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1 Introducion
In the context of bargaining, experimental evidence suggests that fairness regarding
preferences have a significant influence on the bargaining outcome. These preferences
are possibly in the form of one’s own payoff relative to the payoff of the opponent, or
relative to some (not necessarily equal) reference division which the individual con-
siders fair according to a principle. The latter case is particularly common in some
scenarios where each player has to provide some input to take part in the bargain (such
as bargaining over a jointly produced amount or player specific prices to enter the bar-
gain). While the majority of the theoretical literature primarily focuses on purely self-
interested agents, fairness motivation is a subject of growing interest and importance in
the field.

The theory of other-regarding preferences in bargaining consists predominantly of
models of inequality-aversion, where the fairness judgment of the outcome by a player
is based on their share relative to those of the other players. This can also be inter-
preted as the players considering an equal division fair. Such agents are studied in a
highly relevant work to the model here by Kohler and Schlag (2016). They propose a
solution for inequality averse bargainers in infinite horizon alternating offer bargaining
and show the effects of weights (guilt and envy) given to fairness on the outcome divi-
sion. However, as stated above, there often exists a focal point different than the equal
division as a fairness reference (such as the ratio of input in a jointly produced good),
which cannot be accounted for by inequality aversion. A more general utility model is
required for explaining the consequences of these asymmetric fair points. Hence, the
model in Kohler and Schlag (2016) corresponds to a special case of the model in this
paper where the variable fair point is set to the equal division. The solution presented



in Kohler and Schlag (2016) will be utilized in this paper to solve for bargainers that
consider asymmetric divisions fair.

There is some recent theoretical work that investigates the effect of conceived fair di-
visions that are non-equal. These papers, however, explain the effects within the frame-
work of axiomatic solution concepts (particularly Nash Bargaining Solution) or finite
horizon protocols.

The contribution of this paper is the application of asymmetric (i.e. non-equal)
fairness conceptions to the infinite-horizon alternating offer framework of Rubinstein
(1982), while seperately accounting for disutilities suffered for receiving a higher share
(guilt) and lower share (envy) than in the fair division. This is done utilizing a modified
version of the preferences from Fehr and Schmidt (1999). It is shown that the general
solution to the Rubinstein bargaining is applicable with these modified utilities, and the
resulting subgame perfect equilibrium is analyzed.

While the majority of the work examining the influence of varying fair points on the
bargaining outcome focus on the effect of different and often conflicting (incompatible
- see Birkeland & Tungodden 2014) subjective fairness principles of the bargainers, the
motivation in this paper is understanding the effects of variation in the driving factor
of the conceived fair point (e.g. production relative to the opponent) on bargaining
power and outcome. Thus, in this model, the bargainers agree on what constitutes a fair
division for each given state of the world. The model allows any commonly observed
fairness principal such as egalitarianism, laissez-faire, and accountability (Konow 1996,
2000) as long as the two bargainers share a particular principle.

As mentioned above, the examined bargaining protocol is that proposed by Rubin-
stein (1982). Here, the bargainers take turns making offers to the other regarding the
division of the pie, a process which continues until an offer is accepted. The critical
assumption is that they are impatient, meaning that the individuals derive a lower utility
from an agreement share if it is realized at a later stage. Osborne and Rubinstein (1994)
show for the general case, that there exists a unique subgame perfect equilibrium for the
problem, where each bargainer is indifferent between accepting the opponent’s offer and
making their own offer in the next round at any given stage of the bargaining process.

To reflect the fairness motivation of the bargainers, this study modifies the inequality
averse preferences proposed by Fehr and Schmidt (1999) where players experience util-
ity diminishing guilt when they receive a higher share than opponents, and envy when
receiving less. In a two player setting, this corresponds to utility diminishment based
on the difference between a proposed share and the half of the pie. Degrees of guilt and
envy are used to capture the weight each player attaches to fairness in case of receiv-
ing more and less than half respectively, which in turn determine the magnitude of the
disutility suffered from inequality. The difference between the standard Fehr & Schmidt
utility and the one that is used here is that while the degrees of guilt and envy are kept,
the utility diminishment is based on the difference between the share from an offer and
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an exogenously determined conceived fair share instead of the equal division. Conse-
quently, guilt is experienced by the players if they receive more than their conceived fair
share, and envy if less. This study follows the argument of Kohler and Schlag (2016)
that the solution proposed by Osborne and Rubinstein (1994) holds only for the degrees
of guilt for which a larger share of the pie is always desirable (i.e. the utility of both
players remain strictly increasing in their own share of the pie). If the degree of guilt
is high enough to make a player worse off when receiving a larger share than in the
fair point, the agreement is immediate and on the fair division. Thus, the conclusions
regarding the influence of the fair point on the bargaining outcome are valid for low
enough degrees of guilt.

In the bargaining process, the offers that are similar to the fair point become more
preferable relative to the offers that are far away from it if the players give higher weight
to fairness (i.e. higher guilt and envy). Conversely with given degrees of guilt and envy,
the conceived fair point coming closer to a given division increases the utility that both
players derive from this division, increasing its relative preferability. So an increase in
a player’s fair share (which means the conceived fair point moving closer to divisions
where this player receives a high share), may give him incentive to reject a low offer by
the opponent today in favor of offering to take a higher share tomorrow.

The comparative statics in the subgame perfect equilibrium show that whether a
higher fair share leads to a higher monetary payoff for a player structurally depends
on how symmetric (close to equal) the conceived fair division is. More specifically,
the effect differs between moderate fair points, which assign the two bargainers similar
shares, and extreme fair points, which assign one player most of the pie. These classes
of fairness conceptions are distinguished by thresholds determined by how much weight
the bargainers give to fairness (guilt and envy) and how patient they are. With moderate
fair points, players feel guilty with their own offers, and envious with the opponent’s
offers (where they receive a lower share than with their own offers). With extreme fair
points, one player always feels guilty and the other always envious.

