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Introduction

"Aging" occurs in out-of-equilibrium physical systems. It is becoming in-
creasingly important in physics and mathematics.

Bouchaud’s trap model on a graph G = (V, £) has been introduced to ana-
lyze aging. It is defined as follows:

Let £ = (E.)z.ev be a collection of i.i.d. random variables exponentially
distributed with mean one, we introduce the continuous time Markov chain
X (t) with state space V such that

Wgy dt  if z,y are connected in G

P(X(t+dt) =y|X(t) =z, F) = )
0 otherwise,

where
Wyy = vexp(—F((1 — a)E, — aEy)).

Here [ stands for the inverse temperature, a € [0, 1] expresses the balance of
power between x and y. The parameter v is introduced for technical reasons.
The Markov chain X () resides at site x for a certain amount of time, which
depends on FE,. This time increases, if F, does. Thus, F, can be viewed as
the depth of the trap at site x.

Bouchaud’s trap model illustrates the motion of the physical system between
the states with energies E,. It can be viewed as a simplification of spin-glass
dynamics. The states of X (¢) represent those of a spin-glass system with par-
ticularly low energy. The spin-glass dynamics reside mostly in the deepest
traps and run through the others especially fast. Thus, all smaller traps can
be neglected, when it comes to analyzing long time behaviour of dynamics.

For the sake of this thesis, the case G = (Z, &), where £ = {(z,y) : |[x —y| =
1)} are the nearest neighbor edges is most important:

Let (7;)zez be ii.d. random variables with unbounded expectation, which



INTRODUCTION

fulfill the following requirement:
Let a > 0. There exists a slowly varying function L, such that

P, = u] = u™*L(u).

Suppose 19 > ¢ > 0, for a € [0, 1], the one-dimensional Bouchaud trap model,
BTM(Z,1,a), is a continuous time Markov chain X (¢) with state space Z
starting in X (0) = 0 and random jump rates

1 —al1_—(1=a) _4 .
oy — §E[7'0 17 )Ty if (z,y)e &

otherwise.

This model was analyzed in terms of "aging" for a = 0 by Fontes, Isopi and
Newman in [7] and for a > 0 by Ben Arous and Cerny in [6].

Aging occurs if there exists a limit of a two-point function F(t,,t, + t),
which represents the change of the BTM(Z, 7,a) at time t + ¢, after time
t,, if t goes to infinity.

Introduced by Fontes, Isopi and Newman a good estimate for the change of
the system and therefore a good choice for F' is

R(t,t +0t) =E > P[X( t) = ilr, X ()%

€L

RY represents the average (here the average with respect to the starting point)
probability that two independent realizations of X (t) with equal site at time
t, will arrive at the same site after time ¢t + ¢,.

Fontes, Isopi and Newman managed to prove existence of the following limit
for a = 0:

lim RA(t, ¢ + 0t) = tlggo]EZP[X(u +0)t) =i, X(1)]* = RYO). (1)

This has been extended by Ben Arous and éerny for the case a > 0. Thus,
existence of "aging" has been proven for BTM(Z, 7, a) for all a € [0, 1]. The
main tool to prove (1) consists of computing the scaling limit of X (¢):

Let € > 0 we define the rescaled process:

Xe(t) :=eX(t/ec.),
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where
c.=(inf{t = 0:P(rp>1t) <e})™.

It has been proven in [7] that X¢(¢) converges almost surely in distribution
to a diffusion M (t) as ¢ — 0, where M(t) is defined by its speed measure
P = Diez Vidy, With (2;,v;),ez being an inhomogeneous Poisson point process
on R x (0,00) with density measure dz av™'"*dv. We will refer to M (t) as
the FIN-diffusion, since this diffusion was first introduced by Fontes, Isopi,
and Newman.

For the proof that the scaling limit of X (¢) is the FIN-diffusion they applied
a theorem (see chapter 1 theorem 9) proved by C. Stone in [8]. This theo-
rem states that vague convergence of a sequence of speed measures implies
convergence in distribution of the corresponding diffusions.

Consequently, they showed vague convergence of the speed measures to get
convergence in distribution of the corresponding rescaled diffusions to the
FIN-diffusion.

In this thesis we focus on diffusions, which can be interpreted as contin-
uous versions of the BTM(Z, 7,a). Analogously to the BTM(Z, 1,a) we
want to compute their scaling limits.

To be concrete: Let (1,41, P1) and (€, Az, Ps) be probability spaces. The
diffusions will be defined on (£2; x Q5,41 ® Ay, P), with P := P; ® Ps.

Let ¢ be a Poisson Point Process on R with intensity 1, defined on (91,4, P1).
Consequently, £([a, b]) has a Poisson distribution with parameter b — a. For
wy €  let (x;(w1))iez be the points of the Poisson point process correspond-
ing to the realization wj.

Let (Y;)iez be a sequence of positive i.i.d random variables on (Qs, Az, Ps).
Let h e C*(R) with supp(h) = [—1,1] and let ¢ > 0.

We study scaling limits of two diffusion models with random coefficients.
The first case corresponds to a = 0 in the discrete case:

We consider a random one-dimensional diffusion solving for each w € €21 x {2
a SDE (stochastic differential equation) without drift

dX, = (f.(X)"2dW,,  Xp=0 (2)
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with
0

fo(z)=¢ Z h(z — z;(w1))Yi(wa) + ¢

1=—00

where € is to be defined dependent on the requirement for Y;:
We study the asymptotic behavior of the solution X(¢) to (2) under two
different assumptions:

L. (Y})iez satisfy

E[Y;] < o0 (3)

and we set

~ 1

C .

(Sil h(x) dx) + B[]

2. (Y;)iez have unbounded expectation and the following condition holds:
There exists a slowly varying function L, such that

PulY; > u] = u *Lw) (4)

Gim Ullh(x) d:r)

In both cases we want to determine the scaling limit of X,.

Provided E[Y;] < oo, we define the rescaled process X°(t) := eX (¢ 2¢, 't),
where ¢y := (E[Y7])™.

Analogously to BTM(Z, 7,a) we exploit Stone’s theorem to compute the
limit of X¢(t), as € — 0, which will be the Brownian motion.

In the other case, provided (4), for ¢ > 0 and

and we set

-1

co=(inf{t =0:P(Y; >t) <e})™!, (5)

t
we define the rescaled process X¢(t) := ¢X —) Since for Y; the same
c.e

conditions are fulfilled as for the rescaled BTM(Z, 7, a), which converges to

4
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the FIN-diffusion M (t), we expect X°(t) to converge to M(t) as well. We
proceed equally to the first case by using Stone’s theorem and obtain almost
sure convergence in distribution to the FIN-diffusion.

The second diffusion, which we will examine, is derived from a SDE with
non-zero drift:

Assume x;, Y; and h are equally defined as before. Suppose (4) holds, we
consider

dXt = Vé(Xt) dt + th XO =X, (6)

where for each w € 0 x ()
1 o6}
Vo(z) = ) log (cl Z‘Zooh(x — x;(w1))Yi(w2) + c).

Again we show that for c¢. as introduced in (5) and some constant C' the

rescaled process XS (t) := X, (g) converges to the FIN-diffusion M (t).
€

This thesis is organized as follows: In the first chapter we will establish a

general theory concerning one-dimensional diffusions, derived from stochastic

differential equations. One dimensional diffusions coming from SDEs without

drift, can be expressed as a time changed Brownian motion. A time changed

Brownian motion is characterized by the speed measure of a diffusion. The

speed measure can be obtained by the SDE.

The second chapter then concentrates on proving the convergence results of

the diffusions as illustrated above.



1. One-dimensional diffusions

Let W, be a one-dimensional Brownian motion. We focus on the stochastic
differential equation (SDE)

dXt = O'(Xt) th + b(Xt) dt, X(] =X. (11)
A process X; satisfies (1.1) if

t t
Xe=x+ J o(Xs) dW, + J b(Xs) ds.
0 0
We assume that o and b are both locally Lipschitz and that ¢ is bounded
from below by some positive constant such that a solution to (1.1) exists.

Let C' := C([0,00)). The canonical process Z; is defined on C' by Z,(w') =
w'(t).

Let X(x,t,w) be the solution to (1.1). For each x we introduce a proba-
bility measure P* on C, determined by

P*(Z;, (W) € By, ..., Zy, (W) € E,) = P(X (z,t1,w) € By, ..., X (2, t,,w) € E,,)
(1.2)

whenever ty,...,t, € [0,0) and Ej, ..., E, are Borel sets in R. Hence, z indi-
cates the starting point of the canonical process Z; with probability measure
P*. Defined on the smallest o-field containing these cylindrical sets, P* can
be extended to F, := | J,cp+ %/, where %/ is a right continuous filtration.
We now state our first important theorem:

Definition 1. The shift operators 0; : C — C are defined by 0;(w)(s) =
w(t + s). A stochastic process Z; is strong Markov if

E[f(Y 0 0r)|F7] = E7[Y] (1.3)
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holds P*-a.s., whenever x € R, Y is bounded and F. -measurable and T is a
finite stopping time.

Theorem 1. The canonical process (P*, Z;) is a strong Markov process.

The proof of this theorem can be found in [1] (Chapter 1 Theorem 5.1).

1.1 Properties of diffusions

Definition 2. For each x € R let P* be a probability measure defined on
Fo. If Xy is a a continuous strong Markov process with respect to P* ((1.3)
holds), then we say that (P*, Xy) is a diffusion.

