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1 INTRODUCTION

Since the completion of the human genome project the capability of genotyping devices
has made an impressive progress. With current state technology it is possible to collect
millions of measures from a subject within a single experiment simultaneously. Con-
sequently, this has led to experimental designs where the number of unknown features
p massively outsizes the number of experimental units n. The data produced by such
designs is usually called high dimensional. The possibility to conduct such experiments
sounds like a gift, but actually the analysis of high dimensional data is extremely de-
manding. Developing statistical methods that are able to separate useful information
from noise is a key challenge and a necessity to prove the utility of such experiments.
In the following I will present different methods and strategies to analyze data from

such experiments and compare them on a real data example and in a simulation study.
For this purpose, I limit the scope of my inquiry to a class of experimental designs called
genome wide association study (abbreviated as GWAS). The following sections of this
chapter will contain a brief exposition of the biological and statistical concepts as well
as the terminology necessary to understand the purpose of a GWAS and the means and
pitfalls in the involved data collection and analysis process.

1.1 Basic Biology

The exposition in Section 1.1 and 1.2 mainly follows the corresponding chapters of [15].

1.1.1 Phenotypes and Genotypes

A phenotype is any observable characteristic of an organism, e.g. height, muscular mass,
eye color, disease status. Typically we are able to observe a significant amount of vari-
ation between individuals of the same species for a phenotype. Biologists attribute this
variation to two general classes of causes. The first class of causes are dispositions within
an organism. These dispositions are called genetic. The totality of these dispositions is
called the genotype of an organism. The second class comprises sources that are external
to an organism. Causes in this class are called environmental. The relative amount of
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1 INTRODUCTION

variability of the phenotype that can be accounted to the genotype is called the heri-
tability of a trait. The way genetic and environmental causes interact in general and
for specific phenotypes is a field of ongoing research, but most of the current biological
research is focused on the genetic aspect.
In eukaryotes1 most of the material that codes the genetic information is located in

the cell nucleus. This material is organized in structures of deoxyribonucleic acid (DNA)
which are called chromosomes. The DNA consists of two strands that are twisted around
each other and form a double helix. Each strand is a biopolymer composed of simpler
units called nucleotides. Each nucleotide contains a nucleobase – either cytosine (C),
guanine (G), adenine (A), or thymine (T) –, a monosaccharide sugar called deoxyribose
and a phosphate group. The nucleotides are joined to one another in a chain by covalent
bonds between the sugar of one nucleotide and the phosphate of the next. The end of
a strand is called 5’ if it corresponds to the phosphate group and 3’ else2. This fact
allows to introduce the notion of direction for a DNA strand. For DNA one strand runs
in the direction 3’-5’ and the other in the direction 5’-3’. The two strands of DNA are
joined together via hydrogen bonds between the nucleobases according to the base pair
rule which says that A ties with T and C pairs with G. These facts are summarized
by the phrase that the two strands of DNA are antiparallel (run in opposite directions)
and complementary (due to the base pair rule). For the purpose of statistical analysis a
chromosome is simply represented as a sequence composed of the four letters A,C,G,T
corresponding to the nucleobases of one of the complementary strings3.
Usually these sequences vary between different subjects of the same species. Given

a specific population of individuals of the same species, positions of the DNA sequence
where a difference between two or more individuals can be observed represent potential
sources of genetic variability that could explain phenotypic variation. These positions
along with the deviations that are observed on these positions are called genetic markers.
For the purpose of explaining a phenotype, it is sufficient to characterize the genotype of
individuals by genetic markers. This concept is further detailed in the next paragraph.

1.1.2 Genetic Variation

The DNA sequence is almost identical between different individuals of a given species,
e.g. for humans 99.9% of all base pairs match. Nonetheless, there are a large number

1A eukaryote is any organism whose cells contain a nucleus and other organelles enclosed within mem-
branes. This taxon also applies to humans.

2This notation is derived form the carbon molecule numbering of the sugar molecule.
3Henceforth, I assume that the direction is the same for all individuals when I make statements involving
more than one subject.
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1 INTRODUCTION

of spots in the genotype where one observes differences between individuals of the same
species. These spots are called polymorphic loci and can extend from a single base pair
location to large stretches of consecutive base pair positions. The observed variants
at such a locus are called alleles. The most prominent examples of genetic variation
are single nucleotide polymorphisms (SNP), microsatellites and copy number variations
(CNV). A SNP is the result of a so called point mutation of a single base pair, e.g. the
two sequences GATTACA and GATTATA show a SNP at their 6th position. Almost
all SNPs have only two alleles, where the more frequent one is called the major allele or
wild type and serves as a reference while the less frequent one is called the variant or
minor allele. A microsatellite is a very short pattern of DNA ranging in length from 2
to 5 base pairs that is repeated a different number of times for individuals of the same
species. They are also called short tandem repeats (STRs) or simple sequence repeats
(SSRs). Copy number variations refer to long stretches of DNA (typically they range
in length from 103 to 106 base pairs) which are repeated a different number of times
(this is the variant of a CNV) in different individuals of the same species. In particular
insertions, deletions and duplications of DNA stretches are counted as CNV.
The number of homologous chromosomes4 differs between species. Diploid organisms

(like humans) have two homologous chromosomes. So, for a diploid organism, the geno-
type at a given locus is represented by a pair of alleles. For example, let us consider a
biallelic locus (e.g. a SNP), with alleles A and a. Then there exist three possible geno-
types AA, Aa and aa. An individual carrying two identical alleles is called homozygous,
and one that carries two different alleles is called heterozygous.

1.1.3 Relationship between Genotype and Phenotype

First and foremost we distinguish between causal and noncausal markers. A noncausative
marker does not influence the phenotype under consideration. This means that the
expected value of the phenotype given a certain manifestation of the marker equals the
expectation of the phenotype for all levels of the marker M , or in short E [Y |M = m] =

E [Y ] for all m ∈ L where L denotes the set of all possible marker manifestations5.
For causative makers geneticists distinguish between two modes of influence called

additive and dominant. Let us consider a simple example to illustrate them. Assume,
that we observe a quantitative trait Y and a biallelic locusM , then we define the following

4These are sets of chromosomes that pair up together and contain genetic information for the same
feature on the same locus.

5We will see in Section 1.1.4, that this distinction must be slightly accommodated to be correct in
reality.
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1 INTRODUCTION

expectations given a certain genotype µ1 = E [Y |M = AA], µ2 = E [Y |M = Aa] and
µ3 = E [Y |M = aa]. Because we assume that the marker is causative, we know that
there exits a pair i, j = 1, 2, 3, for which µi 6= µj .
If µ2 = (µ1 + µ3) /2, which means that E [Y |M = AA] − E [Y |M = Aa] = E[Y |M =

Aa] − E [Y |M = aa], then the effect of the causal SNP is called additive. Otherwise,
the marker is said to have a dominance effect quantified (and defined) as γ := µ2 −
(µ1 + µ3) /2. If d (µ1, µ2) < d (µ1, µ3), than A dominates a and vice versa if otherwise.
For instance, in the extreme case that µ1 = µ2 (which means that the expected value
given the genotypes AA and Aa is identical), allele A completely dominates over a. A is
then called the dominant and a the recessive allele.

1.1.4 Markers and Genetic Linkage

Genetic linkage is the tendency of alleles that are close6 together on a chromosome to be
inherited together. As a result of this tendency one can observe a correlation structure
between genetic markers within a population. This correlation structure is a well defined
function of the distance between two loci for different kinds of experimentally produced
populations but rather complicated for outbred populations. In the latter case biologist
usually speak of linkage disequilibrium to describe the nonrandom association between
two markers. Figure 1.1 on the following page illustrates a typical LD pattern.
The important consequence of linkage disequilibrium for statistical considerations is

that two neighboring markers cannot be treated as stochastically independent. Therefore
one might observe that a noncausal marker is associated with a phenotype due to linkage
disequilibrium with a causal marker. Let us consider the following example to illustrate
this.
Let Y be a quantitative trait with a continuous distribution which is causally influ-

enced by the biallelic marker C, and let M be a noncausal biallelic marker in linkage
disequilibrium with C. Then for all m ∈ {AA,Aa, aa} by definition

E [Y |M = m] =

ˆ
yfY |M=mdy.

The conditional density can be rewritten so that

fY |M=m =
fY,M=m

P (M = m)
=

1

P (M = m)

∑
c∈{AA,Aa,aa}

fY,M=m|C=cP (C = c) .

6The physical distance between two markers is expressed by the number of base pairs between them.
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Figure 1.1: HeatMap illustrating the LD pattern for 90 individual of the CEU HapMap
population. Color is coding the LD measure R2 between the first 250 adjacent
SNPs of ENCODE region ENm010 (after removing identical SNPs). This plot
is taken from [15].

Because Y and M are stochastically independent given C, this simplifies to

fY |M=m =
1

P (M = m)

∑
c

fY |C=cP (M = m|C = c)P (C = c)

=
∑
c

fY |C=cP (C = c|M = m) .

So we get

E [Y |M = m] =

ˆ
y

(∑
c

fY |C=cP (C = c|M = m)

)
dy =

=
∑
c

E [Y |C = c]P (C = c|M = m) .

This equivalence neatly displays the indirect mechanism we assume. We see that the
indirect effect of M is a weighted average of the causal marker effects, so that for the
considered scenario M mediated threw C could appear to be a causal SNP.

This observation combined with the roughly block-like structure of linkage disequilib-
rium (shown in Figure 1.1) establishes the core principle of association studies in outbred
populations. The aim of genome wide association studies is not to track down a causal
marker explicitly but rather to detect a DNA region which hosts such a marker. As we
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1 INTRODUCTION

can now see, it is sufficient to operate with a (well chosen) subset of all possible markers
in order to pursue this goal. This observation is important from an experimental point
of view, because even nowadays array based genotyping devices are only capable to cover
about 20% of the human genome within a single experiment. This has changed with
next generation sequencing, but this is currently still much more expensive compared to
array based genotyping.

1.2 Genome Wide Association Studies

A fundamental genetic premise in the study of phenotype genotype relationships is the
so called common disease7-common variant assumption. This postulate states that the
markers causing a disease will be found in all populations of a species which manifest
that disease and that each marker influencing a disease will have a small additive (or
multiplicative) effect on the expression of the disease. A usual addendum to this postulate
is the assumption that the number of causal markers is moderate. This means that the
number is larger than one, but significantly less than the total number of markers. A
trait with this property is called a complex trait. This is the kind of phenotype usually
addressed by GWAS.
Genome wide association studies have become feasible with the development of SNP

array technology. With a contemporary array it is possibly to measure up to 4 million
markers of an individual within a single experiment simultaneously. In order to perform
this task, SNP arrays utilize the mechanism of hybridization8. In principle an array con-
sists of a carrier (e.g. a glass slide) with probes of short single stranded DNA samples
(20-60 nucleotides long) mounted on it’s surface. With current manufacturing technology
is possible to place these probes very close together. The distance between two neighbor-
ing probes is usually just a few micrometers. To be able to determine which allele of a
marker is present in an individual, probes9 for every allele are placed on the device. The
quantity which is measured is the relative amount of sample DNA (target) that hybridize
on the alleles of a given locus10. From this information, one can infer which type of allele

7In the current context disease is synonymous with phenotype.
8Which means that complementary strains of DNA bind together according to the base pair rule.
9Usually the magnitude of replicates of a probe are of size 103. Identical probes are located in clusters
on the array. The terminus technicus for these clusters are spots. The spatial location of these spots
is well defined for an array, so that we have a fixed correspondence between spatial coordinates and
markers.

10This measurement is usually done indirectly with the following method. Before a sample of DNA is
exposed to an array, the DNA sample taken from an individual underwent a special preparation.
During this preparation the DNA is broken in small pieces, such that it fits the length of the chip
probes, and amplified, which means that replicates of these pieces are produced. Finally a fluores-
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is present at a locus. For example, consider a biallelic locus. If all DNA binds at probe
A the conclusion would be that the individual carries the homozygous genotype AA. If
half of the DNA binds at probe A and the other half at probe a the individual would
be heterozygous at that locus. In practice this process, called genotype calling, involves
a lot of statistical techniques due to imperfections in the technical process and the pro-
cess of hybridization itself. Even very sophisticated algorithms are usually not able to
decide unambiguously upon a genotype of a SNP for all markers and for all array chips
in a study. As a consequence the analyst of such data have to deal with the problem of
missing values. This problem is of special importance if the analyst wants to apply more
advanced methods which assume complete data.

1.2.1 Imputation

It is a common place within Imputation Theory to distinguish between missing values
due to random causes and missing values due to systematic causes. A systematic cause
could be for example, that the genotype calling failed for a particular marker for a large
percentage of individuals in a study. Then this marker will be excluded from further
analysis. A systematic missing pattern is also given if the calling quality of all markers
on a particular chip is poor due to problems during the processing of the array in the
lab. Then the entire data from this chip will be excluded from further investigations.
On the other hand if missing values seem to be sporadic, the application of imputation
algorithms permits inference of the missing genotype states.
Imputation methods base their estimates on two sources of information, namely the

genotype data available from the study sample and data published in reference panels.
The conceptual complexity of these methods ranges from very simple to highly complex.
More advanced methods also go beyond the task of simply filling up random gaps in the
data, and try to infer the genotype of markers not even present in the study data.

1.2.2 Models and Strategies for Analyzing GWAS Data

Currently the most common strategy applied to analyze GWAS data are single marker
tests [18]. There exists a variety of tests developed in this context for both quantitative
and dichotomous11 phenotypes. But for convenience and flexibility it is useful to treat

cent dye is attached to one end of the probes. After the sample was presented to the array and
hybridization took place, the dye is excited and the emitted light is collected via a photo sensitive
chip. This image is the source data for genotype inference. Usually array manufactures provide a
software together with a chip so that this image data can be easily transformed into probe intensities.

11An example of such a phenotype is the presence or absence of a certain disease. Such studies are
usually called case-control study.
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1 INTRODUCTION

both cases under the unifying frame of generalized linear regression models [21, 25].
In its broadest generalization a regression function links a particular deterministic

feature of the random variable Y to some determining factors X. Mathematically this is
expressed by

C (Y |X) = g(X).

Restricting the regression function g (X) to be a function η of a linear combination
of X we arrive at the class of generalized linear regression models (GLM) with the
mathematical representation

C (Y |X) = η (Xβ) ,

where η is called the link function. Examples for this class are the well known linear and
logistic regression models. The former is commonly expressed as

E [Y |X] = Xβ

with the additional assumption that Y ∼ N
(
Xβ, σ2I

)
. For the latter, let Y ∈ {0, 1} be

a Bernoulli distributed random variable with p := P (Y = 1|X) and η the logit function,
then we arrive at the familiar binary logistic regression model

E [Y |X] = P(Y = 1|X) = logit (Xβ) .

In the context of association studies it is clear that Y represents the phenotype under
investigation and X the genotype. In this case the restriction to a linear model corre-
spond to the notion expressed in the common disease - common variant postulate that
the individual markers cause the phenotype independent of each other and that their
contribution is additive with the additional assumption that there is no epistasis12.
In Section 1.1.3 we pointed out that geneticists distinguish between several types of

relationship between genotype markers and phenotypes. To incorporate these patterns
into statistical models it is necessary to accommodate the coding of markers. For illus-
trative purposes let us consider a biallelic marker, where A represents the major allele.
First assume that the marker has an additive effect. As already pointed out this means
that E [Y |M = AA]−E [Y |M = Aa] = −c and E[Y |M = aa]−E [Y |M = Aa] = c where
c is some constant. This means that every occurrence of an allele a adds c to the effect

12Following [11] epistasis describes the situation that the effect of one marker depends on the mani-
festation of another maker. This kind of effect regulation could be modeled as a (multiplicative)
interaction term in a regression model. So given m markers there are C(m, 2) possible two way in-
teraction terms, where C(n, k) denotes the binomial coefficient n over k. The effect regulation could
be even more complex and include k makers, then there are C (m, k) interaction terms.
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1 INTRODUCTION

of the marker. We can easily express an additive effect in a linear model by introducing
the following coding G := {AA = −1, Aa = 0, aa = 1}. The resulting model (including
an intercept term) will be

E[Y |M ] = β0 + β1G (M) .

It follows that β0 = E [Y |M = Aa] and β1 = c. Thus additive effects can be seamlessly
expressed in a GLM, but what about dominance?
As we have seen in Section 1.1.3 dominance is defined as a directed shift γ of the loca-

tion of E [Y |M = Aa] away from the midpoint between E [Y |M = AA] and E [Y |M = aa].
Formally this means that E [Y |M = AA] − E [Y |M = Aa] = −c + γ and E[Y |M =

aa] − E [Y |M = Aa] = c + γ where c and γ are some constants. In order to ad-
just our GLM for dominance effects we can incorporate another term D := G2 =

{AA = 1, Aa = 0, aa = 1}. The resulting model will be

E[Y |M ] = β0 + β1G (M) + β2G
2 (M) .

