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Introduction

"Aging" occurs in out-of-equilibrium physical systems. It is becoming in-
creasingly important in physics and mathematics.
Bouchaud's trap model on a graph G � pV, Eq has been introduced to ana-
lyze aging. It is de�ned as follows:
Let E � pExqxPV be a collection of i.i.d. random variables exponentially
distributed with mean one, we introduce the continuous time Markov chain
Xptq with state space V such that

PpXpt� dtq � y|Xptq � x,Eq �
#
wxy dt if x, y are connected in G
0 otherwise,

where

wxy � ν expp�βpp1� aqEx � aEyqq.

Here β stands for the inverse temperature, a P r0, 1s expresses the balance of
power between x and y. The parameter ν is introduced for technical reasons.
The Markov chain Xptq resides at site x for a certain amount of time, which
depends on Ex. This time increases, if Ex does. Thus, Ex can be viewed as
the depth of the trap at site x.
Bouchaud's trap model illustrates the motion of the physical system between
the states with energies Ex. It can be viewed as a simpli�cation of spin-glass
dynamics. The states of Xptq represent those of a spin-glass system with par-
ticularly low energy. The spin-glass dynamics reside mostly in the deepest
traps and run through the others especially fast. Thus, all smaller traps can
be neglected, when it comes to analyzing long time behaviour of dynamics.

For the sake of this thesis, the case G � pZ, Eq, where E � tpx, yq : |x� y| �
1qu are the nearest neighbor edges is most important:

Let pτxqxPZ be i.i.d. random variables with unbounded expectation, which
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INTRODUCTION

ful�ll the following requirement:
Let α ¡ 0. There exists a slowly varying function L, such that

Prτx ¥ us � u�αLpuq.

Suppose τ0 ¡ c ¡ 0, for a P r0, 1s, the one-dimensional Bouchaud trap model,
BTMpZ, τ, aq, is a continuous time Markov chain Xptq with state space Z
starting in Xp0q � 0 and random jump rates

ωxy �
$&%

1

2
Erτ�a0 sτ�p1�aqx τ�ay if px, yq P E

0 otherwise.

This model was analyzed in terms of "aging" for a � 0 by Fontes, Isopi and
Newman in [7] and for a ¡ 0 by Ben Arous and �erný in [6].

Aging occurs if there exists a limit of a two-point function F ptω, tω � tq,
which represents the change of the BTMpZ, τ, aq at time t � tω after time
tω, if t goes to in�nity.
Introduced by Fontes, Isopi and Newman a good estimate for the change of
the system and therefore a good choice for F is

Rqpt, t� θtq � E
¸
iPZ

PrXpp1� θqtq � i|τ,Xptqs2.

Rq represents the average (here the average with respect to the starting point)
probability that two independent realizations of Xptq with equal site at time
tω will arrive at the same site after time t� tω.
Fontes, Isopi and Newman managed to prove existence of the following limit
for a � 0:

lim
tÑ8

Rqpt, t� θtq � lim
tÑ8

E
¸
iPZ

PrXpp1� θqtq � i|τ,Xptqs2 � Rqpθq. (1)

This has been extended by Ben Arous and �erný for the case a ¡ 0. Thus,
existence of "aging" has been proven for BTMpZ, τ, aq for all a P r0, 1s. The
main tool to prove (1) consists of computing the scaling limit of Xptq:
Let ε ¡ 0 we de�ne the rescaled process:

Xεptq :� εXpt{εcεq,
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INTRODUCTION

where

cε � pinftt ¥ 0 : Ppτ0 ¡ tq ¤ εuq�1.

It has been proven in [7] that Xεptq converges almost surely in distribution
to a di�usion Mptq as ε Ñ 0, where Mptq is de�ned by its speed measure
ρ :� °

iPZ viδxi with pxi, viqiPZ being an inhomogeneous Poisson point process
on R � p0,8q with density measure dxαv�1�α dv. We will refer to Mptq as
the FIN-di�usion, since this di�usion was �rst introduced by Fontes, Isopi,
and Newman.
For the proof that the scaling limit of Xptq is the FIN-di�usion they applied
a theorem (see chapter 1 theorem 9) proved by C. Stone in [8]. This theo-
rem states that vague convergence of a sequence of speed measures implies
convergence in distribution of the corresponding di�usions.
Consequently, they showed vague convergence of the speed measures to get
convergence in distribution of the corresponding rescaled di�usions to the
FIN-di�usion.

In this thesis we focus on di�usions, which can be interpreted as contin-
uous versions of the BTMpZ, τ, aq. Analogously to the BTMpZ, τ, aq we
want to compute their scaling limits.
To be concrete: Let pΩ1,A1,P1q and pΩ2,A2,P2q be probability spaces. The
di�usions will be de�ned on pΩ1 � Ω2,A1 bA2,Pq, with P :� P1 b P2.

Let ξ be a Poisson Point Process on R with intensity 1, de�ned on pΩ1,A1,P1q.
Consequently, ξpra, bsq has a Poisson distribution with parameter b� a. For
ω1 P Ω1 let pxipω1qqiPZ be the points of the Poisson point process correspond-
ing to the realization ω1.
Let pYiqiPZ be a sequence of positive i.i.d random variables on pΩ2,A2,P2q.
Let h P C8pRq with suppphq � r�1, 1s and let c ¡ 0.

We study scaling limits of two di�usion models with random coe�cients.
The �rst case corresponds to a � 0 in the discrete case:
We consider a random one-dimensional di�usion solving for each ω P Ω1�Ω2

a SDE (stochastic di�erential equation) without drift

dXt � pfωpXtqq�1{2dWt, X0 � 0 (2)
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INTRODUCTION

with

fωpxq � pc 8̧

i��8
hpx� xipω1qqYipω2q � c

where pc is to be de�ned dependent on the requirement for Yi:
We study the asymptotic behavior of the solution Xptq to (2) under two
di�erent assumptions:

1. pYiqiPZ satisfy

ErYis   8 (3)

and we set

pc :� 1�³1
�1
hpxq dx

	
� c

ErY1s
.

2. pYiqiPZ have unbounded expectation and the following condition holds:
There exists a slowly varying function L, such that

P2rYi ¥ us � u�αLpuq (4)

and we set

pc :�
�» 1

�1

hpxq dx

�1

.

In both cases we want to determine the scaling limit of Xt.
Provided ErYis   8, we de�ne the rescaled process Xεptq :� εXpε�2c�1

2 tq,
where c2 :� pErY1sq�1.
Analogously to BTMpZ, τ, aq we exploit Stone's theorem to compute the
limit of Xεptq, as εÑ 0, which will be the Brownian motion.
In the other case, provided (4), for ε ¡ 0 and

cε � pinftt ¥ 0 : PpY1 ¡ tq ¤ εuq�1, (5)

we de�ne the rescaled process Xεptq :� εX

�
t

cεε



. Since for Yi the same

conditions are ful�lled as for the rescaled BTMpZ, τ, aq, which converges to
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INTRODUCTION

the FIN-di�usion Mptq, we expect Xεptq to converge to Mptq as well. We
proceed equally to the �rst case by using Stone's theorem and obtain almost
sure convergence in distribution to the FIN-di�usion.

The second di�usion, which we will examine, is derived from a SDE with
non-zero drift:
Assume xi, Yi and h are equally de�ned as before. Suppose (4) holds, we
consider

dXt � V 1
ωpXtq dt� dWt X0 � x, (6)

where for each ω P Ω1 � Ω2

Vωpxq :� �1

2
log

�
c1

8̧

i��8
hpx� xipω1qqYipω2q � c

	
.

Again we show that for cε as introduced in (5) and some constant C the

rescaled process Xε
ωptq :� εXω

�
tC

cεε



converges to the FIN-di�usion Mptq.

This thesis is organized as follows: In the �rst chapter we will establish a
general theory concerning one-dimensional di�usions, derived from stochastic
di�erential equations. One dimensional di�usions coming from SDEs without
drift, can be expressed as a time changed Brownian motion. A time changed
Brownian motion is characterized by the speed measure of a di�usion. The
speed measure can be obtained by the SDE.
The second chapter then concentrates on proving the convergence results of
the di�usions as illustrated above.
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1. One-dimensional di�usions

Let Wt be a one-dimensional Brownian motion. We focus on the stochastic
di�erential equation (SDE)

dXt � σpXtq dWt � bpXtq dt, X0 � x. (1.1)

A process Xt satis�es (1.1) if

Xt � x�
» t

0

σpXsq dWs �
» t

0

bpXsq ds.

We assume that σ and b are both locally Lipschitz and that σ is bounded
from below by some positive constant such that a solution to (1.1) exists.

Let C :� Cpr0,8qq. The canonical process Zt is de�ned on C by Ztpω1q �
ω1ptq.

Let Xpx, t, ωq be the solution to (1.1). For each x we introduce a proba-
bility measure Px on C, determined by

PxpZt1pω1q P E1, ..., Ztnpω1q P Enq � PpXpx, t1, ωq P E1, ..., Xpx, tn, ωq P Enq
(1.2)

whenever t1, ..., tn P r0,8q and E1, ..., En are Borel sets in R. Hence, x indi-
cates the starting point of the canonical process Zt with probability measure
Px. De�ned on the smallest σ-�eld containing these cylindrical sets, Px can
be extended to F 1

8 :� �
tPR� F 1

t , where F 1
t is a right continuous �ltration.

We now state our �rst important theorem:

De�nition 1. The shift operators θt : C Ñ C are de�ned by θtpωqpsq �
ωpt� sq. A stochastic process Zt is strong Markov if

ExrfpY � θT q|F 1
T s � EZT rY s (1.3)
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1.1. PROPERTIES OF DIFFUSIONS

holds Px-a.s., whenever x P R, Y is bounded and F 1
8-measurable and T is a

�nite stopping time.

Theorem 1. The canonical process pPx, Ztq is a strong Markov process.

The proof of this theorem can be found in [1] (Chapter 1 Theorem 5.1).

1.1 Properties of di�usions

De�nition 2. For each x P R let Px be a probability measure de�ned on
F 1

8. If Xt is a a continuous strong Markov process with respect to Px ((1.3)
holds), then we say that pPx, Xtq is a di�usion.

From Theorem 1 we obtain: pPx, Ztq, the canonical process of the solution
of the SDE (1.1), is a di�usion. LetWt be a Brownian motion de�ned on some
pΩ, tF ut,F ,Pq. Then the canonical Brownian motion pPx, Ztq, analogously
de�ned to (1.2), is also a di�usion. We will now prove a certain property of
the canonical Brownian motion:

Proposition 1. Let pPx, Xtq be the canonical Brownian motion and let τra,bs :�
inftt ¡ 0|Xt R ra, bsu. If a   x   b, then τra,bs   8 a.s., and

PxpXpτra,bsq � aq � b� x

b� a
, PxpXpτra,bsq � bq � x� a

b� a
. (1.4)

Proof. We write τ instead of τra,bs. X2
t � t is a martingale, so is the stopped

process X2
τ^t � τ ^ t. Hence,

ExrX2
τ^ts � Exrτ ^ ts � x.

For t ¤ τ, |Xt| ¤ |a| � |b|, so Fatou's lemma yields: Exτ ¤ p|a| � |b|q2 � |x|
and thus τ   8 a.s. Optional stopping theorem applied on the martingale
Xt gives:

x � ExXτ � aPxpXτ � aq � bPxpXτ � bq. (1.5)

As τ   8 a.s.,

1 � PxpXτ � aq � PxpXτ � bq. (1.6)

Solving the linear system (1.5) and (1.6) for the two unknowns PxpXτ � aq
and PxpXτ � bq completes the proof.
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1.2. SPEED MEASURES

Taking bÑ 8 and x ¡ a, continuity of the probability measure gives:

PxpTa   8q � 1. (1.7)

De�nition 3. Let pPx, Xtq be a di�usion, which takes values in an interval
I, and Ty :� inftt : Xt � yu if

for all x, y in the interior of I : PxpTy   8q � 1 (1.8)

we say the di�usion is regular.

