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Introduction 

The fast pace of technological development has enabled the creation of software systems in 

which data is exchanged by global computer networks faster, safer and at a reduced cost. At 

the same time, globalisation and the shifting structure of modern supply chains have 

increased the need for intelligent autonomous agents in a multi-issue bargaining process to 

adopt and expand traditional trading and production operations with the goal of becoming 

more decentralized and, thus, robust to environmental changes. The objective of such 

intelligent agent settings is a fully automated system working independently of human 

interaction or assisting decision-making processes. The idea to involve autonomous agents 

in day-to-day applications in the supply chain has been a focus of research since two 

decades. In practice, automated negotiation processes include, for instance, automated 

storage and retrieval systems, industrial robots (e.g. Amazon Kiva robotic) and Google's self-

driving cars. The different objectives, constraints and capabilities of decentralized agents 

make the negotiation processes, however, a complex problem to be solved, with currently 

many limitations on their implementation in real-world settings. Thus, most of the modern 

automation processes still involve human intervention in decision-making and control.  

This thesis focuses on decentralized automated negotiation solutions implemented as a 

multi-agent system (MAS), motivated by the developments of the so-called Industry 4.0 and 

the internet-of-things. The paper explores research literature and real-life projects in which 

autonomous agents are implemented largely de-centrally to facilitate dynamic and complex 

workflows. The aim of the paper is to explore current approaches to automated MAS with a 

focus on logistics, their functionality and efficiency, as well as underlying technological 

requirements.  

The paper is organized as follows: the first chapter serves as an introduction to MAS in 

comparison to single-agent and centralized systems to an extend which facilitates the 

understanding of the chapters thereafter. In the second section, MA-frameworks and 

autonomous agents are further explored in their functionalities, capabilities and technical 

nature. The third and fourth chapter introduce different negotiation protocols and optimization 

techniques used in theoretical MA-frameworks, followed by a literature exploration to 

automated negotiation systems in logistics and a brief introduction to real-life MA-projects. 

The last section of the paper provides a computational implementation of a multi-agent flow 

shop example, giving a solution comparison to a centralized approach.    
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Einführung 

Die rasanten Entwicklungen der technischen Möglichkeiten erweitern traditionelle 

Produktions- und Logistik-Bereiche immer stärker um den Einsatz komplexer Systeme, in 

denen Daten schneller, sicherer und kosteneffizienter über Computersysteme fließen. 

Gleichzeitig zwingen Globalisierung und die sich stetig verändernde Struktur der 

Beschaffungskette den Einsatz von intelligenten Softwareagenten, die untereinander 

teilweise oder gänzlich autonom verhandeln und dadurch die traditionellen Arbeitsabläufe 

erweitern und automatisieren. Ihr Einsatz kann dabei dezentral ohne Menschenzutun 

gesteuert werden oder zentralistisch als vorletzte Instanz der Entscheidungsprozesse 

erfolgen. Die Idee, autonome Softwareagenten in den täglichen Prozessen einer 

Vertriebskette einzusetzen, ist Fokus von zwei Jahrzehnten an Forschung. In der Praxis sind 

autonome Verhandlungsagenten vor allem im Bereich der automatisierten Lagerung, der 

Industrieroboter (z.B. Kiva Roboter von Amazon) und bei selbst-gesteuerten Alltagsprojekten 

(z.B. Google's Autos ohne Fahrer) eingesetzt. Die wohl größten Herausforderungen im 

Umgang mit automatisierten Verhandlungsagenten sind die unterschiedlichen Zielfunktionen, 

Beschränkungen und Kapazitäten, die den Einsatz solcher Agenten sehr komplex gestalten. 

Immer noch werden autonome Agenten aus diesem Grund- ihr Potential nicht ausschöpfend- 

überwiegend in Entscheidungsprozessen als Ergänzung, aber nicht als Entscheidungsträger 

mit einbezogen. 

Diese Arbeit konzentriert sich auf dezentral-automatisierte Verhandlungsansätze, umgesetzt 

als Multi-Agenten Systeme (MAS), motiviert von den Entwicklungen der sog. Industrie 4.0 

und der Internet-der-Dinge. Die Arbeit analysiert die Literatur und praktische Einsätze von 

autonomen Agenten, die überwiegend dezentral agieren um komplexe Arbeitsprozesse zu 

erleichtern. Ziel der Arbeit ist, mit einem Fokus auf logistische Systeme gegenwärtige 

Methoden zu MAS, deren Funktionalität und Effektivität sowie technische Einschränkungen 

und Voraussetzungen zu untersuchen. 

Die Arbeit ist wie folgt unterteilt: der erste Abschnitt dient als Einführung in die Terminologie 

von MAS und Single-Agenten Systemen, gefolgt von einer vertiefenden Einsicht in MA-

Strukturen und der Natur von autonomen Agenten. In den darauffolgenden Kapiteln sind 

unterschiedliche Verhandlungsprotokolle und Optimierungstechniken von MAS vorgestellt. 

Die vorletzten Abschnitte stellen die in der Literatur erwähnten MA-Ansätze in der Logistik 

vor, gefolgt von einer kurzen Übersicht über praktische Agenten-Erfahrungsprojekte. Im 

letzten Abschnitt der Arbeit ist ein dezentrales Multi-Agenten Flow Shop Problem vorgestellt 

und anschließend mit einem zentralen Beispiel verglichen.  
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1 Global Logistics under the Internet-of-Things 

Today's digital world allows for more flexibility in manufacturing, improved productivity, faster 

quality assessments, as well as a stronger participation and influence of customers. The 

broadly integrated wireless interaction between people and the internet has created services 

and communication networks that were unthinkable two decades ago. People get real-time 

access to events happening thousand kilometres away, they communicate faster and 

through a broader distance, they can transfer information and money within seconds to 

locations far away, and they can communicate with pictures and videos. Most importantly, 

people have obtained global access to any kind of services and information, gaining 

significantly more purchasing power, a wider choice set, and more complex terms and 

conditions for building a long-term business relationship and brand loyalty. The 

developments in computer software and hardware, coupled with globalisation, has 

additionally made it increasingly attractive for companies to use intelligent non-human 

software agents, each being equipped with different (possibly conflicting) goals to assist in 

their operations and decision-making processes.  

Such significant influences have also shaped the nature of modern logistics. For example, 

production firms increasingly outsource the transportation orders under a set of pre-

negotiated terms to other companies (intermediary logistic companies) that negotiate the 

distribution of these orders with other smaller companies that have the actual transportation 

capacity, forming so-called multi-party logistics. The Internet-of-Things has additionally 

increased the complexity and dynamics of modern logistics and SCM (supply chain 

management) through relocating the demand and supply market into the internet (e.g. 

Amazon, Ebay). TechTarget defines the Internet-of-Things (IoT) as a system of interrelated 

computing devices, mechanical and digital machines, objects, animals or people that are 

provided with unique identifiers and the ability to transfer data over a network wirelessly1. 

The data transfer thereby takes place through the use of four distinct area networks: BAN 

(body area network like a smart glass or piece of clothing with integrated sensors, so-called 

wearables), LAN (local area network like smart meters at home), WAN (wide area network 

like connected cars and Telematics) and VWAN (very wide area network like e-services that 

are accessible from everywhere with no physical locations)2. The increasing digitalization and 

interconnection of products, value chains and processes through the use of sensors, wireless 

networks, intelligent robots and machines as well as the increased computing power and the 

development of 'big data' analytics in the industrial sector has led to the so-called fourth 

industrial revolution, also known as Industry 4.0 (synonymous terms are Smart factories, or 

                                                           
1 IoT Agenda (2016): online  
2 council(2016): online 

http://whatis.techtarget.com/definition/unique-identifier-UID
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Advanced manufacturing). Industry 4.0 uses advancements from five main areas: information 

and communication technology (ICT) to digitise and integrate information at all process 

stages; cyber-physical systems that use ICTs to monitor and control processes through the 

use of sensors, robots or additive manufacturing devices (e.g. 3D printing); network 

communication that links machines, products, systems and people across the supply chain 

through wireless and internet technologies; simulation that models and virtualises processes 

in their development stage; big data analysis and cloud computing that evaluates inputs and 

outputs virtually; and augmented reality or other intelligent tools for greater design and 

production support.3 

Creating intelligent and largely independent interaction processes between different entities 

is a study area in Artificial Intelligence (AI). Following the technological advancements and 

globalization, Distributed Artificial Intelligence (DAI) has evolved as a subfield of AI about 

three decades ago. DAI deals with learning, planning, communication and decision-making 

processes occurring in the interaction between multiple independent entities (both human 

and artificial entities) in a domain. Traditionally, DAI was divided into two sub-disciplines: 

Distribution Problem Solving (DPS) that focuses on the information processing between 

several branches working together towards a common goal (e.g. task decomposition), and 

Multi-Agent System (MAS) that deals with communication processes between several 

independent entities, so-called agents (e.g. subcontracting the decomposed tasks to different 

problem-solving agents).4 Many definitions of agents have been proposed in the fields of 

MAS, the most common and suitable definition is derived from Wooldridge (1997): an agent 

is defined as a computer system that is capable of autonomous [independent] actions in the 

environment [domain] in which it is situated in order to meet its design objectives5.  

While DAI divides a particular problem into smaller problems of common knowledge, MAS 

aims for establishing a negotiation system among artificial agents in which they cooperate or 

compete following their individual knowledge and action set. The literature suggests that MA-

systems deal with both the construction of complex systems of multiple independent 

competing or cooperating entities and the mechanisms for coordinating the individual agents' 

behaviour and, thus, embedding important aspects of DPS into MAS in the search for optimal 

negotiation processing between multiple agents. This converged definition of MAS is used in 

the further context of this paper. 

Automated systems in logistics, also referred to as automated logistics or logistics 

automation, are strongly centrally coordinated intelligent interactions between independent 

                                                           
3 Davies R. (2015): pp.1-3 
4 Stone P. and Veloso M. (2000): pp.1-2 
5 Wooldridge M. (1997): pp.28-29; Kraus S. (2001): p.152 
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entities, either via a human interface or via a central computer system that makes all 

decisions and assigns the individual tasks and resources to other entities. Automated 

logistics describes centralized automated workflow solutions in which a predefined wireless 

negotiation process between several objects is used to improve the efficiency of logistic 

operations. Logistics automation is used in warehousing and storage through AS/RS, in 

production planning and quality management through automated conveyors that are adjusted 

to check for deviations in product type, weight, size or other quality features, as well as in 

product sorting through barcode or radio-frequency identification tag scanners to check for 

product type and destination (e.g. mail sorting line).  In the last twenty years, the evolution of 

retail logistics has largely evolved into a so-called e-commerce logistics involving internet-

only retailers and increasingly automated distribution networks including 24/7 operating 

fulfilment centres in which the items are stocked and picked at item level, sorting centres in 

which orders are being sorted automatically by post code, and integrated technology where 

shopping carts connect via API or other connection to a transportation management system.6 

Such e-commerce logistics allow, for instance, a large transparency in the supply chain, high 

cost-reduction due to a faster human-independent processing (less human-related errors) 

and an online synchronous overview of the current delivery status. While automated logistics 

can be traditionally considered a single-agent system, that is a centralized system with the 

full decision-control over multiple machines and resources, the technological development 

has made it increasingly possible to employ multi-agent platforms in which several 

autonomous software agents coordinate themselves to perform certain processes. 

Figure 1 illustrates a general single-agent framework according to P. Stone and M. Veloso 

(2000) on two examples. In a single-agent system, the agent models itself (i.e. its own 

objectives and constraints), the environment in which it operates and their interaction 

processes (left illustration). The central agent interacts with its environment through sensors 

(getting information from the environment) and effectors (communicating actions and 

decisions to the environment). In case other agents are part of this system, they are 

considered part of the environment but, differently to the central agent, they do not have their 

own goals, actions and knowledge. In the example of a predator/prey-game (right 

illustration), the agent controls all predators (black circles) and the (grey) prey is part of the 

environment and not under the control of the agent. The central agent aims to coordinate the 

predators in a way that the prey can be caught.7 

                                                           
6 Cerasis (2014): online 
7 Stone P. and Veloso M. (2000): pp.6-7 
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Figure 1: a general single-agent framework as proposed by Stone P. and Veloso M. (2000) given two 

illustrative examples 

  

 

Differently to a single-agent system, a multi-agent system consists of several agents, 

whereby each models its own objectives, constraints, the potential interaction with other 

agents and their environment (see Figure 2). The environment is established by the 

individual agents, which themselves can differ in objectives and constraints, and the 

environment can change frequently depending on the agents’ actions and decisions. Thus, 

multi-agent systems typically have dynamic environments. As Figure 2 illustrates, each agent 

is both part of the environment and, thus, needs to obey the rules that govern the system, 

and a separate entity that influences the environment's dynamics. Given the example of a 

predator/prey game, the predators would each be modelled as an individual agent with own 

objectives, constraints and an action set. The agents may have limited information about the 

other agents and they need to coordinate each other to haunt the prey. In a competitive 

scenario, each agent would try to maximize its own utility in the presence of environmental 

constraints by haunting the prey alone outside any cooperation approaches.8  

In a homogeneous environment, agents can have an identical structure (sensors, effectors, 

domain knowledge, and decision functions) but communicate differently with the 

environment, because they are situated differently and make their own decisions. This is a 

necessary condition for MAS and the main difference to a single-agent system: each agent 

acts on its own behalf and through sensor inputs and effectors that differ from other agents, 

or else they act identically in case the agents' objectives, constraints, actions and domain 

knowledge are all identical.9 

                                                           
8 Stone P. and Veloso M. (2000): pp.8-13 
9 Stone P. and Veloso M. (2000): p.14 
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Figure 2: a general multi-agent framework as proposed by Stone P. and Veloso M. (2000) given two 

illustrative examples 

  

 

Kumar S. (2012) describes MAS with the following characteristics10: 

 there is an arbitrary number of agents in the system which are capable of interacting 

with each other by exchanging messages through some computer network 

infrastructure 

 the individual agents are acting autonomously, mostly on behalf of users, and can 

have very different goals and motivations. Therefore, they make independent 

decisions and aim to maximize the utilities for their owners 

 each agent has incomplete information or capabilities for solving the problem. Thus, 

they must cooperate with other agents to fulfil their own objectives 

 there is no system global control 

 data is decentralized and accessible by anyone in the system 

There are numerous advantages in using MAS: multiple agents could work parallel in case a 

domain is easily broken into several independent components that can be handled by 

separate agents. The use of MAS can be also more robust against failure than having a 

single entity- processor or agent who controls everything. Another advantage of MAS is their 

scalability. Some authors claim that it is easier to add new agents to a MAS than new 

capabilities to a monolithic system, making MAS attractive for systems with dynamic 

parameters. Additionally, the division of tasks can facilitate programming and computation 

time, and it is particularly practical to use MAS simulation for problems in social and life 

sciences. Another benefit of MAS is that geographically distributed operations can be better 

served by multiple agents acting locally than with the use of a central agent. Finally, MAS 

                                                           
10 Kumar S. (2012): p.11; Radu S. (2013): pp.48-49 
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can have a higher cost efficiency than single-agents, because capabilities bundled together 

can make a system more expensive to engineer.11  

To obtain a desirable MAS-technology, Kumar S. (2012) proposed the following criteria to be 

met12: 

a) Simultaneous computation and communication must be kept minimal (computational 

efficiency). While the number of agents in a system can be arbitrary, each agent can only 

communicate with a small subset of other agents in the system. Thereby, communication 

must not need to be a one-to-one way between agents, but each agent can simultaneously 

negotiate with multiple other agents (parallel negotiation). A system that involves less or 

faster communication is preferred in a real-world setting as it is less time consuming. 

b) The system must be stable. Stability, on the one hand, refers to the system being able to 

recover fast from component failures when it is able to dynamically find agents with 

redundant capabilities (reliability). On the other hand, a mechanism is stable if the agents 

involved do not have an incentive to deviate from their agreement (stability). 

c) System reliability to some extend already implies the necessity for MAS to be responsive, 

hence, reacting locally to anomalies (responsiveness). 

d) The system must be flexible, in terms of both the number and capabilities of agents 

working on a problem (extensibility) and of agents with different abilities being able to 

adaptively organize to solve the problem (flexibility). 

e) The system must be robust, both in terms of tolerating uncertainty (robustness) and in 

terms of remaining unaffected by a changing number of agents in the system (scalability). 

f) The agents involved should be reusable in different agent teams (reuse). 

  

                                                           
11 Stone P. and Veloso M. (2000): p.4 
12 Kumar S. (2012): p.11 adopted from Rosenschein and Zlotkin (1994) 



Seite 9 von 96 
 

2 Basic Principles of MAS 

Multi-agent systems are developed around the following main set of components: 

1. agents: their functionalities and internal state 

2. environment: the system and its dynamics in which the agents operate 

3. interaction and negotiation setting: the communication style and message semantics the 

agents use in pursuing individual and joint objectives - this topic is more widely discussed in 

the next chapter 

2.1.  The Nature of Agents 

An agent is characterized by two important criteria: (i) it is a discrete entity with its own goals 

(design objectives), constraints (resources) and rules of behaviour, and (ii) it is autonomous 

and, therefore, acts outside the control of a central authority, whereby it is capable of 

adapting its behaviour to its environment and the domain rules. 

In particular, agents are limited to two main behaviours: (1) they autonomously act on their 

owner's behalf (pursuing predefined objectives), and (2) they interact with other agents by 

exchanging data or by coordination, cooperation, negotiation, etc. to achieve the objective 

under a set of constraints and domain knowledge 13 . Figure 3 represents two agents 

interacting with each other and their environment. In order to fulfil an individual objective, 

agents must be able to assess the different states of the environment by processing their 

interaction and envisioning possible outcomes from potential decisions.14 

In order to fulfil tasks autonomously, agents must meet following criteria15: 

- they must be clearly identifiable from other objects in their environment 

- they follow one or several individual objective functions (goals), usually defined in advance 

and not available to their environment (private information) 

- they operate under well-defined, mostly private boundaries (constraints) and interfaces, and 

they possess their own set of resources 

- they rely on inputs through sensors and act on the environment through effectors which 

results in a direct or indirect communication with other agents 

- they have control over their internal state and, thus, over their own behaviour 

- they are reactive to changes in their environment; usually those changes are being 

addressed within a feasible set of possible actions 

- they act proactively towards fulfilling their goals 

                                                           
13 Kumar S. (2012): pp.9-10 
14 Uhrmacher A. and Weyns D. (2009): p.15 
15 Uhrmacher A. and Weyns D. (2009): pp.14-15; Jennings N. R. (2000b): p.280 
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Usually, MAS consists of heterogeneous agent types that are designed to implement some 

functionality of a process, so-called functional agents. Broadly, functional agents can be 

further divided into two groups: information agents, who provide system information to other 

group agents, and agents who are related to a certain good or role of the system. For 

instance, seller agents are functional agents aiming to sell a negotiation object, while buyer 

agents are designed with the goal to buy a particular good, task or information.16 

Figure 3: a multi-agent world according to Uhrmacher A. and Weyns D. (2009) 

 

 

The internal organization of an agent is generally referred to as architecture. Ferber et al. 

distinguish between two main approaches for analysing agent architectures, which is (1) the 

stimuli-response approach and (2) the cognitivist approach that relies on the explicit 

representation of the environment by the agents involved. The approaches can be also 

combined to a hybrid approach. In the stimuli-response approach, the agent lacks an explicit 

representation of its environment and the agents therein and, thus, behaves only in terms of 

predefined operations in reaction to what it perceives. For instance, agents could react along 

predefined priorities, or they focus on the needs of the negotiation partner in a cooperative 

behaviour, or they act given a set of tasks based on neural nets. In a cognitive architecture, 

agents are supposed to be rational operators who reason from knowledge explicitly 

representing their environment and the agents therein (its object dynamics, states and 

properties). Therefore, an agent acts upon its beliefs about the world's states and its 

knowledge to satisfy a goal. The Belief-Desire-Intention architecture of this type, for instance, 

assumes that its agents possess a library of plans, each aiming to achieve a particular 

objective. When an agent selects a specific goal to pursue (e.g. given a certain message that 

the agent decides to act upon), it follows the strictly predefined environmental actions and 

communications by using a particular plan or set of plans compatible with the agent's beliefs. 

The beliefs, on the other hand, are formed by external perceptions and messages (incl. 

                                                           
16 Chen Y. et al. (1999): p.2 
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learning effects). If no plan can be found, a problem can be decomposed into sub-goals that 

the agent aims to satisfy.17  

In the forefront of modelling an agent's architecture, the behaviour of agents can be largely 

summarized into the three steps: (1) perception of inputs, (2) deliberation of intentions, and 

(3) action to produce outputs. Expressed mathematically, we can thus model an agent's 

behaviour by the function 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑎: Σ ↦ 𝐴𝑎 representing the set of possible actions that 

can be taken by agent 𝑎 based on the following steps, as defined by Uhrmacher A. and 

Weyns D.:18 

(1) 𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑎: Σ ↦ 𝑃𝑎- the agent obtains a perception 𝑝𝑎𝜖𝑃𝑎 given an input from a current 

state 𝜎𝜖Σ.  

(2) 𝐷𝑒𝑙𝑖𝑏𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎: Pa × 𝑆𝑎 ↦ 𝑆𝑎- this function calculates a new internal state 𝑠𝑎 of the agent 𝑎 

based on the previous perception and the current internal state. The result is used to update 

the agent's action plan.  

(3) 𝐴𝑐𝑡𝑖𝑜𝑛𝑎: Pa × 𝑆𝑎 ↦ 𝐴𝑎- this function computes an agent's output (decision-making), based 

on its new internal state and current perception from its environment. 

2.2.  Environment 

The environment defines the conditions and infrastructure in which the agents can exist 

together. In a typical setting, an environment is a system with the following differentiated 

properties (originally selected from Russell and Norvig, 2003): 
19 

- an environment is accessible if agents can perceive all the information from it, else it is 

inaccessible 

- an environment is deterministic if its next state entirely depends on the agents' actions and 

the current state, else it's nondeterministic 

- similarly, an environment is static if its state is influenced by the agents only and not, like in 

a dynamic setting, endogenously  

- an environment is discrete if it has a limited number of possible inputs and outputs 

(actions). In a dynamic environment, the range of perceptions and actions typically depend 

on the individual agents and the nature of the reaction and not on the environment (agent-

centred) 

                                                           
17 Ferber J. et al. (2001): pp.13-14; Uhrmacher A. and Weyns D. (2009): pp.14-16 
18 Uhrmacher A. and Weyns D. (2009): pp.16-17 
19 Uhrmacher A. and Weyns D. (2009): pp.18-20 
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2.3.  Interaction and Negotiation Setting 

Agent interaction can take place in form of a cooperation (multiple agents (e.g. in a team) 

trying to maximize a global utility), an operation request (handing over tasks to an agent with 

more adequate or higher capacity) or in form of an information exchange to follow a self-

interest (each agent trying to maximize its local utility) 20 . All those interactions involve 

negotiation - the process by which the involved autonomous agents are being convinced to 

a mutually acceptable agreement on a task, or they disagree and depart from the negotiation 

process21. 

There are mainly the following three approaches to automated negotiation, which are 

discussed in greater detail in the next chapter:22 

1) Game-Theoretic approach: refers to negotiation among self-interested, strategically 

reasoning agents that aim to maximize their own utilities by taking into account the decisions 

of the other agents in the system. The basic assumption for agents following a game-

theoretic negotiation is that all agents act to optimize their individual welfare.  

Subchapters: game-theoretic bargaining, coalitional games, auctions 

2) Heuristic- based negotiation: is a cooperative negotiation approach by which the 

negotiation space is searched in a non-exhaustive manner in order to produce good, rather 

than optimal solutions (proposals), to save computational time and, thus, costs associated 

with strategic decision-making.  

Subchapters: concession-based negotiation, service-oriented negotiation 

3) Argumentation-based negotiation: is an approach by which additional information are 

exchanged among the agents involved in the negotiation setting. Such additional information 

can include, for instance, preferences of the agent who is proposing a counteroffer, or a 

critique of a proposal following a rejection.  

Subchapters: argumentation-based negotiation 

2.3.2. Agent Language 

Agents interact using a certain agent language that follows a predefined negotiation protocol, 

i.e. logics and rules of interaction. Each agent has some knowledge about the system 

                                                           
20 Castelfranchi C. (1998): pp.158ff 
21 Jennings N. R. et al. (2001): p.201 
22 Kumar S. (2012): pp.23-26; Jennings N. R. et al. (2001): pp.11-24 
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ontology, that is the nature of the system and the interaction primitives employed by the 

system that is has to adhere to.  

