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Abstract 

Limited driving range and the subsequent range anxiety is still one of the greatest obstacles 

for the use of electric vehicles (EV). Slow-moving progress in increasing battery capacities 

necessitates for new and novel solutions to the problem. This thesis presents a routing 

system capable of computing the ideal route in terms of energy consumption for electric 

bicycles. An underlying static model calculates energy requirements for arbitrary street seg-

ments based on contextual information. For example, this information could include the 

structure of the road network, a digital elevation model or vehicular parameters such as 

weight, velocity, or the presence of a recuperation mechanism. A routing application was 

developed that was capable of accurately displaying either an energy optimized route or an 

estimation of the remaining cruising range. The existence of the application allows for the 

estimation (which acts as a simulation of energy consumption) to be validated and optimized 

through test drives. One use-case of this technology is within a navigation system, where it 

can enable automatic switching from a shortest-path route in progress into energy-saving 

mode when a target destination becomes unreachable due to reasons such as insufficient 

charge. The methods outlined in this work can optimize the route, taking into account the 

required energy for the remaining distance and the given low state of charge (SOC) to en-

able riders to more reliably reach their destinations. It extends the potential of e-bike routing. 

 

 

 

 

 

 

 

 

 

Keywords: routing, e-mobility, electric bicycle, electric vehicle, range prediction, reacha-
bility, energy consumption model, Bellman-Ford
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Kurzfassung 

Die begrenzte Reichweite und daraus entstehende Reichweitenangst kann als eine der 

grössten Hindernisse bei der Nutzung von elektrischen Fahrzeugen (EV) angesehen wer-

den. Der gleichzeitig nur sehr schleppende Fortschritt in der Entwicklung von grösseren 

Batteriekapazitäten verlangt nach innovativen Lösungen für dieses Problem. Diese Thesis 

stellt ein Routing System vor, welches für elektrische Fahrräder jene Routen mit dem ge-

ringsten Energieverbrauch berechnen kann. Das dem System zugrundeliegende statische 

Modell erzeugt den Energiebedarf für beliebige Strassensegmente auf Basis kontextbezo-

gener Informationen. Diese bestehen u.a. aus dem Strassennetz, einem digitalen Höhen-

modell oder fahrzeugseitigen Parametern wie Gewicht, Geschwindigkeit oder einem Me-

chanismus zur Rückgewinnung der Energie. Darauf aufbauend wurde eine Applikation ent-

wickelt, welche einem entweder eine energieoptimierte Routenwahl oder die Schätzung der 

verbleibenden Reichweite anzeigt. Mittels Testfahrten konnten die simulierten Daten vali-

diert und optimiert werden. Ein mögliches Anwendungsfeld dieser Technologie sind Navi-

gationssysteme. Während man sich entlang der kürzesten Route bewegt, könnte ein auto-

matischer Wechsel in einen Energiesparmodus vollzogen werden, sobald das Ziel durch 

einen zu geringen Akkustand ausser Reichweite gerät. Das in dieser Thesis vorgestellte 

Verfahren kann die Route unter Berücksichtigung des noch absehbaren Energieverbrauchs 

für die verbleibende Distanz bei entsprechendem Akkustand optimieren und Fahrern das 

Erreichen ihres ausser Reichweite geglaubten Ziels ermöglichen. Dies eröffnet neue Mög-

lichkeiten im E-Bike Routing. 

 

 

 

 

 

 

 

Schlüsselwörter: Routing, E-Mobilität, elektrische Fahrräder, elektrische Fahrzeuge, 
Reichweitenprognose, Erreichbarkeit, Energieverbrauchsmodell, Bellman-Ford 
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1. Introduction 

As cities become more densely populated due to rising urbanization, and societies try to 

decrease their dependency on fossil energy sources, it becomes increasingly important to 

substitute many of the trips previously covered by car with smaller and more energy-efficient 

modes of transportation. Electric bicycles fit nicely into this gap, as they have several ben-

efits. They take little space on the roads. Perhaps most significantly, they are lower in costs 

under many interpretations – energy demand, cost of purchase or rental, insurance, li-

censes, registration, road taxes, or parking (MUETZE & TAN 2007; MCLOUGHLIN ET AL. 2012). 

At the same time, they may be fueled by renewable energy. Also, required physical strain 

decreases as compared to a regular bicycle (thus increasing the personally reachable 

range). Those advantages manifest themselves in growing sales numbers in both European 

countries (PAUL & BOGENBERGER 2014; Figure 1) and other regions in the world, for exam-

ple China (FAIRLEY 2005), Japan, Taiwan and the United States (MUETZE & TAN 2007). In 

Switzerland two percent of all households own an electric bicycle (in 2010; likely to have 

increased ever since; FEDERAL STATISTICAL OFFICE (FSO) 2017). Contributing uses cases 

seem to stem not only from individual purchases for persona use but also business uses. 

Some examples of this include delivery or courier purposes, or companies providing their 

employees with shared e-bikes (e.g., as part of a health program). Also, there is an emerg-

ing amount of stations-based and even free-floating e-bike sharing systems within cities 

(Figure 2). Current examples for Switzerland are the station-based system “Publi-Bike” 

(PUBLI-BIKE 2017), the free-floating system “smide” (SMIDE 2017) in Zurich or the eCargo-

Bike System “carvelo2go” (CARVELO2GO 2017). These trends make it increasingly important 

to be able to effectively assess driving ranges of bicycles taking into account not only pa-

rameters of the bike itself, but also of the person using it, the roads available for travel and 

any other contextual data that may influence the journey. Concomitant, the relentless digit-

ization of every aspect of our daily lives within the scope of intelligent transport systems 

(ITS)1 increase the suitability of applications as the envisaged one in this work. 

 

                                                
1 ITS address processing of traffic and transportation data through telecommunication and infor-
mation technologies. 
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Figure 1: Development of the stock of electric bikes in Europe from 2008 to 2012 (PAUL & BOGENBERGER 2014). 

 

Figure 2: The growing number of countries with bike-sharing programs (PAUL & BOGENBERGER 2014). 

 

 Objectives 

Based on a variety of other electrical and physical consumption models (cf. HOCH 2015; 

ABAGNALE ET AL. 2015a; MUETZE & TAN 2007; OLIVA ET AL. 2013; WANG ET AL. 2015), I will 

build a static model of an electric bicycle, which is embedded in a framework for route com-

putations. The resulting framework features a processing pipeline tailored to fast querying 

for electrical bicycle routes. Prominent steps in the pipeline are the evaluation of multiple 

parameters in parallel, and building up static cost graphs based on a road network and a 

digital elevation model (DEM). In order to evaluate the model performing test drives, two 



 

   

4 Optimizing the Operation Range of E-Bikes in Routing Systems 

prototypical applications are built with the aim of route planning and cruising range estima-

tion. 

Within the scope of this work, three overarching research questions are discussed: 

i) What are the peculiarities of electrical bicycles in terms of energy consumption, 

and related route and range computations? What specific parameters are nec-

essary to model the energy consumption of an e-bike? (Chapter 4 and Section 

6.1) 

 

ii) What is an adequate implementation of an energy consumption model for rout-

ing systems and range estimation for electrical bicycles? (Chapter 5) 

 

iii) Is there an extension of the capabilities of common routing models? (Chapter 6, 

7 and 8) 

 

 Outline of the Thesis 

The thesis consists of the following structure: In order to analyze the previously defined 

research questions, I am first going to review the existing literature on this topic (Chapter 2) 

and – due to the thesis’ partly application-based character – present similar projects ac-

cordingly. Chapter 3 describes the study area and the methodology employed in the thesis 

and hence, its framework including specific hardware, the chosen data construct, develop-

ment tools and other applied software. Chapter 4 deals with the creation of a theoretic ap-

proach of an energy model suitable for e-bikes, followed by the implementation into a pro-

grammatic model. The calculations are followed by query preparation and updating the ini-

tial files within an object-relational database management system (ORDBMS), which is then 

used within a routing system. Therefore, the development of two prototypical applications 

in Chapter 5 is used to evaluate, validate, and optimize the model performing test drives 

(Chapter 6). After presenting and visualizing the results in Chapter 7, the final Chapter sum-

marizes the elaborated work and concludes with an outlook on possible further research. 
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2. Related Works 

I provide an overview of existing work in this field, which encompasses identifying peculiar-

ities of electric bicycles, summarizing similar energy models of all kinds of electric vehicles 

(EV) to be able to adopt them, and an investigation on appropriate algorithms in Section 

2.1. Since one of the thesis results is a prototypical application, I present similar projects in 

the private sector in the subsequent Section 2.2. 

 Literature Overview 

The profound potential for energy-based routing has previously been stated by ERICSSON 

ET AL. 2006, initially in reference to fossil fuel use and later with specific regard to EVs 

(SACHENBACHER ET AL. 2011). For EVs in particular, this routing approach will gain even 

more importance in the future, with limited battery capacity resp. limited operation range 

and long recharge times still representing major user concerns (cf. NEAIMEH ET AL. 2013; 

ARTMEIER & HASELMAYR 2010). This might lead to mental obstacles such as range anxiety 

(STEINHILBER ET AL. 2013). In contrast to the research mentioned, I have chosen an ap-

proach where I treat the use of energy consumption directly as weights for the graph rather 

than using it as a factor of the length (ERICSSON ET AL. 2006). This method enables me to 

display genuine consumption upon each request in terms of cost transparency. 

To be able to compute an energy-based routing, it’s essential to know the energy demand 

on a certain route. Therefore, I need to establish an energy consumption model for electric 

bicycles. A large body of work covers similar energy models for electric cars (cf. HOCH 

2015; OLIVA ET AL. 2013), both from an engineering point of view (e.g., to assess the influ-

ence of different parts on the overall energy consumption), as well as for routing and cruis-

ing range estimation using Geographic Information Systems (GIS) (cf. NEAIMEH ET AL. 2012; 

NEAIMEH ET AL. 2013; KARRAIS 2014). Due to the progress in the field, scientists have started 

to take altered approaches of determining factors into account. NEAIMEH ET AL. 2013, for 

example, focused on a maximized cruising radius integrating the limitations with regard to 

battery capacity of an EV when adjusting a certain route, rather than finding the shortest or 

quickest path. While the above-mentioned models are to a large degree applicable to the 

topic of electric bicycles as well, there are several differences: the smaller complexity of the 

drivetrain (e.g., partly the lack of an energetic recovery system resp. recuperation system, 

or the mostly constant energy consumption and smaller amount of switched on auxiliary 

components – e.g., compared to adjustable air conditioning or radio in cars), the additional 

power supplied by the rider, or the lack of battery temperature management causing higher 

or lower energy consumption (KARIMI & LI 2013; YUKSEL & MICHALEK 2015; LI ET AL. 2016). 
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For example, the recent research on electric bicycle energy models by ABAGNALE ET AL. 

2015b; ABAGNALE ET AL. 2015a; CARDONE ET AL. 2016 only consists of a motor and gearbox 

in sequence. BA HUNG ET AL. 2017 evaluated the effect and interaction of a variety of input 

parameters on the required power to propel an electric bicycle. They aimed at providing 

suggestions on how to optimize the energy consumption. MUETZE & TAN 2007 also exam-

ines the performance of electric bicycles. While STORANDT 2012 has already identified the 

need for energy saving routes for vehicles in the context of the examined ordinary bicycles, 

her work focusses on avoiding steep climbs as influencing parameter only. However, the 

study aims at optimizing a specific routing algorithm. 

Routing algorithms can solve the shortest path problem in a network. Such a network is 

typically described as a graph, consisting of nodes (i.e., street intersections), which are 

connected by edges (i.e., street segments, bike lanes, etc.). A cost value is assigned to 

each edge weight which could be the length of the street segment or – in this thesis – the 

energy consumption of an electric bicycle on the street segment. To solve the shortest path 

problem the algorithm computes the path with the least edge costs between two selected 

nodes in the network. In an undirected graph the edges have no orientation, while edges in 

a directed graph have a specific orientation. Street networks require directed graphs as 

street segments can be traversed sometimes in both directions and sometimes only in one 

direction. Furthermore, the energy consumed by a electric bicycle is higher when going 

uphill than when going downhill (BA HUNG ET AL. 2017), especially when a recuperation 

mechanism recovers energy while braking. This fact can be considered only when distin-

guishing between forward and backward traversal. 

The mentioned peculiarities require the use of a routing algorithm suitable for my cause. 

The recuperation mechanism prevents the use of a routing algorithm such as Djikstra 

(DIJKSTRA 1959) or its generalizing, extending, or speed-up variants such as the A*- algo-

rithm (HART ET AL. 1968), Contraction Hierarchies (CH) (GEISBERGER ET AL. 2008) or several 

other route planning algorithms (DELLING ET AL. 2009), as the battery may be charged during 

a downhill segment (SACHENBACHER ET AL. 2011). Therefore, if recovered energy is repre-

sented by a negative value, the corresponding edge weight will be negative. Simply adding 

a large positive number to all edge weights and applying the Dijkstra algorithm (and sub-

tracting the appropriate amount after compiling the route) can ultimately result in a different 

(and thus not optimal) route, as Figure 3 illustrates. The Bellman-Ford algorithm (BELLMAN 

1958) is a popular alternative able to process negative edge costs. Nevertheless, it does 

not allow negative edge cycles (i.e., a cycle containing only negative edge weights, or even 
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a cycle causing a negative value when adding up the containing edge weights). Considering 

the topography while passing downhill segments in a street network with the aim to go back 

to the origin, a negative edge cycle in a three-dimensional environment is physically impos-

sible. In other words, as the energy required to traverse a street segment (i.e., assigned to 

the street segment as edge weight) is only negative if the slope gradient is, it will not cause 

a cycle of negative edge values. 

Figure 3: An example on how the summation of an additional edge cost value in a graph in order to eliminate 
negative edge costs can ultimately result in a different path. The first line: Adding a number  to every edge 

appears in the cost as an additional term equal to ⋅ . This additonal cost value  is dependent on , which 
is the number of all edges of the path taken. In general the number of edges has no influence on the cost of a 
path, only the sum of individual cost of all edges. Therefore this method can not be applied. The notation in the 
second line is adapted for the example in the third line: To eliminate negative costs, the additional cost must be 
at least the minimum of the edge weights in the graph. While in the first graph the shortest path from A to B is 
along = 3 and = −2 (total cost of the path = 1), the shortest path in the altered second graph is now along 

= 4 (total cost of the path = 4). 

 

The Bellman-Ford algorithm might also require more calculations in terms of time complex-

ity2. According to BAST ET AL. 2015 the application of algorithms for route planning inevitably 

implies a trade-off between query time on the one hand and preprocessing time and storage 

at the other hand. GALLO & PALLOTTINO 1982 resp. PALLOTTINO 1984 introduced a variant 

of Bellman-Ford with a worst time complexity, but a better performance though (ZHAN & 

NOON 1998). Also, the mentioned work of STORANDT 2012 focuses mainly on the application 

and improvement of the underlying CH algorithm. However, the use of speed-up techniques 

is not of major concern in this work. As routes for electric bicycles are comparatively short 

                                                
2 Time complexity in computer science describes the growth of the running time of a function (i.e. the 
algorithm) proportional to the size of the input (i.e. the length of its string) (SIPSER 2006). While O in 
O(nx) denotes a tight upper bound on the time complexity, n reflects the size of the input. 

B 

A = 3 

+  
 ( + ) ⋅ +  

+ = −min( ) 

= +  

+2 

( + ) = + −min( ) ⋅ −min( ) + =  resp. 

+ = 5 A 

B 

resp. 
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(as range is limited by the utilized battery) and make thereby use of relatively small parts of 

the street network. I uprated the applicability of an appropriate routing algorithm. Concomi-

tant with graphs being preprocessed, query time resp. the use of speed-up techniques is 

not the focus of this work. As a consequence, routing for a bicycle without recuperation 

mechanism is computed simply with a Dijkstra implementation, whereas the subsequent 

developed Bellman-Ford enables a wider use for both bikes with and without recuperation 

systems. 

As a model for electrical bicycles is largely dependent on personal parameters (e.g., weight, 

rider power supply), various capturing of the parameters in different steps of the cost calcu-

lation requires the preprocessing of the cost value and prevents me from updating edge 

weights dynamically. While recent research has shown methods for dynamic graph updates 

(e.g., SCHULTES & SANDERS 2007), it usually focuses on updating only a few edges. For that 

reason, I opted for building a processing pipeline, which computes multiple parameterized 

graphs in parallel. 

According to the works of ABAGNALE ET AL. 2015a; ABAGNALE ET AL. 2015b; CARDONE ET AL. 

2016, literature distinguishes between two kinds of actuators for electric bicycles: Pure elec-

tric bicycles which are triggered by a handlebar throttle on the one hand (cf. FAIRLEY 2005; 

SOMCHAIWONG & PONGLANGKA 2006; YANG ET AL. 2009), and so-called pedelecs which re-

act on pedaling of the rider on the other hand (cf. DU ET AL. 2009). Although the test set 

from Section 6.2 is carried out using pedelecs3 and the energy model from Section 4.1 de-

signed accordingly (as this type is more common in Europe and therefore the study area 

introduced in Section 3.4 according to MUETZE & TAN 2007), my approach could be applied 

on both versions of electric bicycles by just omitting the human force for the former. Also, 

by adjusting the parameters and the overall setting, the model can be used for other EVs. 

  

                                                
3 I use the terms electric bicycle resp. e-bike synonymous to pedelec in this work. 
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 Similar projects 

Besides academic research, major developments can be found in the private sector. While 

“Smart Directions” by “Mapbox” enables to compute the most energy efficient route for elec-

tric cars or scooter (so far for San Francisco solely), it is not exclusively made for electric 

bicycles (MAPBOX n.d.). “Nyon” by “Bosch” is capable of showing the remaining range for 

electric bicycles with “Topo-Reichweite” considering the topography on the shortest route 

(launched in April 2016; BOSCH 2016). Surprisingly however, neither do these offer an en-

ergy based routing, which predicts an approximation of the required energy, nor a recom-

mendation on which route to take, so that one can still reach the desired target location at 

the remaining state of charge (SOC) of the battery, although developments in this direction 

might be tending (WILLE 2016). In this context, the so-called “eBike Reichweiten-Assistent” 

is noteworthy as well. Based on a variety of input parameters, it estimates the general 

reachability displaying a value for the range only without any spatial context (Bosch prod-

ucts solely, BOSCH n.d.). “Morbih’en vélo” follows a similar approach as this thesis, but they 

use pgRouting to find the safest route riding an ordinary bicycle (MORBIH’EN VÉLO n.d.). Just 

as much as those products differ from my approach, it might not be expedient to define a 

state of the art for this kind of application. 
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3. Methods 

For the selection of the right framework, I focused mainly on the interoperability of the cho-

sen tools in order to meet the requirements of the desired universal applicability. Certainly, 

criteria such as adaptability during the process of the work and previous knowledge of the 

underlying coding language mattered as well. The use of open source data and tools prom-

ise greater combability which inherently allows an easier use of the calculated data in ex-

ternal programs and arbitrary applicability. Moreover, I followed a holistic contemplation in 

the stage of data (Section 3.1) and software (Section 3.2) selection to ensure proper func-

tioning of every chosen element. The chapter provides both an overview of required hard-

ware (Section 3.3) and justification for the selection of the study area (Section 3.4). 

 Data Acquisition 

To establish a routing environment, I had to acquire data both for a street network and a 

DEM which should meet the following requirements: Latest data, high accuracy/resolution, 

optimal spatial coverage, available complementary, automated processing and storage in 

a ORDBMS possible. Two options fulfil those conditions: Open Street Map (OSM) and Open 

Government Data (OGD). Although for the latter a Web Feature Service (WFS) for bikeways 

is available for the chosen study area  introduced Section 3.4 (CITY OF ZURICH 2017) and 

could be incorporated as a Tool in ArcMap, the provider limits any request to 1000 features. 

This precludes any implemented reconciliation with OSM Data to improve the selection of 

accurate street segments simultaneously. However, OSM Data does not have the men-

tioned restrictions. Through manually defined predicates before download, I can select ne-

gotiable roads solely, which reduces query time as well. Raw OSM data from the source 

mentioned in Table 1 is provided in the World Geodetic System (WGS) WGS 84 (EPSG 

SRID: 4326). 

Table 1: The specifications of the employed data. The table contains the type, provider, geodetic datum and 
source of the very same. 

Data Provider Geodetic Datum Source 

road network OSM WGS 84 http://www.overpass-

api.de/api/xapi_meta? 

DEM (swissALTI3D) swisstopo CH1903 LV03 Educational Use Data swisstopo in Ap-

pendix 

Defined goal for future work is to fully automate the model which also concerns the DEM 

(cf. Section 8.2). However, for the extraction of altitude values I used the swissALTI3D of 

the canton of Zurich provided by the Federal Office of Topography in Switzerland swisstopo 
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with a resolution of 2 meters to ensure best possible evaluation thereafter instead of e.g., 

free and open-source data from the Shuttle Radar Topography Mission (SRTM). The geo-

detic datum is CH1903 LV03 (EPSG SRID: 21781). 

 

 Selection of Software 

Considering the use of open data, a whole series of developing tools came into question 

such as OSRM, OpenTripPlanner, Graphhopper, only to name a few (OPENSTREETMAP 

WIKI 2016). I decided to use PostgreSQL to store my data. On the one hand, by its own 

admission it is the world’s most advanced open source database and is used very often. 

Besides, with PostGIS, it has a very powerful spatial extension – indispensable for this work. 

On the other hand, the additional geospatial routing system pgRouting provides a large 

number of functionalities for developers. It can process OSM Data, for which I chose 

osm2pgrouting, and edge costs can be calculated and updated dynamically. ArcSDE, which 

enables the inclusion of spatial data into the ORDBMS, establishes the connection to 

ArcGIS Model Builder, where the calculation of the energy consumption takes place. I can 

incorporate OSM Data using the additional OpenStreetMap Toolbox. ArcGIS Model Builder 

combines both a graphical user interface (GUI) for a better review and fast adaption possi-

bilities in the development process (instead of using a pure python script). The routing ex-

tension ArcGIS Network Analyst is based on the Dijkstra algorithm (ESRI 2016b) however 

an implementation of the Bellman-Ford algorithm (cf. Section 2.1) was required. Unfortu-

nately, due to the prioprietary nature of the tool, it was infeasible to implement it within 

ArcGIS. Consequently, I abstained from perfoming the routing within ArcGIS and used the 

programing language Rust for a stand-alone application. In contrast to the capabilities of 

ArcGIS, the reason for the additional usage of QGIS is more functionalities in the connection 

between the ORDBMS and the GIS to perform and visualize database queries such as DB 

Manager and pgRoutingLayer. However, ArcGIS enables me, for example, to implement 

Python scripts using ArcPy which is why I had to choose several integrated development 

environments (IDE). While PyCharm operates as a script tool editor and debugger with 

direct linkage to ArcGIS, I managed and administrated the ORDBMS by using DataGrid 

along with pgAdmin and DB Manager. For the development of applications, I used Web-

Storm and Notepad++, as well as Visual Studio Code mainly for the development of the 

Bellman-Ford Application. The linkage between Tableau and the ORDBMS facilitates anal-

ysis and visualization of the calculated values when altering parameters upon each run of 

the model in the evaluation phase. To avoid measurement inaccuracies as a consequence 
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of the use of third party applications for tracking, I used two free and open-source 

smartphone applications redundantly. Table 2 summarizes the selection of the software. 

Table 2: The software specifications. The table contains the name of each program, its version, proprietor and 
license and how it is employed for my purposes. 

Name Version Proprietor (license) Function 

PostgreSQL 9.4 open source (Post-
greSQL) 

ORDBMS 

 2.3 open source (GPL) spatial database extender 

pgRouting 2.3 open source (GPL) routing system 

osm2pgrouting (mapcon-
fig_for_bicycles.xml) 

2.2.0 open source (GPL) tool - imports OSM Data into 
pgRouting / defines topology 

pgAdmin 1.16.1 open source (GPL) GUI for ORDBMS 

ArcGIS for Desktop 

ArcGIS for Server 

ArcSDE 

ArcGIS Editor for OSM 

10.4 

10.4 

10.2 

10.4 

proprietary (ESRI) GIS (GUI for cost calculation) 

 

spatial database engine 

toolbox 

QGIS 

DB Manager 

pgRoutingLayer 

2.16.1 

0.1.20 

2.1.0 

open source (GPL) GIS (GUI for routing) 

GUI for ORDBMS 

Plugin to display pgRouting 
layers directly 

Geoserver 2.10.1 open source (GPL) IMS 

PyCharm 2016.2.3 proprietary (JetBrains) IDE 

DataGrid 2016.2.6 proprietary (JetBrains) IDE 

WebStorm 2016.2.4 proprietary (JetBrains) IDE 

Visual Studio Code 1.11.0 open source /proprietary 
(Microsoft) 

source code editor 

Notepad++ 7.2.2 open source (GPL) source code editor 

Tableau 10.1 proprietary (Tableau Soft-
ware) 

data visualization (ORDBMS) 

Open GPS Tracker  proprietary (René de 
Groot) 

application for tracking test 
drives / generating GPX-Files 

Geo Tracker – GPS tracker  proprietary (Ilya Bogda-
novich) 

application for tracking test 
drives / generating GPX-Files 
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 Specific Hardware 

Table 3: The hardware specifications. The table contains the hardware employed, its manufacturer and usage 
resp. specifications. 

Hardware Manufacturer / Model Usage / Specs 

Notebook Lenovo Yoga Intel(R) Core(TM) i7-6500U 

CPU @ 2,50GHz 2,59 GHz 

and 16.0 GB RAM with Win-

dows 10 64-bit operating sys-

tem 

Energy cost meter Arendo Measurement of the Energy 

Consumption of the Battery 

Smartphone OnePlus Two Tracking 

E-Bikes EGO Movement White Knight 

Stromer ST2 

Table 4 

Throughout this thesis, I required specific hardware, especially e-bikes in order to perform 

test drives (Table 4). I used a GNSS (Global Navigation Satellite System) enabled device 

to track the route and an energy cost meter to ascertain energy consumption (Table 3). 

Table 4: The specifications of the electric bicycles used in the test drives. 

Specifications White Knight (EGO Movement) ST2 (Stromer) 

Weight [kg] 23 27 

Wheel Diameter [inches] 28 26 

Max. Gradeability [degree] 15 - 

Motor 

Nominal Voltage [V] 

Nominal Current [A] 

Nominal Power [W] 

 

36 

- 

350 

 

46.8 

24 (max.) 

500 

Auxiliary Components [W] 1.08 (display) 0.15 (backlight) 

1 (controller) 

1.02 (display) 

2 (daytime running lights) 

4.2 (headlight) 

Battery 

Nominal Voltage [V] 

Rated Capacity [Ah] 

Capacity [Wh] 

 

- 

10.319 

360 

 

48 

15.9 

814 

Maximal Speed [km/h] 25 45 (curbed to 35 for the tests) 
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 Study Area 

Zurich City was chosen as survey area, because it contains a dense road network and steep 

as well as flat regions. Therefore, it is suitable to evaluate the impact of different influence 

quantities such as gravitation  (cf. Section 4.1 (1)) carrying out test drives. The extent in 

WGS 84 (EPSG: 4326) is defined with 47.42 (Top), 8.57 (Right), 47.35 (Bottom), 8.485 

(Left). It contains 22859 street segments (Figure 4). 

Figure 4: The study area. The map shows the street network illustrating the location and extent. 
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4. Development of the Energy Consumption Model 

In this chapter, I am going to explain the development process of the energy consumption 

model, which calculates edge costs, to be processed in the applications using appropriate 

routing algorithms thereafter. I am going to describe the theoretic setup of an energy model 

for electric bicycles (Section 4.1), which is then – after conducting inevitable preparation 

steps – transformed into a programmatic form in Section 4.2. 

 Energy Model 

An electric bicycle powertrain has to supply enough energy to overcome gravitation, drag, 

and friction (i.e., road resistance), as shown in Figure 5. Steep slopes cause a large gravi-

tational force, which can either lead to energy consumption (when going uphill), or energy 

production (when going downhill): 

 

(1) = ⋅ ⋅ (  
 

In this formula, m is the total mass (i.e., bicycle and rider), g is the gravitational constant, 

and  is the slope angle. The friction is commonly defined as: 

 

(2) = ⋅ ⋅ ⋅ cos( ) 
 

Being proportional to the gravitational force, it is enriched with a rolling coefficient crr. Finally, 

the definition of drag or air resistance is: 

 

(3) = ( − )  

 

Here, Pamb denotes the ambient air pressure, Ra the universal gas constant, Tamb the ambi-

ent temperature, cw the drag coefficient, A the reference area, vDD the driving speed in driv-

ing direction and vwx an optional wind speed. For simplicity, I assume the wind speed to 

always be zero in the elaborated implementation. 
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Power generated via the electric powertrain must overcome all these forces ( = + +

), in order to propel the bicycle forward. Note that I will omit the acceleration resistance, 

which is used to model how a vehicle accelerates and decelerates. For my static model, 

acceleration is neglected. Instead, a measured average velocity is assumed to be the pro-

spective target velocity. Later integration is discussed in Section 8.2. 

Figure 5: All physical forces considered in this work (ABAGNALE ET AL. 2015a, edited). The arrows denote vectors 
which illustrate the direction of each force interfering. 

 

There are different systems for controlling the ratio between rider and motor power input. 

For example, ABAGNALE ET AL. 2015a propose the pedelec velocity control (PVEC), in which 

the motor provides full support up to a selectable target velocity. Since this method only 

works in a dynamic model, I instead model the rider power input  as a constant factor  of 

the tractive force . This way, a specific value emerges for each graph, which can be seen 

as average rider power input and modified at will in an optimization process (cf. Section 

6.1). Ultimately, a user-dependent value also limits the maximal rider power supply. 

 

(4) =   ⋅   
 

Accordingly, the overall wheel torque  consists of + , where  is the motor torque 

(cf. formula (5)).  
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The above forces induce a certain torque on the wheels, denoted as = , where rw is 

the wheel radius. Using the angular velocity of the wheel ( = / ), the equation for 

motor power generation / consumption results in: 

 

(5) = ( , )⋅
+ ∑ ≥ 0

⋅ ( , ) ⋅ + ∑ < 0
 

 

Where EM is the motor efficiency (depending on torque and velocity) and  the gearbox 

efficiency, and the sum of the power  consumed by auxiliary components (cf. HOCH 2015; 

ABAGNALE ET AL. 2015a; OLIVA ET AL. 2013). For torques greater than zero, the motor is in 

consumption mode, and for torques smaller than zero, it is in production mode. 

For bicycles which lack a recuperation system, the motor simply never operates in produc-

tion mode, i.e., PEM will never be negative, and the battery will never be recharged. In my 

model, this restraint is a parameter of the bicycle, which limits PEM accordingly. 

As most people charge their battery indoors, i.e., in a warmer environment, the power con-

sumption appears to be larger due to the battery cooling down. YUKSEL & MICHALEK 2015 

investigated the effects of temperature differences (i.e., comparison between different re-

gions in that case) on EVs stressing the poorer performance of EVs at lower temperatures 

since electrochemical reactions are temperature dependent. LI ET AL. 2016 examined the 

effect of temperature among and compared to other factors influencing the energy con-

sumption of EVs. They are both stating that heating and cooling influences range not only 

due to less available energy from the battery, but also causes an increasing energy demand. 

Note that I only considered the cooling effect in this work since the tests were carried out in 

winter, and for simplification it is modelled with a linear decrease. The effect of the battery 

cooling down is approximated by a temperature-dependent factor : 

 

(6) =  ⋅ (1 + (25 − Δ ) ⋅ ) 
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The electric motor power ultimately results in the energy consumption required for each 

road segment of length : 

 

(7) =   ⋅  
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 Data Pipeline 

To find routes with low energy consumption, the model from Section 4.1 must be applied to 

a street network. Such a model application either computes all required values dynamically 

during the routing process, or builds a static graph of edge costs. My model follows the 

second approach, as routing on a static graph is much less computationally intensive, and 

thus applicable for large graphs, such as a street network. The recurrence of numerous 

personalized input parameters (cf. Section 6.1) in different stages of the cost calculation 

process makes it almost impossible to fully process the model dynamically upon request 

resp. would lead to unacceptable query times. 

I transformed the theoretical approach for an energy model from Section 4.1 into a pro-

grammatic model using ArcGIS Model Builder in a PostgreSQL environment (cf. Section 

3.2). It can preprocess all cost value required for the application in one step. Despite choos-

ing Zurich City as study area, a later adaption and optimization could easily be performed 

by changing input parameters for any desired location. 

The graph building application consists of the following stages, which are built as an auto-

mated data pipeline beginning in Section 4.2.3: road network preparation, extraction of al-

titude values from a DEM, calculation of intermediate model values (impeding forces, wheel 

torque and angular velocity), and computation of electrical motor power and energy con-

sumption. Naturally, all edge costs must be computed both for a forward and backward 

traversal, for different bike parameters (such as recuperation mode switched on or off), and 

different target velocities. To perform model iterations only for specific parameters at the 

end of the workflow, the model is divided into submodels, which the program runs consec-

utively. 

 

4.2.1. Basic Preparation 

The first step is to set up a framework. The installed versions of PostgreSQL (with PostGIS 

and pgRouting) and ArcGIS must match in order to function properly, which is why the ver-

sions must meet specific requirements (PostgreSQL 9.3 resp. 9.4 for ArcGIS <9.5 by the 

time I started to write this thesis; ESRI 2016a). I created a new database named ebike 

which will store the data (SQL expression): 

CREATE DATABASE ebike; 
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This database is defined as maintenance database (in pgAdmin3: disconnect server > RC 

Server > Properties > maintenance DB: ebike). All other (default) databases need to be 

disconnected to avoid any mis-allocation of the required schemas and extensions: 

CREATE SCHEMA postgres; 
CREATE EXTENSION postgis WITH SCHEMA public; 
CREATE EXTENSION pgrouting WITH SCHEMA public; 

 

As shown above, functions must be stored in schema public, so that the ORDBMS and 

ArcGIS can communicate over ArcSDE. However, due to restrictions by ArcGIS, data gen-

erated in Model Builder can neither be stored in the default schema public nor in (the later 

created) sde, but in the new created schema postgres. However, the above-mentioned ex-

tensions and related functions can only be stored in the default schema public. Otherwise, 

ArcGIS can’t access them. I copy st_geometry.dll (usually stored) in C:\Program Files 

(x86)\ArcGIS\Desktop10.4\DatabaseSupport\PostgreSQL\9.4\Windows64 into C:\Program 

Files\PostgreSQL\9.4\lib (default paths). In the next step, I create a folder Workspace 

(which will contain Current and Scratch Workspace as explained below) and a subfolder 

Scratch. 

 

4.2.2. Preparation in ArcGIS 

ArcGIS needs connection to the ORDBMS in order to access the inherent data. Thus, I 

execute “Create Enterprise Geodatabase”. This tool creates i.a. a new schema sde which 

ensures compatibility between PostgreSQL and ArcGIS. Therefore, a new database, stor-

age locations and a database user to act as the geodatabase administrator and owner of 

the geodatabase are established automatically. The tool grants the geodatabase adminis-

trator privileges required to create a geodatabase in the database. I used input parameter 

and stated in Figure 6. Figure 7 shows the succeeded execution. 
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Figure 6: Input Parameter of the Tool “Create Enterprise Geodatabase”. The database platform is PostgreSQL, 
the instance a localhost, the database named ebike, the database administrator postgres with the password 
ebike. A new geodatabase administrator sde with the password ebike is created. The field authorization file 
must contain the file of a active the ArcGIS Server license (cf. Section 3.2). 

 

Figure 7: Succeeded processing of the Tool “Create Enterprise Geodatabase”.  
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The next step is to create a database connection file in the Workspace folder using “Create 

Database Connection”, which ultimately acts as Current Workspace, specified as default 

geodatabase (RC on databaseconnectionfile.sde > Make Default Geodatabase). In this da-

tabase, I compile a new toolbox ebike.postgres.energy_consumption_model (RC on data-

baseconnectionfile.sde > New > Toolbox). This newly created toolbox will contain all models 

and submodels used for the calculation of the energy consumption (RC on ebike.post-

gres.energy_consumption_model > New > Model). For this purpose, I use the following 

pattern: 

energyconsumptionmodel_[manufacturer]_[e-bike-model] 

resp. energyconsumptionsubmodel_[e-bike-model]_[number of submodel] 

Example:  energyconsumptionmodel_egomovement_whiteknight.py 

resp. energyconsumptionsubmodel_whiteknight_1.py 

energyconsumptionsubmodel_whiteknight_2.py 

energyconsumptionmodel_stromer_st2.py 

resp. energyconsumptionsubmodel_st2_1.py 

energyconsumptionsubmodel_st2_2.py 

energyconsumptionsubmodel_st2_3.py 
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Figure 8: The energy consumption model for the bike without recuperation (White Knight from EGO Movement), 
divided into two submodels which are computed subsequently in an automated data pipeline. The parameters 
on the left side correspond the established ones in Section 4.1 and are filled with values from Table 9 in Section 
6.2.1. 

