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Zusammenfassung 

 

Fertigungsbänder spielen eine wichtige Rolle in den Produktionsplanungssystemen und es werden 

vieleLösungsmethoden erzeugt, um die Effizienz und Leistung zu steigern.Das Ziel dieser Arbeit ist es, 

Fließbandfertigungssysteme zu verstehen und Methoden zu finden, umBandabgleich Probleme optimal 

lösen zu können. Es werden detaillierte Informationen über Bandabgleichskonzepte angeführt und es 

wird umfassende Literatur über diverse Lösungsmethoden aufgearbeitet. In der Fallstudie werden spe-

zielle Bandabgleich Probleme, bei denen die Anzahl der Maschinen pro Arbeitsstation beschränkt ist, 

analysiert. Verschiedene Single Pass heuristische Regeln und vorgeschlagene genetische Algorithmen 

werden auf 2 verschiedenen Instanzarten, angewendet. Optimale Problemlösungen werden mithilfe 

eines GAMS-Model gefunden und die vorgeschlagenen Algorithmen mit den Resultaten von Pitaaso 

und Sethananverglichen (2015). Die rechnerischen Untersuchungen zeigen, dass die vorgeschlagenen 

genetischen Algorithmen die optimale Lösung für 19 Fälle von 20 Fällen für SALBP-1M erreichen und 

die Resultate besser sind als die von Pitakaso und Sethanan (2015) vorgeschlagenen Algorithmen." 

 

Schlüsselwörter: einfaches Fertigungsband Problem, Maschinen Begrenzung, Priorität basierte heuris-

tische Regeln, genetischer Algorithmus   
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Abstract 

Assembly lines play a significant role in production planning systems and many solution methods are-

generated in order to improve their efficiency and performance.The aim of this study is to understand 

assembly line systems and solution methods to balance assembly line problems. Detailed information is 

given about concepts of assembly line balancing and a comprehensive literature review is provided for 

various solution methods. In a case study, the simple assembly line balancing problem with a given 

number of machine limits is analyzed (SALBP- 1M). Various single pass heuristic rules and a genetic 

algorithm are applied to two different test instances. Optimal results of the problems are solved by a 

GAMS model and the results of the proposed algorithms are compared with results presented by Pita-

kaso and Sethanan (2015). The computational study proves that the proposed genetic algorithm reaches 

optimal solutions for 19 instances out of 20 instances for SALBP-1M and produces better results than 

the algorithm of Pitakaso and Sethanan (2015). 

 

Keywords: simple assembly line problem, machine limitation, priority based heuristic rules, genetic 

algorithm  
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1. Introduction 

Assembly lines are fundamental for mass production and manufacturing systems in all areas. ALB is 

essential to improve efficient usage of resources such as raw materials, machines, labor and to increase 

production capacity by maximizing the productivity and efficiency. 

ALBPs are complex optimization problems. In ALB, a group of tasks is orderly assigned to work-

stations considering the precedence constraints, cycle time restrictions and predetermined optimization 

measure in order to find optimal task assignments according to the chosen objective such as cost reduc-

tion, minimization of workstations, increasing line efficiency. 

Due to globalization and increased competition, companies have to adapt to the fast change at produc-

tion systems by developing productive methods and using resources efficiently. GAs have been devel-

oped to speed up optimization processes by inspiring from biology mechanisms. Nowadays, GA is a 

metaheuristic optimization method that can be optimized via computer-based applications. 

There are many studies for ALBP due to technological improvements at production systems. Various 

exact, heuristic and metaheuristic methods are presented to find an optimal solution for ALBPs and 

these methods are also combined with resource constraints to reach better solutions. Agcak and Gokcen 

(2005) present a method to solve resource constrained ALBP which minimizes amount of used re-

sources with maximum amount of workstations and given cycle time, they consider the minimization 

workforce and number of machines; Bautista and Pereira (2011) propose a bounded dynamic pro-

gramming based method for time and space constrained ALBP with predetermined cycle time consid-

ering space availability for machines in order to decrease the number of workers; Chica, Cordon and 

Damas (2011) improve GA with multiple objectives for 1/3 variant of the time and space ALBP for 

minimization of amount and space of the workstations with given cycle time by inspiring from non-

dominated GA on coding structure, genetic operators, diversification system with pareto fronts. 

In this study, single pass heuristic methods and GA are proposed to balance simple assembly line prob-

lem with given number of machine limits (SALBP-1M) by objecting the minimization of number of 

workstations. Different single pass heuristic methods and the proposed GA are applied to two different 

problems as Pitakaso-1 and Pitakaso-2 that are obtained from research of Pitakaso and Sethanan 

(2015). Pitakaso-1 problem consists of 36 jobs and 6 different machines and Pitakaso-2 comprises 52 

jobs and 5 different machines; proposed optimization methods are used to solve both problems with 

two different machine limit types and five different cycle times for each machine limit; so, 20 instances 

are analyzed to find an optimal solution for SALBP-1M. 

The study is organized as following: in Chapter 2, general concepts of ALB is mentioned including the 

main objectives and classifications of ALB; Chapter 3 gives detailed information for solution methods 

of ALBP and a comprehensive literature review for heuristic solution methods and GA; Chapter 4 de-
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scribes the mathematical formulation of SALBP-1M, the summary of related research and the results of 

the proposed model. Finally, Chapter 5 explains the conclusion drawn from this study. 
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2. The Concepts of Assembly Lines and Assembly Line Balancing 

 

2.1 Assembly 

Assembly is a manufacturing process for creating a finished product by putting together components or 

subassemblies. There are many different operations at the assembly process; these operations can be 

collected under the four main categories: Feeding, handling, insertion and check (Acar & Estas, 1991). 

Feeding is operation that material or semi-finished product is taken away from the storage (station etc.) 

for assembly process. 

Handling is operation which material is transferred to assembly station.  

Insertion operation is installing various parts together.   

Check is examination of the components and controlling of the tasks during the assembly process. 

Manufacturing system and assembly work evolved according to needs and demands in the production 

over the years. During the industrialization period, the manufacturing system started to change in order 

to produce in high volumes, faster and lower cost. In 1913, Henry Ford revolutionized the production 

system by inventing moving assembly lines. Assembly line system was structured such that while some 

conveyors moved the assemblies along and the other conveyors constantly moved parts into position so 

that labours could insert the parts without carrying them (Ford Motor Company website, 2015). Each 

worker had defined tasks and assigned workstation. 

Assembly line is a flow-oriented production system which consists of orderly located stations, connect-

ed by material handling system, performing different operations in work pieces which are moved from 

one station to another. At the end of this process, unfinished and semi-finished parts release from the 

system as finished products (Becker & Scholl, 2006a). 

 

2.2 Assembly Line and Assembly Line Balancing 

Products consist of combination of multiple parts that are put together in specific orders during assem-

bly process. Assembly lines are production systems comprised of sequential stations, aligned along 

conveyor belt or other transportation system, to operate a set of tasks to convert materials to the fin-

ished products. Unfinished product moves along the line by material handling system from one station 

to another and launches out the line as finished products (Becker & Scholl, 2006a). 
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                                   Figure 2.1 Concept of Assembly Line 

 
 

ALB is a decision process of assigning tasks to the workstation to perform some objectives with respect 

to restrictions. Line balancing tries grouping the facilities or workers in an efficient in order to reach an 

optimum or most efficient balance of the capacities and flows of the production or assembly processes. 

Task allocation of each worker was succeeded by ALB to improve efficiency and productivity of the 

line (Kumar & Mahto, 2013). 

The installation of an assembly line is a medium or long term decision and usually requires large capi-

tal investments, so balancing and designing of the assembly line is significant process to produce as 

efficiently as possible. In addition, balancing a new system, a running one has to be re-balanced at cer-

tain times or after any changes in the production system or in the production program have occurred. 

Due to the long term effect of balancing decisions, the objectives which are used have to be carefully 

determined by taking into account of all the strategic aims of the enterprise (Becker & Scholl, 2006a). 

In the beginning, assembly lines were used for producing in high volumes and low variety of products. 

Production companies worked on the individualization of products because of which efficient flow line 

system for low volume of products have been improved and a modern terminology of mass customiza-

tion has been presented (Hjálmarsson&Viktorsson). The fast qualitative and quantitative improvements 

in the market demands leaded manufacturers to look for new and more efficient methods for managing 

the assembly lines on behalf they can minimize the idle time and improve the flexibility of the produc-

tion system. Thus, the designing of ALB system is still improving in order to satisfy market trends and 

changing needs of the customers. 

 

From an economic point of view cost and profit related objectives should be also taken into account 

during the improvement of the ALB system. Assembly lines were developed for a cost efficient mass-

production of standardized products, designed to take advantage of a high specialization of labour and 

the involved learning effects (Hjálmarsson&Viktorsson). Minimizing the cost of the line, long term 

investment cost and short term operating cost decrease the prices of produced goods, give competitive 

Station1 

1n 

Station2 

1n 

Station3 

1n 

Material handling system 

Station4 

1n 
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advantages to manufacturer in the market by responding to the demands of the consumers with lower 

prices. 

 

 

2.3 Basic Concepts of Assembly Line Balancing 

 

Task is the smallest, indivisible work piece element of the total workload in an assembly line process. 

Tasks are practical and lowest segment of total work. Besides, task is the smallest rational work ele-

ments, which is not possible to be divided by two and more workers or stations (Baybars, 1986b). For 

example, we can define five different tasks for drilling five different holes; when it comes to ALB, the 

rational task is the drilling five different holes as grouped tasks. 

Workstation is a location on the flow line where workers or robotic operators or machinery performs 

the tasks as assembling parts or processing operations. Stations can be categorized in two main types as 

open station and closed station. For closed stations, it is not possible for operators to cross the bounda-

ries of station. On the other hand, open station is more flexible and boundaries can be crossed by adja-

cent operators as so not to interfere tasks of each workstation (Erel&Sarin, 1998). 

Task processing time (task time) is the time required for performing an operation/task. The total is 

processing time is sum of the all tasks at assembly line process (Baybars, 1986b). 

Workstation time (station time) is the total workload of a station. It is the sum of processing times of 

the tasks that are assigned to a particular station. Workstation time must not exceed cycle time of the 

assembly line (Boysen, Fliedner&Scholl, 2008) 

Cycle time is the fixed time between the launches of two consecutive products from the assembly line. 

In other words, it is maximum amount of time which product can be processed in each station. It repre-

sents a particular time that all tasks are operated by workers in each station. The cycle time is prede-

termined considering the production rate (Scholl, 1999).  Cycle time cannot be smaller than the largest 

task processing time. Although all tasks at the station are already processed, station time could not fill 

in cycle time. 

Workstation idle time is the positive difference between the cycle time and the workstation time. The 

sum of idle times of all stations is called total idle time which related measure of the efficiency of as-

sembly line design (Erel&Sarin, 1998). Tasks must be assigned to the stations in order to minimize the 

idle time of each workstation, hence the average assembly time for each product decreases to mini-

mum.  

Balance delay is the one of measurements for the efficiency of the line. Balance delay results from 

unbalanced assignments of the tasks to the workstations. If the tasks are assigned properly and all 

workstation time is equal to each other, the assembly line has effective work flow and no delay occurs 
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in the system. It is also referred as the ratio of average idle time at the workstations over cycle time 

(Kumar & Mahto, 2013). 

 

 

 

 

 

 

             

 

                            Figure 2.2 Perfectly balanced n-station assembly line 

 

Precedence relations represents in which order tasks must be performed in the task sequence (Becker 

& Scholl, 2006a). 

Precedence graph (diagram) is a graphical representation of the precedence relations between the 

tasks. It contains nodes representing each task and arcs visualizing the precedence relations of the 

tasks; the processing time of each task is shown at right top of each node. Figure 2.3 shows precedence 

diagram with ten tasks; task 5 can only be operated after the completion of task 1 and task 3, which are 

the immediate predecessors of task 4, and the indirect predecessor task 2 (Becker & Scholl, 2006a). 

 

 

   

    

 

 

Precedence matrix is transformation of the precedence graph into a matrix. It shows the direct prece-

dence relations between the tasks; if the task at row is immediate predecessor of the task at column of 

the matrix, the crossing point of these tasks are marked with one,0 is assigned the other points. Table 

2.1 shows the precedence matrix of precedence diagram at figure 2.3 (Aydogdu, 2005). 

Station number 

Cycle time 

 

 

1          2       3         4                                                          n 

2 

1 

4 

5 

6 

7 

3 
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10 8   12 11 

5 

4 3 

3 

5 

3 

5 4 

2 1 6 3 

Figure 2.3 Precedence diagram 
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Tasks 1 2 3 4 5 6 7 8 9 10 11 12 

1 0 0 0 1 1 0 0 0 0 0 0 0 

2 0 0 1 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 1 1 0 0 0 0 0 0 

4 0 0 0 0 0 0 1 1 0 0 0 0 

5 0 0 0 0 0 0 0 1 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 1 

7 0 0 0 0 0 0 0 0 1 0 0 0 

8 0 0 0 0 0 0 0 0 0 1 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 1 

10 0 0 0 0 0 0 0 0 0 0 1 0 

11 0 0 0 0 0 0 0 0 0 0 0 1 

12 0 0 0 0 0 0 0 0 0 0 0 0 

Table 2.1 Precedence matrix 

 

2.4 Main Objectives of Assembly Line Balancing 

Assembly lines are important part of the mass production system. Assembly lines can be classified in 

different types regarding their technical qualifications such as number of products, line control and 

layout, workflow, and etc. Although there is a huge diversity of assembly lines, the basic system of 

different assembly lines operates based on same procedure.  

The main purposes of the ALB are as follows (Kumar & Mahto, 2013): 

 To maintain balanced flow of material between the stations 

 To use minimum amount of material for processing of the tasks 

 To equally divide the workloads among workers to the assembly line 

 To use optimum mix form of automation and manual assembly 

 To utilize from the machinery and equipment capacities at maximum level 

 To minimize the total amount of idle time and flow time 

 To maximize the line efficiency 

 To optimize the number of workstations 

 To minimize the balance delay time and equally distribute the balance delay among all stations 

 To minimize the total cost of ALB and improve productivity 
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It is not possible to satisfy the all objectives of the ALB at the same time and so the main aim is to 

reach optimum solution considering the constraints of assembly lines. During the solution optimization 

and improving productivity, the factors which influence the total cost of the line must be taken into 

consideration. The building of assembly line is long-term decision which involves large capital invest-

ments as long-term investment cost and short-term operating cost that are depending on the cycle time 

and the number of workstations. The minimization of the total cost depends on the decreasing the in-

ventory costs, labour costs, material cost, setup costs, machinery costs (Scholl, 1999). 

Besides performance and cost related purposes, social goals should be considered to have a better work 

environment by providing job enlargement, increasing responsibilities of an operator, allocating less 

monotonous tasks to an operator, ensuring sufficiently equipped and safe work plant. 

2.4.1 Constraints Affecting Assembly Line Balancing 

2.4.1.1 Basic Constraints 

Cycle time is determined by given net production objective, gross operation percent and tolerance per-

cent. Workstation time cannot exceed the cycle time. 

Precedence relations are the task sequence shows in which order tasks must be operated. To operate 

the task, direct and indirect predecessors of this task must be processed before. Task assignments to the 

workstations based on precedence relations between the tasks. 

2.4.1.2 Side Constrains 

Position related constraints; in some cases, tasks can require a certain position of the work pieces thus 

it might not be possible to move the work pieces due to economic or physical reasons (e.g., heavy items 

such as a ship, drilling machine, etc.) (Wang&Wilson, 1986). 

Workstation related constraints; in some cases, special machines or equipment needing the implemen-

tation of the certain tasks are only possible in one or a few workstations, cannot be transferred to an-

other place (Becker & Scholl, 2006a). 

Station workload related constraints; in some cases, some of the workstation times are required to be 

smaller than cycle time. This constraint is applied especially for first station to decrease the effects of 

the delay which may occur at the beginning process of the assembly line (Tanyas&Baskak, 2003). 

Operator related constraints; in some cases, specific operators with different professional skills and 

education must do certain tasks depending on their complexity (Agrawal, 1985). 

Task related constraints; in some cases, some tasks must be operated in the same or different work-

stations, these constraints are referred as positive or negative zoning constraints. Positive zoning con-

straints are in respect to use of common equipment, machines, tool or common processing conditions 
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for operating tasks, so that these tasks must be assigned to same workstation or successive connected 

workstations. Some tasks must not be performed at the same workstation regarding negative zoning 

constraints. For example, milling and measuring operations must not be performed at same workstation 

(Tanyas&Baskak, 2003). 

 

2.5 Classification of Assembly Line Balancing 

2.5.1 Automation Level Characteristics 

Level of automation of assembly line can be categorized under three main types: Manual, automatic/ 

semiautomatic and robotic assembly lines. These types can be operated separately or combined to per-

form together. Firstly, the operation must be analysed considering the economy and conformity of the 

assembly line (Baskak, 2005). 

Selection of automation level 

 

                   Analysis for manual                  Analysis for automatic              Analysis for robotic 

                     assembly line                                assembly line                             assembly line 

 

 

 

 

 

Improvement of the design 

and reanalyse 
 

Figure 2.4 Designing steps for assembly analysis 
 

2.5.1.1 Manual Assembly System (Baskak, 2005) 

Basic tools and equipment are used in manual system for assembling small lots. Operator must have 

specific and important qualifications at manual system; operator can move work pieces from one place 

to another and install the work pieces to original place efficiently. On the other hand, there are some 

cases which it is hard and time-consuming for operators to replace the work pieces; such as very tiny 

pieces, very huge and heavy pieces, pieces which are hard to hold due to their sharp surface, brittleness. 

The manual assembly system is commonly used in production of automotive, electric motor, camera, 

furniture. They can be designed as parallel or serial lines with single or multiple stations. 
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Figure 2.5 Manual assembly line (www.pcstats.com) 

 

2.5.1.2 Automatic or Semiautomatic Assembly System 

Specific transportation mechanisms are used at automatic assembly system. Automatic assembly sys-

tems operate on parallel lines and they have qualifications which make assembly process more effi-

cient. The most important qualification is that instead of operators, automatic machines perform the 

mechanical assembly process. Thus, labour can be used on more specific operations which are not une-

conomic and easy to automatize.  Other most important advantages are as shown as below (Baskak, 

2005): 

 Assembly cost decreases. 

 Efficiency of assembly line increases. 

 Better qualified and consistent products can be produced. 

 Safer working environment is provided by assigning operators to less dangerous operations. 

Those must be considered at automatic assembly systems are as follows (Tanyas&Baskak, 2003):  

i. The over loading and routing of work pieces must be minimized. 

ii. Automatic systems should consist of basic motions of machine parts. 

iii. The mobility of the fasteners must be limited. 

iv. The fasteners like screw, bolt, and rivet must not be used. 

v. Assembly process must comprise of breakout, assembly, labelling and drilling operations. 

vi. Fasteners must have standard type and size 
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Figure 2.6 Automatic assembly line (www.globalmarket.com) 

Automatic assembly systems consist of transportation system which transfers work pieces between 

stations, automatic assembly tools, control stations which check vacant stations used by operators to 

perform complex assembly operations and performance of operations. Automatic assembly machines 

are designed considering the transportation system used in the production process. For instance; the 

work pieces move along on straight line at straight (serial) assembly line machine and transportation 

follows rotational line at rotary assembly machines. For both type of machine, transportation could be 

discrete or continuous. The main problem of automatic assembly system is loss of production due to 

idleness of machines. At manual systems, operators can remove defective work pieces easily and less 

loss of production occurs. Automatic machines wait until the defective pieces are found and fixed, so it 

creates idle time at the production process. Therefore, high qualified pieces must be chosen for auto-

matic assembly system (Tanyas&Baskak, 2003):  

Automatic assembly systems are useful and profitable for production in high volume, so economic effi-

ciency of system should be considered as important effect.    

2.5.1.3 Robotic Assembly System 

One or a pair of robot performs on a station or multiple stations; stations can be on parallel lines and 

serial lines. A robot that positions, fits, and assembles components or parts and aligns the finished 

product to perform. Robots are useful for the most demanding and complicated production processes. 

Robots for simple assembly and material handling work via simple mechanical handle under control of 

computer based system and they are most common type of robots in the industries. Robotic assembly 
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system has various qualifications for capacity, ability and size. Simple assembly robots operate by dif-

ferent features and tools, such as x-y-z linear moving, electro-optical position centring system, screw 

driver. Specific equipment is with signal feedback system, servo-driven and computer controlled for 

torque and power sensitivities; these robots are used in small assembly applications, such as adding a 

small component of the electrical circuit board (Tanyas&Baskak, 2003).  

Robotic assembly system has four main parameters:  

 The weight of carried work piece 

 Repeatability for assembly process 

 Processor speed 

 Complexity of operation 

  A robotic assembly system is more flexible and cost saving than an automatic system. Robotic assem-

bly system ensures a variety of benefits including decreased labour, production time, ergonomic issues, 

as well as increased quality, efficiency and throughput (Motion Controls Robotics website, 2015). 

 

Figure 2.7 Robotic assembly line (www.caeweb.com) 

 

2.5.2 Product Characteristics 

2.5.2.1 Single Model Assembly Line 

Assembly lines are used for large volume production of only a single product and workers work on 

same product. The station workload and task processing times are constant. The design of single model 

assembly line is simple; the task processing time and precedence relations are shown by a single prece-

dence graph. Nowadays, the single model assembly line is not as useful as before due to customer de-

mands and competitive business environment (Ullah et al., 2014). 
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2.5.2.2 Mixed Model Assembly Line (Thomopoulos, 1970) 

Slightly differentiated models from same product parent are assembled in the mixed model assembly 

line. Each model nearly has same production process based on basic operations, some models can have 

different process and due to this, these different models can have larger or smaller workstation time 

than the other models. So, work load distribution may not be equal in each station and this can cause to 

non-smooth production. 

The precedence relation is shown by consisting of precedence diagram of all models in the production. 

The same tasks are assigned to same stations to reduce set up time of different tasks of different models 

based on precedence relation of mixed model assembly line. Hence, task assignment to the station is 

important procedure at mixed model ALB to allocate the tasks of different models in a way that prece-

dence relations and objectives are satisfied. Model sequencing is also important procedure; in each sta-

tion, the different models of product are properly sequence for assembling.  

2.5.2.3 Multi Model Assembly Line 

In multi model assembly line, different products are produced and assembling of the different models 

are in batches. The different products are produced in batches without mixing with each other. After 

production of the batch of one model, the organization of station is changed and arranged according to 

the need of the next batch. Assembling in batched form can reduce of the time and set up cost but in-

ventory cost may increase too. The lot-sizing problem arises for different batches of the models in mul-

ti model assembly line (Boysen, Fliedner&Scholl, 2008).  
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Figure 2.8 Assembly lines for (a) single model, (b) mixed model, (c) multi model (Kumar&Mahto, 2013, pp.30) 
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2.5.3 Workflow Characteristics 

2.5.3.1 Paced Assembly Line 

In paced assembly lines, all stations are supposed to have same cycle time and the work pieces are 

transferred to one station to another when tasks of station finish. All stations never pass over the cycle 

time; although the tasks at the station finish earlier than cycle time, they wait to move to next station 

until cycle time is over. In such case, station has an idle time which affects the efficiency of assembly 

line. In paced assembly line, finished work pieces move from one station to another by a conveyer belt. 

The minimum value of cycle time is determined based on the maximum workload of the stations on the 

assembly line. The production rate of paced assembly lines is fixed and depends on cycle time of the 

line and finished work pieces which are transferred by conveyor from one to another station without 

buffers between stations (Ullah et al., 2014). 

 

2.5.3.2 Un-paced Assembly Line 

In un-paced assembly lines, the work pieces are transferred to one station to another when they are fin-

ished on the station without waiting for that cycle time is over. Un-paced assembly line can be catego-

rized in two types according to the movement of the finished work pieces from the stations.  

Synchronous un-paced assembly lines transfers finished work pieces from one station to another after a 

fixed time simultaneously, therefore no buffers arise between stations. In asynchronous un-paced as-

sembly lines, cycle time is different between the stations and workload of the station is equal to cycle 

time of this station. If all tasks of the station have already processed, it must wait till the successor be-

comes eligible and idle time may occur. So, buffers can be used to decrease the idle time in such cases 

(Urban&Chiang, 2006).  

2.5.4 Layout Characteristics 

Layout and design of the assembly line has effect on productivity of the line. Layout of assembly line 

can be chosen based on the location of the line and product to be produced. Assembly lines can be cat-

egorized as serial (straight) lines, parallel lines, U- shaped lines and two-sided assembly lines. 

2.5.4.1 Serial Assembly Lines 

Stations are aligned in a serial route by the sides of the conveyor in serial assembly lines. Work pieces 

are entered to assembly line and moved to first station. They are transferred from one to another station 

on the assembly line, until their processing is over and run through last station. The cycle time is de-

termined based on the station with maximum workload. In serial assembly lines, lead-time is taken into 
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account for deciding cycle time as well. Therefore, a workload and dead time of the stations are includ-

ed while calculating the cycle time (Ullah et al., 2014). 

Serial assembly lines are used frequently due to their basic systems, easy place-ability, service ability, 

adapting practically to conveyor systems and effects on decreasing the expenditure. 

2.5.4.2 Parallel Assembly Lines 

In parallel assembly lines, the workload is distributed between stations. In case that cycle time of as-

sembly line is more than expected, the workload of station with maximum workload can be split by 

paralleling this station for decreasing the cycle time of assembly line. Same group of tasks are assigned 

to duplicated parallel stations. The implementation of these lines increase flexibility and decrease the 

waiting time in the line by moving work pieces to the duplicated parallel workstations (Becker & 

Scholl, 2006a). 

2.5.4.3 U-shaped Assembly Lines 

In U-shaped assembly lines, the workstations are aligned among a “U” form line and the tasks are as-

signed to stations by moving forward and backward through the precedence graph. So, work pieces can 

be operated at different positions on the assembly line during same cycle (Erel, Sabuncuoglu &Aksu, 

2001).  

The U-shaped assembly lines are used commonly in assembly production system to operate tasks on 

different positions more efficiently.  It provides a better balance of workstation loads by assigning 

workers flexibly along the line and improving possibilities on assigning tasks to workstations. In some 

situations of competitive market, U-shaped assembly lines easily adapt to changing conditions and im-

prove the performance measures (Miltenburg&Wijngaard, 1994). Hence, U- shaped lines are chosen 

more than traditional serial lines. 

2.5.4.4 Two -sided Assembly Lines 

Two- sided assembly lines are designed to produce large sized and heavy, standardized products such 

as automobiles, buses and trucks. Tasks can be operated at both side of the line and more than a ma-

chine and worker can work together on a work pieces at the station simultaneously. Thus, there are less 

number of stations required for assembly process at two-sided lines (Lee, Kim &Kim, 2001).  

Bartholdi (1993) proposed two-sided assembly line in which workstations are placed opposite to each 

other as the left and right side of the line. In some cases, idle time can occur due to precedence con-

straints between two opposite stations. There are some advantages of two-sided assembly lines (Bar-

tholdi, 1993):  

 The length of assembly line may be shorter than one-sided assembly line 
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 It may decrease the workers’ movement, material handling cost, setup time and throughput time 

 It can reduce the cost of equipment, tools and fixtures as well. 

 

2.5.5 Task Time Characteristics 

Task time can be categorized as deterministic task time, stochastic task time and dynamic task time.  

The characteristics of task processing times depend on the nature of tasks and operators. 

2.5.5.1 Deterministic Task Time 

When the expected variation of task time is enough small, e.g. in case of assembly lines with simple 

tasks or highly reliable automated stations, the task time is accepted as deterministic. Task time is sup-

posed not to change during the assembly process and it is assumed as a fixed variable in deterministic 

approaches that simplify the solution for the assembly lines (Johnson, 1983). 

2.5.5.2 Stochastic Task Time 

There are various uncertainties, which are caused by machine breakdowns, weak maintained equip-

ment, the instability of worker`s skills (i.e., work rate, failure sensitivity) and motivation, defected raw 

materials and complex processes, require considering stochastic task times (Buzacott, 1990; Robinson, 

McClain& Thomas, 1990). 
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Figure 2.9 (a) Serial assembly line, (b) U-shaped assembly line, (c) Two-sided assembly line (Saif et al.,2014,pp-100-101) 

 

2.5.5.3 Dynamic Task Time 

In production systems, task time of assembly lines is varied due to labours, systematic reductions or 

successive improvements which caused by learning effects of production process. For example, when 

the worker first operates the given tasks, he can perform the tasks in longer time than his next opera-

tions of this task; because he gains experience at first time and he may perform the task in less time 

(Boucher, 1978; Chakravarty, 1988). 

 

2.5.6 Objectives Characteristics 

Assembly lines can be categorized based on the objective functions used during optimization process. 

Some assembly lines are optimized according to one objective function; on the other hand, some of 

them may have more than one objective functions to achieve during the optimization. Many researches 

have done to balance assembly lines by applying single or multi-objectives optimization methods. 

2.5.6.1 Single Objective Optimization  

Single objective optimization of assembly line is commonly used and there are several articles consid-

ering different types of objectives. The main objectives are listed as below (Boysen, Fliedner &Scholl, 

2007):  

 Minimization of the number of workstations m with a given cycle time or production rate; an ob-

jective to reduce the investment cost during designing a new line. 

 Minimization of the cycle time c with a given number of workstations; can be referred as maxi-

mization of the production rate 
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 Maximization of line efficiency E is related with productivity of the line capacity 

 Minimization of cost for a given output target; based on the optimization model, cost types can 

be allocated to different parts of assembly system, such as workstations, tasks, processing alter-

natives or resources 

 Maximization of profit 

 Score refers minimization or maximization of composed score which is based on one or more 

features explaining efficiency measurement or bottleneck aspects 

 Finding feasible solution without objective function 

Mixed model assembly lines have various workloads in each workstation because of different demand 

of models; so incomplete units may occur at certain models. To have a smoothed workstation times, 

two ways of smoothing has introduced: 

 Horizontal balancing by Merengo,Nava and Pozetti( 1999) to balance the workload on each sta-

tion and smooth to workload in workstations  

 Vertical balancing by Rachamadugu and Talbot (1991) to balance the workload among differ-

ent workstations and smooth workload between workstations 

 

2.5.6.2 Multi- Objective Optimization 

In production industry, assembly lines have several objectives to satisfy simultaneously. In multi-

objective optimization, combination of at least two objectives from single optimization problem can be 

applied. In some cases of assembly line optimization problem, chosen objectives may conflict with 

each other; for example, while optimization of one objective gives good results, the other one may not 

produce as good as the other at the same time. Therefore, it is not easy to satisfy all objectives at the 

same time by producing the best results in real environment (Ullah et al., 2014).  

2.5.7 Problem Structure: Simple versus Generalized Assembly Line Balancing 

Different classifications on problem structure of ALB have been represented in the literature since 

Salveson`s (1955) the first mathematical formalization of ALB based on the assignment of the tasks to 

the workstations. The most well-known classification on problem structure is proposed by Baybars 

(1986b) who categorized assembly line problem as SALBP and GALBP.  

