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Zusammenfassung

Symmetrien — eine zentrales Konzept in der modernen Physik — spielen eine wichtige Rol-
le in der Formulierung vieler wichtiger physikalischen Theorien, wie z.B. der speziellen und
allgemeinen Relativätstheorie, der Quantenmechanik und diverser Feldtheorien bis hin zum
Standardmodell der Teilchenphysik. Topologische Invarianz im Speziellen ist eine sehr starke
Symmetrie, die dem tiefgreifenden Verständnis von kooperativen Phänomenen in kondensierter
Materie (wie z.B. dem Quanten-Hall-Effekt), welche sich als erstaunlich robust gegenüber Stö-
rungen und Verunreinigungen erweisen, zugrunde liegt. In dieser Doktorarbeit wird ein theo-
retisches Grundgerüst entwickelt, das in der Lage ist, sowohl globale als auch topologische
Symmetrien von sogenannten Tensornetzwerkzuständen zu beschreiben, und das Zugang zu
universalen physikalischen Kenngrößen für die Klassifizierung von verschiedenen Phasen kon-
densierter Materie gewährt.

Zu Beginn wird ein allgemeiner Formalismus für die Beschreibung physikalischer und vir-
tueller Symmetrien von Projected Entangled Pair State (PEPS)-Tensornetzwerken in zwei räum-
lichen Dimensionen entwickelt, welche aus der Kontraktion vieler Kopien ein und desselben
elementaren, lokalen Tensors konstruiert werden. Dieser elementare Tensor verbindet physika-
lische, ortslokale Symmetrien mit virtuellen Matrixproduktoperator (MPO)-Symmetrien, wel-
che auf die virtuellen Verschränkungsfreiheitsgrade wirken und die Grundbausteine des neuen
Formalismus darstellen.

Insbesondere werden jene Systeme untersucht welche nur topologisch triviale Anregun-
gen beinhalten um daraus die Klassifikation von symmetrie-geschützten topologischen Phasen
herzuleiten. Ein Eichverfahren wird dann genau auf diese Zustände angewandt wobei gleich-
sam die globale Symmetrie auf eine Menge von lokalen Eichbedingungen transformiert wird.
Weiters wird die daraus resultierende MPO-Symmetrietransformation dargelegt und die hieraus
entstehende topologische Phase der Eichsysteme hergeleitet.

Im nächsten Schritt wird die Relevanz dieser MPO-Symmetrien für eindimensionale Ober-
flächenphysik untersucht. Es stellt sich heraus, dass die MPO’s als Dualitätsabbildung zwischen
gegapten Phasen, welche an kritischen Punkten zu Symmetrien werden, verstanden werden
können. Solch ein Phasenübergang ist durch eine resultierende konforme Feldtheorie (CFT)
beschrieben. Unter Verwendung der MPO Symmetrien werden topologische Sektoren, welche
nichtlokale scaling Felder beinhalten können, von dieser CFT konstruiert und deren physikali-
sche Eigenschaften studiert.

Wir entwickeln dann die allgemeine Theorie von MPO Synnetrien, welche wir mit den
graduierten unitären Fusions-Kategorien identifizieren. Eine Methode zur Konstruktion von
Tensor-Netzwerk-Darstellungen der Superauswahl-Sektoren, einschließlich der für extrinsische
Symmetrie -Defekte, wird gegeben. Die universellen physikalischen Daten der emergenten
Symmetrie-angereicherten topologischen Ordnung wird aus diesen Darsellungen abgeleitet.
Der Effekt der Eichung der globalen Symmetrie wird berechnet und stellt sich als dual zum
Prozess der Anyon-Kondensation, welcher von der Brechung der virtuellen MPO Symmetrie
herrührt.
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Ein Tensor-Netzwerk-Ansatz wird verwendet zur Konstruktion von Hamiltonians welche
neue Phasen der Materie in drei räumlichen Dimensionen realisieren. Dies stellt ein Beispiel
des allgemeinen Rahmens der Tensor-Netzwerk-Darstellungen von Zustandssummen, Hamilto-
nians, Grundzuständen, und deren Symmetrien der topologischen Quantenfeldtheorien (TQFT).
Eine große Klasse von Beispielen wird abgeleitet aus einer TQFT welche kürzlich mit Hilfe der
definierenden Daten einer Symmetrie-angereicherten topologischen Ordnung konstruiert wur-
de.

Zuletzt wird eine Verallgemeinerung der Eich-Prozedur gegeben für Symmetrien die auf
Unterräumen des Gitters wirken, möglicherweise von fraktaler Dimension, welche diese auf lo-
kale Eich-Constraints abbildet. Dies wirft neues Licht auf exotisch fracton topologische Phasen,
einschließlich Haah’s cubic code, welche in Termen von Symmetrien und Eichung verstanden
werden können.
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Abstract

Symmetry has played an essential role in the development of modern physics, from the theories
of special and general relativity, to quantum mechanics, field theory and the standard model.
Topological invariance is a very strong symmetry that underpins our profound understanding
of emergent phenomena in condensed matter systems, such as the quantum Hall effect, that
are remarkably robust to perturbation and impurity. In this thesis, we develop a theoretical
framework that accommodates both global and topological symmetries of tensor network states
and facilitates the extraction of universal physical data to classify the emergent phases of matter.

We begin by setting up a general formalism for the study of physical and virtual symmetries
of projected entangled pair state (PEPS) tensor networks in two spatial dimensions, which are
constructed by contracting many copies of a local tensor. The local tensor intertwines on-
site physical symmetries to virtual matrix product operator (MPO) symmetries, acting on the
entanglement degrees of freedom, which constitute the basic building blocks of our formalism.

The subclass of systems that support only topologically trivial excitations is treated in detail,
from which the classification of symmetry-protected topological phases is recovered. A gauging
procedure is applied directly to these states, thereby promoting the global symmetry to a set of
local gauge constraints. The transformation thus induced upon the MPO symmetry is found and
the emergent topological order of the gauged system is derived.

Next we study the role played by these MPO symmetries in the one-dimensional boundary
physics. The MPOs are found to act as duality maps between gapped phases that become
symmetries at a phase transition point. Such a phase transition is described by an emergent
conformal field theory (CFT). We use the MPO symmetries to construct topological sectors of
the CFT, which support nonlocal scaling fields, and derive their physical properties.

We proceed to develop the general theory of MPO symmetries, which we identify with
unitary graded fusion categories. A method to construct tensor network representations of the
superselection sectors, including those for extrinsic symmetry defects, is given. The universal
physical data of the emergent symmetry-enriched topological order is derived from these rep-
resentations. The effect of gauging the global symmetry is calculated and is found to be dual to
an anyon condensation process that is induced by breaking the virtual MPO symmetry.

A tensor network approach is used to construct Hamiltonians that realize new phases of
matter in three spatial dimension. This exemplifies a general framework for tensor network
representations of topological quantum field theory (TQFT) partition functions, Hamiltonians,
ground states, and their symmetries. A large class of examples are derived from a TQFT that
was recently constructed using the defining data of a symmetry-enriched topological order.

Finally, a generalization of the gauging procedure is developed for symmetries that act on
subsets of the lattice, possibly of fractal dimension, which maps them to local gauge constraints.
This sheds new light on exotic fracton topological phases, including Haah’s cubic code, allow-
ing them to be understood in terms of symmetries and gauging.
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Introduction

The consideration of symmetry has proven to be a valuable guide in the search for mathematical
descriptions of natural law.

In classical physics, fundamental symmetries have been derived from the concept that the
laws of physics should be the same for all observers. This is instantiated by the principle of
Galilean invariance in Newtonian mechanics, invariance under the Poincaré group in special
relativity, and diffeomorphism invariance in general relativity.

In quantum physics, considerations of symmetry brought about a dramatic change of course,
with the proliferation of the so called “Gruppenpest” due to Wigner, Weyl and others. Once
combined with the principle of linearity, symmetry provided powerful and explicit tools — in
the form of representation theory — that led to the solution of hitherto intractable problems
involving large numbers of identical particles.

In the Lagrangian formulation of physics, a famous theorem due to Noether shows that dif-
ferentiable symmetries imply conservation laws. In this framework, field theories are described
by systems of many degrees of freedom that interact in a purely local fashion. Symmetry con-
siderations place strong constraints on the interactions that can occur. In the interest of harmony
between symmetry and locality, the process of gauging can be used to turn a global symmetry
into a local constraint. This is achieved via the introduction of gauge bosons to compensate for
the transformation induced by the application of the symmetry to a local region. These ideas
provided a significant boon en rout to the standard model, a pinnacle amongst the achievements
of modern physics.

A symmetry of the equations that govern a phyiscal system does not necessarily translate
into a symmetry of the observed solutions. Asymmetry is observed when the only symmetric
solutions are given by macroscopic superpositions of distinguishable asymmetric states, which
instantaneously decohere to break the symmetry. This phenomenon is known as spontaneous
symmetry breaking, and it formed the basis for the discovery of Goldstone modes and, later, the
Higgs boson.

Spontaneous symmetry breaking also underlies the general framework developed by Lan-
dau and Ginzburg for the description of second order phase transitions. This approach proved
extremely successful in classifying phases of matter, in the presence of a global symmetry, in
terms of how their low energy states spontaneously break that symmetry. The analysis is largely
based on mean field theory, where the environment of each local degree of freedom is simply
approximated by many copies of itself. In this decoupled description, all relevant physical in-
formation can be extracted from local measurements. The quantities that effectively diagnose
these phase transitions are known as local order parameters.

Considerations of symmetries originating from the nontrivial topology of a configuration
space led to new and previously unexpected phases and phase transitions, which were not pre-
dicted by mean field theory and spontaneous symmetry breaking. The Kosterlitz–Thouless tran-
sition1 and the Haldane phase2,3 are notable examples — both of which went against the con-
ventional wisdom that phase transitions could not occur in the relevant systems, as the Mermin-
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Wagner theorem4 implies continuous symmetries cannot be spontaneously broken in two di-
mensions. An even stronger notion of topological symmetry, deformation invariance, underpins
an elegant explanation of the astounding robustness of the quantum Hall effect5. The emergence
of a precisely quantized value of Hall conductance from a system consisting of a vast number
of interacting degrees of freedom boils down to a mathematical fact: the quantity being mea-
sured on the electronic wavefunction corresponds to a topological invariant6,7. This sequence
of developments, for which the 2016 Nobel prize in physics was awarded, played a large role in
the reemergence of a new Quantengruppenpest that currently afflicts the community studying
the condensed matter physics of strongly correlated quantum many-body systems8–10.

The proliferation of the concept of topological symmetries also entered high energy and
mathematical physics, culminating in the development of topological and conformal field the-
ory11–13. These are classes of field theories defined by a high degree of spatial symmetry, which
led to the discovery of beautiful analytic and algebraic properties14. Such field theories play
a key role in understanding fixed points of the renormalization group15,16, which are defined
by their high degree of symmetry under all renormalization transformations. For the unstable,
gapless fixed points, this corresponds to a symmetry under conformal transformations. For sta-
ble, gapped fixed points — which are resilient to local deformations due to the spectral gap
— this yields a stronger symmetry under arbitrary diffeomorphisms. Despite the extremely
strong symmetry of topological quantum field theories — which essentially restricts their local
properties to be trivial — they can exhibit extremely interesting topological features. In partic-
ular, they can yield nontrivial topological invariants, notably Witten’s formulation of the Jones
polynomial17,18.

The ideas of topological symmetry were brought into the newly developing field of quantum
information by Kitaev, Preskill, Freedman, Wang, and others. They noticed that the topological
degrees of freedom, which occur naturally in some condensed matter systems, yield good quan-
tum error correcting codes due to their inherent robustness to local perturbations19. This obser-
vation led to the concept of topological quantum computation, where information is stored in
topological degrees of freedom and all computations are implemented by changes of topology,
whence robustness to local perturbations is preserved throughout arbitrary computations20–23.

This inspired a new approach to the classification of quantum phases, in which gapped lo-
cal Hamiltonians on the lattice — that are related by adiabatic deformation — are collected
into equivalence classes24–27. This mathematical formulation of the classification problem is
intended to describe phases of matter, at extremely low temperatures, that are resilient to pertur-
bations below a minimum energy scale. Although this formulation does not accurately capture
all physical situations of interest, where the possibility of long wavelength phonon and photon
excitations may imply there is no spectral gap28, it does appear to capture the essence of the
classification problem. Even in the absence of any global symmetry these equivalence classes
yield distinct topological phases8–10. The addition of a global symmetry further refines the clas-
sification, as the allowed adiabatic deformations must respect the symmetry property, and the
topological phases split into symmetry-enriched topological (SET) phases29–33. Even the trivial
phase may split into nontrivial symmetry-protected topological (SPT)3,34–36 phases, which have
neither intrinsic topological order, nor any broken symmetry.

The ground state wavefunctions in these strongly correlated quantum phases of matter are
characterized by their entanglement patterns, that is, the structure of the quantum correlations
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between the underlying degrees of freedom26,37,38. The states in a nontrivial phase are said to
be topologically ordered, a new type of ordering which cannot be detected by any local order
parameter. This classification in terms of the way particles are ordered, relies little on the
precise nature of the underlying degrees of freedom. This embodies the spirit of the Wilsonian
renormalization group approach to physics through emergent phenomena.

A naive description of these ground state wavefunctions is marred by the curse of dimen-
sionality, due to the exponential growth of Hilbert space dimension with the number of degrees
of freedom. On a more subtle level, the resulting distributions over physical measurement out-
comes cannot be efficiently sampled, in general. This is due to the notorious sign problem,
a result of quantum interference, which diminishes the efficacy of the Monte Carlo methods
that are ubiquitous for classical many-body systems. This has been addressed by extending the
mean field approach to a more general ansatz class known as tensor network states39–41 which
capture nontrivial local quantum correlations. This class of states maintains the crucial feature
that the environment of a local degree of freedom can be efficiently approximated by a local ob-
ject. This facilitates various approaches to the optimization of these ansatz states with respect
to the energy of some local Hamiltonian.

The class of tensor network states forms a very general ansatz that captures many essential
properties of the low energy states of local Hamiltonians42,43. For gapped Hamiltonians this
includes the entanglement area law44, exponential decay of correlations and the existence of a
local parent Hamiltonian45,46. A single tensor from such an ansatz state provides a local window
into the emergent physics, via the structure of its entanglement with the surrounding region.
The use of such ansatz wavefunctions is reminiscent of the Laughlin and Moore-Read trial
wavefunctions from condensed matter physics47,48, although tensor networks aim to faithfully
represent a more general class of groundstates.

The general efficacy of tensor network methods in condensed matter physics can be traced
back to White’s famous DMRG algorithm for the optimization of spin chain ground states49,50.
It was later realized that the unprecedented success of this algorithm lay in the fact that it opti-
mized over the class of matrix product states (MPS)51, which was shown to contain faithful rep-
resentations of the ground states of one-dimensional Hamiltonians42,52. MPS have also proven
to be a useful tool in theoretical studies, including the discovery of the AKLT model53,54, the
formalism of finitely correlated states55, and the recent classification of one-dimensional quan-
tum phases27,56.

This classification of quantum phases in one-dimension was based upon an analysis of how
a physical symmetry could act on the virtual entanglement degrees of freedom27,56. This ap-
proach was extended to the study of two-dimensional projected entangled pair states (PEPS),
particularly those with topological order57–67. We continue this line of inquiry by studying
the interplay between physical and topological matrix product operator (MPO) symmetries on
the virtual level of tensor networks in (2 + 1)D and more generally. From this we construct a
framework for the extraction of emergent physical data from these local symmetries.
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Outline and summary of the results

The majority of this thesis focuses on the development of a formalism for the description of SET
order in PEPS. Our formalism is founded on the principles of locality, linearity and symmetry,
which coalesce in the form of an MPO symmetry algebra of a local PEPS tensor — the central
object in our approach. We exercise this approach to study SPT states and their gapless edge
theories, before moving on to general SET orders. A method to extract emergent physical data
from the MPO symmetries is formulated. The effects of gauging the global symmetry, and the
dual process of anyon condensation, are described. Tensor networks are used to construct new
Hamiltonians for (3 + 1)D topological phases of matter from the unitary G-crossed braided fu-
sion category (UGxBFC) data that describes an SET phase. Finally, we generalize the quantum
state gauging procedure to symmetries that act on subsets of the lattice.

Chapter 1: In this chapter we lay a foundation for the study of global symmetry in PEPS.
We expand the philosophy of MPO-injectivity63, developed for the description of topological
order, to capture the action of a global symmetry upon the entanglement degrees of freedom of a
PEPS. The symmetry-enriched pulling through condition lies at the heart of this extension. Our
formalism applies to non-injective PEPS, extending previous approaches68,69, which is crucial
for the description of nontrivial symmetry-protected and symmetry-enriched topological orders.
We thus establish an approach to the classification of (2 + 1)D SET phases in terms of the
invariant labels of an MPO group representation.

We then specialize our study to SPT phases by focusing on PEPS that are MPO-injective
with respect to an injective MPO. Interestingly a nontrivial MPO is still necessary for the de-
scription of nontrivial SPT phases69. We show that such a PEPS is the unique ground state
of its parent Hamiltonian46 on any topology, and that the MPO group representation can also
be picked to be injective. These MPO representations are labeled by an element of the third
cohomology group, and hence the cohomology classification of (2 + 1)D SPT phases36 is re-
covered.

The MPO representation captures the action of the symmetry group upon the edge degrees
of freedom of a symmetric PEPS70. This MPO representation has an ’t Hooft anomaly, specified
by the third cohomology label, which constitutes an obstruction to an on-site realization of
the group action. The presence of a nontrivial anomaly implies that the edge theory either
spontaneously breaks the edge symmetry or is gapless.

We move on to apply the state gauging procedure, introduced in Ref. 71, to the SPT PEPS
and find that the resulting PEPS falls into a twisted quantum double — or Dijkgraaf-Witten —
topological phase of matter19,72. This recovers the gauging approach to the classification of
SPT phases73.

We use our MPO group representation to construct symmetry-twisted states and mon-
odromy defects, and to find the projective action of the global symmetry on these defects. We
also calculate the transformation of symmetry-twisted states under the global symmetry and use
the result to identify which states survive the gauging process.

We demonstrate our formalism with a general class of SPT fixed point PEPS examples.

Chapter 2: In this chapter we focus on the action of anomalous MPO representations of
finite groups upon one-dimensional spin chains. Such models naturally arise at the boundary
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of nontrivial SPT phases in (2 + 1)D, where the anomaly is said to be resolved by the SPT
bulk74–76. Such anomalous MPOs can implement dualities between distinct (1 + 1)D SPT
phases, that become symmetries at a critical phase transition point77. Alternatively, they may
be spontaneously broken throughout a gapped phase.

We focus our attention on MPO symmetric gapless spin chain Hamiltonians, which admit an
emergent conformal field theory (CFT) description. We use the MPO representation to construct
nontrivial topological superselection sectors, containing nonlocal scaling fields, and to derive
general topological restrictions on conformal data that may be extracted from the lattice.

We formulate a variational subclass of the multi-scale entanglement renormalization ansatz
(MERA)43,78 that is symmetric under an anomalous MPO representation, and apply this ansatz
to numerically study an example with a symmetric critical line. The topological sectors of this
model are constructed and nonlocal scaling fields are found, extending the approach taken in
Ref. 79. The critical line is demonstrated to be a gapless phase protected by the anomalous
MPO symmetry and translation, similar to Ref. 80. The same MPO representation is used to
implement a duality between critical lines in a different parameter regime of the same example.

Chapter 3: In this chapter we develop the framework introduced in Chapter 1 to realize a
constructive classification of (2 + 1)D SET phases in terms of the emergent physical data ex-
tracted from a graded MPO symmetry algebra. We summarize the results of Refs. 63 and 64,
explaining how the emergent topological order of a MPO-injective PEPS can be extracted from
its MPO symmetry algebra. We build on this foundation to study graded MPO algebras that
arise from group extensions of an underlying topological MPO symmetry algebra. We relate
these graded MPO algebras to the theory of graded fusion categories81.

We extend the approach of Ref. 64 to construct a defect tube algebra, from which tensor
network representations of the topological defect superselection sectors are derived. We de-
scribe how the physical data of the emergent SET can be extracted from our representations of
the defect superselection sectors. This data specifies a G-crossed modular UGxBFC31, which
captures the permutation of defects, the projective symmetry action on each defect and the
G-crossed modular S and T matrices.

We work out how a graded MPO algebra symmetry transforms when the state gauging
procedure of Ref. 71 is applied to a SET PEPS. This is used to calculate the relationship between
the physical data of an SET and that of the resulting topological order. We move on to analyze
an anyon condensation phase transition, induced by MPO symmetry breaking, that is dual to
the gauging transformation. Again, we work out the relationship between a topological order
and the resulting SET. We describe a generalization of these MPO symmetry breaking phase
transitions beyond cases that are dual to gauging a finite group. We conjecture that this captures
all anyon condensation transitions between nonchiral topological phases in (2 + 1)D.

We work through several examples to demonstrate different aspects of our formalism. We
write down PEPS representations of the recently introduced symmetry-enriched string-net32,33

ground states, and show that they satisfy a symmetry-enriched pulling through condition. We
explicitly carry out the construction of defect superselection sectors, gauging, and condensa-
tion, for the electromagnetic duality enriched toric code. Further examples are also given to
demonstrate the use of Morita equivalent MPO algebras to find different anyon condensation
phase transitions.
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Chapter 4: In this chapter we harness two recent constructions of state sum topological quan-
tum field theories (TQFTs)82,83 to derive local commuting projector Hamiltonians for new topo-
logical phases of matter in three spatial dimensions. We follow a tensor network approach,
introduced in Ref. 84, and also a diagrammatic calculus approach, similar to Refs. 24,85.

We introduce relevant background material on the definition of state sum TQFTs and the
general machinery of Ref. 84 for the construction of Hamiltonians, tensor networks represen-
tations of ground states, and their virtual tensor network operator symmetries, from a state sum
TQFT. We review Kashaev’s construction of a family of state sum TQFTs in Ref. 82. We
also review the underlying data of a UGxBFC from which the state sum TQFTs in Ref. 83 are
constructed.

We explicitly apply the machinery of Ref. 84 to construct local commuting projector Hamil-
tonians from Kashaev’s TQFTs. We compute the ground state degeneracies of these models on
the 3-torus, which forms the basis for our conjecture that they realize a subset of the topological
phase appearing in the Crane-Yetter-Walker-Wang (CYWW) models85,86. We also explicitly
write down local commuting projector Hamiltonians for the UGxBFC TQFTs, first by using
the machinery of Ref. 84 and then by following a graphical calculus approach, generalizing the
construction in Ref. 85.

We discuss how our Hamiltonians fit into the broader context of (3 + 1)D topological
phases that admit a TQFT description, which excludes so called fracton87 phases which are
discussed further in Chapter 5. We explain how the UGxBFC models — with the addition of
a 2-group cocycle twist — capture previous constructions, including the CYWW models and
2-group gauge theory88,89 (which generalizes Dijkgraaf-Witten theory72 and Yetter’s 2-type
TQFTs90). We also speculate about the relation of our Hamiltonians to a general construction
based on unitary fusion 2-categories, or 3-categories with a single object.

Chapter 5: In this chapter we generalize the quantum state gauging procedure of Ref. 71
to symmetries that act on subsets of the lattice. We refer to such symmetries as submanifold
symmetries and we employ the polynomial language developed by Haah91 to describe them.
This extends the toolbox of lattice gauge theory to exotic fracton topological phases of matter87,
which do not admit a conventional TQFT description. We derive general relations between
a symmetric Hamiltonian and the Hamiltonian that results from gauging the symmetry. In
particular, the existence of a uniform spectral gap is preserved by the gauging process.

For the special case of Calderbank-Shor-Steane code Hamiltonians we describe how the
gauging process simplifies to shifting along a chain complex. We make use of this general
phenomenon to construct novel cluster state Hamiltonians that are self dual under the gauging
map. We also apply our formalism to several familiar examples, including the toric code19 and
Haah’s cubic code92.



Chapter 1

Matrix product operators for symmetry-
protected topological phases: gauging
and edge theories
Synopsis:

Projected entangled pair states (PEPS) provide a natural ansatz for the ground states of gapped,
local Hamiltonians in which global characteristics of a quantum state are encoded in proper-
ties of local tensors. We develop a framework to describe on-site symmetries, as occurring in
systems exhibiting symmetry-protected topological (SPT) quantum order, in terms of virtual
symmetries of the local tensors expressed as a set of matrix product operators (MPOs) labeled
by distinct group elements. These MPOs describe the possibly anomalous symmetry of the
edge theory, whose local degrees of freedom are concretely identified in a PEPS. A classifi-
cation of SPT phases is obtained by studying the obstructions to continuously deforming one
set of MPOs into another, recovering the results derived for fixed-point models [X. Chen et al.,
Phys. Rev. B 87, 155114 (2013)]36. Our formalism accommodates perturbations away from
fixed point models, opening the possibility of studying phase transitions between different SPT
phases. We also demonstrate that applying the recently developed quantum state gauging pro-
cedure to a SPT PEPS yields a PEPS with topological order determined by the initial symmetry
MPOs. The MPO framework thus unifies the different approaches to classifying SPT phases,
via fixed-points models, boundary anomalies, or gauging the symmetry, into the single problem
of classifying inequivalent sets of matrix product operator symmetries that are defined purely in
terms of a PEPS.

Based on: 93
Dominic J. Williamson, Nick Bultinck, Michael Mariën, Mehmet B. Sahinoglu, Jutho Haege-
man, and Frank Verstraete,
Phys. Rev. B 94, 205150 (2016), arXiv:1412.5604.

Changes compared to published version: Minor formatting changes.

Contributions of the author: This was a collaborative project, with significant contributions in
the form of ideas and calculations by the first two authors. The included version was primarily
written by the first author.

http://link.aps.org/doi/10.1103/PhysRevB.94.205150
https://arxiv.org/abs/1412.5604
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1.1 Introduction

The phase diagrams of quantum many-body systems become much richer when global symme-
tries are imposed. It has become clear of late that in the presence of a global symmetry there
exist distinct phases which cannot be distinguished via local order parameters. These phases
are referred to as symmetry-protected topological (SPT) phases36. In contrast to topologically
ordered systems10, all SPT phases become trivial if the symmetry is allowed to be explicitly
broken. While this implies that SPT ground states possess only short-range entanglement, they
cannot be adiabatically connected to a product state without breaking the symmetry. Further-
more they exhibit interesting edge properties when defined on a finite system with nontrivial
boundary.

In recent years there has been a growing interplay between the theory of quantum many-
body systems and quantum information. This has led to the development of tensor network
ansatz for the ground states of local, gapped Hamiltonians39,41,42,46,55. Tensor network methods
have proven particularly useful in understanding the emergence of topological phenomena in
quantum many-body ground states. In one dimension, Matrix Product States were used to com-
pletely classify SPT phases via the second cohomology group of their symmetry group27,35,56.
In two dimensions, Projected-Entangled Pair States (PEPS) have been used to characterize sys-
tems with intrinsic topological order59,62,63,94,95, symmetry-protected topological order70 and
chiral topological insulators60,61,96.

The first goal of this work is to present a general framework for the description of on-site
symmetries within the PEPS formalism. The framework includes symmetry actions on states
with topological order and thus provides a natural setting for the study of symmetry-enriched
topological phases29–31,81,97–102 with PEPS103, See Chapter 3 for more details. We then re-
strict to PEPS without topological order and provide a complete characterization of bosonic
SPT order by formulating sufficient conditions to be satisfied by the individual PEPS tensors.
Previously some powerful results for renormalization group (RG) fixed-point states with SPT
order were presented by Chen et al.36,70, the present work extends these results to systems with
a finite correlation length. Furthermore, application of the quantum state gauging procedure
of Ref. 71 within the framework presented here illuminates the correspondence between SPT
phases and certain topologically ordered phases in the language of PEPS, providing a comple-
mentary description to the Hamiltonian gauging construction of Levin and Gu73. This naturally
brings together the classification of SPT phases via fixed-point models, gauging and anoma-
lous boundary symmetries into a single unified approach that focuses only on MPOs which are
properties of the ground states alone.

To achieve these goals we have developed tools to deal with orientation dependent MPO
tensors. These tools allow us to calculate the symmetry action on monodromy defected and
symmetry twisted states and also modular transformations, pre- and post- gauging, in a local
way that is governed by a single tensor.

We first outline the general formalism for characterizing gapped phases in PEPS using ma-
trix product operators (MPOs) in Section 1.2. Section 1.3 presents a set of local conditions that
lead to a large class of PEPS with global symmetries which fit within the general formalism.
Next, in Section 1.4, we identify a class of short-range entangled PEPS and discuss how SPT
order manifests itself in these models via their anomalous edge physics. Section 1.5 explains
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how gauging a SPT PEPS with a discrete symmetry group yields a long-range entangled PEPS
with topological order. In Section 1.6 we study symmetry twists and monodromy defects of SPT
PEPS. These concepts are then illustrated with a family of examples that fall within the frame-
work of SPT PEPS in Section 1.7. We show explicitly that gauging these states yields ground
states of the twisted quantum double models104,105, which are the Hamiltonian formulations of
Dijkgraaf-Witten discrete gauge theories72,106.

The appendices are organized into sections that review relevant background and others that
provide technical details of results which are used throughout the paper. We first review the
relevant properties of MPO-injective PEPS in Appendix 1.9, provide an argument that a MPO-
injective PEPS with a single block projection MPO is the unique ground state of its parent
Hamiltonian in Appendix 1.10 and review the definition of the third cohomology of a single
block MPO group representation in Appendix 1.11. In Appendix 1.12 we present results con-
cerning possible orientation dependencies of MPO group representations. In Appendix 1.13 we
discuss different crossing tensors, their composition and the effect of modular transformations.
Appendix 1.14 contains a brief review of the quantum state gauging formalism and a proof
that a gauged SPT PEPS is MPO-injective63. In Appendix 1.15 we present an extension of the
quantum state gauging procedure of Ref. 71 to arbitrary flat G-connections and use it to prove
that the gauging procedure is gap preserving for arbitrary topologies and to furthermore con-
struct the full topological ground space of a gauged SPT model. In Appendix 1.16 we develop
a description of symmetry twisted states, topological ground states and monodromy defected
states in terms of MPOs and calculate their transformation under the residual symmetry group.
Finally in Appendix 1.17 we demonstrate that the quantum state gauging procedure for finite
groups is equivalent to the standard minimal coupling scheme for gauging Hamiltonians.

1.2 Characterizing topological phases with matrix product opera-
tors

In this section we present a general framework for the classification of gapped phases with PEPS
in terms of universal and discrete labels that arise directly from tensor network states. These
discrete labels emerge from the set of MPO symmetries of the PEPS tensors and should remain
invariant under continuous deformation of the MPOs.

A 2D PEPS can be defined on any directed graph Λ (most commonly a regular lattice)
embedded in an oriented 2D manifoldM given a tensor

Av :=
d∑

iv=1

D∑
{ie}=1

(Av)iv{ie} |iv〉
⊗
e∈Ev

(ie|

for every vertex v ∈ Λ, where Ev is the set of edges with v as an endpoint, see Fig.1.1. Here iv
is the physical index running over a basis for the Hilbert space of a single site Cd and each ie is
a virtual index of dimension D along an edge e adjacent to v in the graph Λ.

For any simply connected region R ⊂M whose boundary ∂R forms a contractible closed
path in the dual graph Λ∗ we define the PEPS map

AR : (CD)⊗|∂R|e → (Cd)⊗|R|v ,
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Figure 1.1: a) A PEPS tensor on a trivalent vertex. b) A right handed MPO tensor.

from |∂R|e virtual indices on the edges that cross ∂R to |R|v physical indices on the vertices
in R, by taking the set of tensors {Av | v ∈ R} and contracting each pair of indices that are
assigned to an edge withinR, to yield

AR :=
∑

{iv}v∈R

∑
{ie}e∈R

⊗
v∈R

(Av)iv{ie}e∈Ev
⊗
v∈R
|iv〉

⊗
e∈∂R

(ie|

whereR := R∪ ∂R, see Fig.1.2.

ℛ
�ℛ

Figure 1.2: The PEPS map AR from virtual indices on edges in ∂R to physical indices on vertices in
R.

Universal properties of the phase of matter containing the PEPS wave function are man-
ifest in the local symmetries of AR. The specific symmetries we consider are of the form
U⊗|R|vAR = ARO

∂R, where U is an on-site unitary corresponding to a physical symmetry
that is respected in our classification of phases. Since physical symmetries necessarily form a
group under multiplication, we henceforth use the notation U(g), g ∈ G (we do not consider
non on-site symmetries such as lattice symmetries107). O∂R is a MPO acting on the virtual
space associated to the edges crossing ∂R. In general,

O∂R =
D∑

{in},{i′n}=1
Tr[Bi1,i′1

σi · · ·B
iN ,i

′
N

σN ] |i1 . . . iN 〉 〈i′1 . . . i′N |

where the edges crossing ∂R are ordered 1 toN := |∂R|e, by fixing an arbitrary base point and
following the orientation of ∂R (specifically the orientation induced byM). Each (Bi,i′

σn )a,b is
a χ × χ matrix, see Fig.1.1, which can depend on the handedness σn = ± of the crossing of
∂R and edge n (+ for right, − for left).

Any truly topological symmetries should persist under arbitrary deformations of the region
R, hence the relevant task is to find a complete set Sg of linearly independent single block45

MPOsO∂Rα (g) for every symmetry transformationU(g) such that for every regionR (satisfying
the conditions outlined above) we have

U(g)⊗|R|vAR = ARO
∂R
α (g) (1.1)



1.2 Characterizing topological phases with matrix product operators 27

�(�)

�(�)

�(�)

�(�) �(�) =

�

Figure 1.3: The symmetry of the PEPS map AR on a regionR containing five sites.

see Fig.1.3. There is an important subtlety in finding inequivalent MPOs that satisfy Eq.(1.1)
since two linearly independent solutions O∂R1 (g), O∂R2 (g) may coincide on the support of AR.
This occurs precisely when they differ by an operator supported on the kernel ofAR. To remove
this redundancy one must first find the set of all single block MPO symmetries S1 for U(1) = 1.
Assuming these MPOs are complete in the following sense

∑
αO

∂R
α (1) = A+

RAR, where A+
R

is a distinguished generalized inverse of AR, any MPO Ô∂R can be projected onto the support
of AR to yield another MPO A+

RARÔ
∂R with a (multiplicative) constant increase in the bond

dimension. Hence the set of inequivalent single blocked MPO symmetries Sg := {O∂Rα (g)}α
can be found by taking all linearly independent MPOs satisfying Eq.(1.1), projecting them onto
the support subspace A+

RAR and collecting the linearly independent single block MPOs that
result.

Eq.(1.1) implies that S :=
⋃
g Sg has a G-graded algebra structure. This algebra structure

and the number of elements in S must be independent of R. Note the MPO matrices Bij
σe,α(g)

also do not depend onR hence for every region the MPO O∂Rα (g) is constructed from the same
local tensors. The symmetry relations of Eq.(1.1), the graded algebra structure of S and any
discrete labels of the MPO representation of this graded algebra provide universal labels of a
quantum phase, independent of the details of the local tensors Av.

Conjecture 1 ( 103). A discrete set of labels that fully specify a symmetry-enriched topological
phases of matter can be derived from S, the MPO representation of G, in a purely local fashion
and these labels remain invariant under continuous physical perturbations.

This set of labels can be calculated by following a similar approach to Ref. 64, which is
described in Chapter 3, and they describe the emergent symmetry defects and their G-graded
fusion and G-crossed braiding properties. Note this data subsumes the underlying anyon theory
and the possibly fractional symmetry transformation of the defects.

Intrinsic topological order is defined without reference to any symmetry and thus corre-
sponds to the G = {1} case, in which PEPS are classified by S1. Injective PEPS46 always
posses trivial topological order and have S1 = {1⊗|∂R|}whereas all known topological ordered
PEPS59,62,63,94,95 satisfy Eq.(1.1) with a nontrivial S1. This was formalized in the framework of
MPO-injectivity in Ref. 63, which was shown to capture all Levin-Wen string-net models (the
Hamiltonian version of Turaev-Viro state sum invariants108). In Ref. 63 the independence of
the MPO tensors from the region R was guaranteed by the intuitive pulling through property
and the more technical generalized and extended inverse properties, all of which were purely
local conditions.

By taking a global symmetry G into account, a finer classification is achieved in terms of S
where |Sg| > 0 ∀g ∈ G. This classification contains symmetry-protected phases for |S1| = 1
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and symmetry-enriched topological phases for |S1| > 1. In the next section we demonstrate
how solutions of Eq.(1.1) can be obtained for nontrivial elements g ∈ G in a similar fashion to
Ref. 63.

1.3 Global symmetry in PEPS

In this section we present a set of local conditions that lead to a general class of solutions to
Eq.(1.1).

Consider a PEPS on a trivalent directed graph Λ embedded in an oriented manifold M,
built from four index tensors A which we interpret as linear maps from the virtual to physi-
cal indices A : (CD)⊗3 → Cd. Firstly, we require that the tensors A satisfy the axioms of
MPO-injectivity63, a framework describing general gapped phases without symmetry. Thus
(potentially after some blocking of lattice sites, which we assume has already been carried out)
the projection P := A+A onto the subspace within which the tensor A is injective can be
written as a matrix product operator

��

��

+

= (1.2)

here the MPO tensors are denoted as black squares and satisfy the axioms listed in Ref. 63,
see Appendix 1.9 for a brief review. These axioms ensure that the same MPO is obtained for
any larger region, independent of the order in which the generalized inverses are applied, and
furthermore that this closed MPO is a projector independent of its length.

We now describe purely local sufficient conditions for a PEPS to be invariant under the
on-site action U(g) of a global symmetry group G. Hereto, we introduce another set of closed
MPOs {V ∂R(g) | g ∈ G} which inherit an orientation from ∂R. These MPOs are composed of
four index tensors that depend on a group element g. The tensors are depicted by filled circles
in the following diagrams and are defined by conditions (1.3) and (1.4)

�

=
�

�(�)

(1.3)

where U(g) is a unitary representation of G, and

�

= . (1.4)
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Note Eq.(1.4) with the directions reversed is implied by the above conditions. The orientation
of the MPO tensors is significant as pulling the MPO through a PEPS tensor in a right handed
fashion, as in Eq.(1.3), induces an action U(g) on the physical index while pulling through in a
left handed fashion results in a physical action U †(g), this follows directly from Eq.(1.3) since
U is a unitary representation.

With these two properties, it is clear that the ground space of a MPO-injective PEPS con-
structed from the tensor A on any closed system of arbitrary size is invariant under the global
symmetry action U(g)⊗N . Hence such MPO-injective PEPS that are unique ground states must
be eigenvectors of the global symmetry. For the special case of injective PEPS46 the MPO P

is simply the identity P = 1 (i.e. a MPO with bond dimension 1), the symmetry MPOs V (g)
can always be factorized into a tensor product of local gauge transformations69 and the ground
state is unique.

From Eqs.(1.3) and (1.4) it immediately follows that the PEPS tensors are intertwiners,
i.e. U(g)A = AV (g), where V (g) denotes a closed MPO acting on the three virtual indices.
Without loss of generality, and in accordance with the general framework of Section 1.2, we
impose that the MPOs V (g) act within the support space of A such that PV (g) = V (g), i.e.

�

=

�

(1.5)

and in particular V (1) = P , for 1 the identity group element. Hence the MPOs V (g) form a
representation of G since we have AV (g1g2) = U(g1g2)A = U(g1)U(g2)A = AV (g1)V (g2),
and thus PV (g1g2) = PV (g1)V (g2) where P := A+A, see Eq.(1.2) (note PV (g)P =
A+U(g)AP = PV (g)). A similar argument shows that the symmetry MPO Vrev(g) along
the path with reversed orientation (inducing reversed arrows) equals V (g−1) since AVrev(g) =
U †(g)A = U(g−1)A = AV (g−1) which implies PVrev(g) = PV (g−1). The above two argu-
ments extend to arbitrary contractible regionsR and boundary MPOs P∂R, V ∂R(g).

If we do not project the boundary symmetries onto the support subspace of A there are
many equivalent choices for the symmetry action on the boundary. In particular, there might
be choices for which the action is factorizable into a tensor product (see e.g. Ref. 70), even
if the support projector is not. However, the resulting boundary actions will generically not
form a representation of the relevant symmetry group G. The procedure we have outlined
of projecting these actions onto the injectivity subspace provides an unambiguous recipe to
identify the relevant set of boundary operators that form a MPO representation of the physical
symmetry group G. For the particular case of renormalization group fixed-point models, our
recipe matches the results of Ref. 70, as illustrated in Section 1.7.

With these properties it is clear that the class of symmetric PEPS satisfying Eqs.(1.3) and
(1.4) constitute a special case of the general framework described in Section 1.2. Let V ∂R(g)
denote the MPO corresponding to group element g acting on the boundary of regionR then we
have

U(g)⊗|R|vAR = ARV
∂R(g) . (1.6)
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Note in the general case we may need to decompose V ∂R(g) into a sum of single block MPOs
to be consistent with Section 1.2.

This general class of solutions show that the formalism of Section 1.2 accommodates the
description of both symmetries and topological order, and furthermore nontrivial actions of
symmetries on states with topological order. Hence the formalism is well suited to describe
symmetry-enriched topological phases within the PEPS framework. This is described in Ref.
103 and Chapter 3.

1.4 Symmetry-protected topological PEPS

Having discussed the general framework for gapped phases and global symmetries in PEPS, we
now focus on the subclass corresponding to states with symmetry-protected topological order.
In the first subsection we identify the characteristic properties of short-range entangled SPT
PEPS. We proceed in the second subsection with an analysis of the edge properties of non-
trivial SPT PEPS.

1.4.1 Identifying SPT PEPS

First we must identify the relevant set of PEPS that accurately capture the short-range entan-
glement property characteristic of SPT phases. As shown in Ref. 63 and argued in the previous
sections, MPO-injective PEPS can describe topological phases with long-range entanglement.
To single out the short-range entangled PEPS that are candidates to describe SPT states we re-
quire that the projection MPO P has a single block when brought into its canonical form. Let
Bij
P denote the MPO matrix with external indices i and j, the single block property is equivalent

to the transfer matrix EP :=
∑
ij B

ij
P ⊗ B̄

ij
P having a unique eigenvalue of largest magnitude

with a corresponding unique eigenvector of full rank. For RG fixed-point PEPS, which are
injective on the support subspace of P , we argue that the single block property implies the
topological entanglement entropy37,38 is zero.

Proposition 1. For a RG fixed-point (zero correlation length) MPO-injective PEPS with a sin-
gle blocked projector MPO P , the topological entanglement entropy of the PEPS is zero

Note the rank of the reduced density matrix ρR on a finite homotopically trivial region R
of a MPO-injective PEPS on a sphere equals the rank of the projection MPO surrounding that
region, i.e. rank(ρR) = rank(P∂R)63. Since the MPO P is a projection, we have rank(P∂R) =
tr(P∂R) = tr(P 2

∂R) = tr(ELP ), where L = |∂R|e is the number of virtual bonds crossing
the boundary of the region R under consideration. We then use the uniqueness of the largest
eigenvalue λmax of EP to conclude that, for large regions, the rank of the reduced density matrix
scales as λLmax. This implies that the zero Rényi entropy has no topological correction and for
RG fixed-points this furthermore implies that the topological entanglement entropy is zero109.
We expect this property to hold throughout the gapped phase containing the fixed-point.

A further crucial property of a SPT phase without symmetry breaking is the existence of a
unique ground state on any closed manifold. For a PEPS to be a unique ground state its transfer
matrix must have a unique fixed-point. This excludes both symmetry-breaking and topological
degeneracy94,110. By taking a PEPS sufficiently close to its isometric form59,62,63 we avoid the
symmetry-breaking case (and assure the gap condition56). Furthermore, in Appendix 1.10 we
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present an argument showing that MPO-injective PEPS with single block projection MPOs do
not lead to topological degeneracy.

We have argued above that SPT PEPS should be MPO-injective on the support subspace of
a single blocked projection MPO. In the language of Section 1.2 this implies |S1| = 1 for SPT
PEPS. We now show that in this case the symmetry MPOs are also single blocked.

Proposition 2. For any MPO-injective PEPS with a single blocked projection MPO, all sym-
metry MPOs of that PEPS can be chosen to be single blocked.

Assume V (g) contains multiple blocks when brought into canonical form V (g) =
∑
i Vi(g),

then we have PV (g) =
∑
i Vπ(i)(g) in canonical form (for some permutation π) since V (g) =

PV (g) for all lengths. This follows from the fact that a pair of MPOs which are equal for all
lengths exhibit the same blocks when brought into canonical form67. Furthermore π = 1 since
Vi(g) = PVπ−1(i)(g) = P 2Vπ−1(i)(g) = Vπ(i)(g).

We have
P = V (g−1)V (g) =

∑
i

V (g−1)Vi(g)

and since this equality holds for all lengths and P has a single block, there can be only one
block on the right hand side after bringing it into canonical form67. Hence one term in the sum
gives rise to a P block along with zero blocks in the canonical form and the others give rise
only to zero blocks. Writing this out we have

P = V (g−1)Vi(g)

multiplying by V (g) from the left and making use of the invariance under P implies

V (g) = Vi(g)

which has a single block (after throwing away the trivial zero blocks).
The arguments in this subsection show that the subclass of symmetric, MPO-injective PEPS

satisfying Eqs.(1.3) and (1.4) which accurately describe SPT phases are precisely those with a
single blocked projection MPO, provided they are taken sufficiently close to an isometric form
to discount the possibility of a phase transition.

Hence the framework of Section 1.2 yields a classification of SPT phases in terms of
the discrete labels of the (necessarily single blocked) MPO group representation V (g) of the
physical symmetry group G which include the group structure and the third cohomology class
[α] ∈ H3(G,U(1))70 (see Appendix 1.11 for a review).

1.4.2 Edge properties

We now focus on how the MPO symmetries affect the edge physics of a SPT PEPS and discuss
how this can be used to diagnose nontrivial SPT order.

A short-range entangled PEPS with MPO symmetries V (g) that satisfy Eqs.(1.3) and (1.4)
has non-trivial SPT order if the third cohomology class [α] of the MPO representation is non-
trivial. The existence of this non-trivial SPT order can be inferred by analyzing the edge physics
when such a PEPS is defined on a finite lattice R with a physical edge (boundary) ∂R. In
this case the PEPS has open (uncontracted) virtual indices along the physical boundary and
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all virtual boundary conditions give rise to exact ground states of the canonical PEPS (bulk)
parent Hamiltonian HPEPS (note boundary conditions orthogonal to the support of P∂R yield
zero). Hence the ground space degeneracy scales exponentially with the length of the boundary,
which is a generic property of any PEPS (bulk) parent Hamiltonian. The physically relevant
question is whether the Hamiltonian can be perturbed by additional local termsHpert =

∑
vHv,

which are invariant under G, to gap out these edge modes and give rise to a unique symmetric
ground state.

In Ref. 110 an isometry W was derived that maps any operator O acting on the physical
indices of the PEPS to an effective operator acting on the virtual indices of the boundary O 7→
WA
R[O]. Let AR = WH be a polar decomposition of AR, where W is an isometry from

the virtual to physical level (CD)⊗|∂R|e → (Cd)⊗|R|v . This induces the following isometry
WA
R[O] := W †OW that maps bulk operators to the boundary in an orthogonality preserving

way. Note there is some freedom in choosing W precisely when P∂R is nontrivial, in this case
we make the choice that best preserves locality. Regardless of our choice of W we always
have P∂RWA

R[O]P∂R = H+A†ROARH
+, where H+ is defined to be the pseudoinverse of H ,

see Fig.1.4. Away from an RG fixed-point, however, it has not been proven that this isometry

𝐴𝑅
†

𝐴𝑅

Figure 1.4: The bulk to boundary isometry, for a region R containing four sites, projected onto the
injectivity subspace P∂RWA

R[O]P∂R = H+A†ROARH
+.

preserves locality. To this point we venture the following conjecture, which was numerically
illustrated for a particular non-topological PEPS in Ref. 111,

Conjecture 2. The boundary isometry of any PEPS with exponentially decaying correlations
maps a local operator Ov acting on the physical indices near the boundary to a (quasi-) local
operator Õve :=WA

R[Ov] acting on the virtual degrees of freedom along the boundary.

From properties (1.3) and (1.4) it is clear that acting with U(g) on every physical site is
equivalent to acting with the MPO V ∂R(g) on the virtual boundary indices of the PEPS, hence
a G-symmetric local perturbation Hv to the Hamiltonian at the physical level HPEPS is mapped
to an effective (quasi-) local Hamiltonian term on the virtual boundary H̃v

e that is invariant
under V ∂R(g). The full symmetric edge Hamiltonian is given by

H̃edge = P∂RWA
R[Hpert]P∂R

= V ∂R(1)

 ∑
e∈∂R

∑
v 7→e

H̃v
e

 V ∂R(1) (1.7)
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where v 7→ e denotes that the bulk perturbation centered on site v becomes a (quasi-) local
boundary term centered on virtual bond e.
Ground states of the perturbed physical Hamiltonian Hbulk = HPEPS + Hpert are given by
contracting the virtual boundary indices of the ground state PEPS network with ground states
of the effective edge Hamiltonian, i.e. |Ψbulk

0 〉 = AR|ψedge
0 ). If the edge Hamiltonian H̃edge

is gapped and does not exhibit spontaneous symmetry breaking then its ground state |ψedge
0 ) is

well approximated by an injective MPS that is invariant under V ∂R(g). However it was shown
by Chen et al. that this results in a contradiction, since an injective MPS cannot be invariant
under the action of a single blocked MPO group representation V (g) with non-trivial third
cohomology70.

Consequently, the effective edge Hamiltonian H̃edge either exhibits spontaneous symmetry
breaking, in which case the MPS is not injective, or must be gapless, in which case its ground
state cannot be well approximated by a MPS. In the former case, the physical state AR|ψedge

0,i )
obtained by contracting the virtual boundary indices of the PEPS network with |ψedge

0,i ), one
of the symmetry breaking ground states of H̃edge, also exhibits symmetry breaking and hence
does not qualify as a symmetric state. The latter case, on the other hand, implies that a local
symmetric perturbation to the physical Hamiltonian is unable to gap out the gapless edge modes,
which is one of the hallmarks of non-trivial SPT order.

Here we have again relied on a form of Conjecture 2, specifically that a PEPS with ex-
ponentially decaying correlations has a gapped transfer matrix, which implies that the gapless
modes on the virtual boundary of the PEPS network are approximately identified, via the PEPS
map AR, with physical degrees of freedom that are an order of the correlation length from the
boundary. Note this explicit identification of the gapless edge mode degrees of freedom is a
major strength of the PEPS framework111. Our conjecture is consistent with the intuition that
as a SPT PEPS is tuned to criticality the gap of the transfer matrix shrinks and the edge modes
extend further into the bulk, and is also supported by the results of Ref. 77 concerning phase
transitions between symmetry-protected and trivial phases.

In this section we have identified a subclass of symmetric PEPS with short-range entan-
glement that are MPO-injective with respect to a single blocked projection MPO. This led to
a classification of SPT phases within the framework of Section 1.2 in terms of the third coho-
mology class of the MPO symmetry representation. Finally we described the influence of the
possibly anomalous MPO symmetry action on the boundary physics of the PEPS. In the next
section we explore an alternative approach to classifying SPT phases with PEPS via gauging.

1.5 Gauging SPT PEPS

In this section we discuss how gauging a SPT PEPS yields a long range entangled PEPS whose
topological order is determined by the symmetry MPOs. We then proceed to show that the
gauging procedure preserves the energy gap of a symmetric Hamiltonian. Our approach explic-
itly identifies how the symmetry MPOs that determine the boundary theory of a SPT model are
mapped to topological MPOs that describe the anyons of a topological theory64.
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1.5.1 Gauging SPT PEPS to topologically ordered PEPS

We first outline the application of the gauging procedure from Ref. 71 to SPT PEPS and the
effect this has upon the MPO symmetries.

Conditions (1.3) and (1.4) ensure that the SPT PEPS described in Section 1.4 are invariant
under the global action U(g)⊗|M|v of a symmetry group G, hence the quantum state gauging
procedure of Ref. 71 is applicable. It was shown in Ref. 71 that the virtual boundary action of
the physical symmetry in an injective PEPS becomes a purely virtual topological symmetry of
the gauged tensors, with a trivial physical action. More precisely, it was shown that the gaug-
ing procedure transforms an injective PEPS, with virtual bonds in CD and a virtual symmetry
representation that factorizes as V ∂R(g) = v(g)⊗L (with v(g) : CD → CD), into a G-injective
PEPS, with virtual bonds in CD ⊗ C[G], that is injective on the support subspace of the pro-
jector

∑
g∈G [v(g)⊗R(g)]⊗L. Here, L := |∂R|e is the number of virtual bonds crossing the

boundary of the regionR under consideration and R(g) |h〉 := |hg−1〉 denotes the right regular
representation of G on the new component C[G] of the virtual bonds. Let us recast this in the
framework of Section 1.2. The ungauged symmetric injective PEPS map satisfies

ARV
∂R(g) = U(g)⊗|R|vAR (1.8)

for any region R ⊂ M and g ∈ G. Now let O∂R(g) := [v(g)⊗R(g)]⊗L, then the gauged
PEPS map Ag

R for any regionR satisfies

Ag
RO

∂R(g) = Ag
R (1.9)

for all g ∈ G, which implies that the gauged PEPS Ag is in the same phase as a quantum double
model constructed form G, provided it is sufficiently close to a fixed-point to ensure there is no
symmetry breaking19,59.

The result of Ref. 71 can be extended to the general case outlined in Section 1.4 and Ap-
pendix 1.10 where the PEPS mapAR in regionR has a non-factorizable MPO representation of
the symmetry on the virtual level, given by V ∂R(g) : (CD)⊗L → (CD)⊗L, and is only injective
on the support subspace of the projection MPO P∂R = V ∂R(1) which is required to be single
blocked. Hence we have

ARP∂R = AR (1.10)

ARV
∂R(g) = U(g)⊗|R|vAR (1.11)

for all g ∈ G; note we have explicitly separated the g = 1 case for emphasis. In the language of
Section 1.2 we have Sg = {V ∂R(g)}, ∀g ∈ G.

The gauged PEPS Ag obtained by applying the procedure of Ref. 71 to A has virtual bonds
in CD⊗C[G] and satisfies the axioms of MPO-injectivity63, but is now injective on the support
subspace of the projection MPO P g

∂R := 1
|G|
∑
g∈GO

∂R(g), where O∂R(g) := V ∂R(g) ⊗
R(g)⊗L, see Appendix 1.14 for a detailed proof. Writing these conditions out, we have

Ag
RO

∂R(g) = Ag
R (1.12)

for all g ∈ G, which implies Ag
RP

g
∂R = Ag

R. Note every MPO O∂R(g) is one of the original
MPO symmetries V ∂R(g) tensored with a tensor product representation on the new component
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C[G] of the virtual space that was introduced by gauging. The MPO representation of P g
∂R

thus has a canonical form with multiple blocks labeled by g ∈ G that correspond to the single
block MPOs O∂R(g). Hence for the gauged PEPS S1 = {O∂R(g) | g ∈ G}. Importantly,
tensoring with a local action R(g) on the additional virtual space C[G] does not change the
bond dimension nor the third cohomology class of the MPO representation.

The topological order of the gauged SPT PEPS is a twisted Dijkgraaf-Witten model (pro-
vided it is sufficiently close to a fixed-point to ensure there is no symmetry breaking) which
is shown explicitly in Section 1.7.2. We emphasize that up to the trivial operators R(g)⊗L the
same MPOs determine both the gapless edge modes of the SPT phase and, as argued in Refs.
62,63, the topological order of the gauged model. This realizes the gauging map from SPT
models with a finite symmetry group to models with intrinsic topological order, explored at the
level of Hamiltonians by Levin and Gu73, explicitly on the level of states. In Appendix 1.17
we apply the gauging procedure of Ref. 71 to families of SPT Hamiltonians with an arbitrary
finite symmetry group, which yields an unambiguous gauging map to families of topologically
ordered Hamiltonians.

We note that the PEPS gauging procedure can equally well be applied to gauge any normal
subgroup N E G of the physical symmetry group G. This gives rise to states with symmetry-
enriched topological order, where the topological component corresponds to a gauge theory with
gauge group N and the global symmetry is given by the quotient group G/N; this is investigated
further in Ref. 103 and Chapter 3.

1.5.2 Gauging preserves the gap

We now show that the gauging procedure of Ref. 71 preserves the energy gap of a symmetric
Hamiltonian, which implies by contrapositive that two SPT PEPS are in different phases when
the corresponding gauged PEPS lie in distinct topological phases.

Let Hm denote a local gapped symmetric ‘matter’ Hamiltonian, which captures the par-
ticular case of parent Hamiltonians for SPT PEPS. The Hamiltonian is a sum of local terms
Hm :=

∑
v hv, where each hv acts on a finite region within a constant distance of vertex v.

Without loss of generality we take the Hamiltonian to satisfy [hv, U(g)⊗|M|v ] = 0, ∀g ∈ G
and shift the lowest eigenvalue of Hm to 0. The gap to the first excited energy level is denoted
by ∆m > 0. We now apply the gauging procedure of Ref. 71 to obtain the gauged matter
Hamiltonian defined by HGm :=

∑
v GΓv [hv], for GΓv given in Eq.(1.112). This Hamiltonian is

also local since each GΓv is locality preserving.
The gauging procedure introduces gauge fields on the links of the PEPS network and the

full Hamiltonian of the gauged system contains local flux constraint terms HB :=
∑
p(1−Bp)

acting on these gauge fields by adding an energy penalty when the flux through a plaquette p is
not the identity group element. Each local term Bp is a Hermitian projector acting on the edges
around plaquette p which has eigenvalue 1 on any gauge field configuration (G-connection) that
satisfies the flux constraint and 0 otherwise, see Eq.(1.134). Furthermore Bp is diagonal in the
group basis on the edges, hence [Bp,Bp′ ] = 0.

The full Hamiltonian may also contain a sum of local commuting projections onto the gauge
invariant subspace HP :=

∑
v(1 − Pv), see Eq.(1.109), this corresponds to a model with an

effective low energy gauge theory rather than a strict gauge theory. Hence the full Hamiltonian
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on the gauge and matter system is given by the following sum

Hfull = HGm + ∆BHB + ∆PHP

where ∆B,∆P ≥ 0. Note a strictly gauge invariant theory is recovered in the limit ∆P → ∞.
It is easy to verify that the components of the full Hamiltonian commute, i.e. [HGm, HB] =
[HGm, HP ] = [HB, HP ] = 0, and hence are simultaneously diagonalizable. Furthermore, HB
and HP each have lowest eigenvalue 0 and gap 1.

Assuming ∆P is sufficiently large, the low energy subspace of Hfull lies within the ground
space of HP and hence is spanned by states of the form P [ |λ〉Λv ⊗ |φ〉Λe ], with P =

∏
v∈Λ Pv,

for a basis |λ〉 of the matter (vertex) degrees of freedom (we will consider the eigenbasis ofHm)
and a basis |φ〉 of the gauge (edge) degrees of freedom (we will consider the group element
basis).

Similarly, assuming ∆B is sufficiently large, the low energy subspace of Hfull lies within
the ground space of HB which is spanned by states whose gauge fields form a flat G-connection
on the edge degrees of freedom. Since we additionally have [Bp, P ] = 0 the common ground
space of HB and HP is spanned by states of the form P [ |λ〉Λv ⊗ |φflat〉Λe ], for a basis |φflat〉 of
the flat G-connections on the edge degrees of freedom (note these are product states).

G-connections form equivalence classes under the local gauge operations

agv :=
⊗
e∈E+

v

Re(g)
⊗
e∈E−v

Le(g)

(see appendix 1.14 for a more detailed definition of agv). On a 1-homotopy trivial manifold (no
noncontractible loops) there is only 1 such equivalence class given by all connections of the
form |φflat〉 =

∏
i a
gi
vi |1〉Λe , where |1〉Λe := |1〉⊗|Λe|.

Proposition 3. For a 1-homotopy trivial manifold, the states G |λ〉 (for a basis |λ〉) span the
common ground space of both HB and HP , where G is the quantum state gauging map defined
in Eq.(1.111).

Since Pv =
∫

dg Uv(g)⊗ agv one can easily see Pvagv = PvU
†
v (g) and hence for any state in

the intersection of the ground spaces of HB and HP we have

P [ |ψ〉Λv ⊗ |φflat〉Λe ] = P [ |ψ〉Λv ⊗
∏
i

agivi |1〉Λe ]

= P [ [
∏
i

Uvi(gi)]† |ψ〉Λv ⊗ |1〉Λe ]

= G[
∏
i

Uvi(gi)]† |ψ〉Λv (1.13)

where we have started from our above characterization of the common ground space.
We now proceed to show that any eigenstate ofHm is mapped to an eigenstate ofHGm by the

quantum state gauging map G. See appendix 1.14 for the details about the operator and state
gauging maps G and G as constructed in Ref. 71.

Proposition 4 ( 71). The identity GΓ[O]G = GO holds for any symmetric operator O.
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Suppose O acts on the sites v ∈ Γ ⊂ Λ where Γ is a subgraph of the full lattice which
contains all the edges between its vertices, then we have

GΓ[O]G =
∫ ∏

v∈Γ
dhv

⊗
v∈Γ

Uv(hv)O
⊗
v∈Γ

U †v (hv)

⊗
e∈Γ
|hv−e h

−1
v+
e
〉 〈hv−e h

−1
v+
e
|
∫ ∏

v∈Λ
dgv

⊗
v∈Λ

Uv(gv)
⊗
e∈Λ
|gv−e g

−1
v+
e
〉

=
∫ ∏

v∈Λ
dgv

∏
v∈Γ

dhv
⊗
v∈Λ

Uv(gv)
⊗
v∈Γ

Uv(g−1
v hv)

O
⊗
v∈Γ

U †v (g−1
v hv)

∏
e∈Γ

δ(g−1
v−e
h
v−e

), (g−1
v+
e

h
v+
e

)
⊗
e∈Λ
|gv−e g

−1
v+
e
〉

=GO (1.14)

where edge e runs from vertex v+
e to v−e . The last equality follows since the δ condition forces

(g−1
v hv) to be equal for all v ∈ Γ (assuming Γ is connected) and the operator O is symmetric

under the group action [O,
⊗

v∈Γ Uv(g)] = 0.
This implies that any eigenstate |ψλ〉 of Hm with eigenvalue λ gives rise to an eigenstate

G |ψλ〉 of HGm with the same eigenvalue. Note we have assumed that G |ψλ〉 6= 0, which is the
case when the representation under which |ψλ〉 transforms contains the trivial representation.
This always holds for a unique ground state (possibly after redefining the matrices of the group
representation by multiplicative phases U(g) 7→ eiθ(g)U(g) ).

If Hm has a unique ground state |λ0〉 the ground state of the full Hamiltonian is given by
G |λ0〉 (since HGm ≥ 0 for Hm ≥ 0) and its gap satisfies ∆full ≥ min(∆m,∆B,∆P ).

Hence if two local SPT Hamiltonians are connected by a gapped, continuous and symmet-
ric path of local Hamiltonians then the gauged models are also connected by a gapped and
continuous path of local Hamiltonians.

In Appendix 1.15 we extend this proof to SPT Hamiltonians on topologically nontrivial
manifolds where the gauging procedure leads to a topological degeneracy of the ground space.
Orthogonal topological ground states are obtained by gauging distinct symmetry twisted SPT
states, which are the subject of the next section.

1.6 Symmetry twists and monodromy defects

In this section we argue that symmetry twists and monodromy defects have a natural description
in the tensor network formalism in terms of symmetry MPOs that correspond to anyons in the
gauged model. We harness this description to calculate the effect that modular transformations
have upon symmetry twisted and topological ground states via their effect on a four index
crossing tensor. Similarly we calculate the projective transformation of a monodromy defect by
composing two crossing tensors. Our approach explicitly identifies how the symmetry MPOs
that describe defects of a SPT model become topological MPOs that describe the anyons of a
topological model64.

1.6.1 Symmetry twists in SPT PEPS

We first describe the construction of a symmetry twisted SPT PEPS in terms of the original SPT
PEPS, symmetry MPOs and a crossing tensor. We then calculate the transformation of this state
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under the residual symmetry group.
For a flat gauge field configuration there is a well defined procedure for applying a corre-

sponding symmetry twist to a local symmetric Hamiltonian, given by conjugating each local
term by a certain product of on-site symmetries (see Appendix 1.15). On a trivial topology such
a symmetry twist can be applied directly to a symmetric state by acting with a certain product
of on-site symmetries. For example a symmetry twist on an infinite plane, specified by a pair of
commuting group elements (x, y) ∈ G× G and oriented horizontal and vertical paths px, py in
the dual lattice, acts on a state |ψ〉 in the following way

|ψ〉(x,y) :=
⊗
v∈U

Uv(x)
⊗
v∈R

Uv(y) |ψ〉

where R is the half plane to the right of py, U the half plane above px, see Fig.1.5. Note x and
y must commute for the relevant gauge field configuration to be flat. One can also understand
why they must commute by first applying the x-twist which reduces the symmetry group to C(x)
(the centralizer of x) and hence it only makes sense to implement a second twist for y ∈ C(x).
With this definition applying a symmetry twist to an eigenstate of a symmetric Hamiltonian
(on a trivial topology) yields an eigenstate of the symmetry twisted Hamiltonian with the same
eigenvalue.

a) � � � �
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Figure 1.5: a) A symmetry twist (x, y) on an infinite plane. b) Physical action of the aforementioned
symmetry twist.

The framework of SPT PEPS provides a natural prescription for the application of a sym-
metry twist directly to a PEPS on any topology, given by acting with symmetry MPOs on the
virtual level of the PEPS. In the above example, assuming |ψ〉 is a SPT PEPS with local ten-
sor A and symmetry MPOs V (g), Eq.(1.3) implies that the symmetry twisted state |ψ〉(x,y) is
given by acting on the virtual level of the PEPS |ψ〉 with the MPOs V px(x), V py(y) (with inner
indices contracted with the four index crossing tensor Qx,y (1.15) where px, py intersect) see
Fig.1.6.

The crossing tensor Qx,y is defined in terms of the local reduction tensor of the MPO rep-
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�
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�

Figure 1.6: (x, y) symmetry twisted PEPS, for infinite or periodic boundary conditions.

resentation X(x, y) (see Eqs.(1.57,1.86))

Qx,y : = X(x, y)X+(y, x) (1.15)

= W x
R(y)

� �

�

�

�

: =
�(�, �)

+
�(�, �)

where X+(y, x) is the pseudoinverse of X(y, x). Eq.(1.3) and the zipper condition (1.71)
for X(x, y) imply that the Qx,y tensor contracted with MPOs V px(x), V py(y) can be moved
through the PEPS on the virtual level by applying appropriate on-site symmetries to the physical
level.

This prescription extends straightforwardly to an arbitrary topology (see Appendix 1.15) as
we now demonstrate with the example of a symmetry twist on a torus for a pair of commuting
group elements (x, y) along distinct noncontractible cycles px, py. The symmetry twisted SPT
PEPS |ψ〉(x,y) is again given by applying the MPOs V px(x), V py(y) (with inner indices con-
tracted with the crossing tensorQx,y) to the virtual level of the untwisted PEPS |ψ〉. Importantly
this prescription fulfills the condition that applying a symmetry twist to a PEPS groundstate of
a symmetric frustration free Hamiltonian yields a groundstate of the symmetry twisted Hamil-
tonian due to Eq.(1.3). We note that similar tensor network techniques allow a construction of
symmetry twists for time reversal symmetry112.

A symmetry twisted state with conjugated group elements (xg, yg) is related, up to a phase,
to the symmetry twisted state with group elements (x, y) via a global symmetry action as fol-
lows θx,yg |ψ〉

(xg ,yg) = U(g)⊗|M|v |ψ〉(x,y). Similarly a symmetry twisted state for a local de-
formation of the paths (px, py) 7→ (p̃x, p̃y) is related to the symmetry twisted state for (px, py)
by a product of on-site symmetries corresponding to the deformation via Eq.(1.3). Hence the
number of distinct classes of symmetry twisted states on a torus, under local operations, is given
by the number of conjugacy classes of commuting pairs of group elements, which equals the
number of irreducible representation of the quantum double D(G)59.

It is apparent that a symmetry twisted state |ψ〉(x,y) forms a 1D representation under the
physical action of the residual symmetry group C(x, y), where C(S) denotes the centralizer of
a subset S ⊆ G. Assuming that the untwisted ground state |ψ〉 is symmetric under G (which
can always be achieved after rephasing the physical representation) the symmetry twisted states
may still form nontrivial 1D representations of their respective residual symmetry groups, this
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fact becomes important when counting the ground space dimension of the gauged model.
Calculating these 1D representations explicitly within the PEPS framework yields the result
θx,yg = α(x,y)(g) the second slant product of the 3-cocycle α that arose from the MPO group
representation (see Appendix 1.13, Eq.1.103). Hence an (x, y) symmetry twisted state is sym-
metric under C(x, y) iff α(x,y) ≡ 1, in which case y is called α(x)-regular. If this property is
satisfied by a given y ∈ C(x) it is also holds for all conjugates of y. Furthermore the number
of α(x)-regular conjugacy classes is known to be equal to the number of irreducible projective
representations with 2-cocycle α(x) 72.

1.6.2 Gauging the symmetry twisted SPT PEPS

We now outline how the application of an appropriate gauging procedure to a symmetry twisted
SPT PEPS yields a topological ground state.

There is a twisted version of the gauging procedure of Ref. 71 for each flat gauge field con-
figuration which maps a symmetric Hamiltonian with the corresponding symmetry twist to a
gauged Hamiltonian, the same one as obtained by applying the untwisted gauging procedure to
the untwisted symmetric Hamiltonian (see Appendix 1.15 for more detail). For a fixed represen-
tative (x, y) the twisted gauging operator Gx,y is given by contracting the tensor product opera-
tors R(x)⊗|px|, R(y)⊗|py | with the virtual level of the original gauging operator G. The twisted
versions of the state gauging map are orthogonal for distinct symmetry twists in general and
furthermore the fixed representatives satisfy G†x′,y′Gx,y = δ[x′,y′],[x,y]

∫
dg U(g)⊗|M|vδg∈C(x,y)

(see Appendix 1.15.3 for a proof of this). Hence each conjugacy class of symmetry twisted
states that are symmetric under the residual symmetry group is mapped to an orthogonal ground
state, while those that form a nontrivial 1D representation are mapped to 0. Consequently the
dimension of the ground space for the gauged model is given by the number of irreducible
representations of the twisted quantum double Dα(G) which can not be larger than the ground
space dimension of a gauged trivial SPT model with the same symmetry group.

Given a SPT PEPS ground state |ψ〉, the orthogonal ground states of the gauged model can
be constructed by applying the gauging tensor network operator and acting with the SPT sym-
metry MPO and a product of on-site symmetry actions [V (g)⊗R(g)⊗L] along noncontractible
cycles on the virtual level of the gauged tensor network G |ψ〉. For a fixed representative (x, y)
of a symmetric class of symmetry twists the corresponding gauged ground state is given by
contracting the MPOs [V px(x) ⊗ R(x)⊗|px|], [V py(y) ⊗ R(y)⊗|py |] (with the crossing tensor
Qx,y at the intersection point px ∩ py 63) with the virtual level of the gauged PEPS G |ψ〉.

1.6.3 Modular transformations

We calculate the effect of modular transformation on symmetry twisted and topological ground
states via their effect on a set of four index crossing tensors.

Symmetry twisted ground states have been used to identify non trivial SPT order via the
matrix elements of modular transformations taken with respect to them113,114. We have calcu-
lated the SPT S̃ & T̃ matrices, corresponding to a π

2 rotation and a Dehn twist respectively,
using our framework to find (see Eq.(1.106))

〈x′, y′| S̃ |x, y〉 = α(y)(x−1, x)−1 〈x′, y′|y, x−1〉 (1.16)

〈x′, y′| T̃ |x, y〉 = α(x, y, x) 〈x′, y′|x, xy〉 (1.17)
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where we have used the abbreviation |x, y〉 := |ψ〉(x,y), α(y) is the slant product of α (see
Appendix 1.13, Eq.1.91) and note y ∈ C(x). The gauging procedure elucidates the precise cor-
respondence between these matrix elements and the S & T -matrix of the gauged theory63,115,116

which we have also calculated within the ground space (again see Eq.(1.106))

S =
∑
xy=yx

α(y)(x−1, x)−1 |[y, x−1]〉 〈[x, y]| (1.18)

T =
∑
xy=yx

α(x, y, x) |[x, xy]〉 〈[x, y]| (1.19)

where |[x, y]〉 := Gx,y |ψ〉(x,y) denotes a ground state of the gauged model. Note in our frame-
work we consider a fixed but arbitrary choice of representative for each conjugacy class, rather
than group averaging over them.

