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Preface

The primary focus of this thesis is the study of certain results on the regularity of CR map-
pings, which have been traditionally referred to as reflection principles. The epynom of these
kind of statements is the classical Schwarz reflection principle, which in fact may be viewed as
a regularity result: Any real valued continuous function on the real line that extends holomor-
phically to one side is actually real analytic. Note that R C C is a totally real submanifold and
hence all continuous real valued function can be considered as CR mappings on R.

The Schwarz reflection principle can easily be generalized to mappings between totally real
submanifolds of C™. However it was a surprise when in the second half of the last century
an increasing number of reflection principles for CR mappings between more general CR, sub-
manifolds were proven, beginning with the epochal theorem of Fefferman [34] on the smooth
extension of biholomorphisms of bounded strictly pseudoconvex domains in C". Among the im-
portant results on the boundary regularity that were shown after the theorem of Fefferman we
would like to mention the reflection principle of Nirenberg-Webster-Yang [60] and the reflection
principle for CR diffeomorphisms on essential finite real analytic hypersurfaces of Baouendi-
Jacobowitz-Treves [6] to name only a few.

Most of these theorems are of a similar form, which can be summarized as follows. We con-
sider a CR mapping H between two CR submanifolds M and M’ with some a-priori regularity
that extends holomorphically into a wedge with edge M. If the mapping and/or the manifolds
satisfy certain nondegeneracy conditions then it is proven that H is actually of optimal regular-
ity, that is smooth if M and M’ are smooth, or real-analytic if the manifolds are analytic. The
nondegeneracy assumptions mentioned are heavily tailored towards the methods applied in the
various different proofs.

In particular, it is worth noting that in most instances the conditions in the smooth setting
differ sharply from those used in the analytic category. One of the rare cases, where under
the identical assumptions it could be shown that H is smooth if the manifolds are smooth
and analytic if M and M’ are both analytic manifolds, have been the results of Bernhard
Lamel [52], 53]. He proved that every finitely nondegenerate CR mapping between two generic
submanifolds that extends holomorphically is smooth and even analytic if both manifolds are
real-analytic.

Recently Berhanu-Xiao [10] were able to strengthen this result in the smooth case by re-
laxing partially its assumptions. They require only the target manifold to be an embedded CR
manifold, the source manifold could be only an abstract CR manifold. The finitely nondegen-
erate condition on the mapping remains unchanged but the holomorphic extension obviously
makes no sense in this situation. It is replaced in the theorem of Berhanu-Xiao with the as-
sumptation that the fibers of the wavefront set of H do not include opposite directions.

This microlocal assumption is automatically satisfied in the embedded setting if extension
to a wedge is assumed since Baouendi-Chang-Treves [4] showed that for CR distributions on
CR submanifolds of CV the holomorphic extension into wedges is in fact a microlocal condition,
which they used to define the hypoanalytic wavefront set of CR distributions. It coincides with
the analytic wavefront set if the manifold is analytic. If the manifold is only smooth then the
hypoanalytic wavefront set includes the smooth wavefront set.

Since the results of Lamel and Berhanu-Xiao suggest that finite nondegeneracy preserves
regularity quite well, the following question arises naturally. Given a subsheaf A of the sheaf of
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smooth functions we may ask that if in the formulation of the theorem of Lamel the manifolds
are assumed to be of class A, does it follow that the CR mapping has to be of class A as well?

Of course we have to assume that A satisfies certain properties. First of all, in order for the
conjecture above to make sense, A must be closed under composition and the implicit function
theorem must hold in the category of mappings of class A. Furthermore if we try to modify
the existing proofs in the smooth category then we need some version of A-wavefront set or
more precisely a definition of A-microlocal regularity. We should note at this point that in both
Lamel’s proof and that of Berhanu-Xiao the characterization of the smooth wavefront set by
almost-analytic extensions was heavily used as both relied on an almost-analytic version of the
implicit function theorem.

Several different kinds of ultradifferentiable classes of smooth functions have been used in
various areas of mathematics, one of the most prominent cases being the famous Gevrey classes.
These classes are often defined by putting growth conditions either on the derivatives or the
Fourier transform of its elements.