From Theorem 1 we obtain: (P*, Z,), the canonical process of the solution
of the SDE (1.1), is a diffusion. Let W; be a Brownian motion defined on some
(Q,{F}+,#,P). Then the canonical Brownian motion (P*, Z;), analogously
defined to (1.2), is also a diffusion. We will now prove a certain property of
the canonical Brownian motion:

Proposition 1. Let (P*, X;) be the canonical Brownian motion and let Tjqp) =
inf{t > 0|X; ¢ [a,b]}. Ifa <z <, then Tqy < © a.s., and

. b—=x . rT—a
P X (Tap)) = a) = T PY(X(Tap)) = b) = T

(1.4)

Proof. We write 7 instead of 7(4). X? —t is a martingale, so is the stopped

process X2, — 7 A t. Hence,

]EI[XE/\t

| =E*[r A t] + .

For t < 7,|X;| < |a| + |b], so Fatou’s lemma yields: E*r < (|a] + [b])? + ||
and thus 7 < o a.s. Optional stopping theorem applied on the martingale
X gives:

r=E*X, =aP*(X, = a) + P (X, =0). (1.5)
As 7 <0 ass.,
1 =P"(X, =a)+P*(X, =0). (1.6)

Solving the linear system (1.5) and (1.6) for the two unknowns P*( X, = a)
and P*(X, = b) completes the proof. O
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Taking b — oo and = > a, continuity of the probability measure gives:
P*(T, < w0) = 1. (1.7)

Definition 3. Let (P*, X;) be a diffusion, which takes values in an interval
I, and T, := inf{t : X} = y} if

for all x,y in the interior of I : P*(T,, < ) =1 (1.8)
we say the diffusion is regqular.

Definition 4. We say that a regular diffusion (P*, X;) is on natural scale
if (1.4) holds for every interval |a,b].

1.2 Speed measures

Assume we are given a regular diffusion (P*, X;) on an open interval I on
natural scale. For (a,b) < I, we define

2(x —a)(b—y)/(b—a) fora<

r<y<b
2 —a)(b—x)/(b—a) fora<y<z<b (1.9)

Gap(2,y) = {

and set Gy p(z,y) = 0 if z or y is not in (a, b).
We call the measure m(dz) for which
E*(T(ap)) = JGa,b(x> y) m(dy),
whenever (a,b) € [ and x € | (1.10)

holds, speed measure of the diffusion (P*, X;). From (1.10) we notice that
the speed measure computes how fast the diffusion moves in average through
intervals.

Proposition 2. The speed measure for the canonical Brownian motion is
the Lebesgue measure.

Proof. Since X? — t is a martingale, so is the stopped process (Xt/\T(a,b))2 —
t A T(ap)- Thus,

E” (T(ap) A 1) = E* (Xiar,,, — )% (1.11)
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We have | X;| < |a| + |b] for t < 7. Hence, for ¢ — o0 monotone convergence
on the left and the dominated convergence on the right yield

E*(T(ap)) = Em(XT@Yb) —12)? =

= (b—2)°P*(X, b) + (z — a)’P* (X, , = a).

(ab) —
By Proposition 1 this equals

(z —a)(b— ),
which is the same as the integral with respect to the Lebesgue measure of

Gap(z,y). Hence,

E* (T(a,b)) = JGa,b (l’, y) dy

[]

We now state without proof a very important theorem, which we will ap-
ply later in order to determine the speed measure of a diffusion corresponding
to a solution of a stochastic differential equation.

Theorem 2 (Trotter). Let W; be a Brownian motion. There exists a family
of non-decreasing processes l(t,x) that are jointly continuous in x and t a.s.
such that

1. if f is nonnegative Borel function, then

Ltf (We)ds = fR f@)(t,z)dz, as.,

where the null set can be taken independent of f;
2. l(t,x) > © a.s., as t — ©o;
3. The set of t on which I(t,x) increases is precisely the set {t : W, = x};

4. U(t,z) may be defined by the formula

t
Wy — ] — W — 2| = f san(W, — 2) dW, + I(t, 7).

0
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This theorem is verified in [2] (pages 68-71).

Definition 5. The process [(t, z) is called local time of the Brownian motion
W;.

For the next theorem we introduce some notations:
Let m be a measure on an open interval I such that 0 < m(a,b) < o for
every interval (a,b) < I. Let (P*, W;) be the canonical Brownian motion, we
set

¢ = Jl(t,x) m(dz), Y :=inf{u: ¢, >t}, Xy :=Wy,. (1.12)

Theorem 3. Under P*, X; as defined by (2.39), is a reqular diffusion on
natural scale with speed measure m.

Proof. X; 1s continuous:

I(t,x) is continuous in ¢ and for every t € [0,00) Lebesgue integrable with
respect to m < o0. By dominated convergence theorem, we obtain the conti-
nuity of the process ¢;. Let s < u, if t € (s,u), then W; = x for some = € R.
Since [(t, ) grows at t by (3) of Theorem 2, it follows that [(u, x)—I(s,z) > 0.
Continuity of the local times gives I(u,y) —[(s,y) > 0 for all y in a neighbor-
hood (z — 4,z + &) of z. By assumption m(z — §,x + §) > 0, consequently,
Ou — ¢s > 0. As a result ¢, is strictly increasing and continuous. Thus, the
inverse 1, exists and is continuous. Since the Brownian motion is continuous
as well, X; is continuous.

Yy 18 F/-stopping time:

Let w € {1y < t}, then there exists u € [0,¢) such that ¢,(w) > t. ¢, is
continuous process and there exists a rational s with ¢s(w) > t. Conse-
quently, {1y < 1} = Upcsersecol@(s) > t} € F, S F. As a result ¢y is
F/-stopping time.

(P*) X}) is a regular diffusion on natural scale:

Applying monotone convergence and from (2) of Theorem 2, we get ¢, /" 0,
thus v, / o0 and T();b) < oo P*-a.s., where Téb) denotes the exit time of (a, b)

10
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by X; and 7'(‘2/ ) denotes the corresponding exit time of W;. In addition,

r—a

P (X (10p) = b) = T—

Since X, is a time changed Brownian motion and therefore a martingale ac-
cording to optional stopping theorem, this can be proven exactly in the same
way as in the proof of Proposition 1.

(P*, X;) is a strong Markov process:
We set 7" := .7,,. Let T be a bounded stopping time for .7/. Thus,

ETf (X)) | Z7] = EFLf (W (Yrie)) | Fyr |- (1.13)

Yr is a stopping time for F/. ({T' <t} e F = {r <t} ={T < ¢} € F/)
Moreover, 974+ = ¢ o 0y,. Thus, by the strong Markov property of the
canonical Brownian motion (1.13) equals

EVUTf(Wy,)] = EX[£(X0)].

As shown in [2], this is equivalent to the strong Markov property.

The speed measure of (P, X;) is m:

o8]
E" o) = EwL L) (X (s A Tip)) ds

0
_ E”"L Loy (W (s A 7750))) ds

(1.14)

Since ¢; is strictly increasing, 1y = 0. Moreover, we have already shown that
vy /" 0. As a result substitution w.r.t. Lebesgue-Stieltjes integrals yields

11
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that (1.14) equals

00

JO

_ g leaw (t A 7)) di(t,y) m(dy)

J JO

S [ [ . mia)

J JO

— [EUrly ) mla). (115)

(4) of Theorem 2 gives
Ta,b)
B (7o) y) = B [IWTgb) —yl = Wo -yl - L sgn(Ws — y) dW,
= E°[W (rlap) =yl — o —yl, (1.16)

T(‘ilvb) nt . . .
since M(1V Tap A1) = $o " sgn(W, — x) dWy is martingale according to
optional stopping theorem. By Proposition 1, this equals:

- |fE - y| = Ga,b(‘ray)‘

ja -
which together with (1.15) implies

IE:BT();,I)) = J Ga,b(xv y) m(dy)

and completes the proof. O]

1.3 Diffusions as solutions of SDEs

Assume X, is given as the solution to

where we require ¢ and b to be Lipschitz and bounded above and ¢ to be
bounded from below by a positive constant.

12
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We introduce the following operator

(@) = Sal@) () + b)), (1.18)
where a(x) := o%(x).

Proposition 3. Suppose M; is a continuous martingale with [M], strictly
increasing and [M ]y = 0. Then M is a time change of Brownian motion,
that is there exists a one-dimenstonal Brownian motion X such that M, =
X

te

Proof. We set 7(u) := inf{t : [M]; > u} and X, := M. [M]; is the limit
of sums of continuous functions so it is continuous too. According to our
assumption [M], is strictly increasing, so 7(u) coincides with (M, ) ! on the
image of M,. Thus, 7(u) is the inverse of a continuous, strictly increasing
function and therefore continuous too. Consequently so is X. Let u; < us.
T(uy) < 7(uz) are stopping times. Now optional stopping theorem yields

E[Xu2|ﬁ"'(“1)] = E[MT(UQ)LQZT(W)] = Mr(ul) = Xul-

Thus, X, is a martingale with respect to the filtration .#,.). From the
definition of quadratic variation we get that M? — [M]; is a martingale.
Again according to the optional stopping theorem we get

E[X3, — ua| Frtun) = E[MZ ) — [M]rtun) | Frun)] = M) — [M]ruy =

Thus, X? — ¢ is a martingale, hence according to the definition of quadratic
variation, we obtain [X], = ¢. By Levy’s Theorem it follows that X; is a

Brownian motion and we have M; = X|,.

O

Theorem 4. Given a solution X; to (1.17). Let s(x) be the solution to
Zs(x) =0, then there exist constants ¢y, cy and xo such that

s(x) =c + cgf ¢~ zg P&} de g, (1.19)

Zo

Moreover, s(X4), is a regular diffusion on natural scale.

13
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Proof. Since a(z) > ¢* > 0
0= Ls(z) = %a(x)s"(x) + b()s' (x)

is equivalent to

which is equivalent to

(log s'(x))" = —2b(x)/a(x).

This ordinary differential equation can be solved by integrating. Thus, for
X € R

S(x) = exp {—f 2b(w) /a(w)dw + c}. (1.20)

Integrating again yields (1.19).