 

The label [e-bike model] denotes the electric bicycles from Section 3.3 tested in Chapter 6, 

which have marginal differences in calculation (cf. Programming Code ArcGIS Model 

Builder in Appendix). In each superior model, I created a Scratch Workspace (%Scratch%) 

and a Current Workspace (%Workspace%) and several other variables, as the example in 

Figure 8 as well as Figure 10 (Section 4.2.3) illustrates. Those variables were established 

in Section 4.1 and summarized in Table 9 and Table 10 in Section 6.2. On the one hand, 

Scratch workspace is used to access raw data such as the DEM and stores Python scripts 

or with the database incompatible data such as a temporary OSM file (removed by using 

the tool “Delete” unless determination through RC on file > Intermediate possible). On the 

other hand, Current Workspace covers the connection to the database (specified in LC on 

Model > Model Properties > Environments) where the calculated data is stored. All data is 

stored using relative path names. Figure 9 shows the specified “Environment Settings”. 
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Figure 9: "Environment Settings" of each model. The path of both the current and the scratch workspace as 
well as the processing extent is defined here. 

  

The variables contain the input model parameters, established in Section 4.1 and filled with 

values from Section 6.1. Defining variables makes it possible to access them in arbitrary 

parts of the model and adjust values at will. To simplify understanding due to the amount of 

input and output variables, all labels have the same pattern: 

[variable]_[presence of recuperation]_[direction of traversal]_[unit] 

Example:  pressure_r_hPa 

 v%velocity_kmh%_rec_r_Wh 
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The following annotations might facilitate the comprehension: 

 

The unit is stated at the end of each expression throughout the entire model (e.g., 

weight_e-bike_kg). As the unit is only stated if there is one (e.g., pressure_hPa vs. mo-

tor_efficiency (dimensionless)), [direction of traversal] in front of it appears only when 

going backwards [r] (e.g., pressure_hPa for forward traversal vs. pressure_r_hPa for 

backward traversal). Computing reverse costs is mandatory for the use in directed 

graphs such as a street network (cf. Section 2.1). 

The end of the model constitutes an exception (Section 4.2.7): To reduce the length of 

the expression, you can note the variable only by its unit (e.g.,  by [W] or  by 

[Wh]), whereas the variable iteration becomes its label (e.g., v%velocity_kmh% resp. 

v20 for a velocity of 20km/h) – e.g. v20_norec_Wh. The optional presence of recupera-

tion (rec/norec) is established at the end of the model, which is why it does not emerge 

in any previous stage. 

With this kind of notation, an arbitrary extension of the model (e.g., additional iterations 

for weight levels or temperature) becomes viable. 
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4.2.3. Data Conditioning 

Figure 10: The beginning of the energy consumption calculation in the first submodel. It contains all model 
parameters followed by several data preparation stages (which include automated data retrieval, and pre-pro-
cessing of the street graph). 

 

The data conditioning stage starts by downloading OSM data for a defined extend (see 

Section 3.4) through an Extended Application Programming Interface (XAPI) directly from 

one of the OSM Servers (http://www.overpass-api.de/api/xapi_meta?), as shown in Figure 

11. A request predicate is set to include negotiable roads only and reduce processing time 

subsequently: 

highway=primary|primary_link|secondary|tertiary|residential|living_street|track|pedes-

trian|path|cycleway|footway|byway|unclassified|secondary_link|tertiary_link|lane|track|op-

posite_lane|opposite|grade1|grade2|grade3|grade4|grade5|roundabout 
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Figure 11: Input Parameters of the tool "Download OSM Data (XAPI)" 

 

I import the originated OSM file into the pgRouting database using an implemented script, 

which defines a suitable routing topology at the same time. This python script shown below 

executes the osm2pgrouting command using the subprocess module. The implementation 

pursues the approach of fully automated processing and enables easy customizability 

through the shift of input parameters (e.g., database access data could be incorporated into 

the model as well). After implementing it into the model, the script could use any configura-

tion file, e.g., in this case one optimized for bicycles (see Section 3.2), whose path has to 

be located in the bin folder of PostgreSQL/9.4. Among other arguments, I defined a Boolean 

expression which continues the process if succeeded. 

import subprocess 
import sys 
import arcpy 
 
try: 
    osm2pgrouting   =   arcpy.GetParameterAsText(0) 
    osm_file        =   arcpy.GetParameterAsText(1) 
    conf_file       =   arcpy.GetParameterAsText(2) 
    print osm2pgrouting 
    print osm_file 
    print conf_file 
 
    response = subprocess.check_output([osm2pgrouting, 
                                        '--file', osm_file, 
                                        '--conf', conf_file, 
                                        '-p', '5432', '--dbname', 'ebike', 
                                        '--user', 'postgres', '--password', 
                                        'ebike', '--clean']).decode("utf-8") 
 
    print response 
except subprocess.CalledProcessError as e: 
    print "Have an error in processing:", sys.exc_info()[0] 
    print "Ping stdout output:\n", e.output 
    arcpy.SetParameterAsText(4, "false") 
else: 
    arcpy.SetParameterAsText(3, "true") 
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Using Model Builders’ own relation “precondition”, the model deletes the downloaded tem-

porary OSM file and initiates the replication of the generated file ways (edge table as the 

key to conduct routing) likewise. Although the program claims, the input and output data 

element were identical, further proceeding with the original file causes errors. By updating 

the original file at the completion of the calculation with relevant columns only, I hereby 

reduce the amount of data necessary for the subsequent routing. These steps ultimately 

complete the data preparation stage. 

 

4.2.4. Altitude Value Extraction 

To obtain the slope angle for each street segment, I need to extract altitude values from a 

DEM and project them onto the street network. Figure 12 illustrates the trigonometric ap-

proach to calculate the required value. I conducted the following steps (cf. Figure 13). 

Figure 12: Schematic illustration of the calculation of slope. The elevation point at the source location source_el 
of a specific street segment with the length length_m has the coordinates x1/y1, the one at the target location 
target_el has x2/y2. While length_m symbolizes the adjacent side , the difference of the values for target_el 

and source_el results into opposite side . 

 

First of all, height values need to be extracted from the raster (DEM) and added to the street 

network nodes (OSM). For this purpose, points are required to store the altitude values at 

the beginning and end of each street segment. Because the coordinates of the start and 

end node of each segment are provided through x1/y1 for the source and x2/y2 for the 

target location already, I can use “Make XY Event Layer” to convert this information into 

point features (instead of using the tailored “Feature Vertices To Points”). The integration 

of the tool “Feature Class to Feature Class” is mandatory to proceed, since the raw (tem-

porary) point feature layer cannot serve as input feature for the following “Extract Values to 

target_el 
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Points”. Once the DEM has been converted into the same coordinate system (CH1903 to 

WGS 1984), it is stored as the single compatible ESRI GRID (instead of the original Geo-

TIFF format)4. Its elevation values are interpolated at the point location through “Extract 

Values to Points” (check optional “Interpolate values at the point locations” to minimize po-

tential miscalculations) which computes a default field called rastervalu. Since I need to 

execute this function twice both for the source and target and for reasons of comprehension, 

I renamed the generated default label into source_el resp. target_el. I used “Add Field”, 

“Calculate Field” and “Delete Field” (to delete the generated rastervalu) in the stated order 

(the much simpler “Alter Field” caused severe errors in further calculations). 

Figure 13: The altitude value extraction procedure. 

 

The transfer of elevation values causes scattered inaccurate height allocations due to inter-

polation errors through nearby bridges, walls, or scarps. Hence, slope angle contains some 

extreme values (cf. Figure 43Figure 44Figure 45 in Section 8.2). Those can be considered 

as outliers. Since I did not yet alter values above a certain threshold value manually (e.g., 

according to constructional regulations for maximal slopes), no data values are assigned to 

values above a certain gradeability of the motor of the the electric bicycle (cf. Section 4.2.7). 

This approach excludes outliers from the routing procedure at the same time. As a result, 

few street segments which are actually less steep and thus negotiable are not taken into 

account. Due to small quantity of the affected values (under 1 % of the values above 15 

and below -15 degrees of street segment for the study area), this effect can be considered 

negligible for the time being, whereas other solutions are discussed in Section 8.2. 

                                                
4 Clipping or an alignment on the extent might become important when, due to further automation, 
downloading the raster directly (cf. Section 8.2). It is negligible for the experimental setup. 
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After joining the intermediate data (using the field gid), the slope (in percentage as 

slope_percentage and angle as slope_degree) is calculated. For every single step from this 

point forward, all intermediate data is calculated for both forward and backward traversal 

(cf. Figure 14 in Section 4.2.5). In the sequel, the Python code contained in “Calculate Field” 

is shown consecutively numbered per equation in Section 4.1 and additional intermediate 

calculations in the term (x.1), (x.2), and so on. Initially, the model computes (0.1) slope 

percentage as a simple ratio between target_el – source_el, which is inserted into an arc 

tangent function yielding (0.2) the angle of slope accordingly (MUETZE & TAN 2007; BUCKLEY 

2008): 

(0.1) =  ⋅ 100 
 

(0.1) (!target_el!-!source_el!)/!length_m!*100 #slopeangle_percentage 
 

(0.2)  =  tan ( ) 
 

(0.2) math.degrees(math.atan((!target_el!-!source_el!)/!length_m!)) #slopeangle_degree 

 

4.2.5. Impeding Forces 

Subsequently, the model computes (1) climbing resistance , and (2) rolling resistance : 

(1) (%weight_driver_kg%+%weight_e-bike_kg%)*9.806* 
math.sin(math.radians(!slopeangle_degree!)) #climbing_resistance 

 

(2) %rolling_coefficient%*(%weight_driver_kg%+%weight_e-bike_kg%) 
*9.806*math.cos(math.radians(!slopeangle_degree!)) #rolling_resistance 

 

The code in (3.1) denotes the computation of the ambient air pressure  through the 

international height formula, a premise for the calculation of drag . It contains the standard 

atmosphere 1013.25 hPa, the temperature gradient of 0.0065 K / m, the average height 

between the two end nodes of a street segment ℎ, and the ambient temperature Tamb: 

(3.1) = 1013.25 ⋅ (1 −
. ⋅

) ,  

 

(3.1) 1013.25*math.pow(1-(0.0065*((!target_el!+!source_el!)/2)) 
/(%temperature_celsius%+273.15),5.255) #ambient_air_pressure 
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Figure 14: The end of the first submodel with the calculation of slope in degree required to obtain the impeding 
forces gravitation and friction and the pressure required to obtain drag for both forward and backward traversal 
respectively. 

 

Please note: Because of the performed iteration the model is split into parts as Figure 8 

shows exemplary. The computation of (3) drag  indicates the beginning of the second 

part which iterates dependent variables for defined velocity levels  %velocity_kmh% us-

ing the iterator “For” (Figure 15). 

(3) !pressure_hPa!*100/(2*287.058*(%temperature_celsius%+273.15)) 
*1.15*0.55*math.pow((%velocity_kmh%/3.6),2) #drag_resistance 

 

Finally, I add up all previously computed impeding forces to the tractive force : 

(4.1) !climbres_N!+!rollres_N!+!dragres_v%velocity_kmh%_N! #tractive_force 

 

To consider (4) the rider power input , I assume the human torque to be a constant factor 

of the tractive force , ultimately resulting into (4.2) motor torque : 

(4.2) def fachtor(tracforcevvelocity_kmh_N, factor_human_torque, wheel_diameter_inches): 

    if tracforcevvelocity_kmh_N > 0: 
        return (tracforcevvelocity_kmh_N-(tracforcevvelocity_kmh_N*factor_hu-
man_torque))*((wheel_diameter_inches*0.0254)/2) 
    else: 
        return tracforcevvelocity_kmh_N*((wheel_diameter_inches*0.0254)/2 

 #motor_torque 

 

Since the rider needs to pedal only when the tractive force is positive, it does not need to 

be subtracted when it is negative resp. the motor is in generator mode. The pre-logic script 

code is executed by: 

fachtor(!tracforcev%velocity_kmh%_N!, %factor_human_torque%, %wheel_diameter_inches%) 

 

(4.4) (%velocity_kmh%/3.6)/((%wheel_diameter_inches%*0.0254)/2) #angular_velocity 
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Together with the (4.4) angular velocity of the wheel , we are now able to calculate the 

required electric motor power. 

Figure 15: The beginning of the second submodel with the iteration of different velocity levels with the compu-
tation of the remaining impeding forces, summed up to the tractive force. Hence, wheel torque and angular 
velodity are calculated. 

 

 

4.2.6. Determining Motor efficiency 

The motor efficiency for the bike employed in Test Session A is determined by one value, 

which is altered throughout the tests to increase accuracy. In Test Session B, the manufac-

turer provided specifications for the motor efficiency for specific torques and speeds for both 

consumption and production mode in revolutions per minute (RPM), which I transferred into 

model-own entities and then implemented into the model (Figure 16). The values for each 

corresponding velocity level expressed in Table 6 in Section 6.1 are transformed into a 

Python Code implemented into “Calculate Field”, as the example below shows: 

(4.3) def meff5(torquev5_Nm): 
    if -12.5 >= torquev5_Nm: 
        return 0.1686509334044 
    elif -7.5 >= torquev5_Nm > -12.5: 
        return 0.400272727088039 
    elif 0 >= torquev5_Nm > -7.5: 
        return 0.53365978248219 
    elif 0 < torquev5_Nm < 7.5: 
        return 0.623834964702797 
    elif 7.5 <= torquev5_Nm < 12.5: 
        return 0.579450836444724 
    elif 12.5 <= torquev5_Nm < 17.5: 
        return 0.514837509676393 
    elif 17.5 <= torquev5_Nm < 22.5: 
        return 0.472091740648567 
    elif 22.5 <= torquev5_Nm < 27.5: 
        return 0.409172192178427 
    elif 27.5 <= torquev5_Nm < 32.5: 
        return 0.358790286998961 
    elif 32.5 <= torquev5_Nm < 37.5: 
        return 0.32394748442385 
    elif 37.5 <= torquev5_Nm: 
        return 0.192834086191931 

 

The pre-logic script code shown above (4.3) is then executed by: 

meff5(!torquev5_Nm!) 
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Figure 16: An extract of the computation of the motor efficieny of the bike used in Test Session B. 

 

 

4.2.7. Electrical Motor Power and Energy Consumption 

The last part of the model consists of the calculation of the required electric motor power 

 and, following the reassessment of the effect of an increased energy consumption re-

leased by lower temperatures resulting into , the computation of the overall energy con-

sumption  for each feature resp. street segment (Figure 17). 

(4) def pemrecW(slopeangle_degree, gradeability_degree, torquevvelocity_kmh_Nm, angu-
larvvelocity_kmh_s_inverse, motorefficiencyvvelocity_kmh, gearbox_efficiency, aux-
iliary_components_W): 
    if  slopeangle_degree >= gradeability_degree: 
            return 999999 
        elif slopeangle_degree <= -gradeability_degree: 
            return 999999 
    elif torquevvelocity_kmh_Nm < 0: 
        return torquevvelocity_kmh_Nm * angularvvelocity_kmh_s_inverse * motoreffi-
ciencyvvelocity_kmh * gearbox_efficiency + auxiliary_components_W 
    else: 
        return torquevvelocity_kmh_Nm * angularvvelocity_kmh_s_inverse / (motoref-
ficiencyvvelocity_kmh * gearbox_efficiency) + auxiliary_components_W 
 #power electric motor with recuperation 

 

The pre-logic script code shown above calculates (4) the electric motor power for engines 

with a recuperation mechanism (employed in Section 6.2.2) and is executed by: 

pemrecW(!slopeangle_degree!, %gradeability_degree%,!torquev%velocity_kmh%_Nm!, !angu-
larv%velocity_kmh%_s_inverse!, !motorefficiencyv%velocity_kmh%!, %gearbox_efficiency%, 
%auxiliary_components_W%) 

 

It is important to mention that all values beyond the above-mentioned maximal gradeability, 

specified by the e-bikes’ manufacturer, are set to a no-data value.5 This method ensures 

                                                
5 Since several routing systems (i.e., pgRouting) are not able to process pure no data values defined as 
such, I assigned 999999 instead. 
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that the routing exclude those segments and, simultaneously, eliminates scattered interpo-

lation errors arisen from the extraction procedure. For that reason, negative slope (i.e., driv-

ing downhill) is considered as well. To spare query time, this step is implemented in the 

same script. 

Figure 17: The end of the energy consumption model for bikes with recuperation (ensuing Figure 16 in Section 
4.2.6), subsequently computing the power required by the electro motor (adjusted for lower temperatures), the 
energy consumption. The model conciders that one could switch the recuperation on or off by calculating both 
cases.  

 

 

(4) def pemnorecW(slopeangle_degree, gradeability_degree, torquevvelocity_kmh_Nm, angu-
larvvelocity_kmh_s_inverse, motorefficiencyvvelocity_kmh, gearbox_efficiency, aux-
iliary_components_W): 
    if  slopeangle_degree >= gradeability_degree: 
            return 999999 
        elif slopeangle_degree <= -gradeability_degree: 
            return 999999 
    elif torquevvelocity_kmh_Nm < 0: 
        return auxiliary_components_W 
    else: 
        return torquevvelocity_kmh_Nm * angularvvelocity_kmh_s_inverse / (motoreffi-
ciencyvvelocity_kmh * gearbox_efficiency) + auxiliary_components_W 
 
  #power electric motor without recuperation 

 

pemnorecW(!slopeangle_degree!, %gradeability_degree%, !torquev%velocity_kmh%_Nm!, !angu-
larv%velocity_kmh%_s_inverse!, !motorefficiencyv%velocity_kmh%!, %gearbox_efficiency%, 
%auxiliary_components_W%) 

 

To also model the power provided by electric bicycles with a lack of recuperation capability 

(employed in Section 6.2.1), required electric motor power for torques smaller than zero 

consists in this case only of the energy consumed by auxiliary components  such as dis-

play or light, as shown above. Figure 18 represents this case. 

(6) def pemctemprecW(vvelocity_kmh_rec_W, temperature_celsius): 
if vvelocity_kmh_rec_W == 999999: 

return 999999 
if temperature_celsius >= 25: 

return vvelocity_kmh_rec_W 
else: 

return vvelocity_kmh_rec_W * (1+((25-temperature_celsius)*0.0047)) 
 
  #temperature equation with recuperation 
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pemctemprecW(!v%velocity_kmh%_rec_W!, %temperature_celsius%) 

 

After considering (6) the effect of increasing energy consumption due to lower temperatures, 

the multiplication of the power with the ratio between the specific length  and velocity  

ultimately results in (7) energy consumption for each feature resp. street segment. 

(7) def pemrecWh(vvelocity_kmh_ctemp_rec_W, length_m, velocity_kmh): 
if vvelocity_kmh_ctemp_rec_W == 999999: 

return 999999 
else: 

return vvelocity_kmh_ctemp_rec_W*((length_m/1000)/velocity_kmh) 
 
  #energy consumption with recuperation 
 

pemrecWh(!v%velocity_kmh%_ctemp_rec_W!, !length_m!, %velocity_kmh%) 

 

Figure 18: The end of the energy consumption model for bikes without recuperation, subsequently computing 
the power required by the electro motor (adjusted for lower temperatures), the energy consumption resp. energy 
consumption per kilometer for visualization purposes (Figure 19 and Figure 20). 

 

Figure 19 and Figure 20 illustrate the calculated edge weights. The execution time of the 

entire model is approximately 60 minutes for Test Session A and 100 minutes for Test Ses-

sion B (see Table 3 in Section 3.3 for system specifications). To update the native file from 

the database consecutively, running the following SQL query is a crucial step: 

-- new columns are added in the native edge cost file ways and filled with the calculated 
data for energy consumption (for forward and backward traversal and every velocity itera-
tion respectively) 

ALTER TABLE postgres.ways ADD v5_norec_Wh float8; 
UPDATE postgres.ways SET v5_norec_Wh = (SELECT v5_norec_Wh FROM postgres.ways_calculation 
WHERE postgres.ways_calculation.gid = postgres.ways.gid); 
ALTER TABLE postgres.ways ADD v5_rec_Wh float8; 
UPDATE postgres.ways SET v5_rec_Wh = (SELECT v5_rec_Wh FROM postgres.ways_calculation WHERE 
postgres.ways_calculation.gid = postgres.ways.gid); 
ALTER TABLE postgres.ways ADD v5_norec_r_Wh float8; 
UPDATE postgres.ways SET v5_norec_r_Wh = (SELECT v5_norec_r_Wh FROM postgres.ways_calcula-
tion WHERE postgres.ways_calculation.gid = postgres.ways.gid); 
ALTER TABLE postgres.ways ADD v5_rec_r_Wh float8; 
UPDATE postgres.ways SET v5_rec_r_Wh = (SELECT v5_rec_r_Wh FROM postgres.ways_calculation 
WHERE postgres.ways_calculation.gid = postgres.ways.gid); 
 
ALTER TABLE postgres.ways ADD v10_norec_Wh float8; 
UPDATE postgres.ways SET v10_norec_Wh = (SELECT v10_norec_Wh FROM postgres.ways_calculation 
WHERE postgres.ways_calculation.gid = postgres.ways.gid); 
ALTER TABLE postgres.ways ADD v10_rec_Wh float8; 
UPDATE postgres.ways SET v10_rec_Wh = (SELECT v10_rec_Wh FROM postgres.ways_calculation 
WHERE postgres.ways_calculation.gid = postgres.ways.gid); 
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ALTER TABLE postgres.ways ADD v10_norec_r_Wh float8; 
UPDATE postgres.ways SET v10_norec_r_Wh = (SELECT v10_norec_r_Wh FROM postgres.ways_calcu-
lation WHERE postgres.ways_calculation.gid = postgres.ways.gid); 
ALTER TABLE postgres.ways ADD v10_rec_r_Wh float8; 
UPDATE postgres.ways SET v10_rec_r_Wh = (SELECT v10_rec_r_Wh FROM postgres.ways_calculation 
WHERE postgres.ways_calculation.gid = postgres.ways.gid); 
 
ALTER TABLE postgres.ways ADD v15_norec_Wh float8; 
UPDATE postgres.ways SET v15_norec_Wh = (SELECT v15_norec_Wh FROM postgres.ways_calculation 
WHERE postgres.ways_calculation.gid = postgres.ways.gid); 
ALTER TABLE postgres.ways ADD v15_rec_Wh float8; 
UPDATE postgres.ways SET v15_rec_Wh = (SELECT v15_rec_Wh FROM postgres.ways_calculation 
WHERE postgres.ways_calculation.gid = postgres.ways.gid); 
ALTER TABLE postgres.ways ADD v15_norec_r_Wh float8; 
UPDATE postgres.ways SET v15_norec_r_Wh = (SELECT v15_norec_r_Wh FROM postgres.ways_calcu-
lation WHERE postgres.ways_calculation.gid = postgres.ways.gid); 
ALTER TABLE postgres.ways ADD v15_rec_r_Wh float8; 
UPDATE postgres.ways SET v15_rec_r_Wh = (SELECT v15_rec_r_Wh FROM postgres.ways_calculation 
WHERE postgres.ways_calculation.gid = postgres.ways.gid); 
 
ALTER TABLE postgres.ways ADD v20_norec_Wh float8; 
UPDATE postgres.ways SET v20_norec_Wh = (SELECT v20_norec_Wh FROM postgres.ways_calculation 
WHERE postgres.ways_calculation.gid = postgres.ways.gid); 
ALTER TABLE postgres.ways ADD v20_rec_Wh float8; 
UPDATE postgres.ways SET v20_rec_Wh = (SELECT v20_rec_Wh FROM postgres.ways_calculation 
WHERE postgres.ways_calculation.gid = postgres.ways.gid); 
ALTER TABLE postgres.ways ADD v20_norec_r_Wh float8; 
UPDATE postgres.ways SET v20_norec_r_Wh = (SELECT v20_norec_r_Wh FROM postgres.ways_calcu-
lation WHERE postgres.ways_calculation.gid = postgres.ways.gid); 
ALTER TABLE postgres.ways ADD v20_rec_r_Wh float8; 
UPDATE postgres.ways SET v20_rec_r_Wh = (SELECT v20_rec_r_Wh FROM postgres.ways_calculation 
WHERE postgres.ways_calculation.gid = postgres.ways.gid); 
 
ALTER TABLE postgres.ways ADD v25_norec_Wh float8; 
UPDATE postgres.ways SET v25_norec_Wh = (SELECT v25_norec_Wh FROM postgres.ways_calculation 
WHERE postgres.ways_calculation.gid = postgres.ways.gid); 
ALTER TABLE postgres.ways ADD v25_rec_Wh float8; 
UPDATE postgres.ways SET v25_rec_Wh = (SELECT v25_rec_Wh FROM postgres.ways_calculation 
WHERE postgres.ways_calculation.gid = postgres.ways.gid); 
ALTER TABLE postgres.ways ADD v25_norec_r_Wh float8; 
UPDATE postgres.ways SET v25_norec_r_Wh = (SELECT v25_norec_r_Wh FROM postgres.ways_calcu-
lation WHERE postgres.ways_calculation.gid = postgres.ways.gid); 
ALTER TABLE postgres.ways ADD v25_rec_r_Wh float8; 
UPDATE postgres.ways SET v25_rec_r_Wh = (SELECT v25_rec_r_Wh FROM postgres.ways_calculation 
WHERE postgres.ways_calculation.gid = postgres.ways.gid); 
 
-- as some operations are only possible in the schema public due to database restrictions 
(cf. Section 4.2.1) files are copied accordingly 

 
CREATE TABLE public.ways AS 
SELECT * FROM postgres.ways; 
 
CREATE TABLE public.ways_vertices_pgr AS 
SELECT * FROM postgres.ways_vertices_pgr; 
 
CREATE TABLE public.relations_ways AS 
SELECT * FROM postgres.relations_ways; 
 
CREATE TABLE public.osm_relations AS 
SELECT * FROM postgres.osm_relations; 
 
CREATE TABLE public.osm_nodes AS 
SELECT * FROM postgres.osm_nodes; 
 
CREATE TABLE public.osm_way_classes AS 
SELECT * FROM postgres.osm_way_classes; 
 
CREATE TABLE public.osm_way_tags AS 
SELECT * FROM postgres.osm_way_tags; 
 
CREATE TABLE public.osm_way_types AS 
SELECT * FROM postgres.osm_way_types; 
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Figure 19: The energy consumption [Wh] of each street segment in the study area. Naturally, longer street 
segments inherit higher values of energy consumption. Figure 20 addresses this concern. 

 

Figure 20: The hypothetical energy consumption per kilometer [Wh/km] for each street segment. This illustration 
facilitates a comparison between the expected energy demand of particular street segments despite their length. 
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5. Routing Applications 

In order to request a least energy consuming route, I need to build an application using the 

algorithms addressing the shortest path problem introduced in Section 2.1. In a first step, 

for bikes without recuperation and thereby generating only positive edge costs, I compute 

routes with pgRouting using the Dijkstra algorithm (Section 5.1). Second, my own develop-

ment of a routing application using an implementation of the Bellman-Ford algorithm written 

in Rust enables me to involve negative edge costs caused by an energetic recovery system 

henceforth (Section 5.2). 

 Dijkstra Application 

Figure 21: Comparison between an energy-based path (left side) and the shorthest path (right side). Parame-
ters taken from Test Session A (  = 0, m=123,  = 20). 

 

The first approach is to develop an application using the Dijkstra algorithm, applicable for 

bikes without recuperation (Figure 21). With time complexity of O(n2), according to 

ARTMEIER & HASELMAYR 2010 it is the best known algorithm for the processing of non-neg-

ative edge costs. 

Disregarding the availability of several other route planning algorithms with speed-up tech-

nique to reduce query time, preprocessing time and space consumption (DELLING ET AL. 

2009) as the A*- algorithm (HART ET AL. 1968) in the pgRouting library, I used the existing 

implementation of Dijkstra in the pgRouting framework. 

5.1.1. Back-End 

The following description of the setup of the pgRouting Dijkstra Application is inspired by 

the workshop of the FOSS4G 2016 in Bonn and adjusted for my own purposes (KASTL & 

VERGARA 2016). First, I create a function pgr_v20_norec_Wh.sql, which processes input 

parameters both from an edge dataset (in this case ways, specified later on) such as edge 



 

   

43 
 
Routing Applications 

costs (e.g., v20_norec_Wh), and from an attached node dataset, specified as ways_verti-

ces_pgr (e.g., longitude and latitude). Taking those input parameters into account, the func-

tion runs the shortest path Dijkstra query after finding the nearest nodes to start and end-

point coordinates. It flips the geometry if necessary, that target node of the previous road 

segment is the source of the following. Also, it calculates the azimuth from start to end node 

of each road segment. For this purpose, the function employs functions from the PostGIS 

library. pgr_v20_norec_Wh ultimately returns a set of records: A sequence, gid, edge costs 

as energy costs for each segment, street names, a geometry and the heading in degree. 

CREATE OR REPLACE FUNCTION pgr_v20_norec_Wh( 
    IN edges_subset varchar, 
    IN x1 double precision, 
    IN y1 double precision, 
    IN x2 double precision, 
    IN y2 double precision, 
    OUT seq INTEGER, 
    OUT cost FLOAT, 
    OUT name TEXT, 
    OUT geom geometry, 
    OUT heading FLOAT 
) 
RETURNS SETOF record AS 
$BODY$ 
 
WITH 
dijkstra AS ( 
    -- the following runs the shortest path Dijkstra query, which contains input parameters 
for the algorithm such as source and target 
    SELECT * FROM pgr_dijkstra( 
        'SELECT gid as id, source, target, v20_norec_Wh AS cost, v20_norec_r_Wh AS re-
verse_cost FROM ' || $1, 
        -- allocation for finding the nearest nodes to start and endpoint coordinates 
        -- source 
        (SELECT id FROM ways_vertices_pgr 
            ORDER BY the_geom <-> ST_SetSRID(ST_Point(x1,y1),4326) LIMIT 1), 
        -- target 
        (SELECT id FROM ways_vertices_pgr 
            ORDER BY the_geom <-> ST_SetSRID(ST_Point(x2,y2),4326) LIMIT 1), 
        -- directed, reverse costs 
        true) 
    ), 
    with_geom AS ( 
        SELECT dijkstra.seq, dijkstra.cost, ways.name, 
        -- flips the geometry if necessary, that target node of the previous road segment 
is the source of the following 
        CASE 
            WHEN dijkstra.node = ways.source THEN the_geom 
            ELSE ST_Reverse(the_geom) 
        END AS route_geom 
        FROM dijkstra JOIN ways 
        ON (edge = gid) ORDER BY seq 
    ) 
    -- calculates the azimuth from start to end node of each road segment 
    SELECT *, 
    ST_azimuth(ST_StartPoint(route_geom), ST_EndPoint(route_geom)) 
    FROM with_geom; 
$BODY$ 
LANGUAGE 'sql'; 
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To store the above described wrapper into the ORDBMS, the user needs to execute the 

following statement in the command line as shown in Figure 22 (change the direction into 

the target folder of psql; usually cd C:\Program Files\PostgreSQL\9.5\bin\): 

psql -p 5432 -U postgres -d ebike -W ebike -f C:\...\v20_norec_Wh.sql 

Figure 22: The screenshot shows the required arguments to store the function, executed in the command line. 

 

The next step is to publish the wrapper as a Web Map Service (WMS), for which I use the 

Internet Map Server (IMS) Geoserver. Therefore, I connect to the administration page (de-

fault: user: admin; password: geoserver), create a new workspace (Figure 23), a new store 

(Figure 24) and a new layer (Figure 25). I configure the following SQL View in this layer: 

SELECT ST_MakeLine(route.geom) FROM ( 
    SELECT geom FROM pgr_v20_norec_Wh ('ways', %x1%, %y1%, %x2%, %y2% 
  ) ORDER BY seq) AS route 

 

Afterwards, I have to ensure transformation of the coordinate system, since the employed 

OpenLayers basemap (EPSG SRID: 3857) has a different SRID EPSG than the database 

(EPSG SRID: 4326) (cf. Section 3.1). Therefore, I change “Declared SRS” accordingly, se-

lect “Reproject native to declared” in “SRS handling”, click “Compute from data” and “com-

pute from native bounds” and save the form. 
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Figure 23: A new workspace with the name pgRouting is created. 

 

Figure 24: The newly created store is named after the edge costs v20_norec_Wh applied for this trial. Addi-
tionally, connection parameters are defined such as the database type, the host, the port, the database, the 
schema, the user and the password. 
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Figure 25: The SQL View which is used to access data through the created wrapper (cf. Figure 22) in the layer. 

 

 

5.1.2. Front-End 

A front-end document (cf. index_v20_norec_Wh.html in Appendix) ensures access for a 

potential user. A routing request can be performed by simply clicking on two arbitrary points 

of the map. This basemap derives from the OpenLayers library for which the study area is 

set as a default view. To be able to perform the routing request, several variables must be 

predefined. On the one hand, a vector layer is created which is used to display the also 

newly created start and destination features. On the other hand, a variable params calls the 

required layers from Geoserver. The generation of an additional transform function ensures 

the mapping in the correct coordinate system. 

Registering a click event listener determines the starting point through the first click and the 

destination point through the second click. The transformation of the coordinates of the 

retrieved WMS image from native to server projection is ensured by the application of the 

mentioned transform function. Subsequently, data as a WMS image from Geoserver is re-

trieved, matched and displayed. Finally, an additional function capable to removing all ele-

ments from the map in order to start a new request is defined. 
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The final step would be to display the aggregated costs of each route which is why I would 

have to transform the WMS into a WFS. Instead, this functionality is integrated in the Bell-

man-Ford Application in Section 5.2 (responsible for the evaluation in Test Session B in 

Section 6.2.2). However, the initial evaluation of the model in Test Session A in Section 

6.2.1 is carried out using the pgRouting Plugin in QGIS, which provides detailed cost listing 

of the energy consumption per street segment. Hereby, the Dijkstra algorithm proves the 

applicability of the calculated edge costs for energy-based routing initially. 

Explained in the following Section 5.2, the advantage of the Bellman-Ford Application is 

more flexibility as the user can quickly change edge costs (compared to the preliminary 

application presented in this chapter), which were computed for different velocity levels in 

the static model. In detail, because of the implementation of the Bellman-Ford algorithm, 

the application can now process negative edge costs and therefore consider the recupera-

tion ability of certain electric bicycles. 
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 Bellman-Ford Application 

Figure 26: Comparison between an energy-based path (left side) and the shorthest path (right side). Parame-
ters taken from Test Session B (  = 0,  =127,  = 20) similar to the setting of Figure 21. Obviously, the 
costs of the shortest route denote the total length [m] of the journey instead of energy cost of the route [Wh]. 

 

In contrast to, for example, SACHENBACHER ET AL. 2011, who used a variant of the Bellman-

Ford algorithm with the so-called Pallottino strategy (PALLOTTINO 1984), we6 conducted a 

straight-forward implementation of the Bellman-Ford algorithm into another prototypical ap-

plication (Figure 26, Figure 28 and Figure 29). Able to compute arbitrary (i.e. negative) edge 

weights, its worst time complexity O(n3) (compared to Dijkstra) is intended to be compen-

sated by using pre-processed data only in our application, supported by the fast-responding 

character through its setting. Latter means fast query times that is achieved by the use of 

the programing language Rust, which claims to have minimum runtimes (RUST n.d.). As the 

Bellman-Ford algorithm is not part of the library of pgRouting yet, we developed a stand-

alone application explained below. 

5.2.1. Back-End 

The applications’ source (src) consists of main.rs, endpoints.rs, spatialpoints.rs and 

graph.rs (cf. Programming Code Bellman-Ford Application in Appendix). The latter covers 

the implementation of the Bellman-Ford algorithm and performs the routing. It reads de-

clared nodes and edges from the provided database, creates a new graph also adding and 

returning an OSM ID as starting point for the subsequent Bellman-Ford query. Following 

this, graph.rs (cf. Graph.rs in Appendix) initiates spatialpoints.rs (cf. Spatialpoints.rs in Ap-

pendix) to build an R tree. A so-called R tree is a spatial index which defines squares, to 

                                                
6 The second application was developed in collaboration with my supervisor Dominik Bucher. 
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quickly find and access the closest node, starting from every requested location given lon-

gitude and latitude. Graph.rs then gets the node IDs from a longitude and latitude, the in-

ternal ID from an OSM ID, and the location from an internal ID. The application returns a 

vector containing longitude and latitude, finally performing a routing request from source to 

target with the detection of the aggregated costs from each computed graph as total_cost. 

