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Abstract

This framework is devoted to the study of the Bergman kernel named after
the American mathematician Stefan Bergman (1895−1977) whose work was
focused on several complex variables, it represents namely the reproducing
function of the Hilbert space of square integrable functions on a domain Ω
in Cn. Its definition is quite easy (using Riesz theorem on continuous linear
functional in Hilbert spaces) but it is difficult to obtain a concret computa-
tion for arbitrary domains except the case of an open ball or a polydsic.
To begin with,we recall the basic properties of holomorphic functions in sev-
eral complex variables, so we start at an elementary level with standard
results followed by a thorough discussion of the various fundamental con-
cepts of holomorphy, Cauchy formula for the polydisc power series expansion
and the Weierstrass theorem.
In the second part we recall some basic result from Hilbert spaces theory
(orthonormal decomposition, convergence of series in Hilbert spaces, Riesz
representation theorem).
In the third part, I give (without proof) an overview over the mean value
theorem for harmonic functions, then we start with our main subject: the
notion of Bergman spaces and its reproducing function called Bergman ker-
nel, in the last part of this chapter I give and I analyse some special examples
of how to compute the Bergman function of some special domains namely
the open ball, the open polydisc,upper-half plane and the ellipsoid.Bergman
metric and its invariance under biholomorphic maps will be briefly discussed.
The Fock space in one and several variables will be discussed at the end of
the third chapter .
Finally I give an overview of the so called d-bar operator and its relationship
to our main subject the Bergman kernel, so we derive a solution to the d-bar
problem in the unit disc of the complex plane: Canonical solution operator
in terms of Bergman projection. We prove that this operator is compact and
even a Hilbert Schmidt operator, then we investigate the solution operator
S to ∂̄ restricted to forms with coefficients in the Fock space (introduced in
the last part of chapter 3), we will prove non-compactness of S restricted to
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(0,1) forms with Fock-space coefficients.



Zusammenfassung

Thema dieser Arbeit ist eine Einführung in die Theorie des Bergman Kerns in
mehreren Variablen. In den ersten zwei Kapiteln, sammeln wir alle benötigte
Grundlagen aus der Komplexen Analysis in einer und mehrerer Vernderlichen
sowie wichtige Resultate aus Funktionalanalysis.
Im dritten Kapitel, präsentieren wir die Eingenschaften des Hilbertraums
A2(Ω), wobei Ω ein Gebiet in Cn ist. Wir beweisen die Existenz einer re-
produzierenden Funktion des Raums A2(Ω), diese Funktion ist der Bergman
Kern des Gebietes Ω.
Im nächsten Schritt, werden wir die Bergman Funktion einiger Gebiete ex-
plizit berechnen, wir betrachten den Fall der Einheitskugel in einer und
mehreren Variablen, der Halbebene in C und schließlich den Fall des El-
lipsoids in Cn.
Am Ende des dritten Kapitels wird den Bergman Kern des Fockraums in
einer und mehreren Veränderlichen berechnet.
Das letzte Kapitel ist dem Zusammenhang zwischen dem d-quer Opera-
tor und dem Bergman Kern gewidmet. Wir zeigen, dass der kanonische
Lösungsoperator für die inhomogene Cauchy-Riemannsche Differentialgle-
ichung eingeschränkt auf Elemente des Bergmn Raumes auf dem Einheit-
skreis ein Hilbert-Scmidt Operator ist.
Abschließend wird bewiesen, dass dieser Operator auf (0,1) Formen mit Ko-
effizienten aus dem Fock Raum sogar nicht kompakt ist.
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Historical overview

The theory of integral operators and kernels has been known for a long time,
however the characteristics of such kernels has been studied and applied since
the beginning of the last century.
There have been and continue to be two trends in the consideration of those
kernels.
The first is to consider a kernel as a function of two points in an abstract
domain, say E , having the property, discovered by J.Mercer 1909, for each
points (yj)1≤j≤n and (ζj)1≤j≤n complex numbers we have:

n∑

i,j=1

ki,jζiζj ≥ 0 . (0.0.1)

So K appears as a positive definite Hermitian matrix,

K = (ki,j)i,j=1...n , ki,j = K(yi, yj) .

E.H.Moore 1916 in his papers [28], considered functions having the property
(0.0.1) and proved that to each such function (kernel)corresponds a well
defined class of functions, say F , having the structure of a Hilbert space
with a scalar product such that each element of this class can be reproduced
by a scalar product i.e,

f(y) =
〈

f(x), K(x, y)
〉

. (0.0.2)

The second trend was initiated by S.Zaremba in his papers [35] 1907. He
was the first who introduced the notion of the kernel corresponding to a
special class of functions and gave the reproducing formula (0.0.2). However
he didn’t develop general theory in this direction nor give any name to those
kernel he introduced. It appears that nothing was done until the third decade
of the 20th century when S.Bergman 1920 introduced reproducing kernels of
the spaces of analytic function, on a domain in one and several variables,
with an integrability condition.Bergman studied spaces of the type,

Ap(Ω) =
{

f holomorphic onΩ and

∫

Ω

|f |pdλ <∞
}

.

7
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He proved that in the special case when p = 2 this space is a Hilbert space,
being a closed subspace of the Hilbert space L2(Ω).
The continuity of the evaluation map (introduced in the beginning of chapter
3) leads to the existence of the Bergman Kernel and explicit computation of
these kernels (of given domains) becomes a big challenge.
Several important results were achieved by the use of these kernels in the
theory of the ∂̄ Neumann operator, conformal mapping of simply and multi-
ply connected domains and many other areas of mathematical research.



Chapter 1

Holomorphic functions

1.1 Notations

We introduce the basic notations and conventions used throughout this work.
(A) Cn = {z : z = (z1, z2, ..., zn), zj ∈ Cforj = 1, 2, ..., n} is the n-dimensional
complex vector space. It is the product of n copies of C, it carries the struc-
ture of an n-dimensional vector space. Its topology is identical with the one
arising from the following identification of Cn with R2n.
Given an element z = (z1, z2, ..., zn)in Cn, each component zj can be written
in the form zj = xj + iyj.
The mapping z → (x1, x2, . . . , y1, y2, . . . yn) establishes an R- isomorphism
between Cn and R2n.
Via this identification we endow this space with the structure of a normed
vector space and hence with a topology. All usual concepts of analysis in the
Euclidean space R2n carry immediately over Cn.
All norms in Cn are equivalent, commonly we use the following two norms:
(i) Euclidean norm:‖z‖ := {

∑n

j=1 |zj |2}
1
2 .

(ii) The sup norm :‖z‖∞ := maxj=1...,n|zj|.
(B) The open ball around a ∈ Cn with radius r > 0 is defined by
B(a, r) = {z ∈ Cn/‖z − a‖ < r}.
Recall that a set D ⊆ Cn is open if for every a ∈ D there is an r > 0 such
that the open ball B(a; r) ⊆ D.
(C) A domain is an open connected subset.
(D) For a multi-index α = (α1, α2, ..., αn), αj ∈ N0. We define:
a) | α |= α1 + ... + αn is the length of α.
b) zα = zα1

1 . . . zαn
n .

c) α! = α1! . . . αn! .
d) Dα = ∂α1+...αn

∂z1
α1 ...∂znαn .

9



1.2. Cauchy integral formula for polydiscs 10

E) For an open subset Ω in Cn we denote its boundary by bΩ rather than
the usual symbol ∂ which has another meaning.
F) The Wirtinger notations:

∂

∂z̄
=

1

2

( ∂

∂x
+ i

∂

∂y

)
.

∂

∂z
=

1

2

( ∂

∂x
− i

∂

∂y

)
.

Where ∂
∂x
and ∂

∂y
are the usual real partial derivatives.

We recall, in the one-dimensional theory, that for a continuous function
f : G → C(G open subset in the complex plane)is holomorphic if it satisfies
one the following equivalent conditions:
i) f is complex differentiable i.e df

dz
exists and coincides with ∂f

∂z
.

ii) Locally f is representable by a convergent power series.
iii) For each contractible (can be reduced to a point by a homotopy) piecewise
smooth closed curve γ in G,

∫

γ
f(z)dz = 0 (Cauchy's theorem).

iv) f has a continuous partial derivative with respect to x and y at each point
in G,and they satisfy the Cauchy -Riemann differential equations ∂f

∂z̄
= 0 or

{

Ux = Vy

Uy = −Vy

U and V are the real (respectively imaginary) part of f(regarded as a function
of the real variables x and y).
Having that background in mind,we can generalize to the n-dimensional case.

1.2 Cauchy integral formula for polydiscs

In this section we investigate the notion of holomorphy in several complex
variables by combining basic properties in one variable with calculus of sev-
eral variables.

Definition 1.1. Let Ω be an open subset in Cn and f a C1 complex valued
function.
The function f is holomorphic on Ω, if for any z = (z1 . . . zn) ∈ Ω,and any
j = 1 . . . n, the function fj : ζ 7→ f(z1 . . . zj−1, ζ, zj+1 . . . zn) is holomorphic
in the usual sense as a function of the one complex variable ζ.
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We recall that in the one dimensional case a function f defined on a subset
G of C is holomorphic, if and only if for every z ∈ G, f verifies the Cauchy
-Riemann equation:

∂f

∂z̄
= 0.

For more details on holomorphic functions theory see [19].

Let us first recall the classical Cauchy integral formula in the one dimen-
sional case.

Theorem 1.2. Let G be a bounded set of C with C1 boundary bG,and
f ∈ C1(Ḡ) then for all z ∈ G we have:

f(z) =
1

2πi

(∫

bG

f(ζ)

ζ − z
dζ +

∫∫

G

∂f/∂ζ̄

ζ − z
dζ ∧ dζ̄

)

. (1.2.1)

In order to prove this theorem we need the Stokes'formula.
Let ω be a differential form defined on G then:

∫

bG

ωdζ =

∫∫

G

dω ∧ dζ.

See [5]For a proof of this result.

Proof. Let z ∈ G and 0 < r < dist(z, bG).Consider the 1-form defined on
Gr = G \D(z, r) by,

1

2πi

f(ζ)

ζ − z
dζ .

We apply now the Stokes′ formula for Gr and get,

1

2πi

∫

bGr

f(ζ)

ζ − z
dζ =

1

2πi

∫∫

Gr

∂

∂ζ̄
(
f(ζ)

ζ − z
)dζ ∧ dζ̄ (1.2.2)

=
1

2πi

∫∫

Gr

[ ∂f

∂ζ̄

ζ − z
+ f(ζ)

∂

∂ζ̄
(

1

ζ − z
)
]

dζ ∧ dζ̄ . (1.2.3)

We know that the function ζ → 1
ζ−z is holomorphic on Gr then the integral

∫∫

Gr
f(ζ) ∂

∂ζ̄
( 1
ζ−z )dζ ∧ dζ̄ = 0.

Let us compute the left hand side in (1.2.2) so we obtain,
1

2πi

∫

bGr

f(ζ)
ζ−z dζ =

∫

bG

f(ζ)
ζ−z dζ +

∫

χr

f(ζ)
ζ−z dζ ,where χrdenotes the circle around z
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with radius r.
For the second term we have,
∫

χr

f(ζ)
ζ−zdζ =

∫

χr

f(z)
ζ−z dζ +

∫

χr

f(ζ)−f(z)
ζ−z dζ .the first integral in this equality is

exactly f(z)Ind(z, χr) = −f(z) because the curve is negatively oriented.
For the second integral we have,
|
∫

χr

f(ζ)−f(z)
ζ−z dζ | 6 2πrmax

ζ∈χr

|f(ζ)− f(z)| → 0 when r → 0.

Now we have,
∫∫

Gr

∂f

∂ζ̄

ζ−zdζ ∧ dζ̄ =
∫∫

G

∂f

∂ζ̄

ζ−zdζ ∧ dζ̄ +
∫∫

Dr(z)

∂f

∂ζ̄

ζ−zdζ ∧ dζ̄.
For the second integral on the right hand side of this equation we use the
polar coordinates and we obtain,
∫∫

Dr(z)
1

|ζ−z|dζ ∧ dζ̄ = −2i
∫ 2π

0

∫ r

0
1

r′ exp (iθ)
r′ exp (iθ)dr′dθ → 0, when r → 0.

This gives the result.

By this theorem it follows that every holomorphic function has nice prop-
erties in fact it can be represented locally by a convergent power series.
For several complex variables and for integral representation of a holomor-
phic function, the situation is different to the one dimensional case:integral
formulas exist only for Cn domains which are products of C1 domains it turns
out that function theory of a ball in Cn is different from the one for polydisc.
Let us now generalize this result to holomorphic function on special domains
namely the polydsic.

Definition 1.3. The open polydisc P (a, r) of multi-radius r = (r1, . . . ..., rn)
and center a = (a1 . . . .., an), a ∈ Cn is the product of n open discs.
P (a, r) = {z ∈ Cn, |zj − aj| < rj , j = 1 . . . ..., n}.
The distinguished boundary is the n dimensional torus defined by,

b0P = {z ∈ Cn, |zj − aj | = rj} .

We denote it some times by Tr, it is not the topological boundary.

Theorem 1.4. Let U be an open set in Cn and let P (a, r) be a polydisc, let
f be a holomrphic function on P̄ ⊆ U .
For all z ∈ P we have:

f(z) =
1

(2πi)n

∫

b0P

f(ζ)dζ1 . . . ...dζn
(ζ1 − z1) . . . ...(ζn − zn)

. (1.2.4)

Proof. By induction on the number of variables.
For n = 1 the result is already proved in theorem (1.2).
Suppose that the result holds for n − 1 variables. We fix z ∈ P and we
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consider the function of the one complex variable ω → f(ω, z2, . . . , .., zn).
This function is holomorphic throughout a neighbourhood of the closed disc
D̄1(a1, r1). By Cauchy applied for z1 we have:

f(z1, . . . , zn) =
1

2πi

∫

|z1−a1|=r1

f(ζ1, z2 . . . zn)

ζ1 − z1
dζ1 . (1.2.5)

Fix now ζ1 and apply the induction hypothesis to the function of (n − 1)
variables (z2, . . . , zn) → f(ζ1, z2, ..., zn) we obtain:

f(ζ1, z2 . . . , zn) =
1

(2πi)n−1

∫

b0P ′

f(ζ1, . . . , ζn)dζ2 . . . ...dζn
(ζ2 − z2) . . . ...(ζn − zn)

(1.2.6)

Now substitute (1.2.5) in (1.2.6) we obtain

f(z) =
1

(2πi)n

∫

|z1−a1|=r1

f(ζ1, z2 . . . zn)

ζ1 − z1
dζ1

∫

b0P ′

f(ζ1, . . . , ζn)dζ2 . . . ...dζn
(ζ2 − z2) . . . ...(ζn − zn)

=
1

(2πi)n

∫

b0P

f(ζ)dζ1 . . . ...dζn
(ζ1 − z1) . . . ...(ζn − zn)

In the last equality I used a parametrization of the boundary
b0P =

∏n

j=1Crj(zj), where Crj (zj) denotes the circle around zj of radius rj,
with polar coordinates.
For every 1 ≤ j ≤ n we have the standard parametrization of Cr,

ζj = zj + rje
iθj .

Remark 1.5. All integrals involved in the last theorem were curve integrals.
In the following we give a second alternative dealing with area integrals.
Consider a holomorphic function on an open subset G ⊆ C;let z ∈ G and
r > 0 such that D(z, r) ⊆ G. Then,

f(z) =
1

πr2

∫

D(r,z)

f(ω)dλ(ω) . (1.2.7)

where dλ(ω) denotes the Lebesgue measure on C.
This formula follows directly from the Cauchy integral formula. Indeed,

f(z) =
1

2πi

∫

Cs

f(ζ)

ζ − z
dζ

=
1

2π

∫ 2π

0

f(z + s exp(iθ))dθ .
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Cs is the circle around z with radius s parametrised by Cs(θ) = z + s exp(iθ)
A simple computation of the integral in (1.2.7) gives:

∫

D(z,r)

f(ω)dλ(ω) =

∫ r

0

∫ 2π

0

f(z + s exp(iθ))sdsdθ (1.2.8)

= πr2
∫ 2π

0

f(z + s exp(iθ))sdsdθ (1.2.9)

= πr2f(z). (1.2.10)

Using again an iteration process we get a similar representation for holomor-
phic functions of several complex variables, applying the last formula for each
fj we obtain:

f(z) =
1

πnr21 . . . r
2
n

∫

P (z,r)

f(ω)dλ(ω) . (1.2.11)

Corollary 1.6. If f is holomorphic on Ω ⊆ Cn. Then f is C∞.

Proof. Like in the one dimensional case, take some radius r and apply Cauchy
for the closed polydisc contained in Ω and differentiate under the integral sign
to obtain the desired result.

1.3 Multiple and power series in several com-

plex variables

The main references I use in this section are [1], [3] and [29].
In the one dimensional case we declare that a series is convergent if the
sequence of partial sums converges. Since Nn has no partial order, the con-
vergence of a multiple series will be defined as follows:

Definition 1.7. A power series at a ∈ Cn has the general form

∞∑

α1=0

. . .

∞∑

αn=0

λα1...αn(z1 − a1)
α1 . . . (zn − an)

αn , (1.3.1)

where the λα1...αn are complex coefficients and the αi are integers. By con-
vention mentioned at the beginning it will be written in the form,

∑

α

λα(z − a)α . (1.3.2)
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This series is said to be convergent at a point ω, if it converges with respect
to every (hence arbitrary ) order of summation, this is equivalent to the
statement that it converges absolutely.