As according to (1.17) both ¢ and b are continuous, s(x) given by (1.19)
is C%. Now let X; be a solution to (1.17), we use [t6’s formula:

ds(X,) = 5/(X,) dX, + %S"(Xt) (dX))?
— o(X))$ (X)) AW, + b(X)s (X,) dt + %U(Xt)%"(xt) dt

1
= (08")(Xy) dW; + §(bs' + 0%s")(X;) dt .

=0

Consequently, s(X;) is a martingale. The quadratic variation of Y; :=
s(Xy) is S(t)(as’)z(Xs) ds. As os' is positive and bounded from below, the
quadratic variation is strictly increasing and converges to infinity. Thus,
according to Theorem 3, Y; can be written as a time change of a Brownian
motion: Y; = W(¢x). Analogously to the proof of Theorem 3 it follows
from monotone convergence and (2) of Theorem 2 that T&;b) < oo P¥-a.s. Let
(P*) Z;) be the corresponding canonical martingale process to Y;. Equal steps
as used in the proof of Proposition 1 show that (P, Z;) is on natural scale.
Finally, by Theorem 1 it follows that (P*, Z;) is a diffusion, which completes
the proof.

]

14



1.3. DIFFUSIONS AS SOLUTIONS OF SDES

Definition 6. Let X; be a solution to (1.17). Then s(x), defined as in (1.19),
15 called scale function of the diffusion X;.

In the proof of Theorem 4 we have seen that if Y; := s(X;), then

dY, = (s'o)(s (V) dW,. (1.21)
We continue with the case, when b in (1.17) is zero, that is
dX; = o(Xy)dW, (1.22)
Theorem 5. Let X; be a solution to (1.22), then its speed measure is given
by

1
m(dz) = (@) dx (1.23)

and X; = W(wt), where W is a Brownian motion and
A R S N Jl(t,x) m(dz). (1.24)

Proof. Since X, satisfies (1.22), X; is a martingale. [X]; = Sé a(Xs)ds is
strictly increasing and [X], = o0 as a(z) = ¢. According to Theorem 3 X;
is a time changed Brownian motion: X; = W([X];). We set:

t

= X, = f a(X.) ds.

0
The inverse of 1;, namely, ¢;, exists and it holds that

do_ 11

dt  a(Xy,)  a(W,)

integrating gives

to1 1
b = j At fl(t,wa—y dy

for all ¢, where the second equality follows from Theorem 2.2. Now we set

m(dx) := — dz. Since a(z) > ¢?, for any a,b€ R

a(x)
0 < m(a,b) < oo
holds. Theorem 3 yields that the corresponding canonical process (P*, Z;) to

Xy, is a regular diffusion with speed measure m. ]

15
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We state without proof (see [1] page 83):

Theorem 6. If (P? X,), i = 1,2, are two diffusions on natural scale on an
open interval I with the same speed measure m, then P7 = P§ on Z,,.

1.4 Invariant measures

Occasionally it is important, to determine a measure u, which remains equal
under the "flow" of a diffusion X;. In other words, X, is distributed according
to p for all ¢ = 0.

Let

dXt = O(Xt) th + b(Xt) dt, XQ = X. (125)

Let f € C*(R) and .Z defined as in (1.18), the adjoint operator .£* is given
by

L) = o (P@)@) — - (@) ()), (1.26)

X

that is for f and g satisfying suitable regularity conditions, by using integra-
tion by parts,

Jf(:z:).,iﬂg(:c) dr = fg(x).iﬂ*f(:c) dx. (1.27)

Definition 7. A measure [ 18 ivariant for a strong Markov family if
E-f(X;) = § f(x) p{dz) for all t and all bounded continuous f, where
]E‘U'f Xt SEyf Xt) (dy)

Theorem 7. Let

oz, t) = Lu(z,t), t>0,xeR, (1.28)
u(z,0) = f(z), zeR. (1.29)

The solution to (1.28) is

u(z,t) = E* f(Xy).

16



1.4. INVARIANT MEASURES

Proof. Let ty be fixed and let M, = u(X;,tog —t). One can show that the
solution u to (1.28) is C? in x and C* for ¢ > 0 (see [9]). Tto’s formula on
R x [0,10), gives

t t
u(Xy, to — t) = martingale + J Lu(X,, tg— s)ds + J (—omu)(Xs, to — s)) ds.
0 0

Due to dyu = Zu, M, is a martingale, and E* M, = E*M,,. Since
E*M,, = E*u(Xy,,0) = E*f(X,,),
and
E* My = E*u(Xo, to) = u(x, ty).

the result follows for ty. As ty can be chosen arbitrarily, the proof is complete.
O

For the next theorem we assume the coefficients of £ to be smooth:

Theorem 8. Assume there exists a nonnegative solution v to L*v = 0,
which satisfies suitable reqularity conditions. Let p(dx) = v(x)dx. Then u
is invariant for the process associated to L.

Proof. Let f be continuous and let u(z,t) = E* f(X;). Then
0= Ju(x,t).,iﬂ*v(x) dr = J.,?u(x,t)v(az) dr = f&tu(x,t)v(x) dx.
Thus,

IWﬂXo=fﬁwomuwm=Jﬁuﬁwwa (1.30)

is a constant function of ¢t. For t — 0,
B'(X) = [ B 100 uldo) > | £(o) ulie).

Hence, E* f(X;) = { f(z) p(dz) for all ¢. O

17



1.5. CONVERGENCE OF DIFFUSIONS IN DISTRIBUTION

1.5 Convergence of diffusions in distribution

A diffusion on natural scale can be expressed as a time-changed Brownian
motion, defined by its speed measure. Stone’s theorem, which we will state
in the paragraph below, represents our main tool to prove the convergence
results about diffusions coming from SDEs in the second chapter of this thesis.
We notice that Stone’s theorem originally not only involves statements about
convergence for time-changed Brownian motions, but also for some additive
functionals on diffusions. For more details see [8].

Theorem 9 (C. Stone). Let W, be a Brownian motion and p¢, u be a col-
lection of non-random locally finite measures, let

~

V() = W () (#))

with
P(p)(¢) = Jl(t x) po(dx), Y(p°)(t) == inf{u: ¢(u*)(t) >t}
and .
Y(t) =W (@u)(t)
with

P(p)(t) = fl(t,x)u(dl’)? (p)(t) = inf{u : ¢(u)(t) > t}. (1.31)

For any deterministic to > 0, let v*(to) denote the distribution of Y¢(ty) and
v denote the distribution of Y (to). Suppose that

1 — p,

then, as € — 0,

18



2. Scaling limits of random
one-dimensional diffusions

In this chapter we consider diffusion processes, derived from two stochastic
differential equations related to the BTM(Z, 7, a).

We will study the asymptotic behavior of these random diffusions. In other
words, we will determine their scaling limits.

We proceed as follows:

We will prove convergence of an equally distributed sequence of diffusion
processes, which we introduce as time changed Brownian motions defined by
their speed measures.

Then we use Stone’s theorem, which implies, it suffices to verify vague con-
vergence of the corresponding speed measures to prove convergence in distri-
bution of the respective diffusion processes.

Thus, the main work consists of proving vague convergence of the speed mea-
sures.

The first SDE is given as follows:

Let (Q4,.A1,P1) and (€, Ay, P2) be probability spaces. Let (€ x Q5,41 ®
AQ,P), with P := 'P1 ®P2

Let £ be a Poisson Point Process on R with intensity 1, defined on (24, .4;, Py ),
so &(|a,b]) ~ P((b— a)), which means that £([a,b]) has a Poisson distribu-
tion with parameter (b — a). For w; € O let (x;(w1))iez be the points of the
Poisson point process taken for this w;.

Let (Y;)iez = 0 be a sequence of i.i.d. random variables on (€, Ay, Ps).
Let h € C*(R) with sup(h) = [—1,1] and let ¢ > 0.

19



2.1. WEAK CONVERGENCE TO BROWNIAN MOTION

For each w € Q; x Q9 we consider the following 1-dimensional SDE:
dX; = (fo(Xy) ' PdWs,  Xo ==, (2.1)
with
0
fulz) =2 Y hx — ziwn))Yi(wa) + ¢,
1=—00

where ¢ is to be defined dependent on the requirement for Y;.
In order to compute the scaling limit of a solution X, to (2.1) two
assumptions must be differentiated:

1. (Y})iez defined as above satisfy
ElY;] < (2.2)

and we set
1

(Sil h(z) d:c) + E[(;/l] i

2. (Y;)iez defined as above have unbounded expectation and the following
condition holds: There exists a slowly varying function L, such that

~

PolY; = u] = u *L(u), with ae€ (0,1) (2.3)

oim (flh(:c) dm)

2.1 Weak convergence to Brownian motion

and we set
1

Suppose (2.2) holds:

Since (Y;)iez have finite expectation, we can apply the strong law of large
numbers to prove that the speed measures, which will be defined in the proof
of the following theorem below, converge to the Lebesgue measure. This
implies that the rescaled process converges to the Brownian motion:

20



2.1. WEAK CONVERGENCE TO BROWNIAN MOTION

Theorem 10. Let w € Oy x Qy. Let X, (t) be a solution to (2.1), where
(Y:)iez satisfy (2.2), then as e converges to zero:

eX (e 2, 't) S B(t) P—a.s.,
where ¢y := (E[Y1])™' and B(t) is a Brownian motion.

Proof. According to Theorem 5 there exists a Brownian motion Wt such that
Xo(t) = W((1w)(t)), where 1(u,) is defined as above in (1.31) with

po(dix) = fo()d,

the speed measure of the diffusion X, (t).

Let Wf = 51//1\/(5*275), which is also a Brownian motion according to Lévy’s
Theorem.

