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Preface

The primary focus of this thesis is the study of certain results on the regularity of CR map-
pings, which have been traditionally referred to as reflection principles. The epynom of these
kind of statements is the classical Schwarz reflection principle, which in fact may be viewed as
a regularity result: Any real valued continuous function on the real line that extends holomor-
phically to one side is actually real analytic. Note that R ⊆ C is a totally real submanifold and
hence all continuous real valued function can be considered as CR mappings on R.

The Schwarz reflection principle can easily be generalized to mappings between totally real
submanifolds of Cn. However it was a surprise when in the second half of the last century
an increasing number of reflection principles for CR mappings between more general CR sub-
manifolds were proven, beginning with the epochal theorem of Fefferman [34] on the smooth
extension of biholomorphisms of bounded strictly pseudoconvex domains in Cn. Among the im-
portant results on the boundary regularity that were shown after the theorem of Fefferman we
would like to mention the reflection principle of Nirenberg-Webster-Yang [60] and the reflection
principle for CR diffeomorphisms on essential finite real analytic hypersurfaces of Baouendi-
Jacobowitz-Treves [6] to name only a few.

Most of these theorems are of a similar form, which can be summarized as follows. We con-
sider a CR mapping H between two CR submanifolds M and M ′ with some a-priori regularity
that extends holomorphically into a wedge with edge M . If the mapping and/or the manifolds
satisfy certain nondegeneracy conditions then it is proven that H is actually of optimal regular-
ity, that is smooth if M and M ′ are smooth, or real-analytic if the manifolds are analytic. The
nondegeneracy assumptions mentioned are heavily tailored towards the methods applied in the
various different proofs.

In particular, it is worth noting that in most instances the conditions in the smooth setting
differ sharply from those used in the analytic category. One of the rare cases, where under
the identical assumptions it could be shown that H is smooth if the manifolds are smooth
and analytic if M and M ′ are both analytic manifolds, have been the results of Bernhard
Lamel [52, 53]. He proved that every finitely nondegenerate CR mapping between two generic
submanifolds that extends holomorphically is smooth and even analytic if both manifolds are
real-analytic.

Recently Berhanu-Xiao [10] were able to strengthen this result in the smooth case by re-
laxing partially its assumptions. They require only the target manifold to be an embedded CR
manifold, the source manifold could be only an abstract CR manifold. The finitely nondegen-
erate condition on the mapping remains unchanged but the holomorphic extension obviously
makes no sense in this situation. It is replaced in the theorem of Berhanu-Xiao with the as-
sumptation that the fibers of the wavefront set of H do not include opposite directions.

This microlocal assumption is automatically satisfied in the embedded setting if extension
to a wedge is assumed since Baouendi-Chang-Treves [4] showed that for CR distributions on
CR submanifolds of CN the holomorphic extension into wedges is in fact a microlocal condition,
which they used to define the hypoanalytic wavefront set of CR distributions. It coincides with
the analytic wavefront set if the manifold is analytic. If the manifold is only smooth then the
hypoanalytic wavefront set includes the smooth wavefront set.

Since the results of Lamel and Berhanu-Xiao suggest that finite nondegeneracy preserves
regularity quite well, the following question arises naturally. Given a subsheaf A of the sheaf of
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smooth functions we may ask that if in the formulation of the theorem of Lamel the manifolds
are assumed to be of class A, does it follow that the CR mapping has to be of class A as well?

Of course we have to assume that A satisfies certain properties. First of all, in order for the
conjecture above to make sense, A must be closed under composition and the implicit function
theorem must hold in the category of mappings of class A. Furthermore if we try to modify
the existing proofs in the smooth category then we need some version of A-wavefront set or
more precisely a definition of A-microlocal regularity. We should note at this point that in both
Lamel’s proof and that of Berhanu-Xiao the characterization of the smooth wavefront set by
almost-analytic extensions was heavily used as both relied on an almost-analytic version of the
implicit function theorem.

Several different kinds of ultradifferentiable classes of smooth functions have been used in
various areas of mathematics, one of the most prominent cases being the famous Gevrey classes.
These classes are often defined by putting growth conditions either on the derivatives or the
Fourier transform of its elements.

One of the most explored families of ultradifferentiable classes, that also includes the Gevrey
classes, is the category of Denjoy-Carleman classes. The elements of a Denjoy-Carleman class
satisfy generalized Cauchy estimates of the form∣∣∂αf(x)

∣∣ ≤ Ch|α|m|α||α|!
on compact sets, where C and h are constants indepedent of α andM = (mj)j is a sequence of
positive real numbers, the socalled weight sequence associated to the Denjoy-Carleman class.
Such classes of smooth functions were first investigated by Borel and Hadamard, but were named
after Denjoy and Carleman when they characterized quasianalyticity of those classes using its
weight sequence.

There is a rich literature concerning the Denjoy-Carleman classes and their properties.
Obviously conditions on the weight sequence translate to stability conditions of the associated
class. For example, if M is a regular weight sequence in the sense of [29], then it is well
known that the Denjoy-Carleman class is closed under composition, solving ordinary differential
equations and the implicit function theorem holds in the class, c.f. e.g. [67]. Hence it makes
sense in this situation to consider manifolds of Denjoy-Carleman type.

There have been also several attempts to define wavefront sets with respect to Denjoy-
Carleman classes, see e.g. [51] and [24]. But the most widereaching definition of an ultradif-
ferentiable wavefront set both with respect to conditions imposed on the weight sequence and
scope of achieved results was given by Hörmander [42]. However his definition is a little bit
too general for the purposes of this thesis. Due to his relative weak conditions on the weight
sequences Hörmander was only able to define the ultradifferentiable wavefront set WFM u of
distributions u on real-analytic manifolds but not distributions defined on ultradifferentiable
manifolds.

However Dyn’kin proved that for regular weight sequences locally each Denjoy-Carleman
function has an almost-analytic extension, whose dbar-derivative satisfies near Im z = 0 a
certain exponential decrease in terms of the weight sequence. In this thesis we use this result
and several statements of Hörmander [45] to prove that the Denjoy-Carleman wavefront set can
be characterized by M-almost-analytic extensions. Using this characterization it is possible to
modify Hörmander’s proof to show that in this situation the ultradifferentiable wavefront set
for distributions on Denjoy-Carleman manifolds can be well defined.

One of the fundamental results on the wavefront set is the elliptic regularity theorem
which states that for all partial differential operators P with smooth coefficients we have that
WFu ⊆ WFPu ∪ CharP for all distributions. Similarly Hörmander proved that WFM u ⊆
WFM u ∪ CharP holds for operators with real-analytic coefficients. However, recently several
authors [3], [65] have used the pattern of Hörmander’s proof to show this inclusion for ultradif-
ferentiable wavefront sets and operators with ultradifferentiable coefficients for variously defined
ultradifferentiable classes.
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Arguing similarly we prove that, if M is a regular weight sequence, then WFM u ⊆
WFM Pu ∪ CharP for operators P with coefficients in the Denjoy-Carleman class associated
to M. In fact, we show this inclusion for vector-valued distributions and square matrices of
operators with ultradifferentiable coefficients.

With this results on hand and an M-almost analytic version of the almost-analytic im-
plicit function theorem of Lamel we can now prove ultradifferentiable versions of the reflection
principles of Lamel and Berhanu-Xiao for Denjoy-Carleman classes given by regular weight
sequences.

More precisely this thesis is structured as follows. In chapter 1 we develop the theory of
Denjoy-Carleman classes that is necessary for our purposes. In particular, the basic definitions
and a summary of known results for classes given by regular weight sequences are given in section
1.1. Furthermore, after presenting the aforementioned result of Dyn’kin we prove here the M-
almost analytic version of the almost-analytic implicit function theorem mentioned above. In
section 1.2 we note that by the results cited in the previous section it is possible to consider the
category of manifolds of Denjoy-Carleman type if the weight sequence is regular. We observe
also that this allows us to give an ultradifferentiable version of Sussmann’s Theorem and to
generalize the Theorem of Nagano for vector fields with coefficients in quasianalytic Denjoy-
Carleman classes. The last section of chapter 1 contains proofs of generalizations of the basic
smooth division theorems given in [35] to the category of Denjoy-Carleman classes and a brief
discussion on the algebraic structure of quasianalytic classes.

In the first section of chapter 2 the basic theory of the ultradifferentiable wavefront set as
presented in [45] is reviewed. We start section 2.2 with a result on the wavefront set of bound-
ary values of M-almost analytic functions with parameter. This generalized form is later on
needed in the proof of the ultradifferentiable reflection principle. Here, however the statement
without parameter together with results of Hörmander and the theorem of Dyn’kin leads to
the characterization of the ultradifferentiable wavefront set by M-almost analytic extensions,
which in turn is crucial to show that the wavefront set can be invariantly defined on manifolds
of Denjoy-Carleman type. In section 2.3 a generalized version of the famous theorem of Bony
[18] on the characterizations of the analytic wavefront set is presented. In particular, we char-
acterize the wavefront set with respect to regular Denjoy-Carleman classes by the generalized
FBI transform introduced by Berhanu-Hounie. A similar result was recently given by Hoepfner-
Medrado [39]. We shall note that in contrast to their result we allow here also quasianalytic
classes. Section 2.4 is dedicated to the proof of the ultradifferentiable elliptic regularity theorem
mentioned above, which in turn is used in section 2.5 together with a result of Hörmander [41]
to prove a quasianalytic version of the Uniqueness Theorem of Holmgren [40], see also [41].
This enables us to show generalizations of statements of Bony [16, 17], Sjöstrand [75] and,
applying the quasianalytic Nagano theorem, Zachmanoglou [82, 83].

In chapter 3 CR manifolds of Denjoy-Carleman type are considered at last. In section 3.1
basic definitions and first results are given, whereas the proofs of the ultradifferentiable versions
of the reflection principles of Lamel and Berhanu-Xiao are presented in section 3.2. The last two
sections are devoted to present essentially the generalization of [35] concerning the smoothness
of infinitesimal CR automorphisms to regular Denjoy-Carleman classes. We end by examining
smooth infinitesimal CR automorphisms on formally holomorphic nondegenerate quasianalytic
CR submanifolds.

I would like to thank my supervisor Bernhard Lamel for his support and advice during the
long journey that has led to this thesis. I would also like to express my gratitude to Armin
Rainer and Gerhard Schindl, who introduced me to the theory of Denjoy-Carleman classes and
its intricacies. Finally I wish to thank Michael Reiter.

Stefan Fürdös
June 2017, Vienna
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Preliminaries

We will summarize some basic notions and definitions that are going to be used throughout
the thesis.

We will use the standard (subspace) topology on Ω ⊆ Rn. In particular we denote the
system of neighbourhoods of a point p ∈ Ω by U(p) = UΩ(p). Occasionally we are going to write
K ⊂⊂ Ω to denote a compact subset K of Ω. If U is an open set then U ⊂⊂ Ω means that U
is a relatively compact subset of Ω.

The standard scalar product in Rn will be written as

〈x, y〉 =
n∑
j=1

xjyj .

Sometimes we will also use the convention x · y = 〈x, y〉. A subset Γ ∈ Rn is a cone iff for all
λ > 0 and x ∈ Γ it holds that also λx ∈ Γ. The set of positive integers is denoted by N whereas
N0 = N∪ {0}. An element α ∈ Nn0 is said to be a multi-index. The length of a multi-index α is
defined as

|α| =
n∑
j=1

αj .

Similarly the Euclidean norm in Rn is denoted by

|x| =

√√√√ n∑
j=1

|xj |2

for x ∈ Rn.
If R is a ring, E a module over R and f1 . . . , fd ∈ E then we denote the submodule of E

that is generated by f1, . . . , fd by

spanR
{
f1, . . . , fd

}
.

If Ω ⊆ Rn is open then we say that a function f defined on Ω is an element of C1(Ω) iff all
partial derivatives

∂f

∂xj
(x), j = 1, . . . , n,

exist and define continuous functions on Ω. The spaces Ck(Ω), k ∈ N, are defined analogously,
whereas C(Ω) = C0(Ω) is the space of continuous functions on Ω. Accordingly we write E(Ω) =
C∞(Ω) =

⋂∞
k=0 Ck(Ω) for the space of smooth functions. Note that usually all functions are

considered to be complex-valued, if not stated otherwise. We may write

∂j = ∂xj =
∂

∂xj
, j = 1, . . . , n,

and, if α ∈ Nn0 is a multi-index, ∂α = ∂α1
1 . . . ∂αnn . We shall also rarely use the following notation:

Let v ∈ Rn then

∂vf =

n∑
j=1

vj∂jf

is the directional derivative of f in direction v.
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We write Ck(Ω, E) for the k-times differentiable mappings, k ∈ N0 ∪ {∞}, from Ω into
a vector space E. If k = ∞ then we use also the notation E(Ω, E). The Jacobi matrix, or
Jacobian, of a map F = (F1, . . . , Fm) ∈ C1(Ω,Km), K = R,C, at p ∈ Ω is the matrix∂1F1(p) . . . ∂nF1(p)

...
...

∂1Fm(p) . . . ∂nFm(p)

 .

If K ⊆ Ω is compact then E(K) is the space consisting of those continuous functions on K
that can be extended to smooth functions defined in some neighbourhood of K in Ω.

The space of test functions, that is smooth functions with compact support, i.e. functions
f ∈ E(Ω) such that

supp f =
{
p ∈ Ω | @U ∈ UΩ(p) : f |U ≡ 0

}
is compact, is denoted by D(Ω). If D(Ω) and E(Ω) are equipped with their usual local convex
topologies then the dual spaces D′(Ω) and E ′(Ω) are the usual spaces of distributions and
distributions with compact support, respectively, on Ω. The duality bracket on D′ is denoted
by 〈u, ϕ〉 = u(ϕ) where u ∈ D′(Ω) and ϕ ∈ D(Ω). A linear form u on D(Ω) is an element of
D′(Ω) if and only if for each compact subset K ⊂⊂ Ω there are constants C > 0 and k ∈ N0

such that for all ϕ ∈ D(K) = {ψ ∈ D(Ω | suppψ ⊆ K}

〈u, ϕ〉 ≤ C
∑
|α|≤k

sup
x∈K

∣∣∂αϕ(x)
∣∣.

We say that the distribution u is of finite order iff the constant k does not depend on K. If
k0 is the smallest number such that the above estimate holds then u is a distribution of order
k0. The space of distributions of order k on Ω is denoted by D′,k(Ω). Any distribution with
compact support is of finite order and we set E ′,k = D′,k ∩ E ′. For more details see e.g. [45],
[46] or [27].

If Ω ⊆ Cn is open with coordinates Z = (Z1, . . . , Zn), x = ReZ, y = ImZ and f ∈ C1(Ω)
then we set

∂f

∂Zj
=

1

2

(
∂f

∂xj
− i ∂f

∂yj

)
∂f

∂Z̄j
=

1

2

(
∂f

∂xj
+ i

∂f

∂yj

)
.

Since a function f ∈ C1(Ω) is holomorphic if and only if ∂̄jf = ∂f
∂Zj

= 0 for all j = 1, . . . , n, we

write frequently g(p, p̄) for the value of an arbitrary function g ∈ C1(Ω) at the point p ∈ Ω in
order to indicate that generally ∂̄jg 6= 0.

We recall that a paracompact, Hausdorff topological space M is an abstract smooth manifold
of dimension n iff there is an atlas A = {(Vα, ϕα)} of charts ϕα, i.e. homeomorphisms ϕα : Vα →
Rn such that M =

⋃
α Vα is the union of the open subsets Vα ⊂ M and two arbitrary charts

ϕα : Vα → Rn and ϕβ : Vβ → Rn in A are compatible, ithat means ϕα ◦ ϕ−1
β ∈ E wherever the

composition is defined.
If ϕ : V → Rn is a chart then ϕ−1 : U = ϕ(V ) → M is called a (local) parametrization of

M and (x1, . . . , xn) := ϕ−1(q) are local coordinates on U
A map F : M → N between two manifolds is Ck, k ∈ N0 ∪ {∞}, iff ψ ◦ F ◦ ϕ−1 for any

choice of charts ϕ of M and ψ of N . In particular, a function f : M → C is Ck if and only if
ϕ∗f = f ◦ ϕ is Ck for any local parametrization (U,ϕ) of M .

M C

U

f

ϕ
ϕ∗f

viii



We are going to identify occasionally a chart neighbourhood V with the open subset U =
ϕ(V ) ⊆ Rn. We refer e.g. to [25] for a detailed account of the theory of manifolds.

When K denotes either the field R or C, then a manifold E is said to be a (K-)vector
bundle over M of fiber dimension N , if the following holds: There is a smooth surjective map
π : E →M such that Ep = E|p := π−1(p) is an N -dimensional vector space over K, the socalled
fiber of E at p, for each p ∈ M . Furthermore for each p ∈ M there is an open neighbourhood
V ⊆M and a diffeomorphism χ such that the following diagrams commutes

π−1(V ) V ×KN

V V

χ

π p1

id

and such that the mapping χ|π−1(q) : π−1(q)→ {q}×KN ∼= KN is a linear isomorphism for each
q ∈ V . The diffeomorphism χ is called a local trivialization of E. Local trivializations satisfy
the following compatibility condition. Let χ1 and χ2 be local trivializations of a vector bundle
E on the subsets V1 and V2 of M , then

V1 ∩ V2 ×KN V1 ∩ V2 ×KN

π−1(V1 ∩ V2)

V1 ∩ V2

ρ12

p1 p1π

χ1 χ2

commutes, where ρ12 = χ2◦χ−1
1 is linear in the last component. More precisely, we can consider

ρ12 as a smooth mapping
ρ : V1 ∩ V2 → GL(N,K)

into the Lie group of invertible N ×N -matrices with entries in K. The map ρ12 is called a
transition function of E. If χ3 is a local trivialization of E on a further open subset V3 of M
and ρ23 = χ3 ◦ χ−1

2 , ρ31 = χ1 ◦ χ−1
3 the corresponding transition functions then the socalled

cocyle condition is satisfied on V1 ∩ V2 ∩ V3, namely

ρ12(x) · ρ23(x) · ρ31(x) = Id

for x ∈ V1 ∩ V2 ∩ V3. Note that it possible to reconstruct the bundle E from the transition
functions defined on a covering of M .

A map f between two vector bundles E and F over the manifold M is a vector bundle
homomorphism iff f is smooth and linear in the fiber, i.e.

f |Ep : Ep −→ Fπ◦f(p)

is linear for all p ∈M . If f is additionally a diffeomorphism and invertible in each fiber then it
is called a vector bundle isomorphism.

If U ⊆ M is an open subset then we write E|U = E(U) for the vector bundle π−1(U) over
U .

If E is some vector bundle on M then a section of E is a mapping X : M → E that satisfies
π ◦ X = id. Note that we have not required X to be smooth. The space of sections of E is
denoted by Γ(M,E), whereas E(M,E) is the space of smooth sections. We define similarly
Ck(M,E), k ∈ N0.

A local basis of E(M,E) on U ⊆ M is given by smooth sections fj ∈ E(U,E|U ) = E(U,E),
j = 1, . . . , N , that are linearly independent at any point of U , such that any X ∈ E(M,E) can
be written locally as

X|U =

N∑
j=1

Xjfj
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with coefficients Xj ∈ E(U).
If π : E →M is a vector bundle then π′ : F →M is a vector subbundle of E iff F ⊆ E and

π′ = π|F . The dual bundle E∗ of a bundle E is defined by setting

E∗ =
⊔
p∈M

(Ep)
∗.

If ψ is a local trivialization on U then the dual map ψ∗ is defined by ψ∗(p, . ) = (ψ(p, . ))∗ and
ϕ = (ψ∗)−1 is a local trivialization of E∗. Note also that if ρ is a transition function of E then
(τρ)−1 is a transition function of E∗.

If F ⊆ E is a subbundle, we can define a subbundle F⊥ ⊆ E∗ by

F⊥p :=
{
σ ∈ E∗p | σ(v) = 0 ∀v ∈ Fp

}
.

Other constructions from linear algebra that transfer easily to the category of vector bundles
include the tensor product. If E and F are two K-vector bundles then the tensor product
E ⊗ F = E ⊗K F is defined fiberwise by (E ⊗ F )p = Ep ⊗ Fp. Note that E ⊗ F satisfies the
following universal property. Let G be another K−vector bundle and ϕ : E×F → G a bilinear
vector bundle morphism. Then there is a unique linear vector bundle morphism ϕ̃ : E⊗F → G
such that the diagram

E × F E ⊗ F

G

⊗

ϕ
ϕ̃

commutes, where ⊗ is the morphism that maps (ep, fp) ∈ Ep×Fp to its tensor product ep⊗ fp.
In particular, if E is a real vector bundle over M and if we denote the trivial complex bundle
M × C in a slight abuse of notation as C then the tensor product C⊗R E is a complex vector
bundle.

Another construction, that we need to mention is the exterior power
∧k E of a vector

bundle E. It satisfies the following universal property. If F is another vector bundle and

ψ :
∏k E → F is an anti-symmetric k-multilinear morphism then there exists a unique vector

bundle homomorphism ψ̂ :
∧k E → F such that

E × · · · × E
∧k E

G

∧

ψ
ψ̂

commutes. Here ∧ is the following multilinear morphism. If (v1
p, . . . , v

k
p) ∈

∏k
j=1Ep then

v1
p ∧ · · · ∧ vkp =

∑
σ∈Sk

sgn(σ)vσ(1)
p ⊗ · · · ⊗ vσ(k)p

where Sk is the symmetric group of degree k. For more details on the algebraic background of

these constructions, see e.g. [54]. Note in particular that the fiber dimension of
∧k E equals(

N
k

)
. We set

∧0E = M ×K.
The basic examples of vector bundles are the tangent bundle TM =

⊔
TpM , where TpM is

the usual tangent space at p ∈ M , of a manifold M and its dual the cotangent bundle T ∗M .
We denote the tangent map (or push-forward) of a C1-mapping F : M → N at the point p by

(F∗)p : TpM → TF (p)N

and the dual map to F∗(p) = (F∗)p is the cotangent map of F

F ∗p : T ∗F (p)N → TpM.
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Thus, if ϕ is a chart of M on U ⊆M , a local trivialization of TM on U is given by

ϕ∗ : π−1(U) =
⊔
p∈U

TpM −→ ϕ(U)× Rn ∼= U × Rn

(p, vp) 7−→ (ϕ(p), ϕ∗(p)vp).

The transition function ρ of TM associated to two charts ϕ and ψ of M , i.e. associated to the
local trivializations ϕ∗ and ψ∗, is just the Jacobi matrix of ψ ◦ϕ−1. Hence, if ϕ∗(p) = (ϕ∗(p))

∗,
then

ϕ∗ : π−1(U) =
⊔
p∈U

T ∗pM −→ ϕ(U)× Rn ∼= U × Rn

(p, ξp) 7−→ (ϕ(p), ϕ∗(p)ξp).

and the transition function ρ is the transpose of the Jacobi matrix of ψ ◦ ϕ−1. The smooth
sections of TM and T ∗M are called the vector fields of M and the 1-forms of M , respectively.
The Lie bracket [X,Y ] of two vector fields X and Y is the vector field given by

[X,Y ]f = X(Y f)− Y (Xf) f ∈ E(M).

The set of vector fields X(M) = E(M,TM) thus is a Lie algebra, i.e. an algebra with the Lie
bracket as multiplication.

An integral curve of X ∈ C1(M,TM) is a curve γ : R ⊇ I →M that satisfies the equation

dγ(t)

dt
= X ◦ γ(t).

If p ∈ M and X ∈ C1(M,TM) then there is always an integral curve γpX of X such that the
domain of definition (δp, εp) ⊆ R of γ is maximal. The (local) flow H = HX of X is defined as
the map

H : R×M ⊇
{

(τ, p) | p ∈M, τ ∈ (δp, εp)
}
−→M

that is defined by Hτ (p) = H(τ, p) = γpX(τ).
A mapping F : M → N is said to be an immersion iff the tangent map F∗ : TpM → TF (p)N

is injective for all p ∈ M . If M ′ ⊆ M is a subset of a manifold M and M ′ is itself a manifold
such that the inclusion ι : M ′ →M is an immersion then M ′ is called an immersed submanifold
of M . If ι additionally is an homeomorphism on the image then we say that M ′ is an (regular)
submanifold of M .

Let L ⊆ X(M) a Lie subalgebra of vector fields on M . We say that an immersed submanifold
M ′ of M is an integral manifold of L iff

ι∗
(
TpM

′) = L(p) =
{
X(p) | X ∈ L

}
for all p ∈M ′. An integral manifold M ′ of L is called maximal if for any integral manifold M ′′

with M ′ ⊆M ′′ it follows that M ′ = M ′′.
In general, the differential forms of degree k on M are the smooth sections of

∧k(T ∗M),

i.e. the elements of Ak(M) := E(M,
∧k(T ∗M)). If α ∈ Ak(M) is a k-form and β ∈ A`(M) then

the exterior product α ∧ β ∈ Ak+`(M) is defined by

(α ∧ β)p = αp ∧ βp.

If F : M → N is a smooth map then the pullback of a k-form ω ∈ Ak(N) by F is the k-form
F ∗ω ∈ Ak(M) that is pointwise defined by

F ∗ωp
(
X1
p , . . . , X

k
p

)
= ω

(
F∗X

1
p , . . . , F∗X

k
p

)
where X1, . . . , Xn ∈ X(M). Obviously the definition makes also sense for F only a C1-mapping

and a k-form ω of class C1, i.e. ω ∈ C1(N,
∧k T ∗N). That leads to F ∗ω ∈ C1(M,

∧k T ∗M).
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If (U,ϕ) is a local chart of M with coordinate functions ϕ(p) = (x1(p), . . . , xn(p) then a
local basis of vector fields on U , i.e. a set of elements V1, . . . , VN ∈ E(U, TM) such that the
vector fields Vj are linearly indepedent on U , is given by

Vj = ϕ−1
∗

(
∂

∂xj

)
j = 1, . . . , n.

We may identify the coordinates on U and ϕ(U) and write Vj = ∂xj . Similarly a local basis
of 1-forms on U is given by dxj , j = 1, . . . , n. Then dx1 ∧ · · · ∧ dxn is a local basis of An =
E(M,

∧n T ∗M). More generally, the k-forms of the form dxj1 ∧ · · · ∧ dxjk , where 1 ≤ j1 < j2 <

· · · < jk ≤ n, constitute a local basis of Ak(M).
The exterior derivative of a k-form ω that is locally given by

ω =
∑

1≤j1<···<jk≤n
fj1...jkdxj1 ∧ · · · ∧ dxjk

is defined by

dω =
∑

1≤j1<···<jk≤n
dfj1...jk ∧ dxj1 ∧ · · · ∧ dxjk

where dfj1...jk =
∑n

j=1 ∂jfj1...jkdxj is the usual exterior derivative of the function fj1...jk . It

can be shown that the extorier derivative d : Ak(M) → Ak+1(M) is well defined and satisfies
d ◦ d = 0.

The Lie derivative of an k-form ω ∈ Ak(M) with respect to a vector field X ∈ X(M) is the
k-form given by

LXω =
d

dτ

∣∣∣
τ=0

(
Hτ
)∗
ω.

where Hτ is the flow of X, c.f. [38].
A function f : M → C is said to be locally integrable, iff for any parametrization ϕ : U →M

the composition f ◦ ϕ is locally integrable on U .
A complex density on a (real) vector space V of dimension N is a mapping d :

∧N V ∗\{0} →
C such that for all λ ∈ R\{0} and all w ∈

∧N V ∗\{0} we have

d(λw) = |λ| · d(w).

Since
∧N V ∗ is 1-dimensional a density is completely determined by its value on one element

of
∧N V ∗\{0}. Hence the space of densities vol(V ) is a complex vector space of dimension 1.
If M is a manifold then the complex density bundle vol(M) is defined fiberwise by vol(M)p =

vol(TpM). For more details, see e.g. [74] or [37]. The complex density bundle is a com-
plex line bundle, i.e. its complex fiber dimension is 1. If (U,ϕ) is a local chart and ϕ(p) =
(x1(p), . . . , xn(p)) for p ∈ U and consider the section |dx1 ∧ · · · ∧ dxn| of volM that is defined
by |dx1 ∧ · · · ∧ dxn|p((dx1 ∧ · · · ∧ dxn)p) = 1 for all p ∈ U . then |dx1 ∧ · · · ∧ dxn| generates
C(M, vol(M)).

One important feature of the complex density bundle is that it is possible to integrate
continuous sections of vol(M). More precisely, let ϕ be a chart of M on U ⊆ M , K ⊂⊂ U a
compact set and d ∈ C(M, vol(M)) a density with support in K. Then d is of the form

d = d̃|dx1 ∧ · · · ∧ dxn|

where d̃ ∈ C(U) with supp d̃ ⊆ K and we define∫
K

d :=

∫
ϕ(K)

d̃
(
ϕ−1(x)

)
dx.

It can be shown to be well-defined, c.f. [74]. If one uses partitions of unity then the integral
over more general sections of vol(M) can be defined in the usual way.
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If vol(M) is the complex density bundle we define

D(M, vol(M)) :=
{
ψ ∈ E(M, vol(M)) : suppψ ⊂⊂M

}
as the space of compactly supported sections of vol(M) equipped with the usual topology. Its
strong dual D′(M) is the space of distributions on M , for more details see e.g. [23] or [37].
Note that a function f : M → C is locally integrable if and only if∫

M

|fτ | <∞

for all τ ∈ D(M, vol(M)). Therefore any locally integrable function f can be considered as a
distribution on M in the usual way.

If E is a vector bundle on M then we consider similarly

D(M,E ⊗ vol(M)) =
{
ω ∈ E(M,E ⊗ vol(M)) : suppω ⊂⊂M

}
the space of compactly supported smooth sections of E⊗vol(M).

The strong dual of D(M,E ⊗ vol(M)) is the space of distributions (or generalized sections)
on M with values in E∗

D′(M,E∗) =
(
D(M,E ⊗ vol(M))

)′
If ω1, . . . , ων is a local basis of E(U,E|U ), U ⊆ M open, and ωj = (ωj)∗, j = 1, . . . , ν, the

dual basis then a distribution Y ∈ D′(M,E∗) is locally of the form

Y|U =
ν∑
j=1

ujωj (A)

where uj ∈ D′(U). We also say that a section F ∈ Γ(M,E∗) is locally integrable iff∫
M

|F(τ)| <∞

for all τ ∈ D(M,E ⊗ vol(M)).
We note that, beside the usual duality bracket for Y ∈ D′(M,E∗) and ω ∈ D(M,E) by

〈Y, ω〉, there is another bracket

{ . , . } : D′(M,E∗)× E(M,E) −→ D′(M),

which is defined locally as follows: On U ⊆ M open as above we have the local representation
(A) for Y and we can write ω|U =

∑
j fjω

j with fj ∈ E(U). We define

{Y, ω}|U :=

ν∑
j

fjuj ∈ D′(U).