Remark 1.8. In the one dimensional case the domain of convergence of a
power series is always a disc however in several variables the domain of con-
vergence of a multi-variable series can have a variety of shapes, consider for
example the series:

∑∞
n=0(z1z2)

n, the domain of convergence consists of an
unbounded hyperbolic region in the absolute space.

Definition 1.9. A Reinhardt domain Ω ⊆ Cn is one which, whenever it
contains a point (z1 . . . zn), also contains all points (λ1z1 . . . λnzn) with
|λj| ≤ 1, j = 1 . . . n.

In several complex variables, the domain of convergence of a power series
is a Reinhardt domain. Furthermore ,every holomorphic function has a power
series expansion valid throughout the domain, for more details see [23] or [25].

Definition 1.10. Let fm : Ω ⊆ Cn → C, m ∈ N be a sequence of continuous
functions.The series

∑∞
m=0 fm converges normally on Ω if,

∞∑

m=0

(sup
z∈K

|fm|)

converges for every compact subset K such that K ⊆ Ω.
The series in (1.3.2) converges normally if it converges in the sense of this
definition with fm replaced by λα(z − a)α.

Remark 1.11. Note that if the series (1.3.2) converges at some point ω such
that |ω−a| = r with r = (r1 . . . rn)a multi-radius,then the terms λα(ω−a)α are
bonded in the sense that there exists M ≥ 0 such that, |λα|rα1

1 . . . rαn
n ≤M .

We will prove even that the series, under the latter condition, converges
absolutely throughout the polydisc P (ω, r).

Proposition 1.12. (Abel's lemma)

Let ω ∈ Cn. If the set
{

λα|ω − a|α, |α| ≥ 0
}

is bounded, then the series

∞∑

α1,...,αn=0

λα1...αn(z1 − a1)
α1 . . . (zn − an)

αn ,

converges normally in the polydisc:

P = {z : |z − a| < r}
where r = (r1 . . . rn)and rj = |ωj|, j = 1, . . . n.
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Proof. Without lost of generality we can assume that a = 0. So there exists
M such that |λαωα| ≤M .
For 0 < ε < 1 consider the family of polydiscs Pǫ = {z : |zj| ≤ ε|ωj|} .
For z ∈ Pǫ we have:

|λαzα| ≤Mε|α| ,

and

∞∑

α

Mε|α| =M
(∑

α

εα1+...+αn

)

=M
( ∞∑

j=0

εj
)n

=M
( 1

1− ε

)n

.

Hence the power series converges normally on the polycylinder Pε.
Now let K ⊂ P be a compact subset (Pε)ε forms an open covering of P hence
of K, but K is compact therefore there exists a finite sub-covering of K i.e,
K ⊆ Pε1 ∪ . . . ∪ Pεk let q = max{j = 1 . . . , k},the series

∑

α z
α converges

normally on Pq hence on K.

Proposition 1.13. Let r be a multi-radius and P the polydisc around zero
with radius r,let Tr its distinguished boundary. Consider a continuous func-
tion g : Tr → R.Then the function:

f(z) =
1

(2πi)n

∫

Tr

g(ζ)

(ζ1 − z1) . . . (ζn − zn)
dζ , (1.3.3)

can be expanded as a convergent power series on the whole domain P.
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Proof. Let z ∈ P and ζ ∈ T fixed. Since | zj
ζj
| < 1, we have

g(ζ)

(ζ1 − z1) . . . (ζn − zn)
=

g(ζ)

ζ1 . . . ζn

1

1− z1
ζ1

. . .
1

1− z1
ζ1

(1.3.4)

=
g(ζ)

ζ1 . . . ζn

( ∞∑

α=0

(z1
ζ1

)α1
)

. . .
( ∞∑

α=0

(zn
ζn

)αn
)

(1.3.5)

= g(ζ)
( ∞∑

α=0

zα1
1

ζα1
1 .ζ1

)

. . .
( ∞∑

α=0

zαn
n

ζαn
n .ζn

)

(1.3.6)

=

∞∑

α=0

g(ζ).zα

ζα1+1
1 . . . ζαn+1

n

(1.3.7)

The function ζ → g(ζ)
ζ1...ζn

is continuous on Tr which is compact. Therefore it

is bounded and there exists M > 0 such that | g(ζ)
ζ1...ζn

| ≤M , for all ζ ∈ Tr.

The sum in(1.3.7) converges normally on P and we may interchange summa-
tion and integral to get,

f(z) =
1

(2πi)n

∫

Tr

g(ζ)

(ζ1 − z1) . . . (ζn − zn)
dζ

=
1

(2πi)n

∫

Tr

∞∑

α=0

g(ζ).zα

ζα1+1
1 . . . ζαn+1

n

dζ

=

∞∑

α=0

λαz
α

where,

λα =
1

(2πi)n

∫

Tr

g(ζ)

ζα1+1
1 . . . ζαn+1

n

dζ . (1.3.8)

Corollary 1.14. Every holomorphic function on a subset Ω in Cn is locally
representable by a convergent power series around every point.
For any ω ∈ Ω and every r > 0 such that P (ω, r) ⊆ Ω we have for z ∈ P ,

f(z) =
∑

α

λα(z − ω)α. (1.3.9)

with uniform convergence throughout P. The coefficients λα are given by the
formula,

λα =
1

(2πi)n

∫

Tr

f(ζ)

ζα1+1
1 . . . ζαn+1

n

dζ . (1.3.10)
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Proof. Without lost of generality we may assume that ω = 0.Using the
Cauchy integral formula for the polydisc P (0, r) we have for z ∈ P (0, r),

f(z) =

∫

Tr

f(ζ)

ζ − z
dζ (1.3.11)

and the last proposition gives the desired result.

Remark 1.15. Using Taylor expansion for holomorphic functions of one
complex variable and an iteration argument we obtain
Dαf(0) = α!λα.

1.4 The Weierstrass theorem

Theorem 1.16. Let Ω ⊆ Cn and (fn)n≥0 a sequence of holomorphic func-
tions converging normally to a function f. Then f is holomorphic on Ω.

Proof. Since all fm are continuous then f is.In order to prove that f is holo-
morphic it suffices to show that f can be expanded to a convergent power
series around each point ω ∈ Ω.
Without lost of generality we can assume that ω = 0.
Choose an r > 0 such that P (ω, r) ⊆ Ω, for z ∈ Pr. We have,

f(z) = lim
m→∞

fm(z)

= lim
m→∞

∫

Tr

fm(ζ)

ζ − z
dζ .

Our aim now is to interchange integration and limits.
The function ζ → ζ− z does not vanish on Tr thus, the function Φ : ζ → 1

ζ−z
is continuous on Tr which is closed, hence it is bounded and there exists
M > 0, such that |Φ(ζ)| ≤M .
We conclude that ‖ fm−f

Φ
‖ ≤ M‖fm − f‖ → 0 as m → ∞ and fm

Φ
converges

normally to f

Φ
on Tr.

Finally we get

f(z) =

∫

Tr

f(ζ)

ζ − z
dζ . (1.4.1)

By proposition (1.13) f can be expanded in a convergent power series on Tr
hence it is holomorphic.
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1.5 Holomorphic Jacobian

Let Ω ⊆ Cn be a domain and

f : Ω → Cn

z →
(
f1(z), . . . , fn(z)

)

where z = (z1, . . . , zn),be a holomorphic function. In the sequel, we introduce
the notion of the holomorphic Jacobian as presented in [3] and [29].

Definition 1.17. The complex or holomorphic Jacobian of f at z is defined
by the n× n matrix:

JCf(z) =

(

∂fk
∂zj

)k=1,...n

j=1,...,n

Set fj(z) = uj(z) + ivj(z)and zj = xj + iyj. By identifying Cn with R2n and
considering f as a function of the 2n variables x1, y1, . . . xn, yn, we can write
the usual real Jacobian matrix.

JRf =


















∂u1
∂x1

∂u1
∂x2

. . . ∂u1
∂xn

∂u1
∂y1

. . . ∂u1
∂yn

∂u2
∂x1

∂u2
∂x2

. . . ∂u2
∂xn

∂u2
∂y1

. . . ∂u2
∂yn

.

.
∂un
∂x1

∂un
∂x2

. . . ∂un
∂xn

∂un
∂y1

. . . ∂un
∂yn

∂v1
∂x1

∂v1
∂x2

. . . ∂v1
∂xn

∂v1
∂y1

. . . ∂v1
∂yn

.

.
∂vn
∂x1

∂vn
∂x2

. . . ∂vn
∂xn

∂vn
∂y1

. . . ∂vn
∂yn


















Using the simple notations,

∂U

∂X
=

(

∂uk
∂xj

)k=1,...,n

j=1,...,n

∂U

∂Y
=

(

∂uk
∂xj

)k=1,...,n

j=1,...,n

∂V

∂X
=

(

∂vk
∂xj

)k=1,...,n

j=1,...,n
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∂V

∂Y
=

(

∂vk
∂xj

)k=1,...,n

j=1,...,n

The matrix JR becomes:

JRf =





∂U
∂X

∂U
∂Y

∂V
∂X

∂V
∂Y





Note that, each component fj = uj + vj of f is holomorphic, thus it satisfies
the Cauchy-Riemann equations and we obtain,

∂U

∂X
=
∂V

∂Y
(∗)

and
∂U

∂Y
= −∂V

∂X
(∗∗)

Theorem 1.18. With the same notations as in the above definition we have

detJRf =
∣
∣detJCf

∣
∣
2

.

Proof. Using the same notation as in the last definition, equations (∗) and
(∗∗) and since the determinant does not change under linear combinations
of lines(respectively rows)we can write:

detJRf =

∣
∣
∣
∣

∂U
∂X

− ∂V
∂X

∂V
∂X

∂U
∂X

∣
∣
∣
∣

(

i ×2nd line + 1st line
)

=

∣
∣
∣
∣

∂U
∂X

+ i ∂V
∂X

i ∂U
∂X

− ∂V
∂X

i ∂V
∂X

i ∂U
∂X

∣
∣
∣
∣

(

-i ×1st row + 2nd row
)

=

∣
∣
∣
∣

−i ∂U
∂X

+ ∂V
∂X

0
∂V
∂X

i ∂U
∂X

+ ∂V
∂X

∣
∣
∣
∣

=
∣
∣
∣
∂U

∂X
+ i

∂V

∂X

∣
∣
∣

∣
∣
∣
∂U

∂X
− i

∂V

∂X

∣
∣
∣

=
∣
∣
∣detJCf

∣
∣
∣

2

In the last equality, we used the fact that,

∂f

∂z
=

1

2
(
∂f

∂x
− i

∂f

∂y
)

=
1

2

(∂u

∂x
+ i

∂v

∂x
− i(

∂u

∂y
︸︷︷︸

− ∂v
∂x

+i
∂v

∂y
︸︷︷︸

∂u
∂x

)
)

=
∂u

∂x
+ i

∂v

∂x
.
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1.6 Riemann mapping theorem

Now, we go back to the one dimensional complex analysis to state the funda-
mental Riemann theorem dealing with characterization of simply connected
domains in C. To begin with, let us recall some basic definitions of biholo-
morphic functions and simply connected domains.

Definition 1.19. Let Ω ⊆ C be an open subset in the complex plane.
Ω is simply connected, if every closed curve can be continuously contracted
to a point within Ω.
More details on the characterization of simply connected domains can be
found on classical lecture courses on complex analysis, see for example[19](page
119 theorem 4.37).

Definition 1.20. Let U,V ⊆ C be open.The holomorphic map f : U → V
is biholomorphic or conformal if it is one-to-one, onto and if its inverse is
holomorphic.

Theorem 1.21. (Riemann mapping theorem)
Ddenotes as usual the unit disc around zero in C.
Let Ω $ C be simply connected. There exists a biholomorphic map

f : Ω → D

Furthermore, if a ∈ Ω, then there exists a uniquely determined conformal
map

φ : Ω → D

such that, φ(a) = 0 and φ′(a) > 0.

Proof. For all technical details,see [19].

Remark 1.22. This result is of a great importance in the study of the
Bergman Kernel of a simply connected domain in the complex plan. In-
deed, one can gain the Riemann map of a simply connected region in terms
of its Bergman function and vice versa. This will be studied in details in the
third chapter.



Chapter 2

Elementary Hilbert spaces
theory

Hilbert space theory constitutes a part of a large branch in mathematics
called functional analysis. Functional analysis is an important tool in the
investigation of all kind of problems in pure mathematics, physics and even
biology and economics. In fact it is hard to find a branch in science where
functional analysis is not used. In this chapter we shall develop all Hilbert
spaces properties related to the main subject of this work.
We collect all needed ingredients by a short overview of the main defini-
tions and results namely the notion of orthogonality, projection on closed
subspaces,the Cauchy-Schwarz inequality, the fundamental Riesz-Fisher rep-
resentation theorem of continuous linear functional on Hilbert spaces and the
fundamental theorem of vector decomposition in an orthonormal basis(called
Fourier series decomposition in some text books over functional analysis). We
introduce some powerful tools that will be used in the next chapter.
Throughout this chapter H denotes a complex vector space.
For the complex conjugate of a complex number z, I use either the standard
notation z̄,or z∗.
Main references of this chapter are [6], [16] and [31].

2.1 Basic definitions

We recall the basic definitions of normed and Hilbert vector spaces.

Definition 2.1. Let H be a complex vector space. A norm on H is a map

22
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N : H → R+

with the following properties:
a)N(x) = 0 implies x = 0.
b) for all λ ∈ C and x ∈ H we have :N(λ.x) = |λ|N(x).
c) for all x; y ∈ H we have :N(x+ y) ≤ N(x) +N(y): Triangle inequality.

H becomes the structure of a normed vector space, commonly a norm is
denoted by the symbol ||.||.

Examples 2.2. i)On the real line R we define the usual norm by,

||x|| = |x|.

ii)In the Euclidean space Rn we define the Euclidean norm by setting:

||x|| =
(

n∑

k=1

|xi|2
) 1

2 .

iii) Let (X, dµ) be a measure space,
Let Lp, p ≥ 1,be the set of equivalence classes for the relation:

[

f R g ⇔ f = g almost everywhere
]

.

On this space we define a norm by setting:

‖f‖p =
(∫

X
|f |pdµ

) 1
p

.

See [34] for further discussions on the theory of Lp-spaces.

Definition 2.3. A metric on H is a map d : H×H → R+ satisfying:
a) d(x, y) = 0 implies x = y.
b) d(x, y) = d(y, x) for all x, y ∈ H, [Symmetry].
c) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ H, [Triangle inequality].

Remark 2.4. Due to the triangle inequality, it is trivial to show that every
norm on H induces a metric by setting d(x, y) = N(x− y).
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Having a metric we can now introduce the notion of convergence of se-
quence.

Definition 2.5. A sequence (xn)n≥0 in H is a Cauchy sequence, if for all
ε > 0 there exists n0(ε), such that for all n,m ≥ n0 we have d(xn, xm) ≤ ε .

Definition 2.6. A sequence (xn)n≥0converges to x ∈ H if, for all ε > 0, it
exists n0(ε), such that if n ≥ n0 we have:d(xn, x) ≤ ε.
H is complete, if every Cauchy sequence converges.
A Banach space is a normed vector space complete with respect to the metric
induced by its norm.

2.2 Hilbert spaces

Definition 2.7. A scalar product on a vector space H is a map:

(, ) : H×H → C

subject to the following rules:
a) (x, x) ≥ 0 for all x ∈ H and (x, x) = 0 ⇐⇒ x = 0.
b) For all α, β ∈ C , (αx+ βy, z) = α(x, y) + β(y, z).
c) (x, y) = (y, x)∗,for every x, y ∈ H.

Remark 2.8. Due to the item c, it is easy to verify that, for α, β ∈ C and
x, y, z ∈ H we have: (x, αy+βz) = α∗(x, y)+β∗(y, z), thus an inner product
is linear with respect to the first variable and conjugate linear for the second.

A pre-Hilbert space is a vector space equipped with a scalar product.

Remark 2.9. Every inner product induces in a natural way a norm defined
by: ‖x‖2 = (x, x).

Definition 2.10. A Hilbert space is a complete pre-Hilbert space for the
norm induced by the inner product.

Example 2.11. a)The basic example of a Hilbert space is the space of the
square integrable function on a measure space.
Let (X, µ) be a measure space and consider the space,

(L2, µ) =
{

f : X → C measurable,

∫

X
|f |2dµ ≤ ∞

}

.
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Together with the inner product defined by,

(f, g) =

∫

X
fgdµ

is a Hilbert space (see[31]).
b) l2(C) =

{
(an)n :

∑

n |an|2 <∞
}
.

This space is a Hilbert space with respect to the inner product defined by:

< a, b >=
∑

n

anb
∗
n ,

where a := (an)n and b := (bn)n.
c) Let Ω be a domain in Cn and consider the Bergman space defined as fol-
lows:

A2(Ω) =
{

f : X → C holomorphic,

∫

Ω

|f |2dλ ≤ ∞
}

,

equipped with the scalar product

(f, g) =

∫

Ω

fgdλ ,

becomes the structure of a Hilbert space, more details will be developed in the
next chapter when we deal with the Bergman kernel.
d) Hardy space H2 is defined as follows.
Let D be the unit disc in C,

D = {z ∈ C, |z| < 1},

We define the Hardy space by:

H2 = {f : f holomorphic, f(z) =
∑

n

anz
n and (an)n ∈ l2(C}

Let f, g : D → C be holomorphic functions on D with Taylor expansion at
z ∈ D:

f(z) =
∑

n≥0

anz
n

and
g(z) =

∑

n≥0

bnz
n
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The inner product is defined by the relation

(f, g) =
∑

n≥0

anb
∗
n .

e) The Fock space consists of all analytic functions on Cn with the prop-
erty:

∫

Cn

|f(z)|2e−|z|2dλ <∞ .

