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Introduction
The main goal of this thesis is to study the set Y(f) of solutions to an implicit equation

f(x,y(x)) = 0, y(0) = 0 (0.1)

given by a vector f = (f1(x, y), . . . , fm(x, y)) of either algebraic, convergent or formal
power series in two sets of variables x = (x1, . . . , xn) and y = (y1, . . . , yN ). In 1968,
Micheal Artin ([Art68]) showed that if f(x, y) = (f1(x, y), . . . , fm(x, y)) is a vector of
convergent power series, then every formal solution ŷ(x) ∈ C [|x|]N to Equation 0.1
can be approximated up to any order by solutions to Equation 0.1 inside C{x}N ,
where C{x} denotes the ring of convergent power series. Phrased differently, the set
of convergent solutions Y(f) is dense in the set of formal solutions Ŷ(f) in the m-adic
topology. Shortly after Artin, Arkadiusz Płoski([Pło74], [Pło15]) proved upon inspec-
tion of Artin’s proof that it is even possible to find a parametrized family of convergent
solutions Ψ(x, t) ∈ C{x, t}N , where t = (t1, . . . , tk) is a set of new variables, which
passes through ŷ(x) - in the sense that Ψ(x, t(x)) ∈ Y(f) for every t(x) ∈ C{x}k with
t(0) = 0 and that there exists a t̂(x) ∈ C [|x|]k such that Ψ(x, t̂(x)) = ŷ(x). These
results where then generalized in various directions, and Dorin Popescu succeded in
1985 ([Pop85]) in proofing the General Néron Desingularization Theorem. This theo-
rem has numerous applications and yields as a corollary Artin’s conjecture that every
excellent Henselian local ring A has the (now-called) Artin Approximation Property
(AAT), which means that every polynomial f(y) with coefficients in A that admits a
solution ŷ to f(y) = 0 in the completion Â, has a solution y in A. Another conse-
quence of General Néron Desingularization is that the Nested Approximation problem
admits a positive answer when the equation are given by algebraic power series. For
further information, we refer the reader to [Ron15].

While big efforts were undertaken to understand the approximation properties of
rings, there was few work at that time in which Y(f) was studied as a geometric
object - with the notable exception of John Nash, whose unpublished paper in 1965
(which appeared only in 1995 [Nas65]), laid down the foundation to the study of arc
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spaces X∞, the set of all (parametrized) curves y(t) on an algebraic variety X∞. Arc
spaces became popular in the 90ies and have been studied in connection with the
Nash-problem, which establishes a connection between components of certain families
of arcs on the variety and the essential divisors that appear in a resolution of the variety.

In the first chapter we investigate various aspects of the geometry of an arquile
variety Y(f) defined either over the space of algebraic, convergent or formal power
series. The respective ring over which we work will be denoted by C〈〈x〉〉 and its
maximal ideal of series that vanish at 0 by C0〈〈x〉〉. The equation f(x,y(x)) = 0
corresponds to an infinite system of polynomial equations Fβ(yα,j) = 0 in the coeffi-
cients (yα,j)α∈Nn,1≤j≤N . One approach, which is for example carried out in the theory
of arc spaces, is to identify the solutions to f(x,y(x)) = 0 as the closed points of
spec(C[(yα,j)α∈Nn,1≤j≤N ]/〈(Fβ)β∈Nn〉), by assigning to each series y(x) the kernel Ky

of the evaluation map C[(yα,j)α∈Nn,1≤j≤N ]→ C, which evaluates to coordinates at the
coefficients of y. The infinite-dimensional version of Hilbert’s Nullstellensatz given
by Lang ([Lan52]) shows that each closed point (maximal ideal) stems from such an
evaluation map, i.e., corresponds to a formal power series y. A disadvantage of this
viewpoint is that one has to work in a non-Noetherian setting, in which geometric
concepts such as regularity are no longer at one’s disposal. Also, this approach works
only in the formal category. Instead, we embed C0〈〈x〉〉N into spec(C0〈〈x, y〉〉), by iden-
tifying a series y(x) ∈ C0〈〈x〉〉N with the ideal Py formed by all f(x, y) ∈ C0〈〈x, y〉〉
which solve f(x,y(x)) = 0. In the same way we can identify an arquile variety Y with
its ideal of relations IY . An arquile variety is called regular at a point y0 ∈ Y, if it
can be locally defined by a system f(x,y(x)) = (f1(x,y(x)) = · · · = fm(x,y(x))) = 0
so that a full minor ∆ of ∂yf(x,y(x)) does not vanish (as a series in C [|x|]) in a
neighborhood of y0. The tuple (f,∆) is then called a regular pair. The Jacobian cri-
terion in our setting goes then reads as follows: The regularity of Y at a point y0 ∈ Y
is equivalent to the regularity of the local ring (C〈〈x, y〉〉/IY)Py0

. We show with the
Płoski- Tougeron Theorem (Theorem 1.2.4), that at a regular point a Zariski-dense
subset of Y can be parametrized by a map t(x) 7→ Ψ(x, t(x)) and is isomorphic to a
power series module mC〈〈x〉〉N−m.

A guiding question for the research during this thesis was to find suitable assump-
tions on f which would guarantee that the equation f(x,y(x)) = 0 becomes (in a
vague sense) smooth if a sufficiently high jet of y is fixed. In many examples one
can observe that implicit equations start to behave nicely for high-order terms. If

2



f(x, y) ∈ mC [|x, y|]m, then the arquile map f∞ : mC [|x|]N → mC [|x|]m can be inter-
preted as a formally analytic map (see [Bru09]). The Fréchet derivative of f∞ at a
point y0(x) ∈ mC [|x|]N is the C [|x|]-module morphism y(x) 7→ (∂yf(x,y0(x))) · y(x).
If the initial terms of the tangential modules Im(∂yf(x,y(x)) are stable in neighbor-
hood of a point y0, then f∞ is said to have constant rank and f∞ can be linearized
by formally analytic automorphisms of source and target. In the case of a single pa-
rameter x, if (f,∆) is a regular pair at y0, then it can be shown that f∞ has constant
rank around y0. However, it turns out that this statement is false in several variables.

In the case of a single variable, every regular point is smooth in the sense that an
m-adic neighorhood of y0 in Y is isomorphic to a free module C0〈〈x〉〉N−m. This result
is illustrated with Example 1.7.3. In the single parameter case, Y can be decomposed
into arquile locally closed subsets Y = W1 ∪ · · · ∪ Ws, so that each Wi is smooth in
the sense that every point y ∈ Wi admits a neighborhood which is isomorphic to a
free module C0〈〈x〉〉k.

The regular part Y(f)\Y(∆) of a regular pair (f,∆) can be decomposed into disjoint
strata Yd on which the xn-order of ∆ is constant to d. With the aid of a linearization
theorem for arquile maps f∞ : y(x) 7→ f(x,y(x)) along certain submodules of Yd, we
will show that each stratum Yd is isomorphic to a product Z∗d × mC〈〈x〉〉N−m, where
Z∗d is a set which is given locally by arquile equations in a power series space C〈〈x′〉〉 in
one variable less. This construction is based on Płoski’s proof and gives a geometric
interpretation of his techniques. Iterating this construction, we are able to show that
the smooth points are dense in an arquile variety. In the case of several variables, we
do not know whether every regular point is already smooth, but we suspect that this
is not the case. If however the columns of ∂yf(x,y0(x)) span an open submodule of
C〈〈x〉〉m, then the arquile map f∞ : y(x) 7→ f(x,y(x)) can be linearized and y0 is a
smooth point of Y(f). Most parts of the first chapter are joint work with H. Hauser
and will appear in a joint paper.

In the second chapter we develop the analytic toolbox that we need in order to
describe the isomorphisms between Yd and Z∗d × mC〈〈x〉〉N−m. These maps are (ra-
tional) textile maps ([Bru09]), which are maps between power series spaces, whose
coefficients are polynomial (rational) in the coefficients of the input series. The space
of convergent power series has a natural locally convex inductive topology, in which
every arquile map f∞ : C0{x}N → C0{x}m defines a holomorphic function. This point
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of view has been introduced by H.Hauser and G. Müller in [HM94], to establish a lin-
earization theorem for arquile maps of constant rank. We review the rank theorem by
Hauser and Müller and show a version of it for arquile maps whose tangential map has
a cofinite image. In the second section we discuss analytic textile maps. The principal
statement is that a textile map F is analytic whenever F preserves convergence, so if
F (y) is convergent whenever y is convergent. This statement under a mild assumption
on the growth of the support of the coefficient functions. With the aid of majorization
techniques as in the Cauchy-Kovalevskaya Theorem, we show an Implicit and Inverse
Function Theorem for textile maps which are small perturbations of arquile maps.

In the third chapter a new class of spaces which admit filtrations both by Banach
spaces and finite-dimensional Hilbert spaces is introduced. The main example, from
which these spaces are axiomatized, is the space of convergent power series with its
filtrations by homogeneous polynomials and Banach spaces of power series of fixed
radius of convergence. These spaces behave stable with respect to direct compliments
and provide a framework for the study of normal forms of power series equations. The
homomorphisms of these spaces are the homogeneous maps, for which a formal Penrose
inverse will be constructed. In the final section we discuss composition operators and
extend a theorem by Eakin & Harris ([EH77]) to homogeneous composition operators
between spaces of entire functions.
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Chapter 1

Analytic varieties in power series
spaces

1.1 Arquile Varieties

Let f(x, y) be a vector of either algebraic, convergent or formal power series in two sets
of variables x = (x1, . . . , xn) and y = (y1, . . . , yN ). The aim of this chapter is to study
the set Y(f) of implicit solutions f(x,y(x)) = 0 with the same quality (algebraic,
convergent, formal) as f . In order to avoid unnecessary technical complications and
to achieve a local Noetherian setting, we consider only solutions y without constant
term, so which satisfy y(0) = 0. We will call these solution sets arquile varieties, as
they can be seen as generalizations of pointed arc spaces (see e.g. [Ish07]). In order
to distinguish variables from power series, we will denote power series by bold letters,
whenever the same letter is used as a variable. To keep notation short, we will at
several places write f(y) instead of f(x,y(x)). The power series space C〈〈x〉〉 stands
either for the space C〈x〉 of algebraic series, C{x} of convergent series or C [|x|] of
formal power series. A consequence of Artin’s Approximation Theorem is that every
algebraic power series is convergent, which yields the hieararchy of rings

C〈x〉 ⊂ C{x} ⊂ C [|x|] .

Each of these rings is a regular local ring whose dimension equals the number of vari-
ables and which is closed under solving implicit equations f(x,y(x)) = 0 of systems
f(x, y) ∈ C0〈〈x, y〉〉N with det(∂yf(0, 0)) 6= 0 (see [Rui93]). By m and C0〈〈x〉〉 we
will denote the maximal ideal of all series in C〈〈x〉〉 which vanish at 0. The Taylor
expansion of f shows that the equation f(x,y(x)) = 0 corresponds to an infinite sys-
tem of polynomial equations in the coefficients (yα,i)α∈Nn,1≤i≤N of y, so Y(f) can be
seen as an infinite-dimensional algebraic variety and Zariski-closed subset of the spec-
trum spec(C[(yα,i)α∈Nn,1≤i≤N ]) of a polynomial ring in infinitely many variables. The
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closed points of spec(C[(yα,i)α∈Nn,1≤i≤N ]) correspond to solutions of f(y) = 0. This
approach is used in the theory of arc spaces, which studies the set of parametrized for-
mal curves on an algebraic variety. The disadvantage of this viewpoint is that the ring
C[(yα,i)α∈Nn,1≤i≤N ] is not Noetherian, which means that algebraic-geometric concepts
such as regularity are not at one’s disposal.

Instead, we will embed C0〈〈x〉〉N in spec(C〈〈x, y〉〉), identifying series y ∈ C0〈〈x〉〉N

with points Py in spec(C〈〈x, y〉〉): Every y ∈ C0〈〈x〉〉N defines a C-algebra substitu-
tion homomorphism εy : C〈〈x, y〉〉 → C〈〈x〉〉, f(x, y) 7→ f(x,y(x)). The assignments
y 7→ Py := ker(εy) is an injection C0〈〈x〉〉N → spec(C〈〈x, y〉〉), since Py contains
yi − yi(x). The relation between between arquile varieties Y and their defining equa-
tions is expressed via a Galois connection between the power set of C0〈〈x〉〉N and the
set of ideals of C〈〈x, y〉〉, assigning on the one hand to a subset W of C0〈〈x〉〉N the set
of implicit relations IW on W in C〈〈x, y〉〉, and on the other hand to an ideal I the set
of common solutions f(y) = 0 of all members f of I. In this way we can talk about
properties of an arquile variety at a point y0 ∈ Y in terms of the ring properties of
C〈〈x, y〉〉Py0

/
IY · C〈〈x, y〉〉Py0

.

Definition 1.1.1. Let U be a subset of C0〈〈x〉〉N which is open in the m-adic topology,
and denote by Û the closure in the m-adic topology of U in C0 [|x|]N . For a subset I
of C〈〈x, y〉〉, we define

YU (I) := {y ∈ U | f(x,y(x)) = 0 ∀f ∈ I }

Y
Û

(I) := {y ∈ Û | f(x,y(x)) = 0 ∀f ∈ I }

as the set of common solutions f(y) = 0 of all members f ∈ I in C0〈〈x〉〉N , C0[[x]]N ,
respectively. Sets of the form YU (I) will be called arquile varieties in U . If I is defined
by either convergent or algebraic power series, then YU (I) is dense in Y

Û
(I) in the

m-adic topology, because of Artin’s Approximation Theorem ([Art68]). Dually, if W
is an arbitrary subset of C0〈〈x〉〉N , then let

IW = { f ∈ C〈〈x, y〉〉 | f(y) = 0 for all y ∈W }

ÎW = { f ∈ C [|x, y|] | f(y) = 0 for all y ∈W }

be the ideals of relations on W inside C〈〈x, y〉〉 and ideal of formal relations on W . A
natural question is, whether the formal relations ÎW are generated by the relations
IW inside C〈〈x, y〉〉. We will show in subsection 1.3.1 that this is the case when W is
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an arquile variety, which can be seen as a dual version to Artin’s Theorem. For a fixed
open set U , we obtain the following Galois connection between the power set P(U) of
U and the set I(C〈〈x, y〉〉) of ideals of C〈〈x, y〉〉, given by the assignments

I(C〈〈x, y〉〉)→ P(U), I 7→ YU (I)

P(C0〈〈x〉〉N )→ I,W 7→ IW .

An ideal I will be called U -saturated, if I = IYU (I), so if it coincides with the ideal of
relations on YU (I). If Y is a subset of U , then YU (IY ) is called the Zariski-closure of
Y in U . The restriction of the Galois connection yields a bijection between the arquile
varieties in U and the set of U -saturated ideals. In the next lemma we will see that the
arquile varieties form the closed sets of a topology, which we call the arquile topology.
If we identify U ⊂ C0〈〈x〉〉N with U ⊂ spec(C〈〈x, y〉〉), the image of the map y 7→ Py
, then the topology given by the arquile varieties in U is the relative Zariski topology
induced from spec(C〈〈x, y〉〉) on U ([Cla13, p.23]).

Lemma 1.1.2. Let U be an open subset of C0〈〈x〉〉N .
(1) If W ⊂W ′ ⊂ U then IW ⊃ IW ′.
(2) If I ⊂ I ′ ⊂ C〈〈x, y〉〉 then YU (I) ⊃ YU (I ′).
(3) YU (I1 ∩ · · · ∩ Il) = YU (I1) ∪ · · · ∪ YU (Il) for all I1, . . . , Il ⊂ C〈〈x, y〉〉.
(4) YU (I) = YU (IYU (I)) for every I ⊂ C〈〈x, y〉〉N .
(5) If W ⊂ U then IW = IYU (IW ).
(6) If U ⊂ U ′, U ′ open, then every U -saturated ideal is also U ′-saturated.

Proof: (1) By definition IW = ∩y∈WPy ⊃ ∩y∈W ′Py = IW ′ . (2) If y ∈ YU (I ′) then
f(y) = 0 for all f ∈ I ′ and hence for all f ∈ I, consequently y is contained in YU (I).
(3) "⊃" follows from (2). "⊂" Since

∏n
k=1 Ik ⊂ ∩nk=1Ik we have that YU (∩lk=1Ik) ⊂

YU (
∏l
k=1 Ik). The product ideal is generated by the set { f1 · · · fl | fi ∈ Ii }. If y ∈

YU (
∏l
k=1 Ik) then f1(y) · · · fl(y) = 0 (for all fi ∈ Ii). Suppose that y /∈ YU (I1) ∪

· · · ∪ YU (Il−1). Then for every i ∈ {1, . . . , l − 1} there exist fi ∈ Ii so that fi(y) 6= 0.
Let now g ∈ Il be arbitrary. Then 0 = (f1 · · · fl−1 · g)(y) = (f1 · · · fl−1)(y)g(y), thus
g(y) = 0, and therefore y ∈ YU (Il). This yields YU (∩lk=1Ik) ⊂ YU (I1) ∪ · · · ∪ YU (Il)
and hence both sets are equal. (4) By definition, I ⊂ IYU (I). So (2) implies that
YU (I) ⊃ YU (IYU (I)) ⊃ YU (I). (5) By definition W ⊂ YU (IW ), hence IW ⊃ IYU (IW )

and again by definition IW ⊂ IYU (IW ). (6) If f ∈ IYU′ (I), then f ∈ IYU (I) = I.

Note that a prime ideal I need not to be saturated, since Y(I) might be empty. But
if an ideal is saturated, then all its associated primes are saturated.
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Theorem 1.1.3. Let U be an open subset of C0〈〈x〉〉N . Let I = IYU (I) be a U -saturated
ideal with YU (I) 6= ∅ and let Ass(I) = {I1, . . . , Is} be the associated primes of I. Then:

(1) YU (I) = YU (I1) ∪ · · · ∪ YU (Is)
(2) YU (Ik) 6= ∅ for all k ∈ {1, . . . , s}
(3) The associated primes of I are again U -saturated, so Ik = IYU (Ik).
(4) An arquile variety Y in U is irreducible if and only if IY is prime.

Proof: Since I is a radical ideal, it is the intersection I = I1 ∩ · · · ∩ Ik of its asso-
ciated primes, and this decomposition is irredundant. (1) follows now directly from
Lemma 1.1.2.
(2) Suppose that YU (In0) = ∅ (wlog n0 = 1). Consequently YU (I) =

⋃s
k=2 YU (Ik) =

YU (
⋂s
k=2 Ik). Since IYU (I) ⊂

⋂s
k=2 Ik and as IYU (I) is saturated, we both ideals have

to coincide because YU (
⋂s
k=2 Ik) = YU (I). But as the the prime decomposition of

YU (I) is irredundant, IYU (I) has to be properly contained in
⋂s
k=2 Ik - a contradiction.

Hence YU (I1) 6= ∅.
(3) Suppose that Ik ( IYU (Ik). Then let I1,1, . . . , I1,r be an irredundant prime decom-
position of IYU (Ik) =

⋂r
j=1 I1,j . We obtain

I ⊂
r⋂
j=1

I1,j ∩ I2 ∩ · · · ∩ Is.

Since the solution set of both sets coincides and as I is by definition the largest ideal
vanishing on YU (I), we obtain in fact that

I =
r⋂
j=1

I1,j ∩ I2 ∩ · · · ∩ Is.

The above prime decomposition can be reduced to an irredundant one. Since a radical
ideal has a unique irredundant prime decomposition, it follows that I1 has to appear
in this decomposition, and since Ii 6= Ij for i 6= j it follows that I1 = I1,1 (and that
r = 1), which leads to the contradiction IYU (I1) ⊂ I1. (4) Assume that Y is irreducible.
The ideal IY is U -saturated and radical. So if IY = I1 ∩ · · · ∩ Is is the decomposition
of IY into its associated primes, then Y decomposes into YU (I1) ∪ · · · ∪ YU (Is), with
YU (Il) 6= ∅. Since Y is irreducible, it follows that s = 1 and that IY is prime.
Conversely, assume that I is prime. If YU (I) splits into arquile varieties Y1 ∪ · · · ∪ Ys,
then I = IY1∪···∪Ys = IY1 ∩ · · · ∩ IYs . Hence I = IYi for one i ∈ {1, . . . , s}, which
implies that Yi = YU (I) and therefore YU (I) is irreducible.
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Corollary 1.1.4. A radical ideal I is U -saturated if and only if all of its associated
primes are U -saturated.

Proof: Let Ass(I) = {I1, . . . , Is} and suppose that each Il is U -saturated. Then
I =

⋂s
l=1 Il =

⋂s
l=1 IYU (Il) = I⋃s

l=1 YU (Il) = IYU (I). The converse follows from the
previous theorem.

A theorem by Kolchin states that if X ⊂ CN is an irreducible algebraic variety,
then the arc space X∞ consisting of all arc y(t) on X with arbitrary starting point
y(0) ∈ X is irreducible in the Zariski topology induced from C[(yk,i)k∈N,1≤i≤N ] (see
[Kol73, Chap IV, Prop 10], or [Ish07, Lemma 3.10].) Nevertheless, the space of arcs
centered at 0, X∞,0 = {y ∈ X∞ | y(0) = 0} may be reducible. For example, the space
of centered arcs X∞,0 defined by y1y2− ym3 = 0 has m− 1 irreducible components (see
[JK13]).
Likewise, it is not true that an arquile variety defined by a prime ideal is irreducible

in the arquile topology.

Example 1.1.5. Let I be the prime ideal of C [|x, y1, y2, y3|] generated by

y2
1(y2

1 − t2)− y7
2 and y2

1(y4
1 − t4)− y7

3

Then the arquile variety Y = Y(I) = {(0, 0, 0), (t, 0, 0), (−t, 0, 0)} consists of three
isolated points and is thus reducible. The saturation IY(I) of I is the intersection

IY(I) = 〈y1, y2, y3〉 ∩ 〈y1 − t, y2, y3〉 ∩ 〈y1 + t, y2, y3〉.

This pathology does not occur in the case that the ideal can be generated by series
which do not depend on the parameter t. In this case, I is saturated whenever it is a
radical ideal and Y(I) is irreducible whenever I is prime (see Theorem 1.3.18).

Definition 1.1.6. An arquile map is a map F : C0〈〈x〉〉N → C0〈〈x〉〉m given by sub-
stitution y 7→ f(x,y(x)) for a vector of series in C0〈〈x, y〉〉m. Given a series f(x, y) ∈
C0〈〈x, y〉〉m, we denote by f∞ the arquile map f∞ : C0〈〈x〉〉N → C0〈〈x〉〉m induced by f .
Arquile maps are uniformly continuous with respect to the m-adic topology, because
f∞(y + mdC〈〈x〉〉N )− f∞(y) ⊂ mdC〈〈x〉〉N for all y ∈ C0〈〈x〉〉N .

Theorem 1.1.7. Let f(x, y) ∈ C0〈〈x, y〉〉N and assume the det(∂yf(0, 0)) 6= 0. Then
the arquile map f∞ : C0〈〈x〉〉N → C0〈〈x〉〉N is an isomorphism with arquile inverse.
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Proof: The mapH(x, y) = (x, f(x, y)) : (Cn+N , 0)→ (Cn+N , 0) satisfies the condition
of the Inverse Function Theorem, so there exists a G(x, y) = (ϕ(x, y), ψ(x, y)) ∈
C0〈〈x, y〉〉n+N , so that H(ϕ(x, y), ψ(x, y)) = (x, y) and G(x, f(x, y)) = (x, y). It follows
that ϕ(x, y) = x, so G(x, y) = (x, ψ(x, y)). In particular, f∞ ◦ ψ∞ = ψ∞ ◦ f∞.

Definition 1.1.8. A map F : C0 [|x|]N → C0 [|x|]m ,y 7→ F (y) =
∑
β∈Nn Fβ(y)xβ is

called textile ([Bru09]), if each coefficient function Fβ is a polynomial in finitely many of
the of the coefficients (yα,i)α∈Nn,1≤i≤N of y = (y1, . . . ,yN ), where yi =

∑
α∈Nn yα,ix

α.
Likewise, we say that F : C0〈〈x〉〉N → C0〈〈x〉〉m is textile if it is the restriction of
a textile map F̂ : C0 [|x|]N → C0 [|x|]m which maps C0〈〈x〉〉N to C0〈〈x〉〉m. Note that
textile maps are continuous with respect to the m-adic topology and that every arquile
map is textile. In section 2.2 we will discuss textile maps in more detail. These
maps where introduced and studied by C. Bruschek in his thesis ([Bru09]). A map
F : Û → C0 [|x|]m defined on a subset Û of C0 [|x|]N is called rationally textile, if each
coefficient function Fβ(y) is a rational function in the coefficients of y and if each of the
denominators of Fβ vanishes nowhere in Û . Again, a function F : U → C0〈〈x〉〉m defined
on a subset U of C0〈〈x〉〉N will be called rationally textile, if it is the restriction of a
rationally textile function F̂ : Û → C0 [|x|]m. An example of a rationally textile map is
given by the solution operator S : U → C0 [|x|]N defined on the textile open subset U
of C0〈〈x, y〉〉N formed by those series which satisfy the condition of the implicit function
theorem and which assigns to a given f(x, y) the unique solution y to f(x,y(x)) = 0.
Instances of rationally textile maps which will appear in this thesis are all compositions
of arquile maps with division maps that assign the quotients in the Weierstrass Division
(Theorem 2.3.11). These maps will serve as parametrizations F : U → Y of parts of
arquile varieties Y. A point y ∈ Y will be called smooth (in the sense of Differential
Geometry), if there exists a rationally textile map defined on an open subset U of
a product of power series spaces which maps U bijectively onto a neighborhood of
y ∈ Y. We will show in section 1.5 that these points are dense in the m-adic topology.
The collection of the zero sets F−1(0) of textile maps F : C0〈〈x〉〉N → C0〈〈x〉〉 form
the closed sets of a topology on C0〈〈x〉〉N , which we call the textile topology. The
closed sets are given by the solutions of usually infinite systems of polynomials in the
coefficients yα,i of y. If a set V can be defined by a finite number of polynomials,
then V will be called a cofinite textile closed set. If y0 ∈ C [|x|]N , then the kernel My0

of the substitution homomorphism C[(yα,i)α∈Nn,i∈N] → C given by evaluation of the
variables yα,i at the coefficients of y0 is a maximal ideal of C[(yα,i)α∈Nn,1≤i≤N ]. The
assignment ι : C0 [|x|]N → specmax(C[(yα,i)α∈Nn,1≤i≤N ]),y 7→My is an isomorphism.
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If specmax(C[(yα,i)α∈Nn,1≤i≤N ]) is equipped with the Zariski topology, then the initial
topology induced by ι on C0 [|x|]N coincides with the textile topology. The textile
topology is strictly stronger then the arquile topology and the m-adic topology. A
subset W of C0〈〈x〉〉N is called textile locally closed, if it is the compliment V1 \ V2 of a
textile closed set in another. We say that W is a textile cofinitely locally closed set, if
it is given as the difference of two cofinite textile closed sets, so if it can be defined by
a finite number of polynomial equalities p(yα,i) = 0 and the non-vanishing q(yα,i) 6= 0
of another finite system.

1.2 The Płoski-Tougeron Theorem

We will show in this section that if a maximal minor of ∂yf at a solution to f(y) =
(f1(y), . . . , fm(y)) = 0 does not vanish, then Zariski dense subset of Y(f) can be
parametrized by an arquile morphism Ψ∞C0〈〈x〉〉N−m → Y(f). In the case that x
is a single variable, Ψ∞ maps C0〈〈x〉〉N−m onto a neighborhood of y in Y (see also
Theorem 1.5.2).

Definition 1.2.1. Let f ∈ C0〈〈x, y〉〉m. A solution y ∈ C0〈〈x〉〉N to f(y) = 0 is called
simple if there exists an m-minor ∆ of ∂y(f), so that ∆(x,y(x)) 6= 0. Conversely, we
say that f1, . . . , fm form a regular system at y, if y is a simple solution to f(y) = 0.

Theorem 1.2.2 (Identity Theorem). Let f(x, y) ∈ C [|x, y|] and suppose that Y(f) ∩
C〈〈x〉〉N is m-open in C〈〈x〉〉N . Then f = 0.

Proof: By assumption there exists a y0 ∈ Y(f)∩C〈〈x〉〉N and a d ∈ N so that f(y) = 0
for all y ∈ y0 + mdC〈〈x〉〉N . After a linear change of coordinates we can assume that
f∞ vanishes on mdC〈〈x〉〉N . The facts that f∞ : C0 [|x|]N → C [|x|] is continuous in the
m-adic topology and that Ĉ〈〈x〉〉 = C [|x|] imply that f∞ vanishes on mdC [|x|]N . Let
α1, . . . , αN ′ be an enumeration of all monomials of Cn of degree d. We introduce new
variables (zi,α)1≤i≤N,1≤j≤N ′ and

ϕ(x, z) =

 ∑
1≤j≤N ′

z1,jx
αj , . . . ,

∑
1≤j≤N ′

zN,jx
αj

 .
Then the image of C [|x|]N ·N

′
under z(x) 7→ ϕ(x, z(x)) is mdC [|x|]N . Therefore the

map (f(x, ϕ(x, z)))∞ : z(x) 7→ f(x, ϕ(x, z(x))) is identically zero, which implies that
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f(x, ϕ(x, z)) = 0 (compare with [Wob12, Lemma 5.2.3]). Observe that

det
(
∂(ϕ1(x, z), . . . , ϕN (x, z))

∂(z1,1, . . . , zN,1)

)
= xα1·N .

Let K be the quotient field of C [|x|]. Consider ϕ as an element of K[|z|]N and f as an
element of K[|y|]. The partial Jacobian ∂(ϕ1(x,z),...,ϕN (x,z))

∂(z1,1,...,zN,1) = xα1·N is invertible in K,
so by the inverse function theorem there exists a series ψ(z) ∈ K [|z|]N such that

ϕ(x, ψ1(z), z1,2, . . . , z1,N ′ , . . . , ψN (z), zN,2, . . . , zN,N ′) = (z1,1, . . . , zN,1).

Together with the fact f(x, ϕ(x, z)) = 0 this implies that f(x, z1,1, . . . , zN,1) = 0 and
thus f = 0.

Definition 1.2.3. Let z = (z1, . . . , zn), w = (w1, . . . , wk) and let R = C〈〈z〉〉, S =
C〈〈w〉〉 be rings of convergent power series. Let Φ: R → S be a C-algebra homomor-
phism, i.e. Φ(f(z)) = f(φ(w)) for some φ ∈ C0〈〈w〉〉n. Then the generic rank grk(Φ)
of Φ is defined as the rank of ∂(φ1,...,φn)

∂(w1,...,wk) over S.

Theorem 1.2.4 (Płoski-Tougeron, [Pło15]). Let f(x, y) ∈ C0〈〈x, y〉〉m, let y ∈ C0〈〈x〉〉N

be a simple solution to f(y) = 0 and let ∆ be an m−minor of ∂y(f) with ∆(y) 6= 0.
Let z = (z1, . . . , zN−m) be a set of new variables. Then there exists a series Ψ(x, z) ∈
C0〈〈x, z〉〉N with the following properties:
(1) f(x,Ψ(x, z)) = 0.
(2) Ψ(x, 0) = y(x).
(3) Let εΨ : C〈〈x, y〉〉 → C〈〈x, z〉〉, g(x, y) 7→ g(x,Ψ(x, z)). Then grk(εΨ) = n+N−m.
(4) The image of the arquile map Ψ∞ : C0〈〈x〉〉N−m → C0〈〈x〉〉N , z 7→ Ψ(z) is con-

tained in C0〈〈x〉〉N \ Y(∆).
(5) The height of K = ker(εΨ) is m, and 〈f1, . . . , fm〉Py = KPy .
(6) K is U -saturated for every m-adic neighborhood U of y.
(7) There exists an h ∈ C〈〈x, y〉〉 so that YU (K) \ Y(h) = YU (f1, . . . , fm) \ Y(h).
(8) For every sufficiently small m-adic neighborhood U0 ⊂ U of y, the image Ψ∞(Ψ−1

∞ (U0))
is dense in YU0(f).

Proof: After a permutation of the y-variables, we may suppose that

∆(x, y) = det
(
∂(f1(x, y), . . . , fm(x, y))
∂(yN+m+1, . . . , yN )

)
.

