

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

Optimizing the Operation Range of E-Bikes

in Routing Systems

verfasst von / submitted by

Simon Tobias Haumann, B.A.

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Zürich, 2017 / Zurich 2017

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

A 066 856

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

Masterstudium Kartographie und Geoinformation

Betreut von / Supervisor: Prof. Dr. Martin Raubal (ETH Zürich)

i

Optimizing the Operation Range of E-Bikes in Routing Systems

Mitbetreut von / Daily Advisor: M.Sc. Dominik Bucher (ETH Zürich)

ii Optimizing the Operation Range of E-Bikes in Routing Systems

List of contents

List of Figures ... vi

List of Tables ... x

List of Abbreviations ... xii

List of Symbols .. xiv

Abstract ... xvi

Kurzfassung ... xviii

Acknowledgment ... xx

1. Introduction... 2

 Objectives .. 3

 Outline of the Thesis .. 4

2. Related Works... 6

 Literature Overview ... 6

 Similar projects .. 10

3. Methods .. 12

 Data Acquisition ... 12

 Selection of Software .. 13

 Specific Hardware .. 15

 Study Area .. 16

4. Development of the Energy Consumption Model .. 18

 Energy Model ... 18

 Data Pipeline ... 22

4.2.1. Basic Preparation ... 22

4.2.2. Preparation in ArcGIS .. 23

4.2.3. Data Conditioning .. 29

4.2.4. Altitude Value Extraction ... 31

4.2.5. Impeding Forces ... 33

4.2.6. Determining Motor efficiency ... 35

4.2.7. Electrical Motor Power and Energy Consumption ... 36

iii

Optimizing the Operation Range of E-Bikes in Routing Systems

5. Routing Applications ... 42

 Dijkstra Application .. 42

5.1.1. Back-End .. 42

5.1.2. Front-End .. 46

 Bellman-Ford Application .. 48

5.2.1. Back-End .. 48

5.2.2. Front-End .. 49

6. Evaluation .. 54

 Parameters ... 54

 Test Set .. 64

6.2.1. Test Session A .. 66

6.2.2. Test Session B .. 70

7. Results .. 74

8. Discussion.. 80

 Findings ... 80

 Conclusion, Application Areas and Outlook ... 80

9. References ... 88

Appendix ... I

E-Mail Bosch (Martin Wille) .. I

E-Mail EMPA (Marcel Gauch) .. II

Educational Use Data swisstopo ... III

Programming Code ArcGIS Model Builder .. IV

energyconsumptionmodel_egomovement_whiteknight.py ... IV

energyconsumptionsubmodel_whiteknight_1.py ... VII

energyconsumptionsubmodel_whiteknight_2.py .. XIV

energyconsumptionmodel_stromer_st2.py .. XX

energyconsumptionsubmodel_st2_1.py ... XXIX

energyconsumptionsubmodel_st2_2.py .. XXXVI

energyconsumptionsubmodel_st2_3.py ... XXXIX

Programming Code Dijkstra Application .. XLV

index_v20_norec_Wh.html .. XLV

Programming Code Bellman-Ford Application ... XLVIII

iv Optimizing the Operation Range of E-Bikes in Routing Systems

Graph.rs ... XLVIII

Spatialpoints.rs .. LV

Main.rs ... LVI

Endpoint.rs ... LVII

Index.html .. LXI

Test Session A ... LXVII

03.01.2017 ... LXVII

04.01.2017 .. LXX

11.01.2017 ... LXXIII

12.01.2017 ... LXXV

13.01.2017 .. LXXVI

16.01.2017 ...LXXVIII

17.01.2017 .. LXXIX

23.01.2017 .. LXXXII

Test Session B ..LXXXIV

15.02.2017 ... LXXXIV

16.02.2017 ... LXXXVI

17.02.2017 ... LXXXVII

19.02.2017 .. LXXXVIII

22.02.2017 ... LXXXIX

23.02.2017 ... XC

24.02.2017 ... XCI

25.02.2017 .. XCIII

27.02.2017 .. XCV

14.03.2017 ... XCVII

16.03.2017 ... XCVIII

17.03.2017 .. XCIX

21.03.2017 ... C

Affidavit ... CI

v

Optimizing the Operation Range of E-Bikes in Routing Systems

vi Optimizing the Operation Range of E-Bikes in Routing Systems

List of Figures

Figure 1: Development of the stock of electric bikes in Europe from 2008 to 2012 (Paul &

Bogenberger 2014). ... 3

Figure 2: The growing number of countries with bike-sharing programs (Paul & Bogenberger

2014). .. 3

Figure 3: An example on how the summation of an additional edge cost value in a graph in

order to eliminate negative edge costs can ultimately result in a different path. 8

Figure 4: The study area. The map shows the street network illustrating the location and

extent. .. 16

Figure 5: All physical forces considered in this work (Abagnale et al. 2015a, edited). 19

Figure 6: Input Parameter of the Tool “Create Enterprise Geodatabase”. 24

Figure 7: Succeeded processing of the Tool “Create Enterprise Geodatabase”. 24

Figure 8: The energy consumption model for the bike without recuperation 26

Figure 9: "Environment Settings" of each model. .. 27

Figure 10: The beginning of the energy consumption calculation in the first submodel. .. 29

Figure 11: Input Parameters of the tool "Download OSM Data (XAPI)" 30

Figure 12: Schematic illustration of the calculation of slope. ... 31

Figure 13: The altitude value extraction procedure. .. 32

Figure 14: The end of the first submodel ... 34

Figure 15: The beginning of the second submodel .. 35

Figure 16: An extract of the computation of the motor efficieny of the bike used in Test

Session B. ... 36

Figure 17: The end of the energy consumption model for bikes with recuperation 37

Figure 18: The end of the energy consumption model for bikes without recuperation 38

Figure 19: The energy consumption [Wh] of each street segment in the study area........ 40

vii

Optimizing the Operation Range of E-Bikes in Routing Systems

Figure 20: The hypothetical energy consumption per kilometer [Wh/km] for each street

segment ... 40

Figure 21: Comparison between an energy-based path (left side) and the shorthest path

(right side).. .. 42

Figure 22: The screenshot shows the required arguments to store the function 44

Figure 23: A new workspace with the name pgRouting is created................................... 45

Figure 24: The newly created store is named after the edge costs v20_norec_Wh applied

for this trial. .. 45

Figure 25: The SQL View which is used to access data through the created wrapper..... 46

Figure 26: Comparison between an energy-based path (left side) and the shorthest path

(right side). ... 48

Figure 27: Invocation of the Bellman-Ford Application in order to start it. 50

Figure 28: Bellman-Ford application with a reachability request. 52

Figure 29: Bellman-Ford application with a routing request from ETH Hönggerberg to ETH

Center. ... 52

Figure 30: The average friction and drag for the entire study area. 56

Figure 31: The average friction and drag for the entire study area. 56

Figure 32: The amount of power [W] to overcome by the electric bicycle 57

Figure 33: The amount of power [W] to overcome by the electric bicycle. 58

Figure 34: GPX-Records of the the test tracks. ... 65

Figure 35: Energy consumption per street segment on the test tracks. 65

Figure 36: The Electric Bicycle employed in Test Session A. .. 66

Figure 37: The pgRoutingLayer QGIS-Plugin. ... 67

Figure 38: A screenshot from “Geo Tracker”, one of the smartphone applications available

(first picture).. ... 68

viii Optimizing the Operation Range of E-Bikes in Routing Systems

Figure 39: The Electric Bicycle employed in Test Session B. .. 70

Figure 40: The display of the second e-bike model shows data logging of the electric bicycle

such as the ongoing aggregation of total energy expenditure. Note the difference

between total consumption at the beginning (4701 Wh) and the end (4751 Wh) of each

trip – resulting in an energy expenditure of 50 Wh for this trip. 71

Figure 41: The diagram compares measured and modelled energy consumption [Wh] from

Test Session A (without recuperation) (cf. Table 12). ... 78

Figure 42: The diagram compares measured and modelled energy consumption [Wh] from

Test Session B (with recuperation) (cf. Table 12). .. 78

Figure 43: The histogram shows the distribution of the values for the percentage slope

gradient in the study area. ... 83

Figure 44: The histogram shows the distribution of the values for slope angle in degree in

the study area. ... 83

Figure 45: The scatterplot compares the slope angle in degree and the length of every street

segment in the study area. ... 84

ix

Optimizing the Operation Range of E-Bikes in Routing Systems

x Optimizing the Operation Range of E-Bikes in Routing Systems

List of Tables

Table 1: The specifications of the employed data. .. 12

Table 2: The software specifications. .. 14

Table 3: The hardware specifications .. 15

Table 4: The specifications of the electric bicycles used in the test drives. 15

Table 5: The model's parameters, classified by symbol and unit. 55

Table 6: The motor efficiency in Test Session B for different torques and velocity levels. 60

Table 7: The average motor power [W] and human power [W] for the study area. 61

Table 8: Available electric charge of the battery used in Test Session A at different

temperatures . .. 62

Table 9: Model Parameters for the model White Knight from EGO Movement. 69

Table 10: Model Parameters for the model ST2 from Stromer. 72

Table 11: Control Measurements Table. ... 75

Table 12: The entire test set containing measured values from Test Session A and B.... 76

xi

Optimizing the Operation Range of E-Bikes in Routing Systems

xii Optimizing the Operation Range of E-Bikes in Routing Systems

List of Abbreviations

AGILE Association of Geographic Information

Laboratories in Europe

(X)API (Extended) Application Programming

Interface

CH Contraction Hierarchies

DEM Digital Elevation Model

EMPA Swiss Federal Laboratories for Materials Science

and Technology

EPSG European Petroleum Survey Group

ESRI Environmental Systems Research Institute

ETH Swiss Federal Institute of Technology

Zurich

EV Electric Vehicle

FSO (BFS) Federal Statistical Office (Bundesamt für Statistik)

GeoTIFF Georeferenced Tagged Image File Format

GIS Geographic Information System

GNSS Global Navigation Satellite System

GUI Graphical User Interface

GPL General Public Licence

GPS Global Positioning System

GPX GPS Exchange Format

HSV Hue Saturation Value

HTML Hypertext Markup Language

IDE Integrated Development Environment

IMS Internet Map Server

ITS Intelligent Transport System

LC Left Click

OGD Open Government Data

OSM Open Street Map

PVEC Pedelec Velocity Control

ORDBMS Object-Relational Database Management System

xiii

Optimizing the Operation Range of E-Bikes in Routing Systems

RC Right Click

REST Representational State Transfer

RGB Red Green Blue

RPM Revolutions per Minute

SFOE (BFE) Swiss Federal Office of Energy (Bundesamt für

Energie)

SOC State of Charge

SQL Structured Query Language

SRC Source

SRID Spatial Reference System Identifier

SRTM Shuttle Radar Topography Mission

WFS Web Feature Service

WGS World Geodetic System

WMS Web Map Server

XML Extensible Markup Language

xiv Optimizing the Operation Range of E-Bikes in Routing Systems

List of Symbols

 Slope Angle

 Temperature-Dependent Factor

 Constant Factor Rider Power Input

EM Motor Efficiency

 Gearbox Efficiency

 Reference Area

 Wheel Perimeter

 Rolling Coefficient

 Drag Coefficient

 Energy Consumption of the Electric Motor

 Drag / Air Resistance

 Friction / Rolling Resistance

 Gravitation / Climbing Resistance

 Human / Rider’s Force

 Tractive Force

 Gravitational Constant

ℎ Average Height between the two End Nodes of a

Street Segment

 Length of a Street Segment

 Total Mass (i.e., bicycle and rider)

 Ambient Air Pressure

 Human Power

 Power of the Electric Motor

 Power of the Electric Motor

(Temperature Adjusted)

 Power required by all Auxiliary Components

 Universal Gas Constant

rw Wheel Radius

 Ambient Temperature

 Motor Torque

 Human Torque

xv

Optimizing the Operation Range of E-Bikes in Routing Systems

 Wheel Torque

 Velocity in Driving Direction

 Wind Speed

 Angular Velocity of the Wheel

 Height Difference between the two End Nodes of a

Street Segment

xvi Optimizing the Operation Range of E-Bikes in Routing Systems

Abstract

Limited driving range and the subsequent range anxiety is still one of the greatest obstacles

for the use of electric vehicles (EV). Slow-moving progress in increasing battery capacities

necessitates for new and novel solutions to the problem. This thesis presents a routing

system capable of computing the ideal route in terms of energy consumption for electric

bicycles. An underlying static model calculates energy requirements for arbitrary street seg-

ments based on contextual information. For example, this information could include the

structure of the road network, a digital elevation model or vehicular parameters such as

weight, velocity, or the presence of a recuperation mechanism. A routing application was

developed that was capable of accurately displaying either an energy optimized route or an

estimation of the remaining cruising range. The existence of the application allows for the

estimation (which acts as a simulation of energy consumption) to be validated and optimized

through test drives. One use-case of this technology is within a navigation system, where it

can enable automatic switching from a shortest-path route in progress into energy-saving

mode when a target destination becomes unreachable due to reasons such as insufficient

charge. The methods outlined in this work can optimize the route, taking into account the

required energy for the remaining distance and the given low state of charge (SOC) to en-

able riders to more reliably reach their destinations. It extends the potential of e-bike routing.

Keywords: routing, e-mobility, electric bicycle, electric vehicle, range prediction, reacha-
bility, energy consumption model, Bellman-Ford

xvii

Optimizing the Operation Range of E-Bikes in Routing Systems

xviii Optimizing the Operation Range of E-Bikes in Routing Systems

Kurzfassung

Die begrenzte Reichweite und daraus entstehende Reichweitenangst kann als eine der

grössten Hindernisse bei der Nutzung von elektrischen Fahrzeugen (EV) angesehen wer-

den. Der gleichzeitig nur sehr schleppende Fortschritt in der Entwicklung von grösseren

Batteriekapazitäten verlangt nach innovativen Lösungen für dieses Problem. Diese Thesis

stellt ein Routing System vor, welches für elektrische Fahrräder jene Routen mit dem ge-

ringsten Energieverbrauch berechnen kann. Das dem System zugrundeliegende statische

Modell erzeugt den Energiebedarf für beliebige Strassensegmente auf Basis kontextbezo-

gener Informationen. Diese bestehen u.a. aus dem Strassennetz, einem digitalen Höhen-

modell oder fahrzeugseitigen Parametern wie Gewicht, Geschwindigkeit oder einem Me-

chanismus zur Rückgewinnung der Energie. Darauf aufbauend wurde eine Applikation ent-

wickelt, welche einem entweder eine energieoptimierte Routenwahl oder die Schätzung der

verbleibenden Reichweite anzeigt. Mittels Testfahrten konnten die simulierten Daten vali-

diert und optimiert werden. Ein mögliches Anwendungsfeld dieser Technologie sind Navi-

gationssysteme. Während man sich entlang der kürzesten Route bewegt, könnte ein auto-

matischer Wechsel in einen Energiesparmodus vollzogen werden, sobald das Ziel durch

einen zu geringen Akkustand ausser Reichweite gerät. Das in dieser Thesis vorgestellte

Verfahren kann die Route unter Berücksichtigung des noch absehbaren Energieverbrauchs

für die verbleibende Distanz bei entsprechendem Akkustand optimieren und Fahrern das

Erreichen ihres ausser Reichweite geglaubten Ziels ermöglichen. Dies eröffnet neue Mög-

lichkeiten im E-Bike Routing.

Schlüsselwörter: Routing, E-Mobilität, elektrische Fahrräder, elektrische Fahrzeuge,
Reichweitenprognose, Erreichbarkeit, Energieverbrauchsmodell, Bellman-Ford

xix

Optimizing the Operation Range of E-Bikes in Routing Systems

xx Optimizing the Operation Range of E-Bikes in Routing Systems

Acknowledgment

I would like to thank my supervisor Prof. Dr. Martin Raubal (ETH Zurich) for his openness

to the idea of supervising an external student, his quick resolve and interest in the project.

Equally, I am much obliged to Ass.-Prof. Dr. Andreas Riedl (University of Vienna) and the

entire Department of Geography and Regional Research (IfGR) for giving me this oppor-

tunity and the valuable and instructive master’s program.

I thank my advisor Dominik Bucher (ETH Zurich) for his magnificent support throughout this

thesis. Not only did I appreciate his steady advice every single time I needed it, but also his

contributions that sometimes went beyond the tasks of a supervisor and helped me keeping

myself on track. At the same time, I am thankful for giving me space to develop and realize

my own ideas. Thank you for believing in this project and in me solving it!

Many thanks to Daniel Kastl and other participants of the FOSS4G 2016 in Bonn for the

interesting discussions, enabling me to make a jump start into the world of pgRouting (and

thanks to Patrick Dilger (ETH Zurich) who enabled the visit with a last-minute funding). I

thank Marcel Gauch from the Swiss Federal Laboratories for Materials Science and Tech-

nology (EMPA) for his help finding a solution for the energy consumption measurement

issue. Furthermore, I would like to give thanks to David Jonietz (ETH Zurich), Christian

Sailer (ETH Zurich), Fabian Göbel (ETH Zurich), René Buffat (ETH Zurich), Ruth Kläy-

Bührer (ETH Zurich), Monika Niederhuber (ETH Zurich), Christoph Schöneberger (ESRI

Switzerland), and Bernhard Schneider (NewRide).

I felt very happy to win cooperation partners to improve my model. I would like to thank

Marie So and Daniel Meyer from EGO Movement for their help and sincere interest in the

technical part of the thesis. Tiffany Kraus and the whole smide crew for your quick and

straightforward support. Special thanks go to Christophe Wiedmer from Stromer, who had

a solution for any technical concern and special requests regarding their electric bicycles.

Cheers to Annika, Cynthia, Anja, Fabian, Dominik, Daniel, Jonathan and the whole Bülach-

hof community for their power supply, inspiring conversations, and shelter on any occasion.

Special thanks to Fabian and Aurelia for performing additional test rides. Heike, Alex, Vicky

and Angie – thank you for your thorough proofreading. I would like to thank all of my friends

for their continuous support and patience all along.

xxi

Optimizing the Operation Range of E-Bikes in Routing Systems

My Family. Carmen, Jürgen, Kai, Alexander, Fabian, Heike and Annia – I am deeply grateful

for your support throughout the years. Without you, it would literally not have been possible.

You built a new home out of my old one – back in Switzerland.

xxii Optimizing the Operation Range of E-Bikes in Routing Systems

For Micha. You were a great friend to me. Farewell.

1

Acknowledgment

2 Optimizing the Operation Range of E-Bikes in Routing Systems

1. Introduction

As cities become more densely populated due to rising urbanization, and societies try to

decrease their dependency on fossil energy sources, it becomes increasingly important to

substitute many of the trips previously covered by car with smaller and more energy-efficient

modes of transportation. Electric bicycles fit nicely into this gap, as they have several ben-

efits. They take little space on the roads. Perhaps most significantly, they are lower in costs

under many interpretations – energy demand, cost of purchase or rental, insurance, li-

censes, registration, road taxes, or parking (MUETZE & TAN 2007; MCLOUGHLIN ET AL. 2012).

At the same time, they may be fueled by renewable energy. Also, required physical strain

decreases as compared to a regular bicycle (thus increasing the personally reachable

range). Those advantages manifest themselves in growing sales numbers in both European

countries (PAUL & BOGENBERGER 2014; Figure 1) and other regions in the world, for exam-

ple China (FAIRLEY 2005), Japan, Taiwan and the United States (MUETZE & TAN 2007). In

Switzerland two percent of all households own an electric bicycle (in 2010; likely to have

increased ever since; FEDERAL STATISTICAL OFFICE (FSO) 2017). Contributing uses cases

seem to stem not only from individual purchases for persona use but also business uses.

Some examples of this include delivery or courier purposes, or companies providing their

employees with shared e-bikes (e.g., as part of a health program). Also, there is an emerg-

ing amount of stations-based and even free-floating e-bike sharing systems within cities

(Figure 2). Current examples for Switzerland are the station-based system “Publi-Bike”

(PUBLI-BIKE 2017), the free-floating system “smide” (SMIDE 2017) in Zurich or the eCargo-

Bike System “carvelo2go” (CARVELO2GO 2017). These trends make it increasingly important

to be able to effectively assess driving ranges of bicycles taking into account not only pa-

rameters of the bike itself, but also of the person using it, the roads available for travel and

any other contextual data that may influence the journey. Concomitant, the relentless digit-

ization of every aspect of our daily lives within the scope of intelligent transport systems

(ITS)1 increase the suitability of applications as the envisaged one in this work.

1 ITS address processing of traffic and transportation data through telecommunication and infor-
mation technologies.

3

Introduction

Figure 1: Development of the stock of electric bikes in Europe from 2008 to 2012 (PAUL & BOGENBERGER 2014).

Figure 2: The growing number of countries with bike-sharing programs (PAUL & BOGENBERGER 2014).

 Objectives

Based on a variety of other electrical and physical consumption models (cf. HOCH 2015;

ABAGNALE ET AL. 2015a; MUETZE & TAN 2007; OLIVA ET AL. 2013; WANG ET AL. 2015), I will

build a static model of an electric bicycle, which is embedded in a framework for route com-

putations. The resulting framework features a processing pipeline tailored to fast querying

for electrical bicycle routes. Prominent steps in the pipeline are the evaluation of multiple

parameters in parallel, and building up static cost graphs based on a road network and a

digital elevation model (DEM). In order to evaluate the model performing test drives, two

4 Optimizing the Operation Range of E-Bikes in Routing Systems

prototypical applications are built with the aim of route planning and cruising range estima-

tion.

Within the scope of this work, three overarching research questions are discussed:

i) What are the peculiarities of electrical bicycles in terms of energy consumption,

and related route and range computations? What specific parameters are nec-

essary to model the energy consumption of an e-bike? (Chapter 4 and Section

6.1)

ii) What is an adequate implementation of an energy consumption model for rout-

ing systems and range estimation for electrical bicycles? (Chapter 5)

iii) Is there an extension of the capabilities of common routing models? (Chapter 6,

7 and 8)

 Outline of the Thesis

The thesis consists of the following structure: In order to analyze the previously defined

research questions, I am first going to review the existing literature on this topic (Chapter 2)

and – due to the thesis’ partly application-based character – present similar projects ac-

cordingly. Chapter 3 describes the study area and the methodology employed in the thesis

and hence, its framework including specific hardware, the chosen data construct, develop-

ment tools and other applied software. Chapter 4 deals with the creation of a theoretic ap-

proach of an energy model suitable for e-bikes, followed by the implementation into a pro-

grammatic model. The calculations are followed by query preparation and updating the ini-

tial files within an object-relational database management system (ORDBMS), which is then

used within a routing system. Therefore, the development of two prototypical applications

in Chapter 5 is used to evaluate, validate, and optimize the model performing test drives

(Chapter 6). After presenting and visualizing the results in Chapter 7, the final Chapter sum-

marizes the elaborated work and concludes with an outlook on possible further research.

5

Introduction

6 Optimizing the Operation Range of E-Bikes in Routing Systems

2. Related Works

I provide an overview of existing work in this field, which encompasses identifying peculiar-

ities of electric bicycles, summarizing similar energy models of all kinds of electric vehicles

(EV) to be able to adopt them, and an investigation on appropriate algorithms in Section

2.1. Since one of the thesis results is a prototypical application, I present similar projects in

the private sector in the subsequent Section 2.2.

 Literature Overview

The profound potential for energy-based routing has previously been stated by ERICSSON

ET AL. 2006, initially in reference to fossil fuel use and later with specific regard to EVs

(SACHENBACHER ET AL. 2011). For EVs in particular, this routing approach will gain even

more importance in the future, with limited battery capacity resp. limited operation range

and long recharge times still representing major user concerns (cf. NEAIMEH ET AL. 2013;

ARTMEIER & HASELMAYR 2010). This might lead to mental obstacles such as range anxiety

(STEINHILBER ET AL. 2013). In contrast to the research mentioned, I have chosen an ap-

proach where I treat the use of energy consumption directly as weights for the graph rather

than using it as a factor of the length (ERICSSON ET AL. 2006). This method enables me to

display genuine consumption upon each request in terms of cost transparency.

To be able to compute an energy-based routing, it’s essential to know the energy demand

on a certain route. Therefore, I need to establish an energy consumption model for electric

bicycles. A large body of work covers similar energy models for electric cars (cf. HOCH

2015; OLIVA ET AL. 2013), both from an engineering point of view (e.g., to assess the influ-

ence of different parts on the overall energy consumption), as well as for routing and cruis-

ing range estimation using Geographic Information Systems (GIS) (cf. NEAIMEH ET AL. 2012;

NEAIMEH ET AL. 2013; KARRAIS 2014). Due to the progress in the field, scientists have started

to take altered approaches of determining factors into account. NEAIMEH ET AL. 2013, for

example, focused on a maximized cruising radius integrating the limitations with regard to

battery capacity of an EV when adjusting a certain route, rather than finding the shortest or

quickest path. While the above-mentioned models are to a large degree applicable to the

topic of electric bicycles as well, there are several differences: the smaller complexity of the

drivetrain (e.g., partly the lack of an energetic recovery system resp. recuperation system,

or the mostly constant energy consumption and smaller amount of switched on auxiliary

components – e.g., compared to adjustable air conditioning or radio in cars), the additional

power supplied by the rider, or the lack of battery temperature management causing higher

or lower energy consumption (KARIMI & LI 2013; YUKSEL & MICHALEK 2015; LI ET AL. 2016).

7

Related Works

For example, the recent research on electric bicycle energy models by ABAGNALE ET AL.

2015b; ABAGNALE ET AL. 2015a; CARDONE ET AL. 2016 only consists of a motor and gearbox

in sequence. BA HUNG ET AL. 2017 evaluated the effect and interaction of a variety of input

parameters on the required power to propel an electric bicycle. They aimed at providing

suggestions on how to optimize the energy consumption. MUETZE & TAN 2007 also exam-

ines the performance of electric bicycles. While STORANDT 2012 has already identified the

need for energy saving routes for vehicles in the context of the examined ordinary bicycles,

her work focusses on avoiding steep climbs as influencing parameter only. However, the

study aims at optimizing a specific routing algorithm.

Routing algorithms can solve the shortest path problem in a network. Such a network is

typically described as a graph, consisting of nodes (i.e., street intersections), which are

connected by edges (i.e., street segments, bike lanes, etc.). A cost value is assigned to

each edge weight which could be the length of the street segment or – in this thesis – the

energy consumption of an electric bicycle on the street segment. To solve the shortest path

problem the algorithm computes the path with the least edge costs between two selected

nodes in the network. In an undirected graph the edges have no orientation, while edges in

a directed graph have a specific orientation. Street networks require directed graphs as

street segments can be traversed sometimes in both directions and sometimes only in one

direction. Furthermore, the energy consumed by a electric bicycle is higher when going

uphill than when going downhill (BA HUNG ET AL. 2017), especially when a recuperation

mechanism recovers energy while braking. This fact can be considered only when distin-

guishing between forward and backward traversal.

The mentioned peculiarities require the use of a routing algorithm suitable for my cause.

The recuperation mechanism prevents the use of a routing algorithm such as Djikstra

(DIJKSTRA 1959) or its generalizing, extending, or speed-up variants such as the A*- algo-

rithm (HART ET AL. 1968), Contraction Hierarchies (CH) (GEISBERGER ET AL. 2008) or several

other route planning algorithms (DELLING ET AL. 2009), as the battery may be charged during

a downhill segment (SACHENBACHER ET AL. 2011). Therefore, if recovered energy is repre-

sented by a negative value, the corresponding edge weight will be negative. Simply adding

a large positive number to all edge weights and applying the Dijkstra algorithm (and sub-

tracting the appropriate amount after compiling the route) can ultimately result in a different

(and thus not optimal) route, as Figure 3 illustrates. The Bellman-Ford algorithm (BELLMAN

1958) is a popular alternative able to process negative edge costs. Nevertheless, it does

not allow negative edge cycles (i.e., a cycle containing only negative edge weights, or even

8 Optimizing the Operation Range of E-Bikes in Routing Systems

a cycle causing a negative value when adding up the containing edge weights). Considering

the topography while passing downhill segments in a street network with the aim to go back

to the origin, a negative edge cycle in a three-dimensional environment is physically impos-

sible. In other words, as the energy required to traverse a street segment (i.e., assigned to

the street segment as edge weight) is only negative if the slope gradient is, it will not cause

a cycle of negative edge values.

Figure 3: An example on how the summation of an additional edge cost value in a graph in order to eliminate
negative edge costs can ultimately result in a different path. The first line: Adding a number to every edge

appears in the cost as an additional term equal to ⋅ . This additonal cost value is dependent on , which
is the number of all edges of the path taken. In general the number of edges has no influence on the cost of a
path, only the sum of individual cost of all edges. Therefore this method can not be applied. The notation in the
second line is adapted for the example in the third line: To eliminate negative costs, the additional cost must be
at least the minimum of the edge weights in the graph. While in the first graph the shortest path from A to B is
along = 3 and = −2 (total cost of the path = 1), the shortest path in the altered second graph is now along

= 4 (total cost of the path = 4).

The Bellman-Ford algorithm might also require more calculations in terms of time complex-

ity2. According to BAST ET AL. 2015 the application of algorithms for route planning inevitably

implies a trade-off between query time on the one hand and preprocessing time and storage

at the other hand. GALLO & PALLOTTINO 1982 resp. PALLOTTINO 1984 introduced a variant

of Bellman-Ford with a worst time complexity, but a better performance though (ZHAN &

NOON 1998). Also, the mentioned work of STORANDT 2012 focuses mainly on the application

and improvement of the underlying CH algorithm. However, the use of speed-up techniques

is not of major concern in this work. As routes for electric bicycles are comparatively short

2 Time complexity in computer science describes the growth of the running time of a function (i.e. the
algorithm) proportional to the size of the input (i.e. the length of its string) (SIPSER 2006). While O in
O(nx) denotes a tight upper bound on the time complexity, n reflects the size of the input.

B

A = 3

+
 (+) ⋅ +

+ = −min()

= +

+2

(+) = + −min() ⋅ −min() + = resp.

+ = 5 A

B

resp.

9

Related Works

(as range is limited by the utilized battery) and make thereby use of relatively small parts of

the street network. I uprated the applicability of an appropriate routing algorithm. Concomi-

tant with graphs being preprocessed, query time resp. the use of speed-up techniques is

not the focus of this work. As a consequence, routing for a bicycle without recuperation

mechanism is computed simply with a Dijkstra implementation, whereas the subsequent

developed Bellman-Ford enables a wider use for both bikes with and without recuperation

systems.

As a model for electrical bicycles is largely dependent on personal parameters (e.g., weight,

rider power supply), various capturing of the parameters in different steps of the cost calcu-

lation requires the preprocessing of the cost value and prevents me from updating edge

weights dynamically. While recent research has shown methods for dynamic graph updates

(e.g., SCHULTES & SANDERS 2007), it usually focuses on updating only a few edges. For that

reason, I opted for building a processing pipeline, which computes multiple parameterized

graphs in parallel.

According to the works of ABAGNALE ET AL. 2015a; ABAGNALE ET AL. 2015b; CARDONE ET AL.

2016, literature distinguishes between two kinds of actuators for electric bicycles: Pure elec-

tric bicycles which are triggered by a handlebar throttle on the one hand (cf. FAIRLEY 2005;

SOMCHAIWONG & PONGLANGKA 2006; YANG ET AL. 2009), and so-called pedelecs which re-

act on pedaling of the rider on the other hand (cf. DU ET AL. 2009). Although the test set

from Section 6.2 is carried out using pedelecs3 and the energy model from Section 4.1 de-

signed accordingly (as this type is more common in Europe and therefore the study area

introduced in Section 3.4 according to MUETZE & TAN 2007), my approach could be applied

on both versions of electric bicycles by just omitting the human force for the former. Also,

by adjusting the parameters and the overall setting, the model can be used for other EVs.

3 I use the terms electric bicycle resp. e-bike synonymous to pedelec in this work.

10 Optimizing the Operation Range of E-Bikes in Routing Systems

 Similar projects

Besides academic research, major developments can be found in the private sector. While

“Smart Directions” by “Mapbox” enables to compute the most energy efficient route for elec-

tric cars or scooter (so far for San Francisco solely), it is not exclusively made for electric

bicycles (MAPBOX n.d.). “Nyon” by “Bosch” is capable of showing the remaining range for

electric bicycles with “Topo-Reichweite” considering the topography on the shortest route

(launched in April 2016; BOSCH 2016). Surprisingly however, neither do these offer an en-

ergy based routing, which predicts an approximation of the required energy, nor a recom-

mendation on which route to take, so that one can still reach the desired target location at

the remaining state of charge (SOC) of the battery, although developments in this direction

might be tending (WILLE 2016). In this context, the so-called “eBike Reichweiten-Assistent”

is noteworthy as well. Based on a variety of input parameters, it estimates the general

reachability displaying a value for the range only without any spatial context (Bosch prod-

ucts solely, BOSCH n.d.). “Morbih’en vélo” follows a similar approach as this thesis, but they

use pgRouting to find the safest route riding an ordinary bicycle (MORBIH’EN VÉLO n.d.). Just

as much as those products differ from my approach, it might not be expedient to define a

state of the art for this kind of application.

11

Related Works

12 Optimizing the Operation Range of E-Bikes in Routing Systems

3. Methods

For the selection of the right framework, I focused mainly on the interoperability of the cho-

sen tools in order to meet the requirements of the desired universal applicability. Certainly,

criteria such as adaptability during the process of the work and previous knowledge of the

underlying coding language mattered as well. The use of open source data and tools prom-

ise greater combability which inherently allows an easier use of the calculated data in ex-

ternal programs and arbitrary applicability. Moreover, I followed a holistic contemplation in

the stage of data (Section 3.1) and software (Section 3.2) selection to ensure proper func-

tioning of every chosen element. The chapter provides both an overview of required hard-

ware (Section 3.3) and justification for the selection of the study area (Section 3.4).

 Data Acquisition

To establish a routing environment, I had to acquire data both for a street network and a

DEM which should meet the following requirements: Latest data, high accuracy/resolution,

optimal spatial coverage, available complementary, automated processing and storage in

a ORDBMS possible. Two options fulfil those conditions: Open Street Map (OSM) and Open

Government Data (OGD). Although for the latter a Web Feature Service (WFS) for bikeways

is available for the chosen study area introduced Section 3.4 (CITY OF ZURICH 2017) and

could be incorporated as a Tool in ArcMap, the provider limits any request to 1000 features.

This precludes any implemented reconciliation with OSM Data to improve the selection of

accurate street segments simultaneously. However, OSM Data does not have the men-

tioned restrictions. Through manually defined predicates before download, I can select ne-

gotiable roads solely, which reduces query time as well. Raw OSM data from the source

mentioned in Table 1 is provided in the World Geodetic System (WGS) WGS 84 (EPSG

SRID: 4326).

Table 1: The specifications of the employed data. The table contains the type, provider, geodetic datum and
source of the very same.

Data Provider Geodetic Datum Source

road network OSM WGS 84 http://www.overpass-

api.de/api/xapi_meta?

DEM (swissALTI3D) swisstopo CH1903 LV03 Educational Use Data swisstopo in Ap-

pendix

Defined goal for future work is to fully automate the model which also concerns the DEM

(cf. Section 8.2). However, for the extraction of altitude values I used the swissALTI3D of

the canton of Zurich provided by the Federal Office of Topography in Switzerland swisstopo

13

Methods

with a resolution of 2 meters to ensure best possible evaluation thereafter instead of e.g.,

free and open-source data from the Shuttle Radar Topography Mission (SRTM). The geo-

detic datum is CH1903 LV03 (EPSG SRID: 21781).

 Selection of Software

Considering the use of open data, a whole series of developing tools came into question

such as OSRM, OpenTripPlanner, Graphhopper, only to name a few (OPENSTREETMAP

WIKI 2016). I decided to use PostgreSQL to store my data. On the one hand, by its own

admission it is the world’s most advanced open source database and is used very often.

Besides, with PostGIS, it has a very powerful spatial extension – indispensable for this work.

On the other hand, the additional geospatial routing system pgRouting provides a large

number of functionalities for developers. It can process OSM Data, for which I chose

osm2pgrouting, and edge costs can be calculated and updated dynamically. ArcSDE, which

enables the inclusion of spatial data into the ORDBMS, establishes the connection to

ArcGIS Model Builder, where the calculation of the energy consumption takes place. I can

incorporate OSM Data using the additional OpenStreetMap Toolbox. ArcGIS Model Builder

combines both a graphical user interface (GUI) for a better review and fast adaption possi-

bilities in the development process (instead of using a pure python script). The routing ex-

tension ArcGIS Network Analyst is based on the Dijkstra algorithm (ESRI 2016b) however

an implementation of the Bellman-Ford algorithm (cf. Section 2.1) was required. Unfortu-

nately, due to the prioprietary nature of the tool, it was infeasible to implement it within

ArcGIS. Consequently, I abstained from perfoming the routing within ArcGIS and used the

programing language Rust for a stand-alone application. In contrast to the capabilities of

ArcGIS, the reason for the additional usage of QGIS is more functionalities in the connection

between the ORDBMS and the GIS to perform and visualize database queries such as DB

Manager and pgRoutingLayer. However, ArcGIS enables me, for example, to implement

Python scripts using ArcPy which is why I had to choose several integrated development

environments (IDE). While PyCharm operates as a script tool editor and debugger with

direct linkage to ArcGIS, I managed and administrated the ORDBMS by using DataGrid

along with pgAdmin and DB Manager. For the development of applications, I used Web-

Storm and Notepad++, as well as Visual Studio Code mainly for the development of the

Bellman-Ford Application. The linkage between Tableau and the ORDBMS facilitates anal-

ysis and visualization of the calculated values when altering parameters upon each run of

the model in the evaluation phase. To avoid measurement inaccuracies as a consequence

14 Optimizing the Operation Range of E-Bikes in Routing Systems

of the use of third party applications for tracking, I used two free and open-source

smartphone applications redundantly. Table 2 summarizes the selection of the software.

Table 2: The software specifications. The table contains the name of each program, its version, proprietor and
license and how it is employed for my purposes.

Name Version Proprietor (license) Function

PostgreSQL 9.4 open source (Post-
greSQL)

ORDBMS

 2.3 open source (GPL) spatial database extender

pgRouting 2.3 open source (GPL) routing system

osm2pgrouting (mapcon-
fig_for_bicycles.xml)

2.2.0 open source (GPL) tool - imports OSM Data into
pgRouting / defines topology

pgAdmin 1.16.1 open source (GPL) GUI for ORDBMS

ArcGIS for Desktop

ArcGIS for Server

ArcSDE

ArcGIS Editor for OSM

10.4

10.4

10.2

10.4

proprietary (ESRI) GIS (GUI for cost calculation)

spatial database engine

toolbox

QGIS

DB Manager

pgRoutingLayer

2.16.1

0.1.20

2.1.0

open source (GPL) GIS (GUI for routing)

GUI for ORDBMS

Plugin to display pgRouting
layers directly

Geoserver 2.10.1 open source (GPL) IMS

PyCharm 2016.2.3 proprietary (JetBrains) IDE

DataGrid 2016.2.6 proprietary (JetBrains) IDE

WebStorm 2016.2.4 proprietary (JetBrains) IDE

Visual Studio Code 1.11.0 open source /proprietary
(Microsoft)

source code editor

Notepad++ 7.2.2 open source (GPL) source code editor

Tableau 10.1 proprietary (Tableau Soft-
ware)

data visualization (ORDBMS)

Open GPS Tracker proprietary (René de
Groot)

application for tracking test
drives / generating GPX-Files

Geo Tracker – GPS tracker proprietary (Ilya Bogda-
novich)

application for tracking test
drives / generating GPX-Files

15

Methods

 Specific Hardware

Table 3: The hardware specifications. The table contains the hardware employed, its manufacturer and usage
resp. specifications.