De�nition 4. We say that a regular di�usion pPx, Xtq is on natural scale

if (1.4) holds for every interval ra, bs.

1.2 Speed measures

Assume we are given a regular di�usion pPx, Xtq on an open interval I on
natural scale. For pa, bq � I, we de�ne

Ga,bpx, yq �
#

2px� aqpb� yq{pb� aq for a   x ¤ y   b

2py � aqpb� xq{pb� aq for a   y ¤ x   b
(1.9)

and set Ga,bpx, yq � 0 if x or y is not in pa, bq.
We call the measure mpdxq for which

Expτpa,bqq �
»
Ga,bpx, yqmpdyq,

whenever pa, bq � I and x P I (1.10)

holds, speed measure of the di�usion pPx, Xtq. From (1.10) we notice that
the speed measure computes how fast the di�usion moves in average through
intervals.

Proposition 2. The speed measure for the canonical Brownian motion is
the Lebesgue measure.

Proof. Since X2
t � t is a martingale, so is the stopped process pXt^τpa,bqq2 �

t^ τpa,bq. Thus,

Expτpa,bq ^ tq � ExpXt^τpa,bq � xq2. (1.11)

8



1.2. SPEED MEASURES

We have |Xt| ¤ |a| � |b| for t ¤ τ . Hence, for t Ñ 8 monotone convergence
on the left and the dominated convergence on the right yield

Expτpa,bqq � ExpXτpa,bq � xq2 �
� pb� xq2PxpXτpa,bq � bq � px� aq2PxpXτpa,bq � aq.

By Proposition 1 this equals

px� aqpb� xq,

which is the same as the integral with respect to the Lebesgue measure of
Ga,bpx, yq. Hence,

Expτpa,bqq �
»
Ga,bpx, yq dy.

We now state without proof a very important theorem, which we will ap-
ply later in order to determine the speed measure of a di�usion corresponding
to a solution of a stochastic di�erential equation.

Theorem 2 (Trotter). Let Wt be a Brownian motion. There exists a family
of non-decreasing processes lpt, xq that are jointly continuous in x and t a.s.
such that

1. if f is nonnegative Borel function, then» t

0

fpWsq ds �
»
R
fpxqlpt, xq dx, a.s.,

where the null set can be taken independent of f ;

2. lpt, xq Ñ 8 a.s., as tÑ 8;

3. The set of t on which lpt, xq increases is precisely the set tt : Wt � xu;
4. lpt, xq may be de�ned by the formula

|Wt � x| � |W0 � x| �
» t

0

sgnpWs � xq dWs � lpt, xq.

9



1.2. SPEED MEASURES

This theorem is veri�ed in [2] (pages 68-71).

De�nition 5. The process lpt, xq is called local time of the Brownian motion
Wt.

For the next theorem we introduce some notations:
Let m be a measure on an open interval I such that 0   mpa, bq   8 for
every interval pa, bq � I. Let pPx,Wtq be the canonical Brownian motion, we
set

φt :�
»
lpt, xqmpdxq, ψt :� inftu : φu ¡ tu, Xt :� Wψt . (1.12)

Theorem 3. Under Px, Xt as de�ned by (2.39), is a regular di�usion on
natural scale with speed measure m.

Proof. Xt is continuous:

lpt, xq is continuous in t and for every t P r0,8q Lebesgue integrable with
respect to m   8. By dominated convergence theorem, we obtain the conti-
nuity of the process φt. Let s   u, if t P ps, uq, then Wt � x for some x P R.
Since lpt, xq grows at t by (3) of Theorem 2, it follows that lpu, xq�lps, xq ¡ 0.
Continuity of the local times gives lpu, yq� lps, yq ¡ 0 for all y in a neighbor-
hood px � δ, x � δq of x. By assumption mpx � δ, x � δq ¡ 0, consequently,
φu � φs ¡ 0. As a result φt is strictly increasing and continuous. Thus, the
inverse ψt exists and is continuous. Since the Brownian motion is continuous
as well, Xt is continuous.

ψt is F 1
t-stopping time:

Let ω P tψt   tu, then there exists u P r0, tq such that φupωq ¡ t. φt is
continuous process and there exists a rational s with φspωq ¡ t. Conse-
quently, tψt   tu � �

0¤s t,sPQtφpsq ¡ tu P F 1
s � F 1

t . As a result ψt is
F 1
t -stopping time.

pPx, Xtq is a regular di�usion on natural scale:

Applying monotone convergence and from (2) of Theorem 2, we get φt Õ 8,
thus ψt Õ 8 and τXpa,bq   8 Px-a.s., where τXpa,bq denotes the exit time of pa, bq

10



1.2. SPEED MEASURES

by Xt and τWpa,bq denotes the corresponding exit time of Wt. In addition,

PxpXpτXpa,bqq � bq � x� a

b� a
.

Since Xt is a time changed Brownian motion and therefore a martingale ac-
cording to optional stopping theorem, this can be proven exactly in the same
way as in the proof of Proposition 1.

pPx, Xtq is a strong Markov process:

We set F �
t :� F 1

ψt
. Let T be a bounded stopping time for F 1

t . Thus,

ExrfpXT�tq|F �
T s � ExrfpW pψT�tqq|FψT s. (1.13)

ψT is a stopping time for F 1
t . (tT ¤ tu P F 1

ψt
ñ tψT ¤ tu � tT ¤ φtu P F 1

t )
Moreover, ψT�t � ψt � θψT . Thus, by the strong Markov property of the
canonical Brownian motion (1.13) equals

EW pψT qrfpWψtqs � EXT rfpXtqs.

As shown in r2s, this is equivalent to the strong Markov property.

The speed measure of pPx, Xtq is m:

ExτXpa,bq � Ex
» 8

0

11pa,bqpXps^ τXpa,bqqq ds

� Ex
» 8

0

11pa,bqpW pψps^ τ
W pψq
pa,bq qqq ds.

(1.14)

Since φt is strictly increasing, ψ0 � 0. Moreover, we have already shown that
ψt Õ 8. As a result substitution w.r.t. Lebesgue-Stieltjes integrals yields

11



1.3. DIFFUSIONS AS SOLUTIONS OF SDES

that (1.14) equals

� Ex
» 8

0

11pa,bqpW pt^ τWpa,bqqq dφt

� Ex
» » 8

0

11pa,bqpW pt^ τWpa,bqqq dlpt, yqmpdyq

� Ex
» » τW

pa,bq

0

dlpt, yqmpdyq

�
»
ExlpτWpa,bq, yqmpdyq. (1.15)

(4) of Theorem 2 gives

ExlpτWpa,bq, yq � Ex
�
|WτW

pa,bq
� y| � |W0 � y| �

» τW
pa,bq

0

sgnpWs � yq dWs

�
� Ex|W pτWpa,bqq � y| � |x� y|, (1.16)

since MpτWpa,bq ^ tq � ³τW
pa,bq

^t
0 sgnpWs � xq dWs is martingale according to

optional stopping theorem. By Proposition 1, this equals:

|a� y|b� x

b� a
� |b� y|x� a

b� a
� |x� y| � Ga,bpx, yq.

which together with (1.15) implies

ExτXpa,bq �
»
Ga,bpx, yqmpdyq

and completes the proof.

1.3 Di�usions as solutions of SDEs

Assume Xt is given as the solution to

dXt � σpXtqdWt � bpXtqdt, (1.17)

where we require σ and b to be Lipschitz and bounded above and σ to be
bounded from below by a positive constant.

12



1.3. DIFFUSIONS AS SOLUTIONS OF SDES

We introduce the following operator

L fpxq :� 1

2
apxqf2pxq � bpxqf 1pxq, (1.18)

where apxq :� σ2pxq.
Proposition 3. Suppose Mt is a continuous martingale with rM st strictly
increasing and rM s8 � 8. Then M is a time change of Brownian motion,
that is there exists a one-dimensional Brownian motion X such that Mt �
XrMst .

Proof. We set τpuq :� inftt : rM st ¡ uu and Xu :� Mτpuq. rM st is the limit
of sums of continuous functions so it is continuous too. According to our
assumption rM su is strictly increasing, so τpuq coincides with pMuq�1 on the
image of Mu. Thus, τpuq is the inverse of a continuous, strictly increasing
function and therefore continuous too. Consequently so is X. Let u1   u2.
τpu1q   τpu2q are stopping times. Now optional stopping theorem yields

ErXu2 |Fτpu1qs � ErMτpu2q|Fτpu1qs �Mτpu1q � Xu1 .

Thus, Xu is a martingale with respect to the �ltration Fτpuq. From the
de�nition of quadratic variation we get that M2

t � rM st is a martingale.
Again according to the optional stopping theorem we get

ErX2
u2
� u2|Fτpu1qs � ErM2

τpu2q � rM sτpu2q|Fτpu1qs �M2
τpu1q � rM sτpu1q �

� X2
u1
� u1.

Thus, X2
t � t is a martingale, hence according to the de�nition of quadratic

variation, we obtain rXst � t. By Levy's Theorem it follows that Xt is a
Brownian motion and we have Mt � XrMst .

Theorem 4. Given a solution Xt to (1.17). Let spxq be the solution to
L spxq � 0, then there exist constants c1, c2 and x0 such that

spxq � c1 � c2

» x

x0

e
� ³yx0 2bpωq{apωq dω

dy. (1.19)

Moreover, spXtq, is a regular di�usion on natural scale.

13



1.3. DIFFUSIONS AS SOLUTIONS OF SDES

Proof. Since apxq ¡ c2 ¡ 0

0 � L spxq � 1

2
apxqs2pxq � bpxqs1pxq

is equivalent to

s2pxq
s1pxq � �2

bpxq
apxq ,

which is equivalent to

plog s1pxqq1 � �2bpxq{apxq.
This ordinary di�erential equation can be solved by integrating. Thus, for
x0 P R

s1pxq � exp

"
�
» x

x0

2bpωq{apωqdω � c

*
. (1.20)

Integrating again yields (1.19).

As according to (1.17) both σ and b are continuous, spxq given by (1.19)
is C2. Now let Xt be a solution to (1.17), we use Itô's formula:

dspXtq � s1pXtq dXt � 1

2
s2pXtq pdXtq2

� σpXtqs1pXtq dWt � bpXtqs1pXtq dt� 1

2
σpXtq2s2pXtq dt

� pσs1qpXtq dWt � 1

2
pbs1 � σ2s2qpXtq dt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

�0

.

Consequently, spXtq is a martingale. The quadratic variation of Yt :�
spXtq is

³t
0
pσs1q2pXsq ds. As σs1 is positive and bounded from below, the

quadratic variation is strictly increasing and converges to in�nity. Thus,
according to Theorem 3, Yt can be written as a time change of a Brownian
motion: Yt � xW pψtq. Analogously to the proof of Theorem 3 it follows
from monotone convergence and (2) of Theorem 2 that τYpa,bq   8 Px-a.s. Let
pPx, Ztq be the corresponding canonical martingale process to Yt. Equal steps
as used in the proof of Proposition 1 show that pPx, Ztq is on natural scale.
Finally, by Theorem 1 it follows that pPx, Ztq is a di�usion, which completes
the proof.
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1.3. DIFFUSIONS AS SOLUTIONS OF SDES

De�nition 6. Let Xt be a solution to (1.17). Then spxq, de�ned as in (1.19),
is called scale function of the di�usion Xt.

