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1 Introduction

Dynamic stochastic equilibrium (DSGE) models have become the new paradigm

for the analysis of business cycles. Among those, New Keynesian models are espe-

cially popular. They provide both a description of the transmission mechanism of

monetary policy and a framework for an evaluation of that policy.

New Keynesian models have their origin in the Real Business Cycle (RBC) and the

first wave of New Keynesian research. Both research movements emerged during the

1980’s, subsequently to Lucas’s critique of macroeconometric policy. Lucas pointed

out that models that do not explicitly describe the decisions of all economic agents

should not be used for policy evaluation as any change in policy would also sys-

tematically alter the structure of these models (Lucas, 1976, p. 41). In the spirit

of the critique, both branches tried to underpin macroeconomic theory with mi-

crofoundations, that is, with a microeconomic analysis of rational economic agents’

behavior.

The first wave of New Keynesian economics emphasized the role of price and wage

stickiness and the resulting non-neutrality of monetary policy (see e.g. Akerlof

and Yellen (1985)). New Keynesian economists aimed on the inclusion of everyday

observed pricing or wage setting practices and investigated how these could account

for the aggregate price level and real economic activity (Goodfriend and King, 1997,

p. 250). The resulting models, however, were often static and not derived from

explicit dynamic optimization problems that firms and households were facing (Gaĺı,

2008, p. 5).

By contrast, RBC theory established the analysis of aggregate macroeconomic vari-

ables derived from individual intertemporal optimization problems in a stochastic

environment (see e.g. Prescott (1986)). Both households’ and firms’ decisions were

explicitly modeled and combined into a general equilibrium where quantities and

prices are simultaneously determined. Under the assumption that the underlying

decision calculus remained unchanged, the RBC framework made it possible to com-

pare alternative policies on the basis of their effects on economic welfare. Addition-

ally, a strong emphasis was put on the investigation of the effects of shocks on the

business cycle and on the quantitative aspects of macroeconomic modeling, as re-
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flected in the central role of calibration, simulation and evaluation of the models

(Gaĺı, 2008, p. 2). However, RBC models abstracted from monetary and financial

factors and treated monetary policy as mostly neutral. This approach prevented the

application of RBC models by central banks. Furthermore, it is in stark contrast to

the widely held belief that monetary authorities are able to influence output or em-

ployment developments at least in the short run (Gaĺı, 2008, p. 5). Not for nothing,

decisions by the FED ore ECB are closely monitored by all economic agents.1

To tackle these shortcomings, New Keynesian models emerged as a confluence of

both movements. Goodfriend and King (1997) call this the “New Neoclassical Syn-

thesis”. New Keynesian models adopt the RBC methodology of rational actors fac-

ing an intertemporal optimization problem and combine it with assumptions about

nominal rigidities and monopolistic competition. The resulting framework is char-

acterized by monetary non-neutrality, so that monetary policy can be analyzed, and

explicit microfoundations allowing an evaluation of alternative policies without be-

ing subject to the Lucas critique. For these reasons, New Keynesian models are

appealing for both academic research and central banks.

A great variety of models can be found in the literature ranging from small-scale to

high-scale versions. Many of them have at their core a baseline model consisting of

Calvo price staggering on the supply side, an Euler equation on the demand side and

a Taylor rule that describes the policy of the monetary authority. Despite its ap-

pealing features mentioned above, the baseline model is subject to some controversy.

The main reason is the New Keynesian Phillips curve (NKPC), a central element of

the baseline model, which explains inflation as caused by expected inflation and the

output gap. In the baseline model, the NKPC has the following representation:

πt = βEtπt+1 + κ(yt − yft ) (1.1)

where πt is inflation, yt is (log) output, yft is (log) natural output and (yt − yft )

is the output gap. Equation (1.1) implies a stable relationship between inflation

1However, it is difficult to estimate the degree of non-neutrality of monetary policy. Usually
a central bank adjusts the interest rate as reaction to some economic development. A simple
correlation analysis between interest rate and other economic variables like GDP is therefore not
possible. See Gaĺı (2008, p. 7) for a discussion.
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and output. For the case of zero inflation, output would even remain equal to its

natural level. In other words, there exists no trade-off between the stabilization of

output and inflation. Therefore, a central bank can kill two birds with one stone:

By fully stabilizing the price level, the output remains stable around its natural

level. Blanchard and Gaĺı (2007, p. 2) call this exceptional property the “divine

coincidence”.2

In practice, however, central banks face significant trade-offs between output and

inflation stabilization (Gaĺı, 2008, p. 96). They do not pursue a policy of strict

inflation targeting but attach some weight to output gap fluctuations. It is therefore

desirable to modify the baseline New Keynesian model in a way, so that the divine

coincidence disappears and a meaningful trade-off between inflation and output

stabilization emerges. This master thesis introduces three extension to the baseline

model that aim on the overcoming of the divine coincidence. In particular, the

NKPC is expanded by an additional distortion shock and two different staggered

wage setting mechanisms are implemented: real wage and nominal wage rigidities.

In the model comparison part of this thesis, it is investigated, if additional wage

setting mechanisms improve the empirical fit of the baseline model and which of

these mechanisms closer resembles the observed data dynamics. The answer to these

questions can be helpful for the design of more complex New Keynesian models. For

the purpose of model comparison, a Bayesian estimation is conducted and the Bayes

factor is employed to quantify the empirical fit of the models.

The structure of the thesis is as follows: In section 2 the New Keynesian baseline

model is introduced. In section 3 the divine coincidence is discussed and the exten-

sions to the baseline model are introduced. In section 4 the models are estimated

and the results are discussed. Section 5 concludes.

2The concept of the divine coincidence additionally requires a stable relation between output
gap and welfare-relevant output gap, so that a stabilization of the output gap is desirable. See
chapter 3 of this thesis for further details.

7



2 The Baseline New Keynesian Model

This section introduces the baseline New Keynesian model. It corresponds to the

model by Gaĺı (2008) and is modified such that the equilibrium conditions coin-

cide with the model by Rabanal and Rubio-Ramirez (2005).3 All mathematical

derivations are done in the appendix and both main sources are not explicitly cited.

2.1 General assumptions

The baseline model relies on some simplifying assumptions. First, a cashless econ-

omy is assumed. Money can be thought as a unit of account in which prices, wages,

and bond payoffs are stated but not as an asset. Therefore, households cannot gain

utility from holding money and money does not show up in the households’ utility

function or budget constraint. Second, there is no capital and no investment. The

whole output has to be consumed by households, i.e. the market clearing condition

Yt = Ct holds at any time. Third, fiscal policy does not play a role in the economy.

2.2 Households

The economy is populated by a unit interval of identical and infinitely-lived house-

holds.4 The households supply labor to final good producing firms, receive income

and use the income to buy a consumption good. Income that is not consumed is

saved by holding one-period government bonds. The households derive utility from

consumption and disutility from working. The utility function of the households is

assumed to be time separable and separable between consumption and labor and is

3The only difference is an additional preference shifter shock in the households’ utility function.
The additional shock is needed during the estimation procedure. See section 4.1.

4The assumption of a continuum [0, 1] of identical households implies that per-household vari-
ables coincide with aggregate variables and the concept of a representative household can be used.
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parametrized as

U(Ct, Lt) =


Gt

C1−σ
t

1−σ −
L1+φ
t

1+φ
for σ 6= 1

Gt logCt − L1+φ
t

1+φ
for σ = 1,

(2.1)

where Ct is consumption, Lt is the households’ labor supply, Gt a stochastic prefer-

ence factor, σ > 0 the inverse elasticity of intertemporal substitution and φ > 0 the

inverse elasticity of labor supply with respect to real wages.

The representative household seeks to maximize the expected infinite stream of

utility

E0

∞∑
t=0

βtU(Ct, Lt),

where β is the discount or preference factor that satisfies 0 < β < 1. The represen-

tative household faces the the budget constraint

PtCt +Bt ≤ Bt−1(1 + it−1) +WtLt +Dt.

Consumption at a price Pt and bond holdings Bt cannot exceed income received

either from last period bond holdings that pay a nominal interest rate it, nominal

labor income WtLt or nominal profits Dt.
5 In each period t, the household maximizes

its stream of utility with respect to consumption, labor supply and bond holdings

subject to the budget constraint. This yields the following first-order conditions (see

appendix A.1.1):

Wt

Pt
=

Lφt
GtC

−σ
t

= −UL
UC
≡MRSt (2.2)

Gt
C−σt
Pt

= β(1 + it)Et

(
Gt+1

C−σt+1

Pt+1

)
. (2.3)

Equation (2.2) is the labor supply equation linking the marginal rate of substi-

tution between leisure and consumption to the real wage. Equation (2.3) is the

5Nominal profits show up in the budget constraint as the households are the owners of firms
with monopoly power.

9



Euler equation representing a condition for the optimal allocation of intertempo-

ral consumption. The preference shifter Gt has an influence on both intra- and

intertemporal household choices.

Denoting logarithms by lower-case letters, the labor supply equation can be approx-

imated by a Taylor expansion around the steady state as:

wt − pt = φlt − gt + σct = mrst (2.4)

and the Euler equation can be log-linearized around a steady state with constant

inflation and consumption growth as (see appendix A.1.1):

ct = Etct+1 − (1/σ)(it − Etπt+1 + Etgt+1 − gt − ρ), (2.5)

where ρ = − log(β) and πt = pt − pt−1 denotes the inflation rate between period t

and t− 1.

2.3 Firms

There are two different kinds of firms in the economy: Final and intermediate good

producing firms. The final consumption good Yt is produced by fully competitive

firms which use a range [0, 1] of intermediate goods Yt(i) as input. Following Erceg

et al. (2000), it is assumed that the final good producers aggregate intermediate

goods in the same proportions as the households would choose. Formally, these

firms use the following constant elasticity of substitution and constant returns to

scale production function à la Dixit and Stiglitz (1977):

Yt =

[∫ 1

0

Yt(i)
(ηp−1)/ηpdi

]ηp/(ηp−1)

,

where ηp > 1 is the elasticity of substitution between any two intermediate goods.

Final good producers take the price Pt(i) for the good Yt(i) as given and produce

output at minimal cost. As shown in appendix A.1.2, this implies an aggregated
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price index

Pt =

[∫ 1

0

Pt(i)
1−ηpdi

]1/(1−ηp)

(2.6)

and the demand function for intermediate good Yt(i) produced by intermediate firm

i takes the form

Yt(i) =

(
Pt(i)

Pt

)−ηp
Yt. (2.7)

The demand for a differentiated good depends positively on total production and

negatively on its relative price.

The intermediate goods producers have monopoly power and use labor supplied

by the households as only production input. Each intermediate firm i produces

a differentiated good Yt(i) with the same decreasing returns to scale production

function

Yt(i) = AtLt(i)
1−α, (2.8)

where At is the random productivity of labor in period t, assumed to be common to

all firms. Cost minimization at a given wage implies the nominal marginal cost of

each intermediate firm (see appendix A.1.3):

MCn
t (i) =

1

(1− α)
Wt

(
1

At

)1/(1−α)
[(

Pt(i)

Pt

)−ηp
Yt

]α/(1−α)

. (2.9)

Due to the assumption of decreasing returns to scale, each intermediate firm exhibits

different marginal cost depending on the charged price Pt(i). For α = 0 this ex-

pression simplifies considerably and marginal cost are equal across all intermediate

firms.

The individual firm’s marginal cost function can also be expressed by the economy’s

average marginal cost.6 As labor is the only production input, the latter is defined

by

MCn
t =

Wt

MPLt
=

Wt

(1− α)At

(
Yt
At

)α/(1−α)

(2.10)

6The calculation of average marginal cost already needs the insight that the average production
function is Yt = AtL

1−α
t . This is shown in section 2.4. The marginal product of labor is then

MPLt = At(1− α)L−α
t .

11



where MPLt is the marginal product of labor. Equation (2.9) can therefore be

written as

MCn
t (i) = MCn

t

(
Pt(i)

Pt

)− ηpα

1−α

. (2.11)

In order to introduce price rigidities, a staggered price setting mechanism à la Calvo

is used (Calvo, 1983). It is assumed that only a fraction (1− θp) of the intermediate

producers can adjust their prices in each period. This assumption implies that a

firm which recently adjusted its price cannot change it with probability θkp within

the next k periods. When a firm is allowed to reset its price in period t, it faces the

following dynamic optimization problem:

max
Pt(i)

∞∑
k=0

θkpEt
[
Qt,t+k

(
Pt(i)Yt+k|t(i)−Ψt+k(Yt+k|t(i))

)]
s.t. Yt+k|t(i) =

(
Pt(i)

Pt+k

)−ηp
Yt+k, k = 0, 1, 2, ...

Here, Qt,t+k = βk(Gt+k/Gt)(Ct+k/Ct)
−σ(Pt/Pt+k) is the stochastic discount factor

obtained from the household’s Euler equation, Ψt(·) is the firm’s cost function and

Yt+k|t(i) is output of firm i that last set its price in period t. A firm that resets

its price in period t takes expected future levels of consumption and prices and the

probability θkp , that it may not reset the price in the next k periods, into account

when it chooses Pt(i). As all price-resetting firms act identically, they choose the

same price P ∗t and the index i is dropped in the following equations. The first order

condition of the maximization problem takes the form (see appendix A.1.4):

∞∑
k=0

θkpEt[Qt,t+kYt+k|t(P
∗
t −MpMCn

t+k|t)] = 0, (2.12)

where Mp ≡ ηp/(ηp − 1) and

MCn
t+k|t = MCn

t+k (P ∗t /Pt+k)
−ηpα
(1−α) (2.13)

denotes the nominal marginal cost of a firm in period t+ k which last reset its price

in period t. This expression follows directly from equation (2.11).
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For the limiting case that all firms are allowed to reset their prices, i.e. θp = 0,

equation (2.12) reduces to

P ∗t =MpMCn
t . (2.14)

Due to the monopoly power, a firm would charge a constant markup Mp on its

nominal marginal cost if price rigidities were absent. Gaĺı (2008) calls Mp the

“desired or frictionless markup” on marginal cost. The markup is constant given

the assumption of a time invariant elasticity of substitution ηp. As a consequence of

monopoly power, production will be inefficiently low.

