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Zusammenfassung

Heutige Materialwissenschaft, insbesondere die Physik kondensierter Materie, würde unvor-
stellbar sein ohne die Vielfalt von Kohlenstoff Allotropen. Unter ihnen, dem Einatom-dicken Gra-
phene, ist besonders interessant, wegen seines einzigartigen elektronischen und mechanischen
Eingenschaften. Dieser Nulllückenhalbleiter ist vielen modernen wissenschaftlichen Erforschun-
gen unterworfen. Getrieben durch solche modernen Techniken und experimentelle Methoden, wie
ultraniedrige Temperaturabtastung der Rastertunnelmikrokopie (RTM), oder hoch Auflösungab-
tastung der Rastertransmissionselektronenmikroskopie (RTEM), die Wissenschaft von Graphene
verspricht, potenziell einer am meisten Wirkungsvolle Bereiche der Forschung in der modernen
Physik zu sein. Folgend in dieser Linie der Forschung, basiert auf die Forschungsergebnisse von
Crommie, Lutz & Eigler in 1993, welche die Erzeugung von Quanten-Corral auf einer Metal-
loberfläche durch Eisen-Adatomen bewiesen haben, es vorgeschlagen wurde, innerhalb des For-
schungsprojektes Heteratom Quantum Corrals and Nanoplasmonics in Graphene (HeQuCoG),
dass derselbe Affekt, in Graphene beobachtet werden könnte, diesmal mittels eingebetteter Sili-
konatomen. Das Thema dieser Arbeit ist, die erweiterten Si-Strukturen, die wie Verschmutzung
in Graphene eingebettet sind, die lokal die Entbindung der elektronischen Wellenfunktionen in
die Form von Quanten-Corrals abändern können, und auch unterschiedliche optische und plas-
monische Antwortfunktionen vom System in linearem Limes erzeugen können, zu erforschen.

Der entscheidende Vorteil von diesen Graphene-basierten Strukturen gegenüber den Adato-
men auf den Metalloberflächen ist, dass sie Kovalent gebunden sind, welche sie, bis zu dem
Raumtemperatur und viel darüber, stabil macht. Deshalb in dieser Arbeit, eine theoretische Stu-
die, durch computergestützte Methoden, durchgeführt wird, in eine systematische Art und Weise,
anfangend damit, die Geometrie der Strukturen zu entspannen, und die Energetik der Struktu-
ren pro Größe zu konvergieren. Weitere Simulationen der Strukturen (Geometrie Relaxation)
sind dann mit dem Dichtefunktionaltheorie-Code (DFT), GPAW (Grid-bas Projector Augmen-
ted Wave), der besonders dafür bekannt ist, fähig dazu zu sein, große Strukturen zu behan-
deln, durchgeführt. Die entspannten Strukturen, sind dann mittels des RTM-Simulationspakets
analysiert, für die Erfassung der eingeschlossenen elektronischen Zuständen. Zusätzlich zu der
Ebene-welle basierten Methode der linearen dielektrischen Antwortfunktion, welche auch das
Elektronenenergieverlustspektroskopie- (EELS) Spektrum von periodischen Systemen berech-
nen würde, dieses Programm auch die zeitabhängige-DFT-Paket (TDDFT) anbietet, welches
das optischen Photoabsorptionsspektrum von den großen Strukturen ausrechnen, und auch de-
ren lokalisierte Oberflächenplasmonenresonanzen (LSPR) visualisieren kann. Die experimentelle
Bestätigung der Ergebnissen dieser Arbeit bleibt das Ziel des oben-genannten Forschungspro-
jektes HeQuCoG, welche von Bedeutung für die Physik der elektronischen Eigenschaften der
Materie, und deren relevante Industrie, sein könnte.



Abstract

Today’s materials science, especially condensed matter physics, would be unimaginable with-
out the variety of carbon allotropes. Among them, the one-atom thick graphene, is of special
interest, due to its unique electronic and mechanical properties. This zero gap semiconduc-
tor, is subject to many modern scientific explorations. Driven by such modern techniques and
experimental methods, like ultra-low temperature scanning tunnelling microscopy (STM), or
high resolution scanning transmission electron microscopy (STEM), the science of graphene
promises to be one of most potentially impactful areas of research in modern science and mod-
ern physics. Following in this line of research, based on the research findings of Crommie, Lutz
& Eigler in 1993, which demonstrated the creation of a quantum corral on the surface of a
metal using iron ad-atoms, it was proposed, within the research-project Heteroatom quantum
corrals and nanoplasmonics in graphene (HeQuCoG), that the same effect could be observed in
graphene, using embedded silicon atoms. The topic of this thesis-research is to explore extended
Si-structures, embedded in graphene like impurities, that could locally alter the confinement of
the electronic wavefunctions into the form of quantum corrals, and also cause different optical
and plasmonic response of the system in the linear limit.

The crucial advantage of these graphene-based structures over the adatoms on metal surfaces
is that they are covalently bond, which makes them stable up to room temperature and above.
Therefore, in this thesis, a theoretical study of such structures are carried out using computer-
based techniques, in a systematic way, starting by relaxing the geometries and converging the
energetics per size of the structures. Further relaxations of the select structures, are then
done using a density functional theory (DFT) code, known as (Grid-based projector augmented
wave (GPAW) which is particularly known for being capable of handling large structures. The
relaxed structures are then analysed using the STM simulation package of the software for
capturing the confined electronic states, and their shapes and sizes. For the linear response
measurements, in addition to the plane-wave based linear dielectric response method, which
would also calculate the electron energy loss spectroscopy (EELS) spectrum of periodic systems,
this code offers time-dependent DFT (TDDFT) implementation, which can calculate the optical
photo-absorption spectrum, and also visualize the localized surface plasmonic resonance of large
systems. The experimental verification of the results obtained in this work remain the objective
of the research project HeQuCoG, which may have implications for the physics of electronic
properties of materials, and its related industries.



Preface

The science of carbon is one of most fascinating sciences that man has discovered in the
modern era. The physics of carbon based materials, is amongst most modern and most compli-
cated areas of the solid-states physics, due to the fact, that these materials have demonstrated
significant number of special properties, which can only be explained by the modern quantum
science. Especially, the low dimensional materials such as single walled nano-tubes (SWNT) or
graphene are the jewels of the modern materials sciences. The reason for that is the combination
of the electronic (including optical) as well as mechanical properties, the existence of which in
materials such as graphene simultaneously, make it extremely fascinating to study for the physi-
cists of the modern era.

More specifically, the semiconductor physics, which has emerged within the last decades, is
today one of the most important branches of physics, which studies the very electronic properties,
that within carbon materials have fascinated the physicists in the recent decades. The science
of the electronic properties of carbon-based sciences belong to the most modern and the most
sophisticated areas of physics and mathematics. As a widely known example of such, the Prof.
Mildred Dresselhaus, who is known as the “queen of carbon sciences”, is among those scientists,
who have significantly made use of the mathematical theories, such as group theory, in order
to explain the electronic and optical properties of solid-state materials, specially carbon-based
molecules. As a student of physics, one of my most favorite subjects is the study of semiconduc-
tors and their electronic properties within solid-states physics. Specifically, the spectroscopy and
doping of semiconductors, plus the fabrication technologies, which are connected with the study
of such properties and materials, not only are the cutting edge of the current technologies, they
also have direct relevance and application for the industry, for which I have developed a deep
passion.

Within the Austrian Science Funds (FWF), individual project: “Heteroatom quantum corrals
and nanoplasmonics in graphene”, (HeQuCoG) I found the very interesting subject that I had
been looking for, for my masters-thesis, as this project is the exact application of the kind of
science that I described above. Despite it being all simulation-based however, my master-thesis
serves as the basis for the production of the graphene based semiconductor materials, which
can have very interesting electronic properties worthy of research for many many years and ap-
plication in the semiconductor industries. As the title of the project suggest, the goal of the
project is that to produce such structures within the graphene lattice, using mostly silicon, which
would enhance the plasmonic response of the graphene material within the linear regime, how-
ever in massive structures with more that 400 atoms, the simulation of which requires special
techniques, unique to the code that was used for these sets of simulations. Furthermore, due to
the possibility of creating closed structures, based on lattice symmetry, it could be expected that
some of the created structure induce an strong quantum confinement upon lattice, confining the
surface electronic states to form quantum corrals and quantum mirages. However, the actual
creation of such structures using STEM, and STM microscopy and Ion implantation requires
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first the theoretical study of such materials, using computer-simulation software, for which my
thesis-work is designated.

However, the STM (and STS) simulations done in this thesis on the selected structures are
done using a specific limit of STM imaging, reducing the STM-tip into a virtual point. This
theoretical description, while being only one of the models (much earlier models) of STM, has
the disadvantage of not being able to reproduce the interference, and multi-scattering effects,
observed in actual STM experiments and rather described by other STM simulation packages.
Therefore, there is the possibility of theoretical expansion of this work by such means as to observe
local quantum fluctuations in the local density of states (LDOS), which has been proposed to
a theoretical physics group at the TU Vienna for collaboration on a publication. In addition to
this, there is much possibility of experimental verification of the results of this thesis, and/or
the expansions thereof. One of the current topics of research is using the quantum corrals for
quantum computation purposes, while another topic, also beyond the scope of this project, would
be band-gap engineering, using controlled patterns and large structures in super-cells. However,
direct attempts to verify or reproduce the results of this work experimentally remains first and
foremost, within the tasks of the aforementioned FWF individual project HeQuCoG.



Chapter 1

Introduction

1.1 Tight Binding description of Graphene w/ Impurities

Graphene is a allotrope of carbon, which as stated before belongs in the group of low dimen-
sional quantum solids, which in the latest decade have dominated the field of condensed matter
physics. The shape of graphene is a sheet of single atomic honeycomb-lattice, normally obtained
from graphite. In graphite itself, the graphene layers are only held by Van der Waals (VdW)
forces, which are very week, and which can be explained using quantum mechanics. The science
of graphene is extremely vast, from manipulation of its mechanical properties, to engineering its
band gap and manipulating its optical properties. There are many interesting properties, which
fall under the electronic properties, currently being subject of many research projects. Some
mechanical properties of graphene are also of interest usually within other allotrope, such as
SWNT’s, but the electronic properties are particularly interesting, because of the potential in
graphene to be of use in semiconductor devices.

There are many ways to describe the graphene lattice in crystallography, but the simplest
way is to describe a graphene lattice using rhombus with periodic boundary conditions having
only two atoms in the cell [1], as shown in (1.1), which is also called the primitive unit cell, with:

a1 =
a

2
(3,
√

3) a1 =
a

2
(3,−

√
3) (1.1)

as the lattice vectors, and C1 = (a1 +a2)/3, C2 = 2(a1 +a2)/3, as the atomic positions, where
a ≈ 1.42 Å is the C-C bond length (BL) . However, we have in most of our simulations used
a rectangular cell containing 4 atoms. The unit cell has the advantage, that it can be arranged
in two different ways, zigzag and armchair, from which the nanoribons and the nanotubes of
the same name are built. The lattices built by these unit cells are however only 90 rotated
with respect to each other. Fig. 1.1, demonstrate the rhombus unit cell’s position within the
graphene lattice, and fig. 1.2 illustrates the two rectangular cells which were used in different
sets of calculations:

3



1.1. TIGHT BINDING DESCRIPTION OF GRAPHENE W/ IMPURITIES 4

Figure 1.1: Left: Rhombus unit cell vectors and the atomic positions of graphene A-B sublattices.
Right: Reciprocal lattice vectors b1/2 and the Brillouin zone (Γ, M, K and K’ points).

Figure 1.2: Left: The zigzag unit cell, appropriate for making zigzag lines. Right: Armchair
unit-cell appropriate for making armchair lines

As the choices of unit-cells imply, crystallographic symmetry is a very important concept in
the physics of solid states, and here is it no different. We are looking to create the most sym-
metric structures possible, using the proper unit-cell and the size of the super-cell since, these
symmetries play important role in vibrational and dielectric properties of the materials. There-
fore, even when the super-cell of a structure has to very large the orientation (and the position)
of the embedded structures with respect to the honeycomb lattice of graphene is important, due
to their affect on the aforementioned properties. In order to pave the way into the theories of
linear response, dielectric properties, and plasmonic response of graphene-based materials, we
should first briefly review the electronic structure of graphene.

The traditional description for the electronic properties, band structure calculations of graphene
is using the Tight Binding Approximation. This model, despite being quiet old (first discussed
by P. R. Wallace in 1946), produces very good results in comparison to experimental results.
Of course in the latest decades, using the formalism of density functional theory, and its imple-
mentations in computer software on supercomputers, delivers more precise results regarding the
electronic structure and properties of graphene. One of the reasons for that is for example the
existence of Dirac points, K and K’, [1] defined by the following coordinates (a is the same C-C
BL):

K = (
2π

3a
,

2π

3
√

3a
) K = (

2π

3a
,− 2π

3
√

3a
) (1.2)

where (a is the same C-C BL) the electrons, which move at speeds of vF = (1/300)c (where
c is the speed of light), resemble fermions that are described using the formalism of Quantum



1.1. TIGHT BINDING DESCRIPTION OF GRAPHENE W/ IMPURITIES 5

Electrodynamics (QED). The existence of such fermions (Dirac Fermions) then transform the
old and traditional tight-binding Hamiltonian defined as [1]:

H = −t
∑
〈i,j〉,σ

(
a†σ,ibσ,j + h.c.

)
− t′

∑
〈i,j〉,σ

(
a†σ,iaσ,j + b†σ,ibσ,j + h.c.

)
(1.3)

into

H ∼ −ivF t
∫
dxdy

(
Ψ̂†1(r)σ · ∇Ψ̂1(r) + Ψ̂†2(r)σ · ∇Ψ̂2(r)

)
(1.4)

while t′ is set to zero, and the vectors σ = (σx, σy),σ
∗ = (σ∗x, σ

∗
y). The aσ , bσ in eq. 1.3 are the

A/B sublattice annihilation operators of spin-σ electrons, and t, t′ are the nearest-neighbour/next-
nearest neighbour transfer-integrals. The previous creation and annihilation operators are then
replaced with the two component electron wave-functions, Ψ†i = (a†i , b

†
i )i=1,2 in real space, which

near the Dirac points obey the 2D Dirac equation (having the energy eigenvalue E):

− ivFσ · ∇ψ(r) = Eψ(r) (1.5)

Since the honeycomb lattice is made up of six covalent σ bonds (not to be mistaken with the
Pauli spin operator −→σ = σ, which has components), the 2pz orbital which is perpendicular to
the x− y plane forms the half-filled π-bond.

From the Hamiltonian in eq. 1.3 however, the energy bands for π and π∗ (+ and -) can be
derived as follows:

E±(k) = ±t
√

3 + f(k)− t′f(k) (1.6)

with:

f(k) = 2cos
(√

3kya
)

+ 4cos

(√
3

2
kya

)
cos

(
3

2
kxa

)
(1.7)

which is visualized in 3D in fig. 1.3 for t = 2.8 eV and t′ = 0.2t, also showing the concept of
Dirac fermions in Dirac cone described by eq. 1.5.

Figure 1.3: a) The 3D plot of π and π∗ bands for t′ = 0.2t described by TB equation in eq. 1.6
and 1.7. b) The TB Density of States (DOS) around the Dirac point in graphene for t′ = 0.2t,
reprinted with permission from [1], Copyright (2009) by American Physical Society.
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while fig. 1.4 illustrate the complete 2D band structure and the DOS of graphene, showing
all 4 bands σ, σ∗, π, and π∗, calculated in DFT (using the Purdew Burke Erzerhof (PBE)
XC-functional):

Figure 1.4: Left(c): The dispersion direction (band structure) in the graphene lattice including
the Dirac point (K). Right(d): The corresponding DOS in graphene.

At this point it is important that we discuss the effects of disorder and impurity on the
electronic properties of graphene. These defects could be intrinsic like ripples and topological
defects, or extrinsic like ad-atoms, vacancies, charges on top, and crack and edges. One type of
disorder is the one that couples to single site energy, acting as a chemical potential shift for the
fermions, causing a local shift in the Dirac point. The additional term to the Dirac Hamiltonian
in eq. 1.3, resulting from this coupling, which is diagonal in sub-lattice indices could be written
as:

Hdd =
∑
i

Vi

(
a†iai + b†ibi

)
⇒ Hdd =

∫
d2r

∑
a=1,2

Va(r)Ψ̂†a(r)Ψ̂a(r) (1.8)

Where Vi is the strength of the impurity potential at site i (which could be a point impurity at
some position within the lattice like a singe trivalent silicon within the graphene lattice). Note
that this is not an interaction potential between the graphene sublattices (A/B sublattices), as
this is already included in the nearest-neighbour transfer integral t. The charge potentials are
also important for determining the transport and spectroscopic properties.

Especially the Coulomb impurity potential (and the 2D problem arising from it), and the
coupling constant:

Va(r) =
e2

ε0

1

r
g =

Ze2

ε0vF
(1.9)

where ε0 is the dielectric constant of the medium, and Z is the charge impurity, can be studied
analytically, and it resembles the case of the 3D relativistic Hydrogen problem. However, the
form of the eigenfunctions are determined by graphene’s dimensionless coupling constant. The
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significance of this constant is in the fact, that for g > gc = 1/2, just like the 3D QED problem,
the 2D problem of Coulomb impurity becomes unstable, leading to a super-critical behaviour,
effecting the LDOS in such a way that bound states appear outside the band, while scattering
resonance appear within the band. In the case of our research topic, we stury a kind of impurity
that locally very much resembles a charge potential, inducing a Coulomb potential and charge
density, consequently effecting the LDOS in a significant way as seeb in the STM images. How-
ever, due to the impurity/dopant atom (silicon) having the same number of valance electrons as
the carbon, the analytical case of Coulomb impurity cannot be fully applicable to our case.

The second type of disorder, which changes the distance and angle between the pz-orbitals,
modifies the hopping energies leading to the following addition to the Hamiltonian, instead of
eq. 1.8):

Hod =
∑
i,j

{
δ

(ab)
ij

(
a†ibj + h.c.

)
+ δ

(aa)
ij

(
a†iaj + b†ibj

)}
(1.10)

where the deltas, δt
(ab)
ij (δt

(aa)
ij ), are the change of hopping energy between the orbitals on lattice

sites Ri and Rj, while the indices a and b indicate different sub-lattices. If there is no Fourier
component K −K ′ in the Fourier representation of Hamiltonian, meaning that the Dirac cones
are not coupled by disorder, then we can write the above Hamiltonian in real space as:

Hod =

∫
d2r
[
A(r)a†1(r)b1(r) + h.c.+ φ(r)

(
a†1(r)a1(r) + b†1(r)b1(r)

)]
(1.11)

with:
A(r) =

∑
−→
δ ab

δt(ab)(r)e−i
−→
δ ab ·K , φ(r) =

∑
−→
δ ab

δt(ab)(r)e−i
−→
δ ab ·K (1.12)

while for the other cone instead of A(r), A∗(r) is used (φ(r) = φ∗(r)). Writing A(r) as a
vector, due to lack of inversion symmetry for nearest neighbour hopping:

−→
A(r) = Ax(r) + iAy(r) = (Ax(r),Ay(r)) (1.13)

Therefore we can rewrite the Dirac Hamiltonian in one cone as:

Hod =

∫
d2r
[
Ψ̂†1(r)σ ·

−→
A(r)Ψ̂1(r) + φ(r)Ψ̂†1(r)Ψ̂1(r)

]
(1.14)

The existence of the vector potential implies the presence of an effective magnetic field
−→
B =

c/(evF )∇×
−→
A . The other Dirac cone is related to the first one by time reversal, as well as the

effective magnetic field, which in the second cone is reversed.

The impurities within the lattice of graphene also have an effect on the electronic states
within their vicinities. The Fermi energy due to the concentration ni of impurities, is shifted
' vF

√
ni. The Dirac equation also has localized solutions satisfying man boundary condition,

which if solved for circular defects, results in localized and semi-localized states. These states
decay with 1/r as distance from the center of the defects. The Dirac equation of the two-
component wave-function ψ(r) = (φ1(r), φ2(r)) accordingly becomes:

∂wφ1(w,w∗) = 0 , ∂w∗φ2(w,w∗) = 0 (1.15)

with w = x + iy. The corresponding wave-functions for the given boundary condition have the
following form:

ΨK(r̃) ∝ (1/(x+ iy)n, 0) , ΨK′(r̃) ∝ (0, 1/(x− iy)n) (1.16)
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In addition to its electronic structure as described above, also the conductance and the trans-
port properties of graphene are affected by disorder, especially doping and impurity, which as
mentioned before, can result in localized and semi-localized states. At room temperatures, the
conductivity of graphene can be explained in terms of the classical formalism. However, for lower
temperatures as well as in the case of impurities and doping quantum corrections become impor-
tant and interference effects also become visible, though many calculations demonstrate a con-
ductivity of the order of e2/~, which is the universal value of conductivity when the Fermi energy
is at the Dirac point. The lowest order perturbation theory in 2D graphene becomes the diffusion
of electrons in a scattering medium given by the Einstein relation σ0 = e2D(EF )D = e2/4~
(with diffusion coefficient D = v2

F τ/2), where the impurities play the role of the scattering
potentials.

The quantum corrections σ = σ0+δσ are the results of Born approximation calculations of the
impurity potentials. Since the interference effects are responsible for Anderson metal-insulator
transitions, the main quantum mechanical correction term to the conductivity is believed to be
due to weak localization. However currently in addition to the semi-classical Kubo formulation
of the conductivity (beyond the Drude model), the random phase approximation (RPA) formu-
lation of the self-consistent field-theoretic conductivity within linear response regime, plays an
important role for determining the transport and electronic properties of graphene in presence
of a disorder.

1.2 Plasmonics of Graphene

Plasmons are the quanta of the plasmonic oscillations; A quasi-particle of the normal mode
oscillations resulting from long range Coulomb interaction within the lattice. Plasmons are also
the zeros of the dynamical dielectric function [19]. The long-wavelength plasmon dispersion for
mono-layer graphene (MLG) and (BLG) can be written as:

MLG : ωp(q −→ 0) =

(
e2vF q

κ~
√
πngsgv

)1/2

BLG : ωp(q −→ 0) =

(
2πne2

κm
q

)1/2

(1.17)

where gsgv are the degeneracy factors and κ the dielectric constant. This is an example of a
classical (BLG) vs. non-classical (MLG) dispersion relations, which in the case of MLG (which
is the same as 2D pristine graphene), is a direct indication of the linear Dirac like energy mo-
mentum dispersion [19].

For pristine graphene, for which the Fermi energy is at the Dirac point, based on tight-binding
approximation, there is only one excitation, namely the intraband transition from the completely
filled π band to the completely empty π∗ (conduction) band. The excitations can form a single
particle excitations (SPE) region in (q, ω) space for wave-vectors of q = k−K (with K as Dirac
point) in the momentum space, where the spectral weights of the allowed excitations are given
by S(q, ω) = − 1

π
Im [Π(q, ω)], with Π(q, ω) as the polarization function. In RPA this function is

given by [20]:

Π(q, ω) = −gsgv
L2

∑
kss′

f(εsk)− f(εs′k′)

ω + εsk − εs′k′ + iη
Fss′(k,k

′) (1.18)

where k′ = k + q, and s, s′ = ±1 denote the band indices. Furthermore [58],

Fss′(k
′,k) = (1 + ss′cosθ)/2 = |〈εsk,k|e−iq·r|εs′k′ ,k′〉|2 (1.19)
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is the overlap of states, and f(εsk) = [exp {β(εsk − µ)}+ 1]−1 the Fermi-Dirac distribution.
The effects of many-body interactions in graphene make the plasmonics very complicated and
fascinating, since the plasmons in graphene can interact with many quasi-particle such as pho-
tons, phonons, and electrons.

Due to the fact that graphene is a 2D material, the theory and the dispersion of surface
plasmons (SP’s) are very important for graphene plasmonics. Here we discuss two models
to describe the graphene plasmons, namely the semi-classical model and the RPA (Random
Phase Approximation). Considering the fact that the dispersion relation of electrons in graphene
are mostly linear, the charge carriers seem more like massless relativistic Dirac fermions, as
expected. Therefore, the low energy conductivity of graphene consists of both intraband and
interband contributions. Without considering the Hall conductivity (±2(2N + 1)e2/h [1]) the
Kubo formulation for conductivity σ(ω, µ,Γ, T ) can be written as [10]:

− ie2(ω + i2Γ)

π~2

[
1

(ω + i2Γ)

∫ ∞
0

E

(
∂f(E)

∂E
− ∂f(−E)

∂E

)
dE −

∫ ∞
0

f(−E)− f(E)

(ω + i2Γ)2 − 4(E/~)2
dE

]
(1.20)

with f(E) = {1 + exp [(E − µ) /kBT ]}−1 as the same Dirac-Fermi distribution, and 2Γ = τ−1

the electron relaxation time in graphene. As mentioned previously, the above expression can be
split into two parts σ = σintra + σinter, where the two integrals are the contributions of the
respective parts. The intraband part is given by [10]:

σintra = i
e2kBT

π~2(ω + iτ−1)

[
µ

kBT
+ 2ln

(
e−µ/kBT + 1

)]
(1.21)

The chemical potential of pristine graphene, which is generally known to be µ ≤ EF , is obtained
from the carrier density:

n =
2

π~2v2
F

∫ ∞
0

[f(E)− f(E + 2µ)]⇒ µ ≈ EF
[
1− π2(kBT/µ)2/12

]
(1.22)

while for heavily doped or gated graphene |µ| � kBT , µ ≈ EF ≈
√
π~2v2

Fn. In a gated
graphene system, where n can be controlled by the gate voltage, for Tµ→ 0 we get the Drude
form of the intra-band conductivity [65]:

σintra =
inse

2V 2

(ω + i0)µ
=
e2gsgv
16~

4i

πΩ
(1.23)

where Ω = ~ω/µ, and ns = gsgvµ
2/4π~2V 2 is the carrier charge density at T = 0. For the

same condition |µ| � kBT , the interband contribution is given by [10]:

σinter =
e2

4~

[
θ(~ω − 2|µ|) +

i

~
ln|~ω − 2|µ|

~ω − 2|µ|

]
(1.24)

with θ(~ω− 2|µ|) as the Heaviside step-function. Fig. 1.5, illustrates the separate contributions
to the conductivity at zero-, and non-zero temperatures:
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Figure 1.5: Imaginary and the real parts of the inra-, inter-band contributions to the conductivity
at zero temperature (left), and at non-zero temperatures (right) as a function of Ω = ~ω/µ.
Reprinted with permission from [65], Copyright (2007) American Physical Society.

The total conductivity is therefore made up of two parts, the real and the imaginary, σ =
σ′ + iσ′′, which determine which kind of (electromagnetic) EM surface waves that would be
supported, since the two modes that can propagate in graphene are found to be TM (transverse
electric, s-polarized) and TE (transverse magnetic, p-polarized). For σ′′ > 0 (σ′′ < 0), the TM
(TE) are supported. Also for the same values the main contributions would result from intraband
(interband) parts, while the frequency regions would be THz, far-infrared (far- and near-field).
Using the Maxwell’s equations and the Dyadic Green’s function, and for the given medium-
interface with the permeability and dielectric constants (µr, εr), and (µ′r, ε

′
r) (it is assumed that

the graphene is trapped between two medium along the z-axis), the dispersion relations of these
modes can be calculated . For the TM modes therefore we have [10]:

εr√
k2
TM − (εrω2/c2)

+
ε′r√

k2
TM − (ε′rω

2/c2)
+

iσ

ωε0

= 0 (1.25)

with ε′r = ε′r = 1 for a isolated graphene, resulting in the dispersion relation for the TM mode:
kTM = k0

√
1− (2/ση0)2, with η0 =

√
µ0/ε0 ≈ 377Ω.

For a highly doped graphene of thickness ∆, the effective dielectric constant would be ε =
ε0 + iσ/ω∆. Furthermore, for the same highly doped graphene on substrate, (ε′r = 1, εr 6= 1),
the TM mode dominates, as well as the intraband contribution in the conductivity. Having the
following limits for the chemical potential µ ≈ EF and |µ| � kBT , the following expression are
the approximate dispersion relations for the surface plasmons [10]:

kSP ≈
π~2

e2EF
ε0(εr + 1)ω

(
ω +

i

τ

)
, λSP ≈ λ0α

4EF
εr + 1

1

~(ω + iτ−1)
(1.26)

with α = e2/4πε0hc is the fine-structure constant.