The implementation of the Bellman-Ford algorithm returns a tuple, containing a vector of 

predecessors and a vector of distances to the source node. 

Additionally, the application computes the reachability of all nodes in the graph, and returns 

those which are reachable. It returns a vector of vectors, where the arguments are as fol-

lows: Longitude, latitude, remaining energy. 

Eventually, main.rs (cf. Main.rs in Appendix) – the main function and entry point to the pro-

gram – assigns all arguments from the command line and starts the program. The proce-

dure consists of loading the data from graph.rs, setting up the router for the web server. In 

this step, it accesses endpoints.rs which is responsible for the communication with the front-

end. Here, endpoint.rs (cf. Endpoint.rs in Appendix) transforms the result of the route and 

reachability calculation into a GeoJSON string which can be retrieved in the Front-End. 

Therefore, it computes a route given a start and end latitude and longitude resp. a start and 

end OSM ID. Part of this is a request that returns all reachable nodes in a vicinity. 

 

5.2.2. Front-End 

The html-part of the overall web application (cf. Index.html in Appendix) defines the two 

functionalities route and reachability as boxes to select the desired method. To request the 

latter, the user can claim a certain battery capacity or SOC in Wh. The output plot of the 

energy costs per route request is placed below and contains a placeholder (“Please com-

pute a route by clicking on the map!”) for instance. 

In the following JavaScript code, we set the default view to Zurich City with an appropriate 

zoom level, added a function to add or remove elements on the map and defined a helper 

function to convert HSV color ramps to RGB. This time, we choose a mapbox layer and the 

Leaflet library rather than OpenLayers for the underlying basemap. 

Subsequently, we defined what happens, when a user clicks on the map: Either, the user 

is in routing mode, where the application simply computes and displays routes, or he is in 

the reachability mode, where a contour plot of reachable nodes is drawn. For the latter, we 
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determined maximal and minimal capacity, which is required for coloring. Then we created 

10 equally spaced breaks to visualize the declining SOC, the farther someone diverges 

from the origin (from green to red). 

Since the application relies on a different field data type of the longitude and latitude values, 

contained in the edge file ways_vertices_pgr. Instead of using the numeric format, the user 

needs to alter on double precision, so we can start the application. 

ALTER TABLE ways_vertices_pgr ALTER COLUMN lat TYPE DOUBLE PRECISION; 
ALTER TABLE ways_vertices_pgr ALTER COLUMN lon TYPE DOUBLE PRECISION; 

 

To run the wrapper (the so-called cargo package, a build automation system of Rust) in the 

command line, the user need to change the direction into the target folder (cd C:\...). The 

user has to make sure to be in the right directory, as the implementation uses the current 

directory to look for index.html, i.e., under src/static (Figure 27). 

bellman_osm.exe database_user database_password database_name 

ways_vert_table_name ways_table_name forward_cost_column back-

ward_cost_column 

Example: bellman_osm_0.1.1.exe postgres ebike ebike ways_vertices_pgr ways 

v20_rec_Wh v20_rec_r_Wh 

Figure 27: Invocation of the Bellman-Ford Application in order to start it. 
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Then, the user needs to open a browser and points it at http://127.0.0.1:9000, click on the 

map, or use the endpoints http://127.0.0.1:9000/api/route, http://127.0.0.1:9000/api/route-

using-ids and http://127.0.0.1:9000/api/reachability. These three endpoints accept parame-

ters as follows: 

http://127.0.0.1:9000/api/route?source-lon=8.54564666748047&source-

lat=47.407295617526366&target-lon=8.531398773193361&target-

lat=47.366617842193385 

http://127.0.0.1:9000/api/route-using-ids?source-id=1&target-id=5 

http://127.0.0.1:9000/api/reachability?source-lon=8.50170135498047&source-

lat=47.37429091011091&capacity=50.0 
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Figure 28: Bellman-Ford application with a reachability request. The example shows the maximum remaining 
cruising range with a SOC of 20 Wh from an arbitrary loation in Zurich. 

 

 

 

 

 

Figure 29: Bellman-Ford application with a routing request from ETH Hönggerberg to ETH Center. Parameters 
taken from Test Session A (  = 0, m=123,  = 20). Note the difference to comparable modelled values 
from Test Session A in Table 12 in Chapter 7, caused by recuperation in downhill segments. 
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6. Evaluation 

The following chapter is structured in two parts. In the first Section 6.1, I provide a full de-

scription of the values of the parameters and an explanation for why they were chosen and 

how they influence the resistance forces. Then, I describe the procedure of the Test Drive 

Sessions A and B, in Sections 6.2.1 and 6.2.2 repectively. 

 Parameters 

Many of the model parameters presented in this thesis were taken from either literature or 

the model specifications of the bicycles used. In order to determine the remaining parameter 

values, I conducted field tests with electric bicycles. The experimental nature of the tests 

allowed me to tune parameters such as motor efficiency, rolling resistance, and the influ-

ence of the rider. An overview of all the parameters considered is presented in Table 5. This 

is followed by a summary of the parameter values that were applied in different test situa-

tions in Table 9 (Section 6.2.1) and Table 10 (Section 6.2.2).  

I will begin by explaining the interaction and the amount of influence each of the resistance 

forces contributed. To determine which specific parameters these forces consist of, a deri-

vation of the quantity of each parameter is provided afterwards. 

WILSON 2004 describes the influence of each force on the overall resistance in different use 

cases. This is summarized by MUETZE & TAN 2007: 

i) At speeds greater than approximately 10 km/h (considered as threshold value) 

on flat ground, air resistance  commonly has a greater effect than rolling re-

sistance : 

 

 = 0;  >  

 

ii) At speeds smaller than approximately 10 km/h on flat ground, more power is 

needed to overcome rolling resistance  than air resistance : 

 

 = 0;  >  
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iii) On hilly terrain where climbing resistance is high, both air resistance  and roll-

ing resistance  are insignificant. If the velocity becomes high, as with other 

vehicles (e.g. cars), drag could override the climbing resistance . However this 

is usually not the case with e-bikes, which are used at lower speeds (cf. Figure 

32 and Figure 33): 

 

 > ;  >  

 

Table 5: The model's parameters, classified by symbol and unit. To ensure user-friendly units are considered 
in the early development process for an application, sometimes conventional units are listed (e.g., [inches] for 
the diameter of a bicycle wheel, are used for the input values and are subsequently converted during the geo-
processing phase in Section 4.2). 

Model Parameter Symbol Unit 

weight a) driver 

 b) e-bike 

 [kg] 

standard gravity  [m/s2] 

slope angle  [degree] 

rolling coefficient   

temperature  [celsius] resp. [kelvin] 

ambient air pressure  [hPa] resp. [Pa] 

universal gas constant   

drag coefficient   

reference area  [m2] 

velocity levels  [km/h] resp. [m/s] 

factor human torque   

wheel radius (resp. wheel diameter) rw [inches] resp. [m] 

wheel perimeter  [m] 

motor efficiency   

gearbox efficiency   

gradeability  [degree] 

temperature-dependent factor   

auxiliary components  [W] 
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Figure 30: The average friction and drag for the entire study area, using parameters from Test Session A (  
= 0,  =123). For speeds slightly above 10 km/h, average drag becomes more significant than average friction. 
The red line illustrates the transition. Note that the average value for friction in this diagram is calculated from 
all street segments (including flat and steep segments). Therefore, the value is usually slightly higher than 10 
km/h. 

 

I seek to reach the same 10km/h threshold value for the entire study area by adjusting the 

rolling coefficient according to the literature discussed previously. Figure 30 and Figure 31 

show that the transition point, where the influence of drag overpowers the influence of fric-

tion, lies slightly above the velocity of 10 km/h (average dragresv10_N  in the study 

area = 2.68, average rollres_N  = 3.61 for Test Session A; average dragresv10_N  in 

the study area = 2.71, average rollres_N  = 3.73 for Test Session B). 

Figure 31: The average friction and drag for the entire study area, using parameters from Test Session B (  
= 0,  =127). For speeds slightly above 10 km/h, average drag becomes more significant than average friction. 
The red line illustrates the transition. Note that the average value for friction in this diagram is calculated from 
all street segments (including flat and steep segments). Therefore, the value is usually slightly higher than 10 
km/h. 
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Figure 32 and Figure 33 thus provides a comparison between all incorporated powers at 

certain speeds, using the mean of the calculated values in the study area. While friction and 

gravitation result in a linear increase, drag has an exponential curve and exceeds gravita-

tion at a certain speed. Considering that the maximum speed of electric bicycles is 25 km/h 

(Test Session A) resp. 35 or 45 km/h (Test Session B; cf. Table 4 in Section 3.3), gravity is 

the largest influencing factor. However, the smaller the corresponding values for the mass 

 and the slope angle  become, the lower the speed at which drag exceeds gravitation 

becomes. BA HUNG ET AL. 2017 findings also show that the mass  and the slope angle  

are one of the most important parameters affecting the tractive force . Following this ex-

amination of the acting forces, the following paragraphs give a description of the applied 

values given to the underlying parameters that contribute to the extent of each force. 

Figure 32: The amount of power [W] to overcome by the electric bicycle, split up by the influence each force 
compared at different velocities [km/h] as average values for the entire study area. Parameters taken from Test 
Session A (  = 0,  = 123). Since gravitation is either positive or negative (depending if forward or backward 
traversal is performed) the employed values constitute averages over absolute values (the mean is composed 
of the mean of negative and the mean of positive values). 
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Figure 33: The amount of power [W] to overcome by the electric bicycle, split up by the influence each force 
compared at different velocities [km/h] as average values for the entire study area. Parameters taken from Test 
Session B (  = 0,  = 127). Since gravitation is either positive or negative (depending if forward or backward 
traversal is performed) the employed values constitute averages over absolute values (the mean is composed 
of the mean of negative and the mean of positive values). 

 

The parameters from Table 5 can be divided into four groups. The first group consists of 

constant values for the whole test et either taken from literature or derived from physical 

constants. The values taken from literature are the rolling coefficient, the drag coefficient, 

the reference area, the human torque factor and the gearbox efficiency. This is followed by 

the values derived from physical constants which are the standard gravity constant and the 

universal gas constant. The second group of parameters are the values from producers’ 

specifications that vary between the test sessions. These are the weight of the bike, the 

wheel diameter, the wheel perimeter, the motor efficiency, the maximal gradeabilty, the 

temperature-dependent factor and the energy expenditure of auxiliary components. The 

third group are the parameters that change upon each test drive, namely the weight of the 

driver, the temperature and the average velocity. Aside from these statically determined 

parameters, the model also requires dynamically computed parameters such as the angle 

of slope and the ambient air pressure. 

Friction : According to WILSON 2004 the rolling coefficient for bicycles lies in between 

0.002 and 0.01 on a smooth but hard surface. The exact value can change and is dependent 

on environment variables such as inflation pressure, wheel diameter, tire construction, sur-

face material or the presence of an intermediate layer between the rolling object and the 

surface. The presence of heavy snowfall throughout parts of Test Sesion A is an example 

of such an intermediate layer. Under similar conditions, the value of the rolling coefficient 
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for electric bicycles has been found to range from 0.003 (ABAGNALE ET AL. 2015a) to 0.004 

(LOMONOVA ET AL. 2002) and even as high as 0.014 (MORCHIN 1994). Having neither pro-

ducer specifications nor an opportunity to quantify the exact value through appropriate ex-

perimentation, the rolling coefficient was approximated. As a result, it exists as one of the 

parameter that can be adjusted and tuned in the model. For this approximation, I took into 

account the previous findings regarding the influence of friction on the rolling coefficient (as 

the findings in relation to Figure 30 and Figure 31 discuss). 

To calculate drag  in the model, I require values for the frontal area  as well as for the 

drag coefficient . The drag coefficient  is a dimensionless parameter that describes the 

degree of resistance from an object’s surface in a fluid. The frontal area  is defined by the 

forward-facing surface area of the bicycle and rider that is directly exposed and opposed to 

the incoming air resistance. Depending on the rider’s position (recumbent to an entirely 

upright position), values found for the frontal area  in literature vary significantly: 0.33 / 

0.34 / 0.36 (WILSON 2004), 0.4 (MORCHIN 1994), 0.5 (LOMONOVA ET AL. 2002), 0.55 (WILSON 

2004). Typical values for the drag coefficient  range from 0.5 (LOMONOVA ET AL. 2002) to 

0.77 (MUETZE & TAN 2007a) and from 1 (MORCHIN 1994) to 1.15 / 1.2 (WILSON 2004). 

However, as the drag coefficient and frontal area dynamically influence the model, they are 

unable to be quantified in a static setting. Although this is theoretically possible to derive 

from wind tunnel measurements that involve all e-bike models and human subjects, this is 

not practically feasible. As a substitute, approximations of  = 0.55 and  = 1.15 were 

taken from a single test setting (upright commuting bike) in WILSON 2004. These values 

represent the most compatible and standard values. These were then assumed to be con-

stant throughout all test drives (cf. Table 9 and Table 10). 

The motor efficiency of the electric bicycle employed in Test Session A is about 0.8 accord-

ing to manufacturer’s specifications. However, this value was only treated as an initialization 

value for the model. It was then treated as a tuning parameter, to adjust the model and the 

subsequent output values throughout test drives. In contrast, the values of the parameter 

for Test Session B are predefined by more detailed specifications provided by the manu-

facturer (Table 6). In terms of the gearbox efficiency , the value from ABAGNALE ET AL. 

2015a is assumed to be generally valid as a benchmark. It was not possible to quantify this 

value for this work.  
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Table 6: The motor efficiency in Test Session B for different torques and velocity levels. The allocation of values 
to each velocity level (torquev_Nm) results from speed in revolutions per minute (RPM) for a specific wheel 
perimeter (  = 2.074). For torques greater than zero, the motor is in consumption mode, and for torques smaller 
than zero, it is in generator mode. 
 

Speed 

[rpm] 50 100 150 200 250 300 350 400 

[km/h] 

when  

0 - 

9.33 

9.33 -

15.55 

15.55 - 

21.77 

21.77 - 

27.99 

27.99 - 

34.22 

34.22 - 

40.44 

40.44 - 

46.66 

46.66 - 

49.77 

[km/h] of 

torquev_Nm 

5 10 | 15 20 25 30 35 | 40 45 
 

Torque [Nm] 

below 

        

<-37.5     0.24 0.41 0.50 0.57 0.62 0.65 

<-32.5 >-37.5     0.33 0.48 0.57 0.63 0.67 0.70 

<-27.5 >-32.5   0.14 0.41 0.55 0.62 0.68 0.72 0.74 

<-22.5 >-27.5   0.31 0.53 0.64 0.69 0.74 0.77 0.79 

<-17.5 >-22.5   0.46 0.62 0.71 0.75 0.78 0.80 0.81 

<-12.5 >-17.5 0.17 0.56 0.68 0.75 0.79 0.81 0.83 0.84 

<-7.5 >-12.5 0.40 0.66 0.75 0.79 0.81 0.82 0.83 0.83 

<0>-7.5 0.53 0.69 0.72 0.77 0.77 0.76 0.75 0.74 

>0<7.5 0.62 0.72 0.75 0.78 0.77 0.77 0.78 0.75 

>7.5 <12.5 0.58 0.70 0.76 0.78 0.80 0.82 0.82   

>12.5 <17.5 0.51 0.65 0.73 0.76 0.79 0.81 0.82   

>17.5 <22.5 0.47 0.62 0.70 0.75 0.78 0.81 0.82   

>22.5 <27.5 0.41 0.57 0.65 0.71 0.74 0.77     

>27.5 <32.5 0.36 0.51 0.61 0.67 0.71 0.76     

>32.5 <37.5 0.32 0.48 0.57 0.64         

>37.5 0.19 0.31 0.41       
 

  

 

Furthermore, I define a constant factor for the human torque  resp. the corresponding hu-

man torque  which represents the overall average per ride resp. street segment. WILSON 

2004 estimated tractive power on different velocity levels and for two types of riders (re-

garding their physical strength and condition). However, I cannot use data related to ordi-

nary bicycles, as the required human power input without motor assistance is dispropor-

tionately higher and hence makes it fundamentally incomparable. For the same reason I 

cannot apply quantaties from literature (300 W for an athlete and 75 W for a nonathlete 

rider) from the work about electric bicycles by MORCHIN 1994, as he derives his values from 

an article covering non-EVs (cf. GROSS ET AL. 1983). However, ABAGNALE ET AL. 2015a; 
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ABAGNALE ET AL. 2015b proposes a constant modelled torque at a desired target velocity (2 

Nm), which is significantly lower than during the acceleration phase – with a torque value 

of 10 Nm resp. 15 Nm for different rider models. The lack of information about a related 

torque value provided by the electric motor prevents me from transforming those values into 

my own model. SCHNEIDER 2009 measured the amount of pedaling power compared to 

motor power for a variety of currently available electric bicycles on behalf of the Swiss Fed-

eral Office of Energy (SFOE). He undertook an investigation about the comparative power 

on a certain route by measuring the subject’s power curve while riding a racing bicycle on 

the same route as a reference. The range of human power in this test series is 50 W at 

approximately 16 km/h, 100 W at approximately 20 km/h, 150 W at approximately 25 km/h, 

and 200 W at approximately 30 km/h. These values could serve as indication for the mag-

nitude of potential human torque resp. human power values. 

Based on the researched values, I aim to derive an original approach for deteriming the 

human power as a constant factor according to the resistance forces as shown in Section 

4.1 (4). Table 7 shows the calculated average values with adapted parameters, which follow 

the assumption of a potential human force. Without further and more accurate evaluation, 

it remains an approximate value. 

Table 7: The average motor power [W] and human power [W] for the study area at varying speeds for Test 
Session A and B. I adjusted the human torque factor  on 0.1 for the entire Test Series according to the meas-
urements. Therefore, the values may differ from those found in literature. 

Test Session Velocity [km/h] 

( ) 

Motor Power [W] 

(  at a certain ) 

Human Power [W] 

(  at a certain  ) 

A 15 220 24 

 20 330 37 

 25 477 53 

B 15 223 25 

 20 271 30 

 25 317 35 

 30 418 46 

 35 547 61 

Finally, I need to define the temperature-dependent factor . The data is provided by the 

manufacturer of the battery used in Test Session A and the same specification was as-

sumed in Test Session B as the manufacturer did not provide the relevant details. As shown 

in Table 8, electric charge decreases with decreasing temperatures. As it is possible to 

assume that energy demand is inversely proportional to the available electric charge (cf. 

Section 2.1), energy demand is, by extension, also inversely proportional to temperature. 
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Table 8: Available electric charge of the battery used in Test Session A at different temperatures . I as-
sumed that less available electric charge results in a higher energy demand (inversely proportional). The linear 
decrease is 0.0047 per degree celsius. The data was provided by the manufacturer. 

Temperature  [celsius] Electric Charge [Ah] Available Electric Charge [%] 

25 10.319 100 

24 10.2706 99.530962 

23 10.2222 99.061925 

22 10.1738 98.592887 

21 10.1254 98.123849 

20 10.077 97.654812 

19 10.0286 97.185774 

18 9.9802 96.716736 

17 9.9318 96.247698 

16 9.8834 95.778661 

15 9.835 95.309623 

14 9.7866 94.840585 

13 9.7382 94.371548 

12 9.6898 93.90251 

11 9.6414 93.433472 

10 9.593 92.964435 

9 9.5446 92.495397 

8 9.4962 92.026359 

7 9.4478 91.557321 

6 9.3994 91.088284 

5 9.351 90.619246 

4 9.3026 90.150208 

3 9.2542 89.681171 

2 9.2058 89.212133 

1 9.1574 88.743095 

0 9.109 88.274058 

-1 9.0606 87.80502 

-2 9.0122 87.335982 

-3 8.9638 86.866944 

-4 8.9154 86.397907 

-5 8.867 85.928869 

-6 8.8186 85.459831 

-7 8.7702 84.990794 

-8 8.7218 84.521756 

-9 8.6734 84.052718 

-10 8.625 83.583681 

… … … 
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For simplification purposes, I am neglecting a few influence quantities such as the headwind 

 which has an impact on energy consumption (LI ET AL. 2016) but can only be incorpo-

rated in a real-time application (cf. Section 8.2).  
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 Test Set 

To verify the calculated values and tune the model, I ran repeated test drives on three routes. 

I obtained those routes by performing a route request between selected origin and target 

locations using the applications developed in the previous chapter. Figure 35 shows the 

energy demand of each street segment and how this route deviates from a common short-

est route request which uses distance as edge costs. Those routes represent ordinary com-

muter distances, which are usually rather short compared to commutes via other vehicles 

such as car or train. The set of routes consist of either uphill stretches: Bülachhof (height 

source_el: 473 meters a.s.l.) to ETH Hönggerberg (height source_el: 525 meters a.s.l.) and 

ETH Center (height source_el: 450 meters a.s.l.) to Bülachhof. In contrast, the route from 

ETH Hönggerberg to ETH Center consists mainly of downhill segments. I tested the energy 

demand of two different e-bike models on these routes. In Test Session A, an engine without 

recuperation ability was used (EGO Movement White Knight). The model employed in Test 

Session B had a recuperation mechanism (Stromer ST 2) (cf. Section 3.3). 

The tests are carried out with the adapted input parameters, which take into consideration 

the temperature during a test ride and the combined weight of the subject and the electric 

bicycle. The measurement for the average velocity could be taken from either the 

smartphone applications or the internal torque sensor displayed for each trip shown in Fig-

ure 38 in Section 6.2.1. However, the first few test rides revealed the so-called “average 

speed while moving” by Geo Tracker provided the best results (cf. Figure 38 in Section 

6.2.1). As a result of this finding, I match this value with the modelled target velocity of the 

compiled route rather than calculating the mean from the mentioned set of measurements 

(the values measured by the smartphone applications and by the internal torque sensor). 

Several other parameters that I do not measure were assumed from literature or producers’ 

specifications, as explained in Section 6.1. The tire pressure was held constantly at 2.6 bar. 

I use the highest power assistance level to exploit full potential of the electric motor in these 

tests. However, further investigation that integrates different assistance levels into the 

model remains possible (cf. Section 8.2). Additionally, a GNSS-Tracking performed by the 

smartphone applications store the driven trajectory (Figure 34). A comparison with the rout-

ing request ascertains the correct route was taken by the rider. 
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Figure 34: GPX-Records of the the test tracks. 

 

Figure 35: Energy consumption per street segment on the test tracks. The Map shows all routes with the mod-
elled energy consumption per street segment (where the parameters to create the route are taken from Test 
Session A). A comparison between least energy consuming and shortest route (length_m as edge costs) reveals 
very few detours for the chosen test set. 
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6.2.1. Test Session A 

Figure 36: The Electric Bicycle employed in Test Session A. 

 

To reflect the majority of electric bicycles currently available, I employed a bike without 

recuperation mechanism for the first series of tests (Figure 36). For each test drive, the 

route and average speed were tracked and matched with modelled values afterwards. 

Through a retrospective approach, I determined energy consumption during recharge mode 

using an energy cost meter at the respective target location. Naturally, I started always at a 

full SOC. This procedure is illustrated by plugs in Figure 35 in Section 6.2. 
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Figure 37: The pgRoutingLayer QGIS-Plugin. Each shortest path algorithm requires input parameters including 
an edge table, geometry, id, target, source, cost and reverse cost. Source and target ID’s serve as arguments 
for each routing request. The application returns a graph with aggregated costs (i.e., for the three test tracks 
shown here). Upon request, the original coordinate system 4326 must be set and the full extent of the desired 
route must fit into the currently shown display (inside a specified bounding box). 

 

The plugin pgRoutingLayer in QGIS enables me to retrieve routes quickly and adjust pa-

rameters accordingly. It allows even faster adaptions than the developed Bellman-Ford-

Application. This explains why it was hence used for the initial Test Session A where par-

ticular parameters required tuning through a great number of iterative recalculations of the 

model. Using data recorded during the test drives, I tuned the motor efficiency and the 

human torque factor which both influence the edge costs declared in Section 4.2, to in-

crease the model’s fit. Through iterative processing of the model with altered inputs, I could 

minimize the deviation between measured and modelled values. Figure 37 shows an ex-

emplary routing request. 
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Figure 38: A screenshot from “Geo Tracker”, one of the smartphone applications available (first picture). It 
displays the average velocity of the trip. The second picture shows the average velocity measured by the in-
ternal torque sensor on the display of the e-bike itself. The third picture shows separate energy cost meter. 
The display plots i.a. the measured amount of energy during recharge [kWh]. Since I started each Test Drive 
with a fully charged battery, the measured value in recharge mode at the respective target location corre-
sponds to the energy consumption of the driven route. 
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Table 9: Model Parameters for the model White Knight from EGO Movement. 

Model Parameter [unit] Value Reference 

weight  driver [kg] 

  e-bike [kg] 

Table 12 

23 

 

producers’ specs 

standard gravity  [m/s2] 9.806  

slope angle [degree] model-dependent  

rolling coefficient  0.003 WILSON 2004; adjusted empirically 

temperature  [celsius] Table 12  

ambient air pressure  

[hPa] 

model-dependent International height formula 

universal gas constant  287.058  

drag coefficient  0.55 WILSON 2004 

reference area  [m2] 1.15 WILSON 2004 

velocity levels  [km/h] 5, 10, 15, 20, 25 

(Table 12) 

model iteration 

factor human torque  0.1 empirical approximation 

wheel diameter (resp. 

wheel radius rw) [inches] 

28 producers’ specs 

motor efficiency  0.45 producers’ specs; adjusted empirically 

gearbox efficiency  0.98 ABAGNALE ET AL. 2015a 

gradeability [degree] 15 producers’ specs; adjusted empirically 

temperature-dependent 

factor  

0.0047 Producers’ specs; empirical approximation 

auxiliary components  

[W] 

1.08 producers’ specs (display only) 

  



 

   

70 Optimizing the Operation Range of E-Bikes in Routing Systems 

6.2.2. Test Session B 

Figure 39: The Electric Bicycle employed in Test Session B. 

 

The bicycle employed in Test Session B (Figure 39) differs from the one in Test Session A 

with regards to three characteristics. Firstly, it has an integrated recuperation mechanism, 

so the motor is capable of generating power instead of just consuming it. Secondly, the bike 

can accelerate to velocities up to 45 km/h (which is curbed to 35 km/h for our Tests; cf. 

Table 4 in Section 3.3). Thirdly, the battery was not fully loaded at the beginning of the trip 

since recuperation is not possible at a full SOC. 

The motor efficiency determined for this test session is shown in Section 4.2.6 and 6.1. 

Even though one could easily improve the model by tuning factors such as human torque, 

I refrained from doing so in order to compare this untuned test session to the tuned Test 

Session A in Chapter 7. The deviations between the two tests allow me to illustrate the 

nessecity of tuning the model. 

Initially I aimed to employ a consistent method for the entire test set, however this was not 

possible. After the first trial test drives, I recognized irregularities in the output values from 

the outlined procedure (retrospective determination of energy consumption in the recharge 
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mode with an energy meter). This was most probably caused by an incompatible charging 

transformer and battery. However, even if the transformer and battery were compatible, a 

consistent procedure would not be possible due to fundamental differences in the e-bike 

models used in each test session. As mentioned previously, an engine without recuperation 

cannot recover energy when starting at a full SOC (which was the starting state for the 

batteries used in the test drives). In consequence, the entire remaining test session uses 

an alternative method to plot energy consumption. This method allows the e-bike model’s 

continuous measurements of the aggregated total energy expenditure to be easily read 

(Figure 40). Despite having such a simple measurement procedure, there are restrictions 

for this bike model as well. The displayed value only changes every time the SOC dimin-

ishes by one percent, i.e. at the interval of approximately 8.14 Wh (7 Wh throughout meas-

urements) out of 814 Wh SOC when fully charged. As a result, inaccuracies cannot be ruled 

out – especially on short routes. 

Figure 40: The display of the second e-bike model shows data logging of the electric bicycle such as the ongoing 
aggregation of total energy expenditure. Note the difference between total consumption at the beginning (4701 
Wh) and the end (4751 Wh) of each trip – resulting in an energy expenditure of 50 Wh for this trip. 

 

As highlighted in the subsequent chapter 7, I aim to compare measured values with mod-

elled predictions. As the aim of the test drives is to improve the accuracy of the energy 

consumption prediction, the same predefined route had to be used for each test drive in 
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order to be comparable across test sessions. However different cost values (for parameters 

such as recuperation and velocity) may be calculated by the application. At times, this is 

caused by altered parameters but this is not necessarily the case either. The effect of these 

altered cost values is that in some cases, the compiled route outputted by the application 

after the initial routing request and may result in a route that deviates from the predefined 

route. I calculate the energy consumption for the test routes by splitting up the request into 

multiple parts and adding them together. 

Table 10: Model Parameters for the model ST2 from Stromer. 

Model Parameter [unit] Value Reference 

weight  driver [kg] 

  e-bike [kg] 

Table 12 

27 

 

producers’ specs 

standard gravity  [m/s2] 9.806  

slope angle [degree] model-dependent  

rolling coefficient  0.003 WILSON 2004; adjusted empirically 

temperature  [celsius] Table 12  

ambient air pressure  

[hPa] 

model-dependent International height formula 

universal gas constant  287.058  

drag coefficient  0.55 WILSON 2004 

reference area  [m2] 1.15 WILSON 2004 

velocity levels  [km/h] 5, 10, 15, 20, 25, 

30, 35 (Table 12) 

model iteration 

factor human torque  0.1 empirical approximation 

wheel diameter (resp. 

wheel radius rw) [inches] 

26 producers’ specs 

wheel perimeter  [m] 2.074 producers’ specs 

motor efficiency  model-dependent producers’ specs 

gearbox efficiency  0.98 ABAGNALE ET AL. 2015a 

gradeability [degree] 15 producers’ specs; adjusted empirically 

temperature-dependent 

factor  

0.0047 producers’ specs; empirical approximation 

auxiliary components  

[W] 

8.37 producers’ specs (headlight: 4.2; backlight: 

0.15; daytime running lights: 2, display: 1.02; 

controller: 1) 
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74 Optimizing the Operation Range of E-Bikes in Routing Systems 

7. Results 

This chapter presents the results of the conducted test set. I will begin by examining the 

precision of the measured values from the repeated test drives. Following this discussion, I 

will compare the measured values to the predicted values outputted by the model to ascer-

tain the accuracy of the results. Table 12 presents this comparison between the data pre-

dicted and observed, for both Test Sessions. The round trips presented in Table 11 serve 

as control measurements only. 

The comparison between similar measurements from different test rides (i.e., regarding 

weight, velocity and temperature) reveals that the measurement results are intrinsically con-

sistent with minor deviations (cf. Table 12). However, several results expose a bias, espe-

cially for Test Session B. For example, in the third test ride from ETH Center to Bülachhof 

in Test Session B, the journey had an average velocity that was higher than previous rides. 

This means that it should have had a higher energy consumption than previous rides too. 

Surprisingly, the observed energy consumption was in fact, less than half as high. Other 

examples are the last two test rides from Bülachhof to ETH Center in Test Session B, or 

the last two test rides from ETH Hönggerberg to ETH Center in Test Session A, where 

similar biased observations were made. 

Inaccuraricies might occur because of the chosen measurement methods (cf. Section 6.2). 

The actual power consumption during discharge and the read power consumption during 

charge in Test Session A might not be entirely congruent. Under some circumstances, this 

is caused by neglecting the interaction between amperage (i.e., constant current) and volt-

age (which depends on the respective SOC of the Battery). Human error is also likely to 

have affected the recorded results. With the bike model used in this test session, a recording 

could only be taken at the exact time point when recharging was complete. A delay could 

cause the result to be affected by trickle charging, which could result in an overestimated 

energy consumption reading. While the method chosen for Test Session B is a live meas-

urement taken during discharge, inaccuracies may still arise from the fact that total energy 

consumption is only displayed in intervals (as explained in Section 6.2.2). If nothing else, 

the approximation of the velocity might lead to an over- or underestimation of the actual 

energy consumption (e.g., a measured average velocity of 17.51 km/h is assigned to 20 

km/h i.e. v20_rec_Wh for example, while the actual energy consumption in this case lies in 

between the value of v15_rec_Wh and v20_rec_Wh). 
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Due to the minor quantity of measurements, I abstain from quantifying this phenomenon 

statistically. Moreover, the multivariate character of the test set (different input parameters 

for each test drive) would aggravate this attempt. Increased accuracy and precision would 

be an important requirement for further refinements of the model and could be achieved 

through a larger test set or even a different and/or more accurate measurement method. 

Table 11: Control Measurements Table. The energy consumption is recorded as a total for the three test routes. 
The overall length might seem to be slightly longer but this is simply due to the gap between two routes at ETH 
Hönggerberg where the bike was walked from the end point of one route to the start of the next. The gpx-records 
does not include this gap (cf. Figure 34 in Section 6.2). Note that the energy consumption is lower when there 
is a subject with a lower weight. 

Origin - Target Test 

Session 

Weight 

Driver 

[kg] 

Temperature 

[Celsius] 

Ø Velocity 

[km/h] 

Energy Consumption 

[Wh] 

     
Measured Modelled 

Bülachhof A 100 -1 20 170 176 

ETH Hönggerberg   55 0 20 111 135 

- ETH Center - B 100 13 20 149 96 

Bülachhof  55 20 20 56 71 
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Table 12: The entire test set containing measured values from Test Session A and B (cf. Appendix for detailed 
listing of each test drive). Certain parameters are dynamic parameters that change with test drive performed. 
They include the modelled value, weight of the driver, temperature and velocity are dynamic parameters chang-
ing at each test drive performed. Others remain constant throughout a Test Session (cf. Table 9 and Table 10). 

Origin - Target Test 

Session 

Weight 

Driver 

[kg] 

Temperature 

[Celsius] 

Ø Velocity 

[km/h] 

Energy Consumption 

[Wh] 

     
Measured Modelled 

Bülachhof - A 100 3 15 71 74 

ETH Hönggerberg  
 

3 20 85 86 
 

 
 

3 20 85 86 
 

 
 

0 20 89 87 
 

 
 

-4 20 83 89 

 B  5 25 85 65 

   10 20 64 57 

   13 20 50 56 

   7 25 70 64 

   7 25 63 64 

ETH Hönggerberg A 100 3 20 49 47 

-  
 

3 20 48 47 

ETH Center  
 

3 20 54 47 
 

 
 

-4 20 53 48 
 

 
 

-4 25 42 60 

 B  10 20 42 17 

   5 30 35 34 

   10 30 35 32 

   10 25 35 23 

   10 25 35 23 

ETH Center - A 100 3 20 40 40 

Bülachhof  
 

3 20 41 40 
 

 
 

0 20 42 41 
 

 
 

-4 25 52 50 
 

 
 

-4 20 38 42 

 B  10 20 35 25 

   10 20 28 25 

   10 25 14 28 

   3 30 42 35 

   10 30 28 34 
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Out of five repeated test drives for each of the three routes, the average deviation between 

measured and modelled values is around 7 % for Test Session A and 25 % for Test Session 

B (i.e., higher or lower than measured). Hence, the overall deviation for the entire test set 

lies at around 16 %. 

Besides the mentioned measurement inaccuracies, these deviations can also partly be ex-

plained by the omission of acceleration/deceleration resistance. A possible implementation 

is discussed in Section 8.2. Moreover, despite more accurate motor efficiency values used 

in Test Session B, the deviation between modelled and measured values is distinctly higher. 

As Test Session B was not tuned, this points out the importance of fine tuning the defined 

tuning parameters in the given model. In this context, the human torque factor assumed in 

the model might differ from the true value. As long as human torque is not measured directly 

in real-time (which is not feasible in this work), the actual influence of it remains an approx-

imation. Finally, the implementation of a compensation factor that takes into account the 

capacity loss due to higher energy consumption in low temperatures could not be examined 

empirically in this work because of similar temperatures throughout the Test Sessions. 

For initial evidence of the model’s accuracy and precision, I adduce test results conducted 

by EMPA (with same bike from Test Session B) in the course of the program “commercial 

usage of EV in companies” (GAUCH 2017). 

The measured energy consumption of 1120 Wh per 100 kilometers by EMPA covers the 

projected measured energy consumption of 1062 Wh per 100 kilometers resp. 983 Wh per 

100 kilometers for the modelled values7 in this thesis. This comparison provides only a first 

step towards validating the model since parameters such as the average velocity or the 

topography might differ between the test set carried out by EMPA and the one presented in 

this thesis. 