All problem types which generalize or eliminate some assumptions of SALP are called GALPBs. 

GALBP covers extensive variety of models including practice relevant view, such as balancing of 

mixed model, U-shaped lines, parallel stations or processing alternatives; thereby more realistic assem-

bly line problems can be applied under GALBP (Becker&Scholl, 2006a). 
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SALBPs have lots of simplified assumptions, constraints and relations that make assembly line problem 

easy to solve and several researches have been done about SALBP in literature. Main characteristics of 

the classical single-model ALBPs are as follows (Scholl, 1999; Baybars, 1986b): 

 Mass production of one homogeneous product performing by n operations of a given produc-

tion process 

 Paced line with fixed cycle time 

 Deterministic and integral operation times 

 No assignment restrictions besides the precedence constraints 

 Serial line layout, one sided stations 

 All stations are equally equipped with respect to machines and workers 

 Fixed rate launching, launch interval equals to cycle time 

SALBP has four different versions depending on objective functions: the feasibility problem (SALBP-

F), the minimization number of workstations for a given cycle time (SALBP-1), the minimization of 

cycle time for a given number of workstations (SALBP-2), the maximization of the line efficiency 

(SALBP-E). Since all SALBP decreases partition problems which determine whether or not a set of 

positive integral weights may have two subsets with same sum of weights, they are NP-hard problems 

(Karp, 1972). 

The notation of SALBP is presented below (Scholl, 1999): 

n             number of tasks    

V             set of all tasks (= {1,.....,n} ) 

j              index for the tasks ( j = 1,.....,n)  

c             cycle time 

p             production rate ( = 1/c ) 

m            number of stations 

k             index for the stations (k = 1,.....,m) 

tj                processing time (task time) of task j 

pj            workstation requirement of task j (= tj/c = tj. p ) 

tmax          maximal task time ( =max { tj │j = 1,…..,n}) 

tmin          minimal task time ( =min { tj │j = 1,…..,n}) 

tsum          sum of task times ( =Σj tj ) 

Pj            set of immediate predecessors of task j 

Fj            set of immediate successors of task j 

A             set of direct precedence relations (= {(i,j) │i ∈ V and j ∈ Fi }) 

Sk            station load, set of tasks assigned to station k 

t(Sk)    station time of workstation k  ( = Σ tj ) 

Ej            earliest workstation of task j 

Lj            latest workstation of task j    

j∈Sk 
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SIj           workstation interval 

Bk            set of potentially assignable tasks  

T             planning period/time of production 

qmax         maximum production amount 

qmin          minimum production amount 

E             line efficiency 

 

2.5.7.1 The Feasibility Problem: SALBP-F  

SALBP-F objects to find the feasible solution with a given number m of stations and a given the cycle 

time c of assembly line. In SALBP-F, assembly line is balanced with a given (m, c)- combination in 

order to have a feasible assignment. 

Patterson and Allbracht (1975) presented the mathematical formulation of SALBF-F as below: 

                                          1 if task j is assigned to station k        

xjk ( binary variable) =                                                                     for j = 1,…..,n and k ∈ SIj         (2.1) 

                                          0 otherwise 

      Σ  xjk = 1                                    for j = 1,…..,n                                                                            (2.2) 

      Σ  tj.xjk  ≤ c                                for k = 1,…..,m                                                                          (2.3) 

      Σ  k.xhk  ≤  Σ  k.xjk                    for (h, j)  ∈ A    and Lh ≥ Ej                                                       (2.4) 

      xjk ∈ {0,1}                                  for j = 1,…..,n  and  k ∈ SIj  (2.5) 

xjk is a binary variable presenting whether task j is assigned to workstation k. Occurrence constraint 

(2.2) and integrality constraint (2.5) refer that each task is assigned to only one workstation to find the 

line balance. The cycle time constraint (2.3) ensures that each workstation time is not greater than cycle 

time; workstation time must be smaller or equal to the cycle time of assembly line. The precedence 

constraint (2.4) guarantee that tasks has to be assigned to workstation according to their precedence 

relation; each task is assigned to workstation if all predecessors of the tasks have been already as-

signed. 

The feasibility problem SALBP-F is related to other three types of optimization problems, so these 

constraints are applied by all types of SALBP to find an optimal solution. 

 

 

{ } 

k∈SIj 

k∈ Bk 

k∈ SIj k∈ SIh 
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2.5.7.2 The Minimization of Number of Workstations: SALBP-1 

SALBP-1 aims to assign tasks to workstations in order to minimize the number of workstations m for a 

given cycle time c. SALBP-1 results from SALBP-F by presenting the amount m of workstations as a 

decision variable and improving the m minimization goal (Scholl, 1999).  

Due to fixed cycle time and production rate, SALBP-1 is used for establishing a new assembly line in 

order to estimate demand of production system. In SALBP-1, cycle time is fixed when management 

decides the production ratio or production planning requests effect the upper bound (Erel&Sarin, 

1998).  

Bounds are useful to improve the solution process by decreasing time for solution period and size of 

the problem formulation. The most common used lower bound formula is based on the inequality     

m.c ≥ tsum showing that the total task time is smaller than the total available time on the assembly line 

(Baybars, 1986b): 

Lower bound for m number of workstations                    mmin : = ⌈ tsum/ c ⌉ = ⌈ ∑ pj
n
j  ⌉                      (2.6) 

The basic upper bound equals to number of tasks n considering each task can be assigned n number of 

different workstations (Scholl, 1999).  The more extensive upper bound formula was proposed by 

Hackman, Magazine and Wee (1989), which gives at least one feasible solution with m workstations 

the load of the first m-1 work stations in maximum level. 

Maximality condition of the first m-1 workstations         t( Sk ) + tmax > c       for k = ,…..,m-1       (2.7) 

                                                                                                  or 

                                                                                          t( Sk ) ≥ c+1- tmax 

Scholl (1999) summarized the inequalities in 2.7 and transformed the upper bound formula to as below: 

Upper bound for m number of workstations                    mmax : = ⌊(tsum -1) / ( c+1- tmax⌋ + 1           (2.8) 

Different versions of objective functions are created in the literature. Patterson and Allbracht (1975) 

proposed a simple objective function, which is minimizing the number of workstation by assigning 

tasks to the latest used workstation considering precedence constraints, as follows: 

Objective function                                                            Minimize F(x) = ∑ k.xnkk∈SIn                      (2.9) 

Satisfying this objective may decrease the space requirements for building a new assembly line and 

reduce the labour cost while minimizing the number of workstations with a fixed cycle time.  

SALBP-1 is related to some sequencing problems considering the objective and constraints. For exam-

ple, the bin packing problem which aims to pack fixed amounts of items into minimum number of same 

sized bins and one type of capacitated vehicle routing problem which minimized the number of fixed 
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capacitated identical vehicles for distribution of goods from a warehouse to a number of customers 

(Hackman, Magazine& Wee, 1989; Labbe, Laporte &Mercure,1991). 

 

2.5.7.3 The Minimization of Cycle Time: SALBP-2 

SALBP-2 aims to assign tasks to workstations in order to minimize the cycle time c for a given number 

of workstations. SALBP-2 adjusts SALBP-F by presenting the cycle time c as a decision variable and 

improving the c minimization goal (Scholl, 1999). 

While minimization of the cycle time for a given number of workstations, SALBP-2 also minimizes the 

sum of idle times and maximizes the production rate of an existing assembly line (Boysen, Fliedner 

&Scholl, 2007).  

In order to improve the solution process, lower and upper bounds on cycle time c are proposed in the 

literature. The simplest lower bound formula for cycle time depends on the necessary feasibility condi-

tion m.c ≥ tsum and c ≥ tmax is applied by tasks for indivisibility condition (Scholl, 1999):  

Lower bound for c cycle time                                           cmin : = max{ tmax, ⌈ tsum/ m ⌉ }                  (2.10) 

Due to maximization of the production rate, when production amount q is considered with a fixed time 

planning period T (Hartl, 2014):  

Lower bound inequality for c cycle time                          c ≥ ⌈T / qmax ⌉                                           (2.11) 

By summing up both lower bound formulas, we have a general expression for a lower bound formula: 

Lower bound for c cycle time                                           cmin : = max{ tmax, ⌈T / qmax ⌉, ⌈ tsum/ c ⌉ }  (2.12) 

The basic upper bound formula that does not satisfy the precedence relations between the tasks is given 

(Scholl, 1999): 

Upper bound for c cycle time                                           cmax : = max{ tmax, 2. ⌈ tsum/ m ⌉ }              (2.13) 

Upper bound for cycle time can be found also from minimum production amount in time horizon T 

(Hartl, 2014):  

Upper bound inequality for c cycle time                          c ≤ ⌊T / qmin ⌋                                                (2.14) 

In objective function of SALBP-2, cycle time c is introduced as a variable, c ≥ 0 in order to minimiza-

tion of c: 



 
25 

 

Objective function                                                            Minimize F(x, c) = c                                 (2.15) 

SALBP-2 is related to some assignment problems considering the objective and constraints. For exam-

ple, the problem of scheduling jobs for m identical parallel machines in order to minimized the 

makespan and bottleneck transportation problems which aim to find a feasible distribution for minimi-

zation of maximum transportation time between supplier and buyer (Garfinkel&Rao, 1971;Coffman, 

Grey&Johnson, 1984). 

 

2.5.7.4 The Maximization of Line Efficiency: SALBP-E 

SALBP-E searches for a feasible combination (m, c) of the number m of workstations and cycle time c 

as well as maximizes of assembly line efficiency, E = tsum / (m.c) or equally minimizes m.c. SALBP-E 

covers the generalization of SALBP-1 and SALBP-2 and creates opportunities to improve production 

process (Scholl&Becker, 2006b). When assembly line has no idle times, line efficiency is equal to one 

with (m, c) combination of m = 1 and c = tsum ; so assembly line operates with 100% efficiency (Hartl, 

2014). 

As maximization of line efficiency is based on constant tsum and minimizing non-linear term m.c; thus 

listed capacity oriented objectives are equal to maximizing line efficiency E (Scholl, 1999):  

 Minimization of flow time  : = m.c 

 Minimization of balance delay time : = m.c - tsum 

 Minimization of balance delay ration : = 1-E 

For optimization of SALBP-E, a lower bound mmin for number of workstations must be found. Since an 

upper bound cmax for cycle time is predetermined, it is possible to find a lower bound mmin for the num-

ber of workstations by using feasibility condition m.c ≥ tsum (Scholl, 1999):  

Lower bound mmin for number of workstations                 mmin : = ⌈ tsum/ cmax ⌉                                 (2.16) 

Restriction on number of workstations is also needed to reach the optimal solution in SALBP-E.  A 

lower bound cmin for cycle time is reached by using the lower bound formula (2.12) in SALBP-2;  so 

modified version of  upper bound formula for number of workstations (2.8)  is applied to find an upper 

bound mmax for number of workstations:  

Upper bound mmax for number of workstations                mmax : = ⌊(tsum -1) / ( cmin +1- tmax⌋ + 1      (2.17)       

In order to summarized the bound conditions, instances for SALBP-E are restricted by [mmin, mmax ] 

and [cmin, cmax] . 
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The objective function of SALBP-E is created by taking objective function of SALBP-1, where the 

cycle time is accepted as an additional variable (Hartl, 2014).   

Objective function                                                            Minimize F(x) = 𝑐. ∑ k.xnkk∈SIn                   (2.18) 
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3. Solution Methods for Assembly Line Balancing and Literature Review  

Due to rapid change of technological improvements and global competitions, companies pay attention 

for improving their production and assembly line systems by decreasing costs, production time and 

increasing machinery usage, productivity of the line. Since the first formulation on ALB problem was 

developed by Salveson (1955); many exact, heuristic and metaheuristic algorithms are improved by 

using computational tools and techniques in order to provide more optimal solutions (Scholl&Becker, 

2006b).  

 

3.1 Exact Solution Methods and Literature Review for Exact Solution Methods 

3.1.1 Integer Programming 

Salveson (1955) develops SALBP-1 as a linear programming problem including all possible combina-

tions of task assignment to workstations. Due to split tasks, his methods can often produce infeasible 

solutions. Bowman (1960), as later modified by White (1961), solves this problem by creating indivisi-

bility constraint and transformed linear programming formulation to an integer programming problem 

describing symbolizing task assignments to workstations with 0-1 binary variables. Klein (1963) pro-

poses a simple integer programming to find an optimal combination for assigning tasks to workstations 

when the order of operations is specified. However, his approach was not practical for the real- sized 

ALBPs due to amount of the required enumeration.  

Balas (1965) presents a tree search algorithm which uses information in the search to exclude portions 

of tree by solving linear programs with 0-1 variables. Then, Geoffrion (1967) modifies the additive 

algorithm of Balas (1965); he also improves a flexible and economical version of the “back-track” 

methods of integer programming. 

Thangavelu and Shetty (1971) apply the additive algorithm of Balas (1965) and introduced their integer 

programming methods with two subroutines; one is for increasing the partial solution that may result a 

better feasible solution than incumbent solution, the other one is for backtracking and record keeping 

where a better feasible solution may occur or no solution may be reached. Thangavelu and Shetty 

(1971) also apply conditional feasibility test to speed up the implicit enumeration process. 

Patterson and Allbracht (1975) introduce an integer programming method to analyse sequences of zero-

one variables for feasible solution. They defined new parameters as early and late workstations for each 

task based one precedence relations, accordingly decreasing the number of variables. They apply a bi-

nary infeasibility test for the cycle time constraints and improved enumeration process for fathoming a 

partial solution.  

Talbot and Patterson (1984) present an integer programming by applying integer variables instead of 

binary variables. They used the implicit enumeration of Balas (1965) for their formulation in which 
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precedence relations are sustained by immediate predecessor test and the evaluated idle time vector 

fulfills the cycle time constraints. Talbot and Patterson (1984) also introduce early and late work-

stations for each task; they also improved the problem form by enabling the fathoming and branching 

process. 

3.1.2 Branch and Bound Algorithms 

The branch and bound algorithms are acknowledged solution for combinatorial optimization with two 

main components which are branching (enumeration) and bounding.  

Branching (enumeration) is the process that the initial problem is divided into continuously develop-

ing sub-problems (nodes) which generate a multi-level enumeration tree. The first stage of this tree 

composed of the root node represents initial problem; at next stages, descending nodes are constructed 

by developing an ancestor node at each previous stage of the problem and sub-problems of the found 

optimal solution are called as leaf nodes. Branch is a path starting from the root to any other node of 

the tree (Scholl, 1999). 

Branch and bound algorithm is divided according to nodes sequence of the branched enumeration tree 

(Scholl&Becker, 2006b): 

 At depth-first-search, a single branch of the tree is improved since a leaf node is arrived. The 

search tracks the first potential alternative branch while it is moving back to the root. Each node 

is developed then their ancestor nodes are visited again. Depth-first-search is work as a laser 

search with respect to priority rules of descending node at the current branch. Firstly, the node 

with the highest priority is branched, then rests wait at candidate list during revisiting process of 

each node until they have priority. 

 A minimal lower bound strategy always selects undeveloped node with the minimum lower 

bound from a candidate list. The selected node is branched by building all descending nodes. 

Until the current node is dropped, the remaining nodes wait in the candidate list which is 

aligned based on non-decremental bound values. 

Branching strategies can be categorized as task oriented and station oriented procedures. At task ori-

ented procedure, an available task is selected to assign to earliest available workstation; only one work-

station is taken into account for assignment of a single task. On the other hand, at station oriented pro-

cedure, a complete load is constructed for one workstation at each step (Scholl, 1999). 

Bounding is to drop the size of enumeration trees by calculating lower bounds on the number of work-

stations for each node. The lower bounds are drove from relaxations that are results of the omitting or 

relaxing constraints. The root node bound is called as initial or global lower bound and the other nodes 

of residual problems are local lower bounds. At the bounding procedure, logical tests such as domi-

nance and reduction rules can be applied to decrease the size of enumeration trees (Scholl, 1999). 
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To find an optimal solution for the minimum number of workstations is an upper bound for the initial 

problem. When upper bound is equal to the global lower bound, the feasible solution is reached; so the 

procedure stops. All nodes which their local lower bounds are greater than upper bound are fathomed 

and left out of the solution because they produce solutions with number of workstations is more than 

upper bound. 

The feasible solution of the SALBPs can be shown by a tree which each path represents a feasible solu-

tion with each arc as a workstation. Jackson (1956) introduces the first algorithm for SALBP-1 by rep-

resenting the assembly lines with a tree. At algorithm of Jackson (1956), if any task can`t be assigned 

to a workstation considering the cycle time constraints and precedence relations, a workstation is speci-

fied as maximal. According to Jackson (1956), the arcs of the feasible solution tree presents only max-

imal workstations. The procedure is not exact enumeration; however, it goes through all possible as-

signments to the first m-1 workstations before deciding any assignment to the mth workstations. 

Hu (1961) contributes branch and bound approach to solve SALBP with parallel workstations. He in-

troduced the ordering restrictions of ALBP as form in tree to find minimum number of workers needed 

to process the tasks with a given time by applying lower bounds on shortest time. At algorithm of Hu 

(1961) is based on finishing all tasks at the earliest time with a given number of workers by setting the 

tasks in several sequences. Hu (1961) defines his algorithm as a mechanical analogy in which metal 

rings represent nodes and a tree diagram that consists of tied rings by pieces of string of unit length. By 

holding a final node, the all other rings are released. “Then the algorithm is to cut off at most number of 

end-rings at a time, with preference given to bottom end-rings if there is more than number of end-rings 

available for cutting” Hu (1961 ,p.846). The researcher describes his algorithm as cutting longest queue 

Hu (1961): 

 

Figure 3.1 Illustration for mechanical analogy of Hu (1961)´s algorithm, pp. 846 
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Jaeschke (1964) introduces the first simple model strategy of a workstation oriented branching and the 

bound as a lower bound on m number of workstations by applying the minimal lower bound. The nodes 

with minimum total idle time are selected for branching and the nodes with the largest number of load-

ed workstations are chosen.  

Mertens (1967) proposes a workstation oriented depth-first-search algorithm depending renumbering of 

tasks with priority rules and he used simple bound as a lower bound on m number of workstations.  

Van Assche and Herroelen (1979) present a workstation oriented procedure by applying minimal lower 

bound strategy. They use Jackson (1956) ´s enumeration tree type and proposed dominance rules, 

bounding methods and branching heuristics with a node showing the tasks assignment to a single work-

station. The process begins with an empty workstation and goes through the unordered list considering 

that each node is one of assigning the remaining tasks to the remaining workstations by searching for 

an immediate solution. When there is not any immediate solution, the node branches into a number of 

descendant node related to the optimal assignments of non-dominated next workstation and calculates a 

lower bound for the remaining number of workstations. Van Assche and Herroelen (1979) also intro-

duce some penalty and tie breaking rules to discriminate the nodes with the lower bound and penalty.  

Johnson (1973) describes a new workstation oriented approach for a branch and bound algorithm in 

which workstations are represented by arcs by applying “maximal workstation assignment” algorithm 

of Jackson (1956). Then, Johnson (1981) develops a new version of his algorithm (1973) by improving 

his bounding procedure as combining depth-first-search and minimal lower bound strategies. At John-

son (1981), the set of recently created nodes generate new arcs and a feasible solution is found by min-

imizing idle time for selected each arc at the workstation. If a feasible solution is found, the solution 

tree comprises from a complete path with a number of end nodes conjoint to the nodes of the path. 

Johnson (1988) introduces a new branch and bound algorithm called as FABLE which is task oriented 

procedure depth-first search organized as laser search for SALBP-1. FABLE reaches feasibility quickly 

by applying several logical tests such as maximum load rule, Jackson dominance rule. From the first 

workstation, sub-problems are built by assigning the candidate tasks to the current workstation. If there 

isn´t any assignable tasks, a new workstation will be opened. At each creating of new workstation, the 

task with the smallest index in the assignable tasks set is assigned firstly. Due to assigning the candi-

date tasks to the earliest workstation, the workstations are filled according to forward planning from the 

first to last workstation.  

Gunther, Johnson and Peterson (1983) introduce the goal programming for a multiple objective formu-

lation to the GALB and presented a branch and bound algorithm to find the optimal solution.  

Talbot and Patterson (1984) propose feasible solutions depending on integer programming codes using 

branch and bound procedures with task oriented branching and depth-first-search. They use two differ-

ent ways for backtracking by using chains and network cuts. A chain is a set of orderly numbered tasks 

which are immediate predecessors or successors of next members of the set. If there are chains, search-

ing takes faster due to directly backtracking to the task with the highest number not existing in a chain. 
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A network cut is a parameter defines the application of the rules and presents a workstation number for 

describing if the fathoming and backtracking rules applied or not. Talbot and Patterson (1984) define 

two fathoming rules and two additional expediting rules depending on lower bound for idle time pre-

sented in each workstation to solve an imbedded knapsack problem. 

Saltzman and Baybars (1987) present branch and bound algorithm which is task oriented and depth-

first-search. Tasks are enumerated non-decremental order of operation times. An initial value for the 

upper bound is decided according to a priority-based heuristic of task assignment depending on non-

increasing order of task times. 

Betts and Mahmoud (1989) use same procedure of Johnson (1981) ´s algorithm except the method of 

building workstation loads by applying workstation-oriented procedure undirectionally.  

Hackman, Magazine and Wee (1989) propose an algorithm as a station oriented branching with mini-

mal lower bound and applied several dominance rules. They implement priority-based heuristics to 

decide an initial upper bound and to find partial solutions. They also use fathoming for selection of 

nodes. 

Nourie and Venta (1991) extend FABLE by applying heuristics to find an initial upper bound and a 

memory saving method for storing all feasible subsets of tasks required by workstations in order to 

implement the feasible set dominance rule.  Their algorithm is task oriented branching with depth-first-

search. Due to huge storage requirement of the addressing of feasible task subsets, Nourie and Venta 

(1991) introduce a tree structure to improve the performance of the storage for all feasible subsets.  

Berger, Bourjolly and Laporte (1992) change the algorithm of Hackman, Magazine and Wee (1989) by 

applying depth-first-search instead of minimal lower bound for restricted version of SALBP-1 with at 

most one predecessor for each tasks based on out-tree precedence graph.  

Hoffman (1992) introduces another depth-first-search algorithm called as EUREKA to solve SALBP-1.  

EUREKA is a workstation based laser search method with lower bound procedure for unassigned tasks 

by implementing complete enumeration. The algorithm performs forward and backward planning. 

Workstation loads are formed based on increasing numbers of tasks at forward procedure, and vice 

versa at backward procedure by applying same enumeration method at both procedures in order adapt-

ing the precedence graph. After finishing the assignment of a workstation, the cumulative sum for slack 

time is computed. If the sum of slack time is greater than minimum slack time, all emanating branches 

are enumerated. If not, algorithm backtracks to the preceding workstation and creates a new tasks as-

signment before performing same procedures. When no feasible solution is reached in a defined com-

putation time, the heuristic technique at Hoffman (1963) is implemented to find a feasible solution.  

Scholl and Klein (1996) create SALOME-2 for SALBP-2 by customizing components of SALOME-1. 

SALOME-2 is a flexible bidirectional branching strategy with using local lower bound method and 

applying some dominance and reduction rules to ensure restrictions of SALBP-2.  
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Scholl and Klein (1997) present a new branch and bound algorithm for SALBP-1 called as SALOME-

1; which combines and improves the most promising components of FABLE and EUREKA. Scholl and 

Klein (1997) improve a bi-directional branching by implementing local lower bound method for each 

sub-problem of the enumeration tree to reach preferable planning direction. The potential loads of the 

current workstation have two different classes while applying branching at each sub-problem. At first 

class, all loads have minimal idle time and do not need to increase the number of workstations and re-

maining loads are placed at second class. The loads of the first class are branched firstly; if no solution 

has been reached in related sub-trees, they increase by 1 the lower bound for the number of work-

stations, then the loads at second class start to be branched. Scholl and Klein (1999) expand the SA-

LOME-1 algorithm by implementing new dynamic renumbering and dominance rules.  

Bock and Rosenberg (1998) and Bock (2000) improve distributed version of SALOME-1 with a work-

station oriented and local lower bound method.  

Sprecher (1999) introduces a task oriented branch and bound algorithm called as the Adapted General 

Sequencing Algorithm which is performing a wide class of resource constrained project scheduling 

problems with only renewable resource considering precedence related enumeration process. Sprecher 

(2003) improves distributed and parallelized version of Sprecher (1999).  

Scholl, Fliedner and Boysen (2010) improve an algorithm called as ABSALOM (SALOME for As-

signment Bounded Problems) depending on basic procedure of SALOME with intensively usage of 

bounding processes, dominance rules and reduction procedures to associate processes from combinato-

rial optimization and constraint programming. They present ABSALOM to solve the ALBP with as-

signment restrictions.  

3.1.3 Dynamic Programming  

Dynamic programming is an optimization method for multi-stage decision processes. Dynamic pro-

gramming problem consists of stages (sub-problems) that are solved orderly until the first stage (prob-

lem) reaches a solution (Erel&Sarin, 1998).  

Each stage has a number of states, which define all potential situations of the decision process, must be 

taken into account. The set of all states of the decision process is described as a state space. States at a 

certain stage are transformed to states at the following stage by a decision. The states production is 

defined by transformation (transition) functions that are based on present stage and the decision. Each 

decision indicates values for specific problem variables.  A sequence of the decisions on states between 

different stages is called as policy (Erel&Sarin, 1998).  

Dynamic programming depends on the optimality principle which initial problem, linking the first state 

and terminal state of the decision process, must apply optimal policies for all sub-problems. The dy-

namic programming problem must be formulated as a multistage decision process. There are two dif-

ferent methods to solve the decision procesd (Erel&Sarin, 1998): 
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 Forward Recursion: From the initial state, the stages are organized orderly increasing number 

until the terminal state. At each stage, all potential states are created before the following stage 

is checked. The optimal solution of the problem is generated according to optimal policy which 

transforms the initial state to terminal state. 

 Backward Recursion: This procedure is applied stage by stage starting from the terminal state to 

initial state. Each stage includes all state that can be possibly turned into the terminal state 

based on the optimal policy. At the preceding stage, all states that end up with at least one state 

at the succeeding stage are created. In this procedure, the optimal policy establishes a link be-

tween initial and terminal state of the optimal solution. 

Dynamic programming can be classified in two groups according to decision which is used at the solu-

tion procedure (Erel&Sarin, 1998): 

Workstation oriented procedure is that the stages connected to workstations and the states of each 

stage are determined by feasible subsets of tasks which can be assigned to workstations. The workloads 

that can be formed for the workstation according to a state at the preceding workstation generate deci-

sion according to optimal policy. The initial stage of the first state is defined by empty set and terminal 

state by the set of all tasks. Since the terminal state is known, the corresponding stage is unknown due 

to its corresponding to number of requested workstations. 

Task oriented procedure comprises of decision process that are sub-classified to stages corresponding 

to the numbers of assigned tasks whose sequences form the policies. The states of each stage are de-

termined by feasible subsets of tasks. “In each state at a stage k, k tasks are already assigned and the 

decisions are to assign one of the currently available tasks to position k+1 of the sequence.” 

(Erel&Sarin, 1998, p.130). Initial stage of the first state is defined by empty set and terminal state by 

the set of all tasks. The task sequences are connected to workstations according to maximum load rule.  

Pulling and reaching are the basic strategies applied to enumerate all feasible subsets at the task orient-

ed procedure. 

Jackson (1956) introduces a workstation oriented dynamic programming procedure for solving 

SALBP-1 and applied forward recursion to reach optimal solution. His algorithm firstly assigns all fea-

sible tasks to the first workstation, then produces all feasible assignments to the second workstation, 

known the assignments of first workstation to generate a first-second workstation combination. After 

creating a first-second workstation combination, all feasible assignments are built for the third work-

station. This process goes on until an optimal number for workstation is found, so all tasks cam be as-

signed to target number of workstations. Jackson (1956) applies several dominance rules to improve his 

solution. Application of the optimal policy, procedure can reach an optimal solution. However, Jackson 

(1956) does not use independency of related policies for the states of the procedure.  

Held and Karp (1962) propose task oriented procedure for dynamic programming which they applied 

general rules of sequencing regarding to precedence relations. Then, Held, Karp and Shareshian (1963) 

present this dynamic programming procedure with pulling strategy in more details and introduced fea-
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sible subsets and feasible sequences into the method. At their task assignment procedure, the number of 

workstation is minimized while tasks are performed based on their feasible sequences. Due to the opti-

mal policy of dynamic programming, they introduced a compact addressing function to save each of all 

produced states in their memory position with their workstation requirement. This addressing function 

guarantees that memory positions are under monotonous order and it depends on recursively partition-

ing the precedence graph. At each memory position, related state is decided by calculating the inverse 

of the addressing function according to counting procedure that determines the cardinality for the space 

of each state. The addresses of all previous states must be calculated based on the requirement of pull-

ing strategy.   

Kao (1976) introduces a dynamic programming approach to assign tasks to the minimum amount of 

workstations considering the precedence relations between the tasks and the lower bound constraint for 

that the probability of the assigned workloads to each workstation not greater than cycle time while 

minimizing the labour cost of assembly line. The approach is suitable for the limited size of the prob-

lems due to storage space requirements.  

Schrage and Baker (1978) improve a task oriented dynamic programming procedure with an easier 

addressing function which depends on task labels valued by the labelling dominance rule to store the 

updated minimum number of workstations. Each subset of the tasks requires a specified addressing in a 

memory to store workstation necessities of all feasible subsets. The address of each feasible subset is 

calculated by summing up labels of the inclusive tasks. They try to improve the compactness of ad-

dressing by applying diversified labelling methods 

Lawler (1979) proposes a task oriented dynamic programming procedure with an enumeration tech-

nique operating the states from one stage to another stage. The procedure has forward recursion ap-

proach by applying a reaching strategy to improve the efficiency on the storage requirements and pro-

cessing times of the assembly line.  

Kao and Queyranne (1982) improve the enumeration process of the task oriented dynamic program-

ming of Schrage and Baker (1978) by changing the algorithm to solve larger size of problems without 

requirements of a huge storage space and creating the states based on increasing order of the addressing 

for SALBP. 

Bard (1989) presents a dynamic programming procedure to minimize the number of workstations by 

while balancing the cost of setting additional facilities such as operating costs, equipment costs for as-

sembly lines with parallel workstations. Bard (1989) applies an enumeration procedure with utilizing 

the given lower bound.  
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3.2 Heuristic Solution Methods and Comprehensive Literature Review for Heuristic Solution 

Methods 

3.2.1 Heuristic Solution Methods  

Many heuristic solution methods have been developed for balancing assembly lines. Heuristic methods 

are logical procedure; even though they do not guarantee the optimal solution, feasible solutions with 

good results can be found. Heuristic procedures are mainly priority rules methods, enumerative heuris-

tic methods, shortest path problems and an adaption of the heuristics for the cutting and packing prob-

lems. At this part, I would explain the milestone in heuristic solution methods for ALB.  