Following our previous considerations it is obvious that β2 = γ.
Now, we have seen that GLMs provide all the means to model the phenotype genotype

relation in a very straight forward way. Besides, thanks to the well developed statistical
theory for GLMs [25], we can also construct statistical tests for formally testing whether
a marker influences a phenotype.
An advantage of GLMs over single marker tests is that they allow multimarker analysis.

Because most GWAS are conducted to study complex traits, which are by definition
influenced by a large number of markers, GLMs open the possibility of a more powerful
way to analyze GWAS data.
That this assertion is indeed true has been proven by Frommlet et al. [18]. I will

briefly repeat this argument. Let yi, i ∈ {1, ..., n} denote measurements of a normally
distributed quantitative trait with

(
µ, τ2

)
taken from n individuals. Furthermore, let xij

represent the genotype of SNP j from individual i, where j ∈ {1, . . . , p}. Assume that
p� n, and that J∗ = {j1, . . . , jk} denotes the set of causal SNPs for this phenotype. If
we further assume that the joint effect of this SNPs is a simple linear combination of the
individual effects, then the true model for the phenotype expression of individual i will
be

MJ∗ : yi = β0 +
∑
l∈J∗

βlxil + εi,

where εi ∼ N
(
0, σ2

)
summarizes the effect of environmental causes. If this data is

analyzed with single marker tests, then each marker j is analyzed without considering

9
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any of the other ones. Hence, this test strategy limits the scope of explanatory models
to those of the form

Mj : yi = β
(j)
0 + β

(j)
1 xij + ε

(j)
i .

The usual F-test forMj compares the proportion of genotype variance explained by SNP
j compared to the proportion left unexplained, thus it could be used to detect causal
SNPs. Based on least squares regression the F-statistic for SNP j is calculated as

Fj = (n− 2)
MSSj
RSSj

,

where RSSj =
∑n

i=1

(
yi −

(
β̂

(j)
0 + β̂

(j)
1 xij

))2
and MSSj =

∑n
i=1 (yi − ȳ)2 −RSSj . For

both statistics Frommlet et al. derived the distribution under the causal model. This
allows to calculate the power of the tests based on Fj . So far the setting of the example
requires just the common assumptions that underlie genome wide association studies.
To simplify things for exposition, let us additionally assume that the SNPs in MJ∗ are
orthogonal13 and that the squared scaled effect size τ =

nβ2
l

σ2 is equal for all l ∈ J∗. With
this additional assumptions the distributions for RSSj and MSSj are independent and

RSSj ∼ σ2χ2 (n− 2, (k − 1) τ)

MSSj ∼ σ2χ2 (1, τ)

Where χ2 (df, ncp) denotes the noncentral chi-squared distribution with df degrees of
freedom and noncentrality parameter ncp. Large values of Fj indicate a significant de-
viation from the null hypothesis that β(j)

1 = 0. Given a sample size n, in order that Fj
is large either RSSj must be small or MSSj must be large. For any τ the distribution
of MSSj is fixed but the distribution of RSSj depends on the true number of causal
SNPs. The larger k the larger will be the probability for large RSSj values. Hence, the
power of a test based on Fj decreases uniformly over τ with increasing k. The results
of an illustrative simulation study are summerized in Figure 1.2 on the next page, which
clearly demonstrate the poor power of single marker tests in the face of a complex trait
even when the (scaled quadratic) effect size is rather large. Even if the assumption of
orthogonality is hardly met in a GWAS and it is also quite artificial to assume that
all causal SNPs have equally strong influence the main conclusion of these deliberations
should hold true, anyway.
Therefore single marker tests are not particularly well suited to analyze GWAS for

13This means that [1,x.j1 , . . . ,x.jk ]
′
[1,x.j1 , . . . ,x.jk ] = nIk+1

10
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Figure 1.2: Power to detect a causal SNP with single marker tests, when k SNPs are
causal. Other simulation parameters are n = 2000 and α = 10−6.

complex traits and in order to increase the power of the involved statistical tests one
should consider multi marker models. Given that the analyst of a GWAS usually doesn’t
know which SNPs are good proxies for the causative SNPs of a trait, this naturally raises
the problem to find the causal SNPs. Hence, we have to deal with a model selection
problem.

1.2.3 Sample Considerations and Population Structure

Ideally GWAS are based on a large number of unrelated individuals, where unrelated
means that the relationship between the individuals is distant enough that no linkage
due to relatedness between them is observed. This assumption is important for many
statistical tests. If this assumption is violated the properties of these tests can not be
guaranteed.
Another fundamental assumption in association studies is random mating. This means

that all individuals in a population are potential partners. In reality this assumption is
hardly met and one is confronted with a population structure. This fact can have se-
vere impact on the conclusions drawn from a GWAS, if the analysis is not appropriately
adjusted. To illustrate the distorting impact of population structure on OLS-based in-
ference I will first discuss the consequences in general followed by presenting a remedy
for regression models.

11
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1.2.3.1 The Impact of Population Structure on OLS Estimator based Inference

Let us assume the standard situation for estimating a multiple linear regression model,
where Y is a n-vector, X a (n× p)-matrix and β a p-vector. Further let E [Y |X] = Xβ

and V ar (Y |X) = σ2In where In is the (n× n)-identity matrix. Then we know that the
OLS estimators for β and σ2 are

β̂ols =
(
XtX

)−1
XtY

respectively

σ̂2
ols =

Y tY − Y tX
(
XtX

)−1
XtY

n− p
=

1

n− p
tr
((
In −X

(
XtX

)−1
Xt
)
Y Y t

)
,

with conditional expected values of

E
[
β̂ols|X

]
=
(
XtX

)−1
XtE [Y |X] = β

and
E
[
σ̂2
ols|X

]
=

1

n− p
tr
((
In −X

(
XtX

)−1
Xt
)
V ar (Y |X)

)
= σ2.

The conditional bias of an estimator θ̂ for the true parameter θ is defined as

B
[
θ̂|X

]
:= E

[
θ̂|X

]
− θ.

Hence, both estimators are unbiased under these assumptions. Thus,

ˆV ar
(
β̂ols|X

)
= σ̂2

ols

(
XtX

)−1

is also an unbiased estimator of the variance of β̂ols in this setting.
So far we have only considered the case that the outcomes are uncorrelated. Now, we

want to investigate the behavior of β̂ols, σ̂2
ols and V ar

(
β̂ols|X

)
when the outcomes are

correlated but we ignore this while we construct our estimators. Following Stram [34],
we assume that the covariance between the observations is V ar (Y |X) = σ2In + γ2K,
where K is positive definite. Then β̂ols is still conditional unbiased.
Now, let us calculate the conditional bias of the variance of β̂ols. Under the actual

12
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model the true variance of our estimator is

V ar
(
β̂ols|X

)
=

(
XtX

)−1
XtV ar (Y |X)X

(
XtX

)−1

=
(
XtX

)−1
Xt
(
σ2In + γ2K

)
X
(
XtX

)−1

= σ2
(
XtX

)−1
+ γ2

(
XtX

)−1
XtKX

(
XtX

)−1

and the conditional expectation of the variance estimator will be

E
[

ˆV ar
(
β̂ols|X

)
|X
]

= E
[
σ̂2
ols|X

] (
XtX

)−1

=
1

n− p
tr
((
In −X

(
XtX

)−1
Xt
)
V ar (Y |X)

) (
XtX

)−1

=

[
σ2 +

γ2

n− p

(
tr (K)− tr

((
XtX

)−1
XtKX

))] (
XtX

)−1
.

So, B
[

ˆV ar
(
β̂ols|X

)
|X
]
is

γ2
(
XtX

)−1
[

1

n− p

(
tr (K)− tr

((
XtX

)−1
XtKX

))
Ip −XtKX

(
XtX

)−1
]
.

For illustrative purposes let us now consider the special case that p = 2 and that
X = [1,x], where 1 denotes the n-vector whose components are all 1 and x is a n-vector
that represents the variable of interest. Without loss of generality let x be centered, this
means that 1′x = 0. Under this additional assumptions the conditional bias for the slope
parameter, which is the (2,2)-element of B

[
ˆV ar
(
β̂ols|X

)
|X
]
, reduces to

γ2

xtx

[
tr(K)

n− 2
− 1tK1

n (n− 2)
− xtKx

xtx

(
1 +

1

n− 2

)]
.

For large n this expression is approximately

γ2

xtx

[
tr(K)

n
− 1tK1

n2
− xtKx

xtx

]
.

If we look at the bias as a function of x we see that the expected bias is most severe
when the quadratic form xtKx (s.t xtx = const) reaches an extremum. The maxi-
mizer for this problem is the eigenvector which correspondents to the largest eigenvalue
and the minimizer is the eigenvector that corresponds to the lowest eigenvalue. We
can also see, that the bias is negative – which means that the estimator on average
underestimates the true variance – when xtKx

x′x
> tr(K)

n − 1tK1
n2 . This systematic under-
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estimation of V ar
(
β̂ols|X

)
will lead to anti-conservative tests and confidence intervals.

One consequence of this is an increased probability to detect false positive signals. On
the other hand if xtKx

x′x
< tr(K)

n − 1tK1
n2 , then the estimator systematically overestimates

V ar
(
β̂ols|X

)
which in consequence leads to over-conservative tests. A result of this is

a decreased power to detect true positive signals. Obviously, neither one is a favorable
situation.
So far we have only looked at a specific realization of x. Let us now consider the case

that x is a random vector with E [x] = 0, E
[
xx
′
]

= τ2K14 where all entries of K are
greater or equal to 0 and let λ denote the vector whose components are the eigenvalues
of K. Then the expected value of the bracket multiplied by xtx of the approximate slope
parameter bias will be

E
[
tr

(
tr(K)

n
xtx− 1tK1

n2
xtx− xtKx

)]
<

tr(K)

n
tr
(
E
[
xxt

])
− tr

(
KE

[
xxt

])
= τ2

(
tr(K)2

n
− tr (KK)

)
Because the trace is equal to the sum of the eigenvalues of a matrix, and the eigenvalues
of KK are the squared eigenvalues of K the last expression equals

τ2

[
‖λ‖21
n
− ‖λ‖22

]
.

Using the fact ‖λ‖1 ≤
√
n‖λ‖2, we can see that the expected value of this condition

is smaller than zero. Hence, we are expecting that the estimator underestimates the
variance of β̂ols and we are in a situation where we no longer control the Type I Error
probability and must fear potentially many false positive results.
In this section I have only examined the effect of a misspecified dependence structure

of the outcome for single marker tests based on OLS regression, but the results carry
over to multimarker models and GLMs [34].
At first the assumption that the dependence structure of Y could be written as

V ar (Y |X) = σ2In + γ2K seems arbitrary, but it is actually highly appropriate to model
deviations from the homogenous population and random mating assumptions such as
relatedness, hidden non-mixing populations, incomplete admixture or other factors that
act as a confounder for genetic association [34]. But this assumption also makes sense
from a genetic point of view. As mentioned in Section 1.1.1 geneticists postulate that the

14This assumption is met for instance for hidden non-mixing strata when the Balding-Nichols model
holds true.
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variation of a phenotype can be explained either by environmental factors or by geno-
type variation. If we add the common assumption that these sources are stochastically
independent, then the proposed dependence structure (where K represents the genetic
similarity between the sampled individuals) reflects those considerations.

1.2.3.2 Regression based Correction for Population Structure

One consequence of the results of the last section is that the distortion induced by a
population structure is not homogeneous among all SNPs. SNPs that are located in the
span of the largest15 eigenvectors of K will show the most severe distortion of their test
statistics. One of the most common methods to deal with this problem was suggested
by Price [28]. Essentially he proposed the following five step procedure

1. Find an estimator K̂ for K.

2. Compute the eigenvector/eigenvalue pairs of K̂.

3. Select the l eigenvectors with the l largest eigenvalues.

4. Transform the phenotype data vector y and all marker data vectors xk such that
they are orthogonal to the l selected eigenvectors. This is usually achieved by cal-
culating the residuals of a linear regression of these vectors on the selected eigen-
vectors.

5. Calculate the statistics based on the residual vectors.

In the context of linear multiple regression step 4 can be incorporated in the OLS-
estimator of the parameter vector β [26] by considering the model

E [Y |X,E] = Xβ + Eγ,

where E is the matrix whose columns are the l selected eigenvectors of K̂. In this way
the resulting test statistics for β̂ are adjusted for the population structure. So it is easy
to incorporate Prices’ approach in the context of regression models. What is left is the
specification of an estimator for K, a computational efficient method to compute the
eigenvalue/eigenvector pairs of it and a method to choose l. Price [28] proposed the
correlation matrix between individuals based on the observed marker phenotypes as an
estimator for K. Hence

K̂ :=
1

M
XsX

t
s,

15Here large refers to an ordering induced by the eigenvalues of the eigenvectors.
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where Xs is a (N ×M)-matrix whose columns are the standardized genotypes for each
individual. Because K̂ is a correlation matrix the tasks stated in step 2 an 3 are iden-
tical with the computations needed to perform principal components analysis (PCA).
This is a standard procedure implemented in a lot of software packages. Once the eigen-
value/eigenvector pairs for the largest eigenvalues are computed one can for instance use
a screeplot to choose l.

1.3 Statistical Methods for Highdimensional Data Analysis

1.3.1 Multiple Testing

The theory of multiple testing, or multiple comparison as it is sometimes called, is con-
cerned with the problem of testing m > 1 hypotheses in a sample simultaneously. To
formalize the problem let us consider the situation where m tests are performed for a
given sample X with corresponding pairs of null hypothesis H(j)

0 and alternative hypoth-
esis H(j)

A for j = 1, . . . ,m. Let m0 ≤ m denote the number of tests for which the null
hypothesis is correct. Further, let the test decisions for each of the m tests be based on
the corresponding test statistic T1 (X) , T2 (X) , . . . , Tj (X) , . . . , Tm (X) . Statistical tests
are constructed in such a way that the null and the alternative hypothesis are mutually
exclusive. Consequently a statistical test can yield one of the following four possible
results:

1. H0 is true and the test accepts H0.

2. H0 is true but the test rejects H0 (this is called a Type I error).

3. HA is true but the test accepts H0 (this is called a Type II error).

4. HA is true and the test rejects H0.

Table 1.1 provides the standard notation to summarize the outcome of m test results.
In this table V denotes the number of Type I errors that have happened and T the
number of Type II errors. Naturally we would like both numbers to be as small as
possible, but unfortunately this optimal situation is not achievable with a finite sample
size because the probability of a Type I error and the probability of a Type II error are
antagonistically related for a statistical test. In concreto this means that a low Type
I error probability necessarily leads to an increased Type II error probability and vice
versa. Usually the Type I error probability is fixed at a certain level α ∈ (0, 1) (named
the α-level of the test) and one chooses or constructs a test for a certain situation such
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H0 accepted H0 rejected Total
H0 is true U V m0

HA is true T S m−m0

Total m−R R m

Table 1.1: Notation for multiple testing

that the Type II error probability is as small as possible, or equivalently that the power
of the test – defined as the probability to reject the null hypothesis when the alternative
is true – is maximized. So the most important property of a statistical test is its ability
to control the Type I error probability at α, which means that P (reject H0) ≤ α where
P denotes the probability measure under H0. An important question is how to generalize
this property, the ability to control the probability of a certain misjudgment, to the
multiple testing situation.
A large number of measures have been suggested for this purpose [23]. Common gen-

eralizations are the per-family error rate PFER := E [V ], the per-comparison error rate
PCER := E[V ]/m and most important the family wise error rate FWER := P (V > 0)

which is the probability to make at least one Type I error within the family of m tests.
Unfortunately, for very large m, controlling the FWER at an acceptable level leads to
procedures with very low power to detect true signals in the data. This implies that
such a procedure will miss a lot of true signals and therefore have a high probability to
generate Type II errors.
One of the most influential innovations in multiple testing was the rediscovery and

popularization of the False Discovery Rate (FDR) as a generalized measure of Type I
error by Bejamini and Hochberg [3]. The FDR is formally defined as

FDR := E [V/R] with V/R = 0 if R = 0

or equivalently FDR = P (R > 0)E [V/R|R > 0]. So, as we can easily see, the FDR
is designed to control the expected proportion of incorrectly rejected null hypotheses
among the rejected null hypotheses. Under the total null, which means that m0 = m,
it holds that V/R = 1 and consequently E [V/R|R > 0] = 1 whenever R > 1, so that the
FDR coincides with FWER in this situation. If m0 < m, than 0 < E [V/R|R > 0] <

1. Therefore the FWER is strictly bigger than the FDR. So FDR is a less stringent
generalized Type I error rate than the FWER, which allows for a potential gain in power.
In the subsequent sections the most prominent procedures for controlling the FWER and
the FDR are presented.
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1.3.1.1 Controlling the Family Wise Error Rate

There exists a huge variety of procedures that guarantee control of FWER in different
multiple testing situation. I limit my exposition to the most popular procedure, namely
the Bonferroni correction and two of its variants the Bonferroni-Holm step-up and the
Hochberg step-down procedure.
Let us first define the event Bj :=

{
H

(j)
0 rejected

}
. For the corresponding test

statistic Tj and an associated critical value Tcrit,αj an equivalent characterization is
Bj =

{
Tj ≥ Tcrit,αj

}
. By definition the critical value for a test statistic is chosen such

that P (Bj) = αj where αj is the α-level of the jth-test. Without loss of generality we
assume that hypotheses are ordered, so that the null hypothesis is true for the first m0

hypotheses. Thus, we can write

FWER = P (V > 0) = P

m0⋃
j=1

Bj

 .