In the proof of Theorem 4 we have seen that if Yt :� spXtq, then
dYt � ps1σqps�1pYtqq dWt. (1.21)

We continue with the case, when b in (1.17) is zero, that is

dXt � σpXtqdWt (1.22)

Theorem 5. Let Xt be a solution to (1.22), then its speed measure is given
by

mpdxq � 1

apxq dx (1.23)

and Xt � xW pψtq, where xW is a Brownian motion and

ψt :� inftu : φu ¡ tu, φt :�
»
lpt, xqmpdxq. (1.24)

Proof. Since Xt satis�es (1.22), Xt is a martingale. rXst �
³t
0
apXsq ds is

strictly increasing and rXs8 � 8 as apxq ¥ c. According to Theorem 3 Xt

is a time changed Brownian motion: Xt � xW prXstq. We set:

ψt :� rXst �
» t

0

apXsq ds.

The inverse of ψt, namely, φt, exists and it holds that

dφt
dt

� 1

apXφtq
� 1

apxWtq
,

integrating gives

φt �
» t

0

1

apxWsq
ds �

»
lpt, yq 1

ay
dy

for all t, where the second equality follows from Theorem 2.2. Now we set

mpdxq :� 1

apxq dx. Since apxq ¥ c2, for any a, b P R

0   mpa, bq   8
holds. Theorem 3 yields that the corresponding canonical process pPx, Ztq to
Xt, is a regular di�usion with speed measure m.
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1.4. INVARIANT MEASURES

We state without proof (see [1] page 83):

Theorem 6. If pPxi , Xtq, i � 1, 2, are two di�usions on natural scale on an
open interval I with the same speed measure m, then Px1 � Px2 on FτI .

1.4 Invariant measures

Occasionally it is important, to determine a measure µ, which remains equal
under the "�ow" of a di�usionXt. In other words, Xt is distributed according
to µ for all t ¥ 0.
Let

dXt � σpXtq dWt � bpXtq dt, X0 � x. (1.25)

Let f P C2pRq and L de�ned as in (1.18), the adjoint operator L � is given
by

L �fpxq :� B2
B2x

�
σ2pxqfpxq�� B

Bx pbpxqfpxqq , (1.26)

that is for f and g satisfying suitable regularity conditions, by using integra-
tion by parts, »

fpxqL gpxq dx �
»
gpxqL �fpxq dx. (1.27)

De�nition 7. A measure µ is invariant for a strong Markov family if
EµfpXtq �

³
fpxqµpdxq for all t and all bounded continuous f , where

EµfpXtq �
³
EyfpXtqµpdyq.

Theorem 7. Let

Btupx, tq � L upx, tq, t ¡ 0, x P R, (1.28)
upx, 0q � fpxq, x P R. (1.29)

The solution to (1.28) is

upx, tq � ExfpXtq.
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1.4. INVARIANT MEASURES

Proof. Let t0 be �xed and let Mt � upXt, t0 � tq. One can show that the
solution u to (1.28) is C2 in x and C1 for t ¡ 0 (see [9]). Itô's formula on
R� r0, t0q, gives

upXt, t0 � tq � martingale�
» t

0

L upXs, t0 � sq ds�
» t

0

p�BtuqpXs, t0 � sqq ds.

Due to Btu � L u,Mt is a martingale, and ExM0 � ExMt0 . Since

ExMt0 � ExupXt0 , 0q � ExfpXt0q,

and

ExM0 � ExupX0, t0q � upx, t0q.

the result follows for t0. As t0 can be chosen arbitrarily, the proof is complete.

For the next theorem we assume the coe�cients of L to be smooth:

Theorem 8. Assume there exists a nonnegative solution v to L �v � 0,
which satis�es suitable regularity conditions. Let µpdxq � vpxq dx. Then µ
is invariant for the process associated to L .

Proof. Let f be continuous and let upx, tq � ExfpXtq. Then

0 �
»
upx, tqL �vpxq dx �

»
L upx, tqvpxq dx �

»
Btupx, tqvpxq dx.

Thus,

EµfpXtq �
»
ExfpXtqµpdxq �

»
upx, tqvpxq dx (1.30)

is a constant function of t. For tÑ 0,

EµfpXtq �
»
ExfpXtqµpdxq Ñ

»
fpxqµpdxq.

Hence, EµfpXtq �
³
fpxqµpdxq for all t.

17



1.5. CONVERGENCE OF DIFFUSIONS IN DISTRIBUTION

1.5 Convergence of di�usions in distribution

A di�usion on natural scale can be expressed as a time-changed Brownian
motion, de�ned by its speed measure. Stone's theorem, which we will state
in the paragraph below, represents our main tool to prove the convergence
results about di�usions coming from SDEs in the second chapter of this thesis.
We notice that Stone's theorem originally not only involves statements about
convergence for time-changed Brownian motions, but also for some additive
functionals on di�usions. For more details see [8].

Theorem 9 (C. Stone). Let xWt be a Brownian motion and µε, µ be a col-
lection of non-random locally �nite measures, let

Y εptq :� xW pψpµεqptqq

with

φpµεqptq :�
»
lpt, xqµεpdxq, ψpµεqptq :� inftu : φpµεqptq ¡ tu

and
Y ptq :� xW pψpµqptqq

with

φpµqptq :�
»
lpt, xqµpdxq, ψpµqptq :� inftu : φpµqptq ¡ tu. (1.31)

For any deterministic t0 ¡ 0, let vεpt0q denote the distribution of Y εpt0q and
v denote the distribution of Y pt0q. Suppose that

µε
vÝÑ µ,

then, as εÑ 0,
vε

wÑ v.
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2. Scaling limits of random

one-dimensional di�usions

In this chapter we consider di�usion processes, derived from two stochastic
di�erential equations related to the BTMpZ, τ, aq.
We will study the asymptotic behavior of these random di�usions. In other
words, we will determine their scaling limits.
We proceed as follows:
We will prove convergence of an equally distributed sequence of di�usion
processes, which we introduce as time changed Brownian motions de�ned by
their speed measures.
Then we use Stone's theorem, which implies, it su�ces to verify vague con-
vergence of the corresponding speed measures to prove convergence in distri-
bution of the respective di�usion processes.
Thus, the main work consists of proving vague convergence of the speed mea-
sures.

The �rst SDE is given as follows:
Let pΩ1,A1,P1q and pΩ2,A2,P2q be probability spaces. Let pΩ1 � Ω2,A1 b
A2,Pq, with P :� P1 b P2.
Let ξ be a Poisson Point Process on R with intensity 1, de�ned on pΩ1,A1,P1q,
so ξpra, bsq � P ppb � aqq, which means that ξpra, bsq has a Poisson distribu-
tion with parameter pb� aq. For ω1 P Ω1 let pxipω1qqiPZ be the points of the
Poisson point process taken for this ω1.

Let pYiqiPZ ¥ 0 be a sequence of i.i.d. random variables on pΩ2,A2,P2q.
Let h P C8pRq with supphq � r�1, 1s and let c ¡ 0.
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2.1. WEAK CONVERGENCE TO BROWNIAN MOTION

For each ω P Ω1 � Ω2 we consider the following 1-dimensional SDE:

dXt � pfωpXtqq�1{2dWt, X0 � x, (2.1)

with

fωpxq � pc 8̧

i��8
hpx� xipω1qqYipω2q � c,

where pc is to be de�ned dependent on the requirement for Yi.
In order to compute the scaling limit of a solution Xt to (2.1) two
assumptions must be di�erentiated:

1. pYiqiPZ de�ned as above satisfy

ErYis   8 (2.2)

and we set

pc :� 1�³1
�1
hpxq dx

	
� c

ErY1s
.

2. pYiqiPZ de�ned as above have unbounded expectation and the following
condition holds: There exists a slowly varying function L, such that

P2rYi ¥ us � u�αLpuq, with α P p0, 1q (2.3)

and we set

pc :�
�» 1

�1

hpxq dx

�1

.

2.1 Weak convergence to Brownian motion

Suppose (2.2) holds:

Since pYiqiPZ have �nite expectation, we can apply the strong law of large
numbers to prove that the speed measures, which will be de�ned in the proof
of the following theorem below, converge to the Lebesgue measure. This
implies that the rescaled process converges to the Brownian motion:
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2.1. WEAK CONVERGENCE TO BROWNIAN MOTION

Theorem 10. Let ω P Ω1 � Ω2. Let Xωptq be a solution to (2.1), where
pYiqiPZ satisfy (2.2), then as ε converges to zero:

εXpε�2c�1
2 tq wÝÑ Bptq P� a.s.,

where c2 :� pErY1sq�1 and Bptq is a Brownian motion.

Proof. According to Theorem 5 there exists a Brownian motion xWt such that
Xωptq � xW pψpµωqptqq, where ψpµωq is de�ned as above in (1.31) with

µωpdxq � fωpxqdx,

the speed measure of the di�usion Xωptq.

Let xW ε
t :� εxW pε�2tq, which is also a Brownian motion according to Lévy's

Theorem.

Let ε ¡ 0, we introduce the scaled speed measure

µεωpdxq :� c2 � fωpε�1xqdx � c2ppc¸
iPZ
hpε�1x� xipω1qqYipωq � cq dx.

Let λ be the Lebesgue-measure. If

Ppω P Ω1 � Ω2 : µεω
vÝÝÑ

εÑ0
λq � 1 (2.4)

holds, by Theorem 9

xW εpψpµεqptqq d� xW pψpµεqptqq wÝÑ xW pψpλqptqq P� a.s.

and we obtain

xW εpψpµεqptqq wÝÑ xW pψpλqptqq P� a.s.

We have shown in Theorem 2 that the speed measure of the canonical Brow-
nian motion is the Lebesgue measure. Let pPx, Ztq be the corresponding
canonical process to xW pψpλqptqq and ppPx,Wtq the canonical Brownian mo-
tion, then Theorem 6 yields

pPx, Ztq � ppPx,Wtq.
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2.1. WEAK CONVERGENCE TO BROWNIAN MOTION

Consequently Bptq :� xW pψpλqptqq is a Brownian motion.

It remains to prove that

xW εpψpµεqptqq � εXpε�2c�1
2 tq.

Let lεpt, xq be the local time of xW ε. An easy computation gives

lεpt, xq � εlpε�2t, ε�1xq.

We write µεpdxq instead of µεωpdxq, φεptq instead of φpµεqptq and ψεptq instead
of ψpµεqptq. Thus,

φεptq �
»
lεpt, xqµεpdxq �

»
εlpε�2t, ε�1xqpc2fpε�1xqq dx.

By using substitution y � ε�1x we get

�
»
ε2lpε2t, yqpc2fpyqq dy � c2ε

2φpε2tq.

Thus,

ψεptq � ε�2ψpc�1
2 ε�2tq.

As a result

xW εpψpµεqptq � εxW pε�2ψεptqq � εxW pψpε�2c�1
2 tqq � εXpε�2c�1

2 tq.

Hence,
εXpε�2c�1

2 tq dÝÑ Bptq P� a.s.

It remains to show (2.4):

We need some preparatory lemmas:
The following property immediately can be derived from the de�nition of
vague convergence:
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2.1. WEAK CONVERGENCE TO BROWNIAN MOTION

Lemma 1. Let hε and h be nonnegative functions in CpRq. If
µεpdxq :� hεpxqdx and µpdxq :� hpxqdx

and

µεpra, bsq εÑ0ÝÝÑ µpra, bsq @a   b P R,

then

µε
vÑ µ.

Proof. Let f be a bounded continuous function with compact support K
and I � ra, bs with K � I. Let ε ¡ 0. As I is compact, the function |f | is
bounded from above by some L ¡ 0 and����»

K

fpxqhεpxq dx�
»
K

fpxqhpxq dx
���� � ����» b

a

fpxqhεpxq � fpxqhpxq dx
����

¤ sup
x
|fpxq|

����» b

a

hεpxq � hpxq dx
���� ¤ L

����» b

a

hεpxq � hpxq dx
���� εÑ0ÝÝÑ 0

We set ε :� 1

n
.