We may write Y(ω) = ω(Y) = {Y, ω}.
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CHAPTER 1

Denjoy-Carleman functions

1.1. Introduction

Troughout this and the next chapter Ω is going to denote an open subset of Rn. A weight
sequence is a sequence of positive real numbers (Mj)j∈N0 with the following properties

M0 = 1

M2
j ≤Mj−1Mj+1 j ∈ N.

Definition 1.1.1. LetM = (Mj)j be a weight sequence. We say that a function f ∈ E(Ω)
is ultradifferentiable of class {M} iff for every compact set K ⊂⊂ Ω there exist constants C
and h such that for all multi-indices α ∈ Nn0∣∣Dαf(x)

∣∣ ≤ Ch|α|M|α| x ∈ K. (1.1.1)

We denote the space of ultradifferentiable functions of class {M} on Ω as EM(Ω). It is
always a subalgebra of E(Ω) ([48]).

Example 1.1.2. For any s ≥ 0 consider the sequence Ms = ((k!)s+1)k. The space of
ultradifferentiable functions associated to Ms is the well known space of Gevrey functions
Gs+1 = EMs of order s + 1, c.f. e.g. [68]. If s = 0 then G1 = EM0 = O is the space of
real-analytic functions.

Remark 1.1.3. It is easy to see that EM(Ω) is an infinite-dimensional vector space, since it
contains all polynomials. In fact EM(Ω) is a complete locally convex space, see e.g. [48]. The
topology on EM(Ω) is defined as follows. If K ⊂⊂ Ω is a compact set such that K = K◦ then
we define for f ∈ E(K)

‖f‖hK := sup
x∈K
α∈Nn0

∣∣∣∣Dαf(x)

h|α|M|α|

∣∣∣∣
and set

EhM(K) :=
{
f ∈ E(K) | ‖f‖hK <∞

}
.

It is easy to see that EhM(K) is a Banach space. Moreover, EhM(K) ( EkM(K) for h < k and

the inclusion mapping ιkh : EhM(K)→ EkM(K) is compact. Hence the space

EM(K) :=
{
f ∈ E(K) | ∃h > 0: ‖f‖hK <∞

}
= lim−→

h

EhM(K)

is a (LB)-space. We can now write

EM(Ω) = lim←−
K

EM(K)

as a projective limit. For more details on the topological structure of EM(Ω) see [48].

We call EM(Ω) also the Denjoy-Carleman class on Ω associated to the weight sequence M.
If M and N are two weight sequences then

M 4 N :⇐⇒ sup
k∈N0

(
Mk

Nk

) 1
k
<∞

1



defines a reflexive and transitive relation on the space of weight sequences. Furthermore it
induces an equivalence relation by setting

M≈ N :⇐⇒ M 4 N and N 4M.

It holds that EM ⊆ EN if and only if M 4 N and EM = EN if and only if M ≈ N , see [56],
c.f. also [66] and [78]. For example, if r < s then Gr+1 ( Gs+1.

The weight function ωM (c.f. [56] and[48]) associated to the weight sequence M is defined
by

ωM(t) := sup
j∈N0

log
tj

Mj
t > 0,

ωM(0) := 0.

It follows that ωM is a continuous increasing function on [0,∞), vanishes on the interval [0, 1]
and ωM ◦ exp is convex. In particular ωM(t) increases faster than log tp for any p > 0 as t tends
to infinity [48, 56]. It is possible to extract the weight sequence from the weight function ([56],
[48]), i.e.

Mk = sup
t

tk

eωM(t)
.

If f and g are two continuous functions defined on [0,∞) then we set f ∼ g iff f(t) = O(g(t))
and g(t) = O(f(t)) for t → ∞. It can be shown that the weight function ωs for the Gevrey
space Gs+1 satisfies

ωs(t) ∼ t
1
s+1 .

Sometimes the classes EM are defined using the sequence mk = Mk
k! instead of (Mk)k and

(1.1.1) is replaced by ∣∣Dαf(x)
∣∣ ≤ Ch|α||α|!m|α|.

Infrequently the sequences µk =
Mk+1

Mk
or Lk = M

1
k
k are also used, with an accordingly modified

version of (1.1.1), c.f. also Remark 2.1.3. The main reason for the different ways of defining
the Denjoy-Carleman classes is the following. In order to show that these classes satisfy certain
properties, like the inverse function theorem, one has to put certain conditions on the defining
data of the spaces, i.e. the weight sequence, c.f. [67]. Often these conditions are easier to write
down in terms of these other sequences instead of using (Mj)j . In the following our point of view
is that the sequences (Mk)k, (mk)k, (µk)k and (Lk)k are all associated to the weight sequence
M. We are going to use especially the two sequences (mj)j and (Mj)j indiscriminately.

We may note that sometimes ultradifferentiable functions associated to the weight sequence
M are defined as smooth functions satisfying (1.1.1) for all h > 0 on each compact K, see e.g.
[32]. One says then that f is ultradifferentiable of class (M) and the corresponding space is
the Beurling class associated to M. On the other hand EM is then usually called the Romieu
class associated to M, c.f. [48] and [67].

From now on we shall put certain conditions on the weight sequences under consideration.

Definition 1.1.4. We say that a weight sequence M is regular iff it satisfies the following
conditions:

m0 = m1 = 1 (M1)

sup
k

k

√
mk+1

mk
<∞ (M2)

m2
k ≤ mk−1mk+1 k ∈ N (M3)

lim
k→∞

k
√
mk =∞ (M4)

2



The last condition just means that the space O of all real-analytic functions is strictly
contained in EM whereas the first is an useful normalization condition that will help simplify
certain computations. It is obvious that if we replace in (M1) the number 1 with some other
positive real number we would not change the resulting space EM.

IfM is a regular weight sequence, then it is well known that the associated Denjoy-Carleman
class satisfies certain stability properties, c.f. e.g. [12, 67]. For example EM is closed under
differentiation, i.e. if f ∈ EM(Ω) then Dαf ∈ EM(Ω) for all α ∈ Nn0 .

Remark 1.1.5. The fact that EM(Ω) is closed under differentiation implies immediately
another stability condition, namely closedness under division by a coordinate ([12]):

Suppose that f ∈ EM(Ω) and f(x1, . . . , xj−1, a, xj+1, . . . , xn) = 0 for some fixed a ∈ R and
all xk, k 6= j, with the property that (x1, . . . , xj−1, a, xj+1, . . . , xn) ∈ Ω. Then we apply the
Fundamental Theorem of Calculus to the function

fj : t 7−→ f(x1, . . . , xj−1, t(xj − a) + a, xj+1, . . . , xn)

and obtain

f(x) =

1∫
0

∂fj
∂t

(t) dt = (xj − a)

1∫
0

∂f

∂xj
(x1, . . . , xj−1, t(xj − a) + a, xj+1, . . . , xn) dt = (xj − a)g(x).

It is easy to see that g ∈ EM(Ω) using ∂f
∂xj
∈ EM(Ω).

For the proof of the properties above only (M2) was used. If we apply also (M3) then it is
possible to show that EM(Ω) is inverse closed, i.e. if f ∈ EM(Ω) does not vanish at any point
of Ω then

1

f
∈ EM(Ω),

c.f. [67] and the remarks therein.
In fact, ifM is a regular weight sequence then the associated Denjoy-Carleman class satisfies

also the following stability properties.

Theorem 1.1.6. Let M be a regular weight sequence and Ω1 ⊆ Rm and Ω2 ⊆ Rn open sets.
Then the following holds:

(1) The class EM is closed under composition (Romieu [70] see also [12]) i.e. let F :
Ω1 → Ω2 be a EM-mapping, that is each component Fj of F is ultradifferentiable of
class {M} in Ω1, and g ∈ EM(Ω2). Then also g ◦ F ∈ EM(Ω1).

(2) The inverse function theorem holds in the Denjoy-Carleman class EM (Komatsu [49]):
Let F : Ω1 → Ω2 be a EM-mapping and p0 ∈ Ω1 such that the Jacobian F ′(p0) is
invertible. Then there exist neighbourhoods U of p0 in Ω1 and V of q0 = F (x0) in Ω2

and a EM-mapping G : V → U such that G(q0) = p0 and F ◦G = idV .
(3) The implicit function theorem is valid in EM ([49]): Let F : Rn+d ⊇ Ω → Rd be a
EM-mapping and (x0, y0) ∈ Ω such that F (x0, y0) = 0 and ∂F

∂y (x0, y0) is invertible.

Then there exist open sets U ⊆ Rn and V ⊆ Rd with (x0, y0) ∈ U × V ⊆ Ω and a
EM-mapping G : U → V such that G(x0) = y0 and F (x,G(x)) = 0 for all x ∈ V .

Furthermore it is true that EM(Ω) is closed under solving ODEs.

Theorem 1.1.7 (Yamanaka [81] see also [50]). Let M be a regular weight sequence, 0 ∈
I ⊆ R an open interval, U ⊆ Rn, V ⊆ Rd open and F ∈ EM(I × U × V ).

Then the initial value problem

x′(t) = F (t, x(t), λ) t ∈ I, λ ∈ V
x(0) = x0 x0 ∈ U

has locally a unique solution x that is ultradifferentiable near 0.

3



More precisely, there is an open set Ω ⊆ I ×U × V that contains the point (0, x0, λ) and an
EM-mapping x = x(t, y, λ) : Ω→ U such that the function t 7→ x(t, y0, λ0) is the solution of the
initial value problem

x′(t) = F (t, x(t), λ0)

x(0) = y0.

For any regular weight sequence M we can define the associated weight by

hM(t) = inf
k
tkmk if t > 0 & hM(0) = 0. (1.1.2)

Similarly to above we have that

mk = sup
t

hM(t)

tk

In order to describe the connection between the weight and the weight function associated to a
regular weight sequence we set

ω̃M(t) := sup
j∈N0

log
tj

mj

h̃M(t) = inf
k
tkMk

for t > 0 and ω̃M(0) = h̃M(0) = 0.

Lemma 1.1.8. If M is a regular weight sequence then

hM(t) = e−ω̃M
(

1
t

)
h̃M(t) = e−ωM

(
1
t

) (1.1.3)

Proof. We prove only the equality for hM. Of course, the verification of the other equation
is completely analogous. If t > 0 is chosen arbitrarily we have by the monotonicity of the
exponential function that

exp

(
ω̃M

(
1

t

))
= exp

(
sup
k

log
1

mktk

)
= sup

k

1

mktk
=

1

infkmktk
=

1

hM(t)
.

�

We obtain that hM is continuous with values in [0, 1], equals 1 on [1,∞) and goes more
rapidly to 0 than tp for any p > 0 for t→ 0. Albeit the weight function is the prevalant concept,
the weight was used e.g. by Dyn’kin [28, 29] and Thilliez [77].

Example 1.1.9. If M =Ms is the Gevrey sequence of order s then we know already that

the associated weight function satisfies ωs(t) ∼ t
1

1+s . Hence (1.1.3) shows for s > 0 that if we
set

fs(t) = e−
1
ts

then there are constants C1, C2, Q1 and Q2 > 0 such that

C1fs
(
Q1t

)
≤ hs(t) ≤ C2fs

(
Q2t

)
for t > 0.

4



√
t

ω1

3 6

2

4

t t

1

1

h1

e−
1
t

s = 1

It is well known (see e.g. [57], [58] or [79]) that a function f is smooth on Ω if and only
if there is an almost-analytic extension F of f , i.e. there exists a smooth function F on some
open set Ω̃ ⊆ Cn with Ω̃ ∩ Rn = Ω such that

∂̄jF =
∂

∂z̄j
F =

1

2

(
∂

∂xj
+ i

∂

∂yj

)
F

is flat on Ω and F |Ω = f . The idea is now that if f is ultradifferentiable then one should find
an extension F of f such that the regularity of f is translated in a certain uniform decrease
of ∂̃jF near Ω (c.f. [30]). Such extensions were constructed e.g. by [63] and [2] under relative
restrictive conditions on the weight sequence. The most general result in this regard though
was given by Dyn’kin [28, 29].

Theorem 1.1.10. Let M be a regular weight sequence, K ⊂⊂ Rn a compact set with K =
K◦.Then f ∈ EM(K) if and only if there exists a test function F ∈ D(Cn) with F |K = f and if
there are constants C,Q > 0 such that

∂̄jF (z) ≤ ChM(QdK(z)) (1.1.4)

where 1 ≤ j ≤ n and dK is the distance function with respect to K on Cn\K.

We shall note that Dyn’kin used the function h1(t) = inf mkt
k−1 instead of the weight

hM. It is easy to see that h1(t) = hM(t)/t. Since hM is rapidly decreasing for t → 0 we can
interchange these two functions in the formulation of Theorem 1.1.10. In fact, Dyn’kin’s proof
gives immediately the following result.

Corollary 1.1.11. Let M be a regular weight sequence, p ∈ Ω and f ∈ D′(Ω). If f is
ultradifferentiable of class {M} near p, i.e. there exists a compact neighbourhood K of p such
that f |K ∈ EM(K), then there are an open neighbourhood W ⊆ Ω, a constant ρ > 0 and a
function F ∈ E(W + iB(0, ρ)) such that F |W = f |W and∣∣∂̄jF (x+ iy)

∣∣ ≤ ChM(Q|y|) (1.1.5)

for some positive constants C,Q and all 1 ≤ j ≤ n and x+ iy ∈W + iB(0, ρ).

The following theorem is the M-almost analytic version of the ”almost-holomorphic” im-
plicit function theorem of Lamel [53].

Theorem 1.1.12. Let M be a regular weight sequence, U ⊆ CN a neighbourhood of the
origin, A ∈ Cp and F : U × Cp → CN of class {M} on U and polynomial in the last variable
with F (0, A) = 0 and FZ(0, A) invertible. Then there exists a neighbourhood U ′ × V ′ of (0, A)
and a smooth mapping φ = (φ1, . . . , φN ) : U ′ × V ′ → CN with φ(0, A) = 0 with the property

5



that if F (Z, Z̄,W ) = 0 for some (Z,W ) ∈ U ′ × V ′ then Z = φ(Z, Z̄,W ). Furthermore, there
are constants C, γ > 0 such that∣∣∣∣ ∂φj∂Zk

(Z, Z̄,W )

∣∣∣∣ ≤ ChM(γ|φ(Z, Z̄,W )− Z|
)

(1.1.6)

for all 1 ≤ j, k ≤ N and φ is holomorphic in W .

Proof. We write F (Z, Z̄,W ) = F (x, y,W ), where (x, y) ∈ RN × RN are the underlying
real coordinates of CN , i.e. Zj = xj + iyj for 1 ≤ j ≤ N . Let U0 ⊆ RN be a neighbourhood of

0 such that U0 × U0 ⊆ U . Using Theorem 1.1.10 we find a smooth mapping

F̃ = U0 × RN × U0 × RN × Cp −→ CN

such that F̃ (x, x′, y, y′,W )
∣∣
x′=y′=0

= F (x, y,W ) and if we write ξk = xk + ix′k, ηk = yk + iy′k
for k = 1, . . . , N and set ζ = (ξ, η), then for each compact subset K ⊂⊂ Cp there are constants
C, γ > 0 such that ∣∣∣∣∂F̃j∂ξ̄k

(ζ, ζ̄,W )

∣∣∣∣ ≤ ChM(γ|Im ζ|) (1.1.7a)∣∣∣∣∂F̃j∂η̄k
(ζ, ζ̄,W )

∣∣∣∣ ≤ ChM(γ|Im ζ|) (1.1.7b)

for (ζ,W ) ∈ (U0 + iRN )2 × K and 1 ≤ j, k ≤ N . Note also that F̃ is still polynomial in the
variable W .

We introduce new variables χ = (χ1, . . . , χN ) ∈ CN by

ξk =
Zk + χk

2
ηk =

Zk − χk
2i

1 ≤ k ≤ N

and note that

xk =
Zk + χk

2

∣∣∣∣
χk=Z̄k

yk =
Zk − χk

2i

∣∣∣∣
χk=Z̄k

.

We also set G(Z, Z̄, χ, χ̄,W ) = F̃ (ξ, ξ̄, η, η̄,W ). The function G is therefore smooth in the
first 2N variables in some neighbourhood of the origin and polynomial in the last p variables.
Due to the definition of G we have

∂G

∂Z̄
=

1

2

∂F̃

∂ξ̄
+

1

2i

∂F̃

∂η̄

∂G

∂χ̄
=

1

2

∂F̃

∂ξ̄
− 1

2i

∂F̃

∂η̄
.

We are going to compute the real Jacobian of G at the point (0, A). We obtain

∂G

∂Z
(0, A) =

∂F

∂Z
(0, A)

and

∂G

∂Z̄
(0, A) =

1

2

(
∂F̃

∂ξ̄
(0, A)− i∂F̃

∂η̄
(0, A)

)
= 0

and thus

det

(
∂G
∂Z

∂G
∂Z̄

∂Ḡ
∂Z

∂Ḡ
∂Z̄

)
(0, A) =

∣∣∣∣ det
∂F

∂Z
(0, A)

∣∣∣∣2 6= 0

by assumption. Hence, by the smooth implicit function theorem, there is a smooth mapping
ψ defined in some open neighbourhood of (0, A), valued in CN and holomorphic in the vari-
able W such that Z = ψ(χ, χ̄,W ) solves the equation G(Z, Z̄, χ, χ̄,W ) = 0 uniquely. Since
G(Z, Z̄, Z̄, Z,W ) = F (Z, Z̄,W ), this fact implies that if F (Z, Z̄,W ) = 0 then Z = ψ(Z̄, Z,W ).
We set φ(Z, Z̄,W ) = ψ(Z̄, Z,W ) and claim that ϕ satisfies (1.1.6).
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In fact, if we differentiate the implicit equation G(ψ(χ, χ̄,W ), ψ(χ, χ̄,W ), χ, χ̄,W ) = 0 then
we obtain

GZψχ̄ +GZ̄ψ̄χ̄ +Gχ̄ = 0

ḠZ̄ψ̄χ̄ + ḠZψχ̄ + Ḡχ̄ = 0.

If we multiply the last line with GZ̄Ḡ
−1
Z̄

and substract the result from the first line then(
GZ −GZ̄Ḡ−1

Z̄
ḠZ
)
ψχ̄ = GZ̄Ḡ

−1
Z̄
Ḡχ̄ −Gχ̄.

Hence we have in a small neighbourhood of (0, A) that

φZ(Z, Z̄,W ) = ψχ̄(Z̄, Z,W ) =

(
GZ̄Ḡ

−1
Z̄
Ḡχ̄ −Gχ̄

GZ −GZ̄Ḡ−1
Z̄
ḠZ

)(
ψ(Z̄, Z,W ), ψ(Z̄, Z,W ), Z̄, Z,W

)
.

This formula shows that any function ∂Zkϕj is a sum of products each of which contains a factor
of the form GZ̄` or Gχ̄` for some `. Note also that by definition Im ξ = 1

2(ImZ + Imχ) and

Im η = −1
2(ReZ − Reχ).

Hence (1.1.7) implies on some compact neighbourhood of (0, A), where detG−1
Z is bounded,∣∣φZ(Z, Z̄,W )

∣∣ ≤ ChM(1

2
γ
(
|Imφ(Z, Z̄,W )− ImZ|2+|ReZ − Reφ(Z, Z̄,W )|2

)1
2

)
= ChM

(
γ|φ(Z, Z̄,W )− Z|

)
for some positive constants C and γ. �

One of the main questions in the study of ultradifferentiable functions is if the class under
consideration behaves more like the ring of real-analytic functions or the ring of smooth func-
tions. E.g., does the class contain flat functions, that means nonzero elements whose Taylor
series at some point vanishes? That leads to following definition.

Definition 1.1.13. Let E ⊆ E(Ω) be a subalgebra. We say that E is quasianalytic iff for
f ∈ E the fact that Dαf(p) = 0 for some p ∈ Ω and all α ∈ Nn0 implies that f ≡ 0 in the
connected component of Ω that contains p.

In the case of Denjoy-Carleman classes quasianalyticity is characterized by the following
theorem.

Theorem 1.1.14 (Denjoy[26]-Carleman[22, 21]). The space EM(Ω) is quasianalytic if and
only if

∞∑
k=1

Mk−1

Mk
=∞. (1.1.8)

We say that a weight sequence is quasianalytic iff it satisfies (1.1.8) and non-quasianalytic
otherwise.

Example 1.1.15. Let σ > 0 be a parameter. We define a family N σ of weight sequences by

Nσ
k = k!

(
log(k + e)

)σk
.

The weight sequence N σ is quasianalytic if and only if 0 < σ ≤ 1 [78].

Remark 1.1.16. Obviously DM(Ω) = D(Ω) ∩ EM(Ω) is nontrivial if and only if EM(Ω) is
non-quasianalytic [71]. It is well known that the sequencesMs are non-quasianalytic if and only

if s > 0. In fact there is a non-quasianalytic regular weight sequence M̃ such that M̃ �Ms

for all s > 0 [66, p.125]. Hence

O ( EM̃ (
⋂
s>0

Gs+1.
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1.2. Ultradifferentiable manifolds

From now on, unless explicitly stated otherwise, M will always be assumed to be a regular
weight sequence. Using Theorem 1.1.6 we are able to define

Definition 1.2.1. Let M be a smooth manifold and M a weight sequence. We say that
M is an ultradifferentiable manifold of class {M} iff there is an atlas A of M that consists of
charts such that

ϕ′ ◦ ϕ−1 ∈ EM
for all ϕ,ϕ′ ∈ A.

If M ⊆ RN is an ultradifferentiable submanifold of class {M} then the following character-
ization is proven exactly as the analogous result in the smooth setting.

Proposition 1.2.2. Let M ⊂ RN be a smooth manifold of dimension n and p ∈M and M
be a weight sequence. The following statements are equivalent:

(1) The manifold M is ultradifferentiable of class {M} near p.
(2) There are an open neighbourhood U ⊆ RN of p and an EM-mapping ρ : U → RN−n

such that dρ 6= 0 on W and

ρ−1(0) = M ∩ U.

A mapping F : M → N between two manifolds of class {M} is ultradifferentiable of class
{M} iff ψ ◦ F ◦ ϕ−1 ∈ EM for any charts ϕ and ψ of M and N , respectively. We can now
consider the category of ultradifferentiable manifolds of class {M}. In particular, it is possible
to consider the usual constructions like vector bundles, vector fields or differential forms.

Definition 1.2.3. Let M be an ultradifferentiable manifold of class {M}. We say that a
smooth vector bundle π : E →M is an ultradifferentiable vector bundle of class {M} iff for any
point p ∈M there is a neighbourhood U of p and a local trivialization χ of class {M} on U .

Remark 1.2.4. Let E be an ultradifferentiable vector bundle of class {M}. Then E can
also be considered as a smooth vector bundle or as a vector bundle of class {N} for any weight
sequence N <M. We observe in particular that a local basis of EM(M,E) is also a local basis
of EN (M,E) and E(M,E), respectively.

We denote by XM(M) = EM(M,TM) the Lie algebra of ultradifferentiable vector fields on
M . Note that, if M is a regular weight sequence, an integral curve of an ultradifferentiable
vector field of class {M} is an EM-curve by Theorem 1.1.7.

The next result is an ultradifferentiable version of Sussmann’s Theorem [76].

Theorem 1.2.5. Let p0 ∈ Ω and a collection D of ultradifferentiable vector fields of class
{M}. Then there exists an ultradifferentiable submanifold W of Ω through p0 such that all
vector fields in D are tangent to W at all points of W and such that the following holds:

(1) The germ of W at p0 is unique, i.e. if W ′ is an ultradifferentiable submanifold of Ω
containing p0 and to which all vector fields of D are tangent at every point of W ′ then
there is a neighbourhood V ⊆ Ω of p0 such that W ∩ V ⊆W ′ ∩ V .

(2) For every open set U ⊆ Ω containing p0 there exists J ∈ N and open neighbourhoods
V1 ⊆ V2 ⊆ U of p0 such that every point p ∈ W ∩ V1 can be reached from p0 by a
polygonal path of J integral curves of vector fields in D contained in W ∩ V2.

The proof of Theorem 1.2.5 is essentially the same as in the smooth setting, c.f. e.g. [8], due
to Theorem 1.1.7.

The (unique) germ of the manifold W will be denoted as the local Sussmann orbit of p0

relative to D. The local Sussman orbit does not depend on Ω.
We are going to close this section with a proof of a quasianalytic version of Nagano’s theorem

[59]. We follow mainly the presentation given in [8].
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Theorem 1.2.6. Let U be an open neighbourhood of p0 ∈ Rn andM a quasianalytic regular
weight sequence. Furthermore let g be a Lie subalgebra of XM(U) that is also an EM-module,
i.e. if X ∈ g and f ∈ EM(U) then fX ∈ g.

Then there exists an ultradifferentiable submanifold W of class {M} in U , such that

TpW = g(p) ∀p ∈W. (1.2.1)

Moreover, the germ of W at p0 is uniquely defined by this property.

Proof. We choose coordinates x = (x1, . . . , xn) vanishing at p0 and vector fields X1, . . . , Xr

in g,

Xj =

n∑
k=1

ajk(x)
∂

∂xk
ajk ∈ EM(U), j = 1, . . . , r

such that X1(0), . . . , Xr(0) form a basis of g(0) and

Xj(0) =
∂

∂xj

∣∣∣
0

j = 1, . . . , r.

Hence

det
(
ajk(x)

)
1≤j,k≤r 6= 0

for x in some neighbourhood of 0. Since the conclusion of the theorem is local, we shall assume
that this neighbourhood is U . Thus, after an EM(U)-linear transformation on the vector fields
X1, . . . , Xr, we may write

Xj =
∂

∂xj
+

n∑
k=r+1

bjk(x)
∂

∂xk
j = 1, . . . , r

with bjk(0) = 0. Let Y be the vector space over R spanned by the vector fields X1, . . . , Xr

above and denote by g0 the set of vector fields in g which are of the form

n∑
k=r+1

ck(x)
∂

∂xk
.

Note that g0 is a Lie subalgebra of g and a EM(U)-module. Moreover all elements in g0 vanish
at the origin. We put

Z := Y + g0

and deduce

[Z1, Z2] ∈ g0 ⊂ Z ∀Z1, Z2 ∈ Z.
Hence Z is a Lie subalgebra of g, that is proper if r > 0 and we have Z(x) = g(x) for all x ∈ U .
In order to finish the proof we need a lemma:

Lemma 1.2.7. Let V be a neighbourhood of 0 in Rn and A a Lie subalgebra of XM(V ) with
the property that all commutators of vector fields in A vanish at 0. If X ∈ A vanishes at the
origin then it vanishes on any integral curve t 7→ exp0 tY for Y ∈ A.

Proof. Let X,Y ∈ A as above and assume Y (0) 6= 0 (otherwise, there is nothing to prove).
We write

X =
n∑
j=1

aj(x)
∂

∂xj
, Y =

n∑
j=1

bj(x)
∂

∂xj
.

If (adY )(X) = [Y,X] then it is easy to conclude that

(adY )k =
n∑
j=1

(
Y kaj

) ∂

∂xj
+

n∑
j=1

qj∑
p=1

(
Spjbj

) ∂

∂xj

9



where Spj = V1V2 . . . V`pj is a string of length `pj ≤ k with Vi ∈ A such that at least one Vi
vanishes at 0. Indeed, for k = 1 the commutator

[Y,X] =

n∑
j=1

(Y aj)
∂

∂xj
+

n∑
j=1

(Xbj)
∂

∂xj

is of the desired form. If we suppose that we have for k = k0 ≥ 1 a representation of (adY )k0(X)
as above, then

(adY )k0+1X =
[
Y, (adY )k0X

]
=

n∑
j=1

Y

(
Y kaj +

qj∑
p=1

Spjbj

)
∂

∂xj
+

n∑
j=1

(
(adY )k0X

)
bj

∂

∂xj

=
n∑
j=1

Y k+1aj
∂

∂xj
−

n∑
j=1

n∑
j=1

qj∑
p=1

(
Y Spj − (adY )k0X

)
bj

is also of the form as wished since (adY )k0X = [Y, (adY )k0−1X] vanishes as a commutator of
two vector fields in A. Now let S = V1V2 . . . Vj be a string of length j with Vi ∈ A and at least
one of the Vi vanishes at 0. Then all coefficients of the operator S vanish. This is obvious if
V1(0) = 0. If V2(0) = 0 then we use the fact that

V1V2V3 . . . Vj = V2V1V3 . . . Vj + [V1, V2]V3 . . . Vj .

By the assumption on A we have that [V1, V2](0) = 0 and hence the right-hand side of the
equation above vanishes at 0. The general statement follows in a straight-forward manner by
induction.

For k ≥ 1 we have that (adY )k(X)(0) = 0 and thus by the arguments above we conclude
Y kaj(0) = 0 for all j = 1, . . . , n. Now, let γ(t) = exp0(tY ) be the integral curve of Y through
the origin and put ãj = aj ◦ γ. Then

dkãj
dtk

= Y ka

and we conclude that the curve ãj is flat at the origin. Since the class EM is quasianalytic it
follows that aj vanishes on the complete curve γ. �

We continue with the proof of Theorem 1.2.6. By Lemma 1.2.7 we conclude that for any
X ∈ g0 and Y ∈ Y, X vanishes on the integral curve t 7→ exp0 tY .

We define the manifold W ⊂ U by the following parametrization

Rr 3 (t1, . . . , tr) 7−→ Φ(t1, . . . , tr) := exp0

 r∑
j=1

tjXj

 ∈ U
for (t1, . . . , tr) in a sufficiently small neighbourhood V of 0 in Rr, such that the rank of Φ is r
in V . Thus the parametrization defines a manifold in a neighbourhood of 0 in U . Lemma 1.2.7
implies that g0(x) = 0 for all x ∈ W and hence g(x) = Z(x) = Y for x ∈ W . In order to prove
(1.2.1) it suffices then to show, due to dimensionality, that Y ⊆ TxW for all x ∈ W . For this,
we choose p ∈ W and X ∈ Y. We want to show that X(p) ∈ TpW . Since p ∈ W , there exists
(t01, . . . , t

0
r) ∈ V such that

p = exp0

 r∑
j=1

t0jXj

 .

In other words, p is the point with time one on the integral curve of the vector field Y =
∑

j t
0
jXj

from 0. Consider the mapping

f(s, t) := exp0

(
t(sX + Y )

)
.
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It is defined on R = {(s, t) ∈ R2 | |s| < ε, t ∈ (−δ, 1 + δ)}, where δ, ε > 0 are chosen suitably,
and maps R into W . We claim that for any t ∈ (−δ, 1 + δ) we have

∂f

∂s
(0, t) = tX

(
(f(0, t)

)
= tX

(
f(0, t)

)
(1.2.2)

We regard f and all other vector fields like, e.g., X ◦ f as vector-valued functions R→ Rn. We
first differentiate f(s, t) with respect to t

∂f

∂t
= sX(f(s, t)) + Y (f(s, t)) (1.2.3)

and hence
∂2f

∂s∂t
(0, t) = X(f(0, t)) +

n∑
j=1

∂Y

∂xj

(
f(0, t)

)∂fj
∂s

(0, t).