It follows from the sub-additivity of the probability measure that

FWER ≤
m0∑
j=1

P (Bj) =

m0∑
j=1

αj ≤
m∑
j=1

αj .

Therefore, whenever
∑m

j=1 αj is bounded by some α ∈ (0, 1) then also the FWER for
the m simultaneous tests is bounded by α. This fact is exploited by the Bonferroni
procedure. The Bonferroni correction suggests to choose the individual αj ∈ (0, 1)

such that
∑m

j=1 αj = α for some predefined α ∈ (0, 1) and reject H(j)
0 whenever pj :=

P (Tj ≥ tj,obs) ≤ αj where tj,obs is the observed test statistic for test j. The standard
choice is αj = α/m.

We have seen that the argument behind the Bonferroni correction makes no use of
the actual distribution of (T1, T2, . . . , Tm). Therefore this procedure has the favorable
property that it guarantees FWER control for all possible joint distributions of the test
statistics, but on the other hand the actual FWER may be much smaller than the nominal
α. For instance this is the case when m0 � m or when the test statistics are positively
correlated. A multiple testing procedure with this property is called conservative. This
property is typically associated with a reduced power to detect true signals in the data.
An improvement (in terms of a power gain) of the Bonferroni correction is the Bonferroni-

Holm procedure, which results from applying the closed testing principle [24]. Let
p[1] ≤ p[2] ≤ · · · ≤ p[j] ≤ · · · ≤ p[m] be the ordered sequence of p-values obtained by
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the m individual tests and H [j]
0 the corresponding sequence of null hypotheses. Let k be

the smallest index j such that p > α/m+1−j. Then the Bonferroni-Holm procedure rejects
all m hypotheses if no such k exists and rejects all H [j]

0 with j < k otherwise.
In contrast to the Bonferroni adjustment the acceptance or rejection of a particular

hypothesis H(j)
0 depends on the value of all other test statistics Ti for i 6= j. The benefit

of this is an enlarged rejection region and thus an increased power compared to the
Bonferroni adjustment.
The Bonferroni-Holm procedure is an example of a so called step-down procedure.

Stepwise procedures are characterized by the fact, that they make test decisions based
on an ordered sequence of p-values. Step-down procedures start from the smallest one,
each time checking if a condition is satisfied and stop the first time this condition is met.
Then all null hypotheses with a smaller index than the stopping index are rejected. For
each step-down procedure one can define a corresponding step-up procedure. In contrast
to a step-down procedure the step-up procedure starts with the highest p-value and
compares p-values with a certain criterion in a descending order. The procedure stops
when the condition is not satisfied for the first time and rejects all null hypotheses with an
index smaller or equal to the stopping index. Let kdown and kup denote the corresponding
stopping indices for both procedures, then it always holds that kup ≥ kdown. Therefore a
step-up procedure is at least as powerful as its corresponding step-down procedure, but
usually it is more difficult for a step-up procedure to control the FWER at a nominal
level [15].
The step-up procedure which corresponds to the Bonferroni-Holm procedure is called

Hochberg procedure. Hochberg demonstrated [22] that this procedure controls the FWER
at a nominal level whenever the Simes inequality (see [31] for definition) holds, which is
not always the case.

1.3.1.2 Controlling the False Discovery Rate

In a seminal paper Benjamini and Hochberg [3] discussed the following step-up procedure
to control the FDR which was introduced by Simes in [33]. Named after the former
authors this method is called the Benjamini-Hochberg procedure, and is one of the most
commonly applied procedures to control the FDR.
Let p[1] ≤ p[2] ≤ · · · ≤ p[j] ≤ · · · ≤ p[m] be the ordered sequence of p-values obtained

by m individual tests and H [j]
0 the corresponding sequence of null hypotheses. Further,

let k denote the largest index j such that p[j] ≤ jα/m, and reject all H [j]
0 with j ≤ k.

Benjamini and Hochberg proved under the assumption of independent test statistics
that this procedure controls the FDR at a level of (m0/m)α. Benjamini and Yekutieli
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[4] also proved that this procedure controls the false discovery rate at the same nominal
level when the test statistics Tj are positive regression dependent. In the same article the
authors also propose a conservative modification of the Benjamini-Hochberg procedure
that controls the FDR at a given nominal level for any form of dependence structure
between the test statistics.

1.3.1.3 Bayes Oracle

A different perspective on multiple testing is offered when Bayesian statistical decision
theory is employed to formalize and analyze this problem.
Basically we can partition the simultaneous tests in two classes, the class C0 of tests

for which the null hypothesis is true and the class CA of tests for which the alternative
hypothesis is true. Let p denote the fraction of tests that belongs to CA. Let F0 denote
the distribution function for the test statistics when the test belongs to C0 and FA denote
the distribution function for the test statistic when the test belongs to CA. So the test
statistics Tj of the simultaneous tests are distributed according to the following mixture

Tj ∼ (1− p)F0 + pFA

Let us also define a loss-function that assigns the loss δI to a Type I Error, the loss
δII to a Type II Error and loss 0 in case of a correct test decision. The total loss
for the m simultaneous tests is simply defined as the sum of losses over all tests. If
δI = δII = 1, then the total loss is identical to the number of misjudgments. The function
that minimizes the expected total loss R (which is called risk) is called the Bayes classifier
or Bayes oracle. In practice this optimal test procedure can not be applied, because it is
based on unknown quantities and thus the risk of any feasible procedure is always bigger
than the Bayes risk Ropt (which is the risk of the Bayes oracle). But it can serve as a
theoretical benchmark measure.
Frommlet et al. [16] called a procedure asymptotically Bayes optimal under sparsity

(ABOS) if the ratio R/Ropt converges to 1 under an asymptotic scheme satisfying m→∞,
nm →∞, pm → 0 and 2 log(p)/n→ C ∈ [0,∞) (for fixed losses). Because there exists more
than one possible asymptotic regime that satisfies the previous conditions a procedure is
always ABOS with respect to a specific regime.
In the same article Frommelt et al. derive conditions under which the Bonferroni

correction with FWER level α and the Benjamini-Hochberg procedure with FDR level
α are ABOS. They proved that α could be kept constant only when n ∝ log (m). When
n increases faster, than αn must converge to zero at O (1/

√
n) . Frommlet et al also
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demonstrated that given n ∝ log (m) the Bonferroni correction is ABOS just in the case
that p ∝ 1/m, while the FDR is ABOS when p ∝ m−β for any β ∈ (0, 1].

1.3.2 Model Selection

In Section 1.2.2 we have seen that regression models are very well suited for modelling
GWAS data. We have also seen that single marker tests are a poor strategy for analyzing
GWAS data because of the low power of marginal tests. So instead of looking at each
SNP individually and select them according to the results of multiple testing adjusted
single marker tests one can switch to a multi marker perspective and reformulate the
task so that we face a model selection problem.
One way to perform model selection is to construct a measure to rank the models and

decide based upon this ranking which model is the best. This measure is called a model
selection criterion. The two most prominent examples are Akaike’s Information Criterion
(AIC) and the Bayesian Information Criterion (BIC). Both criteria are presented in the
subsequent sections together with some modifications to fit the needs of high dimensional
statistics. But in advance, I would like to make a general comment on model selection
in a high dimensional setting and in particular in its application to GWAS data.
Both AIC andBIC require to calculate the criterion for every candidate model in order

to select the best one. However, in a usual GWAS the number of markers16 astronomically
exceeds the number of individuals. Exacerbating this already unfavorable fact geneticists
introduce even more complexity in the model space by their desire to study dominance
effects or epistatis. Summarizing the problem, in a GWAS the analyst is confronted
with a model universe that is so vast that it is infeasible to calculate the model selection
criterion for each model on modern desktop workstations. Even more problematic is
the fact that it is usually not possible to calculate these criteria when the number of
regressors m entering a model exceeds the sample size n.
On a first glance it seems that model selection could not be applied to GWAS at all,

but what helps is the fact that only a comparable small number of markers are actually
causative. Abstracting the GWAS context, this idea plays a prominent role in high
dimensional statistics and is known as sparsity [19, 15]. For the problem sketched in
the previous paragraph this means that we can usually limit the set of candidate models
to models of size k (number of regressors in the model) with k � n. But even then
this subspace can be so enormous that it is infeasible to calculate the criterion for all

16For a typical GWAS the number of genetic markers p is between 105 to 107 and usually between 100 to
1000 times the number of sampled individuals. This numbers are already impressive, but the number
of potential models is 2p!
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models. Therefore complete enumeration is not an option and most software packages
and programs that perform model selection for GWAS have some sort of search strategy
implemented to find the best model (in the sense of some criterion).

1.3.2.1 The Likelihood Function

The likelihood function plays a central role in a lot of branches of contemporary statis-
tics and it also does in model selection. Assume that n observations are sampled inde-
pendently out of a homogenous population so that Y1, Y2, . . . , Yn are independent and
identically distributed with density function fθ and parameter θ ∈ Θ ⊂ Rk where Θ is
an open subset. Then the likelihood function L (θ|Y1, . . . , Yn) : Θ→ R+ is defined as

L (θ|Y1, . . . , Yn) := f (Y1, . . . , Yn; θ) =

n∏
j=1

fθ (Yj) .

For example let us consider the linear regression model with variable selection, which will
be very important for the following discussion. To fix notation, let Sr ⊂ {1, 2, . . . ,m}
denote a set of indices that characterizes the subset of regressors which are included in a
given model Mr. So each observation Yi follows the model

Mr : Yi = β0 +
∑
j∈Sr

βjxij + εi

where εi ∼ N
(
0, σ2

)
independently for i = 1, . . . , n and σ2 > 0 is known. For this model

Θ = (β0, βSr) ⊂ R1+|Sr| with dimension k = |Sr| + 1. Then, the likelihood function for
this model is

L (θ|Y1, . . . , Yn) =
1√
2πσ

exp

(
−RSSr

2σ2

)
,

where

RSSr :=

n∑
i=1

yi − β̂0 −
∑
j∈Sr

β̂jxij

2

is the residual sum of square for the fitted model Mr and θ̂r =
(
β̂0, β̂Sr

)
denotes the

maximum likelihood estimator (MLE), which is defined as θ̂r := argmaxL (θ|Y1, . . . , Yn).
In this model the maximum likelihood estimator is identical to the ordinary least squares
estimator (OLS).
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1.3.2.2 Akaike’s Information Criterion

Fundamental for the derivation of the AIC is the specification of a quasi-distance measure
between two different densities. As we have seen in the previous sections a model can be
characterized by the density function fθ. Assume that f∗ is the true model. Obviously
we would like to select a model fθ that is close to f∗. In the derivation of the AIC [2]
Akaike measured the distance between two models by the Kullback-Leibler divergence

I (f∗, fθ) :=

ˆ
x∈Ω

f∗ (x) log

(
f∗ (x)

fθ (x)

)
dx.

The Kullback-Leibler divergence measures the information that is lost when f∗ is ap-
proximated by fθ. Consequently we want to choose θ such that I (f∗, fθ) is as small
as possible. In practice this is not possible, because f∗ is unknown. Instead Akaike
demonstrated that it is possible to estimate the expected Kullback-Leibler divergence
EY
[
I
(
f∗, fθ̂

)]
, where θ̂ denotes the maximum likelihood estimator, up to a constant.

Under certain technical conditions it holds that

EY
[
I
(
f∗, fθ̂

)]
= − logL (θ|Y1, . . . , Yn) + kr + const,

where kr is the dimension of the model. Utilizing this fact Akaike defined the AIC as

AIC := −2 logL (θ|Y1, . . . , Yn) + 2kr.

To perform model selection one has to choose the model with the lowest AIC out of
a set of candidate models. Looking at the definition of the AIC, we note the interesting
fact that the AIC belongs to the class of penalized log-likelihood selection criteria.
Criteria of this class are composed of two terms. The first term is proportional to

logL (θ|Y1, . . . , Yn) and measures the fit of the model to the observed data. Typically
the model fit increases, this is expressed by an increased likelihood, with the number of
model parameters (model dimension). The second term is a penalty term that counteracts
this effect so that more complex models receive a higher penalty.

1.3.2.3 Bayesian Information Criterion

In order to express the key ideas leading to the BIC we first introduce the following nota-
tion. Let Y = (Y1, Y2, . . . , Yn) be a random n-vector with density function corresponding
to model Mr denoted by fr (Y |θr). When we fix Mr and Y then fr (Y |θr) : Θr → R+

is again a likelihood function. To achieve a full specification of the model in a Bayesian

23



1 INTRODUCTION

sense we also need to define the prior distribution for the kr-vector θr denoted by gr (θr)

and a prior distribution for Mr denoted by π (Mr). Using Bayes theorem the posterior
probability for a model after observing Y is

P (Mr|Y ) ∝ P (Y |Mr)π (Mr) ,

where
P (Y |Mr) =

ˆ
Θr

fr (θr|Y ) gr (θr) dθr.

In Bayesian model selection one chooses the model with the highest posterior probability,
which is the key idea behind the BIC.

In practice the computation of P (Mr|Y ) is a time consuming task that requires com-
putational intensive techniques like Markov Chain Monte Carlo (MCMC). Schwarz’s [32]
idea was to drastically reduce the computational burden by approximating the integral
P (Y |Mr) with the Laplace-Approximation for large samples. In the rest of this section I
will heuristically sketch the arguments involved in the derivation of BIC for sufficiently
nice behaving densities.
Let us start by looking at the following quantity

S (Mr|Y ) := −2 logP (Mr|Y ) = −2 logP (Y |Mr)− 2 log π (Mr) + const.

In order to simplify this expression Schwarz uses the Laplace-Approximation to approxi-
mate P (Y |Mr). By taking the second order Taylor expansion of log fr (Y |θr) around its
maximizer θ̂r (which is identical to the maximum likelihood estimator) one obtains

log fr (θr|y) ≈ log fr

(
θ̂r|y

)
− 1

2

(
θr − θ̂r

)t [
nJ̄
(
θ̂r, y

)](
θr − θ̂r

)
,

where J̄
(
θ̂r, y

)
:= − 1

n

∂2 log fr(θ̂r|y)
∂θr∂θtr

is the average observed Fisher information matrix.
Thus

fr (θr|y) ≈ fr
(
θ̂r|y

)
exp

(
−1

2

(
θr − θ̂r

)t [
nJ̄
(
θ̂r, y

)](
θr − θ̂r

))
,

and for θr ≈ θ̂r

P (Y |Mr) ≈ fr
(
θ̂r|y

)ˆ
Θr

exp

(
−1

2

(
θk − θ̂k

)t [
nJ̄
(
θ̂r, y

)](
θk − θ̂k

))
gr (θr) dθr.

We know that J̄
(
θ̂r, y

)
is positive definite for every n, because θ̂k is the maximizer of

log fr (Y |θr). Thus, for large n, the exponential term of the integrand rapidly decreases

24



1 INTRODUCTION

towards zero for any point in the neighborhood of θ̂k. Hence, the exact form of gr (θr) is
almost irrelevant. Substituting gr (θr) by a constant (and for simplicity setting gr (θr) =

1) the integral can be easily solved and one obtains

P (Y |Mr) ≈ fr
(
θ̂r|y

)
(2π)

kr
2 det

(
nJ̄
(
θ̂r, y

))− 1
2
.

So for large n one has up to a constant

S (Mr|Y ) ≈ −2 log fr

(
θ̂r|y

)
− kr log 2π + kr log n+ log det

(
J̄
(
θ̂r, y

))
− 2 log π (Mr) .