As long as the fair division remains moderate according to the distinction above,
the higher a players fair share is, the higher a share he receives in agreement. With
moderate fair points, Player 2 (player who makes the second offer) compares accepting
an offer lower than his fair share to offering to take more than it tomorrow. An increase
in his fair share makes his own offer better and accepting Player 1s offer worse than
before. As a result, a higher offer is required to convince him to accept. However, if the
fair point assigns one player very little or very much of the pie (i.e. with extreme fair
points), a small increase in a players fair share can actually result in a decrease in his
share in agreement. With extreme fair points, the low player (the player with the lower
share in fair point) compares accepting today to making own offer tomorrow, both of
which make the low player feel guilty by giving him a larger share than in the fair point.
An even lower fair share increases the guilt from both offers. As the additional guilt is
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discounted for tomorrow, the additional disutility is higher today. This makes tomorrow
better relative to today and gives the low player incentive to reject. As a result, a higher
share is given to the low player in agreement than before. The decision of the high
player between accepting or rejecting the offer of the low player is affected in the same
way trough envy. So if the guilt of the low player is sufficiently high relative to the
envy of the high player, the outcome share of a player is decreasing in his fair share and
increasing otherwise. From these effects, one can conclude that for moderate fair points,
the outcome division becomes more equal as the fair point becomes more symmetric,
and for extreme fair points, the outcome division becomes less(more) equal as the fair
point becomes more symmetric if the guilt is high(low) relative to the envy. It is also
shown that for moderate fair points, the outcome division converges to the fair division
as players become more patient. The outcome share of players increase in their own
envy and the opponent’s guilt, and decrease in their own guilt and opponent’s envy.

The body of work regarding possibly non-egalitarian fairness conceptions in bar-
gaining consists mostly of experiments which find a considerable effect on bargaining
behavior for various protocols, although evidence regarding the nature of this influ-
ence is mixed. The experiments which suggest the sensitivity of the outcome to the
division considered fair by the bargainers include Königstein (2000), Gantner, Güth,
and Königstein (2001), Gächter and Riedl (2005, 2006), Cappelen, Hole, Sørensen,
and Tungodden (2007), Birkeland (2013), Cappelen, Moene, Sørensen, and Tungodden
(2013), Bolton and Karagozoglu (2016), and Gantner, Horn, and Kerschbamer (2016).
There are relatively few theoretical studies that model this influence. Birkeland and
Tungodden (2014) propose a model that assigns the same weight to utility diminish-
ment caused by receiving more and receiving less than in the fair division determined
by their fairness principle. Here, they examine the effects of changing fairness views
on the Nash Bargaining Solution (Nash, 1950). It is also shown that with incompatible
fairness views the bargaining set can become the empty set, resulting in disagreement.
Bolton and Karagozoglu (2016) study the effects appealing to focal points (which are
based on what they conceive as a fair division) and the possibility to commit to a cer-
tain division in an experimental setting. They then apply these concepts to the Nash
Bargaining Solution and a finite Zeuthen-Harsanyi bargaining game.

In Section 2, the formal bargaining protocol and the corresponding general case
equilibrium will be presented. In Section 3, a utility model of fairness motivation will be
introduced, which then will be used to derive the unique SPE for such agents. In Section
4, the comparative statics of the solution will be shown and the effects of interest will be
discussed. A brief summary of these findings will be presented and concluding remarks
regarding the applications of the model and the possible further steps in the area will be
made in Section 5.
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2 Bargaining Environment and General Case Solution
In deriving the subgame perfect equilibrium alternating offer bargaining game for fair-
ness motivated bargainers, this study uses the version of the general solution by Osborne
and Rubinstein (1994) presented in Kohler and Schlag (2016), which directly uses bar-
gainers’ utility functions (as opposed to their preference over divisions) to measure op-
timal behavior and to determine the corresponding strategies.

Following their notation, let U = {v1, f(v1) : v1 ∈ [ω1, ω2] ∧ ω1 ≤ 0} denote
the bargaining set (set of all possible agreements), where v1 is the utility Player 1 (first
offer-maker) derives from her outcome share x, f(v1) is the utility Player 2 (the second
offer maker) derives from her outcome share 1−x as a function of v1, and ω1 (ω2) is the
minimum (maximum) possible utility Player 1 can get from an agreement. δ ∈ (0, 1)
will denote the discount factor, which here will be assumed equal for both players (the
solution is analogous for individual degrees of impatience). Let the pair of utilities in
disagreement be d = (0, 0). Starting with Player 1 in the first round, players alternately
make offers regarding the division of the pie, which the other player can accept or reject.
In case of rejection, the other player makes an offer in the next round. This process
continues until an offer is accepted. In case of permanent rejection in every round, both
players get their disagreement utility (here, (0,0)).

Now let f(v1) be such that:

(F1)f is continuous in v1

This implies that there exists a small change in strategy that leads to an arbitrarily
small change in agreement.

(F2)f is strictly decreasing in v1

This implies a conflict of interest between the two bargainers. Furthermore, given
that v1 is strictly increasing in x, it implies that f(v(x)) is strictly increasing in 1 − x,
meaning a larger share of the pie is always strictly preferred by both players. When this
property holds, a division that makes one player relatively better off makes the other
player worse off. This implies Pareto-Efficiency of all possible agreements, as it rules
out the possibility of switching a different agreement where both players are better off.

(F3) f(0) ≥ 0
(F4)f(ω2) ≤ 0

These two properties imply that the subset of the bargaining set U consisting of
agreements that provide a higher utility than in disagreement for both players is non-
empty. That is, there are divisions of the pie that are better than disagreement for both
players.
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Based on the preference based solution by Osborne and Rubinstein (1994), Kohler
and Schlag (2016) show that (v∗1, f(v

∗
1)) is the pair of utilities derived from the unique

subgame perfect equilibrium of the above bargaining game if f(v1) satisfies properties
(F1) through (F4), and v∗1 is the only solution for f(v1) = δf(δv1). The SPE strategies
are such that Player 1 always offers v∗1 and accepts iff offered v1 with v1 ≥ δv∗1 , and
Player 2 always offers δv∗1 and accepts iff offered v1 ≤ v∗1 . The resulting agreement
takes place in the first round, and is on the division (v−11 (v∗1), 1− v−11 (v∗1)).