Note that
∂f

∂s
(0, 0) = 0.

We conclude that the function

u : t 7−→ ∂f

∂s
(0, t)

satisfies the following system of ordinary differential equations

∂u

∂t
(t) = X

(
f(0, t)

)
+

n∑
j=1

∂

∂xj

(
f(0, t)

)
uj(t), u(0) = 0. (1.2.4)

The claim, i.e. (1.2.2), will be proven, in view of the uniqueness of solutions of ordinary differ-
ential equations, if we show that the function ũ(t) = tX(f(0, t)) also solves (1.2.4). Obviously
ũ(0) = 0. Furthermore

d

dt

(
tX(f(0, t))

)
= X(f(0, t)) + t

n∑
j=1

∂X

∂xj

(
f(0, t)

)∂fj
∂t

(0, t)

and using (1.2.3) we obtain

d

dt

(
tX(f(0, t)) = X(f(0, t)) + t

n∑
j=1

∂X

∂xj

(
f(0, t)

)
Yj(f(0, t))

= X(f(0, t)) + t[Y,X](f(0, t)) +
n∑
j=1

∂Y

∂xj
(f(0, t))

(
tXj(f(0, t))

)
.

Lemma 1.2.7 gives that [Y,X](f(0, t)) = 0 for all t and hence it follows that ũ satisfies (1.2.4).

Since f maps R into W , the vector ∂f
∂s (s, t) is in the tangent space Tf(s,t)W . In particular,

(1.2.2) implies that X(p) is in TpW and since both p ∈ W and X ∈ Y were chosen arbitrarily
we have Y(x) ⊆ TxW for all x ∈W which proves (1.2.1) as indicated above.

It remains to prove the uniqueness. Suppose that W ′ is another manifold of class {M}
through 0 satisfying (1.2.1). Necessarily dimW ′ = dim g(0) = dimW . Thus it suffices to show
that there is an open neighbourhood U1 of the origin in U such that

W ∩ U1 ⊆W ′ ∩ U1

Let V̂ be a convex neighbourhood of 0 in V ⊆ Rr and define Ŵ = Φ(V̂ ) ⊆ W . We choose an

open neighbourhood U1 of 0 such that W ∩ U1 = Ŵ . We can choose V̂ and U1 so small that
W ′ ∩ U1 is closed in U1. Let p1 ∈ Ŵ . By definition, there exists a vector field Y ∈ g such that
the integral curve γ(t) = exp0(tY ) goes through p1 at time 0. Since V̂ is convex we have that

γ(t) ∈ Ŵ ⊂ U1 for t ∈ [0, 1]. Furthermore, since

Y (p) ∈ TpW ′ (1.2.5)
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for all p ∈ W ′ by assumption we infer that γ(t) ∈ W ′ ∩ U1 if t is small enough. The proof is
finished if we can show that p1 = γ(1) ∈ W ′ ∩ U1. Let E := {t0 ∈ [0, 1] | γ(t) ∈ W ′ ∩ U1 ∀t ∈
[0, t0]} ⊆ [0, 1]. By (1.2.5) E is open, but E is also closed since W ′ ∩ U1 is closed in V and
γ([0, 1]) is contained in V . Thus E = [0, 1] and therefore W ∩ U1 = W ′ ∩ U1. �

We call the uniquely defined germ γp0(g) of the manifold constructed in Theorem 1.2.6 the
local Nagano leaf of g at p0. From now on all Lie algebras of ultradifferentiable vector fields
that are considered are assumed to be also EM-modules. As in the analytic category, c.f. [8],
we have the following result.

Corollary 1.2.8. Let M be quasianalytic and D ⊆ XM(Ω) a collection of ultradifferen-
tiable vector fields. If g = gD is the Lie algebra generated by D and p0 ∈ Ω then the local
Sussman orbit of p0, relative to D, coincides with the local Nagano leaf of g.

Proof. Let WN be a representative of the local Nagano leaf of g at p0 and WS a repre-
sentative of the local Sussman orbit of p0, relative to D. By Theorem 1.2.5 (1) there exists an
open neighbourhood V of p0 such that WS ∩ V ⊆ WN ∩ V . On the other hand g(p) = TpWN

for all p ∈ WN and g(p) ⊆ TpWS at every p ∈ WS , hence g(p) = TpWS for p ∈ WS ∩ V .
The uniqueness part of Theorem 1.2.6 gives the equality of the local Nagano leaf and the local
Sussman orbit. �

Following [59], c.f. also [8], we can also give a global version of Theorem 1.2.6.

Theorem 1.2.9. Let M be a quasianalytic regular weight sequence. If g is a Lie subalgebra
of XM(Ω) then g admits a foliation of Ω, that is a partition of Ω by maximal integral manifolds.

Proof. For x ∈ Ω set Mx to be the set of all embedded connected submanifolds W ⊆ Ω
such that (1.2.1) holds in some neighbourhood of x. We need a Lemma in order to proceed.

Lemma 1.2.10. Let W ⊆ Ω be an immersed connected EM-manifold such that

ι∗TwW = g(ιw) ∀w ∈W ′ (1.2.6)

where ι is the embedding of W into Ω and W ′ is an open subset of W . Then (1.2.6) holds for
all points in W .

Proof. Suppose that W ′ 6= W otherwise there would be nothing to prove. W.l.o.g. assume
that W ′ is the maximal open set such that (1.2.6) holds. Let w0 ∈ ∂W ′ ⊆W and choose a local
basis of the ultradifferentiable vector fields ξ1, . . . , ξk tangent to W near w0. If we choose a small
enough neighbourhood W0 of w0 then due to ι being an immersion there is similar to the smooth
case (c.f. [25, Corollary 2.4.10]) an ultradifferentiable local diffeomorphism ψ : Rn ⊇ U0 → Ω
near ι(w0) such that U0 is open and connected, ϕ(0) = ι(w0) and

ϕ = ι|−1
U0
◦ ψ : U0 ∩ Rk −→W0

is a well-defined ultradifferentiable diffeomorphism. If U0 is small enough, then after a coordinate
change we may write

ηj = ϕ−1
∗ ξj =

∂

∂xj
j = 1, . . . , k,

on U0 ∩ Rk. On the other hand let X1, . . . , Xm be a local basis of g near ι(w0) and thus

Yν = ψ−1
∗ Xν =

n∑
`=1

a`,ν
∂

∂x`
ν = 1, . . . ,m

where a`,ν ∈ EM(U0). We observe that by assumption we have that on U ′ := ϕ−1(W0 ∩W ′)
Yν |U ′ ∈ spanEM

(
η1, . . . , ηk

)
ν = 1, . . . ,m.

However that means b`,ν = (a`,ν)|{0}×Rn−k is zero on U ′ for ` = k + 1, . . . , n. Thence the

functions b`,ν , ` = k + 1, . . . , n have to vanish on ϕ−1(W0). That is a contradiction to the
assumption that W ′ is maximal relative to the property (1.2.6). �
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We continue the proof of Theorem 1.2.9 and define the global Nagano leaf through x as the
manifold

Γx(g) =
⋃

W∈Mx

W

together with the final topology induced by the embeddings W → Γx(g). Then Γx(g) is an
immersed connected ultradifferentiable manifold of classM and by Lemma 1.2.10 at any point
y ∈ Γx(g) the global Nagano leaf Γx(g) contains the local Nagano leaf γy(g) through y. That
shows Γy(g) = Γx(g). Hence the global Nagano leafs define a foliation of Ω. �

1.3. Division Theorems

In this section we want to transfer the results pertaining the division of smooth functions
in [35, section 4] to the category of ultradifferentiable functions of class {M}. This is possible
because these classes are closed under division by a coordinate, c.f. Remark 1.1.5.

Lemma 1.3.1. Let λ be an ultradifferentiable function of class {M} defined near 0 ∈ R that

is non-flat at the origin, i.e. there is a positive integer k ∈ N such that λ(j)(0) = 0 for all

integers 0 ≤ j ≤ k−1 and λ(k)(0) 6= 0. Further assume that there is a locally integrable function
u defined near 0 such that the product f = λu is of class {M} in some neighbourhood of the
origin.

Then u is ultradifferentiable of class {M} near the origin.

Proof. First, we note that the zero of λ at 0 is isolated. Therefore we restrict ourselves to
an open interval I that contains the origin and such that 0 is the only zero of λ on I. Iterating
the argument given in Remark 1.1.5 we see that there is a function λ̃ of class {M} defined near

0 such that λ̃(0) 6= 0 and

λ(x) = xkλ̃(x).

In order to proceed we want a similar decomposition of f . But, since we are not able to say
anything apriori about the values of the derivatives of f at the origin, we can only find an
ultradifferentiable function f1 such that

f(x) = xf1(x)

in a neighbourhood of 0. If k > 1 then we would have that

u(x) = x1−k f1(x)

λ̃(x)

in a punctured neighbourhood of 0. Hence, if f1(0) 6= 0 then u ∼ x1−k for x → 0. This is a
contradiction to the assumption that u is locally integrable. Therefore f1(0) = 0 and there has
to be a function f2 of class {M} such that f(x) = x2f2(x) near 0. Repeating this argument
if necessary, we obtain that there is a function fk ultradifferentiable of class {M} defined near
the origin such that

f(x) = xkfk(x).

It follows that

u(x) =
fk(x)

λ̃(x)

in some neighbourhood of 0. �

Proposition 1.3.2. Let p0 ∈ Rn and λ an ultradifferentiable function of class {M} defined
in a neighbourhood of p0 and λ(p0) = 0. Suppose that λ−1(0) is a hypersurface of class {M}
near p0 and that there are v ∈ Rn and k ∈ N such that ∂jv(p) = 0 for 0 ≤ j < k and ∂kv (p) 6= 0
for all p ∈ λ−1(0) ∩ U where U is a neighbourhood of p0.

If u is a locally integrable function defined near the origin in Rn such that λ ·u = f is ultra-
differentiable of class {M} near p0 then u has also to be of class {M} in some neighbourhood
of p0.
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Proof. We can choose ultradifferentiable coordinates (x1, . . . , xn−1, xn) = (x′, xn) in a
neighbourhood V of p0 in Rn such that p0 = 0, λ−1(0) ∩ V = {(x′, xn) ∈ V | xn = 0} and

∂jλ

∂xjn
(0) = 0, 0 ≤ j < k,

∂kλ

∂xkn
(0) 6= 0.

Similarly to above, using Remark 1.1.5 we conclude, if we shrink V , that there is λ̃ ∈ EM(V )

with the following properties: λ̃(x) 6= 0 and λ(x) = xknλ̃(x) for all points x ∈ V . There is also
a Denjoy-Carleman function f1 on V such that f(x′, xn) = xnf1(x′, xn). We want to show, as
in the 1-dimensional case, that f1(x′, 0) = 0 for (x′, 0) ∈ V if k > 1: Suppose that there exists
some y ∈ Rn−1 with (y, 0) ∈ V and f1(y, 0) 6= 0. Then there is a neighbourhood W of (y, 0)

such that f1(x) 6= 0 and also λ̃(x) 6= 0 for x ∈ W . W.l.o.g. the open set W is of the form
W = W ′ × I ⊂ Rn−1 × R and set

F (xn) :=

∫
W ′

∣∣∣∣f1

λ̃
(x)

∣∣∣∣ dx
for xn ∈ I. We conclude that∫

W

|u(x)| dx =

∫
I

|xn|1−kF (xn) dx =∞

and hence u cannot be locally integrable near (y, 0) which contradicts our assumption. Therefore

we obtain by iteration a function f̃ of class {M} defined near the origin in Rn such that

f(x′, xn) = xknf̃(x′, xn). Hence u = f̃/λ̃ is also of class {M} in a neighbourhood of 0. �

Corollary 1.3.3. Let U ⊆ Rn a neighbourhood of 0, λ ∈ EM(U) and suppose that λ is of

the form λ(x) = xαλ̃(x) where α ∈ Nn0 and λ̃ ∈ EM(U) with λ̃(0) 6= 0.
If u is a locally integrable function near 0 with the property that the product f := λ · u is of

class {M} near the origin, then u is also ultradifferentiable near 0.

Proof. Note first that, if α = αjej then the statement is just Proposition 1.3.2. In the

general case we argue as follows: Set f̃ = f/λ̃ and

uk(x) =

n∏
j=k+1

x
αj
j u(x).

The function f̃ is of class {M} whereas the functions uk are locally integrable near 0. Further-
more we define un+1 = u and obtain

xα1
1 u1(x) = f̃(x)

x
αk+1

k+1 uk+1(x) = uk(x) 1 ≤ k ≤ n.

Hence repeated application of Proposition 1.3.2 finishes the proof. �

In the literature the focus regarding questions of divisibility of functions seems to be more
on the problem if it is possible to show that functions that are formally divisible, i.e. their
Taylor series are divisible, are actually divisible. Indeed, the Weierstrass division theorem for
example implies that two real-analytic functions that are formally divisible are also divisible as
functions.

However, the equivalent of the Weierstrass division theorem does not hold for general quasi-
analytic Denjoy-Carleman classes [1],[62], c.f. also [33]. In general the algebraic structure of
quasianalytic Denjoy-Carleman classes is far more complicated than that of the space of real-
analytic functions, c.f. the survey of Thilliez [78].
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Despite this there are some positive results known for quasianalytic regular classes, e.g.
Bierstone and Milman [12] showed that certain desingularization theorems hold in these classes
whereas Rolin, Speissegger and Wilkie [69] proved that quasianalytic regular Denjoy-Carleman
classes define o-minimal structures. Both of these approaches can be used to prove division
theorems. Especially the following result was shown by Nowak [61].

Theorem 1.3.4. Let p ∈ Rn, M quasianalytic and f, g ∈ EM are defined near p with power
series expansions f̂ and ĝ at p. If f̂ ∈ ĝ · C[[x]] then f ∈ g · EM near p.
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CHAPTER 2

Geometric microlocal analysis in the ultradifferentiable
category

2.1. Introduction

In 1971 Hörmander [41] proved the following local characterization of EM via the Fourier
transform:

Proposition 2.1.1. Let u ∈ D′(Ω) and p0 ∈ Ω. Then u is ultradifferentiable of class
{M} near p0 if and only if there are an open neighbourhood V of p0, a bounded sequence
(uN )N ⊆ E ′(U) such that u|V = (uN )|V and some constant Q > 0 so that

sup
ξ∈Rn
N∈N0

|ξ|N |ûN (ξ)|
QNMN

<∞.

Subsequently he used this fact to define analogously to the smooth category:

Definition 2.1.2. Let u ∈ D′(Ω) and (x0, ξ0) ∈ T ∗Ω\{0}. We say that u is microlocal
ultradifferentiable of class {M} at (x0, ξ0) iff there is a bounded sequence (uN )N ⊆ E ′(Ω) such
that uN |V ≡ u|V , where V ∈ U(x0) and a conic neighbourhood Γ of ξ0 such that for some
constant Q > 0

sup
ξ∈Γ
N∈N0

|ξ|N |ûN |
QNMN

<∞. (2.1.1)

The ultradifferentiable wavefront set WFM u is then defined as

WFM u :=
{

(x, ξ) ∈ T ∗Ω\{0} | u is not microlocal of class {M} at (x, ξ)
}
.

Remark 2.1.3. We need to point out that Hörmander in [41] defined WFM for weight
sequences that satisfy weaker conditions then those we imposed in Definition 1.1.4. He required,
as we have done, (M2) and that O ⊆ EM, but (M3) is replaced by the monotonic growth of the
sequence

LN = (MN )
1
N . (2.1.2)

This condition still implies that EM is an algebra but gives only that EM is closed under
composition with analytic mappings.

More precisely, in terms of the sequence (LN )N the conditions that Hörmander imposed
take the following form. First, N ≤ LN and LN ≤ CLN+1 for all N and a constant C > 0
independent of N . Furthermore as mentioned before the sequence (LN )N is also assumed to be
increasing.

Note that his classes might not even be defined by weight sequences in the sense of section
1.1. Hence Hörmander in [45] was able to define WFM u for distributions u on real analytic
manifolds but not on arbitrary ultradifferentiable manifolds of class {M}; note that the im-
plicit function theorem may not hold in an arbitrary ultradifferentiable class defined by weight
sequences obeying his conditions. Similarly he proved that

WFM u ⊆WFM Pu ∪ CharP

for linear partial differential operators P with analytic coefficients but not for operators whose
coefficients might be only of class {M}.
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As mentioned before it is possible to modify the arguments of Hörmander in the case of
regular weight sequences to show that the above inclusion holds for partial differential operators
with ultradifferentiable coefficients. Similarly we are able to define WFM u for distributions
defined on manifolds of class {M}, in this instance using Dyn’kin’s almost-analytic extension
of ultradifferentiable functions.

However, since regular weight sequences also fulfill the conditions of Hörmander we can use
all of his results on WFM. Indeed, in terms of LN , we have that (M4) implies that k ≤ γLk
for all k ∈ N0 and a constant γ > 0 independent of k by Sterling’s formula whereas (M2) is
equivalent to the existence of a constant A > 0 such that Lk ≤ ALk−1. We note that the last
estimate implies LN ≤ AN for N ∈ N0 since L1 = 1. On the other hand, it is well-known that
if (MN )N satisfies (M3) then (LN )N is an increasing fsequence, see [56].

The following result by Hörmander shows that we may choose the distributions uN in
Definition 2.1.2 in a special manner.

Proposition 2.1.4 ([45] Lemma 8.4.4.). Let u ∈ D′(Ω) and let K ⊂ Ω be compact, F ⊂ Rn
a closed cone such that WFM u ∩ (K × F ) = ∅. If χN ∈ D(K) and for all α∣∣Dα+βχN | ≤ Cαh|β|α M

|β|
N
N |β| ≤ N

for some constants Cα, hα > 0.
Then it follows that χNu is bounded in E ′S if u is of order S in a neighbourhood of K, and

further

|χ̂Nu(ξ)| ≤ CQ
NMN

|ξ|N
N ∈ N, ξ ∈ F

for some constants C,Q > 0.

We summarize the basic properties of WFM according to [45].

Theorem 2.1.5 ([45] Theorem 8.4.5-8.4.7). Let u ∈ D′(Ω) and M,N weight sequences.
Then we have

(1) WFM u is a closed conic subset of Ω× Rn\{0}.
(2) The projection of WFM u in Ω is

π1

(
WFM u

)
= sing suppM u =

{
x ∈ Ω | @V ∈ U(x) : u|V ∈ EM(U)}

(3) WFu ⊆WFM u ⊆WFN u if M 4 N .
(4) If P =

∑
pαD

α is a partial differential operator with ultradifferentiable coefficents of
class {M} then WFM Pu ⊆WFM u.

Additionally we note WFM u satisfies the following microlocal reflection property :

(x, ξ) /∈WFM u⇐⇒ (x,−ξ) /∈WFM ū. (2.1.3)

In particular, if u is a real-valued distribution, i.e. ū = u, then WFM u|x := {ξ ∈ Rn | (x, ξ) ∈
WFM u} is symmetric at the origin.

Example 2.1.6. It is easy to see that WFM δp = {p} × Rn \{0} for any regular weight
sequence M.

Remark 2.1.7. The complicated form of Definition 2.1.2 compared with the definition of the
smooth wavefront set stems from the fact that quasianalytic weight sequences are allowed. Thus
in general there may not be any nontrivial test functions of class {M}. However if DM 6= {0}
then we can choose in Definition 2.1.2 the constant sequence uN = ϕu for some ϕ ∈ DM(Ω)
with ϕ(x0) = 1 and (2.1.1) is equivalent to

∃C,Q > 0
∣∣ϕ̂u(ξ)

∣∣ ≤ C inf
N
QNMN |ξ|−N ∀ξ ∈ Γ
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thus 1.1.3 implies ∣∣ϕ̂u(ξ)
∣∣ ≤ Ch̃M(Q|ξ|

)
≤ C exp

(
−ωM

(
|ξ|
Q

))
.

We conclude that (c.f. e.g. [68] in the case of Gevrey-classes) that for non-quasianalytic weight
sequences M (2.1.1) is equivalent to

∃Q > 0 sup
ξ∈Γ

eωM(Q|ξ|)∣∣ϕ̂u(ξ)
∣∣ <∞.

Proposition 2.1.1 is then only a restatement to the well-known fact that for non-quasianalytic
weight sequences we have that ϕ ∈ DM if and only if ϕ̂ ≤ Ce−ωM(Q|ξ|) for some constants C,Q.
Therefore it is possible to define ultradifferentiable classes using appropriately defined weight
functions instead of weight sequences, see e.g. in a somehow generalized setting [13]. However,
this approach leads only to non-quasianalytic spaces. This restriction was removed by [19]
who reformulated the defining estimates of these classes to allow also quasianalytic classes. A
wavefront set relative to these classes was introduced in [3], c.f. section 2.4. The complicated
connection between the classes defined by weight sequences and those given by weight func-
tions was investigated in [15]. Recently a new approach to define spaces of ultradifferentiable
functions was introduced in [66], which encompasses the classes given by weight sequences and
weight functions, see also [67].

2.2. Invariance of the wavefront set under ultradifferentiable mappings

Our aim in this section is to develop, using the almost-analytic extension of functions in
EM given by Dyn’kin, a geometric description of WFM similarly to the one that was presented
in [55, section 4] for the smooth wavefront set.

We need to fix some notations: If Γ ⊆ Rd is a cone and r > 0 then

Γr :=
{
y ∈ Γ | |y| < r

}
.

If Γ′ ⊆ Γ is also a cone we write Γ′ ⊂⊂ Γ iff (Γ′ ∩ Sd−1) ⊂⊂ (Γ ∩ Sd−1).
Similarly to [55, section 2.1] (c.f. also [53, section 2]) in the smooth category we say that,

if M is a weight sequence, a function F ∈ E(Ω× U × Γr), U ⊆ Rd open, is M-almost analytic
in the variables (x, y) ∈ U × Γr with parameter x′ ∈ Ω iff for all K ⊂⊂ Ω, L ⊂⊂ U and cones
Γ′ ⊂⊂ Γ there are constants C,Q > 0 such that for some r′ we have∣∣∣∣∂F∂z̄j (x′, x, y)

∣∣∣∣ ≤ ChM(Q|y|) (x′, x, y) ∈ K × L× Γ′r′ , j = 1, . . . , d (2.2.1)

where ∂
∂z̄j

= 1
2(∂xj + i∂yj ) and hM is the weight associated to the regular weight sequence M

as defined by (1.1.2).
We may also say generally that a function g ∈ C(Ω× U × Γr) is of slow growth in y ∈ Γr if

for all K ⊂⊂ Ω, L ⊂⊂ U and Γ′ ⊂⊂ Γ there are constants c, k > 0 such that

|g(x′, x, y)| ≤ c|y|−k (x′, x, y) ∈ K × L× Γ′r. (2.2.2)

The next theorem is a generalization of [45, Theorem 4.4.8].

Theorem 2.2.1. Let F ∈ E(Ω×U×Γr) beM-almost analytic in the variables (x, y) ∈ U×Γr
and of slow growth in the variable y ∈ Γr. Then the distributional limit u of the sequence
uε = F ( . , . , ε) ∈ E(Ω × U) exists. We say that u = bΓ(F ) ∈ D′(Ω × U) is the boundary value
of F . Furthermore, we have

WFM u ⊆
(
Ω× U

)
×
(
Rn × Γ◦

)
where Γ◦ = {η ∈ Rd | 〈y, η〉 ≥ 0 ∀y ∈ Γ} is the dual cone of Γ in Rd.

19



Proof. Let ϕ ∈ D(Ω × U) and Y0 ∈ Γδ. Then there are K ⊂⊂ Ω, L ⊂⊂ U such that
suppϕ ⊆ K × L and constants c, k > 0 exists such that (2.2.2) holds. We set

Φκ(x′, x, y) =
∑
|α|≤κ

∂αxϕ(x′, x)
(iy)α

α!

for κ ≥ k. Obviously F ·Φκ can be extended to a smooth function on Rn×Rd×Γδ that vanishes
outside K × L× Γδ. We consider the function

uε : R2 3 (σ, τ) 7−→ F (x′, x̃+ σY0, ε+ τY0)Φκ(x′, σY0, τY0)

where x′ ∈ Rn, x̃ ∈ Y ⊥0 = {z ∈ Rd | 〈z, Y0〉 = 0}. If a < b are chosen such that ϕ(x′, x̃+σY0) = 0
for all x′ ∈ Rn, x̃ ∈ Y ⊥0 and σ ≤ a or σ ≥ b then uε(σ, τ) = 0 for all τ ∈ [0, 1]. If R = [a, b]× [0, 1]
then Stokes’ Theorem states that ∫

∂R

uε dζ =

∫
R

∂uε
∂ζ̄

dζ̄ ∧ dζ (2.2.3)

where we have set ζ = σ + iτ .
A simple computation gives

2i
∂

∂ζ̄

(
Φκ(x′, x̃+ σY0, τY0)

)
=
∑
|α|≤κ

d∑
j=1

∂
α+ej
x ϕ(x′, x̃+ σY0)τ |α|

(iY0)α+ej

α!

−
∑
|α|≤κ

∂αxϕ(x′, x̃+ σY0)|α|τ |α|−1 (iY0)α

α!

=
∑

1≤|α|≤κ+1

∂αxϕ(x′, x̃+ σY0)τ |α|−1 (iY0)α

α!

d∑
j=1

αj

−
∑

1≤|α|≤κ

∂αxϕ(x′, x̃+ σY0)|α|τ |α|−1 (iY0)α

α!

= (κ+ 1)τκ
∑
|α|=κ+1

∂αxϕ(x′, x̃+ σY0)
(iY0)α

α!
.

Hence formula (2.2.3) means in detail that

b∫
a

F (x′, σY0, ε)ϕ(x′, σY0) dσ =

b∫
a

F (x′, σY0, ε+ Y0)Φκ(x′, σY0, Y0) dσ

+ 2i

b∫
a

1∫
0

〈∂̄F (x′, σY0, ε+ τY0), Y0〉Φκ(x′, σY0, τY0) dτdσ

+ (κ+ 1)

b∫
a

1∫
0

F (x′, σY0, ε+ τY0)τκ
∑
|α|=κ+1

∂αxϕ

β!
dτdσ

20



and thus integrating over Ω× Y ⊥0 yields

∫
Ω×U

F (x′, x, ε)ϕ(x′, x) dλ(x′, x) =

∫
Ω×U

F (x′, x, ε+ Y0)Φκ(x′, x, Y0) dλ(x′, x)

+ 2i

∫
Ω×U

1∫
0

〈
∂̄F (x′, x, ε+ τY0), Y0

〉
Φκ(x′, x, τY0) dτdλ(x′, x)

+ (κ+ 1)

∫
Ω×U

1∫
0

F (x′, x, ε+ τY0)τκ
∑
|α|=κ+1

∂αxϕ(x′, x)
(iY0)α

α!
dλ(x′, x).

(2.2.4)

Since by assumption |τκF (x′, x, ε + τY0)| ≤ c for some constant c and ∂̄jF decreases rapidly
for Γr 3 y → 0 (c.f. the remarks after Lemma 1.1.8) the bounded convergence theorem implies
that the right-hand side converges for ε→ 0. Hence we define

〈u, ϕ〉 :=

∫
Ω×U

F (x′, x, Y0)Φκ(x′, x, Y0) dλ(x′, x)

+ 2i

∫
Ω×U

1∫
0

〈
∂̄F (x′, x, τY0), Y0

〉
Φκ(x′, x, τY0) dτdλ(x′, x)

+ (κ+ 1)

∫
Ω×U

1∫
0

F (x′, x, τY0)τκ
∑
|α|=κ+1

∂αxϕ(x′, x)
(iY0)α

α!
dτdλ(x′, x).

(2.2.5)

Since there is a constant C̃ only depending on F and K × L such that

|〈u, ϕ〉| ≤ C̃ sup
(x′,x)∈K×L

( ∑
|β|≤κ+1

∣∣∂βxϕ(x′, x)
∣∣)

we deduce that the linear form u on D(Ω× U) given by (2.2.5) is a distribution.
Now, let p0 ∈ Ω × U and ω2 × V2 ⊂⊂ ω1 × V1 ⊂⊂ Ω × U two open neighbourhoods of p0.

Using [45, Theorem 1.4.2] we can choose a sequence (ϕκ)κ ⊂ D(ω1×V1) such that ϕκ|ω2×V2 ≡ 1

and for all γ ∈ Nn+d
0 we have that

∣∣Dγ+βϕκ
∣∣ ≤(Cγ(κ+ 1)

)|β| |β| ≤ κ+ 1 (2.2.6)

for a constant Cγ ≥ 1 independent of κ. As before we set for each κ

Φκ(x′, x, y) =
∑
|α|≤κ

∂αxϕκ(x′, x)
(iy)α

α!
.
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We aim to estimate ϕ̂κu. In order to do so let (ξ, η) ∈ Rn × Rd and notice that (2.2.5) implies
for κ ≥ k

ϕ̂κu(ξ, η) =
〈
u, e−i〈 . ,(ξ,η)〉ϕκ

〉
=

∫
Ω×U

F (x′, x, Y0)e−i(x
′ξ+(x+iY0)η)Φκ(x′, x, Y0) dλ(x′, x)

+ 2i

∫
Ω×U

1∫
0

〈
∂̄F (x′, x, τY0), Y0

〉
e−i(x

′ξ+(x+iτY0)η)Φκ(x′, x, τY0) dτdλ(x′, x)

+ (κ+ 1)

∫
Ω×U

1∫
0

F (x′, x, τY0)e−i(x
′ξ+(x+iτY0)η)τκ

∑
|α|=κ+1

∂αxϕ(x′, x)
(iY0)α

α!
dτdλ(x′, x)

for some fixed, but arbitrary Y0 ∈ Γr (note that k depends on u, ω1 × V1 and Y0). Condition
(2.2.6) gives the following estimate for 0 ≤ µ ≤ κ+ 1∣∣∣∣∣ ∑

|α|=µ

∂αxϕκ(x′, x)
(iY )α

α!

∣∣∣∣∣ ≤ Cµ0 (κ+ 1)µ
∑
|α|=µ

|Y α|
α!

= Cµ0 (κ+ 1)µ
|Y |µ1
µ!

where |Y |1 =
∑

j |Yj | for Y = (Y1, . . . , Yd) ∈ Rd. Hence we have∣∣Φκ(x′, x, τY0)
∣∣ ≤ Cκ+1

1∣∣∣∣(κ+ 1)
∑
|α|=κ+1

∂αxϕκ(x′, x)
(iY0)α

α!