Accordingly we divide y into two blocks of variables: Let y(1) = (y1, . . . , yN−m) and let
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y(2) = (yN−m+1, . . . , yN ). Let v = (v1, . . . , vN ), z = (z1, . . . , zN−m), a = (a1, . . . , am)
be three sets of new variables. Let L1(x, y) = ∂y(1)f(x, y), L2(x, y) = ∂y(2)f(x, y). We
expand

f(x, y + v) = f(x, y) + ∂yf(x, y)v + q(x, y, v),

where
q(x, y, v) =

∑
1≤i,j≤N

qi,j(x, y, v)vivj

is at least quadratic in v. We set

F (x, z, a) := f

(
x,y(x) +

(
∆2(x,y(x)) · z
∆(x,y(x)) · a

))
=

= f(x,y(x))︸ ︷︷ ︸
=0

+∆2(x,y(x))L1(x,y(x)) · z + ∆(x,y(x))L2(x,y(x)) · a+ ∆2(x,y(x))Q(x, z, a),

where Q(x, z, a) is quadratic in (z, a). Let L∗2 denote the classical adjoint of L2. Since
detL∗2(x,y) 6= 0, we can multiply the previous equation with L∗2 from the left without
changing its solutions, and L∗2(x,y(x))F (x, z(x),a(x)) = 0 expands to

∆2(x,y)L∗2(x,y(x))L1(x,y(x)) · z + ∆2(x,y(x)) · a+ ∆2(x,y(x))L∗2(x,y(x))Q(x, z, a) = 0

⇔ ∆2(x,y) (L∗2(x,y(x))L1(x,y(x)) · z + idCm · a+ L∗2(x,y(x))Q(x, z, a))︸ ︷︷ ︸
=:H(x,z,a)

= 0

Since H(0) = 0, ∂aH(0) = idCm , we can apply the classical Implicit Function Theorem
to conclude the existence of a series a(x, z) ∈ mC〈〈x, z〉〉m solving H(x, z,a(x, z)) = 0.
Then

Ψ(x, z) = y(x) +
(

∆2(x,y(x)) · z
∆(x,y(x)) · a(x, z)

)

solves f(x,Ψ(x, z)) = 0. Since Q(x, 0, 0) = 0, it follows that a(x, 0) = 0, whence
Ψ(x, 0) = y(x), which concludes the proof of (1) and (2).
(3) The generic rank of εΨ is the rank of

∂(x1, . . . , xn,Ψ1(x, z), . . . ,ΨN (x, z))
∂(x1, . . . , xn, z1, . . . , zN−m) =

 idCn 0
∂x(Ψ(x, z)) idCN−m ·∆(x,y(x))

 ,
which is n+N −m.
(4) We claim that ∆(x,Ψ(x, z(x))) 6= 0 for all z(x) ∈ C0〈〈x〉〉N−m, which follows from
the following fact: If g(x, y) is an arbitrary power series without constant term, and
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y(x),h(x) ∈ mC〈〈x〉〉N , then g(x,y + g(x,y(x)) · h(x)) coincides up to multiplication
with a unit with g(x,y(x)). Indeed, expand

g(x, y + v) = g(x, y) + ∂yg(x, y) · v + q(x, y, v),

where q is quadratic in h. Substituting v = g(x)h(x) and y = y(x) yields

g(x,y(x)) = g(x,y(x)) + ∂yg(x,y(x)) · g(x,y(x))h(x) + g2(x,y(x))q̃(x,h(x)),

where q̃(x, h) is quadratic in h, yielding

g(x,y(x)) = g(x,y(x)) (1 + ∂yg(x,y(x))h(x) + g(x,y(x))q̃(x,h(x)))︸ ︷︷ ︸
u(x)

,

and since h(x), g(x,y(x)) vanish at zero, u(x) is a unit. Now it follows at once that
∆(x,Ψ(x, z(x))) and ∆(x,y(x)) coincide up to multiplication with a unit.
(5) After a linear change of coordinates we can suppose that y = 0. Then Ψ(x, z) =
(∆2(x)z,∆(x)a(x, z)). We factorize εΨ into Φ1 ◦ Φ2, where

Φ1 : C〈〈x, y〉〉 → C〈〈x, z〉〉, f(x, y) 7→ f(x, z,a(x, z))

Φ2 : C〈〈x, y〉〉 → C〈〈x, y〉〉, f(x, y) 7→ f(x,∆2(x)y(1),∆(x)y(2)).

and set ϕ1 = (z,a(x, z)), ϕ2 = (∆2(x) ·y(1),∆(x) ·y(2)), so that Φ2 = εϕ2 , Φ1 = ε(z,a).
Let us show at first that Φ2 is injective. Denote by K the quotient field of C〈〈x〉〉. The
Jacobian matrix

∂y(ϕ2)(0) = diag(∆2(x), . . . ,∆2(x),∆(x), . . . ,∆(x))

is invertible in K. By the Inverse Function theorem there exists hence a series vector
ϕ−1

2 (y) ∈ K[[y]]N with ϕ−1
2 ◦ ϕ2 = id. Hence the extension Φ2 : K[[y]] → K[[y]] of Φ2

is an isomorphism with inverse εϕ−1
2
. As C [|x, y|] = C [|x|] [[y]] ⊂ K[[y]], it follows in

particular that Φ2 is injective. The homomorphism Φ1 : C〈〈x, y〉〉 → C〈〈x, z〉〉 is onto,
and induces therefore and isomorphism Φ1 : C〈〈x, y〉〉/ ker(Φ1) → C〈〈x, z〉〉. Therefore
ht(ker(Φ1)) = dim(C〈〈x, y〉〉) − dim(C〈〈x, z〉〉) = m. Since Φ2 is injective, it follows
that ker(Φ1 ◦ Φ2) ⊂ ker(Φ1) and therefore ht(ker(εΨ)) ≤ m. Using Theorem 1.3.5
we see that 〈f1, . . . , fm〉Py is a prime ideal (since regular rings are integral domains)
of C〈〈x, y〉〉Py and that its height is m. Hence ker(εΨ)Py = 〈f1, . . . , fm〉Py , because
both ideals are prime, 〈f1, . . . , fm〉Py ⊂ ker(εY )Py and since ht(ker(εΨ)Py) ≤ m. (6)
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Let U be an open neighborhood of y and assume that g(x, y) vanishes on Y(K) ∩ U .
We need to show that g ∈ K. Since arquile maps are continuous with respect to the
m-adic topology and as Ψ∞ maps 0 to y, the preimage Ψ−1

∞ (U) is a neighborhood of
0. By assumption, g(x,Ψ(x, z(x))) = 0 for all z(x) ∈ Ψ−1

∞ (U). The identity theorem
for arquile maps (Theorem 1.2.2) implies that g(x,Ψ(x, z)) = 0, which means that
g ∈ ker εΨ = K.
(7) Since 〈f1, . . . , fm〉Py is prime and coincides with KPy , K is an associated prime of
〈f1, . . . , fm〉 and hence there exists an h ∈ C〈〈x, y〉〉 \Py so that (〈f1, . . . , fm〉 : h) = K.
As 〈f1, . . . , fm〉 ⊂ K, we have Y(f1, . . . , fm) ⊃ Y(K). Let ỹ ∈ Y(f1, . . . , fm) \ Y(h)
and g ∈ K. Then h ·g ∈ 〈f1, . . . , fm〉, whence (h ·g)(ỹ) = 0, and as h(ỹ) 6= 0, it follows
that g(ỹ) = 0. Therefore YU (f1, . . . , fm) \ Y(h) = YU (K) \ Y(h).
(8) Let U0 ⊂ U \ Y(h) be an m-adic neighborhood of y. Then YU0(f) = YU0(K). The
proof of (6) shows that g ∈ C〈〈x, y〉〉 vanishes on YU0(K) iff g vanishes on Im(Ψ∞)∩U0,
which shows that the Zariski-closure of both sets coincides.

Example 1.2.5. Let n = N = 2, and let f(x, y) = y1x1 + y2x2. Then f∞ is linear,
f(x, 0) = 0, fy2(x, y) = x2, and f∗y2(x, y) = 1. Let Ψ1(x, t) = (x2

2t,−x2x1t) be the curve
through the solution 0, as constructed in the Ploski-Bourbaki-Tougeron theorem, with
respect to fy2(x, 0). Analogously the construction can be repeated with respect to
fy1(x, 0), yielding the solution curve Ψ2(x, t) := (−x1x2t, x

2
1t). In particular, the map

Ψ∞ need not to be onto, even if f is linear in y.

1.3 Regularity

Definition 1.3.1. Let U be an m-open subset of C0〈〈x〉〉N and let Y be an arquile
variety in U . We say that Y is regular at y ∈ Y if

C〈〈x, y〉〉Py

/
(IY)Py

is a regular local ring. We will see that geometrically, this means that a Zariski
neighborhoodN of y is defined by a regular system of equations (Proposition 1.3.11[4]).
Conversely, if y is a simple solution to f(y) = 0, then Y(f) is regular at y. At a regular
point, a dense subset of the irreducible component of y in Y can be parametrized by
an arquile morphism Ψ∞ : C0〈〈x〉〉k → Y.

Remark. A pathology which comes with this definition is that singular points may
be m-adically isolated from the regular points - which does not correspond to the
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expectation formed by the study of finite-dimensional analytic varieties, in which the
regular points are dense in the Euclidean (as well as in the Zariski) topology. We will
introduce in the next section a weaker, more local concept, to deal with this situation.

Example 1.3.2 ([Hic05]). Let X be the Whitney Umbrella f(y) = y2
1 − y2y

2
3 = 0

and consider the curve y0(t) = (0, t, 0), which is contained in the singular locus of
X. The ideal I = 〈f〉 is saturated (see Theorem 1.3.18) and hence y0 ∈ Ysing(f).
Let Un = y0 + tn · C〈〈t〉〉3. Then Un ∩ Y(f) ⊂ Ysing(f) for all n ≥ 2: Write y ∈ Un
as y(t) = (atn, t + btn, ctn). Then y ∈ Y(f) if a2t2n = (t + btn)c2t2n, and a simple
degree comparison shows that this is only the case when a = c = 0, which means that
y ∈ Ysing(f).

In the following we will formulate an adopted version of the Jacobian criterion,
which will show that an arquile variety can be defined by a regular system at a regular
point.

Definition 1.3.3. Let R be a local integral domain and let A ∈ Mk×l(R). Then the
rank rank(A) of A is the rank of A over the quotient field of R. It is easy to see that
the rank of A coincides with the determinant rank of A over R, that is, rank(A) equals
the size of the largest non-vanishing minor of A. If q is a prime ideal, then by rank(A)
mod q we denote the rank of A over R/q.

Lemma 1.3.4. Let ϕ : R → S be a homomorphism of local integral domains and
let p be the kernel of ϕ. Let A = (ai,j)i,j ∈ Mk×l(R) and let ϕ(A) be the matrix
(ϕ(ai,j))i,j ∈ Mk×l(S). Then rank(A) mod p equals the rank of ϕ(A) over S.

Proof: Observe that if B is a square matrix over R, then det(ϕ(B)) = ϕ(det(B)),
because of Leibniz’ determinant formula. So the minors of A which are not contained
in p correspond to the non-vanishing minors of ϕ(A), which proves the claim.

We can now formulate the usual Jacobian criterion for power series spaces (see for
example [Rui93, p.32], [dJP00, p.154]).

Theorem 1.3.5 (Jacobian Criterion). Let I = 〈f1, . . . , fs〉 be an ideal in C〈〈x〉〉 and
let q be a prime ideal in C〈〈x〉〉 containing I.
(1) The following are equivalent:

(a) C〈〈x〉〉q
/
Iq

is a regular local ring.

(b) rank
(
∂(f1,...,fs)
∂(x1,...,xn)

)
mod q = ht(Iq).

(c) rank
(
∂(f1,...,fs)
∂(x1,...,xn)

)
mod q ≥ ht(Iq).
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(2) Let m = ht(Iq), and let g1, . . . , gm ⊂ I. If rank
(
∂(g1,...,gm)
∂(x1,...,xn)

)
= m mod q, then

g1, . . . , gm generate Iq.

Corollary 1.3.6 ([Rui93, p.31]). Let p be a prime ideal in C〈〈x〉〉 of height m. Then
there exist f1, . . . , fm ∈ p so that an m-minor of ∂(f1,...,fm)

∂(x1,...,xn) is not contained in p.

The following basic facts from Commutative Algebra will be used repeatedly.

Theorem 1.3.7. Let R be a Noetherian local integral domain. Let I be an ideal in R
and let I ⊂ p ⊂ q, where p, q ∈ spec(R).
(1) Let I = I1 ∩ I2 ∩ · · · ∩ Is ∩ Is+1 ∩ · · · ∩ It be an irredundant primary decom-

position of I, arranged so that I1, . . . , Is ∈ q and and Is+1, . . . , It 6∈ q. Then
Iq = I1Rq ∩ · · · ∩ IsRq is an irredundant primary decomposition of I and in par-
ticular, the associated primes of Iq are the localized associated primes of I which
are contained in q.

(2) If Iq = pq, then there exists an h ∈ R\q, so that (I : h) = p and p is an associated
prime of I.

Proof: For (1), we refer to [AM69, p.54]. Let us show (2): Let {f1, . . . , fs} be a set
of generators of I, and choose fs+1, . . . , ft ∈ p so that {f1, . . . , ft} generates p. By
assumption Iq = pq and hence for every j ∈ {s + 1, . . . , t} there exist ri,j ∈ R and
hi,j ∈ R \ q so that

fj =
s∑

k=1

ri,j
hi,j

fi.

Set h = Πi,jhi,j . Then h ∈ R \ q and h · fj ⊂ I for all j, which yields h · p ⊂ I, so
p ⊂ (I : h). Since h ∈ R \ q ⊂ R \ p ⊂ R∗p it follows that Ip = pp. Suppose that p were
a proper subset of (I : h). Then (I : h)Rp = Rp, since (I : h) contains an element of
R \ p ⊂ R∗p. But

(I : h)Rp = (I : h)hRp = IRp = pRp.

Thus pRp = Rp, which implies by Nakayammas lemma that Rp = 0 - a contradiction
and therefore (I : h) = p. This also implies that p ∈ Ass(I).

Definition 1.3.8. LetM(x, y) ∈ Mn×m(C〈〈x, y〉〉) and let y ∈ C0〈〈x〉〉. Then ranky(M)
is the rank of M(x,y(x)) in Mn×m(C〈〈x〉〉), so by definition the rank of M(x,y(x))
over the quotient field of C〈〈x〉〉. By Lemma 1.3.4 it coincides with rank(M) mod Py
and equals the size of the largest minor of M which does not vanish at y.
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The following is a standard argument used in all proofs of Artin’s approximation
theorem (see for example [Pło15]).

Lemma 1.3.9. Let f = (f1, . . . , fm) ∈ C0〈〈x, y〉〉m and let y in Y(f). Then

ranky

(
∂(f1, . . . , fm)

∂(x1, . . . , xn, y1, . . . , yN )

)
= ranky

(
∂(f1, . . . , fm)
∂(y1, . . . , yN )

)
.

Proof: Differentiating f(x,y(x)) = 0 with respect to xj yields the following relation
between the x-derivatives and the y−derivatives:

− ∂f(x, y)
∂xj

∣∣∣∣∣
(x,y(x))

=
N∑
i=1

∂f(x, y)
∂yi

∣∣∣∣
(x,y(x))

∂yi(x)
∂xj

. (1.1)

The linear relations Equation 1.1 between the columns of ∂x(f)(y) and ∂y(f)(y) over
C〈〈x〉〉 imply that the rank of (∂x(f)(y), ∂y(f)(y)) over the quotient field of C〈〈x〉〉 is
the same as the rank of (0, ∂y(f)(y)), and therefore

ranky (∂x(f), ∂y(f)) = ranky (0, ∂y(f)) .

The preceding lemma immediately yields the following reformulation of the Jacobian
criterion (Theorem 1.3.5, Theorem 1.3.5).

Corollary 1.3.10 (Arquile Jacobian Criterion). Let U be an open subset of C0〈〈x〉〉N ,
let I = 〈f1, . . . , fs〉 ⊂ C0〈〈x, y〉〉 and let y ∈ YU (I).

(1) The following are equivalent:

(a) C〈〈x, y〉〉Py

/
IPy

is a regular local ring.

(b) ranky

(
∂(f1,...,fs)
∂(y1,...,yN )

)
= ht(IPy).

(2) Let ht(IPy) = m. If ranky

(
∂(f1,...,fm)
∂(y1,...,yN )

)
= m, then f1, . . . , fm generate IPy .

Proposition 1.3.11. Let U be an m-open subset of C0〈〈x〉〉N and let Y be a non-empty
arquile variety in U . Let S be a system of generators for IY , let y0 ∈ Y and let m be
the height of the localized ideal IY · C〈〈x, y〉〉Py0

at y0 . TFAE:
(1) The point y0 is a regular point of Y.
(2) There exist f1, . . . , fm ∈ S so that an (m×m)-minor ∆ of the partial Jacobian

∂yf of f = (f1, . . . , fm) does not vanish at y0.
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(3) There exist f1, . . . , fm ∈ S with fi(y0) = 0, an (m ×m)-minor ∆ of the partial
Jacobian ∂yf of f = (f1, . . . , fm) which does not vanish at y0, so that

YU (f1, . . . , fm) \ Y(∆) = Y \ Y(∆).

(4) There exist f1, . . . , fr ∈ C〈〈x, y〉〉 with fi(y0) = 0, an (m ×m)-minor ∆ of the
partial Jacobian ∂yf of f = (f1, . . . , fm) which does not vanish at y0, so that

YU (f1, . . . , fm) \ Y(∆) = Y \ Y(∆).

Proof: The equivalence of (1) and (2) is the preceding Jacobian Criterion and (3) ⇒
(4) is trivial. Set I = IY . WLOG we may assume that ∆ = det

(
∂(f1,...,fm)
∂(y1,...,ym)

)
.

(2) ⇒ (3) Because of the Jacobian Criterion, the ring C〈〈x, y〉〉Py0
/IPy0

is a regular
local ring and hence an integral domain ([dJP00, p. 167]), whence IPy0

is prime and
coincides with the localization of a prime p ∈ spec(C〈〈x, y〉〉). Let I0 = 〈f1, . . . , fm〉.
The localization (I0)Py0

coincides with IPy0
(Theorem 1.3.10(2)), and is hence prime.

By Theorem 1.3.7, there exists an h ∈ C〈〈x, y〉〉 \ Py0 , so that (I0 : h) = p. Then set
f̃i = h2 · fi and let I1 be the ideal in C〈〈x, y〉〉 generated by the f̃i. Observe that h
divides ∆̃ = det

(
∂(f̃1,...,f̃m)
∂(y1,...,ym)

)
and that ∆̃(y) = h2(y) ·∆(y) for all y ∈ Y(f1, . . . , fm),

in particular

Y(f1, . . . , fm) \ (Y(∆) ∪ Y(h)) = Y(f̃1, . . . , f̃m) \ Y(∆̃) (1.2)

It is easily seen that (I1 : h3) = (h2I0 : h3) = (I0 : h). The inclusion of ideals I1 ⊂ I ⊂ p

yields YU (I1) ⊃ YU (I) ⊃ YU (p). Let y ∈ YU (I1) \ Y(∆̃). As h divides ∆̃, h(y) 6= 0.
If g ∈ p, then h3 · g ∈ I1, whence (h3 · g)(y) = 0, and hence g(y) = 0. This shows
YU (f̃1, . . . , f̃m) \ Y(∆) ⊂ YU (p), and thus YU (f̃1, . . . , f̃m) \ Y(∆̃) = YU (I) \ Y(∆̃) =
Y \ Y(∆̃).
(4) ⇒ (1) By assumption, y0 is a simple solution to f(y0) = 0, so we can apply The-
orem 1.2.4. Let z = (z1, . . . , zN−r) be a set of new variables, let Ψ(x, z) ∈ C0〈〈x, z〉〉N

and εΨ as in Theorem 1.2.4. The image of Ψ∞ : C0〈〈x〉〉N−r → C0〈〈x〉〉N is contained
in Y(f) \ Y(∆), so Ψ∞(z) ∈ Y for every z ∈ Ψ−1

∞ (U). Let g ∈ I. Then g∞ ◦Ψ∞ = 0
on Ψ−1

∞ (U) and thus g(x,Ψ(x, z)) = 0 by Theorem 1.2.2. So g ∈ K := ker(εΨ) and
I ⊂ K. We claim that IPy0

is prime, i.e. that y0 is contained in exactly one irreducible
component of Y. Let Y1, . . . ,Yl be the irreducible components of Y that contain y0,
let Ii = IYi . By Theorem 1.2.4[6], K is U -saturated and therefore YU (K) is irreducible.
The localization of 〈f1, . . . , fr〉Py0

coincides with KPy0
and fi ∈ K, hence there exists
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an h ∈ C〈〈x, y〉〉 \ Py0 so that (〈f1, . . . , fr〉 : h) = K. Equation 1.2 and the proof of (2)
⇒ (3) shows that Y(f1, . . . , fr) \ Y(∆ · h) = YU (K) \ Y(∆ · h) = Y \ Y(∆ · h). The
compliment Y \ Z of a proper closed subset Z of an irreducible set Y is dense in Y.
Therefore

YU (K) = YU (K) \ YU (∆ · h) =
l⋃

i=1
Yi \ Y(∆ · h).

Since YU (K) is irreducible, it follows that YU (K) = Yi0 \ Y(∆ · h) = Yi0 for one
i0 ∈ {1, . . . l} and that Yi \Y(∆ ·h) = ∅ for i 6= i0. As both K and Ii0 are U -saturated,
we obtain that K = Ii0 = I1, so K is associated to I. Since ∆ · h 6= 0, it follows in
particular that y0 is contained only in the component YU (K). Let I = I1 ∩ · · · ∩ Ik
be the decomposition of I into its associated prime. The associated primes of IPy0

are the localizations of those associated primes which are contained in Py0 , and since
I is radical and only one associated prime is contained in Py0 , we have obtain that
IPy0

= KPy0
. But KPy0

= 〈f1, . . . , fm〉Py0
(Theorem 1.2.4(5)), and once more the

Jacobian Criterion implies the regularity of C〈〈x, y〉〉/KPy0
= C〈〈x, y〉〉/IPy0

.

Definition 1.3.12. A pair (f,∆) as in (3) of the previous theorem is called a regular
pair.

Theorem 1.3.13. Let U be an m-open subset of C0〈〈x〉〉N , let Y be a non-empty arquile
subset of U and let Y = Y1 ∪ · · · ∪ Yl be the irreducible components of Y.
(1) The regular locus is covered by a finite number of arquile open subsets of the form
YU (f1, . . . , fm) \ Y(∆), where (f,∆) is a regular pair for Y.

(2) The pairwise intersections Yi ∩ Yj (i 6= j) of the irreducible components are
contained in the singular locus of Y.

(3) A point y lies in the regular locus Reg(Y) if and only y is contained in exactly
one component Yi and in the regular locus of Yi.

(4) The singular locus is an arquile closed proper subset of Y. The height of the
defining ideal of Sing(Y) is strictly larger than the height of IY .

(5) There exists a finite filtration of Y by arquile closed subsets Y = W0 ⊃ W1 ⊃
W2 ⊃ · · · ⊃ Wk = ∅ so that each locally closed subset Wi \ Wi+1 admits a finite
covering as in (1).

Proof: Let I1 = IY1 , . . . , Il = IYl be the associated primes of I = IY , and let y ∈ Y.
Since I = I1∩· · ·∩Il and hence IPy is radical, IPy is the intersection (Ii1)Py∩· · ·∩(Iik)Py

of the localization of those associated primes Iij which are contained in Py ([dJP00,
p.33]).
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(1) The arquile Zariski topology is Noetherian and therefore every open subset is
compact (see [Har77b, p.80]). By the previous theorem every regular point has a
neighborhood Y(f) \ Y(∆) induced by a regular pair, so these sets form an open
covering of Reg(Y), which can be reduced to a finite covering because Reg(Y) is
compact.
(2) If y ∈ Yi ∩Yj for i 6= j, then the localization IPy is not a prime ideal and hence Y
cannot be regular at y.
(3) If y ∈ Yi and y is not contained in any other component Yj , then IPy = (Ii)Py .
Then it follows directly from the definition that y ∈ Reg(Y) if and only if y ∈ Reg(Yi).
Conversely, if y ∈ Reg(Y), then IPy is prime. Since IPy is prime, there exists hence
exactly one Ij which is contained in Py - which means that y ∈ Yj and y 6∈ Yi for
i 6= j.
(4) Let I = IY . Assume at first that Y is irreducible, i.e. that IY is prime and let
m = ht(I). Then by Theorem 1.3.5 there exist f1, . . . , fm ∈ I so that an m−minor
∆ of ∂(f1,...,fm)

∂(x1,...,xn,y1,...,yN ) is not contained in I. Since I is U -saturated, this means that
there exists a point y ∈ Y(I) so that ∆(y) 6= 0. By Lemma 1.3.9, we can assume that
∆ is a minor of the partial Jacobian ∂yf . Then the arquile version of the Jacobian
criterion (Theorem 1.3.10) implies that y ∈ Reg(Y), so Reg(Y) is non-empty. Denote
by Jy(I) the ideal generated by I and all m-minors of ∂yf, of all f = (f1, . . . , fm)
whose components fi are contained in I. The singular locus Sing(Y) is then given
by YU (J (I)) (Theorem 1.3.10) and is hence closed. Since I ( Jy(I) ⊂ ISing(Y), the
height of ISing(Y) is strictly larger than the height of I, which shows (2) if I = IY is
irreducible. Now let I be arbitrary. The singular locus is composed of the union of
the singular loci Sing(Yi) of the irreducible components and the pairwise intersection
Yi ∩ Yj (i 6= j) (because of (2) and (3)), so

Sing(Y) =
⋃
i

Sing(Yi) ∪
⋃
i 6=j
Yi ∩ Yj =

⋃
i

YU (Jy(Ii)) ∪
⋃
i 6=j
YU (Ii + Ij) =

= YU

⋂
i

⋂
i 6=j

(Ii + Ij) ∩ Jy(Ii)

 .
As I1 ∩ · · · ∩ Il is irredundant, the height of Ii + Ij must be strictly larger than
max{ht(Ii),ht(Ij)}. We have already seen that ht(Jy(Ii)) > ht(Ii). Therefore the
height of (Ii + Ij) ∩ Jy(Ii) is strictly larger than ht(I) = min ht(Ii), and the same
holds for the intersection of all (Ii + Ij) ∩ Jy(Ii). The height of the saturated ideal
can be only larger, whence ht(ISing(Y)) > ht(IY).
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(5) Set W1 = Sing(Y), W2 = Sing(W2) ⊂ W1 and so on. This descending chain of
closed subsets becomes eventually stationary. Since Wi \ Wi+1 = Wi \ Sing(Wi), the
finite covering by open sets induced by regular system follows directly from (1).

Corollary 1.3.14. Let Y be an arquile variety, let y be a regular point of Y, let Yi
be the irreducible component which contains Y and let m = ht(Yi). Then there exists
an injective arquile map Ψ∞ : W → Yi, defined on an open subset W of C0〈〈x〉〉N−m,
which has dense image in Yi.

Proof: Since Y is regular at y, it follows from the previous theorem that y ∈ Reg(Yi).
Let (f,∆), f = (f1, . . . , fm) be a regular pair for Yi at y. Then by Theorem 1.2.4
there exists an injective arquile map Ψ∞ : C0〈〈x〉〉N−m → Y(f) \ Y(∆). The restric-
tion of Ψ∞ to W = Ψ−1

∞ (U) maps W to YU (f) \ Y(∆) = Yi \ Y(∆). Let εΨ be
defined as in Theorem 1.2.4, K = ker(εΨ). Then 〈f1, . . . , fm〉Py = KPy = (Ii)Py by
Theorem 1.2.4(5) and Theorem 1.3.10(2), and therefore Ii = K. Suppose now that
g ∈ C〈〈x, y〉〉 vanishes on Ψ∞(W ). Then g(x,Ψ(x, z(x))) = 0 for all z(x) ∈ W , hence
g(x,Ψ(x, z)) = 0 because of the Identity Theorem Theorem 1.2.2, hence g ∈ K and
thus K = IIΨ∞(W ) . Therefore Yi = YU (K) = YU (IΨ∞(W ) = Ψ∞(W ), as claimed.

Corollary 1.3.15. The regular locus of an arquile variety Y ⊂ U is Zariski-dense in
Y.

Proof: Assume at first that Y is irreducible in U , so that IY is prime. Because of the
previous theorem we know that Sing(Y) is a proper arquile subset of Y. Since Y is
irreducible, it follows that Reg(Y) = Y\Sing(Y) is dense in Y. Let now Y be arbitrary,
Ass(I) = { I1, . . . , Il }, and Yi = YU (Ii) the irreducible components. We claim that
Sing(Y) ∩ Yi is a proper subset of Yi for every 1 ≤ i ≤ l. Assume contrarily that
there exists a component Yi0 such that Yi0 ⊂ Sing(Y). WLOG i0 = 1. In particular,
this means that the regular locus of Y1 is completely covered by the other components
(Theorem 1.3.13(4)), so we can write Y as Sing(Y1) ∪ Y2 ∪ · · · ∪ Yl and further as
Y1,1 ∪ · · · ∪ Y1,s ∪ Y2 ∪ · · · ∪ Yl, where Y1,1, . . . ,Y1,s are the irreducible components of
Sing(Y1). This decomposition can be reduced to an irredundant decomposition, and
the uniqueness implies that Y1 = Y1,j for some 1 ≤ j ≤ s. But then we obtain the
contradiction Y1 ) Sing(Y1) ⊃ Y1, which shows that Yi \ Sing(Y) 6= ∅. So

Reg(Y) = Y \ Sing(Y) =
l⋃

i=1
Yi \ Sing(Y) =

l⋃
i=1
Yi = Y.
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1.3.1 Characterization of saturated ideals and a dual version of AAT

Theorem 1.3.16. A prime ideal I ⊂ C〈〈x, y〉〉 is U -saturated if and only if there exists
a point y ∈ YU (I) so that (C〈〈x, y〉〉/I)Py is regular.

Proof: Assume at first that I is saturated, so that I = IYU (I). By Proposition 1.3.11,
the regular locus of YU (I) is non-empty, so there exists a y ∈ YU (I) so that (C〈〈x, y〉〉/I)Py

is regular. Conversely, suppose that there exists a point y ∈ YU (I) so that (C〈〈x, y〉〉/I)Py

is regular. By Theorem 1.3.10 IPy is generated by f1, . . . , fm ∈ I, which satisfy that
an m-minor of ∂y(f), f = (f1, . . . , fm), does not vanish at y. By Theorem 1.2.4, the
local ideal 〈f1, . . . , fm〉Py is the localization KPy of a U -saturated prime K ⊂ C〈〈x, y〉〉
of height m. But since the prime ideals of C〈〈x, y〉〉 included in Py are in a one-
to-one correspondence with the primes of C〈〈x, y〉〉Py , K = I and in particular, I is
U -saturated.

Corollary 1.3.17. A radical ideal I ⊂ C〈〈x, y〉〉 is U -saturated if and only there exists
for every associated prime Ii of I a point y ∈ YU (Ii) such that (C〈〈x, y〉〉/I)Py is
regular.

Proof: Let I = I1 ∩ · · · ∩ Is be the decomposition of I into its associated primes. By
Theorem 1.1.3, I is saturated if and only if all Ij are saturated. Then the characteri-
zation follows immediately from the previous theorem.

If the generators of the ideal I do not depend on the parameter x, then the curve
selection lemma can be applied to conclude that not all solutions to f(y) = 0 are
contained in Sing(Y(I)). This shows that I is saturated. However, by Example 1.3.2,
I might not be U -saturated if U is an m-adic neighborhood U of a point y ∈ Sing(Y).

Corollary 1.3.18. Let I ⊂ C〈〈x, y〉〉 be an ideal which is generated by series that do
not depend on x, let J = I ∩ C〈〈y〉〉.
(1) If I is a radical ideal, then I is saturated.
(2) If I is prime, then Y(I) is irreducible.
(3) If J ⊂ C[y] is radical, then I is saturated and Y(I) is irreducible if and only if

J is analytically irreducible.

Proof: (1), (2) Let J = I ∩ C〈〈y〉〉, let J = J1 ∩ · · · ∩ Js the decomposition of J into
its associated primes and let Xi be the irreducible analytic space germ defined by Ji.
Because of the curve selection lemma ([Mil68]), we can choose for every component
Xi an arc y(x1) ∈ C0〈〈x1〉〉N , which does not lie completely in the singular locus of Xi.
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The Jacobian Criterion together with the fact that ht(Ji) = ht(Ji · C〈〈x, y〉〉) implies
that (C〈〈x, y〉〉Py/IiC〈〈x, y〉〉Py) is regular, which by the previous theorem implies that
Ji · C〈〈x, y〉〉 is saturated. By assumption, I = J · C〈〈x, y〉〉. The associated primes
of I are Ii = JiC〈〈x, y〉〉 of I = J · C〈〈x, y〉〉 are therefore all saturated, and thus I is
saturated by Theorem 1.1.3.
(3) I = J · C〈〈x, y〉〉 is a radical ideal whenever J is a radical ideal. The irreducible
components of Y(I) stem from the components of the analytic space germ defined by
J in (CN , 0), which shows the second claim.

Let Φ: C{z} → C{w} be a C-algebra homomorphism between two rings of conver-
gent power series, given by substitution of z by a vector of convergent series ϕ(w).
The morphism naturally extends to Φ̂ : C [|z|]→ C [|w|]. Grothendieck ([Gro62]) asked
whether it is true that the kernel of Φ̂ is generated by the convergent relations, the
kernel of Φ. A. Gabrielov gave a counter-example in ([Gab71]), and later ([Gab73])
gave conditions in terms of the generic rank of ϕ, under which the problem admits a
positive answer.

Theorem 1.3.19 (Gabrielov, [Gab73], [BZ79, p.47]). Let R = C{z}, S = C{w} be
rings of convergent power series, z = (z1, . . . , zn), w = (w1, . . . , wk) and let Φ: R→ S,

be the C-algebra homomorphism f(z) 7→ f(ϕ(w)). Denote by Φ̂ : C [|z|] → C [|w|] the
extension of Φ to the completions of R and S. Set

r1 = grk(Φ), r2 = dim
(
C [|z|]

/
ker(Φ̂)

)
, r3 = dim

(
C{z}

/
ker(Φ)

)

Then r1 ≤ r2 ≤ r3 and if r1 = r2, then r2 = r3 and k̂er(Φ) = ker Φ̂.

We note that if Φ is induced by algebraic series, and r4 denotes the dimension of the
quotient of C〈z〉 by the kernel of the restriction of Φ to C〈z〉, then r3 ≤ r4. Describing
the kernel of a morphism Φ between analytic rings can be reformulated as a Nested
Artin Approximation problem involving the coordinates of ϕ. Since the Nested Artin
Approximation Problem admits a positive answer in the case of algebraic series (as a
consequence of Popescu’s General Néron Desingularization Theorem), Grothendieck’s
question can be answered in the affirmative in the algebraic case. In [Ron13] G. Rond
shows that if Φ is induced by algebraic series, then r1 = r4 and as a consequence we
obtain that the convergent, formal relations, respectively, are generated by the alge-
braic relations.
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We now turn to a similar problem. Let W ⊂ C0{x}N be a set of convergent power
series, then is it true that the analytic relations IW onW generate the formal relations
ÎW ? If W = {y} consists only of one point, then the question is easily answered in
the affirmative: Consider Φ = εy : C{x, y} → C{x}, f(x, y) 7→ f(x,y(x)). Then
ker Φ̂ = k̂er Φ follows already from the fact that C{x} → C [|x|] is a flat extension. If
Y is an irreducible arquile variety, then a Zariski-dense subset of Y can be parametrized
by an arquile map Ψ∞ (Theorem 1.2.4), and dually IY is given by the kernel of the
associated morphism εΨ. In this manner we can relate our question to Gabrielov’s
Theorem.

Theorem 1.3.20. Let C〈〈x〉〉 ∈ {C{x},C〈x〉} be either the ring of algebraic or con-
vergent power series. Let Y be an arquile variety in an m-adically open subset U of
C0〈〈x〉〉N . Then the ideal of relations on Y within C〈〈x, y〉〉 generates the ideal of formal
relations on Y, that is,

ÎY = IY · C [|x, y|] .