We have explicitly verified that S & T generate a linear representation of the modular group
in agreement with known results for lattice gauge theories (See Subsection 1.13.4).

1.6.4 Projective symmetry transformation of monodromy defects

Here we describe an explicit construction of the projective representation that acts upon a mon-
odromy defect. We calculate the 2-cocycle of this projective representation by considering the
composition of pairs of crossing tensors.

Monodromy defects can be understood as symmetry twists along paths with open end points
and have proven useful for the identification of SPT phases117,118. The prescription for applying
symmetry twists to SPT PEPS extends naturally to a construction of a pair of monodromy
defects at the ends of a path pg, for g ∈ G. This is given by applying a symmetry MPO V pg(g)
to the virtual level of the PEPS with an open inner index at either end of the path, which may
be contracted with defect tensors replacing the PEPS tensors at each of the defects, see Fig.1.7.
A defect tensor must lie in the support subspace of the projector Vg(1) acting on its virtual
indices, see Eq.(1.20). This may leave some freedom in choosing the tensor which correspond
to internal degrees of freedom of the defect, see Ref. 64 for further details. Applying the twisted
gauging procedure for the corresponding gauge field configuration (which is flat except near the
defect points) explicitly maps the symmetry twisted PEPS to a PEPS that describes a pair of
anyon excitations in the gauged theory, see Appendix 1.16 and Refs. 59,64.

We now study a pair of monodromy defects on a twice punctured sphere topology, with
a defect in each puncture, see Fig.1.7. This captures the case of a symmetry twist g applied
to a path pg along a cylinder, from one boundary to the other, and also the case of a pair of
monodromy defects on a sphere, where each puncture is formed by removing a PEPS tensor
and replacing it with a tensor that describes the defect.

Treating a symmetry twisted SPT PEPS on a cylinder (of fixed radius) as a one dimensional
system, it is clear that the bulk is invariant under the residual symmetry group C(g) since the
symmetry twisted SPT PEPS on a torus formed by closing the cylinder (such that pg becomes
a noncontractible cycle) is symmetric. In this case the PEPS can be interpreted as a MPS and
standard results in this setting imply that the global symmetry U(h)⊗|M|v is intertwined by the
PEPS to a tensor product of projective symmetry representations on the left and right virtual
boundaries VgL(h)⊗ VgR(h).

The projective boundary action VgR(h) of the symmetry can be explicitly constructed within
the SPT PEPS framework. We find that it is given by a symmetry MPO acting on the PEPS
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Figure 1.7: a) A symmetry twist along a cylinder PEPS. b) A pair of monodromy defects in a PEPS.

virtual bonds entering the puncture, with its inner indices at the intersection of pg and the
boundary of the puncture contracted with the tensor Y g

R(h) (see Eq.(1.88)) that acts on the inner
index of the symmetry twist MPO V pg(g) entering the puncture.

VgR(h) = (1.20)

The multiplication of physical symmetries induces a composition rule for the Y g
R(·) tensors,

see Appendix 1.16 for details. Explicit calculation of these products yields the 2-cocycle factor
set ωg of the projective boundary representation VgR(k)VgR(h) = ωg(k, h)VgR(kh) in terms of the
3-cocycle α of the MPO symmetry representation ωg(k, h) ∼ α(g,k,h)α(k,h,g)

α(k,g,h) . This is consistent
with the results of Ref. 118. Note that altering α by a 3-coboundary induces a 2-coboundary
change to the 2-cocycle ωg, which hence forms a robust label of the SPT phase. The projective
symmetry action is closely related to the braiding of anyons in the gauged theory.

1.7 Example: fixed-point SPT states

Inspired by the illuminating examples in Refs. 36 and 70 we now present a family of SPT
PEPS with symmetry group G and 3-cocycle α satisfying Eqs.(1.3) and (1.4), and explicitly
demonstrate that gauging these states71 yields MPO-injective PEPS that are the ground states
of twisted quantum double Hamiltonians72,105.

1.7.1 Fixed-point SPT PEPS

We describe our construction of fixed-point SPT PEPS and calculate the MPOs induced by the
symmetry action on a site. We explicitly give the fusion tensors for these MPOs and verify that
they satisfy the zipper condition before determining the 3-cocycle of the MPO representation.

Our short-range entangled PEPS are defined on any trivalent lattice embedded in an ori-
ented 2-manifold (dual to a triangular graph). They realize states equivalent to a standard
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SPT fixed-point construction on the triangular graph36,75. To this end we specify an order-
ing on the vertices of the triangular graph which induces an orientation of each edge, point-
ing from larger to smaller vertex. With this information we assign the following PEPS tensor
A4 : C(G)⊗6 → C(G)⊗3 to each vertex of the trivalent lattice

A4 :=
∫ ∏

v∈4
dgv α̃4

⊗
v∈4
|gv〉4,v

⊗
e∈4

(gv−e |4,e,v−e (gv+
e
|4,e,v+

e
(1.21)

where edge e is oriented from v+
e to v−e (hence v−e < v+

e ) in the triangular graph. The phase
α̃4 is defined on a vertex of the trivalent PEPS lattice dual to plaquette 4 of the triangu-
lar lattice, whose vertices appear in the order v, v′, v′′ following the orientation of the 2-
manifold (note the choice of starting vertex is irrelevant), by a 3-cocycle α as follows α̃4 :=
ασπ(g1g

−1
2 , g2g

−1
3 , g3). Where (g1, g2, g3) := π(gv, gv′ , gv′′) with π the permutation that sorts

the group elements into ascending vertex order and σπ = ±1 is the parity of the permutation
(equivalently the orientation of 4 relative to the 2-manifold). In the following example the
tensor A4, possessing six virtual and three physical indices, has non zero entries given by

g1

g1

g2

g2

g3

g3
= α(g1g

−1
2 , g2g

−1
3 , g3) . (1.22)

Note the tensor diagrams in this section use the convention that physical vertex indices are
written within the body of the tensor. Moreover we only depict the virtual and physical index
combinations that give rise to non-zero values of the tensor.

The global symmetry of the PEPS on a closed manifold is ensured by the following trans-
formation property of each local tensor

R(h)⊗3A4 = A4
⊗
e∈4

[Zσ4,ee (h)R(h)⊗2] , (1.23)

where Ze(h) :=
∫

dgv−e dgv+
e
α(gv−e g

−1
v+
e
, gv+

e
, h)|gv−e , gv+

e
)(gv−e , gv+

e
|, and σ4,e = ±1 is +1 if e

is directed along the clockwise orientation of ∂4, and −1 otherwise. With this definition one
can check that Eq.(1.23) is equivalent to the cocycle condition (1.60). Note the boundary actions
on the shared edge of two neighboring tensors A4, A4′ , induced by group multiplication on
the physical sites 4,4′, cancel out since σ4,e = −σ4′,e from which it follows that the full
PEPS (on a closed manifold) is invariant under the group action applied to all physical indices.
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In our example the symmetry property is∗

g1h

g2h g3h

R(h)

R(h) R(h)

g1
g3

g2 =

g1

g1h

g2h

g2

g3h

g3

R(h)

R(h)

g3h

g2h

g1h

R(h)

R(h)

R(h)R(h)

Z(h)

†

†

†

(1.24)

Where the left side of the equality depicts the physical symmetry acting on a single tensor, and
the right side depicts the virtual representation of the symmetry.

Note that a tensor product of the virtual symmetry matrices [Zσ4,ee (h)R(h)⊗2] in general
do not constitute a representation of G. A representation of G on the virtual level, V (g), is
obtained by projecting these matrices onto the subspace on which the PEPS tensor is injective.
By doing so we construct MPOs that cannot be factorized as a tensor product. For the current
fixed-point example we project [Zσ4,ee (h)R(h)⊗2] onto the subspace of virtual boundary indices
corresponding to non-zero values of A4, Eq.(1.21). This yields a MPO V (h) constructed from
the following tensors

h

g2g1

g2hg1h

= α(g1g
−1
2 , g2, h) (1.25)

note that for fixed h these MPOs possess a single block. We introduce the isometry X(h1, h2)

h2

h1

h1h2
gh1

g

gh1h2

= α(g, h1, h2) , (1.26)

to describe the multiplication of two MPO tensors. With this isometry we have the following
relation

h1

h2

g1 g2

g1h1 g2h1

g1h1h2 g2h1h2

= h1h2

g2h1h2g1h1h2

g1 g2

(1.27)

∗ Note the following subtlety, our tensor diagrams depict the coefficients of the mapA4 and hence the group ac-
tionR(h) on the physical kets is equivalent toR(h−1) on the coefficients, i.e. R(h)

∫
dgf(g) |g〉 =

∫
dgf(gh) |g〉.
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where the left most tensor of Eq.(1.27) is X†(h1, h2) and we have made use of the 3-cocycle
condition (1.60). This implies that the MPOs V (h) with fixed inner indices indeed form a
representation of G. Note the stronger zipper condition

h1

h2

g2h1h2g1h1h2

g1 g2

=

g1 g2

h1

g1h1 g2h1

h2

g1h1h2 g2h1h2

(1.28)

also holds for this MPO representation.
From Eq.(1.23) it is clear that the PEPS tensors A4, Eq.(1.21), together with the MPOs

V (h), defined by Eq.(1.25), have SPT order described by the framework of Section 1.4. We
now calculate the third cohomology class of the MPOs to determine which SPT phase the
model belongs to. For this we see that X obeys the following associativity condition

X(h1h2, h3)[X(h1, h2) ⊗ 1h3 ] = α−1(h1, h2, h3)X(h1, h2h3)[1h1 ⊗X(h2, h3)] , (1.29)

which is again the 3-cocycle condition Eq.(1.60). From Eq.(1.29) we thus conclude that the
short-range entangled states described by the tensors of Eq.(1.21) lie in a symmetry-protected
topological phase labeled by the cohomology class [α−1] ∈ H3(G,U(1)), see Appendix 1.9.

One may be surprised to notice that one layer of strictly local unitaries (equivalent to the
local unitary circuit Dα (1.141)) acting on the vertices of the PEPS built from the tensors in
Eq.(1.21) can remove the 3-cocycles, thus mapping it to a trivial product state. Superficially
this seems to contradict the fact that SPT states cannot be connected to the trivial product state
by low-depth local unitary circuits that preserve the symmetry. However, this is not the case as
this definition requires every individual gate of the circuit to preserve the symmetry26, which is
not true for the circuit just described.

1.7.2 Gauging the fixed-point SPT PEPS

We now apply the quantum state gauging procedure of Ref. 71 to gauge the global symmetry of
the fixed-point SPT PEPS defined in the previous subsection. For this we construct a gauging
tensor network operator (matching that of Ref. 71 on the dual triangular graph) that couples
gauge degrees of freedom to a given matter state. We proceed by applying a local unitary
circuit to disentangle the gauge constraints and explicitly demonstrate that the resulting tensor
describes the ground state of a twisted Dijkgraaf-Witten gauge theory.

The gauging map is defined by the following local tensors G4 : C(G)⊗6 ⊗ C(G)⊗3 →
C(G)⊗6

G4 :=
∫ ∏

v∈4
dhv

⊗
v∈4

R4,v(hv)
⊗
e∈4

[ |hv−e h
−1
v+
e
〉
4,e
⊗ (hv+

e
|4,e,v+

e
(hv−e |4,e,v−e ], (1.30)

noteG4 introduces gauge degrees of freedom on the edges. For our example the gauging tensor
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is
h1

h2 h3

R(h2) R(h3)

R(h1)

h2h3

h1h3h1h2
-1

-1

-1

(1.31)

We can apply the gauging tensors locally to the SPT PEPS to form tensors for a gauge and
matter PEPS

Ā4 :=
∫ ∏

v∈4
dhvdgv α̃4

⊗
v∈4
|gvh−1

v 〉4,v
⊗
e∈4
|hv−e h

−1
v+
e
〉
4,e

(gv+
e
, hv+

e
|4,e,v+

e
(gv−e , hv−e |4,e,v−e

(1.32)

in our example these are

h1

g2 g3

h2h3

h1h3h1h2
-1

-1

-1

g1h1

g2h2 g3h3
-1 -1

-1

g1

h2

h3

h3

h2

g1

g2 g3

h1

= α(g1g
−1
2 , g2g

−1
3 , g3) . (1.33)

The gauged PEPS |ψg〉, built from the tensors Ā4, satisfies local gauge constraints P̃v |ψg〉 =
|ψg〉 for every vertex v, where

P̃v :=
∫

dgv
⊗
43v

[R4,v(h)
⊗
e∈E+

v

R4,e(gv)
⊗
e∈E−v

L4,e(gv)]

The gauge and matter tensor Ā4 is MPO-injective with respect to a purely virtual symmetry
inherited from the symmetry transformation of the SPT tensor A4 and it also intertwines a
physical symmetry to a virtual symmetry due to the transformation of the gauging tensors

Ā4
⊗
e∈4

[Zσ4,ee (h)R(h)⊗2]⊗R(h)⊗2 =Ā4
⊗
v∈4

R4,v(h)
⊗
e∈4

R4,e(h)L4,e(h)Ā4

=Ā4
⊗
e∈4

1⊗2 ⊗ L(h)⊗2 (1.34)

the latter symmetry reflects the invariance of the full PEPS under the gauge constraints P̃v.
We next apply a local unitary circuit C̃Λ to explicitly map the gauge and matter model to

a twisted quantum double ground state on the gauge degrees of freedom alone. This circuit is
given by the tensor product of the following local unitary on each site

C̃4 :=
∫ ∏

v∈4
dgv

⊗
v∈4
|gv〉 〈gv|v

⊗
e∈4

Le(gv−e )Re(gv+
e

) ,



1.7 Example: fixed-point SPT states 47

which maps the gauge constraints to local rank one projectors on the matter degrees of free-
dom at each vertex C̃ΛP̃vC̃Λ =

∫
dgv

⊗
43v R4,v(h), fixing the state of the matter to be∫

dgv
⊗
43v |gv〉4,v. From this we infer that the circuit C̃Λ disentangles the gauge from the

matter degrees of freedom. To see this explicitly we apply the circuit locally to each PEPS ten-
sor, along with a unitary change of basis on the virtual level (leaving the physical state invariant)
to form the tensor ¯̄A4 which is defined as follows

¯̄A4 := C̃4Ā4
⊗
e∈4

U4,e,v+
e
⊗ U4,e,v−e

=
∫ ∏

v∈4
dkvdgv α̃4

⊗
v∈4
|kv〉4,v

⊗
e∈4

[ |gv−e g
−1
v+
e
〉
4,e
⊗ (gv+

e
, kv+

e
|4,e,v+

e
(gv−e , kv−e |4,e,v−e ]

(1.35)

where U :=
∫

dg |g〉 〈g| ⊗ SL†(g), with S |g〉 := |g−1〉, satisfies (g, h|U = (g, gh−1|. For our
example this tensor is given by

k1

g2 g3

g2g3

g1g3g1g2
-1

-1

-1

k1

k2 k3

g1

k2

k3

k3

k2

g1

g2 g3

k1

= α(g1g
−1
2 , g2g

−1
3 , g3) (1.36)

This disentangled PEPS tensor ¯̄A4 is now MPO-injective on the support subspace of the pro-
jection MPO given by a normalized sum of the symmetry MPOs from the SPT PEPS. Moreover
the intertwining condition maps the physical vertex symmetry to a trivial action on the virtual
space

¯̄A4
⊗
e∈4

[Zσ4,ee (h)R(h)⊗2]⊗ 1⊗2 = ¯̄A4
⊗
v∈4

R4,v(h) ¯̄A4 (1.37)

= ¯̄A4
⊗
e∈4

1⊗2 ⊗R(h)⊗2 . (1.38)

From this we see that ¯̄A4 separates into a trivial local component on the matter degrees of
freedom yielding the state

⊗
v

∫
dgv

⊗
43v |gv〉4,v, and the following tensors on the gauge

degrees of freedom ∫ ∏
v∈4

dgvα̃4
⊗
e∈4
|gv−e g

−1
v+
e
〉 (gv+

e
|4,e,v+

e
(gv−e |4,e,v−e . (1.39)

These tensors define a PEPS on the gauge degrees of freedom that is a ground state of a 2D
twisted quantum double with 3-cocycle α. Note this PEPS matches the standard represen-
tation of the ground state on the subspace obtained by mapping

⊗
43v |g〉4,v 7→ |g〉v and



48 1 Matrix product operators for symmetry-protected topological phases

⊗
43e |g〉4,e 7→ |g〉e. For our example this tensor is

g1

g2 g3g2g3

g1g3g1g2
-1

-1

-1

= α(g1g
−1
2 , g2g

−1
3 , g3) (1.40)

note in the Abelian case the tensors in Eq.(1.40) reduce to the string-net tensors119,120 after a
suitable mapping between 3-cocycles and F -symbols121 (in the non-Abelian case one has to
change to the basis of irreducible representations to make the identification).

1.7.3 Perturbations away from fixed-points

The examples presented thus far in this section are all fixed-point states under a real space
blocking renormalization group flow and have zero correlation length. This corresponds to the
PEPS tensor that builds the state being of MPO-isometric type63. More generally one could add
an arbitrary perturbation that lies within the MPO-injectivity subspace (this can be constructed
by applying the MPO projector to an arbitrary perturbation) to the MPO-isometric PEPS tensor
to find a new MPO-injective PEPS that will generically have a finite correlation length. For a
sufficiently small symmetric perturbation the resulting MPO-injective PEPS will lie in the same
phase of matter as the fixed-point MPO-isometric PEPS62,122.

The simplest explicit perturbations away from fixed-point tensors are given by local filtering
operations on the physical indices. For a given MPO-injective PEPS tensor A local filtering
by a projector P generates a family of MPO-injective deformations {P (λ)A | λ ∈ [0, 1)}
where P (λ) := (1− λ)1 + λP . For topological PEPS P can be an arbitrary projector on the
physical index, while for SPT PEPS it must commute with the on-site symmetry action. This
path of deformations can move from one phase of matter to another, for instance if we let
P = |0〉 〈0| the deformation can induce an anyon condensation transition if A describes a
topologically ordered ground state71,123,124. In the SPT case with on-site group actionR(g) one
can consider P = |ẽ〉 〈ẽ|, the projector onto the trivial representation, where |ẽ〉 = 1

|G|
∑
g∈G
|g〉 to

find a symmetric interpolation to the trivial phase. A framework to understand these transitions
in terms of symmetry breaking of the virtual symmetry is described in Refs. 123,124.

1.8 Conclusions

We have presented a unified picture for the characterization of all gapped phases, possibly with
respect to certain physical symmetries, within the framework of PEPS in terms of virtual MPO
symmetries. To achieve this we developed a characterization of global symmetry in the frame-
work of MPO-injective PEPS62,63. In contrast to the injective case69, where the symmetry rep-
resentation on the virtual indices factorizes into a tensor product, a MPO-injective PEPS tensors
can have a virtual symmetry representation given by unfactorizable MPOs. We subsequently
identified the short-range entangled PEPS to be those having a single block in the projection
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MPO onto the injectivity subspace. If the accompanying single block MPO virtual symme-
try representation has a non-trivial third cohomology class it gives rise to unconventional edge
properties and thus to symmetry-protected topological PEPS. Our identification of the virtual
entanglement structure of PEPS with SPT order opens new routes to study transitions between
SPT phases by utilizing methods that have been developed to study anyon condensation transi-
tions of topological phases94,123.

We demonstrated that applying the quantum state gauging procedure71 to a SPT PEPS trans-
forms its MPO representation of G into a purely virtual symmetry of the gauged tensors. This
implies that the resulting gauge-invariant PEPS also satisfies the axioms of MPO-injectivity,
but with a projection MPO onto the injectivity subspace with a block structure labeled by the
group elements g ∈ G. This block structure of the projection MPO, together with the third
cohomology class label, characterizes the phases of the twisted quantum double models which
are known to have intrinsic topological order. It was shown in Ref. 63 that the projection MPO
determines all the topological properties of the gauged PEPS. This relation explains the mech-
anism behind the braiding statistics approach to SPT phases73 at the level of the corresponding
quantum states. It furthermore reveals that both the gauging and boundary theory approaches
to classifying SPT phases are recast in the PEPS framework as the classification of a common
set of MPOs. We have illustrated these concepts for a family of RG fixed-point states, contain-
ing a representative for all two-dimensional bosonic SPT phases with a finite on-site symmetry
group.

To prove these results we developed new tools to deal with orientation dependent MPO
tensors and used them to calculate the symmetry action on monodromy defected and symmetry
twisted states and also modular transformations, before and after gauging, in terms of a single
tensor.

The general formalism presented in this paper describes both local physical symmetries
and topological order of PEPS with virtual MPO symmetries. Furthermore, it captures the
general action of a symmetry on a PEPS with topological order and hence yields a natural
framework for the study of symmetry-enriched topological phases (SET). The quantum state
gauging procedure can be adapted to gauge only a normal subgroup of the global symmetry
group of a SPT PEPS, which allows one to explicitly construct families of SET PEPS. An
open question is how the corresponding MPOs encode the discrete, universal labels of the SET
phase and how to extract them. We further expect that a better understanding of excitations in
MPO-injective PEPS64 will yield insights into the physical properties of SET phases such as
symmetry fractionalization.These matters are studied in Ref. 103 and Chapter 3.

In this work we only explicitly consider finite on-site unitary symmetry actions. It is an
interesting and relevant question to generalize this to time-reversal and continuous Lie group
symmetries as well as lattice translation and point group symmetries. Progress has been made
on incorporating these types of symmetries into PEPS in Ref. 107. In particular since time-
reversal can be realized as a local action on the PEPS tensors112 a similar approach to that used
here should apply, with some extra care necessary due to the possible action of time reversal on
the symmetry MPOs.

Another question which presents itself is how to generalize the constructions presented in
this paper to fermionic systems. Partial progress has been made in the direction of applying the
same principles to the formalism of fermionic PEPS125. This has led to a (partial) classification
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of fermionic SPT phases66,126 based on supercohomology127 and the existence of Majorana-
type defects128. The quantum state gauging procedure works equally well for fermionic sys-
tems, but the gauge degrees of freedom are always bosonic. It would thus be interesting to see
how fermionic SPT order can be probed in this way.

Our identification of SPT PEPS in 2D as being injective with respect to an injective MPO
hints at a hierarchical definition of SPT PEPS in arbitrary dimension with an injective tensor
network object associated to each codimension. This appears to recover the cohomological
classification of bosonic SPT states in arbitrary dimensions by a generalization of the argument
from70. We plan to explore this further in future work.
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Supplementary Material

1.9 Axioms for MPO-injectivity

This section reviews the axioms of MPO-injectivity as presented in Ref. 63.
We interpret the tensors A of a MPO-injective PEPS as linear maps from the virtual to the

physical space and apply a distinguished generalized inverseA+, which gives rise to a projector
that can be written as a MPO:

�

�
+

= (1.41)

We further require this MPO to satisfy the pulling through property shown in Eq.(1.42).

= (1.42)

The same property should also hold where the MPO gets pulled from three virtual indices to one
or vice versa. This makes the presence of this MPO locally undetectable in the PEPS. Using the
pulling through property, it is easy to check that the requirement for the MPO to be a projector
is equivalent to the property shown in Eq.(1.43)

= (1.43)
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We also need a technical requirement such that the properties of the PEPS grow in a controlled
way with the number of sites. For example, we want two concatenated tensors to be injective
on the support subspace of the projection MPO surrounding these two tensors. For this we need
that there exists a tensor E, depicted in (1.44),

E := (1.44)

such that we have the extended inverse property (1.45).

= (1.45)

The extended inverse property allows one to prove many useful things such as the intersection
property or an explicit expression for the ground state manifold on a torus63. It turns out that
under very reasonable assumptions about the projection MPO the extended inverse condition is
automatically satisfied64.

1.10 Uniqueness of SPT PEPS ground state

In this appendix we demonstrate that the parent Hamiltonian of a MPO-injective PEPS with
a single block projection MPO has a unique ground state on the torus (i.e. no topological
degeneracy). A similar argument holds for higher genus surfaces.
For a Hermitian projection MPO there is no need to keep track of a direction on the internal
leg of the MPO, we also ignore the explicit directions on the edges of the PEPS as they are
irrelevant to our arguments. We require the following condition (stronger than Eq.(1.57))

We assume the projection MPO has been brought into a form satisfying the zipper condition,
i.e. there are no off diagonal blocks in the product of two MPO tensors after it has been brought
into canonical form, equivalently

= (1.46)

where X is the reduction tensor for multiplication of copies of the MPO which forms a single
block representation of the trivial group. This is true of the MPOs arising from fixed-point
models. For this representation we have the following version of Eq.(1.58)

= α . (1.47)
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We now rewrite this equality in a more suggestive fashion

= α . (1.48)

In the above, and throughout the remainder of this appendix, we ignore explicit direction de-
pendence as it does not affect the arguments made.
In the framework of MPO-injectivity different ground states of the PEPS parent Hamiltonian
on the torus are spanned by tensor networks closed with different Q tensor solutions (see Ref.
63) connected to MPOs on the virtual level along the inequivalent noncontractible loops of the
torus

Q . (1.49)

From the physical level one only has access to the Q tensor projected onto the support subspace
of a MPO loop along the closure of the system.

Q (1.50)

Note this closure gives rise to the same ground state as the closed loop is a symmetry of the
closed MPO-injective tensor network. Using condition (1.46) repeatedly (within the closed
tensor network) leads to the following crossing tensor

Q (1.51)

which again gives rise to the same ground state. Following several more applications of Eqs.(1.46) & (1.48)
we arrive at

Q (1.52)

Note the overall phase of the ground state is irrelevant. Since the Q tensor can be placed
anywhere in the tensor network we have that the following matrix

MQ := Q (1.53)
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commutes through the virtual level of the single block (injective) projection MPO and hence
must be proportional to the identity MQ = 1. Plugging this in we have the crossing tensor

(1.54)

which, by Eq.(1.46), yields the same state as the following

(1.55)

and with several applications of Eqs.(1.46) & (1.48) one can verify that this is equivalent to

(1.56)

which is easily seen to be a symmetry of a closed MPO-injective tensor network which hence
yields the trivial ground state. To summarize we have seen that any Q tensor solution gives rise
to the unique ground state obtained by closing the tensor network without any MPOs on the
virtual level.

1.11 Third cohomology class of a single block MPO group repre-
sentation

In this appendix we recount the definition of the third cohomology class of an injective MPO
representation of a finite group G, as first introduced in Ref. 70. For details about group coho-
mology theory in the context of SPT order we refer the reader to Ref. 36.

In a MPO representation of G, multiplying a pair of MPOs labeled by the group elements
g0 and g1 is equal to the MPO labeled by g0g1 for every length. Since the MPOs are injective
we again know there exists a gauge transformation on the virtual indices of the MPO that brings
both representations into the same canonical form45. This implies that there exists an operator
(the reduction tensor) X(g0, g1) : (Cχ)⊗2 → Cχ such that Eq.(1.57) holds.

�0

�1

�(�0, �1)
+
�(�0, �1)

=
�0�1

(1.57)

note X(g0, g1) is only defined up to multiplication by a complex phase β(g0, g1). If we now
multiply three MPOs labeled by g0, g1 and g2 there are two ways to reduce the multiplied
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MPOs to the MPO labeled by g0g1g2. When only acting on the right virtual indices these two
reductions are equivalent up to a nonzero complex number labeled by g0, g1 and g2. This is
shown in Eq.(1.58).

�(�0, �1)

�(�0�1, �2)

�0

�1

�2

= α(g0, g1, g2)

�(�1, �2)

�(�0, �1�2)

�0

�1

�2

(1.58)

By multiplying four MPOs one sees that α has to satisfy certain consistency conditions as the
two different paths achieving the same reduction, shown in Eq.(1.59), should give rise to the
same complex number.

�0

�1

�2

�3

→

�0

�1

�2

�3

→

�0

�1

�2

�3

↓ ↓

�3

�0

�1

�2 →

�0

�1

�2

�3

(1.59)

Using Eq.(1.58) one can easily verify that the consistency conditions are

α(g0, g1, g2)α(g0, g1g2, g3)α(g1, g2, g3)
α(g0g1, g2, g3)α(g0, g1, g2g3) = 1 (1.60)

which are exactly the 3-cocycle conditions and hence α is a 3-cocycle. As mentioned above
X(g0, g1) is only defined up to a complex number β(g0, g1). This freedom can change the
3-cocycle defined in Eq.(1.58) by

α′(g0, g1, g2) = α(g0, g1, g2)β(g1, g2)β(g0, g1g2)
β(g0, g1)β(g0g1, g2) (1.61)

thus we see that α is only defined up to a 3-coboundary. For this reason the single block MPO
group representation is endowed with the label [α] from the third cohomology group H3(G,C).
Using the fact that Hd(G,R) = Z1

36 (and that R as an additive group is isomorphic to R+ as a
multiplicative group), we thus obtain that the third cohomology class of the MPO representation
[α] is an element of H3(G,U(1)).
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1.12 Orientation dependencies of MPO group representations

In this appendix we go beyond previous treatments of MPO group representations to consider
subtleties that arise due to possible orientation dependencies of the tensors. We find a gauge
transformation that reverses the orientation of MPO tensors, and use it to define the Frobenius-
Schur indicator. We then find several pivotal phases and relate them to the 3-cocycle of the
MPO group representation.

1.12.1 Orientation reversing gauge transformation

To describe the most general bosonic SPT phases one must use lattices with oriented edges,
the internal index of the MPO also carries an orientation which leads to the definition of a pair
of possibly distinct MPO tensors which depend on the handedness of the crossing upon which
they sit

B+(g) = , B−(g) = (1.62)

As shown in Section 1.3 reversing the orientation of the internal MPO index corresponds to
inverting the group element which the MPO represents, i.e. Vrev(g) = V (g−1). Since this holds
for any injective group MPO of arbitrary length standard results from the theory of MPS imply
that the local tensors are related by an invertible gauge transformation which we denote Zg

= (1.63)

= (1.64)

where we use the following graphical notation for Zg and related matrices

Zg = , ZTg = (1.65)

Z−1
g = , (Z−1

g )T = (1.66)

which satisfy the relations

= (1.67)

= (1.68)

note while it seems a priori that the gauge transformations in Eq.(1.64) could be independent,
the fact that the equation Vrev(g) = V (g−1) holds for arbitrary orientations of the PEPS bonds
implies that they can be chosen to be the same.
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Applying the gauge transformation twice we arrive at the equality

= (1.69)

which implies Zg(Z−1
g−1)T = χg1 for some χg ∈ U(1) since the MPO is injective. Hence

Zg = χgZ
T
g−1 i.e.

= χg (1.70)

where χg is analogous to the Frobenius–Schur indicator and can be seen to satisfy χg = χ−1
g−1 .

Note χg can be absorbed by redefinition of Zg whenever g 6= g−1, but we will not do so at this
point.

1.12.2 Pivotal phases

Since the multiplication of the injective MPOs forms a representation of G we have a local
reduction as in Eq.(1.57). Again since this holds for arbitrary orientations of the PEPS bonds
the reduction matrix X(g0, g1) is the same for left and right handed MPOs. From here on we
will work with a stronger restriction on the form of the MPOs such that the following zipper
condition holds

= (1.71)

this is equivalent to there being no off diagonal blocks in the product of two MPO tensors after it
has been brought into canonical form, and is true for MPOs that arise from fixed-point models.

Let us now derive a relation between 1g ⊗ (Z−1
h )T X+(g, h) and X(gh, h−1) in terms of

a one-line pivotal phase which we then proceed to calculate in terms of the three cocycle α of
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the MPO group representation. Consider

=

=

=

= (1.72)

which yields the desired equality

= γ(gh, h−1) (1.73)

where γ(gh, h−1) is some yet to be determined one-line pivotal phase. We now separate
γ(gh, h−1) into a product of a phase specified by the cocycle α and another phase b(g, h)



58 1 Matrix product operators for symmetry-protected topological phases

which we show to be trivial. Multiplying Eq.(1.73) by X−1(g0g1, g
−1
1 ) yields

γ(gh, h−1) =

= α−1(g, h, h−1)

= α−1(g, h, h−1) b(g, h) (1.74)

Now considering

= b(g, h) (1.75)

after an application of Eq.(1.58) to the left most reductions tensors we see that b(g, h) =
b(xg, h), ∀x and hence b has no dependence on the first input and can be absorbed into the
definition of Zh. Similar reasoning yields another useful equality

= α(g−1, g, h) (1.76)

In summary we have calculated the one-line pivotal phases

γ(gh, h−1) = α−1(g, h, h−1)
γ′(gh, h−1) = α(g−1, g, h) (1.77)

We now proceed to define a pivotal phase relating the following different reductions of the
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same left handed MPO tensors

= (1.78)

=

Hence

= β(g, h) (1.79)

for some pivotal phase β(g, h) ∈ U(1). By making use of Eqs.(1.73,1.76,1.77) we calculate β
directly to find

β(g, h) = ε(g)ε(h)β̃(g, h) (1.80)

where

ε(g) := χg α(g, g−1, g)

β̃(g, h) := α(h, g, g−1)
α(hg, g−1, h−1)

we proceed to show that ε ∼= 1 and hence β ∼= β̃.
Evaluating β in two different ways as follows

β(g, h) =

= χgχh

= χgχhβ(h−1, g−1)
χgh

(1.81)

leads to the relation on ε

ε(k)ε(h)ε(hk) = 1 (1.82)
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after several applications of the 3-cocycle condition for α.
Using Eq.(1.58) we find

= α(g−1, h−1, h−1)
α(k, h, g) (1.83)

applying Eq.(1.79) twice to both sides yields the further constraint on β

dβ(a, b, c) := β(a, b)β(ab, c)
β(b, c)β(a, bc) = α(a, b, c)

α(c−1, b−1, a−1) (1.84)

hence α forms a potential obstruction to β being a 2-cocycle. Note that β̃ also satisfies Eq.(1.84)
as a consequence of the 3-cocycle condition for α and hence the function θ(a, b) := ε(a)ε(b)
satisfies the 2-cocycle condition dθ(a, b, c) = 1. This 2-cocycle condition, together with
Eq.(1.82), implies that ε(a) = ε(c), ∀a, c ∈ G and since ε(1) = 1 consequently ε ≡ 1 is
the constant function. This of course implies β ≡ β̃ which is the desired result

β(g, h) = α(h, g, g−1)
α(hg, g−1, h−1) . (1.85)

1.13 Crossing tensors

In this Appendix we define four crossing tensors and demonstrate that they are related by phases
involving only the 3-cocycle of the MPO representation. We proceed to define a composition
operation on the crossing tensors and calculate the resulting crossing tensor. Building upon this
result we determine the transformation of a crossing tensor under the global symmetry. Finally
we calculate the effect of modular transformations on the crossing tensors.
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1.13.1 Definitions

We now introduce several different forms for the crossing tensor (see Eq.(1.15)) that are related
by phases which play an important role in our calculations

W g
R(h) : = X(g, h)X+(h, g) = (1.86)

W g
L(h) : = X(h, g)X+(g, h) = (1.87)

Y g
R(h) : = X+(gh, h−1)[X+(h, g)⊗ Z−1

h ]

= (1.88)

Y g
L (h) : = [X(h, g)⊗ Zh]X(gh, h−1)

= ∼ (1.89)

note h ∈ C(g) and each tensor above is treated as a representative of an equivalence class of
all crossing tensors that give rise to equal PEPS. Using Eqs.(1.58,1.77) one finds Y g

L (h) =
α(g, h, h−1)W g

L(h), W g
L(h) = α(g)(h, h−1)−1W g

R(h−1), and W g
R(h) = α(g, h, h−1)Y g

R(h),
i.e.

W g
L(h) α(g)(h,h−1)−−−−−−−→ W g

R(h−1)

α(g,h,h−1)
y xα(g,h−1,h)

Y g
L (h) −−−−−−→

ωg(h,h−1)
Y g
R(h−1)

(1.90)

where

α(g)(k, h) := α(g, k, h)α(k, h, g)α−1(k, g, h) (1.91)

is the slant product of α (which is a 2-cocycle) and

ωg(k, h) := α(g)(k, h) α(g, kh, (kh)−1)
α(g, k, k−1)α(g, h, h−1) (1.92)

is an equivalent 2-cocycle, i.e. [ωg] = [α(g)]. One can easily verify that changing α by a 3-
coboundary alters α(g) by a 2-coboundary and hence the cohomology class [α] is mapped to
[α(g)] by the slant product.
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1.13.2 Composition rule

There is a natural composition operation on the Y g
R(h) tensors induced by the action of a global

symmetry U(k)⊗|M|v , k ∈ C(g, h), upon a symmetry twisted ground state as follows

Y g
R(k)× Y g

R(h) := (1.93)

which includes a reduction of the tensors by X(k, h) and X+(k, h), note this product is asso-
ciative but not commutative. The Y g

R(h) tensors in fact form a projective representation under
this composition rule since

α(k,gh,h−1)−1
−−−−−−−−−→

α(gkh,h−1,k−1)
y

α(k,h,g)−1
←−−−−−−−

yβ(h,k)

which yields

Y g
R(k)× Y g

R(h) = α(k, gh, h−1)α(k, h, g)
α(gkh, h−1, k−1)β(h, k)Y

g
R(kh)

=α(g)(k, h) α(g, kh, h−1k−1)
α(g, k, k−1)α(g, h, h−1)

α(k, h, h−1k−1)
α(h, h−1, k−1)β(h, k)Y

g
R(kh)

=ωg(k, h)Y g
R(kh) (1.94)
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after several applications of the 3-cocycle condition for α, see Eq.(1.60).

1.13.3 Symmetry action

We are now in a position to calculate the effect of applying a global symmetry k ∈ C(g, h) to
an (x, y) symmetry twisted SPT PEPS on a torus as follows

∼ (1.95)

∼ (1.96)

∼ (1.97)

= Y g
R(k)×W g

R(h)× Y g
L (k) (1.98)

= α(g, h, h−1)
ωg(k, k−1) Y g

R(k)× Y g
R(h)× Y g

R(k−1) (1.99)

= α(g, h, h−1)ωg(k, h)
ωg(k, k−1) Y g

R(kh)× Y g
R(k−1) (1.100)

= ωg(k, h)ωg(kh, k−1)α(g, h, h−1)
ωg(k, k−1) Y g

R(h) (1.101)

= ωg(k, h)
ωg(h, k) W

g
R(h) (1.102)

where we have made use of the 3-cocycle condition on α and the relations from Eq.(1.90).
Hence we have found the group action πk[·] induced on the crossing tensor by the physical
symmetry to be

πk[W g
R(h)] = (ωg)(h)(k)−1W g

R(h)

= α(g,h)(k)−1W g
R(h) (1.103)

where (ωg)(h) is the slant product of ωg (it is easy to see this equals the coeficient in Eq.(1.95))
and hence a 1D representation of C(g, h) which equals the twice slant product of alpha, i.e.
(ωg)(h) = α(g,h) (since the slant product maps cohomology classes to cohomology classes).
Now by the orthogonality of characters we have that the projector Πg,h[·] :=

∑
k∈C(g,h)

πk[·]
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maps a nonzero W g
R(h) to zero iff α(g,h) is nontrivial i.e.

Πg,h[W g
R(h)] 6= 0 ⇐⇒ α(g,h) ≡ 1. (1.104)

1.13.4 Modular transformations

In this section we will calculate the effects of the S and T transformations (π2 rotation and Dehn
twist respectively) on the crossing tensor W g

R(h) which is relevant for both symmetry twisted
and topological ground states. We use the following left handed convention

S−−−−→

T−−−−→

(1.105)

∼ .

Using Eqs.(1.60,1.73,1.76,1.77,1.90) and the 3-cocycle condition on α we find

S[W g
R(h)] = α(h)(g−1, g)−1W h

R(g−1) (1.106)

T [W g
R(h)] = α(g, h, g)W g

R(gh) (1.107)

with these formulas we have explicitly verified that the action of S and T generate a linear
representation of the modular group, i.e. they satisfy the relations

S4 = 1 , (ST )3 = S2 . (1.108)

It was sufficient to simply consider the multiplication of these generators since the gauge the-
ories we deal with are doubled topological orders and consequently have zero modular central
charge. We do not reproduce the tedious calculation here.

1.14 Gauging SPT PEPS yields topological PEPS

In this appendix we recount the definition of the quantum state gauging procedure of Ref. 71
and generalize their proof to show that gauging a SPT PEPS results in a MPO-injective PEPS
with a projection MPO that has multiple blocks in its canonical form, labeled by the group
elements.

1.14.1 Quantum state gauging procedure

Let us first recount the definition of the global projector onto the gauge invariant subspace.
This is defined on a directed graph Λ in which the vertices are enumerated and the edges are
directed from larger to smaller vertex. To each vertex v ∈ Λ we associate a Hilbert space Hv
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together with a representation Uv(g) of the group G and to each edge e ∈ Λ we associate a
Hilbert space isomorphic to the group algebra He

∼= C[G]. We define the matter Hilbert space
Hm :=

⊗
v∈Λ Hv and the gauge Hilbert space Hg :=

⊗
e∈Λ He which together form the full

Hilbert space Hg,m := Hg⊗Hm. The states in Hg,m that are relevant for the gauge theory satisfy
a local gauge invariance condition at each vertex. Specifically, they lie in the simultaneous +1
eigenspace of the following projection operators

Pv :=
∫

dgvUv(gv)
⊗
e∈E+

v

Re(gv)
⊗
e∈E−v

Le(gv) (1.109)

where E+
v (E−v ) is the set of adjacent edges directed away from (towards) vertex v. R(g), L(g)

are the right and left regular representations, respectively. The projector onto the gauge invariant
subspace is given by PΛ :=

∏
v Pv and the analogous projectorPΓ for any operatorO supported

on a subgraph Γ ⊂ Λ (which contains the bounding vertices of all its edges) is defined to be

PΓ[O] :=
∫ ∏

v∈Γ
dgv[

⊗
v∈Γ

Uv(gv)
⊗
e∈Γ

Le(gv−e )Re(gv+
e

)]O [
⊗
v∈Γ

Uv(gv)
⊗
e∈Γ

Le(gv−e )Re(gv+
e

)]†

(1.110)

where edge e points from v+
e to v−e .

We proceed to describe a gauging procedure for models defined purely on the matter degrees
of freedom Hm. To apply PΛ and PΓ we first require a procedure to embed states and operators
from Hm into Hg,m. For this we define the gauging map for matter states |ψ〉 ∈ Hm by

G |ψ〉 := P [ |ψ〉
⊗
e

|1〉e] , (1.111)

and for matter operatorsO ∈ L(Hm) acting on a subgraph Γ ⊆ Λ (containing all edges between
its vertices) by

GΓ[O] := PΓ[O
⊗
e∈Γ
|1〉 〈1|e] . (1.112)

1.14.2 Gauging SPT PEPS

In this section we show that a gauged SPT PEPS satisfies the axioms of MPO-injectivity.
Consider a region R of a SPT PEPS |ψ〉 ∈ Hm built from local tensor A. The PEPS map

AR on this region satisfies A+
RAR = P∂R and hence is injective on the support subspace of a

single block projection MPO P∂R = V ∂R(1) given by supp(P∂R) ⊆ (Ve)⊗L where Ve denotes
the Hilbert space of a virtual index and L := |∂R|e.

For the gauged PEPS G |ψ〉 ∈ Hg,m, the region R is defined to include only those edges
between vertices within R, i.e. excluding the edges e ∈ ∂R. Note our proof is easily adapted
to the case where the edge degrees of freedom are ‘doubled’ and absorbed into the neighboring
vertex degrees of freedom, as in Section 1.7.

The gauged PEPS map on region R, Ag
R : (Ve ⊗ C[G])⊗L → H⊗|R|vv ⊗ H⊗|R|ee , naturally

decomposes into the original PEPS map and a gauging tensor network operator multiplying the
physical degrees of freedom Ag

R = GRAR where

GR :=
∫ ∏

v∈R
dgv

⊗
v∈R

Uv(gv)
⊗
e∈R
|gv−e g

−1
v+
e
〉
e

⊗
e∈∂R

(gv±e |e (1.113)

where v±e ∈ R denotes the unique vertex inR adjacent to the edge e ∈ ∂R.
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Proposition 5. A generalized inverse of the gauged PEPS is given by (Ag
R)+ = A+

RG
†
R which

satisfies (Ag
R)+Ag

R = 1
|G|

∑
g∈G

V ∂R(g) ⊗ R(g)⊗L. Furthermore, the gauged PEPS is MPO-

injective with respect to the projection MPO 1
|G|

∑
g∈G

V ∂R(g)⊗R(g)⊗L which is a sum of single

block injective MPOs labeled by g ∈ G.

Firstly we have

G†RGR =
∫ ∏

v∈R
dhvdgv

⊗
v∈R

Uv(h−1
v gv)

⊗
e∈R
〈hv−e h

−1
v+
e
|gv−e g

−1
v+
e
〉
⊗
e∈∂R

|hv±e )(gv±e |e

=
∫

dg
⊗
v∈R

Uv(g)
⊗
e∈∂R

Re(g) (1.114)

since the delta conditions 〈hv−e h
−1
v+
e
|gv−e g

−1
v+
e
〉 force h−1

v−e
gv−e = h−1

v+
e
gv+
e

and hence h−1
v gv =: g is

constant across all v ∈ R, assumingR is connected. Hence

A+
RG
†
RGRAR = P∂R

∫
dg V ∂R(g)

⊗
e∈∂R

Re(g) (1.115)

since U(g)⊗|R|vAR = ARV
∂R(g) for a SPT PEPS (see Section 1.3) then the result follows as

P∂RV
∂R(g) = V ∂R(g).

Let us now address the remaining conditions for MPO-injectivity. Most importantly the
pulling through condition is easily seen to hold by Eq.(1.3) and since

PvU
†
v (g) = Pv

⊗
e∈E+

v

Re(g)
⊗
e∈E−v

Le(g) ,

see Appendix 1.15, Proposition 13 for more detail. The trivial loops condition for the MPO
V ∂R(g)⊗R(g)⊗L follows directly from the trivial loops condition for V ∂R(g) and the conven-
tion thatR(g) is inverted depending on the orientation of the crossing of the MPO loop with the
virtual bond edge of the PEPS graph, see Eqs.(1.3),(1.4). Finally, as discussed at the end of Ap-
pendix 1.9 the extended inverse condition is automatically satisfied when the projection MPO
has a canonical form with injective blocks64, which is the case for the MPO V ∂R(g)⊗R(g)⊗L.

1.15 Generalizing the gauging procedure to arbitrary flat G-connections

In this section we outline a generalization of the gauging procedure defined in Ref. 71 to ar-
bitrary flat G-connections. For equivalent G-connections the gauging maps are related by lo-
cal operations while for inequivalent G-connections, which are necessary to construct the full
ground space of a gauged model on a nontrivial manifold, the gauging maps are topologically
distinct. The gauging maps for nontrivial flat G-connections take inequivalent symmetry twisted
states of the initial SPT models to orthogonal ground states of the topologically ordered gauged
models.
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1.15.1 Elementary definitions

Definition 1. A G-connection φ on a directed graph Λ, embedded in an oriented 2-manifold
M, is given by specifying a group element φe ∈ G for each edge e ∈ Λ.

φ : Λe → G
e 7→ φe

where Λe is the set of edges in Λ and φ can be thought of as a labeling {φe} of the edges
in Λ by group elements φe ∈ G. We view these connections as basis states |φ〉 :=

⊗
e |φe〉e ∈

C[G]⊗|Λe|.
Each G-connection φ defines a notion of transport along any oriented path (with origin and end
point specified) p ∈ Λ on the edges of the graph, the transport is specified by the group element

φp :=
1∏

i=|p|e

φσiei = φ
σ|p|
e|p| · · ·φ

σ1
e1 (1.116)

where the edges ei ∈ p are ordered as they occur following p along its orientation, and σi is
1 if the orientation of ei matches that of p and −1 if it does not, see Fig.1.8. Note for paths
p1, from v0 to v1, and p2, from v1 to v2, we have the following relation φp2φp1 = φp12 , where
p12 := p1 ∪ p2 is given by composing paths 1 and 2.

A pair of G-connections φ, ϕ are considered equivalent if they are related by a sequence of
local gauge transformations from the set

{agv :=
⊗
e∈E+

v

Re(g)
⊗
e∈E−v

Le(g) | ∀g ∈ G, v ∈ Λ} (1.117)

i.e. φ ∼ ϕ ⇐⇒ |φ〉 =
∏
i

agivi |ϕ〉 .

One can easily verify that this constitutes an equivalence relation. Importantly, this equivalence
relation preserves the conjugacy class of the G-holonomy φp of any closed path p ∈ Λ with a
fixed base point.

An important class of connections are the flat G-connections which are defined to have
trivial holonomy along any contractible path.

Definition 2. A G-connection φ is flat iff φp = 1 for any closed path p ∈ Λ that is contractible
in the underlying manifoldM.

This definition immediately implies that φp = φp′ for any pair of homotopic oriented paths
p, p′ with matching endpoints. It is easy to see that a G-connection is flat if and only if it satis-
fies the local condition φ∂q = 1 for every plaquette q of the graph Λ ⊂ M, where ∂q ⊂ Λ is
the boundary of q with the orientation inherited fromM. Moreover, one can easily verify that
flatness is preserved under the equivalence relation (1.117) and hence the flat G-connections
form equivalence classes under this relation. Note there can be multiple flat equivalence classes
since it is possible for a flat G-connection to have a nontrivial holonomy φp 6= 1 along a non-
contractible loop p ∈ Λ ⊂M.

One can easily show that any contractible region Γ ⊆ Λ ⊂ M (formed by a set of vertices
and the edges between them) of a flat G-connection |φ〉 can be ‘cleaned’ by a sequence of opera-
tions

∏
i a
gi
vi , where each vi ∈ Γ, such that the resulting equivalent connection |φ′〉 :=

∏
i a
gi
vi |φ〉
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a)
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Figure 1.8: a) A simple example φp = φ3φ
−1
2 φ1. b) Noncontractible cycles of the 2-torus.

satisfies φ′e = 1,∀e ∈ Γ.
Utilizing the cleaning procedure leads one to the following conclusion

Proposition 6. The equivalence class [φ] of a flat G-connection φ on an oriented 2-manifold
(w.l.o.g. a genus-n torus or n-torus)M is labeled uniquely by the conjugacy class of n pairs of
group elements that commute with their neighbors, i.e.

{[(x1, y1), . . . , (xn, yn)] | ∃xi, yi ∈ G, xiyi = yixi, yixi+1 = xi+1yi} ,

the set of such labels is henceforth referred to as IM.

The argument proceeds as follows: any G-connection can be ‘cleaned’ onto the set of edges
that cross any of the 2n closed paths {(pix, piy)} in the dual graph Λ∗ (where each (pix, piy)
and (piy, pi+1

x ) pair intersect once) that span the inequivalent noncontractible loops of the n-
torus, see Fig.1.8. Now by the flatness condition the group elements along any loop must be
the same (assuming w.l.o.g. the edges on that loop have the same orientation) and the group
elements (xi, yi) and (yi, xi+1) of each pair of intersecting loops must commute. Furthermore,
equivalence under the application of

⊗
v∈Λ a

g
v, ∀g ∈ G implies that every set of labels in the

same conjugacy class are equivalent.
Note there is a uniquely defined set of group elements

{(x1, y1), . . . , (xn, yn) |xi, yi ∈ G, xiyi = yixi, yixi+1 = xi+1yi} , (1.118)

for each flat G-connection φ which are specified by the G-holonomies xi := φp̃ix , yi := φp̃iy of
pairs of paths (p̃iy, p̃ix) in the graph Λ, where p̃ix is defined to be a path that intersects pix once
and all other paths pky , p

j
x, j 6= i, zero times (p̃iy is defined similarly). Moreover, the conjugacy

class [(x1, y1), . . . , (xn, yn)] := {(xh1 , yh1 ), . . . , (xhn, yhn) | ∀h ∈ G} labels the equivalence class
[φ] of the G-connection φ, where xh := hxh−1.

For a fixed representative γ = {(xi, yi)} of conjugacy class [γ] ∈ IM and choice of paths
{(pix, piy)} spanning the inequivalent noncontractible cycles of the n-torus, we construct a par-
ticularly simple representative flat G-connection as follows

Definition 3. The simple representative flat G-connection φγ is defined by setting φγe := x
σie
i if

pix crosses e and φγe := y
σie
i if piy crosses e, where σie is +1 if the crossing is right handed and

-1 if it is left handed, and otherwise φγe := 1 for edges that are not crossed by either pix, p
i
y.

Note an arbitrary flat connection |φ〉 is related to some |φγ〉 by a sequence of local oper-
ations |φ〉 =

∏
i a
gi
vi |φ

γ〉. In particular, the representative connection |φ̃γ〉 corresponding to a
deformation of the paths (pix, piy) 7→ (p̃ix, p̃iy) that does not introduce additional intersections (a
planar isotopy) is related to |φγ〉 by a sequence of local operations

∏
i a
gi
vi that implements the

deformation.
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Figure 1.9: A representative flat G connection labeled by (x, y).

1.15.2 Twisting and gauging operators and states

For any local operatorO acting on the matter degrees of freedom in a contractible region Γ ⊆ Λ
there is a well defined notion of twistingO by a flat G-connection φ. Fixing a base vertex v0 ∈ Γ
the twisted operator is given by

Oφ :=
∫

dg
⊗
v∈Γ

Uv(φpvg)O
⊗
v∈Γ

U †v (φpvg) (1.119)

where pv is any path from v0 to v within Γ (the choice does not matter since the connection is
flat and Γ is contractible). The choice of distinguished base vertex v0 is irrelevant since a change
v0 7→ v′0 can be compensated by shifting g 7→ φ−1

p′ g, where p′ is a path from v′0 to v0, which
has no effect since g is summed over. Note this definition of Oφ first projects O onto the space
of symmetric operators, hence the sum over g is unnecessary if O is already symmetric. One
can verify that Oφ commutes with the following twisted symmetry

⊗
v∈Γ Uv(gφpv ), ∀g ∈ G,

where gh = hgh−1, independent of the choice of base point v0 and paths pv ∈ Γ from v0 to v.
The twisted state gauging map Gφ, for a flat G-connection φ, is defined by the following

action

Gφ |ψ〉 :=P [ |ψ〉 ⊗ |φ〉]

=
∫ ∏

v∈Λ
dgv[

⊗
v∈Λ

Uv(gv)] |ψ〉
⊗
e∈Λ
|gv−e φeg

−1
v+
e
〉
e

(1.120)

where |ψ〉 ∈ Hm is a state of the matter degrees of freedom. One can verify that

G†φGφ =
∫

dg
⊗
v∈Λ

Uv(gφpv )
∏
i

δgxi,xigδgyi,yig ,

is the projection onto the symmetric subspace of the twisted symmetry, where (xi, yi) are the
pairs of commuting group elements that label φ, see Eq.(1.118). The δ conditions arise since
the state overlaps force the conjugation of g by the transport group elements φpv , φp′v to agree
for non homotopic paths pv, p′v from v0 to v. These δ conditions also ensure the choice of fixed
base point v0 is irrelevant.
The twisted operator gauging map GφΓ is defined similarly

GφΓ[O] :=
∫ ∏

v∈Γ
dgv

⊗
v∈Γ

Uv(gv)O
⊗
v∈Γ

U †v (gv)
⊗
e∈Γ
|gv−e φeg

−1
v+
e
〉 〈gv−e φeg

−1
v+
e
| (1.121)
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where O is an operator that acts on the matter degrees of freedom on sites v ∈ Γ ⊆ Λ, and Γ is
defined to include all the edges between its vertices. GφΓ is invertible on the space of φ-twisted
symmetric local operators Oφ in the following sense

Tre∈Γ[GφΓ[Oφ]
⊗
e∈Γ
|φe〉 〈φe|e] =

∫ ∏
v∈Γ

dgv
⊗
v∈Γ

Uv(gv)×Oφ
⊗
v∈Γ

U †v (gv)
∏
e∈Γ

δg
v−e
φeg
−1
v+
e

,φe

=
∫

dgv0

⊗
v∈Γ

Uv(gφpvv0 )Oφ
⊗
v∈Γ

U †v (gφpvv0 )

= Oφ (1.122)

where the final equality follows from the twisted symmetry of Oφ and the second equality
follows since the δ conditions force gv−e = gφe

v+
e

which implies, after fixing a base point v0 ∈ Λ,

that gv = g
φpv
v0 for any path pv from v0 to v within Γ which is assumed to be contractible in the

underlying manifoldM.
For the twisted gauging procedure we also have a version of Proposition 4, which states the

useful equality GΓ[O]G = GO for symmetric O. In the twisted case it must be modified in the
following way

Proposition 7. The identity GφΓ[Oφ]Gφ = GφO
φ holds for any symmetric operator O.

We now proceed to show this

GφΓ[Oφ]Gφ =
∫ ∏

v∈Γ
dhv

⊗
v∈Γ

Uv(hv)Oφ
⊗
v∈Γ

U †v (hv)
⊗
e∈Γ
|hv−e φeh

−1
v+
e
〉 〈hv−e φeh

−1
v+
e
|

×
∫ ∏

v∈Λ
dgv

⊗
v∈Λ

Uv(gv)
⊗
e∈Λ
|gv−e φeg

−1
v+
e
〉

=
∫ ∏

v∈Λ
dgv

∏
v∈Γ

dhv
⊗
v∈Λ

Uv(gv)
⊗
v∈Γ

Uv(g−1
v hv)Oφ

⊗
v∈Γ

U †v (g−1
v hv)

×
∏
e∈Γ

δ(g−1
v−e
h
v−e

), (g−1
v+
e

h
v+
e

)φe
⊗
e∈Λ
|gv−e φeg

−1
v+
e
〉

= GφO
φ (1.123)

the last equality follows since the δ condition forces g−1
v hv = (g−1

v0 hv0)φpv (for a fixed choice
of vertex v0 and path pv ∈ Γ from v0 to v which has no effect on the outcome) implying⊗
v∈Γ Uv(g−1

v hv) =
⊗
v∈Γ Uv( (g−1

v0 hv0)φpv ) which is precisely a twisted symmetry that com-
mutes with Oφ to yield the desired result.

For a symmetric local Hamiltonian that has been twisted by a flat G-connection φ,Hφ
m =

∑
v h

φ
v ,

we define the twisted gauged Hamiltonian (Hφ
m)Gφ :=

∑
v G

φ
Γv [h

φ
v ] in a locality preserving way

similar to the untwisted case. With this definition we pose the following proposition

Proposition 8. For all flat G-connections φ we have (Hφ
m)Gφ = HGm.
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To prove this it suffices to consider a generic local term hφv acting on the subgraph Γv

GφΓv [h
φ
v ] =

∫ ∏
v∈Γ

dgv
⊗
v∈Γ

Uv(gv)Uv(φpv)hv
⊗
v∈Γ

U †v (φpv)U †v (gv)
⊗
e∈Γ
|gv−e φeg

−1
v+
e
〉 〈gv−e φeg

−1
v+
e
|

=
∫ ∏

v∈Γ
dgv

⊗
v∈Γ

Uv(gvφpv)hv
⊗
v∈Γ

U †v (gvφpv)
⊗
e∈Γ
|gv−e φpv−e

φ−1
p
v+
e

g−1
v+
e
〉 〈gv−e φpv−e

φ−1
p
v+
e

g−1
v+
e
|

=
∫ ∏

v∈Γ
dg̃v

⊗
v∈Γ

Uv(g̃v)hv
⊗
v∈Γ

U †v (g̃v)
⊗
e∈Γ
|g̃v−e g̃

−1
v+
e
〉 〈g̃v−e g̃

−1
v+
e
|

= GΓv [hv] (1.124)

for the first equality we use the symmetry of hv, for the second we use the fact φe = φp
v−e
φ−1
p
v+
e

,

note the choice of base point v0 and paths pv from v0 to v in Γ have no effect since hv is
symmetric and Γ is contractible, for the third we use the invariance of the Haar measure under
the change of group variables gv 7→ g̃v := gvφpv .

1.15.3 Gauging preserves the gap and leads to a topological degeneracy

We are now in a position to prove that gauging a SPT Hamiltonian defined on an arbitrary ori-
ented 2-manifoldM preserves the energy gap, generalizing the proof presented in Section 1.5.2.

The full gauged Hamiltonian is given byHfull := HGm + ∆BHB + ∆PHP , see Section 1.5.2
for a discussion of each term in the Hamiltonian. Note by Proposition 8 the same full Hamilto-
nian Hfull is achieved by gauging any φ-twist of a given SPT Hamiltonian.

As argued in Section 1.5.2, for ∆B, ∆P sufficiently large, the low energy subspace of Hfull

lies within the common ground space of HB and HP . This subspace is spanned by the states
P [ |λ〉m ⊗ |φ〉g] = Gφ |λ〉, where the matter states |λ〉 form a basis of Hm, and the gauge states
|φ〉 span the flat G-connections. This leads to a generalization of Proposition 3 to arbitrary
2-manifolds

Proposition 9. For an oriented 2-manifoldM the set of states {Gφγ |λ〉}, for {|λ〉} a basis of
Hm and a fixed choice of representatives γ ∈ [γ] ∈ IM, span the common ground space of HB
and HP .

Firstly, by Proposition 6, an arbitrary flat connection |φ〉 is related to |φγ〉 , ∃[γ] ∈ IM by a
sequence of local operations |φ〉 =

∏
i a
gi
vi |φ

γ〉. Since Pv =
∫

dgUv(g)⊗ agv one can easily see
Pva

g
v = PvU

†
v (g) and hence we have

Gφ |ψ〉m = P [|ψ〉m ⊗
∏
i

agivi |φ
γ〉g]

= P [ [
∏
i

Uvi(gi)]† |ψ〉m ⊗ |φ
γ〉g]

= Gφγ [
∏
i

Uvi(gi)]† |ψ〉m . (1.125)

Therefore the common ground space of HB and HP is spanned by the states {Gφγ |λ〉}(λ,γ) for
a basis {|λ〉}λ of Hm and a representative γ of each conjugacy class [γ] ∈ IM.

We now bring together the definitions and propositions laid out thus far to show the follow-
ing
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Proposition 10. Gauging a gapped SPT Hamiltonian on an arbitrary oriented 2-manifoldM
yields a gapped local Hamiltonian with a topology dependent ground space degeneracy.

Let |λγ〉 denote an eigenstate of the twisted SPT HamiltonianHφγ
m with eigenvalue λ. From

Propositions 7 & 8 it follows that gauging an eigenstate of a φ-twisted SPT Hamiltonian yields
an eigenstate of the gauged Hamiltonian, so we have HGmGφγ |λγ〉 = λGφγ |λγ〉.

If Hm has a unique ground state |λ0〉 Proposition 9 implies the ground space of the full
HamiltonianHfull is spanned by the states {Gφγ |λγ0〉}γ and its gap satisfies ∆full ≥ min(∆m,∆B,∆P )

In the above we have assumed that Gφγ |λγ0〉 6= 0, for some γ. Note G |λ0〉 6= 0 always
holds for a unique ground state |λ0〉 of a symmetric Hamiltonian (possibly after rephasing the
matrices of the physical group representation which is assumed to have occurred).

We now proceed to show that the ground space degeneracy is equal to the number of dis-
tinct equivalence classes of symmetry twists which are invariant under the residual physical
symmetry. This relies on the assumption that the distinct symmetry twisted SPT Hamiltonians
Hφγ

m each have a nonzero unique ground state |λγ0〉 with the same energy λ0. We show this to
be the case, when the original frustration free SPT Hamiltonian Hm has a SPT PEPS ground
state, by explicitly constructing tensor network representations of the twisted ground states, see
Definition 4.

Proposition 11. The overlap matrix of the gauged ground statesM[γ′],[γ] := 〈λγ
′

0 |G
†
φγ′
Gφγ |λγ0〉

is diagonal, where γ, γ′ are drawn from a fixed set of representatives for the conjugacy classes
in IM. Furthermore, M[γ′],[γ] is invariant under a change of representatives and M[γ],[γ] = 0
iff |λγ0〉 transforms as a nontrivial representation of the physical symmetry action of C(γ).

The operators G†ϕGφ that appear in the overlaps of the gauged twisted ground states imply
that they are orthogonal. To see this consider the following

G†ϕGφ =
∫ ∏

v∈Λ
dkvdgv

⊗
v∈Λ

Uv(k−1
v gv)

∏
e∈Λ
〈kv−e ϕek

−1
v+
e
|gv−e φeg

−1
v+
e
〉 (1.126)

=
∫

dgv0

⊗
v∈Λ

Uv(ϕpvgv0φ
−1
pv )

∏
i

δx′igv0 ,gv0xiδy
′
igv0 ,gv0yi

where we have fixed an arbitrary base vertex v0, pv is any path from v0 to v, and {(x′i, y′i)}i, {(xi, yi)}i
label the connectionsϕ, φ respectively. The delta conditions arise since the overlaps in Eq.(1.126)
force the transported group element ϕpvgv0φ

−1
pv to agree for any choice of path pv (which may be

homotopically distinct). This implies thatG†ϕGφ = 0 whenever the labels {(x′i, y′i)}i, {(xi, yi)}i
fall into distinct equivalence classes of IM.
For the particular case of the simple representative G-connections φγ we have

G†
φγ
′Gφγ = δ[γ′],[γ]

∫
dg
⊗
v∈Λ

Uv(g)
∏
i

δx′ig,gxiδy
′
ig,gyi

for equivalence classes [γ′], [γ] ∈ IM. Furthermore, if γ′ ∼ γ then there exists a group element
h ∈ G such that (x′i, y′i) = (xgi , y

g
i ), ∀i ⇐⇒ g ∈ hC(γ), a left coset of the centralizer of

γ = {xi, yi}i. In this case

G†
φγ′
Gφγ =

∫
dg
⊗
v∈Λ

Uv(g) δg∈hC(γ) (1.127)
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andHφγ
′

m = U(g)⊗|Λ|vHφγ
m U †(g)⊗|Λ|v for any g ∈ hC(γ), which implies θγg |λ

γ′

0 〉 = U(g)⊗|Λ|v |λγ0〉
for some phase θγg ∈ U(1). Hence

〈λγ0 |G
†
φγGφγ |λ

γ
0〉 = θγh 〈λ

γ
0 |G

†
φγGφγ′ |λ

γ′

0 〉 ⇐⇒ [γ] = [γ′].

Moreover since |λγ0〉 is the unique groundstate of a C(γ)-symmetric Hamiltonian θγ(·) is a 1D rep-

resentation of C(γ). By the orthogonality of characters we haveG†φγGφγ |λ
γ
0〉 6= 0 ⇐⇒ θγ(·) ≡ 1.

Note θγ(·) ≡ 1 is in fact a property of a conjugacy class as it does not depend on the choice of
representative γ.

Consequently the choice of representative symmetry twist γ ∈ [γ] ∈ IM does not matter as
all lead to the same gauged state |λ0, [γ]〉 := Gφγ |λγ0〉. Hence the overlap matrix of the gauged
twisted SPT groundstates is given by

M[γ′],[γ] = 〈λ0, [γ′]|λ0, [γ]〉

= δ[γ′],[γ] δθγ(·),1
|C(γ)|
|G|

〈λγ0 |λ
γ
0〉 (1.128)

and the set of states {|λ0, [γ]〉 | [γ] ∈ IM, θγ(·) ≡ 1} form an orthogonal basis for the ground
space of the full gauged Hamiltonian Hfull.

1.16 Symmetry twists & monodromy defects

In this appendix we describe a general and unambiguous procedure for applying symmetry
twists to SPT PEPS using virtual symmetry MPOs. We furthermore demonstrate that the gaug-
ing procedure maps the symmetry MPOs to freely deformable topological MPOs on the virtual
level and hence the gauged symmetry twisted PEPS are locally indistinguishable while remain-
ing globally orthogonal, implying that they exhibit topological order. We move on to discuss
how the same MPOs can be arranged along open paths to describe monodromy defects in SPT
PEPS and anyons in the gauged PEPS. Moreover, we explicitly calculate the projective trans-
formation of individual monodromy defects under the residual symmetry group using tensor
network techniques.

1.16.1 Symmetry twisted states

In this section we discuss the ground states of symmetry twisted Hamiltonians in more detail
and show that the PEPS framework naturally accommodates a simple construction of these
states.

On a trivial topology a symmetry twist can be applied directly to a state by acting on some
region of the lattice with the physical symmetry. For example on an infinite square lattice in the
2D plane a symmetry twist (x, y) along an oriented horizontal and vertical path px, py, in the
dual lattice, acts on a state |ψ〉 via

|ψ〉φ : =
∫

dg
⊗
v∈Γ

Uv(φpvg) |ψ〉

=
⊗
v∈U

Uv(x)
⊗
v∈R

Uv(y)
∫

dg
⊗
v∈Γ

Uv(g) |ψ〉
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where φ is the simple representative connection with label (x, y) on paths px, py, see Defini-
tion 3, andR is the half plane to the right of py, U the half plane above px, see Fig.1.5. Note this
definition implicitly projects |ψ〉 onto the trivial representation and we haveOφ |ψ〉φ = (O |ψ〉)φ

for symmetric operators O. Hence twisting an eigenstate |λ〉 of a SPT Hamiltonian Hm yields
an eigenstate |λ〉φ of the twisted Hamiltonian Hφ

m with the same eigenvalue. Note x and y must
commute for φ to be a flat connection, equivalently if one thinks of first applying the x twist
to a symmetric Hamiltonian, then the resulting operator will only be symmetric under the cen-
tralizer subgroup of x, C(x) ≤ G, and hence it only makes sense to apply a second twist for an
element y ∈ C(x).

The effect of such a symmetry twist on a SPT PEPS |ψ〉 is particularly simple, it can be
achieved by adding the virtual symmetry MPOs V px(x) and V py(y) (with inner indices con-
tracted with the four index crossing tensor Qx,y = W x

R(y) (1.15,1.86) where px, py intersect,
see Fig.1.6) to the virtual level of the PEPS. Let us denote the resulting tensor network state
|ψ(x,y)〉, then by Eq.(1.3) we have |ψ(x,y)〉 = |ψ〉φ.

For nontrivial topologies the symmetry twist on a state |ψ〉φ
γ

is not well defined in terms
of a physical symmetry action since two homotopically inequivalent paths pv, p′v can give rise
to distinct transport elements φpv 6= φp′v . Note this problem does not arise when symmetry
twisting local operators, such as the terms in a local Hamiltonian, since each operator acts
within a contractible region. The PEPS formalism yields a simple resolution to this problem
since the process of applying a symmetry twist φγ on the virtual level of a PEPS |ψγ〉 remains
well defined, see Definition 4 and Fig.1.10.

� �

Figure 1.10: An (x, y) symmetry twisted PEPS on a torus.

The general scenario is as follows; we have a local gapped frustration free SPT Hamiltonian
Hm defined on an oriented 2-manifoldMwith a SPT PEPS |λ0〉 as its unique ground state (note
SPT PEPS parent Hamiltonians satisfy these conditions) and we want to apply a symmetry twist
along paths pix, p

i
y in the dual graph labeled by γ = {(xi, yi)}i.

Definition 4 (Symmetry Twisted SPT PEPS). For a SPT PEPS |ψ〉 and a symmetry twist γ,
specified by a set of pairwise intersecting paths in the dual graph {pix, piy}i and pairwise com-
muting group elements {(xi, yi)}i in G, the symmetry twisted PEPS |ψγ〉 is constructed by
taking the tensor network for |ψ〉 with open virtual indices on edges that cross {pix, piy}i and

contracting these virtual indices with the MPOs {V pix(xi), V piy(yi)}i. Moreover, at the inter-
section of the paths pix ∩ piy the internal indices of the MPOs V pix(xi), V piy(yi) are contracted
with four index crossing tensors Qxi,yi = W xi

R (yi), defined in Eqs.(1.15,1.86) and similarly
with Qyi−1,xi = W

yi−1
R (xi) at the intersections pi−1

y ∩ pix. This is depicted in Fig. 1.10.
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It follows from Eq.(1.3) and the zipper condition (1.71) for X(xi, yi) that the symmetry
twisted ground state SPT PEPS |λγ0〉 is the ground state of the twisted SPT Hamiltonian Hφγ

m .
More generally for any SPT PEPS |ψ〉 that is an eigenstate of each local term in Hm, Eq.(1.3)
implies that |ψγ〉 is an eigenstate of Hφγ

m with the same eigenvalue (thereby justifying the nota-
tion). Note the twisted SPT PEPS |ψγ〉 for different choices of representative γ from the same
conjugacy class [γ] ∈ IM are all related by the action of some global symmetry, which again
follows from Eqs.(1.3),(1.71) and Proposition 6.