Lemma 2. Let qn be measures on the Borel σ-Algebra, de�ned by

qnpra, bsq :� 1

n

» nb

na

8̧

i��8
pYi hpy � xiqq � c dy, (2.5)

@a   b P R (2.6)

then

qnpra, bsq nÑ8ÝÝÝÑ pch ErY1s � cqpb� aq P� a.s., (2.7)
@a   b P R (2.8)

where

ch :�
» 1

�1

hpxq dx.
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2.1. WEAK CONVERGENCE TO BROWNIAN MOTION

Proof. ξpra, bsq has Poisson distribution with parameter pb � aq. Thus, for
ηpnq :� rna, nbs, it follows that ξpηpnqq has Poisson distribution with param-
eter npb� aq.

Let A1 :� tω1 P Ω1 : pb � aq � limnÑ8
ξpηpnqqpω1q

n
u. We will show now

that P1pA1q � 1 holds: To see this, write

ξpηpnqq �
¸

1¤i¤n
pξprpn� i� 1qa� pi� 1qb, pn� iqa� ibsq (2.9)

as the sum of n i.i.d. random variables, which have Poisson pb�aq-distribution
and therefore are integrable. The strong law of large numbers yields

ξpηpnqq
n

Ñ pb� aq P1 � a.s. as nÑ 8. (2.10)

We set η1pnq :� rna � 1, nas, η2pnq :� rnb, nb � 1s, ηp3q :� rna, na � 1s and
ηp4q :� rnb� 1, nbs. Let

A1
2pnq :� tω1 P Ω1 : ξpη1pnqq ¤ r

?
nsu, A1

2 :� tω1 P Ω : ω1 P lim infnÑ8A1
2pnqu,

A2
2pnq :� tω1 P Ω1 : ξpη2pnqq ¤ r

?
nsu, A2

2 :� tω1 P Ω : ω1 P lim infnÑ8A2
2pnqu,

A3
2pnq :� tω1 P Ω1 : ξpηp3qpnqq ¤ r

?
nsu, A3

2 :� tω1 P Ω : ω1 P lim infnÑ8A3
2pnqu,

A4
2pnq :� tω1 P Ω1 : ξpηp4qpnqq ¤ r

?
nsu, A4

2 :� tω1 P Ω : ω1 P lim infnÑ8A4
2pnqu.

We will show that P1pA1
2q � 1 by proving P1ppA1

2qcq � 0. For any t P R
we have

P1pξpη1pnqq ¥
P?
n
Tqq ¤ P1peptξpη1pnqq ¥ etr

?
nsq ¤ Eretξpη1pnqqs

etr
?
ns

�: p1q.

Let t :� 1a
pr?nsq . As Ere

tξpη1pnqqs � ec
1pet�1q we get for n large:

p1q ¤ c2 � e�
?

r
?
ns.

Since
8̧

i�1

P1pξpη1pnqq ¤
8̧

i�1

e�
?

r
?
ns ¤

8̧

i�1

e�
4
?
n   8,
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2.1. WEAK CONVERGENCE TO BROWNIAN MOTION

Borel-Cantelli lemma gives P1ppA1
2qcq � 0. Analogously we get P1ppA2

2qcq �
P1ppA3

2qcq � P1ppA4
2qcq � 0. Hence, P1pA2q � P1pA1

2q � P1pA3
2q � P1pA4

2q �
1.
Then for A :� A1 X A2 X A1

2 X A3
2 X A4

2 and

B :� tω2 P Ω2 : limnÑ8
1

n

°n
i�1 Yipω2q   8u it holds that PpA � Bq �

P1pAqP2pBq � 1.

For ω1 P A and ω2 P B we have

qnpra, bsqpω1, ω2q �

� 1

n

» nb

na

8̧

i��8
Yipω2q hpy � xipω1qq � c dy

� 1

n

8̧

i��8
Yipω2q

» nb

na

hpy � xipω1qq dy � 1

n

» nb

na

c dy

� 1

n

¸
i:xiPrna,nbs

Yipω2q
» nb

na

hpy � xipω1qq dy

� 1

n

¸
i:xiPrna�1,nas

Yipω2q
» na�1

na

hpy � λxipω1qq dy
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

�:c1pnq

� 1

n

¸
i:xiPrnb,nb�1s

Yipω2q
» nb

nb�1

hpy � xipω1qq dy
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

�:c2pnq

� 1

n

¸
i:xiPrna,na�1s

Yipω2q
» na

xi�1

hpy � xipω1qq dy
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

�:s1pnq

� 1

n

¸
i:xiPrnb�1,nbs

Yipω2q
» xi�1

nb

hpy � xipω1qq dy
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

�:s2pnq

�cpb� aq
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2.1. WEAK CONVERGENCE TO BROWNIAN MOTION

� 1

n

¸
i:xiPrna,nbs

Yipω2q
» 1

�1

hpyq dy
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

�:ch

�cpb� aq � c1pnq � c2pnq � s1pnq � s2pnq

� ch � 1

n

ξpηpnqqpω1q¸
i�1

Yipω2q
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p�q

�cpb� aq � c1pnq � c2pnq � s1pnq � s2pnq.

We have pb�aq � limnÑ8
ξpηpnqqpω1q

n
. Thus, for all ε ¡ 0 there exits n0 : @n ¥

n0 : ξpηpnqqpω1q ¤ rnpb� aqs� nε. Hence,

p�q ¤ ch � 1

n

rnpb�aqs�rnεs¸
i�1

Yipω2q � ch � 1

n

nrpb�aqs¸
i�1

Yipω2q � ch � 1

n

rnpb�aqs�rnεs¸
i�rnpb�aqs�1

Yipω2q

¤ ch � pb� aq � 1

rnpb� aqs� 1

rnpb�aqs¸
i�1

Yipω2q � chε � 1

rnεs� 1

rnpb�aqs�rnεs¸
i�rnpb�aqs�1

Yipω2q.

By the strong law of large numbers this converges to

ch � pb� aq � ErY1s � cε � ErY1s

for n drawing closer to in�nity. Since ε was arbitrary, we obtain

lim sup
nÑ8

p�q ¤ ch � ErY1s.

Analogously we get the lower bound.
Finally we need to show that c1pnq and c2pnq as well as s1pnq and s2pnq
converge to 0 for nÑ 8: First it holds that DN P N : @n ¥ N :

|ti : xi P rna� 1

pb� aq ,
na

pb� aqsu ¤
P?
n
T
.

h is continuous and has compact support and consequently is bounded. Thus,
@n : D C2 ¡ 0 » na�1

na

hpy � xipω1qq dy ¤ C2.
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Consequently,

lim
nÑ8

c1pnq ¤ lim
nÑ8

� 1

r
?
ns

1

r
?
ns

r
?
nş

i�1

Yipω2qC2�
� lim

nÑ8
� 1

r
?
ns

�
C2 lim

nÑ8
� 1

r
?
ns

r
?
nş

i�1

Yipω2q
��0 � C2ErY1s � 0,

again by the strong law of large numbers. c2pnq Ñ 0, s1pnq Ñ 0 and s2pnq Ñ
0 follow equally.
As a result we get ρ 1

n
pra, bsq nÑ8ÝÝÝÑ ch � pb� aqErY1s � cpb� aq P� a.s.

Hence, by Lemma 1 and Lemma 2 we get (2.4).

2.2 Weak convergence to FIN-di�usion

Provided that Yi have �nite expectation, we proved convergence of the rescaled
di�usion to the Brownian motion. It remains to show convergence for the
second case, when Yi have unbounded expectation:

dXt � pfωpXtqq�1{2dWt, X0 � x, with

fωpxq � pc 8̧

i��8
hpx� xipω1qqYipω2q � c,

where

pc :�
�» 1

�1

hpxq dx

�1

.

Suppose (2.3) holds: There exists a slowly varying function L, such that

P2rYi ¥ us � u�αLpuq, with α P p0, 1q.

Under this assumption, we will prove very similar to [7] that the speed mea-
sures, which are de�ned in the proof of the theorem below, converge to a
measure ρ. This implies that the rescaled process converges to the FIN-
di�usion, which is de�ned as follows:
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De�nition 8. Let pxi, viqiPZ be an inhomogeneous Poisson point process on
R�p0,8q with density measure dxαv�1�αdv and let ρ :� °

i viδxi be a discrete
measure on the Borel-σ-algebra BpRq. Let

φptq :�
»
lpt, xq ρpdxq and ψptq :� inftu : φpuq ¡ tu

and let xW ptq be a Brownian motion, we denote Mptq :� xW pψptqq and call
Mptq FIN-di�usion.
Theorem 11. Let ω P Ω1 � Ω2. Let Xωptq be a solution to (2.1), where
pYiqiPZ satisfy (2.3). Let

cε :� pinfrt ¥ 0 : PpY1 ¡ tq ¤ εsq�1. (2.11)

Let Mt be the FIN-di�usion. Then there exist processes X̄t and M̄t, de�ned
on the same probability space pΩ1 � Ω2,A1 bA2,Pq such that for all t ¡ 0:

X̄t
d� Xt, M̄t

d�Mt

and as ε converges to zero:

εX̄ppcεεq�1tq wÝÑ M̄ptq P̄� a.s.

Proof. According to Theorem 5 there exists a Brownian motion xWt such that
Xωptq � xW pψpµωqptqq, where ψpµωq is de�ned as above in (1.31) with

µωpdxq � fωpxqdx,
the speed measure of the di�usion Xωptq.

LetxW ε
t :� εxW pε�2tq, which is a Brownian motion too according to Lévy's

Theorem.
Let ε ¡ 0, we introduce the scaled speed measure

µεωpdxq :� cε
ε
fωpε�1xqdx � cε

ε
pc1

¸
iPZ
hpε�1x� xipω1qqYipωqq � c dx.

We have to show that for every ε ¡ 0 there exist i.i.d. random variables
pY ε

i qiPZ de�ned on a probability space pΩ1 � Ω2,A1 bA2,Pq such that

Y ε
i

d� Y1,
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2.2. WEAK CONVERGENCE TO FIN-DIFFUSION

and such that for couplings µε of the speed measures µε de�ned by

µεωpdxq :� cε
ε

�
bεpε�1xq� dx, (2.12)

where

bεpxq :� pc¸
iPZ
hpx� xipω1qqY ε

i pωq � c

there exists a coupling ρ of the speed measure ρ such that all couplings are
de�ned on an equal probability space pΩ1 � Ω2,A1 bA2,Pq and such that

µεpdxq vÝÑ ρpdxq P� a.s. (2.13)

holds. Provided (2.13), then for M̄ptq :� xW pρqptq d�Mptq Theorem 9 gives

xW εpµεqptq wÑ M̄ptq P� a.s.

Let φ̄ωptq :� ³
lpt, xqµωpdxq, where µ :� µ1 and ψ̄ωptq :� inftu : φωpuq ¡ tu

and let

φ̄εωptq :�
»
lεpt, xqµεωpdxq �

»
εlpε�2t, ε�1xqcε

ε

�
bεpε�1xq� dx �

�
»
lpε�2t, ε�1xqcε

�
bεpε�1xq� dx.

By using substitution [y � ε�1xñ ε�1dy � dx] we obtain

φ̄εωptq �
»
εlpε�2t, yqcε pbεpyqq dy � cεεφ̄ωpε�2tq.

Therefore,

ψ̄εωptq � ε2ψ̄ω

�
t

cεε



.

Now let X̄ptq :� xW εpµptqq d� Xptq, then

εX̄ωptpcεεq�1q � εxW pψ̄ωptpcεεq�1qq � εxW pε�2ψ̄εωptqq �
� xW εpψ̄εωptqqq.
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It remains to prove (2.13):

Vague convergence of speed measures to ρ

In order to show the almost sure vague convergence of the rescaled ran-
dom speed measures µε to ρ, we need to construct a coupling of µε as well
as ρ, such that both µε and ρ are de�ned on the same probability space.
We introduce a Levy process V pxq, x P R with V p0q � 0 that has station-
ary and independent increments with càdlàg paths de�ned on pΩ2,A 2,P2q
through its characteristic functions:

EreirpV px�x0q�V px0qqs � exp

�
xα

» 8

0

peirω � 1qω�1�α dω
�
.