Priority Rule Based Procedure is a constructive method to find the feasible solution for balancing as-

sembly line by applying task ranking according the chosen priority rule. Many different priority rules 

have been proposed in the literature. Application procedure of priority rules is that each task is assigned 

to workstation based on their computed priority of the heuristic decision rule by not violating the prec-

edence relations between the task and cycle time. Firstly, a task with highest numerical priority accord-

ing to choosen heuristic priority rules is assigned to a workstation. Then, predecessors of the first as-

signed task are placed to available list checking the priority rule, remaining time at the workstation and 

precedence relation. The task with the highest priority from available (candidate) list is assigned to the 

workstation. At the assignment of each task, available list and the remaining time for workstation must 

be updated. This process goes on until there is no possibility to assign another task to workstation due 

to remaining time check. Then, the next workstation can be opened to assign to tasks at the updated 

available list. The assignment procedure ends when there are no tasks to assign at the assembly line and 

a feasible solution is reached in the end. The assignment procedure can be workstation oriented or task 

oriented. 

The notation for priority rules is shown below (Erel&Sarin, 1998; Scholl&Voß, 1997): 

c             cycle time 

tj             task time 

Pj            set of tasks which must precede task j immediately (predecessors) 

Fj            set of tasks which must follow task j immediately (successors, followers) 

Pj
*          set of all tasks which must precede task j  

Fj
*          set of all tasks which must follow task j 

�̅�           upper bound in the number of workstations 

pwj         positional weight of task j  ( = tj+   ∑  thℎ∈𝐹𝑗∗  ) 

pwj
*        positional weight of task j  ( = tj+   ∑  pwh

*
ℎ∈𝐹𝑗  ) 

rj             number of arcs in the paths having j as its root ( = | Fj | + ∑  | Fh |ℎ∈𝐹𝑗∗  ) 

rj
*            recursive cumulated number of arcs in the paths with root j ( = ∑ ( rh

*
ℎ∈𝐹𝑗 + 1) ) 
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Ej            earliest workstation of task j ( = ⌈( tj / ∑  thh∈Pj* ) / c ⌉ ) 

Lj            latest workstation of task j to improve   ( = �̅� - ⌈( pwj / c ⌉ ) 

sj            slack of task j ( = Ej - Lj + ε ) 

         

The positional weight is calculated by adding up the operation times of the task and all successors of 

this task at the precedence diagram. The reverse positional weight is found by adding the operation 

times of the task and all predecessors of this task at the precedence graph. The priority rj
* presents each 

arc related to the number of successors that are depended to task j by this arc. The slack shows the 

freedom level for assigning a task to verified workstations.  Small number “ε” is added to prevent split-

ting by zero in some of priority decision rules.  

These priority rules are static and are divided into several subgroups during the solution procedure. The 

extensive collection of well-known and new priority rules is listed below (Erel&Sarin, 1998) :   

MaxTime                     decreasing task time tj 

MaxPWsm               decreasing positional weight  pwj 

MaxFsm decreasing number of followers | Fj
* | 

MAXIF decreasing number of immediate followers | Fj | 

MinEm increasing earliest workstation Ej 

MinLm increasing latest workstation Lj 

MinSlack   increasing slack sj 

MaxAvgPW   decreasing average positional weight  pwj / | Fj
* +1 | 

MinAvgLsm increasing average latest workstation Lj / | Fj
* +1 | 

MaxTimeL decreasing task time divided by latest workstation  tj / Lj 

MaxFSlack decreasing number of followers divided by slack  | Fj
* | / sj 

MaxTimeSlack decreasing task time divided by slack tj / sj 

MaxAsm decreasing total number of following arcs rj 

MaxCumAsm decreasing cumulated number of following arcs rj
* 

MaxCumPWsm decreasing cumulated positional weight  pwj
* 

MinTaskNosm increasing task number j 

The rules marked with “m” defines monotonous increasing or decreasing ranking values for a specific 

pj ; for example, “ ph  ≥  or  ≤ pj ” is true for all arcs (h,j) at the precedence diagram. The rules with “sm 

” means strongly monotonous when “ ph > or < pj ” holds for all arcs (h,j).  
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“MaxTime ” priority rule is presented by Moodie and Young ( 1965); at this priority rule, tasks are 

ranked according to their operation times from largest to smallest and are assigned based on decreasing 

operation times by choosing the task with assigned predeccessors. This rule can be applied as a reverse 

way which is assigning tasks according to increasing task times in order to precedence relations. 

Helgeson and Birnie (1961) improve the most popular single pass heuristic priority rule called “RPW 

Technique”. Positional weight for each task is calculated and tasks are listed in decreasing order, then 

assignment process is applied based on descending positional weight rule by considering precedence 

relations at the assembly line. During the assignment process, available list, consisting of candidate 

tasks to assign, must be updated after each assignment to find the feasible solution.  

Tonge (1960) introduces the “MAXIF ” which is assignment of the task according to decreasing num-

ber of immediate successors ( followers). Tonge (1965) proposes “Random Selection” procedure that 

assigns tasks to workstations by randomly choosing the following task to place into present work-

station.  

Arcus (1963) proposes the “MinTaskNo” priority rule which is assigning tasks according to ascending 

task number. He applies a biased sampling procedure to reach a feasible tasks sorting for assigning to a 

workstation.  

Priority rules like MaxFsm, MinSlack, MaxAvgPW are proposed by Talbot, Peterson and Gehrlein 

(1986). 

All station and task oriented procedure can be formed initially by prefixing tasks j with Ej = Lj to work-

station Ej. In this situation, all preceding tasks of j must be assigned to the workstation by starting first 

until Ej (Scholl, 1999). When a feasible solution can not be found by applying these static priority 

rules, we may use “Upper Bound” decision rules to find the minimum number of workstation in order 

to reach optimal solution. According the upper bound decision rules (Talbot,Peterson&Gehrlein,1986; 

Hartl, 2014): 

 Tasks can be assigned monotonically increasing upper bound of each task j and their predeces-

sors required number of workstations   

 Tasks can be assigned monotonically increasing upper bound for latest possible workstation of 

each task j  

The procedure for priority rules can be applied as forward, backward and bidirectional ranking. For-

ward procedure is improving solution by starting from the first workstation unidirectionally. On the 

other hand, backward procedure develops solution on reverse precedence diagram with reverse rule. 

Moreover, both procedure may be applied in order to assign task bidirectionally. Task ranking must be 

calculated based on forward and backward procedure. The bidirectional procedure begins with first 

workstation and (𝑚 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ as present workstation by applying both directions. The Priority Based Pro-
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cedure has static rules due to only considering the parameters, not the solution process. Dynamic rules 

are hold by using modified parameters through task assignments (Scholl, 1999).  

Wee and Magazine (1982) develop “Generalized- First – Fit which is assigning all available tasks to 

the initial workstation by considering precedence relations and cycle time constraints. Secondly, avail-

able (candidate) task list must be updated after all assignment of the tasks whose immediate predeces-

sors have been already assigned. Their methods relatively sequence the tasks based on the levels in the 

assembly line precedence diagram and task ranking score in each level of assignment procedure. 

Hackman, Magazine and Wee (1989) present “Immediate- First – Fit” which is heuristic task oriented 

procedure with assignment of tasks based on numerical score of each task; the task with the highest 

numerical score is assigned the first workstation. The assignment procedure is quite same as general-

ized method but in immediate first fit procedure, some restriction related with precedence relation. 

They also propose “Rank and Assign” which is less useful than other two procedures due to checking 

the constraints many time even it is not required. 

Kilbridge and Wester (1961) introduce a heuristic assembly line procedure that is grouping tasks under 

the columns at the precedence diagram in which tasks are stated as left as possible based on their prec-

edence relations according to their cumulative operation times of each task. This method is a good so-

lution for assembly lines with large cycle time if a workstation passes through various columns. Tasks 

can be switched between each other in every column at the precedence diagram and they may be trans-

ferred to right sideward position from their columns according g precedence constraints to find the fea-

sible balance for the assembly line. Kilbridge and Wester (1961) also analyse the effect of balance de-

lay at different parameters of ALB. 

Hoffman (1963) improves a unidirectional workstation oriented heuristic method in which assembly 

lines are balanced with a precedence matrix. This method starts with the first workstation to calculate 

the combination of tasks with resulting the minimum slack time at that workstation until all tasks are 

assigned. While finding the optimal solution with precedence matrix with iterations, each column of the 

matrix is totalled and these total values state another row attached to the bottom row of the precedence 

matrix.  

Arcus (1966) proposes a computer based multi-pass heuristic solution approach as COMSOAL which is 

random generation of a large amount of feasible solutions and finds the best solution with minimizing 

the number of workstations. The procedure starts from first workstation for assigning tasks with as-

signed predecessors. The following task as candidate to be assigned is chosen randomly from the subset 

of the candidate tasks. When the subset becomes empty, new workstation is open.  

Thomopoulos (1967) forms the method of Kilbridge and Wester (1961) to solve mixed model ALBPs. 

He assigned the tasks to workstations by calculating the penalty cost resulting from unproductiveness 

of ordering different models. The assignment procedure of Thomopoulos (1967) is a shift based and he 

introduces four different unproductiveness which are idleness, work deficiency, utility work and work 

congestion. If there is an idle waiting of workers, idleness happens; if the worker can operate the task 
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before the following task comes to the workstation, work deficiency happens; time shortage for the 

uncompleted work results with utility work and work congestion. Then, Thomopoulos (1970) improves 

a method in which assignment of tasks is done serially.  The methods analyse a finite amount of feasi-

ble combination for tasks to minimize the deviation of the workstation tome from mean average work-

station tıme.  

Dar- El (1973) presents a method for SALBP-2 as “MALB” which is assigning tasks with a given num-

ber of workstation in order to minimize cycle time. So, MALB begins with minimum theoretical cycle 

time and processes by producing feasible assignments of task to the workstations. If there is no im-

provement at the feasible assignments, then the method proceeds a backtracking procedure by separat-

ing tasks in right way or giving a results as a rise of a time unit for cycle time.  

Pinto, Dannenbring and Khumawala (1978) introduce a heuristic solution approach based on shortest 

path problem, only taking into account of subgraph of precedence graph. In the method, the nodes de-

fine a subset of tasks which can be executed in some sequence with no prior finishing of any task not 

placed in the subset. They also apply other heuristic procedure to create the nodes which is generated to 

be combined to develop a composite network.  

Due to possibility of not finding the optimal solutions by applying heuristic methods, “Worst Case 

Analysis” is improved by Wee and Magazine (1982) to find the solution quality that is achieved on the 

average and in the worst case. During the ALB, related error bounds can be obtained from features of 

the optimal solutions. The worst case bound indicates that there is not more than twice the number of 

workstations as an optimal solution occurs in a heuristic solution (Wee&Magazine, 1982). 

Agrawal (1985) improves a method with a decision rule as “Largest set rule” to divide the work to 

workstations. The method calculates the cumulative time for every task that is the sum of operation 

time of the task and operation time of all its predecessors. Afterwards, the task with the largest cumula-

tive, less than cycle time, is chosen and related tasks are transferred to the worker. The method contin-

ues until all tasks are assigned and the work is shared by the workers.  

Baybars (1986a) proposes a single-pass heuristic solution method with five different phases. Initial four 

phases decrease the size of ALBP by providing benefit from different features of the assembly line 

problem and the final phase is single-pass heuristic solution to be applied on the decreased problem. 

The procedure is backward process, so it starts with the last tasks of the precedence diagram.  

 

3.2.2 Comprehensive Literature Review for Heuristic Solution Methods 

Besides the well – known heuristic solution methods mentioned above, many researches are done and 

published from the 1960s till nowadays.  
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Mastor (1970) analyses the procedures of Helgeson and Birnie (1961), Kilbridge and Wester (1961), 

Hoffman (1963), Held, Karp and Shareshian (1963) and Arcus (1966) by applying on different types of 

ALBPs.  The performance measures to compare the methods are the output rate to measure the effec-

tiveness and cycle time of assembly line and the cost of calculation. The research of Mastor (1970) 

shows that there are particular differences on ordering strength, problem size and assembly line length 

between ALB methods. The best results achieved by methods of Held, Karp and Shareshian (1963).  

Campbell, Dudek and Smith (1970) proposed a heuristic method to find approximate solutions via 

computer for very large sequence problems. They applied the method to n number of tasks, m number 

of machines with every task process with same order of machines. They aim to reach m machine se-

quence problems with minimization of total elapsed time not considering passing of tasks. As a result, 

the method is able to find up to m-1 sequences with a possible decreasing of expected error via usage 

of computer.  

Macasskill (1972) introduces a computer applied heuristic methods for task assignment to balance 

mixed model assembly lines with deterministic task time.  

Nevins (1972) present a general heuristic program as “The Best Bud Search” which has an upper bound 

for the number of workstations and is applied to minimize the number of workstations indirectly. 

Reeve and Thomas (1973) research the single model assembly line with stochastic task processing time 

by comparing four solution methods. According their methods, the first balance is given and reassigned 

the tasks by minimizing the workstation time over cycle time. Their first method is based on “Trade 

and Transfer” which is trading the tasks one by one between workstations to decrease the probability of 

workstation times over cycle time. Their second method is based on bounding process that exploit the 

first balanced solution to set the probability of workstation times over cycle time the upper bound for 

the idle time. Their third method is a heuristic branch and bound technique by adding some heuristic 

rules to second method. The fourth method is called as BABTAB which is combination of their first and 

third methods. BABTAB performs well for short time periods and cannot be generally interpreted be-

cause small size of the ALBPs of the research. (Reeve&Thomas, 1973). 

Kottas and Lau (1973) draw an attention on the including costs apart from labour cost of the assembly 

line and they propose a heuristic solution method for minimization of the product incompletion cost. 

The incompletion cost is related with incomplete tasks and labour cost at the assembly line. There is a 

connection between the cost of workstation idle time and the incompletion cost. In Kottas and Lau 

(1973) method, the unit comes down the assembly line to complete the remaining tasks as possible if 

there is an unfinished task; then all unfinished tasks are completed off the assembly line. The desirable 

tasks list is composed by specifying the candidate (available) tasks list with marginally desirable tasks 

for assigning to workstations. A task is marginally desirable if its predicted labour savings at the par-

ticular position is greater than its expected incompletion cost. The tasks with main certainty to be com-

pleted are initially assigned to workstation according to decreasing incompletion time until desirable 

list becomes empty, new workstation can be opened. Kottas and Lau (1976) propose a new method to 
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review the total expected incompletion cost of a design. Their method searches for all potential combi-

nation of incomplete tasks and computes the related costs. Kottas and Lau (1981) improve different 

heuristic solution method that produces likely assembly line designs and they develop their first work 

by adding new selection rules and possible combinations principle for the desirable tasks list. 

Buxey (1974) presents a computer program for multiple parallel workstations, integral tasks and spatial 

zoning. Then, Buxey (1978) improve COMSOAL for parallel workstations to decrease the total idle 

time of assembly line.  

Dar-El (1975) compares MALB with COMSOAL and 12 different single – pass heuristic rules for 

SALBP-2. He chooses the balance delay and computation time as a performance measure for efficiency 

of the solution methods. According to research of Dar – EL (1975) MALB better than the other meth-

ods and COMSOAL is better of ten of the single – pass rules. Dar-El and Rubinovitch (1979) introduce 

a backtracking method called as Multiple Solutions Techniques -MUST” which produces alternative 

solutions with same quality by applying exhaustive enumeration eight exponential improvement of 

number of subsets. Their algorithm performs better results or same result comparing with mixed model 

ALBPs in each case.  

Schofield (1979) develops a computer based method called as “Nottingham University Line Sequencing 

Program- NULISP” that can be applied for SALBP-1 and SALBP-2 by working with different zoning 

restrictions and task processing times exceed cycle time.  

Raouf and Tsui (1982) improve a method for single model assembly line with deterministic processing 

time by applying theorem in which when a new task enters into a tasks group, the coefficient variation 

of new workstation time is smaller than the previously built old workstation time based on lack of cor-

relation between the tasks. The method accepts that the task processing times are not known and sym-

metrical distributed. They applied priority ranking heuristic solution procedure. 

Sarker and Shanthihumar (1983) introduce a heuristic method for serial and parallel lines, quite similar 

to Moodie and Young (1965). During the ALB process, they also consider task with processing times is 

larger than cycle time.  

Akagi, Osaki and Kikichi (1983) propose a multi – pass heuristic solution method with two phases in 

which more than one worker can be assigned to a workstation. The task assignment procedure is ap-

plied based on priority rules and is iterated for a verified number of workers at single workstation. Af-

ter the assignment of workers to the workstations, tasks can be assigned to workers at each workstation.  

Shtub (1984) develops a heuristic method for balancing assembly lines with stochastic task processing 

times and various assignment design of workstations. Determining of the available and desirable tasks 

list of Shtub’s (1984) method is quite same to Kottas and Lau’s (1973), but the desirability of task de-

pends on the number of workers at each workstation. The average processing time of each task is ac-
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cepted as a non – increasing discrete function of the number of workers at the workstation with the as-

signed tasks.  

Silverman and Carter (1986) analyse relations between stochastic task processing times and the total 

operation cost of an assembly line where the incompletions are solved by switching off the all assembly 

line to finish the work. Tasks are chosen randomly for assignment and they introduce a cost function as 

below:  

                   E ( TC ) = ( C . K . L ) + La ∫ ( 1 − 𝐺(𝜔)). 𝑑𝜔
∞

𝑐
                                                           (3.1) 

In this cost formula to find the lowest total cost as an optimal solution; K is the number of workstations 

at the assembly line, L represents the labour rate, La is the overtime labour rate, 𝜔 is the maximum time 

of workstation to finish their tasks in a certain cycle time and 𝐺(𝜔) is the cumulatve distribution. Their 

method performs better than the assembly line problems that have higher overtime rate (Silver-

man&Carter, 1986). 

Chakravarty and Shtub (1986) improve two heuristic methods for mixed model assembly lines with 

stochastic time. Their methods combined the labour cost with in – process inventory holding cost and 

machine setup cost and it is possible to have in – process inventories between the workstations; main 

aim is minimization of total operating cost of the assembly line considering the constraints. Their first 

method is a single pass heuristic approach based on positional weight calculation and second method is 

a shortest – path heuristic approach based on the consecutive ordering of the tasks.  

Gustavson (1986) proposes heuristic methods to solve the single and multiple product equipment bal-

ancing problem. He develops additional solution method to abstain from non-serial assembly line de-

signs and the method is used for the fixed assembly sequence with inconveniences.  

Bhattacharjee and Sahu (1988) introduce a single model ALB method which applies on different con-

straints such as fixed position, multiple parallel workstations, positive and negative zoning. Their as-

signment procedure based on a priority rule that is the sum of each task processing time and its total 

number of successors. The method is able to analyse large number of randomly generated ALBPs.  

Chakravarty (1988) presents the learning effects of eack task on the starting design of workstation at 

assembly line in order to find solution without large idle times. He assumes the ALBP as a dynamic 

recursive optimization model that states the bottleneck workstations and decreases the idle time of rest 

of workstations according to these bottleneck workstations. Chakravarty (1988)  proves the equality 

between the minimization of idle time and bottle time of the assembly line by applying the optimization 

model as a shortest path problem. He analyses idle times of the assembly line by considering the lear-

ning effects and not considering them. 

Shtub and Dar-El (1990) propose a method with two main objectives to balance mixed model assembly 

lines for SALBP-1 and SALBP-2 by practicing a set of zoning restrictions in order to restrict the tasks 
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of chosen subassemblies to a single workstation. Their method has four models and two main objec-

tives as minimization of the total idle time and minimization of the number of subassemblies processed 

at every workstation in order to enhance working technics and improve the jobs of workers as well. The 

first model aims to minimize the number of workstations and the weighted sum of the total amount of 

subassemblies at assembly line. The second model purposes to minimize the number of cycle time and 

the weighted sum of the total amount of subassemblies at assembly line. At the third model, the objec-

tive is the minimization of number of workstations with the constraint in which every workstation does 

not process above than predetermined amount of subassemblies. The fourt model minimize the cycle 

time with the constraint in which every workstation does not process above than predetermined amount 

of subassemblies. The efficiency of ALBP depends on how much effort is implied separately on two 

main objectives of the method.  

Shin (1990) improves a cost related method to minimize the expected total cost which includes the total 

labour cost and cost of the unfinished tasks that are extracted from the assembly line to be completed 

later. The method is applicable for every deterministic heuristic algorithms or methods by processing 

with a large cycle time initially. The cycle time is decreased by a predetermined quantity until cycle 

time becomes equal to lower bound of the task processing time. The expected total cost related with the 

assembly line design is computed and the line balance related with the minimum expected total cost 

generates the solution of the ALBP under the method.  

Rachamadugu and Talbot (1991) propose a method for solving manual assembly lines by analysing the 

scaling of workloads across workstations. The objective function is an average absolute deviation of 

workloads condition to balance the workload between workstations. Furthermore, unbalanced assign-

ments are accepted as unfair and require some management related action like differential pay.  These 

levelling task assignment method is applicable for SALBP-1 and SALBP-2 to find the optimal solution 

by balancing workload between workstations.  

Ahmadi, Dansu and Tang (1992) improve a heuristic method with three different procedures for dy-

namic allocation problem with assigning models to assembly lines to find almost optimal solution by 

objecting to decrease penalty costs and changeover costs. The number of lines are fixed and identical. It 

may define as a scheduling problems for multiple types of tasks on parallel machines.  

Rosenberg and Ziegler (1992) introduce two new heuristic methods to solve cost-oriented ALB and 

they are “The Wage Rate Method” and “The Wage Rate Smoothing Method”. They accept that the 

processing of workstation results in a wage rate for each time unit which is even to the maximum wage 

rate of entire tasks of the chosen workstation. The aim is to decrease and balance the wage rate at all 

workstations as much as minimizing the number of workstations. The elements of task are assigned to 

the workstation in decreasing sequence of the tasks element wage rates, changing on behalf of the max-

imal processing time.  

Bartholdi (1993) analyses two-sided assembly lines in which couple of workstations are designed at the 

different sides as right and left sides of the lines and every couple of workstations operate on one prod-
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uct at the same time. He proves that two-sided assembly lines need fewer workstations than a known 

type of one-sided assembly lines by satisfying precedence and cycle time constraints. Bartholdi (1993) 

applies an updated version of a priority rule based heuristic to a software program that give an oppor-

tunity for applicants to fix some tasks to chosen workstations.  

Pannerselvan and Sankar (1993) search the single model ALBPs with an objective of minimizing the 

number of workstations. They analyse Dar-El ’s (1975) six single pass heuristic rules and they finalize 

their research with introducing more developed version of three heuristic rules of Dar-El ’s (1975) and 

new six heuristic rules which are the most efficient set of heuristics for solving SALBP-2.  

Rubinovitz and Bukchin (1993) propose a heuristic method which is based upon the branch and bound 

algorithms and called as “RALB” with line design in which various robot kinds can be used, to analyse 

single model ALBPs. They assumed that every substitutive equipment has a specified purchase cost. 

They aim to reach an optimal solution by minimizing the number of workstations with chosen produc-

tion rate.  

Malakooti (1994) presents a heuristic approach to balance assembly lines with multiple decision crite-

ria which includes different objectives (cost related, precedence relations, buffers etc.) and constraints. 

He applied the multiple decision criteria to single model ALBP with positioning and dimensioning 

buffers.  

Miltenburg and Wijngaard (1994) introduce U-shaped assembly lines to improve flexibility of grouping 

tasks to the workstations. They improve three procedures to balance U-shaped, single model assembly 

lines: Their first procedure is dynamic programming method which is based upon Held, Karp and 

Shareshian (1963), second procedure used ranked position weight technique of Helgeson and Birnie 

(1961) and third procedure is based upon the enumeration method of Hoffman (1963).  

Süer and Dagli (1994) improve a heuristic method to find out the number of assembly lines, the number 

of workstations allocated to every model and the allocation of models to assembly lines for every cycle 

term in specific time. The amount number of assembly lines must be fixed and the cycle time for the 

workstation must not be overcome. Their optimisation criteria are minimization of the mean system 

response time and the makespan when there is a request to be delivered. The production system can 

compose of any number of assembly line and there is no limitation on number of workstations; there is 

only limitation on sum of the number of eligible workstations. They apply six various scheduling rules 

and the main problem of the method is that the entire task can be split tasks in a sense which they can 

be placed to the necessary number of workstations.  

Kim and Park (1995) propose a heuristic method in which task processing times can be used as motiva-

tion and the method does not consider the instability between workers and operation time of assembly 

line. They create a mathematical model and cutting plane algorithm to solve SALBP-1.  
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Boctor (1995) presents a composite heuristic method for SALBP-1 by applying four decision rules to 

assign tasks to workstations at prioritizing plan and the assignment procedure is same as at single pass 

heuristic methods. Four decision rules of Boctor (1995): 

1. Choose the task with same duration to remaining time of workstation. If there is no eligible 

task, go to next rule. To break ties, assign the task which has the largest number of subsequent 

candidates. 

2. Choose the severe task, which has a processing time larger than or equal to half og-f the cycyle 

time, with the largest number of subsequent candidates. Ifthere is no severe tasks, go to next ru-

le. If there is a tie among tasks, select the task with the largest processing time. 

3. Choose the combination of two task with a duration equal to remanining time of workstation. If 

there isn’t any combination like that, go to next rule. If tie occurs, take the largest number of 

subsequent candidates. 

4. Choose the task with the greatest number of subsequent candidates. To break ties, select the 

task with the largest number of severe immediate successors and if there is still a tie, assign the 

task having the largest processing time. 

Boctor (1995) applies these four assignment rules on forward and reverse ALB procedures.  

Nkasu and Leung (1995) improves a heuristic method which is quite similar to COMSOAL with regard 

to the best design is chosen among a couple of created by simulation. The processing times and cycle 

time can be taken from different probability distributions at the procedure and they take the minimiza-

tion of cycle time, the number of workstations, balance delay as performance measures of their method.  

Scholl and Voß (1996) analyse the forward, backward and bidirectional priority rules for the assign-

ment of tasks for SALBP-1 and SALBP-2 by presenting forward and backward rankings. They applied 

the backward procedure by reversing the precedence relation graph of assembly line problem and cal-

culating rankings as inverse positional weight of Helgeson and Birnie (1961). At the bidirectional pro-

cedure, they use forward and backward procedure simultaneously by creating ranking for each proce-

dure. They introduce a task as backward available if all successors are already assigned and as back-

ward assignable to workstation k if task is backward available and any of its successors are not as-

signed to previous workstations. The bidirectional procedure begins with workstations kf and kb as cur-

rent workstations in which kf  is equal 1 and kb is equal to a really large number. In every assigning iter-

ation, the task with the highest priority is selected and assigned to the chosen workstation by checking 

if the task is forward assignable to kf or backward assignable to kb. The bidirectional procedure ends 

when there is no task to assign. Scholl and Voß (1996) find out that bidirectional procedure produces 

better results with comparison both forward and backward procedures for SALBP-1.  

Malakooti and Kumar (1996) present different heuristic methods with multi-objective which are cycle 

time, the number of workstations, buffer size and cost oriented objectives for ALBP. They applied 

three steps interacting procedure for minimization of total cost of the assembly line. Firstly, they use 

“ranked positional weight” rule of Helgeson and Birnie (1961) and search the necessary buffer size via 
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an empirical formulation. In the end, they are able to estimate the total cost of assembly line. Malakooti 

and Kumar (1996) improve an additive utility function according to user’s choices and split the all 

problem to three basic parts; minimization of the number of workstations with a given cycle time, min-

imization of the cycle time with given number of workstations and minimization of the total cost of 

assembly line with given cycle time and chosen number of workstations.  

Park, Park and Kim (1997) propose a heuristic method which is developed by additional constraints as 

task incompatibilities and range constraints to provide flexibility for precedence relations in situations 

lack of enough precedence information and solve according to network theories. The method has two 

sub-problems which can be optimized by using neighbourhood search process. First sub-problem is a 

generalized bin packing assembly problem and second one is shortest path problem with polynomial 

time bound. The method is applicable for practical situations with an improvement at production rate.  

Askin and Zhou (1997) introduce a nonlinear integer programming to balance mixed model assembly 

line with parallel workstations according to idle time and cost oriented constraints. At their method, 

every task is assigned to a stage at the serial production system and find out the amount of same paral-

lel workstations at every stage. The aim of this heuristic method is to find optimal assignment by reduc-

ing the total cost of the assembly line by applying greedy approach.  

Minzu and Henrioud (1997) develop a stochastic method called as kangaroo algorithm to solve assem-

bly line with a given number of workstations. The method decreases the maximum workload of the 

workstations to reach a better balanced line.  

Ugurdag, Rachamadugu and Papachristou (1997) propose a heuristic method with two stages to bal-

ance SALBP-2 by minimizing cycle time and smoothing the workload between workstations. At the 

first stage of the method, the initial solution is created according to processing times to comprise the 

simplex table for heuristic balancing. At the second stage called as ALMap- Line Mapping, the optimal 

solution is improved from initial solution by applying simplex process.  

Süer (1998) presents a heuristic method with three phases for a single model assembly line to minimize 

total number of workers assigned to workstations. At the first phase, tasks are variously grouped ac-

cording to number of the workstations; at the second phase, the parallel workstations are chosen and 

the number of the workers for each workstations is chosen based on integer programming model for 

improving the production rate. At the last phase, the solution with best production rate for every num-

ber of workers is chosen for parallel assembly lines.  

Sparling (1998) introduces a heuristic method for balancing a Just-in-time production unit with U-

shaped assembly line and multiline workstations for SALBP-1. At the method, the number of U-shaped 

assembly lines are determined, every line is assigned to a single product and three versions of work-

stations which are regular, crossover and multiline can be used. You may reach each U-lines through 

start area and workstations are not allowed to cross paths; in addition, workstations with multiline do 
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not have more than two U-lines. This assembly line problem is named as N U-line balancing in which 

locations of U-lines are undetermined.  

Merengo, Nava and Pozzetti (1999) analyse a manual mixed model assembly lines by applying balanc-

ing and sequencing process to minimize the rate of incomplete tasks and decrease WIP (work in pro-

gress). At the balancing process, heuristic method is applied according to weighted differences at four 

different versions including vertical and horizontal balancing to smooth the workload of workstations 

and minimize the number of workstations. At the sequencing process, they highlight the uniform parts 

usage for minimization of incomplete units for just-in-time production systems.  

Sarin, Erel and Dar-El (1999) develop a stochastic method for single model ALBP to minimize the 

total labour and expected incompletion cost with a given allocation and sequencing of tasks and given 

number of the workstations. At their method, ALBP is divided into sub-problems from which an initial 

solution is reached by applying dynamic programming; then, the initial solution is developed at the 

improvement procedure by applying branch and bound balancing method that forms an approximate 

solution. At the final solution of improvement procedure, less workstations and less cost amounts are 

found.  