Proposition 12. A γ-twisted SPT PEPS |ψγ〉 transforms as the following 1D representation

θγ(·) = α(x0,y0)(·)−1 ∏
i=1

[α(yi−1,xi)(·)α(xi,yi)(·)]−1 (1.129)

under the physical action of the residual symmetry group C(γ).

The physical action of the symmetry U(k)⊗|M|v induces a local action πk on each crossing
tensor {W xi

R (yi),W yi−1
R (xi)}i and by Eq.(1.103) we find the combined action to be

α(x0,y0)(·)−1 ∏
i=1

[α(yi−1,xi)(·)α(xi,yi)(·)]−1

as claimed.

1.16.2 Topological ground states

We now show that the twisted gauging procedure maps the virtual symmetry MPO to a freely
deformable topological MPO on the virtual level.

Proposition 13. Applying the twisted gauging map Gφγ to a nonzero twisted SPT PEPS |ψγ〉
yields the MPO-injective PEPS G |ψ〉 with a set of freely deformable MPOs joined by crossing
tensors, specified by [γ], acting on the virtual level. The gauged state is zero iff |ψγ〉 transforms
nontrivially under the residual symmetry group C(γ), this property depends only on [γ] and [α].

We will first show that the tensor network Gφγ |ψγ〉 is given by contracting the MPOs
[V pix(xi)

⊗
e∈pix Re(xi)], [V

piy(yi)
⊗
e∈piy Re(yi)] (contracted with the crossing tensorQxi,yi = W xi

R (yi)
at pix ∩ piy) with the virtual indices of G |ψ〉 on edges that cross the paths {pix, piy}.

In general Gφ is a projected entangled pair operator (PEPO) with vertex tensors

Gvφ =
∫

dg Uv(g)
⊗
e∈Ev

(g| = Gv

and edge tensors71

Geφ =
∫

dgv+
e

dgv−e Le(gv−e )Re(gv+
e

) |φe〉 ⊗ (gv+
e
|(gv−e | .

Furthermore the edge tensors satisfy Geφ = Ge1(R(φe) ⊗ 1) = Ge1(1 ⊗ R†(φe) ). Hence
the PEPO Gφ is given by the untwisted gauging map G with the tensor product operators
{
⊗
e∈pix Re(xi),

⊗
e∈piy Re(yi)} applied to the virtual indices that cross {pix, piy}.

Eqs.(1.3) and (1.71) together with Pvagv = PvU
†
v (g) imply Gφγ |ψγ〉 = Gφγ̃ |ψγ̃〉 for any

deformation γ̃ = {p̃ix, p̃iy} of the paths γ = {pix, piy} that does not introduce additional in-
tersections (a planar isotopy). This furthermore implies that the MPOs [V p(g)

⊗
e∈pRe(g)]
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satisfy the pulling through condition of Ref. 63 for any path p. Consequently, the MPO
1
|G|
∑
g[V p(g)

⊗
e∈pRe(g)], that was shown to be the projection onto the injectivity subspace

of the gauged PEPS in Appendix 1.14, also satisfies the pulling through condition.
By Proposition 11 the gauged SPT PEPS Gφγ |ψγ〉 is zero iff θγ(·) is nontrivial, which is a

property of the conjugacy class [γ]. Now by Proposition 12 and the fact that the slant product
maps cohomology classes to cohomology classes we have the stated result.

Hence the nonzero gauged symmetry twisted PEPS ground states |λ0, [γ]〉 := Gφγ |λγ0〉
are topologically ordered since the tensors Qxi,yi that determine the ground state are locally
undetectable, which follows from the pulling through condition satisfied by the topological
MPOs and Eq.(1.71), while for [γ] 6= [γ′] the states are globally orthogonal 〈λ0, [γ]|λ0, [γ′]〉 =
0, as shown above.

In fact there is a slight subtlety, as while the reduced density matrices for all [γ], [γ′] ∈ IM
are supported on the same subspace ρλ0,[γ]

R , ρ
λ0,[γ′]
R ∈ Im(AR⊗A†R) for any contractible region

R, they are not necessarily equal59 (or even exponentially close in the size of the region). One
might also fret over the possibility that the state exhibits spontaneous symmetry breaking.
However neither of these complications can occur for the gauged symmetry twisted SPT PEPS,
since an exact isometric fixed-point SPT PEPS does not exhibit symmetry breaking and is
gauged to a topologically ordered fixed-point state which also does not exhibit symmetry break-
ing (see Section 1.7). Furthermore the gauging map is gap preserving, hence gauging any SPT
PEPS in the same phase as an SPT fixed-point maps it to a topological PEPS in the same phase
as the gauged topological fixed-point PEPS.

1.16.3 Monodromy defects in SPT PEPS

Monodromy defects can be created in a SPT theory by applying a symmetry twist along an
open ended path in the dual graph pg from plaquette q0 to q1, specified by a G-connection φpg ,
where φpge = 1, for e /∈ pg and φpge = gσe for e ∈ pg (σe is +1 if pg crosses e in a right
handed fashion and -1 for left handed crossings) hence φpg is flat on every plaquette except
q0, q1, the end points of pg, see Fig.1.11. The defect states can be realized as ground states of
some twisted Hamiltonians Hφpg

m =
∑
q∈Λ\∂pg h

φpg
q + h′q0 + h′q1 where the choice of the end

terms h′q0 , h
′
q1 is somewhat arbitrary. These monodromy defects can be introduced into a SPT

PEPS |ψ〉 following the framework set up for symmetry twists.

Definition 5 (Monodromy defected SPT PEPS). A monodromoy defect specified by pg in a SPT
PEPS |ψ〉 is described by a set of tensor network states parametrized by a pair of tensorsB0, B1
where B0 : (CD)⊗|Ev0 | ⊗ Cχ → Cd is a local tensor associated to a vertex v0 ∈ ∂q0 with a
set of indices matching those of the tensor Av0 , and an extra virtual index of the same bond
dimension χ as the internal index of the MPO (B1 is defined similarly).
The monodromy defected tensor network states |ψpg , B0, B1〉 are constructed from the SPT
PEPS |ψ〉 by replacing the PEPS tensorsAv0 , Av1 withB0, B1 and contracting the extra virtual
indices thus introduced with the open end indices of the MPO V pg(g) which acts on the virtual
indices of the PEPS that cross pg. This is depicted in Fig. 1.12 b).

This provides an ansatz64 for symmetry twists by choosing appropriate boundary tensors
B0, B1 to close the free internal MPO indices at q0, q1, the possibility of different boundary con-
ditions corresponds to the ambiguity in the local Hamiltonian terms h′q0 , h

′
q1 , see Figs.1.11,1.12.
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Figure 1.11: A symmetry twist g along an open path.

Eq.(1.3) implies that the defect state ansatz |ψpg , B0, B1〉 is in the ground space of the sum of
Hamiltonian terms away from the end points of pg,

∑
q∈Λ\∂pg h

φpg
q , for any choice of tensors

B0, B1.
Since the connection φpg is flat everywhere but q0, q1, the gauging map can be applied, in

the usual way, to operators that are supported away from these plaquettes. Hence the twisted
gauged defect Hamiltonian is (Hφpg

m )Gφ
pg

:=
∑
q∈Λ\∂pg G

φpg

Γq [hφpgq ] + h′′q0 + h′′q1 where again
there is an ambiguity in the choice of end terms h′′q0 , h

′′
q1 . The SPT PEPS with monodromy

defect pg can be gauged via the standard gauging procedure for the G-connection φpg to yield
the tensor network Gφpg |ψpg , B0, B1〉. Similar to the case of symmetry twists on closed paths,
the gauged defected SPT PEPS Gφpg |ψpg , B0, B1〉 is constructed from the untwisted gauged
SPT PEPS G |ψ〉 by removing the tensors Gv0Av0 , G

v1Av1 and replacing them with the pair
of tensors Gv0B0, G

v1B1 connected by a virtual MPO [V pg(g)
⊗

e∈pg Re(g)] acting on the
virtual indices of the PEPS that cross pg. Note the dimension of the inner indices of this MPO
match the extra indices of Gv0B0, G

v1B1 since the newly introduced component of the MPO⊗
e∈pg Re(g) has trivial inner indices. To achieve a more general ansatz one may want to replace

Gv0B0, G
v1B1 by arbitrary tensors B̃0, B̃1 : (CD ⊗ C[G])⊗|Ev | ⊗ Cχ → Cd.

As shown above, the MPO [V pg(g)
⊗
e∈pg Re(g)] satisfies the pulling through condition

of Ref. 63 and hence Gφpg |ψpg , B0, B1〉 = G
φ
p′g |ψ

p′g , B0, B1〉 for p′g an arbitrary, end point

preserving, deformation of pg. By Eq.(1.124) we have Gφ
pg

Γq [hφpgq ] = GΓq [hq] and hence the
gauged defected SPT PEPS Gφpg |ψpg , B0, B1〉, for all B0, B1, is in the ground space of the
sum of gauged Hamiltonian terms away from the end points

∑
q∈Λ\∂pg GΓq [hq]. Consequently

Gφpg |ψpg , B0, B1〉 must represent a superposition of anyon pairs, localized to the plaquettes
q0, q1, on top of the vacuum (ground state). Furthermore the freedom in choosing B0, B1 leads
to a fully general anyon ansatz within the framework of MPO-injective PEPS64.

1.16.4 Projective symmetry transformation of monodromy defects

We proceed to show that the internal degrees of freedom of a monodromy defect pg transform
under a projective representation of the residual global symmetry group C(g) via a generaliza-
tion of the mechanism for virtual symmetry actions in MPS27,35,56.

We consider a SPT PEPS on an oriented manifoldM with a twice punctured sphere topol-
ogy and a symmetry twist pg running from one puncture Π0 to the other Π1. This captures both
the case of a symmetry twisted SPT model defined on a cylinder (when the virtual bonds that
enter the punctures are left open), and the case of a pair of monodromy defects on a sphere
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(when the punctures are formed by removing a pair of PEPS tensors Av0 , Av1 and contracting
the virtual indices thus opened with B0, B1), see Fig. 1.12.

The bulk of the symmetry twisted state is invariant under the physical on-site representation
U(h)⊗|M|v of C(g) ≤ G, but this may have some action on the virtual indices that enter the
punctures. Treating the SPT PEPS on a cylinder of fixed radius as a one dimensional symmetric
MPS implies, by well established arguments27,56, that the action of the symmetry on the vir-
tual boundaries Vg0 (h) ⊗ Vg1 (h) forms a representation, while each individual boundary action
Vg0 (h),Vg1 (h) is free to form a projective representation.

a) � b)
�

Figure 1.12: a) A symmetry twisted SPT PEPS on a cylinder. b) A pair of monodromy defects on a
sphere.

Assuming the symmetry MPOs satisfy the zipper condition (1.71) one can directly calculate
the effect that a physical symmetry action U(h)⊗|M|v , h ∈ C(g) has on the virtual boundary,
simultaneously demonstrating the symmetry invariance of the bulk.

= (1.130)

= (1.131)

Hence the symmetry action Vg1 (h) (see Eq.(1.20)) on the boundary of a single puncture Π1
is given by the MPO V ∂Π−1 (h), acting on the virtual indices along ∂Π1, contracted with the
crossing tensor Y g

R(h) (see Eq.(1.88)) acting on the inner MPO index of the symmetry twist
V pg(g) that enters the puncture. Similarly Vg0 (h), acting on the boundary of the other puncture
Π0, is given by contracting the MPO V ∂Π−0 (h) with the crossing tensor Y g

L (h).
There is a natural composition operation on the crossing tensors Y g

R(·) that is induced by
applying a product of global symmetries U(k)⊗|M|vU(h)⊗|M|v and utilizing the reduction of
Eq.(1.131) twice and then zipping the MPOs V ∂Π−1 (k)V ∂Π−1 (h) = X(k, h)V ∂Π−1 (kh)X+(k, h)
by Eq.(1.71). This is nothing but the product Y g

R(k)× Y g
R(h) that was previously defined in

Eq.(1.93).
Since the physical action U(h)⊗|M|v forms a representation of the symmetry group C(g)

the simultaneous virtual action on both boundaries Π0,Π1 together Vg0 (h) ⊗ Vg1 (h) must also
form a representation. However, there is a multiplicative freedom in the multiplication rule of
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the representation on a single boundary

Vg1 (k)Vg1 (h) = ωg1(k, h)Vg1 (kh)

(and similarly for Vg0 (h)), under the constraint ωg0(k, h)ωg1(k, h) = 1, allowing the possibility
of projective representations.

Using the result of Eq.(1.94), Y g
R(k)× Y g

R(h) = ωg(k, h)Y g
R(kh), we can pin down the 2-

cocycle ωg1 explicitly in terms of the 3-cocycle α of the injective MPO representation V ∂Π−0 (·)
as follows ωg1(k, h) = ωg(k, h) (see Eq.(1.92) for definition of ωg). Hence the cohomology
class of the projective representation Vg1 (·) is given by

[ωg1(k, h)] = [α(g)(k, h)].

It was shown above that a gauged SPT PEPS with a pair of defects Gφpg |ψpg , B0, B1〉
describes a superposition of anyon pairs in the resulting topological theory. The projective
transformation of the monodromy defects is intimately related to the braiding of the resulting
anyons, which can be inferred from the following process, depicted in Fig. 1.13. First consider
an isolated anyon formed by creating a pair of anyons and then moving the other arbitrarily far
away. Next create a second pair and move them to encircle the isolated anyon, at this point one
should fuse these anyons, but the full description of such fusion requires a systematic anyon
ansatz which is beyond the scope of the current paper (see Ref. 64). Instead we drag the pair
arbitrarily far away as demonstrated in Fig. 1.13 and use the fact that this can be rewritten as
some local action on the internal degrees of freedom of the isolated anyon, plus another locally
undetectable action that can be moved arbitrarily far away.

→

↓

=

Figure 1.13: The process used to find the effect of braiding on the internal degrees of freedom of a single
anyon.

1.17 Gauging symmetric Hamiltonians and ground states

In this appendix we apply the gauging procedure developed in Ref. 71 to families of trivial
and SPT Hamiltonians with symmetric perturbations and find that they are mapped to perturbed
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quantum double and twisted quantum double models respectively. We then go on to describe
gauging the (unperturbed) fixed-point ground states.

1.17.1 Gauging the Hamiltonian

First we apply the gauging procedure to a symmetric Hamiltonian defined on the matter degrees
of freedom, each with Hilbert space Hv

∼= C[G] and symmetry action Uv(g) = Rv(g), associ-
ated to the vertices of a directed graph Λ embedded in a closed oriented 2-manifoldM. The
Hamiltonian is given by

Hm = α
∑
v∈Λ

h0
v +

∑
m∈G

βm
∑
e∈Λ
Eme (1.132)

the vertex terms are h0
v :=

∫
dĝvdgv |ĝv〉 〈gv| while the edge interaction terms are

Eme :=
∫

dgv−e dgv+
e
δg
v−e
g−1
v+
e

,m |gv−e 〉〈gv−e | ⊗ |gv+
e
〉〈gv+

e
| .

Each term in this Hamiltonian is symmetric under the group action
⊗
v Rv(g). For α, βm < 0

and |α| � |βm| this Hamiltonian describes a symmetric phase with trivial SPT order, while for
|βm| � |α| the Hamiltonian describes different symmetry broken phases.

We construct the gauge and matter Hamiltonian Hg,m by first gauging the local terms h0
v,

which leaves them invariant Gv[h0
v] = h0

v. Next we gauge the interaction terms Eme with the
gauging map on ē (the closure of edge e)

Gē[Eme ] =
∫

dgv−e dgv+
e

dhv−e dhv+
e
δg
v−e
g−1
v+
e

,m |gv−e h
−1
v−e
〉〈gv−e h

−1
v−e
|

⊗ |hv−e h
−1
v+
e
〉〈hv−e h

−1
v+
e
|e ⊗ |gv+

e
h−1
v+
e
〉〈gv+

e
h−1
v+
e
|.

Finally we consider additional local gauge invariant Hamiltonian terms acting purely on the
gauge degrees of freedom: symmetric local fields

Fce :=
∫

dĝedge δĝeg−1
e ∈c |ĝe〉 〈ge| (1.133)

where c ∈ C(G) are conjugacy classes of G, and plaquette flux-constraints

Bmp :=
∫ ∏

e∈∂p
dge δ

gσ
e1
e1 ···g

σ
e|∂p|
e|∂p|

,m

⊗
e∈∂p
|ge〉〈ge| , (1.134)

where each plaquette p has a fixed orientation induced by the 2-manifold M, and the group
elements {ge1 , . . . , ge|∂p|} are ordered as the edges are visited starting from the smallest vertex
label and moving against the orientation of ∂p, then σei = ±1 is +1 if the edge ei points in
the same direction as the orientation of p and −1 otherwise. Finally we require that the group
elements lie in the center of the groupm ∈ C(G) which renders the choice of vertex from which
we begin our traversal of ∂p irrelevant.

The full gauge and matter Hamiltonian is thus given by

Hg,m = α
∑
v∈Λ

h0
v +

∑
m∈G

βm
∑
e∈Λ
Gē[Eme ] +

∑
c∈C(G)

γc
∑
e∈Λ
Fce +

∑
m∈C(G)

εm
∑
p∈Λ
Bmp . (1.135)

Note that each term commutes with all local gauge constraints {Pv}, see Eq.(1.109), and the
physics takes place within this gauge invariant subspace.
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1.17.2 Disentangling the constraints

To see more clearly that this gauge theory is equivalent to an unconstrained quantum double
model we will apply a local disentangling circuit to reveal a clear tensor product structure,
allowing us to ‘spend’ the gauge constraints to remove the matter degrees of freedom.

We define the disentangling circuit to be the product of local unitaries CΛ :=
∏
v Cv, where

Cv :=
∫

dgv |gv〉 〈gv|v
∏
e∈E+

v
Re(g)

∏
e∈E−v Le(g). Note the order in the product is irrelevant

since [Cv, Cv′ ] = 0. This circuit induces the following transformation on the gauge projectors:
CΛPvC

†
Λ =

∫
dgRv(g), hence any state |ψ〉 in the gauge invariant subspace (simultaneous +1

eigenspace of all Pv) is disentangled into a tensor product of symmetric states on all matter
degrees of freedom with an unconstrained state |ψ′〉 ∈ Hg on the gauge degrees of freedom
CΛ |ψ〉 = |ψ′〉

⊗
v

∫
dgv |gv〉.

Now we apply the disentangling circuit to the Hamiltonian Hg,m. First note the pure gauge
terms Fce and Bmp are invariant under conjugation by Cv. The vertex terms are mapped to

Cvh
0
vC
†
v =

∫
dgvRv(gv)

⊗
e∈E+

v

Re(gv)
⊗
e∈E−v

Le(gv) .

Since the disentangled vertex degrees of freedom are invariant under Rv(gv) we see that this
Hamiltonian term acts as ∫

dgv
⊗
e∈E+

v

Re(gv)
⊗
e∈E−v

Le(gv)

on the relevant gauge degrees of freedom. We recognize this as the vertex term of a quantum
double model. Finally we examine the transformation of the interaction terms

CvGē[Eme ]C†v = 1
|G| |m〉 〈m|e ,

which yield local fields on the gauge degrees of freedom that induce string tension. Hence we
see that the gauge plus matter Hamiltonian after disentangling becomes a local Hamiltonian
Hg := CvHg,mC

†
v acting purely on the gauge degrees of freedom

Hg = α
∑
v

∫
dgv

⊗
e∈E+

v

Re(gv)
⊗
e∈E−v

Le(gv) +
∑
m∈G

βm
|G|

∑
e∈Λ
|m〉 〈m|e

+
∑

c∈C(G)
γc
∑
e∈Λ
Fce +

∑
m∈C(G)

εm
∑
p∈Λ
Bmp (1.136)

which describes a quantum double model with string tension and flux perturbations. Note that
a spontaneous symmetry breaking phase transition in the ungauged model is mapped to a string
tension induced anyon condensation transition by the gauging procedure.

1.17.3 Gauging nontrivial SPT Hamiltonians

The gauging procedure extends to nontrivial SPT Hamiltonians which are defined on triangular
graphs embedded in closed oriented 2-manifolds M. The only modification required is to
replace the trivial vertex terms h0

v by nontrivial terms hαv which are defined by∫
dĝvdgv

∏
v′∈L(v)

dgv′
∏

4∈S(v)
α4 |ĝv〉 〈gv|

⊗
v′∈L(v)

|gv′〉 〈gv′ | (1.137)
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where S(v) is the star of v, L(v) is the link of v and α4 ∈ U(1) for plaquette4, whose vertices
are given counterclockwise (relative to the orientation of the 2-manifold) by v, v′, v′′, is defined
by the 3-cocycle α4 := ασπ(g1g

−1
2 , g2g

−1
3 , g3g

−1
4 ) where (g1, g2, g3, g4) := π(ĝv, gv, gv′ , gv′′)

for π the permutation that sorts the group elements into ascending vertex label order (with the
convention that ĝv immediately precedes gv) and σπ = ±1 is the parity of the permutation.
The terms hαv are clearly symmetric under global right group multiplication and are seen to be
Hermitian since conjugation inverts the phase factor α4 and interchanges the role of ĝv and gv
which inverts the parity of π thereby compensating the conjugation of α4.

We apply the gauging map on the region S̄(v) (the closure of the star of v) to hαv

GS̄(v)[h
α
v ] =

∫
dĝvdgvdhv

∏
v′∈L(v)

dgv′dhv′
∏

4∈S(v)
α4 |ĝvh−1

v 〉 〈gvh−1
v |⊗

v′∈L(v)
|gv′h−1

v′ 〉 〈gv′h
−1
v′ |

⊗
e∈S̄(v)

|hv−e h
−1
v+
e
〉〈hv−e h

−1
v+
e
|e (1.138)

followed by the disentangling circuit CΛGS̄(v)[hαv ]C†Λ which yields∫
dĝvdgvdhv

∏
v′∈L(v)

dgv′dhv′
∏

4∈S(v)
α4 |ĝvh−1

v 〉 〈gvh−1
v |

⊗
v′∈L(v)

|gv′h−1
v′ 〉 〈gv′h

−1
v′ |

⊗
e∈E+

v

|gv−e ĝ
−1
v 〉〈gv−e g

−1
v |

⊗
e∈E−v

|ĝvg−1
v+
e
〉〈gvg−1

v+
e
|
⊗

e∈L(v)
|gv−e g

−1
v+
e
〉〈gv−e g

−1
v+
e
|. (1.139)

Note, importantly, the phase functions α4 now depend only on the gauge degrees of freedom.
Finally in Eq.(1.140) we rewrite the pure gauge Hamiltonian terms without reference to the
matter degrees of freedom, which become irrelevant as the matter degrees of freedom in any
gauge invariant state are fixed to be in the symmetric state

∫
dgv |gv〉v by the disentangling

circuit ∫
dĝvdgv

∏
v′∈L(v)

dgv′
∏

4∈S(v)
α4

⊗
e∈E+

v

|gv−e ĝ
−1
v 〉〈gv−e g

−1
v |

⊗
e∈E−v

|ĝvg−1
v+
e
〉〈gvg−1

v+
e
|

⊗
e∈L(v)

|gv−e g
−1
v+
e
〉〈gv−e g

−1
v+
e
| (1.140)

This can be recognized as the vertex term of a 2D twisted quantum double model (the lattice
hamiltonian version of a twisted Dijkgraaf Witten theory for the group G and cocycle α).

1.17.4 Gauging SPT groundstates

In this section we apply the gauging procedure directly to the ground states of the nontrivial
SPT Hamiltonian that was defined in Eq.(1.137). These ground states are constructed using the
following local circuit75

Dα :=
∫ ∏

v∈Λ
dgv

∏
4∈Λ

α̃4
⊗
v∈Λ
|gv〉 〈gv| (1.141)

where α̃4 ∈ U(1) is a function of the degrees of freedom on plaquette 4, whose vertices are
given counterclockwise, relative to the orientation of the 2-manifoldM, by v, v′, v′′ (note the
choice of starting vertex is irrelevant) and is defined by a 3-cocycle as follows

α̃4 := ασπ(g1g
−1
2 , g2g

−1
3 , g3)
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where (g1, g2, g3) := π(gv, gv′ , gv′′) with π the permutation that sorts the group elements into
ascending vertex label order and σπ = ±1 is the parity of the permutation (equivalently the
orientation of4 embedded within the 2-manifoldM). NoteDα is easily expressed as a product
of commuting 3-local gates.

To define SPT fixed-point states we start with the trivial state

|SPT(0)〉 :=
⊗
v

∫
dgv |gv〉v ,

which is easily seen to be symmetric under global right group multiplication. One can also
check that Dα is symmetric under conjugation by global right group multiplication by utilizing
the 3-cocycle condition satisfied by each α̃4. With this we define nontrivial SPT fixed-point
states

|SPT(α)〉 := Dα |SPT(0)〉 ,

which are symmetric by construction. To see that |SPT(α)〉 is the ground state of the SPT
Hamiltonian

∑
v h

α
v we note hαv = Dαh

0
vD
†
α which again is proved using the 3-cocycle condi-

tion.
We will now gauge the SPT fixed-point states by applying the state gauging map to Dα,

since the input variables of the circuit carry the same information as the virtual indices of the
fixed-point SPT PEPS we hope this makes the correspondence between the two pictures more
clear

GDα =
∫ ∏

v∈Λ
dgvdhv

∏
4∈Λ

α̃4
⊗
e∈Λ
|hv−e h

−1
v+
e
〉
⊗
v∈Λ
|gvh−1

v 〉 〈gv| . (1.142)

Under the local disentangling circuit this transforms to

CΛGDα =
∫ ∏

v∈Λ
dgv

∏
4∈Λ

α̃4
⊗
e∈Λ
|gv−e g

−1
v+
e
〉
⊗
v∈Λ
〈gv|

⊗
v∈Λ

∫
dkv |kv〉 , (1.143)

where it is clear that the matter degrees of freedom have been disentangled into symmetric
states and the cocycles α̃4 depend on both the group variables on the edges and the inputs on
the vertices (which correspond to the PEPS virtual degrees of freedom).

The explicit connection to the fixed-point SPT PEPS is made by replacing the basis at
each vertex |gv〉v by an analogous basis of the diagonal subspace of variables at each plaque-
tte surrounding the vertex

⊗
4∈S(v) |gv〉4,v. This construction lends itself directly to a PEPS

description where a tensor is assigned to each plaquette of the original graph (i.e. the PEPS is
constructed on the dual graph). This in turn is why we must apply a seemingly modified version
of the gauging operator of Ref. 71 to gauge the PEPS correctly and we note that on the subspace
where redundant variables are identified the modified PEPS gauging operator becomes identical
to the standard gauging operator.



84 1 Matrix product operators for symmetry-protected topological phases



Chapter 2

Anomalies and entanglement renormal-
ization
Synopsis:

We study ’t Hooft anomalies of discrete groups in the framework of (1+1)-dimensional multi-
scale entanglement renormalization ansatz states on the lattice. Using matrix product operators,
general topological restrictions on conformal data are derived. An ansatz class allowing for
optimization of MERA with an anomalous symmetry is introduced. We utilize this class to
numerically study a family of Hamiltonians with a symmetric critical line. Conformal data is
obtained for all irreducible projective representations of each anomalous symmetry twist, cor-
responding to definite topological sectors. It is numerically demonstrated that this line is a
protected gapless phase. Finally, we implement a duality transformation between a pair of crit-
ical lines using our subclass of MERA.
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2.1 Introduction

Quantum many-body models of strongly interacting spins display surprisingly complex emer-
gent physics. Understanding general classes of collective behaviors corresponds to understand-
ing which phases of matter can be realized through local interactions. The universal behavior
of phases, and their transitions, is determined by the fixed points under renormalization group
(RG) flows15,16.

Symmetries play a fundamental role in the understanding of phases, due to constraints they
impose on RG. Indeed, the conventional classification of phases describes how a symmetry can
be broken130. Distinct quantum phases emerge even without a broken symmetry1,8–10,131. In
the absence of intrinsic topological order, these phases are known as symmetry protected topo-
logical (SPT) phases3,34–36. Despite having no topological order and no local order parameter,
SPT phases are resources for quantum computation132–136.

On the lattice, symmetries are usually assumed to act independently on each site. More
exotic symmetries, which cannot be made on-site, have recently been studied in chains of
anyons80,137–140 and at the boundary of SPT phases70,74–76,93,141–145. In fact, a classification
of SPTs can be obtained by considering possible boundary actions of the symmetry. Equiva-
lence classes of such symmetries are labeled by the ’t Hooft anomalies146 of a discrete group.
Such anomaly labels are preserved by symmetric RG transformations, so restrict the possible
fixed points147.

Tensor network methods39–41 allow anomalous symmetries to be realized directly on the lat-
tice. In (1 + 1) dimensions, matrix product operators (MPOs) capture all ’t Hooft anomalies of
discrete groups70,74,93,141. Within the framework of tensor networks, phases are classified at the
level of states. For example, matrix product states (MPS) have proven particularly successful
for the study of gapped spin chains27,45,49–51,53–56,67. Despite substantial complications arising
for tensor networks in higher dimensions; significant progress has been made, particularly in
the study of topological states57–66.

Imposing on-site symmetries on tensor network representations of quantum states is well
understood68,69,148. Far less effort has been made to study the effect of anomalous group actions
on these states. Such group actions naturally arise as the effective edge symmetries of (d+ 1)D
SPTs75,143,144. In (2 + 1)D, the edge theory must either spontaneously break this symmetry or
be gapless. Since all MPS break the symmetry70, to study gapless, symmetric edge theories
we turn to another class of tensor networks known as multiscale entanglement renormalization
ansatz (MERA)43. These networks draw on ideas from RG to represent the low energy states
of gapless Hamiltonians43,78,149.

In this work we define a variational subclass of MERA which can be used to simulate
SPT edge physics in a manifestly symmetric way. This subclass allows us to investigate the
interplay between RG and anomalies in the framework of tensor networks. We use tensor
network methods to derive general consequences of an anomalous symmetry on the conformal
field theory (CFT) data of an RG fixed point. For a family of Hamiltonians, corresponding to
a line of fixed points, we numerically optimize within our variational class to find the lowest
energy states and extract conformal data150,151. We observe the effects of the anomaly in these
results. Furthermore, we demonstrate that as a consequence of the anomaly these Hamiltonians
admit no relevant, symmetric perturbations. The Hamiltonians therefore support a gapless phase
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which is protected by an anomalous symmetry.
More generally, RG fixed points may transform non-trivially under an anomalous group

action. Our variational class accommodates this possibility, and hence permits the study of
gapless models which are not symmetric. We utilize this in a numerical simulation of two
critical lines that are related by a duality transformation, which we implement at the level of a
single tensor.

This paper is organized as follows: In Section 2.2, we introduce background material on
anomalies, symmetries and tensor networks. In particular, we introduce the ’t Hooft anomaly of
a discrete symmetry. We then briefly review the MERA and what it means for it to be symmetric
under an on-site group action. The difficulties in enforcing anomalous MPO symmetries locally
are then discussed. In Section 2.3, we derive general consequences of an anomalous symme-
try on a MERA, which are later utilized in the numerical simulations. We study anomalous
symmetry twists and the projective representations under which they transform. From these in-
gredients, projectors onto definite topological sectors are constructed. Consequences for fields
within a sector are discussed. In Section 2.4, we define a variational subclass of MERA which
is later used for manifestly symmetric simulations. We present a disentangling unitary capable
of decoupling a local piece of an anomalous Z3

N group action. This allows the unconstrained
variational parameters of any symmetric MERA scheme to be isolated, and therefore optimized
over. In Section 2.5, we bring together tools developed in the preceding sections to simulate
a family of Hamiltonians with three critical lines. One of these lines possesses an anomalous
symmetry, whilst the other two are dual under the anomalous group action. We present con-
formal data for these critical lines obtained from a numerically optimized MERA, including
two nontrivial topological sectors for the symmetric line. Additionally, we demonstrate that the
symmetric line is in fact a protected gapless phase. In Section 2.6 we summarize the results and
suggest several possible extensions of this work.

We have included several appendices for completeness. In Appendix 2.7 we provide con-
formal data obtained from a symmetric MERA in all topological sectors for the symmetric line
of our example model. Additionally, we present fusion rules for these topological sectors com-
puted using a symmetric MERA. In Appendix 2.8 we review the notion of third cohomology for
an MPO representation of a finite group. In Appendix 2.9 we provide details of our ansatz for
MPO symmetric MERA including example tensors for two MERA schemes. In Appendix 2.10
we describe a generalization of the CZX model70 to arbitrary finite groups G, such that the bulk
symmetry acts as an MPO duality of G-SPT phases on the boundary.

2.2 Symmetries and anomalies in MERA

This section introduces the main tools and concepts utilized in the remainder of this manuscript.
We begin by discussing ’t Hooft anomalies of group actions, including some historical context.
Lattice realizations of these anomalies, and their influence on tensor network states, are our
primary objects of study. Readers unfamiliar with this terminology may skip to Section 2.2.1
for the definition of anomaly used throughout this work. We then review the MERA, the tensor
network designed for critical behavior, and define what it means for it to be symmetric under
a unitary group action. We briefly explain how one enforces an on-site symmetry via a local
constraint before moving on to discuss the difficulties in enforcing an anomalous symmetry in
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a similar fashion.
Recently anomalies have played an important role in the classification and study of topo-

logical phases of matter142,152,153. Particularly relevant are ’t Hooft anomalies, which de-
scribe obstructions to gauging a global symmetry146. SPT phases, and their higher symmetry
generalizations88,154,155, can be classified by the possible ’t Hooft anomalies on their bound-
aries75,76,143,144. Conversely one can think of the possible ’t Hooft anomalies as being classified
by what is known as anomaly inflow from one dimension higher76,142–145.

A global symmetry with an ’t Hooft anomaly has an interesting interplay with the renor-
malization group (RG). For a connected Lie group symmetry, an ’t Hooft anomaly restricts the
possible RG fixed points, even if the symmetry is spontaneously broken156,157. In the case of a
broken discrete symmetry, this is no longer true. For a symmetry respecting RG flow, however,
the ’t Hooft anomaly can not change and hence constrains the possible fixed points143.

Symmetry actions which can be realized independently on each site have trivial ’t Hooft
anomaly because they can be gauged directly on the lattice71,73,93, see Chapter 1. Conversely,
this gauging procedure cannot be applied directly to symmetries which cannot be made on
site. Therefore, we treat the ’t Hooft anomaly as an obstruction to making a symmetry action
on-site74,142,145.

For a discrete symmetry group G in (1 + 1)D, all ’t Hooft anomalies of bosonic unitary
representations occur on the boundaries of (2 + 1)D SPT phases, in other words they arise from
anomaly inflow. The anomalies can therefore be classified by H3(G,U(1)), the same set of
labels as the SPT phases70,75,144. In the next section, we describe how matrix product operators
can be utilized to represent these anomalous actions.

2.2.1 Symmetries on the lattice

In this work, we consider unitary representations of finite groups on the lattice. We say a state
|ψ〉 is symmetric under a group G if Ug |ψ〉 = |ψ〉 for all g ∈ G, where Ug is some unitary
representation of the group.

The symmetry is on-site if the representation can be decomposed as Ug = ⊗Nj=1(ug)j ,
where each (ug)j is a (local) unitary representation.

Although group actions are usually considered to be on-site, this is not the most general way
a symmetry can be represented. A more general class of group actions can be represented by
matrix product operators (MPOs). Using the conventional tensor network notation39–41, these
are denoted

Ug = g , (2.1)

where g next to the MPO indicates which group element it represents. We refer to the dimension
of the horizontal indices as the bond dimension of the MPO. The on-site case corresponds to
bond dimension 1, whilst arbitrary bond dimension allows representation of any unitary. We
consider the case of a constant bond dimension in the length of the MPO.

To form a representation, the MPOs must obey

g
h = gh , (2.2)
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L(0)

L(1)

L(2)

L(3)

Figure 2.1: The MERA represents a quantum state using layers of isometric tensors. Together, these
tensors define a quantum circuit of logarithmic depth which can be used to prepare an entangled state
from a product state. If the tensors are chosen appropriately, the network is thought to be able to accu-
rately represent the ground state of gapless one-dimensional Hamiltonians. Throughout the paper we use
a convention such that tensor network diagrams read bottom-to-top correspond to matrix multiplication
read left-to-right.

for all lengths. In contrast to on-site representations, for bond dimensions larger than one this
does not hold at the level of the local tensors. Rather there is a tensor X(g, h), referred to as the
reduction tensor 45,55,70 (Appendix 2.8) such that

gh

X(g, h)†X(g, h)

g

h

X(g, h)X(g, h)†
= g

h

X(g, h)†X(g, h)

gh

. (2.3)

The reduction procedure need not be associative. When reducing three tensors, there are
two distinct orders of reduction which may differ by a phase φ

f

g

h X(g, h)

X(f, gh)
= φ(f, g, h)

h

g

f

X(f, g)

X(fg, h)

. (2.4)

As discussed in Appendix 2.8, φ is a 3-cocycle with [φ] ∈ H3(G,U(1)). Since on-site rep-
resentations are locally associative they have a trivial cocycle. Hence a nontrivial [φ] indicates
an obstruction to making the symmetry action on-site. We can therefore regard a nontrivial
[φ] as a nontrivial ’t Hooft anomaly for G in (1 + 1)D. We remark that each class of ’t Hooft
anomaly can be realized using MPOs in this way62,93, see Chapter 1.

2.2.2 MERA and symmetry

In its most general form43,78, the MERA can be thought of as a series of locality preserving
isometric maps

L(i) :
(
Cdi+1

)⊗Ni+1 →
(
Cdi

)⊗Ni
, (2.5)

where dNi+1
i+1 ≤ dNii . Since the size of the lattice decreases at each step, these maps can be

thought of as enacting a renormalization group on the real-space lattice. At the base (layer 0),
the high energy, short-wavelength, lattice scale Hamiltonian H(0) is defined, with subsequent
layers defining increasingly low-energy, long-wavelength effective theories

H(i+1) := L†(i)H
(i)L(i). (2.6)

To correctly describe the physical RG fixed points, the MERA layers must be chosen to preserve
the low-energy physics of H(0).
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For concreteness, in this discussion we specialize to the MERA depicted in Fig. 2.1, which
we refer to as the 4:2 MERA. This MERA is built from a single kind of tensor, an isometry
from 4 sites to 2 sites. In general, these tensors may all contain distinct coefficients, although
space-time symmetries such as scale invariance can be imposed by, for example, forcing the
tensors on each layer to be identical. We remark that our results are not specific to this choice,
rather they work for all MERA schemes. In particular, in Appendix 2.9, we describe how the
results apply to the commonly used ternary MERA78,149.

In the MERA the fundamental constraint that a symmetry is preserved under renormaliza-
tion is that each coarse-graining circuit acts as an intertwiner of G representations. That is, the
renormalized symmetry

U (i+1)
g := L†(i)U

(i)
g L(i), (2.7)

is again a representation of G. When this condition is satisfied the third cohomology anomaly
label of the symmetry does not change along the renormalization group flow76,143. Hence the
presence of an anomaly does not introduce any additional constraints on the renormalization
process (which is to be expected for a discrete group).

For both practical and physically motivated reasons it is common to require further restric-
tions on the form of a symmetry throughout renormalization. For example, at a scale invariant
renormalization group fixed point, the symmetry is also required to be scale invariant149. Fur-
thermore, along an RG flow one may require that the bond dimension of an MPO symmetry
remain constant, or grow subexponentially with the renormalization step. An extreme case is
that of an on-site symmetry where the bond dimension is always required to be one, such that
the symmetry remains strictly on-site.

2.2.3 On-site symmetry

In the case of a trivial ’t Hooft anomaly, a physical symmetry can be realized by an on-site
representation. For a MERA satisfying Eqn. 2.7, the ’t Hooft anomaly is preserved and hence it
should remain possible to realize the symmetry in an on-site fashion at each RG step. This addi-
tional constraint is imposed by insisting thatU (i+1)

g remains an on-site representation. Therefore
the symmetry constraint becomes completely local148.

The symmetry can then be enforced on a MERA state by ensuring that the local tensors are
locality preserving intertwiners for the group action

ug ug ug ug

vg vg

=
ug ug ug ug

vg vg

, (2.8)

where the representation on each bond may be distinct. Standard results in representation theory
allow one to impose the conditions Eqn. 2.8.

2.2.4 Anomalous MPO symmetries

Generally (2+1)D SPT states are gapped in the bulk (on a closed manifold), but, on a manifold
with a boundary they either spontaneously break the ‘protecting’ symmetry, or possess gapless
excitations in the vicinity of the boundary70. Since the low energy physics is confined to the
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Figure 2.2: By applying the MPO to a half infinite chain, one can insert a domain wall between two dual
theories. If the MPO acts as a symmetry, this corresponds to putting the theory on boundary conditions
which have been twisted by the group element.

edge, it is interesting to consider the low energy, effective edge theory. When restricting the on-
site bulk symmetry to the edge, it becomes anomalous with anomaly label [φ] ∈ H3(G,U(1))
matching the bulk SPT70,74,75. An on-site representation of the bulk symmetry cannot be recov-
ered by any local operations on the edge.

Since anomalous symmetries cannot be made on-site, the condition in Eqn. 2.7 is no longer
strictly local. If the bond dimension of an MPO is allowed to grow at each renormalization step,
the only constraint in Eqn. 2.7 is that the symmetry remains a global representation.

So long as this constraint is satisfied, the nontrivial anomaly label [φ] ∈ H3(G,U(1)) of an
MPO representation, discussed in Appendix 2.8, is invariant under renormalization143.

For anomalous symmetries the natural analogue to Eqn. 2.8 is

g

g

=
g

g

, (2.9)

which is a sufficient condition for a symmetric MERA, but is not necessarily implied by Eqn. 2.7.
We remark that this condition does not correspond to a local group action unless further

assumptions are made. Consequently conventional techniques from representation theory do
not suffice to enforce the constraint. Despite this, in Section 2.4 we define a class of MERA
which allow Eqn. 2.9 to be imposed via a strictly local condition.

Although Eqn. 2.9 generically allows the MPO to change one may wish to insist that the
MPO is fixed under the RG. For instance, at an RG fixed point where identical tensors are used
at each layer of the MERA.

Unlike an on-site symmetry, an MPO can act as a duality transformation between a pair of
critical models. This can be realized in MERA by allowing the MERA tensors themselves to
change in Eqn. 2.9. We demonstrate such an action in Section 2.5.3. One can also use the MPO
to create a domain wall between the two critical theories by applying the MPO to a half-infinite
chain. In the case where the dual theories coincide (i.e. the MPO acts as a symmetry) this
corresponds to a symmetry twist (topological defect) or twisted boundary condition. This will
be the subject of Section 2.3.

2.2.5 Physical data from MERA

Once a MERA has been obtained, a variety of physical data can be extracted. The most straight-
forward of these is the energy of the MERA, which simply requires evaluation of 〈ψ|H |ψ〉.

For a MERA representing the ground state of a gapless Hamiltonian, one can also extract
a variety of data about the associated conformal field theory (CFT)150,151. One can compute
the central charge as discussed in Refs. 149,158 using the scaling of entanglement entropy in
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the state. One can also obtain the scaling dimensions of the associated CFT149,158 by seeking
eigenoperators of the scaling superoperator

S1( ) = = λ . (2.10)

The scaling dimensions describe the decay of correlations in the theory. We will refer to ∆ =
− log2(λ) as the scaling dimension corresponding to a particular scaling field.

The scaling fields obtained from the scaling superoperator correspond to local fields in the
CFT. Given a symmetric MERA, one can also obtain nonlocal scaling fields by constructing the
‘symmetry twisted’ scaling superoperators

Sg( ) = = λ , (2.11)

where is the symmetry MPO for the group element g. These fields correspond to a half
infinite symmetry twist, as in Fig. 2.2, terminated by a local tensor. Previously, nonlocal scaling
operators with a tensor product structure have been obtained in the same way79, but this more
general class involving an anomalous symmetry was not investigated.

2.3 Symmetry twists and topological sectors

Once a symmetric MERA is optimized to represent the ground state of a critical model, con-
formal data can be obtained as discussed in Section 2.2.5. In this section, we investigate the
impact that an anomalous symmetry has on such conformal data. In particular, we use the prop-
erties of MPO group representations to obtain possible topological corrections to the conformal
spins when a symmetry twist is applied. We observe these corrections in our example model,
as shown in Table 2.1. Additionally, we construct the projective representations under which
the nonlocal scaling fields (as defined in Eqn. 2.11) transform. These allow us to construct pro-
jectors onto irreducible topological sectors, extending the usual decomposition into symmetry
sectors. We discuss the constraints that this decomposition imposes on the operator product
expansion of the CFT. For our example model, we observe these constraints in Table 2.2.

Throughout this section, for simplicity of presentation, we treat the case of scale invariant
MERA with scale invariant MPO symmetry. Furthermore, we assume the technical condition
that the MPO representation satisfies the zipper condition93

g

h
gh

X(g, h)†X(g, h)
=

gh

X(g, h)†X(g, h)

g

h

. (2.12)

These assumptions imply that the MPOs can be deformed freely through a symmetric MERA
network. We remark that representative MPOs satisfying the zipper condition have been given
for all anomalous discrete symmetries in (1+1)D93. Additionally, we have suppressed possible
orientation dependencies of the MPOs, although this effect is accounted for in our results. For a
full treatment of the intricacies that arise due to orientation dependence see Ref. 93, Chapter 1.
We note that similar reasoning applies to MPOs not satisfying these simplifying assumptions.
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2.3.1 Symmetry twist and topological correction to conformal spin

For a model described by symmetric HamiltonianH , a symmetry twist can be created by acting
with an element of the group on a half-infinite chain. Hamiltonian terms far away from the end
of the twist are left invariant and the only remnant is a single twisted Hamiltonian term crossing
the end. This is captured by the MERA in Fig. 2.2 with uniform tensors.

The twisted Hamiltonian term can be used to close a chain into a ring of length L. In
the case of a trivial (identity) twist this yields periodic boundary conditions. For a nontrivial
group element this corresponds to a flux insertion through the ring as there is now a nontrivial
monodromy around the ring given by the group element.

The introduction of an MPO twist by group element g leads to a twisted translation operator

τg = · · · · · ·
g , (2.13)

which translates the system by one site without moving the end of the twist (previously noted
in Refs. 159,160). We will see that this leads to corrections to the conformal spin.

The untwisted translation operator for periodic boundary conditions satisfies τL1 = 1 which
implies that local fields have integer conformal spin161. The twisted translation operator satis-
fies τLg = Tg where

Tg = g
· · · · · · (2.14)

is the Dehn twist operator. For a faithful on-site representation of g the order of Tg is simply the
order of g, denoted ng. Hence the conformal spins of g-twisted fields may have a topological
correction leading them to take values161 in 1

ng
Z.

We now consider anomalous representations and show that the order of Tg is 2ng in some
cases, reflecting a further correction due to the anomaly. We observe this additional correction
in our numerical example, as shown in Table 2.1.

First we define

M
(g)
h = h

X(h, g)

X(g, h)†
. (2.15)

which corresponds to the action of h on the g twisted MERA shown in Fig. 2.2. It was shown
in Ref. 93 and Chapter 1 that

TgM
(g)
h = φ(g, h, g)M (g)

gh , (2.16)

where φ is the 3-cocycle of the MPO representation. Applying the Dehn twist ng times results
in a phase

Tngg M
(g)
1 =

ng−1∏
i=1

φ(g, gi, g)M (g)
1 , (2.17)

where again ng denotes the order of g. Since g generates a subgroup Zng 6 G and

φg(i, j, k) := φ(gi, gj , gk) (2.18)
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defines a 3-cocycle of Zng . Denote the relevant cohomology class by [φg] ∈ H3(Zng ,U(1)) ∼=
Zng . For simplicity, assume it has been brought into the normal form106

φg(i, j, k) = ω[φg ]i(j+k−j⊕k)/ng , (2.19)

where ω is a primitive nth
g root of unity and ⊕ denotes addition modulo ng. Hence

ng−1∏
i=1

φ(g, gi, g) = ω[φg ] (2.20)

and

Tngg = ω[φg ]1. (2.21)

Consequently an anomaly [φ] for g-twisted fields may induce a further topological correction to
their conformal spins. In particular, the correction to the conformal spins take values in

1
ng

Zng + [φg]
n2
g

. (2.22)

To make this argument we fixed a particular representative of φ, however the topological
correction to conformal spin is a gauge invariant quantity and should not depend on this choice.

For the case of G = Z3
2, we observe this anomalous correction in our numerical example,

where we see quarter- and three-quarter- integer conformal spins (displayed in Table 2.1).

2.3.2 Projective representations and topological sectors

We proceed to construct topological sectors that have a definite topological correction to the
conformal spin. These topological sectors are an extension of the usual symmetry sectors used
to block diagonalize a Hamiltonian.

Topological sectors are labeled by a conjugacy class C ⊂ G, indicating twist symmetry twist,
and a (projective) irreducible representation (irrep.) χµg of the centralizer of a representative
element g ∈ C. The topological sectors are mathematically described by Dφ(G), the quantum
double of the symmetry group G twisted by the 3-cocycle anomaly φ. This category determines
all topological properties of the sectors.

Since the MPO symmetry commutes with the MERA tensors, one can simultaneously di-
agonalize the twisted scaling superoperator Sg(·) and the action of the symmetry. The vector
space spanned by g-twisted scaling fields (see Eqn. 2.11) transforms under a projective repre-
sentation V (g)

h of the centralizer Zg. This projective representation has 2-cocycle φ(g) defined
by

φ(g)(h, k) = φ(g, h, k)φ(h, k, g)
φ(h, g, k) , (2.23)

which is the slant product of φ. The action is explicitly given by93

V
(g)
h =

h
X(h, h−1gh)

X(g, h)†

, (2.24)
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where h−1gh = g for h ∈ Zg.
The g-twisted scaling superoperator commutes with the projective representation

Sg(V (g)
h (·)) = V

(g)
h (Sg(·)), (2.25)

and hence can be block diagonalized into projective irreps.
Topological sectors that contribute a definite correction to the conformal spin can be con-

structed following the approach of Ref. 64. The first step is to form projectors Pg,µ onto the
projective irreps of Zg. For a twist g and projective irrep µ with 2-cocycle φ(g)

Pg,µ := dµ
|Zg|

∑
h∈Zg

χ̄µg (h)V (g)
h , (2.26)

where dµ its dimension, χµg its character and ·̄ denotes complex conjugation.
The full scaling superoperator, taking into account all sectors, is given by

SG(·) :=
⊕
g

Sg(·). (2.27)

This commutes with the full |G|2 dimensional algebra spanned by V (g)
h (note V (k)

l V
(g)
h = 0

unless k = h−1gh). This is a C∗ algebra64 and can be diagonalized into blocks. The simple
central idempotents that project onto each irreducible block are given by

PCg ,µ :=
∑
k∈Cg

Pk,µ, (2.28)

where Cg is the conjugacy class of g in G. These projectors block diagonalize SG(·) into irre-
ducible topological sectors. For the numerical example in Appendix 2.7, all conformal data is
decomposed into these sectors.

The topological sectors thus constructed have definite topological spin64 (correction to con-
formal spin), which we observe in our example in Table 2.1. Additionally, these sectors obey a
set of fusion rules, and support a notion of braiding monodromy and exchange statistics. The
full set of topological data can be extracted from the idempotents constructed in Eqn. 2.28 via
the procedure outlined in Ref. 64.

In the MERA, with an MPO symmetry, the operator product expansion (OPE)150,151 for
scaling fields a and b in topological sectors labeled (C0, µ0) and (C1, µ1)

a× b =
∑
g∈C0
h∈C1

a
bX(g, h)†

=
∑
c

Ccabc. (2.29)

The fusion rules imply topological restrictions on the OPE of scaling fields, generalizing sym-
metry constraints on the local fields. In particular, Ccab = 0 unless the sector labeling c appears
in the fusion product

(C0, µ0)× (C1, µ1) =
∑

(C2,µ2)
N

(C2,µ2)
(C0,µ0)(C1,µ1)(C2, µ2). (2.30)

We observe the constraints directly in the numerical MERA in Table 2.2.
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Technically the symmetry twists and their fusion structure are described by the unitary
fusion category (UFC) VecφG while the topological sectors are given by its Drinfeld center
Z(VecφG) — equivalently the twisted quantum double Dφ(G) — which is a modular tensor
category (MTC)14,162–166. The mathematical structure of this MTC determines all topological
properties of the fields in each sector, including the topological correction to their conformal
spin (equivalently the exchange statistics), topological restriction on the OPE and monodromies
(braiding).

Interestingly the fusion rules for the topological sectors can be nonabelian, even when the
symmetry group is abelian. This requires a nontrivial anomaly φ. This occurs in our numerical
example as discussed in Section 2.5 and Table 2.2.

2.4 A class of MPO symmetric MERA

To enforce a constraint on a MERA state requires an identification of the remaining variational
parameters in such a way that it is possible to optimize over them. In this section we describe
an approach that relies on a property of the MPO symmetry: the existence of a local unitary
capable of disentangling a contiguous region of each MPO into an inner part that forms a local
representation of the symmetry and is decoupled from the original MPO on the outer section.
Given such a local representation, conventional techniques can be used to ensure the MERA
is symmetric. We construct a large class of MPOs with this property and find the resulting
constraints on the form of symmetric MERA tensors.

2.4.1 Disentangling an MPO

For scale invariant MERA, where the MPO symmetry is required to be identical at all layers, the
goal is to identify a family of MERA circuits which locally coarse grains each MPO to itself. If
the MPOs form an on-site symmetry, standard techniques of representation theory allow this to
be achieved. For MPOs with bond dimension greater than one it is unclear how to apply these
techniques. Our approach involves disentangling a local piece out of each MPO. We can then
use representation theory to coarse grain this piece, allowing us to identify the desired family
of MERA circuits.

This approach may seem counter-intuitive since no local constant depth circuit is capable
of disentangling an MPO representation with a nontrivial third cohomology label into an on-
site representation. This does not rule out the possibility of disentangling a contiguous region
without decoupling the tensors in its complement. More precisely, there may exist constants
b, k ∈ Z+ such that for all n ∈ kZ+ (where k accounts for possible blocking of sites), and
MPOs of arbitrary length N , sufficiently larger than n, there exists some unitary Dn+2b acting
on n+ 2b sites (where b is a buffer depending on the correlation length of the MPO) such that

D†
n+2b

Dn+2b

=
ug

, (2.31)

for a local representation u(n)
g acting on n sites.
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This leads to a special form for a MERA tensor that coarse grains i sites into j sites, given
by

D†
i

Dj

. (2.32)

In this form the MPO symmetry condition in Eqn. 2.9 becomes

u(i−2b)
g

=
u(j−2b)
g

, (2.33)

which can be handled using standard techniques from representation theory.

2.4.2 A class of anomalous Z3
N MPO symmetries

We now define a class of anomalous symmetries for the groups Z3
N . These symmetries exem-

plify the role played by an anomalous symmetry both at the boundary of a two dimensional
SPT phase and as a duality of distinct one dimensional SPT phases77,167–169. They occur as the
boundary symmetry actions of Z3

N SPTs labeled by a type-III anomaly in two spatial dimen-
sions106. In addition, they can be seen to act transitively on the set of one dimensional SPT
phases with Z2

N symmetry. This particular example is an instance of a more general relation
between a two dimensional G ×H2(G,U(1)) SPT and the set of dualities of one dimensional G
SPTs. Further details about the specifics of the Z3

N models, including a fixed point bulk model,
bulk to boundary mapping and boundary Hamiltonian, as well as the more general case are
contained in Appendix 2.10.

We consider a spin chain with a pair ofN -dimensional spins at each site. For this discussion,
we label the first spin in red and the second in blue. Let ω = exp(2iπ/N) and define the
generalized Pauli operators via ZX = ωXZ. Below we work in the basis where Z is the
diagonal clock matrix and X is the shift matrix. We define the generalized controlled X and Z
operators as

=
( )† = 1

N

N−1∑
i,j=0

ωijZiXj (2.34a)

=
( )† = 1

N

N−1∑
i,j=0

ωijZiZj (2.34b)

respectively.
Using the notation (α1, α2, α3) for an element of Z3

N , the group action is defined by the
generators

(1, 0, 0)→
⊗
j

Xj (2.35a)

(0, 1, 0)→
⊗
j

X̃j (2.35b)

(0, 0, 1)→ C, (2.35c)
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where C is defined by the (periodic) circuit

C =
site

. (2.36)

The symmetry operators can be realized using a translationally invariant MPO with on-site
tensor defined by

(α1, α2, α3)

i j

i+ α1 j + α2

=
N−1∑
k=0

ωjα3(k−i) |i〉〈k| , (2.37)

with all other elements being zero. The reduction tensor (defined in Appendix 2.8) associated
to these MPOs is given by

X(α, β) =
N−1∑
x=0

ω−xα2β3

∣∣∣∣∣x+ α1
x

〉
〈x| . (2.38)

From this, one can verify that this MPO representation has cocycle φ(α, β, γ) = ωα1β2γ3 which
is a representative of the root ‘type-III’ anomaly106.

2.4.3 Symmetric MERA tensors

The disentangling circuit, as defined in Eqn. 2.31, for this representation is given by

D2K =
K−1∏
j=1

CX1,2j+1CX2K,2j , (2.39)

and the residual local symmetry is given by

u
(2K−2)
(α1,α2,α3) =

(K−1∏
j=1

CZ2j,2j+1

K−1∏
j=2

CZ†2j−1,2j

)α3

. (2.40)

For further details see Appendix 2.9. This leads to the ansatz for MERA tensors

= , (2.41)

which allows the symmetry to be enforced by a local condition on each tensor.
The symmetry can then be enforced by ensuring the residual tensors obey the local condi-

tions

= , (2.42)

which can be achieved using standard techniques of representation theory. We remark that the
on-site Z2

N symmetry is automatically enforced, without any further constraints.
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Since the action can be applied locally, this ansatz class can also be used to investigate how
the group acts on numerically optimized states which have not been constrained to be invariant.
This allows investigation of theories which are dual under anomalous group actions.

The constraint in Eqn. 2.41 was used in an exact renormalization scheme introduced in Ref.
170 for the case of a Z2 × Z2 symmetry171. The form of the information transmitted to the
next scale of renormalization is extremely restricted in this case. By considering more spins per
site we find a less restrictive ansatz, described in Appendix 2.9, capable of attaining accurate
results as demonstrated in Section 2.5. The scheme described in Ref. 170 does not see similar
improvement at larger blocking on a model which is unitarily equivalent to the one considered
here171. After blocking at least two spins per site, our ansatz cannot be captured by the approach
of Ref. 170.

Analogous circuits exist for all MERA such that the number of ingoing/outgoingN -dimensional
indices is even. This leads to a family of symmetric MERA with increasing bond dimension and
a larger number of variational parameters. Eqn. 2.41 can also be generalized to other MERA
schemes, such as the ternary MERA as discussed in Appendix 2.9.

2.5 Example: A Z3
2 symmetric model

In this section we focus on the N = 2 case of the ansatz described in the previous section.
We consider a particular Hamiltonian which transforms under the type-III anomalous Z3

2 group
action. This Hamiltonian has three critical lines, one is symmetric and the other two are dual
under the group action. We numerically optimize over the ansatz class presented in the previous
section along these three lines. We present resulting conformal data for the local fields along
each line, and for two nontrivial topological sectors along the symmetric line. Furthermore, we
numerically implement the duality on the remaining pair of lines. Finally, we demonstrate that
the symmetric line is a gapless phase protected by the anomalous symmetry and translation.

For a MERA with bond dimension 8 corresponding to three qubits per site, the ansatz for
the tensors is

= , (2.43)

with symmetry constraint

= . (2.44)

This tensor contains all degrees of freedom which are not fixed by the symmetry, so can be
optimized over.
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a = 3 b = 3

c = 3

a = 0b = 0

c = 0

Para SB

SPT

ISING

MPO KT

Figure 2.3: Phase diagram of the abc model where a + b + c = 3. SB=Symmetry breaking, ferro-
magnetic phase. SPT=Z2 × Z2 symmetry protected topological phase. Para=Paramagnetic/disordered
phase. RG fixed points are indicated in red, and the dashed blue lines indicate the unitary mappings be-
tween the phases. ISING=Ising duality map, KT=(Generalized) Kennedy-Tasaki transformation172,173,
MPO=action of (1,1,1) defined in Eqn. 2.35.

2.5.1 Family of Hamiltonians

The Hamiltonian we study is

H = −a
∑

(Xj + X̃j)− b
∑

(ZjZj+1 + Z̃jZ̃j+1)− c
∑

(ZjX̃jZj+1 + Z̃jXj+1Z̃j+1),
(2.45)

for positive values of (a, b, c). Here Xj(Zj) and X̃j(Z̃j) are the qubit Pauli operators action on
the first and second qubit on site j. This model, which we refer to as the abc model, has a rich
phase diagram as depicted in Fig. 2.3, possessing fully symmetric disordered and SPT phases,
in addition to a fully symmetry breaking phase. For all values of (a, b, c), this Hamiltonian has
an on-site Z2×Z2 symmetry corresponding to Eqn. 2.35a and Eqn. 2.35b, whilst the anomalous
action exchanges the terms with strength a and c, so is only a symmetry when a = c. The SPT
phase is protected by the on-site symmetry.

We note that unitarily equivalent models have previously been studied174–179. The critical
lines in this model can all be exchanged by (nonlocal) unitary transformations, so all are known
to be described by a conformal field theory (CFT) with central charge 1. Additionally, the
ground state energy along each of these lines is known177–179.

In Fig. 2.4, we study the model with a = c (referred to as the b line) using a MERA
with full anomalous symmetry enforced. For convenience, we allow a single transitional layer
followed by a scale invariant portion. This leaves a pair of tensors which completely specify the
state. After optimizing these residual degrees of freedom (2 × 16376 real parameters) within
this symmetric manifold, we obtain a good approximation to the ground state for all values of
b, as evidenced by the ground state energy in Fig. 2.4a (relative error O(10−4)). When the
symmetry operator is applied to the state, we see that the state is unchanged (a property which
was explicitly enforced). The central charge remains within 4.2% of the analytic value for all
values of b, comparable to that found in Ref. 179.

2.5.2 Scaling dimensions and topological sectors

From our optimized MERA tensors, we have obtained the scaling dimensions of the associated
CFT in each symmetry sector using Eqn. 2.10. The data is shown in Fig. 2.4b. As expected, the
scaling dimensions vary continuously with the parameter b.
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Figure 2.4: MERA data for the abc model along the ‘b line’. This line is symmetric under the full Z3
2.

CFT data, including averaging process, is discussed in more detail in Appendix 2.7.
a) The energy of the optimized MERA state. The state remains a ground state when the anomalous
symmetry operator is applied.
b) Scaling dimensions of the associated CFT. These vary continuously with the parameter b. Points
are averaged MERA data, whilst black lines correspond to Eqn. 2.47a for integer e and m. Distinct
colors/markers indicate under which irrep. the fields transform.
c) Scaling dimensions of nonlocal operators corresponding to applying an anomalous symmetry (for
group element (1, 1, 1) defined in Eqn. 2.35) twist to half of the chain. Points are averaged MERA data,
whilst black lines correspond to Eqn. 2.47a for e,m ∈ Z + 1/2. Distinct colors/markers indicate under
which projective irrep. the fields transform.

The local fields are those of the compactified boson CFT at a radius

R2 = π

2 cos−1( 2b
b−3)

. (2.46)

The fields can be labeled by a pair of integers, and have scaling dimension ∆ and conformal
spin s given by150,151

∆e,m = e2

R2 + m2R2

4 , (2.47a)

se,m = em, (2.47b)

e,m ∈ Z.

Finally, we investigate the effect of (1, 1, 1) symmetry twist in Fig. 2.4c. By applying the
symmetry to half of the infinite chain we create the twist, and a set of nonlocal (with respect to
the original theory) twisted fields can be obtained79. These operators correspond to eigenop-
erators of the ‘symmetry twisted’ scaling superoperator (Eqn. 2.11). Since the symmetry acts
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Figure 2.5: MERA data for the abc model along the ‘a’ and ‘c’ lines. These are exchanged by the
symmetry action.
a) Ground state energy of the optimized MERA. By applying the symmetry operator to a state optimized
for the Hamiltonian with (a, b, b), we obtain a state which is the ground state of the Hamiltonian with
parameters (b, b, a). This demonstrates that the states are transforming properly.
b) The local fields in the CFTs describing these two lines are identical, but distinct from those on the ‘b’
line.

projectively on the twisted fields, they can be decomposed into projective irreps corresponding
to definite topological sectors. We can then diagonalize Sg(·) within each sector, allowing us to
label the twisted fields by the projective irrep under which they transform.

Again we can compare the numerically calculated twisted scaling dimensions to the analytic
results to identify conformal spins of the twisted fields. As displayed in Table 2.1, within each
topological sector, all conformal spins receive the same correction.

From the MERA data, we can identify the fields with a (1, 1, 1) twist as carrying scaling
dimension and conformal spin given by Eqn. 2.47a and Eqn. 2.47b respectively, but with e,m ∈
Z + 1

2 , leading to quarter- and three-quarter- integer spins in this sector.
To examine the effect of the anomalous symmetry on the OPE, we computed fusion rules

for the topological sectors using Eqn. 2.29 for a symmetric MERA tensor. Despite the fact
that the symmetry group is abelian, we observe nonabelian fusion for all sectors with nontrivial
twist. For example, fusion of sectors with twist (1, 1, 1) results in only half of the trivial twist
sectors. The full set of fusion rules is given in Table 2.2 (Appendix 2.7).

In this example, the modular tensor category describing the topological sectors is Dφ(Z3
2).

This category is known to be equivalent toD(D4), where D4 is the symmetry group of a square.
The fusion table obtained from MERA matches that of Dφ(Z3

2) ∼= D(D4)106,180–183.
The data for all topological sectors is displayed in full in Appendix 2.7.

2.5.3 Duality and domain walls

We have also studied the ‘a’ and ‘c’ lines which are not symmetric under the anomalous Z2, but
are exchanged by its action. We optimize over tensors of the form Eqn. 2.43, but do not enforce
the symmetry constraint on the residual degrees of freedom.

The ground state energy obtained after optimization along the b = c line is shown in
Fig. 2.5a. If the symmetry MPO corresponding to group element (1, 1, 1) is applied to the
optimized state (via local application of Eqn. 2.44), the result is an excited state. If the energy
of this state is measured using the Hamiltonian with parameters a and c switched, we see that it
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is a ground state. This confirms that the state is transforming as expected under the anomalous
action, that is, the MPO is acting as a duality transformation of the ‘a’ and ‘c’ critical lines.

We also show the scaling dimensions of the CFTs corresponding to the two dual lines
(Fig. 2.5b). We observe that the local field content is identical, indicating that the same CFT
describes these two lines. This CFT is distinct (in its local content) from that describing the ‘b’
line, although it still has central charge 1.

2.5.4 An anomaly protected gapless phase

In Ref. 70 it was shown that a phase with anomalous MPO symmetry can either be gapped and
spontaneous break the symmetry, or be gapless. Furthermore it is known from Refs. 80,137,
138,184,185 that a topological symmetry, together with translation, can protect a gapless phase.
An anomalous MPO symmetry is in fact an example of a topological symmetry. Hence one
may suspect that there exist gapless phases protected by such a symmetry.

Here we demonstrate that under an anomalous Z3
2 symmetry, along with translations, the

gaplessness of the Hamiltonian along the ‘b’ line is protected. That is, there are no translation
invariant terms which are both symmetric under the full anomalous symmetry and are relevant
in the renormalization group sense, and would therefore gap the Hamiltonian.

Since the effect of translations cannot be tested in the MERA framework, we performed a
finite size scaling analysis161 to test this. Using the ALPS MPS library186,187, the lowest 40
eigenstates of the Hamiltonian (Eqn. 2.45) along the ‘b’ line were obtained. Bond dimensions
were capped at 100 and lengths of between 6 and 55 sites (12-110 qubits) were considered.
Scaling dimensions are obtained by first normalizing the Hamiltonian such that the ground
state has energy 0 and the first excited state has energy corresponding to the smallest nonzero
scaling dimension of the CFT188. The energy levels are then fitted as a function of 1/N and
extrapolated to N =∞. This is shown in Fig. 2.6a for b = .6.

The Hamiltonian and symmetry operators were then simultaneously diagonalized within
this subspace. In the fully symmetric sector (all symmetries acting as +1), the translation
operator was diagonalized, allowing the momentum to be extracted.

Under the combined action of the anomalous symmetry group and translations by a single
spin, there are no fully symmetric states with scaling dimension less than 2 (Fig. 2.6b). This
implies there are no local symmetric terms which can gap the Hamiltonian, thus the gapless
phase is protected. We remark that under the operator which translates by a full site; an RG
relevant, fully symmetric state with momentum zero does exist and therefore the Hamiltonian
can be gapped by a staggered term. A similar effect was observed in Ref. 80.

2.6 Conclusions

We have studied anomalous MPO symmetries in the framework of MERA. Following Ref. 143,
the third cohomology class of an MPO representation of a finite group was identified with an
’t Hooft anomaly.

The properties of a fully MPO symmetric MERA were derived, including anomalous sym-
metry twists and the projective representations they carry. These were used to construct all
topological sectors. This construction allows the complete set of topological data to be ex-
tracted, including a definite topological correction to the conformal spins of the fields in each
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Figure 2.6: Finite size scaling data for the fully symmetric sector of the model.
a) After rescaling the spectrum so that the lowest excitation is consistent with the lowest nontrivial pri-
mary of the CFT, the fully symmetric states can be extracted. Fitting the data and extrapolating to the
thermodynamic limit gives the scaling dimension.
b) For almost the whole ‘b’ line, we observe that there are no fully symmetric states with scaling dimen-
sion less than 2 (RG relevant). This implies that no local, symmetric, translationally invariant terms can
be added to the Hamiltonian to gap it out, thus the gapless phase is protected.

sector and topological restrictions on the OPE.
A local condition to enforce the symmetry in the MERA was formulated, which allows for

optimization of states with an anomalous symmetry. This ansatz works by locally disentangling
the symmetry action, decoupling degrees of freedom on which the action can be expressed
locally.

By way of an example, MERA states were optimized for a Hamiltonian with an anomalous
Z3

2 symmetry. We have obtained accurate energy and conformal data for states optimized over
our ansatz class, and demonstrated that the states transform as expected. All topological sectors
were constructed and the resultant topological data was extracted. The conformal data was
computed within each topological sector, and the projective action of the symmetry on the
scaling fields was found. Furthermore, a correction to the conformal spin was identified, and
shown to match the topological spin.

We applied the ansatz to study a duality of two critical lines. By extracting conformal data
from optimized MERA the local content of the dual CFTs was shown to match. It was demon-
strated that the action of the MPO mapped MERA ground-states optimized for Hamiltonians
along one line to ground-states of the dual Hamiltonians. This required the ability to apply the
MPO in a local fashion, which our ansatz permits.

We performed a finite size scaling analysis of the anomalous Z3
2 symmetric line for large

system sizes. It was numerically demonstrated that the anomalous MPO symmetry, together
with translation, protects a gapless phase.

There are several extensions of this work which suggest themselves. Our restricted MERA
ansatz was only constructed for a particular class of anomalous group actions. It would be in-
teresting to extend this to other MPOs, such as: nonabelian group representations with different
cocycle anomalies, the Ising duality map or the translation operator.

The most general extension conceivable is to a set of MPOs described by a unitary fu-
sion category64,189–194. While the construction of topological sectors is known in this general
case64,163,164,189,190,195–197, an ansatz which allows the symmetry to be enforced locally in the
MERA remains to be found.
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It would be interesting to determine which of these general symmetries protects a gapless
phase such as the one observed in this work and those in Refs. 80,137,138,184,185.