The RPA model of the dispersion is more complicated, due to the fact that that the electrons
at the Dirac points interact heavily with the plasmons, making their experimental spectrum differ-
ent that the theoretical predictions of the RPA model. However, at zero temperature, in the limit
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of q → 0 (and for ε(ω, q) = 0), under the assumption of infinite relaxation time of the electrons,
this model can predict well the dispersion and the spectrum of the graphene plasmons within
the self-consistent field linear response theory formalism. In this model the electrons move in
the self-consistent field composed of an external field and the induced field of all of the electrons.

Even though the approximate relation for the RPA dispersion could be given without the
definition of the RPA conductivity, it is important to mention the path to the derivation of
the approximate relation (eq. 1.17) starting from the RPA conductivity. Recalling the RPA
polarization function Π(q, ω) (eq. 1.18), by defining the electron scattering rate at the Fermi
energy τ(EF )−1 and ωγ = ω+ iτ(EF )−1, in order to account for the electron conservation [21],
taking into account the scattering, we can redefine the polarization function as:

Πγ(q, ω) =
ωγ

ωΠ(q, ω)−1 + iτ−1(EF )Π(q, 0)−1
(1.27)

which is called the RPA relaxation time approximation taking into account the finite scattering
rate, while the Π(q, 0) is obtained by setting τ(EF )−1 and ω to zero. Then the RPA-RT (RPA
relaxation time) conductivity is given by [21]:

σRPA(q, ω) = −iω e
2

q2
Πγ(q, ω) (1.28)

If we then consider a graphene sample placed between the air and a substrate of constant
permittivity εsub, the dispersion relation is the solution of the following equation:

εave + i
q

2ω
σRPA(q, ω) = 0 , εave = (εsub + ε0)/2 (1.29)

re-arranging the above equation in this form ε(q, ω) = 1 − v(q)Πγ(q, ω), we can then use the
following approximation for the polarization function [20]:

Π(q, ω) ≈


D0γ

2q2

2ω2

[
1− ω2

4E2
F

]
, γq < ω < 2EF

D0

[
1 + i

ω

γq

]
, ω < γq

 (1.30)

Using these approximations, for the single layer graphene the dispersion relation could be written
as:

ωSP (q → 0) = ω0
√
q , ω0 = (gsgve

2EF/2κ)1/2 (1.31)

with κ as the background lattice dielectric constant, and gs = 2, gv = 2 the spin and the valley
degeneracy. One can see that the density dependence of the plasmon in monolayer graphene
ω0 ∝ n1/4 shows a different behaviour than the classical 2D plasmons ω0 ∝ n1/2.

Since there are two kinds of electrons in graphene, namely the σ, and the π, there are two
other kinds of plasmons, in addition to the low energy (≤ 3 eV) 2D plasmons, namely the π and
the σ + π, which appear in pristine graphene at energies of ∼ 4.7 eV , and 14.6 eV. The 2D
plasmons on the other hand appear in doped graphene. The best way to probe the plasmons
in graphene experimentally is by EELS. Fig. 1.6 shows the EELS spectrum of pristine graphene
for different q-limits against that of multi-layer stacked graphene (graphite), illustrating the
difference between the plasmons in graphite, and the non-classical surface plasmons of graphene,
which rapidly disappear for large momenta.
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Figure 1.6: Left: The graphite (multi-layer graphene stacking) EELS spectrum for different
(increasing) momentum vectors (q’s). Right: The EELS spectrum of graphene for different
Increasing) q’s, showing the π and σ + π plasmons.

1.3 Quantum Confinement in Graphene

Finally it is important, to talk about the theoretical concepts and the experiments of quantum
confinement in graphene or graphene based materials, because one of the goals in this thesis
is a direct simulation of quantum confinement and possibly creating the quantum corrals on
the graphene lattice, while using silicon atoms only as the static potential. Even though the
concept of quantum corrals have been almost exclusively limited to the case of ad-atoms on the
metallic surfaces, there have been experiments arising from the principles of localization of the
Dirac Fermions in graphene, which are more in line with general cases of quantum confinement
in semiconductors.

The charge carriers in graphene, as are the surface charge carries of topological insulators,
are 2D relativistic Dirac fermions. Using these carries, it is possible to show the formation of
the confined states and corrals due to the presence of the impurity-potential. Starting from the
massless Dirac Hamiltonian [15]:

H = vF (k × σ) · ẑ +
N∑
i=1

Vi(r) (1.32)

with k = (kx, ky) as the planar momentum, σ = (σx, σy, σz) as the Pauli matrices, and i
the index-number of the impurities. If we set the Fermi velocity and lattice constant to unity
vF = aa = 1, then we can write the impurity potential as:

Vi(r) = (Uiσ0 +
1

2
JiS · σ)δ(r − ri) (1.33)

where Ui is the potential (magnetic) scattering strength, with the following definition that
Ui(Ji = 0)/Ji(Ui = 0) would denote the scalar/magnetic impurities, and S the spin of the
impurity. Then a quantum interference effects will take place which is the result of the interac-
tion between the STM tip and the sample surface, which would be observed in the measurement
of the LDOS. In the next section we will talk about the theory of quantum corrals in relation to
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the STM application theory, but for now we mention the formalism in a non-rigorous way.

In the STM measurement of such systems as described above, The LDOS would be propor-
tional by the imaginary part of the trace of the electron Green function:

LDOS(r, E) ≡ − 1

π
Im {Tr [G(r, r, E)]} (1.34)

while the Green function is defined as:

G(r, r′, E) = G0(r, r′, E) +
N∑

i,j=1

G0(r, ri, E) · T (ri, rj, E)G0(rj, r
′, E) (1.35)

The form of the T (ri, rj, E) matrix (T ) is a bit strange, as it is defined for numerical calculations.
Starting from the expression:

T (ri, rj, E) = Viδi,j + Vi

N∑
l=1

G0(ri, rl, E)T (rl, rj, E) (1.36)

The final expression for the T matrix would be:

T =
Himp

I −HimpG0

= Himp +HimpG0T (1.37)

where Himp, G0, and G0 are each separate matrices, in addition to I, which is the identity.
The impurity Hamiltonian is a diagonal matrix given by Himp = diag(V1, V2, ......, VN), and the
unperturbed Green’s function is given by the Fourier transformation of the following:

G0(k, i, E) = [iE − vF (k × σ) · ẑ]−1 (1.38)

or for numerical calculations as:

G(r, r′, E) = G0(r, r′, E) + G0T G ′0 (1.39)

The G ′0, and G0 are single column and single row matrices, each with 2× 2N entries, where the
elements are arranged in the following way:

G0 = (G(r, r1, E)......G(r, rN , E))

G ′0 = (G(r1, r
′, E)......G(rN , r

′, E))
T (1.40)

These matrices, which together could be compacted into the G0 matrix, denote the propagation
of the electrons to the impurities from the STM tip and vice versa. Fig. 1.7 shows the LDOS
measurements in a non-magnetic corral of 80 ad-atoms with a radius of R0 = 50Å, at different
positions showing a resonance at the Dirac level for large enough potential. For a barrier potential
of small value the LDOS (in red dots) doesn’t show any fluctionations, which are the result of
confinement, but once the barrier potential is big enough, both at the center and r = (25, 0) we
see resonances (as seen in the fig. 1.7).
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Figure 1.7: The resonance at the Dirac level in the center (left) of the 80 ad-atom corral, and
at position r = (25, 0) (right) in a STM experiment for a small (red dots) and large enough
potentials. Reprinted with permission from [15], Copyright (2011) American Physical Society.



Chapter 2

Theory & Methods

2.1 Structural Optimizations & Basic DFT

2.1.1 Analytical Tersoff 1989 (T89) Potential

One of the most important analytical inter-atomic potentials used in different classical MD
codes is the empirical inter-atomic bond-order potential created by J.Tersoff. This potential
applied to three-body systems of silicon and carbon, in codes such as LAMMPS and Atomistica,
is one of the potentials that we originally used for the calculations of Si-C systems, in the form
of silicon doping of graphene. Many physical and chemical problem require the calculation of the
total energy as the function of the atomic coordinates. The problem is constructing a potential
beyond quantum mechanics, that is computationally not too expensive, and that can give the
total energy of the system as the function of the atomic coordinates E({r}).

Among other approaches, the approach of Biswas and Hamann [35] opened a new door for
describing covalent semiconductors like silicon. They argued that [35] the ′′...cohesive energies of
many real and the hypothetical arrangement of silicon is known from reliable quantum mechan-
ical calculations.′′ Therefore, such information may be used as database for an initial attempt of
constructing an interatomic potential which correctly describes the cohesive energy over a wide
range of atomic coordinates and bondings geometry. In particular this argument was the founda-
tion for the construction of the new model known as the bond order potential. The approach of
Biswas and Hamann implies that a 3-body potential does not adequately describe the cohesive
bonds of silicon over a long range, and many-body potentials like 4-body and 5-body would
have too many free parameters. Therefore this N-body potential approach has to be abandoned
altogether.

The trend that emerges for the bond-order potential, is that of a monotonically decreasing
function of coordination. The balancing factors are the trade off between bond-order and number
of bonds, which together determine the equilibrium coordination. For many elements of periodic
table, one of above factors would dominate, and only a few elements would have an intermediate
coordination. A suitable inter-atomic potential can be constructed with the following form:

E =
∑
i

Ei =
1

2

∑
i 6=j

Vij , Vij = fC(rij) [aijfR(rij) + bijfA(rij)] (2.1)

where E is the total energy, Ei the site energy and Vij the bond energy. The functions fR and
fA represent repulsive and attractive part potentials as the functions of rij the atomic distance
between the atoms i and j, while fC is the cut-off function, limiting the range of the potential, in

15
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order to reduce the computational burden. The most important parts of the above potential, is
the bij function, which represents the bond-order measure. The determination of these functions
are not trivial, but it is in general assumed that bij is a monotonically decreasing function of
coordination of atoms i and j. However, aij is merely a range limiting function.

In determining the exact form of the above functions, the choice of exponential functions for
fR and fA has a very desirable feature [35]:

fR(r) = A · exp(−λ1r) , fR(r) = −B · exp(−λ2r) (2.2)

and for the cut-off function:

fC(r) =


1 , r < R−D
1

2
− 1

2
sin
[π

2
(r −R)/D

]
, R−D < r < R +D

0 , r > R +D

 (2.3)

which is a short range, continuous and differentiable function for all r, going from 1 to 0, covering
the first-neighbour shell in most structures. And finally the bond-order function bij as described
above is given by:

bij = (1 + βnξnij)
−1/2n

ξij =
∑
k 6=i,j

fC(rik)g(θijk)exp[λ3
3(rij − rik)3],

g(θ) = 1 + c2/d2 − c2/[d2 + (h− cosθ)2],

(2.4)

with θijk as the angle between the bonds ij and ik, c/d/h as the normal constants, and λ1/2/3

as the Morse-type potential constants. Additionally the form for aij:

aij = (1 + αnηij)
−1/2n , ηij =

∑
k 6=i,j

fC(rik)exp[λ3
3(rij − rik)3], (2.5)

where α is chosen so small so that aij ' 1, for atoms outside the first-neighbour shell. The aij
is used for completeness, for improvement of the potential, but it is mostly set equal to 1.

This set of suggested potential form can be used for a variety of elements. The free parameters
can be set to reproduce a large database of known properties of materials.

2.1.2 Analytical Erhard Albe Potential

As we saw in the previous section, the importance of the bond-order potential, which in gen-
eral form was applicable to a variety of elements, was due to the fact that the previous models
could not describe the cohesive energy of the semiconductors accurately enough, in particular
silicon and hybrid compounds of silicon. However, this effort seems to be an understatement,
if we are to, by having used such extra-accurate potentials, make a statement about the im-
portance of the semiconductor materials and the simulations of their properties. Among them
silicon-carbide holds a special place due to the combination of the its mechanical and electronic
properties.

As stated, the bond-order potential by Tersoff is widely known as one of the most accurate
and effective potentials for describing systems of moderate size. However, this potential along
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with its modified versions are not so useful, if the simulation requires a more extensive smapling
of the configuration space [34]. Therefore, a more robust and accurate model based on the
previous Tersoff potential is proposed, where a new set of parameters for interactions Si − Si,
C − C, and Si − C are proposed. This new potential, which fall within the Brenner -class po-
tentials (due to their use of the Brenner-functional), is known as the Erhard-Albe silicon-carbide
analytical potential [34].

The functional that is introduced has been applied to metals and metal-carbides successfully,
in addition to having used for the description of semiconductors. The cohesive energy as a sum
over the bond energies is given by:

E =
∑
i>j

fC(rij)

VR(rij)−
bij + bji

2︸ ︷︷ ︸
bij

VA(rij)

 (2.6)

where VR(r) and VA(r) are the repulsive and the attractive pair-wise potentials defined as below:

VR(r) =
D0

S − 1
exp

[
−β
√

2S(r − r0)
]

, VA(r) =
SD0

S − 1
exp

[
−β
√

2/S(r − r0)
]

(2.7)

with D0 and β as the dimer energy and parameter of the dimer ground state oscillation, and r0

the bond length. The S is obtained from the slope of the Pauling plot, and the cut-off function
fC(r) is exactly as defined in eq. 2.4. The fit known as the Pauling plot is the fit used to
approximate the results obtained from the quantum mechanical or first principles calculations.

The bond-order function bij which we introduces in the previous section also takes a similar
form as in the Tersoff potential:

bij = (1 + χij)
−1/2 , χij =

∑
k 6=i,j

fC(rik)g(θijk)exp[2µ(rij − rik)] (2.8)

only with the function χij slightly different, while the angular function g(θ) is also exactly the
same. The nine parameters 2µ, γ, c, d and h determine the three-body interaction, based on
atom types i and j. The parameter adjustment which leads to the optimization of the potential
is done in the following way, first the dimer pair-parameter are adjusted (D0, r0, β), and then
from the Pauling slope the S. Then the three-body interaction parameters are adjusted by
fitting to the cohesive energies and bond lengths of highly symmetric structures, and to the
elastic constants of ground structures. For silicon dimer some of the above parameters, such as
(D0, r0, β) are known experimentally, where D0 is the dimer binding energy, r0 the equilibrium
bonding distance, and β the potential parameter related to the ground-state oscillation wave
number k.

2.1.3 Kohn-Sham Equations, PW’s, FD, PAW, LCAO

Density functional theory, which is basically the theory of the electronic structure of solids
based on first principles (many-body quantum mechanics), as it had originally been developed
in 60’s and the 70’s, has evolved much in the recent decades and recent years. If we start
from the foundation of the DFT and Hohenberg-Kohn (HK) theorems, it will be a long path
before we reach the theory of the variation of the DFT-code which we have used in this work,
known as GPAW. Therefore we start from the basic core of the DFT, the eigenvalue Kohn-Sham
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equation, the Kohn-Sham variational method to the self consistence loop, and then we develop
the theory into the projector augmented-wave method (PAW), grid-decomposition of the PAW
method (FD, for finite difference), and the linear combination of the atomic orbitals (LCAO)
method. The original Kohn-Sham scheme, was rewriting the previous many-body problem in
terms of an auxiliary system of an independent particles and interacting density, which proved
to be very successful approximation.

Two assumptions are made in the Kohn-Sham scheme, which we need to mention before
illustrating the scheme [13]:1- The ground state density can be represented by the ground state
density of the non-interacting auxiliary system. 2- The Hamiltonian of the auxiliary system has
a usual kinetic operator and a much simplified effective local potential acting on the electron
of spin σ and coordinates r, V σ

eff (r). This potential which is usually the characteristic of the
Kohn-Sham scheme, has to be spin-dependent, except in the case of spin-symmetry. Based
on these assumptions The schematic Kohn-Sham Ansatz, which is the relationship between the
independent particle Kohn-Sham system and the full many-body problem, is as follows [13]:

Vext
HK←− n0(r)

KS←→ n0(r)
HK0−−→ VKS(r)

↓ ↑ ↑ ↓
Ψi({r}) ←− Ψi({r}) ψi=1,Ne(r) ←− ψi(r)

(2.9)

where HK0 denotes the Hohenberg-Kohn theorem of non-interacting problem. Using the Hartee
atomic unites ~ = me = e = 4π/ε0, the auxiliary Hamiltonian is defined as:

Hσ
aux = −1

2
∇2 + V σ(r) (2.10)

The Kohn-Sham energy functional of the ground state density is given by:

EKS = Ts[n] +

∫
drVext(r)n(r) + EHartree[n] + EII + Exc[n] (2.11)

where the kinetic energy Ts[n] is defined as:

Ts = −1

2

∑
σ

Nσ∑
i=1

〈ψσi |∇2|ψσi 〉 =
1

2

∑
σ

Nσ∑
i=1

∫
d3r|∇ψσi (r)|2 (2.12)

and the density of the auxiliary system:

n(r) =
∑
σ

s(r, σ) =
∑
σ

Nσ∑
i=1

|ψσi (r)|2 (2.13)

As for the potentials, the Vext(r) is the spin-independent potential due to external fields
and the nuclei, and EII the nuclei-interaction term. The remaining terms have to include the
classical Coulomb term, and the many-body exchange-correlation terms (XC). The Hartee term
EHartree[n]:

EHartree[n] =
1

2

∫
d3rd3r′

n(r)n(r′)

|r− r′|
(2.14)

replaces the Coulomb potential with interacting electron-density potential, and the XC-term:

Exc[n] = FHK [n]− (Ts[n] + EHartree[n]) = 〈T̂ 〉 − Ts[n] + 〈V̂int〉 − EHartree[n] (2.15)



2.1. STRUCTURAL OPTIMIZATIONS & BASIC DFT 19

However, the XC-term, under the consideration of the exchange-correlation hole concept, which
states, that the XC-term keeps electrons apart and therefore gives rise to encountering a hole at
r′, can be written like the Hartree term:

Exc[n] =
e2

2

∫
d3r

∫
d3r′

n(r)nxc(r, r
′)

|r− r′|
(2.16)

In order to solve the above energy functional for the ground state density and then the energy
eigenvalues, the Kohn-Sham variational must be applied:

δEKS
δψσ∗i (r)

=
δTs

δψσ∗i (r)
+

[
δEext
δn(r, σ)

+
δEHartree
δn(r, σ)

+
δExc

δn(r, σ)

]
δn(r

δψσ∗i (r)
= 0 (2.17)

with the orthogonalization condition of 〈ψσi |ψσ
′

j 〉 = δi,jδσ,σ′ . Reforming the above equation and
using the definition of the effective potential V σ

eff from (2.32) of the auxiliary Hamiltonian, we
can write:

δEKS[n]

δn(r, σ)
=

δTs[n]

δn(r, σ)
+
δVeff [n]

δn(r, σ)
(2.18)

Therefore:
δVeff [n]

δn(r, σ)
=

[
δEext
δn(r, σ)

+
δEHartree
δn(r, σ)

+
δExc

δn(r, σ)

]
(2.19)

and:
V σ
eff (r)|min = V σ

KS(r) = Vext(r) + VHartree(r) + V σ
xc(r) (2.20)

With the the auxiliary Hamiltonian and the Kohn-Sham Hamiltonian become fully identical under
the above definition for the effective potential:

Hσ
aux = Hσ

KS = −1

2
∇2 + V σ

KS(r) (2.21)

And so having clearly defined the Kohn-Sham Hamiltonian, we can now set out to solve the
Kohn-Sham eigenvalue problem:

(Hσ
KS − εσi )ψσi (r) = 0 (2.22)

This is a fundamental stage from which all the new procedures and variations of this basic
theory branch out. There are multiple different strategies to solve the above eigenvalue problem,
as there a varieties of definitions for the given potentials. For example the used wave-functions
could be a grid (mesh) or plane-wave, or linearised augmented plane wave (LAPW), and XC-
term could be GGA, or LDA or LSDA (see the abbreviations list). The kinetic operator could
be relativistic or non-relativistic, and there is even the possibility of inclusion of time variable,
which would eventually bring us to one of the most important variations of the DFT, that we
have also extensively used in this thesis, namely the time-dependant DFT (TDDFT). The below
figure lists some of these variations. However, regardless of the all these options for solving and
modifying the Kohn-Sham equation, one mathematical principle remains at the heart, and that
is the self-consistence. No matter what definitions are used for any of the terms in eq. 2.15, the
resulting density must be self-consistent. The flow chart in fig. 2.1 illustrates this principle (i.e.
the SCF loop) [13]:
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Figure 2.1: The chart of the self consistence field (SCF) loop of the Kohn-Sham equation,
represented in a step by step form, which in case of consistency results in all the desired output
quantities [13].

Having introduced the set of strategies for solving the Kohn-Sham equations, the actual
solutions, as mentioned previously, depends on a set of definitions used for each component of
the equations. For example, we start with defining an expression for the wavefuctions from which
the densities are calculated. Starting from the Kohn-Sham eigenvalue equation:

Ĥeff (r)ψi(r) =

[
−1

2
∇2 + Veff (r)

]
ψi(r) = εiψi(r) (2.23)
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we then expand the wave-functions into a set of orthonormal plane-waves :

ψi(r) =
∑
q

ci,q ×
1√
ω

exp(iq · r) ≡
∑
q

ci,q × |q〉 (2.24)

with the sets satisfying the ortho-normalization condition:

〈q′|q〉 ≡ 1

Ω

∫
Ω

dr exp(−iq′ · r)exp(−iq · r) = δq,q′ (2.25)

Using this plane-wave ansatz results in a new set of expressions by applying the Hamiltonian
of the system. For example the kinetic energy term becomes: 〈q′| − ∇2|q〉 = 1

2
|q|2δq,q′ while

the effective potential can be Fourier decomposed in the following way:

Veff (r) =
∑
m

Veff (Gm)exp(iGm · r) , Veff (G) =
1

Ωcell

∫
Ωcell

Veff (r)exp(−iG · r)dr (2.26)

so that it could be written as: 〈q′|Veff |q〉 =
∑

m Veff (Gm)δq′−q,Gm . If we define q = k+Gm,
and q′ = k + Gm′ , the expectation value of the Hamiltonian can be written as the following
diagonal matrix: ∑

m′

Hm,m′(k)ci,m′(k) = εi(k)ci,m(k) (2.27)

with Hm,m′(k) is defined as:

Hm,m′(k) = 〈k + Gm|Ĥeff |k + Gm′〉 =
~2

2me

|k + Gm|2δm,m′ + Veff (Gm −Gm′) (2.28)

At this point it is relevant to introduce the theorem, which is of significant importance for the
calculations of the band structure, as it makes use of one important lattice-symmetry, thereby
reformulating the Fourier decomposition of the wave-function in eq. 2.24, namely the Bloch
theorem. The theorem is the basis for formulation of the lattice-periodicity, which together
with formalism of the Fourier-space (k-space and the Brillioun zone) construct the foundation
of the plane-wave expansion in DFT. According to the theorem, each wavefunction that is the
eigenfunction of the Schrödinger equation (2.49) for a given k can be written be expanded:

ψi,k =
∑
m

ci,m(k)× 1√
Ω

exp(i(k + Gm) · r) = exp(ik · r) 1√
Ncell

ui,k(r) (2.29)

where the summation over q is limited q = k + Gm, and Ω = NcellΩcell, while:

ui,k(r) =
1√
Ωcell

=
∑
m

ci,m(k)exp(iGm · r) (2.30)

The above expression shows the periodicity of the crystal-lattice, which is the main part of
the Bloch theorem. Being the Fourier coefficients of the decomposition ui,k(r) also build an
orthonormal set:

1

Ωcell

∫
cell

dru∗i,k(r)ui′,k(r) =
∑
m

c∗i,m(k)ci′,m(k) = δi,i′ (2.31)

Furthermore, in limits of large Ω where the k points become a dense continuum, and the energy-
bands become continuous, the set of eigenstates and the eigenvalues i = 1, 2, .... for each k
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point may be found by diagonalizing the Hamiltonian in the basis k + Gm,m = 1, 2, ......

Next we need to talk about one of the most significant variations of DFT from the plane-wave
formalism, which find many applications in simulation of large systems. In our simulations, as
mentioned before, we have implemented the real-space implementation of the PAW formulations
of the DFT. Therefore, we approach the real-space implementation and formalism alongside
introducing the PAW formalism which is, mathematically speaking, a transformation formalism
of the PW-formulation, in order to carry out the simulations with more computational efficiency.
In real-space implementation, which is called the finite differences (FD) method, the real space
of the system, is turned into a grid. The total wavefunction is then evaluated at each of the
grid points, which are separated by a designated parameter(s) hx, hy, hz called the grid-spacing.
This formalism however is not an alternative to the k-point decomposition, as the periodic
systems still would have a k-point expansion of the wave-function, in addition to real space
grid-decomposition. going in between the spaces, namely the Fourier-space, and the real-space
is realized by using fast Fourier transform algorithm (FFT) on the variables. However, in the
calculation of the ground state density of the Kohn-Sham equations, in the second derivative
has the following form in the DF method [13]:[

∂2ψ

∂x2

]
xi,yj ,zk

=
m∑
−m

Cmψ(xi +mhx, yj, zk) +O(h2m+2) (2.32)

resulting in the Laplacian in a uniform 3D-grid being [39]:

[
∇2ψ

]
xi,yj ,zk

=
N∑

n=−N

N∑
m=−N

N∑
l=−N

Clmnψ(xi + lhx, yj +mhy, zk + nhz) (2.33)

In order to move on to the real-space grid implementation, we define the following notations,
and call the smooth partial wave functions φ̃ai (r), where the core state φ̃a,corei (r) are frozen, and
the index a denotes atom-centred [38]. Using these states and their projection operators the
transformation T can be written as [38]:

T = 1 +
∑
i

∑
a

(|φai 〉 − |φ̃ai 〉)〈p̃ai | (2.34)

where the atom-centered all-electron wavefunctions are defined as (n, l,m are the quantum
numbers used in Hydrogen-atom wave-functions):

φai (r) = φanl(r)YL(r) , φ̃ai (r) = φ̃anl(r)YL(r) (2.35)

with YL(r) as the real-valued spherical harmonics (L is the combined index of l,m). The atomic
augmentation sphere has the distance rac , as the cut-off radius, which sets the above functions
equal resulting in the linear transformation being T = 1 for r > rac . Therefore the projection
operators which we define for the smooth partial wavefunctions p̃ai = p̃anl(r)YL(r), would fulfill
the following relation:∫ rac

0

r2drp̃anl(r)φ̃
a
nl(r) = δnn′ , 〈p̃ai1|φ̃

a
i2
〉 = δi1i2 (2.36)

If we set the atomic position at Ra (Bravais lattice vector), the above condition becomes effec-
tive for |r−Ra| > rac
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Now we can expand the total atom-centered wavefunction Ψ (and its smooth pseudo version
Ψ̃) in terms of the all-electron (AE) and smooth pseudo (PS) partial waves φai (r), φ̃

a
i (r):

Ψa
n(r) =

∑
i

P a
inφ

a
i (r) , Ψ̃a

n(r) =
∑
i

P a
inφ̃

a
i (r) (2.37)

where the coefficient are given by P a
in = 〈p̃ai |Ψ̃n〉. Note that for |r −Ra| < rac , Ψn = Ψa

n and
Ψ̃n = Ψ̃a

n with Ψn(r) = T Ψ̃n(r). Therefore, the total wavefunction takes the following form:

Ψn = Ψ̃n +
∑
a

(Ψa
n − Ψ̃a

n) (2.38)

Also the PAW formalism gives the smooth-core PS electron densities, which has also contributions
from the atom-centred PS-density, as follows:

ñ(r) =
∑
n

fn|Ψ̃n(r)|2 +
∑
a

ñac(|r−Ra|) (2.39)

which is equal to the all-electron (AE) density n(r) outside the rac , where fn’s are the occupation
numbers according to the Fermi-Dirac distribution of electronic orbitals (0 − 2), and ñac(r) the
smooth version of the frozen core electron density nac(r). If we define the atomic density matrix
Da
i1i2

:

Da
i1i2

=
∑
n

〈Ψ̃n|p̃ai1〉fn〈p̃
a
i2
|Ψ̃n〉 (2.40)

using that, the atom-centered AE and PS densities could be written as:

na(r) =
∑
i1,i2

Da
i1i2
φai1(r)φ

a
i2

(r) + nac(r) , ña(r) =
∑
i1,i2

Da
i1i2
φ̃ai1(r)φ̃

a
i2

(r) + ñac(r) (2.41)

from which the full AE density could be written as (also using the Bravais lattice vector Ra of
atom a):

n(r) = ñ(r) +
∑
a

(na(r)− ña(r)) = ñ(r) +
∑
a

[na(r−Ra)− ña(r−Ra)] (2.42)

The form of the above total smooth PS wavefunction in eq. 2.38 could be further illustrated
using the fact that in the case of Brilloun zone sampling of the period structures, the same Bloch
theorem applies and that the only difference is that the wavefunction is in the real space, whore
periodicity is expressed in terms of the Bravais lattice vector r:

Ψ̃nk(r + R) = eik·RΨ̃nk(r) (2.43)

Having introduced the most important parameters in the grid-implementation of PAW for-
malism, in addition to the kinetic energy that we previously introduced, every other variable gets
defined in terms of these parameters, such as the electrostatic multipole moments and compen-
sation charges. However, here we define only the neutral charge density ρ̃(r), and it’s Poisson
equation, so that we can define the PAW energy functional. For a given compensation charge
Z̃a(r) we have for the neutral charge density [38]:

ρ̃(r) = ñ(r) +
∑
a

Z̃a(r−Ra) , ∇2ṽH = −4πρ̃ (2.44)
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with ṽH(r) as the pseudo-Hartree potential. Now we can introduce the PAW total energy,
which has a contribution from the ”soft” energy (which in turn is a function of the smooth PS
wavefunction):

E = Ẽ +
∑
a

(Ea − Ẽa) (2.45)

which has three separate energy terms, from which the two within the sum is called the atomic
corrections:

Ẽ =
∑
n

fn

∫
drΨ̃∗n(r)

(
−1

2
∇2

)
Ψ̃n(r) +

1

2

∫
drṽH(r)ρ̃(r)

+ Exc [ñ(r)] +

∫
drñ(r)

∑
a

va(|r−Ra|)
(2.46)

where va is an arbitrary localized potential which equal to zero for r > rac . For Ea we have:

Ea =
core∑
i

∫
drφa,corei (r)

(
−1

2
∇2

)
φa,corei (r) +

∑
i1i2

Da
i1i2

∫
drφai (r)

(
−1

2
∇2

)
φai (r)

+
1

2

∫
dr

∫
dr′

[na(r) + Za(r)][na(r′) + Za(r′)]

|r− r′|
+ Exc[n

a(r]

(2.47)

and for Ẽa:

Ẽa =
∑
i1i2

Da
i1i2

∫
drφ̃ai1(r)

(
−1

2
∇2

)
φ̃ai2(r)

+
1

2

∫
dr

∫
dr′

[ña(r) + Z̃a(r)][ña(r′) + Z̃a(r′)]

|r− r′|
+ Exc[ñ

a(r)] +

∫
drña(r)va(r)

(2.48)

The grid for the Ea and Ẽa is a radial one inside the augmentation sphere.