Let € > 0, we introduce the scaled speed measure

pe (dx) = co - fole ta)dr = 62(62 h(e 'z — x4(w1))Yi(w) + c) du.

1EZ
Let A be the Lebesgue-measure. If

P(wtexQQ;MZLO»A)=1 (2.4)

holds, by Theorem 9

~

We (@) (1) £ W (po) () > W((\)(1) P as.
and we obtain
WE@ () (1) > W (A (1) P — a.s.

We have shown in Theorem 2 that the speed measure of the canonical Brow-
nian motion is the Lebesgue measure. Let (P”,Z;) be the corresponding

canonical process to I//I\/(zﬁ()\) (t)) and (P*,W,) the canonical Brownian mo-
tion, then Theorem 6 yields

(an Zt) = (ﬁ\va Wt)'
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2.1. WEAK CONVERGENCE TO BROWNIAN MOTION

.

Consequently B(t) := W ((A)(t)) is a Brownian motion.
It remains to prove that
W) (1) = eX (e %),
Let I°(¢,x) be the local time of We. An easy computation gives
F(t,z) = el(e?t, e ).

We write p°(dz) instead of pe (dx), ¢°(t) instead of ¢(u°)(t) and ¥°(t) instead
of ¥ (uf)(t). Thus,

5 (t) = Jze(t, 2) 1 (dz) = fsl(e_gt, e 2)(eaf (1)) da.

By using substitution y = e7'z we get

- [ 1t )t w) dy = oo,
Thus,
() = e (e e 2).
As a result
We W ()(8) = eW (€720 (1)) = eW ($(e %5 1)) = eX (725 0).

Hence,
eX(e72') S B(t) P—as.

It remains to show (2.4):
We need some preparatory lemmas:

The following property immediately can be derived from the definition of
vague convergence:
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2.1. WEAK CONVERGENCE TO BROWNIAN MOTION

Lemma 1. Let h. and h be nonnegative functions in C(R). If
pe(dx) := he(z)dr and p(dz) == h(x)dx
and
pe([a,0]) = p([a,b]) Va<beR,
then
[ie = .
Proof. Let f be a bounded continuous function with compact support K
and I = [a,b] with K < I. Let ¢ > 0. As I is compact, the function |f| is
bounded from above by some L > 0 and

Jf@%&@—f@%@ﬁw

Lﬂ@w@m—Lj@mmm

b b
< sup |f(z)] f he(x) — h(z)dz| < L f he(z) — h(z) dz| =50
O
1
We set € := —.
n
Lemma 2. Let g, be measures on the Borel o-Algebra, defined by
1 nb 0
ao(fa,b]) = — | > (Vi hly — ) +cdy, (25)
na j——cno
Va<beR (2.6)
then
an([a,0]) =5 (L E[Yi] +e)(b—a) P—a.s., (2.7)
Va<beR (2.8)
where



2.1. WEAK CONVERGENCE TO BROWNIAN MOTION

Proof. &([a,b]) has Poisson distribution with parameter (b — a). Thus, for
n(n) := [na, nb], it follows that (n(n)) has Poisson distribution with param-
eter n(b — a).

Let Ay = {w; € Q1 : (b—a) = lim, e M} We will show now
that P1(A;) = 1 holds: To see this, write

) = Y (€ —i+ Da+ (=D (—ia+d)  (29)

as the sum of n i.i.d. random variables, which have Poisson (b—a)-distribution
and therefore are integrable. The strong law of large numbers yields

U

n

P —a.s. as n — 0. (2.10)

We set 1'(n) := [na — 1,nal, n"(n) := [nb,nb + 1], n® := [na,na + 1] and
nW := [nb —1,nb]. Let

Al(n) i={wi € Q1 : E('(n)) < [Vn]}, AY = {w; € Q: w; € liminf, ., AY(n)},
Ai(n) :=={w € Q1 : E"(n)) < [Vn]}, A% = {w1 € Q: wy € liminf,_,, A3(n)},
A3(n) = {wy € Q : £ (n)) < [vn]}, Ag {w; € Q:wy € liminf, o A3(n)},
Ad(n) = {wr € Q1 EW(n)) < [vnl}, AL = {w) € Q:w; € liminf, . A3(n)}.

We will show that P;(A)) = 1 by proving P1((A})¢) = 0. For any t € R

we have

E[eté('(n)
PuElrl (n) = [VA])) < Pu(etsr) > oivily < BEE) )
etlvnl
1 / J t
Let t := ————. As E[e®0(M)] = /(¢"~1) we get for n large:

vV (IVnl)

Since



2.1. WEAK CONVERGENCE TO BROWNIAN MOTION

Borel-Cantelli lemma gives P;((A3)) = 0. Analogously we get P;((A3)°) =
Pi((A3)°) = P1((A3)°) = 0. Hence, Pi(As) = Pi(Ay) = Pi(A3) = P1(4)
1.
Then for A := A; n Ay n Ay n A3 1 A} and
1
B = {wy € Qy : lim, o0 — >, Yi(wo) < oo} it holds that P(A x B) =
n

Pi1(A)Py(B) = 1.

For w; € A and wy € B we have
an([a, b]) (w1, wo) =

:lf" ST Yilws) Ay — zi(wn)) + cdy

n Jna ;
1=—00
1 0 nb 1 nb
=D Vi) [ by dy+ | edy
i=—00 na na

1 nb
+— ) Yi(w) My — xi(w1)) dy
n b—1
t:z;€[nb,nb+1] n
::c;(n)
1 na
Sn X v | ho- e dy

i:x;€[na,na+1]

=:51(n)

_ % Z Yi(ws) f h(y — zi(w1)) dy +c(b — a)

1:z;€[nb—1,nb| nb

=:s2(n)
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2.1. WEAK CONVERGENCE TO BROWNIAN MOTION

=— Z Y(wg)f h(y) dy +c(b—a) + c1(n) + c2(n) + s1(n) + s2(n)

i:x;€[na,nb)
— ——
=:icp,

1 E(m(n)){w1)
=cp - — Z Yi(w2) +c(b —a) + c1(n) + c2(n) + s1(n) + sa(n).
=1

We have (b—a) = lim,,_,q f(”(nnw Thus, for all € > 0 there exits ng : VYn >
no : £(n(n))(w1) < [n(b—a)] + ne. Hence,

1 [=a)ltnel 1 " 1 [MO=a)l+ne]
(x) <cp- o Z Yi(ws) = e Z )+ cn - ” Z Yi(wa)
i=1 i=1 i=[n{b—a)]+1
1 [n(b—a)] 1 [n(b—a)|+[ne]
< (b—a) ———— Yi(wa) + cpe - Yi(ws).
n(b—a)] -1 < [ne] — 1 i In(oa)]+1

By the strong law of large numbers this converges to
cn - (b—a) - E[Y1] + ce - E[Y]]
for n drawing closer to infinity. Since € was arbitrary, we obtain

limsup(*) < ¢ - E[Y1].
n—eo
Analogously we get the lower bound.
Finally we need to show that c¢;(n) and c(n) as well as s;(n) and sq(n)
converge to 0 for n — oo: First it holds that AN e N:Vn > N :

na — 1 na

e Ty gl < [Vl

h is continuous and has compact support and consequently is bounded. Thus,
Vn:3 C">0

na+1
J h(y — z(w1)) dy < C".

na

26



2.2. WEAK CONVERGENCE TO FIN-DIFFUSION

Consequently,
11 4 )
lim ¢ (n) < lim (—=+—= >, Yi(ws)C
el < i (Ui & )

[vn]
= Jim ()" B, (7 25 Yilen))=0 - C'BIYi] =,

again by the strong law of large numbers. cz(n) — 0, s1(n) — 0 and ss(n) —
0 follow equally.
As a result we get p1([a,b]) > ¢ - (b—a)E[Yi] +c(b—a) P—as. O

Hence, by Lemma 1 and Lemma 2 we get (2.4). O

2.2 Weak convergence to FIN-diffusion

Provided that Y; have finite expectation, we proved convergence of the rescaled
diffusion to the Brownian motion. It remains to show convergence for the
second case, when Y; have unbounded expectation:

dX; = (fw(Xt))_l/2tha Xo = x, with

ful@) =2 > bz — zi(w))Yi(ws) +c,

i=—00

Gim Ullh(x) dm)

Suppose (2.3) holds: There exists a slowly varying function L, such that

where

-1

PolY; = u] = uw*L{u), with «ae (0,1).

Under this assumption, we will prove very similar to [7] that the speed mea-
sures, which are defined in the proof of the theorem below, converge to a
measure p. This implies that the rescaled process converges to the FIN-
diffusion, which is defined as follows:
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2.2. WEAK CONVERGENCE TO FIN-DIFFUSION

Definition 8. Let (x;,v;)icz be an inhomogeneous Poisson point process on
Rx (0, 00) with density measure deav™"*dv and let p := Y, v;0,, be a discrete
measure on the Borel-o-algebra B(R). Let

6(t) = J I(t,2) p(d) and w(t) = inf{u : o(u) > 1)
and let W(t) be a Brownian motion, we denote M(t) := W(w(t)) and call
M (t) FIN-diffusion.
Theorem 11. Let w € Oy x Qy. Let X, (t) be a solution to (2.1), where
(Y:)iez satisfy (2.3). Let
c. = (inf[t = 0:P(Y; > t) <¢e]) . (2.11)

Let M, be the FIN-diffusion. Then there exisl processes X, and M,, defined
on the same probability space (21 x Qo, A} @ As, P) such that for all t > 0:

X, Lx, LM,

and as € converges to zero:

eX((cee)™t) B M(t) P—a.s.