One could adapt these results to the recent tensor network renormalization (TNR)198–201

scheme, constraining the RG flow to remain MPO symmetric. We remark that the Ising duality
has previously been studied both numerically, using TNR but without manifestly enforcing the
symmetry, in Ref. 159 and theoretically in Ref. 160.

It would also be interesting to consider the influence of an MPO symmetry on the entangle-
ment entropy. We remark that by considering MPO symmetries of topologically ordered tensor
network states in (2 + 1)D one recovers the topological entanglement entropy37,38,63,64,109.

A particularly interesting future direction is to generalize our MPO symmetric MERA
ansatz to a (2 + 1)D MERA describing a topologically ordered state that is symmetric un-
der an anomalous PEPO symmetry.
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Supplementary Material

2.7 Conformal data in all topological sectors

In this appendix, we present the full set of scaling dimensions extracted from the bond dimen-
sion 8 MERA with full anomalous symmetry enforced. The data is shown in Fig. 2.7 for the
trivial twist, and Fig. 2.8 and Fig. 2.9 for the nontrivial twists. Each subplot in these figures
corresponds to a distinct topological sector.

When examining the gray points, one notices a broken degeneracy. This was previously
noted in Ref. 179. We conjecture that this occurs via coupling of states which, in the field
theoretic limit, would be forbidden from coupling due to the full conformal symmetry. As such,
we conjecture that the scaling dimensions corresponding to degenerate fields obtained from the
MERA experience a splitting ∆MERA = ∆CFT ± ε, where the size of the splitting ε decreases
with increased bond dimension as the full conformal symmetry is effectively recovered.

To combat this splitting, we average the MERA scaling dimensions in an attempt to recover
the CFT values. When choosing which lines should be averaged together, we have taken all
lines of similar gradient and position on the plot. The result of this procedure is indicated in
red, and closely matches the CFT values.

The scaling dimensions and conformal spins in each topological sector are given in Ta-
ble 2.1. Table 2.2 shows the fusion rules for the sectors, computed using the symmetric MERA.

The irreps are given explicitly in Eqn. 2.48. Those below the line are nontrivial projective
representations.

χ1
±(100) = +1 χ1

±(010) = +1 χ1
±(001) = ±1 (2.48a)

χ2
±(100) = −1 χ2

±(010) = +1 χ2
±(001) = ±1 (2.48b)

χ3
±(100) = +1 χ3

±(010) = −1 χ3
±(001) = ±1 (2.48c)

χ4
±(100) = −1 χ4

±(010) = −1 χ4
±(001) = ±1 (2.48d)

α1
±(100) = ±1 α1

±(010) = X α1
±(001) = Z (2.48e)

α2
±(100) = Z α2

±(010) = ±1 α2
±(001) = X (2.48f)

α3
±(100) = X α3

±(010) = Z α3
±(001) = ±1 (2.48g)

β1
±(100) = Z β1

±(010) = X β1
±(001) = ±X (2.48h)

β2
±(100) = ±X β2

±(010) = Z β2
±(001) = X (2.48i)

β3
±(100) = X β3

±(010) = ±X β3
±(001) = Z (2.48j)

γ±(100) = ±X γ±(010) = ±Y γ±(001) = ±Z (2.48k)
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Topological Sector
Topological spin Scaling Dimension Conformal spin Parameters

Twist Proj. Irrep.

(000)

χ1
+ 0 e2

R2 + m2R2

4 em e,m ∈ 2Z

χ4
+ 0 { e

2

R2 + m2R2

4 , 1} em e,m ∈ 2Z, em 6= 0

χ2
+ 0

e2

R2 + m2R2

4 em

e ∈ 2Z,m ∈ 2Z + 1

χ3
+ 0 e ∈ 2Z,m ∈ 2Z + 1

χ1
− 0 e ∈ 2Z + 1,m ∈ 2Z

χ2
− 0 e ∈ 2Z + 1,m ∈ 2Z + 1

χ3
− 0 e ∈ 2Z + 1,m ∈ 2Z + 1

χ4
− 0 e ∈ 2Z + 1,m ∈ 2Z

(100)
α1

+ 0
h+ h̄ h− h̄ h, h̄ ∈ { 1

16 ,
9
16}

h− h̄ ∈ Z

α1
−

1
2 h− h̄ ∈ Z + 1

2

(010)
α2

+ 0
h+ h̄ h− h̄ h, h̄ ∈ { 1

16 ,
9
16}

h− h̄ ∈ Z

α2
−

1
2 h− h̄ ∈ Z + 1

2

(110)
β3

+ 0 e2

R2 + m2R2

4 em e ∈ Z + 1
2 ,m ∈ Z

em ∈ Z

β3
−

1
2 em ∈ Z + 1

2

(001)
α3

+ 0 e2

R2 + m2R2

4 em e ∈ Z,m ∈ Z + 1
2

em ∈ Z

α3
−

1
2 em ∈ Z + 1

2

(101)
β2

+ 0
h+ h̄ h− h̄ h, h̄ ∈ { 1

16 ,
9
16}

h− h̄ ∈ Z

β2
−

1
2 h− h̄ ∈ Z + 1

2

(011)
β1

+ 0
h+ h̄ h− h̄ h, h̄ ∈ { 1

16 ,
9
16}

h− h̄ ∈ Z

β1
−

1
2 h− h̄ ∈ Z + 1

2

(111)
γ+

3
4 e2

R2 + m2R2

4 em e,m ∈ Z + 1
2

em ∈ Z + 3
4

γ−
1
4 em ∈ Z + 1

4

Table 2.1: Primary fields in each topological sector labeled by a twist (an element of G = Z3
2) and an

irreducible (projective) representation. These sectors are the simple objects of Dφ(Z3
2) ∼= D(D4).

Note that the choices of e and m allowed for each representation under the trivial twist corresponds to
(−1)e = χ(001) and (−1)m = χ(110), where χ is the representation being considered.
Projective representations in each topological sector are indicated in Eqn. 2.48, reproduced from Ref.
106.
The fusion table, computed using the symmetric MERA, for these sectors is explicitly presented in
Table 2.2. All sectors with a nontrivial twist have quantum dimension 2, and so are nonabelian.
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Figure 2.7: MERA scaling dimensions for the trivial twist of the abc model along the ‘b’ line. This line
is symmetric under the anomalous action of Z3

2.
Figure titles label: (twist label; irreducible representation label). Grey points are the raw data extracted
from the MERA. Red points correspond to averaged data as discussed in Appendix 2.7. Black lines
correspond to local fields of the compactified free boson CFT.
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Figure 2.8: Scaling dimensions for topological sectors with twists of the form (x, y, 0).
Figure titles label: (twist label; irreducible projective representation label).
Grey points are the raw data extracted from the MERA. Red points correspond to averaged data as
discussed in Appendix 2.7. Black lines correspond to equations in Table 2.1.
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Figure 2.9: Scaling dimensions for topological sectors with twists of the form (x, y, 1).
Figure titles label: (twist label; irreducible projective representation label).
Grey points are the raw data extracted from the MERA. Red points correspond to averaged data as
discussed in Appendix 2.7. Black lines correspond to equations in Table 2.1.
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Table 2.2: Fusion rules for Dφ(Z3
2) sectors computed from symmetric MERA. Cell entries denote the

allowed fusion outcome sectors for a × b. The OPE coefficients defined in Eqn. 2.29 are zero if the
resultant field c does not lie in an allowed sector.
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2.8 MPO group representations and third cohomology

In this appendix we recount the definition of the third cohomology class of an injective MPO
representation of a finite group G, as first introduced in Ref. 70. MPO representations appear
in the study of (2 + 1)D SPT tensor network states and it was shown in Ref. 93, Chapter 1, that
they are always injective. The presence of such an MPO symmetry has an important physical
consequence; all short range entangled states must break the symmetry, either explicitly or
spontaneously. For details about group cohomology theory in the context of SPT order we refer
the reader to Ref. 36.

In an MPO representation of G, multiplying a pair of MPOs labeled by the group elements
g0 and g1 is equal to the MPO labeled by g0g1 for every length. For injective MPOs there
exists a gauge transformation on the virtual indices that brings both representations into the
same canonical form45,55,67. This implies that there exists an operator (the reduction tensor)
X(g0, g1) : (Cχ)⊗2 → Cχ such that

g1

g0

X(g0, g1)X†(g0, g1)
= g0g1 , (2.49)

where X(g0, g1) is only defined up to multiplication by a complex phase β(g0, g1).
If we now multiply three MPOs labeled by g0, g1 and g2 there are two ways to reduce the

multiplied MPOs to the MPO labeled by g0g1g2. When only acting on the right virtual indices
these two reductions are equivalent up to a complex phase

g0

g1

g2 X(g1, g2)

X(g0, g1g2)
= φ(g0, g1, g2)

g2

g1

g0 X(g0, g1)

X(g0g1, g2)

. (2.50)

When multiplying four MPOs, one observes that φ has to obey certain consistency condi-
tions. By performing a series of moves (changing order of reduction), one can achieve the same
reduction
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g3

g2

g1

g0

= φ(g1, g2, g3)

g3

g2

g1

g0

= φ(g1, g2, g3)φ(g0, g1g2, g3)

g3

g2

g1

g0

= φ(g1, g2, g3)φ(g0, g1g2, g3)φ(g0, g1, g2)

g3

g2

g1

g0

(2.51)

= φ(g1, g2, g3)φ(g0, g1g2, g3)φ(g0, g1, g2)
φ(g0g1, g2, g3)

g3

g2

g1

g0

= φ(g1, g2, g3)φ(g0, g1g2, g3)φ(g0, g1, g2)
φ(g0g1, g2, g3)φ(g0, g1, g2g3)

g3

g2

g1

g0

, (2.52)

implying that
φ(g0, g1, g2)φ(g0, g1g2, g3)φ(g1, g2, g3)

φ(g0g1, g2, g3)φ(g0, g1, g2g3) = 1. (2.53)

This condition is known as the 3-cocycle conditions and identifies φ as a 3-cocycle. As men-
tioned above X(g0, g1) is only defined up to a complex phase β(g0, g1). This freedom can
change the φ, giving the equivalence relation

φ′(g0, g1, g2) = φ(g0, g1, g2)β(g1, g2)β(g0, g1g2)
β(g0, g1)β(g0g1, g2) , (2.54)

so φ is only defined up to a 3-coboundary. For this reason the single block MPO group
representation is endowed with the label [φ] from the third cohomology group H3(G,U(1)).
One can check that multiplying any larger number of MPOs does not give additional condi-
tions/equivalences on φ.

One can use a similar argument to demonstrate that no injective MPS can possess an anoma-
lous symmetry. Assume an injective MPS with tensor A is symmetric under an MPO symmetry
for all lengths, similar reasoning that lead to Eqn. 2.49 implies the existence of another reduc-
tion tensor Y (g) satisfying

A

g

Y (g)Y †(g)

= A . (2.55)
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Similar to Eqn. 2.50 we find that acting with multiple group elements leads to a complex
phase β(g0, g1)

g0

g1

A Y (g1)

Y (g0)
= β(g0, g1)

A

g1

g0 X(g0, g1)

Y (g0g1)

. (2.56)

We now consider the application of three group elements

A

g2

g1

g0

= β(g1, g2)

A

g2

g1

g0

= β(g1, g2)β(g0, g1g2)

A

g2

g1

g0

= β(g1, g2)β(g0, g1g2)φ(g0, g1, g2)

A

g2

g1

g0

(2.57)

= β(g1, g2)β(g0, g1g2)φ(g0, g1, g2)
β(g0g1, g2)

A

g2

g1

g0

= β(g1, g2)β(g0, g1g2)φ(g0, g1, g2)
β(g0g1, g2)β(g0, g1)

A

g2

g1

g0

, (2.58)

which leads to a consistency equation

φ(g0, g1, g2) = β(g0g1, g2)β(g0, g1)
β(g1, g2)β(g0, g1g2) , (2.59)

implying φ is a coboundary. Therefore φ ∼ 1, is in the trivial cohomology class. Hence
no injective MPS can be symmetric under an anomalous MPO symmetry. This leaves open the
possibility of a non-injective MPS, describing a state which spontaneously breaks the symmetry.
Alternatively a symmetric state may be gapless and hence have no MPS description (with a fixed
bond dimension).
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2.9 Ansatz for MERA tensors with type-III Z3
N symmetry

In this appendix, we describe an ansatz for the tensors in a MERA with type-III Z3
N symmetry.

Let G = Z3
N , with action as defined in Eqn. 2.35. Let T be an isometric tensor with 2A upper

indices and 2B (B ≥ A) lower indices

T : (CN )⊗2A → (CN )⊗2B, (2.60)

T †T = 1⊗2A
N . (2.61)

Define the decoupling circuit on 2K indices as

D2K =
K−1∏
j=1

CX1,2j+1CX2K,2j . (2.62)

Allowed MERA tensors are those given by

T = D†2B (1N ⊗ t⊗ 1N )D2A, (2.63)

where

t : (CN )⊗2(A−1) → (CN )⊗2(B−1), (2.64)

t†t = 1
⊗2(A−1)
N . (2.65)

The X portion of the symmetry is automatically enforced by this circuit. To enforce the
CZ part, one must ensure thatB−1∏

j=1
CZ†2j−1,2j

B−2∏
j=1

CZ2j,2j+1

 t = t

A−1∏
j=1

CZ†2j−1,2j

A−2∏
j=1

CZ2j,2j+1

 . (2.66)

2.9.1 4:2 MERA

For clarity, we now include the form of the constraint on the 4:2 MERA (introduced in Fig. 2.1)
with bond dimension N , N2 and N3:

= , (2.67a)

= , (2.67b)

= . (2.67c)



116 2 Anomalies and entanglement renormalization

Figure 2.10: The ternary MERA represents a quantum state using two types of tensors; unitary ‘disen-
tanglers’ (rectangles) and isometric tensors (triangles).

2.9.2 Ternary MERA

For completeness, we show how our ansatz is applied to the ternary MERA shown in Fig. 2.10.
The ternary ansatz is commonly seen in the literature due to its relatively low optimization cost.
A ternary MERA is built from two kinds of tensors; unitary ‘disentanglers’ v (rectangles in
Fig. 2.10) and isometric tensorsw (triangles in Fig. 2.10). In the general case, these tensors may
all contain distinct coefficients, although symmetries such as scale invariance can be imposed
by, for example, forcing the tensors on each layer to be identical.

For bond dimension N2 and N4, the constraint on the tensors is

= , = , (2.68a)

= , = , (2.68b)

with the obvious generalization to other bond dimensions.
We remark that although our examples drawn here map χ dimensional sites to χ dimen-

sional sites, this can be relaxed. This allows the effective dimension of the sites to be increased
as desired.
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2.10 Generalized ZN CZX model and its gapless boundary theory

The CZX model was introduced in Ref. 70 as a simple exactly solvable representative of the
nontrivial Z2 SPT phase in two spatial dimensions. In this paper we have considered the larger
symmetry group Z3

2 of the model for which it is a representative of the Z3
2 type-III SPT phase. In

this appendix we describe a simple generalization of the CZX model to a Hamiltonian with Z3
N

symmetry that is a representative of the root type-III Z3
N SPT. We then outline how this fits into

the more general setting of (1+1)D G-SPT dualities at the edge of a particular G×H2(G,U(1))-
SPT bulk in (2 + 1)D.

2.10.1 Definitions

The model is defined on a two dimensional square lattice with four ZN spins per site. For
concreteness we label them counterclockwise as follows

4

1 2

3

. (2.69)

Before stating the Hamiltonian, ground-state, and symmetries of the model we establish some
definitions:

P2 =
N−1∑
i=0
|i〉⊗2 〈i|⊗2 (2.70)

X4 =
N−1∑
i=0
|i+ 1〉⊗4 〈i|⊗4 (2.71)

|GHZ4〉 = 1√
N

N−1∑
i=0
|i〉⊗4 (2.72)

u−X = X1 ⊗X3 (2.73)

u+
X = X2 ⊗X4 (2.74)

uCZ = CZ12CZ
†
23CZ34CZ

†
41, (2.75)

where X,CZ are defined in Section 2.4.

2.10.2 Hamiltonian and ground state

The Hamiltonian is a sum of local terms acting on each plaquette of a square latticeH =
∑
p hp.

The terms are given by

hp = −
N−1∑
i=0

Xi
4 ⊗ P2 ⊗ P2 ⊗ P2 ⊗ P2, (2.76)



118 2 Anomalies and entanglement renormalization

which act on the lattice as

X4

P2

P2

P2 P2 . (2.77)

The ground state is unique for closed boundary conditions and is given by a tensor product of
the state |GHZ4〉 on the four spins around each plaquette

|ΨGS〉 =
⊗
p

|GHZ4〉 . (2.78)

Note that this ground state is not a product state with respect the locality structure we have
chosen by our grouping of spins into sites (if sites were instead defined to group the spins
around each plaquette it would be a product state).

2.10.3 Symmetry

To describe the Z3
N symmetry of the Hamiltonian in Eqn. 2.76 we first bipartition the lattice

into black (b) and white (w) sites, as indicated in Fig. 2.11. The generators are then given by

UX =
⊗
b

u−X
⊗
w

u+
X (2.79)

UX̃ =
⊗
b

u+
X

⊗
w

u−X (2.80)

UCZ =
⊗
b

u†CZ
⊗
w

uCZ . (2.81)

One can verify that each of these operators is of order N and that they mutually commute.
Furthermore each local Hamiltonian term commutes with all symmetries and they leave the
ground state invariant. Note the UCZ symmetry is an on-site symmetry for our definition of site
but would not be if sites were instead defined by grouping the spins around each plaquette.

2.10.4 Boundary theory

In the presence of an open boundary the bulk Hamiltonian is extensively degenerate as it only
projects pairs of spins along the edge into the support subspace of P2. We identify effective
ZN edge spins with the N states in this subspace via the projector

∑
i
|i〉 〈ii|. This identification

is indicated by { in Fig. 2.11. An edge site is formed by a pair of these spins, as shown in
Fig. 2.11. This identification provides an exact mapping from bulk operators to the boundary.
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...
...

...

· · ·· · ·

i− 1 i i+ 1

2i− 3 2i− 2 2i− 1 2i 2i+ 1 2i+ 2 2i+ 3

Figure 2.11: Identification of the edge degrees of freedom.

The symmetry acts on the edge as follows

UX 7→
⊗
j

Xj (2.82)

UX̃ 7→
⊗
j

X̃j (2.83)

UCZ 7→ C =
site

. (2.84)

Due to the grouping of edge spins into sites only the subgroup generated by UX and UX̃ acts
on-site.

The bulk to boundary mapping can be used to find the edge action of certain operators that
leave no residual effect on the bulk of the ground state. In particular

(Z1)b2i 7→ Zi (2.85)

(Z2)w2i−1 7→ Zi (2.86)

(Z1)w2i+1 7→ Z̃i (2.87)

(Z2)b2i 7→ Z̃i (2.88)

(X2)w2i−1(X1)b2i 7→ Xi (2.89)

(X2)b2i(X1)w2i+1 7→ X̃i, (2.90)

where the numbering is indicated in Fig. 2.11. We find an effective edge Hamiltonian by con-
sidering symmetric perturbations in the bulk with minimal support.

(Z†1Z3)b2i(Z2Z
†
4)w2i+1 7→ Z†iZi+1 (2.91)

(Z1Z
†
3)w2i+1(Z†2Z4)b2i+2 7→ Z̃iZ̃

†
i+1 (2.92)

(X2)w2i−1(X1)b2i + (Z1X2Z
†
3)w2i−1(X1Z

†
2Z4)b2i 7→ Xi + Z̃i−1XiZ̃

†
i (2.93)

(X2)b2i(X1)w2i+1 + (Z†1X2Z3)b2i(X1Z2Z
†
4)w2i+1 7→ X̃i + Z†i X̃iZi+1. (2.94)
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The edge Hamiltonian is given by

HEdge = −
∑
i

N−1∑
k=0

ck

N−1∑
j=0

(Z†i
jkX̃i

jZi+1
jk + Z̃i−1

jkXi
jZ̃†i

jk)

−
∑
i

N−1∑
k=0

bk(Z†i
kZi+1

k + Z̃i
kZ̃†i+1

k). (2.95)

where bk = bN−k. The Hamiltonian is fully symmetric under UX and UX̃ while the parameters
transform as follows under C

ck 7→ ck−1, (2.96)

bk 7→ bk. (2.97)

When ck is the only nonzero parameter the Hamiltonian is in the [k] ∈ H2(G,U(1)) SPT phase,
while for bk = bN−k the only nonzero parameters it describes a symmetry broken phase. Hence
the C operator cycles the SPT phases [k] 7→ [k + 1] and the Hamiltonian is fully symmetric
when all ck = c0. This may correspond to an SPT critical point or a symmetry breaking point
depending upon the relative strength of the bk parameters.

2.10.5 General (1 + 1)D G SPT duality at the edge of a (2 + 1)D G ×H2(G, U(1))
SPT

The above construction for Z3
N is a specific instance of a general connection between duality of

(1+1)D edge G SPT phases and a (2+1)D bulk G×H2(G,U(1)) SPT phase. This connection
may be of independent interest. The action of the bulk H2(G,U(1)) symmetry can be though
of as pumping G SPTs onto the edge.

Similarly to the case above, the Hilbert space of each spin is given by C[G] and 4 spins are
grouped per site of a square lattice. Rg denotes the right regular representation, we fix a choice
of representative for a set of generators of H2(G,U(1)) ∼=

∏
k ZNk (their products fix all other

representatives) and

R⊗4
g P4 :=

∑
g∈G
|hg−1〉⊗4 〈h|⊗4 (2.98)

Cω12 :=
∑
g0,g1

ω(g0g
−1
1 , g1) |g0, g1〉 〈g0, g1| (2.99)

uω := Cω12Cω23Cω34Cω41 (2.100)

for [ω] ∈ H2(G,U(1)).
The local Hamiltonian terms are given by

hp = −
∑
g∈G

R⊗4
g P4 ⊗ P2 ⊗ P2 ⊗ P2 ⊗ P2 (2.101)

acting on the square lattice similarly to the term in Eqn. 2.77. The ground state is again given
by

|ΨGS〉 =
⊗
p

|GHZ4〉 . (2.102)
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The global on-site symmetry is generated by

Ug =
⊗

R⊗4
g (2.103)

Uω =
⊗
b

u†ω
⊗
w

uω (2.104)

which can be seen to mutually commute and also commute with hp. These symmetries also
leave the ground state invariant.

As above, the effective edge spins are identified with the ground state subspace of plaquettes
crossing the boundary, via the projector

∑
g
|g〉 〈gg|. The action of the symmetry on the edge is

given by

Ug 7→
⊗
i

Rg (2.105)

Uω 7→
∏
i

Cω2i,2i+1Cω
†
2i−1,2i. (2.106)

This forms a matrix product operator representation of G ×H2(G,U(1)) with 3-cocycle

α((g0, ω0), (g1, ω1), (g2, ω2)) = ω2(g0, g1). (2.107)

The edge action of Uω maps a G SPT phase [β] to [β + ω]. This can be seen by examining the
effect of Uω on a fixed point local Hamiltonian such as the G-paramagnet

H = −
∑
v

∑
g

(Rg)v. (2.108)

Alternatively, note the edge action of Uω restricted to an open chain is an MPO with two dan-
gling virtual indices associated to its boundaries. Denote this MPO Mω. Mω obeys the follow-
ing commutation rules R⊗Lg MωR

†⊗L
g = VgMωV

†
g . Here Vg is a projective representation of G,

with cocycle ω, given by

Vg =
∑
h

ω(h, g) |hg〉 〈h| , (2.109)

which acts on one dangling virtual bond of the MPO. Hence applyingMω to a unique symmetric
ground state, such as |+〉⊗N , maps it to a state in the SPT phase [ω].
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Chapter 3

Symmetry-enriched topological order in
tensor networks: gauging and anyon con-
densation
Synopsis:

We study symmetry-enriched topological order in two-dimensional tensor network states using
graded matrix product operator algebras. A close connection to the theory of graded unitary
fusion categories is established. Tensor network representations of the topological defect su-
perselection sectors are constructed. The emergent symmetry-enriched topological order is
extracted from these representations, including the symmetry action on the underlying anyons.
Dual phase transitions, induced by gauging a global symmetry, and condensation of a bosonic
subtheory, are analyzed and the relationship between topological orders on either side of the
transition is derived. Several explicit examples are worked through.

Based on: 103
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3.1 Introduction

Symmetry plays a fundamental role in the classification of phases of matter. From spontaneous
symmetry breaking in the Landau-Ginzburg theory of second-order phase transitions130 to the
homeomorphism invariance of topological quantum field theories (TQFTs)11–13. Even in the
absence of a global symmetry, equivalence classes of gapped Hamiltonians under adiabatic de-
formation break up into inequivalent topological phases1,8–10,131. These phases have topological
symmetries inherited from the TQFTs that describe their low energy behavior, which are often
realized by nontrivial string operators. Enforcing a global symmetry drastically refines the clas-
sification of phases that is found. Even the trivial phase splits into a set of SPT phases, which
cannot be adiabatically connected while preserving the symmetry3,34–36. Nontrivial topologi-
cal phases also split into symmetry-enriched topological phases which are distinguished by the
interplay of the global symmetry with their topological superselection sectors29–33,81,97–102,203.

The interplay of a global symmetry with topological degrees of freedom has also received
attention from the quantum information community due to its relevance for topological quan-
tum codes and computation100,204–210. Transversal gates on topological codes are generated by
the action of on-site symmetries on superselection sectors, and symmetry defects have been
used to alter the code properties of a topological order. In the quantum information approach to
many-body condensed matter systems, tensor networks39–41 are used to describe ground states
and excitations. These provide efficient representations that faithfully capture the local entan-
glement structure of the many-body states. In one spatial dimension, matrix product states
(MPS) have been used to classify gapped phases by studying the way a global symmetry acts
on the auxiliary entanglement degrees of freedom27,45,49–51,53–56,67. In two spatial dimensions,
projected entangled pair states (PEPS) have been used to study topological phases57–59,62–66. A
classification of nonchiral phases has been obtained from the algebra of matrix product operator
(MPO) symmetries on the entanglement degrees of freedom of a local PEPS tensor that satisfy a
pulling through equation. The resulting topological phases are given by Morita equivalence211

classes of MPO symmetry algebras. This class of tensor networks includes all the string-net
states24, for which explicit PEPS and MPO representations have been found63,119,120. Chiral
phases have also been studied60,61,95, however a complete coherent theoretical framework is
lacking.

In this work, we study PEPS representations of symmetry-enriched nonchiral topological
phases. We focus on the interplay of a global symmetry with an MPO algebra symmetry on the
entanglement degrees of freedom. To this end we consider the generalized symmetry-enriched
pulling through equation93 introduced in Chapter 1. The resulting SETs are classified by graded
Morita equivalence classes of MPO symmetry algebras. We demonstrate that this class of tensor
networks includes the recently introduced symmetry-enriched string-net models32,33 by con-
structing the local PEPS and MPO tensors. We generalize Ocneanu’s tube algebra163,212 to
include nontrivial defect sectors, from which we construct the superselection sectors of the
emergent SET order. We explain how the phyiscal data of the SET can be extracted from this
construction. We calculate the effects of gauging the global symmetry71,73,213,214, and the rela-
tion of the SET to the resulting topological phase. We also find an anyon condensation phase
transition215 — dual to gauging — that is induced by breaking a graded MPO symmetry al-
gbera, and calculate the relation of the topological order to the resulting SET. The nonchiral
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case of many of the general results shown in Ref. 31 follow directly from our construction. The
mathematical contribution of our work includes an explicit construction of the automorphism
induced on the Drinfeld center (double) by a given extension of a UFC81, this is only part of our
more general construction of the defect tube algebra and graded Drinfeld center from a graded
UFC. Several explicit examples are provided to illustrate various aspects of our formalism.

The paper is organized as follows: In Section 3.2, we present a detailed analysis of the
electromagnetic duality symmetry-enriched toric code: including a summary of relevant back-
ground results from Refs. 63 and 64, a Z2 gauging procedure that maps it to the doubled Ising
model, and a dual Rep(Z2) anyon condensation phase transition. In Section 3.3, we write down
explicit tensor network representations of the symmetry-enriched string-net ground states and
their G-graded MPO symmetry algebras, and show that they satisfy the symmetry-enriched
pulling through equation. In Section 3.4, we summarize the results of Ref. 64 including a
derivation of Ocneanu’s tube algebra from the MPO symmetry algebra of a tensor network, a
construction of the emergent topological superselection sectors from the tube algebra, and the
extraction of physical data from superselection sectors thus constructed. In Section 3.5, we
describe the theory of G-graded matrix product operator algebras in terms of G-extensions of
an underlying MPO algebra, we draw an analogy to the theory of G-graded unitary fusion cat-
egories, and define the symmetry-enriched pulling through equation for a tensor network. In
Section 3.6, we generalize the tube algebra to include nontrivial G-defect sectors, which are
constructed from a G-graded MPO symmetry algebra of a tensor network, we describe a con-
struction of the emergent SET order, and the extraction of its physical data. In Section 3.7,
we calculate the effect that gauging a global G symmetry has upon a G-graded MPO symme-
try algebra, derive the relationship between the emergent SET and the topological order that
results from gauging, and demonstrate the gauging procedure explicitly for SPT phases. In
Section 3.8, we describe the Rep(G) anyon condensation phase transitions that are induced by
G-graded MPO algebra symmetry breaking, these phase transitions are dual to gauging a global
G symmetry, we derive the relation between the emergent topological order and the SET that
results from the condensation. In Section 3.9, we present several examples that demonstrate
different aspects of our formalism, particularly the interplay between Morita equivalence and
anyon condensation phase transitions induced by MPO algebra symmetry breaking. In Sec-
tion 3.10, we present conclusions and future directions.

3.2 A motivating example

We begin with a concrete example that demonstrates the methods developed throughout the
paper. In this example we study the relation between the doubled Ising model24 and the toric
code19 enriched by Z2 electromagnetic duality symmetry32,33,100. These models are related
by the dual processes of gauging the Z2 electromagnetic duality symmetry or condensing a
Rep(Z2) subtheory, as follows

Toric code
Add Z2 defects // Z2 symmetry-enriched

toric code

Gauge Z2 symmetry //

Confine Z2 defects
oo Doubled

Ising model.Condense Rep(Z2)
oo

(3.1)



126 3 Symmetry-enriched topological order in tensor networks

Each of the steps in this diagram can be calculated concretely in the language of tensor net-
works. To achieve this we summarize the mathematical objects, known as unitary fusion cat-
egories, from which the toric code and doubled Ising model are built166,216. Using this data,
we recount the tensor network description of the toric code and doubled Ising model sting-net
ground states119,120 and the algebras of matrix product operator symmetries they posses63. We
present an extension of the fixed point tensor network construction to the recently defined class
of symmetry-enriched string-net models32,33, and demonstrate the interplay of the MPO sym-
metries with the physical symmetry. This extension is based upon the notion of graded unitary
fusion categories81,97,98. By viewing the Ising fusion category as a Z2-graded fusion category
the authors of Refs. 32,33 were able to construct a local commuting projector Hamiltonian, in
two spatial dimensions, with a Z2-enriched toric code topological order where an on-site group
action implements the electromagnetic duality of the toric code anyons.

To calculate the action of the symmetry explicitly with the tensor network approach we
build upon the anyon ansatz presented in Ref. 64, which is summarized in Section 3.4. In
that work, a second algebra — corresponding to Ocneanu’s tube algebra163,212 — was derived
from the matrix product operator symmetry algebra of the local tensors. By diagonalizing
this tube algebra into irreducible blocks, the topological sectors are constructed. From the
projectors onto these blocks, the full set of topological data — characterizing the emergent
anyonic excitations — can be extracted. This set of data forms a mathematical object known
as a modular tensor category99,165,166,203,216 which includes an underlying set of anyons, their
fusion rules and F -symbols,Rmatrices which describe braiding processes, as well as the gauge
invariant Frobenius-Schur indicators, and the modular S and T matrices.

We extend the tube algebra to a set of |G| defect tube algebras whose irreducible blocks
describe the definite topological G-defect sectors. Similar to the anyon tubes, all topological
data of the emergent symmetry-enriched theory can be extracted from the defect tubes. This
data constitutes a G-crossed modular tensor category31,81,97,98, and includes the underlying set
of topological defects, their fusion rules and F -symbols, the G action on the set of defects, the G-
crossed R matrices which describe the braiding of defects, the projective representation carried
by each defect and its 2-cocycle ηag(h,k), and the projective representation on the fusion and
splitting spaces Ug(ah, bk; chk), as well as the Frobenius-Schur indicators, and the G-crossed
modular S and T matrices.

Rather than calculating the topological defect sectors of the EM duality enriched toric code
directly, we develop an extremely simple recipe to find the effect of Rep(Z2) anyon conden-
sation on the tubes of the doubled Ising model. This approach yields the pair of inequivalent
topological defect sectors, known as100 σ+, σ−. We also describe a recipe to calculate the ef-
fects of gauging the Z2 EM duality symmetry on the defect tubes to recover the tubes of the
doubled Ising model. We derive relations between the topological data of the models related by
the dual gauging and condensation procedures.
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3.2.1 Background: Constructing topological sectors in a tensor network

Toric code

The toric code is based on a very simple unitary fusion category C = VecZ2
built from the

algebra C[Z2]. We denote the simple objects {0, ψ} with abelian multiplication

0× a = a, ψ × ψ = 0, (3.2)

for a ∈ {0, ψ}. The F -symbols are trivial, containing only the fusion constraints

F abcdef = δeabδ
d
ecδ

f
bcδ

d
af , (3.3)

which are defined by

δcab :=
{

1 when a appears in the fusion product b× c
0 otherwise.

(3.4)

A tensor network representation of the toric code ground state on a trivalent lattice can be
constructed from these F -symbols, see Eq.(3.6) left. This is a specific instance of the more
general tensor network representation of string-net ground states63,119,120. This tensor network
specifies a state in a Hilbert space where the qubit degrees of freedom that usually live on edges
live in the diagonal subspace of a pair of qubits living on the neighbouring vertices

C[Z2]e ∼= span{|00〉 , |11〉} ⊆ C[Z2]u ⊗ C[Z2]v, (3.5)

where ∂e = {u, v}. This convention is used as it avoids the need to define separate tensors on
the edges of the tensor network.

This tensor network has a Z2 MPO symmetry specified by the tensor on the right of Eq.(3.6).

α k′ γ′

β ′
j ′
γα

′ i
′ β

i j
k = δii′δjj′δkk′δαα′δββ′δγγ′F

αij
γβk , (3.6)

µ i ν′

α′ i′ β

µ
′
a
α

β
′
a ′
ν = δαα′δββ′δµµ′δνν′δii′δaa′F

aµi
βαν , (3.7)

where all labels lie in Z2. Here a ∈ Z2 ∼= {0, ψ} controls which element of Z2 the MPO
represents

MPOa := a . . . , (3.8)
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where the vertical dashed lines denote periodic boundary conditions and

a

β
b
α

α
′b ′β

′

:= δαα′δββ′δb,b′δb,a. (3.9)

We will also make use of the following short hand notation for the projector onto the a block

a

:= a . (3.10)

These MPOs reproduce the fusion algebra in Eq.(3.2)

MPO0MPOa = MPOa, MPOψMPOψ = MPO0. (3.11)

In fact, the individual MPO tensors satisfy the fusion rules locally (left), up to a fusion/splitting
tensor (right)

a

b

a

b
=
∑
c

δcab
c c

a

b

a

b

, (3.12)

where

α
′
c
γ

β
′ a α

β b γ ′

= δαα′δββ′δγγ′F
abγ
αcβ . (3.13)

This MPO representation of Z2 falls into the framework develop in Ref. 59.
The local order of fusion/splitting does not matter in this case

a b c

d

e

e

=
∑
f

F abcdef

a b c

d

f

f

, (3.14)

as the F -symbols are trivial and simply enforce the fusion constraint δfbcδ
d
af .

The toric code tensor network and its Z2 MPO symmetry satisfy the pulling through equa-
tion (left), as well as a constraint that allows one to remove a contractible loop of the MPO from
the tensor network (right)

= ,

i k j

a
= δkij

i k j

. (3.15)
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Furthermore the toric code tensor network is MPO-injective, in the terminology of Ref. 63, with
respect to the MPO projector onto the symmetric subspace: 1

2(MPO0 + MPOψ).
The framework developed in Refs. 63,64,160 demonstrated that calculations involving an

algebra of MPO symmetries on the virtual level of an MPO-injective tensor network follow the
same rules as the planar isotopy invariant, diagrammatic calculus for unitary fusion categories
described in Refs. 203,217,218 and elsewhere. In other words, the properties of an MPO algebra
on the virtual level of an MPO-injective tensor network can be abstracted to the diagrammatic
calculus for anyons (without braiding).

To see this from another perspective, recall that the vector space associated to a manifold by
the Turaev-Viro topological quantum field theory (TQFT)108,219 — for a given unitary fusion
category — is defined to be the space of allowed pictures modulo local relations220,221 (this is
isomorphic to the ground space of the string net model on that manifold). In this way a tensor
network satisfying MPO-injectivity, together with its MPO symmetry algebra, can be thought
of as an explicit representation of all pictures that can be reduced to the empty diagram via
local relations. In this representation the local relations are implemented by the pulling through
equation, together with the local conditions satisfied by the MPOs. We remark that one can
construct the full set of different ground states by closing the tensor network using different
MPOs, as described below.

The upshot of the previous paragraph is: for the purposes of calculations involving elements
of the MPO algebra within an MPO-injective tensor network, we can work at the level of the
diagrammatic UFC calculus203,217,218. The MPO-injective tensor network itself can be thought
of as a sort of background, and MPOs on the virtual level will become loops on top of this
background. For example

=

ψ

7→ 7→

∼

(3.16)

where the ψ loop is depicted as a squiggly line in the diagrammatic calculus. As demonstrated
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by this example local relations in the diagrammatic calculus correspond to equalities in the
tensor network representation. For this reason we will work with the vector space of diagrams
modulo local relations, hence the equivalence above becomes an equality.

As was mentioned above, on a topologically nontrivial manifold the vector space of the
Turaev-Viro TQFT may have dimension greater than one. Equivalently the string-net model
may have a ground state degeneracy. This appears in the tensor network formalism when one
considers closing a disc to form a nontrivial topology. It was shown in Ref. 63 that the MPO-
injectivity property is stable under concatenation. That is, one can contract arbitrarily many
MPO-injective tensors on a disc and the resulting tensor will maintain the MPO-injectivity
property. The resulting tensor network is a PEPS, and hence comes equipped with a frustration
free, local, parent Hamiltonian for which it is a ground state46. It was also shown in Ref. 63,
that the ground space of this Hamiltonian on a disc is spanned by the tensor network on the
disc contracted with an arbitrary boundary tensor, see Eq.(3.17), LHS. We remark that the local
relations in the bulk give rise to an action of the MPO algebra on the boundary tensor which
project it onto the symmetric subspace.

The local tensor in Eq.(3.6) can be used to build a unique state on a closed manifold. How-
ever there may be linearly independent states on the same manifold that are constructed from
the same tensor on any disc, but also contain virtual level MPOs that are free to move through
the tensor network. As a matter of terminology, we will refer to a spanning set of ground states
of the local parent Hamiltonian on a given manifold as the set of tensor networks assigned to
that manifold by the local tensor.

To form a closed manifold one can consider adding handles to a disc. The simplest choice
is to close the disc into a sphere. Even in this case one finds a closure tensor, located on a
single link, that is free to move throughout the tensor network63. The different choices for this
closure tensor pick out different ground states in an unstable TQFT. Here unstable means that
the TQFT has a ground state degeneracy on the sphere. For a stable TQFT, which is always the
case when the MPO algebra yields a unitary fusion category, there is a single ground state on
the sphere and the closure tensor is trivial. Since an unstable TQFT can be written as a sum of
stable TQFTs we will only consider the stable case from here on.

The next example we consider is attaching a 1-handle to a disc to form a cylinder. Before the
closure, the class of states we are considering corresponds to the tensor network with arbitrary
boundary conditions A, depicted below on the left. After taking the closure we are guaranteed
that any disc must look like the original tensor network. Hence the only boundary conditions
along the attaching edge that survive are the ones that can be freely deformed through the
tensor network. This implies that these boundary condition must be a linear combination of the
irreducible MPOs, shown below on the right. This argument was given explicitly in Ref. 63.

A =
∑
pµ

cp
p

Bµ Cµ , (3.17)

where the dotted lines indicate a periodic identification of the boundaries and the solid line con-
necting the caps indicates that they are part of the same tesnor. Hence all boundary conditions
on the cylinder can be divided into an arbitrary tensor A′ :=

∑
µBµ ⊗ Cµ, acting on the open
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left and right boundaries, joined by a linear combination of MPOs along the closure edge. More
specifically, the virtual indices of the MPO are contracted with indices of A′.

Similarly, when closing a disc to form a torus, the most general boundary condition is given
by a linear combination of MPOs along the cycles of the torus. Furthermore the tensor at their
intersection point can be resolved into a linear combination of fusion and splitting vertices,
shown below on the right.

B =
∑
xyz

czxy
x

z

x

y

y

=
∑
xyz

czxy |xyz〉 . (3.18)

For the toric code, a basis for the ground space on the torus is given by

|000〉 = , |0ψψ〉 = , (3.19)

|ψ0ψ〉 = , |ψψ0〉 = . (3.20)

To find the superselection sectors within this tensor network, we consider a well separated
pair of pointlike excitations on a sphere. This sphere can be stretched out to a cylinder with an
excitation at each end. Away from these excitation points the tensor network locally looks the
same, hence the whole tensor network is of the form in Eq.(3.17) with A′ now also containing
physical indices located around each excitation. The local relations in the bulk of the tensor
network on the cylinder give rise to an MPO action on each boundary.

r
=

r

s
=

s

s
r

(3.21)

=
∑
q

δqrs

s
r r

q
ss

=
∑
qr

δqrsδ
p
sq

ss

ss

r rp
. (3.22)

This defines an algebra acting on each of the punctures. In fact, this is Ocneanu’s famous tube
algebra. We remark that the tube algebra contains a copy of the fusion algebra, generated by
T s0s0, but is generally distinct from the fusion algebra. The irreducible superselection sectors
within a puncture are given by the irreducible blocks of the tube algebra. Projecting onto a
superselection sector fixes a definite anyon flux through the puncture. A particular sector can be
constructed by projecting onto the corresponding block of the tube algebra using the irreducible
central idempotent (ICI) that acts as the identity within that block.
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We use the following labeling convention for basis elements of the tube algebra

T spqr = r
q

p

s

s

, (3.23)

which corresponds to the minimal tensor network

p

r
q

s

s

, (3.24)

note T spqr is only nonzero when δrqsδ
p
sq = 1, hence the dimension of the algebra is given by∑
pqrs

δrqsδ
p
sq < |C|4 ,

where |C| is the number of simple objects in the fusion algebra, in this case |C| = 2.
Multiplication of tubes is defined by the stacking operation

T spqrT s
′

p′q′r′ = δrp′
r

q

p

s

s

r′

q′

s′

s′

= δrp′
∑
q′′s′′

F sqs
′

q′rq′′F
q′′s′s
pqs′′ F

s′sq′′

r′q′s′′ T
s′′
pq′′r′ , (3.25)

where the only tubes T s′′pq′′r′ that appear on the RHS with nonzero coefficients satisfy δs
′′
ss′ . Her-

mitian conjugation is given by

(T spqr)† = r
q

p

s

s

=
∑
q′

F srspqq′T srq′p . (3.26)

With this notation Eq.(3.21) becomes

T 0
rrr =

∑
pq

(T spqr)†T 0
pppT spqr. (3.27)

We have verified that the tube algebra is closed under multiplication and Hermitian conju-
gation. Hence the tube algebra is a C∗ algebra, spanned by the tubes in Eq.(3.23) and can be
block diagonalized.

The toric code tube algebra is spanned by the following basis elements

T 0
000 = , T ψ0ψ0 = , (3.28)

T 0
ψψψ = , T ψψ0ψ = . (3.29)
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We remark that this tube algebra splits into two copies of C[Z2] and hence is diagonalized by
a set of projectors onto the irreps of each Z2. These projectors are summarized in the following
table

Anyons T 0
000 T ψ0ψ0 T 0

ψψψ T ψψ0ψ
0 1 1
e 1 −1
m 1 1
em 1 −1

(3.30)

which contains the coefficients of each ICI. In this table — and for all superselection sector
tables throughout the paper — we suppress a normalization by the quantum dimension squared
D2, which gives 2 in this case. Hence the ICIs of the toric code are given by

0 = 1
2(T 0

000 + T ψ0ψ0) , e = 1
2(T 0

000 − T
ψ

0ψ0) , (3.31)

m = 1
2(T 0

ψψψ + T ψψ0ψ) , em = 1
2(T 0

ψψψ − T
ψ
ψ0ψ) . (3.32)

We remark that the vacuum 0 superselection sector is always given by the projector onto the
symmetric subspace of the fusion algebra generated by T s0s0. To justify the labeling of the other
superselection sectors, we need a method to extract the physical data characterizing the anyon
theory from the ICIs. The S and T matrices of the emergent topological theory are independent
of any gauge choice in defining the input fusion category. These invariants are conjectured to be
complete for non-chiral theories, which are precisely those arising from the double construction
we have described.

On the tube algebra S and T are defined as

S(T spqr) := δpr
p

q
p

s
s =

∑
q′

F spspq′qT
p
sq′s , T (T spqr) := T pp1pT spqr , (3.33)

S(a) =
∑
b

Sab b , T (a) = θa a , (3.34)

in writing the second formula for S we have assumed that all idempotents have dimension one,
which is true for the toric code example. The general formula is given in Section 3.3, Eq.(3.146).
We remark that S corresponds to changing basis on the torus from a definite flux through the
y-cycle to a definite flux through the x-cycle. Similarly T corresponds to a Dehn twist along
the y-cycle of the torus with definite flux through the y-cycle, or equivalently a 2π rotation of a
superselection sector.

For toric code S and T are given by

D2S 0 e m em

0 1 1 1 1
e 1 1 −1 −1
m 1 −1 1 −1
em 1 −1 −1 1

T 0 e m em

0 1
e 1
m 1
em −1

(3.35)
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We remark the normalization of the S matrix by D2 refers to the quantum dimension of the
input fusion category which satisfies D2 = Dout. In this example the normalization is D2 = 2.
The T matrix uniquely identifies the em sector as it is the only fermion in the theory. However
one can see that the choice of e andm sectors is arbitrary as the data is invariant under swapping
e with m. This is an EM duality Z2 symmetry of the toric code. In the next section we will
construct the symmetry enriched toric code, including the EM duality defects.

In fact we can also extract the full set of gauge-variant data, the F and R symbols, that
define the emergent topological theory from the ICIs. The ICIs can be used to construct a
realization of the emergent theory, which may be of use for topological quantum computation
in wavefunctions that admit a tensor network description.

Throughout this subsection all explanations were given with the toric code in mind and
hence many subtleties have been left out. In particular we neglected orientation dependence,
factors of the quantum dimension, pivotal phases, Frobenius-Schur indicators and possible fu-
sion degeneracy. These subtleties are covered in Section 3.3.

Doubled Ising model

The Ising fusion category is based on an algebra of three objects which we denote {0, ψ, σ}
with commutative multiplication rules

0× a = a, ψ × ψ = 0, σ × ψ = σ, σ × σ = 0 + ψ, (3.36)

for a ∈ {0, ψ, σ}. The quantum dimensions are d0 = 1, dψ = 1, dσ =
√

2, hence D2 = 4. The
nontrivial F -symbols are given by

[F σσσσ ]ji = 1√
2

[
1 1
1 −1

]
, [F σψσψ ]σσ = [Fψσψσ ]σσ = −1, (3.37)

for i, j ∈ {0, ψ}. The remaining F -symbols are either 0 or 1, which is completely determined
by the convention that [F abcd ]fe contains the constraint δeabδ

d
ecδ

f
bcδ

d
af , defined in Eq.(3.4). One can

check that these F -symbols satisfy the pentagon equation. We remark that VecZ2
is contained

as a subcategory of Ising, generated by the objects {0, ψ}. This observation is the basis of the
construction in Section 3.2.2.

The tensor network and MPO algebra for the Ising model are defined in a similar fashion
to the toric code example. Both examples fall under the general case that covers all string-net
models63,64, which is described in Section 3.3. Here we will skip directly to the tube algebra.
The construction of the tube algebra proceeds similarly to the toric code, but one must also deal
with the appearance of quantum dimensions. For an explanation of the explicit details we have
skipped over see Section 3.3.

The Ising tube algebra is twelve dimensional and is spanned by the tubes in Eq.(3.28),
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together with the following

T 0
σσσ = , T ψσσσ = , T σ0σ0 = , (3.38)

T σψσψ = , T σσ0σ = , T σσψσ = , (3.39)

T σψσ0 = , T σ0σψ = , (3.40)

The coefficients of the ICIs that determine the superselection sectors of the tensor network
are given by

Anyons T 0
000 T ψ0ψ0 T 0

ψψψ T ψψ0ψ T 0
σσσ T ψσσσ T σ0σ0 T σψσψ T σσ0σ T σσψσ

0 1 1
√

2
ψψ 1 1 −

√
2

ψ 1 −1 −i
√

2
ψ 1 −1 i

√
2

σσ 2 −2 2 2
σ 1 −i e−

πi
8 e

3πi
8

σψ 1 −i e
7πi
8 e−

5πi
8

σ 1 i e
πi
8 e−

3πi
8

ψσ 1 i e−
7πi
8 e

5πi
8

(3.41)

where we have suppressed a normalization by D2 = 4. To be explicit, the table should be read
as follows

ai = 1
D2

∑
j

tji (T
s
pqr)j , (3.42)

where ai is the i-th anyon row label, (T spqr)j is the j-th tube column label, and tij is the (i, j)-
th table entry. We remark that our normalization convention for the tubes T spqr differs slightly
from that in Ref. 64 by a factor

√
ds, after adjusting for this difference our results match those

reported in Ref. 64.
In the Ising tube algebra the σσ block is two dimensional. The full block, including off

diagonal elements, is given by

σσ00 = 1
2(T 0

000 − T
ψ

0ψ0) σσ01 = 1√
2
T σ0σψ

σσ10 = 1√
2
T σψσ0 σσ11 = 1

2(T 0
ψψψ + T ψψ0ψ). (3.43)
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To justify the labeling of the particles we have calculated the S and T matrices from the
ICIs using the formula in Section 3.3, Eq.(3.146). Note that since σσ is a two dimensional
block, the S matrix is defined in terms of its action on the normalized ICI 1

2σσ.

D2S =

0 ψ σ 0 ψ σ

0 1 1
√

2 ⊗ 0 1 1
√

2
ψ 1 1 −

√
2 ψ 1 1 −

√
2

σ
√

2 −
√

2 0 σ
√

2 −
√

2 0

(3.44)

T =

0 ψ σ 0 ψ σ

0 1 ⊗ 0 1
ψ −1 ψ −1
σ e

πi
8 σ e−

πi
8

(3.45)

We remark the S and T matrices have a tensor product structure since the input Ising fusion
category admits a modular braiding. This implies Z(Ising) ∼= Ising(1)� Ising(1), where Ising(1)

denotes the Ising theory equipped with the modular braiding31.

3.2.2 Symmetry-enriched tensor networks from anyon condensation

Z2-paramagnet from the toric code

To demonstrate the condensation procedure we note the toric code trivially has a Z2-grading
C1 ⊕ Cx = {0} ⊕ {ψ}, where we use the following presentation Z2 ∼=

〈
x | x2 = 1

〉
. We make

use of the notation ψx to indicate ψ ∈ Cx and bψc = x to indicate the sector containing ψ. In
this example each sector contains only a single simple object, so there is no need to keep track
of the sector label separately. However, we will explicitly keep track of the sectors to prepare
the reader for more complicated examples.

The tensors for the symmetry-enriched model32,33 are given by a simple modification of
the string-net tensors, which amounts to promoting the sector label of the virtual indices to a
physical degree of freedom.

α k′ γ′

β ′
j ′
γα

′ i
′ β

g

f h
i j
k = δfbαcδgbβcδhbγcδii′δjj′δkk′δαα′δββ′δγγ′F

αij
γβk, (3.46)

The set of MPOs for the SET string-net tensor are still given by Eq.(3.6), we simply reinter-
pret them in light of the additional G-grading structure. Hence the 1 sector of the MPO algebra
is given by MPO0 and the x sector is given by MPOψ. Since we are using the same MPOs
they still satisfy the zipper condition, F -move, and the bubble popping relation introduced in
Section 3.2.1.

The pulling through equation must be modified in accordance with the G-grading. That is,
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pulling through an MPO in sector g results in a g action on the physical indices

ag

=
ag

g

g g
, (3.47)

where

g := tg × = gt . (3.48)

Similar to the purely topological case, the calculations involving MPOs within a tensor
network that satisfies the SET pulling though condition can be abstracted to a diagrammatic
calculus. This calculus additionally involves discs that are labeled by group elements, which
represent the application of the on-site symmetry to the tensor network within the labeled region.
For example

∼ x , alternatively, x ∼ , (3.49)

where the 1 label, corresponding to the action of the trivial element, remains implicit. This
corresponds to a diagramatic calculus for a 2-category222 where the set of objects is G, the
morphisms from g to h are given by the objects in Cgh, and the 2-morphisms are given by the
1-morphisms of CG .

The emergent SET order of the tensor network is described by a unitary G-crossed braided
fusion category. This mathematical structure captures the topological properties of monodromy
defects as they braid and fuse. The inequivalent monodromy defects for a given g ∈ G corre-
spond to the superselection sectors at the end point of a g domain wall. The defect superselec-
tion sectors can be calculated using a modification of the tube algebra, which is described in
Section 3.6.

The SET is intimately related to a topological order obtained by gauging the G symme-
try31,102, which can be done directly on the lattice71,93,223, see Chapter 1. The superselection
sectors of the gauged topological order can be derived from the defect superselection sectors
and the action of the group upon them. Alternatively, the defect sectors of the SET can be found
via a Rep(G) condensation215 procedure on the gauged topological order.

Here we demonstrate the effect of condensing Rep(Z2) on the toric code tubes. This is
implemented by dividing the tube algebra into 1 and x sectors, according to the group element
bpc = brc in T spqr. Next we simply drop the basis elements T spqr with bsc = x, corresponding
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to a ψ line wrapping the tube, from the tube algebra. The ICIs in the 1 sector correspond to
anyons or 1-defects, while those in the x sector correspond to x-defects. Since the defect tube
algebra in each sector becomes one dimensional, we find only the vacuum anyon and a single
x-defect, ∆x.

Anyons T 0
000 T ψ0ψ0 T 0

ψψψ T ψψ0ψ
0 1 1
e 1 −1
m 1 1
em 1 −1

7→
Sectors Defects

Condensed
T 0

000 T 0
ψψψ

Z2-action
anyons T ψ0ψ0 T ψψ0ψ

1 0 0 1 1
e 1

x ∆x
m 1 1
em 1

(3.50)

In the lower table we retain the implicit normalization of D2 = 2, from the toric code, in the
coefficients of the ICIs. However, we also have multiple contributions to each defect ICI from
the different anyon ICIs that condense into it. In this case the factors cancel and we simply have

0 = T 0
000 ∆x = T 0

ψψψ. (3.51)

From the table we see that the Rep(Z2) boson which condensed was the e particle of the toric
code. By picking a different tensor network representation of the toric code one can also realize
the equivalent condensation of m. The result is a trivial topological order with a single Z2
defect. Since the underlying topological order is trivial, the model is an SPT which is classified
by the cohomology class of the associator for the defects. This label lies in H3(G,U(1)) and
for this example it is trivial. Hence we have found a trivial Z2-paramagnet as expected.

The tubes that were dropped to make the defect tube algebra can now be used to realize the
action of the symmetry on the defect sectors. This is achieved by projecting the collection of
discarded tubes onto each defect ICI. Hence we find the action T ψ0ψ0 on the vacuum, as expected,

and T ψψ0ψ acting on the ∆x defect. These actions generate linear representations of Z2, note the
identity in each sector is given by the corresponding defect ICI.

With the representation of the symmetry for each defect we can also calculate the effect
of gauging the Z2 symmetry. Specifically there is a simple recipe to calculate the full set of
anyon ICIs of the gauged theory. For each defect the post-gauging anyon ICIs are given by
the projectors onto the irreps of the group action on that defect. In the toric code example this
implies

0 7→
1
2(T 0

000 + T ψ0ψ0) = 0
1
2(T 0

000 − T
ψ

0ψ0) = e
∆x 7→

1
2(T 0

ψψψ + T ψψ0ψ) = m
1
2(T 0

ψψψ − T
ψ
ψ0ψ) = em

. (3.52)
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We remark that there are much simpler ways to analyze the condensation / gauging pro-
cedure for the toric code, we have included it here to demonstrate our general approach on a
familiar example.

Symmetry-enriched toric code from the doubled Ising model

The Ising fusion category has a Z2-graded structure C1 ⊕ Cx = {0, ψ} ⊕ {σ}. In this case there
are two simple objects in the trivial sector, so it is necessary to keep track of the object and
sector index separately.

A tensor network representation of the recently introduced SET string-net models32,33 is
given by the following tensors

α k′ γ′

β ′
j ′
γα

′ i
′ β

g

f h
i j
k = δfbαcδgbβcδhbγcδii′δjj′δkk′δαα′δββ′δγγ′

d
1
4
i d

1
4
j F

αij
γβk

d
1
4
k

√
dβ

, (3.53)

α′ k′ γ

α
i ′
β ′ β
j
′ γ

′

g

hf
ji

k = δfbαcδgbβcδhbγcδii′δjj′δkk′δαα′δββ′δγγ′
d

1
4
i d

1
4
j F

αij
γβk

∗

d
1
4
k

√
dβ

, (3.54)

where the F -symbols are those of the input G-graded fusion category. For the current example
they are given in Eq.(3.37). We remark that the tensors are related by a combination of reflection
and complex conjugation.

The MPOs for this tensor network are the same as those for the usual string-net24, which are
described in Section 3.3. However, the MPOs in the g-sector now represent g-domain walls. The
multiplication of these MPOs is Z2-graded, and in particular {1

2(MPO0 + MPOψ), 1√
2MPOσ}

forms a representation of Z2.
These domain walls require a group action to be moved through the lattice. This is captured

by the symmetry-enriched pulling through equation

ag

=
ag

g

g g , (3.55)
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ag

=

ag

g

gg

. (3.56)

We have used the notation defined in Eq.3.47 for the group action on the physical indices. The
second equation is obtained from the first via complex conjugation and reflection. All other
pulling through configurations can be derived from Eq.(3.55) by using properties of the string-
net MPO given in Section 3.3.

The defect tube algebra is spanned by the subset of Ising tubes T spqr, given in Section 3.2.1,
with s ∈ {0, ψ}. The algebra is Z2-graded, with the 1 sector containing tubes with bpc = bqc =
1, and the x sector containing those with bpc = bqc = x. The ICIs can be found by condensing
the Rep(Z2) boson in doubled Ising, corresponding to the Z2 grading of the input Ising fusion
category. First the — possibly non-central — irreducible idempotents of the defect tube algebra
are derived from those of the doubled Ising model, given in Eq.(3.41), by simply dropping the
elements T spqr with s = σ. In this case all the resulting idempotents turn out to be central in the
defect tube algebra. In particular the two non-central irreducible idempotents in the σ̄σ block
of doubled Ising split into distinct sectors after condensation. The results are summarized in the
following table.

Sectors Defects
Condensed

T 0
000 T ψ0ψ0 T 0

ψψψ T ψψ0ψ T 0
σσσ T ψσσσanyons

1

0 0 1 1
ψψ 1 1

em
ψ 1 −1
ψ 1 −1

e σσ00 2 −2
m σσ11 2 2

x
σ+

σ 1 −i
σψ 1 −i

σ−
σ 1 i

ψσ 1 i

(3.57)

The left table carries over the implicit normalization of D2 = 4 from Eq.(3.41), but there are
also two contributions to each of the condensed defects, except e and m. For example we have
0 = 1

2(T 0
000 + T ψ0ψ0).

Each defect sector, a, carries a Z2 action, Bg
a. This is found by projecting the Ising tubes that

were thrown away onto the ICI of each sector and normalizing the results so that they satisfy
the unitarity condition (Bg

a)†Bg
a = a.

K (c0T σ0σ0 + c1T σψσψ + c2T σψσ0 + c3T σ0σψ + c4T σσ0σ + c5T σσψσ) a = Bx
a, (3.58)



3.2 A motivating example 141

for arbitrary constants ci ∈ C and some positive constant normalization K that depends on
the ci. We remark that certain specific choices of ci can result in a zero projection, but any
generic choice will lead to a nonzero result. There is a gauge freedom in the definition of Bx

a

corresponding to multiplication by a coboundary. In particular, one can always choose B1
a = a

for all a.

Sectors Defects
Z2-action

T σ0σ0 T σψσψ T σ0σψ T σψσ0 T σσ0σ T σσψσ

1

0
√

2

em
√

2

e
√

2

m
√

2

x
σ+ e−

πi
4 e

πi
4

σ− e
πi
4 e−

πi
4

(3.59)

The resulting Bx
a for the symmetry-enriched toric code are contained in Eq.(3.59), note there is

an implicit normalization by D2
1 = 2 there. We remark that the tubes which were thrown away

correspond to an x domain wall, hence projecting them onto a defect captures the action of the
x domain wall.

The nontrivial group element x may permute each defect a, resulting in a defect xa, this
permutation is found by considering

Bx
a(Bx

a)† = xa. (3.60)

In our example we find the only permutation corresponds to the EM duality xe = m, xm = e as
expected. This is summarized in the following table

ρx
x0 xem xe xm xσ+

xσ−

0 1
em 1
e 1
m 1
σ+ 1
σ− 1

(3.61)

For each defect, the action of the subgroup that does not permute it may form a projective
representation. For our example we find

(Bx
0)2 = B1

0 , (Bx
em)2 = −B1

em , (Bx
σ+)2 = e−

πi
4 B1

σ+ , (Bx
σ−)2 = e

πi
4 B1

σ− . (3.62)

Note, the symmetry groups preserving e and m are trivial. In this case the projective phases of
the x-defect sectors can be trivialized by a gauge transformation.

The Bh
ag domain walls determine a basis of minimally entangled states for each symmetry

twisted sector on the torus. The state |Bh
ag〉 is given by a linear combination of states derived
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from basis elements of the tube algebra

|pg sh qgh〉 =
p

q

p

s

s

. (3.63)

The coefficient of each state is determined by those of Bh
ag expanded in the tube basis. For a

more detailed description see Eq.(3.280). For this state to be nonzero we must have ha = a, as
the periodic boundary conditions imply that the following tubes yield the same state

Bh
ag = Bh

ag a ∼ aBh
ag = δha aBh

ag . (3.64)

Hence the dimension of the (g,h)-twisted sector is equal to the number of h-invariant g-defects.
The Bh

ag domain walls, satisfying ha = a, give rise to G-crossed S and T matrices. These
matrices are defined by their action on tube basis elements, which is described in Eq.(3.146).
They satisfy

1
Da

S(Bh
ag) =

∑
bh

Sagbh

Db
Bg
bh
, T (Bh

ag) = θaBgh
ag , (3.65)

Sagbh =
DbTr[(Bg

bh
)†S(Bh

ag)]
DaTr[(Bg

bh
)†Bg

bh
]
, θaδab =

DbTr[(Bg
bh

)†T (Bh
ag)]

DaTr[(Bg
bh

)†Bg
bh

]
, (3.66)

where we have assumed that the defect ICIs are one dimensional for the top left equality for S,
which is true for the current example.
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For the current example the G-crossed modular matrices are given by

D2
1S

(1, 1) (1, x) (x, 1) (x, x)
0 em e m Bx

0 Bx
em σ+ σ− Bx

σ+ Bx
σ−

(1, 1)

0 1 1 1 1
em 1 −1 −1 1
e 1 1 −1 −1
m 1 −1 1 −1

(1, x) Bx
0

√
2

√
2

Bx
em i

√
2 −i

√
2

(x, 1) σ+
√

2 −i
√

2
σ−

√
2 i

√
2

(x, x) Bx
σ+ e

πi
4

Bx
σ− e−

πi
4

(3.67)

T 0 em e m Bx
0 Bx

em σ+ σ− Bx
σ+ Bx

σ−

0 1
em −1
e 1
m 1
Bx

0 1
Bx
em −1
σ+ 1
σ− 1
Bx
σ+ e

πi
4

Bx
σ− e−

πi
4

(3.68)

We remark that these matrices are not gauge invariant quantities. However, they do contain
guage invariant data, in particular the S and T matrices of the underlying toric code, and the
quantum dimensions of the defects. Unitarity of the S-matrix implies that the number of h-
invariant g-defects equals the number of g-invariant h-defects, in particular the number of g-
defects equals the number of g-invariant anyons31. It also allows one to use the G-crossed
Verlinde formula to calculate the fusion rules31.

The ICIs of the gauged model can be recovered from the full set of domain walls, the
projective representations they form, and their permutation action on the defects. First, a set
of idempotents (a, µ) are constructed by forming projectors onto the projective irreps of the
stabilizer group of each defect. The ICIs [a, µ] are then found by taking a sum over projectors
in the orbit of each defect

(a, µ) = dµ
|Za|

∑
h∈Za

χµa(h)Bh
a , [a, µ] =

∑
k∈G/Za

(ka, kµ) (3.69)

For example

σ+ 7→
1
2(B1

σ+ + e
πi
8 Bx

σ+) = σ
1
2(B1

σ+ − e
πi
8 Bx

σ+) = σψ
,

e

m
7→ B1

e + B1
m = σσ . (3.70)



144 3 Symmetry-enriched topological order in tensor networks

note the projective irreps χ±σ+ of the representation {B1
σ+ ,B

x
σ+} are given by χ±σ+(1) = 1,

χ±σ+(x) = ±e−
πi
8 .

The full set of gauged ICIs is once again given by Eq.(3.41), and the resulting topological
order is the Ising model. In this case, knowing the topological order post-gauging is enough to
diagnose that the SET must be the EM duality enriched toric code {0, e,m, em} ⊕ {σ+, σ−}
where σ± have trivial FS indicator.

The S and T matrix of the gauged theory can be derived from their G-crossed counter
parts31 by using the the gauged ICIs, see Section 3.7,

S
Z(Ising)
[ag,µ][bh,ν] = 1

|G|
∑

r∈G/Za
s∈G/Zb

rχµa(sh) sχνb (rg)Sragsbh , T
Z(Ising)
[ag,µ][bh,ν] = δ[ag,µ][bh,ν]

χµa(g)
χµa(1)θa, (3.71)

where Sagbh denotes an element of the SET S matrix, and θa an element of the SET T matrix.
We have also used the notation

rχµa := χ
rµ
ra , (3.72)

to denote the action of an element r ∈ G/Za, which permutes a, on a character of Za. Note the
permutation action induces a fixed choice of irrep rµ on ra which specifies the aforementioned
character. By using Eq.(3.71), one can diagnose the gauged theory once the G-crossed S and
T matrices have been calculated, without needing to carry out the gauging procedure explicitly.
In the current example we recover the S and T matrices of the doubled Ising model.

We remark that one can go further, and use the defect ICIs and domain walls to construct
a realization of the full emergent UGxBFC, including the full gauge variant, {N,F,R, ρ, U, η}
data. For the purposes of diagnosing the SET this does not appear to be particularly useful, but
we anticipate that it may have applications to analyzing topological quantum computation19–23

with defects in a tensor network.

3.3 Symmetry-enriched string-net tensor networks

In this section we present the PEPS and MPO tensors for the class of symmetry-enriched string-
net examples32,33. These include the conventional string-nets as a subcase24. We first introduce
the unitary fusion category data166,216 that is the input for the string-net construction. We then
present the MPOs that are used in both the string-nets and their symmetry-enriched counter-
parts. The local tensors for the (symetry-enriched) string nets are then given, along with the
(symmetry-enriched) pulling through equation that they satisfy. The global symmetry of the
symmetry-enriched string-net tensors is explicitly gauged, which is shown to recover the regu-
lar string-net tensor.

3.3.1 Input (graded) unitary fusion category data

We give a pedestrian description of the algebraic data14,224 of a unitary fusion category (UFC)
C that is taken as input to the string-net construction. The skeleton of this data is given by a
fusion algebra of a finite set of simple objects a ∈ C

a× b =
∑
c∈C

N c
abc , (3.73)
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where N c
ab ∈ N are a set of fusion coefficients. We define δcab ∈ Z2 to be 0 when N c

ab = 0 and
1 otherwise.

For a G-graded UFC CG the simple objects are organized into sectors Cg and the fusion
respects the G-grading

CG =
⊕
g∈G
Cg , N ck

agbh
= δk,ghN

ck
agbh

, (3.74)

where ag is shorthand for a ∈ Cg.
There is a distinguished unit element 0, corresponding to the vacuum in a physical theory,

that satisfies N b
0a = δa,b = N b

a0. Each simple object a has a unique conjugate simple object a
that satisfies N0

ab = δa,b = N0
ba, and a = a. For a graded fusion category 0 ∈ C1 and ag ∈ Cg.

Each simple object a is assigned a quantum dimension da, given by the Perron-Frobenius
eigenvalue of the matrix obtained by fixing a in N c

ab. These quantum dimensions satisfy

da db =
∑
c

N c
ab dc , d0 = 1 and da = da . (3.75)

The total quantum dimension D of a UFC C is defined by

D2 =
∑
a

d2
a . (3.76)

For G-graded UFCs the quantum dimension of Cg is defined by

D2
g =

∑
ag

d2
ag , (3.77)

they satisfy Dg = D1 for all g ∈ G, and hence D2
G = |G|D2

1 .
The following sum is a projector known as the ω0-loop of C

ω0 :=
∑
a∈C

da
D2a . (3.78)

For a G-graded UFC the ω0-loop of C1 plays the role of the unit element in a representation of
G given by

πg :=
∑
a∈Cg

dag

D2 ag , (3.79)

hence the ω0-loop of CG is the projector onto the symmetric subspace of this representation.
In a UFC the fusion coefficients are promoted to N c

ab-dimensional vector spaces over C.
These vector spaces V c

ab (and their duals V ab
c ) appear on fusion (and splitting) vertices. Basis

states for V ab
c are denoted

a b

c

µ , (3.80)

where µ ∈ {1, . . . , N c
ab}.



146 3 Symmetry-enriched topological order in tensor networks

The fusion algebra is associative and the fusion coefficients satisfy∑
e∈C

N e
abN

d
ec =

∑
f∈C

Nf
bcN

d
af . (3.81)

However, the composition of fusion or splitting vertices is not strictly associative. Rather, two
different orders of fusion or splitting are related by an associator matrix known as the F -symbol.

At this point, for clarity of exposition, we restrict our discussion to multiplicity free UFCs.
That is, we assume N c

ab = δcab ∈ Z2. It is straightforward, although cumbersome, to extend the
whole construction to include fusion multiplicity, but we will not cover that here.

The F -symbol associators satisfy

a b c

e

d

=
∑
f

[F abcd ]fe

a b c

f

d

. (3.82)

The F -symbols are only defined upon the allowed splitting vertices, we use the convention that
they are 0 outside of this subspace

[F abcd ]fe = δeabδ
d
ecδ

f
bcδ

d
af [F abcd ]fe . (3.83)

The F -symbols are invertible matrices on the splitting spaces for which they are defined∑
f

[F abcd ]fe [(F abcd )−1]ẽf = δeẽ δ
e
ab δ

d
ec . (3.84)

The quantum dimension and Frobenius-Shur indicator can be extracted from the F -symbol

da = 1
|F aaaa00 |

, κa = F aaaa00
|F aaaa00 |

. (3.85)

Since the associativity constraint of an algebra was relaxed to a nontrivial associator, we find
a higher order constraint on the composition of associators known as the pentagon equation. The
pentagon equation can be derived by equating two inequivalent paths of associators that relate
a pair of splitting diagrams on four objects.

a b c d

e

q
p

a b c d

e

q
x

a b c d

e

x
s

a b c d

e

r
s

a b c d

e

rp

(3.86)

Which can be written in terms of matrix elements as

F pcdeqr F
abr
eps =

∑
x

F abcqpxF
axd
eqs F

bcd
sxr , where F abcdef := [F abcd ]fe . (3.87)
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A result known as Maclane’s coherence theorem225 implies that the pentagon equation alone is
enough to ensure that any path of associators between a pair of splitting diagrams are consis-
tent. Another fundamental result known as Ocneanu rigidity166,203, implies that a continuous
deformation of a solution to the pentagon equation can be absorbed into a gauge transformation
of the associator.