The line of arguments is as follows. Suppose vi (vi) is the lowest (highest) payoff for
player i in a subgame perfect equilibrium where i makes the first offer. Then the highest
utility that Player 2 can get by making her own offer is v2. In the preceding round,
Player 1’s offer is sure to be accepted if it provides Player 2 with at least the discounted
value of this utility, namely δv2. Consequently, Player 1 can receive any payoff v1 with
v1 ≤ f−1(δv2) in a SPE. This implies v1 ≥ f−1(δv2). That is, the minimum payoff
of the utility maximizing Player 1 in a SPE is at least as much as the one that makes
Player 2 indifferent between accepting or getting the highest possible utility by making
an offer.

In the SPE that gives Player 2 v2, Player 1 cannot receive a payoff higher than
f−1(δv2), as these offers with v1 > f−1(δv2) provide Player 2 a lower utility than
making her own offer and will be rejected. Thus, v1 ≤ f−1(δv2). That is, the minimum
payoff of Player 1 is no more than the one that makes Player 2 indifferent between
accepting and getting the highest possible utility by making own offer.

Assuming that the players accept in case of indifference, these two weak inequalities
imply that Player 1’s minimum payoff in a SPE is the one that makes Player 2 indifferent
between accepting and rejecting in the SPE where Player 2 receives the highest payoff.
Thus, v1 = f−1(δv2). Converse holds for the minimum SPE payoff of Player 2 (δv1 =
f−1(v2)).

In a SPE, Player 2 will accept only offers that give her at least the discounted value
of the minimum utility she can secure by making her own offer (δv2). Thus, SPE rules
out Player 1 making offers where she gets more than the share that makes Player 2
indifferent between accepting or making own offer tomorrow. This means that the max-
imum payoff Player 1 can receive in a SPE is no more than the one that gives Player 2
the discounted value of her minimum utility tomorrow (v1 ≤ f−1(δv2)).

In the SPE where Player 2 gets v2 by making her own offer, any offer by Player 1 that
gives Player 2 at least the discounted value of v2 is accepted. Thus, a utility maximizing
Player 1 makes an offer where Player 2 receives no more than her discounted minimum
SPE utility. (v1 ≥ f−1(δv2)).

These two weak inequalities imply that the maximum payoff Player 1 can receive in
a SPE is the one that makes Player 2 indifferent between accepting or making an offer
tomorrow that gives her her lowest SPE utility. That is, v1 = f−1(δv2). Converse holds
for the maximum SPE payoff of Player 2, meaning v2 = f(δv1).
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The two equations above can also be written as f(v1) = δv2 and f(v1) = δv2.
Replacing v2 (v2) with f(δv1) (f(δv1)) yields:

f(v1) = δf(δv1)

f(v1) = δf(δv1)

Recall that the above proposed solution is under the assumption that the function f
has a unique solution v∗1 for f(v1) = δf(δv1). For this equation system this assumption
implies v1 = v1 = v∗1 , which then becomes the unique SPE payoff of Player 1 for
this bargaining game. The only credible strategy profile that yields these utilities in
agreement is the one described in the proposition. Here, both players make offers that
make the other indifferent between accepting and rejecting (making own offer in the
next round) when it is their turn to make an offer. As a result, the offer in the first round
by Player 1 is accepted.

Continuity of f ensures that the solutions from the above maximum and the mini-
mum value equations have a common solution. Decreasing f ensures that v′1 is unique
for any given f(v′1), and that there is a strict preference relation between any two offers
in the same round. The decreasing nature of f implies that both players make the offer
that gives them the maximum payoff among acceptable offers. F3 and F4 ensure that
the bargaining set is non-empty.

The next section shows that this solution can be applied to a specific utility function
that regards asymmetric fair points.

3 Solution for Fairness Motivated Bargainers

3.1 The Utilities
To capture the fairness motivation in bargainer preferences, utilities similar to the ones
in the inequality aversion model proposed by Fehr and Schmidt (1999) will be used.

Fehr and Schmidt (1999) suggest that in addition to their absolute share in agreement
xi, bargainers also take their shares relative to that of the opponent into consideration.
In the 2 player case, if player i receives more than her opponent she suffers some utility
loss, the magnitude of which measured by the difference between the payoffs and a
weight βi ∈ [0, 1). Similarly, if player i receives less than her opponent, the utility loss
is measured by the difference between payoffs weighted by αi ≥ 0. αi(βi) captures the
envy (guilt) experienced by player i as a result of an unequal division. The resulting
utility function of player i ∈ {1, 2} is:

ui = xi − αimax{0, xj − xi} − βimax{0, xi − xj}, i 6= j
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Denoting the share of Player 1 (the first offer-maker) by x allows us to denote the
share of Player 2 by 1− x. Simplifying the resulting functions yields:

u1 = x− α1max{0, 1− 2x} − β1max{0, 2x− 1}

and

u2 = 1− x− α2max{0, 2x− 1} − β2max{0, 1− 2x}

One difference between the utilities used in this paper and the utilities above is that
in this paper, the guilt and envy are experienced based on the difference between a
player’s outcome share and the share that she would receive in what she considers to
be the fair division (instead of the difference between her share and the share of the
opponent in the outcome). If the bargainers consider the equal division fair, the model
in this study becomes conceptually analogous to the utilities above. In the case where
the conceived fair point is the equal division, the corresponding functional form to this
description is:

ui = xi − αimax{0,
xi + xj

2
− xi} − βimax{0, xi −

xi + xj
2
}, i 6= j

Now, as the objective of this study is to capture the effect of different divisions as
conceived fair points on bargaining behavior, the share that player i considers to be her
fair share is generalized and denoted by λi ∈ [0, 1]. Furthermore, the assumption that
both players consider the same division fair implies that λ1 = 1 − λ2. As a result, the
fair share of Player 1 can be denoted by λ and the fair share of Player 2 will be denoted
by 1− λ. In the above utility function, replacing x1 by x, x2 by 1− x, replacing 1/2 by
λ in Player 1’s utility function and by 1− λ in Player 2’s utility function yields:

u1 = x− α1max{0, λ− x} − β1max{0, x− λ}

and

u2 = 1− x− α2max{0, x− λ} − β2max{0, λ− x}

Note that with this functional form, λ has no interaction term with x. Thus, the value
of λ has no effect on the slope of the utility function for x < λ or x > λ. However, λ
determines the regions of x where guilt or envy are experienced, and the magnitude of
the utility loss suffered from a given x.