Sysoey and Dolgui (1999) propose an iterative pareto optimization approach for production systems by 

applying heuristic processes of the selection part of ALB with multiple decisions. Their method is 

equipment selection that is resource planning part of ALBP. 

Bautista et al. (2000) present a Greedy Randomized Adaptive Search Procedure which is created by 

using some heuristic rules based on priority constraints and a GA that solve the problem for heuristic 

space. They analyse ALBP by taking into account incompatibilities between the tasks as their first aim, 

then their second aim is minimizing the cycle time with a given minimum number of workstations. The 

main characteristics of classical greedy heuristics is used for their method; they propose the random 

selection rule by applying probability distribution which based on an index resulting arises from priori-

ty based rules and they named their method as a Greedy Randomize Weighted Adaptive Search Proce-

dure that uses the introduction of random selection rules by adapting greedy heuristics into their prob-

lem. The solution of problem can be based on order of priority rules and the tasks can be chosen ran-

domly based on the fitness value depends on a chosen rule.  

Gadidov and Wilhelm (2000) propose a new brand and cut method for single product assembly system 

design problem and their method is combination of heuristic, pre-processing and two cut-generating 

processes. The aim is the minimization of total costs at assembly line design and total cost includes 

fixed costs of operating workstations, machines used for operating and variable cost of operating dur-

ing the planning period. All processing times of tasks, costs are accepted as deterministic and every 

task can be operated at one of a group of alternative machines. At their first variation of the problem, 

assembly line is parallel and has same machines to be placed at every workstation; it is possible to op-

erate with the tasks that have larger processing time than cycle time and improve workstation availabil-
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ity. At their second variation of the problem, they focus on the positional constraints resulted by non-

ability of product assignment to same workstations front and back side of operations.  

Amen (2000,2001) improves a workstation oriented priority rules focused method, which considers 

cost rate and duration of tasks, called as “best change of idle costs” priority rule; with application of 

this new rule, it is possible to check the idle time and wage rates differences between workstations. 

This rule differs from other priority rules due to consideration of production cost as outcome from cost 

wage rates and production time. Amen (2000,2001) also proposes a heuristic method as “exact solution 

of sliding problem window” that is a heuristic version of an exact solution method.  

Lee et al. (2001) introduce a heuristic group assignment method for two-sided ALBP and aim of the 

method is maximization of work relatedness and slack time between tasks. The group assignment allo-

cates the task groups to mated workstations in deterministic times. The computation results show that 

their method is able to improve the work relatedness and slackness with a small amount or no changes 

in cycle time and the number of workstations.  

Matanachai and Yao (2001) develop a heuristic method for mixed model assembly line to find well-

balanced workload between workstations and forming the daily sequence of tasks which supplies con-

sistent workloads for assembly line. Their heuristic method is applied by using a filtered beam search 

algorithm which finds out applicable subsets at every workstation; the subsets with best objective val-

ues for every workstation are kept and the subset with the best objective value is divided to form eligi-

ble subsets for following workstation. After the feasible solution is reached, the tasks are transferred 

from one workstation to another to reach a better objective value.  

Bukchin, Dar-El and Rubinovitz (2002) analyse the make to order environment for mixed model ALBP 

by applying three-stage heuristic method to minimize the number of workstations with a given cycle 

time. They group the tasks into two sets: the first tasks group is eligible to be assigned to a single work-

station for all model kinds asking this task, the second tasks group is eligible to be assigned to various 

workstations for different model kinds. The heuristic solution method has three stages: SALBP-1 is 

solved to find number of workstations and place the tasks to workstation at the first stage; at the second 

stage, reassignment of the tasks of every model occurs and the tasks of every model are particular for 

current model to save the previous assignments and optimize assembly line based on the chosen goal; 

at the last stage, local search is applied to differ the assignment of the tasks by using bottleneck meas-

ure and the solutions is completed by assigning particular tasks.  

Urban and Chiang (2002) present a hybrid heuristic method for U-shaped ALBP, their method is based 

priority rules processes and tasks times are accepted as stochastic. 

Liu and Chen (2002) propose a two-stage heuristic method with two objectives as minimization of cyc-

le time and minimization of total operation cost of assembly line for balancing multisection assembly 

line problem. At the first stage, a multiple objective mixed integer zero-one programming model and 

related interactive process are developed to minimize cycle time and numbe rof the workstations by 
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fulfilling the desired total operation cost. At the second stage, simulation is reviewed to evaluate poten-

tial operation variability, buffer size, quantity of pallets and capacity constraints. To satisfy the two 

objectives at the same time, they use goal programming at the objective function of the mathematical 

programming model.  

Jina and Wu (2002) introduce a heuristic algorithm called as “variance algorithm” at Just-In-Time sys-

tem for mixed model ALBP. They analyse the relationship between qualified parts and remaining se-

quence.  

Fleszar and Hindi (2003) develop an enumerative heuristic method and reduction techniques with the 

aim as minimization of quantity of workstations for ALBP. Their heuristic method is improved from 

Hoffman’s heuristic method and solves ALBP at both directions of precedence relations to reach opti-

mal solution. The reduction techniques are used at rising processing time of tasks and connecting tasks.  

Karabati and Sayin (2003) analyse the assembly line at mixed model sequencing environments with 

synchronous transfers and relation between task assignments and the sequencing decisions for synchro-

nous transfers; their objective is minimization of total cycle time by incorporating the cyclic sequenc-

ing information. Karabati and Sayin (2003) build a mathematical model which compounds multiple 

model into a single model by summing up processing times generates a lower bound for the mathemat-

ical formulation and introduce a heuristic method to minimize the maximum sub-cycle time of ALBP. 

The result of study shows that proposed method find better solutions but with more computational cost.  

Dolgui et al. (2004) develop a heuristic method for transfer line balancing to assign all tasks to given 

number of workstations or machines and blocks by keeping transfer line cost as low as possible, not 

exceeding chosen cycle time and considering precedence and compatibility constraints. At the assem-

bly line, the tasks of every workstation are grouped into blocks and all tasks of each block are operated 

by a spindle head. They propose two heuristic algorithms, which is based on COMSOAL, as RAP Al-

gorithm-Recursive Assignment of Predecessors and FSIC Algorithm- First Satisfy Inclusion Con-

straints. The recursive algorithm analyses the all constrains of collections of tasks sets only after satis-

fying the actual workstation. At the other algorithm, tasks placed according to the constraints at one 

workstation are operated firstly.  

Lapierre and Ruiz (2004) work on a case study in which an assembly line with two sides and two dif-

ferent heights is balanced according to priority based heuristic rules and they adapt the heuristic proce-

dure to industrial problem. They prove that efficient usage of randomness and logic is important to 

reach a good solution. Lapierre and Ruiz (2004) implement their algorithm into a software as MsAc-

cess97.  

Erel, Sabuncuoglu and Sekerci (2005) apply a beam search method for U-shaped, stochastic ALBPs at 

the first time. A beam search is a heuristic brand and bound procedure which analyses through a search 

tree. They aim to minimize total labor cost and total expected incompletion cost of assembly line with a 
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given cycle time. Their study performs better than well-known heuristic methods for straight lien prob-

lems.  

Fonseca et al. (2005) propose a fuzzy logic method for stochastic ALBPs. They use a fuzzy set theory 

that allows for review uncertainty at assignment of task times and cycle times. They modified COM-

SOAL and RPW by using fuzzy representation for the time variables.  

Liu, Ong and Huang (2005) present a bidirectional heuristic method to solve the probabilistic assembly 

line problems with a given quantity of workstations and fixed assembly reliability that is the ratio of 

line workload not over than cycle time of assembly line. Forward task assignment procedure is used at 

the first step; then the tasks are changed between workstations till the cycle time is decreased.  

Gokcen, Agpak and Benzer (2006) introduce a heuristic method with a mathematical programming 

model for balancing the multiple or parallel ALBPs by aiming minimization of the number of worksta-

tions while balancing at least one line at the same time. At their solution method, each line can be as-

signed to one product, two parallel lines process same production operation and cross-trained operators 

and two parallel lines are able to share specific workstations.   

Gamberini, Grassi and Rimini (2006) analyse assembly re-balancing problem with stochastic time by 

improving new heuristic method called as “Technique for order preference by similarity ideal solu-

tion”. Their approach is based on a well-known cost-oriented heuristic approach of Kottas and Lau 

(1973) and objects to minimize unit labor and expected unit completion cost, and tasks reassignments. 

Then, they also aim to avoid costs related equipment movement, tasks changement, worker trainings at 

new balancing procedure.  

Jiano, Kumar and Martin (2006) create a web-based interactive advisor to balance assembly lines with 

the aim of minimization of amount of workstations, maximization of the output for each week and 

mean workstation utilization. The web-based advisor is able to apply primitive heuristic methods and 

includes a schedule for different types of heuristic methods in its memory.  

Bukchin and Rabinowitch (2006) develop a branch and bound method with backtracking algorithm and 

a branch and bound based heuristic method for mixed model ALBPs by objecting minimization of total 

cost of the workstations and task duplication; enabling a mutual task to be assigned to different work-

stations for different models. Their branch and bound based heuristic method aims to decrease the 

search to find optimal solution at large- scale problems and the main process of method is cutting 

branches by small possibility of reaching optimal solutions. They analyse three heuristic rules as 

“greedy rule, gap=1 rule, reduced candidate list rule”; combine “gap=1 rule” and “reduced candidate 

list rule” for their heuristic algorithm.  

Becker and Scholl (2006a) present a survey on problems and methods in generalized ALB to describe 

the developments and classify according to their layout, task time type, equipment selection, objective 

function.  
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Scholl and Becker (2006b) make comprehensive research on exact and heuristic solution methods for 

SALBP up to now.  

Dimitriadis (2006) analyses paced assembly line with multi-manned workstations, in which group of 

workers can operate on various assembly tasks on the same product and workstation. Every worker 

starts operating task as soon as assembly line is feasible without considering the product is ready. Di-

mitriadis (2006) improves a heuristic method from ALBP’s two limiting cases which are SALBP that 

one worker can work in every workstation and the single- stage sequencing problem with several simi-

lar machines. The heuristic method includes two- level process and is based upon modified version of 

Hoffman’s method. The upper level finds all feasible and eligible to assign subsets of work elements to 

group of workers operating on the same product and workstation; the lower level assigns the tasks to 

every worker. The objective of heuristic method is decreasing the length of assembly line according to 

cycle time and precedence constraints while total effectiveness of assembly line remains stable.  

Van Hop (2006) introduces a heuristic method for mixed model ALB with fuzzy task times as first time 

and the heuristic method is built by applying flexible exchange sequence process to assign tasks into 

workstations. The general system of heuristic method is to gather fuzzy time and the precedence graph-

ic in fuzzy approach for product models converting into a fuzzy single model ALBP. Then tasks are 

assigned to workstations according to gathered fuzzy times considering technological constraints and 

cycle time until the best solutions is reached.  

Boysen, Fliedner and Scholl (2007) categorize ALBP according to the objectives, workstation station 

and line characteristics, precedence graph characteristics; present a wide literature review based on 

solution methods of ALBP.  

Agpak and Gokcen (2007) propose a chance constrained 0-1 integer programming methods for the sto-

chastic traditional U-shaped ALBPs for minimization of quantity of workstations. A goal programming 

approach is explained to improve system reliability; their model can be used as validation tools for heu-

ristic solution methods.  

Boysen and Fliedner (2008) improve a versatile, two-stage graph algorithm to solve SALBP with dif-

ferent objective types such as SALBP-1, SALBLP-2, SALBLP-E, GALBP according to different con-

straints that are parallel workstations and jobs, zoning constraints, stochastic task times, resource and 

wage synergies, processing alternatives. At the first stage of Avalanche-A Versatile Assembly Line Al-

gorithm for Numerous Characteristic Extensions, the precedence graph is used to construct a sequenc-

ing of tasks. When a feasible sequence is reached, the tasks are eligible for assignment to workstations 

by solving a shortest-path problem. Avalanche is a flexible algorithm which can be modified according 

to various constraints.  

Boysen, Fliedner and Scholl (2008) define ALBP and classify the extensions of ALBP according to the 

objectives, precedence diagram characteristics, workstation and line characteristics. They categorize 

the ALB with respect to number of the model used, line control, frequency, automation level.  
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Andres, Miralles and Pastor (2008) analyse the balancing and sequencing of simple assembly lines by 

adding sequence-dependent setup time restrictions in a way that a task is placed next to other at the 

same workstation, a setup time is summed up to calculate the global workstation time. They explain 

their method on the mathematical model; eight different heuristic rules with task-oriented and work-

station oriented objectives are designed and applied according to several task selection ordering meas-

ure. They also apply greedy randomized adaptive search procedure algorithm to find a solution for the 

ALBP.  

Miralles et al. (2008) present a new ALBP called as “Assembly Line Worker Assignment and Balancing 

Problem ” which is application for sheltered work centres for disabled; they apply a branch and bound 

procedure with three search strategies and different factors, they modified heuristic methods to depth-

first-search algorithm for to solve large problems. The problem gives two results as solution which are 

the assignment of task to workstations and the assignment of eligible workers to workstations and aims 

to assign more tasks for disable workers.  

Grzecha (2008) analyses time and cost oriented single ALBP in which only one product can be operat-

ed; time oriented assembly line problem decreases the idle times of workstations and a cost oriented 

assembly line problem reduces the manufacturing cost of final good. Author applies eleven different 

priority based heuristic rules for both problem and additional measurement that affects the line effi-

ciency, smoothness index and the time of line.  

Xiaofeng, Erfei and Ye (2008) develop a workstation-oriented enumerative assignment method for 

two-sided ALBP and combine their method with Hoffman`s heuristic method to optimize two-sided 

assembly lines. They introduce the time transfer function and integrate with precedence relation con-

straint to calculate the earliest and the latest starting time of tasks. The workstation-oriented method 

based upon the start time is planned for task assignment considering direction and cycle time re-

strictions by beginning from the left workstation to the right workstation of the place. They apply their 

algorithm on the benchmark set of instances and their algorithm gives efficient results.  

Bautista and Pereira (2009) introduce a dynamic programming based heuristic method called as 

Bounded Dynamic Programming with graph search exploration to solve SALBPs by minimizing the 

number of workstations. Their deterministic method applies heuristic procedures to decrease amount of 

all states and uses bounds to decrease the search space.  

Becker and Scholl (2009) consider ALBPs with variable parallel workplaces and improve a branch and 

bound algorithm which is also applicable as heuristic method. Becker and Scholl (2009) work on lower 

bounds and reduction rules for their method and they modify the branch and bound algorithm by add-

ing two more time restrictions. After reaching the first feasible assignment, the heuristic solution meth-

od heuristically examines all nodes on the present branching path and goes back to the root node of 

network after specific time. The heuristic version of branch and bound algorithm performs better at 

large sized problem with larger cycle time.  
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Ege, Azizoglu and Ozdemirel (2009) develop an exact and heuristic based branch and bound algo-

rithms for ALB with workstation paralleling by objecting minimization of total workstation opening 

cost and total tooling cost. Their method assigns random quantity of parallel workstations to very stage 

and performs better at medium sized optimization problems. They prove that their heuristic based 

branch and bound algorithm performs better at large problems with low tooling cost, finds nearly opti-

mal solutions.  

Guschinskaya and Dolgui (2009) compare well-known exact and heuristic solution methods for transfer 

line balancing problem in order to minimize total quantity of the necessary equipment by aiming to 

group the tasks into blocks and to assign the blocks to machines. They analyse four different mixed 

integer programming, the shortest path method, FISC heuristic algorithm, deterministic decomposition 

based on precedence diagram, heuristic multi-start decomposition and the aggregate solving which 

considers previously solved sub-problems by changing some assignment processes.  They find out that 

exact methods should be applied for small sized problems, for medium sized problems the shortest 

graph method should be used and the heuristic multi-start decomposition with aggregate solving of sub-

problems should be used for large sized problems.  

Yeh and Kao (2009) create a new bidirectional heuristic method by combining with the critical path 

method to examine the task assignment process of ALBP. They initially apply the critical path method 

to get the critical tasks which ranks in higher precedence for assigning of tasks. After critical method, 

they apply bidirectional method for random task assignment as forward and backward directions. Com-

putational results show that their heuristic method performs effectively.  

L. Capacho et al. (2009) work on Alternative Subgraphs ALBP that considers versions for different 

parts of production. ASALBP includes two sub-problem: the decision problem for deciding one assem-

bly sub-diagram for every sub-assembly with the usage of alternatives and the balancing problem for 

assignment of tasks. At the problem, there are group of tasks for that several choices of assembly vari-

ants are eligible and the tasks must be allocated to the set of workstations. Every variant of every sub-

assembly is shown by separated sub-graphs and chooses tasks for assembling and their precedence or-

der; total task operation time can be different between assemblies. They make comparative analysis by 

applying 39 single-pass and 17 multi-pass heuristic methods based on random selection and priority 

rule as decision criteria. According to their experiments, multi-pass heuristics performs better than sin-

gle-pass heuristics while applying random selection for sub-graphs.  

Toksari et al. (2010) propose effects of learning and deterioration task in ALB with an objective of 

minimization of workstation quantity by improving mixed integer programming model and modifying 

COMSOAL method for such SALBPs. They apply same learning and deterioration rates at work-

stations, but learning and deterioration for every workstation reinitializes due to difference of workers 

or machines at workstations. COMSOAL method is adapted to solve large sized SALBPs with learning 

effects and deterioration tasks. They find out that when problem size or cycle time goes up, learning 

effect is more dominant in case of raising amount of tasks at every workstation. Based on computation-

al experiments at large scale problems, the learning affects more than the deterioration.  
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Kilincci (2010) introduces a Petri-net based heuristic method for solving SALBP-2 by applying reach-

ability analysis and the token movement at assignment process. He iteratively solves the problem by 

using different trial cycle times; if the cycle time is not convenient for a given quantity of workstations, 

the heuristic methods raises the cycle time until reaching an optimal solution; a binary search approach 

is applied between the first feasible and the last feasible solution to enhance the solution. Three ver-

sions of the heuristic methods are introduced by implementing forward, backward and bidirectional 

assignment procedures. According to computational results and comparisons, his heuristic method per-

forms well for SALBP-2, it is perfectly suitable for large scale problems. 

Martino and Pastor (2010) analyse the GALBP with setup times where every time a task is allocated to 

following to another at the same workstation, a setup time must be added to calculate the total work-

station time during arranging the task order for every workstation. They improve heuristic methods 

based on priority rules for GALBPS with aim of minimizing the quantity of workstations; the heuristic 

methods are a workstation-oriented method based on not-weighted priority rules, a task oriented meth-

od with priority rules, a workstation-oriented method based on weighted priority rules and improved 

task assignment schemes by checking of all positions which an applicant task can be allocated, pro-

cessing a local optimisation after a workstation is assumed as closed, processing a local optimisation at 

each time a new task placed to a chosen workstation. The experimental results prove that the scheme of 

local optimization of the tasks assigned to a workstation after each assignment outperforms. 

Lee (2010) presents a modified heuristic mixed model assembly line method to ensure stable work-

station assignments on a model by mode as well as on a workstation based.  His modified heuristic 

method is developed from Thomopoulos method (1970) and applies Hoffman’s precedence matrix 

(1963) and Arcus’s method (1966) for reaching quickly to large amount of feasible assignments. The 

experimental results show that modified algorithm decreases the fluctuations in processing times be-

tween the models as well as workstations and balance delays.  

Jonnalagedda and Dabade (2010) define seven priority rule with a workstation oriented heuristic meth-

od for mixed model ALBP to minimize cycle time with a given number of workstations. They imple-

ment cycle time, model variability, workstation variability and combination of these objectives to direct 

the heuristic method. Bottleneck measure that engages in variability is used for modelling the priority 

rule. The computational results show that according to the performance based on cycle time, the priori-

ty rules as positional weight or positional weight integrated with model variability and/or workstation 

variability outperforms other approaches in the research. The application of the priority rule based on 

mean positional weight or combination with model variability and/or workstation variability performs 

better than used priority rules.  

Yegul, Agpak and Yavuz (2010) create a new hybrid design which is combination of two-sided and U-

shaped assembly lines and apply a multi-pass random allocation process to minimize the quantity of 

workstations. One part of assembly line is organized as U-shaped line allowed workstation with cross-

over and the other part of assembly line is balanced as a traditional straight line flow; they name the 

new design of assembly line as Two-sided ALB with One Side in U-Shape. It is possible to find two 
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different balances (quantity of workstations) according to left or right side of the line having the U-

shaped line design. Based on computational results, it can be solved in low computational time for 

small scale problems and provides a solution with less workstations.  

Kilincci (2011) proposes new heuristic algorithm which applies an order of firing sequence of transi-

tion based on Petri-net approach of precedence graph to solve SALBP by minimizing the quantity of 

workstation with a given cycle time. The proposed firing sequence backward algorithm-FSb with single 

pass heuristic rule and Petri-net approach has two stages. At the first stage, the firing sequence back-

ward algorithm finds firing sequence of transitions considering token movement in the network; at the 

second stage, the proposed algorithm allocates the last task of the sequence list to the last workstation 

applying backward method. Kilincci (2011) compare new algorithm with single pass, multi pass and 

iterative backtracking heuristics by implementing on Talbot’s and Hoffman’s benchmarking problem 

sets and categorizing analyses into problem size, data sets and order strength. The experimental results 

prove that firing sequence algorithm performs well at Talbot’s sets for small and large scale problems 

and the algorithm also provides better solution than single pass heuristic methods at the literature.  

Bautista and Pereira (2011) develop a bounded dynamic programming based method for time and space 

constrained ALBP with a given cycle time and space availability for minimization of number of work-

ers. The time and space constrained ALBP considers the space requirements of machine and assembly 

equipment and their algorithm can be explained in two parts. At the first part, the process for enumerate 

states is based upon the Hoffman heuristic (Hoffmann,1963) which consequentially reaches each task 

assignment to workstation to result with an optimal one; they add new search limit for the number of 

task assignment amount to be reach and apply four different heuristic evaluation techniques to find the 

feasible task allocation. At the second part, their method solves the traditional ALBPs caused by dy-

namic programming with an exponential amount of positions applying heuristic rules to decrease the 

state space and their aim is limitation memory and time requirements connected to final application of 

dynamic programming formulas. Their bounding method is applicable for two different fields that are 

fast lower bounds for enumeration process for heuristic and exact methods, and tight bounds based up-

on a mathematical formulation to compare solutions quality. According to computational experiments, 

their method performs better than other solution methods for time and space constrained ALBP with 

minimization of number of workstations. Additionally, their method also can be applied for GALBPs.  

Fazlollahtabar et al. (2011) introduce a heuristic method based on RPW Algorithm for solving stochas-

tic ALBPs with stochastic activity time parameters by minimizing number of workstations; they also 

apply another approximated approach which calculates the integral curve without capability and Monte 

Carlo simulation.  At the proposed heuristic method, the time for every activity uses normal distribu-

tion with the mean and standard deviation value and stochastic times are converted to probabilities by 

applying standard normal distribution table. According to experimental results, Monte Carlo simula-

tions proves that proposed heuristic performs efficiently by finding same number of workstations as 

solution.  
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Hu (2011) presents a heuristic algorithm to solve two-sided ALBP with multi-objectives as minimiza-

tion line length and smoothness index. The heuristic algorithm includes two stages: at the first stage, a 

branch and bound algorithm is used to find feasible solution with the minimum line length and the al-

gorithm allocates jobs to workstations to decrease the amount of positions and at the second stage, the 

weight of workstations is rebalanced for minimization of smoothness index according to precedence 

and line length constraints. An example is applied to present the process of heuristic algorithm and the 

better result is found. 

Yin, Su and Wu (2011) analyse a heuristic method to solve the two-sided with multi-parallel work-

stations ALBPs with positional constraints. The aim of their method is minimization of number of 

opened positions and the workstations. At the multi-parallel workstations, two workstations operate 

randomly at opposite sides of same task and they define as the workplace occurred by workstations as 

position. At the heuristic algorithm, each task must be allocated to only one position and workstation. 

The proposed heuristic method is effective to apply for bus and track assembly factories.  

Pastor (2011) creates a new ALBP called as “Lexicographic bottleneck ALBP” that reduces the work-

load of the most loaded workstation pursued by the workstation with second most workload and pur-

sued by the workstation with third most workload and goes on. Pastor (2011) designs two mixed inte-

ger linear programming method and three heuristic method based upon mixed integer linear program-

ming.  The mixed integer linear programming methods are the global hierarchical model that minimiz-

es a weighted sum of function with enough variable weights to protect the hierarchy between presented 

objectives and the successive hierarchical model that performs a pre-emptive goal programming to 

minimize the objectives when the optimal values of the objectives with the highest priority have been 

reached. The three heuristic methods comprise of running these two mixed integer programming meth-

ods for limited computation time. According to experimental results, the heuristic method based on 

successive hierarchical model gives better results than other methods.  

Pastor, Chueca and Villoria (2012) improve a new algorithm which compounds a heuristic method for 

getting an initial solution and a few local search processes for solving lexicographic ALBP. The im-

proved heuristic method is based upon dividing iteratively sub-problems into smaller sub-problems and 

balancing every problem as a SALBP-2 (minimization of cycle time with a given number of work-

stations); the found solution of every sub-problem is utilized to renew the global solution of the real 

problem and a local search is performed at every iteration of heuristic method according to exploration 

of the actual workstation. The main characteristic of heuristic method is the usage of local search pro-

cess based on trade and transfer of tasks between a pair of workstations at every iteration of method. 

Moreira et al. (2012) consider the assembly line worker assignment and balancing problems by apply-

ing heuristic methods based on task and worker priority rules. They implement three worker and six-

teen task priority rules and the main idea of their method is usage of task and worker priority rules to 

identify which operator and which group of tasks will be allocated to every workstation. The heuristic 

methods perform workstation oriented assignment process according to selected priority rule to mini-

mize the cycle time with given number of workstation. According to experimental results, tasks priority 
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rules perform better than other heuristic rules for every instance. In addition, they also use the present-

ed heuristic method as a solution decoder for a hybrid GA which optimizes significant priorities for 

every task-operator set.  

Avikal et al. (2013) compare the labour productivity in U-shaped assembly lines and traditional straight 

assembly lines by implementing bidirectional assignments with heuristic based critical path method 

(CPM). The introduced heuristic method is modified version of the method of Yeh and Kao (2009) but 

at the introduced method, tasks can be allocated to same workstation from either end of the assembly 

line or precedence network at U-shaped assembly line system. The heuristic method has four steps for 

task assignment process: determining the critical path of precedence diagram of the problem at the first 

step, design of new virtual workstations at the second step, the assignment of suitable tasks to virtual 

workstations at third step and the last step is converting virtual workstations to actual workstations. 

Computational results prove that their heuristic method works well and improves labour productivity 

with smaller number of workstations.  

Gao et al. (2013) work on a mathematical model and developed algorithm based upon heuristic rules 

that apply cumulative RPWas process for task allocation and plan the orders of each branch. They aim 

to minimize number of workstation and length of assembly line by implementing heuristic rules to de-

cide priority of branch nodes and allocate them considering precedence relations. The applied heuristic 

rules are as early-stating-time rule to decrease the waiting time, selection tasks according to operational 

direction constraints when there are multiple tasks and task assignment according to decreasing cumu-

lative RPW when there are multiple tasks. They solve ALBP with sixteen tasks and their algorithm 

produces good result.  

Jaturanondo et al. (2013) introduce a heuristic method for finding a task-workstation assignment solu-

tion that decrease balance day and improve the smooth postural load among operator at the assembly 

line by implementing the algorithm of Kilbridge and Wester (1961) for getting an initial solution. A 

composite index of variation is determined as measurement for the effectiveness of the solution. A task 

reassignment algorithm is implemented for reaching the initial solution by reallocating tasks to new 

workstations in order to have a minimum variation. They also consider that the method may allocate 

tasks to workstation equally. They define two quantitative measures based upon the workstation pro-

cessing time and the workstation grand score that is total of the grand scores from whole tasks, for 

tasks-worker assignment solution. The composed index of variation permits common valuation of the 

workstation processing time and the workstation grand score. After trying their method on an example 

of clothes assembling, the computational results show that the heuristic method gives good results for 

large scale ALBPs with smooth postural load.  

Great and Offiong (2013) propose a heuristic approach as the Longest Operation Time method for in-

creasing productivity in breweries companies. The Longest Operation Time method is heuristic as-

signment rules that allocates tasks according to decreasing operation time; the objective is minimiza-

tion of number of workstation and labour and idle times of assembly line as well. The case study shows 

that application of heuristic method improves line efficiency and decreases the idle time.  
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Gurevsky et al. (2013) analyse a stability measure for feasible and optimal solutions of GALBP with 

parallel tasks according to potential alternatives of the operation time of tasks by applying heuristic 

method to reach a compromise between objective function and the required stability measure. The ini-

tial optimization problem has two aims as improving total cost of the line and its robustness; Pareto 

optimality is applied to reach a solution to satisfy both objectives. At first, feasible solution has just one 

workstation including one empty workplace, then the heuristic method allocates tasks to this workplace 

until there is no task to allocate with regard to problem constraints; then, a new empty workplace is 

opened and assignment process starts. The experimental results suggest a probability to contain a ro-

bustness measure during the design process and utilize line configurations in terms of line stability by 

trying small variations of tasks operational times.  

Scholl et al. (2013) improve Setup ALB and Scheduling Problem by using more realistic setups, defin-

ing more compact mathematical model formulation and applying efficient heuristic method. This prob-

lem creates a minimum amount of ordered workstations loads such that every task is allocated to only 

one workstation, the precedence restriction is considered and workstation times are not greater than 

cycle time with regard to cyclic task with sequence-dependent setup times. They consider this type as a 

mixed binary linear model that has the procedure of simple assembly line traditional model and form of 

traveling salesman problem; they develop a new joint balancing and sequencing problem that combines 

setup times of assembly system through diversification between backward and forward setups. Scholl 

et al. (2013) present a toolbox composed of different heuristic processes that are applicable for real life 

instances to find solution with high quality. In their heuristic method, they apply modified version of 

greedy randomized adaptive search procedure with random selection of priority rules; they use differ-

ent procedure, that firstly calculates priorities for entire tasks with eligibility for the instant position of 

workstation sequence at re-optimization process; they accept an upper bound for minimum productive 

time at fathoming; they make developments at shortest path calculation and use lower bound and data 

reduction. According to computational results, new heuristic method outperforms other method on 

quality of solution and computational times.  

Su et al. (2014) consider the mixed model ALBP in order to maximize the efficiency of assembly line 

by implementing Petri-net based heuristic method and creating a mathematical model. The heuristic 

method includes two stages: at the first stage, Petri-net model with a P-invariant algorithm is applied to 

reduce the quantity of workstations and at the second stage, P-invariant algorithm with binary search 

algorithm is used for minimization of cycle time with a given quantity of workstation reached at the 

first stage. Based on example and experimental results, the proposed heuristic minimizes the idle time 

of models and maximizes the line efficiency; performs well for solution accuracy and large scaled 

problems.  