It becomes a Hilbert space by defining the inner product

(f, g) =

∫

Cn

f(z)g(z)e−|z|2dλ .

2.2.1 The Cauchy - Schwarz inequality

Proposition 2.12. For every x, y ∈ H we have:

|(x, y)| ≤ ‖x‖‖y‖ .

Proof. Let (x, y) = |(x, y)|eiθ, 0 ≤ θ ≤ 2π.
For t ∈ R we compute the following inner product

(x+ teiθy, x+ teiθy) = ‖x‖2 + te−iθ(x, y) + teiθ(y, x) + t2eiθe−iθ‖y‖2

= ‖x‖2 + t2‖y‖2 + 2t|(x, y)| .

The last expression is a non-negative polynomial of degree 2 in t, it has there-
fore a negative discriminant,

∆ = 4|(x, y)|2 − 4‖x‖2‖y‖2 ≤ 0 .

This gives the desired result.

Remark 2.13. This result leads to the triangle inequality:

‖x+ y‖ ≤ ‖x‖+ ‖y‖ .



2.2. Hilbert spaces 27

In fact

‖x+ y‖2 = ‖x‖2+‖y‖2+(x, y)+(y, x) ≤ ‖x‖2+‖y‖2+2 ‖x‖ ‖y‖ =
(

‖x‖+‖y‖
)2

.

Lemma 2.14. H denotes a complex Hilbert space, let y ∈ H then the follow-
ing maps:

H → C

x→ (x, y)

and

H → R+

x→ ‖x‖

are continuous.

Proof. By Cauchy-Schwarz we have, if ζ1, ζ2 ∈ H.Then,
|(ζ1, y)− (ζ2, y)| = |(ζ1 − ζ2, y)| ≤ ‖ζ1 − ζ2‖ ‖y‖.
By the triangle inequality we have:
| ‖ζ1‖ − ‖ζ2‖ | ≤ ‖ζ1 − ζ2‖.
This shows that these maps are even uniformly continuous.

2.2.2 Orthogonality and the projection theorem

Definition 2.15. Let H be a Hilbert space, x, y ∈ H.
i) x,y are orthogonal if (x, y) = 0.
ii)The orthogonal of a subset M ⊆ H is defined by:M⊥ =

{
y ∈ H, for all

x ∈ M, (x, y) = 0
}
.

Remark 2.16. Due to the continuity of the scalar product, we conclude that
the orthogonal of a subset is closed in fact, if (xn)n is a sequence in M⊥

which converges to x we have,

(x, y) = ( lim
n→∞

xn, y) = lim
n→∞

(xn, y) = 0 .

In the sequel we set the following problem:
Let M be a proper closed subset in H and let x ∈ H an arbitrary point. Does
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there exist a point x0 ∈ M closest to x ? If it exists, is it unique ?
The next theorem gives a positive answer to this question.

Theorem 2.17. Let M be a convex closed subset in H and let x ∈ H an
arbitrary point.
Define δ = inf {‖x− y‖ , y ∈ M}. There exists a uniquely determined point
x0 ∈ M such that,

δ = ‖x− x0‖ (∗)

Proof. Throughout the proof we take advantage of the so called parallelo-
gram law which reads as follows:

‖x+ y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2 .

a)Uniqueness:
Suppose that there are x0 and x′0 satisfying (∗). Then by the parallelogram
rule we have:

‖x0 − x′0‖
2
= ‖x0 − x+ x− x′0‖

2

= 2 ‖x0 − x‖2 + 2 ‖x− x′0‖
2 − 4

∥
∥
∥
∥
∥
∥
∥
∥

x− x0 + x′0
2

︸ ︷︷ ︸

∈M

∥
∥
∥
∥
∥
∥
∥
∥

2

≤ 2δ2 + 2δ2 − 4δ2

Thus x0 = x′0.
b)Existence:
By definition of δ there exists a sequence (xn)n in M such that,

lim
n→∞

‖xn − x‖ = 0 .

We will prove that it is Cauchy sequence and we identify its limits as being
the sought after x0 ∈ M.
By the last step we see easily that for n,m ∈ N

‖xn − xm‖ ≤ ‖xn − x‖2 + 2 ‖xm − x‖2 − 4δ2.

Thus (xn)n is a Cauchy sequence, it converges in H and setting its limits to
be x0 this achieves our proof of existence.
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Remark 2.18. x0 is the unique element satisfying, for all y ∈ M:

(x− x0) ⊥ y .

Indeed, let y ∈ M and set:
f : R → R

λ→ ‖x− (x0 + λy)‖2 .

We have:
f(λ) = ‖x− y‖2 − 2λℜ(x− x0, y) + λ2 ‖y‖2

which attains its minimum δ2at λ = 0, furthermore we have,

f ′(0) = ℜ(x− x0, y) = 0 .

Similar considerations for the function:

g(λ) = ‖x− (x0 + iλy)‖2

yield to

ℑ(x− x0, y) = 0 .

Hence (x− x0, y) = 0 as claimed.
The existence of an other x′0 with that property yields to (x0 − x′0, y) = (x−
x0, y) + (x− x′0, y) = 0.The choice of y = x0 − x′0 leads to x0 = x′0.

Remark 2.19. If M is only closed then the set

x+M =
{

x+ y, y ∈ M
}

,

is convex and closed thus theorem (2.17) ensures existence of the so called
orthogonal projection of x on M denoted by x0.

Corollary 2.20. Let M be a closed subset in a Hilbert space H. Then there
exist two linear operators P : H → M and Q : H → M⊥ with the following
properties
(1)For all x ∈ H we have x = Px+Qx, i.e H = M

⊕
M⊥.

(2)If x ∈ M. Then Px = x and Qx = 0 hence P 2 = P .
If x ∈ M⊥ . Then Px = 0 and Qx = x hence Q2 = Q
(P and Q are idempotent).
(3)For any x ∈ H we have ‖x‖2 = ‖Px‖2 + ‖Qx‖2.
(4)P and Q are continuous and self- adjoint operators.
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Proof. (1)Existence is ensured by the last theorem, the only statement to
prove is that Qx ∈ M⊥. Indeed,
(i)If y = 0 there is nothing to show.
(ii)If y 6= 0. Then without lost of generality, we can assume that ‖y‖ = 1.
Let y ∈ M, and α a complex number, since Qx is of minimal norm in x+M
and Qx− αy ∈ M we have:

0 ≤ (Qx,Qx) ≤ (Qx− αy,Qx− αy)

= ‖Qx‖2 − 2α(Qx, y) + |α|2.

If we set α = (Qx, y) the last inequality becomes,
0 ≤ −|α|2 thus (Qx, y) = 0.
For the uniqueness of this decomposition we use the fact that,
M ∩M⊥ = {0}.Indeed if x = x0 + x1 with x0 ∈ M and x1 ∈ M⊥ then

Px− x0
︸ ︷︷ ︸

∈M∩M⊥

= Qx− x1
︸ ︷︷ ︸

∈M∩M⊥

.

Hence Px = x0 and Qx = x1.
(2)If x ∈ M. Then x− Px

︸ ︷︷ ︸

∈M

= Qx
︸︷︷︸

∈M⊥

⇒ x = Px.

Using the same argument for Q,we obtain the remaining statement.
(3)Straightforward from the computation of the inner-product,
(Px+Qx, Px+Qx) = ‖Px‖2 + (Px,Qx)

︸ ︷︷ ︸

=0

+ (Qx, Px)
︸ ︷︷ ︸

=0

+ ‖Qx‖2.

(4)Let x, y ∈ H by definition of Q we have:

‖Q(x− y)‖ = min{x− y +m,m ∈ M} ≤ ‖x− y‖ .
Since P = I −Q,where I is the identity. Then P is continuous.
Self-adjointness follows from the fact that:

(Px, y) = (Px, Py +Qy) = (Px, Py) ,

and
(x, Py) = (Px+Qx, Py) = (Px, Py) .

Thus
(Px, y) = (x, Py) ,

and P ∗ = P .
The same argument gives Q∗ = Q.
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2.2.3 Orthogonal sets and orthonormal basis

In this paragraph I give a short overview of the notion of orthogonal basis
and we state the fundamental theorem of Fourier expansion which gives an
elegant way to represent any vector in a Hilbert space as the sum of a con-
vergent series.

Definition 2.21. A collection(finite or infinite, possibly uncountable)of vec-
tors {xi}i∈I in H is said to be orthogonal if (xi, xj) = 0 whenever i 6= j.
If in addition ‖xi‖ = 1 for all i ∈ I, then the set is called orthonormal.
A set of non-zero vectors {xi} can be transformed into an ON-set by replac-
ing xi with

xi
‖xi‖ .

Note that orthonormal sets are linearly independent.
An orthonormal basis is a maximal orthonormal set(maximality with respect
to the inclusion order).
Zorn's lemma shows that every separable Hilbert space has an orthonormal
basis.
The fundamental property of orthonormal bases is that they have a natural
interpretation as orthogonal coordinates systems.

Lemma 2.22. ( Bessel's inequality ) Let {ej}j≥1 be a countable or finite
orthonormal set in Hilbert space H. Then,

∑

j≥1

|(x, ej)|2 ≤ ‖x‖2

for all x ∈ H.

Proof. For a finite subset {e1, . . . en} we have:

0 ≤
∥
∥
∥
∥
∥
x−

n∑

j=1

(x, ej)ej

∥
∥
∥
∥
∥

2

=

(

x−
n∑

j=1

(x, ej)ej, x−
j=n
∑

j=1

(x, ej)ej

)

= ‖x‖2 −
n∑

j=1

(x, ej)(ej, x)−
n∑

j=1

(x, ej)(x, ej)

+
n∑

p=1

n∑

j=1

(x, ep)(x, ej)(ep, ej)

= ‖x‖2 −
n∑

k=1

|(x, ek)|2 .
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The last line is due to the fact that,(ep, ej) = δpj,where the δpj is the Kro-
necker's symbol. The inequality holds therefore for finite sums.
We have now,

n∑

k=1

|(x, ek)|2 ≤ ‖x‖2 .

Since the right side is fixed,a limiting process ensures its validity even for
infinite sums.

Lemma 2.23. As in the previous lemma. Let {ej}j≥1 be an orthonormal set
in a Hilbert space H.Then the following holds:
(a) The series:

∑∞
k=1 αkek, converges in H if and only if,

∞∑

k=1

|αk|2 <∞ .

(b)If,
∑∞

k=1 αkek =
∑∞

k=1 βek, in the sense that both series converge to the
same x in H.
Then αk = βk for all k ≥ 1,and:

‖x‖2 =
∞∑

k=1

|(x, ek)|2.

Proof. (a) Suppose that limN→∞
∑k=N

k=1 αk = x.
Then by the continuity of the scalar product we have

(x, ek) =

( ∞∑

k=1

αkek, en

)

=

∞∑

k=1

αk(ek, en) = αn .

Bessel's inequality ensures the convergence of the numerical series
∑∞

k=1 |αk|2.
Conversely if,

∑∞
k=1 |αk|2 ≤ ∞.Let Sn =

∑n
k=1 αkek .

For n > m ≥ 1 we have:

‖Sn − Sm‖2 = (Sn − Sm, Sn − Sm)

=

(
n∑

k=m+1

αkek,

n∑

j=m+1

αjej

)

=
n∑

k=m+1

n∑

j=m+1

αkαj(ek, ej) =
n∑

k=m+1

|αk|2
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The last line is due to the orthonormality of the set {ej}j≥1.The sequence
(Sn)n≥1 is a Cauchy sequence in H which is complete hence it converges.
(b) If x =

∑∞
k=1 αkek =

∑∞
k=1 βek then,

0 = lim
N→∞

{
N∑

k=1

αkek −
N∑

k=1

βek
}
= lim

N→∞

N∑

k=1

(αk − βk)ek .

By Bessel's inequality we obtain αk = βk .
Now if x =

∑∞
k=1 αkek in the sense that the series converges in H to x.

By Cauchy-Schwarz we have,

‖x‖2 −
n∑

k=1

|αk|2 = (x, x−
n∑

k=1

αkek) + (x−
n∑

k=1

αkek,
n∑

k=1

αkek)

≤
∥
∥
∥
∥
∥
x−

n∑

k=1

αkek

∥
∥
∥
∥
∥

(

‖x‖ +
∥
∥
∥
∥
∥

n∑

k=1

αkek

∥
∥
∥
∥
∥

)

.

Since
∑n

k=1 αkek → x as n → ∞, the right hand side converges to zero.
Therefore ‖x‖2 ≤

∑∞
k=1 |αk|2.

Combining this with Bessel's inequality we obtain the desired result.

Theorem 2.24. (The best approximation) Let {e1 . . . en} be an orthonor-
mal set in a Hilbert space H and x ∈ H.Then for every choice of complex
numbers: α1, . . . , αn. We have,

∥
∥
∥
∥
∥
x−

n∑

k=1

(x, ek)ek

∥
∥
∥
∥
∥
≤
∥
∥
∥
∥
∥
x−

n∑

k=1

αkek

∥
∥
∥
∥
∥

with equality if and only if:αk = (x, ek).

Proof. In view of theorem(2.17),
∑k=n

k=1(x, ek)ek is identified as the orthogonal
projection of x on the n-dimensional linear space spanned by {e1 . . . en}.
Indeed, by orthonormality we have:

(x−
n∑

k=1

(x, ek)ek,
n∑

k=1

αje− j) =
n∑

k=1

αk(x, ek)−
n∑

j=1

n∑

k=1

(x, ek)αj(ek, ej)

=

n∑

k=1

αk(x, ek)−
n∑

k=1

αk(x, ek)

= 0 .

The statement follows at once from theorem (2.17).
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We are now ready to prove the fundamental theorem dealing with or-
thonormal bases in Hilbert spaces.

Theorem 2.25. Let {en}n≥1 be an orthonormal basis in a Hilbert space
H.Then:
(a) For any x ∈ H we have:

x =
∑

n≥1

(x, en)en .

(b)For allx, y ∈ H,

(x, y) =
∑

n≥1

(x, en)(y, en) .

(c) (Parseval identity) For any x ∈ H we have:

‖x‖2 =
∑

n≥1

|(x, en)|2 .

Proof. (a)Claim If M is a linear subspace. Then (M⊥)⊥ = M.
If {en} is a maximal orthonormal set, the only vector orthogonal to all of
the en 's is zero. Set M = span{en, n ≥ 1}.We have M⊥ = {0}.But then
(M⊥)⊥ = H and M = H. Consequently, for every x ∈ H, we can find a
sequence {yn} of finite linear combinations of vectors from the orthonormal
basis,

yn =

N(n)
∑

j=1

αj,nej

with yn → x, n→ ∞.
We may assume that N(n) ≥ n. The best approximation yields:

∥
∥
∥
∥
∥
∥

x−
N(n)
∑

j=1

(x, ej)ej

∥
∥
∥
∥
∥
∥

≤

∥
∥
∥
∥
∥
∥

x−
N(n)
∑

j=1

αj,nej

∥
∥
∥
∥
∥
∥

= ‖x− yn‖ → 0, n→ ∞

Consequently,

x =
∑

n≥1

(x, en)en .

(b) For x =
∑

n≥1(x, en)en and y =
∑

n≥1(y, en)en.We observe that,

(x, y) = (
∑

n≥1

(x, en)en,
∑

n≥1

(y, en)en =
∑

k≥1

∑

j≥1

(x, ek)(y, ej)(ek, ej)

=
∑

n≥1

(x, en)(y, en) .
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(c)Straightforward by setting x = y in (b).

2.2.4 Riesz-Fischer theorem

Definition 2.26. The dual space of a Hilbert space is the set of all linear-
continuous functional defined on H i.e:

H∗ = {L : H → C,L linear and continuous }

On this space we define a norm by:

‖L‖ = sup
{

|L(x)|, x ∈ H
}

= sup
{

|L(x)|, ‖x‖ = 1
}

L is bounded if: ‖L‖ <∞.
In Hilbert space continuity of a linear functional is equivalent to boundedness.

Remark 2.27. By the Cauchy-Schwarz inequality we know that for every
y ∈ H.The map:

Ly : x→ (x, y)

is a bounded linear functional (with norm ‖y‖).
The Riesz-Fischer theorem shows indeed, that every linear functional on a
Hilbert space can be written in this way.

Theorem 2.28. Let L : H → C be a bounded linear functional.Then there
is a uniquely determined vector y ∈ H such that:

L(x) = (x, y) ,

for all x ∈ H.

Proof. a) Existence
i) If L ≡ 0.Then just take y = 0.
ii) If L 6≡ 0.Then,

Ker(L) =
{

x ∈ H,L(x) = 0
}

is a proper subspace in H, therefore Ker(L)⊥ contains a unit vector, say ỹ.
Now remark that for every x ∈ H,

L(x)ỹ − L(ỹ)x ∈ Ker(L) .
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Hence

0 =
(

ỹ,L(x)ỹ − L(ỹ)x
)

= L(x)∗ (ỹ, ỹ)
︸ ︷︷ ︸

=1

−L(ỹ)∗(ỹ, f) ,

and
L(x)∗ = L(ỹ)(ỹ, x) .