Let ρ be the Lebesgue-Stieltjes measure on R associated to V , i.e. ρppa, bsq �
V pbq � V paq for all a, b P R, a   b. We state without proof:

Lemma 3. 1. ρpdxq � °
j vjδxjpdxq, where pxj, vjq is an inhomogeneous

Poisson point process with density dxαv�1�αdv.

2. V pεq d� ε1{αV p1q
3. limyÑ8 yαPpV1 ¡ yq � 1

Now we de�ne the function G : r0,8q Ñ r0,8q such that

PpV p1q ¡ Gpxqq � PpY1 ¡ xq. (2.14)

The function is well-de�ned since V p1q has continuous distribution, it is
non-decreasing and right-continuous. Hence, it has non-decreasing right-
continuous generalized inverse G�1.

Let gε : r0,8q Ñ r0,8q be de�ned as

gε :� cεG
�1pε�1{αxq @ x ¥ 0. (2.15)

Lemma 4. Let

τ εi �
1

cε
gεpV pεpi� 1qq � V pεiqq, (2.16)

then for any ε ¡ 0: τ εi are i.i.d. with the same distribution as Y1.
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Proof. We have to show that for any ε ¡ 0, t P R and for all i P Z:

Ppτ εi ¤ tq � PpY1 ¤ tq (2.17)

As the increments of V are independent, so are τ εi . Moreover, we get from
the stationarity of the increments that

τ εi �
1

cε
gεpV pεpi� 1qq � V pεiqq d� 1

cε
gεpV pεqq � τ ε0 .

Since g�1
ε p�q � ε1{αGp�{cεq it holds that

Ppτ εi ¡ tq � Ppτ ε0 ¡ tq � PpgεpVεq ¡ cεtq � PpVε ¡ g�1
ε pcεtqq � (2.18)

� PpV pεq ¡ ε1{αGptqq @i P Z. (2.19)

According to (1) of Lemma 3: V pεq d� ε1{αV p1q. Hence,
PpV pεq ¡ ε1{αGptqq � PpV p1q ¡ Gptqq � PpY1 ¡ tq @ε ¡ 0, t P R,

completing the proof.

Construction of the coupling:

Let pΩ1 � Ω2,A1 b A2,Pq, where P :� P1 b P2 and for each ω1 P Ω1 and
a   b, with a, b P R let

ρω1
ppa, bsq :� V pbq � V paq. (2.20)

Moreover, if Y ε
i :� τ εi , then

µεωpdxq :� cε
ε

�
c1
¸
iPZ
hpε�1x� xipω1qqτ εi pωq � c

�
dx (2.21)

coincides with (2.12) and according to Lemma 3 and Lemma 4 the following
equations hold:

ρ
d� ρ̄ µε

d� µε.

Consequently, ρ̄ and µε are de�ned on the same probability space and it is
possible to show (2.13).

In order to do this, we have to prove some properties:
The subsequent lemmas (Lemmas 5-10) as well as their proofs are taken from
[7] (see page 598 �)
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Lemma 5. For any �xed y ¡ 0, gεpyq Ñ y as εÑ 0.

Lemma 6. For any δ1 ¡ 0, there exist constants C 1 and C2 in p0,8q such
that

gεpxq ¤ C 1x1�δ
1

for ε1{α ¤ x ¤ 1 and ε ¤ C2. (2.22)

In order to proof these two lemmas we use the following four subsidiary
lemmas, which we proof later.

Lemma 7.
1

ε
PpY1 ¡ 1

cε
q Ñ 1 as εÑ 0.

Lemma 8. For y ¡ 0 :
1

ε
PpY1 ¡ y

cε
q Ñ 1

yα
as εÑ 0.

Lemma 9. For any λ ¡ 0:
cε
cλε

Ñ λ�1{α as εÑ 0 and thus cε � ε1{αL̃pε�1q,
where L̃ is a positive slowly varying function at in�nity.

Lemma 10. There exists λ ¡ 0 su�ciently small such that G�1pyq ¤ 1

cλ{yα

for y ¥ 1 or, equivalently gεpxq ¤ cε
cλε{xα

for x ¥ ε1{α.

Proof of Lemma 5. Let g�1
ε be the right-continuous generalized inverse of gε.

To prove gεpyq Ñ y, it su�ces to prove that g�1
ε pyq Ñ y. Now G�1pV1q d� Y1,

so gεpε1{αV1q � cεG
�1pε�1{αε1{αV1q d� cεY1 and thus PpY1 ¡ y{cεq equals

PpcεY1 ¡ yq � Ppgεpε1{αV1q ¡ yq � Ppε1{αV1 ¡ g�1
ε pyqq � PpV1 ¡ ε�1{αg�1

ε pyqq.
(2.23)

By Lemma 3.p3.q:
ε�1PpV1 ¡ ε�1{αyq Ñ 1

yα
(2.24)

as εÑ 0. By (2.23) and Lemma 8:

ε�1PpV1 ¡ ε�1{αg�1
ε pyqq � ε�1PpY1 ¡ y

cε
q Ñ 1

yα
(2.25)

as ε Ñ 0. This implies that ε�1PpV1 ¡ ε�1{αg�1
ε pyqq{ε�1PpV1 ¡ ε�1{αyq Ñ

1 as ε Ñ 0 and this plus (2.24) implies that lim supεÑ0 g
�1
ε pyq ¤ y and

lim infεÑ0 g
�1
ε pyq ¥ y.
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Since indirect assume: lim supεÑ0 g
�1
ε pyq � c ¡ y ñ Let δ ¡ 0 with c� δ ¡ y

for ε ¡ 0 : Dε0 ¤ ε : g�1
ε ¥ c� δ

Therefore:

ε�1
0 PpV1 ¡ ε

�1{α
0 g�1

ε pyqq ¤ ε�1
0 PpV1 ¡ ε

�1{α
0 pc� δq

As this inequality holds for any ε ¡ 0, we get:

lim sup
εÑ0

ε�1PpV1 ¡ ε�1{αg�1
ε pyqq ¤ lim sup

εÑ0
pε�1

0 PpV1 ¡ ε
�1{α
0 pc�δqq ¤ 1

pc� δqα
(2.26)

ñ 1 � lim supεÑ0 ε
�1PpV1 ¡ ε�1{αg�1

ε pyqq
lim supεÑ0 ε

�1PpV1 ¡ ε�1{αyq ¤ 1{pc� δqα
1{yα   1,

which is a contradiction. Analogously we get lim infεÑ0 g
�1
ε pyq ¥ y, which

completes the proof of Lemma 5.

Proof of Lemma 6. By Lemmas 9 and 10 for x ¥ ε1{α :

gεpxq ¤ λ�1{αx
L̃pεq�1

L̃ppxε{λqε�1q (2.27)

for λ ¡ 0 small enough; the value of λ will be chosen later. We now use a re-

sult about slowly varying functions, stating that L̃pxq � apxq expp³x
1

4pyq
y

dyq,
where apxq Ñ c P p0,8q as x Ñ 8 and 4pyq Ñ 0 as y Ñ 8. The quotient
in the right-hand side of (2.27) then becomes

apε�1q
appxα{λqε�1q exp

#» ε�1

1

4pyq
y

dy

+
exp

#
�
» pxα{λqε�1

1

4pyq
y

dy

+
� (2.28)

� apε�1q
appxα{λqε�1q exp

#» ε�1

pxα{λqε�1

4pyq
y

dy

+
. (2.29)

If ε ¤ λ such that pxα{λqε�1 ¥ 1{λ ¥ ε�1, then the absolute value of the
latter integral is bounded above by

δ

�����
» ε�1

pxα{λqε�1

1

y
dy

����� ¤ δ| logpxα{λ|, (2.30)
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where δ � δpλq � supt|4pyq|, y ¡ 1{λu and thus the exponential in (2.29) is
bounded above (for λ ¤ 1, x ¤ 1q by

λ�δx�αδ. (2.31)

Thus, given δ1 ¡ 0, we choose λ P p0, 1q such that αδpλq ¤ δ1 and such that
apyq P rc{2, 2cs for y ¥ λ�1. The lemma now follows from (2.27) - (2.31) with
C 1 � 4λ�p1�δ

1q{α and C2 � λ.

To complete the proof of our two main lemmas, it remains to prove the
subsidiary Lemmas 7, 8, 9 and 10.

Proof of Lemma 7. By the de�nition of 2.11 of cε, PpY1 ¡ c�1
ε q ¤ ε and

PpY1 ¡ xq ¡ ε for all x   c�1
ε . Thus, if the statement of the lemma is not

true, then there must exist δ P p0, 1q and a sequence pεiq with εi ¡ 0 for all
i and εi Ñ 0 as iÑ 8 such that PpY1 ¡ δ1c�1

εi q ¡ εi and so

PpY1 ¡ δ1c�1
εi q

PpY1 ¡ c�1
εi q

¥ δ�1 (2.32)

for all i. Since c�1
εi Ñ 8 and PpY1 ¡ �q is regularly varying at in�nity (with

exponent �α), it follows that for any λ ¡ 0:

lim
tÑ8

PpY1 ¡ λt

PpY1 ¡ tq � λ�α, (2.33)

which contradicts (2.32) since pδ1qα ¡ δ.

Proof of Lemma 8. This is a consequence of Lemma 7, the fact that c�1
ε Ñ 8

as εÑ 0, and (2.2), from which it follows that

PpY1 ¡ y{cε
PpY1 ¡ 1{cεq

Ñ 1

yα
. (2.34)

Proof of Lemma 9. By Lemma 7: pλεq�1PpY1 ¡ 1{cλεq Ñ 1 or equivalently
ε�1PpY1 ¡ 1{cλεq Ñ λ as εÑ 0 while, by Lemma 8, ε�1PpY1 ¡ y{cεq Ñ 1{yα.
Now by taking yα � λ�1 we get, that cελ1{α{cλε Ñ 1, (this can be proved
analogously to the last part of the proof of Lemma 5), which is equivalent to
cε{cλε Ñ λ�1{α as εÑ 0.
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Proof of Lemma 10. We need to show that G�1pyq ¤ z,. It is enough to
show that Gpzq ¡ y. So we want to prove that Gp1{cλ{yαq ¡ y for y ¥ 1 and
some λ ¡ 0. By the de�nition (2.14) of G, Gpxq ¡ y would be a consequence
of PpV1 ¡ yq ¡ PpY1 ¡ xq, where we take x � 1{cλ{yα . Now there exists
K ¡ 0 such that PpV1 ¡ yq ¡ K{yα for y ¥ 1 [by Lemma 3.p3.q], so it
su�ces to show that PpY1 ¡ 1{cλ{yα ¤ K{yα for y ¥ 1 and some λ ¡ 0; or,
equivalently, taking ε � λ{yα, it su�ces to show that for some λ ¡ 0 and all
ε ¤ λ,PpY1 ¡ 1{cεq ¤ Kε{λ, or PpY1 ¡ 1{cεq{ε ¤ Kλ. By Lemma 7, we may
choose λ small enough so that for ε ¤ λ,PpY1 ¡ 1{cεq{ε ¤ 2 and also small
enough that K{λ ¥ 2.

Lemma 11. Let for all ε ¡ 0 fε be a non-decreasing right-continuous func-
tion with limεÑ0 fεpxq � x @x P R. Let y : R Ñ R be a non-decreasing
function that is right-continuous in 0 with limεÑ0 ypεq � z. Then

lim
εÑ0

fεpypεqq � z.

Proof. Let δ ¡ 0. Since fε is right-continuous and non-decreasing it holds
that

Dµ1 ¡ 0 : @x   y P R : 0 ¤ x� z   y � z   µ1 : 0 ¤ fεpyq � fεpxq
¤ fεpyq � fεpzq   δ

3
.

y is right-continuous in 0. Thus,

η : @ε ¤ η : 0 ¤ ypηq � ypεq   µ1.