An important feature of these functions is that Player i’s utility is strictly increasing
in her own share (for any given λ) if and only if βi < 1. This is a necessary condition
for the solution presented in Section 2 to be applicable. If βi = 1 for Player i, then that
player is indifferent between any share not smaller than her fair share. If βi > 1, then
the utility of player i has a maximum at xi = λi, and decreases with higher shares than
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that. In both cases, ”pie is desirable” is not true, which violates the assumption (F2)
from Section 2. Thus, the Rubinstein solution is not applicable to bargaining with these
utilities if βi ≥ 1 for any i ∈ {1, 2}.

3.2 The Subgame Perfect Equilibrium
Using the above described utilities to capture the fairness motivation as well as their
self-interest, one can derive the unique Subgame Perfect Equilibrium for the bargaining
problem.

Proposition 1. There exists a unique Subgame Perfect Equilibrium for the infinite hori-
zon alternating offer bargaining game with fairness motivated bargainers who agree on
what constitutes a fair division if βi < 1, ∀i ∈ {1, 2}, where agreement is reached in
the first round. The strategies are such that Player 1 always offers x∗ and accepts offer
x if and only if x ≥ δx∗, and Player 2 always offers δx∗ and accepts offer x if and only
if x ≤ x∗. Outcome share x∗ of Player 1 as follows.

x∗ =


1

1+δ
(1+λα2

1+α2
− λδβ1

1−β1 ); λ ≤ λ

(1+α1)(1−δ)+λ(δα1+α1α2+α2+δβ2+δ2β1−δ2β1β2)
(1+α1)(1+α2)−δ2(1−β1)(1−β2) ; λ ∈ (λ, λ)

1
1+δ

(1−λβ2
1−β2 + δα1λ

1+α1
); λ ≥ λ

From which Player 1 derives utility v∗1 with:

v∗1 =


1−β1+λ(α2+β1)
(1+α2)(1+δ)

; λ ≤ λ

(1−δ)(1−β1)(1+α1)+λ[(1+α1)(α2+β1)+δ(1−β1)(α1+β2)]
(1+α1)(1+α2)−δ2(1−β1)(1−β2) ; λ ∈ (λ, λ)

1+α1−λ(α1+β2)
(1+δ)(1−β2) ; λ ≥ λ

With λ = δ(1−β1)
1+α2+δ(1−β1) and λ = 1+α1

1+α1+δ(1−β2) .

Proof. First, it will be shown that the utility assumptions necessary for the Rubinstein
solution hold for the above utilities if β1,2 < 1. Then it will be shown that f(v1) =
δf(δv1) has a unique solution. This will be followed by the presentation of the solution
and the corresponding conditions on λ.

We start by defining the bargaining set U = {v1, f(v1) : v1 ∈ [ω1, ω2]∧ ω1 ≤ 0} for
the given utility functions. As the utilities are assumed to be the ones described above,
let v1 = u1(x) = x − α1max{0, λ − x} − β1max{0, x − λ} (the utility Player 1 gets
from share x). As β1 < 1 by assumption, we know that dv1

dx
= du1

dx
> 0,∀x ∈ [0, 1].

Thus, it can be seen that among the possible divisions, Player 1 gets her maximum
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utility if x = 1 and minimum if x = 0. So, we can set ω1 = u1(0) = −λα1 and
ω2 = u1(1) = 1− β1(1− λ).

Finally, since f(v1) is Player 2’s utility as a function of Player 1’s utility from a
given division x, we define f(v1) as u2(u−11 (x)) (or simply as u2(x(v1)). Now, as v1 is
diminished via α1 if x < λ and via β1 if x > λ, it has different slopes for these ranges.
As x < λ(x > λ) implies v1 < λ(v1 > λ), function x(v1) is given by:

x =

{ v1+a1λ
1+a1

; v1 < λ

v1−β1λ
1−β1 ; v1 ≥ λ

Replacing x with x(v1) in u2(x) yields u2(x(v1)) = f(v1) as we defined above:

f(v1) =

{
1− β2λ− (v1 + α1λ)

1−β2
1+α1

; v1 < λ

1 + α2 − (v1 − β1λ)1+α2

1−β1 ; v1 ≥ λ

Note that because v1 is greater(smaller) than λ, Player 1 feels guilt(envy), and Player
2 feels envy(guilt). Thus, β1 and α2 (α1 and β2) enter the utility of Player 2.

Now that we have fully defined U = {v1, f(v1) : v1 ∈ [−λα1, 1 − β1(1 − λ)]},
we can check if the four assumptions necessary for the applicability of the Rubinstein
solution hold for f(v1).

(F1) : f(v1) is continuous. It is clear that f(v1) is continuous for v1 ∈ [ω1, λ) and
v1 ∈ (λ, ω2]. To check the continuity at v1 = λ, we compute the left and right limits.
This yields limv1↗λ f(v1) = limv1↘λ f(v1) = 1− λ. Thus, we can conclude that (v1) is
continuous for all v1 ∈ [ω1, ω2].

(F2):f(v1) is strictly decreasing. Taking the derivative of f(v1) with respect to v1
yields:

df(v1)

dv1
=

{
−1−β2

1+a1
; v1 < λ

−1+α1

1−β1 ; v1 ≥ λ

Which, since we assume β1,2 < 1, is strictly negative for all v1 ∈ [ω1, ω2]. So f(v1)
is strictly decreasing.

(F3) and (F4) : Since 1 ≥ λ ≥ 0, f(v1) is continuous, and β2 < 1, f(0) =
α1(1−λ)+1−β2λ

1+α1
> 0 (F3 is satisfied). Since 1 ≥ ω2 ≥ λ, f(ω2) = α2(λ − 1) ≤ 0 (F4 is

satisfied).