One of the most explored families of ultradifferentiable classes, that also includes the Gevrey
classes, is the category of Denjoy-Carleman classes. The elements of a Denjoy-Carleman class
satisfy generalized Cauchy estimates of the form

0% f ()] < Chlolmyy|a!

on compact sets, where C' and h are constants indepedent of v and M = (m;); is a sequence of
positive real numbers, the socalled weight sequence associated to the Denjoy-Carleman class.
Such classes of smooth functions were first investigated by Borel and Hadamard, but were named
after Denjoy and Carleman when they characterized quasianalyticity of those classes using its
weight sequence.

There is a rich literature concerning the Denjoy-Carleman classes and their properties.
Obviously conditions on the weight sequence translate to stability conditions of the associated
class. For example, if M is a regular weight sequence in the sense of [29], then it is well
known that the Denjoy-Carleman class is closed under composition, solving ordinary differential
equations and the implicit function theorem holds in the class, c.f. e.g. [67]. Hence it makes
sense in this situation to consider manifolds of Denjoy-Carleman type.

There have been also several attempts to define wavefront sets with respect to Denjoy-
Carleman classes, see e.g. [51] and [24]. But the most widereaching definition of an ultradif-
ferentiable wavefront set both with respect to conditions imposed on the weight sequence and
scope of achieved results was given by Hormander [42]. However his definition is a little bit
too general for the purposes of this thesis. Due to his relative weak conditions on the weight
sequences Hormander was only able to define the ultradifferentiable wavefront set WF yqu of
distributions u on real-analytic manifolds but not distributions defined on ultradifferentiable
manifolds.

However Dyn’kin proved that for regular weight sequences locally each Denjoy-Carleman
function has an almost-analytic extension, whose dbar-derivative satisfies near Imz = 0 a
certain exponential decrease in terms of the weight sequence. In this thesis we use this result
and several statements of Hérmander [45] to prove that the Denjoy-Carleman wavefront set can
be characterized by M-almost-analytic extensions. Using this characterization it is possible to
modify Hormander’s proof to show that in this situation the ultradifferentiable wavefront set
for distributions on Denjoy-Carleman manifolds can be well defined.

One of the fundamental results on the wavefront set is the elliptic regularity theorem
which states that for all partial differential operators P with smooth coefficients we have that
WFu C WF Pu U Char P for all distributions. Similarly Hérmander proved that WF  u C
WEF 1w U Char P holds for operators with real-analytic coefficients. However, recently several
authors [3], [65] have used the pattern of Hormander’s proof to show this inclusion for ultradif-
ferentiable wavefront sets and operators with ultradifferentiable coefficients for variously defined
ultradifferentiable classes.



Arguing similarly we prove that, if M is a regular weight sequence, then WF u C
WEF ¢ Pu U Char P for operators P with coefficients in the Denjoy-Carleman class associated
to M. In fact, we show this inclusion for vector-valued distributions and square matrices of
operators with ultradifferentiable coefficients.

With this results on hand and an M-almost analytic version of the almost-analytic im-
plicit function theorem of Lamel we can now prove ultradifferentiable versions of the reflection
principles of Lamel and Berhanu-Xiao for Denjoy-Carleman classes given by regular weight
sequences.

More precisely this thesis is structured as follows. In chapter [1| we develop the theory of
Denjoy-Carleman classes that is necessary for our purposes. In particular, the basic definitions
and a summary of known results for classes given by regular weight sequences are given in section
Furthermore, after presenting the aforementioned result of Dyn’kin we prove here the M-
almost analytic version of the almost-analytic implicit function theorem mentioned above. In
section [1.2] we note that by the results cited in the previous section it is possible to consider the
category of manifolds of Denjoy-Carleman type if the weight sequence is regular. We observe
also that this allows us to give an ultradifferentiable version of Sussmann’s Theorem and to
generalize the Theorem of Nagano for vector fields with coefficients in quasianalytic Denjoy-
Carleman classes. The last section of chapter [I] contains proofs of generalizations of the basic
smooth division theorems given in [35] to the category of Denjoy-Carleman classes and a brief
discussion on the algebraic structure of quasianalytic classes.