The vision of automated trading settings, in which software agents bargain on behalf of an 

end-user, largely depends on the quality of the agent communication languages and 

protocols used. Areas of foci are the design of interaction protocols among agents, the 

dynamic management of agents among themselves, and the [semantic] style and 

transportation of messages among the agents involved. Several initiatives with the goal of 

developing such MA protocols have emerged about two decades ago, of which the most 

widely known is the Foundation for Intelligent Physical Agents (FIPA), a committee founded 

in 1996 and consisting of different companies and colleges worldwide that emphasize in 

multi-agent technologies. The FIPA Community continuously works on developing a range of 

agent-related standards and performatives to support MAS-negotiation, of which the most 

widely used negotiation language are the Agent Communication Language (ACL) and the 

Knowledge Query and Manipulation Language (KQML) 23 . Agent languages like KQML, 

however, only give frameworks for negotiation and have to be adapted to the type of 

negotiation used.  

In most of the MAS literature, proposal-based communication primitives have been 

observed, which is popularly illustrated as a so-called contract net interaction protocol (CNP; 

see Figure 4 as example) introduced by R.G. Smith (1980) and later adopted by FIPA as an 

alternative FIPA agent communication language (FIPA ACL). Such a negotiation starts with 

one agent (initiator agent) making the first offer (typically a call-for-proposal message; CFP) 

to another agent or to a group of recipient agents who can accept (i.e. send a propose 

message or accept a proposal), reject (i.e. refuse to participate in the negotiation process or 

reject a proposal) or make a counter-offer on a previous offer (in case the first offer is a 

proposal), which the receiving agent can react to in the same manner until a negotiation is 

closed (e.g. agreement or deadline is reached). The propose message send by the 

participating agents (e.g. bid) is, thereby, computed using the agent's local algorithm which is 

private and, thus, unknown to the other agents.24  

There have been numerous extensions to the basic CNP that take into consideration 

collaborative and competitive environments with multiple parallel negotiations 25  or more 

flexible contracting in competitive environments26.  

  

                                                           
23 Wooldridge M. and Parsons S. (2000): p.1; Chen Y. et al. (1999): pp.2-3 
24 Kalina P. (2014): pp.34-35; Carabelea C. (2002): pp.3-4 
25 Aknine S. et al. (2004): p.7 
26 Vokrinek J. et al. (2007): p.660 
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3 Components of a Negotiation Setting 

Negotiation is one of the main research areas in MAS, largely because agents operate in 

environments with scarce resources which share they have to optimally allocate among the 

agent population. Negotiation is a communication process in which a group of agents interact 

to come to a mutually acceptable agreement about a matter of possibly conflicting interests. 

The negotiation process usually starts with contradictory demands from which the parties 

involved move towards an agreement by making concessions or searching alternative 

proposals27. In a mathematical framework, negotiation can be seen as a distributed search 

through the space of potential agreements28. The outcome of the agreement is typically 

represented in terms of the allocation of resources such as commodities, services (i.e. 

outsourcing tasks), time or money. Negotiation happens either in a one-to-many setting (e.g. 

in an auction where auctioneer and bidders reach an agreement typically on the price of an 

item on sale) or in a one-to-one setting (e.g. in task allocation where a task allocation agent 

searches for the most suitable task agent to perform a task on the client’s behalf) and it can 

be used to foster coordination (e.g. outsourcing) and cooperation (coalition) or to resolve 

conflicts in a multi-agent setting (e.g. conflicts over the usage of joint resources or tasks). In 

multi-agent systems, we assume that the agents are self-interested but are able to cooperate 

if they get a benefit from the cooperation. While auctions typically adopt a game-theoretic 

approach with possibly some cooperation intention (coalition games), one-to-one negotiation 

is often heuristic-based due to limited information about the opponent’s preferences.29 

This chapter details the different components of a negotiation setting, including the object 

under negotiation, the strategy used that guides the behaviour of the individual agents and 

the negotiation protocol as the public set of rules all agents must adhere to. As the last 

component is the most important part in a negotiation setting, this chapter focuses on the 

different literature-based negotiation protocols applicable in MAS. 

When designing a multi-agent framework, several important components of the automated 

negotiation setting, as proposed by Kumar S., should be predefined:30 

i. Negotiation objects: the range of issues over which an agreement must be reached. 

A negotiation object may contain a single issue (e.g. price) or multiple issues (e.g. 

price & quality & terms and conditions, etc.), whereby we assume a preference 

independence between the individual attributes in a multi-issue setting (e.g. price is 

independent of quality). In some cases, the content of the agreement is fixed and can 

                                                           
27 Faratin P. et al. (1998): p.159 
28 Jennings N. R. et al. (2001): p.6 
29 Sadri F. et al. (2002): p. 405 
30 Kumar S. (2012): pp.12-13 
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be only accepted or rejected by the participants. In other scenarios, the value of the 

issues in the negotiation object can change following a counter-proposal. Participants 

may also alter the structure of the negotiation object by adding or removing issues 

(e.g. offering additional benefits to clinch the deal). 

ii. Negotiation protocol: the set of rules that govern the interaction such as the types of 

participants, the negotiation states (when to bid, when to propose), the events that 

alter the negotiation states and the participants' valid actions in a particular state31. 

iii. Negotiation strategy: is derived from the choice of the negotiation setting and 

protocol and defines which message can be send by whom, to whom, at what stage, 

and how the tactics’ weights should change over the course of the negotiation 

rounds. The negotiation strategy, thus, specifies the sequence of actions (offers, 

responses) that an agent plans to make during the negotiation process. While a 

protocol dictates the rules of negotiation all the involved parties must abide by and is, 

thus, necessarily public and open, a strategy is a private guideline within a single 

agent or multiple cooperative agents to achieve the best outcome (e.g. utility 

maximization)32. 

iv. Reasoning model or decision-making strategies: usually includes a description of 

the potential agents to be contacted, the communication style to be implemented 

(parallel with all agents or sequential), the initial proposals at which to start the 

negotiation process, the development of counter-proposals, and the decision space 

(when to accept, reject or opt out from the negotiation). 

v. Domain knowledge: In an open environment, agents frequently deal with new 

negotiation partners, while in a closed setting, the number of agents involved is 

closed or only expandable if a new agent introduces itself to the other agents. 

vi. Social context and inter-relationships: if negotiation takes place between agents in 

the same organisation, the agents usually follow a cooperative negotiation style. 

Bargaining involving the vertical line of the supply chain can be strongly competitive 

instead, involving utility maximization objectives of all agents involved.  

  

                                                           
31 Jennings N. et al. (2001): pp.13-14 
32 Bartolini C. et al. (2001): online 
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3.1    Negotiation object: issues, tactics and offers 

A negotiation object is an issue (or attribute) bundle that agents negotiate about. Single-issue 

negotiation usually involves negotiating about price. Seller agents, for instance, want to sell 

an item at the highest price achievable, while buyer agents negotiate for the lowest price 

achievable. In real-world applications, negotiations are based on multi-attribute or multi-issue 

objects with attributes like price, quality, quantity, etc. In most approaches, multi-attribute 

offers are formed as a combination of specific tactics. A tactic can be defined as a function 

representing a single component of the negotiation object (issue, attribute)33. The result of a 

negotiation round is referred to as an offer, which is a linear combination of differently 

weighted tactics whereby the weights represent the relative importance of a respective 

attribute. Likewise, counter-offers represent differently weighted tactics with the goal to 

increase the negotiation partners' utility in order to reach an agreement.34 

3.2    Negotiation Strategy: From Bargaining to IBN 

A negotiation strategy reflects an agent's behaviour, that is a sequence of actions consisting 

of offers and counter-offers (responses) and it is guided by the rules of the underlying 

protocol. The goal of a strategy is to win a preferred share of the negotiation object. 

Traditionally, a negotiation strategy was position-based (bargaining), also referred to as 

distributive or competitive bargaining, in which the parties aimed to maximize their own 

expected utility regardless of their negotiation partner's interests, economically also referred 

to as a "zero-sum game". In such a negotiation, the utility cake is fixed and divided 

proportional to their share won among the parties, whereby a better deal for one agent 

means a worse deal for another. In position-based bargaining, an agent aims to win the 

negotiation by imposing a preferred solution on the opposing negotiators through the use of, 

for instance, time pressure (e.g. imposing a deadline or increasing negotiation costs), threats 

(e.g. threatening to change partners), (future) promises or by appearing firm (firm agents 

typically start with a very high demand and concede only slowly).35 

Contrary to the monotonic bargaining, in an interest-based negotiation (IBN), also referred 

to as integrative or cooperative bargaining or problem solving, the negotiators' interests are 

more important than the position to be won. Hence, the agents search the space of 

negotiation objects (rather than the space of deals for a particular object) in order to reach a 

"win-win" outcome. Problem solving behaviour could include arrangements that expand the 

"pie" (non-zero sum game), or the agreement comes with a nonspecific compensation (i.e. 

                                                           
33 Lopes F. et al. (2009): p.20 
34 Faratin P. et al. (1998): p.162; Vetschera R. et al. (2012): p.77 
35 Shi Z. et Sadananda R. (2006): pp.327-330; Lopes F. et al. (2009): pp.18-19 
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paying off the opponents for accommodating an interest). Other collaborative behaviours are 

reframing (i.e. an agreement is reached from changing strategic issues only such that no 

concession must be made with respect to the underlying goal), log-rolling (i.e. one party 

trades off a low priority issue that is of high priority for the counter-party), cost cutting (i.e. 

reducing or eliminating negotiation costs if an agreement is reached), or bridging (i.e. 

searching for new alternatives to reach a mutually beneficial agreement).36 

3.3    Negotiation Protocol 

An effective strategy largely depends on an appropriate negotiation protocol. As previously 

discussed, a negotiation protocol are rules governing the interaction between the 

negotiating agents, including the available negotiation states (e.g. accepting, rejecting, 

counter-offering proposals), the valid state actions and the state transition events. The 

individual agent's decision, on the other hand, is derived from the internal (private) strategy.  

Usually, a negotiation protocol does not indicate which action to take but rather only restricts 

the possible action set and marks process phases at which the agents must make a decision 

according to their strategy.37  

The evaluation of the negotiation results of multi-agent protocols is in so far not easy, 

because each agent acts upon its self-interests (i.e. objectives and constraints). Thus, 

determining the success of a negotiation typically requires the evaluation of the benefits or 

losses for each individual agent in the multi-agent setting or of the overall system outcome.  

In the course of this subchapter, the main negotiation protocols from MAS literature are being 

discussed. These protocols broadly differentiate in their strategic positioning (interest-based, 

position-based, a mixture of both) and approach to offer generation. Latter is being described 

here mostly in its mathematical logics and is computationally often implemented with some 

heuristic methods. The protocols discussed range from self-interested game theoretic 

frameworks and argumentation-based approaches to more cooperative [interest-based] 

adaptations such as, for instance, coalition games and concession-based frameworks. 

3.3.1 Game-Theoretic Bargaining: Non-cooperative Bargaining 

Standard economic theory deals with the question of how people bargain over a pie of a 

certain size. One approach is to specify a fair division such as dividing a pie in its half. 

Another approach is to divide the pie in a way that makes the solution stable (in a Nash 

                                                           
36 Shi Z. et Sadananda R. (2006): pp.327-330; Lopes F. et al. (2009): pp.18-19 
37 Jennings N.R. et al. (2001): p.18 
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equilibrium (NE), see definition in Appendix A) following the consideration that a purely fair 

division might not equally satisfy the agents involved.38 

Game-theoretic bargaining (most prominently called Nash bargaining) is most often adopted 

in one-to-many negotiation research areas39. The basic idea behind the concept of game 

theoretic bargaining is that self-interested agents (i.e. agents who select a strategy that 

maximizes their expected payoff) must take into account the decisions other agents may 

make assuming that the agents will act in a way that maximizes their own outcome (utility). 

Two well-known examples of such normal-form games are the Prisoner’s Dilemma (constant-

sum game, most commonly known as zero-sum game) and common pay-off games (same-

sum game). Latter example is also referred to as pure coordination games or team games in 

which the agents have no conflicting goals but aim to decide on an outcome that is maximally 

beneficial to every agent.40 

In a standard negotiation approach that is being followed in the course of this paper, an 

agent whose turn it is to make an offer at time 𝑡  makes a proposal that can be either 

accepted or rejected by the other agents. Alternatively, a responding agent can also opt out 

of the negotiation, ending the bargaining in a conflicting result.  If all the agents accept an 

offer, the negotiation ends in the offer being implemented. If at least one agent has rejected 

the offer, the negotiation continues with the next agent making a counter-offer to the other 

agents at time 𝑡 + 1. Thereby, the agents are not bound to any previous offers that have 

been made before. This strategy can be also called the simultaneous response protocol.41  

Finding equilibria in dynamic MAS typically always involves such repeated games with offers 

and counter-offers until an equilibrium is reached. A prominent example for repeated games 

is the method of Rubinstein’s alternating offers which employ the notion of subgame-

perfect equilibrium (i.e. every subgame is in a NE) in repeated games among agents with an 

infinite time horizon (i.e. unlimited offers and counter-offers). In the Rubinstein’s repeated 

games’ model, agents differ in their preferences but have complete information over the 

other preferences, and time is valuable (i.e. time discounts through fixed bargaining costs 

and a fixed discounting factor on future utility). The discounting and cost factor in 

Rubinstein’s alternating offers is crucial to keeping the equilibrium reached stable. Therefore, 

the main difference between Nash’s and Rubinstein’s equilibrium is that Nash equilibrium is 

in some scenarios a weak one in which one agent might have yield a higher pay-off in a first 

negotiation round but has settled for a lower pay-off in the next round to reach equilibrium, 

and it might, thus, have an incentive to deviate from the final outcome in order to reach a 

                                                           
38 Levin J. (2002): p.1 
39 Sadri F. et al. (2002): p.405 
40 Shoham Y. and Leyton-Brown K. (2009): pp.56-58; Kraus S. (1997): pp.82-83 
41 Goel A. K. et al. (2011): p.377; Chen Y. et al. (1999): p.3 
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higher pay-off. Rubinstein’s subgame perfect equilibrium, on the other hand, requires that an 

agent’s strategy is optimal (in NE) at every negotiation round rather than only at the initial 

stage.42 

Self-interested intelligent agents can choose between two forms of strategies: (1) they select 

a single action (pure strategy), or (2) they can randomly select over a set of available actions 

according to some probability distribution (mixed strategy) 43 . In case of a multi-issue 

negotiation object, parts of the whole object can be separate subjects of the bargaining 

process.  

Game theoretical bargaining is strongly related to classical decision theory that describes 

mechanisms for making decisions in systems in which the outcomes of the various actions 

are unknown. In a typical MAS setting, intelligent agents operate in an open environment 

with incomplete information. Thus, for some aspect of the current state of the environment 𝑋𝑖, 

the agents only know that each possible value 𝑥𝑖𝑗
of 𝑋𝑖 has some probability, formally44: 

𝑃: 𝑥 ∈ 𝑋 ↦ [0,1]  and ∑ 𝑃 (𝑥𝑖𝑗
)𝑗 = 1 

If an agent knows that the current state has a value 𝑥𝑖𝑗
, then 𝑃 (𝑥𝑖𝑗

) = 1, else 𝑃 (𝑥𝑖𝑗
) = 0. If 

two aspects of the current state of the environment, 𝑋1, 𝑋2, are related to each other, they 

have dependent probabilities (conditional probabilities), hence: 𝑃 (𝑥1𝑖⋀𝑥2𝑗) = 𝑃 (𝑥1𝑖|𝑥2𝑗) ∗

𝑃(𝑥2𝑗), else they are independent with a probability of 𝑃 (𝑥1𝑖⋀𝑥2𝑗) = 𝑃(𝑥1𝑖) ∗ 𝑃(𝑥2𝑗).45 

Typically, each agent places a different value to a current (or future) state of the environment 

depending on how well it is connected to the agent’s goal, economically referred to as utility. 

As Von Neumann and Morgenstern showed, utility can be easily defined in terms of 

preference relations such that an outcome that is preferred has a higher utility46, formally: 

𝑢(𝑠𝑖) ≥ 𝑢(𝑠𝑗) 𝑖𝑖𝑓 𝑠𝑖 ≽ 𝑠𝑗                          (1) 

𝑢([𝑝1: 𝑠1, . . , 𝑝𝑘: 𝑠𝑘]) = ∑ 𝑝𝑖𝑢(𝑠𝑖)𝑘
𝑖=1    (2) 

In words: (1) the utility under a state 𝑖 is at least as high as under another state 𝑗 if and only if 

the outcome under the state 𝑖 is at least as preferred as the outcome under state 𝑗, and (2) 

the overall utility of a negotiation equals the respective utility from the current state’s aspects 

considering their probability to occur. 

                                                           
42 Rubinstein A. (1982): pp.98-108 
43 Shoham Y. and Leyton-Brown K. (2009): p.59 
44 Parsons S. and Wooldridge M. (2000): p.2 
45 Parsons S. and Wooldridge M. (2000): pp.2-3 
46 EconPort (2006): online; Levin J. (2006): pp.8-10; Shoham Y. and Leyton-Brown K. (2009): pp.52-53 
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By combining the probability for a state with the intention to maximize utility, intelligent 

agents work with a so-called expected utility function (also called the Neumann-Morgenstern 

utility function), that is the linear and continuous weighted average utility of each possible 

outcome with the weight being the probability of an outcome under a certain action 

performed, mathematically: 

 𝑈(𝐴𝑖) = ∑ 𝑃(𝑆𝑗|𝐴𝑖) ∗ 𝑈(𝑆𝑗)𝑆𝑗𝜖𝑆 , with 𝑆 being the set of all possible states and 𝑈(𝑆𝑗) being the 

different utility values for each of the state outcomes. The agent selects 𝐴∗ such that 𝐴∗ =

arg max
𝐴𝑖∈𝐴

∑ 𝑃(𝑆𝑗|𝐴𝑖) ∗ 𝑈(𝑆𝑗)𝑆𝑗𝜖𝑆 .47 

In the practical context, the game-theoretic approach in bargaining has several drawbacks: 

first, considering the necessity to create a stable negotiation protocol, agents do not deviate 

and must strictly follow the strategies defined for them in the strategy profile of the NE. 

However, as a negotiation can involve counter-proposals and concessions made by other 

agents, the use of Nash Equilibrium creates unstable agreements (a strategy could be in 

equilibrium at the beginning of the negotiation, but may become unstable if an agent must 

deviate from its optimal payoff to reach an agreement). To overcome the limitations of Nash 

equilibrium strategies, subgame perfect equilibrium could be used in which a NE can be 

obtained after every negotiation round. Under incomplete information, however, a subgame 

cannot exist, as it would require information sharing between the competitive agents. A 

second drawback to the stable game-theoretic bargaining is the general lack of cooperation 

possibilities as the agents follow a purely payoff-maximization strategy. Thus, a MAS with 

game-theoretic bargaining among intelligent agents would be very likely always unstable.48  

3.3.2 Argumentation-based Negotiation 

The typical negotiation process is largely based on exchanging proposals only. Such 

bargaining starts with one agent making the first offer to another agent who can accept, 

reject or make a counter-offer on the first offer, which the receiving agent can react to in the 

same manner until a negotiation fails or ends. Argumentation-based negotiation (ABN) 

enriches the negotiation process by offering justifications for offers and critics on proposals 

that were rejected (see Figure 4, represented as "attack proposal" in the right graph). ABN is 

widely used in dialogue games and is a tool particularly used in decision-making under 

uncertainty. The fundamental approach in ABN is the ability of agents to exchange 

                                                           
47 Parsons S. and Wooldridge M. (2000): p.5; Levin J. (2006): p.6 
48 Kraus S. (2001): pp.153-156 
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information about their internal state in order to convince the other of an offer or 

communicate their preference relations on the set of offers.49 

Convincing or explaining a proposal or withdrawal to the negotiation partner is an element 

crucial in an interest-based strategy as arguments can help reaching an agreement more 

efficiently if it lies in the interest constraints of the counterpart. As such, argumentation-based 

negotiation can be considered a suitable negotiation framework for interest-based 

negotiation if the arguments included are not of non-interest-based nature (e.g. using threats 

or authority).50 

Existing literature on ABN focuses on two main approaches: (1) designing negotiation 

concepts for logically defending arguments, and (2) designing bargaining-frameworks with 

exchange mechanisms of rhetorical arguments (e.g. rewards, promises, appeals).51 

Figure 4: UML 2.0 specification of a traditional bargaining protocol (left graph) and of an ABN (right 
graph), illustrated in a so-called contract net interaction protocol (CNP)52 

 
 

In a typical negotiation setting, intelligent agents are utility maximizers and they interact with 

the external environment to find supporting information for their offer’s argumentation. In 

ABN, an offer is transmitted with an argument, created from both internal and external 

information that supports the conditions under which the offer was made. If an agent is 

unable to produce a new offer with arguments for its goal, it searches for new arguments 

under which it can accept the (counter) proposal of the other agent. Figure 5 illustrates an 

ABN protocol as proposed by Kakas A. and Moraitis P. (2006) from the view of an agent 

(here, agent X), assuming that the opposing agent (here, agent Y) performs the exact same 

functions (which is normative for protocols). In their protocol, the authors use argumentative 

                                                           
49 Marey O. et al. (2014): p.61; El-Sisi A. and Mousa H. (2014): pp.157-158; Rovatsos M. et al. (2005): p.7 
50 Rahwan I. (2004): p.64 
51 Rahwan I. et al. (2004): p.2; Kraus S. et al. (1998): p.1; Ramchurn S. et al. (2003): p.1 
52 El-Sisi A. and Mousa H. (2014): pp.157-158 
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functions (deliberate, accept) and three evaluation functions used by the sender agent to 

determine which information to send (𝑝𝑟𝑜𝑝𝑜𝑠𝑒(𝑂𝑓𝑓𝑒𝑟, 𝑒𝑗, 𝑠𝑖) ). They differentiate between 

three types of proposals (offers): in the first type, denoted as 𝑝𝑟𝑜𝑝𝑜𝑠𝑒(𝑂𝑌, 𝑒𝑌→𝑋, 𝑠𝑛
𝑌,𝑌), agent Y 

sends a new offer to agent X, 𝑂𝑌, with new supporting information 𝑠𝑛
𝑌,𝑌. From the previous 

step, agent Y has evaluated the information for the offer sent by agent X (Note: the offer 

send by agent X is denoted as 𝑂𝑋), which [the evaluation] is denoted as 𝑒𝑌→𝑋. In the first 

step (agent X has not sent an offer yet), 𝑒𝑌→𝑋  equals 0. In the second proposal 

type, 𝑝𝑟𝑜𝑝𝑜𝑠𝑒(𝑂𝑌, 𝑒𝑚
𝑌→𝑋, ⨂), agent Y sends an answer to agent X’s previous offer to accept 

𝑂𝑌 under given terms or conditions [proposed by agent X], 𝑒𝑚
𝑌→𝑋 (agent X has entered the 

so-called conciliation phase when it is willing to accept an offer under certain conditions). In 

the third proposal type,  𝑝𝑟𝑜𝑝𝑜𝑠𝑒(𝑂𝑋, ⨂, 𝑠𝑛
𝑌,𝑋), agent Y sends an answer to agent X with 

conditions 𝑠𝑛
𝑌,𝑋 under which it would accept the offer from agent X, 𝑂𝑋 (agent Y has entered 

the conciliation phase).53 

Carabelea C. (2002) suggests an argumentation-based negotiation approach between two 

agents in which a so-called negotiation balance (NB), as the ratio between the value under 

negotiation and the value being traded for (ideally being 1), is being compared by each 

agent. While the server agent typically tries to raise the balance so that the value obtained is 

higher than the value that is traded in exchange, the client agent aims to lower the balance in 

its own favour. The argument chosen by each agent is, thereby evaluated based on an 

expected effect of that argument on the opponent, and hence their evaluation of the NB. 