Proof. According to Theorem 5 there exists a Brownian motion Wt such that
Xo(t) = W((1w)(t)), where 1(u,) is defined as above in (1.31) with

o, (dz) = f,(x)dz,

the speed measure of the diffusion X, (t).

Let Wf = 51//1\/(5*275), which is a Brownian motion too according to Lévy’s
Theorem.
Let € > 0, we introduce the scaled speed measure

pe,(dx) = %fw(s_lx)dx = %(cl Z h(e 'z — 25(w1))Y;(w)) + cdu.

We have to show that for every ¢ > 0 there exist i.i.d. random variables
(YF)iez defined on a probability space (€ x Q, A1 ® Ag, P) such that

(2

e Ly,
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2.2. WEAK CONVERGENCE TO FIN-DIFFUSION

and such that for couplings ii° of the speed measures p° defined by
7 (dx) = = (be(e7'x)) da, (2.12)
3
where

be(x) =2 h(r — wi{wn)) Vi (w) + ¢

€L

there exists a coupling p of the speed measure p such that all couplings are
defined on an equal probability space (21 x s, A; ® Ay, P) and such that

7 (dr) % p(dx) P — a.s. (2.13)

~ i

holds. Provided (2.13), then for M(t) := W (p)(t) = M(t) Theorem 9 gives

We@) () % MEt) P—as.

Let ¢, (t) :== {i(t,z) 7, (dz), where i := fi* and ¥, (t) := inf{u : ¢, (u) > t}
and let

Golt) = [P m ) = [l e 0)E (e ') de -
= fl(g_Qt, e7'z)c. (bo(e7'2)) d.
By using substitution [y = e 'z = ¢ 'dy = dx| we obtain
Folt) = [ <l 2t e (b)) dy = cectle ),

Therefore,
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2.2. WEAK CONVERGENCE TO FIN-DIFFUSION

It remains to prove (2.13):
Vague convergence of speed measures to p

In order to show the almost sure vague convergence of the rescaled ran-
dom speed measures u° to p, we need to construct a coupling of p° as well
as p, such that both u® and p are defined on the same probability space.
We introduce a Levy process V(z),x € R with V(0) = 0 that has station-
ary and independent increments with cadlag paths defined on (52,32,7_32)
through its characteristic functions:

0
E[eir(V(z+xo)*V(ro))] = exp [xaf (6i7~w N 1)&)7170{ dw
0

Let p be the Lebesgue-Stieltjes measure on R associated to V, i.e. p((a,b]) =
V(b) — V(a) for all a,b e R,a < b. We state without proof:

Lemma 3. 1. p(dx) = >,;v;0,,(dx), where (z;,v;) is an inhomogeneous
Poisson point process with density dvov ' dv.

2. V(e) L ety (1)
3. limy e y*P(Vy > y) =1
Now we define the function G : [0,00) — [0, o) such that
P(V(1) > G(z)) = P(Y; > x). (2.14)

The function is well-defined since V(1) has continuous distribution, it is
non-decreasing and right-continuous. Hence, it has non-decreasing right-
continuous generalized inverse G~ 1.

Let g. : [0,00) — [0, 00) be defined as
ge = .G (e V2) Va=0. (2.15)

Lemma 4. Let ]
TE = C—gE(V(g(i + 1)) — V(e1)), (2.16)

€

then for any € > 0: 77 are i.i.d. with the same distribution as Y;.
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2.2. WEAK CONVERGENCE TO FIN-DIFFUSION

Proof. We have to show that for any ¢ > 0,7 € R and for all 2 € Z:

P(rf <t)=P(Y; <) (2.17)

As the increments of V' are independent, so are 77. Moreover, we get from
the stationarity of the increments that

= g VG + 1) - Vi) L g (V) = 7

€

Since g-'(-) = e/*G(-/c.) it holds that

P(r; > t) =P(15 > t) = P(g-(Vo) > ct) = P(V. > g '(eet)) = (2.18)
=P(V(e) > Y°G(t)) Vie Z. (2.19)

According to (1) of Lemma 3: V(g) £ £/2V(1). Hence,
P(V(e) > e/G(t)) = P(V(1) > G(t)) = P(Y; > t) Ve >0,teR,
completing the proof. O

Construction of the coupling:

Let (1 x Qy, A ® Az, P), where P := P; ® P, and for each w; € ; and
a < b, with a,be R let
Pu, ((a,b]) :==V(b) — V(a). (2.20)

Moreover, if Y := 77, then

1, (dx) == - (01 Z h(e ' — xi(wi)) 75 (W) + c) dx (2.21)

< €L
coincides with (2.12) and according to Lemma 3 and Lemma 4 the following
equations hold:
d — _—cd .
p=p H =p.
Consequently, p and i are defined on the same probability space and it is
possible to show (2.13).

In order to do this, we have to prove some properties:
The subsequent lemmas (Lemmas 5-10) as well as their proofs are taken from
|7] (see page 598 ff)
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2.2. WEAK CONVERGENCE TO FIN-DIFFUSION

Lemma 5. For any fired y > 0,g9-(y) —> y as e — 0.

Lemma 6. For any 0' > 0, there exist constants C' and C" in (0,00) such
that
ge(x) < C'z" foreV <a <1 ande <", (2.22)

In order to proof these two lemmas we use the following four subsidiary
lemmas, which we proof later.

1
Lemma 7. -P(Y; > —) - 1 as ¢ — 0.
£ Ce

1— 1
Lemma 8. Fory > 0: -P(Y} >£)—>— as € — 0.
£ .’ y”

C ~
Lemma 9. For any A > 0: — — A% as ¢ — 0 and thus c. = eV/*L(e71),
~ Che
where L is a positive slowly varying function at infinity.

1

C)\/ya

Lemma 10. There exists X > 0 sufficiently small such that G71(y) <

Ce

fory =1 or, equivalently g.(z) < for x> ello,

Che/zxe

Proof of Lemma 5. Let g-' be the right-continuous generalized inverse of g..
To prove g.(y) — v, it suffices to prove that g_'(y) — y. Now G~1(1}) Ly,
50 g.(eY°V}) = c.G7 (e~ Voel/oNy) 2 ¢.Y; and thus P(Y; > y/c.) equals

P(c.Yy > y) = P(g- (V1) > y) = P(*Vy > g- ' (y)) = P(Vi > e 2 ().

(2.23)
By Lemma 3.(3.):
= 1
eTIP(Vy > e7Voy) - — (2.24)
yOé
as ¢ — 0. By (2.23) and Lemma 8:
— — 1
eP(Vi > eV () = P > L) - — (2.25)
Ce U

as ¢ — 0. This implies that e 'P(V; > e Vg Y (y)) /e 'P(V} > e Voy) —
1 as ¢ — 0 and this plus (2.24) implies that limsup, ;9. '(y) < y and
liminf. .o 9. (y) = v-
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2.2. WEAK CONVERGENCE TO FIN-DIFFUSION

Since indirect assume: limsup. ,, - (y) =c >y = Let § > 0 withc—d > y
fore>0:3eg<e:g-t=2c—06

Therefore:
ey P(Vi > g5 /g7 (y) < &5 "P(Vh > &5 (¢ — 0)

As this inequality holds for any ¢ > 0, we get:

o 1

limsupe 'P(V; > & g, (1)) < limsup(e, "B(Vs > 2 (e=0)) < T
-0 e—0 c—0)%
(2.26)

_limsup, o= (Vi > = Vg 1(y)) _ 1/(c—0)°

=1 — <
limsup,_oe 'P(V; > & Vo) 1y

< 1,

which is a contradiction. Analogously we get liminf. ,og-'(y) > y, which
completes the proof of Lemma 5. O
Proof of Lemma 6. By Lemmas 9 and 10 for z > e/« :
I(e)-1
g=(7) < )\_1/"“%# (2.27)
L((z=/A)e™1)

for A > 0 small enough; the value of A will be chosen later. We now use a re-
~ VAN
sult about slowly varying functions, stating that L(x) = a(x) exp({; Lly) dy),
Yy

where a(z) — ¢ € (0,00) as  — o0 and A(y) — 0 as y — 0. The quotient
in the right-hand side of (2.27) then becomes

a(e! et (% /N\)e !

1

_ e T A
= (@ /M) p{f(xamg-l y dy}' (229)

If ¢ < A such that (z%/A)e ! = 1/X\ = !, then the absolute value of the
latter integral is bounded above by

1
1

(-
(zo/N)e1 Y

33

5 < 6| log(z°/)|, (2.30)




2.2. WEAK CONVERGENCE TO FIN-DIFFUSION

where § = §(\) = sup{|A(y)|,y > 1/A\} and thus the exponential in (2.29) is
bounded above (for A < 1,2 < 1) by

A0, (2.31)

Thus, given ¢’ > 0, we choose X € (0,1) such that ad(\) < ¢" and such that
a(y) € [¢/2,2c] for y = A1, The lemma now follows from (2.27) - (2.31) with
C' =4\ 0+)/e and C" = \. O

To complete the proof of our two main lemmas, it remains to prove the
subsidiary Lemmas 7, 8,9 and 10.