Next, equation (2.12) is log-linearized around the non-stochastic zero inflation steady

state which is characterized by constancy of prices. Therefore, P ∗t /Pt−k = P ∗t /Pt =

P ∗t /Pt+k = 1 implying Yt+k|t = Yt+k = Y . Consequently, Ct+k = C due to mar-

ket clearing and Qt,t+k = βk. Furthermore, for real marginal cost, it holds that

MCr
t+k|t = MCr

t+k = MCr = 1
Mp

, as all intermediate firms choose the same price

and produce the same amount of output. As shown in appendix A.1.5, a first order

Taylor expansion around that steady state yields:

p∗t = µp + (1− θpβ)Et

∞∑
k=0

θkpβ
k(mcrt+k|t + pt+k). (2.15)

Reoptimizing firms choose a price corresponding to the logarithm of the desired

markup µp = logMp plus a weighted sum of their current and expected nominal

marginal cost. In other words, firms adjust their prices according to current and

future discounted cost conditions.

2.4 Aggregated conditions

For the derivation of the symmetric equilibrium two expressions for aggregated prices

and the relationship between aggregated output and aggregated labor are needed

(the algebra is done in appendix A.1.6). First, the aggregate price dynamics in the

model economy can be written as:

Π
1−ηp
t = θp + (1− θp)

(
P ∗t
Pt−1

)1−ηp
, (2.16)
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where Πt ≡ Pt
Pt−1

is the gross inflation between period t − 1 and t. For the case of

zero inflation, i.e. Πt = 1, it follows that P ∗t = Pt−1 = Pt. This equation can be

log-linearized around that zero inflation steady state:

πt = (1− θp)(p∗t − pt−1), (2.17)

which shows that inflation is caused by the deviation of the current optimal price,

chosen by the reoptimizing firms, from last period’s average price.

Second, the link between aggregated output and aggregated labor can be expressed

as:

Lt = st

(
Yt
At

)1/(1−α)

, (2.18)

where st =
∫ 1

0

(
Pt(i)
Pt

)− ηp
(1−α)

di represents ‘the resource costs due to relative price

dispersion with long-run inflation’ (Ascari and Merkl, 2009, p. 430). A higher

st requires a higher level of labor to produce a given amount of output. However,

log(st) is equal to zero up to a first-order and (2.18) can be approximated as:

lt =
1

1− α
(yt − at). (2.19)

2.5 The non-policy block of the baseline model

In this section, the New Keynesian Phillips curve and the New Keynesian IS-curve

are derived. The NKPC is stated both in terms of marginal cost and in terms of the

output gap. The former representation is used in the empirical part of this thesis as

it facilitates the extension of the baseline model, while the latter is used to illustrate

the phenomenon of the divine coincidence.

Before the New Keynesian Phillips curve is derived, a logarithmic expression of the

intermediates good producers (real) marginal cost function (2.13) is needed:

mcrt+k|t = mcrt+k −
ηpα

1− α
(p∗t − pt+k) (2.20)

Now, the log-linearized optimal pricing function (2.15) is combined with (2.20). In

14



appendix A.1.7 it is shown that the resulting expression is:

p∗t − pt−1 = βθpEt(p
∗
t+1 − pt) + (1− βθp)Θ m̂ct

r + πt, (2.21)

where Θ = 1−α
1−α+αηp

≤ 1. Combining (2.21) with (2.17) yields the New Keynesian

Phillips curve (NKPC) expressed in terms of deviations of real marginal costs from

its steady state value:7

πt = βEtπt+1 + λpm̂c
r
t , (2.22)

where λp = (1−θp)(1−βθp)

θp
Θ is strictly decreasing in the index of price stickiness θp,

in the measure of decreasing returns α and in the demand elasticity ηp. The New

Keynesian Phillips curve relates current inflation with expected inflation and real

marginal cost. Due to the forward-looking behavior of the intermediate producers,

which base their pricing decisions on the evolution of marginal cost and also consider

the possibility of being bound to a price, the NKPC is also forward-looking and cost-

dependent.

In order to illustrate the divine coincidence, the New Keynesian Phillips curve is

written in terms of the output gap, which is defined as the difference between actual

output and its flexible (or natural) level, yt − yft . The flexible level of output yft

is the equilibrium level of output that would occur in absence of price rigidities

(θp = 0), i.e. when prices are fully flexible. Equation (2.14) implies that, under

this scenario, all firms would choose the same price which is a constant markup over

nominal marginal cost.8 Consequently, the logarithm of real marginal cost would be

time-invariant and equal to mcr = log( 1
Mp

) = −µp.

Independent of the nature of price setting, an expression for average real marginal

cost can be obtained from equation (2.10) combined with the aggregate production

7Here and in the following, hatted variables denote log-deviations from steady state levels.
8Note, that the zero inflation steady state and the flexible output equilibrium are quite similar

but not the same. In both scenarios prices and real marginal cost of intermediate firms coincide.
However, the flexible equilibrium is still hit by production or preference shocks that are absent in
a non-stochastic steady state.
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function (2.19) and the marginal rate of substitution (2.4):

mcrt = wt − pt −mplt
= σyt + φlt − gt − (yt − lt)− log(1− α)

= (σ +
φ+ α

1− α
)yt −

1 + φ

1− α
at − gt − log(1− α). (2.23)

This relation must also hold in the flexible price equilibrium where real marginal

cost is constant:

mcr = (σ +
φ+ α

1− α
)yft −

1 + φ

1− α
at − gt − log(1− α). (2.24)

As marginal cost is constant, the flexible rate of output yft absorbs both technology

and preference shocks. Subtracting (2.24) from (2.23) yields:

m̂crt = (σ +
φ+ α

1− α
)(yt − yft ).

This expression can be substituted into equation (2.22) yielding the New Keynesian

Phillips curve in terms of the output gap:

πt = βEtπt+1 + κpỹt, (2.25)

where κp = λp
(
σ + φ+α

1−α

)
and ỹt = yt − yft is the output gap. This representation

of the NKPC is used in the next chapter to illustrate the phenomenon of the divine

coincidence. Before doing so, the second key equation, the New Keynesian IS-curve,

is stated. It can be obtained, after applying the (log) market clearing condition

yt = ct, by rewriting the Euler equation (2.5) in terms of the output gap:

ỹt = Etỹt+1 − (1/σ)(rt − rft ), (2.26)

where rt = it − Etπt+1 is the real interest rate according to the Fisher identity and

rft is the natural rate of interest, i.e. the real interest rate that would occur in a
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flexible price equilibrium. It is given by:

rft = ρ− Etgt+1 + gt + σ(Ety
f
t+1 − y

f
t ) (2.27)

Note, that rft is exogenous, as it is solely determined by both shock processes gt and

at via the flexible level of output.

Equations (2.25) and (2.26) form the non-policy block of the baseline New Keynesian

model. The NKPC determines inflation given the output gap, while the IS-curve

determines the output gap given the deviation of the real interest rate from its

natural counterpart. The real interest rate is, in turn, determined by expected

inflation and the nominal interest rate. In order to close the model, an appropriate

interest rate rule is needed.9 Usually a Taylor rule or an exogenous path for the the

money supply are specified to explain the interest rate. This is left to the empirical

part of this thesis, where also a summary of the equilibrium conditions is provided.

9This shows that the equilibrium cannot be determined independently of monetary policy. Thus,
monetary policy is non-neutral in the baseline New Keynesian model.
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3 The Divine Coincidence

There are two slightly different definitions of the divine coincidence in the literature.

Walsh (2010, p. 349) describes the divine coincidence as a feature of the baseline

version of the New Keynesian Model that allows keeping inflation equal to zero “by

keeping current and expected future output equal to the flexible-price equilibrium

level.” This property can be seen by solving the NKPC (2.25) forwards:

πt = κp

∞∑
k=0

βkEtỹt+k

If Etỹt+k = 0 for all k, inflation remains equal to zero or, alternatively, if πt = 0

the output gap is asymptotically closed. That is, the central bank does not face a

trade-off between both stabilizing inflation and output gap. Price stability implies

a stable level of output and vice versa.

This definition of the divine coincidence, however, is somewhat sloppy. It refers only

to the stable relation between inflation and the output gap and does not indicate the

desirability of a stabilization of both variables. Usually a central bank should try

to stabilize output not around its natural but around its efficient or pareto-optimal

level. The latter refers to the equilibrium output that would arise in absence of

any rigidities and monopolistic competition, whereas the natural level of output is

inefficient due to the monopoly power of the firms. In this regard, the definition by

Walsh does not capture “the divine” of the New Keynesian Phillips curve.

The more precise definition of the divine coincidence stems from Blanchard and Gaĺı

(2007, p. 40): Stabilizing inflation not only stabilizes the output gap but also the

welfare-relevant output gap, (yt − yet ), which is the distance between actual output

and its efficient level. This means that a policymaker needs not consider both

objectives when conducting the optimal policy. It is sufficient to achieve either price

stability or a stable welfare-relevant output gap as the divine coincidence ensures

that both objectives are attained simultaneously.

In presence of the divine coincidence, “strict inflation targeting” would be the opti-

mal policy for a central bank (Gaĺı, 2015, p. 127). In practice, however, “inflation tar-
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geting is never “strict” but always “flexible”, in the sense that all inflation-targeting

central banks not only aim at stabilizing inflation [...] but also put some weight

on stabilizing the real economy” (Svensson, 2011, p. 1239). This view reflects on

the one hand the trade-off monetary authorities are confronted with in reality, on

the other hand it shows that policies that seek to fully stabilize inflation are rather

unrealistic. Therefore, the baseline model should be modified in a way such that

the divine coincidence disappears and a meaningful trade-off between both inflation

and output stabilization arises.

The remainder of this chapter is structured as follows. First, the source of the divine

coincidence is discussed and it is shown that the divine coincidence occurs in the

baseline model. Then, three extensions that aim at overcoming the divine coinci-

dence are introduced: Adding a cost-push shock to the NKPC and implementing

real or nominal wage rigidities.

3.1 The Divine Coincidence in the baseline model

Blanchard and Gaĺı (2007, p. 36) point out that the occurrence of the divine coinci-

dence is linked with the fact that the gap between the natural level of output yft and

the efficient level of output yet is constant over time and invariant to shocks. To illus-

trate this property it is helpful to rewrite the NKPC in terms of the welfare-relevant

output gap using the identity ỹt ≡ (yt − yet ) + (yet − y
f
t ):

πt = βEtπt+1 + κpx̃t + κpδt (3.1)

where x̃t = yt − yet is the welfare-relevant output gap and δt = yet − y
f
t is the gap

between the natural level of output and its efficient counterpart. As soon as δt is

constant, the relation between inflation and welfare-relevant output gap is stable

and the divine coincidence emerges.10

10There are also examples in the literature where the gap δ is zero. Equality between efficient
and flexible output can be achieved, if a subsidy is introduced that compensates the inefficiency
resulting from market power of the intermediate firms. In such a model, a zero inflation policy
automatically leads to an efficient level of output. For an example, see Erceg et al. (2000) or Gaĺı
(2008, Chapter 4).
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In the following it is shown that the divine coincidence emerges in the baseline

version introduced in chapter 2. This is done in an analogous way to Blanchard

and Gaĺı (2007): First, the efficient and the flexible price equilibria of the baseline

model are derived. Then the gap between the natural level and the efficient level of

output is calculated which turned out to be actually constant.

3.1.1 Efficient equilibrium

In order to obtain the efficient equilibrium, perfect competition in goods and labor

markets and absence of price rigidities are assumed. Note that, under this scenario,

all intermediate firms are price takers and charge the same price. For this reason,

the firm-specific index i can be omitted and the individual production functions

correspond to the economy’s average production function. From the log form of

nominal average marginal cost (2.10) the nominal wage is determined as:

wnt = mcnt +mplt

or equivalently in real terms (as pt = mcnt under perfect competition):

ωt = mplt = log(1− α) + yt − lt,

where ωt = log(Wt

Pt
) is the real wage and the second equality makes use of the

production function (2.19). From the households’ labor supply equation (2.4) one

obtains:

ωt = mrst = φlt + σyt − gt,

where the market clearing condition ct = yt has been applied. Combining both

expressions yields the efficient equilibrium level of employment:

(1 + φ)let = (1− σ)yet + gt + log (1− α), (3.2)
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which depends positively on the output and the preference shifter gt. Note that in

case of a log-utility function, i.e. σ = 1, fluctuations in efficient employment would

solely be determined by gt. Combining (3.2) with the production function (2.19)

yields the efficient level of output:(
1− (1− α)(1− σ)

1 + φ

)
yet = at +

1− α
1 + φ

(gt + log(1− α)) , (3.3)

which depends positively on the two shock processes, at and gt.

3.1.2 Flexible price equilibrium

Next, the assumption of a perfectly competitive goods market is dropped but prices

are still flexible. Firms act as monopolists and charge an additional mark-up on

nominal marginal costs. From (2.14) one obtains pt = mcnt + µp. Similarly to

efficient case one has for the firms side:

ωt = mplt − µp = log(1− α) + yt − lt − µp.

The households’ labor supply equation is not affected by monopolistic competition

and remains unchanged. The flexible level of employment lft is therefore determined

as:

(1 + φ)lft = (1− σ)yft + gt + log (1− α)− µp (3.4)

and the corresponding flexible level of output is (this expression is same as (2.24)):(
1− (1− α)(1− σ)

1 + φ

)
yft = at +

1− α
1 + φ

(gt + log(1− α)− µp) . (3.5)

Again, output depends on both shocks and varies over time. Firms produce less

output than in the efficient case due to monopolistic competition.

Now, the gap between efficient and flexible level of output can be calculated. Taking

the difference of (3.3) and (3.5) yields:

yet − y
f
t =

(1− α)µp

(1 + φ)− (1− α)(1− σ)
≡ δ. (3.6)
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The gap δ between efficient and flexible level of output is constant over time (which

is indicated by the omission of the time index t) and invariant to shocks. As shown

above, the constancy of δ implies that stabilizing inflation is equivalent with a

stabilization of the welfare-relevant output gap. Therefore, the divine coincidence

emerges in the baseline New Keynesian model.