Typically, each agent creates a list of possible arguments from which it chooses the 

argument that improves the NB for the opposing agent while still being in the acceptance 

range of its own NB.54 

A similar approach is proposed by Rahwan I. et al. (2004) in which the value of items is 

computed as a utility of a contract or plan, and the utility is influenced by the worth of states 

which is proportional to the set of desires that are satisfied by the respective state. The state 

is influenced, for instance, by the cost of carrying out a contract or plan (if the cost increase, 

utility decreases) or by additional [free] benefits that are directly linked to the offer.55 

 

                                                           
53 Kakas A. and Moraitis P. (2006): pp.386-387 
54 Carabelea C. (2002): pp.5-6 
55 Rahwan I. et al. (2004): p.9 
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Figure 5: Argumentation-based negotiation protocol based on Kakas A. and Moraitis P. (2006) 

 

Because arguments are always selected based on knowledge, beliefs and preferences that 

are usually unknown to the addresser, ABN remains a negotiation approach that has to deal 

with a high degree of uncertainty. Marey O. et al. (2014) discussed ABN in relation to two 

main types of uncertainties and they proposed techniques to handle those uncertainties: 

Type I is the agent's uncertainty about selecting the right moves during the dialogue, and 

Type II is the agent's uncertainty that the opposing party will accept the move. Their 

uncertainty-aware techniques classify arguments into several classes depending on their risk 

of failure (note: failure is meant as not being chosen). Arguments of the same risk class are 

considered to be equally favourable and preferable (thus, have a higher acceptance rate by 

the opponent), and more favourable and preferable than any other argument of another class 
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with a higher risk rate. The authors further classified the risk classes into smaller disjoint 

subclasses in case of several arguments. If two arguments are considered equally 

preferable, they are put into the same low subclass (higher acceptance rate). If an argument 

is less preferable than an existing argument, it enters a higher subclass, etc.56 

ABN is said to also work well with multiple negotiation partners (e.g. in an auction), whereby 

each agent follows the same protocol rules and the negotiation runs parallel between several 

sender agents (e.g. seller agents) and one receiving agent (e.g. buyer agent). In practice, 

however, ABN can come with considerably low scalability and extensibility in a dynamic 

system in which the number of agents can continuously change, making the MAS 

computationally extensive and complex. Particularly in a highly competitive setting in which 

competing agents start with extreme positions and only gradually concede, ABN could turn 

out to include much redundancy and be computationally more expensive than beneficial to 

be implemented.  

3.3.3 Cooperative Game Theory: Coalitional Games  

Negotiation is not only about winning a position or creating profits from a business trade 

agreement, but it is likely also about creating successful synergies and profitable 

cooperations. Coalition refers to agents grouping together to cooperate on a joint task, using 

joint resources with individual competencies and abilities. Coalition can be formed between 

parties who offer complementary services (e.g. for allocating a task to more suitable 

partners), or between similar parties (e.g. outsourcing). Sometimes it is also beneficial to join 

with strongly diverse partners in order to create a wider market share and save costs on 

SCM processes due to committed long-term collaborations. Coalitions are typically used in 

task allocation, sensor networks and electronic marketplaces.57 

Coalition formation deals with the following three sub-problems: first, selecting an adequate 

coalition partner in the agent population such that agents within each coalition self-organise 

their activities to achieve their goals while the cooperation of the coalition at large is 

rewarded and not the individual agents; and second, sharing the cooperation value between 

the coalition partners; and third, solving a joint optimization problem with shared and 

combined resources from that coalition. As the optimal coalition structure is NP-complete, 

finding an optimal coalition from the agent population can get computationally very 

exhaustive.58 

                                                           
56 Marey O. et al. (2014): pp.62-65 
57 Airiau S. (2010): p.1 
58 Sandholm T. et al. (1999): pp.209-211; Airiau S. (2010): p.3 
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The fundamental questions behind coalitional game theory are59: 

1. Which coalition will form? (i.e. how to partition the set of all agent population 

into coalitions) 

2. How should the coalition divide its payoff among its members? 

The most likely coalition structure to be formed is the so-called grand coalition that is the 

coalition of all the agents in the agent population. As a grand coalition yields a higher payoff 

than other coalition structures and is, thus, more likely to form, the focus in this subchapter 

lies in payoff division only.60 

While existing literature focuses on single coalition structure formation, several coalitions can 

also co-exist within a coalition system, which usually places additional physical and 

organizational constraints. Skibski O. et al. (2016) assume that while there are typically low 

restrictions on the feasibility of a coalition structure, hence, any coalition structure may form, 

the number of feasible coalitions within a coalition structure is limited. Thus, a feasible 

coalition structures can still contain infeasible coalitions61, which can make coalition formation 

a practically hard task to be implemented in real-life MAS projects. In this subchapter, 

feasibility constraints are, due to their complexity, not further considered. 

Coalition games are one branch of game theory studies in which agents can cooperate and, 

thus, do not act position-based only. The literature of cooperative game theory differentiates 

between two main models: the transferable utility games (TU games) in which utility can be 

compared between two agents and utility can be distributed freely among the coalition 

members, and the non-transferable utility games (NTU games). While in the TU game, the 

value created from the coalition can or has to be shared among the members, thus a 

comparison and utility transfer must be allowed, coalition members in an NTU game cannot 

compensate any agent while each agent still profits individually from the coalition.62 

Typically, analysing the payoff division lies in the core of any coalition forming, as rational 

agents are more likely to cooperate in more profitable coalitions than acting in less profitable 

coalitions or alone. Unfortunately, dividing the coalition payoff equally among its members is 

rarely a stable solution. This subchapter suggests the most common solution concepts from 

literature to divide a coalition payoff along with important characteristics for stable solutions. 

  

                                                           
59 Shoham Y. and Leyton-Brown K. (2010): p.384 
60 Shoham Y. and Leyton-Brown K. (2010): p.387 
61 Skibski O. et al. (2016): pp.177-178 
62 Airiau S. (2010): p.2 



Seite 26 von 96 
 

Transferable utility (TU) games 

A system with a universal currency is a classic example for a TU coalition, with the coalition’s 

payoff being a single value. A fundamental criterion for coalition formation is that each agent 

is guaranteed a payoff that is at least as high as a one-agent coalition.63 

We denote the finite set of agents  𝑁 , indexed by  𝑖 , and let  𝑣: 2𝑁 ⟼ ℝ (characteristic or 

valuation function) be the real-valued payoff 𝑣(𝑆) for a coalition 𝑆 ⊆ 𝑁 that the members of 

the coalition can distribute among themselves (𝑣(∅) = 0). In TU games, coalitions follow at 

least one of the following characteristics: they can be additive, i.e. the worth of each coalition 

is always the same regardless of its degree of cooperation with other coalitions (formally, for 

any additive game 𝐺(𝑁, 𝑣): ∀𝑆, 𝑇 ⊂ 𝑁, if 𝑆 ∩ 𝑇 = ∅, then 𝑣(𝑆 ∪ 𝑇) = 𝑣(𝑆) + 𝑣(𝑇)); they can 

be super-additive, i.e. the payoff of the sum of two non-overlapping coalitions is at least as 

large as the individual payoffs, implying additional inequality to additivity (formally, 𝑣(𝑆 ∪ 𝑇) ≥

𝑣(𝑆) + 𝑣(𝑇)); they can be sub-additive when the coalition is less profitable than remaining 

along (i.e. 𝑣(𝑆 ∪ 𝑇) ≤ 𝑣(𝑆) + 𝑣(𝑇)); and they can be convex, i.e. the marginal contribution of 

an agent 𝑖 to a coalition 𝑆, 𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆), increases with the size of the coalition the agent 

joins (formally, for any convex game 𝐺(𝑁, 𝑣): ∀𝑆, 𝐵 ⊂ 𝑁, 𝑆 ⊆ 𝐵and 𝑖 ∉ 𝐵, 𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆) ≤

𝑣(𝐵 ∪ {𝑖}) − 𝑣(𝐵)).64 

The question to how the coalition’s payoff should be divided among the members can be 

answered using the following most widely known methods:65 

1. The Shapley value divides the coalition’s payoff among its members based on the 

fairness principle under the formula: 

𝜙𝑖(𝑁, 𝑣) =
1

|𝑁|!
∑ |𝑆|! (|𝑁| − |𝑆| − 1)! [𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)]𝑆⊆𝑁{𝑖}  (Average marginal 

contribution of agent 𝑖 , taking into consideration all possible sequences 𝑆 of the 

agents entering the coalition, starting from the empty set and adding uniformly at 

random one agent at a time; differently put, the average of an agent 𝑖’s marginal 

contribution at the time the agent is added considering all its possible sequences of 

additions).66 

2. The core divides a coalition’s payoff based on what division makes the agents want 

to form the coalition (“strong equilibrium”), considering that not all agents are willing to 

accept their fair share from the coalition and have, thus, an incentive to deviate. A 

linear feasibility problem is used to derive to a payoff vector for each member that 

                                                           
63 Shoham Y. and Leyton-Brown K. (2010): p.388 
64 Airiau S. (2010): p.3; Shoham Y. and Leyton-Brown K. (2010): pp.386-387 
65 Shoham Y. and Leyton-Brown K. (2010): p.384 
66 Shoham Y. and Leyton-Brown K. (2010): pp.389-390 
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makes the coalition attractive to be formed. Thereby, we say that the payoff vector 

must be in the core of a coalitional game (𝑁, 𝑣) which is the case iif:67 

∀𝑆 ⊆ 𝑁, ∑ 𝑥𝑖 ≥ 𝑣(𝑆)𝑖∈𝑆  , 

whereby 𝑥𝑖  refers to the agent  𝑖 ’s share (real value) of the coalition’s payoff. 

Differently speaking, the sum of payoffs to any group of agents 𝑆 ⊆ 𝑁 must be at least 

as high as the payoffs these agents would share by forming a sub-coalition. To fulfil 

this straightforward criterion, the core must be both non-empty and unique which is, 

however, not always the case. The possibly strongest condition to allow a valid payoff 

division is convexity. However, Shoham Y. and Leyton-Brown K. (2010) proposed 

several other theorems that allow for checking the core’s validity. They additionally 

suggested several refinements to the formula mentioned above that allow a non-

existing and non-unique core.68 

Non-transferable utility (NTU) games 

Differently to TU games, non-transferable utility games additionally have different outcomes 

depending on the coalition formed. Thus, while in TU games agents can have allocation 

preferences (i.e. preferences over the share of the coalition’s payoff), agents in NTU games 

make their cooperation choice based on the outcome from a coalition. 

The set of outcomes is denoted with 𝑋  whereby 𝑥𝑆  denotes the unique outcome from a 

coalition 𝑆 ⊆ 𝑁 . The valuation function is 𝑉: 2𝑁 → 2𝑋  that describes the payoff outcome 

𝑉(𝑆) ⊆ 𝑋 (𝑉(𝑆) = {𝑥𝑆}) that can be achieved from a coalition 𝑆. Additionally, each agent 𝑖 has 

preferences over the set of outcomes given as the preference relation  ≻𝑖 , which is 

considered transitive and complete. For any two outcomes 𝑥𝑆 and 𝑥𝑇 from coalitions 𝑆 and 𝑇 

that agent 𝑖 could enter, 𝑥𝑆 ≽𝑖 𝑥𝑇 (in words, agent 𝑖 prefers the outcome from coalition 𝑆 at 

least as much as the outcome from coalition 𝑇) iif 𝑆 ≽𝑖 𝑇.69 

As agents in NTU games cannot measure the common worth of a coalition, they cannot aim 

for a fair share (computed with the Shapley value). Instead, an agent chooses a coalition 

based on a stable outcome from the coalition, measured by the core value: 

 𝑐𝑜𝑟𝑒(𝑉) = {𝑥𝜖𝑉(𝑁)|∄𝑆 ⊂ 𝑁, ∄𝑦 ∈ 𝑉(𝑆), ∀𝑖 ∈ 𝑆 𝑦 ≻𝑖 𝑥}70 

i.e. a coalition is in the core if there is no other outcome 𝑦𝜖𝑋 that is strictly preferred by any 

other member of the coalition. Otherwise (i.e. for any outcome  𝑥 ≼𝑖 𝑦 ), agents have an 

                                                           
67 Shoham Y. and Leyton-Brown K. (2010): p.391 
68 Shoham Y. and Leyton-Brown K. (2010): pp.391-394 
69 Airiau S. (2010): pp.21-22 

70 Airiau S. (2010): pp.21-22 
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incentive to deviate from the coalition to achieve that outcome and, thus, no coalition is 

formed. 

Constructive approaches to generating coalitions in TU and NTU games have been rarely 

studied yet in multi-agent applications. Thereby, coalition games research focuses on the 

complexity of assessing the stability of coalitional structures, such as determining the non-

emptiness of the core. Dunne P. E. et al. (2010) proposed a Coalition Resource Game 

(CRG) framework in which the stability of a coalition can be determined in feasible amount of 

time with small number of agents (exponentially) and agent objectives (polynomially) while 

the outcome proves to meet subgame perfect equilibrium, alongside other stability 

properties71.  

3.3.4 Auctions 

An auction is a one-to-many negotiation style in which one client aims to find a business 

partner (e.g. buyer agent) out of a group of several potential servers. Auctions are not only 

one of the most ancient negotiation styles, they are also the bargaining type most dominant 

in e-commerce (e.g. EBay, AuctionBot). There are several types of auctions with each 

modelling a specific protocol. The most prominent auction types are the English auction in 

which the auctioneer raises the price of the negotiation object until only one bidder remains; 

the Dutch auction which works opposite to the English version with the highest possible price 

and gradual price decreases until the first bidder accepts the price; the First-Price Sealed Bid 

auction in which bids are made simultaneously and the highest bidder wins; and the Vickrey 

auction which is similar to the First-Price Sealed Bid but with the highest bidder (winner) 

paying the second highest price.72 

When considering an auction protocol, the negotiation follows some basic assumption: (i) 

agents aim to maximize their expected utility from an outcome, and (ii) the opponents’ 

valuations are held private and are, thus, not known to the opposing negotiators. In contrast 

to argumentation-based negotiation, agents do not have a direct reasoning for why an offer 

has been rejected by another party. This typically leads to suboptimal solutions (local 

optima). The uncertainty about the opponent’s preferences can be handled by either 

modelling a likely belief of the opponent (e.g. learning from experience following an interest-

based strategy) or by constructing a strategy that is independent of the opponent’s beliefs 

(position-based strategy). In order to reach a stable deal, the agents must follow a protocol 

that is based on the agents’ dominant strategy which yields an expected payoff that is at 

least as high as the other’s expected payoff regardless of the opponent’s behaviour. A 

                                                           
71 Dunne P. E. et al. (2010): p.20 
72 Jennings N. (2000a): p.30 
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dominant strategy prevents the partners to deviate after closing the contract. In this 

subchapter, a protocol framework for English based auctions is formulated. Literature argues 

that both English and Vickrey protocols use dominant strategies, but that the English protocol 

works better in more complex negotiation settings including time, issue preferences and offer 

(change) dynamics.73 

As auction-based protocols are quite common in MAS literature, this subchapter offers a 

generic mathematical model for implementing auction protocols in multi-issue negotiations as 

suggested by Benameur H. et al. (2002). An actual protocol implementation is offered by 

Bartolini C. et al. (2002), see link in the references, which described in detail the actions and 

messages of a single-issue English-based auction in JESS according to the General 

Negotiation Protocol74. 

For simplicity reasons, we assume identical and fixed number of items 𝑄 under auction, as 

well as private evaluations and one vendor agent for a finite number 𝑛  buyer agents 

𝐴1, … , 𝐴𝑛 . An auction framework for variable item quantity is proposed by Lengwiler Y. 

(1999).  

Each buyer 𝐴𝑖  aims to get a quantity 𝑞𝑖  whereby ∑ 𝑞𝑖
𝑛
𝑖=1 > 𝑄, so that the buyers become 

competitive bidders for their desired quantity. The money available for each bidder is 

denoted as 𝑉𝑖, 𝑖 = 1, … , 𝑛  with 𝑉𝑖~𝑢𝑛𝑖𝑓(𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥) , the continuous uniform distribution, 

where 𝑉𝑚𝑎𝑥 −  𝑉𝑚𝑖𝑛 > 1, so that the valuations are independent and private. As all items are 

identical, the buyer agents are willing to bid the same amount of money 𝑣𝑖 for all the desired 

items:  

𝑉𝑖 = 𝑣𝑖 × 𝑞𝑖 

Let 𝑏𝑖 be the function of the offers submitted that describes the auction strategy of buyer 𝐴𝑖 

depending on the budget 𝑉𝑖 and desired quantity 𝑞𝑖 of item 𝑖: 

𝑏𝑖 = 𝑏(𝑉𝑖, 𝑞𝑖),    𝑖 = 1, … , 𝑛 

In order to increase the price bid, a buyer agent could decrease the desired quantity during 

an auction according to 𝑣′𝑖 =
𝑣𝑖

𝑞′𝑖
, with 𝑣′𝑖  being the new price bid and 𝑞′𝑖  the new quantity 

desired (𝑞′𝑖 < 𝑞𝑖). The quantity 𝑞̅𝑖 buyer agent 𝐴𝑖 receives at the end of the auction directly 

depends on the offers 𝑏𝑗 of the other buyer agents 𝐴𝑗. Thus, the following auction result holds 

with respect to the opponents’ bids:75 

                                                           
73 Jennings N. (2000a): pp.31-35 
74 Bartolini C. et al. (2002): pp.8-9 
75 Benameur H. et al. (2002): pp.7-8 
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𝑞̅𝑖 = 𝑞𝑖                             𝑖𝑓 𝑄 − ∑ 𝑞𝑗 ≥ 𝑞𝑖𝑗:𝑏𝑗>𝑏𝑖
       

𝑞̅𝑖 = 𝑄 − ∑ 𝑞𝑗        𝑗:𝑏𝑗>𝑏𝑖
𝑖𝑓 0 < 𝑄 − ∑ 𝑞𝑗 < 𝑞𝑖𝑗:𝑏𝑗>𝑏𝑖

𝑞̅𝑖 = 0                              𝑖𝑓 𝑄 − ∑ 𝑞𝑗𝑗:𝑏𝑗>𝑏𝑖
≤ 0          

   

whereby ∑ 𝑞𝑗𝑗:𝑏𝑗>𝑏𝑖
 denotes the quantity of the opponent bidders. The utility received from 

the auction is thus: 𝑈𝑖 = (𝑣̅𝑖 − 𝑏𝑖) × 𝑞̅𝑖 = 𝑉𝑖 − 𝑏𝑖𝑞̅𝑖 with 𝑈𝑖 ≥ 0 to be maximized. 

While the auction protocol as proposed by Benameur M. et al. (2002) is straightforward, the 

difficult part lies in determining the bid 𝑏𝑖, such that the utility is maximized under a small, yet 

comparatively best bid. The actual strategy that determines the bid should consider those 

two contradicting constraints. Benameur M. et al. further state that- in order to obtain the best 

possible bid  𝑏𝑖 - the strategy considers the expected probabilities for the 𝑛 − 1  opponent 

bidders’ offers 𝑏𝑗 such that the buyer agent’s bid 𝑏𝑖 is superior to what is expected from the 

opponents. Mathematically, this can be described with the conditional probability function: 

𝑃(𝑏𝑗 < 𝑏𝑖|𝑞𝑗) = ∫ 𝐹(𝑉)𝑑𝑉
𝑞𝑖𝑏𝑖

𝑉𝑚𝑖𝑛
  with 𝐹(𝑥) =

1

𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛
, that results in 

𝑃(𝑏𝑗 < 𝑏𝑖|𝑞𝑗) =  
𝑞𝑖𝑏𝑖−𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛
  

The probability that all offers of the other 𝑛 − 1  opponent bidders are inferior to 𝑏𝑖  is 

computed using the maximum-likelihood method (considering independent bids): 

∏
𝑞𝑖𝑏𝑖 − 𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛

𝑛−1

𝑖=1

= [
𝑞𝑖𝑏𝑖 − 𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛
]

𝑛−1

 

As every bidder aims to maximize their utility from the auction, each bidder maximizes the 

following expression (the own bid multiplied by the expected probability of all other bidders): 

𝜕(𝑉𝑖 − 𝑞𝑖𝑏𝑖) [
𝑞𝑖𝑏𝑖 − 𝑉𝑚𝑖𝑛
𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛

]
𝑛−1

𝜕𝑏𝑖
= 0 

After differentiating above maximization problem under 𝑏𝑖, the result to compute the optimal 

offer 𝑏̂𝑖 of the buyer agent 𝐴𝑖 is: 

𝑏̂𝑖 =
𝑉𝑚𝑖𝑛+(𝑛−1)𝑉𝑖

𝑛𝑞𝑖
 , 

which represents the minimum offer that maximizes the probability to win the auction at a 

uniformly distributed budget. In case another budget distribution is used, the above 

mentioned 𝐹(𝑥) must be replaced by the respective cumulative distribution choice. As 𝑉𝑚𝑖𝑛 is 

a value unknown to the respective bidder, the bids submitted are usually not optimal. 
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However, this auction protocol should give a good baseline to compute bids as close as 

possible to their optimal value.76   

3.3.5 Concession-Based Negotiation 

In a concession-based bargaining, the parties begin the negotiation with inconsistent and 

often extreme positions in their favour and then make concessions in each negotiation round, 

relaxing their demand, in order to reach an agreement. Thereby, concessions can be 

changes in the issue space or in the utility space, or both. Concessions are typically based 

on the opponent’s preferences, e.g. changing an issue to a more preferred option for the 

opponent. In case the negotiator lacks information about the opponent’s preferences, though, 

concessions could move from a more preferred option to a less preferred option in at least 

one issue for the negotiator, in each negotiation round.77 

Vetschera R. et al. (2012) proposed a concession-based approach to bargaining with a focus 

on offer generation, looking at both the utility space and the issue space. This framework 

proposed is being introduced in this subchapter. Similar to Lai G. and Sycara K. (2009), who 

established a multi-attribute offer generation approach to negotiation that uses Rubinstein's 

alternating offer game in a time-based strategy to reach an agreement, Vetschera R. et al.'s 

framework offers solutions along the Pareto-frontier and considers incomplete information to 

concession-based bargaining which, in contrast to similar studies, better resembles real-

world negotiation scenarios. Both the alternating-offer game by Rubinstein as proposed by 

Lai G. and Sycara K., and the concession-based approach by Vetschera R. et al. generate 

offers based on the utility level of the opposing party's preferences (considering some 

minimum information are available) and make concessions by minimizing the Euclidean 

(shortest) distance between the offer and the last offer of the opponent. In case no 

information about preferences is available, a mediator agent is used to collect some 

information about both parties' preferences and suggests an improved offer close to the 

Pareto-frontier. While the alternating-offer framework generates offers based on the final 

outcome (preferences), the concession-based framework by Vetschera R. et al. focuses on 

preferences and properties in each concession step.78 

 

                                                           
76 Benameur H. et al. (2002): pp.7-11 
77 Vetschera R. et al. (2012): p.78 
78 Vetschera R. et al. (2012): pp.77-78; Lai G. and Sycara K. (2009): pp.11-27 
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In the framework proposed, three criteria must hold in each negotiation round, thus for each 

offer being proposed79:  

(i) real concession-making: refers to offers that are of higher utility to the opponent 

and lower utility to the negotiator 

(ii) reciprocity: in order to generate stable offers (avoiding too small or too large 

concessions that could lead to unfavourable agreements), the concession made 

should reciprocate the concessions received from the opponent to compensate 

any utility losses the opponent made in his last offer with utility gains in the current 

offer of the negotiator  

(iii) value creation: in order to create Pareto-optimal solutions, each negotiation step 

should allow the joint utility to increase in value. Value creation, thus, compares 

the utility given up by the negotiator to the utility gained by the opponent in the 

same negotiation round, and requires the gains to exceed utility loss 

In order to generate offers successfully, the negotiation process considers the time interval 

and negotiation history. At each negotiation step, both parties make a concession until two 

offers are compatible and close the deal. In their own offers, the agent demands a higher 

utility for itself and proposes a lower utility to the opponent than in the opponent’s offers. The 

concession made by the opposing party is denoted as 𝛿 > 0  and describes the utility 

decrease the opponent accepted in his last round. The utility from a previous offer is denoted 

as 𝑢𝑜𝑤𝑛
0  respectively  𝑢𝑜𝑝𝑝

0  for the negotiator and the opponent, and (𝑢𝑜𝑤𝑛(𝑥), 𝑢𝑜𝑝𝑝(𝑥)) are 

the utility values achieved by the new offer 𝑥.80 

As mentioned above, any new offer 𝑥 ∈ 𝑋 (utility vector with issue values) must fulfil the 

criteria of real concession-making, reciprocity and value creation, besides being feasible. 

Mathematically, new offers must, thus, meet feasibility and the following conditions:81 

(i) 𝑢𝑜𝑤𝑛(𝑥) <  𝑢𝑜𝑤𝑛
0  

(ii) 𝑢𝑜𝑝𝑝(𝑥) ≥ 𝑢𝑜𝑝𝑝
0 + 𝛿 

(iii) 𝑢𝑜𝑤𝑛(𝑥) + 𝑢𝑜𝑝𝑝(𝑥) > 𝑢𝑜𝑤𝑛
0 + 𝑢𝑜𝑝𝑝

0 . 