If we assume that det
(
J̄
(
θ̂r, y

))
is bounded for n → ∞, then we can ignore it as well

as the other terms that are bounded, including 2 log π (Mr), in a large sample setting.
This final approximation yields the BIC definition

BIC := −2 log fr

(
θ̂r|y

)
+ kr log n.

For model selection one chooses the model with the smallest BIC out of a set of candidate
models.
We want to make two remarks about BIC. First, the BIC of a model is independent

of the priors gr (θr) and π (Mr). Second, BIC also belongs to the class of penalized
log-likelihood criteria. If we compare it to AIC we can see that for n > 8 BIC puts a
higher penalty on the model complexity than AIC and thus has the tendency to favor
smaller models than AIC. A highly relevant property of BIC is that it is consistent for
a fixed collection of candidate models, which means that if the correct model is among
the candidate models than BIC will select it with probability converging to 1 as n→∞.
The same is not the case for AIC which has the tendency of overfitting even in the
classical setting where p� n [27].

1.3.2.4 Modifications of BIC for Highdimensional Data under Sparsity

Broman and Speed [7] were among the first researches who explored the model selection
approach to analyze QTL17 data. They observed that both AIC as well as BIC have
the tendency to select too big models for moderate sample sizes. Bogdan et al. [5, 6]
offered the following explanation for this behavior.
In the previous section I sketched the derivation of the BIC under an asymptotic

17In principle the aims of a QTL study and a GWAS are the same. The difference between them is that
a GWAS draws samples from a natural population whereas QTL studies use experimentally breeded
individuals.
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regime that holds the set of candidate models constant while n → ∞. A consequence
of this setting was that the model prior π (Mr) could be ignored in the definition of
BIC. Bogdan et al. [5, 6] argue that this is equivalent with choosing a uniform prior
π (Mr) = 1/R, where R is the cardinality of the set of candidate models. While this
choice is uninformative for the models, which means that no model is preferred a priori
over the other, it implies an informative prior on the model dimension. For regression
models with m potential regressors there are C (m, k) possible models of size k. Hence, a
noninformative prior on the set of all possible models implies the prior p (k) ∝ C (m, k)

on the model dimension . To asses the preference that this prior expresses let us note that
C (m, k + 1) = (n−k)/(k+1)C (m, k) and that the factor (n−k)/(k+1) is strictly decreasing for
k = 0, . . . , n from n to 0 and is larger than 1 only for k < n/2, so p (k) is growing fast for
small k and has a maximum at m/2, due to the symmetry of the binomial coefficient g (k)

around m/2. Thus this “noninformative” prior expresses a strong preference for models
with dimension k ≈ m/2. The effect of this on the BIC is a strong bias towards models
with a sparsity level of p ≈ 1/2 for small and moderate sample sizes. Thus, the BIC will
tend to select too large models in situations where we expect that the sparsity p of the
true model is much smaller than 1/2. This is the case in GWAS where we expect at most
a few hundreds out of hundred thousands of markers to be causative.
In the same articles Bogdan et al. suggest the following remedy for this ill behavior of

the BIC in high dimensions. Instead of a uniform prior they specified the model prior

π (Mr) = ωkr (1− ω)m−kr ,

which induces a binomial prior p (k) = C (m, k)ωk (1− ω)m−k on the model dimension.
The parameter ω of the model prior distribution can be interpreted as the expected
proportion of causative SNPs in the true model, or in other words our expected sparsity
of the true model. The a priori expected number of causative SNPs is given by c :=

E [K] = mω. So instead of neglecting the term −2 log π (Mr) as Schwarz did in the
derivation of BIC, Bogdan et al. suggest to amend the BIC with this term. After some
simple approximation the resulting criterion is called the modified Bayesian Information
Criterion (mBIC) and is defined as

mBIC := BIC + 2kr log

(
1

ω

)
= −2 log fr

(
θ̂r|y

)
+ kr log

nm2

c2
.

If there is no prior knowledge on the expected number of SNPs in the true model then
Bogdan et al. [6] suggest c = 4 as a default choice. This choice guarantees control of
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FWER at a level of 0.1 for n ≥ 200 and m ≥ 10. As Bogdan et al. demonstrated there is
a close relationship (see Section 1.3.2.5 for details) between mBIC and the Bonferroni
procedure for multiple testing .
Another adaption of the BIC to a sparse high dimensional setting was introduced

by Frommlet et al. [14, 18]. This modification is based on a discussion by Abramovich
et al.[1] on penalized model selection schemes that control the FDR at a given level α.
For a linear regression model Mr with size kr Abramovich et al. defined their selection
criterion as

S (M) :=
RSSr
σ2

+

kr∑
l=1

q2

(
αl

2m

)
,

where RSSr denotes the residual sum of squares of the fitted model and q (x) denotes the
(1− x)-quantile function of a standard normal distribution. They furthermore assume
that σ2 is known. Under the assumption that the regressors are orthogonal this criterion
is closely related to the Benjami-Hochberg procedure.
Frommlet et al. started their adoption by approximating the penalty terms of the sum

q2

(
αl

2m

)
≈ 2 log

(m
l

)
+ log

(
2

π

)
− 2 log (α) .

This leads to the following approximation for the sum

kr∑
l=1

q2

(
αl

2m

)
≈ 2kr log (m)− 2 log (kr!) + kr log

(
2

π

)
− 2kr log (α) .

For theoretical reasons presented in [14] Frommlet et al. choose α ∝ 1/
√
n, which implies

that the FDR of this procedure should decrease towards 0 when n → ∞. With this
choice the approximation simplifies to

kr∑
l=1

q2

(
αl

2m

)
≈ kr log

(
m2n

2

π

)
− 2 log (kr!) .

For large m and n the factor 2/π could be replaced with 1/c2 where c := E [k] = mω.
Finally the criterion suggested by Frommlet et al. is named modified Bayesian Infor-

mation Criterion version 2 (mBIC2) and is defined as

mBIC2 := −2 log fr

(
θ̂r|y

)
+ kr log

(
m2n

c2

)
− 2 log (kr!) .

We can easily see that the mBIC2 complexity penalty is smaller than the penalty
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applied by mBIC for models which include at least two regressors. This fact is not
surprising because mBIC2 is designed to control the FDR (a rather liberal multiple
comparison control) and mBIC is designed to control the FWER control (a fact which
is presented in the next section).

1.3.2.5 Relation of BIC, mBIC and mBIC2 to multiple testing procedures

In this section I will start with the discussion of the relationship between BIC, mBIC
and the Bonferroni procedure for multiple testing in the special case of a linear regression
model with orthogonal regressors. At this place I reproduce the argument presented by
Bodan et al. in [6]. Then I will mention some asymptotic results for mBIC and mBIC2

without discussing the corresponding arguments.
Let us start by considering models of the form

Mr : Y ∼ N
(
Xrβr, σ

2In
)

with orthogonal regressors
Xt
rXr = nIkr+1.

Here Y = (Y1, Y2, . . . , Yn) is a n-vector of observations and Xr = (1, x.1, x.2, . . . , x.kr) is
a n×(kr + 1)-matrix of kr orthogonal regressor variables and 1 denotes a n-vector whose
components are all 1. Let us further assume that σ2 is known. For this model

−2 log fr

(
θ̂r|y

)
= n log

(
2πσ2

)
+
RSSr
σ2

,

where
RSSr = Y tY − nβ̂trβ̂r

and
β̂r = 1/nXt

rY.

Thus, the BIC for this model is

BIC (Mr) = n log
(
2πσ2

)
− RSSr

2σ2
+ kr log (n) .

In the set of candidate models the BIC selects that model which maximizes

S (Mr) :=

kr∑
i=1

(
nβ̂2

r

σ2
− log (n)

)
.
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This quantity is maximized if and only if the chosen model Mr includes only those
regressors for which

Z2
j :=

(√
nβ̂r
σ

)2

> log (n) .

Now, observe that under the null hypothesis H(j)
0 : βj = 0, Zj =

√
nβ̂r
σ has a standard

normal distribution. Thus the probability of a Type I Error, which means that a chosen
regressor is actually not present in the true model, is

αn = 2P
(
Z >

√
log (n)

)
.

Using the fact P(c) = φ(c)/c (1 + o (c)), where φ (.) denotes the density of the standard
normal distribution, gives

αn ≈

√
2

πn log (n)
.

If we assume that the number of true regressors is k then the expected number of
incorrectly selected regressors is (m− k)αn. In an asymptotic scheme where k is fixed
and m,n→∞ the expected number of incorrectly selected regressors is of order m√

n log(n)

which is not converging towards 0. This illustrates, that under such a scheme the BIC
is not consistent. One remedy is to have αn depending on m as well, for instance set
αn,m := αn/m. This modification is nothing else but the well known Bonferroni adjustment
in multiple testing. In order to find the modification of the BIC such that the selection
is consistent under this asymptotic scheme we do some reverse engineering.
In particular we are looking for the quantity cBon such that

2P (Z >
√
cBon) =

αn
m
.

Using the above approximation again and considering approximations for large m and n
(which implies a large cBon )

cBon ≈ log (n) + 2 log (m) .

If we repeat the argument that gave us the critical value cBIC :=
√
log (n) for mBIC

we obtain the critical value

cmBIC = log (n) + 2 log (m)− 2 log (c) .

We see that cmBIC ≈ cBon for large m and n. Hence, under this asymptotic scheme
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the expected number of incorrectly selected regressors converges to 0 for mBIC based
selection.
Bogdan et al. also derived the following approximation for the FWER of mBIC based

selection for large m and n

FWER ≈
√

2

π

c√
n (log (n) + 2 log (m)− 2 log (c))

,

and demonstrated that the probability to select the true model rapidly converges to 1

when n → ∞. In summary this leads to the conclusion that mBIC based selection is
consistent for the special case of orthogonal regressors under the assumed asymptotic
scheme.
Frommlet et al. [14] proved that under orthogonality themBIC is ABOS for the linear

regression model only in case of extreme sparsity (p ∝ 1/m). These results were obtained
for both known and unknown σ2. In the same article Frommlet et al. also showed that
the mBIC2 is ABOS for the linear regression model with known σ2 in a much wider
range of sparsity levels (p ∝ m−β for β ∈ (0, 1]). These findings are in accordance with
those of the related multiple testing procedures.
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In this chapter I will present the actual details of the compared algorithms and the setup
of the simulation study and the real data example that I used for this comparison. To
this end I start with a brief description of the data set which I use for both parts of my
inquiry. Because the genotype data of this data set contains missing values, which must be
imputed in order to apply model selection procedures, I will also sketch the principles of
the imputation algorithm. This will be followed by a description of the Bayesian variable
selection method implemented in the PiMass software package and the algorithmic details
of the two search strategies implemented in the MOSGWA software package, which allows
to perform mBIC2 based model selection. Finally, I will give a detailed account on the
technicalities of the calibration, conducted to find suitable parameters for the memetic
search strategy implemented in MOSGWA, and the simulation study as well as the real
data example.

2.1 The Data

The dataset STAMPEED: Northen Finland Birth Cohort 1966 (NFBC1966)1 serves as
a real data analysis example and the corresponding genotype data was used to perform
a simulation study.
The Northern Finland Birth Cohorts program (NFBC) was initiated in the 1960s in

the two northernmost provinces of Finland to study risk factors involved in preterm birth
and intrauterine growth retardation, and the consequences of these early adverse events
on subsequent morbidity and mortality. The data of the cohort is obtained from early
fetal life (including maternal health during pregnancy) to adulthood. After birth, the
offspring was examined and then again underwent clinical evaluation at ages 1y, 14y and
31y. At each visit, a wide range of phenotypic data was gathered by questionnaires and
clinical examinations. DNA samples were obtained from 5402 subjects.
Deidentified genome wide genotype data and a selected list of phenotype data including

triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), c-

1This dataset is available at dbGaP with the accession number phs000276.v2.p1.
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reactive protein (CRP), glucose (GLU), insulin (INS), body mass index (BMI), systolic
(SYS) and diastolic (DIA) blood pressure measured at the 31y examination are available
at dbGaP. Details about the measurement of these nine variables can be found in [30].

2.1.1 Preprocessing of Genotype Data

From a statistical point of view the preprocessing of genotype data is equivalent with
the imputation of missing values. It is a common practice in the GWAS community to
preselect markers and individuals before the application of an imputation algorithm to
ensure that the imputation is not distorted by systematic missing patterns. I preselected2

the SNPs according to the following widely agreed criteria:

• Minor Allele Frequency (MAF) larger than .01.

• Calling frequency of at least .975.

• The SNP must pass3 a Hardy-Weinberg Equilibrium test4 at a significance level
α = 10−8.

• The marker must be a SNP (so CNV etc. are excluded).

Individuals are only considered for analysis if their total call rate is larger than .95 and
if they are not related to any other subject in the sample (IBD smaller than .2). This
preselection strategy lead to no reduction of the sample size, but the number of markers
decreased from 370404 to 324310 SNPs. Missing values for this selected dataset were
than imputed per chromosome with the BEAGLE45 software package (for details of the
algorithm see Section 2.2).

2.1.2 Population Structure in the Data

In order to account for the population structure (as described in Section 1.2.3.2) the
first twenty eigenvector-eigenvalue pairs were calculated and presented in Figure 2.1.
Based on the screeplot, the first five eigenvectors were used to adjust for the population
structure in the data.

2All data management was performed with PLINK (v1.90b3s).
3For this test pass means that the null hypothesis is accepted.
4This is basically a Fisher exact test.
5I used the default values of the parameters and no reference panel data.
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Figure 2.1: Screeplot of the twenty biggest eigenvalues of XXt where X is the scaled
genotype matrix.

2.1.3 Preprocessing of the Phenotype Data

Sabatti et al. [30] present a GWAS of a subsample (in terms of markers and individuals)
of the NFBC 1966 where they analyzed the nine phenotypes previously stated. They
defined sensible exclusion criteria for most of these phenotypes so that potentially biased
measurements are excluded from the analysis. The criteria defined by Sabbati et al.
served as a guideline for the definition of the following exclusion criteria6.
For GLU, INS and the lipid phenotypes (TG, HDL and LDL) individuals were excluded

if they had not fastened before the blood sample was taken or if they were diabetic.
Subjects were excluded for BMI if the weight measure results were self-reported or if the
subject was pregnant. No exclusion criterion was defined for CRP, SYS and DIA.

2.2 BEAGLE

In this section I am going to explain the principles guiding the imputation method de-
scribed in [9] which is implemented in the BEAGLE7 program. The algorithmic details
are only presented up to a degree of detail that is required for understanding the principle
mechanisms of the algorithm. Further details can be found in [8, 9, 10].

6Subjects were excluded from analysis by setting their phenotype value to missing.
7Retrievable at: https://faculty.washington.edu/browning/beagle/beagle.html [03/20/16]
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The BEAGLE algorithm links the problem of imputing missing values to the problem
of (computationally) inferring the allele sequence of two homologous chromosomes from
(in this respect) unsorted genotype data, as for example obtained from GWAS array
experiments. This problem is commonly phrased as haplotype8 phasing or just phasing.

A central concept for this algorithm is the notion of a localized haplotype-cluster model.
In order to understand this device let us first assume, that we possess a collection of N
haplotypes9 of lengthM . This collection forms the population for further considerations.
Further, we assume that these sequences contain no missing values.
Now, we partition this population at a position t ∈ {1, 2, . . . ,M} such that all haplo-

types within an equivalence class (called a cluster) have a similar conditional probability
P (at+1at+2 . . . aM |a1a2 . . . at). In other words, given the cluster membership at position
t the exact pattern a1a2 . . . at is irrelevant for the probability to observe a subsequence
at+1at+2 . . . aM right of t. The collection of all partitions is the localized haplotype-
cluster model. A localized haploytpe-cluster model can also be represented by a directed
acyclic graph with the following properties:

1. The graph has one root node at m = 0 with no incoming edges, and one terminal
node at m = M with no outgoing edges. The root node represents all of the N
haplotypes before any maker is processed, and the terminal node represents all
haplotypes after all markers are processed.

2. The graph is leveled with M + 1 levels. Each node A has a level m. All incoming
edges at a node A at level m originate in a parent node at level m − 1, and all
outgoing edges from A have a child node at level m+ 1.

3. The level of an edge corresponds to the level of its child node. An edge is labeled
with an allele for the m-th marker. Two edges originating from the same node
cannot be labeled with the same allele.

4. For each hapoltype in the population, there is a path from the root node to the ter-
minal node, such that the m-th allele of the haplotype is the label of the m-th edge
of the path. Conversely, each edge of the graph has at least one haplotype in the
sample whose path traverses the edge, and so represents this group of haplotypes.

An illustration of a localized haplotype-cluster model based on the data presented in
Table 2.1 is given in Figure 2.2. For each edge e we define the edge count n (e) to be the

8In our usage, this term refers to one specific copy of a homologous chromosome. So a diploid organism
possesses two haplotypes for each chromosome.