                                                
7 Average of the five test drives per route in Test Session B (calculation x[Wh]*100[km]/y[km], where 
x is the mean energy consumption for a route (cf. Table 12) and y is the length or the route): 
     Measured Wh/100km:  Modelled Wh/100km: 
Bülachhof – ETH Hönggerberg:  66*100/4.5= 1467  61*100/4.5= 1356 
ETH Hönggerberg – ETH Center:  36*100/5= 720  26*100/5= 520 
ETH Center – Bülachhof:   27*100/2.7= 1000  29*100/2.7= 1074 
Total Average:      1062    983 
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Figure 41: The diagram compares measured and modelled energy consumption [Wh] from Test Session A 
(without recuperation) (cf. Table 12). 

 

It is also important to consider the effect of recuperation on energy consumption. As men-

tioned in Section 6.2, the track from ETH Hönggerberg to ETH Center has the most downhill 

segments, with a total descent of 75 meters in altitude. This makes it the most appropriate 

route to establish the difference between a ride with recuperation and without recuperation. 

In comparing Test Session A where recuperation is absent and Test Session B and where 

it is present (cf. Figure 41 and Figure 42 respectively), it becomes clear that both the mod-

elled values and the actual energy consumption (measured values) are significantly lower 

with recuperation. 

Figure 42: The diagram compares measured and modelled energy consumption [Wh] from Test Session B 
(with recuperation) (cf. Table 12). 
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8. Discussion 

In Section 8.1 of this final chapter, I will review all proposed research questions and provide 

a conclusion to the conducted work in Section 8.2. This will be followed by an outlook on 

what further research could be accomplished. Also, this final Section considers optimiza-

tions and refinements of the model, outlines the feasibility of automation and discusses 

possible further development of end-user applications. 

 Findings 

All initially stated research questions were fully investigated. A new energy model devel-

oped from a variety of existing ones was successfully implemented into a programmatic 

approach in Chapter 4. Additionally, I could also determine all parameters that this model 

required from either existing sources or from empirical data gathered, was able to success-

fully feed data into the framework and discuss the related peculiarities of electric bicycles, 

as shown in Section 6.1 (i). After initial exploratory analysis using an existing routing devel-

opment tool for e-bikes without recuperation in Chapter 5 (ii), it was determined that the 

process was feasible and that the calculated edge weights could be used. This allowed me 

to further the investigation and construct an independent routing approach capable of pro-

cessing negative edge weights. Finally, Chapter 6, 7 and 8 analyses the advantages of my 

approach in detail (iii). I could develop an extension to common routing models, that allows 

energy efficiency to be taken into account alongside existing routing algorithms that assess 

minimum distance and time. Furthermore, the consideration of energy cost allows for im-

proved reachability. 

 

 Conclusion, Application Areas and Outlook 

I have presented a static e-bike model which includes an automated processing pipeline for 

route graph building and a host application. After the application completes a necessary 

evaluation phase to validate and optimize the model for a given type of electric bicycle, it 

can be used for route planning, navigation systems, reachability analyses, or even urban 

planning. An example for urban planning would be to use the framework as criteria for the 

designation of new bicycle routes, as one might be willing to ride a slightly longer route to 

avoid steep hills, regardless of whether you are riding an e-bike or an ordinary bicycle (cf. 

STORANDT 2012; as shown in my thesis, slope has, at a certain point, the biggest influence 

on the calculation of edge weight in the presented model). Moreover, it is possible to deter-

mine locations for new e-bike stations in station-based bike sharing system or to ensure 
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optimal allocation of e-bikes in free-floating bike sharing systems. In particular, applications 

where fast querying on a personalized graph is necessary benefit from the approach. 

For further research, it will be necessary to determine parameters more accurately and 

evaluate the model’s overall applicability. The modeling of human power input and temper-

ature influence in particular, will need further empirical validation. Objectives for additional 

research are automation, optimization, and refinement of the model. Refinement could be  

achieved through the inclusion of traffic (e.g., through OPENTRAFFIC 2016) and street type 

data, parameters which determine acceleration/deceleration phases (e.g., traffic lights or 

pedaling frequency and strength), a more detailed SOC model or a more detailed imple-

mentation of weather conditions. Additionally, it could be improved by incorporating any or 

all of these elements in a live navigation application. Possible implementations are dis-

cussed in this Section. 

A significant refinement of the model would be to implement the omitted acceleration re-

sistance through inclusion of narrow curves and intersections. Intersections have a partic-

ularly substantial impact as one might assume that an electric bicycle stops at 50 % of all 

intersections tagged as having traffic lights through OSM classes. This would almost cer-

tainly increase the overall accuracy. Simultanously, it increases the accuracy of parameters 

that aim to compensate this effect so far and would result i.a. in a higher factor for the 

human power input. 

Another important refinement is improving the determination method for the human power 

input. This generally needs to be evaluated in greater detail using suitable methods. One 

such example of an improvement would be a test ride could be conducted with motor as-

sistance switched off. Measuring the power provided by the driver, the value could be com-

pared to the result when motor assistance is switched on (while all other parameters remain 

constant). Repeating this procedure, the accuracy of the huan torque factor could be in-

creased by adjusting it. Moreover, the effect of power assistance levels could be incorpo-

rated. For example, as the bike employed in Test Session A has five power assistance 

levels, the motor power would be reduced (20 % of the calculated value for the first power 

assistance level, 40 % for the second, etc.) and the factor for human power input increased 

accordingly. Undoubtedly, further evaluation of the extent of the influence of these param-

eters would further improve the model. 

Due to the static nature of the model, the behavior of the rider (in particular in terms of their 

interaction with the bicycle) is not taken into consideration during processing. This can result 
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in inaccuracies in the model that are impossible to rectify. When driving downhill, one might 

not use the recuperation mechanism as extensively as modelled (a common example of 

this is when riders decide not to brake and thus exceed the modelled target velocity). On 

uphill segments on the contrary, the rider will not generally be able to maintain the modelled 

target velocity (this is further explained in the next paragraph). HOCH 2015, for example, 

proposes a theoretical black-box driver model that takes historic data into account and 

hence attempts to make the driver’s behavior predictable. Together with a white-box EV 

model (comparable with Section 4.1), it results in a so-called “grey-box” EV consumption 

model that facilitates better prediction of the potential energy expenditure. 

Maximum rated output of the electric bicycles (cf. Table 4 in Section 3.3) is not included as 

a paramter in the proposed model due to the static nature of the model. However, an im-

plementation could be achieved by restricting the maximum rated output the engine is ca-

pable of delivering. Assuming there is a steep slope segment that requires 1000 W of power 

to propel the bicycle forward and that a rated power of 360 W can be provided by the electric 

motor, the remaining 640 W must therefore be supplied by the rider. However, this is simply 

not plausible. This discrepancy results from an inaccuracy in the underlying model. Primarily 

that by using a static velocity for the whole route graph disregards the fact that the speed 

of an electric bicycle mostly diminishes on higher slopes. An applicable approach would be 

to reduce the static velocity at a certain slope gradient. Switching automatically into a lower 

velocity level class (e.g., v20_rec_Wh into v15_rec_Wh) would ultimately result in a lower 

modelled value for the power required. To ensure the validity of this procedure, additional 

empirical validation would be needed. 
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Figure 43: The histogram shows the distribution of the values for the percentage slope gradient in the study 
area. 

 

Figure 44: The histogram shows the distribution of the values for slope angle in degree in the study area. 

 

The histograms in Figure 43 and Figure 44 show the distribution of the values for the slope 

angle in percent and degrees, respectively. In contrast, the scatterplot in Figure 45 com-

pares the slope angle in degrees with the length of every street segment in the study area. 

Most of the segments are comparatively short with an overall mean in the dataset of 53 

meters and a median 34 meters. The slope angle is within the 15 degrees of the given 

maximal gradeability of this test set (which is approximately 99% of all values). However, it 

reveals several outliers beyond the specified gradeability, particularly on short street seg-

ments. Causes might be at least partly interpolation inaccuracies during extraction process 



 

   

84 Optimizing the Operation Range of E-Bikes in Routing Systems 

of altitude values, as there exist no street segments with a slope angle of 60 degrees (cf. 

Section 4.2.4 and 6.1). An average of the height that was used for the calculated slope 

angle of long street segments is not an accurate representation of the true height (which 

may fluctuate). For further research, street segments could be divided into equidistant 

blocks, e.g., 10 meters (cf. NEAIMEH ET AL 2013). That way, I can avoid inaccurate predic-

tions of energy consumptions which are caused by long segments with fluctuating elevation. 

Figure 45: The scatterplot compares the slope angle in degree and the length of every street segment in the 
study area. 

 

As far as gradeability is concerned, one could restrict slope over a certain predefined thresh-

old value in order to not exclude street segments which are actually viable, as realized in 

the current approach in Section 4.2.7 (e.g., through legal construction restraints). Further-

more, instead of only integrating a maximum gradeability, maximum torque of the electric 

motor could be incorporated as well. 

Also, the configuration file for bicycles has no usability in the model yet. For example, the 

existing classification of street classes is used to their practicability for bicycles (tagged 

through priority). The usage of the configuration file for bicycles would create no additional 

value at this stage of the work. However, one could classify street classes according to the 

friction of eletric bicycles on their surface. The accurate rolling coefficient could be accessed 

at any given moment. Naturally, the definition of rolling coefficients would need further em-

pirical inquiry beforehand. Furthermore, classifications contained in the configuration file 

such as cycleway:right or cycleway:left could be employed in one way regulations to obtain 

a more reasonable routing. This would aid the creation of a ready-to-use application for 

end-users. 

Further suggestions for wider automation and refinement of the model could include the 

automatic retrieval of the DEM, e.g., through ArcREST (Representational State Transfer). 
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However, the accuracy of energy consumption prediction could diminish if a DEM with less 

resolution is choosen (cf. Section 3.1).  

In this process of model refinement, the data pipeline from ArcGIS Model Builder could be 

transformed into a pure python script using the ArcPy modul (cf. Programming Code ArcGIS 

Model Builder in Appendix). This could improve processing time, but unfortunately compli-

cates the development process. ArcGIS Model Builder simplified the development process 

in terms of allowing the developer to see an overview of the building and implementation 

process, as well as the tuning of particular parameters. 

Finally, a variety of improvements for the application itself are conceivable in order to truly 

achieve a ready-to-use application. One such possible improvement is the coloring of the 

path in terms of energy consumption upon each routing request (cf. analog version in Figure 

35 in Section 6.2). Another improvement would be to speed up the application through the 

techniques summarized in Section 2.1. For example, BAST ET AL. 2015 points out that the 

work of FUNKE & STORANDT 2013 is a significant improvement of CH. The related work of 

STORANDT 2012 on routing for bicycles could serve as a leverage point to improve applica-

tions for e-bikes without recuperation. Adding automated data pipelines to the static ap-

proach allows a library to be established which stores graphs on different parameter levels 

in parallel for specific regions. This could be incorporated into an automated service, such 

as a WFS. Therefore, the user is able to access an arbitrary region with his own input pa-

rameters. A requirement for the applicability for end-user applications is that the nessecary 

input parameters are supplied automatically. Weight and temperature could be determined 

by a model iteration as well (using levels/intervals as shown for velocity in this work). The 

application could access these parameters automatically. Using a calculated velocity (either 

through the current GNSS-Location or through the internal torque sensor from a vehicle via 

data logging8), an automatic alignment of the modelled and measured average velocity (per 

trip) is feasible. With regards to weather conditions, the application could extract tempera-

ture (using a weather API and/or an integrated thermometer) and also current precipitation 

(e.g., heavy snowfalls during Test Session A), which may affect the rolling coefficient differ-

ently on different road surfaces. In a similar manner, headwind (cf. Section 4.1, Equation 

                                                
8 Data Logging means the record of data over time with additional measurement methods (internal or 
external) with a specific device, a data logger. A current example for a far-reaching data logging (as an 
interface together with the transmission of data using mobile communication) for an electric bicycle is 
Stromer OMNI, which has an own API. Smide provided the related bicycle, but it was not possible to 
apply the API for my purposes, e.g., to extend the prototypical application with additional functionality 
(Stromer desisted from sharing it with additional third-party users at the current stage). 
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(3)) could be taken into account through matching of respective azimuth (by use of gyro-

scope, GNSS) with the prevailing wind direction and speed (by use of sensors and/or a 

weather API). The automatic retrieval of weight via an on-board weighing device in the sad-

dle or seat, value transmitted through a data logger would also be a conceivable improve-

ment. Further on, data logging of the current SOC allows for continued alignment with the 

computed energy consumption. 

Since time is of the utmost importance to most people when it comes to finding a route from 

A to B, it is likely one may choose the shortest or fastest route instead of the least energy 

consuming path (as such a path might require slightly more time). Take this into consider-

ation, the eventual goal is to develop an application for real-time navigation systems which 

is able to switch between shortest route and energy-saving mode. Consequently, a previ-

ously assumed inaccessible target at a certain low SOC could still be reached. As a result, 

this research extends the potential of e-bike routing. 

 

 

 

 

 

 

 

 

 

 

The thesis’ results were reviewed and accepted as conference short paper “Energy-based 

Routing and Cruising Range Estimation for Electric Bicycles” at the AGILE 2017 (HAUMANN 
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the ESRI Young Scholar Award 2017, Switzerland.  
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Programming Code ArcGIS Model Builder 

energyconsumptionmodel_egomovement_whiteknight.py 

# -*- coding: utf-8 -*- 
# -----------------------------------------------------------------------
---- 
# energyconsumptionmodel_egomovement_whiteknight.py 
# Created on: 2017-05-29 11:00:44.00000 
#   (generated by ArcGIS/ModelBuilder) 
# Usage: energyconsumptionmodel_egomovement_whiteknight <factor_hu-
man_torque> <auxiliary_components_W> <rolling_coefficient> <gradeabil-
ity_degree> <gearbox_efficiency> <motor_efficiency> <wheel_diame-
ter_inches> <temperature_celsius> <weight_driver_kg> <weight_e_bike_kg> 
<DEM_tif> <mapconfig_for_bicycles_xml> <osm2pgrouting_exe> <Workspace> 
<Scratch>  
# Description:  
# -----------------------------------------------------------------------
---- 
 
# Import arcpy module 
import arcpy 
 
# Load required toolboxes 
arcpy.ImportToolbox("C:/Users/sim_h/OneDrive/Dokumente/1_Uni_Wien/16_Mas-
terarbeit/4_Daten/Daten/Workspace/databaseconnectionfile.sde/ebike.post-
gres.energy_consumption_model") 
 
# Script arguments 
factor_human_torque = arcpy.GetParameterAsText(0) 
if factor_human_torque == '#' or not factor_human_torque: 
    factor_human_torque = "0.1" # provide a default value if unspecified 
 
auxiliary_components_W = arcpy.GetParameterAsText(1) 
if auxiliary_components_W == '#' or not auxiliary_components_W: 
    auxiliary_components_W = "1.08" # provide a default value if unspeci-
fied 
 
rolling_coefficient = arcpy.GetParameterAsText(2) 
if rolling_coefficient == '#' or not rolling_coefficient: 
    rolling_coefficient = "0.003" # provide a default value if unspeci-
fied 
 
gradeability_degree = arcpy.GetParameterAsText(3) 
if gradeability_degree == '#' or not gradeability_degree: 
    gradeability_degree = "15" # provide a default value if unspecified 
 
gearbox_efficiency = arcpy.GetParameterAsText(4) 
if gearbox_efficiency == '#' or not gearbox_efficiency: 
    gearbox_efficiency = "0.98" # provide a default value if unspecified 
 
motor_efficiency = arcpy.GetParameterAsText(5) 
if motor_efficiency == '#' or not motor_efficiency: 
    motor_efficiency = "0.45" # provide a default value if unspecified 
 
wheel_diameter_inches = arcpy.GetParameterAsText(6) 
if wheel_diameter_inches == '#' or not wheel_diameter_inches: 
    wheel_diameter_inches = "28" # provide a default value if unspecified 
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temperature_celsius = arcpy.GetParameterAsText(7) 
if temperature_celsius == '#' or not temperature_celsius: 
    temperature_celsius = "0" # provide a default value if unspecified 
 
weight_driver_kg = arcpy.GetParameterAsText(8) 
if weight_driver_kg == '#' or not weight_driver_kg: 
    weight_driver_kg = "100" # provide a default value if unspecified 
 
weight_e_bike_kg = arcpy.GetParameterAsText(9) 
if weight_e_bike_kg == '#' or not weight_e_bike_kg: 
    weight_e_bike_kg = "23" # provide a default value if unspecified 
 
DEM_tif = arcpy.GetParameterAsText(10) 
if DEM_tif == '#' or not DEM_tif: 
    DEM_tif = "%Scratch%\\DEM.tif" # provide a default value if unspeci-
fied 
 
mapconfig_for_bicycles_xml = arcpy.GetParameterAsText(11) 
if mapconfig_for_bicycles_xml == '#' or not mapconfig_for_bicycles_xml: 
    mapconfig_for_bicycles_xml = "C:\\Program Files\\Post-
greSQL\\9.4\\bin\\mapconfig_for_bicycles.xml" # provide a default value 
if unspecified 
 
osm2pgrouting_exe = arcpy.GetParameterAsText(12) 
if osm2pgrouting_exe == '#' or not osm2pgrouting_exe: 
    osm2pgrouting_exe = "C:\\Program Files\\Post-
greSQL\\9.4\\bin\\osm2pgrouting.exe" # provide a default value if unspec-
ified 
 
Workspace = arcpy.GetParameterAsText(13) 
if Workspace == '#' or not Workspace: 
    Workspace = "Database Connections\\Connection to localhost.sde" # 
provide a default value if unspecified 
 
Scratch = arcpy.GetParameterAsText(14) 
if Scratch == '#' or not Scratch: 
    Scratch = "C:\\Users\\sim_h\\OneDrive\\Dokumente\\1_Uni_Wien\\16_Mas-
terarbeit\\4_Daten\\Daten\\Workspace\\Scratch" # provide a default value 
if unspecified 
 
# Local variables: 
temp_osm = "%Scratch%\\temp.osm" 
ebike_postgres_ways_calculation = "%Workspace%\\ebike.postgres.ways_cal-
culation" 
 
# Set Geoprocessing environments 
arcpy.env.scratchWorkspace = "C:\\Users\\sim_h\\OneDrive\\Doku-
mente\\1_Uni_Wien\\16_Masterarbeit\\4_Daten\\Daten\\Workspace\\Scratch" 
arcpy.env.snapRaster = "" 
arcpy.env.extent = "8.485 47.35 8.57 47.42" 
arcpy.env.workspace = "Database Connections\\Connection to localhost.sde" 
 
# Process: energyconsumptionsubmodel_whiteknight_1 
arcpy.energyconsumptionsubmodelwhiteknight1_energy_consump-
tion_model(Scratch, Workspace, "8.485 47.35 8.57 47.42", temp_osm, 
osm2pgrouting_exe, mapconfig_for_bicycles_xml, DEM_tif, weight_e_bike_kg, 
weight_driver_kg, temperature_celsius, wheel_diameter_inches, motor_effi-
ciency, gearbox_efficiency, gradeability_degree, rolling_coefficient, 
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ebike_postgres_ways_calculation, "http://www.overpass-
api.de/api/xapi_meta?", auxiliary_components_W, factor_human_torque) 
 
# Process: energyconsumptionsubmodel_whiteknight_2 
arcpy.energyconsumptionsubmodelwhiteknight2_energy_consumption_model("5", 
"25", "5", ebike_postgres_ways_calculation) 
  



 

   

VII 
 
Appendix 

energyconsumptionsubmodel_whiteknight_1.py 

# -*- coding: utf-8 -*- 
# -----------------------------------------------------------------------
---- 
# energyconsumptionsubmodel_whiteknight_1.py 
# Created on: 2017-05-29 11:01:05.00000 
#   (generated by ArcGIS/ModelBuilder) 
# Usage: energyconsumptionsubmodel_whiteknight_1 <Scratch> <Workspace> 
<Extent> <temp_osm> <osm2pgrouting_exe> <mapconfig_for_bicycles_xml> 
<DEM> <weight_e_bike_kg> <weight_driver_kg> <temperature_celsius> 
<wheel_diameter_inches> <motor_efficiency> <gearbox_efficiency> <gradea-
bility_degree> <rolling_coefficient> <ebike_postgres_ways_calcula-
tion__55_> <Download_URL> <auxiliary_components_W> <factor_human_torque>  
# Description:  
# -----------------------------------------------------------------------
---- 
 
# Import arcpy module 
import arcpy 
 
# Load required toolboxes 
arcpy.ImportToolbox("C:/Users/sim_h/OneDrive/Dokumente/1_Uni_Wien/16_Mas-
terarbeit/4_Daten/Daten/Workspace/databaseconnectionfile.sde/ebike.post-
gres.energy_consumption_model") 
 
# Script arguments 
Scratch = arcpy.GetParameterAsText(0) 
if Scratch == '#' or not Scratch: 
    Scratch = "C:\\Users\\sim_h\\OneDrive\\Dokumente\\1_Uni_Wien\\16_Mas-
terarbeit\\4_Daten\\Daten\\Workspace\\Scratch" # provide a default value 
if unspecified 
 
Workspace = arcpy.GetParameterAsText(1) 
if Workspace == '#' or not Workspace: 
    Workspace = "Database Connections\\Connection to localhost.sde" # 
provide a default value if unspecified 
 
Extent = arcpy.GetParameterAsText(2) 
if Extent == '#' or not Extent: 
    Extent = "8.485 47.35 8.57 47.42" # provide a default value if un-
specified 
 
temp_osm = arcpy.GetParameterAsText(3) 
if temp_osm == '#' or not temp_osm: 
    temp_osm = "%Scratch%\\temp.osm" # provide a default value if unspec-
ified 
 
osm2pgrouting_exe = arcpy.GetParameterAsText(4) 
if osm2pgrouting_exe == '#' or not osm2pgrouting_exe: 
    osm2pgrouting_exe = "C:\\Program Files\\Post-
greSQL\\9.4\\bin\\osm2pgrouting.exe" # provide a default value if unspec-
ified 
 
mapconfig_for_bicycles_xml = arcpy.GetParameterAsText(5) 
if mapconfig_for_bicycles_xml == '#' or not mapconfig_for_bicycles_xml: 
    mapconfig_for_bicycles_xml = "C:\\Program Files\\Post-
greSQL\\9.4\\bin\\mapconfig_for_bicycles.xml" # provide a default value 
if unspecified 
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DEM = arcpy.GetParameterAsText(6) 
if DEM == '#' or not DEM: 
    DEM = "%Scratch%\\DEM.tif" # provide a default value if unspecified 
 
weight_e_bike_kg = arcpy.GetParameterAsText(7) 
if weight_e_bike_kg == '#' or not weight_e_bike_kg: 
    weight_e_bike_kg = "23" # provide a default value if unspecified 
 
weight_driver_kg = arcpy.GetParameterAsText(8) 
if weight_driver_kg == '#' or not weight_driver_kg: 
    weight_driver_kg = "100" # provide a default value if unspecified 
 
temperature_celsius = arcpy.GetParameterAsText(9) 
if temperature_celsius == '#' or not temperature_celsius: 
    temperature_celsius = "20" # provide a default value if unspecified 
 
wheel_diameter_inches = arcpy.GetParameterAsText(10) 
if wheel_diameter_inches == '#' or not wheel_diameter_inches: 
    wheel_diameter_inches = "28" # provide a default value if unspecified 
 
motor_efficiency = arcpy.GetParameterAsText(11) 
if motor_efficiency == '#' or not motor_efficiency: 
    motor_efficiency = "0.45" # provide a default value if unspecified 
 
gearbox_efficiency = arcpy.GetParameterAsText(12) 
if gearbox_efficiency == '#' or not gearbox_efficiency: 
    gearbox_efficiency = "0.98" # provide a default value if unspecified 
 
gradeability_degree = arcpy.GetParameterAsText(13) 
if gradeability_degree == '#' or not gradeability_degree: 
    gradeability_degree = "15" # provide a default value if unspecified 
 
rolling_coefficient = arcpy.GetParameterAsText(14) 
if rolling_coefficient == '#' or not rolling_coefficient: 
    rolling_coefficient = "0.003" # provide a default value if unspeci-
fied 
 
ebike_postgres_ways_calculation__55_ = arcpy.GetParameterAsText(15) 
if ebike_postgres_ways_calculation__55_ == '#' or not ebike_post-
gres_ways_calculation__55_: 
    ebike_postgres_ways_calculation__55_ = "%Workspace%\\ebike.post-
gres.ways_calculation" # provide a default value if unspecified 
 
Download_URL = arcpy.GetParameterAsText(16) 
if Download_URL == '#' or not Download_URL: 
    Download_URL = "http://www.overpass-api.de/api/xapi_meta?" # provide 
a default value if unspecified 
 
auxiliary_components_W = arcpy.GetParameterAsText(17) 
if auxiliary_components_W == '#' or not auxiliary_components_W: 
    auxiliary_components_W = "1.08" # provide a default value if unspeci-
fied 
 
factor_human_torque = arcpy.GetParameterAsText(18) 
if factor_human_torque == '#' or not factor_human_torque: 
    factor_human_torque = "0.1" # provide a default value if unspecified 
 
# Local variables: 
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ebike_postgres_ways = "%Workspace%\\ebike.postgres.ways" 
successful = "true" 
Delete_succeeded__3_ = successful 
ebike_postgres_ways_calculation__2_ = "%Workspace%\\ebike.post-
gres.ways_calculation" 
ebike_postgres_ways_calculation__4_ = ebike_postgres_ways_calculation__2_ 
ebike_postgres_ways_calculation__23_ = ebike_postgres_ways_calcula-
tion__2_ 
ebike_postgres_ways_target = "%Workspace%\\ebike.postgres.ways_target" 
ebike_postgres_target_for_extract = "Database Connections\\Connection to 
localhost.sde\\ebike.postgres.target_for_extract" 
dem_proj = "%Workspace%\\ebike.postgres.dem_proj" 
ebike_postgres_target_extract = "%Workspace%\\ebike.postgres.target_ex-
tract" 
ebike_postgres_target_extract__3_ = ebike_postgres_target_extract 
ebike_postgres_target_extract__2_ = ebike_postgres_target_extract__3_ 
ebike_postgres_target_extract__4_ = ebike_postgres_target_extract__2_ 
ebike_postgres_ways_calculation__36_ = ebike_postgres_ways_calcula-
tion__23_ 
ebike_postgres_ways_calculation__47_ = ebike_postgres_ways_calcula-
tion__23_ 
ebike_postgres_ways_source = "%Workspace%\\ebike.postgres.ways_source" 
ebike_postgres_source_for_extract = "Database Connections\\Connection to 
localhost.sde\\ebike.postgres.source_for_extract" 
ebike_postgres_source_extract = "%Workspace%\\ebike.postgres.source_ex-
tract" 
ebike_postgres_source_extract__3_ = ebike_postgres_source_extract 
ebike_postgres_source_extract__2_ = ebike_postgres_source_extract__3_ 
ebike_postgres_source_extract__4_ = ebike_postgres_source_extract__2_ 
ebike_postgres_ways_calculation__10_ = ebike_postgres_ways_calcula-
tion__36_ 
ebike_postgres_ways_calculation__33_ = ebike_postgres_ways_calcula-
tion__10_ 
ebike_postgres_ways_calculation__46_ = ebike_postgres_ways_calcula-
tion__33_ 
ebike_postgres_ways_calculation__16_ = ebike_postgres_ways_calcula-
tion__46_ 
ebike_postgres_ways_calculation__9_ = ebike_postgres_ways_calcula-
tion__16_ 
ebike_postgres_ways_calculation__8_ = ebike_postgres_ways_calculation__9_ 
ebike_postgres_ways_calculation__12_ = ebike_postgres_ways_calcula-
tion__8_ 
ebike_postgres_ways_calculation__13_ = ebike_postgres_ways_calcula-
tion__12_ 
ebike_postgres_ways_calculation = ebike_postgres_ways_calculation__13_ 
unsuccessful = "false" 
ebike_postgres_ways_calculation__15_ = ebike_postgres_ways_calcula-
tion__47_ 
ebike_postgres_ways_calculation__39_ = ebike_postgres_ways_calcula-
tion__15_ 
ebike_postgres_ways_calculation__25_ = ebike_postgres_ways_calcula-
tion__39_ 
ebike_postgres_ways_calculation__5_ = ebike_postgres_ways_calcula-
tion__25_ 
ebike_postgres_ways_calculation__11_ = ebike_postgres_ways_calcula-
tion__5_ 
ebike_postgres_ways_calculation__3_ = ebike_postgres_ways_calcula-
tion__11_ 
ebike_postgres_ways_calculation__7_ = ebike_postgres_ways_calculation__3_ 
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ebike_postgres_ways_calculation__14_ = ebike_postgres_ways_calcula-
tion__7_ 
Delete_succeeded = "false" 
Delete_succeeded__2_ = "false" 
 
# Set Geoprocessing environments 
arcpy.env.scratchWorkspace = "C:\\Users\\sim_h\\OneDrive\\Doku-
mente\\1_Uni_Wien\\16_Masterarbeit\\4_Daten\\Daten\\Workspace\\Scratch" 
arcpy.env.workspace = "Database Connections\\Connection to localhost.sde" 
 
# Process: Download OSM Data (XAPI) 
tempEnvironment0 = arcpy.env.scratchWorkspace 
arcpy.env.scratchWorkspace = Scratch 
arcpy.XAPIDownload_osmtools(Download_URL, Extent, "*", "highway=pri-
mary|primary_link|secondary|tertiary|residential|living_street|track|pe-
destrian|path|cycleway|footway|byway|unclassified|secondary_link|ter-
tiary_link|lane|track|opposite_lane|oppo-
site|grade1|grade2|grade3|grade4|grade5|roundabout", temp_osm) 
arcpy.env.scratchWorkspace = tempEnvironment0 
 
# Process: osm2pgrouting 
arcpy.osm2pgrouting_energy_consumption_model(osm2pgrouting_exe, temp_osm, 
mapconfig_for_bicycles_xml) 
 
# Process: Copy 
arcpy.Copy_management(ebike_postgres_ways, ebike_postgres_ways_calcula-
tion__2_, "%Workspace\\ebike.postgres.ways") 
 
# Process: Make XY Event Layer (1) 
arcpy.MakeXYEventLayer_management(ebike_postgres_ways_calculation__2_, 
"x2", "y2", ebike_postgres_ways_target, "GEOGCS['GCS_WGS_1984',DA-
TUM['D_WGS_1984',SPHE-
ROID['WGS_1984',6378137.0,298.257223563]],PRIMEM['Green-
wich',0.0],UNIT['Degree',0.0174532925199433]];-400 -400 1000000000;-
100000 10000;-100000 10000;8.98315284119522E-09;0.001;0.001;IsHighPreci-
sion", "") 
 
# Process: Feature Class to Feature Class 
arcpy.FeatureClassToFeatureClass_conversion(ebike_postgres_ways_target, 
Workspace, "target_for_extract", "", "", "") 
 
# Process: Project Raster 
arcpy.ProjectRaster_management(DEM, dem_proj, "GEOGCS['GCS_WGS_1984',DA-
TUM['D_WGS_1984',SPHE-
ROID['WGS_1984',6378137.0,298.257223563]],PRIMEM['Green-
wich',0.0],UNIT['Degree',0.0174532925199433]]", "NEAREST", 
"2.21884308916892E-05 2.21884308916892E-05", "CH1903_To_WGS_1984_1", "", 
"PROJCS['CH1903_LV03',GEOGCS['GCS_CH1903',DATUM['D_CH1903',SPHEROID['Bes-
sel_1841',6377397.155,299.1528128]],PRIMEM['Greenwich',0.0],UNIT['De-
gree',0.0174532925199433]],PROJECTION['Hotine_Oblique_Mercator_Azi-
muth_Center'],PARAMETER['False_Easting',600000.0],PARAMETER['False_North-
ing',200000.0],PARAMETER['Scale_Factor',1.0],PARAMETER['Azi-
muth',90.0],PARAMETER['Longitude_Of_Center',7.439583333333333],PARAME-
TER['Latitude_Of_Center',46.95240555555556],UNIT['Me-
ter',1.0]],VERTCS['LN_1902',VDATUM['Landesnivellement_1902'],PARAME-
TER['Vertical_Shift',0.0],PARAMETER['Direction',1.0],UNIT['Meter',1.0]]") 
 
# Process: Extract Values to Points 
tempEnvironment0 = arcpy.env.workspace 
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arcpy.env.workspace = Workspace 
arcpy.gp.ExtractValuesToPoints_sa(ebike_postgres_target_for_extract, 
dem_proj, ebike_postgres_target_extract, "INTERPOLATE", "VALUE_ONLY") 
arcpy.env.workspace = tempEnvironment0 
 
# Process: Add Field (10) 
arcpy.AddField_management(ebike_postgres_target_extract, "target_el", 
"DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (10) 
arcpy.CalculateField_management(ebike_postgres_target_extract__3_, "tar-
get_el", "!rastervalu!", "PYTHON_9.3", "") 
 
# Process: Delete Field (3) 
arcpy.DeleteField_management(ebike_postgres_target_extract__2_, "raster-
valu") 
 
# Process: Join Field (5) 
arcpy.JoinField_management(ebike_postgres_ways_calculation__2_, "gid", 
ebike_postgres_target_extract__4_, "gid", "target_el") 
 
# Process: Make XY Event Layer (2) 
arcpy.MakeXYEventLayer_management(ebike_postgres_ways_calculation__2_, 
"x1", "y1", ebike_postgres_ways_source, "GEOGCS['GCS_WGS_1984',DA-
TUM['D_WGS_1984',SPHE-
ROID['WGS_1984',6378137.0,298.257223563]],PRIMEM['Green-
wich',0.0],UNIT['Degree',0.0174532925199433]];-400 -400 1000000000;-
100000 10000;-100000 10000;8.98315284119522E-09;0.001;0.001;IsHighPreci-
sion", "") 
 
# Process: Feature Class to Feature Class (2) 
arcpy.FeatureClassToFeatureClass_conversion(ebike_postgres_ways_source, 
Workspace, "source_for_extract", "", "", "") 
 
# Process: Extract Values to Points (2) 
tempEnvironment0 = arcpy.env.workspace 
arcpy.env.workspace = Workspace 
arcpy.gp.ExtractValuesToPoints_sa(ebike_postgres_source_for_extract, 
dem_proj, ebike_postgres_source_extract, "INTERPOLATE", "VALUE_ONLY") 
arcpy.env.workspace = tempEnvironment0 
 
# Process: Add Field (11) 
arcpy.AddField_management(ebike_postgres_source_extract, "source_el", 
"DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (11) 
arcpy.CalculateField_management(ebike_postgres_source_extract__3_, 
"source_el", "!rastervalu!", "PYTHON_9.3", "") 
 
# Process: Delete Field (2) 
arcpy.DeleteField_management(ebike_postgres_source_extract__2_, "raster-
valu") 
 
# Process: Join Field (4) 
arcpy.JoinField_management(ebike_postgres_ways_calculation__2_, "gid", 
ebike_postgres_source_extract__4_, "gid", "source_el") 
 
# Process: Add Field (12) 
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arcpy.AddField_management(ebike_postgres_ways_calculation__23_, "slope-
perc", "DOUBLE", "", "", "", "slope_percentage", "NULLABLE", "NON_RE-
QUIRED", "") 
 
# Process: Calculate Field (12) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__36_, 
"slopeperc", "(!target_el!-!source_el!)/!length_m!*100", "PYTHON_9.3", 
"") 
 
# Process: Add Field (5) 
arcpy.AddField_management(ebike_postgres_ways_calculation__10_, "slopean-
gle_degree", "DOUBLE", "", "", "", "angle_of_slope_degree", "NULLABLE", 
"NON_REQUIRED", "") 
 
# Process: Calculate Field (5) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__33_, 
"slopeangle_degree", "math.degrees(math.atan((!target_el!-
!source_el!)/!length_m!))", "PYTHON_9.3", "") 
 
# Process: Add Field (6) 
arcpy.AddField_management(ebike_postgres_ways_calculation__46_, 
"climbres_N", "DOUBLE", "", "", "", "climbingresistance_N", "NULLABLE", 
"NON_REQUIRED", "") 
 
# Process: Calculate Field (6) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__16_, 
"climbres_N", "(%weight_driver_kg%+%weight_e-
bike_kg%)*9.806*math.sin(math.radians(!slopeangle_degree!))", "PY-
THON_9.3", "") 
 
# Process: Add Field (13) 
arcpy.AddField_management(ebike_postgres_ways_calculation__9_, 
"rollres_N", "DOUBLE", "", "", "", "rollingresistance_N", "NULLABLE", 
"NON_REQUIRED", "") 
 