Hardware Manufacturer / Model Usage / Specs

Notebook Lenovo Yoga Intel(R) Core(TM) i7-6500U

CPU @ 2,50GHz 2,59 GHz

and 16.0 GB RAM with Win-

dows 10 64-bit operating sys-

tem

Energy cost meter Arendo Measurement of the Energy

Consumption of the Battery

Smartphone OnePlus Two Tracking

E-Bikes EGO Movement White Knight

Stromer ST2

Table 4

Throughout this thesis, I required specific hardware, especially e-bikes in order to perform

test drives (Table 4). I used a GNSS (Global Navigation Satellite System) enabled device

to track the route and an energy cost meter to ascertain energy consumption (Table 3).

Table 4: The specifications of the electric bicycles used in the test drives.

Specifications White Knight (EGO Movement) ST2 (Stromer)

Weight [kg] 23 27

Wheel Diameter [inches] 28 26

Max. Gradeability [degree] 15 -

Motor

Nominal Voltage [V]

Nominal Current [A]

Nominal Power [W]

36

-

350

46.8

24 (max.)

500

Auxiliary Components [W] 1.08 (display) 0.15 (backlight)

1 (controller)

1.02 (display)

2 (daytime running lights)

4.2 (headlight)

Battery

Nominal Voltage [V]

Rated Capacity [Ah]

Capacity [Wh]

-

10.319

360

48

15.9

814

Maximal Speed [km/h] 25 45 (curbed to 35 for the tests)

16 Optimizing the Operation Range of E-Bikes in Routing Systems

 Study Area

Zurich City was chosen as survey area, because it contains a dense road network and steep

as well as flat regions. Therefore, it is suitable to evaluate the impact of different influence

quantities such as gravitation (cf. Section 4.1 (1)) carrying out test drives. The extent in

WGS 84 (EPSG: 4326) is defined with 47.42 (Top), 8.57 (Right), 47.35 (Bottom), 8.485

(Left). It contains 22859 street segments (Figure 4).

Figure 4: The study area. The map shows the street network illustrating the location and extent.

17

Methods

18 Optimizing the Operation Range of E-Bikes in Routing Systems

4. Development of the Energy Consumption Model

In this chapter, I am going to explain the development process of the energy consumption

model, which calculates edge costs, to be processed in the applications using appropriate

routing algorithms thereafter. I am going to describe the theoretic setup of an energy model

for electric bicycles (Section 4.1), which is then – after conducting inevitable preparation

steps – transformed into a programmatic form in Section 4.2.

 Energy Model

An electric bicycle powertrain has to supply enough energy to overcome gravitation, drag,

and friction (i.e., road resistance), as shown in Figure 5. Steep slopes cause a large gravi-

tational force, which can either lead to energy consumption (when going uphill), or energy

production (when going downhill):

(1) = ⋅ ⋅ (

In this formula, m is the total mass (i.e., bicycle and rider), g is the gravitational constant,

and is the slope angle. The friction is commonly defined as:

(2) = ⋅ ⋅ ⋅ cos()

Being proportional to the gravitational force, it is enriched with a rolling coefficient crr. Finally,

the definition of drag or air resistance is:

(3) = (−)

Here, Pamb denotes the ambient air pressure, Ra the universal gas constant, Tamb the ambi-

ent temperature, cw the drag coefficient, A the reference area, vDD the driving speed in driv-

ing direction and vwx an optional wind speed. For simplicity, I assume the wind speed to

always be zero in the elaborated implementation.

19

Development of the Energy Consumption Model

Power generated via the electric powertrain must overcome all these forces (= + +

), in order to propel the bicycle forward. Note that I will omit the acceleration resistance,

which is used to model how a vehicle accelerates and decelerates. For my static model,

acceleration is neglected. Instead, a measured average velocity is assumed to be the pro-

spective target velocity. Later integration is discussed in Section 8.2.

Figure 5: All physical forces considered in this work (ABAGNALE ET AL. 2015a, edited). The arrows denote vectors
which illustrate the direction of each force interfering.

There are different systems for controlling the ratio between rider and motor power input.

For example, ABAGNALE ET AL. 2015a propose the pedelec velocity control (PVEC), in which

the motor provides full support up to a selectable target velocity. Since this method only

works in a dynamic model, I instead model the rider power input as a constant factor of

the tractive force . This way, a specific value emerges for each graph, which can be seen

as average rider power input and modified at will in an optimization process (cf. Section

6.1). Ultimately, a user-dependent value also limits the maximal rider power supply.

(4) = ⋅

Accordingly, the overall wheel torque consists of + , where is the motor torque

(cf. formula (5)).

20 Optimizing the Operation Range of E-Bikes in Routing Systems

The above forces induce a certain torque on the wheels, denoted as = , where rw is

the wheel radius. Using the angular velocity of the wheel (= /), the equation for

motor power generation / consumption results in:

(5) = (,)⋅
+ ∑ ≥ 0

⋅ (,) ⋅ + ∑ < 0

Where EM is the motor efficiency (depending on torque and velocity) and the gearbox

efficiency, and the sum of the power consumed by auxiliary components (cf. HOCH 2015;

ABAGNALE ET AL. 2015a; OLIVA ET AL. 2013). For torques greater than zero, the motor is in

consumption mode, and for torques smaller than zero, it is in production mode.

For bicycles which lack a recuperation system, the motor simply never operates in produc-

tion mode, i.e., PEM will never be negative, and the battery will never be recharged. In my

model, this restraint is a parameter of the bicycle, which limits PEM accordingly.

As most people charge their battery indoors, i.e., in a warmer environment, the power con-

sumption appears to be larger due to the battery cooling down. YUKSEL & MICHALEK 2015

investigated the effects of temperature differences (i.e., comparison between different re-

gions in that case) on EVs stressing the poorer performance of EVs at lower temperatures

since electrochemical reactions are temperature dependent. LI ET AL. 2016 examined the

effect of temperature among and compared to other factors influencing the energy con-

sumption of EVs. They are both stating that heating and cooling influences range not only

due to less available energy from the battery, but also causes an increasing energy demand.

Note that I only considered the cooling effect in this work since the tests were carried out in

winter, and for simplification it is modelled with a linear decrease. The effect of the battery

cooling down is approximated by a temperature-dependent factor :

(6) = ⋅ (1 + (25 − Δ) ⋅)

21

Development of the Energy Consumption Model

The electric motor power ultimately results in the energy consumption required for each

road segment of length :

(7) = ⋅

22 Optimizing the Operation Range of E-Bikes in Routing Systems

 Data Pipeline

To find routes with low energy consumption, the model from Section 4.1 must be applied to

a street network. Such a model application either computes all required values dynamically

during the routing process, or builds a static graph of edge costs. My model follows the

second approach, as routing on a static graph is much less computationally intensive, and

thus applicable for large graphs, such as a street network. The recurrence of numerous

personalized input parameters (cf. Section 6.1) in different stages of the cost calculation

process makes it almost impossible to fully process the model dynamically upon request

resp. would lead to unacceptable query times.

I transformed the theoretical approach for an energy model from Section 4.1 into a pro-

grammatic model using ArcGIS Model Builder in a PostgreSQL environment (cf. Section

3.2). It can preprocess all cost value required for the application in one step. Despite choos-

ing Zurich City as study area, a later adaption and optimization could easily be performed

by changing input parameters for any desired location.

The graph building application consists of the following stages, which are built as an auto-

mated data pipeline beginning in Section 4.2.3: road network preparation, extraction of al-

titude values from a DEM, calculation of intermediate model values (impeding forces, wheel

torque and angular velocity), and computation of electrical motor power and energy con-

sumption. Naturally, all edge costs must be computed both for a forward and backward

traversal, for different bike parameters (such as recuperation mode switched on or off), and

different target velocities. To perform model iterations only for specific parameters at the

end of the workflow, the model is divided into submodels, which the program runs consec-

utively.

4.2.1. Basic Preparation

The first step is to set up a framework. The installed versions of PostgreSQL (with PostGIS

and pgRouting) and ArcGIS must match in order to function properly, which is why the ver-

sions must meet specific requirements (PostgreSQL 9.3 resp. 9.4 for ArcGIS <9.5 by the

time I started to write this thesis; ESRI 2016a). I created a new database named ebike

which will store the data (SQL expression):

CREATE DATABASE ebike;

23

Development of the Energy Consumption Model

This database is defined as maintenance database (in pgAdmin3: disconnect server > RC

Server > Properties > maintenance DB: ebike). All other (default) databases need to be

disconnected to avoid any mis-allocation of the required schemas and extensions:

CREATE SCHEMA postgres;
CREATE EXTENSION postgis WITH SCHEMA public;
CREATE EXTENSION pgrouting WITH SCHEMA public;

As shown above, functions must be stored in schema public, so that the ORDBMS and

ArcGIS can communicate over ArcSDE. However, due to restrictions by ArcGIS, data gen-

erated in Model Builder can neither be stored in the default schema public nor in (the later

created) sde, but in the new created schema postgres. However, the above-mentioned ex-

tensions and related functions can only be stored in the default schema public. Otherwise,

ArcGIS can’t access them. I copy st_geometry.dll (usually stored) in C:\Program Files

(x86)\ArcGIS\Desktop10.4\DatabaseSupport\PostgreSQL\9.4\Windows64 into C:\Program

Files\PostgreSQL\9.4\lib (default paths). In the next step, I create a folder Workspace

(which will contain Current and Scratch Workspace as explained below) and a subfolder

Scratch.

4.2.2. Preparation in ArcGIS

ArcGIS needs connection to the ORDBMS in order to access the inherent data. Thus, I

execute “Create Enterprise Geodatabase”. This tool creates i.a. a new schema sde which

ensures compatibility between PostgreSQL and ArcGIS. Therefore, a new database, stor-

age locations and a database user to act as the geodatabase administrator and owner of

the geodatabase are established automatically. The tool grants the geodatabase adminis-

trator privileges required to create a geodatabase in the database. I used input parameter

and stated in Figure 6. Figure 7 shows the succeeded execution.

24 Optimizing the Operation Range of E-Bikes in Routing Systems

Figure 6: Input Parameter of the Tool “Create Enterprise Geodatabase”. The database platform is PostgreSQL,
the instance a localhost, the database named ebike, the database administrator postgres with the password
ebike. A new geodatabase administrator sde with the password ebike is created. The field authorization file
must contain the file of a active the ArcGIS Server license (cf. Section 3.2).

Figure 7: Succeeded processing of the Tool “Create Enterprise Geodatabase”.

25

Development of the Energy Consumption Model

The next step is to create a database connection file in the Workspace folder using “Create

Database Connection”, which ultimately acts as Current Workspace, specified as default

geodatabase (RC on databaseconnectionfile.sde > Make Default Geodatabase). In this da-

tabase, I compile a new toolbox ebike.postgres.energy_consumption_model (RC on data-

baseconnectionfile.sde > New > Toolbox). This newly created toolbox will contain all models

and submodels used for the calculation of the energy consumption (RC on ebike.post-

gres.energy_consumption_model > New > Model). For this purpose, I use the following

pattern:

energyconsumptionmodel_[manufacturer]_[e-bike-model]

resp. energyconsumptionsubmodel_[e-bike-model]_[number of submodel]

Example: energyconsumptionmodel_egomovement_whiteknight.py

resp. energyconsumptionsubmodel_whiteknight_1.py

energyconsumptionsubmodel_whiteknight_2.py

energyconsumptionmodel_stromer_st2.py

resp. energyconsumptionsubmodel_st2_1.py

energyconsumptionsubmodel_st2_2.py

energyconsumptionsubmodel_st2_3.py

26 Optimizing the Operation Range of E-Bikes in Routing Systems

Figure 8: The energy consumption model for the bike without recuperation (White Knight from EGO Movement),
divided into two submodels which are computed subsequently in an automated data pipeline. The parameters
on the left side correspond the established ones in Section 4.1 and are filled with values from Table 9 in Section
6.2.1.

The label [e-bike model] denotes the electric bicycles from Section 3.3 tested in Chapter 6,

which have marginal differences in calculation (cf. Programming Code ArcGIS Model

Builder in Appendix). In each superior model, I created a Scratch Workspace (%Scratch%)

and a Current Workspace (%Workspace%) and several other variables, as the example in

Figure 8 as well as Figure 10 (Section 4.2.3) illustrates. Those variables were established

in Section 4.1 and summarized in Table 9 and Table 10 in Section 6.2. On the one hand,

Scratch workspace is used to access raw data such as the DEM and stores Python scripts

or with the database incompatible data such as a temporary OSM file (removed by using

the tool “Delete” unless determination through RC on file > Intermediate possible). On the

other hand, Current Workspace covers the connection to the database (specified in LC on

Model > Model Properties > Environments) where the calculated data is stored. All data is

stored using relative path names. Figure 9 shows the specified “Environment Settings”.

27

Development of the Energy Consumption Model

Figure 9: "Environment Settings" of each model. The path of both the current and the scratch workspace as
well as the processing extent is defined here.

The variables contain the input model parameters, established in Section 4.1 and filled with

values from Section 6.1. Defining variables makes it possible to access them in arbitrary

parts of the model and adjust values at will. To simplify understanding due to the amount of

input and output variables, all labels have the same pattern:

[variable]_[presence of recuperation]_[direction of traversal]_[unit]

Example: pressure_r_hPa

 v%velocity_kmh%_rec_r_Wh

28 Optimizing the Operation Range of E-Bikes in Routing Systems

The following annotations might facilitate the comprehension:

The unit is stated at the end of each expression throughout the entire model (e.g.,

weight_e-bike_kg). As the unit is only stated if there is one (e.g., pressure_hPa vs. mo-

tor_efficiency (dimensionless)), [direction of traversal] in front of it appears only when

going backwards [r] (e.g., pressure_hPa for forward traversal vs. pressure_r_hPa for

backward traversal). Computing reverse costs is mandatory for the use in directed

graphs such as a street network (cf. Section 2.1).

The end of the model constitutes an exception (Section 4.2.7): To reduce the length of

the expression, you can note the variable only by its unit (e.g., by [W] or by

[Wh]), whereas the variable iteration becomes its label (e.g., v%velocity_kmh% resp.

v20 for a velocity of 20km/h) – e.g. v20_norec_Wh. The optional presence of recupera-

tion (rec/norec) is established at the end of the model, which is why it does not emerge

in any previous stage.

With this kind of notation, an arbitrary extension of the model (e.g., additional iterations

for weight levels or temperature) becomes viable.

29

Development of the Energy Consumption Model

4.2.3. Data Conditioning

Figure 10: The beginning of the energy consumption calculation in the first submodel. It contains all model
parameters followed by several data preparation stages (which include automated data retrieval, and pre-pro-
cessing of the street graph).

The data conditioning stage starts by downloading OSM data for a defined extend (see

Section 3.4) through an Extended Application Programming Interface (XAPI) directly from

one of the OSM Servers (http://www.overpass-api.de/api/xapi_meta?), as shown in Figure

11. A request predicate is set to include negotiable roads only and reduce processing time

subsequently:

highway=primary|primary_link|secondary|tertiary|residential|living_street|track|pedes-

trian|path|cycleway|footway|byway|unclassified|secondary_link|tertiary_link|lane|track|op-

posite_lane|opposite|grade1|grade2|grade3|grade4|grade5|roundabout

30 Optimizing the Operation Range of E-Bikes in Routing Systems

Figure 11: Input Parameters of the tool "Download OSM Data (XAPI)"

I import the originated OSM file into the pgRouting database using an implemented script,

which defines a suitable routing topology at the same time. This python script shown below

executes the osm2pgrouting command using the subprocess module. The implementation

pursues the approach of fully automated processing and enables easy customizability

through the shift of input parameters (e.g., database access data could be incorporated into

the model as well). After implementing it into the model, the script could use any configura-

tion file, e.g., in this case one optimized for bicycles (see Section 3.2), whose path has to

be located in the bin folder of PostgreSQL/9.4. Among other arguments, I defined a Boolean

expression which continues the process if succeeded.

import subprocess
import sys
import arcpy

try:
 osm2pgrouting = arcpy.GetParameterAsText(0)
 osm_file = arcpy.GetParameterAsText(1)
 conf_file = arcpy.GetParameterAsText(2)
 print osm2pgrouting
 print osm_file
 print conf_file

 response = subprocess.check_output([osm2pgrouting,
 '--file', osm_file,
 '--conf', conf_file,
 '-p', '5432', '--dbname', 'ebike',
 '--user', 'postgres', '--password',
 'ebike', '--clean']).decode("utf-8")

 print response
except subprocess.CalledProcessError as e:
 print "Have an error in processing:", sys.exc_info()[0]
 print "Ping stdout output:\n", e.output
 arcpy.SetParameterAsText(4, "false")
else:
 arcpy.SetParameterAsText(3, "true")

31

Development of the Energy Consumption Model

Using Model Builders’ own relation “precondition”, the model deletes the downloaded tem-

porary OSM file and initiates the replication of the generated file ways (edge table as the

key to conduct routing) likewise. Although the program claims, the input and output data

element were identical, further proceeding with the original file causes errors. By updating

the original file at the completion of the calculation with relevant columns only, I hereby

reduce the amount of data necessary for the subsequent routing. These steps ultimately

complete the data preparation stage.

4.2.4. Altitude Value Extraction

To obtain the slope angle for each street segment, I need to extract altitude values from a

DEM and project them onto the street network. Figure 12 illustrates the trigonometric ap-

proach to calculate the required value. I conducted the following steps (cf. Figure 13).

Figure 12: Schematic illustration of the calculation of slope. The elevation point at the source location source_el
of a specific street segment with the length length_m has the coordinates x1/y1, the one at the target location
target_el has x2/y2. While length_m symbolizes the adjacent side , the difference of the values for target_el

and source_el results into opposite side .

First of all, height values need to be extracted from the raster (DEM) and added to the street

network nodes (OSM). For this purpose, points are required to store the altitude values at

the beginning and end of each street segment. Because the coordinates of the start and

end node of each segment are provided through x1/y1 for the source and x2/y2 for the

target location already, I can use “Make XY Event Layer” to convert this information into

point features (instead of using the tailored “Feature Vertices To Points”). The integration

of the tool “Feature Class to Feature Class” is mandatory to proceed, since the raw (tem-

porary) point feature layer cannot serve as input feature for the following “Extract Values to

target_el
(x2/y2)

source_el
(x1/y1)

length_m

ta
rg

et
_

el
 -

so

u
rc

e_
e

l

32 Optimizing the Operation Range of E-Bikes in Routing Systems

Points”. Once the DEM has been converted into the same coordinate system (CH1903 to

WGS 1984), it is stored as the single compatible ESRI GRID (instead of the original Geo-

TIFF format)4. Its elevation values are interpolated at the point location through “Extract

Values to Points” (check optional “Interpolate values at the point locations” to minimize po-

tential miscalculations) which computes a default field called rastervalu. Since I need to

execute this function twice both for the source and target and for reasons of comprehension,

I renamed the generated default label into source_el resp. target_el. I used “Add Field”,

“Calculate Field” and “Delete Field” (to delete the generated rastervalu) in the stated order

(the much simpler “Alter Field” caused severe errors in further calculations).

Figure 13: The altitude value extraction procedure.

The transfer of elevation values causes scattered inaccurate height allocations due to inter-

polation errors through nearby bridges, walls, or scarps. Hence, slope angle contains some

extreme values (cf. Figure 43Figure 44Figure 45 in Section 8.2). Those can be considered

as outliers. Since I did not yet alter values above a certain threshold value manually (e.g.,

according to constructional regulations for maximal slopes), no data values are assigned to

values above a certain gradeability of the motor of the the electric bicycle (cf. Section 4.2.7).

This approach excludes outliers from the routing procedure at the same time. As a result,

few street segments which are actually less steep and thus negotiable are not taken into

account. Due to small quantity of the affected values (under 1 % of the values above 15

and below -15 degrees of street segment for the study area), this effect can be considered

negligible for the time being, whereas other solutions are discussed in Section 8.2.

4 Clipping or an alignment on the extent might become important when, due to further automation,
downloading the raster directly (cf. Section 8.2). It is negligible for the experimental setup.

33

Development of the Energy Consumption Model

After joining the intermediate data (using the field gid), the slope (in percentage as

slope_percentage and angle as slope_degree) is calculated. For every single step from this

point forward, all intermediate data is calculated for both forward and backward traversal

(cf. Figure 14 in Section 4.2.5). In the sequel, the Python code contained in “Calculate Field”

is shown consecutively numbered per equation in Section 4.1 and additional intermediate

calculations in the term (x.1), (x.2), and so on. Initially, the model computes (0.1) slope

percentage as a simple ratio between target_el – source_el, which is inserted into an arc

tangent function yielding (0.2) the angle of slope accordingly (MUETZE & TAN 2007; BUCKLEY

2008):

(0.1) = ⋅ 100

(0.1) (!target_el!-!source_el!)/!length_m!*100 #slopeangle_percentage

(0.2) = tan ()

(0.2) math.degrees(math.atan((!target_el!-!source_el!)/!length_m!)) #slopeangle_degree

4.2.5. Impeding Forces

Subsequently, the model computes (1) climbing resistance , and (2) rolling resistance :

(1) (%weight_driver_kg%+%weight_e-bike_kg%)*9.806*
math.sin(math.radians(!slopeangle_degree!)) #climbing_resistance

(2) %rolling_coefficient%*(%weight_driver_kg%+%weight_e-bike_kg%)
*9.806*math.cos(math.radians(!slopeangle_degree!)) #rolling_resistance

The code in (3.1) denotes the computation of the ambient air pressure through the

international height formula, a premise for the calculation of drag . It contains the standard

atmosphere 1013.25 hPa, the temperature gradient of 0.0065 K / m, the average height

between the two end nodes of a street segment ℎ, and the ambient temperature Tamb:

(3.1) = 1013.25 ⋅ (1 −
. ⋅

) ,

(3.1) 1013.25*math.pow(1-(0.0065*((!target_el!+!source_el!)/2))
/(%temperature_celsius%+273.15),5.255) #ambient_air_pressure

34 Optimizing the Operation Range of E-Bikes in Routing Systems

Figure 14: The end of the first submodel with the calculation of slope in degree required to obtain the impeding
forces gravitation and friction and the pressure required to obtain drag for both forward and backward traversal
respectively.

Please note: Because of the performed iteration the model is split into parts as Figure 8

shows exemplary. The computation of (3) drag indicates the beginning of the second

part which iterates dependent variables for defined velocity levels %velocity_kmh% us-

ing the iterator “For” (Figure 15).

(3) !pressure_hPa!*100/(2*287.058*(%temperature_celsius%+273.15))
*1.15*0.55*math.pow((%velocity_kmh%/3.6),2) #drag_resistance

Finally, I add up all previously computed impeding forces to the tractive force :

(4.1) !climbres_N!+!rollres_N!+!dragres_v%velocity_kmh%_N! #tractive_force

To consider (4) the rider power input , I assume the human torque to be a constant factor

of the tractive force , ultimately resulting into (4.2) motor torque :

(4.2) def fachtor(tracforcevvelocity_kmh_N, factor_human_torque, wheel_diameter_inches):

 if tracforcevvelocity_kmh_N > 0:
 return (tracforcevvelocity_kmh_N-(tracforcevvelocity_kmh_N*factor_hu-
man_torque))*((wheel_diameter_inches*0.0254)/2)
 else:
 return tracforcevvelocity_kmh_N*((wheel_diameter_inches*0.0254)/2

 #motor_torque

Since the rider needs to pedal only when the tractive force is positive, it does not need to

be subtracted when it is negative resp. the motor is in generator mode. The pre-logic script

code is executed by:

fachtor(!tracforcev%velocity_kmh%_N!, %factor_human_torque%, %wheel_diameter_inches%)

(4.4) (%velocity_kmh%/3.6)/((%wheel_diameter_inches%*0.0254)/2) #angular_velocity

35

Development of the Energy Consumption Model

Together with the (4.4) angular velocity of the wheel , we are now able to calculate the

required electric motor power.

Figure 15: The beginning of the second submodel with the iteration of different velocity levels with the compu-
tation of the remaining impeding forces, summed up to the tractive force. Hence, wheel torque and angular
velodity are calculated.

4.2.6. Determining Motor efficiency

The motor efficiency for the bike employed in Test Session A is determined by one value,

which is altered throughout the tests to increase accuracy. In Test Session B, the manufac-

turer provided specifications for the motor efficiency for specific torques and speeds for both

consumption and production mode in revolutions per minute (RPM), which I transferred into

model-own entities and then implemented into the model (Figure 16). The values for each

corresponding velocity level expressed in Table 6 in Section 6.1 are transformed into a

Python Code implemented into “Calculate Field”, as the example below shows:

(4.3) def meff5(torquev5_Nm):
 if -12.5 >= torquev5_Nm:
 return 0.1686509334044
 elif -7.5 >= torquev5_Nm > -12.5:
 return 0.400272727088039
 elif 0 >= torquev5_Nm > -7.5:
 return 0.53365978248219
 elif 0 < torquev5_Nm < 7.5:
 return 0.623834964702797
 elif 7.5 <= torquev5_Nm < 12.5:
 return 0.579450836444724
 elif 12.5 <= torquev5_Nm < 17.5:
 return 0.514837509676393
 elif 17.5 <= torquev5_Nm < 22.5:
 return 0.472091740648567
 elif 22.5 <= torquev5_Nm < 27.5:
 return 0.409172192178427
 elif 27.5 <= torquev5_Nm < 32.5:
 return 0.358790286998961
 elif 32.5 <= torquev5_Nm < 37.5:
 return 0.32394748442385
 elif 37.5 <= torquev5_Nm:
 return 0.192834086191931

The pre-logic script code shown above (4.3) is then executed by:

meff5(!torquev5_Nm!)

36 Optimizing the Operation Range of E-Bikes in Routing Systems

Figure 16: An extract of the computation of the motor efficieny of the bike used in Test Session B.

4.2.7. Electrical Motor Power and Energy Consumption

The last part of the model consists of the calculation of the required electric motor power

 and, following the reassessment of the effect of an increased energy consumption re-

leased by lower temperatures resulting into , the computation of the overall energy con-

sumption for each feature resp. street segment (Figure 17).

(4) def pemrecW(slopeangle_degree, gradeability_degree, torquevvelocity_kmh_Nm, angu-
larvvelocity_kmh_s_inverse, motorefficiencyvvelocity_kmh, gearbox_efficiency, aux-
iliary_components_W):
 if slopeangle_degree >= gradeability_degree:
 return 999999
 elif slopeangle_degree <= -gradeability_degree:
 return 999999
 elif torquevvelocity_kmh_Nm < 0:
 return torquevvelocity_kmh_Nm * angularvvelocity_kmh_s_inverse * motoreffi-
ciencyvvelocity_kmh * gearbox_efficiency + auxiliary_components_W
 else:
 return torquevvelocity_kmh_Nm * angularvvelocity_kmh_s_inverse / (motoref-
ficiencyvvelocity_kmh * gearbox_efficiency) + auxiliary_components_W
 #power electric motor with recuperation

The pre-logic script code shown above calculates (4) the electric motor power for engines

with a recuperation mechanism (employed in Section 6.2.2) and is executed by:

pemrecW(!slopeangle_degree!, %gradeability_degree%,!torquev%velocity_kmh%_Nm!, !angu-
larv%velocity_kmh%_s_inverse!, !motorefficiencyv%velocity_kmh%!, %gearbox_efficiency%,
%auxiliary_components_W%)

It is important to mention that all values beyond the above-mentioned maximal gradeability,

specified by the e-bikes’ manufacturer, are set to a no-data value.5 This method ensures

5 Since several routing systems (i.e., pgRouting) are not able to process pure no data values defined as
such, I assigned 999999 instead.

37

Development of the Energy Consumption Model

that the routing exclude those segments and, simultaneously, eliminates scattered interpo-

lation errors arisen from the extraction procedure. For that reason, negative slope (i.e., driv-

ing downhill) is considered as well. To spare query time, this step is implemented in the

same script.

Figure 17: The end of the energy consumption model for bikes with recuperation (ensuing Figure 16 in Section
4.2.6), subsequently computing the power required by the electro motor (adjusted for lower temperatures), the
energy consumption. The model conciders that one could switch the recuperation on or off by calculating both
cases.

(4) def pemnorecW(slopeangle_degree, gradeability_degree, torquevvelocity_kmh_Nm, angu-
larvvelocity_kmh_s_inverse, motorefficiencyvvelocity_kmh, gearbox_efficiency, aux-
iliary_components_W):
 if slopeangle_degree >= gradeability_degree:
 return 999999
 elif slopeangle_degree <= -gradeability_degree:
 return 999999
 elif torquevvelocity_kmh_Nm < 0:
 return auxiliary_components_W
 else:
 return torquevvelocity_kmh_Nm * angularvvelocity_kmh_s_inverse / (motoreffi-
ciencyvvelocity_kmh * gearbox_efficiency) + auxiliary_components_W

 #power electric motor without recuperation

pemnorecW(!slopeangle_degree!, %gradeability_degree%, !torquev%velocity_kmh%_Nm!, !angu-
larv%velocity_kmh%_s_inverse!, !motorefficiencyv%velocity_kmh%!, %gearbox_efficiency%,
%auxiliary_components_W%)

To also model the power provided by electric bicycles with a lack of recuperation capability

(employed in Section 6.2.1), required electric motor power for torques smaller than zero

consists in this case only of the energy consumed by auxiliary components such as dis-

play or light, as shown above. Figure 18 represents this case.

(6) def pemctemprecW(vvelocity_kmh_rec_W, temperature_celsius):
if vvelocity_kmh_rec_W == 999999:

return 999999
if temperature_celsius >= 25:

return vvelocity_kmh_rec_W
else:

return vvelocity_kmh_rec_W * (1+((25-temperature_celsius)*0.0047))

 #temperature equation with recuperation

38 Optimizing the Operation Range of E-Bikes in Routing Systems

pemctemprecW(!v%velocity_kmh%_rec_W!, %temperature_celsius%)

After considering (6) the effect of increasing energy consumption due to lower temperatures,

the multiplication of the power with the ratio between the specific length and velocity

ultimately results in (7) energy consumption for each feature resp. street segment.

(7) def pemrecWh(vvelocity_kmh_ctemp_rec_W, length_m, velocity_kmh):
if vvelocity_kmh_ctemp_rec_W == 999999:

return 999999
else:

return vvelocity_kmh_ctemp_rec_W*((length_m/1000)/velocity_kmh)

 #energy consumption with recuperation

pemrecWh(!v%velocity_kmh%_ctemp_rec_W!, !length_m!, %velocity_kmh%)

Figure 18: The end of the energy consumption model for bikes without recuperation, subsequently computing
the power required by the electro motor (adjusted for lower temperatures), the energy consumption resp. energy
consumption per kilometer for visualization purposes (Figure 19 and Figure 20).

Figure 19 and Figure 20 illustrate the calculated edge weights. The execution time of the

entire model is approximately 60 minutes for Test Session A and 100 minutes for Test Ses-

sion B (see Table 3 in Section 3.3 for system specifications). To update the native file from

the database consecutively, running the following SQL query is a crucial step:

-- new columns are added in the native edge cost file ways and filled with the calculated
data for energy consumption (for forward and backward traversal and every velocity itera-
tion respectively)

ALTER TABLE postgres.ways ADD v5_norec_Wh float8;
UPDATE postgres.ways SET v5_norec_Wh = (SELECT v5_norec_Wh FROM postgres.ways_calculation
WHERE postgres.ways_calculation.gid = postgres.ways.gid);
ALTER TABLE postgres.ways ADD v5_rec_Wh float8;
UPDATE postgres.ways SET v5_rec_Wh = (SELECT v5_rec_Wh FROM postgres.ways_calculation WHERE
postgres.ways_calculation.gid = postgres.ways.gid);
ALTER TABLE postgres.ways ADD v5_norec_r_Wh float8;
UPDATE postgres.ways SET v5_norec_r_Wh = (SELECT v5_norec_r_Wh FROM postgres.ways_calcula-
tion WHERE postgres.ways_calculation.gid = postgres.ways.gid);
ALTER TABLE postgres.ways ADD v5_rec_r_Wh float8;
UPDATE postgres.ways SET v5_rec_r_Wh = (SELECT v5_rec_r_Wh FROM postgres.ways_calculation
WHERE postgres.ways_calculation.gid = postgres.ways.gid);

ALTER TABLE postgres.ways ADD v10_norec_Wh float8;
UPDATE postgres.ways SET v10_norec_Wh = (SELECT v10_norec_Wh FROM postgres.ways_calculation
WHERE postgres.ways_calculation.gid = postgres.ways.gid);
ALTER TABLE postgres.ways ADD v10_rec_Wh float8;
UPDATE postgres.ways SET v10_rec_Wh = (SELECT v10_rec_Wh FROM postgres.ways_calculation
WHERE postgres.ways_calculation.gid = postgres.ways.gid);

39

Development of the Energy Consumption Model

ALTER TABLE postgres.ways ADD v10_norec_r_Wh float8;
UPDATE postgres.ways SET v10_norec_r_Wh = (SELECT v10_norec_r_Wh FROM postgres.ways_calcu-
lation WHERE postgres.ways_calculation.gid = postgres.ways.gid);
ALTER TABLE postgres.ways ADD v10_rec_r_Wh float8;
UPDATE postgres.ways SET v10_rec_r_Wh = (SELECT v10_rec_r_Wh FROM postgres.ways_calculation
WHERE postgres.ways_calculation.gid = postgres.ways.gid);

ALTER TABLE postgres.ways ADD v15_norec_Wh float8;
UPDATE postgres.ways SET v15_norec_Wh = (SELECT v15_norec_Wh FROM postgres.ways_calculation
WHERE postgres.ways_calculation.gid = postgres.ways.gid);
ALTER TABLE postgres.ways ADD v15_rec_Wh float8;
UPDATE postgres.ways SET v15_rec_Wh = (SELECT v15_rec_Wh FROM postgres.ways_calculation
WHERE postgres.ways_calculation.gid = postgres.ways.gid);
ALTER TABLE postgres.ways ADD v15_norec_r_Wh float8;
UPDATE postgres.ways SET v15_norec_r_Wh = (SELECT v15_norec_r_Wh FROM postgres.ways_calcu-
lation WHERE postgres.ways_calculation.gid = postgres.ways.gid);
ALTER TABLE postgres.ways ADD v15_rec_r_Wh float8;
UPDATE postgres.ways SET v15_rec_r_Wh = (SELECT v15_rec_r_Wh FROM postgres.ways_calculation
WHERE postgres.ways_calculation.gid = postgres.ways.gid);

ALTER TABLE postgres.ways ADD v20_norec_Wh float8;
UPDATE postgres.ways SET v20_norec_Wh = (SELECT v20_norec_Wh FROM postgres.ways_calculation
WHERE postgres.ways_calculation.gid = postgres.ways.gid);
ALTER TABLE postgres.ways ADD v20_rec_Wh float8;
UPDATE postgres.ways SET v20_rec_Wh = (SELECT v20_rec_Wh FROM postgres.ways_calculation
WHERE postgres.ways_calculation.gid = postgres.ways.gid);
ALTER TABLE postgres.ways ADD v20_norec_r_Wh float8;
UPDATE postgres.ways SET v20_norec_r_Wh = (SELECT v20_norec_r_Wh FROM postgres.ways_calcu-
lation WHERE postgres.ways_calculation.gid = postgres.ways.gid);
ALTER TABLE postgres.ways ADD v20_rec_r_Wh float8;
UPDATE postgres.ways SET v20_rec_r_Wh = (SELECT v20_rec_r_Wh FROM postgres.ways_calculation
WHERE postgres.ways_calculation.gid = postgres.ways.gid);

ALTER TABLE postgres.ways ADD v25_norec_Wh float8;
UPDATE postgres.ways SET v25_norec_Wh = (SELECT v25_norec_Wh FROM postgres.ways_calculation
WHERE postgres.ways_calculation.gid = postgres.ways.gid);
ALTER TABLE postgres.ways ADD v25_rec_Wh float8;
UPDATE postgres.ways SET v25_rec_Wh = (SELECT v25_rec_Wh FROM postgres.ways_calculation
WHERE postgres.ways_calculation.gid = postgres.ways.gid);
ALTER TABLE postgres.ways ADD v25_norec_r_Wh float8;
UPDATE postgres.ways SET v25_norec_r_Wh = (SELECT v25_norec_r_Wh FROM postgres.ways_calcu-
lation WHERE postgres.ways_calculation.gid = postgres.ways.gid);
ALTER TABLE postgres.ways ADD v25_rec_r_Wh float8;
UPDATE postgres.ways SET v25_rec_r_Wh = (SELECT v25_rec_r_Wh FROM postgres.ways_calculation
WHERE postgres.ways_calculation.gid = postgres.ways.gid);

-- as some operations are only possible in the schema public due to database restrictions
(cf. Section 4.2.1) files are copied accordingly

CREATE TABLE public.ways AS
SELECT * FROM postgres.ways;

CREATE TABLE public.ways_vertices_pgr AS
SELECT * FROM postgres.ways_vertices_pgr;

CREATE TABLE public.relations_ways AS
SELECT * FROM postgres.relations_ways;

CREATE TABLE public.osm_relations AS
SELECT * FROM postgres.osm_relations;

CREATE TABLE public.osm_nodes AS
SELECT * FROM postgres.osm_nodes;

CREATE TABLE public.osm_way_classes AS
SELECT * FROM postgres.osm_way_classes;

CREATE TABLE public.osm_way_tags AS
SELECT * FROM postgres.osm_way_tags;

CREATE TABLE public.osm_way_types AS
SELECT * FROM postgres.osm_way_types;

40 Optimizing the Operation Range of E-Bikes in Routing Systems

Figure 19: The energy consumption [Wh] of each street segment in the study area. Naturally, longer street
segments inherit higher values of energy consumption. Figure 20 addresses this concern.

Figure 20: The hypothetical energy consumption per kilometer [Wh/km] for each street segment. This illustration
facilitates a comparison between the expected energy demand of particular street segments despite their length.

41

Development of the Energy Consumption Model

42 Optimizing the Operation Range of E-Bikes in Routing Systems

5. Routing Applications

In order to request a least energy consuming route, I need to build an application using the

algorithms addressing the shortest path problem introduced in Section 2.1. In a first step,

for bikes without recuperation and thereby generating only positive edge costs, I compute

routes with pgRouting using the Dijkstra algorithm (Section 5.1). Second, my own develop-

ment of a routing application using an implementation of the Bellman-Ford algorithm written

in Rust enables me to involve negative edge costs caused by an energetic recovery system

henceforth (Section 5.2).