9From our abstract point of view these are sequences of symbols built of a two letter alphabet coding
the different alleles.
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number of haplotypes in the population whose path traverses the edge, and we define the
parent node count np (e) to be the number of haplotypes in the population whose path
traverses the parent node of the edge.
An algorithm for fitting localized haploytpe-cluster models to a given collection of

haplotypes is described in [8, 10]. This algorithm starts by constructing a rooted directed
tree graph which encompass all haplotypes in the sample and then merges two nodes A
and B at level t if

max
1≤k≤M−t

max
at+1...at+k

∣∣∣∣nA (at+1 . . . at+k)

nA
− nA (at+1 . . . at+k)

nA

∣∣∣∣ <√ 1

nA
+

1

nB

where nX denotes the number of haplotypes whose path traverses node X and
nX (at+1 . . . at+k) denotes the number of haplotypes whose path traverses nodeX (at level
t) and the sequence at+1 . . . at+k at the positions right of t. Obviously
nX (at+1 . . . at+k) is monotonically decreasing with k and the value of the calculated
difference is bounded by the maximum of both relative frequencies, thus long patterns
at+1 . . . at+k will have no influence on the criterion. Loosely speaking, this criterion
merges two nodes based on the similarity of the conditional distributions of short se-
quences right of t. Thus, the haplotypes are grouped according to local patterns of no
specific length, a behavior that is well suited to model linkage disequilibrium patterns.

Haplotype Count
aaaa 21
aaaA 79
aaAA 95
aAAa 116
Aaaa 25
AaaA 112
AaAA 152

Table 2.1: Example of haplotype data

In order to utilize this concept for the purpose of imputation we first recognize that a
localized haplotype-cluster model determines a Hidden Markov Model (HMM) for which
the status space comprises the edges of the graph representing the model. A HMM is
specified when the following objects are defined [29]:

1. The space of hidden states H of the HMM.

2. The distinct observable symbols S given a state.
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Figure 2.2: Example of a directed acyclic graph representing the localized haplotype-
cluster model for four markers, with the haplotype counts given in Table 2.1.
For each marker, allele a is represented by a solid line, and allele A by a
dashed line. The boldline edges from the root node to the terminal node
represent the haplotype AaaA. The node marked by an asterisk (*) is the
parent node for edge eF . This example is taken from [9].

3. The state transition probabilities.

4. The emission probabilities of a symbol given a state.

5. The initial distribution.

As already mentioned the state space of the HMM comprises the edges of the localized
haploytpe-cluster model. The emitted symbol for each state is the allele that labels
the edge. Thus this symbol (allele) is emitted with probability 1 given the state. The
state transition probabilities and the initial distribution are calculated from the edge
counts. The initial distribution (for the edges at level 1) is estimated by P (e1 = A) =
n(e1=A)

N and P (e1 = a) = n(e2=a)
N = 1 − P (e1 = A) for a biallelic locus. The transition

probabilities are estimated by P (ei|ej) = n(ei)
np(ei)

if the parent node of ei is the child node
of ej and P (ei|ej) = 0 else. We should also note, that the graph representing the localized
haplotype-cluster model of the data is leveled, thus we can partition the state space into
classes Lm, where m = 1, . . . ,M , so that all edges with level m and only these edges are
in the set Lm.
So far we have only specified a haploid HMM, but because we have to deal with data

obtained from diploid organisms, we need a diploid HMM. We specify the state space of
a diploid HMM as ordered pairs of edges for each level of the localized haplotype-cluster
model. Thus the state space for the diploid HMM is ∪Mi=1Li × Li. The emitted symbol
for each state is the observed unordered allele pair at locus i, where i = 1, . . . ,M . The
emitting probability is either 0 or 1 depending whether or not the state is consistent
with the genotype. We assume that the loci in our experiment are in Hardy-Weinberg
equilibrium, so the initial probabilities are P ((ei, ej)) = P (ei)P (ej) for ei, ej ∈ L1 and
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the transition probabilities are P ((ei, ej) | (ek, el)) = P (ei|ek)P (ei|el) for ei, ej ∈ Lt+1

and ek, el ∈ Lt and P ((ei, ej) | (ek, el)) = 0 else.
Now, that the diploid HMM is fully specified we can use the forward-backward algo-

rithm to sample hidden states conditional on the observed genotypes, and the Viterbi-
algorithm to find the most likely sequence of hidden states given the observed genotypes
[9, 29].
In principle we are now able to determine the most likely ordered pairs of haplotypes

conditional on the genotype data and the diploid HMM. But, if we look back at the begin-
ning, we started with the assumption that we possess a sample of complete haplotypes,
so we are still not able to perform our desired task, namely, to impute missing genotype
data. Instead we have to work with the incomplete unordered genotype samples. The
BEAGLE algorithm solves this problem by the following iterative procedure:

1. Set iteration counter to 1.

2. For each of the N observed genotypes impute the missing values by randomly
selecting an unordered pair of alleles according to the allele frequencies determined
in the sample at the position of the missing value.

3. Phase each of the N genotypes by randomly ordering the alleles for each unordered
pair. Now build 2N haplotypes out of these randomly ordered allele pairs.

4. Build a localized haplotype-cluster model for the haplotypes obtained in [3] and
the corresponding diploid HMM.

5. If the iteration counter equals a predefined number of iterations, use the Viterbi-
algorithm to sample the most likely sequence of ordered allele pairs given each of
the N genotypes and the diploid HMM specified at [4], then stop the procedure.
If the iteration counter is less than the predefined number of iterations, increment
the iteration counter by 1 and use the forward-backward algorithm to sample a
sequence of ordered allele pairs for each of the N genotypes. Then generate a
sample of 2N haplotypes out of the sampled ordered pairs. With this sample go
back to step [4].

The final result of this procedure are complete sequences of ordered allele pairs which we
can use to impute missing values in our genotype data by replacing our missing genotype
data with corresponding loci of these sequences.
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2.3 PiMass

In the next few paragraphs I am going to sketch the Bayesian Variable Selection Re-
gression (BVSR) proposed by Guan and Stephens [20] and implemented in the PiMass10

program. For my cursory exposition I will focus on the model specification, as this is the
most crucial part in all applications of Bayesian data analysis and on the most impor-
tant posterior statistics reported by PiMass. I will give no account of the implemented
Monte Carlo Markov Chain (MCMC) and other technical aspects of the actual algorithm
implemented in PiMass.
The specification begins by considering the following model, which relates a phenotype

y to the genotypes X

y|µ, β,X, τ ∼ Nn

(
µ1 +Xβ, τ−1In

)
.

Here y denotes a n-vector of observed phenotypes for n individuals, µ is a real valued
parameter, 1 a n-vector whose components are all 1, X a (n× p)-matrix of p observed
markers for n individuals, β a p-vector of regression coefficients, τ−1 ∈ R+ denotes
the variance and In denotes the (n× n)-identity matrix. µ, β and τ−1 are in principal
unobservable quantities which we want to infer. For convenience, let us also assume that
the columns of X are centered, thus

∑n
i=1 xij = 0 for all j = 1, . . . , p.

So far we have only specified a linear regression model. In order to incorporate model
selection in this model Guan and Stephens define the p-vector γ ∈{0, 1}p which serves as
a selection indicator, following the convention that the marker j is selected if and only if
the jth component of γ equals 1. The adapted model can be written as

y|γ, µ, β,X, τ ∼ Nn

(
µ1 +Xγβγ , τ

−1In
)
,

where Xγ denotes the design matrix that is restricted to the selected markers and βγ

denotes the regression weights for the selected markers. To complete the specification for
this model Guan and Stephens define the following prior distributions

τ ∼ Gamma (λ/2, κ/2)

µ|τ ∼ N (0, σ2
µ/τ)

γj ∼ Bernoulli (π)

10Retrievable at: http://www.haplotype.org/pimass.html [03/20/16]
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βγ |τ, γ ∼ N|γ|
(
0, (σ2

a/τ) I|γ|
)

β−γ |γ ∼ δ0

where |γ| :=
∑p

j=1 γj , β−γ denotes the vector of coefficients for the nonselected markers
and δ0 denotes a point mass at 0. π, σa, λ, κ and σµ are hyperparameters, among which
λ, κ and σµ are of minor importance. For the calculation of the posterior distributions
Guan and Stephens (only) consider the limiting case σ2

µ →∞ and λ, κ→ 0,which means
that they make use of improper priors.
In their paper Guan and Stephens put special emphasis on the choice of the hyperpa-

rameters π and σa. They remark that these parameters have a specific interpretation,
namely that π reflects the sparsity of the model and that σa reflects the typical size of the
nonzero coefficients. Because these are crucial and usually unknown model features in
GWAS, Guan and Stephens put prior distributions on both parameters. In the Bayesian
literature π and σa are usually chosen such that they are stochastically independent,
whereas Guan and Stephens argue, that such a choice implies that more complex models
(bigger selection probability π) are expected to have a substantially larger proportion
of explained variance (PVE). In a more genetic parlance, this means that traits with a
more complex genetic architecture are expected to have higher heritability. Guan and
Stephen doubt this implication, and suggest that the priors for π and σa should not be
modeled as independent. First, they choose the following prior distribution for log (π)

log (π) ∼ U (log (1/p) , log (M/p))

where M is a predefined constant. This prior implies that π ∈ [1/p,M/p], which means
that the expected number of SNPs in the model ranges from 1 to M . It also expresses
a preference towards more sparse models, due to the fact that the prior distribution of
π puts more weight on smaller values. Instead of modeling the prior of σa explicitly
Guan and Stephens do it indirectly by putting an approximately uniform prior on the
conditional expected PVE. They start by defining the following quantity

V (β, τ) :=
τ

n

n∑
i=1

[(Xβ)i]
2 .

Given that the columns of X are centered, this quantity is the variance of Xβ divided
by τ−1. Hence the proportion of variance in y explained by X given β is

PV E(β,τ)=
V (β, τ)

1 + V (β, τ)
.
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Guan and Stephens further note the fact that

v (γ, σa) := E [V (β, τ) |γ, σa, τ ] = σ2
a

∑
j:γj=1

V ar (x.j)

and use this to define the quantity

h (γ, σa) :=
v (γ, σa)

1 + v (γ, σa)

as an approximation for the conditional expected PVE11. Guan and Stephens place a
uniform prior h ∼ U (0, 1) on this quantity. This prior is independent of γ, but it implies
that the pdf12 and the cdf of σ2

a given γ are

pdfσ2
a|γ (z) =

cγ
(1 + cγz)

respectively

cdfσ2
a|γ (t) = 1− 1

1 + cγt
,

where t, z ≥ 0 and cγ :=
∑

j:γj=1 V ar (x.j). In order to better understand the relationship
between γ and σ2

a we look at the cdf of σ2
a|γ as a function of cγ . We can see that for

every t the cdf is monotonically increasing with cγ . Thus the pdf puts more mass on
lower values as cγ increases. cγ is big if the selected markers have a high variance or if
a lot of markers are selected. In summary the consequence of this modeling is that the
effect of single markers tends to be smaller in bigger models.
The most important output quantities of PiMass are the posterior inclusion probabili-

ties of the considered markers and a heritability estimate for the investigated phenotype.
For the former PiMass calculates a crude estimator (the proportions of models in the
Markov Chain that include the specific SNP) and a Rao-Blackwellized refinement of it.
In order to select SNPs one chooses one of these estimators and selects all SNPs with an
estimated posterior probability bigger than .5. PiMass provides two estimators for the
heritability, one based on MCMC results for the sampled h (called h) and the other one
using the derived sequence for PVE that is calulated from the sampled MCMC sequences
of β and τ (called hh).

11Actually h (γ, σa) is an upper bound for the expected PVE, due to Jensen’s inequality.
12We should also note, that this distribution doesn’t possess a first moment. In other words, the

distribution is heavy tailed.
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2.4 MOSGWA

The software package MOSGWA13 allows to perform model selection based on different
model selection criteria (including mBIC2 and mBIC) for case-control and continuous
phenotype GWAS. As mentioned in Section 1.3.2 one of the intricacies of the model
selection approach in GWAS is the enormous number of candidate models so that com-
plete enumeration is not feasible even on modern computers. The only way to cope with
this problem is the implementation of optimization heuristics. Currently, MOSGWA
has implemented two search strategies to find the optimal model. One is a variant of a
greedy algorithm and is called fast stepwise search (FSS) and the other one is a memetic
algorithm.

2.4.1 Fast Stepwise Search

In order to find an improved (in the sense of a criterion) modelM starting from an initial
model Minit FSS iteratively applies a three-step procedure [13]. The procedure starts by
ordering all the m − |Minit| candidate Markers (excluding the SNPs already in Minit)
according to single marker test p-values (starting with the lowest). Then two groups
of markers G1 and G2 are derived from this sequence. For this purpose two numbers
m1 and m2 are chosen such that 0 < m1 < m2 ≤ m − |Minit| (default m1 = 350 and
m2 = 500). Now G1 is defined as the set of the first m1 elements of the ordered sequence
and G2 as the set of the first m2 elements of this sequence. Thus G1 ⊂ G2. These tuples
are a preselection of candidate markers based on their “marginal explanatory power” and
thus limit the search space to the most promising models. Now, the initial model is set
as the current model and the iteration begins.
The first step is called directed14 forward step. This step itself is a loop over G1 where

in each step the current model is enhanced by including the current SNP of G1 in the
model. If the criterion of this enhanced model is smaller than the one of the active model
the loop is broken and the enhanced model is set as the current model.
The next step is called exchange step. In this step all SNPs in the current model

are tested whether exchanging them with suitable candidates decreases the criterion.
Suitable candidates for a model SNP are the d nearest (the distance is measured in
absolute base pairs between locations) SNPs of G2. The exchange step starts with the

13Retrievable at: https://sourceforge.net/projects/mosgwa/ [03/20/16]. I used MOSGWA v1.2.10 for
the experiments presented in this thesis. After I finished my calculations a new version of MOSGWA
(v1.2.11) which implemented a major modification of the memetic search algorithm was available at
scourceforge.

14In the sense that the search is performed along the p-value sorted sequence G1.
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first SNP in the model. If there is at least one replacement that improves the current
model then the model with the lowest criterion is set as the current model. Then the
second SNP is replaced in the same fashion, then the third and so forth until every SNP
in the model has been considered once.
The last step is an extended backward elimination step. First all models where one

SNP is removed from the current model are evaluated. If this yields a model with a lower
criterion then the model with the lowest criterion is set as the current model and this
step is finished. If this yields no improvement than among the narrowed models the one
with the smallest criterion is fixed and the process is repeated. This iteration is repeated
up to three times.
The result of the last step is passed on to a directed forward step and the next iteration

is started. This loop stops when no improvement of the criterion is achieved within an
iteration.
This procedure is the major building block of the actual search that is performed

when MOSGWA is running in this mode. For convenience let us denote this process as
a function called FSS with input parameters Minit, test and criterion. The result of
FSS is a model M , which is an element of the search space. Let us further define a new
model selection criterion

mBIC60 := −2 log fr

(
θ̂r|y

)
+ kr log

nm2

c2602
.

The complexity penalty of this criterion is smaller than the one applied by mBIC2 for
sufficiently small models. Hence, this criterion has the tendency to select bigger models
than mBIC2 in this subclass of models.
One of the problems of search heuristics in general is that they can get stuck in a local

optimum. For model selection this means that too small (compared with the true model)
models are selected. To avoid this MOSGWA has implemented the following three-step
strategy to avoid getting trapped in a local minimum. Starting with the empty model
M0 it computes

1. M∗ = FSS (M0,Cochran Armitrage,mBIC60)

2. M∗∗ = FSS (M∗,Score Test,mBIC60)

3. Mfin = FSS (M∗∗,Score Test,mBIC2)

The rational behind this strategy is that the application of the milder criterion mBIC60

in the first two rounds should yield models which are far too large and hopfully include a
large proportion of relevant causal SNPs. This model is then trimmed back in the third
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step when the relevant (and stricter) criterion is applied. Thus it should be guaranteed
that the algorithm does not get stuck in a poor local minimum for the relevant criterion.
The main difference between steps 1 and 2 is the test which is used to introduce the
ordering of candidate SNPs. The Cochran Armitrage test evaluates each candidate SNP
independent of all other SNPs, whereas the Score Test evaluates the candidate SNPs
conditional on the SNPs which are already included in M∗.