In the first section of chapter |2 the basic theory of the ultradifferentiable wavefront set as
presented in [45] is reviewed. We start section with a result on the wavefront set of bound-
ary values of M-almost analytic functions with parameter. This generalized form is later on
needed in the proof of the ultradifferentiable reflection principle. Here, however the statement
without parameter together with results of Hérmander and the theorem of Dyn’kin leads to
the characterization of the ultradifferentiable wavefront set by M-almost analytic extensions,
which in turn is crucial to show that the wavefront set can be invariantly defined on manifolds
of Denjoy-Carleman type. In section [2.3] a generalized version of the famous theorem of Bony
[18] on the characterizations of the analytic wavefront set is presented. In particular, we char-
acterize the wavefront set with respect to regular Denjoy-Carleman classes by the generalized
FBI transform introduced by Berhanu-Hounie. A similar result was recently given by Hoepfner-
Medrado [39]. We shall note that in contrast to their result we allow here also quasianalytic
classes. Section[2.4]is dedicated to the proof of the ultradifferentiable elliptic regularity theorem
mentioned above, which in turn is used in section together with a result of Hormander [41]
to prove a quasianalytic version of the Uniqueness Theorem of Holmgren [40], see also [41].
This enables us to show generalizations of statements of Bony [16], 17], Sjostrand [75] and,
applying the quasianalytic Nagano theorem, Zachmanoglou [82], [83].

In chapter [3]| CR manifolds of Denjoy-Carleman type are considered at last. In section
basic definitions and first results are given, whereas the proofs of the ultradifferentiable versions
of the reflection principles of Lamel and Berhanu-Xiao are presented in section The last two
sections are devoted to present essentially the generalization of [35] concerning the smoothness
of infinitesimal CR automorphisms to regular Denjoy-Carleman classes. We end by examining
smooth infinitesimal CR automorphisms on formally holomorphic nondegenerate quasianalytic
CR submanifolds.

I would like to thank my supervisor Bernhard Lamel for his support and advice during the
long journey that has led to this thesis. I would also like to express my gratitude to Armin
Rainer and Gerhard Schindl, who introduced me to the theory of Denjoy-Carleman classes and
its intricacies. Finally I wish to thank Michael Reiter.

Stefan Fiirdos
June 2017, Vienna






Preliminaries

We will summarize some basic notions and definitions that are going to be used throughout
the thesis.

We will use the standard (subspace) topology on 2 C R™. In particular we denote the
system of neighbourhoods of a point p € Q by U(p) = Uq(p). Occasionally we are going to write
K ccC Q) to denote a compact subset K of 2. If U is an open set then U CC (2 means that U
is a relatively compact subset of €.

The standard scalar product in R™ will be written as

n
j=1

Sometimes we will also use the convention x -y = (x,y). A subset I' € R" is a cone iff for all
A > 0and z € T it holds that also Az € I'. The set of positive integers is denoted by N whereas
No = NU{0}. An element a € Nj is said to be a multi-index. The length of a multi-index « is

defined as
la| = Z a;.
j=1

Similarly the Euclidean norm in R" is denoted by

for z € R™.
If R is a ring, F a module over R and f;..., f; € F then we denote the submodule of F
that is generated by fi,..., fq by
SpanR{fla s 7fd}'

If Q C R" is open then we say that a function f defined on 2 is an element of C1(£2) iff all
partial derivatives

of
874‘]-(1:)’
exist and define continuous functions on €. The spaces C*(Q2), k € N, are defined analogously,
whereas C(2) = C%(Q) is the space of continuous functions on Q. Accordingly we write £(Q) =
C®(Q) = N2y C*(Q2) for the space of smooth functions. Note that usually all functions are
considered to be complex-valued, if not stated otherwise. We may write

9
a$j ’
and, if & € Nj is a multi-index, 0% = 97" ... 95". We shall also rarely use the following notation:
Let v € R™ then

8‘7:8sz j:]_,...,n,

n
Ouf =Y v0;f
j=1
is the directional derivative of f in direction v.
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We write C*(Q2, E) for the k-times differentiable mappings, k € Ny U {oo}, from  into
a vector space E. If k = oo then we use also the notation £(2, E). The Jacobi matrix, or
Jacobian, of a map F = (Fy,..., Fy,) € C1(Q,K™), K=R,C, at p € Q is the matrix

81F1(p) N 8nF1(p)

D1 Fm(p) .. OnFun(p)

If K C Q is compact then £(K) is the space consisting of those continuous functions on K
that can be extended to smooth functions defined in some neighbourhood of K in €.