3.2 Overcoming the Divine Coincidence

In order to make the baseline model more realistic, the divine coincidence has to

be overcome. In general, there are two options to break up the divine coincidence:

Destabilizing either the exact relation between inflation and output gap or drive

a time-varying wedge between efficient and flexible output. For these purposes,

three extensions to the baseline model are introduced. The first approach expands

the NKPC by a cost-push shock as it was done by Clarida et al. (2001), Canova

and Ferroni (2011) or Smets and Wouters (2003). The second and third approach

extend the baseline model by two alternative staggered wage setting mechanisms:

real wage rigidities following Blanchard and Gaĺı (2007) as well as nominal wage

rigidities following Erceg et al. (2000).

3.2.1 Cost-push shocks

Considering the NKPC in terms of the welfare relevant output gap (3.1), the most

obvious approach to eliminate the divine coincidence is generating a time-varying

gap δt. A potential implementation is to assume a time varying elasticity of substi-

tution between two intermediate goods, ηp,t. Following Canova and Ferroni (2011,

p. 1) it now is assumed that

ηp,t = ηp exp

(
1− ηp
ηp

εcpt

)
, ηp > 1,

where εcpt is an independent and identically distributed normal shock. If prices are

flexible, the associated desired price markup in period t on marginal cost is not

22



constant any longer and equal to:

µpt = log

(
ηp,t

ηp,t − 1

)
. (3.7)

It is important to note that a time-varying elasticity of substitution only affects the

natural level of output while its efficient level remains unchanged as firms do not

charge a markup in that case. Thus, fluctuations in the gap δt arise:

δt =
(1− α)µpt

(1 + φ)− (1− α)(1− σ)
(3.8)

and the divine coincidence no longer holds.

In appendix A.1.8 it is shown that the implementation of a time-varying markup

yields following NKPC:

πt = βEtπt+1 + λp(m̂c
r
t + εcpt ). (3.9)

Inflation is determined by expected inflation and marginal costs that now are hit by

an exogenous shock parameter. For this reason, the shock is referred to as cost-push

shock.

The implementation of a cost-push shock, in order to overcome the divine coin-

cidence, is not entirely satisfactory. Indeed, the cost-push shock breaks up the

otherwise constant relation between natural and efficient level of output and re-

moves the divine coincidence, but only with respect to the shock itself. The divine

coincidence still holds with respect to all other shocks of the model. Blanchard and

Gaĺı (2007, p. 50) illustrate this limitation for the case of an oil price shock:11 They

point out that, even in presence of a cost-push shock, “the model still implies that

keeping inflation constant in the face of increase in the price of oil” would be “the

right policy”. Therefore, the authors suggest the introduction of real wage rigidities

which permanently destabilize the gap δt.

11In the baseline model, an oil price shock is not explicitly implemented. However, the effects are
similar to a technology shock. Both affect the production function of the intermediate producers.
See Goodfriend and King (1997, p. 272).
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3.2.2 Real wage rigidities

In order to introduce real wage rigidities, an additional real imperfection in the labor

market is assumed. In particular, a new wage setting mechanism is implemented

that allows only for a partial wage adjustment. Following Blanchard and Gaĺı (2007,

p. 41), the labor supply equation (2.4) of the baseline model is modified as follows:

wt − pt = γ(wt−1 − pt−1) + (1− γ)mrst (3.10)

where γ ∈ [0, 1] is the measure of real wage rigidities. Households can only partly

adjust their real wages to the marginal rate of substitution as they would do in

absence of rigidities. An important assumption underlying equation (3.10) is that

only the flexible price equilibrium is affected by real wage rigidities while the effi-

cient equilibrium remains unchanged. This holds as the sluggish wage adjustment

is assumed to be the result of distortions rather than preferences (Blanchard and

Gaĺı, 2007, p. 41). By definition, distortions do not have an effect on the efficient

equilibrium.

Next, the influence of real wage rigidities on the gap between efficient and flexible

level of output is examined. To facilitate the derivation of the gap δt, a log-utility

function is assumed, that is σ = 1.12 The efficient level of output is still given by

(3.3), where σ is set to 1:

yet = at +
1− α
1 + φ

(gt + log(1− α)) . (3.11)

Under flexible pricing, monopolistic competition, a log-utility function and real wage

rigidities one has for the wage setting side:

ωt = γωt−1 + (1− γ)(φlt + yt − gt)

= γωt−1 + (1− γ)((at − αlt) + (1 + φ)lt − gt) (3.12)

12An attempt to calculate the gap δt for the general case of the utility function turned out to be
too messy for a reasonable presentation in this thesis.
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and, as before, from the firms’ side:

ωt = log(1− α) + yt − lt − µp

= at − αlt − log(1− α)− µp (3.13)

Combining (3.12) and (3.13) yields the flexible level of employment:

(αγ+(1−γ)(1+φ))lft = (1−γ)(gt+log(1−α)−µp)+γ(at−at−1)+αγlft−1, (3.14)

which now depends on the change of technology and the lagged level of employment.

As shown in appendix A.1.9, the flexible level of employment can be used to derive

following formulation of the gap between efficient and flexible output:

yft − yet + δ = Υ (yft−1 − yet−1 + δ) + (1− α)Υ (
1

α
∆at −

1

1 + φ
∆gt) (3.15)

where Υ ≡ αγ/(αγ + (1− γ)(1 + φ)) ∈ [0, 1] and δ = µp(1− α)/(1 + φ) is the time

invariant gap defined in equation (3.6) in case of a log-utility function. Equation

(3.15) shows that the gap between efficient and flexible output is not constant any

longer. Instead it is subjected to both technology and preference shocks. This is a

key difference to the effects of a cost-push shock that also destabilizes the gap δ but

only with respect to the shock itself.

In appendix A.1.10 it is shown that the NKPC in terms of the output gap has the

form:

πt = βEtπt+1 +
λp

(1− γL)(1− α)
[(1 + φ)(1− γ)(yt − yft ) + αγ(∆yt −∆yft )] (3.16)

where L is the lag operator. In presence of real wage rigidities, inflation depends

on both current level and change of the output gap. Although the relation between

output gap and inflation is more complex compared to the baseline model, it remains

stable and a constant rate of inflation implies a constant output gap. However, a

stabilization of the output gap is not longer desirable as the the gap between flexible

and efficient output is not constant any longer. Therefore, the divine coincidence
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has been overcome by the introduction of real wage rigidities.

The real wage setting mechanism introduced above has the drawback that it is

not explicitly derived from actions of economic agents. It is not clear why wage

staggering should arise exactly in this form. For this reason, another extension is

introduced where wage setting is explicitly based on decisions of the households.

3.2.3 Nominal wage rigidities

This section mainly refers to Gaĺı (2008, Chapter 6) and Erceg et al. (2000) (EHL for

short). Again, both source are not explicitly cited. Furthermore, most derivations

are left out as they are very similar to the baseline model.

As in the real wage case, nominal wage rigidities represent an imperfection in the

labor market. As the name implies, the nominal wage is subject to a sluggish

adjustment. Following EHL, the labor market is modeled as a duplicate of the in-

termediate goods market of the baseline model. In particular, there is a continuum

of monopolistically competitive households, now explicitly indexed by j ∈ [0, 1],

that are allowed to set their wages. Each household is specialized in a differentiated

labor service Nt(j). As in the model by EHL, there is a representative labor aggre-

gator (the counterpart of the final good producers), who combines labor services of

the households in the same proportions as intermediate firms would choose. This

assumption allows the intermediary firms’ optimal behavior to be the same as in the

baseline model. A further important assumption is full consumption risk sharing

across households, as it ensures that all households face same optimization problem

and choose identical wages and consumption amounts.13

The labor aggregator combines the labor index as:

Lt =

[∫ 1

0

Nt(j)
(ηw−1)/ηwdj

]ηw/(ηw−1)

, (3.17)

13The assumption of full risk sharing requires the existence of complete bond markets which
allow the households to perfectly hedge against idiosyncratic risks. Due to risk aversion, implied
by the concave utility function, consumption is then identical across households in every period
(Erceg et al., 2000, p. 288).
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where ηw > 1 represents the elasticity of substitution among labor services.14 The

labor aggregator takes each household’s wage rate Wt(j) as given and “produces”

aggregate labor at minimal cost. This implies an aggregate wage index of:

Wt =

[∫ 1

0

Wt(j)
1−ηwdj

]1/(1−ηw)

. (3.18)

The aggregator’s demand for labor services of household j, which also reflects the

total demand by the intermediate producers for this type of labor, is given by:

Nt(j) =

(
Wt(j)

Wt

)−ηw
Lt. (3.19)

As in the baseline model, the household j seeks to maximize the expected infinite

stream of utility. However, households now have monopoly power and are allowed

to set (nominal) wages. Additionally, in order to introduce nominal wage rigidities,

the Calvo price setting rule is applied on the wage decisions of households. It is

assumed that only a fraction (1− θw) of the households can adjust its wage in each

period while the rest has to keep the wage unchanged. Under these assumptions, a

household will choose W ∗
t in order to maximize:

Et

∞∑
t=k

(θwβ)kU(Ct+k|t, Nt+k|t) (3.20)

subject to the constraints:

Pt+kCt+k|t +Bt+k|t ≤ Bt+k−1|t(1 + it+k−1) +W ∗
t Nt+k|t +Dt+k (3.21)

14Note, that a household’s labor supply is now denoted by N(j) instead of L in the baseline
model. This notation is introduced to clarify the difference between a household’s supply and a
firm’s demand of labor. The latter is still denoted by Lt(i) and refers to the aggregate labor index
L under nominal wage rigidities.
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and

Nt+k|t =

(
W ∗
t

Wt+k

)−ηw
Lt+k, k = 0, 1, 2, ... (3.22)

where Ct+k|t, Bt+k|t and Nt+k|t denote consumption, bond holdings and labor in

period t + k given the household last set its wage in period t. The associated

optimality condition is:

Et

∞∑
k=0

(θwβ)k
[
UC(Ct+k|t, Nt+k|t)Nt+k|t

(
W ∗
t

Pt+k
−MwMRSt+k|t

)]
= 0, (3.23)

where Mw = ηw
ηw−1

and MRSt+k|t = −UN (Ct+k|t,Nt+k|t)

UC(Ct+k|t,Nt+k|t)
is the marginal rate of substi-

tution between consumption and labor in period t+ k given a last wage adjustment

in period t.

In absence of wage rigidities, i.e. θw = 0, all households choose the same wage and

(3.23) collapses to:
W ∗
t

Pt
=
Wt

Pt
=MwMRSt|t. (3.24)

Due to monopoly power, households charge a markup Mw on their marginal rate

of substitution. Furthermore, in the zero wage inflation steady state all households

choose the same wage. Hence, it holds that W ∗/P = W/P =MwMRS.

Next, equation (3.23) is log-linearized around that steady state, yielding following

the wage setting rule:

w∗t = µw + (1− θwβ)Et

∞∑
k=0

(θwβ)k(mrst+k|t + pt+k), (3.25)

where µw = logMw. Households charge a nominal wage corresponding to the fixed

markup µw plus a weighted sum which is increasing in expected price rises and in

the marginal rate of substitution.

Before a NKPC-type equation for wage inflation can be derived, expressions for

the the economy’s aggregate wage dynamics and the marginal rate of substitution

mrst+k|t are needed. Both reasoning and derivation of the former are very similar
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to the aggregate price dynamics of the baseline model (see appendix A.1.6). The

log-linearized aggregate wage is given by:

wt = (1− θw)w∗t + θwwt−1 (3.26)

or alternatively:

πwt = (1− θw)(w∗t − wt−1) (3.27)

where πw = wt − wt−1 denotes wage inflation, i.e. the share of inflation caused by

sticky wages.15 Wage inflation is driven by the distance of optimal wage from last

period’s average wage.

The household-specific marginal rate of substitution mrst+k|t can be written in terms

of economy’s average marginal rate of substitution (2.4). Given that the utility

function takes the same form as in the baseline model, one obtains:

mrst+k|t = φnt+k|t − gt+k − σct+k|t
= φnt+k|t − gt+k − σct+k
= mrst+k + φ(nt+k|t − lt+k)

= mrst+k − φηw(w∗t − wt+k). (3.28)

Note that in the second step, the assumption of a complete bond market has been

used which implies that the consumption choices of households are independent of

wage history, i.e. ct+k|t = ct+k,∀k. The last step uses the households’ labor demand

constraint (3.22).

As shown in appendix A.1.11, combining (3.25) with (3.28) and using the results

from (3.26) and (3.27) yields the wage inflation equation:

πwt = βEtπ
w
t+1 + λw[m̂rst − (ŵt − p̂t)] (3.29)

where λw = (1−θw)(1−βθw)/[θw(1+φηw)]. Wage inflation is determined by expected

15Now, wage inflation πwt and price inflation πpt are explicitly distinguished.
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wage inflation as well as by the distance between the marginal rate of substitution

and the real wage. If the real wage is below the marginal rate of substitution,

households will increase their nominal wage and generate positive inflation. Note

that this equation has an analogous form to the NKPC in terms of of marginal cost.

It replaces the labor supply equation (2.4) of the baseline model. The households’

Euler equation and all optimality conditions of the firms remain the same as in the

baseline model.

To asses the effects of this alternative wage setting rule on the divine coincidence,

both NKPC and wage infaltion equation (3.29) are written in terms of the output

and real wage gap. The latter is the distance between real wage and its natural (or

flexible) counterpart:

ω̃t = ωt − ωft . (3.30)

Both natural real wage and natural output refer to the equilibrium outcome in

absence of price and wage rigidities.