Now that we have shown that all the necessary and sufficient conditions hold for
f(v1), we know by the proposition presented in Section 2 that if a unique solution exists
for f(v1) = δf(δv1), then that solution is the utility Player 1 gets from the agreement
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in the unique subgame perfect equilibrium. We start by defining the function h(v1) :=
f(v1)− δf(δv1):

h(v1) =


1− β2λ− (v1 + α1λ)

1−β2
1+α1

− δ[1− β2λ− (δv1 + α1λ)
1−β2
1+α1

]; v1 ≤ λ

1 + α2λ− (v1 − β1λ)1+α2

1−β1 − δ[1− β2λ− (δv1 + α1λ)
1−β2
1+α1

]; v1 ∈ (λ, λ
δ
)

1 + α2λ− (v1 − β1λ)1+α2

1−β1 − δ[1 + α2λ− (δv1 − β1λ)1+α2

1−β1 ]; v1 ≥ λ
δ

Note that the region v1 ≤ λ corresponds to v1 with f(v1), f(δv1) ≥ λ, v1 ∈ (λ, λ
δ
)

corresponds to v1 with f(v1) < λ ∧ f(δv1) > λ, and v1 ≥ λ
δ

corresponds to v1 with
f(v1), f(δv1) ≤ λ.

To show that a unique solution v∗1 exists for h(v1) = 0 for any given combination of
λ, β1,2 and α1,2 that satisfy the conditions in the proposition, it is sufficient to show that
h(v1) is strictly decreasing, continuous, and there exist v′1, v

′′
1 ∈ [ω1, ω2] with h(v′1) ≥ 0

and h(v′′1) ≤ 0.
It is easy to see that as f(v1) is continuous for all v1 ∈ [ω1, ω2], h(v1) is also contin-

uous. It is also shown above that df(v1)
dv1

< 0 for all v1 (which also implies d[δf(δv1)]
dv1

< 0

as δ > 0). Furthermore, as δ < 1, we can see that |df(v1)
dv1
| > |d[δf(δv1)]

dv1
|. That is, the

added term in h(v1) decreases faster with v1 than the subtracted term. Thus, h(v1) is
strictly decreasing.

To show that there h(v1) can obtain both positive and negative values within domain
[ω1, ω2], it is wise to use v1 = 0 and v1 = ω2, since h(v1) is shown to be strictly
decreasing. It is shown above that f(0) > 0. This implies δf(0) < f(0) and thus,
h(0) > 0. As we know that ω2 ≥ 0, we can infer that δω2 ≤ ω2. This implies (with
decreasing f ) f(ω2) ≤ f(δω2). Also shown above is f(ω2) ≤ 0, These two inequalities
then lead to f(ω2) ≤ δf(δω2) and hence, h(ω2) ≤ 0.

Function h(v1) is continuous, strictly decreasing, and maps to both positive and
negative values from domain [ω1, ω2]. From this we can conclude that h(v1) = 0 for
exactly one value of v1.

Now that we know a unique solution for h(v1) = 0 exists for any given combination
λ, βi, αi, we can solve for each region of v1. Note that different λ values mean different
borders for the three regions of h(v1), so a change in λ results in a shift in the points
where the slope of h(v1) changes. Consequently, in which of these three regions h(v1) =
0 occurs will be conditional on the value of λ.

We will start with the region where v1 ≥ λ
δ
.

Solving h(v∗1) = 1 + α2λ − (v∗1 − β1λ)1+α2

1−β1 − δ[1 + α2λ − (δv∗1 − β1λ)1+α2

1−β1 ] = 0
for v∗1 yields:

v∗1 =
1− β1 + λ(α2 + β1)

(1 + α2)(1 + δ)

11



For the solution to be in this region, v∗1 ≥ λ
δ

must hold. Replacing v∗1 with the
expression above, then solving this condition for λ we find:

λ ≤ δ(1− β1)
1 + α2 + δ(1− β1)

= λ

Similarly, solving h(v∗1) = 0 for v1 ∈ (λ, λ
δ
) yields:

v∗1 =
(1− δ)(1− β1)(1 + α1) + λ[(1 + α1)(α2 + β1) + δ(1− β1)(α1 + β2)]

(1 + α1)(1 + α2)− δ2(1− β1)(1− β2)

Replacing v∗1 with this expression in v∗1 ∈ (λ, λ
δ
) and solving for λ yields:

λ ∈ (
δ(1− β1)

1 + α2 + δ(1− β1)
,

1 + α1

1 + α1 + δ(1− β2)
) = (λ, λ)

Solving h(v∗1) = 0 for v1 ≤ λ yields:

v∗1 =
1 + α1 − λ(α1 + β2)

(1 + δ)(1− β2)
Replacing v∗1 in this expression in v∗1 ≤ λ and solving for λ yields:

λ ≥ 1 + α1

1 + α1 + δ(1− β2)
= λ

Note that the conditions on λ are the same for the upper border of Region 1 and the
lower border of Region 2 (λ) as well the upper border of Region 2 and the lower border
of Region 3 (λ). This implies that there is exactly one value v∗1(λ) for all λ ∈ [0, 1].
Furthermore, limλ↗λ v

∗
1 = limλ↘λ v

∗
1 and limλ↗λ v

∗
1 = limλ↘λ v

∗
1 . This implies that

v∗1(λ) is continuous.
Inserting the above functions for v∗1 in x(v1) yields:

x∗ =


1

1+δ
(1+λα2

1+α2
− λδβ1

1−β1 ); λ ≤ λ

(1+α1)(1−δ)+λ(δα1+α1α2+α2+δβ2+δ2β1−δ2β1β2)
(1+α1)(1+α2)−δ2(1−β1)(1−β2) ; λ ∈ (λ, λ)

1
1+δ

(1−λβ2
1−β2 + δα1λ

1+α1
); λ ≥ λ

4 Comparative Statics and Discussion
Based on the solution presented above, this section will focus on pointing out the ceteris-
paribus effects of the conceived fair division on the bargaining outcome x∗. Also, the
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outcome division in the limit of patience and the ceteris-paribus effects of degrees of
guilt and envy on the outcome division will be examined. For any partial derivative or
limit value not explicitly shown, please refer to Section 6: Appendix A.