With this level of details in the PAW formalism in the real-space grid implementation, we
can now expand our formalism to localized atomic basis sets, which are the building block of
PAW-LCAO implementation. It should be said that the method discussed here is different than
the LCAO pseudo-potential method used in codes such as Siesta. In this formalism, we define
the PS wavefunction again as an expansion, however in terms of localized atomic orbital-like
functions |Φµ〉 [41]:

|Ψ̃n〉 =
∑
µ

cµn|Φµ〉 , ρµν =
∑
n

cµnfnc
∗
νn (2.49)

where cµn are variational parameters for the expansion and the fn again the occupation number.
Ans so with that PS density is given by:

ñ(r) =
∑
µν

Φ∗µ(r)Φν(r)ρνµ +
∑
a

ñac(r) (2.50)

In order to express the energy and the other quantities in LCAO we first express the following
three matrices in terms of basis functions:

Tµν = 〈Φµ| −
1

2
∇2|Φν〉 , P a

iµ = 〈p̃ai |Φµ〉 , Θµν = 〈Φµ|Φν〉 (2.51)
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using which the atomic density matrices, and the kinetic energy could be expressed as:

Da
ij =

∑
µν

P a
iµρµνP

a∗
jν ,

∑
n

fn〈Ψ̃n| −
1

2
∇2|Ψ̃n〉 =

∑
µν

Tµνρνµ (2.52)

and the potential term:

Vµν =

∫
Φ∗µ(r)ṽ(r)Φµ(r)dr (2.53)

where ṽ = ṽHa[ρ̃] + v + vxc[ñ]. Having defined the individual terms, now we can move on to
define the Hamiltonian, the eigenvalue and the Kohn-Sham equation.

Starting from the equivalent of the Kohn-Sham equation in the PAW-LCAO formalism for
the PS wavefunction H̃|Ψ̃n〉 = S|Ψ̃n〉εn, with S = T †T as the overlap operator, we can define
the discretized Hamiltonian [41]:

Hµν =
∂E

∂ρνµ
= Tµν + Vµν +

∑
aij

P a∗
iµ ∆Ha

ijP
a
jν , ∆Ha

ij =
∂E

∂Da
ji

(2.54)

where the matrix representation of the overlap operator would be given by:

Sµν = 〈Φµ|S|Φν〉 = Θµν +
∑
aij

P a∗
iµ ∆SaijP

a
jν (2.55)

using the parameters in eq. 2.51, the following orthogonality condition is expressed using:∑
µν

c∗µmSµνcνn = δmn (2.56)

and the generalized eigenvalue problem take the following form:∑
ν

Hµνcνn =
∑
ν

Sµνcνnεn (2.57)

where the Hamiltonian and the overlap matrix are the knowns, while cµn and the eigenvalues εn
the unknowns.

In contrast to the FD and the PW mode, the LCAO formalisn depends heavily on the
basis functions for the SCF loops, since there are no actual wavefunctions involved, other than
densities. As in the GPAW, the first initial guess for any SCF loop is done based on the LCAO
atomic basis-sets. These functions are atom-centred orbitals, composed of a radial part and the
spherical harmonics part. Given the quantum numbers n, l,m, Φnlm(r) = ϕnl(r)Ylm(r). The
strictly localized radial functions, which are all zero beyond the cut-off radius, are used to make
the Hamiltonian and the overlap matrix narrow in their representation. These basis functions
are categorizes and named as: single-zeta (SZ), single-zeta polarized (SZP), double-zeta (DZ),
double-zeta polarized (DZP), etc. The SZ refers the the first basis orbitals ϕAEnl (r), which are
obtained for each valance state by solving the Kohn-Sham equations for an isolated atom in a
coulomb potential with a certain cut-off radius ϕAEnl (r). The extra basis functions, (multiple
zeta) with the same angular momentum are constructed with the split-valance technique, which
are to improve the radial flexibility.
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2.1.4 Forces and Stress

Structural optimization (relaxation), is one of the most important and most popular simu-
lations that are done in the field of computer-based materials and solid state physics. The two
major methods are the DFT and analytical potential-based MD (molecular dynamics) codes.
The DFT codes are mostly written for the calculations of the electronic structure, and not atom-
ic/ionic relaxations, due to the fact that applying the DFT method to large structures would
become extremely expensive, to the point that not even the current supercomputers would be
able to properly execute the codes. That is why we turn to alternative methods as starting point,
some of which are directly based on DFT, such as the LCAO (local combination of the atomic
orbitals), or rely on analytical potentials, such LAMMPS, Atomistica, etc.

The most important factors for the structural optimization in both methods, are the calcu-
lations of the forces that act between the ions, and the stress between the atoms. In analytical
potentials, the motion and the forces obey the laws of classical Newtonian mechanics. While
the force is the time derivative of the classical momentum, Pi = d

dt
(mivi) = Fi, it is also the

gradient of the total analytical (classical) potential, F = − d
dr
Utot(r), which is defined in the

specific code. In [29] there are quite a few of the analytical potentials listed. Accordingly the
total energy, which would need to be minimized as the forces are minimized between the atoms,
has a typical form of [29]:

Esystem = Ebond + EvdW + ECoul︸ ︷︷ ︸
2−body

+Eval,angle︸ ︷︷ ︸
3−body

+ Etors︸︷︷︸
4−body

+ Eover︸ ︷︷ ︸
multi−body

+.... (2.58)

where Eval,angle is the angle strain term, Etors the torsional energy, and Eover the over-coordination
energy. As an example, in LAMMPS these terms translate into the following energy sums [64]:

E(r1, ....., rN) =
∑
i,j

Epair(ri, rj)+
∑
ij

Ebond(ri, rj)+
∑
ijk

Eangle(ri, rj, rk)+E4−body+... (2.59)

However the expression for the computation of the stress tensor using the classical potentials
is a bit more complicated, even though the stress in the classical continuum mechanics can
simply be written as [28]:

divσ + ρb = ρr̈ (2.60)

where the σ is the stress, ρ the mass density, and b the body force density. The second derivative
denotes the derivative of the displacement with respect to the origin. The expression for the
computational stress tensor is basically derived from the following equation of pressure [27]:

P =
NkBT

V
+
〈W 〉
3V

(2.61)

where 〈W 〉 is the ensemble average of the internal virial, and it represents the contribution of
the total virial due to forces acting between the atoms:

W (rN) = −3V
dU

dV
, rN = r1, ....., rN (2.62)

This scalar virial which is related to the global virial tenor W by W = TrW, depends like the
potential on the atomic positions ri.
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Due to the fact that the forces are defined as, Fi = − d
dri
U(rN) the correct form of the virial

under periodic boundary conditions have been shown to be:

W (rN) =
N∑
i=1

ri · Fi − 3V

(
∂U

∂V

)
rN

(2.63)

Even though the above expression represents a standard expression for the virial derived from
the continuum and classical mechanics, a more general expression involving also the statistical
mechanics is given by:

W (rN) =
N∑
i=1

ri · Fi +
∑
n∈Z3

Hn ·
N∑
j=1

F ′in (2.64)

where F ′in is not the total force on an atoms, but the partial force on the atom located at
ri + Hn. Finally, using this and a few relations to reform the expression, for the total virial
tensor we get:

W(rN) =
∑
n∈Z3

N∑
i=1

N∑
j>i

Fijn ⊗ rijn +
∑
n∈Z3

′
N∑
i=1

Fiin ⊗ riin (2.65)

And with that we write the total stress tensor P as [27]:

P =
1

V
〈
N∑
i=1

mivi ⊗ vi + W(rN)〉 (2.66)

Now we compare these expression with their equivalents in the DFT formalism. Obviously
in DFT, the total energy functional of the ground state is obtained using a variational principle,
which is known as the Hohenberg-Kohn theorem [30]:

E = E[n0(−→r )] = min {E[(−→r )]} ,
δE[n(−→r )]

δ(−→r )
(2.67)

At this point, directly relevant for the calculation of the forces, it is not the Kohn-Sham equations,
but a theorem known as the Hellmann-Feynman theorem. Using this theorem the following
expression results in the calculation of the forces acting on a given atom located at the ionic

coordinates
−→
R = (

−→
R I) [30]:

−
−→
F I = ∇IE0(

−→
R ) =

∂

∂
−→
R
〈Ψ0(
−→
R )|H(

−→
R )|〈Ψ0(

−→
R )〉 = 〈Ψ0(

−→
R )|∇IH(

−→
R )|〈Ψ0(

−→
R )〉 (2.68)

namely the expectation of the gradient of the electronic Hamiltonian. Note that the terms such
as 〈∇IΨ0|H|Ψ0〉 = 〈Ψ0|H|Ψ0∇I〉 = 0 vanish due to the variational principle.

Similarly the stress tensor σij, which defines the variation of the energy functional with respect
to the infinitesimal distortion [30], is also given by the above theorem. Namely for distortion of
the basis vector a′(k),i =

∑
j(δij + tij)a(k),i, we have for the stress tensor:

σij = −
∂E(−→a ′(k))

∂tij
= −〈Ψ0|

∂

∂tij
H(−→a ′(k))|Ψ0〉 (2.69)

where tij is the directional strain.
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2.2 Density Functional Theory of Electronic Properties

2.2.1 Exchange-Correlation Functionals

The core of the DFT calculations lies in the form and the choice of the exchange-correlation
potential (functional), as this is the differentiating part, which separates DFT from the its
predecessors such the Hartee Fock, or Thomas-Fermi theory. One of the earliest types of XC-
functional that was proposed (by Kohn and Sham) was the type which would characterize the
electronic structure of solids as a homogeneous Fermi gas, and therefore the interactions as local.
This model, known as the local densities approximations (LDA) which was extended to local spin
densities approximation (LSDA) was proposed to be an integral over all space, while being local
in terms of exchange and correlation energy density [13]

ELSDA
xc [n↑, n↓] =

∫
d3rn(r)εhomxc (n↑(r, n↓(r))

=

∫
d3rn(r)[εhomx (n↑(r), n↓(r)) + εhomc (n↑(r), n↓(r))]

(2.70)

The logic behind the LDA is that the effect of exchange and correlation is short. while
this might be a good approximation for homogeneous free electron gas (as in the metals), for
solids with covalant bonds, this local approximation are not so accurate. To go beyond the local
approximations, one can first include the magnitude of the gradient of the density |∇nσ|. With
that the generalized-gradient approximations (GGA) expansion of the XC-functional is given by
the following expression [13]

EGGA
xc [n↑, n↓] =

∫
d3rn(r)εxc(n

↑, n↓, |∇n↑|, |∇n↓|, ...)

≡
∫

d3rn(r)εhomx (r)Fxc(n
↑, n↓, |n↑|, |n↓|, ...),

(2.71)

where εhomx (n) is the exchange energy of the unpolarized electron gas, and Fxc a dimensionless
function.

For the exchange functional of the same unpolarized system of density n(r), the following
relation (spin scaling) holds:

Ex[n
↑, n↓] =

1

2
[Ex[2n

↑] + Ex[2n
↓] (2.72)

For exchange we need to consider the expansion of the spin-unpolarized Fx(n, |∇n|)

Fx = 1 +
10

81
s2

1 +
146

2025
s2

2 + ..... (2.73)

where:

sm =
|∇mn|

(2kF )mn
=

|∇mn|
2m(3π2)m/3(n)(1+m/3)

(2.74)

with the kF = 3(2π/3)1/2r−1
s , and rs the average distance between the atoms. The factor Fx

has different shape for different derivations of the GGA-potential, such as the PBE, PW91, and
B88. These variations differ significantly, where s is large (s ≥ 3). Finally, we have the gradient
expansion of the correlation in the lowest order as follows:

Fc =
εLDAc (n)

εLDAx (n)
(1− 0.219, 51s2

1 + ...), (2.75)
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Having defined the functionals for the LDA and GGA potentials, it is possible to derive the
explicit form of the XC-potentials for these functionals. The functionals are functions of local
densities n(σ, r) and their gradients at r, and so for LDA we have:

δExc[n] =
∑
σ

∫
dr

[
εhomxc + n

∂εhomxc

∂nσ

]
r,σ

δn(r, σ) (2.76)

Therefore the XC-potential:

V σ
xc(r) =

[
εhomxc + n

∂εhomxc

∂nσ

]
r,σ

(2.77)

Taking the simple derivatives the following are the separate terms of the exchange and correlation
for LDA:

V σ
x (r) =

4

3
εhomx (n(r, σ)) , Vc(rs) = εc(rs)−

rs
3

dεc(rs)

drs
(2.78)

There are a variety of expressions, such as Hedin-Lundqvist (HL), and Perdew-Zunger (PZ),
which give explicit forms for the correlation energy.

For GGA we proceed up to the linear order variation of the functional with δ∇n = ∇δn:

δExc[n] =
∑
σ

∫
dr

[
εxc + n

∂εxc
∂nσ

+ n
∂εxc
∂∇nσ

∇
]
r,σ

(2.79)

therefore by partial integration of the last differential operator we get for the XC-potential:

V σ
xc(r) =

[
εxc + n

∂εxc
∂nσ
−∇

(
n
∂εxc
∂∇nσ

)]
r,σ

(2.80)

Here we further discuss the explicit Perdew-Burke-Ernzerdorf (PBE) form of the GGA correlation
potential, in which the dimensionless Fx(0) = 1 for the recovery of the local approximations,
and:

Fx(s) = 1 + κ− κ/(1 + µs2/κ) (2.81)

with the value of κ = 0.0804 chosen to satisfy the Lieb-Oxford inequality lower bound, and
µ = 0.21951 to cancel the correlation term. For the correlation functional we have:

EGGA−PBE
c [n↑, n↓] =

∫
d3rn

[
εhomc (rs, ζ) +H(rs, ζ, t)

]
(2.82)

where t is a dimensionless gradient t = |∇n|/(2φkTFn) and rs the local value of the density
parameter, with φ = ((1 + ζ)2/3 + (1− ζ)2/3)/2. The expression for H is given by:

H =
e2

a0

γφ3log

(
1 +

β

γ
t2

1 + At2

1 + At2 + A2t4

)
(2.83)

with e2/a0 = 1, a0 = Bohr radius, and A:

A =
β

γ

[
exp

(
−εhomc

γφ3 e2

a0

)
− 1

]−1

(2.84)

Having introduced the two most common forms of XC-potential, we can now briefly mention
some more advanced XC-potentials specifically available in GPAW. Even though the extent of
these advanced and hybrid functionals requires an entire chapter to describe, here we suffice to
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describing one special functional GLLB-SC, namely the Gauss-Lobatto-Legendre-Birkhoff solids
corrected approximation of the exact exchange EXX [43]. For this purpose we start from the
exact exchange functional defined in GPAW, which is claimed to be the first real-space PAW
implementation of the functional. The Fock exact exchange is given by [40]:

EXX = −1

2

∑
ijσ

fiσfjσK
C
ijσ,ijσ (2.85)

with i, j as the indices of states and Σ as the spin. The Coulomb matrix is therefore given by:

KC
ijσ1,klσ2

= (nijσ1|nklσ2) =

∫
drdr′

|r− r′|
n∗ijσ1(r)nklσ2(r

′) (2.86)

with nijσ(r) = ψ∗iσψjσ(r) as the density-matrix element of spin σ. The PAW partitioning of the
AE and PS with the atom-centred corrections naturally apply to this density-matrix elements:

nijσ = ñijσ +
∑
a

(nijσ − ñaijσ) (2.87)

here once again we make use of the compensation charge in order to eliminate the cross terms
between different augmentation spheres, as in the PAW formalism:

ρ̃ij = ñij +
∑
a

Z̃a
ij , Z̃a

ij(r) =
∑
lm

Q1
lm,ij ĝ

a
lm(r) (2.88)

with ρ̃ij as the smooth compensated pair density. This in turn results in the Coulomb matrix
partitioning into smooth part and the local corrections:

KC
ij,kl = (ρ̃ij|ρ̃kl) +

∑
a

∆KC,a
ij,kl (2.89)

The local corrections term, which is a limit of difference of two Coulomb matrices KC,a
ij,kl, is an

import term in linear response TDDFT formalism, and therefore we will elaborate later on its
exact form.

For solving the Coulomb integral over the kernel 1/|r − r′|, the Poisson equation is solved
∇2ṽij = −4πρ̃ij. The Coulomb matrix in eq. 2.86, which could be written as the expansion
coefficient, also includes the core-core interaction, which are calculated once for all the atoms
with frozen core orbitals. Now we can further explain the Fock operator, corresponding the exact
exchange energy functional. The operator itself does not have an explicit form in real-space grid,
as it is a non-local operator, however it’s action is very similar to a projector operator acting on
a PS wavefunction:

fn ˆ̃vF |ψ̃n〉 = ∂EXX/∂〈ψ̃n| = −
∑
m

fmṽnm(r)|ψ̃m〉+
∑
a

∑
i

|p̃ai 〉∆vFa[ṽnm,
{
P a
jm

}
] (2.90)

The first part of the above equation−
∑

m fmṽnm(r)|ψ̃m〉, which deals with the pseudo-quantities,
can be accurately solved on the coarse real-space grid, making a converged EXX SCF loops pos-
sible at moderately high computational cost. However the solution of applying the Fock operator
requires solving the Poisson equation for all the pairs of orbitals, making it in general compu-
tationally expensive. The comparison of the implementation in PBE and PBE0 however, with
the plane-wave PAW implemented in codes such as VASP, and the experimental values, indicate
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good agreement [40], despite heavy computational costs.

For that reason there exist the GLLB approximation of the exact exchange Exx, which is
later one modified into GLLB-SC. In GLLB the exchange potential is separated into [43]:

vx(r) = vS(r) + vresp(r) (2.91)

where the vS is approximated using the GGA exchange energy density εGGAx , vS(r) = 2εGGAx (r;n)
n(r)

.
The response part can be approximated using the common denominator approximation, and
exchange scaling relations:

vresp(r) =
occ∑
i

K[n]
√
εr − εi

|ψi(r)|2

n(r)
, K =

8
√

2

3π2
≈ 0.382 (2.92)

Based on this scheme we will extend this approximation into GLLB-SC, in which the whole
exchange-correlation is separated into two parts, both of which also contain additionally, a
contribution from PBEsol [43]. In the quasi-particle band gap there are two terms, one of which
leads to the necessity of using the GLLB-SC for a more correct calculation of the band gap of
an N -electron system (with I as the ionization potential and A the electron affinity) [43]:

EQP
gap = I − A = E[nN−1]− 2E[nN ] + E[nN+1] = EKS

gap + ∆xc (2.93)

The first term EKS
gap = εN+1− εN is the Kohn-Sham band gap, and the second term is, which is

called the derivative discontinuity, is a bang gap discontinuity which emerges at integer occupa-
tions J as the function r:

∆xc = ∆xc(r) = lim
δ→0

[vxc(r; J + δ)− vxc(r; J − δ)] (2.94)

The exchange correlation potential vxc can be approximated similar to GLLB by spliting into
two parts:

vxc(r) = vS(r) + vresp(r) (2.95)

which are in turn approximated using the PBEsol as follows:

vS(r) = 2ε(PBEsol)xc (r) , vresp(r) =
occ∑
i

wi
|ψi(r)|2

n(r)
(2.96)

where the coefficient wi are calculated using the computationally heavy Fock operator wi =
〈i|vx(r)− v̂Fx |i〉. The exchange potential in the previous equation was first approximated using
the GLLB approximation [44], in which exchange scaling and asymptotic behaviour in addition
to fitting to the homogeneous electron gas (HEG) was used. If we shift the potential wi by
a constant, it should have not any physical meaning. If we further take the highest occupied
eigenvalue εH as reference and we set wi = f(εr − εi), with f(0) = 0 = wH , we realise that:

wi = Kx

√
εr − εi (2.97)

due to the scaling properties of f , εi, and vx as follows:

vx[nλ](r) = λvx[n](λr) , nλ = λ3n(λr) , εi[nλ] = λ2εi[n(r)] (2.98)

so that for f(λ2(εr−εi)) = λf(εr−εi) taking the response potential of HEG to be vresp = kF/2π,
with kF = (3π2n)1/3 the approximated response potential becomes:

vHEGresp =
V

8π3

∫
|k|<kf

dkKx

√
εr − εk , εr − εk = (k2

F/2 + vKS)− (k2/2 + vKS) (2.99)
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by setting vHEGresp = kF/2π the prefactor which is obtained by electron gas fit is calculated

to be, Kx = 8
√

2/3π2 ≈ 0.382. In GLLB approximation, this same fitting scheme is used
for the correlation part of the response to get a prefactor Kc, but in GLLB-SC, PBEsol, and
GGA-functionals are used for vc, scr and vc,reps so that:

vPBEsolc,reps = vPBEsolc (r)− 2εPBEsolc (r) (2.100)

with the full GLLB-SC potential is given by [43]:

vGLLB−SC(r) = 2εPBEsolxc (r) +
occ∑
i

Kx

√
εr − εi

|ψi(r)|2

n(r)
+ vPBEsolc,resp (r) (2.101)

Now returning to the gap in the spectrum of the quasi-particle, the discontinuity in GLLB-SC
is similar to GLLB, with the difference that in GLLB the discontinuity comes with the coefficients
wi. As we said the discontinuity happens for integer occupations j of the N -electron system,
and so the reference energy εr splits into two values for particle number N when it is close to
the integers J : εJ , for N ≤ J , and εJ+1 for N > J . What happens here is that for N > J the
lowest unoccupied molecular orbital (LUMO) becomes the highest occupied molecular orbital
(HUMO), and so in this limit, is where the discontinuity happens:

∆x,reps(r) =
N∑
i

Kx(
√
εN+1 − εi −

√
εN − εi)

|ψi(r)|2

n(r)
(2.102)

The above approximation is not a constant, and it would affect the wavefunction. That is why
it should be compared with first order perturbation theory expansion:

∆x,resp = 〈ΨN+1|∆GLLB
x,resp |ΨN+1〉 (2.103)

The first approximation to the derivative discontinuity was derived by solving the vxc from the
Sham-Schlüter equation [43]. However, a better approximation of vxc was obtained my Mark
Casida in terms of the self-energy:

vxc(r) =
N∑
i

Re
{
ψi(r)Σ̂

xc(εi)ψi(r)
}

n(r)
+

N∑
i

〈
ψi|vxc − Σ̂xc(εi)|ψi

〉
|ψi(r)|2

n(r)
(2.104)

With that taking into account the equivalence between eq. 2.97 and 〈i|vx(r)− v̂Fx |i〉, the GLLB,
and GLLB-SC can be thought of the following matrix element approximation:〈

ψi|vx − Σ̂x(εi)|ψi
〉
≈ Kx

√
εr − εi (2.105)

2.2.2 STM Theory & Simulation

During the work of this thesis, half of the effort has been concentrated on coming up with
geometrical structures, that would first successfully simulate the confinement of quantum surface
states of graphene, and further possibly resemble and encourage the creation of quantum corrals
on graphene, as originally done on the surface of a metal by adatoms [6]. However, there are
two constrains that need to be mentioned here in order to clarify the goals and achievements.
First is that the creation of actual quantum corrals, as were done on a metal surface using a
STM, requires geometrical closed structures that have a couple of hundred Ångström (100-200
Å) in diameter. These structures are created using at least 60 Si-atoms adatoms on the surface
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of the metal, and there is in principle no constrains as to where these atoms could be positioned.
Secondly, as the formalism of the creation of quantum corrals indicate [6], in order for a success-
ful creation of the wave-like fluctuations in the LDOS, a material STM-tip needs to be inserted
onto the surface of the probe, at which point the electronic states emanate from the tip all the
way onto the barriers (the Si-lines) and bounce back towards the tip, which then results in an
interference pattern on the surface, and creates a position dependent fluctuations in the LDOS.
This process is best described by the Bardeen’s approach and NEGF formalism [6], [42]

Taking these two actual constrains into account, one must consider the fact that in our
simulations, we are dealing with structures, that are only about 20-40 Å in diameter, due to
the limitations of relaxing the structures even in LCAO mode in DFT. Namely, any structures
of 100 Å across cannot be relaxed in DFT-LCAO. Secondly, in regard to the latter constrain, in
our simulations we used a STM package which was formulated based on the Tersoff-Hamman
(TH) approximation. In this formalism, the STM tip is reduced to a s orbital, and there is no
interference between the tip-states and the surface states [5]. Therefore, this model cannot fully
simulate the quantum corrals. However, as the results will show, the observation of confined
surface quantum states were successful using the TH approximation STM simulations, due to
the fact that the closed Si-structures had induced enough large electric dipole moment, so that a
standalone states were created without any external interference of an external potential (namely
the STM tip).

The TH theory is based on the Bardeen’s theory of tunnelling. As mentioned before, the
particular characteristic of the TH model, is that the tip-states are factorized out of the problem
by representing the tip by a potential and an arbitrarily localized wave-function. Geometrically,
it resembles a point and as later on we shall see, it is represented by a s orbital. Therefore, in
this model the STM image can only be attributed to the properties of the surface states alone.
The tunnelling current, based on the Bardeen model, summing the currents from tip to surface
and from surface to tip is given by [6]:

I =
4πe

~
∑
νµ

[
f(ES

µ − ES
F )− f(ET

ν − ET
F )
]
|Mµν |2δ(ET

ν − ES
µ − eV ) (2.106)

where f the is the Fermi-Dirac distribution, Mµν the tunnelling matrix and V the bias voltage,

and ES,T
F the Fermi energy of the surface/tip (ES,T

µ,ν are the energies eigenvalues of ψS,Tµ,ν ).
Replacing the the sum with an integral and using a smaller measurement resolution than kBT ,
we can rewrite the above equation in terms of densities, and use a step function instead of the
Fermi-Dirac distribution:

I =
4πe

~

∫ eV

0

dεnT (ET
F − eV + ε)nS(ES

F + ε)|M |2 (2.107)

where nT and nS are the tip and the substrate DOS’s. Both of the surface and tip states
contribute to the tunnelling current and it would be impossible to omit one from the above
equation, rather one could approximate one in an arbitrary fashion. Taking a small bias voltage
we can evaluate the above integral with:

I =
4πe

~
V nT (ET

F )nS(ES
F )|M |2 (2.108)

The corresponding differential conductivity is given by:

dI

dV
=

4πe

~
nT (ET

F )nS(ES
F + eV )|M(ES

F + eV,ET
F )|2 (2.109)
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Which illustrates the ability of the STM to access the occupied and unoccupied states of the
substrate by changing the sign of the bias voltage.