In appendix A.1.12 it is shown that price and wage inflation under nominal wage

rigidities can be written as:

πpt = βEtπ
p
t+1 + κpỹt + λpω̃t (3.31)

and

πwt = βEtπ
w
t+1 + κwỹt − λwω̃t (3.32)

where κw = λw(σ + φ
1−α), κp = αλp

1−α and λp as specified in the baseline model. In

presence of nominal wage rigidities, the economy’s inflation is determined by price

inflation as well as wage inflation. Note that both price and wage inflation depend on

the output gap and the real wage gap. Thus, the exact relation between output gap

and inflation is resolved and the divine coincidence does not emerge any longer. This

approach is in contrast to the two other extensions that aimed on the destabilization

of the gap δ between efficient and flexible output.16

16For future papers, it would also be interesting to investigate, how the nominal wage setting
mechanism effects the gap δt.
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4 Empirical analysis and model comparison

In this section, the three extensions of the baseline model are estimated using a

Bayesian approach. Additionally it is investigated, which model fits best to the

data. For that purpose, the Bayes factor, obtained from the log marginal likelihood

of the models, is employed.

The outline of this section is as follows: First, the model equilibrium conditions

are summarized and the Bayesian estimation strategy is sketched. Then, the data

sample and the specifications of the priors are described. Finally, the estimation

results are presented and discussed.

4.1 Log-linearized equilibrium

Before proceeding, the equilibrium conditions are summarized and a Taylor rule

is specified. In order to stay consistent to Rabanal and Rubio-Ramirez (2005),

all model variables are now stated in log-deviations from their steady state values

instead of log-levels.17 The log-linearized equilibrium is:

ŷt = Etŷt+1 − 1/σ(̂it − Etπ̂t+1 + Etĝt+1 − ĝt) (4.1)

ŵt − p̂t = m̂rst (4.2)

m̂rst = σŷt + φl̂t − ĝt (4.3)

ŷt = ât + (1− α)l̂t (4.4)

m̂ct = ŵt − p̂t + l̂t − ŷt (4.5)

π̂pt = βEtπ̂
p
t+1 + λp(m̂ct + εcpt ), (4.6)

where λp = (1−θp)(1−βθp)(1−α)

θp(1−α+αηp)
. In presence of real wage rigidities, (4.2) is replaced by:

ŵt − p̂t = γ(ŵt−1 − p̂t−1) + (1− γ)m̂rst (4.2’)

17The only difference between equations in log-levels and in log-deviations is that in the latter
all constant terms drop out. In the three models, only the Euler equation and the marginal cost
function are concerned. Note further that in the zero inflation steady state π = log(Π) = log(1) = 0,
which implies π̂t = πt.
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and in presence of nominal wage rigidities, (4.2) is replaced by:

π̂wt = βEtπ̂
w
t+1 + λw[m̂rst − (ŵt − p̂t)], (4.2”)

where λw = (1−θw)(1−βθw)
θw(1+φηw)

. The Taylor rule is specified as in Rabanal and Rubio-

Ramirez (2005):

ît = ρîit−1 + (1− ρi)[hππ̂pt + hyŷt] + εzt , (4.7)

where ρi ∈ [0, 1] is an interest rate smoothing parameter and εzt is a monetary policy

shock. The central bank reacts to deviations of price inflation and output from

their steady state values. The parameters hπ and hy determine the magnitude of

the reaction.

As in Rabanal and Rubio-Ramirez (2005, p. 1154) the real wage evolution is defined

as:

ŵt − p̂t = ŵt−1 − p̂t−1 + π̂wt − π̂
p
t . (4.8)

This expression is needed in order to close the model. Finally, the technology and

preference shocks are specified as AR(1) processes:

ât = ρaât−1 + εat (4.9)

ĝt = ρgĝt−1 + εgt (4.10)

where ρa and ρg ∈ [0, 1). Further it is assumed that εit follows a normal (0, σ2
i )

distribution, for i = a, g, z, cp, and that all εit are uncorrelated with each other.

Note that in above equilibrium system, the baseline model refers now to the model

including a cost-push shock. To avoid stochastic singularity, it is necessary that the

number of shocks is equal the number of observables (An and Schorfheide, 2007, p.

124). As the models are estimated using time series for output, real wage, inflation

and interest rate, four shocks are needed. Hence, the model extended by a cost-push

shock serves as “new” baseline model.
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4.2 Estimation strategy

The models are estimated using a Bayesian approach. Unlike classical statistics,

prior knowledge about parameter values can be incorporated in form of prior dis-

tributions into the estimation process. Confrontation to the data leads then to a

revision of the parameters’ probabilities, expressed by their posterior distribution.

The estimation of the posterior distribution needs the evaluation of a model’s like-

lihood function and a specification of the prior distribution. More formally, define

M = {Base, RWR, NWR} as the set of the three models and ϑ = (θp, θw, γ, hπ, hy, σ,

φ, ρi, ρa, ρg, ηp, ηw, α, β, σa, σg, σcp, σz)
′ as the vector of the models’ parameters. Then,

the likelihood function of model m ∈ M is L(Yt|ϑm,m), where Yt is the used data

set.18 For a linear model, the likelihood function can be evaluated using the Kalman

filter. Let p0 be the prior joint probability density function chosen on available prior

knowledge about the parameters. Then, weighting the obtained likelihood function

by the priors yields the unnormalized posterior distribution p1 of the parameters

(Gelman et al., 2014, p. 7):

p1(ϑm|Yt,m) ∝ p0(ϑm|m)L(Yt|ϑm,m), (4.11)

Equation (4.11) shows that the choice of the prior distribution is important as it

affects the shape of the posterior distribution.

As there is no closed-form solution for the posterior distribution (Rabanal and

Rubio-Ramirez, 2005, p. 1158), a Random Walk Metropolis-Hastings (RWMH)

algorithm has to be applied to generate draws from the posterior distribution of ϑm.

These draws can then be used to calculate the mean and variance of the parameters.

For further details, see An and Schorfheide (2007, p. 131).

For model comparison, the marginal likelihood of each model m is calculated. The

marginal likelihood is equal to the integral of the likelihood function weighted by

the priors over the parameter space. Again, there is no closed-form solution and the

marginal likelihood has to be computed numerically. This is done using Geweke’s

18The parameter vector ϑm differs across the three models.
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harmonic mean estimator.19 With the help of the marginal likelihood the Bayes

factor can be derived. It is calculated as the ratio of the marginal likelihoods of two

models (Gelman et al., 2014, p. 183):

BF =

∫
p0(ϑ1|m1)L(Yt|ϑ1,m1)dϑ1∫
p0(ϑ2|m2)L(Yt|ϑ2,m2)dϑ2

. (4.12)

The Bayes factor “quantifies the relative probability of the observed data” under

each model (Ly et al., 2016, p. 22). A Bayes factor larger than 1 indicates that

the observed data Yt more likely occurred under model m1 and that model m1 is

preferred over model m2 (Ly et al., 2016, p. 22).

Using the Bayes factor as a model comparison tool has the advantage that, even

in case of misspecified and/or non-nested models, the Bayes factor is a consistent

selection device of the best model (Fernandez-Villaverde and Rubio-Ramirez, 2004,

p. 159).

In Dynare, all just mentioned steps are already implemented and executed auto-

matically. After entering the model and the priors, a mode finding routine and

corresponding start values for the parameters have to be specified. The posterior

mode is required for the initialization of the RWMH algorithm. In this thesis, Chris

Sims’ csminwel.m is used for mode finding. Additionally, a scale parameter, de-

termining the jumping distribution in RWMH algorithm, has to be set (Griffoli,

2013, p. 51). The scale parameter is chosen such that the acceptance ratio of draws

form the posterior distribution is between 0.25 and 0.33. With these specifications,

200000 draws from the posterior distribution were generated for each model. Ap-

pendix A.4 shows an example of the Dynare code employed to estimate the baseline

model and the transition of parameters from prior to posterior distributions during

estimation.

4.3 Data

For the estimation of the models’ parameters, quarterly US time series data for

real output, inflation, real wage and interest rate are used. To guarantee the best

19See An and Schorfheide (2007, p. 146) for further details.
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possible data consistency, the time series of output, inflation and wage stem from

the same source, the Bureau of Labor Statistics. In particular, for real output the

series “Nonfarm business sector: Real Output”, for inflation the series “ Nonfarm

Business Sector: Implicit Price Deflator” and for real wages the series “Nonfarm

Business Sector: Real Compensation Per Hour” are employed. The time series for

the interest rate is the federal funds rate published by the Board of Governors of

the Federal Reserve System. Two sample periods are considered: First, a sample

ranging from 1982Q4 to 2001Q4 reflecting the choice by Rabanal and Rubio-Ramirez

(2005). Additionally, as a robustness check, the sample is extended, ranging from

1982Q4 to 2007Q4. A longer time horizon was not possible, as the FED lowered the

federal funds rate close to zero in the course of the financial crisis and kept it close

to zero until 2016. That behavior by the FED is hard to harmonize with a standard

Taylor rule.

All observed variables have to be transformed such that they coincide with the

models’ variables. That is, all observables have to be written as log-deviations from

their steady-state values.20 Therefore, all variables are logarithmized and demeaned.

Additionally, as the models do not include a trend, the series for output and wage

are detrended using a one-sided HP filter. An accurate description of all time series,

their transformations and the specification of the measurement equations can be

found in appendix A.2.

4.4 Priors

The specifications of the priors follow mostly the description in Rabanal and Rubio-

Ramirez (2005, p. 1156). The second column of Table 1 shows the chosen priors for

the estimated parameters.

The priors of the index of price and wage stickiness, θp and θw, were transformed

in order to keep their values between 0 and 1. The transformed parameters can be

interpreted as the average duration of prices and wages. They are assumed to follow

a gamma distribution with mean 3 and standard deviation 1.42 for prices, and mean

20Pfeifer (2015) provides a comprehensive introduction to the specification of observation equa-
tions.
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Table 1: Prior and posterior distributions for the parameters.
Sample: 1982Q4-2001Q4

Prior distribution Posterior distribution

Base RWR NWR

Mean Mean Mean Mean
(SD) (SD) (SD) (SD)

1
1−θp Gamma(2, 1) + 1 3.00 9.30 10.00 10.21

(1.42) (1.25) (1.11) (1.67)

1
1−θw Gamma(3, 1) + 1 4.00 - - 3.63

(1.71) (0.61)

γ Uniform[0, 1) 0.50 - 0.93 -
(0.28) (0.05)

hπ Normal(1.5, 0.25) 1.50 1.59 1.84 1.76
(0.25) (0.20) (0.20) (0.21)

hy Normal(0.125, 0.125) 0.125 0.16 0.28 0.30
(0.125) (0.05) (0.07) (0.07)

σ Gamma(2, 1.25) 2.50 6.40 8.10 7.39
(1.76) (1.36) (2.51) (1.94)

φ Normal(1, 0.5) 1 0.90 1.10 1.49
(0.5) (0.23) (0.38) (0.39)

ρi Uniform[0, 1) 0.5 0.76 0.86 0.86
(0.28) (0.03) (0.02) (0.02)

ρa Uniform[0, 1) 0.5 0.89 0.28 0.27
(0.28) (0.03) (0.16) (0.13)

ρg Uniform[0, 1) 0.5 0.88 0.92 0.91
(0.28) (0.03) (0.03) (0.03)

σa Uniform[0, 1) 0.5 0.008 0.069 0.220
(0.28) (0.13) (3.29) (8.16)

σg Uniform[0, 1) 0.5 0.042 0.058 0.054
(0.28) (0.008) (0.015) (0.017)

σcp Uniform[0, 1.5) 0.75 0.91 1.167 1.103
(0.43) (0.186) (0.226) (0.317)

σz Uniform[0, 1) 0.5 0.0015 0.0012 0.0012
(0.28) (0.0002) (0.0001) (0.0001)

log(L̂) 1242.2 1276.1 1284.9

4 and standard deviation 1.71 for wages, reflecting informal microeconomic evidence

by Taylor (Rabanal and Rubio-Ramirez, 2005, p. 1158) and a prior belief of more

rigid wages compared to prices. The degree of real wage rigidities, γ, is uniformly

distributed on the interval [0, 1). The uniform distribution was chosen as no prior

knowledge about this parameter was available. The Taylor rule coefficients, hπ and

hy, are normally distributed with means 1.5 and 0.125, respectively, which are Tay-

lor’s original estimates (Rabanal and Rubio-Ramirez, 2005, p. 1156). Additionally,
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the support for hπ is limited to values greater than 1 to guarantee equilibrium deter-

minacy (Gaĺı, 2008, p. 128). The inverse elasticity of intertemporal substitution, σ,

follows a gamma distribution with mean 2.5 and standard deviation 1.76. Further,

the inverse elasticity of labor supply, φ, is assumed to be normally distributed with

mean 1 and standard deviation 0.5. For the interest rate smoothing parameter, ρi,

the persistence of technology and preference shocks, ρa and ρg, and the standard

deviations of the shocks except the cost-push shock, a uniform distribution on [0, 1)

is assumed, reflecting again no prior knowledge about the parameter values. Follow-

ing Lombardi and Nicoletti (2011, p. 19), the standard deviation of the cost-push

shock, σcp, is assumed to be uniformly distributed on the slightly larger interval

[0, 1.5). This deviation from the specification of Rabanal and Rubio-Ramirez, who

also used a uniform [0, 1) distribution, has been introduced as the estimation using

the extended sample required a support greater than 1 for σcp.
21

Finally, the parameters α, β, ηp and ηw are set to fixed values. Without incorporation

of capital into the models, an estimation of α and β is difficult. For this reason it

is assumed that α = 0.36 and β = 0.99. The parameters ηp and ηw cannot be

estimated due to identification problems. The parameter ηp only shows up in the

NKPC together with θp. Similarly, ηw and θw appear only in the wage inflation

equation. Thus, both ηp and ηw cannot be identified separately and their values are

fixed at 6 in correspondence to Rabanal and Rubio-Ramirez (2005).

4.5 Findings

In this section, findings of several estimation experiments are presented. First,

difficulties that occurred in the estimation procedure are outlined. Then, results for

the main and the extended sample are presented and discussed.