Following the terminology explained in the introduction, ”moderate” fair points will
correspond to λ ∈ (λ, λ), and ”extreme” fair points will correspond to λ ≤ λ or λ ≥ λ.
Note that as λ = δ(1−β1)

1+α2+δ(1−β1) ∈ (0, 1/2) and λ = 1+α1

1+α1+δ(1−β2) ∈ (1/2, 1) for all
δ, βi, αi allowed in the model, all of the three regions of λ are always nonempty intervals
of real numbers. The moderate region λ ∈ (λ, λ) becomes smaller as δ → 1, but doesn’t
disappear.

Under the SPE strategies, if λ is in the moderate region, Player 1’s own offers v∗1 give
her a higher share than her fair share λ, and Player 2’s offers δv∗1 give Player 1 a lower
share than her fair share (as here v∗1 ∈ (λ, λ

δ
)). Converse holds for Player 2. So with each

offer Player 1 makes, Player 1(Player 2) feels guilt(envy), and with each offer Player 2
makes Player 1(Player 2) feels envy(guilt). For the extreme region where Player 1 has
the larger fair share (λ ≥ λ), Player 1(Player 2) receives less(more) than her fair share
in both her own offers v∗1 and the offers δv∗1 of Player 2 (as then v∗1 ≤ λ < λ

δ
). Thus

Player 1(Player 2) always feels envy(guilt) on the equilibrium path. Switching the roles
of Players 1 and 2 shows that Player 1 (Player 2) always feels guilt (envy) for the low
extreme region of λ ≤ λ. This is the underlying dynamic for the difference in solutions
across the three regions. Consequently, the effect of λ on x∗ will also depend on which
region λ is in.

4.1 Outcome with Respect to the Fair Point

In the moderate region, we see that dx
∗

dλ
> 0,∀λ ∈ (λ, λ). This implies that d(1−x

∗)
d(1−λ) > 0,

meaning that both players’ outcome shares are increasing with their own shares in the
conceived fair point, as long as this fair point remains moderate. A more interesting
finding is for the extreme regions. For low fair shares of Player 1 (λ ≤ λ) we have:

dx∗

dλ
Q 0 ⇐⇒ α2

1 + α2

Q
δβ1

1− β1
This means if Player 1’s guilt relative to Player 2’s envy is high enough to satisfy the

above condition (note that this is the case for most combinations {δ, αi, βi ∈ (0, 1)}),
then the outcome payoff of each player is decreasing in her own fair share as long as
λ ≤ λ still holds.

Similarly for the extreme regions with a high fair share of Player 1 (λ ≥ λ) we find:

dx∗

dλ
Q 0 ⇐⇒ δα1

1 + α1

Q
β2

1− β2
That is, if Player 2’s guilt relative to Player 1’s envy is sufficiently high, then the
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outcome payoff of each player is decreasing in her own share as long as λ ≥ λ still
holds.

Note that the condition for decreasing x∗ is stricter for λ ≤ λ than for λ ≥ λ. This
is due to δ changing sides, and is caused by the first mover advantage. This difference
disappears as δ → 1, in which case we can generalize the effect described above by
denoting the envy of the high fair share player in an extreme case αh and the guilt of the
low fair share player βl as follows.

lim
δ→1

dx∗

dλ

 > 0; λ ∈ (limδ→1 λ, limδ→1 λ)

Q 0; λ /∈ (limδ→1 λ, limδ→1 λ) ∧ αh

1+αh
Q βl

1−βl

With limδ→1 λ = 1−β1
2+α2−β1 and limδ→1 λ = 1+α1

2+α1−β2 That is, with highly asymmetric
fair points conceived by highly patient bargainers, the outcome share of each player
decreases (increases) with their own fair share if the guilt of the low player is sufficiently
high (low) relative to the envy of the high player.

4.2 Outcome against the Fair Point
Another important finding for moderate fair points is that x∗ > λ if λ ∈ (λ, λ), but
limδ→1 x

∗ = λ if λ ∈ [limδ→1 λ, limδ→1 λ]. That is, the outcome payoff of Player
1 is higher than her fair share, but the outcome division converges to exactly the fair
division as the bargainers become more patient if the fair division is symmetric enough.
This shows us that with moderate fair points, Player 1 receiving more than her fair share
is caused solely by the first mover advantage. For extreme fair points however, this is
not the case. For λ ≤ λ, we know that x∗ ≥ δλ > λ. Furthermore, limδ→1 x

∗ > λ
for all λ < limδ→1 λ. This means for any λ < λ, the outcome share of Player 1 is
strictly greater than her fair share, and it converges to a value strictly above her fair
share. Similarly for λ ≥ λ, we know that x∗ ≤ λ (with x = λ for λ = λ). We can also
compute that limδ→1 x

∗ < λ for all λ > limδ→1 λ. Thus, for any λ > λ, the outcome
share of Player 1 is strictly smaller than her fair share, and it converges to a value strictly
below her fair share. Combining these three observations we have:

x∗


> λ; λ < λ

= λ; λ = λ

< λ; λ > λ

and
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lim
δ→1

x∗


> λ; λ < limδ→1 λ

= λ; λ ∈ [limδ→1 λ, limδ→1 λ]

< λ; λ > limδ→1 λ

From the above, the most important inferences we can make are that for moderate
fair points, first mover receivers a slightly higher share than in the fair division, but this
excess payoff disappears with patience. For extreme fair points, the player with the high
fair share receives less than her fair share and the one with the low fair share receives
more. For every given combination of utility parameters δ < 1, αi and βi, the only fair
point for which the outcome is exactly equal to the fair division is λ.

Finally, we can compute that λ < limδ→1 λ⇒ limδ→1 x
∗ < 1

2
and λ > limδ→1 λ⇒

limδ→1 x
∗ > 1

2
. Combining this with the above argument about the limits, we conclude

that λ < 1
2
⇒ limδ→1 x

∗ ∈ [λ, 1
2
), λ > 1

2
⇒ limδ→1 x

∗ ∈ (1
2
, λ], and λ = 1

2
⇒

limδ→1 x
∗ = 1

2
. That is, in the limit of patience, the outcome division is always between

the fair point and the equal division.