∣∣∣∣ ≤ Cκ+1
1

for C1 = 2eC0|Y0|1 and τ ∈ [0, 1]. We obtain

|ϕ̂κu(ξ, η)| ≤ Cκ+1
1 eηY0 + 2Cκ+1

1 C

1∫
0

hM(Qτ |Y0|)eτηY0 dτ + Cκ+1
1

1∫
0

τκ−keτηY0 dτ

≤ C2Q
κ
1

(
eηY0 +mκ−k

1∫
0

τκ−keηY0

)
= C2Q

κ
1

(
eηY0 +mκ(κ− k)!(−Y0η)k−κ−1

)
for some constants C2, Q1 and Y0η < 0. If we set Ỹ0 = (0, Y0) ∈ Rn × Rd then obviously〈

Ỹ0, (ξ, η)
〉

= 〈Y0, η〉.
Therefore we have for κ ≥ k and ζ = (ξ, η) that∣∣ϕ̂κu(ζ)

∣∣ = C3Q
κ
1

(
eỸ0ζ +mκ−k(κ− k)!

(
−Ỹ0ζ

)k−κ−1
)

and Ỹ0ζ < 0.
Now for any ζ0 ∈ Rn+d with 〈Ỹ0, ζ0〉 < 0 we can choose an open cone V ⊆ Rn+d such that

ζ0 ∈ V and for some constant c > 0 we have 〈Ỹ0, ζ〉 < −c|ζ| if ζ ∈ V . Furthermore we set
uκ = ϕk+κ−1u. Clearly the sequence (uκ)κ is bounded in E ′(Ω × U) and uκ|ω2×V2 ≡ u|ω2×V2 .

Also using the inequality e−c|ζ| ≤ κ!(c|ζ|)−κ we conclude∣∣ûκ(ζ)
∣∣ = C3Q

κ
1

(
κ!(c|ζ|)−κ +mκ−1(κ− 1)!

(
c|ζ|
)−κ) ≤ C3Q

κ
2mκκ!|ζ|−κ ζ ∈ V.

Hence (p0, ζ0) /∈WFM u and therefore

WFM u ⊆
(
Ω× U

)
×
(
Rn × Γ◦

)
\{(0, 0)}

�
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It is clear that the proof requires only F ∈ C1. From now the constants used in the proofs
will be generic, i.e. they may change from line to line.

Remark 2.2.2. If F ∈ E(Ω × U × V ) is M-almost analytic with respect to the variables
(x, y) ∈ U×V we will often write F (x′, x+iy) or F (x′, z, z̄) and consider F as a smooth function
on Ω× (U + iV ). If Ω = ∅ then we just say that F is M-almost analytic.

Example 2.2.3. Consider the holomorphic function F (z) = 1
z on C\{0}. It is well known

that the boundary values of F onto the real line from above and beneath, commonly denoted
by

1

x+ i0
= b+F = lim

y→0+

1

x+ iy
1

x− i0
= b+F = lim

y→0+

1

x− iy
satisfy the jump relations (c.f. e.g. [27]), in particular

2iδ =
1

x− i0
− 1

x+ i0
.

We have that both 1
x+i0 and 1

x−i0 are real-analytic outside the origin. Hence the application of
Theorem 2.2.1 together with the jump relations imply that

WFM

(
1

x± i0

)
= {0} × R±.

There is a partial converse to the last theorem.

Theorem 2.2.4. Let Γ ⊂ Rn be an open convex cone and u ∈ D′(Ω) with WFM u ∈ Ω×Γ◦.

If V ⊂⊂ Ω and Γ′ is an open convex cone with Γ
′ ⊆ Γ∪{0} then there is an M-almost analytic

function F on V + iΓ′r of slow growth for some r > 0 such that u|V = bΓ′(F )

Proof. By [45, Theorem 8.4.15] we have that u can be written on a bounded neighbour-
hood U of V as a sum of a function f ∈ EM(U) and the boundary value of a holomorphic
function of slow growth on U + iΓ′r for some r. To obtain the assertion use Corollary 1.1.11 to
extend f almost-analytically on V . �

In order to proceed we need a further refinement of a result of Hörmander.

Lemma 2.2.5. Let Γj ⊆ Rn\{0}, j = 1, . . . , N , be closed cones such that
⋃
j Γj = Rn\{0}

and V ⊂⊂ Ω. Any u ∈ D′(Ω) can be written on V as a linear combination u|V =
∑

j uj of

distributions uj ∈ D′(V ) that satisfy

WFM uj ⊆WFM u ∩
(
V × Γj

)
Proof. Set v = ϕu where ϕ ∈ D(Ω) such that ϕ ≡ 1 on V . [45, Corollary 8.4.13] gives the

existence of vj ∈ S ′(Rn) such that

WFM vj ⊆WFM v ∩
(
Rn × Γj

)
.

Set uj = (vj)|U . �

Together with the above Lemma Theorem 2.2.4 implies

Corollary 2.2.6. Let u ∈ D′(Ω) and (x0, ξ0) ∈ Ω × Rn\{0}. Then (x0, ξ0) /∈ WFM u if
and only if there are a neighbourhood U of x0, open convex cones Γ1, . . . ,ΓN with the properties
ξ0Γj < 0, j = 1, . . . N and Γj ∩ Γk = ∅ for j 6= k, and M-almost analytic functions hj on
U + iΓrj , rj > 0, of slow growth such that

u|U =

N∑
j=1

bΓj (hj)
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Proof. W.l.o.g. assume that WFM u 6= ∅. If (x0, ξ0) /∈ WFM u one can find closed cones
V1, . . . , VN with nonempty interior and Vj ∩ Vk has measure zero for j 6= k such that ξ0 is
contained in the interior of V1 and V1 ∩WFM u = ∅ whereas ξ0 /∈ Vj are acute cones and
WFM u ∩ Vj 6= ∅ for j = 2, . . . , N . By Lemma 2.2.5 we can write u on an open neighbourhood

U of x0 as a sum u = u1 +
∑N

j=2 uj with u1 being an ultradifferentiable function defined on U

and uj ∈ D′(U) such that WFM uj ⊆WFM u∩ Vj , j = 2, . . . , N . The cones V2, . . . , VN are the
dual cones of open convex cones Γ2, . . . ,ΓN , i.e. Γ◦j = Vj . We can choose cones Γ′j ⊂⊂ Γj and

using Theorem 2.2.4 we find M-almost analytic functions hj on U + iΓ′j,r of slow growth such

that uj = bΓ′j (hj). It remains to note that ξ0y < 0 for all y ∈ Γ′j , j = 2, . . . , N . �

Let Ω1 ⊆ Rm and Ω2 ⊆ Rn be open. If F : Ω1 → Ω2 is a EM-mapping then we denote as in
[45, page 263] the set of normals by

NF =
{

(F (x), η) ∈ Ω2 × Rn : DF (x)η = 0
}
.

where DF denotes the transpose of the Jacobian of F . The following is a generalization of [45,
Theorem 8.5.1]

Theorem 2.2.7. For any u ∈ D′(Ω2) with NF ∩WFM u = ∅ we obtain that the pull-back
F ∗u ∈ D′(Ω1) is well defined and

WFM
(
F ∗u

)
⊆ F ∗

(
WFM u

)
. (2.2.7)

Proof. The first part of the statement is [45, Theorem 8.2.4]. For the proof of the second
part of the theorem assume first that there is an open convex cone Γ such that u is the boundary
value of anM-almost analytic function Φ on Ω2 +iΓr of slow growth. Hence WFM u ⊆ Ω2×Γ◦.
If x0 ∈ Ω1 and DF (x0)η 6= 0 for η ∈ Γ◦\{0} then DF (x0)Γ◦ is a closed convex cone. We claim
that

WFM(F ∗u)|x0 ⊆
{

(x0, DF (x0)η) : η ∈ Γ◦\ {0}
}
.

We adapt as usual the argument of [45]. We can write (see [45, page 296])

DF (x0)Γ◦ =
{
ξ ∈ Rn | 〈h, ξ〉 ≥ 0, F ′(x0))h ∈ Γ

}
.

If F̃ denotes anM-almost analytic extension of F onto X0+iRn, X0 ∈ U(x0) relatively compact
in Ω1, which exists due to Theorem 1.1.10, then Taylor’s formula implies that

Im F̃ (x+ iεh) ∈ Γ x ∈ X0

for F ′(x0)h ∈ Γ if X0 and ε > 0 are small.
Recalling (2.2.4) we see that the map

R≥0 ×
(
Γ ∪ {0}

)
3 (ε, y) 7−→ Φ̃(ε, y) := Φ

(
F̃ ( . + iεh) + iy

)
∈ D′(X0)

is continuous. If ε→ 0 then Φ̃(ε, y)→ Φ̃(0, y) = Φ(F̃ ( . + 0i) + iy) in D′ and if now y → 0 we

have by definition Φ̃(0, y) → F ∗u. On the other hand if first y → 0 then Φ̃(ε, y) → Φ̃(ε, 0) =

Φ(F̃ ( . + iεh)). Hence by continuity

F ∗u = lim
ε→0

Φ
(
F̃ ( . + iεh)

)
in D′(X0) and by the proof of Theorem 2.2.1

WFM |x0 ⊆ {(x0, ξ) | 〈h, ξ〉 ≥ 0}.
The claim follows.

Now suppose that (F (x0), η0) /∈WFM u. By Corollary 2.2.6 we can write a general distribu-

tion u on some neighbourhood U0 of F (x0) as
∑N

j=1 uj where the distributions uj , j = 1, . . . , N ,
are the boundary values of someM-almost analytic functions Φj on U0 + iΓj , where the Γj are
some open convex cones such that η0Γj < 0 for all j = 1, . . . , N . By assumption DF (x)η 6= 0
when (F (x), η) ∈ WFM u for x ∈ F−1(U0). Hence we can assume that DF (x)η 6= 0 for
η ∈ Γ◦j for all j = 1, . . . , N and x ∈ F−1(U0) since in the proof of Corollary 2.2.6 the cones Γj ,
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j = 1, . . . , N , can be chosen such that the set Γ◦j\WFM u has small measure. By the arguments
above we have for a small neighbourhood V of x0 that

F ∗u|V =
N∑
j=1

F ∗uj |V

and WFM(F ∗uj)|x0 ⊆ {(x0, DF (x0)η) | η ∈ Γ◦j \{0}} for all j. However, since η0Γj < 0 it

follows that (x0, DF (x0)η0) /∈WFM(F ∗uj) and therefore (x0, DF (x0)η0) /∈WFM(F ∗u). �

Remark 2.2.8. If F is an EM-diffeomorphism we obtain from Theorem 2.2.7 that

WFM
(
F ∗u

)
= F ∗

(
WFM u

)
.

Hence if M is an EM-manifold and u ∈ D′(M) we can define WFM u invariantly as a subset
of T ∗M \{0}. More precisely, there is a subset Ku of T ∗M such that the diagram

Ku

T ∗ϕ(U ∩ V ) ⊇WFM v1 WFM v2 ⊆ T ∗ψ(U ∩ V )
ρ∗

commutes for any two charts ϕ and ψ of M on U ⊆ M and V ⊆ M , respectively. We have
set ρ = ψ ◦ ϕ−1, v1 = ϕ∗u ∈ D′(ϕ(U ∩ V )) and v2 = ψ∗u ∈ D′(ψ(U ∩ V )). It follows that
Ku ⊆ T ∗M \{0} has to be closed and fiberwise conic. We set WFM u := Ku.

Analogously we define the wavefront set of a distribution u ∈ D′(M,E) with values in an
ultradifferentiable vector bundle locally by setting

WFM u|V =
ν⋃
j=1

uj

where V ⊆ M is an open subset such that there is a local basis ω1, . . . , ων of EM(V,E) and
uj ∈ D′(V ) are distributions on V such that

u|V =
ν∑
j=1

ujω
j .

We close this section by observing that Theorem 2.2.7 allows us to strengthen a uniqueness
result of Boman [14]:

Theorem 2.2.9. LetM be a quasianalytic weight sequence and S ⊆ Rn an EM-submanifold.
If u is a distribution defined on a neighbourhood of S such that

WFM u ∩N∗S = ∅

and

∂αu|S = 0 ∀α ∈ Nn0 ,

then u vanishes on some neighbourhood of S.

Indeed, locally S is diffeomorphic to

S′ =
{

(x′, x′′) ∈ Rm+d | x′′ = 0
}
⊆ Rn

and the assumptions of the theorem translate to the corresponding conditions for the pullback
w = F ∗u where F : Rn → Rn is the local EM-diffeomorphism that maps S′ to S. Then the
proof of Theorem 1 in [14] gives w = 0 in a neighbourhood of S′.
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2.3. A generalized version of Bony’s Theorem

We have seen that for a distribution u the wavefront set WFM u can be described either
using the Fourier transform or by itsM-almost analytic extensions. The similar fact is true for
the analytic wavefront set using holomorphic extensions. The latter was the original approach
of Sato [72]. However, [20] used the classical FBI-Transform to describe the set of microlocal
analytic singularities. It was Bony [18] who proved that all three methods describe actually
the same set. In the ultradifferentiable setting [24], see also [47], used the FBI transform to
define an ultradifferentiable singular spectrum for Fourier hyperfunctions. However, they did
not mention how this singular spectrum in the case of distributions may be related to WFM as
defined by Hörmander. Our next aim is to show an ultradifferentiable version of Bony’s theorem.
We will work in the generalized setting of Berhanu and Hoepfner[9]. We shall note that recently
Hoepfner and Medrado [39] also proved a characterization of the ultradifferentiable wavefront
set by this generalized FBI transform for a certain class of non-quasianalytic weight sequences.

Let p be a real, homogeneous, positive, elliptic polynomial of degree 2k, k ∈ N, on Rn, i.e.

p(x) =
∑
α=2k

aαx
α aα ∈ R,

and there are constants c, C > 0 such that

c|x|2k ≤ p(x) ≤ C|x|2k x ∈ Rn.

Let c−1
p =

∫
e−p(x)dx. As in [9, section 4] we consider the generalized FBI transform with

generating function e−p of a distribution of compact support u ∈ E ′(Rn), i.e.

Fu(t, ξ) = cp

〈
u(x), eiξ(t−x)e−|ξ|p(t−x)

〉
.

The inversion formula is

u = lim
ε→∞

∫
Rn×Rn

eiξ(x−t)e−ε|ξ|
2
Fu(t, ξ)|ξ|

n
2k dtdξ (2.3.1)

where of course the distributional limit is meant.

Theorem 2.3.1. Let u ∈ D′(Ω) and (x0, ξ0) ∈ T ∗Ω\{0}. Then (x0, ξ0) /∈ WFM u if and
only if there is a test function ψ ∈ D(Ω) with ψ|U ≡ 1 for some neighbourhood U of x0 such
that

sup
(t,ξ)∈V×Γ

eωM(γ|ξ|)∣∣F(ψu)(t, ξ)
∣∣ <∞ (2.3.2)

for some conic neighbourhood V × Γ of (x0, ξ0) and some constant γ > 0.

Proof. First, assume that (x0, ξ0) /∈ WFM u. By Corollary 2.2.6 we know that for some
neighbourhood U of x0

u|U =

N∑
j=1

bΓj (Fj)

where Fj are M-almost analytic on U × Γjrj for cones Γj with ξ0Γj < 0. Hence it suffices to
prove the necessity of (2.3.2) for u = bΓ(F ) being the boundary value of an M-almost analytic
function on U × Γd where Γ is a cone with the property that ξ0Γ < 0. W.l.o.g. x0 = 0 and let
r > 0 such that B2r(0) ⊂⊂ U and ψ ∈ D(B2r(0)) such that ψ|Br(0) ≡ 1. Furthermore we choose
v ∈ Γd and set

Q(t, ξ, x) = iξ(t− x)− |ξ|p(t− x).

Then

F(ψu)(t, ξ) = lim
τ→0+

∫
B2r(0)

eQ(t,ξ,x+iτv)ψ(x)F (x+ iτv) dx.
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As in the proof of Theorem 4.2 in [9] we put z = x+ iy, ψ(z) = ψ(x) and

Dτ :=
{
x+ iσv ∈ Cn | x ∈ B2r = B2r(0), τ ≤ σ ≤ λ

}
for some λ > 0 to be determined later and consider the n-form

eQ(t,ξ,z)ψ(z)F (z) dz1 ∧ · · · ∧ dzn.

Since ψ ∈ D(B2r(0)) Stokes’ theorem implies∫
B2r

eQ(t,ξ,x+iτv)ψ(x)F (x+ iτv) dx =

∫
B2r

eQ(t,ξ,x+iλv)ψ(x)F (x+ iλv) dx

+
n∑
j=1

∫
Dτ

eQ(t,ξ,z) ∂

∂z̄j

(
ψ(z)F (z)

)
dz̄j ∧ dz1 ∧ · · · ∧ dzn

=

∫
B2r

eQ(t,ξ,x+iλv)ψ(x)F (x+ iλv) dx

+
n∑
j=1

∫
B2r

λ∫
τ

eQ(t,ξ,x+iσv) ∂ψ

∂z̄j
(x+ iσv)F (x+ iσv) dσdx

+

n∑
j=1

∫
B2r

λ∫
τ

eQ(t,ξ,x+iσv)ψ(x+ iσv)
∂F

∂z̄j
(x+ iσv) dσdx.

(2.3.3)

We need to estimate the integrals on the right-hand side of (2.3.3). Since ξ0 · v < 0 there
is an open cone Γ1 containing ξ0 such that ξ · v ≤ −c0|ξ||v| for all ξ ∈ Γ1 and some constant
c0 > 0. We note that for ξ ∈ Γ1 and t in some bounded neighbourhood of the origin we have

ReQ(t, ξ, x+ iλv) = λ(ξv)− |ξ|Re p(t− x− iλv)

= λ(ξv)− |ξ|
(
Re p(t− x) +O(λ2)|v|2

)
≤ λ(ξv)− c|ξ|

(
|t− x|2k +O(λ2)|v|2

)
≤ −c0λ|v||ξ|+O

(
λ2
)
|ξ|.

Hence for λ small enough

ReQ(t, ξ, x+ iλv) ≤ −c0

2
λ|v||ξ| (2.3.4)

where ξ ∈ Γ1, x ∈ B2r and t is in a bounded neighbourhood V of 0. We conclude that∣∣∣∣∣∣
∫
B2r

eQ(t,ξ,x+iλv)ψ(x)F (x+ iλv) dx

∣∣∣∣∣∣ ≤ C1e
−γ1|ξ|

for some constants γ1, C1 > 0 and (t, ξ) ∈ V ×Γ1. We note that (M4) implies that ωM(t) = O(t)
for t→∞, c.f. e.g. [48] or [15], thence∣∣∣∣∣∣

∫
B2r

eQ(t,ξ,x+iλv)ψ(x)F (x+ iλv) dx

∣∣∣∣∣∣ ≤ C1e
−ωM(γ1|ξ|)

for (t, ξ) ∈ V × Γ1.
On the other hand we can also estimate

ReQ(t, ξ, x+ iσv) ≤ σ(ξv)− c|t− x|2k|ξ|+O
(
λ2
)
|ξ|

≤ −c|t− x|2k|ξ|+O
(
λ2
)
|ξ|
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since ξv < 0 for all ξ ∈ Γ1. If x ∈ supp(∂ψ/∂z̄j) then |x| ≥ r. Therefore if |t| ≤ r/2 and λ small
enough we obtain that there is a constant γ2 > 0 such that

ReQ(t, ξ, x+ iσv) ≤ −γ2|ξ|

for all ξ ∈ Γ1. Hence∣∣∣∣∣∣
n∑
j=1

∫
B2r

λ∫
τ

eQ(t,ξ,x+iσv) ∂ψ

∂z̄j
(x+ iσv)F (x+ iσv) dσdx

∣∣∣∣∣∣ ≤ C2e
−γ2|ξ| ≤ C2e

−ωM(γ2|ξ|)

for ξ ∈ Γ1, |t| ≤ r/2 and all 0 < τ < λ.
In order to estimate the third integral in (2.3.3) we remark that by (2.3.4) we have for a

generic constant C3 > 0 and all k ∈ N0 that∣∣∣∣∣∣
n∑
j=1

∫
B2r

λ∫
τ

eQ(t,ξ,x+iσv)ψ(x)
∂F

∂z̄j
(x+ iσv) dσdx

∣∣∣∣∣∣ ≤ C3

∞∫
0

e−c0σ|v||ξ|hM(Qσ|v|) dσ

≤ C3

∞∫
0

e−c0σ|v||ξ|Qkσk|v|kmk dσ

= C3Q
kmkc

−k
0 |ξ|

−kk!

= C3Q
k
1Mk|ξ|−k.

Hence by Lemma 1.1.8∣∣∣∣∣∣
n∑
j=1

∫
B2r

λ∫
τ

eQ(t,ξ,x+iσv)ψ(x)
∂F

∂z̄j
(x+ iσv) dσdx

∣∣∣∣∣∣ ≤ C3h̃M
(
Q1|ξ|−1

)
≤ C3e

−ωM(Q2|ξ|).

In view of (2.3.3) we have shown that for ξ ∈ Γ1 and t in a small enough neighbourhood of
0 there are constants C,Q > 0 such that∣∣∣∣∣∣

∫
B2r

eQ(t,ξ,x+iτv)ψ(x)F (x+ iτv) dx

∣∣∣∣∣∣ ≤ Ce−ωM(Q|ξ|).

Note that in the estimate the constants C and Q depend on λ but not on τ < λ. Thus (2.3.2)
is proven.

On the other hand, assume that (2.3.2) holds for a point (x0, ξ0), i.e. that there is a neigh-
bourhood V of x0, an open cone Γ ⊆ Rn containing ξ0 and constants C, γ > 0 such that∣∣F(ψu)(x, ξ)

∣∣ ≤ Ce−ωM(γ|ξ|) x ∈ V, ξ ∈ Γ (2.3.5)

for some test function ψ ∈ D(Ω) that is 1 near x0. We may assume that x0 = 0. We have to
prove that (0, ξ0) /∈ WFM u or, equivalently, (0, ξ0) /∈ WFM v where v = ψu. We invoke the
inversion formula (2.3.1) for the FBI transform

v = lim
ε→∞

∫
Rn×Rn

eiξ(x−t)e−ε|ξ|
2
Fv(t, ξ)|ξ|

n
2k dtdξ

and split the occuring integral into 4 parts∫
Rn×Rn

eiξ(x−t)e−ε|ξ|
2
Fv(t, ξ)|ξ|

n
2k dtdξ = Iε1(x) + Iε2(x) + Iε3(x) + Iε4(x) (2.3.6)
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where

Iε1(x) =

∫
Rn

∫
|t|≤a

eiξ(x−t)e−ε|ξ|
2
Fv(t, ξ)|ξ|

n
2k dtdξ

Iε2(x) =

∫
|ξ|≤B

∫
a≤|t|≤A

eiξ(x−t)e−ε|ξ|
2
Fv(t, ξ)|ξ|

n
2k dtdξ

Iε3(x) =

∫
Rn

∫
|t|≥A

eiξ(x−t)e−ε|ξ|
2
Fv(t, ξ)|ξ|

n
2k dtdξ

Iε4(x) =

∫
|ξ|≥B

∫
a≤|t|≤A

eiξ(x−t)e−ε|ξ|
2
Fv(t, ξ)|ξ|

n
2k dtdξ

for certain constants a, A and B to be determined. We modify the approach in [11, 9] and
analogously to the analytic case we are going to show that the last three integrals converge
for ε tending to 0 to holomorphic functions that are defined near the origin in Cn without
using (2.3.5). Our assumption that (2.3.5) holds will allow us to prove that Iε1 converge to a
distributions that can be written as the sum of boundary values of certain M-almost analytic
functions.

We begin with the easiest case. We see immediately that for any choice of these constants
the function Iε2 extends to an entire function on Cn and if ε → 0 these functions converge
uniformly on compact subsets to the entire function

I2(z) =

∫
|ξ|≤B

∫
a≤|t|≤A

eiξ(z−t)Fv(t, ξ)|ξ|
n
2k dtdξ.

If we choose A ≥ 4 large enough for

supp(v) ⊆
{
y ∈ Rn

∣∣∣ |y| ≤ A

4

}
(2.3.7)

to hold, then we have similar to before that for |t| ≥ A
ReQ(t, ξ, x) = −p(t− x)|ξ|

≤ −c|t− x|2k|ξ|

≤ −c|ξ|
(
|t| −A/4

)2k
= −c|ξ|

(
|t|2 − 1

2
|t|A+

A2

24

)k

≤ −c|ξ|

(
1

2
|t|2 +

A2

24

)k

≤ −c|ξ|
k∑
j=1

(
k

j

)
|t|2j

2j
A2(k−j)

24(k−j)

≤ −c|ξ|

(
|t|2k

2k
+
A2k

24k

)

≤ −c|ξ|

(
|t|
2

+
A

4

)
.

Hence

|Fv(t, ξ)| ≤ Ce
−c̃|ξ|

(
|t|+A

2

)
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for some generic constants C and c̃ independent from ξ and thus we conclude that∣∣∣∣∣∣∣
∫
|t|≥A

eiξtFv(t, ξ) dt

∣∣∣∣∣∣∣ ≤ Ce−c̃
A
2 |ξ|

∞∫
A

ρn−1e−c̃|ξ|ρ dρ

= Ce−c̃
A
2 |ξ|

An−1e−c̃|ξ|A

c̃|ξ|
+
n− 1

c̃|ξ|

∞∫
A

ρn−2e−c̃|ξ| dρ


≤ Ce−c̃A|ξ|

when |ξ| ≥ 1 and the constants do not depend on ξ. But this means∣∣∣∣∣∣∣ eiξ(x+iy)−ε|ξ|2 |ξ|
n
2k

∫
|t|≥A

e−iξtFv(t, ξ) dt

∣∣∣∣∣∣∣ ≤ C|ξ|
n
2k e(−c1+|y|)|ξ|

and hence

I3(z) =

∫
Rn

∫
|t|≥A

eiξ(z−t)Fv(t, ξ)|ξ|
n
2k dtdξ

constitutes a holomorphic function near the origin of Cn. Therefore we obverse that the entire
functions Iε3 converge uniformly in some neighbourhood of 0 to I3 for ε→ 0.

In order to examine Iε4 we write

Iε4(x) =

∫∫
|ξ|≥B
a≤|t|≤A

|ξ|
n
2k

〈
v(y), ei(x−y)ξ−|ξ|p(t−y)−ε|ξ|2

〉
y
dξdt.

Since v ∈ E ′(Ω) there has to be a sequence vj ∈ D(Ω) such that vj → v in E ′ and without loss

of generality supp vj ⊆ K =
{
y ∈ Rn | |y| ≤ A

2

}
. Then

Iε4(x) = lim
j→∞

∫∫
|ξ|≥B
a≤|t|≤A

|ξ|
n
2k

∫
K

vj(y)ei(x−y)ξ−|ξ|p(t−y)−ε|ξ|2 dydξdt

By the Theorem of Fubini and the exponential decrease in the variable ξ we deduce∫∫
|ξ|≥B
a≤|t|≤A

|ξ|
n
2k

∫
K

vj(y)ei(x−y)ξ−|ξ|p(t−y)−ε|ξ|2 dydξdt =

∫∫
a≤|t|≤A

K

vj(y)

∫
|ξ|≥B

|ξ|
n
2k ei(x−y)ξ−|ξ|p(t−y)−ε|ξ|2 dξdydt

and thus

Iε4(x) = 〈v,Gε(x, y)〉y
where

Gε(x, y) :=

∫
a≤|t|≤A

∫
|ξ|≥B

|ξ|
n
2k ei(x−y)ξ−|ξ|p(t−y)−ε|ξ|2 dξdt.

Note that Gε and therefore also Iε4 extend to entire functions for all ε > 0.
We recall from [11] that the function g(ξ) = log |ξ| has a holomorphic extension into the

region W = {ζ ∈ Cn | |Re ζ| > |Im ζ|} which we denote by log〈ζ〉, where

log〈ζ〉 =
1

2
log

n∑
j=1

ζ2
j = log

 n∑
j=1

ζ2
j


1
2
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for a suitable branch of the complex logarithm. Of course, the function g1(ζ) = 〈ζ〉
1
2k and

g2(ζ) = 〈ζ〉 are also holomorphic on W . We consider the exact form

F ε(ζ;x, y, t) = g1(ζ)nei(x−y)ζ−g2(ζ)p(t−y)−εg2(ζ)2
dζ1 ∧ · · · ∧ dζn

on W and the n-cycle
ΓR = Γ1

R ∪ Γ2 ∪ Γ3
R ∪ Γ4

R

consisting of the regions

Γ1
R =

{
ζ ∈ Cn | Im ζ = 0, B ≤ |Re ζ| ≤ R

}
Γ2 =

{
ζ ∈ Cn | |Re ζ| = B, Im ζ = σs(x− y), 0 ≤ σ ≤ 1

}
Γ3
R =

{
ζ ∈ Cn | ζ = ξ + is|ξ|(x− y), ξ ∈ Rn, B ≤ |ξ| ≤ R

}
Γ4
R =

{
ζ ∈ Cn | |Re ζ| = R, Im ζ = σs(x− y), 0 ≤ σ ≤ 1

}
where s is a parameter that is later specified and R > B. Stokes’ Theorem tells us that for x,
y and t fixed we have ∫

ΓR

F ε(ζ;x, y, t) = 0.

If R → ∞ we observe that
∫

Γ4
R
F ε(ζ;x, y, t) → 0 uniformly for x, y and t varying in compact

subsets. As a result we obtain that

Gε(x, y) =

∫
a≤|t|≤A

∫
Γ3

g1(ζ)
n
2k ei(x−y)ζ−g2(ζ)p(t−y)−εg2(ζ)2

dζdt

−
∫

a≤|t|≤A

∫
Γ2

g1(ζ)
n
2k ei(x−y)ζ−g2(ζ)p(t−y)−εg2(ζ)2

dζdt

(2.3.8)

where Γ3 = {ζ ∈ Cn | ζ = ξ + is|ξ|(x− y), ξ ∈ Rn, B ≤ |ξ|}.
Since Γ2 is compact we conclude that the second integral on the right-hand side constitutes

an entire function that converges to an entire function for ε tending to 0.
On the other hand let us consider

Pε(z, y, t, ξ) := i(z − y)ξ − s|z − y|2|ξ| − g2(ζ(ξ))p(t− y)εg2(ζ(ξ))2

with ζ(ξ) := ξ + is|ξ|(Re z − y). We need to estimate RePε. If we assume that |z| ≤ δ for δ
small, |y| ≤ A

2 (recall (2.3.7)) and s = s(δ, A) small enough then

s2
∣∣z − y∣∣2 ≤ 1

2
.