Proof: Assume at first that IY is prime. Let y ∈ Reg(Y) (Theorem 1.3.13) and let
(f,∆) be a regular system for Y at y. Let Ψ(x, z) be as in Theorem 1.2.4 through
y. Then as in Theorem 1.3.16 it follows that IY = ker(εΨ), where εΨ : C〈〈x, y〉〉 →
C〈〈x, z〉〉, f(x, y) 7→ f(x,Ψ(x, z)). Let g(x, y) ∈ ÎY . Then g(x,Ψ(x, z(x))) = 0 for all
z ∈ Ψ−1

∞ (U), since Ψ(x, z(x)) ∈ Y. The Identity Theorem (Theorem 1.2.2) implies
then that g(x,Ψ(x, z)) = 0 and therefore ÎY ⊂ ker(ε̂Ψ). By Theorem 1.2.4

grk(εΨ) = n+N −m = dim
(
C〈〈x, y〉〉

/
ker(εΨ)

)
,

and thus εΨ satisfies Gabrielov’s rank condition. So we can apply Gabrielov’s theorem
(Theorem 1.3.19) to conclude that k̂er(εΨ) = ker(ε̂Ψ) and therefore ÎY ⊂ IY ·C [|x, y|].
The converse inclusion is trivially satisfied and hence ÎY = IY · C [|x, y|]. Now the
general case. Let IY = IY1 ∩ · · · ∩ IYs be the decomposition of IY into its associated
primes and let YU (Ii) = Yi be the irreducible components of Y. Then

ÎY = ÎY1∪···∪Ys =
s⋂
i=1
ÎYi =

s⋂
i=1

(IYi · C [|x, y|]) (?)=
(

s⋂
i=1
IYi

)
· C [|x, y|] = IY · C [|x, y|]

where (?) follows from the fact that
(⋂k

i=1 Ji
)
·C [|x, y|] = J1 ·C [|x, y|]∩· · ·∩Js ·C [|x, y|]

for arbitrary ideals Ji ⊂ C〈〈x, y〉〉 (see [Rui93, p.100]).
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1.3.2 Weak Regularity

Example 1.3.2 shows that singular points may be isolated from regular points in the
m-adic topology. To remedy this problem, we introduce a weaker notion of regularity,
which is a local concept with respect to the m-adic topology.

Definition 1.3.21. Let U be an m-open subset of mC〈〈x〉〉N and let Y ⊂ U be an
arquile subset. We say that Y is weakly regular at y ∈ W , if there exists an m-adic
neighborhood W of y, f1, . . . , fm ∈ C〈〈x, y〉〉, so that

YW (f1, . . . , fm) = Y ∩W

and such that an m−minor ∆ of ∂y(f) vanishes nowhere on W . So Y is weakly reg-
ular at y ∈ Y, if Y can be defined in an m-adic neighborhood by a regular system.
As expected, regularity implies weak regularity, but the converse is not true (Exam-
ple 1.3.23).

Lemma 1.3.22. If y is a regular point of the arquile subset Y in U , then Y is weakly
regular at y.

Proof: By Proposition 1.3.11, there exists a regular pair (f,∆) so that YU (f)\Y(∆) =
Y \ Y(∆). As ∆ does not vanish at y, there exists an m-adic neighborhood W of y in
U on which ∆ stays non-zero. But then

W ∩ Y(f) = W ∩ (YU (f) \ Y(∆)) = W ∩ Yi,

and therefore Y is weakly regular at y.

Example 1.3.23. The Whitney umbrella (Example 1.3.2) Y = Y(y2
1− y2y

2
3) provides

an example of a weakly regular but non-regular point. We have seen that (0, t, 0) ∈
Sing(Y). But Y ∩ Un is given by the equations y1 = 0, y3 = 0, where Un = (0, t, 0) +
tn · C〈〈t〉〉3, n ≥ 2. So Y is weakly regular at y.

Definition 1.3.24. The local ideal I(Y,y) of an arquile variety Y at y ∈ Y is given by
all g ∈ C〈〈x, y〉〉 which vanish some m-adic neighborhood of y in Y. It corresponds to
the defining ideal of the germ (with respect to m-adic local equivalence) of Y at y.

The Noethernity of C〈〈x, y〉〉 implies that I(Y,y) = IW∩Y for every sufficiently small
neighborhoodW of y. Indeed, the set of ideals {IY∩W |W is an m− neighborhood of y}
has a maximal element IY∩W0 . If now W ⊂ W0, then IW∩Y ⊃ IW0∩Y , and therefore
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IW∩Y = IW0∩Y because IW0∩Y is maximal. It follows that I(Y,y) = IY∩W for every
neighborhood W contained in W0. Also weak regularity can be characterized by an
adopted Jacobian criterion.

Theorem 1.3.25. Let U be an m-open subset of C0〈〈x〉〉N and let Y be an arquile
subset of U . The following are equivalent:
(1) Y is weakly regular at y.
(2) C〈〈x, y〉〉Py

/
I(Y,y) · C〈〈x, y〉〉Py

is a regular local ring.

Proof: Pick a sufficiently small neighborhood W0 of y such that IW∩Y = I(Y,y) for
every neighborhood W ⊂W0 and let Z = W0 ∩Y be the corresponding arquile subset
of W0. (2)⇒(1) Then y is a regular point of Z (Theorem 1.3.10) and hence a weakly
regular point of Z ( Lemma 1.3.22). So Z and therefore Y is defined in an m-adic
neighborhood of y by a regular system, which means that Y is weakly regular at y.
(1) ⇒ (2) Let W ⊂ W0 be a neighborhood of y so that Y ∩W = Y(f1, . . . , fm) ∩W
and an m-minor ∆ of ∂y(f), f = (f1, . . . , fm), vanishes nowhere on W . In particular,
Y ∩W = Y ∩W \ Y(∆) = (Y(f1, . . . , fm) ∩W ) \ Y(∆). It follows now from Propo-
sition 1.3.11(4) that y is a regular point of the arquile subset Y ∩ W of W , which
means that C〈〈x, y〉〉Py/IY∩WC〈〈x, y〉〉Py is regular. The fact IY∩W = I(Y,y) concludes
the proof.

Theorem 1.3.26. The weakly regular points of an arquile variety Y ⊂ U are dense
in Y.

Proof: Let y ∈ Y and let W be an arbitrary m-adic neighborhood of y. By Propo-
sition 1.3.11, the regular locus of (W ∩ Y) is non-empty. Let y1 ∈ Reg(W ∩ Y).
Then (W ∩ Y) and thus Y is weakly regular at y1. Since W was arbitrary, the claim
follows.

1.4 Factorization of the regular locus

In this section, we deal with the parametrization of the solution set of a regular system
Y(f) \ Y(∆), where ∆ is a maximal minor of ∂yf . The open subset C0〈〈x〉〉N \ Y(∆)
is partitioned into the strata Sd, on which the xn-order of ∆ is d. Each stratum Sd is
then partitioned into a family (Vz)z∈Rd of C〈〈x〉〉-submodules, along which f∞ can be
linearized. The family of submodules can be trivialized to a product Zd×C〈〈x〉〉N of a
textile cofinitely locally closed subset Zd of a module C〈〈x′〉〉 over the power series space
C〈〈x′〉〉 in one variable less and a free module C〈〈x〉〉N . We will show then that Y(f)∩Sd
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is isomorphic to a product Z∗d ×C〈〈x〉〉N−m of a local arquile subvariety Z∗d of C〈〈x′〉〉N ′

with C〈〈x〉〉N−m, where m is the co-dimension of Y(f). This construction follows the
proof of Płoski’s desingularization theorem ([Pło74], [Pło15]). The variety Z∗d may
be singular, but since the weakly regular points of an arquile variety are dense in the
arquile topology, this construction can be generically iterated to locally factorize Z∗d
into a product of a variety of a power series space in two variables less and so forth.
This will show that at a generic point an arquile variety is locally isomorphic to a
nested product mµ1

1 C〈〈x1〉〉N1 × mµ2
2 C〈〈x1, x2〉〉N2 × · · · × mµn

n C〈〈x1, . . . , xn〉〉Nn , where
mk = 〈x1, . . . , xk〉 denotes the maximal ideal of C〈〈x1, . . . , xk〉〉.

Definition 1.4.1. Let f = (f1, . . . , fm) ∈ mC〈〈x, y〉〉m and assume that m ≤ N . Fix
a minor ∆ of the partial Jacobian ∂y(f). After reordering the y-coordinates we may
assume that

∆ = det
(

∂(f1, . . . , fm)
∂(yN−m+1, . . . , yN )

)
.

We split y accordingly into two variable blocks: Set y(1) = (y1, . . . , yN−m) and y(2) =
(yN−m+1, . . . , yN ), so that y = (y(1), y(2)). The partial y-Jacobians are then

∂y(1)(f) := ∂(f1, . . . , fm)
∂(y1, . . . , yN−m) = ∂f

∂y(1)

∂y(2)(f) := ∂(f1, . . . , fm)
∂(yN−m+1, . . . , yN ) = ∂f

∂y(2)

For y ∈ C0〈〈x〉〉N let D(y) be the diagonal matrix

D(y) := diag(∆2(y), . . . ,∆2(y)︸ ︷︷ ︸
N−m times

, g(y), . . . , g(y)︸ ︷︷ ︸
m times

)

and let Vy be the affine submodule of C〈〈x〉〉N (as in Theorem 1.2.4)

Vy := y +
(

∆2(y) · C0〈〈x〉〉N−m

∆(y) · C0〈〈x〉〉m

)
= y +D(y) · C0〈〈x〉〉N .

We will write elements of Vy as y + v, and v = D(y) · a. A key observation is that
even though the modules Vy depend in a nonlinear way on y, the module Vy does not
change along itself, that is, Vy+v = Vy for all y and v = D(y) ·a. Let v = (v1, . . . , vN )
and a = (a1, . . . , aN ) be two pairs of new variables.
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Theorem 1.4.2. Let ∆ and Vy be defined as above and assume that ∆ ∈ C0〈〈x, y〉〉.

(1) There exists a unit u(x, z, a) so that ∆(x, z +D(x, z)a) = u(x, z, a) ·∆(x, z).
(2) For any y ∈ C0〈〈x〉〉N ,v = D(y) · a ∈ C〈〈x〉〉N ,

Vy+v = Vy. (1.3)

Proof: We expand ∆(x, z + v) = ∆(x, z) + L(x, z) · v + q(x, z, v). Let us substitute
v = D(x, z)a. Since q(x, z, v) is quadratic in v, we can factor it into q̃(x, z, a)∆(x, z)2,
where q̃ is quadratic in a. We factor D(x, z) into ∆(x, z) · D̃(x, z), where D̃(x, z) =
diag(∆(x, z), . . . ,∆(x, z), 1, . . . , 1). Hence

∆(x, z + v) = ∆(x, z) + L(x, z) ·D(x, z) · a+ ∆(x, z)2q̃(x, z, a) =

= ∆(x, z) (1 + L(x, z)D̃(x, z)a+ ∆(x, z)q̃(x, z, a))︸ ︷︷ ︸
=:u(x,z,a)

.

The series u(x, z, a) is a power series with non-vanishing constant term and hence a
unit. In particular, D(y) and D(y + v) coincide up multiplication with an invertible
diagonal matrix and consequently the modules generated by the columns of both
matrices coincide. Since v = D(y)a,

Vy+v = y +D(y)a +D(y + v)C0〈〈x〉〉N = y +D(y)a +D(y) · C0〈〈x〉〉N =

= y +D(y) · C0〈〈x〉〉N = Vy,

and the claim follows.

Remark. The statement of the previous theorem is true for any module of the form
y +G(y) · C0〈〈x〉〉N , where G(y) is a diagonal module 〈g(y)p1〉 × · · · × 〈g(y)pN 〉.

Theorem 1.4.3. There exists a series h(x, z, a) ∈ C0〈〈x, z, a〉〉N with ∂ah(0) = idCN ,
so that

f(y +D(y)a) = f(y) + ∂yf(y)D(y)h(y,a). (1.4)

Proof: As usually we expand f(x, z + v) = f(x, z) + ∂yf(x, z)v + q(x, z, v), where

q(z, v) =
∑

1≤i,j≤N
qi,j(z, v)vivj .
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Substituting v by v = D(y)a yields

q(y,v) =
∑

1≤i,j≤N
qi,j(y, D(y)a)∆(y)li+ljaiaj ,

where

li =

2 if i ∈ {1, . . . , N −m}

1 if i ∈ {N −m+ 1, . . . , N}

Since li + lj ≥ 2, we can factor out ∆(y) so that q(y, D(y)a) = ∆2(y)q̃(y,a), where
q̃(x, z, a) ∈ C0〈〈x, z, a〉〉m is at least quadratic in a. Let ∂∗

y(2)f denote the classical
adjoint of ∂y(2)f . Then

∆2(y)q̃(y,a) = (∂y(2)f(y))(∂∗y(2)f(y))∆(y) · q̃(y,a)

= (∂y(2)f(y))∆(y)(∂∗y(2)f(y)) · q̃(y,a)

= ∂yf(y,a) ·D(y)

 0
(∂∗
y(2)f(y)) · q̃(y,a)


︸ ︷︷ ︸

p(y,a)

,

where p(x, z, a) = (0, . . . , 0, ∂∗
y(2)f(x, z, a) · q̃(x, z, a)) ∈ C0〈〈x, z, a〉〉N . If we set now

h(x, z, a) = a+ p(x, z, a), then

f(y +D(y)a) = f(y) + ∂yf(y) ·D(y)a + ∂yf(y,a) ·D(y)p(y,a) =

= f(y) + ∂yf(y) ·D(y)h(y,a)

as claimed.

Remark. For every y the map a 7→ h(x,y,a) is an arquile automorphism of C0〈〈x〉〉N

(by Theorem 1.1.7). The previous theorem shows that up to a coordinate change in
a, the map f∞(y + D(y) · a) is linear in a. In [HW16], modules with properties
Equation 1.3 and Equation 1.4 were dubbed Division Modules, providing an abstract
setting in which the linearization works. However, the only known examples of such
modules are diagonal modules of the form y + 〈∆(y)l1〉 × · · · × 〈∆(y)lN 〉, where the
exponents satisfy li + lj ≥ lk + 1 for all i, j ∈ {1, . . . , N} and k ∈ {N −m+ 1, . . . , N}.

Remark. A consequence of Theorem 1.4.2 is that the relation y ∼ y′ : ⇔ y ∈ Vy′
defines an equivalence relation (if ∆ does not have a constant term) on C0〈〈x〉〉N . If
N is now a canonical normal form (that is, there exists for each Vy a unique z ∈ N so
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that Vz = Vy), then N ×C0〈〈x〉〉N → C0〈〈x〉〉N , (z,a) 7→ z+D(y)a is an isomorphism,
which trivializes the module bundle (Vy)y∈N . Using a variation of the Weierstrass
Division, we will show that locally the normal form can be chosen as a space of xn-
polynomials. This corresponds to the induction step in Płoski’s proof. In order to
be able to apply the Weierstrass-Grauert Division Theorem with respect to ∆(y), we
have to restrict to strata on which ∆(y) is xn-regular of a fixed order d.

Definition 1.4.4. If h(x) is any power series in x = (x1, . . . , xn), we define the xn-
order ordxn h(x) as the order of h(0, xn). We set

Sd =
{
y ∈ C0〈〈x〉〉N | ordxn ∆(y) = d

}
and S =

⋃
d≥1 Sd. Note that if ∆(y) 6= 0, then one can apply a linear coordinate change

in the x-variables so that ∆(y) becomes xn regular. The condition ordxn ∆(y) = d

means ord ∆(0, xn,y(0, xn)) = d and depends only on a finite number of polynomial
equalities and inequalities in the d-jet of y(0, xn). Indeed, let

y(0, xn) = p(xn) = (
∞∑
j=1

p1,jx
j
n, . . . ,

∞∑
j=1

pN,jx
j
n)

and expand
∆(0, xn,p(xn)) =

∑
Gk(pi,j)xkn,

where the Gk are polynomials in the coefficients of p(xn). Each Gk only depends on
(pi,j)1≤i≤N,1≤j≤k, so on the k−jet of p(xn). Hence the set Sd is given by

G1(pi,j) = 0

G2(pi,j) = 0
...

Gd−1(pi,j) = 0

Gd(pi,j) 6= 0

which means that Sd is a cofinitely textile locally closed set. Since the conditions only
depend on finitely many coefficients, Sd is open in the m-adic topology. We will now
turn to the division by D(y). In principle, we want to apply on each component the
ordinary Weierstraß division, so that we can decompose y into D(y)a+z, where z is a
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vector of xn-polynomials of fixed maximal degrees. But since we require the quotient
a to vanish at zero, this means dividing by (x1∆(y), . . . , xn∆(y)), so we have to apply
the more general Grauert-Hironaka Division. For d ∈ N, set

Pd := { p ∈ C〈〈x′〉〉[xn] | degxn(p) ≤ d } P̂d := { p ∈ C
[
|x′|
]
[xn] | degxn(p) ≤ d }

Rd := Cxdn ⊕ Pd−1 ⊂ Pd R̂d := Cxdn ⊕ P̂d−1 ⊂ P̂d

Lemma 1.4.5. Let g(x) ∈ C〈〈x〉〉 be xn-regular of order d. Then for every h(x) ∈
C〈〈x〉〉 there exist unique a(x) ∈ C0〈〈x〉〉 and z(x) ∈ Rd such that

h(x) = g(x)a(x) + z(x).

Proof: Fix d ∈ N and let < be a monomial order on C〈〈x〉〉 so that It<(p) = p0,dx
d
n,

whenever p(x) is xn−regular of order d. The set {x1g(x), . . . , xng(x)} is a standard
basis of the ideal g ·C0〈〈x〉〉. The initial module of g(x) ·C0〈〈x〉〉 is hence generated by
{xd+1

n xdnxn−1, . . . , x
d
n, x1}. The remainder space of in the Grauert-Hironaka division

(Theorem 2.3.6) by g · C0〈〈x〉〉 is therefore Rd and thus there exist a unique vector
q = (qn, . . . , q1) ∈ C〈〈x〉〉Γ and z(x) ∈ Rd so that h = qnxng + . . . q1x1q + z = ga + z,
where a = qnxn+· · ·+q1x1, which shows the existence. In the case that we are working
with algebraic power series, so if C〈〈x〉〉 = C〈x〉, we observe that Hironaka’s box
condition is satisfied, which guarantees that that the remainder z is again algebraic.
Hence g(x)a(x) = h(x) − z(x) is algebraic, and as the Weierstrass Division theorem
is valid for the ring of algebraic power series, also a(x) is algebraic. Concerning the
uniqueness: Let ã ∈ C0〈〈x〉〉, z̃ ∈ Rd with h(x) = g(x)ã(x)+z̃(x). Since {x1g, . . . , xng}
is a standard basis, the remainder is unique, hence z = z̃, and consequently a = ã.
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Theorem 1.4.6. For d ∈ N let

Zd =
{
z = (z(1), z(2)) ∈ RN−m2d ×Rmd | ordxn ∆(z) = d

}
(1.5)

(1) Then the map

Ψd : Zd × C0〈〈x〉〉N → Sd, (z,a) 7→ z +D(z) · a = z + v

is an arquile isomorphism with rational-textile inverse given by componentwise
Weierstraß Division as in the previous lemma. By πd we denote the remainder
map y = z + v 7→ z.

(2) The restriction of Ψd to {z}×C0〈〈x〉〉N is an isomorphism onto Vz and the family
of submodules {Vz}z∈Zd partitions Sd into disjoint submodules. In particular,
πd(y) = z for all y ∈ Vz and Vy = Vπd(y).

Proof: Let y ∈ Sd. Dividing the components yi by g(y)2 for i ∈ {1, . . . , N −m} and
yi by g(y) for i ∈ {N −m+ 1, . . . , N} yields a unique representation y = D(y)ã + z

with ã ∈ C0〈〈x〉〉N and z ∈ RN−m2d ×Rmd . By Theorem 1.4.2, ∆(y) and ∆(z) coincide
up to multiplication with a unit and hence ordxn ∆(z) = d, which means that z ∈ Zd
as claimed. Since D(z) = u(z,a)D(y), and as z is in the direct monomial compliment
of D(y) and thus of D(z), the remainder in the division of y by D(z) is the same
as with respect to D(y), which shows that πd(Vz) = {z}. The fact Vy = Vz shows
that Ψd is onto. Since the initial terms of the generators {x1∆(y), . . . , xn∆(y)} are
constant for y ∈ Sd, the assignment of y = D(y)ã+z 7→ ã, y 7→ z is rationally textile
in y by Theorem 2.3.11. So πd is rationally textile, and the inverse of Ψd is given by
division (assignment of quotient and remainder) of y = Ψd(z,v) through πd(y) = z,
which is a rationally textile map on Sd.

Proposition 1.4.7 (Linearization of arquile maps). There exists a rational-textile
isomorphism

χd : Zd × C0〈〈x〉〉N → Sd

so that the composition

f∞ ◦ χd : Zd × C0〈〈x〉〉N → C0〈〈x〉〉m

is linear in the second coordinate a,

f∞ ◦ χd(z,a) = f∞(z) + ∂yf(z) ·D(z) · a.
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Proof: Let Ψ−1
d : Sd → Zd×C0〈〈x〉〉N ,y 7→ (z,a) be the divsion map as in the previous

theorem. By Equation 1.4 there exists a vector h(x, z, a) ∈ C〈〈x, z, a〉〉, ∂ah(0) = idCN

so that
f(z +D(z)a) = f(z) + ∂yf(z) ·D(z) · h(z,a).

By Theorem 1.1.7, the map

ϕd : Zd × C0〈〈x〉〉N → Zd × C0〈〈x〉〉N , (z,a) 7→ (z, h(z,a))

is an isomorphism with arquile inverse ϕ−1
d (z,a) = (z, g(z,a)). Set χd = Ψd ◦ ϕ−1

d .
Then it follows immediately that f∞ ◦ χd(z,a) = f(z) + ∂yf(z) ·D(z) · a.

Definition 1.4.8. A subset Z of a free power series module C0〈〈x〉〉N is called locally
arquile, if Z is locally defined by arquile equations, so if every point z ∈ Z has an
m-adic neighborhood W so that W ∩ Z = YW (f1, . . . , fk) for some fi ∈ C0〈〈x, y〉〉.

Theorem 1.4.9. Let Yd = Y(f1, . . . , fm) ∩ Sd, and let Z∗d = πd(Yd) be the image of
Yd under the projection πd.
(1) Z∗d =

{
z ∈ Zd

∣∣∣ (∂∗
y(2)f(z)) · f(z) ≡ 0 mod ∆(z)2C0〈〈x〉〉m

}
.

(2) There exists an isomorphism

Φd : Z∗d × C0〈〈x〉〉N−m → Yd

which is the composition of an arquile map with a division mapping, with rational-
textile inverse. The map extends to an isomorphism

Φ̂d : Ẑ∗d × C0 [|x|]N−m → Ŷd,

where

Ẑ∗d =
{
z ∈ Ẑd

∣∣∣ ordxn(∆(z)) = d, (∂∗y(2)f(z)) · f(z) ≡ 0 mod ∆(z)2C0 [|x|]m
}

Ŷd =
{
ŷ ∈ C0 [|x|]N | f(y) = 0, ordxn ∆(y) = d

}
.

(3) Each point z0 ∈ Z∗d has an m−adic neighborhood U so that U ∩ Z∗d is given by
arquile equations in the xn-coefficients of z, so Z∗d is a locally arquile subset of
a free module C〈〈x′〉〉N ′ over the power series space C〈〈x′〉〉 in one variable less.

(4) For every z ∈ Z∗d fixed, the map Φd(z,_) : C0〈〈x〉〉N−m → Vd is an isomorphism
onto Y ∩ Vz.
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Proof: Let χd be as in the previous theorem so that f∞◦χd(z,a) = f(z)+∂yf(z)D(z)a.
Then z ∈ Zd is contained in Z∗d if and only if there exists a y ∈ Vz so that f(y) = 0,
which means that

f(z) + ∂yf(z) ·D(z)a = 0 (1.6)

is solvable for some a ∈ C0〈〈x〉〉N . As the determinant of ∂y(2)f(z) and hence of the
adjoint ∂∗

y(2)f(z) is non-zero, Equation 1.6 is equivalent to

(∂∗y(2)f(z)) · f(z) + (∂∗y(2)f(z))(∂y(1)f(z), ∂y(2)f(z))D(z) · a = 0 (1.7)

⇔ (∂∗y(2)f(z)) · f(z) +
(
(∂∗y(2)f(z))∂y(1)f(z), idCm

)
g(z)2 · a = 0, (1.8)

which is solvable if and only if

(∂∗y(2)f(z)) · f(z) ≡ 0 mod ∆(z)2C0〈〈x〉〉. (1.9)

Denote by Q(_,∆(z)) : C0〈〈x〉〉m → C0〈〈x〉〉m the map which assigns the quotient in
C0〈〈x〉〉m in the Weierstrass Division with respect by ∆(z). If z ∈ Z∗d , then the
solutions of f(y) = 0 inside Vz are given by

Φd(z,a(1)) = (1.10)

= z +D(z) ·

 0
Q
(
(∂∗
y(2)f(z)) · f(z),∆(z)

) +

 a(1)

−(∂∗
y(2)f(z)) · (∂∗

y(1)f(z))a(1)


(1.11)

The inverse of Φd is given by the division maps

Φ−1
d (y) =

(
πd(z)

Q(y(1) − π(1)
d (z),∆2(πd(z)))

)

and is rationally textile, which concludes the proof of (1) and (2).
(3) We will formulate Equation 1.9 as an arquile equation in the coefficients of the
remainder in the division. Let

projd : C〈〈x〉〉N → C[xn]N , projd(y) =
(
j2d(y(1)(0, xn)), jd(y(2)(0, xn))

)
∈ C[xn]N .

Let z0 ∈ Zd and set p0 = projd(z0). Then let U be the m-adically open neighbor-
hood U = { z ∈ Rd | projd(z) = p0 } of z0. Since ordxn ∆(z) = d only depends on
projd(z), the neighborhood U is in fact contained in Zd. If z ∈ U , then we can write
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z = (z1, . . . ,zN ) as

zi(x′, xn) = pi(xn) +
2d−1∑
j=0

vi,j(x′)xjn for i ∈ {1, . . . , N −m},

zi(x′, xn) = pi(xn) +
d−1∑
j=0

vi,j(x′)xjn for i ∈ {N −m+ 1, . . . , N},

where vi,j ∈ C0〈〈x′〉〉. Accordingly, let v = (vi,j)i,j be a set of new variables, and let
P (xn, v) = (P1(xn, v), . . . , PN (xn, v)) be the polynomial

Pi(xn, v) = pi(xn) +
2d−1∑
j=0

vi,jx
j
n for i ∈ {1, . . . , N −m},

Pi(xn, v) = pi(xn) +
d−1∑
j=0

vi,jx
j
n for i ∈ {N −m+ 1, . . . , N}.

In particular, for every z ∈ U there exists a unique v = (vi,j)i,j ∈ C0〈〈x′〉〉N
′ so that

z = P (xn,v). Let now h(x, v) = (∂∗
y(2)f(x, P (xn, v))) · f(xn, P (xn, v)) and g(x, v) =

∆2(x, P (xn, v)). So Equation 1.9 on U can be expressed as

h(v) ≡ 0 mod g(v) · C0〈〈x〉〉. (1.12)

Observe that g(x, v) is xn-regular of order 2d, since

g(0, xn, 0) = ∆2(0, P (xn, 0)) = ∆2(0,p(xn)).

We apply Lemma 1.4.5 to rewrite Equation 1.12 as

hi(x, v) = g(x, v)qi(x, v) +
2d−1∑
j=0

ri,j(x′, v)xjn + cix
2d
n

for some qi(x, v) ∈ C0〈〈x′, v〉〉, ri,j(x′, v) ∈ C〈〈x′, v〉〉 and ci ∈ C. The uniqueness of quo-
tient and remainder, and the fact that ordxn(g(v)) = 2d for every v without constant
term, implies that qi(v) and

∑
j=0 ri,j(v)xjn+cix

2d
n are the quotient and remainder, re-

spectively, in the division of hi(v) by g(v). Let v0 ∈ C0〈〈x′〉〉N
′ so that P (xn,v0) = z0.

Then Equation 1.12 implies that the remainder vanishes,
∑2d−1
j=0 ri,j(v)xjn + cix

2d
n = 0,

and a comparison of xn degrees yields ci = 0. Therefore, z = P (xn,v) ∈ U is contained
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in Z∗d if and only if

ri,j(v) = 0 for all 1 ≤ i ≤ m, 0 ≤ j ≤ 2d− 1,

which shows that U ∩ Z∗d can be identified with an arquile variety in C〈〈x′〉〉N .

Remark. In the terminology of Płoski([Pło15]), solutions of Equation 1.9 are called
approximative solutions.

1.5 Smooth Points

Definition 1.5.1. Let Y be an arquile variety. We say that Y is smooth at y ∈ Y, if
there exists a neighborhood W of y, so that Y ∩W is textile isomorphic to a product
of the form

mµ1
1 C〈〈x1〉〉l1 × · · · ×m

µn−1
n−1 C〈〈x1, . . . , xn−1〉〉ln−1 ×mµn

n C〈〈x1, . . . , xn〉〉ln ,

where µi, li ∈ N.

Theorem 1.5.2. If x is a single variable, and Y an arquile variety in C0〈〈x〉〉N , then
every weakly regular point is already smooth. If Y is weakly regular at y0 ∈ Y, then
there exists a neighborhood W of y so that W ∩Y is textile isomorphic to C0〈〈x〉〉N−m,
where m is the height of I(Y,y0).

Proof: Since Y is weakly regular at y0, there exists a neighborhood V of y0, a regular
pair (f,∆) such that ∆ vanishes nowhere on V and such that Y(f) ∩ V = Y ∩ V .
After shrinking V , we may assume that ord(∆(y)) = ord(∆(y0)) = d on V . By
Theorem 1.4.9 there exists a textile isomorphism Φd : Z∗d × C0〈〈x〉〉N−m → Yd(f).
Let (z0,a0) ∈ Z∗d × C0〈〈x〉〉N−m so that Φ(z0,a0) = y0. By Theorem 1.4.9(4), the
restriction

Φ := Φ(z0,_): C0〈〈x〉〉N−m → Vz

is an isomorphism onto Vz ∩ Y(f). Recall that Vz = Vy0 (Theorem 1.4.6) and that

Vy0 = y0 +
(

∆2(y0) · C0〈〈x〉〉N−m

∆(y0) · C0〈〈x〉〉m

)
= y0 +

(
x2d · C0〈〈x〉〉N−m

xd · C0〈〈x〉〉m

)
,

because ∆(y0) factors into the product of xd with a unit in C〈〈x〉〉, as x is a single
variable. In particular, Vy0 is an m-open neighborhood of y0. Choose now µ1 so
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that xµ1 · C〈〈x〉〉N−m ⊂ Φ−1(V ). Set W = V ∩ Vy. Then the restriction of Φ to
xµ1 · C〈〈x〉〉N−m is an isomorphism onto W ∩ Y, which shows that Y is smooth at y0.

Proposition 1.5.3. The smooth points of an arquile variety Y are m-adically dense
in Y.

Proof: By Theorem 1.3.26 the weakly regular points are m-adically dense, so it suffices
to show that the smooth points are dense in the set of weakly regular points of Y.
So let y0 ∈ Y be a weakly regular point and let W0 be a neighborhood so that
Y ∩ W0 is given by a system f1(y) = · · · = fm(y) = 0, so that an m-minor ∆ of
∂y(f) vanishes nowhere on W0. Let W ⊂ W0 be an arbitrary neighborhood of W0.
We need to show that Y has a smooth point in W , i.e. that YW (f1, . . . , fm) has a
smooth point. The proof is conducted by induction on n (the length of x). In the
case of a single variable n = 1, every weakly regular point is already smooth by the
last theorem. Now we show the induction step n − 1 → n. After a linear change
of coordinates and a permuation of the y-coordinates, ∆(y0) is xn-regular of order
d ≥ 0 and is the determinant of ∂(f1,...,fm)

∂(y1,...,yN−m) . By Theorem 1.4.9 there exists a textile
isomorphism Φd : Z∗d ×C0〈〈x〉〉N−m → Yd, where Yd = Y(f1, . . . , fm) ∩ {y ∈ C0〈〈x〉〉N |
ordxn(∆(y)) = d} and Z∗d is a locally arquile subset of C0〈〈x1, . . . , xn−1〉〉N

′ . Let
(z0,a0) ∈ Z∗d × C0〈〈x〉〉N−m so that Φ(z0,a0) = y0. Let

V = V1 ×
(
a0 + mµn

n C〈〈x〉〉N−m
)

be an open neighborhood of (z0,a0) such that V1 ∩ Z∗d is an arquile variety in V1 (in
one variables less) and so that the image of V under Φ is contained in W . Because
of the induction hypothesis, V1 ∩ Z∗d has a smooth point z1, so there exists a textile
isomorphism

Φ̃: mµ1
1 C〈〈x1〉〉l1 × · · · ×m

µn−1
n−1 C〈〈x1, . . . , xn−1〉〉ln−1 → Z∗d ∩ V2

onto a neighborhood V2 ∩ Z∗d of z1 in Z∗d . Let τa0 be the translation C〈〈x〉〉N−m →
C〈〈x〉〉N−m, a 7→ a + a0. Then the textile map Φ = Φd ◦ (Φ̃× τa0),

Φ: mµ1
1 C〈〈x1〉〉l1 × · · · ×m

µn−1
n−1 C〈〈x1, . . . , xn−1〉〉ln−1 ×mµn

n C〈〈x〉〉N−m → Yd

is an isomorphism onto a neighborhood of Φ(z1, 0) in Y(f), since Yd(f) is m-open in
Y(f). In fact, the construction shows that the image of Φ lies in Y(f) ∩W = Y ∩W ,
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so Φ maps onto an open neighborhood of Φ(z1, 0) in Y ∩W , and there Φ(z1, 0) is a
smooth point of Y ∩W .

1.6 Finitely regular points and isolated singularities

Definition 1.6.1. We say that an arquile variety Y is finitely regular at y0 ∈ Y, if there
exists an m-neighborhood W of y0 and f(x, y) ∈ C〈〈x, y〉〉m so that Y ∩W = Y(f)∩W
and

∂yf(x,y0(x)) · C0〈〈x〉〉N

is open in the m-adic topology. In the next chapter we will see that the arquile map
f∞ can under this hypothesis be linearized by a textile isomorphism in a neighborhood
of y0, if we are are working with either convergent or formal power series. In partic-
ular, finitely regular points are smooth. Unfortunately, we do not know whether this
isomorphism also preserves algebraic series, which is why the case of algebraic series
is excluded from our results below.

Like regular points, we can also characterize finitely regular points in terms of the
minors of ∂yf(x,y0(x)) of a defining system of Y at y0.