The fusion categories that lead to Hermitian string-net Hamiltonians have unitaryF -symbols
on the relevant splitting subspace

[(F abcd )−1]ef = [(F abcd )†]ef =
(
F abcdef

)∗
,

∑
f

F abcdef

(
F abc
dẽf

)∗
= δeẽ δ

e
ab δ

d
ec . (3.88)

3.3.2 Matrix product operator tensors and their fusion

The string-net examples considered here are defined on oriented lattices, which give rise to both
left and right handed MPO tensors. These tensors are related by a combined reflection and com-
plex conjugation. A factor of the quantum dimension must be included for each variable that
is summed over to achieve a correct overall normalization. The variables being summed over
appear as closed loops in the tensor network diagrams and we use the convention established
in Ref. 63, that such a sum over a variable s is weighted by the quantum dimensions ds. We
remark that the weighting by quantum dimension can also be incorporated into the local tensors
directly, by making use of the planar geometry, which was done in Refs. 64,119,120. We do
not take this approach here.

The MPOs described in this section are for both the string-nets and their symmetry-enriched
variants. The only difference in the symmetry-enriched case is the inclusion of a G-grading on
the objects of the input fusion category CG .

The left and right handed MPO tensors are given by

µ i ν′

α′ i′ β

µ
′
a
α

β
′
a ′
ν = δαα′δββ′δµµ′δνν′δii′δaa′

F aµiβαν√
dαdν

, (3.89)

µ i ν′

α′ i′ β

µ
′
a
α

β
′
a ′
ν = δαα′δββ′δµµ′δνν′δii′δaa′

F aαiνµβ
∗√

dµdβ
, (3.90)

where the indices take values in the set of simple objects of the input category, and d and F
are also taken from the input category. Each index of the tensor is |C|3 dimensional, and red is
used to indicate the virtual indices. The MPO tensors have some redundancy, as they are only
nonzero on the subspace of the bond indices that satisfy δνβ′a′ and δµ

′
αa, they are injective once

projected onto this subspace. Here a corresponds to the block label of the MPO.
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These MPO tensors satisfy an equation that corresponds to dragging an MPO string off a
tensor network bond, this leads to a bubble popping equation that replaces a loop of MPO a

with the quantum dimension da

i k j

a
l = 1

di
δii′δ

j
ikδ

i′
al

i k j

a
i′

l ,

i k j

a
= daδ

j
ik

i k j

. (3.91)

The factor of 1
di

in the left equation corrects for an excess quantum dimension that arises when
two separate loops are merged. This can be seen by imagining the equation as part of a larger,
closed, tensor network diagram in which the δii′ condition becomes redundant. Reflecting and
conjugating the above equations, leads to analogous relations with reversed orientations.

The matrices constructed by contracting a periodic chain of L local tensors, with block
label a and virtual index pointing let to right, are denoted MPOL

a . These matrices form an MPO
representation of the input fusion algebra

MPOL
a MPOL

b =
∑
c∈C

N c
ab MPOL

c . (3.92)

In the symmetry-enriched case this algebra is G-graded.
For open boundary conditions the MPOs only obey the algebra multiplication up to bound-

ary fusion and splitting tensors

γ
′
c
α

γ b
β
′

α ′
a β

= δαα′δββ′δγγ′
d

1
4
a d

1
4
b F

abγ
αcβ

d
1
4
c
√
dβ

, (3.93)

α
′
c
γ

β
′ a α

β b γ ′

= δαα′δββ′δγγ′
d

1
4
a d

1
4
b F

abγ
αcβ

∗

d
1
4
c
√
dβ

. (3.94)

These tensors are again related by a combined reflection and complex conjugation. We have
chosen a particular normalization of the fusion and splitting tensors such that the following
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equations hold

a

b

a

b
=
∑
c

δcab

√
dc
dadb

c c

a

b

a

b

, (3.95)

α c′β

α c β

a b = δc,c′δ
c
abδ

α
cβ

√
dadb
dc

α c β

, (3.96)

where the right equation reduces to bubble popping for b = a and c = 0.
While the multiplication of closed MPOs are clearly associative, as they are matrices, for

open boundary conditions the multiplication is not strictly associative. Rather, two different
orders of multiplication are related by an associator, that is given by the F -symbol of the input
category

a b c

d

e

e

=
∑
f

F abcdef

a b c

d

f

f

. (3.97)

An analogous equation for the fusion tensors is obtained by a combined reflection and complex-
conjugation. The resulting F symbols satisfy the pentagon equation, as the input was a consis-
tent UFC. Since we are working with the tensor product of tensors over C there is no different
between taking a left or right trace, which is analogous to the spherical property of UFCs.

In our examples we assume that the F symbols have been brought into a gauge where

F 0bc
def = F a0c

def = F ab0def = 1 . (3.98)

We remark that, in general, these elements may be arbitrary complex phases. This constraint
is equivalent to the following triangle equations, which allow a vacuum line to be added or
removed at fusion and splitting vertices

α ′a
β ′0

α b β

=
0

α
′ a
β

′

α b β

=
0

α
′ a
β

′

α b β

= α ′a
β ′

0

α b β

= δabδαα′δββ′δ
α
aβ

αaβ

.

(3.99)

In the above equations we have used the following states to terminate a vacuum line

α a β

0
:= δa0δαβ

√
dβ ,

α a β

0

:= δa0δαβ
√
dβ . (3.100)
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Terminating a vacuum line that splits into (results from the fusion of) a particle-antiparticle
pair leads to an orientation reversing “flag” matrix, corresponding to a cup (cap)

α
a
β

β
′a
α
′ :=

0

β ′a
α ′α

a
β

, β
a
α

α
′a
β
′

:=

β
′ a
α

′α
a
β

0

. (3.101)

The absolute orientation chosen for the flag matrices is not important, as they already define
their oppositely oriented variants via transposition and swapping a↔ a.

The closed MPOs satisfy MPO†a = MPOa = MPO−a , where − indicates orientation rever-
sal. The orientation reversing flag matrices implement this at the level of the local tensors

a aa a = a a , β
a
α

a

α
′a
β
′

a = δαα′δββ′δ
α
aβ

α
a
β .

(3.102)

From the above we see that the relative orientation of the flags does matter. Changing this
orientation leads to the FS indicator κa ∈ U(1), which is a piece of gauge invariant physical
data — given by κa = ±1 — for a = a

β
a
α

a

α
′a
β
′

a = κaδαα′δββ′δβaα

α
a
β , a a = κa aa .

(3.103)

The orientation reversing flag matrices can be used to derive a relation between the fusion
and splitting spaces

b

c

a a a = Aabc

b

c

a ,

c

a

bbb = Bab
c

a

b

c

, (3.104)

with the normalization we have chosen these maps are unitary. They can be used to show a
version of the pivotal identity satisfied by UFCs. For the case of no fusion multiplicity these
maps are simply phases

Aabc =
√
dadb
dc

F aabb0c
∗
, Bab

c =
√
dadb
dc

F abbac0 . (3.105)

Furthermore, the flag matrices allow one to derive a version of Eqs.(3.91), and (3.95) with
the orientation of only the red lines reversed.

3.3.3 String-net tensors and the pulling through equation

The string-net models are defined on a trivalent lattice that is dual to a triangulation endowed
with branching structure. A PEPS representation of the ground state is specified by the local
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tensors

α k′ γ′

β ′
j ′
γα

′ i
′ β

i j
k = δii′δjj′δkk′δαα′δββ′δγγ′

d
1
4
i d

1
4
j F

αij
γβk

d
1
4
k

√
dβ

, (3.106)

α′ k′ γ

α
i ′
β ′ β

j
′ γ

′ji
k = δii′δjj′δkk′δαα′δββ′δγγ′

d
1
4
i d

1
4
j F

αij
γβk

∗

d
1
4
k

√
dβ

, (3.107)

which are related by a combined reflection and complex conjugation. Each of the indices is
|C|3 dimensional, the physical indices are depicted within the tensors. In our representation
of the string-nets each edge degree of freedom appears twice on the adjacent triangles. This
convention, although redundant, is used for convenience and is equivalent to other conventions
where the redundancy is removed.

The string-net PEPS was found to be MPO-injective in Ref. 63 with respect to the MPO
defined by the same UFC C. The pulling through equations for the string-nets are given by

= , (3.108)

= . (3.109)

We emphasize the inclusion of a factor of the quantum dimension da on the index that is summed
over, which appears as a closed loop. These equations are implied by the pentagon equation for
the F -symbol used to define both the PEPS and the MPO tensors. The two equations are
related by a combined reflection and complex conjugation. All other pulling through equations,
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involving different combinations of indices and orientations, can be derived from the above by
using Eqs.(3.91), and (3.102).

3.3.4 Symmetry-enriched string-net tensors, pulling through, and gauging

For the G symmetry-enriched string-nets the simple objects of the input UFC are equipped
with a G-grading. We use the shorthand notation bac = g to denote the sector a ∈ Cg, i.e.
bagc = g. The PEPS tensors only differ from the ungraded string-nets via the inclusion of the
sector information of the virtual indices in the physical index

α k′ γ′

β ′
j ′
γα

′ i
′ β

g

f h
i j
k = δfbαcδgbβcδhbγcδii′δjj′δkk′δαα′δββ′δγγ′

d
1
4
i d

1
4
j F

αij
γβk

d
1
4
k

√
dβ

, (3.110)

α′ k′ γ

α
i ′
β ′ β

j
′ γ

′

g

hf
ji

k = δfbαcδgbβcδhbγcδii′δjj′δkk′δαα′δββ′δγγ′
d

1
4
i d

1
4
j F

αij
γβk

∗

d
1
4
k

√
dβ

. (3.111)

The tensor that copies the sector information is depicted as a circle. Again the tensors are
related by combined reflection and complex conjugation. Similar tensors were described in
Refs. 222,226.

These tensors are MPO-injective with respect to the MPO constructed from C1. They further
satisfy the symmetry-enriched pulling through equations defined by the MPOs constructed from
CG

ag

=
ag

g

g g , (3.112)
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ag

=

ag

g

gg

, (3.113)

where the shaded circle containing g denotes the application of the on-site left regular group
action

g := tg × = gt . (3.114)

Again a factor of the quantum dimension is included on the summed variable, which appears as
a closed loop. These equations are implied by the pentagon equation, and the G-grading of the
fusion algebra for CG . The two pulling through equations are related by a combined reflection
and Hermitian conjugation. All other instances of the symmetry-enriched pulling through equa-
tion can be derived from the above by using Eqs.(3.91), and (3.102). The symmetry-enriched
pulling through equation93, together with the properties of the MPOs, imply that the PEPS is
symmetric under the on-site left regular representation of G, see Chapter 1.

Gauging the G symmetry

The state gauging procedure defined in Ref. 71 can be applied to the PEPS tensors of a fixed-
point model, such as the symmetry-enriched string-nets, to produce PEPS tensors for the gauged
model. This was explained in detail in Ref. 93, and Chapter 1, which focused on SPT tensor
networks, but the results generalize straightforwardly. For a system of C[G] degrees of freedom
on the vertices of a directed graph, in state |ψ〉V , and a global symmetry given by a tensor
product of the left regular representation on every vertex, the gauging map is given by

G |ψ〉V :=
∏
v

 1
|G|

∑
gv

Lv(gv)
⊗
e+v

Le+v (gv)
⊗
e−v

Re−v (gv)

 |ψ〉V ⊗
e

|1〉e , (3.115)

where e±v is a neighboring edge that pints away from (towards) vertex v. The resulting states
G |ψ〉V are only defined on the subspace that satisfies the local gauge constraints, which does
not have an immediately obvious tensor product structure.

For the on-site left regular representation the following isometry disentangles the gauge
constraints, and maps back to a tensor product Hilbert space

Y :=
(⊗

v

〈+|v

)∏
v

∏
e+v

CL−1
v,e+v

∏
e−v

CR−1
v,e−v

, where |+〉 :=
∑

g
|g〉 , (3.116)

and CL (R) is the controlled left (right) multiplication. Hence Y G |ψ〉V is a state on the edge
degrees of freedom alone.
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The composition of the global gauging projector followed by the disentangling isometry,
CG, can be implemented directly on the local tensors

〈+|0 〈+|1 〈+|2CL
−1
0,01CL

−1
0,02CL

−1
1,12CR

−1
1,01CR

−1
2,02CR

−1
2,12 |1〉01 |1〉12 |1〉23

1

0 2

=
〈+|

〈+| 〈+| , (3.117)

where 0, 1, 2 labels the closest C[G] degree of of freedom, and 01, 12, 02 labels the newly
introduced C[G] degree of of freedom on the relevant edge.

Every edge degree of freedom of the tensor network now carries a redundant copy of the
sector information i.e. |sg〉 |g〉. A further local isometry W can be applied to each edge to
disentangle and project out this redundancy

W01W12W02

〈+|

〈+| 〈+| = , (3.118)

where W |sg〉 |h〉 := (1⊗ 〈1|) |sg〉 |gh〉. We find that this results in the string-net tensor for the
full UFC CG , given in Eq.(3.106). A similar equation holds for the positively oriented tensor
given in Eq.(3.107).

• In summary, the effect of gauging can be captured by simply projecting each local tensor
onto the trivial representation of the on-site symmetry, in this case |+〉. This explains the
results observed in Ref. 227.

• The inverse operation to gauging G corresponds to a Rep(G) anyon condensation. This
can simply be implemented on the string-net tensors by copying the sectors of the virtual
degrees of freedom to the physical index. This effectively ungauges the flat G-connection
defined by the G-grading of the virtual indices.

• Similarly, confining the G-defects of the SET can be implemented directly on the local
tensors by projecting the sector information onto the |1〉 state.

• The inverse operation corresponds to allowing G-defects and can be implemented on the
local tensors by allowing the sector degree of freedom to fluctuate freely.

These relations are summarized as follows

SNTN(C)
Fluctuate sector d.o.f. //

SESNTN(CG)
Project sector d.o.f. onto + //

Project sector d.o.f. onto 1
oo SNTN(CG)

Copy bac to phys. index
oo

(3.119)

where SNTN(C) refers to the string-net tensor network constructed from the UFC C, and
SESNTN(CG) refers to the symmetry-enriched string-net tensor network.
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3.4 Ocneanu’s tube algebra and emergent topological order from
matrix product operators

In this section, we describe a construction known as Ocneanu’s tube algebra163,164,212. The
derivation of the tube algebra from MPOs was first explained in Ref. 64, similar lattice con-
structions of the tube algebra have appeared in Refs. 195,196. By block diagonalizing this tube
algebra we find tensor network representations of the emergent superselection sectors. We are
able to extract gauge invariant observable physical data by using these representations to con-
struct minimally entangled states, this indcludes the modular S and T matrices as well as the
topological entanglement entropies of the superselection sectors. Furthermore we outline how
the full emergent anyon theory, which is known to be the Drinfeld center (or double) Z(C) of
the MPO UFC C, can be constructed by finding the gauge variant fusion and braiding, F and R
symbols. The tube algebra construction can be performed for the string-net examples tensors of
the previous section.

3.4.1 Definition of the tube algebra

Throughout this section we work on the level of abstraction explained in Eq.(3.16), where the
specifics of the underlying lattice are neglected. We use a diagrammatic notation in which grey
shaded areas denote the PEPS tensor network, and black lines denote MPOs contracted with the
virtual indices of the PEPS.

The tube algebra is found by considering a puncture in the tensor network and calculating
the action of the topological MPO symmetry on the virtual indices of the puncture. To this end
we consider a cylinder (or twice punctured sphere) as there is a global constraint that forces
the charge in a unique puncture on a sphere to be trivial. As explained in Eq.(3.17) the MPO-
injective tensor network states on the cylinder are found by closing the tensor network with an
MPO. Hence it suffices to consider the action of the topological MPO symmetry algebra on the
states

r
= 1
ds

r

s
= 1
ds s

s
r

=
∑
q

√
dq
drd3

s

s
r r

q

=
∑
pq

1
d2
s

√
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dr

ss
r rp

=
∑
pq

Brs
q (Brs

q )† 1
d2
s

√
dp
dr

ss

ss
r rp

,

(3.120)

where we have used Eqs.(3.91), (3.95), (3.102), and (3.104), or rather, the analogous equations
for a general MPO algebra. The dashed lines indicate periodic boundary conditions.
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Hence the basis elements that span the tube algebra are given by

T spqr = d
1
4
p d
− 1

4
r

r
q

p

s

s

, (3.121)

which corresponds to the minimal tensor network

d
1
4
p d
− 1

4
r rq

s

p s

, (3.122)

we will often refer to these basis elements simply as tubes. There is some gauge freedom in the
definition of these tubes which is similar to a 1-cochain. Eq.(3.120) can be rewritten as

T 0
rrr = 1

d2
s

∑
pq

(T spqr)†T 0
pppT spqr , and hence 1 :=

∑
r

T 0
rrr = 1

D2

∑
pqrs

(T spqr)†T spqr , (3.123)

where 1 denotes the identity matrix on a relevant subspace corresponding to virtual indices of
a cylinder PEPS.

Multiplication of tubes is defined by the stacking operation

T spqrT s
′

p′q′r′ = δrp′d
1
4
p d
− 1

4
r′

r
q

p

s

s

r′

q′

s′

s′

(3.124)

= δrp′
∑
q′′s′′

κs

√
dsds′

ds′′
Bq′s
q′′ (B

qs
r )†F s

′q′s
qrq′′ (F

q′′ss′

r′s′′q′)
∗
(F ss

′q′′

pqs′′ )
∗
T s′′r′q′′p , (3.125)

only tubes, T s′′pq′′r′ , satisfying δs
′′
ss′ 6= 0 have nonzero coefficients in this expansion. The tube

algebra is a C∗ algebra as Hermitian conjugation is given by

(T spqr)† = d
1
4
p d
− 1

4
r

r
q

p

s

s

=
√
dp
dr

∑
q′

Bps
q′ (A

sq
p )†F spsrqq′ T

s
pq′r . (3.126)

Each tube defines a state on the torus, which is identically zero when p 6= r

|T spqr〉 := δpr
p

q

p

s

s

=: δpr |psq〉 . (3.127)

As explained in Eq.(3.18), the above states span the ground space on the torus.
These states are not always independent, due to the relation induced by growing an ω0-loop

over the whole torus and fusing it into the MPOs along the 1-skeleton

|T srqr〉 = 1
D2

∑
pqs

∣∣∣T spqrT srqr(T spqr)†〉 . (3.128)
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3.4.2 Block diagonalizing the tube algebra with irreducible central idempotents

We have demonstrated that the tube algebra is a C∗ algebra and hence can be block diagonal-
ized. Since the tubes in Eq.(3.121) span the algebra we have

D =
∑
pqrs

δpsqδ
r
qs =

∑
a

Da ×Da , (3.129)

where the sum is over all blocks a of the tube algebra, D is the dimension of the tube algebra,
and Da is the dimension of the a block (which consists of Da ×Da-matrices).

The irreducible central idempotents (ICI) of the tube matrix algebra correspond to Hermitian
projectors onto each irreducible block. These ICIs determine the set of inequivalent topological
sectors for a disc in the tensor network that may be used to fill in a puncture. A constructive
algorithm to find these ICIs was explained in Ref. 64. Alternatively, several exact formulas
exist when the input category has additional structure such as a modular braiding228.

The irreducible central idempotents can be expressed as linear combinations of the tube
basis elements

a = 1
D2

∑
pqrs

tpqrsa T spqr , (3.130)

a = 1
D2

∑
pqrs

tpqrsa
r

q

p

s

s

, (3.131)

note the coefficients satisfy tpqrsa = δprt
pqps
a as only basis elements T spqr with r = p can occur

in the construction of central idempotents. The ICIs are defined by the conditions, a, b 6= 0

a b = δab a , T spqra = aT spqr , a 6= b+ c , (3.132)

for a, b ICIs and c a nonzero central idempotent. These idempotents realize the superselections
sectors of the emergent anyon theory, or modular tensor category (MTC), which is the Drinfeld
center Z(C) of the input UFC C. The crossing tensor for a, containing the weights tpqrsa , can be
directly interpreted as the the simple objects of the center MTC Z(C).

There is always a unique ICI corresponding to the vacuum

0 =
∑
s∈C

ds
D2T

s
0s0 , (3.133)

which is easily verified to be an ICI.
Each irreducible central idempotent that projects onto a block, a, of the matrix algebra with

dimension Da can be written as a sum of Da non-central irreducible idempotents that partition
the identity within the block

a =
Da∑
i=1

(a)ii . (3.134)

These non-central irreducible idempotents satisfy, (a)ii 6= 0

(a)ii(b)jj = δabδij(a)ii , (a)ii 6= (b)jj + c , (3.135)
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for (b)jj , c 6= 0 idempotents and (b)jj irreducible. There are also Da(Da − 1) off-diagonal,
nilpotent elements (a)ij 6= 0 in each degenerate block that satisfy

(a)ij(a)kl = δjk(a)il , (a)†ij = (a)ji . (3.136)

The irreducible idempotents are mixed by the conjugation action of the tube algebra T spqr(a)ii(T spqr)†.
In particular

(a) =
∑
j

(a)ji(a)ii(a)†ji . (3.137)

We remark that the irreducible idempotents (a)ii, together with the off-diagonal elements
(a)ij within each block, define a basis for the tube algebra. Hence we can define the change of
basis matrix

(a)ij = 1
D2

∑
pqrs

tpqrsaij T
s
pqr , (3.138)

which includes expressions for the off-diagonal elements as well as for the irreducible idempo-
tents. Similarly we have the inverse change of basis matrix

T spqr =
∑
aij

t
aij
pqrs(a)ij , which implies (T spqr)† =

∑
aij

(taijpqrs)∗(a)ji . (3.139)

These coefficients satisfy

1
D2

∑
pqrs

tpqrsaij t
bkl
pqrs = δabδikδjl ,

1
D2

∑
aij

t
aij
pqrst

xyzw
aij = δpxδqyδrzδsw . (3.140)

The columns of the inverse change of basis matrix are orthogonal

1
D2

∑
pqrs

t
aij
pqrs(t

bkl
pqrs)∗ = δabδikδjl

1
|aij |2

, (3.141)

for some positive weights |aij |.
It follows from Eqs.(3.120) and (3.141) that

1 =
∑
r

T 0
rrr = 1

D2

∑
pqrs

(T spqr)†T spqr =
∑
aij

1
|aij |2

(a)†ij(a)ij . (3.142)

Multiplying by (a)ii implies

∑
j

1
|aij |2

= 1 , and hence 1 =
∑
p

T 0
ppp =

∑
a

a , (3.143)

which is a partition of the identity, on the virtual indices of the cylinder tensor network, by ICIs.

3.4.3 Minimally entangled states and modular matrices

To diagnose the emergent topological order of the Drinfeld center Z(C) described by the ICIs,
we want to calculate gauge invariant observable quantities. In this section we describe how to
extract the modular S and T matrices by using the ICIs to define minimally entangled states
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(MES)229. These modular matrices are conjectured to be complete invariants for non-chiral,
equivalently Drinfeld center230,231, topological orders.

Each irreducible idempotent defines a state on the torus

|aij〉 := δij
1
D2

∑
pqs

tpqpsaii |psq〉 . (3.144)

Due to the relation (a)ii = (a)ij(a)ji ∼ (a)ji(a)ij = (a)jj , all irreducible idempotents (a)ii
within the same block give rise to the same state, i.e. |aii〉 = |ajj〉.

In particular we take the following set of representatives as our definition

|a〉 := 1
Da

∑
i

|aii〉 , (3.145)

which yields a basis of minimally entangled states with a definite anyonic flux a threading the
y-cycle of the torus. With this choice of normalization we have |a〉 = |aii〉.

Since the ground space on the torus is spanned by states of the form |psq〉, see Eq.(3.18),
we recover the well known fact that the ground space dimension of the torus equals |Z(C)| the
number of emergent anyons or ICIs.

The modular S and T matrices are defined on the tubes as follows

S(T spqr) := δpr

p

q
p

s
s T (T spqr) := T pp0pT spqr (3.146)

=
∑
q′

κsBq′s
p Bsp

q′ (B
qs
p )†(Apsq′ )

†(F spspq′q)
∗
T psq′s . (3.147)

For the normalized MES and ICIs they satisfy

|S(a)〉 =
∑
b

Sab |b〉 , T (a) = θa a . (3.148)

The quantity θa ∈ U(1) is known as the topological spin of sector a. The equation defining it
follows from Schur’s lemma and the observations

∑
a

T aa0a T spqr = T spqr
∑
a

T aa0a , and

(∑
a

T aa0a

)†(∑
a

T aa0a

)
=
∑
a

T 0
aaa = 1 , (3.149)

which imply that T acts as the identity times a phase on each irreducible block of the matrix
algebra. The S and T matrices just defined match those derived from state overlaps of MES for
fixed point models such as the string-nets.

As a technical aside, note that S was defined on MES — rather than directly on ICIs — as
the relation |aii〉 = |a〉 is necessary to find the correct S matrix elements. This already shows
up in the doubled Fibonacci example, see Section 3.9. An equivalent definition would be to look
at the action of S on ICIs up to equivalence by conjugation (a)ii ∼ (a)ji(a)ii(a)†ij = (a)jj .
Another useful equivalent definition of the matrix elements for S and T is given by

Sab = DbTr[b†S(a)]
DaTr[b†b]

, θaδab = DbTr[b†T (a)]
DaTr[b†b]

, (3.150)
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where the trace now ensures that we have the necessary relation

Tr[(a)ii] = Tr[(a)jj ] = 1
Da

Tr[ a ] . (3.151)

We remark that the formulas in Eq.(3.150) where written with some unnecessary redundancies
(such as the hermitian conjugation). We chose to present them in this way as it makes their
generalization to the symmetry-enriched case more clear.

The S and T matrices constructed above are unitary, as the emergent theory is the Drinfeld
centerZ(C), which is known to be modular. Furthermore, since all such theories can be realized
by local commuting projector Hamiltonians — via the string-net construction — they have zero
chiral central charge and do not support robust gapless edge modes. Consequently S and T
satisfy the modular relations

(ST )3 = S2 , S4 = 1 . (3.152)

One can also verify that our definition of S and T must satisfy the above modular relations via
direct manipulation of MPOs. Without using the previously known results it is clear that our
definition of T must be unitary. It should also be possible to directly show that our definition of
S is unitary. However we will not labor to reproduce this known result here.

One can find an explicit formula for S in terms of matrix elements tpqrsaij , t
aij
pqrs of the tube

basis change matrix, and F abcdef from the UFC data. This leads to a convenient formula for the
quantum dimensions

da =
∑
p

dpt
ppp0
a

Da
, (3.153)

which follows from

da
D2 = Sa0 = Tr[0S(a)]

DaTr[ 0 ] = 1
D2

∑
pqs

tpqpsa

Tr[0S(T spqp)]
DaTr[ 0 ] =

∑
p

dpt
ppp0
a

D2Da
. (3.154)

Where we have used the relation S(T spqp) 0 = dpδs0δpq 0, which is implied by Eq.(3.167).

3.4.4 Topological entanglement entropy of the superselection sectors

Our tensor network representation of the ICIs a, that project onto each superselection sector,
can be used to calculate the topological correction to the entanglement entropy for these sec-
tors37,38,232. We first calculate the scaling of the rank of each sector, given by the trace of the
relevant ICI, to find the topological correction. We then argue that this correction should be
independent of the Rényi index for an RG fixed point model109 and, furthermore, that the value
of topological entanglement entropy (TEE) should be robust throughout a gapped phase37.

Using Eq.(3.153), we find that the topological correction to the 0-Rényi entropyH0 (i.e. the
entanglement rank) for the a sector is given by

γa = log(Dout)− log(da) , where Dout = D2 , (3.155)

Dout is the total quantum dimension of the emergent theory. Note, this differs from the TEE of
the MES, as reported in Ref. 229, since we are considering a disk topology rather than a torus.
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For gapped, fixed point models — such as the string-nets — the 0-Rényi entropy is equal
to the entanglement entropy as the Schmidt spectrum is flat. Hence, for fixed point models,
the topological correction γa we have calculated corresponds to the topological entanglement
entropy (TEE) of the a superselection sector37,38. Furthermore, Ref. 109 argued that the result
for the TEE calculated at a fixed point, via the 0-Rényi entropy, should hold throughout the
gapped phase containing that fixed point model.

The 0-Rényi entropy H0 of the a superselection sector can be calculated by taking the trace
of the ICI a. To extract the topological correction we need to access the regime of asymptotic
scaling in the size of the perimeter L. Hence we consider an ICI formed by an MPO of length
L contracted with the crossing tensor containing the weights tpqpsa

H0 = log
( 1
DaD2

∑
pqs

tpqpsa Tr
[ pq

p

s

s
s

1

s . . .

. . .2

s

L

])
. (3.156)

The factor of D−1
a is included due to an argument presented in Ref. 64 that for a pair of charges

a, a on a sphere, each basis vector in the degenerate block appears with the same weight. To
produce a correctly normalized state, this weight should be D−1

a .
It was argued in Ref. 64 that the trace of a projector MPO of length L (assuming the exis-

tence of a unique unit element) is dominated by the leading eigenvector of the 0 block, λ0 > λs
for s 6= 0. This contributes a factor of λL0 and picks out the elements of the crossing tensor tppp0a

satisfying s = 0. To be consistent with a faithful MPO representation of the UFC calculus, the
traced crossing tensor must yield the quantum dimension of the closed loop it forms, i.e. dp for
the entry of the crossing tensor with coefficient tppp0a . Using Eq.(3.153) we find that H0 scales
as

H0 ≈ log(λ0)L− γa , where γa = − log
(∑

p

dpt
ppp0
a

DaD2

)
= log(Dout)− log(da) . (3.157)

This provides a general method to extract the TEE of superselection sectors directly on the
lattice, including the well known vacuum TEE γ0 = log(Dout).

3.4.5 Fusion

The fusion spaces of the emergent theory are found by considering the tensor network on a
thrice-punctured sphere. To construct these fusion spaces we make a slight change of notation
for the tubes

r
q

p

s

s

=
r
qp

s

, a =

a

. (3.158)



162 3 Symmetry-enriched topological order in tensor networks

Now the splitting space V ab
c is constructed from tensor networks of the form

a b
µ

c

, (3.159)

where

µ :=
∑
pqr

cpqrµ d
1
4
p d

1
4
q d

1
4
r

p q

r

. (3.160)

There is an important subtlety in calculating the basis vectors of the spanning set, due to the
local relation induced by growing an ω0-loop over the thrice punctured sphere and fusing it into
the skeleton. Hence the splitting space is spanned by vertex tensors µcab in the support subspace
of the following projector

∑
sijklpq

D4

d2
s

a†ij b†kl
µ

cpq

s

= µ , (3.161)

where µcab indicates µ ∈ V ab
c . More specifically, the relation is induced by creating an ω0-loop

between c and a, b and fusing it into the edges around the µcab vertex. This also results in a
correlated action by (a)ij , (b)kl and (c)†pq on the a, b and c sectors, respectively. These actions
permute the internal states within each degenerate block.

Considering Eq.(3.136), and the fact that the ω0-loop is a projector, one finds that the action
in Eq.(3.161) is also a projector. By taking the trace of this projector we should find N c

ab, the
dimension of its support subspace. After using the tube S-matrix to expand a, b, c in a com-
plimentary tube basis, we find a formula that is tantalizingly close to the well known Verlinde
formula233,234

N c
ab =

∑
x

SaxSbxScx
S0x

. (3.162)

This formula holds for any modular theory, which includes all the theories we consider as they
are Drinfeld centers. We expect that our formula should recover Verlinde, after some massaging,
although we do not pursue this direction any further here.

In the case that a, b, and c are nondegenerate, cpqrµ is a delta function that determines a
unique fusion vertex, µcab. This fusion vertex, µcab, must satisfy

∑
s

D4

d2
s

a† b†
µ

c

s

= µ , (3.163)
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which allows one to absorb the c ICI into a, b and µcab. More explicitly, for nondegenerate ICIs
a, b, c, one has

a b
µ

c

=
a b

µ

, (3.164)

for the unique vertex µcab that satisfies Eq.(3.163).
Eq.(3.161) follows from the identity

∑
s

ds
D2

a

s

=
∑
ij

(ã)†ij a (a)ij , (3.165)

which takes a slightly more illuminating form for a nondegenerate block

∑
s

ds
D2

a

s

= ã† a . (3.166)

The special case of this equation for a = 0, corresponds to sliding an MPO over an ω0-loop

∑
s

0

s

=
∑
s

0

s

, (3.167)

which can be intuitively understood as follows: the 0 ICI simply projects onto a disc of unaltered
tensor network, through which the MPO is free to move.

The above identities are a consequence of the following slight generalization of Eq.(3.142),
which is proved in much the same way,

∑
rs

ds
D2

s
r = 1

D2

∑
pqrs

(T̃ spqr)†T spqr =
∑
aij

(ã)†ij(a)ij , (3.168)

where

(T̃ spqr)† = d
1
4
p d
− 1

4
r

s

s

r p

q , (ã)†ij = 1
D2

∑
pqrs

(tpqrsaij )∗ (T̃ spqr)†. (3.169)
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We remark that Eq.(3.166) is somewhat analogous to state teleportation in quantum informa-
tion, where a plays the role of the state being teleported and the delta condition arising from
multiplication with the idempotent plays the role of the projective measurement.

Similar to Eq.(3.165), we have

∑
s

ds
D2

a

s

=
∑
ij

(a)†ij a (ã)ij , (3.170)

with analogous definitions of T̃ spqr and (ã)ij to those in Eq.(3.169).

Cups, caps and the Frobenius-Schur indicator

The special case of pair fusion (creation) to (from) the vacuum is captured by the cap (cup) tube

a a , and a a , (3.171)

respectively. Where ā is the ICI for which the above tubes are nonzero. The FS indicator can be
found by composing a cup and a cap228, which corresponds to unbending an anyon worldline

aaa = κa a . (3.172)

We remark that the the FS indicator only has an invariant meaning for self inverse particles,
a = a, in which case κa ± 1.

F -symbol associators

Assuming no block degeneracy, the F -symbols for the doubled theory, denoted F , are given by

µeab

νdec

=
∑
f

Fabcdef

ρfbc

σdaf

, (3.173)

∑
pqrst

p q

r

s

µeab

νdec

t =
∑
pqrstu
fρσ

F pqrstu c
pqt
µ ctrsν cρqruc

σ
pus

q r

p

s

ρfbc

σdaf

u , (3.174)
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where, due to the no degeneracy assumption, cµpqt and cqruρ are delta functions. We remark that
the above equation should be interpreted as part of a larger diagram, involving a sphere with
four punctures, that have been projected onto idempotents a, b, c and d respectively, similar
to the thrice punctured sphere depicted in Eq.(3.159). The LHS of the above equation has an
implicit e idempotent between the fusion vertices, which was absorbed into the µ vertex using
Eq.(3.163). Similarly, the line connecting the fusion vertices on the RHS has been resolved into
a sum over idempotents f , using Eq.(3.143), which have been absorbed into the ρ vertex using
Eq.(3.163).

There is a similar, although somewhat more involved equation for F when degenerate
blocks are involved. By considering a sphere with five punctures one can check that the emer-
gent F -symbols satisfy the pentagon equation.

3.4.6 Braiding

The exchange of superselection sectors can be implemented by a deformation of the tensor
network

b a

Exchange−−−−−→
a b

(3.175)

=
∑
ijs

D2

ds a b

s
a†ij

,

(3.176)

where we have used Eq.(3.165) to find a tensor corresponding to the Rab matrix. We remark
that there is a correlated action (a)ij on the internal states of the a block, if it is degenerate,
which we do not explicitly depict.

R-matrix

If the a ICI is nondegenerate, there is no summation over i, j and we simply have the above
formula with a† in place of (a)†ij . Hence for nondegenerate a and b we have a formula for the
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R matrix

Rab = a†

sbsa

=
∑
q

(tsaq sasba )∗

dsb
, (3.177)

where sa is defined by the equation aT 0
ppp = δp,sa a.

The R matrix can be resolved into sectors of definite charge to find the Rabc symbols. For
nondegenerate ICIs a, b, c, and the unique fusion vertices µcba, and νcab, we have

µ

a†

= Rabc
ν , (3.178)

which should be interpreted as part of a larger fusion diagram such as Eq.(3.159). An explicit
formula for Rabc can be derived from Eq.(3.177). We remark that a similar line of reasoning
applies to degenerate ICIs, but the analysis becomes more complicated.

3.5 Symmetry-enriched topological order from matrix product op-
erators

In Ref. 93, and Chapter 1, a formalism was introduced for the classification of symmetry-
enriched topological order in two spatial dimensions using G-graded matrix product operator
algebras. The formalism was based on finding MPO representations MPOg of the physical
symmetry group G. These MPOs correspond to G-domain walls. Only unitary, on-site repre-
sentations of finite groups were explicitly considered, but this turns out to capture the same SET
phases without making the on-site assumption81 and there is a simple extension to also include
anti-unitary elements33.

In this section we develop the theory of G-graded MPO algebras, drawing on the previous
results derived for MPO algebras in Ref. 64. We find that the G-graded MPO algebras, with
a given underlying 1-sector MPO algebra, correspond to G extensions of that 1-sector MPO
algebra. We establish a close analogy between G-graded MPO algebras and G-graded UFCs,
for which the extension problem has been thoroughly analyzed in Ref. 81. The G-graded MPOs
are used to define a symmetry-enriched pulling through condition for PEPS tensors that lead to
symmetric tensor networks under the global symmetry. Finally we describe how calculations
involving the G-graded MPOs can be abstracted to a diagrammatic calculus that only keeps
track of the relevant topological information.

3.5.1 G-graded MPO algebras

We consider MPO representations of a finite group G consisting of translation invariant elements
of the form

MPOL
g =

∑
i1...iL
j1...jL

Tr[∆gB
i1j1
g Bi2j2

g · · ·BiLjL
g ] |i1 · · · iL〉 〈j1 . . . jL| , (3.179)
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for arbitrary length L. The object Bij
g is a χg×χg matrix for each value of i, j ∈ ZD, where χg

is the bond dimension of the MPO and D corresponds to the bond dimension of a PEPS. ∆g is
also a χg × χg matrix. In the conventional tensor network notation, we have

(Bij
g )αβ = g βα

i

j

, MPOg = ∆g g g . . . g , (3.180)

where dashed lines are used to denote periodic boundary conditions.
We restrict our attention to MPOs that can be brought into canonical form45,67 after insertion

of ∆g. Hence the tensors have a block diagonal structure

Bij
g =

⊕
a∈Cg

Bij
a , ∆g =

⊕
a∈Cg

wa1χa , (3.181)

where Bij
a are a set of χa × χa matrices that generate the full matrix algebra, wa are nonzero

complex numbers, and Cg refers to the collection of MPOs appearing in the decomposition of
MPOg. These MPOs are referred to as single block, since they cannot be decomposed further.
The full collection of single block MPOs in all sectors is denoted CG . We remark that ∆g

decomposes into a direct sum of multiples of the identity since it must commute with the full
matrix algebra on each block, as the MPO is translationally invariant.

In tensor network notation Eq.(3.181), left, is written as

g =
∑
ag

ag , where ag βα

i

j

= (Bij
ag)αβ , (3.182)

and the shorthand notation ag indicates MPOa ∈ Cg. We also use the shorthand bac ∈ G to
indicate MPOa ∈ Cbac, i.e. bagc = g. We remark that each ag MPO tensor is only nonzero
within the relevant χa × χa block of the virtual index, hence a direct sum is implicit in the
equation above, left.

The single block MPOs are then

MPOag = ag ag . . . ag , which satisfy MPOg =
∑
ag

wag MPOag . (3.183)

Since the g MPOs form a representation of G we have MPOgMPOh = MPOgh. The MPO
algebra must have a faithful G-grading, i.e. |Cg| > 0 for all g, otherwise application of the
physical symmetry to a tensor network can annihilate the state. If |C1| = 1 there is no un-
derlying topological order, and the formalism recovers the cohomology classification of SPT
phases36,70,73 in (2 + 1)D, this case was thoroughly analyzed in Ref. 93, Chapter 1. In general
this representation yields a Hermitian MPO projector onto the symmetric subspace

1
|G|

∑
g∈G

MPOL
g , (3.184)

for all lengths L. In Ref. 64 such MPO projectors where analyzed extensively, and it was found
that many concepts from the theory of fusion categories naturally emerge. At an intuitive level,
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such MPO projectors correspond to a representation of a fusion category. In particular, the
theory of MPOs and the fact that we have a representation, implies

MPOagMPObh
=
∑
c∈CG

N c
agbh

MPOc =
∑

cgh∈Cgh

N
cgh
agbh

MPOcgh
, (3.185)

∑
ag bh

N
cgh
agbh

wagwbh = wcgh , (3.186)

sinceN c
agbh

vanishes unless c ∈ Cgh. Remarkably it also implies a local version of this condition
on the level of individual MPO tensors. That is, there exists a set of independent fusion tensors,
and their left inverses

[Xcgh µ
agbh

]γαβ = γc
α a

β

b
µ

, [(Xcgh µ
agbh

)−1]αβγ = γ
c

β
b

αa
µ , (3.187)

where µ ∈ ZNc
ab

, such that

bh

ag cgh
µ

cgh
µ = δcab

c ,
bh

ag
dgh

ν
cgh

µ = δcabδµνδcd
cgh , (3.188)

where the cgh line on the right indicates the identity on the cgh block of the virtual index. We
remark that the fusion tensor are only defined up to an invertible gauge transformation on the
degeneracy index, µ,

X
cgh µ
agbh

7→ X̃
cgh ν
agbh

:=
∑
µ

(Y c
ab)νµX

cgh µ
agbh

. (3.189)

For a symmetric PEPS on a sphere, a second type of MPO arises that has a reversed orien-
tation of the virtual bond. These MPO are not independent from those introduced earlier, and
lead to an arrow reversing gauge transformation. Consider a sphere and partition the on-site site
representation into an action on the northern and southern hemispheres,

U(g) = UN(g)⊗ US(g) , (3.190)

respectively. Applying US(g) to a symmetric PEPS — see Section 3.5.4 — leads to a domain
wall along the equator, represented by MPOg. Applying UN(g) instead, leads to a different
MPO

MPO−g =
∑
ag

wagMPO−ag , (3.191)

where MPO−ag = ag ag . . . ag , and (B−ag)
ij
αβ = βα

i

j

ag . (3.192)
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This is simply because the boundary of the southern disc has the opposite orientation to the
boundary of the northern disc. Hence, by applying UN(g) = (1⊗ US(g) )U(g) to a symmetric
PEPS on the sphere we find

MPO−g = MPOg . (3.193)

The theory of MPS implies that there is a unique label ag, for each ag, such that

MPO−ag = MPOag
, and , wag = wag , (3.194)

which also satisfies a = a. Furthermore, there exists a local gauge transformation

Za = aa , Z−1
a = a a , (3.195)

such that

ag = ag
a a

, and ag = ag
a a

. (3.196)

Note the same gauge transformation must work for both orientations in a consistent MPO rep-
resentation93. By applying Eq.(3.196) twice, we find that Za(Z−1

a )T must commute with the
set of matrices Bij

a . Hence Za(Z−1
a )T = κa1χa , for some complex number κa. This implies

aa = κa a a , and aa = κa a a , (3.197)

we also find κa = κ−1
a . The magnitude |κa| can be absorbed into the definition of Za and the

phase κa
|κa| can also be absorbed unless a = a, in which case we have κa = ±1. It will be shown

later that this quantity corresponds to the familiar Frobenius-Schur indicator from the theory of
fusion categories.

3.5.2 Classification via group extensions of MPO algebras

G-graded matrix product operator algebras can be classified by G extensions of an underlying
MPO algebra, that corresponds to the 1-sector of the resulting graded algebra.

Summary of the problem

G-graded MPO algebras CG occur as group extensions of the ungraded MPO algebra C that
forms the 1 sector. This is a generalization of the more familiar group extension problem,
where C plays the role of the normal subgroup, and G the quotient group. For the class of MPO
algebras that correspond to fusion categories, which we focus on, one can apply the thorough
analysis of the group extension problem for fusion categories given in Ref. 81.

The first step in the search for faithful G extensions of an MPO algebra C can intuitively be
thought of as a hunt for G-graded MPO algebras CG that make

1→ C → CG → G → 1 , (3.198)

into a short exact sequence. From left to right, the arrows correspond to: a map from unit to the
0 MPO (defined more precisely below), an injection that maps C to C1 ⊆ CG , a surjection that
maps Cg down to g, and a map from all elements of G to 1, respectively.
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This extension problem includes the group extension problem as a special case in the fol-
lowing way: for C = VecN and G = Q, any group G that is an extension of Q by N yields a
solution CG = VecG. There are solutions beyond these group extensions, as demonstrated by
the example C = VecZ2

and G = Z2, for which we find solutions where CG has Ising fusion
rules, along with solutions that have Z2 × Z2 and Z4 fusion rules. This example is explored
further in Section 3.9.

There is a potential obstruction to finding an associative set of G graded fusion rules which
lies in the third cohomology groupH3(G,Z1), explained in detail below. If this obstruction van-
ishes, we have a consistent set of G-extended fusion rules. These form a torsor over H2(G,Z1)
as shifting by such a 2-cocycle leads to another consistent solution.

A consistent G-graded fusion algebra alone does not solve the extension problem. Since the
fusion of open MPOs is only associative up to some boundary operator, we need to solve a cate-
gorification of the underlying algebra problem. Hence we must also check whether a consistent
set of associators can be found, to relate the fusion of open MPOs in different orders. This
amounts to finding F -symbols that solve the pentagon equation for the previously constructed
G-graded fusion algebra. Any such solution can be realized by a G-graded MPO algebra via
the fixed point construction in Section 3.3. It was shown in Ref. 81 that there is a potential ob-
struction to finding a consistent set of associators which lies in H4(G,U(1)). We find that this
obstruction vanishes for the class of MPOs considered here, and the resulting solutions form
H3(G,U(1)) torsors. That is, multiplying any solution by a 3-cocycle results in another —
possibly distinct — solution. Physically this corresponds to the fact that a classification of SET
phases depends upon the choice of on-site symmetry with respect to which they are classified.

For the above example, where C = VecN , G = Q, and the fusion rules are given by
CG = VecG — for G a group extension of Q by N — the potential H4(G,U(1)) obstruction
disappears as the trivial F -symbols are a valid solution to the pentagon equation. Shifting by
an element [α] ∈ H3(G,U(1)) corresponds to twisting the extension by a 3-cocycle to obtain
CG = VecαG .

This example captures the formalisms of Ref. 29,235–237. Refs. 236,237 corresponds to
further restricting the 3-cocycle α to lie in the trivial cohomology class. They differ in so far
as Ref. 237 captures the case where the restriction of the cocycle to N may be nontrivial in
cohomology, while Ref. 236 requires this restriction to be trivial. It is clear that restricting
CG to have the fusion rules of a finite group is very restrictive and misses many interesting
cases, such as the Ising fusion rules needed to describe the EM duality enriched toric code, see
Sections 3.9.1, 3.2.2. Furthermore, all such MPOs can be generated by an on-site representation
times a diagonal local unitary circuit, see Refs. 70,74,93, while the more general MPOs may
require a linear depth unitary circuit, for instance the Ising MPO.

MPO representations satisfying the group zipper condition

At this point we assume that a stronger version of the local fusion condition holds for the MPO
group representation. This allows us to make contact with the theory of group extensions of
fusion categories81. The MPO representation of a G domain wall correspond to an invertible
bimodule in the language of Ref. 81. We restrict to the case where the full group MPOs satisfy
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the group zipper condition: that there exist tensors, together with left inverses

Xg,h =
ghg

h
, X−1

g,h =
gh

h

g

, (3.199)

such that

h

g

= gh
g

h h

g

. (3.200)

These tensors define a left and right group action on the χg × χg matrix algebra of the g virtual
bond

h ◦Mg =
Mg

h
hghg

, Mg ◦ h = h

Mg ghgh
. (3.201)

The subset of matrices — modulo multiples of the identity — that commute with Bij
g for all

ij, define the group of autoequivalences of the g domain wall, Zg. The right and left actions
in Eq.(3.201) imply isomorphisms Zhg ∼= Zg ∼= Zgh, due to the zipper condition, and hence
Zg ∼= Z1. It was shown in Ref. 81 that Z1 ∼= A, the group of abelian anyons of the emergent
topological order A ⊆ Z(C1). It is beyond the scope of this paper to rigorously establish that
our definition of Z1 matches that of Ref. 81, but they are analogous.

The Xg,h tensors define a matrix

T (g,h,k) = h

g

k

, (3.202)

that lies in Zghk and satisfies the 3-cocycle equation

g0 ◦ T (g1, g2, g3)T (g0, g1g2, g3)T (g0, g1, g2) ◦ g3 = T (g0, g1, g2g3)T (g0g1, g2, g3) .
(3.203)

If we modify our choice of Xg,h, by an element Mg,h ∈ Zgh, to X ′g,h = Xg,hMg,h we find that

T ′(g,h,k) = M−1
gh,k (M−1

g,h ◦ k)T (g,h,k) (g ◦Mh,k)Mg,hk , (3.204)

which corresponds to a transformation by a coboundary.
HenceXg,h yields an element [T ] ∈ H3(G,Z1), that is invariant under modifying the choice

of Xg,h by an element of Zgh. This element [T ] constitutes an obstruction to a consistent MPO
representation of a set of G domain walls. Intuitively, the obstruction can be thought of as
an anomalous anyonic charge appearing from the fusion of domain walls. It is unclear at this
point whether an MPO group representation can be found with [T ] 6= 0. If they were to be
found, these MPOs would be relevant to the understanding of tensor network representations of
SETs with anomalous symmetry fractionalization, such as those occurring on the boundary of
a (3 + 1)D higher form SPT155,238.
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Consistent fusion of the MPO representation requires [T ] = 0 and that T has been trans-
formed, by a coboundary, into a multiple of the identity. Tensor solutions Xg,h that satisfy
[T ] = 0, form H2(G,Z1) torsors. That is, we can modify any solution Xg,h by a 2-cocycle
Mg,h ∈ Zgh satisfying

(Mg,h ◦ k)Mgh,k = (g ◦Mh,k)Mg,hk , (3.205)

to find a new solution X ′g,h = Xg,hMg,h

Hence we have T (g,h,k) = α(g,h,k)1ghk, where we may take α(g,h,k) ∈ U(1) by
normalizing the Xg,h tensors. This yields an associator

h

g

k

= α(g,h,k) h

g

k

. (3.206)

Considering the reduction of g0g1g2g3, one finds a relation

g0 g1 g2 g3

g0 g1 g2 g3 g0 g1 g2 g3

g0 g1 g2 g3

g0 g1 g2 g3

, (3.207)

leading to the phase

ν(g0, g1, g2, g3) := α(g1, g2, g3)α(g0, g1g2, g3)α(g0, g1, g2)
α(g0, g1, g2g3)α(g0g1, g2, g3) , (3.208)

which is a 4-cocycle. This constitutes anH4(G,U(1)) obstruction81 to finding a solution to the
pentagon equation for the MPO representation. We find that this obstruction always vanishes for
the MPOs we consider, due to the zipper condition we have assumed. It would be interesting to
generalize our framework to capture a nontrivialH4(G,U(1)) obstruction, which is relevant for
the understanding of tensor network representations of anomalous SETs such as those occurring
on the boundary of a (3 + 1)D SPT239–241.

Since this obstruction vanishes, the possible solutions to the pentagon equation form an
H3(G,U(1)) torsor. That is, any F -symbol solution may be multiplied by a 3-cocycle to obtain
another solution which may or may not be distinct.

3.5.3 G-graded MPO algebras satisfying the stronger zipper condition and G-
graded unitary fusion categories

We move on by narrowing our focus to the class of MPOs that are relevant for the description of
anomaly free SET phases in (2+1)D. The properties thus introduced allow for an identification
of these MPOs with G-graded UFCs. In the process, we recount many results shown in Ref. 64
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and put them into the context of G-graded MPO algebras, which are relevant for the description
of domain walls in SET ordered states.

From this point on we assume that the stronger zipper condition holds for the single block
MPOs, and the fusion tensors defined in Eq.(3.187)

bh

ag

=
∑
cghµ

c
ag

bh
µ

bh

ag
µ . (3.209)

The class of MPOs satisfying the zipper condition is sufficiently general to capture representa-
tions of all G-graded fusion categories, via the fixed point construction explained in Section.3.3.

The associativity of the product (MPOagMPObh
)MPOck

= MPOag(MPObh
MPOck

) implies∑
egh

N
egh
agbh

N
dghk
eghck =

∑
fhk

N
dghk
agfhk

Nfhk
bhck

. (3.210)

The addition of the zipper condition further implies the existence of F -symbol associators64

bhag ck

α

e
β

d

=
∑
fµν

[F abcd ]fµνeαβ

bhag ck

µ

f
ν

d

, (3.211)

where

[F abcd ]fµνeαβ = 1
χd

bh

ag

ck
µ
f

ν

e
α

β

d

, (3.212)

that satisfy the pentagon equation

ag bh ck dl

e

q
p

ag bh ck dl

e

q
x

ag bh ck dl

e

x
s ag bh ck dl

e

r
s

ag bh ck dl

e

rp

, (3.213)

∑
ν

[F pcde ]rµνqβγ [F abre ]sστpαν =
∑
xκλη

[F abcq ]xκλpαβ[F axde ]sητqλγ [F bcds ]rµσxκη . (3.214)

Hence all obstructions vanish for MPO representations satisfying this zipper condition, and we
have a consistent fusion theory. It was shown in Ref. 64 that MPO algebras satisfying the
zipper condition correspond closely to fusion categories. Hence the structure of G-graded MPO
algebras that satisfy the zipper condition correspond closely to G-graded fusion categories.
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The classification of G SET phases for a given underlying topological order is given by
G-graded MPO algebras containing the MPO algebra of the underlying topological order as C1.
There is a subtlety in this classification as different MPO algebras may give rise to the same
emergent SET. We say that a pair of G-graded MPO algebras are G-graded Morita equivalent if
they lead to the same emergent SET. A method to calculate the emergent SET from the G-graded
MPO algebra is described in Section 3.6. Hence, for the SET phase classification, one should
consider G extensions of all representatives in the Morita equivalence class of the underlying
topological order, up to G-graded Morita equivalence.

Imposing further restrictions to isolate the G-graded MPO algebras that describe SET
orders

Thus far we have seen the structure of associative fusion rules arise from MPO algebras. We
proceed to restrict our attention to MPO algebras that satisfy a range of further conditions,
derived from structures in a unitary fusion category.

Firstly, we restrict to irreducible projector MPOs, i.e. those where MPO1 cannot be written
as a sum of inequivalent nonzero projector MPOs

MPO1 6= PMPO + PMPO′ . (3.215)

This excludes the possibility of cat state projectors that occur for spontaneous symmetry break-
ing phases. It corresponds to restricting to stable TQFTs, and we note the nonreducible case
can be reconstructed by taking a sum of irreducible PMPOs.

Next we further restrict our attention to MPO representations that satisfy MPO†g = MPOg.
Equivalently, MPO representations that are unitary within the support subspace of a Hermitian
unit MPO. This implies the MPO projector in Eq.(3.184) is also Hermitian. For a consistent
unitary MPO representation we must have MPO†ag = MPOag

= MPO−ag , that is, the conjugate
particle defined by Hermitian conjugation must match that defined by orientation reversal. In
this case the tensor for the left handed tensor is defined by reflecting and complex conjugating
the right handed tensor (B−a )ijαβ = (Bij

a )∗βα. Graphically

βα

i

j

ag =
∗
αβ

i

j

ag , (3.216)

i.e. complex conjugation is equivalent to reflection of the tensor. This implies

N c
ab = N c

ab
(3.217)

Additionally, we have wā = w∗a and hence the wa are real numbers. Moreover, wa > 0 follows
from Eq.(3.186), and the fact that N c

ab has only nonnegative entries.
We further assume that the single block MPOs have been brought into a canonical form45,67

that admits unitary gauge transformation matrices Za and isometric fusion matrices Xc
ab.

It was shown in Ref. 64 that, for projector MPOs satisfying our assumptions, each block a
has an element ea that satisfies N ea

aa = 1. We further assume that there is a unique, single block
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unit MPO 0 satisfying N0
aa = 1 for all a ∈ C. It was shown64 that, with this assumption, 0 = 0

and κ0 = 1. Furthermore, N0
ab

= δab and

N c
ab = Na

bc = N b
ca , which implies δab = N b

a0 = N b
0a , (3.218)

and hence 0 plays the role of the trivial element under fusion, as expected. We do not expect all
irreducible projector MPOs to be unital, as the existence of a unit is posited as an assumption
in the theory of fusion categories.

Given the definition of the unit element, we require that the F -symbols have been brought
into a gauge where

δcabδµν = [F a0b
c ]b0νa0µ = [F ab0c ]a0ν

bµ0 = [F 0ab
c ]aν0

b0µ , (3.219)

where the first equality corresponds to the triangle equation and the latter equalities follow
by combining it with the pentagon equation. Then it was shown64 that the F -symbols can be
brought into a compatible gauge satisfying

[F aaaa ]000
000 = κa

da
, (3.220)

with da = da > 0, and κa matching the definition given in Eq.(3.197).
Consistent fusion of the MPOs within a tensor network requires that removing an infinites-

imal loop of MPOa results in a weight da. A local sufficient condition for this is

ag

ag

= da P , (3.221)

where P corresponds to the projector onto the support subspace of the PEPS virtual index. This
implies that da match the definition of quantum dimension via the Perron-Frobenius vector, i.e.

dadb =
∑
c

N c
abdc . (3.222)

For a consistent MPO representation of G domain walls within a tensor network, we furthermore
require that an infinitesimal loop of domain wall G can be removed. This corresponds to a local
sufficient condition

g

g

= P , (3.223)

which implies

wag =
dag

D2
g
, where D2

g :=
∑
ag

d2
ag . (3.224)

Hence the MPO representation of G is given by

MPOg =
∑
ag

dag

D2
g

MPOag , (3.225)
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in particular, MPO1 corresponds to what is known as the ω0-projector for C1.
At this point we renormalize the fusion and splitting tensors

γc
α a

β

b
µ = d

1
4
a d

1
4
b d
− 1

4
c [Xcgh µ

agbh
]γαβ , γ

c

β
b

αa
µ = d

1
4
a d

1
4
b d
− 1

4
c ([Xcgh µ

agbh
]γαβ)∗ . (3.226)

This is to ensure that removing a loop of MPOaMPOa fusing to the vacuum MPO0, matches
the removal of an MPOa loop within a tensor network

bh

ag

=
∑
cghµ

√
dc
dadb

c
ag

bh
µ

bh

ag
µ ,

bh

ag
dgh

ν
cgh

µ = δcabδµνδcd

√
dadb
dc

cgh .

(3.227)

We focus on the class of MPOs admitting a set of unitary matrices Aabc , B
ab
c that satisfy

pivotal identities relating the fusion and splitting tensors

c

baa
µ =

∑
ν

[Aabc ]νµ c

ba
ν ,

c

a b b
µ =

∑
ν

[Bab
c ]νµ

c

a b
ν . (3.228)

This requires N c
ab = N b

ac, which follows from Eqs.(3.217) and (3.218). These pivotal identities
are related to the existence of a pivotal structure in the theory of fusion categories. We believe
that the above pivotal identities can be derived for the class of MPOs we are considering, how-
ever a proof is beyond the scope of this paper. We remark that such a proof was given in Ref.
93, Chapter 1, for the SPT case where |C1| = 1.

For the fixed point examples in Section 3.3 we found

[Aabc ]νµ =
√
dadb
dc

([F aabb ]cµν000)∗ , [Bab
c ]νµ =

√
dadb
dc

[F abba ]000
cµν , (3.229)

and we suspect that these formulas still hold for the full class of MPOs considered here.

Implications of the G-grading

The existence of a G-grading for the fusion structure implies further restrictions on the algebraic
data of an MPO algebra, similar to results shown in Ref. 31.

Since each element ag satisfies N0
ab

= N b
a0 = N b

0a = δab, for all bg there must exist some
c1, c

′
1 such that N c

ab
= N b

ca 6= 0, and N c′

ba
= N b

ac′
6= 0. That is, for any single block MPOag ,

any other single block MPObh
appears in the product MPOagMPO

c′1
and also MPOc1

MPOag for

some c1, c
′
1. However, we do not generally have |Cg| = |Ch| for g 6= h.

The MPO algebras we consider are faithfully G-graded, hence Eq.(3.222) implies thatD2
0 =

D2
g for all g. The argument for this is identical to that given in Ref. 31. Consequently we have

D2
G = |G|D2

1 , where D2
G =

∑
g
D2

g . (3.230)
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Hence the MPO projector onto the symmetric subspace in Eq.(3.184) corresponds to the ω0-
loop of CG , since

wa
|G|

= da
D2
G
. (3.231)

The ω0-MPO loop of C1 satisfies an equation, generalizing Eq.(3.167), that allows us to
move a g-MPO through an MPO1 loop by transforming it to an MPOg loop. That is,

1

g
11

= 1
D2

1

∑
ags1
bgµ

√
dbds
da

s1

bgs1

ag
µ

ag

µ

(3.232)

= 1
D2

1

∑
agbg
s1νµ

√
dbds
da

([Bsa
b ]νµ)∗[Bsa

b ]νµ

s1

bgs1

ag

ag

ν

ag

ag

ν
(3.233)

= 1
D2

1

∑
agbg
s1ν

db

√
ds
dadb

κaκa

ag
ag

bg

bgs1

ag
ν

ag

ag

ν

= 1
D2

1

∑
agbg

db

ag
ag

bg

bg
ag

ag

bg

(3.234)

=

g

g

g
g

g

, (3.235)

where we have used the zipper condition, the pivotal identities, and properties of the FS indica-
tor. A similar equation holds for a 1 MPO of arbitrary length and with arbitrary orientations of
the black indices. By applying orientation reversing gauge transformations, Zg, on the open red
indices and noting that reversal of the orientation of the 1 MPO has no effect, MPO−1 = MPO1,
the equation can also bee seen to hold for all orientations of the red indices. Furthermore, the
same argument applies for pulling through an open MPO from any contiguous subregion of a
circle to its complement.



178 3 Symmetry-enriched topological order in tensor networks

3.5.4 SET tensor network states and the symmetry-enriched pulling through
equation

The G-graded MPO algebras that were just introduced yield representations of domain walls
in SET tensor network states. We proceed to introduce a condition on the local tensors of a
PEPS that ensures it is symmetric under an on-site representation of G, and furthermore that the
domain walls are described by a G-graded MPO algebra.

The local tensors of a two dimensional PEPS on a directed trivalent lattice, dual to a trian-
gulation with branching structure, are specified by

T ijkp =

k

i j

p , T ijkp =

k

ji

p
. (3.236)

We assume that this PEPS is MPO-injective and hence describes a state with some underlying
topological order. The MPO w.r.t. which the PEPS is MPO-injective corresponds to MPO1 in
the MPO representation of G.

The PEPS is symmetric under an on-site representation of G if it satisfies the symmetry-
enriched pulling though equation93

g

g
=

gg
,

gg
g =

g
. (3.237)

Where we have used the following graphical notation for the on-site group action

g = Ug , hence g :=
∑
q

[Ug]qp T ijkq . (3.238)

By the properties of the MPOs described above, Eq.(3.237) implies that all the similar pulling
through equations, involving MPOg acting on a different choice of indices, also hold. While
the tensors considered above can be used to build a PEPS on any triangulation with branching
structure. Similar considerations apply for regular lattices, such as the square lattice, or more
generally for locally planar directed graphs.

Due to Eqs.(3.223) and (3.232), the symmetry-enriched pulling though equation is equiva-
lent to the following group intertwiner property

g =

g

gg
,

g =
g

gg

, (3.239)

which we expect to be more practical for numerical purposes.
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ω0-loop fixed-point tensors

The ω0-loop of C1, MPO1, defines an MPO-injective PEPS tensor64 which we refer to as an
MPO fixed-point PEPS tensor

=
1

11

, =
1

11

. (3.240)

The physical degree of freedom is identified with a subspace of the three MPO indices that
enter the circle, given by the support of MPOL=3

1 . The on-site group action is given by Ug =
MPOL=3

g , which is unitary on the support subspace of MPOL=3
1 , corresponding to the local

physical degree of freedom. The application of the group action to the PEPS tensors results in

g =

g

gg
,

g =
g

gg

. (3.241)

Hence it follows from Eq.(3.232) that the MPO fixed-point PEPS tensors in Eq.(3.240) satisfy
the symmetry-enriched pulling through equation (3.237).

We remark that this MPO fixed-point construction yields the same PEPS tensor for all G-
extensions of an underlying MPO algebra C1. This same tensor represents different SET phases,
depending upon the choice of the on-site symmetry action. A similar phenomenon has previ-
ously been noted for the restricted case of SPT phases70.

3.5.5 Abstracting the calculus of G-graded MPO algebras to diagrams

At this point we have developed the theory of G-graded MPO algebras, and seen that they
represent G domain walls of symmetric tensor networks. The characteristics of the domain
wall MPOs within a tensor network are topological and do not have a strong dependence on
local details, such as the number of sites within a certain region. In fact, the calculus of these
MPOs within a tensor network can be abstracted further by not explicitly keeping track of the
underlying lattice. This was described in detail in Eqs.(3.16) and (3.49).

To carrying out this abstraction, we first identify the tensor network ground state with the
vacuum. This corresponds to the empty diagram

. (3.242)

A loop on top of this background represents an MPO

ag

, (3.243)
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and the application of the on-site symmetry to all sites within a region is depicted as

g . (3.244)

Hence

g

ag

= da , and

ag

= da g . (3.245)

When passing to the abstract diagrammatic calculus, we switched convention for the colour of
MPO loops from red to black.

All of the properties satisfied by the G-graded MPO algebras that were discussed throughout
this section can be carried over to the abstract diagrammatic calculus. This realizes all consistent
fusion diagrams, modulo local relations from the G-graded unitary fusion category, and planar
isotopy. In particular, restricting to the 1-sector recovers the diagrammatic calculus203,217,218

of the unitary fusion category C1. The full CG leads to a more general diagrammatic calculus,
related to a 2-category, that was recently introduced in Ref. 222.

In this section we have adapted the theory of MPO algebras, presented in Ref. 64, to include
a G-grading. These MPOs form a representation of the domain walls of an SET ordered phase.
Classifying the emergent SET order that arises from G-graded MPO algebras corresponds to
grouping them into graded Morita equivalence classes. Two G-graded MPO algebras are equiv-
alent if they give rise to the same symmetry-enriched G-graded double, which is described by a
UGxBFC. In the next section we will describe how to construct the symmetry-enriched double,
and extract the gauge invariant physical data of the emergent SET.

This contains the classification of the underlying emergent topological order as a subprob-
lem. This emergent topological order is given by the Drinfeld double (or center) of the fusion
category corresponding to the MPO algebra and hence is nonchiral. Moreover, this construction
can realize all nonchiral topological orders230,231. The classification is then given by collecting
MPO algebras into Morita equivalence classes that lead to the same topological order164,211.

It was shown in Ref. 81, and later used in a condensed matter context by Refs. 32,33,
that the symmetry-enriched double construction can realize all consistent symmetry actions of
emergent anyons in an on-site manner. In the next section we will go further to construct the
full SET on the lattice, including the theory of emergent symmetry defects.

3.6 The defect tube algebra and emergent symmetry-enriched topo-
logical order

In this section we generalize Ocneanu’s tube algebra to an algebra of topological symmetries
acting on each nontrivial monodromy g-defect, appearing at the termination point of a g-domain
wall. We construct tensor network representations of the defect superselection sectors by block
diagonalizing each g-sector of this defect tube algebra. Furthermore, we find tensor network
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representations of the projective group action upon each defect superselection sector. From
these representations we extract physical data of the emergent theory, including the G-crossed
modular S and T matrices, the permutation action of the symmetry upon the defect sectors,
the cohomology class of the projective representation carried by each defect sector, and the
topological entanglement entropies of the defect sectors. We go on to describe a construction
of the full emergent G-crossed modular UGxBFC Z(C)G of the emergent SET order from the
defect ICIs. In particular, this defect tube algebra construction can be applied to the symmetry-
enriched string-net examples of Section 3.3.

3.6.1 Definition of the dube algebra

Similar to the conventional tube algebra, the defect tube (dube) algebra is found by considering
the action of MPOs in the 1-sector upon a puncture at the end of a g-domain wall. For this,
we look at a symmetry-twisted cylinder, which is equivalent to a domain wall on a sphere
with a puncture at each of its end points. Again, for simplicity of presentation, we restrict our
attention to the case of no fusion multiplicity. The results we find directly generalize to the case
with nontrivial fusion multiplicity.

By a slight generalisation of Eq.(3.17) the g-twisted cylinder is spanned by tensor networks
that have been closed with an MPO from the g-sector

∑
rg µ

crg

rg
Bµ Aµ . (3.246)

We can repeat the analysis that lead to Eq.(3.120) by considering the virtual MPO symmetries
in the 1-sector that act on the punctures

rg
=
∑
qg

√
dq
drd3

s

s1rg rg

qg
=
∑
pgqg

1
d2
s

√
dp
dr s1s1

rg rgpg
. (3.247)

Elements of the dube algebra are defined in the same way as for the tube algebra, except they
now split into sectors according to the label of the horizontal MPO

T s1
pgqgrg := d

1
4
p d
− 1

4
r

rg
qg

pg

s1

s1

, (3.248)

which corresponds to the minimal tensor network

d
1
4
p d
− 1

4
r rq

s

p s

. (3.249)
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We often refer to elements of the dube algebra simply as dubes∗. We remark that there is a
gauge freedom in the definition of the dube elements, similar to a 1-cochain.

Hence Eq.(3.247) can be rewritten as

1g :=
∑
rg

T 0
rgrgrg = 1

D2
1

∑
pgqg
rgs1

(T s1
pgqgrg)

†T s1
pgqgrg , (3.250)

where 1g is the identity on the virtual level of the g-twisted cylinder tensor network.
The definition of multiplication is given by stacking dubes, and is identical to the one given

in Eq.(3.124). Similarly, the definition of Hermitian conjugation is given in Eq.(3.126). We
remark that the G-grading of the MPOs ensures that the dube algebra breaks into |G| orthogonal
sectors, each of which is a C∗ algebra. In particular, the 1-sector of the dube algebra recovers
the tube algebra of C1.

3.6.2 Block diagonalizing sectors of the dube algebra with ICIs

Since the dube algebra breaks up into |G| decoupled C∗ algebras, we can separately block
diagonalize each of these sectors.

The sector generated by tubes of the form T s1
pgqgrg is referred to as the g-dube algebra. It has

dimension

Dg =
∑

pgqgrgs1

δ
pg
s1qgδ

rg
qgs1 =

∑
ag

Dag ×Dag , (3.251)

where the sum is over the irreducible blocks ag of the g-dube algebra, and Dag is the dimension
of the ag block (consisting of Dag ×Dag-matrices).

The ICIs of each g-sector are given by Hermitian projectors onto each irreducible ag block.
The ICIs of the g-sector determine the inequivalent superselection sectors for a disc filling a
puncture at the termination point of a g-domain wall. The ICIs can be found constructively
by following the approach in Ref. 64. Expressions for the defect ICIs of the G-graded dube
algebra for CG can be derived from the ICIs of the tube algebra for CG , this is discussed further
in Section 3.8.

The g-defect ICIs can be written as a linear combination of dubes from the g-sector

ag = 1
D2

1

∑
pgqg
rgs1

tpqrsag T
s1
pgqgrg , (3.252)

ag = 1
D2

1

∑
pgqg
rgs1

tpqrsag

rg
qg

pg

s1

s1

, (3.253)

where the coefficients satisfy tpqrsag = δprt
pqps
ag , as only dubes T s1

pgqgrg with pg = rg can appear in
the ICIs.