Proof of Lemma 7. By the definition of 2.11 of ¢, P(Y; > ¢7!) < ¢ and
P(Y; > z) > ¢ for all # < c_'. Thus, if the statement of the lemma is not
true, then there must exist § € (0,1) and a sequence (g;) with ¢; > 0 for all
i and &; — 0 as i — oo such that P(Y; > §'c') > g; and so

@(Yl > 5'0;-1) S 51

P(Y; > c.)) (2.52)

for all 4. Since c;' — oo and P(Y; > ) is regularly varying at infinity (with
exponent —a), it follows that for any A > 0:

P(Y; > At
i D> Ao (2.33)
t—o0 ]P)(Y'l > t)
which contradicts (2.32) since (0)* > 6. O

Proof of Lemma 8. This is a consequence of Lemma 7, the fact that cc! — oo
as ¢ — 0, and (2.2), from which it follows that

P(Yy > 1/c.)  y~ '

]
Proof of Lemma 9. By Lemma T: (Ae)T'P(Y; > 1/cxe) — 1 or equivalently
e7'P(Y; > 1/cy.) — X as e — 0 while, by Lemma 8, e 'P(Y; > y/c.) — 1/y~.
Now by taking y® = A~! we get, that c.A\Y*/cy. — 1, (this can be proved

analogously to the last part of the proof of Lemma 5), which is equivalent to
Co/cre — AV as e — 0. O
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2.2. WEAK CONVERGENCE TO FIN-DIFFUSION

Proof of Lemma 10. We need to show that G '(y) < z,. It is enough to
show that G(z) > y. So we want to prove that G(1/cy/ye) >y for y = 1 and
some A > 0. By the definition (2.14) of G, G(x) > y would be a consequence
of P(Vi > y) > P(Y; > z), where we take © = 1/cy/,o. Now there exists
K > 0 such that P(V; > y) > K/y® for y > 1 |by Lemma 3.(3.)], so it
suffices to show that P(Y; > 1/cape < K/y® for y = 1 and some A > 0; or,
equivalently, taking e = A/y®, it suffices to show that for some A > 0 and all
e < \P(Y; > 1/c.) < Ke/A, or P(Y; > 1/c.)/e < K\. By Lemma 7, we may
choose A small enough so that for ¢ < A\, P(Y; > 1/c.)/e < 2 and also small
enough that K/\ > 2. O

Lemma 11. Let for all ¢ > 0 f. be a non-decreasing right-continuous func-
tion with lim. o fo(z) = x Vx € R. Let y : R — R be a non-decreasing
function that is right-continuous in 0 with lim._,oy(e) = z. Then

liy £.(y(2)) = =

Proof. Let 0 > 0. Since f. is right-continuous and non-decreasing it holds
that

G >0:Ve<yeR:0<ax—z<y—z<p:0< f(y) — f()
)
< foly) — fo(2) < 3
y is right-continuous in 0. Thus,

n:Ve<n:0<ym) —yle) <.

Since lim._,oy(g) = z, there exists

)
7>0:V5<7:y(5)—z<§.

Let &1 := min(n, ). Due to lim. ¢ f-(x) = z, there exits

Wl >

g9 >0:Ve <er:0< fo(y(er)) —yler) <

For ¢ < min(ey, £9) we have

|f(y(e)) — 2| = [ fe(y(e)) — f-(y(er)) + fe(y(er)) —yler) + yler) — 2|
< |fey(e)) — felyle))| + | fo(y(er)) —y(e)| + ly(er) — 2| < 6.
0
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2.2. WEAK CONVERGENCE TO FIN-DIFFUSION

Having collected all required properties, we continue with the proof of
(2.13). We have to show that for every f € C.(R):

f fda® Hf fdp P—a.s. (2.35)
R R

Before we get into the proof, we illustrate its main concept: Examining the
summands of the sum within the speed measure of 7{®) we notice that the
process V only has jumps in y; and is constant elsewhere. Applying the above
lemmas we will see that for all indices ¢ of the sum within the speed measure
71®), for which the process Ve(i+1) — Ve(s) does not have a jump, the summand
converges to zero as € draws closer to zero. Consequently, taking the sum
over the jumps of V yields the same sum. Moreover, the number of jumps
of V larger some § > 0 is finite within a bounded interval, which enables us
to exchange limit and sum for those indices. Taking ¢ to zero ensures that
eventually all jumps are covered. In detail:

Proof of (2.13). We verify (2.35): Let f € C.(R) with I := supp(f) and
w.lo.g. I =a,b], where a < be R. Then

J}Rfdu ff ( Z h(e™tx) —xL)lge(vg(M)—vsi)H) dx

1=—00

=6 = <Zh Ly — ;) (‘é(iﬂ)—‘/;i)—l—c) dx =: (1).

1=—00

Let (yi,v;)ien be the jump process of V. For § > 0 we define J° := {y; : v; >
6} and JE={i€Z:i€el Vi1 — Vo > 6}
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2.2. WEAK CONVERGENCE TO FIN-DIFFUSION

Hence,

(1 _
) =c| =f(x)- he e — 2;)g:(Veiony — Vi) | do
R € ieJ?
=K{(e)
~(1 _
po] @[ X b e m)g (Vi — Vi) | do
R i€, \J§
=K (e)
(1 _
+c gf(a?) : Z h(e™'w — 23)g-(Vegipy — Vai) | d
R i€ I5\I%
=K3(¢)

+c %f(x)cdx
R E

:=Ky(e)

The process V only has finitely many jumps larger than ¢ within /. Let
IO I|=:n < oo.

For any ¢ > 0 and y € J° we have: e|¥| <y < ¢(|%] +1) = for ¢
small: {[yJ ly € J° A PJ e I} < J°. For e small there is at most only
€ £
one jump in each [égJ,g(gJ + 1)} So J? = {PJ ly e J° A PJ e I} and
£ £
|J0 A 1| =|J° A I| < oo. We consider the first sum and compute its limit for
e — 0O

W.lo.g. we assume that f is a nonnegative function. All functions within
the integral converge uniformly and we can move the limit inside:
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2.2. WEAK CONVERGENCE TO FIN-DIFFUSION

hm K(e) = hmcj —f(®) - g-(Veigry — Vi) Z h (

=) | de

e—0
ieJ?d
:lichg (i+1) — J —f(z xl) dx
50 13 (2 E’L
ieJ?
' ezite | T — e
:ll_l)%czgs e(i+1) — sz)f . _f( ) ( c ) dz.
’LEJ‘s ET;—E
. I T —ex; = .
Applying Substitution [z = = cdr = dz] gives
€

1

lim K%(¢) = lim ¢ Z 9e(Veirry — Vi) flez —exy) - h(z) dz.

e—0 e—0 ]
ieJ?

Let i; (1 < j < n) be the indices of the jumps larger 6. Let z; := y;,. It
follows that

lim K7 (2) zé-thge(VE(ngH) ET lli%f flez —ex)z))h(2) dz.

5

=A45(9) :B;(e)

Since V' is increasing, we get: V(l J -V 5| 2 > lim._,o V([ 4y~ Vsl?gj =

+1) 6[
Vi, + = Vi, = v, Let yi(e) = Vs([%]ﬂ) — VlﬁJ. Now according to

3
€

Lemma 5: lim. ,og¢.(z) = x. Moreover, g. is right-continuous and y;(¢) is
non decreasing and we get from Lemma 11:

Aj(e) = lim g (V2| pyy = Vo)) = imge(y,() = vy

As (z;)ien is a Poisson Point Process, the waiting times e; between two con-
secutive points x; and x; 1 are i.i.d. with exponential distribution. Therefore
according to the strong law of large numbers we get that

1 2

® ‘gN
—

lim gx[ij = lim iz]x[ﬁj z; lim ej = zjEle1] = 2

e—0 e—0 Z] e—0

,_
o |
—
-.
I
o

S
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2.2. WEAK CONVERGENCE TO FIN-DIFFUSION

and
| 2]+
limex = lim iz T 2 “ b();nded z: im ——— Z — z: lim ¢ -
e—0 l?]J e-0 z; J [?]J - J EHO = 7250 [iJ +1
= sz[el] = Zj.

Hence, we have EX|| 7 % = Yiye

Now we get for B;(¢) by dominated convergence that

—hmj flez —ex ?JJ) (z )dZZJl llmf(éz—exlgj)h(z)dz

-0 160
1
f fi)h(z) dz = f(yz])j h(z)dz.
N

=:¢—1

As a result we obtain that

5( ~ N
g K3(6) = 2 0, B ge (V2o — Ve 2) B

€

= Z yz] Z ’Uzj yzj

We continue with the second sum. For ¢ small the support of f(es(e7'v)) is
subset of the compact interval I’. Thus,

~(1 _
K =2 | @) | N e e (Vi Ve | do =

€%\

J Z (Vegien) — Vai)f(x)h<x — €Ii> ! dx.

€ (3 g 6
€J Vo \J§

Since all functions are positive applying Fubini’s Theorem yields that this is

c T —ex;\ 1
s¢ Z 9e(Veirn) = Vai) J f(x)h )_ de.
ieJs \JS I €

cl/a
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T — Ex;

Using substitution [z = = ¢ ldr = dz] gives that the above term is

£
1
¢ Z 9= (Ve(ivr) — Vaz')f flez —ex;)h(z) dz,
€%\ 1
which is

<Cro D0 ge(Vegeny — Vi)

1% 0\
By Lemma 6 we see that for ¢’ such that ¢’ + o < 1, this is

<C- Z (Vagisny — Vi)' ™0 <
€5, \Jg

1-¢'
<C- Z v;"° =: Hy.
j:vjéﬁ with y;el

The density of the inhomogeneous Poisson Point Process (y;, v;) is deav ' *dv.
Hence:

5
E(Hs) < 04|I|J W w — 0 as § — 0.
0

Hjs is decreasing and positive. Therefore the limit lims o Hs exists ?—a.s.
Now according to the dominated convergence theorem lims_,g Hs = 0 P-a.s.

For next sum we notice that as g. is non-decreasing and by using Lemma 10
we get g.(7) < g-(e¥/*) < Cc, for all z < €'/®. Thus, after completing equal
steps as for the second sum we see that

~[1 _
Ks(e)=c¢ Ef(x)) : Z h(e e — xi)ga(va(i—i-l) — V) | dx
& eI\,
18
<C- Z 9e(Veirry — Vi) < C'Cec. - Z 1<C'Ce, - Z 1

ieJ5\J* ieJ§\J* iee=11nZ
€ £

N

1/ 1/a
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2.3. WEAK CONVERGENCE TO FIN-DIFFUSION WITH DRIFT

<CO'Ce.- Il -0 ase—0.