The framework proposed can be briefly described as follows: from the starting extreme 

positions (𝑢𝑜𝑤𝑛
0  , 𝑢𝑜𝑝𝑝

0  ), each agent makes a concession along the path  

𝑢𝑜𝑤𝑛(𝑥) + 𝛼 𝑢𝑜𝑝𝑝(𝑥) = 𝑢𝑜𝑤𝑛
0 + 𝛼 𝑢𝑜𝑝𝑝

0 , with 𝛼 > 0, describing the trade-off rate between both 

parties’ utility, (how much one agent gives up in utility for the gain of the other agent). In case 

                                                           
79 Vetschera R. et al. (2012): pp.78-79 
80 Vetschera R. et al. (2012): p.80 
81 Vetschera R. et al. (2012): p.80 
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those issues are not continuous but discrete values only, the concession path above might 

not reach a feasible solution, and the authors proposed an alternative concession cone that 

contains solutions (new offers) close to the concession path:82 

𝑢𝑜𝑤𝑛(𝑥) + (𝛼 − 𝜏) 𝑢𝑜𝑝𝑝(𝑥) ≤ 𝑢𝑜𝑤𝑛
0 + (𝛼 − 𝜏) 𝑢𝑜𝑝𝑝

0  

𝑢𝑜𝑤𝑛(𝑥) + (𝛼 + 𝜏) 𝑢𝑜𝑝𝑝(𝑥) ≥ 𝑢𝑜𝑤𝑛
0 + (𝛼 + 𝜏) 𝑢𝑜𝑝𝑝

0  

with 𝜏 being a constant indicating how far the concession can deviate from the concession 

path.  

Both 𝛼 and 𝜏 are parameters individually set by the agents who must not necessarily select 

similar values. Figure 6 shows the discrepancy between continuous and discrete issues as 

suggested by Vetschera R. et al. In case issues are discrete, the feasible set contains only 

discrete points and is, thus, no longer convex. The new formulas for the concession cone 

allow the agents to search for offers close to the concession path that imitates continuous 

issues under a convex set. Also visible in the graph is the importance of offers being on the 

Pareto-frontier. Let us assume that one agent has selected a negative 𝜶-value and, thus, 

aims for Pareto-improving offers (selfish step that would contradict the initially established 

condition of real concession making). In Figure 6 this situation is presented with violet 

arrows, the selfish agent is the leftmost violet arrow. This agent would reach the Pareto-

frontier very fast but far away from the opponent’s utility position. In order to find an 

agreement, the agent must then move along the frontier, giving up a larger utility in 

comparison to the opponent’s gains and losing all its initial utility gains from the selfish step. 

Let us assume now that both negotiating agents choose a positive but low 𝜶-value, in 

Figure 6 they are displayed as the yellow arrows. Both reach the Pareto-frontier close to one 

another and would come to an agreement faster than in the first scenario. Now let us 

assume, both agents choose a relatively large 𝜶-value (green arrows) which leads to an 

inefficient agreement (both offers match at inefficient points below the frontier) from which 

they both look for mutual improvements.83 

                                                           
82 In case of 𝛼 ≤ 0, the agent would make Pareto-improving steps instead of real concessions. Vetschera R. et al. 

proposed an 𝛼 ≤ min (1,
𝑢𝑜𝑤𝑛

0 −𝑢𝑜𝑤𝑛
𝑝

𝑢𝑜𝑝𝑝
∗ −𝑢𝑜𝑝𝑝

0 ) with 𝑝 indicating the previous offer and 𝑢𝑜𝑝𝑝
∗ is the optimal objective value for 

the linear maximization problem 𝜌 𝑢𝑜𝑤𝑛(𝑥) + 𝑢𝑜𝑝𝑝(𝑥) → 𝑚𝑎𝑥, 𝑠. 𝑡.: 𝑢𝑜𝑤𝑛(𝑥) ≥ 𝑢𝑜𝑤𝑛
𝑝

  𝑎𝑛𝑑 𝑥 ∈ 𝑋. 𝜌 is a constant that 

serves to eliminate weakly dominated solutions in case of multiple optima (Vetschera R. et al. (2012): pp.81-82) 
83 Vetschera R. et al. (2012): pp.81-83 
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Figure 6: Concession cone based on Vetschera R. et al. (2012) 

 

Besides that agents aim to maximize their utility by making offers based on the most optimal 

agreement along the Pareto-frontier, further constraints include the issue values themselves 

which define the feasible set of offers. Vetschera R. et al. proposed a connection between 

utility values and issue values assuming an additive utility function 𝑢(𝑥) = ∑ 𝑤𝑗𝑣𝑗(𝑥𝑗)𝑗  with 𝑥𝑗 

being a vector of issue values describing an offer x, 𝑤𝑗 is the issue 𝑗’s weight, and 𝑣𝑗(. ) is the 

partial utility function for issue 𝑗 . Typically, the preferences of the opponent are in the 

opposite direction, for which reason an offer 𝑥𝑗  for the negotiator can be replaced by 1 − 𝑥𝑗 

for the opponent’s preferences. The issue value 𝑥𝑗 can be expressed as a linear combination 

of two neighbouring values 𝑥𝑗,𝑘−1 and 𝑥𝑗,𝑘  and only two neighbouring factors greater than 

zero 𝑠𝑗,𝑘−1  and 𝑠𝑗,𝑘  with  𝑥𝑗 = ∑ 𝑠𝑗,𝑘𝑥𝑗,𝑘
𝑛
𝑘=0 , whereby ∑ 𝑠𝑗,𝑘 = 1𝑘 . Assuming a linear utility 

function, the same weights for the utility 𝑣𝑗,𝑘  and the issue value 𝑥𝑗,𝑘, we can express the 

utility function with 𝑣𝑘 = ∑ 𝑠𝑗.𝑘𝑣𝑗,𝑘
𝑛
𝑘=0 . The weights are left out in the formula in order for the 

utility function to be linear and the authors argue that the partial utility functions 𝑣𝑗(𝑥𝑗) for the 

respective issue in offer can be scaled between 0 and the respective issue 𝑗’s weight 𝑤𝑗. The 

entire utility function for the offer is then 𝑢 = ∑ 𝑣𝑗𝑗 . The authors additionally embedded a 

binary variable to restrict the neighbouring factors 𝑠𝑗,𝑘 and 𝑠𝑗,𝑘−1 to be greater than zero. In 

case of discrete issue values, this additional constraint can be omitted. Further optimization 

models that include predicting the concession path and distance computations for generating 

counter-offers similar to the opponent’s offers using augmented Tschebyscheff norm are 

detailed in the paper of Vetschera R. et al.84 

                                                           
84 Vetschera R. et al. (2012): pp.83-84 
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3.3.6 Service-oriented (Heuristic) Negotiation: a bilateral model 

In a service-oriented negotiation, an agent (allocation agent) aims to find an agreement with 

another agent (task agent) about the conditions under which a particular service should be 

executed on the client's behalf. A service can be, thereby, defined as a problem solving 

activity with clear definitions of start and end points85. Typically, a service can be provided by 

more than one agent in the negotiation setting, some service offers might be identical, some 

others might vary in one or several issues. A service-oriented negotiation is very likely a 

multi-party, multi-issue, one-to-many negotiation in which several characteristics of a service 

have to be negotiated about and trade-offs among the differently important issues might be 

necessary to come to an agreement. 

This subchapter introduces a negotiation model for service-oriented negotiation as proposed 

by Faratin P. et al. (1998).  

Let 𝑖𝜖{𝑎, 𝑏} be the negotiation agents and 𝑗𝜖{1, … , 𝑛} the issues of a negotiation object (with 𝑛 

being finite). Let 𝑥𝑗 ∈ [𝑚𝑖𝑛𝑗
𝑖 , 𝑚𝑎𝑥𝑗

𝑖] be a value for issue 𝑗 that is in the acceptable range of 

agent 𝑖. Each agent has a scoring function that ranks an issue's value for each agent 𝑖 in the 

interval [0,1]: 𝑉𝑗
𝑖: [𝑚𝑖𝑛𝑗

𝑖, 𝑚𝑎𝑥𝑗
𝑖] → [0,1]. The value of an offer 𝑥 for an issue 𝑗, 𝑉𝑗

𝑖(𝑥𝑗), can be 

modelled as a linear function with respect to the issue's acceptable value range:86 

𝑉𝑖𝑠𝑠𝑢𝑒1
𝑎𝑔𝑒𝑛𝑡 𝑎(𝑥𝑖𝑠𝑠𝑢𝑒1) =

𝑥𝑖𝑠𝑠𝑢𝑒1 − 𝑚𝑖𝑛𝑖𝑠𝑠𝑢𝑒1
𝑎𝑔𝑒𝑛𝑡 𝑎

𝑚𝑎𝑥𝑖𝑠𝑠𝑢𝑒1
𝑎𝑔𝑒𝑛𝑡 𝑎

− 𝑚𝑖𝑛𝑖𝑠𝑠𝑢𝑒1
𝑎𝑔𝑒𝑛𝑡 𝑎 

𝑉𝑖𝑠𝑠𝑢𝑒2
𝑎𝑔𝑒𝑛𝑡 𝑎(𝑥𝑖𝑠𝑠𝑢𝑒2) = 1 −

𝑥𝑖𝑠𝑠𝑢𝑒2 − 𝑚𝑖𝑛𝑖𝑠𝑠𝑢𝑒2
𝑎𝑔𝑒𝑛𝑡 𝑎

𝑚𝑎𝑥𝑖𝑠𝑠𝑢𝑒2
𝑎𝑔𝑒𝑛𝑡 𝑎

− 𝑚𝑖𝑛𝑖𝑠𝑠𝑢𝑒2
𝑎𝑔𝑒𝑛𝑡 𝑎 

Those two value formulas are just a computational example for how two issue values could 

be computed in a linear way; non-linear approaches could be used here too. 

The relative importance (weight) of each issue 𝑗 for agent 𝑖 is defined as 𝑤𝑗
𝑖 with ∑ 𝑤𝑗

𝑖
1≤𝑗≤𝑛 =

1     ∀𝑖 ∈ {𝑎, 𝑏} (normalized). The offer valuation for agent 𝑖  can be computed as a linear 

combination of each issue's value considering their respective importance (weight): 

𝑉𝑖(𝑥) = ∑ 𝑤𝑗
𝑖𝑉𝑗

𝑖(𝑥𝑗)

1≤𝑗≤𝑛

 

As an example, let us consider two functional agents, a seller agent 𝑠 and two buyer agents 

𝑏1, 𝑏2 and a multi-issue object under negotiation. The seller agent 𝑠 wants to delegate a task 

                                                           
85 Faratin P. et al. (1998): p.160 
86 Faratin P. et al. (1998): pp.163 
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(e.g. production of a certain good) under a certain price (𝑥𝑝𝑟𝑖𝑐𝑒) and at a certain deadline 

( 𝑥𝑝𝑟𝑜𝑑.𝑑𝑎𝑦𝑠 ). The reservation prices for the agent with respect to the issues is 

[𝑚𝑖𝑛𝑝𝑟𝑖𝑐𝑒
𝑠 , 𝑚𝑎𝑥𝑝𝑟𝑖𝑐𝑒

𝑠 ] = [10, 20]  and [𝑚𝑖𝑛𝑝𝑟𝑜𝑑.𝑑𝑎𝑦𝑠
𝑠 , 𝑚𝑎𝑥𝑝𝑟𝑜𝑑.𝑑𝑎𝑦𝑠

𝑠 ] = [1, 3] . We also take into 

consideration different issue weights assuming that the number of days for completing the 

task is more important than the price with the weight range [𝑤𝑝𝑟𝑖𝑐𝑒
𝑠 , 𝑤𝑝𝑟𝑜𝑑.𝑑𝑎𝑦𝑠

𝑠 ] = [0.3, 0.7]. 

The agent 𝑠 now receives from the two buyer agents the offers [18, 3] and [15, 2]. Thus, the 

value for the price offer from agent 𝑏1 is (
18−10

20−10
) = 0.8 and the value of the price offer from 𝑏2, 

respectively, is (
15−10

20−10
) = 0.5. Computing the value for the production time offers, 𝑏1's offer 

yields  1 − (
3−1

3−1
) = 0 and  𝑏2's offer yields  1 − (

2−1

3−1
) = 0.5. The total value of the offered 

contract from b1 is hence 𝑉𝑏1(𝑥) =  0.3 ∗ 0.8 + 0.7 ∗ 0 = 0.24 and from b2 𝑉𝑏2(𝑥) =  0.3 ∗ 0.5 +

0.7 ∗ 0.5 = 0.5 . Assuming that the seller agent wants to maximize its utility, it therefore 

chooses  b2's offer and rejects b1's offer.87 

Typically, the search for an agreement can last several rounds and does not necessarily 

need to end in an agreement. At the end of each round, the proposing agents give their final 

offer to the receiving agent who weights the best alternative offer and either accepts an offer 

ending the negotiation process or rejects both offers and asks for new proposals. Depending 

on the negotiation protocol, the receiving agent could additionally make a counter-offer to 

facilitate the search for an agreement. In a service-oriented negotiation, counter-offers could 

be changes in issue weights, so that the proposing agents can find an offer that is in the 

acceptable range of the receiving agent much faster. 

By introducing a time indicator, we can make the service-oriented approach time dependent 

and, thus, implement several negotiation rounds in the search process. The vector of values 

a proposing agent 𝑎 sends to the receiving agent 𝑏 at time 𝑡𝑘  𝑤𝑖𝑡ℎ 𝑘 ∈ 1 … 𝑇 (number of days; 

𝑡1 = 0) is defined as  𝑥𝑎→𝑏
𝑡 . The negotiation process remains active if the current proposal is 

neither accepted nor rejected at the time 𝑡′  when the evaluation is done, 𝑥𝑎↔𝑏
𝑡′ ∉

{𝑎𝑐𝑐𝑒𝑝𝑡, 𝑟𝑒𝑗𝑒𝑐𝑡}.88 

When agent 𝑎 receives an offer at time 𝑡 from agent 𝑏, 𝑥𝑏→𝑎
𝑡 , it rates the respective offer 

using its scoring function. If the value of 𝑉𝑎(𝑥𝑏→𝑎
𝑡 ) is greater than the value of the counter-

offer agent 𝑎 could offer at time 𝑡′, 𝑥𝑎→𝑏
𝑡′  with 𝑡 ′ > 𝑡, then agent 𝑎 accepts. Otherwise, agent 𝑎 

                                                           
87 Faratin P. et al. (1998): pp.163 
88 Faratin P. et al. (1998): pp.165 
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makes a counter-proposal. The interpretation of the proposing agents' offer at time 𝑡′ can be 

defined more formally:89 

𝐼𝑎(𝑡 ′, 𝑥𝑏→𝑎
𝑡 ) = {

𝑟𝑒𝑗𝑒𝑐𝑡  
𝑎𝑐𝑐𝑒𝑝𝑡    

𝑥𝑎→𝑏
𝑡′      

 𝑖𝑓 𝑡 ′ >  𝑡𝑚𝑎𝑥
𝑎                         

𝑖𝑓 𝑉𝑎(𝑥𝑏→𝑎
𝑡 ) ≥ 𝑉𝑎(𝑥𝑎→𝑏

𝑡′ )

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                            

, where 𝑡𝑚𝑎𝑥
𝑎  is a constant representing 

the time by which agent 𝑎 wants the negotiation to end, and 𝑥𝑎→𝑏
𝑡′  is the counter-offer of 

agent 𝑎 to agent 𝑏 at time of evaluation. In case of two proposing agents, the receiving agent 

𝑎 first evaluates both offers and, if both offers are unacceptable, makes a counter-proposal to 

each agent, which they can accept, reject or counter-propose to. 

In order to create counter-offers, agents use tactics that generate new values for each issue 

of the object under negotiation. Faratin P. et al. (1998) proposed mathematical definitions for 

a number of tactics that are suitable for service-oriented negotiation, e.g. time dependent 

tactics in which the remaining negotiation time directly influences the next offer's value, 

behaviour dependent tactics in which the next offer depends on the previous offer made by 

the opponent negotiator (thereby, different imitation computations can be performed), 

dynamic deadline tactics in which an increasing number of agents entering the negotiation 

rounds increase the time interval available to reach an agreement (i.e. the more proposing 

agents there are, the lower the pressure for the receiving agent to reach an agreement) or 

resource dependent tactics which generate counter-offers based on how a particular 

resource (e.g. money) is being used up.90 

Finding the right negotiation behaviour with respect to the rate of approach to the reservation 

price of an opponent is crucial to the success of the multi-agent setting. Faratin P. et al. 

conclude that time dependent tactics are most useful in environments with long deadlines 

when the approach rate to reservation is generally low, while resource dependent tactics are 

overall more successful in environments with high communication costs and perform 

generally better than time dependent negotiation. Their findings also show that a faster rate 

of approach from the initial offer to the reservation price generally yields worse solutions, 

because a lower range of offers is being selected until a deadline is reached.91 

  

                                                           
89 Faratin P. et al. (1998): pp.165-166 
90 Faratin P. et al. (1998): pp.168-170 
91 Faratin P. et al. (1998): pp.171-180 
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4 Agent-based Optimization 

Different from a centralized optimization problem in which a sole central agent coordinates 

the actions of a group of (non-autonomous) agents in an environment, multi-agent problems 

are typically distributed (decentralized) problems in which both inter-agent and intra-agent 

optimization methods are applied. Inter-agent optimization, thereby, refers to a global 

evaluation of the whole negotiation process. Inter-agent optimization is insofar important 

because the solution obtained is evaluated according to its stability. An unstable solution can 

hinder sustainable success of the multi-agent system (because agents are likely to deviate 

from an agreement) and, thus, a negotiation should not terminate at an unstable solution. 

Depending on the evaluation approach, a solution stability is evaluated by using some 

convergence criteria. The inter-agent optimization is typically done by an environmental 

central agent, such as a mediator or information agent. Intra-agent optimization, on the other 

hand, is an optimization of proposal generation taking into account each agent's own goals, 

local constraints and strategy that are private information and as such unknown to all other 

agents. 

Technically, there are two possible ways to model decentralized multi-agent optimization: in 

the first way, an optimization technique is applied to the problem, which solution is then re-

planed by the autonomous agents. In this approach, the optimization problem is considered a 

social welfare maximization problem within a society of agents92. In a second approach, each 

agent employs optimization rules internally, followed by agent-based modelling ABM. ABM 

is about building a multiple agent structure and simulating the local interaction among agents 

to visualize and quantify the properties of a [complex] system that emerge from collective 

behaviour. There are different types of agent interactions with its neighbourhood: agents can 

interact freely (continuous movements) in the system, they can be connected via a grid of 

local neighbourhoods, or they can interact within a static or dynamic network, or move over 

Geographical Information Systems (see Figure 7). ABM, thus, connects the agent behaviour 

with the system architecture and allows the network to be tested under different uncertainty 

scenarios. In contrast to other modelling approaches, agent-based modelling happens 

through the agent's perspective.93 

                                                           
92 Kalina P. (2014): p.21 
93 Afshari H. et al. (2014): p.652; Macal C. and North M. (2006): pp.2-24; Bandini S. et al. (2009): online 
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Figure 7: Agent Interaction Topologies of how agents can be connected with their neighbourhood94 

 

Agent-based modelling consists of the following components95: 

(i) a set of autonomous, heterogeneous agents (rules of behaviour) 

(ii) defined agent relationships and interactions 

(iii) a framework for simulation (typically provided by a toolkit like Repast (Java), NetLogo, 

MASON, AnyLogic (Java) or Arena Simulation, just to name a few; an abstract of specific 

tools used in simulation practice are shown in Figure 8 and are structured by model simplicity 

and scope of simulation) 

Figure 8: ABMS toolkits used in practice as illustrated by Macal C. and North M. (2006) 

 

As mentioned before, an alternative for modelling and simulating agent-based networks is to 

formulate a multi-agent optimization problem as a social welfare maximization problem. 

The specific optimization problem, thereby, turns into a problem of aggregate social 

preferences and the determination of the most optimal social states (e.g. equilibrium, Pareto 

optimality). The solving methods can range from methodologies based in social choice 

                                                           
94 Macal C. and North M. (2006): p.10 
95 Macal C. and North M. (2006): p.24 
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theory (e.g. auction, negotiation mechanisms) to traditional optimization techniques (e.g. LP, 

heuristics).96 

As already mentioned in the second chapter, the goal of multi-agent optimization is, on the 

one hand, to find a solution such that multiple, possibly conflicting agents can reach some 

overall preferred joint state, and, on the other hand, to address the dynamic structure that 

such systems typically employ. The most widely used formalisms in multi-agent optimization 

can be summarized as follows and are further described in greater detail in the subchapters 

below97: 

- STRIPS Planning: the classical planning approach, referred to as STRIPS, is an 

automated planning formalism that uses predicate logics to generate and explore a state-

space by sequentially applying a set of actions on a preceding condition to reach a desirable 

situation. Starting from an initial condition, each action involves a preceding and a result 

outcome that are part of a set of efficient plans aimed at reaching a set of goal states. 

- Constraint Programming: this formal approach in multi-agent optimization is employed 

when a set of agents with specific constraints must cooperate on a collective problem. The 

search space is the specific problem being solved, formalized as a set of variables with each 

of the variables being owned by a single agent, and their domains and relations are 

expressed as constraints (feasible set). The function of these variables is the objective that 

describes the system performance. The goal is to find an assignment for the variables such 

that all constraints are satisfied and the value of the objective function is maximized. 

Thereby, each agent autonomously decides on the value of its own variables concerning its 

sub-problem (local constraints), following some protocol that combines the agents' local 

problem solving with communication approaches among the agents. 

- Belief-Desires-Intentions (BDI) Architecture: this method combines logics with the 

mental states of the agents (the beliefs, desires and intentions), whereby this architecture 

allows the agent to periodically update information (local knowledge) of the other members' 

mental states (beliefs), its long-term goals (desires) and the temporal states that the agent 

commits to achieve (intentions).  

- Markov Decision Processes (MDPs): MDPs are used to model continuous learning in the 

network. Thereby, for each state and possible action, a reward is defined that is associated 

with the action in a specific state. Every strategy (policy) may lead to a different reward and 

every action performed adds up to the agent's overall utility. The optimization problem is to 

                                                           
96 Kalina P. (2014): p.22 
97 Kalina P. (2014): p.25-31 
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select a sequence of actions that maximizes the accumulate reward. Typically, the transition 

states employed are described as [state-]conditional probabilities. 

4.1 STRIPS Planning 

STRIPS is a formal language derived from central planning that can be used in a multi-agent 

planning problem. There are numerous literature examples on problem statements with 

STRIPS implementation. In this subchapter, the formalisms of STRIPS is defined given an 

example of a collaborative MA-planning that allows for private information as proposed by 

Brafman R. I. and Domshlak C. (2013). 

Every planning task in MA-STRIPS is given by a quadruple 〈𝑃, {𝐴}𝑖=1
𝑘 , 𝐼, 𝐺〉 where 𝑘 is the 

number of agents,  𝑃 is a finite set of atoms (propositions or facts like true or false), 𝐴𝑖 is the 

set of actions that can be performed by an agent 𝑖, 𝐼 ⊆ 𝑃 is the initial state of the system, and 

𝐺 ⊆ 𝑃 is the goal condition(s). Additionally, each action 𝑎𝜖𝐴 is given by a triplet of subsets of 

𝑃, 〈𝑝𝑟𝑒(𝑎), 𝑎𝑑𝑑(𝑎), 𝑑𝑒𝑙(𝑎)〉, which define the preconditions, add effects, and delete effects of 

each action.98 

The planning semantics of STRIPS can be described as follows: action 𝑎 can be applied in a 

state 𝑠 ⊆ 𝑃  iff 𝑝𝑟𝑒(𝑎) ⊆ 𝑠 . In doing so, the system is transformed to state (𝑠\𝑑𝑒𝑙(𝑎)) ∪

𝑎𝑑𝑑(𝑎), denoted as 𝑠⟦𝑎⟧. Sequential application of the respectively applicable actions 𝑎𝑖=1,..,𝑘 

starting at state 𝑠 is denoted as 𝑠⟦〈𝑎1, … , 𝑎𝑘〉⟧. Iff 𝐺 ⊆ 𝐼⟦〈𝑎1, … , 𝑎𝑘〉⟧, then the action sequence 

is considered a plan.99 

To give an example, let's assume a set of packages that should be moved on a roadmap 

from an initial location to a target location using a given fleet of vehicles. Each package 

location on the map and in the vehicles is associated by an atom, so is each vehicle location 

on the map. The possible actions with the respective parameters are 

𝑚𝑜𝑣𝑒(𝑣𝑒ℎ𝑖𝑐𝑙𝑒, 𝑜𝑟𝑖𝑔𝑖𝑛, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛) ,  𝑙𝑜𝑎𝑑(𝑝𝑎𝑐𝑘𝑎𝑔𝑒, 𝑣𝑒ℎ𝑖𝑐𝑙𝑒, 𝑎𝑡 − 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) , and 𝑢𝑛𝑙𝑜𝑎𝑑(… ) . 