Since limεÑ0 ypεq � z, there exists

γ ¡ 0 : @ε ¤ γ : ypεq � z   δ

3
.

Let ε1 :� minpη, γq. Due to limεÑ0 fεpxq � x, there exits

ε2 ¡ 0 : @ε ¤ ε2 : 0 ¤ fεpypε1qq � ypε1q   δ

3
.

For ε ¤ minpε1, ε2q we have
|fεpypεqq � z| � |fεpypεqq � fεpypε1qq � fεpypε1qq � ypε1q � ypε1q � z|

¤ |fεpypεqq � fεpypε1qq| � |fεpypε1qq � ypε1q| � |ypε1q � z| ¤ δ.
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Having collected all required properties, we continue with the proof of
(2.13). We have to show that for every f P CcpRq:»

R
f dµpεq Ñ

»
R
f dρ P̄� a.s. (2.35)

Before we get into the proof, we illustrate its main concept: Examining the
summands of the sum within the speed measure of µpεq we notice that the
process V only has jumps in yi and is constant elsewhere. Applying the above
lemmas we will see that for all indices i of the sum within the speed measure
µpεq, for which the process Vεpi�1q�Vεpiq does not have a jump, the summand
converges to zero as ε draws closer to zero. Consequently, taking the sum
over the jumps of V yields the same sum. Moreover, the number of jumps
of V larger some δ ¡ 0 is �nite within a bounded interval, which enables us
to exchange limit and sum for those indices. Taking δ to zero ensures that
eventually all jumps are covered. In detail:

Proof of (2.13). We verify (2.35): Let f P CcpRq with I :� supppfq and
w.l.o.g. I � ra, bs, where a   b P R. Then»

R
f dµpεq �

»
R
fpxq � cε

ε
�
�pc 8̧

i��8
hpε�1xq � xiq 1

cε
gεpVεpi�1q � Vεiq � c

�
dx

� pc »
R

1

ε
fpxq �

� 8̧

i��8
hpε�1v � xiqgεpVεpi�1q � Vεiq � c

�
dx �: p1q.

Let pyi, viqiPN be the jump process of V . For δ ¡ 0 we de�ne Jδ :� tyi : vi ¡
δu and Jδε � ti P Z : i P I, Vεpi�1q � Vεi ¡ δu.
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Hence,

p1q � pc »
R

1

ε
fpxq �

��¸
iPJδε

hpε�1x� xiqgεpVεpi�1q � Vεiq
�
 dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
:�Kδ

1 pεq

� pc »
R

1

ε
fpxq �

�� ¸
iPJε

ε1{α
zJεδ
hpε�1x� xiqgεpVεpi�1q � Vεiq

�
 dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
:�Kδ

2 pεq

� pc »
R

1

ε
fpxq �

�� ¸
iPJε0 zJεε1{α

hpε�1x� xiqgεpVεpi�1q � Vεiq
�
 dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
:�K3pεq

� pc »
R

cε
ε
fpxq � c dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
:�K4pεq

.

The process V only has �nitely many jumps larger than δ within I. Let
|Jδ X I| �: n   8.

For any ε ¡ 0 and y P Jδ we have: ε
X
y
ε

\ ¤ y ¤ εpXy
ε

\ � 1q ñ for ε

small: t
Yy
ε

]
|y P Jδ ^

Yy
ε

]
P Iu � Jδε . For ε small there is at most only

one jump in each
�
ε
Yy
ε

]
, εp
Yy
ε

]
� 1q

�
. So Jδε � t

Yy
ε

]
|y P Jδ ^

Yy
ε

]
P Iu and

|Jδε X I| � |Jδ X I|   8. We consider the �rst sum and compute its limit for
εÑ 0:
W.l.o.g. we assume that f is a nonnegative function. All functions within
the integral converge uniformly and we can move the limit inside:

37



2.2. WEAK CONVERGENCE TO FIN-DIFFUSION

lim
εÑ0

Kδ
1pεq � lim

εÑ0
pc »

R

1

ε
fpxq � gεpVεpi�1q � Vεiq

��¸
iPJδε

h
�x� εxi

ε

	�
 dx

� lim
εÑ0

pc¸
iPJδε

gεpVεpi�1q � Vεiq
»
I

1

ε
fpxq � h

�x� εxi
ε

	
dx

� lim
εÑ0

pc¸
iPJδε

gεpVεpi�1q � Vεiq
» εxi�ε

εxi�ε

1

ε
fpxq � h

�x� εxi
ε

	
dx.

Applying Substitution
�
z � x� εxi

ε
ñ ε�1dx � dz

�
gives

lim
εÑ0

Kδ
1pεq � lim

εÑ0
pc¸
iPJδε

gεpVεpi�1q � Vεiq
» 1

�1

fpεz � εxiq � hpzq dz.

Let ij p1 ¤ j ¤ nq be the indices of the jumps larger δ. Let zj :� yij . It
follows that

lim
εÑ0

Kδ
1pεq � pc � ņ

j�1

lim
εÑ0

gεpVεpt zjε u�1q � V
εt
zj
ε u
q

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�:Ajpεq

lim
εÑ0

» 1

�1

fpεz � εxt
zj
ε u
qhpzq dz

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�:Bjpεq

.

Since V is increasing, we get: V
εpt zjε u�1q�Vεt zjε u ¥ limεÑ0 Vεpt zjε u�1q�Vεt zjε u �

Vyij� � Vyij� � vij . Let yjpεq :� V
εpt zjε u�1q � V

εt
zj
ε u
. Now according to

Lemma 5: limεÑ0 gεpxq � x. Moreover, gε is right-continuous and yjpεq is
non decreasing and we get from Lemma 11:

Ajpεq � lim
εÑ0

gεpVεpt zjε u�1q � V
εt
zj
ε u
q � lim

εÑ0
gεpyjpεqq � vij .

As pxiqiPN is a Poisson Point Process, the waiting times ei between two con-
secutive points xi and xi�1 are i.i.d. with exponential distribution. Therefore
according to the strong law of large numbers we get that

lim
εÑ0

εxt
zj
ε u
� lim

εÑ0

ε

zj
zjxt

zj
ε u
¤ zj lim

εÑ0

1X zj
ε

\ t zjε u̧
i�0

ej � zjEre1s � zj

38



2.2. WEAK CONVERGENCE TO FIN-DIFFUSION

and

lim
εÑ0

εxt
zj
ε u
� lim

εÑ0

ε

zj
zjxt

zj
ε u

e1 bounded¥ zj lim
εÑ0

1X zj
ε

\� 1

t
zj
ε u�1¸
i�0

ej � zj lim
εÑ0

cX zj
ε

\� 1
�

� zjEre1s � zj.

Hence, we have εxt zjε u
Ñ zj � yij .

Now we get for Bjpεq by dominated convergence that

Bjpεq � lim
εÑ0

» 1

�1

fpεz � εxt
zj
ε u
qhpzq dz �

» 1

�1

lim
εÑ0

fpεz � εxt
zj
ε u
qhpzq dz

�
» 1

�1

fpyijqhpzq dz � fpyijq
» 1

�1

hpzq dz
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

�:ĉ�1

.

As a result we obtain that

lim
εÑ0

Kδ
1pεq � pc � ņ

j�1

lim
εÑ0

gεpVεpt zjε u�1q � V
εt
zj
ε u
q lim
εÑ0

» 1

�1

fpεz � εxt
zj
ε u
qhpzq dz

� pc � ņ

j�1

vijfpyijqppcq�1 �
ņ

j�1

vijfpyijq.

We continue with the second sum. For ε small the support of fpεspε�1vqq is
subset of the compact interval I 1. Thus,

Kδ
2pεq � pc »

R

1

ε
fpxq �

�� ¸
iPJε

ε1{α
zJεδ
hpε�1x� xiqgεpVεpi�1q � Vεiq

�
 dx �

¤ pc »
I

¸
iPJε

ε1{α
zJεδ
gεpVεpi�1q � Vεiqfpxqh

�x� εxi
ε

	1

ε
dx.

Since all functions are positive applying Fubini's Theorem yields that this is

¤ pc ¸
iPJε

ε1{α
zJεδ
gεpVεpi�1q � Vεiq

»
I

fpxqh
�x� εxi

ε

	1

ε
dx.
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Using substitution
�
z � x� εxi

ε
ñ ε�1dx � dz

�
gives that the above term is

¤ pc ¸
iPJε

ε1{α
zJεδ
gεpVεpi�1q � Vεiq

» 1

�1

fpεz � εxiqhpzq dz,

which is

¤ C1 �
¸

iPJε
ε1{α

zJεδ
gεpVεpi�1q � Vεiq.

By Lemma 6 we see that for δ1 such that δ1 � α ¤ 1, this is

¤ C �
¸

iPJε
ε1{α

zJεδ
pVεpi�1q � Vεiq1�δ1 ¤

¤ C �
¸

j:vj¤δ with yjPI
v1�δ

1

j �: Hδ.

The density of the inhomogeneous Poisson Point Process pyj, vjq is dxαv�1�αdv.
Hence:

EpHδq ¤ α|I|
» δ

0

ω1�δ1ω�1�αdω Ñ 0 as δ Ñ 0.

Hδ is decreasing and positive. Therefore the limit limδÑ0Hδ exists P̄-a.s.
Now according to the dominated convergence theorem limδÑ0Hδ � 0 P̄-a.s.

For next sum we notice that as gε is non-decreasing and by using Lemma 10
we get gεpxq ¤ gεpε1{αq ¤ Ccε for all x ¤ ε1{α. Thus, after completing equal
steps as for the second sum we see that

K3pεq � pc »
R

1

ε
fpxqq �

�� ¸
iPJε0 zJεε1{α

hpε�1x� xiqgεpVεpi�1q � Vεiq
�
 dx

is

¤ C �
¸

iPJε0 zJεε1{α
gεpVεpi�1q � Vεiq ¤ C 1Ccε �

¸
iPJε0 zJεε1{α

1 ¤ C 1Ccε �
¸

iPε�1IXZ

1 ¤

40



2.3. WEAK CONVERGENCE TO FIN-DIFFUSION WITH DRIFT

¤ C 1Ccε � |I| � ε�1 Ñ 0 as εÑ 0.

This convergence holds, because there exists k ¡ 0 with �k � 1

α
¡ 1 such

that cε ¤ Cε�k�1{α(Lemma 9).

We study the last term:

K4pεq � pc »
R

cε
ε
fpxq � c dx ¤ C � cε

ε
Ñ 0 as εÑ 0.

The convergence again follows from the fact that there exists k ¡ 0 with

�k � 1

α
¡ 1 such that cε ¤ Cε�k�1{α(Lemma 9).

As a result we obtain

lim
εÑ0

»
R
f dp̃pεq � lim

εÑ0
lim
δÑ0

�
Kδ

1pεq �Kδ
2pεq �K3pεq �K4pεq

�

� lim
δÑ0

¸
j:vj¥δ

fpxjqvj �
»
R
fpxqδyipdxq �

»
R
f dρ̄.

2.3 Weak convergence to FIN-di�usion with drift

The second SDE we are going to consider has nonzero drift. Thus, the so-
lution of this SDE has a scale function, which doesn't equal the identity
function.
The speed measure of a solution to this SDE is very similar to the speed mea-
sure of a solution to the �rst SDE. The main di�erence being that a scale
function is involved. This scale function, however, converges to the identity
function.
Hence, provided the same assumptions as in section 2, we can proceed anal-
ogously to section 2, when it comes to determining the scaling limit of this
di�usion.
Thus, proceeding in the same way as in section 2, we introduce suitably
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rescaled speed measures, which de�ne our di�usion processes with equal dis-
tributions as the rescaled processes of the solution to the SDE, and prove
that these speed measures converge to ρ. Applying Stone's theorem again
yields that its scaling limit is the FIN-di�usion.