Now we turn to describing the tunnelling matrix Mµν = 〈ψTν |UT |ψSµ 〉 by surface integral:

Mµν =

∫
z>z0

ψSµ

(
ET
ν +

~2

2m

∂2

∂z2

)
︸ ︷︷ ︸

UT

ψT∗ν d3r (2.110)

where UT is the tip potential. Taking ES
µ = ET

ν due to the elastic tunnelling, and realising that
the sample potential is zero, we get:

Mµν = − ~
2m

∫
z>z0

(
ψT∗ν

∂2ψTµ
∂z2

− ψ∗Sµ
∂2ψTν
∂z2

)
d3r (2.111)

Taking into account the following identity:

ψT∗ν
∂2ψSµ
∂z2

− ψSµ
∂2ψT∗ν
∂z2

=
∂

∂z

[
ψT∗µ

∂ψSν
∂z
− ψSν

∂ψSµ
∂z

]
dxdy (2.112)

The above one dimensional equation, which is the surface integral of two electrodes, contains
only information about the wavefunctions over the surface between the two electrodes, and it
can be extended to three dimensions:

Mµν =
~

2m

∫
ΩT

[
ψSµ∆ψT∗ν − ψT∗ν ∆ψSµ

]
· d−→r =

~
2m

∫
Σ

[
ψSµ
−→
∇ψT∗ν − ψT∗ν

−→
∇ψSµ

]
· d
−→
S (2.113)

The energy dependence of the tunnelling matrix must not be overlooked, as the energy
scale in STS experiments easily exceeds ±2 eV. Therefore, we no turn to define M in terms of
the eigenvalues of the tip and substrate wavefunctions. In the region between the tip and the
substrate we have:

ψSµ (z) = ψSµ (0)e−χ
S
µz , ψSµ (z) = ψSµ (s)eχ

T
ν z−s (2.114)

where χSµ =
√

2m|ES
µ |/~ = χTν due to ES

µ = ET
ν , which is the result of elastic tunnelling. Using

these relations the tunnelling matrix can be written as:

Mµν =
~2

2m
e−χ

S
µs

∫
z=z0

2χSµψ
S
µ (0)ψTν (s)dxdy (2.115)

As we can see the argument in the integral is a constant, due to the fact that the ψTν (s) is the
value of the tip-wavefunction at its surface. The above matrix element corresponds to constant
height STM imaging since z = z0 the integral is position independent, and the energy depen-
dence comes from the decay constant χSµ . The main contributions to the energy spectrum, as
integrated in eq. 2.107, come from the energy spectrum of the tip near the Fermi level, and the
substrate’s empty states, ∼ eV above the Fermi level.

Now we are in the position to derive the final TH approximation, which is an approximation
of the tunnelling matrix based on the used atomic orbital for the tip, which we here take it to be
an s-orbital. The mentioned functions above, the tip and the surface near the Fermi obey the
following Schrödinger equation:

− ~2

2m
∆ψ = −Φψ , ∆ψ = χ2ψ (2.116)
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the s-orbital approximation of the tip delivers two solutions for the above equation, regular and
irregular, from which we are interested in the regular one, namely the following modified Bessel
function:

ψTν (−→r −
−→
R T ) = Ck

(1)
0 (χ|−→r −

−→
R T |) = C

e−χ|
−→r −
−→
RT |

χ|−→r −
−→
R T |

(2.117)

where C is a normalization constant. Using this description for the tip wavefunction, results in
the following expression for the tunnelling matrix:

Mµν(
−→
R T ) =

C~2

2m

∫
ΩT[

k
(1)
0 (χ|−→r −

−→
R T |)∆ψSµ (−→r −

−→
R T )− ψSµ (−→r −

−→
R T )∆k

(1)
0 (χ|−→r −

−→
R T |)

]
d−→r

(2.118)

Noticing the singularity of the second part if the integral ar −→r =
−→
R and the relationship between

the Green function and the modified Bessel function G(−→r − −→r ′) = χk
(1)
0 (χ|−→r − −→r ′|), where

∆G(−→r −−→r ′) = −4πδ(−→r −−→r ′), we rewrite the ∆k0 in the above integral as (χ2k
(1)
0 −4πδ/χ),

which would reduce the tunnelling matrix, approximated with an s-orbital wavefunction into the
following expression:

Mµν(
−→
R T ) = −2πC~2

χm
ψSµ (
−→
R T ) (2.119)

The above result is an approximation of an spherical tip around the point RT with a point, so
that the tunnelling matrix is only proportional to the sample wavefunction at the highest point
of the surface. Fig. 2.2 illustrates the original Bardeen model of the spherical tip:

Figure 2.2: Estimation of the tip current by using the closest point to the surface where the
current density is the highest. [6]

from which, it could be seen that in order to approximate the entire sphere, only the closest point
to the surface could be taken into consideration and replaced with an atomic orbital, which in
our case is an s-orbital. From the above expression we can now calculate the tunnelling current:

I(
−→
R T , V ) =

16π3C2~3e

χ2m2
nT
∫ eV

0

dεnS(
−→
R T , E

S
F + ε) (2.120)
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where nT is a constant, and nS(
−→
R T , ε) =

∑
µ δ(E

S
µ − ε)|ψSµ (

−→
R T )|2. Using these the final form

of the tunnelling current would be:

I(
−→
R T , V ) =

16π3C2~3e

χ2m2
nT
∫ ESF+eV

ESF

dε
∑
µ

δ(ES
µ − ε)|ψSµ (

−→
R T )|2 (2.121)

from which and the differential conductivity is:

dI(
−→
R T , V )

dV
=

16π3C2~3e

χ2m2
nT
∑
µ

δ(ES
µ − ε)|ψSµ (

−→
R T )|2 (2.122)

Turning to our theory of quantum corrals in the multi-scattering formalism, which we in-
troduced in section 1.3, we note that the tunnelling current is proportional to the integral of
LDOS [15]

I ∝
∫ EF+eV

EF

nT (ε)LDOS(RT , ε)dε (2.123)

Therefore, we have for the LDOS and the differential conductivity:

dI

dV
(
−→
R T , V ) ∝ LDOS(

−→
R T , ε) ∝

∑
µ

δ(ES
µ − ε)|ψSµ (

−→
R T )|2 (2.124)

from eq. 1.34 we know that LDOS(r, ε) ∝ −(1/π)Im[Gret(r, r, ε)], and setting
−→
R T = r as free

position, we get:

− 1

π
Im[Gret(r, r, ε)] =

∑
µ

δ(ES
µ − ε)|ψSµ (r)|2 (2.125)

where the retarded Green’s function may be written in time domain as [6]:

Gret(r′, r, t) = −iθ(t)
∑
µ

〈r′|e−iESµ t/~|ψSµ 〉〈ψSµ |r〉 (2.126)

and in the energy domain by taking the Fourier transform:

Gret(r′, r, ε) =
∑
µ

ψS∗µ (r)ψSµ (r′)

ε− ES
µ + iδ

(2.127)

meaning that the surface states and their eigenvalues have to be the eigenvalues and the eigen-
functions of the scattering Hamiltonian, and it’s relation to the Green’s function. In conclusion,
we see that the scattering theory using the Green’s function, that we have already talked about
in section 1.3 must be related to the surface states in the way that we described here, in order for
a quantum corral to be observed using a TH-STM model. Even if the scattering is of the lowest
order, some sort of confined state may still be observable in this formalism, which is the basis of
our STM simulations. However, a complete quantum corral image can only be produced when a
full multi-scattering takes place, and the tip states are there to interfere with the backscattered
surface states constructively. And this is only possible in the non-equilibrium Green function
formalism of STM, and STM simulations that are based on NEGF.
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2.3 Time-Dependent Density Functional Theory

2.3.1 Linear Density Dielectric Response

In this section we discuss the theory of optical excitations and the dielectric as well as the
EELS spectra of period systems in time-dependent DFT. All of these spectra are obtained from a
frequency-dependent linear density-response function evaluated at real-space positions r, which
has been subject to a time-dependent perturbation of frequency ω from position r′. It must
be mentioned here, that there are a varieties of formalism regarding the linear response in den-
sity functional perturbation theory (DFPT), such as the Green’s function approach (and other
methods) by S. Baroni & R. Resta, or the Sternheimer linear response [51]. But the formalism
that we introduce here are exclusively subject of TD-DFT, despite some similarities, which by
extension into frequency independent exchange-correlation kernels, results in Casida’s equation.
As we shall see later, linear response from Casida’s equation is a powerful method of calculating
optical spectra for large molecules in a real-grid based formalism. Therefore, we are here in
principle discussing the plane-wave version of the Casida’s equation which is known as the linear
response TDDFT (LrTDDFT).

The induced density from the linear density response function χ(r′, r, ω) is given by the
following equation:

δn(r, ω) =

∫
drχ(r′, r, ω)δVext(r

′, ω) (2.128)

which leads to the central concept in TDDFT:

χ(r′, r, ω) =
δn(r, ω)

δVext(r′, ω)
(2.129)

For periodic systems, where the sampling of the first Brilloun zone is required, the response
function can be written in terms of it generic form χGG′(q, ω):

χ(r′, r, ω) =
1

NqΩ

BZ∑
q

∑
GG′

ei(q+G)·rχGG′(q, ω)e−i(q+G)·r (2.130)

where G, and G′ are the reciprocal lattice vectors, q is the wave-vector in the first Brilloun zone,
and Ω the volume of the real-space primitive-cell. The evaluation of the optical properties using
the above response function are done in RPA and ALDA (adiabatic LDA) level in GPAW, but
this method is not quiet accurate for the optical excitations, since the electron-hole attraction
are not properly taken into consideration. However, for the dielectric properties of the extended
systems, this method has produced very accurate results which have been reported to be in good
agreement with EELS experiments for bulk-metal surface, graphene-based systems, semiconduc-
tors, and superconductors.

Recalling the PAW formalism, we first note that all-electron expectation value of a semi-local
operator is given by:

〈ψnk|A|ψnk〉 = 〈ψ̃nk|A|ψ̃nk〉+
∑
a,ij

〈ψ̃nk|p̃ai 〉〈p̃ai |ψ̃nk〉 ×
[
〈φai |A|φaj 〉 − 〈φ̃ai |A|φ̃aj 〉

]
(2.131)

The point that the above expression makes clear regarding the expectation values, is that there
is always the atomic PAW corrections to any expectation values, given by the second term
in the sum. This is due to the fact that one has access to the frozen core states in PAW
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formalism, and for systems of localized d and f electrons the PAW formalism offers a distinct
advantage in calculation the linear response. Having said that, which is the relevant concept
for the calculation of the Kohn-Sham response function, one can obtain the interacting density
function χGG′(q, ω) from the non-interaction Kohn-Sham density response function χ0

GG′(q, ω),
and an electron-electron interaction kernel, which in our case can either be evaluated in ALDA,
or RPA level:

χGG′(q, ω) = χ0
GG′(q, ω) +

∑
G1G2

χ0
GG′(q, ω)KG1G2χG2G′(q, ω) (2.132)

The above equation is Dyson-like equation, which if reformed would be:

χ = (1− χ0K)−1χ0 (2.133)

which maybe solved by gaining the right-hand side from the ground state. Furthermore, the
two terms that are introduced in the above equation, namely the Kohn-Sham density response
function χ0

GG′(q, ω), and the interaction kernel KG1G2 have an extensive definition, which will
briefly illustrate here.

First the non-interaction Kohn-Sham response function in it’s Bloch representation is given
by:

χ0
GG′(q, ω) =

2

Ω

∑
k,nn′

(fnk − fn′k+q)
nnk,n′k+q(G)n∗nk,n′k+q(G′)

ω + εnk − εn′k+q + iη
(2.134)

where the PAW term:
nnk,n′k+q(G) = 〈ψnk|e−i(q+G)·r|ψnk+q〉 (2.135)

which is known as the charge-density matrix, while the plane-wave term e−ik·r, k = q + G are
expanded as follows:

e−ik·r = 4π
∑
lm

iljl(kr)Ylm(r̂)Ylm(k̂) (2.136)

εnk are the energy eigenvalues of the all-electron wave-function ψnk, and fnk are the (Fermi-
Dirac) occupation numbers. The other representation of the Kohn-Sham response function,
which is in real-space like the response function in eq. 2.129, can be obtained from the first
order perturbation theory [51]

χ0(r′, r, ω) = lim
κ→0+

∑
a,i

(ni − na)
[
φ∗i (r)φa(r)φi(r

′)φ∗a(r
′)

ω − (εa − εi) + iη
− φi(r)φ

∗
a(r)φa(r

′)φ∗i (r
′)

ω − (εa − εi) + iη

]
(2.137)

where i’s are the occupied and a’s the unoccupied Kohn-Sham orbitals, with n’s as their respec-
tive occupation number. Therefore, as we can see the Kohn-Sham response function as given in
the perturbation theory and in TDDFT are very close to each other. As we shall see, the main
difference in calculation of the total density response function lies in the form of the eigenvalue
problem (the Hamiltonian), that is set to be solved as a result of the external perturbation or
field (Vext).

Secondly, the interaction kernel KG1G2(q), which has a Coulomb part and an XC-part, has
different form in ALDA compared to RPA. Given the diagonal Coulomb kernel in Bloch repre-
sentation [48]:

KC
G1G2

(q) =
4π

|q + G1|2
δG1G2 (2.138)
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the XC-kernel in ALDA is given by [48]:

Kxc−ALDA
G1G2

(q) =
1

Ω

∫
drfxc [n(r)] e−i(G1−G2)·r (2.139)

where f [52]

fALDAxc [n(r)] =
∂2Exc[n]

∂n2
|n0(r) =

dvLDAxc

dn
|n0(r) (2.140)

while the RPA interaction kernel, as it is used also in Casida’s equation in real-space, is given
by [49]

KRPA
ijσ,kqτ =

∫
dr1dr2

n∗ijσ(r1)nkqτ (r2)

|r1 − r2|
= (nijσ|nkqτ ) (2.141)

With that we can now introduce the relevant quantities in dielectric calculations, which starts
with the dielectric function itself in reciprocal space defined as:

ε−1
GG′(q, ω) = δGG′ +

4π

|q + G|2
χGG′(q, ω) (2.142)

The frequency-dependent dielectric function in real-space is then obtained using the FFT al-
gorithm, given in general as ε−1(r, r′, ω) = δVtot(r, ω)/δVext(r

′, ω). The macroscopic dielectric
function, which can be calculated with local field effects or without it is given:

W − LFC εM(q, ω) =
1

ε−1
00 (q, ω)

, Wo− LFC εM(q, ω) = ε00(q, ω) (2.143)

Furthermore, the optical-absorption spectrum ABS the EELS spectrum are given by:

EELS = −Im
1

εM(q, ω)
, ABS = ImεM(q→ 0, ω) (2.144)

while the macroscopic dielectric function itself can be calculated from the polarizability, ImεM(q, ω) =
4πImαM(q, ω).

2.3.2 Linear Response: Casida’s Method & Time Propagation

With the formalism of the linear density response formalism in TDDFT at hand, we now
move to another set of implementations of linear response within the TDDFT framework, which
have more to do with the time-dependency of the Kohn-Sham formalism, as the evolution of
the dipole-moment with time becomes the central issue. However, a method named after Mark
Casida, has proven to be an equivalent to the observation of the changes in dipole moment in
time, even though it originates from solving the time-dependent Kohn-Sham equation [49]

i
∂

∂t
ψn(r, t) =

[
−∇

2

2
+ vs(r, t)

]
ψn(r, t) ≡ Fsψn(r, t) (2.145)

where vs(r, t) the time-dependent Kohn-Sham effective potential:

vs(r, t) = vext(r, t) + vH(r, t) + vxc(r, t) (2.146)

and the all electron KS wavefunction ψn(r, t):

ψn(r) = ψ̃n(r) +
∑
a

(ψan(r−Ra)− ψ̃an(r−Ra)) (2.147)
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with the atom-centred AE and smooth wavefunctions ψan, ψ̃an expandable in terms of the atom-
centred partial waves φaj , and φ̃aj as described in eq. ??. where the Hartree time-dependent
potential is defined as a function of the time-dependent density n(r, t):

vH(r, t) =

∫
dr′

n(r′, t)

|r− r′|
, n(r, t) =

occ∑
n

fn|ψn(r, t)|2 +
∑
a

nac(|r−Ra|) (2.148)

where fn is the occupation number of each orbital and nac(|r−Ra| the atom-centred frozen core
electron density contribution.

Now here comes the crucial part in understanding the TDDFT formalism of linear response.
In the previous formalism we obtained the response function perturbatively. while being the in the
reciprocal space, we stated that the central concept in TDDFT is given by the eq. 2.129, while
solving a Dyson-like equation for calculating the response function from the KS non-interacting
response function and the interaction kernel. In real-space linear response TDDFT (LrTDDFT),
almost the exact same formalism is applied although in real-space, with the main mathematical
difference being that fact that the Dyson-like equation is replaced by a set of linear equations.
There are a few more differences between the formalism however, the most notable of them being
fact that linear density response (LDR) is applicable to extended systems since it is in reciprocal
space and the Brilloun-zone is sampled by acquiring the KS response function in the reciprocal
space. But LrTDDFT is done in real space for the given system without any extension to peri-
odic boundary conditions (PBC). Therefore, in LrTDDFT it is the dipole oscillator strengths and
the excitation energies that are important, while in the LDR the dipole transition matrix is part
of the KS response function which gets extended into the entire space by the virtue of Bloch
theorem, and Fourier transformed into the real-space response function.

Therefore, as we said in LrTDDFT in order to calculate the perturbation to the time-
dependent density, it is expanded up to first order and set in a couple of linear equations against
the external perturbative equation. However, without going into all that detail we start from the
main equation for finding the dipole oscillator strength and the excitation energies namely the
Casida equation [49]

ΩFI = ω2
IFI (2.149)

with the transition energy to the excitation state s being ~ωs, while Ω is expanded in terms of
KS particle-hole excitations, included in which is the interaction kernel similar to eq. {151}:

Ωijσ,kqτ = δikδjqδστε
2
ijσ + 2

√
fijσεijσfkqτεkqτKijσ,kqτ (2.150)

where εijσ = εjσ − εiσ and fijσ = fjσ − fiσ are the energy and occupation number differences,
with i, j, k, q as band indices and σ, τ as spin projection indices. The K interaction kernel, which
is also the coupling matrix has two parts, Kijσ,kqτ = KRPA

ijσ,kqτ +Kxc
ijσ,kqτ . The KRPA

ijσ,kqτ is defined
in eq {2.160}, and Kxc

ijσ,kqτ is defined as:

Kxc
ijσ,kqτ =

∫
dr1dr2n

∗
ijσ(r1)

δ2Exc
δρσ(r1)ρτ (r2)

n∗kqτ (r2) (2.151)

with ρσ as the spin densities, and nij(r) as pair density:

nij(r) = ψ∗i (r)ψj(r) = ñij +
∑
a

(naij − ñaij) (2.152)
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We can now expand upon our formalism and arrive at the desired dipole oscillator strength
and its eigenvalues, by introducing the set of quantities which we have previously mentioned in
describing the PAW formalism in real-space, such as the compensation charge density Z̃a

ij:∫
dr2

naij(r2)− ñaij(r2)− Z̃a
ij(r2)

|r1 − r2|
= 0 , Z̃a

ij(r2) =
∑
L

Qa
L,ijg

a
l (Z̃

a
ij(r)) (2.153)

with L = l + m and gal (r) as an arbitrary function,
∫
drrl+2gal (r) = 1. The coefficients are

further defined as follows:

QL,ij =
∑
i1i2

∆L,ijP
a
ii1
P a
ji2

, ∆L,ij =

∫
drrlYL(r̂)[φai1(r)φ

a
i2

(r)− φ̃ai1(r)φ̃
a
i2

(r)] (2.154)

where the expansion coefficients P a
ii are defined in eq. 2.51. Using the following notation,

ρ̃ij(r) = ñij(r) +
∑

a Z̃
a
ij(r−Ra) we can rewrite the RPA kernel as:

KRPA
ijσ,kqτ = (ρ̃ij|ρ̃kq)+

∑
a

∆KRPA,a
ijσ,kqτ , ∆KRPA

ijσ,kqτ = (naij|nakq)a−(ñaij+Z̃
a
ij|ñakq+Z̃a

kq)a (2.155)

And for the definition of (∗|∗) we refer to the eq. 2.141. Furthermore, using the following
notation:

Kxc
ijσ,kqτ [nσ, nτ ] = lim

ε→0

∫
drn∗ijσ(r)

vσxc[nσ, nτ + εnkqτ ](r)− vσxc[nσ, nτ − εnkqτ ](r)
2ε

(2.156)

we can write the XC-kernel similar to the RPA-kernel in the following way:

Kxc
ijσ,kqτ [nσ, nτ ] = K̃xc

ijσ,kqτ [ñσ, ñτ ] + ∆Kxc,a
ijσ,kqτ

∆Kxc,a,±
ijσ,kqτ = lim

ε→0

Kxc,a,+
ijσ,kqτ −K

xc,a,−
ijσ,kqτ

2ε

(2.157)

where:

Kxc,a,±
ijσ,kqτ = 〈ψaiσ|vxc[naσ, naτ ± εnakqτ ]|ψajτ 〉 − 〈ψ̃aiσ|vxc[ñaσ, ñaτ ± εñakqτ ]|ψ̃ajτ 〉 (2.158)

Now we can introduce the dipole oscillator strength, which is dimensionless, and is related
to the eigenvectors FI of the omega matrix Ω:

fIα =
2me

~e2
ωIµ

2
Iα =

2me

~e2

∣∣∣∣∣∣
fiσ>fjσ∑
ijσ

(µijσ)α
√
fijσεijσ(FI)ijσ

∣∣∣∣∣∣
2

α = x, y, z (2.159)

where the dipole transition moment of the ground |0〉 and the excited state |I〉 and the KS
transition dipoles are given by:

µI = −e〈0|
N∑
k=1

rk|I〉 , µijσ = −e〈ψiσ|r|ψjσ〉 (2.160)

where N is the number of the electrons. And as usual the KS dipole transition can be partitioned
in PAW, into smooth part and atom-centred part:

µijσ = −e〈ψ̃iσ|r|ψ̃jσ〉+
∑
a

∑
pq

P ∗iσpPjσqµ
a
pq

(µapq)m = −e
√

4π

[
∆a

1m,pq√
3

+ ∆a
L=0,pq(Ra)m

] (2.161)
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where the constants ∆a
L,pq are as defined in eq. 2.154.

The continuation of this formalism, which similarly to the calculation of the optical excitation
spectrum would lead, is known as the time-propagation TDDFT. This formalism however, is not
exclusive to the calculation of the optical spectra, but also other dynamical effects, though the
time-evolution of the dipole moment remains one of the most important applications. Returning
to our time-dependent Schrödinger equation i~∂tψn(t) = Ĥ(t)ψn(t), where it undergoes the
PAW transformation as follows [51]

i~T̂ †∂tT̂ ψ̃n(t) = T̂ †Ĥ(t)T̂ ψ̃n(t) , i~Ŝ∂tψ̃n(t) = H̃(t)ψ̃n(t) (2.162)

where S̃ = T̂ †T̂ is the PAW overlap operator. Now in contrast to the previous formalism, where
the spectrum is simply calculated by the excitation energies, the evolution of the dipole moment
requires the application of a delta pulse of a dipole field E(t) = εk0δ(t)~/a0e, a.k.a ”the kick”,
which would instantaneously change the KS wavefunctions:

ψ(t = 0+) = exp

(
i
ε

a0

k0 · r
)
ψ(t = 0−) (2.163)

where ε is the unitless perturbation parameter, k0 the polarization vector of the field, and a0 the
Bohr radius. Having applied the kick observe than the time-dependent many body wavefunction
in its linear order expansion expansion:

|Ψ(t = 0+)〉 =

(
1− i ε

ea0

k0 · µ̂
)
|0〉+O(ε2) (2.164)

where the µ̂ = −e
∑N

k=1 rk is the dipole operator, using which one can extend the expansion to
excited states as well:

|Ψ(t)〉 = c0|0〉+
∑
I

e−iωI tcI |I〉 (2.165)

with the coefficients given by:

c0 = 1− i ε
ea0

k0 · 〈0|µ̂|0〉 , cI = 1− i ε
ea0

k0 · 〈I|µ̂|0〉 (2.166)

which would allow the expansion of the time-dependent density as well:

n(r, t) = n0(r) +
∑
I

(e−iωI tcI〈0|n̂(r)|I〉+ c.c.) (2.167)

with n̂ =
∑N

k=1 δ(r− rk) as the density operator. Due to the absence of the magnetic fields we
can therefore write:

µ(t) = −e
∫
drn(r, t)r = µ(0)− 2ε

ea0

∑
I

sin(ωIt)(k
0 · µI)µI (2.168)

from which the dipole oscillator strength can be obtained vie Fourier transform. However, more
generally one calculates:

S(ω)k0 =
2mea0

e~π
ω

1

ε

∫ T

0

dtsin(ωt)g(t)[µ(0)− µ(t)] (2.169)

which is the oscillator strength in terms of polarization direction k0, with T as the simulation-
time and g(t) as the envelope of the spectrum (Gaussian or Lorentzian). From the above result
the following important relation between the dipole strength tensor, and the folded oscillator
strength:

k0
α · S(ω)k0

α =
∑
I

fIαg̃(ω − ωI) (2.170)

with g̃(ω) as the folded Fourier transform.
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2.3.3 Localized Surface Plasmon Resonances

Finally, we need to talk about the concept, which turns out to be useful in visualizing the
plasmonics of graphene, due to the fact that the embedded structures, among other effects, do
localized the surface plasmons in graphene and the details of such localizations are as important
as the plasmonic spectra themselves. One important distinction however needs to be made
between the surface plasmons, which are also called the surface plasmon polaritons (SPP),
and the localized surface plasmons (LSP) [10]. While on the metallic surfaces, the surface
plasmons propagate like an electromagnetic field by coupling to the electron plasma of the
conductors, LSP’s are non-propagating excitations of the conduction electrons, that are coupled
to an electromagnetic field. This helps us distinguish the fact in our simulations, that even
though on graphene one might observe propagating surface plasmons, once the silicon impurities
are introduced, the plasmons become localized and no-longer take propagating shape. The
reason for that is the scattering that takes place by the nanoparticles, which in our case are the
Si-atoms within the metallic surface of the graphene. The visualization simulations, will clarify
this concept in the coming sections, as does the figure below:

Figure 2.3: The comparison of the surface plasmons (a), with the localized surface plasmons
(b) [45].

As stated above, the reason of interest in the LSPR’s is the fact that the optical excitations of
the nanostructures, that we are studying, have a maxima at the LSPR frequencies, and this is a
general fact about the LSPR’s [45].