The space of test functions, that is smooth functions with compact support, i.e. functions
f € E(Q) such that

supp f = {p € Q| AU € Ua(p): flv =0}

is compact, is denoted by D(2). If D(Q) and £(2) are equipped with their usual local convex
topologies then the dual spaces D'(2) and £'(2) are the usual spaces of distributions and
distributions with compact support, respectively, on 2. The duality bracket on D’ is denoted
by (u,p) = u(p) where u € D'(Q) and ¢ € D(2). A linear form u on D(Q) is an element of
D'(Q) if and only if for each compact subset K CC 2 there are constants C' > 0 and k € Ny
such that for all p € D(K) = {¢ € D(Q | suppy C K}

(u, ) < C Z Suplaago(x)‘.

o<k zeK

We say that the distribution u is of finite order iff the constant k does not depend on K. If
ko is the smallest number such that the above estimate holds then w is a distribution of order
ko. The space of distributions of order k on € is denoted by D"*(2). Any distribution with
compact support is of finite order and we set &% = D'* N £, For more details see e.g. [45],
[46] or [27].

If Q C C" is open with coordinates Z = (Z1,...,Z,), x = ReZ, y =Im Z and f € C(Q)
then we set

of _1/9f of
0Z; 2<8xf %)
(200
82 2\ Oz; 0y

Since a function f € C!(€) is holomorphic if and only if 9; f = % =0forall j=1,...,n, we
write frequently g(p,p) for the value of an arbitrary function g € CI(Q) at the point p € € in
order to indicate that generally éj g # 0.

We recall that a paracompact, Hausdorff topological space M is an abstract smooth manifold
of dimension n iff there is an atlas A = {(Vj, ¢a)} of charts ¢, i.e. homeomorphisms ¢, : Vo —
R™ such that M =, V4 is the union of the open subsets V, C M and two arbitrary charts

o Vo = R"and ¢g : Vg — R" in A are compatible, ithat means ¢, o ngl € & wherever the
composition is defined.

If ¢ : V — R"is a chart then ¢! : U = ¢(V) — M is called a (local) parametrization of
M and (x1,...,2,) = ¢ 1(q) are local coordinates on U

A map F : M — N between two manifolds is C*, k € Ng U {oo}, iff ¢ o F o ¢~ ! for any
choice of charts ¢ of M and 1 of N. In particular, a function f : M — C is C* if and only if
©*f = fois CF for any local parametrization (U, ) of M.

M*>C
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viii



We are going to identify occasionally a chart neighbourhood V' with the open subset U =
o(V) CR™. We refer e.g. to [25] for a detailed account of the theory of manifolds.

When K denotes either the field R or C, then a manifold F is said to be a (K-)vector
bundle over M of fiber dimension NV, if the following holds: There is a smooth surjective map
7 : E — M such that E, = E|, :== 7~ 1(p) is an N-dimensional vector space over K, the socalled
fiber of E at p, for each p € M. Furthermore for each p € M there is an open neighbourhood
V C M and a diffeomorphism x such that the following diagrams commutes

N V) X5 V x KN

iﬂ' lpl

v —4 v
and such that the mapping x|.-1(g) : 7 (q) = {¢} x K¥ = K" is a linear isomorphism for each
q € V. The diffeomorphism y is called a local trivialization of F. Local trivializations satisfy
the following compatibility condition. Let x1 and xso be local trivializations of a vector bundle