Each vehicle is represented by an agent. Figure 9 (a) illustrates the example using four 

agents (cars 𝑐1, 𝑐2, 𝑐3 and truck 𝑡𝑟). The truck agent can only move between the locations D 

and E, and the cars can only move outside the connection line D-E. The packages can be 

loaded and unloaded at any accessible location, except for location D in which packages can 

only be unloaded. Figure 9 (b) depicts the agent interaction graph (directed graph) that 

shows the dependencies of such a problem on the agents. For each agent 𝜑𝑖𝜖Φ, the set of 

all atoms affected by and/or affecting the actions of an agent is denoted as 𝑃𝑖 =

                                                           
98 Brafman R. I. and Domshlak C. (2013): p.54; Fikes R.E. and Nilsson N.J. (1971): p.197 
99 Brafman R. I. and Domshlak C. (2013): p.54 
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⋃ 𝑝𝑟𝑒(𝑎) ∪ a𝑑𝑑(𝑎) ∪ 𝑑𝑒𝑙(𝑎) 𝑎𝜖𝐴𝑖
. Private information or other disjoint information that are not 

affected by other agents' actions are considered internal atoms, referring to the subsets 

𝑃𝑖
𝑖𝑛𝑡 = 𝑃𝑖\ ⋃ 𝑃𝑗𝜑𝑖𝜖Φ{𝜑𝑖} . Atoms not internal to an agent are public atoms (i.e. information 

available to every agent), denoted as 𝑃𝑖
𝑝𝑢𝑏

= 𝑃𝑖\𝑃𝑖
𝑖𝑛𝑡. In the graph (b), all agent locations are 

private atoms to the respective agents, while (see (a)) 𝑎𝑡(𝑝2, 𝐹) and 𝑎𝑡(𝑝2, 𝐺) are package 

locations only private to agent 𝑐3.  An agent's actions can be defined by its internal (here, 

move) and public (here, load and unload) actions in the partition set 𝐴𝑖 = 𝐴𝑖
𝑖𝑛𝑡 ∪ 𝐴𝑖

𝑝𝑢𝑏
.100 

Figure 9: example as depicted from Brafman R. I. and Domshlak C. (2013), based on the transport 
planning task from Helmert M. (2009) 

 

A propositional representation of the MA-STRIPS transportation-planning task as shown in 

the interaction graph in Figure 9 is derived from Helmert M. (2009). In Figure 10 the states 

are represented as sets of atomic propositions, and operators are given in terms of 

preconditions (which proposition must be true for the operator to be applicable), true-

propositions (which atoms the operator makes true; ADD effects), and false-propositions 

(which atoms it makes false; DEL[ETE] effects).101 

                                                           
100 Brafman R. I. and Domshlak C. (2013): pp.55-56 
101 Helmert M. (2009): pp.504-505 
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Figure 10: The STRIPS representation of the transportation planning task using binary variables (atoms ∈
{𝟎 = 𝒇𝒂𝒍𝒔𝒆, 𝟏 = 𝒕𝒓𝒖𝒆}) as illustrated by Helmert M. (2009) and as presented in the interaction graph in 

Figure 9. The notation is read as follows: 𝒂𝒕 − 𝒑𝟏 − 𝒂 states that the first package (p1) is at location a, 𝒊𝒏 −
𝒑𝟐 − 𝒕 means that the second package (p2) is currently inside the truck t   

 

So far, the STRIPS planning problem has been introduced in a single-agent framework. 

Brafman and Domshlak further proposed to consider the public actions as "coordination" 

points among the agents, in between which the agents must formulate their internal actions 

so that the goal outcome is reached. For instance, if the truck agent 𝑡 must load package 𝑝1 

in location D, than the package should be somehow brought to D in time by the car agents 

𝑐1, 𝑐2 and cannot be picked up from location D before 𝑡. Creating a globally consistent plan is 

a combination of constraint satisfaction (CSP) and planning, consisting of a coordination 

constraint (ensuring that agent performs in favour of the public actions) and an internal 

planning constraint (the agent ensures that the internal preconditions of the public actions 

can be achieved). The coordination constraint states, less formally, that if 𝑝 ∈ 𝑃𝑖
𝑝𝑢𝑏

 is a public 

precondition of 𝑎, then someone must supply 𝑝 before 𝑡 (i.e. 𝑝 ∈ 𝑎𝑑𝑑(𝑎′) and 𝑡′ < 𝑡) and no 

one destroys 𝑝  between 𝑡′  and 𝑡  (i.e. 𝑝 ∈ 𝑑𝑒𝑙(𝑎′′)  and 𝑡′ ≤ 𝑡′′ ≤ 𝑡 ). The internal planning 

constraint ensures that an assignment with action commitments is solvable. According to 

those constraints, a possible solution plan to the transportation planning problem from above, 

assuming that car 𝑐1 must perform the public actions 𝑙𝑜𝑎𝑑(𝑝1, 𝑐1, 𝐶)  and 𝑢𝑛𝑙𝑜𝑎𝑑(𝑝1, 𝑐1, 𝐷), 

would be  

〈𝑚𝑜𝑣𝑒(𝑐1, 𝐴, 𝐷), 𝑚𝑜𝑣𝑒(𝑐1, 𝐷, 𝐶), 𝑙𝑜𝑎𝑑(𝑝1, 𝑐1, 𝐶)|𝑖𝑛𝑡, 𝑚𝑜𝑣𝑒(𝑐1, 𝐶, 𝐷), 𝑢𝑛𝑙𝑜𝑎𝑑(𝑝1, 𝑐1, 𝐷)|𝑖𝑛𝑡〉.102 

                                                           
102 Brafman R. I. and Domshlak C. (2013): pp.57-58 
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4.2 Constraint Programming: An Introduction 

In distributed problem solving (DPS), a task is distributed among multiple agents whereby 

each decision variable is owned by a different agent and all agents need to cooperate to find 

a global variable assignment that meets the model constraints. Most typically, such agents 

are considered to be benevolent and they work together to solve a problem of common 

interest. A DPS system is a distributed constraint satisfaction problem (CSP) which aims 

to assign values of individual agents to a [global/central] decision variable in a way that is 

consistent with all the model constraints. Thereby, each variable has a domain and 

constraints on its values that all agents must adhere to. CSP is, however, not only used in 

clearly cooperative networks. Considering interest-based negotiation approaches in which a 

stable global solution can only be found if the agents concede to some degree to their 

opponents' interests, constraint programming is often implemented as part of the optimization 

problem. A typical example of a DPS situation are sensor networks which consist of multiple 

processing units, whereby each unit has limited processing power, limited power supply and 

local sensor capabilities. Sensor networks are used, for instance, to monitor environmental 

systems like humidity, temperature and pressure in an office, and they aim to provide global 

service while being limited to monitoring its local area and, thus, require cooperation among 

the individual processing units. The algorithm used by the individual sensors must be, 

therefore, designed in a way that the neighbouring sensors can effectively communicate and 

the centre can put together the individual sensors' inputs to achieve a global picture 

(output).103  

Basic algorithms that can be implemented in a DPS situation are domain-pruning algorithms 

and heuristic search algorithms. In the former algorithms, agents communicate with their 

neighbouring agents in order to eliminate values from their domain. That can happen through 

a filtering algorithm in which agents communicate their domain to their neighbours and 

eliminate the values from their domain that are inconsistent with the values received from the 

neighbours until there is only one value left in each domain or no conclusive solution can be 

found. In the heuristic search algorithm, each agent searches the space of possible 

assignments that are consistent with their neighbours' domain values and informs the 

neighbours in case a value in the domain is consistent. Thereby, the variables 𝑥𝑖 are ordered 

and the set values assigned to those ordered variables 𝑣𝑖 are being compared recursively to 

a domain value 𝑣𝑗 (the rules of a recursive, backtracking approach are shown in Figure 11). If 

the domain value is consistent with the set of values assigned to the variables, then the 

process starts for a new variable, until all variables have one solution assigned to them. 

Those straightforward algorithms can further be expanded to include more complex features. 

                                                           
103 Shoham Y. and Leyton-Brown K. (2009): pp.1-3 
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Shoham Y. and Leyton-Brown K. (2009) introduce a combination and expansion of those two 

DPS algorithms, the asynchronous backtracking with dynamic link, which uses 

characteristics of both algorithms such as global total ordering on agents and an order-based 

message-passing protocol to distribute their local information to meet global constraints.104 

Figure 11: recursive search through the space of possible assignments using backtracking. Backtracking 
can be implemented in different ways like, for instance, by removing the assignments in reverse 

chronological order105 

 

As already mentioned before, a main prerequisite and advantage of MAS is the ability to 

divide the problem into smaller subtasks (sub-problems). Assigning control of subtasks to 

different agents makes the problem easier and faster to be solved. The sub-problem can be, 

thereby, solved only once and stored for future interaction. The method of dividing a complex 

problem into simpler sub-problems to be solved, whereby each sub-problem's solution is 

being stored, is referred to as dynamic programming or dynamic optimization. Dynamic 

programming techniques and reinforcement learning algorithms as related area are often 

used in theoretical implementations of MAS in combination with CSPs. The lack of practical 

evidence does not allow for the analysis of dynamic programming techniques in real-life 

applications, but following the flexibility, learning ability and usefulness of dynamic 

programming techniques as well as its continuous research for MAS applications 106 , it 

appears to be a suitable communication approach in a multi-agent setting. 

4.3 BDI Architecture 

A Belief-Desire-Intention (BDI) architecture has been widely used to design agents that can 

perform complex reasoning. One widely used BDI framework is the Procedural Reasoning 

System that consists of three steps: (1) the agent collects information about its environment 

(perception phase; belief formation), (2) a central interpreter helps the agent to select an 

appropriate action for its goals (planning phase; desire formation), and (3) the agent acts or 

reacts (execution phase of an intention)107. In recent years, an emotion-transition component 

                                                           
104 Shoham Y. and Leyton-Brown K. (2009): pp.3-5 
105 Shoham Y. and Leyton-Brown K. (2009): p.9 
106 Yokoo M. and Suzuki K. (2002); Csáji B. C. and L. Monostori (2005); Valenti J. (2007); Shoham Y. and Leyton-
Brown K. (2009); Wu F. et al. (2010) 
107 Caillou P. et al. (2015): p.3 
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was added to such agents making artificial intelligent agents capable of expressing emotions 

during their interaction108. 

A BDI architecture can be described using the following example of a simple task allocation 

problem with three types of agents, several task performing agents (TAs), a task allocation 

agent (AA), a resource agent (RA), and homogeneous tasks. The TA has the general desire 

to find a task. In order to do so, the TA looks for an AA that has a task to assign (it plans to 

find a task). When it finds an AA with who the skills and capabilities match the task's 

requirements, the TA forms a new belief about finding the necessary resources to fulfil the 

task. Its new desire is to find an RA that offers the resources it needs at a reasonable 

condition (e.g. considering budgetary or timely constraints). When the TA finds an RA with 

available resources, it selects the new intention of requesting the resources needed. The 

new plan for the intention could be, for instance, to reallocate an existing set of tasks so that 

it can be assigned the resources, or the agent plans to persuade the RA by outbidding the 

other TAs.109 An example of a BDI framework and simulation of a land-use model is provided 

by Caillou P. et al. (2015) which can be adapted to work for facility location models as well. 

A BDI agent consists of a knowledge set, that is the beliefs (describable as a binary 

predicate such as availableTask(true,(atTimeResource :: (start=x, duration=y)))), desires 

(including priority values that are used to select a new intention and are formulated similarly 

to beliefs), intensions, and a behaviour set, that is the set of plans that guides the 

behaviour to reach a specific desire (e.g. goToPosition or selectPriority).110 

4.4 Markov Decision Processes 

Markov Decision Processes (MDPs) are employed to solve sequential decision making 

problems under uncertainty, with the use of transition probabilities. Using multi-agent MDPs 

(MMDPs), however, the complexity level of state-transition descriptions can become quite 

problematic for which reason a sophisticated approach to multi-agent MDPs (MMDPs) is 

neither described here, nor further dealt with in the subsequent contents. For the sake of 

completeness, MMDPs are formulated in their simplest setting, that is, we assume that the 

probabilities of transition are known and that individual agents in the multi-agent framework 

have all the same payoff function. Under unknown probabilities, some reinforcement learning 

algorithms can be additionally employed to transition simulations.  

                                                           
108 Puica M.-A. and Florea A.-M. (2013): pp.1ff 
109 based on the Chopper-Fire example of Caillou P. et al. (2015): p.4 
110 Caillou P. et al. (2015): p.5 
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In a single-agent setting, MDPs are defined as the tuple 〈𝑆, 𝐴, 𝑃𝑟, 𝑅〉 where 𝑆 is the finite set 

of states, 𝐴 is the finite set of actions, 𝑃𝑟: 𝑆 × 𝐴 × 𝑆 ↦ [0,1] denotes a transition probability 

function of moving from state 𝑠𝜖𝑆 to state 𝑠′ ∈ 𝑆 when action 𝑎 ∈ 𝐴 is performed, and 𝑅: 𝑆 ↦

ℝ is the reward function.111 

Given a policy (i.e. a probability distribution over the agent's action for any state 𝑠) 𝜋(𝑠): 𝑆 ↦

𝐴 and a starting state 𝑠𝑜, we can describe the expected value (utility; reward) function as a 

linear function:  

𝑉𝜋(𝑠) = 𝑅(𝑠) + 𝛽 ∗ ∑ 𝑃𝑟(𝑠, 𝜋(𝑠), 𝑠 ′ )𝑉𝜋(𝑠 ′ )𝑠′𝜖𝑆 , ∀𝑠 ∈ 𝑆 

𝑉𝜋(𝑠𝑜)  describes the utility of the starting state. The objective is to find a policy that 

maximizes the value function.112 

Mathematically, 𝑃𝑟(𝑠, 𝜋(𝑠), 𝑠 ′ ) is described as the conditional probability function that state 𝑠 ′ 

is reached after taking action 𝜋 in a previous state 𝑠, denoted as 𝑃(𝑠 ′|𝑠, 𝜋(𝑠)).113 

In a multi-agent setting, we typically have multiple agents, each with their own set of actions 

and tasks to be solved. We assume here that the problem is fully cooperative, hence, all 

agents aim to maximize the utility of a system state (joint utility function) rather than their own 

goals. In a MMDP, an action that is performed at any state consists of the individual action 

components done by the agents involved. Boutilier C. (1996) described MMDPs as an n-

person stochastic [repeated] game in which the payoff function is the same for all agents. 

Because of the joint utility function, the collection of agents can be considered a single agent, 

which results in the above formulation of a joint MDP. That is, MMDP can be described as a 

tuple 〈𝑆, 𝛼, {𝐴𝑖}𝑖𝜖𝛼 , 𝑃𝑟, 𝑅〉 where 𝑆 is the finite set of states, 𝛼 is the finite set of agents, 𝐴𝑖 is 

the finite set of actions available to agent 𝑖 , 𝑃𝑟: 𝑆 × 𝐴1 × … × 𝐴𝑛 × 𝑆 ↦ [0,1] is a transition 

function that describes the probability of a transition from state 𝑠 to state 𝑠′ given a joint 

action 𝑎 ∈ 𝐴 =×𝑖∈𝛼 𝐴𝑖 , and 𝑅(𝑠): 𝑆 ↦ ℝ  is the expected reward function received by the 

agents at state 𝑠. A stationary individual policy of agent 𝑖 is denoted as  𝜋𝑖(𝑠): 𝑆 ↦ 𝐴𝑖, the 

value function as described above. The joint policy is denoted as {𝜋𝑖}𝑖𝜖𝛼 that is the set of 

individual policies mapped into joint actions. In case a state 𝑠 is weakly dependent for agent 

𝑖, there is more than one individual optimal action choice for agent 𝑖 to take at state 𝑠.114 

 

                                                           
111 Chadès I. and Bouteiller B. (2005): p.1595 
112 Chadès I. and Bouteiller B. (2005): p.1595 
113 Guestrin C. et al. (2001): p.4 
114 Boutilier C. (1996): pp.4-5 
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5 Literature Research: MAS in Logistics 

This chapter describes various literature frameworks of multi-agent automation techniques 

for different logistic applications. Thereby, the focus lies on the negotiation models 

implemented and the agent optimization used. So far, the literature implementations are 

mostly theoretical and a comparison between the decentralized approach implemented and a 

state-of-the-art centralized counterpart is, if existent, purely descriptive and based on time 

performance comparison, rather than on the solution quality. In some cases, a significant 

solution comparison might even be barely possible, as decentralized frameworks yield local 

optima under criteria that are difficult to be objectively replicated for a centralized system. 

The existing comparison points out the time complexity of multi-agent settings, which 

typically place the solution quality at a trade-off for a faster computation (i.e. the faster the 

system must be, the worse the solution becomes). The benefit of MAS lies, as altogether 

pointed out by the literature research, in the recognition of the environmental dynamic 

structures (i.e. autonomous agents react faster than a sole central agent, both in an open 

environment and in case of changes in closed structures). At the same time, MAS facilitates 

the implementation of distributed systems that typically serve a self-purpose while profiting 

the superordinate structure.  

5.1    MAS in general logistic frameworks 

A prominent general framework by Chen Y. et al. (1999) uses the Contract Net as introduced 

in chapter 2.3.2 by R.G. Smith (1980) for supply chain management using two types of 

functional agents, the information agent and the role agent. The functional agents transfer 

information, share knowledge and negotiate with each other using an extension of the 

modelling language P/T net. The predefined (fixed) number of information agents interact 

with the entire supply chain system, filtering relevant system information for a potential 

negotiation process and informing the role agents about the potential negotiation partners 

and their preferences. The role agent is related to a certain good and implements a special 

role of the supply chain. Despite the information agents, other system components are not 

fixed and by leaving or entering the supply chain, the functional agents have to notify an 

information agent. When a buyer agent looks for a cooperation partner, it communicates with 

the information agent about the potential sellers and then negotiate with the seller agents 

directly to find the most suitable seller partner concerning the respective constraints of the 

order. The negotiation process uses a limited number of negotiation protocols with 

predefined agent responses. The negotiation can take place between two functional agents 

(pair-wise negotiation protocol) and third party involvement (auction). Table 1 gives a 

summary of the possible actions a functional agent can take when a certain message from 
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another agent comes in. In a third party involvement, the negotiation protocol follows an 

auction strategy including an additional BID-message through which INFORM-messages 

between the seller agent and the auctioneer are being transferred (the seller agent informs 

the auctioneer of what it wants to sell and the auctioneer informs the seller agent of the 

auction result). Figure 12 illustrates the third party negotiation scenario (auction) which is an 

extension of the pair-wise negotiation protocol using an additional intermediary agent 

(auctioneer) who carries out the negotiation with all the involved bidders (buyer agents).  

There are several drawbacks to this descriptive framework (note: no computation was 

provided), such as the assumed closed environment and complete information of the 

negotiation process.  

Table 1: pair-wise negotiation strategies and expected response as illustrated in Chen Y. et al. 

(1999)115 

 

Figure 12: auction strategy proposed by Chen Y. et al. (1999) using pair-wise negotiation rules in 
accordance to the FIPA ACL 

 

Auctions in some form have been widely used in distributed problem solving methods in MAS 

literature. A practically relevant example of a decentralized task allocation method using 

auction-based negotiation in the logistics domain was provided by Hoogendoorn M. et al. 

(2007). According to their architecture, agents distribute tasks via first-price reverse 

                                                           
115 Chen Y. et al. (1999): p.3 
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combinatorial auctions with time windows and precedence constraints in a setting in which 

limited information are shared. Their framework considers two bidding strategies: in the first 

strategy, the agents only bid on tasks that are closely related to their current tasks, while in 

the second strategy they bid randomly. The empirical evaluation of their proposed system 

using the Iterative Deepening algorithm for bid evaluation showed a deviation from optimum 

between 1,008 (for 1 task) and 1,038 (for 10 tasks) for the first bidding strategy, whereby the 

solution deviation did not significantly increase for a high number of tasks to be allocated in 

the system. Their findings showed that distance measures in the bid evaluation is crucial to 

creating an auction-based MAS framework that is close to optimum. 

When it comes to managing the efficiency of workflows, defect analysis becomes a crucial 

part of logistics. Kaplanoglu V. et al. presented, 2014, a theoretical approach to automatically 

dealing with breakdowns of automated guided vehicles AGV (machinery) in manufacturing 

systems (production logistics), a framework that could likely be applied under certain 

adaptations to other areas of logistics. Again, some form of auction is used in the framework 

proposed. The goal of the authors’ research was to offer an instantaneous solution to an 

AGV breakdown while the system is operating. The authors defined several agents in the 

AGV system that all interact in case a machine breaks down: the AGV resource agent, the 

AGV scheduler agents and the operation agent. When a new order comes in, the manager 

agent assigns the order to an operation agent. The operation agent then looks for proposals 

from the scheduler agent to process the new order. When a machine agent is found, the 

order agent calls for a proposal to the scheduler agent to be assigned to the machine. The 

scheduler agent, then, bargains with the resource agent to allocate resources to the order. 

While a resource agent is operating, the machine can break down. The working status of the 

resource agent would then change from "in working condition" to "broken down" and send 

the breakdown information to the scheduler agent who informs the operation agents about 

the breakdown and negotiates with them a new schedule and machine relocation. In the 

decision-making process, the scheduler agent aims to find an operation that has the 

minimum earliest loading time of operation 𝑖 (𝐸𝐿𝑇𝑖) following the formula: 

𝐸𝐿𝑇𝑖=1…𝑛 = {
𝐸𝐹𝑇 + Δt(𝑁𝐿, 𝑃𝐶𝑃𝑖=1…𝑛

𝐸𝐹𝑇 + max {Δ𝑡(𝑁𝐿, 𝑃𝐶𝑃𝑖=1…𝑛), (𝐸𝑃𝑇𝑖=1…𝑛 − 𝐸𝐹𝑇)}
𝐸𝐹𝑇 > 𝐸𝑃𝑇𝑖=1…𝑛

, 𝐸𝐹𝑇 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
) , whereby 

EFT is the earliest free time (idle), NL is the next location of the AGV resource agent, Δ𝑡 is 

the required time between the broken agent and the new agent, 𝐸𝑃𝑇𝑖=1…𝑛 is the earliest 

pickup time of the operation 𝑖, and 𝑃𝐶𝑃𝑖=1…𝑛 is the pickup point of operation 𝑖.  

Then the scheduler agent selects the operation for which 𝐸𝐿𝑇𝑠 = 𝑚𝑖𝑛{𝐸𝐿𝑇𝑖} 𝑖 = 1 … 𝑛 and 

submits a proposal to the operation agent(s) 𝑠. If there is a match between the current 

operation and the scheduler agent's proposal, the order is taken over.    
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Further literature concepts expanded the bidding framework by implementing a learning 

mechanism from rejected and accepted cooperation relationships to speed up future 

agreement attempts and evaluation mechanisms of the proposed cooperation partners.    

Such an example of a multi-agent learning mechanism is the adaptive agent relationship 

protocol in dynamic environments by Berndt J. and Herzog O. (2011). The adaptive agent 

relationship aims at dynamically establishing and coordinating social structures in a MAS 

based on observable behaviour, thus, without prior information about agent properties and 

capabilities. The dynamics of the relationship start with an agent memorizing former 

interactions of the observed others' reactions. Each memory entry 𝑚𝑒𝑚𝑖 = 〈𝑠𝑖, 𝑟𝑖〉 thereby 

consists of a tuple of messages 𝑠 from the set 𝑆 of all possible messages an agent can sent, 

and 𝑟 as the agent's observed response to the first one from the set 𝑅  of all possible 

responses to 𝑆. At time 𝑡, when the agent receives message 𝑟𝑡 , it stores it in the vector 

𝑀𝐸𝑀 = (𝑚𝑒𝑚1, … , 𝑚𝑒𝑚𝑛) with its own message 𝑠𝑡−1. In case memory is being exceeded, 

the oldest entries are being deleted. Based on the entries of the memory, an agent can 

estimate the outcome of possible activities based on the observed behaviour. The memory 

access function to estimate the probability of a specific response can be, thereby, computed 

as: 

𝑙𝑜𝑜𝑘𝑢𝑝(𝑠, 𝑟) =
𝑙(𝑠,𝑟)

∑ 𝑙(𝑠,𝑟′)𝑟′∈𝑟𝑒𝑠𝑝(𝑠)
         [1] 

with 𝑙(𝑠, 𝑟) =
𝑐

|𝑟𝑒𝑠𝑝(𝑠)|
+ ∑

𝑛+1−𝑖

𝑛
∗ {

1  𝑖𝑓 〈𝑠, 𝑟〉 = 𝑚𝑒𝑚𝑖

0     𝑒𝑙𝑠𝑒                     
𝑛
𝑖=1                    

The mapping 𝑟𝑒𝑠𝑝: 𝑆 → Ρ(𝑅)  denotes the set of all valid responses to a given message 

( 𝑟𝑒𝑠𝑝(𝑠) = {𝑟𝜖𝑅|𝑣𝑎𝑙(𝑠, 𝑟)}) , 𝑐𝜖ℝ  is a constant value that allows an agent to consider 

unobserved interactions while ruling out impossible message pairs, and the memory access 

function 𝑙𝑜𝑜𝑘𝑢𝑝: 𝑆𝑥𝑅 → [0,1]  is normalized to give estimated probability of an observed 

message pair.  