2.4.2 The Memetic Search Algorithm

Previous studies [18, 13] have shown that the stepwise search presented in the previous
section works very well. However it is not guaranteed that the result obtained by this
search strategy is really the best solution. Memetic algorithms are a possible approach
to boost the results obtained by FSS and find models with a smaller criterion value.
However the motive to find a better solution than FSS is not the only consideration

that motivates the application of a memetic algorithm to the model selection problem
addressed by MOSGWA. One of the shortcomings of classical model selection criteria
is the fact that they only provide one “best” model, and do not allow to estimate the
uncertainty tied to this choice. If we look back at the derivation of mBIC2 (Section
1.3.2.3 and 1.3.2.4) we can see that

P (M |Y ) ∝ P (Y |M)π (M) ≈ exp (−mBIC2(M)/2) .

In order to exploit this fact to calculate model posterior probabilities we need to compute
the normalizing constant P (Y ). By the law of total probability we know that

P (Y ) =
∑
M∈M

P (Y |M)π (M) ≈
∑
M∈M

exp (−mBIC2(M)/2) ,

where M denotes the set of all possible models. Unfortunately |M | = 2m,m denoting the
number of candidate markers, is usually so large that it is simply unfeasible to calculate
this sum exactly. But some reflections on the individual terms of the sum show us a way
for a good and feasible approximation of this sum.
Without doubt it is reasonable to assume that most of the models in M will fit

the data poorly, resulting in very large mBIC2 values for these models. Thus, the
individual contribution of these models to the sum will be approximately zero. Hence,
they can be neglected for this calculation and it is possible to approximate this sum with

43



2 METHODS

a significantly smaller subset M ∗. Therefore

P (Y ) ≈
∑

M∈M ∗

exp (−mBIC2(M)/2) .

One can then further define an estimator for the posterior inclusion probability of a SNP
j as

P̂ (j|Y ) :=
∑

M∈M ∗:j∈M
P (M |Y ) .

So the crucial point is to find a good set M ∗. In the next paragraphs I will sketch
the design of a memetic algorithm15 that performs this task by an extensive search over
models which have a large posterior probability.
The memetic algorithm that is proposed here for GWAS analysis is closely related to

an algorithm developed and applied by Frommlet et al. [17] in the context of QTL map-
ping. The term memetic algorithm refers to a synergy of population based evolutionary
search strategies (known as genetic algorithms) with separate local improvement strate-
gies for individuals. Genetic algorithms work with an initial population of models which
evolves over time (whereby the number of individuals is kept constant), so that the fitness
(measured by a fitness function that maps an individual to a real number) of the whole
population (defined as the sum of the individual’s fitness values) is non-decreasing over
time. To that end genetic algorithms apply the random operations of selection, recombi-
nation and mutation to the population to generate offspring. If the offspring proves to
be fitter than the least fit individual in the population this individual is replaced by the
offspring and the process is repeated. So when applying a genetic algorithm to solve an
optimization problem one has to define these operations and construct a suitable initial
population.
Obviously the fitness function that has to be optimized in our application ismBIC216,

but we also want that the algorithm visits a lot of models in M ∗ so that we can get good
posterior probability estimates. To achieve both goals (and keep the runtime within
reasonable bounds) we need to generate the initial population so that on the one hand the
algorithm visit mainly models in M ∗ but on the other hand provides sufficient diversity
among the individuals of the initial population to avoid getting stuck in a local optimum.
To this end a first set of v models is obtained by applying a greedy selection procedure.

The first model of the population is obtained by running the procedure described in
Section 2.4.1. Then we remove all SNPs with a single marker p-value larger than .1

15The algorithm I present here is the memetic algorithm implemented in MOSGWA v1.2.11.
16In our case a higher fitness is indicated by a lower mBIC2 value.
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from the set of candidate markers. We also exclude the SNPs that are included in the
first model from this set. In order to obtain a second member we apply the procedure
termed FSS in the previous section starting with an empty model and BIC as criterion
to search over the set of models that can be build out of the reduced set of candidate
SNPs. Then we remove the selected SNPs from the candidate set and perform the search
again. Thus we obtain a third member. This procedure is repeated until v models are
selected. Because the complexity penalty of BIC is smaller than the one of mBIC2

this step selects models that are way to large. To avoid unrealistically large models we
restrict the maximum size of a model to kmax = 150 SNPs.
Now, a second set of (u− v) models is created by random selection from the remaining

set of candidates. Again, we apply an iterative procedure which starts by calculating a
selection probability πi ∝ 1/pi, where pi denotes the single marker test p-value for SNP i,
for each candidate SNP. Now, kmax SNPs are randomly selected and combined to form a
model. These SNPs are removed from the set of candidates and the procedure is repeated
until (u− v) models are generated.
Finally we put both sets together. Hence, we achieved to construct an initial population

of size u where all models are disjoint.
We implement tournament selection as the selection operator to choose parent models.

Therefore two models are randomly drawn from the population and the fitter one is chosen
as a parent. This process is repeated until we obtain two distinct parent models.
Recombination between the parents is performed with probability pr = .9. If no

recombination is performed than the fitter parent is chosen as offspring. The rational
behind this option is to allow direct mutation of population individuals without previous
recombination. The recombination step itself consists of a modified forward respectively
backward selection which always includes the markers that are present in both parent
models in the offspring model. Let I denote the set of all markers that are present in
both parents and D denote the set of all markers that are present in one and only one
parent model. The forward selections starts from I and in a greedy fashion adds one
SNP at a time from D to the model. The backward elimination starts with the model
that includes all SNPs from both parents and in a greedy fashion eliminates one SNP
after the other. During this step only SNPs in D are allowed to be eliminated. The
fittest model obtained by these two procedures is chosen as offspring.
This step generates a child that is at least as fit as both parents, so this is not really a

random recombination but rather an implicit optimization step. Thus we have a memetic
algorithm and not a pure genetic algorithm.
Next, mutation of the child model is performed mandatory if no recombination hap-
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pened or with probability pm = .25 otherwise. In the mutation step either the action of
adding a SNP to the model or the action of removing one SNP from the model is per-
formed. Which sort of action happens is randomly determined, whereby both actions are
equally likely. In the case of deletion one randomly selected marker is removed from the
model, except when the child model is of size one, in which case the marker is substituted
by another randomly selected marker from the set of candidates. In the case of addition
the child model is appended by a randomly selected marker that satisfies the condition
that its absolute correlation with ever SNP already in the child model is less than .5.

After selection and mutation a local improvement step for the child model is performed.
This step resembles the exchange step described in section 2.4.1. During this step a
randomly selected fraction plocal of child model SNPs (one at a time) are tested whether
exchanging them with SNPs from their neighborhood improves the fitness of the model.
The neighborhood of a SNP is defined to consist of those SNPs among the 100 closest (50
SNPs on each side) which are correlated at a level |r| > .3 with the considered SNP. In a
greedy manner we always keep the SNP that results in the best model fitness. Compared
with the algorithm of Frommlet et al. [17] we put less emphasis on local improvement.
The reason for this choice is that – keeping in mind our second goal to estimate posterior
probabilities – we want the algorithm to visit a lot of good models and therefore we are
willing to sacrifice some algorithmic efficiency (in terms of convergence rate).
For the purpose of calculating posterior probability estimates and also to improve the

computational efficiency we keep track of all visited models and store the associated
mBIC2 value. This inventory is called the pool (of visted models). The algorithm stops
if (A) within a certain number of iterations no new model was found which is among the
B best models of the population or (B) if the pool size exceeds a specified number. As
it is always the case with memetic algorithms the actual performance of the algorithm
strongly depends on the choice of the involved parameters. Therefore attention has to
be paid to this problem.
When MOSGWA performs the memetic search, it offers two ways to select a “best”

model. One is simply to choose the model with the minimal selection criterion found
by the memetic algorithm. The other choice is based on the estimator of the posterior
probabilities of the markers. This procedure starts with adding the estimated posterior
probabilities of all makers within a region17. If this cumulative estimated posterior
probability is bigger than .5, the marker with the highest estimated posterior probability

17In order to be in the same region two SNPs have to pass three criteria. They must be located on the
same chromosome and the physical distance between them must be smaller than 1MBP. The third
criterion is that the Pearson correlation between them must be bigger than .3.
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Scenario k h2 βmin βmax
I 0 0
II 20 .18 .05 .24
III 30 .38 .05 .34
IV 50 .69 .1 1

Table 2.2: Characteristics of the four simulation scenarios, where k denotes the number
of causal SNPs and h2 the heritability. βmin and βmax are the smallest and
the largest effect size.

within a region is reported as a selected SNP.
If MOSGWA performs memetic search it also calculates a heritability estimator, which

is simply the proportion of explained variance of the selected model and an associated
credibility interval.

2.5 The Experiments

The main purpose of this thesis is to investigate the properties ofmBIC2 based model se-
lection and the effect of different search strategies for a typical quantitative trait GWAS
and compare the results to the Bayesian variable selection model implemented in Pi-
Mass18. Furthermore, I would like to compare the heritability estimator offered by MOS-
GWA with those obtained by PiMass. To this end I conducted a simulation study and
reanalyzed a real data example.
An integral part of my work was the fine tuning of certain parameters of the memetic

algorithm. The resulting parameters will be used as default values in MOSGWA.

2.5.1 Simulation Study

The simulations are based on the real SNP data of the first chromosome (p = 24622) of
the n = 5402 subjects of the NFBC66 study. I consider four different scenarios, whose
characteristics are presented in Table 2.2. In the first scenario simulations are performed
under the total null model whereas scenarios II to IV consider different numbers of causal
SNPs, effect sizes and heritability. The causal SNPs are chosen to be approximately
equidistant (with distance larger than 3 MBP) in such a way that the whole chromosome
is covered and that the minor allele frequency (MAF) of each SNP is bigger than 0.3.
The Pearson correlation between any two causal SNPs is smaller than 0.1. The choice of

18 Choice of PiMass parameters used for the rest of this thesis: 1000 burn in steps and total chain length
of 300000 which is recorded every 10 steps.
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causal SNPs and their corresponding effect size for each scenario is listed in Table 2.4
and Table 2.6.
For each scenario a linear regression model with a standard normally distributed error

term was used to generate 100 artificial phenotypes. For scenarios II and III, which cor-
respond to relatively small and intermediate heritability, the true regression coefficients
were equally spaced between the minimum and maximum value. For the fourth scenario
I consider 41 SNPs with relatively small effect size and 9 SNPs with a large effect size,
consequently the heritability in this scenario is fairly large.
The causal SNPs for each scenario have been eliminated from the set of candidate

markers before analysis in order to account for the fact that in a real GWAS only a
fraction of all possible SNPS are measured and so most of the time the causative SNP
can only be detected indirectly.
As mentioned in Section 1.1.4 the aim of a GWAS is to detect regions that contain at

least one causative marker. In order to define suitable performance measures, I introduce
the following terminology. The set of all candidate SNPs which have an absolute Pearson
correlation of at least .3 with a causal SNP and are not more than 1.5 MBP away is defined
as the region around a causal SNP. A causal SNP is called detected, when at least one
SNP of its region is also a selected SNP. A causal SNP is a false negative, if it is not
detected. A selected SNP which does not belong to a region of a causal SNP is termed
a false positive. If the converse is true, we call the SNP a true positive.
The results of an algorithm will be evaluated according to the following performance

measures

Power :=
# {detected SNPs}

# {true model SNPs}
False Positive := # {selected SNPs} −# {detected SNPs}

FDR :=
# {False Positve}
# {selected SNPs}

False Negative := # {true model SNPs} −# {detected SNPs}

Miss := # {False Positive}+ # {False Negative}

where #X denotes the cardinality of the set X. These measures are calculated for each
of the 100 replications. The final comparison of the algorithms will be based on the mean
values of these observed measures.
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SNPId BP MAF S1 S2 S3 S4
rs3766178 1468043 0.3173 0 0.05 0.05 0.1
rs277672 6694194 0.4802 0 0 0.06 0.1025
rs2982376 11312923 0.4869 0 0.06 0 0.105
rs848212 16136039 0.3799 0 0 0.07 0.1075
rs12070677 21209909 0.4684 0 0 0 0.11
rs2095426 26090671 0.4822 0 0.07 0.08 0.1125
rs4949294 31008523 0.4526 0 0 0.09 0.115
rs6702202 36869181 0.3143 0 0.08 0 0.1175
rs4660429 40794563 0.3592 0 0 0.1 0.12
rs3013595 45925790 0.4444 0 0 0 0.1225
rs1875645 50562467 0.3959 0 0.09 0.11 0.125
rs2767503 55925313 0.4834 0 0 0.12 0.1275
rs6587887 60781874 0.436 0 0.1 0 0.13
rs913199 65643650 0.4778 0 0 0.13 0.1325
rs6424388 70703376 0.3964 0 0 0 0.135
rs6656537 75558471 0.3603 0 0.11 0.14 0.1375
rs1012455 80512131 0.4393 0 0 0 0.14
rs6660237 85468592 0.332 0 0.12 0.15 0.1425
rs12035196 90502332 0.3388 0 0 0.16 0.145
rs10458508 95415812 0.304 0 0 0 0.1475
rs3766600 100160527 0.3277 0 0.13 0.17 0.15
rs6695731 105309419 0.4479 0 0 0 0.1525
rs7545139 110389479 0.3482 0 0 0.18 0.155
rs360622 115208584 0.3733 0 0.14 0.19 0.1575
rs539708 120010026 0.388 0 0 0 0.16

Table 2.4: First 25 of 50 SNPs from chromosome 1 selected to be causal for the simulation
study. The consecutive columns contain: SNPId, position (in base pairs),
minor allele frequency (MAF) and the regression coefficients for Scenarios 1,
2, 3 and 4.

49



2 METHODS

SNPId BP MAF S1 S2 S3 S4
rs12724816 144350681 0.3955 0 0 0.2 0.1625
rs1498308 148561755 0.3964 0 0.15 0 0.165
rs884618 152867781 0.4305 0 0 0.21 0.1675
rs2106092 157099068 0.3736 0 0 0.22 0.17
rs2841959 161324818 0.4857 0 0.16 0 0.1725
rs1021621 165465160 0.406 0 0 0.23 0.175
rs6656814 170007569 0.4793 0 0 0 0.1775
rs12033847 174294601 0.4083 0 0.17 0.24 0.18
rs4076449 178263641 0.3375 0 0 0 0.1825
rs7549909 182512254 0.31 0 0.18 0.25 0.185
rs10754227 187001959 0.4469 0 0 0 0.1875
rs1234722 191121675 0.3412 0 0 0.26 0.19
rs10754210 195278734 0.3313 0 0.19 0 0.1925
rs2782581 199770355 0.3666 0 0 0.27 0.195
rs823096 203946510 0.4507 0 0.2 0.28 0.1975
rs6661316 208162150 0.4794 0 0 0 0.2
rs1391553 212540742 0.3041 0 0 0.29 0.25
rs6684205 216676325 0.301 0 0.21 0.3 0.3
rs35746652 220779831 0.3714 0 0 0 0.4
rs3738725 225240833 0.4043 0 0.22 0.31 0.5
rs531592 229463257 0.4168 0 0 0 0.6
rs291388 233714648 0.4996 0 0 0.32 0.7
rs2278642 237933766 0.3783 0 0.23 0 0.8
rs2047137 242263033 0.3032 0 0 0.33 0.9
rs11204620 246495261 0.4135 0 0.24 0.34 1

Table 2.6: Last 25 of 50 SNPs from chromosome 1 selected to be causal for the simulation
study. The consecutive columns contain: SNPId, position (in base pairs),
minor allele frequency (MAF) and the regression coefficients for Scenarios 1,
2, 3 and 4.
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2.5.1.1 Calibration of the memetic search

The performance and runtime of the memetic search algorithm are highly dependent
on the choice of its main parameters19 population size (modelsNo), maximum num-
ber of visited models (maxPoolSize), the degree of exhaustion during local search
(pLocalExchangeTrial), the maximum number of iterations (maxNoProgressIter), the
reset condition (B) and the composition of the initial population (fastForwardModelsNo).

In order to find a balanced setup between runtime and the prospect to find a globally
optimal model I conducted a small simulation study based on five repetitions for each
parameter setting, with phenotypes generated according to scenario III. I decided to fix
the values for the maximum number of visited models to 200000 and the population
size to 100 to keep the runtime within reasonable bounds. In a first step I focused my
interest on three aspects, namely, the composition of the initial population, the degree
of localization of the search strategy and the iteration reset condition to get a good per-
forming combination of parameters. For this, I considered all combinations of the follow-
ing parameter values fastForwardModelsNo ∈ {10, 25, 50} , pLocalExchangeTrial ∈
{.05, .1, .25, .5}, B ∈ {10, 20, 30, 40} and maxNoProgressIter = 5000. The poolsize was
nearly 200000 for every replication and all combinations. I observed that the choice for
B had no substantial impact on the performance or the runtime and that the combina-
tion fastForwardModelsNo = 50, pLocalExchangeTrial = .25 showed the best (and
very satisfying) performance. In the next step I wanted to reduce the runtime while not
losing too much in terms of performance. So I fixed fastForwardModelsNo = 50 and
pLocalExchangeTrial = .25, and investigated all combinations of B ∈ {10, 20, 30, 40}
and maxNoProgressIter ∈ {500, 1000, 2500, 5000}. It turned out that the combination
B = 10 and maxNoProgressIter = 1000 clearly reduced the runtime while the loss in
the performance parameters was only minor.
The final parameter setting which was used throughout the rest of the thesis and which

now serves as the default setting of MOSGWA is maxPoolSize = 200000, modelsNo =

100, fastForwardModelsNo = 50, B = 10, pLocalExchangeTrial = .25, and
maxNoProgressIter = 1000.