4.3 Outcome with Respect to Guilt and Envy
Holding all else constant, we now observe the effects of the weights that the bargainers
attach to the fair point on the outcome shares of the bargainers. The expectation is that
each individual weight (α1,2, β1,2) only affects the outcome with values of λ for which
it is relevant. Relevance of a weight means that it is experienced by the corresponding
bargainer in some stage under the equilibrium strategies.

Observing the derivatives of outcome x∗ with respect to α1 and β2, we find the
following.

dx∗

dα1

,
dx∗

dβ2


= 0; λ ≤ λ

> 0; λ > λ

Outcome share of Player 1 is increasing in her own envy and Player 2’s guilt if her
fair share is at least moderately high. Note that if the fair point is in the lower extreme
region(λ ≤ λ), the outcome is independent of Player 1’s envy and Player 2’s guilt. This
is because for λ ≤ λ the fair share of Player 1 is so low that even Player 2’s (lower)
offers with her equilibrium strategy don’t give Player 1 a lower share than in the fair
division. As a result, Player 1 never experiences envy and Player 2 never experiences
guilt on the equilibrium path.

Important to note is that α1 and β2 are determinant factors (enter the function) for
λ but not for λ. As dλ

dα1
, dλ
dβ2

> 0, an increase in α1 or β2 can mean that a given high
extreme fair point (λ ≥ λ) now becomes a moderate fair point. However, since in both
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of these regions x∗ is increasing in α1 and β2, the above condition of positivity holds for
all α1, β2 ∈ (0, 1).

When we look at x∗ with respect to α2, β1 we see the following.

dx∗

dα2

,
dx∗

dβ1


< 0; λ ≤ λ

= 0; λ > λ

Outcome share of Player 1 decreases with her own guilt, and Player 2’s envy. Simi-
larly, the guilt of Player 1 and the envy of Player 2 are only relevant if the fair share of
Player 1 is low enough. If the fair division assigns Player 1 a very high share (λ ≥ λ),
Player 1 never receives more than her fair share on the equilibrium path and thus, never
feels guilty (β1 is irrelevant). Same logic applies for Player 2’s envy (α2 is irrelevant).

Also analogous to the case for α1 and β2, we can see that only λ depends on α2, β1
(with dx∗

dα2
, dx

∗

dβ1
< 0). Consequently, an extremely low given fair point (λ ≤ λ) can

become moderate with increasing α2 or β1. Still, as the outcome share of Player 1
decreases in both these regions, the above positivity conditions continue to hold.

Combining the two observations above, we can conclude that the outcome payoff of
each bargainer is increasing in her own envy and the opponent’s guilt, and decreasing in
her own guilt and the opponent’s envy, given that the fair point is such that each weight
is relevant according to the description above. In other words, feeling a high degree of
envy strengthens the bargaining position of a player and feeling a high degree of guilt
weakens it.

Finally, note that in the moderate region, the effects of guilt and envy are due to
the first mover advantage and disappear as δ → 1 (recall that limδ→1 x

∗ = λ for
λ ∈ [limδ→1 λ, limδ→1 λ] and λ is considered a given constant in this subsection). For
extreme regions, however, dx

∗

dα1
and dx∗

dβ2
converge to positive values and dx∗

dα2
and dx∗

dβ1
con-

verge to negative values when they are relevant. Therefore, in limit of patience, the
effects of weight given to fairness remain only in extreme regions.

As we know limδ→1 x
∗ > λ for λ < limδ→1 λ with any given αi, βi and x∗ decreas-

ing with α2, β1 in this region, we can conclude that λ < limδ→1 λ⇒ limδ→1
d(|x∗−λ|)

dα2
<

0, and limδ→1
d(|x∗−λ|)

dβ1
< 0. Both of these limits are equal to zero for any λ ≥ limδ→1 λ

as then α2 and β1 have no effect on x∗ in limit. With the same argument, we can find
that λ > limδ→1 λ ⇒ limδ→1

d(|x∗−λ|)
dα1

< 0 and limδ→1
d(|x∗−λ|)

dβ2
< 0. Analogously to

above, we see that these two limits are equal to zero in any other region.
We can generalize the statements above as follows.

lim
δ→1

d(|x∗ − λ|)
dαi

≤ 0 ∧ lim
δ→1

d(|x∗ − λ|)
dβi

≤ 0,∀i ∈ {1, 2}

That is, in limit of patience, higher weight of any kind attached to fairness leads to
outcomes that are not further from (possibly closer to) the fair division.
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5 Concluding Remarks
In searching for the effects of changes in the determinant factor for the conceived fair
division, fairness motivated agents were modeled as agents who suffer utility loss based
on the difference between the share they actually receive and the share that they would
have received in the division they consider fair. The agents of interest were the ones
who agree on what constitutes a fair division in any given scenario (i.e. judge according
to the same fairness principle), and still strictly prefer a higher share of the pie with any
given division.

When such two agents engage each other in an open-ended alternating offer bar-
gaining setting, it is shown that the effect of the fair division depends structurally on the
symmetry of this fair point. If the bargainers consider it fair that they receive similar
shares (moderate fair points), the monetary payoff of an individual in the bargaining
outcome increases with her fair share. The relative attractiveness of her own offers in-
creases and this gives her incentive to reject the opponent’s offers, making her capable
of making additional credible threats. This effect continues unless her fair share is even
higher than the payoff that she receives from her own offers (or even lower than the pay-
off she receives from the opponent’s offers). With these highly asymmetric (extreme)
fair divisions, the outcome payoff of a player is decreasing in her fair share if the degree
of guilt that the low fair share player feels is high relative to the degree of envy that the
high fair share player feels. This is because an even further decrease in the fair share
of the low player decreases her utility from both own and the opponent’s offers by the
same absolute amount via guilt, giving the low player incentive to reject and make her
own offer in the next round.

Also shown is that for highly asymmetric fair points, the high fair share player gets
less than her fair share, and the low fair share player more than hers. For highly patient
players (in limit), the outcome converges to exactly the fair division if the fair division is
highly symmetric, and is between the fair division and 50:50 if the fair division is highly
asymmetric. Feeling a high degree of guilt decreases the bargaining power of a player,
and a high degree of envy increases it. For highly patient bargainers, both degrees of
”attachment” to fairness (guilt and envy) lead to an outcome that is closer to the fair
division.