By combining [1] with a utility function for each of the responses in the memory vector given 

an agent's objective, an agent is able to estimate the expected outcome given a certain 

interaction process.  However, because the above formulation only considers exact matches 

of memory entries, it is necessary to expand the computation to include similarities between 

interactions, like differences in one negotiation issue of the multi-issue object. Thus, the 

authors defined the selection value 𝑣  for a message 𝑠  and its response 𝑟  as a function 

𝑣: 𝑆𝑥𝑅 → [0,1]  that considers the (average) neighborhood of messages 𝑠 ′ ∈ 𝑆  which are 

semantically similar to 𝑠 with their responses 𝑟 ′ ∈ 𝑅 being equivalent to 𝑟: 
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𝑣(𝑠, 𝑟) = ∑
𝑙𝑜𝑜𝑘𝑢𝑝(𝑠′,𝑟′)

|𝑛𝑏(𝑠)|𝑠′∈𝑛𝑏(𝑠)          [2] 

with 𝑟 ≡ 𝑟′ ∈ 𝑟𝑒𝑠𝑝(𝑠 ′) and 𝑛𝑏(𝑠) denoting the set of neighbouring messages to 𝑠: 

𝑛𝑏(𝑠) = {𝑠] ∪ {
∅                               𝑖𝑓 ∃𝑟 ∈ 𝑅: 〈𝑠, 𝑟〉 ∈ 𝑀𝐸𝑀

𝑠 ′: 𝑚𝑖𝑛𝑠′≠𝑠∆(𝑠, 𝑠 ′)                    𝑒𝑙𝑠𝑒                 
 

As before, the selection value is combined with a utility function in order to estimate the 

outcome of possible interactions. 

In a multi-agent setting, the message selection must happen simultaneously while interacting 

with multiple agents. Thus, the message selection is a bundled message being evaluated 

under the joint utility for a given design objective. The maximum expected outcome based on 

a set of messages is defined in the framework as: 

𝑠𝑒𝑙𝑒𝑐𝑡(𝑆) = 𝑚𝑎𝑥𝑋⊆𝑆(∑ ∑ 𝑣(𝑠, 𝑟) ∗ 𝑢𝑡𝑖𝑙(𝑠, 𝑟|𝑋))𝑟∈𝑟𝑒𝑠𝑝(𝑠)𝑠∈𝑋     [3] 

with any conditional utility function 𝑢𝑡𝑖𝑙: 𝑆𝑥𝑅𝑥𝑃(𝑆) → ℝ denoting the expected value for a 

message pair given a set of simultaneously sent bundled messages X. 

The empirical results of their adaptive agent relationship protocol demonstrated an overall 

significantly better performance to a predefined network configuration and a random 

message selection method based on optimal fulfilment rates in a dynamic environment. As 

demand changed, the quality of performance of the negotiation decreased to the level of the 

random selection method but could, contrary to a pre-defined negotiation pattern, 

significantly re-establish its utilization rate. Without environmental changes, the results even 

approximated optimal performance rates based on an order and delivery example. The 

authors concluded that implementing an adaptive agent relationship protocol could create a 

negotiation framework in an uncertain environment that is capable of re-establishing an 

efficient coordination among the negotiating agents.   

5.2    MAS in Transportation Logistics and Routing Problems 

In a paper from Davidsson P. et al. (2005), the existing research on agent-based approaches 

to transportation and traffic management was analysed through the years 1992 until year of 

publication, 2005. Their findings showed a relatively large research interest in agent-based 

systems in this domain, most likely because most transportation applications fulfil the 

characteristics below as defined by Parunak (1999) to be important criteria for an ideal 

application of agent technology: 
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 the entities involved contain well-defined set of state variables and are distinct from 

other involved entities and clearly identifiable 

 the application can work decentralized 

 the structure of the application is dynamic and changeable 

 all information about the application is not available at design phase 

 the system is strongly complex with a large number of different behaviours and 

dynamic interactions 

According to Davidsson et al., for any application, which is strongly centralized, static and 

well-structured, agent technology would not offer any value added but unnecessary 

complexity. The paper structured the agent-based technology research based on the three 

parts: domain (transport, traffic, and terminal), mode of transportation (road, rail, air, water, 

and pipeline), and the time horizon considered (operational, tactical, strategic as levels of 

decision-making). In the transport-domain, a good is being moved from A to B via either air, 

water, road or rail. Typical transport problem areas include route planning, scheduling or fleet 

management. The traffic-domain implies a flow of the different transports within a network 

(e.g. train traffic) and typical problem areas include the scheduling of traffic flow, railway slot 

allocation and traffic management. The terminal-domain is a fixed place where the transport 

is handled. Typical application areas are resource allocation and scheduling of cranes, for 

instance. Figure 13 illustrates the focus of applications in the papers surveyed by the 

authors. The graph shows that the modes of transportation applied in MAS were dominated 

by air, road and intermodal (i.e. different modes of transportation used). The widest area of 

interest lied in the traffic domain such as allocating slots for the railway network (i.e. 

timetabling), allocating transport tasks to vehicles, flights in air traffic (i.e. aircrafts choose 

their speed and path in real-time), and traffic management to avoid congestion of roads. 

Figure 14 further illustrates the number of literature in which MAS frameworks were 

introduced in a varying degree of decentralization and automation. According to the analyses 

done by the authors, the main advantages for the use of MAS as mentioned by the papers 

surveyed is the distribution of control, the ability to cope with noisy data and to model 

complex, dynamic problems. However, only half of the projects surveyed used a dynamic 

MAS structure and the main application area of MAS was still in decision-support rather than 

a decentralized automation system. The authors also found in their selection of research 

papers a lack of evaluation comparison between the current or alternative approaches and 

the agent-based application. Two third of the approaches surveyed had a strictly theoretical 

implementation of the agent-based system without further evaluation comparison. Only 5 out 

of 56 papers included a quantitative comparison with the use of simulation. 
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Figure 13: the distribution of domain and transport mode, according to the extensive survey on MAS 

applications in transport logistics done from 1992-2005 by Davidsson P. et al. (2005) 

 

Figure 14: MAS characteristics in transport logistics’ research papers according to Davidsson P. et al. 
(2005). Left: the number of approaches on decision-support systems; right: the number of approaches on 
automation systems 

  
 

Half a decade later, newer MAS applications in transport logistics become more 

sophisticated and focused on a quantitative evaluation. One example framework was 

proposed by Robu V. et al. in 2011, an auction-based multi-agent platform for loads 

allocation in transportation logistics that allowed the comparison and evaluation of automated 

trading strategies and was used as a prototype for VOS Logistics. In their framework, one 

depot serves several destinations in one foreign country and all orders have to be delivered 

by a certain deadline. The platform then lists orders (loads) sequentially based on their lead-

time (difference in days between the time of placing the order online and the delivery 

deadline) and auctions loads to a predefined number of different shipping companies. In the 

auction protocol, when an order appears in the platform, all bidders (carrier-companies) are 

informed and can make offers. If 𝑏𝑖𝑑𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑖
 > 𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑖𝑐𝑒𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑒𝑒𝑟 for an 𝑖, the offer is 

rejected and the carrier can bid again. If a bid is accepted, all carriers are informed and a 

new load offer is being auctioned. While the auction process is straightforward, the actual 

difficulty lies in how well the carriers form profitable bundles of loads. This requires all 

carriers to compute a cost model for each combination of loads they aim to win in the 

auction, containing both fixed costs and variable costs (proportional to the distance 

travelled). Additionally, the carrier planning must take into account several constraints such 

as, for example, capacity constraints for the mode of transportation used and any legal 
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constraints (max. working hours for the drivers). Thus, the carriers participating in the auction 

process at time 𝑡 must each compute an optimal route (the given framework used insertion 

heuristic) prior to offering a bidding price for an auctioned load in order to derive a 

competitive selling price. This computations are repeated for the other loads being auctioned 

at time 𝑡 + 1, 𝑡 + 2, … considering the new bundle of loads and the new intermediary stops on 

the currently planned route under the set of given constraints. The bidding platform was not 

tested on empirical data, but transportation planners of VOS Logistics were to bid against the 

intelligent agents and the authors concluded with the following findings: first, the bidding 

support was considered to be helpful for transportation planners and could at times 

outperform the planners' decision; and second, using automated bidding agents has the 

potential to stabilize market prices and influence their convergence to realistic levels.   

The work of Feng F. et al. (2015) used the concept of dynamic cooperative relationships in a 

large-scale automating transport plan protocol by building three modules inside the software 

agents used that assist dynamic negotiation behaviours. The agents are thereby defined by 

their task-divisions and include: the barge agent (BA) that negotiates with the terminal agent 

(TA) to find available time slots and cooperate with the decision-making (DMA) to assess 

schedule performance; the TA that receives and processes time requests from different BAs 

and looks for time slots; the DMA analyses the feasibility of the schedule and, if needed, 

initiates a new negotiation round; and the supervisor agent (SA) monitors system status and 

agents behaviour. The three modules for cooperative agent relationships are the computing 

engine that performs relevant task computations (e.g. task sequence), the negotiation engine 

that translates the incoming messages, and the intelligent engine that aims to make the 

agents adaptive to their environment, similar to the functionality of Robu et al.'s framework on 

adaptive agent relationships mentioned before. They implemented their framework on a 

hinterland barge transport plan, an example for a large-scale complex logistics system 

characterized by low communication and lack of coordination. Traditionally, a barge is 

scheduled in advanced to a free terminal and remains fixed throughout the plan. Thus, the 

traditional approach follows a strictly time-ordered sequence. The example data of the 

authors included six barges for containers to load and unload in eight terminals following a 

normal distribution. Their findings showed that the intelligent agent system found the best 

route with less waiting time (by 65% lower) and better turnaround time (by 30% faster) than 

the traditional planning approach.  

5.3    MAS in Task Allocation and Scheduling Problems 

Task allocation and scheduling problems deal with the division of a problem into precedence-

constrained sub-problems and their allocation to other agents so that the completion time is 
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minimized. The amount of time invested typically involves the execution delay of a service, 

the job release times with respect to any precedence jobs as well as communication delays 

between agents. Much of the literature work presented for task allocation and scheduling 

problems in MAS is based on multiprocessor scheduling theory that deals with optimally 

allocating a set of agents (or machines) to complete a set of tasks over time. The majority of 

literature on such problem settings involve heuristics that are problem specific and, thus, do 

not work best for every problem instance.116 

Nouyan S. et al. (2005) proposed a classification of dynamic task allocation and scheduling 

problems into the two subsets of market-based approach and insect-based approach. The 

market-based approach is typically used for coordinating asynchronous scheduling 

operations under imperfect information and the decision process is based on a decentralized 

bidding mechanism where agents (e.g. processors) bid for a task or a resource and the 

highest bidder wins. The bid is computed based on the agent's ability to solve a task or on 

the availability of a resource. The original algorithm for market-based scheduling was 

developed by R. Morley in 1996. In the example of the authors, several painting booths 

(agents) are autonomously bidding for painting a truck (tasks). If the queue of an agent is full 

(i.e. no capacity available), the agent does not participate in the bidding process. Any other 

agent participating in the bidding process bids a value given by: 

𝐵𝑘(𝑗) =
𝑃 ∗ 𝑤𝑖 ∗ (1 + 𝐶 ∗ 𝑐𝑖,𝑘)

∆𝑇𝑘(𝑗)𝐿
 

where 𝑤𝑖 is the priority of the task 𝑖 (truck), 𝑐𝑖,𝑘 is a binary value depending on a required 

painting setup (i.e. switching colours for the truck), ∆𝑇 is the time until task 𝑖 starts to be 

painted in booth (agent) 𝑘 , and 𝑃, 𝐶, 𝐿  are parameters that weight each component's 

importance, 𝑤𝑖, 𝑐𝑖,𝑘, and ∆𝑇. Additionally, ∆𝑇 is computed using the following equation: 

∆𝑇𝑘(𝑗) = 𝑞𝑘 ∙ 𝑡𝑝𝑟𝑜𝑐 + 𝑛𝑘
𝑠𝑒𝑡𝑢𝑝

∙ 𝑡𝑠𝑒𝑡𝑢𝑝 + 𝑡𝑘
𝑤𝑜𝑟𝑘𝑖𝑛𝑔

 

that is, the sum of the paint time, 𝑡𝑝𝑟𝑜𝑐, with respect to the number of trucks 𝑞𝑘 in a booth 𝑘's 

queue, total setup, 𝑡𝑠𝑒𝑡𝑢𝑝, with regards to the total number of times the next truck in line 

requires a different colour than the previous truck, and the time required to finish the 

currently painted truck, 𝑡𝑘
𝑤𝑜𝑟𝑘𝑖𝑛𝑔

. The bids are compared and the respective truck goes to the 

queue of the highest bidding booth. 

In the insect-based approach, Nouyan S. et al. categorized task allocation that focuses on a 

smart division of labour using a response threshold model by Theraulaz G. et al. (1998) that 

                                                           
116 Tompkins M. F. (2003): p. 20  
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helps to divide the tasks among the agents. In their model, one threshold is given to each 

type of task, whereby the threshold value represents the level of specialization in that task. 

Based on the threshold value and a stimulus to perform a task, an agent will accept a task or 

withdraw from it.117 Given this response threshold model, several algorithms were developed 

in task allocation and scheduling. A framework that incorporates the above example with the 

painting booths was proposed by Campos M. et al. (2000). According to the authors, each 

painting booth (agent) 𝑘  has a threshold value 𝜃𝑘,𝑐𝑗
 for each colour 𝑐𝑗 . A truck 𝑗  has a 

stimulus effect of 𝑠𝑐𝑗
 for each colour in the system. The probability of booth 𝑘 to get task 𝑗 is 

given by: 

𝑃𝑘 (𝑠𝑐𝑗
, 𝜃𝑘,𝑐𝑗

) =
𝑠𝑐𝑗

2

𝑠𝑐𝑗
2 + 𝛼 ∙ 𝜃𝑘,𝑐𝑗

2 + ∆𝑇𝑘
2𝛽

(𝑗)
 

where 𝛼, 𝛽 are parameters that weight the relative importance of their respective terms, and 

∆𝑇𝑘 is the same as in the market-based example. The values of 𝑃𝑘 are then compared and 

the respective truck is assigned to the booth with the largest value. After a truck is assigned, 

the threshold value is updated for all of the booths, whereby 𝜃𝑘,𝑐𝑗
 decreases by an amount 𝜀. 

The authors’ findings showed promising results but recognized the issue that with changing 

processing times the relative importance for each parameter must change too which makes 

the problem difficult to implement. 

Despite the transportation system, auction-based (market-based) frameworks are quite 

popular in task scheduling of cooperative agents too. An example for cooperative agents in a 

market-based framework was given by Zlot R. and Stentz A. (2005). In their framework 

proposed, they assumed complex tasks can be solved by one or more robots on the team 

(distributed system). Thereby, the task can be divided into sub-tasks (note: complex tasks 

can be represented graphically using a task tree whereby the tree nodes are sub-tasks that 

the complex task can be divided into) and the agents bid on the sub-task or on the entire 

tree. Their approach is considered to be an extension of TraderBots, in which agents trade 

tasks via auctions and each agent maintains a schedule of the tasks won and evaluates new 

tasks by computing the marginal costs of adding them to the existing schedule. Figure 15 

illustrates the clearing algorithm used in auctions held by individual robots (agents) using 

task trees on each task under auction. In this task tree auction proposed by the authors, the 

goal of the auctioneer is to find a task allocation that maximizes profits (minimizing team 

costs). When a new complex task enters the system, the OpTrader agent divides the task 

into sub-tasks (using a task tree) and auctions the task nodes to the other robots. Although 

bidders can bid on all or multiple nodes, only one node at a time can be awarded per bidder 

                                                           
117 Theraulaz G. et al. (1998): p.1 
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and the bid price depends on the marginal costs to perform the task. The empirical 

evaluation considered the example of a multi-robot simulator in which a number of robots 

had to overcome obstacles on a terrain map by coordination. The findings showed that the 

task tree allocation mechanism could outperform current state-of-the-art complex multi-robot 

allocation mechanisms with respect to the total distance travelled by the team and the 

solution cost (e.g. hitting a tree). They concluded that the distributed agent system is 

beneficial to be used when flexibility to re-plan and cooperate on complex tasks is 

required.118  

Figure 15: Alg. 1 is used as a clearing algorithm by the individual agents (auction clearing refers to 
determining to which bidders to award which tasks). The auctioneer has a reserve price for the entire task 
tree (an entire task) in case it can perform the task itself (Alg. 2). The OpTrader decomposes new complex 
tasks entering the system and, in case it cannot perform the task itself, holds an auction to allocate the 
resulting task tree to the robots. There is no reserve price if the task can be performed by the auctioneer 
(Alg. 3). The auction stops when all tree nodes are auctioned 

 

 

 

A stronger view on selfish bidding agents was presented by Liu L. and Shell D. A. (2013). In 

their strategic pricing algorithm used in a bidding framework, the bidders perform an 

optimization step aiming at computing an optimal assignment permutation of new tasks to an 

existing set of tasks formulated as a linear program. Thereby, each bidder wants to maximize 

their profit margin (primal program), that is the utility gained from performing a task minus the 

bid price (i.e. the price paid for winning the auction and obtaining the task). In the dual 

method, utility can be interpreted as a budget a bidder has for a task or object (or affordable 

price) to turn the linear program into a minimization problem. In their proposed algorithm, 

however, the tasks prices are not influenced by the bidders (as it is the case in a traditional 

auction setting) but by the auctioneer. For tasks that are preferred by multiple agents, the 

auctioneer raises the price by an amount that makes it unprofitable for some bidding agents 

who move on to bid for other tasks. This strategy clears the path for bidders who are most 

                                                           
118 Dias M. B. (2004): pp.33-38 
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suitable for a task bid for. The findings showed that, while the traditional auction algorithm in 

which the bidders set the auction price, was extremely sensitive to the input data and worked 

best in example data with large value differences (that lead to larger bidding margins) but, 

overall, yielded the worst results compared to a centralized approach and the proposed 

strategic pricing, latter strategy significantly improved the model, particularly for a high matrix 

size. Nonetheless, the proposed framework yielded a solution quality that was slightly inferior 

to a centralized benchmark. 

A joint task scheduling problem between competing but heterogeneous agents was proposed 

by Lang F. et al. (2016) which takes into account an agent’s share of (possibly non-linear) 

costs on a joint schedule given private information. The efficiency of the negotiation protocol 

is, thereby, determined by minimizing the Euclidean distance to the closest Pareto-efficient 

solution (due to a potentially non-linear decision function) and minimizing social cost as the 

total sum of all agents’ tardiness and operating costs. The negotiation protocol as proposed 

by the authors is based on offer modification (contract mutations) using simulation annealing, 

whereby deteriorating moves are accepted based on a probability distribution controlled by a 

virtual temperature parameter, so that worse offers are accepted in the early negotiation 

stage to overcome local optima. The protocol is carried out by an artificial mediator software 

component that generates the contract mutations randomly for the negotiation rounds. In the 

computational analysis, the authors evaluated their protocol based on several criteria, such 

as, for example, a randomly generated starting contract (offer), a pre-selection of an initial 

contract from a number of random contracts, adding acceptance quotas that require agents 

to accept a certain number of deteriorations, and partly allowing agents to execute contract 

mutations (agent proposal) by individually pre-selecting a best fitting contract from a set of 

random mutations. Their findings showed that acceptance quotas were essential to 

satisfactory results that were close to the Pareto frontier and the social cost minimum, 

whereby the outcome varied only insignificantly between random initial contracts and a pre-

negotiation of a more suitable starting point. The authors additionally found, that the agent-

based contract proposal led to more straightforward movements to the Pareto frontier than 

the basic protocol form in which contract mutations were performed randomly and without 

agent preferences by the mediator component only. While their protocol was found to work 

well with simple problem sets (of 5-10 machines), the results got considerably worse with a 

larger instance size. At the best outcome, the social cost solutions were approximately 1 

percent worse to a central solution.   

Tompkins M. F. (2003) presented a Mixed Integer-Linear Programming (MILP) approach 

using branch-and-bound for complex classifications of scheduling problems under different 

parameters. The precedence relationships and data flow, thereby, follows a control 
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architecture and a graph decomposition network based on the hierarchical planning of 

functionally independent tasks, see Figure 16. Typically, each task involves subtasks for 

which the processing time must be taken into consideration when computing the optimal 

schedule for a task or job. Thus, the framework requires two inputs: an agent network with 

known communication and execution delays, and a partially ordered job precedence graph. 

The author's framework was said to be an alternative to other heuristic based approaches 

that typically involve only a limited set of parameters. Additionally, the author used Multiple 

Objective Linear Programming (MOLP) techniques to evaluate the multi-agent setting under 

multiple objective functions. His computational results showed that for a small number of 

agents and jobs (<20), the model yielded minimal makespans for scheduling problems. 

According to his findings, allowing job to be solved parallel across multiple agents could 

further improve makespan and computational running time and, thus, allow for more agents 

and jobs to be modelled.  

Abdallah S. and Lesser V. (2006) proposed a task allocation framework in which agents 

dynamically choose their strategy (i.e. negotiation behaviour) according to the benefits 

(reward) they reap out of the interaction with other agents. They are, thus, considered to be 

learners, and learning becomes the essential part in the offer generation. At the same time, 

the authors claimed that their algorithm introduced- a new gradient ascent-learning algorithm, 

which they call the weighted policy learner algorithm- outperformed state-of-the-art multi-

agent learners in task allocation problems implemented so far, in terms of both convergence 

speed and sensitivity. In their framework setting, they differentiated between servers who 

execute tasks and mediators who receive tasks from users and allocate the tasks to servers, 

under the goal of finding an optimal allocation that minimizes the average turn-around-time 

(TAT: the time interval between a task arrival and its completion including processing and 

waiting times). According to the authors, any learning algorithm must fulfil the three criteria: 

(i) agents must be able to learn a stochastic policy instead of following a deterministic joint 

policy, (ii) the algorithm must converge in order for the system to create a stable solution, 

and (iii) the system must be adaptable as it is considered to be dynamic and open. Figure 17 

shows the learning algorithm as proposed by the authors. The basic idea is that learning is 

increased if the strategy gradient changes its direction (if the action reward is rather small); 

else, it slows down (if the action reward is increasing).  
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Figure 16: multi-agent planning and scheduling process (left graph) and the agent network with execution 
and communication delays based on three example services (add, subtract, multiply) (right graph), as 
proposed by Tompkins M. F. (2003) 

 

 

 

Figure 17: the learning algorithm as proposed by Abdallah A. and Lesser V. (2006) in a task allocation 

game, with 𝛑𝐢
𝐭 being the policy (strategy) of an agent 𝐢 at the current running time (𝐭 = 𝟏) and ∆ is the 

strategy gradient that updates the strategy 𝛑 

 

5.4    MAS in Facility Location Problems 

The goal of any facility location problem is to establish a network that responds to customers' 

demand at a minimum time with the best possible quality (efficient allocation). Decentralized 

agent-based approaches for facility location problems are until now a poorly studied research 

area within logistic MAS and AI. Multi-agent facility location models could be potentially well 

used in land-use transport models and product-service networks within supply chains (i.e. 

where to locate production or service plants within an existing supply chain), particularly 

when it comes to facilitating the decision-process by using the advantage of the dynamic 

nature of multi-agent distributed systems. 
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One decision framework for locating facilities was presented by Afshari H. et al. (2014). They 

proposed an agent-based approach within product-service networks that are typically 

characterized as distributed problems. Agents are considered regional warehouses (RWs) 

and cities, and the optimization method governs the behaviour of the agents in the 

distribution-service network environment. The optimization rules are, thereby, derived from 

similar centralized optimization problems in facility locations. The idea of their framework 

proposed is based on the question of how many regional warehouses to install (customers 

belong to distinct regions) and where to locate them. For making a facility location decision, 

an RW agent autonomously decides based on optimization rules under multiple agent-based 

[constraint] elements such as, for instance, latitude and longitude location in the model, 

cumulative demand of covered customers, minimum distance to another RW agent, capacity 

and cost rates, number of facilities (RWs) to be located, the distance type method used, and 

the location method (objective function). The empirical evaluation of the authors considered 

different objective functions (min distance among all RW’s, closest to central warehouse, 

max demand coverage, etc.) and showed that under demand uncertainty, the agent-based 

model led to more efficient location decisions than in a centralized approach in terms of 

service speed (i.e. time needed to serve customer demand) but yielded, overall, worse cost 

solutions than the central optimization approach. The authors concluded that the use of 

weighting mechanisms for both cost and time balances in the agent-based optimization 

model could lead to a service network that saves transportation time while, at the same time, 

supplies customers faster. 