We conclude for |z| ≤ δ and |y| ≤ A
2 that

RePε(z, y, t, ξ) ≤ |Im z||ξ| −
(
s|z − y|2 + p(t− y)

)
|ξ| − ε|ξ|2

(
1− s2|z − y|2

)
≤ δ|ξ| −

(
s|z − y|2 + p(t− y)

)
|ξ| − ε

2
|ξ|2

≤ δ|ξ|+ min
(
−s|z − y|2,−p(t− y)

)
|ξ| − ε

2
|ξ|2.

If |y| ≤ a
2 then

min
(
−s|z − y|2,−p(t− y)

)
≤ −c|t− y|2k ≤ −c

(a
2

)2k
.

On the other hand, if a
2 ≤ |y| ≤

A
2 and δ ≤ a

2 then

min
(
−s|z − y|2,−p(t− y)

)
≤ −s

(a
4

)2
.

So if we choose δ > 0 small enough and let z ∈ Bδ(0) ⊆ Cn, |y| ≤ A
2 and |t| ≥ a then

RePε(z, y, t, ξ) ≤ −c′|ξ|
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for some constant c′ > 0. It follows that the first integral in (2.3.8) extends to an entire function
with respect to the variable x and converges uniformly for z in a small neighbourhood of the
origin and |y| ≤ A

4 to ∫
a≤|t|≤A

∫
Γ3

g1(ζ)
n
2k ei(x−y)ζ−g2(ζ)p(t−y) dζdt.

This fact implies the uniform convergence of Iε4(z) = 〈v,Gε(z, . )〉 to the holomorphic function
I4(z) = 〈v,G(z, . )〉 as long as z is in a small neighbourhood of 0 in Cn.

It remains to look at Iε1 . Suppose that a is small enough such that Ba(0) ⊆ V . Let Cj ,
1 ≤ j ≤ N be open, acute cones such that

Rn =
N⋃
j=1

Cj

and the intersection Cj ∩ Ck has measure zero for j 6= k. Furthermore, let ξ0 ∈ C1, C1 ⊆ Γ and

ξ0 /∈ Cj for j 6= 1. In particular that means that (2.3.5) holds on Ba(0)× C1, i.e.∣∣F(ψu)(x, ξ)
∣∣ ≤ Ce−ωM(γ|ξ|) x ∈ Ba(0), ξ ∈ C1 (2.3.9)

Furthermore for j = 2, . . . , N we can choose open cones Γj with the property that ξ0Γj < 0
and there is some positive constant cj such that

〈v, ξ〉 ≥ cj |v| · |ξ| ∀v ∈ Γj , ∀ξ ∈ Cj . (2.3.10)

We set

f εj (x+ iy) =

∫
Cj

∫
Ba(0)

eiξ(x+iy−t)−ε|ξ|2Fv(t, ξ)|ξ|
n
2k dtdξ

for j ∈ {2, . . . , N}. Note that each f εj is entire if ε > 0 and for ε tending to 0 the functions f εj
converge uniformly on compact subsets of the wedge Rm + iΓj to

fj(x+ iy) =

∫
Cj

∫
Ba(0)

eiξ(x+iy−t)Fv(t, ξ)|ξ|
n
2k dtdξ

which are also holomorphic on Rm × iΓj due to (2.3.10).
Similarly we define

f ε1 (x) =

∫
C1

∫
Ba(0)

eiξ(x−t)−ε|ξ|
2
Fv(t, ξ)|ξ|

n
2k dtdξ

and

f1(x) =

∫
C1

∫
Ba(0)

eiξ(x−t)Fv(t, ξ)|ξ|
n
2k dtdξ.

The functions f ε1 , ε > 0, extend to entire functions whereas f1 is smooth due to (2.3.9) since
e−ωM is rapidly decreasing (c.f. the remark after the proof of Lemma 1.1.3). This decrease also
shows that f ε1 converges uniformly to f1 in a neighbourhood of 0 since∣∣f1(x)− f ε1 (x)

∣∣ ≤ ∫
C1

∫
Ba(0)

∣∣Fv(t, ξ)
∣∣|ξ| n2k ∣∣∣1− e−ε|ξ|2∣∣∣ dtdξ

≤ C
∫
C1

|ξ|
n
2k e−ωM(γ|ξ|)

∣∣∣1− e−ε|ξ|2∣∣∣ dξ
and the last integral converges to 0 by the monotone convergence theorem.
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In fact f1 ∈ EM because∣∣Dαf1(x)
∣∣ ≤ ∫
C1

|ξ|
n
2k
∣∣ξαFv(t, ξ)

∣∣∣ dtdξ
≤ C

∫
C1

|ξ|
n
2k+|α|e−ωM(γ|ξ|) dξ

≤ C
∫
C1

|ξ|
n
2k−2n|ξ|2n+|α|h̃M

(
1

γ|ξ|

)
dξ

≤ Cγ−2n+|α|M2n+|α|

∫
C1

|ξ|
n
2k−2n dξ

≤ Cγ|α|M|α|,

where in the last step (M2) is used.
So we have showed that on an open neighbourhood U of the origin and some open cones

Γj , j = 2, . . . , N that satisfy ξ0Γj < 0 we can write

v|U = v0 +
N∑
j=2

bΓjfj

with v0 ∈ EM(U) and fj holomorphic on U + iΓj for j = 2, . . . , N . Hence (0, ξ0) /∈WFM v. �

We summarize our results regarding the description of WFM u in order to obtain the gen-
eralized Bony’s Theorem alluded in the beginning of this section (c.f. [39]).

Theorem 2.3.2. Let u ∈ D′(Ω). For (x0, ξ0) ∈ T ∗Ω\{0} the following statements are
equivalent:

(1) (x0, ξ0) /∈WFM u
(2) There are U ∈ U(x0), open convex cones Γj ⊆ Rn with ξ0Γj < 0 andM-almost analytic

functions Fj of slow growth in U ×Γjρj , ρj > 0 and j = 1, . . . , N for some N ∈ N such
that

u|U =
N∑
j=1

bΓjFj .

(3) There are ϕ ∈ D(Ω) with ϕ ≡ 1 near x0, V ∈ U(x0) and an open cone Γ containing ξ0

such that (2.3.2) holds.

We can also give a local version of Theorem 2.3.2.

Corollary 2.3.3. Let u ∈ D′(Ω) and p ∈ Ω. Then the following is equivalent:

(1) The distribution u is of class EM near p.
(2) There is a bounded sequence (uN )N ⊆ E ′(Ω) and an open neighbourhood V ⊆ Ω of p

such that uN |V = u|V for all N ∈ N0 and (2.1.1) holds for Γ = Rn and some constant
Q > 0.

(3) There exists an open neighbourhood W ⊆ Ω of p, r > 0 and a smooth function F on
W + iB(0, r) such that F |W = u|W and (1.1.5) holds for some constants C,Q > 0.

(4) There is a testfunction ψ ∈ D(Ω) such that ϕ|U ≡ 1 for some neighbourhood U of p
and constants C, γ > 0 such that

sup
(t,ξ)∈V×Rn

eωM(γ|ξ|)∣∣F(ψu)(t, ξ)
∣∣ <∞

for some V ∈ U(p).
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Proof. The equivalence of (1) and (2) is just Proposition 2.1.1, whereas Corollary 1.1.11
shows that (1) implies (3). For the fact that (4) implies (1) we note that by Theorem 2.3.1
we have that for all ξ ∈ Rn \{0} (p, ξ) /∈ WFM u. Therefore u has to be ultradifferentiable
of class {M} near p. Now we show that (4) follows from (3): Suppose that u ∈ EM(V ) on
a neighbourhood of p and let F ∈ E(W + iRn) be an M-almost analytic extension of u on a
relatively compact neighbourhood W ⊂⊂ V of p. We choose ϕ ∈ D(W ), 0 ≤ ϕ ≤ 1 and ϕ ≡ 1
near p. We consider the map

θ : y 7−→ θ(y) = y − isϕ(y)
ξ

|ξ|
.

for some 1 > s > 0 to be determined.
Finally let ψ ∈ D(V ) such that ψ ≡ 1 on W . As in the proof of Theorem 2.3.1 we set

ψ(z) = ψ(x) for z = x+ iy ∈ Cn. We put v = ψF and consider the n-form

eQ(t,ξ,z)v(z) dz1 ∧ · · · ∧ dzn
on

Ds =

{
x+ iσϕ(x)

ξ

|ξ|
∈ Cn

∣∣∣ 0 < σ < s, x ∈ supp v

}
.

Stokes’ Theorem gives us

Fv(t, ξ) = cp

∫
θ(Rn)

eQ(t,ξ,z)v(z, z̄) dz1 ∧ · · · ∧ dzn

+ cp

n∑
j=1

∫
Ds

eQ(t,ξ,z) ∂v

∂z̄j
(z, z̄) dz̄j ∧ dz1 ∧ · · · ∧ dzn.

The second integral above is estimated in the same way as the last integral in (2.3.3). On the
other hand the first integral on the right-hand side equals

G(t, ξ) = cp

∫
Rn

eQ(t,ξ,θ(y))v(θ(y)) det θ′(y) dy

We note that

ReQ(t, ξ, θ(y)) ≤ −sϕ(y)|ξ|
(
1 +O(sϕ(y)

)
− c0|t− y|2k

and hence

|G(t, ξ)| ≤ C
∫

Bδ(p)

eReQ(t,ξ,θ(y)) dy + C

∫
Rn\Bδ(p)
y∈supp(v◦θ)

eReQ(t,ξ,θ(y)) dy

= I1(t, ξ) + I2(t, ξ),

where Bδ(p) ⊆ {x ∈ Rn | ϕ(x) = 1}, can be estimated as follows, c.f. [11]. Set s = δ/4. We
obtain

I1(t, ξ) ≤ Ce−c|ξ|

for all ξ ∈ Rn if t is in some bounded neighbourhood of p. Furthermore

I2(t, x) ≤ C
∫

Rn\Br(p)
y∈supp(u◦θ)

e−|ξ||t−y|
2k
dy ≤ Ce−

(
δ
2

)2k
|ξ|

for all ξ and |t− p| ≤ δ
2 .

Hence we have showed that there are constants c, C > 0 such that

|Fu(t, ξ)| ≤ Ce−ωM(c|ξ|)

for all ξ ∈ Rn and t in a bounded neighbourhood of p. �
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2.4. Elliptic regularity

As mentioned in the introduction Albanese, Jornet and Oliaro [3] used the pattern of
Hörmander’s proof [45, Theorem 8.6.1] to prove elliptic regularity for operators with coeffi-
cients that are all in the same ultradifferentiable class defined by a weight function, c.f. Remark
2.1.7. Similarly Hörmander’s methods were applied in [64] and [65] for certain classes that are
defined by more degenerate sequences. It is easy to see that the approach of Albanese, Jornet
and Oliaro can be used to show elliptic regularity for operators with EM-coefficients as long as
M is a regular weight sequence. However, they considered only scalar operators. We show here
that Hörmander’s proof can be modified in a way to investigate the regularity of solutions of a
determined system of linear partial differential equations

P11u1 + · · ·+ P1νuν = f1

...
...

Pν1u1 + · · ·+ Pννuν = fν

where Pj,k, 1 ≤ j, k ≤ ν, is a partial differential operator with EM-coefficients. Since we have
showed in section 2.2 that WFM u is well defined for distributions u on EM-manifolds, we can
work in the following setting (see [45, chapter 6] and [23]).

Let M be an ultradifferentiable manifold of class {M} and E and F two vector bundles
of class {M} on M with the same fiber dimension ν. An ultradifferentiable partial differential
operator P : EM(M,E)→ EM(M,F ) of class {M} is given locally by

Pu =

P11 · · · P1ν
...

. . .
...

Pν1 · · · Pνν


u1

...
uν

 (2.4.1)

where the Pjk are linear partial differential operators with ultradifferentiable coefficients defined
in suitable chart neighbourhoods. If

Q(x,D) =
∑
|α|≤m

qα(x)Dα

is a differential operator of order ≤ m on some open set Ω ⊆ Rn then the principal symbol q is
defined to be

q(x, ξ) =
∑
|α|=m

qαD
α.

Hence the order of P is of order ≤ m iff no operator Pjk on any chart neighbourhood is of order
higher than m and P is of order m if the operator is not of order ≤ m−1. The principal symbol
p of P is an ultradifferentiable mapping defined on T ∗Ω with values in the space of fiber-linear
maps from E to F that is homogenous of degree m in the fibers of T ∗Ω. It is given locally by

p(x, ξ) =

p11(x, ξ) . . . p1ν(x, ξ)
...

. . .
...

pν1(x, ξ) . . . pνν(x, ξ)

 (2.4.2)

where pjk is the principal symbol of the operator Pjk. See [23] for more details. We say that P
is non-characteristic at a point (x, ξ) ∈ T ∗M \{0} if p(x, ξ) is an invertible linear mapping. We
define the set of all characteristic points

CharP = {(x, ξ) ∈ T ∗M \{0} : P is characteristic at (x, ξ)}.

Theorem 2.4.1. Let M be a EM-manifold and E,F two ultradifferentiable vector bundles
on M of the same fiber dimension. If P (x,D) is a differential operator between E and F with
EM-coefficients and p its principal symbol, then

WFM u ⊆WFM(Pu) ∪ CharP u ∈ D′(M,E). (2.4.3)
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Proof. We write f = Pu. Since the problem is local we work on some chart neighbourhood
Ω such that in suitable trivializations of E and F we may write u = (u1, . . . , uν) ∈ D′(Ω,Cν),
f = (f1, . . . , fν) ∈ D′(Ω,Cν) and P and its principal symbol p are of the form (2.4.1) and
(2.4.2), respectively. In particular, P is of order m on Ω.

We have to prove that if (x0, ξ0) /∈WFM f ∪CharP then (x0, ξ0) /∈WFM u. Assuming this
we find that there has to be a compact neighbourhood K of x0 and a closed conic neighbourhood
V of ξ0 in Rn\{0} satisfying

det p(x, ξ) 6= 0 (x, ξ) ∈ K × V (2.4.4)

(K × V ) ∩WFM(Pu)j = ∅ j = 1, . . . , ν. (2.4.5)

We consider the formal adjoint Q = P t of P with respect of the pairing

〈f, g〉 =

ν∑
τ=1

∫
fτ (x)gτ (x) dx f, g ∈ D(Ω,Cν).

If P = (Pjk)jk then Q = (Qjk)jk = (P tkj)jk where P tjk denotes the formal adjoint of the scalar

operator Pjk(x,D) =
∑
pαjk(x)Dα, i.e. for v ∈ E(Ω)

P tjk(x,D)v =
∑
|α|≤m

(−D)α
(
pαjk(x)v(x)

)
.

Let (λN )N ⊆ D(K) be a sequence of test functions satisfying λN |U ≡ 1 on a fixed neigh-
bourhood U of x0 for all N and for all α ∈ Nn0 there are constants Cα, hα > 0 such that∣∣Dα+βλN

∣∣ ≤ Cα(hαN)|β|, |β| ≤ N. (2.4.6)

If u = (u1, . . . , uν) ∈ D′(Ω,Cν), then we have that the sequence uτN = λ2Nu
τ is bounded in E ′

and each of these distributions is equal to uτ in U for all τ . Hence we have to prove that (uτN )N
satisfies (2.1.1), i.e.

sup
ξ∈V
N∈N0

|ξ|N
∣∣ûτN ∣∣

QNMN
<∞

for a constant Q > 0 independent of N .
In order to do so, set ΛτN = λNeτ ∈ D′(Ω,Cν) and observe

ûτN (ξ) =
〈
uτ , e−i〈 . ,ξ〉λ2N

〉
=
〈
u, e−i〈 . ,ξ〉Λτ2N

〉
.

Following the argument of Hörmander [45, Theorem 8.6.1] we want to solve the equation
Qgτ = e−ixξΛτ2N . We make the ansatz

gτ = e−ixξB(x, ξ)wτ

where B(x, ξ) is the inverse matrix of the transpose of p(x, ξ), which exists if (x, ξ) ∈ K × V
and is homogeneous of degree −m in ξ; note that the principal symbol of Q = P t is B−1(x,−ξ).
Using this we conclude that w has to satisfy

wτ −Rwτ = Λτ2N . (2.4.7)

Here R = R1 + · · · + Rm with Rj |ξ|j being (matrix) differential operators of order ≤ j with
coefficients in EM that are homogeneous of degree 0 in ξ if x ∈ K and ξ ∈ V .

A formal solution of (2.4.7) would be

wτ =

∞∑
k=0

RkΛτ2N .

However, this sum may not converge and even if it would converge, in the estimates we want
to obtain we are not allowed to consider derivatives of arbitrary high order. Hence we set

wτN :=
∑

j1+···+jk≤N−m
Rj1 · · ·RjkΛτ2N
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and compute

wτN −RwτN = Λτ2N −
∑

k∑
s=1

js>N−m≥
k∑
s=2

js

Rj1 . . . RjkΛτ2N = Λτ2N − ρτN .

Equivalently, we have

Q
(
e−ixξB(x, ξ)wτN

)
= e−ixξ

(
Λτ2N (x)− ρτN (x, ξ)

)
.

We obtain now

ûτN (ξ) =
〈
u, e−i〈 . ,ξ〉Λτ2N

〉
=
〈
u,Q

(
e−i〈 . ,ξ〉B( . , ξ)wτN

)〉
+ 〈u, e−i〈 . ,ξ〉ρτN ( . , ξ)〉

= 〈f, e−i〈 . ,ξ〉B( . , ξ)wτN 〉+ 〈u, e−i〈 . ,ξ〉ρτN ( . , ξ)〉

(2.4.8)

and continue by estimating the right-hand side of (2.4.8). For this purpose we need the following
Lemma.

Lemma 2.4.2. There exists constants C and h depending only on R and the constants ap-
pearing in (2.4.6) such that, if j = j1 + · · ·+ jk and j + |β| ≤ 2N , we have∣∣∣Dβ

(
Rj1 . . . RjkΛτ2N

)
σ

∣∣∣ ≤ ChNM j+|β|
2N

2N |ξ|−j ξ ∈ V, σ = 1, . . . , ν. (2.4.9)

Proof. Since both sides of (2.4.9) are homogeneous of degree −j in ξ ∈ V it suffices to
prove the lemma for |ξ| = 1. Moreover we can write(

Rj1 · · ·RjkΛτ2N
)
σ

= R̃τσλ2N σ = 1, . . . , ν

with R̃τσ being a certain linear combination of products of components of the operators Rjs .

Especially the coefficients of R̃τσ are all of class {M} on a common neighbourhood of K and
since there are only finitely many of them we may assume that they all can be considered as
elements of EqM(K) for some q > 0. Recall also from Remark 2.1.3 that N

√
MN →∞ and that

there has to be a constant δ > 0 such that N ≤ δ N
√
MN . Hence (2.4.6) implies that for all

α ∈ Nn0 there are constants Cα > 0 and hα > 0 such that

|Dα+βλN
∣∣ ≤ Cαh|β|α M

|β|
N
N (2.4.10)

for |β| ≤ N . Therefore the proof of the lemma is a consequence of the following result. �

Lemma 2.4.3. Let K ⊆ Ω be compact, (λN )N ⊂ D(K) a sequence satisfying (2.4.10) and
a1, . . . , aj−1 ∈ EqM(K). Then there are constants C, h > 0 independent of N such that for j ≤ N
we have ∣∣Di1(a1Di2(a2 . . . Dij−1(aj−1DijλN ) . . . ))

∣∣ ≤ ChjM j
N
N . (2.4.11)

Proof. We begin by noting that (M3) implies that mjmk−j ≤ mk for all j ≤ k ∈ N c.f.
[56]. Obviously the expression Di1a1Di2a2 . . . Dij−1aj−1DijλN is a sum of terms of the form
(Dα1a1) · · · (Dαj−1aj−1)DαjλN where |α1|+ · · ·+ |αj | = j.

We set h ≥ max(q, h0). If there are Ck1,...,kj terms with |α1| = k1, . . . , |αj | = kj then we
have the following estimate on K∣∣Di1a1Di2a2 . . . Dij−1aj−1DijλN

∣∣ ≤ C∑ qj−kjCk1,...,kjmk1 · · ·mkj−1
k1! · · · kj−1!h

kj
0 M

kj
N
N

≤ Chj
∑

mj−kjCk1,...,kjk1! · · · kj−1!M
kj
N
N

≤ Chj
∑

Ck1,...,kj

k1! · · · kj−1!

(j − kj)!
Mj−kjM

kj
N
N .
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Now observe that since N
√
MN is increasing we have

Mj−kjM
kj
N
N = M

j−kj
j−kj
j−kj M

kj
N
N ≤M

j−kj
N

N M
kj
N
N = M

j
N
N .

As noted in [3] it is possible to estimate

k1! · · · kj−1!

(j − kj)!
=
k1! · · · kj−1!kj !j!

(j − kj)!kj !j!
≤ 2j

k1! · · · kj !
j!

,

and also (c.f. [45, p. 308]) ∑
Ck1,...,kjk1! · · · kj ! = (2j − 1)!!.

Since (2j−1)!!
j!2j

≤ 1 we obtain

∣∣Di1a1Di2a2 . . . Dij−1aj−1DijλN
∣∣ ≤ C(4h)j

(2k − 1)!!

j!2j
M

j
N
N

≤ C(4h)jM
j
N
N .

�

In order to estimate ûτN , we note that due to the boundedness of the sequence (uτN )N ⊆ E ′
the Banach-Steinhaus theorem implies that there are constants κ and c such that

|ûτN | ≤ c
(
1 + |ξ|

)κ
for all N and therefore if |ξ| ≤ N∣∣ξ|N |ûτN | ≤ cNN

(
1 +N

)κ ≤ cδN C̃NMN (2.4.12)

for some constant C̃. Hence it suffices to estimate the terms on the right-hand side of (2.4.8)
for ξ ∈ V , |ξ| > N . We begin with the second term.

As in the scalar case there are constants µ and C > 0 that only depend on u and K such
that for all ψ ∈ D(Ω,Cν) with suppψ ⊆ K∣∣〈u, ψ〉∣∣ ≤ C ∑

|α|≤µ

sup
K

∣∣Dαψ
∣∣.

Note that suppx ρ
τ
N ( . , ξ) ⊆ K for all ξ ∈ V and N ∈ N. Thence∣∣〈u, e−i〈 . ,ξ〉ρτN ( . , ξ)〉

∣∣ ≤ C ∑
|α|≤µ

∑
β≤α
|ξ||α|−|β| sup

x∈K

∣∣Dβ
xρ

τ
N (x, ξ)

∣∣
≤ C

∑
|α|≤µ

|ξ|µ−|α| sup
x∈K

∣∣Dα
xρ

τ
N (x, ξ)

∣∣
for ξ ∈ V , |ξ| ≥ 1 and N ∈ N. There are at most 2N terms of the form Rj1 . . . RjkΛτ2N in ρτN
and each term can be estimated by (2.4.9) setting j > N −m and hence

∣∣Dα
xρ

τ
N (x, ξ)

∣∣ ≤ ChN2N |ξ|m−NM
N+|α|
N

N

for x ∈ K and ξ ∈ V , |ξ| > 1. Therefore∣∣〈u, e−i〈 . ,ξ〉ρτN ( . , ξ)〉
∣∣ ≤ ChN2N+µ|ξ|µ+m−NM

N+µ
N

N ≤ ChN |ξ|µ+m−NMN . (2.4.13)

The first term in (2.4.8) is more difficult to estimate. Recall from Remark 2.1.3 that by
assumption N

√
MN is increasing and that there is a constant δ such that N ≤ δ N

√
MN . Lemma
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2.4.2 gives ∣∣DβwτN (x, ξ)
∣∣ ≤ ChNM N−m+|β|

2N
2N |ξ|m−N

≤ ChNM
N−m+|β|

2N
2N Nm−N

≤ ChNM
N−m+|β|

2N
2N δm−NM

m−N
N

N

≤ ChNM
N−m+|β|

2N
2N M

m−N
2N

2N

≤ ChNM
|β|
2N

2N

for N > m, |β| ≤ N and ξ ∈ V , |ξ| > N . Recall that for N ≤ m we have set wτN = Λτ2N = λτ2Neτ .
Hence by the above and (2.4.10) it follows that∣∣DβwτN (x, ξ)

∣∣ ≤ ChNM |β|
2N

2N (2.4.14)

for all N ∈ N, |β| ≤ N and ξ ∈ V , |ξ| > N .
On the other hand, since the components of B(x, ξ) are ultradifferentiable of class {M}

and homogeneous in ξ ∈ V of degree −m we note that it is possible to show similarly to above,
using an analogue to Lemma 2.4.2, the following estimate for N .∣∣Dβ

x

(
wτN (x, ξ)|ξ|mB(x, ξ)

)∣∣ ≤ ChNM |β|
2N

2N |β| ≤ N, ξ ∈ V, |ξ| > N. (2.4.15)

In order to finish the proof of Theorem 2.4.1 we need an additional lemma.

Lemma 2.4.4. Let f ∈ D′(Ω), K be a compact subset of Ω and V ⊂ Rn\{0} a closed cone
such that

WFM f ∩ (K × V ) = ∅.
Furthermore let wN ∈ E(Ω× V ) such that suppwN ⊆ K × V and (2.4.14) holds.

If µ denotes the order of f in a neighbourhood of K then∣∣∣ŵNf(ξ)
∣∣∣ =

∣∣〈wN ( . , ξ)f, e−i〈 . ,ξ〉
〉∣∣ ≤ ChN |ξ|µ+n−NMN−µ−n, (2.4.16)

for N > µ+ n and ξ ∈ Γ, |ξ| > N .

Proof. By Proposition 2.1.4 we can find a sequence (fN )N that is bounded in E ′,µ and
equal to f in some neighbourhood of K and∣∣f̂N (η)

∣∣ ≤ CQNMN

|η|N
η ∈W (2.4.17)

where W is a conic neighbourhood of Γ. Then wNf = wNfN ′ for N ′ = N − µ− n.
If we denote the partial Fourier transform of wN (x, ξ) by

ŵN (η, ξ) =

∫
Ω

e−ixηwN (x, ξ) dx

then obviously (2.4.14) is equivalent to∣∣ηβŵN (η, ξ)
∣∣ ≤ ChNM |β|

2N
2N

for |β| ≤ N , ξ ∈ V , |ξ| > N and η ∈ Rn. Since |η| ≤
√
nmax|ηj | we conclude that

|η|`|ŵN (η, ξ)| ≤ ChNM
`

2N
2N
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for ` ≤ N , η ∈ Rn and ξ ∈ V , |ξ| > N . Hence we obtain(
|η|+M

1
2N

2N

)N ∣∣ŵN (η, ξ)
∣∣ =

N∑
k=0

(
N

k

)
M

k
2N

2N |η|
N−k|ŵN (η, ξ)

∣∣
≤ ChN

N∑
k=0

(
N

k

)
M

k
2N

2N M
N−k
2N

N

≤ ChNM
N
2N

2N

(2.4.18)

if η ∈ Rn, ξ ∈ V and |ξ| > N . Like [45] and [3] we consider

ŵNf(ξ) =
1

(2π)n

∫
ŵN (η, ξ)f̂N ′(ξ − η) dη

=
1

(2π)n

∫
|η|<c|ξ|

ŵN (η, ξ)f̂N ′(ξ − η) dη +
1

(2π)n

∫
|η|>c|ξ|

ŵN (η, ξ)f̂N ′(ξ − η) dη

for some 0 < c < 1. The boundedness of the sequence (fN )N in E ′,ν implies as before that∣∣f̂N (ξ)
∣∣ ≤ C(1 + |ξ|

)µ
.

Hence we conclude that

(2π)n
∣∣∣ŵNf(ξ)

∣∣∣ ≤ ∥∥ŵN ( . , ξ)
∥∥
L1 sup
|ξ−η|<c|ξ|

∣∣f̂N ′(η)
∣∣+ C

∫
|η|>c|ξ|

∣∣ŵN (η, ξ)
∣∣(1 + c−1

)µ(
1 + |η|)µ dη

since |η| ≥ c|ξ| gives |ξ + η| ≤ (1− c−1)|η|.
On the other hand there is a constant 0 < c < 1 such that η ∈ W when ξ ∈ V and

|ξ−η| ≤ c|ξ|. Then |η| ≥ (1− c)|ξ| and we can replace the supremum above by supη∈W |f̂N ′(η)|.
Furthermore by (2.4.18)∥∥ŵN ( . , ξ)

∥∥
L1

=

∫
Rn

∣∣ŵN (η, ξ)
∣∣ dη

≤ ChNM
N
2N

2N

∫
Rn

(
|η|+ 2N

√
M2N

)−N
dη

= ChNM
N
2N

2N

∞∫
0

(
r + 2N

√
M2N

)−N
rn−1 dr

≤ ChNM
N
2N

2N

∞∫
0

(
r + 2N

√
M2N

)−N ′−1
dr

≤ ChNM
N
2N

2N

∞∫
2N√M2N

s−N
′−1 ds

≤ ChNM
N
2N

2N

M
−N

′

2N
2N

N ′

≤ ChNM
µ+n
2N

2N
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if N ≥ µ+ n. Note that (M2) implies that there is a constant δ such that N
√
MN ≤ δN for all

N ∈ N. Thence it follows for ξ ∈ V , |ξ| > N , that

|ξ|N ′
∣∣∣ŵNf(ξ)

∣∣∣ ≤ C1(1− c)−N ′
∥∥ŵN ( . , ξ)

∥∥
L1 sup

η∈W

∣∣f̂N ′(η)
∣∣|η|N ′

+ C2

(
1 + c−1

)N ′+µ ∫
(1 + |η|)µ|η|N ′ |ŵN (η, ξ)| dη

≤ C1h
NM

n+µ
2N

2N QN
′
MN ′ + C2h̃

N ′+µMN ′+µ

≤ C1h
Nδ2N(n+µ)MN ′ + C2h̃

N ′MN ′

≤ ChNMN ′

where we have also used (2.4.17). �

Due to (2.4.15) we can replace wN in (2.4.16) with (wτN |ξ|mB)σ, σ = 1, . . . , ν, and obtain∣∣〈f, e−i〈 . ,ξ〉B( . , ξ)wτN
〉∣∣ ≤ ChN |ξ|µ+n−NMN−µ−n (2.4.19)

for ξ ∈ V , |ξ| > N .
We consider now the sequence (vτN )N = (uτN+m+n+µ)N . If ξ ∈ V , |ξ| ≤ N , then by (2.4.12)

|ξ|N
∣∣v̂τN | ≤ ChNMN .