# Process: Calculate Field (14) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__8_, 
"rollres_N", "%rolling_coefficient%*(%weight_driver_kg%+%weight_e-
bike_kg%)*9.806*math.cos(math.radians(!slopeangle_degree!))", "PY-
THON_9.3", "") 
 
# Process: Add Field (8) 
arcpy.AddField_management(ebike_postgres_ways_calculation__12_, "pres-
sure_hPa", "DOUBLE", "", "", "", "ambientairpressure_hPa", "NULLABLE", 
"NON_REQUIRED", "") 
 
# Process: Calculate Field (8) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__13_, 
"pressure_hPa", "1013.25*math.pow(1-(0.0065*((!tar-
get_el!+!source_el!)/2))/(%temperature_celsius%+273.15),5.255)", "PY-
THON_9.3", "") 
 
# Process: Add Field (25) 
arcpy.AddField_management(ebike_postgres_ways_calculation__23_, "slope-
perc_r", "DOUBLE", "", "", "", "slope_percentage_reverse", "NULLABLE", 
"NON_REQUIRED", "") 
 
# Process: Calculate Field (25) 
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arcpy.CalculateField_management(ebike_postgres_ways_calculation__47_, 
"slopeperc_r", "(!source_el!-!target_el!)/!length_m!*100", "PYTHON_9.3", 
"") 
 
# Process: Add Field (20) 
arcpy.AddField_management(ebike_postgres_ways_calculation__15_, "slopean-
gle_r_degree", "DOUBLE", "", "", "", "angle_of_slope_reverse_degree", 
"NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (20) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__39_, 
"slopeangle_r_degree", "math.degrees(math.atan((!source_el!-!tar-
get_el!)/!length_m!))", "PYTHON_9.3", "") 
 
# Process: Add Field (21) 
arcpy.AddField_management(ebike_postgres_ways_calculation__25_, 
"climbres_r_N", "DOUBLE", "", "", "", "climbingresistance_reverse_N", 
"NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (21) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__5_, 
"climbres_r_N", "(%weight_driver_kg%+%weight_e-
bike_kg%)*9.806*math.sin(math.radians(!slopeangle_r_degree!))", "PY-
THON_9.3", "") 
 
# Process: Add Field (28) 
arcpy.AddField_management(ebike_postgres_ways_calculation__11_, 
"rollres_r_N", "DOUBLE", "", "", "", "rollingresistance_reverse_N", "NUL-
LABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (28) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__3_, 
"rollres_r_N", "%rolling_coefficient%*(%weight_driver_kg%+%weight_e-
bike_kg%)*9.806*math.cos(math.radians(!slopeangle_degree!))", "PY-
THON_9.3", "") 
 
# Process: Add Field (23) 
arcpy.AddField_management(ebike_postgres_ways_calculation__7_, "pres-
sure_r_hPa", "DOUBLE", "", "", "", "ambientairpressure_reverse_hPa", 
"NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (23) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__14_, 
"pressure_r_hPa", "1013.25*math.pow(1-(0.0065*((!source_el!+!tar-
get_el!)/2))/(%temperature_celsius%+273.15),5.255)", "PYTHON_9.3", "") 
 
# Process: Delete(3) 
arcpy.Delete_management(ebike_postgres_target_for_extract, "") 
 
# Process: Delete (2) 
arcpy.Delete_management(ebike_postgres_source_for_extract, "") 
 
# Process: Delete 
arcpy.Delete_management(temp_osm, "") 
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energyconsumptionsubmodel_whiteknight_2.py 

# -*- coding: utf-8 -*- 
# -----------------------------------------------------------------------
---- 
# energyconsumptionsubmodel_whiteknight_2.py 
# Created on: 2017-05-29 11:02:10.00000 
#   (generated by ArcGIS/ModelBuilder) 
# Usage: energyconsumptionsubmodel_whiteknight_2 <from_velocity_kmh> 
<to_velocity_kmh> <by_velocity_kmh> <ebike_postgres_ways_calcula-
tion__55_>  
# Description:  
# -----------------------------------------------------------------------
---- 
 
# Import arcpy module 
import arcpy 
 
# Load required toolboxes 
arcpy.ImportToolbox("Model Functions") 
 
# Script arguments 
from_velocity_kmh = arcpy.GetParameterAsText(0) 
if from_velocity_kmh == '#' or not from_velocity_kmh: 
    from_velocity_kmh = "5" # provide a default value if unspecified 
 
to_velocity_kmh = arcpy.GetParameterAsText(1) 
if to_velocity_kmh == '#' or not to_velocity_kmh: 
    to_velocity_kmh = "25" # provide a default value if unspecified 
 
by_velocity_kmh = arcpy.GetParameterAsText(2) 
if by_velocity_kmh == '#' or not by_velocity_kmh: 
    by_velocity_kmh = "5" # provide a default value if unspecified 
 
ebike_postgres_ways_calculation__55_ = arcpy.GetParameterAsText(3) 
if ebike_postgres_ways_calculation__55_ == '#' or not ebike_post-
gres_ways_calculation__55_: 
    ebike_postgres_ways_calculation__55_ = "Database Connections\\Connec-
tion to localhost.sde\\ebike.postgres.ways_calculation" # provide a de-
fault value if unspecified 
 
# Local variables: 
ebike_postgres_ways_calculation__6_ = ebike_postgres_ways_calcula-
tion__55_ 
ebike_postgres_ways_calculation__35_ = ebike_postgres_ways_calcula-
tion__55_ 
velocity_kmh = from_velocity_kmh 
ebike_postgres_ways_calculation__29_ = ebike_postgres_ways_calcula-
tion__35_ 
ebike_postgres_ways_calculation__39_ = ebike_postgres_ways_calcula-
tion__29_ 
ebike_postgres_ways_calculation__4_ = ebike_postgres_ways_calcula-
tion__39_ 
ebike_postgres_ways_calculation__31_ = ebike_postgres_ways_calcula-
tion__4_ 
ebike_postgres_ways_calculation__34_ = ebike_postgres_ways_calcula-
tion__31_ 
ebike_postgres_ways_calculation__3_ = ebike_postgres_ways_calcula-
tion__34_ 
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ebike_postgres_ways_calculation__30_ = ebike_postgres_ways_calcula-
tion__3_ 
ebike_postgres_ways_calculation__38_ = ebike_postgres_ways_calcula-
tion__30_ 
ebike_postgres_ways_calculation__10_ = ebike_postgres_ways_calcula-
tion__38_ 
ebike_postgres_ways_calculation__9_ = ebike_postgres_ways_calcula-
tion__10_ 
ebike_postgres_ways_calculation__23_ = ebike_postgres_ways_calcula-
tion__9_ 
ebike_postgres_ways_calculation__19_ = ebike_postgres_ways_calcula-
tion__23_ 
ebike_postgres_ways_calculation__5_ = ebike_postgres_ways_calcula-
tion__19_ 
ebike_postgres_ways_calculation__24_ = ebike_postgres_ways_calcula-
tion__5_ 
ebike_postgres_ways_calculation__44_ = ebike_postgres_ways_calcula-
tion__24_ 
ebike_postgres_ways_calculation = ebike_postgres_ways_calculation__6_ 
ebike_postgres_ways_calculation__37_ = ebike_postgres_ways_calculation 
ebike_postgres_ways_calculation__33_ = ebike_postgres_ways_calcula-
tion__37_ 
ebike_postgres_ways_calculation__32_ = ebike_postgres_ways_calcula-
tion__33_ 
ebike_postgres_ways_calculation__21_ = ebike_postgres_ways_calcula-
tion__32_ 
ebike_postgres_ways_calculation__14_ = ebike_postgres_ways_calcula-
tion__21_ 
ebike_postgres_ways_calculation__27_ = ebike_postgres_ways_calcula-
tion__14_ 
ebike_postgres_ways_calculation__20_ = ebike_postgres_ways_calcula-
tion__27_ 
ebike_postgres_ways_calculation__16_ = ebike_postgres_ways_calcula-
tion__20_ 
ebike_postgres_ways_calculation__22_ = ebike_postgres_ways_calcula-
tion__16_ 
ebike_postgres_ways_calculation__26_ = ebike_postgres_ways_calcula-
tion__22_ 
ebike_postgres_ways_calculation__28_ = ebike_postgres_ways_calcula-
tion__26_ 
ebike_postgres_ways_calculation__25_ = ebike_postgres_ways_calcula-
tion__28_ 
ebike_postgres_ways_calculation__49_ = ebike_postgres_ways_calcula-
tion__25_ 
ebike_postgres_ways_calculation__48_ = ebike_postgres_ways_calcula-
tion__49_ 
 
# Set Geoprocessing environments 
arcpy.env.scratchWorkspace = "C:\\Users\\sim_h\\OneDrive\\Doku-
mente\\1_Uni_Wien\\16_Masterarbeit\\4_Daten\\Daten\\Workspace\\Scratch" 
arcpy.env.workspace = "Database Connections\\Connection to localhost.sde" 
 
# Process: For 
arcpy.IterateCount_mb(from_velocity_kmh, to_velocity_kmh, by_veloc-
ity_kmh) 
 
# Process: Add Field (22) 
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arcpy.AddField_management(ebike_postgres_ways_calculation__55_, 
"dragresv%velocity_kmh%_r_N", "DOUBLE", "", "", "", "dragresistanceveloc-
ity%velocity_kmh%_reverse_N", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (22) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__35_, 
"dragresv%velocity_kmh%_r_N", "!pressure_r_hPa!*100/(2*287.058*(%tempera-
ture_celsius%+273.15))*1.15*0.55*math.pow((%velocity_kmh%/3.6),2)", "PY-
THON_9.3", "") 
 
# Process: Add Field (16) 
arcpy.AddField_management(ebike_postgres_ways_calculation__29_, 
"tracforcev%velocity_kmh%_r_N", "DOUBLE", "", "", "", "tractiveforce-
velocity%velocity_kmh%_reverse_N", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (16) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__39_, 
"tracforcev%velocity_kmh%_r_N", 
"!climbres_r_N!+!rollres_r_N!+!dragresv%velocity_kmh%_r_N!", "PY-
THON_9.3", "") 
 
# Process: Add Field (17) 
arcpy.AddField_management(ebike_postgres_ways_calculation__4_, 
"torquev%velocity_kmh%_r_Nm", "DOUBLE", "", "", "", "torquevelocity%ve-
locity_kmh%_reverse_Nm", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (17) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__31_, 
"torquev%velocity_kmh%_r_Nm", "fachtorr(!tracforcev%velocity_kmh%_r_N!, 
%factor_human_torque%, %wheel_diameter_inches%)", "PYTHON_9.3", "def 
fachtorr(tracforcevvelocity_kmh_r_N, factor_human_torque, wheel_diame-
ter_inches):\\n    if tracforcevvelocity_kmh_r_N > 0:\\n        return 
(tracforcevvelocity_kmh_r_N-(tracforcevvelocity_kmh_r_N*factor_hu-
man_torque))*((wheel_diameter_inches*0.0254)/2)\\n    else:\\n        re-
turn tracforcevvelocity_kmh_r_N*((wheel_diameter_inches*0.0254)/2)") 
 
# Process: Add Field (18) 
arcpy.AddField_management(ebike_postgres_ways_calculation__34_, "angu-
larv%velocity_kmh%_r_s_inverse", "DOUBLE", "", "", "", "angularwheel-
velocity%velocity_kmh%_reverse_s_inverse", "NULLABLE", "NON_REQUIRED", 
"") 
 
# Process: Calculate Field (18) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__3_, "an-
gularv%velocity_kmh%_r_s_inverse", "(%velocity_kmh%/3.6)/((%wheel_diame-
ter_inches%*0.0254)/2)", "PYTHON_9.3", "") 
 
# Process: Add Field (24) 
arcpy.AddField_management(ebike_postgres_ways_calculation__30_, "v%veloc-
ity_kmh%_norec_r_W", "DOUBLE", "", "", "", "velocity%velocity_kmh%_no_re-
cuperation_reverse_W", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (24) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__38_, 
"v%velocity_kmh%_norec_r_W", "pemnorecrW(!slopeangle_r_degree!, %gradea-
bility_degree%, !torquev%velocity_kmh%_r_Nm!, !angularv%veloc-
ity_kmh%_r_s_inverse!, %motor_efficiency%, %gearbox_efficiency%, %auxil-
iary_components_W%)", "PYTHON_9.3", "def pemnorecrW(slopeangle_r_degree, 
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gradeability_degree, torquevvelocity_kmh_r_Nm, angularvveloc-
ity_kmh_r_s_inverse, motor_efficiency, gearbox_efficiency, auxiliary_com-
ponents_W):\\n    if  slopeangle_r_degree >= gradeability_degree:\\n              
return 999999\\n        elif slopeangle_r_degree <= -gradeability_de-
gree:\\n            return 999999\\n    elif torquevvelocity_kmh_r_Nm < 
0:\\n       return auxiliary_components_W\\n    else:\\n        return 
torquevvelocity_kmh_r_Nm * angularvvelocity_kmh_r_s_inverse / (motor_ef-
ficiency * gearbox_efficiency) + auxiliary_components_W") 
 
# Process: Add Field (6) 
arcpy.AddField_management(ebike_postgres_ways_calculation__10_, 
"ctempv%velocity_kmh%_norec_r_W", "DOUBLE", "", "", "", "capacitiytemper-
aturevelocity%velocity_kmh%_no_recuperation_reverse_W", "NULLABLE", "RE-
QUIRED", "") 
 
# Process: Calculate Field (6) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__9_, 
"ctempv%velocity_kmh%_norec_r_W", "pemctempnorecrW(!v%veloc-
ity_kmh%_norec_r_W!, %temperature_celsius%)", "PYTHON_9.3", "def pem-
ctempnorecrW(vvelocity_kmh_norec_r_W, temperature_celsius):\\n    if vve-
locity_kmh_norec_r_W == 999999:\\n        return 999999\\n    if tempera-
ture_celsius >= 25:\\n        return vvelocity_kmh_norec_r_W\\n    
else:\\n        return vvelocity_kmh_norec_r_W * (1+((25-temperature_cel-
sius)*0.0047))") 
 
# Process: Add Field (27) 
arcpy.AddField_management(ebike_postgres_ways_calculation__23_, "v%veloc-
ity_kmh%_norec_r_Wh", "DOUBLE", "", "", "", "velocity%veloc-
ity_kmh%_no_recuperation_reverse_Wh", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (27) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__19_, 
"v%velocity_kmh%_norec_r_Wh", "pemnorecrWh(!ctempv%veloc-
ity_kmh%_norec_r_W!, !length_m!, %velocity_kmh%)", "PYTHON_9.3", "def 
pemnorecrWh(ctempvvelocity_kmh_norec_r_W, length_m, velocity_kmh):\\n    
if ctempvvelocity_kmh_norec_r_W == 999999:\\n        return 999999\\n    
else:\\n        return ctempvvelocity_kmh_norec_r_W*((length_m/1000)/ve-
locity_kmh)") 
 
# Process: Add Field (12) 
arcpy.AddField_management(ebike_postgres_ways_calculation__5_, "v%veloc-
ity_kmh%_norec_r_Whkm", "DOUBLE", "", "", "", "velocity%veloc-
ity_kmh%_norecuperation_reverse_Wh_per_km", "NULLABLE", "NON_REQUIRED", 
"") 
 
# Process: Calculate Field (12) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__24_, 
"v%velocity_kmh%_norec_r_Whkm", "pemnorecrWhkm(!v%veloc-
ity_kmh%_norec_r_Wh!, !length_m!)", "PYTHON_9.3", "def pemnorecrWhkm(vve-
locity_kmh_norec_r_Wh, length_m):\\n    if vvelocity_kmh_norec_r_Wh == 
999999:\\n        return None\\n    else:\\n        return vveloc-
ity_kmh_norec_r_Wh*1000/ length_m") 
 
# Process: Add Field (7) 
arcpy.AddField_management(ebike_postgres_ways_calculation__55_, 
"dragresv%velocity_kmh%_N", "DOUBLE", "", "", "", "dragresistanceveloc-
ity%velocity_kmh%_N", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (7) 



 

   

XVIII Optimizing the Operation Range of E-Bikes in Routing Systems 

arcpy.CalculateField_management(ebike_postgres_ways_calculation__6_, 
"dragresv%velocity_kmh%_N", "!pressure_hPa!*100/(2*287.058*(%tempera-
ture_celsius%+273.15))*1.15*0.5*math.pow((%velocity_kmh%/3.6),2)", "PY-
THON_9.3", "") 
 
# Process: Add Field 
arcpy.AddField_management(ebike_postgres_ways_calculation, 
"tracforcev%velocity_kmh%_N", "DOUBLE", "", "", "", "tractiveforceveloc-
ity%velocity_kmh%_N", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__37_, 
"tracforcev%velocity_kmh%_N", "!climbres_N!+!rollres_N!+!dragresv%veloc-
ity_kmh%_N!", "PYTHON_9.3", "") 
 
# Process: Add Field (2) 
arcpy.AddField_management(ebike_postgres_ways_calculation__33_, 
"torquev%velocity_kmh%_Nm", "DOUBLE", "", "", "", "torquevelocity%veloc-
ity_kmh%_Nm", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (2) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__32_, 
"torquev%velocity_kmh%_Nm", "fachtor(!tracforcev%velocity_kmh%_N!, %fac-
tor_human_torque%, %wheel_diameter_inches%)", "PYTHON_9.3", "def fach-
tor(tracforcevvelocity_kmh_N, factor_human_torque, wheel_diame-
ter_inches):\\n    if tracforcevvelocity_kmh_N > 0:\\n        return 
(tracforcevvelocity_kmh_N-(tracforcevvelocity_kmh_N*factor_hu-
man_torque))*((wheel_diameter_inches*0.0254)/2)\\n    else:\\n        re-
turn tracforcevvelocity_kmh_N*((wheel_diameter_inches*0.0254)/2)") 
 
# Process: Add Field (3) 
arcpy.AddField_management(ebike_postgres_ways_calculation__21_, "angu-
larv%velocity_kmh%_s_inverse", "DOUBLE", "", "", "", "angularwheelveloc-
ity%velocity_kmh%_s_inverse", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (3) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__14_, 
"angularv%velocity_kmh%_s_inverse", "(%velocity_kmh%/3.6)/((%wheel_diame-
ter_inches%*0.0254)/2)", "PYTHON_9.3", "") 
 
# Process: Add Field (9) 
arcpy.AddField_management(ebike_postgres_ways_calculation__27_, "v%veloc-
ity_kmh%_norec_W", "DOUBLE", "", "", "", "velocity%velocity_kmh%_no_recu-
peration_W", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (9) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__20_, 
"v%velocity_kmh%_norec_W", "pemnorecW(!slopeangle_degree!, %gradeabil-
ity_degree%, !torquev%velocity_kmh%_Nm!, !angularv%velocity_kmh%_s_in-
verse!, %motor_efficiency%, %gearbox_efficiency%, %auxiliary_compo-
nents_W%)", "PYTHON_9.3", "def pemnorecW(slopeangle_degree, gradeabil-
ity_degree, torquevvelocity_kmh_Nm, angularvvelocity_kmh_s_inverse, mo-
tor_efficiency, gearbox_efficiency, auxiliary_components_W):\\n    if  
slopeangle_degree >= gradeability_degree:\\n            return 999999\\n        
elif slopeangle_degree <= -gradeability_degree:\\n              return 
999999\\n    elif torquevvelocity_kmh_Nm < 0:\\n     return auxil-
iary_components_W\\n    else:\\n        return torquevvelocity_kmh_Nm * 
angularvvelocity_kmh_s_inverse / (motor_efficiency * gearbox_efficiency) 
+ auxiliary_components_W") 
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# Process: Add Field (10) 
arcpy.AddField_management(ebike_postgres_ways_calculation__16_, 
"ctempv%velocity_kmh%_norec_W", "DOUBLE", "", "", "", "capacitiytempera-
turevelocity%velocity_kmh%_no_recuperation_W", "NULLABLE", "REQUIRED", 
"") 
 
# Process: Calculate Field (10) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__22_, 
"ctempv%velocity_kmh%_norec_W", "pemctempnorecW(!v%veloc-
ity_kmh%_norec_W!, %temperature_celsius%)", "PYTHON_9.3", "def pemctemp-
norecW(vvelocity_kmh_norec_W, temperature_celsius):\\n    if vveloc-
ity_kmh_norec_W == 999999:\\n        return 999999\\n    if tempera-
ture_celsius >= 25:\\n        return vvelocity_kmh_norec_W\\n    else:\\n        
return vvelocity_kmh_norec_W * (1+((25-temperature_celsius)*0.0047))") 
 
# Process: Add Field (15) 
arcpy.AddField_management(ebike_postgres_ways_calculation__26_, "v%veloc-
ity_kmh%_norec_Wh", "DOUBLE", "", "", "", "velocity%velocity_kmh%_no_re-
cuperation_Wh", "NULLABLE", "REQUIRED", "") 
 
# Process: Calculate Field (15) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__28_, 
"v%velocity_kmh%_norec_Wh", "pemnorecWh(!ctempv%velocity_kmh%_norec_W!, 
!length_m!, %velocity_kmh%)", "PYTHON_9.3", "def pemnorecWh(ctempvveloc-
ity_kmh_norec_W, length_m, velocity_kmh):\\n    if ctempvveloc-
ity_kmh_norec_W == 999999:\\n        return 999999\\n    else:\\n        
return ctempvvelocity_kmh_norec_W*((length_m/1000)/velocity_kmh)") 
 
# Process: Add Field (20) 
arcpy.AddField_management(ebike_postgres_ways_calculation__25_, "v%veloc-
ity_kmh%_norec_Whkm", "DOUBLE", "", "", "", "velocity%velocity_kmh%_nore-
cuperation_Wh_per_km", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (20) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__49_, 
"v%velocity_kmh%_norec_Whkm", "pemnorecWhkm(!v%velocity_kmh%_norec_Wh!, 
!length_m!)", "PYTHON_9.3", "def pemnorecWhkm(vvelocity_kmh_norec_Wh, 
length_m):\\n    if vvelocity_kmh_norec_Wh == 999999:\\n        return 
None\\n    else:\\n        return vvelocity_kmh_norec_Wh*1000/ length_m") 
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energyconsumptionmodel_stromer_st2.py 

# -*- coding: utf-8 -*- 
# -----------------------------------------------------------------------
---- 
# energyconsumptionmodel_stromer_st2.py 
# Created on: 2017-05-29 11:02:31.00000 
#   (generated by ArcGIS/ModelBuilder) 
# Usage: energyconsumptionmodel_stromer_st2 <factor_human_torque> <auxil-
iary_components_W> <rolling_coefficient> <gradeability_degree> <gear-
box_efficiency> <wheel_diameter_inches> <temperature_celsius> 
<weight_driver_kg> <weight_e_bike_kg> <DEM> <mapconfig_for_bicycles_xml> 
<osm2pgrouting_exe> <Connection_to_localhost_sde> <Scratch> <ebike_post-
gres_ways_calculation__15_>  
# Description:  
# -----------------------------------------------------------------------
---- 
 
# Import arcpy module 
import arcpy 
 
# Load required toolboxes 
arcpy.ImportToolbox("C:/Users/sim_h/OneDrive/Dokumente/1_Uni_Wien/16_Mas-
terarbeit/4_Daten/Daten/Workspace/databaseconnectionfile.sde/ebike.post-
gres.energy_consumption_model") 
 
# Script arguments 
factor_human_torque = arcpy.GetParameterAsText(0) 
if factor_human_torque == '#' or not factor_human_torque: 
    factor_human_torque = "0.1" # provide a default value if unspecified 
 
auxiliary_components_W = arcpy.GetParameterAsText(1) 
if auxiliary_components_W == '#' or not auxiliary_components_W: 
    auxiliary_components_W = "8.37" # provide a default value if unspeci-
fied 
 
rolling_coefficient = arcpy.GetParameterAsText(2) 
if rolling_coefficient == '#' or not rolling_coefficient: 
    rolling_coefficient = "0.003" # provide a default value if unspeci-
fied 
 
gradeability_degree = arcpy.GetParameterAsText(3) 
if gradeability_degree == '#' or not gradeability_degree: 
    gradeability_degree = "15" # provide a default value if unspecified 
 
gearbox_efficiency = arcpy.GetParameterAsText(4) 
if gearbox_efficiency == '#' or not gearbox_efficiency: 
    gearbox_efficiency = "0.98" # provide a default value if unspecified 
 
wheel_diameter_inches = arcpy.GetParameterAsText(5) 
if wheel_diameter_inches == '#' or not wheel_diameter_inches: 
    wheel_diameter_inches = "26" # provide a default value if unspecified 
 
temperature_celsius = arcpy.GetParameterAsText(6) 
if temperature_celsius == '#' or not temperature_celsius: 
    temperature_celsius = "3" # provide a default value if unspecified 
 
weight_driver_kg = arcpy.GetParameterAsText(7) 
if weight_driver_kg == '#' or not weight_driver_kg: 



 

   

XXI 
 
Appendix 

    weight_driver_kg = "100" # provide a default value if unspecified 
 
weight_e_bike_kg = arcpy.GetParameterAsText(8) 
if weight_e_bike_kg == '#' or not weight_e_bike_kg: 
    weight_e_bike_kg = "27" # provide a default value if unspecified 
 
DEM = arcpy.GetParameterAsText(9) 
if DEM == '#' or not DEM: 
    DEM = "%Scratch%\\DEM.tif" # provide a default value if unspecified 
 
mapconfig_for_bicycles_xml = arcpy.GetParameterAsText(10) 
if mapconfig_for_bicycles_xml == '#' or not mapconfig_for_bicycles_xml: 
    mapconfig_for_bicycles_xml = "C:\\Program Files\\Post-
greSQL\\9.4\\bin\\mapconfig_for_bicycles.xml" # provide a default value 
if unspecified 
 
osm2pgrouting_exe = arcpy.GetParameterAsText(11) 
if osm2pgrouting_exe == '#' or not osm2pgrouting_exe: 
    osm2pgrouting_exe = "C:\\Program Files\\Post-
greSQL\\9.4\\bin\\osm2pgrouting.exe" # provide a default value if unspec-
ified 
 
Connection_to_localhost_sde = arcpy.GetParameterAsText(12) 
if Connection_to_localhost_sde == '#' or not Connection_to_localhost_sde: 
    Connection_to_localhost_sde = "Database Connections\\Connection to 
localhost.sde" # provide a default value if unspecified 
 
Scratch = arcpy.GetParameterAsText(13) 
if Scratch == '#' or not Scratch: 
    Scratch = "C:\\Users\\sim_h\\OneDrive\\Dokumente\\1_Uni_Wien\\16_Mas-
terarbeit\\4_Daten\\Daten\\Workspace\\Scratch" # provide a default value 
if unspecified 
 
ebike_postgres_ways_calculation__15_ = arcpy.GetParameterAsText(14) 
if ebike_postgres_ways_calculation__15_ == '#' or not ebike_post-
gres_ways_calculation__15_: 
    ebike_postgres_ways_calculation__15_ = "%Workspace%\\ebike.post-
gres.ways_calculation" # provide a default value if unspecified 
 
# Local variables: 
temp_osm = "%Scratch%\\temp.osm" 
ebike_postgres_ways_calculation__17_ = "%Workspace%\\ebike.post-
gres.ways_calculation" 
ebike_postgres_ways_calculation__16_ = ebike_postgres_ways_calcula-
tion__17_ 
ebike_postgres_ways_calculation__29_ = ebike_postgres_ways_calcula-
tion__16_ 
ebike_postgres_ways_calculation__31_ = ebike_postgres_ways_calcula-
tion__16_ 
ebike_postgres_ways_calculation = ebike_postgres_ways_calculation__31_ 
ebike_postgres_ways_calculation__49_ = ebike_postgres_ways_calculation 
ebike_postgres_ways_calculation__10_ = ebike_postgres_ways_calcula-
tion__49_ 
ebike_postgres_ways_calculation__51_ = ebike_postgres_ways_calcula-
tion__10_ 
ebike_postgres_ways_calculation__11_ = ebike_postgres_ways_calcula-
tion__51_ 
ebike_postgres_ways_calculation__53_ = ebike_postgres_ways_calcula-
tion__11_ 
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ebike_postgres_ways_calculation__13_ = ebike_postgres_ways_calcula-
tion__53_ 
ebike_postgres_ways_calculation__55_ = ebike_postgres_ways_calcula-
tion__13_ 
ebike_postgres_ways_calculation__12_ = ebike_postgres_ways_calcula-
tion__55_ 
ebike_postgres_ways_calculation__57_ = ebike_postgres_ways_calcula-
tion__12_ 
ebike_postgres_ways_calculation__14_ = ebike_postgres_ways_calcula-
tion__57_ 
ebike_postgres_ways_calculation__59_ = ebike_postgres_ways_calcula-
tion__14_ 
ebike_postgres_ways_calculation__3_ = ebike_postgres_ways_calcula-
tion__29_ 
ebike_postgres_ways_calculation__32_ = ebike_postgres_ways_calcula-
tion__3_ 
ebike_postgres_ways_calculation__4_ = ebike_postgres_ways_calcula-
tion__32_ 
ebike_postgres_ways_calculation__35_ = ebike_postgres_ways_calcula-
tion__4_ 
ebike_postgres_ways_calculation__5_ = ebike_postgres_ways_calcula-
tion__35_ 
ebike_postgres_ways_calculation__39_ = ebike_postgres_ways_calcula-
tion__5_ 
ebike_postgres_ways_calculation__6_ = ebike_postgres_ways_calcula-
tion__39_ 
ebike_postgres_ways_calculation__41_ = ebike_postgres_ways_calcula-
tion__6_ 
ebike_postgres_ways_calculation__7_ = ebike_postgres_ways_calcula-
tion__41_ 
ebike_postgres_ways_calculation__43_ = ebike_postgres_ways_calcula-
tion__7_ 
ebike_postgres_ways_calculation__8_ = ebike_postgres_ways_calcula-
tion__43_ 
ebike_postgres_ways_calculation__46_ = ebike_postgres_ways_calcula-
tion__8_ 
ebike_postgres_ways_calculation__9_ = ebike_postgres_ways_calcula-
tion__46_ 
 
# Set Geoprocessing environments 
arcpy.env.scratchWorkspace = "C:\\Users\\sim_h\\OneDrive\\Doku-
mente\\1_Uni_Wien\\16_Masterarbeit\\4_Daten\\Daten\\Workspace\\Scratch" 
arcpy.env.workspace = "Database Connections\\Connection to localhost.sde" 
 
# Process: energyconsumptionsubmodel_st2_1 
arcpy.energyconsumptionsubmodelst21_energy_consumption_model(Scratch, 
Connection_to_localhost_sde, "8.485 47.35 8.57 47.42", temp_osm, 
osm2pgrouting_exe, mapconfig_for_bicycles_xml, DEM, weight_e_bike_kg, 
weight_driver_kg, temperature_celsius, wheel_diameter_inches, gearbox_ef-
ficiency, gradeability_degree, rolling_coefficient, ebike_post-
gres_ways_calculation__17_, "http://www.overpass-api.de/api/xapi_meta?", 
auxiliary_components_W, factor_human_torque) 
 
# Process: energyconsumptionsubmodel_st2_2 
arcpy.energyconsumptionsubmodelst22_energy_consumption_model("5", "35", 
"5", ebike_postgres_ways_calculation__17_) 
 
# Process: Add Field (12) 
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arcpy.AddField_management(ebike_postgres_ways_calculation__16_, "motoref-
ficiencyv5_r", "DOUBLE", "", "", "", "motorefficiencyvelocity5_reverse", 
"NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (22) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__31_, 
"motorefficiencyv5_r", "meff5(!torquev5_r_Nm!)", "PYTHON_9.3", "def 
meff5(torquev5_r_Nm):\\n    if -12.5 >= torquev5_r_Nm:\\n        return 
0.1686509334044\\n    elif -7.5 >= torquev5_r_Nm > -12.5:\\n        re-
turn 0.400272727088039\\n    elif 0 >= torquev5_r_Nm > -7.5:\\n        
return 0.53365978248219\\n    elif 0 < torquev5_r_Nm < 7.5:\\n        re-
turn 0.623834964702797\\n    elif 7.5 <= torquev5_r_Nm < 12.5:\\n        
return 0.579450836444724\\n    elif 12.5 <= torquev5_r_Nm < 17.5:\\n        
return 0.514837509676393\\n    elif 17.5 <= torquev5_r_Nm < 22.5:\\n        
return 0.472091740648567\\n    elif 22.5 <= torquev5_r_Nm < 27.5:\\n        
return 0.409172192178427\\n    elif 27.5 <= torquev5_r_Nm < 32.5:\\n        
return 0.358790286998961\\n    elif 32.5 <= torquev5_r_Nm < 37.5:\\n        
return 0.32394748442385\\n    elif 37.5 <= torquev5_r_Nm:\\n        re-
turn 0.192834086191931") 
 
# Process: Add Field (21) 
arcpy.AddField_management(ebike_postgres_ways_calculation, "motoreffi-
ciencyv10_r", "DOUBLE", "", "", "", "motorefficiencyvelocity10_reverse", 
"NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (23) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__49_, 
"motorefficiencyv10_r", "meff10(!torquev10_r_Nm!)", "PYTHON_9.3", "def 
meff10(torquev10_r_Nm):\\n    if -27.5 >= torquev10_r_Nm:\\n        re-
turn 0.137684115952318\\n    elif -22.5 >= torquev10_r_Nm > -27.5:\\n        
return 0.312279619894597\\n    elif -17.5 >= torquev10_r_Nm > -22.5:\\n        
return 0.459405191207038\\n    elif -12.5 >= torquev10_r_Nm > -17.5:\\n        
return 0.556210442620491\\n    elif -7.5 >= torquev10_r_Nm > -12.5:\\n        
return 0.660850232379088\\n    elif 0 >= torquev10_r_Nm > -7.5:\\n        
return 0.68784176628815\\n    elif 0 < torquev10_r_Nm < 7.5:\\n        
return 0.715972669192336\\n    elif 7.5 <= torquev10_r_Nm < 12.5:\\n        
return 0.701007821443731\\n    elif 12.5 <= torquev10_r_Nm < 17.5:\\n        
return 0.654257533958745\\n    elif 17.5 <= torquev10_r_Nm < 22.5:\\n        
return 0.622696398091954\\n    elif 22.5 <= torquev10_r_Nm < 27.5:\\n        
return 0.56559006689693\\n    elif 27.5 <= torquev10_r_Nm < 32.5:\\n        
return 0.514923576679544\\n    elif 32.5 <= torquev10_r_Nm < 37.5:\\n        
return 0.476584799195279\\n    elif 37.5 <= torquev10_r_Nm:\\n        re-
turn 0.305739781527573") 
 
# Process: Add Field (22) 
arcpy.AddField_management(ebike_postgres_ways_calculation__10_, "motoref-
ficiencyv15_r", "DOUBLE", "", "", "", "motorefficiencyvelocity15_re-
verse", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (25) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__51_, 
"motorefficiencyv15_r", "meff15(!torquev15_r_Nm!)", "PYTHON_9.3", "def 
meff15(torquev15_r_Nm):\\n    if -27.5 >= torquev15_r_Nm:\\n        re-
turn 0.137684115952318\\n    elif -22.5 >= torquev15_r_Nm > -27.5:\\n        
return 0.312279619894597\\n    elif -17.5 >= torquev15_r_Nm > -22.5:\\n        
return 0.459405191207038\\n    elif -12.5 >= torquev15_r_Nm > -17.5:\\n        
return 0.556210442620491\\n    elif -7.5 >= torquev15_r_Nm > -12.5:\\n        
return 0.660850232379088\\n    elif 0 >= torquev15_r_Nm > -7.5:\\n        
return 0.68784176628815\\n    elif 0 < torquev15_r_Nm < 7.5:\\n        
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return 0.715972669192336\\n    elif 7.5 <= torquev15_r_Nm < 12.5:\\n        
return 0.701007821443731\\n    elif 12.5 <= torquev15_r_Nm < 17.5:\\n        
return 0.654257533958745\\n    elif 17.5 <= torquev15_r_Nm < 22.5:\\n        
return 0.622696398091954\\n    elif 22.5 <= torquev15_r_Nm < 27.5:\\n        
return 0.56559006689693\\n    elif 27.5 <= torquev15_r_Nm < 32.5:\\n        
return 0.514923576679544\\n    elif 32.5 <= torquev15_r_Nm < 37.5:\\n        
return 0.476584799195279\\n    elif 37.5 <= torquev15_r_Nm:\\n        re-
turn 0.305739781527573") 
 