Having calculated the SP frequency and dispersion relation in graphene in 1.2, we need to turn
to some classical electromagnetic theory in order to be able to give an approximate theoretical
description. The fact about the theories of LSPR, is that it is almost always described as
surface plasmons of a spherical nanoparticle, for which d � λ with the d as the diameter of
the particle. If we start with the Mie theory of scattering, with the complex refractive index of
metals as ñ = nR + inI , and nm the real refractive index of the medium, we define the following
parameters [45] to be used in cross-sections (eq. 2.172).

aL =
mψL(mx)ψ′L(x)− ψ′L(mx)ψL(x)

mψL(mx)χ′L(x)− ψ′L(mx)χL(x)

bL =
ψL(mx)ψ′L(x)−mψ′L(mx)ψL(x)

ψL(mx)χ′L(x)−mψ′L(mx)χL(x)

(2.171)

where x = kmr, and m = ñ/nm, with km the wave-vector of the medium and r the radius of the
nanoparticle. The ψ’s and χ’s are Riccati-Bessel function with L = 2, 4, ... representing dipole,
quadrupole, or multipoles of scattering. With that the scattering and extinction cross-sections
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are defined as:

σsca =
2π

|k|2
∞∑
L=1

(2L+ 1)(|aL|2 + |bL|2) , σext =
2π

|k|2
∞∑
L=1

(2L+ 1)[Re(aL + bL)] (2.172)

where the absorption cross-section defined as σabs = σext − σsca. The dielectric function of the
medium is given by εm = n2

m, and equivalently the dielectric function of the metal is ε̃ = ε1 + iε2

where:
ε1 = n2

R − n2
I , ε2 = 2nRnI (2.173)

and the above formalism simplifies significantly for small particle (x� 1), into power series, and
the resonance condition becomes ε1 = −2εm since this maximizes the extinction cross-section.
So we use the expansion up to the order x3, in which we get:

b1 ≈ 0 , a1 ≈ −i
2x3

3

n2
R − n2

1 + i2nRnI − n2
m

n2
R − n2

1 + i2nRnI + 2n2
m

(2.174)

which is equivalent to:

a1 =
2x3

3

−iε2
1 − iε1εm + 3ε2εm − iε2

2 + i2ε2
m

(ε1 + 2εm)2 + (ε2)2
(2.175)

Using the above relation, and putting it in eq. 2.172, we get for the cross-sections:

σext =
18πε

3/2
m V

λ

ε2(λ)

[ε1(λ) + 2εm]2 + ε2(λ)2

σsca =
32π4ε2

mV
2

λ4

(ε1 − εm)2

[ε1(λ) + 2εm]2 + ε2(λ)2

(2.176)

So far there has been no explicit argument about the dielectric function of the metal itself,
other than its role in calculation of the cross-sections. However, in order to calculate the
resonance frequency of the LSP’s, the explicit from of the dielectric function is necessary. For
the sake of simplicity, we do not use the expression that we have derived in , and suffice to the
simplest model, namely the Drude-model:

ε1 = 1−
ω2
p

ω2 + γ2
γ � ωp ⇒ ε1 = 1− ωp

ω2
(2.177)

using the resonance condition ε1 = −2εm we get for the resonance frequency and wavelength:

ωmax =
ωp√

2εm + 1
, λmax = λp

√
2n2

m + 1 (2.178)

where λp (ωp) is the plasma wavelength of the material. Therefore, if we wanted to calculate
the correct LSPR frequencies for our systems, we would need to use the dielectric function cal-
culated in linear density response TDDFT, and use the SP frequency for graphene in eq. 1.26.
Furthermore, for systems that not spherical, a numerical scheme such as the discrete dipole ap-
proximation (DDA) or the finite different time domain (FDTD) has to be used for the calculation
of the LSPR frequencies.



Chapter 3

Analytical Potential Simulations Results

3.1 Evaluating the Analytical Potentials

3.1.1 Tersoff Potential in LAMMPS

As the theoretical and the introductory sections have already indicated, in order to find the
most efficient path to the correct results, we started by using a few different potentials, within
a couple of different codes. However, since the experimental verifications are not part of this
thesis, the reference for benchmarking remains first the literature values for the physical quan-
tities, and the DFT calculations for any computational simulations. Therefore, the first task
would be finding the most reliable analytical potential, which would produce the closest results
to the DFT simulations, which then are compared against the literature values. The first code
of choice for simulating large structures, was LAMMPS, due to its vast choice of bond-order
potentials, and relative ease of use. The LAMMPS program is a whole package, where the ana-
lytical potentials are provided in addition to different optimization and MD-engines. Therefore,
LAMMPS could be used without any external interface, just by inputing a set of parameters in a
BASH (Bourne again shell) format. The disadvantage of using LAMMPS is the fact that there
is nor GUI (graphical user interface) which one might use for designing a structure, and so the
atomic positions and the primitive unit-cell has to be manually defined in LAMMPS. However,
it is always the supercell that undergoes the simulation and not the primitive unit-cell.

After having tested a few structures, and having ruled out certain structures, and lines, the
first set of simulations of zigzag-lines produce the following structures using the Tersoff potential,
as shown in fig. 3.1.

Figure 3.1: The result of first set of relaxations of zigzag-lines, with LAMMPS using the Tersoff
Si-C potential from different angles.
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The above relaxation, was done with FIRE algorithm since in choosing the right cell-size, this
algorithm proved to be the smoothest, namely least prone to be stuck in local extrema. Choosing
the right cell-size was done using a BASH script, in which both x, y coordinates were changed
in an interval, one by one, which were expected to produce results as seen in fig. 3.2.

Figure 3.2: The X-Y coordinates cell-adjustment using the FIRE algorithm and the Tersoff
potential in LAMMPS, showing the minimum only for X coordinate.

In the above 3D diagram the darkest point on the surface in principle has the lowest energy.
However, regarding the above results it must be said that, such structures despite having the
lowest energy in one direction, namely the x coordinate, in the y direction do not represent the
lowest energy structures, as the diagram also indicates. The y coordinate adjustment, as seen
in fig. 3.3, of the absolute lowest energy would result in a wavy structure, which we will present
an example of an at the end of this section.

Figure 3.3: The X-Y coordinates cell-scale adjustment, in the interval of ±2%, using the FIRE
algorithm and the Tersoff potential in LAMMPS.
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These structures were considered not realistic, and physically undesirable due to the fact that
the flat graphene in between the lines was lost, resulting in an wavy sheet, which could be easily
destroyed by the electron beam or the phonon vibrations at room temperatures. For that reason,
as the fig. 3.2 shows, the global minimum for the cell-size could not be clearly determined.
Therefore, the results were relaxed a second time using a restart command in LAMMPS which
further relaxes a previously relaxed result with the possibility of rescaling the cell-coordinates.
This way of fine-tuning the cell-size was known to find the local minimum on the energy curve.
That’s why we chose a small ±2% rescaling interval for both x, and y coordinates to find the
clear and absolute minimum of the energy in the curve, as shown in 3.3.

However, even despite having found a good candidate for zigzag line structure, and observing
a smooth set of relaxation curves (harmonic at the minimum), the relaxed results were no different
than those in fig. 3.1. Therefore, in the next set of relaxations we chose to start with strickter
relaxation parameters (10000 iterations, 10−12 eV threshold). But the change in results were
minimal, as seen in fig. 3.4.

Figure 3.4: The results of simulations with strickter parameters of relaxation using the FIRE
algorithm and the Tersoff potential.

The logic behind the above relaxations was to find a physically acceptable structure while ap-
proaching the energy minimum, by searching in the x direction and taking a guess by expanding
the y coordinate in multiples of graphene cell y-coordinate (≈ 2.42Å), so that our structure
would have a flat graphene in between the lines, as seen in fig. 3.5.

Figure 3.5: An example of a zigzag-line structure with global and local minimum-energy cell-size,
using the Tersoff potential
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The absolute minima in the global X-Y cell-size search and local fine-tuning would produce
structures like the one above in fig. 3.3. Therefore, using the Tersoff potential in LAMMPS for
the above zigzag line, we seemed to be unable to achieve this goal, since the flat structures of
above were not at the global energy minimum, and also slightly unrealistic. And the structure
that were at the global energy minimum were completely distorted, and unphysical.

3.1.2 Tersoff & EA in LAMMPS

After having measured the bond-lengths, and established non-conclusiveness of the results
obtained from Tersoff potential in LAMMPS, we decided to benchmark the potential against
another analytical potential and then check the results with DFT. The best candidate was
the analytical potential of Erhard-Albe, which is based on the Brenner functional. The set
of structures that we chose for benchmarking (other than graphene itself), was the 2D Si-C,
single trivalent Si in graphene, and a custom zigzag (ZZ) line structure, where the lines are on
alternating sublattices, with a distance of three graphene-rows in between. The custom zigzag
line structure relaxed using Tersoff potential, and the EA potential, had the best converged form
as in fig. 3.6 and 3.7.

Figure 3.6: Relaxed structure of the custom zigzag line, with the Tersoff potential and starting
from a somehow different initial guess.

Figure 3.7: Relaxed structure of the custom zigzag line, with the EA potential and starting from
a somehow different initial guess.
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The above set of results were achieved using the exact same parameters, and initial condition,
with the only difference being the analytical potential used. The results, represent the global
(and local) minimum on the energy/relaxation curve, which we previously considered unphysical
and unrealistic. They indeed look very similar, but the DFT simulations, in a combined method
of PW and FD, produced a completely different result, as seen in fig. 3.8

Figure 3.8: The DFT results of zigzag line relaxations using the PBE-GGA XC-functional, in PW
and FD mode.

It turns out for this system, namely the custom zigzag line with 3 graphene rows in between,
taking the DFT structure (or a similar configuration) as the starting point, using both of the
potentials, an acceptable corrugated structure could be produced, as seen in fig. 3.9.

Figure 3.9: The relaxation results of custom zigzag line structure using both Tersoff (left) and
EA (right) potentials, starting from the DFT relaxed structure as initial guess.

Therefore, it is clear that having the Si-lines close to each other, the Tersoff potential can
produce as reasonable result as the EA potential. However bond-length differences in fig. 3.10
are noticeable.
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Figure 3.10: The bond lengths differences of custom zigzag line structure using both Tersoff
(left) and EA (right) potentials, starting from the DFT relaxed structure as initial guess.

Now we can look at the rest of the structures, that we compared in both of the potentials.
Fig. 3.11 shows the single trivalent silicon in a graphene sheet from different angles, and the 2D
Si-C sheet.

Figure 3.11: The relaxation results of single trivalant silicon in graphene using both Tersoff (left)
and EA (right) potentials.

Figure 3.12: The relaxation results of 2D Si-C sheet using both Tersoff (left) and EA (right)
potentials.

So far every comparison almost shows the same result for both of the potentials. In order to
summarize and gain some more insight however, we can now compare the numbers of bond-
lengths and the energies of the above 3 structures with the DFT (in FD mode), in tab. 3.1 (µC
is the carbon chemical potential calculated from prisitine graphene energy in the given potential).
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Table 3.1: The summary of the relaxation data of bond-lengths, and embedding energies per
C/Si-atoms in different structures, for Tersoff, EA, and DFT-PBE potentials in FD mode.

XXXXXXXXXXXXStructure
Potential

Tersoff T89 Erhard-Albe DFT-PBE

µC in Graphene
XXXXXXXXXXXX-7.392 eV

1.462 Å
XXXXXXXXXXXX-7.385 eV

1.478 Å
XXXXXXXXXXXX-9.223 eV

1.426 Å

Custom ZZ line
XXXXXXXXXXXX-2.324 eV

1.75 Å
XXXXXXXXXXXX-3.2651 eV

1.79 Å
XXXXXXXXXXXX-2.686 eV

1.748 Å

Trivalant Single Si
XXXXXXXXXXXX-2.658 eV

1.76 Å
XXXXXXXXXXXX-2.795 eV

1.75 Å
XXXXXXXXXXXX-1.582 eV

1.761 Å

2D Si-C Sheet
XXXXXXXXXXXX-3.984 eV

1.81 Å
XXXXXXXXXXXX-4.661 eV

1.82 Å
XXXXXXXXXXXX-4.737 eV

1.792 Å

The above energies are per atom energies, and in the case of the 3 structures with silicon,
the energies are embedding energies of single Si-atom. For the bond-lengths in the custom ZZ
line, the value refers to the shortest two bonds. The comparisons of the values the Tersoff
potential might be correct choice compared to the DFT results, other than in the case of 2D
Si-C, where the energy per Si-atom is closer to the DFT energy. But the fact is that, as the
further simulations demonstrate, for structures where the Si-atoms are close to each other, the
Tersoff potentials seems a better choice, however as the Si-structures get further away from each
other the interaction range of the Tersoff potential does not resemble that of the DFT, and since
the structures do not interact, flat lines like those in fig. 3.1 and 3.2, appear as the minimum
energy structures. Fig. 3.13 illustrates this fact.

Figure 3.13: The relaxed ZZ-line results with 10 rows of graphene in between, relaxed using the
Tersoff (left) and EA (center and right) potentials.

As the figure in the far left above shows, when the distance between the lines increases, the lines
in the Tersoff potential no longer interact, and therefore the corrugated line shape disappears.
But for the EA potential, even with 10 graphene rows in between the Si-lines, ZZ lines in the
above structure still interact, which leads to a corrugated line structure, in between which there
is flat pristine graphene. Therefore, the choice for the further simulations was the EA potential.

3.1.3 EA Potential in Atomistica & ASE

Knowing the limitations and the advantages of EA potential and the LAMMPS environment,
we decided to continue with the EA potential, however in a different environment, which offered
a few advantages over LAMMPS. The atomic simulations environment (ASE), which is also
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the interface to the GPAW code, could be coupled to the EA potential using the Atomistica
calculator, which is an analytical MD engine. It has a set of Brenner-functional based potentials,
in addition to other inter-atomic potentials. The main advantage of this method is that, while
using ASE as the minimizer/optimizer engine, all the optimization algorithms of ASE could be
used for energy-minimization, such as SciPyMinCG, or BFGS, and also the size of the supercell
could be adjusted using the Strain-Filter (SF). The existence of strain-filter significantly increases
the optimization efficiency, compared to LAMMPS where only atomic positions are optimized.
Therefore, we decided to study the convergence behaviour of one system, and compare it to
GPAW.

The optimization is ASE was done in two stages, one using loops adjusting the X-Y coordi-
nate, while optimizing the atomic positions up to 5000 iterations, thereby looking for the global
minimum cell-size. Second, taking the absolute lowest X-Y cell-size in energy, and further opti-
mizing the atomic positions and the cell-size using the strain-filter in sequences, while decreasing
the force threshold, as shown in fig. 3.14.

Figure 3.14: The relaxation scheme in ASE with EA potential, using the FIRE algorithm and the
Strain-Filter (SF) in sequences while decreasing the threshold.

Enabling the energy function in ASE, the two dimensional X-Y cell adjustment produces curves
like these, in fig. 3.15

Figure 3.15: The X-Y cell-size adjustment energy curves, showing the global lowest energy X-Y
combination for the cell.

From which the best guess for the X-Y coordinates of the cell could be chosen for further opti-
mization using the strain-filter according to the scheme in fig. 3.14.

However, in certain structures, like the single trivalent silicon in graphene, it makes a dif-
ference whether or not the silica-patterns are symmetrically embedded onto the graphene or
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anti-symmetrically. Fig. 3.16 shows the 6x super-cell size relaxed structure, both in symmetric
and antisymmetric configurations:

Figure 3.16: The relaxed trivalent single silicon in graphene for 6x supercell in both symmetric
and anti-symmetric configuration.

Now we can compare the symmetric case with DFT and compare the convergence curves. For that
we relaxed 3 different supercell size in DFT for the symmetric case, with two different chemical
potentials. Fig. 3.17 shows the results (note that the Energy / Si is calculated according to
ESi = (ETot −NC · µC)/NSi).

Figure 3.17: Left: The relaxed symmetric trivalent single silicon in graphene for 6x supercell
in DFT. Right: the convergence behaviour of the symmetric/antisymmetric single silicon in
graphene using EA in ASE and DFT-PBE

Where NC is the number of C-atoms and µC is the carbon chemical potential. The bond-
lengths in EA are 1.77Å and in DFT-PBE 1.76Å, and the convergence behavior in the case of
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a symmetric configuration are similar between EA and the DFT, and therefore the relaxation
method in ASE using the EA could be trusted for the rest of the structures.

3.2 Geometries, & Energetics of the Structures

3.2.1 Zigzag- & Armchair Lines: Dense, Dashed & Double-Dashed

The first set of structures that we studied, were the lines, since we had already did the
benchmarking using the dense ZZ line. The number of lines, that could be embedded in graphene
is quite large taking into account the distance between the Si-atoms along the line as a variety.
Specifically the ZZ-line is of particular interest, and so starting with ZZ-line ,we also study the
effect of distance between the Si-atom on the convergence and the energetics. Fig. 3.18 shows
the converged cell-size for the dense ZZ-line, in both symmetric and anti-symmetric configuration.

Figure 3.18: Left: The relaxed ZZ line structure for the converged cell-size of 6x in both
symmetric (left), and antisymmetric (right) configurations.

In the case of the above structures, similar to the case of the single silicon in graphene
as well, there seems to be no difference energetically in arranging the lines symmetrically or
antisymmetrically, since the above cell-size is the converged size (namely that there are no
interactions between the lines). For the converged cell-size, the energies overlap and remain
the same for larger cell-sizes (see fig. 3.17), while for the smaller cells there is energy difference
between the symmetric and the antisymmetric case. Looking at the structures from the long-side,
it can be seen, that the distortion in graphene remains similar in both cases, and that explains
the indifference in embedding energy per silicon. In addition to the energy, the bond-lengths of
the above structures are shown in fig. 3.19.
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Figure 3.19: The bond lengths of the symmetric ZZ-line in 6x supercell (left) compare to the
antisymmetric ZZ-line bond lengths.

Also the bond-lengths in the above variations seem to be exactly the same, proving the equality
of the configurations for this cell-size.

The next studied structure was the dashed version of the ZZ-line, shown in fig. 3.20.

Figure 3.20: The relaxed dashed ZZ-line for the converged 4x cell-size, in symmetric (left) and
antisymmetric (right) configurations.

For the above structures in the above supercell of 4x, the total energy difference was ≈ 1 eV in
favour of the antisymmetric configuration (1819.5 eV symmetric, and 1820.5 eV antisymmetric)
for a total of 1029 atoms. Therefore, even though as we explained before the antisymmetric
structure is preferred, for the converged supercell size this preference disappears, with the amount
of silicon embedding-energy per atom being almost the same.

In fig. 3.21 present the other two versions of the dashed ZZ-line, namely the double-dashed
(DD) ZZ-line, and the quad-dashed (QD) ZZ-line, both only in antisymmetric configurations.
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Figure 3.21: The relaxed (left) double dashed- (DD), and (right) quad-dashed (QD) ZZ-line for
the converged 4x cell-size, in antisymmetric configurations.

Now we can summarize and compare the convergence behaviours of the ZZ-line for cell-size and
the distance between the Si-lines along the line (dashing) in the following common plots (in the
left plot 1.0, 2.0, 3.0, 4.0 mean the dense,dashed, DD and QD, ZZ-line), in fig. 3.22.

Figure 3.22: The convergence behaviour of the ZZ-line, as the function of the cell-size (right),
and the distance between the Si-atoms, or line size (left). Note: The left diagram is the rotated
version of the right diagram where the divergent points from the lines are marked with red stars.

According to the above results, the converged cell-size and line-size (distance between the
Si-atoms) for the ZZ-line, would be the dashed ZZ-line, as both of the diagrams indicate. As it
turns out, the dashed ZZ-line relaxed using EA in ASE, also in full agreement with the equivalent
DFT calculations, while the dense ZZ-line shows discrepancies. And as well shall see in the next
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chapter, this should explain, why we get different results for DFT relaxations of the dense ZZ-
line. However, there are still two types of lines left which we want to study, and those are the
armchair-line (AC-line) and the alternate sub-lattice ZZ-line (ABZZ-line), which is the ZZ-line,
with Si-atoms being put on alternating sub-lattices one at a time, as seen in fig. 3.23

Figure 3.23: The relaxed ABZZ-line (left) and ACh-line (right), in their converged cell-sizes
according to the energy/cell-size curve.

Accordingly, we have the convergence behaviour of these two alternative forms of lines, together
and with respect to the ZZ-lines, as can be seen in fig. 3.24.

Figure 3.24: The convergence behaviour of ABZZ-line and ACh-line with respect to each other,
and the ZZ-lines.
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Figure 3.25: The side view of the ABZZ-line in 4x cell, showing the flat graphene in the middle.

The ABZZ-line in 4x structure, despite being seemingly wavy and distorted, is flat in between the
silicon lines, as the fig. 3.25 shows. However, in order to have more flat between the silicon-lines,
the 6x cell was chosen to be on the safe side.

3.2.2 Hexagons and Triangles

Next in line would be the lattice symmetric structures, namely hexagons and triangles. These
structures could be made very easily using the dense ZZ-line, or any other variant of it (dashed-,
DD-, etc.). In the case of the closed structures. Hence only the largest ones are presented here,
unless we use the smaller sizes for some other purpose, in which case we will present both (all)
sizes. For example, the smallest and the largest hexagon (1x, and 16x) are presented in fig. 3.26

Figure 3.26: The relaxed structures of smallest (left) and the largest (right) hexagons in their
converged cell-sizes.

The smallest hexagons were examined up to the convergence cell-size, while the same behaviour
is also expected for the larger hexagons as a general rule. The following diagrams show the
convergence behaviour of the hexagons similar to the ZZ-lines:
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Figure 3.27: The convergence behaviour of the hexagons based on structure-size (left) and based
on the cell size (right). Note: The left diagram is the rotated version of the right diagram where
the divergent points from the lines are marked with red stars.

As for the triangles, we relaxed 6 different sizes, starting from the smallest triangle, which is
made of ZZ line, with only one carbon inside it. The following are the two largest sizes that were
relaxed in symmetric form only, even though the smaller sizes, were relaxed both in symmetric
and antisymmetric configurations:

Figure 3.28: The relaxed 21x and 36x triangles in converged cell sizes of 6x respectively.

But fig. 3.29 shows the energy curves of both symmetric and antisymmetric configurations:
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Figure 3.29: The energy curves of the triangles for different triangle sizes in antisymmetric (left)
and symmetric configurations (right).

The above triangle names are in terms of their area with respect to the area of the smallest trian-
gle of 3 Si-atoms surrounding a carbon atom. Respectively the size of the cells are named based
on the rows of graphene between the successive structures in the periodic boundary conditions,
hence the different cell size despite the same name of 6x.

As the above diagrams show, the antisymmetric curves follow the logical pattern of increasing
in energy with the cell-size, since as we know, as the density of Si-atoms in graphene increases
the embedding energy decreases, and approaches that of 2D SiC. However, in the case of the
symmetric structures, some times the decrease in the cell-size causes the structure to change,
which explains why in some of the cases smaller cell-sizes have larger embedding-energy. This
also applies to the case of hexagons, as seen in fig. 3.27.

In addition to the structures made with the dense ZZ-line in hexagonal and triangular shapes,
we made a couple of structures using the dashed ZZ-line, namely the largest hexagon and the
triangle, as shown in fig. 3.30.
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Figure 3.30: The relaxed dashed 36x-triangle, and dashed 16x-hexagon in 6x supercell sizes,
which is definitely the converged size.

With regards to the cell-size energy convergence we know from comparison of the dashed ZZ-line
to the dense ZZ-line, that the dashed case converges for smaller cell-size than the dense ZZ-line,
and since 6x cell is still sufficient for DFT simulations, choosing the 6x cell-size for the dashed
versions of the triangle and hexagon relieves us of having to calculate the energy curves.

3.2.3 Squares, Circles, and Mixed Structures

In this section we look at the structures that are not lattice-symmetric like the hexagons and
triangles, and are also not always made of the same ZZ-line. For the convergence behaviour of
these structure no predictions can be made, other than the fact that if the structures remain
the same throughout the cell-size change, at some point one cell-size for that structure should
be converged, and that structure should be the dominant one. Starting with the squares, we
present the largest square size and its dashed version in fig. 3.31.

Figure 3.31: The relaxed 8x squares in 6x converged cell-size, in dashed (left) and dense (right)
variations.

Accordingly the following are the convergence curves with and without the dashed 8x-square:
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Figure 3.32: The convergence behaviour of the squares, with (left) the dashed 8x-square, and
without (right).

Now we move to the circles, which are least lattice symmetric structures. The smallest circle,
made with 12 silicon atoms, is a particular symmetrical structure, as it encloses a coronene, and
therefore is dodecagon. However, this is the only lattice-symmetrical circle that can be embedded
into the graphene lattice. Any other circle of larger size require distorting the lattice symmetry.
Therefore, the energy curves in the convergecne diagram can only be interpreted approximately
for choosing the converged cell-size only, and not for comparing the convergence behaviour of
different circle sizes. In the following however, we present the smallest circle, the dodecagon,
and the 4x circle, since the 5x is presented in a modified version as the mixed custom structures:

Figure 3.33: Left: The dodecagon circle in the graphene lattice with a cell size of 6x. Right:
The 4x circle in a 6x super-cell.
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As the above images show the EA potential was not quite capable of reaching the ideal relaxed
state for the dodecagon, which would an elevated perfectly symmetric dodecagon, enclosing the
coronene according to the DFT calculations. However starting from a DFT relaxed structure,
the EA potential also relaxes the structure into a perfectly symmetric and elevated dodecagon,
depicted in fig. 3.34, as opposed to the structure in fig {3.33}.

Figure 3.34: The relaxed dodecagon circle using the EA starting from the relaxed state of the
DFT.

Also energetically is the structure in fig. 3.34 (slightly) more favourable using the EA potential,
however, the potentials has a hard time reaching this state on its own from a purely random
corrugated initial state.

We can now look at the convergence behaviour of the circles, keeping in mind the difference
between the different sizes of the circles, similar to the structures in fig. 3.33, where the smaller
circle is the 1x size, and the larger circle is the 4x size:

Figure 3.35: The convergence behaviour of different circle sizes, all having a larger degree of
symmetry than the hexagons, while being structurally different from each other.

One important fact about the circles, despite their structural differences, is that in order to make
them on the graphene lattice, all three kinds of lines that we previously mentioned, namely the
ZZ-line, the AC-line, and the ABZZ-line, have to be used in order to make a reasonably circular
shape on the graphene lattice. This is even true about the dodecagon circle. Therefore, despite
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the fact that we regarded the circles as non-symmetrical structures, there is a certain degree
of symmetry involved in making the circles in fig. 3.33, which may be lower or higher than
the structures in fig. 3.26. Furthermore, as the diagram shows there is similarity between the
structures, in that they almost all converge for 6x cell-size.

The last set of structures are ”custom” structures, which are not easily categorizable in terms
of their size and shape with respect to the previous structures, but still fall within certain larger
categories. Even though originally, we had many such custom structures, including ones that had
two layers of silicon enclosing, we only decided to 3 large structure to be relaxed and consequently
examined using DFT. Here we present these 3 structures, and their convergence behaviour in
fig. 3.37. Two of the structures resemble circle and a square in a 650 atom cells, with the name
of XXL-Cir/Squ, and the other structure is a large hexagon made with the ABZZ-line as seen in
fig. 3.36.

Figure 3.36: The XXL-Circle in its converged cell-size of 4x (left), the XXL-Square in its con-
verged cell-size of 6x (center), and the ABZZ-Hexagon in its converged cell-size of 6x (right).

Figure 3.37: The convergence behaviour of the extra large structures.
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The above cell-sizes are chosen according to the curves below, while as mentioned before the x
part of the cell size indicates the number of the graphene rows between periodic images of the
silicon shapes for that particular structure. Therefore as we see the 6x cell of XXL-Square have
≈ 650 atoms, while the 6x cell of the ABZZ-Hexagon has ≈ 510 atoms.

It should be said that these cell-sizes of roughly 650 atoms, constituted the DFT limit for
relaxation, using the LCAO mode of the GPAW. It is said that DFT codes are usually appropriate
for up to 350 atoms, which obviously has to be in LCAO mode. Normally for this size of cells,
DFTB methods are used. However, we were fortunate to be able to utilize this variations of LCAO
formulation in real space, which could handle this number of atoms relatively good, as far as the
relaxations with periodic boundary conditions were concerned. With that we have presented and
analysed all of our structures in EA potential, and have examined their temperature stability. In
the next section we present the relaxation results of the select of the above structures, and move
on to present the STM/STS and linear plasmonic response simulations that were done on those
structures.



Chapter 4

DFT Simulation Results

4.1 DFT Relaxation Results of Selected Structures

4.1.1 ZZ-Lines, ABZZ-Line & ACh-Line

The first set of the structures from the EA-potential relaxations would be the lines, namely
the ZZ-line and the dashed ZZ-line (DaZZ-line), the ABZZ-line, and the ACh-line. Each of these
lines have been used for the STM, and plasmonic response simulations as well, A systematic study
of these structures is presented in (a). Here we only present the results, for those structures that
were used in STM/STS, and plasmonic response simulations in fig. 4.1.

Figure 4.1: The lowest energy relaxed 6x ZZ-line (left) and 6x DaZZ-line (right) in their optimal
cell-size in antisymmetric configuration.

The DaZZ-line above was relaxed in 4 different sizes, 4x,6x, and 8x, but since the dense ZZ-line
is relaxed in 6x cell, therefore we also used the DaZZ-line in that cell.

The above structures were relaxed in plane-wave mode, due to their small size, using the
Unit-Cell filter for the optimization of the cell-size. For the ZZ-line, the pseudo-flat structure,
which has one silicon atom sticking out of the plane, proved to have the minimum energy, despite
other relaxations similar in shape to the EA results being also possible to achieve with DFT. In
(a), the other ”corrugated” ZZ-line is also presented. The fact remains, that when used for
making round structures on the graphene lattice, similar to the DaZZ-line, the ZZ-line abandons
this pseudo-flat formation, and manifests a corrugated/wavy nature. The ABZZ-line, and the
ACh-line are shown in fig. 4.2.
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Figure 4.2: The lowest energy relaxed 6x ABZZ-line (left) and 6x ACh-line (right) in their optimal
cell-size in antisymmetric configuration.