21Lombardi and Nicoletti (2011, p. 19), who used the same baseline model and the same data set
(1960Q1-2001Q4), employed a uniform distribution on the interval [0, 1.5) for σcp as the cost-push
shock “is known to contribute to inflation dynamics with quite large movements”. Other authors
assume inverse gamma distributions which have a support of (0,∞) but peak in regions close to
zero (see, e.g. Smets and Wouters (2003) or An and Schorfheide (2007)). In order to maintain
comparability to Rabanal and Rubio-Ramirez, the first option was chosen.
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4.5.1 Estimation difficulties

In their paper “Comparing New Keynesian models of the business cycle: A Bayesian

approach”, Rabanal and Rubio-Ramirez (2005) examine the empirical properties of

several New Keynesian models. Among others they estimated the baseline and

nominal wage rigidity model presented in this thesis using a Bayesian approach.

Therefore, it immediately suggested itself to choose their settings as a starting point

for estimation. Originally, Rabanal and Rubio-Ramirez used above mentioned prior

distribution and time series ranging from 1960Q1 to 2001Q4. With these specifi-

cations, however, the estimation of the models’ parameters was not possible. The

estimation of the NWR model yielded the Taylor rule coefficient hπ to be on the

lower boundary, i.e equal to 1. A value for hπ smaller or equal to 1, however, vi-

olates the Taylor principle and leads to equilibrium indeterminacy (Gaĺı, 2008, p.

22). Without further assumptions about the priors of the other parameters, the

NWR model could not be estimated. Rabanal and Rubio-Ramirez (2005, p. 1161)

also report values “extremely close to one” for hπ, however always slightly larger

than 1 and therefore estimable.

To obtain more stable results, Rabanal and Rubio-Ramirez restricted their sample

in a second estimation to the period 1982Q4-2001Q4, which is characterized by

relatively constant monetary policy by the FED (Christensen and Dib, 2008, p.

163) and allows for a “safe” estimation of hπ. Likewise, the next experiment was

estimating the models with the help of the reduced data sample, while the prior

specification remained unchanged. This experiment was successful, the results are

presented in Table 3 in appendix A.3. Except for a higher estimated standard

deviation of the cost push-shock and lower values of the persistence of the technology

shock in the nominal wage rigidity model, the obtained estimates were similar to

the findings by Rabanal and Rubio-Ramirez.

However, the original prior specification did not permit an estimation using the

extended data set ranging from 1982Q4 to 2007Q4. The posterior mode of σcp was

always larger than one and out of the domain of the uniform [0,1) distribution,

regardless of the choice of the other parameters’ start values. Thus, the RWMH

algorithm could not be initialized.
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A feasible solution was increasing the support for σcp to the interval [0, 1.5) (see also

section 4.4). The results with these specifications of the priors and the data samples

are presented in subsequent section.

4.5.2 Main sample

Columns 3 - 6 of Table 1 show the means and standard deviations of the estimated

parameters of each model for the sample 1982Q4-2001Q4.

The average duration of prices in the baseline model is 9.3 quarters, which seems to

be quite high compared to the assumed prior distribution. For both RWR and NWR

even higher values around 10 arise, corresponding to values for θp of approximately

0.9. The average duration of wages is fixed to be one in the baseline and the RWR

model. In the NWR model, that parameter is estimated to be 3.63 quarters and

hence much lower than the average duration of prices. This applies despite a higher

prior mean for wages rigidities. The degree of real wage rigidities is estimated to be

at 0.93 in the RWR model, showing that current wages are mainly determined by

last quarter’s wage. The Taylor Rule coefficients are 1.59 and 0.16 in the baseline

model and slightly higher in both the RWR and NWR model. The inverse elasticity

of intertemporal substitution, σ, is in the range between 6.40 and 8.10 corresponding

to an intertemporal substitution elasticity between 0.16 and 0.19. The elasticity of

labor supply, φ−1, is with an estimate of 1.1 higher in the baseline model than in the

wage rigidity models. In absence of wage rigidities, the marginal rate of substitution

is equal to the real wage. Hence, a larger value of this elasticity accounts for the

fluctuations of the observed real wage (Rabanal and Rubio-Ramirez, 2005, p. 1159).

The interest rate smoothing parameter is 0.86 in both RWR and NWR model and

slightly lower in the baseline model. The same holds true for the persistence param-

eter of the preference shock. The persistence parameter of the technology shock,

however, is much higher in the baseline model compared to the wage rigidity models.

This observation suggests that a large part of the technology shock persistence is

absorbed by the introduction of wage rigidities. The estimated prior means for the

standard deviations of the shocks are quite different from each other. While mone-

tary policy and preference shifter shocks show only small amplitudes in all models,

39



the estimates for the standard deviations of the technology and cost-push shocks are

diverse. The technology shock volatility is almost zero in the baseline model and

increases in the RWR and NWR models with estimates of 0.069 and 0.22, respec-

tively. Even larger is the volatility of the cost-push shock. Its standard deviation is

estimated to be 0.91 in the baseline and around 1.15 in the wage rigidity models.

The last row of Table 1 reports the marginal likelihood of each model. The marginal

likelihood for the RWR model is 1276.1, which translates into a Bayes factor of

e1276−1242 = e34 with respect to the baseline model.22 For the NWR model, a Bayes

factor of e43 is obtained. Hence, the Bayes factor clearly prefers the wage rigidity

models over the baseline model and the data set provides very strong evidence

against flexible wages.23 A comparison of the marginal likelihoods of the NWR

and the RWR model results in a Bayes factor of e8 in favor of the NWR model.

Therefore, the nominal wage setting mechanism seems to fit best to the data of the

main sample.

4.5.3 Extended sample

In a next step, in order to asses the robustness of above results, the sample is

extended to 2007Q4. Table 2 in appendix A.3 reports the estimation results.

Noteworthy findings are: The average duration of prices in the baseline model has

increased and is now on the same level as the estimates obtained from the wage rigid-

ity models. Similarly, the standard deviation of the cost-push shock in the baseline

model adjusts upwards to the other models’ values. Another differences to the main

sample is that the elasticity of labor supply, φ−1, dropped in the wage rigidity mod-

els, while it remained constant in the baseline model. The other parameters are

quite robust to the extension of the sample in all three models, in particular both

NWR and RWR model exhibit very similar estimation results.

The marginal likelihood and the Bayes factor show qualitatively the same results as

in the main sample. Wage rigidity models are preferred over the baseline model and

22The exponential needs to be taken as the marginal likelihood is reported in logs.
23According to Jeffreys (1961, p. 432) a Bayes factor greater than 100 is considered as decisive

evidence for model m1 over m2.
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the NWR model has the better empirical fit compared to the RWR model.

4.5.4 Discussion of the results

All in all, the parameter estimates are different between baseline and wage rigidity

models, while the estimation results of RWR and NWR models turn out to be very

similar in all estimations, including the estimation with the uniform [0, 1) prior for

σcp. On the one hand, one could have expected more diverse parameter estimates

caused by two different wage setting rules. On the other hand this observation is not

too surprising as two related mechanisms have been implemented that both prevent

the real wage to adjust immediately.24 Hence, it can be concluded, that in terms of

parameter estimates both wage rigidity models are as good as the other.

Turning to the Bayes factor, a clear pattern is observable. In all estimations, the

introduction of wage rigidities enhances the fit to the data. It could be argued

that richer models automatically rank better than more sparse models. However, as

Rabanal and Rubio-Ramirez (2005, p. 1161) point out “richer models have many

more hyperparamters, and the Bayes factor discriminates against them”. Hence,

employing the Bayes factor for model comparison automatically takes the model

size into account, with a preference for parsimonious modeling. It can be concluded

that introducing wage rigidities not only overcomes the divine coincidence but also

improves the empirical fit of the baseline model.

Regarding the Bayes factor of the wage rigidity models, the nominal outperforms

the real wage rigidity model. There is decisive evidence in favor of the nominal wage

rigidity model in all estimations. Hence, the dynamics of the nominal wage rigidity

model closer resembles the observed data.

The Bayesian approach, however, is not flawless. Due to the difficulties mentioned

in section 4.5.1, the estimation using the main sample was conducted twice, for

σcp ∈ [0, 1) and σcp ∈ [0, 1.5). Comparing Table 1 and Table 3 of appendix A.3, one

striking difference can be observed. Under the prior specification with σcp ∈ [0, 1),

24Nominal wage rigidities in combination with price rigidities lead to sticky real wages. The
impulse response functions of the models in appendix A.3 show that real wage dynamics after a
technology shock are similar in both models but more pronounced in the NWR model.
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estimates of the average price duration are in the range 8.4 to 8.9 periods and

estimates of σcp are between 0.75 and 0.83. For σcp ∈ [0, 1.5), the values of average

price duration increase in the wage rigidity models to approximately 10 periods and

estimates for σcp jump to values above 1.10. As all other priors were held completely

identical, these difference are solely caused by changes of the prior distribution of

σcp. That observation suggests a close relationship between θp and σcp. Indeed, by

considering the New Keynesian Phillips curve (4.6), it becomes evident that higher

values of estimated σcp require lower values of λp which, in turn, go hand in hand

with higher values for θp. This relationship implies that a truncation of the support

for σcp has a direct influence on the estimates of the average distribution of prices

and hence on θp (Rabanal and Rubio-Ramirez, 2005, p. 1156).

The variation of the estimates highlights the sensitivity of the estimates to the spec-

ification of prior distributions in a Bayesian estimation approach. The inclusion

of prior knowledge has an undeniable appeal but it also potentially confounds es-

timation results. This seems to be especially problematic, if no prior knowledge

is available and the researcher has to rely on uninformative (but influential) priors

that cannot be justified by other empirical findings.

5 Conclusion

This master thesis introduced three possibilities to overcome the divine coincidence

in a baseline New Keynesian model. From a methodological point of view, the easiest

way to tackle the divine coincidence is the introduction of real wage rigidities, as

long as it comes in form of an ad-hoc rule. This simplification, however, is at cost

of a lack of microfoundations. Hence, the nominal wage setting mechanism, derived

from explicit decisions of households, is preferable. The introduction of a cost-push

shock has to treated separately from the other approaches, as the divine coincidence

is removed only with respect to the shock itself. Nevertheless, using a cost-push

shock is reasonable, as it accounts for permanently changing cost conditions the

producers are exposed to.

The Bayesian estimation revealed that the introduction of wage rigidities, not only
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made the divine coincidence to disappear but also improved the empirical fit of the

baseline model. Both wage setting mechanisms yielded similar parameter estimates,

which also were robust to an extension of the data sample. The nominal rigidity

model outperformed the real wage model in terms of the empirical fit.

Hence, both theoretical considerations and empirical findings suggest, that the nom-

inal wage rigidity mechanism is the best option to overcome the divine coincidence.
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A Appendix

A.1 Mathematical Appendix

A.1.1 The Household’s optimization problem

The representative household wants to maximize the infinite stream of utility subject

to its budget constraint. The household chooses quantities of consumption, labor

and bond holdings. Take the Lagrangian:

Λ = E0

∞∑
t=0

βt

(
Gt
C1−σ
t

1− σ
− bL1+φ

t

1 + φ

)
+ λt(Bt−1(1 + it−1) +WtLt +Dt − PtCt −Bt)

The FOC’s are:

∂Λ

∂Ct
= βtGtC

−σ
t − λtPt = 0 (A.1)

∂Λ

∂Lt
= −βtLφt + λtWt = 0 (A.2)

∂Λ

∂Bt

= −λt + Et(λt+1)(1 + it) = 0 (A.3)

Shifting the first equation by one period and combining with the third equation

yields the Euler equation:

βtGtC
−σ
t = λtPt ⇐⇒ βt+1Gt+1C

−σ
t+1 = λt+1Pt+1

⇔βtGt
C−σt
Pt

= βt+1(1 + it)Et

(
Gt+1

C−σt+1

Pt+1

)
⇔Gt

C−σt
Pt

= β(1 + it)Et

(
Gt+1

C−σt+1

Pt+1

)
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For the labor supply equation combine the first and the second FOC:

βt
GtC

−σ
t

Pt
Wt = βtLφt

Wt

Pt
=

Lφt
GtC

−σ
t

For the log-linearizion we rewrite the Euler equation to:

1 = Et
(
elog(β)+log(1+it)+∆gt+1−σ∆ct+1−πt+1

)
= Et

(
e−ρ+it+∆gt+1−σ∆ct+1−πt+1

)
where −ρ = log(β). Note that log(1 + it) ≈ it for i close to zero. In a steady state

with constant consumption growth γc = ∆c, inflation π, interest rate i and zero

shocks we have:

1 = e−ρ+i−σγc−π =⇒ σγc = −ρ+ i− π

A first order Taylor approximation25 around this steady state yields:

1 ≈ Et (1 + (it − i) + ∆gt+1 − σ(∆ct+1 − γc)− (πt+1 − π))

= Et (1 + (it − i) + ∆gt+1 − σ∆ct+1 − ρ+ i− π − (πt+1 − π))

and after rearranging:

ct = Etct+1 − (1/σ)(it − Etπt+1 + Etgt+1 − gt − ρ)

25For a multivariate function f(x, y), the first-order Taylor expansion around a point (x̄, ȳ) is:
f(x, y) ≈ f(x̄, ȳ) + fx(x̄, ȳ)(x− x̄) + fy(x̄, ȳ)(y− ȳ) where fx,y corresponds to the partial derivative
with respect to x and y, respectively.
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A.1.2 The final good producers optimization problem

The final good firms produce any output Yt at minimal cost and take the price Pt(i)

for each differentiated good Yt(i) as given. They face the following optimization

problem:

min
Yt(i)

∫ 1

0

Pt(i)Yt(i)di s.t. Yt =

[∫ 1

0

Yt(i)
(ηp−1)/ηpdi

]ηp/(ηp−1)

The Lagrangian takes the form:

Λ =

∫ 1

0

Pt(i)Yt(i)di+ λt

(
Yt −

[∫ 1

0

Yt(i)
(ηp−1)/ηpdi

]ηp/(ηp−1)
)

The related FOC is:

∂Λ

∂Yt(i)
= Pt(i)− λt

ηp
(ηp − 1)

Y
1/ηp
t

(ηp − 1)

ηp
Yt(i)

−1/ηp = 0

The Lagrangian multiplier λt equals the marginal cost of a final good producer(Walsh,

2010, p. 332). Solving this expression for Yt(i) yields the demand function for in-

termediated goods:

Yt(i) =

(
Pt(i)

λt

)−ηp
Yt = λ

ηp
t Pt(i)

−ηpYt

This expression can be substituted into the final firms’ production function:

Yt =

[∫ 1

0

(λ
ηp
t Pt(i)

−ηpYt)
(ηp−1)/ηpdi

]ηp/(ηp−1)

Solving the former for λt yields the expression for the aggregated price index Pt:

λt =

[
1∫ 1

0
Pt(i)1−ηpdi

]1/(ηp−1)

=

[∫ 1

0

Pt(i)
1−ηpdi

]1/(1−ηp)
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Note, as the final good producers operate in a fully competitive market, final output

is sold at a price equal to marginal cost. Therefore, it holds that λt = Pt.