Now take y = L(ỹ)∗ỹ, the desired result follows at once.
b)Uniqueness
Suppose that there are y1, y2 ∈ H such that for every x ∈ H we have,

L(x) = (x, y1) = (x, y2) .

It follows that 0 = (x, y1 − y2), therefore y1 − y2 ∈ H⊥ = {0}.

Remark 2.29. The last theorem shows that a Hilbert space is equivalent to
its own dual space i.e H ∼= H∗ via the map x → (x, .)which is a conjugate
linear isometric bijection between H and H∗.



Chapter 3

Bergman spaces and
reproducing formula

3.1 Preliminaries

We recall in this section a standard result in harmonic analysis, the mean
value property. For a proof of this result see for example [14].

Definition 3.1. Let U ⊆ Rn an open subset, f : U → C a C2 function f is
harmonic on U if it is a solution of the Laplace equation △f = 0 where the
differential operator Laplace is defined as follows,

△ =
n∑

i=1

∂2

∂x2i
.

Remark 3.2. Every holomorphic function on a subset of the complex plane is
harmonic considered as a function of the two real variables x and y, indeed if
f = u+ iv where u and v are the real and imaginary parts,these function are
C2 because f is holomorphic in particular C2, using the Cauchy -Riemann
equalities and the Schawrz identity we obtain △u = uxx + uyy = (ux)x +
(vy)y = vyx − vxy

︸ ︷︷ ︸

Cauchy-Riemann

= vxy − vxy
︸ ︷︷ ︸

Schwarz

= 0 .

Next we derive the fundamental mean value theorem for harmonic func-
tions which explains that, for every x ∈ U and every ball B(x, r) ⊆ U , u(x)
equals to the average over the sphere S(x, r) and the average over the entire
B(x, r), these implicit representations have important consequences as we
will see when we introduce the evaluation map on the Bergman space.

37
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Theorem 3.3. (Mean value theorem)
Let U ⊆ Rn be an open subset and f : U → C a harmonic function,let x ∈ U
and r > 0 such that B(x, r) ⊆ U then

u(x) =
1

S

∫

S(x,r)

U(ζ)dσ(ζ)

=
1

V

∫

B(x,r)

u(ω)dλ(ω)

λ is the usual Lebesgue measure and σ is the area on the surface of the sphere.
S and V are respectively the area of the sphere S(x, r) and the volume of the
ball B(x, r).

Proof. See [14]for a detailed proof.

3.2 Bergman spaces

To begin with, let Ω ⊂ Cn be a domain. As mentioned in the last chapter
the Bergman space is defined as follows:

A2 =
{

f : Ω → C; fholomorphic and

∫

Ω

|f(z)|2dλ(z) <∞
}

= L2(Ω) ∩H(Ω)

where dλ denotes the Lebesgue measure and H(Ω) is the space of all holo-
morphic functions on Ω. For the discussion below I use [13] and [36].

Proposition 3.4. Let K ⊆ Ω be a compact subset and f ∈ A2.Then there
exists a constant CK,n such that,

sup
z∈K

|f(z)| ≤ CK,n ‖f‖L2 (3.2.1)

Proof. Since K is compact then for every z ∈ K there is rK such that
B(z, rK) ⊆ K. By remark (3.2) f is harmonic on Ω hence it verifies the
mean value theorem hence;
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|f(z)| = 1

|V (B(z, rK))|

∣
∣
∣
∣

∫

B(z,rK)

f(ω)dλ(ω)

∣
∣
∣
∣

≤ 1

|V (B(z, rK))|

∫

B(z,rK)

|f(ω)| dλ(ω)

=
1

|V (B(z, rK))|

∫

Ω

χB(z,rK)(ω)|f(ω)|dλ(ω)

≤ 1

|V (B(z, rK))|
(∫

Ω

|χB(z,rK)(ω)|2dλ(ω)
)1

2

︸ ︷︷ ︸

=
√
V (B(z,rK))

(∫

Ω

|f(ω)|2dλ(ω)
)1

2

︸ ︷︷ ︸

=‖f‖
L2

In the last inequality I used the Cauchy -Schwartz inequality. Now if we set
Cn,K = 1√

V (B(z,rK)
we obtain the desired estimate.

Estimate(3.2.1) means in other words that convergence in the L2 norm
implies uniform convergence on compact subsets.

Corollary 3.5. A2(Ω) is a closed subspace of L2(Ω) and hence a Hilbert
space.

Proof. Let{fn}n≥0 be a sequence in A2 such that

fn → f in L2

From functional analysis we know that there is a subsequence fn,j converging
almost everywhere to f(see [31]).
On the other hand the last proposition ensures that this sequence is a Cauchy
sequence with respect to the uniform convergence on compact subsets,indeed
for K ⊆ Ω and p ≥ q we have

supz∈K |fp(z)− fq(z)| ≤ Cn,K ‖fp − fq‖L2 → 0

This means that {fn} has a limit,say g,which is by the Weierstrass theorem
analytic.
Combining both arguments we can identify f and g.
Since L2 is complete and A2 is closed,it follows that the Bergman space is a
Hilbert space.

Now we introduce the so-called point evaluation map defined by, for z ∈ Ω
fixed:

Evz : A2 → C

f → f(z)
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Lemma 3.6. The point evaluation map is a linear bounded functional on
A2.

Proof. a)Linearity : Let f, g ∈ A2and α ∈ C we have

Evz(f + αg) = (f + αg)(z) = f(z) + αg(z) = Evz(f) + αEvz(g)

b) Boundedness The set {z} is a compact subset in Ω we have by propo-
sition (3.4)

|Ez(f)| ≤ Cn,{z} ‖f‖L2

Thus the point evaluation is bounded hence continuous.

For fixed z ∈ Ω the point evaluation is a linear continuous functional thus
by the Riesz representation theorem (2.28) there exists a uniquely determined
element, denoted by Kz, satisfying: For all f ∈ A2,

Evz(f) = (f,Kz).

This means that for every z ∈ Ω and f ∈ A2 we have:

f(z) =

∫

Ω

f(ω)Kz(ω)dλ(ω). (3.2.2)

Definition 3.7. The Bergman Kernel of Ω is defined by,

K : Ω× Ω → C

(z, ω) → K(z, ω) := Kz(ω)

The formula 4.4 becomes

f(z) =

∫

Ω

f(ω)K(z, ω)dλ(ω)

This is the so-called: reproducing formula .
Now we collect fundamental properties of the Bergmana kernel.

Proposition 3.8. The Bergman kernel is holomorphic in the first variable
and anti-holomorphic in the second.

Proof. For each z ∈ Ω we know that the function ω → Kz(ω) is holomorphic.
Since K(z, ω) = Kz(ω), it follows that K is antiholomorphic in the second
variables.
Claim We claim that for each z, ω ∈ Ω we have:

K(z, ω) = K(ω, z)
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For ω ∈ Ω fixed we apply the reproducing formula (4.4) to the function
Kω ∈ A2(Ω):

K(ω, z) = Kω(z) =

∫

Ω

Kω(ζ)K(z, ζ)dλ(ζ)

=

∫

Ω

Kz(ζ)K(ω, ζ)dλ(ζ)

=

∫

Ω

Kz(ζ)K(ω, ζ)dλ(ζ)

= Kz(ω) = K(z, ω)

Hence K(z, ω) = K(ω, z) and the reproducing kernel is holomorphic with
respect to the first component.

Proposition 3.9. The Bergman kernel is uniquely determined by the prop-
erties that it is an element of A2(Ω) holomorphic in z,conjugate symmetric
and reproduces A2(Ω).

Proof. Suppose that,there is another K ′ satisfying(4.4). For every z ∈ Ω and
by its very definition, K ′

z ∈ A2.Thus by the reproducing formula we have,

K ′(z, ω) = K ′
z(ω)

=

∫

Ω

K ′(ζ)K(ω, ζ)dλ(ζ)

=

∫

Ω

K ′(z, ζ)K(ω, ζ)dλ(ζ)

=

∫

Ω

K ′(z, ζ)K(ω, ζ)dλ(ζ)

= K(z, ω)

The next result gives an expansion of the Bergman kernel in an orthonor-
mal basis of A2(Ω), it leads to a powerful method how to represent the
Bergman Kernel in terms of a convergent series.

Proposition 3.10. Let K ⊆ Ω be a compact subset and {Φn}n≥1 be an
orthonormal basis of the Hilbert space A2(Ω).
The sum ∑

n≥1

Φn(z)Φn(Ω)
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sums uniformly on K×K to the Bergman Kernel K i.e

K(z, ω) =
∑

n≥1

Φn(z)Φn(Ω)

Proof. Let f ∈ A2. Then

f =
∞∑

j=1

ajΦj

Where
aj = (f,Φj)

By estimate(3.2.1) we know that there exists CK such that

sup
z∈K

|f(z)| ≤ CK.

On the other hand, by the Riesz-Fischer representation theorem and propo-
sition(3.4)we have:

sup
{( ∞∑

j=1

∣
∣
∣Φj(z)

∣
∣
∣

2
) 1

2

, z ∈ K
}

= sup
{∣
∣

∞∑

j=1

ajΦj(z)
∣
∣, z ∈ K,

( ∞∑

j=1

|aj|2
) 1

2

= 1
}

= sup

{

|f(z)|, z ∈ K, ‖f‖L2 = 1

}

≤ CK

This inequality shows that, for each z ∈ K the sequence of complex numbers
{Φn(z)}n ⊂ l2.
Now take z, ζ ∈ K, we may use the Cauchy-Schwarz inequality(proposition(2.12))to
obtain:

∣
∣
∣
∣

∞∑

n=1

Φ(z)Φn(ω)

∣
∣
∣
∣
≤
( ∞∑

n=1

∣
∣
∣
∣
Φn(z)

∣
∣
∣
∣

2
) 1

2

︸ ︷︷ ︸

≤CK

( ∞∑

n=1

∣
∣
∣
∣
Φn(ω)

∣
∣
∣
∣

2
) 1

2

︸ ︷︷ ︸

≤C
′
K

This proves the uniform convergence of the series
∑∞

n=1Φ(z)Φn(ω) on K×K
and that

∑∞
n=1Φ(z)Φn(ω) ∈ A2 as a function of ω.Now set

K ′(z, ω) =
∞∑

n=1

Φ(z)Φn(ω)

Let f ∈ A2(Ω). By theorem(2.25) (a)we have for each z ∈ Ω

f(z) =
∞∑

n=1

(f,Φn)Φn(z)
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which converges not only in L2(Ω), but also uniformly on compact subsets
of Ω (L2 convergence dominates uniform convergence by proposition (3.4).

f(z) =

∞∑

n=1

(f,Φn)Φn(z)

=
∞∑

n=1

∫

Ω

f(ζ)Φn(ζ)dλ(ζ)Φn(z)

=

∫

Ω

f(ζ)
∞∑

n=1

Φn(ζ)Φn(z)

︸ ︷︷ ︸

K
′(z,ζ)

dλ(ζ)

=

∫

Ω

f(ζ)K ′(z, ζ)dλ(ζ) (∗)

By the reproducing formula we have:

f(z) =

∫

Ω

f(ζ)K(z, ζ)dλ(ζ) (∗∗)

Combining(*)and(**) and by the Riesz representation theorem we obtain
K(z, ζ) = K ′(z, ζ).

Corollary 3.11. Let K ⊆ Ω be compact.Then for each z ∈ K we have

K(z, z) > 0

Proof. We know that K(z, z) =
∑∞

j=0 |Φj(z)|2. If in fact K(z, z) = 0, we

must have Φj(z) = 0, ∀j ∈ N which means that f(z) = 0 for each f ∈ A2(Ω)
which is absurd.

3.3 Bergman projection

In corollary(3.5) we have shown that A2(Ω) is closed in L2(Ω).By the pro-
jection theorem there is a unique operator

P : L2(Ω) → A2(Ω)

satisfying:
a)∀f ∈ A2(Ω), Pf = f .
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b) Pf − f ⊥ g,∀g ∈ A2(Ω).
This operator is called the Bergman projection. Our next aim is to express
the Bergman projection of a domain in terms of its reproducing kernel.
Since ∀f ∈ L2(Ω), P f ∈ A2(Ω) we can apply the reproducing formula to this
function, so for each z ∈ Ω we have:

Pf(z) =

∫

Ω

Pf(ω)K(z, ω)dλ(ω)

=

∫

Ω

Pf(ω)Kz(ω)dλ(ω)

=
〈

Pf,Kz

〉

=
〈

f, P ∗Kz

〉

=
〈

f,Kz

〉

=

∫

Ω

f(ω)K(z, ω)dλ(ω)

3.4 Bergman metric

In this section we describe the behaviour of the Bergman Kernel under bi-
holomorphic maps. In what follows, KΩ denotes the Bergman Kernel of the
bounded domain Ω.

Theorem 3.12. Let Ω1,Ω2 two bounded domains in Cn and let f : Ω1 → Ω2

be a biholomorphic map. We have

detJCf(z)KΩ2

(

f(z), f(ω)
)

detJCf(ω) = KΩ1(z, ω) (3.4.1)

Proof. For the proof we use a combination between operator theory on Hilbert
spaces and complex analysis.
Define

Tf : L
2(Ω2) → L2(Ω1)

φ→ Tfφ =
(

φ ◦ f
)

detJCf

We claim that, this map is an isometric isomorphism. The linearity of
this map is obvious and for fixed φ ∈ L2(Ω2) using the change of variable
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ζ = f(z),we obtain:

‖Tfφ‖2L2(Ω1)
=

∫

Ω1

|φ ◦ f(z)|2|detJCf(z)|2dλ(z)

=

∫

Ω2

|φ(ζ)|2dλ(ζ)

= ‖φ‖2L2(Ω2)
.

Thus Tf is an isometry with inverse Tf−1 .
Note that, if we differentiate

z = f−1(f(z))

we obtain
1 = detJCf−1

(

f(z)
)

detJCf(z)

.
Now, take ψ ∈ A2(Ω1) ⊆ L2(Ω2) and apply the reproducing formula for
A2(Ω2) to the function Tf−1ψ,for ζ ∈ Ω2 and by setting ζ = f(z) we obtain

Tf−1ψ(ζ) =

∫

Ω2

Tf−1ψ(η)KΩ2(ζ, η)dλ(η) (3.4.2)

= ψ(z)
[

detJCf(z)
]−1

(3.4.3)

Now since Tf is a unitary operator,then we have

Tf−1 = (Tf )
−1 = T ∗

f

hence
(Tf−1)∗ = Tf

(3.4.2)becomes:

〈

Tf−1ψ,KΩ2(., ζ)
〉

L2(Ω2)
=
〈

ψ, TfKΩ2(., ζ)
〉

L2(Ω1)
(3.4.4)

=

∫

Ω1

ψ(ω)KΩ2(f(ω), ζ)detJCf(ω)dλ(ω) (3.4.5)

=

∫

Ω1

ψ(ω)KΩ2(f(z), f(ω))detJCf(ω)dλ(ω)

(3.4.6)
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Identifying (3.4.3)and(3.4.6)we obtain

ψ(z) =

∫

Ω1

ψ(ω)detJCf(z)KΩ2(f(z), f(ω))detJCf(ω)dλ(ω)

The right hand-side of the above equality has the same properties of the
reproducing kernel of the domain Ω1, so the equality of the two functions
follows.This finishes the proof.

Remark 3.13. The last theorem has a nice application in computation of the
Bergman Kernel of some simply connected domain in C namely the upper-
half plane (see next section). It allows us furthermore to express the Bergman
projection of a domain in terms of bi-holomorphic maps.