The 1-sector of the dube algebra recovers the tube algebra of the underlying fusion category
C1. Hence the emergent topological order is described by Z(C1), see Section 3.4. The full set

∗The process of constructing the defect tube algebra from a G-graded MPO algebra is called rolling a dube.
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of g-sector ICIs lead to a description of the emergent SET order, which is denoted Z(C1)G .
The specifics of this construction, in particular how to extract the physical characteristics of the
emergent theory, are described below.

For irreducible blocks of dimension Dag > 1 the ag ICI further decomposes into a sum of
Dag orthogonal irreducible idempotents (ag)ii. Furthermore, there are Dag(Dag − 1) nilpotent
off diagonal elements (ag)ij for i 6= j

(ag)ij = 1
D2

1

∑
pgqg
rgs1

tpqrs(ag)ijT
s1
pgqgrg . (3.254)

These elements span the Dag × Dag-matrix algebra of the ag-block, hence the dubes in the
g-sector can be expanded in this basis

T s1
pgqgrg = 1

D2
1

∑
(ag)ij

t
(ag)ij
pqrs (ag)ij . (3.255)

The columns of this change-of-basis matrices are orthogonal

1
D2

1

∑
pgqgrgs1

t
(ag)ij
pqrs (t(bh)kl

pqrs )∗ = δabδikδjl
1

|(ag)ij |2
, (3.256)

for some positive weights |(ag)ij |.
It follows from Eqs.(3.250) and (3.256) that

1g =
∑

(ag)ij

1
|(ag)ij |2

(ag)†ij(ag)ij , (3.257)

where 1g denotes the identity on the virtual level of the g-twisted cylinder. Multiplying by
(ag)ii implies

∑
j

1
|(ag)ij |2

= 1 , and hence 1g =
∑
ag

ag , (3.258)

which is a partition of the identity on the virtual level of the g-twisted cylinder by the ag ICIs.

3.6.3 Projective group actions on the defect ICIs

Beyond the topological symmetries acting on each g-defect, there is also an action of each
element of the physical symmetry group. This can be found by considering the action of the
global symmetry on a g-twisted cylinder tensor network

rg

h

= 1
ds

sh
rg

=
∑
qgh

√
dq
drd3

s

shrg rg

qgh
(3.259)

=
∑
phgqgh

1
d2
s

√
dp
dr shsh

rg rg
phg

, (3.260)
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where the darker shaded region denotes the application of the on-site physical action of h ∈ G.
The action of h on a g-defect involves tube elements of the form

T sh
phgqghrg := d

1
4
p d
− 1

4
r

rg
qgh

phg

sh

sh

. (3.261)

These tubes match the set of elements of the tube algebra for CG , however they are interpreted
differently in light of the G-grading structure.

Hence Eq.(3.259) can be written as

Uh[1g] = 1
D2

1

∑
phgqgh
rgsh

(T sh
phgqghrg)

†T sh
phgqghrg , (3.262)

where Uh denotes the action of the global symmetry h ∈ G to the physical level of the tensor
network.

The action of an h domain wall on an ICI ag is defined by projecting the collection of tubes
with s ∈ Ch onto the ICI

Bh
ag := K

 ∑
phgqgh
rgsh

cpqrsag T sh
phgqghrg

 ag , (3.263)

for arbitrary constants cpqrsag 6= 0, and some normalization K 6= 0 that depends on the cpqrsag . For
simplicity of presentation we ignore some subtleties that may arise in the case of a degenerate
block, the analysis presented can still be applied to the degenerate case with some care. We
remark that the RHS of the above equation may be 0 for certain fine-tuned choices of cpqrsag ,
we intend it to hold for generic choices, i.e. after adding a random perturbation to any given
fine-tuned values.

The normalization is fixed, up to a multiplicative phase factor, by the unitarity requirement

(Bh
ag)
†Bh

ag = ag . (3.264)

The domain walls are only defined up to a multiplicative 1-cochain εh
ag ∈ U(1). We always

work with a choice of 1-cochain such that B1
ag = ag and Bg

0 = MPOg.
The domain walls on each sector can be expanded in the tube basis

Bh
ag = 1

D2
1

∑
phgqgh
rgsh

tpqrsBh
ag
T sh
phgqghrg , (3.265)

Bh
ag = 1

D2
1

∑
phgqgh
rgsh

tpqrsBh
ag

rg
qgh

phg

sh

sh

. (3.266)

Due to Eqs.(3.258), and (3.264) we have

Uh[1g] =
∑
ag

(Bh
ag)
†Bh

ag , (3.267)

which corresponds to the intertwining of a physical h action to the virtual level by the g-twisted
cylinder tensor network.
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Permutation action on the defects

The action of the domain wall on the set of defects may result in a nontrivial permutation
ρh(ag) = h(ag) = (ha)hg. Which can be found as follows

h(ag) := Bh
ag(B

h
ag)
† , or equivalently Bh

ag ag = h(ag)Bh
ag . (3.268)

To reiterate, the permuted defect satisfies h(ag) ∈ Chg, and even in the case gh = hg there may
still be a nontrivial permutation action of h upon the defects within sector g, captured by (ha)g.
In particular, the potentially nontrivial permutation action of the global symmetry G upon the
emergent anyons (or 1-defects) can be extracted.

By definition (3.263), we have Bh
k(ag)B

k
ag = C Bhk

ag , for some constant C. Hence ρ is a
homomorphism from G to the permutation group on CG

h(k(ag)) = hk(ag) . (3.269)

We remark that the action of the domain walls commutes with the T matrix, see Eqs.(3.146),
and (3.283). Hence the topological spin of all superselection sectors in an orbit of the permuta-
tion action must match.

We refer to the set of all group elements that do not permute a given defect ag as its central-
izer

Zag := {h ∈ G | hag = ag} , (3.270)

which is a subgroup of G. Note g ∈ Zag as the T matrix, see Eq.(3.149), commutes with ag.
The orbit of a defect ag under the G-action is denoted by

[ag] := {hag |h ∈ G} , (3.271)

and a set of representatives for each right coset of Zag is written as G/Zag , hence

[ag] = {hag |h ∈ G/Zag} . (3.272)

2-cocycle of the projective representation on a defect

We can go beyond the analysis of the previous section to work out precise composition rules of
the domain walls. Since∑

ag

(Bhk
ag )†Bh

k(ag)B
k
ag

 bg = bg

∑
ag

(Bhk
ag )†Bh

k(ag)B
k
ag

 , (3.273)

∑
ag

(Bhk
ag )†Bh

k(ag)B
k
ag

†∑
ag

(Bhk
ag )†Bh

k(ag)B
k
ag

 = 1g , (3.274)

by an application of Schur’s lemma we have

Bh
k(ag)B

k
ag = ηa(h,k)Bhk

ag , (3.275)

for some phase ηa(h,k) ∈ U(1). Due to the associativity of matrix multiplication, ηa must
satisfy the twisted 2-cocycle equation

ηka(f,h)ηa(fh,k) = ηa(f,hk)ηa(h,k) . (3.276)
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Since Bk
ag is only defined up to a multiplicative 1-chain, ηa(h,k) is only defined up to a 2-

coboundary and hence each defect ag carries a ρ-twisted projective representation in cohomol-
ogy class [ηa] ∈ H2

ρ(G,U(1)). Furthermore, each defect ag transforms under a conventional
projective representation of its own centralizerZag with cohomology class [ηa] ∈ H2(Za,U(1)).
We assume these cocycles have been normalized such that

ηa(h, 1) = ηa(1,h) = 1 . (3.277)

We remark that all defects in a G-orbit hag ∈ [ag] have isomorphic centralizer groups
Zag
∼= Zhag , via the obvious isomorphism k 7→ hk. It was shown in Ref. 31 that the 2-cocycle

of the projective rep of Zha acting on hag is related to the projective rep of Za acting on ag by a
coboundary

ηha(hx, hy) = dεh
a(x, y) ηa(x, y) , where εh

a(x) := ηa(h, hx)
ηa(x,k) , (3.278)

hence [ηha(hx, hy)] = [ηa(x, y)] give the same element in bothH2(Za,U(1)) andH2(Zha,U(1)).
Furthermore, this gives a canonical isomorphism between the ηha-projective irreps of Zha

and the ηa-projective irreps of Za, for a chosen representative a ∈ [a], as follows

π
hµ
ha

(hk) = εh
a(k)πµa (k) . (3.279)

Where πµa is an irreducible projective representation of Za with cocycle ηa, labeled by µ.

3.6.4 Symmetry-twisted minimally entangled states and G-crossed modular ma-
trices

The representations of h on the g-defects Bh
ag yield all the (g,h) symmetry-twisted, minimally

entangled states31 on the torus

|Bh
ag〉 = 1

DaD2
1

∑
pgqghsh

tpqpsBh
ag
|pg sh qgh〉 . (3.280)

Only tubes T sh
phgqghrg with p = r lead to nonzero states, and hence nonzero symmetry-twisted

sectors must satisfy gh = hg. Furthermore, only group elements with nonzero trace Tr[Bh
ag ] 6= 0

lead to nonzero states. By using Eq.(3.268), and the orthogonality of defect ICIs, this implies
that nonzero symmetry-twisted MES must satisfy hag = ag. Hence the dimension of the (g,h)-
sector equals the number of h-invariant g-defects.

Similarly, one can use the crossing tensors from the domain wall tensor networks Bh
ag —

containing the weights tpqpsBh
ag

— to construct general symmetry-twisted states on arbitary ori-

ented 2-manifolds, i.e. higher genus tori. Here we focus on the torus, as it already allows us to
construct the G-crossed S and T matrices that generate a representation of the modular group.

The action of the global, on-site symmetry upon the symmetry-twisted MES can be calcu-
lated by using Eq.(3.267)

Uk |Bh
ag〉 = |Bk

agB
h
ag(B

k
ag)
†〉 = ηa(k,h)ηka(kh,k)

ηa(k,k)
|Bkh

kag
〉 . (3.281)
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Where, by Eq.(3.275), and Eq.(3.276), we have ηa(k,k)(Bk
ag)
† = Bk

kag
.

For calculational purposes it is often convenient to derive the permutation action on the
defects kag directly from the MES. This can be done by intertwining the global Uk action on
the physical indices to MPOk on the virtual indices, and fusing it into the 1-skeleton of the
torus.

For k ∈ Zh, by Eq.(3.264), we have

Uk |Bh
ag〉 = ηh

ag(k) |Bh
kag
〉 , where ηh

ag(k) = ηa(k,h)
ηa(h,k) , (3.282)

which is the slant product. This phase is only gauge invariant for k ∈ ZBh
ag

, which is defined to
be the elements of Zag that also commute with h. In that case we find a group homomorphism
ηh
ag : ZBh

ag
→ U(1), due to the 2-cocycle Equation (3.276).

The G-crossed modular S and T matrices are defined by the same action on tubes as the
topological modular matrices, see Eq.(3.146). They satisfy

|S(Bh
ag)〉 =

∑
bh

Sagbh |B
g
bh
〉 , |T (Bh

ag)〉 = θBh
ag
|Bgh
ag 〉 , (3.283)

where

Sagbh =
DbTr[(Bg

bh
)†S(Bh

ag)]
DaTr[(Bg

bh
)†Bg

bh
]
, θBh

ag
δa,b =

DbTr[(Bg
bh

)†T (Bh
ag)]

DaTr[(Bg
bh

)†Bg
bh

]
, (3.284)

and we have used that gag = ag, since the T matrix tube commutes with ag, see Eq.(3.149).
This includes the special case of the topological spin of defect superselection sectors

|T (ag)〉 = θag |Bg
ag〉 , (3.285)

and due to Eq.(3.268) we have

θBh
ag

= ηa(g,h)θag . (3.286)

The G-crossed modular matrices are broken down into sectors, outside of which they are
identically zero. That is,

〈By
bx
|S(Bh

ag)〉 =: δx,hδy,gS
(g,h)
agbh

, 〈By
bx
|T (Bh

ag)〉 =: δx,gδy,ghδa,bT
(g,h)
agag . (3.287)

Since S and T are clearly invertible by definition, the dimension of the (g,h) and (h, g)
sectors must match. This implies the number of h-invariant g-defects equals the number of
g-invariant h-defects, where gh = hg. In particular, the number of g-defects equals the number
of g-invariant anyons (1-defects). We also have that the (g,h) and (g, gh) sectors must have the
same dimension.

Similar to the case without symmetry, the S and T matrices are unitary. This is because
the emergent theory describes a modular non-chiral topological order that has been enriched by
a non-anomalous symmetry, and remarkably it has been shown that G-extensions of modular
theories are G-crossed modular31,98,166.

Unitarity of the T matrix follows directly from our definition, and we expect that unitarity
of S can also be derived in similar fashion to the ungraded tube algebra. However, we will not
give such a proof here.
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The G-crossed S and T matrices satisfy modular relations, similar to the ungraded case. For
technical reasons31 we first rescale S by a complex phase Uh(a, a; 0) ∈ U(1) that arises from
the group action on the fusion space, see Eq.(3.303),

S̃agbh := [Uh(a, a; 0)]∗Sagbh . (3.288)

Since the underlying topological order is a Drinfeld center Z(C1), the chiral central charge is
trivial, and hence we have the modular relations

(S̃T )3 = S̃2 , S̃4 = 1 . (3.289)

One can also verify these formulas by direct manipulation of MPOs, using the definitions of S
and T given in Eq.(3.146).

We remark that Sagbh and θBh
ag

are not gauge-invariant, although they do contain gauge

invariant data31. In particular, the S and T matrices of the underlying topological order are
given by S(1,1) and T (1,1).

Furthermore, with the normalizations we have fixed for the B1
ag ,B

g
0 domain walls, we can

extract the normalized quantum dimensions of the defects using a similar approach to that which
led to Eq.(3.153). The result

dag =
∑
pg

dpgt
pgpgpg0
ag

Dag

, (3.290)

follows from

dag

D2
1

= Sag0 =
Tr[(Bg

0)†S(ag)]

DaTr[ (Bg
0)†Bg

0 ]
= 1
D2

1

∑
pqs

t
pgqgpgs1
ag

Tr[(Bg
0)†S(T spqp)]
DaTr[ 0 ] =

∑
pg

dpt
ppp0
a

D2
1Da

, (3.291)

where we have used S(T s1
pgqgpg) 0 = dp δs0δpq Bg

0, which is implied by Eq.(3.298).
Since we have a G-extension of Z(C1), and the total quantum dimension of the 1-defect

topological superselection sectors is given by Dout = D2
1 , the total quantum dimension of all

defects is given by DG,out =
√
|G|D2

1 .

3.6.5 Topological entanglement entropy of the defect superselection sectors

The topological entanglement entropy (TEE) of the defect superselection sectors can be calcu-
lated via the topological correction to the 0-Rényi entropy, similarly to the purely topological
case considered in Section 3.4.4. The 0-Rényi entropy for the ag defect superselection sector is
calculated by taking the trace of the ag ICI, of varying MPO length L, similar to Eq.(3.156).

By using Eq.(3.290) we recover a similar result to Eq.(3.157)

H0 ≈ log(λ0)L− γag , where γag = − log

∑
pg

dpgt
pgpgpg0
ag

DagD2
1

 = log(Dout)− log(dag) ,

(3.292)

and Dout = D2
1 is the quantum dimension of the underlying emergent topological order.

We argued in Section 3.4.4 that the topological correction to the entropy is independent of
the Rényi index for an RG fixed point model, and that the topological entanglement entropy



3.6 The defect tube algebra and emergent symmetry-enriched topological order 189

is a robust quantity throughout a gapped phase of matter. The same arguments apply for the
topological correction to the entropy of a defect superselection sector, and hence the quantity
γag in Eq.(3.292) does indeed correspond to the TEE of a defect. Hence Eq.(3.292) provides a
general method to calculate the TEE of defect superselection sectors directly on the lattice205.

3.6.6 G-graded fusion

The fusion structure of the defect ICIs proceeds almost identically to the purely topological
case, explained in Section 3.4.5. We briefly summarize the points of similarity, before moving
on to discuss the interplay of fusion with the group action and domain walls, which are aspects
that do not occur in the topological case.

We use a similar notation to that established in Section 3.4.5

rg
qg

pg

s1

s1

=
rg
qgpg

s1

, ag =

a
g

g

1

, (3.293)

where the group elements on the far right indicate the sector of the strings appearing in the
definition of ag.

The fusion of defects ag and bh to sector ck is captured by

a b
µ

c

, (3.294)

where

µ :=
∑

pgqhrgh

cpqrµ d
1
4
p d

1
4
q d

1
4
r

pg qh

rgh

, (3.295)

are fusion vertex tensors that lead to nonzero tensor networks. Due to the structure of the defect
ICIs, cpgqhrk

µ contains the constraint δgh,k and hence the fusion is G-graded.
The fusion space V agbh

cgh is spanned by states µcab in the support subspace of the projector
described in Eq.(3.161). This is found using the same approach as in the purely topological
case, by creating an MPO1 loop projector between cgh and ag, bh and fusing it into the edges
surrounding µcab.

By taking the trace of the projector in Eq.(3.161) we should find N cgh
agbh

, the dimension of its
support subspace. After using the G-crossed S-matrix to expand ag, bh, cgh in a complimentary
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basis, we find a formula that is very close to the G-crossed Verlinde formula, recently introduce
in Ref. 31

N
cgh
agbh

=
∑
x1

Sagx1Sbhx1S
∗
cghx1

S0x1

ηx(h, g) . (3.296)

This holds for any G-crossed modular theory, which includes all the theories in our formalism
as they are symmetry-enriched Drinfeld centers. We expect that with further work one could
derive the exact G-crossed Verlinde formula from our calculation, but we do not pursue this
direction here.

Further properties of defect fusion that follow from a direct application of the methods
described in Section 3.4.5 are briefly summarized below:

• If the ICIs ag, bh, cgh are all nondegenerate, there is a unique fusion vertex µcab and one
can absorb the c ICI into a, b and µ, similar to Eq.(3.164).

• The antiparticle ag for each ag is found using the same approach as in the topological
case. That is, by finding the ICI ag that leads to nonzero cup and cap tubes, as defined in
Eq.(3.171). The G-grading of the fusion implies that ag lies in the g-sector.

• The FS indicator κag can then be calculated by multiplying a cup and cap tube as in
Eq.(3.172). This is only gauge invariant for ag = ag, which requires g2 = 1, and implies
κag = ±1.

• The F -symbols of the emergent theory are calculated using the same approach as in the
topological case, see Eq.(3.173).

Similar to Eq.(3.267) we have

∑
sh

ds
D2

1

ag

sh

= (B̃h
ag)
†Bh

ag (3.297)

For the special case ag = 0 we recover a version of Eq.(3.232) for tubes

∑
sg

0

sg

=
∑
sg

Bg
0

sg

, (3.298)

which corresponds to sliding a g domain wall over an MPO1 loop, thus transforming it into an
MPOg loop. This is similar to Eq.(3.232).

Eq.(3.297) follows from the following slight generalization of Eq.(3.267)

∑
g,h

∑
rgsh

ds
D2

1

sh
rg = 1

D2
1

∑
g,h

∑
phgqgh
rgsh

(T̃ sh
phgqghrg)

†T sh
phgqghrg =

∑
g,h

(B̃h
ag)
†Bh

ag , (3.299)
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where

(T̃ sh
phgqghrg)

† = d
1
4
p d
− 1

4
r

sh

sh

rg phg

qgh
, (B̃h

ag)
† = 1
D2

1

∑
phgqgh
rgsh

(tpqrsBh
ag

)∗ (T̃ sh
phgqghrg)

†. (3.300)

We also have the similar result

∑
sh

ds
D2

1

ag

sh

= (Bh
ag)
† B̃h

ag . (3.301)

Group action on the fusion space

The action of the on-site representation of G on the fusion pair-of-pants tensor network can be
calculated as follows

a b
µ

c

k

=
Bk
a Bk

b

kµ

Bk†
c

. (3.302)

Where the darker shaded region indicates the on-site action of k on the fusion tensor network,
and

kµ :=
∑
sk

D4

d2
s

Bk†
a Bk†

b
µ

Bk
c

sk

=
∑
ν

[Uk(a, b; c)]µν ν , (3.303)

defines the group action Uk(a, b; c) on the fusion space.
We denote the pair-of-pants tensor network in Eq.(3.294) by Vagbh

cgh , hence

Uk[Vagbh
cgh ] = (Bk

c )† V
kagkbh
kcgh

Bk
a ⊗ Uk(a, b; c)⊗ Bk

b . (3.304)

Since Uk forms a representation andBk
a forms a projective representation we find thatUk(a, b; c)

forms a projective representation

Ux(ya, yb; yc)Uy(a, b; c) = ωx,y(a, b; c)Uxy(a, b; c) . (3.305)

Where

ωx,y(a, b; c) = ηc(x, y)
ηa(x, y)ηb(x, y) , (3.306)
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is a U(1) phase that satisfies the twisted 2-cocycle equation

ωx,yz(a, b; c)ωy,z(a, b; c) = ωx,y(za, zb; zc)ωxy,z(a, b; c) . (3.307)

For x, y ∈ Za,b,c we find [ω(a, b; c)] ∈ H2(Za,b,c,U(1)) as it is only defined up to a coboundary,
corresponding to rephasing Uk(a, b; c).

Eq.(3.302) included an action of the symmetry within the a, b, and c superselection sectors.
To this end we consider closing the pair-of-pants tensor network via defect tensors T−a , T

−
b , Tc,

where the − indicates that the boundary of the puncture is negatively oriented. The defect
tensors must transform under the on-site physical symmetry as follows

Uk[Ta] = TkaBk
a , Uk[T−a ] = (Bk

a)†T−ka , (3.308)

if they are to correctly capture the behaviour of the defect ag. For the special case Ta = a, we
have Uk[Ta] = Bk

a.
Including the action of the physical symmetry upon the defect superselection sectors yields

the following modification of Eq.(3.302)

Uk[Tc V
agbh
cgh T−a ⊗ 1⊗ T−b ] = Uk[Tc](Bk

c )† V
kagkbh
kcgh

Bk
a Uk[T−a ]⊗ Uk(a, b; c)⊗ Bk

b Uk[T−b ]
(3.309)

= Tkc V
kagkbh
kcgh

T−ka ⊗ Uk(a, b; c)⊗ T−kb . (3.310)

That is, the physical action of the symmetry compensates the action on each defect sector ap-
pearing in Eq.(3.302).

3.6.7 G-crossed braiding

The process of exchanging defects differs from the exchange of anyons, as we must now also
move the domain walls attached to the defects, which requires the application of the physical
symmetry

bh ag

Exchange−−−−−→
Bh†
a

h

bh

=
∑
sh

D2
1
ds ha bh

sh
Bh†
a

.

(3.311)
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During the exchange step we have applied the physical symmetry to the dark shaded region,
and to the superselection sector, which resulted in the application of (Bh

a)† to the ICI ag.
For nondegenerate ag and bh we have

R
hagbh := Bh†

a

sbh
s
ha
hg

sag

=
∑
qgh

(ts
haq sasb

Bh
a

)∗

dsb
, (3.312)

where sa is defined by the equation agT 0
ppp = δpsa ag.

The G-crossed R-symbols R
hagbh
chg are defined by resolving the R-matrix into defect super-

selection sectors of definite topological charge. For nondegenerate defect ICIs ag, bh, chg, the
fusion vertices µcba and νchab are unique, and we have

µ

Bh†
a

= R
hagbh
chg

ν , (3.313)

as part of a larger fusion pair-of-pants tensor network V
hagbh
cgh . An explicit expression for R

hagbh
chg

can be derived directly from Eq.(3.312). These results can be generalized to degenerate defect
ICIs by following a similar line of reasoning.

3.6.8 Shifting by 2 and 3 cocycles

In Section 3.5.2 we found that consistent fusion rules for a G-graded MPO algebra correspond to
anH2(G,Z1) torsor, while F -symbol associators that satisfy the pentagon equation correspond
toH3(G,U(1))-torsors. Hence one might consider the effect on the emergent theory, of shifting
the MPO algebra by an element of H2(G,Z1) or H3(G,U(1)). Shifting the fusion rules by an
element of H2(G,Z1) can totally change the structure of the g-defect tube algebras for g 6= 1.
Beyond the 1-sector, which remains the same, there is no obvious relation between the emergent
theories before and after the shift. This is demonstrated in Example 3.9.1.

Shifting the F -symbol associators by an element of H3(G,U(1)) is more subtle, as it pre-
serves the set of emergent defects, but it may change some of their properties. Except for the
underlying emergent topological order, corresponding to the 1-sector, which is left invariant.
Specifically, we consider shifting by a nontrivial cocycle [α] ∈ H3(G,U(1))

F
agbhck
def 7→ α(g,h,k)F agbhck

def , (3.314)

which leads to an obvious change in the F -symbols of the emergent theory, via Eq.(3.173). The
effect on the G-crossed R matrices can also be derived.

The G-crossed modular matrices are modified as follows

Sagbh 7→ κ∗g αh(g, g)∗α(h, gh,h)
α(g,hg, g) Sagbh , θBh

ag
7→ α(g,h, g)∗ α(h, gh,h)

α(gh,h, gh)
θBh

ag
. (3.315)

The effects of the cocycle shift on the physically observable data are more apparent after
gauging the symmetry, see Section 3.7. These effects are largely a consequence of the following
transformations.
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The Frobenius-Schur indicator transforms as follows

κag 7→ α(g, g, g)κag . (3.316)

The 2-cocycle of the projective representation acting on the ag defect transforms as

ηa(h,k) 7→ ωg(h,k) ηa(h,k) , (3.317)

where

ωg(h,k) = αg(h,k) dεg(h) , αg(h,k) = α(h, kg,k)
α(hkg,h,k)α(h,k, g) , (3.318)

dεg(h,k) = εg(k)εkg(h,k)
εg(hk) , εg(h) = α(h, gh,h) . (3.319)

Hence the group action on the symmetry-twisted MES becomes

ηh
ag(k) 7→ αg,h(k)ηh

ag(k) , where αg,h(k) = αg(k,h)
αg(h,k) , (3.320)

and k ∈ Zg,h, with gh = hg. Finally the group action on the fusion vertices transforms as
follows

Uk(ag, bh; cgh) 7→ ωk(g,h)Uk(ag, bh; cgh) , (3.321)

for k ∈ Zag,bh,cgh .
We remark that shifting by a 3-cocycle cannot, in general, be absorbed by a change of gauge

of the MPO data. For instance it is apparent that the projective representations acting on the
defects are shifted when the 2-cocycle αg lies in a nontrivial cohomology class. Hence one
must assess whether shifting by a 3-cocycle actually changes the emergent UGxBFC on a case
by case basis. In Section 3.8 we present some examples for which a 3-cocycle shift can be
absorbed by a change of gauge, and some for which it cannot.

3.7 Gauging the global symmetry

In this section, we describe the effect of applying the state gauging procedure — developed in
Refs. 71,93, Chapter 1 — to SET tensor networks. This corresponds to equivariantization in the
category theory language used in Refs. 81,97,98. Our analysis focuses on the transformation
of the G-graded MPO symmetry algebra. Gauging effectively promotes the nontrivial g-sectors
into purely topological symmetries. From this we derive formulas for the the ICIs of the gauged
topological order. These gauged ICIs lead to expressions for the resulting S and T matrices, as
well as the fusion degeneracies and quantum dimensions. Before addressing the general case,
we focus on a simple example that captures many features of the gauging procedure.

3.7.1 Example: Gauging SPT orders

We begin by applying the gauging procedure to the simplest class of examples where a uni-
tary, on-site SPT order is gauged to a twisted quantum double (Dijkgraaf-Witten) topological
order19,72,73,93.
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MPO description of an SPT order

We consider a G-graded MPO algebra with |C1| = 1. It was shown in Ref. 93 and Chapter 1
that this corresponds to a non-chiral, invertible topological order. Furthermore it was shown
that |Cg| = 1, ∀g ∈ G, for a faithful MPO representation with |C1| = 1.

In this case the single block MPOs are simply labeled by group elements MPOg, and their
fusion is given by the group product MPOgMPOh = MPOgh. Consequently, the associators are
simply U(1) phases F g,h,k

ghk,gh,hk = α(g,h,k) that satisfy the 3-cocycle equation

α(f, g,h)α(f, gh,k)α(g,h,k) = α(fg,h,k)α(f, g,hk) , (3.322)

due to the pentagon equation. The algebraic data of the MPO algebra is described by the UFC
VecαG , considered as a G-graded category. The classification of such MPO algebras recovers the
third cohomology classification of SPTs70,75,242. In this case the G-graded Morita equivalence
class is given by a representative, up to a 1-cochain, since each sector consists of only one single
block MPO. Fixed point representatives of these SPT phases are captured by a special case of
the G-graded string-net example, see Section 3.3.

The significance of the fact that F -symbol solutions are torsors can be understood in this
case as follows: the classification of SPT phases is dependent upon the precise choice of phys-
ical symmetry, with respect to which the classification is done. As an explicit example, the
well known CZX model70 is in the trivial phase w.r.t. an on-site X⊗N symmetry, but is in a
nontrivial phase for the more complicated on site symmetry chosen in Ref. 70.

Since |Cg| = 1 the dube algebras are all one dimensional. There is a single defect ICI for
each sector, which is simply given by g = T 1

g,g,g.
When considering the group action on the defects we use the following choice of gauge

Bh
g = α∗(h, gh,h)T h

hg,gh,g =: T h
g . (3.323)

The permutation action is simply given by group conjugation, i.e. hg = hgh.
Multiplication of domain walls is given by

Bh
kgB

k
g = α(h, kg,k)

α(hkg,h,k)α(h,k, g)B
hk
g , hence ηg(h,k) = αg(h,k) . (3.324)

The group action of k ∈ Zh on the MES is given by

Uk |Bh
g 〉 = αg,h(k) |Bh

kg〉 , where αg,h(k) = αg(k,h)
αg(h,k) . (3.325)

The G-crossed modular matrices are given by

〈By
x |S(Bh

g )〉 = δx,hδy,gδg,hg κ∗g αh(g, g)∗ , (3.326)

〈By
x |T (Bh

g )〉 = δx,gδy,ghδg,hg α(g,h, g)∗ . (3.327)

Fusion of the defect ICIs is again given by the group multiplication rule, and it is multiplicity
free. Hence the group action on the fusion space is simply a U(1) phase, which is only defined
up to multiplication with a 1-cocycle. One can verify that the following is a valid choice64

Uk(g,h; gh) = αk(g,h) . (3.328)
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Even though U is a phase in this case, it cannot generally be absorbed into the gauge of the
projective representation Bh

g as it is a function of three group variables.
The F -symbols of the defects are given by the 3-cocycle α of the underlying MPO algebra.

Hence the FS indicators of the defects are given by κg = α(g, g, g).

Gauging the global symmetry

It was shown in Ref. 93 and Chapter 1 that applying the lattice gauging procedure introduced in
Ref. 71, for the full symmetry group G, results in a tensor network with an MPO algebra where
the G-grading is essentially forgotten. That is, the 1-sector of the resulting MPO algebra is given
by the full G-graded MPO algebra of the ungauged model. The algebraic data describing this
is again the UFC VecαG , but without including the G-grading. Hence the emergent topological
order is Z(VecαG), which is a twisted quantum double model. See Section 3.3 for a description
of the gauging map applied to the fixed point PEPS tensors.

After gauging, the former domain walls Bh
g become purely virtual operators that do not

require a physical group action. These MPOs can now be thought of as fluctuating in the
vacuum given by the tensor network representation of the ground state.

This produces a tube algebra for VecαG from the dube algebra of the G-graded VecαG , together
with the former domain walls Bh

g . Hence all the sectors in a conjugacy class Cg of the dube
algebra are coupled by the domain wall tubes Bh

g and result in a |Cg| × |G| block of the gauged
tube algebra.

An individual defect g supports a projective representation of Zg with 2-cocycle αg. This
contributes a block of size |Zg| to the gauged tube algebra, which is block-diagonalized by
idempotents that project onto the projective irreps πµg

(g, µ) := dµ
|Zg|

∑
h∈Zg

χµg (h)Bh
g , (3.329)

where χµg (h) := Tr[πµg (h)]∗ is a complex conjugated character. Each (g, µ) projects onto a
block of size dµ, and since ∑

µ

d2
µ = |Zg| , (3.330)

we see that the decomposition is complete.
These irreducible idempotents can be extended to the full |Cg| × |G| block, by summing

over the orbit of (g, µ) under conjugation

[g, µ] =
∑

k∈G/Zg

(kg, kµ) , (3.331)

where the canonical isomorphism between projective irreps, given in Eq.(3.279), is used to
define (kg, kµ). The resulting [g, µ] are ICIs that project onto dµ × |Cg| dimensional blocks,
and by counting one can verify that they give a complete decomposition.

After gauging, some states on the torus vanish. As discusses in Ref. 93, Chapter 1, only
those states |Bh

g 〉 satisfying αg,h ≡ 1 survive the gauging process.
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The gauged S and T can be derived from the G-crossed modular matrices, leading to the
formulas

S
Z(VecαG)
[g,µ][h,ν] = 1

|G|
∑

r∈G/Zg
s∈G/Zh

δrgsh,shrg
rχµg (sh) sχνh(rg)κ∗rg α

sh(rg, rg) , (3.332)

T
Z(VecαG)
[g,µ][h,ν] = δ[g,µ][h,ν]

χµg (g)
χµg (1) , (3.333)

where rχµg := χ
kµ
rg . From the special case of the S matrix with [h, ν] = [1, 1], we find

d[g,µ] = |G|dµ
|Zg|

. (3.334)

The fusion multiplicities can be derived from S via the Verlinde formulas, but they can also
be obtained directly by considered the intertwining property of a defect pair-of-pants tensor
network

Bk
ghUk[Vg,h

gh ] = Vg,h
gh αk(g,h)Bk

g ⊗ Bk
h , (3.335)

for k ∈ Zg,h. After gauging there is no global group action Uk remaining, hence the projector
onto the πκgh(k) projective rep is intertwined by the gauged pair-of-pants tensor network as
follows

dκ
|Zgh|

∑
k∈Zg,h

χκgh(k)Bk
gh 7→

dκ
|Zgh|

∑
k∈Zg,h

χκgh(k)αk(g,h)Bk
g ⊗ Bk

h , (3.336)

which projects onto the diagonal πκgh(k)
∣∣
k∈Zg,h

irrep within
(
(αk(g,h)πµg (k)⊗ πνh(k)

) ∣∣
k∈Zg,h

.
To calculate the fusion multiplicity one must also sum over conjugacy classes Cg, Ch, and Cgh.
This is implemented by summing over conjugates (xg, yh), where x ∈ G/Zg, y ∈ G/Zh, mod-
ulo left multiplication (zx, zy), since that leads to conjugation z(xgyh) which remains within
Cxgyh. The set of elements G/Cg × G/Ch, modulo left multiplication, is known to be isomor-
phic to the double coset Zg\G/Zh.

After including the summations over conjugacy classes we find that the fusion multiplicity
is given by

N
[k,κ]
[g,µ][h,ν] = (3.337)∑

(x,y)∈Zg\G/Zh
z∈G/Zk

δxgyh,zk m

(
zπκk (·)

∣∣∣
Zxg,yh

, α(·)(xg, yh)
∣∣∣
Zxg,yh

xπµg (·)
∣∣∣
Zxg,yh

⊗ yπνh(·)
∣∣∣
Zxg,yh

)
,

where

m(π, ρ) = dim [HomG(π, ρ)] , (3.338)

counts the dimension of the space of intertwiners between the π and ρ reps. For the special case
of π an irrep. it counts the number of times π appears in the irrep decomposition of ρ. For a
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further discussion of the m function, and how it can be computed in terms of projective char-
acters, see Ref. 31. In Ref. 64 this multiplicity was evaluated explicitly in terms of projective
characters

N
[k,κ]
[g,µ][h,ν] = 1

|G|
∑

x∈G/Zg

∑
y∈G/Zh

∑
z∈G/Zk

δxgyh,zk
∑

w∈Zxg,yh

αw(xg, yh) xχµg (w) yχνh(w) zχκk(w) .

(3.339)

3.7.2 The general case

Gauging a global symmetry can be implemented explicitly on a tensor network state using the
prescription of Ref. 71. It was shown in Ref. 93, Chapter 1, that gauging a symmetric tensor
network results in the removal of the G-grading from the MPO algebra. That is, the 1-sector of
the gauged MPO algebra consists of all sectors of the ungauged G-graded MPO algebra. The
application of the gauging map to the fixed point SET string-net tensors is described explicitly
in Section 3.3.

Since the 1-sector of the gauged MPO algebra is CG , the emergent superselection sectors
are given by Z(CG) and can be constructed via the tube algebra. The total quantum dimension
is given by Dout = D2

G = |G|D2
1 , see Eq.(3.230).

Rather than calculating the gauged ICIs directly with the tube algebra, we can derive them
from the defect ICIs ag and the domain walls Bh

ag of the dube algebra. In this section, and the
next, we demonstrate that the problem of finding the gauged ICIs is equivalent to finding the
ungauged defect ICIs and domain walls.

After gauging, the former domain walls Bh
ag are now included in the tube algebra. Hence

the sectors of the dube algebra within a conjugacy class Cg are coupled by the domain walls
Bh
ag , and contribute a block to the resulting tube algebra.

The projective representation ofZg, acting on each ag defect, was constructed in Section 3.6.
Idempotents of the gauged theory are given by Hermitian projectors onto projective irreps πµag

with 2-cocycle ηag

(ag, µ) := dµ
|Zag |

∑
h∈Zag

χµag(h)Bh
ag . (3.340)

The projector (ag, µ) correspond to the identity on a block of dimension dµ ×Dag .
The ICIs are then found by summing over the orbit of the defect ag under the group action

[ag, µ] =
∑

k∈G/Zag

(kag,
kµ) , (3.341)

which project onto blocks of dimension dµ ×Dag × |G|/|Zag |. Similar to the SPT example93,
only states satisfying ηh

ag ≡ 1 lead to nonzero gauged states.
The S and T matrices of the gauged theory can be calculated in terms of the G-crossed
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modular matrices by using Eqs.(3.150),(3.283),(3.341)

Sab =
∑

r∈G/Za
s∈G/Zb

∑
f∈Zsag
k∈Zsbh

D[bh,ν] dµdν
rχµag(f) sχνbh

(k) Tr[(Bk
sbh

)†S(Bf
rag)]

D[ag,µ] |Zag | |Zbh |Tr[bh, µ] (3.342)

=
∑

r∈G/Za
s∈G/Zb

Dbh d
2
ν

rχµag(
sh) sχνbh

(rg) Tr[(B
rg
sbh

)†S(Bsh
rag)]

Dag |Zbh |2 Tr[bh, µ] (3.343)

=
∑

r∈G/Za
s∈G/Zb

rχµag(
sh) sχνbh

(rg)Srag sbh

|G|
. (3.344)

Where we have used that Tr[(Bk
bh

)†S(Bf
ag)] contains the delta condition δk,gδf,h, and

Tr[bh, ν] =
∑

s∈G/Zbh

dν
|Zbh |

∑
k∈Zsbh

sχνbh
(k) Tr(Bk

sbh
) = |G|d

2
ν

|Zbh |2
Tr(bh) , (3.345)

which follows from χνbh
(1) = dν , Tr(Bk

bh
) = δk,1Tr(B1

bh
) and B1

sbh
= bh.

Since it was shown in Eq.(3.148) that the T matrix simply results in a phase, it can be
calculated by keeping track of the relative phase of the underlying defect ICI ag

T ([ag, µ]) =

∑
k,sk

T ss0s

 dµ
|Zag |

(
χµag(1) ag + . . .

)
(3.346)

= dµ
|Zag |

(
χµag(1)

χµag(g)
χµag(1)

(
χµag(g)
χµag(1)

)∗
θag Bg

ag + . . .

)
(3.347)

=
χµag(g)
χµag(1) θag [ag, µ] , (3.348)

where we have used that
χµag (g)
χµag (1) ∈ U(1).

Hence we have31

S
Z(CG)
[ag,µ][bh,ν] = 1

|G|
∑

r∈G/Za
s∈G/Zb

rχµa(sh) sχνb (rg)Sragsbh , (3.349)

T
Z(CG)
[ag,µ][bh,ν] = δ[ag,µ][bh,ν]

χµa(g)
χµa(1)θa . (3.350)

These quantities are gauge invariant, as the variation of θag and Sragsbh under a 2-coboundary is
canceled by that of χµag(g). In particular, the topological spins of the anyons (1-defects), after
gauging, remain the same. Setting [bh, ν] = [0, 0] in Eq.(3.349) we find the quantum dimensions
of the gauged superselection sectors to be

d[ag,µ] =
|G|dµdag

|Zag |
. (3.351)

The fusion multiplicities can be derived form the S matrix, claculated in Eq.(3.349), by
using the Verlinde formula. It is also possible to derive them directly, by using the intertwining
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property of the pair-of-pants tensor network

Bk
cgh

Uk[Vag,bh
cgh ] = Vag,bh

cgh Bk
ag ⊗ Uk(ag, bh; cgh)⊗ Bk

bh
, (3.352)

for k ∈ Zag,bh,cgh . After gauging, there is no longer a physical group action, and hence the
projector onto the πκcgh

rep is intertwined by the gauged pair-of-pants fusion tube as follows

dκ
|Zcgh |

∑
k∈Zag,bh,cgh

χκcgh
(k)Bk

cgh
7→ dκ
|Zcgh |

∑
k∈Zag,bh,cgh

χκcgh
(k)Bk

ag ⊗ Uk(ag, bh; cgh)⊗ Bk
bh
.

(3.353)

This projects onto the πκcgh

∣∣
Zag,bh,cgh

rep within
(
πµag ⊗ U( · )(ag, bh; cgh) ⊗ πνbh

) ∣∣
Zag,bh,cgh

. To

calculate the fusion multiplicity one must also include a summation over defect orbits [ag], [bh],
[cgh]. We implement this by summing over pairs (xag,

ybh), for x ∈ G/Zag , y ∈ G/Zbh , modulo
left multiplication (zx, zy), since that leads to defects z(xag × ybh) in the same orbit. Hence

N
[ck,κ]
[a g,µ][b h,ν] =

∑
(x,y)∈Zag\G/Zbh

z∈G/Zck

δ
zck
xagyb h

m

(
zπκck

∣∣
Zxag,ybh,zck

, xπµag

∣∣
Zxag,ybh,zck

⊗U( · )(xag,
ybh; zck)

∣∣
Zxag,ybh,zck

⊗ yπνbh

∣∣
Zxag,ybh,zck

)
, (3.354)

where m is the projective rep multiplicity counting function defined in Eq.(3.338).

3.8 Anyon condensation phase transitions dual to gauging

In this section, we study the Rep(G) anyon condensation phase transition induced by breaking a
G-graded MPO symmetry down to the 1-sector subalgebra236,237. This corresponds to deequiv-
ariantization in the category theory language used in Ref. 81,97,98. These phase transition are
dual to those induced by gauging a global G symmetry, which were studied in the previous sec-
tion. We recount how symmetry breaking perturbations to a local tensor lead to tensor network
representations of an anyon condensate123,243,244. Furthermore, we present a decomposition of
these perturbations into topological charge sectors that identify which anyons are condensed by
a given perturbation. A procedure to extract the defect superselection sectors and domain walls
of the condensed theory from the topological superselection sectors of the original theory is
explained. This allows one to identify which anyons split, which are identified, and which are
confined during the condensation phase transition, as well as the full UGxBFC description of the
resulting SET. We also outline how different — Morita equivalent — MPO algebras, that lead
to the same emergent topological order, can be used to find different anyon condensation phase
transitions. It is conjectured that this approach will recover all possible boson condensation
transitions from a given nonchiral topological order.

3.8.1 MPO symmetry breaking perturbations and anyon condensation

We first explain how anyon condensation phase transitions, induced by a reduction of the topo-
logical MPO symmetry algebra, can be analyzed with superselection sector ICIs. The reduction
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of the topological MPO symmetry algebra can either originate from explicit symmetry break-
ing236,243,244, due to a non-symmetric perturbation to the local tensor, or from spontaneous
symmetry breaking123,124,237, where the local tensor is varied symmetrically until the boundary
theory undergoes a phase transition.

For the case of explicit symmetry breaking, it was argued in Ref. 244 that perturbations to
the local tensor can be classified according to the MPO symmetry they respect. The perturba-
tions that are not even symmetric under the vacuum MPO0 do not change the tensor network,
while perturbations respecting MPO0 lead to fluctuating anyons on top of the tensor network
ground state vacuum. The full MPO algebra symmetry of the unperturbed tensor network im-
plies that the fluctuating anyons satisfy a global charge constraint.

The perturbations respecting MPO0 can be further divided into sectors corresponding to the
subset of irreducible idempotents of the tube algebra that come attached to a vacuum string
MPO0. The set of ICI sectors on which a perturbation has support identify the emergent anyons
that it condenses.

We denote the set of irreducible idempotents that can be realized at the end of a vacuum
MPO0 string by {a0}. Hence we have

a0 = 1
D2

∑
s

t0s0sa0 T
s

0s0 = 1
D2

∑
s

t0s0sa0 MPOs . (3.355)

Each a0 corresponds to an internal state of a topological superselection sector satisfying a =
(a0 + . . . ) . In particular the vacuum sector 0 always appears in this set of idempotents that
occur at the end of MPO0.

Due to Eq.(3.143) any tensor perturbation V can be partitioned into a sum over a0 sectors

V = V× +
∑
a0

Va0 , (3.356)

where V× is orthogonal to MPO0 and hence leads to a zero state, while Va0 satisfies Va0a0 =
Va0 , and hence lies in the a charge sector. The perturbations V0, satisfying V0 0 = V0, are
symmetric under the full MPO algebra.

Let |Ψ[T (i)]〉 denote the tensor network resulting from the contraction of tensors T (i) on
every site i of some lattice. We assume the local tensor is symmetric under the full MPO
algebra i.e. T 0 = T . A perturbed tensor network is given by

|Ψ[(T + ε×V× +
∑
a0

εa0Va0)(i)]〉 = |Ψ[T ]〉+
∑
a0

εa0

∑
v

|Ψ[T (i 6=v), V (v)
a0 ]〉

+
∑
a0,b0

εa0εb0
∑
u,v

|Ψ[T (i 6=u,v), V (u)
a0 , V

(v)
b0

]〉+ . . . ,

(3.357)

where i, u, v are lattice sites. We remark that the first order perturbations, aside from V0, gener-
ically contribute a zero state for a closed manifold due to a global charge constraint. The result-
ing tensor network states can be interpreted as anyon condensates, as they involve a fluctuation
of the charges a0 with εa0 6= 0 on top of the tensor network ground state vacuum.

We expect the case of spontaneous MPO symmetry breaking to follow a similar picture.
That is, once the phase transition has been crossed the physical state becomes a cat (GHZ) state
given by a sum of explicit MPO symmetry breaking tensor networks, each of which can be
interpreted as an anyon condensate.



202 3 Symmetry-enriched topological order in tensor networks

3.8.2 Extracting the SET order that results from Rep(G) anyon condensation

Due to the additional structure appearing in the ICIs of a tube algebra derived from a graded
MPO algebra CG , it is possible to infer the defect ICIs and domain walls of the CG dube algebra
from the anyon ICIs of the CG tube algebra. This procedure allows us to calculate the effect of
condensing a bosonic Rep(G) subtheory of Z(CG) that induces a phase transition to Z(C1)G .
While the anyon theory that results from this condensation transition is known31 to be Z(C1),
which can simply be constructed by finding the ICIs of the C1 tube algebra, we go beyond this
to explicitly derive the full SET defect theory Z(C1)G . In particular we calculate which ICIs
split, which become identified, and which become confined defect ICIs during the condensation
phase transition215. The resulting dube ICIs and domain walls can be used to construct the full
UGxBFC description of the resulting SET, by following the procedure explained in Section 3.6.

We assume that the MPO algebra CG of the model under consideration admits a G-grading.
Hence there is a group element assigned to each of the single block MPOs bac ∈ G. The
analysis of Refs. 243,244 can be extended to the case where the full virtual MPO symmetry CG is
broken down to a nontrivial residual MPO symmetry, given by the 1-sector subalgebra C1. This
corresponds to an anyon condensation transition from Z(CG) to a nontrivial topological phase
Z(C1). To calculate the relationship between the Z(CG) theory and the condensate Z(C1)G we
examine the implications of a G-grading for the CG tube algebra ICIs. For an ICI of the CG tube
algebra

a = 1
D2

∑
pqs

tpqpsa T spqp , (3.358)

we can separate out sectors according to the group elements bpc and bsc

(a)h
g := 1

D2

∑
pqs

δbpc,g δbsc,h t
pqps
a T spqp , (3.359)

we must have gh = hg for a nonzero (a)h
g .

Each ICI a can be written as a sum of subidempotents

a =
∑
g∈C

(a)g , where (a)g :=
∑

h∈Zg

(a)h
g (3.360)

for some conjugacy class C.
Since the MPO symmetry has been broken down to C1, the MPOs from the Cg sectors for

g 6= 1 now correspond to immobile domain walls in the tensor network. Hence, tubes T spqr
with bsc 6= 1 should be dropped from the tube algebra. Furthermore, the remaining tubes T spqr
generate a G dube algebra, that is graded by the sector bpc = bqc = brc. By dropping the
immobile domain walls from the topological symmetry algebra, the subidempotents of an ICI
a are mapped as follows

(a)g 7→ (a)1
g . (3.361)

The resulting idempotents (a)1
g are attached to an MPO string in the g-sector. For g 6= 1 the

idempotents correspond to confined defects, as they are connected to a physically observable
g-domain wall that is detected by the local terms of the PEPS parent Hamiltonian46, and hence
the energy penalty of a defect pair scales with their separation.
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For a nontrivial conjugacy class |C| > 1 the ICI a splits into multiple defects

a 7→ {K (a)1
g }g∈C , (3.362)

for some positive constant normalization K > 0 such that K(a)1
g is a projector. We can also

calculate which ICIs condense into the same defect, by looking for all a and b that satisfy

(a)1
g = K̃ (b)1

g 6= 0 , (3.363)

for some positive constant K̃.
The centralizer Zag of a defect ag is given by the set of group elements h that lead to a

nonzero (a)h
g , and the orbit of a defect [(a)1

g] is given by the set of defects (a)1
kg that are nonzero.

The (a)1
1 idempotents give the anyon ICIs of the condensed topological order. The proce-

dure explained above allows one to determine the splitting and condensation relations between
the anyons of Z(CG) and those of Z(C1). In particular, we can calculate the anyons that con-
dense into the vacuum

01 =
∑
s

δbsc,1
ds
D2

1
T s0s0 , (3.364)

by looking for those a that satisfy (a)1
1 = 1

|G|01. For condensation induced by symmetry break-
ing down to the 1-sector of a G-graded MPO algebra, the ICIs that condense to vacuum are
precisely given by [01, µ], see Eq.(3.341). These superselection sectors correspond to bosonic
G-charges, which generate a Rep(G) subtheory of Z(CG) that condenses to yield the resulting
SET Z(C)G .

Hence symmetry breaking perturbations to the local tensor can be divided into irreps, or
G-charges,

V = ε×V× +
∑
µ

εµVµ , (3.365)

similar to Eq.(3.356). When a tensor network is built from a symmetric local tensor T with
such a perturbation V — for εµ 6= 0 — the G-charges fluctuate and induce a Rep(G) anyon
condensation, see Eq.(3.357).

To construct a tensor network for the condensed SET, where the symmetry is realized on-
site, we can modify the local tensor with a perturbation that is correlated to a newly introduced
physical group variable

T 7→
∑

g
|g〉 ⊗ (T + V0 MPOg) . (3.366)

One can verify that this tensor has the correct symmetry transformation under a physical group
action, given by the left regular representation, acting on the newly introduced variable. This
corresponds to ungauging a G-gauge symmetry, or equivalently gauging a 1-form symme-
try88,154,223. We remark that the perturbations V0 MPOg can be constructed from a linear com-
bination of the Vµ perturbations.

Beyond the defect ICIs, we can also extract the G domain walls of the SET resulting from
Rep(G) condensation

Bag
h = K (a)h

g , (3.367)
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where gh = hg, andK > 0 is a normalization fixed by the equation (Bag
h )†Bag

h = ag. These do-
man walls can be used to extract the second cohomology label of each defect [ηa] ∈ H2

ρ(G,U(1))
that describes its projective transformation under the global symmetry.

Furthermore, the domain walls define the full set of symmetry-twisted MES on the torus
|Bag
h 〉, from which the G-crossed S and T matrices can be extracted, see Section 3.6.4. To

calculate the permutation action on the defects, and symmetry twisted states, one can simply
fuse an MPOk loop into the skeleton of the torus

|MPOk ◦ Bh
ag〉 7→

ηa(k,h)ηka(kh,k)
ηa(k,k)

|Bkh
kag
〉 , (3.368)

see Eq.(3.281).

3.8.3 Using Morita equivalences to find all anyon condensation phase transitions

The concept of Morita equivalence plays an important role in the search for all possible boson
condensation transitions in the framework we have developed. Two MPO algebras C, C̃ are
Morita equivalent, denoted C ∼ C̃, precisely when they lead to the same emergent anyons164,211,
Z(C) ∼= Z(C̃). That is, when the physical properties derived from the ICIs of the tube algebras
match.

Different, Morita equivalent, MPO algebras that lead to the same emergent topological order
can exhibit different G-gradings and different 1-sectors C1. Hence, by considering such different
presentations of the same emergent topological order we can find different Rep(G) condensation
transitions from Z(C). Several examples of this phenomenon are given in Section 3.9.

By Ref. 81 all Rep(G) condensation transitions from Z(C), which are dual to gauging an
on-site G symmetry on a nonchiral topological order, can be realized by considering Morita
equivalent MPO algebras that lead to the Z(C) emergent topological order. To find Morita
equivalent representations more explicitly would require a framework for invertible domain
walls between different MPO algebras. This is more general than the G-extension problem
considered in Section 3.5.2, which only considered invertible domain walls between the same
MPO algebra. We plan to address this in future work.

The process we have outlined for calculating the effects of anyon condensation, by breaking
the MPO symmetry down to a nontrivial subalgebra, is straightforwardly generalized beyond
the case of a G-grading. The most general case corresponds to a grading by an algebra, note it
is trivial that every MPO symmetry is graded by its own fusion algebra. Several examples of
these more general condensations are given in Section 3.9.

Motivated by the G-graded case, we conjecture that all possible boson condensation phase
transitions from a nonchiral topological phase Z(C) can be realized by symmetry breaking
down to the 1-sector of some algebra-graded MPO symmetry algebra in the Z(C) Morita equiv-
alence class. We plan to cover this generalization in more detail in a future work.

Beyond computing the effects of anyon condensation, the MPO symmetry breaking pro-
cedure leads to a simple method to derive the ICIs of a UFC C from the ICIs of a modular
extension of C. This is because C naturally forms a subcategory of any modular extension of
C. We expect this to prove useful as explicit formulas exist for the ICIs of a modular theory,
making them particularly easy to find.
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3.9 Further examples

In this section, we present several examples that demonstrate different aspects of the construc-
tions explained throughout the paper. First, the Z2-extension problem for VecZ2

is solved ex-
plicitly. Then, a Morita equivalent description of Z(VecZ4

) is used to study a Rep(Z2) con-
densation phase transition to the doubled semion model Z(VecωI

Z2
), induced by MPO symmetry

breaking. Next, we study a condensation phase transition — not generated by a Rep(G) subthe-
ory — from the doubled Fibonacci model to the trivial phase. Finally, we use Morita equivalent
descriptions of Z(VecS3

) to study condensation phase transitions to Z(VecZ3
) and Z(VecZ2

),
the latter of which is not generated by condensation of a Rep(G) subtheory.

3.9.1 Z2-extension of VecZ2 and symmetry-enriched toric codes

The Z2-extension problem for an underlying UFC VecZ2
= {0, ψ} provides a simple and il-

lustrative example of the extension procedure described in Section 3.5.2. It corresponds to
classifying anomaly-free Z2 SET orders, where the underlying topological order is the toric
code Z(VecZ2

). One of these extensions corresponds to the EM duality-enriched toric code,
which was analyzed in detail in Section 3.2.

An extension is calculated in two stages, firstly we search for consistent Z2-graded fusion
rules containing VecZ2

as the trivial sector. Note the Z2 = {1, x} action on the objects of VecZ2

must be trivial, as there is only a single nontrivial object. Since the total quantum dimension of
each g-sector must be the same we have D2

x = D2
1 = 2. Hence the x-sector can either consist

of a single object σ with quantum dimension
√

2, or a pair of inequivalent objects σ+, σ− both
with quantum dimension 1. We find consistent fusion rules for both of these cases, for which
the potential obstructions in H3(Z2,Z2

2) disappear.
In the former case the fusion rules must be

σ × σ = 0 + ψ , (3.369)

and the action of the H2 torsor, permuting 0 and ψ, is trivial. Hence the unique choice is given
by the Ising fusion rules.

In the later case there is a trivial solution to the fusion rules

σ± × σ± = 0 , σ± × σ∓ = ψ , (3.370)

which corresponds to Z2 × Z2 fusion rules.
In this case the action of the H2 torsor changes the fusion rules to an inequivalent choice

σ± × σ± = ψ , σ± × σ∓ = 0 , (3.371)

which corresponds to Z4 fusion rules. This exhausts the different choices of consistent fusion
rules.

The possible obstruction at the second stage also vanishes since H4(Z2,U(1)) = 0. For
each choice of fusion rule we can now look for solutions to the pentagon equation. These
are H3(Z2,U(1)) torsors, which can be realized through multiplication of a representative F -
symbol with the nontrivial 3-cocycle function α(g,h,k) = (−1)ghk. That is

F
agbhck
def 7→ α(g,h,k)F agbhck

def , (3.372)
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note the only nontrivial value of α is α(x, x, x) = −1.
Solutions to the pentagon equation for each choice of graded fusion rules are listed below,

where we use the notation of Ref. 106,180 for the 3-cocycles ωI, ωII.

Ising – For Ising fusion rules, the F -symbols in Eq.(3.37) solve the pentagon equation. In
this case the FS indicator of σ is given by κσ = 1. As discussed in Section 3.2.1
this corresponds to the EM duality enriched toric code that gauges to the doubled
Ising model, Ising(1) � Ising(1).

– Multiplication with the 3-cocycle α(σ, σ, σ) = −1 flips the phase of F σσσσ00 and
hence yields κσ = −1. This corresponds to the EM duality enriched toric code
with a pair of self-inverse defects with negative FS indicators. Gauging this leads to
the Drinfeld center of the modified Ising model with κσ = −1, Ising(3) � Ising(3).

Z2
2 – For Z2 × Z2 fusion rules, there is a trivial solution F ghkabc = δghk,aδgh,bδhk,c which

corresponds to a toric code tensor producted with a trivial paramagnet. This gauges
to two copies of the toric code.

– Multiplying by α(σ±, σ±, σ±) = −1 leads to a Z2-extension of VecZ2
with two self

inverse defects that have negative FS indicator κσ+ = κσ− = −1. This corresponds
to a symmetry-enriched toric code that gauges to Z(Vec

ω
I(2)

Z2×Z2
).

– There is another distinct solution to the pentagon equation with these fusion rules,
corresponding to a 3-cocycle ωI(1)ωII, which gives a toric code tensor producted with
a nontrivial Z2 SPT. This gauges to a toric code tensor producted with a doubled
semion model.
Multiplying by α(σ±, σ±, σ±) = −1 in this case corresponds to relabeling σ±, and
hence yields the same solution.

The generalF -symbol solutions for Z2×Z2 fusion rules are given by 3-cocycles represen-
tatives of the elementsH3(Z2×Z2,U(1)) = Z3

2, which are generated by ωI(1) , ωI(2) , ωII.
For a fixed choice of Z2 subgroup, corresponding to C1, there are four inequivalent 3-
cocycles with a trivial restriction. Two of these 3-cocycles are captured by the first two
cases above, while the other two are both captured by the third case.

Z4 – For Z4 fusion rules, again there is the trivial solution, which corresponds to a toric
code with two pairs of topologically distinct defects that are mutual inverses. This
gauges to the Z4 quantum double model Z(VecZ4

).

– Multiplying by α(σ±, σ±, σ±) = −1 corresponds to a different symmetry-enriched
toric code with two pairs of mutual inverse defects. This gauges to the ω2

I -twisted

Z4 quantum double model Z(Vecω
2
I

Z4
).

The general F -symbol solutions for Z4 fusion rules are given by 3-cocycles represen-
tatives of the elements H3(Z4,U(1)) = Z4. There are two 3-cocycles that have trivial
restriction to the Z2 subgroup. These correspond to the two cases above.

We remark that similar treatments of this example have appeared in Refs. 32,33.
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3.9.2 Morita equivalent MPO algebras VecZ4 ∼ VecωII
Z2×Z2 and condensation to

the doubled semion model

In Ref. 237 a condensation phase transition from Z(VecZ4
) to the doubled semion model VecωI

Z2

was described in terms of a boundary SPT phase under the MPO symmetry. Here we revisit
this condensation with our framework, and by using a Morita equivalent description of the
topological order Z(VecZ4

) ∼= Z(VecωII
Z2×Z2

) we find a reduction of the MPO symmetry that
induces the same Rep(Z2) condensation phase transition without any reference to a boundary
SPT. This exemplifies the general fact, that all Rep(G) condensation phase transitions can be
realized through G-graded MPO symmetry breaking. Hence any condensation phase transition
corresponding to a boundary SPT phase in the language of Ref. 237, can be induced by sym-
metry breaking in some Morita equivalent MPO algebra using our framework. Our approach
has the advantage that it captures all Rep(G) condensation phase transition, while no such proof
was given in Ref. 237.

There is a well known Morita equivalence VecZ4
∼ VecωII

Z2×Z2
, see Ref. 106, and hence

Z(VecZ4
) ∼= Z(VecωII

Z2×Z2
). Therefore, to describe an emergent Z(VecZ4

) topological order we
may use an MPO algebra VecωII

Z2×Z2
.

let us first construct the tube algebra for VecωII
Z2×Z2

and find its ICIs, from which one can
verify the equivalence Z(VecZ4

) ∼= Z(VecωII
Z2×Z2

). Since the fusion rules are Abelian and all
group elements are self inverse, the tubes appearing are of the form T hg,g+h,g and we use the
shorthand notation T hg := α(h, g + h, h)T hg,g+h,g, established in Eq.(3.323). This tube algebra
has multiplication rules

T hf T kg = δf,g α
g(h, k)T h+k

g , (3.373)

where αg is the slant product defined in Eq.(3.318). The 3-cocycle is given by α ≡ ωII where

ωII(A,B,C) = (−1)a0b1c1 , and A = (a0, a1) . (3.374)
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Using the ICI formula for twisted gauge theory, given in Eq.(3.331), we find

Anyons T 00
00 T 01

00 T 10
00 T 11

00 T 00
01 T 01

01 T 10
01 T 11

01 T 00
10 T 01

10 T 10
10 T 11

10 T 00
11 T 01

11 T 10
11 T 11

11
(00,++) 1 1 1 1
(00,+−) 1 −1 1 −1
(00,−+) 1 1 −1 −1
(00,−−) 1 −1 −1 1
(01,++) 1 1 1 1
(01,+−) 1 −1 1 −1
(01,−+) 1 1 −1 −1
(01,−−) 1 −1 −1 1
(10,++) 1 −i 1 −i
(10,+−) 1 i 1 i

(10,−+) 1 −i −1 i

(10,−−) 1 i −1 −i
(11,++) 1 −i 1 −i
(11,+−) 1 i 1 i

(11,−+) 1 −i −1 i

(11,−−) 1 i −1 −i
(3.375)

the table gives the elements tji of the ICIs and should be read as follows

ai = 1
D2

∑
j

tji (T
g
h )j , (3.376)

where D2 = 4 in this case.
There are several Z2-gradings of VecωII

Z2×Z2
that we could consider for C1 ⊕ Cx

{00, 01} ⊕ {10, 11}, {00, 10} ⊕ {01, 11}, {00, 11} ⊕ {01, 10} . (3.377)

The first two are equivalent and lead to a condensation to the toric code phase, while the third
leads to a condensation to the doubled semion phase. This is because the restriction of the 3-
cocycle ωII to the {00, 11} subgroup lies in the nontrivial cohomology class ofH3(Z2,U(1)) = Z2.
We remark that shifting by a ωI cocycle on any of the Z2 subgroups rearranges which of the
above Z2-gradings corresponds to the doubled semion phase.

We choose the {00, 11} ⊕ {01, 10} grading for the MPO symmetry algebra. Then break-
ing the MPO symmetry down to C1 leads to a Rep(Z2) condensation to a symmetry enriched
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doubled semion phase described in the table below.

Sectors Defects
Condensed

T 00
00 T 11

00 T 00
11 T 11

11 T 00
01 T 11

01 T 00
10 T 11

10anyons

1

0 (00,++) 1 1
(00,−−) 1 1

ss
(00,+−) 1 −1
(00,−+) 1 −1

s
(11,++) 1 −i
(11,−−) 1 −i

s
(11,+−) 1 i

(11,−+) 1 i

x

σ0
(01,++) 1 1
(01,−−) 1 1

σ1
(01,+−) 1 −1
(01,−+) 1 −1

σ2
(10,++) 1 −i
(10,−−) 1 −i

σ3
(10,+−) 1 i

(10,−+) 1 i

(3.378)

The domain walls for the nontrivial element x are given by

Sectors Defects
Z2-action

T 01
00 T 10

00 T 01
11 T 01

11 T 01
01 T 10

01 T 01
10 T 10

10

1

0 1 1
ss 1 −1
s 1 i

s 1 −i

x

σ0 1 1
σ1 1 −1
σ2 1 i

σ3 1 −i

(3.379)

where a normalization by D2
1 = 2 is implicit. For a more detailed guide to reading the tables,

see Eq.(3.57).
Denote the Z2 generator on defect a by Xa, then X2

a = 1 for a ∈ {0, ss, σ0, σ1} and
X2
a = −1 for a ∈ {s, s, σ2, σ3}. We remark, in this case, the projective phase X2

a = −1 can be
removed by a choice of coboundary. It is important, however, to keep track of the choice when
calculating the effect of gauging the symmetry.

This example demonstrates that the topological data obtained by gauging an SET is not a
faithful label. In particular one finds the same gauged data for the symmetry-enriched doubled
semion, described in Eq.(3.378), and the symmetry-enriched toric code, described as the first
case under Z4 in Section 3.9.1. For this example, the gauge invariant S(1,1), T (1,1) matrices of
the SETs clearly distinguish the two SET phases, as they have different underlying topological
orders.
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We remark that even when the underlying topological order is the same, the gauged data still
does not provide a faithful label. A well known example of this occurs for the trivial D4 SPT
and the type-III Z3

2 SPT, since Z(VecD4
) ∼= Z(VecωIII

Z3
2

) and the underlying topological orders

are both trivial74,106,129, see Chapter 2. In this case the SPTs are clearly distinguished by their
different symmetry groups.

3.9.3 Doubled Fibonacci model

We now present the simplest nontrivial example of a condensation phase transition induced by
MPO algebra symmetry breaking that does not originate from a G-grading. The example is
based on the Fibonacci fusion category. The fusion algebra is constructed from two objects,
denoted {0, τ}, with commutative multiplication rules

0× a = a , τ × τ = 0 + τ , (3.380)

for a ∈ {0, τ}. Their quantum dimensions are d0 = 1, dτ = φ, and the nontrivial F -symbols
are given by

[F ττττ ]ji = 1
φ

[
1
√
φ√

φ −1

]
, (3.381)

for i, j ∈ {0, τ}. Where

φ := 1 +
√

5
2 is the golden ratio, φ2 = 1 + φ , and D2 = φ

√
5 . (3.382)

The ICIs of the tube algebra are specified by the table below.

Anyons T 0
000 T τ0τ0 T 0

τττ T ττ0τ T ττττ
0 1 φ

ττ φ2 −φ φ φ 1√
φ

τ 1 e
4iπ
5

√
φe−

3iπ
5

τ 1 e−
4iπ
5

√
φe

3iπ
5

(3.383)

Note the implicit normalization by D2. The full two dimensional ττ block is spanned by the
elements

ττ00 = 1
D2

(
φ2T 0

000 − φT τ0τ0

)
ττ01 = φ

D
T τ0ττ (3.384)

ττ10 =
√
φ

D
T τττ0 ττ11 = 1

D2

(
φT 0

τττ + φT ττ0τ + 1√
φ
T ττττ

)
. (3.385)

The other blocks are one dimensional.
The Fibonacci algebra clearly does not admit any nontrivial G-grading. It does, however,

admit the obvious grading by the fusion algebra itself. This statement in itself is vacuous.
However, by breaking the MPO algebra down to the 0-sector — which consists only of MPO0
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— we can calculate the effects of a corresponding boson condensation transition.

Sectors Defects
Condensed

T 0
000 T 0

τττanyons

1 0 0 1
ττ00 φ2

a ∆a

ττ11 φ

τ 1
τ 1

(3.386)

Where the fusion rules for {1, a} are identical to the Fibonacci algebra

1× z = z , a× a = 1 + a , for z ∈ {1, a} . (3.387)

This example demonstrates that, unlike the G-graded case, breaking an MPO symmetry ac-
cording to an algebra-grading may induce a boson to split with only one of the resulting sectors
condensing to the vacuum. Similar to the G-graded case, MPOs in a nontrivial sector corre-
spond to locally detectable domain walls after condensation. Hence, idempotents that appear at
the end of MPOs in nontrivial sectors condense to extrinsic defects, which are confined. Unlike
the G-graded case, we do not expect it to be possible to move these domain walls by applying
local unitaries to the physical system, as they are not generally invertible.

We remark that the resulting vacuum transforms under an action of the Fibonacci alge-
bra generated by T τ0τ0, whereas the ∆a-defect transforms under a different algebra gener-
ated by {T ττττ , T ττ0τ}. This algebra contains a copy of the Fibonacci algebra, generated by
(φ3T ττ0τ + φ3/2T ττττ ), but also contains elements outside of this. One might like to think of this
in analogy to the group case, where nontrivial defects may carry a projective representation of
the symmetry group. However, here the difference between the the algebras in the two sectors
is more extreme. There is also a Z2 action hopping between the 0 and ∆a defects generated by√
φ

D (T τττ0 +
√
φT τ0ττ ). The precise physical meaning of the algebras under which the defects

transform is unclear.

3.9.4 Z(VecS3) and Z( Rep(S3) )

For a final example, we use another well known Morita equivalence VecS3
∼ Rep(S3) to

study two different anyon condensation phase transitions from the emergent topological oder
Z(VecS3

) ∼= Z(Rep(S3)). We first use the Z2-grading of VecS3
to study a phase transition

to Z(VecZ3
). Next, we consider an algebra grading of Rep(S3) to study a phase transition to

Z(VecZ2
).

We work with the following presentation of S3〈
s, r | s2 = r3 = (sr)2 = 1

〉
, (3.388)

hence the set of group elements is given by {1, r, r, s, sr, sr}. Furthermore, we denote
the irreducible representations of S3 by {0, ψ, π}, correspond to the trivial, sign, and two-
dimensional irrep, respectively.

The fusion rules of VecS3
are given by S3 multiplication, and the F -symbols are trivial. The

anyons of Z(VecS3
) can be labeled by a conjugacy class, together with an irreducible represen-

tation of the centralizer of a representative from the conjugacy class. We use the notation [g, ρ]
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to indicate the conjugacy class Cg and an irrep ρ of the centralizer Zg. A formula for the ICIs
is given in Eq.(3.331).