5.5    MAS for Lot-Sizing 

As for multi-agent facility locations, decentralized lot sizing in MAS is yet not properly 

studied. Lot-sizing MAS covers decentralized production coordination and, thus, takes into 

account distributed systems of agents that follow a mutually agreeable production plan under 

private information. Homberger J. (2010) proposed a decentralized multi-level uncapacitated 

lot-sizing problem (MLULSP) using decentralized simulated annealing, consisting of a 

transition rule performed by a neutral mediator agent and a cooperative acceptance rule 

assessed by the negotiating agents. The approach of the author was to formulate the 

problem as a coordination problem using facility-based decomposition where the production 

of subassemblies and components is spread across multiple facilities. Each facility is a 

independent decision agent who follows the individual objective of minimizing total inventory 

holding and setup costs of its facility (local costs). The individual objectives are typically 

conflicting in the overall global setting and, in order to reach a mutually agreeable production 

plan, the decision agents must coordinate themselves. The typically NP-hard MLULSP is 
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formulated as a MILP with the objective function (to be minimized) being the sum of inventory 

and setup costs for all items over the entire planning horizon. The constraints include the 

inventory balance equation, a demand function for a production quantity of an item in an 

upcoming period, the appearance of setup costs in case of purchased or produced batched 

and non-negativity constraints on inventory and production variables as well as the binary 

nature of the decision variables (setup). Additionally, all self-interested agents that are 

assigned to a facility follow their individual objective to minimize the local costs. Thereby, the 

local costs cannot be minimized simultaneously (conflicting objective among agents). The 

negotiation model proposed by the author works as follows: in the first phase, a neutral 

mediator generates a random first contract 𝑐 that represents a joint production plan, and 

each negotiating agent 𝑎𝑔𝑘  computes a local schedule with controls the probabilities of 

accepting deteriorations during the negotiation. In each negotiation round, the mediator 

generates a new, neighbouring contract proposal 𝑐′ randomly (by transition rule that is in the 

framework proposed similar to a random pick from 0 to 1) and each agent votes for or 

against the acceptance of the proposal following a private cost function (taking its local costs 

into account) that influences the acceptance probability. Based on the empirical evaluation, 

the author concluded that the average solution quality (total costs) of the agent approach 

was significantly lower than the centralized method (using simulated annealing) and it 

decreased with an increasing number of negotiating agents as, generally, the proposals' 

value declined with an increasing number of agents. 
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6 Experimental and Real-life implementations of Autonomous 

Agents 

Until now, real-life applications of multi-agent systems are limited and mostly implemented as 

a decision-making instance in which the MA-simulation proposes one or several outputs that 

a central agent actively chooses from, instead of transferring the decision-making processes 

to a number of autonomous agents. MAS proposed in literature have largely remained 

prototypes out of many possible reasons: on the one hand, many frameworks are limited in 

their practicability, particularly in a multi-agent system of possibly conflicting agents with 

international spread. Criteria not always well enough considered include the stability and 

robustness of a negotiation agreement (contract) over time, as well as the general necessity 

to share private information in an environment sensitive to data security, trade secrets and 

contractual agreements in long-term business partnerships. Literature findings also show that 

a MAS' solution often differs in quality based on underlying environmental conditions that can 

change unforeseen. Hence, MAS can be considered to yield [local] solutions that are usually 

worse to a state-of-the-art central solution (though, a direct comparison between a central 

and a decentralized system is rarely possible due to the different objective formulations). 

MAS is not only about creating intelligent agents capable of negotiating autonomously, but it 

is most likely about creating a sustainable system in which negotiation strategies can be 

autonomously modified dynamically by the agents with respect to the changing objectives, 

underlying resources (constraints) and environmental inputs (negotiation partners, legal 

constraints, etc.), which is difficult to be defined in practice. On the other hand, a 

decentralized agent system generally requires considerable investment without showing 

immediate and direct financial benefits over a previous central system. Additionally, the 

efficiency of a multi-agent system strongly depends on the nature of the business to be 

decentralized. This chapter introduces a number of autonomous systems that either are 

applied in a real-life setting or have proven to be attractive for implementation. Such projects 

range from agent trading systems to the autonomous movement of machines. 

In the late Nineties, a particularly attractive research field has been automated trading 

systems in which demand is automatically matched with supply in online commerce. An 

example for such an intelligent automated trading system is Kasbah, a virtual agent 

marketplace on the Web, proposed by Chavez A. and Maes P. (1996), where users create 

autonomous agents to buy and sell goods on their behalf in bilateral and straightforward 

negotiation rounds. Kasbah is a simple, distributive prototype marketplace. When a user 

creates a new selling agent, he gives it a description of the item to sell including a desired 

sales deadline, desired price and lowest acceptable price. The selling agent then goes into 

the virtual marketplace, contacts interested parties (buying agents) and negotiates with them 
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to reach the best deal for the client. Similar to the selling agents, buying agents are created 

whenever a user aims to buy a particular good. The prototype of Kasbah does not include 

any machine learning techniques but allows parameters to be changed by the users at any 

time after the agent has been created. Additionally, the parameters include a certain dynamic 

structure in which, for instance, the sales price is decreased gradually the longer the selling 

agent negotiates in order to reach an agreement before the sales deadline. Agents can enter 

and leave the marketplace anytime and a notification is then send to the remaining agents.119  

Similar to Kasbah, AuctionBot is an example of an academic auction platform in which 

autonomous agents are used to sell or buy used textbooks and individual objects at the 

University of Michigan that is available to the public since 1997. In AuctionBot auctions, 

users create new auctions to buy or sell products by choosing from a selection of auction 

types and parameters (e.g. clearing times, method for resolving bidding ties, closing 

conditions, etc.). The AuctionBot then manages the multilateral bidding processes according 

to the negotiation protocols and parameters of the created auctions.120 

Automated negotiation is not only attractive in e-commerce applications. There are numerous 

examples of MAS-related applications in the fields of Artificial Intelligence that could be or 

are employed in the fields of logistics too. One example is AIBO, an Artificial Intelligence 

Robot, which describes pet robots designed by Sony who autonomously interact with their 

environment. Such robots take information from their surrounding using visual intake, voice 

recognition and to some extend also contact and motion. For industry purposes such AIBO's 

are implemented to a technologically more advanced extend, such as the Kiva robots 

developed by Amazon Robotics, a fully owned subsidiary of Amazon, and deployed in 

Amazon's fulfilment centres. The items in the warehouse are being stored in portable storage 

units and the Kiva database system locates the closest Kiva bots to the item ordered and 

directs a free robot to retrieve it. The robot navigates itself through barcode stickers on the 

floor and autonomously reacts to (e.g. compassing) other robots nearby. When the robot 

reaches the target shelf, it slides underneath it, lifts it up and carries the shelf to a specified 

human worker who picks the ordered items to be packed for delivery. Kiva robots can lift up 

to 750 pounds, their motion sensors can detect objects on their way and they can travel 

between 3 and 4 miles per hour.121  

Since the active employment of Kiva robots in Amazon fulfilment centres around America, 

several start-up project have emerged to fill the industry gap left by Kiva: the Fetch Robotics 

from a Silicon Valley start-up, for instance, is able to independently pick orders and place 

                                                           
119 Chavez A. and Maes P. (1996): pp.1-12 
120 Wurman P. R. et al. (1998): pp.1-7; Guttman R. and Maes P. (1998): pp.5-6 
121 Amazon Robotics (2015): online; CNET News (2014): online; 
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items into a pod on a freight robot that then autonomously navigates to a packing station. 

The communication thereby takes places through a real-time web-based communication and 

information system, which allows managers to monitor the robots' movements and degree of 

retrieval and delivery fulfilment. Another example is the Harvest Automation, a start-up 

project from the plant nursery segment, which employs robots being able to carry heavy 

workload from one location to another. Beside Amazon, many other suppliers use 

warehousing automation technology to assist human workers in retrieval and transportation 

activities, but so far only a few start-ups are offering that level of disruptive system.122 

Since about a decade ago, MA contests have been run with agent gaming approaches 

aiming to stimulate research in the area of MAS development and programming by creating a 

competitive programming platform for testing multi-agent programming languages and tools 

on online scenarios that are strongly replicable to real-world applications. Thereby, the 

contestant teams create a MAS and test it on a given gaming field. Each team consists of 

different types of agents (e.g. cars, trucks, motorcycles, and drones) which differ in speed, 

motion ability, power (e.g. battery) and transportation capacity, and the teams collect 

tournament points according to the money earned at the end of the simulation. The MAS 

performance is tested in a series of games where the systems compete against each other. 

Such multi-agent gaming has led to several real-life implementations that are, up to now, 

held playfully, such as the RoboCup (robots playing football on a platform with sensors and 

effectors to read from and to make changes to the environment, respectively).123  

Robotic cars refer to autonomous vehicles that are capable of sensing their environment 

and navigating around objects with the use of radars, Odometry and computer vision. They 

are able to identify appropriate navigation paths and obstacles and interact with GPS data to 

find the right location. Implementations of robotic cars in the most practical relevance include 

the Oxford RobotCar that uses probabilities and estimation of data from sensors like 

cameras, radars, lasers, aerial photos and internet queries. Additionally, the cars employ 

machine-learning techniques to build a picture of the world in terms of prior experience 

(training) and knowledge. The innovation in robotic cars like RobotCar is their ability to work 

outside of controlled workspaces, a limitation the Kiva Robots do not address (note: latter 

only follow barcodes on the warehouse floor). In other words, entirely autonomously 

functioning robotic cars must fully independently identify the ground on which they drive, the 

direction they must go to and the different objects in their environment they must distinguish 

from and react to in order to move safely. To apply those cars to a vast scale, they must also 

operate outside GPS areas. Google Driverless Car is the first Self-Driving Car project that 

                                                           
122 The Robot Report (2015): online 
123 Multi-Agent Programming Contest (2016): online 
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evolved to actual driving application on a large scale on American streets (RobotCar is so far 

only being tested in Oxford). Up to now, there are still safety drivers aboard all vehicles.124 

Nurse robots were developed to assist the healthcare system in caring for the increased 

elderly demographics. Since about a decade, the development of robots that assist nurses 

with their workloads on elderly patients has been of high interest for countries with 

particularly problematic demographics, like Japan. This has led to the development of robots 

that carry patients (RIBA) or medical robots that contain a medication database with respect 

to health issues and vital signs. The former robot types were developed about seven years 

ago in Japan with the goal to lift patients into or out of bed and help them stand. Latter 

robots, called Terapio, are programmed to follow a nurse in her rounds and as a nurse 

inputs data to the robot, it can immediately suggest certain medications, or recognize 

medication interdependency or allergies to look for.125 

  

                                                           
124 MRG (2016): online; Google (2016): online 
125 Extreme Tech (2015): online 
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7 A Flow Shop Cooperative Auction Game 

Various optimization problems can be formulated as task allocation problems, in which 

𝑁 objects (e.g. tasks, jobs, resources) need to be assigned to a set of  𝑀 agents (e.g. 

processors or machines) at minimum overall costs and at a particular time in order to achieve 

the overall system goals. These problem types are typically NP-hard and can, thus, not be 

solved within polynomial time. Task allocation in a MAS is the problem of coordinating 

agents' interaction with each other and with the environment to determine which agent 

should execute which tasks to achieve the system objectives. In case of a robotic system in 

which robots act as agents, the problem is commonly referred to as multi-robot task 

allocation (MRTA).126  

This paper's theoretical framework implementation focuses on a generic example of a task 

allocation problem, that is a multi-agent system applied to a flow shop scheduling problem in 

which new orders constantly enter the system from a job database and have to be 

implemented into an already existing scheduling plan. The computational example in this 

paper is implemented in R using a fixed number of predefined job instances of 𝑛 =

{20, 50, 100}  jobs in which each job with 𝑙 = 5  operations to be done on 𝑚 = 5  different 

machines must be assigned separately, and is tested against a central agent performance 

using the same underlying optimization method. The methodology uses an auction protocol 

in which workcenter agents (bidders) are being informed about new jobs by a shop floor 

agent (auctioneer) who assigns job candidates to the best bidder. The workcenter agents 

compute a bid for the job candidate based on their current job schedule (scheduling costs) 

and make a proposal decision based on the information they receive from the information 

agent (threshold value). At the end of the auction, the workcenter agents enter a cooperative 

trading process in which they can exchange jobs that fit their individual schedule in a way 

that improves the system solution. The goal of the production schedule is to minimize total 

makespan in a system of four agent types. The end of the chapter provides a 

computational performance and solution quality comparison.  

7.1 Multi-Agent Scheduling Framework 

The scheduling objective is to organize the execution of incoming jobs to a set of machines 

(𝑀) following a flow shop problem design (i.e. same machine order for each job) such that 

the total agent makespan for all jobs is minimized. The machines are grouped into work 

centers, whereby each work center consists of a predefined number of different machines. 

Each incoming job 𝑗 consists of 𝑛𝑗 = 5 operations (tasks) of different machine order.  

                                                           
126 Korsah G. A. et al. (2013): p.1 
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This problem setting is build up around four functional agent types: two information agents 

(shop floor agent, information agent) and two task agent types (job agent, 3 workcenter 

agents). The job arrival is handled by a Job Agent (JA) who remains fixed in the system. 

Whenever a job needs to be scheduled, the Job Agent turns to the Shop Floor Agent for 

assignment. The Shop Floor Agent (SFA) is the auctioneer in the system who requests a 

current central solution from the Information Agent and informs the Workcenter Agents, who 

each hold 5 machines as resources, about any new job to be assigned, its central solution 

(used as a threshold value for the proposal decision) and requests them to submit their bids. 

The Workcenter Agents (WCA’s) determine the bid value based on the scheduling costs 

including the new job’s processing times and the individual jobs previously won. The bidding 

decision (propose-or-withdraw) is based on a threshold value that is 40%-60% of the current 

central solution as computed by the Information Agent (IA). Within each bid computation, 

the Campbell, Dudek and Smith Algorithm is used on the total schedule considering the new 

job. Thus, the lowest scheduling cost (minimum of all agents’ minimum total makespan 

schedules) wins the current auction. Whenever a job is assigned, it leaves the JA and 

proceeds to the winner-WCA. Workcenter Agents can only bid on the entire job (i.e. all its 

operations). If an agent’s scheduling cost exceeds the threshold value, the agent withdraws 

from the auction round and waits for the next job to bid on. In case all WCA’s withdraw from 

the bidding round, the job is send back to the JA, entering as a last-in and its assignment is 

postponed to a later round.127 

The Campbell, Dudek and Smith (CDS) Algorithm divides a 𝑛-job 𝑚-machine problem with 

𝑚 > 2 into 𝑚 − 1 number of 2-machine 𝑛-job sub-problems. For each sub-problem, the value 

of 𝐶𝑚𝑎𝑥 (total completion time for the 𝑛-jobs) is computed using Johnson rule, and the best 

job sequence of all sub-problems is selected that yields the minimum value of 𝐶𝑚𝑎𝑥.128 

Following simplifications were used: 

 no job or resource travelling time is being considered 

 material needed to process an operation per machine is infinite 

 no setup time is required on each machine 

Figure 18 illustrates the agent interaction framework following the technical infrastructure. In 

practice, the MA-framework suggested could consider a virtual server Job Agent, a central 

server Shop Floor Agent, distinct and entirely separated private Workcenter Agent Terminals 

and a central, public information agent acting similar to a mainframe. The contract net 

                                                           
127 Amrita and Tripathi A. (2014); Xuesong J. et al. (2016); Wu Z. (2005) 
128 Harkan I. (2010): pp.10-14; Modrák V. and Pandian R. S. (2010): p.276; Kumar Sahu L. and Sridhar K. (2015): 
pp.41-42 
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auction and cooperative trading protocol as illustrated in Figure 19 is further explained in the 

following procedures. 

Figure 18: communication network of the JSSP example with three workcenter agents of which each 
workcenter has five fixed machines (resources) of different type 

 

Figure 19: CNP of the MA-FSSP 
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Each agent consists of a knowledge unit, a functional unit and a control unit. The knowledge 

base contains the domain data, the functional component are the computational procedures 

for decision-making and the control unit consists of the protocols for the respective agents.129 

Job Agent (JA) 

The knowledge base of the job agent consists of a memory registry of all incoming jobs, the 

total number on uncompleted jobs as well as the job information. The functional component 

is for the assignment request: to select the next job from a list of queuing jobs and request an 

auction start from the shop floor agent. The control unit is the following communication 

protocol: 

1) update job list (i.e. generate jobs and their information). 

2) if there are several queued jobs, determine a job order for assignment (if earliest due date 

is given, queue order is based on that; if no priority is given, select FIFO); else go to step 3. 

3) send an assignment request to the SFA on the next job; if there is no next job, go to step 

5. 

4) if job is assigned (i.e. all its operations), go to step 1. 

5) if all jobs are assigned (queue is empty), send a cooperation-request to the WCA’s, else 

go to step 3. 

Shop Floor Agent (SFA) 

The SFA acts as a job auctioneer who assigns new jobs from the Job Agent to the best 

bidding Workcenter Agent. As a participation decision (threshold value), the SFA requests a 

current central solution for the job candidate and sends it with a call-for-proposal to the 

WCA’s. 

The knowledge base consists of the current job information, the existing workcenter agents 

and their status. The functional unit is for job auctioning. Job auctioning selects a workcenter 

agent for the new job based on a bid comparison. The control unit can be designed as 

follows: 

1) request central solution from Information Agent (threshold value). 

2) send new job info with threshold value in a call-for-proposal (cfp) to WCAs. 

3) collect bids and withdrawals from the WCAs and evaluate them. 

4) if all WCA’s withdraw from the bid round, inform Job Agent to place job back, else go to 5. 

5) select a winner-WCA as the lowest bid (bid = scheduling costs) and inform the winner. If 

there is more than one winning bidder, select a winner randomly.  

                                                           
129 Wu Z. (2005): pp.35-36 adopted from Sikora and Shaw (1997) 
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6) if all jobs are assigned (i.e. JA doesn’t send an assignment request), stop; else go to 1). 

 

Workcenter Agent (WCA) 

The decentralized bidding agents have a fixed number of machines available to schedule. 

After receiving a call-for-proposal from the Shop Floor Agent, each WCA computes a bid 

based on the total cost of the new schedule including the job candidate represented as 

minimum total makespan. The idea to formulate the bid as new or current schedule costs is 

derived from Chien S. et al. (2000) and its main gain is that the bidder whose schedule cost 

is the lowest after adding the task in question to an already existing schedule wins the 

auction, which is closest to a desirable reality130. 

The knowledge unit of a WCA consists of the current number of jobs in each machine's 

queue and the processing times. The functional component is for job scheduling. Job 

scheduling selects the best assignment for the job candidate in an already existing schedule, 

whereby current jobs in the queue can be rescheduled in each auction round if total 

makespan is minimized. The control unit can be designed as follows (for each WCA): 

1) if there is a cfp-request, collect the number of jobs currently in queue from private 

memory. 

2) formulate a bid based on the current schedule with the candidate job using CDS-

algorithm. 

3) compare bid with central-threshold as computed by the information agent. 

4) if job threshold is not surpassed, send bid (proposal) to SFA; else withdraw from the bid. 

5) if proposal is accepted, queue new job to the current job schedule (memory) and wait for 

new cfp; else (proposal rejected) do nothing. 

6) if there is a cooperation-request from the IA, start to trade (exchange) jobs such that the 

trade gain for one agent compensates for the trade loss of the other agent (i.e. overall 

system solution is better after the trade than it was before); stop if no solution improvement is 

possible. 

Information Agent (IA) 

Using an information agent in a multi-agent setting is quite common in the MA-literature. An 

information agent allows to directly connecting a decentralized system performance to a 

central measure for solution evaluation and, thus, improvement.  

                                                           
130 Zlot R.M. (2006): p.94 referring to the paper from Chien S. et al. (2000) 
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The knowledge base of the IA includes all the job information already assigned in the 

previous negotiation rounds. In a dynamic setting, any jobs that were finalized in the 

processing would be deleted from the global schedule memory. The functional unit of the IA 

is for job sequencing in a central context, that is computing a central solution of a single 

FSSP on 5 machines, including the processing time information of the jobs previously 

auctioned and the job candidate. The central solution serves as a threshold for the WCAs' 

decision to participate (propose-or-withdraw) in the auction round. The control unit of the IA 

looks as follows: 

1) if SFA requests the threshold information, compute the central solution for the job 

candidate including all jobs auctioned successfully in previous rounds since auction start, 

send the solution information to SFA and wait for the SFA answer on the auction success; 

else do nothing. 

2) if SFA sends an auction-success, store the job candidate in memory; else drop the job 

information from the system solution. 

3) if there is a new request from the SFA, repeat 1) and 2); else do nothing. 

7.2 Summary of Experimental Results 

In the MA-example, the jobs are predefined following Taillard's data instances with 20, 50 

and 100 jobs131 and the jobs enter one-at-a-time the scheduling architecture. In this problem 

design, the individual job components (tasks) must be processed at the same work center 

(i.e. no job division between work centers is allowed) and in the same machine order of 𝑚 =

5 machines (flow shop scheduling problem; FSSP). The distribution of jobs to work centers 

follows an auction concept in which Workcenter Agents submit bids for each incoming job 

and, once won, cannot withdraw from the job bid on. The job won is then inserted into the job 

queue of the winner agent but not further processed (static MAS). The bids computed by 

each agent is derived from the minimization of the total makespan taking into account 

already existing jobs in the respective agent's queue and the job candidate (i.e. total length of 

the current schedule including the job candidate). Within each bid computation, the CDS-

Algorithm is used on the total schedule with the job candidate (the jobs can be reordered at 

every auction round). The agent with the minimal total makespan for the job candidate wins 

the current auction. The total auction process stops when all jobs in the instance database 

are being assigned and the cooperative trading (job exchange) between the Workcenter 

Agents starts.   

 

                                                           
131 derived from http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html  
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The example data has following characteristics: 

- each job follows the same machine order 

- only one operation from each job can be processed at the same time 

- each machine has different processing times 

- job rescheduling is allowed 

- no job is processed twice on the same machine 

- machines cannot process more than one operation at the same time 

- each work center has a fixed number of machines (5 in total) of different type 

- machines can be idle within a schedule period 

- jobs are scheduled in a queue until all jobs from the database are assigned (static 

scheduling) 

- the machine processing order as given by the JA cannot be changed once auctioned 

 

Table 2 illustrates the average computational solutions per Taillard benchmark instance from 

the central solution (central CDS), from the MA-auction game only (auction) and from the 

cooperative trading (coop. trade) at the end of the auction game. The central solution was 

computed considering all 𝑛-jobs on 𝑚 = 5 machines. The auction and cooperation solution is 

the sum of all agents’ optimal schedule (min total makespan) considering the agents’ 

respective jobs won in the auction and received in the trade afterwards, respectively. For 

each set of jobs 𝑛 = {20, 50, 100}, four instance data sets from Taillard were taken into 

consideration. The column solution ∆ A:C displays the percentage difference between the 

auction solution and the central solution. Similarly, solution ∆ T:C is the percentage difference 

between the cooperative trade and the central solution. Column trade:auction shows the 

solution improvement yielded by the cooperative job exchange with respect to the auction's  

outcome.  

The findings in Figure 20 show that the multi-agent setting is always worse than the central 

setting. Particularly, if there is a low number of jobs to fill idle times of machines, the 

computation solution is with appr. 30,25% after the auction and 18,43% after the trading 

considerably worse to a central agent structure. The higher the number of jobs to be 

assigned, the lower the solution difference, with about 12,01% solution difference from 

auctioning 50 jobs and 6,02% from auctioning 100 jobs. Following the nature of a 

competition, the purely competitive game unsurprisingly yields local solutions that are 

considerably worse than the cooperative outcome. After the coop. trading procedure, the 

solution difference decreases to an average of 2,63% solution difference to a central agent. 

While a 20-jobs' scheduling game yields considerably unfavourable agent schedules, its 

improvement margin is likewise the highest than for a higher number of jobs. The job 



Seite 75 von 96 
 

assignment in the auction results in largely uniformly distributed jobs and as the trading only 

allows exchanges, the cooperative schedule remains equally distributed.  