1
This convergence holds, because there exists k& > 0 with —k + — > 1 such

e
that c. < Ce /% (Lemma 9).

We study the last term:

Kye) =¢ %f() cdr <C-= 50 ase— 0.
R € 9

The convergence again follows from the fact that there exists & > 0 with
1

—k 4+ — > 1 such that ¢, < Ce™**/*(Lemma 9).
o

As a result we obtain

e—06—0

lim J fdp® = lim lim (K5( ) + K3(e) + Ks3(e) + Ku(e))

]

2.3 Weak convergence to FIN-diffusion with drift

The second SDE we are going to consider has nonzero drift. Thus, the so-
lution of this SDE has a scale function, which doesn’t equal the identity
function.

The speed measure of a solution to this SDE is very similar to the speed mea-
sure of a solution to the first SDE. The main difference being that a scale
function is involved. This scale function, however, converges to the identity
function.

Hence, provided the same assumptions as in section 2, we can proceed anal-
ogously to section 2, when it comes to determining the scaling limit of this
diffusion.

Thus, proceeding in the same way as in section 2, we introduce suitably
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2.3. WEAK CONVERGENCE TO FIN-DIFFUSION WITH DRIFT

rescaled speed measures, which define our diffusion processes with equal dis-
tributions as the rescaled processes of the solution to the SDE, and prove
that these speed measures converge to p. Applying Stone’s theorem again
yields that its scaling limit is the FIN-diffusion.

Let (Q4,.A1,P1) and (€, Ay, P2) be probability spaces. Let (€ x Qs 4; ®
AQ,ED), with P := 731 ®P2

Let & be a Poisson Point Process with intensity 1, defined on (Q4, Ay, Py),
so &([a, b]) has Poisson distribution with parameter (b — a). For w; € ; let
(2;(w1))iez be the points of the Poisson point process taken for this w;.

Let (Y;)iez = 0 be a sequence of i.i.d. random variables on (Qy, Ay, Ps),
which satisfy the following condition: There exists a slowly varying function
L, such that

PlY; = u] = u *L(u)

holds.
Let h € C*(R) with sup(h) = [—1,1] and let ¢ > 0. Moreover, let ¢; be a
constant, which will be defined later in the proof of Lemma 12.

For each w € 1 x y, we introduce the function:

V() = ~log (01 i Wz — :(w1))Yi(ws) + c)

2
i=—00

We consider the following SDE

Theorem 12. Let for each w € ) x Qy X,,(t) be a solution to (2.36). Let
M (t) be the FIN-diffusion. Then there exist processes X (t) and M (t), defined
on the same probability space, such that

X)L X(t) M@ <L M@

and for e — 0

X ( tc ) “NI() P as. (2.37)
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where

c. = (inf[t = 0:P(Y; > t) <¢]) ! (2.38)
and C 1is a constant which will be introduced in the proof.
Before we prove this theorem we have to verify some properties:

Lemma 12. Let X, (t) be a solution to (2.36). Let s,(x) be a scale function
to X, (t), then for |z| — oo:

-1 P-a.s.

Proof. We show convergence for x — oo. Convergence for x — —oo follows
analogously. Let x € N. We know from (1.20) that

s (z) = exp ( — J: 2V (u)du + 5) = exp ( — 2V, (x) + c’)

= (Cl i h(ZU — $¢(W1))3/¢(w2) + C) - .C

i=—00

Consequently, we choose our scale function as follows:

This presentation of the scale function will allow us to apply the strong law
of large numbers. For each w; € 21, we have Z; is independent from Z;, for
k= 3.

We proceed with the crucial definition of the still not defined constant ¢; by
setting ¢; := E[Z;]. Now

Swi) éz ((w2) = (c1)” Zé 2 D),

k=0 1<j<z
with jmod3=Fk
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2.3. WEAK CONVERGENCE TO FIN-DIFFUSION WITH DRIFT

Let Do := {j|0 < 3j < a}, Dy := {j|0 < 3j+1 <z}, Dy := {j|0 < 3j+2 < x}

We have {gJ —-1< |Di|<[ J—l—lforie{O,l,Q} and

=Wl g

1<j<a — 1 jep,
3 with jmod3=i

ZZCUQ\:L, Z Zj(bdg\ ZZCUQ
L&J Lien: l3J
for i € {0,1,2}.
Since Z; are of finite expectation, according to the strong law of large num-
bers we get

ZZ 5 E[Z)] Pa—as.
ng

+1 JjeD;
and

[ J1 : Z A ﬂ)E[Zl] Py — a.s.
§ — 1 jeD;

for i € {0,1,2}. As a result we get for 0 <7 < 2:

1 PN
= Y, ZZ5E[Z)] Pr-as

1<j<z
3 with jmod3=1

Finally, by definition of ¢,

R M AR CoEARE EARS )

k=0 L 1<z 3 3
with 7 mod 3=k

=1 Py—as.

For z € R*, by using the monotonicity of the scale function we obtain

1 P
:(01)71; Zj [ 1 [—ZZ —OO>1 Pg—as.

=]
1 l$J 1 z—0
= (Cl) 15 Zj :7(01) 1mj_EIZj—>1 Pg—as.
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Lemma 13. Let (m.)o<c<1) be positive finite measures and

of = fl(t,m) me(dz), Yy = inf{u : ¢, > t}. (2.39)
If
I//[\/a(@bg(t)) = M(t) P—as and SWT(:U) -1 P-a.s,
then

es e TWE(WE () S M(t) P— as.

Proof. We will omit w in the following proof.(Assume w € €; x Qy such
that both convergence conditions hold.) The set {Ws(we(t)) 0 < e <
1, s € R} is sequentially weakly compact, as for any sequence within this set
one can always find a weakly converging subsequence. Hence, according to
Prokhorov’s theorem, it is tight. Now

s~ eTTWE(WE (1)) — WP (2)) =
= es Y TWEWE(E)) — WE( (1) + W8 (1) — WE(ue (t))

= 1 e (geqoyienn (857 (€7 WE(U5(8) = WE(0°(1))

+ Ly ey \>M}( e WS (1)) = WE (D))
+ WE(5(1) = WH(0(8)). (2.40)
s~!is an increasing function. It follows that . : [0, M| — R, defined by
Ye(z) := es™'(e7'z), are a monotonically decreasing sequence of functions

for ¢ — 0, defined on a compact topological space. In addition, according to
Lemma 12 X. converges pointwise to the identity function. Hence, we can
apply Ulisse Dini’s theorem (see [10] p. 238) and obtain

sup [o(x) — o =5 0.
z€[0,M]

Thus, the first term on the right-hand side of (2.40) converges almost surely
to zero. Consequently, it also converges weakly to zero.

We continue with the second term of the right-hand side: We notice that
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the set {Ws(we(t)) : 0 < € < 1,5 € R} is sequentially weakly compact, so
Prokhorov’s theorem yields:

P((L 55 ey onry (65 (€ TVE (WA (1)) — WE(°())) — 0) > ) =
= P([We (5 (t)| > M) 2= 0,

which implies weak convergence to 0. The last term on the right-hand side
converges weakly to 0 according to assumption. O]

Proof of Theorem 12. Let X, (t) be a solution to (2.36). We have already
shown in the proof of Lemma 12 that

(@) = (e i W — m())Yiln) ) e
i=—o0
If Y, (t) := s(X,(t)), then according to (1.21) Y; satisfies
dY; = g(Y;)dW, (2.41)
with
9(y) = s, 05, (V)
Let (P, Z,(t)) be the corresponding canonical process of Y, (t). (P*, Z,(t))

is a regular diffusion on natural scale. According to (1.23) its speed measure
satisfies

my,(dr) = g, (z) 2dr = (s, 0 s,}) *(x)dr =
= <01 Z h(s; (z) — z5(w1))Yi(ws) + c> ¢ dx.
Let ¢,(t) = §i(t,x) my(dz) and ¢, (t) := inf{u : ¢,(u) > t}. Accord-

ing to Theorem 5/:\Yw(t) = 5,(X,(1)) = W(ww(t)), consequently X, (t) =
s (Yo(t) = s (W (thu(1).
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Let

me,(dr) := ;—8 <61 Z h(s; (e ) — 2i(w1))Yi(ws) + c) -cdx.

where c. is defined according to (2.38) and C' is a constant, which will be
defined later.

According to Lemma 3 and Lemma 4 for ¢ > 0 and for all i € Z : 77 Ly
and m* defined by

me,(dx) := 50_(6}’ <01 Z h(s, (e 'x) — xi(w))) 75 (we) + c) -cdx

on (Q; x Qy, A ® Ay, P) are couplings of m*.

We again define p := V(b) — V(a) for a < b with a,b € R. p as shown
in Lemma 3 equals >, v;0,,(dx). m° and p are defined on the same prob-
ability space (Q; x Qy, A1 ® Ay, P). Consequently, it is possible to show
that

me(dr) % pldr) P —a.s. (2.42)
holds. Theorem 9 then gives
wem)(t) S Wp)(t) = M(E) P—a.s.

Let ¢, (t) := (1(t,z) M, (dz) with m := m' and ¥, (t) := inf{u : ¢, (u) > t}
and let

oo(t) = | I5(t, z) W, (dw) =

r 0

= I(e—2¢ —1, %
J&?(s ,E a:)0<

r

2
= | (e, e ) c.C <01 h(s — zi(w1)) 75 (we) + c> -cdx.

1=0

h(s, (e 'x) — xi(wr)) 7 (wo) + c> -cdr =

=0
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1

By applying substitution [y = e 'z = ¢ !dy = dx] we obtain

oo (t) = JSZ( ~*t,y)c.C (Clzh S (W1))77 (w2) + c> -cdx =
=cc.C™h - g (e72).