Often in real world bargaining situations, individuals take the fairness of the out-
come into consideration along with their monetary payoff. Furthermore in many situ-
ations, there exists some benchmark variable for what would be the fair division (such
as how much input each player provided for a jointly produced amount, how costly it
was for each individual to take part in the process in the first place, how much each
individual needs the good, etc.), as opposed to simply considering it fair that all players
receive the same amount. Such bargains often take place in an environment where the
individuals disregard or have uncertainty about the time limit of the bargaining process
(a behavior which can be captured by the infinite horizon bargaining protocol). Al-
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though the evidence for the exact effect of fairness motivation is mixed in experimental
literature, especially when simulating the infinite horizon, the existence of it as a deter-
minant factor on bargaining behavior has been strongly supported. Thus, it is indeed
of importance to study the behavior of fairness motivated agents in an infinite setting.
Further steps in the area might include bargaining between players who vary in their
fairness principles in an infinite-horizon setting (as individuals often tend to support
fairness concepts that favor their position), or incomplete information regarding the fair
point, as the input each bargainer has provided is rarely measurable in practice.

6 Appendix A

6.1 Partial Derivatives
Partial derivatives of the SPE outcome share of Player 1:

dx∗

dλ
=


1

1+δ
( α2

1+α2
− δβ1

1−β1 ); λ ≤ λ

δα1+α1α2+α2+δβ2+δ2β1−δ2β1β2
(1+α1)(1+α2)−δ2(1−β1)(1−β2) > 0; λ ∈ (λ, λ)

1
1+δ

( δα1

1+α1
− β2

1−β2 ); λ ≥ λ

The following are for D := (1 + α1)(1 + α2) − δ2(1 − β1)(1 − β2) and E :=
(1 + α1)(1 − δ) + λ(δα1 + α1α2 + α2 + δβ2 + δ2β1 − δ2β1β2). Note that λD < E if
λ ∈ (λ, λ).

dx∗

dα1

=


0; λ ≤ λ

(1−δ+λ(δ+α2))D−(1+α2)E
D2 > 0; λ ∈ (λ, λ)

. δλ
(1+δ)(1+α1)2

> 0; λ ≥ λ

dx∗

dα2

=


λ−1

(1+δ)(1+α1)2
< 0; λ ≤ λ

(1+α1)(λD−E)
D2 < 0; λ ∈ (λ, λ)

0; λ ≥ λ

dx∗

dβ1
=


−δλ

(1+δ)(1−β1)2 < 0; λ ≤ λ

δ2(1−β2)(λD−E)
D2 < 0; λ ∈ (λ, λ)

0; λ ≥ λ
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dx∗

dβ2
=


0; λ ≤ λ

λδ(1−δβ1)D−δ2(1−β1)E
D2 > 0; λ ∈ (λ, λ)

1−λ
(1+δ)(1−β2)2 > 0; λ ≥ λ

Partial derivatives of region borders:

dλ

dδ
=

(1− β1)(1 + α2)

(1 + α2 + δ(1− β1))2
> 0

dλ

dδ
= − (1− β2)(1 + α1)

(1 + α2 + δ(1− β1))2
< 0

dλ

dα2

= − δ(1− β1)
(1 + α2 + δ(1− β1))2

< 0

dλ

dβ1
= − δ(1 + α1)

(1 + α2 + δ(1− β1))2
< 0

dλ

dα1

=
δ(1− β2)

(1 + α2 + δ(1− β1))2
> 0

dλ

dβ2
=

δ(1 + α1)

(1 + α2 + δ(1− β1))2
> 0

dλ

dα1

=
dλ

dβ2
=

dλ

dα2

=
dλ

dβ1
= 0

6.2 Limits as δ → 1

Region borders:

lim
δ→1

λ =
1− β1

2 + α2 − β1
∈ (0,

1

2
)

lim
δ→1

λ =
1 + α1

2 + α1 − β2
∈ (

1

2
, 1)

Outcome division:

lim
δ→1

x∗


1
2
(1+λα2

1+α2
− λβ1

1−β1 ) > λ; λ < limδ→1 λ

= λ; λ ∈ [limδ→1 λ, limδ→1 λ]

1
2
(1−λβ2

1−β2 + λα1

1+α1
) < λ; λ > limδ→1 λ
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7 Appendix B (Abstract)

7.1 English
This paper presents a model of infinite horizon alternating offer bargaining with asym-
metric divisions as conceived fair points, where both bargainers consider the same divi-
sion fair. The behavior of the bargaining outcome with respect to varying fair points is
studied. A higher fair share can lead to a higher or lower outcome share for a player, de-
pending on how asymmetric the fair division is. With highly patient bargainers, the fair
point can be achieved as the outcome if it is highly symmetric. Feeling guilt weakens
and feeling envy strengthens the bargaining position of each player. With highly patient
players, weight attached to fairness brings the solution closer to the fair point .

7.2 Deutsch
Diese Arbeit präsentiert ein offenes Verhandlungsmodel mit asymmetrichen Aufteilun-
gen als erachtete Fairpunkte, wobei beide Spieler dieselbe Aufteilung fair finden. Das
Verhalten des Verhändlungsergebnisses in Bezug auf verschiedene Fairpunkte ist zu
beobachten. Ob ein höherer Fairanteil von einem Spieler zu einem höheren oder kleineren
Ergebnisanteil führt hängt von der Symmetrie des Fairpunktes ab. Mit sehr geduldigen
Spielern kann der Fairpunkt als Verhandlungsergebnis erreicht werden, wenn er sehr
symmetrisch ist. Für jeden Spieler, Schuld schwächt die Verhandlungsposition und Neid
stärkt die Verhandlungsposition. Mit sehr geduldigen Spielern, das Verhandlungsergeb-
nis bewegt sich näher zum Fairpunkt mit einer Erhhung von Schuld oder Neid.
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Gächter, S., & Riedl, A. (2006). Dividing justly in bargaining problems with claims.
Social Choice and Welfare, 27(3), 571-594.
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