The findings coincide with literature findings as follows: 

1. competitive games typically yield worse solutions than a cooperative approach, as 

competitive agents only focus on finding local optima that satisfy their own objective 

2. MAS are computationally more complex than central systems, which significantly 

influences the running time (see usertime in sec in the Table 2) 

3. MAS are most beneficial in complex (e.g. large) dynamic systems such that the 

solution difference to a centralized system decreases with a large problem size and 

is, in contrast, more robust to environmental uncertainty (e.g. machine breakdowns; 

latter benefit from a dynamic system was not tested) 

Table 2: findings from the MA-framework compared with the centralized CDS-solution based on Taillard's 

test instances of 𝒏𝒙𝒎 jobs-on-machines. Average results are based on 4 runs. Usertime results are based 
on an Intel(R) Core Processor with 3.20 GHz, 7.88 GB RAM 

  

Figure 20 illustrates the computational findings in a bar chart. 0,0% refers to the central 

solution. It can be seen, that the solution difference to a centralized system decreases, the 

larger the system is (i.e. the more jobs need to be assigned).  

Figure 20: comparison between central solution (global optimum) and the MA-auction as a competitive 
game with and without cooperative trading 

 

instance sets central CDS auction coop. trade trade:auction

min Cmax min Cmax min Cmax

002 - 20x5 1359 1290 1424 1847 29,69% 1,27 1699 16,2% 2,84 -13,5%

003 - 20x5 1081 1073 1249 1650 32,09% 1,31 1481 15,7% 2,00 -16,4%

005 - 20x5 1236 1198 1323 1767 33,58% 1,39 1691 21,8% 2,13 -11,8%

006 - 20x5 1195 1180 1312 1735 32,22% 1,25 1642 20,1% 1,74 -12,1%

007 - 50x5 2724 2712 2866 3170 10,59% 2,75 3029 5,4% 217,91 -5,2%

008 - 50x5 2834 2808 3032 3402 12,21% 2,70 3259 7,0% 204,65 -5,2%

011 - 50x5 2863 2837 3038 3362 10,66% 3,30 3239 6,2% 190,31 -4,5%

012 - 50x5 2829 2793 3031 3415 12,67% 3,30 3238 6,4% 203,96 -6,3%

014 - 100x5 5268 5208 5563 5857 5,28% 12,33 5692 2,3% 350,75 -3,0%

015 - 100x5 5175 5130 5452 5776 5,94% 10,82 5614 2,9% 408,26 -3,1%

016 - 100x5 5014 4963 5273 5558 5,41% 10,92 5410 2,5% 654,02 -2,9%

018 - 100x5 5135 5063 5203 5603 7,68% 10,54 5354 2,8% 563,03 -4,9%
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In the computational example, the threshold value that influenced the propose-or-withdraw 

decision was set randomly as an integer percentage in the interval [40%,60%]. Threshold 

values set in the interval [35%,40%] predominantly let to job loops in which a job was 

continuously refused to be bid on by all the Workcenter Agents. A threshold analysis shows 

that, on general, the solution quality does not depend on the threshold value; thus, a lower 

threshold value does not necessarily lead to a higher solution quality! Selecting a threshold 

value randomly, however, smooths out the average solution differences and, hence, creates 

a more stable auction result irrespective of the data set.  

Figure 21: auction solution difference to central schedule based on threshold value (x-axis) and on 𝒏 jobs 

and 𝒎 machines  

 

7.3 Limitations and Prospects 

The practical usability of the proposed example model is in several ways limited to its real-life 

implementation. The following list includes suggested adaptations and limitation 

considerations of the proposed model as well as some known risks in a MA-setting: 

1) The jobs listed in the database did not include due dates. Jobs with due dates cannot 

simply re-enter the Job Agent and patiently wait for another auction round. Instead, the 

Job Agent would sort the incoming jobs according to earliest due date and, once jobs 

enter the auction, they must be bid on which makes the MAS less flexible.   

2) The only costs involved in the example is the schedule length (processing times). 

Typically, a bid needs to take more costs into consideration, such as, for instance, 

material costs to fulfil tasks, penalty costs for late delivery and costs related to a 

transportation and setup time. Agents may also have limited or unlimited capacities to 

perform a task of a job, which needs to be taken into consideration in a real-life setting. 

3) The cooperative trading includes the processing of private information, that are all the 

individual tasks’ processing times of the agents’ schedule who participate in the trading. 
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The exchange of private information among competing agents can be implemented 

using a fifth independent agent (trader agent) whose goal is to exchange jobs without 

the actual information from which agent the job is being traded from and with. As such, 

the trade agent acts as a central coordinator and is vital to the auction game. Such a 

powerful agent can realistically not be easily implemented in an auction setting between 

competing firms, because of its susceptibility to hacking and technical breakdowns and, 

most significantly, lack-of-trust in its neutrality.  

4) The model’s bid computation only takes queued jobs into consideration while the jobs 

won are not further processed until the auction ends. In a dynamic setting, in which jobs 

assigned could immediately enter the processing, the bid would also include any jobs 

currently in process, while no operation interruption is allowed, as well as the remaining 

time to finish a job in process.  

5) The trading at the end of an auction involves exchanging two jobs between agents so 

that at least one agent benefits from the trade while the other agent is not worse off than 

the other’s gain from the trade. The trading concept implemented is in several ways 

complicated in the practical context: first, the end of an auction must be clearly defined, 

while the current jobs in the agents’ queue additionally influence the result of the 

cooperative trading's outcome. As the exchange involves swaping two jobs between 

agents, the trading outcome can significantly vary depending on the auction’s outcome. 

Second, a trade in which one agent benefits at the cost of another agent requires a 

future promise or penalty to be negotiated successfully and remain stable throughout 

further negotiation rounds. A future promise can be, for instance, directly linked to a 

budget that an agent draws upon. Defining a penalty rate or budget cost is crucial as it 

directly influences the likelihood of future successful negotiation between the trading 

agents or the ability to continue trading with other agents. 

6) In the example concept, job tasks must be done by the winner agent (i.e. operations 

cannot be split) and an exchange of individual operations is not possible. However, a 

manufacturing firm in which products need to be assigned to several identical work 

centers, a task transfer between machines of different work centers can significantly 

improve the multi-agent setting’s performance by reducing idle time of machines, and 

makes the system more robust to machine breakdown. Allowing task transfer, however, 

requires to consider several additional costs in the bid formulation, such as the 

transportation time between machines, setup costs and fixed costs for the transportation 

infrastructure. Linking those costs to a task trade while neglecting to take them already 

into consideration in the auction process, can lead to a scheduling system in which 
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agents win jobs who are unfavourable but can later on be traded with a budgetary 

advantage, which makes the MAS suboptimal. On the other hand, considering those 

potential costs (probabilities) in the bid calculation makes the MAS increasingly complex, 

as the question arises as of the size and probability of the potential trade costs, which 

are likely to be unknown at the start of an auction round.  

7) The biggest advantage of a MAS in comparison to a central system is its robustness to 

environmental changes (e.g. machine breakdown). The robustness advantage is clearly 

identifiable when considering a vehicle-routing scenario in which a truck agent 

breakdown occurs on the road and a breakdown signal is send to neighbouring truck 

agents, who then immediately recalculate their route considering the freed customer 

destinations and their remaining delivery points. Such clear benefits are, however, not 

directly viable in other problem settings, such as, for instance, in a job assignment 

problem in which a central agent can likewise act as a re-scheduler in case of a 

breakdown which can significantly benefit the complexity of such a multi-agent system, 

making the initially decentralized system central (but still automated) again. 

8) Creating robust, dynamic multi-agent systems among geographically spread locations is 

largely impeded by a reference point. Thereby, the dynamics of a MAS is not only 

influences by the factor time, but also by wireless factors such as file transfer speed, 

disruptions and security. Most importantly, all connected data processors must speak the 

same language (protocols) which increases the thread of security lacks and hacking. 
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8 Conclusion 

Designing a MAS is a complicated task to do with many considerations to make in the 

development phase, such as on the functionality and number of agents to use, the dynamics 

of the environment in which they operate and their negotiation nature, which are the 

negotiation objects, their valuation, the rules governing the agents' interaction (protocol) and 

their social context. The probably most difficult aspect of a MAS is the interrelation between 

the different negotiation components: an effective agent's strategy largely depends on the 

negotiation protocol. Each protocol, on the other hand, comes with certain limitations that are 

influences by the nature of the system's environment. A purely game-theoretic bargaining, for 

example, comes most likely with unstable agreements and, although it is computationally 

less complex to be implemented, largely yields local and, thus, poor solutions. On the other 

hand, an auction strategy was found to work best in systems with large differences in input 

data. A cooperative approach to negotiation can likewise prove to be difficult to be defined 

when agents must take into consideration the value interpretation of their negotiation 

partners while following individual goals. In order to facilitate an agreement outcome, 

additional reasoning steps could be included such as placing arguments on rejections or 

offers, whereby negotiation additions can make a negotiation model more complex and, thus, 

inflexible to the input data. However, expanding the agents' reasoning model to include 

learning mechanisms is crucial to developing a negotiation model that is both 

computationally beneficial and robust in the outcome. 

In theory, multi-agent systems in logistics have been dominantly used in the transportation, 

task allocation and scheduling domains, particularly because those applications have shown 

to fulfil the characteristics ideal for implementing agent technology. Such characteristics 

include, most importantly, clearly identifiable, distinct entities with well-defined set of state 

variables, a high degree of structural complexity and environmental dynamics, and ill-

structured information about the application at design phase. The advantages of agent-

technology over central-agent systems are, thereby, found to lie in their general solution 

robustness of a dynamic setting in which a high degree of flexibility is required (e.g. an 

agent's breakdown is possible, or new agents can enter the system freely), as well as in 

cooperation systems in which complex tasks must be allocated among agents under some 

degree of information asymmetry. In distributed network in which agents have the possibility 

to work parallel towards achieving a goal, MAS is generally found to produce faster and less 

sensitive [to the type of data] results. Particularly for a global MAS, it is easier to implement 

new agents (or agents with new capabilities) to an already existing distributed setting than 

adding new capabilities to a central-agent system. Additionally, central models typically 

neglect self-interested agents and can, thus, not be fully employed in automated 
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intercompany settings. Literature also suggests, that it is particularly beneficial to use MAS 

for simulation purposes of social and life science problems with heuristic implementations, or 

in geographically distributed operations in which local agents can react faster to its location 

than a central agent would. Outside the proposed application fields, however, MAS showed 

to produce inferior results to central benchmarks both in solution quality and running times. 

Additionally, multi-agent mechanisms place several crucial aspects in the forefront of its 

development and practicability: first, distributed systems might require sharing private 

information or using some form of central agent as a mediator (information agent) to run 

effectively, which is rarely an attractive option for intercompany settings and place additional 

needs for the technical infrastructure in terms of data transfer security; second, in a 

distributed system of competing agents, it is found to be generally harder to find a global 

optimum that gives both a robust and stable solution at a computationally reasonable running 

time; third, objective functions formulated for a decentralized system in which the decision 

variables are heterogeneous and, most likely, self-interested agents are significantly different 

to a centrally formulated objective function and the model solutions can, thus, not be directly 

compared, which makes it difficult to objectively assess a decentralized model’s effectivity; 

and fourth, depending on the environmental criteria, multi-agent mechanisms can perform 

significantly slower as compared to a central system and, if timed, can end in a considerably 

lower solution quality. 

In practice, additional limitations arise as of the technological abilities and security 

implementations that come with wireless connection. Negotiation structures between firms 

competing for public resources require agents to share, to some extent, private information. 

Equipping public agents with private information, however, creates considerable risks for 

hacking and manipulation. Thus, MAS is, in practice, most likely a topic of concern for 

internal firm's implementations in order to enhance central production processes. However, 

the advantages of intra-firm MAS implementations blurry out in the aspect of involving central 

agents who act as autonomous controllers considering the system's dynamics. For instance, 

embedding a central controller who automatically and immediately reacts to a machine 

breakdown by relocating jobs to the remaining agents can make a decentralized system 

considerably irrelevant.  

There are several measures proposed in theory to quantify the quality of a MAS-technology, 

such as computational efficiency, robustness, solution stability, flexibility, responsiveness 

and scalability, and several MAS' projects have been proven to be useful for implementation. 

Such projects implemented include, for instance, TradeBots and similar auction bots used in 

automated trading platform that are aimed at saving the users time on buying or selling 

desired goods; Google cars that can, similar to Amazon Robotics, be implemented in 
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automated delivery systems serving locations far away; and the prototype of the loads 

allocation bidding platform implemented for VOS Logistics that assists transportation 

planners in their decision-making. 

The practical implementation provided in this paper, a multi-agent flow shop problem, was 

aimed at using several theoretical frameworks from literature, combining a classical auction 

mechanism with a cooperation step at the end of the auction and used, at large, an 

information agent who objectively overtakes the decision of selecting a winning trade. Such 

hybrid methods are computationally more extensive but at the same time also more efficient 

in solution quality and have the potential to perform nearly equally good to a central solution, 

depending on the input size. The inter-agent optimization implemented is a simplification of a 

social welfare maximization problem using an auction (proposal-based CNP) with sub-

optimal, unstable local solutions and finalizing the auction's outcome with an extensive 

cooperative trading phase among the bidder agents. The improvement steps from the 

cooperative trading involve finding stable solutions that benefit the global system outcome. 

Thus, the improvement stops, if no further trading benefits the global solution. This does not 

necessarily end in a locally stable solution as a job exchange can still benefit a single agent 

at the expense of another agent. As the global solution is a stable one, however, the agents 

are not equally motivated to further participate in a trade. The intra-agent optimization is a 

schedule cost minimization problem in the offer generation phase using the Campbell, Dudek 

and Smith heuristic on the agent's current schedule with the job candidate placed in the 

auction, and it is computed every time a new job must be bid on. The findings show that the 

cooperative approach is always better than the competitive strategy in terms of solution 

quality, but is computationally significantly less efficient. At the same time, the solution of the 

cooperative mechanism also depends on the auction outcome. On general, the solution 

quality of the framework implemented improves at a higher number of jobs, and ends up to 

be less than 3% inferior to the central benchmark. Adding threshold values to the bidding 

decision of the agents slightly improves the auction algorithm, benefiting the cooperation 

result too. The practical implementation could be further improved, if the jobs allocated are 

immediately being processed on idle machines while a new job is being auctioned 

(parallelism of jobs), and if singular tasks of a job could be allocated between the competing 

agents.  
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Appendix A 

Definition of Pareto Optimality: a strategy 𝑠 Pareto dominates another strategy 𝑠′ if 

∀𝑖 ∈ 𝑁, 𝑢𝑖(𝑠) ≥ 𝑢𝑖(𝑠′), and there exists some 𝑗 ∈ 𝑁 for which 𝑢𝑗(𝑠) > 𝑢𝑗(𝑠′), i.e. in a 

Pareto-dominated strategy some player can be made better off without making any 

other player worse off. A Pareto-optimal strategy (or strictly Pareto efficient strategy), 

there is, thus, no other strategy 𝑠′ ∈ 𝑆 that dominates Pareto 𝑠.132 

Definition of Nash Equilibrium: a strategy 𝑠𝑖
∗ ∈ 𝑆𝑖 is an agent 𝑖’s best response to a 

strategy 𝑠−𝑖  (i.e. a strategy of an agent other than 𝑖 ) if 𝑢𝑖(𝑠𝑖
∗, 𝑠−𝑖) ≥ 𝑢𝑖(𝑠𝑖, 𝑠−𝑖)   ∀ 

strategies 𝑠𝑖 ∈ 𝑆𝑖 . The strategy 𝑠∗ = (𝑠1
∗, … , 𝑠𝑛

∗)  is then in a Nash equilibrium if, 

∀ agents 𝑖 , 𝑠𝑖
∗  is a best response to 𝑠−𝑖  Thereby, 𝑠−𝑖  denotes a strategy  𝑠  without 

agent 𝑖’s strategy, hence , 𝑠−𝑖 = (𝑠1, … , 𝑠𝑖−1, 𝑠𝑖+1, … , 𝑠𝑛). A NE is a stable strategy set 

(i.e. no agent can gain a higher pay-off by deviating from the equilibrium strategy, 

assuming every agent knows all the other agents’ best response strategy) and 

depending on the uniqueness of the solution we differentiate between a weak and a 

strict NE (note: a weak strategy set yields a utility that is equally high or higher than 

for any other strategy, while a strict strategy always leads a strictly higher utility than 

any other possible strategy move).133 

  

                                                           
132 Shoham Y. and Leyton-Brown K. (2009): p.61 
133 Shoham Y. and Leyton-Brown K. (2009): p.62 
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Appendix B 

   

Job_Agent: select job from database and place to 

auction; returning jobs place back to database into last 
position 

SFA_inform: auction algorithm for cfp-requests and 

bid selection (winner selection); if all bidders 
withdraw, inform Job_Agent to place job back to 
auction later 

input: job_database 𝐽 = {𝑗𝑜𝑏1, … , 𝑗𝑜𝑏𝑁}; optional binary 
auction_start 

input: 𝑗𝑜𝑏𝑗: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑡𝑖𝑚𝑒_𝑝𝑒𝑟_𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑗𝑜𝑏𝑗
; 

optional 𝑠𝑡𝑎𝑟𝑡 

while 𝐽 ≠ 0 do 

     foreach 𝑗𝑜𝑏𝑗 ∈ 𝐽 do 

         𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙 =  SFA_inform(𝑗𝑜𝑏𝑗 , 𝑎𝑢𝑐𝑡𝑖𝑜𝑛_𝑠𝑡𝑎𝑟𝑡); 

         if withdrawal==1 then 

            𝐽 = 𝐽[−𝑗𝑜𝑏𝑗] ∪ {𝑗𝑜𝑏𝑗}; 

         else  

            𝐽 = 𝐽\{𝑗𝑜𝑏𝑗}; 

         end-if  
     end-for 
end 
call WCA_coop; 

initialize winner :=NULL; 
initialize bid := NULL; 
𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑠𝑜𝑙 =  𝑰𝑨(𝑗𝑜𝑏𝑗 , 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 = 1, 𝑠𝑡𝑎𝑟𝑡 =

1, 𝑚𝑒𝑚𝑜𝑟𝑦); 
foreach 𝑖 ∈ 𝑊𝐶𝐴 ≔ {𝑊𝐶𝐴1, 𝑊𝐶𝐴2, 𝑊𝐶𝐴3} do 

   𝑏𝑖𝑑𝑖 = 𝑾𝑪𝑨_𝒄𝒇𝒑(𝑖, 𝑗𝑜𝑏𝑗 , 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑠𝑜𝑙, 𝑚𝑒𝑚𝑜𝑟𝑦); 

end-for 

if 𝑙𝑒𝑛𝑔𝑡ℎ({𝑏𝑖𝑑1 , 𝑏𝑖𝑑2 , 𝑏𝑖𝑑3} == "𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙"))  < 3 
then 

    𝑙𝑜𝑤𝑒𝑠𝑡_𝑏𝑖𝑑𝑑𝑒𝑟 = 𝑤ℎ𝑖𝑐ℎ(𝑚𝑖𝑛{𝑏𝑖𝑑1 , 𝑏𝑖𝑑2 , 𝑏𝑖𝑑3}); 
    if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑙𝑜𝑤𝑒𝑠𝑡_𝑏𝑖𝑑𝑑𝑒𝑟) > 1 then 

        𝑤𝑖𝑛𝑛𝑒𝑟 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑒𝑙𝑒𝑐𝑡(𝑙𝑜𝑤𝑒𝑠𝑡_𝑏𝑖𝑑𝑑𝑒𝑟); 
    else  

        𝑤𝑖𝑛𝑛𝑒𝑟 = 𝑙𝑜𝑤𝑒𝑠𝑡_𝑏𝑖𝑑𝑑𝑒𝑟; 
    end-if 

        call 𝑾𝑪𝑨_𝒊𝒏𝒇𝒐𝒓𝒎(𝑗𝑜𝑏𝑗 , 𝑤𝑖𝑛𝑛𝑒𝑟, 𝑚𝑒𝑚𝑜𝑟𝑦); 

        call IA(𝑗𝑜𝑏𝑗 , 𝑚𝑒𝑚𝑜𝑟𝑦); 

        return(𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙=0); 
else 

     return(𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙=1); 
end-if 

 

WCA_cfp: call-for-proposal function, each WCA 

computes a bid and decides if bid is being proposed 

input: 𝑖 ∈ 𝑊𝐶𝐴 ≔ {𝑊𝐶𝐴1, 𝑊𝐶𝐴2, 𝑊𝐶𝐴3}; information 𝑗𝑜𝑏𝑗; 

𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑠𝑜𝑙𝑗𝑜𝑏𝑗
; 𝑚𝑒𝑚𝑜𝑟𝑦 

initialize 𝑛𝑒𝑤_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑖 : =  0; 

𝑎𝑔𝑒𝑛𝑡_𝑄𝑖 =WCA_inform(𝑗𝑜𝑏𝑗 = 𝑁𝑈𝐿𝐿,𝑖,𝑚𝑒𝑚𝑜𝑟𝑦𝑖); 

𝑛𝑒𝑤_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑖 = 𝑎𝑔𝑒𝑛𝑡_𝑄𝑖  ∪ {𝑗𝑜𝑏𝑗}; 

compute optimal schedule using CDS-Algorithm: 
𝑏𝑖𝑑𝑗𝑜𝑏𝑗

=  𝑚𝑖𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑛𝑒𝑤_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑖
; 

if 𝑏𝑖𝑑𝑗𝑜𝑏𝑗
 >= 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑠𝑜𝑙 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚(𝑠𝑒𝑞(. 4, .6), 1) then 

   𝑏𝑖𝑑𝑗𝑜𝑏𝑗
 = "𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙"; 

end-if 

return 𝑏𝑖𝑑𝑗𝑜𝑏𝑗
; 

 

WCA_coop: after auction, workcenter agents can 

trade jobs; trade is successful if new solution is 
better than old solution 

input: none 

initialize 𝑎𝑔𝑒𝑛𝑡𝑖 = {1 … 3} 
foreach 𝑖 ∈ {1 … 3} do 

   𝑎𝑔𝑒𝑛𝑡𝑖= WCA_inform(𝑗𝑜𝑏 =
𝑁𝑈𝐿𝐿, 𝑎𝑔𝑒𝑛𝑡𝑖 , 𝑚𝑒𝑚𝑜𝑟𝑦) 
end-for 

foreach 𝑖 ∈ {1 … 3} do 

   𝑙 = 1; 
   while (𝑙 ≤  𝑛𝑟𝑗𝑜𝑏𝑠(𝑎𝑔𝑒𝑛𝑡𝑖)) do 

      compute optimal schedule using CDS-Algorithm 
and   
      exchange 𝑗𝑜𝑏𝑠𝑖={1…𝑛𝑟𝑗𝑜𝑏𝑠(𝑎𝑔𝑒𝑛𝑡𝑖)} with  

      𝑗𝑜𝑏𝑠𝑗={1…𝑛𝑟𝑗𝑜𝑏𝑠(𝑎𝑔𝑒𝑛𝑡𝑗)} 𝑓𝑜𝑟 𝑖 ≠ 𝑗 

      𝑙 + +; 
   end 
end-for 

 

WCA_inform: winning WCA receives job candidate won 

to queue into current optimal job schedule 

input: optional 𝑗𝑜𝑏𝑗; 𝑎𝑔𝑒𝑛𝑡; 𝑚𝑒𝑚𝑜𝑟𝑦 

if 𝑗𝑜𝑏𝑗 ! =  𝑁𝑈𝐿𝐿 then 

𝑎𝑔𝑒𝑛𝑡_𝑄𝑖 = 𝑚𝑒𝑚𝑜𝑟𝑦𝑖 ∪ {𝑗𝑜𝑏𝑗}; 

else 

return 𝑎𝑔𝑒𝑛𝑡_𝑄𝑖 = 𝑚𝑒𝑚𝑜𝑟𝑦; 
end-if 
 

IA: information agent who computes central solution to a 

job candidate and stores successfully auctioned jobs 

input: information 𝑗𝑜𝑏𝑗; optional 𝑟𝑒𝑞𝑢𝑒𝑠𝑡; optional 𝑠𝑡𝑎𝑟𝑡; 

𝑚𝑒𝑚𝑜𝑟𝑦 

if 𝑠𝑡𝑎𝑟𝑡 == 1 then 

   initialize 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ∶=  0; 
end-if 

if 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 == 1 then 

   initialize 𝑛𝑒𝑤_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ∶=  0; 

   𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 = 𝑚𝑒𝑚𝑜𝑟𝑦; 

   𝑛𝑒𝑤_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 = 𝑚𝑒𝑚𝑜𝑟𝑦 ∪ {𝑗𝑜𝑏𝑗}; 

   compute optimal schedule using CDS-Algorithm: 
   𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑠𝑜𝑙 =  𝑚𝑖𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑛𝑒𝑤_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒; 

   return 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑠𝑜𝑙; 
else 

   𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 = 𝑚𝑒𝑚𝑜𝑟𝑦 ∪ {𝑗𝑜𝑏𝑗}; 
end-if 

 

 