The bond lengths (BL’s) of the silicon-carbon bonds are expected to be within the limits that
were discussed in the benchmarking section. Different Si-C bonds lengths for structures relaxed
with the PBE XC-potential are shown in fig. 4.3.

Figure 4.3: Different BL’s of ABZZ-line (a), ACh-line (b), ZZ-line (c), and DaZZ-line (d) relaxed
with PBE-DFT.

As it could be seen in fig. 4.3, the shortest BL is at 1.72 Å, while the longest BL reaches
1.9 Å with the pseudo-flat ZZ-line. However this structure is a bit atypical in that it is overall
flat with the exception of a single ”trivalent” silicon, which is closer to the neighbouring silica as
to the carbons with which it is supposed to form a bond (BL of 2.49 Å with Si-atoms, compared
to 2.5 Å with the carbons), hence not being even trivalent in nature. With that it is expected
that for all the rest of structures, the BL’s remain between 1.72− 1.9 Å. Tab. 4.1 summarizes
the embedding energies.
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Table 4.1: The comparison of the energetics of the lines in PBE-DFT (FD mode) and EA
analytical potential.

XXXXXXXXXXXXStructure
Energies

EEmbed/Si(eV) PBE-DFT EEmbed/Si(eV) EA

ZZ-line 6x -3.24 n.a.
DaZZ-line 6x -1.78 -3.15
ABZZ-line 6x -2.76 -4.11
ACh-line 6x -2.92 -3.45

All of the above structures in their chosen 6x cells have the same number of atoms (48
atoms), which makes the comparison possible and meaningful. The flat ZZ-line does not have
an equivalent in EA, and therefore the energy of that structure in EA would not be applicable to
the comparison with DFT. The embedding energies of the DFT results seem to correlate with
the flatness of the structure; the flatter the structure the higher the embedding energy, but this
does not seem to be the case with the EA potential

4.1.2 Hexagons and Triangles

The largest hexagon is one of the most important structures in this study, on which both
STM simulations and plasmonic repsonse simulations are done. However the smallest hexagon,
which we additionally relaxed we used only for comparing and benchmarking the photo-absorption
spectra between FD and LCAO modes in time-propagation TDDFT. The structures are shown
in fig. 4.4.

Figure 4.4: The smallest 6-Si hexagon used for benchmarking in spectrum simulations (left)
compared to the largest hexagon relaxed in LCAO-mode using PBE.
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In fig. 4.5, we show the two largest triangles (21x and the 36x), which were both examined
for STM, additionally the 36x triangle (Triangle36x) was used thoroughly for STM/STS and the
spectra.

Figure 4.5: The 21x and 36x triangles relaxed in LCAO mode with PBE XC-functional.

The embedding energies are listed in tab. 4.2.

Table 4.2: The comparison of the energetics of the triangles and the hexagons in PBE-DFT and
EA analytical potential.

XXXXXXXXXXXXStructure
Energies

EEmbed/Si(eV) PBE-DFT EEmbed/Si(eV) EA

Hex 1x 6x -2.03 -3.92
Hex 16x 6x -2.68 -3.68
Tri 21x 6x -2.91 -3.83
Tri 36x 6x -2.44 -3.69

The embedding energies of the hexagons show a different trend in DFT as in EA. The reason
for that could be the fact that the small hexagon in DFT distorts the lattice more than the
larger 16x hexagon, while in the case of the triangles it is vice versa. Therefore when a particular
structure distorts the lattice the Si-embedding energy rises, both in DFT and EA. Having said
that, it should be also noted that some structures relax differently in EA as in the DFT, such as
the small hexagon, which has a flat lattice in EA but a slightly distorted lattice in DFT.

Finally we look at the dashed version of the largest hexagon and the triangle, in fig. 4.6.
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Figure 4.6: The dashed version of the 36x triangle and 16x hexagon in 6x cells with the total of
392 atoms.

Of the two dashed structures above the hexagon is the flatter one. The energetics of the
structures have to reflect that in DFT and also EA if the same fact could be said about the EA
structures. Tab. 4.3 shows the energetics in DFT and EA.

Table 4.3: The comparison of the energetics of the triangles and the 16x hexagon in PBE-DFT
and EA analytical potential.

XXXXXXXXXXXXStructure
Energies

EEmbed/Si(eV) PBE-DFT EEmbed/Si(eV) EA

DaHex 16x 6x -1.18 -3.12
Tri 36x 6x -1.18 -3.11

The two structures are very similar in terms of the energetics, with the minor difference due to
the dashed hexagon being slightly flatter. The above structures are therefore different variations
of the same symmetric structures (380 C + 12 Si atoms). The only difference is the way
these atoms are arranged, and the slight difference in the flatness is accounted for by the slight
embedding (total) energy difference in both DFT and EA.

4.1.3 Squares, Circles, and Mixed Structures

As for the circles we present the two structures which were also discussed in the analytical
potential section, namely the small dodecagon circle, and the Circle4x in fig. 4.7. And as for
the squares we only present the largest one (Square8x) plus the dashed version of it in fig. 4.8
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Figure 4.7: The 1x dodecagon circle, and Circle4x in their converged cell sizes of 10x and 4x.

Figure 4.8: The Square8x and its dashed version, in their 6x converged cell size.

The embedding energies are listed in tab. 4.4.
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Table 4.4: The comparison of the energetics of the select circles and squares PBE-DFT and EA
analytical potential.

XXXXXXXXXXXXStructure
Energies

EEmbed/Si(eV) PBE-DFT EEmbed/Si(eV) EA

Dodecagon 6x -2.50 -3.96
Cir 4x 6x -2.55 -3.75
Squ 8x 6x -2.29 -3.74

DaSqu 8x 6x -1.31 -3.22

It is interesting that the DFT energies of the circles are close, while that of the Circle4x and the
Square8x in EA are close. One face about the DFT energies are observable, and that is that
the dashed structures usually have an embedding energy that is close to the half of the dense
version. The EA energies of of the dashed and the dense consistently show that the dashed
version have higher energies and are mostly around ≈ 3.1 eV.

Now we can look at the large structures as the last set of the structures that were relaxed in
DFT, in fig. 4.9.

Figure 4.9: The two extra large structures, the XXL-Circle and the large ABZZ-Hexagon in their
relaxed cell sizes of 4x and 6x respectively.

And finally we look at the energetics of the above structures in tab. 4.5.
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Table 4.5: The comparison of the energetics of the additional large structures in PBE-DFT and
EA analytical potential.

XXXXXXXXXXXXStructure
Energies

ETot(eV) PBE-DFT EEmbed/Si(eV) PBE-DFT EEmbed/Si(eV) EA

ZZHex 4x -2.39 -4.12
XXLCir 4x -2.42 -3.88

The energies are very close both in DFT and EA, although DFT prefers the XXL circle, the EA
prefers the ABZZ-hexagon. However due to the small energy differences, it could be said that
the structures are equally highly favourable, and that is due to the symmetric corrugation of the
graphene lattice in addition to small amounts of lattice distortion, which when combined usually
constitute the best form of creating impurity defect.

4.2 Quantum Confinement

4.2.1 Initial STM/STS of Structures w/ Fermi Level Convergence

In the first part of the STS/STM simulations we look at the STM/STS, at constant heights,
of the structures whose unoccupied bands have not been additionally converged, in search of
confined surface electronic states. The selected structures which showed potential for confining
a surface state, were chosen for further convergence of the unoccupied bands, the STM/STS
results of which are presented in the next section. For the sake of comparison however, one
structure, the ACh-Line, we examine both in this and the next section, consequently with and
without the converged unoccupied bands.

However one relevant consideration for STM image simulations is, would be what is the right
distance for a constant height STM imaging. Another one, would be the selection of the bias
voltages. Furthermore, as we have mentioned in the introductory sections, the Si impurity in
graphene cannot be seen as a Coulomb impurity, and it is of central importance in this project
to examine and understand the effect of this impurity on the electronic properties of graphene.
For this purpose we start by looking at a few plots from the DOS, and STS of pristine graphene
and a single trivalent Si in graphene (similar to fig. 3.11) the sheet (Dot Si 4x, 1 Si in 31 C
atoms), while the STS plots are done for different heights. The DOS’s of graphene sheet with
and without the singe trivalent Si are shown in fig 4.10

Figure 4.10: The Kohn-Sham DOS of pristine graphene with (left) and without (right) single
trivalent Si.
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STS simulations carried out at different heights for a C atoms in pristine graphene and for a Si
impurity are presented in fig. 4.11. STS of the single Si atom would illustrate the effect of the
Si atom impurity on the LDOS of atoms in graphene near a Si atom.

Figure 4.11: The STS of C atom in 2-atom cell pristine graphene (right) and Si atom in 32-atom
Dot Si graphene (left), for different z-heights (right axis of the Si-STS shows the scaled LDOS
values based on the cell sizes of 32/2 atoms.

Clearly one can see completely different spectra, and the fact that the STS of C atoms resembles
the DOS of graphene, while the STS of the Si atom is completely different. The significant
contributions of the Si-spectra (LDOS) to the LDOS of the neighbouring atoms, and the total
DOS could be between 0 − 2 eV and 4 − 7 eV, as indicated by the two clear peaks. As far
as the other two questions are concerned, one can see that for graphene the STS signal is at
it’s highest at Z = 0.65 Å, and the negative biases disappear for Z ≥ 2.0 Å (see fig. 4.13).
While this difference between the negative bias and positive bias contributions of the C atom in
graphene decreases for heights > 0.65 Å, for the Si atom the positive bias contribution remain
strong beyond the peak value of Z = 0.80 Å. Fig. 4.12 shows the STS’s of C-atom in graphene
separated from the peak intensity height.

Figure 4.12: The STS of C atom in 2-atom cell pristine graphene up to the peak point (left)
and from the peak point to Z = 4.27 Å (right).
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First we look at the atomic position of each structure, on which STS was performed in fig.
4.13.

Figure 4.13: The atomic positions of a) ACh-line, b) DaZZ-line, c) ABZZ-line, d) dashed
hexagon16x, e) dashed triangle36x, for STS simulations.

Now we look at the line structures, their STS/STM images to gain an idea of the capabilities
of different lines in confining electronic states on the surface. The Dense ZZ-line however has
been left out due to its peculiar geometry, and therefore we are left with the DaZZ-line, the
ABZZ-line, and the ACh-Lin to get started with, in fig. 4.14

Figure 4.14: The Kohn-Sham total DOS’s of DaZZ-line, ABZZ-line, and the ACh-Line, while
converged only up to the Fermi level (except the lower left plot).

The above DOS’s include only converged occupied bands, and therefore are only valid up to the
Fermi level. However looking at the DOS of DaZZ-line and comparing that to the DOS of the
half-cell DaZZ-line (48-atom cell), which has converged unoccupied bands, the spectrum above
the Fermi level looks very similar to the converged case, and therefore the STS of the single
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atoms can be expected to give qualitatively correct results. In fig. 4.15 we show the STS’s of
middle and border Si-atom of the DaZZ-line.

Figure 4.15: Above: The STS of two central atoms at Z = 4.361 Å. Below: The STS of the Si
atom within the DaZZ-line at two different heights.

Now we present the STM results for the DaZZ-line at two different heights, which showed many
peaks in the LDOS of the central atoms, taken at the peak biases according to the STS results:

Figure 4.16: STM results of the DaZZ-line at 2.5Å for the bias set of
[4.85, 5.0, 5.2, 5.5, 5.8, 6.3] V (left to right) .
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Figure 4.17: STM results of the DaZZ-line at 4.361Å for the bias set of
[4.85, 5.0, 5.2, 5.5, 5.8, 6.3] V (left to right) .

At Z = 2.5 Å there are no states in between the Si-atoms to be observed, other than the
fact that the trivalent nature of the Si-C bonds become clear for the larger biases. However at
Z = 4.361 Å for bias of 5.5 V there a weak feature appears in between the Si-lines, which we
look at more closely (repeated) in fig. 4.18.

Figure 4.18: The weak confined state in between the Si-lines, in the form of a sinusoidal wave
as marked with the blue arrow.

As for the two other structures, it is not expected that any confined states appear in the STM
images, however for the sake of comparison and reference we examine them as well, in fig. 4.19.

Figure 4.19: The STS of a central atom and a Si in the ABZZ-line at Z = 4.361 Å.
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The spectra indicate a clear peak in the LDOS at 4.5 V, and so we take a look at the STM
images at two different height similar to the DaZZ-line case, in fig. 4.20.

Figure 4.20: The STM images of the ABZZ-line for three biases of [4.5, 4.8, 5.2] V at Z = 2.5 Å
(left), and Z = 4.361 Å (right).

Indeed for 4.5 V, one sees a weak connection between the silica at the higher Z distance in the
above set of images. The STS results for the ACh-line are presented in fig. 4.21.

Figure 4.21: The STS of a central atom ACh-line at 4 differnet heights Z = 1.5, 2.5, 3.5, 4.361 Å.

A few LDOS peaks at larger heights of Z ≥ 2.5 Å can be observed. Accordingly, the STM
images in fig-4.22 are done at the peak biases.
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Figure 4.22: The STM images of the ACh-line for the biases of (3.5, 3.8, 4.2, 4.3, 4.6, 5.75) V at
Z = 2.5 Å (above), and Z = 4.361 Å (below), with the candidate image marked with a green
frame.

As seen in the figures, there are additional states appearing as free standing states close to the
Si-lines for 4.3 V bias at Z = 4.361 Å, which we look at in repeated fashin in fig. 4.23.

Figure 4.23: The repeated STM image of ACh-line at 4.3 V bias from the height of Z = 4.361 Å
showing the confined states next to the armchair Si-lines (the Si-lines have the brightest color).

This kind of result is an example of significant potential for producing confined states, which
then requires converging the unoccupied bands for more reliable STM images. And indeed this
is what we have done, in order to have the results consolidated by converging the unoccupied
bands amongst which these LDOS’s appear.

Lastly for the closing of this section we look at the dashed versions of the hexagon, and the
triangle, in order to analyse their potential. However, first we look at their total DOS’s in fig.
4.24
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Figure 4.24: The total Kohn-Sham DOS’s of dashed hexagon 16x (right), and the dashed
triangle 36x (left).

Judging by the shape of the DOS curves, it seems that the unoccupied bands are more or less
converged up to 5 eV (based on the definition of convergence for WF’s, (e.g. log10 of error being
-5.0 instead of -8.0)). Therefore it makes sense to examine the STM simulations according to
the peak biases of STS spectra, to see to what states these unoccupied bands correspond to.
Fig. 4.25 shows the STS spectra for 3 different atoms of the dashed hexagon, one at the border,
one at the center, and one in between them.

Figure 4.25: The STS of the border Si-atom (left), the central atom (center of the hexagon)
(right), and the C-atom in between the previous two atoms (center) of the dashed hexagon 16x
at Z = 4.361 Å.

From which the STM images of fig. 4.26 are made according to the peak biases.
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Figure 4.26: The STM images of the dashed Hexagon16x for the biases of
(3.85, 4.0, 4.15, 4.3, 4.8, 4.95) V at Z = 4.361 Å.

Analysing the STM/STS results, it seems that there are no new confined states are formed in
the dashed hexagon.

In the following we look at the STS/STM of dashed Triangle36x starting with the STS in
fig. 4.27, and the STM of peak biases up to 4.3 V in fig. 4.28:

Figure 4.27: The STS of the border C-atom (left), the central atom (center of the triangle)
(right), and the C-atom in between the previous two atoms (center) of the dashed Triangle36x
at Z = 4.361 Å..

Figure 4.28: The STM images of dashed Hexagon16x for the biases of (3.7, 3.85, 4.0, 4.15, 4.3)
V at Z = 4.361 Å.

As it could be seen in the images of fig. 4.28 for 3.85 V bias we clearly see a new confined
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state in the form of a triangle, which also vaguely appears for bias ∼ 3.7 V. This confined state
is relatively very reliable, since the the corresponding bias is relatively low, and would be more
or less close to the convergence point. Therefore, contrary to the dashed hexagon, the dashed
triangle has a clear potential for confining a surface state, even though we do not further examine
this structure by converging the unoccupied bands.

4.2.2 STM/STS of Select Structures w/ Converged Unoccupied Bands

In this part we examine the quantum confinement of the surface states with structures, whose
unoccupied energy bands have been converged, and which prior to convergence, showed clear
potential for confining surface states. First we look at the atomic positions of each structure,
on which a STS was done in fig. 4.29.

Figure 4.29: The atomic positions of a) ACh-line, b) ABZZ-Hexagon, c) XXL-Circle, d) Trian-
gle36x, e) Circle4x, f) and Hexagon16x, for STS.

The shape and the biases of these confined states therefore can be trusted as far as the
TH-STM model resembles the experimental STM imaging. We start by looking at the ACh-line
(shown in fig. 4.29-a), this time with 192 converged bands out of 320 in total (the first 96 bands
are occupied). Fig. 4.30 shows the total DOS of the ACh-line with 192 converged bands.

Figure 4.30: The total DOS of the ACh-line with 192 converged bands (left), compared to the
ACh-line with only first 96 bands (the occupied bands) converged (right).
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As the graphs show even bands at ≈ 4.0 eV are more or less converged in the right figure (based
on the definition of convergence for WF’s, (e.g. log10 of error being -7.0 instead of -8.0)). It is
only the bands beyond 5.0 eV, which show a lot of difference in their DOS’s. Now we look at the
STS’s of central and a mid-central C-atoms at two different height to check for any positive bias
surface-states at the mentioned positions, in fig. 4.31. Additionally, we will be checking some
negative biases as they appear in the lower-height STS’s as well, however only for this structure.

Figure 4.31: The STS of the ACh-line of the central (No.31, below row) and mid-central atom
(No.15, above row) at two different heights Z = 4.361 Å, and Z = 1.5 Å, with the zoom in
of the Z = 4.361 Å (the center figures).

Both the central atom, and the mid-central one show peaks for positive bias STS’s, with high
intensity, while the negative biases are only once again present for low heights. In fig. 4.34 we
look at the STM images corresponding to the positive biases.

Figure 4.32: The STM images of ACh-line for the biases of 4.3− 6.55 V at Z = 4.361 Å.
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Looking at the above snapshots, it is clear that the ACh-line indeed has a great potential for
confining surface states, as the closer examination shows, that there is indeed 3 different confined
surface-states present. (If we regard each bright line as peak and each dark line as trough) the
three images below in fig. 4.33 show a double-peak mode (both being peaks), where the Si-lines
are appearing as black for 4.55 V, another double-peak mode (one peak one trough), for 5.8 V,
and finally a three peak mode (peak trough peak) between the bright Si-lines for 6.15 V.

Figure 4.33: The repeated STM images of ACh-line showing three different confinement modes,
two of which resemble the experimental STM images of confined states between two lines.

However, looking at the negative biases, even at 2.5 Å, there are no new confined states in fig.
4.34.

Figure 4.34: The STM images of ACh-line for biases of -2.5 → -5.75 V, taken at Z = 2.5 Å.

As expected negative biases STM images deliver no sign of confinement, which is consistent with
the idea that the Si-impurity contributes to the positive states and LDOS of its neighbouring
atom, which in turn may or may not become a confined surface state.

Next we look at three structures of the same class, namely the Hexagon16x, the Triangle36x,
and the Circle4x (as shown in fig. 4.29), all of which have super-cells of 392 atoms, ∼ 786
occupied bands in total with very similar DOS’s as shown in fig. 4.35.

Figure 4.35: The DOS of the hexagon16x, triangle36x, and the circle4x, with 1400, 1350, and
1600 bands respectively converged.
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We look at the STS’s of the Hexagon16x on 3 different atoms from the highest Z-distance, similar
in position to the dashed structures in the previous section, once in the full spectrum and once
zoomed in as in fig. 4.31. Therefore, while we leave the negative biases aside altogether, we also
note that the lower height STS’s in the positive region only increase in intensity of the peaks
with decreasing the z-distance (for example from 4.361 Å to 3.5 Å). The results are shown in
fig. 4.36

Figure 4.36: The STS of the 3 different atoms of the Hexagon16x, border Si-atom (left), the
central C-atom (right) and the C-atom in between the previous 2 atoms (center), both in full
spectrum (top), and the zoomed in spectrum (bottom).

The STS curves of the Hexagon16x indicate many modes, and indeed with high intensity
both at the central atom and the mid-central atom. Therefore, we made a complete set of
STM images according to the peaks of the C-atoms in the center and mid-way, not to miss any
possible modes, as shown in fig. 4.37.

Figure 4.37: The STM images of the Hexagon16x at the mentioned biases showing the scattering
and the multi-resonance process.
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Based on the above set of images, there could at least four different modes be seen, as
confined surface states. In the above row the Si-atoms appear black, and the side images come
from the border graphene on the upper periodic image. In the bottom row the Si-atoms appear
on the sides of the central confined mode, while the graphene that is attached to the Si-atoms
outside the plateau appear dark. The interesting pattern that appears throughout, is that for
the lower biases (5.8 V) a central confined mode appears, which then spreads into a triangle
with increased biases, and then spreads over the Si-atoms, giving them intensity to appear in
the image as the bias increases more, while simultaneously getting confined once again at the
center, and then repeating the previous steps (as it turns into a triangle). In other words, this
implies a dynamics of formation, that we can see a trace of in a set of images. This pattern looks
similar to the multi-resonance occurring at the Dirac level for large potentials, in a 80-atoms
corral STM experiment on the surface of a topological insulator as shown in fig. 1.7.

We continue by looking at the rest of the structures, expecting more or less the same be-
haviour that we just described for the hexagon. Fig. 4.38 shows the 3-atom STS of the Circle4x:

Figure 4.38: The STS spectra of the border Si, mid-central C, and the central C atoms in positive
region at Z = 4.361 Å.

And fig. 4.39 the corresponding confined surface states, and their evolution with bias increase:

Figure 4.39: The STM images of the Cirle4x showing the similar multi-resonance process as in
the Hexagon16x for increasing biases.
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Once again looking at the image of 5.15 V biases the confined central mode is similar to that
of 3.9 V biases, with only difference being the intensity of the Si-atoms LDOS, which resembles
the multi-resonance scattering process as in the case of the hexagon.

Moving onto the Triangle36x, we notice the difference between the hexagon and the circle,
namely that in hexagon initial confinement was without the presence of any Si-atoms. In fig.
4.40 we look at the 3 atoms STS of the triangle:

Figure 4.40: The zoomed-in 3-atom STS spectra of the Triangle36x at Z = 4.361 Å.

And accordingly in fig. 4.41 we have the STM images of the Triangle36x.

Figure 4.41: The STM images based on the STS peaks, of Triangle36x at Z = 4.361 Å.

Other than the low-bias central confined mode, there doesn’t seem to be much intensification of
that confinement with increasing bias however.

Having concluded this much about the confinement capabilities for our regular sized systems
(392 atom cells), we also studied some large systems, The XXL-Circle and ABZZ-Hexagon
(as shown in fig. 4.31), whose WF’s we converged with many unoccupied bands beyond the
Fermi level specifically for STM/STS simulations. Therefore we close the quantum confinements
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sections with the study of these structures. In fig. 4.42 we have the DOS’s of the XXL-Circle
with total of 2600 converged bands, and the ABZZ-Hexagon with 1700 total bands converged.

Figure 4.42: The DOS of the ABZZ-Hex with 1700 converged bands (left), and the XXL-Circle
with 2600 converged bands (right).

The XXL-circle in its 648-atom cell has 1295, and the ABZZ-Hex, in its 512-cell atom, has 1024
occupied bands below the Fermi level. Fig. 4.43 and 4.44 are the 3-atom STS of the ABZZ-Hex
similar to the normal structures, followed by the corresponding STM images:

Figure 4.43: The zoomed-in 3-atom STS spectra of the ABZZ-Hex at Z = 4.361 Å..

Figure 4.44: The STM images of ABZZ-Hex showing confined states, at Z = 4.361 Å, evolving
with the increase of bias.
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Similarly we have for the STS of the XXL-Circle in fig. 4.45.

Figure 4.45: The zoomed-in 3-atom STS of the XXL-Circle at Z = 4.361 Å .

From which the STM images of fig. 4.46 have been produced.

Figure 4.46: The STM images of the XXL-Circle for increasing biases showing the evolution of
the confined state, at Z = 4.361 Å .

It is once again clear that the same pattern as in the hexagon is repeating itself in the large
structures as well, only in a different shapes as in the hexagon. But one fact remains irrefutable,
and that is that the capability of seeing confined surface states, and clear potential for producing
quantum corrals given the possibility of having multi-scattering and interference using a STM
tip. Clearly the patterns show that the confinement goes beyond a weak undetectable surface
states, which may occur in the presence of any impurity on a conducting surface.

4.3 Linear Plasmonic Response

4.3.1 TDDFT Linear Dielectric Response & EELS

We start the simulations of the plasmonic response, with the calculation of the linear dielectric
response of the periodic systems in TDDFT (RPA) such as 2D Si-C, for benchmarking and
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comparison purposes, from which also the plasmonic EELS spectrum of the systems could also
be calculated as given by eq. ??. This method calculates the frequency-dependent dielectric
function of a periodic system with, and without local field corrections (LFC), in a given direction
(which is defined by the geometry of the system as referred to in the figures). For 2D systems
the EELS spectrum in the plasmonic region can then be calculated using the zero momentum
vector q = [0, 0, 0] from the dielectric function Re and Im parts. However, this calculation
involves many parameters which can alter the results and with regard to which the results need
to be converged. In fig. 4.47 we show the results of altering some of the parameters for the
calculation of the EELS spectrum of pristine graphene in its 2-atom cell (with two different
broadening parameters η in the upper and the lower curves).

Figure 4.47: The EELS spectrum of graphene for the varying vacuum in the z-direction (above),
and for the fixed vacuum of 12 Å (below), while changing other parameters (η = 0.5 above,
η = 0.1 below).

About the set of parameters in the above calculations it should be said, that the first two are the
Ecut’s for the ground-state (GS) wavefunction, and the LFC, the the k-point mesh initial and
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dense sampling 2D number (k × k × 1), the number of the converged bands (NB), the vacuum
(V), the frequency increment (do=∆ω) of the non-linear grid, and the broadening parameter (η).

As seen in fig. 4.47 for a 2D system the vacuum is one of the important parameters, as is
the denseness of the k-point mesh and the number of the bands. However the bands and the
k-point mesh can vary with the size of the 2D system. But the acceptable value for the vacuum
in a 2D system seems to be 15− 18 Å. In the upper plot of fig. 4.47 we see that for V = 17 Å,
the spectrum almost overlaps with the previous one, therefore we used 18 Å of vacuum for the
smaller (up to 10 atoms) systems in our calculations. However 15 Å is still an acceptable amount
in the case of the heavy calculations, but for any value below 15 Å, the shift in the spectrum
in 2D materials is visible. The parameters do = ∆ω, the frequency increment for the non-linear
frequency-grid, and Ecut for the LFC, which is the smaller value in the diagrams of fig. 4.47
are two secondary parameters. These parameters, which add to the details of the spectrum, as
opposed to being decisive about the correctness of the spectra, are chosen usually based on the
necessity for details and the availability of computational resources. For larger systems high level
of detail comes at very high computational cost, while for small systems its mostly necessary
without being computationally expensive.

Therefore we start by presenting the dielectric function of graphene with and without LFC,
and the corresponding EELS spectrum in fig. 4.48:

Figure 4.48: Above: The dielectric function of graphene with LFC (left), and within LFC. Below:
The corresponding graphene EELS spectrum with and without LFC.

The calculation parameters are as follows: EGS
cut = 600 eV for GS, and ELFC

cut = 200 eV for LFC,
32 converged bands in total, k-point mesh of initial= (7, 7, 1) and dense-sampling= (14, 14, 1),
V = 18 Å, ∆ω = 0.03, η = 0.5. The dielectric functions are indeed very similar with or
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without the LFC, despite a large cut-off energy, and therefore the EELS spectra are close with
and without LFC. In the following simulations we simply skip the dielectric function without LFC,
mostly focus on comparing the EELS spectra. The dielectric function and the EELS of graphene
in fig. 4.48 are all done in x-direction, and it is not expected that the y-direction spectra be
any different. Therefore, next we move to another flat 2D structure, namely the 2D Si-C in fig.
4.49, whose y-direction spectra are also expected to remain the same as the x-direction spectra.