Otto and Otto (2014a) define general design policies on combination of priority rule-based methods to 

build good performing assembly line systems, ensure a cross-validation of the computational results 

and sample how to apply the formulised design policies. They submit that there are some policies to 

have solution with better quality and they categorize these policies as principles of aggregation, combi-

nation, structural specificity and principle of random influences.  
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Otto and Otto (2014b) form a new problem type as “ALB with Learning Effects” by introducing exact 

methods for small-medium scale problems and heuristic method for large scale problems. They focus 

on the initial process of ALB as a beginning of production step and modify ALBP by integration the 

learning stage and permitting individual learning curves for every task. Their methods have two objec-

tives as minimization of quantity of workstation after learning ensues and minimization of length of 

learning stage. The introduces solution methods are exact methods of learning ALBP, branch and 

bound algorithm based methods and heuristic method as Priority Rules Based Method for ALB with 

Learning Effects that allocates a priority value in decreasing order to every task regarding construction 

scheme as workstation oriented or task oriented. The priority values are based upon task times, the 

quantity of predecessors or successors and their cumulative time and learning stage times. Experi-

mental results show that their heuristic method produces good solution for large scale problems in a 

short time.  

Borba and Ritt (2014) develop a mixed integer programming model, a novel heuristic method based 

upon beam search and a task oriented branch and bound method in order to minimize cycle time and 

maximize the production rate for assembly line worker assignment problem with given number of 

workstations. Their heuristic method is based on probabilistic beam search procedure and operates for 

verified candidate cycle times from an interval concluding at the present upper bound. The probabilistic 

beam search tries to reach a feasible assignment for every candidate cycle time and divides the work-

station oriented assignment process into two perspectives: at the beginning, the proposed method se-

lects one of the eligible tasks with a probability proportional according to chosen priority during alloca-

tion of tasks to actual workstation; then it implements beam search to reach the best allocation of work-

ers and their tasks. According to computational tests, their heuristic methods perform better than well-

known heuristic methods in comparison to computational time and quality of results.  

Manavizadeh et al. (2015) propose a new heuristic method for U-shaped mixed model ALBP in order 

to find a good combinational of tasks balancing and models sequencing as multi-objective by applying 

three aims as minimization of cycle time, minimization of wastages at every workstation and minimiz-

ing the work overload of assembly line. They implement their heuristic method with an initial solution 

which may be found by an exact or metaheuristic method, so every single objective model is solved by 

an initial balancing method. Then, they use these results at other objective models, reach the objective 

solution. After that, they have a multi-objective function from the initial method, they search for a fea-

sible solution until the stopping criteria is reached and their heuristic method is used to improve the 

solutions. They also compare the effects of straight assembly line and U-shaped assembly line for small 

size and large size problems. The experimental results show that the heuristic method can produce bet-

ter results than initial methods; it is possible to enhance the solutions at a minimum for one model of 

three models and the decision maker can determine the design of assembly line.  

Moreira et al. (2015) present a new ALBP coming about conventional and disable workers of the as-

sembly line, called as “Assembly Line Worker Integration and Balancing Problem” that increase the 

productivity of assembly line by decreasing the quantity of workstation during integration of quantity 

of disabled workers into assembly line. They enhance an integer linear model for minimization of the 
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quantity of workstation while considering occurrence of disabled workers, then one version, which 

decreases the idle time of workstation with disabled operators, is presented. They apply a heuristic 

method named as Constructive Insertion Heuristic which begins with SALBP process and adds the 

eligible disable workers in order to decrease the quantity of workstations. The heuristic algorithm work 

in way that firstly, without consideration of heterogeneous workers and application of SALBP-1 pro-

cess; splitting remaining assembly line into segments; checking entire eligible heterogeneous workers 

in every workstation of the first line segment; choosing the best allocation and arranging the solutions 

on workstations prior to the chosen one; these steps continue until there are no workers to allocate to 

workstations. In addition, two post-optimization processes for the presented heuristic method are im-

plemented according to neighbourhood search of mixed integer programming.  

 

3.3 Metaheuristic Solution Methods and Comprehensive Literature Review for Genetic Algo-

rithm 

The concept of metaheuristic implies to a kind of optimization methods for reaching near-optimal solu-

tions. The metaheuristic solution methods are iterative generation processes operates as algorithm and 

modify heuristic methods to find the search space efficiently. 

The efficiency of metaheuristic method depends on the balance between diversification ad intensifica-

tion. Diversification explores various search areas in the search space, while intensification utilizes 

from the explored search areas to find hard-charging solutions. Blum and Roli (2003) summarizes the 

main characteristics of metaheuristic method as follows: 

 Metaheuristics are guide for search processes. 

 The aim is efficient exploration of search space to obtain (near-) optimal solution. 

 Metaheuristic algorithms are applicable for verified processes, from local search procedures to 

complex learning processes. 

 Metaheuristic algorithms produce approximate results and generally non-deterministic. 

 Metaheuristics avoid be kept in confined regions of the search space. 

 The basic conceptions of metaheuristic methods allow a summary as description. 

 Metaheuristic methods are not specified according to problem types. 

 Metaheuristics apply domain-specific knowledge in the heuristic methods which are under con-

trol of upper level strategy. 

 Nowadays, more improved metaheuristic methods apply search experience to guide the proce-

dure. 

There are several categorizations for the metaheuristic methods according to the focus of objective 

function and characteristics, such as population-based or trajectory-based (single solution-based), na-

ture-inspired or non-nature-inspired, static or dynamic objective function, local or global search capa-



 
61 

 

bility, memory-based algorithm or memoryless, implicit or explicit or direct metaheuristics etc. 

(Blum&Roli,2003). Figure 3.2 summarizes the classification of metaheuristic methods as graphic. 

At the next sections, the well-known metaheuristic methods are shortly described; the comprehensive 

description of GA and literature review for GA is analysed. 

 

Figure 3.2 Graphical Classification of Metaheuristic Methods (www.metah. nohjan.net) 

3.3.1 Simulated Annealing 

Simulated Annealing is one of the oldest and most popular metaheuristic method based on single-

solution process and proposed independently by Kirkpatrick et al. (1983) and Cerny (1985) with inspi-

ration from cooling process of liquids. The main idea is permitting moves resulted in solutions with 

worse performance than present solution to avoid being trapped in local minima.  

The aim of cooling process is collocation of atoms in the most ordinate way at crystalline procedure 

and the quality of the procedure at final arrangement depends on cooling rate. If the cooling process is 

applied really fast or initial temperature is not chosen high enough, the annealing process produces in-

efficient results. On the other hand, if the cooling process is enough slow, a proper atomic collocation 

can be reached and the annealing process obtains high quality crystals. One of the most important fea-

ture of cooling process in nature is the possibility of high energy generation. The true probability which 

a state with energy E happens at temperature T is determined based upon the Boltzmann probability 

distribution. When this probability increases for greater values of T, then it permits the independent 

moves of atoms and states of high energy (Zapfer, Braune&Beogl, 2010). 
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The formulation of Simulated Annealing depends on the Metropolis Algorithm from the statistical me-

chanics. It illustrates a thermodynamical procedure by generating an alignment of states or configura-

tions at chosen temperature. A new configuration may be gained from an available one by randomly 

dislocating of an atom. ∆E represents the energy difference between two configurations. If dislocation 

yields a fall in energy level such in case of ∆E ≤ 0, the new configuration becomes acceptable. When 

∆E >0, it is possible to accept the new configuration according to probability named as the Metropolis 

acceptance criterion that is written below (Zapfel, Braune&Beogl, 2010): 

                                                          P(∆E) = exp (- ∆E / bT)                                                       (3.2) 

Zäpfel, Braune and Beogl (2010) define the Simulated Annealing as the repeated implementation of the 

Metropolis Algorithm for non-increasing alignment of temperature values T according to assumptions 

explained below:  

 Every configuration accounts for a solution for a chosen optimization problem. 

 Dislocating a single atom is even for implementation a modified to a solution. 

 The energy of configuration has an indirect effect on quality of the solution.  

 Simulated Annealing needs a cost function C for a description of general formulation. Based 

upon the cost function, the Metropolis acceptance criterion can be modified for applications of 

SA, as following: 

                                          P(∆C) = exp (- ∆C / T) = 1 / (∆C / T)                                                       (3.3) 

Simulated Annealing can be categorized as homogenous and inhomogeneous: Homogenous SA fixes 

the temperature value during every run of Metropolis algorithm and its aim is to permit the system in 

order to attain an equilibrium at every temperature level; inhomogenous simulated annealing instantly 

updates the temperature after every Metropolis trial and violates the attaining of any kind of equilibri-

um state at a chosen temperature value (Zapfel, Braune&Beogl, 2010). 

 

3.3.2 Tabu Search 

Glover (1986) presents the Tabu Search based upon earlier improvements of Glover (1977). Tabu 

Search is created according to special memory structure that states exact solutions set as tabu at every 

repetation; Tabu Search uses the search history to improve local search as basic components and ap-

plies a short term memory in order to avoid to be trapped in local minima and cycles (Blum&Roli, 

2003). Zäpfel et al. illustrate the solution process of Tabu Search and use s and s` to symbolize the pre-

sent and the following solution.at Figure 3.3 and summarize the general concept of Tabu Search below 

(Zäpfel, Braune&Beogl (2010): 

 When Tabu Search goes by a new solution, it selects the best available solution. 
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 If it is required, Tabu Search permits temporal deteriorations for quality of the solution. 

 Tabu Search is based on a memory structure to escape to be kept in cycles. 

 Tabu Search generates entire solutions accessible by implementing the chosen modification 

steps. 

 Tabu Search selects the best solution from this set that is not included by the memory. 

                                  
Figure 3.3 Tabu Search Detailed Solution Processing (Zäpfel, Braune&Beogl, 2010, pp.103)   

The short term memory is applied as a tabu list which records the most lately visited solutions and pre-

vents moving back to these solutions in order to getting caught to endless cycling. The neighborhood of 

present solution is thereby limited to the solutions which are not at the tabu list. At every iteration, the 

new present solution is selected from best solution of allowed set and put to tabu list, then a solution 

that were already placed in tabu list is excluded from the list according to determined order. The algo-

rithm ends until a termination condition is reached. The length (capacity) of the tabu list decides the 

tabu tenure checks the memory of search procedure (Blum&Roli,2003). Tabu list with stable length 

cannot exactly escape the generation of cycles. Two main procedure have been improved to enhance 

cycle protection (Zäpfel, Braune&Beogl, 2010): 

 Diversifying the list capacity over time 

 Diversifying the tabu tenure of every tabu element 

Attributes are used as key components of solutions in order to notice the tabu functionality. Chosen 

attributes of lately found solutions are stored in the list and whole new solutions including one of cho-

sen attributes are accepted as tabu. The group of attributes and related tabu lists describe the tabu con-

ditions that are filters to solution neighborhood and create the allowed set (Blum&Roli,2003). 
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3.3.3 Ant Colony Optimization 

ACO is firstly proposed by Dorigo (1992) inspired by foraging behaviour of ants in the nature. The 

foraging behaviour makes easier for ants to get the shortest paths between their nest and food resources 

by following the trial of the most condense pheromone that is deposited at their metabolism. This be-

haviour is the fundamental for a collaborative interaction that results with occurrence of shortest path 

(Blum&Roli,2003). 

ACO algorithm depends on a parametrized probabilistic model, pheromone model, which is used for 

formulation of chemical pheromone trials. To find the shortest path at optimization problem, an artifi-

cial pheromone trial is allocated to every edge between the start node and the target node. Every artifi-

cial pheromone trial is symbolized by a value that is created by the ants during their pass of the related 

edge.  During passing an edge, an ant updates the pheromone amount by rising it applying a stable 

amount.  While ants are trying to reach their aimed nodes, they also must make decisions beside saving 

pheromone. When a specific ant reached to a node that is linked to multiple follower nodes, the deci-

sion must be settled. The possibility of selecting significant path depends on the proportion of the pher-

omone concentration of the path. The moves of several ants starting from star node and leading to the 

target node will rise the pheromone condensation on the paths and will result with occurrence of the 

shortest path in the end (Zäpfel, Braune&Beogl, 2010).  

Zäpfel, Braune and Beogl (2010) illustrate the detailed solution concept and components of ACO at 

Figure 3.4.  

                                                   
Figure 3.4 Detailed Graphics of ACO solution process (Zäpfel, Braune&Beogl, 2010, pp.88) 
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Heuristic information supplies a specific information for the optimization problem by identifying best 

potential component for following selection. As we know, the pheromone trails are updated directly an 

ant makes decision. When an ant has already get a solution, it can reuse the same path by saving the 

path at its memory; the pheromone trails of implemented component are updated with regard to 

reached solution quality. Pheromone evaporation is significant component of ACO by reason of hin-

dering the search from being trapped without reaching a (near) optimal solution. Pheromone evapora-

tion also has a diversification impact due to reducing the pheromone concentration. The autocatalytic 

impact leads to a fast increase at the pheromone concentration of trails that are part of at least one relat-

ed good solutions; so that, the probability of choosing various components decreases at solution con-

struction process. Pheromone evaporation prevents the search procedure from rapidly resulting with a 

sub-optimal solution by regularly decreasing the concentration on the trails. Daemon actions are meth-

ods that are implemented from global view and cannot be fulfilled by single ants. Based on the activi-

ties they carry out, they notice diversification or intensification or both. Intensification is successfully 

concluded by more improvements at the solution by ants or by offline pheromone updates based on the 

best solution got at the present iteration. In other respects, daemon actions can reduce pheromone trails 

to improve exploration (Zäpfel, Braune&Beogl, 2010).  

3.3.4 Particle Swarm Optimization 

Particle Swarm Optimization is one of the main swarm intelligence optimization methods introduced 

by Kennedy and Eberhart (1995). The Pparticle swarm optimization is created based on the inspiration 

from existing motion of a flock birds which is flying around for finding food source; the motion of eve-

ry individual bird of the flock is affected by potential foraging areas which the bird has visited as yet 

and by the movements of other birds at the flock. Likewise, a swarm of individuals considered as parti-

cles tries for reaching the global minimum or maximum value according to objective function of this 

algorithm. The multidimensional scope of the objective function determines the search space for the 

particles and the function values related with the quantity of food at various positions (Merk-

le&Middendorf, 2005). 

Every particle flies along the search space with regard to itself `s velocity vector which is arranged at 

every iteration of particle swarm algorithm. For the new velocity vector of a particle, its primary indi-

vidual best position and global best position, which is reached as entire best position by particle until 

now, behave as attractors. The primary individual best position affects the cognitive sense and the 

global best position effects social sense of particles behaviour. One of the specific feature of this meth-

od is that it is possible to balance their global and local search skills by arranging related effect of local 

and global best solution while update of velocity (Merkle&Middendorf, 2005). 

Many variations of particle swarm optimization is improved to increase the speed of reaching stopping 

criteria and quality of solution. The variation is affected by an amount of control parameters referred to 

the problem dimension, the amount of particles (swarm size), acceleration coefficients, neighbourhood 

magnitude, inertia weight that is a mechanism to check search and exploitation skills of the swarm and 
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to eliminate the requirements of velocity clamping, amount if the iteration and the random values that 

evaluate the effects of the cognitive and social senses (Rini, Shamsuddin&Yuhaniz, 2011). 

Various kinds of neighbourhoods have been analysed; neighbourhoods of particles can be formed ac-

cording to locations of the particles at the search area. At the fixed neighbourhood, the particles are 

linked by a graph, which can be rings, pyramids, meshes or linear arrays, and the particle neighbour-

hood consists of all its neighbours at the graph. At the dynamic neighbourhood, the group of particles 

at the neighbourhood might alter at each iteration, such as in form of k-nearest particles (Merk-

le&Middendorf, 2005). 

Merkle and Middendorf (2005) summarize the advantages of particle swarm optimization algorithm as 

following:  

 The algorithm does not need a specific analytical features. 

 The algorithm implements only the functions value at the particle position to lead the explora-

tion, so it is very favourable to apply for non-differentiable objective functions. 

 The algorithm is population-based algorithm and the search procedure with random feature, 

therefore it cannot get stuck in local minimum. 

 The algorithm can find balance between the global and local exploration of search area. 

 The algorithm does not have complex processes, it can be easily and efficiently applied. 

 

 

3.3.5 Differential Evolution 

DE is stochastic, population-based evolutionary algorithm developed by Storn and Price (1997) in or-

der to optimize the real valued functions. DE has major three advantages as reaching the true global 

minimum without considering the initial parameters, quick convergence and the requirement of small 

number of control parameters. The main steps of DE are initialization, mutation, recombination and 

selection; the main process depends on the differences of randomly chosen couples of solution at the 

population. Detailed formulation of DE is explained at Section 4.1. 

The optimization task comprise of D parameter can be defined by a D-dimensional vector. Initially, the 

population of target vectors are generated randomly according to determined upper and lower bound 

for every parameter. Then, DE applied mutation process as exploration mechanism and a mutant vector 

is created by using randomly chosen vectors from the generation. By using the parts of the current pop-

ulation elements to generate trial vectors, the recombination process efficiently exchanges information 

about the good qualified combinations and explores the better solution area. The trial vector is created 

from elements of target vector and mutant vector; elements of the mutant vector are added the trial vec-

tor according to chosen probability. At the selection process, the trial vector (child) and the target vec-
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tor (parent) are compared based on their performance; the best vector is selected for next generation. 

These steps continue until the stopping criteria is reached (Karaboga&Okdem, 2004). 

 

Figure 3.5 Development of new proposal at DE (Karaboga&Okdem, 2004, pp.55) 

 

Karaboga and Okdem (2004) explain the detailed processes of DE in Figure 3.5. The difference be-

tween two members of the population (1,2) is added on a third member of population (3); the outcome 

(4) is liable to the mutation with the candidate for replacement (5) to get a proposal (6). If it performs 

better, the proposal is considered and substitute the candidate.  

 

3.3.6 Genetic Algorithm 

Evolutionary Algorithms are metaheuristic, population –based optimization methods inspired from 

biology mechanism and adapted from “survival of the fittest” theory, in which dominant chromosomes 

have higher probability to reproduce exponentially in the population along generations by reason of 

longer existence than the weaker individuals, to improve group of solutions iteratively. GA is sub-

group of evolutionary algorithm and is computer-based optimization method adapted from genetic pro-

cedure of biological organisms. GA continuously develops by modifying the previous individuals and 

selects randomly two parents from current population at every iteration in order to create individuals 

for new population (Zekai, 2004). 

GA start with a group of solutions represented by chromosomes, referred as initial population. Solu-

tions of a population is obtained and used to create a new population that is supposed that new popula-

tion will perform better than older population. Additionally, solutions are chosen based on their fitness 

value which is performance indicator. The main operators of GA are selection, crossover and mutation. 

The general procedure of the GA is graphed at Figure 3.6. 
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3.3.6.1 Basic Concepts of Genetic Algorithm (Michalewicz, 1996) 

The structure of GA should be generated to find a solution and concepts of the GA should be deter-

mined to specify the parameters. The basic concepts of GA are defined in details below: 
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Figure 3.6 The General Procedure of GA 
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Gene is the smallest constituent of chromosomes as formation of single bits at every specific position 

or successively joined design of bits, that keeps genetic information and acts as a decision variable at 

optimization model. 

Coding is defined as forming the GA according to chosen objective of optimization problem. Coding is 

differentiated based on implementation type of optimization problem.  

Chromosome is string as combination of either one gene or group genes which have all information 

about the solution of the optimization problem.  

Individual is member in the population that comprises of chromosomes and each individual is solution 

candidate for the optimization problem.  

Population is a colony that is consisted of definite amount of individuals which have relations with 

each other to improve the quality of the population.  

Generation is the new population of chromosomes generated as an output of process in every iteration 

of the GA.  

Generation Gap is the partition of new individual attending in a population at every generation.  

Parent is an individual which is chosen for mating from current generation in order to generate new 

individuals named as child or offspring. Child or Offspring is chromosome regeneration that is output 

of mating of two or more parent chromosomes.  

Fitness value is quality indicator for every chromosome after pre-established evaluations, that is bene-

fited during the selection process to bias the algorithm in order to choose fitter individuals for crossover 

process and during the insertion process to bias the algorithm in order to eliminate weaker individuals 

from the population.  

Diversity is the average difference between the individuals of the population. If the average difference 

has a high value, it is called as high diversity. If the average difference is low, it is called as low diver-

sity. Diversity is significant component of GA due to its determination to bounds of the search space. 

3.3.6.2 Fundamental Operators of Genetic Algorithm 

The process of GA starts with chromosome coding based on given optimization problem, generating 

initial population and deciding the fitness function. The basic operators are selection, crossover and 

mutation; there are different types of chromosome coding, selection, crossover and mutation methods 

which are chosen according to type of optimization problem. On the other hand, determination of the 

fitness function and stopping criteria have an important impact on solution of GA.  The success of the 

GA depends on these leading fundamentals listed below (Taskin&Emel, 2009):  
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 Chromosome representation and coding 

 Generation of initial population 

 Deciding the fitness function 

 Describing the evolutionary period involving various types of genetic operators, parent selec-

tion methods, different crossover and mutation rules and replacement/insertion method 

 Determination of GA specific parameters as population size, crossover rate, mutation rate, 

number of individuals in a generation (i.e. population), number of generations used in the evo-

lution process etc. 

 Handling with infeasibility 

 

a. Chromosome Coding (Malhotram Singh&Singh, 2011) 

Encoding methods of GA are based on optimization problem and these methods convert solution of 

problem to chromosomes. There are different kinds of chromosome coding methods explained below. 

Binary Encoding is the most popular coding method in which the data value is transformed into binary 

strings. Binary encoding provides verified possible chromosomes with small amount of alleles which is 

either 0 or 1 in a bit string. Each bit carries a characteristic of the solution, find the simple example 

below:  

Chromosome A     

Chromosome B      

Figure 3.7 Binary Encoding 

Permutation Encoding is suitable for ordering and sequencing problems especially for travelling 

salesman optimization problem. Each chromosome is represented as string of numbers in an order. 

 

Chromosome A     

Chromosome B      

Figure 3.8 Permutation Encoding 

Value Encoding can be model number, real numbers on features to some complex values. Each chro-

mosome is a string of some values and is implemented at requirement of more complex values. 

 

1 0 1 1 0 0 1 0 

1 1 0 0 1 0 0 1 

3 8 5 6 1 0 4 2 

0 2 3 8 7 1 6 5 
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Chromosome A 

 

Chromosome B    

Figure 3.9 Value Encoding 

Tree Encoding is suitable method for evolving statements or program like genetic programming. Each 

chromosome is a tree of objects, process between objects, functions or commands at programming. 

                                                                    Chromosome A 

 

 

 

 

 

 

 

 

 

b. Determination of Fitness Function 

GA has an objective function in order to evaluate proximities of individuals to the solution of problem. 

The objective function scales the performance of each individual or fitness of each individual in the 

search space. Fitness value is the quality measure of individual in GA; the fitness of the solution leads 

to improvement of search process (Cagatay&Emel, 2009). 
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Figure 3.10 Tree Encoding 
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c. Generation of Initial Population 

In GA, an initial population is firstly created and the generation of the population is based on optimiza-

tion problem type. Determination of the population size and generation method of initial population 

must be considered before operating the algorithm. When we increase the number of initial population, 

we can end up with high computational time; if the number of initial population is decreased, the diver-

sity of the algorithm reduced and the algorithm may be stuck in the local optimum. 

In GA, it is possible to implement random sampling and particularly modelled construction heuristics 

during initialization process. The last pace of initialization process is to evaluate the fitness value of the 

individual by applying fitness function (Zapfel, Braune&Beogl, 2010). 

d. Selection 

During each successive generation, a proportion of current population is selected to produce a new 

generation. Some chromosomes are chosen as a parent from current population to be assigned in the 

rebreeding process according to their good characteristics. The selection decision of an individual is 

based upon the fitness of the solutions and its fitness value in comparison to all or a proportion of the 

population. Thus, the fitter chromosomes have more chance to be selected for crossover process (Zap-

fel, Braune&Beogl, 2010). There are different rules for selection of parent for mating to breed an off-

spring in recombination process. 

Elitism migrates chosen number of the fittest individuals from current generation based on their fitness 

values in order to save them from to be destroyed by operators along generations (Mitchell, 1999). 

Roulette Wheel Selection is the most popular method for applying fitness proportionate selection. This 

method allocates all individuals to imaginary roulette wheel and the magnitude of slice proportional to 

fitness value of each individuals in the population. Fittest individual has the maximum slice magnitude 

on the wheel, so it has more chance to be selected. Firstly, the fitness values of all individual is 

summed up, then choose a random number from interval of the population; finally, it goes over the 

whole population and fitness sum, if the sum is greater than fitness criteria, it stops and go to the indi-

vidual (Malhotra, Singh&Singh, 2011).  
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 Figure 3.11 Roulette Wheel Selection 

Ranking Selection ranks individuals in the population according to predetermined objective and each 

individual gets a fitness value assigned by this ranking. This method hinders the premature conver-

gence, the individuals are graded based on their fitness value and the assigned value of every individual 

is based on its rank not its real fitness value (Malhotra, Singh&Singh, 2011). 

 

 

 

 

 

Figure 3.12 Ranking Selection – Higher fitness value, fitter individual 

 

Tournament Selection is a method that the fittest individual overcome the remains at the end of the 

tournament competitions. The competition goes on until the amount of winners attain to predetermined 

amount of parents. The selection pressure and variety at the population can be arranged by switching 

the amount of individuals who join to tournament competition for selection (Mitchell, 1999). 

Steady-State Selection has a major idea that more part of chromosome may migrate to next population. 

Only little number of individuals in every generation are replaced and few newly generated offsprings 

are placed instead of weakest individual (Malhotra, Singh&Singh, 2011).  

Random Selection is a method that individuals are selected as parents according to uniformly random 

numbers, so to be selected as parents is same for whole individuals.  
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e. Crossover 

After the selection process for mating, crossover operators generate new individuals by recombining 

genes of selected parents in order to produce more promising child/offsprings. The crossover rate de-

cides how many times crossover of chromosomes will be occurred in a generation and crossover rate 

can be chosen between 0% and 100%. When the crossover rate is really small, the diversity is low since 

offsprings will have same characteristics of parent chromosomes. There are various crossover methods, 

the well-known ones are explained below (Chapter 2- Literature Review GA, www.prr.hec.gov.pk).  

Single-point crossover is the easiest version of crossover methods. A single crossover point is select 

randomly; the genes positioned until this point is taken from first parent and the rest of the genes are 

taken from second parent. The order of exchanging process is different to create two non-identical off-

springs (Zekai, 2004). Figure 3.13 shows the single-point crossover: 

 

 

 

 

 

 

 

 

Figure 3.13 Single-point crossover 

 

Two-point crossover is the method in which two positions are randomly chosen and the genes between 

these two positions are exchanged as described in Figure 3.14 (Zekai, 2004): 
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Figure 3.14 Two-point crossover 

Multi-point crossover is method in which at least two points are chosen randomly from parents, then 

each gene bounded by the crossover points are reunited to create a new offspring (Zekai, 2004). 

Uniform crossover applies fixed mixing ratio as 0.5 for two parents in order to enable every gene of 

offspring to be inherited every allele from both parents. Uniform crossover does not have positional 

bias since given opportunity for every gene (Mitchell, 1999). 

Fusion operator is fitness-based crossover operator, which considers the structure and related fitnesses 

of the parents, presented by Beasley and Chu (1996). Only single offspring is created in consequence of 

crossover process of two parents by fusion operator. To give an example in which higher fitness means 

fitter individual, when fusion operator will combine two chromosomes according to their fitness values 

which are 4 and 6, the probability of every gene of the generated offspring is taken from first parent 

with 0.4 probability and from second parent with 0.6 probability. The fusion operator is more creative 

than other crossover methods since it has more diversification on recombination of the parents. 

PMX crossover is partially matched crossover based on ordering procedure proposed by Goldberg and 

Lingle (1985) and used especially at travelling salesman problems. Only one offspring is generated 

from two parents and randomly chosen genes from one parent are directly copied to same position of 

offspring and the rest is created randomly as non-existing values. 

OX crossover is order crossover introduced by Davis (1985). The selected two parent are cut at ran-

domly chosen two points and the offspring gets the identical genes outside from chosen points at same 

positions as the parent and the genes between two points are intermixed based on the order which they 

are placed in other parent.  

 

1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 

1 0 0 1 1 1 0 1 1 1 0   1 0 1 0 1 

Parent 1 Parent 2 

Randomly chosen 

crossover points 

Randomly chosen 

crossover points 

Offspring 1 Offspring 2 



 
77 

 

f. Mutation (Michalewicz, 1996) 

The main goal of implementing mutation is to cause a particular level of diversity in the population, 

thus GA can avoid to get stuck in a local optimum. During the mutation process, a small changed is 

occurred at the genetic model of chromosome and the offspring result of crossover process, is randomly 

altered by a mutation operator. The mutation rate is probability that mutation occurs, the small muta-

tion rate gives better results since it prevents GA to be trapped in local minima. There are several types 

of mutation method which are explained below. 

Displacement mutation chooses randomly two points and removes these genes between two points 

from string; after that, these genes are inserted in their original order to randomly chosen positions. 

 

 

 

 

 

 

Figure 3.15 Displacement mutation 

 

Exchange mutation chooses randomly two genes and swaps their positions on the chromosome. 

 

 

 

 

 

  

 

Insertion mutation randomly selects a points and removes the gene at this point; then inserts the gene 

randomly selected points.  
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Figure 3.16 Exchange mutation 
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Figure 3.17 Insertion mutation 

Simple inversion mutation randomly selects two cut-points and substring between two cut-points are 

reversed to produce mutant offspring. 

 

 

 

 

 

  

Figure 3.18 Simple inversion mutation 

Inversion mutation randomly selects two positions and removes the genes from chromosome between 

two positions; then inserts these genes in reversed order into randomly chosen position. 

 

 

 

 

 

 

 

1 1 0 1 0 0 0 1 

1 0 1 0 0 0 0 1 

1 1 0 1 1 0 0 1 

1 0 1 1 0 0 0 1 

1 1 0 1 1 0 0 1 

1 1 0 0 1 1 0 1 

Child chromosome 

To be 

moved 

Child chromosome 

Randomly chosen 

two points 

Randomly chosen 

insertion point 

Mutant 

Child chromosome 

Randomly chosen 

cut-points 

Mutant 

Randomly chosen 

insertion point 

Mutant 

Figure 3.19 Inversion mutation 



 
79 

 

Scramble mutation randomly chooses two cut-points and the genes between these cut-points are ran-

domly switches their positions. 