Corollary 3.14. Let Ω1,Ω2 be two domains in Cn. Denote P1 respectively
P2 the Bergman projections operators. Let f : Ω1 → Ω2 be a bi-holomorphic
map. Then for all g ∈ L2(Ω2) we have

P1

(

(detJCf)(g ◦ f)
)

= (detJCf)
(

P2(g ◦ f)
)

Proof. This identity follows directly from the last theorem and the formula
for the Bergman projection. Indeed,

P1

(

(detJCf)(g ◦ f)
)

(z) =

∫

Ω1

(detJCf(ω))(g ◦ f(ω))KΩ1(z, ω)dλ(ω)

=

∫

Ω1

(detJCf(ω))(g ◦ f(ω))detJCf(z)KΩ2

(

f(z), f(ω)
)

detJCf(ω)dλ(ω)

= detJCf(z)
∫

Ω1

∣
∣
∣(detJCf(ω))

∣
∣
∣

2

(g ◦ f)(ω)KΩ2

(

f(z), f(ω)
)

dλ(ω)

=
ζ=f(ω)

detJCf(z)
∫

Ω2

KΩ2

(

f(z), ζ
)

g(ζ)dλ(ζ)

= (detJCf)
(

P2(g ◦ f)
)

In what follows,we give a short introduction to Hermitian metrics and
Bergman metric, for more details on this topic see[12].
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Definition 3.15. Let Ω ⊆ Rn be a domain.A Riemanian metric on Ω is a

matrix A (x) =
(

ai,j(x)
)n

i,j≥1
satisfying the following condition

For every ζ ∈ Rn we have:

ζA ζ⊤ ≥ 0

ζ⊤ stands for the transpose of the vector ζ.
In this way we assign to each vector x ∈ Rn a positive definite quadratic
form. For each vector ζ we can define its length (for each x) by:

‖ζ‖x =
√

ζ
(

ai,j(x)
)n

i,j≥1
ζ⊤

A curve in Ω is a C1 map γ : [0, 1] → Ω.We usually define its length by:

l(γ) =

∫ 1

0

|γ′(t)|dt

In our case, the length of the curve with respect to the Riemanian metric A

is defined by

lA (γ) =

∫ 1

0

‖γ′(t)‖γ(t) dt

In the same way we may define the distance, with respect to this metric,between
p, q ∈ Ω by:

dA (p, q) = inf
{

lA (γ) , γ piecewise C1 curve such that γ(0) = p and γ(1) = q
}

Example 3.16. a) Let Ω = D be the unit disc in the plane and take

A (x) =

(
1 0
0 1

)

Consider the segment γ(t) = (λt, 0) , t ∈ [0, 1].
We haveγ′(t) = (λ, 0) and

‖γ′(t)‖
A

=

√

(λ, 0)

(
1 0
0 1

)(
λ
0

)

= λ
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Therefore

lA (γ) =

∫ 1

0

‖γ′(t)‖γ(t) dt =
∫ 1

0

λdt

= λ

b)We consider now the following metric defined on the unit disc of the com-
plex plane by

A (z) =

(
1

(1−|z|2)2 0

0 1
(1−|z|2)2

)

For the same curve as above we have

lA (γ) =

∫ 1

0

√
√
√
√(λ, 0)

(
1

(1−|λt|2)2 0

0 1
(1−|λt|2)2

)(
λ
0

)

dt

= λ

∫ 1

0

1

1− (λt)2
dt

=
1

2
log
(1 + λ

1− λ

)

This metric is a version of the Poincare metric on the disc, and we see that
the length of the segment joining 0 and λ is unbounded when λ→ 0

Definition 3.17. Let Ω be a bounded domain in Cn and let K = KΩ its
corresponding Bergman Kernel. The Bergman metric is defined via

A (z) =
(

ai,j(z)
)n

i,j=1
=
( ∂2

∂zi∂z̄j
logK(z, z)

)n

i,j=1

This means that the length of a tangent vector ζ = (ζ1, . . . , ζn) at a point
z ∈ Ω is given by

lA (ζ) =

√
√
√
√

n∑

i=1

n∑

j=1

ai,j(z)ζiζ̄j

This definition is meaningful since K(z, z) ≥ 0.(see corollary (3.11)). The
next result shows that the Bergman metric is invariant under biholomorphic
maps.
Let Ω1 and Ω2 two domains in Cn and Φ : Ω1 → Ω2 a biholomorphic map.Let



3.4. Bergman metric 49

also γ : [0, 1] → Ω1 be a C1 curve, define its image γ∗ by γ∗(t) = Φ ◦ γ.
γ∗ is in fact a curve in Ω2.

Denote AΩ1(z) =
(

aΩ1
i,j (z)

)n

i,j=1
and AΩ2(z) =

(

aΩ2
i,j (z)

)n

i,j=1
the Bergman

metric of Ω1 resp Ω2

Proposition 3.18. Under the same notations as above we have

lAΩ1
(γ) = lAΩ2

(γ∗)

Proof. Our aim is to show that

∫ 1

0

‖γ′(t)‖γ(t) dt =
∫ 1

0

‖(γ∗)′(t)‖γ∗(t) dt

It suffices to show that the integrands are equal.
By the transformation formula (4.3.1) we have

detJCΦ(z)KΩ2

(

Φ(z),Φ(z)
)

detJCΦ(z) = KΩ1(z, z)

Applying Logarithms on both sides we obtain

Log(detJCΦ(z)) + Log(KΩ2

(

Φ(z),Φ(z)
)

+ Log(detJCΦ(z)) = Log(KΩ1(z, z))

Apply now the mixed derivative, the right hand side is nothing but the
Bergman metric of Ω1. The first and the last terms of the left hand side
vanish, and we are left only with the term

∂2

∂zi∂z̄j
Log(KΩ2

(

Φ(z),Φ(z)
)

which is exactly

n∑

l=1

n∑

m=1

∂2

∂zl∂z̄m
Log(KΩ2

(

Φ(z),Φ(z)
)

︸ ︷︷ ︸
(

a
Ω2
l,m

(Φ(z)

)

∂Φl(z)

∂zi

∂Φm(z)

∂z̄j

Therefore we have:

aΩ1
i,j (z) =

∑

l,m

aΩ2
l,m(Φ(z))

∂Φl(z)

∂zi

∂Φm(z)

∂z̄j
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3.5 Computation of the Bergman Kernel

We start now with the computation of the Bergman kernel of some special
domains.

3.5.1 Bergman kernel of the unit disc

As usual we denote
D(0, 1) :=

{
z ∈ C, |z| < 1

}

Lemma 3.19. The normalized monomials Φn(z) =
√

n+1
π
znconstitute an

orthonormal basis of the space A2(D)

Proof. Orthonormality
For n 6= m using polar coordinates we obtain

(Φn,Φm) =

√

(n+ 1)(m+ 1)

π

∫

D(0,1)
znzmdλ(z)

=

√

(n+ 1)(m+ 1)

π

∫ 1

0

∫ 2π

0

rn+mei(n−m)θrdrdθ

=

√

(n+ 1)(m+ 1)

π

2π

n +m+ 2
δn,m ,

where,

δm,n =

{

1 if n 6= m

0 else

is the Kronecker symbol.
This shows that (Φn,Φm) = 0 if n 6= m.

Completeness
In order to show that the family {Φn} is completed, we have to show that:

M = span{Φn} = A2(D)

which is equivalent to
M⊥ = {0}

Let f ∈ M⊥.f ⊥ zn, ∀n i.e 0 =
∫

D f(z)z
ndλ(z)

Since f is entire, it admits a Taylor expansion,

f(z) =
∞∑

n=0

anz
n
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which converges uniformly on each compact subset of the unit disc.
By Lebesgue's dominated convergence theorem we may write:

0 =

∫

D
f(z)zndλ(z)

= lim
ρ→1

∫

D(0,ρ)

( ∞∑

k=0

akz
k

)

zndλ(z)

= lim
ρ→1

∞∑

k=0

ak

∫ ρ

0

∫ 2π

0

rk+n+1ei(k−n)θdθdr

︸ ︷︷ ︸

rk+n+2

k+n+2

2πδn,k

= an lim
ρ→∞

r2n+2

2n+ 2
2π

= an
π

n + 1

This implies that an = 0, ∀n ∈ N and thus f ≡ 0

Now applying(3.10) for this basis we obtain, for each z, ω ∈ D

KD(z, ω) =
∞∑

n=0

Φn(z)Φn(ω) (3.5.1)

=
∞∑

n=0

(n+ 1)

π
(zω̄)n (3.5.2)

=
1

π

1

(1− zω̄)2
(3.5.3)

Proposition 3.20. The Bergman kernel of the polydisc P(0, 1) ⊆ Cn is given
by

KP(z, ω) =
1

πn

n∏

k=1

1

(1− zjω̄j)2

Proof. By the last lemma we know that, the Bergman kernel of the unit disc
B(0, 1) ⊆ C has the following expression

KB(z1, ω1) =
1

π

1

(1− z1ω̄1)2

Claim Let Ω1,Ω2 ⊆ C and Ω = Ω1 × Ω2.Then

KΩ = KΩ1.KΩ2
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Indeed,let f ∈ A2(Ω).By the reproducing formula we have

f(z) =

∫

Ω

f(ω)KΩ(z, ω)dλ(ω) (∗)

Where z = (z1, z2) and ω = (ω1, ω2). Now fix z2, and consider the map

φ : Ω1 → C

z1 → f(z1, z2)

We see easily that f ∈ A(Ω1) Therefore,

f(z1, z2) =

∫

Ω1

f(ω1, z2)KΩ1(z1, ω1)dλ(ω1)

=

∫

Ω1

( ∫

Ω2

f(ω1, ω2)KΩ2(z2, ω2)dλ(ω2)
)

︸ ︷︷ ︸

reproducing formula for Ω2

KΩ1(z1, ω1)dλ(ω1)

Fubini
=

∫

Ω1×Ω2

f(ω1, ω2)KΩ2(z2, ω2)KΩ1(z1, ω1)dλ(ω1)dλ(ω2) (∗∗)

Identifying (∗) and (∗∗) we obtain the result, and by an induction process
we can prove even prove that, if Ω1 . . .Ωn ⊆ C.Then

K∏n
i=1 Ωi

=

n∏

i=1

KΩi

Now since

P =
n∏

i=1

B(0, 1)

we obtain that, for z = (z1, . . . zn) and ω = (ω1, . . . ωn)

KP(z, ω) =
n∏

i=1

KB(zi, ωi)

=
1

πn

n∏

k=1

1

(1− zjω̄j)2
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3.5.2 Bergman kernel of the upper-half plane

In theorem (3.12), we saw how the Bergman Kernel behaves under biholo-
morphic maps so we will take advantage of this tool to derive an explicit
formula of the kernel function of the upper half plane in C.
We define the upper-half plane of the one dimensional complex plane by

U =
{

z ∈ C : Imz > 0
}

This domain is simply connected by the Riemann mapping theorem, indeed
if we set

φ : U → D

defined by

φ(z) =
z − i

z + i

we see immediately that φ is biholomorphic and even conformal.

Proposition 3.21. For all z, ω ∈ U we have

KU(z, ω) =
−1

π(z − ω̄)

Proof. By theorem (3.12) we have for each z, ω ∈ U:

KU(z, ω) = KD

(

φ(z), φ(ω)
)

φ′(z)φ′(ω)

φ′(z) =
2i

(z + i)2

By(3.5.3)we have:

KD(ζ, η) =
1

π(1− ζη̄)

with some intermediary computation we get,

KU(z, ω) =
1

π
(

1− z−i
z+i

(ω̄+i)
(ω̄−i)

)2

2i

(z + i)2

{ 2i

(ω + i)2

}

=
4

π(−2iz + 2iω̄)2

=
−1

π(z − ω̄)
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Remark 3.22. Knowing explicitly the Riemann function of a simply con-
nected domain, one can compute the corresponding Bergman kernel and vice
versa.The next result gives the relationship between the Riemann function
and the reproducing kernel of a simply connected domain.

Proposition 3.23. Let Ω ⊆ C be a simply connected domain, a ∈ Ω and
let φ be the corresponding Riemann map with the property that φ(a) = 0 and
φ′(a) > 0.
Let KΩ be the corresponding Bergman kernel. Then

φ′(z) =

√
π

KΩ(a, a)
KΩ(z, a)

Proof. By theorem(3.12)we have

KΩ(z, a) = KD

(

φ(z), φ(a)
)

φ′(z)φ′(a) (3.5.4)

=
1

π
(

1− φ(z)φ(a)
︸ ︷︷ ︸

=0

)2φ
′(z)φ′(a) (3.5.5)

We have furthermore

KΩ(a, a) =
∣
∣
∣φ′(a)

∣
∣
∣

2

and by corollary(3.11)we have

KΩ)(a, a) > 0

this leads to
φ′(a) =

√

KΩ(a, a)

The desired result is obtained by inserting the last equality in(3.5.5).

Remark 3.24. Practical application of this result is the computation of the
Riemann function of a simply connected domain. Indeed, having an ON-basis
of the space A2(Ω) leads to the desired map. At least, if the polynomials are
dense in the Bergman space A2(Ω) one can get an ON-basis using the proce-
dure of Gram-Schmidt applied to monomials.
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3.5.3 Bergman kernel of the ball in Cn

Now, we restrict our attention to the unit ball B ⊆ Cn.

Lemma 3.25. The set of monomials

{zα, α = (α1 . . . αn), αj ∈ N0} ,

is a an orthogonal complete system of the space A2(B).

Proof. We begin with completeness.
Let f ∈ A2(B) such that for each α,

〈

f, zα
〉

= 0

we have to show that
f ≡ 0

Since f is analytic on B, it can be locally represented by a power series (Taylor
expansion) converging uniformly on compact subsets.
Let z ∈ B and 0 < ǫ < 1 consider the sets

Iǫ =
{

z : ‖z‖ ≤ 1− ǫ
}

jǫ =
{

z : 1− ǫ < ‖z‖ < 1
}

we have

0 =
〈

f, zα
〉

=

∫

B
f(z)zαdλ(z)

=

∫

Iǫ

f(z)zαdλ(z) +

∫

Jǫ

f(z)zαdλ(z)

The two integrals on the right hand side have the same absolute value, by
the triangular inequality we obtain

∣
∣
∣

〈

f, zα
〉∣
∣
∣ ≤ 2

∣
∣
∣

∫

Jǫ

f(z)zαdλ(z)
∣
∣
∣

Now by the Cauchy -Schwarz inequality and using the fact that |zα| < 1 we
obtain
∣
∣
∣

∫

Jǫ

f(z)zαdλ(z)
∣
∣
∣ =

∣
∣
∣

∫

B
f(z)zαχJα(z)dλ(z)

∣
∣
∣ (3.5.6)

≤
(∫

B
|f(z)2|dλ(z)

) 1
2

︸ ︷︷ ︸

‖f‖
A2

( ∫

B
χJα(z)dλ(z)

) 1
2

︸ ︷︷ ︸√
V (Jǫ)

→ 0 as ǫ→ 0

(3.5.7)
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V (Jǫ)denotes the volume of the region Jǫ which tends to zero as ǫ goes to
zero.

Now by Taylor expansion we have

f(z) =
∑

µ

Cµz
µ

with uniform convergence on Iǫ therefore we may interchange summation and
integration to obtain:

∫

Iǫ

f(z)zαdλ(z) =

∫

Iǫ

∑

µ

Cµz
µzαdλ(z) (3.5.8)

= Cα

∫

Iǫ

|zα|2dλ(z) (3.5.9)

The second line is due to the orthogonality of the monomials (the only con-
tribution arises when µ = α).
Combining(3.5.7)and (3.5.9)we get

|Cα| ‖zα‖2A2 ≤ 0

Thus Cα = 0 and since α was arbitrary, we conclude that f ≡ 0

Set

γα =

∫

B
|zα|2dλ(z)

we see that { zα√
γα
} is an orthonormal basis of A2(B). Thus

KB(z, ω) =
∑

α

zαω̄α

γα

In order to compute the Bergman function of the ball explicitly we have to
determine the coefficients γα.For this purpose we need some lemmas related
to real analysis, these lemmas are formulated in RN . For more details see[34]
(Topics in Real and Functional analysis pages 134-140).

Lemma 3.26. We have that
∫

RN

e−π|x|
2

dx = 1
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Proof. For N = 1 we have

I =

∫

R
e−π|x|

2

dx = 2

∫ ∞

0

e−π|x|
2

dx

︸ ︷︷ ︸

J

By Fubini's theorem we have

J2 =

(∫ ∞

0

e−π|x|
2

dx

)2

=

∫ ∞

0

∫ ∞

0

e−π(x
2+y2)dxdy

Let now:

ϕ : [0,
π

2
]× [0,∞[→ [0,∞[×[0,∞[

(θ, r) → (r cos(θ), r sin(θ))

ϕ is a C∞- diffeomorphism and its Jacobian is

Jϕ(r, θ) =
∣
∣
∣
∣

∂θϕ1 ∂θϕ2

∂rϕ1 ∂rϕ2

∣
∣
∣
∣
= −r

By the measure transformation's theorem (or change of variables theorem)we
obtain:

J2 =

∫ π
2

0

∫ ∞

0

e−π(r
2 cos2 θ+r2 sin2 θ)|Jϕ|drdθ

=

∫ π
2

0

∫ ∞

0

e−πr
2

rdrdθ =
1

4

Thus J = 1
2
and therefore I = 1.

For N ≥ 1 applying Fubini once more we obtain

∫

RN

e−π|x|
2

dx =

∫

R
e−πx

2

dx . . .

∫

R
e−πx

2

dx = 1

Let σ the unique rotationally invariant area measure on SN−1 = ∂BN i.e
the measure of the unit sphere in RN and let ωN−1 = σ(SN−1)
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Lemma 3.27. We have

ωN−1 =
2π

N
2

Γ(N
2
)

where

Γ(x) =

∫ ∞

0

tx−1e−tdt

Proof. For this proof I follow [25]. Using polar coordinates we have

1 =

∫

Rn

e−π|x|
2

dx

=

∫

SN−1

dσ

︸ ︷︷ ︸

ωN−1

∫ ∞

0

e−πr
2

rN−1dr

=
ωN−1

2π
N
2

∫ ∞

0

e−ss
N
2
−1ds

︸ ︷︷ ︸

Γ(N
2
)

The last equality is obtained by setting s = πr2.

Now return to B ⊆ Cn.We set

η(k) =

∫

∂B
|z1|2kdσ ,N(k) =

∫

B
|z1|2kdλ(z)

Lemma 3.28. We have

η(k) = πn
2k!

(k + n− 1)!

and

N(k) = πn
k!

(k + n)!

Proof. Polar coordinates again show that η(k) = 2(k + n)N(k).So it suffices
to compute the N(k).
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Let z = (z1 . . . zn) = (z, z′).