On the other hand (2.4.8), (2.4.13) and (2.4.19) give

|ξ|N
∣∣v̂τN (ξ)

∣∣ ≤ C1h
N
1 MN+m|ξ|−m + C2h

N
2 MN+µ+m+n|ξ|−n

≤ C1h
N
1 MNN

−m + C2h
N
2 MNN

−n

≤ ChNMN

for ξ ∈ V , |ξ| > N .
Therefore we have shown for all τ = 1, . . . , ν that the bounded sequence (vτN )N ⊂ E ′(Ω)

satisfies

sup
ξ∈V
N∈N

|ξ|N
∣∣vτN (ξ)

∣∣
QNMN

<∞

for some Q > 0. Obviously uτ |U ≡ (vτN )|U and hence

(x0, ξ0) /∈WFM uτ

for all τ = 1, . . . , ν. �

For elliptic operators, i.e. operators P with CharP = ∅, the following holds obviously.

Corollary 2.4.5. If P is elliptic and u ∈ D′ then

WFM Pu = WFM u

for all weight sequences M.

2.5. Uniqueness Theorems

Hörmander [41] and Kawai (see [73]) independently noticed that results like Theorem 2.4.1
in the analytic category can be used to prove Holgrem’s Uniqueness Theorem [40]. We show
here that Theorem 2.4.1 can also be used to give a quasianalytic version of Holgrem’s Uniqueness
Theorem. We follow mainly the presentation in [45].

First recall [44, Theorem 6.1.]:

Proposition 2.5.1. Let I ⊆ R be an interval and x0 ∈ ∂ suppu then (x0,±1) ∈ WFM u
for any quasianalytic weight sequence M.
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As Hörmander noted in [44] Proposition 2.5.1 immediately generalizes to a result in higher
dimensions (c.f. [45][Theorem 8.5.6], see [47] for a similar result):

Theorem 2.5.2. Let M be a quasianalytic weight sequence, u ∈ D′(Ω), x0 ∈ suppu and
f : Ω→ R a function of class {M} with the following properties:

df(x0) 6= 0, f(x) ≤ f(x0) if x0 6= x ∈ suppu

Then we have
(x0,±df(x0)) ∈WFM u.

Proof. If we replace f by f(x)− |x− x0|2 we see that we may assume that f(x) < f(x0)
for x0 6= x ∈ suppu. Furthermore, since df(x0) 6= 0 we can assume that x0 = 0 and f(x) = xn.
Next we choose a neighbourhood U of 0 in Rn−1 so that U × {0} ⊂⊂ Ω. By assumption
suppu ∩ (Ū × {0}) = {0}. Hence there is an open interval I ⊂ R with 0 ∈ I such that

U × I ⊂⊂ Ω & suppu ∩
(
∂U × I

)
= ∅.

If A is an entire analytic function in the variables x′ = (x1, . . . , xn−1) then we consider the
pushforward UA = A∗u (c.f. [27]). By [45, Theorem 8.5.4’] we have that

WFM
(
UA
)
⊆
{

(xn, ξn) ∈ I × R\{0} | ∃x′ ∈ U : (x′, xn, 0, ξn) ∈WFM u
}
.

Note that (x′, xn) above must be close to 0 for xn small.
Assume, e.g., that (0, en) /∈WFM u, en = (0, . . . , 0, 1). Then I can be chosen so small that

(x, en) /∈ WFM u for x ∈ U × I. We conclude that (xn, 1) /∈ WFM UA if xn ∈ I. Proposition
2.5.1 implies that UA = 0 on I since UA = 0 on I ∩ {xn > 0}. That means actually that〈

u|U×I , A⊗ ϕ
〉

= 0

for all ϕ ∈ D(I). Since A was chosen arbitrarily from a dense subset of E(Rn−1) it follows that
u = 0 on U × I. �

In order to give Theorem 2.5.2 a more invariant form we need to recall some facts from [45].

Definition 2.5.3. Let F be a closed subset of a C2 manifold X. The exterior normal set
Ne(F ) ⊆ T ∗X\{0} is defined as the set of all points (x0, ξ0) such that x0 ∈ F and there exists
a real valued function f ∈ C2(X) with df(x0) = ξ0 6= 0 and f(x) ≤ f(x0) when x ∈ F .

In fact, following the remarks in [45, p. 300] we observe that it would be sufficient for f to
be defined locally around x0. Furthermore f could then also be chosen real-analytic in a chart
neighbourhood near x0. If g is C1 near a point x̃ ∈ F and dg(x̃) = ξ̃ 6= 0 then (x̃, ξ̃) ∈ Ne(F ) ⊆
T ∗X \{0}. It is clear that if (x0, ξ0) ∈ Ne(F ) then x0 ∈ ∂F . In fact, if π : T ∗Ω → Ω is the
canonical projection then π(Ne(F )) is dense in ∂F , see [45, Proposition 8.5.8.]. The interior
normal set Ni(F ) ⊆ T ∗X\{0} consists of all points (x0, ξ0) with (x0,−ξ0) ∈ Ne(F ). The normal
set of F is defined as N(F ) = Ne(F ) ∪Ni(F ) ⊆ T ∗X\{0}.

In this notation Theorem 2.5.2 takes the following form.

Theorem 2.5.4. Let M be a quasianalytic weight sequence and u ∈ D′(Ω). Then

N(suppu) ⊆WFM u

Theorem 2.5.4 combined with Theorem 2.4.1 implies

Theorem 2.5.5. LetM be a quasianalytic weight sequence, P a partial differential operator
with EM-coefficients and u ∈ D′(Ω) a solution of Pu = 0. Then

N(suppu) ⊆ CharP,

i.e., the principal symbol pm of P must vanish on N(suppu).

In fact, we can now derive the quasianalytic Holgrem Uniqueness Theorem. We recall that
a C1-hypersurface M is characteristic at a point x with respect to a partial differential operator
P , iff for a defining function ϕ of M near x we have that (x, dϕ(x)) ∈ CharP .
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Corollary 2.5.6. Let M be quasianalytic and P a partial differential operator with EM-
coefficients. If X is a C1-hypersurface in Ω that is non-characteristic at x0 and u ∈ D′(Ω) a
solution of Pu = 0 that vanishes on one side of X near x0 then u ≡ 0 in a full neighbourhood
of x0.

In fact, (c.f. Zachmanoglou [82]) it is possible to reformulate Corollary 2.5.6

Corollary 2.5.7. Let M be quasianalytic and P a differential operator with coefficients in
EM(Ω). Furthermore let F ∈ EM(Rn) be a real-valued function of the form

F (x) = f
(
x′
)
− xn, x′ = (x1, . . . , xn−1)

where f ∈ EM(Rn−1) and suppose that the level hypersurfaces of F are nowhere characteristic
with respect to P in Ω. Set also Ωc = {x ∈ Ω | F (x) < c} for c ∈ R. If u ∈ D′(Ω) is a solution
of P (x,D)u = 0 and there is c ∈ R such that Ωc ∩ suppu is relatively compact in Ω, then u = 0
in Ωc.

Proof. We set for c ∈ R
ωc =

{
x ∈ Ω | F (x) = c

}
.

Note that each c ∈ R ωc is not relatively compact in Ω. Therefore also Ωc is not relatively
compact in Ω for any c since ∂Ωc = ωc.

By assumption there is a c ∈ R such that K = suppu ∩ Ωc is compact in Ω. In particular,
K is bounded in Ω. Hence there has to be c̃ < c such that

K ⊆
{
x ∈ Ω | c̃ ≤ F (x) ≤ c

}
.

Let c1 < c be the greatest real number such that the inclusion above holds for c̃ = c1. Since K
is compact there is a point p ∈ ∂K such that F (p) = c1. It follows that p ∈ ∂ suppu∩ωc1 . Thus
we can apply Corollary 2.5.6 because ωc1 is nowhere characteristic for P . Hence u vanishes in
a full neighbourhood of p. This contradicts the choice of c1. We conclude that u has to vanish
on Ωc. �

Note that in [43] Hörmander used the analytic version of Corollary 2.5.7 to prove Holgrem’s
Uniqueness Theorem.

Remark 2.5.8. We have formulated our results for scalar operators on open sets of Rn but
they remain of course valid on ultradifferentiable manifolds. Actually, all the conclusions in this
section hold even for determined systems of operators and vector-valued distributions. Indeed,
we have only to verify that Theorem 2.5.2 holds also for distributions with values in Cν , but
this is trivial: If f(x) ≤ f(x0) for x ∈ suppu then f(x) ≤ f(x0) for all x ∈ suppuj and any
1 ≤ j ≤ n, since suppu =

⋃ν
j=1 suppuj . Hence Theorem 2.5.2 implies

(x0,±df(x0)) ∈
ν⋂
j=1

WFM uj ⊆WFM u.

Following an idea of Bony ([16, 17]) it is possible to generalize the results above. For the
formulation we need some additional notation. Consider a smooth real valued function p on
T ∗Ω. The Hamiltonian vector field Hp of p is defined by

Hp =

n∑
j=1

(
∂p

∂ξj

∂

∂xj
− ∂p

∂xj

∂

∂ξj

)
.

An integral curve of Hp, i.e. a solution of the Hamilton-Jacobi equations

dxj
dt

=
∂p

∂ξj
(x, ξ),

dξj
dt

= − ∂p

∂xj
(x, ξ),
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j = 1, . . . , n, is called a bicharacteristic if p vanishes on it. If q is another smooth real valued
function on T ∗Ω then the Poisson bracket is defined by {p, q} := Hp(q) or in coordinates

{p, q} =

n∑
j=1

(
∂p

∂ξj

∂q

∂xj
− ∂p

∂xj

∂q

∂ξj

)
.

See [36] or [45] for more details.
We continue by recalling a result of Sjöstrand [75] (see also [45]).

Theorem 2.5.9. Let F be a closed subset of Ω and suppose that p ∈ E(T ∗Ω\{0}) is real
valued and vanishes on Ne(F ). If (x0, ξ0) ∈ Ne(F ) then the bicharacteristic t 7→ (x(t), ξ(t)) with
(x(0), ξ(0)) = (x0, ξ0) stays for |t| small in Ne(F ).

The analogous statement is of course also true for Ni(F ) replacing Ne(F ). It follows

Corollary 2.5.10 (Bony). Let F be a closed subset of Ω and set

NF :=
{
p ∈ E(T ∗Ω\{0}) | p ≡ 0 on N(F )

}
.

Then NF is an ideal in E(T ∗Ω\{0}) that is closed under Poisson brackets.

We obtain the quasianalytic version of a result of Bony [16, 17].

Theorem 2.5.11. Let M be quasianalytic, P a differential operator with EM-coefficients on
Ω and Π the Poisson algebra that is generated by all functions f ∈ E(T ∗Ω\{0}) that vanish on
CharP .

If u ∈ D′(Ω) is a solution of the homogeneous equation Pu = 0 then all functions in Π have
to vanish on N(suppu).

Corollary 2.5.12. If the elements of Π have no common zeros and u vanishes in a neigh-
bourhood of a point p0 ∈ Ω then u must vanish in the connected component of Ω that contains
p0.

We continue by taking a closer look at Theorem 2.5.9. Let π : T ∗Ω → Ω be the canonical
projection and (x0, ξ0) ∈ T ∗Ω\{0}. If q is a smooth function on T ∗Ω\{0} that vanishes on
N(F ), F ⊆ Ω closed, and λ(t) the bicharacteristic through (x0, ξ0) then we conclude that the
bicharacteristic curve γ(t) = π ◦ λ must stay in ∂F for small t in view of the remarks before
Theorem 2.5.4.

Now suppose that Q is a real vector field on Ω and q its symbol. If we denote by γ the
integral curve of Q through x0 and by λ the bicharacteristic of q through (x0, ξ0) where (x0, ξ0)
then it is trivial that γ = π ◦ λ.

Definition 2.5.13. We say that a partial differential operator P on Ω with EM-coefficients
isM-admissible iff there are ultradifferentiable real-valued vector fields Q1, . . . , Qd with symbols
q1, . . . , qd such that each qj vanishes on CharP .

Following the approach of Sjöstrand [75] we can generalize results of Zachmanoglou [83]
(c.f. also [17]) to the quasianalytic setting.

Proposition 2.5.14. Let M be quasianalytic and P be an M-admissible operator. If L =
L(Q1, . . . , Qd) is the Lie algebra generated by the vector fields Qj, j = 1, . . . , d, ϕ ∈ C1(Ω,R)
near a point x0 ∈ Ω such that (x0, ϕ

′(x0)) ∈ CharP and u ∈ D′(Ω) a solution of Pu = 0 such
that near x0 we have x0 ∈ suppu ⊆ {ϕ ≥ 0}. Then each Q ∈ L is tangent to {ϕ = 0} at x0

and the local Nagano leaf γx0(L) is contained in suppu.

Proof. By assumption all Q1, . . . , Qd are tangent to {ϕ = 0} at x0 and hence also all
Q ∈ L. From the remarks before Definition 2.5.13 and Theorem 2.5.4 we see that all integral
curves of the vector fields in L must be contained in ∂ suppu for a small neighbourhood of
x0. Inspecting the construction of the representative of the local Nagano leaf in the proof of
Theorem 1.2.6 we see that γx0(L) ⊆ suppu near x0. �
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In fact, we have the following global theorem (see for the analytic case [83], c.f. [17, Theorem
2.4.])

Theorem 2.5.15. Let M be quasianalytic and P an M-admissable differential operator. If
u ∈ D′(Ω) is a solution of Pu = 0 and p0 /∈ suppu then every integral curve of the vector fields
Q1, . . . , Qd through p0 stays in Ω \ suppu.

Proof. Let Γ = Γp0(L) be the global Nagano leaf of L = L(Q1, . . . , Qd) through p0 and
suppose that ∂ suppu ∩ Γ 6= ∅. Then there has to be a point q0 ∈ Γ ∩ ∂ suppu such that for all
neighbourhoods V ⊆ Ω of x0 we have(

Γ ∩ V
)
∩
(
Ω \ suppu

)
6= ∅.

Let V small enough such that Γ ∩ V is the representative of the local Nagano leaf of L at q0

constructed in the proof of Theorem 1.2.6. Then

Γ \ suppu ∩ V 6= ∅.
Thence there is a vector field X ∈ L such that if γ(t) = exp tX is the integral curve of X
through q0 then γ(0) = q0 and γ(1) = q1 ∈ V \suppu. Possibly shrinking V and applying an
ultradifferentiable coordinate change in V we may assume that q0 = 0, q1 = (0, . . . , 0, 1) and

X =
∂

∂xn
.

We note that in these new coordinates the assumption on P can be stated in the following way.
Let ξ ∈ Rn with ξn 6= 0 then pm(x, ξ) 6= 0 for all x ∈ V . There is also a neighbourhood V1 ⊆ V
of q1 such that u vanishes on V1.

We adapt the proof of [82, Theorem 1]. Let r > 0 and δ > 0 small enough so that

U =
{
x ∈ Rn | |x′| < r, −δ < xn < 1

}
is contained in V and {

x ∈ Rn | |x′| < r, xn = 1
}
⊆ V1.

We consider the real-analytic function

F (x) = (1 + δ)
|x′|2

r2
− δ − xn.

The normals of the level hypersurfaces of F are always nonzero in the direction of the n-th unit
vector. It follows that the level hypersurfaces are everywhere non-characteristic with respect to
P in V . Set

U1 =

{
x ∈ U : F (x) < −δ

2

}
and note that if x ∈ U1 then xn > −δ/2. It is easy to see that U1∩suppu is relatively compact in
U . We conclude that u = 0 in U1 by Corollary 2.5.7. That is a contradiction to the assumption
q0 ∈ ∂ suppu. �

Example 2.5.16. If Q1, . . . , Qd are real valued vector fields with EM-coefficients, then the
operators

P0 = Q1 + iQ2

Pk =
d∑
j=1

Q2k
j k ∈ N

are M-admissible.
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CHAPTER 3

CR manifolds of Denjoy-Carleman type

In this chapter M is always going to denote an ultradifferentiable (sub-)manifold of class
{M}, where M is a regular weight sequence. Here though we may also allow to let M = ∅ be
the empty sequence, i.e. EM = E . In this particular case this chapter might not contain any new
results, c.f. the references given in the individual sections for the results in the smooth case.

3.1. Introduction

In this section we rapidly recall the basic definitions of CR geometry, for more details see [8].
We begin with the embedded case. LetM ⊆ CN be a real submanifold of CN , then TpM ⊆ TpCN
(p ∈ M) as real vector spaces, but TpCN = R2N ∼= CN inherits a complex structure from CN .
Hence there is a maximal complex subspace T cpM of TpCN such that T cpM ⊆ TpM ⊆ TpCN .

Definition 3.1.1. A submanifold M ⊆ CN is said to be CR if the mapping

M 3 p 7−→ dimC T
c
pM

is constant. The CR dimension of M is then defined as dimCRM := dimC T
c
pM .

Note that any real hypersurface M ⊆ CN is CR. An arbitrary submanifold M ⊆ CN of
codimension d is said to be generic iff it can be realized as the intersection of d real hypersurfaces
whose complex tangent spaces are in general position as complex vector spaces. The manifold
M is said to be generic at a point p ∈ M iff there is a neighbourhood U of p in CN such that
M ∩ U is generic. We recall that if M ⊆ CN is a generic submanifold of CR dimension n and
real codimension d then n+ d = N .

It is easy to see that for a CR manifold M we can consider the complex tangent bundle
T cM ⊆ TM . However the complex tangent bundle, although being a vector bundle over
C, is realized as a subbundle of the real bundle TM . Often it is more convenient to take a
different approach for the definition of CR manifolds. For this end consider the complexified
tangent bundle CTM = C ⊗ TM of a manifold M ⊆ CN . Furthermore let p ∈ M and set
CTpCN = T 1,0

p CN ⊕ T 0,1
p CN . If zj = xj + iyj , j = 1, . . . , N denote the coordinates of CN then

the spaces T 1,0
p CN and T 0,1

p CN are generated by ∂/∂zj |p and ∂/∂z̄j |p, j = 1, . . . , N , respectively.

If we set Vp = CTpM ∩ T 0,1
p CN then dimC Vp = dimC T

c
pM . If M is a CR submanifold, then

V =
⊔
p Vp is said to be the CR bundle associated to M . It is easy to see that V is involutive, i.e.

[V,V] ⊆ V, and V ∩ V̄ = {0}. Using this it is possible to generalize the notion of CR manifold.

Definition 3.1.2. Let M be a manifold (not necessarily embedded) and V ⊆ CTM a
subbundle. We say that (M,V) is an abstract CR manifold iff V is an involutive bundle and
V ∩ V̄ = {0}. The CR dimension of M is defined as dimCRM = dimV. If dimRM = m + n
then the CR codimension is given by d = m− n.

If M is a CR manifold of class {M} then a CR vector field L is an ultradifferentiable section
of V, i.e. L ∈ EM(M,V). If p ∈ M and n = dimCRM then a local basis of CR vector fields
near p consists of n CR vector fields L1, . . . , Ln defined near p that are linearly independent.
We also set Lα = Lα1

1 · · ·Lαnn for α ∈ Nn0 .
A CR function or CR distribution is a function or distribution on M that is annihilated by

all CR vector fields. We refer to T ′M := V⊥ as the holomorphic cotangent bundle. T ′M is a
complex vector bundle on M with fiber dimension N = n + d. Its ultradifferentiable sections
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are called holomorphic forms. The real subbundle T 0M ⊆ T ′M that consists of the real dual
vectors that vanish on V ⊕ V̄ is called the characteristic bundle of M and its sections of class
{M} are the characteristic forms on M . Note that if L is a CR vector field, we have generally
that CharL ⊆ T 0M , hence we obtain for any CR distribution u that WFM u ⊆ T 0M .

A C1-mapping H between two CR manifolds (M,V) and (M ′,V ′) is CR iff for all p ∈M we

have H∗(Vp) ⊆ V ′H(p). Here H∗ denotes the tangent map of H. If M ′ ⊆ CN ′ is an embedded

CR submanifold and Z ′ = (Z ′1, . . . , Z
′
N ′) some set of local holomorphic coordinates in CN ′ then

Hj = Z ′j ◦H, 1 ≤ j ≤ N ′ is a CR function on the CR manifold M for all 1 ≤ j ≤ N ′.
We continue with a first look at specific results about ultradifferentiable CR manifolds.

Proposition 3.1.3. Let M ⊆ CN be a generic manifold of class {M} of codimension d
and p0 ∈ M . If n denotes the CR dimension of M then there are holomorphic coordinates
(z, w) ∈ Cn × Cd defined near p0 that vanish at p0 and a function ϕ ∈ EM(U × V,Rd) defined
on a neighbourhood U × V of the origin in R2n × Rd with ϕ(0) = 0 and ∇ϕ(0) = 0, such that
near p0 the manifold M is given by

Imw = ϕ(z, z̄,Rew). (3.1.1)

Proof. We follow the proof of [8] for the result in the smooth category.
After an affine transformation we may assume that p0 = 0. Let ρ = (ρ1, . . . , ρd) be a defining

function for M near 0. The complex differentials ∂ρ1, . . . , ∂ρd are linearly independent over C
near 0 since M is generic. For each k ∈ {1, . . . , d} we write

ρk(Z, Z̄) =

N∑
r=1

(
akrxr + bkryr

)
+O(2)

where O(2) denotes terms that vanish at least of quadratic order at 0. Since ρk is real-valued,
the coefficients akr and bkr have to be real numbers. We define a linear form `k on CN by

`k(Z) =
N∑
r=1

(bkr + iakr)Zr

and thus the above equation becomes

ρk(Z, Z̄) = Im `k(Z) +O(2).

The linear forms `k, k = 1, . . . , d are linearly indepedent over C since the differentials ∂ρk,
k = 1, . . . , d, are C-linearly indepedent. After renumbering the coordinates Zj we can assume
that

Z1, . . . , Zn, `1, . . . , `k

are linearly indepedent as linear forms over C.
We define new holomorphic coordinates (z, w) near (0, 0) ∈ Cn+d by

zj = Zj 1 ≤ j ≤ n
wk = `k(Z) n+ 1 ≤ k ≤ N = n+ d.

In these new coordinates we have, if we set ρ̃(z, z̄, w, w̄) = ρ(Z(z, w), Z(z, w)),

ρ̃(z, z̄, w, w̄) = Imw +O(2) (3.1.2)

and therefore we can locally near 0 solve the equation

ρ̃(z, z̄, w, w̄) = 0 (3.1.3)

with respect to t = Imw according to Theorem 1.1.6. We obtain an ultradifferentiable solution
ϕ of class {M} defined near 0 ∈ R2n+d = Cn × Rd and valued in Rd. The properties ϕ(0) = 0
and ∇ϕ(0) = 0 are easy consequences of (3.1.2) and (3.1.3). We also see that in view of (3.1.2)
and

ρ̃(z, z̄, s+ iϕ(z, z̄, s), s− iϕ(z, z̄, s)) = 0
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the function ψ(z, z̄, s, t) = t − ϕ(z, z̄, s) is also a defining function for M near 0. This finishes
the proof. �

Remark 3.1.4. We note that Proposition 3.1.3 can be used to give a special local basis of
CR vector fields. Indeed, let M ⊆ CN be a generic submanifold of codimension d that is given
locally near a point p0 ∈ M by a defining function ρ = (ρ1, . . . , ρd). If we use the coordinates
(z, w) ∈ Cn+d from above then we can formally view ρ as a function on the variables (z, z̄, w, w̄).
Let ρz, ρz̄, ρw and ρw̄ the Jacobi matrices of ρ with respect to z, z̄, w and w̄ respectively. We
can assume that ρw and ρw̄ are invertible in a neighbourhood of p0. According to [8, §1.6] a
local basis of CR vector fields near p0 is given by

(L) =
(
∂z̄
)
− τρz̄

τρw̄
−1
(
∂w̄
)

where we have used the following notation

(L) =

L1
...
Ln

 ,
(
∂z̄
)

=

∂z̄1...
∂z̄n

 ,
(
∂w̄
)

=

∂w̄1

...
∂w̄d

 .

If we use the defining function ρ = t − ϕ induced by (3.1.1) then this local basis is of the
following form

Lj =
∂

∂z̄j
−

d∑
µ=1

2bjµ
∂

∂w̄µ

=
∂

∂z̄j
−

d∑
µ=1

bjµ
∂

∂sµ

with

bjµ = i
detBj

µ

det Φ
.

Here we used

Φ = ρw̄ =

1 + i(ϕ1)s1 · · · i(ϕ1)sd
...

. . .
...

i(ϕd)s1 · · · 1 + i(ϕd)sd


and Bj

µ is the following matrix. Let δµν be the Kronecker delta defined by δνν = 1 and δµν = 0
otherwise and set

(ϕ)sν =

δ1ν + i(ϕ1)sν
...

δdν + i(ϕd)sν

 and (ϕ)z̄j =

(ϕ1)z̄j
...

(ϕd)z̄j

 .

Then

Bjµ =
(
(ϕ)s1 · · · (ϕ)sµ−1 (ϕ)z̄j (ϕ)sµ+1 · · · (ϕ)sd

)
.

In particular, if M ⊆ Cn+1 is a real hypersurface of class {M} locally given by the equation
Imw = ϕ(z, z̄,Rew) where ϕ ∈ EM then the vector fields

Lj =
∂

∂z̄j
− 2i

ϕz̄j
1 + iϕs

∂

∂w̄
j = 1, . . . , n

form a local basis of the CR vector fields of M . When we use the local coordinates (z, z̄, s) of
M induced by (3.1.1) then this basis takes the form

Lj =
∂

∂z̄j
− i

ϕz̄j
1 + iϕs

∂

∂s
j = 1, . . . , n.

We close the section with a first result on the structure of ultradifferentiable CR manifolds.
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Definition 3.1.5. Let M ⊆ CN a CR submanifold. The CR orbit Orbp of p ∈ M is the
local Sussman orbit of p in M relative to the set of ultradifferentiable sections of T cM .

Note that if p0 ∈ M then by construction T cpOrbp0 = T cpM for all p ∈ Orbp0 thence Orbp0

is the germ of a CR submanifold of CN of CR dimension n.

Definition 3.1.6. Let M ⊆ CN a CR manifold and p0 ∈M .

(1) We say that M is minimal at p0 iff there is no submanifold S ⊆ M through p0 such
that T cpM ⊆ TpS for all p ∈ S and dimR S < dimRM .

(2) The manifold M is said to be of finite type at p0 iff there are vector fields X1, . . . , Xk ∈
EM(M,T cM) such that the Lie algebra generated by the X1, . . . , Xk evaluated at p0

is isomorphic to Tp0M .

It is well known that finite type implies minimality and that the two notions coincide for real-
analytic CR manifolds, c.f. [8]. We are going to show that this fact holds also for quasianalytic
CR submanifolds.

Theorem 3.1.7. Let M be a quasianalytic weight sequence and M ⊆ CN an ultradifferen-
tiable CR manifold of class {M}. The following statements are equivalent:

(1) M is minimal at p0.
(2) dimR Orbp0 = dimRM
(3) M is of finite type at p0.

Proof. The equivalence of (1) and (2) holds even ifM is non-quasianalytic. Following the
arguments in [8, §4.1.] we see that, if we assume that M is nonminimal then dimR Orbp0 <
dimRM . On the other hand if dimR Orbp0 < dimRM then any representative W of Orbp0 is
by the remark below Definition 3.1.5 a submanifold of M and T cpW = T cpM for all p ∈ W . It
remains to prove that (2) implies (3).

By Corollary 1.2.8 we have that Orbp0 = γp0(g), where g is the Lie algebra generated by the
ultradifferentiable sections of T cU with U being a sufficiently small neighbourhood of p0 and
γp0(g) the local Nagano leaf of g at p0. Hence dimR Orbp0 = dimR γp0(g) = dimR g(p0).

On the other hand M is of finite type at p0 if and only if dimR g(p0) = dimRM . �

We shall note we could have shown the equivalence of (1) and (2) by citing the corre-
sponding proof in the smooth category in [8, Theorem 4.1.3.]. Indeed, let M ⊆ CN be an
ultradifferentiable CR submanifold of class {M} and p0 ∈M . Then we can consider M also as

an smooth CR manifold and define similar to [8] Õrbp0 as the Sussman Orbit relative to the
smooth sections of T cM near p0.

However, if X1, . . . , Xn is a local basis of EM(M,T cM) near p0 then we have that Orbp0

is generated by D = {X1, . . . , Xn}, c.f. Theorem 1.2.5. On the other hand, since the vector

fields X1, . . . , Xn constitute also a local basis of E(M,T cM) near p0 we obtain also that Õrbp0

is generated by D. It follows that Orbp0 = Õrbp0 as germs of manifolds at p0.
The next example is a straightforward generalization of [8, Example 1.5.16.].

Example 3.1.8. Let M be a non-quasianalytic weight sequence and ψ ∈ EM(R) a real
valued function such that ψ(y) = 0 for y ≤ 0 and ψ(y) > 0 for y > 0. We define a real
hypersurface in C2 by

M =
{

(z, w) ∈ C2 | Imw = ϕ(Im z)
}
.

Then M is minimal at the origin but not of finite type at 0. Indeed, if M is non-minimal at 0
then according to [8, Theorem 1.5.15] there is a holomorphic hypersurface S ⊆M through the
origin. Since ∂/∂z is tangent to S at 0 it follows that S is given near the origin by the defining
equation w = h(z) where h is a holomorphic function defined in some neighbourhood of 0 ∈ C
with h(0) = 0. We conclude that due to S ⊆M we necessarily have that

h(z)− h(z) = 2iψ(Re z)
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in some neighbourhood of 0. It follows that ψ has to be real-analytic near 0 which contradicts
the definition of ψ.

Since ψ is flat at the origin, it follows that M cannot be of finite type at 0.

3.2. An ultradifferentiable reflection principle

The aim of this section is to prove generalizations of results of Bernhard Lamel and Berhanu-
Xiao. Lamel proved that a finitely nondegenerate CR mapping that extends holomorphically
to a wedge between two generic submanifolds is real analytic if the manifolds are real analytic
([52]) and smooth if the manifolds are both smooth ([53]). Our main result states that if the
two CR manifolds are both ultradifferentiable of class {M} then H has to be ultradifferentiable
of the same class {M}. We begin with recalling the definition of finite nondegeneracy of a CR
map.

Definition 3.2.1. Let M be an abstract CR manifold and M ′ ⊆ CN ′ a generic submanifold.
Furthermore let ρ′ = (ρ′1, . . . , ρ

′
d′) be a defining function of M ′ near a point q0 ∈M ′, L1, . . . , Ln

a local basis of CR vector fields on M near p0 ∈ M and H : M → M ′ a Cm-CR mapping with
H(p0) = q0.

For 0 ≤ k ≤ m define an increasing sequence of subspaces Ek(p0) ⊆ CN ′ by

Ek(p0) := spanC

{
Lα

∂ρ′

∂Z ′
(
H(Z), H(Z)

)
|Z=p0 : 0 ≤ |α| ≤ k, 1 ≤ l ≤ d′

}
.