# Process: Add Field (23) 
arcpy.AddField_management(ebike_postgres_ways_calculation__11_, "motoref-
ficiencyv20_r", "DOUBLE", "", "", "", "motorefficiencyvelocity20_re-
verse", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (28) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__53_, 
"motorefficiencyv20_r", "meff20(!torquev20_r_Nm!)", "PYTHON_9.3", "def 
meff20(torquev20_r_Nm):\\n    if -37.5 >= torquev20_r_Nm:\\n        re-
turn 0.242985328431138\\n    elif -32.5 >= torquev20_r_Nm > -37.5:\\n        
return 0.326487747096875\\n    elif -27.5 >= torquev20_r_Nm > -32.5:\\n        
return 0.406298826260984\\n    elif -22.5 >= torquev20_r_Nm > -27.5:\\n        
return 0.53371216133064\\n    elif -17.5 >= torquev20_r_Nm > -22.5:\\n        
return 0.61970983060857\\n    elif -12.5 >= torquev20_r_Nm > -17.5:\\n        
return 0.684670290041407\\n    elif -7.5 >= torquev20_r_Nm > -12.5:\\n        
return 0.751571154518068\\n    elif 0 >= torquev20_r_Nm > -7.5:\\n        
return 0.722428702257428\\n    elif 0 < torquev20_r_Nm < 7.5:\\n        
return 0.749823207947012\\n    elif 7.5 <= torquev20_r_Nm < 12.5:\\n        
return 0.756144166249551\\n    elif 12.5 <= torquev20_r_Nm < 17.5:\\n        
return 0.727493370155266\\n    elif 17.5 <= torquev20_r_Nm < 22.5:\\n        
return 0.704447090103871\\n    elif 22.5 <= torquev20_r_Nm < 27.5:\\n        
return 0.653827051136146\\n    elif 27.5 <= torquev20_r_Nm < 32.5:\\n        
return 0.610366351999488\\n    elif 32.5 <= torquev20_r_Nm < 37.5:\\n        
return 0.570148382769345\\n    elif 37.5 <= torquev20_r_Nm:\\n        re-
turn 0.411535127628699") 
 
# Process: Add Field (25) 
arcpy.AddField_management(ebike_postgres_ways_calculation__13_, "motoref-
ficiencyv25_r", "DOUBLE", "", "", "", "motorefficiencyvelocity25_re-
verse", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (29) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__55_, 
"motorefficiencyv25_r", "meff25(!torquev25_r_Nm!)", "PYTHON_9.3", "def 
meff25(torquev25_r_Nm):\\n    if -37.5 >= torquev25_r_Nm:\\n        re-
turn 0.409268259437775\\n    elif -32.5 >= torquev25_r_Nm > -37.5:\\n        
return 0.481313215219602\\n    elif -27.5 >= torquev25_r_Nm > -32.5:\\n        
return 0.54783588540812\\n    elif -22.5 >= torquev25_r_Nm > -27.5:\\n        
return 0.641936048794025\\n    elif -17.5 >= torquev25_r_Nm > -22.5:\\n        
return 0.707092957349041\\n    elif -12.5 >= torquev25_r_Nm > -17.5:\\n        
return 0.749965174434069\\n    elif -7.5 >= torquev25_r_Nm > -12.5:\\n        
return 0.793345434388403\\n    elif 0 >= torquev25_r_Nm > -7.5:\\n        
return 0.77195594049356\\n    elif 0 < torquev25_r_Nm < 7.5:\\n        
return 0.775650893643593\\n    elif 7.5 <= torquev25_r_Nm < 12.5:\\n        
return 0.783856109033499\\n    elif 12.5 <= torquev25_r_Nm < 17.5:\\n        
return 0.764640691523341\\n    elif 17.5 <= torquev25_r_Nm < 22.5:\\n        
return 0.748987636783427\\n    elif 22.5 <= torquev25_r_Nm < 27.5:\\n        
return 0.705186831992523\\n    elif 27.5 <= torquev25_r_Nm < 32.5:\\n        
return 0.666858058750972\\n    elif 32.5 <= torquev25_r_Nm:\\n        re-
turn 0.640896012607356") 
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# Process: Add Field (28) 
arcpy.AddField_management(ebike_postgres_ways_calculation__12_, "motoref-
ficiencyv30_r", "DOUBLE", "", "", "", "motorefficiencyvelocity30_re-
verse", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (30) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__57_, 
"motorefficiencyv30_r", "meff30(!torquev30_r_Nm!)", "PYTHON_9.3", "def 
meff30(torquev30_r_Nm):\\n    if -37.5 >= torquev30_r_Nm:\\n        re-
turn 0.503961290702052\\n    elif -32.5 >= torquev30_r_Nm > -37.5:\\n        
return 0.574071561001055\\n    elif -27.5 >= torquev30_r_Nm > -32.5:\\n        
return 0.62418619075502\\n    elif -22.5 >= torquev30_r_Nm > -27.5:\\n        
return 0.692363882400556\\n    elif -17.5 >= torquev30_r_Nm > -22.5:\\n        
return 0.748143465737966\\n    elif -12.5 >= torquev30_r_Nm > -17.5:\\n        
return 0.785475525219002\\n    elif -7.5 >= torquev30_r_Nm > -12.5:\\n        
return 0.810884982216235\\n    elif 0 >= torquev30_r_Nm > -7.5:\\n        
return 0.767802941434139\\n    elif 0 < torquev30_r_Nm < 7.5:\\n        
return 0.766445865111972\\n    elif 7.5 <= torquev30_r_Nm < 12.5:\\n        
return 0.802113888658795\\n    elif 12.5 <= torquev30_r_Nm < 17.5:\\n        
return 0.787104493659772\\n    elif 17.5 <= torquev30_r_Nm < 22.5:\\n        
return 0.775961036216906\\n    elif 22.5 <= torquev30_r_Nm < 27.5:\\n        
return 0.742906970272747\\n    elif 27.5 <= torquev30_r_Nm:\\n        re-
turn 0.709593390721885") 
 
# Process: Add Field (29) 
arcpy.AddField_management(ebike_postgres_ways_calculation__14_, "motoref-
ficiencyv35_r", "DOUBLE", "", "", "", "motorefficiencyvelocity35_re-
verse", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (31) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__59_, 
"motorefficiencyv35_r", "meff35(!torquev35_r_Nm!)", "PYTHON_9.3", "def 
meff35(torquev35_r_Nm):\\n    if -37.5 >= torquev35_r_Nm:\\n        re-
turn 0.572518348372519\\n    elif -32.5 >= torquev35_r_Nm > -37.5:\\n        
return 0.628062859898562\\n    elif -27.5 >= torquev35_r_Nm > -32.5:\\n        
return 0.680406586919219\\n    elif -22.5 >= torquev35_r_Nm > -27.5:\\n        
return 0.737424308689985\\n    elif -17.5 >= torquev35_r_Nm > -22.5:\\n        
return 0.781179207736998\\n    elif -12.5 >= torquev35_r_Nm > -17.5:\\n        
return 0.809803596145166\\n    elif -7.5 >= torquev35_r_Nm > -12.5:\\n        
return 0.818725408364537\\n    elif 0 >= torquev35_r_Nm > -7.5:\\n        
return 0.759422563052545\\n    elif 0 < torquev35_r_Nm < 7.5:\\n        
return 0.772907061038415\\n    elif 7.5 <= torquev35_r_Nm < 12.5:\\n        
return 0.820490814499513\\n    elif 12.5 <= torquev35_r_Nm < 17.5:\\n        
return 0.811626316454911\\n    elif 17.5 <= torquev35_r_Nm < 22.5:\\n        
return 0.805890003387917\\n    elif 22.5 <= torquev35_r_Nm < 27.5:\\n        
return 0.773830012847367\\n    elif 27.5 <= torquev35_r_Nm:\\n        re-
turn 0.756120670347907") 
 
# Process: Add Field (7) 
arcpy.AddField_management(ebike_postgres_ways_calculation__16_, "motoref-
ficiencyv5", "DOUBLE", "", "", "", "motorefficiencyvelocity5", "NULLA-
BLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (2) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__29_, 
"motorefficiencyv5", "meff5(!torquev5_Nm!)", "PYTHON_9.3", "def 
meff5(torquev5_Nm):\\n    if -12.5 >= torquev5_Nm:\\n        return 
0.1686509334044\\n    elif -7.5 >= torquev5_Nm > -12.5:\\n        return 
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0.400272727088039\\n    elif 0 >= torquev5_Nm > -7.5:\\n        return 
0.53365978248219\\n    elif 0 < torquev5_Nm < 7.5:\\n        return 
0.623834964702797\\n    elif 7.5 <= torquev5_Nm < 12.5:\\n        return 
0.579450836444724\\n    elif 12.5 <= torquev5_Nm < 17.5:\\n        return 
0.514837509676393\\n    elif 17.5 <= torquev5_Nm < 22.5:\\n        return 
0.472091740648567\\n    elif 22.5 <= torquev5_Nm < 27.5:\\n        return 
0.409172192178427\\n    elif 27.5 <= torquev5_Nm < 32.5:\\n        return 
0.358790286998961\\n    elif 32.5 <= torquev5_Nm < 37.5:\\n        return 
0.32394748442385\\n    elif 37.5 <= torquev5_Nm:\\n        return 
0.192834086191931") 
 
# Process: Add Field (2) 
arcpy.AddField_management(ebike_postgres_ways_calculation__3_, "motoref-
ficiencyv10", "DOUBLE", "", "", "", "motorefficiencyvelocity10", "NULLA-
BLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (11) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__32_, 
"motorefficiencyv10", "meff10(!torquev10_Nm!)", "PYTHON_9.3", "def 
meff10(torquev10_Nm):\\n    if -27.5 >= torquev10_Nm:\\n        return 
0.137684115952318\\n    elif -22.5 >= torquev10_Nm > -27.5:\\n        re-
turn 0.312279619894597\\n    elif -17.5 >= torquev10_Nm > -22.5:\\n        
return 0.459405191207038\\n    elif -12.5 >= torquev10_Nm > -17.5:\\n        
return 0.556210442620491\\n    elif -7.5 >= torquev10_Nm > -12.5:\\n        
return 0.660850232379088\\n    elif 0 >= torquev10_Nm > -7.5:\\n        
return 0.68784176628815\\n    elif 0 < torquev10_Nm < 7.5:\\n        re-
turn 0.715972669192336\\n    elif 7.5 <= torquev10_Nm < 12.5:\\n        
return 0.701007821443731\\n    elif 12.5 <= torquev10_Nm < 17.5:\\n        
return 0.654257533958745\\n    elif 17.5 <= torquev10_Nm < 22.5:\\n        
return 0.622696398091954\\n    elif 22.5 <= torquev10_Nm < 27.5:\\n        
return 0.56559006689693\\n    elif 27.5 <= torquev10_Nm < 32.5:\\n        
return 0.514923576679544\\n    elif 32.5 <= torquev10_Nm < 37.5:\\n        
return 0.476584799195279\\n    elif 37.5 <= torquev10_Nm:\\n        re-
turn 0.305739781527573") 
 
# Process: Add Field (11) 
arcpy.AddField_management(ebike_postgres_ways_calculation__4_, "motoref-
ficiencyv15", "DOUBLE", "", "", "", "motorefficiencyvelocity15", "NULLA-
BLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (14) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__35_, 
"motorefficiencyv15", "meff15(!torquev15_Nm!)", "PYTHON_9.3", "def 
meff15(torquev15_Nm):\\n    if -27.5 >= torquev15_Nm:\\n        return 
0.137684115952318\\n    elif -22.5 >= torquev15_Nm > -27.5:\\n        re-
turn 0.312279619894597\\n    elif -17.5 >= torquev15_Nm > -22.5:\\n        
return 0.459405191207038\\n    elif -12.5 >= torquev15_Nm > -17.5:\\n        
return 0.556210442620491\\n    elif -7.5 >= torquev15_Nm > -12.5:\\n        
return 0.660850232379088\\n    elif 0 >= torquev15_Nm > -7.5:\\n        
return 0.68784176628815\\n    elif 0 < torquev15_Nm < 7.5:\\n        re-
turn 0.715972669192336\\n    elif 7.5 <= torquev15_Nm < 12.5:\\n        
return 0.701007821443731\\n    elif 12.5 <= torquev15_Nm < 17.5:\\n        
return 0.654257533958745\\n    elif 17.5 <= torquev15_Nm < 22.5:\\n        
return 0.622696398091954\\n    elif 22.5 <= torquev15_Nm < 27.5:\\n        
return 0.56559006689693\\n    elif 27.5 <= torquev15_Nm < 32.5:\\n        
return 0.514923576679544\\n    elif 32.5 <= torquev15_Nm < 37.5:\\n        
return 0.476584799195279\\n    elif 37.5 <= torquev15_Nm:\\n        re-
turn 0.305739781527573") 
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# Process: Add Field (13) 
arcpy.AddField_management(ebike_postgres_ways_calculation__5_, "motoref-
ficiencyv20", "DOUBLE", "", "", "", "motorefficiencyvelocity20", "NULLA-
BLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (16) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__39_, 
"motorefficiencyv20", "meff20(!torquev20_Nm!)", "PYTHON_9.3", "def 
meff20(torquev20_Nm):\\n    if -37.5 >= torquev20_Nm:\\n        return 
0.242985328431138\\n    elif -32.5 >= torquev20_Nm > -37.5:\\n        re-
turn 0.326487747096875\\n    elif -27.5 >= torquev20_Nm > -32.5:\\n        
return 0.406298826260984\\n    elif -22.5 >= torquev20_Nm > -27.5:\\n        
return 0.53371216133064\\n    elif -17.5 >= torquev20_Nm > -22.5:\\n        
return 0.61970983060857\\n    elif -12.5 >= torquev20_Nm > -17.5:\\n        
return 0.684670290041407\\n    elif -7.5 >= torquev20_Nm > -12.5:\\n        
return 0.751571154518068\\n    elif 0 >= torquev20_Nm > -7.5:\\n        
return 0.722428702257428\\n    elif 0 < torquev20_Nm < 7.5:\\n        re-
turn 0.749823207947012\\n    elif 7.5 <= torquev20_Nm < 12.5:\\n        
return 0.756144166249551\\n    elif 12.5 <= torquev20_Nm < 17.5:\\n        
return 0.727493370155266\\n    elif 17.5 <= torquev20_Nm < 22.5:\\n        
return 0.704447090103871\\n    elif 22.5 <= torquev20_Nm < 27.5:\\n        
return 0.653827051136146\\n    elif 27.5 <= torquev20_Nm < 32.5:\\n        
return 0.610366351999488\\n    elif 32.5 <= torquev20_Nm < 37.5:\\n        
return 0.570148382769345\\n    elif 37.5 <= torquev20_Nm:\\n        re-
turn 0.411535127628699") 
 
# Process: Add Field (16) 
arcpy.AddField_management(ebike_postgres_ways_calculation__6_, "motoref-
ficiencyv25", "DOUBLE", "", "", "", "motorefficiencyvelocity25", "NULLA-
BLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (17) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__41_, 
"motorefficiencyv25", "meff25(!torquev25_Nm!)", "PYTHON_9.3", "def 
meff25(torquev25_Nm):\\n    if -37.5 >= torquev25_Nm:\\n        return 
0.409268259437775\\n    elif -32.5 >= torquev25_Nm > -37.5:\\n        re-
turn 0.481313215219602\\n    elif -27.5 >= torquev25_Nm > -32.5:\\n        
return 0.54783588540812\\n    elif -22.5 >= torquev25_Nm > -27.5:\\n        
return 0.641936048794025\\n    elif -17.5 >= torquev25_Nm > -22.5:\\n        
return 0.707092957349041\\n    elif -12.5 >= torquev25_Nm > -17.5:\\n        
return 0.749965174434069\\n    elif -7.5 >= torquev25_Nm > -12.5:\\n        
return 0.793345434388403\\n    elif 0 >= torquev25_Nm > -7.5:\\n        
return 0.77195594049356\\n    elif 0 < torquev25_Nm < 7.5:\\n        re-
turn 0.775650893643593\\n    elif 7.5 <= torquev25_Nm < 12.5:\\n        
return 0.783856109033499\\n    elif 12.5 <= torquev25_Nm < 17.5:\\n        
return 0.764640691523341\\n    elif 17.5 <= torquev25_Nm < 22.5:\\n        
return 0.748987636783427\\n    elif 22.5 <= torquev25_Nm < 27.5:\\n        
return 0.705186831992523\\n    elif 27.5 <= torquev25_Nm < 32.5:\\n        
return 0.666858058750972\\n    elif 32.5 <= torquev25_Nm:\\n        re-
turn 0.640896012607356") 
 
# Process: Add Field (17) 
arcpy.AddField_management(ebike_postgres_ways_calculation__7_, "motoref-
ficiencyv30", "DOUBLE", "", "", "", "motorefficiencyvelocity30", "NULLA-
BLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (20) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__43_, 
"motorefficiencyv30", "meff30(!torquev30_Nm!)", "PYTHON_9.3", "def 
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meff30(torquev30_Nm):\\n    if -37.5 >= torquev30_Nm:\\n        return 
0.503961290702052\\n    elif -32.5 >= torquev30_Nm > -37.5:\\n        re-
turn 0.574071561001055\\n    elif -27.5 >= torquev30_Nm > -32.5:\\n        
return 0.62418619075502\\n    elif -22.5 >= torquev30_Nm > -27.5:\\n        
return 0.692363882400556\\n    elif -17.5 >= torquev30_Nm > -22.5:\\n        
return 0.748143465737966\\n    elif -12.5 >= torquev30_Nm > -17.5:\\n        
return 0.785475525219002\\n    elif -7.5 >= torquev30_Nm > -12.5:\\n        
return 0.810884982216235\\n    elif 0 >= torquev30_Nm > -7.5:\\n        
return 0.767802941434139\\n    elif 0 < torquev30_Nm < 7.5:\\n        re-
turn 0.766445865111972\\n    elif 7.5 <= torquev30_Nm < 12.5:\\n        
return 0.802113888658795\\n    elif 12.5 <= torquev30_Nm < 17.5:\\n        
return 0.787104493659772\\n    elif 17.5 <= torquev30_Nm < 22.5:\\n        
return 0.775961036216906\\n    elif 22.5 <= torquev30_Nm < 27.5:\\n        
return 0.742906970272747\\n    elif 27.5 <= torquev30_Nm:\\n        re-
turn 0.709593390721885") 
 
# Process: Add Field (20) 
arcpy.AddField_management(ebike_postgres_ways_calculation__8_, "motoref-
ficiencyv35", "DOUBLE", "", "", "", "motorefficiencyvelocity35", "NULLA-
BLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (21) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__46_, 
"motorefficiencyv35", "meff35(!torquev35_Nm!)", "PYTHON_9.3", "def 
meff35(torquev35_Nm):\\n    if -37.5 >= torquev35_Nm:\\n        return 
0.572518348372519\\n    elif -32.5 >= torquev35_Nm > -37.5:\\n        re-
turn 0.628062859898562\\n    elif -27.5 >= torquev35_Nm > -32.5:\\n        
return 0.680406586919219\\n    elif -22.5 >= torquev35_Nm > -27.5:\\n        
return 0.737424308689985\\n    elif -17.5 >= torquev35_Nm > -22.5:\\n        
return 0.781179207736998\\n    elif -12.5 >= torquev35_Nm > -17.5:\\n        
return 0.809803596145166\\n    elif -7.5 >= torquev35_Nm > -12.5:\\n        
return 0.818725408364537\\n    elif 0 >= torquev35_Nm > -7.5:\\n        
return 0.759422563052545\\n    elif 0 < torquev35_Nm < 7.5:\\n        re-
turn 0.772907061038415\\n    elif 7.5 <= torquev35_Nm < 12.5:\\n        
return 0.820490814499513\\n    elif 12.5 <= torquev35_Nm < 17.5:\\n        
return 0.811626316454911\\n    elif 17.5 <= torquev35_Nm < 22.5:\\n        
return 0.805890003387917\\n    elif 22.5 <= torquev35_Nm < 27.5:\\n        
return 0.773830012847367\\n    elif 27.5 <= torquev35_Nm:\\n        re-
turn 0.756120670347907") 
 
# Process: energyconsumptionsubmodel_st2_3 
arcpy.energyconsumptionsubmodelst23_energy_consumption_model("5", "35", 
"5", ebike_postgres_ways_calculation__15_) 
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energyconsumptionsubmodel_st2_1.py 

# -*- coding: utf-8 -*- 
# -----------------------------------------------------------------------
---- 
# energyconsumptionsubmodel_st2_1.py 
# Created on: 2017-05-29 11:03:27.00000 
#   (generated by ArcGIS/ModelBuilder) 
# Usage: energyconsumptionsubmodel_st2_1 <Scratch> <Workspace> <Extent> 
<temp_osm> <osm2pgrouting_exe> <mapconfig_for_bicycles_xml> <DEM> 
<weight_e_bike_kg> <weight_driver_kg> <temperature_celsius> <wheel_diame-
ter_inches> <gearbox_efficiency> <gradeability_degree> <rolling_coeffi-
cient> <ebike_postgres_ways_calculation__55_> <Download_URL> <auxil-
iary_components_W> <factor_human_torque>  
# Description:  
# -----------------------------------------------------------------------
---- 
 
# Import arcpy module 
import arcpy 
 
# Load required toolboxes 
arcpy.ImportToolbox("C:/Users/sim_h/OneDrive/Dokumente/1_Uni_Wien/16_Mas-
terarbeit/4_Daten/Daten/Workspace/databaseconnectionfile.sde/ebike.post-
gres.energy_consumption_model") 
 
# Script arguments 
Scratch = arcpy.GetParameterAsText(0) 
if Scratch == '#' or not Scratch: 
    Scratch = "C:\\Users\\sim_h\\OneDrive\\Dokumente\\1_Uni_Wien\\16_Mas-
terarbeit\\4_Daten\\Daten\\Workspace\\Scratch" # provide a default value 
if unspecified 
 
Workspace = arcpy.GetParameterAsText(1) 
if Workspace == '#' or not Workspace: 
    Workspace = "Database Connections\\Connection to localhost.sde" # 
provide a default value if unspecified 
 
Extent = arcpy.GetParameterAsText(2) 
if Extent == '#' or not Extent: 
    Extent = "8.485 47.35 8.57 47.42" # provide a default value if un-
specified 
 
temp_osm = arcpy.GetParameterAsText(3) 
if temp_osm == '#' or not temp_osm: 
    temp_osm = "%Scratch%\\temp.osm" # provide a default value if unspec-
ified 
 
osm2pgrouting_exe = arcpy.GetParameterAsText(4) 
if osm2pgrouting_exe == '#' or not osm2pgrouting_exe: 
    osm2pgrouting_exe = "C:\\Program Files\\Post-
greSQL\\9.4\\bin\\osm2pgrouting.exe" # provide a default value if unspec-
ified 
 
mapconfig_for_bicycles_xml = arcpy.GetParameterAsText(5) 
if mapconfig_for_bicycles_xml == '#' or not mapconfig_for_bicycles_xml: 
    mapconfig_for_bicycles_xml = "C:\\Program Files\\Post-
greSQL\\9.4\\bin\\mapconfig_for_bicycles.xml" # provide a default value 
if unspecified 
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DEM = arcpy.GetParameterAsText(6) 
if DEM == '#' or not DEM: 
    DEM = "%Scratch%\\DEM.tif" # provide a default value if unspecified 
 
weight_e_bike_kg = arcpy.GetParameterAsText(7) 
if weight_e_bike_kg == '#' or not weight_e_bike_kg: 
    weight_e_bike_kg = "27" # provide a default value if unspecified 
 
weight_driver_kg = arcpy.GetParameterAsText(8) 
if weight_driver_kg == '#' or not weight_driver_kg: 
    weight_driver_kg = "100" # provide a default value if unspecified 
 
temperature_celsius = arcpy.GetParameterAsText(9) 
if temperature_celsius == '#' or not temperature_celsius: 
    temperature_celsius = "3" # provide a default value if unspecified 
 
wheel_diameter_inches = arcpy.GetParameterAsText(10) 
if wheel_diameter_inches == '#' or not wheel_diameter_inches: 
    wheel_diameter_inches = "26" # provide a default value if unspecified 
 
gearbox_efficiency = arcpy.GetParameterAsText(11) 
if gearbox_efficiency == '#' or not gearbox_efficiency: 
    gearbox_efficiency = "0.98" # provide a default value if unspecified 
 
gradeability_degree = arcpy.GetParameterAsText(12) 
if gradeability_degree == '#' or not gradeability_degree: 
    gradeability_degree = "15" # provide a default value if unspecified 
 
rolling_coefficient = arcpy.GetParameterAsText(13) 
if rolling_coefficient == '#' or not rolling_coefficient: 
    rolling_coefficient = "0.003" # provide a default value if unspeci-
fied 
 
ebike_postgres_ways_calculation__55_ = arcpy.GetParameterAsText(14) 
if ebike_postgres_ways_calculation__55_ == '#' or not ebike_post-
gres_ways_calculation__55_: 
    ebike_postgres_ways_calculation__55_ = "%Workspace%\\ebike.post-
gres.ways_calculation" # provide a default value if unspecified 
 
Download_URL = arcpy.GetParameterAsText(15) 
if Download_URL == '#' or not Download_URL: 
    Download_URL = "http://www.overpass-api.de/api/xapi_meta?" # provide 
a default value if unspecified 
 
auxiliary_components_W = arcpy.GetParameterAsText(16) 
if auxiliary_components_W == '#' or not auxiliary_components_W: 
    auxiliary_components_W = "8.37" # provide a default value if unspeci-
fied 
 
factor_human_torque = arcpy.GetParameterAsText(17) 
if factor_human_torque == '#' or not factor_human_torque: 
    factor_human_torque = "0.1" # provide a default value if unspecified 
 
# Local variables: 
ebike_postgres_ways = "%Workspace%\\ebike.postgres.ways" 
successful = "true" 
Delete_succeeded__3_ = successful 
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ebike_postgres_ways_calculation__2_ = "%Workspace%\\ebike.post-
gres.ways_calculation" 
ebike_postgres_ways_calculation__4_ = ebike_postgres_ways_calculation__2_ 
ebike_postgres_ways_calculation__23_ = ebike_postgres_ways_calcula-
tion__2_ 
ebike_postgres_ways_target = "%Workspace%\\ebike.postgres.ways_target" 
ebike_postgres_target_for_extract = "Database Connections\\Connection to 
localhost.sde\\ebike.postgres.target_for_extract" 
dem_proj = "%Workspace%\\ebike.postgres.dem_proj" 
ebike_postgres_target_extract = "%Workspace%\\ebike.postgres.target_ex-
tract" 
ebike_postgres_target_extract__3_ = ebike_postgres_target_extract 
ebike_postgres_target_extract__2_ = ebike_postgres_target_extract__3_ 
ebike_postgres_target_extract__4_ = ebike_postgres_target_extract__2_ 
ebike_postgres_ways_calculation__36_ = ebike_postgres_ways_calcula-
tion__23_ 
ebike_postgres_ways_calculation__47_ = ebike_postgres_ways_calcula-
tion__23_ 
ebike_postgres_ways_source = "%Workspace%\\ebike.postgres.ways_source" 
ebike_postgres_source_for_extract = "Database Connections\\Connection to 
localhost.sde\\ebike.postgres.source_for_extract" 
ebike_postgres_source_extract = "%Workspace%\\ebike.postgres.source_ex-
tract" 
ebike_postgres_source_extract__3_ = ebike_postgres_source_extract 
ebike_postgres_source_extract__2_ = ebike_postgres_source_extract__3_ 
ebike_postgres_source_extract__4_ = ebike_postgres_source_extract__2_ 
ebike_postgres_ways_calculation__10_ = ebike_postgres_ways_calcula-
tion__36_ 
ebike_postgres_ways_calculation__33_ = ebike_postgres_ways_calcula-
tion__10_ 
ebike_postgres_ways_calculation__46_ = ebike_postgres_ways_calcula-
tion__33_ 
ebike_postgres_ways_calculation__16_ = ebike_postgres_ways_calcula-
tion__46_ 
ebike_postgres_ways_calculation__9_ = ebike_postgres_ways_calcula-
tion__16_ 
ebike_postgres_ways_calculation__8_ = ebike_postgres_ways_calculation__9_ 
ebike_postgres_ways_calculation__12_ = ebike_postgres_ways_calcula-
tion__8_ 
ebike_postgres_ways_calculation__13_ = ebike_postgres_ways_calcula-
tion__12_ 
ebike_postgres_ways_calculation = ebike_postgres_ways_calculation__13_ 
unsuccessful = "false" 
ebike_postgres_ways_calculation__15_ = ebike_postgres_ways_calcula-
tion__47_ 
ebike_postgres_ways_calculation__39_ = ebike_postgres_ways_calcula-
tion__15_ 
ebike_postgres_ways_calculation__25_ = ebike_postgres_ways_calcula-
tion__39_ 
ebike_postgres_ways_calculation__5_ = ebike_postgres_ways_calcula-
tion__25_ 
ebike_postgres_ways_calculation__11_ = ebike_postgres_ways_calcula-
tion__5_ 
ebike_postgres_ways_calculation__3_ = ebike_postgres_ways_calcula-
tion__11_ 
ebike_postgres_ways_calculation__7_ = ebike_postgres_ways_calculation__3_ 
ebike_postgres_ways_calculation__14_ = ebike_postgres_ways_calcula-
tion__7_ 
Delete_succeeded = "false" 
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Delete_succeeded__2_ = "false" 
 
# Set Geoprocessing environments 
arcpy.env.scratchWorkspace = "C:\\Users\\sim_h\\OneDrive\\Doku-
mente\\1_Uni_Wien\\16_Masterarbeit\\4_Daten\\Daten\\Workspace\\Scratch" 
arcpy.env.workspace = "Database Connections\\Connection to localhost.sde" 
 
# Process: Download OSM Data (XAPI) 
tempEnvironment0 = arcpy.env.scratchWorkspace 
arcpy.env.scratchWorkspace = Scratch 
arcpy.XAPIDownload_osmtools(Download_URL, Extent, "*", "highway=pri-
mary|primary_link|secondary|tertiary|residential|living_street|track|pe-
destrian|path|cycleway|footway|byway|unclassified|secondary_link|ter-
tiary_link|lane|track|opposite_lane|oppo-
site|grade1|grade2|grade3|grade4|grade5|roundabout", temp_osm) 
arcpy.env.scratchWorkspace = tempEnvironment0 
 
# Process: osm2pgrouting 
arcpy.osm2pgrouting_energy_consumption_model(osm2pgrouting_exe, temp_osm, 
mapconfig_for_bicycles_xml) 
 
# Process: Copy 
arcpy.Copy_management(ebike_postgres_ways, ebike_postgres_ways_calcula-
tion__2_, "%Workspace\\ebike.postgres.ways") 
 
# Process: Make XY Event Layer (4) 
arcpy.MakeXYEventLayer_management(ebike_postgres_ways_calculation__2_, 
"x2", "y2", ebike_postgres_ways_target, "GEOGCS['GCS_WGS_1984',DA-
TUM['D_WGS_1984',SPHE-
ROID['WGS_1984',6378137.0,298.257223563]],PRIMEM['Green-
wich',0.0],UNIT['Degree',0.0174532925199433]];-400 -400 1000000000;-
100000 10000;-100000 10000;8.98315284119522E-09;0.001;0.001;IsHighPreci-
sion", "") 
 
# Process: Feature Class to Feature Class 
arcpy.FeatureClassToFeatureClass_conversion(ebike_postgres_ways_target, 
Workspace, "target_for_extract", "", "", "") 
 
# Process: Project Raster 
arcpy.ProjectRaster_management(DEM, dem_proj, "GEOGCS['GCS_WGS_1984',DA-
TUM['D_WGS_1984',SPHE-
ROID['WGS_1984',6378137.0,298.257223563]],PRIMEM['Green-
wich',0.0],UNIT['Degree',0.0174532925199433]]", "NEAREST", 
"2.21884308916892E-05 2.21884308916892E-05", "CH1903_To_WGS_1984_1", "", 
"PROJCS['CH1903_LV03',GEOGCS['GCS_CH1903',DATUM['D_CH1903',SPHEROID['Bes-
sel_1841',6377397.155,299.1528128]],PRIMEM['Greenwich',0.0],UNIT['De-
gree',0.0174532925199433]],PROJECTION['Hotine_Oblique_Mercator_Azi-
muth_Center'],PARAMETER['False_Easting',600000.0],PARAMETER['False_North-
ing',200000.0],PARAMETER['Scale_Factor',1.0],PARAMETER['Azi-
muth',90.0],PARAMETER['Longitude_Of_Center',7.439583333333333],PARAME-
TER['Latitude_Of_Center',46.95240555555556],UNIT['Me-
ter',1.0]],VERTCS['LN_1902',VDATUM['Landesnivellement_1902'],PARAME-
TER['Vertical_Shift',0.0],PARAMETER['Direction',1.0],UNIT['Meter',1.0]]") 
 
# Process: Extract Values to Points 
tempEnvironment0 = arcpy.env.workspace 
arcpy.env.workspace = Workspace 
arcpy.gp.ExtractValuesToPoints_sa(ebike_postgres_target_for_extract, 
dem_proj, ebike_postgres_target_extract, "INTERPOLATE", "VALUE_ONLY") 
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arcpy.env.workspace = tempEnvironment0 
 
# Process: Add Field (10) 
arcpy.AddField_management(ebike_postgres_target_extract, "target_el", 
"DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (10) 
arcpy.CalculateField_management(ebike_postgres_target_extract__3_, "tar-
get_el", "!rastervalu!", "PYTHON_9.3", "") 
 
# Process: Delete Field (3) 
arcpy.DeleteField_management(ebike_postgres_target_extract__2_, "raster-
valu") 
 
# Process: Join Field (5) 
arcpy.JoinField_management(ebike_postgres_ways_calculation__2_, "gid", 
ebike_postgres_target_extract__4_, "gid", "target_el") 
 
# Process: Make XY Event Layer (3) 
arcpy.MakeXYEventLayer_management(ebike_postgres_ways_calculation__2_, 
"x1", "y1", ebike_postgres_ways_source, "GEOGCS['GCS_WGS_1984',DA-
TUM['D_WGS_1984',SPHE-
ROID['WGS_1984',6378137.0,298.257223563]],PRIMEM['Green-
wich',0.0],UNIT['Degree',0.0174532925199433]];-400 -400 1000000000;-
100000 10000;-100000 10000;8.98315284119522E-09;0.001;0.001;IsHighPreci-
sion", "") 
 
# Process: Feature Class to Feature Class (2) 
arcpy.FeatureClassToFeatureClass_conversion(ebike_postgres_ways_source, 
Workspace, "source_for_extract", "", "", "") 
 
# Process: Extract Values to Points (2) 
tempEnvironment0 = arcpy.env.workspace 
arcpy.env.workspace = Workspace 
arcpy.gp.ExtractValuesToPoints_sa(ebike_postgres_source_for_extract, 
dem_proj, ebike_postgres_source_extract, "INTERPOLATE", "VALUE_ONLY") 
arcpy.env.workspace = tempEnvironment0 
 
# Process: Add Field (11) 
arcpy.AddField_management(ebike_postgres_source_extract, "source_el", 
"DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (11) 
arcpy.CalculateField_management(ebike_postgres_source_extract__3_, 
"source_el", "!rastervalu!", "PYTHON_9.3", "") 
 
# Process: Delete Field (2) 
arcpy.DeleteField_management(ebike_postgres_source_extract__2_, "raster-
valu") 
 
# Process: Join Field (4) 
arcpy.JoinField_management(ebike_postgres_ways_calculation__2_, "gid", 
ebike_postgres_source_extract__4_, "gid", "source_el") 
 
# Process: Add Field (12) 
arcpy.AddField_management(ebike_postgres_ways_calculation__23_, "slope-
perc", "DOUBLE", "", "", "", "slope_percentage", "NULLABLE", "NON_RE-
QUIRED", "") 
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# Process: Calculate Field (12) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__36_, 
"slopeperc", "(!target_el!-!source_el!)/!length_m!*100", "PYTHON_9.3", 
"") 
 
# Process: Add Field (5) 
arcpy.AddField_management(ebike_postgres_ways_calculation__10_, "slopean-
gle_degree", "DOUBLE", "", "", "", "angle_of_slope_degree", "NULLABLE", 
"NON_REQUIRED", "") 
 
# Process: Calculate Field (5) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__33_, 
"slopeangle_degree", "math.degrees(math.atan((!target_el!-
!source_el!)/!length_m!))", "PYTHON_9.3", "") 
 
# Process: Add Field (6) 
arcpy.AddField_management(ebike_postgres_ways_calculation__46_, 
"climbres_N", "DOUBLE", "", "", "", "climbingresistance_N", "NULLABLE", 
"NON_REQUIRED", "") 
 
# Process: Calculate Field (6) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__16_, 
"climbres_N", "(%weight_driver_kg%+%weight_e-
bike_kg%)*9.806*math.sin(math.radians(!slopeangle_degree!))", "PY-
THON_9.3", "") 
 