 

 

 

 

 

Figure 3.20 Scramble mutation 

f. Replacement/Insertion 

Replacement is step in which individuals of current generation will be exchanged with newly created 

offspring or will survive in the population; the amount of these quitting individuals are considered as 

generation gap. Fitter individuals are transported to the next generation to improve the performance of 

the algorithm (Zapfel, Braune&Beogl, 2010). 

g. Handling with Infeasibility 

The infeasible solution can occur as a results of design of crossover or mutation operators. Unfortunate-

ly, an infeasible solution does not satisfy the constraint of optimization problem. There are three ways 

to handle with infeasible solutions (Zapfel, Braune&Beogl, 2010) :  

 Discarding infeasible solutions 

 Penalizing infeasible solutions 

 Repairing the infeasible solutions. 

h. Termination of Genetic Algorithm 

The algorithm may stop when one of the following criteria are reached: 

 Conclusion with a single solution or a group of same solutions 

 No feasible solution is found 

 Getting pre-specified threshold value for fitness value 

 Reaching the pre-specified iteration number 

 Reaching the pre-specified time limit for running the algorithm 

 Finding a feasible solution 
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3.3.6.3 Difference of Genetic Algorithm from Traditional Optimization Methods 

GA differs from other traditional optimization methods in its fundamental procedures (Goldberg, 

1989): 

 GA operates with a coding of parameter group, not the parameters themselves. 

 GA explores from a population of points, not only one point. 

 GA applies payoff (objective function) information, not derivative or other subsidiary parame-

ters 

 GA implements probabilistic transition methods, not deterministic methods. 

 

3.3.7 Comprehensive Literature Review for Genetic Algorithm 

Metaheuristic methods are applied to solve optimization problem by resulting optimal solution through 

a finite or countable infinite amount of choices. Evolutionary algorithms are population based metaheu-

ristic optimization methods which is inspired from biology and natural selection procedure to build 

iteratively number of solutions. GA is also a computer based, evolutionary algorithm that can reach 

near-optimal solution with an acceptable computation time. Up to now, many research and applications 

are done on usage of GA.  

GA is firstly introduced by John Holland (1975) based on survival of the fittest theory and genetic sci-

ence in order to find optimal solution by applying directed random search for large scale optimization 

problems. Every cycle of GA is named as generation that contains the evaluation of solutions, the im-

plementation of selection and crossover, mutation as genetic operators.  

Goldberg (1989) presents an intensive research on GA theory and analyses different structures on se-

lection, crossover and mutation processes.  

Falkenauer (1991) proposes the grouping GA (GGA) in order to apply in grouping optimization prob-

lems in which members of a set as a small amount of families to satisfy the objective function accord-

ing the chosen constraints. There is a particular chromosome representation model and genetic opera-

tors.  

Falkenauer and Delchambre (1992) implement GA as grouping type for SALBP with objective of min-

imization of number of workstations. In their groping representation, the workstations are shown by 

increasing the workstation according to chromosome with a group section and they firstly improve their 

representation for bin packing problem, then form it particularly for genetic operators. They randomly 

create the initial population and size of the population; use modified bin packing crossover method and 
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mutation for the group section of the chromosome in which the workstation based section of the chro-

mosome does not change.  

Anderson and Ferris (1994) analyse the productive application of GAs with description of classic serial 

implementation of GA for the ALBP with objective of minimization of cycle time and workstation 

based chromosome representation. They consider the effects of different GA operators on performance 

based and develop a parallel type of GA as an alternative in which every individual of the population 

are located at a processor. They use the heuristic solutions on creation of initial population and the 

chromosome length is represented by the quantity of tasks; they apply elitism as survival theory, one-

point crossover and mutation methods and a penalty cost for the evaluation function.  The comparison 

of serial and parallel GA proves that the performance of the best solutions is better at serial GA.  

Leu et al. (1994) improve a GA for SALB with different techniques to analyse the feasibility problems 

at population initialization by aiming the minimization of number of workstations. For the creation of 

initial population, they apply both random and heuristic procedure and give more flexibility at the pop-

ulation by permitting to build up before survival theory is considered. The chromosomes are deter-

mined as task based precedence list and length of the chromosome is equal to the amount of tasks; or-

der crossover and scramble mutation is chosen at GA. Their objectives are minimization of the idle 

mean idle time and the minimization of the mean squared idle time. 

Rubinovitz and Levitin (1995) compound GA with a basic local optimization search method for 

SALBP-2, in which proposed GA is able to balance the assembly line when task processing times de-

pend on workstation. They produce initial population randomly and use fragment reordering mutation 

in order to improve diversification at the population and fragment reordering crossover which preserves 

the heritage of positions and related sequence of members at the procedure, supplies variations within 

fragment without disrupting precedence relations. They compare proposed GA with Dar-El and Rubi-

novitz’s MUST; the experimental results show that GA performs faster than MUST for large scale 

problems with high flexibility proportion.  

Tsujimura et al. (1995) are the first on the application of GA to GALBPs. They use fuzzy numbers to 

symbolize the cycle time and the task processing times since these processing times are not stable be-

cause of worker and machine influences. They solve single-machine ALBP with GA in order to mini-

mize the number of the workstations by symbolization of the fuzzy task times via triangular member-

ship elements. They randomly generate the initial population, the chromosome is defined as task based; 

additionally, they use the adjusted PMX crossover and exchange mutation methods. According to the 

computer simulations, they establish that their GA method is suitable for solving fuzzy ALBPs.  

Watanabe et al. (1995) develop a GA for ALBP in order to reach optimal task assignment by minimiz-

ing the cycle time with a chosen amount of workstations. Three alternative algorithms are enhanced to 

find optimal solutions via genetic coding, to create initial population randomly for evolution model and 

usage of the roulette wheel and ranking selection operators, single-point crossover and insertion muta-

tion. They confirm that their GA is not suitable for large-size problems.  
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Gen et al. (1996) consider ALBP with fuzzy processing times in order to minimize overall processing 

times at every workstation. They practice two-point crossover and one-point mutation methods as ge-

netic operators; as a result of these methods, infeasible chromosomes may occur. In order to deal with 

infeasibility of chromosome, they execute the precedence-based random consecutive allocation tech-

nique for assuring the feasibleness of the initial population and repairing method for forcing these 

chromosomes which are created by earlier populations to fulfil the precedence constraint for following 

generation.  

Kim et al. (1996) introduce a GA to balance assembly line with different objectives which are minimi-

zation of number of workstations, minimization of cycle time, maximization of workload smoothness, 

maximization of work relatedness, multi-objective of maximizing the workload smoothness and work 

relatedness. They apply various crossover methods as partially mapped, enhanced edge recombination, 

order, uniform, cycle crossover and non-usual crossover operators as one-point, two-point and uniform; 

on the other hand, six various mutation methods are applied, which are reciprocal exchange, insertion, 

inversion, displacement, feasible insertion and scramble mutation operators. Repair mechanism is im-

proved in order to convert an infeasible chromosome to feasible one by organizing tasks based on prec-

edence and other relative constraints. According to experimental results, application of partially 

mapped crossover and reciprocal exchange mutation operators are better off the other combination of 

operators for different objectives; their GA performs better than compared heuristic methods by pro-

ducing various Pareto optimal results.  

Suresh et al. (1996) proposed an adjusted GA for SALB-1 with stochastic operation times to solve the 

irregular search space issue by using two populations -one takes into account infeasible solutions in 

order to not be caught in a trap at local minimum- and switching problem specifications at proper peri-

ods. They indicate that infeasible solution may be authorized at the population when the genetic opera-

tors may end with feasible solution starting from infeasible solutions. The computational results show 

that using two populations may accomplish better solutions than using only feasible population.  

Falkenauer (1997) combines grouping GA with branch and bound algorithm in order to minimize the 

number of workstation at assembly line with resource dependent operation times. Firstly, grouping GA 

allocates tasks to workstations and later branch and bound algorithm decides the ideal source for every 

workstation. The task times are based on the chosen resources, thus, resources with various cost and 

speed are assigned to every task besides task allocation to workstations, so the overall cost of the as-

sembly line can remain minimal.  

Ajenblit and Wainwright (1998) present a GA for U-shaped SALBP-1 by aiming the objectives as the 

minimization of the total idle time or/and to balance the workload between workstations. They create 

six various assignments algorithms for representing a chromosome and task allocation to workstations 

and the fitness value of one chromosome is calculated by these six assignment algorithms. The first 

assignment allocates the alternatively non-allocated tasks at initial and the final point of tasks order; the 

second one applies same by prioritizing the tasks placed at the end of the order; at the third assignment 

procedure, all available non-allocated tasks at the initial point of the order are assigned and then all 
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available non-allocated tasks at the final point of the order are assigned; then fourth one allocates all 

available tasks at the end of the order and allocates all available task at the beginning of the order; the 

fifth assignment procedure prioritizes the tasks at the beginning of the order while the sixth one priori-

tizes the tasks at the end of the order. Order crossover is used while any mutation method is not used 

due to not getting possible improvements. They compare the performance of their GA with dynamic 

programming and different heuristic algorithms and the GA gives better results than compared algo-

rithms at most of the case.  

Chan et al. (1998) develop a GA for balancing assembly lines with minimization of number of work-

stations in the clothing industry. Their aim is to increase the efficiency of line by reducing the time 

used during assembly line planning. They consider the labour effect by adjusting different skill levels 

to the problem. The initial population is generated randomly; they change the elitism strategy in a sense 

that the parent chromosomes are displaced with child chromosomes instead of the worst performing 

individual at the population is displaced with child. According to experimental results, GA produces 

better solutions than greedy algorithm which is implemented for optimize the ALBP in many indus-

tries.  

Kim, Kim and Cho (1998) work on a heuristic based GA to balance workload between the workstation 

at the ALBP. They modify the many parts of GA, such as evaluation function, genetic operators. Initial 

population is created randomly and chromosome representation is based on workstation. They improve 

heuristic based genetic operators as a heuristic structural crossover method which uses problem specific 

restrictions to decide various groups of workstations in order to reproduce from two parents to an off-

spring, a heuristic structural mutation method which chooses randomly tasks from every chromosome 

according to mutation rate then relocates chosen tasks. The computational results prove that their GA 

performs better than well-known heuristic methods and the standard GA.  

Rekiek et al. (1999) introduce a grouping GA based on Equal Piles procedure for SALBP by assign-

ment of tasks to a fixed amount of workstations in order to equalize the workload among workstations. 

The introduced GA is based on boundary stones process where the boundaries are considered as seeds 

to fill workstations. Tasks are grouped into a predetermined number of workstation, so that precedence 

constraints are not violated and operation times of workstations are almost same.  

Bautista et al. (2000) analyse the SALBPs with incompatibilities between the tasks by objecting firstly 

the minimization of number of workstations and then minimization of cycle time with the smallest 

number of workstations. They propose Greedy Randomized (Weighted) Adaptive Search Procedure 

which is the application of classic heuristic priority based rules and GA with finding for a solution at 

heuristic search space. They apply the main qualifications of greedy heuristic rules and random selec-

tion process for generating solution with probability distribution; the applicant task list is restricted to 

increase the probability of the most eligible applicant tasks. At their methods, the probability distribu-

tion is based on an index resulting according the chosen priority rule. Six different greedy randomized 

heuristic rules are applied with a selection probability for task allocation commensurate to the parame-

ter for chosen priority rules and these six priority rules allocate tasks based on longest processing time, 
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ranked positional weight, average ranked positional weight, processing time divided by upper bound, 

maximum number of successors divided by slack.  Seven different forms of presented GA are used by 

varying crossover and regeneration methods, mutation and crossover probabilities. The experimental 

results show that GAs and presented GA with index resulting probability distribution produce better 

solutions with comparison of other chosen heuristics.  

Kim et al. (2000) improve a GA for two-sided ALBP by examining the major parts of GA which con-

tains encoding and decoding processes, generation of initial population, genetic operators. They affirm 

the usage of problem specific information and GA’s self-adaptation ability. The group number encod-

ing and a heuristic decoding method are modified; tournament selection method is chosen at proposed 

GA. The authors especially indicated that the proposed GA is applicable for ALBP with different ob-

jectives by making some minor changes.  

Ponnambalam et al. (2000) create a multi-objective GA for ALBP in order to evaluate the performance 

according to the amount of workstations, the line efficiency, the smoothness index before/after trade 

and transfer. Twelve different heuristic priority rules and two created heuristic rules, whose task as-

signments are based on maximum task time of follower task and maximum position weight of follower 

task, are applied for chromosome representation. The performance of their GA is compared with six 

well-known heuristic optimization methods, which are ranked positional weight, Kilbridge and Wester 

(1961), maximum task time method of Moodie and Young (1965), precedence matrix of Hoffman 

(1963), immediate update first fit and rank and assign methods, by examining on twenty different as-

sembly line networks with five cycle times. The comparative results prove that their multi-objective 

GA is better off than six heuristic methods; on the other hand, the execution time of GA is much more 

than others due to research of globally optimal solutions.  

Sabuncuoglu et al. (2000) propose a GA for single- model ALBP by implementing a new technique for 

a particular chromosome design “dynamic partitioning” which alters the chromosome design by assign-

ing tasks to workstations in order to comply chosen restrictions and then, go on with residual tasks. The 

chromosomes are presented based on precedence relations of tasks, the initial population is generated 

randomly and their fitness function has two objectives as minimization of quantity of workstations and 

balancing the workload between workstations. While order crossover, scramble mutation and roulette 

wheel selection methods are applied as genetic operators; new elitism method from Simulated Anneal-

ing is implemented to the model. They state that their dynamic chromosome design method improves 

the solution quality and save computation times besides resulting with less chromosome size. Compre-

hensive experimental results demonstrate that their GA performs better than popular heuristic methods 

in the literature.  

Carnahan et al. (2001) consider the physical demand criteria for labours integrated with production 

objectives for ALB. Their aim is to establish methods in order to minimize the cycle time of assembly 

line and the maximum physical gripping demands needed of an operative allocated to a workstation in 

the assembly line. They work on three optimization methods which are ranking heuristics, a combinato-

rial GA and a problem space GA; every optimization method is structured for minimization of both 
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objectives. The comparative results indicate that the problem space GA shows better performance than 

the others.  

Simaria and Vilarinho (2001) develop a two-staged iterative search method with application of GA for 

mixed model assembly line with parallel workstations in order to minimize the cycle time with a given 

number of workstations. The iterative search method is demonstrated on a case study with two assem-

bly models and twenty-five tasks. The method initializes with a lower bound of cycle time; when the 

optimal solution is reached, GA operates in order to diminish the cycle time. During minimization of 

the cycle time, the method also aims to balance the workload between workstations as the second ob-

jective.  

Chen et al. (2002) introduce a hybrid GA associated with self-tuning method for assembly line plan-

ning including several different goals which are minimization of cycle time, maximization of the work-

load smoothness, minimization of the tool change frequency, minimization of the quantity of machines 

and tools’ usage, and minimization of the complexity of assembly sequences. The introduced tuning 

method is able to sustain useful schemata of chromosomes in order to avoid infeasible precedence rela-

tions in the assembly at GA process. Firstly, various popular heuristic methods are applied to find fea-

sible solutions which are then added to randomly generated population of evolving pool; they aim to 

minimize the search space by adding these heuristic solutions, so that the search time may decrease too. 

The computational results prove that introduced method notably enhances the solution quality and de-

creases the computation time by integrating with heuristic solutions.  

Goncalves and De Almedia (2002) propose a hybrid GA combined with a heuristic priority rule method 

and a local search process for SALBP-1. The proposed GA applies a random key heuristic based chro-

mosome representation, elitism as selection operator and a parameterized uniform crossover. They im-

plement their GA to a few ALBPs from the literature and the proposed GA produces efficient results.  

Miltenburg (2002) develops a GA for balancing and sequencing mixed model U-shaped ALBPs in or-

der to minimize the number of workstations. The initial population is randomly created and the chro-

mosome representation is the combination of task and model sequence based. Miltenburg (2002) pro-

vides comprehensive information on performance of the developed GA by explaining the changes at 

the computation time according to altering the crossover operator from two-point to cycle crossover. 

Valente, Lopes and Arruda (2002) improve a GA for balancing two-sided car assembly line as real-

world implementation in order to minimize the cycle time in which every workstation’s length is prede-

termined and stable. They use workstation based chromosome representation, one-point crossover and 

bit by bit mutation. The adopted results show that their GA decreased the total time of assembly line by 

28.5%.  

Wu, Liu and Wu (2002) consider a GA for master production schedule problem in a processing-

assembly line with exact same machines in order to reduce total holding cost of the assembly line while 

satisfying the chosen numerous and complex restrictions. They apply roulette wheel selection, one-
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point crossover and a uniform transpiring method as crossover method. The experimental results state 

that their GA outperform particularly problems with tight restrictions.  

Abe, Yamada and Matsui (2004) analyse a design method for ALBP by creating a GA considering cy-

cle time, line length, precedence relations and lead times. They implement traditional GA, Adam-Eve 

GA in which new offsprings generated by crossover operator do not employ their parent’s space and 

are added into population as new individuals, a new operator as death represents the lifetime of every 

individual, and two-stage GA in order to optimize the assembly line design. 

Brudaru and Valmar (2004) introduce a hybrid method combined GA with branch and bound for 

SALBP-1 in order to decide fitness function. They use embryonic chromosome representation which 

examines the subsets of solutions instead of individual solutions; they also develop a growing operator 

as genetic operator for the embryonic chromosome representation in order to make easier to evolution 

of chromosome along all length chromosome.  

Martinez and Duff (2004) optimize the SALBP by practising 10 different heuristic priority rules such 

as MA, RPW, maximum total number of follower or successor tasks to minimize the number of work-

stations. Then, they adjust GA of Ponnambalam et al. (2000) by using these heuristic priority rules in 

order to generate initial population.  

Simaria and Vilarinho (2004) propose a mathematical programming model and an iterative GA process 

to solve mixed model ALBP with parallel workstations in order to improve the production ratio of the 

assembly line with a given number of operators with consideration of issues on operating circumstanc-

es at real-world assembly systems. Their mathematical model is based on the usage of parallel work-

stations and zoning constraints: positive zoning, in which the pairs of tasks are pushed to be allocated 

to the same workstations, and negative zoning as group of pairs of incompatible tasks. The objective 

function has two aims as minimization of the cycle time with a given number of workstations and bal-

ancing the workload between workstations. Their proposed GA has three stages which are constructive 

heuristic solving for mixed model SALBP-1, GA procedure as GA-1 and finally GA procedure as GA-

2. The constructive heuristic solution begins by reaching an initial solution for the assembly line prob-

lem from a lower bound for the cycle time. When a task has been selected for assignment from the 

group of eligible tasks, the heuristic randomly selects the priority rule to be applied and the sum of 

number of workstations comes from the solution of mixed assembly line problem Type 1 is bigger than 

the current number of workstation of the original problem mixed mode SALBP-2, the cycle time is 

grown by a unit and another mixed assembly line problem Type 1 is solved; the solution of the first 

stage activated to stage 1 of the heuristic that practises the GA-1 process. GA-1 process decreases the 

cycle time by one unit at the end of first stage and attempts to reach feasible solutions; at each time of 

reaching a feasible solution, the cycle time is reduced and GA-1 begins again until the stopping criteria 

is reached and then, the cycle time is grown by a unit in order to trigger last stage. GA-2 process aims 

to adjust the solution of GA-1 by finding the workload balance between workstations to guarantee that 

almost same amount of work is operated at every workstation for each model. GA-2 has approximately 

same procedure with GA-1 except the fitness function and proceeding with unfeasible solutions. The 
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proposed GA performs well for mixed model ALBP with aim of minimisation of cycle time and maxi-

mization of production ratio. 

Brown and Sumichrast (2005) compare the solutions of the traditional GA over a wide filed of group-

ing problems with GGA of Falkenauer (1991) for balancing SALBP with minimization of number of 

workstations. They use two procedures as standard GA and GGA on group of problems in order to 

compare the performance regarding quality and computational duration of the solution. Their experi-

mental study shows that both procedures are able to reach to the optimal solution but GGA comes to 

the solution faster.  

Hui (2005) introduce a new solution method for ALBP by applying hybrid GA with different types of 

selection, crossover and mutation processes. Self- adaptive mutation rate is used in order to prevent 

generation of premature chromosomes. Hui (2005) works on 100 generations with 128 individuals; his 

experimental study indicates that linear ranking as selection operators performs better and derivative 

tree crossover produces better results out of examined ones. 

Due to increase at the usage of robots at production process in assembly line systems, Levitin, Rubi-

novitz and Shnits (2006) analyse GA for large scale and RALBP in order to improve automation and 

flexibility in assembly line. The objective is minimization of cycle time with a given number of work-

stations while balancing the workload between workstations by assignment of the best fitted robot to 

every workstation; this algorithm gives a solution for the way of grouping the work activities operated 

at a certain number of workstation and the way to allocate a single robot of one of different types of 

number of robots to every workstation in order to satisfy the objective of the problem. Two distinct 

methods are presented for the adaptation of GA with basic evolution principle for RALBP by assign-

ment of robots with various qualifications to workstations: a recursive assignment procedure and a con-

secutive assignment procedure. Recursive assignment procedure objects to allocate activities to work-

stations with consideration of vector sequence; consecutive assignment procedure splits the vector into 

parts as number of workstations, thus allocation of the activities pre-determined in a defined sequence 

through workstations and assignment of robots to workstations. The results of GA are reformed by a 

local optimization (hill climbing) work-piece exchange procedure. Experiments operated in randomly 

created problems prove that consecutive assignment procedure produces better qualified solutions and 

GA finds better results in a comparison with Branch and Bound Algorithm for RALBP.  

Noorul Haq, Jayaprakash and Rengarajan (2006) develop a hybrid GA for mixed model ALBP with 

minimization of number of workstations by applying modified ranked position weight method into ran-

domly creation of initial population of Ga in order to narrow the search space within global search 

space Tests establish that their GA with modified ranked position method gives better results than 

standard GA 

Wong, Mok and Leung (2006) introduce a GA to optimize operator allocation in apparel assembly line 

by minimising the operator idle time. The applied method rearranged the operator allocation after each 

fixed time period based on the most updated production condition to eliminate the bottle necks in the 



 
88 

 

assembly line. Initial population is generated randomly; elitism rule and roulette wheel selection rule 

are used as selection operator and single-point crossover and random resetting mutation is implemented 

at introduced GA. The computational results prove that proposed GA is able to promote the assembly 

makespan because the optimised outputs of GA are less than the constant theoretical operator allocation 

and to shorten total production time by decreasing the idle time of each operator.  

Yu, Yin and Chen (2006) present a multi-objective GA for mixed assembly lines and implement pareto 

ranking method to measure efficiency of algorithm’s results. Pareto ranking method measures the per-

formances of each of the workstations in assembly lines according to their task completion process and 

quality. Furthermore, pareto ranking method may be used for multi-objective based designs in order to 

determine the performances of the systems.  To find optimal results, pareto ranking method transfers 

the objectives of vectors into fitness values and eliminates ''random moving'' variables during measur-

ing the rankings. Researchers focus on completion time, reduction of costs and application of crossover 

operation between workstations at ALBP. Experimental results show that proposed multi-objective GA 

submits better and smoother level as compared to traditional and heuristic models regarding the sched-

uling problems in assembly lines. 

Baykasoğlu and Ozbakir (2007) analyze stochastic U-shaped ALBP by their proposed model on multi-

ple-rule-based GA in terms of task completion process and reduction of costs. The initial population is 

randomly created, roulette wheel selection, single and two-point crossover operators are used; the fit-

ness function of GA takes into account of idle time of every workstations and the non-completion 

probabilities of every workstation while minimizing the amount of workstations. The output of exam-

ined tests finalize that their GA can optimize practical-sized problems with acceptable computational 

times.  

Su and Lu (2007) consider the effectiveness of GA for mixed- model ALBPs by minimization of cycle 

time through application of combining GA for non-robotic assembly lines. Researchers improve a sim-

ulation of a mixed model assembly line to use it for proposed GA method in order to observe the 

productivity and problem solving capacity of improved model.  Their GA with combination of simula-

tion accelerates cycle time of assembly lines, therefore, this method provides better results as compared 

to previous methods for balancing assembly line problems. 

Suwannarongsri, Limnarat and Puangdownreong (2007) develop a new hybrid intelligent methods that 

consists of the combination of Tabu Search and GA models and named as TSGA-based method to be 

used for solving ALBP. The proposed method is initially employed to the tasks that are assigned to 

each workstation. Then, the summation of all of the tasks is equalized to the total task of the problem in 

assembly lines. After that, the method arranges the sequences of tasks according to precedence re-

strictions. To summarize, tabu search leads the amount of the tasks allocated for every workstation 

while GA organize the tasks order based on precedence restrictions. The computation results address 

that their method gives better solution than conventional COMSOAL and four single-based assembly 

lines' balancing problems are completely resolved by applying this new technique.  
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Suwannarongsri and Puangdownreong (2008) apply combination of Tabu Search and GA models 

method on U-shaped assembly line in order to optimize the balancing conditions and augment the pro-

duction quality of the line. The proposed multi-objective GA model with aim of balancing workload 

between workstations, decreasing idle time and increasing line efficiency gives better results for U-

shaped assembly line in comparison with single-objective models.  

Guo et al. (2008) investigate the scheduling problem in flexible assembly lines by presenting a GA in 

which a new chromosome is added. The presented method initially assigns the operations to work-

stations and determines the proportions of tasks within each of the different workstations.  After that, to 

route the operations of each product, heuristic operation route is used.  Experimental results outline that 

the proposed optimization algorithm submits superior outputs as compared to heuristic attempts within 

flexible assembly lines problems.  

Hwang, Katayama and Gen (2008) work on multi-objective GA for balancing U-shaped ALBP with 

including performance criteria as: efficiency of assembly line and minimizing the amount of work-

stations as well, and balancing the workload between workstations. The comparison of results show 

that multi-objective based GA method produces better solution for line efficiency in U-shaped assem-

bly lines as compared to single-objective methods and traditional heuristic techniques.  

Kulak, Yilmaz and Günther (2008) examine the performance of GA based solution approach on bal-

ancing printed circuit board assembly lines which comprise of a number of various machined for 

mounting electronic parts on printed circuit board. In this study, component feeders are initially at-

tributed to the placement machines with the tasks for ALB; then, specific machine optimization algo-

rithms are integrated with a number of candidate solution approaches. The examined results prove that 

the operation times which are based on fine-tuned placement are reduced by the application of GA 

based solution and more importantly, printed circuit board assembly line production times are mini-

mized by the candidate solution approaches.  

Zang, Gen and Lin (2008) consider that multi-objective GA by a generalized pareto-based scales inde-

pendent fitness function (gp-siffGA) in order to optimize ALBP with worker assignment and task allo-

cation to workstation for minimization of cycle time, diversification of workload and reducing the total 

cost of the line. At first, a random key representation procedure is implemented for prioritized task 

vector readjusting the GA is proposed, during randomly created procedure is followed for worker as-

signment vector. After that, improved genetic operators are adjusted to special chromosome form. The 

computational results prove that their approach enhances the solution quality in comparison with other 

GA approaches.  

 

Gao et al. (2009) develop hybridized GA with local search on balancing problems in type 2 robotic 

assembly where tasks are allocated to workstations and every workstation requires to choose one of the 

eligible robots to operate the allocated task considering the aim of minimization of cycle time. Also, the 

proposed model focuses on local search procedures and improve the ability of searching of GA in as-
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sembly lines. GA implements the partial representation techniques in which only some portion of the 

determination information about an applicant answer is stated in the chromosome and the remaining is 

figured by a heuristic procedure. To extend search space, local search methods proceed based on GA 

scheme. Results of the tests indicate that developed method is applicable for small-scaled problems by 

reaching optimal solution in short computational time.  

Hwang and Katayama (2009) work on measuring the efficiency and performance level of multi-

objective GA for mixed model ALBPs with performance scale as the amount of workstations and di-

versification of workload. The priority based GA structures an amelioration form with a GA in order to 

enhance the balance of workload in mixed model ALBPs. The priority based GA leads for production 

of efficient chromosome with weight mapping crossover operator. The experimental results show that 

multi-objective GA methods gives better solutions for mixed model assembly balancing problems as 

compared to single based GA techniques.  

Kim, Song and Kim (2009) combine a mathematical model and GA for the two-sided ALBP with a 

goal of minimization of cycle time with a given amount of matched workstations. This proposed model 

involves the strategy of localized evolution and steady-state reproduction in order to advance the diver-

sification of population and search efficiency in two-sided assembly lines. While structuring their GA, 

they consider qualifications of two-sided ALBP. The examined results show that their GA is better off 

on quality of solution in comparison with the heuristics and the tested GAs.  

Moon, Logendrand and Lee present GA integrated with mixed integer linear program for ALB with 

resource restrictions. The main aim of this research is to minimize the total workstation costs and re-

duce salaries of workers, which are assigned to them according to predetermined cycle time. The pre-

sented model finds more efficient results as compared to existing GA methods due to combination with 

integer linear program. Also, the resource restriction problem is completely resolved by the implemen-

tation of this new proposed model.  

 

Akgunduz and Tunali (2010) introduce and adaptive GA by taking into account of variation in part 

consumption ratios, sum of the utility work and setup costs, for mixed model ALBPs. The introduced 

process harmonizes an adaptive parameter control to enhance the competences of algorithm and this 

parameter also determines the mutation ration and elitism proportion. Experimental results indicate that 

introduced adaptive GA perform better solutions considering amount and the quality, in comparison 

with non-adaptive algorithms.  

 

Minghai and Huanmin (2010) examine the effects of hybridized GA on reconfigurable ALBPs. To 

solve the balancing problems, the researchers develop a hybridized GA model that is integrated with a 

mathematical model, and applied to reconfigurable assembly lines in order to reduce the total produc-

tion time and increase the productiveness of the production quality. The results show that the validity 

and feasibility of the proposed algorithm for the balancing problems in reconfigurable assembly line.  
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Tang et al. (2010) work on field based research that measures the influence of a novel GA approach 

where chromosome representation based on task sequence are coded with satisfaction of precedence 

constraints and partitioned dynamically under the restrictions of unidirectional workstations ALBP in 

manual automobile assembly lines. This new method depends on producing the optimal/near task allo-

cations along the assembly lines and assigning the tasks to appropriate workstations in the lines. Fur-

thermore, it aims to decrease the total production time and reduce the costs of whole manufacturing 

operation of assembly The experimental results show that their method produces outperforming solu-

tions in manual automobile assembly lines and proves its validity and feasibility of this model for the 

first time.  

Yang and Gao (2010) consider the effectiveness of multi-objective based GA on rebalancing problems 

in mixed model assembly lines to minimize the total processing times of reassigned tasks for scaling 

cost of rebalancing and integrating amount and difficulty of the reassigned tasks. The additional objec-

tives of proposed GA are minimization of the amount of workstations and descending the differences 

between workstation time and mean workstation time for evert model. The results prove the proposed 

method is able to solve at the rebalancing problems for mixed model assembly lines and works 

smoother as compared to traditional heuristic techniques.  