19The names of the parameters controlling these aspects of the memetic search algorithm in MOSGWA
are given in brackets.
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2.5.2 Real Data Analysis

As a real data example I will reanalyze the NFBC66 dataset. A subset of this dataset has
already been analyzed by Sabbati et al. [30]. I tried to mimic the analysis of Sabbati et
al. as closely as possible, but due to the fact that the datasets are not identical and that
some data preprocessing steps could not be replicated with the data available at dbGaP a
direct comparison between my results and those of Sabbati et al. is not possible. Instead
I will focus on comparing the results obtained by MOSGWA with those of PiMass and
linear regression based single marker tests applying Benjamini-Hochberg and Bonferroni
adjustment with the typical choice of .05 for FWER respectively FDR. Because the
memetic search algorithm of MOSGWA and the MCMC sampler implemented in PiMass
contain random elements I repeat the analysis with those algorithms five times to assess
the stability of the results. I used both PiMass and MOSGWA with the same parameter
setup as in the simulation study, with the only exception ofmaxPoolSize for MOSGWA’s
memetic search which I set to 100000 to bound the runtime at a reasonable level.
As mentioned in Section 2.1.2 there is clear evidence for population structure in the

data. In order to control the results for this I applied the strategy described in Section
1.2.3.2. Sabbati et al. also suggested that three other variables (use of oral contraception
(OC), sex of a subject (SEX) and pregnancy status) should be considered as covariates
for analysis. Therefore all regression models include these three variables and the first
five eigenvectors as mandatory regressors. The only exception to this is BMI where PG
is omitted as covariate. This adjustment can be applied directly for MOSGWA and the
single marker tests. Unfortunately PiMass is not able to handle mandatory regressors.
So, I had to use the residuals of the phenotype regressed on these variables instead of the
observed phenotype as the regressand for PiMass. This remedy, which is not equivalent
with the intended procedure, is suggested by Guan and Stephens [20]. The inability of
PiMass to include mandatory covariates is certainly a disadvantage.
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3.1 Simulation Study

Let us start by reviewing the performance results of the competing model selection al-
gorithms (see Table 3.1 and Figure 3.1). MOSGWA regardless of the search strategy
does an excellent job in controlling the FWER under the total null hypothesis (scenario
I). The same is true for PiMass (we observed only one run for scenario I were PiMass
reported a SNP).

MA_Best MA_Post Greedy PiMass BH
Scenario I: k=0

FDR <.01 <.01 0.08 0.01 <.01
Scenario II: k=20

Power 0.756 0.76 0.743 0.612 0.762
FDR 0.004 0.004 0.002 0.03 0.0874
FP 0.06 0.06 0.03 0.42 14.87
Mis 4.87 4.86 5.17 8.18 19.63

Scenario III: k=30
Power 0.855 0.854 0.837 0.744 0.853
FDR 0.0085 0.0086 0.0023 0.0249 0.1586
FP 0.23 0.23 0.06 0.61 50.6
Mis 4.58 4.61 4.93 8.27 55.02

Scenario IV: k=50
Power 0.932 0.932 0.924 0.833 0.722
FDR 0.011 0.0107 0.0095 0.0315 0.4086
FP 0.53 0.51 0.45 1.44 161.58
Mis 3.93 3.92 4.24 9.77 175.47

Table 3.1: Comparison of estimated power, false discovery rate (FDR), false positives
(FP) and number of misclassifications (Mis) for PiMass, MOSGWA in FSS
mode (Greedy), MOSGWA in memetic search mode with posterior inclu-
sion probability based selection (MA_Post) and best criterion based selection
(MA_Best) as well as Benjamini Hochberg adjusted single marker tests (BH)
with a nominal FDR level of .0085. This choice is based on the approximate
theoretical FDR level of mBIC2 calculated by formula 16 presented in [6].
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Figure 3.1: Comparison of estimated power (right column) and number of false positives
(left column) for all methods and scenarios II-IV. For FP dark gray equals
zero false positives and the lighter the higher the number of FP (see legend
on the right).
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The dark gray portion in the left column of Figure 3.1 on the preceding page shows
the number of runs where no FP was reported. This number decreases for both methods
with increasing scenario complexity, but the performance loss of PiMass is much more
pronounced compared to MOSGWA. A detailed look at this figure shows that for all
scenarios mBIC2 based algorithms reported no false positive signals in more than 50

out of 100 replications, this number exceeds 75 for scenario III and is about 90 for scenario
II. In all scenarios PiMass shows a much stronger tendency to report false positive signals
(this is also supported by the numbers presented Table 3.1). Especially in scenario IV
PiMass reported at least one wrong SNP in 90 out of 100 runs. When it comes to the total
average number of misclassified SNPs mBIC2 based methods again clearly outperform
PiMass in every scenario. These results are in line with the fact that mBIC2 based
selection is asymptotically a Bayes optimal classifier [14]. They further suggest that this
property holds at typical GWAS sample sizes.
Based on the considerations presented in [6] we would expect that mBIC2 based

methods should control the FDR at a level of .0085. For scenarios II, III and IV all
mBIC2 based methods show a FDR of less than .011 which is roughly what we would
expect. Compared to PiMass the FDR control of MOSGWA is much stricter. In scenario
II and III the observed FDR of PiMass is roughly an order larger than the one observed
for MOSGWA and in scenario IV it is nearly three times as big. But in absolute terms
PiMass performed quite well with an FDR below .032 for all scenarios. In general the
FDR of each method increases with the complexity of the scenario.
Now, let us turn our attention to the power to detect causal SNPs. Given that

mBIC2’s ABOS property holds for moderate sample sizes, we would expect that MOS-
GWA reports less false negative results than PiMass, which in turn should yield a better
power. That is exactly what we have observed. mBIC2 based methods dramatically
outperform PiMass in every scenario in terms of power. This finding is even more ap-
parent when we look at the selection pattern of MOSGWA and PiMass for scenario II
(the patterns are similar for scenarios III and IV) as presented in Figure 3.2. MOSGWA
shows a very regular, stable and desirable selection pattern. Highly influential SNPs were
detected in nearly all replications, the biggest effect size with a detection rate below .95

was β = .13. The selection pattern shown by PiMass is quite different. For PiMass the
selection frequency of a region shows no direct correspondence with the effect size of the
causative SNP. For example, the selection frequency of a region with a causative SNP
effect size of β = .22 (the third biggest effect in this scenario!) was practically zero,
which is indisputable much lower than the detection frequency of 90% for a region with
a causal SNP effect size of β = .1.
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Figure 3.2: Illustration of the selection pattern of PiMass and MOSGWA. Columns dis-
play the selection frequency of a region around a causal SNP.
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Figure 3.3: Runtime of PiMass (right, gray filled Boxplots) and MOSGWA in memetic
mode (left, white filled Boxplots) for scenarios I-IV.

So far we have seen that MOSGWA clearly outperforms PiMass in any aspect. The only
advantage that PiMass offers is a relatively moderate runtime (see Figure 3.3) which is
nearly the same for all scenarios, whereas the runtime of MOSGWA’s memetic algorithm
grows nearly exponentially with the complexity of the considered scenario. However,
limiting the maximal pool size will also bound the runtime of the memetic algorithm,
which tends to be proportional to the number of visited models.
Finally we want to look at the heritability estimators. According to Figure 3.4 all

heritability estimators have the tendency to underestimate the heritability in all scenar-
ios. This is no surprise for MOSGWA h2, which is basically the fraction of explained
variance, because most of the selected models did not contain all causal regions. This
bias increases with the complexity of the scenario for all methods. PiMass estimator h
shows the most severe increase in bias, followed by PiMass hh which is nearly unbiased
for scenario II but shows a strong bias for scenario IV. MOSGWA h2 performs relatively
best in the most complex scenario, nonetheless the estimator is severely biased.
In all three scenarios MOSGWA h2 provides credibility intervals which are by a factor 5

to 10 smaller than the estimators offered by PiMass. In general the length of the credibil-
ity intervals of h2 was very small with respect to the point estimator and approximately
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Figure 3.4: Estimates of heritability (left column) and length of credibility interval (CI)
(right column). The dotted line represents the true heritability for a scenario.
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equal in all scenarios. In combination with the bias described above this led to a lower
coverage compared to the interval estimators offered by PiMass (see Table 3.2). The best
coverage was observed for scenario III where the true value was in the credibility interval
in 73 out of 100 runs. Still this is far below the nominal level of .95. The shortness of

Scenario MA_h² PiMass_h PiMass_hh
II .67 1.00 .97
III .73 1.00 .97
IV .13 1.00 .68

Table 3.2: Frequency of the event that the true heritability value was in the credibility
interval.

the credibility intervals obtained with the genetic algorithm is most likely due to the fact
that the algorithm visits a too homogeneous or too small subpopulation of the model
space. This finding will be revisited and related to other results in the Discussion section.
Now we want to compare the performance of MOSGWAwith the very common strategy

of Benjamini-Hochberg (BH) adjusted single marker tests. What is really striking is the
fact that BH seems to completely fail to control the FDR at the nominal level (see Table
3.1) for the scenarios II to IV and that the average number of false positives is 100 to
1000 times bigger compared to mBIC2 based methods. In terms of our definition of FP
this means, that BH selects a large number of SNPs that are not in the neighborhood
of a causal SNP. This behavior of single marker based test strategies has already been
observed by Frommlet et al.[18]. The key to understand this undesired behavior is
the actual distribution of the single marker test statistics under a complex model (see
section 1.2.2 for a principle sketch of the argument). Their important finding was that
the selection probability is essentially controlled1 by the noncentrality parameter ν of
the model sum of squares (MSS) distribution. For a noncausal SNP j in a given finite
sample this parameter is

√
νj =

∣∣∣∣∣∣ 1√
V̂ar (Xj)

∑
l 6=j

βl ˆCov (Xl, Xj)

∣∣∣∣∣∣ ,
where βl denotes the effect of SNP l on the phenotype under consideration. This fact
reveals that noncausal SNPs are “charged” via sample correlations with causal SNPs.
Let us consider the case that the causal SNPs are statistically independent from each

other and that the noncausal SNP j is not in linkage with any of them. Then the sum

1A larger noncentrality parameter implies a larger selection probability.
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above is a random variable with expected value 0 and variance
∑

l 6=j β
2
l Var

(
ˆCov (Xl, Xj)

)
.

Thus, the probability that the statistical test for a nonindicative SNP j has an associated
noncentrality parameter that is large enough to give a significant selection probability for
a nonindicative SNP is nonzero, and increases with trait complexity due to the increasing
number of nonzero βj . Given the huge number of nonindicative SNPs in a typical GWAS
one can expect that a certain number of them will be selected, even if the probability
for a single SNP is rather small. So, some of the false positives are weak linkage SNPs,
but far more troubling, we can conjecture that a significant portion of false positives are
entirely nonindicative SNPs.
The validity of this argument can be clearly seen in Figure 3.5, where the observed

relationship between the noncentrality parameter and the selection frequency of false
positive detections is depicted. Further, this argument also explains why the false positive
rate is higher in more complex scenarios. In contrast to the single marker tests MOSGWA
shows only a small increase of false positives with increasing trait complexity.

60



3 RESULTS

Figure 3.5: Illustration of the relationship between the noncentrality parameter of the
single marker test statistic distribution of a noncausal SNP and the frequency
of false positive occurrence in the 100 simulation runs for scenario II to IV.
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3.2 Real Data Reanalysis

Rudimentary sample characteristics are presented in Table 3.3. We can see that the
Genomic Inflation Factor lambda2 (based on the population structure adjusted single
marker tests) is approximately 1 for all phenotypes. This indicates that the p-values of
the single marker based analysis for all phenotypes are not distorted by an unaccounted
population structure. By virtue of the fact that we have applied the same correction
strategy for all methods, these statistics also indicate that the obtained results are nearly
unaffected by population structure effects for all methods. We will now discuss the results
for each phenotype.

Pheno Variants N_tot N_male N_female lambda
BMI 324310 4915 2491 2424 1.02921
CRP 324310 5257 2514 2743 1.02091
DIA 324310 5242 2511 2731 1.03531
GLU 324310 5239 2500 2739 1.01976
HDL 324310 4835 2282 2553 1.04597
INS 324310 5212 2482 2730 1.00841
LDL 324310 4821 2274 2547 1.05264
SYS 324310 5251 2512 2739 1.03794
TG 324310 4834 2281 2553 1.01447

Table 3.3: Sample characteristics for each phenotype.

The selected SNPs for each phenotype are tabulated in Table 3.4 whenever at least
one method selected a SNP for a particular phenotype. We can see that for both blood
pressure measures (SYS and DIA), Body Mass Index (BMI ) and insulin level (INS ) no
method was able to detect a causative region.
We observed consensus about the causative regions among the methods for CRP, but

we have to note that PiMass found the region indicated by SNP rs1169300 only four out
of five times.
The results show a different picture for GLU. For this phenotype MOSGWA selected

five regions which were also selected by Bonferroni adjusted single marker tests. Out
of these five regions PiMass reported only four and no more. We also note that the
results for PiMass are not identical for all replications and that the Benjamini-Hochberg
adjusted single marker tests reported one additional region compared to MOSGWA.

2The Genomic Inflation Factor λ := median
(
χ2

)
/0.456 proposed by Devlin [12] tries to quantify to

what extent a collection of χ2 based test statistics suffer from distortions caused by population
structure. A Genomic Inflation Factor near 1 indicates that no overall population structure effect is
present.
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SNPid chr pos Post Best Greedy PiMass BH Bon Sabbati
CRP

rs12753193 1 65942267 5.1E-06
rs2794520 1 157945440 5 5 x 5 x (1) x (1) 1.3E-19
rs1169300 12 119915608 5 5 x 4 x (5) x (5) 1.1E-08

GLU
rs2025934 1 192001523 5 5 x 3 x (1) x (1)
rs560887 2 169471394 5 5 x 4 x (1) x (1) 4.3E-10
rs3798004 5 9423945 5 5 x x (1) x (1)
rs35781869 6 32661960 5 5 x 2 x (10) x (6)
rs10244051 7 15030358 1.5E-06
rs7858883 9 70481450 5 5 x 1 x (1) x (1)
rs1447352 11 92362409 8.4E-08
rs3794687 16 83684042 x (1)

HDL
rs6728178 2 21047434 x (4)
rs10096633 8 19875201 1 x (1)
rs2740486 9 106706334 2 x (1)
rs7120118 11 47242866 5 5 x 4 x (3) x (1) 2.2E-07
rs1532085 15 56470658 5 5 x 5 x (3) x (3) 2.7E-11
rs3764261 16 55550825 5 5 x 5 x (4) x (4) 8.2E-29
rs255052 16 66582496 5 5 x 1 x (19) x (9) 2.1E-07
rs1800961 20 42475778 x (1)

LDL
rs207150 1 55579053 2 x (3)
rs646776 1 109620053 5 5 x 5 x (2) x (2) 7.3E-11
rs4844614 1 205941798 2 x (1) 1.1E-06
rs1713222 2 21124828 5 5 x 5 x (12) x (10) 3.2E-12
rs945559 10 89813127 1
rs174556 11 61337211 3 x (8) 1.3E-07
rs2228671 19 11071912 5 5 x 5 x (3) x (2) 7.2E-09
rs157580 19 50087106 5 5 x 5 x (1) 1.1E-08

TG
rs3923037 2 21011755 1 x (1) 3.4E-07
rs1260326 2 27584444 5 5 x 5 x (2) x (2) 5.2E-11
rs10096633 8 19875201 5 5 x 3 x (1) x (1) 9.5E-09
rs12805061 11 116058235 x (2)