A.1.3 Marginal cost of intermediate producers

As for the final good producers, firms minimize cost at a given factor price and tech-

nology constraint. Again, the Lagrangian multiplier reflects the nominal marginal

cost of a intermediate firm:

Λ = WtLt(i) + λt(Yt(i)− AtLt(i)1−α)

The FOC is:

∂Λ

∂Lt(i)
= Wt − λt(1− α)AtLt(i)

−α = 0

Solving for λt and eliminating Lt(i) with the help of the production function yields

λt =
Wt

(1− α)At
Lt(i)

α =
Wt

(1− α)

(
1

At

)1/(1−α)

Yt(i)
α/(1−α)

Using the intermediate firms’ demand schedule for Yt(i) ( 2.7), one gets the expres-

sion for the nominal marginal cost of a firm i:

MCn
t (i) =

Wt

(1− α)

(
1

At

)1/(1−α)
[(

Pt(i)

Pt

)−ηp
Yt

]α/(1−α)

A.1.4 First order condition of intermediate producers

Using the demand function to eliminate Yt+k|t(i), the optimization problem can be

written as an unconstrained one:

max
Pt(i)

∞∑
k=0

θkpEt

[
Qt,t+k

(
Pt(i)

(
Pt(i)

Pt+k

)−ηp
Yt+k −Ψt+k

((
Pt(i)

Pt+k

)−ηp
Yt+k

))]
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Differentiating this expression with respect to Pt(i) and equaling zero yields:

∞∑
k=0

θkpEt

[
Qt,t+k

((
Pt(i)

Pt+k

)−ηp
Yt+k − ηp

(
Pt(i)

Pt+k

)−ηp−1
Pt(i)

Pt+k
Yt+k

+ ηpΨ
′
t+k

(
Yt+k|t(i)

)(Pt(i)
Pt+k

)−ηp−1

Yt+k
1

Pt+k

)]
= 0

Substituting back Yt+k|t(i) and rearranging:

∞∑
k=0

θkpEt

[
Qt,t+kYt+k|t(i)

(
(1− ηp) + ηpΨ

′
t+k

(
Yt+k|t(i)

) 1

Pt(i)

)]
= 0

Multiplying by Pt(i)/(1−η) and using the fact that the derivative of the cost function

is the marginal cost, i.e. Ψ′t+k
(
Yt+k|t(i)

)
= MCn

t+k|t(i) it follows:

∞∑
k=0

θkpEt

[
Qt,t+kYt+k|t(i)

(
P ∗t (i)− ηp

ηp − 1
MCn

t+k|t(i)

)]
= 0

where

MCn
t+k|t =

Wt+k

(1− α)

(
1

At+k

)1/(1−α)
[(

P ∗t (i)

Pt+k

)−ηp
Yt+k

]α/(1−α)

= MCn
t+k

(
P ∗t (i)

Pt+k

)−ηpα/(1−α)

is the nominal marginal cost for an intermediate firm that last reset its price in

period t.

A.1.5 Log-linearization of the Optimal Pricing Condition

The optimal pricing condition is now log linearized around the zero inflation steady

state. A similar proof can be found in Bergholt (2012, p.14). For this purpose, a
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first order Taylor approximation is applied.

Solving the firms’ optimality condition for P ∗t yields:

P ∗t =M
Et
∑∞

k=0 θ
k
pQt,t+kP

1+ηp
t+k Yt+kMCr

t+k|t

Et
∑∞

k=0 θ
k
pQt,t+kP

ηp
t+kYt+k

which can be rewritten as:

P ∗t
Pt−1

Et

∞∑
k=0

θkpβ
kGt+kC

1−σ
t+k P

ηp−1
t+k =M 1

Pt−1

Et

∞∑
k=0

θkpβ
kGt+kC

1−σ
t+k P

ηp
t+kMCr

t+k|t

where both sides were divided by Pt−1 and the definition of the stochastic discount

factor Qt,t+k = βk(Gt+k/Gt)(Ct+k/Ct)
−σ(Pt/Pt+k) together with the market clearing

condition Yt+k = Ct+k have been used. That condition must hold as there is no

capital and no investment. Hence, all produced goods must be consumed in the

same period.

Now, do a first order Taylor expansion around the zero inflation steady state. This

yields for the LHS of above expression:

P ∗t
Pt−1

Et

∞∑
k=0

θkpβ
kGt+kC

1−σ
t+k P

ηp−1
t+k

≈
∞∑
k=0

θkpβ
kGC1−σP ηp−1 + Et

∞∑
k=0

θkpβ
kC1−σP ηp−1(Gt+k −G)

+ Et

∞∑
k=0

θkpβ
kG(1− σ)C−σP ηp−1(Ct+k − C) +

1

P
Et

∞∑
k=0

θkpβ
kGC1−σP ηp−1(P ∗t − P )

− P

P 2
Et

∞∑
k=0

θkpβ
kGC1−σP ηp−1(Pt−1 − P ) + Et

∞∑
k=0

θkpβ
kGC1−σ(ηp − 1)P ηp−2(Pt+k − P )

= GC1−σP ηp−1Et

∞∑
k=0

θkpβ
k
(

1 + ĝt+k + (1− σ)ĉt+k + p̂∗t + p̂t−1 + (ηp − 1)p̂t+k

)
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where variables with a hat on top denote log deviations from steady state. Applying

the same steps for the RHS yiels:

M 1

Pt−1

Et

∞∑
k=0

θkpβ
kGt+kC

1−σ
t+k P

ηp
t+kMCr

t+k|t

≈MGC1−σP ηp−1MCr Et

∞∑
k=0

θkpβ
k
(
1 + ĝt+k + (1− σ)ĉt+k + p̂t−1 + ηpp̂t+k + m̂crt+k|t

)
= GC1−σP ηp−1Et

∞∑
k=0

θkpβ
k
(
1 + ĝt+k + (1− σ)ĉt+k + p̂t−1 + ηpp̂t+k + m̂crt+k|t

)
as MCr = 1/M in steady state. Equating LHS and RHS expressions and simplify-

ing:

Et

∞∑
k=0

θkpβ
k
(
p̂∗t − p̂t+k

)
= Et

∞∑
k=0

θkpβ
km̂crt+k|t

Note, that p̂∗t = p∗t − p, p̂t+k = pt+k − p and m̂crt+k|t = mcrt+k|t −mc = mct+k|t + µp,

so one can write:

∞∑
k=0

θkpβ
k (p∗t − pt+k) = Et

∞∑
k=0

θkpβ
k
(
mcrt+k|t + µp

)
Rearranging and applying the properties of a geometric series to both sides:

p∗t
(1− θpβ)

=
µp

(1− θpβ)
+ Et

∞∑
k=0

θkpβ
k
(
mcrt+k|t + pt+k

)
and finally:

p∗t = µp + (1− θpβ)Et

∞∑
k=0

θkpβ
k(mcrt+k|t + pt+k)
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A.1.6 Aggregate price dynamics and relationship between aggregated

output and labor

The aggregate price in the economy is

Pt =

[∫ 1

0

Pt(i)
1−ηpdi

]1/(1−ηp)

A constant fraction of firms 1 − θp chooses the optimal price in period t while the

fraction θp keeps the price of the last period. As all firms that set a new price face

the same optimization problem, they choose the same price P ∗t . Thus, the integral

can be split into two parts:

Pt =

[∫ 1

0

(
(1− θp)P ∗1−ηpt + θpP

1−ηp
t−1

)
di

]1/(1−ηp)

=

[∫ 1−θp

0

P
∗1−ηp
t di+

∫ 1

1−θp
P

1−ηp
t−1 di

]1/(1−ηp)

=
[
(1− θp)P ∗1−ηpt + θpP

1−ηp
t−1

]1/(1−ηp)

Exponentiating both sides by (1− ηp) and dividing both sides by P
1−ηp
t−1 ,

Π
1−ηp
t = θp + (1− θp)

(
P ∗t
Pt−1

)1−ηp

where Πt = Pt
Pt−1

. For the log-linearization do a first order Taylor expansion around

the zero inflation steady state (i.e. Π = 1):

Π1−ηp + (1− ηp)Π−η (Πt − Π)

= θp + (1− θp)
(
P

P

)1−ηp
+ (1− θp)(1− ηp)

(
P

P

)−ηp ( 1

P
(P ∗t − P )− P

P 2
(Pt−1 − P )

)
= 1 + (1− θp)(1− ηp)(p∗t − pt−1)
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which can be simplified to:

πt = (1− θp)(p∗t − pt−1).

For the relationship between aggregated output and labor consider the labor market

clearing condition:

Lt =

∫ 1

0

Lt(i)di

By using the intermediate goods production function we get:

Lt =

∫ 1

0

(
Yt(i)

At

)1/(1−α)

di

=

(
Yt
At

)1/(1−α) ∫ 1

0

(
Pt(i)

Pt

)−ηp/(1−α)

di

= st

(
Yt
At

)1/(1−α)

where the second equality follows from the demand function (2.7). Taking the log

yields:

lt =
1

1− α
(yt − at) + dt

where dt = log(st) = log

(∫ 1

0

(
Pt(i)
Pt

)−ηp/(1−α)

di

)
. Now, we have to show that dt

is zero up to a first order approximation (a similar proof can be found in Bergholt
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(2012, p. 19)). First, from the aggregate price index (2.6) we get:

Pt =

[∫ 1

0

Pt(i)
1−ηpdi

]1/(1−ηp)

1 =

[∫ 1

0

(
Pt(i)

Pt

)1−ηp
di

]1/(1−ηp)

=

[∫ 1

0

e(1−ηp)(pt(i)−pt)di

]1/(1−ηp)

⇒ 1 =

∫ 1

0

e(1−ηp)(pt(i)−pt)di

A second order approximation around the zero inflation steady state gives:

1 ≈
∫ 1

0

[
e0 + e0(1− ηp) [(pt(i)− p)− (pt − p)]

+
(1− ηp)2

2

[
e0(pt(i)− p)2 − 2e0(pt(i)− p)(pt − p) + e0(pt − p)2

] ]
di

= 1 + (1− ηp)
∫ 1

0

(pt(i)− pt)di+
(1− ηp)2

2

∫ 1

0

(pt(i)− pt)2di

Solving for pt yields:

pt ≈
∫ 1

0

pt(i)di+
(1− ηp)

2

∫ 1

0

(pt(i)− pt)2di
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Next,

∫ 1

0

(
Pt(i)

Pt

)− ηp
1−α

di

=

∫ 1

0

e−
ηp

1−α (pt(i)−pt)di

≈
∫ 1

0

[
e0 − e0 ηp

1− α
[(pt(i)− p)− (pt − p)]

+
1

2

(
ηp

1− α

)2 [
e0(pt(i)− p)2 − 2e0(pt(i)− p)(pt − p) + e0(pt − p)2

] ]
di

= 1− ηp
1− α

∫ 1

0

(pt(i)− pt)di+
1

2

(
ηp

1− α

)2 ∫ 1

0

(pt(i)− pt)2di

= 1 +
ηp

1− α
pt −

ηp
1− α

∫ 1

0

pt(i)di+
1

2

(
ηp

1− α

)2 ∫ 1

0

(pt(i)− pt)2di

Now, the foregoing approximation of pt is inserted:

∫ 1

0

(
Pt(i)

Pt

)− ηp
1−α

di

≈ 1 +
ηp

1− α

[ ∫ 1

0

pt(i)di+
(1− ηp)

2

∫ 1

0

(pt(i)− pt)2di

]
− ηp

1− α

∫ 1

0

pt(i)di

+
1

2

(
ηp

1− α

)2 ∫ 1

0

(pt(i)− pt)2di

= 1 +

[
ηp(1− ηp)
2(1− α)

+
ηp

2

2(1− α)2

] ∫ 1

0

(pt(i)− pt)2di

= 1 +
ηp(1− α + αηp)

2(1− α)2

∫ 1

0

(pt(i)− pt)2di > 1

There are two conclusions from this calculation: st =
∫ 1

0

(
Pt(i)
Pt

)− ηp
1−α

di is bound

below at one and st ≈ 1 up to a first order approximation. This implies that

dt = log(st) = 0 and we finally have:

lt =
1

1− α
(yt − at).
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A.1.7 Derivation of the New Keynesian Phillips curve

First, recall the intermediate firms’ nominal marginal cost function (2.11). From that

equation we get an expression of a intermediate firm’s real marginal cost function:

MCr
t+k|t = MCr

t+k

(
P ∗t
Pt+k

)−ηpα/(1−α)

and in logarithmic form:

mcrt+k|t = mcrt+k −
ηpα

1− α
(p∗t − pt+k) (A.4)

Starting point of the derivation of the New Keynesian Phillips curve is the optimal

price setting equation (2.15):

p∗t = µp + (1− θpβ)Et

∞∑
k=0

θkpβ
k(mcrt+k|t + pt+k)

Rearranging yields (using µp = −mcr):

p∗t = (1− θpβ)Et

∞∑
k=0

θkpβ
k(mcrt+k|t −mcr + pt+k)

Now, use above marginal cost function (A.4) the to get rid of mcrt+k|t:

p∗t = (1− θpβ)Et

∞∑
k=0

θkpβ
k

(
mcrt+k −

αηp
1− α

(p∗t − pt+k)−mcr + pt+k

)
= − αηp

1− α
p∗t + (1− θpβ)Et

∞∑
k=0

θkpβ
k

(
m̂crt+k −

1− α + αηp
1− α

pt+k

)
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Rearranging and subtracting pt−1 on both sides:

p∗t − pt−1 = (1− θpβ)Et

∞∑
k=0

θkpβ
k

(
1− α

1− α + αηp
m̂crt+k + pt+k − pt−1

)
= (1− θpβ)Et

∞∑
k=0

θkpβ
k
(
Θ m̂crt+k + pt+k − pt−1

)
= (1− θpβ)Et

∞∑
k=0

θkpβ
kΘ m̂crt+k + (1− θpβ)Et

∞∑
k=0

θkpβ
k(pt+k − pt−1)

Now, consider the second sum. It can be written as:

(1− θpβ)Et

∞∑
k=0

θkpβ
k(pt+k − pt−1) = (1− θpβ)Et[θ

0
pβ

0(pt − pt−1)+

+ θ1
pβ

1(pt+1 − pt + pt − pt−1) + θ2
pβ

2(pt+2 − pt+1 − pt+1 − pt + pt − pt−1) + ...]