# Process: Add Field (13) 
arcpy.AddField_management(ebike_postgres_ways_calculation__9_, 
"rollres_N", "DOUBLE", "", "", "", "rollingresistance_N", "NULLABLE", 
"NON_REQUIRED", "") 
 
# Process: Calculate Field (14) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__8_, 
"rollres_N", "%rolling_coefficient%*(%weight_driver_kg%+%weight_e-
bike_kg%)*9.806*math.cos(math.radians(!slopeangle_degree!))", "PY-
THON_9.3", "") 
 
# Process: Add Field (8) 
arcpy.AddField_management(ebike_postgres_ways_calculation__12_, "pres-
sure_hPa", "DOUBLE", "", "", "", "ambientairpressure_hPa", "NULLABLE", 
"NON_REQUIRED", "") 
 
# Process: Calculate Field (8) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__13_, 
"pressure_hPa", "1013.25*math.pow(1-(0.0065*((!tar-
get_el!+!source_el!)/2))/(%temperature_celsius%+273.15),5.255)", "PY-
THON_9.3", "") 
 
# Process: Add Field (25) 
arcpy.AddField_management(ebike_postgres_ways_calculation__23_, "slope-
perc_r", "DOUBLE", "", "", "", "slope_percentage_reverse", "NULLABLE", 
"NON_REQUIRED", "") 
 
# Process: Calculate Field (25) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__47_, 
"slopeperc_r", "(!source_el!-!target_el!)/!length_m!*100", "PYTHON_9.3", 
"") 
 
# Process: Add Field (20) 
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arcpy.AddField_management(ebike_postgres_ways_calculation__15_, "slopean-
gle_r_degree", "DOUBLE", "", "", "", "angle_of_slope_reverse_degree", 
"NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (20) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__39_, 
"slopeangle_r_degree", "math.degrees(math.atan((!source_el!-!tar-
get_el!)/!length_m!))", "PYTHON_9.3", "") 
 
# Process: Add Field (21) 
arcpy.AddField_management(ebike_postgres_ways_calculation__25_, 
"climbres_r_N", "DOUBLE", "", "", "", "climbingresistance_reverse_N", 
"NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (21) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__5_, 
"climbres_r_N", "(%weight_driver_kg%+%weight_e-
bike_kg%)*9.806*math.sin(math.radians(!slopeangle_r_degree!))", "PY-
THON_9.3", "") 
 
# Process: Add Field (28) 
arcpy.AddField_management(ebike_postgres_ways_calculation__11_, 
"rollres_r_N", "DOUBLE", "", "", "", "rollingresistance_reverse_N", "NUL-
LABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (28) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__3_, 
"rollres_r_N", "%rolling_coefficient%*(%weight_driver_kg%+%weight_e-
bike_kg%)*9.806*math.cos(math.radians(!slopeangle_degree!))", "PY-
THON_9.3", "") 
 
# Process: Add Field (23) 
arcpy.AddField_management(ebike_postgres_ways_calculation__7_, "pres-
sure_r_hPa", "DOUBLE", "", "", "", "ambientairpressure_reverse_hPa", 
"NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (23) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__14_, 
"pressure_r_hPa", "1013.25*math.pow(1-(0.0065*((!source_el!+!tar-
get_el!)/2))/(%temperature_celsius%+273.15),5.255)", "PYTHON_9.3", "") 
 
# Process: Delete(3) 
arcpy.Delete_management(ebike_postgres_target_for_extract, "") 
 
# Process: Delete (2) 
arcpy.Delete_management(ebike_postgres_source_for_extract, "") 
 
# Process: Delete 
arcpy.Delete_management(temp_osm, "") 
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energyconsumptionsubmodel_st2_2.py 

# -*- coding: utf-8 -*- 
# -----------------------------------------------------------------------
---- 
# energyconsumptionsubmodel_st2_2.py 
# Created on: 2017-05-29 11:03:41.00000 
#   (generated by ArcGIS/ModelBuilder) 
# Usage: energyconsumptionsubmodel_st2_2 <from_velocity_kmh> <to_veloc-
ity_kmh> <by_velocity_kmh> <ebike_postgres_ways_calculation__55_> 
<ebike_postgres_ways_calculation__2_>  
# Description:  
# -----------------------------------------------------------------------
---- 
 
# Import arcpy module 
import arcpy 
 
# Load required toolboxes 
arcpy.ImportToolbox("Model Functions") 
 
# Script arguments 
from_velocity_kmh = arcpy.GetParameterAsText(0) 
if from_velocity_kmh == '#' or not from_velocity_kmh: 
    from_velocity_kmh = "5" # provide a default value if unspecified 
 
to_velocity_kmh = arcpy.GetParameterAsText(1) 
if to_velocity_kmh == '#' or not to_velocity_kmh: 
    to_velocity_kmh = "35" # provide a default value if unspecified 
 
by_velocity_kmh = arcpy.GetParameterAsText(2) 
if by_velocity_kmh == '#' or not by_velocity_kmh: 
    by_velocity_kmh = "5" # provide a default value if unspecified 
 
ebike_postgres_ways_calculation__55_ = arcpy.GetParameterAsText(3) 
if ebike_postgres_ways_calculation__55_ == '#' or not ebike_post-
gres_ways_calculation__55_: 
    ebike_postgres_ways_calculation__55_ = "Database Connections\\Connec-
tion to localhost.sde\\ebike.postgres.ways_calculation" # provide a de-
fault value if unspecified 
 
ebike_postgres_ways_calculation__2_ = arcpy.GetParameterAsText(4) 
if ebike_postgres_ways_calculation__2_ == '#' or not ebike_post-
gres_ways_calculation__2_: 
    ebike_postgres_ways_calculation__2_ = "Database Connections\\Connec-
tion to localhost.sde\\ebike.postgres.ways_calculation" # provide a de-
fault value if unspecified 
 
# Local variables: 
ebike_postgres_ways_calculation__6_ = ebike_postgres_ways_calcula-
tion__55_ 
ebike_postgres_ways_calculation__35_ = ebike_postgres_ways_calcula-
tion__55_ 
velocity_kmh = from_velocity_kmh 
ebike_postgres_ways_calculation = ebike_postgres_ways_calculation__6_ 
ebike_postgres_ways_calculation__37_ = ebike_postgres_ways_calculation 
ebike_postgres_ways_calculation__33_ = ebike_postgres_ways_calcula-
tion__37_ 
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ebike_postgres_ways_calculation__3_ = ebike_postgres_ways_calcula-
tion__33_ 
ebike_postgres_ways_calculation__29_ = ebike_postgres_ways_calcula-
tion__35_ 
ebike_postgres_ways_calculation__39_ = ebike_postgres_ways_calcula-
tion__29_ 
ebike_postgres_ways_calculation__4_ = ebike_postgres_ways_calcula-
tion__39_ 
ebike_postgres_ways_calculation__5_ = ebike_postgres_ways_calculation__4_ 
ebike_postgres_ways_calculation__7_ = ebike_postgres_ways_calculation__5_ 
 
# Set Geoprocessing environments 
arcpy.env.scratchWorkspace = "C:\\Users\\sim_h\\OneDrive\\Doku-
mente\\1_Uni_Wien\\16_Masterarbeit\\4_Daten\\Daten\\Workspace\\Scratch" 
arcpy.env.workspace = "Database Connections\\Connection to localhost.sde" 
 
# Process: For 
arcpy.IterateCount_mb(from_velocity_kmh, to_velocity_kmh, by_veloc-
ity_kmh) 
 
# Process: Add Field (7) 
arcpy.AddField_management(ebike_postgres_ways_calculation__55_, 
"dragresv%velocity_kmh%_N", "DOUBLE", "", "", "", "dragresistanceveloc-
ity%velocity_kmh%_N", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (7) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__6_, 
"dragresv%velocity_kmh%_N", "!pressure_hPa!*100/(2*287.058*(%tempera-
ture_celsius%+273.15))*1.15*0.5*math.pow((%velocity_kmh%/3.6),2)", "PY-
THON_9.3", "") 
 
# Process: Add Field 
arcpy.AddField_management(ebike_postgres_ways_calculation, 
"tracforcev%velocity_kmh%_N", "DOUBLE", "", "", "", "tractiveforceveloc-
ity%velocity_kmh%_N", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__37_, 
"tracforcev%velocity_kmh%_N", "!climbres_N!+!rollres_N!+!dragresv%veloc-
ity_kmh%_N!", "PYTHON_9.3", "") 
 
# Process: Add Field (2) 
arcpy.AddField_management(ebike_postgres_ways_calculation__33_, 
"torquev%velocity_kmh%_Nm", "DOUBLE", "", "", "", "torquevelocity%veloc-
ity_kmh%_Nm", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (2) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__3_, 
"torquev%velocity_kmh%_Nm", "fachtor(!tracforcev%velocity_kmh%_N!, %fac-
tor_human_torque%, %wheel_diameter_inches%)", "PYTHON_9.3", "def fach-
tor(tracforcevvelocity_kmh_N, factor_human_torque, wheel_diame-
ter_inches):\\n    if tracforcevvelocity_kmh_N > 0:\\n        return 
(tracforcevvelocity_kmh_N-(tracforcevvelocity_kmh_N*factor_hu-
man_torque))*((wheel_diameter_inches*0.0254)/2)\\n    else:\\n        re-
turn tracforcevvelocity_kmh_N*((wheel_diameter_inches*0.0254)/2)") 
 
# Process: Add Field (22) 
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arcpy.AddField_management(ebike_postgres_ways_calculation__55_, 
"dragresv%velocity_kmh%_r_N", "DOUBLE", "", "", "", "dragresistanceveloc-
ity%velocity_kmh%_reverse_N", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (22) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__35_, 
"dragresv%velocity_kmh%_r_N", "!pressure_r_hPa!*100/(2*287.058*(%tempera-
ture_celsius%+273.15))*1.15*0.55*math.pow((%velocity_kmh%/3.6),2)", "PY-
THON_9.3", "") 
 
# Process: Add Field (16) 
arcpy.AddField_management(ebike_postgres_ways_calculation__29_, 
"tracforcev%velocity_kmh%_r_N", "DOUBLE", "", "", "", "tractiveforce-
velocity%velocity_kmh%_reverse_N", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (16) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__39_, 
"tracforcev%velocity_kmh%_r_N", 
"!climbres_r_N!+!rollres_r_N!+!dragresv%velocity_kmh%_r_N!", "PY-
THON_9.3", "") 
 
# Process: Add Field (17) 
arcpy.AddField_management(ebike_postgres_ways_calculation__4_, 
"torquev%velocity_kmh%_r_Nm", "DOUBLE", "", "", "", "torquevelocity%ve-
locity_kmh%_reverse_Nm", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (17) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__5_, 
"torquev%velocity_kmh%_r_Nm", "fachtorr(!tracforcev%velocity_kmh%_r_N!, 
%factor_human_torque%, %wheel_diameter_inches%)", "PYTHON_9.3", "def 
fachtorr(tracforcevvelocity_kmh_r_N, factor_human_torque, wheel_diame-
ter_inches):\\n    if tracforcevvelocity_kmh_r_N > 0:\\n        return 
(tracforcevvelocity_kmh_r_N-(tracforcevvelocity_kmh_r_N*factor_hu-
man_torque))*((wheel_diameter_inches*0.0254)/2)\\n    else:\\n        re-
turn tracforcevvelocity_kmh_r_N*((wheel_diameter_inches*0.0254)/2)") 
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energyconsumptionsubmodel_st2_3.py 

# -*- coding: utf-8 -*- 
# -----------------------------------------------------------------------
---- 
# energyconsumptionsubmodel_st2_3.py 
# Created on: 2017-05-29 11:03:55.00000 
#   (generated by ArcGIS/ModelBuilder) 
# Usage: energyconsumptionsubmodel_st2_3 <from_velocity_kmh> <to_veloc-
ity_kmh> <by_velocity_kmh> <ebike_postgres_ways_calculation__55_>  
# Description:  
# -----------------------------------------------------------------------
---- 
 
# Import arcpy module 
import arcpy 
 
# Load required toolboxes 
arcpy.ImportToolbox("Model Functions") 
 
# Script arguments 
from_velocity_kmh = arcpy.GetParameterAsText(0) 
if from_velocity_kmh == '#' or not from_velocity_kmh: 
    from_velocity_kmh = "5" # provide a default value if unspecified 
 
to_velocity_kmh = arcpy.GetParameterAsText(1) 
if to_velocity_kmh == '#' or not to_velocity_kmh: 
    to_velocity_kmh = "35" # provide a default value if unspecified 
 
by_velocity_kmh = arcpy.GetParameterAsText(2) 
if by_velocity_kmh == '#' or not by_velocity_kmh: 
    by_velocity_kmh = "5" # provide a default value if unspecified 
 
ebike_postgres_ways_calculation__55_ = arcpy.GetParameterAsText(3) 
if ebike_postgres_ways_calculation__55_ == '#' or not ebike_post-
gres_ways_calculation__55_: 
    ebike_postgres_ways_calculation__55_ = "Database Connections\\Connec-
tion to localhost.sde\\ebike.postgres.ways_calculation" # provide a de-
fault value if unspecified 
 
# Local variables: 
velocity_kmh = from_velocity_kmh 
ebike_postgres_ways_calculation = ebike_postgres_ways_calculation__55_ 
ebike_postgres_ways_calculation__2_ = ebike_postgres_ways_calcula-
tion__55_ 
ebike_postgres_ways_calculation__27_ = ebike_postgres_ways_calculation 
ebike_postgres_ways_calculation__9_ = ebike_postgres_ways_calcula-
tion__27_ 
ebike_postgres_ways_calculation__20_ = ebike_postgres_ways_calcula-
tion__27_ 
ebike_postgres_ways_calculation__11_ = ebike_postgres_ways_calcula-
tion__9_ 
ebike_postgres_ways_calculation__3_ = ebike_postgres_ways_calcula-
tion__11_ 
ebike_postgres_ways_calculation__31_ = ebike_postgres_ways_calcula-
tion__3_ 
ebike_postgres_ways_calculation__24_ = ebike_postgres_ways_calcula-
tion__31_ 
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ebike_postgres_ways_calculation__13_ = ebike_postgres_ways_calcula-
tion__24_ 
ebike_postgres_ways_calculation__14_ = ebike_postgres_ways_calcula-
tion__20_ 
ebike_postgres_ways_calculation__4_ = ebike_postgres_ways_calcula-
tion__14_ 
ebike_postgres_ways_calculation__34_ = ebike_postgres_ways_calcula-
tion__4_ 
ebike_postgres_ways_calculation__28_ = ebike_postgres_ways_calcula-
tion__34_ 
ebike_postgres_ways_calculation__25_ = ebike_postgres_ways_calcula-
tion__28_ 
ebike_postgres_ways_calculation__30_ = ebike_postgres_ways_calcula-
tion__2_ 
ebike_postgres_ways_calculation__45_ = ebike_postgres_ways_calcula-
tion__30_ 
ebike_postgres_ways_calculation__38_ = ebike_postgres_ways_calcula-
tion__30_ 
ebike_postgres_ways_calculation__12_ = ebike_postgres_ways_calcula-
tion__38_ 
ebike_postgres_ways_calculation__6_ = ebike_postgres_ways_calcula-
tion__12_ 
ebike_postgres_ways_calculation__23_ = ebike_postgres_ways_calcula-
tion__6_ 
ebike_postgres_ways_calculation__19_ = ebike_postgres_ways_calcula-
tion__23_ 
ebike_postgres_ways_calculation__15_ = ebike_postgres_ways_calcula-
tion__19_ 
ebike_postgres_ways_calculation__26_ = ebike_postgres_ways_calcula-
tion__45_ 
ebike_postgres_ways_calculation__5_ = ebike_postgres_ways_calcula-
tion__26_ 
ebike_postgres_ways_calculation__18_ = ebike_postgres_ways_calcula-
tion__5_ 
ebike_postgres_ways_calculation__17_ = ebike_postgres_ways_calcula-
tion__18_ 
ebike_postgres_ways_calculation__16_ = ebike_postgres_ways_calcula-
tion__17_ 
 
# Set Geoprocessing environments 
arcpy.env.scratchWorkspace = "C:\\Users\\sim_h\\OneDrive\\Doku-
mente\\1_Uni_Wien\\16_Masterarbeit\\4_Daten\\Daten\\Workspace\\Scratch" 
arcpy.env.workspace = "Database Connections\\Connection to localhost.sde" 
 
# Process: For 
arcpy.IterateCount_mb(from_velocity_kmh, to_velocity_kmh, by_veloc-
ity_kmh) 
 
# Process: Add Field (3) 
arcpy.AddField_management(ebike_postgres_ways_calculation__55_, "angu-
larv%velocity_kmh%_s_inverse", "DOUBLE", "", "", "", "angularwheelveloc-
ity%velocity_kmh%_s_inverse", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (3) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation, "angu-
larv%velocity_kmh%_s_inverse", "(%velocity_kmh%/3.6)/((%wheel_diame-
ter_inches%*0.0254)/2)", "PYTHON_9.3", "") 
 
# Process: Add Field (4) 
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arcpy.AddField_management(ebike_postgres_ways_calculation__27_, "v%veloc-
ity_kmh%_rec_W", "DOUBLE", "", "", "", "velocity%velocity_kmh%_recupera-
tion_W", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (4) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__9_, 
"v%velocity_kmh%_rec_W", "pemrecW(!slopeangle_degree!, %gradeability_de-
gree%,!torquev%velocity_kmh%_Nm!, !angularv%velocity_kmh%_s_inverse!, 
!motorefficiencyv%velocity_kmh%!, %gearbox_efficiency%, %auxiliary_compo-
nents_W%)", "PYTHON_9.3", "def pemrecW(slopeangle_degree, gradeabil-
ity_degree, torquevvelocity_kmh_Nm, angularvvelocity_kmh_s_inverse, mo-
torefficiencyvvelocity_kmh, gearbox_efficiency, auxiliary_compo-
nents_W):\\n  if  slopeangle_degree >= gradeability_degree:\\n            
return 999999\\n        elif slopeangle_degree <= -gradeability_de-
gree:\\n              return 999999\\n    elif torquevvelocity_kmh_Nm < 
0:\\n     return torquevvelocity_kmh_Nm * angularvvelocity_kmh_s_inverse 
* motorefficiencyvvelocity_kmh * gearbox_efficiency + auxiliary_compo-
nents_W\\n  else:\\n        return torquevvelocity_kmh_Nm * angularvve-
locity_kmh_s_inverse / (motorefficiencyvvelocity_kmh * gearbox_effi-
ciency) + auxiliary_components_W") 
 
# Process: Add Field (8) 
arcpy.AddField_management(ebike_postgres_ways_calculation__11_, 
"ctempv%velocity_kmh%_rec_W", "DOUBLE", "", "", "", "capacitiytempera-
turevelocity%velocity_kmh%_recuperation_W", "NULLABLE", "REQUIRED", "") 
 
# Process: Calculate Field (8) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__3_, 
"ctempv%velocity_kmh%_rec_W", "pemctemprecW(!v%velocity_kmh%_rec_W!, 
%temperature_celsius%)", "PYTHON_9.3", "def pemctemprecW(vveloc-
ity_kmh_rec_W, temperature_celsius):\\n    if vvelocity_kmh_rec_W == 
999999:\\n        return 999999\\n    if temperature_celsius >= 25:\\n        
return vvelocity_kmh_rec_W\\n    else:\\n        return vveloc-
ity_kmh_rec_W * (1+((25-temperature_celsius)*0.0047))") 
 
# Process: Add Field (14) 
arcpy.AddField_management(ebike_postgres_ways_calculation__31_, "v%veloc-
ity_kmh%_rec_Wh", "DOUBLE", "", "", "", "velocity%velocity_kmh%_recupera-
tion_Wh", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (13) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__24_, 
"v%velocity_kmh%_rec_Wh", "pemrecWh(!ctempv%velocity_kmh%_rec_W!, 
!length_m!, %velocity_kmh%)", "PYTHON_9.3", "def pemrecWh(ctempvveloc-
ity_kmh_rec_W, length_m, velocity_kmh):\\n    if ctempvvelocity_kmh_rec_W 
== 999999:\\n        return 999999\\n    else:\\n        return ctempvve-
locity_kmh_rec_W*((length_m/1000)/velocity_kmh)") 
 
# Process: Add Field (9) 
arcpy.AddField_management(ebike_postgres_ways_calculation__27_, "v%veloc-
ity_kmh%_norec_W", "DOUBLE", "", "", "", "velocity%velocity_kmh%_no_recu-
peration_W", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (9) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__20_, 
"v%velocity_kmh%_norec_W", "pemnorecW(!slopeangle_degree!, %gradeabil-
ity_degree%, !torquev%velocity_kmh%_Nm!, !angularv%velocity_kmh%_s_in-
verse!, !motorefficiencyv%velocity_kmh%!, %gearbox_efficiency%, %auxil-
iary_components_W%)", "PYTHON_9.3", "def pemnorecW(slopeangle_degree, 
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gradeability_degree, torquevvelocity_kmh_Nm, angularvvelocity_kmh_s_in-
verse, motorefficiencyvvelocity_kmh, gearbox_efficiency, auxiliary_compo-
nents_W):\\n  if  slopeangle_degree >= gradeability_degree:\\n            
return 999999\\n        elif slopeangle_degree <= -gradeability_de-
gree:\\n              return 999999\\n    elif torquevvelocity_kmh_Nm < 
0:\\n     return auxiliary_components_W\\n    else:\\n        return 
torquevvelocity_kmh_Nm * angularvvelocity_kmh_s_inverse / (motorefficien-
cyvvelocity_kmh * gearbox_efficiency) + auxiliary_components_W") 
 
# Process: Add Field (10) 
arcpy.AddField_management(ebike_postgres_ways_calculation__14_, 
"ctempv%velocity_kmh%_norec_W", "DOUBLE", "", "", "", "capacitiytempera-
turevelocity%velocity_kmh%_no_recuperation_W", "NULLABLE", "REQUIRED", 
"") 
 
# Process: Calculate Field (10) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__4_, 
"ctempv%velocity_kmh%_norec_W", "pemctempnorecW(!v%veloc-
ity_kmh%_norec_W!, %temperature_celsius%)", "PYTHON_9.3", "def pemctemp-
norecW(vvelocity_kmh_norec_W, temperature_celsius):\\n    if vveloc-
ity_kmh_norec_W == 999999:\\n        return 999999\\n    if tempera-
ture_celsius >= 25:\\n        return vvelocity_kmh_norec_W\\n    else:\\n        
return vvelocity_kmh_norec_W * (1+((25-temperature_celsius)*0.0047))") 
 
# Process: Add Field (15) 
arcpy.AddField_management(ebike_postgres_ways_calculation__34_, "v%veloc-
ity_kmh%_norec_Wh", "DOUBLE", "", "", "", "velocity%velocity_kmh%_no_re-
cuperation_Wh", "NULLABLE", "REQUIRED", "") 
 
# Process: Calculate Field (15) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__28_, 
"v%velocity_kmh%_norec_Wh", "pemnorecWh(!ctempv%velocity_kmh%_norec_W!, 
!length_m!, %velocity_kmh%)", "PYTHON_9.3", "def pemnorecWh(ctempvveloc-
ity_kmh_norec_W, length_m, velocity_kmh):\\n    if ctempvveloc-
ity_kmh_norec_W == 999999:\\n        return 999999\\n    else:\\n        
return ctempvvelocity_kmh_norec_W*((length_m/1000)/velocity_kmh)") 
 
# Process: Add Field (18) 
arcpy.AddField_management(ebike_postgres_ways_calculation__55_, "angu-
larv%velocity_kmh%_r_s_inverse", "DOUBLE", "", "", "", "angularwheel-
velocity%velocity_kmh%_reverse_s_inverse", "NULLABLE", "NON_REQUIRED", 
"") 
 
# Process: Calculate Field (18) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__2_, "an-
gularv%velocity_kmh%_r_s_inverse", "(%velocity_kmh%/3.6)/((%wheel_diame-
ter_inches%*0.0254)/2)", "PYTHON_9.3", "") 
 
# Process: Add Field (24) 
arcpy.AddField_management(ebike_postgres_ways_calculation__30_, "v%veloc-
ity_kmh%_norec_r_W", "DOUBLE", "", "", "", "velocity%velocity_kmh%_no_re-
cuperation_reverse_W", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (24) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__38_, 
"v%velocity_kmh%_norec_r_W", "pemnorecrW(!slopeangle_r_degree!, %gradea-
bility_degree%, !torquev%velocity_kmh%_r_Nm!, !angularv%veloc-
ity_kmh%_r_s_inverse!, !motorefficiencyv%velocity_kmh%_r!, %gearbox_effi-
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ciency%, %auxiliary_components_W%)", "PYTHON_9.3", "def pem-
norecrW(slopeangle_r_degree, gradeability_degree, torquevveloc-
ity_kmh_r_Nm, angularvvelocity_kmh_r_s_inverse, motorefficiencyvveloc-
ity_kmh_r, gearbox_efficiency, auxiliary_components_W):\\n  if  slopean-
gle_r_degree >= gradeability_degree:\\n              return 999999\\n        
elif slopeangle_r_degree <= -gradeability_degree:\\n            return 
999999\\n    elif torquevvelocity_kmh_r_Nm < 0:\\n       return auxil-
iary_components_W\\n    else:\\n        return torquevvelocity_kmh_r_Nm * 
angularvvelocity_kmh_r_s_inverse / (motorefficiencyvvelocity_kmh_r * 
gearbox_efficiency) + auxiliary_components_W") 
 
# Process: Add Field (6) 
arcpy.AddField_management(ebike_postgres_ways_calculation__12_, 
"ctempv%velocity_kmh%_norec_r_W", "DOUBLE", "", "", "", "capacitiytemper-
aturevelocity%velocity_kmh%_no_recuperation_reverse_W", "NULLABLE", "RE-
QUIRED", "") 
 
# Process: Calculate Field (6) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__6_, 
"ctempv%velocity_kmh%_norec_r_W", "pemctempnorecrW(!v%veloc-
ity_kmh%_norec_r_W!, %temperature_celsius%)", "PYTHON_9.3", "def pem-
ctempnorecrW(vvelocity_kmh_norec_r_W, temperature_celsius):\\n    if vve-
locity_kmh_norec_r_W == 999999:\\n        return 999999\\n    if tempera-
ture_celsius >= 25:\\n        return vvelocity_kmh_norec_r_W\\n    
else:\\n        return vvelocity_kmh_norec_r_W * (1+((25-temperature_cel-
sius)*0.0047))") 
 
# Process: Add Field (27) 
arcpy.AddField_management(ebike_postgres_ways_calculation__23_, "v%veloc-
ity_kmh%_norec_r_Wh", "DOUBLE", "", "", "", "velocity%veloc-
ity_kmh%_no_recuperation_reverse_Wh", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (27) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__19_, 
"v%velocity_kmh%_norec_r_Wh", "pemnorecrWh(!ctempv%veloc-
ity_kmh%_norec_r_W!, !length_m!, %velocity_kmh%)", "PYTHON_9.3", "def 
pemnorecrWh(ctempvvelocity_kmh_norec_r_W, length_m, velocity_kmh):\\n    
if ctempvvelocity_kmh_norec_r_W == 999999:\\n        return 999999\\n    
else:\\n        return ctempvvelocity_kmh_norec_r_W*((length_m/1000)/ve-
locity_kmh)") 
 
# Process: Add Field (19) 
arcpy.AddField_management(ebike_postgres_ways_calculation__30_, "v%veloc-
ity_kmh%_rec_r_W", "DOUBLE", "", "", "", "velocity%velocity_kmh%_recuper-
ation_reverse_W", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (19) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__45_, 
"v%velocity_kmh%_rec_r_W", "pemrecrW(!slopeangle_r_degree!, %gradeabil-
ity_degree%,!torquev%velocity_kmh%_r_Nm!, !angularv%velocity_kmh%_r_s_in-
verse!, !motorefficiencyv%velocity_kmh%_r!, %gearbox_efficiency%, %auxil-
iary_components_W%)", "PYTHON_9.3", "def pemrecrW(slopeangle_r_degree, 
gradeability_degree, torquevvelocity_kmh_r_Nm, angularvveloc-
ity_kmh_r_s_inverse, motorefficiencyvvelocity_kmh_r, gearbox_efficiency, 
auxiliary_components_W):\\n if  slopeangle_r_degree >= gradeability_de-
gree:\\n              return 999999\\n        elif slopeangle_r_degree <= 
-gradeability_degree:\\n            return 999999\\n    elif torquevve-
locity_kmh_r_Nm < 0:\\n       return torquevvelocity_kmh_r_Nm * angular-
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vvelocity_kmh_r_s_inverse * motorefficiencyvvelocity_kmh_r * gearbox_ef-
ficiency + auxiliary_components_W\\n    else:\\n        return torquevve-
locity_kmh_r_Nm * angularvvelocity_kmh_r_s_inverse / (motorefficiencyvve-
locity_kmh_r * gearbox_efficiency) +auxiliary_components_W") 
 
# Process: Add Field (5) 
arcpy.AddField_management(ebike_postgres_ways_calculation__26_, 
"ctempv%velocity_kmh%_rec_r_W", "DOUBLE", "", "", "", "capacitiytempera-
turevelocity%velocity_kmh%_recuperation_reverse_W", "NULLABLE", "RE-
QUIRED", "") 
 
# Process: Calculate Field (5) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__5_, 
"ctempv%velocity_kmh%_rec_r_W", "pemctemprecrW(!v%velocity_kmh%_rec_r_W!, 
%temperature_celsius%)", "PYTHON_9.3", "def pemctemprecrW(vveloc-
ity_kmh_rec_r_W, temperature_celsius):\\n    if vvelocity_kmh_rec_r_W == 
999999:\\n        return 999999\\n    if temperature_celsius >= 25:\\n        
return vvelocity_kmh_rec_r_W\\n    else:\\n        return vveloc-
ity_kmh_rec_r_W * (1+((25-temperature_celsius)*0.0047))") 
 
# Process: Add Field (26) 
arcpy.AddField_management(ebike_postgres_ways_calculation__18_, "v%veloc-
ity_kmh%_rec_r_Wh", "DOUBLE", "", "", "", "velocity%velocity_kmh%_recu-
peration_reverse_Wh", "NULLABLE", "NON_REQUIRED", "") 
 
# Process: Calculate Field (26) 
arcpy.CalculateField_management(ebike_postgres_ways_calculation__17_, 
"v%velocity_kmh%_rec_r_Wh", "pemrecrWh(!ctempv%velocity_kmh%_rec_r_W!, 
!length_m!, %velocity_kmh%)", "PYTHON_9.3", "def pemrecrWh(ctempvveloc-
ity_kmh_rec_r_W, length_m, velocity_kmh):\\n    if ctempvveloc-
ity_kmh_rec_r_W == 999999:\\n        return 999999\\n    else:\\n        
return ctempvvelocity_kmh_rec_r_W*((length_m/1000)/velocity_kmh)") 
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Programming Code Dijkstra Application 

index_v20_norec_Wh.html 

<!DOCTYPE 

html> 
 

<html>  
<head>  
 

  
 <title>e-Bike Routing</title>  
    
 <!-- Inspired by  
 http://workshop.pgrouting.org/2.1.0-dev/en/index.html. -->  
    
 <meta charset="utf-8">  
 <link href="C:\Users\sim_h\OneDrive\Dokumente\1_Uni_Wien\16_Mas-

terarbeit\5_Applikation\Dijkstra\src\v3.18.2-dist\ol.css" rel="styles-

heet">  
 <style>  
 #map {  
    width: 100%;  
 height: 500px;  
 }  
 </style>  
</head>  
<body>  
 <div id="map"></div>  
 <button id="clear">clear</button>  
 <script src="C:\Users\sim_h\OneDrive\Dokumente\1_Uni_Wien\16_Mas-

terarbeit\5_Applikation\Dijkstra\src\v3.18.2-dist\ol.js"></script>  
 <script type="text/javascript">  
 // The map on which we add all elements.  
 var map = new ol.Map({  
  target: 'map',  
  layers: [  
   new ol.layer.Tile({  
    source: new ol.source.OSM()  
   })  
  ],  
  view: new ol.View({  
   center: ol.proj.transform([8.54226, 47.37174], 

'EPSG:4326', 'EPSG:3857'),  
   zoom: 13 
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  }),  
  controls: ol.control.defaults({  
   attributionOptions: {  
    collapsible: false  
  }  
  })  
 });  
 // Variable that calls the required layer from Geoserver.  
 var params = {  
 LAYERS: 'pgrouting:v20_norec_wh',  
 FORMAT: 'image/png'  
 }  
 // The "start" and "destination" features.  
 var startPoint = new ol.Feature();  
 var destPoint = new ol.Feature();  
 // The vector layer used to display the "start" and "destination" 

features.  
 var vectorLayer = new ol.layer.Vector({  
   source: new ol.source.Vector({  
  features: [startPoint, destPoint]  
   })  
 });  
 map.addLayer(vectorLayer);  
   
 // A transform function to convert coordinates from EPSG:3857 to 

EPSG:4326.  
 var transform = ol.proj.getTransform('EPSG:3857', 'EPSG:4326');  
 // Register a map click listener.  
 map.on('click', function(event) {  
   if (startPoint.getGeometry() == null) {  
  /**  
  * First click.  
  */  
  startPoint.setGeometry(new ol.geom.Point(event.coordi-

nate));  
   } else if (destPoint.getGeometry() == null) {  
  /**  
  * Second click.  
  */  
  destPoint.setGeometry(new ol.geom.Point(event.coordinate));  
  /**  
  * Transform the coordinates from the map projection   
  * (EPSG:3857) to the server projection (EPSG:4326).  
  */ 
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  var startCoord = transform(startPoint.getGeome-

try().getCoordinates());  
  var destCoord = transform(destPoint.getGeometry().getCoor-

dinates()); 

  /** 

  * Retrieval, matching and displaying of the WMS Image 

  from Geoserver 

  */  
  var viewparams = [  
    'x1:' + startCoord[0], 'y1:' + startCoord[1],  
    'x2:' + destCoord[0], 'y2:' + destCoord[1]  
  ];  
  params.viewparams = viewparams.join(';');  
  result = new ol.layer.Image({  
    source: new ol.source.ImageWMS({  
   url: 'http://localhost:8080/geoserver/pgrout-

ing/wms',  
   params: params  
    })  
  });  
  map.addLayer(result);  
   }  
 });  
 //Function that removes all elements from the map.  
 var clearButton = document.getElementById('clear');  
 clearButton.addEventListener('click', function(event) {  
 /**  
 * Reset the "start" and "destination" features.  
 */  
 startPoint.setGeometry(null);  
 destPoint.setGeometry(null);  
 /**  
 * Remove the result layer.  
 */  
 map.removeLayer(result);  
 });  
 </script>  
</body>  
</html> 



 

   

XLVIII Optimizing the Operation Range of E-Bikes in Routing Systems 

Programming Code Bellman-Ford Application 

Graph.rs 

use std; 

use std::fs::File; 

use std::io::{BufReader, Seek, SeekFrom}; 

use byteorder::{LittleEndian, ReadBytesExt}; 

use pbr::ProgressBar; 

use spade::RTree; 

use cgmath::Vector2; 

use postgres::{Connection, TlsMode}; 

use spatialpoint::SpatialPoint; 

// Inspired by http://codegists.com/snippet/rust/bellmanrs_tristramg_rust. 

/// Holds a single node, containing the OSM id, longitude, and latitude. 

#[derive(Debug)] 

struct Node { 

    /// The OSM id associated with this node. 

    id: u64, 

    /// The longitude of this node. 

    lon: f32, 

    /// The latitude of this node. 

    lat: f32, 

} 

/// Holds a single edge, containing the source node, the target node, 

/// and the edge weight. 