Let pΩ1,A1,P1q and pΩ2,A2,P2q be probability spaces. Let pΩ1 � Ω2,A1 b
A2,Pq, with P :� P1 b P2.

Let ξ be a Poisson Point Process with intensity 1, de�ned on pΩ1,A1,P1q,
so ξpra, bsq has Poisson distribution with parameter pb � aq. For ω1 P Ω1 let
pxipω1qqiPZ be the points of the Poisson point process taken for this ω1.

Let pYiqiPZ ¥ 0 be a sequence of i.i.d. random variables on pΩ2,A2,P2q,
which satisfy the following condition: There exists a slowly varying function
L, such that

PrYi ¥ us � u�αLpuq
holds.
Let h P C8pRq with supphq � r�1, 1s and let c ¡ 0. Moreover, let c1 be a
constant, which will be de�ned later in the proof of Lemma 12.

For each ω P Ω1 � Ω2, we introduce the function:

Vωpxq � 1

2
log

�
c1

8̧

i��8
hpx� xipω1qqYipω2q � c

	
We consider the following SDE

dXt � V 1
ωpXtq dt� dWt. (2.36)

Theorem 12. Let for each ω P Ω1 � Ω2 Xωptq be a solution to (2.36). Let
Mptq be the FIN-di�usion. Then there exist processes X̄ptq and M̄ptq, de�ned
on the same probability space, such that

X̄ptq d� Xptq M̄ptq d�Mptq
and for εÑ 0

εX̄

�
tC

cεε2



wÝÑ M̄ptq P̄� a.s., (2.37)
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where
cε :� pinfrt ¥ 0 : PpY1 ¡ tq ¤ εsq�1 (2.38)

and C is a constant which will be introduced in the proof.

Before we prove this theorem we have to verify some properties:

Lemma 12. Let Xωptq be a solution to (2.36). Let sωpxq be a scale function
to Xωptq, then for |x| Ñ 8:

sωpxq
x

Ñ 1 P� a.s.

Proof. We show convergence for x Ñ 8. Convergence for x Ñ �8 follows
analogously. Let x P N. We know from (1.20) that

s1ωpxq � exp
�
�
» x

0

2V 1
ωpuqdu� c̃

	
� exp

�
� 2Vωpxq � c1

	
� exp

�
log

�
c1

8̧

i��8
hpx� xipω1qqYipω2q � c

	�1

� c1
	

�
�
c1

8̧

i��8
hpx� xipω1qqYipω2q � c

	�1

� c

Consequently, we choose our scale function as follows:

sωpxq : �
» x

0

s1ωpyqdy �
x̧

j�1

» j

j�1

s1ωpyqdy �

� pc1q�1
x̧

j�1

» j

j�1

� 8̧

i��8
hpy � xipω1qqYipω2q � c

	�1

� c dy
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

:�Zjpω2q

This presentation of the scale function will allow us to apply the strong law
of large numbers. For each ω1 P Ω1, we have Zj is independent from Zj�k for
k ¥ 3.
We proceed with the crucial de�nition of the still not de�ned constant c1 by
setting c1 :� ErZ1s. Now

sωpxq
x

� pc1q�1 1

x

x̧

j�1

Zjpω2q � pc1q�1
2̧

k�0

1

x

¸
1¤j¤x

with jmod3�k

Zjpω2q.
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LetD0 :� tj|0   3j ¤ xu, D1 :� tj|0   3j�1 ¤ xu, D2 :� tj|0   3j�2 ¤ xu

We have
Yx

3

]
� 1 ¤ |Di| ¤

Yx
3

]
� 1 for i P t0, 1, 2u and

1Yx
3

]
� 1

¸
jPDi

Zjpω2q ¤ 1
x

3

¸
1¤j¤x

with jmod3�i

Zjpω2q ¤ 1Yx
3

]
� 1

¸
jPDi

Zjpω2q

for i P t0, 1, 2u.
Since Zj are of �nite expectation, according to the strong law of large num-
bers we get

1Yx
3

]
� 1

¸
jPDi

Zi
xÑ8ÝÝÝÑ ErZ1s P2 � a.s.

and
1Yx

3

]
� 1

¸
jPDi

Zi
xÑ8ÝÝÝÑ ErZ1s P2 � a.s.

for i P t0, 1, 2u. As a result we get for 0 ¤ i ¤ 2::

1
x

3

¸
1¤j¤x

with jmod3�i

Zj
xÑ8ÝÝÝÑ ErZ1s P2 � a.s.

Finally, by de�nition of c1

spxq
x

� pc1q�1
2̧

k�0

1

x

¸
1¤j¤x

with j mod 3�k

Zj
xÑ8ÝÝÝÑpc1q�1

�
1

3
ErZ1s � 1

3
ErZ1s � 1

3
ErZ1s



� 1 P2 � a.s.

For x P R�, by using the monotonicity of the scale function we obtain

spxq
x

¤ sprxsq
x

� pc1q�1 1

x

rxş

j�1

Zj � rxs

x
pc1q�1 1

rxs

rxş

j�1

Zj
xÑ8ÝÝÝÑ 1 P2 � a.s.

and

spxq
x

¥ sptxuq
x

� pc1q�1 1

x

txu̧

j�1

Zj � txu

x
pc1q�1 1

txu

txu̧

j�1

Zj
xÑ8ÝÝÝÑ 1 P2 � a.s.
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Lemma 13. Let pmεqp0 ε 1q be positive �nite measures and

φεt :�
»
lpt, xqmεpdxq, ψεt :� inftu : φu ¡ tu. (2.39)

If xW εpψεptqq wÝÑMptq P� a.s. and
sωpxq
x

Ñ 1 P� a.s.,

then

εs�1
ω pε�1xW εpψεptqqq wÝÑMptq P� a.s.

Proof. We will omit ω in the following proof.(Assume ω P Ω1 � Ω2 such
that both convergence conditions hold.) The set txW εpψεptqq : 0   ε  
1, s P Ru is sequentially weakly compact, as for any sequence within this set
one can always �nd a weakly converging subsequence. Hence, according to
Prokhorov's theorem, it is tight. Now

εs�1pε�1xW εpψεptqqq �xW εpψρptqq �
� εs�1pε�1xW εpψεptqqq �xW εpψεptqq �xW εpψεptqq �xW εpψρptqq
� 11t|xW εpψεptqq|¤Mupεs�1pε�1xW εpψεptqqq �xW εpψεptqqq
� 11t|xW εpψεptqq|¡Mupεs�1pε�1xW εpψεptqqq �xW εpψεptqqq
�xW εpψεptqq �xW εpψρptqq. (2.40)

s�1 is an increasing function. It follows that Σε : r0,M s Ñ R, de�ned by
Σεpxq :� εs�1pε�1xq, are a monotonically decreasing sequence of functions
for εÑ 0, de�ned on a compact topological space. In addition, according to
Lemma 12 Σε converges pointwise to the identity function. Hence, we can
apply Ulisse Dini's theorem (see [10] p. 238) and obtain

sup
xPr0,Ms

|Σεpxq � x| εÑ0ÝÝÑ 0.

Thus, the �rst term on the right-hand side of (2.40) converges almost surely
to zero. Consequently, it also converges weakly to zero.

We continue with the second term of the right-hand side: We notice that
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the set txW εpψεptqq : 0   ε   1, s P Ru is sequentially weakly compact, so
Prokhorov's theorem yields:

Ppp11t|xW εpψεptqq|¡Mupεs�1pε�1xW εpψεptqqq �xW εpψεptqqq � 0q ¡ γq �
� Pp|xW εpψεptqq| ¡Mq MÑ8ÝÝÝÝÑ 0,

which implies weak convergence to 0. The last term on the right-hand side
converges weakly to 0 according to assumption.

Proof of Theorem 12. Let Xωptq be a solution to (2.36). We have already
shown in the proof of Lemma 12 that

s1ωpxq �
�
c1

8̧

i��8
hpx� xipω1qqYipω2q � c

	�1

� c̄.

If Yωptq :� spXωptqq, then according to (1.21) Yt satis�es

dYt � gpYtqdWt (2.41)

with

gpyq � s1ω � s�1
ω pyq.

Let prPx, rZωptqq be the corresponding canonical process of Yωptq. prPx, rZωptqq
is a regular di�usion on natural scale. According to (1.23) its speed measure
satis�es

mωpdxq � gωpxq�2dx � ps1ω � s�1
ω q�2pxqdx �

�
�
c1

8̧

i�0

hps�1
ω pxq � xipω1qqYipω2q � c

�2

� c̄ dx.

Let φωptq :� ³
lpt, xqmωpdxq and ψωptq :� inftu : φωpuq ¡ tu. Accord-

ing to Theorem 5: Yωptq � sωpXωptqq � xW pψωptqq, consequently Xωptq �
s�1pYωptqq � s�1pxW pψωptqq.
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Let

mε
ωpdxq :� cε

εC

�
c1

8̧

i�0

hps�1
ω pε�1xq � xipω1qqYipω2q � c

�2

� c̄ dx.

where cε is de�ned according to (2.38) and C is a constant, which will be
de�ned later.

According to Lemma 3 and Lemma 4 for ε ¡ 0 and for all i P Z : τ εi
d� Y1

and mε de�ned by

mε
ωpdxq :� cε

εC

�
c1

8̧

i�0

hps�1
ω pε�1xq � xipω1qqτ εi pω2q � c

�2

� c̄ dx

on pΩ1 � Ω2,A1 bA2,Pq are couplings of mε.

We again de�ne ρ̄ :� V pbq � V paq for a   b with a, b P R. ρ̄ as shown
in Lemma 3 equals

°
j vjδxjpdxq. mε and ρ̄ are de�ned on the same prob-

ability space pΩ1 � Ω2,A1 b A2,Pq. Consequently, it is possible to show
that

mεpdxq vÝÑ ρpdxq P� a.s. (2.42)

holds. Theorem 9 then givesxW εpmεqptq wÑ xW pρqptq �: M̄ptq P� a.s.

Let φ̄ωptq :� ³
lpt, xqmωpdxq with m :� m1 and ψ̄ωptq :� inftu : φωpuq ¡ tu

and let

φ̄εωptq �
»
lεpt, xqmε

ωpdxq �

�
»
εlpε�2t, ε�1xq cε

εC

�
c1

8̧

i�0

hps�1
ω pε�1xq � xipω1qqτ εi pω2q � c

�2

� c̄ dx �

�
»
lpε�2t, ε�1xqcεC�1

�
c1

8̧

i�0

hps�1
ω pε�1xq � xipω1qqτ εi pω2q � c

�2

� c̄ dx.
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By applying substitution ry � ε�1xñ ε�1dy � dxs we obtain

φ̄εωptq �
»
εlpε�2t, yqcεC�1

�
c1

8̧

i�0

hps�1
ω pyq � xipω1qqτ εi pω2q � c

�2

� c̄ dx �

� εcεC
�1 � φ̄ωpε�2tq.

Therefore

ψ̄εωptq � ε2ψ̄ω

�
Ct

cεε



.

Finally, let X̄ptq :� s�1pxW εpmqptqq then

εX̄ωptCpcεεq�1q � εs�1pxW pψ̄ωptCpcεεq�1qqq � εs�1pxW pε�2ψ̄εωptqqq �
� εs�1pε�1xW εpψ̄εωptqqq.

From Lemma 12 we have
sωpxq
x

xÑ8ÝÝÝÑ 1 P̄ � a.s. and since xW εpψ̄εptqq wÝÑ
M̄ptq P̄� a.s.

Lemma 13 yields that P̄�a.s. : εX̄ptpcεεq�1q � εs�1pε�1xW εpψ̄εptqqq wÝÑ M̄ptq.

It remains to prove (2.42):

Proving (2.42) involves the same procedure, which we already used in the
proof of (2.13). Additional technical work needs to be done due to the scale
function s. We will add some substitutions and exploit the fact that spxq
converges to the identity function for xÑ 8. This will eventually transform
the integral, such that analogously to (2.13) all lemmas can be applied.