= (1− θpβ)Et[θ
0
pβ

0πt + θ1
pβ

1(πt+1 + πt) + θ2
pβ

2(πt+2 + πt+1 + πt) + ...]

= Et[θ
0
pβ

0πt + θ1
pβ

1(πt+1 + πt) + θ2
pβ

2(πt+2 + πt+1 + πt) + ...]−

− Et[θ1
pβ

1πt + θ2
pβ

2(πt+1 + πt) + θ3
pβ

3(πt+2 + πt+1 + πt) + ...]

= Et

∞∑
k=0

θkpβ
kπt+k

This expression can be used in above equation:

p∗t − pt−1 = (1− θpβ)ΘEt

∞∑
k=0

θkpβ
km̂crt+k + Et

∞∑
k=0

θkpβ
kπt+k

Now, this equation is written recursively to eliminate the sum operator. First, take

out the terms for k = 0 :

p∗t − pt−1 = (1− θpβ)ΘEt

∞∑
k=1

θkpβ
km̂crt+k + Et

∞∑
k=1

θkpβ
kπt+k+

+ (1− θpβ)Θ m̂crt + πt
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Then, shift the sum operators by one period backwards:

p∗t − pt−1 = θpβ

[
(1− θpβ)ΘEt

∞∑
j=0

θjpβ
jm̂crt+j+1 + Et

∞∑
j=0

θjpβ
jπt+j+1

]
+

+ (1− θpβ)Θ m̂crt + πt

= θpβEt(p
∗
t+1 − pt) + (1− θpβ)Θ m̂crt + πt

Combining with (2.17) yields the New Keynesian Phillips Curve:

πt = βEtπt+1 + λpm̂c
r
t

A.1.8 Implementing a cost-push shock

If intermediate firms face a time-varying elasticity of substitution ηp,t, their first

order pricing condition becomes:

∞∑
k=0

θkpEt

[
Qt,t+kYt+k|t(i)

(
1− ηp,t+k + ηp,t+kMCr

t+k|t
Pt+k
Pt(i)

)]

=
∞∑
k=0

θkpEt

Qt,t+kYt+k|t(i)

1− ηp,t+k + ηp,t+kMCr
t+k

(
Pt+k
Pt(i)

)α−1−αηt+k
1−α

 = 0

Using the definitions of the stochastic discount factor and of the firms’ demand

schedule and applying the same steps as in A.1.5, yields following log-linear expres-

sion:

∞∑
k=0

θkpβ
kEt

(
ηp

1− ηp
η̂p,t+k +

α− 1− αηp
1− α

p̂∗t −
α− 1− αηp

1− α
p̂t+k + m̂crt+k

)
= 0

Note that η̂p,t = log(ηp,t)− log(ηp) = 1−ηp
ηp
εcpt . Therefore, we have:

∞∑
k=0

θkpβ
kEt

(
εcpt+k +

α− 1− αηp
1− α

p̂∗t −
α− 1− αηp

1− α
p̂t+k + m̂crt+k

)
= 0
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Solving for p∗t yields:

p∗t = (1− θpβ)Et

∞∑
k=0

θkpβ
k

(
1− α

1− α + αηp
(m̂crt+k + εcpt+k) + pt+k

)

Applying the steps of section A.1.7 yields the NKPC with a cost-push shock:

πt = βEtπt+1 + λp(m̂c
r
t + εcpt ) (A.5)

A.1.9 Derivation of the gap δ in case of real wage rigidities

As discussed in the main text, the derivation is done only for the case of a log-utility

function, so σ = 1. Starting point is the flexible level of employment:

(αγ + (1− γ)(1 + φ))lft = (1− γ)(gt + log(1− α)− µp) + γ(at − at−1) + αγlft−1

or with Υ ≡ αγ/(αγ + (1− γ)(1 + φ)):

lft =
(1− γ)

αγ + (1− γ)(1 + φ)
(gt + log(1− α)− µp) +

Υ

α
(at − at−1) + Υ lft−1

Subtract let on both sides, add Υ let−1 − Υ let−1 on the RHS and use lft − let = (yft −
yet )/(1− α):

yft − yet
1− α

= Υ

(
yft−1 − yet−1

1− α

)
+

Υ

α
∆at − let + Υ let−1 +

(1− γ)

αγ + (1− γ)(1 + φ)
(gt + log(1− α)− µp)

Multiply by (1− α) and add δ = µp(1− α)/(1 + φ) on both sides:

yft − yet + δ = Υ (yft−1 − yet−1 + δ) + (1−Υ)
µp(1− α)

(1 + φ)

+ (1− α)

[
Υ

α
∆at − let + Υ let−1 +

(1− γ)

αγ + (1− γ)(1 + φ)
(gt + log(1− α)− µp)

]
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Plugging in the both current and lagged expressions for the efficient level of employ-

ment (3.2) and rearranging yields:

yft − yet + δ = Υ (yft−1 − yet−1 + δ) + (1− α)Υ (
1

α
∆at −

1

1 + φ
∆gt)

A.1.10 Derivation of the NKPC under real wage rigidities

This derivation is based on Blanchard and Gaĺı (2007, p. 35). The derivation by

Blanchard and Gaĺı seems to contain a typo that complicates reproducing of the

derivation but does not alter the final representation of the NKPC. In presence of

RWR we have following wage setting mechanism:

ωt = γ(ωt−1) + (1− γ)mrst

The deviation of marginal cost from its steady state value can be written as (see

also equation 2.23):

mct + µp = ωt −mplt + µp

Combining both expressions yields:

mct + µp = γ(ωt−1 + µp) + (1− γ)mrst −mplt + (1− γ)µp

= γ(mct−1 + µp)−mplt +mplt−1 + (1− γ)mrst + (1− γ)µp

Plugging in the expression mrst = φlt− gt + yt and mplt = yt− lt + log(1−α) yields

after some rearranging:

mct + µp = γ(mct−1 + µp)− γ∆at + αγ∆lt + (1 + φ)(1− γ)lt

+ (1− γ)(µp − log(1− α)− gt)
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In immediately above equation, Blanchard and Gaĺı left out µp in the last term.

Under flexible prices it holds that mc = −µp:

0 = −γ∆at + αγ∆lft + (1 + φ)(1− γ)lft + (1− γ)(µp − log(1− α)− gt)

Subtracting the former from the latter equation yields:

mct + µp = γ(mct−1 + µp) + (1 + φ)(1− γ)(lt − lft ) + αγ(∆lt −∆lft )

From the production function we have lt− lft = (yt−yft )/(1−α). Additionally make

use of the lag operator L:

mct + µp = γL(mct + µp) + (1 + φ)(1− γ)(1− α)−1(yt − yft ) + αγ(1− α)−1(∆yt −∆yft )

Solving for mct + µp and combining the resulting expression with the NKPC (2.22)

yields the equation in the main text:

πt = βEtπt+1 +
λp

(1− γL)(1− α)
[(1 + φ)(1− γ)(yt − yft ) + αγ(∆yt −∆yft )]

A.1.11 Derivation of the wage inflation equation under nominal wage

rigidities

Combining (3.25) with (3.28) yields:

w∗t =
1− βθw
1 + ηwφ

Et

∞∑
k=0

(θwβ)k(µw +mrst+k + ηwφwt+k + pt+k)
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Defining the economy’s average log wage up as µwt = (wt − pt) −mrst this can be

written as:

w∗t =
1− βθw
1 + ηwφ

Et

∞∑
k=0

(θwβ)k(µw − µwt+k + (1 + ηwφ)wt+k)

=
1− βθw
1 + ηwφ

Et

∞∑
k=1

(θwβ)k[(1 + ηwφ)wt+k − µ̂wt+k] + (1− βθw)(wt −
µ̂wt

1 + ηwφ
)

=
1− βθw
1 + ηwφ

Et

∞∑
j=0

(θwβ)j+1[(1 + ηwφ)wt+j+1 − µ̂wt+j+1] + (1− βθw)(wt −
µ̂wt

1 + ηwφ
)

= βθwEtw
∗
t+1 + (1− βθw)(wt −

µ̂wt
1 + ηwφ

)

This expression can be combined with wt = (1− θw)w∗t + θwwt−1 (3.26):

wt = θwwt−1 + (1− θw)

[
βθwEtw

∗
t+1 + (1− βθw)(wt −

µ̂wt
1 + ηwφ

)

]
= θwwt−1 + (1− θw)

[
βθwEt(w

∗
t+1 − wt) + wt −

1− βθw
1 + ηwφ

µ̂wt

]
⇔ θw(wt − wt−1) = βθw(1− θw)Et(w

∗
t+1 − wt)−

(1− βθw)(1− θw)

1 + ηwφ
µ̂wt

Make now use of πwt = (1− θw)(w∗t − wt−1) (3.27) and divide by θp:

πwt = βEtπ
w
t+1 − λwµ̂wt (A.6)

Finally, note that µ̂wt = µwt − µw = −mrst + (wt − pt) +mrs− (w− p) = −[m̂rst −
(ŵt − p̂t)]. Therefore, the wage inflation equation can be written as:

πwt = βEtπ
w
t+1 + λw[m̂rst − (ŵt − p̂t)] (A.7)
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A.1.12 Derivation of the wage and price inflation equation in terms of

the output gap under nominal wage rigidities

Note again, that flexible variables - denoted by a superscript f - refer to equilibrium

values that occur in absence of any rigidity (price and wage). We have for the log

deviation of marginal cost from its steady state:

m̂crt = mcrt −mcr = ωt −mplt − ωft +mplft

= ωt − (at + log(1− α)− αlt)− ωft + (at + log(1− α)− αlft )

= ω̃t − (at + (1− α)lt − lt) + (at + (1− α)lft − l
f
t )

= ω̃t − (yt − lt) + (yft − l
f
t )

= ω̃t − (yt −
yt − at
1− α

− yft +
yft − at
1− α

)

= ω̃t − (ỹt −
1

1− α
ỹt) = ω̃t +

α

1− α
ỹt

Combining this with the standard NKPC:

πpt = βEtπ
w
t+1 + λpm̂c

r
t = πt = βEtπt+1 + λp(ω̃t +

α

1− α
ỹt)

For the wage inflation equation we need an alternative expression for the desired

wage markup. Start with the definition of µ̂wt :

µ̂wt = µwt − µw = ωt −mrst − ωft +mrsft

= ω̃t − (φlt − gt + σct) + (φlft − gt + σcft )

= ω̃t − (φlt − gt + σyt) + (φlft − gt + σyft )

= ω̃t − σỹt − φ(lt − lft )

= ω̃t − (σ +
φ

1− α
)ỹt
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Combining this expression with the wage inflation equation A.6 yields the equation

in the main text:

πwt = βEtπ
w
t+1 − λwµ̂wt = βEtπ

w
t+1 − λw(ω̃t − (σ +

φ

1− α
)ỹt)

A.2 Data Appendix

This section describes the time series used for estimation. All variables are in quar-

terly frequency.

A.2.1 Original data

• Nonfarm business sector: Real Output published by the Bureau of labor

statistics. Obtained from the FRED homepage.

– FRED label: OUTNFB

– Units: Index 2009=100, Seasonally Adjusted

• Nonfarm Business Sector: Implicit Price Deflator published by the

Bureau of labor statistics. Obtained from the FRED homepage.

– FRED label: IPDNBS

– Units: Index 2009=100, Seasonally Adjusted

• Nonfarm Business Sector: Real Compensation Per Hour published by

the Bureau of labor statistics. Obtained from the FRED homepage.

– FRED label: COMPRNFB

– Units: Index 2009=100, Seasonally Adjusted

• Effective Federal Funds Rate published by the Board of Governors of the

Federal Reserve System (US). Obtained from the FRED homepage.

– FRED label: FF

– Units: Percent, Not Seasonally Adjusted
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A.2.2 Transformed data

• yobs = fhpfilter(log(OUTNFB))

• rwobs = fhpfilter(log(COMPRNFB))

• πobs = log(IPDNBS)− log(mean(IPDNBS))

• iobs = log(1 + FF
400

)− log(mean(1 + FF
400

))

The function fhpfilter is a one-sided HP-filter. It was written for Matlab by Alexander

Meyer-Gohde and can be obtained via https://ideas.repec.org/c/dge/qmrbcd/

181.html. It returns the trend and cycle component of a time series. Here, the

cycle component was used.