Anyons T 1
1 T r1 T r1 T s1 T sr1 T sr1 T 1

r T rr T rr T 1
r T rr T rr T 1

s T ss T 1
sr T srsr T 1

sr T srsr
[1, 0] 1 1 1 1 1 1
[1, ψ] 1 1 1 −1 −1 −1
[1, π] 4 −2−2
[r, 1] 2 2 2 2 2 2

[r, e
2πi
3 ] 2 2e−

2πi
3 2e

2πi
3 2 2e

2πi
3 2e−

2πi
3

[r, e−
2πi
3 ] 2 2e

2πi
3 2e−

2πi
3 2 2e−

2πi
3 2e

2πi
3

[s,+] 3 3 3 3 3 3
[s,−] 3 −3 3 −3 3 −3

(3.389)

Note the implicit normalization of D2 = 6 in the above table.
The full two dimensional [1, π], [r, 1], [r, e

2πi
3 ], and [r, e−

2πi
3 ] blocks are given by

[1, π]00 = 1
3
(
T 1

1 + e−
2πi
3 T r1 + e

2πi
3 T r1

)
[1, π]01 = 1

3
(
T s1 + e

2πi
3 T sr1 + e−

2πi
3 T sr1

)
[1, π]10 = 1

3
(
T s1 + e−

2πi
3 T sr1 + e

2πi
3 T sr1

)
[1, π]11 = 1

3
(
T 1

1 + e
2πi
3 T r1 + e−

2πi
3 T r1

)
,

(3.390)

[r, 1]00 = 1
3
(
T 1
r + T rr + T rr

)
[r, 1]01 = 1

3
(
T sr + T srr + T srr

)
[r, 1]10 = 1

3
(
T sr + T srr + T srr

)
[r, 1]11 = 1

3
(
T 1
r + T rr + T rr

)
,

(3.391)

[r, e±
2πi
3 ]00 = 1

3
(
T 1
r + e∓

2πi
3 T rr + e±

2πi
3 T rr

)
[r, e±

2πi
3 ]01 = 1

3
(
T sr + e±

2πi
3 T srr + e∓

2πi
3 T srr

)
[r, e±

2πi
3 ]10 = 1

3
(
T sr + e∓

2πi
3 T srr + e±

2πi
3 T srr

)
[r, e±

2πi
3 ]11 = 1

3
(
T 1
r + e±

2πi
3 T rr + e∓

2πi
3 T rr

)
.

(3.392)

While the three dimensional [s,+] and [s,−] blocks are given by

[s,±]00 = 1
2
(
T 1
s ± T ss

)
[s,±]01 = 1

2
(
T rsr ± T srsr

)
[s,±]02 = 1

2 (T rsr ± T srsr )

[s,±]10 = 1
2
(
T rs ± T srs

)
[s,±]11 = 1

2
(
T 1
sr ± T srsr

)
[s,±]12 = 1

2
(
T rsr ± T ssr

)
[s,±]20 = 1

2
(
T rs ± T srs

)
[s,±]21 = 1

2 (T rsr ± T ssr) [s,±]22 = 1
2
(
T 1
sr ± T srsr

)
. (3.393)

VecS3
admits a Z2-grading as follows {1, r, r} ⊕ {s, sr, sr}. Breaking the MPO algebra
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down to the 1-sector induces a Rep(Z2) condensation phase transition to Z(VecZ3
).

Sectors Defects
Condensed

T 1
1 T r1 T r1 T 1

r T rr T rr T 1
r T rr T rr T 1

s T 1
sr T 1

sr
anyons

1

[1, 1]
[1, 0] 1 1 1

[1, ψ] 1 1 1

[1, e
2πi
3 ] [1, π]00 2 2e−

2πi
3 2e

2πi
3

[1, e−
2πi
3 ] [1, π]11 2 2e

2πi
3 2e−

2πi
3

[r, 1] [r, 1]00 2 2 2

[r, 1] [r, 1]11 2 2 2

[r, e
2πi
3 ] [r, e

2πi
3 ]00 2 2e−

2πi
3 2e

2πi
3

[r, e−
2πi
3 ] [r, e

2πi
3 ]11 2 2e

2πi
3 2e−

2πi
3

[r, e−
2πi
3 ] [r, e−

2πi
3 ]00 2 2e

2πi
3 2e−

2πi
3

[r, e
2πi
3 ] [r, e−

2πi
3 ]11 2 2e−

2πi
3 2e

2πi
3

x ∆
[s,+] 3 3 3

[s,−] 3 3 3
(3.394)

The three dimensional ∆ block is given by

∆00 = T 1
s ∆01 = T rsr ∆02 = T rsr

∆10 = T rs ∆11 = T 1
sr ∆12 = T rsr

∆20 = T rs ∆21 = T rsr ∆22 = T 1
sr . (3.395)

The reader may find it amusing that this condensation transition actually increases the number
of anyons from eight to nine.

The action of the nontrivial group element x upon the defect superselection sectors is given
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by

Sectors Defects
Z2-action

T s1 T sr1 T sr1 T sr T srr T srr T sr T srr T srr T ss T srsr T srsr

1

[1, 1] 1 1 1

[1, e
2πi
3 ]

2 −1 −1
[1, e−

2πi
3 ]

[r, 1] 1 1 1

[r, 1] 1 1 1

[r, e
2πi
3 ] 1 e−

2πi
3 e

2πi
3

[r, e−
2πi
3 ] 1 e

2πi
3 e−

2πi
3

[r, e−
2πi
3 ] 1 e

2πi
3 e−

2πi
3

[r, e
2πi
3 ] 1 e−

2πi
3 e

2πi
3

x ∆ 3 3 3
(3.396)

where there is an implicit normalization by D2
1 = 3.

From these actions we can extract the permutation action upon the defects, summarized
below.

ρx
x[1, 1] x[1, e

2πi
3 ] x[1, e−

2πi
3 ] x[r, 1] x[r, 1] x[r, e

2πi
3 ] x[r, e

2πi
3 ] x[r, e−

2πi
3 ] x[r, e−

2πi
3 ] x∆

[1, 1] 1

[1, e
2πi
3 ] 1

[1, e−
2πi
3 ] 1

[r, 1] 1

[r, 1] 1

[r, e
2πi
3 ] 1

[r, e
2πi
3 ] 1

[r, e−
2πi
3 ] 1

[r, e−
2πi
3 ] 1

∆ 1
(3.397)

We now turn to the Morita equivalent Rep(S3) MPO algebra. The simple objects are given
by the irreducible representations of S3 which are {0, ψ, π} as described above. The fusion
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rules of this algebra are given by

0× a = a, ψ × ψ = 0, π × ψ = ψ, π × π = 0 + ψ + π, (3.398)

while the nontrivial F -symbols are

[F ππππ ]ji = 1
2

 1 1
√

2
1 1 −

√
2√

2 −
√

2 0

 , F πππψππ = Fψπππππ = F πψππππ = F ππψπππ = −1 . (3.399)

The emergent anyons can be labeled identically to those of Z(Rep(S3)), and the corre-
sponding ICIs are given below.

Anyons T 0
000 T

ψ
0ψ0 T 0

ψψψ T
ψ
ψ0ψ T π0π0 T πψπψ T 0

πππ T ψπππ T ππ0π T ππψπ T ππππ
[1, 0] A P8 1 1 2
[1, ψ] B P2 1 1 −2
[1, π] C P6 2 2 2 2 −2 2
[s,+] D P7 3 −3 3

2
3
2

3
2

3
2

[s,−] E P3 3 −3 3
2

3
2 −3

2 −3
2

[r, 1] F P5 1 −1 1 −1
√

2
[r, e

2πi
3 ] G P4 1 −1 e−

2πi
3 e

πi
3
√

2e
2πi
3

[r, e−
2πi
3 ] H P1 1 −1 e

2πi
3 e−

πi
3
√

2e−
2πi
3

(3.400)

Note the implicit normalization D2 = 6 in the above table. We have also included the anyon
labels in the language of Refs. 64,204 to ease the comparison of our results.

The full two dimensional [1, π], [s,+], [s,−] blocks are given by

[1, π]00 = 1
3
(
T 0

000 + T ψ0ψ0 − T
π

0π0

)
[1, π]01 = 1√

3
T π0πψ

[1, π]10 = 1√
3
T πψπ0 [1, π]11 = 1

3
(
T 0
ψψψ + T ψψ0ψ + T πψπψ

)
, (3.401)

[s,+]00 = 1
2
(
T 0

000 − T
ψ

0ψ0

)
[s,+]01 = 1√

2
T π0ππ

[s,+]10 = 1
2T

π
ππ0 [s,+]11 = 1

4
(
T 0
πππ + T ψπππ + T ππ0π + T ππψπ

)
, (3.402)

[s,−]00 = 1
2
(
T 0
ψψψ − T

ψ
ψ0ψ

)
[s,−]01 = i√

2
T πψππ

[s,−]10 = i

2T
π
ππψ [s,−]11 = 1

4
(
T 0
πππ + T ψπππ − T ππ0π − T ππψπ

)
. (3.403)

Rep(S3) admits a grading by the Fibonacci algebra, see Eq.(3.387), as follows C1 ⊕ Ca =
{0, ψ} ⊕ {π}. The 1-sector is nontrivial in this case, given by Rep(Z2). Breaking the MPO
symmetry down to the 1-sector induces an anyon condensation phase transition to the toric code
phase Z(Rep(Z2)). The effects of condensation, including the resulting defects, are summa-
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rized in the table below.

Sectors Defects
Condensed

T 0
000 T ψ0ψ0 T 0

ψψψ T ψψ0ψ T 0
πππ T ψπππanyons

1

0 [1, 0] 1 1
[1, π]00 2 2

m
[1, ψ] 1 1

[1, π]11 2 2
e [s,+]00 3 −3
em [s,−]00 3 −3

a

π+
[s,+]11

3
2

3
2

[s,−]11
3
2

3
2

π−

[r, 1] 1 −1
[r, e

2πi
3 ] 1 −1

[r, e−
2πi
3 ] 1 −1

(3.404)

In this example, we see that the [1, π] superselection sector splits, with only one of the resulting
idempotents condensing to the vacuum, similar to what we saw in the Fibonacci example.

In the condensed theory, there is a copy of the Fibonacci algebra — generated by T π0π0 —
acting on the 0 anyon. While the m anyon transforms under an algebra generated by T πψπψ,
with multiplication a × a = 1 − a. We remark that the identity on each anyon is given by the
irreducible central idempotent for that anyon.

The π+ defect supports a representation of Z2 generated by 1
2(T ππ0π + T ππψπ), and the π−

defect transforms under an algebra generated by { 1√
2T

π
πππ,

1
2(T 0

πππ − T ψπππ)}. The algebra also

induces a Z2 hopping action between 0 and m generated by 1√
3(T π0πψ + T πψπ0). Similarly there

is a hopping between e and π+ generated by 1
2(T πππ0 +

√
2T π0ππ), and also between m and π+

generated by i
2(T πππψ +

√
2T πψππ). Again, the precise physical meaning of these actions is not

clear.

3.10 Discussion and conclusions

In this work, we have established a description of emergent symmetry-enriched topological
order in tensor network states in terms of G-graded matrix product operator algebras. A classi-
fication of these G-graded MPO algebras was given in terms of G-extensions of an underlying
topological MPO symmetry algebra. An extension of Ocneanu’s tube algebra to nontrivial
defect sectors was established, from which the physical data of the emergent SET order was
extracted. This induced a G-graded Morita equivalence relation on the G-graded MPO algebras,
relating those which led to the same emergent SET order. We described the effect that gauging
the global G symmetry had upon the MPO symmetry algebra, and found the relationship be-
tween the emergent SET and the topological order that results from gauging. The dual Rep(G)
anyon condensation process was also described in terms of the MPO symmetry algebra.

The results of Sections 3.4, 3.5, 3.6, 3.7, and 3.8 can be summarized succinctly with a
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diagram

C1
G-extension //

Double

��

CG
Restrict to C1

oo

G-Double

��

Double

((

Z(C1)
Add G defects // Z(C1)G

Gauge G symmetry //

Confine G defects
oo Z(CG) .

Condense Rep(G)
oo

(3.405)

Where C1 is an MPO algebra (or UFC), CG is a G-graded MPO algebra (or G-graded UFC),
Z(C1) and Z(CG) are emergent topological orders (or MTCs), and Z(C1)G is an emergent SET
(or G-crossed MTC). The theory of G-graded MPO algeras CG was described in Section 3.5, the
double construction was described in Section 3.4, G-Double refers to the symmetry-enriched
double construction described in Section 3.6, the gauging procedure was described in Sec-
tion 3.7, and the condensation procedure was described in Section 3.8.

In summation, the results developed in this paper provide a comprehensive toolbox for the
study of anomaly-free, nonchiral, SET orders under an on-site unitary group representation, on
a lattice in two spatial dimensions. The tools thus developed were brought to bear on several
examples: including an EM duality enriched toric code in Section 3.2, the symmetry-enriched
string-nets in Section 3.3, and more in Section 3.9.

Moving forward, the work reported here has generated a number of outstanding questions
and uncovered a number of promising paths toward future research.

For instance, it would be interesting — and extremely relevant — to incorporate anti-unitary
symmetries such as time-reversal into our formalism. We remark symmetry-enriched string-
net models with time reversal symmetry have been described in Ref. 33,112,222. Another
immediate generalization would be the inclusion of spatial symmetries and lattice defects, for
which tensor networks are naturally suited. We anticipate an approach similar to that presented
in Ref. 245 would prove fruitful.

It would also be interesting to adapt our approach to systems with constituent fermion de-
grees of freedom. It is known that the fermionic parity symmetry can be gauged, and that this
is dual to condensing an emergent fermion in the gauged system, which is made up of bosonic
constituent degrees of freedom246–249. The fermion parity defects can be interpreted singulari-
ties in a lattice spin structure250–252.

A question that we have not answered is how to construct local isometry circuits between
different symmetry-enriched phases with the same underlying topological order, which are ex-
pected to exist following the framework of Ref. 26. We remark that such circuits are simple to
construct for the special case of SPT phases, see Refs. 75,93, Chapter 1 for example.

The G-graded MPO algebras we have studied can be viewed as a construction of invertible
gapped domain walls between a Z(C1) topological order and itself. More specifically, these are
gapped domain walls between a specific representative of the Z(C1) Morita equivalence class,
given by the MPO algebra C1, and itself. A natural extension would be to consider invertible
gapped domain walls between arbitrary representative MPO algebras from the Z(C1) Morita
equivalence class. Such a gapped domain wall, between representative UFCs CA and CB , would
correspond to an invertible CA-CB-bimodule216,253. Developing the theory of these bimodules
should allow us to understand the Morita equivalence relation more explicitly at the level of the
local tensors of an MPO algebra.
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Another extension would be to consider noninvertible gapped domain walls, which corre-
spond toA-graded MPO algebras, whereA is also an algebra. It was discussed in Section 3.8.3
how anA-grading can be used to calculate the effects of an anyon condensation phase transition
induced by breaking the MPO algebra down to the 1-sector. Several examples demonstrating
this procedure were given in Section 3.9. We conjectured that this captures all anyon condensa-
tion phase transitions between nonchiral topological orders in two spatial dimensions. It would
be interesting to develop an A-extension procedure, generalizing G-extension, dual to these
anyon condensations and to understand the connnection between theA algebra and the algebra
object approach to anyon condensation246,253. We expectA-graded UFCs that admit a braiding
can be used to generalize the Hamiltonian construction of topological phases presented in Ref.
254 and Chapter 4. The resulting phases of matter should correspond to a family of TQFTs
known as Dichromatic state sum models recently defined in Ref. 255. We plan to expand on
these directions in future work.

The even more general case of CA-CB-bimodules for arbitrary UFCs CA and CB (not neces-
sarily Morita equivalent), describes all gapped domain walls between Z(CA) and Z(CB). This
captures the gapped boundary conditions of Z(CA) via the special case where CB is trivial,
CB = {0}, note the general case can be recovered by using the folding trick. We remark that a
systematic study of this problem for string-net models was given in Ref. 253.

The tools we have developed also allow one to find and construct all possible transver-
sal gates on topological quantum codes in two spatial dimensions. We remark that the re-
sults of Ref. 81 imply all locality preserving gates on topological quantum codes, that have
an anomaly-free action on the superselection sectors of the topological order, can in fact be
realized transversally. This may require one to use a different underlying model with the same
emergent topological order. The symmetry-enriched string-nets32,33 suffice to realize all such
transversal gates in local commuting projector topological quantum codes. We plan to explain
this in more detail in a follow up work.

The boundary phases of an SET tensor network, and their phase transitions, can be clas-
sified in terms of the G-graded MPO symmetry algebra. These phases are classified w.r.t. a
symmetry given by the MPO algebra C1, and G plays the role of a group of dualities between
the phases. Conversely, the framework developed in Section 3.5 allows one to construct the
possible MPO algebra of dualities between the one dimensional C1 phases. These dualities can
be used to find phase transitions, which are described by emergents conformal field theories
(CFTs)191–194. At the phase transition the dualities become symmetries and the topological su-
perselection sectors of the CFT can be constructed using the approach described in Section 3.4,
see Ref. 129 and Chapter 2 for example. The (1 + 1)D quantum Euclidean path integrals, or 2D
classical partition functions, of the boundary phases can be realized using a generalized strange
correlator256, given by an overlap between a product state and the SET tensor network state.
Generalized strange correlators derived from the symmetry-enriched string-nets can be used to
construct many familiar lattice statistical mechanics models, including the Ising model and Z3
Potts model. Stable renormalization group fixed points on the boundary correspond to gapped
phases and can be interpreted as gapped boundary conditions, while the unstable gapless fixed
points correspond to CFTs.

It would be very interesting to find tensor networks that are symmetric under an anomalous
symmetry in two spatial dimensions. Such anomalous symmetries can be expressed as tensor
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network operators, that arise at the boundary of a (generalized) SPT phase in three spatial di-
mensions155,238–241. We anticipate that such a tensor network could be found by following a
similar approach to Ref. 129, Chapter 2. We plan to study this in a future work.

Acknowledgments — We thank Dave Aasen, Meng Cheng, Michaël Mariën, and Ryan Thorn-
gren for many useful discussions and Jacob Bridgeman for sharing his tikz skillz.
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Chapter 4

Hamiltonian models for topological phases
of matter in three spatial dimensions
Synopsis:

We present commuting projector Hamiltonian realizations of a large class of (3+1)D topolog-
ical models based on mathematical objects called unitary G-crossed braided fusion categories.
This construction comes with a wealth of examples from the literature of symmetry-enriched
topological phases. The spacetime counterparts to our Hamiltonians are unitary state sum topo-
logical quantum fields theories (TQFTs) that appear to capture all known constructions in the
literature, including the Crane-Yetter-Walker-Wang and 2-Group gauge theory models. We also
present Hamiltonian realizations of a state sum TQFT recently constructed by Kashaev whose
relation to existing models was previously unknown. We argue that this TQFT is captured as
a special case of the Crane-Yetter-Walker-Wang model, with a premodular input category in
some instances.

Based on: 254
Dominic J. Williamson and Zhenghan Wang,
Ann. Phys. 377, 311–344 (2016), arXiv:1606.07144.

Changes compared to published version: Minor corrections and formatting changes.

Contributions of the author: This project was a collaborative effort, the research direction was
proposed by the second author, who also provided invaluable supervision through many stim-
ulating discussions, whilst the calculation and writing was primarily done by the first author.
This work contains a summary of Ref. 84, which was written by the first author.

http://www.sciencedirect.com/science/article/pii/S0003491616302871
https://arxiv.org/abs/1606.07144


222 4 Hamiltonian models for topological phases of matter in three spatial dimensions

4.1 Introduction

Theoretically, a topological phase of matter (TPM)9,257 without any symmetry protection is
an equivalence class of local Hamiltonians19,25,26,258 whose low energy physics is modeled
by a stable∗ unitary topological quantum field theory (TQFT)11–14,22,203,224. Given a realistic
Hamiltonian it is generally difficult to determine which TPM it is in. A fruitful approach is to
reverse engineer Hamiltonians from known TQFTs. Famous examples include Kitaev’s toric
code19,72 and Levin-Wen models24,108.

Physical TQFTs are local and this is usually formulated by a set of axioms known as the
gluing formulas220,221,259. A more explicit form of locality is a state sum construction108. It is
generally believed that state sum TQFTs are in 1-1 correspondence with fully extended TQFTs
and both admit local commuting projector Hamiltonian realizations. However this conjecture
has not been rigorously proven in full generality largely due to an inability to drop restric-
tive symmetry assumptions on the input data and higher “j-symbols”. While it is difficult to
algebraically formalize the fully extended TQFT framework without these assumptions some
progress has been made for the state sum case in Ref. 84. An interesting example that clearly
violates the symmetry assumptions is Kashaev’s state sum (3+1)-TQFT82,260, whose j-symbols
strongly depend on the linear ordering of the vertices of a 4-simplex.

A basic principle in the study of state sum TQFTs is that the behavior of a local (n + 1)-
TQFT restricted to a disk is encoded by some higher n-category C 220,221,259. Furthermore the
partition functions and a local commuting projector Hamiltonian can be constructed from C as
illustrated by the Turaev-Viro and Levin-Wen models24,108 (generalized Kitaev models19,72) in
two spatial dimensions. The physical excitations in this general picture should be described
by a special (n + 1)-category that is constructed by taking a generalized Drinfeld double of
the n-category C 164,211. The major deficiencies of this general approach are the lack of a good
algebraic definition for the appropriate weak n-categories and an absence of examples. This
is in stark contrast to the well developed theory of fusion categories relevant to the (2 + 1)D
case165,216.

In this paper our focus will be on three dimensional topological phases of matter and the
associated (3 + 1)-TQFTs. Many concrete constructions in three spatial dimensions have been
proposed82,86,88,90,260–266, but all seemingly fall short of capturing the full intricacies of (3+1)D
topological order. Looking back to (2 + 1)D we note that state sum TQFTs constructed from
unitary fusion categories (UFCs) are sufficiently general to achieve all non chiral topological or-
ders24,108 (from the higher categorical point of view these should be understood as 2-categories
that contain a single object). By analogy, we will refer to the most general input to (3 + 1)D
state sum TQFTs as unitary fusion 2-categories (which should correspond to 3-categories that
contain a single object).

As a step towards a fully general unitary fusion 2-category construction, we focus on a
case that is populated by a rich class of examples originating from the algebraic theory of
defects in (2 + 1)D symmetry enriched topological (SET) orders. These defects are described
by mathematical objects known as unitary G-crossed braided fusion categories (UGxBFCs). We
build on the work of Ref. 83 in which a large class of state sum (3 + 1)-TQFTs were rigorously

∗Stable can be understood as no spontaneous symmetry breaking. The technical definition is Z[S3 × S1] = 1
which implies local operators act trivially within the ground space.
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constructed from UGxBFCs that (with a small extension) seem to include almost all known
examples of unitary state sum (3 + 1)-TQFTs. In this paper we propose their Hamiltonian
realization, generalizing the construction of Ref. 85. We note that a related construction of
(3 + 1)-TQFTs based on a proposed definition of spherical 2-category was given in Ref. 265
but it was shown in Ref. 83 that this definition was too restrictive to even capture the unitary
G-crossed braided fusion categories (UGxBFC).

A family of models possibly outside this class of TQFTs are Kashaev’s examples82. We
also establish a Hamiltonian formulation of these (3 + 1)-TQFTs. Moreover we pose, and
provide evidence for, the following conjecture: Kashaev’s TQFTs are equivalent to a subset of
Crane-Yetter TQFTs with input categories that may be premodular, in particular sV ec for some
instances (i.e. Walker-Wang models with fermionic string types).

4.2 Background

In this section we recount the definition of state sum TQFTs, and their associated Hamiltonians
and tensor network ground states, before moving on to discuss two recently constructed classes
of state sums; the UGxBFC and Kashaev’s ZN models. To facilitate the discussion of these
topics we first set up some basic conventions and terminologies that are used throughout the
manuscript. From this point forward we also make free use of notation and constructions from
combinatoric topology, for those unfamiliar with this topic the necessary points are summarized
in Appendix.4.6.

We will define topological partition functions Z[X] on space-time manifolds X of dimen-
sion n + 1, and Hilbert spaces V [Y ] on spatial n-manifolds Y that are equipped with triangu-
lations13. But triangulation can mean many different things. For highly non-symmetric state
sum TQFTs, we usually need a simplicial triangulation of the spatial manifold Y , but only a
∆-complex triangulation of the space-time manifold X .

A manifoldM has a simplicial triangulation ifM is homeomorphic to the realization or un-
derlying space |K| of an abstract simplicial complex K267 (there are in fact extra technicalities,
see the appendix). A simplicial complex K is a collection of subsets of a finite set V , called the
vertices ofK, with the property that if a subset σ of V is inK then all subsets of σ are also inK.
The subset σ is called an i-simplex if σ has (i + 1) vertices. A geometric realization |K| of K
can be built by associating each vertex v ∈ V to a basis vector of the Euclidean space R|V |. An
important technical point for our construction is that we assume V has a linear order. Therefore
our simplicial triangulations always have induced branching structures by drawing an arrow on
each edge from the lower numbered vertex to the higher one.

A manifold M of dimension m has a ∆-complex triangulation if the manifold M is con-
structed from a finite collection of m-simplices, which are glued together along the (m − 1)-
dimensional faces by simplicial maps. In particular a ∆-complex triangulation of a manifold
can have a single vertex, for example the torus T 2 with two triangles.

4.2.1 State Sum TQFTs

An oriented unitary (n + 1)-TQFT (V,Z) is technically a symmetric monoidal functor from
(n + 1)Cob to V ecC

11,13. This is nothing more than a very compact way of axiomatizing
topological invariance of a field theory and can be broken down into a series of more elementary
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statements. The TQFT assigns a topologically invariant partition function Z[Xn+1] ∈ C to
each oriented closed (n + 1)-manifold and a finite dimensional Hilbert space V [Y n] to each
oriented closed n-manifold. It furthermore assigns a linear map Z[Xn+1] : V [Y n

0 ] → V [Y n
1 ]

to an oriented (n + 1)-manifold with boundary ∂Xn+1 = Y 0 t Y1. Unpacking the definition
leads to gluing formulas that ensure topological invariance amongst other technical axioms.
Additionally for a unitary TQFT orientation reversal is mapped to complex conjugation. We do
not delve any further into the general definition here, instead we move on to the more specific
notion of a state sum TQFT.

The most general possible construction of state sum TQFTs is not yet rigorously formalized,
due to technicalities in proving independence from the choice of branching structure, we will
present an overview here. A state sum TQFT comes with a finite set of input labels {L(i)}ni=0.
For any triangulationK of an n+1-manifoldX , we first choose a linear ordering of the vertices
K(0) (in fact a local ordering or branching structure will suffice). Then a configuration on the
triangulated manifold is specified by a set of maps s(i) : K(i) → L(i), which color each i-
simplex inK(i) with a label from L(i). Moreover, to capture the most general solutions we allow
each label l to have an associated “quantum dimension" dl ∈ C×. Finally in a configuration
s each labeled n+1-simplex ∆ is evaluated to a “j-symbol” Tσ(∆)

s(∆) , where σ(∆) = ± is the
orientation of the n+1-simplex. The partition function is then

Z[X] =
∑
s

∏
∆n+1

Tσ(∆n+1)
s(∆n+1)

∏
∆n−1

ds(∆n−1)
∏

∆n−3

ds(∆n−3)∏
∆n

ds(∆n)
∏

∆n−2

ds(∆n−2)
· · ·

note our quantum dimensions may be rescaled compared to the usual definition from a unitary
fusion category (UFC).

This prescription extends to triangulated manifolds with boundary ∂X = Y 0 t Y1
84

Z[X] =
∑
s

∏
∆n+1

Tσ(∆n+1)
s(∆n+1)

∏
∆n−1

d
c(∆n−1)
s(∆n−1)

∏
∆n−3

d
c(∆n−3)
s(∆n−3)∏

∆n

d
c(∆n)
s(∆n)

∏
∆n−2

d
c(∆n−2)
s(∆n−2)

· · ·
⊗

∆j∈Y1

|s(∆j)〉
⊗

∆i∈Y0

〈s(∆i)|

where c(∆i) = 1
2 if ∆i ∈ ∂X and 1 if it is in the interior. Hilbert spaces V [Y ] are then defined

to be the support subspace of the linear operator Z[Y × I] for a triangulation of Y × I that
matches Y on both boundaries. Topological invariance of the state sum is more precisely an
invariance of Z under piecewise linear (PL) homeomorphisms on the (n + 1)-manifold. PL
homeomorphic manifolds are related by a sequence of local bistellar flips of the triangulation,
drawn from a finite set known as the Pachner moves268. This recasts topological invariance of
the state sum into a finite set of equations that the j-symbol must satisfy84, corresponding to
retriangulations of the (n+ 1)-ball. This guarantees the partition function is independent of the
choice of triangulation, moreover one must show the partition function is independent of the
choice of vertex ordering.

4.2.2 Hamiltonians, Tensor Network Ground States and PEPO Symmetries

State sum TQFTs have a natural interpretation as tensor networks84,108,269 (see Ref. 41 for an
introduction to tensor networks). Copies of a single tensor are associated to each simplex and
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contracted according to how the simplices are glued together. Topological invariance of the
discrete partition functions is ensured if and only if the simplex tensor satisfies tensor equa-
tions corresponding to the Pachner moves268. There is a standard (although not widely known)
construction to obtain a local real-space renormalization group (RSRG) fixed point commuting
projector Hamiltonian that stabilizes the vector space of a state sum TQFT on a triangulated
surface, generalizing that of Levin & Wen24. The Hamiltonian is given by

H =
∑
v

1− Z[v′ ∗ cl stv] (4.1)

where v′ is a copy of vertex v after one imaginary time step. For a definition of the opera-
tions {∗, cl, st} see Appendix.4.6. All the aforementioned properties of the Hamiltonian fol-
low from the Pachner move invariance of the simplex tensor84. A projected entangled pair
state (PEPS)39,42,46,55 representation of a ground state wave function (GSWF) on a triangu-
lated manifold (Y,K) is given by Z[v0 ∗ K]. Provided Z[{v0, v1} ∗ Y ] > 0 (which implies
dimV [Y ] = Z[Y × S1] > 0) the resulting state is nonzero. This PEPS is a frustration free
ground state as it satisfies Z[v′ ∗ cl stv]Z[v0 ∗ K] = Z[v0 ∗ K] following from the Pachner
moves. This PEPS has a projected entangled pair operator (PEPO) symmetry which can be
“pulled through” the virtual level59,62,63,66,93, this is also ensured by the Pachner moves. The
symmetry is indicative of topological order in the model via a bulk boundary correspondence
given by taking the double of the algebra of tensor network operators on the boundary to con-
struct the emergent physical excitations64,195,270. The framework also yields a multiscale en-
tanglement renormalization ansatz (MERA)43 description of the ground space constructed by
taking a triangulated identity bordism (Y × I,K′) such that the triangulation at the space mani-
fold (Y, 0) reduces to the physical lattice K and we pick a minimal triangulation K′′ of (Y, 1) at
the ‘top’ of the MERA corresponding to the far IR scale. Then upon fixing a vector containing
the fully coarse grained topological information |t〉 the MERA is given by

Z[K′] |t〉 (4.2)

For physical lattice models it is important that the Hamiltonians output by our construction are
Hermitian. This is ensured by a sufficient condition on the underlying tensor, namely that it is
symmetric under simultaneous complex conjugation and orientation reversal. We note in the
framework of Ref. 84 there is some technicality involved when dealing with weight functions
associated to objects on lower dimensional strata of the triangulation.

4.2.3 Review of the UGxBFC TQFT

A new class of (3+1)-TQFTs was constructed in Ref. 83 from unitaryG-crossed braided fusion
categories (UGxBFC) C×G 31,81,97,98, whereG is a finite group. These UGxBFCs can be though of
as special unitary fusion 2-categories. WhenG is trivial, a UGxBFC C×G reduces to a premodular
category and the resulting TQFT is the Crane-Yetter TQFT86,261 whose Hamiltonian realization
is described in Ref. 85. In general, a UGxBFC has |G| sectors and the trivial sector is always a
premodular category.

UGxBFC

A UGxBFC31,81,97,98 can roughly be thought of as a spherical fusion 1.5-category—it is a spher-
ical fusion category with a G-crossed braiding, hence it does not seem to be a totally general
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Figure 4.1: Summary of the results in Ref. 84.

spherical fusion 2-category. That being said there is no satisfactory agreed upon definition of
a spherical 2-category in the literature. While a definition was proposed in Ref. 265 it was
shown in Ref. 83 that this was too restrictive to even capture the UGxBFCs. Moving forward
the UGxBFCs constitute a very important class of unitary fusion 2-categories as they provide a
huge family of nontrivial examples, which have proved otherwise hard to come by.

For our purpose, the most convenient way to define a G-crossed braided fusion category is
through a collection of symbols {N c

ab, da, F
abc
d , Rabc ,κa, Ug(a, b; c), ηx(g, h)}31. This extends

the description of a unitary premodular category through a collection of symbols
{N c

ab, da, F
abc
d , Rabc ,κa}203.

A UGxBFC is an abstract description of point like defects of a symmetry group G in a
gapped phase of matter in (2 + 1)D. Each defect carries a flux g ∈ G but there may be multiple
topologically distinct defects carrying the sameG-flux, this is described by aG-graded category

CG =
⊕
g∈G
Cg

where each simple object is contained in some sector a ∈ Cg. We follow the notation of Ref. 31
and use ag as shorthand for a ∈ Cg. Defects can be fused by physically bringing them together,
this is described by a set of multiplicities N c

ab counting the number of ways a and b can fuse to
c. In particular the fusion a × b → c is admissible iff N c

ab 6= 0. The fusion should respect the
grading, i.e.

ag × bh =
∑
c∈CG

N c
abc =

∑
c∈Cgh

N c
abcgh.

The C1 sector is closed under fusion and contains the unique vacuum object that fuses trivially
with everything else, thus forming a fusion subcategory.

The fusion of three defects is not strictly associative, two different fusion paths with result
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d are related by an F -symbol associator (a× b)× c
Fabcd−−−→ a× (b× c) more precisely

a b c

e

d

α

β

=
∑
fµν

[F abcd ]fµνeαβ

a b c

f

d

µ

ν

(4.3)

Unitarity of the fusion category requires [(F abcd )−1]eαβfµν = ([F abcd ]fµνeαβ)∗. For this associator to
be consistent all paths between a pair of diagrams must agree, this is guaranteed by the well
known pentagon equation∑

δ

[F fcde ]lδνgβγ [F able ]kλµfαδ =
∑
hσψρ

[F abcg ]hσψfαβ [F ahde ]kλρgσγ [F bcdk ]lµνhψρ (4.4)

this is depicted diagrammatically in Fig.4.2.

Figure 4.2: The pentagon equation.

The group G has an action on simple objects denoted by gah ∈ Cgh where gh = ghg−1.
Each simple object ag has a unique conjugate ā ∈ Cḡ that can fuse together to give the vacuum,
where ḡ = g−1. Flipping the direction of an edge is equivalent to conjugating the charge label

a
=

ā
. (4.5)

The element [F aāaa ]11 = κa
da

consists of a quantum dimension which arises from popping a
bubble

da = dā = a (4.6)

and a Frobenius-Shur (FS) indicator which arises when a cup and cap are canceled

a ā a

0

0

= κa a . (4.7)
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Note the FS indicator can be fixed to 1 via a gauge transformation unless a = ā in which case
κa = ±1.

The total quantum dimension of C is D2 =
∑
a∈C

d2
a and similarly for each sector Cg, D2

g =∑
a∈Cg

d2
a. The nonempty sectors form a subgroup H ≤ G and satisfy Dh = D1 for h ∈ H . Note

all defects in a given sector are related by fusion with objects in C1.
The physical defects appear at the end of branch cuts and can be dragged around by adia-

batically deforming the Hamiltonian. This leads to braided worldlines of the defects attached to
worldsheets of the branch cuts. We follow the convention of Ref. 31 and depict the worldsheets
going into the page. The worldsheet of a defect worldline acts on other defects which pass
behind it. The G-crossed braiding is defined by several pieces of data, the R-symbol

cgh

bhag

µ =
∑
ν

[Ragbhcgh
]νµ

cgh

bhag

ν (4.8)

and the U and η symbols, which arise due to symmetry actions as a defect is slid over or under
a fusion vertex,

xk
k̄b

k̄cgh

bhag

µ

=
∑
ν

[Uk(a, b; c)]νµ xk

k̄cgh

cgh

bhag

ν

(4.9)

xk

ḡx

h̄ḡxk

cgh

bhag

µ

= ηx(g, h) xk

h̄ḡxk

cgh

bhag

µ

. (4.10)

U corresponds to the action of the global symmetry on topological degrees of freedom, while
ηx corresponds to the 2-cocycle of the projective representation carried by x.

For the data F abcd , Rabc , Ug(a, b; c), ηx(g, h) to define a consistent UGxBFC C×G the symbols
must satisfy a number of conditions. The F -symbols must satisfy the pentagon equation in
Fig.4.2. Equating the two different paths in Fig.4.3 yields a constraint corresponding to the
action of (kl)l̄ k̄ being trivial (technically a natural isomorphism)

[κk,l(a, b; c)]νµ =
∑
αβ

[U−1
k (a, b; c)]αµ[U−1

l (k̄a, k̄b; k̄c)]βα

[Ukl(a, b; c)]νβ = ηa(k, l)ηb(k, l)
ηc(k, l)

δνµ. (4.11)

Associativity of the group action klm yields a further constraint on κk,l

κl,m(k̄a, k̄b; k̄c)κk,lm(a, b; c) = κk,l(a, b; c)κkl,m(a, b; c).
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Figure 4.3: Consistency of the global symmetry action and projective phases.

Consistency of fusion and η leads to the equation

ηḡx(h, k)ηx(gh, k) = ηx(g, h)ηx(gh, k)

by equating the two paths in Fig.4.4. This ensures the symmetry fractionalization is not anoma-
lous and can be realized in a standalone (2 + 1)D system, corresponding to the vanishing of a
H3(G,A) obstruction where A is the group of abelian anyons. Similarly consistency of fusion

x

ag bh ck

egh

dghk

α

β

→
x

ag bh ck

dghk

fhk

µ

ν

↓ ↓

egh

x

ag bh ck

dghk

α

β →

x

ag bh ck

fhk

dghk

µ

ν

xk

ka kb kc

a b c

e

d

α

β

→
xk

ka kb kc

a b c

d

f
µ

ν

↓ ↓

ke

xk

ka kb kc

d

α′

β′ →

xk

ka kb kc

kf

kd

d

µ′

ν′

Figure 4.4: Consistency of fusion with: η (left), and U (right).

and U yields the equation∑
α′β′µ′ν′

[Uk(k̄a, k̄b; k̄e)]α
′
α [Uk(k̄e, k̄c; k̄d)]β

′

β [F k̄ak̄bk̄c
k̄d

]
k̄fµ′ν‘
k̄eα‘β′ [U

−1
k (k̄b, k̄c; k̄f)]µµ‘[U

−1
k (k̄a, k̄f ; k̄d)]νν‘

= [F abcd ]fµνeαβ

(4.12)

which corresponds to a symmetry condition on F under the group action.
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The Yang-Baxter equation is no longer a strict equality in a UGxBFC and leads to a consis-
tency equation between the dragging of a string over or under a crossing

ηk̄a(
k̄h, k)

ηk̄a(k, h)
∑
µ′ν′

[Uk(kb, kh̄a; kc)]µ′µ [Rkakb
kc ]ν′µ′ [U−1

k (ka, kb; kc)]νν‘ = [Rabc ]νµ (4.13)

which is a symmetry condition on R under the group action.

bh h̄agxk

kag
kbh xk

bh h̄agxk

kag
kbh xk

Figure 4.5: Yang-Baxter relation in a UGxBFC.

Finally there are consistency relations between F and R (also involving U and η) known as
the heptagon equations, generalizing the well known hexagon equations for a UBFC, one each
for right and left handed braiding (see Fig.4.6) as follows∑

λγ

[Race ]λα[F ack̄bd ]mγνeλβ [Rbcm]µγ =
∑
fσδθψ

[F ck̄ak̄bd ]
k̄fδσ
eαβ [Uk(a, b; f)]θδ [R

fc
d ]ψσ [F abcd ]mµνfθψ

(4.14)∑
λγ

[(Rcae )−1]λα[F aḡcbd ]mγνeλβ [(Rḡcb
m )−1]µγ =

∑
fσδψ

[F cabd ]fδσeαβηc(g, h)[(Rcfd )−1]ψσ [F abh̄ḡcd ]gµνfδψ (4.15)

where the defect sectors are determined by ag, bh, ck. For a unitary GxBFC it is required that

Figure 4.6: The left and right handed heptagon equations of a UGxBFC, respectively.

[(Rabc )−1]νµ = ([Rabc ]µν )∗. Note the trivial sector C1 of a UGxBFC is itself a UBFC as the
heptagon equations reduce to the hexagon equations in that case.

The consistency equations for a UGxBFC guarantee it is not anomalous and can be realized
in a stand-alone (2+1)D system. Not all group actions on UBFCs can be extended to a UGxBFC
as some are anomalous. The anomalies lie in H4(G,U(1)), which is related to weakening the
pentagon equation Fig.4.2, and H3(G,A) which is related to weakening the fractonalization
constraint Fig.4.4.
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Example: Z3 Tambara-Yamagami Category

A simple example of a UGxBFC known as the Z3 Tambara-Yamagami category can be con-
structed from a Z(1)

3 anyon theory {0, 1, 2} with a Z2 symmetry that permutes 1 and 2. This
theory is also known as SU(3)1 which has central charge c = 2 and a Z2 particle-hole sym-
metry. Physically, this theory describes the topological order of a sector of the ν = 1

3 Laughlin
FQH state.

The UGxBFC consists of two sectors C×Z2
= C0 ⊕ C1. The Z(1)

3 UBFC constitutes the C0
sector and is defined by the fusion rules N c

ab = δa+b=c mod 3, trivial F symbols and braiding
Raba+b = e2πiab/3. The nontrivial sector contains only a single defect C1 = {σ}. The fusion
rules are thus

σ × a = a× σ = σ

σ × σ =
∑
a∈C0

a.

The anyons in C0 each have quantum dimension 1, hence dσ =
√

3. The nontrivial F symbols
are then given by

[F aσbσ ]σσ = [F σaσb ]σσ = χ(a, b)

[F σσσσ ]ba = κσ√
3
χ(a, b)∗

where χ(a, b) = e2πiab/3 is a symmetric bi-character. The G-crossed braidings involving σ are
determined by

Rσaσ = U1(σ, σ, a)(−1)ae−πia2/3 , Raσσ = (−1)ae−πia2/3

Rσσa = γ(−1)aeπia2/3 , γ2 = κσ√
3
∑
a∈C0

(−1)ae−πia2/3

where U1(σ, σ, a) = ±1 and κσ = ±1 are choices which yield slightly different UGxBFC
extensions of C0, note η is trivial in all cases.

State Sum from UGxBFC

The data of a UGxBFC C×G can be used as input to generate a family of (3 + 1)D state sum
TQFTs83 generalizing the Crane-Yetter-Walker-Wang model. The label set is as follows L(1) =
G, L(2) = C×G , L(3) = Hom(C×G ⊗ C

×
G , C

×
G ⊗ C

×
G), where we are abusing notation by using

C×G to denote the set of equivalence classes of simple objects. That is each edge is labeled by
a group element g, each triangle is labeled by a defect a and each tetrahedron is labeled by a
triple (a, µ, ν) of a defect and two degeneracy labels. The only configurations that have nonzero
contributions to the state sum must satisfy the following constraints between the labels on the
different strata: the defect on a simplex 012 must satisfy a012 ∈ C(dg)012 where (dg)012 =
ḡ02g01g12 and the defect labels on the faces and body of a tetrahedra 0123 are subject to the
constraints Na0123

a1̂
ḡ23a3̂

6= 0 6= Na0123
a2̂a0̂

(then µ, ν correspond to degeneracy labels of these fusion
spaces).

The 15j-symbols are given by evaluating diagrams in the UGxBFC shown in Fig.4.7. The
choice of diagram is determined by the configuration s and the vertex ordering on a pentachoron.
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We use the compressed notation F abcd;ef = [F abcd ]fe , explicit evaluation of the diagrams in Fig.4.7
yields

T+
s(01234) =

∑
a,b

dbF
024,234,3̄4·2̄3012
b;0234,a η−1

012(3̄4, 2̄3)R2̄4012,234
a (F 024,2̄4012,234

b;a,0124 )−1F 014,124,234
b;0124,1234

(F 014,134,3̄4123
b;1234,0134 )−1 F 034,3̄4013,3̄4123

b;0134,3̄40123 U3̄4(023, 2̄3012; 0123)

U−1
3̄4 (013, 123; 0123)(F 034,3̄4023,3̄4·2̄3012

b;3̄40123,0234 )−1 (4.16)

T−s(01234) =
∑
a,b

db(F 024,234,3̄4·2̄3012
b;a,0234 )−1η012(3̄4, 2̄3)(R2̄4012,234

a )−1F 024,2̄4012,234
b;0124,a

(F 014,124,234
b;1234,0124 )−1F 014,134,3̄4123

b;0134,1234 (F 034,3̄4013,3̄4123
b;3̄40123,0134 )−1

U−1
3̄4 (023, 2̄3012; 0123)U3̄4(013, 123; 0123)F 034,3̄4023,3̄4·2̄3012

b;0234,3̄40123 (4.17)

where each label ∆i is to be read as s(∆i), we have omitted the explicit writing of s for brevity.

Figure 4.7: Diagrams in the UGxBFC that define the 15j-symbols T+
s(01234) (left), and T−s(01234)

(right)83. It is intended that ∆i should be read as s(∆i).

These 15j-symbols, together with the quantum dimensions, define the state sum partition
function

Z[X] =
∑
s

∏
∆4

Tσ(∆4)
s(∆4)

∏
∆2

ds(∆2)
∏
∆0

D2/|G|∏
∆3

ds(∆3)
∏
∆1

D2

where D is the total quantum dimension. It was shown in Ref. 83 that the partition function is
a topological invariant, i.e. does not depend on the choice of vertex ordering or triangulation.
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The latter condition is guaranteed by the equalities Z[J ] = Z[∆5\J ] for all 4-subcomplexes
J ⊆ ∆5.

This state sum captures many known constructions as special cases:

• For G = {1} the trivial group the UGxBFC C×G = C1 is a regular UBFC and the 15j-
symbols match the construction of Crane and Yetter86,261, hence Z[X] = CYC1(X) the
Crane-Yetter partition function for C1. This implies our lattice models include the Walker-
Wang models85.

• Another special case constructed from a categorical group (or crossed module) yields
Yetter’s homotopy 2-type invariant90. Note this inclusion implies that our lattice models
capture those of Ref. 89. Categorical groups are in 1-1 correspondence with crossed
modules, we follow Ref. 83 and use the latter to build a UGxBFC. A crossed module is
specified by the data (G,H, ρ, a) for G,H finite groups, ρ : H → G a group morphism
and a : G × H → H a group action of G on H subject to the conditions ρ(ag(h)) =
gρ(h) and aρ(h′)(h) = h′h. A UGxBFC C(G,H, ρ, a) =

⊕
g∈G
Cg is constructed from

the data as follows: the simple elements are h ∈ H , the grading is given by h ∈ Cρh,
fusion is given by multiplication in H , the G-action is given by a, the braiding and F
symbols are trivial. The 15j-symbols are simply delta conditions on the configuration
being admissible (i.e. face and tetrahedra constraints satisfied) and the partition function
satisfies Z[X] = Y(X) for the Yetter invariant90 constructed from the categorical group
corresponding to (G,H, ρ, a). In the special case that H = {1} is trivial, ρ & a are also
trivial, then the triangle constraints become the flatness condition dg = 0 and the partition
function recovers the untwisted Dijkgraaf-Witten theory for G, Z[X] = DWG(X)72.

• The case where the only nontrivial sector is C1, a UBFC, the triangle constraints imply the
flatness condition dg = 0. If in addition the group action is trivial the group and anyon
degrees of freedom decouple and the partition function factors into a product of CY and
untwisted DW theory, Z[X] = DWG(X)CYC1(X).

For the trivially graded case it is possible to introduce additional cocycle data to produce
variants of the UGxBFC:

• Since the state sum only involves flat G-connections the 4 group variables gi,i+1 fully
specify the G configuration on a pentachoron. One may modify the 15j-symbol by
multiplication with a 5-cocycle phase factor [ω] ∈ H4(G,U(1)) to produce T̂±s(∆4) =
T±s(∆4)ω

±1(g01, g12, g23, g34) which will give rise to a topologically invariant state sum.
If in addition the group action is trivial the resulting partition function is given by a prod-
uct of CY and twisted DW theories Z[X] = DWω

G(X)CYC1(X).

• In the case that C1 = H an abelian group, with trivial F and R symbols, and a group
action a : G×H → H the tetrahedra constraint reads (dah)0123 = ag23(h1̂) +h3̂−h0̂−
h2̂ = 0. One may introduce a twisted 3-cocycle [β] ∈ H3

a(G,H) modifying the flatness
condition to (dah)0123 = β(g01, g12, g23). The 15j-symbols are then delta conditions
on the flatness of a 2-group connection defined by the data G = (G,H, a, β), following
Ref. 88. Furthermore one may introduce a multiplicative cocycle [ω] ∈ H4(BG, U(1))
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to produce a new 15j-symbol T̂±s(∆4) = T±s(∆4)ω
±1(s(∆4) ). The partition function then

recovers the twisted 2-group gauge theory Z[X] = 2-DWω
G(X).

No rigorous connection has been established between the aforementioned H3 & H4 co-
cycles and the H3(G,A) & H4(G,U(1)) anomaly classes of an SET. In these cases the SET
theory C1 and group action cannot be extended to a UGxBFC. However we conjecture it will re-
main possible to construct an extension of the UGxBFC with a single sector whose 15j-symbol
has an intrinsic H3 & H4 anomaly. We defer the details of this to future work271. Note the
possibility of adding an arbitrary H3 & H4 as discussed above suggest the intrinsic anomalies
should be thought of as torsors. Furthermore we speculate that it should be possible to construct
a unitary fusion 2-category generalizing the UGxBFC that describes extension of an anomalous
SET to nontrivial defect sectors, and this construction may yield a state sum with 15j-symbols
generalizing those of the UGxBFC.

It is not yet known how strong the UGxBFC state sum invariant is. Considering the special
cases it contains it is clearly sensitive to homotopy 2-type and also the second Stiefel—Whitney
class (as the anyons can be fermionic). It is unclear if the theory is able to detect any smooth
structure, while it is known from general considerations that it cannot be sensitive to all smooth
structure272.

4.2.4 Review of Kashaev’s TQFT

Kashaev’s family of state sum TQFTs82,260 are indexed by a natural number N ∈ N, they are
specified by a tensor

Q = N−
1
2

∑
k,l,m∈ZN

ωkm |k〉 〈k +m| ⊗ |l〉 〈l +m| ⊗ |m〉 (4.18)

where ω ∈ U(1) is a primitive N th root of unity. A tensor Q (Q†) is assigned to each 4-

Figure 4.8: Kashaev’s Q tensor (left) and its conjugate (right).

simplex in the triangulation where the orientation induced by the branching structure matches (is
opposite to) the ambient orientation of the triangulated manifold. AnN level qudit is associated
to each 3-simplex facet of the 4-simplex tensor, they are written in the order given by taking
the dual of the vertex order inherited from the branching structure. The full partition function
on a triangulated 4-manifold (X,K) is given by the evaluation of the tensor network times the
normalization factors N

3
2χ(X) and N−|K0|, where χ is the Euler characteristic and K0 is the

number of vertices in the triangulation (with those on a boundary counted as half).
Kashaev has shown in Ref. 82 that theQ tensors satisfy the Pachner move invariance condi-

tions, together with the Hermitian property of the tensors (i.e. parity reversal induces complex
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conjugation) this implies the construction outlined in Ref. 84 gives rise to a local commut-
ing projector Hamiltonian. The dimension of the (unfrustrated) zero energy eigenspace of the
Hamiltonian on a spatial manifold Y is given by Z[Y × S1]. In particular the Hamiltonian is
frustration free iff Z[Y × S1] is nonzero. Partition functions have been calculated for a number
of manifolds by Kashaev82 and for S1 × T 3 by the authors. These results are summarized in
Table.4.1 and show that the TQFT is stable (i.e. the Hamiltonian does not exhibit spontaneous
symmetry breaking). The final element of the table (highlighted in red) is the result of a new

X χ(X) σ(X) ZN [X]
S4 2 0 1

S2 × S2 4 1 3+(−1)N
2

CP 2 3 1 1√
N

N∑
k=1

ωk
2

S3 × S1 0 0 1

S2 × S1 × S1 0 0 3+(−1)N
2

S1 × S1 × S1 × S1 0 0 (3+(−1)N
2 )3

Table 4.1: Partition functions of Kashaev’s TQFT

calculation and yields the ground state degeneracy on the 3 torus for all N . Furthermore we
have ∣∣∣Z[CP 2]

∣∣∣2 = 1 + (−1)
N
2

1 + (−1)N

2 .

Hence the data computed for the Kashaev theory is consistent with a modular CYWW model
(an invertible TQFT) for N odd, and a premodular CYWW with transparent subcategory: Z2
with trivial braiding (topological order equivalent to toric code) for N = 0 mod 4, and sV ec
for N = 2 mod 4 (as Z[CP 2] = 0 the partition function can be seen to depend on spin
structure in this case).

We conjecture that the general construction of Kashaev260 is dual to the Crane-Yetter TQFT,
in a similar fashion to the duality between Kuperberg’s (2 + 1)-manifold invariants273 and the
Turaev-Viro TQFT108.

4.3 Lattice Model for Kashaev’s TQFT

In this section we apply the framework developed in Ref. 84 to produce a translation invariant
local commuting projector Hamiltonian for the theory on a particular 3-dimensional lattice.

4.3.1 The Hamiltonian

With the Q tensor from Eq.(4.18) one can explicitly construct a local commuting projector
Hamiltonian of the form in Eq.(4.1) on any 3-manifold equipped with a triangulation and
branching structure (Y,K) by following the recipe outlined in Ref. 84. For concreteness we
work with the body centered cubic (BCC) triangulation of T 3 or R3 which is dual to a tessel-
lation by regular 4-permutohedra (also known as truncated octahedra). The branching structure
is given for R3 by the rule that all edges not orthogonal to the ẑ axis are oriented along the +ẑ
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direction, while those in an xy-plane point along the +x̂ or +ŷ direction (note these edges are
always parallel to one of these axes). This also induces a branching structure on the triangula-
tion of T 3. Note this branching structure preserves the full translational symmetry along each
of the spatial axes in addition to a translation symmetry generated by (1

2 ,
1
2 ,

1
2). Working on the

Figure 4.9: Triangulation and branching structure within a unit cell.

permutohedron cellulation dual to the triangulation the model is defined on a Hilbert space con-
sisting of a qudit degree of freedom for each vertexH =

⊗
v∈C CNv . The Hamiltonian is a sum

of identical terms each acting on 24 qudits in the boundary of a different permutohedron. To
explicitly evaluate the Hamiltonian produced by the recipe of Ref. 84 we specify a numbering
of the vertices on the boundary of a permutohedron depicted in Fig.4.10. The Hamiltonian is

Figure 4.10: Ordering of the vertices (red) and dual vertices (underlined blue) on the boundary of a
permutahedron flattened onto the plane.

given by

〈j|1−hv |i〉 =ωiZ ·jX−iX ·jZ

N12 δi8−i9+i22+i23δi10+i11+i14+i15δi16+i17−i20+i21δi0−i1+i2+i3+i4−i5

δ−j0+j1+j6+j7δj2+j3+j12−j13δj4+j5+j18+j19δj9−j10+j15+j16+j21−j22

δi1−i2+i6−i11+i13−i14−j1−j2+j11+j14δi3+i4+i12+i17−i19−i20+j3+j4−j17+j20

δi6+i7−i9+i10+j6+j7−j8+j9−j10+j11δ−i12+i13+i15+i16+j12−j13+j14+j15+j16+j17

δ−i18+i19+i21+i22+j18+j19−j20+j21−j22−j23 (4.19)

where the in and jn labels are are in the either the X or Z basis as shown in Table.4.2 and by i

in the X basis we mean |̂i〉 := N−
1
2
N−1∑
k=0

ω−i·k |k〉. Also the notation iZ indicates the subset of

i labels in the Z basis and similarly for j and X .
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
in X Z Z X Z Z X Z X Z X X Z X X X Z X Z Z Z X X Z
jn Z X X Z X X Z X Z X Z Z X Z Z Z X Z X X X Z Z X

Table 4.2: Basis choices for i, j.

A matrix element of the Hamiltonian for fixed i and j as above gives rise to a tensor network
multiplied by some nonzero weight. The tensor network is composed of delta tensors and X
matrices and computes a delta condition on the flatness of the configuration shown in Fig. 4.11.
Evaluating the delta flatness condition yields the Hamiltonian term in Eq.(4.19).

Figure 4.11: Configuration induced by fixing the input/output of a Hamiltonian term.

4.3.2 Degeneracy, Statistics, and the Ground State Wave Function

Thus far there is little known about the relation of the Kashaev TQFTs to other more established
families of models. We conjecture that the Kashaev TQFTs and their Hamiltonian realizations
are equivalent to Crane-Yetter-Walker-Wang (CYWW) models for ZN with a particular choice
of braiding. In the case N is odd it is a nondegenerate braiding on ZN hence the CYWW
model is an invertible TQFT and its partition functions depend only on Euler characteristic
and signature. In the case of N even the relevant braiding on ZN is degenerate and hence the
CYWW model is premodular.

The partition functions calculated for Kashaev’s TQFT support our conjecture as they are
consistent with an invertible modular CYWW model for N odd and consistent with a premodu-
lar CYWW in the even case, the simplest example being Z2 which we expect to be the CYWW
model based on sV ec. More generally we conjecture the even case is equivalent to a CYWW
model based on a premodular category with transparent subcategory: Z2 (with trivial braiding)
for N = 0 mod 4, and sV ec for N = 2 mod 4.

The partition function Z[S1 × Y ] equals the dimension of the ground space V [Y ] (note
in this case normalization by Euler characteristic and signature are irrelevant as both are 0).
The values of Z[S1 × S3] in the table indicate that Kashaev’s TQFT is stable i.e. does not
spontaneously break any symmetry.
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In accordance with our conjecture we expect the topological excitations of the Kashaev
model to match those of CYWW. In particular for N odd there are no deconfined particle like
excitations in the bulk while there may be interesting loop like excitations. ForN even there is a
species of point like fermionic excitations in the bulk as well as loop like excitations. Explicitly
comparing the 3 loop braiding statistics of the loop excitations in Kashaev and CYWW is an
interesting problem which we leave for future work.

There is a PEPS representation of a ground state wave function for all Kashaev TQFTs
which is obtained by following the procedure of Ref. 84. Due to the Pachner move symmetry of
the tensors used to construct this PEPS it will have a closed surface PEPO topological symmetry
on the virtual level59,62,63,84,93. It should be possible to construct the excitations from this
PEPO by following a higher dimensional generalization of the procedure laid out in Ref. 64 for
(2 + 1)D. Note the procedure of Ref. 84 also yields a MERA representation of the ground state
wave functions.

4.3.3 Example: Z2 Case

The explicit tensor for the N = 2 Kashaev TQFT is given by

Q = 1√
2

∑
k,l,m∈Z2

(−1)km |k〉 〈k +m| ⊗ |l〉 〈l +m| ⊗ |m〉 (4.20)

We conjecture thisN = 2 Kashaev model is described by the CYWW model for the premodular

Figure 4.12: Kashaev’s Q tensor for N = 2.

category sV ec consisting of a vacuum and fermion particle. Hence we expect the partition
functions to depend on the possible spin structures of a manifold. This is supported by the
observations that Z[CP2] = 0 which corresponds to CP2 not admitting a spin structure, and we
proceed to show Z[T 4] = 8 corresponding to 8 spin structures on the space manifold T 3.

Lemma 1. For the commuting, projector, real-space blocking RG fixed point Hamiltonian term
hv we have dimV [T 3] = Z[T 4] = Tr[πZ[v′ ∗ stv] ] = Tr[π(1− hv)] for the permutation π
given below.

Proof. We consider the translation invariant BCC triangulation of T 3 (or R3) dual to a tiling by
regular 4-permutohedra. For concreteness we fix the branching structure to be that of Fig.4.9
and the ordering of tetrahedra in stv to be that of Fig.4.10. However note any branching structure
that is consistent with periodic boundary conditions may be used, and the ordering is totally
arbitrary. Considering the Hamiltonian term of Eq.4.19 we have 1− hv = Z[v′ ∗ stv] and note
this is a tensor network on the triangulation of a 4d hypercube. Conceptually it is clear that
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taking closed boundary conditions yields the partition function of the 4d torus. The gluing map
that corresponds to closing the boundary conditions is specified by the permutation

π: 0 → 13 → 20 → 9 → 0
1 → 18 → 17 → 10 → 1
2 → 19 → 8 → 15 → 2
3 → 6 → 23 → 16 → 3
4 → 7 → 14 → 21 → 4
5 → 12 → 11 → 22 → 5

(4.21)

abusing notation slightly we also use π to denote the linear operator
∑
{in} |{iπ(n)}〉 〈{in}|.

Then we have Z[T 4] = Tr[πZ[v′ ∗ stv] ] = Tr[π(1− hv)].

We furthermore conjecture that a similar relation holds in all dimensions, following from
the basic facts that the regular (n + 1)-permutohedron tiles n dimensional euclidean space (or
the n dimensional torus) and that the join of its dual triangulation of the n-sphere with a line
(including its two endpoints) is a triangulation of the (n+ 1) hypercube. By taking appropriate
periodic boundary conditions, specified by a generalization of the permutation π we find a
similar relation as in (3 + 1)D.

Proposition 1. For Kashaev’s model82 at N = 2, dimV [T 3] = Z[T 4] = 8.

Proof. We make use of Lemma 1 and calculate Tr[πZ[v′ ∗ stv] ] = Z[T 4] using the tetrahedron
labeling in Fig.4.10 and the branching structure in Fig.4.13. The quantity we want to compute

Figure 4.13: The branching structure used to calculate Z[T 4].

is a sum over tensor networks on the 4-permutohedron graph

Tr[πZ[v′ ∗ stv] ] =
∑
{in}
〈{in}|Z[v′ ∗ stv] |{iπ(n)}〉 . (4.22)

Each tensor has 5 indices, 2 exterior indices corresponding to in, iπ(n) and 3 internal indices
of the tensor network on the permutohedron. With the branching structure we have chosen the
fixed exterior labels correspond to the 0 and 4 indices of each individual tensor, fixing these
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labels we find the following 3 index tensor

= (−1)ij√
2

(4.23)

which consists of a delta tensor along withX matrices and a sign that is determined by the fixed
external indices. From this equation it follows that the tensor network on the 4-permutohedron
graph specifies a map σ : Z24

2 → Z36
2 from the fixed external indices to a Z2 configuration on

the edges of the permutohedron, corresponding to the exponent of the X matrix on each edge.
Contracting the tensor network yields a nonzero result only for those connections which are flat,
i.e. the sum around each plaquette is 0. To describe this precisely we denote the map from a Z2
edge configuration to the induced flux through each plaquette by f then we have

〈{in}|Z[v′ ∗ stv] |{iπ(n)}〉 = (−1)i·π(i)

212 δ(σ ◦ f(i) = 0) (4.24)

where i · π(i) =
∑
n in · iπ(n) and the normalization factor comes from a product of 1√

2 for

each of the 24 tensors (See Eq.4.23), a factor 1
2 from the normalization N−|K0|, and a factor 2

from the contraction of delta tensors and X matrices on the permutohedron graph. We proceed
to show that all flat configurations contribute with a +1 sign and hence the problem is to count
the number of them. First we use the relation

∑
k δi,j,kδk,l,m = δi,j,l,m to remove 12 edges of

the permutohedron tensor network by contracting them, precisely those on which an X never
occurs, see Fig.4.14. Hence we can consider reduced Z2 maps σ : Z24

2 → Z24
2 and f : Z24

2 →

Figure 4.14: Configuration induced by the map σ. Value n−m to be read as in−im.

Z13
2 by noting there are 24 edges and 14 faces (one of which is redundant as its value equals

the sum of all other faces). Since we are considering flat configurations on a cellulation of S2

there is only a single homology class and furthermore an injective map d : Z11
2 → Z24

2 from Z2
values on the 12 vertices (with one vertex value fixed) to a Z2 configuration on edges such that
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im d = ker f . A full list of generators for ker σ ◦ f is

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
7 0 5 12 6 1 15 9 4 3 2 0 1 2 8

18 23 8 19 13 14 22 16 17 20 11 7 6 13 17
gi(·) = 1 12 19 18 20

3 4 5 11
10 9 16 14
15 22 21 23

(4.25)

one can verify that these are independent. Generators 11-14 correspond to the generators of
ker σ, while 0-10 lie in (kerσ)⊥ and their image under σ generates ker f . Hence 215 flat
configurations contribute to the sum, and furthermore we have

∑
n g

i
n · g

j
π(n) =

∑
n g

j
n · giπ(n).

Any flat configuration x ∈ kerσ ◦ f is of the form x =
∑
i xigi and the corresponding phase

factor is 1 as x · π(x) = 0 hence all such configurations contribute with a positive sign.

4.3.4 Back to the general case

Our analysis of Z[T 4] for N = 2 largely carries over to the case of general N , the main
modifications required involve keeping track of orientations and complex conjugations. The
calculation proceeds as above up to Eq.(4.23) at which point we find

= ω±ij√
N

(4.26)

where ± depends on the orientation of the simplex to which the tensor is associated. This leads
to new maps σ : Z24

N → Z24
N and f : Z24

N → Z13
N which can be understood in terms of flat ZN

connections on a cellulation of S2, see Fig.4.14. In place of Eq.(4.24) we have

〈{in}|Z[v′ ∗ stv] |{iπ(n)}〉 = ωi·π(i)

N12 δ(σ ◦ f(i) = 0) (4.27)

where the dot product has been altered as follows i · π(i) =
∑
n(−1)nin · iπ(n) and the normal-

ization arises in the same way as above (with N in place of 2). Again we have a boundary map
d : Z11

N → Z24
N that satisfies im d = ker f and the generators of σ ◦ f are the same as those

given in Eq.(4.25), however now each has order N . Now N15 flat configurations contribute to
the sum, the new complication being that they may take on different phase values. We still have
the identities gi · π(gi) = 0 and gi · π(gj) = gj · π(gi) however they no longer guarantee
the phase factors are trivial for N > 2. An arbitrary element x ∈ kerσ ◦ f is of the form
x =

∑
i
xigi and we have

x · π(x) =
∑
i<j

2xixjgi · π(gj)

= 2(x0(x8 − x5) + (x1 − x9)(x4 − x7) + (x2 − x10)(x6 − x3)).
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Hence the overall summation becomes

Z[T 4] =

 ∑
i,j∈ZN

ω2ij

N

3

(4.28)

=

∑
i∈ZN

δ(2i = 0 mod N)

3

(4.29)

which takes the value 1 for N odd and 8 for N even.

4.4 Lattice Model for UGxBFC TQFT

In this section we introduce tensor network and graphical calculus constructions of a class of
commuting projector Hamiltonians for topological models based on the UGxBFC state sum
TQFT.

Before discussing constructions of a Hamiltonian let us describe the Hilbert space on a
general triangulation or equivalently the Poincaré dual simple polyhedra. Given a UGxBFC
C×G and L the label set L(1) = G, L(2) = C×G , L(3) = C×G . Suppose Y is an oriented spatial
3-manifold with a vertex ordered ∆-complex triangulation K. ΓK denotes the dual simple
polyhedron. We take a resolution of each 4-valent vertex in ΓK into a pair of trivalent vertices
where the edges dual to the faces 0̂, 2̂ and 1̂, 3̂ meet, denote the resulting polyhedron as Γ′K . Let
V,E, F denote the sets of vertices, edges, and faces of Γ′K respectively. A configuration on Γ′K
is a labeling of each edge by a defect label a ∈ C×G , each face by a group element g ∈ G, and
each vertex by a basis element in ⊕(a,b,c)∈(C×G)3CN

c
ab . Hence the total local Hilbert space is

H(Y,K) =
⊗
E

C[C×G ]
⊗
V

(
⊕

(a,b,c)
∈(C×G)3

CN
c
ab)
⊗
F

C[G]. (4.30)

4.4.1 Tensor Network Approach

The recipe outlined in Ref. 84 constructs a local commuting projector Hamiltonian for the
UGxBFC state sum on any triangulation from a set of 15j-symbols. The 15j-symbols for
the UGxBFC T±s(∆4) are shown in Fig.(4.7) they take as input a configuration s = (g, a) :
(K(1),K(2)∪K(3))→ (G, C×G) of group elements ge ∈ G on edges, and defects a∆, a∆3 ∈ C

×
G

on triangles and tetrahedra of a 4-simplex ∆4 and return a value in C. T±s(∆4) only take nonzero
values on admissible configurations, those satisfying the triangle constraints a∆ ∈ Cdg∆ , where
dg012 = ḡ02g01g12, and the tetrahedra constraints Na0123

a1̂
ḡ23a3̂

6= 0 6= Na0123
a2̂a0̂

.
The Hamiltonian takes the form H =

∑
v
hv where the term at vertex v is given by

hv = 1− (D2)−|(stv)1|

|G|
∑
γ,α

∏
∆2∈J

dα(∆2)∏
∆3∈J

dα(∆3)
Bγ,α
v (4.31)

where J = int(v′ ∗ stv) can be thought of as a small piece of spacetime, with v′ an auxiliary
copy of vertex v at the next time step. The elements γ ∈ G, α : J (2) ∪ J (3) → C×G label the
timelike edge, triangles and tetrahedra in J .
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The individual summands are given by

Bγ,α
v =

∑
S,S′

∏
∆i∈lkv
i>0

δS(∆i),S′(∆i)

∏
∆2∈stv

√
da(∆2)da′(∆2)∏

∆3∈stv

√
da(∆3)da′(∆3)

∏
∆4∈J

Tσ(∆4)
s(∆4)

⊗
e,∆,∆3∈stv

|g′e, a′∆, a′∆3〉 〈ge, a∆, a∆3 | (4.32)

where S = (g, a), S′ = (g′, a′) denote configurations on the triangulated spatial slices cl(stv),
v′ ∗ lkv and s denotes the full spacetime configuration {S, S′, (γ, α)} on cl(J). Note the vari-
ables in lkv are fixed control qudits for the operator Bγ,α

v , while the variables in stv fluctuate.
The Hamiltonian built in this way contains only vertex terms. These terms also enforce the

flatness (admissibility) triangle and tetrahedra constraints on basis states with nonzero ground
space overlap. Contrast this with the more conventional way of writing fixed point Hamiltonians
as a sum of separate vertex fluctuation and plaquette flatness terms.

On the BCC triangulation with the branching structure chosen in Fig.4.9 the Hamiltonian
is a translationally invariant sum with a single type of term. Note the case described explicitly
above was assuming no multiplicity in the fusion of C×G , to include possible multiplicities one
simply includes the corresponding fusion multiplicity labels together with the defect label on
each tetrahedron.

4.4.2 Graphical Calculus Approach

Another approach to constructing the Hamiltonian closer to that of Ref. 85 is to use the graph-
ical calculus of the UGxBFC to define the local terms. First we consider two different cellu-
lations of the 3-torus T 3: the cellulation used in Ref. 85, and the simple polyhderon of the
permutohedron cellulation dual to the BCC triangulation in Fig.4.9. Both celluations have the
full translational symmetry which keep the Hamiltonians relatively simple. We then explain the
general construction on a simple polyhedra.

The Hamiltonian on the 3-Torus: resolved cubic lattice

We first focus on the simple case where G is abelian and all group elements and defects are
self inverse, this removes the need to keep track of edge orientations. Note it is simple to
generalize to the non self inverse case by keeping track of edge orientations, however extending
to nonabelian G requires nontrivial work as the cellulation is not a simple polyhedra.

The cellulation Γ is given by the following resolution of the cubic lattice into trivalent
vertices.

→

Group degrees of freedom live on the plaquettes of the cubic lattice, and defect degrees of
freedom live on the edges of the resolved lattice. Hence the Hilbert space is given in Eq.(4.30).
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The Hamiltonian is given by

HΓ = −
∑
v∈V

Av −
∑
e∈E

Ae −
∑
f∈F

∑
g∈G,
a∈Cg

da
D2B

g,a
f −

∑
c∈C

∑
g∈G

Bg
c (4.33)

where V,E, F,C are the vertices, edges, faces and 3-cells of Γ. The Av term enforces the
constraint that each triple of defects a, b, c meeting at a vertex is an admissible fusion N c

ab 6= 0.

Av


c

ba

 = δcab

c

ba

Ae enforces the constraint that each defect lies in the sector given by the boundary of the group
configuration on the adjacent faces i.e. ae ∈ C(∂g)e .

Ae


g

h

k

l

ax


= δx,ghkl g

h

k

l

aghkl

Bg
c fluctuates the group configuration adjacent to c in the conventional way hfg, for f ∈ ∂c.