We say that H is k0-nondegenerate at p0 (0 ≤ k0 ≤ m) iff Ek0−1(p0) ( Ek0(p0) = CN ′ .

Furthermore if Γ ⊆ Rd is an open convex cone, p0 ∈M and U ⊆ CN an open neighbourhood
of p0 then a wedge W with edge M centered at p0 is an open subset of the form W := {Z ∈ U |
ρ(Z, Z̄) ∈ Γ}, where ρ is a local defining function of M .

Theorem 3.2.2. Let M ⊆ CN and M ′ ⊆ CN ′ be two generic ultradifferentiable submanifolds
of class {M}, p0 ∈ M , p′0 ∈ M ′ and H : (M,p0) → (M ′, p′0) a Ck0-CR mapping that is k0-
nondegenerate at p0. Suppose furthermore that H extends continuously to a holomorphic map
in a wedge W with edge M . Then H is ultradifferentiable of class {M} in a neighbourhood of
p0.

Proof. Since the assertion of the theorem is local, we are going to work on a neighbourhood
Ω ⊆ CN of p0. If Ω is small enough then by Proposition 3.1.3 there are open neigbourhoods
U ⊆ Cn and V ⊆ Rd of the origin and a function ϕ ∈ EM(U × V,Rd) with ϕ(0, 0) = 0 and
∇ϕ(0, 0) = 0 such that

M ∩ Ω =
{

(z, w) ∈ Ω | Imw = ϕ(z, z̄,Rew)
}
.

From now we denote M ∩ Ω by M . If we choose U and V to be small enough we can consider
the diffeomorphism

Ψ : U × V −→ M

(z, s) 7−→ (z, s+ iϕ(z, z̄, s)).

If we shrink the neighbourhoods U, V a little bit (such that ϕ ∈ EM(U×V ,Rd)) we can extend
the mapping Ψ M-almost analytically in the s-variables, i.e. there exists a smooth function
Ψ̃ : U × V ×Rd → CN such that Ψ̃|U×V×{0} = Ψ and for each component Ψ̃k, k = 1, . . . , N , of

Ψ̃ we have ∣∣∣∣∂Ψ̃k

∂w̄′j
(z, z̄, s, t)

∣∣∣∣ ≤ ChM(γ|t|) j = 1, . . . , d, (3.2.1)

for some constants C, γ > 0. Here w′ = s+ it ∈ V + iRd. We see that there is some r > 0 such
that Ψ̃|U×V×Br(0) is a diffeomorphism.
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By assumption H = (H1, . . . ,HN ′) extends continuously to a holomorphic mapping on a
wedge W near 0. If we shrink W we may assume that ∂Hj , j = 1, . . . , N ′, is bounded on W.
By definition

W =
{
Z ∈ Ω0 | ρ(Z, Z̄) ∈ Γ̃

}
for a neighbourhood Ω0 of the origin in CN and an open acute cone Γ̃ ∈ Rd. If we shrink U, V ,
when necessary, and choose a suitable open and acute cone Γ, we achieve that

Ψ̃
(
U × V × Γδ

)
⊂ W

for some r ≥ δ > 0. Note that Ψ̃(U × V × Γδ) is open in CN . For each j = 1, . . . , N ′ set

hj = Hj ◦ Ψ̃ and uj = Hj ◦Ψ. Since

∂hj
∂w̄′k

=
N∑
`=1

∂Hj

∂Z`

∂Ψ̃`

∂w̄′k
j = 1, . . . , N ′, k = 1, . . . , d,

and ∂Hj is bounded, each function hj is M-almost analytic on U × V × Γδ due to (3.2.1) and

extends uj ∈ Ck0(U × V ). Hence Theorem 2.2.1 implies

WFM uj ⊆
(
U × V

)
×
(
R2n × Γ◦

)
\{0}. (3.2.2)

If Lj , j = 1, . . . , n, is a basis of the CR vector fields on M = M ∩Ω, then Λj = Ψ∗Lj defines
a CR structure on U × V and Λjuk = 0 for j = 1, . . . , n and k = 1, . . . , N ′.

Let ρ′ be a defining function of M ′ near p′0 = 0 ∈ CN ′ . Then there are ultradifferentiable
functions Φ`,α(Z ′, Z̄ ′,W ) for |α| ≤ k0, ` = 1, . . . , d′, defined in a neighbourhood of {0}×CK0 ⊆
CN ′ × CK0 and polynomial in the last K0 = N ′ · |{α ∈ Nn0 | |α| ≤ k0}| variables such that

Λα
(
ρ′` ◦ u

)
(z, z̄, s) = Φ`,α

(
u(z, z̄, s), ū(z, z̄, s),

(
Λβū(z, z̄, s)

)
|β|≤k0

)
= 0 (3.2.3)

and

Λαρ′`,Z′
(
u, ū

)
(0, 0, 0) = Φ`,α,Z′

(
0, 0, (Λβū(0, 0, 0))|β|≤k0

)
Since H is k0-nondegenerate there are multi-indices α1, . . . , αN

′
and `1, . . . , `N

′ ∈ {1, . . . , d′}
such that if we set

Φ =
(
Φ`1,α1 , . . . ,Φ`N′ ,αN′

)
the matrix ΦZ′ is invertible. Hence by Theorem 1.1.12 there is a smooth function φ =
(φ1, . . . , φN ′) defined in a neighbourhood of (0, (Λβū(0, 0, 0))|β|) in CN ′ × CK0 such that, if
we shrink U × V accordingly,

uj(z, z̄, s) = φj
(
u(z, z̄, s), ū(z, z̄, s), (Λβū(z, z̄, s))|β|≤k0

)
(z, s) ∈ U × V, j = 1, . . . , N ′

and (1.1.6) holds. If we further shrink U × V and δ and choose Γ′ ⊂⊂ Γ appropriately we see
that

gj(z, z̄, s, t) = φj
(
h(z, z̄, s,−t), h̄(z, z̄, s,−t), (h̃`,β(z, z̄, s, t)`∈{1,...,N ′};|β|≤k0

)
(3.2.4)

is well defined for t ∈ −Γ′δ. Here h̃j,β is the M-almost analytic extension of Λβūj on U × V ×
(−Γ′δ), which exists due to (3.2.2), (2.4.3), Proposition 2.1.5 and Theorem 2.2.4. It is also easy
to see that h̄(z, z̄, s,−t) is M-almost analytic on U × V × (−Γ′δ). We have that

∂gj
∂w̄′`

=
N ′∑
k=1

∂φj
∂Z ′k

∂hk
∂w′`

+
N ′∑
k=1

∂φj
∂Z̄ ′

∂h̄

∂w′`
+

N ′∑
k=1

∑
|β|≤k0

∂φj
∂Wk,β

∂h̃k,β
∂w′`

for j = 1, . . . , N ′ and ` = 1, . . . , d. Note that we can choose U × V and Γ′δ so small that all

functions appearing on the right-hand side are uniformly bounded. Hence, since ∂w′` h̄ = ∂w̄′`h,

gj is an M-almost analytic extension on U × V × (−Γ′δ) of uj due to (1.1.6) and thus

WFM uj ⊆
(
U × V

)
×
(
Rn × (Γ′ ∪ −Γ′)◦

)
\{0} =

(
U × V

)
×
(
Rn\{0} × {0}

)
.
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W M

Ψ−1

U ×W
−Γ′

Γ′

On the other hand, since each uj is CR we have that WFM uj |0 ⊆ {0}×Rd \{0} and we de-
duce that in fact WFM uj |0 = ∅ for all j = 1, . . . , N ′. Hence the mapping H is ultradifferentiable
of class {M} near p0. �

If we recall the well-known result of Tumanov [80] which states that any CR function on a
minimal CR submanifold M extends to a holomorphic function on a wedge with edge M , then
we obtain the following corollary.

Corollary 3.2.3. Let M ⊆ CN and M ′ ⊆ CN ′ generic submanifolds of class {M}, p0 ∈
M , p′0 ∈ M ′, M minimal at p0 and H : (M,p0) → (M ′, p′0) a Ck0-CR mapping that is k0-
nondegenerate at p0. Then H is ultradifferentiable of class {M} in some neighbourhood of
p0.

A CR manifold M is said to be k0-nondegenerate, as introduced in [5], iff id : M → M is
k0-nondegenerate. For a discussion of this nondegeneracy condition see [8] or [31]. We note
here only the fact that any CR diffeomorphism between two k0-nondegenerate CR manifolds is
k0-nondegenerate. This leads to the following.

Corollary 3.2.4. Let M ⊆ CN and M ′ ⊆ CN ′ generic submanifolds of class {M} that are
k0-nondegenerate at p0 ∈M and p′0 ∈M ′, respectively. Furthermore assume that M is minimal
at p0 and let H : M → M ′ a CR diffeomorphism that is Ck0 near p0 and satisfies H(p0) = p′0.
Then H has to be ultradifferentiable of class {M} near p0.

Recently Berhanu-Xiao [10] showed that it is possible to slightly weaken the prerequisites
of the smooth reflection principle of Lamel. In particular, the source manifold M can be chosen
to be an abstract CR manifold. Using the methods developed previously we can also generalize
this result to the ultradifferentiable category.

Theorem 3.2.5. Let (M,V) be an abstract CR manifold and M ′ ⊆ CN ′ be a generic sub-
manifold, both of class {M}. Furthermore let p0 ∈M , H : M →M ′ a Ck0-CR mapping that is
k0-nondegenerate at p0 and there is a closed acute cone Γ ⊆ Rd such that WFMH|p0 ⊆ {0}×Γ.
Then H is ultradifferentiable of class {M} near p0.

Proof. Since the assertation is local we will work on a small chart neighbourhood Ω =
U ×V ×W ⊆ Rn×Rn×Rd of M of p0 = 0. Here n denotes the CR-dimension of M whereas d
is the CR-codimension of M . We use coordinates (x, y, s) on Ω and write z = x+ iy. In these
coordinates a local basis of the CR vector fields of M is given by

Lj =
∂

∂z̄j
+

n∑
k=1

ajk
∂

∂zk
+

d∑
α=1

bjα
∂

∂sα
j = 1, . . . , n.
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From the assumptions we conclude that if Ω is small enough that there is an open, convex cone
Γ1 ⊆ RN \{0} such that

WFMH =
N ′⋃
j=1

WFMHj ⊆ Ω× Γ◦1 (3.2.5)

due to the closedness of WFMH in T ∗M\{0}. If we further shrink Ω (resp. U , V and W ) and
choose an open convex cone Γ2 ⊆ RN \{0} such that Γ2 ⊆ Γ1 ∪ {0} we have by Theorem 2.2.4

that there is an M-almost extension F̃ with slow growth of H onto Ω × Γ2. If we now choose
an open convex cone Γ3 ⊆ Rd\{0} with {0} × Γ3 ⊆ Γ2 we infer that

F := F̃ |Ω×({0}×Γ3)

is an M-almost analytic function on U × V ×W × Γ3 with values in CN ′ and

lim
Γ33t→0

F ( . , . , . , t) = H

in the sense of distributions.
Let ρ′ = (ρ′1, . . . , ρ

′
N ′) be an ultradifferentiable defining function of M ′ near p′0 = H(p0).

As before in the proof of Theorem 3.2.2 we conclude that there are ultradifferentiable functions
Φ`,α(Z ′, Z̄ ′,W ) for |α| ≤ k0, ` = 1, . . . , d′, defined in a neighbourhood of {0}×CK0 ⊂ CN ′×CK0

and polynomial in the last K0 = N ′|{α ∈ Nn′0 | |α| ≤ k0}| variables. From now on we can follow
the proof of Theorem 3.2.2 verbatim. �

3.3. Infinitesimal CR automorphisms and multipliers

In this and the next section we show how the results in [35] concerning the smoothness
of infinitesimal CR automorphisms transfer to the ultradifferentiable setting. We begin with
recalling the basic definitions. Here (M,V) is always an ultradifferentiable abstract CR manifold
of class {M}.

Definition 3.3.1. Let U ⊆M an open subset and X : U → TM a vector field of class C1.
We say that X is an infinitesimal CR automorphism iff its flow Hτ , defined for small τ , has the
property, that there is ε > 0 such that Hτ is a CR mapping provided that |τ | ≤ ε.

We need for the proofs of the regularity results a more suitable characterization of infini-
tesimal CR automorphisms. We call a section Y ∈ Γ(M, (T ′M)∗) a holomorphic vector field on
M .

Apparently every vector field X ∈ Γ(M,TM) gives rise to a holomorphic vector field by
first extending X to CTM and then restricting the extension to T ∗M . For a partial converse,
we recall from [35] the following purely algebraic result.

Lemma 3.3.2. Let Y ∈ Γ(M, (T ′M)∗). Then there exists a unique vector field X∈Γ(M,TM)

such that Y is induced by X if and only if Y(τ) = Y(τ) for all characteristic forms τ .

Indeed, since (CTM)∗ = V⊥ + V⊥ and CT 0M = (V ⊕ V)⊥, we can decompose any form
ω = α + β̄ with α, β holomorphic forms in a nonunique manner. Thus Y gives rise to a real
vector field X via

X(ω) =
1

2

(
α
(
Y
)

+ β
(
Y
))

which is well defined provided that Y(τ̄) = Y(τ) for all τ ∈ Γ(M,CT 0M) or equivalently, that

Y(τ) = Y(τ) for all τ ∈ Γ(M,T 0M), both of which are equivalent to the definition of X above
being independent of the decomposition ω = α + β̄. From now on we shall not distinguish
between X being a real vector field or a holomorphic vector field.

We recall the well-known identity, see e.g. [38],

LXα(Y ) = dα(X,Y ) + Y α(X) = Xα(Y )− α([X,Y ]),

which holds for arbitrary complex vector fields X,Y and complex forms α on smooth manifolds.
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We conclude that accordingly the Lie derivative

LLω( . ) = dω(L, . )

of a holomorphic form ω with respect to a CR vector field L is again a holomorphic form. It
is now possible to make the following definition. We shall say that a holomorphic vector field
Y ∈ Γ(M, (T ′M)∗) is CR iff

Lω(Y) = dω(L,Y)

for every CR vector field L and holomorphic form ω. In particular a real vector field X is CR
if and only if

ω([L,X]) = 0

for all CR vector fields L and holomorphic forms ω. We recall from [35] the following fact.

Proposition 3.3.3. If X is an infinitesimal CR automorphism on M , then X considered
as a holomorphic vector field, i.e. X ∈ C1(M, (T ′M)∗) is CR.

Proof. Let Hτ denote the flow of X. By definition, Hτ satisfies the following differential
equation

dHτ

dτ
(p) = X ◦Hτ (p).

We note that H0 = idM is trivially a CR map, but by assumption we know that if τ is small
then

ω
(
(Hτ )∗L

)
= 0

for any CR vector field L and any holomorphic form ω, i.e. ω(L) = 0.
We begin with the following general claim: For any triple (Y,B, α), where

Y =
m∑
j=1

Yj
∂

∂xj
Yj ∈ R

B =
m∑
j=1

Bj
∂

∂xj

α =

m∑
j=1

αjdxj

are defined near 0 and α(B) = 0, we have, if Kτ is the flow of Y ,

d

dτ

(
(Kτ )∗α(B)

)∣∣
τ=0

= α
(
[B, Y ]

)
near the origin. For the convenience of the reader, we shall include the computation below.

Recalling the fact

(Kτ )∗α
(
B
)
(p) = α

(
(Kτ )∗B

)
(Kτ (p)) =

m∑
j=1

m∑
k=1

(
αk ◦Kτ

)
(p)Bj(p)

∂Kτ
k

∂xj
(p)

we can compute

d

dτ

(
(Kτ )∗α(B)

)
(p) =

m∑
j=1

m∑
k=1

d

dτ

((
αk ◦Kτ

)
(p)

∂Kτ
k

∂xj
(p)Bj(p)

)

=

m∑
j=1

m∑
k=1

m∑
`=1

(
∂αk

∂y`
◦Kτ

)
(p)
(
Y` ◦Kτ

)
(p)

∂Kτ
k

∂xj
(p)Bj(p)

+
m∑
j=1

m∑
k=1

m∑
`=1

(
αk ◦Kτ

)
(p)

(
∂Yk
∂y`
◦Kτ

)
(p)

∂Kτ
`

∂xj
(p)Bj(p).
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This leads immediately to

d

dτ

(
(Kτ )∗α(B)

)∣∣
τ=0

=
m∑
k=1

m∑
`=1

(
∂αk

∂x`
Y`Bk + αk

∂Yk
∂x`

B`

)

=
m∑
k=1

m∑
`=1

(
−αkY`

∂Bk
∂x`

+ αk
∂Yk
∂x`

B`

)
= α

(
[B, Y ]

)
.

Now we set Y = X, B = L and α = ω as above. Then we have

0 =
d

dτ

(
H∗τω(L)

)∣∣
τ=0

= ω
(
[L,X]

)
and hence X is CR. �

We are now able to generalize the notion of infinitesimal CR automorphism. To this end
consider the space D′(M, (T ′M)∗) of distributions with values in (T ′M)∗.

Definition 3.3.4. An infinitesimal CR diffeomorphism with distributional coefficients on
M is a generalized holomorphic vector field Y ∈ D′(M, (T ′M)∗) that satisfies

Lω(Y) = (LLω)(Y) (3.3.1)

for every CR vector field L and holomorphic form ω and

Y(τ) = Y(τ) (3.3.2)

for all characteristic forms τ .

Note that (3.3.1) is in fact a CR equation for Y. If U ⊆M is an open subset of M then we
say that Y ∈ D′(M, (T ′M)∗) is an infinitesimal CR automorphism on U iff (3.3.1) and (3.3.2)
hold for all local sections L ∈ EM(U,V|U ) and θ ∈ EM(U, T 0M |U ), respectively. Let the subset
U ⊂M is small enough such that there is a local basis L1, . . . , Ln of CR vector fields and also a
local basis {ω1, . . . , ωN} of the space of holomorphic forms. We recall that locally a distribution
Y ∈ D′(M, (T ′M)∗) is of the form

Y|U =
N∑
j=1

Xjωj (3.3.3)

with Xj ∈ D′(U). We introduce also the following operators on U

Lj = Lj · IdN =

Lj 0
. . .

0 Lj


and note that since dωk(Lj , . ) is again a holomorphic form we have

dωk(Lj , . ) =

N∑
`=1

Bj
k,`ω

`

with Bk
j,` ∈ EM(U). We observe that Y is CR on U if and only if

LjXk = Lj
(
ωk(Y)

)
= dωk

(
Lj ,Y)

)
=

N∑
`=1

Bj
k,`X`

for all 1 ≤ j ≤ n and 0 ≤ k ≤ N . We set

Bj =

B
1
j,1 . . . B1

j,N
...

...
BN
j,1 . . . BN

j,N

 .
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Furthermore, using its local representation (3.3.3), we can identify Y with the vector X =
(X1, . . . , XN ). Hence (3.3.1) turns into

LjX = Bj ·X

or

PjX = 0

respectively, where

Pj = Lj −Bj
In particular we infer from above and Theorem 2.4.1 that

WFMY ⊆ T 0M. (3.3.4)

For the formulation of the main regularity results we need one more definition. To begin we
introduce for the ultradifferentiable CR manifold M the following sequence of spaces of sections.

Ek =
〈
LK1 . . .LKjθ : j ≤ k, Kq ∈ EM(M,V), θ ∈ EM(M,T 0M)

〉
.

We note that E0 = EM(M,T 0M), and Ej ⊆ EM(M,T ′M) for all j ∈ N0, and set E =
⋃
j∈N0

Ej .

We associate to the increasing chain Ek the increasing sequence of ideals Sk ⊂ EM(M,C),
where

Sk =
∧N

Ek =

det

V 1(Y1) . . . V 1(YN )
...

...
V N (Y1) . . . V N (YN )

 : V j ∈ Ek, Yj ∈ EM(M, (T ′M)∗)

 .

We set S = S(M) =
⋃
k∈N0

Sk and call it the space of multipliers of M . In fact each Sk and thus

also S can be considered actually as ideal sheaves, if we define Ek(U) and Sk(U) accordingly.
Note that locally one can find smaller sets of generators: Let U ⊂M be open, and assume

that L1, . . . , Ln is a local basis for Γ(U,V), that θ1, . . . , θd is a local basis for Γ(U, T 0M), and that
ω1, . . . , ωN is a local basis of T ′M . We write Lj = LLj for j = 1, . . . , n and Lα = Lα1

1 . . .Lαnn
for any multi-index α = (α1, . . . , αn) ∈ Nn. We note that, since V is formally integrable, the
Lα, where |α| = k, generate all k-th order homogeneous differential operators in the Lj , and we
thus have

Ek
∣∣
U

=
〈
Lαθµ : 1 ≤ µ ≤ d, |α| ≤ k

〉
.

We can expand

Lαθµ =
N∑
`=1

Aα,µ` ω` (3.3.5)

and for any choice α = (α1, . . . , αN ) of multi-indices α1, . . . , αN ∈ Nn and r = (r1, . . . , rN ) ∈
{1, . . . , d}N we define the functions

D(α, r) = det


Aα

1,r1
1 . . . Aα

1,r1
N

...
...

Aα
N ,rN

1 . . . Aα
N ,rN
N

 . (3.3.6)

With this notation, we have

Sk
∣∣
U

=
〈
D(α, r) : |αj | ≤ k

〉
;

we shall denote the stalk of Sk at p by Skp .
The space of multipliers of a CR manifold M clearly encodes the nondegeneracy properties of

M . We close this section by taking a closer look at the connection of S with finite nondegeneracy.
We recall from [8] the definition of finite nondegeneracy for abstract CR manifolds.
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Definition 3.3.5. Let M be an abstract CR manifold and

Ek(p) =
〈
LK1 . . .LKjθ(p) : j ≤ k, Kq ∈ E(M,V), θ ∈ E(M,T 0M)

〉
. (3.3.7)

for p ∈ M and k ∈ N. Then M is k0-nondegenerate at p0 ∈ M iff Ek0−1 ( Ek0 = T ′p0
M . We

say that M is finite nondegenerate iff M is finite nondegenerate at every point.

Remark 3.3.6. This definition is in fact local, since by [8, Proposition 11.1.10.] if L1, . . . , Ln
is a local basis of CR vector fields and θ1, . . . θd is a local basis of characteristic forms near p0

then M is k0-nondegenerate if and only if

T ′p0
M = spanC

{
Lαθµ(p0) : |α| ≤ k0, µ ∈ {1, . . . , d}

}
.

Hence we may replace M with any open neighbourhood U⊆M of p0 in (3.3.7). Thus we observe
that a CR submanifold M is k0-nondegenerate at p0 ∈M if and only if Sk0

p0
= (EM)p0 .

More precisely, let U ⊆M be an open subset and q ∈ U . Then M is k0-nondegenerate at q
if and only if there is a multiplier f ∈ Sk0(U) that does not vanish at q, i.e. f(q) 6= 0.

Indeed, if f(q) 6= 0 then obviously Ek0(q) = T ′qM . On the other hand, if g(q) = 0 for all

multipliers g ∈ Sk0(U) then necessarily Ek0(q) 6= T ′qM .

3.4. Regularity of infinitesimal CR automorphisms

Definition 3.4.1. Let (M,V) be an ultradifferentiable abstract CR manifold of class {M},
and Y an infinitesimal CR diffeomorphism with distributional coefficients of M , see section 3.3.

We say that Y extends microlocally to a wedge with edge M iff there exists a set Γ ⊆ T 0M
such that for each p ∈M , the fiber Γp ⊆ T 0

pM \{0} is a closed, convex cone, and

WFM(ω(Y)) ⊆ Γ

for every holomorphic form ω ∈ EM(M,T ′M).

Note that the condition Γ ⊆ T 0M is not as strict as it seems, because WFM(ω(Y)) ⊆ T 0M
by (3.3.4).

Theorem 3.4.2. Let (M,V) be an ultradifferentiable abstract CR structure of class {M},
and Y an infinitesimal CR diffeomorphism of M with distributional coefficients which extends
microlocally to a wedge with edge M .

Then, for any ω ∈ E, the evaluation ω(Y) is ultradifferentiable, and for any λ ∈ S, the
vector field λY is also of class {M}.

Proof. Since the assertion is local we will work in a suitable small open set U ⊆ M such
that there are local bases L1, . . . , Ln of EM(U,V) and ω1, . . . , ωN of EM(U, T ′M), respectively.
We recall that we can represent Y on U by (3.3.3) or by X = (X1, . . . , XN ) ∈ D′(U,CN ). By
assumption we know that there is a closed convex cone Γ ⊆ T 0M\{0} such that WFMXj ⊆ Γ
for each j = 1, . . . , N . If we set W+ = (Γ)c ⊆ T 0M \{0}, then WFMXj ∩W+ = ∅ for all
j = 1, . . . , N . We may refer to this fact by saying that Xj extends above. On the other hand, if
we analogously put W− = (−Γ)c ⊆ T 0M\{0} then WFM X̄j ∩W− = ∅ by (2.1.3); we say that
X̄j extends below.

Furthermore let {θ1, . . . , θd} be a generating set of EM(U, T 0M) and recall (3.3.5), i.e.

Lαθν =

N∑
`=1

Aα,ν` ω`

with Aα,ν` ∈ EM(U) for α ∈ Nn0 and ν = 1, . . . , d. In particular, (3.3.2), i.e. θ(Y) = θ(Y), turns
into

N∑
`=1

A0,ν
` X` =

N∑
`=1

Ā0,ν
` X̄`
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and applying Lα to (3.3.2) yields

N∑
`=1

Aα,ν` X` =
N∑
`=1

∑
|α|≤|α|

Cβ,ν` LβX̄`,

where Cβ,ν` ∈ EM(U). Note that in both equations above the left hand side extends above,
while the right hand side extends below.

Now choose any N -tuple α = (α1, . . . , αN ) ∈ NNn0 of multi-indices with |α| ≤ k for all
j = 1, . . . , N and r = (r1, . . . , r

N ) ∈ {1, . . . , d}N . Then we have
Aα

1,r1
1 . . . Aα

1,r1
N

...
. . .

...

Aα
N ,rN

1 . . . Aα
N ,rN
N


X1

...
XN

 =


∑
Cα

1,`
β LβX̄`

...∑
Cα

N ,`
β LβX̄`

 .

If we multiply the equation with the classic adjoint of the matrix
Aα

1,r1
1 . . . Aα

1,r1
N

...
. . .

...

Aα
N ,rN

1 . . . Aα
N ,rN
N


then we obtain

D(α, r)Xj =
∑
|β|≤k

`=1,...,N

D
α,r
β,jL

βX̄j

for each j = 1, . . . , N where the D
α,r
β,j are ultradifferentiable functions on U . It follows that the

right hand side of this equation extends below, whereas the left hand side obviously extends
above. Hence WFMD(α, r)X = ∅. We conclude that λX ∈ EM(U) for any λ ∈ Sk(U) since
Sk(U) is generated by the functions D(α, r). �

The next statement is an obvious corollary of Theorem 3.4.2.

Corollary 3.4.3. Let (M,V) be an ultradifferentiable finitely nondegenerate abstract CR
structure and X an infinitesimal CR diffeomorphism of M with distributional coefficients which
extends microlocally to a wedge with edge M . Then X is ultradifferentiable of class {M}.

However, the condition that M is actually finitely nondegenerate is far too restrictive. We
shall say that (M,V) is CR-regular if for every p ∈ M there exists a multiplier λ ∈ S with the
property that near p, the zero set of λ is a finite intersection of real hypersurfaces in M , and
such that λ does not vanish to infinite order at p. Thence we can apply Proposition 1.3.2 or
Corollary 1.3.3, respectively.

Theorem 3.4.4. Let (M,V) be an abstract CR structure, p ∈ M , and assume that M is
CR-regular near p. Then any locally integrable infinitesimal CR diffeomorphism X of M which
extends microlocally to a wedge with edge M is of class {M} near p.

Without boundedness conditions on X this theorem is actually in some sense optimal as we
are going to see later on.

In general it might be difficult to determine if a certain CR manifold is CR-regular. In the
forthcoming we want to present some instances of CR-regular manifolds. But first we take a
closer look at the Lie derivatives of characteristic forms.

Suppose that M is a CR manifold and near a point p0 ∈ M there are local coordinates
(x, y, s) of M such that the vector fields

Lj =
∂

∂z̄j
−

d∑
τ=1

bjτ
∂

∂sτ
, j = 1, . . . , n, zj = xj + yj , (3.4.1)
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where bjτ ∈ EM, are a local basis of CR vector fields near p0. In this setting (c.f. Remark 3.1.4)
the characteristic bundle is spanned by the forms

θτ = dsτ +

n∑
j=1

bjτ dz̄j +

n∑
j=1

b̄jτ dzj , τ = 1, . . . , d.

Furthermore, the forms θτ , τ = 1, . . . , d, and ωj = dzj , j = 1, . . . , n, constitute a local basis of
holomorphic forms on M near p0. We also define the functions

λj,kµ := Lk b̄
j
µ − L̄jbkµ

for j, k = 1, . . . , n and µ = 1, . . . , d.
Consider a general holomorphic form

η =
d∑

µ=1

σµθ
µ +

n∑
j=1

ρjω
j .

The Lie derivative of η with respect to the CR vector field Lk is

Lkη = dη(Lk, . ) =

d∑
µ=1

(
Lkσµ −

d∑
ν=1

σν
(
bkν
)
sµ

)
θµ +

n∑
j=1

(
Lkρj +

d∑
µ=1

σµλ
j,k
µ

)
ωj . (3.4.2)

Let α ∈ Nn0 a multi-index of length |α| = m. We introduce the finite sequence mj :=∑
`≤j α`, j = 1, . . . , n, and set m0 := 0 and associate to α the function pα : {0, 1, . . . ,m} →

{0, 1, . . . , n} which is defined by

pα(`) = j if ` ∈ (mj−1,mj ]

for ` = 1, . . . ,m and pα(0) = 0. We also associate the following sequences of multi-indices to α

α(`) :=
∑
q≤`

epα(q) ` = 0, 1, . . . ,m,

α̂(`) :=
∑
q>`

ep(q),

where ej is the j-th standard unit vector in Rn.
With this notation and (3.4.2) we can now state what the Lie derivative of the characteristic

form θµ (µ = 1, . . . , d) is:

Lαθµ =
d∑

τ=1

Tα,µτ θτ +
n∑
j=1

Aα,µj ωj (3.4.3)

The functions Tα,µτ and Aα,µj are defined iteratively by

T 0,µ
τ = δµτ ,

Tα,µτ = Lpα(1)T
α̂(1),µ
τ −

d∑
ν=1

(
bp(1)
ν

)
sτ
T α̂(1),µ
ν (3.4.4a)

and

Aα,µj =

m∑
k=1

d∑
ν=1

Lα(k−1)
(
Tα−α(k),µ
ν λj,pα(k)

ν

)
. (3.4.4b)

We are now able to give the first example of a CR regular submanifold of CN .