Proof of (2.42). Let f P CcpRq with I :� supppfq and I � ra, bs.

»
R
f dmpεq �

»
R
fpxqcε

ε

�
c1

8̧

i��8
hps�1pε�1xq � xiq 1

cε
gεpVεpi�1q � Vεiq � c

�2

c̄ dx.
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Applying substitution rx � εspyq ñ εs1pyqdy � ε
�
c1
°8
i��8 hpy � xiqτi � c

��1
dy

� dxs yields»
R
f dmpεq �

»
R
fpεspyqq � cε

ε
� ε �

�
c1

8̧

i��8
hpy � xiq 1

cε
gεpVεpi�1q � Vεiq � c

�
c̄ dy.

Again by substitution ry � ε�1v ñ ε�1dv � dys we obtain»
R
f dmpεq � pc »

R

1

ε
fpεspε�1vqq �

� 8̧

i��8
hpε�1v � xiqgεpVεpi�1q � Vεiq

�
dv

� pc »
R

cε
ε
fpεspε�1vqqc dv

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�:K4pεq

. (2.43)

Let pyi, viqiPN be the jump process of V . For δ ¡ 0 we de�ne Jδ :� tyi :
vi ¡ δu and Jδε � ti P Z : εSpε�1iq P I, Vεpi�1q � Vεi ¡ δu. Therefore we can
express the �rst term on the right hand side of (2.43) as

pc »
R

1

ε
fpεspε�1vqq �

��¸
iPJδε

hpε�1v � xiqgεpVεpi�1q � Vεiq
�
 dv

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�:Kδ

1 pεq

� pc »
R

1

ε
fpεspε�1vqq �

�� ¸
iPJε

ε1{α
zJεδ
hpε�1v � xiqgεpVεpi�1q � Vεiq

�
 dv

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�:Kδ

2 pεq

� pc »
R

1

ε
fpεspε�1vqq �

�� ¸
iPJε0 zJεε1{α

hpε�1v � xiqgεpVεpi�1q � Vεiq
�
 dv

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�:K3pεq

Since according to Lemma 12 εspε�1vq Ñ v, for ε small, there exists small
neighborhood I 1 of I such that Jδε � I 1.The process V only has �nitely many
jumps ¡ δ within I 1. Let |Jδ X I 1| �: n   8.
For any ε ¡ 0 and y P Jδ we have: ε

X
y
ε

\ ¤ y ¤ εpXy
ε

\ � 1q ñ for ε small:
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t
Yy
ε

]
|y P Jδ ^

Yy
ε

]
P I 1u � Jδε . For ε small there is at most only one

jump in each
�
ε
Yy
ε

]
, εp
Yy
ε

]
� 1q

�
. So Jδε � t

Yy
ε

]
|y P Jδ ^

Yy
ε

]
P I 1u and

|Jδε X I 1| � |Jδ X I 1|   8.
We consider the �rst sum and compute its limit for εÑ 0:

Let γ ¡ 0. For ε small it holds that fpεs�1pε�1vqq has compact support I 1 and
f�pεs�1pε�1vqq ¤ f�pvq�γ11I 1pvq as well as f�pεs�1pε�1vqq ¤ f�pvq�γ11I 1pvq
@v P R. W.l.o.g. we assume that f is a nonnegative function. All functions
within the integral converge uniformly and we can move the limit inside:

lim
εÑ0

Kδ
1pεq � lim

εÑ0
pc »

R

1

ε
fpεs�1pε�1vqq � gεpVεpi�1q � Vεiq

��¸
iPJδε

h
�v � εxi

ε

	�
 dv

¤ lim
εÑ0

pc »
R

1

ε
pfpvq � γ11I 1q � gεpVεpi�1q � Vεiq

��¸
iPJδε

h
�v � εxi

ε

	�
 dv

� lim
εÑ0

pc¸
iPJδε

gεpVεpi�1q � Vεiq
»
I

1

ε
fpvq � h

�v � εxi
ε

	
dv

� lim
εÑ0

pc¸
iPJδε

gεpVεpi�1q � Vεiq
»
I 1

1

ε
γ � h

�v � εxi
ε

	
dv

� lim
εÑ0

pc¸
iPJδε

gεpVεpi�1q � Vεiq
» εxi�ε

εxi�ε

1

ε
fpvq � h

�v � εxi
ε

	
dv

� lim
εÑ0

pc¸
iPJδε

gεpVεpi�1q � Vεiq
» εxi�ε

εxi�ε

1

ε
γ � h

�v � εxi
ε

	
dv.

Using substitution rz � v � εxi
ε

ñ ε�1dv � dzs gives

lim
εÑ0

Kδ
1pεq � lim

εÑ0
pc¸
iPJδε

gεpVεpi�1q � Vεiq
» 1

�1

fpεz � εxiq � hpzq dz

� lim
εÑ0

pc¸
iPJδε

gεpVεpi�1q � Vεiq
» 1

�1

γ � hpzq dz.

Let ij p1 ¤ j ¤ nq be the indices of the jumps larger δ. Let zj :� yij . It
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follows that

lim
εÑ0

Kδ
1pεq � pc � ņ

j�1

lim
εÑ0

gεpVεpt zjε u�1q � V
εt
zj
ε u
q

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�:Ajpεq

lim
εÑ0

» 1

�1

fpεz � εxt
zj
ε u
qhpzq dz

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�:Bjpεq

� pc � ņ

j�1

lim
εÑ0

gεpVεpt zjε u�1q � V
εt
zj
ε u
q lim
εÑ0

» 1

�1

γhpzq dz.

We have already shown in the proof of (2.13) that

Ajpεq � vij and Bjpεq � fpyijq
» 1

�1

hpzq dz
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

�:ch

.

Consequently,

lim
εÑ0

Kδ
1pεq � pc � ņ

j�1

lim
εÑ0

gεpVεpt zjε u�1q � V
εt
zj
ε u
q lim
εÑ0

» 1

�1

fpεz � εxt
zj
ε u
qhpzq dz

� pc � ņ

j�1

lim
εÑ0

gεpVεpt zjε u�1q � V
εt
zj
ε u
q lim
εÑ0

» 1

�1

γhpzq dz

� pc � ņ

j�1

vijfpyijqch � pc � ņ

j�1

vijγch � C
ņ

j�1

vijfpyijq � γ

�pc � ņ

j�1

vijch

�
.

Since γ can be chosen arbitrary small

lim
εÑ0

Kδ
1pεq � C

¸
j:vj¥δ

fpxjqvj.

We continue with the second sum. For ε small the support of fpεspε�1vqq is
subset of the compact interval I 1. Thus,

Kδ
2pεq � pc »

R

1

ε
fpεspε�1vqq �

�� ¸
iPJε

ε1{α
zJεδ
hpε�1v � xiqgεpVεpi�1q � Vεiq

�
 dv �

� pc »
I 1

¸
iPJε

ε1{α
zJεδ
gεpVεpi�1q � Vεiqfpεspε�1vqqh

�v � εxi
ε

	1

ε
dv.
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All functions are positive and by Fubini's Theorem we get

Kδ
2pεq � pc ¸

iPJε
ε1{α

zJεδ
gεpVεpi�1q � Vεiq

»
I 1
fpεspε�1vqqh

�v � εxi
ε

	1

ε
dv.

For ε small, we �nd γ ¡ 0 such that

Kδ
2pεq ¤ pc ¸

iPJε
ε1{α

zJεδ
gεpVεpi�1q � Vεiq

»
I 1
pfpvqq � γqh

�v � εxi
ε

	1

ε
dv

¤ pc ¸
iPJε

ε1{α
zJεδ
gεpVεpi�1q � Vεiq

» εxi�ε

εxi�ε
pfpvqq � γqh

�v � εxi
ε

	1

ε
dv.

Then substitution rz � v � εxi
ε

ñ ε�1dv � dzs yields

Kδ
2pεq ¤ pc ¸

iPJε
ε1{α

zJεδ
gεpVεpi�1q � Vεiq

» 1

�1

pfpεz � εxiq � γqhpzq dz

¤ C1 �
¸

iPJε
ε1{α

zJεδ
gεpVεpi�1q � Vεiq.

By Lemma 6 we get

Kδ
2pεq ¤ C �

¸
iPJε

ε1{α
zJεδ
pVεpi�1q � Vεiq1�δ1

¤ C �
¸

j:vj¤δ with yjPI
v1�δ

1

j �: Hδ.

In the proof of (2.13) we have already veri�ed that limδÑ0Hδ � 0 P̄-a.s.
limεÑ0K3pεq � 0 and limεÑ0K4pεq � 0 can be shown by analogous steps as
used in the proof of (2.13).

We obtain

lim
εÑ0

»
R
f dp̃pεq � lim

εÑ0
lim
δÑ0

�
Kδ

1pεq �Kδ
2pεq �K3pεq �K4pεq

� �
� lim

δÑ0
C

¸
j:vj¥δ

fpxjqvj � C

»
R
fpxqδyipdxq � C

»
R
f dρ̄.
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Appendix

Abstract

We establish a general theory concerning one-dimensional di�usions, derived
from stochastic di�erential equations. One dimensional di�usions coming
from SDEs without drift, can be expressed as time changed Brownian mo-
tions. A time changed Brownian motion is characterized by the speed mea-
sure of a di�usion. The speed measure can be obtained by the SDE.

We devote ourselves to determining scaling limits of random di�usions de-
rived from stochastic di�erential equations.
At �rst we consider a di�usion de�ned by a stochastic di�erential equation
without drift. Suitably rescaling this di�usion we obtain sequences of di�u-
sions which converge weakly. Depending on the assumptions we show that
one suitably rescaled sequence converges weakly to the Brownian motion and
another suitably rescaled sequence converges weakly to the FIN-di�usion.
Applying Stone's theorem it is su�cient to show vague convergence of the
respective speed measures in order to obtain weak convergence of the rescaled
di�usion sequences. Analogously we proceed for the second di�usion com-
ing form a stochastic di�erential equation which has non-zero drift. Using
Stone's theorem we show weak convergence to the FIN-di�usion of a suitably
rescaled sequence of di�usions.
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Zusammenfassung

Wir entwickeln eine allgemeine Theorie über eindimensionale Di�usionen,
welche durch stochastische Di�erentialgleichungen de�niert sind. Eindimen-
sionale Di�usionen können als zeitlich geänderte Brownsche Bewegungen
dargestellt werden. Eine zeitlich geänderte Brownsche Bewegung wird durch
das Geschwindigkeitsmaÿ der Di�usion bestimmt.

Wir beschäftigen uns mit den Grenzwerten skalierter eindimensionaler Dif-
fusionen, die durch stochastische Di�erentialgleichungen de�niert sind.
Zuerst studieren wir eine Di�usion, welche von einer stochastischen Di�eren-
tialgleichung ohne Drift bestimmt wird. Indem wir diese Di�usion passend
skalieren, erhalten wir schwach konvergierende Folgen von Di�usionen. Ab-
hängig von den Voraussetzungen konvergiert eine passend skalierte Folge von
Di�usionen gegen die Brownsche Bewegung und eine andere passend skalierte
Folge gegen die FIN-Di�usion.
Um diese Konvergenzaussagen zu beweisen, verwenden wir Stone's Theo-
rem. Stone's Theorem impliziert, dass es ausreicht, die vage Konvergenz der
Geschwindigkeitsmaÿe der entsprechenden skalierten Di�usionen zu zeigen,
um die schwache Konvergenz der skalierten Di�usionen zu erhalten. Die
zweite Di�usion, mit der wir uns auseinandersetzen, wird durch eine stochastis-
che Di�erentialgleichung mit Drift bestimmt. Wir verfahren analog wie zuvor
und zeigen, dass eine passend skalierte Folge von Di�usionen gegen die FIN-
Di�usion konvergiert, indem wir Stone's Theorem anwenden.
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