Therefore
— C
J5(1) = 20, ( ’*)

Finally, let X (¢) := s~} (W=(m)(t)) then
eX,(tC(cce)™) = es‘l(W@(tC(cee)‘l))) = esH (W (e205(1))) =
=es (T WA (YL())-

Su(T) 2o
x

From Lemma 12 we have 1 P— a.s. and since We(zﬁa(t)) -

M(t) P—a.s.

Lemma 13 yields that P—a.s. : eX (t(cee) V) = es~ (e W= (¢5(1))) 22 M(%).
O

It remains to prove (2.42):

Proving (2.42) involves the same procedure, which we already used in the
proof of (2.13). Additional technical work needs to be done due to the scale
function s. We will add some substitutions and exploit the fact that s(z)
converges to the identity function for x — oo. This will eventually transform
the integral, such that analogously to (2.13) all lemmas can be applied.

Proof of (2.42). Let f € C.(R) with [ := supp(f) and I = [a, b].

2
% 1

J fam® = J f(a:)% <cl Z h(s™He™'a) — xi)c—ga(VE(iH) — Vo) + c) ¢ du.
R R i=—00 €
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Applying substitution [z = es(y) = es'(y)dy = € (c1 2o Ry — )73 + c)fl dy
= dx] yields

Ce = 1

J fdm® = f fles)) = e |er X, My —a:)—ge(Veen) — Vi) + ¢ | € dy.
R R € i=—00 Ce

Again by substitution [y = e'v = ¢~ 'dv = dy| we obtain

dem —CJ —f(es(e™ ) <Z h(e (V;-(iJrl)_‘/ai)) dv

1=—00

2 % Fles(z"v))edw. (2.43)
R

—Ka(e)

Let (i, v;)ien be the jump process of V. For § > 0 we define J° := {y; :
v; >0} and J? = {i€ Z :eS(e7i) € I, Voit1) — Vo > 8}, Therefore we can
express the first term on the right hand side of (2.43) as

J f 55 € U Z h v — I gs(V;-(z'H) - ng‘) dv

ieJ?

—iK3(e)

o[ e [T e - v | i

€%, \J§

—K3()

~ 1
o] St | X b= ) (Ve — Vi | do
RE VI

=:K3(€)

Since according to Lemma 12 es(e 'v) — v, for € small, there exists small
neighborhood I’ of I such that J° < I'.The process V only has finitely many
jumps > § within I'. Let |J° n I'| =1 n < c0.

For any € > 0 and y € J° we have: 5[§J <y < 5([§J + 1) = for £ small:
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{[QJ ly € J° A [QJ e I'} < J°. For ¢ small there is at most only one
€

jump in each [5[QJ,5([QJ + 1)] So JO = {[QJ ly € J° A [QJ € I'} and
€ € € €

ST =] NI < co.

We consider the first sum and compute its limit for ¢ — 0:

Let v > 0. For e small it holds that f(es™'(¢7'v)) has compact support I’ and
files™H ™)) < fr () +y1p(v) as well as f(es™ (e ') < f-(0) +71r(v)
Vv e R. W.lo.g. we assume that f is a nonnegative function. All functions
within the integral converge uniformly and we can move the limit inside:

tim K9(0) = lm | 2 f(es™ e 70) - g (Vi — V) | 330 (P2) | o

e—0 R I

(1 V— EX;
<hmcj —(f() +y1p) - ge(Vegisry — Vi) Zh( ) dv
R

e—0 I

. ET;
= 1}_1;[(1) Clgé gs 5(z+1) €’L f f - ) dv
.- 1 —ew;
+£{%Ci§s95(vs(i+1) — Vi )J, -7 h( - ) dv
crite | v — exy
— hmcz 9 (Vegirr) — )J —f( ) - ( ) dv
e—0 Z€J5 EX;—E€ €
EX;+E 1 — e
+lime Z ga e(i+1) ez) J =7 h < ) dv.
=0 ieJ? ewi—e € c
. . . - 6xi -1 .
Using substitution [z = = ¢ 'dv = dz] gives
€

1

lim K?9(¢) = lim ¢ Z 9e(Veiory = Vai) | flez —exy) - h(2) dz

e—0 e—0 s _1
1

F e 3 . Vi = Vi) | 7+ h(e)
=0 i€J? -1

Let i; (1 < j < n) be the indices of the jumps larger 6. Let z; := y;;. It
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follows that

e—0 e—0

lim K9(¢) = ¢- Z ling(VE(l%JH) — Vslz?gj) lim Jl flez — exl%J)h(z) dz

5 (€)

n 1

0 2 lim g (Vo) = Ve i | 9h(z) d=.
We have already shown in the proof of (2.13) that

Aj(e) = v;; and Bj(e) = f(ys,) Ll h(z)dz.

—_—
=:cp,
Consequently,
n 1
lim K () = & 2, m e (Veq 22y = Ve lim | fle2 — e 2 h(z) dz

Jj=1 Jj=1 Jj=1

Since v can be chosen arbitrary small

th(S =C Z fxj)v;

Jiw; =6

We continue with the second sum. For ¢ small the support of f(es(e7'v)) is
subset of the compact interval I’. Thus,

~[1 _ _
R = [ et | B et etV < Ve | do =
l/nz\‘]E
_ v—ex;\ 1
= CJ 2 6(z+1) ‘/;i)f(gs(g 1/0))}"( c )g dv.
l/a\JE

o1



2.3. WEAK CONVERGENCE TO FIN-DIFFUSION WITH DRIFT

All functions are positive and by Fubini’s Theorem we get

Kie) =€ Y, g:(Veuny = Va) | feste o))(

. 7
iel%,\J5 I

—ex\ 1
e

9 9

For € small, we find v > 0 such that

Kg(s) <c Z 9e (Vs(iﬂ) - Vi) L/(f(v)) + V)h(v — 6xi)lalv

1/04\']E c c
R ET;+E v — ex; 1
<@ Y gy —Va) | (@) +R(=—)  dv
ieJ% , \J§ exi—e
. . V— EX; -1 .
Then substitution [z = = ¢~ 'dv = dz] yields
£

MOt 3 ol | (e =) + ey a

l/a\Js

< (- Z gs(Vs(i—i—l) - Vaz’)-
l/a\JE
By Lemma 6 we get
Ki(e) < C - Z (Viginy — Ve)'™
i€ 0\
<C- Z U;_dl =: Hy.
Jiw <6 with y;el
In the proof of (2.13) we have already verified that lims o Hs =0 P-a.s,

lim._,o K3(¢) = 0 and lim._,o K4(¢) = 0 can be shown by analogous steps as
used in the proof of (2.13).

We obtain
lin%f fdp® = lim lim (K{(e) + K3(2) + K3(e) + Ku(e)) =
:(lsli%Cfo] _Cff =CJRfd,5.
Jiw;=6
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Appendix

Abstract

We establish a general theory concerning one-dimensional diffusions, derived
from stochastic differential equations. One dimensional diffusions coming
from SDEs without drift, can be expressed as time changed Brownian mo-
tions. A time changed Brownian motion is characterized by the speed mea-
sure of a diffusion. The speed measure can be obtained by the SDE.

We devote ourselves to determining scaling limits of random diffusions de-
rived from stochastic differential equations.

At first we consider a diffusion defined by a stochastic differential equation
without drift. Suitably rescaling this diffusion we obtain sequences of diffu-
sions which converge weakly. Depending on the assumptions we show that
one suitably rescaled sequence converges weakly to the Brownian motion and
another suitably rescaled sequence converges weakly to the FIN-diffusion.
Applying Stone’s theorem it is sufficient to show vague convergence of the
respective speed measures in order to obtain weak convergence of the rescaled
diffusion sequences. Analogously we proceed for the second diffusion com-
ing form a stochastic differential equation which has non-zero drift. Using
Stone’s theorem we show weak convergence to the FIN-diffusion of a suitably
rescaled sequence of diffusions.
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Zusammenfassung

Wir entwickeln eine allgemeine Theorie iiber eindimensionale Diffusionen,
welche durch stochastische Differentialgleichungen definiert sind. Eindimen-
sionale Diffusionen konnen als zeitlich gednderte Brownsche Bewegungen
dargestellt werden. Eine zeitlich gednderte Brownsche Bewegung wird durch
das Geschwindigkeitsmaf der Diffusion bestimmt.

Wir beschiftigen uns mit den Grenzwerten skalierter eindimensionaler Dif-
fusionen, die durch stochastische Differentialgleichungen definiert sind.
Zuerst studieren wir eine Diffusion, welche von einer stochastischen Differen-
tialgleichung ohne Drift bestimmt wird. Indem wir diese Diffusion passend
skalieren, erhalten wir schwach konvergierende Folgen von Diffusionen. Ab-
héngig von den Voraussetzungen konvergiert eine passend skalierte Folge von
Diffusionen gegen die Brownsche Bewegung und eine andere passend skalierte
Folge gegen die FIN-Diffusion.

Um diese Konvergenzaussagen zu beweisen, verwenden wir Stone’s Theo-
rem. Stone’s Theorem impliziert, dass es ausreicht, die vage Konvergenz der
Geschwindigkeitsmafte der entsprechenden skalierten Diffusionen zu zeigen,
um die schwache Konvergenz der skalierten Diffusionen zu erhalten. Die
zweite Diffusion, mit der wir uns auseinandersetzen, wird durch eine stochastis-
che Differentialgleichung mit Drift bestimmt. Wir verfahren analog wie zuvor
und zeigen, dass eine passend skalierte Folge von Diffusionen gegen die FIN-
Diffusion konvergiert, indem wir Stone’s Theorem anwenden.
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