 Dijkstra Application

Figure 21: Comparison between an energy-based path (left side) and the shorthest path (right side). Parame-
ters taken from Test Session A (= 0, m=123, = 20).

The first approach is to develop an application using the Dijkstra algorithm, applicable for

bikes without recuperation (Figure 21). With time complexity of O(n2), according to

ARTMEIER & HASELMAYR 2010 it is the best known algorithm for the processing of non-neg-

ative edge costs.

Disregarding the availability of several other route planning algorithms with speed-up tech-

nique to reduce query time, preprocessing time and space consumption (DELLING ET AL.

2009) as the A*- algorithm (HART ET AL. 1968) in the pgRouting library, I used the existing

implementation of Dijkstra in the pgRouting framework.

5.1.1. Back-End

The following description of the setup of the pgRouting Dijkstra Application is inspired by

the workshop of the FOSS4G 2016 in Bonn and adjusted for my own purposes (KASTL &

VERGARA 2016). First, I create a function pgr_v20_norec_Wh.sql, which processes input

parameters both from an edge dataset (in this case ways, specified later on) such as edge

43

Routing Applications

costs (e.g., v20_norec_Wh), and from an attached node dataset, specified as ways_verti-

ces_pgr (e.g., longitude and latitude). Taking those input parameters into account, the func-

tion runs the shortest path Dijkstra query after finding the nearest nodes to start and end-

point coordinates. It flips the geometry if necessary, that target node of the previous road

segment is the source of the following. Also, it calculates the azimuth from start to end node

of each road segment. For this purpose, the function employs functions from the PostGIS

library. pgr_v20_norec_Wh ultimately returns a set of records: A sequence, gid, edge costs

as energy costs for each segment, street names, a geometry and the heading in degree.

CREATE OR REPLACE FUNCTION pgr_v20_norec_Wh(
 IN edges_subset varchar,
 IN x1 double precision,
 IN y1 double precision,
 IN x2 double precision,
 IN y2 double precision,
 OUT seq INTEGER,
 OUT cost FLOAT,
 OUT name TEXT,
 OUT geom geometry,
 OUT heading FLOAT
)
RETURNS SETOF record AS
$BODY$

WITH
dijkstra AS (
 -- the following runs the shortest path Dijkstra query, which contains input parameters
for the algorithm such as source and target
 SELECT * FROM pgr_dijkstra(
 'SELECT gid as id, source, target, v20_norec_Wh AS cost, v20_norec_r_Wh AS re-
verse_cost FROM ' || $1,
 -- allocation for finding the nearest nodes to start and endpoint coordinates
 -- source
 (SELECT id FROM ways_vertices_pgr
 ORDER BY the_geom <-> ST_SetSRID(ST_Point(x1,y1),4326) LIMIT 1),
 -- target
 (SELECT id FROM ways_vertices_pgr
 ORDER BY the_geom <-> ST_SetSRID(ST_Point(x2,y2),4326) LIMIT 1),
 -- directed, reverse costs
 true)
),
 with_geom AS (
 SELECT dijkstra.seq, dijkstra.cost, ways.name,
 -- flips the geometry if necessary, that target node of the previous road segment
is the source of the following
 CASE
 WHEN dijkstra.node = ways.source THEN the_geom
 ELSE ST_Reverse(the_geom)
 END AS route_geom
 FROM dijkstra JOIN ways
 ON (edge = gid) ORDER BY seq
)
 -- calculates the azimuth from start to end node of each road segment
 SELECT *,
 ST_azimuth(ST_StartPoint(route_geom), ST_EndPoint(route_geom))
 FROM with_geom;
$BODY$
LANGUAGE 'sql';

44 Optimizing the Operation Range of E-Bikes in Routing Systems

To store the above described wrapper into the ORDBMS, the user needs to execute the

following statement in the command line as shown in Figure 22 (change the direction into

the target folder of psql; usually cd C:\Program Files\PostgreSQL\9.5\bin\):

psql -p 5432 -U postgres -d ebike -W ebike -f C:\...\v20_norec_Wh.sql

Figure 22: The screenshot shows the required arguments to store the function, executed in the command line.

The next step is to publish the wrapper as a Web Map Service (WMS), for which I use the

Internet Map Server (IMS) Geoserver. Therefore, I connect to the administration page (de-

fault: user: admin; password: geoserver), create a new workspace (Figure 23), a new store

(Figure 24) and a new layer (Figure 25). I configure the following SQL View in this layer:

SELECT ST_MakeLine(route.geom) FROM (
 SELECT geom FROM pgr_v20_norec_Wh ('ways', %x1%, %y1%, %x2%, %y2%
) ORDER BY seq) AS route

Afterwards, I have to ensure transformation of the coordinate system, since the employed

OpenLayers basemap (EPSG SRID: 3857) has a different SRID EPSG than the database

(EPSG SRID: 4326) (cf. Section 3.1). Therefore, I change “Declared SRS” accordingly, se-

lect “Reproject native to declared” in “SRS handling”, click “Compute from data” and “com-

pute from native bounds” and save the form.

45

Routing Applications

Figure 23: A new workspace with the name pgRouting is created.

Figure 24: The newly created store is named after the edge costs v20_norec_Wh applied for this trial. Addi-
tionally, connection parameters are defined such as the database type, the host, the port, the database, the
schema, the user and the password.

46 Optimizing the Operation Range of E-Bikes in Routing Systems

Figure 25: The SQL View which is used to access data through the created wrapper (cf. Figure 22) in the layer.

5.1.2. Front-End

A front-end document (cf. index_v20_norec_Wh.html in Appendix) ensures access for a

potential user. A routing request can be performed by simply clicking on two arbitrary points

of the map. This basemap derives from the OpenLayers library for which the study area is

set as a default view. To be able to perform the routing request, several variables must be

predefined. On the one hand, a vector layer is created which is used to display the also

newly created start and destination features. On the other hand, a variable params calls the

required layers from Geoserver. The generation of an additional transform function ensures

the mapping in the correct coordinate system.

Registering a click event listener determines the starting point through the first click and the

destination point through the second click. The transformation of the coordinates of the

retrieved WMS image from native to server projection is ensured by the application of the

mentioned transform function. Subsequently, data as a WMS image from Geoserver is re-

trieved, matched and displayed. Finally, an additional function capable to removing all ele-

ments from the map in order to start a new request is defined.

47

Routing Applications

The final step would be to display the aggregated costs of each route which is why I would

have to transform the WMS into a WFS. Instead, this functionality is integrated in the Bell-

man-Ford Application in Section 5.2 (responsible for the evaluation in Test Session B in

Section 6.2.2). However, the initial evaluation of the model in Test Session A in Section

6.2.1 is carried out using the pgRouting Plugin in QGIS, which provides detailed cost listing

of the energy consumption per street segment. Hereby, the Dijkstra algorithm proves the

applicability of the calculated edge costs for energy-based routing initially.

Explained in the following Section 5.2, the advantage of the Bellman-Ford Application is

more flexibility as the user can quickly change edge costs (compared to the preliminary

application presented in this chapter), which were computed for different velocity levels in

the static model. In detail, because of the implementation of the Bellman-Ford algorithm,

the application can now process negative edge costs and therefore consider the recupera-

tion ability of certain electric bicycles.

48 Optimizing the Operation Range of E-Bikes in Routing Systems

 Bellman-Ford Application

Figure 26: Comparison between an energy-based path (left side) and the shorthest path (right side). Parame-
ters taken from Test Session B (= 0, =127, = 20) similar to the setting of Figure 21. Obviously, the
costs of the shortest route denote the total length [m] of the journey instead of energy cost of the route [Wh].

In contrast to, for example, SACHENBACHER ET AL. 2011, who used a variant of the Bellman-

Ford algorithm with the so-called Pallottino strategy (PALLOTTINO 1984), we6 conducted a

straight-forward implementation of the Bellman-Ford algorithm into another prototypical ap-

plication (Figure 26, Figure 28 and Figure 29). Able to compute arbitrary (i.e. negative) edge

weights, its worst time complexity O(n3) (compared to Dijkstra) is intended to be compen-

sated by using pre-processed data only in our application, supported by the fast-responding

character through its setting. Latter means fast query times that is achieved by the use of

the programing language Rust, which claims to have minimum runtimes (RUST n.d.). As the

Bellman-Ford algorithm is not part of the library of pgRouting yet, we developed a stand-

alone application explained below.

5.2.1. Back-End

The applications’ source (src) consists of main.rs, endpoints.rs, spatialpoints.rs and

graph.rs (cf. Programming Code Bellman-Ford Application in Appendix). The latter covers

the implementation of the Bellman-Ford algorithm and performs the routing. It reads de-

clared nodes and edges from the provided database, creates a new graph also adding and

returning an OSM ID as starting point for the subsequent Bellman-Ford query. Following

this, graph.rs (cf. Graph.rs in Appendix) initiates spatialpoints.rs (cf. Spatialpoints.rs in Ap-

pendix) to build an R tree. A so-called R tree is a spatial index which defines squares, to

6 The second application was developed in collaboration with my supervisor Dominik Bucher.

49

Routing Applications

quickly find and access the closest node, starting from every requested location given lon-

gitude and latitude. Graph.rs then gets the node IDs from a longitude and latitude, the in-

ternal ID from an OSM ID, and the location from an internal ID. The application returns a

vector containing longitude and latitude, finally performing a routing request from source to

target with the detection of the aggregated costs from each computed graph as total_cost.

The implementation of the Bellman-Ford algorithm returns a tuple, containing a vector of

predecessors and a vector of distances to the source node.

Additionally, the application computes the reachability of all nodes in the graph, and returns

those which are reachable. It returns a vector of vectors, where the arguments are as fol-

lows: Longitude, latitude, remaining energy.

Eventually, main.rs (cf. Main.rs in Appendix) – the main function and entry point to the pro-

gram – assigns all arguments from the command line and starts the program. The proce-

dure consists of loading the data from graph.rs, setting up the router for the web server. In

this step, it accesses endpoints.rs which is responsible for the communication with the front-

end. Here, endpoint.rs (cf. Endpoint.rs in Appendix) transforms the result of the route and

reachability calculation into a GeoJSON string which can be retrieved in the Front-End.

Therefore, it computes a route given a start and end latitude and longitude resp. a start and

end OSM ID. Part of this is a request that returns all reachable nodes in a vicinity.

5.2.2. Front-End

The html-part of the overall web application (cf. Index.html in Appendix) defines the two

functionalities route and reachability as boxes to select the desired method. To request the

latter, the user can claim a certain battery capacity or SOC in Wh. The output plot of the

energy costs per route request is placed below and contains a placeholder (“Please com-

pute a route by clicking on the map!”) for instance.

In the following JavaScript code, we set the default view to Zurich City with an appropriate

zoom level, added a function to add or remove elements on the map and defined a helper

function to convert HSV color ramps to RGB. This time, we choose a mapbox layer and the

Leaflet library rather than OpenLayers for the underlying basemap.

Subsequently, we defined what happens, when a user clicks on the map: Either, the user

is in routing mode, where the application simply computes and displays routes, or he is in

the reachability mode, where a contour plot of reachable nodes is drawn. For the latter, we

50 Optimizing the Operation Range of E-Bikes in Routing Systems

determined maximal and minimal capacity, which is required for coloring. Then we created

10 equally spaced breaks to visualize the declining SOC, the farther someone diverges

from the origin (from green to red).

Since the application relies on a different field data type of the longitude and latitude values,

contained in the edge file ways_vertices_pgr. Instead of using the numeric format, the user

needs to alter on double precision, so we can start the application.

ALTER TABLE ways_vertices_pgr ALTER COLUMN lat TYPE DOUBLE PRECISION;
ALTER TABLE ways_vertices_pgr ALTER COLUMN lon TYPE DOUBLE PRECISION;

To run the wrapper (the so-called cargo package, a build automation system of Rust) in the

command line, the user need to change the direction into the target folder (cd C:\...). The

user has to make sure to be in the right directory, as the implementation uses the current

directory to look for index.html, i.e., under src/static (Figure 27).

bellman_osm.exe database_user database_password database_name

ways_vert_table_name ways_table_name forward_cost_column back-

ward_cost_column

Example: bellman_osm_0.1.1.exe postgres ebike ebike ways_vertices_pgr ways

v20_rec_Wh v20_rec_r_Wh

Figure 27: Invocation of the Bellman-Ford Application in order to start it.

51

Routing Applications

Then, the user needs to open a browser and points it at http://127.0.0.1:9000, click on the

map, or use the endpoints http://127.0.0.1:9000/api/route, http://127.0.0.1:9000/api/route-

using-ids and http://127.0.0.1:9000/api/reachability. These three endpoints accept parame-

ters as follows:

http://127.0.0.1:9000/api/route?source-lon=8.54564666748047&source-

lat=47.407295617526366&target-lon=8.531398773193361&target-

lat=47.366617842193385

http://127.0.0.1:9000/api/route-using-ids?source-id=1&target-id=5

http://127.0.0.1:9000/api/reachability?source-lon=8.50170135498047&source-

lat=47.37429091011091&capacity=50.0

52 Optimizing the Operation Range of E-Bikes in Routing Systems

Figure 28: Bellman-Ford application with a reachability request. The example shows the maximum remaining
cruising range with a SOC of 20 Wh from an arbitrary loation in Zurich.

Figure 29: Bellman-Ford application with a routing request from ETH Hönggerberg to ETH Center. Parameters
taken from Test Session A (= 0, m=123, = 20). Note the difference to comparable modelled values
from Test Session A in Table 12 in Chapter 7, caused by recuperation in downhill segments.

53

Routing Applications

54 Optimizing the Operation Range of E-Bikes in Routing Systems

6. Evaluation

The following chapter is structured in two parts. In the first Section 6.1, I provide a full de-

scription of the values of the parameters and an explanation for why they were chosen and

how they influence the resistance forces. Then, I describe the procedure of the Test Drive

Sessions A and B, in Sections 6.2.1 and 6.2.2 repectively.

 Parameters

Many of the model parameters presented in this thesis were taken from either literature or

the model specifications of the bicycles used. In order to determine the remaining parameter

values, I conducted field tests with electric bicycles. The experimental nature of the tests

allowed me to tune parameters such as motor efficiency, rolling resistance, and the influ-

ence of the rider. An overview of all the parameters considered is presented in Table 5. This

is followed by a summary of the parameter values that were applied in different test situa-

tions in Table 9 (Section 6.2.1) and Table 10 (Section 6.2.2).

I will begin by explaining the interaction and the amount of influence each of the resistance

forces contributed. To determine which specific parameters these forces consist of, a deri-

vation of the quantity of each parameter is provided afterwards.

WILSON 2004 describes the influence of each force on the overall resistance in different use

cases. This is summarized by MUETZE & TAN 2007:

i) At speeds greater than approximately 10 km/h (considered as threshold value)

on flat ground, air resistance commonly has a greater effect than rolling re-

sistance :

 = 0; >

ii) At speeds smaller than approximately 10 km/h on flat ground, more power is

needed to overcome rolling resistance than air resistance :

 = 0; >

55

Evaluation

iii) On hilly terrain where climbing resistance is high, both air resistance and roll-

ing resistance are insignificant. If the velocity becomes high, as with other

vehicles (e.g. cars), drag could override the climbing resistance . However this

is usually not the case with e-bikes, which are used at lower speeds (cf. Figure

32 and Figure 33):

 > ; >

Table 5: The model's parameters, classified by symbol and unit. To ensure user-friendly units are considered
in the early development process for an application, sometimes conventional units are listed (e.g., [inches] for
the diameter of a bicycle wheel, are used for the input values and are subsequently converted during the geo-
processing phase in Section 4.2).

Model Parameter Symbol Unit

weight a) driver

 b) e-bike

 [kg]

standard gravity [m/s2]

slope angle [degree]

rolling coefficient

temperature [celsius] resp. [kelvin]

ambient air pressure [hPa] resp. [Pa]

universal gas constant

drag coefficient

reference area [m2]

velocity levels [km/h] resp. [m/s]

factor human torque

wheel radius (resp. wheel diameter) rw [inches] resp. [m]

wheel perimeter [m]

motor efficiency

gearbox efficiency

gradeability [degree]

temperature-dependent factor

auxiliary components [W]

56 Optimizing the Operation Range of E-Bikes in Routing Systems

Figure 30: The average friction and drag for the entire study area, using parameters from Test Session A (
= 0, =123). For speeds slightly above 10 km/h, average drag becomes more significant than average friction.
The red line illustrates the transition. Note that the average value for friction in this diagram is calculated from
all street segments (including flat and steep segments). Therefore, the value is usually slightly higher than 10
km/h.

I seek to reach the same 10km/h threshold value for the entire study area by adjusting the

rolling coefficient according to the literature discussed previously. Figure 30 and Figure 31

show that the transition point, where the influence of drag overpowers the influence of fric-

tion, lies slightly above the velocity of 10 km/h (average dragresv10_N in the study

area = 2.68, average rollres_N = 3.61 for Test Session A; average dragresv10_N in

the study area = 2.71, average rollres_N = 3.73 for Test Session B).

Figure 31: The average friction and drag for the entire study area, using parameters from Test Session B (
= 0, =127). For speeds slightly above 10 km/h, average drag becomes more significant than average friction.
The red line illustrates the transition. Note that the average value for friction in this diagram is calculated from
all street segments (including flat and steep segments). Therefore, the value is usually slightly higher than 10
km/h.

57

Evaluation

Figure 32 and Figure 33 thus provides a comparison between all incorporated powers at

certain speeds, using the mean of the calculated values in the study area. While friction and

gravitation result in a linear increase, drag has an exponential curve and exceeds gravita-

tion at a certain speed. Considering that the maximum speed of electric bicycles is 25 km/h

(Test Session A) resp. 35 or 45 km/h (Test Session B; cf. Table 4 in Section 3.3), gravity is

the largest influencing factor. However, the smaller the corresponding values for the mass

 and the slope angle become, the lower the speed at which drag exceeds gravitation

becomes. BA HUNG ET AL. 2017 findings also show that the mass and the slope angle

are one of the most important parameters affecting the tractive force . Following this ex-

amination of the acting forces, the following paragraphs give a description of the applied

values given to the underlying parameters that contribute to the extent of each force.

Figure 32: The amount of power [W] to overcome by the electric bicycle, split up by the influence each force
compared at different velocities [km/h] as average values for the entire study area. Parameters taken from Test
Session A (= 0, = 123). Since gravitation is either positive or negative (depending if forward or backward
traversal is performed) the employed values constitute averages over absolute values (the mean is composed
of the mean of negative and the mean of positive values).

Gravitation [W]

Drag [W]

Friction [W]

0

50

100

150

200

250

5 10 15 20 25 [km/h]

58 Optimizing the Operation Range of E-Bikes in Routing Systems

Figure 33: The amount of power [W] to overcome by the electric bicycle, split up by the influence each force
compared at different velocities [km/h] as average values for the entire study area. Parameters taken from Test
Session B (= 0, = 127). Since gravitation is either positive or negative (depending if forward or backward
traversal is performed) the employed values constitute averages over absolute values (the mean is composed
of the mean of negative and the mean of positive values).

The parameters from Table 5 can be divided into four groups. The first group consists of

constant values for the whole test et either taken from literature or derived from physical

constants. The values taken from literature are the rolling coefficient, the drag coefficient,

the reference area, the human torque factor and the gearbox efficiency. This is followed by

the values derived from physical constants which are the standard gravity constant and the

universal gas constant. The second group of parameters are the values from producers’

specifications that vary between the test sessions. These are the weight of the bike, the

wheel diameter, the wheel perimeter, the motor efficiency, the maximal gradeabilty, the

temperature-dependent factor and the energy expenditure of auxiliary components. The

third group are the parameters that change upon each test drive, namely the weight of the

driver, the temperature and the average velocity. Aside from these statically determined

parameters, the model also requires dynamically computed parameters such as the angle

of slope and the ambient air pressure.

Friction : According to WILSON 2004 the rolling coefficient for bicycles lies in between

0.002 and 0.01 on a smooth but hard surface. The exact value can change and is dependent

on environment variables such as inflation pressure, wheel diameter, tire construction, sur-

face material or the presence of an intermediate layer between the rolling object and the

surface. The presence of heavy snowfall throughout parts of Test Sesion A is an example

of such an intermediate layer. Under similar conditions, the value of the rolling coefficient

Gravitation [W]

Drag [W]

Friction [W]

0

50

100

150

200

250

300

350

400

450

500

5 10 15 20 25 30 35 [km/h]

59

Evaluation

for electric bicycles has been found to range from 0.003 (ABAGNALE ET AL. 2015a) to 0.004

(LOMONOVA ET AL. 2002) and even as high as 0.014 (MORCHIN 1994). Having neither pro-

ducer specifications nor an opportunity to quantify the exact value through appropriate ex-

perimentation, the rolling coefficient was approximated. As a result, it exists as one of the

parameter that can be adjusted and tuned in the model. For this approximation, I took into

account the previous findings regarding the influence of friction on the rolling coefficient (as

the findings in relation to Figure 30 and Figure 31 discuss).

To calculate drag in the model, I require values for the frontal area as well as for the

drag coefficient . The drag coefficient is a dimensionless parameter that describes the

degree of resistance from an object’s surface in a fluid. The frontal area is defined by the

forward-facing surface area of the bicycle and rider that is directly exposed and opposed to

the incoming air resistance. Depending on the rider’s position (recumbent to an entirely

upright position), values found for the frontal area in literature vary significantly: 0.33 /

0.34 / 0.36 (WILSON 2004), 0.4 (MORCHIN 1994), 0.5 (LOMONOVA ET AL. 2002), 0.55 (WILSON

2004). Typical values for the drag coefficient range from 0.5 (LOMONOVA ET AL. 2002) to

0.77 (MUETZE & TAN 2007a) and from 1 (MORCHIN 1994) to 1.15 / 1.2 (WILSON 2004).

However, as the drag coefficient and frontal area dynamically influence the model, they are

unable to be quantified in a static setting. Although this is theoretically possible to derive

from wind tunnel measurements that involve all e-bike models and human subjects, this is

not practically feasible. As a substitute, approximations of = 0.55 and = 1.15 were

taken from a single test setting (upright commuting bike) in WILSON 2004. These values

represent the most compatible and standard values. These were then assumed to be con-

stant throughout all test drives (cf. Table 9 and Table 10).

The motor efficiency of the electric bicycle employed in Test Session A is about 0.8 accord-

ing to manufacturer’s specifications. However, this value was only treated as an initialization

value for the model. It was then treated as a tuning parameter, to adjust the model and the

subsequent output values throughout test drives. In contrast, the values of the parameter

for Test Session B are predefined by more detailed specifications provided by the manu-

facturer (Table 6). In terms of the gearbox efficiency , the value from ABAGNALE ET AL.

2015a is assumed to be generally valid as a benchmark. It was not possible to quantify this

value for this work.

60 Optimizing the Operation Range of E-Bikes in Routing Systems

Table 6: The motor efficiency in Test Session B for different torques and velocity levels. The allocation of values
to each velocity level (torquev_Nm) results from speed in revolutions per minute (RPM) for a specific wheel
perimeter (= 2.074). For torques greater than zero, the motor is in consumption mode, and for torques smaller
than zero, it is in generator mode.

Speed

[rpm] 50 100 150 200 250 300 350 400

[km/h]

when

0 -

9.33

9.33 -

15.55

15.55 -

21.77

21.77 -

27.99

27.99 -

34.22

34.22 -

40.44

40.44 -

46.66

46.66 -

49.77

[km/h] of

torquev_Nm

5 10 | 15 20 25 30 35 | 40 45

Torque [Nm]

below

<-37.5 0.24 0.41 0.50 0.57 0.62 0.65

<-32.5 >-37.5 0.33 0.48 0.57 0.63 0.67 0.70

<-27.5 >-32.5 0.14 0.41 0.55 0.62 0.68 0.72 0.74

<-22.5 >-27.5 0.31 0.53 0.64 0.69 0.74 0.77 0.79

<-17.5 >-22.5 0.46 0.62 0.71 0.75 0.78 0.80 0.81

<-12.5 >-17.5 0.17 0.56 0.68 0.75 0.79 0.81 0.83 0.84

<-7.5 >-12.5 0.40 0.66 0.75 0.79 0.81 0.82 0.83 0.83

<0>-7.5 0.53 0.69 0.72 0.77 0.77 0.76 0.75 0.74

>0<7.5 0.62 0.72 0.75 0.78 0.77 0.77 0.78 0.75

>7.5 <12.5 0.58 0.70 0.76 0.78 0.80 0.82 0.82

>12.5 <17.5 0.51 0.65 0.73 0.76 0.79 0.81 0.82

>17.5 <22.5 0.47 0.62 0.70 0.75 0.78 0.81 0.82

>22.5 <27.5 0.41 0.57 0.65 0.71 0.74 0.77

>27.5 <32.5 0.36 0.51 0.61 0.67 0.71 0.76

>32.5 <37.5 0.32 0.48 0.57 0.64

>37.5 0.19 0.31 0.41

Furthermore, I define a constant factor for the human torque resp. the corresponding hu-

man torque which represents the overall average per ride resp. street segment. WILSON

2004 estimated tractive power on different velocity levels and for two types of riders (re-

garding their physical strength and condition). However, I cannot use data related to ordi-

nary bicycles, as the required human power input without motor assistance is dispropor-

tionately higher and hence makes it fundamentally incomparable. For the same reason I

cannot apply quantaties from literature (300 W for an athlete and 75 W for a nonathlete

rider) from the work about electric bicycles by MORCHIN 1994, as he derives his values from

an article covering non-EVs (cf. GROSS ET AL. 1983). However, ABAGNALE ET AL. 2015a;

61

Evaluation

ABAGNALE ET AL. 2015b proposes a constant modelled torque at a desired target velocity (2

Nm), which is significantly lower than during the acceleration phase – with a torque value

of 10 Nm resp. 15 Nm for different rider models. The lack of information about a related

torque value provided by the electric motor prevents me from transforming those values into

my own model. SCHNEIDER 2009 measured the amount of pedaling power compared to

motor power for a variety of currently available electric bicycles on behalf of the Swiss Fed-

eral Office of Energy (SFOE). He undertook an investigation about the comparative power

on a certain route by measuring the subject’s power curve while riding a racing bicycle on

the same route as a reference. The range of human power in this test series is 50 W at

approximately 16 km/h, 100 W at approximately 20 km/h, 150 W at approximately 25 km/h,

and 200 W at approximately 30 km/h. These values could serve as indication for the mag-

nitude of potential human torque resp. human power values.

Based on the researched values, I aim to derive an original approach for deteriming the

human power as a constant factor according to the resistance forces as shown in Section

4.1 (4). Table 7 shows the calculated average values with adapted parameters, which follow

the assumption of a potential human force. Without further and more accurate evaluation,

it remains an approximate value.

Table 7: The average motor power [W] and human power [W] for the study area at varying speeds for Test
Session A and B. I adjusted the human torque factor on 0.1 for the entire Test Series according to the meas-
urements. Therefore, the values may differ from those found in literature.

Test Session Velocity [km/h]

()

Motor Power [W]

(at a certain)

Human Power [W]

(at a certain)

A 15 220 24

 20 330 37

 25 477 53

B 15 223 25

 20 271 30

 25 317 35

 30 418 46

 35 547 61

Finally, I need to define the temperature-dependent factor . The data is provided by the

manufacturer of the battery used in Test Session A and the same specification was as-

sumed in Test Session B as the manufacturer did not provide the relevant details. As shown

in Table 8, electric charge decreases with decreasing temperatures. As it is possible to

assume that energy demand is inversely proportional to the available electric charge (cf.

Section 2.1), energy demand is, by extension, also inversely proportional to temperature.

62 Optimizing the Operation Range of E-Bikes in Routing Systems

Table 8: Available electric charge of the battery used in Test Session A at different temperatures . I as-
sumed that less available electric charge results in a higher energy demand (inversely proportional). The linear
decrease is 0.0047 per degree celsius. The data was provided by the manufacturer.

Temperature [celsius] Electric Charge [Ah] Available Electric Charge [%]

25 10.319 100

24 10.2706 99.530962

23 10.2222 99.061925

22 10.1738 98.592887

21 10.1254 98.123849

20 10.077 97.654812

19 10.0286 97.185774

18 9.9802 96.716736

17 9.9318 96.247698

16 9.8834 95.778661

15 9.835 95.309623

14 9.7866 94.840585

13 9.7382 94.371548

12 9.6898 93.90251

11 9.6414 93.433472

10 9.593 92.964435

9 9.5446 92.495397

8 9.4962 92.026359

7 9.4478 91.557321

6 9.3994 91.088284

5 9.351 90.619246

4 9.3026 90.150208

3 9.2542 89.681171

2 9.2058 89.212133

1 9.1574 88.743095

0 9.109 88.274058

-1 9.0606 87.80502

-2 9.0122 87.335982

-3 8.9638 86.866944

-4 8.9154 86.397907

-5 8.867 85.928869

-6 8.8186 85.459831

-7 8.7702 84.990794

-8 8.7218 84.521756

-9 8.6734 84.052718

-10 8.625 83.583681

… … …

63

Evaluation

For simplification purposes, I am neglecting a few influence quantities such as the headwind

 which has an impact on energy consumption (LI ET AL. 2016) but can only be incorpo-

rated in a real-time application (cf. Section 8.2).

64 Optimizing the Operation Range of E-Bikes in Routing Systems

 Test Set

To verify the calculated values and tune the model, I ran repeated test drives on three routes.

I obtained those routes by performing a route request between selected origin and target

locations using the applications developed in the previous chapter. Figure 35 shows the

energy demand of each street segment and how this route deviates from a common short-

est route request which uses distance as edge costs. Those routes represent ordinary com-

muter distances, which are usually rather short compared to commutes via other vehicles

such as car or train. The set of routes consist of either uphill stretches: Bülachhof (height

source_el: 473 meters a.s.l.) to ETH Hönggerberg (height source_el: 525 meters a.s.l.) and

ETH Center (height source_el: 450 meters a.s.l.) to Bülachhof. In contrast, the route from

ETH Hönggerberg to ETH Center consists mainly of downhill segments. I tested the energy

demand of two different e-bike models on these routes. In Test Session A, an engine without

recuperation ability was used (EGO Movement White Knight). The model employed in Test

Session B had a recuperation mechanism (Stromer ST 2) (cf. Section 3.3).

The tests are carried out with the adapted input parameters, which take into consideration

the temperature during a test ride and the combined weight of the subject and the electric

bicycle. The measurement for the average velocity could be taken from either the

smartphone applications or the internal torque sensor displayed for each trip shown in Fig-

ure 38 in Section 6.2.1. However, the first few test rides revealed the so-called “average

speed while moving” by Geo Tracker provided the best results (cf. Figure 38 in Section

6.2.1). As a result of this finding, I match this value with the modelled target velocity of the

compiled route rather than calculating the mean from the mentioned set of measurements

(the values measured by the smartphone applications and by the internal torque sensor).

Several other parameters that I do not measure were assumed from literature or producers’

specifications, as explained in Section 6.1. The tire pressure was held constantly at 2.6 bar.

I use the highest power assistance level to exploit full potential of the electric motor in these

tests. However, further investigation that integrates different assistance levels into the

model remains possible (cf. Section 8.2). Additionally, a GNSS-Tracking performed by the

smartphone applications store the driven trajectory (Figure 34). A comparison with the rout-

ing request ascertains the correct route was taken by the rider.

65

Evaluation

Figure 34: GPX-Records of the the test tracks.

Figure 35: Energy consumption per street segment on the test tracks. The Map shows all routes with the mod-
elled energy consumption per street segment (where the parameters to create the route are taken from Test
Session A). A comparison between least energy consuming and shortest route (length_m as edge costs) reveals
very few detours for the chosen test set.

66 Optimizing the Operation Range of E-Bikes in Routing Systems

6.2.1. Test Session A

Figure 36: The Electric Bicycle employed in Test Session A.

To reflect the majority of electric bicycles currently available, I employed a bike without

recuperation mechanism for the first series of tests (Figure 36). For each test drive, the

route and average speed were tracked and matched with modelled values afterwards.

Through a retrospective approach, I determined energy consumption during recharge mode

using an energy cost meter at the respective target location. Naturally, I started always at a

full SOC. This procedure is illustrated by plugs in Figure 35 in Section 6.2.

67

Evaluation

Figure 37: The pgRoutingLayer QGIS-Plugin. Each shortest path algorithm requires input parameters including
an edge table, geometry, id, target, source, cost and reverse cost. Source and target ID’s serve as arguments
for each routing request. The application returns a graph with aggregated costs (i.e., for the three test tracks
shown here). Upon request, the original coordinate system 4326 must be set and the full extent of the desired
route must fit into the currently shown display (inside a specified bounding box).

The plugin pgRoutingLayer in QGIS enables me to retrieve routes quickly and adjust pa-

rameters accordingly. It allows even faster adaptions than the developed Bellman-Ford-

Application. This explains why it was hence used for the initial Test Session A where par-

ticular parameters required tuning through a great number of iterative recalculations of the

model. Using data recorded during the test drives, I tuned the motor efficiency and the

human torque factor which both influence the edge costs declared in Section 4.2, to in-

crease the model’s fit. Through iterative processing of the model with altered inputs, I could

minimize the deviation between measured and modelled values. Figure 37 shows an ex-

emplary routing request.

68 Optimizing the Operation Range of E-Bikes in Routing Systems

Figure 38: A screenshot from “Geo Tracker”, one of the smartphone applications available (first picture). It
displays the average velocity of the trip. The second picture shows the average velocity measured by the in-
ternal torque sensor on the display of the e-bike itself. The third picture shows separate energy cost meter.
The display plots i.a. the measured amount of energy during recharge [kWh]. Since I started each Test Drive
with a fully charged battery, the measured value in recharge mode at the respective target location corre-
sponds to the energy consumption of the driven route.

69

Evaluation

Table 9: Model Parameters for the model White Knight from EGO Movement.

Model Parameter [unit] Value Reference

weight driver [kg]

 e-bike [kg]

Table 12

23

producers’ specs

standard gravity [m/s2] 9.806

slope angle [degree] model-dependent

rolling coefficient 0.003 WILSON 2004; adjusted empirically

temperature [celsius] Table 12

ambient air pressure

[hPa]

model-dependent International height formula

universal gas constant 287.058

drag coefficient 0.55 WILSON 2004

reference area [m2] 1.15 WILSON 2004

velocity levels [km/h] 5, 10, 15, 20, 25

(Table 12)

model iteration

factor human torque 0.1 empirical approximation

wheel diameter (resp.

wheel radius rw) [inches]

28 producers’ specs

motor efficiency 0.45 producers’ specs; adjusted empirically

gearbox efficiency 0.98 ABAGNALE ET AL. 2015a

gradeability [degree] 15 producers’ specs; adjusted empirically

temperature-dependent

factor

0.0047 Producers’ specs; empirical approximation

auxiliary components

[W]

1.08 producers’ specs (display only)

70 Optimizing the Operation Range of E-Bikes in Routing Systems

6.2.2. Test Session B

Figure 39: The Electric Bicycle employed in Test Session B.

The bicycle employed in Test Session B (Figure 39) differs from the one in Test Session A

with regards to three characteristics. Firstly, it has an integrated recuperation mechanism,

so the motor is capable of generating power instead of just consuming it. Secondly, the bike

can accelerate to velocities up to 45 km/h (which is curbed to 35 km/h for our Tests; cf.

Table 4 in Section 3.3). Thirdly, the battery was not fully loaded at the beginning of the trip

since recuperation is not possible at a full SOC.

The motor efficiency determined for this test session is shown in Section 4.2.6 and 6.1.

Even though one could easily improve the model by tuning factors such as human torque,

I refrained from doing so in order to compare this untuned test session to the tuned Test

Session A in Chapter 7. The deviations between the two tests allow me to illustrate the

nessecity of tuning the model.

Initially I aimed to employ a consistent method for the entire test set, however this was not

possible. After the first trial test drives, I recognized irregularities in the output values from

the outlined procedure (retrospective determination of energy consumption in the recharge

71

Evaluation

mode with an energy meter). This was most probably caused by an incompatible charging

transformer and battery. However, even if the transformer and battery were compatible, a

consistent procedure would not be possible due to fundamental differences in the e-bike

models used in each test session. As mentioned previously, an engine without recuperation

cannot recover energy when starting at a full SOC (which was the starting state for the

batteries used in the test drives). In consequence, the entire remaining test session uses

an alternative method to plot energy consumption. This method allows the e-bike model’s

continuous measurements of the aggregated total energy expenditure to be easily read

(Figure 40). Despite having such a simple measurement procedure, there are restrictions

for this bike model as well. The displayed value only changes every time the SOC dimin-

ishes by one percent, i.e. at the interval of approximately 8.14 Wh (7 Wh throughout meas-

urements) out of 814 Wh SOC when fully charged. As a result, inaccuracies cannot be ruled

out – especially on short routes.

Figure 40: The display of the second e-bike model shows data logging of the electric bicycle such as the ongoing
aggregation of total energy expenditure. Note the difference between total consumption at the beginning (4701
Wh) and the end (4751 Wh) of each trip – resulting in an energy expenditure of 50 Wh for this trip.

As highlighted in the subsequent chapter 7, I aim to compare measured values with mod-

elled predictions. As the aim of the test drives is to improve the accuracy of the energy

consumption prediction, the same predefined route had to be used for each test drive in

72 Optimizing the Operation Range of E-Bikes in Routing Systems

order to be comparable across test sessions. However different cost values (for parameters

such as recuperation and velocity) may be calculated by the application. At times, this is

caused by altered parameters but this is not necessarily the case either. The effect of these

altered cost values is that in some cases, the compiled route outputted by the application

after the initial routing request and may result in a route that deviates from the predefined

route. I calculate the energy consumption for the test routes by splitting up the request into

multiple parts and adding them together.

Table 10: Model Parameters for the model ST2 from Stromer.

Model Parameter [unit] Value Reference

weight driver [kg]

 e-bike [kg]

Table 12

27

producers’ specs

standard gravity [m/s2] 9.806

slope angle [degree] model-dependent

rolling coefficient 0.003 WILSON 2004; adjusted empirically

temperature [celsius] Table 12

ambient air pressure

[hPa]

model-dependent International height formula

universal gas constant 287.058

drag coefficient 0.55 WILSON 2004

reference area [m2] 1.15 WILSON 2004

velocity levels [km/h] 5, 10, 15, 20, 25,

30, 35 (Table 12)

model iteration

factor human torque 0.1 empirical approximation

wheel diameter (resp.

wheel radius rw) [inches]

26 producers’ specs

wheel perimeter [m] 2.074 producers’ specs

motor efficiency model-dependent producers’ specs

gearbox efficiency 0.98 ABAGNALE ET AL. 2015a

gradeability [degree] 15 producers’ specs; adjusted empirically

temperature-dependent

factor

0.0047 producers’ specs; empirical approximation

auxiliary components

[W]

8.37 producers’ specs (headlight: 4.2; backlight:

0.15; daytime running lights: 2, display: 1.02;

controller: 1)

73

Evaluation

74 Optimizing the Operation Range of E-Bikes in Routing Systems

7. Results

This chapter presents the results of the conducted test set. I will begin by examining the

precision of the measured values from the repeated test drives. Following this discussion, I

will compare the measured values to the predicted values outputted by the model to ascer-

tain the accuracy of the results. Table 12 presents this comparison between the data pre-

dicted and observed, for both Test Sessions. The round trips presented in Table 11 serve

as control measurements only.