#[derive(Debug)] 

struct Edge { 

    /// Where this edge starts. 

    source: usize, 

    /// Where this edge ends. 

    target: usize, 

    /// The weight of this edge. 

    weight: f32, 

} 

/// Contains a whole graph. 

pub struct Graph { 

    /// All the edges contained in the graph. 

    edges: Vec<Edge>, 

    /// All the nodes contained in this graph. 

    nodes: Vec<Node>, 

    /// An R tree for quick access to the nodes, given a longitude and latitude. 

    rtree: RTree<SpatialPoint, SpatialPoint> 

} 

/// Implementation of node. 
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impl Node { 

    /// Reads a node from an OSRM file. 

    fn from_osrm(reader: &mut BufReader<&File>) -> Node { 

        let lon = reader.read_i32::<LittleEndian>().unwrap(); 

        let lat = reader.read_i32::<LittleEndian>().unwrap(); 

        let id = reader.read_u64::<LittleEndian>().unwrap(); 

        let _ = reader.seek(SeekFrom::Current(8)); 

        Node { 

            id: id, 

            lon: lon as f32 / 1e6, 

            lat: lat as f32 / 1e6 

        } 

    } 

} 

/// Implementation of edge. 

impl Edge { 

    /// Reads an edge from an OSRM file. 

    fn from_osrm(reader: &mut BufReader<&File>) -> Edge { 

        let source = reader.read_u32::<LittleEndian>().unwrap() as usize; 

        let target = reader.read_u32::<LittleEndian>().unwrap() as usize; 

        let _ = reader.seek(SeekFrom::Current(4)); 

        let weight = reader.read_u32::<LittleEndian>().unwrap(); 

        let _ = reader.seek(SeekFrom::Current(8)); 

        Edge { 

            source: source, 

            target: target, 

            weight: weight as f32, 

        } 

    } 

} 

/// Implementation of graph. 

impl Graph { 

    /// Creates a new graph, by reading an OSRM file. This also adds and returns an OSM 

id 

    /// as the starting point for a later bellman-ford query. 

    pub fn new(file: &String) -> Graph { 

        let file = File::open(file).unwrap(); 

        let mut reader = BufReader::new(&file); 

        let _ = reader.seek(SeekFrom::Start(152)); 

        // First, we read in all nodes. 

        let nodes_count = reader.read_u32::<LittleEndian>().unwrap() as usize; 

        println!(" ˪— Reading {:?} nodes", nodes_count); 

        let mut nodes = Vec::with_capacity(nodes_count); 

        let mut n_pb = ProgressBar::new(nodes_count as u64); 
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        for i in 0..nodes_count { 

            let node = Node::from_osrm(&mut reader); 

            nodes.push(node); 

            if i % 1000 == 0 { 

                n_pb.add(1000); 

            } 

        } 

        // Then, we continue with all edges. 

        let edges_count = reader.read_u32::<LittleEndian>().unwrap() as usize; 

        println!(" ˪– Reading {:?} edges", edges_count); 

        let mut edges = Vec::with_capacity(edges_count); 

        let mut e_pb = ProgressBar::new(edges_count as u64); 

        for i in 0..edges_count { 

            edges.push(Edge::from_osrm(&mut reader)); 

            if i % 1000 == 0 { 

                e_pb.add(1000); 

            } 

        } 

        // Finally, we build an R tree for quick access. 

        let mut rtree = RTree::new(); 

        for n in nodes.iter() { 

            let p = SpatialPoint::new(Vector2::new(n.lon, n.lat), n.id); 

            rtree.insert(p); 

        } 

        Graph { edges: edges, nodes: nodes, rtree: rtree } 

    } 

    /// Loads a graph from a Postgres database. 

    pub fn new_from_db(uname: &String, pw: &String, db: &String, 

                       ways_vert_table: &String, ways_table: &String, 

                       weight: &String, weight_rev: &String) -> Graph { 

        let conn_str = format!("postgres://{}:{}@localhost/{}", uname, pw, db); 

        let conn = Connection::connect(conn_str, TlsMode::None).unwrap(); 

        let mut nodes = Vec::with_capacity(1000); 

        let select_str_vert = format!("SELECT id, lon, lat FROM {} ORDER BY id", 

ways_vert_table); 

        for row in &conn.query(&select_str_vert, &[]).unwrap() { 

            let osm_id: i64 = row.get(0); 

            let lon_raw: f64 = row.get(1); 

            let lat_raw: f64 = row.get(2); 

            let node = Node { 

                id: osm_id as u64, 

                lon: lon_raw as f32, 

                lat: lat_raw as f32 

            }; 
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            nodes.push(node); 

        } 

        let mut edges = Vec::with_capacity(1000); 

        let select_str = format!("SELECT source, target, {}, {} FROM {}", weight, 

weight_rev, ways_table); 

        for row in &conn.query(&select_str, &[]).unwrap() { 

            let source_id: i64 = row.get(0); 

            let target_id: i64 = row.get(1); 

            let weight_raw: f64 = row.get(2); 

            let weight_raw_rev: f64 = row.get(3); 

            // When inserting, we simply subtract 1, so that the IDs map to those of                         

  the nodes. 

            // This comes from the fact that the Rust vector is 0-indexed, but in  

  Postgres, 

            // the IDs start with 1. 

            let edge = Edge { 

                source: source_id as usize - 1, 

                target: target_id as usize - 1, 

                weight: weight_raw as f32 

            }; 

            edges.push(edge); 

            // We also insert edges for every backward edge. 

            let edge = Edge { 

                source: target_id as usize - 1, 

                target: source_id as usize - 1, 

                weight: weight_raw_rev as f32 

            }; 

            edges.push(edge); 

        } 

        // Finally, we build an R tree for quick access. 

        let mut rtree = RTree::new(); 

        for n in nodes.iter() { 

            let p = SpatialPoint::new(Vector2::new(n.lon, n.lat), n.id); 

            rtree.insert(p); 

        } 

        Graph { edges: edges, nodes: nodes, rtree: rtree } 

    } 

    /// Gets the node IDs from a longitude and latitude. 

    pub fn get_id_from_lon_lat(&self, lon: f32, lat: f32) -> u64 { 

        let nearest = self.rtree.nearest_neighbor(&Vector2::new(lon, lat)).unwrap(); 

        nearest.id 

    } 

    /// Gets the internal ID from an OSM id. 

    fn get_id_from_osm(&self, osm_id: usize) -> usize { 
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        self.nodes.iter().position(|r| r.id == osm_id as u64).unwrap() 

    } 

    /// Gets the location from an internal id. Returns a vector containing 

    /// longitude and latitude. 

    fn get_loc_from_id(&self, id: usize) -> Vec<f32> { 

        vec![self.nodes[id].lon, self.nodes[id].lat] 

    } 

    /// Performs a routing request from source to target. 

    pub fn route(&self, source: usize, target: usize) -> (Vec<Vec<f32>>, f32) { 

        let source_id = self.get_id_from_osm(source); 

        let target_id = self.get_id_from_osm(target); 

        let (pred, dist) = self.bellman(source_id); 

        let max_length = self.edges.len(); 

        println!(" ˪— Backtracking from {}, having {} edges. Total cost: {}.", 

            target_id, max_length, dist[target_id]); 

        let mut trace = Vec::new(); 

        let mut current_node = target_id; 

        trace.push(self.get_loc_from_id(current_node)); 

        let mut count = 0; 

        while current_node != source_id { 

            current_node = pred[current_node]; 

            trace.push(self.get_loc_from_id(current_node)); 

            count = count + 1; 

            // Make sure this doesn't run forever. 

            if count > max_length { 

                current_node = source_id; 

            } 

        } 

        (trace, dist[target_id]) 

    } 

    /// Computes the reachability of all nodes in the graph, and returns those which 

    /// are reachable. Returns a vector of vectors, where the coordinates are as 

 follows: 

    /// longitude, latitude, remaining_energy. 

    pub fn reachability(&self, source: usize, capacity: f32) -> Vec<Vec<f32>> { 

        let source_id = self.get_id_from_osm(source); 

        let (pred, dist) = self.bellman(source_id); 

        let max_length = self.nodes.len(); 

        println!(" ˪— Assessing all {} nodes to select feasible ones.", max_length); 

        let mut trace = Vec::new(); 

        for (i, node) in dist.iter().enumerate() { 

            if capacity - node >= 0.0 { 

                let mut loc = self.get_loc_from_id(i); 

                loc.push(capacity - node); 
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                trace.push(loc); 

            } 

        } 

        trace 

    } 

    /// Runs the Bellman Ford algorithm on the graph. Returns a tuple, containing a 

 vector of 

    /// predecessors and a vector of distances to the source node. 

    fn bellman(&self, source: usize) -> (Vec<usize>, Vec<f32>) { 

        let nodes_count = self.nodes.len(); 

        let max_length = self.edges.len(); 

        println!(" ˪— Starting from {}, having {} nodes.", source, nodes_count); 

        let mut pred = (0..nodes_count).collect::<Vec<_>>(); 

        let mut dist = std::iter::repeat(std::f32::MAX).take(nodes_count).col-

lect::<Vec<_>>(); 

        dist[source] = 0.0; 

        let mut count = 0; 

        let mut improvement = true; 

        while improvement { 

            improvement = false; 

            for edge in &self.edges { 

                let source_dist = dist[edge.source]; 

                let target_dist = dist[edge.target]; 

                if source_dist != std::f32::MAX && source_dist + edge.weight < tar-

get_dist { 

                    dist[edge.target] = source_dist + edge.weight; 

                    pred[edge.target] = edge.source; 

                    improvement = true; 

                } 

                // This would be needed for undirected edges, as we'd have to follow 

   every 

                // edge both ways in that case. 

                // if target_dist != std::f32::MAX && target_dist + edge.weight <  

   source_dist { 

                //     dist[edge.source] = target_dist + edge.weight; 

                //     pred[edge.source] = edge.target; 

                //     improvement = true; 

                // } 

            } 

            count = count + 1; 

            // Make sure this doesn't run forever. 

            if count > max_length { 

                improvement = false; 

            } 
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        } 

        println!(" ˪— Bellman iterations: {}", count); 

        (pred, dist) 

    } 

} 

Spatialpoints.rs 

use cgmath::Vector2; 

use num::zero; 

use spade::SpatialObject; 

use spade::BoundingRect; 

/// A spatial point, to be stored in an R tree from the spade crate. 

#[derive(Debug)] 

pub struct SpatialPoint { 

    /// The point's coordinates. 

    pub center: Vector2<f32>, 

    /// The associated OSM id. 

    pub id: u64, 

} 

impl SpatialPoint { 

    /// Create a new point. 

    pub fn new(center: Vector2<f32>, id: u64) -> SpatialPoint { 

        SpatialPoint { 

            center: center, 

            id: id, 

        } 

    } 

} 

impl SpatialObject for SpatialPoint { 

    type Vector = Vector2<f32>; 

    fn mbr(&self) -> BoundingRect<Vector2<f32>> { 

        BoundingRect::from_corners(&(self.center.clone()), &(self.center.clone())) 

    } 

    fn distance2(&self, point: &Vector2<f32>) -> f32 { 

        let dx = self.center[0] - point[0]; 

        let dy = self.center[1] - point[1]; 

        let dist = (dx * dx + dy * dy).sqrt().max(zero()); 

        dist * dist 

    } 

    // Nothing is contained within a point. 

    fn contains(&self, point: &Vector2<f32>) -> bool { 

        false 

    } 

} 



 

   

LV 
 
Appendix 

Main.rs 

extern crate byteorder; 

extern crate time; 

extern crate pbr; 

extern crate iron; 

extern crate params; 

extern crate router; 

extern crate mount; 

extern crate persistent; 

extern crate cgmath; 

extern crate spade; 

extern crate num; 

extern crate staticfile; 

extern crate postgres; 

extern crate geojson; 

extern crate rustc_serialize; 

use std::env; 

use iron::prelude::*; 

use router::Router; 

use mount::Mount; 

use persistent::Read; 

use staticfile::Static; 

use std::path::Path; 

mod graph; 

mod spatialpoint; 

mod endpoints; 

use graph::Graph; 

use endpoints::GraphPool; 

/// Main function and entry point to the program. 

fn main() { 

    let args: Vec<_> = env::args().collect(); 

    let start = time::now(); 

    // Loading the graph data. 

    println!("Loading the data"); 

    // let graph = Graph::new(&args[1]); 

    let graph = Graph::new_from_db(&args[1], &args[2], &args[3], &args[4], &args[5], 

                                   &args[6], &args[7]); 

    println!("   duration: {}s\n", (time::now() - start).num_seconds()); 

    // Setting up the router for the web server. 

    let mut router = Router::new(); 

    router.get("/route", endpoints::route_lat_lon, "route"); 

    router.get("/route-using-ids", endpoints::route_ids, "routeIds"); 

    router.get("/reachability", endpoints::reachability, "reachability"); 

    let mut mount = Mount::new(); 
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    mount.mount("/api", router); 

    mount.mount("/", Static::new(Path::new("./src/static/"))); 

    let mut chain = Chain::new(mount); 

    chain.link_before(Read::<GraphPool>::one(graph)); 

    Iron::new(chain).http("127.0.0.1:9000").unwrap(); 

} 
 

Endpoint.rs 

extern crate time; 

extern crate iron; 

extern crate geojson; 

use iron::prelude::*; 

use iron::typemap::Key; 

use persistent::Read; 

use graph::Graph; 

use std::collections::BTreeMap; 

use rustc_serialize::json::ToJson; 

use geojson::{Feature, FeatureCollection, GeoJson, Geometry}; 

/// A pool that abstracts over the graph, and makes it available to all requests. 

pub struct GraphPool; 

impl Key for GraphPool { type Value = Graph; } 

/// Transforms the result of a route calculation into a GeoJSON, convenient for sending 

/// over the Internet. 

fn route_res_to_geojson(lat_lons: Vec<Vec<f32>>, cost: f32) -> String { 

    let geometry = Geometry::new( 

        geojson::Value::LineString(lat_lons.iter().map(|x| 

            x.iter().map(|&y| y as f64).collect::<Vec<_>>() 

            ).collect::<Vec<_>>()) 

    ); 

    let mut properties = BTreeMap::new(); 

    properties.insert( 

        String::from("total_cost"), 

        cost.to_json(), 

    ); 

    let geojson = GeoJson::Feature(Feature { 

        crs: None, 

        bbox: None, 

        geometry: Some(geometry), 

        id: None, 

        properties: Some(properties), 

    }); 

    geojson.to_string() 

} 
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/// Transforms the result of a reachability calculation to a GeoJSON string, ready 

/// to be processed in the frontend. 

fn reachability_res_to_geojson(lat_lon_caps: Vec<Vec<f32>>) -> String { 

    let mut features = Vec::new(); 

    for lat_lon in lat_lon_caps { 

        let mut props = BTreeMap::new(); 

        props.insert( 

            String::from("capacity_remaining"), 

            lat_lon[2].to_json(), 

        ); 

        features.push(Feature { 

            crs: None, 

            bbox: None, 

            geometry: Some(Geometry::new( 

                geojson::Value::Point(lat_lon[0..2].iter().map(|&y| 

                    y as f64).collect::<Vec<_>>()) 

            )), 

            id: None, 

            properties: Some(props) 

        }); 

    } 

    let geojson = GeoJson::FeatureCollection(FeatureCollection { 

        crs: None, 

        bbox: None, 

        features: features, 

    }); 

    geojson.to_string() 

} 

/// Computes a route, given a start and end latitude and longitude. 

pub fn route_lat_lon(req: &mut Request) -> IronResult<Response> { 

    let graph = req.get::<Read<GraphPool>>().unwrap(); 

    use params::{Params, Value}; 

    let map = req.get_ref::<Params>().unwrap(); 

    match (map.find(&["source-lon"]), map.find(&["source-lat"]), 

           map.find(&["target-lon"]), map.find(&["target-lat"])) { 

        (Some(&Value::String(ref source_lon)), Some(&Value::String(ref source_lat)), 

         Some(&Value::String(ref target_lon)), Some(&Value::String(ref target_lat))) 

=> { 

            let bellman_start = time::now(); 

            println!("Starting Bellman-Ford ..."); 

            let source_id = graph.get_id_from_lon_lat(source_lon.parse::<f32>().un-

wrap(), 

                                                      source_lat.parse::<f32>().un-

wrap()); 
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            let target_id = graph.get_id_from_lon_lat(target_lon.parse::<f32>().un-

wrap(), 

                                                      target_lat.parse::<f32>().un-

wrap()); 

            let res = graph.route(source_id as usize, target_id as usize); 

            println!(" ˪— duration: {}s\n", (time::now() - bellman_start).num_sec-

onds()); 

            Ok(Response::with((iron::status::Ok, route_res_to_geojson(res.0, res.1)))) 

        }, 

        _ => Ok(Response::with(iron::status::NotFound)) 

    } 

} 

/// Computes a route, given a start and end OSM ID. 

pub fn route_ids(req: &mut Request) -> IronResult<Response> { 

    let graph = req.get::<Read<GraphPool>>().unwrap(); 

    use params::{Params, Value}; 

    let map = req.get_ref::<Params>().unwrap(); 

    match (map.find(&["source-id"]), map.find(&["target-id"])) { 

        (Some(&Value::String(ref source_id)), Some(&Value::String(ref target_id))) => 

{ 

            let bellman_start = time::now(); 

            println!("Starting Bellman-Ford ..."); 

            let res = graph.route(source_id.parse::<i32>().unwrap() as usize, 

                                  target_id.parse::<i32>().unwrap() as usize); 

            println!(" ˪— duration: {}s\n", (time::now() - bellman_start).num_sec-

onds()); 

            Ok(Response::with((iron::status::Ok, route_res_to_geojson(res.0, res.1)))) 

        }, 

        _ => Ok(Response::with(iron::status::NotFound)) 

    } 

} 

/// Returns all reachable nodes in a vicinity. This can be a lot, so take care! 

pub fn reachability(req: &mut Request) -> IronResult<Response> { 

    let graph = req.get::<Read<GraphPool>>().unwrap(); 

    use params::{Params, Value}; 

    let map = req.get_ref::<Params>().unwrap(); 

    match (map.find(&["source-lon"]), map.find(&["source-lat"]), map.find(&["capac-

ity"])) { 

        (Some(&Value::String(ref source_lon)), Some(&Value::String(ref source_lat)), 

         Some(&Value::String(ref capacity))) => { 

            let bellman_start = time::now(); 

            println!("Starting Reachability Bellman-Ford ..."); 

            let source_id = graph.get_id_from_lon_lat(source_lon.parse::<f32>().un-

wrap(), 
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                                                      source_lat.parse::<f32>().un-

wrap()); 

            let res = graph.reachability(source_id as usize, capac-

ity.parse::<f32>().unwrap()); 

            println!(" ˪— duration: {}s\n", (time::now() - bellman_start).num_sec-

onds()); 

            Ok(Response::with((iron::status::Ok, reachability_res_to_geojson(res)))) 

        }, 

        _ => Ok(Response::with(iron::status::NotFound)) 

    } 

} 
 

Index.html 

<!DOCTYPE html> 

<html> 

<head> 

 <title>e-Bike Routing</title> 

 <meta charset="utf-8" /> 

 <meta name="viewport" content="width=device-width, initial-scale=1.0"> 

 <link rel="shortcut icon" type="image/x-icon" href="docs/images/favicon.ico" /> 

 <link rel="stylesheet" href="https://unpkg.com/leaflet@1.0.2/dist/leaflet.css" /> 

 <script src="https://unpkg.com/leaflet@1.0.2/dist/leaflet.js"></script> 

 <script 

 src="https://code.jquery.com/jquery-3.1.1.min.js" 

 integrity="sha256-hVVnYaiADRTO2PzUGmuLJr8BLUSjGIZsDYGmIJLv2b8=" 

 crossorigin="anonymous"></script> 

 <script src="https://npmcdn.com/@turf/turf@3.5.1/turf.js"></script> 

 <style media="screen"> 

 html * { 

  font-size: 1em !important; 

  color: #000 !important; 

  font-family: Arial !important; 

 } 

 .ebike-overlay { 

  position: absolute; 

  right: 20px; 

  top: 20px; 

  z-index: 999; 

 } 

 #cost-box { 

  background-color: white; 

  padding: 16px 24px; 

  -webkit-box-shadow: 0px 0px 5px 0px rgba(0,0,0,0.5); 
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  -moz-box-shadow: 0px 0px 5px 0px rgba(0,0,0,0.5); 

  box-shadow: 0px 0px 5px 0px rgba(0,0,0,0.5); 

  border-radius: 3px; 

 } 

 </style> 

</head> 

<body style="width: 100%; height: 100%; position: absolute; margin: 0;"> 

 <div class="ebike-overlay"> 

  <div id="cost-box"> 

   Select method: 

   <form id="method-form" action=""> 

    <input type="radio" id="method-route" name="method" 

value="route" checked><label for="method-route">Route</label><br> 

    <input type="radio" id="method-reachability" name="method" 

value="reachability"><label for="method-reachability">Reachability</label> 

   </form> 

   <label for="capacity">Battery Capacity: </label><input type="number" 

id="capacity" name="capacity" value="50.0"> 

   <br><br> 

   <span id="cost-box-explanation">Please compute a route by clicking on the 

map!</span> 

  </div> 

 </div> 

 <div id="mapid" style="width: 100%; height: 100%;"></div> 

 <script> 

 // The map on which we add all elements. 

 var mymap = L.map('mapid').setView([47.3673, 8.55], 13); 

 var mymapelements = []; 

 /** 

 * Function that removes all elements from the map. 

 */ 

 function removeAllMapElements() { 

  for(i = 0; i < mymapelements.length; i++) { 

   mymap.removeLayer(mymapelements[i]); 

  } 

  mymapelements = []; 

 } 

 /** 

 * Function that adds an element to the map. 

 */ 

 function addToMap(element) { 

  mymapelements.push(element); 

  element.addTo(mymap); 

 } 
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 /** 

 * Helper function to convert hsv color ramps to rgb. 

 */ 

 var hsv2rgb = function(hsv) { 

  var h = hsv.hue, s = hsv.sat, v = hsv.val; 

  var rgb, i, data = []; 

  if (s === 0) { 

   rgb = [v,v,v]; 

  } else { 

   h = h / 60; 

   i = Math.floor(h); 

   data = [v*(1-s), v*(1-s*(h-i)), v*(1-s*(1-(h-i)))]; 

   switch(i) { 

    case 0: 

    rgb = [v, data[2], data[0]]; 

    break; 

    case 1: 

    rgb = [data[1], v, data[0]]; 

    break; 

    case 2: 

    rgb = [data[0], v, data[2]]; 

    break; 

    case 3: 

    rgb = [data[0], data[1], v]; 

    break; 

    case 4: 

    rgb = [data[2], data[0], v]; 

    break; 

    default: 

    rgb = [v, data[0], data[1]]; 

    break; 

   } 

  } 

  return '#' + rgb.map(function(x){ 

   return ("0" + Math.round(x*255).toString(16)).slice(-2); 

  }).join(''); 

 }; 

 L.tileLayer('https://api.tiles.mapbox.com/v4/{id}/{z}/{x}/{y}.png?access_to-

ken=pk.eyJ1IjoibWFwYm94IiwiYSI6ImNpandmbXliNDBjZWd2M2x6bDk3c2ZtOTkifQ._QA7i5Mpkd_m30IGElHziw', { 

  maxZoom: 18, 

  attribution: 'Map data &copy; <a href="http://openstreetmap.org">Open-

StreetMap</a> contributors, ' + 

  '<a href="http://creativecommons.org/licenses/by-sa/2.0/">CC-BY-SA</a>, ' + 

  'Imagery © <a href="http://mapbox.com">Mapbox</a>', 
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  id: 'mapbox.streets' 

 }).addTo(mymap); 

 var clickCount = 0; 

 var start = []; 

 var end = []; 

 // Specifies what happens when someone clicks on the map. 

 function onMapClick(e) { 

  // Either, we are in routing mode, where we simply compute and display 

  // routes. 

  if ($('input[name=method]:checked', '#method-form').val() == "route") { 

   if (clickCount == 0) { 

    removeAllMapElements(); 

    start = [e.latlng.lng, e.latlng.lat]; 

    addToMap(L.marker([e.latlng.lat, e.latlng.lng])); 

    clickCount = 1; 

   } else { 

    end = [e.latlng.lng, e.latlng.lat]; 

    addToMap(L.marker([e.latlng.lat, e.latlng.lng])); 

    $.get("http://127.0.0.1:9000/api/route?source-lon=" + start[0] + 

    "&source-lat=" + start[1] + 

    "&target-lon=" + end[0] + "&target-lat=" + end[1], function(data) 

{ 

     geoJson = JSON.parse(data); 

     var geoJSONStyle = { 

      color: 'red', 

      weight: 3, 

      opacity: 0.5, 

      smoothFactor: 1 

     }; 

     addToMap(L.geoJSON(geoJson, { style: geoJSONStyle } )); 

     $('#cost-box-explanation').text("Energy cost of route: " 

+ geoJson.properties.total_cost); 

    }); 

    clickCount = 0; 

   } 

   // Or we are in the reachability mode, where we draw a contour plot 

   // of reachable nodes. 

  } else if ($('input[name=method]:checked', '#method-form').val() == "reachabil-

ity") { 

   removeAllMapElements(); 

   start = [e.latlng.lng, e.latlng.lat]; 

   addToMap(L.marker([e.latlng.lat, e.latlng.lng])); 

   var capacity = $('#capacity').val(); 

   $.get("http://127.0.0.1:9000/api/reachability?source-lon=" + start[0] + 
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   "&source-lat=" + start[1] + 

   "&capacity=" + capacity, function(data) { 

    geoJson = JSON.parse(data); 

    // Determine max and min capacity, used for coloring later. 

    var maxCapacity = 0; 

    var minCapacity = Infinity; 

    for (i in geoJson.features) { 

     var feature = geoJson.features[i]; 

     if (feature.properties.capacity_remaining > maxCapacity) 

{ 

      maxCapacity = feature.properties.capacity_re-

maining; 

     } 

     if (feature.properties.capacity_remaining < minCapacity) 

{ 

      minCapacity = feature.properties.capacity_re-

maining; 

     } 

    } 

    // Create 10 equally spaced breaks. 

    var breaks = Array.apply(null, Array(10)).map(function (_, i) 

{return (minCapacity + i) * (maxCapacity - minCapacity) / 10;}); 

    var resolution = 50; 

    var isobands = turf.isolines(geoJson, 'capacity_remaining', res-

olution, breaks); 

    isobands.features.forEach(function (feature) { 

     var cap_diff = 100 - 100 * (feature.properties.capac-

ity_remaining - minCapacity) / (maxCapacity - minCapacity); 

     var h = Math.floor((100 - cap_diff) * 120 / 100); 

     var s = 1; //Math.abs(cap_diff - 50) / 50; 

     var v = 1; 

     feature.properties["stroke"] = hsv2rgb({hue: h, sat: s, 

val: v}); 

     feature.properties["stroke-width"] = 10; 

     feature.properties["stroke-opacity"] = .5; 

    }); 

    addToMap(L.geoJSON(isobands, { 

     style: function(feature) { 

      return { 

       color: feature.properties['stroke'], 

       width: feature.properties['stroke-

width'], 

       opacity: feature.properties['opacity'] 

      }; 
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     } 

    })); 

   }); 

  } 

 } 

 mymap.on('click', onMapClick); 

 </script> 

 

 

 

 

 

 

</body> 

</html> 
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Test Session A 

03.01.2017 

Model Parameter Weight [kg] 123 

 Velocity [km/h] 15 

 Temperature [° C] 3 

Track Source Bülachhof 

 Target ETH Hönggerberg 

Energy Consumption Modelled [Wh] 73.91877696 

 Measured [Wh] 71 
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Model Parameter Weight [kg] 123 

 Velocity [km/h] 20 

 Temperature [° C] 3 

Track Source ETH Hönggerberg 

 Target ETH Center 

Energy Consumption Modelled [Wh] 46.35903523 

 Measured [Wh] 49 
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Model Parameter Weight [kg] 123 

 Velocity [km/h] 20 

 Temperature [° C] 3 

Track Source ETH Center 

 Target Bülachhof 

Energy Consumption Modelled [Wh] 39.96724041 

 Measured [Wh] 40 
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04.01.2017 

Model Parameter Weight [kg] 123 

 Velocity [km/h] 20 

 Temperature [° C] 3 

Track Source Bülachhof 

 Target ETH Hönggerberg 

Energy Consumption Modelled [Wh] 85.91187674 

 Measured [Wh] 85 
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Model Parameter Weight [kg] 123 

 Velocity [km/h] 20 

 Temperature [° C] 3 

Track Source ETH Hönggerberg 

 Target ETH Center 

Energy Consumption Modelled [Wh] 46.35903523 

 Measured [Wh] 48 
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Model Parameter Weight [kg] 123 

 Velocity [km/h] 20 

 Temperature [° C] 3 

Track Source ETH Center 

 Target Bülachhof 

Energy Consumption Modelled [Wh] 39.96724041 

 Measured [Wh] 41 
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11.01.2017 

Model Parameter Weight [kg] 123 

 Velocity [km/h] 20 

 Temperature [° C] 3 

Track Source Bülachhof 

 Target ETH Hönggerberg 

Energy Consumption Modelled [Wh] 85.91187674 

 Measured [Wh] 85 
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Model Parameter Weight [kg] 123 

 Velocity [km/h] 20 

 Temperature [° C] 3 

Track Source ETH Hönggerberg 

 Target ETH Center 

Energy Consumption Modelled [Wh] 46.35903523 

 Measured [Wh] 54 
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12.01.2017 

Model Parameter Weight [kg] 78 

 Velocity [km/h] 20 

 Temperature [° C] 0 

Track Source Bülachhof (- ETH Hönggerberg) 

 Target (- ETH Center -) Bülachhof 

Energy Consumption Modelled [Wh] 135.16504582 

 Measured [Wh] 111 
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13.01.2017 

Model Parameter Weight [kg] 123 

 Velocity [km/h] 20 

 Temperature [° C] 0 

Track Source Bülachhof 

 Target ETH Hönggerberg 

Energy Consumption Modelled [Wh] 87.31076172 

 Measured [Wh] 89 
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Model Parameter Weight [kg] 123 

 Velocity [km/h] 20 

 Temperature [° C] 0 

Track Source ETH Center 

 Target Bülachhof 

Energy Consumption Modelled [Wh] 40.62863265 

 Measured [Wh] 42 
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16.01.2017 

Model Parameter Weight [kg] 123 

 Velocity [km/h] 20 

 Temperature [° C] -1 

Track Source Bülachhof (- ETH Hönggerberg) 

 Target (- ETH Center -) Bülachhof 

Energy Consumption Modelled [Wh] 176.05760205 

 Measured [Wh] 170 
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17.01.2017 

Model Parameter Weight [kg] 123 

 Velocity [km/h] 20 

 Temperature [° C] -4 

Track Source Bülachhof 

 Target ETH Hönggerberg 

Energy Consumption Modelled [Wh] 89.20051469 

 Measured [Wh] 83 
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Model Parameter Weight [kg] 123 

 Velocity [km/h] 20 

 Temperature [° C] -4 

Track Source ETH Hönggerberg 

 Target ETH Center 

Energy Consumption Modelled [Wh] 50.13277719 

 Measured [Wh] 52 

  

 

  

  



 

   

LXXIX 
 
Appendix 

Model Parameter Weight [kg] 123 

 Velocity [km/h] 25 

 Temperature [° C] -4 

Track Source ETH Center 

 Target Bülachhof 

Energy Consumption Modelled [Wh] 50.13277719 

 Measured [Wh] 53 
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23.01.2017 

Model Parameter Weight [kg] 123 

 Velocity [km/h] 25 

 Temperature [° C] -4 

Track Source ETH Hönggerberg 

 Target ETH Center 

Energy Consumption Modelled [Wh] 60.19935606 

 Measured [Wh] 42 
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Model Parameter Weight [kg] 123 

 Velocity [km/h] 20 

 Temperature [° C] -4 

Track Source ETH Center 

 Target Bülachhof 

Energy Consumption Modelled [Wh] 41.52137251 

 Measured [Wh] 38 
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Test Session B 

15.02.2017 

Model Parameter Weight [kg] 127 

 Velocity [km/h] 20 

 Temperature [° C] 10 

Track Source ETH Hönggerberg 

 Target ETH Center 

Energy Consumption Modelled [Wh] 16.8643035888671 

 Measured [Wh] 42 
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Model Parameter Weight [kg] 127 

 Velocity [km/h] 20 

 Temperature [° C] 10 

Track Source ETH Center 

 Target Bülachhof 

Energy Consumption Modelled [Wh] 24.5377445220947 

 Measured [Wh] 35 
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16.02.2017 

Model Parameter Weight [kg] 127 

 Velocity [km/h] 20 

 Temperature [° C] 10 

Track Source ETH Center 

 Target Bülachhof 

Energy Consumption Modelled [Wh] 24.5377445220947 

 Measured [Wh] 28 
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17.02.2017 

Model Parameter Weight [kg] 127 

 Velocity [km/h] 25 

 Temperature [° C] 5 

Track Source Bülachhof 

 Target ETH Hönggerberg 

Energy Consumption Modelled [Wh] 64.861569404602 

 Measured [Wh] 85 
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19.02.2017 

Model Parameter Weight [kg] 127 

 Velocity [km/h] 20 

 Temperature [° C] 10 

Track Source Bülachhof 

 Target ETH Hönggerberg 

Energy Consumption Modelled [Wh] 56.6393508911132 

 Measured [Wh] 64 
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22.02.2017 

Model Parameter Weight [kg] 127 

 Velocity [km/h] 20 

 Temperature [° C] 13 

Track Source Bülachhof 

 Target ETH Hönggerberg 

Energy Consumption Modelled [Wh] 55.7145195007324  

 Measured [Wh] 50 
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23.02.2017 

Model Parameter Weight [kg] 127 

 Velocity [km/h] 25 

 Temperature [° C] 10 

Track Source ETH Center 

 Target Bülachhof 

Energy Consumption Modelled [Wh] 27.8884544372558 

 Measured [Wh] 14 
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24.02.2017 

Model Parameter Weight [kg] 127 

 Velocity [km/h] 25 

 Temperature [° C] 7 

Track Source Bülachhof 

 Target ETH Hönggerberg 

Energy Consumption Modelled [Wh] 64.11506557464587 

 Measured [Wh] 70 
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Model Parameter Weight [kg] 127 

 Velocity [km/h] 30 

 Temperature [° C] 5 

Track Source ETH Hönggerberg 

 Target ETH Center 

Energy Consumption Modelled [Wh] 33.6142349243164 

 Measured [Wh] 35 
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25.02.2017 

Model Parameter Weight [kg] 127 

 Velocity [km/h] 25 

 Temperature [° C] 7 

Track Source Bülachhof 

 Target ETH Hönggerberg 

Energy Consumption Modelled [Wh] 64.11506557464587 

 Measured [Wh] 63 
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Model Parameter Weight [kg] 127 

 Velocity [km/h] 30 

 Temperature [° C] 3 

Track Source ETH Center 

 Target Bülachhof 

Energy Consumption Modelled [Wh]  

 Measured [Wh] 42 
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27.02.2017 

Model Parameter Weight [kg] 127 

 Velocity [km/h] 30 

 Temperature [° C] 10 

Track Source ETH Hönggerberg 

 Target ETH Center 

Energy Consumption Modelled [Wh] 32.2482948303222 

 Measured [Wh] 35 
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Model Parameter Weight [kg] 127 

 Velocity [km/h] 30 

 Temperature [° C] 10 

Track Source ETH Center 

 Target Bülachhof 

Energy Consumption Modelled [Wh] 33.6458396911621 

 Measured [Wh] 28 
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14.03.2017 

Model Parameter Weight [kg] 127 

 Velocity [km/h] 25 

 Temperature [° C] 10 

Track Source ETH Hönggerberg 

 Target ETH Center 

Energy Consumption Modelled [Wh] 22.691593170166 

 Measured [Wh] 35 
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16.03.2017 

Model Parameter Weight [kg] 127 

 Velocity [km/h] 25 

 Temperature [° C] 10 

Track Source ETH Hönggerberg 

 Target ETH Center 

Energy Consumption Modelled [Wh] 22.691593170166 

 Measured [Wh] 35 
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17.03.2017 

Model Parameter Weight [kg] 82 

 Velocity [km/h] 20 

 Temperature [° C] 20 

Track Source Bülachhof (- ETH Hönggerberg) 

 Target (- ETH Center -) Bülachhof 

Energy Consumption Modelled [Wh] 70.6653275489805 

 Measured [Wh] 56 
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21.03.2017 

Model Parameter Weight [kg] 127 

 Velocity [km/h] 20 

 Temperature [° C] 13 

Track Source Bülachhof (- ETH Hönggerberg) 

 Target (- ETH Center -) Bülachhof 

Energy Consumption Modelled [Wh] 96.3204441070556 

 Measured [Wh] 149 
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Affidavit 

 

Ich versichere: 

 

 dass ich die Masterarbeit selbstständig verfasst, andere als die angegebenen Quel-

len und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfe be-

dient habe.  

 dass alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten und nicht veröf-

fentlichten Publikationen entnommen sind, als solche kenntlich gemacht sind. 

 dass ich dieses Masterarbeitsthema bisher weder im In- noch im Ausland (einer 

Beurteilerin/ einem Beurteiler zur Begutachtung) in irgendeiner Form als Prüfungs-

arbeit vorgelegt habe. 

 dass diese Arbeit mit der vom Begutachter beurteilten Arbeit übereinstimmt. 
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