Yu and Yin (2010) propose an adaptive GA with reconfigurable crossover and mutation rates which are 

dynamically determined based on the fitness value of each individual in order to minimize the number 

of workstations and balance the workload between workstations. Additionally, sequence-based coding 

solution guarantees that chromosome represented precedence constraints of tasks at assembly ALBP. 

The computational results illustrate that proposed adaptive GA performs better solution in comparison 

with traditional heuristic solution methods.  

Akpinar and Bayhan (2011) present a hybridized GA for mixed model ALBP with parallel work-

stations and zoning restrictions in order to minimize the amount of workstations, increase the smooth-

ness of workload among workstations by using three well-known heuristic methods as RPW, Kilbridge 

and Wester, Moodie and Young on generation of initial population. The examined results indicate that 

their GA produces better solutions with higher quality as compared with traditional GAs.  

Kazemi et al. (2011) implement a novel two-stage GA method to minimize total cost related with 

amount of workstations and duplication costs of tasks for balancing U-shaped ALBP. The operation 

procedure of this new GA method is based on selecting population primarily, and detecting the best 

workstation for the assigned tasks. The tests show that their GA works well for small and medium-

sized problems with short computational time; on the other hand, for large-sized problems, GA finds 

solution in acceptable computational times.  

Ozcan, Kellegoz and Toklu (2011) focus on effectiveness of GA on both of the problems of sequencing 

and balancing in U-shaped assembly lines by minimizing the number of workstations for predeter-

mined cycle time with stochastic processing times. Their model is capable to solve two interrelated 

problems simultaneously, which are line balancing and model sequencing. It primarily initializes the 
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population and operates a local search procedure in order to improve the best individual performance 

within the production process. Then, if the termination condition is not fitted into the location, the 

model iterates the following operations: It chooses two parent chromosomes from the current popula-

tion and detect which solution component is going to be applied. If the random value of generated one 

is below the predetermined score, then, it implements the balance part for the solution. The results sig-

nify the validity and feasibility of their GA in balancing and sequencing problems for U-shaped assem-

bly lines.  

Taha et al. (2011) consider GA for two-sided assembly lines problems to minimize the amount of mat-

ed workstations for improving the efficiency of line. Their proposed GA improve generation of initial 

population by using new methods as forward, backward and combination backward and forward meth-

ods at creating the initial population while hybrid crossover and a modified scramble crossover genetic 

operators are used in in order to extend the search space efficiently for finding best accessible results. 

The experimental results prove that proposed GA is able to reach the optimum or nearly optimum re-

sults with restricted amount of iterations.  

Zhang and Gen (2011) analyze effect of the demand ratio-based cycle time for solving balancing prob-

lems in order to reach better results. The researchers apply a new GA for multi-objective mixed model 

ALBP by objecting minimization of the cycle time, diversification of workload between workstations 

and total cost of line while pareto-based scale is also implemented to measure the efficiency of assem-

bly line. The examined results indicate that new GA is able to perform well for mixed model ALBPs.  

Chen et al. (2012) introduce a GGA for ALBP with various labour capabilities and to smooth the work-

load among workstations at garment industry. The aim is to minimize the mean absolute deviations in 

production line in order to enhance the efficiency of assembly line. Their GGA model provides shorter 

time cycle for production line and higher level of production quality. Therefore, their model can be 

important role for garment industry in current agenda.  

Hamzadayi and Yildiz (2012) present a priority based GA for balancing mixed model U-shaped assem-

bly line problems with parallel workstations and zoning constraints in order to minimize the amount of 

workstation and smooth the workload among workstations. The fitness function of presented GA is 

inspired from fitness evaluation of simulated annealing optimization method. The iteration number can 

be defined by user in addition to required minimum amount of iteration. The computation results indi-

cate that fitness evaluation based on simulated annealing method for priority based GA improves the 

performance of GA for practical-scaled problems with acceptable computational time.  

Mamun et al. (2012) examine GA to optimize mixed model ALBPs by minimizing the number of 

workstations and make user to decide number of iterations. Researchers modify traditional GA by us-

ing heuristic method at reallocation of tasks after crossover process which violates the restrictions; used 

heuristic methods are MA, RPW, AllSucc, ImmSucc and maximum average processing times. The tests 

prove that their GA is able to solve small and large sized problems in reasonable computational times.  
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Wang, Che and Chiang (2012) work on hybridized multi-objective based GA as on product plan selec-

tion problem in sequencing and balancing conditions of assembly lines. They combine guided modified 

GA and weighted pareto based multi-objective GA to find the most effective production plan by creat-

ing mathematical model with multiple objectives for choosing the product plan. Four different perfor-

mance measures are taken into account, which are minimization of the cost, time and amount of work-

stations and reaching maximum amount of connector homogeneity. The experimental results show that 

pareto optimal process is effective for balancing multi-objective ALBP with large dimensions.  

Yolmeh and Kianfar (2012) propose a hybridized GA via implementing dynamic programming method 

for setup balancing and scheduling SALBP. Every chromosome’s scheme should include two proper-

ties as task allocation to workstation and sequence of operating tasks in a workstation. A basic permu-

tation is applied for representation of a chromosome and initial population consisting of these chromo-

somes is randomly created; this basic permutation decides the sequence of tasks operated by worker in 

every workstation.  Dynamic programming method is combined with GA to find an optimal tasks allo-

cation to workstations considering sequencing too. The GA operators and parameters are rearranged by 

multifactor diversification analyse. The examined results signify that their GA produces better solu-

tions comparing with other algorithm applied to solve same ALBP type. 

Akpinar, Bayhan and Baykasoglu (2013) combine GA with ACO method for mixed model ALB with 

setups Type-1 problem in order to improve performance of ACO by inserting GA as local search plan 

while considering specific characteristics as parallel workstations, zoning restrictions and sequence 

based on setup times among workstations. At presented model, on one hand ACO enhances diversifica-

tion of algorithm, on the other hand, GA improves the intensification since they aimed to speed up 

ACO and to extend the search space GA. The experimental results show that presented model performs 

better in comparison with pure GA and ACO, other hybrid GA methods.  

Mutlu, Polat and Supciller (2013) implement an iterative GA for assembly line worker assignment and 

balancing problem with objective of minimization of cycle time in order to optimize the processing 

times difference caused from worker qualifications by considering task and worker allocation to work-

stations. Researchers use three search methods, which are GA, iterated local search and modified bisec-

tion search, to enhance diversification and efficiency at their model; the all parameters and operators 

are converted to chosen type of ALBP and heuristic methods are applied on computation of cycle time, 

organizing the task and worker allocation and performance sequence of tasks. The results indicate that 

proposed iterative GA gives efficient solution for assembly line worker assignment and balancing prob-

lem.  

Purnomo, Wee and Rau (2013) introduce a mathematical model with application GA and iterative first 

fit rule to balance two-sided assembly lines with allocation restrictions by minimizing cycle time with 

predetermined amount of matched workstations. The allocation restrictions of two-sided ALBP are 

zoning, resource, workstation, distance and synchronous task constraints. GA uses the greedy search at 

genetic operator to control local and global search while iterative first fit rule implements the minimi-

zation of the gaps between hypothetical and existing cycle time according to predecessor best cycle 
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time. The tests prove that GA performs in less computational time than first fit rule which submits su-

perior cycle time for medium sized problems.   

Zacharia and Nearchou (2013) focus on a single model ALB with fuzzy task operation times in order to 

maximize efficiency of assembly line by taking into account of minimization of amount of workstation 

and cycle time. Their model is formulated based on triangular fuzzy membership functions and GA is 

used to solve the model. Researchers apply two-stage GA that GA randomly creates initial population 

and proceeds evaluation by constituting high qualified solutions at first stage, GA works one more 

times restarting from a new randomly generated initial population which is seeded by the chromosome 

with best solution. Their mode produces outperforming results for single model ALBP with fuzzy pro-

cessing times.  

Baykasoglu and Ozbakir (2015) optimize SALBP effectively by applying single pass heuristic task 

assignment rules which are found out via genetic programming. Their model is used in two combined 

segments: the fundamental algorithm is applied as genetic programming that reviews the balancing 

module in which single pass heuristic solution methods are carried out based on rules created by genet-

ic programming. Every individual in genetic programming population is a task allocation rule to allo-

cate tasks to workstation based on chosen objective and problem.  

Kucukkoc and Zhang (2015) present a mathematical formulation and GA to solve parallel two-sided 

ALB in which at least two number of two-sided assembly line are structured to each other. They aim to 

examine the all system to various stages of parallel lines’ cycle time and reach the best cycle time cou-

ple that submits the most efficient level of assembly line. The presented GA produces promising results 

for balancing parallel two-sided assembly lines.  

Sikora et al. (2015) develop a GA for balancing assembly line problems with objective of minimizing 

cycle time with predetermined amount of workstations by considering precedence constraints and phys-

ical restrictions. The developed GA concentrates on reaching the efficient search space and gives near-

ly optimal results for instances in the literature.  

Delice, Aydogan and Ozcan (2016) analyze GA and well-known priority rule based heuristic methods 

to optimize the stochastic two-sided, U-shaped ALBP by minimization of amount of positions and 

workstations. Researchers explain the solution process via examples and adapt new allocation and se-

lection approaches to their model. The computational results indicate that proposed model gives outper-

forming solution for two-sided, U-shaped ALBP.  

Tang et al. (2016) propose a hybrid GA with novel logic strings for mixed model ALBP with sequence-

based task to minimize the cycle time and balance workload between workstations. Firstly, sequence-

based connections and precedence network are inserted into the incorporated precedence diagram to 

convert the actual problem to single-model ALBP. Secondly, three heuristic methods as processing 

time, number of immediate successors and number of updated tasks are used to generate the initial 

population of GA. Thirdly, logic strings are formed to guarantee chromosome feasibility while two-
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point crossover and insertion mutation process. The experimental results signify that proposed GA is 

able to find near optimal solution in reasonable computational time.  

Zhao et al. (2016) create a mathematical model for balancing assembly line with multiple objectives 

respecting quality of product and efficiency at production by considering the mental workload which is 

defined as the consuming human internal resource to fulfil a task. After structuring model, GA is used 

to solve chosen problem by mental workload and task assignment to workstations regarding to cycle 

time constraint. The examined results prove that altering cycle time at every workstation is effective on 

solution quality and experience has an important effect for mental workload.  
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4. Experimental Study Review  

 

4.1 Summary of The Paper of Pitakaso & Sethanan (2015) (Pitakaso&Sethanan, 2015) 

Pitakaso and Sethanan (2015) introduce “DE-C” for SALBP, beside the classic DE for SALBP-1 with 

minimization of number of workstations with a given cycle time. Additionally, they also take account 

of the number of machine types operated at every workstation (SALBP-1M) in order to improve the 

space usage at the production line. In SALBP-1M, every task has to be practiced at specific machine 

with consideration of number of machine types for each workstation while satisfying precedence rela-

tion, cycle time constraints. Figure 4.1 demonstrates a simple model of precedence diagram for 

SALBP-1M with eight tasks and three different machine types in which every task is operated particu-

larly: 

 

Figure 4.1 Precedence Diagram of Simple Example for SALBP-1M. (Pitakaso&Sethanan,2015, pp.2) 

 

In general, DE algorithm consists of four steps as generation of initial solution, mutation, recombina-

tion and selection. The recombination process actually produces one trial vector; in the modified algo-

rithm DE-C of Pitakaso and Sethanan, two trial vectors are created as one dominant trial vector (gene) 

and one recessive trial vector (gene) with an inspiration from human genes in order to perform better 

quality compared the traditional DE algorithm.  

Generation of an initial set of target vectors is the first step in order to have a population from ran-

domly generated target vectors. Every vector has dimension D which is the amount of tasks to be allo-

cated to a particular number of workstations. For example, the precedence diagram at Figure 4.1 has 

eight different tasks, so a vector with eight dimensions is randomly created to symbolize one solution; 
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when the population size is fixed to six vector, it means that six vectors with eight dimensions are ran-

domly created. At this first step of modified DE, they generate a random number for each task between 

0 and 1 and the tasks are sorted based on these assigned random numbers in order to satisfy chosen 

objective function. During the assignment process of SALBP-1M, the proposed restrictions for number 

of machine used in each workstation must be considered beside general restrictions as cycle time, prec-

edence relations.  

We can explain the assignment process of SALBP-1M on an example. The precedence diagram at Fig-

ure 4.1 has eight tasks. They randomly generate values for each task/position at target vectors and de-

code one vector into solution at Figure 4.2: 

 

 

1 2 3 4 5 6 7 8 

0.92 0.08 0.65 0.05 0.99 0.02 0.68 0.44 

 

Figure 4.2 Example for a target vector (Pitakaso&Sethanan,2015, pp.6) 

 

The first row represents the values in a position of these tasks and second row represents the randomly 

generated number for each task; the assignment sequence of tasks can be shown as below with priority 

of decreasing values process: 

 

5 1 7 3 8 2 4 6 

 

Figure 4.3 Assignment sequence of the given target vector. 

 

The cycle time is 12 and the limit for the number of machine is 1 at the given example; when we satisfy 

the precedence relations, cycle time and machine limit restrictions considering the assignment sequence 

for the assignment procedure of SALBP-1M, we should start with task 1 with value 0.92 and machine 

A due to lack of predecessors. Then, we should check the sequence, machine limit and cycle time on 

allocation of the second task; according to assignment sequence, it should be task 5, since we consider 

the other restrictions, we should allocate the task 2 with processing time 7 and machine A to the first 

workstation. We should open the second workstation since there is no remaining time at the first work-

station; task 3 and task 4 are the candidate for assignment. When we take into account the assignment 

sequence, we should allocate task 3 with value 0.65 since it has greater value than task 4; after alloca-

tion of task 3, remaining time of workstation 2 is 8. If we check the all constraints especially machine 
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limitation, there is no eligible to task to assign to workstation 2, so we close workstation 2 and open 

new workstation 3. Task assignment procedure of given target vector continues based on SALBP-1M 

process at Table 4.1. 

 

 

 

Table 4.1 Task assignment procedure of target vector for solving SALPB-1M 

 

The result of task assignment procedure is shown in Table 4.2:  

 

Table 4.2 Results of task assignment procedure of target vector for solving SALPB-1M 

 

Mutation process is performed as second step; the mutant vector, Vi,j,G is created using a set of ran-

domly selected target vectors, Xi,j,G from current generation and a vector which produces better solution 

so far at the proposed algorithm by applying the formulation of  Storn (2008) for creating mutant solu-

tion :  

)()(
,,4,,3,,2,,1,,,, GjrGjrGjrGjrGjbestGji

XXFXXFXV          

 r1, r2, r3 and r4 are the randomly chosen vectors/individuals from individual index, i; j is the position 

index and G is the generation index, best refers to best vector reached so far by introduced algorithm. 

The scale factor, F is determined as 2 at DE-C. 
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Recombination process are applied as third step and two different kind of trial vectors are generated: 

dominant trial vector and recessive trial vector which is firstly presented in DE-C.  

The dominant trial vector is created under traditional recombination process by using the formulation 

of Pitakaso (2014) in which a random number is generated between 1 and j, number of the posi-

tions/tasks and values of the position between these numbers are taken from the chosen target vector 

and the rest are copied from the chosen mutant vector:    
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The recessive trial vector is created under modified recombination process by applying three types of 

process: 

1. Vector transition process is applied as following: randomly generation of number for transition 

points, randomly selection of transition points at the vector and randomly replacement of the 

values at the selected positions with randomly generated numbers between 0 and 1. 

2. Vector exchange process is randomly selection of two positions and exchange their values. 

3. Vector insertion process progresses like that: randomly selection of one insertion and one mov-

ing point, insertion of the value at the moving point to insertion point and one position move-

ment of the values between these two points. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

1 2 3 4 5 6 7 8 

0.92 0.08 0.65 0.05 0.99 0.02 0.68 0.44 

1 2 3 4 5 6 7 8 

0.45 0.15 0.65 0.05 0.73 0.02 0.68 0.44 

Original/Dominant vector 

Accompany/Recessive vector 

Randomly chosen transition points 

Figure 4.4 Vector transition example (Pitakaso&Sethanan,2015, pp.9) 

 

(4.2) 
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The recessive trial vector, U2
i, j, G is modified by adding three more positions to original trial vector; 

these three new positions represent the number of creation of vector processes: T is value in the posi-

tion of vector transition process, E is value in the position of vector exchange process, I is value in the 

position of vector insertion process. The highest value between these positions of T, E, I is chosen to 

create the recessive trial vector: 

 

 

1 2 3 4 5 6 7 8 

0.92 0.08 0.65 0.05 0.99 0.02 0.68 0.44 

1 2 3 4 5 6 7 8 

0.45 0.15 0.02 0.05 0.73 0.65 0.68 0.44 

1 2 3 4 5 6 7 8 

0.92 0.08 0.65 0.05 0.99 0.02 0.68 0.44 

1 2 3 4 5 6 7 8 

0.45 0.99 0.08 0.65 0.05 0.02 0.68 0.44 

Accompany/Recessive vector 

Figure 4.5 Vector exchange example (Pitakaso&Sethanan,2015, pp.9) 

 

Randomly chosen exchange points 

Figure 4.6 Insertion vector example (Pitakaso&Sethanan,2015, pp.9) 

 

Original/Dominant vector 

Original/Dominant vector Moving point Insertion point 

Accompany/Recessive vector 
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1 2 3 4 5 6 7 8 T E I 

0.92 0.08 0.65 0.05 0.99 0.02 0.68 0.44 0.15 0.61 0.50 

  

 

The performance of dominant trial vector, U1
i, j, G is compared with the performance of the recessive 

trial, U2
i, j, G t and the trial vector is determined according to formulation below: 

 

 

In DE-C, just one recessive vector is created from every dominant vector to have shorter computational 

time. 

Selection process is the final step, whose result is chosen as a target vector to be in following genera-

tion and it will be an initial point of the mutation process at next generation. At the selection process, 

the best vector, either the trial vector or the target vector, is chosen for next generation according to 

formulation below: 

 

 

They compare performance of DE-C with several benchmark problems, such as GAs, tabu search algo-

rithms, DE particle swarm optimization to solve SALBP-1; their DE-C performs better than some of 

compared algorithm or produces same results. They analyse the output of traditional DE and modified 

DE-C, both have quite same solution quality but DE-C reaches to optimal solution in less computation-

al time. 

They also apply DE-C method to two case studies as Pitakaso-1 with 36 jobs-6 machine types and Pi-

takaso-2 with 52 jobs-5 machine types for SALBP-1M considering the machine limits; DE-C performs 

much better than classical heuristic priority methods. The results of DE-C are explained in details at the 

following sections. 
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Figure 4.7 Extended vector used to choose the creation process (Pitakaso&Sethanan,2015, pp.10) 
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4.2 GAMS Results 

 Two different case studies of SALBP-1M taken from Pitakaso and Sethanan (2015) are solved by 

GAMS (General Algebraic Modelling System) in order to find optimal solutions of SALBP. Pitakaso-1 

problem comprises of 36 jobs and 6 machine types with various cycle times 1.23, 1.80, 2.00, 2.50 and 

3.00 seconds; precedence diagram of Pitakso-1 is shown in Figure 4.8. Pitakaso-2 problem consists of 

52 jobs and 5 machine types with different cycle times 1.89, 2.00, 2.20, 2.50 and 2.95 seconds; prece-

dence graph of Pitakaso-2 is illustrated in Figure 4.9. 

These two cases of SALBP-1M objects to minimize the number of workstations with a given cycle 

time by considering the machine limitation for every workstation. As is seen from precedence diagrams 

of Pitakaso-1 and Pitakaso-2, each job is operated on specific machines under particular processing 

times. These two problems are optimized based on two different machine limits as single machine and 

two machines with 5 different cycle time for each problem, so we have 20 instances to optimize. 
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The mathematical formulation of SALBP-1M proposed by Pitakaso and Sethanan (2015) is analysed 

considering all parameters, indices, decision variables and constraints in order to formulate the prob-

lemwith GAMS. The indices, parameters and decision variables are applied in the mathematical model 

of SALBP- 1M outlined below (Pitakaso&Sethanan, 2015): 

 

Figure 4.8 Precedence diagram of Pitakaso-1 problem (Pitakaso&Sethanan,2015, pp.15) 
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Indices: 

n               index of tasks n while n=1 ,…..,N 

k               index of workstation k while k=1 ,…..,M 

N               total number of tasks 

M              total number of workstations 

G              total number of machines 

BM           big number suck as 10.000 

LG            highest number of machines in each workstation 

 

Parameters: 

Pn              processing time of task n 

CT             cycle time of workstation 

Fnj=1         if task n is predecessor of task j; otherwise 0     

Wng=1         if task n uses machine g to produce; otherwise 0 

 

Decision variables: 

Xnk=1         if task n assign to workstation j; otherwise 0 

Yk=1          if workstation k is opened; otherwise 0 

Hkg=1         if workstation k is operated by machine g (at least one per machine); otherwise 0 
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Figure 4.9 Precedence diagram of Pitakaso-2 problem (Pitakaso&Sethanan,2015, pp.16) 
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Objective function: 

        

∑ 𝑌𝑘

𝑀

𝑘=1

 

 

subject to: 

∑  Xnk=1   ∀n

𝑀

𝑘=1

= 1, . . , 𝑁 

                               

∑ (k . Xjk ) − (k .  Xnk ) ≥ 0 ∀n = 1, . . . , N , j = 1, . . . , M , Fnj = 1 

                         

∑  Xnk . Pn ≤ CT . Yk ∀k = 1, . . . , M 

 

Yk  ≤ Yk−1 ∀k = 2, . . . , M 

 

∑ Xnk . Wng ≤ Hkg × BM ∀k = 1, . . . , M , ∀g = 1, . . . , G 

 

∑Hkg ≤ LG ∀k = 1, . . . , M 

 

The first equation (4.5) is objective function of minimization of the number of workstations. Equation 

(4.6) assures that each task has to be allocated to just one workstation; equation (4.7) represents the 

precedence relations between tasks; equation (4.8) checks that processing time of each workstation 

cannot exceed the predetermined cycle time. Equation (4.9) controls that the workstations are in in-

creasing under during task assignment procedure. Equation (4.10) guarantees that when each task is 

assigned to workstation, machine which task is operated must be allocated to same workstation; equa-

tion (4.11) represents that maximum machine type limit cannot be surpassed by assigned machine types 

to each workstation. 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.5) Min Z = 
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These mathematical formulation is used to create our GAMS model in which indices are n task, k 

workstation and m machine, parameters are outlined to assign values for each element of every set; 

decision variables are defined algebraically with their particular indices. GAMS produces every in-

stance of the variable based on specified type. Objective function and equations of related constraints 

are stated with specific names and their mathematical formulation are defined. The GAMS model is 

named as ALB and all equations are used in the model. Finally, GAMS solves the problem by CPLEX 

solver while minimizing the objective function value. 

The optimal results of Pitakaso-1 and Pitakaso-2 with two different machine type limits, obtained from 

GAMS are shown below: 

 

PITAKASO-1 

Single Machine Two Machines 

Cycle Time 
GAMS Optimal 

Results 
Cycle Time 

GAMS Optimal 

Results 

1,23 22 1,23 17 

1,8 18 1,8 12 

2 17 2 11 

2,5 17 2,5 9 

3 17 3 8 

Table 4.3 GAMS results of Pitakaso-1 for solving SALPB-1M 

 

PITAKASO-2 

Single Machine Two Machines 

Cycle Time 
GAMS Optimal 

Results 
Cycle Time 

GAMS Optimal 

Results 

1,89 25 1,89 22 

2 23 2 20 

2,2 22 2,2 19 

2,5 18 2,5 16 

2,95 16 2,95 13 

Table 4.4 GAMS results of Pitakaso-2 for solving SALPB-1M 
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4.3 Proposed Models for Solving SALBP-1M 

Single pass heuristic solution methods based on priority rules and GA are introduced in order to solve 

20 different instances of Pitakaso-1 and Pitakaso-2 for SALBP-1M. 

4.3.1 Proposed Single Pass Heuristic Methods 

Different single pass heuristic methods are applied to find an optimal solution for 20 instances of 

SALBP-1M; some of the applied rules are same with priority rules used by Pitakaso&Sethanan (2015) 

in order to compare the results of each solution.  

MA priority rule is used for sorting the jobs with respect to decreasing order of their processing times 

and MI priority rules is implemented for sorting the jobs based on increasing processing times from 

smallest to largest. RPW is tested to allocate the jobs with respect to decreasing positional weight value. 

Random Selection rule is applied in order to assign jobs to workstation by randomly selecting the suc-

cessor job to put into current workstation. ImmSuc rule is used for allocation of jobs regarding descend-

ing number of direct successors and AllSuc rule is tested for sorting jobs with respect to decreasing 

number of all successors. These six priority based heuristic methods are applied according to greedy 

approach by selecting the job at the top of the sorted list to balance SALBP-1M. 

In order to extend the solution space of algorithm, Randomized RPW technique is implemented by ran-

domly selecting n number of jobs instead of top ranked job. There is a cumulative lookup table LT con-

taining the cumulative selection probabilities for each eligible job to assign and sum of the probabilities 

has to be equal to 1. In this procedure, a number between 0 and 1 is randomly chosen, then it is checked 

at which interval this randomly chosen number is located in cumulative probabilities of eligible jobs in 

order to decide the job for assigning to workstation. Randomized RPW can be explained with a small 

example: We may assume 3 jobs are randomly selected from eligible jobs, the first selected job has 

70% probabilities to be assigned, the second has 20% and the third has %10; in this case by considering 

the cumulative probabilities of each job, LT (1) is 0,7; LT (2) is 0,2 and LT (3) is “1”. If randomly 

chosen number is 0,8; so the randomly selected second job is firstly assigned to workstation. 

Task assignment procedure with respect to “first fit” jobs to be placed to workstation is explained fol-

lowing: There must be eligible jobs which do not have immediate predecessors to initiate the proposed 

algorithm which works through five steps. At the first step, the selected job is determined by using pri-

ority rule which is chosen from applied priority rules at proposed model. At the second step, the first 

station no is assumed as “0”, the first available workstation is searched in order to assign the selected 

job by looking for where all immediate predecessors of selected job are allocated; then workstation 

with the minimum number is chosen.  

Third step is the assignment of selected job to first available workstation considering cycle time and 

machine type limit. If the processing time of selected job is less than remaining time of the workstation 

and the machine type limit is examined by checking the machine of selected job is already placed in this 
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workstation, the selected job can be assigned to this workstation and remaining time is updated by sub-

tracting the processing time of selected job. If the remaining time constraint is satisfied but the machine 

of selected job is not already placed in this workstation, the number of machine type must be taken into 

account by controlling the remaining places for the selected job’s machine; supposing that there is 

enough place for the selected job’s machine, selected job and the machine of selected job can be as-

signed to this workstation, thus the remaining time of this workstation is updated by subtracting the 

processing time of selected job and the machine type limit is also amended by adding the machine of 

selected job to this workstation. 

If selected job is still not assigned, the algorithm moves to the fourth step in which a new workstation 

is opened; selected job and the machine of selected job is assigned to newly opened workstation, ma-

chine type limit and remaining time of the workstation must be adjusted as well. 

At final/fifth step, the eligible jobs list must be amended by eliminating the assigned selected job from 

eligible jobs and accepting as already placed job. In order to update the eligible job list, immediate pre-

decessors of selected job’s immediate successors are checked if they are already assigned to work-

stations; if not, they are considered as eligible job to assign. The proposed algorithm goes through all 

steps until there is no eligible job to assign. The steps of proposed algorithm are shown at Figure 4.10 

below: 

 

While (|E| > 0)                 

1 Set selectedJob using the seleceted "Priority Rules" 
   

  

2 Find the firstStationId that selectedJob can be assigned 
  

  

3 Assign the selectedJob to the "first available" workstation 
  

  

4 Given the selectedJob is not assigned, then open a new workstation and assign the job 

5 Update the eligible jobs and already placed jobs lists 
  

  

End While                 

 

4.3.2 Proposed Genetic Algorithm 

GA is very promising metaheuristic approach for solving difficult optimization problems due to its 

ability on moving from one solution set to another one and its flexibility on incorporation of particular 

characteristics of the problem.  

The effectiveness of GA is based on the chosen operators which are the key components for solution 

structure. GA and its concepts are explained in section 3.3.6; the proposed GA for solving SALBP-1M 

is explained in this section. 

Figure 4.10 Pseudo code for task assignment algorithm with first fit rule 
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Encoding used in proposed GA is that individuals are encoded using the number of tasks to be as-

signed. Each individual encoding is composed of a task sequence, which indicated the priority during 

the task assignment procedure. At generation of initial population, individuals are generated randomly 

or applying single pass heuristic methods: special individuals are generated by implementing RPW, MA 

and MI priority based heuristic task assignment rules, so assignment sequence of each special individu-

al is based on one of these rules; remaining number of individuals are created randomly, in which a 

random number between 0 and 1 is generated for each task and tasks are sorted with respect to assigned 

number from greater to smaller.  

Once the assignment sequence is decided, task assignment procedure can be applied in order to solve 

SALBP-1M. Two different approaches are implemented for task assignment procedure: first fit ap-

proach is task placement with respect to allocation of each task to first available workstation (explained 

in previous section) considering the machine and cycle time constraints and best fit approach is task 

placement with respect to allocation of each task to the best suitable workstation considering nearly 

matching remaining time of workstation and checking all open workstations, task processing time, oth-

er constraints as well in order to minimize the remaining idle time at workstations. 

Fitness function is determined based on the objective of our SALBP-1M which is to minimize the 

number of workstations with machine type limit constraints; by taking inspiration from double-

barrelled objective function of Sabuncuoglu et al. (2000) following formulation is used in proposed GA 

to find better balanced solution.  

   

S

WW

S

WW

Fitness

S

s

s

S

s

s 









1

max

1

2

max

2  

In the equation 4.12, Ws is the workload of workstation s, Wmax is the workload of the workstation with 

the highest workload and S is the number of workstations in the solution. The first part of the fitness 

function objects to reach the best balance between the solution with same number of workstations 

while the second part aims minimization of number of workstations; the second part is multiplied with 

‘2’ since the second part has more importance for our optimization problem. 

Selection process is executed in proposed GA as following: Elitism is to migrate the proportion of best 

individuals based on their fitness values from current generation to next generation in order to keep the 

high quality individuals of current generation, migration ratio for elitism is determined as 0,20; the 

remaining number of individuals are selected with respect to selective random/uniform process in 

which an individual is chosen randomly from current population during a pure random individual is 

generated, then the fitter individual is selected between them. Roulette wheel and ranking selection 

parameters are also defined in the algorithm as an option which can be provided by user using an exter-

nal .xml file. 