The comparison between similar measurements from different test rides (i.e., regarding

weight, velocity and temperature) reveals that the measurement results are intrinsically con-

sistent with minor deviations (cf. Table 12). However, several results expose a bias, espe-

cially for Test Session B. For example, in the third test ride from ETH Center to Bülachhof

in Test Session B, the journey had an average velocity that was higher than previous rides.

This means that it should have had a higher energy consumption than previous rides too.

Surprisingly, the observed energy consumption was in fact, less than half as high. Other

examples are the last two test rides from Bülachhof to ETH Center in Test Session B, or

the last two test rides from ETH Hönggerberg to ETH Center in Test Session A, where

similar biased observations were made.

Inaccuraricies might occur because of the chosen measurement methods (cf. Section 6.2).

The actual power consumption during discharge and the read power consumption during

charge in Test Session A might not be entirely congruent. Under some circumstances, this

is caused by neglecting the interaction between amperage (i.e., constant current) and volt-

age (which depends on the respective SOC of the Battery). Human error is also likely to

have affected the recorded results. With the bike model used in this test session, a recording

could only be taken at the exact time point when recharging was complete. A delay could

cause the result to be affected by trickle charging, which could result in an overestimated

energy consumption reading. While the method chosen for Test Session B is a live meas-

urement taken during discharge, inaccuracies may still arise from the fact that total energy

consumption is only displayed in intervals (as explained in Section 6.2.2). If nothing else,

the approximation of the velocity might lead to an over- or underestimation of the actual

energy consumption (e.g., a measured average velocity of 17.51 km/h is assigned to 20

km/h i.e. v20_rec_Wh for example, while the actual energy consumption in this case lies in

between the value of v15_rec_Wh and v20_rec_Wh).

75

Results

Due to the minor quantity of measurements, I abstain from quantifying this phenomenon

statistically. Moreover, the multivariate character of the test set (different input parameters

for each test drive) would aggravate this attempt. Increased accuracy and precision would

be an important requirement for further refinements of the model and could be achieved

through a larger test set or even a different and/or more accurate measurement method.

Table 11: Control Measurements Table. The energy consumption is recorded as a total for the three test routes.
The overall length might seem to be slightly longer but this is simply due to the gap between two routes at ETH
Hönggerberg where the bike was walked from the end point of one route to the start of the next. The gpx-records
does not include this gap (cf. Figure 34 in Section 6.2). Note that the energy consumption is lower when there
is a subject with a lower weight.

Origin - Target Test

Session

Weight

Driver

[kg]

Temperature

[Celsius]

Ø Velocity

[km/h]

Energy Consumption

[Wh]

Measured Modelled

Bülachhof A 100 -1 20 170 176

ETH Hönggerberg 55 0 20 111 135

- ETH Center - B 100 13 20 149 96

Bülachhof 55 20 20 56 71

76 Optimizing the Operation Range of E-Bikes in Routing Systems

Table 12: The entire test set containing measured values from Test Session A and B (cf. Appendix for detailed
listing of each test drive). Certain parameters are dynamic parameters that change with test drive performed.
They include the modelled value, weight of the driver, temperature and velocity are dynamic parameters chang-
ing at each test drive performed. Others remain constant throughout a Test Session (cf. Table 9 and Table 10).

Origin - Target Test

Session

Weight

Driver

[kg]

Temperature

[Celsius]

Ø Velocity

[km/h]

Energy Consumption

[Wh]

Measured Modelled

Bülachhof - A 100 3 15 71 74

ETH Hönggerberg

3 20 85 86

3 20 85 86

0 20 89 87

-4 20 83 89

 B 5 25 85 65

 10 20 64 57

 13 20 50 56

 7 25 70 64

 7 25 63 64

ETH Hönggerberg A 100 3 20 49 47

-

3 20 48 47

ETH Center

3 20 54 47

-4 20 53 48

-4 25 42 60

 B 10 20 42 17

 5 30 35 34

 10 30 35 32

 10 25 35 23

 10 25 35 23

ETH Center - A 100 3 20 40 40

Bülachhof

3 20 41 40

0 20 42 41

-4 25 52 50

-4 20 38 42

 B 10 20 35 25

 10 20 28 25

 10 25 14 28

 3 30 42 35

 10 30 28 34

77

Results

Out of five repeated test drives for each of the three routes, the average deviation between

measured and modelled values is around 7 % for Test Session A and 25 % for Test Session

B (i.e., higher or lower than measured). Hence, the overall deviation for the entire test set

lies at around 16 %.

Besides the mentioned measurement inaccuracies, these deviations can also partly be ex-

plained by the omission of acceleration/deceleration resistance. A possible implementation

is discussed in Section 8.2. Moreover, despite more accurate motor efficiency values used

in Test Session B, the deviation between modelled and measured values is distinctly higher.

As Test Session B was not tuned, this points out the importance of fine tuning the defined

tuning parameters in the given model. In this context, the human torque factor assumed in

the model might differ from the true value. As long as human torque is not measured directly

in real-time (which is not feasible in this work), the actual influence of it remains an approx-

imation. Finally, the implementation of a compensation factor that takes into account the

capacity loss due to higher energy consumption in low temperatures could not be examined

empirically in this work because of similar temperatures throughout the Test Sessions.

For initial evidence of the model’s accuracy and precision, I adduce test results conducted

by EMPA (with same bike from Test Session B) in the course of the program “commercial

usage of EV in companies” (GAUCH 2017).

The measured energy consumption of 1120 Wh per 100 kilometers by EMPA covers the

projected measured energy consumption of 1062 Wh per 100 kilometers resp. 983 Wh per

100 kilometers for the modelled values7 in this thesis. This comparison provides only a first

step towards validating the model since parameters such as the average velocity or the

topography might differ between the test set carried out by EMPA and the one presented in

this thesis.

7 Average of the five test drives per route in Test Session B (calculation x[Wh]*100[km]/y[km], where
x is the mean energy consumption for a route (cf. Table 12) and y is the length or the route):
 Measured Wh/100km: Modelled Wh/100km:
Bülachhof – ETH Hönggerberg: 66*100/4.5= 1467 61*100/4.5= 1356
ETH Hönggerberg – ETH Center: 36*100/5= 720 26*100/5= 520
ETH Center – Bülachhof: 27*100/2.7= 1000 29*100/2.7= 1074
Total Average: 1062 983

78 Optimizing the Operation Range of E-Bikes in Routing Systems

Figure 41: The diagram compares measured and modelled energy consumption [Wh] from Test Session A
(without recuperation) (cf. Table 12).

It is also important to consider the effect of recuperation on energy consumption. As men-

tioned in Section 6.2, the track from ETH Hönggerberg to ETH Center has the most downhill

segments, with a total descent of 75 meters in altitude. This makes it the most appropriate

route to establish the difference between a ride with recuperation and without recuperation.

In comparing Test Session A where recuperation is absent and Test Session B and where

it is present (cf. Figure 41 and Figure 42 respectively), it becomes clear that both the mod-

elled values and the actual energy consumption (measured values) are significantly lower

with recuperation.

Figure 42: The diagram compares measured and modelled energy consumption [Wh] from Test Session B
(with recuperation) (cf. Table 12).

79

Results

80 Optimizing the Operation Range of E-Bikes in Routing Systems

8. Discussion

In Section 8.1 of this final chapter, I will review all proposed research questions and provide

a conclusion to the conducted work in Section 8.2. This will be followed by an outlook on

what further research could be accomplished. Also, this final Section considers optimiza-

tions and refinements of the model, outlines the feasibility of automation and discusses

possible further development of end-user applications.

 Findings

All initially stated research questions were fully investigated. A new energy model devel-

oped from a variety of existing ones was successfully implemented into a programmatic

approach in Chapter 4. Additionally, I could also determine all parameters that this model

required from either existing sources or from empirical data gathered, was able to success-

fully feed data into the framework and discuss the related peculiarities of electric bicycles,

as shown in Section 6.1 (i). After initial exploratory analysis using an existing routing devel-

opment tool for e-bikes without recuperation in Chapter 5 (ii), it was determined that the

process was feasible and that the calculated edge weights could be used. This allowed me

to further the investigation and construct an independent routing approach capable of pro-

cessing negative edge weights. Finally, Chapter 6, 7 and 8 analyses the advantages of my

approach in detail (iii). I could develop an extension to common routing models, that allows

energy efficiency to be taken into account alongside existing routing algorithms that assess

minimum distance and time. Furthermore, the consideration of energy cost allows for im-

proved reachability.

 Conclusion, Application Areas and Outlook

I have presented a static e-bike model which includes an automated processing pipeline for

route graph building and a host application. After the application completes a necessary

evaluation phase to validate and optimize the model for a given type of electric bicycle, it

can be used for route planning, navigation systems, reachability analyses, or even urban

planning. An example for urban planning would be to use the framework as criteria for the

designation of new bicycle routes, as one might be willing to ride a slightly longer route to

avoid steep hills, regardless of whether you are riding an e-bike or an ordinary bicycle (cf.

STORANDT 2012; as shown in my thesis, slope has, at a certain point, the biggest influence

on the calculation of edge weight in the presented model). Moreover, it is possible to deter-

mine locations for new e-bike stations in station-based bike sharing system or to ensure

81

Discussion

optimal allocation of e-bikes in free-floating bike sharing systems. In particular, applications

where fast querying on a personalized graph is necessary benefit from the approach.

For further research, it will be necessary to determine parameters more accurately and

evaluate the model’s overall applicability. The modeling of human power input and temper-

ature influence in particular, will need further empirical validation. Objectives for additional

research are automation, optimization, and refinement of the model. Refinement could be

achieved through the inclusion of traffic (e.g., through OPENTRAFFIC 2016) and street type

data, parameters which determine acceleration/deceleration phases (e.g., traffic lights or

pedaling frequency and strength), a more detailed SOC model or a more detailed imple-

mentation of weather conditions. Additionally, it could be improved by incorporating any or

all of these elements in a live navigation application. Possible implementations are dis-

cussed in this Section.

A significant refinement of the model would be to implement the omitted acceleration re-

sistance through inclusion of narrow curves and intersections. Intersections have a partic-

ularly substantial impact as one might assume that an electric bicycle stops at 50 % of all

intersections tagged as having traffic lights through OSM classes. This would almost cer-

tainly increase the overall accuracy. Simultanously, it increases the accuracy of parameters

that aim to compensate this effect so far and would result i.a. in a higher factor for the

human power input.

Another important refinement is improving the determination method for the human power

input. This generally needs to be evaluated in greater detail using suitable methods. One

such example of an improvement would be a test ride could be conducted with motor as-

sistance switched off. Measuring the power provided by the driver, the value could be com-

pared to the result when motor assistance is switched on (while all other parameters remain

constant). Repeating this procedure, the accuracy of the huan torque factor could be in-

creased by adjusting it. Moreover, the effect of power assistance levels could be incorpo-

rated. For example, as the bike employed in Test Session A has five power assistance

levels, the motor power would be reduced (20 % of the calculated value for the first power

assistance level, 40 % for the second, etc.) and the factor for human power input increased

accordingly. Undoubtedly, further evaluation of the extent of the influence of these param-

eters would further improve the model.

Due to the static nature of the model, the behavior of the rider (in particular in terms of their

interaction with the bicycle) is not taken into consideration during processing. This can result

82 Optimizing the Operation Range of E-Bikes in Routing Systems

in inaccuracies in the model that are impossible to rectify. When driving downhill, one might

not use the recuperation mechanism as extensively as modelled (a common example of

this is when riders decide not to brake and thus exceed the modelled target velocity). On

uphill segments on the contrary, the rider will not generally be able to maintain the modelled

target velocity (this is further explained in the next paragraph). HOCH 2015, for example,

proposes a theoretical black-box driver model that takes historic data into account and

hence attempts to make the driver’s behavior predictable. Together with a white-box EV

model (comparable with Section 4.1), it results in a so-called “grey-box” EV consumption

model that facilitates better prediction of the potential energy expenditure.

Maximum rated output of the electric bicycles (cf. Table 4 in Section 3.3) is not included as

a paramter in the proposed model due to the static nature of the model. However, an im-

plementation could be achieved by restricting the maximum rated output the engine is ca-

pable of delivering. Assuming there is a steep slope segment that requires 1000 W of power

to propel the bicycle forward and that a rated power of 360 W can be provided by the electric

motor, the remaining 640 W must therefore be supplied by the rider. However, this is simply

not plausible. This discrepancy results from an inaccuracy in the underlying model. Primarily

that by using a static velocity for the whole route graph disregards the fact that the speed

of an electric bicycle mostly diminishes on higher slopes. An applicable approach would be

to reduce the static velocity at a certain slope gradient. Switching automatically into a lower

velocity level class (e.g., v20_rec_Wh into v15_rec_Wh) would ultimately result in a lower

modelled value for the power required. To ensure the validity of this procedure, additional

empirical validation would be needed.

83

Discussion

Figure 43: The histogram shows the distribution of the values for the percentage slope gradient in the study
area.

Figure 44: The histogram shows the distribution of the values for slope angle in degree in the study area.

The histograms in Figure 43 and Figure 44 show the distribution of the values for the slope

angle in percent and degrees, respectively. In contrast, the scatterplot in Figure 45 com-

pares the slope angle in degrees with the length of every street segment in the study area.

Most of the segments are comparatively short with an overall mean in the dataset of 53

meters and a median 34 meters. The slope angle is within the 15 degrees of the given

maximal gradeability of this test set (which is approximately 99% of all values). However, it

reveals several outliers beyond the specified gradeability, particularly on short street seg-

ments. Causes might be at least partly interpolation inaccuracies during extraction process

84 Optimizing the Operation Range of E-Bikes in Routing Systems

of altitude values, as there exist no street segments with a slope angle of 60 degrees (cf.

Section 4.2.4 and 6.1). An average of the height that was used for the calculated slope

angle of long street segments is not an accurate representation of the true height (which

may fluctuate). For further research, street segments could be divided into equidistant

blocks, e.g., 10 meters (cf. NEAIMEH ET AL 2013). That way, I can avoid inaccurate predic-

tions of energy consumptions which are caused by long segments with fluctuating elevation.

Figure 45: The scatterplot compares the slope angle in degree and the length of every street segment in the
study area.

As far as gradeability is concerned, one could restrict slope over a certain predefined thresh-

old value in order to not exclude street segments which are actually viable, as realized in

the current approach in Section 4.2.7 (e.g., through legal construction restraints). Further-

more, instead of only integrating a maximum gradeability, maximum torque of the electric

motor could be incorporated as well.

Also, the configuration file for bicycles has no usability in the model yet. For example, the

existing classification of street classes is used to their practicability for bicycles (tagged

through priority). The usage of the configuration file for bicycles would create no additional

value at this stage of the work. However, one could classify street classes according to the

friction of eletric bicycles on their surface. The accurate rolling coefficient could be accessed

at any given moment. Naturally, the definition of rolling coefficients would need further em-

pirical inquiry beforehand. Furthermore, classifications contained in the configuration file

such as cycleway:right or cycleway:left could be employed in one way regulations to obtain

a more reasonable routing. This would aid the creation of a ready-to-use application for

end-users.

Further suggestions for wider automation and refinement of the model could include the

automatic retrieval of the DEM, e.g., through ArcREST (Representational State Transfer).

85

Discussion

However, the accuracy of energy consumption prediction could diminish if a DEM with less

resolution is choosen (cf. Section 3.1).

In this process of model refinement, the data pipeline from ArcGIS Model Builder could be

transformed into a pure python script using the ArcPy modul (cf. Programming Code ArcGIS

Model Builder in Appendix). This could improve processing time, but unfortunately compli-

cates the development process. ArcGIS Model Builder simplified the development process

in terms of allowing the developer to see an overview of the building and implementation

process, as well as the tuning of particular parameters.

Finally, a variety of improvements for the application itself are conceivable in order to truly

achieve a ready-to-use application. One such possible improvement is the coloring of the

path in terms of energy consumption upon each routing request (cf. analog version in Figure

35 in Section 6.2). Another improvement would be to speed up the application through the

techniques summarized in Section 2.1. For example, BAST ET AL. 2015 points out that the

work of FUNKE & STORANDT 2013 is a significant improvement of CH. The related work of

STORANDT 2012 on routing for bicycles could serve as a leverage point to improve applica-

tions for e-bikes without recuperation. Adding automated data pipelines to the static ap-

proach allows a library to be established which stores graphs on different parameter levels

in parallel for specific regions. This could be incorporated into an automated service, such

as a WFS. Therefore, the user is able to access an arbitrary region with his own input pa-

rameters. A requirement for the applicability for end-user applications is that the nessecary

input parameters are supplied automatically. Weight and temperature could be determined

by a model iteration as well (using levels/intervals as shown for velocity in this work). The

application could access these parameters automatically. Using a calculated velocity (either

through the current GNSS-Location or through the internal torque sensor from a vehicle via

data logging8), an automatic alignment of the modelled and measured average velocity (per

trip) is feasible. With regards to weather conditions, the application could extract tempera-

ture (using a weather API and/or an integrated thermometer) and also current precipitation

(e.g., heavy snowfalls during Test Session A), which may affect the rolling coefficient differ-

ently on different road surfaces. In a similar manner, headwind (cf. Section 4.1, Equation

8 Data Logging means the record of data over time with additional measurement methods (internal or
external) with a specific device, a data logger. A current example for a far-reaching data logging (as an
interface together with the transmission of data using mobile communication) for an electric bicycle is
Stromer OMNI, which has an own API. Smide provided the related bicycle, but it was not possible to
apply the API for my purposes, e.g., to extend the prototypical application with additional functionality
(Stromer desisted from sharing it with additional third-party users at the current stage).

86 Optimizing the Operation Range of E-Bikes in Routing Systems

(3)) could be taken into account through matching of respective azimuth (by use of gyro-

scope, GNSS) with the prevailing wind direction and speed (by use of sensors and/or a

weather API). The automatic retrieval of weight via an on-board weighing device in the sad-

dle or seat, value transmitted through a data logger would also be a conceivable improve-

ment. Further on, data logging of the current SOC allows for continued alignment with the

computed energy consumption.

Since time is of the utmost importance to most people when it comes to finding a route from

A to B, it is likely one may choose the shortest or fastest route instead of the least energy

consuming path (as such a path might require slightly more time). Take this into consider-

ation, the eventual goal is to develop an application for real-time navigation systems which

is able to switch between shortest route and energy-saving mode. Consequently, a previ-

ously assumed inaccessible target at a certain low SOC could still be reached. As a result,

this research extends the potential of e-bike routing.

The thesis’ results were reviewed and accepted as conference short paper “Energy-based

Routing and Cruising Range Estimation for Electric Bicycles” at the AGILE 2017 (HAUMANN

ET AL. 2017), which was elected best short paper. Moreover, the thesis was honored with

the ESRI Young Scholar Award 2017, Switzerland.

87

Discussion

88 Optimizing the Operation Range of E-Bikes in Routing Systems

9. References

ABAGNALE, C. ET AL., 2015a. A dynamic model for the performance and environmental
analysis of an innovative e-bike. Energy Procedia, 81, pp.618–627.

ABAGNALE, C. ET AL., 2015b. Model-based control for an innovative power-assisted bicycle.
Energy Procedia, 81, pp.606–617.

ARTMEIER, A. ET AL., 2010. The optimal routing problem in the context of battery-powered
electric vehicles. Workshop: CROCS, pp.1–13.

BA HUNG, N., JAEWON, S. & LIM, O., 2017. A study of the effects of input parameters on the
dynamics and required power of an electric bicycle. Applied Energy.

BAST, H. ET AL., 2015. Route Planning in Transportation Networks. Microsoft Research
Technical Report, pp.1–65.

BELLMAN, R., 1958. On a Routing Problem. Quarterly of Applied Mathematics, 16, pp.87–
90.

BOSCH, https://www.bosch-ebike.com/ch-de/service/reichweiten-assistent/.
Date accessed: 11.04.2017.

BOSCH, 2016. https://www.bosch-ebike.com/de/news-und-storys/news/more/details/was-
ist-die-premiumfunktion-topo-reichweite-636/show/.
Date accessed: 11.04.2017.

BUCKLEY, A., 2008. https://blogs.esri.com/esri/arcgis/2008/06/12/expressing-slope/. ESRI.
Date accessed: 11.04.2017.

CARDONE, M., STRANO, S. & TERZO, M., 2015. Optimal power-assistance system for a new
pedelec model. Proceedings of the Institution of Mechanical Engineers, Part C: Journal
of Mechanical Engineering Science, pp.1–14.

CARVELO2GO, 2017. https://www.carvelo2go.ch/de/. Date accessed: 11.04.2017.

CITY OF ZURICH, 2017. https://data.stadt-zuerich.ch/dataset/veloweg.
Date accessed: 11.04.2017.

DELLING, D. ET AL., 2009. Engineering and Augmenting Route Planning Algorithms. LNCS,
2, p.161.

DIJKSTRA, E.W., 1959. A Note on Two Probles in Connexion with Graphs. Numerische
Mathematik, pp.269–271.

DU, W., ZHANG, D. & ZHAO, X., 2009. Research on battery to ride comfort of electric bicycle
based on multi-body dynamics theory. Proceedings of the 2009 IEEE International
Conference on Automation and Logistics, ICAL 2009, pp.1722–1726.

ERICSSON, E., LARSSON, H. & BRUNDELL-FREIJ, K., 2006. Optimizing route choice for lowest
fuel consumption - Potential effects of a new driver support tool. Transportation
Research Part C: Emerging Technologies, 14, pp.369–383.

ESRI, 2016a. https://desktop.arcgis.com/de/system-requirements/latest/database-
requirements-postgresql.htm. Date accessed: 11.04.2017.

89

References

ESRI, 2016b. https://desktop.arcgis.com/en/arcmap/10.4/extensions/network-
analyst/algorithms-used-by-network-analyst.htm. Date accessed: 11.04.2017.

FAIRLEY, P., 2005. China’s cyclists take charge: electric bicycles are selling by the millions
despite efforts to ban them. IEEE Spectrum, 42, pp.54–59.

FEDERAL STATISTICAL OFFICE (FSO), 2017.
https://www.bfs.admin.ch/bfs/de/home/statistiken/mobilitaet-
verkehr/verkehrsinfrastruktur-fahrzeuge/fahrzeuge/strassenfahrzeuge-bestand-
motorisierungsgrad.html. Date accessed: 11.04.2017.

FUNKE, S. & STORANDT, S., 2013. Polynomial-time Construction of Contraction Hierarchies
for Multi-criteria Objectives. Alenex 2013, pp.41–54. Available at:
http://dx.doi.org/10.1137/1.9781611972931.4.

GALLO, G. & PALLOTTINO, S., 1982. A new algorithm to find the shortest paths between all
pairs of nodes. Discrete Applied Mathematics, pp.23–35.

GAUCH, M., 2017. E-Mail Communication 20.02.2017.
(cf. E-Mail EMPA (Marcel Gauch) in Appendix)

GEISBERGER, R. ET AL., 2008. Contraction Hierachies: Faster and Simpler Hierachical
Routing in Road Networks. Proceedings of the 7th Workshop on Experimental
Algorithms (WEA 2008), 2, pp.319–333.

GROSS, A.C., KYLE, C.R. & MALEWICKI, D.J., 1983. The aerodynamics of human powered
land vehicles. Scientific American, 249, pp.142–152.

HART, P.E., NILSSON, N.J. & RAPHAEL, B., 1968. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2), pp.100–107.

HAUMANN, S.T., BUCHER, D. & JONIETZ, D., 2017. Energy-based Routing and Cruising
Range Estimation for Electric Bicycles. In A. Bregt et al., eds. Societal Geo-Innovation :
short papers, posters and poster abstracts of the 20th AGILE Conference on
Geographic Information Science. Wageningen University & Research 9-12 May 2017,
Wageningen, the Netherlands.

HOCH, N., 2015. Customer-Centric Travel Planning for Electric Vehicles. ETH Zürich.

KARIMI, G. & LI, X., 2013. Thermal management of lithium-ion batteries for electric vehicles.
International Journal of Energy Research, 37(1), pp.13–24.

KARRAIS, N., 2014. Modellierung der verbrauchsbasierten Erreichbarkeit mit GIS. In
Angewandte Geoinformatik 2014. Beiträge zum 26. AGIT-Symposium Salzburg.
Herbert Wichmann Verlag, VDE VERLAG GMBH, Berlin/Offenbach, pp. 56–67.

KASTL, D. & VERGARA, V., 2016. http://workshop.pgrouting.org/2.1.0-dev/en/index.html.
Date accessed: 11.04.2017.

LI, W. ET AL., 2016. Determining the Main Factors Influencing the Energy Consumption of
Electric Vehicles in the Usage Phase. Procedia CIRP, 48, pp.352–357.

LOMONOVA, E.A. ET AL., 2002. Development of an improved electrically assisted bicycle.
IEEE Industry Applications Conference, 2002. 37th IAS Annual Meeting, pp.384–389.

90 Optimizing the Operation Range of E-Bikes in Routing Systems

MAPBOX, https://www.mapbox.com/industries/transportation/. Date accessed: 11.04.2017.

MCLOUGHLIN, I.V. ET AL., 2012. Campus Mobility for the Future: The Electric Bicycle. Journal
of Transportation Technologies, 2(1), pp.1–12.

MORBIH’EN VÉLO, http://www.velo.morbihan.fr/pv/public/MorbihanVelo2.
Date accessed: 01.09.2016.

MORCHIN, W.C., 1994. Battery-powered electric bicycles. In Proceedings of
NORTHCON ’94. pp. 269–274.

MUETZE, A. & TAN, Y.C., 2007. Electric bicycles - A performance evaluation. IEEE Industry
Applications Magazine, pp.12–21.

NEAIMEH, M. ET AL., 2012. Investigating the effects of topography and traffic conditions on
the driving efficiency of Electric Vehicles to better inform smart navigation. In IET and
ITS Conference on Road Transport Information and Control (RTIC 2012). pp. 1–6.

NEAIMEH, M. ET AL., 2013. Routing systems to extend the driving range of electric vehicles.
Intelligent Transport Systems, IET, pp.327–336.

OLIVA, J.A., WEIHRAUCH, C. & BERTRAM, T., 2013. A Model-Based Approach for Predicting
the Remaining Driving Range in Electric Vehicles. Annual Conference of the
Prognostics and Health Management Society, pp.438–448.

OPENSTREETMAP WIKI, 2016. https://wiki.openstreetmap.org/wiki/Routing#Developers.
Date accessed: 11.04.2017.

OPENTRAFFIC, 2016. http://opentraffic.io/. Date accessed: 11.04.2017.

PALLOTTINO, S., 1984. Shortest path methods: Complexity, interrelations and new
propositions. Networks, pp.257–267.

PAUL, F. & BOGENBERGER, K., 2014. Evaluation-method for a Station Based Urban-pedelec
Sharing System. Transportation Research Procedia, 4, pp.482–493.

PUBLI-BIKE, 2017. https://www.publibike.ch/. Date accessed: 11.04.2017.

RUST, https://www.rust-lang.org/en-US/. Date accessed: 11.04.2017.

SACHENBACHER, M. ET AL., 2011a. Efficient Energy-Optimal Routing for Electric Vehicles.
Proc. Twenty-Fifth AAAI Conference on Artificial Intelligence, pp.1402–1407.

SACHENBACHER, M. ET AL., 2011b. Efficient Energy-Optimal Routing for Electric Vehicles.
Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, pp.1402–
1407.

SCHNEIDER, B., 2009. E-Bike Reichweitentest - Alltagstauglichkeit von Elektrobikes, Bern.

SCHULTES, D. & SANDERS, P., 2007. Dynamic highway-node routing. Experimental
Algorithms, pp.66–79.

SIPSER, M., 2006. Introduction to the Theory of Computation, Cambridge: Massachusetts
Institute of Technology.

SMIDE, 2017. http://www.smide.ch/. Date accessed: 11.04.2017.

91

References

SOMCHAIWONG, N. & PONGLANGKA, W., 2006. Regenerative power control for electric bicycle.
2006 SICE-ICASE International Joint Conference, pp.4362–4365.

STEINHILBER, S., WELLS, P. & THANKAPPAN, S., 2013. Socio-technical inertia: Understanding
the barriers to electric vehicles. Energy Policy, 60, pp.531–539.

STORANDT, S., 2012. Route Planning for Bicycles — Exact Constrained Shortest Paths
Made Practical Via Contraction Hierarchy. Icaps, pp.234–242.

WANG, J., BESSELINK, I. & NIJMEIJER, H., 2015. Electric vehicle energy consumption
modelling and prediction based on road information. EVS28 International Electric
Vehicle Symposium and Exhibition, pp.1–12.

WILLE, M., 2016. E-Mail Comunication 19.12.2016.
(cf. E-Mail Bosch (Martin Wille) in Appendix)

WILSON, D.G., 2004. Bicycling Science, Cambridge: Massachusetts Institute of Technology.

YANG, M.J. ET AL., 2009. A cost-effective method of electric brake with energy regeneration
for electric vehicles. IEEE Transactions on Industrial Electronics, 56, pp.2203–2212.

YUKSEL, T. & MICHALEK, J.J., 2015. Effects of regional temperature on electric vehicle
efficiency, range, and emissions in the united states. Environmental Science and
Technology, 49, pp.3974–3980.

ZHAN, B.F. & NOON, C.E., 1998. Shortest path algorithms: an evaluation using real road
networks. Transportation Science, 32, pp.65–73.

92 Optimizing the Operation Range of E-Bikes in Routing Systems

I

Appendix

Appendix

E-Mail Bosch (Martin Wille)

II Optimizing the Operation Range of E-Bikes in Routing Systems

E-Mail EMPA (Marcel Gauch)

III

Appendix

Educational Use Data swisstopo

IV Optimizing the Operation Range of E-Bikes in Routing Systems

Programming Code ArcGIS Model Builder

energyconsumptionmodel_egomovement_whiteknight.py

-*- coding: utf-8 -*-

energyconsumptionmodel_egomovement_whiteknight.py
Created on: 2017-05-29 11:00:44.00000
(generated by ArcGIS/ModelBuilder)
Usage: energyconsumptionmodel_egomovement_whiteknight <factor_hu-
man_torque> <auxiliary_components_W> <rolling_coefficient> <gradeabil-
ity_degree> <gearbox_efficiency> <motor_efficiency> <wheel_diame-
ter_inches> <temperature_celsius> <weight_driver_kg> <weight_e_bike_kg>
<DEM_tif> <mapconfig_for_bicycles_xml> <osm2pgrouting_exe> <Workspace>
<Scratch>
Description:

Import arcpy module
import arcpy

Load required toolboxes
arcpy.ImportToolbox("C:/Users/sim_h/OneDrive/Dokumente/1_Uni_Wien/16_Mas-
terarbeit/4_Daten/Daten/Workspace/databaseconnectionfile.sde/ebike.post-
gres.energy_consumption_model")

Script arguments
factor_human_torque = arcpy.GetParameterAsText(0)
if factor_human_torque == '#' or not factor_human_torque:
 factor_human_torque = "0.1" # provide a default value if unspecified

auxiliary_components_W = arcpy.GetParameterAsText(1)
if auxiliary_components_W == '#' or not auxiliary_components_W:
 auxiliary_components_W = "1.08" # provide a default value if unspeci-
fied

rolling_coefficient = arcpy.GetParameterAsText(2)
if rolling_coefficient == '#' or not rolling_coefficient:
 rolling_coefficient = "0.003" # provide a default value if unspeci-
fied

gradeability_degree = arcpy.GetParameterAsText(3)
if gradeability_degree == '#' or not gradeability_degree:
 gradeability_degree = "15" # provide a default value if unspecified

gearbox_efficiency = arcpy.GetParameterAsText(4)
if gearbox_efficiency == '#' or not gearbox_efficiency:
 gearbox_efficiency = "0.98" # provide a default value if unspecified

motor_efficiency = arcpy.GetParameterAsText(5)
if motor_efficiency == '#' or not motor_efficiency:
 motor_efficiency = "0.45" # provide a default value if unspecified

wheel_diameter_inches = arcpy.GetParameterAsText(6)
if wheel_diameter_inches == '#' or not wheel_diameter_inches:
 wheel_diameter_inches = "28" # provide a default value if unspecified

V

Appendix

temperature_celsius = arcpy.GetParameterAsText(7)
if temperature_celsius == '#' or not temperature_celsius:
 temperature_celsius = "0" # provide a default value if unspecified

weight_driver_kg = arcpy.GetParameterAsText(8)
if weight_driver_kg == '#' or not weight_driver_kg:
 weight_driver_kg = "100" # provide a default value if unspecified

weight_e_bike_kg = arcpy.GetParameterAsText(9)
if weight_e_bike_kg == '#' or not weight_e_bike_kg:
 weight_e_bike_kg = "23" # provide a default value if unspecified

DEM_tif = arcpy.GetParameterAsText(10)
if DEM_tif == '#' or not DEM_tif:
 DEM_tif = "%Scratch%\\DEM.tif" # provide a default value if unspeci-
fied

mapconfig_for_bicycles_xml = arcpy.GetParameterAsText(11)
if mapconfig_for_bicycles_xml == '#' or not mapconfig_for_bicycles_xml:
 mapconfig_for_bicycles_xml = "C:\\Program Files\\Post-
greSQL\\9.4\\bin\\mapconfig_for_bicycles.xml" # provide a default value
if unspecified

osm2pgrouting_exe = arcpy.GetParameterAsText(12)
if osm2pgrouting_exe == '#' or not osm2pgrouting_exe:
 osm2pgrouting_exe = "C:\\Program Files\\Post-
greSQL\\9.4\\bin\\osm2pgrouting.exe" # provide a default value if unspec-
ified

Workspace = arcpy.GetParameterAsText(13)
if Workspace == '#' or not Workspace:
 Workspace = "Database Connections\\Connection to localhost.sde" #
provide a default value if unspecified

Scratch = arcpy.GetParameterAsText(14)
if Scratch == '#' or not Scratch:
 Scratch = "C:\\Users\\sim_h\\OneDrive\\Dokumente\\1_Uni_Wien\\16_Mas-
terarbeit\\4_Daten\\Daten\\Workspace\\Scratch" # provide a default value
if unspecified

Local variables:
temp_osm = "%Scratch%\\temp.osm"
ebike_postgres_ways_calculation = "%Workspace%\\ebike.postgres.ways_cal-
culation"

Set Geoprocessing environments
arcpy.env.scratchWorkspace = "C:\\Users\\sim_h\\OneDrive\\Doku-
mente\\1_Uni_Wien\\16_Masterarbeit\\4_Daten\\Daten\\Workspace\\Scratch"
arcpy.env.snapRaster = ""
arcpy.env.extent = "8.485 47.35 8.57 47.42"
arcpy.env.workspace = "Database Connections\\Connection to localhost.sde"

Process: energyconsumptionsubmodel_whiteknight_1
arcpy.energyconsumptionsubmodelwhiteknight1_energy_consump-
tion_model(Scratch, Workspace, "8.485 47.35 8.57 47.42", temp_osm,
osm2pgrouting_exe, mapconfig_for_bicycles_xml, DEM_tif, weight_e_bike_kg,
weight_driver_kg, temperature_celsius, wheel_diameter_inches, motor_effi-
ciency, gearbox_efficiency, gradeability_degree, rolling_coefficient,

VI Optimizing the Operation Range of E-Bikes in Routing Systems

ebike_postgres_ways_calculation, "http://www.overpass-
api.de/api/xapi_meta?", auxiliary_components_W, factor_human_torque)

Process: energyconsumptionsubmodel_whiteknight_2
arcpy.energyconsumptionsubmodelwhiteknight2_energy_consumption_model("5",
"25", "5", ebike_postgres_ways_calculation)

VII

Appendix

energyconsumptionsubmodel_whiteknight_1.py

-*- coding: utf-8 -*-

energyconsumptionsubmodel_whiteknight_1.py
Created on: 2017-05-29 11:01:05.00000
(generated by ArcGIS/ModelBuilder)
Usage: energyconsumptionsubmodel_whiteknight_1 <Scratch> <Workspace>
<Extent> <temp_osm> <osm2pgrouting_exe> <mapconfig_for_bicycles_xml>
<DEM> <weight_e_bike_kg> <weight_driver_kg> <temperature_celsius>
<wheel_diameter_inches> <motor_efficiency> <gearbox_efficiency> <gradea-
bility_degree> <rolling_coefficient> <ebike_postgres_ways_calcula-
tion__55_> <Download_URL> <auxiliary_components_W> <factor_human_torque>
Description:

Import arcpy module
import arcpy

Load required toolboxes
arcpy.ImportToolbox("C:/Users/sim_h/OneDrive/Dokumente/1_Uni_Wien/16_Mas-
terarbeit/4_Daten/Daten/Workspace/databaseconnectionfile.sde/ebike.post-
gres.energy_consumption_model")

Script arguments
Scratch = arcpy.GetParameterAsText(0)
if Scratch == '#' or not Scratch:
 Scratch = "C:\\Users\\sim_h\\OneDrive\\Dokumente\\1_Uni_Wien\\16_Mas-
terarbeit\\4_Daten\\Daten\\Workspace\\Scratch" # provide a default value
if unspecified

Workspace = arcpy.GetParameterAsText(1)
if Workspace == '#' or not Workspace:
 Workspace = "Database Connections\\Connection to localhost.sde" #
provide a default value if unspecified

Extent = arcpy.GetParameterAsText(2)
if Extent == '#' or not Extent:
 Extent = "8.485 47.35 8.57 47.42" # provide a default value if un-
specified

temp_osm = arcpy.GetParameterAsText(3)
if temp_osm == '#' or not temp_osm:
 temp_osm = "%Scratch%\\temp.osm" # provide a default value if unspec-
ified

osm2pgrouting_exe = arcpy.GetParameterAsText(4)
if osm2pgrouting_exe == '#' or not osm2pgrouting_exe:
 osm2pgrouting_exe = "C:\\Program Files\\Post-
greSQL\\9.4\\bin\\osm2pgrouting.exe" # provide a default value if unspec-
ified

mapconfig_for_bicycles_xml = arcpy.GetParameterAsText(5)
if mapconfig_for_bicycles_xml == '#' or not mapconfig_for_bicycles_xml:
 mapconfig_for_bicycles_xml = "C:\\Program Files\\Post-
greSQL\\9.4\\bin\\mapconfig_for_bicycles.xml" # provide a default value
if unspecified