N(k) =

∫

|z|<1

|z1|dλ(z)

=

∫

|z′|<1

(
∫

|z1|≤
√

1−|z′|2
|z1|2kdλ(z1)

)

dλ(z′)

= 2π

∫

|z′|<1

∫
√

1−|z′|2

0

r2krdrdλ(z′)

= 2π

∫

|z′|<1

(1− |z′|2)k+1

2k + 2
dλ(z′)

=
π

k + 1
ω2n−3

∫ 1

0

(1− r2)k+1r2n−3dr

=
π

2(k + 1)
ω2n−3

∫ 1

0

(1− s)k+1sn−1ds

2s

=
π

2(k + 1)
ω2n−3β(n− 1, k + 2)

Where β is the classical Euler function defined by

β(x, y) =

∫ 1

0

tx−1(1− t)y−1dt

and characterized by the fundamental identity

β(x, y) =
Γ(x)Γ(y)

Γ(x+ y)

Using this formula and the fact that Γ(n+ 1) = n! we obtain

N(k) =
π

2(k + 1)
ω2n−3

Γ(n− 1)Γ(k + 2)

Γ(n+ k + 1)

=
π

2(k + 1)

2πn−1

Γ(n− 1)

Γ(n− 1)Γ(k + 2)

Γ(n+ k + 1)

=
πnk!

(k + n)!

This leads to the desired result.

Lemma 3.29. Let z ∈ B ⊆ Cn and 0 < r < 1. The symbol I denotes the
point (1, 0, . . . 0). We have

KB(z, rI) =
n!

πn
1

(1− rz1)n+1
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Proof.

KB(z, rI) =
∑

α

zα(rI)
α

γα
=

∞∑

k=0

zk1r
k

N(k)

=
1

πn

∞∑

k=0

(rz1)
k (k + n)!

k!

=
n!

πn

∞∑

K=0

(rz1)
k

(
k + n
n

)

=
n!

πn
1

(1− rz1)n+1

In the last step we used the fact that |rz1| < 1,hence

1

1− rz1
=

∞∑

k=0

(rz1)
k

Set y = rz1 and differentiate n times with respect to this variable.

Theorem 3.30. For each z, ω ∈ B we have

KB(z, ω) =
n!

πn
1

(1− zω̄)n+1

where
zω̄ = z1ω̄1 . . . znω̄n

Proof. Let z = rz̃ ∈ B where r = |z| and |z̃| = 1.Fix also,ω ∈ B. Choose an
unitary rotation ρ such that ρ(z̃) = I,

KB(z, ω) = KB(rz̃, ω) = KB(rρ
−1I, ω) = KB(rI, ρω) = KB(ρω, rI)

=
n!

πn
1

(1− r(ρω)1)n+1
=
n!

πn
1

(1− rI(ρω))n+1

=
n!

πn
1

(

1− (rρ−1I)(ω)
)n+1 =

n!

πn
1

(

1− zω
)n+1

This gives the desired result.

Remark 3.31. An other method to compute the A2-norm of the monomials
was presented in [11], we recall it in the next section with more details.

Remark 3.32. An other approach of the Bergman kernel of the ball in Cn

can be found in [32].
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3.6 Bergman kernel of the ellipsoid

The main reference of this paragraph is[11]:
In the sequel we prove some results giving explicitly the Bergman kernel
function of special domains namely ellipsoid and annulus.
Let p positive number. We consider the domain in Euclidean space Cn+m

where m,n are integers,

Ωp =
{

(z, ω) ∈ Cn × Cm / ‖z‖2 + ‖ω‖2p < 1
}

For p=1, Ωp is nothing than the unit ball in Cn+m

In proposition (3.22) we have shown that whenever {Φn} is an ON basis of
the the Hilbert space A2(Ω) then the orthonormal series,

∑

n

Φn(z)Φn(ω)

sums uniformly to the Bergman kernel function. We will use this method to
compute the desired function.
For this purpose we need some preparation of calculus.
Notations
i) An element ζ ∈ Cn+m will be denoted as follows ζ = (z, ω) where z ∈ Cn

and ω ∈ Cm.
ii)In the same way we denote a multi-index µ ∈ Nn+m by µ = (α, γ),α ∈ Nn

and γ ∈ Nm.
According to these notations we write,ζµ = (zα, ωγ).
iii) To avoid any confusion, for a multi-index α = (α1 . . . αn) we denote
α + 1 = (α1 + 1 . . . αn + 1).

Definition 3.33. The Euler Gamma function is defined by

Γ(x) =

∫ ∞

0

tx−1e−tdt.

this function is well defined, continuous on its domain of definition ]0,∞[
and even of class C∞.
This function has the basic property that, for x ∈]0,∞[,

Γ(x+ 1) = xΓ(x).

Thus, for every integer n,
Γ(n+ 1) = n! .



3.6. Bergman kernel of the ellipsoid 62

and for every s, k ∈ R+.

s(s+ 1) . . . (s+ k − 1)Γ(s) = Γ(s+ k). (3.6.1)

The Gamma function can be seen as an extension of the factorial function
to non-negative real numbers.
For multi-index α = (α1 . . . αn), αj ∈ R+, we set:

Γ(α) =
n∏

j=1

Γ(αj).

Lemma 3.34. For every positive real numbers a,b. We have:

β(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

Proof. By making the change of variable t = s2

Γ(a) = 2

∫ ∞

0

s2a−1e−s
2

Now Fubini's theorem and polar coordinates give:

Γ(a)Γ(b) = 4

∫ ∞

0

∫ ∞

0

s2a−1t2b−1e−(s2+t2)dsdt

= 4

∫ ∞

0

∫ π
2

0

r2(a+b)−1e−r
2

cos2a−1(θ)sin2b−1(θ)drdθ

=
(

2

∫ ∞

0

r2(a+b)−1e−r
2

dr

︸ ︷︷ ︸

Γ(a+b)

)(

2

∫ π
2

0

cos2a−1(θ)sin2b−1(θ)drdθ
)

︸ ︷︷ ︸

I

Setting y = sinθ, I becomes:

I =

∫ 1

0

(1− y2)a−1y2b−22ydy

u=y2

=

∫ 1

0

(1− u)a−1ub−1du = β(a, b).

Definition 3.35. In Rn we consider the unit ball,

Bn =
{

X = (x1 . . . , xn) /

n∑

j=1

x2j < 1
}
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The unit sphere will be denoted by Sn−1. When we wish to consider the subset
of these sets for which all the variables are positive, we use + as a subscript.
For α = (α1 . . . αn), αj ∈ R+,we define:

B(α) = 2n|α|
∫

Bn

r2α−1dr.

For n = 2 and α = (α1, α2) we retrieve the usual β function. Indeed,

B(α1, α2) = 4(α1 + α2)

∫

B(0,1)
x2α1−1y2α2−1dxdy

= 4(α1 + α2)

∫ 1

0

∫ √
1−x2

0

x2α1−1y2α2−1dxdy

=
α1 + α2

α2

∫ 1

0

x2α1−2(1− x2)α2dx

u=x2
=

α1 + α2

α2

∫ 1

0

uα1−1(1− u)α2du

︸ ︷︷ ︸

J(α1,α2)

.

J(α1, α2) = β(α1, α2 + 1)

=
Γ(α1)Γ(α2 + 1)

Γ(α1 + α2 + 1)

=
α2Γ(α1)Γ(α2)

(α1 + α2)Γ(α1 + α2)

Hence
B(α1, α2) = β(α1, α2).

Lemma 3.36. For α = (α1 . . . αn), αj ∈ R+ n-tuples of real positive num-
bers. We have,

B(α) =

∏n
j=1 Γ(αj)

Γ(|α|) .

Remark 3.37. For the proof of this lemma we need the following identity

∫

Bn

fdλ = 2n

∫ 1

0

r2n−1dr

∫

Sn−1

f(rζ)dσ(ζ).

A proof of this statement can be found in the book of Rudin [32].
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Proof. By definition we have:

Γ(α) =
n∏

j=1

Γ(αj) (3.6.2)

= 2n
∫ ∞

0

x2α1
1 e−x

2
1dx1 . . .

∫ ∞

0

x2αn

n e−x
2
ndxn (3.6.3)

= 2n
∫

]0,∞[n
x2α−1e−‖x‖2dx (3.6.4)

= 2n
∫ ∞

0

∫

Sn−1
+

e−ρ
2

ρ2|α|−1ω2α−1dρdσ(ω) (3.6.5)

= 2n−1Γ(|α|)
∫

Sn−1
+

ω2α−1dσ(ω). (3.6.6)

Using now spherical coordinates: X = ρω, where ρ ∈]0, 1[ and ω ∈ Sn−1(the
unit sphere in Rn)we obtain,

B(α)

2n|α| =
∫

Bn
+

X2α−1dX (3.6.7)

=

∫ 1

0

∫

Sn−1

ρ2|α|−1ω2α−1dρdσ(ω) (3.6.8)

=
1

2|α|

∫

Sn−1
+

ω2α−1dσ(ω). (3.6.9)

Thus:
∫

Sn−1
+

ω2α−1dσ(ω) =
B(α)

2n−1
. (3.6.10)

Combining (3.6.6)and (3.6.10) we obtain our equality.

Next we derive some results related to Taylor expansion of some function
helping us to compute the norm of the monomials in L2(Ωp).

Lemma 3.38. For ‖x‖ < 1 and s > 0 we have

1

(1− ‖x‖2)s
=
∑

α

Γ(|α|+ s)

Γ(s)
∏n

i=1 Γ(αi + 1)
x2α.
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Proof. For |t| < 1 and s > 0.Consider the function f(t) = 1
(1−t)s .In a neigh-

bourhood of zero, f has the Taylor expansion:

f(t) =

∞∑

k=0

f (k)(0)

k!
tk (3.6.11)

=
∞∑

k=0

Γ(k + s)

Γ(s)Γ(k + 1)
tk. (3.6.12)

This is since f (k)(0) = s(s+ 1) . . . (s+ k) = Γ(s+k)
Γ(s)

.
Now using the fact that

‖x‖2k =
∑

|α|=k

Γ(|α|+ 1)
∏

Γ(αi + 1)
x2k,

and substitute t by ‖x‖2 in (3.6.12) we obtain:

f(‖x‖2) =
∞∑

k=0

Γ(k + s)

Γ(s)Γ(k + 1)

∑

|α|=k

Γ(|α|+ 1)
∏n

i=1 Γ(αi + 1)
x2k

=
∑

α

Γ(|α|+ 1)
✘
✘

✘
✘✘Γ(k + 1)

Γ(s)
✘
✘
✘
✘✘Γ(k + 1)
∏n

i=1 Γ(αi + 1)
x2k.

Lemma 3.39. Let qd be a polynomial of degree d in one variable. Then there
are constants ck such that

∑

γ

Γ(|γ|+ s)
∏n

i=1 Γ(αi + 1)
qd(|γ|)x2γ =

d∑

k=0

ck

( 1

1− ‖x‖2
)s+k

. (3.6.13)

Proof. If qd is constant the previous lemma shows that:

Γ(s)

(1− ‖x‖2)s
=
∑

γ

Γ(|γ|+ s)
∏n

i=1 Γ(γ + 1)
x2α.

For the vector space of polynomials of degree d in |γ|,the set

{1, |γ|+ s, . . .

d−1∏

l=0

(|γ|+ s+ l)}
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is a basis, since all entries are of different degree thus they are linearly inde-
pendent.
There exist bk such that

qd(|γ|) =
d−1∑

k=−1

bk

k∏

l=0

(|γ|+ s+ l)

with the convention that the product equals 1 for k = −1.
Now plug this equality in the left of (3.6.13)and write,

k∏

l=0

(|γ|+ s+ l) =
Γ(|γ|+ s+ k + 1)

Γ(|γ|+ s)

we obtain:

∑

γ

Γ(|γ|+ s)
∏n

i=1 Γ(αi + 1)
qd(|γ|)x2γ =

∑

γ

Γ(|γ|+ s)
∏n

i=1 Γ(αi + 1)

d−1∑

k=−1

bk
Γ(|γ|+ s+ k + 1)

Γ(|γ|+ s)
x2γ

=

d∑

k=0

bk
∑

γ

Γ(|γ|+ s+ k)
∏n

i=1 Γ(αi + 1)
x2γ

︸ ︷︷ ︸
Γ(s+k)

(1−‖x‖2)s+k

Our equality follows by setting ck = bkΓ(s+ k).

Lemma 3.40. Let ζ = (z, ω) ∈ Cn+m and consider the set of monomials
{ζµ, µ = (γ, α), γ = (γ1 . . . γn) and α = (α1 . . . αm)}.
This set is an orthogonal complete set in A2(Ωp).

Proof. Let µ = (γ, α) and µ′ = (γ′, α′) two multi-indices. Then,

〈

ζµ, ζµ
′
〉

=

∫

Cn+m

ζµζµ′dλ(ζ)

=

∫

Cn

zαzα
′

dλn(z)

∫

Cm

ωγωγ
′

dλm(z)

=

∫

C
zα1
1 z1

α′
1dz1 . . .

∫

C
zαn

n zn
α′
ndzn

∫

C
ωγ11 ω1

γ′1dω1 . . .

∫

C
ωγmm ωm

γ′mdωm.

Each integral above can be computed using polar coordinates and it follows
that, unless αj = α′

j: ∫

C
z
αj

j zj
α′
jdzj = 0,
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and unless γk = γ′k: ∫

C
ωγkk ωk

γ′kdωk = 0.

This shows that the set is orthogonal.
It is straightforward to see that Ωp is a Reinhardt domain, thus each holomor-
phic function has a power series expansion uniformly convergent throughout
Ωp.Hence

〈

f, ζµ
〉

=

∫

Cn+m

∑

θ

Cθζ
θζ
µ
dλ(ζ)

= Cµ

∫

Cn+m

ζµζ
µ
dλ(ζ).

Thus
〈

f, ζµ
〉

= 0 implies Cµ = 0 . Hence f ≡ 0 and the set is complete.

Now our task is to compute the norm of the monomials in order to get
an ON basis.

Lemma 3.41. Let {zαωγ} be as above.Then

‖zαωγ‖2L2(Ωp)
=
πn+m

p

∏n

i=1 Γ(αi + 1)
∏n

i=1 Γ(γi + 1)Γ( |γ|+m
p

)

Γ(|γ|+m)Γ(|α|+ n + 1 + |γ|+m
p

)
.

Proof. For the proof we will use the same techniques as before.

‖zαωγ‖2L2 =

∫

Ωp

|z|2α|ω|2γdλ(z)dλ(ω). (3.6.14)

Writing again,

z = r exp(iθ) where

{

r = (r1, . . . rn)

θ = (θ1 . . . θn)

and

ω = s exp(iφ)

{

s = (s1, . . . sm)

θ = (φ1 . . . φm)

After integrating out the angular variables,(3.6.14) becomes:

(2π)n+m
∫

‖r‖2+‖s‖2p<1+

r2α+1s2γ+1dλ(r)dλ(s). (3.6.15)
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Introducing the spherical coordinates in the s variable

s = φ(ρ, ω) = ρω,

0 < ρ < 1 and ρ ∈ Sm−1
+ .

The Jacobian of this diffeomorphism is |Jφ| = ρm−1.
(3.6.15)becomes,

(2π)n+m
∫

‖r‖2+|ρ2p<1+

∫

Sm−1
+

r2α+1ρ2|γ|+2m−1ω2γ+1dλ(r)dρdσ(ω). (3.6.16)

Now we make the change the change of variable

x = ρp,

(3.6.16) becomes:

(2π)n+m

p

∫

‖r‖2+|x|2<1+

∫

Sm−1
+

r2α+1x
2|γ|+2m

p
−1ω2γ+1dλ(r)dxdσ(ω). (3.6.17)

For the integral over the sphere we use the equality (3.6.10)to obtain
∫

Sm−1

ω2(γ+1)−1dσ(ω) =
B(γ + 1)

2m−1
(3.6.18)

=
1

2m−1

∏m

i=1 Γ(γi + 1)

Γ(|γ|+m)
. (3.6.19)

For the rest of the integral define,

ζ = (α + 1,
|γ|+m

p
) and y = (r1 . . . rn, x),

and use(3.6.9)for the ball in Rn+1 we obtain,
∫

Bn+1
+

y2ζ−1dλ(y) =
B(ζ)

2n+1|ζ | , (3.6.20)

where

|ζ | = |α|+ n + 1 +
|γ|+m

p
.

Thus(3.6.20)becomes:

∏n
i=1 Γ(αi + 1).Γ( |γ|+m

p
)

Γ(|α|+ n+ 1 + |γ|+m
p

)
. (3.6.21)

(3.6.19)and(3.6.21)lead to the desired result.
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We are now ready to compute explicitly the Bergman kernel function of
our domain.
In view of lemma(3.40), the set

{ζµ, ζ ∈ Cn+m, µ ∈ Nn+m}
is an ON basis of A2(Ωp). Thus

KΩp(ζ, ζ̄) =
∑

µ

|ζµ|2
‖ζµ‖2L2

. (3.6.22)

Theorem 3.42. The Bergman kernel of Ωp is given by,

KΩp

(
(z, ω), (z, ω)

)
=

n+1∑

k=0

ck

(
1− ‖z‖2

)−n−1+ 1
p

(
(1− ‖z2‖) 1

p − ‖ω‖2
)m+k

. (3.6.23)

Proof. It remains to sum (3.6.22).For this purpose we will use our results.
First we sum out the z:

∑

α,γ

|zαωγ|2
‖zαωγ‖2L2

=
p

πn+m

∑

α,γ

Γ(|γ|+m)Γ
(

|α|+ n+ 1 + |γ|+m
p

)

∏n
i=1 Γ(αi + 1)

∏n
i=1 Γ(γi + 1)Γ( |γ|+m

p
)
|z|2α|ω|2γ

(3.6.24)

=
p

πn+m

∑

γ

Γ(|γ|+m)Γ
(

n+ 1 + |γ|+m
p

)

∏n

i=1 Γ(γi + 1)Γ( |γ|+m
p

)
|ω|2γ 1

(1− ‖z‖)n+1+
m+|γ|

p

.