(4.12) 
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Crossover process aims to carry characteristic information from genes of parents to offsprings to the 

next generation as a genetic operator. Two parents are needed for mating to produce an offspring and 

therefore, the first parent is chosen via selective random/uniform process and second parent is chosen 

via roulette wheel by fitness with regard to minimization objective of our problem; several crossover 

methods are applied in proposed GA. 

a. Modified uniform crossover takes into account the fitter of the parents by creating threshold 

probability with respect to fitness values of parents’, so that the generated offspring inherits 

more characteristic from fitter parents. Since our objective function is based on minimization, 

inverse proportion is considered for calculating threshold probability. This method can be ex-

plained on simple example: 2 parents, one with fitness value as 40 and the other with fitness 

value as 80, are selected by going through the processes above for mating; threshold probability 

can be found as 80/ (40+80). Then, random number is generated for each gene between 0 and 1; 

if the randomly created number for each gene is smaller than the threshold probability 0.66, this 

gene is copied from fitter parent with fitness value 40 to offspring’s gene; otherwise, this gene 

is taken from the other parent with 80 fitness value to offspring’s gene. 

b. Uniform crossover has a fixed mixing ratio to copy genes from parents, in which each gene is 

tested to copy it from one of the parent; 0.5 is used as mixing ration at proposed GA. A random 

number is generated between 0 and 1; if randomly generated number is smaller than fixed mix-

ing ratio 0.5, the gene is taken from first parent which is chosen under selection process, other-

wise the gene is taken from second parent which is selected based on roulette wheel method.  

c. Bias to fitter uniform crossover uses the bias probability defined by user in order to take genes 

from fitter parent by testing each bit for creation of offspring. To create an offspring, a random 

number is generated between 0 and 1; if random number is smaller than selection probability, 

this gene is copied from fitter parent, otherwise it is duplicated from less fit parent. 

d. One-point crossover randomly selects single crossover point, then the genes placed until this 

point are replicated from first parent and the remaining of genes are copied from second parent 

to produce first offspring; the genes positioned until this point are taken from second parent ad 

rests are taken from first parent at creation of second offspring. So, all data prior to this point is 

swapped between two parents and the fitter offspring is chosen. 

e. Two-point crossover randomly decides two crossover point and the genes between these two 

points are exchanged between the parents in order to generate two offsprings; then, a fitter off-

spring is selected. 

Some applied crossover methods’ examples at proposed GA are illustrated below: 

 

  

0.92 0.08 0.65 0.05 0.99 0.02 0.68 0.44 0.13 0.41 0.91 0.15 0.16 0.34 0.61 0.21 

0.61 0.74 0.31 0.04 0.11 0.96 0.07 0.23 

Parent 2 Parent 1 

Randomly generated number  
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Crossover process is initiated by generation a random number, then comparison of this number with 

crossover probability; if randomly generated number is smaller than crossover probability, crossover 

process can be implemented. Crossover methods is chosen randomly and crossover probability is se-

lected user to determine how often crossover of chromosomes is processed; crossover probability is 

chosen 0.8 after examining different values. After crossover process, the fitness values of newly creat-

ed offsprings are calculated at proposed GA. 

Mutation process is used to improve genetic diversity from one generation of a population to the next 

to avoid to be trapped in a local optimum by changing a little of genetic model of chromosome. Muta-

tion process is initiated by creation of a random number as well and comparing this random number 

with mutation probability for application of process on one individual; mutation process occurs based 

on a user-definable mutation probability which is determined as 0.05, two different mutation methods 

are used in proposed GA.  

a. Bit by bit randomly mutation has a fixed threshold for determination of whether to mutate gene 

or not. A random number is generated between 0 and 1; if random number is smaller than 

0.13 0.41 0.65 0.05 0.99 0.34 0.68 0.44 

0.92 0.08 0.65 0.05 0.99 0.02 0.68 0.44 0.13 0.41 0.91 0.15 0.16 0.34 0.61 0.21 

0.61 0.74 0.31 0.04 0.11 0.56 0.07 0.23 

0.13 0.41 0.65 0.05 0.99 0.02 0.68 0.44 

Figure 4.11 Uniform crossover example with mixing ratio 0.5 

 

Parent 2 Fitter Parent 1 

Offspring 

Offspring 

Randomly generated number  

Figure 4.12 Bias to fitter uniform crossover example with selection probability 0.6 
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threshold for mutation probability of chromosome, the gene is mutated by regenerated this gene 

randomly until all genes on chromosomes are tested. 

b. Two-point mutation selects two points and the genes positioned between these points are re-

placed with a randomly created numbers. 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

Insertion process continues until population limit is reached; fitness values of individuals are calculat-

ed and these individuals with fitter values are replaced with current individuals of the population. 

These migration, selection, crossover, mutation and insertion processes proceed until the stopping con-

dition is reached; proposed GA stops when the specific numbers of generations have evolved. Since 

survival has a great importance in GA which outputs individual with a low fitness values and sustains 

the population to better solutions. Proposed GA finally reports the individual with the highest fitness 

value considering minimization problem in the final population. When GA reaches the stopping crite-

ria, proposed GA reports the best performing individual as solution. 

 

 

0.92 0.08 0.65 0.05 0.99 0.02 0.68 0.44 

0.61 0.74 0.31 0.04 0.11 0.96 0.07 0.23 

0.92 0.08 0.65 0.14 0.86 0.02 0.51 0.44 

0.92 0.08 0.65 0.05 0.99 0.02 0.68 0.44 

0.92 0.08 0.24 0.43 0.77 0.02 0.68 0.44 

Mutated Individual 

Figure 4.13 Bit by bit randomly mutation example with fixed threshold 0.15 

 

Randomly chosen points 

Random generated numbers for mutation process 

 

Individual  

Mutated Individual 

Figure 4.14 Two-point mutation example  

 

 

Individual 
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4.4 Comparison of Pitakaso&Sethanan (2015)’s and Proposed Model’s Results 

We have applied different single pass heuristic methods and proposed GA in order to find optimal solu-

tions for 20 instances with a goal of minimization of number of workstations considering the machine 

limit for each workstation.  

Pitakaso-1 problem comprises of 36 jobs and 6 various machine types as SNA-1, SNA-2, 4OL, FLA-1, 

FLA-2 and DNN; on the other hand, Pitakaso-2 problem consists of 52 jobs and 5 different types of 

machine as SN0-comp, 2TBC-1/8, 4OV,1FLA. There is two different machine limit at each workstation 

for two problems of Pitakaso; so, single machine and two machines restriction are considered for solv-

ing both problems. In addition, there are 5 different cycle time for each problem; Pitakaso-1 problem is 

solved with various cycle times as 1.23, 1.8, 2.0, 2.5 and 3.0 seconds and Pitakaso-2 problem has di-

versified cycle times as 1.89, 2.0, 2.2, 2.5 and 2.95 seconds. 

Firstly, single pass heuristics results for both problem, 20 instances are analysed by comparing pro-

posed model and Pitakaso and Sethanan (2015)’s model.  The researchers implement RPW, MA and  

MI  heuristic assignment rules to optimize instances under constraints of SALBP-1M.  We apply same 

heuristic rules as well; in addition, we test ImmSuc, AllSuc, Pure Random, Randomized RPW single 

pass heuristic rules; except random assignment rules, greedy approach is used for task assignment pro-

cedure. Randomized RPW technique is explained in Section 4.3.1; pseudo code of Randomized RPW 

is summarized belo 

 

If |E| < n         

  Normalize LT(j) for all j∈ E such that ∑j LT(j)=1 

End If 
   

  

//Create r random number (0,1) 
 

  

Find job j∈ E such that LT(j)≤r≤LT(j+1)   

return E(j)         

 

 

 

In Figure 4.14, j represents job; E(j) represents eligible job list, n is the window length for randomly 

selecting job, LT is A cumulative lookup table containing the cumulative selection probabilities and r 

represents the randomly selected number between 0 and 1.    

Randomized RPW is applied with 3 and 4 number of jobs with two different selection probabilities for 

each to improve solution space at proposed single pass heuristic methods: 

Figure 4.15 Pseudo code for Randomized RPW  
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Heuristic Rule Randomly Chosen Number of Jobs n 

 

LT(1)  LT(2)  LT(3)  LT(4) 

 Randomized RPW1 3 0.70 0.90 1   

 Randomized RPW2 3 0.60 0.90 1   

 Randomized RPW3 4 0.60 0.85 0.95 1 

 Randomized RPW4 4 0.50 0.75 0.90 1 

 
Table 4.5 The values used for Randomized RPW in proposed model 

 

20 instances of Pitakaso’s problems are solved by these single pass heuristic methods at our proposed 

algorithm based on task assignment procedure by assigning jobs to first available workstation. The re-

sults of our proposed single pass heuristic methods are shown for Pitakaso-1 problem with 10 instances 

at Table 4.6. 

 

PITAKASO-1 

    Proposed Single Pass Heuristic Methods Results 

Machine Type Limit Cycle Time Pure Random MA MI RPW 
Randomized 

RPW1 
ImmSucc AllSucc 

Single/One machine 1,23 22 24 26 22 26 26 23 

Single/One machine 1,8 18 20 21 18 22 21 18 

Single/One machine 2 17 20 21 17 22 21 17 

Single/One machine 2,5 17 20 21 18 23 21 17 

Single/One machine 3 17 21 21 18 23 21 18 

Two machines 1,23 18 18 20 18 20 20 18 

Two machines 1,8 13 13 14 12 14 14 13 

Two machines 2,0 13 12 12 12 13 13 11 

Two machines 2,5 10 10 10 9 11 10 9 

Two machines 3 9 9 10 9 10 10 9 
 

Table 4.6 Results of proposed single pass heuristic methods for Pitakaso-1 

 

The algorithm runs 10 times for finding a solution of methods above and the outperforming results are 

marked with green. Pure random method produces better results than the other implemented methods 

for Pitakaso-1 with single machine limit. At Pitakaso-1 with single machine limit problem, RPW also 

gives same results with pure random method for cycle time 1.23, 1.8, 2.0 seconds and AllSucc method 

finds same solution with pure random method for cycle time 2.0 and 2.5. On the other hand, Pure ran-

dom’s results are not the best for chosen each cycle time for Pitakaso-1 with two machines limit prob-

lem; but this method produces best result for cycle time 1.23 as same as MA, RPW and AllSucc algo-
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rithms. For cycle time 1.8, only RPW outperforms for finding minimum number of workstation, 12 

while AllSucc method gives the best results for cycle time 2.0 as 11 workstations for Pitakaso-1 with 

two machines limit problem. RPW and AllSucc methods finds the best results for cycle time 2.5, as 9 

workstations; for cycle time 3.0, addition to these two methods, pure random and MA methods submit 

the best solution as 9 workstations for Pitakaso-1 with two machine limits. 

In order to improve the solution quality, random algorithms run 1000 times and randomized RPW are 

diversified by increasing chosen random number of jobs and changing selection probabilities; the re-

sults of 1000 times run random algorithm are shown below Table 4.7. 

 

PITAKASO-1 

    Proposed Single Pass Heuristic Methods Results 

Machine Type Limit 
Cycle 

Time 

Pure Random 

(1000) 

Randomized 

RPW1 (1000) 

Randomized 

RPW2 (1000) 

Randomized 

RPW3 (1000) 

Randomized 

RPW4 (1000) 

Single/One machine 1,23 22 22 22 23 23 

Single/One machine 1,8 18 18 18 18 18 

Single/One machine 2 17 17 17 18 17 

Single/One machine 2,5 17 17 17 18 17 

Single/One machine 3 17 17 17 18 17 

Two machines 1,23 18 18 18 18 18 

Two machines 1,8 12 12 12 12 12 

Two machines 2,0 11 11 11 11 11 

Two machines 2,5 9 9 9 9 9 

Two machines 3 8 8 8 9 8 
 

Table 4.7 Results of proposed single pass heuristic randomized methods for Pitakaso-1 

 

The algorithm runs 1000 times for finding a solution of each method above and the outperforming re-

sults are marked with green. Pure random method gives same results as before for Pitakaso-1 with sin-

gle machine limit. On the other hand, results of RPW1 are improved for each cycle time in comparison 

with the previous results of this method. According to Table 4.7, pure random, RPW1 and RPW2 pro-

duce the best results at every cycle time for Pitakaso-1 with single machine limit problem while RPW4 

also gives the best results all cycle times except cycle time 1.23. For Pitakaso-1 problem with two ma-

chines limit, all implemented methods find the best results for all cycle times, except RPW3 only for 

cycle time 3.0 seconds. Pure random and RPW1 are developed for each cycle time comparing with 

their previous results for Pitakaso-1 problem with two machines limit. 
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The results of proposed single pass heuristics are compared with same heuristic methods implemented 

by Pitakaso&Sethanan (2015): 

 

 

Table 4.8 Proposed single pass heuristic methods results comparison for Pitakaso-1 

 

The best results are marked with green, the same results produced by both model are marked with col-

our orange at Table 4.8. For Pitakaso-1 problem with single machine limit, results of Pitakaso outper-

forms for RPW method with 2.0 cycle time and MI with 3.0 cycle time as 1 workstation difference for 

both; the results are same with both proposed methods which are MA with 1.23 and 2.5 cycle time, MI 

with 2.0 cycle time. RPW with each cycle time except 2.0 seconds. The proposed model outperforms at 

MA with 1.8 cycle time, RPW with 2.0 cycle time as 1 workstation difference for both; on the other 

hand, MI produces much better results in comparison with Pitakaso at every cycle time except 2.0 sec-

onds for Pitakaso -1 problem with single machine limit. For Pitakaso-1 problem with two machines, 

there are 7 tie results between two proposed models, especially at MA method and our proposed model 

gives better results especially at RPW method. To sum up, our proposed single pass heuristic model’s 

results are better of single pass heuristic model of Pitakaso&Sethanan (2015) at almost every instance 

of Pitakaso-1 problem, after improvement of our random methods. 

The results of our proposed single pass heuristic methods are shown in Table 4.9. for Pitakaso-2 prob-

lem set which is composed of 10 different instaces. The algorithm runs 10 times for finding a solution 

of each method below and the outperforming results are marked with green. 

For Pitakaso-2 problem with two machines limit, pure random, MI and ImmSucc methods are not able 

to produce the best results for all cycle times. Randomized RPW1 outperforms for cycle time 1.89, 2.5 

Machine Type Limit Cycle Time MA MA-Pitakaso MI MI-Pitakaso RPW RPW-Pitakaso

Single/One machine 1,23 24 24 26 27 22 22

Single/One machine 1,8 20 21 21 25 18 18

Single/One machine 2 20 21 21 21 17 18

Single/One machine 2,5 20 20 21 23 18 18

Single/One machine 3 21 19 21 23 18 18

Two machines 1,23 18 18 20 21 18 20

Two machines 1,8 13 13 14 13 12 13

Two machines 2,0 12 12 12 13 12 12

Two machines 2,5 10 10 10 10 9 10

Two machines 3 9 10 10 10 9 10

PITAKASO-1

Single Pass Heuristic Methods Compared Results
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and 2.95 with 27, 21 and 20 number of workstations while RPW gives the best results for cycle time 2 

and 2.2 with 25 workstations per each cycle time as same as AllSuc method for cycle time 2.2 at Pita-

kaso-2 problem with single machine limit. For Pitakaso-2 problem with two machines limit, ImmSuc 

and AllSucc methods are not able to submit the best results at each cycle time. MA, RPW and Random-

ized RPW1 produce outperforming results as 23 workstations for cycle time 1,89 while Pura Random, 

MA and Randomized RPW1 give the best outcomes as 21 workstations for cycle time 2 seconds at Pita-

kaso-2 problem with two machine limits. RPW produces the best solutions as 19 workstations for cycle 

time 2.2 and as 14 workstations for cycle time 2.95; MA is able to find the best result as 16 work-

stations for cycle time 2.5 seconds in Pitakaso-2 problem with two machines limit. 

 

PITAKASO-2 

    Proposed Single Pass Heuristic Methods Results 

Machine Type Limit Cycle Time Pure Random MA MI RPW 
Randomized 

RPW1 
ImmSucc AllSucc 

Single/One machine 1,89 30 30 30 28 27 31 29 

Single/One machine 2 29 28 29 25 27 28 28 

Single/One machine 2,2 28 27 27 25 27 26 25 

Single/One machine 2,5 25 23 24 23 21 24 23 

Single/One machine 2,95 23 23 21 21 20 22 22 

Two machines 1,89 24 23 25 23 23 24 24 

Two machines 2 21 21 24 22 21 24 23 

Two machines 2,2 20 20 22 19 20 21 21 

Two machines 2,5 18 16 19 17 17 18 17 

Two machines 2,95 15 15 16 14 16 15 15 
 

Table 4.9 Results of proposed single pass heuristic methods for Pitakaso-2 

 

 

In order to improve the solution quality and search space, random algorithms run 1000 times and ran-

domized RPW are verified by ascending selected random number of jobs and altering selection proba-

bilities; the results of 1000 times run random algorithm are illustrated below Table 4.10. 
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PITAKASO-2 

    Proposed Single Pass Heuristic Methods Results 

Machine Type Li-

mit 

Cycle 

Time 

Pure Random 

(1000) 

Randomized 

RPW1 

(1000) 

Randomized 

RPW2 

(1000) 

Randomized 

RPW3 

(1000) 

Randomized 

RPW4 

(1000) 

Single/One machine 1,89 25 25 25 25 25 

Single/One machine 2 25 25 24 25 24 

Single/One machine 2,2 23 24 24 23 23 

Single/One machine 2,5 19 20 20 19 20 

Single/One machine 2,95 19 19 19 18 18 

Two machines 1,89 22 22 22 22 22 

Two machines 2 21 21 21 21 21 

Two machines 2,2 19 19 19 19 19 

Two machines 2,5 16 16 16 16 16 

Two machines 2,95 14 14 14 14 14 
 

Table 4.10 Results of proposed single pass heuristic randomized methods for Pitakaso-2 

The algorithm runs 10000 times for finding a solution of each method above and the outperforming 

results are marked with green. For Pitakaso-2 problem with single machine limit, all methods give the 

best output as 25 workstations for 1.89 cycle time. RPW2 and RPW3 submit the best results as 24 

workstations for 2 seconds of cycle time while pure random and RPW4 find the outperforming result as 

19 workstations for 2.5 seconds. Pure random, RPW3 and RPW4 reach the best solution for 2.2 cycle 

time; furthermore, RPW3 and RPW4 also gives the best solution as 18 workstations for 2.95 cycle time 

too. For Pitakaso-2 problem with two machines limit, all proposed method find the same outperforming 

solutions. Performance of pure random and RPW1 methods are improved for each cycle time of Pita-

kaso-2 problem after running algorithm 1000 times. 
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 Table 4.11 Proposed single pass heuristic methods result comparison for Pitakaso-2 

The best results are marked with green, the same results produced by both model are marked with col-

our orange at Table 4.11. For Pitakaso-2 problem with single machine limit, MI of Pitakaso outper-

forms as 24, 22 and 20 number workstations for cycle 2.2, 2.5 and 2.95 seconds while our RPW method 

produces the best results as 25 workstations at cycle time 2 and at cycle time 1.89, as 28 workstations 

which is same output with results of MI-Pitakaso. For Pitakaso-2 problem with two machines limit, our 

MA and RPW and MI-Pitakaso submit the best solution as 23 workstations for 1,89 cycle time while 

MA and MI-Pitakaso give the best results as 21 works for cycle time of 2 seconds, RPW and MI-

Pitakaso produced the outperforming solution as 14 workstations for cycle time 2,95. MI method of 

Pitakaso finds the best solution for cycle time 2.2; on the other hand, our MA gives the best solution for 

cycle time 2.5 for Pitakaso-2 problem with two machines limit. To sum up, our proposed single pass 

heuristic model’s results are better of single pass heuristic model of Pitakaso&Sethanan (2015) at al-

most every instance of Pitakaso-2 problem, after improvement of our random methods. 

GA model is also proposed in order to find optimal solutions for 20 instances presented by Pita-

kaso&Sethanan (2015) by minimizing number of workstations considering the machine type limit for 

each workstation. As it is mentioned, initial population of proposed GA is created randomly and im-

plementing single pass heuristic methods which are RPW, MA and MI priority based heuristic task as-

signment rules; the task assignment procedure is applied with two approach as first fit approach assign-

ing jobs to first available workstations or best fit approach by checking remaining time of all open 

workstations in order to allocate jobs to workstations. Population size is decided as 1000 number of 

individuals and generation size is determined as 1000; the fitness function is chosen based on minimi-

Machine Type Limit Cycle Time MA MA-Pitakaso MI MI-Pitakaso RPW RPW-Pitakaso

Single/One machine 1,89 30 34 30 28 28 33

Single/One machine 2 28 34 29 26 25 33

Single/One machine 2,2 27 32 27 24 25 31

Single/One machine 2,5 23 28 24 22 23 30

Single/One machine 2,95 23 29 21 20 21 28

Two machines 1,89 23 25 25 23 23 26

Two machines 2 21 25 24 21 22 25

Two machines 2,2 20 22 22 17 19 21

Two machines 2,5 16 20 19 18 17 18

Two machines 2,95 15 15 16 14 14 16

Single Pass Heuristic Methods Compared Results

PITAKASO-2
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zation of the number of workstations considering task allocation balance between workstation as pro-

posed GA. Migration ratio is implemented as 0.2, crossover probability is accepted as 0.85 and muta-

tion probability is accepted as 0.05. Selective random method is used at selection process; if the select-

ed individual perform crossover process, mate is chosen via roulette wheel method and randomly cho-

sen crossover is applied; crossover method bias to fitter uniform’s mixing ratio is determined as 0.6 and 

fixed mixing ration for uniform crossover is 0.5. Mutation probability is decided as 0.05, mutation rule 

to implement is randomly selected; bit by bit randomly mutation method has fixed threshold as 0.15. 

The stopping condition of proposed algorithm is reaching 1000 number of generations. The summary 

for the steps of proposed GA is below: 

1. Generate initial population (of size N=1000 number of individual) randomly and using single 

pass heuristic rules, evaluate the fitness of each individual 

2. Repeat until stopping condition (L = 1000 generations) is reached 

2.1. Migration: (Select the most fit individuals based on migrate ratio 0.2 from the most recent 

generation) 

2.2.  Repeat until population limit is reached. 

        2.2.1. Select individual via selective random process 

        2.2.2. Crossover: Generate a random number. If the number is less than the crossover

                         probability (0.85), apply crossover 

                   Select mate by roulette wheel; select crossover rule randomly and apply crossover 

        2.2.3. Mutation: Generate a random number. If the number is less than the mutation proba 

                                   bility (0.05), apply mutation by selection a mutation rule randomly                            

       2.2.4. Insertion: Calculate fitness and insert the individual into the current population   

3. Report the individual with the highest fitness value in the final population. 

The steps of proposed GA are illustrated at Figure 4.14 below: 
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Generate initial population random-

ly and using sing pass heuristic 

rules 

Initialization 

Evaluate the fitness value of each 

individual 

Evaluation 

Apply crossover based on 0.85 

probability to generate new off-

spring from 2 parent chromosome  

Crossover 

Migrate the 20% of current genera-

tion and apply selective random 

process 

Selection 

Calculate fitness and insert final 

individual into current population 

Insertion 

Mutate the generated offspring 

based on 0.05 mutation probability 

Mutation 

New Generation 

Stopping Condition 

is reached? 

The end of GA 

Report the individual with fittest 

fitness value  

YES 

NO 

Figure 4.16 Steps of Proposed GA 
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For SALBP-1M, 20 instances of Pitakaso’s problems are solved by proposed GA based on both task 

assignment procedures which produces same results. The best results of proposed GA are explained for 

Pitakaso-1 and Pitakaso-2 problems with 20 instances at Table 4.12. 

PITAKASO-1 

 

PITAKASO-2 

Machine Type Limit 
Cycle 

Time 
GA 

 
Machine Type Limit 

Cycle 

Time 
GA 

Single/One machine 1,23 22 

 

Single/One machine 1,89 25 

Single/One machine 1,8 18 

 

Single/One machine 2 23 

Single/One machine 2 17 

 

Single/One machine 2,2 22 

Single/One machine 2,5 17 

 

Single/One machine 2,5 19 

Single/One machine 3 17 

 

Single/One machine 2,95 16 

Two machines 1,23 17 

 

Two machines 1,89 22 

Two machines 1,8 12 

 

Two machines 2 20 

Two machines 2 11 

 

Two machines 2,2 19 

Two machines 2,5 9 

 

Two machines 2,5 16 

Two machines 3 8 

 

Two machines 2,95 13 

 

 

Proposed GA is tested for different size of population and generation in order to improve the solution 

quality; GA with 1000 generations with 1000 individuals gives better solution according to main aim of 

minimization number of workstations. Regarding to computational times of proposed GA; GA with 

500 individuals and 200 generations solves one instance around 110 seconds, GA with 500 individuals 

and 500 generations submits a solution for one instance around 400 seconds, GA with 1000 individuals 

and 500 generations gives an output for one instance in 750 seconds. The proposed GA algorithm pro-

duces the best solution with 1000 individual and 1000 generation around 1150 and 1200 seconds ac-

cording to instance to solve. 

The outperforming results of our proposed model as single pass heuristic methods and GA are com-

pared with GAMS optimal results and the presented model of Pitakaso and Sethanan (2015) for Pita-

kaso-1 and Pitakaso-2 problems. 

Table 4.12 The results of Proposed GA 
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For Pitakaso-1 problem with single machine limit, pure random, RPW1 and RPW2 with 1000 runs 

from proposed single pass heuristics and proposed GA produce the optimal results same as the results 

of GAMS model; on the other hand, single pass heuristic methods of Pitakaso&Sethanan (2015) only 

find optimal solution for cycle time 1.23 and 1.8 seconds and DE and DE-C of Pitakaso&Sethanan 

(2015) reach optimal results for only cycle time 1.8 and 2.0 seconds. Proposed GA, DE and DE- C 

submits optimal results for every cycle time at Pitakaso-1 problem with two machines limit. Further-

more, pure random, RPW1, RPW2, RPW3, RPW4 with 1000 times running from proposed single pass 

heuristic methods submit optimal results except at cycle time 1.23seconds. 

 

 

Machine Type

Limit Cycle Time

Proposed Best

Single Pass Heu.

Proposed Best Single 

Pass Heu. Pitakaso Proposed GA

DE_ 

Pitakaso

DE_C 

Pitakaso

GAMS 

Optimal

Single/One machine 1,23 22 22 22 21* 20* 22

Single/One machine 1,8 18 18 18 18 18 18

Single/One machine 2 17 18 17 17 17 17

Single/One machine 2,5 17 18 17 16* 16* 17

Single/One machine 3 17 18 17 16* 16* 17

Two Machines 1,23 18 18 17 17 17 17

Two Machines 1,8 12 13 12 12 12 12

Two Machines 2 11 12 11 11 11 11

Two Machines 2,5 9 10 9 9 9 9

Two Machines 3 8 9 8 8 8 8

PITAKASO-1

Table 4.13 The results of Pitakaso-1 problem 

* Numbers marked with a star indicate that there is a discrepancy between the number reported by 

Pitakaso and Sethanan (2015) and the optimal result. 
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Table 4.14. The results of Pitakaso-2 problem 

* Numbers marked with a star indicate that there is a discrepancy between the number reported by Pitakaso and Sethanan 

(2015) and the optimal result. 

 

For Pitakaso-2 problem with single machine limit, proposed GA outperforms at used each cycle time 

and produces same solutions same as optimal solution of GAMS model besides for the problem with 

single machine and 2,5 cycle time and for this problem,Pitakaso and Sethanan (2015) find the optimum 

results with 18 workstation; unfortunately, proposed GA reaches 19 workstaion which is 1 more work-

station more then optimum results. Some of the proposed single pass heuristic methods, which are pure 

random, RPW1, RPW2, RPW3, RPW4 with 1000 times runs, give the optimal result as 25 workstations 

for cycle time 1.89 seconds. Pitakaso&Sethanan (2015)’s DE and DE-C submits optimal results as 18 

and 16 workstations for cycle time 2.5 and 2.95 at Pitakaso-2 with single machine limit. Proposed GA, 

DE and DE-C find optimal solutions for Pitakaso-2 problem with two machines limit; on the other 

hand, pure random, RPW1, RPW2, RPW3, RPW4 with 1000 times runs from applied single pass heuris-

tic methods give optimal results as 22 workstations, 19 workstations and 16 workstations for cycle time 

1.89, 2.2 and 2.5 seconds. 

 

 

 

 

Machine Type

 Limit Cycle Time

Proposed Best

Single Pass Heu.

Proposed Best Single

Pass Heu. Pitakaso Proposed GA DE_Pitakaso

DE_C

Pitakaso

GAMS

Optimal

Single/One machine 1,89 25 28 25 23* 23* 25

Single/One machine 2 24 26 23 22* 22* 23

Single/One machine 2,2 23 24 22 21* 21* 22

Single/One machine 2,5 19 22 19 18 18 18

Single/One machine 2,95 18 20 16 16 16 16

Two Machines 1,89 22 23 22 22 22 22

Two Machines 2 21 21 20 20 20 20

Two Machines 2,2 19 17* 19 19 19 19

Two Machines 2,5 16 18 16 16 16 16

Two Machines 2,95 14 14 13 13 13 13

PITAKASO- 2
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5. Conclusion 

ALB is an extensively studied area. SALBP-1 is one of the best-known ALBPs, which aims to mini-

mize the number of workstation at the line. We considered SALBP-1M in which there is a machine 

limit type for each workstation while minimizing the amount of workstations and balancing workload 

between workstations. 

In this study, different single pass heuristic optimization methods and a GA were proposed to optimize 

SALBP-1M. Random, MA, MI, RPW and randomized RPW, AllSuc and ImmSucc were used as heu-

ristic priority rules in order to assign jobs to workstations. This is done based on created task assign-

ment procedure which can be based on first fit rule and best fit rule approach. The proposed GA was 

implemented with various genetic operators to extend the search space considering improvements at 

diversification and to avoid to be trapped in local minima. 

The proposed optimization methods were applied to solve two problems which are introduced by Pita-

kaso and Sethanan (2015). These problems were previously optimized by single pass heuristic methods 

and DE-C. Pitakaso-1 includes 36 jobs and 6 different kinds of machines and Pitakaso-2 contains 52 

jobs and 5 machine types; these two problems are solved with two distinct machine type limits. Each 

problem is examined with five different cycle times for every machine type limit. 

Optimal results of both problems were found by a GAMS model in order to check if the proposed algo-

rithms are able to reach the optimal solutions. The results of the proposed single pass heuristic methods 

and GA were compared with results of heuristic methods, DE and DE-C of Pitakaso and Sethanan 

(2015). For the single pass heuristics methods, the proposed heuristic rules produced efficient output 

and found the optimal results for one problem type with. In addition, the proposed GA gave optimal 

results for both problems except Pitakaso-2 problem with one machine limit per workstation and 2,5 

cycle time while the modified evolutionary algorithm was able to reach optimal results only for prob-

lems with two machine type limits. 

Different priority based heuristic rules could be implemented to generate initial populations. Future 

research may be developing metaheuristic methods for SALBP-1M to optimize Pitakaso-1 and Pita-

kaso-2 problems in order to compare the results with this stud
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