VIII Optimizing the Operation Range of E-Bikes in Routing Systems

DEM = arcpy.GetParameterAsText(6)
if DEM == '#' or not DEM:
 DEM = "%Scratch%\\DEM.tif" # provide a default value if unspecified

weight_e_bike_kg = arcpy.GetParameterAsText(7)
if weight_e_bike_kg == '#' or not weight_e_bike_kg:
 weight_e_bike_kg = "23" # provide a default value if unspecified

weight_driver_kg = arcpy.GetParameterAsText(8)
if weight_driver_kg == '#' or not weight_driver_kg:
 weight_driver_kg = "100" # provide a default value if unspecified

temperature_celsius = arcpy.GetParameterAsText(9)
if temperature_celsius == '#' or not temperature_celsius:
 temperature_celsius = "20" # provide a default value if unspecified

wheel_diameter_inches = arcpy.GetParameterAsText(10)
if wheel_diameter_inches == '#' or not wheel_diameter_inches:
 wheel_diameter_inches = "28" # provide a default value if unspecified

motor_efficiency = arcpy.GetParameterAsText(11)
if motor_efficiency == '#' or not motor_efficiency:
 motor_efficiency = "0.45" # provide a default value if unspecified

gearbox_efficiency = arcpy.GetParameterAsText(12)
if gearbox_efficiency == '#' or not gearbox_efficiency:
 gearbox_efficiency = "0.98" # provide a default value if unspecified

gradeability_degree = arcpy.GetParameterAsText(13)
if gradeability_degree == '#' or not gradeability_degree:
 gradeability_degree = "15" # provide a default value if unspecified

rolling_coefficient = arcpy.GetParameterAsText(14)
if rolling_coefficient == '#' or not rolling_coefficient:
 rolling_coefficient = "0.003" # provide a default value if unspeci-
fied

ebike_postgres_ways_calculation__55_ = arcpy.GetParameterAsText(15)
if ebike_postgres_ways_calculation__55_ == '#' or not ebike_post-
gres_ways_calculation__55_:
 ebike_postgres_ways_calculation__55_ = "%Workspace%\\ebike.post-
gres.ways_calculation" # provide a default value if unspecified

Download_URL = arcpy.GetParameterAsText(16)
if Download_URL == '#' or not Download_URL:
 Download_URL = "http://www.overpass-api.de/api/xapi_meta?" # provide
a default value if unspecified

auxiliary_components_W = arcpy.GetParameterAsText(17)
if auxiliary_components_W == '#' or not auxiliary_components_W:
 auxiliary_components_W = "1.08" # provide a default value if unspeci-
fied

factor_human_torque = arcpy.GetParameterAsText(18)
if factor_human_torque == '#' or not factor_human_torque:
 factor_human_torque = "0.1" # provide a default value if unspecified

Local variables:

IX

Appendix

ebike_postgres_ways = "%Workspace%\\ebike.postgres.ways"
successful = "true"
Delete_succeeded__3_ = successful
ebike_postgres_ways_calculation__2_ = "%Workspace%\\ebike.post-
gres.ways_calculation"
ebike_postgres_ways_calculation__4_ = ebike_postgres_ways_calculation__2_
ebike_postgres_ways_calculation__23_ = ebike_postgres_ways_calcula-
tion__2_
ebike_postgres_ways_target = "%Workspace%\\ebike.postgres.ways_target"
ebike_postgres_target_for_extract = "Database Connections\\Connection to
localhost.sde\\ebike.postgres.target_for_extract"
dem_proj = "%Workspace%\\ebike.postgres.dem_proj"
ebike_postgres_target_extract = "%Workspace%\\ebike.postgres.target_ex-
tract"
ebike_postgres_target_extract__3_ = ebike_postgres_target_extract
ebike_postgres_target_extract__2_ = ebike_postgres_target_extract__3_
ebike_postgres_target_extract__4_ = ebike_postgres_target_extract__2_
ebike_postgres_ways_calculation__36_ = ebike_postgres_ways_calcula-
tion__23_
ebike_postgres_ways_calculation__47_ = ebike_postgres_ways_calcula-
tion__23_
ebike_postgres_ways_source = "%Workspace%\\ebike.postgres.ways_source"
ebike_postgres_source_for_extract = "Database Connections\\Connection to
localhost.sde\\ebike.postgres.source_for_extract"
ebike_postgres_source_extract = "%Workspace%\\ebike.postgres.source_ex-
tract"
ebike_postgres_source_extract__3_ = ebike_postgres_source_extract
ebike_postgres_source_extract__2_ = ebike_postgres_source_extract__3_
ebike_postgres_source_extract__4_ = ebike_postgres_source_extract__2_
ebike_postgres_ways_calculation__10_ = ebike_postgres_ways_calcula-
tion__36_
ebike_postgres_ways_calculation__33_ = ebike_postgres_ways_calcula-
tion__10_
ebike_postgres_ways_calculation__46_ = ebike_postgres_ways_calcula-
tion__33_
ebike_postgres_ways_calculation__16_ = ebike_postgres_ways_calcula-
tion__46_
ebike_postgres_ways_calculation__9_ = ebike_postgres_ways_calcula-
tion__16_
ebike_postgres_ways_calculation__8_ = ebike_postgres_ways_calculation__9_
ebike_postgres_ways_calculation__12_ = ebike_postgres_ways_calcula-
tion__8_
ebike_postgres_ways_calculation__13_ = ebike_postgres_ways_calcula-
tion__12_
ebike_postgres_ways_calculation = ebike_postgres_ways_calculation__13_
unsuccessful = "false"
ebike_postgres_ways_calculation__15_ = ebike_postgres_ways_calcula-
tion__47_
ebike_postgres_ways_calculation__39_ = ebike_postgres_ways_calcula-
tion__15_
ebike_postgres_ways_calculation__25_ = ebike_postgres_ways_calcula-
tion__39_
ebike_postgres_ways_calculation__5_ = ebike_postgres_ways_calcula-
tion__25_
ebike_postgres_ways_calculation__11_ = ebike_postgres_ways_calcula-
tion__5_
ebike_postgres_ways_calculation__3_ = ebike_postgres_ways_calcula-
tion__11_
ebike_postgres_ways_calculation__7_ = ebike_postgres_ways_calculation__3_

X Optimizing the Operation Range of E-Bikes in Routing Systems

ebike_postgres_ways_calculation__14_ = ebike_postgres_ways_calcula-
tion__7_
Delete_succeeded = "false"
Delete_succeeded__2_ = "false"

Set Geoprocessing environments
arcpy.env.scratchWorkspace = "C:\\Users\\sim_h\\OneDrive\\Doku-
mente\\1_Uni_Wien\\16_Masterarbeit\\4_Daten\\Daten\\Workspace\\Scratch"
arcpy.env.workspace = "Database Connections\\Connection to localhost.sde"

Process: Download OSM Data (XAPI)
tempEnvironment0 = arcpy.env.scratchWorkspace
arcpy.env.scratchWorkspace = Scratch
arcpy.XAPIDownload_osmtools(Download_URL, Extent, "*", "highway=pri-
mary|primary_link|secondary|tertiary|residential|living_street|track|pe-
destrian|path|cycleway|footway|byway|unclassified|secondary_link|ter-
tiary_link|lane|track|opposite_lane|oppo-
site|grade1|grade2|grade3|grade4|grade5|roundabout", temp_osm)
arcpy.env.scratchWorkspace = tempEnvironment0

Process: osm2pgrouting
arcpy.osm2pgrouting_energy_consumption_model(osm2pgrouting_exe, temp_osm,
mapconfig_for_bicycles_xml)

Process: Copy
arcpy.Copy_management(ebike_postgres_ways, ebike_postgres_ways_calcula-
tion__2_, "%Workspace\\ebike.postgres.ways")

Process: Make XY Event Layer (1)
arcpy.MakeXYEventLayer_management(ebike_postgres_ways_calculation__2_,
"x2", "y2", ebike_postgres_ways_target, "GEOGCS['GCS_WGS_1984',DA-
TUM['D_WGS_1984',SPHE-
ROID['WGS_1984',6378137.0,298.257223563]],PRIMEM['Green-
wich',0.0],UNIT['Degree',0.0174532925199433]];-400 -400 1000000000;-
100000 10000;-100000 10000;8.98315284119522E-09;0.001;0.001;IsHighPreci-
sion", "")

Process: Feature Class to Feature Class
arcpy.FeatureClassToFeatureClass_conversion(ebike_postgres_ways_target,
Workspace, "target_for_extract", "", "", "")

Process: Project Raster
arcpy.ProjectRaster_management(DEM, dem_proj, "GEOGCS['GCS_WGS_1984',DA-
TUM['D_WGS_1984',SPHE-
ROID['WGS_1984',6378137.0,298.257223563]],PRIMEM['Green-
wich',0.0],UNIT['Degree',0.0174532925199433]]", "NEAREST",
"2.21884308916892E-05 2.21884308916892E-05", "CH1903_To_WGS_1984_1", "",
"PROJCS['CH1903_LV03',GEOGCS['GCS_CH1903',DATUM['D_CH1903',SPHEROID['Bes-
sel_1841',6377397.155,299.1528128]],PRIMEM['Greenwich',0.0],UNIT['De-
gree',0.0174532925199433]],PROJECTION['Hotine_Oblique_Mercator_Azi-
muth_Center'],PARAMETER['False_Easting',600000.0],PARAMETER['False_North-
ing',200000.0],PARAMETER['Scale_Factor',1.0],PARAMETER['Azi-
muth',90.0],PARAMETER['Longitude_Of_Center',7.439583333333333],PARAME-
TER['Latitude_Of_Center',46.95240555555556],UNIT['Me-
ter',1.0]],VERTCS['LN_1902',VDATUM['Landesnivellement_1902'],PARAME-
TER['Vertical_Shift',0.0],PARAMETER['Direction',1.0],UNIT['Meter',1.0]]")

Process: Extract Values to Points
tempEnvironment0 = arcpy.env.workspace

XI

Appendix

arcpy.env.workspace = Workspace
arcpy.gp.ExtractValuesToPoints_sa(ebike_postgres_target_for_extract,
dem_proj, ebike_postgres_target_extract, "INTERPOLATE", "VALUE_ONLY")
arcpy.env.workspace = tempEnvironment0

Process: Add Field (10)
arcpy.AddField_management(ebike_postgres_target_extract, "target_el",
"DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (10)
arcpy.CalculateField_management(ebike_postgres_target_extract__3_, "tar-
get_el", "!rastervalu!", "PYTHON_9.3", "")

Process: Delete Field (3)
arcpy.DeleteField_management(ebike_postgres_target_extract__2_, "raster-
valu")

Process: Join Field (5)
arcpy.JoinField_management(ebike_postgres_ways_calculation__2_, "gid",
ebike_postgres_target_extract__4_, "gid", "target_el")

Process: Make XY Event Layer (2)
arcpy.MakeXYEventLayer_management(ebike_postgres_ways_calculation__2_,
"x1", "y1", ebike_postgres_ways_source, "GEOGCS['GCS_WGS_1984',DA-
TUM['D_WGS_1984',SPHE-
ROID['WGS_1984',6378137.0,298.257223563]],PRIMEM['Green-
wich',0.0],UNIT['Degree',0.0174532925199433]];-400 -400 1000000000;-
100000 10000;-100000 10000;8.98315284119522E-09;0.001;0.001;IsHighPreci-
sion", "")

Process: Feature Class to Feature Class (2)
arcpy.FeatureClassToFeatureClass_conversion(ebike_postgres_ways_source,
Workspace, "source_for_extract", "", "", "")

Process: Extract Values to Points (2)
tempEnvironment0 = arcpy.env.workspace
arcpy.env.workspace = Workspace
arcpy.gp.ExtractValuesToPoints_sa(ebike_postgres_source_for_extract,
dem_proj, ebike_postgres_source_extract, "INTERPOLATE", "VALUE_ONLY")
arcpy.env.workspace = tempEnvironment0

Process: Add Field (11)
arcpy.AddField_management(ebike_postgres_source_extract, "source_el",
"DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (11)
arcpy.CalculateField_management(ebike_postgres_source_extract__3_,
"source_el", "!rastervalu!", "PYTHON_9.3", "")

Process: Delete Field (2)
arcpy.DeleteField_management(ebike_postgres_source_extract__2_, "raster-
valu")

Process: Join Field (4)
arcpy.JoinField_management(ebike_postgres_ways_calculation__2_, "gid",
ebike_postgres_source_extract__4_, "gid", "source_el")

Process: Add Field (12)

XII Optimizing the Operation Range of E-Bikes in Routing Systems

arcpy.AddField_management(ebike_postgres_ways_calculation__23_, "slope-
perc", "DOUBLE", "", "", "", "slope_percentage", "NULLABLE", "NON_RE-
QUIRED", "")

Process: Calculate Field (12)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__36_,
"slopeperc", "(!target_el!-!source_el!)/!length_m!*100", "PYTHON_9.3",
"")

Process: Add Field (5)
arcpy.AddField_management(ebike_postgres_ways_calculation__10_, "slopean-
gle_degree", "DOUBLE", "", "", "", "angle_of_slope_degree", "NULLABLE",
"NON_REQUIRED", "")

Process: Calculate Field (5)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__33_,
"slopeangle_degree", "math.degrees(math.atan((!target_el!-
!source_el!)/!length_m!))", "PYTHON_9.3", "")

Process: Add Field (6)
arcpy.AddField_management(ebike_postgres_ways_calculation__46_,
"climbres_N", "DOUBLE", "", "", "", "climbingresistance_N", "NULLABLE",
"NON_REQUIRED", "")

Process: Calculate Field (6)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__16_,
"climbres_N", "(%weight_driver_kg%+%weight_e-
bike_kg%)*9.806*math.sin(math.radians(!slopeangle_degree!))", "PY-
THON_9.3", "")

Process: Add Field (13)
arcpy.AddField_management(ebike_postgres_ways_calculation__9_,
"rollres_N", "DOUBLE", "", "", "", "rollingresistance_N", "NULLABLE",
"NON_REQUIRED", "")

Process: Calculate Field (14)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__8_,
"rollres_N", "%rolling_coefficient%*(%weight_driver_kg%+%weight_e-
bike_kg%)*9.806*math.cos(math.radians(!slopeangle_degree!))", "PY-
THON_9.3", "")

Process: Add Field (8)
arcpy.AddField_management(ebike_postgres_ways_calculation__12_, "pres-
sure_hPa", "DOUBLE", "", "", "", "ambientairpressure_hPa", "NULLABLE",
"NON_REQUIRED", "")

Process: Calculate Field (8)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__13_,
"pressure_hPa", "1013.25*math.pow(1-(0.0065*((!tar-
get_el!+!source_el!)/2))/(%temperature_celsius%+273.15),5.255)", "PY-
THON_9.3", "")

Process: Add Field (25)
arcpy.AddField_management(ebike_postgres_ways_calculation__23_, "slope-
perc_r", "DOUBLE", "", "", "", "slope_percentage_reverse", "NULLABLE",
"NON_REQUIRED", "")

Process: Calculate Field (25)

XIII

Appendix

arcpy.CalculateField_management(ebike_postgres_ways_calculation__47_,
"slopeperc_r", "(!source_el!-!target_el!)/!length_m!*100", "PYTHON_9.3",
"")

Process: Add Field (20)
arcpy.AddField_management(ebike_postgres_ways_calculation__15_, "slopean-
gle_r_degree", "DOUBLE", "", "", "", "angle_of_slope_reverse_degree",
"NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (20)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__39_,
"slopeangle_r_degree", "math.degrees(math.atan((!source_el!-!tar-
get_el!)/!length_m!))", "PYTHON_9.3", "")

Process: Add Field (21)
arcpy.AddField_management(ebike_postgres_ways_calculation__25_,
"climbres_r_N", "DOUBLE", "", "", "", "climbingresistance_reverse_N",
"NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (21)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__5_,
"climbres_r_N", "(%weight_driver_kg%+%weight_e-
bike_kg%)*9.806*math.sin(math.radians(!slopeangle_r_degree!))", "PY-
THON_9.3", "")

Process: Add Field (28)
arcpy.AddField_management(ebike_postgres_ways_calculation__11_,
"rollres_r_N", "DOUBLE", "", "", "", "rollingresistance_reverse_N", "NUL-
LABLE", "NON_REQUIRED", "")

Process: Calculate Field (28)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__3_,
"rollres_r_N", "%rolling_coefficient%*(%weight_driver_kg%+%weight_e-
bike_kg%)*9.806*math.cos(math.radians(!slopeangle_degree!))", "PY-
THON_9.3", "")

Process: Add Field (23)
arcpy.AddField_management(ebike_postgres_ways_calculation__7_, "pres-
sure_r_hPa", "DOUBLE", "", "", "", "ambientairpressure_reverse_hPa",
"NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (23)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__14_,
"pressure_r_hPa", "1013.25*math.pow(1-(0.0065*((!source_el!+!tar-
get_el!)/2))/(%temperature_celsius%+273.15),5.255)", "PYTHON_9.3", "")

Process: Delete(3)
arcpy.Delete_management(ebike_postgres_target_for_extract, "")

Process: Delete (2)
arcpy.Delete_management(ebike_postgres_source_for_extract, "")

Process: Delete
arcpy.Delete_management(temp_osm, "")

XIV Optimizing the Operation Range of E-Bikes in Routing Systems

energyconsumptionsubmodel_whiteknight_2.py

-*- coding: utf-8 -*-

energyconsumptionsubmodel_whiteknight_2.py
Created on: 2017-05-29 11:02:10.00000
(generated by ArcGIS/ModelBuilder)
Usage: energyconsumptionsubmodel_whiteknight_2 <from_velocity_kmh>
<to_velocity_kmh> <by_velocity_kmh> <ebike_postgres_ways_calcula-
tion__55_>
Description:

Import arcpy module
import arcpy

Load required toolboxes
arcpy.ImportToolbox("Model Functions")

Script arguments
from_velocity_kmh = arcpy.GetParameterAsText(0)
if from_velocity_kmh == '#' or not from_velocity_kmh:
 from_velocity_kmh = "5" # provide a default value if unspecified

to_velocity_kmh = arcpy.GetParameterAsText(1)
if to_velocity_kmh == '#' or not to_velocity_kmh:
 to_velocity_kmh = "25" # provide a default value if unspecified

by_velocity_kmh = arcpy.GetParameterAsText(2)
if by_velocity_kmh == '#' or not by_velocity_kmh:
 by_velocity_kmh = "5" # provide a default value if unspecified

ebike_postgres_ways_calculation__55_ = arcpy.GetParameterAsText(3)
if ebike_postgres_ways_calculation__55_ == '#' or not ebike_post-
gres_ways_calculation__55_:
 ebike_postgres_ways_calculation__55_ = "Database Connections\\Connec-
tion to localhost.sde\\ebike.postgres.ways_calculation" # provide a de-
fault value if unspecified

Local variables:
ebike_postgres_ways_calculation__6_ = ebike_postgres_ways_calcula-
tion__55_
ebike_postgres_ways_calculation__35_ = ebike_postgres_ways_calcula-
tion__55_
velocity_kmh = from_velocity_kmh
ebike_postgres_ways_calculation__29_ = ebike_postgres_ways_calcula-
tion__35_
ebike_postgres_ways_calculation__39_ = ebike_postgres_ways_calcula-
tion__29_
ebike_postgres_ways_calculation__4_ = ebike_postgres_ways_calcula-
tion__39_
ebike_postgres_ways_calculation__31_ = ebike_postgres_ways_calcula-
tion__4_
ebike_postgres_ways_calculation__34_ = ebike_postgres_ways_calcula-
tion__31_
ebike_postgres_ways_calculation__3_ = ebike_postgres_ways_calcula-
tion__34_

XV

Appendix

ebike_postgres_ways_calculation__30_ = ebike_postgres_ways_calcula-
tion__3_
ebike_postgres_ways_calculation__38_ = ebike_postgres_ways_calcula-
tion__30_
ebike_postgres_ways_calculation__10_ = ebike_postgres_ways_calcula-
tion__38_
ebike_postgres_ways_calculation__9_ = ebike_postgres_ways_calcula-
tion__10_
ebike_postgres_ways_calculation__23_ = ebike_postgres_ways_calcula-
tion__9_
ebike_postgres_ways_calculation__19_ = ebike_postgres_ways_calcula-
tion__23_
ebike_postgres_ways_calculation__5_ = ebike_postgres_ways_calcula-
tion__19_
ebike_postgres_ways_calculation__24_ = ebike_postgres_ways_calcula-
tion__5_
ebike_postgres_ways_calculation__44_ = ebike_postgres_ways_calcula-
tion__24_
ebike_postgres_ways_calculation = ebike_postgres_ways_calculation__6_
ebike_postgres_ways_calculation__37_ = ebike_postgres_ways_calculation
ebike_postgres_ways_calculation__33_ = ebike_postgres_ways_calcula-
tion__37_
ebike_postgres_ways_calculation__32_ = ebike_postgres_ways_calcula-
tion__33_
ebike_postgres_ways_calculation__21_ = ebike_postgres_ways_calcula-
tion__32_
ebike_postgres_ways_calculation__14_ = ebike_postgres_ways_calcula-
tion__21_
ebike_postgres_ways_calculation__27_ = ebike_postgres_ways_calcula-
tion__14_
ebike_postgres_ways_calculation__20_ = ebike_postgres_ways_calcula-
tion__27_
ebike_postgres_ways_calculation__16_ = ebike_postgres_ways_calcula-
tion__20_
ebike_postgres_ways_calculation__22_ = ebike_postgres_ways_calcula-
tion__16_
ebike_postgres_ways_calculation__26_ = ebike_postgres_ways_calcula-
tion__22_
ebike_postgres_ways_calculation__28_ = ebike_postgres_ways_calcula-
tion__26_
ebike_postgres_ways_calculation__25_ = ebike_postgres_ways_calcula-
tion__28_
ebike_postgres_ways_calculation__49_ = ebike_postgres_ways_calcula-
tion__25_
ebike_postgres_ways_calculation__48_ = ebike_postgres_ways_calcula-
tion__49_

Set Geoprocessing environments
arcpy.env.scratchWorkspace = "C:\\Users\\sim_h\\OneDrive\\Doku-
mente\\1_Uni_Wien\\16_Masterarbeit\\4_Daten\\Daten\\Workspace\\Scratch"
arcpy.env.workspace = "Database Connections\\Connection to localhost.sde"

Process: For
arcpy.IterateCount_mb(from_velocity_kmh, to_velocity_kmh, by_veloc-
ity_kmh)

Process: Add Field (22)

XVI Optimizing the Operation Range of E-Bikes in Routing Systems

arcpy.AddField_management(ebike_postgres_ways_calculation__55_,
"dragresv%velocity_kmh%_r_N", "DOUBLE", "", "", "", "dragresistanceveloc-
ity%velocity_kmh%_reverse_N", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (22)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__35_,
"dragresv%velocity_kmh%_r_N", "!pressure_r_hPa!*100/(2*287.058*(%tempera-
ture_celsius%+273.15))*1.15*0.55*math.pow((%velocity_kmh%/3.6),2)", "PY-
THON_9.3", "")

Process: Add Field (16)
arcpy.AddField_management(ebike_postgres_ways_calculation__29_,
"tracforcev%velocity_kmh%_r_N", "DOUBLE", "", "", "", "tractiveforce-
velocity%velocity_kmh%_reverse_N", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (16)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__39_,
"tracforcev%velocity_kmh%_r_N",
"!climbres_r_N!+!rollres_r_N!+!dragresv%velocity_kmh%_r_N!", "PY-
THON_9.3", "")

Process: Add Field (17)
arcpy.AddField_management(ebike_postgres_ways_calculation__4_,
"torquev%velocity_kmh%_r_Nm", "DOUBLE", "", "", "", "torquevelocity%ve-
locity_kmh%_reverse_Nm", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (17)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__31_,
"torquev%velocity_kmh%_r_Nm", "fachtorr(!tracforcev%velocity_kmh%_r_N!,
%factor_human_torque%, %wheel_diameter_inches%)", "PYTHON_9.3", "def
fachtorr(tracforcevvelocity_kmh_r_N, factor_human_torque, wheel_diame-
ter_inches):\\n if tracforcevvelocity_kmh_r_N > 0:\\n return
(tracforcevvelocity_kmh_r_N-(tracforcevvelocity_kmh_r_N*factor_hu-
man_torque))*((wheel_diameter_inches*0.0254)/2)\\n else:\\n re-
turn tracforcevvelocity_kmh_r_N*((wheel_diameter_inches*0.0254)/2)")

Process: Add Field (18)
arcpy.AddField_management(ebike_postgres_ways_calculation__34_, "angu-
larv%velocity_kmh%_r_s_inverse", "DOUBLE", "", "", "", "angularwheel-
velocity%velocity_kmh%_reverse_s_inverse", "NULLABLE", "NON_REQUIRED",
"")

Process: Calculate Field (18)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__3_, "an-
gularv%velocity_kmh%_r_s_inverse", "(%velocity_kmh%/3.6)/((%wheel_diame-
ter_inches%*0.0254)/2)", "PYTHON_9.3", "")

Process: Add Field (24)
arcpy.AddField_management(ebike_postgres_ways_calculation__30_, "v%veloc-
ity_kmh%_norec_r_W", "DOUBLE", "", "", "", "velocity%velocity_kmh%_no_re-
cuperation_reverse_W", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (24)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__38_,
"v%velocity_kmh%_norec_r_W", "pemnorecrW(!slopeangle_r_degree!, %gradea-
bility_degree%, !torquev%velocity_kmh%_r_Nm!, !angularv%veloc-
ity_kmh%_r_s_inverse!, %motor_efficiency%, %gearbox_efficiency%, %auxil-
iary_components_W%)", "PYTHON_9.3", "def pemnorecrW(slopeangle_r_degree,

XVII

Appendix

gradeability_degree, torquevvelocity_kmh_r_Nm, angularvveloc-
ity_kmh_r_s_inverse, motor_efficiency, gearbox_efficiency, auxiliary_com-
ponents_W):\\n if slopeangle_r_degree >= gradeability_degree:\\n
return 999999\\n elif slopeangle_r_degree <= -gradeability_de-
gree:\\n return 999999\\n elif torquevvelocity_kmh_r_Nm <
0:\\n return auxiliary_components_W\\n else:\\n return
torquevvelocity_kmh_r_Nm * angularvvelocity_kmh_r_s_inverse / (motor_ef-
ficiency * gearbox_efficiency) + auxiliary_components_W")

Process: Add Field (6)
arcpy.AddField_management(ebike_postgres_ways_calculation__10_,
"ctempv%velocity_kmh%_norec_r_W", "DOUBLE", "", "", "", "capacitiytemper-
aturevelocity%velocity_kmh%_no_recuperation_reverse_W", "NULLABLE", "RE-
QUIRED", "")

Process: Calculate Field (6)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__9_,
"ctempv%velocity_kmh%_norec_r_W", "pemctempnorecrW(!v%veloc-
ity_kmh%_norec_r_W!, %temperature_celsius%)", "PYTHON_9.3", "def pem-
ctempnorecrW(vvelocity_kmh_norec_r_W, temperature_celsius):\\n if vve-
locity_kmh_norec_r_W == 999999:\\n return 999999\\n if tempera-
ture_celsius >= 25:\\n return vvelocity_kmh_norec_r_W\\n
else:\\n return vvelocity_kmh_norec_r_W * (1+((25-temperature_cel-
sius)*0.0047))")

Process: Add Field (27)
arcpy.AddField_management(ebike_postgres_ways_calculation__23_, "v%veloc-
ity_kmh%_norec_r_Wh", "DOUBLE", "", "", "", "velocity%veloc-
ity_kmh%_no_recuperation_reverse_Wh", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (27)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__19_,
"v%velocity_kmh%_norec_r_Wh", "pemnorecrWh(!ctempv%veloc-
ity_kmh%_norec_r_W!, !length_m!, %velocity_kmh%)", "PYTHON_9.3", "def
pemnorecrWh(ctempvvelocity_kmh_norec_r_W, length_m, velocity_kmh):\\n
if ctempvvelocity_kmh_norec_r_W == 999999:\\n return 999999\\n
else:\\n return ctempvvelocity_kmh_norec_r_W*((length_m/1000)/ve-
locity_kmh)")

Process: Add Field (12)
arcpy.AddField_management(ebike_postgres_ways_calculation__5_, "v%veloc-
ity_kmh%_norec_r_Whkm", "DOUBLE", "", "", "", "velocity%veloc-
ity_kmh%_norecuperation_reverse_Wh_per_km", "NULLABLE", "NON_REQUIRED",
"")

Process: Calculate Field (12)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__24_,
"v%velocity_kmh%_norec_r_Whkm", "pemnorecrWhkm(!v%veloc-
ity_kmh%_norec_r_Wh!, !length_m!)", "PYTHON_9.3", "def pemnorecrWhkm(vve-
locity_kmh_norec_r_Wh, length_m):\\n if vvelocity_kmh_norec_r_Wh ==
999999:\\n return None\\n else:\\n return vveloc-
ity_kmh_norec_r_Wh*1000/ length_m")

Process: Add Field (7)
arcpy.AddField_management(ebike_postgres_ways_calculation__55_,
"dragresv%velocity_kmh%_N", "DOUBLE", "", "", "", "dragresistanceveloc-
ity%velocity_kmh%_N", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (7)

XVIII Optimizing the Operation Range of E-Bikes in Routing Systems

arcpy.CalculateField_management(ebike_postgres_ways_calculation__6_,
"dragresv%velocity_kmh%_N", "!pressure_hPa!*100/(2*287.058*(%tempera-
ture_celsius%+273.15))*1.15*0.5*math.pow((%velocity_kmh%/3.6),2)", "PY-
THON_9.3", "")

Process: Add Field
arcpy.AddField_management(ebike_postgres_ways_calculation,
"tracforcev%velocity_kmh%_N", "DOUBLE", "", "", "", "tractiveforceveloc-
ity%velocity_kmh%_N", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field
arcpy.CalculateField_management(ebike_postgres_ways_calculation__37_,
"tracforcev%velocity_kmh%_N", "!climbres_N!+!rollres_N!+!dragresv%veloc-
ity_kmh%_N!", "PYTHON_9.3", "")

Process: Add Field (2)
arcpy.AddField_management(ebike_postgres_ways_calculation__33_,
"torquev%velocity_kmh%_Nm", "DOUBLE", "", "", "", "torquevelocity%veloc-
ity_kmh%_Nm", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (2)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__32_,
"torquev%velocity_kmh%_Nm", "fachtor(!tracforcev%velocity_kmh%_N!, %fac-
tor_human_torque%, %wheel_diameter_inches%)", "PYTHON_9.3", "def fach-
tor(tracforcevvelocity_kmh_N, factor_human_torque, wheel_diame-
ter_inches):\\n if tracforcevvelocity_kmh_N > 0:\\n return
(tracforcevvelocity_kmh_N-(tracforcevvelocity_kmh_N*factor_hu-
man_torque))*((wheel_diameter_inches*0.0254)/2)\\n else:\\n re-
turn tracforcevvelocity_kmh_N*((wheel_diameter_inches*0.0254)/2)")

Process: Add Field (3)
arcpy.AddField_management(ebike_postgres_ways_calculation__21_, "angu-
larv%velocity_kmh%_s_inverse", "DOUBLE", "", "", "", "angularwheelveloc-
ity%velocity_kmh%_s_inverse", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (3)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__14_,
"angularv%velocity_kmh%_s_inverse", "(%velocity_kmh%/3.6)/((%wheel_diame-
ter_inches%*0.0254)/2)", "PYTHON_9.3", "")

Process: Add Field (9)
arcpy.AddField_management(ebike_postgres_ways_calculation__27_, "v%veloc-
ity_kmh%_norec_W", "DOUBLE", "", "", "", "velocity%velocity_kmh%_no_recu-
peration_W", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (9)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__20_,
"v%velocity_kmh%_norec_W", "pemnorecW(!slopeangle_degree!, %gradeabil-
ity_degree%, !torquev%velocity_kmh%_Nm!, !angularv%velocity_kmh%_s_in-
verse!, %motor_efficiency%, %gearbox_efficiency%, %auxiliary_compo-
nents_W%)", "PYTHON_9.3", "def pemnorecW(slopeangle_degree, gradeabil-
ity_degree, torquevvelocity_kmh_Nm, angularvvelocity_kmh_s_inverse, mo-
tor_efficiency, gearbox_efficiency, auxiliary_components_W):\\n if
slopeangle_degree >= gradeability_degree:\\n return 999999\\n
elif slopeangle_degree <= -gradeability_degree:\\n return
999999\\n elif torquevvelocity_kmh_Nm < 0:\\n return auxil-
iary_components_W\\n else:\\n return torquevvelocity_kmh_Nm *
angularvvelocity_kmh_s_inverse / (motor_efficiency * gearbox_efficiency)
+ auxiliary_components_W")

XIX

Appendix

Process: Add Field (10)
arcpy.AddField_management(ebike_postgres_ways_calculation__16_,
"ctempv%velocity_kmh%_norec_W", "DOUBLE", "", "", "", "capacitiytempera-
turevelocity%velocity_kmh%_no_recuperation_W", "NULLABLE", "REQUIRED",
"")

Process: Calculate Field (10)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__22_,
"ctempv%velocity_kmh%_norec_W", "pemctempnorecW(!v%veloc-
ity_kmh%_norec_W!, %temperature_celsius%)", "PYTHON_9.3", "def pemctemp-
norecW(vvelocity_kmh_norec_W, temperature_celsius):\\n if vveloc-
ity_kmh_norec_W == 999999:\\n return 999999\\n if tempera-
ture_celsius >= 25:\\n return vvelocity_kmh_norec_W\\n else:\\n
return vvelocity_kmh_norec_W * (1+((25-temperature_celsius)*0.0047))")

Process: Add Field (15)
arcpy.AddField_management(ebike_postgres_ways_calculation__26_, "v%veloc-
ity_kmh%_norec_Wh", "DOUBLE", "", "", "", "velocity%velocity_kmh%_no_re-
cuperation_Wh", "NULLABLE", "REQUIRED", "")

Process: Calculate Field (15)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__28_,
"v%velocity_kmh%_norec_Wh", "pemnorecWh(!ctempv%velocity_kmh%_norec_W!,
!length_m!, %velocity_kmh%)", "PYTHON_9.3", "def pemnorecWh(ctempvveloc-
ity_kmh_norec_W, length_m, velocity_kmh):\\n if ctempvveloc-
ity_kmh_norec_W == 999999:\\n return 999999\\n else:\\n
return ctempvvelocity_kmh_norec_W*((length_m/1000)/velocity_kmh)")

Process: Add Field (20)
arcpy.AddField_management(ebike_postgres_ways_calculation__25_, "v%veloc-
ity_kmh%_norec_Whkm", "DOUBLE", "", "", "", "velocity%velocity_kmh%_nore-
cuperation_Wh_per_km", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (20)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__49_,
"v%velocity_kmh%_norec_Whkm", "pemnorecWhkm(!v%velocity_kmh%_norec_Wh!,
!length_m!)", "PYTHON_9.3", "def pemnorecWhkm(vvelocity_kmh_norec_Wh,
length_m):\\n if vvelocity_kmh_norec_Wh == 999999:\\n return
None\\n else:\\n return vvelocity_kmh_norec_Wh*1000/ length_m")

XX Optimizing the Operation Range of E-Bikes in Routing Systems

energyconsumptionmodel_stromer_st2.py

-*- coding: utf-8 -*-

energyconsumptionmodel_stromer_st2.py
Created on: 2017-05-29 11:02:31.00000
(generated by ArcGIS/ModelBuilder)
Usage: energyconsumptionmodel_stromer_st2 <factor_human_torque> <auxil-
iary_components_W> <rolling_coefficient> <gradeability_degree> <gear-
box_efficiency> <wheel_diameter_inches> <temperature_celsius>
<weight_driver_kg> <weight_e_bike_kg> <DEM> <mapconfig_for_bicycles_xml>
<osm2pgrouting_exe> <Connection_to_localhost_sde> <Scratch> <ebike_post-
gres_ways_calculation__15_>
Description:

Import arcpy module
import arcpy

Load required toolboxes
arcpy.ImportToolbox("C:/Users/sim_h/OneDrive/Dokumente/1_Uni_Wien/16_Mas-
terarbeit/4_Daten/Daten/Workspace/databaseconnectionfile.sde/ebike.post-
gres.energy_consumption_model")

Script arguments
factor_human_torque = arcpy.GetParameterAsText(0)
if factor_human_torque == '#' or not factor_human_torque:
 factor_human_torque = "0.1" # provide a default value if unspecified

auxiliary_components_W = arcpy.GetParameterAsText(1)
if auxiliary_components_W == '#' or not auxiliary_components_W:
 auxiliary_components_W = "8.37" # provide a default value if unspeci-
fied

rolling_coefficient = arcpy.GetParameterAsText(2)
if rolling_coefficient == '#' or not rolling_coefficient:
 rolling_coefficient = "0.003" # provide a default value if unspeci-
fied

gradeability_degree = arcpy.GetParameterAsText(3)
if gradeability_degree == '#' or not gradeability_degree:
 gradeability_degree = "15" # provide a default value if unspecified

gearbox_efficiency = arcpy.GetParameterAsText(4)
if gearbox_efficiency == '#' or not gearbox_efficiency:
 gearbox_efficiency = "0.98" # provide a default value if unspecified

wheel_diameter_inches = arcpy.GetParameterAsText(5)
if wheel_diameter_inches == '#' or not wheel_diameter_inches:
 wheel_diameter_inches = "26" # provide a default value if unspecified

temperature_celsius = arcpy.GetParameterAsText(6)
if temperature_celsius == '#' or not temperature_celsius:
 temperature_celsius = "3" # provide a default value if unspecified

weight_driver_kg = arcpy.GetParameterAsText(7)
if weight_driver_kg == '#' or not weight_driver_kg:

XXI

Appendix

 weight_driver_kg = "100" # provide a default value if unspecified

weight_e_bike_kg = arcpy.GetParameterAsText(8)
if weight_e_bike_kg == '#' or not weight_e_bike_kg:
 weight_e_bike_kg = "27" # provide a default value if unspecified

DEM = arcpy.GetParameterAsText(9)
if DEM == '#' or not DEM:
 DEM = "%Scratch%\\DEM.tif" # provide a default value if unspecified

mapconfig_for_bicycles_xml = arcpy.GetParameterAsText(10)
if mapconfig_for_bicycles_xml == '#' or not mapconfig_for_bicycles_xml:
 mapconfig_for_bicycles_xml = "C:\\Program Files\\Post-
greSQL\\9.4\\bin\\mapconfig_for_bicycles.xml" # provide a default value
if unspecified

osm2pgrouting_exe = arcpy.GetParameterAsText(11)
if osm2pgrouting_exe == '#' or not osm2pgrouting_exe:
 osm2pgrouting_exe = "C:\\Program Files\\Post-
greSQL\\9.4\\bin\\osm2pgrouting.exe" # provide a default value if unspec-
ified

Connection_to_localhost_sde = arcpy.GetParameterAsText(12)
if Connection_to_localhost_sde == '#' or not Connection_to_localhost_sde:
 Connection_to_localhost_sde = "Database Connections\\Connection to
localhost.sde" # provide a default value if unspecified