(3.6.25)

Now using(3.6.1)we obtain:

Γ
(

n+ 1 +
|γ|+m

p

)

= Γ
( |γ|+m

p

) n∏

k=0

( |γ|+m

p
+ k
)

(3.6.26)

= Γ
( |γ|+m

p

) 1

pn+1

n∏

k=0

(

|γ|+m+ kp
)

(3.6.27)

The product in(3.6.27) is a ploynomial of degree n+1 in |γ|, say qn+1(|γ|).
By inserting(3.6.27)in(3.6.25)we have

p

πn+m

∑

γ

Γ(|γ|+m)
∏n

i=1 Γ(γi + 1)
qn+1(|γ|)|ω|2γ

1

(1− ‖z‖2)n+1+
m+|γ|

p

(3.6.28)

=
p

πn+m

∑

γ

Γ(|γ|+m)
∏n

i=1 Γ(γi + 1)
qn+1(|γ|)

(

|ω|2

(1− ‖z‖2) 1
p

)γ

(1− ‖z‖2)−n−1−m
p

(3.6.29)
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The expression above conforms to the hypothesis of lemma(3.39). We can
thus invoke the result to obtain the following expression

1

(1− ‖z‖2)n+1+m
p

n+1∑

k=0

ck

(

1

1− ‖ω‖2

(1−‖z‖2)
1
p

)m+k

Multiplying numerator and denominator of each term in the sum by

(1− ‖z‖2)
m+k

p

yields the desired result.
The information on the constants follows from the explicit nature of the
polynomial qn+1(|γ|). For more details see[11] page 31 to 33.

3.7 The Fock space

In this paragraph, we study some examples of Fock spaces in one and several
variables. This subject was studied in numerous books and papers, in this
work we follow [8] and [8].

Definition 3.43. Let Ω ⊆ Cn be a domain.
(a)A weight function is a positive measurable function f : Ω → R+

(b)A weight is a positive measure µ on the Borel σ-algebra B(Ω) such that,
for each A ∈ B(Ω) we have

µ(A) =

∫

A
f(z)dA(z)

where dA is the usual Lebesgue area measure in the complex plane.
(c)The weighted space L2(Cn, f) is the space of all square integrable functions
with respect to the weighted measure dµ = fdA
In order to get a non-trivial L2(Cn) of entire functions, we need a reasonable
decay of the weight function. If for example the weight has only a polynomial
decay the space will be finite dimensional.
(d)Let f(z) = e−α|z|

2
(Gaussian weight)

The Fock space F 2
α(C

n, e−α|z|
2
)is the space of all holonorphic square integrable

functions with respect to the measure dλα = fdA in other words

F
2
α(C

n, e−α|z|
2

) =
{

ϕ holomorphic on C and

∫

Cn

|ϕ(z)|2e−α|z|2dλα <∞
}
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On this space we define an inner product via

〈

f, g
〉

Fα

=

∫

Cn

f(z)g(z)dλα

and
‖f‖2

Fα
=
〈

f, f
〉

Fα

We start with the one dimensional case.

Theorem 3.44. With respect to the this inner product, Fα(C, e−α|z|
2
) be-

comes a Hilbert space.

In order to prove this theorem we need the following two results.

Proposition 3.45. For each f ∈ F 2
α(C, e

−α|z|2) we have

|f(z)| ≤ e
α
2
|z|2 ‖f‖

F2
α

For the proof we follow [37].

Proof. For z = 0,the mean value theorem gives, for r > 0

f(0) =
1

2π

∫ 2π

0

f(reit)ieitdt

Thus

|f(0)| ≤ 1

2π

∫ 2π

0

|f(reit)|dt

Cauchy−Schwarz
≤ 1

2π

(∫ 2π

0

|f(reit)|2dt
) 1

2
(∫ 2π

0

1dt
) 1

2

Thus

|f(0)|2 ≤ 1

2π

∫ 2π

0

|f(reit)|2dt

Now multiply by re−αr
2
and integrating over (0,∞) we obtain

|f(0)|2
∫ ∞

0

re−αr
2

dr

︸ ︷︷ ︸
1
2α

≤ 1

2π

∫ ∞

0

∫ 2π

0

|f(reit)|2re−αr2dtdr
︸ ︷︷ ︸

∫
C
|f(z)|2e−α|z|2dz=‖f‖2

F2
α
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For an arbitrary z, define G(ω) = f(z − ω)eαωz−
α
2
|z|2

By the preceding we have |G(0)| ≤ ‖G‖
F2

α

‖G‖2
F2

α
=
α

π

∫

C

∣
∣
∣f(z − ω)

∣
∣
∣

2∣
∣
∣e2αωz−α|z|

2−α|ω|2
∣
∣
∣dA(ω)

=
α

π

∫

C

∣
∣
∣f(z − ω)

∣
∣
∣

2

e−α|ω|
2+|z|2−2Re(ωz)dA(ω)

=
α

π

∫

C

∣
∣
∣f(z − ω)

∣
∣
∣

2

e−α|z−ω|
2

dA(ω)

ζ=z−ω
=

α

π

∫

C

∣
∣
∣f(ζ)

∣
∣
∣

2

e−α|ζ|
2

dA(ω)

= ‖f‖2
F2

α

Now replacing G(0) by f(z)e−
α
2
|z|2, we obtain the desired estimate.

Lemma 3.46. The multiplication operator

M : L2(C) → L2
α(C)

defined via

M(f)(z) :=

√
π

α
f(z)e

α
2
|z|2

is an isometry between L2(C) and L2
α(C)

Proof. Just remark that

‖M(f)‖2L2
α
=
π

α

α

π

∫

C
|f(z)|2eα|z|2e−α|z|2dA(z)

= ‖f‖2L2

and that the inverse operatorM−1 is simply multiplication by
√

α
π
e−

α
2
|z|2

Theorem 3.47. The Fock space F 2
α is complete hence a Hilbert space.

Proof. Let (fn)n be a Cauchy sequence in F 2
α , proposition(3.45)shows that

(fn)n is uniformly Cauchy on each compact subset of C. Indeed, let K ⊆ C
be compact and set

M = sup{eα|z|2, z ∈ K}
For n > m ∈ N we have

supz∈K|fn(z)− fm(z)| ≤M ‖fn − fm‖F2
α
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It follows that (fn)n converges uniformly to some g which is analytic by the
Weierstrass theorem. Our task now is to show that g is square integrable.
(fn)n is Cauchy in L2

α since F 2
α ⊆ L2

α.We will show that this sequence is
Cauchy in L2(C).
Since the multiplication operator defined in lemma (3.46) is invertible, it
follows that (M−1fn)n is Cauchy in L2(C) which is complete hence it con-
verges in norm of L2 to some function say M−1f .This leads to the existence
of a subsequence converging almost everywhere to M−1f(see Theorem 3.12
in[30]). Thus (fn)n converges to f almost everywhere, and (fn)n converges to
g on compact subsets, so we can identify f with an analytic function g. This
achieves the proof.

Remark 3.48. Proposition (3.45) shows that the evaluation maps are bounded
on F 2

α which leads to the existence of the Bergman kernel of the space F 2
α

say Kα.
Our next aim is to give an explicit formula for this kernel function by means
of ON basis.

Proposition 3.49. For any non-negative integer n.

Let, en(z) =
√

αn

n!
zn.

Then the set {en} is an ON basis for F 2
α

Proof. Polar coordinates show that this set is an orthonormal set.
Given f ∈ F 2

α and n ≥ 0, dominated convergence gives

〈

f, en

〉

F2
α

=

∫

C
f(z)en(z)dλα

= lim
R→∞

∫

|z|<R
f(z)en(z)dλα

Since the Taylor series
∞∑

k=0

akz
k

converges uniformly on |z| < R we obtain,

lim
R→∞

∫

|z|<R
f(z)en(z)dλα =

∞∑

k=0

ak lim
R→∞

∫

|z|<R
zken(z)dλα
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Using polar coordinates again, we obtain

〈

f, en

〉

F2
α

=

∫

C
f(z)en(z)dλα

= lim
R→∞

∫

|z|<R
f(z)en(z)dλα

= an

∫

C
znen(z)dλα(z)

Therefore, the condition that
〈

f, en

〉

F2
α

for all n ≥ 0 implies that an = 0 for

all n ≥ 0 which in turn implies that f = 0. This shows that the system {en}
is complete in F 2

α.

Now, since the series
∞∑

n=0

en(z)en(ω)

sums uniformly to Kα on compact subsets of Ω× Ω, we obtain,

Kα(z, ω) =

∞∑

n=0

αn

n!
znωn

= eαzω

Now, we study an example of Fock space in several variables.
Consider the space

F
2(Cn, e−|z|2) =

{

ϕ holomorphic on Cnand

∫

C
|ϕ(z)|2e−|z|2dλα <∞

}

Define the scalar product

〈

f, g
〉

F

=

∫

Cn

f(z)g(z)e−|z|2dλ(z)

and
‖f‖2

F
=
〈

f, f
〉

F

Proposition 3.50. With respect to the scalar product defined above,
F 2(Cn, e−|z|2)becomes a Hilbert space.

Proof. We show that the Fock space is a closed subspace of L2(Cn, f) us-
ing the same arguments used in the proof of corollary(3.5), just replace the
Lebesgue measure by the weighted measure dµ.
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Similar discussion as in the second paragraph leads to the existence of the
Bergman Kernel of the Fock space. Our next aim is to give an explicit formula
of that kernel by means of an ON-basis of the Hilbert space F (Cn, e−|z|2).

Proposition 3.51. The normalized monomials
{

φα = zα

‖zα‖ , α = (α1 . . . , αn)
}

form an ON-basis of the Fock space.

Proof. The proof is analogous to the one done in(3.25). It is easy to show
that each φα belongs to F and that the elements of this set are orthogonal
to each other.

We can even show that the series
∑

α

φα(z)φα(ω)

sums uniformly on compact subsets of Cn to the Bergman kernel of the Fock
space. Now,our task is to compute the norm of the monomials.

Lemma 3.52. For every multi-index α = (α1 . . . , αn) we have

‖zα‖2
F

= α!

Proof. An easy computation shows that

‖zα‖2
F

=
1

πn

∫

Cn

|z|2αe−|z|2dλ(z)

Fubini
=

1

πn

k=n∏

k=1

∫

C
|zk|2αke−|zk|2dλ(zk)

=
1

πn
πnα1! . . . αn!

= α!

Polar coordinates gives that for every 0 ≤ m ≤ n

∫

C
|z|2αme−|z|2dλ(z) =

∫ 2π

0

∫ ∞

0

r2αme−r
2

rdrdθ

= π

∫ ∞

0

r2αme−r
2

2rdr

s=r2
= π

∫ ∞

0

sαme−sds

= πΓ(αm + 1) = παm!
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Lemma 3.53. The Bergman kernel of the Fock space is given by,
KF (z, ω) = ezω̄, for every z, ω ∈ Cn.

Proof. The set { zα

‖zα‖ , αmulti− index} is an ON basis of the Fock space thus
the Bergman kernel has the form

KF (z, ω) =
∑

α

zα

‖zα‖
ωα

‖ωα‖

=
∑

α

(zω)α

α!

= ezω



Chapter 4

Bergman Kernel and the d-bar
problem

In this chapter we are going to give an overview of the d-bar Neumann prob-
lem in one and several complex variables, this theme still be a huge area
of mathematical research and numerous books and papers were written in
this subject. I give just a warm up to the subject with introducing its rela-
tionship with our main topic of the work namely the Bergman kernel. We
will show how to take profit of the Bergman projection to solve the one di-
mensional inhomogeneous ∂̄ problem on the unit disc of the plane. We will
show that in this case the canonical solution operator is compact and even
Hilbert-Schmidt. However, if the dimension is grater than one, this operator
fails to be compact. We prove furthermore that the canonical solution oper-
ator on (0,1)-forms with Fock space coefficients is also non compact. Several
investigations on compactness of the ∂̄ were made, see for example [17], [?] ,
[38] and [33].

4.1 Introduction

Let Ω ⊆ Cn be an open subset and consider f : Ω → C a C1 map.For each
component we write zj = xj + iyj, let p ∈ Ω, the differential of f at p is:

df(p) =
n∑

j=1

( ∂f

∂xj
(p)dxj +

∂f

∂yj
(p)dyj

)

Write now
dzj = dxj + idyj dz̄j = dxj − idyj

77
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and using the Wirtinger symbols,

∂f

∂z
=

1

2

(∂f

∂x
− i

∂f

∂y

)

∂f

∂z
=

1

2

(∂f

∂x
+ i

∂f

∂y

)

We can rewrite the differential of f in the form

df(p) =
n∑

j=1

( ∂f

∂zj
(p)dzj +

∂f

∂z̄j
(p)dz̄j

)

= ∂f(p) + ∂̄f(p)

Definition 4.1. A general(p,q)-differential form is given by

ω =
∑

|J |=p |K|=q

′aJ,KdzJ ∧ dz̄K

where the aJ,K are C1 functions on Ω. The prime symbol means that we sum
over all increasing multi-indices

J = (j1 . . . jp) and K = (k1 . . . kq)

The derivative of this form is defined by

dω =
∑

|J |=p |K|=q

′daJ,K ∧ dzJ ∧ dz̄K =
∑

|J |=p |K|=q

′(∂aJ,K + ∂̄aJ,K) ∧ dzJ ∧ dz̄K

We denote
∂ω =

∑

|J |=p |K|=q

′∂aJ,K ∧ dzJ ∧ dz̄K

and
∂̄ω =

∑

|J |=p |K|=q

′∂̄aJ,K ∧ dzJ ∧ dz̄K

Definition 4.2. C∞
0 (Ω)denotes the set of all infinitely differentiable maps

with compact support in Ω. A function f ∈ L2(Ω) has a derivative of order
α in the distributional sense. If for each φ ∈ C∞

0 (Ω), there exists a function
g ∈ L2(Ω) such that

∫

Ω

f∂αφdλ = (−1)|α|
∫

Ω

φgdλ

We denote
g := ∂αf

in the distributional sense.
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Definition 4.3.

L2
(0,q)(Ω) =

{

u =
∑

|K|=q

′uKdz̄K , uK ∈ L2(Ω)
}

The topology of this space is defined via the scalar product

< u, v >=
∑

|K|=q
′
∫

Cn

uKvKdλ

Where

u =

′∑

K

uKdz̄K and v =

′∑

K

vKdz̄K

The ∂̄ acts on this space in the following way

∂̄u =

n∑

j=0

∑

|K|=q

′∂uK
∂z̄j

dz̄j ∧ dz̄K (∗)

The derivative is again in the distributional sense.
The domains of this operator consists of all (0,q) forms with L2 coefficients
such that the right hand-side of (∗) belongs to L2

(0,q+1)(Ω).

On its domain ∂̄ acts as an unbounded, densely defined and closed operator
therefore it has an adjoint operator defined on L2

(0,q+1)(Ω),denoted by ∂̄∗.
The complex Laplacian is defined by

� = ∂̄∂̄∗ + ∂̄∗∂̄

A self contained and an elegant discussion of the properties of � can be found
in[21].
In the sequel we focus on (0,1) forms.
For f ∈ L2(Ω),the ∂̄ acts as follows:

∂̄f =

n∑

i=1

∂fi
∂z̄i

dz̄i

4.2 Canonical solution operator with Bergman

space coefficients

Let Ω be a bounded domain in Cn.
As usual we consider:

∂̄ : Dom(∂̄) ⊆ L2(Ω) → L2
(0,1)(Ω)
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We consider the problem:
{

∂̄u = g g =
∑n

j=1 gjdz̄j , gj ∈ A2(Ω)

u ⊥ (Ker∂̄)
(4.2.1)

The second condition makes the solution unique.
A bounded operator

S1 : L
2
(0,1)(Ω) → L2(Ω)

is a solution operator to ∂̄ if

∂̄S1g = g, for every g ∈ L2
(0,1)(Ω)

If
S1g ⊥ Ker(∂̄)

is valid as well, then we call S1 the canonical solution operator.

Proposition 4.4. Let g =
∑n

j=1 gjdz̄j be a (0,1)form such that gj ∈ A2(Ω).
The canonical solution operator has the following form:

S1g(z) =

∫

Ω

K(z, ω) < g(ω), z − ω > dλ(ω). (4.2.2)

K is the Bergman kernel of the domain and

< g(ω), z − ω >=

n∑

j=1

gj(ω)(zj − ωj)

.

Proof. Since gj ∈ A2(Ω) then

gj(ω) =

∫

Ω

K(ω, ζ)gj(ζ)λ(ζ) (∗)

Now set

v(z) =

n∑

j=1

zjgj(z)

we get:

∂̄v =
n∑

j=1

∂

∂z̄j
(z̄jgj)dz̄j

=

n∑

j=1

gj(z)dz̄j = g
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Hence the canonical solution operator has the form S1g = (I−P )(z̄g) where
P is the Bergman projection defined in (3.3).
The identity (∗) gives:

S1g(z) = z̄g(z)− P (z̄g)(z)

=

∫

Ω

n∑

j=1

z̄jK(z, ω)gj(ω)dλ(ω)−
∫

Ω

K(z, ω)

n∑

j=1

ω̄jgj(ω)dλ(ω)

=

∫

Ω

K(z, w)
n∑

j=1

gj(ω)(z̄j − ω̄)dλ(ω)

=

∫

Ω

K(z, ω) < g(ω), z − ω > dλ(ω)

Definition 4.5. Recall that the Bergman projection is defined as follows:

P : L2(Ω) → A2(Ω)

f 7→ Pf

Pf(z) =

∫

Ω

K(z, ω)f(ω)dλ(ω)

K is the corresponding Bergman kernel of the domain.
We define the Hankel operator with symbol ψ (satisfying suitable conditions)by

Hψ : A2(Ω) → L2(Ω)\A2(Ω)

g 7→ Hψg := (I − P )(ψg)

A simple calculation shows that

Hψg(z) =

∫

Ω

(

ψ(z)− ψ(ω)
)

K(z, ω)dλ(ω)

Remark 4.6. The canonical solution operator to ∂̄ restricted to the Bergman
space A2 can be interpreted as a Hankel operator with symbol z̄

Hz̄g =
(

I − P
)

(z̄g)

Remark 4.7. Investigations of the solution operator on (0,1)-forms with
entire coefficients are made in[18].