Bg
c

 h
k

l
 =

hg
kg

lg

The Bg,a
f term fluctuates the group and defect configuration adjacent to f by fusing a loop of

defect a in to the defects on ∂f and simultaneously multiplying hfg. This term is reminiscent
of the plaquette term in the Walker-Wang model and matches it exactly in the case G = {1}.

We proceed to calculate the effect of the Bg,a
f term using the diagrammatic calculus of the

UGxBFC, we use the compressed notation F abcd;ef = [F abcd ]fe . Consider an initial configuration
σI depicted on the left; first the edges crossing f are moved aside

hf

a

a′
p p′

q

q′k

kb

kb′kcc

lc′

rl

r′
uu′

d
d′

v

v′ w

w′

→
hf

a

a′
p p′

q

q′k

b

b′c
c′

lc′

rl

r′
uu′

d
d′

v

v′ w

w′

unlike the Walker-Wang model this invokes a factor of Uk(b, c; b′) on top of the braiding sym-
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bols Rq
′kb
q R

lc′r
c . Now acting with Bg,a

f introduces a loop of defect a onto plaquette f :

Bg,a
f

 hf

a

a′
p p′

q

q′k

b

b′c
c′

lc′

rl

r′
uu′

d
d′

v

v′ w

w′


=

sg

hfg

a

a′
p p′

q

q′k

b

b′c
c′

glc′

r′
uu′

d
d′

v

v′ w

w′

which we proceed to fuse in to ∂f :

sg

hfg

a′′

a′
p p′

q

q′k

b

b′c
c′

glc′

r′
uu′

d
d′

v

v′ w

w′

→
hfg

sg

a′′

a′
p′′ p′

q′′

q′k

b′′

b′c′′
c′

glc′

r′′gl

r′
uu′

d
d′

v

v′ w

w′

this induces a factor F a
′′sp

a′;ap′′F
p′′sq
p′;pq′′F

q′′sb
q′;qb′′F

b′′sc
b′;bc′′F

c′′sr
c′;cr′′ . The next step induces a factor ηc′(l, g)

hfg

sg

a′′

a′
p′′ p′

q′′

q′k

b′′

b′c′′
c′

glc′

r′′gl

r′
uu′

d
d′

v

v′ w

w′

.

Then five more F -moves leads to

hfg

aa′′ a′′

a′
p′′ p′

q′′

q′k

b′′

b′c′′
c′

glc′

r′′gl

r′
u′′u′

d′′
d′

v′′

v′ w′′
w′

along with a factor F r
′′su

r′;ru′′F
u′′sd
u′;ud′′F

d′′sv
d′;dv′′F

v′′sw
v′;vw′′F

w′′sa
w′;wa′′ . Finally restoring the lattice to its orig-
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inal position we find the final configuration σF shown below

a′
p′

q′k

kb′c′′
r′

u′

d′

v′

w′

hfg

a′′ p′′
q′′

kb′′

kc′′

glc′

r′′gl

u′′

d′′

v′′

w′′

along with a factor U−1
k (b′′, c′′; b′)Rq

′kb′′

q′′ R
glc′r′′
c′′ note r′′ ∈ Cgl. Hence the full plaquette term is

〈σF|Bg,a
f |σI〉 =Uk(b, c; b′)U−1

k (b′′, c′′; b′)ηc′(l, g)Rq
′kb
q R

lc′r
c Rq

′kb′′

q′′ R
glc′r′′
c′′

F a
′′sp

a′;ap′′F
p′′sq
p′;pq′′F

q′′sb
q′;qb′′F

b′′sc
b′;bc′′F

c′′sr
c′;cr′′F

r′′su
r′;ru′′F

u′′sd
u′;ud′′F

d′′sv
d′;dv′′F

v′′sw
v′;vw′′F

w′′sa
w′;wa′′

(4.34)

which differs noticeably from WW in the appearance of the factorsUk(b, c; b′)U−1
k (b′′, c′′; b′)ηc′(l, g).

The Hamiltonian on Simple Polyhedra

We now turn to the general case of an arbitrary finite G and a UGxBFC C×G , this requires a
cellulation ΓK dual to a triangulation K with branching structure and keeping track of edge
orientations. Γ′K is then the cellulation where each 4-valent vertex v has been resolved into
a pair of trivalent vertices v+, v−, as in Eq.(4.30). The orientations of dual edges in ΓK are
specified as follows: for vertices dual to positively oriented tetrahedra, the dual 0̂, 2̂ edges point
out and 1̂, 3̂ point in, and vice versa for vertices dual to negatively oriented tetrahedra. The extra
edges introduced in Γ′K point from the 0̂, 2̂ vertex to the 1̂, 3̂ vertex in a resolved vertex dual to
a positively oriented tetrahedra, and vice versa for negative.

The Hamiltonian is similar to that in Eq.(4.33)

HΓ = −
∑
v∈V

(Av+ +Av−)−
∑
e∈E

Ae −
∑
f∈F

∑
g∈G,
a∈Cg

da
D2B

g,a
f −

∑
c∈C

∑
g∈G

Bg
c (4.35)

where V,E, F,C are the vertices, edges, faces, and 3-cells of ΓK .
Writing 0123 for the tetrahedron dual to v then the Av+ term enforces the admissibility of

the fusion Na0123
a2̂a0̂

6= 0, while the Av− term enforces a twisted fusion constraint Na0123
a1̂
ḡ23a3̂

6= 0.
Both Av+ and Av− terms project onto the subspace spanned by locally admissible configura-
tions such as the following (depicted on a triangulation and its dual cellulation)

0

1

2

3

∼

a1̂

a0̂

ḡ23a3̂

a2̂

a0123 .

The operator Ae enforces the constraint that each defect lies in the sector specified by the dif-
ference of the adjacent group variables, for an edge e dual to the triangle 012 the constraint
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reads a012 ∈ Cĝ02g01g12 . Hence the Ae term projects onto the subspace spanned by admissible
configurations such as:

g

hk
ak̂gh

∼

g

hk

ak̄gh .

The term Bg
c fluctuates the group configuration on faces f ∈ ∂c. To be more specific we work

on the dual triangulation, then each group variable on an edge e− pointing towards vc (the vertex
dual to c) transforms as he− ḡ, while a group variable on an edge e+ leaving vc transforms as
ghe+ . Hence the operator Bg

c maps configurations as follows

h

k
l →

gh

kḡ
lḡ .

Additionally the defects on the five edges associated to the dual of a tetrahedra having vc as its
highest ordered vertex (all edges pointing in) are acted upon by h as follows

h

k l
→

hḡ

kḡ lḡ

∼ ∼

a1̂

a0̂

ḡ23a3̂

a2̂

a0123 →

ga1̂

ga0̂

gḡ23a3̂

ga2̂

ga0123

when Bg
c is applied.

The plaquette term Bg,a
f right multiplies the group variable on face f , resulting in hf ḡ, and

fuses a loop of defect a ∈ Cg, oriented along the boundary of f , into the defects on edges
e ∈ ∂f . The numerical amplitudes of Bg,a

f are calculated according to the diagrammatic rules
of the input UGxBFC.

The ground space of the Hamiltonian is supported on a subspace of states satisfying the
vertex and edge constrains which is spanned by consistent diagrams from the UGxBFC. Naively
these states and the Hamiltonian seem to depend on the choice of projection to the 2D plane
of the picture, up to a local unitary gauge equivalence due to U and η. We note that such an
apparent dependence does not appear when following the tensor network approach to produce
a Hamiltonian which was described in Sec.4.4.1.

The Hamiltonian on the 3-Torus: BCC lattice

To explicitly construct an important special case of the Hamiltonian on simple polyhedra we
pick ΓK to be the regular cellulation of T 3 by permutohedra which is dual to the BCC trian-
gulation K. We use the branching structure on K obtained form Fig.4.9 via translations. The
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Hamiltonian is given in Eq.(4.35). We proceed to explicitly calculate the matrix elements of the
plaquette term Bg,a

f for the top face of a permutohedron by deriving the effect of fusing a defect
loop a onto the lattice

the other terms are calculated similarly. First the 4-valent vertices are resolved using our choice
of branching structure. On the resolved lattice we have some initial configuration σI which is
depicted on the left. Next the edges crossing f are moved aside:

u
u′

a kp
kp′

kb

a′kb

b′
q

q′
c

lc′

rlr′

d

d′

hf →

u
u′

a
p

p′
b

ā′k

b′
q

q′c̄′
c

lc̄′

rlr′

d

d′

hf

this introduces a factor U−1
k−1(b̄, p; p′)Rpā

′
a R

lc̄′r
c . The plaquette term Bg,s

f introduces a loop of
defect sg onto the face f :

u
u′

a
p

p′
b

ā′k

b′
q

q′c̄′
c

glc̄′

rlr′

d

d′
sg

hf ḡ

this is then fused into the lattice:

u
u′ a′′a a

p
p′

b

ā′k

b′
q

q′c̄′
c

glc̄′

rlr′

d

d′
sg

hf ḡ →

u
u′ a′′a p′′

p′
b′′

ā′k

b′
q′′

q′c̄′
c′′

glc̄′

rlr′

d

d′
sg

hf ḡ

r′′gl

resulting in a factor F ā
′′sp

a′;āp′′F
p̄′′sb
p̄′;p̄q′′F

b̄′′sq
b′;b̄q′′F

q̄′′sc
q̄′;q̄c′′F

c̄′′sr
c′;c̄r′′ . Next we slide the c′ line under a vertex

u
u′ a′′a p′′

p′
b′′

ā′k

b′
q′′

q′c̄′
c′′

glc̄′

rlr′

d

d′
sg

hf ḡ

r′′gl
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yielding a factor ηglc̄′(g, l). Making three additional F -moves F r̄
′′sd

r̄′;r̄d′′F
d̄′′su
d′;d̄u′′F

ū′′sa
ū′;ūa′′ leads to

u′′
u′ a′′a′′ a p′′

p′
b′′

ā′k

b′
q′′

q′c̄′
c′′

glc̄′

r′′glr′

d′′

d′
sg

hf ḡ .

Restoring the lattice to the initial position

u′′
u′ a′′

kp′′
kp′

b′′

kb′′

a′k

b′
q′′

q′
c′′

glc′

r′′glr′

d′′

d′

hf ḡ

yields the final configuration σF and a phaseU−1
k−1(b̄′′, p′′; p′)Rp

′′ā′

a′′ R
glc̄′r′′
c′′ . Hence the full matrix

element of the plaquette term is given by:

〈σF|Bg,a
f |σI〉 =U−1

k−1(b̄, p; p′)U−1
k−1(b̄′′, p′′; p′)ηglc̄′(g, l)R

pā′
a R

lc̄′r
c Rp

′′ā′

a′′ R
glc̄′r′′
c′′

F ā
′′sp

a′;āp′′F
p̄′′sb
p̄′;p̄q′′F

b̄′′sq
b′;b̄q′′F

q̄′′sc
q̄′;q̄c′′F

c̄′′sr
c′;c̄r′′F

r̄′′sd
r̄′;r̄d′′F

d̄′′su
d′;d̄u′′F

ū′′sa
ū′;ūa′′ . (4.36)

4.4.3 Degeneracy, Statistics, and the Ground State Wave Function

The GSWF of the Hamiltonian in Eq.(4.31) admits a simple PEPS and MERA following the
approach of Ref. 84. For a triangulated space manifold (Y,K) the tensor network is given by

Z[K ∗ v0] (4.37)

where v0 is an auxiliary vertex below the other vertices in the ordering. To normalize this state
properly we use the convention that any weight associated to a simplex at the boundary w(∆i)
is included in the state after taking a square root

√
w(∆i). This ensures that upon gluing along

such a boundary the full weight is recovered. In particular

〈Z[K ∗ v′0] |Z[K ∗ v0]〉 = Z[{v′0, v0} ∗ Y ] (4.38)

assuming the TQFT is unitary (Hermitian). Note in our models these weights are always posi-
tive real numbers and the positive square root is chosen, if these weights are negative (or com-
plex) such a convention is not straightforward (for example this occurs in Ref. 274). Similarly
for the MERA consider a triangulated identity bordism on some space manifold (Y × I,K′)
such that the triangulation at the space manifold (Y, 0) reduces to the physical lattice K and we
pick a minimal triangulation K′′ of (Y, 1) at the ‘top’ of the MERA corresponding to the ultra
IR scale. Then upon fixing a vector containing the fully coarse grained topological information
|t〉 the MERA is given by

Z[K′] |t〉 (4.39)
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The PEPS built this way has a virtual PEPO symmetry, to extract the physical superselection
sectors corresponding to point and loop like excitations we expect a generalization of Ocneanu’s
tube algebra can be constructed directly in the tensor network as has been achieved in (2 +
1)D64.

There is an alternate approach to a tensor network description of the GSWF working di-
rectly with the diagrammatic representation of the anyons. For CYWW this yields roughly
a 2.5D tensor network representation that is presented with a particular choice of projection
down to a plane but transforms trivially under changing this choice275. This approach encoun-
ters complications for the UGxBFC model due to the nontrivial action of anyon wordlines upon
configurations behind them31. Hence it appears this approach may only produce a gswf that
transforms with a local unitary upon changing the plane of projection. Note a similar complica-
tion may occur for a figure 8 worldine in CYWW, however this can be corrected with a careful
labeling of the writhe of each anyon worldline.

In Section 4.2 we discussed how special cases of the UGxBFC recover an uncoupled DW
and CY theory, for trivial grading and group action, or a 2-group gauge theory, for a categorical
group input. We also pointed out that one can add H3 and H4 cocycles to the data of the
ungraded case to realize a general 2-group gauge theory with cohomology twist. This suggests
an interpretation of the model (at least in the ungraded case) as a theory of anyons coupled to a
2-group gauge theory.

4.5 Discussion

In this section we aim to place the new models into the broader context of previously constructed
state sum TQFTs82,86,88,90,260–266. In doing so we sketch the general framework for state sum
TQFTs and explain how the UGxBFC model fits into this. We also describe the relation of the
UGxBFC model to other classes of (3 + 1)D state sums and their boundary physics.

It is conventional wisdom that an n-category describes a local or fully extended TQFT
restricted to the disc220,259,286. This correspondence is materialized by the general prescription
to construct an (n + 1)D state sum model from an n-category84. The recipe dictates that the
i-simplices of a triangulation are labeled by i-morphisms of the n-category along with an (n-
1)-associator for each (n+1)-simplex, a tensor satisfying the Pachner move equations. To make
contact with familiar examples, first in (1 + 1)D, one can view the morphisms of a linear
category with a single object as an associative algebra. Decorating the edges of a triangulated
surface with these morphisms and assigning the structure coefficients to each triangle recovers
the familiar Frobenius algebra TQFTs276. For (2 + 1)D consider a 2-category with a single
object, the 1-morphisms and 2-morphisms can be identified with the objects and morphisms
of a fusion category respectively. Using these to label the edges and faces of a triangulated
3-manifold and assigning F-symbol associators to each tetrahedron recovers the Turaev-Viro
TQFTs (Levin Wen string nets)24,108. In (3+1)D consider a 3-category with a single object and
single 1-morphism, the 2- and 3- morphisms can be identified with the objects and morphisms
of a braided fusion category. Using these to label the faces and tetrahedra of a triangulated
4-manifold and assigning a 15j-symbol to each 4-simplex recovers the Crane-Yetter TQFTs
(Walker-Wang models)85,86,261.

These examples display the general pattern that adding structure to an n-category is often
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State Sum Hamiltonian Input data
ST

Dimension
D

Sensitivity Physical excitations

Trivial/Invertible theory Trivial paramagnet - all D

Classical local
invariants: Euler

characteristic,
signature, . . .

Local excitations, no
nontrivial

superselection
sectors

GHZ TQFT (Includes all 2D
TQFTs based on Frobenius

Algebras 276)
Symmetry breaking n ∈ N all D π0

Domain wall
excitations

n-group Dijkgraaf-Witten
gauge theory 72,88 or Yetter

homotopy n-type 90 (Includes
Birmingham-Rakowski

model 277 and Mackaay’s group
examples 264)

Higher group lattice
gauge theory (includes

twisted quantum
doubles 19,105,278,

generalized toric codes,
2-group gauge theory 89

and Yoshida’s
models 279)

n-group G &
D-cocycle α ∈
HD(BG, U(1))

all D≥n
n-homotopy type
(or n-Postnikov

system)

Gauge charges,
fluxes etc..

Turaev-Viro
(Barrett-Westbury) 108,219

(dropping semisimplicity
assumption gives Kuperberg

invariant 273,280 and 281)

Levin-Wen string-net
model 24 UFC C 216 (2 + 1) D

PL
homeomorphism

Z(C) anyon theory

Crane-Yetter 86,261 (captures
unitary Broda, Petit,

Barenz-Barett dichromatic state
sums 255,282–284 via chainmail

construction 285)

Walker-Wang model 85 UBFC C 216 (3 + 1) D π1, w2

Bosons and fermions
and loop excitations

(only for
nonmodular C)

Crane-Frenkel 263 &
Carter-Kauffman-Saito 262 ?

Hopf category
and cocycle

(3 + 1) D homotopy ? ?

Kashaev TQFT 82,260 Kashaev model Zn (3 + 1) D π1, w2

Fermions (bosons)
and loop excitations

for N = 2 (0)
mod 4 (trivial for N

odd)
UGxBFC 83 (includes

Mackaay’s spherical 2-category
models 265)

UGxBFC Hamiltonian
UGxBFC
C 31,81,97,98 (3 + 1) D

w2, homotopy
3-type ?

Bosons, fermions
and loop excitations

Conjectural n-category TQFT
(semisimplicity condition

corresponds to having a single
object)

(n− 1)-membrane net
Hamiltonian

Unitary
n-category C

all
D= (n+ 1)

PL
homeomorphism

(except for D= 4)

higher categorical
center Z(C)

equivalent to shifting all the morphisms up a level while introducing a single object. From this
point of view it is natural that to resolve the UV anomaly that prevents a (2 + 1)D (commut-
ing projector Hamiltonian) lattice realization of a chiral anyon theory one should consider the
boundary of a (3 + 1)D theory. This is precisely what the WW model achieves. It also suggests
that to realize the most general (3 + 1)D topological orders (with excitations described by a
unitary braided fusion 2-category) with commuting projector Hamiltonians on the lattice one
must similarly consider boundary theories of (4 + 1)D state sums.

From the examples above the UGxBFC models appear to be the natural generalization of
TV to (3+1)D as they correspond to a 3-category with a single object (which can be thought of
as a (2+1)D topological phase) the 1-morphisms are identified with group elements (invertible
gapped boundaries of the (2 + 1)D phase), 2-morphisms between the 1-morphisms g1 and g2
correspond to defects in the sector Cg−1

1 g2
and 3-morphisms are the regular morphisms in the
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Figure 4.15: Conjectured relations of unitary (3 + 1)D state sum TQFTs (“twist” refers to the addition
of various cocycle functions).

UGxBFC. Following the recipe, edges are labeled by group elements, triangles by defects and
tetrahedra by UGxBFC morphisms while 4-simplices come with a 15j-symbol.

Notice in all the examples thus far we have considered only n-categories with a single object,
loosening this requirement seems to correspond to dropping the assumption of semi simplicity
(or possibly simplicity of the unit object)273,287. We conjecture all non chiral topological phases
of finite spin models can be realized by a state sum construction from an n-category with a single
object. One way to extend the UGxBFC model might be to include multiple objects in the 4-
category, this naturally corresponds to considering boundaries between different topological
phases rather than the same phase (this corresponds to a tricategory of bimodules which is a
Gray category288).

Throughout the paper we have considered anomaly free SETs described by a UGxBFC
(the state sums for these are rigorously constructed in Ref. 83), such SETs can be realized
purely in (2 + 1)D systems with ultra-local symmetry actions. From the perspective of using
(3 + 1)D models to realize anomalous boundary phases it is natural to consider extensions of
the model to UGxBFCs with non vanishing H3 and H4 anomalies. In the case of a trivial
grading (all nontrivial defect sectors empty) the labeling of the triangulation defines a flat 2-
group connection. Using the language of Ref. 88 the 2 group specified by Π1 = G, Π2 = A
(the abelian anyons) with a group action ρ inherited form the UGxBFC and trivial 3-cocycle. It
is possible to augment this construction by adding in a 3-cocycle β ∈ H3

ρ (G,A), which alters
the flatness condition to that of a different 2-group G. Furthermore one may add in a 4-cocycle
H4(BG, U(1)). Hence these trivially graded models can be understood as a theory of bosons
or fermions coupled to a 2-group gauge field. This generalizes the picture of CYWW models
as a theory of bosons or fermions coupled to a discrete group gauge field. We leave the details
of this to future work271.

From this perspective the ungraded UGxBFC models have a deequivariantized or ungauged
counterpart given by a 2-group G-SPT with ultra-local symmetry action. The boundaries of
these models can support all anomalous (2 + 1)D SET phases as the bulk serves to resolve the
chiral, H3 and H4 anomalies155. Upon gauging or equivariantizing the G symmetry of these
SET models one recovers the ungraded UGxBFC model. These possible additions suggest the
intrinsic H3 and H4 classes of an anomalous UGxBFC should be treated as a torsor, as they
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can be shifted by an arbitrary choice in the ungraded case, although it is unclear how this carries
over to the general graded case.

Thus far we have explained how the 2-group and CYWW models are captured as subcases of
the UGxBFC construction, furthermore we believe the Kashaev TQFT is equivalent to a subset
of the CYWW model and hence is also captured. We have outlined what is conjectured to be the
most general construction of a (3 + 1)D state sum in terms of a 3-category. We made the case
that restricting to models that have a single object is expected to capture all topological orders
with a commuting projector Hamiltonian that admit a TQFT description. These topological
orders are also known as gapped quantum liquids289 and they do not include models such as
Haah’s cubic code92,290 even though it admits a generalized gauge theory description87,223, see
Chapter 5. The UGxBFC model captures a very general case of the single object 3-category
state sum construction, and most importantly the construction comes with a wealth of examples
originating from SET phases in (2 + 1)D29–31,81,97,98,100–102.

To assess whether the UGxBFC model truly goes beyond the preexisting constructions one
would ideally construct the irreducible excitations and compare their full set of physically ac-
cessible topological invariants. In general the construction of the excitations should correspond
to taking the Drinfeld double or 2-categorical center of the input treated as a unitary fusion
2-category164,211, this itself is not well understood. The resulting invariants are also not fully
understood, although very interesting progress has been made291,292 particularly on the 3-loop
braiding statistics182,293–295. In principle these invariants should uniquely specify the unitary
braided fusion 2-category describing the physical excitations, however it has not even been
rigorously shown that the commonly used S and T matrices are in 1-1 correspondence with
UBFCs in the (2 + 1)D setting.

We may resort to comparing the boundary physics of the proposed UGxBFC models to pre-
vious constructions, but as we have seen the relevant boundaries can be understood as coming
from a CYWW model coupled to a 2-group gauge field155.

Another avenue is to focus on the closed manifold partition functions of the theory. This ap-
proach, for example, allows one to differentiate the Turaev-Viro models from Dijkgraaf-Witten
in (2 + 1)D as the former is sensitive to PL homeomorphism, while the latter depends only on
homotopy. However in (3 + 1)D the situation is complicated by the fact that it is fundamentally
impossible for a unitary TQFT to detect all inequivalent smooth structures on homotopic or s-
cobordant manifolds272 (this is a consequence of the existence of 3D boundary diffeomorphisms
that do not extend into the 4D bulk). Here we should note that the equality (equivalence) of all
partition functions is not known to be a sufficient condition for two theories to be equivalent.
That being said it has been suggested that the UGxBFC state sum depends on the homotopy
3-type of a manifold83, it can also be seen to depend on some Stiefel-Whitney classes of a man-
ifold as it includes the CYWW model which can involve fermions that are sensitive to a choice
of spin structure. These dependencies are consistent with the interpretation of the UGxBFC
model as bosons or fermions coupled to a higher group gauge theory. It is currently unclear if
the UGxBFC models with nontrivial grading give rise to more general invariants, we plan to
study this in future work296.

Finally let us clarify that for the UGxBFC models with non empty defect sectors, the TQFT
constructed from the 15j-symbol does not depend on extra structure or decoration of the cobor-
dism category (beyond possibly an orientation). That is to say the theory is not an SET involving
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physical defects of some global symmetry. However it may be possible that the boundary the-
ory can be thought of as an SET with a certain configuration of defects specified as a boundary
condition.
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Supplementary Material

4.6 Elementary combinatoric topology

In this appendix we introduce some basic notions from the field of combinatorial topology that
are used throughout the paper. We recommend Ref. 267 for further reading.

Figure 4.16: Red indicates the closure (left), star (middle) and link (right) of a vertex and an edge.

• An n-simplex ∆n = [v0 . . . vn] is the convex hull of a set of (n+1) points v0, . . . , vn ∈
Rm≥n such that the vectors v1−v0, . . . , vn−v0 are linearly independent. The orientation
of a simplex can be defined as σ(∆n) := sgn(det(v1 − v0, . . . , vn − v0)) and satisfies
σ([v0 . . . vn]) = sgn(π)σ([vπ(0) . . . vπ(n)]) for a permutation π. We focus on the combi-
natorial aspects of simplices, notice the convex hull of any subset of vertices [vi0 . . . vij ],
for 0 ≤ j ≤ n, is a j-subsimplex of ∆n. Hence ∆n contains

(n+1
j+1
)
j-subsimplices.

• A simplicial complex K is a union of simplices loosely defined as a subset of the power
set of (N + 1) points P{v0, . . . , vN} such that ∆ ∈ K =⇒ P (∆) ⊆ K. We exclu-
sively deal with homogeneous simplicial complexes of some dimension D, which can be
thought of as a union of D-simplices, in which all K-simplices, for dimK <D, appear
as a subsimplex of a D-simplex. The usual definition of simplical complex requires the
intersection of any pair of simplices ∆p ∩ ∆q to be a subsimplex of ∆p and ∆q. We
also use a weaker notion referred to as a ∆-complex in which the intersection of a pair of
simplices may consist of multiple subsimplices.

• The underlying space of a simplicial complexK is given by the union of all its simplices
(treated as a topological space) denoted by |K|.

• The k-skeleton of a simplicial complex K, denoted Kk is the union of j-subsimplices
∆j ∈ K with j ≤ k.

• We often assume the vertices of a simplicial complex have been ordered, this induces an
orientation on the edges of the 1-skeleton from lesser to greater adjacent vertex. This
orientation is a branching structure since the edges on the boundary of a triangle never
form a similarly oriented cycle. In fact our arguments only require a branching struc-
ture which is a local condition slightly weaker than a global ordering, although we will
sometimes assume a global ordering for convenience.

• The boundary of a D-simplicial complex K is a (D − 1)-simplicial complex ∂K con-
sisting of all ∆D−1 ∈ K that are the subsimplex of a single D-simplex within K. Note
∂ ◦ ∂ = 0.
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∗ = , ∗ = , { , } ∗ =

Figure 4.17: The join of two edges (left), cone of an edge (middle) and suspension of an edge (right).

• The closure of a collection of simplices J ⊆ K is given by clJ the minimal subcomplex
of K containing J .

• The interior of a subcomplex J ⊆ K is given by int J := clJ \J .

• The star of a subcomplex J ⊆ K is given by stJ the union of simplices in K which have
a subsimplex contained in J .

• The link of a subcomplex J ⊆ K is given by lkJ := clstJ \stclJ

• The join of two simplices ∆n = [v0 . . . vn],∆m = [vn+1, . . . vn+m+1] is the simplex
∆n ∗∆m = [v0 . . . vn+m+1] ' ∆n+m+1. The join of two simplicial complexes K,J is
given byK ∗J the union of all ∆i∗∆j , ∀∆i ∈ K,∀∆j ∈ J (note this includes joins with
the empty simplex ∅ ∗∆j = ∆j). Note the join is associative and commutative (possibly
up to orientation reversal). There is a simple relation for any simplex ∆i ∈ K given by
st∆i

= ∆i ∗ lk∆i
.

• The cone of a simplicial complex K is its join with a point v given by v ∗K.

• The suspension of a simplicial complex K is its join with two points v, v′ given by
{v, v′} ∗K.

• A bistellar flip (Pachner move) on any k-simplex ∆k ∈ K is constructed from an
auxiliary (n-k)-simplex ∆n−k /∈ K by taking (K\st∆k

) ∪lk∆k
(∂∆k ∗ ∆n−k) with the

identification lk∆k
' ∂∆k ∗ ∂∆n−k.

↔ ↔

Figure 4.18: The bistellar (Pachner) moves in 3D.

• The Poincaré dual of an n-dimensional simplicial complex is an n-dimensional simple
polytope with an (n-k)-cell for each k-simplex of the simplicial complex. To construct
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this dual one can start by associating a vertex vi to each simplex ∆i
n ∈ K then iteratively

adding a j-cell σj for j = 1, . . . , n for each (n-j)-simplex ∆n−j ∈ K. For ∆i
n−j ∈ K

we add a j-cell σij with kl (j-l) faces, where kl is the number of (n-j+l)-simplices that
intersect ∆(n− j) in K. Each (j-l) face of σij is glued to the (j-l)-cell that is dual to the
corresponding (n-j+l)-simplex intersecting ∆n−j .

• A piecewise linear (PL) manifold is a topological space equipped with an atlas of coor-
dinate charts such that the transition functions between charts are piecewise linear. Simi-
larly a smooth manifold is a topological space with an atlas of coordinate charts such that
the transition functions are smooth. (Top, PL, Smooth) is the category of (topological,
PL, smooth) manifolds and (continuous, PL continuous, differentiable) maps between
them, a (homeomorphism, PL homeomorphism, diffeomorphism) between spaces de-
fines an equivalence. Not all topological manifolds admit a PL structure, an example of
minimal dimensionality being Freedman’s E8 4-manifold, and those which do may ad-
mit infinitely many inequivalent PL structures, lowest dimensional examples are exotic
R4’s due to Freedman, Donaldson and Taubes. Note the existence of exotic 4-spheres is
unknown and would provide a counter example to the 4D smooth Poincaré conjecture.
Similarly not all PL manifolds admit a smoothing, examples of minimal dimension 8
were discovered by Ells, Kuiper and Tamura, and those which do may admit multiple
inequivalent smooth structures, minimal dimensional examples given by Milnor’s exotic
7-spheres. In general we have Smooth⊆PL⊆Top, while for D≤ 6 Smooth'PL, for D= 7
the inclusion Smooth⊆PL is surjective but not injective and for D≥ 8 the inclusion is nei-
ther injective nor surjective. For D≤ 3 PL'Top while for D≥ 4 the inclusion is neither
injective nor surjective.

• A triangulation of a topological manifold X is a simplicial complex K together with a
homeomorphism φ : |K| → X .

• A PL triangulation of a topological manifoldX is a simplicial complexK together with
a homeomorphism φ : |K| → X , satisfying the extra constraint that the link of any vertex
lkv, v ∈ K is homeomorphic to a PL (n-1)-sphere (not merely a homotopy sphere). For
D≤ 4 all triangulations are PL, while for D≥5 one can construct a non PL triangulation
by taking two (or more) suspensions of a triangulated Poincaré sphere. According to the
discussion above all smooth manifolds admit unique PL triangulations, while topological
manifolds admit unique PL triangulations for D≤ 3 and may admit anywhere from 0 up
to an infinite family of inequivalent PL triangulations for D≥ 4. For D≥ 5 it was shown
by Manolescu that there are manifolds that do not admit PL triangulations but do admit
the weaker notion of triangulation.
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5.1 Introduction

The study of topological order9,10 intertwines many rich areas of physics: strongly corre-
lated quantum many-body condensed-matter systems24,203, quantum codes19,297,298, topolog-
ical quantum field theory (TQFT)12,13,220, and modular tensor categories166 (and their higher
categorical generalizations84,259,286,299). By viewing the same physics through these comple-
mentary lenses valuable insights have been gained.

In two dimensions a concise and deep understanding of topological order has solidified
in terms of the theory of anyonic excitations14,18,63,64,203,300–302 described mathematically by
modular tensor categories166 known to be equivalent to (3-2-1)-extended topological quantum
field theories165. The theory of stabilizer codes in two dimensions is also well understood303,304.
It is known that all two-dimensional (2D) stabilizer Hamiltonians possess stringlike logical
operators and hence are not self-correcting quantum memories at finite temperature305, and
furthermore that they are equivalent to some number of copies of the toric code306,307.

In three dimensions the landscape of possibilities remains shrouded in mystery. Progress
has been made via the construction of families of fixed point Hamiltonians85,254 and the devel-
opment of novel tools such as the 3-loop braiding statistics294 (which primarily apply to gauge
theories with a possibly anomalous 2D topological boundary) but a general understanding is
still lacking. On the other hand novel contributions have been made in assessing the possibility
of self-correcting three dimensional (3D) quantum memories92,308,309 but a definitive consensus
has not been reached. For a nice overview of progress on this topic see the recent review article
Ref. 310. Most significantly this search has revealed models92,290 that satisfy conventional defi-
nitions of topological order and stability and yet are not described by any (conventional) TQFT.
Rather than being fixed points under real space blocking renormalization group flow they may
bifurcate into multiple copies of themselves311.

The idea of gauging pervades the literature on topological order in condensed matter sys-
tems71,73,213,214. This process makes global symmetries local while allowing one to relate cer-
tain physical properties of the pre- and post-gauged systems71,73,93. This is most commonly
applied to a truly global and on site symmetry, although it has also been adapted to higher
form symmetries154,279 that are important in the classification of higher dimensional phases of
matter155,299.

In this paper we develop a framework for gauging submanifold symmetries, including those
of fractal type, using the language of translationally invariant stabilizer Hamiltonians91,312,313.
We then demonstrate relations between physical characteristics of the pre- and post- gauged
models. Our formalism includes exotic examples such as Haah’s cubic code92 and more con-
ventional examples such as generalized toric codes. We go on to use the tools developed to
construct novel cluster states with fractal-type symmetries.

The results presented here share many similarities with those in the concurrent work Ref.
87. In Ref. 87 the authors also develop a gauging duality map and apply it to study what they
call fracton topological orders, meaning those with pointlike excitations that are not created by
stringlike operators. The fundamental idea underlying the construction of their gauging map,
which they call “F-S” duality, is the introduction of gauge degrees of freedom to mediate many-
body interactions. This is identical to the ideology of our approach, although the execution and
applications differ. They explicitly describe their gauging duality for many examples of classi-
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cal spin models with what they call subsystem symmetries (which we refer to as submanifold
symmetries) including Haah’s cubic code92 and the model due to Chamon, Bravyi, Leemhuis
and Terhal314,315. While the set of examples they consider differs from those here, they are all
equally well described using our formalism. Moreover the gauging duality map of Ref. 87 is
defined only for classical Ising models and does not allow any local symmetries, which excludes
them from gauging the 1-form symmetry of the toric code for example. An advantage of our
approach is that it allows one to gauge any quantum model that is described by a spatially local
Hamiltonian with a given submanifold symmetry; this goes beyond the classical (diagonal in
the computational basis) Ising models considered in Ref. 87.

5.2 Background

In this section we recount several basic notions from the polynomial formalism developed in
Refs. 91,313.

Our focus is on Pauli Hamiltonians that are local, translation invariant and consist of a sum
of terms that are each tensor products of exclusively PauliX or Z matrices (We shall loosen the
last requirement somewhat in the next section). We use the language of polynomials developed
by Haah in Refs. 91,313 as it provides a succinct description of the operators in this setting.
In Haah’s formalism a Pauli operator is specified by a column of polynomials over Z2. For
a translationally invariant system with d spatial dimensions each lattice site is specified by a
vector i ∈ Zd; when there are Q qubits per site a single qubit is specified by a pair (i, q) for
q ∈ {1, . . . , Q}. A general Pauli operator is then mapped to a column of length 2Q with a
multivariate polynomial over Z2 in each entry as follows:

⊗
i,q
X
pqi
i,q
⊗
i,q
Z
rqi
i,q 7→

(
p
r

)
(5.1)

where p = (p1, . . . , pQ) is a column consisting of entries pq which are multivariate polynomials
over Z2 whose xi coefficient is given by pqi ∈ {0, 1} (we are using multi-index notation) i.e.

pq =
∑
i∈Zd

pqi x
i1
1 · · ·x

iQ
Q (5.2)

with similar notation for r. For example on a two dimensional lattice with two types of qubits
r, b per site the operator X(0,0),rX(0,1),rX(1,1),bZ(1,0),r is specified by the polynomial (1 +
y, xy, x, 0) as shown in by

XI IX

XI ZI

y xy

1 x

(5.3)

A pair of Pauli operators

(
p
r

)
,

(
s
v

)
commutes iff their symplectic inner product is zero, i.e.

[(
s̄T v̄T

)
λQ

(
p
r

)]
0

= 0 (5.4)
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where λQ := (ZX) ⊗ 1Q is the relevant symplectic form, s̄ is the antipode map (sending
each monomial summand to its inverse) and the subscript [·]0 denotes the constant term of the

polynomial. For convenience we also define the conjugation operation

(
s
v

)†
:= (s̄T v̄T).

In Haah’s formalism the Hamiltonian is identified with a module generated by the stabilizers
on the unit cell. More specifically let F be a free module of rank T , think of this as the set of
position labels for individual stabilizer terms, and P be the module of Pauli matrices on the

lattice. The Hamiltonian module with T types of local interaction terms

{(
pt
rt

)}
t

is generated

by

σ :=
(

p1 . . . pT
r1 . . . rT

)

which maps σ : F → P . Its symplectic conjugate ε := σ†λQ maps ε : P → E, that is
from the Pauli module P to the virtual excitation module E; think of this as the positions
of various stabilizer terms that anticommute with a given Pauli operator. The condition that
the Hamiltonian is commuting and hence defines a stabilizer code is simply εσ = 0 which is
equivalent to the sequence

F
σ−−−−→ P

ε−−−−→ E

forming a complex. It was shown in Refs. 91,313 that the stabilizer Hamiltonian is topologically
ordered if the aforementioned sequence is exact, i.e. im(σ) = ker(ε).

In the case of Calderbank-Shor-Steane (CSS) codes this complex breaks up into a direct sum
since we have σ = σX ⊕ σZ and the commutation condition becomes σ†ZσX = 0 = σ†XσZ .

In terms of the bipartite interaction graph of the Hamiltonian, σ can be thought of as map-
ping from a Hamiltonian node to the qubit nodes in its support (as an operator) and ε can be
though of as mapping from a qubit node to the adjacent Hamiltonian nodes with which a Pauli
operator on that qudit anticommutes. Note we in fact need to add extra structure to distinguish
the X and Z terms in the interaction graph above, alternatively if the Hamiltonian is CSS we
can consider separate X and Z interaction graphs, corresponding to σX and σZ , and the only
relevant operators are then either Z or X respectively.

5.3 Gauging

In this section we build up a procedure for gauging submanifold symmetries and analyze the
important properties of this gauging map. We start by specifying the type of translationally
invariant, symmetric, local Hamiltonians we treat. We then move on to the definition of the
gauging procedure and proofs of several results that demonstrate its key features. Finally we
describe the relationship between the gauging procedure and translationally invariant, local,
CSS stabilizer Hamiltonians and give a construction of cluster state316 models with submanifold
symmetries.
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5.3.1 Hamiltonian construction

Consider a system of “matter” degrees of freedom (Q qubits per site) with Hilbert space Hm

governed by a translationally invariant local Hamiltonian

Hm =
∑
i∈Zd

∑
k

hi,k

with a family of on-site symmetry operators generated by a tensor product of X on qubits
contained in each closed submanifold of some fixed but arbitrary dimension, possibly fractals
with noninteger dimension (note these manifolds only appear as discretizations with a minimum
length scale cutoff).

We only consider hypercube local Hamiltonian terms, hence the X symmetry can be spec-
ified by hypercube local constraints expressed as products of Z fields that commute with any
symmetry operator. These Z constraints can be understood as locally checking whether an op-
erator, which is a tensor product of Xs, has the shape of an appropriate submanifold on which
it is a symmetry. Associated with these checks is a fundamental object in our framework, the
map

η : FT → P

from FT , a free module of rank T , to P , the Pauli module (T is the number of independent local
Z constraints).

In addition to sums and products of these Z constraint fields, a symmetric Hamiltonian may
contain arbitrary X perturbations. There are two important irreducible types of X fields, single
siteX fields and hypercube localX fields that commute with the Z constraints. Hence the set of
symmetric field perturbations we consider break up into the local Z constraint fields described
by η, the single X terms described by 1Q and possibly a number SX of additional X fields
described by a map

φ : FSX → P

from a free module of rank SX to the Pauli module, which satisfies φ†λQη = 0. These local X
fields that commute with the Z constraints are in fact local symmetries of the model, we will
largely ignore them for the time being as they become trivial after gauging.

In summary we are considering Hamiltonians that commute with a set of tensor product X
operators which might best be described as a locally defined symmetry. Such symmetries are
concretely defined in terms of a chain complex

FSX
φ−−−−→ P

η†λQ−−−−→ FT (5.5)

with local symmetries given by the image of φ and equivalence classes of global symmetries
given by the distinct homology classes of the sequence. Note this homology description of a
locally defined, tensor productX symmetry is very general and does not rely on a translationally
invariant structure or a fixed spatial dimension. This may prove interesting for future work.

An illustrative example is a generalized toric code in d spatial dimensions with qubits on
k-cells, X stabilizers on (k − 1)-cells and Z stabilizers on (k + 1)-cells. This model has
(d − k)-manifold (k-form) X symmetry, specified by the local Z stabilizer constraints on the
unit cell and their translations (note this analysis extends to an arbitrary cellulation of a closed
d-manifold). See Sec. 5.4.1 for a more detailed description of the 2D case.
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5.3.2 Gauging procedure

In this section we follow and generalize the approach of Ref. 71 to produce a (nearly) unam-
biguous gauging procedure for quantum states and operators with submanifold symmetry.

To gauge the Hamiltonian Hm we must first specify the gauge degrees of freedom. We
extend the canonical choice for gauging a conventional k-form symmetry, given by associating
a gauge field to each (k+1)-cell, with a recipe that also deals with more exotic cases. The gauge
and matter Hilbert space Hm ⊗ Hg is built by tensoring in a gauge qubit for each Z constraint
field, i.e. each label in FT . The locality of this system is described by the bipartite interaction
graph of the Z constraint fields, which is generated by η. Hence η can now be thought of as the
map from gauge qubits to neighbouring matter qubits, η : FT → FQ, we will continue to use
this definition below.

The next ingredient in the gauging procedure is a set of local constraints that project onto
states satisfying a Z2 “Gauss law”. This law states that the charge on each matter qubit equals
the sum of the fields on the neighbouring gauge qubits. The local gauge constraints are gener-
ated by the map

π :=


1Q
η†

0
0

 . (5.6)

Specifically each constraint is given by a projector

Pi,q := 1
2(Pi,q(0) + Pi,q(1) )

onto the +1 eigenspace of the Pauli operator π xi êq, which is identified with Pi,q(1), where êq
is the column with a 1 in the qth entry and zeros elsewhere and Pi,q(0) := 1. The full projector
onto the gauge invariant subspace is then given by the product of these local projectors

P =
∏
i,q
Pi,q.

The state gauging map G : Hm → Hm ⊗Hg is given by

G |ψ〉 := P |ψ〉 ⊗ |0〉⊗NT

where N is the number of unit cells in the system.
The local projection of an operator onto the gauge invariant subspace is given by

PΓ[·] :=
∑
SΓ

⊗
i,q
Pi,q(sqi )

∣∣
Γ [·]

⊗
i,q
Pi,q(sqi )

∣∣
Γ

where
∣∣
Γ denotes the restriction of an operator onto the qubits within the region Γ and the sum

is over the set of variables SΓ := {sqi } ∈ {0, 1}|Γ|. Then the corresponding operator gauging
map is defined by

G[O] := PΓ[O
⊗
v∈Γ
|0〉 〈0|v]

where Γ is a (minimal) region containing supp(O) that is generated by a set of points corre-
sponding to gauge qubits in the interaction graph and their neighbours under η.
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The matter Hamiltonian is gauged in a locality preserving way as follows:

HGm :=
∑
i,k
G[hi,k] .

To construct the full gauged Hamiltonian in a nontrivial way we must also specify some fields
HB that describe dynamics of the gauge spins. We will introduce these fields in the zero gauge
coupling limit where the gauge degrees of freedom are frozen to have ‘zero magnetic flux’
(this is analogous to a flatness condition on a finite group connection) perturbations away from
this point are considered later. Note the HB fields are only defined within the gauge invariant
subspace and so should commute with all local gauge constrains. The Z fields commuting with
all Pi,q are precisely those described by polynomials in the kernel of η, in addition we require
them to be a set of independent generators that are local to a hypercube and are hence described
by a map µ which generates the kernel of η.

The full gauged Hamiltonian is then given by

Hfull := HGm + ∆BHB + ∆PHP

where ∆B,∆P > 0 and HP is the sum of all local gauge projectors. From the definitions of the
various Hamiltonian terms one can see that

[Hm, HB] = [HB, HP ] = [HP , Hm] = 0.

For ∆P sufficiently large the low energy subspace of this Hamiltonian is gauge invariant, with
a true gauge theory being recovered in the limit ∆P → ∞. When ∆B is also sufficiently large
the states relevant to the low energy physics are those within the gauge invariant subspace that
also have ‘flat’ gauge connections (specified by the µ constraints).

This full gauged Hamiltonian is equivalent, via a constant depth circuit UD of local isome-
tries, to another Hamiltonian where the gauge has been fixed to remove the local gauge con-
straints thus restoring a clear tensor product structure to the gauge invariant physics. The circuit
is constructed from a product of controlled-X gates from each matter qubit to each of its adja-
cent gauge qubits (under the map η†). Note this unitary disentangles each local gauge constraint
Pi,q such that it becomes a projector onto the |+〉-state of the single qubit at site (i, q). Hence
the full disentangling isometry UD is given by

UD :=
⊗
i,q
〈+|

∏
i,q

∏
xj
êt∈η†xiêq

CX(i,q)→(j,t) . (5.7)

Now the disentangled Hamiltonian, which acts purely on the gauge qubits remaining, is given
by

UDHfullU
†
D = ĤGm + ∆BHB

where ĤGm =
∑
i,k
UDGΓki

[hk,i]U †D is again a sum of local terms.

We close the section by giving a summary of the full gauging and disentangling procedure
in terms of its effect on local symmetric Pauli terms. In the polynomial language these are as
follows

xiêq 7→ η†λQxiêq (5.8)

ηxiêt 7→ xiêt. (5.9)
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Eq.(5.8) describes the mapping of a single qubitX to a product ofX terms on the neighbouring
gauge qubits and Eq.(5.9) describes the mapping of a minimal symmetric Z field (which is nec-
essarily generated by η) to a single Z on the corresponding gauge qubit. Note these mappings
suffice to describe the transformation of all local symmetric tensor products of Pauli matrices.
In general the choice of p generating a set of symmetric Z fields ηp may not be unique since
the kernel of η may be nontrivial. The exact term obtained is determined by the local support
set Γ that is chosen when gauging the symmetric Z fields. All choices for gauging this term
are related by some local fields in HB since it is generated by µ which also generates the kernel
of η. Hence all such choices have an equivalent action upon the ground space provided ∆B is
sufficiently large.

In summary we have constructed a bipartite graph determined by the X symmetry which is
specified in the polynomial language by η. The gauging procedure sends single site X terms
to a product of Xs on the neighbouring gauge bits and symmetric Z terms (which necessarily
lie in the image of η) to a local term in their preimage under η. Additional local Z fields were
also introduced in terms of the map µ which generates the kernel of η. Hence we have a CSS
stabilizer Hamiltonian specified by the gauging complex

F
σ−−−−→ P

ε−−−−→ E (5.10)

where σ = η†⊕µ and ε = σ†λQ. Note the additional Z terms are noncommuting perturbations
to this code Hamiltonian.

5.3.3 Basic properties of the gauging procedure

The mantra of gauging is ‘global symmetry to local symmetry’. This is made precise in the
gauging procedure above as follows; any symmetry specified by a subset of qubits M of the
original model

X(M) :=
⊗

(i,q)∈M
Xi,q

can be reconstructed from the local symmetries of the gauged model, i.e.∏
(i,q)∈M

Pi,q(1) = X(M)⊗ 1g

where g indicates the gauge subsystem.
Gauging in the zero coupling limit (described above in terms of the maps G, G) provides

an equivalence between the gauged and ungauged models in that the operator gauging map
is invertible (in a sense) and furthermore all symmetric expectation values are preserved. We
proceed to show this below. For the remainder of the section we use the labeling convention
that (j, t) are gauge qubits while (i, q) are matter qubits.

Proposition 14. The operator gauging map is invertible for symmetric operators O in the fol-
lowing sense: Tr(j,t)∈Γ

(
G[O] ·

⊗
(j,t)∈Γ |0〉 〈0|

)
= O.

Proof. This is simply a calculation

Tr(j,t)∈Γ

G[O] ·
⊗

(j,t)∈Γ
|0〉 〈0|

 =
∑
SΓ

⊗
(i,q)∈Γ

X
sqi
i,q O

⊗
(i,q)∈Γ

X
sqi
i,q

∏
(j,t)∈Γ

δ

 ∑
η†xiêq3xj

êt

sqi


= O
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the only nontrivial step is realizing that whenever the variables sqi satisfy the δ condition the

operator
⊗

(i,q)∈Γ
X
sqi
i,q is a symmetry and hence commutes with O by assumption.

Lemma 2. The operator G†G projects onto the symmetric subspace.

Proof. Again this is simply a calculation

G†G =
∑
SΛ

∑
S̄Λ

⊗
(i,q)∈Λ

X
sqi +s̄qi
i,q

∏
(j,t)

δ

 ∑
η†xiêq3xj

êt

sqi + s̄qi


where Λ is the full interaction graph (note the sums are only over matter qubits (i, q) and the
product is over the gauge qubits (j, t)). Observe that due to the δ condition this is by definition
the sum over all symmetries of the model.

Lemma 3. The identity G[O]G = GO holds for any symmetric local operator O.

Proof. Once again this is simply a calculation

G[O]G =
∑
S̄Γ

⊗
(i,q)∈Γ

X
s̄qi
i,q O

⊗
(i,q)∈Γ

X
s̄qi
i,q

⊗
(j,t)∈Γ

∣∣∣∣∣∣∣
∑

η†xiêq3xj
êt

s̄qi

〉

×
〈 ∑
η†xiêq3xj

êt

s̄qi

∣∣∣∣∣∣∣
∑
SΛ

⊗
(i,q)∈Λ

X
sqi
i,q

⊗
(j,t)∈Λ

∣∣∣∣∣∣∣
∑

η†xiêq3xj
êt

sqi

〉

=
∑
S̄Γ

∑
SΛ

⊗
(i,q)∈Λ

X
sqi
i,q

⊗
(i,q)∈Γ

X
sqi +s̄qi
i,q O

⊗
(i,q)∈Γ

X
sqi +s̄qi
i,q

∏
(j,t)∈Γ

δ

 ∑
η†xiêq3xj

êt

sqi + s̄qi


⊗

(j,t)∈Λ

∣∣∣∣∣∣∣
∑

η†xiêq3xj
êt

sqi

〉

= GO

where the final step follows from the δ condition and the symmetry of O.

Proposition 15. Any matrix element of a local symmetric operator O taken with respect to
a symmetric state |ψ0〉 and an arbitrary state |ψ1〉 is preserved by the gauging procedure i.e.
〈ψ0|O |ψ1〉 = 〈ψ0|G† G[O]G |ψ1〉.

Proof. We have

〈ψ0|G† G[O]G |ψ1〉 = 〈ψ0|G†GO |ψ1〉
= 〈ψ0|O |ψ1〉

where the first equality follows from Lemma 3 and the second from Lemma 2.

Lemma 4. The states {G |λ〉}, for a basis {|λ〉} ofHm, span the ground space of ∆BHB + ∆PHP

with ∆B,∆P > 0.
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Proof. As discussed in Section 5.3.2 the ground space of HP is spanned by the states {P |λ〉 ⊗
|ψ〉} for bases {|λ〉}, {|ψ〉} of Hm,Hg respectively. To restrict to the ground space of HB

we consider the computational basis for Hg which consists of states |SΛ〉 =
⊗
i,q
X
sqi
i,q |0〉

⊗|Λ|.

Since each local field in HB commutes with P the combined ground space is spanned by states

{P |λ〉 ⊗ |SΛ〉} where [
⊗
i,q
X
sqi
i,q, HB] = 0; i.e. the X terms correspond to polynomials in the

kernel of µ†. We only treat the exact case where ker(µ†) = im(η†) (this is always true for
our constructions from topologically ordered CSS codes see Sec. 5.3.5, if this assumption is
loosened one must deal more carefully with the ground space93 see Chapter 1) then the only
relevant states in Hg are generated by a Pauli operator of the form η†p.

Note we have the relation PPi,q(1) = P hence

P Pi,q(1)
∣∣
g = P Pi,q(1)

∣∣
m (5.11)

where
∣∣
g/m denotes the restriction of the operator onto the gauge or matter qubits respectively.

Since any Pauli operator specified by η†p is of the form
∏
i,q
Pi,q(1)

∣∣
g the ground space of

∆BHB + ∆PHP is spanned by states

P |λ〉 ⊗
∏
i,q
Pi,q(1)

∣∣
g |0〉

⊗|Λ| = P
∏
i,q
Pi,q(1)

∣∣
m |λ〉 ⊗ |0〉

⊗|Λ|

= G
∏
i,q
Pi,q(1)

∣∣
m |λ〉

where we have used Eq.(5.11). Hence the ground space is spanned by states of the form {G |λ〉}.

Proposition 16. The gauging procedure preserves a gap; i.e. if Hm has a uniform constant
energy gap then Hfull does too, provided the constants ∆B,∆P are sufficiently large.

Proof. By Lemma 4, for ∆B,∆P > 0 sufficiently large, the ground space of Hfull is spanned
by states of the form {G |λ〉}. Since HGm =

∑
i,k
GΓki

[hi,k] is a sum of gauged local operators

Lemma 3 implies that, for any matter eigenstate Hm |λ〉 = λ |λ〉, we have HGmG |λ〉 = λG |λ〉.
Hence Hfull has the same lowest eigenvalue as Hm (assuming a symmetric ground state) and
gap ∆full ≥ min(∆m,∆B,∆P ).

We remark that Proposition 16 implies that gauging defines a function from the set of gapped
phases of the ungauged model into the set of gapped phases of the gauged model. That is,
Hamiltonians from the same symmetry protected phase must land in the same phase of the
gauged model.

5.3.4 Properties of the gauging complex

Recall the gauging complex

F
σ−−−−→ P

ε−−−−→ E (5.12)
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defined in terms of the maps involved in the gauging procedure σ = η† ⊕ µ. By focusing on
the maps in the gauging complex one can infer interesting relationships between quantities pre-
and post- gauging.

Firstly any product of the generating symmetric Z fields which multiplies to identity in
the initial model gives an element p ∈ ker(η) and hence a Z symmetry of the gauged model.
Furthermore when the gauging complex is exact and the gauged model is topologically ordered
ker(η) is generated by the map µ and hence p = µ r, ∃r. Then µ describes the minimal local
Z-fields that commute with the gauged X terms.

Secondly any X symmetry of the initial model is an element p ∈ ker(η†) which specifies a
product ofX stabilizers equal to the identity, i.e. a redundantX stabilizer, in the gauged model.
This is relevant in the calculation of the number of qubits encoded into the ground space of the
gauged model, which also requires information about redundant Z stabilizers.

Notice that the gauging procedure is in fact a duality map, in that applying it twice takes
us back to the original model. To achieve this duality we consider gauging the Z symmetry,
generated by µ, of the gauged model. The local X fields commuting with this symmetry are
generated by η†, any product of them equal to identity is in ker(η†) by definition and gives a
symmetry of the twice gauged model. Let φ be a local map generating ker(η†), then φ describes
the independent local X fields that commute with the Z stabilizers of the twice gauged model.
These twice gauged Z terms are given by η. Note these are precisely the local commuting Z
and X fields in the the initial stabilizer Hamiltonian. This suggests an addition to the picture of
the gauging complex, completing the circle of gauging

F
σ−−−−→ P

ε−−−−→ E∥∥∥ ∥∥∥
Ê ←−−−−

ε̂
P̂ ←−−−−

σ̂
F̂

(5.13)

where σ̂ := φ⊕ η, & ε̂ = σ̂†λQ.
Collecting these facts together, we note the number of encoded qubits in the ungauged

model is
N [Q− T + SZ − SX ] + Cm

where N is the number of unit cells, Q is the number of matter qubits per site, T = rank(η)
is the number of local Z stabilizers, SZ = rank(µ) is the number of redundant Z stabilizers
locally, SX = rank(φ) is the number of independent local X symmetries and Cm accounts for
global products of X and Z stabilizers that multiply to the identity upon taking closed bounday
conditions for the matter model. The number of encoded qubits in the gauged model is given
by

N [T −Q+ SX − SZ ] + Cg

where T now corresponds to the number of gauge qubits per site, Q is the number of local X
stabilizers, SX is the number of redundant X stabilizers locally, SZ is the number of indepen-
dent local Z stabilizers and again Cg accounts for global products of X and Z stabilizers that
multiply to the identity upon taking closed boundary conditions for the gauged model.
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5.3.5 A construction from CSS stabilizer Hamiltonians

In light of the above discussion it is clear that from a complex corresponding to a topological
CSS stabilizer code

F
σ−−−−→ P

ε−−−−→ E (5.14)

where σ = σX⊕σZ , one can read off a gauging duality. This duality is specified in our language
by the maps η = σ†X and µ = σZ . Hence the ungauged Hamiltonian is generated by φ ⊕ σ†X
(with im(φ) = ker(σX)) with local symmetric X field perturbations (1Q, 0).

From this analysis we see that if ker(σX) is locally trivial, in the sense that it contains
no local elements, then the ungauged Hamiltonian possesses only global symmetries and the
stabilizers are all Z fields (see the examples in Section 5.4). This point highlights a difference
between the cubic code and generalized toric codes, while both the respective ungauged variants
may have a growing number of global X symmetries (one for each redundant X stabilizer) the
former has no local symmetries whereas the latter has an extensive number. This is relevant to
the distinct behaviours of their ground state degeneracies. We speculate that it is indicative of
spatially extended vs. isolated pointlike excitations

5.3.6 Cluster state construction & gauging

We now go slightly beyond CSS stabilizers and consider cluster state models built on bipartite
graphs specified by the map η from the gauging procedure for some CSS Hamiltonian. By con-
struction this cluster state inherits theX symmetry of the input ungauged model (corresponding
to ker(η†)) on one sublattice and an X symmetry on the other sublattice in the position of each
Z symmetry of the input gauged model. This cluster model is clearly short-range entangled
(SRE) since it can be mapped to a trivial decoupled model via a local circuit of CZs. However
this disentangling does not respect the symmetries. Hence these cluster states are candidates for
higher form or fractal symmetry-protected topological (SPT)27,35,36,56,242 states.

Several different approaches could be taken when gauging these cluster models. We take
advantage of the natural bipartite structure of the system and treat the two disjoint sublattices
separately. Since the terms appearing on a single sublattice are either single Xs or products
of Zs, generated by η or η† respectively, one can instantly read off the effect of gauging one
sublattice. Specifically it results in a doubling of the qubits on the remaining sublattice with
each X,Z field on that lattice now accompanied by a Z,X term, respectively, on the new
partner qubit.

Z fields generated by either µ or φ, depending on the sublattice gauged, are also added to the
new qubits. These intermediate models can possess topological order since they are equivalent
to either the input gauged or ungauged model under a local circuit of CZs. However these gates
do not respect the symmetry on the remaining sublattice, which is indicative of the possibility
of symmetry-enriched topological (SET)29–31,97,98,100,101 order.

Once both sublattices have been gauged one can easily see that the model is mapped to itself
up to local swaps and Hadamards.
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5.4 Fractal Symmetries

In this section we present several examples which consist of pairs of models that are dual under
gauging and support interesting symmetries.

5.4.1 2D toric code - Ising model

The toric code is a CSS code that is known to be equivalent to a Z2 gauge theory (see Section
3 of Ref. 19 and also Ref. 317). In the polynomial language the toric code is generated by
σX = (x+ xy, y + xy), σZ = (1 + x, 1 + y), graphically

IX XX

II XI

IZ II

ZZ ZI

. (5.15)

The map η = σ†X determined by theX stabilizers corresponds to the 2D Ising model, generated
by the terms (0, 1 + y), (0, 1 + x)

Z I

Z I

I I

Z Z

(5.16)

with X perturbations generated by (1, 0).
Note that when gauging the Ising model one encounters a situation in which ker(η) is non-

trivial and is generated by σZ as expected. To see this explicitly consider a product of terms
from Eq.(5.16) around a plaquette that yields the identity.

5.4.2 3D cubic code - fractal symmetry Ising model

The cubic code is a 3D CSS code generated by

σX =
(
x+ y + z + xyz

1 + y + xy + yz

)
σZ =

(
x+ y + xy + xyz

1 + xy + yz + xz

)
or graphically

IX XI

XI II

XX IX

IX XI

IZ ZI

ZI ZZ

II IZ

IZ ZI

(5.17)

the gauging map η specifies the ungauged cubic code, a type of ‘Ising’ model, with Z stabilizers
generated by

(0, 1 + xy + xz + yz), (0, x+ z + xz + xyz)

Z I

I Z

I Z

Z I

I Z

Z Z

I I

I Z

(5.18)
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and single qubit X perturbations. This model has a fractal X symmetry for each product of
stabilizers equal to the identity in the cubic code.

5.4.3 Self dual cluster models

The first cluster model is derived from the 2D toric code and has stabilizers

IZ II

(X)

ZZ ZI

Z I

(XI)

Z I

I I

(IX)

Z Z

(5.19)

where the matter sublattice has a single qubit per site (blue) and the gauge sublattice has two
(red). This model has a 1D (1-form) X symmetry on the red sublattice and a global (0-form) X
symmetry on the blue sublattice.

The previous example fits into a broad class of cluster states in arbitrary dimension d with
qubits on (k− 1)- and (k)- cells. These cluster states are constructed on the bipartite adjacency
graph of these cells and possess (d− k)- and (k − 1)- form X symmetry.

The second cluster state model comes from the cubic code and has stabilizers

IZ ZI

ZI ZZ

X

II IZ

IZ ZI

Z I

I I

XI

Z Z

Z I

I Z

Z I

IX

Z I

I Z

(5.20)

using the same sublattice conventions as above. One can see by inspecting the pictures that all
translations of these terms commute.

This model supports fractal X symmetries on each sublattice. It inherits an X symmetry
on the red sublattice for each X symmetry of the cubic code and an X symmetry on the blue
sublattice for each X symmetry of the ungauged cubic code.

5.5 Conclusions

In this paper we have defined a gauging procedure for general submanifold symmetries, includ-
ing those of fractal type, within the framework of Pauli Hamiltonians. We demonstrated rela-
tions between the pre- and post- gauging models reminiscent of those obtained via the conven-
tional gauging procedure. Using the tools developed in this process we constructed short-range
entangled Ising and cluster models with fractal symmetries and examined their transformation
under gauging.

This gauging procedure constitutes a small step towards adapting the standard tools from
the condensed matter toolbox for application to more exotic 3D topological orders, including
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cases where the common sense assumptions leading to a TQFT description are not satisfied311.
We are optimistic that this path leads to a cache of strange and exotic phases of matter beyond
(conventional) TQFTs, citing Haah’s cubic code92 as a demonstrative example.

Our approach opens the door to more general constructions and a possible relation between
SRE fractal-symmetric and exotic topological phases similar to the well known connection
between SPT phases and Dijkgraaf-Witten theories72,93. In particular the gauging procedure
applied to a subgroup of the global symmetry allows one to construct and study fractal SET
phases. The fractal symmetries in this context may play a role in understanding the most gen-
eral transversal gates in topological codes204,206 and a connection of these phases of matter to
quantum computation134,136.
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nated and also to the quantum theory group at the University of Sydney where it was written
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Discussion and outlook

In this thesis we have established a powerful approach to the extraction of emergent physical
properties of a quantum state from the local entanglement structure of its constituent degrees
of freedom. Our approach was founded on the principles of locality, linearity and symmetry,
which were brought together in the study of the MPO symmetry algebra of local PEPS tensors.
From these MPO symmetries, which constrain the pattern of local correlations in the resulting
quantum states, we outlined how the emergent SET order could be extracted.

In Chapter 1 we introduced a formalism for the description of global symmetry in PEPS
in terms of MPO group representations and the symmetry-enriched pulling through condition.
We applied our formalism to SPT phases, and provided a detailed description of the emergent
physical data. This included the anomalous action of the symmetry upon the edge degrees
of freedom, and a construction of the topological order that results from gauging the global
symmetry. We also explained a method to introduce symmetry twists and monodromy defects
into a symmetric PEPS and calculated the projective action of the global symmetry upon a
mondromy defect.

In Chapter 2 we focused on the (1 + 1)D edge theories of (2 + 1)D SPTs. In these models
MPO group representations appear as dualities between gapped phases, which become symme-
tries at a gapless phase transition point. We used the MPOs to construct topological superselec-
tion sectors of the gapless models, which contain nonlocal scaling fields of the emergent CFT.
We demonstrated our approach with an example, which was shown to support a gapless phase,
protected by an MPO symmetry.

In Chapter 3 we further developed the framework introduced in Chapter 1, culminating in
a construction of the defect superselection sectors of a symmetric PEPS. To achieve this, we
established a close connection between graded MPO algebras and graded UFCs. We explained
how the emergent physical data of an SET phase could be extracted from our representations of
the superselection sectors. We also studied the relationship between SET phases and topological
phases that are related by the dual processes of gauging a global symmetry, or condensing a
bosonic subtheory.

In Chapter 4 we utilized two recent constructions of state sum TQFTs82,83 to write down
new fixed point commuting projector Hamiltonians for topological phases of matter in (3 + 1)D.
We calculated the ground state degeneracies of Kashaev’s models82 on the 3-torus, which
formed the basis for our conjecture that these models fall into a subset of the topological phases
realized by the CYWW models85,86. We also discussed how the UGxBFC models83 — with a
small modification — capture previous constructions, including the CYWW models, Dijkgraaf-
Witten theories72 and their 2-group generalizations88,90, and how these models fit into a general
framework based on unitary fusion 2-categories.

In Chapter 5 we extended the quantum state gauging procedure, introduced in Ref. 71, to
generalized global symmetries that act on subsets of the lattice. This allows the tools of lattice
gauge theory to be applied to exotic fracton topological phases of matter87. General results
about the connection between models before and after gauging were derived. In particular, it
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was shown that a gapped Hamiltonian is mapped to a gapped Hamiltonian. As an example we
found a modified Ising model, with a generalized global symmetry, that is mapped to Haah’s
cubic code by the gauging process.

Together, these results exemplify the utility of tensor networks for the description of topo-
logical phases of matter. We have used them not only to construct ground states, but also
complicated fixed point Hamiltonians for new topological phases, and local symmetries on the
entanglement degrees of freedom of a PEPS, which were used to find topological superselec-
tion sectors. Key elements in our formalism were the fusion tensors, that locally implement
multiplication of the MPO symmetry algebra, and the associator tensors, that relate different
orders of multiplication. We further described how this hierarchical structure could be extended
to higher dimension84. A particular emphasis was placed on the fact that emergent properties
of a phase of matter can be extracted from the local TNO symmetries.

Our approach lends itself to a plethora of natural generalization: An immediate, although
significant, generalization is the extension of the tube algebra and the derivation of superse-
lection sectors, to a cube algebra in (3 + 1)D. This could be significantly complicated by the
higher categorical nature of emergent excitations in (3 + 1)D, since the superselection sectors
for regions of different topology behave in fundamentally different ways. While the pointlike
particles are relatively simple, as they must be either bosons or fermions, a general construc-
tion of looplike excitations has not been given, although interesting progress was made in this
direction recently318. For a complete theory we expect one must also consider the cutting and
gluing of superselection sectors with boundaries, highlighting the higher categorical nature of
the emergent excitations, which are expected to be described by a modular tensor 2-category.
The analysis is also complicated by the fact that domain walls of 1-form symmetries may appear
in the looplike superselection sectors210,318.

Alongside the construction of the cube algebra, it would be interesting to find the most gen-
eral (3 + 1)D state sum TQFTs and their local commuting projector Hamiltonian realizations,
as discussed in Chapter 4. We anticipate that such models will arise from unitary fusion 2-
categories, although no satisfactory algebraic definition of such objects has yet been established.
Perhaps the most significant aspect of this endeavor, is the search for new concrete examples.
In particular, we would like to establish whether the Hamiltonian models we described in Chap-
ter 4 capture topological phases beyond 2-group gauge theories and Walker-Wang models. At
this point it remains unclear whether there are any (3 + 1)D topological phases not captured
by 2-group gauge theory coupled to a Walker-Wang model, and Ref. 319 provides some pre-
liminary arguments indicating that there may not be. Even if there is nothing beyond this class
of topological phases, we expect that the finer classification of higher form SET phases will
go beyond 2-group gauge theory and Walker-Wang models. To this end we have identified a
simple subclass of our models which appear to capture novel 1-form SET phases, including
the recently introduced 2-Ising theory248. We plan to explore the properties of these models in
more detail in a future work.

One approach to finding new state sum models in (3 + 1)D is to look for tensor solution to
the Pachner move equations described in Ref. 84 and Chapter 4. It was shown that such tensors
naturally give rise to a tensor network operator (TNO) symmetry algebra. By using a dimension
reduction procedure, higher levels of categorical structure can be accessed directly in the tensor
networks. Exploring these TNO algebras further could yield promising tools in the search for
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new models.
Another immediate avenue for generalization would be to incorporate antiunitary and spatial

symmetries, and their associated lattice defects, into our framework for SET phases. Tensor
networks provide a natural environment for the construction of such defects, and we expect
an approach similar to Ref. 245 could be combined with our defect tube algebra to classify
emergent SET phases on the lattice, see Chapter 3.

It would also be interesting to consider anomalous symmetries in two spatial dimensions and
extend the approach taken in Chapter 2 to find symmetric PEPS or MERA tensor networks. A
closely related direction is the development of a general, cohesive framework for the description
of chiral topological orders in PEPS. Both anomalous symmetries and chiral anomalies occur
at the boundary of WW models and their generalizations described in Chapter 4. Hence, the
problem of constructing chiral and anomalous symmetric tensor networks is related to finding
those with the relevant TNO symmetries. This approach could lead to interesting gapless phases
of matter, and may shed light on why the chiral tensor networks found thus far are ground states
of gapless Hamiltonians.

We expect that the tools we have developed will prove useful in the study of topological
quantum codes and computation. For instance, we plan to apply our general framework for
SET order in PEPS to produce a construction of all non-anomalous locality preserving gates
in two-dimensional lattice topological codes in a forthcoming work. In our formalism these
gates are all realized transversally, making precise the connection between non-anomalous SET
phases and transversal gates in topological codes. We also plan to use our construction of emer-
gent superselection sectors in PEPS to derive effective noise models, for topological degrees of
freedom, from realistic noise models on the physical degrees of freedom. We also anticipate that
our isolation of topological degrees of freedom, concretely in a tensor network representation,
could lead to improved schemes for topological quantum computation on the lattice.

Our analysis of MPO dualities in one-dimensional phases in Chapter 2 can be extended to
the more general class of dualities considered in Refs. 193,194. These MPOs can be used to
construct the topological superselection sectors, and nonlocal scaling fields of emergent RCFTs
that describe symmetric critical points. These sectors allow one to pick out the primary fields
and derive their set of scaling dimensions, which describe the universality class of the phase
transition. The mathematical framework for group extensions of MPO algebras, developed in
Chapter 3, can be applied to classify (1 + 1)D phases and their phase transitions in terms of an
algebra of MPO symmetries and dualities.

For all of the aforementioned future directions it would be interesting to also include con-
stituent fermionic degrees of freedom, some work along these lines has already been done in
Refs. 66,126,320.

A final, far reaching future direction would be to adapt our approach to emergence in con-
densed matter systems — by analyzing the entanglement structure — to the problem of emer-
gence in quantum gravity. We remark that other ideas from quantum information have proven
extremely fruitful in recent applications to quantum gravity321–323, and a captivating dialog is
ongoing.

In summary, this thesis constitutes a modest addition to the grand story of how the macro-
scopic world emerges from an intricate tapestry of correlations in the underlying microscopic
degrees of freedom.
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