Scratch = arcpy.GetParameterAsText(13)
if Scratch == '#' or not Scratch:
 Scratch = "C:\\Users\\sim_h\\OneDrive\\Dokumente\\1_Uni_Wien\\16_Mas-
terarbeit\\4_Daten\\Daten\\Workspace\\Scratch" # provide a default value
if unspecified

ebike_postgres_ways_calculation__15_ = arcpy.GetParameterAsText(14)
if ebike_postgres_ways_calculation__15_ == '#' or not ebike_post-
gres_ways_calculation__15_:
 ebike_postgres_ways_calculation__15_ = "%Workspace%\\ebike.post-
gres.ways_calculation" # provide a default value if unspecified

Local variables:
temp_osm = "%Scratch%\\temp.osm"
ebike_postgres_ways_calculation__17_ = "%Workspace%\\ebike.post-
gres.ways_calculation"
ebike_postgres_ways_calculation__16_ = ebike_postgres_ways_calcula-
tion__17_
ebike_postgres_ways_calculation__29_ = ebike_postgres_ways_calcula-
tion__16_
ebike_postgres_ways_calculation__31_ = ebike_postgres_ways_calcula-
tion__16_
ebike_postgres_ways_calculation = ebike_postgres_ways_calculation__31_
ebike_postgres_ways_calculation__49_ = ebike_postgres_ways_calculation
ebike_postgres_ways_calculation__10_ = ebike_postgres_ways_calcula-
tion__49_
ebike_postgres_ways_calculation__51_ = ebike_postgres_ways_calcula-
tion__10_
ebike_postgres_ways_calculation__11_ = ebike_postgres_ways_calcula-
tion__51_
ebike_postgres_ways_calculation__53_ = ebike_postgres_ways_calcula-
tion__11_

XXII Optimizing the Operation Range of E-Bikes in Routing Systems

ebike_postgres_ways_calculation__13_ = ebike_postgres_ways_calcula-
tion__53_
ebike_postgres_ways_calculation__55_ = ebike_postgres_ways_calcula-
tion__13_
ebike_postgres_ways_calculation__12_ = ebike_postgres_ways_calcula-
tion__55_
ebike_postgres_ways_calculation__57_ = ebike_postgres_ways_calcula-
tion__12_
ebike_postgres_ways_calculation__14_ = ebike_postgres_ways_calcula-
tion__57_
ebike_postgres_ways_calculation__59_ = ebike_postgres_ways_calcula-
tion__14_
ebike_postgres_ways_calculation__3_ = ebike_postgres_ways_calcula-
tion__29_
ebike_postgres_ways_calculation__32_ = ebike_postgres_ways_calcula-
tion__3_
ebike_postgres_ways_calculation__4_ = ebike_postgres_ways_calcula-
tion__32_
ebike_postgres_ways_calculation__35_ = ebike_postgres_ways_calcula-
tion__4_
ebike_postgres_ways_calculation__5_ = ebike_postgres_ways_calcula-
tion__35_
ebike_postgres_ways_calculation__39_ = ebike_postgres_ways_calcula-
tion__5_
ebike_postgres_ways_calculation__6_ = ebike_postgres_ways_calcula-
tion__39_
ebike_postgres_ways_calculation__41_ = ebike_postgres_ways_calcula-
tion__6_
ebike_postgres_ways_calculation__7_ = ebike_postgres_ways_calcula-
tion__41_
ebike_postgres_ways_calculation__43_ = ebike_postgres_ways_calcula-
tion__7_
ebike_postgres_ways_calculation__8_ = ebike_postgres_ways_calcula-
tion__43_
ebike_postgres_ways_calculation__46_ = ebike_postgres_ways_calcula-
tion__8_
ebike_postgres_ways_calculation__9_ = ebike_postgres_ways_calcula-
tion__46_

Set Geoprocessing environments
arcpy.env.scratchWorkspace = "C:\\Users\\sim_h\\OneDrive\\Doku-
mente\\1_Uni_Wien\\16_Masterarbeit\\4_Daten\\Daten\\Workspace\\Scratch"
arcpy.env.workspace = "Database Connections\\Connection to localhost.sde"

Process: energyconsumptionsubmodel_st2_1
arcpy.energyconsumptionsubmodelst21_energy_consumption_model(Scratch,
Connection_to_localhost_sde, "8.485 47.35 8.57 47.42", temp_osm,
osm2pgrouting_exe, mapconfig_for_bicycles_xml, DEM, weight_e_bike_kg,
weight_driver_kg, temperature_celsius, wheel_diameter_inches, gearbox_ef-
ficiency, gradeability_degree, rolling_coefficient, ebike_post-
gres_ways_calculation__17_, "http://www.overpass-api.de/api/xapi_meta?",
auxiliary_components_W, factor_human_torque)

Process: energyconsumptionsubmodel_st2_2
arcpy.energyconsumptionsubmodelst22_energy_consumption_model("5", "35",
"5", ebike_postgres_ways_calculation__17_)

Process: Add Field (12)

XXIII

Appendix

arcpy.AddField_management(ebike_postgres_ways_calculation__16_, "motoref-
ficiencyv5_r", "DOUBLE", "", "", "", "motorefficiencyvelocity5_reverse",
"NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (22)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__31_,
"motorefficiencyv5_r", "meff5(!torquev5_r_Nm!)", "PYTHON_9.3", "def
meff5(torquev5_r_Nm):\\n if -12.5 >= torquev5_r_Nm:\\n return
0.1686509334044\\n elif -7.5 >= torquev5_r_Nm > -12.5:\\n re-
turn 0.400272727088039\\n elif 0 >= torquev5_r_Nm > -7.5:\\n
return 0.53365978248219\\n elif 0 < torquev5_r_Nm < 7.5:\\n re-
turn 0.623834964702797\\n elif 7.5 <= torquev5_r_Nm < 12.5:\\n
return 0.579450836444724\\n elif 12.5 <= torquev5_r_Nm < 17.5:\\n
return 0.514837509676393\\n elif 17.5 <= torquev5_r_Nm < 22.5:\\n
return 0.472091740648567\\n elif 22.5 <= torquev5_r_Nm < 27.5:\\n
return 0.409172192178427\\n elif 27.5 <= torquev5_r_Nm < 32.5:\\n
return 0.358790286998961\\n elif 32.5 <= torquev5_r_Nm < 37.5:\\n
return 0.32394748442385\\n elif 37.5 <= torquev5_r_Nm:\\n re-
turn 0.192834086191931")

Process: Add Field (21)
arcpy.AddField_management(ebike_postgres_ways_calculation, "motoreffi-
ciencyv10_r", "DOUBLE", "", "", "", "motorefficiencyvelocity10_reverse",
"NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (23)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__49_,
"motorefficiencyv10_r", "meff10(!torquev10_r_Nm!)", "PYTHON_9.3", "def
meff10(torquev10_r_Nm):\\n if -27.5 >= torquev10_r_Nm:\\n re-
turn 0.137684115952318\\n elif -22.5 >= torquev10_r_Nm > -27.5:\\n
return 0.312279619894597\\n elif -17.5 >= torquev10_r_Nm > -22.5:\\n
return 0.459405191207038\\n elif -12.5 >= torquev10_r_Nm > -17.5:\\n
return 0.556210442620491\\n elif -7.5 >= torquev10_r_Nm > -12.5:\\n
return 0.660850232379088\\n elif 0 >= torquev10_r_Nm > -7.5:\\n
return 0.68784176628815\\n elif 0 < torquev10_r_Nm < 7.5:\\n
return 0.715972669192336\\n elif 7.5 <= torquev10_r_Nm < 12.5:\\n
return 0.701007821443731\\n elif 12.5 <= torquev10_r_Nm < 17.5:\\n
return 0.654257533958745\\n elif 17.5 <= torquev10_r_Nm < 22.5:\\n
return 0.622696398091954\\n elif 22.5 <= torquev10_r_Nm < 27.5:\\n
return 0.56559006689693\\n elif 27.5 <= torquev10_r_Nm < 32.5:\\n
return 0.514923576679544\\n elif 32.5 <= torquev10_r_Nm < 37.5:\\n
return 0.476584799195279\\n elif 37.5 <= torquev10_r_Nm:\\n re-
turn 0.305739781527573")

Process: Add Field (22)
arcpy.AddField_management(ebike_postgres_ways_calculation__10_, "motoref-
ficiencyv15_r", "DOUBLE", "", "", "", "motorefficiencyvelocity15_re-
verse", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (25)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__51_,
"motorefficiencyv15_r", "meff15(!torquev15_r_Nm!)", "PYTHON_9.3", "def
meff15(torquev15_r_Nm):\\n if -27.5 >= torquev15_r_Nm:\\n re-
turn 0.137684115952318\\n elif -22.5 >= torquev15_r_Nm > -27.5:\\n
return 0.312279619894597\\n elif -17.5 >= torquev15_r_Nm > -22.5:\\n
return 0.459405191207038\\n elif -12.5 >= torquev15_r_Nm > -17.5:\\n
return 0.556210442620491\\n elif -7.5 >= torquev15_r_Nm > -12.5:\\n
return 0.660850232379088\\n elif 0 >= torquev15_r_Nm > -7.5:\\n
return 0.68784176628815\\n elif 0 < torquev15_r_Nm < 7.5:\\n

XXIV Optimizing the Operation Range of E-Bikes in Routing Systems

return 0.715972669192336\\n elif 7.5 <= torquev15_r_Nm < 12.5:\\n
return 0.701007821443731\\n elif 12.5 <= torquev15_r_Nm < 17.5:\\n
return 0.654257533958745\\n elif 17.5 <= torquev15_r_Nm < 22.5:\\n
return 0.622696398091954\\n elif 22.5 <= torquev15_r_Nm < 27.5:\\n
return 0.56559006689693\\n elif 27.5 <= torquev15_r_Nm < 32.5:\\n
return 0.514923576679544\\n elif 32.5 <= torquev15_r_Nm < 37.5:\\n
return 0.476584799195279\\n elif 37.5 <= torquev15_r_Nm:\\n re-
turn 0.305739781527573")

Process: Add Field (23)
arcpy.AddField_management(ebike_postgres_ways_calculation__11_, "motoref-
ficiencyv20_r", "DOUBLE", "", "", "", "motorefficiencyvelocity20_re-
verse", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (28)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__53_,
"motorefficiencyv20_r", "meff20(!torquev20_r_Nm!)", "PYTHON_9.3", "def
meff20(torquev20_r_Nm):\\n if -37.5 >= torquev20_r_Nm:\\n re-
turn 0.242985328431138\\n elif -32.5 >= torquev20_r_Nm > -37.5:\\n
return 0.326487747096875\\n elif -27.5 >= torquev20_r_Nm > -32.5:\\n
return 0.406298826260984\\n elif -22.5 >= torquev20_r_Nm > -27.5:\\n
return 0.53371216133064\\n elif -17.5 >= torquev20_r_Nm > -22.5:\\n
return 0.61970983060857\\n elif -12.5 >= torquev20_r_Nm > -17.5:\\n
return 0.684670290041407\\n elif -7.5 >= torquev20_r_Nm > -12.5:\\n
return 0.751571154518068\\n elif 0 >= torquev20_r_Nm > -7.5:\\n
return 0.722428702257428\\n elif 0 < torquev20_r_Nm < 7.5:\\n
return 0.749823207947012\\n elif 7.5 <= torquev20_r_Nm < 12.5:\\n
return 0.756144166249551\\n elif 12.5 <= torquev20_r_Nm < 17.5:\\n
return 0.727493370155266\\n elif 17.5 <= torquev20_r_Nm < 22.5:\\n
return 0.704447090103871\\n elif 22.5 <= torquev20_r_Nm < 27.5:\\n
return 0.653827051136146\\n elif 27.5 <= torquev20_r_Nm < 32.5:\\n
return 0.610366351999488\\n elif 32.5 <= torquev20_r_Nm < 37.5:\\n
return 0.570148382769345\\n elif 37.5 <= torquev20_r_Nm:\\n re-
turn 0.411535127628699")

Process: Add Field (25)
arcpy.AddField_management(ebike_postgres_ways_calculation__13_, "motoref-
ficiencyv25_r", "DOUBLE", "", "", "", "motorefficiencyvelocity25_re-
verse", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (29)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__55_,
"motorefficiencyv25_r", "meff25(!torquev25_r_Nm!)", "PYTHON_9.3", "def
meff25(torquev25_r_Nm):\\n if -37.5 >= torquev25_r_Nm:\\n re-
turn 0.409268259437775\\n elif -32.5 >= torquev25_r_Nm > -37.5:\\n
return 0.481313215219602\\n elif -27.5 >= torquev25_r_Nm > -32.5:\\n
return 0.54783588540812\\n elif -22.5 >= torquev25_r_Nm > -27.5:\\n
return 0.641936048794025\\n elif -17.5 >= torquev25_r_Nm > -22.5:\\n
return 0.707092957349041\\n elif -12.5 >= torquev25_r_Nm > -17.5:\\n
return 0.749965174434069\\n elif -7.5 >= torquev25_r_Nm > -12.5:\\n
return 0.793345434388403\\n elif 0 >= torquev25_r_Nm > -7.5:\\n
return 0.77195594049356\\n elif 0 < torquev25_r_Nm < 7.5:\\n
return 0.775650893643593\\n elif 7.5 <= torquev25_r_Nm < 12.5:\\n
return 0.783856109033499\\n elif 12.5 <= torquev25_r_Nm < 17.5:\\n
return 0.764640691523341\\n elif 17.5 <= torquev25_r_Nm < 22.5:\\n
return 0.748987636783427\\n elif 22.5 <= torquev25_r_Nm < 27.5:\\n
return 0.705186831992523\\n elif 27.5 <= torquev25_r_Nm < 32.5:\\n
return 0.666858058750972\\n elif 32.5 <= torquev25_r_Nm:\\n re-
turn 0.640896012607356")

XXV

Appendix

Process: Add Field (28)
arcpy.AddField_management(ebike_postgres_ways_calculation__12_, "motoref-
ficiencyv30_r", "DOUBLE", "", "", "", "motorefficiencyvelocity30_re-
verse", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (30)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__57_,
"motorefficiencyv30_r", "meff30(!torquev30_r_Nm!)", "PYTHON_9.3", "def
meff30(torquev30_r_Nm):\\n if -37.5 >= torquev30_r_Nm:\\n re-
turn 0.503961290702052\\n elif -32.5 >= torquev30_r_Nm > -37.5:\\n
return 0.574071561001055\\n elif -27.5 >= torquev30_r_Nm > -32.5:\\n
return 0.62418619075502\\n elif -22.5 >= torquev30_r_Nm > -27.5:\\n
return 0.692363882400556\\n elif -17.5 >= torquev30_r_Nm > -22.5:\\n
return 0.748143465737966\\n elif -12.5 >= torquev30_r_Nm > -17.5:\\n
return 0.785475525219002\\n elif -7.5 >= torquev30_r_Nm > -12.5:\\n
return 0.810884982216235\\n elif 0 >= torquev30_r_Nm > -7.5:\\n
return 0.767802941434139\\n elif 0 < torquev30_r_Nm < 7.5:\\n
return 0.766445865111972\\n elif 7.5 <= torquev30_r_Nm < 12.5:\\n
return 0.802113888658795\\n elif 12.5 <= torquev30_r_Nm < 17.5:\\n
return 0.787104493659772\\n elif 17.5 <= torquev30_r_Nm < 22.5:\\n
return 0.775961036216906\\n elif 22.5 <= torquev30_r_Nm < 27.5:\\n
return 0.742906970272747\\n elif 27.5 <= torquev30_r_Nm:\\n re-
turn 0.709593390721885")

Process: Add Field (29)
arcpy.AddField_management(ebike_postgres_ways_calculation__14_, "motoref-
ficiencyv35_r", "DOUBLE", "", "", "", "motorefficiencyvelocity35_re-
verse", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (31)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__59_,
"motorefficiencyv35_r", "meff35(!torquev35_r_Nm!)", "PYTHON_9.3", "def
meff35(torquev35_r_Nm):\\n if -37.5 >= torquev35_r_Nm:\\n re-
turn 0.572518348372519\\n elif -32.5 >= torquev35_r_Nm > -37.5:\\n
return 0.628062859898562\\n elif -27.5 >= torquev35_r_Nm > -32.5:\\n
return 0.680406586919219\\n elif -22.5 >= torquev35_r_Nm > -27.5:\\n
return 0.737424308689985\\n elif -17.5 >= torquev35_r_Nm > -22.5:\\n
return 0.781179207736998\\n elif -12.5 >= torquev35_r_Nm > -17.5:\\n
return 0.809803596145166\\n elif -7.5 >= torquev35_r_Nm > -12.5:\\n
return 0.818725408364537\\n elif 0 >= torquev35_r_Nm > -7.5:\\n
return 0.759422563052545\\n elif 0 < torquev35_r_Nm < 7.5:\\n
return 0.772907061038415\\n elif 7.5 <= torquev35_r_Nm < 12.5:\\n
return 0.820490814499513\\n elif 12.5 <= torquev35_r_Nm < 17.5:\\n
return 0.811626316454911\\n elif 17.5 <= torquev35_r_Nm < 22.5:\\n
return 0.805890003387917\\n elif 22.5 <= torquev35_r_Nm < 27.5:\\n
return 0.773830012847367\\n elif 27.5 <= torquev35_r_Nm:\\n re-
turn 0.756120670347907")

Process: Add Field (7)
arcpy.AddField_management(ebike_postgres_ways_calculation__16_, "motoref-
ficiencyv5", "DOUBLE", "", "", "", "motorefficiencyvelocity5", "NULLA-
BLE", "NON_REQUIRED", "")

Process: Calculate Field (2)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__29_,
"motorefficiencyv5", "meff5(!torquev5_Nm!)", "PYTHON_9.3", "def
meff5(torquev5_Nm):\\n if -12.5 >= torquev5_Nm:\\n return
0.1686509334044\\n elif -7.5 >= torquev5_Nm > -12.5:\\n return

XXVI Optimizing the Operation Range of E-Bikes in Routing Systems

0.400272727088039\\n elif 0 >= torquev5_Nm > -7.5:\\n return
0.53365978248219\\n elif 0 < torquev5_Nm < 7.5:\\n return
0.623834964702797\\n elif 7.5 <= torquev5_Nm < 12.5:\\n return
0.579450836444724\\n elif 12.5 <= torquev5_Nm < 17.5:\\n return
0.514837509676393\\n elif 17.5 <= torquev5_Nm < 22.5:\\n return
0.472091740648567\\n elif 22.5 <= torquev5_Nm < 27.5:\\n return
0.409172192178427\\n elif 27.5 <= torquev5_Nm < 32.5:\\n return
0.358790286998961\\n elif 32.5 <= torquev5_Nm < 37.5:\\n return
0.32394748442385\\n elif 37.5 <= torquev5_Nm:\\n return
0.192834086191931")

Process: Add Field (2)
arcpy.AddField_management(ebike_postgres_ways_calculation__3_, "motoref-
ficiencyv10", "DOUBLE", "", "", "", "motorefficiencyvelocity10", "NULLA-
BLE", "NON_REQUIRED", "")

Process: Calculate Field (11)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__32_,
"motorefficiencyv10", "meff10(!torquev10_Nm!)", "PYTHON_9.3", "def
meff10(torquev10_Nm):\\n if -27.5 >= torquev10_Nm:\\n return
0.137684115952318\\n elif -22.5 >= torquev10_Nm > -27.5:\\n re-
turn 0.312279619894597\\n elif -17.5 >= torquev10_Nm > -22.5:\\n
return 0.459405191207038\\n elif -12.5 >= torquev10_Nm > -17.5:\\n
return 0.556210442620491\\n elif -7.5 >= torquev10_Nm > -12.5:\\n
return 0.660850232379088\\n elif 0 >= torquev10_Nm > -7.5:\\n
return 0.68784176628815\\n elif 0 < torquev10_Nm < 7.5:\\n re-
turn 0.715972669192336\\n elif 7.5 <= torquev10_Nm < 12.5:\\n
return 0.701007821443731\\n elif 12.5 <= torquev10_Nm < 17.5:\\n
return 0.654257533958745\\n elif 17.5 <= torquev10_Nm < 22.5:\\n
return 0.622696398091954\\n elif 22.5 <= torquev10_Nm < 27.5:\\n
return 0.56559006689693\\n elif 27.5 <= torquev10_Nm < 32.5:\\n
return 0.514923576679544\\n elif 32.5 <= torquev10_Nm < 37.5:\\n
return 0.476584799195279\\n elif 37.5 <= torquev10_Nm:\\n re-
turn 0.305739781527573")

Process: Add Field (11)
arcpy.AddField_management(ebike_postgres_ways_calculation__4_, "motoref-
ficiencyv15", "DOUBLE", "", "", "", "motorefficiencyvelocity15", "NULLA-
BLE", "NON_REQUIRED", "")

Process: Calculate Field (14)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__35_,
"motorefficiencyv15", "meff15(!torquev15_Nm!)", "PYTHON_9.3", "def
meff15(torquev15_Nm):\\n if -27.5 >= torquev15_Nm:\\n return
0.137684115952318\\n elif -22.5 >= torquev15_Nm > -27.5:\\n re-
turn 0.312279619894597\\n elif -17.5 >= torquev15_Nm > -22.5:\\n
return 0.459405191207038\\n elif -12.5 >= torquev15_Nm > -17.5:\\n
return 0.556210442620491\\n elif -7.5 >= torquev15_Nm > -12.5:\\n
return 0.660850232379088\\n elif 0 >= torquev15_Nm > -7.5:\\n
return 0.68784176628815\\n elif 0 < torquev15_Nm < 7.5:\\n re-
turn 0.715972669192336\\n elif 7.5 <= torquev15_Nm < 12.5:\\n
return 0.701007821443731\\n elif 12.5 <= torquev15_Nm < 17.5:\\n
return 0.654257533958745\\n elif 17.5 <= torquev15_Nm < 22.5:\\n
return 0.622696398091954\\n elif 22.5 <= torquev15_Nm < 27.5:\\n
return 0.56559006689693\\n elif 27.5 <= torquev15_Nm < 32.5:\\n
return 0.514923576679544\\n elif 32.5 <= torquev15_Nm < 37.5:\\n
return 0.476584799195279\\n elif 37.5 <= torquev15_Nm:\\n re-
turn 0.305739781527573")

XXVII

Appendix

Process: Add Field (13)
arcpy.AddField_management(ebike_postgres_ways_calculation__5_, "motoref-
ficiencyv20", "DOUBLE", "", "", "", "motorefficiencyvelocity20", "NULLA-
BLE", "NON_REQUIRED", "")

Process: Calculate Field (16)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__39_,
"motorefficiencyv20", "meff20(!torquev20_Nm!)", "PYTHON_9.3", "def
meff20(torquev20_Nm):\\n if -37.5 >= torquev20_Nm:\\n return
0.242985328431138\\n elif -32.5 >= torquev20_Nm > -37.5:\\n re-
turn 0.326487747096875\\n elif -27.5 >= torquev20_Nm > -32.5:\\n
return 0.406298826260984\\n elif -22.5 >= torquev20_Nm > -27.5:\\n
return 0.53371216133064\\n elif -17.5 >= torquev20_Nm > -22.5:\\n
return 0.61970983060857\\n elif -12.5 >= torquev20_Nm > -17.5:\\n
return 0.684670290041407\\n elif -7.5 >= torquev20_Nm > -12.5:\\n
return 0.751571154518068\\n elif 0 >= torquev20_Nm > -7.5:\\n
return 0.722428702257428\\n elif 0 < torquev20_Nm < 7.5:\\n re-
turn 0.749823207947012\\n elif 7.5 <= torquev20_Nm < 12.5:\\n
return 0.756144166249551\\n elif 12.5 <= torquev20_Nm < 17.5:\\n
return 0.727493370155266\\n elif 17.5 <= torquev20_Nm < 22.5:\\n
return 0.704447090103871\\n elif 22.5 <= torquev20_Nm < 27.5:\\n
return 0.653827051136146\\n elif 27.5 <= torquev20_Nm < 32.5:\\n
return 0.610366351999488\\n elif 32.5 <= torquev20_Nm < 37.5:\\n
return 0.570148382769345\\n elif 37.5 <= torquev20_Nm:\\n re-
turn 0.411535127628699")

Process: Add Field (16)
arcpy.AddField_management(ebike_postgres_ways_calculation__6_, "motoref-
ficiencyv25", "DOUBLE", "", "", "", "motorefficiencyvelocity25", "NULLA-
BLE", "NON_REQUIRED", "")

Process: Calculate Field (17)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__41_,
"motorefficiencyv25", "meff25(!torquev25_Nm!)", "PYTHON_9.3", "def
meff25(torquev25_Nm):\\n if -37.5 >= torquev25_Nm:\\n return
0.409268259437775\\n elif -32.5 >= torquev25_Nm > -37.5:\\n re-
turn 0.481313215219602\\n elif -27.5 >= torquev25_Nm > -32.5:\\n
return 0.54783588540812\\n elif -22.5 >= torquev25_Nm > -27.5:\\n
return 0.641936048794025\\n elif -17.5 >= torquev25_Nm > -22.5:\\n
return 0.707092957349041\\n elif -12.5 >= torquev25_Nm > -17.5:\\n
return 0.749965174434069\\n elif -7.5 >= torquev25_Nm > -12.5:\\n
return 0.793345434388403\\n elif 0 >= torquev25_Nm > -7.5:\\n
return 0.77195594049356\\n elif 0 < torquev25_Nm < 7.5:\\n re-
turn 0.775650893643593\\n elif 7.5 <= torquev25_Nm < 12.5:\\n
return 0.783856109033499\\n elif 12.5 <= torquev25_Nm < 17.5:\\n
return 0.764640691523341\\n elif 17.5 <= torquev25_Nm < 22.5:\\n
return 0.748987636783427\\n elif 22.5 <= torquev25_Nm < 27.5:\\n
return 0.705186831992523\\n elif 27.5 <= torquev25_Nm < 32.5:\\n
return 0.666858058750972\\n elif 32.5 <= torquev25_Nm:\\n re-
turn 0.640896012607356")

Process: Add Field (17)
arcpy.AddField_management(ebike_postgres_ways_calculation__7_, "motoref-
ficiencyv30", "DOUBLE", "", "", "", "motorefficiencyvelocity30", "NULLA-
BLE", "NON_REQUIRED", "")

Process: Calculate Field (20)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__43_,
"motorefficiencyv30", "meff30(!torquev30_Nm!)", "PYTHON_9.3", "def

XXVIII Optimizing the Operation Range of E-Bikes in Routing Systems

meff30(torquev30_Nm):\\n if -37.5 >= torquev30_Nm:\\n return
0.503961290702052\\n elif -32.5 >= torquev30_Nm > -37.5:\\n re-
turn 0.574071561001055\\n elif -27.5 >= torquev30_Nm > -32.5:\\n
return 0.62418619075502\\n elif -22.5 >= torquev30_Nm > -27.5:\\n
return 0.692363882400556\\n elif -17.5 >= torquev30_Nm > -22.5:\\n
return 0.748143465737966\\n elif -12.5 >= torquev30_Nm > -17.5:\\n
return 0.785475525219002\\n elif -7.5 >= torquev30_Nm > -12.5:\\n
return 0.810884982216235\\n elif 0 >= torquev30_Nm > -7.5:\\n
return 0.767802941434139\\n elif 0 < torquev30_Nm < 7.5:\\n re-
turn 0.766445865111972\\n elif 7.5 <= torquev30_Nm < 12.5:\\n
return 0.802113888658795\\n elif 12.5 <= torquev30_Nm < 17.5:\\n
return 0.787104493659772\\n elif 17.5 <= torquev30_Nm < 22.5:\\n
return 0.775961036216906\\n elif 22.5 <= torquev30_Nm < 27.5:\\n
return 0.742906970272747\\n elif 27.5 <= torquev30_Nm:\\n re-
turn 0.709593390721885")

Process: Add Field (20)
arcpy.AddField_management(ebike_postgres_ways_calculation__8_, "motoref-
ficiencyv35", "DOUBLE", "", "", "", "motorefficiencyvelocity35", "NULLA-
BLE", "NON_REQUIRED", "")

Process: Calculate Field (21)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__46_,
"motorefficiencyv35", "meff35(!torquev35_Nm!)", "PYTHON_9.3", "def
meff35(torquev35_Nm):\\n if -37.5 >= torquev35_Nm:\\n return
0.572518348372519\\n elif -32.5 >= torquev35_Nm > -37.5:\\n re-
turn 0.628062859898562\\n elif -27.5 >= torquev35_Nm > -32.5:\\n
return 0.680406586919219\\n elif -22.5 >= torquev35_Nm > -27.5:\\n
return 0.737424308689985\\n elif -17.5 >= torquev35_Nm > -22.5:\\n
return 0.781179207736998\\n elif -12.5 >= torquev35_Nm > -17.5:\\n
return 0.809803596145166\\n elif -7.5 >= torquev35_Nm > -12.5:\\n
return 0.818725408364537\\n elif 0 >= torquev35_Nm > -7.5:\\n
return 0.759422563052545\\n elif 0 < torquev35_Nm < 7.5:\\n re-
turn 0.772907061038415\\n elif 7.5 <= torquev35_Nm < 12.5:\\n
return 0.820490814499513\\n elif 12.5 <= torquev35_Nm < 17.5:\\n
return 0.811626316454911\\n elif 17.5 <= torquev35_Nm < 22.5:\\n
return 0.805890003387917\\n elif 22.5 <= torquev35_Nm < 27.5:\\n
return 0.773830012847367\\n elif 27.5 <= torquev35_Nm:\\n re-
turn 0.756120670347907")

Process: energyconsumptionsubmodel_st2_3
arcpy.energyconsumptionsubmodelst23_energy_consumption_model("5", "35",
"5", ebike_postgres_ways_calculation__15_)

XXIX

Appendix

energyconsumptionsubmodel_st2_1.py

-*- coding: utf-8 -*-

energyconsumptionsubmodel_st2_1.py
Created on: 2017-05-29 11:03:27.00000
(generated by ArcGIS/ModelBuilder)
Usage: energyconsumptionsubmodel_st2_1 <Scratch> <Workspace> <Extent>
<temp_osm> <osm2pgrouting_exe> <mapconfig_for_bicycles_xml> <DEM>
<weight_e_bike_kg> <weight_driver_kg> <temperature_celsius> <wheel_diame-
ter_inches> <gearbox_efficiency> <gradeability_degree> <rolling_coeffi-
cient> <ebike_postgres_ways_calculation__55_> <Download_URL> <auxil-
iary_components_W> <factor_human_torque>
Description:

Import arcpy module
import arcpy

Load required toolboxes
arcpy.ImportToolbox("C:/Users/sim_h/OneDrive/Dokumente/1_Uni_Wien/16_Mas-
terarbeit/4_Daten/Daten/Workspace/databaseconnectionfile.sde/ebike.post-
gres.energy_consumption_model")

Script arguments
Scratch = arcpy.GetParameterAsText(0)
if Scratch == '#' or not Scratch:
 Scratch = "C:\\Users\\sim_h\\OneDrive\\Dokumente\\1_Uni_Wien\\16_Mas-
terarbeit\\4_Daten\\Daten\\Workspace\\Scratch" # provide a default value
if unspecified

Workspace = arcpy.GetParameterAsText(1)
if Workspace == '#' or not Workspace:
 Workspace = "Database Connections\\Connection to localhost.sde" #
provide a default value if unspecified

Extent = arcpy.GetParameterAsText(2)
if Extent == '#' or not Extent:
 Extent = "8.485 47.35 8.57 47.42" # provide a default value if un-
specified

temp_osm = arcpy.GetParameterAsText(3)
if temp_osm == '#' or not temp_osm:
 temp_osm = "%Scratch%\\temp.osm" # provide a default value if unspec-
ified

osm2pgrouting_exe = arcpy.GetParameterAsText(4)
if osm2pgrouting_exe == '#' or not osm2pgrouting_exe:
 osm2pgrouting_exe = "C:\\Program Files\\Post-
greSQL\\9.4\\bin\\osm2pgrouting.exe" # provide a default value if unspec-
ified

mapconfig_for_bicycles_xml = arcpy.GetParameterAsText(5)
if mapconfig_for_bicycles_xml == '#' or not mapconfig_for_bicycles_xml:
 mapconfig_for_bicycles_xml = "C:\\Program Files\\Post-
greSQL\\9.4\\bin\\mapconfig_for_bicycles.xml" # provide a default value
if unspecified

XXX Optimizing the Operation Range of E-Bikes in Routing Systems

DEM = arcpy.GetParameterAsText(6)
if DEM == '#' or not DEM:
 DEM = "%Scratch%\\DEM.tif" # provide a default value if unspecified

weight_e_bike_kg = arcpy.GetParameterAsText(7)
if weight_e_bike_kg == '#' or not weight_e_bike_kg:
 weight_e_bike_kg = "27" # provide a default value if unspecified

weight_driver_kg = arcpy.GetParameterAsText(8)
if weight_driver_kg == '#' or not weight_driver_kg:
 weight_driver_kg = "100" # provide a default value if unspecified

temperature_celsius = arcpy.GetParameterAsText(9)
if temperature_celsius == '#' or not temperature_celsius:
 temperature_celsius = "3" # provide a default value if unspecified

wheel_diameter_inches = arcpy.GetParameterAsText(10)
if wheel_diameter_inches == '#' or not wheel_diameter_inches:
 wheel_diameter_inches = "26" # provide a default value if unspecified

gearbox_efficiency = arcpy.GetParameterAsText(11)
if gearbox_efficiency == '#' or not gearbox_efficiency:
 gearbox_efficiency = "0.98" # provide a default value if unspecified

gradeability_degree = arcpy.GetParameterAsText(12)
if gradeability_degree == '#' or not gradeability_degree:
 gradeability_degree = "15" # provide a default value if unspecified

rolling_coefficient = arcpy.GetParameterAsText(13)
if rolling_coefficient == '#' or not rolling_coefficient:
 rolling_coefficient = "0.003" # provide a default value if unspeci-
fied

ebike_postgres_ways_calculation__55_ = arcpy.GetParameterAsText(14)
if ebike_postgres_ways_calculation__55_ == '#' or not ebike_post-
gres_ways_calculation__55_:
 ebike_postgres_ways_calculation__55_ = "%Workspace%\\ebike.post-
gres.ways_calculation" # provide a default value if unspecified

Download_URL = arcpy.GetParameterAsText(15)
if Download_URL == '#' or not Download_URL:
 Download_URL = "http://www.overpass-api.de/api/xapi_meta?" # provide
a default value if unspecified

auxiliary_components_W = arcpy.GetParameterAsText(16)
if auxiliary_components_W == '#' or not auxiliary_components_W:
 auxiliary_components_W = "8.37" # provide a default value if unspeci-
fied

factor_human_torque = arcpy.GetParameterAsText(17)
if factor_human_torque == '#' or not factor_human_torque:
 factor_human_torque = "0.1" # provide a default value if unspecified

Local variables:
ebike_postgres_ways = "%Workspace%\\ebike.postgres.ways"
successful = "true"
Delete_succeeded__3_ = successful

XXXI

Appendix

ebike_postgres_ways_calculation__2_ = "%Workspace%\\ebike.post-
gres.ways_calculation"
ebike_postgres_ways_calculation__4_ = ebike_postgres_ways_calculation__2_
ebike_postgres_ways_calculation__23_ = ebike_postgres_ways_calcula-
tion__2_
ebike_postgres_ways_target = "%Workspace%\\ebike.postgres.ways_target"
ebike_postgres_target_for_extract = "Database Connections\\Connection to
localhost.sde\\ebike.postgres.target_for_extract"
dem_proj = "%Workspace%\\ebike.postgres.dem_proj"
ebike_postgres_target_extract = "%Workspace%\\ebike.postgres.target_ex-
tract"
ebike_postgres_target_extract__3_ = ebike_postgres_target_extract
ebike_postgres_target_extract__2_ = ebike_postgres_target_extract__3_
ebike_postgres_target_extract__4_ = ebike_postgres_target_extract__2_
ebike_postgres_ways_calculation__36_ = ebike_postgres_ways_calcula-
tion__23_
ebike_postgres_ways_calculation__47_ = ebike_postgres_ways_calcula-
tion__23_
ebike_postgres_ways_source = "%Workspace%\\ebike.postgres.ways_source"
ebike_postgres_source_for_extract = "Database Connections\\Connection to
localhost.sde\\ebike.postgres.source_for_extract"
ebike_postgres_source_extract = "%Workspace%\\ebike.postgres.source_ex-
tract"
ebike_postgres_source_extract__3_ = ebike_postgres_source_extract
ebike_postgres_source_extract__2_ = ebike_postgres_source_extract__3_
ebike_postgres_source_extract__4_ = ebike_postgres_source_extract__2_
ebike_postgres_ways_calculation__10_ = ebike_postgres_ways_calcula-
tion__36_
ebike_postgres_ways_calculation__33_ = ebike_postgres_ways_calcula-
tion__10_
ebike_postgres_ways_calculation__46_ = ebike_postgres_ways_calcula-
tion__33_
ebike_postgres_ways_calculation__16_ = ebike_postgres_ways_calcula-
tion__46_
ebike_postgres_ways_calculation__9_ = ebike_postgres_ways_calcula-
tion__16_
ebike_postgres_ways_calculation__8_ = ebike_postgres_ways_calculation__9_
ebike_postgres_ways_calculation__12_ = ebike_postgres_ways_calcula-
tion__8_
ebike_postgres_ways_calculation__13_ = ebike_postgres_ways_calcula-
tion__12_
ebike_postgres_ways_calculation = ebike_postgres_ways_calculation__13_
unsuccessful = "false"
ebike_postgres_ways_calculation__15_ = ebike_postgres_ways_calcula-
tion__47_
ebike_postgres_ways_calculation__39_ = ebike_postgres_ways_calcula-
tion__15_
ebike_postgres_ways_calculation__25_ = ebike_postgres_ways_calcula-
tion__39_
ebike_postgres_ways_calculation__5_ = ebike_postgres_ways_calcula-
tion__25_
ebike_postgres_ways_calculation__11_ = ebike_postgres_ways_calcula-
tion__5_
ebike_postgres_ways_calculation__3_ = ebike_postgres_ways_calcula-
tion__11_
ebike_postgres_ways_calculation__7_ = ebike_postgres_ways_calculation__3_
ebike_postgres_ways_calculation__14_ = ebike_postgres_ways_calcula-
tion__7_
Delete_succeeded = "false"

XXXII Optimizing the Operation Range of E-Bikes in Routing Systems

Delete_succeeded__2_ = "false"

Set Geoprocessing environments
arcpy.env.scratchWorkspace = "C:\\Users\\sim_h\\OneDrive\\Doku-
mente\\1_Uni_Wien\\16_Masterarbeit\\4_Daten\\Daten\\Workspace\\Scratch"
arcpy.env.workspace = "Database Connections\\Connection to localhost.sde"