Definition 3.4.5. We say that a real hypersurface M ⊂ CN is weakly nondegenerate at p0

iff there exist coordinates (z, w) ∈ Cn × C near p0 and numbers k,m ∈ N such that p0 = 0 in
these coordinates and near p0 M is given by an equation of the form

Imw = (Rew)mϕ(z, z̄,Rew),
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where

∂|α|ϕ

∂zα
(0, 0, 0) =

∂|α|ϕ

∂z̄α
(0, 0, 0) = 0, |α| ≤ k,

and
spanC{ϕzz̄α(0, 0, 0) : |α| ≤ k} = Cn.

If k0 is the smallest k for which the preceding condition holds, we say that M is weakly k0-
nondegenerate at p0.

Proposition 3.4.6. Let M ⊆ CN be an ultradifferentiable real hypersurface, p0 ∈ M , and
assume that M is weakly k0-nondegenerate at p0. Then M is CR regular near p0. In particular,
any locally integrable infinitesimal CR diffeomorphism of M which extends microlocally to a
wedge with edge M near p0 is ultradifferentiable near p0.

Proof. In order to show that M is CR regular we are going to construct a multiplier λ ∈ S
of the form

λ(z, z̄, s) = s`ψ(z, z̄, s)

in suitable local coordinates and with ψ ∈ EM not vanishing at s = 0 and ` ∈ N.
Recall that by assumption there are coordinates (z, w) ∈ Cn × C such that p0 = 0 and M

is given locally by
Imw = (Rew)mϕ(z, z̄,Rew)

where m∈N and ϕ is an ultradifferentiable real-valued function defined near 0 with the property
that ϕzα(0)=ϕz̄α(0)=0 for |α| ≤ k0 and

spanC{ϕzz̄α(0, 0, 0) : 0 < |α| ≤ k0} = Cn.
In these coordinates a local basis of the CR vector fields on M is given by

Lj =
∂

∂z̄j
− bj ∂

∂s
, 1 ≤ j ≤ n,

with

bj = i
smϕz̄j

1 + i(smϕ)s
,

whereas the characteristic bundle is spanned near the origin by

θ = ds+

n∑
j=1

bj dz̄j +

n∑
j=1

bj dzj

and θ together with the forms ωj = dzj constitute a local basis of T ′M near the origin.
We observe that for 1 ≤ j, ` ≤ n

λj` := Lj b̄
` − L̄`bj

= sm

(
iϕz̄jz`(1 + i(smϕ)s) + ϕz`(s

mϕz̄j )s

(1 + i(smϕ)s)2

+
ϕz̄j
(
(smϕz`)s(1 + i(smϕ)s)− ismϕz`(smϕ)ss

)
(1 + i(smϕ)s)3

+
iϕz̄jz`(1 + i(smϕ)s) + ϕz̄j (s

mϕz`)s

(1 + i(smϕ)s)2

−
ϕz`
(
(smϕz̄j )s(1 + i(smϕ)s)− smϕz̄j (smϕ)ss

)
(1 + i(smϕ)s)3

)
= smχj`

and χj`(0) = 2iϕz̄jz`(0) by the assumptions on ϕ.
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In this setting (3.4.3) takes the form

Lαθ = Tαθ +

n∑
j=1

Aαj ω
j

and (3.4.4) implies that

Tα = Lp(1)T
α̂(1) −

(
bp(1)

)
s
T α̂(1), T 0 = 1

Aαj =

|α|∑
k=1

= Lα(k−1)
(
T

ˆα(k)λjp(k)

)
.

If we use the two simple facts for smooth functions f, g, namely (sqf)s = sq−1f + sqfs for
q ∈ N we see that T β = sm−1Gβ for |β| ≥ 1. Hence, if m ≥ 2 we have

Aα` (z, z̄, s) = sm
2iϕz̄αz`(z, z̄, s)

1 + (smϕ(z, z̄, s))2
s

+ s2m−1Rα` (z, z̄, s) = smBα
` (z, z̄, s).

On the other hand we obtain for m = 1 the following representation

Aα` (z, z̄, s) = s
2iϕz̄αz`(z, z̄, s)

1 + (ϕ(z, z̄, s) + sϕs(z, z̄, s))2
+ sSα` (z, z̄, s) + s2Rα` (z, z̄, s) = sBα

` (z, z̄, s),

where Sα` is a sum of products of rational functions with respect to ϕ and its derivatives. Each
of these summands contains at least one factor of the form ϕz̄β or ϕzβ with |β| ≤ |α| ≤ k0 and
therefore Sα` (0) = 0.

By assumption there have to be multi-indices α1, . . . , αn 6= 0 of length shorter than k0 such
that

{ϕ
zz̄α1 (0), . . . , ϕzz̄αn (0)}

is a basis for Cn. Now we choose α = (0, α1, . . . , αn) and calculate according to (3.3.6) the
multiplier D(α) = D(α, 1) (note that d = 1):

D(α) = det


1 0 . . . 0

Aα
1

θ Aα
1

1 . . . Aα
1

n
...

...
. . .

...
Aα

n

θ Aα
n

1 . . . Aα
n

n



= sn·m det


1 0 . . . 0

Aα
1

θ Bα1

1 . . . Bα1

n
...

...
. . .

...
Aα

n

θ Bαn
1 . . . Bαn

n


= sn·mQ(α)

where

Q(α) = det


1 0 . . . 0

Aα
1

θ Bα1

1 . . . Bα1

n
...

...
. . .

...
Aα

n

θ Bαn
1 . . . Bαn

n

 = det

B
α1

1 . . . Bα1

n
...

. . .
...

Bαn
1 . . . Bαn

n

 ,

hence

Q(α)(0) = (2i)n det

ϕzz̄α1 (0)
...

ϕzz̄αn (0)

 6= 0.

We conclude that M is CR-regular. �
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Obviously, a similar approach as in the hypersurface case above can be used to find manifolds
of higher codimension that are CR-regular.

Definition 3.4.7. We say that a CR manifold M ⊆ CN of codimension d is weakly nonde-
generate at p0 ∈M (in the first codimension) iff there are local coordinates (z, w) ∈ Cn+d near
p0 such that M is given by the equations

Imwµ = (Rew)γ
µ
ϕµ(z, z̄,Rew), µ = 1, . . . , d,

with γ1 < γν , ν = 2, . . . , d, and |γ1| ≥ 2. Furthermore the function ϕ1 satisfies for some k

spanC
{(
ϕ1

)
zz̄α

(0, 0, 0) : |α| ≤ k
}

= Cn.

If k0 is the smallest integer k for which the above condition holds, we say that M is weakly
k0-nondegenerate at p0.

Proposition 3.4.8. Let M ⊆ CN be a generic ultradifferentiable CR submanifold of codi-
mension d, p0 ∈ M , and assume that M is weakly nondegenerate at p0. Then any locally
integrable infinitesimal CR diffeomorphism of M which extends microlocally to a wedge with
edge M near p0 is ultradifferentiable near p0.

Proof. Similar to before we have to construct a multiplier λ ∈ S of the form λ(z, z̄, s) =
sβψ(z, z̄, s) where ψ ∈ EM and ψ(0) 6= 0. By assumption there are coordinates (z, w) ∈ Cn+d

near p0 = 0 such that M is given by

Imwµ = (Rew)γ
µ
ϕµ(z, z̄,Rew), µ = 1, . . . , d.

In particular note that α1 ≤ αµ for µ = 2, . . . , d.
We deduce from Remark 3.1.4 that the vector fields

Lj =
∂

∂z̄j
−

d∑
µ=1

bjµ
∂

∂sµ

are a local basis of the CR vector fields near the origin. The coefficients bjµ are of the form

bjµ = i
(

det(Idd +iΦ)
)−1 · detBj

µ

where Φ denotes the Jacobi matrix of the map (sγ
µ
ϕµ)µ with respect to the variables s =

(s1 . . . , sd) and

Bj
µ =


1 + i(sγ

1
ϕ1)s1 . . . i(sγ

1
ϕ1)sµ−1 sγ

1
(ϕ1)z̄j i(sγ

1
ϕ1)sµ+1 . . . i(sγ

1
ϕ1)sd

...
...

...
...

...
i(sγ

µ
ϕµ)s1 . . . i(sγ

µ
ϕµ)sµ−1 sγ

µ
(ϕµ)z̄j i(sγ

µ
ϕµ)sµ+1 . . . i(sγ

µ
ϕµ)sd

...
...

...
...

...

i(sγ
d
ϕd)s1 . . . i(sγ

d
ϕd)sµ−1 sγ

d
(ϕd)z̄j i(sγ

d
ϕd)sµ+1 . . . 1 + i(sγ

d
ϕd)sd

 .

Hence for all j = 1, . . . n and µ = 1, . . . , d we have

bjµ = isγ
1(

det(Idd +iΦ)
)−1

detCjµ (3.4.5)

with

Cjµ =


1 + i(sγ

1
ϕ1)s1 . . . i(sγ

1
ϕ1)sµ−1 (ϕ1)z̄j i(sγ

1
ϕ1)sµ+1 . . . i(sγ

1
ϕ1)sd

...
...

...
...

...
i(sγ

µ
ϕµ)s1 . . . i(sγ

µ
ϕµ)sµ−1 sγ̃

µ
(ϕµ)z̄j i(sγ

µ
ϕµ)sµ+1 . . . i(sγ

µ
ϕµ)sd

...
...

...
...

...

i(sγ
d
ϕd)s1 . . . i(sγ

d
ϕd)sµ−1 sγ̃

d
(ϕd)z̄j i(sγ

d
ϕd)sµ+1 . . . 1 + i(sγ

d
ϕd)sd


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and γ̃µ = γµ − γ1 > 0. We observe that

detCj1
∣∣
s=0

= (ϕ1)z̄j (z, z̄, 0) (3.4.6a)

detCjµ = 0 µ = 2, . . . , d, (3.4.6b)

since |γµ| ≥ |γ1| ≥ 2.
Furthermore the forms

θµ = dsµ +

n∑
j=1

bjµdz̄j +

n∑
j=1

b̄jµdzj , µ = 1, . . . , d,

span the characteristic bundle near 0 and θµ, µ = 1, . . . , d and ωj = dzj , j = 1, . . . , n, form a
local basis of the holomorphic forms on M . From (3.4.3) we recall for α ∈ Nn0 and µ = 1, . . . , d
that

Lαθµ =

d∑
τ=1

Tα,µτ θτ +
n∑
j=1

Aα,µj ωj

and from (3.4.4)

T 0,µ
τ = δµτ

Tα,µτ = Lpα(1)T
α̂(1),µ
τ −

d∑
ν=1

(
bp(1)
ν

)
sτ
T α̂(1),µ
ν

Aα,µj =

|α|∑
k=1

d∑
ν=1

Lα(k−1)
(
Tα−α(k),µ
ν λj,pα(k)

ν

)
.

We recall that

λj,kν = Lk b̄
j
ν − L̄jbkν

=
(
b̄jν
)
z̄k
−

d∑
µ=1

bkµ
(
b̄jν
)
sµ
−
(
bkν
)
zj

+
∑
µ=1

b̄jµ
(
bkν
)
sµ

and note that (3.4.5) and (3.4.6) imply that

λj,kν = 2isγ
1
Rj,kν ν = 1, . . . , d,

where

Rj,k1

∣∣∣
s=0

=
(
ϕ1

)
z̄kzj

∣∣∣
s=0

Rj,kν

∣∣∣
s=0

= 0 ν = 1, . . . , d.

It is easy to see that also Tα,µτ

∣∣
s=0

= 0 for α 6= 0. We conclude that for all α 6= 0, and
j = 1, . . . , n

Aα,µj = 2isγ
1
Ãα,µj µ = 1, . . . , d

where

Ãα,1j

∣∣∣
s=0

=
(
ϕ1

)
z̄αzj

∣∣∣
s=0

Ãα,µj

∣∣∣
s=0

= 0 µ = 2, . . . , d.

By assumptation there are multi-indices α1, . . . , αn ∈ Nn0 of length at most k0 such that the
vectors (

ϕ1

)
zz̄α

j (0), j = 1, . . . , n,

form a basis of Cn.
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We compute the multiplier D(α, r) for α = (0, . . . , 0, α1, . . . , αn) and r = (1, . . . , d, 1, . . . , n).
By (3.3.6) we have

D(α, r) = det



1 . . . 0 0 . . . 0
...

...
...

...
0 . . . 1 0 . . . 0

Tα
1,1

1 . . . Tα
1,1

d Aα
1,1

1 . . . Aα
1,1
n

...
...

...
...

Tα
n,1

1 . . . Tα
n,1

d Aα
n,1

1 . . . Aα
n,1
n



= det

A
α1,1
1 . . . Aα

1,1
n

...
...

Aα
n,1

1 . . . Aα
n,1
n



= det

2isγ
1
Ãα

1,1
1 . . . 2isγ

1
Ãα

1,1
n

...
...

2isγ
1
Ãα

n,1
1 . . . 2isγ

1
Ãα

n,1
n



= (2i)nsnγ
1

det

Ã
α1,1
1 . . . Ãα

1,1
n

...
...

Ãα
n,1

1 . . . Ãα
n,1
n


= (2i)nsnγ

1
Λ(α, r).

We conclude

Λ(α, r)(0) = det


(
ϕ1

)
zz̄α1 (0)
...(

ϕ1

)
zz̄αn

(0)

 6= 0.

�

In the preceding results we required the involved manifolds to have a special form in order
to simplify the necessary calculations, but of course there are many more CR regular manifolds.
The next example gives a CR manifold that is not weakly nondegenerate at 0 in the sense of
Definition 3.4.7 but is still CR regular.

Example 3.4.9. Let M ⊆ C3 the CR manifold given by

Imw1 = Rew1 |z|2

Imw2 = Rew2 |z|2.

The CR bundle V of M is spanned by

L =
∂

∂z̄
− i s1z

1 + i|z|2
∂

∂s1
− i s2z

1 + i|z|2
∂

∂s2
.

Thus a basis of the characteristic form is given by

θ1 = ds1 + i
s1z

1 + i|z|2
dz̄ − i s1z̄

1− i|z|2
dz

θ2 = ds2 + i
s2z

1 + i|z|2
dz̄ − i s2z̄

1− i|z|2
dz.

We know that θ1, θ2 and ω = dz is a basis of T ′M . If α = e1 we recall from (3.4.3) that

Lαθ1 = Tα,11 θ1 + Tα,12 θ2 +Aα,1ω.
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Using (3.4.4) we observe that

Tα,11 = −i z

1 + i|z|2

Tα,12 = 0

Aα,1 = −2is1
1− |z|4(
1 + |z|4

)2 .
Hence, if we set α = (0, 0, α) and r = (1, 2, 1) then the multiplier D(α, r) of M given by (3.3.6)
is

D(α, r) = det

 1 0 0
0 1 0

−i z
1+i|z|2 0 −2is1

1−|z|4
(1+|z|4)2

 = −2is1
1− |z|4(
1 + |z|4

)2
and thus M is CR regular.

Next we are going to present an example that shows that the local integrability condition
in Theorem 3.4.4, Proposition 3.4.6 and Proposition 3.4.8, respectively, is essential for the
conclusions in these statements to hold. More precisely, we construct two different infinitesimal
diffeomorphisms with distributional coefficents on a real hypersurface in C2 such that the two
diffeomorphisms are not locally integrable. We also construct a multiplier such that the products
of this multiplier with each diffeomorphism coincide and are ultradifferentiable. We further
note that the coefficients of both diffeomorphisms are closely related to the non-extendable CR
distribution for nonminimal CR submanifolds given by Baouendi and Rothschild [7].

Example 3.4.10. We begin with the calculation of the multiplier in a more general setting
in order to simplify the computations. We will later on restrict ourselves to real hypersurfaces in
C2. Let (M,V) be a 3-dimensional abstract CR structure of hypersurface type that is generated
in some coordinates by the vector field

L =
∂

∂z̄
− smb(z, z̄) ∂

∂s
.

The characteristic bundle T 0M is spanned by

θ = ds+ smb̄(z, z̄)dz + smb(z, z̄)dz̄

and thus the forms ω = dz and θ form a basis of T ′M . We obtain (c.f. (3.4.2))

dθ(L, . ) = −2ism Im

(
∂b

∂z

)
(z, z̄)ω −msm−1b(z, z̄)θ.

We calculate the simplest nontrivial multiplier: for α1 = 0, α2 = 1 and r = (1, 1) (note that
N = 2 and d = 1) we have by (3.3.6)

D(α, r) = det

 1 0

−msm−1b(z, z̄) −2ism Im

(
∂b
∂z

)
(z, z̄)


= −2ism Im

(
∂b

∂z

)
(z, z̄).

Now let m = 1, b = i ψz̄
1+iψ for some ultradifferentiable real-valued function ψ defined in an

open neighbourhood V of 0 ∈ C, i.e. M is an embedded real hypersurface of class {M} in C2

given near the origin by the defining function

ρ(z, z̄, w, w̄) = Imw − Rew · ψ(z, z̄).

Then the multiplier D(α, r) from above is of the form

D(α, r) = 2is

(
ψzz̄
|Ψ|2

− 2
ψzψz̄ψ

|Ψ|4

)
= 2isG(z, z̄),
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where we have set Ψ := 1+iψ. Note also that ω1 = ω = dz and ω2 = dw = Ψds+isψzdz+isψz̄dz̄
is an alternative basis for T ′M in this situation.

Since M is a real hypersurface in C2 we have the following decomposition of an open
neighbourhood Ω of 0 ∈ C2

Ω = U+ ∪M ∪ U−
with U+ = {(z, w) ∈ Ω: ρ(z, z̄, z̄, w, w̄) > 0} and U− = {(z, w) ∈ Ω: ρ(z, z̄, w, w̄) < 0} being
open subsets of Ω. We shall also assume that Ω ∩ (C× {0}) = V × {0}.

If we consider the holomorphic function

F : (z, w) 7−→ 1

w

on C × C\{0} then we see that F is of slow growth for w → 0 on both U+ and U−. We write
u+ = b+F for the boundary value of F |U+ and u− = b−F for the boundary value of F |U− ,
respectively. Note that by the Plemelj-Sokhotski jump relations (see, e.g., [27]) we have

u0 = u+ − u− = −2πi

Ψ
(1⊗ δ).

Note also that u0 is essentially (up to the factor −2πi) the non-extendable CR distribution from
[7], c.f. also [8], for the hypersurface M .

We claim that WFM u+ = R+θ|V×{0} and WFM u− = R−θ|V×{0}, respectively (c.f. Ex-
ample 2.2.3): Note that u+ and u− are ultradifferentiable outside V ×{0} ⊂ M and that
WFM u0 = (R\{0}) θ|V×{0}. Furthermore we know that WFM u+ and WFM u− must each be
contained in (R\{0})θ since both are CR distributions. However, since u+ extends holomor-
phically to U+ it follows that WFM u+ ∩ R−θ = ∅ (c.f. the proof of Theorem 3.2.2) and by
symmetry we have also WFM u− ∩ R+θ = ∅. Now let p = (z, 0) ∈ V ×{0} and suppose that,
e.g., R+θp ∩WFM u+ = ∅. Then we would have that R+θp ∩WFM u0 = ∅ which is obviously
a contradiction to above.

We consider the following vector fields with distributional coefficients

X+ = u+
∂

∂z

∣∣∣
M

+ ū+
∂

∂z̄

∣∣∣
M

and

X− = u−
∂

∂z

∣∣∣
M

+ ū−
∂

∂z̄

∣∣∣
M
.

We claim that both vector fields constitute infinitesimal CR diffeomorphisms on M if

∂ψ

∂x
= ψ

∂ψ

∂y

where z = x+ iy. We show this for X+, the argument for X− is completely analagous of course.
First we see that X+ is real since

X+ = Reu+
∂

∂x

∣∣∣
M

+ Imu+
∂

∂y

∣∣∣
M
.

Furthermore note that the regular distributions (ν > 0)

uν =
1

sΨ + iν

on M converge to u+ in D′ for ν → 0. We have

X+ρ = −sψx Reu+ − sψy Imu+

= lim
ν→0

(
−sψx Reuν − sψy Imuν

)
= lim

ν→0

(
−s2(ψx − ψψy) + sν

s2 + (sψ + ν)2

)
= lim

ν→0
sν|uν |2 = 0
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with convergence in D′. Hence X+ ∈ D′(M,TM). We conclude further

L
(
ω1(X+)

)
= Lu+ = 0,

L
(
ω2(X+)

)
= 0

and since dωj = 0, (j = 1, 2)

dω1(L,X+) = 0,

dω2(L,X+) = 0.

Since ω1(X+) = ω1(X−) = u+, ω2(X+) = ω2(X+) = 0 and ω1(X−) = u− all the assumptions
of Theorem 3.4.2 are satisfied for both X+ and X−.

Indeed

D(α, r)u+ = D(α, r)u− = 2i
G(z, z̄)

Ψ(z, z̄)
∈ EM(M)

hence D(α, r)X+ = D(α, r)X− ∈ EM. Note also that D(α, r)u0 = 0.

We close this section with a look into the case of quasianalytic manifolds. We begin with
recalling the following definition from [8, § 11.7]. Let M ⊆ CN be a CR submanifold with
defining functions ρ = (ρ1, . . . , ρd) near p0 ∈ M . A formal holomorphic vector field at p0 is a
vector field of the form

X =

N∑
j=1

aj(Z)
∂

∂Zj

with the coefficients aj being formal power series in Z − p0 with complex coefficients. The
formal vector field X is said to be tangent iff there exists a d × d matrix c(Z, Z̄) consisting of
formal power series in the variables Z − p0 and Z̄ − p̄0 such that

Xρ(Z, Z̄) ∼ c(Z, Z̄)ρ(Z, Z̄),

where ∼ denotes equality as formal power series in Z − p0 and Z̄ − p̄0. Note that the existence
of nontrivial holomorphic vector fields at p0 tangent to M does not depend on the choice of
holomorphic coordinates and defining equations near p0.

Definition 3.4.11. A generic submanifold M ⊆ CN is formally holomorphically nondegen-
erate at p0 ∈ M iff there is no nontrivial formal holomorphic vector field at p0 that is tangent
to M .

Remark 3.4.12. If M is formally holomorphically nondegenerate at p0 then M is formally
holomorphically nondegenerate at every point of some neighbourhood U of p0. Furthermore if
M is holomorphically nondegenerate on an open set U ⊆ M then M is finitely nondegenerate
on an open and dense subset V ⊆ U , c.f. [8, Theorem 11.7.5].

Theorem 3.4.13. Let M be a quasianalytic regular weight sequence and M ⊆ CN a generic
submanifold of class {M} that is formally holomorphically nondegenerate.

Every smooth CR diffeomorphism Y that extends microlocally to a wedge with edge M is
ultradifferentiable of class {M}.

Proof. As usual we argue locally near a point p0. After a choice of local bases of CR vector
fields and holomorphic forms and selecting a generating set for the characteristic forms we can
use the representation (3.3.3) near p0. By Theorem 3.4.2 we know that for any multiplier λ the
product Λj = λ ·Xj is ultradifferentiable for j = 1, . . . , N . Since Xj is smooth by assumption
we have that the equality holds also for the formal power series at p0 of Λj , λ and Xj . Since
M is formally holomorphically nondegenerate at p0 there has to be a multiplier λ ∈ S with
nontrivial formal power series at p0. Indeed, if the power series of λ at p0 equals 0 then λ itself
has to vanish in a neighbourhood of p0 by the quasianalyticity of M. On the other hand in
every neighbourhood of p0 there is a point q at which M is finitely nondegenerate [8, Theorem
11.7.5]. Hence by Remark 3.3.6 there has to be a nontrivial multiplier λ′ defined on some
neighbourhood U of p0.
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We conclude that the formal power series of Λ′j = λ′Xj at p0 is divisible by the Taylor series

of λ′ at p0. Hence Theorem 1.3.4 gives that Xj is ultradifferentiable of class {M} near p0. �
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1921.

[27] J. J. Duistermaat and J. A. C. Kolk. Distributions. Cornerstones. Birkhäuser Boston, Inc., Boston, MA,
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[65] Stevan Pilipović, Nenad Teofanov, and Filip Tomić. Superposition and propagation of singularities for ex-
tended gevrey regularity. 07 2016.

[66] Armin Rainer and Gerhard Schindl. Composition in ultradifferentiable classes. Studia Math., 224(2):97–131,
2014.

[67] Armin Rainer and Gerhard Schindl. Equivalence of stability properties for ultradifferentiable function classes.
Rev. R. Acad. Cienc. Exactas F́ıs. Nat. Ser. A Math. RACSAM, 110(1):17–32, 2016.

[68] Luigi Rodino. Linear partial differential operators in Gevrey spaces. World Scientific Publishing Co., Inc.,
River Edge, NJ, 1993.

[69] J.-P. Rolin, P. Speissegger, and A. J. Wilkie. Quasianalytic Denjoy-Carleman classes and o-minimality. J.
Amer. Math. Soc., 16(4):751–777 (electronic), 2003.
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Abstract

The main topic of this thesis is the study of regularity of CR mappings between ultradif-
ferentiable CR manifolds. Ultradifferentiable is understood in the sense of Denjoy-Carleman
classes, i.e. subalgebras of smooth functions defined by weight sequences. We consider mainly
Denjoy-Carleman classes that are defined by weight sequences, which are regular in the sense
of Dyn’kin.

In particular, reflection principles of Lamel and Berhanu-Xiao for finitely nondegenerate
CR mappings are generalized to the ultradifferentiable category. More precisely, any finitely
nondegenerate CR mapping between two ultradifferentiable CR manifolds of the same Denjoy-
Carleman class, that extends near a point holomorphically into a wedge, is ultradifferentiable
near this point of the same regularity as the manifolds.

In order to prove the aforementioned result, a geometric theory of the ultradifferentiable
wavefront set with respect to Denjoy-Carleman classes, that was initially defined by Hörmander,
is developed for regular weight sequences. In particular, using a theorem of Dyn’kin on the
characterizations of elements in regular Denjoy-Carleman class by almost-analytic extensions,
a characterization of the ultradifferentiable wavefront set either by almost-analytic extensions
into flat wedges or by the generalized FBI transform in the sense of Berhanu-Hounie is proven.
This allows to show that the ultradifferentiable wavefront set can be invariantly defined on ul-
tradifferentiable manifolds of the same Denjoy-Carleman class. Moreover an ultradifferentiable
microlocal elliptic regularity theorem for vector-valued distributions and partial differential op-
erators with ultradifferentiable coefficients is proven, what generalizes statements of Hörmander,
Albanese-Jornet-Oliaro and others.

Besides the proof of the ultradifferentiable reflection principle, the statements mentioned
above on the ultradifferentiable are used to generalize directly the results on the regularity
of infinitesimal CR automorphisms on smooth abstract CR manifolds by Fürdös-Lamel to the
ultradifferentiable setting. As a further straightforward application of the microlocal techniques
quasianalytic generalizations of statements of Holmgren, Hörmander, Bony and Zachmanoglou
about the uniqueness of solutions of homogeneous equations.
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Zusammenfassung

Das Hauptthema dieser Arbeit ist die Untersuchung der Regularität von CR Abbildungen
zwischen ultradifferenzierbaren CR Mannigfaltigkeiten. Ultradifferenzierbar ist hier im Sinne
von Denjoy-Carleman Klassen gemeint, d.h. von Teilalgebren glatter Funktionen die durch
Gewichtsfolgen definiert werden. Es werden hier hauptsächlich Denjoy-Carleman Klassen be-
trachtet, die (durch im Sinne von Dyn’kin reguläre) Gewichtsfolgen definiert sind.

Insbesondere werden Reflektionsprinzipe von Lamel und Berhanu-Xiao für endlich nicht-
degenerierte CR Abbildungen in die ultradifferenzierbare Kategorie verallgemeinert. Genauer
wird gezeigt, dass jede endlich nichtdegenerierte CR Abbildung zwischen zwei ultradifferenzier-
baren CR Mannigfaltigkeiten von derselben Denjoy-Carleman Klasse, die nahe eines Punktes
eine holomorphe Ausdehnung in einen Wedge besitzt, nahe dieses Punktes ultradifferenzierbar
von der gleichen Regularität wie die Mannigfaltigkeiten ist.

Für den Beweis der obigen Aussage wird eine geometrische Theorie der ultradifferenzier-
baren Wellenfrontmenge im Sinne von Denjoy-Carleman Klassen, welches ursprünglich von
Hörmander definiert wurde, für reguläre Gewichtsfolgen entwickelt. Insbesonders wird ein Satz
von Dyn’kin über die Charakterisierung von Elementen regulärer Denjoy-Carleman Klassen
durch fast-analytische Ausdehnungen verwendet, um die Charakterisierung der ultradifferen-
zierbaren Wellenfrontmenge durch fast-analytische Ausdehnungen in flache Wedges bzw. durch
die verallgemeinerte FBI Transformation im Sinne von Berhanu-Hounie zu zeigen. Dies er-
laubt die invariante Definition der ultradifferenzierbare Wellenfrontmenge auf ultradifferenzier-
bare Mannigfaltigkeiten der selben Denjoy-Carleman Klasse zu geben. Weiters wird ein Satz
über ultradifferenzierbare mikrolokale elliptische Regularität für vektorwertige Distributionen
und Differentialoperatoren mit ultradifferenzierbaren Koeffizienten bewiesen, was Resultate von
Hörmander, Albanese-Jornet-Oliaro und anderen verallgemeinert.

Weiters werden die oben genannten Resultate für die ultradifferenzierbare Wellenfrontmenge
dazu verwendet die Aussagen von Fürdös-Lamel bezüglich der Regularität von infinitesimalen
CR Automorphismen auf abstrakten CR Mannigfaltigkeiten in die ultradifferenzierbare Kate-
gorie zuverallgemeinern.

Als weitere direkte Anwendung der mikrolokalen Techniken werden quasianalytische Verall-
gemeinerungen von Resultaten von Holmgren, Hörmander, Bony und Zachmanoglou über die
Eindeutigkeit von Lösungen homogener Gleichungen gegeben.

77


	Preface
	Preliminaries
	Chapter 1. Denjoy-Carleman functions
	1.1. Introduction
	1.2. Ultradifferentiable manifolds
	1.3. Division Theorems

	Chapter 2. Geometric microlocal analysis in the ultradifferentiable category
	2.1. Introduction
	2.2. Invariance of the wavefront set under ultradifferentiable mappings
	2.3. A generalized version of Bony's Theorem
	2.4. Elliptic regularity
	2.5. Uniqueness Theorems

	Chapter 3. CR manifolds of Denjoy-Carleman type
	3.1. Introduction
	3.2. An ultradifferentiable reflection principle
	3.3. Infinitesimal CR automorphisms and multipliers
	3.4. Regularity of infinitesimal CR automorphisms

	Bibliography
	Abstract
	Zusammenfassung