In the next section we will show that, for the unit disc in C the canonical
solution operator restricted to A2(D) is a Hilbert Schmidt operator whereas
for the unit ball in Cn, n ≥ 2, the canonical solution operator fails to be
Hilbert Schmidt. A self contained and elegant survey on this subject can be
found in[17].
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4.3 Inhomogeneous Cauchy-Riemann equation

in one dimension

The following contains a discussion of the inhomogeneous Cauchy-Riemann
equation restricted to holomorphic functions in one complex variable.
Let g ∈ A2(D) and consider the problem

∂f

∂z
= g (4.3.1)

Let P be the Bergman projection defined in (3.3. We define an operator

S : A2(D) → L
2(D)

by S (g)(z) := zg(z)− P (g̃)(z) where g̃(ω) := ωg(ω)
We claim that,S (g)is a solution to (4.3.1). Indeed

∂S (g)

∂z
(z) =

∂zg

∂z
(z)− ∂g̃

∂z
(z)

chain rule
=

∂z

∂z
︸︷︷︸

=1

g(z) +
(

z − 1
) ∂g

∂z
(z)

︸ ︷︷ ︸

=0

= g(z)

S is called the canonical solution operator. In the following we will show
that S is compact and even a Hilbert-Schmidt operator.
Let {φn = zn

cn
, cn = ‖zn‖A2 , n ∈ N}be an ON-basis of A2(D) and define:

φ̃(z) = z̄φ(z).

Theorem 4.8. The canonical solution operator of (4.2.1)is compact.

Proof. In order to prove the result, we will show that S ∗S is compact which
implies that S is also compact(detailed discussion on compact operators and
its properties can be found in[4]chapter 6).
First step
Recall that if ψ ∈ L 2(D) then

P (ψ)(z) =

∫

D
K(z, ω)ψ(ω)dλ(ω)
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Where P is the Bergman projection.
Now let us compute P (φ̃n),

P (φ̃n)(z) =

∫

D
K(z, ω)ωφn(ω)dλ(ω)

=

∫

D

∞∑

k≥0

zkωk

c2k
ω
ωn

cn
dλ(ω)

=

∞∑

k≥0

zk

c2kcn

∫

D
ωk+1ωndλ(ω)

︸ ︷︷ ︸

=0, unless k=n−1

=
zn−1

c2n−1cn

∫

D
ωnωndλ(ω)

︸ ︷︷ ︸

c2n

=
zn−1cn
c2n−1

second step
Let us compute the adjoint operator of S

Let φ ∈ L 2(D), since g , P (g̃) ∈ A2(D) we have:

〈

S g, φ
〉

L 2(D)
=

∫

D
S (g)(ω)φ(ω)dλ(ω)

=

∫

D

(

ωg(ω)− (P g̃)(ω)
)

φ(ω)dλ(ω)

Reproducingformula
=

∫

D

(
∫

D
K(ω, z)g(z)(ω − z)dλ(z)

)

φ(ω)dλ(ω)

Fubini
=

∫

D
g(z)

(
∫

D
K(z, ω)(ω − z)φ(ω)dλ(ω)

)

dλ(z)

=
〈

g,S ∗φ
〉

L 2(D)

Where

S (φ)(z) =

∫

D
K(z, ω)(ω − z)φ(ω)dλ(ω).

For n ≥ 1 we have
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S
∗
S (φn)(ω) = S

∗
(

zφn(z)− P (φ̃n(z)
)

(ω)

= S
∗
(

z
zn

cn
− cn

zn−1

c2n−1

)

=

∫

D
K(z, ω)(z − ω)

(

z
zn

cn
− cn

zn−1

c2n−1

)

dλ(z)

=

∫

D

∑

k≥0

zkωk

c2k
(z − ω)

(

z
zn

cn
− cn

zn−1

c2n−1

)

dλ(z)

This integral will be computed in two steps, first we multiply by z, we may
interchange integral and sum because of uniform convergence to get:

∫

D

∑

k≥0

zkωk

c2k

(

z
zn+1

cn
− cn

zn

c2n−1

)

dλ(z) =
∑

k≥0

ωk

c2k

(∫

D

zk+1zn+1

cn
dλ(z)

︸ ︷︷ ︸

=0unless k=n

−

cn
c2n−1

∫

D
zkzndλ(z)

︸ ︷︷ ︸

=0unless k=n

)

=
ωnc2n+1

c3n
− ωn

c2n−1

(4.3.2)
Next we multiply by ω and we get,

∫

D

∑

k≥0

zkωk+1

c2k

(

z
zn

cn
− cn

zn−1

c2n−1

)

dλ(z) =
∑

k≥0

ωk+1

c2k

(∫

D

zk+1zn

cn
dλ(z)

︸ ︷︷ ︸

=0unless k=n−1

−

cn
c2n−1

∫

D
zkzn−1dλ(z)

︸ ︷︷ ︸

=0unless k=n−1

)

=
ωncn
cn−1

− ωncn
c2n−1

= 0
(4.3.3)
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Finally we get:

S
∗
S (φn)(ω) = ωn

[c2n+1

c3n
− cn
c2n−1

]

=
[c2n+1

c2n
− c2n
c2n−1

]

φn(ω)

Similar computations leads to

S
∗
S (φ0)(ω) =

c21
c20
φ0(ω)

Now let f ∈ A2(D). With respect to the ON-basis {φn} f has the following
representation:

f =
∑

n≥0

〈

f, φn

〉

φn

Therefore,

S
∗
S (f) =

∑

n≥0

〈

S
∗
S f, φn

〉

φn

= S
∗
S (φ0) +

∑

n≥1

〈

f,S ∗
S φn

〉

φn

=
c21
c20
φ0(ω) +

[c2n+1

c2n
− c2n
c2n−1

]

︸ ︷︷ ︸

s2n

∞∑

n≥0

〈

f, φn

〉

φn

Recall that
c2n = ‖zn‖2A2(D) =

π

n + 1

Therefore

s2n =
n+ 1

n+ 2
− n

n+ 1

=
1

(n+ 1)(n+ 2)
→ 0 as n→ ∞

Conclusion
S ∗S is compact hence S is also compact.
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Next we introduce the notion of Hilbert-Schmidt operators and we show
that the canonical solution operator is Hilbert-Schmidt. In my discussion we
follow[20].

Definition 4.9. a)Let H be a Hilbert space and T ∈ L (H) a linear operator.
The s-numbers of T are the eigenvalues of the linear operator T ∗T .
b)T is a Hilbert-Schmidt operator if its sequence of s-numbers belongs to l2

Proposition 4.10. The canonical solution operator of (4.2.1)is a Hilbert-
Schmidt operator.

Proof. We have already shown that the s-numbers of S are

sn =

√

1

(n+ 1)(n+ 2)

Since ∞∑

n=0

1

(n+ 1)(n+ 2)
<∞

we obtain the desired result.

4.4 Canonical solution operator on (0,1) forms

with Fock space coefficients

Our main purpose of this section is to show that the solution operator of
the ∂̄ restricted to (0,1) forms with coefficients in the Fock space F is non
compact. For this purpose I use the papers [18] and the dissertation [33].
Recall that we understand under the Fock space F the space of holomorphic
functions that are square integrable with respect to weight function e−|z|2.
Let consider the following notation :

c2k =

∫

Cn

|z|2ke−|z|2dλ(z)

Here k = (k1 . . . kn) is a multi-index.
By proposition(3.51)the set,

{ zα

‖zα‖ , α = (α1 . . . αn)
}
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is an ON-basis of the Fock space furthermore

‖zα‖2 = α! .

The Bergman kernel of this space has the explicit form:

K(z, ω) = eω̄z

Here ω̄z = z1ω̄1 . . . znω̄n.

Definition 4.11. The space L2
(0,1)(C

n, e−|z|2) is the set of all(0,1)-forms with

coefficients in the weighted space L2(Cn, e−|z|2). Let dµ = e−|z|2dλ.
The topology of this space is defined via,

‖u‖2 =
n∑

j=1

∫

Cn

|uj|2dµ .

Here

u =

n∑

j=1

ujdz̄j .

In the same way we define F(0,1)(Cn) the space of(0,1)forms with coefficients
in the Fock space F .

In the sequel,we will show that the canonical solution operator of(4.2.1)
with right hand side in F(0,1)(Cn) can be written as a Hankel operator with
symbol z̄.

Definition 4.12. We define

√
F =

{

f : f ∈ F and ∃ g ∈ F such that : f 2 = g
}

Lemma 4.13. Let Mz̄ be the multiplication operator.
Then

Mz̄(
√

F ) ⊆ L2(Cn, e−|z|2)

Proof. Let f ∈
√

F , then ∃ g ∈ F such that f 2 = g
By Cauchy-Schwarz inequality in the Hilbert space F we obtain
∫

Cn

|f |2|z̄|2e−|z|2dλ(z) ≤
(∫

Cn

|f |4e−|z|2dλ(z)
) 1

2
(∫

Cn

|z̄|4e−|z|2dλ(z)
) 1

2

≤ ‖g‖
F

∥
∥z2
∥
∥

F
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Remark 4.14. Every monomial of the form zk belongs to
√

F since zk and
z2k belong to F .Furthermore the set

√
F is clearly dense in F .

Let us again define the Hankel operator with symbol f on the Fock space
F by:

Hf : F → F
⊥

g 7→ (I − P )(fg)

P is now the Bergman projection from the weighted space L2(Cn, |z|2) onto
the closed subspace F .

Theorem 4.15. The following holds

Hz̄ |√F
= S1 |√F

Here S1 denotes the canonical solution operator to ∂̄ on (0,1)-forms with
holomorphic coefficients. Moreover,S1 can be interpreted as L2 limit of the
images of suitable elements of

√
F .

Proof. Let as usual g =
∑n

i=1 = gidz̄i be a (0,1)-form with holomorphic
coefficients and define

v(z) =
n∑

i=1

z̄igi(z)

It follows that

∂̄v =

n∑

i=1

∂v

∂z̄i
dz̄i

=
n∑

i=1

= gidz̄i = g

The solution operator is orthogonal to the kernel of ∂̄.The kernel is ex-
actly the Fock space, so the Bergman projection and the projection onto
the kernel of ∂̄ coincide. The solution operator is well defined. It follows by
Hörmander(see[23]) that the solution operator is bounded. It has to coincide
with the Hankel operator on the dense set F .

Remark 4.16. Proposition(4.4)gives an integral representation of the solu-
tion operator with A2-coefficients. It turns out that this property remains
valid if the right-hand side of (4.2.1) has coefficients in

√
F .

The proof is the same as in proposition (4.4).
Now we want to compute the projection of certain functions explicitly.For this
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purpose, we take profit of the Taylor expansion of the reproducing kernel. Let
us, before doing this, make the following conventions.
Let k = (k1 . . . kn) be a multi-index.Then

k + 1j = (k1 . . . , kj + 1, . . . kn)

Lemma 4.17. Let f the(0,1)-form defined by F = zjdz̄1 then

P (f z̄)(ω) =
c2j
c2j−1

ωj−11

Proof. By orthogonality of the set {zα , α ∈ Nn} we have:

P (f z̄)(ω) =

∫

Cn

K(ω, z) < f(z), z > dµ(z)

=

∫

Cn

∑

m

z̄m

c2m
ωm(z̄1z

j)dµ(z)

=

∫

Cn

∑

m

z̄m+11zj

c2m
ωmdµ(z)

=
∑

m

1

c2m
ωm
∫

Cn

z̄m+11zjdµ(z)

=
∑

m

1

c2m
ωm < zj , zm+11 >F

=
∑

m

cm+11

c2m
δm+11,jω

m

=
c2j
c2j−11

ωj−11

Lemma 4.18. Let S1 : F(0,1) → F (Cn) with adjoint S∗
1 .

For the special (0,1)-form defined by

g = g̃dz̄1where g̃ ∈ F (Cn) .

We have:

S∗
1(g)(ω) =

(∫

Cn

K(ω, z)h(z)(z1 − ω1)dµ(z)
)

dω̄1
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Proof. Let h ∈ F (Cn). By(4.2.2)we have:

< S1(g), h >F =

∫

Cn

S1(g)(z)h̄(z)dµ(z)

=

∫

Cn

h̄(z)
(∫

Cn

K(z, ω) < g, z − ω > dµ(ω)
)

dµ(z)

=

∫

Cn

h̄(ω)
(∫

Cn

K(z, ω)g̃(ω)(z1 − ω1)dµ(ω)
)

dµ(z)

=

∫

Cn

g̃(ω)
(∫

Cn

K(ω, z)h(z)(z1 − ω1)dµ(z)
)

dµ(ω)

=< g, S∗
1h >F(0,1)

Remark 4.19. LetA : H1 → H2 be an operator between Hilbert spaces, it is
well known that A∗A is compact if and only if A is,see for example [16], we
are going to use this method in order to prove non-compactness of S1.

Theorem 4.20. Let

Um(z) =
zm

cm
dz̄1

where m = (m1 . . . mn) is a multi-index.
If m1 > 1.Then

S∗
1S1(Um)(ω) =

(c2m+11

cm
− c2m
c2m−11

)

Um(ω)

Proof. We still know from lemma(4.17)that, if f = zmdz̄1.Then

P (f z̄)(ω) =
c2m
c2m−11

ωm−11

Hence

S1(Um)(z) = z̄1Um(z)−
c2m
c2m−11

zm−11
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By the last lemma, it follows that

S∗
1S1(Um)(ω) =

∫

Cn

K(ω, z)
(

z̄1Um(z)−
c2m
c2m−11

zm−11
)

(z1 − ω1)dµ(z)

=

∫

Cn

(∑

k

z̄k√
k!

ωk√
k!

)(

z̄1Um(z)−
c2m
c2m−11

zm−11
)

(z1 − ω1)dµ(z)

=

∫

Cn

(∑

k

z̄k√
k!

ωk√
k!

)(

z̄1Um(z)−
c2m
c2m−11

zm−11
)

(z1)dµ(z)

=

∫

Cn

zm+11

cm

(∑

k

ωk√
k!

z̄k+11

√
k!

)

dµ(z)

− cm
c2m−11

∫

Cn

zm
(∑

k

ωk√
k!

z̄k+11

√
k!

)

dµ(z)

=
ωm

c3m

∫

Cn

|z|2(m+11)dµ(z)− ωm

c2m−11
cm

∫

Cn

|z|2mdµ(z)

=
(c2m+11

c2m
− c2m
c2m−11

)

Um(ω)

(4.4.1)
For the integral of the second line in the equality above we have of course,

∫

Cn

(∑

k

z̄k√
k!

ωk√
k!

)(

z̄1Um(z)−
c2m
c2m−11

zm−11
)

(ω1)dµ(z)

= ω1

∫

Cn

(∑

k

z̄k√
k!

ωk√
k!

)(

z̄1Um(z)−
c2m
c2m−11

zm−11
)

dµ(z)

= ω1P (I − P )(z1Um(z)) = 0

Now we are ready to prove the main result of this section.

Corollary 4.21. The canonical solution operator S1 on (0,1)-forms with
Fock-space coefficients is not compact.

Proof. The set
{

Um(z) =
zm

cm
dz̄1 , m = (m1 . . .mn)

}
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is orthonormal.
Now remember the definition of the ck,

c2k =

∫

Cn

|z|2ke−|z|2dλ(z)

=

∫

Cn

|z1|2k1 . . . |zn|2kne−(|z1|2+...|zn|2)dλ(z1, . . . , zn)

By Fubini and using the Euler Γ function we obtain

ck = k!

Now,

c2m+11

c2m
− c2m
c2m−11

=
(m+ 11)!

m!
− m!

(m− 11)!

= m1 + 1−m1 = 1

So we have,
S∗
1S1Um(z) = Um(z)

which means that the operatorS∗
1S1 is not compact (it has the special eigen-

vectors to the eigenvalue 1). For an excellent survey on characterisation of
compact operators see [4] or [9].
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tome 11 n 1 (2002) p 57-7.

[19] F.Haslinger, Komplex Analysis 1 und 2 lecture notes on complex
analysis, available on line under http://www.mat.univie.ac.at/∼ has/.

[20] F.Haslinger, The d-bar Neumann problem and Schrödinger operators,
De Gruyter Expositions in Mathematics 59, Walter De Gruyter Berlin
2014.

[21] F.Haslinger, Spectral Analysis, lecture notes ,summer term 2014,avail-
able on line under http://www.mat.univie.ac.at/∼has/

[22] H.Hedenmalm, B.Korenblum, K.Zhu, Theory of Bergman Spaces,
Springer Verlag, New York Berlin Heidelberg ISBN 0-387-98791.
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