Process: Download OSM Data (XAPI)
tempEnvironment0 = arcpy.env.scratchWorkspace
arcpy.env.scratchWorkspace = Scratch
arcpy.XAPIDownload_osmtools(Download_URL, Extent, "*", "highway=pri-
mary|primary_link|secondary|tertiary|residential|living_street|track|pe-
destrian|path|cycleway|footway|byway|unclassified|secondary_link|ter-
tiary_link|lane|track|opposite_lane|oppo-
site|grade1|grade2|grade3|grade4|grade5|roundabout", temp_osm)
arcpy.env.scratchWorkspace = tempEnvironment0

Process: osm2pgrouting
arcpy.osm2pgrouting_energy_consumption_model(osm2pgrouting_exe, temp_osm,
mapconfig_for_bicycles_xml)

Process: Copy
arcpy.Copy_management(ebike_postgres_ways, ebike_postgres_ways_calcula-
tion__2_, "%Workspace\\ebike.postgres.ways")

Process: Make XY Event Layer (4)
arcpy.MakeXYEventLayer_management(ebike_postgres_ways_calculation__2_,
"x2", "y2", ebike_postgres_ways_target, "GEOGCS['GCS_WGS_1984',DA-
TUM['D_WGS_1984',SPHE-
ROID['WGS_1984',6378137.0,298.257223563]],PRIMEM['Green-
wich',0.0],UNIT['Degree',0.0174532925199433]];-400 -400 1000000000;-
100000 10000;-100000 10000;8.98315284119522E-09;0.001;0.001;IsHighPreci-
sion", "")

Process: Feature Class to Feature Class
arcpy.FeatureClassToFeatureClass_conversion(ebike_postgres_ways_target,
Workspace, "target_for_extract", "", "", "")

Process: Project Raster
arcpy.ProjectRaster_management(DEM, dem_proj, "GEOGCS['GCS_WGS_1984',DA-
TUM['D_WGS_1984',SPHE-
ROID['WGS_1984',6378137.0,298.257223563]],PRIMEM['Green-
wich',0.0],UNIT['Degree',0.0174532925199433]]", "NEAREST",
"2.21884308916892E-05 2.21884308916892E-05", "CH1903_To_WGS_1984_1", "",
"PROJCS['CH1903_LV03',GEOGCS['GCS_CH1903',DATUM['D_CH1903',SPHEROID['Bes-
sel_1841',6377397.155,299.1528128]],PRIMEM['Greenwich',0.0],UNIT['De-
gree',0.0174532925199433]],PROJECTION['Hotine_Oblique_Mercator_Azi-
muth_Center'],PARAMETER['False_Easting',600000.0],PARAMETER['False_North-
ing',200000.0],PARAMETER['Scale_Factor',1.0],PARAMETER['Azi-
muth',90.0],PARAMETER['Longitude_Of_Center',7.439583333333333],PARAME-
TER['Latitude_Of_Center',46.95240555555556],UNIT['Me-
ter',1.0]],VERTCS['LN_1902',VDATUM['Landesnivellement_1902'],PARAME-
TER['Vertical_Shift',0.0],PARAMETER['Direction',1.0],UNIT['Meter',1.0]]")

Process: Extract Values to Points
tempEnvironment0 = arcpy.env.workspace
arcpy.env.workspace = Workspace
arcpy.gp.ExtractValuesToPoints_sa(ebike_postgres_target_for_extract,
dem_proj, ebike_postgres_target_extract, "INTERPOLATE", "VALUE_ONLY")

XXXIII

Appendix

arcpy.env.workspace = tempEnvironment0

Process: Add Field (10)
arcpy.AddField_management(ebike_postgres_target_extract, "target_el",
"DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (10)
arcpy.CalculateField_management(ebike_postgres_target_extract__3_, "tar-
get_el", "!rastervalu!", "PYTHON_9.3", "")

Process: Delete Field (3)
arcpy.DeleteField_management(ebike_postgres_target_extract__2_, "raster-
valu")

Process: Join Field (5)
arcpy.JoinField_management(ebike_postgres_ways_calculation__2_, "gid",
ebike_postgres_target_extract__4_, "gid", "target_el")

Process: Make XY Event Layer (3)
arcpy.MakeXYEventLayer_management(ebike_postgres_ways_calculation__2_,
"x1", "y1", ebike_postgres_ways_source, "GEOGCS['GCS_WGS_1984',DA-
TUM['D_WGS_1984',SPHE-
ROID['WGS_1984',6378137.0,298.257223563]],PRIMEM['Green-
wich',0.0],UNIT['Degree',0.0174532925199433]];-400 -400 1000000000;-
100000 10000;-100000 10000;8.98315284119522E-09;0.001;0.001;IsHighPreci-
sion", "")

Process: Feature Class to Feature Class (2)
arcpy.FeatureClassToFeatureClass_conversion(ebike_postgres_ways_source,
Workspace, "source_for_extract", "", "", "")

Process: Extract Values to Points (2)
tempEnvironment0 = arcpy.env.workspace
arcpy.env.workspace = Workspace
arcpy.gp.ExtractValuesToPoints_sa(ebike_postgres_source_for_extract,
dem_proj, ebike_postgres_source_extract, "INTERPOLATE", "VALUE_ONLY")
arcpy.env.workspace = tempEnvironment0

Process: Add Field (11)
arcpy.AddField_management(ebike_postgres_source_extract, "source_el",
"DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (11)
arcpy.CalculateField_management(ebike_postgres_source_extract__3_,
"source_el", "!rastervalu!", "PYTHON_9.3", "")

Process: Delete Field (2)
arcpy.DeleteField_management(ebike_postgres_source_extract__2_, "raster-
valu")

Process: Join Field (4)
arcpy.JoinField_management(ebike_postgres_ways_calculation__2_, "gid",
ebike_postgres_source_extract__4_, "gid", "source_el")

Process: Add Field (12)
arcpy.AddField_management(ebike_postgres_ways_calculation__23_, "slope-
perc", "DOUBLE", "", "", "", "slope_percentage", "NULLABLE", "NON_RE-
QUIRED", "")

XXXIV Optimizing the Operation Range of E-Bikes in Routing Systems

Process: Calculate Field (12)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__36_,
"slopeperc", "(!target_el!-!source_el!)/!length_m!*100", "PYTHON_9.3",
"")

Process: Add Field (5)
arcpy.AddField_management(ebike_postgres_ways_calculation__10_, "slopean-
gle_degree", "DOUBLE", "", "", "", "angle_of_slope_degree", "NULLABLE",
"NON_REQUIRED", "")

Process: Calculate Field (5)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__33_,
"slopeangle_degree", "math.degrees(math.atan((!target_el!-
!source_el!)/!length_m!))", "PYTHON_9.3", "")

Process: Add Field (6)
arcpy.AddField_management(ebike_postgres_ways_calculation__46_,
"climbres_N", "DOUBLE", "", "", "", "climbingresistance_N", "NULLABLE",
"NON_REQUIRED", "")

Process: Calculate Field (6)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__16_,
"climbres_N", "(%weight_driver_kg%+%weight_e-
bike_kg%)*9.806*math.sin(math.radians(!slopeangle_degree!))", "PY-
THON_9.3", "")

Process: Add Field (13)
arcpy.AddField_management(ebike_postgres_ways_calculation__9_,
"rollres_N", "DOUBLE", "", "", "", "rollingresistance_N", "NULLABLE",
"NON_REQUIRED", "")

Process: Calculate Field (14)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__8_,
"rollres_N", "%rolling_coefficient%*(%weight_driver_kg%+%weight_e-
bike_kg%)*9.806*math.cos(math.radians(!slopeangle_degree!))", "PY-
THON_9.3", "")

Process: Add Field (8)
arcpy.AddField_management(ebike_postgres_ways_calculation__12_, "pres-
sure_hPa", "DOUBLE", "", "", "", "ambientairpressure_hPa", "NULLABLE",
"NON_REQUIRED", "")

Process: Calculate Field (8)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__13_,
"pressure_hPa", "1013.25*math.pow(1-(0.0065*((!tar-
get_el!+!source_el!)/2))/(%temperature_celsius%+273.15),5.255)", "PY-
THON_9.3", "")

Process: Add Field (25)
arcpy.AddField_management(ebike_postgres_ways_calculation__23_, "slope-
perc_r", "DOUBLE", "", "", "", "slope_percentage_reverse", "NULLABLE",
"NON_REQUIRED", "")

Process: Calculate Field (25)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__47_,
"slopeperc_r", "(!source_el!-!target_el!)/!length_m!*100", "PYTHON_9.3",
"")

Process: Add Field (20)

XXXV

Appendix

arcpy.AddField_management(ebike_postgres_ways_calculation__15_, "slopean-
gle_r_degree", "DOUBLE", "", "", "", "angle_of_slope_reverse_degree",
"NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (20)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__39_,
"slopeangle_r_degree", "math.degrees(math.atan((!source_el!-!tar-
get_el!)/!length_m!))", "PYTHON_9.3", "")

Process: Add Field (21)
arcpy.AddField_management(ebike_postgres_ways_calculation__25_,
"climbres_r_N", "DOUBLE", "", "", "", "climbingresistance_reverse_N",
"NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (21)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__5_,
"climbres_r_N", "(%weight_driver_kg%+%weight_e-
bike_kg%)*9.806*math.sin(math.radians(!slopeangle_r_degree!))", "PY-
THON_9.3", "")

Process: Add Field (28)
arcpy.AddField_management(ebike_postgres_ways_calculation__11_,
"rollres_r_N", "DOUBLE", "", "", "", "rollingresistance_reverse_N", "NUL-
LABLE", "NON_REQUIRED", "")

Process: Calculate Field (28)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__3_,
"rollres_r_N", "%rolling_coefficient%*(%weight_driver_kg%+%weight_e-
bike_kg%)*9.806*math.cos(math.radians(!slopeangle_degree!))", "PY-
THON_9.3", "")

Process: Add Field (23)
arcpy.AddField_management(ebike_postgres_ways_calculation__7_, "pres-
sure_r_hPa", "DOUBLE", "", "", "", "ambientairpressure_reverse_hPa",
"NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (23)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__14_,
"pressure_r_hPa", "1013.25*math.pow(1-(0.0065*((!source_el!+!tar-
get_el!)/2))/(%temperature_celsius%+273.15),5.255)", "PYTHON_9.3", "")

Process: Delete(3)
arcpy.Delete_management(ebike_postgres_target_for_extract, "")

Process: Delete (2)
arcpy.Delete_management(ebike_postgres_source_for_extract, "")

Process: Delete
arcpy.Delete_management(temp_osm, "")

XXXVI Optimizing the Operation Range of E-Bikes in Routing Systems

energyconsumptionsubmodel_st2_2.py

-*- coding: utf-8 -*-

energyconsumptionsubmodel_st2_2.py
Created on: 2017-05-29 11:03:41.00000
(generated by ArcGIS/ModelBuilder)
Usage: energyconsumptionsubmodel_st2_2 <from_velocity_kmh> <to_veloc-
ity_kmh> <by_velocity_kmh> <ebike_postgres_ways_calculation__55_>
<ebike_postgres_ways_calculation__2_>
Description:

Import arcpy module
import arcpy

Load required toolboxes
arcpy.ImportToolbox("Model Functions")

Script arguments
from_velocity_kmh = arcpy.GetParameterAsText(0)
if from_velocity_kmh == '#' or not from_velocity_kmh:
 from_velocity_kmh = "5" # provide a default value if unspecified

to_velocity_kmh = arcpy.GetParameterAsText(1)
if to_velocity_kmh == '#' or not to_velocity_kmh:
 to_velocity_kmh = "35" # provide a default value if unspecified

by_velocity_kmh = arcpy.GetParameterAsText(2)
if by_velocity_kmh == '#' or not by_velocity_kmh:
 by_velocity_kmh = "5" # provide a default value if unspecified

ebike_postgres_ways_calculation__55_ = arcpy.GetParameterAsText(3)
if ebike_postgres_ways_calculation__55_ == '#' or not ebike_post-
gres_ways_calculation__55_:
 ebike_postgres_ways_calculation__55_ = "Database Connections\\Connec-
tion to localhost.sde\\ebike.postgres.ways_calculation" # provide a de-
fault value if unspecified

ebike_postgres_ways_calculation__2_ = arcpy.GetParameterAsText(4)
if ebike_postgres_ways_calculation__2_ == '#' or not ebike_post-
gres_ways_calculation__2_:
 ebike_postgres_ways_calculation__2_ = "Database Connections\\Connec-
tion to localhost.sde\\ebike.postgres.ways_calculation" # provide a de-
fault value if unspecified

Local variables:
ebike_postgres_ways_calculation__6_ = ebike_postgres_ways_calcula-
tion__55_
ebike_postgres_ways_calculation__35_ = ebike_postgres_ways_calcula-
tion__55_
velocity_kmh = from_velocity_kmh
ebike_postgres_ways_calculation = ebike_postgres_ways_calculation__6_
ebike_postgres_ways_calculation__37_ = ebike_postgres_ways_calculation
ebike_postgres_ways_calculation__33_ = ebike_postgres_ways_calcula-
tion__37_

XXXVII

Appendix

ebike_postgres_ways_calculation__3_ = ebike_postgres_ways_calcula-
tion__33_
ebike_postgres_ways_calculation__29_ = ebike_postgres_ways_calcula-
tion__35_
ebike_postgres_ways_calculation__39_ = ebike_postgres_ways_calcula-
tion__29_
ebike_postgres_ways_calculation__4_ = ebike_postgres_ways_calcula-
tion__39_
ebike_postgres_ways_calculation__5_ = ebike_postgres_ways_calculation__4_
ebike_postgres_ways_calculation__7_ = ebike_postgres_ways_calculation__5_

Set Geoprocessing environments
arcpy.env.scratchWorkspace = "C:\\Users\\sim_h\\OneDrive\\Doku-
mente\\1_Uni_Wien\\16_Masterarbeit\\4_Daten\\Daten\\Workspace\\Scratch"
arcpy.env.workspace = "Database Connections\\Connection to localhost.sde"

Process: For
arcpy.IterateCount_mb(from_velocity_kmh, to_velocity_kmh, by_veloc-
ity_kmh)

Process: Add Field (7)
arcpy.AddField_management(ebike_postgres_ways_calculation__55_,
"dragresv%velocity_kmh%_N", "DOUBLE", "", "", "", "dragresistanceveloc-
ity%velocity_kmh%_N", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (7)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__6_,
"dragresv%velocity_kmh%_N", "!pressure_hPa!*100/(2*287.058*(%tempera-
ture_celsius%+273.15))*1.15*0.5*math.pow((%velocity_kmh%/3.6),2)", "PY-
THON_9.3", "")

Process: Add Field
arcpy.AddField_management(ebike_postgres_ways_calculation,
"tracforcev%velocity_kmh%_N", "DOUBLE", "", "", "", "tractiveforceveloc-
ity%velocity_kmh%_N", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field
arcpy.CalculateField_management(ebike_postgres_ways_calculation__37_,
"tracforcev%velocity_kmh%_N", "!climbres_N!+!rollres_N!+!dragresv%veloc-
ity_kmh%_N!", "PYTHON_9.3", "")

Process: Add Field (2)
arcpy.AddField_management(ebike_postgres_ways_calculation__33_,
"torquev%velocity_kmh%_Nm", "DOUBLE", "", "", "", "torquevelocity%veloc-
ity_kmh%_Nm", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (2)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__3_,
"torquev%velocity_kmh%_Nm", "fachtor(!tracforcev%velocity_kmh%_N!, %fac-
tor_human_torque%, %wheel_diameter_inches%)", "PYTHON_9.3", "def fach-
tor(tracforcevvelocity_kmh_N, factor_human_torque, wheel_diame-
ter_inches):\\n if tracforcevvelocity_kmh_N > 0:\\n return
(tracforcevvelocity_kmh_N-(tracforcevvelocity_kmh_N*factor_hu-
man_torque))*((wheel_diameter_inches*0.0254)/2)\\n else:\\n re-
turn tracforcevvelocity_kmh_N*((wheel_diameter_inches*0.0254)/2)")

Process: Add Field (22)

XXXVIII Optimizing the Operation Range of E-Bikes in Routing Systems

arcpy.AddField_management(ebike_postgres_ways_calculation__55_,
"dragresv%velocity_kmh%_r_N", "DOUBLE", "", "", "", "dragresistanceveloc-
ity%velocity_kmh%_reverse_N", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (22)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__35_,
"dragresv%velocity_kmh%_r_N", "!pressure_r_hPa!*100/(2*287.058*(%tempera-
ture_celsius%+273.15))*1.15*0.55*math.pow((%velocity_kmh%/3.6),2)", "PY-
THON_9.3", "")

Process: Add Field (16)
arcpy.AddField_management(ebike_postgres_ways_calculation__29_,
"tracforcev%velocity_kmh%_r_N", "DOUBLE", "", "", "", "tractiveforce-
velocity%velocity_kmh%_reverse_N", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (16)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__39_,
"tracforcev%velocity_kmh%_r_N",
"!climbres_r_N!+!rollres_r_N!+!dragresv%velocity_kmh%_r_N!", "PY-
THON_9.3", "")

Process: Add Field (17)
arcpy.AddField_management(ebike_postgres_ways_calculation__4_,
"torquev%velocity_kmh%_r_Nm", "DOUBLE", "", "", "", "torquevelocity%ve-
locity_kmh%_reverse_Nm", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (17)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__5_,
"torquev%velocity_kmh%_r_Nm", "fachtorr(!tracforcev%velocity_kmh%_r_N!,
%factor_human_torque%, %wheel_diameter_inches%)", "PYTHON_9.3", "def
fachtorr(tracforcevvelocity_kmh_r_N, factor_human_torque, wheel_diame-
ter_inches):\\n if tracforcevvelocity_kmh_r_N > 0:\\n return
(tracforcevvelocity_kmh_r_N-(tracforcevvelocity_kmh_r_N*factor_hu-
man_torque))*((wheel_diameter_inches*0.0254)/2)\\n else:\\n re-
turn tracforcevvelocity_kmh_r_N*((wheel_diameter_inches*0.0254)/2)")

XXXIX

Appendix

energyconsumptionsubmodel_st2_3.py

-*- coding: utf-8 -*-

energyconsumptionsubmodel_st2_3.py
Created on: 2017-05-29 11:03:55.00000
(generated by ArcGIS/ModelBuilder)
Usage: energyconsumptionsubmodel_st2_3 <from_velocity_kmh> <to_veloc-
ity_kmh> <by_velocity_kmh> <ebike_postgres_ways_calculation__55_>
Description:

Import arcpy module
import arcpy

Load required toolboxes
arcpy.ImportToolbox("Model Functions")

Script arguments
from_velocity_kmh = arcpy.GetParameterAsText(0)
if from_velocity_kmh == '#' or not from_velocity_kmh:
 from_velocity_kmh = "5" # provide a default value if unspecified

to_velocity_kmh = arcpy.GetParameterAsText(1)
if to_velocity_kmh == '#' or not to_velocity_kmh:
 to_velocity_kmh = "35" # provide a default value if unspecified

by_velocity_kmh = arcpy.GetParameterAsText(2)
if by_velocity_kmh == '#' or not by_velocity_kmh:
 by_velocity_kmh = "5" # provide a default value if unspecified

ebike_postgres_ways_calculation__55_ = arcpy.GetParameterAsText(3)
if ebike_postgres_ways_calculation__55_ == '#' or not ebike_post-
gres_ways_calculation__55_:
 ebike_postgres_ways_calculation__55_ = "Database Connections\\Connec-
tion to localhost.sde\\ebike.postgres.ways_calculation" # provide a de-
fault value if unspecified

Local variables:
velocity_kmh = from_velocity_kmh
ebike_postgres_ways_calculation = ebike_postgres_ways_calculation__55_
ebike_postgres_ways_calculation__2_ = ebike_postgres_ways_calcula-
tion__55_
ebike_postgres_ways_calculation__27_ = ebike_postgres_ways_calculation
ebike_postgres_ways_calculation__9_ = ebike_postgres_ways_calcula-
tion__27_
ebike_postgres_ways_calculation__20_ = ebike_postgres_ways_calcula-
tion__27_
ebike_postgres_ways_calculation__11_ = ebike_postgres_ways_calcula-
tion__9_
ebike_postgres_ways_calculation__3_ = ebike_postgres_ways_calcula-
tion__11_
ebike_postgres_ways_calculation__31_ = ebike_postgres_ways_calcula-
tion__3_
ebike_postgres_ways_calculation__24_ = ebike_postgres_ways_calcula-
tion__31_

XL Optimizing the Operation Range of E-Bikes in Routing Systems

ebike_postgres_ways_calculation__13_ = ebike_postgres_ways_calcula-
tion__24_
ebike_postgres_ways_calculation__14_ = ebike_postgres_ways_calcula-
tion__20_
ebike_postgres_ways_calculation__4_ = ebike_postgres_ways_calcula-
tion__14_
ebike_postgres_ways_calculation__34_ = ebike_postgres_ways_calcula-
tion__4_
ebike_postgres_ways_calculation__28_ = ebike_postgres_ways_calcula-
tion__34_
ebike_postgres_ways_calculation__25_ = ebike_postgres_ways_calcula-
tion__28_
ebike_postgres_ways_calculation__30_ = ebike_postgres_ways_calcula-
tion__2_
ebike_postgres_ways_calculation__45_ = ebike_postgres_ways_calcula-
tion__30_
ebike_postgres_ways_calculation__38_ = ebike_postgres_ways_calcula-
tion__30_
ebike_postgres_ways_calculation__12_ = ebike_postgres_ways_calcula-
tion__38_
ebike_postgres_ways_calculation__6_ = ebike_postgres_ways_calcula-
tion__12_
ebike_postgres_ways_calculation__23_ = ebike_postgres_ways_calcula-
tion__6_
ebike_postgres_ways_calculation__19_ = ebike_postgres_ways_calcula-
tion__23_
ebike_postgres_ways_calculation__15_ = ebike_postgres_ways_calcula-
tion__19_
ebike_postgres_ways_calculation__26_ = ebike_postgres_ways_calcula-
tion__45_
ebike_postgres_ways_calculation__5_ = ebike_postgres_ways_calcula-
tion__26_
ebike_postgres_ways_calculation__18_ = ebike_postgres_ways_calcula-
tion__5_
ebike_postgres_ways_calculation__17_ = ebike_postgres_ways_calcula-
tion__18_
ebike_postgres_ways_calculation__16_ = ebike_postgres_ways_calcula-
tion__17_

Set Geoprocessing environments
arcpy.env.scratchWorkspace = "C:\\Users\\sim_h\\OneDrive\\Doku-
mente\\1_Uni_Wien\\16_Masterarbeit\\4_Daten\\Daten\\Workspace\\Scratch"
arcpy.env.workspace = "Database Connections\\Connection to localhost.sde"

Process: For
arcpy.IterateCount_mb(from_velocity_kmh, to_velocity_kmh, by_veloc-
ity_kmh)

Process: Add Field (3)
arcpy.AddField_management(ebike_postgres_ways_calculation__55_, "angu-
larv%velocity_kmh%_s_inverse", "DOUBLE", "", "", "", "angularwheelveloc-
ity%velocity_kmh%_s_inverse", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (3)
arcpy.CalculateField_management(ebike_postgres_ways_calculation, "angu-
larv%velocity_kmh%_s_inverse", "(%velocity_kmh%/3.6)/((%wheel_diame-
ter_inches%*0.0254)/2)", "PYTHON_9.3", "")

Process: Add Field (4)

XLI

Appendix

arcpy.AddField_management(ebike_postgres_ways_calculation__27_, "v%veloc-
ity_kmh%_rec_W", "DOUBLE", "", "", "", "velocity%velocity_kmh%_recupera-
tion_W", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (4)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__9_,
"v%velocity_kmh%_rec_W", "pemrecW(!slopeangle_degree!, %gradeability_de-
gree%,!torquev%velocity_kmh%_Nm!, !angularv%velocity_kmh%_s_inverse!,
!motorefficiencyv%velocity_kmh%!, %gearbox_efficiency%, %auxiliary_compo-
nents_W%)", "PYTHON_9.3", "def pemrecW(slopeangle_degree, gradeabil-
ity_degree, torquevvelocity_kmh_Nm, angularvvelocity_kmh_s_inverse, mo-
torefficiencyvvelocity_kmh, gearbox_efficiency, auxiliary_compo-
nents_W):\\n if slopeangle_degree >= gradeability_degree:\\n
return 999999\\n elif slopeangle_degree <= -gradeability_de-
gree:\\n return 999999\\n elif torquevvelocity_kmh_Nm <
0:\\n return torquevvelocity_kmh_Nm * angularvvelocity_kmh_s_inverse
* motorefficiencyvvelocity_kmh * gearbox_efficiency + auxiliary_compo-
nents_W\\n else:\\n return torquevvelocity_kmh_Nm * angularvve-
locity_kmh_s_inverse / (motorefficiencyvvelocity_kmh * gearbox_effi-
ciency) + auxiliary_components_W")

Process: Add Field (8)
arcpy.AddField_management(ebike_postgres_ways_calculation__11_,
"ctempv%velocity_kmh%_rec_W", "DOUBLE", "", "", "", "capacitiytempera-
turevelocity%velocity_kmh%_recuperation_W", "NULLABLE", "REQUIRED", "")

Process: Calculate Field (8)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__3_,
"ctempv%velocity_kmh%_rec_W", "pemctemprecW(!v%velocity_kmh%_rec_W!,
%temperature_celsius%)", "PYTHON_9.3", "def pemctemprecW(vveloc-
ity_kmh_rec_W, temperature_celsius):\\n if vvelocity_kmh_rec_W ==
999999:\\n return 999999\\n if temperature_celsius >= 25:\\n
return vvelocity_kmh_rec_W\\n else:\\n return vveloc-
ity_kmh_rec_W * (1+((25-temperature_celsius)*0.0047))")

Process: Add Field (14)
arcpy.AddField_management(ebike_postgres_ways_calculation__31_, "v%veloc-
ity_kmh%_rec_Wh", "DOUBLE", "", "", "", "velocity%velocity_kmh%_recupera-
tion_Wh", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (13)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__24_,
"v%velocity_kmh%_rec_Wh", "pemrecWh(!ctempv%velocity_kmh%_rec_W!,
!length_m!, %velocity_kmh%)", "PYTHON_9.3", "def pemrecWh(ctempvveloc-
ity_kmh_rec_W, length_m, velocity_kmh):\\n if ctempvvelocity_kmh_rec_W
== 999999:\\n return 999999\\n else:\\n return ctempvve-
locity_kmh_rec_W*((length_m/1000)/velocity_kmh)")

Process: Add Field (9)
arcpy.AddField_management(ebike_postgres_ways_calculation__27_, "v%veloc-
ity_kmh%_norec_W", "DOUBLE", "", "", "", "velocity%velocity_kmh%_no_recu-
peration_W", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (9)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__20_,
"v%velocity_kmh%_norec_W", "pemnorecW(!slopeangle_degree!, %gradeabil-
ity_degree%, !torquev%velocity_kmh%_Nm!, !angularv%velocity_kmh%_s_in-
verse!, !motorefficiencyv%velocity_kmh%!, %gearbox_efficiency%, %auxil-
iary_components_W%)", "PYTHON_9.3", "def pemnorecW(slopeangle_degree,

XLII Optimizing the Operation Range of E-Bikes in Routing Systems

gradeability_degree, torquevvelocity_kmh_Nm, angularvvelocity_kmh_s_in-
verse, motorefficiencyvvelocity_kmh, gearbox_efficiency, auxiliary_compo-
nents_W):\\n if slopeangle_degree >= gradeability_degree:\\n
return 999999\\n elif slopeangle_degree <= -gradeability_de-
gree:\\n return 999999\\n elif torquevvelocity_kmh_Nm <
0:\\n return auxiliary_components_W\\n else:\\n return
torquevvelocity_kmh_Nm * angularvvelocity_kmh_s_inverse / (motorefficien-
cyvvelocity_kmh * gearbox_efficiency) + auxiliary_components_W")

Process: Add Field (10)
arcpy.AddField_management(ebike_postgres_ways_calculation__14_,
"ctempv%velocity_kmh%_norec_W", "DOUBLE", "", "", "", "capacitiytempera-
turevelocity%velocity_kmh%_no_recuperation_W", "NULLABLE", "REQUIRED",
"")

Process: Calculate Field (10)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__4_,
"ctempv%velocity_kmh%_norec_W", "pemctempnorecW(!v%veloc-
ity_kmh%_norec_W!, %temperature_celsius%)", "PYTHON_9.3", "def pemctemp-
norecW(vvelocity_kmh_norec_W, temperature_celsius):\\n if vveloc-
ity_kmh_norec_W == 999999:\\n return 999999\\n if tempera-
ture_celsius >= 25:\\n return vvelocity_kmh_norec_W\\n else:\\n
return vvelocity_kmh_norec_W * (1+((25-temperature_celsius)*0.0047))")

Process: Add Field (15)
arcpy.AddField_management(ebike_postgres_ways_calculation__34_, "v%veloc-
ity_kmh%_norec_Wh", "DOUBLE", "", "", "", "velocity%velocity_kmh%_no_re-
cuperation_Wh", "NULLABLE", "REQUIRED", "")

Process: Calculate Field (15)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__28_,
"v%velocity_kmh%_norec_Wh", "pemnorecWh(!ctempv%velocity_kmh%_norec_W!,
!length_m!, %velocity_kmh%)", "PYTHON_9.3", "def pemnorecWh(ctempvveloc-
ity_kmh_norec_W, length_m, velocity_kmh):\\n if ctempvveloc-
ity_kmh_norec_W == 999999:\\n return 999999\\n else:\\n
return ctempvvelocity_kmh_norec_W*((length_m/1000)/velocity_kmh)")

Process: Add Field (18)
arcpy.AddField_management(ebike_postgres_ways_calculation__55_, "angu-
larv%velocity_kmh%_r_s_inverse", "DOUBLE", "", "", "", "angularwheel-
velocity%velocity_kmh%_reverse_s_inverse", "NULLABLE", "NON_REQUIRED",
"")

Process: Calculate Field (18)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__2_, "an-
gularv%velocity_kmh%_r_s_inverse", "(%velocity_kmh%/3.6)/((%wheel_diame-
ter_inches%*0.0254)/2)", "PYTHON_9.3", "")

Process: Add Field (24)
arcpy.AddField_management(ebike_postgres_ways_calculation__30_, "v%veloc-
ity_kmh%_norec_r_W", "DOUBLE", "", "", "", "velocity%velocity_kmh%_no_re-
cuperation_reverse_W", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (24)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__38_,
"v%velocity_kmh%_norec_r_W", "pemnorecrW(!slopeangle_r_degree!, %gradea-
bility_degree%, !torquev%velocity_kmh%_r_Nm!, !angularv%veloc-
ity_kmh%_r_s_inverse!, !motorefficiencyv%velocity_kmh%_r!, %gearbox_effi-

XLIII

Appendix

ciency%, %auxiliary_components_W%)", "PYTHON_9.3", "def pem-
norecrW(slopeangle_r_degree, gradeability_degree, torquevveloc-
ity_kmh_r_Nm, angularvvelocity_kmh_r_s_inverse, motorefficiencyvveloc-
ity_kmh_r, gearbox_efficiency, auxiliary_components_W):\\n if slopean-
gle_r_degree >= gradeability_degree:\\n return 999999\\n
elif slopeangle_r_degree <= -gradeability_degree:\\n return
999999\\n elif torquevvelocity_kmh_r_Nm < 0:\\n return auxil-
iary_components_W\\n else:\\n return torquevvelocity_kmh_r_Nm *
angularvvelocity_kmh_r_s_inverse / (motorefficiencyvvelocity_kmh_r *
gearbox_efficiency) + auxiliary_components_W")

Process: Add Field (6)
arcpy.AddField_management(ebike_postgres_ways_calculation__12_,
"ctempv%velocity_kmh%_norec_r_W", "DOUBLE", "", "", "", "capacitiytemper-
aturevelocity%velocity_kmh%_no_recuperation_reverse_W", "NULLABLE", "RE-
QUIRED", "")

Process: Calculate Field (6)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__6_,
"ctempv%velocity_kmh%_norec_r_W", "pemctempnorecrW(!v%veloc-
ity_kmh%_norec_r_W!, %temperature_celsius%)", "PYTHON_9.3", "def pem-
ctempnorecrW(vvelocity_kmh_norec_r_W, temperature_celsius):\\n if vve-
locity_kmh_norec_r_W == 999999:\\n return 999999\\n if tempera-
ture_celsius >= 25:\\n return vvelocity_kmh_norec_r_W\\n
else:\\n return vvelocity_kmh_norec_r_W * (1+((25-temperature_cel-
sius)*0.0047))")

Process: Add Field (27)
arcpy.AddField_management(ebike_postgres_ways_calculation__23_, "v%veloc-
ity_kmh%_norec_r_Wh", "DOUBLE", "", "", "", "velocity%veloc-
ity_kmh%_no_recuperation_reverse_Wh", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (27)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__19_,
"v%velocity_kmh%_norec_r_Wh", "pemnorecrWh(!ctempv%veloc-
ity_kmh%_norec_r_W!, !length_m!, %velocity_kmh%)", "PYTHON_9.3", "def
pemnorecrWh(ctempvvelocity_kmh_norec_r_W, length_m, velocity_kmh):\\n
if ctempvvelocity_kmh_norec_r_W == 999999:\\n return 999999\\n
else:\\n return ctempvvelocity_kmh_norec_r_W*((length_m/1000)/ve-
locity_kmh)")

Process: Add Field (19)
arcpy.AddField_management(ebike_postgres_ways_calculation__30_, "v%veloc-
ity_kmh%_rec_r_W", "DOUBLE", "", "", "", "velocity%velocity_kmh%_recuper-
ation_reverse_W", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (19)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__45_,
"v%velocity_kmh%_rec_r_W", "pemrecrW(!slopeangle_r_degree!, %gradeabil-
ity_degree%,!torquev%velocity_kmh%_r_Nm!, !angularv%velocity_kmh%_r_s_in-
verse!, !motorefficiencyv%velocity_kmh%_r!, %gearbox_efficiency%, %auxil-
iary_components_W%)", "PYTHON_9.3", "def pemrecrW(slopeangle_r_degree,
gradeability_degree, torquevvelocity_kmh_r_Nm, angularvveloc-
ity_kmh_r_s_inverse, motorefficiencyvvelocity_kmh_r, gearbox_efficiency,
auxiliary_components_W):\\n if slopeangle_r_degree >= gradeability_de-
gree:\\n return 999999\\n elif slopeangle_r_degree <=
-gradeability_degree:\\n return 999999\\n elif torquevve-
locity_kmh_r_Nm < 0:\\n return torquevvelocity_kmh_r_Nm * angular-

XLIV Optimizing the Operation Range of E-Bikes in Routing Systems

vvelocity_kmh_r_s_inverse * motorefficiencyvvelocity_kmh_r * gearbox_ef-
ficiency + auxiliary_components_W\\n else:\\n return torquevve-
locity_kmh_r_Nm * angularvvelocity_kmh_r_s_inverse / (motorefficiencyvve-
locity_kmh_r * gearbox_efficiency) +auxiliary_components_W")

Process: Add Field (5)
arcpy.AddField_management(ebike_postgres_ways_calculation__26_,
"ctempv%velocity_kmh%_rec_r_W", "DOUBLE", "", "", "", "capacitiytempera-
turevelocity%velocity_kmh%_recuperation_reverse_W", "NULLABLE", "RE-
QUIRED", "")

Process: Calculate Field (5)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__5_,
"ctempv%velocity_kmh%_rec_r_W", "pemctemprecrW(!v%velocity_kmh%_rec_r_W!,
%temperature_celsius%)", "PYTHON_9.3", "def pemctemprecrW(vveloc-
ity_kmh_rec_r_W, temperature_celsius):\\n if vvelocity_kmh_rec_r_W ==
999999:\\n return 999999\\n if temperature_celsius >= 25:\\n
return vvelocity_kmh_rec_r_W\\n else:\\n return vveloc-
ity_kmh_rec_r_W * (1+((25-temperature_celsius)*0.0047))")

Process: Add Field (26)
arcpy.AddField_management(ebike_postgres_ways_calculation__18_, "v%veloc-
ity_kmh%_rec_r_Wh", "DOUBLE", "", "", "", "velocity%velocity_kmh%_recu-
peration_reverse_Wh", "NULLABLE", "NON_REQUIRED", "")

Process: Calculate Field (26)
arcpy.CalculateField_management(ebike_postgres_ways_calculation__17_,
"v%velocity_kmh%_rec_r_Wh", "pemrecrWh(!ctempv%velocity_kmh%_rec_r_W!,
!length_m!, %velocity_kmh%)", "PYTHON_9.3", "def pemrecrWh(ctempvveloc-
ity_kmh_rec_r_W, length_m, velocity_kmh):\\n if ctempvveloc-
ity_kmh_rec_r_W == 999999:\\n return 999999\\n else:\\n
return ctempvvelocity_kmh_rec_r_W*((length_m/1000)/velocity_kmh)")

XLV

Appendix

Programming Code Dijkstra Application

index_v20_norec_Wh.html

<!DOCTYPE

html>

<html>
<head>

 <title>e-Bike Routing</title>

 <!-- Inspired by
 http://workshop.pgrouting.org/2.1.0-dev/en/index.html. -->

 <meta charset="utf-8">
 <link href="C:\Users\sim_h\OneDrive\Dokumente\1_Uni_Wien\16_Mas-

terarbeit\5_Applikation\Dijkstra\src\v3.18.2-dist\ol.css" rel="styles-

heet">
 <style>
 #map {
 width: 100%;
 height: 500px;
 }
 </style>
</head>
<body>
 <div id="map"></div>
 <button id="clear">clear</button>
 <script src="C:\Users\sim_h\OneDrive\Dokumente\1_Uni_Wien\16_Mas-

terarbeit\5_Applikation\Dijkstra\src\v3.18.2-dist\ol.js"></script>
 <script type="text/javascript">
 // The map on which we add all elements.
 var map = new ol.Map({
 target: 'map',
 layers: [
 new ol.layer.Tile({
 source: new ol.source.OSM()
 })
],
 view: new ol.View({
 center: ol.proj.transform([8.54226, 47.37174],

'EPSG:4326', 'EPSG:3857'),
 zoom: 13

XLVI Optimizing the Operation Range of E-Bikes in Routing Systems

 }),
 controls: ol.control.defaults({
 attributionOptions: {
 collapsible: false
 }
 })
 });
 // Variable that calls the required layer from Geoserver.
 var params = {
 LAYERS: 'pgrouting:v20_norec_wh',
 FORMAT: 'image/png'
 }
 // The "start" and "destination" features.
 var startPoint = new ol.Feature();
 var destPoint = new ol.Feature();
 // The vector layer used to display the "start" and "destination"

features.
 var vectorLayer = new ol.layer.Vector({
 source: new ol.source.Vector({
 features: [startPoint, destPoint]
 })
 });
 map.addLayer(vectorLayer);

 // A transform function to convert coordinates from EPSG:3857 to

EPSG:4326.
 var transform = ol.proj.getTransform('EPSG:3857', 'EPSG:4326');
 // Register a map click listener.
 map.on('click', function(event) {
 if (startPoint.getGeometry() == null) {
 /**
 * First click.
 */
 startPoint.setGeometry(new ol.geom.Point(event.coordi-

nate));
 } else if (destPoint.getGeometry() == null) {
 /**
 * Second click.
 */
 destPoint.setGeometry(new ol.geom.Point(event.coordinate));
 /**
 * Transform the coordinates from the map projection
 * (EPSG:3857) to the server projection (EPSG:4326).
 */

XLVII

Appendix

 var startCoord = transform(startPoint.getGeome-

try().getCoordinates());
 var destCoord = transform(destPoint.getGeometry().getCoor-

dinates());

 /**

 * Retrieval, matching and displaying of the WMS Image

 from Geoserver

 */
 var viewparams = [
 'x1:' + startCoord[0], 'y1:' + startCoord[1],
 'x2:' + destCoord[0], 'y2:' + destCoord[1]
];
 params.viewparams = viewparams.join(';');
 result = new ol.layer.Image({
 source: new ol.source.ImageWMS({
 url: 'http://localhost:8080/geoserver/pgrout-

ing/wms',
 params: params
 })
 });
 map.addLayer(result);
 }
 });
 //Function that removes all elements from the map.
 var clearButton = document.getElementById('clear');
 clearButton.addEventListener('click', function(event) {
 /**
 * Reset the "start" and "destination" features.
 */
 startPoint.setGeometry(null);
 destPoint.setGeometry(null);
 /**
 * Remove the result layer.
 */
 map.removeLayer(result);
 });
 </script>
</body>
</html>

XLVIII Optimizing the Operation Range of E-Bikes in Routing Systems

Programming Code Bellman-Ford Application

Graph.rs

use std;

use std::fs::File;

use std::io::{BufReader, Seek, SeekFrom};

use byteorder::{LittleEndian, ReadBytesExt};

use pbr::ProgressBar;

use spade::RTree;

use cgmath::Vector2;

use postgres::{Connection, TlsMode};

use spatialpoint::SpatialPoint;

// Inspired by http://codegists.com/snippet/rust/bellmanrs_tristramg_rust.