Theorem 1.6.2. Let Y be an arquile variety over C〈〈x〉〉 ∈ {C{x},C [|x|]} and let y0

be a point in Y.
(1) y0 is a finitely regular point of Y if and only if there exists a local defining system

f(x, y) ∈ C〈〈x, y〉〉m for Y at y0 such that the ideal of m-minors of ∂yf(x,y0(x))
is m-open in C{x}.

(2) Every finitely regular point of Y is a weakly regular point.
(3) Every finitely regular point of Y is a smooth point of Y.

Proof: (1) will be proven in the remainder of this subsection, see in particular The-
orem 1.6.7 and (2) is a direct consequence of (1). (3) Let f(x, y) be a local defining
system at y0 of Y as in (1). By Proposition 2.1.11, there exists a δ > 0 and an ana-
lytic automorphism Ψ of U := y0(x) + mδC{x}N , so that f∞ ◦Ψ = L, where L is the
tangential map b(x) 7→ ∂yf(x,y0(x)) · b(x) of f∞. So Y ∩ U is textile isomorphic to
the kernel of L, and since linear arquile varieties are smooth (see Theorem 1.7.1), the
claim follows.

The concept of finitely regular points is closely related to that of finite determinacy
and to isolated singularities of subvarieties of Cn. In the following, we are going to
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review the basic concepts of isolated singularities of varieties in Cn. For simplicity, we
restrict the discussion at first to the hypersurface case.

Definition 1.6.3. Let Ω be an open zero neighborhood in Cn, and let f : Ω → C be
a holomorphic function. The Milnor number µ(f) ∈ N ∪ {∞} of is defined as

µ(f) = dimCC{x}
/

C{x}〈∂x1f(x), . . . , ∂xnf(x)〉.

The function f has an isolated singularity at 0, if there exists a neighborhood V of 0
so that the 0 is the only singular point of the analytic variety Ω ∩ V (f) defined by f
in Ω.

Theorem 1.6.4. Let U ⊂ Cn be an open zero-neighborhood, and let f : U → (C, 0) be
an analytic map.
(1) The following are equivalent:

(a) µ(f) <∞.
(b) f has an isolated singularity at 0.
(c) There exists an l ∈ N so that ml ⊂ 〈∂x1f(x), . . . , ∂xnf(x)〉.

(2) If any of the conditions of (1) is satisfied, then mµ(f) ⊂ 〈∂x1f(x), . . . , ∂xnf(x)〉.

Proof: See [GLS07, p.113] and [Rui93, p.92]

Remark. If f is a polynomial, it is possible to calculate the Milnor number of f for
example with the Computer-Algebra Software singular (see [GLS07, p.111]). For
example, let f(z, w) = z3 + z2w + wz2 + z3. Then µ(f) = 4 can be computed as
follows:

ring r = 0,(z,w),ds; \\

poly f = z3 + z2w + wz2 + z3;\\

ideal j = jacob(f);\\

vdim(std(j)); // Calculates the Milnor number of f

//-> 4

Remark. In the case of two variables, a holomorphic function f(x1, x2) has an isolated
singularity at 0 if and only if f is square-free (see [Rui93, p. 72 ] and [Loo84, p.7]).

Definition 1.6.5. Let (R,m) be a local ring. A regular sequence in R is a tuple
r1, . . . , rs ∈ m so that each ri is a non-zero divisor in R/〈r1, . . . ri−1〉. Geometrically,
a regular sequence corresponds to a (set-theoretic) complete intersection. Let X be a
germ of an analytic variety in Cn of co-dimension k. Then X is called a set-theoretic
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complete intersection if there exist f1, . . . , fk ∈ C{x} so that X is locally given by
f1 = · · · = fk = 0, so if X can be defined by codimX-many equations. An analytic
variety is a set-theoretic complete intersection if and only if it can be defined by
a regular sequence f1, . . . , fk ∈ mC{x}, and in this case the ideal I = 〈f1, . . . , fk〉 is
unmixed, i.e. all associated primes of I have the same height as I (see [Loo84],[Mat89]).
An analytic variety X is said to have an isolated singularity at x0, if x0 is a singular
point of X and if X \ {x0} is locally regular around x0.

Theorem 1.6.6 ([Loo84, p.7]). Let f1, . . . , fk ∈ mC{x} be a regular sequence in
mC{x}, let X be the analytic variety defined by f1, . . . , fk at 0 and let Jk be the ideal
generated by all k × k-minors of ∂x(f). The following are equivalent:
(1) X has an isolated singularity at 0.
(2) Jk contains a power of the maximal ideal m.

In particular, if the components of f = (f1, . . . , fk) define an isolated complete
intersection singularity at 0, then then the image ∂x(f(x)) · C{x}n of the Jacobian of
f is m-adically open in C{x}k. In fact, also the converse is true.

Theorem 1.6.7. Let (R,m) be a Noetherian local ring, let L : RN → Rm be a module
homomorphism and let A ∈ RN×m be the matrix representation of L. Denote by
Jm(A) the ideal generated by the m ×m-minors of A. The image of L is m-open if
and only Jm(A) is m-open.

Proof: Denote by M the cokernel Rm/ Im(L) of L. The sequence

RN
L−→ Rm →M → 0

is a free presentation of M . The ideal Jm(A) is called the first Fitting ideal of M
(usually denoted by F1(M)). Recall that the annihilator ann(M) of a module M
is the ideal which consists of those elements s ∈ R which satisfy s · m = 0 for all
m ∈ M . One has F1(M) ⊂ ann(M), and the radicals of both ideals coincide ( see
[BE77]). In particular, Jm(A) is m−primary if and only if ann(M) is m-primary.
Since R is Noetherian, there exists for every ideal I in R a natural number k0 such
that (

√
I)k0 ⊂ I. The image of L is open if and only if there exists a k ∈ N so that

mk · Rm ⊂ Im(L), which is equivalent to saying that mk annihilates M = coker(L).
Since

√
ann(M) =

√
F1(M), this is the case if and only if F1(M) = Jm(A) contains

mk0 (for some k0), which means that Jm(A) is open.
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Corollary 1.6.8. Assume that f1, . . . , fk ∈ mC{x, y} define an isolated complete in-
tersection singularity at 0 and that f(x, 0) = 0. Then Im ∂yf(x, 0) is m-open and f∞
can be factorized as in Proposition 2.1.11.

Proof: By the two previous theorems, M(x, y) = (∂xf, ∂yf) · C{x, y}N is open, so it
contains 〈x, y〉k0 for some k0. Differentiating f(x, 0) = 0 with respect to x shows that
the columns of ∂xf(x, 0) are C{x}-linear combinations of ∂yf(x, 0) (Lemma 1.3.9).
Hence M(x, 0) = ∂yf(x, 0) · C{x}N , and thus ∂yf(x, 0) · C{x}N contains 〈x〉k0 .

1.7 Special Cases

1.7.1 The linear case

If f(x, y) is linear in y, the requirement y(0) = 0 is superfluous, since f(x,y(x)) is
well-defined for all y ∈ C〈〈x〉〉N . So it is more natural to study the module ker(f)
and not just Y(f), which is ker(f) ∩ C0〈〈x〉〉N . So let f(x, y) = A(x) · y, where
A(x) ∈ Mm×N (C〈〈x〉〉). By the rank of a module M defined over an integral domain
R we understand the rank of Quot(R)⊗RM over Quot(R). The Quot(C〈〈x〉〉)-module
Quot(C〈〈x〉〉)⊗C〈〈x〉〉 ker(f) is the kernel of the extension f of f to Quot(C〈〈x〉〉)N , be-
cause localizing is flat. Choose a basis b1, . . . , bN−m for ker(f), where m = rank(f) =
rank(f), by the rank-nullity theorem. Then ker(f) = 〈b1, . . . , bN−m〉 ∩ C〈〈x〉〉N . How-
ever, this description is not very satisfactory as one does not obtain a parametrization
of the kernel. If n > 1, then C〈〈x〉〉 is not a principal ideal domain, and finitely gener-
ated modules over C〈〈x〉〉 will in general not be free. An alternative is offered by the
Grauert-Hironaka division theorem. The kernel ker(f) is as C-vector space isomorphic
to a subspace EΓ of C〈〈x〉〉l. However, this presentation has two flaws: Neither is EΓ

a C〈〈x〉〉-module, nor is the rank of f reflected in any way. With the parametrization
theorem developed section 1.4, we obtain the following description.

Theorem 1.7.1. Let f(x, y) be linear in y and let m be the rank of f . Then there
exists k1, . . . , kn−1 ≥ 0 and a C〈〈x1〉〉-linear isomorphism

Φ: C〈〈x1〉〉k1×C〈〈x1, x2〉〉k2×· · ·×C〈〈x1, . . . , xn−1〉〉kn−1×C〈〈x1, . . . , xn〉〉N−m → ker(f)

with the property that for any l ≤ n fixed and every,

a = (a1, . . . ,al) ∈ C〈〈x1〉〉k1 × C〈〈x1, x2〉〉k2 × · · · × C〈〈x1, . . . , xl〉〉kl ,

the map Φ(a,_) is C〈〈x1, . . . , xl+1〉〉-linear.
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Proof: We conduct the proof by induction on n. If n = 1, then C〈〈x〉〉 is a principal
ideal domain and hence the torsion-free module ker(f) is free (see [dJP00, Theorem
1.2.7]). n− 1→ n. Write f(x, y) as A(x) · y. WLOG we may assume that A has full
rank: Consider the equation over Quot(C〈〈x〉〉). If a row is linearly dependent on others,
we may delete it without changing the solutions to the equation. So there exists a full
minor ∆ of A which is not zero. After a linear change of coordinates it is xn-regular
of some order d. The minor is independent of y. So ker(f) = Yd ∼= Z∗d × C〈〈x〉〉N−m.
It is easy to see that the Weierstrass division is C〈〈x′〉〉-linear. Z∗d is a (global) arquile
set which can be defined by C〈〈x′〉〉−linear equations. So we can apply the induction
hypothesis, which yields a factorization as stated.

1.7.2 The single parameter case

In this section we assume that x is a single variable. In this case, every element
g(x) ∈ C〈〈x〉〉 factors into a product of xord(g) with a unit in C〈〈x〉〉 and every sub-
module of C〈〈x〉〉N is open in the m-adic topology. A direct consequence is that every
weakly regular point of an arquile variety Y in a power series space of one variable is al-
ready smooth (see Theorem 1.5.2). The filtration by the iterated (Theorem 1.3.13(5))
singular loci induces then a partition of Y into smooth subsets.

Theorem 1.7.2. Let Y be an arquile variety in an m-open subset of a free power
series module C0〈〈x〉〉N in one variable. Then there exists a partition of Y into arquile
locally closed subsets Y = V1 ∪ · · · ∪ Vs, so that every Vk is smooth in the sense that
every y ∈ Vk admits an m-adic neighborhood in Vk, which is textile-isomorphic to an
open subset mkC〈〈x〉〉l, where l = N − ht(I(Vk,y)).

Proof: By Theorem 1.3.13(5) we can filter Y by the iterated singular loci: W0 = Y )
W1 = Sing(Y) ) · · · ) Ws = ∅. Then the differences Vk = Wk \Wk+1 = Reg(Wk)
are the regular loci of varieties Wk and form a partition of Y. Every regular point
is weakly regular and hence smooth, and so every point y ∈ Vk = Reg(Wk) admits
a neighborhood which is isomorphic to mlC〈〈x〉〉k, where k = N − ht(I(Vk,y)) (see
Theorem 1.5.2 and Theorem 1.3.25).

Let (f,∆) be a regular pair and consider Yd = {y ∈ C0〈〈x〉〉N | ord(∆(y)) = d}.
The remainder space in the division by D(y) is the space RN−m2d ×Rmd of polynomial
vectors of degree ≤ 2d in the first N − m components and of degree ≤ d in the
last m components. Let z = (z1, . . . ,zN ) ∈ RN−m2d × Rmd and write zi as zi =∑2d
k=0 zi,jx

j (if 1 ≤ i ≤ N −m) and zi =
∑d
k=0 zi,jx

j (if N −m + 1 ≤ i ≤ N). The
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coefficients of ∆(z) are polynomials in the coefficients of z, so there exists polynomials
Gk((zi,j)1≤i≤N,1≤j≤k) such that

∆(z) =
∞∑
k=0

Gk((zi,j)1≤i≤N,1≤j≤k)xk.

The order condition ord(∆(z)) = d is then given by

G1(z1,1, . . . , zN,1) = 0

G2(z1,1, z1,2, . . . , zN,1, zN,2) = 0
...

Gd−1(z1,1, . . . , z1,d−1, . . . , zN,1, . . . , zN,d−1) = 0

Gd(z1,1, . . . , z1,d, . . . , zN,1, . . . , zN,d) 6= 0.

If z ∈ Zd, then z ∈ Z∗d if

(∂∗y(2)f(z)) · f(z) ≡ 0 mod ∆2(z) · C0〈〈x〉〉m.

Since ∆2(z) is conjugated to x2d, the module ∆(z)C0〈〈x〉〉m equals x2d+1C0〈〈x〉〉m and
the equation simplifies to

ord((∂∗y(2)f(z)) · f(z) ≥ 2d+ 1 .(∗)

Again we expand (∂∗
y(2)f(z)) as

∑
Fk(zi,j)xk, where each Fk is a polynomial in the

coefficients of z. The order condition (∗) can then be written as

F1(zi,1) = · · · = F2d((zi,j)1≤j≤2d) = 0,

and therefore the set of approximative solutions Z∗d is a finite-dimensional locally
closed variety in some finite-dimensional affine space Ck.

Example 1.7.3. Let Y(f) be the arquile variety given by f(y) = y2
1 − y2y3. Since

the parameter x does not appear in the equation and since f is prime, Sing(Y) =
Y(f, ∂y1f, ∂y2f, ∂y3f) = {(0, 0, 0)} (see Theorem 1.3.18) and the regular part is covered
by Y(f)\Y(∂yif). We fix i = 1, so we consider the set Y(f)\Y(2y1), which we stratify
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into Yd = {y ∈ Y(f) | ordy1 = d}. It is easily seen that

Zd =
{
z =

(
z1,dx

d,
2d∑
k=1

z2,kx
k,

2d∑
k=1

z3,kx
k

)∣∣∣∣∣ z1,d 6= 0
}

In the hypersurface case, the defining minor for Zd stems from the 1× 1 matrix ∂y1f ,
whence ∂∗y1f = 1 and thus the equation for Z∗d simplifies to f(z) ≡ 0 mod x2d+1.
Therefore Z∗d is given by the equations

z1,d 6= 0

z2,1z3,1 = 0
...

2d−1∑
j=1

z2,2d−1−jz3,j = 0

z2
1,d −

2d∑
j=1

z2,2d−jz3,j = 0

inside Zd. By the factorization theorem, Yd is isomorphic to Z∗d × C0〈〈x〉〉2. An
isomorphism Φd = (Φd,1,Φd,2,Φd,3) : Z∗d × C0〈〈x〉〉2 → Yd can be explicitly computed
and is given by

Φd,1(z1, z2, z3,a2,a3) = z1 + xd
(
−z1,d +

√
z2

1,d −
z1 − z2z3

x2d + z2a3 + z3a2 + x2da2a3

)
Φd,2(z1, z2, z3,a2,a3) = z2 + x2da2

Φd,3(z1, z2, z3,a2,a3) = z3 + x2da3

Let us quickly explain how the isomorphism is constructed. We expand f(z + v) into
f(z) + ∂y(f)(z) · v + q(z,v)

f(z + v) = (z2
1 − z2z3) + 2z1v1 − z2v3 − z3v2 + (v2

1 − v2v3).

Substitute v1 = xda1, v2 = x2da2, v3 = x2da3. We assume that z ∈ Z∗d , so there
exists an hz(x) ∈ C0〈〈x〉〉 so that z2

1 − z2z3 = x2d · hz(x). Observe that z1 = x2dz1,d.
We want to solve f(z + v) = 0, which in a-coordinates takes the form

(z2
1 − z2z3) + 2z1x

da1 − z2x
2da3 − z3x

2da2 + (x2da2
1 − x2da2x

2da3) = 0
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⇔ x2d
(
hz(x) + 2z1,da1 − z2a3 − z3a2 + a2

1 − x2da2a3
)

= 0

and therefore

a1 = −z1,d +
√
z2

1,d −
z1 − z2z3

x2d + z2a3 + z3a2 + x2da2a3

If an arquile variety Y can be defined by equations which do not depend on the
parameter x, i.e. Y = Y(f1, . . . , fk), fi ∈ C0〈〈y1, . . . , yN 〉〉k, the situation becomes
simpler and some pathologies cannot occur. For example, we have already seen in
Theorem 1.3.18 that any radical ideal which can be generated by series not depending
on x is saturated. Geometrically, Y correspond to the set of arcs centered at 0 on the
complex space germ X defined by f at 0. The curve selection lemma states that when
X is an irreducible analytic variety and x0 is a (closed) point contained in a proper
subvariety Z of X, then there exists a curve γ(x) : (C, 0) → X, γ(0) = 0, so that
the image of γ is not contained in Z. One can ask whether an analogous statement
holds for arquile varieties: Given Y an irreducible arquile variety, W ⊂ Y a proper
arquile subvariety and a point w ∈ W, is it true that there exists an analytic map
Φ: C0〈〈x〉〉N → Y,Φ(0) = 0, so that the image of Φ is not contained inW? However, as
Example 1.3.2 shows, it can occur that Y and W coincide in an m-adic neighborhood
of a point in W, so that in general the curve-selection theorem for arquile varieties
cannot be true. If Y = Y(f), and f does not depending on x, then it Nevertheless, it
is possible to show a similar statement. We can use a resolution of singularities to lift
curves up to a reparametrization to the resolved smooth spaces X̂. In [Izu90], S.Izumi
proves the following theorem:

Theorem 1.7.4 ([Izu90, Lemma 2.1]). Let X be a pure r−dimensional germ of a
complex space at 0, and let y(x) be an analytic arc through zero. Then there exist a
series Ψ(z1, . . . , zr) ∈ C{z1, . . . , zr}N with
(1) grk(Ψ) = r

(2) There exists a q ∈ N so that Ψ(x, 0, . . . , 0) = y(xq)
(3) Ψ: (Cr, 0)→ (X, 0).

The theorem shows that a given arc y on X can be reparametrized so that the new
arc ν(x) = y(xq) is part of a full-rank family.

46



Theorem 1.7.5. Let Y be an irreducible arquile variety defined by an ideal I ⊂ C{y},
and let Z be a proper subvariety defined by an ideal J ⊂ C{y}. Let y ∈ Z. Then there
exists a Γ(x, s) ∈ C{x, s}, where s is an additional variable, so that
(1) Ψ ∈ Y \ Z.
(2) Ψ(x, 0) = y(xq) for some q ∈ N.

1.7.3 The case of single independent variable

Theorem 1.7.6. Let N = 1, i.e. y is a single variable, and let f(x, y) ∈ C0 [|x, y|]m,
m ≥ 1. Then the number of solutions to f(y) = 0 is bounded by ord(f). Especially, if
f is convergent, then every solution is already convergent.

Proof: Let y1 be a solution to f(y) = 0. Since (y − y1(x)) ∈ C0 [|x, y|] is y−regular
we can divide f by (y − y1(x)) and obtain a representation f = (y − y1(x))q + R,
where R(x) ∈ C [|x|]. Evaluating both sides at y1(x) yields 0 = R(x), whence f =
(y − y1(x))q. If y2(x) 6= y1 is another implicit solution of f = 0, then it must
also solve q(y2) = 0. Dividing q by (y − y2(x)) yields a representation f = (y −
y1(x))(y − y2(x))q′(x, y). Since ord(y − y1) = 1 > 0 there can exist at most ord(f)-
many solutions. By Artin’s theorem, every formal solution is the limit of a sequence
of convergent solutions, and since a such sequence is finely constant, every solution
must be already convergent.
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Chapter 2

Analytic and textile maps between
power series spaces
If the space of convergent power series is equipped with its natural inductive locally
convex topology, then every arquile map f∞ : C0{x}N → C0{x}m defines a holomor-
phic function. This point of view has been introduced by H.Hauser and G. Müller in
[HM94], to establish a linearization theorem for arquile maps of constant rank. We
review the basic notions of analytic functions between locally convex spaces and proof
an inversion theorem for holomorphic maps between (DFS)-spaces. Then we review
the rank theorem by Hauser and Müller and show a version of it for arquile maps
whose tangential map has a cofinite image. The second section then turns to analytic
maps. We discuss the analytic solvability of textile equations F (y) = 0 and give a
characterization of analytic textile maps. In the third section we review the division
theorem of Grauert-Hironaka, which is a tool needed in the factorization theorem for
arquile varieties as well as in the linearization theorem for arquile maps.

2.0.4 Holomorphic maps between locally convex spaces

Definition 2.0.7. Let E,F be locally convex vector spaces, let U ⊂ E be an open
subset of E and denote by F ′ the continuous dual space of F . A function f : U → F

is called Gâteaux- or G-holomorphic, if for every ξ ∈ U,w ∈ E,ϕ ∈ F ′, the mapping
of one complex variable z 7→ ϕ ◦ f(ξ + z · w) is holomorphic at 0. A function f is
Gâteaux-holomorphic if and only the limit

lim
z→0

ϕ ◦ f(ξ + z · w)− ϕ ◦ f(ξ)
z

exists for all ξ ∈ U,w ∈ E,ϕ ∈ F ′ ([Din99, p.149]). We call a map f : U → F

holomorphic, if it is G-holomorphic and continuous with respect to the locally convex
topologies on E and F .

49



Definition 2.0.8. A function f : U → F is called curve-holomorphic, if the composi-
tion ϕ ◦ f ◦ γ is holomorphic for all ϕ ∈ F ′ and every analytic curve γ : D→ U . While
every holomorphic function is curve-holomorphic, the converse is in general not true.

Theorem 2.0.9 ([KM97]). Assume that each of the spaces E and F is either a Fréchet
or (DFS)-space and let f : U → F be a function defined on an open subset U of E.
Then f is holomorphic if and only if it is curve-holomorphic.

2.0.5 The Inverse Function Theorem in (DFS)-spaces

In the following we will proof a version of the inverse function theorem for analytic
maps between (DFS)-spaces. Similar versions were obtained by D.Pisanelli ([Pis86])
and Hauser & Müller ([HM94]). A (DFS)-space is an inductive limit of sequences of
Banach spaces (En)n∈N with compact linking maps. The theorem presented below
is tailored to maps between spaces of convergent power series which are high-order
perturbations of the identity and which permit norm estimates that guarantee that a
ball of En is mapped into one of the same step En. In this situation one can apply the
inverse function theorem for Banach spaces and glue together the local inverses along
the different Banach steps En. A theorem by L. Harris gives a precise estimate on the
size of the domain of the local inverse. Under suitable assumptions on the ratio of the
size of the image to the size of the domain of the local operators, the domains of the
inverse fill out a whole neighborhood in E.

Definition 2.0.10. An inductive sequence of Banach spaces (En)n∈N is a sequence of
Banach space such that En ↪→ En+1 and so that ‖x‖n+1 ≤ ‖x‖n if x ∈ En. We say
that the sequence is compact, if all inclusion maps ιn : En → En+1 are compact. The
inductive limit of a compact inductive sequence of Banach spaces is called a (DFS)
space or Silva space. For the convenience of the reader, we list some of the properties
of (DFS)-spaces which we are going to use.

Theorem 2.0.11 ([FW68], [Din99], [Wob12]). Let (En)n∈N be a compact inductive
sequence of Banach spaces and let E = lim−→En.
(1) E carries the final topology with respect to the inclusions ιn : En → E. A function

f : E → Y into an arbitrary topological space is continuous if and only if all its
restrictions f : En → Y are continuous.

(2) (En)n∈N is sequentially retractive, that is, if a sequence (xn)n∈N converges in E
to x ∈ E, then there exists a step En0. which contains the sequence (xn)n∈N and
{x}, and xn converges to x in the norm topology of En0.
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(3) (En)n∈N is regular, that is, every bounded subset is already contained and bounded
in some step En0.

(4) E is a Montel space, that is, every bounded set is relative compact.
(5) Every compact subset of E is metrizable.
(6) A function f : U → F defined on an open subset U of E with values in a locally

convex space is analytic if and only if all restrictions f : Un := U ∩ En → F are
holomorphic.

Theorem 2.0.12 ([Har77a, Proposition2]). Let (X, ‖ ‖) be a complex Banach space,
and let BM := {x ∈ X | ‖x‖ < M}. Let h : BK → BM be a holomorphic function and
suppose that the inverse T0h

−1 of the tangential map exists with
∥∥T0h

−1∥∥−1 ≥ a. Set

ν = K2a

4M , ρ = K2a2

8M

Then h maps Bν biholomorphically onto a domain covering Bρ(h(0)).Moreover, h(x) 6=
h(0) whenever 0 < ‖x‖ < K2a

M .

Proposition 2.0.13. Let E be a (DFS)-space and let (En)n∈N be a compact inductive
sequence of Banach spaces with E = lim−→En. By Bn,M we denote the open ball of size
M in En. Let U be an open subset of E and let f : U → E be a holomorphic mapping
with f(0) = 0 and assume that the tangential map T0f of f at is 0 is the identity idE.
Suppose that there exist sequences (Kk)k∈N , (Mk)k∈N of positive real numbers with the
following properties:
(1) Bk,Kk ⊂ Bk+1,Kk+1 ⊂ U ,
(2) f(Bk,Kk) ⊂ Bk,Mk

,
(3) f : Bk,Kk → Bk,Mk

is analytic as a local map on the Banach space Ek,
(4) Bk,νk ⊂ Bk+1,νk+1, Bk,ρk ⊂ Bk+1,ρk+1 where νk = K2

k
4Mk

and ρk = K2
k

8Mk

for all k ∈ N. Set
V =

⋃
k∈N

Bk,νk , W =
⋃
k∈N

Bk,ρk .

Then f maps V biholomorphically onto a domain Ω which contains W .

Remark. Condition 4) is for example satisfied if K2
k

Mk
≤ K2

k+1
Mk+1

.

Proof: Let fk denote the restriction of f to Bk,νk , considered as a local analytic map
on the Banach space Ek. By Theorem 2.0.12 fk maps Bk,νk onto an open domain Ωk,
that contains Bk,ρk . Let f−1

k : Ωk → Bk,νk denote the analytic inverse of fk. Since
Bk,νk ⊂ Bk+1,νk+1 and fk+1

∣∣
Ek

= fk it follows that Ωk ⊂ Ωk+1 for all k ∈ N. Since, of
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course, the inverse is unique, we can glue together the local inverses f−1
k together to an

inverse f−1 : Ω→ V of f
∣∣
V
. We now show that Ω is open in E. Since E carries the final

topology with respect to the inclusions ιk : Ek → E, this is equivalent to Ω∩Ek being
open for all k ∈ N. Since Ωk ⊂ Ωn for n ≥ k, we have that Ω ∩ Ek =

⋃
n≥k Ωn ∩ Ek.

As the inclusion Ek → En (n ≥ k) is continuous, all Ωn ∩Ek are open and therefore Ω
is open. So it remains to show that f−1 : Ω→ E is holomorphic, for which it suffices
to show that f−1∣∣

Ω∩Ek
is holomorphic for all k ∈ N. If x0 ∈ Ω ∩ Ek, then there exists

a n ≥ k so that x0 ⊂ Ωn. Then f−1∣∣
Ω∩Ek

is locally at x0 just the composition of f−1
n

with the inclusion Ek → En, and therefore an analytic map to En and hence to E.

In the application of the previous theorem in Proposition 2.1.11 we also need the
following fact about holomorphic maps between Banach spaces. Recall that a function
f : E → F between locally convex spaces is called locally bounded, if there exists for
every x0 ∈ E a neighborhood W of x0 such that f(W ) is bounded in F .

Theorem 2.0.14. Let E,F be Banach spaces and let f : U → F be a map defined
on an open subset U of E. Assume that F has a Schauder basis (yk)k∈N and let
projk : F → C be the continuous coordinate projections

∑∞
l=0 clyl 7→ ck. Then f is

holomorphic if and only if it is locally bounded and if all coordinate functions projk ◦f
are holomorphic.

Proof: If f is holomorphic, all is coordinate functions are holomorphic as compositions
of holomorphic functions. The local boundedness follows from a theorem by S.Dineen
([Din99, p.153]), which concludes the first part of the proof. Now assume conversely
that f is locally bounded and that all its coordinates fk := projk ◦ f are holomorphic.
The analyticity of maps between Banach spaces can be tested along analytic curves
([KM97]), so it suffices to show that φ◦f ◦γ : D→ C is holomorphic for every analytic
curve γ : D → U and every continuous linear functional φ ∈ F ′. For every ε ∈ (0, 1),
the image of Dε under γ is compact in E, and admits hence a finite covering by open
sets W1, . . . ,Wk such that f(Wk) is bounded (because of the local boundedness of
f), thus f ◦ γ is bounded on Dε. Therefore φ ◦ f ◦ γ is bounded on every compact
subset of D. Write φ as

∑
k φkprojk. Then φ ◦ f ◦ γ(t) =

∑
k φkfk(γ(t)). All fk ◦ γ are

holomorphic, therefore φ ◦ f ◦ γ is the pointwise limit of the locally bounded family
{
∑N
k=0 φkfk ◦ γ}N∈N and hence itself holomorphic because of Montel’s theorem.
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2.1 Constant rank and linearization of analytic maps be-
tween power series spaces

In this section we shortly review the constant rank theorem for analytic maps between
power series spaces and especially for arquile maps. The rank theorem was proven
by H.Hauser and G.Müller in [HM94] in the analytic and by C. Bruschek [Bru09] in
the formal setting and states that an arquile map of constant rank can be linearized
by analytic automorphisms. In the single variable case, an arquile map f∞ : y(x) 7→
f(x,y(x)) which is induced by a vector of convergent power series whose Jacobian
∂yf(x, y) has maximal rank at y0(x), has constant rank as a map between power
series spaces C{x}N → C{x}m. In several variables, regularity no longer implies
constant rank, since, unlike in the one-variable case, arbritrary submodules of C [|x|]N

do not need to be open in the m-adic topology. We will show that if the image of the
tangential map of an arquile map is open in the m-adic topology, then the arquile map
can be linearized in an m-adic neighborhood.

Definition 2.1.1. For r ∈ R+ let ‖ ‖r be the pseudo-norm

‖ ‖r : C [|x|]→ [0,∞], f =
∑
α∈Nn

fαx
α 7→

∑
α∈Nn

|fα|r|α|.

Let `1r be the weighted `1-space `1r = { f ∈ C [|x|] | ‖f‖r <∞ } equipped with ‖ ‖r,
which defines a norm on `1r . Each `1r is a Banach-Algebra, so ‖f · g‖r ≤ ‖f‖r · ‖g‖r.
For every 0 < r′ < r we have that ‖f‖r′ < ‖f‖r and therefore the injection `1r ↪→ `1r′

is continuous. The family (`1r)r∈R+ forms a Banach scale. The space of convergent
power series is the union C{x} =

⋃
r∈R+ `

1
r and is equipped with inductive topology, so

that it is the inductive limit lim−→r∈R+
`1r in the category of locally convex spaces. The

inclusion `1r → `1r′ (for 0 < r′ < r) is compact, and since lim−→n∈N `
1
rn = lim−→r∈R+

`1r for
every sequence (rn) ↘ 0 of positive real numbers, C{x} with the inductive topology
is a (DFS)-space (see Theorem 2.0.11). The topological dual space of C{x}, equipped
with the strong topology, can be identified with the space H(CN ) of entire functions
on Cn with the topology of uniform convergence on compact subset, via the duality

〈 , 〉 : C{x} ×H(Cn)→ C, (
∑

fαx
α,
∑

hαx
α) 7→

∑
fαφα.

As a consequence of the Grauert-Hironaka Division Theorem, every finitely generated
submodule of C{x}N is closed (Theorem 2.3.6). For details we refer the reader to
[GR13], [HM94], and [Wob12].
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Theorem 2.1.2 ([HM94]). Let f∞ : C0{x}N → C0{x}m be an arquile map associated
to a convergent power series f ∈ C0{x, y}m. Then
(1) f∞ is a holomorphic map.
(2) The Fréchet derivative of F at a point y0 ∈ C{x} is the C{x}-linear map

Ty0f∞ : C0{x}N → C0{x}m,y(x) 7→ (∂yf(x,y0(x))) · y(x)

Remark. Since C0{x} is a (DFS)-space, a map C0{x}N → C0{x}m is holomorphic if
and only if it is curve-holomorphic ([KM97]). This implies that every solution operator
which "comes from a theorem which allows a version with parameters" is holomorphic.
For example, let U be the open subset of C{x, y}N of all those f ∈ C0{x, y}N which
satisfy the condition det(∂yf(0, 0)) 6= 0 and let Σ: U → C0{x}N be the solution
operator which assigns to a given f the unique solution y to f(x,y(x)) = 0. A
holomorphic curve γ(t) : (C, 0) → U is just a series F (t, x, y) with F (t0, x, y) ∈ U

for all t0 close to zero. In particular, F (t, x, y) satisfies the condition of the implicit
function theorem, so there exists a unique σ(t, x) solving F (t, x, σ(t, x)) = 0. The
uniqueness implies that Σ(F (t, x, y)) = σ(t, x), and hence Σ maps analytic curves to
analytic curves, i.e. it is curve-holomorphic.

Definition 2.1.3. Let E,F be locally convex spaces, let U be an open subset of E
and let f : U → F be an analytic map. By Taf we denote the tangential map of f at
a ∈ U . An analytic curve in E is a germ of an analytic map γ : (C, 0)→ E, the set of
all such curves will be denoted by C(E). We say that f has constant rank at a0 ∈ E,
if the following conditions are satisfied:
(1) There exists a closed subspace J of F so that ImTa0 ⊕ J = F .
(2) For every analytic curve in E with γ(0) = a0, every σ ∈ C(F ), there exist unique

b ∈ C(E) and τ ∈ C(J) so that

σ(t) = (Tγ(t)f)b(t) + τ(t)

This definition is per se weaker then the usual one, to which we will refer as pointwise
constant rank: f has pointwise constant rank if F splits into ImTa ⊕ J for all a ∈ U .
However, in applications of the rank theorem in this context, constant rank implies
pointwise constant rank ([HM94, p.100]). A concept related to constant rank is that
of flatness. An analytic map f : U → F is called flat at a0 ∈ U if for every curve γ
through a0, every v ∈ kerTa0 can be lifted an analytic curve V (t) in E with V (0) = v,
satisfying (Tγ(t)f)V (t) = 0. Constant rank implies flatness, and the converse is true
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for arquile maps.

Proposition 2.1.4 ([HM94, p.99]). Let f∞ : C{x}N → C{x}m be an arquile map.
Then f∞ is flat at y0 ∈ C{x}N if and only f∞ has constant rank at y0.