A.2.3 Measurement equations

The measurement equations, linking observed to model variables, are simply speci-

fied as:

• yobs = ŷt

• rwobs = ŵt − p̂t

• πobs = π̂pt

• iobs = ît
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A.3 Further estimation results and impulse response func-

tions

Table 2: Prior and posterior distributions for the parameters.
Sample: 1982Q4-2007Q4

Prior distribution Posterior distribution

Base RWR NWR

Mean Mean Mean Mean
(SD) (SD) (SD) (SD)

1
1−θp Gamma(2, 1) + 1 3.00 10.88 10.45 10.79

(1.42) (1.69) (0.91) (1.88 )

1
1−θw Gamma(3, 1) + 1 4.00 - - 3.76

(1.71) (0.60)

γ Uniform[0, 1) 0.50 - 0.96 -
(0.28) (0.06)

hπ Normal(1.5, 0.25) 1.50 1.53 1.90 1.79
(0.25) (0.20) (0.20) (0.21)

hy Normal(0.125, 0.125) 0.125 0.21 0.34 0.35
(0.125) (0.06) (0.07) (0.08)

σ Gamma(2, 1.25) 2.50 5.27 7.99 7.49
(1.76) (2.12) (2.41) (2.69)

φ Normal(1, 0.5) 1 0.94 1.49 1.80
(0.5) (0.21) (0.36) (0.39)

ρi Uniform[0, 1) 0.5 0.80 0.89 0.89
(0.28) (0.02) (0.01) (0.01)

ρa Uniform[0, 1) 0.5 0.90 0.12 0.26
(0.28) (0.02) (0.19) (0.12)

ρg Uniform[0, 1) 0.5 0.86 0.89 0.89
(0.28) (0.03) (0.03) (0.03)

σa Uniform[0, 1) 0.5 0.007 0.093 0.26
(0.28) (0.001) (0.018) (0.108)

σg Uniform[0, 1) 0.5 0.034 0.054 0.518
(0.28) (0.012) (0.014) (0.015)

σcp Uniform[0, 1.5) 0.75 1.294 1.299 1.254
(0.43) (0.363) (0.190) (0.448)

σz Uniform[0, 1) 0.5 0.002 0.001 0.001
(0.28) (0.0001) (0.0001) (0.0001)

log(L̂) 1628.6 1679.4 1691.6
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Table 3: Prior and posterior distributions for the parameters with σcp ∈ [0, 1).
Sample: 1982Q4-2001Q4

Prior distribution Posterior distribution

Base RWR NWR

Mean Mean Mean Mean
(SD) (SD) (SD) (SD)

1
1−θp Gamma(2, 1) + 1 3.00 8.51 8.44 8.90

(1.42) (0.98) (0.79) (0.78)

1
1−θw Gamma(3, 1) + 1 4.00 - - 3.24

(1.71) (0.41)

γ Uniform[0, 1) 0.50 - 0.89 -
(0.28) (0.07)

hπ Normal(1.5, 0.25) 1.50 1.61 1.84 1.78
(0.25) (0.19) (0.20) (0.21)

hy Normal(0.125, 0.125) 0.125 0.17 0.27 0.30
(0.125) (0.05) (0.07) (0.07)

σ Gamma(2, 1.25) 2.50 6.48 8.03 7.39
(1.76) (1.90) (2.65) (2.38)

φ Normal(1, 0.5) 1 0.95 1.16 1.53
(0.5) (0.23) (0.35) (0.37)

ρi Uniform[0, 1) 0.5 0.76 0.85 0.86
(0.28) (0.03) (0.02) (0.02)

ρa Uniform[0, 1) 0.5 0.89 0.41 0.29
(0.28) (0.03) (0.18) (0.13)

ρg Uniform[0, 1) 0.5 0.88 0.91 0.90
(0.28) (0.03) (0.03) (0.03)

σa Uniform[0, 1) 0.5 0.008 0.034 0.172
(0.28) (0.002) (0.012) (0.062)

σg Uniform[0, 1) 0.5 0.042 0.056 0.054
(0.28) (0.011) (0.016) (0.014)

σcp Uniform[0, 1) 0.5 0.749 0.817 0.831
(0.28) (0.157) (0.132) (0.125)

σz Uniform[0, 1) 0.5 0.002 0.001 0.001
(0.28) (0.0001) (0.0001) (0.0001)

log(L̂) 1248.4 1274.5 1284.3
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Figure 1: Impulse response to a 0.25 points standard deviation technology shock

A.4 Dynare code and figures

//Baseline New Keynesian Model

var y (long_name=’output’)

pi (long_name=’inflation’)

i (long_name=’nominal interest rate’)

winf (long_name=’wage inflation’)

rw (long_name=’real wage’)

mc (long_name=’real marginal cost’)

mrs (long_name=’marginal rate of substitution’)

l (long_name=’labor’)

a (long_name=’AR(1) technology shock process’)

g (long_name=’AR(1) preference shock process’)

y_obs (long_name=’observed output’)

pi_obs(long_name=’observed inflation’)
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rw_obs (long_name=’observed real wage’)

i_obs (long_name=’observed interest rate’)

;

varexo

eps_a (long_name=’technology shock’)

eps_z (long_name=’monetary policy shock’)

eps_g (long_name=’preference shock’)

eps_cp(long_name=’cost-push shock’)

;

parameters

bbeta (long_name=’discount factor’)

ssigma (long_name=’inverse elasticity of

intertemporal substitution’)

pphi (long_name=’inverse elasticity of labor supply’)

aalpha (long_name=’capital share’)

eta_p (long_name=’demand elasticity between goods’)

theta_p (long_name=’Calvo parameter firms’)

h_pi (long_name=’inflation reaction Taylor Rule’)

h_y (long_name=’output reaction Taylor Rule’)

rho_i (long_name=’interest rate smoothing’)

rho_a (long_name=’persistence technology shock’)

rho_g (long_name=’persistence preference shock’)

theta_p_trans

;

//parametrization

bbeta = 0.99;

ssigma= 1;

pphi = 1;
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aalpha = 0.36;

eta_p = 6;

theta_p = 1.1;

h_pi = 1.5;

h_y = 0.5/4;

rho_i = 0.2;

rho_a = 0.9;

rho_g = 0.9;

//Log-linearized model in terms of deviations from

zero inflation steady state

model(linear);

//composite parameters

//#theta_p=1-1/theta_p_trans;

#lambda_p = (1-theta_p)*(1-bbeta*theta_p)*

(1-aalpha)/(theta_p*(1+aalpha*(eta_p-1)));

//1. euler equation

y=y(+1)-1/ssigma*(i-pi(+1)+g(+1)-g);

//2. labor supply equation

rw=mrs;

//3. marginal rate of substitution

mrs=pphi*l+ssigma*y-g;

//4. production function

y=a+(1-aalpha)*l;

//5. marginal cost function
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mc=rw+l-y;

//6. New Keynesian Phillips curve

pi=bbeta*pi(+1)+lambda_p*(mc+eps_cp);

//7. Taylor rule

i= rho_i*i(-1)+(1-rho_i)*(h_pi*pi+h_y*y)+eps_z;

//8. AR(1)Technology shock

a=rho_a*a(-1)+eps_a;

//9. AR(1)Preference shock

g=rho_g*g(-1)+eps_g;

//10. Real wage evolution

rw=rw(-1)+winf-pi;

//11. measurement equations

y=y_obs;

rw=rw_obs;

pi=pi_obs;

i=i_obs;

end;

//define shock variances

shocks;

var eps_a;

stderr 0.25;

var eps_z;

stderr 0.25;

var eps_g;

stderr 0.25;
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var eps_cp;

stderr 0.25;

end;

//steady state equals 0 due to log-linear model

steady;

check;

//priors and starting values for baseline model

estimated_params;

theta_p_trans,7,,,GAMMA_PDF,3,1.42;

h_pi,1.8,1.001,,NORMAL_PDF,1.5,0.25;

h_y,0.25,,,NORMAL_PDF,0.125,0.125;

ssigma,7.3,,,GAMMA_PDF,2,1.25;

pphi,0.60,,,NORMAL_PDF,1,0.5;

rho_i,0.64,,0.9999,UNIFORM_PDF,,,0,1;

rho_a,0.75,,0.9999,UNIFORM_PDF,,,0,1;

rho_g,0.75,,0.9999,UNIFORM_PDF,,,0,1;

stderr eps_a,0.115,0,.9999,UNIFORM_PDF,,,0,1;

stderr eps_g,0.2338,0,.9999,UNIFORM_PDF,,,0,1;

stderr eps_cp,0.732,0,1.5,UNIFORM_PDF,,,0,1.5;

stderr eps_z,0.012,0,.9999,UNIFORM_PDF,,,0,1;

end;

//declare observed variables

varobs pi_obs i_obs y_obs rw_obs;

//specify estimation, mode_compute=4 corresponds to csminwel.m

estimation(datafile=rabanal1982,plot_priors=1,first_obs=1,

mode_compute=4,mode_check,mh_replic=200000,mh_nblocks=2,

mh_jscale=0.59,mh_drop=0.1,nograph);
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Figure 2: Prior (grey) and posterior (black) distributions of the baseline model. The
vertical dashed line is the posterior mode.
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B Abstract

Abstract

This master’s thesis introduces a baseline New Keynesian model which is at the core

of many medium- to high-scale versions. It is shown that the baseline model suffers from

the presence of the “divine coincidence”. This feature allows a simultaneous stabilization

of inflation and welfare-relevant output gap. In practice, however, most central banks are

confronted with a trade-off between inflation and output gap stabilization. The baseline

model is therefore extended by three mechanisms that aim on the overcoming of the divine

coincidence: Real and nominal wage rigidities as well as cost-push shocks. These extensions

are compared using a Bayesian estimation approach and it is investigated which model fits

best to observed data samples. The main results are: The fit of the baseline model can be

improved by the introduction of wage rigidities and the nominal wage setting mechanism

outperforms the real wage mechanism in terms of the empirical fit.

Zusammenfassung

Diese Masterarabeit stellt eine Basisversion der Neukeynesianischen Modelle vor, welches

als Grundgerüst für zahlreiche Erweiterungen dient. Es wird gezeigt, dass ein Phänomen,

welches als “divine coincide” bekannt ist, im Basismodell auftritt. Dieses Phänomen erlaubt

eine gleichzeitige Stabilisierung der Inflation und der wohlfahrt-relevanten Produktionslücke.

In der Praxis sehen sich die meisten Zentralbanken mit einem Zielkonflikt zwischen der Sta-

bilisierung von Inflation und Produktionslücke konfrontiert. Daher wird das Basismodell

um drei Mechanismen erweitert, die auf die Überwindung des “divine coincidence” abzielen:

Reale und nominale Lohnrigiditäten und sogenannte “cost-push” Schocks. Diese Erweiterun-

gen werden mit Hilfe einer Bayesianischen Schätzung verglichen und es wird untersucht,
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welche Erweiterung am besten mit beobachtbaren Daten übereinstimmt. Die Hauptresul-

tate sind: Das Basismodell passt nach der Erweiterung um Lohnrigiditäten besser zu den

Daten und der nominale übertrifft den realen Lohnsetzungsmechanismus.
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Jordi Gaĺı. Monetary Policy, Inflation, and the Business Cycle: An Introduction to

the New Keynesian Framework. Princeton University Press, 2015.

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and

Donald B. Rubin. Bayesian Data Analysis. Taylor & Francis Group, third edition

edition, 2014.

Marvin Goodfriend and Robert G. King. The new neoclassical synthesis and the role

of monetary polic. NBER Macroeconomics Annual 1997, pages 231–282, 1997.

Tommaso Mancini Griffoli. Dynare user guide: An introduction to the solution &

estimation of dsge models, 2013.

Harold Jeffreys. Theory of Probability. Oxford University Press, third edition edition,

1961.

Marco J. Lombardi and Giulio Nicoletti. Bayesian prior elicitation in dsge models:

Macro- vs micro-priors. Working Paper Series European Central Bank, (1289),

2011.

Robert E. Lucas. Econometric policy evaluation: A critque. Carnegie-Rochester

Conference Series on Public Policy, 1:19–46, 1976.

Alexander Ly, Josine Verhagen, and Eric-Jan Wagenmakers. Harold jeffreys’s de-

fault bayes factor hypothesis tests: Explanation, extension, and application in

psychology. Journal of Mathematical Psychology, 72:19–32, 2016.

76



Johannes Pfeifer. A guide to specifying observation equations for the estimation

of dsge models, 2015. URL https://sites.google.com/site/pfeiferecon/

dynare.

Edward C. Prescott. Theory ahead of business-cycle measurement. Carnegie-

Rochester Conference Series on Public Policy, pages 11–44, 1986.

Pau Rabanal and Juan F. Rubio-Ramirez. Comparing new keynesian models of the

business cycle: A bayesian approach. Journal of Monetary Economics, 2005.

Frank Smets and Raf Wouters. An estimated dynamic stochastic gerneral equilib-

rium model of the euro area. Journal of the European Economic Association, 1

(5):1123–1175, 2003.

Lars E.O. Svensson. Inflation targeting. In Handbook of Monetary Economics,

Volume 3B. Elsevier, 2011.

Carl E. Walsh. Monetary Theory and Policy. MIT Press, 2010.

77

https://sites.google.com/site/pfeiferecon/dynare
https://sites.google.com/site/pfeiferecon/dynare

	Introduction
	The Baseline New Keynesian Model
	General assumptions
	Households
	Firms
	Aggregated conditions
	The non-policy block of the baseline model 

	The Divine Coincidence
	The Divine Coincidence in the baseline model
	Efficient equilibrium
	Flexible price equilibrium

	Overcoming the Divine Coincidence
	Cost-push shocks
	Real wage rigidities
	Nominal wage rigidities


	Empirical analysis and model comparison
	Log-linearized equilibrium
	Estimation strategy
	Data
	Priors
	Findings
	Estimation difficulties
	Main sample
	Extended sample
	Discussion of the results


	Conclusion
	Appendix
	Mathematical Appendix
	The Household's optimization problem
	The final good producers optimization problem
	Marginal cost of intermediate producers
	First order condition of intermediate producers
	Log-linearization of the Optimal Pricing Condition
	Aggregate price dynamics and relationship between aggregated output and labor
	Derivation of the New Keynesian Phillips curve
	Implementing a cost-push shock
	Derivation of the gap  in case of real wage rigidities
	Derivation of the NKPC under real wage rigidities
	Derivation of the wage inflation equation under nominal wage rigidities
	Derivation of the wage and price inflation equation in terms of the output gap under nominal wage rigidities

	Data Appendix
	Original data
	Transformed data
	Measurement equations

	Further estimation results and impulse response functions
	Dynare code and figures

	Abstract