Figure 4.49: Above: The dielectric function of graphene with LFC (left), and without LFC.
Below: The corresponding graphene EELS spectrum with and without LFC.

The simulation parameters are the same as in the graphene case. However, a significant
change in the spectrum is observable, with a 6 − 7 eV shift in the larger peak, and ∼ 2 eV
shift in the smaller peak. This structure, like the pristine graphene constitutes one end of the
spectrum, meaning that any 2D combination of the Si-structures in graphene (as long as no
two Si atoms bind together) is expected to have a plasmonic spectrum, that related to those
of the pristine graphene, and/or the 2D Si-C. Furthermore, the 2D Si-C, similar to the pristine
graphene, has the same spectrum in y-direction, as in the x-direction. With that we move to
the next system, which is no longer as trivial as the 2-atom rhombus-cell systems like graphene
or Si-C. This structure however, despite having an 8-atom armchair cell, is completely flat like
the pristine graphene, and could be named as the ABZZ-line 2x, meaning that there are two
ABZZ-lines in the super-cell which are closest to each other (with only two rows of graphene
betweem them) as shown in fig. 4.50.

Figure 4.50: Left: The 8-atom armchair cell of ABZZ-line used is the dielectric response calcu-
lations. Right: The repeated image showing 4 ABZZ-lines with 2x separation between each.

Therefore we expect a spectrum close to that of the 2D Si-C in fig. 4.51:
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Figure 4.51: The Dielectric function (left) and the EELS spectrum (right) of ABZZ-Line 2x in
x-direction.

Compared to the Si-C calculation’s k-point mesh, the number of bands, and the ∆ω hat to
be accordingly adjusted (as seen on the figure), and as we can see in 4.51, despite similarities in
the EELS spectrum, the dielectric functions are quite different. Furthermore, as expected, the
y-direction spectrum is quite different, as seen in fig. 4.52.

Figure 4.52: The Dielectric function (left) and the EELS spectrum (right) of ABZZ-Line 2x in
y-direction.

Aside from the EELS spectrum the dielectric function is quite different with large zero-point
asymptotes. This distinguished the 2x ABZZ-line from 2D Si-C in a clear manner, aside from
emphasizing the importance of direction in heterogeneous 2D materials (2D materials with im-
purity or defect). We have 3 more structures to examine and for the ones that have different
directional shapes, we look at their spectra in both directions. For the sake of comparison of the
details we made the y-direction spectra with η = 0.15, which simply reveals more detail within
the spectra. Therefore before we move to the next structure we look at the y-direction spectra
of 2x ABZZ-line n fig. 4.53
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Figure 4.53: The Dielectric function (left) and the EELS spectrum (right) of ABZZ-Line 2x in
y-direction, with η = 0.15.

Next we move to a larger system, a 24-atom rectangular cell with 2 Si-atoms, and 22 C-atoms
in 2D periodic system. Repeated along the x-y direction many times, this structure would be
the ACh-line in 6x super-cell, as depicted in fig. 4.2 right-side. This structure also has different
spectra in the directions. In fig. 4.54, we look at the dielectric function and the EELS spectrum
in x-direction:

Figure 4.54: The Dielectric function (left) and the EELS spectrum (right) of ACh-Line 6x in
x-direction, with η = 0.5.

For this simulation, the k-point mesh was adjusted to kinitial = (6, 4, 1) and kdense = (12, 6, 1),
due to the fact that system is far from being quadratic in x-y plane (cell-size of [4.4× 15.63×
15.0] Å

3
). The vacuum was reduced to V=15 Å, and the number of bands increased to NB=192,

and finally the combination of Ecut = 120 eV and ∆ω = 0.095 delivered an acceptably detailed
results for this cell-size. As seen on fig. 4.54 the main peak (σ + π) is exactly 15 eV, and
smoother than for graphene, while the smaller peak (π) is very close to 5 eV with damped
side-peak. Overall as expected the spectrum is closer to the pristine graphene as to that of the
2D Si-C. Next in fig. 4.55 we look at the y-direction spectra of the ACh-line 6x.
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Figure 4.55: The Dielectric function (left) and the EELS spectrum (right) of ACh-Line 6x in
y-direction, with η = 0.5.

Despite no parameter change from x- to y-direction calculations (other than the η), there seems
to be some anomalistic behaviour in the dielectric function for this value of η at the low frequency
region. However, notwithstanding the low frequency region there is clear difference between the
spectra as the well the functions in x- and y- direction, especially the fact that for no LFC there
is an additional peak at 8 eV in the EELS spectrum. It is worth mentioning that for η = 0.25
the oscillatory behaviour of the dielectric function in low frequency region is still there.

The next structure is the symmetric single trivalent silicon in a 4x cell, which has 31 C-atoms
and one Si-atom (symmetric Dot-Si 4x) shown in fig. 3.16 right-side, in which one can see a
super-cell of quadruple symmetric Dot-Si’s in 6x cells (meaning instead of 4 there are 6 rows
of graphene between the Si’s along the line). This structure is therefore a periodic system of a
symmetric Dot Si in a 4x cell. Fig. 4.56 shows its dielectric function and the EELS spectrum.

Figure 4.56: The Dielectric function (left) and the EELS spectrum (right) of symmetric Dot-Si 4x
in x-direction, with η = 0.5.

The spectra in fig. 4.56 are calculated in x-direction, but indeed they are also the y-direction spec-
tra due to the 2D symmetry and homogeneity of the system. Furthermore, since the cell is once
again in x-y plane quadratic we have the k-points mesh of kinitial = (4, 4, 1) and kdense = (8, 8, 1).
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The number of converged bands were increased to NB=256, and the Ecut for LFC reduced to
105 eV. As for the spectra and the functions, we can see that the EELS spectrum is very close
to that of ACh-line, but the main peak is at 17 eV this time instead of 15 eV. And there is slight
difference in the shape and the position of the small peak. On the other hand the dielectric
functions look relatively different for low frequencies and more similar for larger frequencies.

Finally we look at the dielectric function and the EELS spectrum of the dashed ZZ-line in
symmetric configuration, in a 48-atom cell, 2 of which are Si-atoms, and 46 of which are C-
atoms. The structure is the symmetric version of the one in the fig. 4.1 right-side, which is also
half the size in terms of the number of the atoms in the simulation. Fig. 4.57 and fig. 4.58
show the X-Y spectra of the symmetric DaZZ-line 6x:.

Figure 4.57: The Dielectric function (left) and the EELS spectrum (right) of symmetric DaZZ-
line 6x in x-direction, with η = 0.5.

Figure 4.58: The Dielectric function (left) and the EELS spectrum (right) of symmetric DaZZ-
line 6x in y-direction, with η = 0.15.

Once again we have parameter change in the calculations with the k-point mesh which is no
longer uniform but reduced to kinitial = (4, 3, 1) and kdense = (8, 6, 1), and the Ecut for the LFC
at 80 eV, and the NB=352 converged bands. The x-direction EELS spectrum looks indeed very
similar to the spectrum of the Dot Si 4x, but the structures are also very similar. However, one
can see the difference in details of the dielectric function (imaginary part), and the form of the
main peaks in the EELS spectra. We will next look at the 3 similar x-direction EELS spectra
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in more detail to see the fine-differences. However the y-direction of the DaZZ-line doesn’t
reveal anything, as it is very similar to the x-direction functions with η = 0.15. In principle,
up to a certain degree of detail, the spectra and the functions of the 3 previous figures simply
mean that the DaZZ-line 6x is basically similar to the single trivalent silicon (Dot Si 4x) in 4x cell.

Finally at the end, in fig. 4.59 we look at the EELS spectra of the ACh-line 6x, Dot Si 4x,
and Dazz-line 6x, with η = 0.2 to see the actual differences in the spectra.

Figure 4.59: The EELS spectra of DaZZ-line 6x, Dot-Si 4x, and ACh-line 6x in x-direction, with
η = 0.2.

As seen in fig. 4.59 the EELS spectra of the 4x Dot Si and the 6x DaZZ-line are indeed slightly
different, and the spectrum of the ACh-line 6x looks clearly different and distinguishable from
the other two. Therefore, for this level of details one can even distinguish between such similar
structures as DaZZ-line 6x and Dot Si 4x.

4.3.2 FD LrTDDFT & Time-Propagation TDDFT, Induced Fields

In this section we look at the photoabsorption spectra (PAS) of some structures, many of
which we already introduced in the previous section as periodic systems, whose spectra in this
section are going to be measured as free standing molecules. The special property of the FD
time-propagation of LrTDDFT is that they can only calculate the PAS of non-periodic sys-
tems with non-zero vacuum boundary conditions. Namely the systems are hexagonal flakes of
graphene saturated with hydrogen, with a certain Si-pattern embedded onto them, in a simula-
tion box with at least 8 Å vacuum in each direction. As in the case of linear response TDDFT, in
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time-propagation- and LrTDDFT a ground-state with enough converged unoccupied bands have
to be first prepared, which then is either used for time-propagation or the construction of the
omega matrix (in Casida’s method eq. 2.149). In the case of time propagation for time step of
7 attoseconds, 5000 iterations are performed (total propagation time of 35 femtoseconds). Due
to some problem in the code, we only used the Casida code for a couple of small flat 2D systems
(graphene and Si-C in smaller molecule), but the time-propagation TDDFT, which scales very
well also gathered the induced field and field enhancement data of the time-evolved systems for
pre-chosen frequencies, the results which we present here together with the spectra.

At the beginning we describe two type of the molecules used in this set of calculations as an
example, but the specific shape of the structures should also be obvious from their induced fields
and the field enhancement visualizations. In fig. 4.60 we see the molecules used in LrTDDFT
and time-propagation TDDFT calculations of graphene and Si-C:

Figure 4.60: The geometrical shape of the saturated (with hydrogen) hexagonal graphene and
Si-C flakes with 54 and 96 atoms (Si+C atoms without the H-atoms) used in respectively in
LrTDDFT and time-propagation TDDFT.

With that we start looking at the PAS of graphene and 2D Si-C in fig. 4.61 and fig. 4.62
respectively.

Figure 4.61: Left: FD-TDDFT time propagation PAS of 96-atom graphene-flake. Right: LrT-
DDFT (Casida) PAS of 54-atom graphene-flake.
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Figure 4.62: Left: FD-TDDFT time propagation PAS of 96-atom SiC-flake. Right: LrTDDFT
(Casida) PAS of 54-atom SiC-flake.

The TDDFT code can capture, as mentioned, the induced charge density and the induced
potential, and the electric field enhancement at given frequencies, which one can visualize in
different dimensions. Here we look at the mentioned properties in z-direction and also in x-y
plane for the 96-atom molecule. Fig. 4.63 shows the induced charge density and potential, plus
the field enhancement of graphene in z-direction for the peak frequencies is the PAS.

Figure 4.63: From top to bottom: Field enhancement, imaginary part of the induced potential,
and imaginary part of the induced charge density, of graphene for two peak frequencies of the
PAS (left and right) in z-direction.

Fig. 4.64 show the same mentioned properties in the x-y plane.
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Figure 4.64: From top to bottom: Field enhancement, imaginary part of the induced potential,
and imaginary part of the induced charge density, of graphene for two peak frequencies of the
PAS (left and right) in x-y plane.

Similarly for 2D Si-C, we present in fig. 4.65 and 4.66.
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Figure 4.65: From top to bottom: Field enhancement, imaginary part of the induced potential,
and imaginary part of the induced charge density, of 2D Si-C for two peak frequencies of the
PAS (left and right) in z-direction.
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Figure 4.66: From top to bottom: Field enhancement, imaginary part of the induced potential,
and imaginary part of the induced charge density, of Dot Si for two peak frequencies of the PAS
(left and right) in x-y plane.

One point should be made about the spectra in fig. 4.62 and 4.63, and that the Casida spectrum
is based on the electron-hole excitations, and the PAS itself is the sum of all excitations in all
directions. However the time-propagations TDDFT spectrum is based on the time-evolution of
the dipole-moment in a given direction per given kick. Namely that above spectra is the PAS
in x-direction resulting from a 3D perturbation of magnitude [1e − 3, 1e − 3, 1e − 3], and are
supposed to be the same also in y-direction, however they are not perfectly so. Additionally re-
garding the induced fields, since the most effect of the Si-impurities on the fields of the graphene
is in x-y plane, for the next structures we only present the x-y induced fields.

Next we look at the single trivalent silicon in graphene, Dot Si, and the DaZZ-line, in a 96-
atom flake, in time-propagation TDDFT. The shape of the structures will be observable from the
induced fields visualizations, but to briefly describe it, it is indeed just the Dot Si, and the DaZZ-
line (fig. 3.11 and fig. 4.1 right-side) structures of the previous sections, with the difference, that
the enclosing graphene is a saturated hexagonal graphene flake of fig. 4.60 left-side (Si-atom
and the DaZZ-line in a central position as much as possible). Fig. 4.66 illustrates the PAS of
these structures.

Figure 4.67: Left: FD-TDDFT time propagation PAS of 96-atom Dot Si-flake. Right: FD-
TDDFT time propagation PAS of 96-atom DaZZ-line-flake
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It should be mentioned that the x-direction in the Dot Si-flake is in agreement with the x-
direction in the dielectric response calculations of the DaZZ-line 6x as shown in fig. 4.1, namely
that the x-direction is along the DaZZ-line within the graphene flake. As for the spectra is it
understandable, that the difference will be more visible as in the case of the dielectric response
due to non-periodic boundary conditions. With that we move to the induced fields of the Dot Si
in fig. 4.68:

Figure 4.68: From top to bottom: Field enhancement, imaginary part of the induced potential,
and imaginary part of the induced charge density, of 2D Si-C for two peak frequencies of the
PAS (left and right) in x-y plane.
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And the induced fields of the DaZZ-line in fig. 4.69:

Figure 4.69: From top to bottom: Field enhancement, imaginary part of the induced potential,
and imaginary part of the induced charge density, of DaZZ-line for two peak frequencies of the
PAS (left and right) in x-y plane.

The induced fields of the Dot Si indeed show in detail, the effect of embedding single trivalent
silicon into the graphene lattice on the electronic properties of graphene. However the DaZZ-
line goes a step further and illustrates the effect of multiple embeddings (impurity) on those
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properties. This effect is studied in this section, starting from the DaZZ-line structure, using
the more reliable method of FD-TDDFT for small systems. But in the next section we expand
our systems in order to see the collective effect of the Si-structures on the plasmonics (collective
electronic oscillations) of graphene. Before moving to the next structure we take a quick look
however, at the z-direction fields of the DaZZ-line in fig. 4.70, due to its corrugated shape in
z-direction.

Figure 4.70: From top to bottom: Field enhancement, imaginary part of the induced potential,
and imaginary part of the induced charge density, of DaZZ-line for two peak frequencies of the
PAS (left and right) in z-direction.

Next we look at the spectra of the ABZZ-line, and the ACh-line in fig. 4.71.

Figure 4.71: Left: FD-TDDFT time propagation PAS of 96-atom flake of ACh-line. Right:
FD-TDDFT time propagation PAS of 96-atom flake of ABZZ-line

The PAS of the ABZZ-line is in full agreement with the EELS spectrum of the previous section.
However the PAS of the ACh-line had to be refined with higher η value and taken n y-direction
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to resemble the EELS spectrum. Interestingly the EELS spectrum without LFC in y-direction
had an unexpected peak at 8 eV (fig. 4.55 right-side). Here the same phenomenon happens
except with the axes switched namely for the x-direction, even though the direction of the line
in both simulations remain the same (x-direction goes along the line). Moving to the induced
fields, fig. 4.72 shows the induced fields of the ABZZ-line in x-y plane.

Figure 4.72: From top to bottom: Field enhancement, imaginary part of the induced potential,
and imaginary part of the induced charge density, of ABZZ-line for two peak frequencies of the
PAS (left and right) in x-y plane.
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Fig. 4.73 illustrates those of the ACh-line in x-y plane:

Figure 4.73: From top to bottom: Field enhancement, imaginary part of the induced potential,
and imaginary part of the induced charge density, of ACh-line for two peak frequencies of the
PAS (left and right) in x-y plane.

The last two set of images of fig. 4.72 and 4.73 illustrate very clearly the effect of a dense
arrangement of Si on the surface fields of the graphene. Any dense line induces a positive charge
density and positive potential around itself thereby deviding the graphene sheet into halves in
terms of the electric potential and gathered charge density. This phenomenon has an implication



4.3. LINEAR PLASMONIC RESPONSE 108

for the surface plasmons of graphene, the effects of which we will see in the next section.

However before that we look at two last structures, which are embedded on a 154-atoms
graphene flakes instead of 96-atoms. The smallest 1x-hexagon (fig. 4.4) and 4-symmetric
Dot Si 4x on the graphene sheet help us in the transition to LCAO-size systems (hundreds of
atoms in the simulation). The 1x hexagon is also simulated in the LCAO in the exact same
way, and 4Dot Si 4x resembles the periodic boundary conditions of Dot Si 4x much better that
just one Si-atom in the graphene flake. First we look at the geometrical descriptions of these
structures (fig 4.73).

Figure 4.74: Left: Geometrical description of the 4Dot Si 4x on a 150-atom saturated graphene
flake. Right: Geometrical description of the 1x Hexagon on a 150-atom saturated graphene
flake.

Fig. 4.73 shows the PAS of the 1x Hexagon and the 4Dot Si 4x.

Figure 4.75: Left: FD-TDDFT time propagation PAS of 150-atom flake of 1x Hexagon. Right:
FD-TDDFT time propagation PAS of 150-atom flake of 4Dot Si 4x
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We finally look at the induced fields of these structures once again in both dimensions z, and
x-y. Fig. 4.76 shows the x-y plane fields of the 4Dot Si 4x.

Figure 4.76: From top to bottom: Field enhancement, imaginary part of the induced potential,
and imaginary part of the induced charge density, of 4Dot Si 4x for two peak frequencies of the
PAS (left and right) in x-y plane.

Fig. 4.77 shows the x-y plane fields of the 1x Hexagon:
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Figure 4.77: From top to bottom: Field enhancement, imaginary part of the induced potential,
and imaginary part of the induced charge density, of 1x Hexagon for two peak frequencies of the
PAS (left and right) in x-y plane.

Next we look at the z-direction fields of the 4Dot Si 4x (fig. 4.78).
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Figure 4.78: From top to bottom: Field enhancement, imaginary part of the induced potential,
and imaginary part of the induced charge density, of 4Dot Si 4x for two peak frequencies of the
PAS (left and right) in z-direction.

And the z-direction fields of the 1x Hexagon in fig. 4.79:

Figure 4.79: From top to bottom: Field enhancement, imaginary part of the induced potential,
and imaginary part of the induced charge density, of 1x Hexagon for two peak frequencies of the
PAS (left and right) in z-direction.
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It is interesting to analyse the induced fields of the last two structures. It is clear, for the
both structures, and that is the fact that the Si atoms around themselves tend to induce a
positive potential, which then results in gathering of negative charge density. But when there
are multiple Si-atoms around a particular area a negative potential is induced in the middle if
the Si-atoms are not too close to each other, as in the case of the 4Dot Si 4x, which compared
to pristine graphene causes a negative charge density to accumulate inside the flake. However,
it is expected if the Si atoms are densely wrapped around an area, the consequently induced
potential is positive, resulting in trapped surface electronic states (instead of hole-states).

4.3.3 LCAO Time-Propagation TDDFT & LSPR’s

In the last section of the result, we finally get to look at the PAS of the large systems which
we have developed, namely the 16x Hexagon and 4x Circle, and so on. This section presents
the result of PAS calculations in LCAO-mode, which together with the collection of the charge
density, forms the study of the LSPR’s of large molecules, namely once again some 600-atom
graphene flakes (saturated with Hydrogen), or any systems embedded onto such pristine graphene
flakes. The difference between surface plasmons (SP’s) and LSPR’s, which are localized, is
explained in the theory section (fig. 2.3), but to present an example, fig. 4.80 shows the SP’s
compared to the LSPR’s in 600-atom saturated (600 atoms without the Hydrogen) pristine
graphene flakes.

Figure 4.80: Left: The propagation of surface plasmons (SP’s) of graphene at 9.8 in SZP-basis
of LCAO. Right: The LSPR’s of graphene at 4.2 eV in SZP-basis of LCAO.

In terms of the iterations and time propagation the parameters in this set of simulations are
similart to the FD-TDDFT. However, as mentioned before, in any LCAO calculation the initial
basis-set (SZ, SZP, DZ, etc.) are the most important parameter of simulations,especially for
simulations of the electronic properties like the band gap, or PAS. Furthermore, the unoccupied
bands in the LCAO-TDDFT time-propagation play no role, as there are no wavefunctions, or
electron-hole basis excitations involved (not yet). It is mentioned in the GPAW documenta-
tions, that the basis-sets provided in the PAW-dataset, are not specifically tested for accuracy.
Therefore, it is strongly suggested to benchmark the LCAO-bases against the FD-TDDFT. This
however, requires careful and expert usage of advanced basis-generator program, doing a large
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statistical analysis of testing all the generated bases against FD-TDDFT, which would make up
a masters-thesis on its own. Therefore, what we accomplish here should serve exclusively as
initial benchmarking of the existing SZP-, and DZP-bases (in LDA and GLLB-SC functionals)
against the previous smaller systems of last two sections. While, none of the spectra for the
large systems (16x hexagons, etc) can be fully trusted, the LSPR’s generated in these systems,
as far as their geometries, shapes and intensities are concerned, can be trusted.

Therefore we start with a similar system to the previous ones, a 96-atom graphene flake,
which we look at using SZP, and DZP bases in LDA, and GLLB-SC, and also it’s fields in x-y
plane and in z-direction. For small systems a large broadening η = 0.5 is usually more appropriate
due to too much detail, however for the rest of the systems, which have 600+ atoms in them,
we will switch to η = 0.25. Therefore fig. 4.81 show 3 PAS of the 96-atom graphene flake with
η = 0.5.

Figure 4.81: LCAO-TDDFT PAS of the 96-atom graphene flak in SZP-LDA basis (above left),
in DZP-LDA basis (above right), and DZP-GLLBSC (below).

There is indeed a significant difference in the shape of the main-peak of the spectra, even when a
DZP basis is chosen, which XC-functional the basis is based on also makes a significant difference,
as seen in fig. 4.81. With that we move to the induced charge density of the graphene-flake in
SZP-LDA, in fig. 4.82, from two different directions, to see what the systems size means for
simulation of the LSPR’s.
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Figure 4.82: Induced charge densities of the 96-atom graphene flake, in SZP-LDA basis for
w ≥ 5, at resonance frequencies in z-direction (above set), and in x-y plane (below set).

The above induced fields, for a large enough width (w ≥ 5.0, which is the width of the induced
charge densities, set as a visualization parameter), look exactly like the induced charge density
and the field enhancement of the 96-atom graphene flake in FD-TDDFT. Therefore, we realize
that resonances of the induced charge density can only be interpreted as LSPR’s for systems
of large dimensions like the ones in fig. 4.80. Now SZP basis seems to generate the LSPR’s
with a weak intensity (note that while the width might change certain LSPR shapes altogether,
in the case of low impurity it only increases the visibility of the effect of the impurity on the
induced charge densities). Therefore, next in fig. 4.83, we look at the PAS, and the LSPR’s in
a 600-atom graphene flake using the DZP basis in fig. 4.84.
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Figure 4.83: LCAO-TDDFT PAS of the 600-atom graphene flake in SZP-LDA basis (above left),
in DZP-LDA basis (above right), and DZP-GLLBSC (below).

Figure 4.84: π LSPR at 5.0 eV (left), and the σ + π LSPR at 16.5 eV (right), of graphene in
600-atom flake, in DZP-GLLBSC basis for w = 0.15.

In fig. 4.84 we clearly see the LSPR’s, indeed localized at the center with negative and
positive polarizations for the. Indeed for the smaller resonance frequency, which is due to the
π band, we see a corresponding LSPR related to the bipolar shape of the π band. However,
for the σ + π LSPR, the σ LSPR is enclosed with two additional clouds of π band resonating
at opposite polarities, interestingly. This is fully in agreement with the definition of the surface
plasmonics of graphene, due to the fact that we see clearly, from the shape of LSPR’s, that at
σ + π frequency we a LSPR that is made up of σ LSPR and an enclosing π LSPR. It would be
interesting to see the effect of the Si-atom structures on this LSPR, which as we see tends to
spread overall (or as one could say 600-atom sheet is too small for its size, as is the 96-atom for
the σ LSPR). However, prior to that we look at one other homogeneous system, namely the 2D
Si-C only in one size molecule, 600-atom saturated flake, and then look at it’s LSPR’s generated
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in DZP-GLLBSC. Fig. 4.85, and fig. 4.86, show the PAS, and the LSPR’s (in DZP-GLLBSC)
of the 2D Si-C.

Figure 4.85: LCAO-TDDFT PAS of the 600-atom graphene flake in SZP-LDA basis (above left),
in DZP-LDA basis (above right), and DZP-GLLBSC (below).

Figure 4.86: π LSPR at 3.9 eV (left), and the σ + π LSPR at 9.8 eV (right), of 2D Si-C in
600-atom flake, in DZP-GLLBSC basis with w = 0.15 (and w > 5.0 for the smaller side figures).

We can see in fig. 4.86 the effect Si-doping (or impurity), which is on alternating lattice sites
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on the shape of the (π) LSPR at 3.9 eV, other than the fact that the resonance frequency is
lowered by ≈ 1 eV. For the larger LSPR the negative part still is slightly affected by the position
of the Si-atoms, and the positive part, despite being spread all over the sheet (more clear with
larger width), still makes its appearance known adjacent to the blue charge densities, which
shows that the positive σ + π LSPR has not completely delocalized.

We move on next to the single trivalent silicon (Dot Si) in two systems of different size with
216-, and 600-atom saturated flakes, and analyse their PAS and LSPR’s if any. Fig. 4.87 shows
the PAS of the 216-atom flake Dot Si.

Figure 4.87: LCAO-TDDFT PAS of the 216-atom Dot Si flake in SZP-LDA basis (left), in
DZP-LDA basis (right)

Accordingly we have the LSPR’s of the 216-atom flake in fig. 4.88.

Figure 4.88: π LSPR at 4.98 eV (left), and the σ + π LSPR at 15.0 eV (right), of 2D Si-C in
600-atom flake, in DZP-LDA basis with w > 5.0.

Looking at the PAS, the DZP-LDA, very well captures the wideness of the second peak centred
at 15.0 eV, while the SZP basis produces a sharp peak at that frequency. From the simulations
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of the 4.3.1 we know that the peak at the 15.0 eV for the Dot Si was not sharp and spread over a
f eV’s. As for the LSPR’s for the lower frequency LSPR in fig. 4.88 left, one sees that the LSPR
is much more compact and localized around the Si-atom in both polarities, while the graphene
sheet is more or less neutral (other than the boundaries). But for the larger frequency LSPR,
the positive charge seems to be more compact than the negative charge, and as a result we have
cloud of negative charge density throughout the graphene flake (the green cloud overall, while
yellow denotes neutral charge). Therefore, once again we can confirm that a Si-atom impurity
induces a positive potential, and once spread (at higher resonance frequencies) this potential
gathers (induces) negative charge density overall in graphene (compensated by the thick positive
charge density close to the Si-atom, and the positive charge gathered at the boundaries). In the
next structure this concept will become more clear.

Now we look at the same structure just in a larger graphene flake of 600-atom expecting
more or less the same results, while we want to see what happens to the LSPR of a larger system
(molecule) at the higher frequency. Fig. 4.88 and 4.89 show the PAS and the LSPR’s of the
system.

Figure 4.89: LCAO-TDDFT PAS of the 600-atom Dot Si flake in SZP-LDA basis (left), in
DZP-LDA basis (right).

Figure 4.90: π LSPR at 5.0 eV (left), and the σ + π LSPR at 15.0 eV (right), of 600-atom
Dot Si flake, in DZP-LDA basis with w > 5.0.
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Aside from the PAS which have only been sharpened, the LSPR’s are exactly as expected, even
more clear. The namely the σ+π LSPR confirms our analysis in the above paragraph about the
smaller system. The fact is now clear, that a Si-atom impurity induces a negative charge density
over the graphene sheet whole causing a positive charge and potential in its immediate vicinity,
therefore changing the polarity of the charge density across the graphene sheet, compared to the
case of pristine graphene as seen in fig. 4.82 right-side.