Using the Division Theorem by Grauert/Hironaka, it is possible to construct a type
of pseudo-inverse σ (which is called a scission in [HM94]) to the tangential map Ta0f∞

of an arquile map. Restricted to a sufficiently neighborhood mcC{x}N , the higher-
order terms of σ ◦ f∞ become in some sense contractive, and f∞ can be linearized if
it has constant rank on mcC{x}N .

Proposition 2.1.5 (Rank Theorem ([HM94, p.96])). Let f∞ : C{x}N → C{x}m be
an arquile map satisfying f∞(0) = 0. Then there exists a δ ∈ N so that for every c ≥ δ
for which the restricted map f∞ : mcC{x}N → C{x}m has constant rank at 0 there
exist local analytic isomorphisms Φ of mcC{x}N and Ψ of C{x}m at 0 which linearize
f , i.e. such that Φ ◦ f∞ ◦Ψ = T0f∞.

In order to calculate a direct compliment of a finitely generated power series module,
one usually has to calculate a standard basis for the module, which is a laborious task.
Flatness, however, can sometimes be easily checked. The tangential map Ty0f∞ of
an an arquile map f∞ at a point y0 is the C{x}-module homomorphism b(x) 7→
∂yf(x,y0(x)) · b(x). An analytic curve γ : (C, 0) → C{x}N is just a vector of power
series γ(t, x) ∈ C{t, x}N , so f∞ is flat at y0 if for every γ(t, x) ∈ C{t, x}N with
γ(0, x) = y0(x), every v(x) ∈ ker ∂yf(x,y0(x)) can be lifted to a V (t, x) ∈ C{t, x}N

solving ∂yf(x, γ(t, x)) · V (t, x) = 0 and V (0, x) = y0(x).

Theorem 2.1.6. Let x = x1 be a single variable. Let f(x, y) = (f1, . . . , fm) ∈ C{x, y}
and let f∞ be the arquile map associated to f . Assume that y0 is a simple solution to
f(x,y(x)) = 0. Then there exists an m-open module in C{x}N so that the restriction
of f∞ to U has constant rank.

Proof: After reordering the variables and conducting a transformation y 7→ y−y0(x)
we may assume that y0 = 0 and that ∆(x) = det(∂y(2)f(x, 0)) 6= 0, as in section 1.4.
Let d be the order of ∆(x) and factor ∆(x) into xd ·u(x), where u(x) is a unit in C{x}.
Set U = V0 = 〈x〉2d+1C{x}N−m × 〈x〉d+1C{x}m as in Theorem 1.4.2. We will show
that f∞ restricted to U is flat. Let v0 ∈ ker(∂yf(x, 0)) ∩ U and let γ : (C, 0)→ C{x}
be a curve through zero, with values in U . We have to show that v can be lifted to
V (t, x) ∈ C{t, x} solving (∂yf(x, γ(t, x))) ·V (t, x) = 0 with V (0, x) = v0. Write V (t, x)
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as v0 + t ·w(t, x), v0 = (x2d+1a
(1)
0 , xda

(2)
0 ), w = (x2d+1a(1)(x, t), xd+1a(2)(x, t)). Then

∂yf(x, γ(t, x))V (t, x) = 0

⇔ ∂∗y(2)f(x, γ(t, x)) · ∂yf(x, γ(t, x))V (t, x) = 0

⇔ ∂∗y(2)f(x, γ(t, x))∂y(1)f(x, γ(t, x))x2d+1(a(1)
0 + t · a(1)) + u(x)x2d+1(a(2)

0 + t · a(2)) = 0

⇔ u(x)−1
(
∂∗y(2)f(x, γ(t, x))∂y(1)f(x, γ(t, x))(a(1)

0 + t · a(1)
)

+ a
(2)
0 = −t · a(2)

The left side of the equation vanishes for t = 0, and can therefore be divided by t.
Choosing a(1) arbitrary and a(2) as above yields then the desired lifting V (t, x) of
v(x).

Remark. The previous theorem follows of course also from Proposition 1.4.7

Example 2.1.7. In several variables, the previous statement is false. Let f(x1, x2, y1, y2) =
x3

1y1 − x2y
3
2. Then y0(x) := 0 is a regular point of Y(f), since ∂y1f(x, 0) = x3

1.
We claim that f does not have constant rank at y0. Since constant rank is equiv-
alent to flatness, it is enough to show that there exists a curve γ(t, x) ∈ C{t, x}2

with γ(0) = 0 and an element b0(x) of ker(∂yf(x, 0)) which cannot be lifted along
γ(t) to a relation b(t, x) with v(0, x) = v0 among the columns of ∂yf(x, γ(t, x)), i.e.
which solves ∂yf(x, γ(t, x)) · b(t, x) = 0. The curve can be chosen in fact in an ar-
bitrary m-adic neighborhood of 0: We consider the curve γ(t) = (txn1 , txn2 ), where
n is an arbitrary positive integer. Let b0 = (0, (x1 + x2)) ∈ ker ∂yf(x, 0) and let
b(t, x) = b0 + t · (h1(t, x), h2(t, x)) ∈ C{t, x}2 be a deformation of b0. Suppose that
b(t, x) solves

(∂yf)(x, γ(t, x)) · b(t, x) = (x3
1,−3x2(txn2 )2) · (th1(t, x), (x1 + x2) + th2(t, x)) = 0

Then
x3

1 · th1(t, x)− (3x2t
2x2n

2 )(x1 + x2 + th2(t, x)) = 0

and hence
−(3x2t

2x2n
2 )(x1 + x2 + th2(t, x)) ≡ 0 mod x3

1

which leads to the contradiction

(x1 + x2 + th2(t, x)) ≡ 0 mod x3
1.

In particular, this shows that the module of initial terms of ∂yf(x, 0) is not stable un-
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der m-adic small pertubations of y0(x): For every n ∈ N there exists an h ∈ mnC{x}2

so that In〈∂yf(x,y0(x) + h(x))〉 6= In〈∂yf(x,y0(x))〉.

Nevertheless it is rather simple to directly solve the equation x3
1y1−x2y

3
2 = 0. Since

C{x} is a unique factorization domain, the above equation is equivalent to x3
1x2w1 −

x2x
3
1w

3
2 = 0, under the transformation y1 = x2w1, y2 = x1w2, which simplifies to w1 =

w3
2. So we obtain an isomorphism ϕ : C{x} → Y(f), ϕ(w2(x)) = (x2w2(x)3, x1w2(x)).

Phrased in geometric terms, Y(f) is contained in the proper submodule M = x2 ·
C{x}×x1 ·C{x} of the affine space mC{x}2. On the algebraic side we observe that even
though f generates the saturated ideal IY , i.e. every arquile function that vanishes
on Y = Y(f) is a multiple of f , there exist additional relations which are not part
of IY that can be added to f without changing the solution set Y. Note that the
membership condition y(x) ∈M is not arquile (it is textile), this is why the fact that
Y (f) ⊂ M is not reflected by IY . It is not difficult to show that f∞ restricted to M
has constant rank.

2.1.1 Finite Codimension

In the case of a single variable x, a matrix A(x) ∈ C [|x|]m×N of generic full rank
induces an m-adically open C [|x|]-module morphism C [|x|]N → C [|x|]m. This is no
longer true in the case of several variables and is the reason why an arquile map f∞
at a regular point may not have constant rank. If, however, Ty0f∞ is m-adically open,
then f∞ has constant rank at y0. If the tangential map Ty0f∞ is m-open, then there
exists an m-adic neighborhood U of y0, so that the image of the non-linear terms of
f∞ are included in the image of the tangential part. In [Bru09] such maps were called
quasi-submersions and the author observed that these maps have constant rank.

Theorem 2.1.8. Let f∞ : mC{x}N → mC{x}m be an arquile map with f∞(0) = 0 so
that the module generated by the columns of ∂yf(x, 0) is m-adically open in C{x}m.
Then there exists a δ ∈ N so that for all d ≥ δ the restriction of f∞ : mdC{x}N →
C{x}m can be linearized by local automorphisms.

Proof: Let A(x, y) = ∂yf(x, y). By assumption, there exists a δ ∈ N so that
mδC{x}m ⊂ A(x, 0) · mC{x}N . Let d ∈ N, d ≥ δ and let y ∈ mdC{x}N . Using
Taylor expansion, we see that A(x,y(x)) = A(x, 0) + H(x), where H(x) is a matrix
with entries of order ≥ d. Hence the columns of H(x) are included in the image of
A(x, 0) and consequently H(x) factors into A(x, 0) · B(x) for some matrix B(x) ∈
mC{x}N×N . So A(x,y(x)) = A(x, 0)(id + B(x)) and since all entries of B(x) vanish
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at zero, (id + B(x)) is invertible and therefore ImA(x,y(x)) = ImA(x, 0) for all
y ∈ mcC{x}N . In particular, f∞ : mcC{x}N → C{x}m has pointwise constant rank
and may therefore be linearized by Proposition 2.1.5.

Under the strong hypothesis of the previous theorem, we are able to prove a more
precise statement on the linearization in this situation. Our arguments and techniques
follow closely the ones of [HM94]).

Definition 2.1.9. In the following, we consider C{x} with the homogeneous `1-norm
structure: For a power series f =

∑
fαx

α, we set ‖f‖r =
∑
|fα|r|α| =

∑
k=0

∑
|α|=k |fα|rk.

Let E ⊂ C{x}m, and F ⊂ C{x}N be linear subspaces and let T : E → F be a linear
map. Then let ‖T‖r,OP := supb∈E,‖b‖r=1 ‖T (b)‖r. Note that ‖T‖r,OP might not be
finite, but if T is induced from a C{x}-module homomorphism, then ‖T (b)‖r is finite
for all sufficiently small r (see [HM94]).

Lemma 2.1.10. Let L : C{x}N → C{x}m be a C{x}-linear map and suppose that
L(mcC{x}N ) contains mδC{x}m. Let E = L−1(mδC{x}m). Then there exists a right-
inverse
σ : mδC{x}m → E of L

∣∣
E
with the following properties:

(1) σ satisfies the estimate
‖σ‖r,OP <

C

rδ−c

for all 0 < r < r0, and some constant C > 0, which is independent of r.
(2) If ord v(x) ≥ δ + d, then ordσ(v(x)) ≥ c+ d.

Proof: We choose the set of monomials {xα,i | |α| = δ, α ∈ Nn, 1 ≤ i ≤ m}
as a standard basis for mδC{x}m, where xα,i = xαei and ei denotes the ith stan-
dard unit vector of Cm. By assumption, there exist bα,i(x) ∈ mcC{x}N so that
xα,i = L(bα,i) for all |α| = δ and 1 ≤ i ≤ m. We enumerate the monomials
{(α, i) | |α| = δ, 1 ≤ i ≤ m} as γ1, . . . , γN ′ (where N ′ = m ·

(d+n−1
d

)
). Set B(x) :=

(bγ1(x), . . . , bγN′ (x)) ∈ mcC{x}N×N ′ . Let L̃ : C{x}N ′ → mδC{x}m , (qi)1≤i≤N ′ 7→∑
qix

γi . Let ∆ be the Newton diagram generated by the xγi , and let OΓ ⊂ C{x}N ′

thee vector space of the canonical normal forms of the quotients (Theorem 2.3.6), so
that each f ∈ C{x}m admits a unique representation f =

∑
qix

γi + p such that
q = (q1, . . . , qm) ∈ OΓ and no term of p is divisible by any of the xγi . Every
f ∈ mδC{x}m admits a unique representation as f = q1x

γ1 + · · · + qN ′x
γN′ , with

(q1, . . . , qN ′) ∈ OΓ. By the construction of Γ, the Newton diagram of f is partitioned
according to the divisibility of the terms by qixγi , whence ‖f‖r =

∑N ′
i=1 ‖xγiqi‖r and
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thus
∑N ′
i=1 ‖qi‖r ≤

1
rδ
‖f‖r. The map σ̃ : mδC{x}m → OΓ, f 7→ q(f) is a right inverse

of L̃ and satisfies the estimate ‖σ̃‖r,OP ≤ 1
rδ
. Since ord bγi = c, there exist a C > 0

and r0 > 0 , so that for all r ∈ (0, r0) the estimate N ′ · max1≤i≤N ′ ‖bγi‖r < C · rc

holds. Let now finally be TB : C{x}N ′ → mcC{x}N , q 7→ B · q. Then L̃ = L ◦ TB and
σ := TB ◦ σ̃ is a right-inverse of the restriction of L to E = L−1(mδC{x}m). Indeed, if
w ∈ mδC{x}m, we have (L ◦ TB ◦ σ̃)(w) = (L̃ ◦ σ̃)(w) = w and σ satisfies the estimate
‖σ‖r,OP = ‖TB ◦ σ̃‖r,OP ≤ C · rc · 1

rδ
= C

rδ−c
. For the second property, observe that σ̃

decreases the order by δ and that TB increases the order by c, since ordB ≥ c.

Remark. Condition (2) of the preceeding theorem, formulated in the terminology of
[Bru09], signifies that the degree of contraction of σ is greater or equal to c− δ.

Proposition 2.1.11. Let f∞ : mC{x}N → mC{x}m be an arquile map with f∞(0) = 0
so that the module generated by the columns of ∂yf(x, 0)) is m-adically open in C{x}m.
Let L = T0f∞ : mC{x}N → mC{x}m be the tangential map b(x) 7→ ∂yf(x, 0) · b(x).
Then there exists an m-adic zero neighborhood U and a global textile isomorphism
Ψ: U → U so that f∞ factors into

f∞ = L ◦Ψ.

If mδC{x}m ⊂ ∂yf(x, 0) ·mC{x}N , then U can be chosen as mδC{x}N .

Proof: By assumption, there exists a δ ∈ N so that mδ ·C{x}m ⊂ ∂yf(x, 0) ·mC{x}N .
Set U = mδC{x}N and let y(x) ∈ U . We expand f(x,y(x)) as

f(x, 0)︸ ︷︷ ︸
=0

+∂yf(x, 0) · y(x) + q(x,y(x)),

where q(x, y) =
∑

1≤i,j≤N qi,j(x, y)yiyj is the non-linear part of f in y. Let L : C{x}N →
C{x}m, y(x) 7→ ∂yf(x, 0)·y(x) and let σ : mδC{x}m → mC{x}N be a right-inverse of L
as in the previous lemma. If y(x) ∈ U , then ord q(x,y(x)) ≥ 2δ and ordσ(q(x,y(x))) ≥
δ + 1, thus σ(q(x,y(x))) ∈ U . For y(x) ∈ mδC{x}N , we have

q(x,y(x)) = L ◦ σ(q(x,y(x))).

and hence

f(x,y(x)) = L(y(x)) + L(σ(q(x,y(x)))) = L (y(x) + σ(q∞(y(x)))︸ ︷︷ ︸
=:Ψ(y(x))
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It remains to show that Ψ: U → U is an analytic isomorphism, for which we will
apply Proposition 2.0.13. Set H = σ ◦ q∞, so that Ψ = id + H. As q consists only
of quadratic or higher terms, T0q∞ = 0, and hence the tangential map of Ψ is the
identity at 0 ∈ U . Let BR,K be the open unit ball in `1(R)N ⊂ C{x}N . We claim that
for every ε > 0 we have

mδ+1C{x}N =
⋃
R>0

BR,εRδ−1 .

Let g(x) ∈ mδC{x}N and let
∑
k≥δ gk(x) be the decomposition of g(x) into its homo-

geneous terms. Let R > 0 so that ‖g(x)‖R <∞. If 0 < S < R, then

‖g(x)‖S =
∑
k≥δ
‖gk‖S =

∑
k≥δ
‖gk‖R

(
S

R

)k
≤
(
S

R

)δ
‖g(x)‖R =

= Sδ−1 S

Rδ
‖g(x)‖R︸ ︷︷ ︸
S→0−−−→0

.

So for R fixed and S small enough, we obtain ‖g(x)‖S < εSδ−1. The same estimate
shows that

BR,εRδ−1 ⊂ BS,εSδ−1 ,

for every 0 < S < R. Now we show that there exist constants M, ε,R0 ∈ R+ so that

H : BR,εRδ−1 → BR,Mε2Rδ−1

for all 0 < R < R0. By the previous lemma, there exists a constant C > 0 and
R0 ∈ (0, 1) so that ‖σ‖R,OP < C

Rδ−1 for all R ∈ (0, R0), where we choose R0 so small
that ‖q‖R0

<∞. Set ε = R0, and M̃ := maxi,j ‖qi,j(x, y)‖ε <∞. Then for 0 < R ≤ ε
and ‖y(x)‖R < ε we obtain ‖qi,j(x,y(x))‖R < M̃ . Now the crucial estimate is that

‖q(x,y(x))‖R ≤
∑
i,j

‖qi,j(x,y(x))‖R ‖yi(x)‖R ‖yj(x)‖R ≤ M̃ · ‖y(x)‖2R

for all ‖y(x)‖R ≤ ε and 0 < R ≤ ε. Set M := M̃ · C. Then for y(x) ∈ BR,εRδ−1 ,
0 < R < R0, we obtain the estimates ‖H(y(x))‖R = ‖q∞(y(x))‖R < M̃ε2R2δ−2,

‖σ ◦ q∞(y(x))‖R < ε2MRδ−1

and
‖Ψ(y(x))‖R = ‖(id +H)(y(x))‖R < εRδ−1(1 +Mε)
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Therefore,
Ψ: BR,εRδ−1 → BR,εRδ−1(1+Mε).

Since Ψ has polynomial and hence analytic coefficient functions and as it is bornological
(in the sense the it maps bounded to bounded sets), it is holomorphic as a local map
BR,εRδ−1 → BR,εRδ−1(1+Mε) of the Banach space `1R by Theorem 2.0.14. We check that
condition (4) of Proposition 2.0.13 is satisfied. Let

νR = ε2R2(δ−1)

4εRδ−1(1 +Mε) = ε

4(1 +Mε)R
δ−1

ρR = ε2R2(δ−1)

8εRδ−1(1 +Mε) = ε

8(1 +Mε)R
δ−1

Then BR,νR ⊂ BS,νS and BR,ρR ⊂ BS,ρS . By Proposition 2.0.13 Ψ is therefore a bi-
holomorphism between

⋃
0≤R<R0 BR,νR = mδC{x}N and

⋃
0≤R<R0 BR,ρR = mδC{x}N

and the claim follows.

Remark. The previous result holds also in the formal setting. It is easily seen that
Ψ − id has a positive degree of contraction in the sense of [Bru09] and hence Ψ is a
formal textile isomorphism by [Bru09, Theorem 3]. In the terminology of the cited
author, the map f∞ is a quasi-submersion if the conditions of the theorem are satisfied.

Remark. The condition that T0f∞ is open in the m−adic topology is of course quite
restrictive. However, it seems to be the only known sufficient condition for the lin-
earization of an arquile map, with is stable with respect to arbitrary pertubations at
a sufficient high degree and which is determined by a sufficiently high k−jet of f . In
general, constant rank is destroyed by m-adic pertubations: For example, take g = 0
and f as in Example 2.1.7. Then g∞ has constant rank, but (xn1 · f)∞ does not have
constant rank for any n.

Definition 2.1.12. Let f : X → Y be an arbitrary function. Then a pseudo-inverse of
f is a map g : Y → X so that f ◦g◦f = f , so any map which assigns to a point f(x) in
the image of f a point z in the pre-image f−1(f(x)). Note that the terminology is not
unified, depending on the author pseudo-inverses are also called generalized inverses
or scissions.

Corollary 2.1.13. Let f∞ : mC{x}N → mC{x}m be an arquile map with f∞(0) = 0
and assume that ∂yf(x, 0) · mC{x}N contains mδC{x}N . Then the restriction of f∞
to U = mδ+1C{x}N admits an analytic textile pseudo-inverse.
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Proof: By [HM94] every linear map L : C{x}N → C{x}m admits a continuous linear
scission σ. So let σ be the scission to the tangential map L of f∞. The restriction
of f∞ to U factorizes into L ◦Ψ as in the previous theorem. It is easily checked that
Ψ−1 ◦ σ is an analytic pseudo-inverse.

Proposition 2.1.14 (Homogenization of arquile maps). Let f(x, y) ∈ mC{x, y}N

with f(x, 0) = 0 and let ∂yf(x, 0) = Hd(x) +
∑
k≥d+1Hk(x) be the decomposition of

∂yf(x, 0) into its homogeneous parts, and assume that Hd(x) · mC{x}N is m-open.
Denote by Ld the linear operator associated to Hd. Then there exists an m−adic zero
neighborhood U and a textile isomorphism ϕ : U → U so that the restriction of f∞
factors into

f∞
∣∣
U

= Ld ◦ ϕ.

If mδC{x}m ⊂ Hd(x) ·mC{x}N , then U can be chosen as mδC{x}N .

Proof: Let L = T0(f) = Ld + S, where S denotes the multiplication operator of the
higher terms b(x) 7→ (

∑
k≥d+1Hk(x)) · b(x). Assume that mδC{x}m ⊂ Hd · mC{x}N .

Since Hd is homogeneous, the terms of order δ in the image of Hd can be gener-
ated by homogeneous terms of order c = δ − d, so Hd · mcC{x}N = mδC{x}m.
By Proposition 2.1.11, there exists a textile automorphism Ψ: U → U , where U =
mδC{x}N , so that f∞

∣∣
U

factors into L ◦ Ψ. Now we are going to factorize L. Let
σ : mδC{x}m → mcC{x}N be a right-inverse of Ld

∣∣
mcC{x}N as in Lemma 2.1.10, satis-

fying ‖σ‖r,OP <
C
rδ−c

and for all 0 < r < r0. Then

L = (Ld + S) = Ld ◦ (id + σ ◦ S).

Since ordS ≥ d + 1, there exists an M > 0 so that ‖S‖r < Mrd+1 for all 0 < r < r1

(for someM > 0, r1 < r0. Note that σ ◦S maps mδC{x}N to mδ+1C{x}m and satisfies
the estimate

‖σ ◦ S‖r ≤
C

rδ−c
Mrd+1 = CMr

for all r < r1. In particular, ‖σ ◦ S‖r < 1 for all sufficiently small r, and for such r the
map id+σ◦S is an isomorphism (mδ`1r)N → (mδ`1r)N , and thus a linear automorphism
of mδC{x}N .
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Example 2.1.15. Let f(x, y) = (f1(x, y), f2(x, y)), where

f1(x, y) = x1y1 + x2y1 − x2y2 + x2y3 + g1(x, y)

f2(x, y) = x2y1 + x1y2 − x2y2 − x1y3 + g2(x, y)

with ord gi ≥ 3 and gi(x, 0) = 0. The lowest order terms of ∂yf(x, 0) are

H1(x) =
(
x1 + x2 −x2 x2

x2 x1 − x2 −x1

)

The set of minors of H1(x) is {x2
1, x

2
2,−x2

1− x1x2− x2
2} and generates m2C{x}. Using

the adjoints of the 2 × 2 submatrices, we see that Im(L1) = m2C{x}2. Therefore
the linear map associated to the lowest order terms L1 : mC{x}3 → m2C{x}2 is onto
and the restriction of f∞ to U = m2C{x}3 factors into L1 ◦ Ψ, where Ψ is a textile
automorphism of U .

Definition 2.1.16. For d ∈ N, let Jd(Cn, 0) be the set of polynomial local biholomor-
phisms of (Cn, 0), which fix the origin and whose degree is less or equal to d. Note that
if f ∈ Aut(Cn, 0), then jd(f) ∈ Jd(Cn, 0), so Aut(Cn, 0) = Jd(Cn, 0)

⊕
md+1C{x}n.

Definition 2.1.17. If w(x) ∈ mC{x}n, then let Cw : C{x} → C{x} be the asso-
ciated composition operator f(x) 7→ f(w(x)). For any k ∈ N, let Cw,k : C{x}k →
C{x}k, (f1, . . . , fk) 7→ (Cw(f1), . . . , Cw(fk)) be the extension of Cw to C{x}k.

Theorem 2.1.18. Let f(x) = (f1, . . . , fm) ∈ C{x}m be a vector of convergent power
series, let L : C{x}n → C{x}m be the tangential map b(x) 7→ ∂xf(x) · b(x). We
decompose Aut(Cn, 0) into the direct sum Jd(Cn)

⊕
md+1C{x}n, and write ϕ(x) as

jd(ϕ(x)) + hd(ϕ(x)), where hd(ϕ(x)) = ϕ(x) − jd(ϕ(x)) ∈ md+1C{x}n. Set Ud =
md+1C{x}n. Assume that the image of L is m-open. Then there exists a δ > 0, textile
analytic maps Λ: Jδ(Cn, 0) × mC{x}m → mC{x}m and Υ: Jδ(Cn, 0) × Uδ → Uδ, so
that for every p(x) ∈ Jδ(Cn, 0),
(1) Λ(p(x),_) is a linear automorphism of C{x}m,
(2) Υ(p(x),_) is an analytic automorphism of Uδ,

so that
f∞ : Aut(Cn, 0)→ C{x}m

factorizes into

f∞(ϕ) = f∞(jδ(ϕ)) + Λ(jδ(ϕ),_) ◦ L ◦Υ(jδ(ϕ), hδ(ϕ)).
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In other words, f∞ can be linearized up to the finite-dimensional part jδ(ϕ), in the
sense that f∞(jδ(ϕ) + hδ(ϕ)) is conjugated to an affine linear map in hδ(ϕ) for every
fixed jδ(ϕ). If m = 1, then δ can be chosen as the Milnor number of f , and for general
m as any number δ such that mδC{x}m ⊂ L(C{x}n).

Proof: By assumption there exists a δ ∈ N such that mδC{x}m ⊂ L(C{x}N ). Let
ϕ(x) ∈ Aut(Cn, 0), and set p(x) = jδ(ϕ), h(x) = hδ(ϕ). Then

f(ϕ(x)) = f(p(x) + h(x)) = Cp,mC
−1
p,mf(p(x) + h(x)) = Cp,m ◦ f(x+ h(p−1(x))),

with h(p−1(x)) ∈ Ud, where p−1 denotes the composite inverse of p. Set F (x, y) =
f(x + y) and consider F∞ : mδ+1C{x}n → C{x}m. Since ∂y(F (x, 0)) = ∂x(f(x)),
mδ+1C{x}m ⊂ ∂y(F (x, 0)) · mC{x}N , and so we can apply Proposition 2.1.11 to con-
clude the existence of a textile biholomorphism Ψ: mδ+1C{x}n → mδ+1C{x}n so that
F∞ = F (x, 0) + L ◦Ψ. Since f(p(x) + h(x)) = Cp,mF (x, h(p−1(x))) we obtain that

f(ϕ(x)) = f(p(x)) + Cp,m ◦ L ◦Ψ(h(p−1(x))). (2.1)

Then the maps

Λ(p(x), g(x)) := Cp,m(g(x))

Υ(p(x), h(x)) := Ψ ◦ C−1
p,n(h(x))

linearize f∞ as in the statement of the theorem. In the hypersurface case m = 1, we
have that mµ(f) ⊂ ∂x(f) by Theorem 1.6.4, and in this case we can thus choose δ as
µ(f).

In [LM07] the authors showed that if a holomorphic map f : (Cn, 0) → (Cn, 0) has
generic full rank, then the induced map H : Aut(Cn, 0) → Gln(C) × mC{x}n, ϕ 7→
(j1(ϕ), f∞(ϕ)) admits an analytic left inverse Φ: Gln(C) × mC{x}n → Aut(Cn, 0).
The following theorem is in a similar spirit:

Corollary 2.1.19. Keep the notation and the assumptions on f from the previous
theorem. Then there exists an analytic pseudo-inverse Φ of the map

H : Aut(Cn, 0)→ Jδ(Cn, 0)×mC{x}m, H(ϕ) = (jδ(ϕ), f∞(ϕ)).

In other words, Φ(p,_) is an analytic pseudo-inverse of the map Uδ 3 h 7→ f∞(p+ h)
for every fixed p ∈ Jδ(Cn, 0) and Φ(p,_) varies analytically with p.
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Proof: Let σ be a scission of L : Uδ = mδ+1C{x}n → C{x}m, and let Ψ: Uδ → Uδ be
as in the proof of the previous theorem. For (p, g) ∈ Jδ(Cn, 0)×C{x}m we define (see
Equation 2.1)

Φ(p, g) := p+ Cp,n ◦Ψ−1 ◦ σ ◦ C−1
p,m(hδ(g − f∞(p))),

where hδ(g) are the terms of order ≥ δ + 1 of g . We check that Φ is indeed a
pseudo-inverse of H:

H ◦ Φ ◦H(ϕ) = H ◦ Φ(p, f∞(p) + Cp,m ◦ L ◦Ψ ◦ C−1
p,n(hδ(ϕ)))︸ ︷︷ ︸

ord≥δ+1

=

= H(p+ Cp,n ◦Ψ−1 ◦ σ ◦ L ◦Ψ ◦ C−1
p,n(hδ(ϕ)))

= (p, f∞(p) + Cp,m ◦ L ◦Ψ ◦ C−1
p,n ◦ Cp,n ◦Ψ−1 ◦ σ ◦ L ◦Ψ ◦ C−1

p,n(hδ(ϕ))) =

= (p, f∞(p) + Cp,m ◦ L ◦Ψ ◦ C−1
p,n(hδ(ϕ))) = (p, f∞(ϕ)) = H(ϕ)

2.2 Textile maps

Definition 2.2.1. Amap F = (F1, . . . , FN ′) : C [|x|]N → C [|x|]N
′
, Fi(y) =

∑
β∈Nn Fβ,i(y)xβ

between two free modules of formal power series is called textile, if each coefficient func-
tion Fβ,i depends polynomially on a finite number of the coefficients (yα,i)α∈Nn,1≤i≤N
of the input y = (y1, . . . ,yN ),yi =

∑
α∈Nn yα,ix

α. We will restrict the discussion to
textile maps F : mC [|x|]N → mC [|x|]N

′
, so it is convenient to define the set of all

monomial exponentsMn as

Mn = { γ : Nn → N | γ(0) = 0, γ(α) 6= 0 for only finitely many α ∈ Nn } .

Then, for y = (y1, . . . ,yN ) ∈ C [|x|]N , yi =
∑
yα,ix

α and γ = (γ1, . . . , γN ) ∈ MN
n we

define
yγ := yγ1

1 · · ·y
γN
N , yγii =

∏
α∈Nn

y
γi(α)
α,i .

For notational simplicity we assume that N ′ = 1. Then the polynomial coefficient
functions Fβ can be written as

Fβ(y) =
∑

γ∈MN

Fβ,γy
γ ,
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where only finitely many of the Fβ,γ are not zero. In applications, the support

supp(F ) =
{

(β, γ) ∈ Nn ×MN
n | Fβ,γ 6= 0

}
underlies certain growth conditions. We define the weight of a monomial γ ∈ MN

n as
the vector

wt(γ) =
N∑
i=1

∑
α∈Nn

γi(α) · α ∈ Nn,

the shape as
sh(γ) = (sh(γ1), . . . , sh(γN )), sh(γi) =

∑
α∈Nn

γ(α).

and the multiplicity

µ(γ) :=
N∏
i=1

µ(γi), µ(γi) := sh(γi)!∏
α∈Nn γi(α)!

We will say that the support is of linear growth, if there exists an affine-linear function
L : Nn → Nn, L(α) = λ · α+ v, where λ ∈ N, v ∈ Nn, such that

supp(F ) ⊂
{

(β, γ) ∈ Nn ×MN
n | wt(γ) ≤ L(β)

}
,

and hence
Fβ(y) =

∑
wt(γ)≤L(β)

Fβ,γy
γ .

If L can be chosen as the identity, then we will call F of strict linear growth. A textile
map F : mC [|x|]N → mC [|x|]N

′
is called analytic, if F (mC{x}N ) ⊂ mC{z}N ′ and if the

restriction on the convergent series is a holomorphic map F : mC{x}N → mC{z}N ′ .
The analyticity of textile maps whose support is of linear growth admits the following
characterization: Such a map is analytic if and only if it maps convergent series to
convergent series.

Proposition 2.2.2. Let F : mC [|x|]N → mC [|x|] be a textile map whose support is of
linear growth. For R ∈ R+ let ‖y‖R,∞ := supα∈Nn |yα|R|α| be the weighted ∞-pseudo-
norm of a power series y =

∑
α∈Nn yαx

α and let BR,M be the closed ball {y ∈ mC [|x|] |
‖y‖R,∞ ≤M}. The following are equivalent:
(1) F is analytic.
(2) F preserves convergence, that is, F (C{x}N ) ⊂ C{x}N ′.
(3) There exist R,M,K, S ∈ R+ so that F (BN

R,M ) ⊂ BS,K .
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(4) For all R,M ∈ R+, there exist S,K ∈ R+ so that F (BN
R,M ) ⊂ BS,K .

(5) There exist S,K,R ∈ R+ so that

sup
β∈Nk

R|β| sup
γ∈MN

n

|Fβ,γ |
K |sh(γ)|

S|wt(γ)| <∞.

Proof: The equivalence of (1), (2), (3), (4) and (5) were proven in [Wob12] in Propo-
sition 5.3.2. and Theorem 4.3.2. By definition, (1) =⇒ (2). We will show that (2) =⇒
(1). We consider the restriction G := F

∣∣ : (`∞R )N → mC{x} of F to (`∞R )N for some
R ∈ R+. Since mC{x} =

⋃
n,k∈N+ B1/n,1/k, we have that `∞R =

⋃
n,k∈N+ G

−1(B1/n,1/k).
We claim that each G−1(B1/n,1/k) is closed. First observe that B1/n,1/k is compact in
mC{x}N , since it is bounded and closed and as mC{x}N is a Montel space ([Wob12]).
Since mC{x}N is an (LF)-space, every compact subset is metrizable and therefore se-
quentially compact by a result of B.Cascales and J.Orihuela ([CO86]). Let now (yk)k∈N
be a sequence in G−1(B1/n,1/k) which converges to some y ∈ `∞R . Then (G(yk))k∈N
is a sequence in the compactum B1/n,1/k. Let (G(ynk))k∈N be an arbitrary conver-
gent subsequence. The continuity of the polynomial coordinate function Fβ implies
that its limit coincides with G(a). This holds for every convergent subsequence, thus
limk→∞G(yk) = G(y). and therefore y ∈ G−1(B1/n,1/k). As the countable family of
closed sets G−1(B1/n,1/k) covers (`∞R )N there exist n0, k0 such that G−1(B1/n0,1/k0) has
non-empty interior, by Baire’s Theorem. Therefore F is bounded on a ball y0 +BN

R,M .
Let τ be the translation y 7→ y0 +y. Then F ◦ τ is bounded on BN

R,M . Therefore F ◦ τ
satisfies the condition of (3), is therefore analytic and hence also F is analytic.