Table 3.4: Indicated regions for all phenotypes with at least one reported region. Re-
ported SNPs that are within 1.5 MBP have been summarized in a single region
which is represented by the most frequent SNP. For deterministic algorithms
x marks a selection followed by the number of selected SNPs in a region. For
random algorithms the reported number indicated how many times this region
was detected. For both adjustment procedures an adjusted p-value of .05 was
regarded as significant. We also include the p-values reported by Sabbati et
al. [30] if the p-value is of order 10−6 or smaller.
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The results for HDL were also ambiguous. MOSGWA reported four causative regions
which were found all the time. The same regions were also reported by Bonferroni
adjusted single marker tests. PiMass indicated more regions than MOSGWA, but most
of the findings could not be replicated in each of the five runs, especially those that are
additional findings compared to MOSGWA. Benjamini-Hochberg adjusted single marker
tests reported more regions than MOSGWA.
The results for LDL show a similar picture. MOSGWA reported the (same) four

regions in all replications. Bonferroni corrected single marker tests have found only three
of those four regions and no more. Again, the results for PiMass were very unstable. Of
all the regions indicated by PiMass only those which were also reported by MOSGWA
were replicated all the time. The replication rate for the additional four regions was very
poor. Again, and as expected, Benjamini-Hochberg adjusted single marker tests reported
more regions than MOSGWA.
MOSGWA indicated two regions for TG in all replications. These regions were also

reported by Bonferroni adjusted single marker tests. PiMass reported an additional
region, but this finding was reported in only one of the five replications. Benjamini
Hochberg adjusted single marker tests reported more regions than MOSGWA.
Let us start our synopsis of the results with the observation that we have seen no

difference in the performance of the three search strategies implemented in MOSGWA.
In general the findings reported by MOSGWA have shown to be very robust and repro-
ducible. This favorable behavior set MOSGWA apart from PiMass. The regions reported
by PiMass have proven to be highly unstable and changed dramatically when the algo-
rithm was applied repeatedly to the same data set. This converse behavior of the two
procedures can also be seen in the estimated posterior probabilities obtained by PiMass
and MOSGWA, which are depicted in Figure 3.6. In this figure we see that estimated
posterior probabilities are much more pronounced and pointed for MOSGWA. This ob-
servation could be an indicator that the Markov chain of the sampler implemented in
PiMass is not in equilibrium (or at least not long enough) and requires additional runtime.
When both procedures nominally control their corresponding generalized Type-I error

rate at a level of .05, we have observed that Bonferroni adjusted single marker tests in
total report one region less than MOSGWA and that Benjamini-Hochberg adjusted single
marker tests report more. Both findings are quite interesting, especially when we take
into account what we have learned from the simulation experiments. At a first glance
is seems quite obvious that mBIC2 based selection performs better than Bonferroni
adjusted single marker tests because the mBIC2 is designed to control the FDR which
is a less stringent generalized Type I error rate than FWER, and therefore must be
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Figure 3.6: Estimated posterior SNP inclusion probabilities for selected phenotypes by
PiMass and MOSGWA for the first replication.
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more powerful. This statement would certainly be true, if MOSGWA and the Bonferroni
procedure control the FDR respectively the FWER at approximately the same level. But,
in the simulation experiment we have seen that MOSGWA controls the FDR at a much
tighter level which is roughly ten times smaller than the nominal level applied for the
Bonferroni adjustment in this analysis. Therefore, it is quite impressive that MOSGWA
despite this stricter control shows a slightly higher power. If we set the nominal FWER
level of the Bonferroni adjustment to .0082, which is according to [6] the approximate
theoretical FDR level ofmBIC2 based selection for this datasets, then MOSGWA reports
four regions more then Bonferroni adjusted single marker tests (see column Bonf* of
Table 3.5). It is also worthwhile to note that all of the additionally indicated SNPs are
reported for LDL, HDL and GLU, which are apparently the most complex traits among
the analyzed phenotypes. This is in line with the theoretical considerations presented in
the previous sections which suggest that the benefits of mBIC2 based model selection
compared to single marker based test strategies increase with the complexity of the
underlying trait.
The reason for the second observation becomes clear in the light of the findings of

the simulation study. There we have seen, that the Benjamini-Hochberg procedure dra-
matically fails to control the FDR at the nominal level. Even for a moderate complex
trait (scenario II) the actual level was approximately 10 times larger than the nominal
level. If we assume that the investigated traits are only influenced by a low to moderate
number of genes (as it seems to be the case), we estimate that the actual FDR level of
the Benjamini-Hochberg procedure is roughly .5. So we expect that nearly half of the
detected signals are spurious. With this in mind, it seems reasonable to suspect that all
the additional findings are actually false positives.
We can (not in a very strict sense) test this conjecture when we set the nominal

FDR to a more adequate level, that facilitates a direct comparison of MOSGWA and
Benjamini-Hochberg adjusted single marker tests results, and notice which regions are
not reported anymore. If we set the nominal FDR level to .0082 which approximately
corresponds to the theoretical FDR of mBIC2 based selection, we see that most of the
additionally reported regions are gone (see column BH* of Table 3.5). Regarding the
simulation experiment results, especially the excessive number of false positives reported
by Benjamini-Hochberg adjusted single marker tests, we also considered the case of a
nominal FDR level of .001 (see column BH** of Table 3.5). According to the simulation
results presented in the previous section this level is clearly too strict for the low complex
traits CRP and TG, but for the more complex traits LDL, HDL and GLU this nominal
level will roughly yield an actual FDR level that corresponds to MOSGWA. At this level
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all the additionally reported regions of the Benjamini-Hochberg adjusted single marker
tests are gone. Actually MOSGWA reports more regions. But both procedures still agree
on most of their shared findings. In toto these results support the hypothesis, that most
(if not all) of the additional findings reported by Benjamini-Hochberg adjusted single
marker tests are spurious.
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SNPid chr pos MOSGWA Bon* BH* BH**
CRP

rs2794520 1 157945440 x (1) x (1) x (1)
rs1169300 12 119915608 x (1) x (2) x (5) x (2)

GLU
rs2025934 1 192001523 x (1) x (1) x (1)
rs560887 2 169471394 x (1) x (1) x (1) x (1)
rs3798004 5 9423945 x (1) x (1)
rs35781869 6 32661960 x (1) x (6) x (7) x (6)
rs7858883 9 70481450 x (1) x (1) x (1) x (1)
rs3794687 16 83684042 x (1)

HDL
rs6728178 2 21047434 x (4)
rs7120118 11 47242866 x (1) x (2)
rs1532085 15 56470658 x (1) x (1) x (3) x (2)
rs3764261 16 55550825 x (2) x (4) x (4) x (4)
rs255052 16 66582496 x (1) x (5) x (12) x (9)
rs1800961 20 42475778 x (1)

LDL
rs207150 1 55579053 x (1)
rs646776 1 109620053 x (1) x (2) x (2) x (2)
rs1713222 2 21124828 x (3) x (7) x (12) x (7)
rs174556 11 61337211 x (2)
rs2228671 19 11071912 x (1) x (2) x (2) x (2)
rs157580 19 50087106 x (1) x (1)

TG
rs1260326 2 27584444 x (1) x (2) x (2) x (1)
rs10096633 8 19875201 x (1) x (1) x (1)

Table 3.5: Indicated regions for all phenotypes with at least one reported region. Re-
ported SNPs that are within 1.5 MBP have been summarized in a single re-
gion. x marks a selection followed by the number of selected SNPs in a region.
For Bonf* and BH * an adjusted p-value of .0082, which is approximatly the
theoretical FDR of mBIC2 based selection, was regarded as significant. For
BH** an adjusted p-value of .001, which permits a direct comparison with
MOSGWA, was regarded as significant.
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4 DISCUSSION

In this thesis I have described a model selection approach to genome wide association
studies (GWAS) using modifications of the Bayesian Information Criterion (BIC) which
is based on sound theoretical considerations (see Section 1.3.2.4). Elementary statisti-
cal arguments (see Section 1.2.2) suggest that this approach should be a more powerful
strategy to analyze GWAS data for complex traits than the frequently used single marker
based test strategy. One of the problems of model selection in high dimensional datasets
is the astronomical size of the potential model universe. Consequently, full enumeration
is not a feasible option and model selection must be based on search heuristics. So, the ac-
tual performance of a model selection criterion is a compound of its theoretical properties
and the behavior of the implemented search strategy for the required optimization.
For mBIC2 based selection I have described two different search algorithms which

are implemented in the MOSGWA software package. One is a very elaborated greedy
algorithm called fast stepwise search (see Section 2.4.1) and the other one is a variant
of a memetic search algorithm (see Section 2.4.2). For the latter two distinct modes of
final SNP selection exist. One is simply to consider the model with the smallest selection
criterion visited by the memetic algorithm, and the other one is based on the estimated
posterior inclusion probabilities of each candidate SNP.
In order to assess the performance of mBIC2 I conducted a simulation study and re-

analyzed a real dataset (see Section 2.5 for details). For the simulation study I contrasted
the mBIC2 based findings with those obtained by the Bayesian variable selection model
implemented in PiMass and Benjamini-Hochberg adjusted single marker tests. For the
real data example I additionally considered Bonferroni adjusted single marker tests. I
omitted a more in depth comparison with the original analysis because the published
data available at dbGaP deviates significantly from the data analyzed in the original
publication [30].
The findings of the simulation study demonstrated an overall superior performance

of mBIC2 based model selection compared to PiMass. mBIC2 based selection detects
more causal SNPs and has a tighter FDR control resulting in a much lower average
number of misclassified SNPs. Furthermore it has demonstrated a very desirable selection
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pattern and the ability to control the false positive detection rate scales very well with
trait complexity. These findings suggest that the asymptotic optimality properties of
mBIC2 can be relied upon at a typical GWAS sample size. What was quite surprising
was the fact that the observed results were practically unaffected by the applied search
strategy. A possible reason for this could be some weakness in the construction of the
initial population of the memetic algorithm that I discovered during my work. I have
passed this finding on to the maintainer of MOSGWA who implemented an improved
initial procedure whose performance is currently examined.
We have also seen that MOSGWA outperforms PiMass in terms of the reproducibility

of the reported SNPs in the real data example. In both experiments we have seen
that PiMass produces shaky and very unstable findings. A possible explanation for
this contrasting behavior may be the different way the implemented search strategies
walk through the search space. The memetic search in MOSGWA is strongly bound to
sample models with high likelihoods and to move only through this subspace of the model
universe. In contrast PiMass implements a MCMC sampler that walks through the model
space more erratically and therefore the visited models are much more heterogeneous in
terms of their likelihood. Because most of the models in the model universe possess an
extremely low likelihood, the sampled Markov chain contains a high proportion of models
that are practically neglectable for the estimation of model posterior probabilities. In
consequence just a small fraction of models dominates the estimation. This leads to
more fluctuation and stronger biased estimated posterior inclusion probabilities as we
have seen, even if the number of visited models is nominally bigger (as it is the case
in the presented experiments). For that reason on might conclude in general that a
simple MCMC sampler is not well suited for model selection in high dimensional settings
and that algorithms which are bound to search in the subset of “good” models, like the
proposed memetic algorithm, should be superior to this approach.
The only thing left to discuss is the higher number of regions indicated by Benjamini-

Hochberg adjusted single marker tests compared to MOSGWA in the real data example.
There exist good arguments to assume that this additional findings are all false positives.
In the simulation study we have seen that the FDR for mBIC2 based methods is roughly
.004 for scenario II (which is most comparable to the complexity of the traits in the real
data example). This is more than ten times as strict as the nominal FDR level of .05 we
have chosen for the Benjamini-Hochberg adjusted single marker tests, and much stricter
than the actual FDR level which can be assumed to be around .5. When the nominal
FDR for the Benjamini-Hochberg procedure is set to the much stricter level that permits
a direct comparison these additionally detected SNPs are all gone. However, we can not
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4 DISCUSSION

be certain if these additionally indicated SNPs are true or false positives. But in theory
mBIC2 based model selection performs asymptotically as good as a Bayes oracle for a
wide range of sparse asymptotic regimes and we have seen in the simulations that this
property holds for a typical GWAS. So it is not unreasonable to conjecture that mBIC2

based model selection is approximately a Bayes optimal classifier and therefore most of
the additional findings by BH will be false positives.
Nonetheless this raises a point. In a discovery context where false positives are far less

important than possible findings one could argue that the property of mBIC2 to control
the FDR proportional to 1/

√
n is too strict, especially when the sample size is bigger than

a few hundredth. So it seems desirable to create a selection criterion that controls the
FDR at a nominal level. Such a criterion is currently developed and will be discussed in
an upcoming publication.
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Abstract

Even nowadays multiple comparison adjusted single marker tests are the most commonly
applied strategy to analyze genome wide association studies (GWAS). Elementary sta-
tistical considerations demonstrate that this strategy is highly suboptimal in terms of
power to detect causative regions on the genome. Especially if the phenotype of interest
is a complex trait. A potentially more powerful strategy is the application of model selec-
tion for multi marker regression models. I discuss a model selection criterion (mBIC2)
which is an adaption of the Bayesian Information Criterion (BIC) to high dimensional
statistics. This modification is based on sound statistical theory, and guarantees that
model selection based on mBIC2 is asymptotically a Bayes optimal classifier for a wide
range of relevant sparse asymptotic regimes. A prevailing difficulty for model selection
in the context of high dimensional datasets is the tremendous size of the potential model
universe. In fact this number is so big that enumeration is not a feasible option any-
more. In order to find the optimal model search heuristics must be applied. I present
two methods for mBIC2 based model selection which are currently implemented in the
MOSGWA software package. One is a version of a greedy algorithm called fast stepwise
selection and the other one is a novel memetic algorithm. Based on these search strate-
gies I compare the performance of mBIC2 based model selection with a Bayesian variable
selection model (implemented in PiMass) and typical single marker test strategies in a
simulation study and a reanalyzed real data example.
The findings of these experiments demonstrated an overall much better performance

of mBIC2 based model selection compared to PiMass and single marker tests. mBIC2

based selection succeeds in all relevant performance measures. It detects more causal
regions, has a tighter FDR control, a much lower average number of misclassified signals
and shows a very desirable selection pattern for all search strategies.



Zusammenfassung

Selbst heutzutage sind Single-Marker Tests nach wie vor die gängigste Analysestrate-
gie zur Auswertung Genomweiter Assoziationsstudien (GWAS). Elementare statistische
Argumente führen jedoch zu dem Urteil, dass diese Auswertestrategie hochgradig in-
effektiv ist um kausale Marker aufzuspüren. Dies gilt im Besonderen dann, wenn der
zugrundeliegende Phänotyp durch eine Vielzahl genetischer Marker bestimmt wird. Ein
Weg die Effektivität der Auswertung zu steigern ist, das zugrundeliegende Problem als
Modelselektion aufzufassen. Somit rückt also die Suche nach dem (im Sinne eines Kriteri-
ums) besten Regressionsmodell zur Erklärung des zugrundeliegenden Phänotyps in den
Fokus. Dabei werden die einzelnen Marker nicht mehr für sich getrennt, sondern gebün-
delt betrachtet, man spricht daher von einem Multi-Marker Ansatz. Zu diesem Zweck
stelle ich das Selektionskriterium mBIC2 vor. Bei diesem Kriterium handelt es sich um
eine theoretisch wohlfundierte Anpassung des Bayesian Information Critera (BIC) für
hochdimensionale statistische Daten mit herausragenden asymptotischen Eigenschaften.
Eine nicht zu übersehende Schwierigkeit bei der Modellselektion in hochdimensionalen

Daten ist die überwältigende Anzahl der möglichen Modelle. Deren Anzahl ist so groß,
dass die vollständige Enumeration selbst mit zeitgenössischen Rechnern nicht möglich
ist. Es bleibt daher keine andere Option als dieses Optimierungsproblem heuristisch zu
lösen. In der vorliegenden Arbeit stelle ich zwei Heuristiken vor die es erlauben mBIC2

basierte Modellselektion in GWAS durchzuführen. Bei der einen Suchstrategie handelt es
sich um eine bereits erprobte Variante eines Greedy-Algorithmus, die zweite beschreibt
eine grundlegend neuartige Variante eines Memetischen-Algorithmus.
Zur Evaluation der Performanz mBIC2 basierter Selektion – mit einem Fokus auf

den memetischen Algorithmus – führte ich eine Simulationsstudie und die Reanalyse
eine bereits veröffentlichten GWAS durch. In beiden Fällen wurden die Ergebnisse
der Heuristiken untereinander und mit alternativen Auswertungsmethoden verglichen.
Die betrachteten Alternativen waren Bonferroni bzw. Benjamini-Hochberg adjustierte
Single-Marker Tests und eine Bayesianisches Variablen Selektionsmodell (implementiert
in PiMass).
Zusammengefasst zeigte sich eine deutliche Überlegenheit der mBIC2 basierten Selek-

tion. Unabhängig von der Optimierungsheuristik zeigten diese eine mit Abstand höhere
Power, eine niedrigere FDR sowie eine deutlich niedrigere Anzahl an falsch klassifizierten
Markern.
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