Next we look at two line structures, namely the 2x ABZZ-line, and the 6x ACh-line, as simu-
lated in section 4.3.1. Once again to mention, one should note that the 2x and 6x indicated the
number graphene rows between the lines. These structures are very appropriate for benchmark-
ing purpose, as they could easily be simulated using periodic boundary conditions in a small cell.
In fig. 4.91 and 4.92 we look at the PAS of these structures:

Figure 4.91: LCAO-TDDFT PAS of the 600-atom ABZZLin 2x flake in SZP-LDA basis (left),
in DZP-LDA basis (right).

Figure 4.92: LCAO-TDDFT PAS of the 600-atom AChLin 6x flake in SZP-LDA basis (left), in
DZP-LDA basis (right).

As expected the spectra look very different and acceptably similart to the spectra in section
4.3.1, namely that the peaks and the overall shape is in agreement, but there is still place for
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adjustment using both bases. It is interesting to observe that in the case of DZP-LDA, the wave-
function wouldn’t converge for the given boundary condition corrections (momenta corrections,
which we will talk about in the discussions). But switching to GLLB-SC in DZP basis, the wave-
fuction converged easily. This indicates the importance of the GLLB-SC functional for materials
with semiconductor properties. In both cases however, the AChLin 6x, and the ABZZLin 2x,
when we compared the spectra to those of section 4.3.1, DZP basis, due to it being bulkier at
the σ + π peak, seems more appropriate for benchmarking, even though it might have a sharp
tip. If the entire peak is sharp however, like the SZP, there isn’t much place for adjustment.

Next we look at the LSPR’s for the peak frequencies in fig. 4.93 and 4.94.

Figure 4.93: π LSPR at 2.5 eV (left), and the σ + π LSPR at 10.5 eV (right), of 600-atom
ABZZLin 2x flake, in DZP-LDA basis with w = 0.15.

Figure 4.94: π LSPR at 4.5 eV (left), and the σ + π LSPR at 14.5 eV (right), of 600-atom
Dot Si flake, in DZP-LDA basis with w > 5.0.

Another effect upon the LSPR’s could be observed in the above figures. As for the ABZZLin 2x,
the Si-atoms seem to delocalize the charge densities beyond a certain radius, which is case of
the Σ +π it looks very much like more charge concentration close to the center, and distributed
charge everywhere else so that the original structure of the LSPR is lost. But in the case of
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AChLin 6x, the Si-lines, which appear with positive charge around them, interestingly somehow
separate the resonant charges for the lower frequency, while for the higher frequency the Si-lines
cannot cut through the negative charge. Before we move on however, we look at the geometries
of the lines within the flakes, and the PAS in y-direction. Fig. 4.95 shows the geometries of the
ABZZLin 2x and AChLin 6x, in a 600-atom flake.

Figure 4.95: The geometries of the ABZZLin 2x (left) and AChLin 6x (right) in a 600-atom
graphene flake.

Fig. 4.96, shows the PAS of these structures in y-direction:

Figure 4.96: LCAO-TDDFT PAS in DZP-LDA basis of the 600-atom ABZZLin 2x flake (left),
and 600-atom AChLin 6x flake (right) in y-direction.

Interestingly, the similarities in the y-direction spectra is very well observable compared to the
dielectric response spectra in section 4.3.1. In the case of ABZZLin 2x, the behaviour of the
larger peak leaning with an extra peak towards 8 eV, as seen is fig. 4.52 and 4.53, is clearly
present, and for AChLin 6x the spectra are as similar as in the previous case of comparison, but
once again there is a twitch at 8 eV in the x-direction in fig. 4.92.
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Next we move on to a few structures, which we have not tried previously, due to their size,
and with that we close this section. First it would be interesting to look at the small 1x circle, or
dodecagon, in a 486-atom graphene flake (since it was smaller than other structures), and then
look at a few larger structures like the 16x hexagon, and 36x triangle. Fig. 4.97 shows PAS of
the dodecagon, and fig 4.98 the corresponding LSPR’s on the plateau of the dodecagon for 2
different widths (w).

Figure 4.97: LCAO-TDDFT PAS of the 486-atom dodecagon flake in SZP-LDA basis (left), in
DZP-LDA basis (right).

Figure 4.98: The LSPRS’s of the dodecagon at peak frequencies and DZP-LDA basis for w =
0.15 (above set), and w > 5.0.
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We can see for the small width that at larger resonance frequency, there seems to be a complete
charge separation, with the Si-atoms acting as a wall of negative charge density causing the cen-
ter of the dodecagon to glow red (positive), even though for the smaller frequency both charges
seem to be present inside the circle. However, when we increase the width this confusion disap-
pears, and wee that the scale is reduced in comparison, but the charge separation is consistent
in both LSPR’s.

With that we move to the Square8x, which is rather a particular structure in terms of the
general lattice symmetry. This structure is on the 600-atom, and in fig. 4.99 we see the PAS of
the Square8x.

Figure 4.99: LCAO-TDDFT PAS of the 600-atom Square8x flake in SZP-LDA basis (left), in
DZP-LDA basis (right).

Fig. 4.100 also shows the corresponding LSPR’s for only one width.

Figure 4.100: π LSPR at 4.5 eV (left), and the σ + π LSPR at 14.65 eV (right), of 600-atom
Square8x flake, in DZP-LDA basis with w = 0.15.

Here is a pattern that we observe in the shape of the LSPR’s especially the larger one enclosing
both negative and positive charge densities, and dividing them from the diagonal. This is very
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interesting indeed, as it seems that closed patterns indeed do change the shape of the LSPR into
a desired form, and that in itself is a significant observation.

Following on that line we next look at the two structures, which are symmetric against the
hexagonal lattice and are very important in terms of their shape, and aside from their calculated
PAS using the existing bases, we study their effect on the graphene LSPR’s. Fig. 4.101 and
4.102 show the PAS, and the corresponding LSPR’s of the Hexagon16x.

Figure 4.101: LCAO-TDDFT PAS of the 600-atom Hexagon16x flake in SZP-LDA basis (left),
in DZP-LDA basis (right).

Figure 4.102: The LSPRS’s of the Hexagon16x at peak frequencies and in DZP-LDA basis for
w > 5.0.

Aside from the PAS, which is different from that of the Square8x, once again we see that the
LSPR’s have taken a funny shape resembling the elevated plateau of the Hexagon16x, while
being separated in positive and negative from the diagonal. The figure however is limited to a
certain height, which is being visualized at the time. The side-traces of the charges therefore
would fill up the entire hexagon, making a unique shape based on the enclosure. This obviously
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brings geometrical control over the shape of LSPR’s, which should be in turn very important for
application in nano-electronics, and sensorics.

Finally we check the Trianlge36x, which is very similar to the hexagon in terms of crystallo-
graphic symmetry. Fig. 4.103 shows the PAS of the Triangle36x.

Figure 4.103: LCAO-TDDFT PAS of the 600-atom Triangle36x flake in SZP-LDA basis (left),
in DZP-LDA basis (right).

Fig. 4.104 shows the LSPR’s of the Triangle36x.

Figure 4.104: he LSPRS’s of the Triangle36x at peak frequencies and in DZP-LDA basis for
w > 5.0.

The PAS of the Triangle36x look very similar to that of the Hexagon, seeing from the above
plots. There is only a small amount of detail in the difference between the two PAS, since
for a 600-atom molecule, a rearrangement of the Si-atoms, which are the same in number (25
Si-atoms in both cases) can only cause so much of a difference. However, it is in the case of the
geometry of their LSPR’s that one can truly distinguish these structures. Therefore, even for
a fully benchmark set, the structures that have the same number of impurity atoms, and close
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geometrical shapes, a very close PAS is to be expected. However these have to significantly
differ from the pristine graphene, which unfortunately is not quite the case here, due to the
aforementioned inaccuracies.



Chapter 5

Discussions & Conclusions

With regards to the relaxation of structures within the graphene lattice, a couple of points
are noteworthy. The procedure how to come up with structures, and how to go about relaxing
them is indeed a process, which requires some work regarding the methods of how to proceed.
Indeed the role of analytical potentials have been crucial, as having the result of relaxation with
analytical potential as the initial figure or condition for DFT relaxation is big jump and an ad-
vantage, if it does not lead to metastable higher energy configurations (as in the case of dense
ZZ-line and it pseudo-flat variation). However, this probility is very small indeed, and in lieu of
such small mistake-probabilities, it is definitely worth to start from analytical potentials, before
embarking on ab initio methods for finding the relaxed form of a particular embedded pattern
onto a 2D graphene sheet.

As for the DFT method of relaxing hundreds of atoms, once again it should be mentioned
that, only real-space grid methods, with the domain-decomposition capability (which divides the
grid points between the processors for parallel computing), are capable of handling this number
of atoms. Normally DFT methods are said to be able to handle up to 300 atoms. However, in our
case 400-atom structures have been easily dealt with, on our systems, a super-computer of some
2000 node, with each node (normal nodes) having 16x@ 2.2 GHz CPU, 64 GB RAM .
Even a system of 650 atoms have been relaxed, though using more than a 1000 nodes for re-
laxation and FD-wavefunction convergence. Therefore, other mainstream DFT methods based
on just plane-wave or PAW, or just LCAO (i.e. Siesta, which is based on Pseudo-potentials),
without real-space grid PAW implementation and domain decomposition, will not be able to
deal with this system-sizes. It is recommended however, for more efficiency and productivity
a super-computer of hundreds of 128-GB-RAM nodes, as have been implemented elsewhere,
which in the opinion of the author, combined with the GPAW-package, will be able to relax and
converge WF’s of structures of ∼ 1000 atoms, breaking a record in DFT.

Regarding the STM results, there is potentially a lot to be said, since this stage of computer-
based experiment is the very preliminary stage, which would pave the way for more complicated
simulations and eventually actual STM experiments. However, as seen in the results and refer-
ring to the theoretical background, the ripple effect which was reported in the original quantum
corral experiment in terms of bias, and position [7], is seen in a way in our simulation in terms of
bias, as the sets of images for increasing bias shows the development of the confined state into
a more complicated one which has wings and sides, all the way onto the Si-atom barriers. This
is significant int that, it is a prelude to seeing ripple effects, once a more advanced STM formal-
ism is applied (NEGF, Keldysh formalism). It has been shown experimentally that graphene is
capable of guiding such standing wave ripples on its lattice in different situations.
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In fig. 5.1 from [2], it is shown that under controlled doping conditions, where a p-n junction
is created between the round area and the rest of the sheet, the ripples of standing wave of a
quantum corral can be observed with a STM on the graphene lattice.

Figure 5.1: The STM experiment on a graphene p-n junctions on a set of substrates, showing the
quantum corral ripples blocked by the junction border, and induced by the STM tip. From [2],
reprinted with permission from Nature Publishing Group.

Equivalently fig. 5.2 from an article about tuning the plasmonics of gated graphene, illustrates
the importance of the STM tip in inducing the surface electronic ripples initiated by infra-red
light.

Figure 5.2: The effect of the STM tip on the surface electronic states (infra-red surface plasmons)
of a gated graphene induced by 3.11 THz infra-red light. (note that the wavelneght of the ripples
(150 nm) is related to the infra-red light frequency. For visible light this length would be ≈ 200
times smaller). From [59], reprinted with permission from AAAS.

And therefore, it is believed that also without explicit doping and creating p-n junctions, solely
by embedding barriers at chosen lattice sites, it would be possible to scatter the surface states
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resulting from the interaction of the tip and the surface in a multi-scattering frame, reproducing
the surface local ripples that we see in fig. 5.1, even in a much smaller scale (wavelength).

The main part of this thesis and the related project is the study of the effect of embedding
controlled impurities, in the form of the geometrical shapes, on the plasmonics of graphene. And
in this thesis we do the ground-laying work in this regard, which is also very much related to the
STM simulations (as shown in fig. 5.2 the confined surface states might very well be produced by
the equivalent wavelength surface plasmons), since experimentally they are just another electron
microscopy technique for the study of surface electronics of graphene. However, as mentioned
before, computer based simulations relay very much on the methods apply. Namely that even
though there is one STM apparatus (same working principle), there is at least 3 different theo-
retical methods that describe the working-function of the STM. Therefore, extreme care has to
be given as to which method is applied and in which context indeed (environmental parameters).

With regards to the calculation of the plasmonic response of materials, there are a few
methods available. One would be the linear dielectric response, which itself has a variety of
formulations, from which we have used the TDDFT method. This method can produce the
low loss EELS, which would reveal information about the plasmonic excitations of materials,
with periodic boundary conditions (namely crystal ans solids). The other methods are based on
modern formulations of the DFT, namely time-dependence and time-propagation, which would
deliver the PAS of materials. It so happens that the surface plasmons of graphene resonate in
the visible light spectrum (refer to the plasmonic dispersion relation in section 1.2), and therefore
it is expected that the PAS and the EELS of graphene have more or less the same form. In fig.
5.3 we see the comparison of EELS with LCAO-TDDFT for 2 systems.

Figure 5.3: The comparison of the EELS with the LCAO-TDDFT time-propagation in different
bases and XC-functionals for pristine graphene (left) and Dot Si (right)

However, there are a few challenges to be overcome in order to obtain consistent results out
of all the methods. First, as already mentioned the PAS calculation in TDDFT can only be done
for a molecule without periodic boundary conditions. Therefore, a molecular representation of
the extended periodic system has to be designed and its GS wavefunction converged. While in
FD up to a 200 atoms this does not produce a challenge, in LCAO converging the GS density,
can be very difficult. This is due to the fact that there are many parameters influencing the GS
densities, whereas if there were wavefunctions these would easily be resolved. In FD the chosen
basis makes absolutely no difference as the wavefunctions then replace the atomic orbitals an get
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expanded in a peridic way throughout the Bravais lattice, and also the wavefunctions easily obey
the multipole corrected boundary conditions which is done by removing momenta up to level 9
(s, px, py, pz, dxx, dxy, dyy, dyz, dzz, this technique eliminates the effect of net charge, eliminating
the so called cell-to-cell interaction due to the net charge [61]). However, converging the GS
density in LCAO while applying the multipole corrections and choosing the right basis (SZ, SZP,
DZP, etc) makes a big difference, as well as it may lead to convergence or non-convergence of
the GS density at all.

In our LCAO-TDDFT simulations, we always applied at least L=4 multipole correction, and
did at least two bases in a XC-functional (SZP and DZP in LDA) for minimal comparison. The
GLLB-SC functional, which is very complicated functional, created for correcting the discontinuity
in semiconductor band-gaps, would not converged in DZP for all the structures. For a few, for
which it did, we also tried the DZP basis in GLLB-SC functional, without any adjustment. The
results as they are presented in fig. 5.3 show a favorability towards DZP in GLLB-SC for this
system sizes, when compared to the EELS spectra. Therefore, without any basis generation we
can make the following statement regarding the bases and the XC-functions: And indeed the
fact that, for our systems which include large semiconductor impurities the GLLB-SC functional,
together with its DZP basis delivers more accurate results than any other basis/functional.
Furthermore the existing bases are only good enough for systems of up to ≈ 200 atoms. For
larger systems a custom basis must be generated and benchmarked against FD method, but
once again they should be benchmarked in GLLB-SC functional. From our results we have the
following common plot in fig. 5.4 to look at, which will show us a comparison of the larger
600-atom structures in DZP-LDA basis.

Figure 5.4: The comparison of the LCAO-TDDFT PAS of 4 different structures in 600-atom
flake with the 600-atom pristine graphene flake, in DZP-LDA.

It is interesting looking at the peaks, which show that the closed structures, while having the
peaks almost at the same place as graphene, they reduce the intensity, whereas the single silicon
increases the intensity. The difference between the Square8x and Triangle36x/Hexagon16x, is
also clear from the PAS.
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Appendix A

Optimization Algorithms

A.1 FIRE

Having described the theory behind the calculations of the forces and stress in DFT and
classical potential codes, we should now describe some of the most important algorithms that
do the energy minimization in both cases. One of the most efficient algorithms known is the
fast inertial relaxation engine or FIRE. This algorithm scales very well compared to the other
known gradients, some of which we will also describe. For the explanation of this algorithm the
model of the blind skier is used in which, the skier looks for the fastest way down the range
of the mountain, where the potential is the total energy which is supposed to be minimized
Etot(x1, ....., xN). For this model the equation of motion is defined classically as:

v̇(t) = F(t)/m− γ(t)|v(t)|[v̂(t)− F̂(t)] (A.1)

where the F̂ the force, v the velocity and γ(t) the acceleration in the direction that is steeper
than the current direction. As previously defined the forces are given by F = −∇E(x), and the
power P (t) = F(t) · v(t) is positive. The trick in this scenario is that the ßkierßtops the motion
when he is moving uphill, denoted by the fact that power would become negative.

The above equation as it has been shown brings the skier surprisingly fast to the desired des-
tination, and so the aforementioned FIRE algorithm is the discretization of the above equation.
For that numerical implementation in a MD-code which needs to use its integrator to check for
the convergence, these two steps need to be taken into consideration: 1-Immediate stop upon
the power becoming negative, 2-Mixing of the global velocity of all the atoms (3Natom-velocities)
with the Force vectors, v→ (1− α)v + αF̂|v|, using the times step discretization of α = γ∆t.
Then algorithm has the following numerical steps, one MD steps and 5 force steps, given the
initial guesses for ∆t, αstart x, while x = 0, [26]:
MD: calculate x,F = −∇E(x) and v using the MD integrator; examine the convergences.
F1: calculate P = F · v.
F2: set v→ (1− α)v + αF̂|v|.
F3: if P > 0 and the number of the steps since P was negative was larger than Nmin, increase
the time step ∆t→ min(∆tfinc,∆tmax) and decrease α→ αfα.
F4: if P ≤ 0, decrease the time step ∆t→ ∆tfdec, freeze the system v→ 0, and set α back to
αstart.
F5: return to MD.

A thorough comparison of the speed and the effectiveness of this method with other methods
will be given at the end of this section, after having described the other minimization algorithms.
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A.2 Conjugate Gradient

One of the most popular algorithms, which is relatively an old one, but still quite in use and
powerful is the method of Conjugate Gradient (CG), which like FIRE is a minimization algo-
rithm. However, this algorithm has many aspects in comparison to FIRE which is used strictly
for structural optimization. Conjugate gradient is mainly an algebraic algorithm for solving sys-
tems of linear or non-linear equations, which in the later case it is called the non-linear CG
method. In particular, it can also be used for solving the eigenvalue problem. That is namely
the most important difference between CG and other optimization methods such as FIRE, which
can only be used for force minimization and structural optimization. For users of DFT codes,
it is certainly known, that one of the methods for solving the Kohn-Sham eigenvalue equations,
known with the technical term as the eigensolver is CG, in addition to other eigensolvers such as
Davidson or RMM-DIIS (residual minimization scheme, direct inversion in the iterative subspace.
Therefore the CG method is a multi-facet method in general, however here we want to look at
the CG-algorithm for structural optimization and force/total-energy minimization.

As mentioned before CG is a minimzation method, namely a quadratic function, which may
be viewed as a Newtonian function f which is twice differentiable, which has a Taylor expansion:

fT (x) = fT (x+ ∆x) ≈ f ′(xn) + f(xn)∆x+
1

2
f ′′(xn)∆x2 +O(∆x3) + .... (A.2)

which in the case of the Newton-conjugate-gradient method turns into:

f(x) ≈ f(x0) +∇f(x0) · (x− x0) +
1

2
(x− x0)TH(x0)(x− x0) (A.3)

where H(x0) is the Hessian matrix of the second derivatives. The minimum of the above
quadratic equation, which is simultaneously its minimum, is found by solving xopt = x0−H−1∇f ,
where the inverse of the Hessian matrix is calculated using the CG method, if the Hessian is
positive definite. Furthermore, as instated in the code-description of ASE for example, due to the
quadratic nature of the classical potentials, once the system is closed to the minimum it makes
sense to use the CG method for finding the minimum of that quadratic equation as described
below (as formulated by the Wikipedia article [67]):

A)-The object of minimization is a quadratic equation: f(x) = 1
2
xTAx− bTx x ∈ Rn

B)- The gradient of f is Ax − b, and the above equation suggests p0 is the negative of the
gradient of f at x = x0, therefore:
1- r0 = b−Ax, p0 = r0, k = 0,
2- Calculate αk =

[
rTk rk

]
/
[
pTkApk

]
,

3- Extract the result xk+1 = xk + αkpk,
4- Checking the convergence: rk+1 = rk − αkApk, if rk+1 is sufficiently small then exit loop,
5- Calculate βk =

[
rTk+1rk+1

]
/
[
rTk rk

]
,

6- Calculate the next p = rk+1 + βkk,
7- And increase the index k = k + 1
.

The desired quantity that we are looking for is of course xk+1, however the loop includes
more steps to make sure the desired convergence criterion is achieved.



A.3. BFGS 134

A.3 BFGS

Another minimization algorithm, which is an approxiamtion of the Newton’s method, is the
Broyden–Fletcher–Goldfarb–Shanno method (BFGS). This is an iterative method, which tries to
find the stationary point of a twice-differentiable function by finding the zero-gradient, and it
also has a few modified versions as well, such as the limited-memory BFGS. The method falls
into the category of Quasi-Newton methods, in which the Hessian does not need to be calcu-
lated, and is approximated using gradient evaluations. The quadratic function to be minimized
remains as before similar to CG-method, f(x) = 1

2
xTAx−bTx+ c. This function is minimized

in each iteration in the direction pk by solving the following equation [?]: Bkpk = −∇f(xx),
where Bk is the approximation of the Hessian matrix, such that if inverted, it would be sym-
metric and possibly positive definite. and the quasi-Newton condition imposed on the Bk reads:
Bk+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk).

Therefore, the the BFGS-algorithm in its original form, can be summerized as follows (as
formulated by the Wikipedia article [66]):
1- Solve the equation Bkpk = −∇f(xx) to obtain a direction pk.
2- Do a line search as follows:

a)- Set k = 0, and take an initial guess x0

b)- Calculate pk such that it would get the initial guess closer to the desired
minimum.

c)- Choose a step-size to minimize h(α) = f(xk + αpk), α ∈ R+

d)- Calculate the next xk+1 = xk + αkpk, and set k = k + 1
e)- Check the convergence, ‖ ∇f(xk) ‖< tolerance.

3- Set sk = αkpk
4- yk = ∇f(xk+1)−∇f(xk)

5- Bk+1 = Bk +
yky

T
k

yTk sk
− Bksks

T
kBk

sTkBksk

The initial guess for B = I, and the next step would be inverting this matrix for solving the
equation in step 1. And finally the convergence can be checked by calculating the norm of the
gradient |∇f(xk)|.



Appendix B

Scripts

B.1 GPAW-code Modifications

In this section we present a couple of modifications to the original GPAW code, for the
simulations of the constant height topography STM, and STS dI/dV . We emphasis here that,
there are no simulation scripts presented here as far as the input-parameter scripts for GPAW-
simulations are concerned. The scripts here are engine modifications to the original GPAW code,
which is an open-source software and editable with Python (where Python code is used), which
then are called upon and utilized using the input-parameter GPAW-job scripts. The scripts use
the features of already existing code for constant current STM simulation, epecially the syntax
written for the calculations of the LDOS as a function of position and bias. The following code
describe the STM function:

d e f scan2 ( s e l f , b i a s , z , r e p e a t =(1 , 1 ) ) :
””” Constant h e i g h t 2−d scan .

R e t u r n s t h r e e 2−d a r r a y s ( x , y , I ) c o n t a i n i n g x−c o o r d i n a t e s ,
y−c o o r d i n a t e s and c u r r e n t s . These t h r e e a r r a y s can be
p a s s e d to m a t p l o t l i b s c o n t o u r f ( ) f u n c t i o n l i k e t h i s :

>>> i m p o r t m a t p l o t l i b . p y p l o t as p l t
>>> p l t . gca ( a s p e c t =’ equa l ’ )
>>> p l t . c o n t o u r f ( x , y , I )
>>> p l t . show ( )

”””

s e l f . c a l c u l a t e l d o s ( b i a s )

nz = s e l f . atoms . c a l c . g e t n u m b e r o f g r i d p o i n t s ( ) [ 2 ]
l d o s = s e l f . l d o s . r e s h a p e ((−1 , nz ) )

I = np . empty ( l d o s . shape [ 0 ] )

zp = z / s e l f . c e l l [ 2 , 2 ] * nz
dz = zp − np . f l o o r ( zp )
zp = i n t ( zp ) % nz
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f o r i , a i n enumerate ( l d o s ) :
I [ i ] = s e l f . f i n d c u r r e n t ( a , z )

s0 = I . shape = s e l f . l d o s . shape [ : 2 ]
I = np . t i l e ( I , r e p e a t )
s = I . shape

i j = np . i n d i c e s ( s , d t y p e=f l o a t ) . r e s h a p e ( ( 2 , −1)).T
x , y = np . dot ( i j / s0 , s e l f . c e l l [ : 2 , : 2 ] ) . T . r e s h a p e ( ( 2 , ) + s )

r e t u r n x , y , I

And the following code describes the STS function:

d e f s t s ( s e l f , x , y , z , b i a s 0 , b i a s 1 , b i a s s t e p ) : #, width ) :
””” C a l c u l a t e s t h e d I /dV c u r v e f o r p o s i t i o n x , y a t h e i g h t z ,
f o r b i a s from b i a s 0 to b i a s 1 w i t h s t e p b i a s s t e p . ” ” ”

b i a s e s = np . a r a n g e ( b i a s 0 , b i a s 1+b i a s s t e p , b i a s s t e p )
I = np . z e r o s ( b i a s e s . shape )

f o r b i n np . a r a n g e ( l e n ( b i a s e s ) ) :
p r i n t b , b i a s e s [ b ]
I [ b ] = s e l f . p o i n t c u r r e n t ( b i a s e s [ b ] , x , y , z )

dIdV = np . g r a d i e n t ( I , b i a s s t e p )

r e t u r n b i a s e s , I , dIdV
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GGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Generalized Gradient Approximations

LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Local Densities Approximation

GLLBS-SC . . . . . . . . . . . . . . . . . . . . . . . . . . Gauss-Lobatto-Legendre-Birkhoff Solids Corrected

GPAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Grid-Based Projector Augmented Wave

DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Density Functional Theory

PAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Photo-Absorption Spectrum/Spectra

VdW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Van der Waals

SWNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single Wall Nano-Tube

STM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scanning Tunnelling Microscopy

STEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scanning Transmission Electron Microscopy

EELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electron Energy-Loss Spectroscopy

TDDFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Time-Dependent Density Functional Theory

LFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Local Field Effects

LFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Local Field Corrections

MD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Molecular Dynamics

LAMMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . Large-scale Molecular Massively Parallel Simulator

LDOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Local Density of States

NEGF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non-Equilibrium Green Function

DOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Density of States

QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quantum Electrodynamics

MLG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multi-Layer Graphene

BLG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bilayer Graphene

SPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single Particle Excitations

RPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random Phase Approximations
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SP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Surface Plasmons

TM/TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transverse Magnetic/Transverse Electric

QD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quantum Dot

ZBL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ziegler Biersack Littmark

EA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Erhard Albe

HK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hohenberg-Kohn

PAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . projector Augmented Wave

LCAO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Linear Combination of Atomic Orbitals

FD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Finite Differences

XC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Exchange Correlation

LAPW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Linearised Augmented Plane-wave

LSDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Local Spin Densities Approximations

SCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self Consistent Fields

PW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Plane-Wave

FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fast Fourier Transform

AE/PS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . All-Electron/Pseudo

SZP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single-Zeta Polarized

DZP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Double-Zeta Polarized

PBE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Perdew, Burke and Ernzerhof

DFTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Density Functional Tight Binding

VASP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vienna Ab-Initio Simulation Package

HEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Homogeneous Electron Gas

LUMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lowest Unoccupied Molecular Orbital

HOMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Highest Occupied Molecular Orbital

TH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tersoff Hamman

STS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scanning Tunnelling Spectroscopy

DFPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Density Functional Perturbation Theory

LrTDDFT . . . . . . . . . . . . . . . . . . . . . . . . . . . Linear Response TDDFT

ALDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Adiabatic Local Densities Approximations

ABS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absorption Spectrum
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LDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Linear Density Response

PBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Periodic Boundary Condition

SPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Surface Plasmon Polariton

LSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Localized Surface Plamons

LSPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Localized Surface Plasmonic Resonances

DDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Discrete Dipole Approximations

FDTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Finite Difference Time Domain

BASH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bourne Again Shell

CG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conjugate Gradient

ASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Atomic Simulation Environment

BFGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Broyden-Fletcher–Goldfarb-Shanno

FIRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fast Inertial Relaxation Engine

RMM-DIIS . . . . . . . . . . . . . . . . . . . . . . . . . Residual Minimization Scheme, Direct Inversion in the
Iterative Subspace
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