Definition 2.2.3. A useful class of textile maps is given by those which are dominated
arquile maps. Originally (in [Bru09]), arquile maps were called tactile maps, whence
we refer to those maps as tactilly bounded. A textile function whose support is of strict
linear growth is called tactilly bounded, if there exists M,R > 0 so that

|Fβ,γ | ≤
Mµ(γ)

R|β|−|wt(γ)|+|sh(γ)| .

The estimates on the right-handed side correspond to the β-coefficient of the arquile
(and hence textile) map y 7→ g(x,y(x)), where g(x, y) = M ·

∑
α∈Nn,β∈NN

xαyβ

R|α|+|β|
. The

modulus of the coefficient Fβ(y) is bounded by the one of g(x, |y|(x)), that is,

|Fβ(y)| ≤ |g(x, |y|(x))[β]|,

where [β] denotes the extraction of the βth coefficient and |y|(x) :=
∑
α∈Nn |yα|xα
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. We then say that g(x, y) (respectively g∞) dominates F . For further details see
[Wob12], where this class of maps was introduced. The majorization by arquile maps
makes it possible to generalize theorems such as the Inverse Function Theorem (see
Theorem 2.2.6) of the Cauchy-Kovalevskaya Theorem ([Wob12]) to this class. If F
is any textile map and, then the tangential map Ta(F ) : C0 [|x|]N → C0 [|x|] of F
at a ∈ C0 [|x|]N is given by the tangential maps of the coefficient functions, so
TaF : y 7→

∑
β∈Nn((TaFβ)(y))xβ. If F is analytic, then the tangential map is the

Fréchet derivative of F . If F = f∞ is an arquile map y(x) 7→ f(x,y(x)), then Taf∞
is the C [|x|]-module morphism ([HM94])

y(x) 7→ ∂yf(x,a(x)) · y(x).

We now turn to the Implicit Function Theorem for textile maps. If f(x, y) ∈ mC{x, y}N ,
y = (y1, . . . , yN ), with ∂yf(0, 0) invertible, then the matrix ∂yf(x, 0) is invertible over
C{x}. So after multiplying with (∂yf(x, 0))−1, we can assume that ∂yf(x, 0) is the
identity on mC{x}N . Then f(x,y(x)) = f(x, 0) + y(x) + q(x,y(x)), where q(x, y)
denote the terms of f which are at least quadratic in y. Under the assumption that
T0(F ) = id, we can generalize the Implicit Function Theorem to textile maps. Let us
introduce one more piece of terminology: We say that a textile map F is quadratic, if
F is of strict linear growth and if F (0) = T0F = 0.

Theorem 2.2.4. Let F : C0 [|x|]N → C0 [|x|]N be a textile map of strict linear growth.
Assume that T0F = id.
(1) There exists a unique formal series y0 ∈ mC [|x|]N solving F (y0) = 0.
(2) If F is tactilly bounded, then y0 is convergent.

Proof: In order to use a majorization argument for the second part, we consider
G(y) = F (−y) instead. Write G(y) as F (0) − y + Q(y), where Q is quadratic. We
want to solve

y = F (0) +Q(y).

For notational simplicity we assume that n = N = 1, so that x and y are single
variables. Write y(x) as

∑∞
k=1 ykx

k, let F (0) =
∑∞
k=1 ckx

k and

Q(y) =
∑

Qk(y)xk

Qk(y) =
∑

wt(γ)≤k
qk,γy

γ
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Therefore
yk = ck +

∑
wt(γ)≤k

qk,γy
γ .

Note that the condition wt(γ) ≤ k implies that Qk can only linearly depend on yk, and
since Q is quadratic, this term must be zero, whence Q is polynomial in y1, . . . , yk−1.
We observe that yk is the evaluation of a polynomial (independent of F ) with positive
coefficients, evaluated at input data ck, (qk,γ)γ , (y1, . . . , yk−1). Recursively we express
y1, . . . , yk−1 in the same manner and obtain

yk = Rk ((ci)1≤i≤k, (ql,γ)1≤l≤k,γ)

where Rk is a universal polynomial (independent of F ), with positive coefficients.
In particular, this system is always solvable, which concludes the proof of (1). The
fact that Rk has positive coefficients can be exploited to majorize the modulus of
the coefficients of y by the coefficients from another system, which dominates the
coefficients of F :

|yk| ≤ Rk ((|ci|)1≤i≤k, (|ql,γ |)1≤l≤k,γ) .

If F is tactilly bounded (which means that Q is tactilly bounded and F (0) is conver-
gent), then the right-handed side of the preceding equation is the k-th coefficient of
the solution of a non-degenerate analytic equation of the form

y =
∑
k≥1

M

Rk
xk +

∑
β≥2

M

Rk+β x
kyβ.

The solution of this equation is analytic and thus geometrically bounded by the
Cauchy-estimates, therefore |yk| ≤ K

Sk
for some K,S ∈ R+, and hence the solution

y to F (y) = 0 is a convergent power series.

Remark. The condition that T0F = id is vital to the analytic case, and cannot simply
be replaced by merely requiring that T0F is invertible: The tactile boundedness of F
may not be carried over to (T0F )−1F . The only problem, however, which can occur
here, is that the terms of the diagonal ∂Fk∂yk

(0) of T0F are too small in comparison to
other ones. In particular, if F is tactilly bounded and if |∂Fk∂yk

(0)| ≥ 1 for all k ∈ N,
then (T0F )−1F is again tactilly bounded.

Example 2.2.5. Let x be a single variable and let us consider the textile map
F : mC{x} → mC{x},y =

∑
ynx

n 7→
∑
Fn(y)xn, where Fn(y) = yn

2n − yn−1 for
n > 1 and F1(y) = y1

2 −1. Then all coefficients of F are bounded by 1, in particular F
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is tactilly bounded. The unique solution to F (y) = 0 is the series
∑
n≥1 2n(n−1)/2xn,

which is not a convergent power series.

Theorem 2.2.6 (Textile Inversion Theorem). Let F : mC{x}N → mC{x}N be a tac-
tilly bounded map and assume that T0F = id. Then F is a global textile isomorphism.

Proof: By the preceding theorem, there exists an y ∈ mC{x}N so that F (y) = 0,
so after an affine-linear coordinate change we may assume that F (0) = 0. Then
F = id + Q, where Q is quadratic. Let g(x, y) ∈ mC{x, y}N so that g∞ dominates
F . Let BR,M be the open weighted `1-ball

{
y ∈ mC{x}N | ‖y‖R < M

}
, where

‖y‖R =
∑
α∈Nn,1≤k≤N |yα,k|R|α|. Let K > 0 so that ‖g(x, y)‖K ≤ M < ∞. Then if

0 < R < K and ‖y‖R < K, we have the estimate ‖g(x,y(x))‖R < M , which implies
that ‖F (y)‖R ≤ M . Therefore F maps BR,K to BR,M and with Theorem 2.0.14 it is
easily seen that F is analytic as a local map BR,K → BR,M of the Banach space `1R.
We apply Proposition 2.0.13. Let

νR = K2

4M

ρR = K2

8M

Then, by Proposition 2.0.13, F is a biholomorphism between
⋃

0<R<K BR,νR = C0{x}N

and
⋃

0<R<K BR,ρR = C0{x}N .

We will shortly discuss the inversion of the tangential map of a textile function.
For notational simplicity, we restrict the discussion to the case of a textile map
F : mC [|x|] → mC [|x|] and where x is a single variable. Let ek denote the standard
unit vector and let e∗k ∈M1 be the monomial vector

e∗k(n) =

1 if n = k

0 else
.

The tangential map T0F is again textile, and the coordinates functions (T0F )n(y) are
the maps

(T0F )n(y) = Fn,e∗1 · y1 + · · ·+ Fn,e∗n · yn.

Hence the tangential map can be identified with an infinite lower-triangular matrix.

Definition 2.2.7. Let A = (ai,j)i,j∈N and B = (bi,j)i,j∈N be infinite matrices. We
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formally define the product as

A ·B := C = (ci,j)i,j∈N, where ci,j :=
∑
k∈N

ai,kbk,j .

We say that an infinite matrix D is lower triangular if di,j = 0 whenever j > i and call
D unipotent if in addition all diagonal elements di,i of D are equal to one. The product
of two lower triangular matrices is well-defined and again a lower triangular matrix.
For n ∈ N we set Dn := (di,j)1≤i,j≤n ∈ Cn×n. A lower triangular matrix D defines a
textile map of strict linear growth on mC [|x|] via y 7→

∑∞
n=1(dn,1y1 + · · ·+ dn,nyn)xn.

By Proposition 2.2.2, D is analytic if and only if there exist C, S, T ∈ R+ so that
|di,j | ≤ CSj

T i
, and D is tactilly bounded if there exist M,R > 0 so that |di,j | ≤ MRj

Ri
.

Note that T0F is tactilly bounded if F is of this type.

Lemma 2.2.8. Let A = (ai,j)i,j∈N be a lower triangular matrix. Then:
(1) (Ak)n = (An)k

(2) Let A = id−B be unipotent. Then A is invertible and

A−1 =
∞∑
k=0

Bk

Theorem 2.2.9. Let C, S, T ∈ R+, let B = (bi,j)i,j∈N+ where

bi,j =

0 if j ≥ i
CSj

T i
else

and set U = (ui,j)i,j∈N+ =
∑∞
k=0B

k. Then U = (1 − B)−1 is an unipotent lower
triangular matrix and its sub-diagonal coefficients are

ui,j = CSj

T i

i−1∏
k=1+j

(1 + C
Sk

T k
) for j < i, (2.2)

where we use the convention that
∏
k∈∅

ak = 1.

Proof: Obviously U is an unipotent lower triangular matrix. Because of Lemma 2.2.8
and the fact that all Bn are nilpotent of order n we have that Un =

∑n
k=0B

k
n and that

Un+1 =

 Un 0
un+1 0

 ,
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where un+1 = (un+1,1, . . . , un+1,n). Bn+1 has the structure Bn 0
bn+1 0


and

Bk
n+1 =

 Bk
n 0

bn+1 ·Bk−1
n 0

 ,
which yields that un+1 = bn+1 ·

∑n
k=0B

k
n = bn+1 · Un. We claim that Equation 2.2

holds for all Un. For n = 1 we have U1 = 1, so there is nothing to show. Now suppose
that the estimates hold for Un. Let 1 ≤ j ≤ n. Then

un+1,j = bn+1,j · 1 +
n∑
k=1

bn+1,kuk,j = CSj

Tn+1 +
n∑

k=j+1

CSk

Tn+1
CSj

T k

k−1∏
l=1+j

(1 + Sl

T l
)

= CSj

Tn+1

1 +
n∑

k=j+1

CSk

T k

k−1∏
l=1+j

(1 + C
Sl

T l
)

 =

= CSj

Tn+1

n+1−1∏
k=1+j

(1 + C
Sk

T k
)

Theorem 2.2.10. Let x be a single variable and let F : mC{x} → mC{x} be a tactilly
bounded map. Assume that the diagonal elements of T0F are bounded from below by
1, that is, assume that ∣∣Fn,e∗n∣∣ ≥ 1.

Then T0F has a tactilly bounded inverse and F is a global textile analytic isomorphism
mC{x} → mC{x}.

Proof: Let D be the infinite diagonal matrix whose diagonal elements dn,n are Fn,e∗n .
Let H = D−1 ◦ F . Since all diagonal elements of D−1 are bounded by 1, H is again
tactilly bounded. Let M,R > 0 so that

|Hn,γ | ≤
Mµ(γ)

Rn−wt(γ)+sh(γ) .

Then
|Hn,e∗

k
| ≤ MRk

RRn
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for n 6= k and Gn,e∗n = 1. Let id − B be the matrix representation of T0H and let
L = (id − B)−1 = (li,j)i≥1,j≥1. Let us denote by |B| the matrix (|bi,j |)i≥1,j≥1 The
modulus of the entries of L = (id−B)−1 is bounded by the entries of (id−|B|)−1. Set
C = M/R. By the previous theorem, the sub-diagonal entries of L can be estimated
by

|li,j | ≤
CRj

Ri

i−1∏
k=1+j

(1 + C) = C

1 + C

Rj

Ri
(1 + C)i−j =

≤ C

1 + C

(R/(1 + C))j

(R/(1 + C)i ≤

≤ KSi−j

where S = (1+C)/R and K = C/(1+C). Then |
∑i
j=1 li,jyj | ≤ |yi|+

∑
i 6=jKS

i−j |yj |,
and hence L is dominated by the linear arquille map ϕ(x,y(x)) = ϕ(x) · y(x), where
g(x) = 1 +

∑
k≥1KS

kxk. Let G∞ be an arquile map which dominates H. Then L ◦H
is dominated by ϕ∞ ◦G∞, thus L◦H is tactilly bounded with T0L◦H = id. Therefore
L ◦H and hence G is an analytic isomorphism by Theorem 2.2.6.

Definition 2.2.11. Let U be a subset of C [|x|]N . A map F : U → C [|x|] is called
rationally textile if each coefficient function Fβ is a quotient of polynomials in the
coefficients of the input y and if non of the denominators vanish on U . A typical
example is the map which assigns to an invertible power series its multiplicative inverse.
The denominators of the inversion map only depends on the constant term y(0).
Likewise, the denominators of rational textile maps which appear in practice usually
only depend on a finite number of the coefficients of y. In Theorem 2.3.11 we will
show that the quotient and remainder in the Grauert-Hironaka division are analytic
rationally textile functions in the dividend and the divisors if the initial monomials of
the dividends are fixed.
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2.3 Division Theorems for Power Series

Definition 2.3.1. A monomial ordering on Nn is a well ordering < (i.e. a total
ordering s.t. every non-empty set has a minimal element) which is compatible with
addition, that is, α < β implies that α + γ < β + γ for all α, β, γ ∈ Nn. Accordingly,
monomials are ordered with respect to their exponents, and xα < xβ implies that
xαxγ < xβxγ . We also need orderings on free modules over C [|x|] ,C{x} respectively.
Let f = (f1, . . . , fN ) ∈ C [|x|]N , fk =

∑
α∈Nn cα,kx

α. We can identify f with f1x
0
n+1 +

· · ·+ fNx
N−1
n+1 in

⊕N
k=1 C [|x|]xk−1

n+1. Instead of xαxkn we will shortly write xα,k, so that
we can write f as

∑
α∈Nn,0≤k≤N−1 cα,kx

α,k. So the set of monomials of C{x}N is

Mn,N := {(α, k) ∈ Nn+1 | 0 ≤ k ≤ N − 1}.

Let < be a given monomial ordering on Nn. Then we say that a total ordering <M on
Mn,N is a module ordering (compatible with <), if for all α, β ∈ Nn, ν, µ ∈ Nn+1

(1) α < β implies (α, 0) + ν < (β, 0) + ν

(2) ν <M µ implies (α, 0) + ν < (α, 0) + µ.

If µ ∈ Nn+1, then let µ denote the first n components (µ1, . . . , µn) of µ = (µ, µn+1).
Given two monomials xµ, xν , say that xµ divides xν , which we denote by xµ|xν , if
µn+1 = νn+1 and if xµ divides xν . The most important monomial orderings in this
context are the ones given by weight vectors ω = (ω, ωn+1) ∈ Rn+1

+ : Set ωµ := ω · µ =∑
µkωk. If the entries of ω are linearly independent over Z, then ω induces a module-

ordering on Mn,N (which respects the monomial ordering induced by ω on Nn) by the
rule µ <ω ν iff ωµ < ων. For example, if q1, . . . , qn+1 are pairwise coprime positive
integers, then the components of ω = (log(q1), . . . , log(qn+1)) are linearly independent
over Z. Fix a monomial ordering < on Mn,N induced by some weight vector ω. For
f =

∑N−1
k=0

∑
α fα,kx

α,k ∈ C [|x|]N we set

In(f) = min{(α, k) : fα,k 6= 0}

Ic(f) = fIn(f)

It(f) = fIn(f)x
In(f)

tail(f) = f − It(f).
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2.3.1 The Grauert-Hironaka Division Theorem for convergent power
series

A weight vector also induces a Banach scale structure consisting of weighted `p-spaces
on C{x}N . In division theorems usually the `1-structure is used, since `1-spaces are
Banach algebras which thus enable good norm estimates for multiplication operators.

Definition 2.3.2. For a fixed weight vector ω, we introduce the following weighted
sequence spaces. For r ∈ R+, f = (f1, . . . , fN ) ∈ C{x}N , f =

∑
α,k cα,kx

α,k we set

‖f‖ω,r =
∑

(α,k)∈Mn,N

|cα,k|rω·(α,k) =
N∑
k=1
‖fk‖ω,r r

ωn+1·(k−1)

(`1ω,r)N =
{
f ∈ C [|x|]N

∣∣∣ ‖f‖ω,r <∞ }
So the free `1ω,r-module (`1ω,r)N = (`1ω,r)N is considered with the weighted sum norm
induced by `1ω,r. The space of convergent power series C{x} is the union of all `1ω,r
(independent of ω ∈ Rn+) and will be equipped with the inductive topology, which
turns it into the inductive limit (as locally convex space) of the inductive sequence
(`1ω,r)r∈R+ . The inductive topology has many good properties and C{x} is a (DFN)-
space (the strong dual of a nuclear Fréchet - Schwartz space (see for example [GR13],
[HM94] or [Wob12])). Let ω = (ω, ωn+1). Then C{x} = lim−→r∈R+

`1ω,r and the inductive
topology on C{x}N coincides with the product topology induced by C{x} on C{x}N .
From now, on we will fix a weight vector ω and omit ω in the notation of the norm,
so we will write ‖f‖r instead of ‖f‖ω,r.

The key estimate in the division theorems of Grauert-Hironaka and its extension to
entire functions is that the norm of the leading terms dominates the norm of the tail.

Theorem 2.3.3. Let f ∈ C{x}N , g ∈ C{x}. Then:
(1) limr→0 ‖tail(f)‖r · (

∥∥∥xIn(f)
∥∥∥
r
)−1 = 0

(2) ‖f · g‖r ≤ ‖g‖r ‖f‖r

Proof: 1) We order the terms supp(f) of f with respect to < in increasing order
cµ1 ≤ cµ2 ≤ . . . . Then f =

∑
j≥1 cµjx

µj and tail(f) =
∑
j≥2 cµjx

µj . Let

h(r) := ‖tail(f)‖r∥∥xIn(f)
∥∥
r

=
∞∑
j=2
|cµj |rωµj−ωµ1 .

Since f is convergent, h(r) <∞ for all r smaller than a certain r0. As all exponents of
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the monomials rωµj−ωµ1 are strictly positive, the sum tends uniformly to 0 for r → 0.
(2) is Mertens inequality for absolutely convergent series (see also [GR13]).

Definition 2.3.4. Let {µ1, . . . , µp} ∈Mn,N . Set 〈µ1, . . . , µk〉 := ∪ki=1(µi + Nn × {0})
and ∆ := 〈µ1, . . . , µp〉. Then the set of monomials which can be divided by some
xµi is x∆ := {xδ | δ ∈ ∆}. We partition ∆ by setting ∆1 := 〈µ1〉 and iteratively
defining ∆i := 〈µi〉 \ 〈µ1, . . . , µi−1〉. So this means that we partition x∆ into sets of
monomials which can be divided by the respective monomial generators xµi . Note
that if γ ∈ ∆i, then γ − µi ∈ Nn × {0}. Let π : Nn+1 → Nn be the projection
(α1, . . . , αn+1) 7→ (α1, . . . , αn). We define

Γi =

π(∆i − µi) if ∆i 6= ∅

{0} else

We set

OΓi = {q ∈ C{x} | all terms of q are contained in xΓi}

OΓ = OΓ1 × · · · × OΓp

O∆c = {g =
∑

gνx
ν ∈ C{x}N | gν = 0 if ν ∈ ∆}

OΓ(r) = OΓ ∩ (`1r)m,O∆c(r) = O∆c ∩ (`1r)N

Note that O∆c is the set of all f ∈ C{x}N which consist only of terms which are not
divisible by any xµi . The space OΓ corresponds to a canonical normal form of the
quotients in the Grauert division presented below.

Remark. The notation is not unified - depending on the author ∆ can also refer to ∆c.

Definition 2.3.5. A standard basis of a finitely generated submodule M of C{x}N

is a finite set {f1, . . . , fm} ⊂ M of generators of M , such that {In(f1), . . . , In(fm)}
generates In(M). Every finitely generated module of C{x}N possesses a standard
basis, which can be shown for example by using the fact that C{x}N is a Noetherian
module ([dJP00, p.271]).
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Theorem 2.3.6 ([dJP00]). Let f1, . . . , fm, g ∈ C{x}N and let < be a fixed monomial
ordering induced by some weight vector ω.
(1) Then there exist q1, . . . , qm ∈ C{x}, R ∈ C{x}N so that

g = q1f1 + . . . qpfp +R

and no term of R is divisible by any It(f1), . . . , It(fp).
(2) There exist unique (q1, . . . , qm) ∈ OΓ, R ∈ O∆c so that g = q1f1+· · ·+qmfm+R.
(3) There exists an r0 so that for all 0 < r ≤ r0 the module `1r

〈f1, . . . , fm〉 is closed
in (`1r)N .

Proof: Assume at first that fk = xµk . Let ∆ = ∪̇i∆i as above, g =
∑
cα,kx

α,k. Set

qi =
∑
α∈Γi

cµi+αx
α = 1

xµk

∑
µ∈∆i

cµx
µ

R =
∑
µ∈∆c

cµx
µ

Then Ψ: OΓ(r)×O∆c(r)→ (`1r)N , (q1, . . . , qm, R) 7→
∑
qkx

µk+R is a continuous linear
isomorphism. The construction shows that it is surjective, and injectivity follows from
the decomposition of ∆. Let qi ∈ `1r , R ∈ (`1r)N . Then

‖Ψ(q,R)‖r ≤
N∑
i=1

rωµi ‖qi‖r + ‖R‖r

Note that
‖qi(g)‖r ≤

1
rωµi

‖g‖r (2.3)

Now the general case. WLOG we may suppose that the coefficients of the initial terms
It(fi) are normalized for all i = 1, . . . ,m. Let µi = In(fi) and let Ψ as above with
respect to xµ1 , . . . , xµp . Let Φ: OΓ(r) × O∆c(r) → (`1r)N , (q1, . . . , qm) 7→

∑
qifi + R

and consider Φ ◦Ψ−1. Let idr be the identity map on (`1r)N .∥∥∥Φ ◦Ψ−1 − idr
∥∥∥
r

=
∥∥∥∑ qi(g)(xµi − fi)

∥∥∥
r

=
∥∥∥∑ qi(g)tail(fi)

∥∥∥
r
≤ (2.4)

≤
∑
‖qi(g)tail(fi)‖r ≤

∑
‖qi(g)‖r ‖tail(fi)‖r ≤ (2.5)

≤
∑
‖g‖r

1
rω·In(fi)

‖tail(fi)‖r (2.6)

By Theorem 2.3.3 there is an r0 ∈ R+ so that we have 1
rω·In(fi)

‖tail(fi)‖r <
1

2m for all
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r ≤ r0, which yields that ∥∥∥Φ ◦Ψ−1 − idr
∥∥∥
r
≤ 1

2 ‖g‖r

for r ≤ r0. So Φ ◦ Ψ−1 and thus Φ is invertible and the claim follows. As the
corresponding maps are isomorphisms, a representation as in (2) is necessarily unique.
(3) Assume at first that {f1, . . . , fm} forms a standard basis for C{x}〈f1, . . . , fm〉 =: M .
Then g ∈ M if and only if R(g) = 0. Let r < r0 and let g ∈ (`1r)N . Then there
exist unique q ∈ O∆(r) so that g =

∑
qifi + R. Hence R(g) = 0 if and only if

g ∈ `1r
〈f1, . . . , fm〉, and M ∩ (`1r)N = `1r

〈f1, . . . , fm〉. The map g 7→ R(g) equals
projO∆c ◦ Φ−1 : (`1r)N → (`1r)N and is thus a continuous endomorphism of (`1r)N for
r < r0. Hence we obtain that ker(projO∆c ◦ Φ−1)) = `1r

〈f1, . . . , fm〉 is closed in (`1r)N .
In the case that f1, . . . , fm do not form a standard basis, let g1, . . . , gl be a standard
basis of M and let r0 be chosen as above for g1, . . . , gl. There exists an r1 > 0 so
that all gj , fj ∈ (`1r)N and such that there exists qi,j ∈ `1r1 so that

∑
j fjqi,j = gi. Let

r < min{r0, r1}, and λi ∈ `1r . Then
∑
λigi =

∑
j(
∑
i λiqi,j)fj and as λiqi,j ∈ `1r , we

obtain that `1r
〈g1, . . . , gl〉 ⊂ `1r

〈f1, . . . , fm〉. The same argument shows the converse
inclusion, and therefore `1r

〈g1, . . . , gl〉 = `1r
〈f1, . . . , fm〉 for r < min{r0, r1}, which in

particular implies that `1r〈f1, . . . , fm〉 is closed.

Definition 2.3.7. Let µ1, . . . , µm ∈ Mn,N be a set of monomial vectors, let < be a
fixed monomial ordering on C{x}N , let Γ,∆c be defined as before. Let z = (z1, . . . , zk)
be a set of new variables. We set

Oz,Γi = {q(x, z) =
∑
α∈Nn

qα(z)xα ∈ C{x, z} | qα = 0 whenever α 6∈ Γi}

Oz,Γ = Oz,Γ1 × · · · × Oz,Γp
Oz,∆c = {g =

∑
gν(z)xν ∈ C{z}N | gν = 0 if ν ∈ ∆}

One of the applications of the Grauert division theorem is that it provides a method
for finding direct compliments to finitely generated C{x}-modules.

Theorem 2.3.8 ([HM94]). Let f1, . . . , fm ∈ C{x}N , let M be the C{x}-module
generate by f1, . . . , fm and let L : C{x}m → C{x}N be the module homomorphism
(q1, . . . , qm) 7→ q1f1 + · · ·+ qmfm induced by the fi.
(1) Assume that f1, . . . , fm form a standard basis. Then

C{x}m = EΓ
⊕

ker(L), C{x}N = M
⊕

E∆c
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(2) There exists a continuous linear scission σ : C{x}N → C{x}m of L which is
compatible with the `1r-structure of C{x}N and C{x}m.

Theorem 2.3.9 (Parametric Grauert-Hironaka Division Theorem). Let µ1, . . . , µm ∈
Mn,N be a set of monomial vectors, let < be a fixed monomial ordering on C{x}N , let
z = (z1, . . . , zk) be an additional set of variables, and let Oz,Γ,Oz,∆c be defined with
respect to {µ1, . . . , µm} as above. Let f1, . . . , fm ∈ C{z}N be a set of convergent power
series. Assume that f1, . . . , fm converge on the polycylinder Dn+k

r0 and assume that
there exist u1(z), . . . , um(z) which converge on Dkr0 such that ui(z) 6= 0 for all z ∈ Dr0,
so that

It<fi(x, z0) = ui(z0)xµi

for every fixed z0 ∈ Dkr . Then for every g ∈ C{x, z} there exist unique q ∈ Oz,Γ and
R ∈ Oz∆c so that

f = q1f1 + · · ·+ qmfm +R.

Proof: Since u1, . . . , um do not depend on x, it is clearly enough to proof the theorem
under the assumption that all ui = 1. Then fi(x, z) = xµi +

∑
β>µi fβ,i(z)x

β. Let <̃ be
any extension of < on C{x, z}N induced by some weight vector, so that the restriction
of <̃ to C{x}N coincides with <. Then the initial term of each fi with respect to
<̃ is xµi , and the parametric version follows immediately from the standard Grauert-
Hironaka Division Theorem.

2.3.2 The Grauert-Hironaka Division Theorem for formal power se-
ries

We will now prove the Grauert-Hironaka Division Theorem for formal power series.
Let us introduce again some notation:

ÔΓi = {q ∈ C [|x|] | all terms of q are contained in xΓi}

ÔΓ = ÔΓ1 × · · · × ÔΓp

Ô∆c = {g =
∑

gνx
ν ∈ C [|x|]N | gν = 0 if ν ∈ ∆}
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Theorem 2.3.10. Let f1, . . . , fm, f ∈ C [|x|]N and let < be a fixed monomial ordering
induced by some weight vector ω.

(1) There exist unique (q1, . . . , qm) ∈ ÔΓ, R ∈ Ô∆c so that g = q1f1 +· · ·+qmfm+R
(2) Assume that Ic(qi) = 1 for all 1 ≤ i ≤ m. Then the map

Φ−1
f : C [|x|]N → ÔΓ × Ô∆c , g 7→ (q,R)

is a textile isomorphism.
(3) Let Û =

{
(f1, . . . , fm) ∈ (C [|x|]N )m

∣∣∣ fi = xµi +
∑
µ>µi fµ(z)xµ

}
. The map

Û × C [|x|]N → ÔΓ × Ô∆c , (f, g) 7→ Φ−1
f (g)

is a textile map. That is, quotient and remainder in the Hironaka Division
depend in a textile way on the dividend and the divisors.

Proof: Let Φ: ÔΓ × Ô∆c → C [|x|]N , (q1, . . . , qm, R) 7→ q1f1 + · · · + qmfm + R and
let Ψ: (q1, . . . , qm, R) 7→ q1x

µ1 + · · ·+ qmx
µm +R. Then Ψ is clearly in isomorphism.

We show that Φ ◦ Ψ−1 is invertible by interpreting H := id − Φ ◦ Ψ−1 as a small
perturbation of the identity on C [|x|]N . Let ω be the weight vector which induces <
and define the weighted order of an element f ∈ C [|x|]N as ord< f = ω(In(f)). Let
g = xµ1qΨ,1(g) + · · · + xµmqΨ,m(g) + R, with qΨ ∈ ÔΓ, R ∈ Ô∆c . It is easily checked
that

ord< qΨ,i(g) ≥ ord(g)− ord(xµi).

Set εi = ord(tail(fi))− ord(µi) and ε = min εi > 0. Then

ord<H(g) = ord<(id− Φ ◦Ψ−1)(g) = ord<
(∑

(xµi − fi)qΨ,i(g)
)
≥

≥ min
1≤i≤m

ord<(tail(fi)) + ord< qΨ,i(g) ≥

≥ min
1≤i≤m

εi + ord(g) ≥ ε+ ord(g)

Since ord<H(g) is strictly larger than ord< g, the sum
∑∞
k=0H

k(g) = (Φ ◦ Ψ)−1 is
well-defined. The inverse of Φ is hence given by Ψ−1 ◦ (Φ ◦Ψ−1)−1. We claim that the
coefficients of Φ−1

f (g) depend polynomially on a finite number of the coefficients of f
and g.Let α ∈Mn,N and choose Kα ∈ N so that Kα · ε ≥ α. If k > Kα(g), then

ord<Hk(g) > kε+ ord(g) > ord< xα
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and in particular, Hk(g) does not contain any xα-terms. Therefore

Φ ◦Ψ−1(g)[α] =
Kα∑
k=0

Hk(g)[α].

The operator H is a shift-operator followed by a multiplication operator, hence the
coefficients of Hk(g) depend polynomially on a finite number of the coefficients of f
and g, therefore Φ ◦Ψ−1 and hence Φ−1

f (g) is a textile map in (f, g).

Theorem 2.3.11 (Variational Grauert-Hironaka Division). Let µ1, . . . , µm be a fixed
set of monomial vectors µi ∈Mn,N = Nn × {0, . . . , N − 1} and let

Ω̂ = {f = (f1, . . . , fm) ∈ (C [|x|]N )m | In(fi) = µi}

Ω = {f = (f1, . . . , fm) ∈ (C{x}N )m | In(fi) = µi}

We denote by Q(f, g) = (Q1(f, g), . . . , Qm(f, g)), R(f, g) the unique quotient Q(f, g) ∈
ÔΓ and remainder R(f, g) ∈ Ô∆c of a power series vector g ∈ C [|x|]N , so that

g = Q1(f, g) · f1 + · · ·+Qm(f, g) · fm +R

as in Theorem 2.3.6. Then the map

Ω̂× C [|x|]N → ÔΓ × Ô∆c , (f, g) 7→ (Q(f, g), R(f, g))

is a rational-textile map and its restriction

Ω× C{x}N → OΓ ×O∆c , (f, g) 7→ (Q(f, g), R(f, g))

is holomorphic.

Proof: As in Theorem 2.3.10, let

Û = {f ∈ (C [|x|]N )m | It(fi) = xµi}

U = {f ∈ (C{x}N )m | It(fi) = xµi}

be the set normalized dividends with initial monomial µi. In the cited theorem it
was shown that the division (f, g) 7→ (Q(f, g), R(f, g)) is textile on Û × C [|x|]N . The
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normalization fi 7→ fi/Ic(fi)) is a rational-textile map Ω̂→ Û . Since

Q

(
f1

Ic(f1) , . . . ,
fm

Ic(fm) , g
)

=
( 1

Ic(f1)Q1(f, g), . . . , 1
Ic(fm)Qm(f, g)

)
,

R

(
f1

Ic(f1) , . . . ,
fm

Ic(fm) , g
)

= R(f, g),

the divsion is rationally textile on Ω̂×C [|x|]N and it remains to show that it is analytic.
The set U is m-adic open and can be identified with a subvector space, which is closed
in the inductive topology, of (C{x}N )m. It is hence a (DFS)-space, so analyticity can
be tested along holomorphic curves (see Theorem 2.0.9). A holomorphic curve

(F,G) : (C, 0)→ (C{x}N )m × C{x}N

is a germ of a convergent power series (F (x, t), G(x, t)) ∈ (C{x, t}N )m × C{x}N , and
the image of F (x, t) lies in U if Fi(x, t) = xµi +

∑
µ>µi Fµ(t)xµ. So the analyticity

reduces to the parametric version of the Grauert Division Theorem (Theorem 2.3.9),
by which Q(F (x, t), G(x, t)) and R(F (x, t), G(x, t)) are analytic.

2.3.3 The Grauert-Hironaka Division Theorem for algebraic power
series

In the case of algebraic power series, the Division Theorem is without further assump-
tions on the divisors no longer true. If f1, . . . , fm, g are algebraic power series, then
the remainder of g in the division by f1, . . . , fm need not to be any longer an algebraic
power series (see [ACJH14]). If, however, the module generated by f1, . . . , fm satisfies
Hironaka’s Box condition, then the remainder will be algebraic.