/// Holds a single node, containing the OSM id, longitude, and latitude.

#[derive(Debug)]

struct Node {

 /// The OSM id associated with this node.

 id: u64,

 /// The longitude of this node.

 lon: f32,

 /// The latitude of this node.

 lat: f32,

}

/// Holds a single edge, containing the source node, the target node,

/// and the edge weight.

#[derive(Debug)]

struct Edge {

 /// Where this edge starts.

 source: usize,

 /// Where this edge ends.

 target: usize,

 /// The weight of this edge.

 weight: f32,

}

/// Contains a whole graph.

pub struct Graph {

 /// All the edges contained in the graph.

 edges: Vec<Edge>,

 /// All the nodes contained in this graph.

 nodes: Vec<Node>,

 /// An R tree for quick access to the nodes, given a longitude and latitude.

 rtree: RTree<SpatialPoint, SpatialPoint>

}

/// Implementation of node.

XLIX

Appendix

impl Node {

 /// Reads a node from an OSRM file.

 fn from_osrm(reader: &mut BufReader<&File>) -> Node {

 let lon = reader.read_i32::<LittleEndian>().unwrap();

 let lat = reader.read_i32::<LittleEndian>().unwrap();

 let id = reader.read_u64::<LittleEndian>().unwrap();

 let _ = reader.seek(SeekFrom::Current(8));

 Node {

 id: id,

 lon: lon as f32 / 1e6,

 lat: lat as f32 / 1e6

 }

 }

}

/// Implementation of edge.

impl Edge {

 /// Reads an edge from an OSRM file.

 fn from_osrm(reader: &mut BufReader<&File>) -> Edge {

 let source = reader.read_u32::<LittleEndian>().unwrap() as usize;

 let target = reader.read_u32::<LittleEndian>().unwrap() as usize;

 let _ = reader.seek(SeekFrom::Current(4));

 let weight = reader.read_u32::<LittleEndian>().unwrap();

 let _ = reader.seek(SeekFrom::Current(8));

 Edge {

 source: source,

 target: target,

 weight: weight as f32,

 }

 }

}

/// Implementation of graph.

impl Graph {

 /// Creates a new graph, by reading an OSRM file. This also adds and returns an OSM

id

 /// as the starting point for a later bellman-ford query.

 pub fn new(file: &String) -> Graph {

 let file = File::open(file).unwrap();

 let mut reader = BufReader::new(&file);

 let _ = reader.seek(SeekFrom::Start(152));

 // First, we read in all nodes.

 let nodes_count = reader.read_u32::<LittleEndian>().unwrap() as usize;

 println!(" ˪— Reading {:?} nodes", nodes_count);

 let mut nodes = Vec::with_capacity(nodes_count);

 let mut n_pb = ProgressBar::new(nodes_count as u64);

L Optimizing the Operation Range of E-Bikes in Routing Systems

 for i in 0..nodes_count {

 let node = Node::from_osrm(&mut reader);

 nodes.push(node);

 if i % 1000 == 0 {

 n_pb.add(1000);

 }

 }

 // Then, we continue with all edges.

 let edges_count = reader.read_u32::<LittleEndian>().unwrap() as usize;

 println!(" ˪– Reading {:?} edges", edges_count);

 let mut edges = Vec::with_capacity(edges_count);

 let mut e_pb = ProgressBar::new(edges_count as u64);

 for i in 0..edges_count {

 edges.push(Edge::from_osrm(&mut reader));

 if i % 1000 == 0 {

 e_pb.add(1000);

 }

 }

 // Finally, we build an R tree for quick access.

 let mut rtree = RTree::new();

 for n in nodes.iter() {

 let p = SpatialPoint::new(Vector2::new(n.lon, n.lat), n.id);

 rtree.insert(p);

 }

 Graph { edges: edges, nodes: nodes, rtree: rtree }

 }

 /// Loads a graph from a Postgres database.

 pub fn new_from_db(uname: &String, pw: &String, db: &String,

 ways_vert_table: &String, ways_table: &String,

 weight: &String, weight_rev: &String) -> Graph {

 let conn_str = format!("postgres://{}:{}@localhost/{}", uname, pw, db);

 let conn = Connection::connect(conn_str, TlsMode::None).unwrap();

 let mut nodes = Vec::with_capacity(1000);

 let select_str_vert = format!("SELECT id, lon, lat FROM {} ORDER BY id",

ways_vert_table);

 for row in &conn.query(&select_str_vert, &[]).unwrap() {

 let osm_id: i64 = row.get(0);

 let lon_raw: f64 = row.get(1);

 let lat_raw: f64 = row.get(2);

 let node = Node {

 id: osm_id as u64,

 lon: lon_raw as f32,

 lat: lat_raw as f32

 };

LI

Appendix

 nodes.push(node);

 }

 let mut edges = Vec::with_capacity(1000);

 let select_str = format!("SELECT source, target, {}, {} FROM {}", weight,

weight_rev, ways_table);

 for row in &conn.query(&select_str, &[]).unwrap() {

 let source_id: i64 = row.get(0);

 let target_id: i64 = row.get(1);

 let weight_raw: f64 = row.get(2);

 let weight_raw_rev: f64 = row.get(3);

 // When inserting, we simply subtract 1, so that the IDs map to those of

 the nodes.

 // This comes from the fact that the Rust vector is 0-indexed, but in

 Postgres,

 // the IDs start with 1.

 let edge = Edge {

 source: source_id as usize - 1,

 target: target_id as usize - 1,

 weight: weight_raw as f32

 };

 edges.push(edge);

 // We also insert edges for every backward edge.

 let edge = Edge {

 source: target_id as usize - 1,

 target: source_id as usize - 1,

 weight: weight_raw_rev as f32

 };

 edges.push(edge);

 }

 // Finally, we build an R tree for quick access.

 let mut rtree = RTree::new();

 for n in nodes.iter() {

 let p = SpatialPoint::new(Vector2::new(n.lon, n.lat), n.id);

 rtree.insert(p);

 }

 Graph { edges: edges, nodes: nodes, rtree: rtree }

 }

 /// Gets the node IDs from a longitude and latitude.

 pub fn get_id_from_lon_lat(&self, lon: f32, lat: f32) -> u64 {

 let nearest = self.rtree.nearest_neighbor(&Vector2::new(lon, lat)).unwrap();

 nearest.id

 }

 /// Gets the internal ID from an OSM id.

 fn get_id_from_osm(&self, osm_id: usize) -> usize {

LII Optimizing the Operation Range of E-Bikes in Routing Systems

 self.nodes.iter().position(|r| r.id == osm_id as u64).unwrap()

 }

 /// Gets the location from an internal id. Returns a vector containing

 /// longitude and latitude.

 fn get_loc_from_id(&self, id: usize) -> Vec<f32> {

 vec![self.nodes[id].lon, self.nodes[id].lat]

 }

 /// Performs a routing request from source to target.

 pub fn route(&self, source: usize, target: usize) -> (Vec<Vec<f32>>, f32) {

 let source_id = self.get_id_from_osm(source);

 let target_id = self.get_id_from_osm(target);

 let (pred, dist) = self.bellman(source_id);

 let max_length = self.edges.len();

 println!(" ˪— Backtracking from {}, having {} edges. Total cost: {}.",

 target_id, max_length, dist[target_id]);

 let mut trace = Vec::new();

 let mut current_node = target_id;

 trace.push(self.get_loc_from_id(current_node));

 let mut count = 0;

 while current_node != source_id {

 current_node = pred[current_node];

 trace.push(self.get_loc_from_id(current_node));

 count = count + 1;

 // Make sure this doesn't run forever.

 if count > max_length {

 current_node = source_id;

 }

 }

 (trace, dist[target_id])

 }

 /// Computes the reachability of all nodes in the graph, and returns those which

 /// are reachable. Returns a vector of vectors, where the coordinates are as

 follows:

 /// longitude, latitude, remaining_energy.

 pub fn reachability(&self, source: usize, capacity: f32) -> Vec<Vec<f32>> {

 let source_id = self.get_id_from_osm(source);

 let (pred, dist) = self.bellman(source_id);

 let max_length = self.nodes.len();

 println!(" ˪— Assessing all {} nodes to select feasible ones.", max_length);

 let mut trace = Vec::new();

 for (i, node) in dist.iter().enumerate() {

 if capacity - node >= 0.0 {

 let mut loc = self.get_loc_from_id(i);

 loc.push(capacity - node);

LIII

Appendix

 trace.push(loc);

 }

 }

 trace

 }

 /// Runs the Bellman Ford algorithm on the graph. Returns a tuple, containing a

 vector of

 /// predecessors and a vector of distances to the source node.

 fn bellman(&self, source: usize) -> (Vec<usize>, Vec<f32>) {

 let nodes_count = self.nodes.len();

 let max_length = self.edges.len();

 println!(" ˪— Starting from {}, having {} nodes.", source, nodes_count);

 let mut pred = (0..nodes_count).collect::<Vec<_>>();

 let mut dist = std::iter::repeat(std::f32::MAX).take(nodes_count).col-

lect::<Vec<_>>();

 dist[source] = 0.0;

 let mut count = 0;

 let mut improvement = true;

 while improvement {

 improvement = false;

 for edge in &self.edges {

 let source_dist = dist[edge.source];

 let target_dist = dist[edge.target];

 if source_dist != std::f32::MAX && source_dist + edge.weight < tar-

get_dist {

 dist[edge.target] = source_dist + edge.weight;

 pred[edge.target] = edge.source;

 improvement = true;

 }

 // This would be needed for undirected edges, as we'd have to follow

 every

 // edge both ways in that case.

 // if target_dist != std::f32::MAX && target_dist + edge.weight <

 source_dist {

 // dist[edge.source] = target_dist + edge.weight;

 // pred[edge.source] = edge.target;

 // improvement = true;

 // }

 }

 count = count + 1;

 // Make sure this doesn't run forever.

 if count > max_length {

 improvement = false;

 }

LIV Optimizing the Operation Range of E-Bikes in Routing Systems

 }

 println!(" ˪— Bellman iterations: {}", count);

 (pred, dist)

 }

}

Spatialpoints.rs

use cgmath::Vector2;

use num::zero;

use spade::SpatialObject;

use spade::BoundingRect;

/// A spatial point, to be stored in an R tree from the spade crate.

#[derive(Debug)]

pub struct SpatialPoint {

 /// The point's coordinates.

 pub center: Vector2<f32>,

 /// The associated OSM id.

 pub id: u64,

}

impl SpatialPoint {

 /// Create a new point.

 pub fn new(center: Vector2<f32>, id: u64) -> SpatialPoint {

 SpatialPoint {

 center: center,

 id: id,

 }

 }

}

impl SpatialObject for SpatialPoint {

 type Vector = Vector2<f32>;

 fn mbr(&self) -> BoundingRect<Vector2<f32>> {

 BoundingRect::from_corners(&(self.center.clone()), &(self.center.clone()))

 }

 fn distance2(&self, point: &Vector2<f32>) -> f32 {

 let dx = self.center[0] - point[0];

 let dy = self.center[1] - point[1];

 let dist = (dx * dx + dy * dy).sqrt().max(zero());

 dist * dist

 }

 // Nothing is contained within a point.

 fn contains(&self, point: &Vector2<f32>) -> bool {

 false

 }

}

LV

Appendix

Main.rs

extern crate byteorder;

extern crate time;

extern crate pbr;

extern crate iron;

extern crate params;

extern crate router;

extern crate mount;

extern crate persistent;

extern crate cgmath;

extern crate spade;

extern crate num;

extern crate staticfile;

extern crate postgres;

extern crate geojson;

extern crate rustc_serialize;

use std::env;

use iron::prelude::*;

use router::Router;

use mount::Mount;

use persistent::Read;

use staticfile::Static;

use std::path::Path;

mod graph;

mod spatialpoint;

mod endpoints;

use graph::Graph;

use endpoints::GraphPool;

/// Main function and entry point to the program.

fn main() {

 let args: Vec<_> = env::args().collect();

 let start = time::now();

 // Loading the graph data.

 println!("Loading the data");

 // let graph = Graph::new(&args[1]);

 let graph = Graph::new_from_db(&args[1], &args[2], &args[3], &args[4], &args[5],

 &args[6], &args[7]);

 println!(" duration: {}s\n", (time::now() - start).num_seconds());

 // Setting up the router for the web server.

 let mut router = Router::new();

 router.get("/route", endpoints::route_lat_lon, "route");

 router.get("/route-using-ids", endpoints::route_ids, "routeIds");

 router.get("/reachability", endpoints::reachability, "reachability");

 let mut mount = Mount::new();

LVI Optimizing the Operation Range of E-Bikes in Routing Systems

 mount.mount("/api", router);

 mount.mount("/", Static::new(Path::new("./src/static/")));

 let mut chain = Chain::new(mount);

 chain.link_before(Read::<GraphPool>::one(graph));

 Iron::new(chain).http("127.0.0.1:9000").unwrap();

}

Endpoint.rs

extern crate time;

extern crate iron;

extern crate geojson;

use iron::prelude::*;

use iron::typemap::Key;

use persistent::Read;

use graph::Graph;

use std::collections::BTreeMap;

use rustc_serialize::json::ToJson;

use geojson::{Feature, FeatureCollection, GeoJson, Geometry};

/// A pool that abstracts over the graph, and makes it available to all requests.

pub struct GraphPool;

impl Key for GraphPool { type Value = Graph; }

/// Transforms the result of a route calculation into a GeoJSON, convenient for sending

/// over the Internet.

fn route_res_to_geojson(lat_lons: Vec<Vec<f32>>, cost: f32) -> String {

 let geometry = Geometry::new(

 geojson::Value::LineString(lat_lons.iter().map(|x|

 x.iter().map(|&y| y as f64).collect::<Vec<_>>()

).collect::<Vec<_>>())

);

 let mut properties = BTreeMap::new();

 properties.insert(

 String::from("total_cost"),

 cost.to_json(),

);

 let geojson = GeoJson::Feature(Feature {

 crs: None,

 bbox: None,

 geometry: Some(geometry),

 id: None,

 properties: Some(properties),

 });

 geojson.to_string()

}

LVII

Appendix

/// Transforms the result of a reachability calculation to a GeoJSON string, ready

/// to be processed in the frontend.

fn reachability_res_to_geojson(lat_lon_caps: Vec<Vec<f32>>) -> String {

 let mut features = Vec::new();

 for lat_lon in lat_lon_caps {

 let mut props = BTreeMap::new();

 props.insert(

 String::from("capacity_remaining"),

 lat_lon[2].to_json(),

);

 features.push(Feature {

 crs: None,

 bbox: None,

 geometry: Some(Geometry::new(

 geojson::Value::Point(lat_lon[0..2].iter().map(|&y|

 y as f64).collect::<Vec<_>>())

)),

 id: None,

 properties: Some(props)

 });

 }

 let geojson = GeoJson::FeatureCollection(FeatureCollection {

 crs: None,

 bbox: None,

 features: features,

 });

 geojson.to_string()

}

/// Computes a route, given a start and end latitude and longitude.

pub fn route_lat_lon(req: &mut Request) -> IronResult<Response> {

 let graph = req.get::<Read<GraphPool>>().unwrap();

 use params::{Params, Value};

 let map = req.get_ref::<Params>().unwrap();

 match (map.find(&["source-lon"]), map.find(&["source-lat"]),

 map.find(&["target-lon"]), map.find(&["target-lat"])) {

 (Some(&Value::String(ref source_lon)), Some(&Value::String(ref source_lat)),

 Some(&Value::String(ref target_lon)), Some(&Value::String(ref target_lat)))

=> {

 let bellman_start = time::now();

 println!("Starting Bellman-Ford ...");

 let source_id = graph.get_id_from_lon_lat(source_lon.parse::<f32>().un-

wrap(),

 source_lat.parse::<f32>().un-

wrap());

LVIII Optimizing the Operation Range of E-Bikes in Routing Systems

 let target_id = graph.get_id_from_lon_lat(target_lon.parse::<f32>().un-

wrap(),

 target_lat.parse::<f32>().un-

wrap());

 let res = graph.route(source_id as usize, target_id as usize);

 println!(" ˪— duration: {}s\n", (time::now() - bellman_start).num_sec-

onds());

 Ok(Response::with((iron::status::Ok, route_res_to_geojson(res.0, res.1))))

 },

 _ => Ok(Response::with(iron::status::NotFound))

 }

}

/// Computes a route, given a start and end OSM ID.

pub fn route_ids(req: &mut Request) -> IronResult<Response> {

 let graph = req.get::<Read<GraphPool>>().unwrap();

 use params::{Params, Value};

 let map = req.get_ref::<Params>().unwrap();

 match (map.find(&["source-id"]), map.find(&["target-id"])) {

 (Some(&Value::String(ref source_id)), Some(&Value::String(ref target_id))) =>

{

 let bellman_start = time::now();

 println!("Starting Bellman-Ford ...");

 let res = graph.route(source_id.parse::<i32>().unwrap() as usize,

 target_id.parse::<i32>().unwrap() as usize);

 println!(" ˪— duration: {}s\n", (time::now() - bellman_start).num_sec-

onds());

 Ok(Response::with((iron::status::Ok, route_res_to_geojson(res.0, res.1))))

 },

 _ => Ok(Response::with(iron::status::NotFound))

 }

}

/// Returns all reachable nodes in a vicinity. This can be a lot, so take care!

pub fn reachability(req: &mut Request) -> IronResult<Response> {

 let graph = req.get::<Read<GraphPool>>().unwrap();

 use params::{Params, Value};

 let map = req.get_ref::<Params>().unwrap();

 match (map.find(&["source-lon"]), map.find(&["source-lat"]), map.find(&["capac-

ity"])) {

 (Some(&Value::String(ref source_lon)), Some(&Value::String(ref source_lat)),

 Some(&Value::String(ref capacity))) => {

 let bellman_start = time::now();

 println!("Starting Reachability Bellman-Ford ...");

 let source_id = graph.get_id_from_lon_lat(source_lon.parse::<f32>().un-

wrap(),

LIX

Appendix

 source_lat.parse::<f32>().un-

wrap());

 let res = graph.reachability(source_id as usize, capac-

ity.parse::<f32>().unwrap());

 println!(" ˪— duration: {}s\n", (time::now() - bellman_start).num_sec-

onds());

 Ok(Response::with((iron::status::Ok, reachability_res_to_geojson(res))))

 },

 _ => Ok(Response::with(iron::status::NotFound))

 }

}

Index.html

<!DOCTYPE html>

<html>

<head>

 <title>e-Bike Routing</title>

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <link rel="shortcut icon" type="image/x-icon" href="docs/images/favicon.ico" />

 <link rel="stylesheet" href="https://unpkg.com/leaflet@1.0.2/dist/leaflet.css" />

 <script src="https://unpkg.com/leaflet@1.0.2/dist/leaflet.js"></script>

 <script

 src="https://code.jquery.com/jquery-3.1.1.min.js"

 integrity="sha256-hVVnYaiADRTO2PzUGmuLJr8BLUSjGIZsDYGmIJLv2b8="

 crossorigin="anonymous"></script>

 <script src="https://npmcdn.com/@turf/turf@3.5.1/turf.js"></script>

 <style media="screen">

 html * {

 font-size: 1em !important;

 color: #000 !important;

 font-family: Arial !important;

 }

 .ebike-overlay {

 position: absolute;

 right: 20px;

 top: 20px;

 z-index: 999;

 }

 #cost-box {

 background-color: white;

 padding: 16px 24px;

 -webkit-box-shadow: 0px 0px 5px 0px rgba(0,0,0,0.5);

LX Optimizing the Operation Range of E-Bikes in Routing Systems

 -moz-box-shadow: 0px 0px 5px 0px rgba(0,0,0,0.5);

 box-shadow: 0px 0px 5px 0px rgba(0,0,0,0.5);

 border-radius: 3px;

 }

 </style>

</head>

<body style="width: 100%; height: 100%; position: absolute; margin: 0;">

 <div class="ebike-overlay">

 <div id="cost-box">

 Select method:

 <form id="method-form" action="">

 <input type="radio" id="method-route" name="method"

value="route" checked><label for="method-route">Route</label>

 <input type="radio" id="method-reachability" name="method"

value="reachability"><label for="method-reachability">Reachability</label>

 </form>

 <label for="capacity">Battery Capacity: </label><input type="number"

id="capacity" name="capacity" value="50.0">

 Please compute a route by clicking on the

map!

 </div>

 </div>

 <div id="mapid" style="width: 100%; height: 100%;"></div>

 <script>

 // The map on which we add all elements.

 var mymap = L.map('mapid').setView([47.3673, 8.55], 13);

 var mymapelements = [];

 /**

 * Function that removes all elements from the map.

 */

 function removeAllMapElements() {

 for(i = 0; i < mymapelements.length; i++) {

 mymap.removeLayer(mymapelements[i]);

 }

 mymapelements = [];

 }

 /**

 * Function that adds an element to the map.

 */

 function addToMap(element) {

 mymapelements.push(element);

 element.addTo(mymap);

 }

LXI

Appendix

 /**

 * Helper function to convert hsv color ramps to rgb.

 */

 var hsv2rgb = function(hsv) {

 var h = hsv.hue, s = hsv.sat, v = hsv.val;

 var rgb, i, data = [];

 if (s === 0) {

 rgb = [v,v,v];

 } else {

 h = h / 60;

 i = Math.floor(h);

 data = [v*(1-s), v*(1-s*(h-i)), v*(1-s*(1-(h-i)))];

 switch(i) {

 case 0:

 rgb = [v, data[2], data[0]];

 break;

 case 1:

 rgb = [data[1], v, data[0]];

 break;

 case 2:

 rgb = [data[0], v, data[2]];

 break;

 case 3:

 rgb = [data[0], data[1], v];

 break;

 case 4:

 rgb = [data[2], data[0], v];

 break;

 default:

 rgb = [v, data[0], data[1]];

 break;

 }

 }

 return '#' + rgb.map(function(x){

 return ("0" + Math.round(x*255).toString(16)).slice(-2);

 }).join('');

 };

 L.tileLayer('https://api.tiles.mapbox.com/v4/{id}/{z}/{x}/{y}.png?access_to-

ken=pk.eyJ1IjoibWFwYm94IiwiYSI6ImNpandmbXliNDBjZWd2M2x6bDk3c2ZtOTkifQ._QA7i5Mpkd_m30IGElHziw', {

 maxZoom: 18,

 attribution: 'Map data © Open-

StreetMap contributors, ' +

 'CC-BY-SA, ' +

 'Imagery © Mapbox',

LXII Optimizing the Operation Range of E-Bikes in Routing Systems

 id: 'mapbox.streets'

 }).addTo(mymap);

 var clickCount = 0;

 var start = [];

 var end = [];

 // Specifies what happens when someone clicks on the map.

 function onMapClick(e) {

 // Either, we are in routing mode, where we simply compute and display

 // routes.

 if ($('input[name=method]:checked', '#method-form').val() == "route") {

 if (clickCount == 0) {

 removeAllMapElements();

 start = [e.latlng.lng, e.latlng.lat];

 addToMap(L.marker([e.latlng.lat, e.latlng.lng]));

 clickCount = 1;

 } else {

 end = [e.latlng.lng, e.latlng.lat];

 addToMap(L.marker([e.latlng.lat, e.latlng.lng]));

 $.get("http://127.0.0.1:9000/api/route?source-lon=" + start[0] +

 "&source-lat=" + start[1] +

 "&target-lon=" + end[0] + "&target-lat=" + end[1], function(data)

{

 geoJson = JSON.parse(data);

 var geoJSONStyle = {

 color: 'red',

 weight: 3,

 opacity: 0.5,

 smoothFactor: 1

 };

 addToMap(L.geoJSON(geoJson, { style: geoJSONStyle }));

 $('#cost-box-explanation').text("Energy cost of route: "

+ geoJson.properties.total_cost);

 });

 clickCount = 0;

 }

 // Or we are in the reachability mode, where we draw a contour plot

 // of reachable nodes.

 } else if ($('input[name=method]:checked', '#method-form').val() == "reachabil-

ity") {

 removeAllMapElements();

 start = [e.latlng.lng, e.latlng.lat];

 addToMap(L.marker([e.latlng.lat, e.latlng.lng]));

 var capacity = $('#capacity').val();

 $.get("http://127.0.0.1:9000/api/reachability?source-lon=" + start[0] +

LXIII

Appendix

 "&source-lat=" + start[1] +

 "&capacity=" + capacity, function(data) {

 geoJson = JSON.parse(data);

 // Determine max and min capacity, used for coloring later.

 var maxCapacity = 0;

 var minCapacity = Infinity;

 for (i in geoJson.features) {

 var feature = geoJson.features[i];

 if (feature.properties.capacity_remaining > maxCapacity)

{

 maxCapacity = feature.properties.capacity_re-

maining;

 }

 if (feature.properties.capacity_remaining < minCapacity)

{

 minCapacity = feature.properties.capacity_re-

maining;

 }

 }

 // Create 10 equally spaced breaks.

 var breaks = Array.apply(null, Array(10)).map(function (_, i)

{return (minCapacity + i) * (maxCapacity - minCapacity) / 10;});

 var resolution = 50;

 var isobands = turf.isolines(geoJson, 'capacity_remaining', res-

olution, breaks);

 isobands.features.forEach(function (feature) {

 var cap_diff = 100 - 100 * (feature.properties.capac-

ity_remaining - minCapacity) / (maxCapacity - minCapacity);

 var h = Math.floor((100 - cap_diff) * 120 / 100);

 var s = 1; //Math.abs(cap_diff - 50) / 50;

 var v = 1;

 feature.properties["stroke"] = hsv2rgb({hue: h, sat: s,

val: v});

 feature.properties["stroke-width"] = 10;

 feature.properties["stroke-opacity"] = .5;

 });

 addToMap(L.geoJSON(isobands, {

 style: function(feature) {

 return {

 color: feature.properties['stroke'],

 width: feature.properties['stroke-

width'],

 opacity: feature.properties['opacity']

 };

LXIV Optimizing the Operation Range of E-Bikes in Routing Systems

 }

 }));

 });

 }

 }

 mymap.on('click', onMapClick);

 </script>

</body>

</html>

LXV

Appendix

Test Session A

03.01.2017

Model Parameter Weight [kg] 123

 Velocity [km/h] 15

 Temperature [° C] 3

Track Source Bülachhof

 Target ETH Hönggerberg

Energy Consumption Modelled [Wh] 73.91877696

 Measured [Wh] 71

LXVI Optimizing the Operation Range of E-Bikes in Routing Systems

Model Parameter Weight [kg] 123

 Velocity [km/h] 20

 Temperature [° C] 3

Track Source ETH Hönggerberg

 Target ETH Center

Energy Consumption Modelled [Wh] 46.35903523

 Measured [Wh] 49

LXVII

Appendix

Model Parameter Weight [kg] 123

 Velocity [km/h] 20

 Temperature [° C] 3

Track Source ETH Center

 Target Bülachhof

Energy Consumption Modelled [Wh] 39.96724041

 Measured [Wh] 40

LXVIII Optimizing the Operation Range of E-Bikes in Routing Systems

04.01.2017

Model Parameter Weight [kg] 123

 Velocity [km/h] 20

 Temperature [° C] 3

Track Source Bülachhof

 Target ETH Hönggerberg

Energy Consumption Modelled [Wh] 85.91187674

 Measured [Wh] 85

LXIX

Appendix

Model Parameter Weight [kg] 123

 Velocity [km/h] 20

 Temperature [° C] 3

Track Source ETH Hönggerberg

 Target ETH Center

Energy Consumption Modelled [Wh] 46.35903523

 Measured [Wh] 48

LXX Optimizing the Operation Range of E-Bikes in Routing Systems

Model Parameter Weight [kg] 123

 Velocity [km/h] 20

 Temperature [° C] 3

Track Source ETH Center

 Target Bülachhof

Energy Consumption Modelled [Wh] 39.96724041

 Measured [Wh] 41

LXXI

Appendix

11.01.2017

Model Parameter Weight [kg] 123

 Velocity [km/h] 20

 Temperature [° C] 3

Track Source Bülachhof

 Target ETH Hönggerberg

Energy Consumption Modelled [Wh] 85.91187674

 Measured [Wh] 85

LXXII Optimizing the Operation Range of E-Bikes in Routing Systems

Model Parameter Weight [kg] 123

 Velocity [km/h] 20

 Temperature [° C] 3

Track Source ETH Hönggerberg

 Target ETH Center

Energy Consumption Modelled [Wh] 46.35903523

 Measured [Wh] 54

LXXIII

Appendix

12.01.2017

Model Parameter Weight [kg] 78

 Velocity [km/h] 20

 Temperature [° C] 0

Track Source Bülachhof (- ETH Hönggerberg)

 Target (- ETH Center -) Bülachhof

Energy Consumption Modelled [Wh] 135.16504582

 Measured [Wh] 111

LXXIV Optimizing the Operation Range of E-Bikes in Routing Systems

13.01.2017

Model Parameter Weight [kg] 123

 Velocity [km/h] 20

 Temperature [° C] 0

Track Source Bülachhof

 Target ETH Hönggerberg

Energy Consumption Modelled [Wh] 87.31076172

 Measured [Wh] 89

LXXV

Appendix

Model Parameter Weight [kg] 123

 Velocity [km/h] 20

 Temperature [° C] 0

Track Source ETH Center

 Target Bülachhof

Energy Consumption Modelled [Wh] 40.62863265

 Measured [Wh] 42

LXXVI Optimizing the Operation Range of E-Bikes in Routing Systems

16.01.2017

Model Parameter Weight [kg] 123

 Velocity [km/h] 20

 Temperature [° C] -1

Track Source Bülachhof (- ETH Hönggerberg)

 Target (- ETH Center -) Bülachhof

Energy Consumption Modelled [Wh] 176.05760205

 Measured [Wh] 170

LXXVII

Appendix

17.01.2017

Model Parameter Weight [kg] 123

 Velocity [km/h] 20

 Temperature [° C] -4

Track Source Bülachhof

 Target ETH Hönggerberg

Energy Consumption Modelled [Wh] 89.20051469

 Measured [Wh] 83

LXXVIII Optimizing the Operation Range of E-Bikes in Routing Systems

Model Parameter Weight [kg] 123

 Velocity [km/h] 20

 Temperature [° C] -4

Track Source ETH Hönggerberg

 Target ETH Center

Energy Consumption Modelled [Wh] 50.13277719

 Measured [Wh] 52

LXXIX

Appendix

Model Parameter Weight [kg] 123

 Velocity [km/h] 25

 Temperature [° C] -4

Track Source ETH Center

 Target Bülachhof

Energy Consumption Modelled [Wh] 50.13277719

 Measured [Wh] 53

LXXX Optimizing the Operation Range of E-Bikes in Routing Systems

23.01.2017

Model Parameter Weight [kg] 123

 Velocity [km/h] 25

 Temperature [° C] -4

Track Source ETH Hönggerberg

 Target ETH Center

Energy Consumption Modelled [Wh] 60.19935606

 Measured [Wh] 42

LXXXI

Appendix

Model Parameter Weight [kg] 123

 Velocity [km/h] 20

 Temperature [° C] -4

Track Source ETH Center

 Target Bülachhof

Energy Consumption Modelled [Wh] 41.52137251

 Measured [Wh] 38

LXXXII Optimizing the Operation Range of E-Bikes in Routing Systems

Test Session B

15.02.2017

Model Parameter Weight [kg] 127

 Velocity [km/h] 20

 Temperature [° C] 10

Track Source ETH Hönggerberg

 Target ETH Center

Energy Consumption Modelled [Wh] 16.8643035888671

 Measured [Wh] 42

LXXXIII

Appendix

Model Parameter Weight [kg] 127

 Velocity [km/h] 20

 Temperature [° C] 10

Track Source ETH Center

 Target Bülachhof

Energy Consumption Modelled [Wh] 24.5377445220947

 Measured [Wh] 35

LXXXIV Optimizing the Operation Range of E-Bikes in Routing Systems

16.02.2017

Model Parameter Weight [kg] 127

 Velocity [km/h] 20

 Temperature [° C] 10

Track Source ETH Center

 Target Bülachhof

Energy Consumption Modelled [Wh] 24.5377445220947

 Measured [Wh] 28

LXXXV

Appendix

17.02.2017

Model Parameter Weight [kg] 127

 Velocity [km/h] 25

 Temperature [° C] 5

Track Source Bülachhof

 Target ETH Hönggerberg

Energy Consumption Modelled [Wh] 64.861569404602

 Measured [Wh] 85

LXXXVI Optimizing the Operation Range of E-Bikes in Routing Systems

19.02.2017

Model Parameter Weight [kg] 127

 Velocity [km/h] 20

 Temperature [° C] 10

Track Source Bülachhof

 Target ETH Hönggerberg

Energy Consumption Modelled [Wh] 56.6393508911132

 Measured [Wh] 64

LXXXVII

Appendix

22.02.2017

Model Parameter Weight [kg] 127

 Velocity [km/h] 20

 Temperature [° C] 13

Track Source Bülachhof

 Target ETH Hönggerberg

Energy Consumption Modelled [Wh] 55.7145195007324

 Measured [Wh] 50

LXXXVIII Optimizing the Operation Range of E-Bikes in Routing Systems

23.02.2017

Model Parameter Weight [kg] 127

 Velocity [km/h] 25

 Temperature [° C] 10

Track Source ETH Center

 Target Bülachhof

Energy Consumption Modelled [Wh] 27.8884544372558

 Measured [Wh] 14

LXXXIX

Appendix

24.02.2017

Model Parameter Weight [kg] 127

 Velocity [km/h] 25

 Temperature [° C] 7

Track Source Bülachhof

 Target ETH Hönggerberg

Energy Consumption Modelled [Wh] 64.11506557464587

 Measured [Wh] 70

XC Optimizing the Operation Range of E-Bikes in Routing Systems

Model Parameter Weight [kg] 127

 Velocity [km/h] 30

 Temperature [° C] 5

Track Source ETH Hönggerberg

 Target ETH Center

Energy Consumption Modelled [Wh] 33.6142349243164

 Measured [Wh] 35

XCI

Appendix

25.02.2017

Model Parameter Weight [kg] 127

 Velocity [km/h] 25

 Temperature [° C] 7

Track Source Bülachhof

 Target ETH Hönggerberg

Energy Consumption Modelled [Wh] 64.11506557464587

 Measured [Wh] 63

XCII Optimizing the Operation Range of E-Bikes in Routing Systems

Model Parameter Weight [kg] 127

 Velocity [km/h] 30

 Temperature [° C] 3

Track Source ETH Center

 Target Bülachhof

Energy Consumption Modelled [Wh]

 Measured [Wh] 42

XCIII

Appendix

27.02.2017

Model Parameter Weight [kg] 127

 Velocity [km/h] 30

 Temperature [° C] 10

Track Source ETH Hönggerberg

 Target ETH Center

Energy Consumption Modelled [Wh] 32.2482948303222

 Measured [Wh] 35

XCIV Optimizing the Operation Range of E-Bikes in Routing Systems

Model Parameter Weight [kg] 127

 Velocity [km/h] 30

 Temperature [° C] 10

Track Source ETH Center

 Target Bülachhof

Energy Consumption Modelled [Wh] 33.6458396911621

 Measured [Wh] 28

XCV

Appendix

14.03.2017

Model Parameter Weight [kg] 127

 Velocity [km/h] 25

 Temperature [° C] 10

Track Source ETH Hönggerberg

 Target ETH Center

Energy Consumption Modelled [Wh] 22.691593170166

 Measured [Wh] 35

XCVI Optimizing the Operation Range of E-Bikes in Routing Systems

16.03.2017

Model Parameter Weight [kg] 127

 Velocity [km/h] 25

 Temperature [° C] 10

Track Source ETH Hönggerberg

 Target ETH Center

Energy Consumption Modelled [Wh] 22.691593170166

 Measured [Wh] 35

XCVII

Appendix

17.03.2017

Model Parameter Weight [kg] 82

 Velocity [km/h] 20

 Temperature [° C] 20

Track Source Bülachhof (- ETH Hönggerberg)

 Target (- ETH Center -) Bülachhof

Energy Consumption Modelled [Wh] 70.6653275489805

 Measured [Wh] 56

XCVIII Optimizing the Operation Range of E-Bikes in Routing Systems

21.03.2017

Model Parameter Weight [kg] 127

 Velocity [km/h] 20

 Temperature [° C] 13

Track Source Bülachhof (- ETH Hönggerberg)

 Target (- ETH Center -) Bülachhof

Energy Consumption Modelled [Wh] 96.3204441070556

 Measured [Wh] 149

XCIX

Appendix

Affidavit

Ich versichere:

 dass ich die Masterarbeit selbstständig verfasst, andere als die angegebenen Quel-

len und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfe be-

dient habe.

 dass alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten und nicht veröf-

fentlichten Publikationen entnommen sind, als solche kenntlich gemacht sind.

 dass ich dieses Masterarbeitsthema bisher weder im In- noch im Ausland (einer

Beurteilerin/ einem Beurteiler zur Begutachtung) in irgendeiner Form als Prüfungs-

arbeit vorgelegt habe.

 dass diese Arbeit mit der vom Begutachter beurteilten Arbeit übereinstimmt.

Datum Unterschrift

24.05.2017

C Optimizing the Operation Range of E-Bikes in Routing Systems