Theorem 2.3.12 ([Hir77], [ACJH14]). Let M be a submodule C [|x|]N which is gen-
erated by vectors of algebraic power series, and let Ô∆c be the direct monomial com-
pliment of M in C [|x|]N . Suppose M satisfies Hironaka’ Box Condition, that is, that
Ô∆c is of the form

N∏
l=1

n⊕
j=0

⊕
γ∈Γl,j

C[[x1, . . . , xj ]]xγ

where Γl,j are finite subsets of Nn. If g ∈ C〈x〉N is a vector of algebraic series, then
the unique remainder r ∈ Ô∆c in the division of g by a standard basis of M is again
algebraic.

We do not know whether the canonical quotients in the division by an algebraic
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standard basis (under the assumptions of the previous theorem) are again algebraic.
However, the Weierstrass Division Theorem remains true for algebraic power series.

Theorem 2.3.13 (Weierstrass Division Theorem [Laf65], [Rui93]). Let f ∈ C〈x〉
be an algebraic power series which is xn-regular of order d. Then for every g ∈
C〈x〉 there exists a unique quotient q ∈ C〈x〉 and a unique remainder r(x) ∈ C〈x〉 ∩⊕d−1
k=0 C[[x1, . . . , xn−1]]xkn so that g = q · f + r.

2.3.4 Division of entire functions by polynomials

This section is inspired by a paper by Apel et al ([ASTW96] ) and Mitiagin/Djakov
([DM80a]). In this section we will establish a division for vectors of entire functions
by vectors of polynomials. The division is very similar to Grauert’s division theorem,
and yields a normal form of f ∈ H(Cn)N with respect to a finite set of polynomials
p1, . . . , pk. The difference in comparison to the local version is that the division is
carried out through the maximal terms exp(pi) and not through the initial terms
It(pi).

Definition 2.3.14. Let < be a term ordering on C[[x]]m. For a polynomial vector
p(x) =

∑
pαx

α ∈ C[x]N , let exp(p) = max{α | pα 6= 0} and let

lt(p) = pexp(p)x
exp(p)

denote the leading term of p. By lack of better options we call stail(p) = p− lt(p) the
swallowtail of p.

Lemma 2.3.15. Let p ∈ C[x]N be a polynomial vector. Then

lim
r→∞

‖p‖r
rω(exp(p)) = 0

Proof: As all powers in powers of r in

‖p‖ω,r
rω(exp(p)) =

∑
α∈Mn,m

|pα|rω(α)−ω(exp(p))

are negative, the value tends to zero for r going to infinity.
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Definition 2.3.16. Let {µ1, . . . , µp} ∈ Mn,N , let ∆1 ∪ · · · ∪ ∆p be the according
partition of ∆ = 〈µ1, . . . , µp〉. We set

EΓi := {q ∈ H(Cn) | all terms of q are contained in xΓi}

EΓ := EΓ1 × · · · × EΓm

E∆c = {g =
∑

gνx
ν ∈ H(Cn)N | gν = 0 if ν ∈ ∆}

Theorem 2.3.17. Let f1, . . . , fm ∈ C[x]N be a finite set of polynomial vectors.
(1) For every g ∈ H(Cn), there exist q1, . . . , qm ∈ H(Cn) and R ∈ H(Cn)N , such

that no term of R is divisible by any lt(fi) so that

g = f1q1 + · · ·+ fmqm +R

(2) For every g ∈ H(Cn), there exist unique q = (q1, . . . , qm) ∈ FΓ, R ∈ F∆c so that
g = f1q1 + . . . fmqm+R. If g is a polynomial, then both q and R are polynomials.

(3) There exists an r0 ∈ R+ so that for all r ≥ r0 the following holds: For every
g ∈ (`1ω,r)N there exist q1, . . . , qm ∈ `1ω,r and R ∈ (`1ω,r)N .

Proof: The proof runs analogous to the the local case. Assume at first that fk = xµk .
Let ∆ = ∪̇i∆i as above, f =

∑
cα,kx

α,k. Set

qi =
∑
α∈Γi

cµi+αx
α = 1

xµk

∑
µ∈∆i

cµx
µ

R =
∑
µ∈∆c

cµx
µ

Then Ψ: EΓ(r)×E∆c(r)→ (`1r)N , (q1, . . . , qm, R) 7→
∑
qkx

µk +R is a continuous linear
isomorphism. The construction shows that it is surjective, and injectivity follows from
the decomposition of ∆. Let qi ∈ `1ω,r, R ∈ `1r . Then

‖Ψ(q,R)‖r ≤
N−1∑
i=0

sωµi ‖qi‖ω,r + ‖R‖r

Note that
‖qi(g)‖ω,r ≤

1
rωµi

‖f‖r

Now the general case. WLOG we may suppose that the coefficients of the leading
terms lt(fi) are normalized for all i = 1, . . . ,m. Let µi = It(fi) and let Ψ as above with
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respect to xµ1 , . . . , xµp . Let Φ: EΓ(r) × E∆c(r) → (`1r)N , (q1, . . . , qm) 7→
∑
qifi + R

and consider Φ ◦Ψ−1. Let idr be the identity map on (`1r)N .∥∥∥Φ ◦Ψ−1 − idr
∥∥∥
r

=
∥∥∥∑ qi(g)(xµi − fi)

∥∥∥
r

=
∥∥∥∑ qi(g) stail(fi)

∥∥∥
r
≤

≤
∑
‖qi(g) stail(fi)‖r ≤

∑
‖qi(g)‖ω,r ‖stail(fi)‖r ≤

≤
∑
‖f‖r

1
rω·exp(fi)

‖stail(fi)‖r

By Lemma 2.3.15 there is an r0 ∈ R+ so that for all r ≥ r0 we have 1
rω·exp(fi)

‖stail(fi)‖r <
1

2m , which yields that ∥∥∥Φ ◦Ψ−1 − idr
∥∥∥
r
≤ 1

2 ‖f‖r

for r ≥ r0. So Φ ◦ Ψ−1 is invertible, which gives that Φ is invertible and the claim
follows. As the corresponding maps are isomorphisms, the representation is necessarily
unique. If f is polynomial, we can apply the classical multivariate polynomial division
algorithm to obtain a representation as stated (see [AL94]).The third part follows from
the proof of (1).

Remark. Suppose that g, f1, . . . , fp are polynomials. Then the series q1, . . . , qm, R as in
the previous theorem coincide with the output of the multinomial polynomial division
algorithm applied to g with respect to the ordered set {f1, . . . , fp}. (see [AL94]).

Definition 2.3.18. Let f, f1, . . . , fp as above. Then R = R(f) = NF(f | f1, . . . , fl) is
called the normal form of f with respect to f1, . . . , fp.

Corollary 2.3.19 ([ASTW96],[DM80b]). Let f1, . . . , fp ∈ C[x]N , let M be the
H(Cn)−module generated by f1, . . . , fp and let f ∈ H(Cn)N .
(1) Assume that {f1, . . . , fp} forms a Gröbner basis for C[x]〈f1, . . . , fp〉. Then f ∈M

if and only if NF(f | f1, . . . , fp) = 0.
(2) Submodules of H(Cn)N generated by polynomials are closed in the compact-open

topology.
(3) There exists an r0 > 0 so that for all r ≥ r0 the module `1r

〈f1, . . . , fp〉 is closed
in (`1r)N .

Proof: (1) We need to show that if f ∈ M then R := NF(f | f1, . . . , fp) = 0.
Since f ∈ M , also R ∈ M and we can write R as f1q1 + · · · + fmqm. Set Rk =
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f1j
k(q1) + . . . fmj

k(qm). The sequence Rk converges to R in H(Cn)N in the compact-
open topology. The map f 7→ NF(f | f1, . . . , fp) is continuous and hence NF(Rk) con-
verges to NF(R) = R. As {q1, . . . , qm} forms a Gröbner Basis and Rk ∈ C[x]〈f1, . . . , fm〉
we obtain NF(Rk | q1, . . . , qm) = 0 (by Theorem 2.3.17) and hence NF(R) = 0. (2)
Without loss of generality we can assume that the fi form a Gröbner basis and hence
the module membership f ∈ M can be expressed as NF(f | f1, . . . , fp) = 0, and
since f 7→ NF(f | f1, . . . , fp) is continuous it follows that M is closed. (3) By Theo-
rem 2.3.17 there exists an r0 so that for every r ≥ r0, every f ∈ (`1r)N can be written
as f1q1 + · · · + fpqp + NF(f | f1, . . . , fp), with all qi and NF ∈ (`1r)N . Again, we can
assume that the fi form a Gröbner basis, and the membership f ∈ `1r

〈f1, . . . , fp〉 is
equivalent to NF = 0.
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Chapter 3

Flat analytic spaces and Homoge-
neous Operators

The C-algebra C{x} of convergent power series has two useful filtrations:

− C{x} is the inductive limit lim−→
r

`1r of weighted `1-Banach spaces. (3.1)

− C{x} is filtered by spaces of (weighted) homogeneous polynomials Hk(ω). (3.2)

The space of homogeneous polynomials of a fixed degree carries a well-known inner
product, the Bombieri inner product (and its normalized cousin, the Fischer product).
One of its applications is that it allows to formulate the properties of a canonical
solution of system of polynomial or analytic equations in terms of orthogonality re-
lations between the coefficients. For example, Fischer ([Fis18], [NS66]) showed that
if P is a homogeneous polynomial, then every polynomial F can be uniquely written
as F = PQ + R with P ( ∂

∂x)(R) = 0. This last relation can be interpreted (with
the suitable product) as a decomposition of the space of polynomials into the ideal
generated by P and its orthogonal complement {R | P ( ∂

∂x)(R) = 0}. The Bombieri
inner product is also compatible with the inductive locally convex structure of C{x} as
lim−→r

`1r in the sense that the duality on the homogeneous levels extends to a duality be-
tween power series, which is well-defined on C{x}×H(Cn) and recovers the inductive
topology as the strong topology on C{x} with respect to this duality. We introduce
a new class of spaces called flat analytic spaces, which have similar filtrations as in
Equation 3.1. These spaces appear naturally if one wants to construct normal forms
of solutions to power series equations and as direct complements of modules generated
by homogeneous power series. The structure morphisms of flat analytic spaces are the
so-called homogeneous operators. We will show that for such operators a generalized
Penrose inverse can be constructed. In the last section we shortly discuss composition
operators and show a strong injectivity theorem for homogeneous composition opera-
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tors acting on spaces of entire functions, generalizing a theorem by Eakin and Harris
([EH77]) to this setting.

3.1 Filtrations by homogeneous polynomials and flat an-
alytic spaces

Definition 3.1.1. Let Hk(Cn) denote the space {
∑
α∈Nn cαx

α | |α| = k ∀cα 6= 0}
of homogeneous polynomials of degree k in n variables. There are two commonly
used inner products on these spaces, which have been studied by various authors
([Fis18],[Rez93], [Pin12], [BBEM90]). Let P =

∑
pαx

α, Q =
∑
qαx

α ∈ Hk(Cn). Then
we introduce the Bombieri inner product

〈P,Q〉 =
∑(

α

|α|

)
pαqα.

The Bombieri product has a couple of useful properties, for example the norm associ-
ated to it is sup-multiplicative and adjoints of multiplication operator are differential
operators. If F =

∑
fαx

α is any polynomial, let F (D) be the differential operator∑
fαD

α, where Dα = ∂|α|

∂
α1
x1 ···∂

αn
xn

, and let F be the conjugate
∑
cαx

α.

Theorem 3.1.2 ([BBEM90], [Rez93]). Let P ∈ Hd(Cn) and Q ∈ Hk(Cn), let Tk : Hk(Cn)→
Hk+d(Cn) be the multiplication operator Q 7→ P ·Q and let ‖ ‖ be the norm induced
by the Bombieri inner product 〈 , 〉on Hk(Cn).
(1) ‖P ·Q‖ ≥ ( k!d!

(k+d)!)
1/2 ‖P‖ · ‖Q‖

(2) ‖P‖2 = P (D)(P )
(3) The adjoint operator of Tk is the differential operator k!

(k+d)!P (D).

Proof: For the proofs of (1) and (2) we refer to [Rez93].
(3) If ε, δ ∈ Nn, then

〈xε, Dδxε+δ〉 =
(
ε

|ε|

)(
ε+ δ

ε

)
= |ε+ δ|!

|ε|!

(
ε+ δ

|ε+ δ|

)
= |ε+ δ|!

|ε|! 〈x
ε+δ, xε+δ〉.

Let F ∈ Hk+d(Cn). Then

〈Q · P, F 〉 =
∑
ε∈Nn

Qε
∑
δ∈Nn

PδF ε+δ〈xε+δ, xε+δ〉 =

=
∑
ε∈Nn

Qε
∑
δ∈Nn

P δF ε+δ
(d+ k)!
k! 〈xε, Dδ(xε+δ)〉 = 〈Q, (d+ k)!

k! P (D)F 〉
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Let P be a homogeneous polynomial of degree d and let Tk : Hk(Cn)→ Hk+d(Cn) be
the associated multiplication operator Q 7→ P ·Q. Then a natural question ([Rez93])
is to find a bound for the operator norm of ‖Tk‖OP independent of k. For P ∈ P(Cn),
let ‖P‖B = sup|z|=1 |P (z)| be the supremum norm of P on the Euclidean ball in Cn.

Theorem 3.1.3 ([Pin12]). Let P as above be homogeneous polynomial of degree d and
let Tk : Hk(Cn)→ Hk+d(Cn) be the multiplication operator Q 7→ P ·Q. Then

lim sup
k→∞

‖Tk‖OP = ‖P‖B .

The Bombieri product induces via application on the homogeneous parts a du-
ality between the convergent power series and the space of entire functions: Let
f =

∑
k∈N Fk(x) ∈ C{x}, and let g =

∑
k∈NGk(x) ∈ H(Cn), Fk, Gk ∈ Hk(Cn).

Then 〈F,G〉 :=
∑
〈Hk, Gk〉. It is easily checked that 〈 , 〉 is well-defined, i.e. that

〈F,G〉 < ∞. The duality recovers the usual topologies of C{x} (the inductive topol-
ogy) and H(Cn) (locally uniform convergence) as the strong topologies of this duality.

Definition 3.1.4. We now introduce the Fischer inner product ([Fis18]), which is a
weighted variant of the Bombieri inner product. For P,Q ∈ Hd(Cn), let

[P,Q]d = d!〈P,Q〉

We equip the space P(Cn) =
⊕

d∈NHd(Cn) of all polynomials with the direct sum
inner product [ , ] and the associated Fischer norm ‖ ‖2 . A nice feature of [ , ] is that
the adjoint of a polynomial multiplication operator is the corresponding differential
operator.

Theorem 3.1.5 ([Ren08]). Let P be a polynomial and let TP : P(Cn)→ P(Cn),
F 7→ P · F be the associated multiplication operator. Then the adjoint of TP with
respect to [ , ] is the differential operator P (D).

Proof: Let P = P0 + · · ·+Pd be the decomposition of P into its homogeneous parts.
Accordingly we decompose TP into TP0 + · · · + TPd . The operator T 7→ T ∗ is linear,
so it suffices to show that T ∗P = P (D) holds for homogeneous polynomial Pd of degree
d. Let F = F0 + · · ·+ Fe, Q = Q0 + · · ·+Qe, Fl, Ql ∈ Hl(Cn). Then

[Pd · F,Q] =
e∑
l=0

(k + d)!〈PdFk, Qk+d〉 =
e∑
l=0

(k + d)! k!
(k + d)!〈Fk, P (D)Q〉 = [F, P (D)Q]
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Restated in terms of the Fischer norm, Theorem 3.1.2 takes the following form:

Theorem 3.1.6 ([Ren08], [BBEM90], [Rez93]). Let P ∈ Hd(Cn) and Q ∈ Hk(Cn),
let Tk : Hk(Cn)→ Hk+d(Cn) be the multiplication operator Q 7→ P ·Q. Then
(1) ‖P ·Q‖2 ≥ ‖P‖2 · ‖Q‖2
(2) ‖P‖22 = P (D)(P )

An interesting aspect of the Fischer inner product is that it can be extended to the
Bargmann-Fock

F(Cn) =
{
f ∈ H(Cn)

∣∣∣∣ ∫
Cn
|f(z)|2e−|z|2dλ <∞|

}
space of entire functions and represented as a weighted integral. The inner product
( , ) on F(Cn) is given by

(f, g) := 1
πd

∫
Cn
f(z)g(z)e−|z|2dλ.

If f, g are polynomials, then
(f, g) = [f, g].

3.1.1 Flat Analytic Spaces

We will now define a class of weighted sequence spaces which are filtered finite-
dimensional Hilbert spaces, and offer a framework to use the properties Equation 3.1.
These spaces have been introduced by B.Lamel.

Definition 3.1.7. Let (Fα)α∈Nd be a sequence of finite-dimensional normed spaces
over C, let ‖ ‖α be the norm of Fα. Then the flat analytic space F over the floors
(Fα)α∈Nd is the vector space

F =
{

(fα)α∈Nd ⊂
∏

Fα
∣∣∣ ∃r > 0 such that

∑
‖fα‖α r

|α| <∞
}
.

We call F̂ :=
∏
Fα the formal analytic space over the floors (Fα)α∈Nd . The projection

F̂ → Fα will be denoted by πα. For r > 0 let Fr be the weighted `1 Banach space

Fr =
{

(fα)α∈Nd ⊂
∏

Fα
∣∣∣ ∑ ‖fα‖α r

|α| <∞
}
.

We equip F with its natural topology as the inductive limit of the steps Fr. For every
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other choice of p ∈ [1,∞],
F = lim−→

r

Fr,p

where Fr,p =
{

(fα)α∈Nd ⊂
∏
Fα

∣∣∣ ∑ ‖fα‖pα rp|α| <∞ }
(for p 6= ∞), equipped with

the corresponding p−norm, and the obvious definition in the case that p =∞. If s < r

then Fr ↪→ Fs and it is not difficult to show that the inclusion is compact (the proof
works analogously as the one for weighted `1-spaces of power series, see for example
[Wob12])), and hence a flat analytic space is a (DFS)-space. In particular, the open
mapping theorem holds for continuous linear maps between flat analytic spaces. From
now on, we will always assume that each floor Fα is equipped with an inner product
〈_,_〉α and the induced norm. The topological dual space, equipped with the strong
topology, is isomorphic to

H (F) = lim←−
r>0
F1/r,q ,

for every q ∈ (1,∞], via the duality

〈 , 〉 : F ×H (F)→ C, ((fα)α∈Nd , (gα)α∈Nd) 7→
∑
〈fα, gα〉α.

The structural morphisms of flat analytic spaces E → F are the homogeneous maps
(see below), which, roughly speaking, map one floor to another, and are nothing else
then an (ascending) sequence of linear operators between the finite dimensional floors
Eα → Fα. We can carry over several constructions from the floorwise level, in which
we work with Hilbert spaces, to the whole flat analytic space and reproduce results for
homogeneous maps which are usually only available for linear maps between Hilbert
spaces. For example, we will see that the image of a homogeneous map has a closed
complement, provided that the image is closed.

Example 3.1.8. For every α ∈ Nd, let Fα = C. Then F = C{x1, . . . , xd}, HF =
H(Cd) and the duality is given by 〈

∑
fαx

α,
∑
gαx

α〉 =
∑
fαgα.

Example 3.1.9. Let Fk = Hk(Cd) be the space of homogeneous polynomials of degree
k, equipped with the Bombieri inner product. Then again F = C{x1, . . . , xd}, HF =
H(Cd). The duality is given by

〈
∑
k∈N

Fk,
∑

Gk〉 =
∑
〈Fk, Gk〉k =

∑
k∈N

∑
|α|=k

(
α

k

)
fαgα,

where Hk, Gk are the homogeneous parts of F =
∑
α∈Nd fαx

α, G =
∑
α∈Nd gαx

α.
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3.1.2 Complemented subspaces

Definition 3.1.10. Let F be a flat analytic space over the floors (Fα)α∈Nd . A flat
analytic subspace of F is a flat analytic space G over the floors (Gα)α∈Nd , such that Gα
is a subspace of Fα for every α ∈ Nd. We will show that every flat analytic subspace
is complemented (Theorem 3.1.14).

Lemma 3.1.11. Let G be flat analytic subspace of F . Then G is a closed subspace of
F , and its natural inductive topology coincides with the topology induced by F .

Proof: The projections πα : F → Fα are continuous, and so G =
⋂
α π
−1(Gα) is

closed in F . The inclusion Gr → G is continuous if G is considered with the subspace
topology induced by F , and hence id: lim−→Gr → G is continuous. As a closed subspace
of a (DFS)-space G is again of such nature, we can apply the open mapping theorem
to conclude that lim−→Gr

∼= G.

Remark. Let (Gα)α∈Nd and (Hα)α∈Nd be two sequences of complemented subspaces of
the floors Fα, i.e. Fα = Gα

⊕
Hα for every α ∈ Nd. Let G and H be the associated

flat analytic spaces. Then it is in general not true, that F = G
⊕
H. While both

subspaces are closed and the floorwise complementation induces a decomposition on
the formal level, i.e. F̂ = Ĝ

⊕
Ĥ, the decomposition does not work on an analytic

level, as seen in the following example given by B. Lamel.

Example 3.1.12. Let Fk := C2 for every k ∈ N and let F be the associated analytic
space over N2. Let e1, e2 be the standard unit vectors of C2, and set vk = e2 +(k!)−1e1.
Let Hk = 〈e2〉 and Gk = 〈vk〉. Let x = (xk)k∈N2 , where xk = e1 for all k ∈ N.
Suppose that x = g + h for some g ∈ G, h ∈ H. Then xk = gk + hk, and hence
gk = k!vk, hk = −k!e2. But g ∈ Ĝ \ G, h ∈ Ĥ \ H. This shows that G +H ( F . Let
projk be the canonical extension to

∏
Fj of the projection of Fk onto Hk along Gk and

set P = (projk)k∈N. Then P : F → F̂ and P (F) is not contained in F . If this failure
is excluded, then the decomposition by the induced by the complemented subspaces
Gk, Hk works also analytically.

Theorem 3.1.13. Let (Gα)α∈Nd and (Hα)α∈Nd be two sequences of complemented
subspaces in the Fα and let G,H be the associated analytic spaces. Let projα : F̂ → Hα

be the canonical extension of the projection of Fα onto Hα along Gα, and let
projH : F → Ĥ, projH((fα)α∈Nd) := (projα(f))α∈Nd = (projα(fα))α∈Nd be the floor-
wise projection.
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The following are equivalent:
(1) projH(F) ⊂ F .
(2) F = G

⊕
H.

(3) F = G
⊕
H and the projection on H along G is projH.

(4) There exist S,M > 0 so that supα∈Nd ‖projα‖OP,Fα S
α ≤M <∞, where ‖projα‖OP,Fα

is the operator norm of the projection as an operator Fα → Hα.

Proof: (1)⇒(3) By definition, projH|H = idH, proj2H = projH, projH(F) ⊂ Ĥ∩F = F
and hence projH : F → H is a projection on H. The projection of Fα onto Gα along Hα

is idFα−projα
∣∣
Fα . Therefore id−projH : F → G is the projection of F onto G along H.

This shows that F = G
⊕
H on an algebraic level, and since both subspaces are closed

and therefore (DFS)-spaces, the open mapping theorem implies that F = G
⊕
H as

locally convex spaces. In particular, projH is continuous (as the projection on H along
G is unique).
(2) ⇒ (1) Let πH, πG be the projections onto H,G, respectively. Then projH =
projH(πH + πG) = projH(πH) + 0 = πH. (3) ⇒ (4) projH is continuous, and therefore
preserves bounded sets. Let BR,M = {(xα)α∈Nd | supα ‖xα‖αRα ≤ M}. Observe that
B1,1 = Πα∈NdBα, where Bα is the unit ball in Fα. Since projH(B) is bounded, there ex-
ists an S,M > 0 so that projH(B1,1) ⊂ BS,M . Choose xα ∈ Bα so that ‖projα(xα)‖α =
‖projα‖OP,Fα . Since x = (xα)α∈Nd ∈ B1,1, we obtain supα ‖projα‖α Sα ≤M <∞.
(4) ⇒ (1). If x ∈ F , then ∃R,K so that supα ‖xα‖αRα ≤ K. Hence

sup
α
‖projα(xα)‖ (SR)α ≤ sup

α
‖projα‖OPR

α ‖xα‖α S
α ≤M ·K,

and so projH(x) ∈ F .

Corollary 3.1.14 (and Definition). Assume that every Fα is equipped with an inner
product and the corresponding Hilbert-norm. Let (Hα)α∈Nd be an arbitrary sequence
of subspaces with each Hα contained in Fα. Let H⊥α be the orthogonal complement
of Hα in Fα and let H⊥ be the flat analytic space over the floors

(
H⊥α

)
α∈Nd

. Fur-
ther, let πHα : F̂ → Hα be the canonical extension of the orthogonal projection of Fα
onto Hα and let πH : F̂ → Ĥ be the orthogonal projection on Ĥ, πH((fα)α∈Nd) :=
(πα(fα))α∈Nd. Then

F = H
⊕
H⊥

and the orthogonal projection π : H → H is analytic. In particular, every flat analytic
subspace is complemented.
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Proof: We apply the previous theorem with Gα = F⊥α . The operator norm of each of
orthogonal projection is of course bounded by 1, thus the fourth part of the previous
theorem yields that the projections are continuous and that F = H

⊕
H⊥.

3.2 Homogeneous operators

Let E ,F be flat analytic spaces over the floors (En)n∈N , (Fn)n∈N. The canonical
embedding of En into E will be denoted by ιn, the coordinate projections E → En by
πn and by abuse of notation the analogous maps for F will be denoted by the same
letters.

Definition 3.2.1. A linear operator T : E → F between flat analytic spaces is called
homogeneous, if there exists a strictly increasing function ϕ : N→ N so that

T ◦ ιk = ιϕ(k) ◦ πϕ(k) ◦ T ◦ ιk,

which will be shortly expressed by T (Ek) ⊂ Fϕ(k). The map ϕ will be called the shift
of T . This means that each coordinate function πn ◦ T depends only on the kth entry
ek (if n = ϕ(k)) or is identically zero (if n 6∈ Im(ϕ)). For k ∈ N, let then

Tk : Ek → Fϕ(k), Tk = πϕ(k) ◦ T ◦ ιk

denote the floorwise operators of T . A linear operator T : E1 × · · · × EN → F will
be called homogeneous, if T is homogeneous with respect to the natural filtration
(E1

k×· · ·×ENk )k∈N of E1×· · ·×EN . An arbitrary map T : E → F will be called quasi-
homogeneous if there exist linear topological automorphisms Ψ of F , ϕ of E , so that
the induced map Ψ ◦ T ◦ ϕ−1 is homogeneous.

Example 3.2.2. Let T : C{x}N → C{x}m be the linear map associated to a vector of
homogeneous polynomials of degree d. Then T is homogeneous since Tk : Hk(Cn)N →
Hk+d(Cn)m.

Example 3.2.3. Let x = (x1, . . . , xn), y = (y1, . . . yN ), z = (z1, . . . , zk) be three
sets of variables, and let ϕ(x, z) ∈ Hd(Cn+k)N be a vector of homogeneous polyno-
mials of degree d. Let ω ∈ Nn+N be the weight vector which assigns to each xi the
weight 1 and each to yi the weight d. Then the composition operator Cϕ : C{x, y} →
C{x, z}, f(x, y) 7→ f(x, ϕ(x, z)) is a homogeneous operator with respect to the filtra-
tion of C{x, y} by Hk(ω) and C{x, z} by Hk(Cn+k).
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Example 3.2.4. More generally, assume that all ϕi(x, z) are homogeneous with re-
spect to the same weight υ = (µ, ν) ∈ Nn+k. Let di be the weighted degree of ϕi,
let δ = (d1, . . . , dN ) and let ω = (µ, δ). Then we claim that Cϕ : C{x, y} → C{x, z}
is a homogeneous operator, if we filtrate C{x, y} with by the weighted homogeneous
polynomials Hk(ω) and C{x, z} by Hk(υ). Recall that a polynomial P (x1, . . . , xn)
with complex coefficients is weighted homogeneous of degree d with respect to some
weight µ, if and only if P (tµ1x1, . . . , t

µnxn) = tdP (x1, . . . , xn) holds for all t ∈ C. Let
us shortly write tµx instead of (tµ1x1, . . . , t

µnxn). If now H(x, y) ∈ Hk(ω), then

(Cϕ(H))(tµx, tνz) =
∑

µ·α+δ·β=k
Hα,β(tµx)α(ϕ1(tµx, tνz), . . . , ϕN (tµx, tνz))β =

=
∑

µ·α+δ·β=k
Hα,βx

αtµ·α(td1ϕ1(x, z), . . . , tdNϕ(x, z))β =

=
∑

µ·α+δ·β=k
Hα,βt

µ·α+δ·βxα(ϕ1(x, z), . . . , ϕ(x, z))β = tk(Cϕ(H))(x, z)

Definition 3.2.5. Let T : E → F be a homogeneous operator with shift ϕ. Then let
T ∗k : Fϕ(k) → Ek be the adjoint of Tk : Ek → Fϕ(k). The floorwise adjoint T ′ to T is
the map F̂ → Ê , T ′(f) = (T ∗k (fϕ(k)))k∈N.

We recall that an adjoint operator to a linear operator T : E → F between duali-
ties 〈E,G〉, 〈F,H〉 is an operator T ∗ : H → G, which satisfies 〈T (e), g〉 = 〈e, T ∗(g)〉
([Sch66, p.128]). The adjoint may not always exist, as the dual map of T might fail to
map H into G. The adjoint exists if and only if T is weakly continuous (i.e. if E, F are
equipped with the weak topologies σ(E,G), σ(F,H), respectively [Sch66, p.128]). If E
and F are equipped with topologies which are consistent with the respective dualities,
then every continuous operator T : E → F is also weakly continuous and has therefore
an adjoint map, which is continuous if both H and G are equipped with their strong
topologies (uniform convergence on bounded sets) ([Sch66, p.130]).

Theorem 3.2.6. Let T : E → F be a homogeneous operator and let T ′ be its floorwise
adjoint, let T ∗ : H (F)→H (E) be the adjoint operator of T . Then
(1) T ∗ = T ′

(2) Assume that T (H (E)) ⊂H (F). Then T ′ is analytic,
i.e. T ′(F) ⊂ E and T ′ : F → E is continuous.
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Proof: (1) Let e = (ek)k∈N ∈ E , h = (hn)n∈N ∈H (F). Then

〈T (e), h〉 =
∑
n∈N
〈Tn(e), hn〉n =

∑
k∈N
〈Tϕ(k)(ι(ek)), hϕ(k)〉ϕ(k) =

=
∑
k∈N
〈Tk(ek), hϕ(k)〉ϕ(k) =

∑
k∈N
〈ek, T ∗k (hϕ(k))〉k = 〈e, T ′(h)〉

Set gk = T ∗k (hϕ(k)), g = (gk)k∈N = T ′(h). It remains to show that g ∈ HE . For
every k ∈ N choose δk ∈ Ek so that 〈δk, gk〉 = ‖gk‖k and such that ‖δk‖ = 1. Then
δ(R) := (δkRk)k∈N ∈ E for every R ∈ R+ and since

∑
k ‖gk‖k Rk = 〈δ(R), g〉 =

〈T (δ(R)), h〉 ∈ C, the sequence ‖gk‖k Rk is bounded, and hence T ′(H (F)) ⊂ H (E).
Therefore T ′ is the adjoint operator of T . (2) The same arguments as before show
that T ′ is the adjoint of T| : H (E)→H (F).

Example 3.2.7. The conditions of the previous theorem are for example met by
multiplication operators associated to matrices of homogeneous polynomials. If A is
an m × n matrix of homogeneous polynomials, then the multiplication f 7→ A · f is
continuous both as an operator C{x}N → C{x}m and H(Cn)N → H(Cn)m.

3.2.1 The Penrose inverse of a homogeneous operator

Definition 3.2.8. If L : V →W is a linear map between two finite-dimensional Hilbert
spaces V and W , then the Penrose inverse L+ of L is the linear map L+ : W → V

which assigns to an element w ∈ W the unique T+(w) ∈ V , which is of least norm
among all vectors in V whose image approximates w in the best way. That is, T+(w)
solves the two-stage optimization problem ([BIG03, p.109])
(1) min{‖w − T (v)‖ | v ∈ V }
(2) min{‖ṽ‖ | ‖w − T (ṽ)‖ = minv∈V ‖w − T (v)‖}

So the Penrose inverse is the unique map L : W → V which solves
(1) w − LL+(w) ∈ Im(T )⊥

(2) L+(w) ∈ ker(T )⊥

for all w ∈W .

Lemma 3.2.9 ([BIG03]). Let L : V →W be a linear map between two finite-dimensional
Hilbert spaces, and let πI : W → Im(L), πK⊥ : V → ker(L)⊥ be the orthogonal projec-
tions on Im(L) and ker(L)⊥, the orthogonal complement of the kernel of L, respectively.
The Penrose inverse of L has the following representations:
(1) L+ = (πI ◦ L

∣∣
K⊥

)−1 ◦ πI
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(2) L+ = L∗ ◦ (πI ◦ LL∗
∣∣
Im(L))

−1 ◦ πI
(3) If L is surjective, then L+ = L∗(LL∗)−1

(4) If L is injective, then L+ = (L∗L)−1L∗

Definition 3.2.10. Let T : E → F be a homogeneous operator between flat analytic
spaces, with shift ϕ. We denote by T+

k the Penrose inverse of Tk : Ek → Fϕ(k). Then
the Penrose inverse of T+ is the map

T+ : F̂ → Ê , f = (fn)n∈N 7→ (T+
k (fϕ(k)))k∈N.

T+ maps F into E if and only if the image of T is closed (see below). But even if the
image is not closed, Im(T ) is mapped to E . In particular, if T is injective, then T+ is
a left-inverse of T . By ker(T )⊥ we denote the closed subspace in E which is the flat
analytic space over the floor sequence (kerTk)⊥. This gives a decomposition of E into
kerT ⊕ (kerT )⊥.

Theorem 3.2.11. Let T : E → F be a homogeneous operator. Then
(1) T+(Im(T )) ⊂ E.
(2) The following are equivalent:

(a) The Penrose inverse of T is analytic.
(b) T has closed image in F .
(c) T (Ê) ∩ F = T (E).

Proof: (1) Let f = T (e) ∈ Im(T ), and choose r > 0 so that
∑
‖ek‖k rk < ∞. Since

T+
k Tk(ek) is the orthogonal projection along the kernel of T ,

∥∥∥T+
k Tk(e)

∥∥∥
k
≤ ‖ek‖, and

hence
∥∥T+(f)

∥∥
r =

∑∥∥∥T+
k Tk(ek)

∥∥∥
k
rk <∞, which shows that T+(Im(T )) ⊂ E .

(i) ⇔ (ii) Let πIm(T ) = (πIm(Tk))k∈N be the orthogonal projection on the image of T
and let πker(T )⊥ = (πker(Tk)⊥)k∈N be the orthogonal projection onto the orthogonal
complement of ker(T ). Suppose at first that T has closed range. Then by Theo-
rem 3.1.14 πIm(T ) is analytic and S := πIm(T ) ◦ T

∣∣∣
ker(T )⊥

is a continuous isomorphism
onto the image of T , as the open mapping theorem holds in the realm of (DFS)-
spaces and since a closed subspace of a (DFS)-space is again a (DFS)-space. Since
T+
k = (πIm(Tk) ◦ T

∣∣∣
ker(Tk)⊥

)−1 ◦πIm(Tk) and as T+ is floorwisely defined as T+
k , we have

T+ = (πIm(T ) ◦ T
∣∣∣
ker(T )⊥

)−1 ◦ πIm(T ), which is an analytic map F → E . Conversely,

suppose that T+ is an analytic map F → E . Then Im(T )⊥, the kernel of T+, is closed
and is therefore a flat analytic space over the floor sequence (Im(Tk)⊥)k∈N. By The-
orem 3.1.14 we obtain a direct sum decomposition of F into Im(T )

⊕
Im(T )⊥, where
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Im(T ) denotes the topological closure of Im(T ) in E. The fact that TkT+
k = id on

Im(Tk) carries over to TT+ = id on Im(T ), whence Im(T ) = Im(T ).
(ii) ⇔ (iii) Assume that Im(T ) is closed and that f ∈ T (Ê)∩F . Then T+(f) ⊂ E and
T (T+(f)) = f , so f ∈ T (E). Conversely, assume that T (Ê) ∩ F = T (E). Let (en)n∈N
be a sequence in E so that the images T (en) converge to f ∈ F̂ , write en as (ek,n)k∈N.
The projections onto the Fα are continuous, whence the coordinates Tk(ek,n) converge
to fφ(k) (for n → ∞). The images of linear maps between finite-dimensional spaces
are closed, hence there exist ek ∈ Ek such that T (ek) = fφ(k). We can therefore solve
T (ê) = f formally with ê ∈ Ê and thus also inside E , which shows that f ∈ Im(T ).

Let us shortly note that the construction of an analytic Pseudo-inverse is not limited
to taking orthogonal complements to the image and kernel. Formally, one can choose
arbitrary complements. If the projections along the respective spaces are analytic
and if the homogeneous operator has closed image, then it is possible to construct an
analytic inverse with respect to the chosen complements.

Definition 3.2.12. Let T : E → F be a homogeneous operator with shift ϕ, Tk : Ek →
Fϕ(k). For every k ∈ N let Nk

⊕
ker(Tk) = Ek and Mk

⊕
Im(Tk) = Fϕ(k) be comple-

mented subspaces to ker(Tk), Im(Tk), respectively. Denote by projNk : Ek → Nk the
projections along ker(Tk) onto Nk and by projIm(Tk) the projection of Fk onto Im(Tk)
along Mk. Let N be the flat analytic space over the floor sequence (Nk)k∈N, respec-
tively, and let

projN = (projNk)k∈N : E → N̂ , projIm(T ) = (projIm(Tk))k∈N : F → Îm(T )

be the projections on N̂ and Îm(T ). Then the pseudo-inverse S with respect to the
complements (Nk)k∈N , (Mk)k∈N is the linear map

S : F̂ → Ê , S((fk)k∈N) =
(
Sk(fϕ(k))

)
k∈N

where Sk = (projIm(Tk)◦Tk
∣∣
Nk

)−1(projIm(Tk))

Theorem 3.2.13. Let T be a homogeneous map with shift ϕ, and let Nk
⊕

ker(Tk) =
Ek and Mk

⊕
Im(Tk) = Fϕ(k) be complemented subspaces to ker(Tk), Im(Tk), respec-

tively. Let projN and projIm(T ) be defined as above. Suppose that T has closed image
and that both projN and projIm(T ) are analytic. Then the pseudoinverse S with respect
to the complements (Nk)k∈N and (Mk)k∈N is analytic and S : F → E equals

projN ◦ (projIm(T ) ◦ T
∣∣
N )−1 ◦ projIm(T ).
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Proof: The analyticity of the projections yields direct sum decompositions

E = ker(T )
⊕
N F = Im(T )

⊕
M.

Again the open mapping theorem for (DFS)-spaces implies that projIm(T ) ◦ T
∣∣
N has

a continuous inverse. It is easy to check that the kth floorwise operator of (projIm(T ) ◦
T
∣∣
N )−1 ◦ projIm(T ) coincides with (projIm(Tk) ◦ Tk

∣∣
Nk

)−1(projIm(Tk)).

Since every submodule of C{x}m is closed by Theorem 2.3.6(3), the next theorem
is a direct consequence of Theorem 3.2.11.

Corollary 3.2.14. Let T : C{x}N → C{x}m be the homogeneous C{x}-module ho-
momorphism T : y 7→ H(x) · y, where H(x) is a matrix of homogeneous polynomials.
Then the Penrose inverse T+ of T is analytic.

Another approach besides showing that the image of the homogeneous operator T
is closed, is to directly estimate the norms of the floorwise Penrose inverses, in order
to show the analyticity of T+. This means that one has to find bounds (from below)
for the smallest non-zero eigenvalues of TkT ∗k . The following example illustrates this
approach, but it seems difficult to use it in more complicated situations.

Example 3.2.15. Let p = γx2
1 + x1x2 + γx2

2, and let T : (a, b) 7→ ((∂x1p)a, (∂x2p)b) =
(2γx1 +x2) ·a+(2γx2 +x1) ·b be the homogeneous linear operator T : C{x}2 → mC{x}
associated to the differential of p. We filter C{x} by Hk(C2), equipped with the
Bombieri inner product. Let Tk : Hk(C2)2 → Hk+1(C2) be the restriction of T to the
kth floor of homogeneous polynomials of degree k. We assume that γ ∈ R+, γ 6= 1/2.
Then all T and all Tk are surjective, which implies that the pseudoinverse of Tk can
be calculated as

T+
k = T ∗k (TkT ∗k )−1.

The adjoint of Tk is the differential operator

Hk 3 fk 7→
1

k + 1

(
2γfx1 + fx2

2γfx2 + fx1

)

The operator TkT ∗k : Hk+1 → Hk+1 maps f ∈ Hk+1 to

1
k + 1(2γx1 + x2)(2γfx1 + fx2) + 1

k + 1(2γx2 + x1)(2γfx2 + fx1) =

= 1
k + 1((4γ2 + 1)x1 + 4γx2)fx1 + 1

k + 1((4γ2 + 1)x2 + 4γx1)fx2 .
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We calculate the matrix representation of TkT ∗k with respect to the canonical orthonor-
mal basis xα

(
k + 1
α

)1/2
∣∣∣∣∣∣ |α| = k + 1

 .
The monomial xα is mapped to

TkT
∗
k (xα) = 1

k + 1
(
(4γ2 + 1)(α1 + α2)xα + 4γα1x

α−e1+e2 + (4γ)α2x
α−e2+e1

)
,

and so the coefficients of TkT ∗k (xα
(k+1
α

)1/2) with respect to the orthonormal basis are

〈
TkT

∗
k

xα( α

k + 1

)1/2
 , xβ( β

k + 1

)1/2〉
=



(4γ2+1)
k+1 β = α

4γ
k+1(α1)(1/2)(α2 + 1)(1/2) β = α− e1 + e2
4γ
k+1(α2)(1/2)(α1 + 1)(1/2) β = α− e2 + e1

0 else

In lexicographical order, the matrix representation of TkT ∗k is the tridiagonal symmetric
matrix

Sk = 1
k + 1



(4γ2 + 1)(k + 1) 4γ(k + 1)1/2 0
4γ(k + 1)1/2 (4γ2 + 1)(k + 1) 4γk1/221/2

0 4γk1/221/2 (4γ2 + 1)(k + 1)... ... ...


By Gershgorin’s circle theorem, the eigenvalues of Sk = (si,j)i,j are contained in the
union of the closed Euclidean balls B(sj,j ,

∑
i 6=j |ai,j |). Hence the smallest Eigenvalue

λk of Sk is larger or equal to min0≤j≤k+1 sj,j −
∑
i 6=j ai,j , so

λk ≥ min
0≤j≤k+1

(4γ2 + 1)− 4γ 1
k + 1

(
(k + 1− j)1/2(j + 1)1/2 + (k + 2− j)1/2j1/2

)
≥ (4γ2 + 1)− 4γ k + 2

k + 1

The quadratic function q(γ) = 4γ2 + 1 − 4γ reaches its minimum at γ = 1/2 and is
strictly positive for all real values different form zero. In particular, 4γ2 + 1 > 4γ for
γ 6= 0 and therefore λk is bounded from below by a constant C̃ > 0 for all k ≥ k0, and
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thus there exists a constant C > 0 so that λk ≥ C for all k ∈ N. The operator norm of
Tk is bounded by the maximum of the supremum norms of the coefficient polynomials
on the unit sphere, so

‖Tk‖OP ≤ max{ sup
|x1|2+|x2|2=1

|2γx1 + x2|, sup
|x1|2+|x2|2=1

|2γx2 + x1|} ≤
√

4γ2 + 1.

Therefore

‖Tk‖+OP ≤ ‖T
∗
k ‖OP

∥∥∥(TkT ∗k )−1
∥∥∥

OP
≤ ‖Tk‖OP λ

−1
k ≤

√
4γ2 + 1C−1 =: M.

Now let f =
∑
k Fk ∈ `1(R), where Fk is the homogeneous part of order k of f and∑

k ‖Fk‖Rk <∞. Then∥∥∥T+(F )
∥∥∥1

R
=
∑∥∥∥T+

k Fk+1
∥∥∥
k
Rk ≤M/R

∑
‖Fk+1‖k+1R

k+1 ≤M/R ‖f‖1R .

These estimates show that T+ is a bounded operator `1(R)→ `1(R)2. The quality of
the estimate is the same as via the approach the Grauert Division algorithm, however,
the estimate holds for all R > 0 and not only for all R smaller then a certain R0.

3.2.2 Composition operators

In the following, we will review some results on the question when a composition
operator between power series algebras has closed image. This question is intimately
related to the solvability of analytic equations and the Nested Artin approximation
theorem. Composition operators induced by algebraic maps always have closed image.
In the analytic case the closedness of the image of Cϕ is equivalent to the a rank
condition on the Jacobian of ϕ.

Definition 3.2.16. An analytic algebra is a quotient of a ring of convergent power
series C{y1, . . . , yn}/I by an ideal I ⊂ C{y1, . . . , yN}. An analytic homomorphism
Φ: R→ S between two analytic algebras R = C{y1, . . . , yN}/I, S = C{x1, . . . , xn}/J ,
is a local C-algebra homomorphism. It turns out that every such homomorphism
is induced from a composition operator Cϕ : C{y1, . . . , yN} → C{x1, . . . , xn}, f(y) 7→
f(ϕ(x)) ([GR13, p.79]). Analytic algebras carry a natural structure as a locally convex
space in the form of a Banach scale and (DFS)-space. We will refer to the quotient
topology induced by C{x} = limr→∞ `

1
r on S as the inductive topology. In [BZ79],

Becker and Zane studied the functional analytic properties of analytic algebras and
showed that many properties of analytic algebra morphisms such as the closedness can
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be read off the algebraic properties of the rings and the power series vector ϕ which
induces the composition operator. Let S be a domain and let Φ: R→ S be an analytic
algebra homomorphism induced by the composition operator Cϕ : C{y1, . . . , yN} →
C{x1, . . . , xn}. The the generic rank grk(Φ) of ϕ is the rank of the Jacobi matrix
∂(ϕ1,...,ϕN )
∂(x1,...,xn) over the quotient field of S. In other terms, it is the size of the largest
minor of ∂(ϕ1,...,ϕN )

∂(x1,...,xn) which is not contained in J .

Remark. As a local ring, an analytic algebra can be also equipped with the Krull (=
m-adic) topology. A third natural topology is given by the coefficientwise convergence
of power series, which is the initial topology with respect to the coordinate projections
projβ :

∑
cαx

α 7→ cβ.

Theorem 3.2.17 ([BZ79, Cor 2.12, Thm 2.8]). Let Φ: R → S be a local homomor-
phism of analytic algebras, with S a domain. TFAE:
(1) Φ(R) is closed in S in the Krull topology.
(2) Φ(R) is closed in S in the inductive topology.
(3) grk(Φ) = dimR/ ker(Φ) = dim R̂/k̂er(Φ).

Corollary 3.2.18. Let Φ: C{y1, . . . , yN} → C{x1, . . . , xn} be an analytic homomor-
phism. If grk(Φ) = N , then Φ is a closed map and an isomorphism onto its image.

Proof: Let ϕ : (Cn, 0) → (CN , 0) be the holomorphic map which induces Cϕ = Φ.
We show at first that Cϕ is injective. Suppose that Cϕ(f(y)) = f(ϕ(x)) = 0. By
assumption, the rank of ∂(ϕ1,...,ϕN )

∂(x1,...,xn) is N . The rank theorem implies that the image
of every open zero neighborhood has non-empty interior. Let V be a connected open
set around 0 ∈ CN so that f is defined on V . Then ϕ(ϕ−1(V )) ⊂ V has non-empty
interior. Since f ◦ ϕ = 0, it follows that f vanishes on ϕ(ϕ−1(V )), thus f = 0 and Cϕ
is injective. Since grk(Φ) = N = dimC{y1, . . . , yN}/ ker(Φ), the image of Φ is closed.
Hence Φ is an isomorphism onto its image (as the open mapping theorem holds for
maps between (DFS)-spaces). Therefore the image of a closed set under Φ is closed
in Φ(R) and thus in S, since Φ(R) is closed in S.

If R and S are rings of germs of analytic maps on reduced algebraic varieties, and if
Φ is an algebraic map between the corresponding algebraic varieties, then the image
of Φ is closed without further assumptions.

Theorem 3.2.19 ([Tou76], [Bec77, Thm B]). Let R,S be the local rings of analytic
functions of germs of reduced algebraic varieties and let Φ: R → S be a local homo-
morphism. If Φ is induced by an algebraic map, then the image of Φ is closed in the
Krull topology.
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This theorem has been generalized by G. Rond ([Ron06], [Ron13]) to the case where
R,S are quotients of convergent power series algebras by ideals generated by algebraic
series, if Φ is an algebraic power series vector and if S is an integral domain.

Theorem 3.2.20. Let x = (x1, . . . , xn), y = (y1, . . . , yN ), (z1, . . . , zk) and let ϕ(x, z) ∈
C[x, z]N be a vector of homogeneous polynomials with respect to the same weight υ ∈
Nn+k. Let di be the weighted degree with respect to υ of ϕi(x, z), let δ = (d1, . . . , dN )
and let ω = (µ, δ) ∈ Nn+N . We consider C{x, y} as a flat analytic space over the
spaces of weighted homogeneous polynomials (Hl(ω))l∈N and C{x, z} as a flat analytic
space over (Hk(υ))k∈N. Then Cϕ : C{x, y} → C{x, z} is a homogeneous operator and
its Penrose inverse ϕ+ is analytic.

Proof: The operator is homogeneous (see Example 3.2.4) and by Becker’s Theorem
B the image of ϕ is closed, which is equivalent to the analyticity of the Penrose inverse
of ϕ (Theorem 3.2.11).

Definition 3.2.21. We say that two vectors of convergent power series f(x) ∈ C{x}N

and g(x) ∈ C{x}N are right-equivalent, if there exists a local biholomorphism of (Cn, 0)
so that f(x) = g(ψ(x)). A germ V of an analytic space is called quasi-homogeneous,
if there exist local coordinates in which V can be defined by weighted homogeneous
polynomials (which are weighted homogeneous with respect to the same weight ω). Put
differently, this mean that there exist f1, . . . , fk which define V , so that f = (f1, . . . , fk)
is right-equivalent to a vector of quasi-homogeneous polynomials.

Lemma 3.2.22. If ϕ(x) ∈ C{x}N is right-equivalent to a weighted homogeneous poly-
nomial, then Cϕ is a quasi-homogeneous operator.

Proof: By assumption, there exists a local isomorphism h of (Cn, 0) and vector of
weighted homogeneous polynomials p so that ϕ(x) = p(h(x)). Hence Cϕ factors into
Ch ◦ Cp, where Ch is an automorphism of C{x} and Cp is a homogeneous map.

The problem when a germ V of an analytic variety is quasi-homogeneous has been
studied classically under the assumption that V is an isolated hypersurface singularity.
Saito ([Sai71]) gave a full characterization and showed that an isolated hypersurface
singularity V (f) is quasi-homogeneous if and only if the Milnor number µ(f) coin-
cides with the Tjurina number τ(f). For isolated complete intersection singularities of
higher co-dimension, the same statement holds true, which has been proven by [Vos02]
40 years after Saito’s result. In the hypersurface case, τ(f) = µ(f) can be equivalently
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stated as f ∈ 〈∂x1f, . . . , ∂xnf〉. The more restrictive question, when an isolated singu-
larity can be defined after a change of coordinates by homogeneous polynomials, has
only been recently answered by Yau and Zuo ([YZ15]): V (f) ⊂ Cn is homogeneous if
and only if µ(f) = τ(f) = (v− 1)n, where v is the order of f (called the multiplicity).

3.2.3 Composition operators on spaces of entire functions

If we study composition operators on the local level, that is, between rings of germs
of analytic functions, then the closedness of the image is characterized by the rank
criterion (Theorem 3.2.17). On a global level, this problem has been classically studied
for composition operators Cϕ : C∞(M)→ C∞(N) between spaces of smooth functions
on smooth manifolds, usually under the assumption the ϕ is semi-proper and real-
analytic ([BMP96]). In the real-analytic setting, Domanski et al ([DG12]) gave criteria
for the closedness of the image of a composition operator Cϕ : A(M)→ A(N) induced
by a real-analytic map and which acts on the real-analytic functions on real-analytic
manifolds M,N .

Theorem 3.2.23 ([DL05, Theorem 3.1]). Let ϕ : M → N be a real-analytic map
between two real-analytic manifolds and let Cϕ : A(M) → A(N) be the associated
composition operator. Then
(1) If Cϕ has closed range, then ϕ(M) is analytic with global equations.
(2) If Cϕ is open onto its closed range, then ϕ is semi-proper.

A map ϕ : X → Y between two topological spaces is called semi-proper, if there
exists for every compact subset K of Y a compact subset L of X so that Im(ϕ)∩K =
ϕ(L). A subset S of N is called analytic with global equations, if S is the zero set of
a real analytic function f on N .
For composition operators Cϕ : H(Cn)→ H(Ck) between spaces of entire functions, it
seems that there does not exist any characterization of the closedness of Im(Cϕ). The
analogously stated necessary conditions of the real analytic setting are not necessarily
met by an operator with closed image: In C2, we can proof the following result:

Theorem 3.2.24. Let q(z, w) = q1(z)w1 + · · ·+qd(z)wd be any polynomial in C2 with-
out constant w-term and let ϕ(z, w) = (z, q(z, w)). Then the associated composition
operator Cϕ : H(C2)→ H(C2) has closed range.

Proof: If q ≡ 0, then the image of Cϕ is H(C) and thus closed. Now assume that
q 6≡ 0, and let z1, . . . , zs be the common zeros of the w-coefficients q1(z), . . . , qd(z).
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Then
Im(ϕ) =

(
C2 \

s⋃
i=1
{z = zi}

)
∪ {(z1, 0), . . . , (zs, 0)} .

Let h be in the closure of the image and choose a sequence (fk)k∈N of entire functions so
that limk→∞Cϕ(fk) = h. Set U = C2 \{gw = 0}. For x ∈ U , ϕ is a local isomorphism,
so Cϕ : Oϕ(x) → Ox is a a topological isomorphism. Hence (fk)k∈N converges locally
uniformly on ϕ(U) to some f ∈ H(ϕ(U)). If x ∈ {gw = 0}, still Cϕ : Oϕ(x) → Ox
has generic full rank, is therefore injective and has closed image. So there exists an
F ∈ Oϕ(x) solving Cϕ(F ) = h. Let V be a connected open neighborhood of ϕ(x)
so that F is analytic on V . Observe that ϕ(U) is dense (and open) in Im(ϕ). Let
x1 ∈ U ∩ ϕ−1(V ). Since Cϕ : Oϕ(x1) → Ox1 is injective, and as Cϕ(F ) = h = Cϕ(f),
we obtain that F has to coincide with f around ϕ(x1). So F coincides with f on
ϕ(U ∩ ϕ−1(V )) and is thus an analytic extension of f around ϕ(x). Since x was
arbitrary, we can thus extend f to Im(ϕ) so that f still solves Cϕ(f) = h. It remains
to show that f can be extended to an entire function, i.e. that it can be extended
across the hyperplanes {z = zi}. But f is holomorphic on C2 \

⋃s
i=1{z = zi} and

extends locally at (zi, 0) ∈ {z = zi} since (zi, 0) = (zi, q(z, 0)) = ϕ(zi, 0). So we can
apply Hartogs removable singularity theorem (of functions across graphs) and extend
f to an entire function.

Remark. If Cϕ : H(Cn)→ H(Cd) has closed range, then it is automatically open onto
its image (by the open mapping theorem for Fréchet spaces).

Example 3.2.25. Let ϕ(z, w) = (z, zw). Then by the previous theorem Cϕ(H(C2))
is closed. But ϕ is neither semi-proper, nor is the image of ϕ closed in C2. The image
of ϕ is C \ {z = 0} ∪ (0, 0). Let K = {(z, 1) | |z| ≤ 1}. Then the only set which is
mapped onto K ∩ Im(ϕ) is the hyperbola {(z, 1/z) | |z| ≤ 1, z 6= 0}, which is obviously
not compact, thus ϕ is not semi-proper.

For weighted homogeneous polynomials, we can easily extend the local results.

Definition 3.2.26. Let W be an arbitrary subset of Cn. We say that a function
f : W → C is holomorphic, if it is locally at each point w0 ∈ W the restriction of a
holomorphic function defined in a neighborhood of w0 in Cn.

Theorem 3.2.27. Let ϕ : Cn → CN be a vector of weighted homogeneous polynomials
with respect to the same weight ω. Assume that ϕ has generic full rank. Then the
following holds:
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(1) Let f be a formal power series. If f ◦ ϕ is an entire function, then f is already
entire.

(2) Every function which is holomorphic on the image of ϕ extends to an entire
function.

(3) The image of Cϕ : H(CN )→ H(Cn) is closed.
(4) The image of Cϕ has a closed complement, and C+

ϕ is a continuous linear left
inverse of Cϕ.

(5) The extension operator H(Im(ϕ))→ H(CN ) is continuous.

Proof: (1) Let h = f ◦ϕ be entire. The image of the local operator L := Cϕ : C{y} →
C{x} is closed (by Theorem 3.2.17), so by Theorem 3.2.20 L admits an analytic Penrose
inverse L+ : C{x} → C{y}. As L is injective, L+ is in fact a continuous left-inverse .
The continuity of L+ implies that the radius of convergence is preserved uniformly by
L+ : For every r > 0 there exists an s > 0 so that L+(f) ∈ `1s(y), whenever f ∈ `1r(x),
where `1s(x) ⊂ C{x} and `1s(y) ⊂ C{y} are the usual weighted `1 spaces. Indeed, recall
that the ball Bs,M (x) of radius M in `1s(x) is bounded in C{x} and that the family
{Bs,M (x) | s,M ∈ R+} forms a fundamental system of the bounded sets in C{x}. So
for every r,M there exist s,K so that T+(Br,M (x)) ⊂ Bs,K(y), since T+ preserves
bounded sets. Now if f 6= 0 ∈ `1r(x) is arbitrary, then L+(f · ‖f‖−1

r M) ⊂ Bs,K(y), and
hence L+ : `1r(x)→ `1s(y). Let now r = 1 for notational simplicity and let s be chosen
so that L+ : `11(x) → `1s(y). We will now show that f is an entire function. Let di be
the weighted degree of ϕi. For t > 0, set ft(y1, . . . , yN ) = f(td1y1, . . . , t

dN yN ) and let
tωx := (tω1x1, . . . , t

ωnxn). Then

h(tωx) = f(ϕ(tωx)) = f(td1ϕ1(x), . . . , tdNϕN (x)) = ft(ϕ(x))

By assumption, h(x) is an entire function, hence ft(ϕ(x)) = h(tωx) ∈ `11(x) and
by the choice of s we can conclude that ft(y) ∈ `1s(y) for every t > 0. Let d0 =
min1≤i≤N di. Then f(y) ∈ `1

std0
(y) for all t > 1 and therefore f ∈ H(CN ). (2) Let

f(y) be holomorphic on Im(ϕ). Then h(x) = f(ϕ(x)) ∈ H(Cn), and we can apply (1)
to conclude that f is an entire function. (3) Let h be an entire function in the closure
of Im(Cϕ) and choose a sequence fk ∈ H(CN ) so that Cϕ(fk) converges to h in the
compact-open topology. In particular, Cϕ(fk) converges to h locally at 0 = ϕ(0). The
local operator L : C{y} → C{x} has closed image, hence there exists an f ∈ C{y}
such that Cϕ(f) = h. We can use the same arguments as in 1) to conclude that f is
an entire function, whence the image of Cϕ is closed. (4) We choose a flat analytic
structure in which Cϕ is a homogeneous operator: Let δ = (d1, . . . , dN ) be the vector
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of the weighted degrees of the ϕi, let Hk(δ) ⊂ C[y] and Hk(ω) ⊂ C[x] be the weighted
homogeneous steps corresponding to the weights δ and ω, respectively. Then Cϕ maps
Hk(δ) into Hk(ω) and we denote the restriction of Cϕ to Hk(δ) by Tk. We claim
that H(Cn) = Im(Cϕ)

⊕
Im(Cϕ)⊥, where Im(Cϕ)⊥ = HIm(Cϕ)⊥ . Let π = (πk)k∈N

be the (floorwise) orthogonal projection onto ̂Im(Cϕ). The operator norm of each
πk : Hk(ω) → Hk(ω) is 1, so the norm of π : `1r(x) → `1r(x) is 1 and π is a continuous
projection on H(Cn) (see also Theorem 3.1.14). So π maps H(Cn) onto Im(Cϕ) and
has Im(Cφ)⊥ as kernel, thus H(Cn) = Im(Cϕ)

⊕
Im(Cϕ)⊥. The image of Cϕ is closed

and Cϕ is injective, thus S = (Cϕ
∣∣
ker(Cϕ)⊥)−1 is a continuous inverse of the restriction.

The construction of C+
ϕ (which was conducted via the homogeneous floors) shows that

C+
ϕ = S ◦π, and is thus analytic. (5) If f is holomorphic on Im(ϕ), then the extension

of f is given by C+
ϕ (f(ϕ(x)). So the extension operator is the composition of C+

ϕ with
the extension of the composition operator to H(Im(ϕ)).

Remark. If the requirement that ϕ is weighted homogeneous is dropped, then the
first statement of the previous theorem is of course false: Let f(y) =

√
1 + y and let

ϕ(x) = 2x + x2. Then f(ϕ(x)) = (1 + x), but f is only locally analytic. The local
statement

f(ϕ(x)) convergent implies that f(x) is convergent

is true if and only ϕ(x) ∈ C{x}N , ϕ(0) = 0 has generic full rank N and was proven by
Eakin and Harris [EH77]. Juhlin and Lamel ([JL13]) have proven a concrete version of
this result, and have also shown that an analytic left-inverse of Cϕ can be constructed
which depends analytically on ϕ inside a textile cofinitely open subsets of C{x}N .
There exist also concrete estimates for the radius of convergence of f in terms by the
one of f ◦ ϕ for certain classes of quasi-analytic function ([Mou02], [CC01], [Bie04]).
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Appendix

Abstract

The main objective of this thesis is to understand certain aspects of the geometry of the
set of solutions Y(f) to an implicit power series equation f(x,y(x)) = 0. This equation
corresponds to an infinite system of polynomial equations Fi(yα) = 0 in the coefficients
yα of y. The usual approach to understand these systems is to consider Y(f) as the
closed points of the affine scheme spec(C[yα]/〈Fi〉) in an infinite-dimensional poly-
nomial ring, which has the disadvantage that finite-dimensional geometrical concepts
such as regularity are not available. Instead, we identify power series y(x) with (non-
closed) points Py of spec(C [|x, y|]), assigning to a series y(x) the ideal of relations
formed by all f ∈ C [|x, y|] solving f(x,y(x)) = 0. A point y0 ∈ Y is said to be regu-
lar, if Y can be locally defined by a system of f(x,y(x)) = 0 whose partial Jacobian
∂yf(x,y(x)) has full rank over C [|x|] at y0. We show a Jacobian Criterion adopted to
this setting. The regular part Y(f) \ Y(∆), where a maximal minor ∆ of ∂y(f(x, y))
does not vanish, can be decomposed into strata Yd according to the order d of ∆(y).
With the aid of a linearization theorem for arquile maps f∞ : y(x) 7→ f(x,y(x)) we
show that the subsets Yd are isomorphic to a product of a local arquile variety Zd in
one variable less and a free module C [|x|]N

′
. These constructions provide a geometri-

cal interpretation of Artin’s ([Art68]) and Płoski’s ([Pło74]) approximation theorems.
If x is a single variable, then our results show that every regular point is smooth
in the sense that a neighborhood is isomorphic to free power series module C [|x|]N .
The case of several variables is more complicated, but we are able to show that the
points at which Y is smooth are dense. The results are shown over the ring of either
algebraic, convergent or formal power series. The second chapter forms the analytic
toolbox which is needed for the linearization techniques and the constructions of the
trivializing morphisms Yd → Z∗d × C [|x|]N

′
. These maps are (rational) textile maps

([Bru09]), which are functions between power series spaces whose coefficients depend
polynomially (rationally) on the coefficients of the input. We show an inversion and
implicit function theorem for textile maps which are mild perturbations of arquile
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maps y(x) 7→ f(x,y(x)). The last part of this chapter reviews the division theo-
rem by Grauert and Hironaka in various settings. In the final chapter we introduce a
class of spaces which admit filtrations by Banach spaces and finite dimensional Hilbert
spaces. The homomorphisms of these spaces are homogeneous operators, for which
a formal Penrose inverse is constructed. In the last section we generalize a result
by Eakin & Harris [EH77] to homogeneous composition operators between spaces of
entire functions.
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Zusammenfassung

In dieser Arbeit werden verschiedene Aspekte der Geometrie von so genannten arquilen
Varietäten, welche die Lösungsmengen Y(f) von impliziten Potenzreihengleichungen
f(x,y(x)) = 0 sind, untersucht. Diese Gleichungen enstsprechen einem unendlichen
System an polynomialen Gleichungen Fi(yα) = 0 in den Koeffizienten yα von y(x).
Der übliche Zugang, der beispielsweise in der Theorie der arc spaces gewählt wird,
ist, die Lösungsmenge Y(f) als die Menge der abgeschloßenen Punkte des affinen
Schemas spec(C[yα]/〈Fi〉) zu interpretieren. Der Nachteil dieses Ansatzes ist jedoch,
dass geometrische Konzepte wie das der Regularität im Unendlichdimensionalen nicht
mehr zu Verfügung stehen. Stattdessen identifizieren wir Potenzreihen y(x) mit
(nicht-abgeschloßenen) Punkten Py in spec(C [|x, y|]), indem wir einer Potenzreihe
das Ideal ihrer Relationen in C [|x, y|] zuordnen, bestehend aus denjenigen f(x, y),
welche f(x,y(x)) = 0 lösen. Eine Lösung y0 ∈ Y heißt regulär, wenn Y lokal bei y0

durch ein System f(x,y(x)) = 0 definiert werden kann, dessen partielle Jacobima-
trix ∂yf(x, y) bei y0 vollen Rang über C [|x|] hat. Wir charakterisieren diese Eigen-
schaft mit einem adaptiertem Jakobi-Kriterium. Die reguläre Teilmenge Y(f) \Y(∆),
wobei ∆ ein maximaler Minor von ∂yf(x, y) sei, wird entsprechend der Ordnung d
von ∆(x,y(x)) in Strata Yd zerlegt. Mithilfe eines Linearisierungstheorems für ar-
quile Abbildungen y(x) 7→ f(x,y(x)) wird gezeigt, dass jedes Stratum Yd zu einem
Produkt Z∗d × C [|x|]N

′
isomorph ist, wobei Z∗d eine lokal-arquile Varietät über einem

Potenzreihenring in einer Variablen weniger ist. Diese Konstruktionen ergeben eine ge-
ometrische Interpretation der Beweise von Artin ([Art68]) und Płoski([Pło74]). Wenn
x ein eindimensionaler Parameter ist, dann zeigt unser Resultat, dass eine arquile Va-
rietät bei einem regulären Punkt glatt ist, d.h. dass sie eine Umgebung besitzt, welche
zu einem Produkt von freien Potenzeihenmodulen isomorph ist. Der mehrdimensionale
Fall ist etwas komplizierter, aber wir können zeigen, dass die Menge der glatten Punkte
dicht ist. Diese Resultate werden über den Ringen der algebraischen, konvergenten
und formalen Potenzeihen gezeigt. Im zweiten Kapitel wird der für die Linearisierung
und Trivialisierung Yd → Z∗d × C [|x|]N

′
notwendige analytische Rahmen geschaffen.

Die Abbildugen, welche hier auftreten sind die s.g. (rational-) textilen Abbildungen
([Bru09]), welche Abbildungen zwischen Potenzreihenräumen sind, deren Koeffizienten
polynomial (rational) von den Koeffizienten des Inputs abhängen. Es wird ein (ana-
lytischer) Inverser- und Impliziter Funktionensatz für textile Abbildungen, welche eine
geringe Störung von arquilen Abbildungen y(x) 7→ f(x,y(x)) sind, gezeigt. Im letzten
Teil dieses Abschnitt werden die Divisionssätze von Grauert-Hironaka besprochen. Im
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dritten Kapitel führen wir eine neue Klasse von Räumen ein, welche wie die Ringe der
konvergenten Potenzreihen Filtrierungen durch Banachräume und endlichdimension-
ale Hilberträume besitzen. Die Homomorphismen dieser Räume sind die homogenen
Abbildungen, für welche eine formale Penrose-Inverse konstruiert wird. Im letzten Teil
wird ein Resultat von Eakin u. Harris auf hom. Kompositionsoperatoren zw. Räumen
von ganzen Funktionen verallgemeinert.
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