FE on the subsets V4 and V5 of M, then

ViN Vs x KN P12 y V41N Ve x KN
T (VinVa)
pP1 \Lﬂ' P1
inh,

commutes, where p12 = X2 °X1_1 is linear in the last component. More precisely, we can consider
p12 as a smooth mapping

p:VinVe — GL(N,K)
into the Lie group of invertible N x N-matrices with entries in K. The map pio is called a
transition function of E. If x3 is a local trivialization of E on a further open subset V3 of M
and pa3 = X3 0 Xy L ops1 = x10 X3 ! the corresponding transition functions then the socalled
cocyle condition is satisfied on V; N Vo N V3, namely

p12(x) - pa3(x) - p31(z) = 1d
for x € V1 N Vo N V3. Note that it possible to reconstruct the bundle £ from the transition
functions defined on a covering of M.
A map f between two vector bundles E and F over the manifold M is a vector bundle
homomorphism iff f is smooth and linear in the fiber, i.e.

B, = Bp — Frof(p)
is linear for all p € M. If f is additionally a diffeomorphism and invertible in each fiber then it
is called a vector bundle isomorphism.

If U C M is an open subset then we write E|y = E(U) for the vector bundle 7—!(U) over
U.

If ' is some vector bundle on M then a section of E is a mapping X : M — FE that satisfies
mo X = id. Note that we have not required X to be smooth. The space of sections of F is
denoted by I'(M, E), whereas £(M, E) is the space of smooth sections. We define similarly
C*(M,E), k € Ny.

A local basis of £(M, E) on U C M is given by smooth sections f; € E(U, E|y) = E(U, E),
j=1,...,N, that are linearly independent at any point of U, such that any X € £(M, E) can
be written locally as

N
Xlo=> X;fj
j=1
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with coefficients X; € £(U).
If 7: E — M is a vector bundle then 7’ : F — M is a vector subbundle of F iff F C E and
7' = 7|p. The dual bundle E* of a bundle F is defined by setting

E = | | (B
peM
If 4 is a local trivialization on U then the dual map ¢* is defined by ¢¥*(p, .) = (¢(p, .))* and
o = (¢*)~! is a local trivialization of E*. Note also that if p is a transition function of E then
("p)~! is a transition function of E*.
If F C FE is a subbundle, we can define a subbundle F+ C E* by

Flf‘ ={oc€E;|o(w)=0 YveF,}

Other constructions from linear algebra that transfer easily to the category of vector bundles
include the tensor product. If E and F' are two K-vector bundles then the tensor product
E® F = E ®k F is defined fiberwise by (E ® F), = E, ® F,. Note that £ ® F' satisfies the
following universal property. Let G be another K—vector bundle and ¢ : £ x F — G a bilinear
vector bundle morphism. Then there is a unique linear vector bundle morphism ¢ : E®Q F' — G
such that the diagram

ExF -2 E®F
xl‘ﬁ
G

commutes, where ® is the morphism that maps (e,, f,) € Ep X F}, to its tensor product e, ® fp.
In particular, if F is a real vector bundle over M and if we denote the trivial complex bundle
M x C in a slight abuse of notation as C then the tensor product C Qg F is a complex vector
bundle.

Another construction, that we need to mention is the exterior power /\k E of a vector
bundle E. It satisfies the following universal property. If F' is another vector bundle and
P Hk FE — F is an anti-symmetric k-multilinear morphism then there exists a unique vector
bundle homomorphism 1 : A¥ E — F such that

Ex---xE 25 N'E
x lw
G

commutes. Here A is the following multilinear morphism. If (v;, . ,v;f ) € H§:1 E, then

U; A A 'U;E — Z Sgn(U)Ug(l) R R rUU(k)P

oc€Sk
where S is the symmetric group of degree k. For more details on the algebraic background of
these constructions, see e.g. [54]. Note in particular that the fiber dimension of /\k E equals
(]]X) We set \YE = M x K.
The basic examples of vector bundles are the tangent bundle TM = | |T,M, where T, M is
the usual tangent space at p € M, of a manifold M and its dual the cotangent bundle T*M.
We denote the tangent map (or push-forward) of a C'-mapping F : M — N at the point p by

(F*)p : TpM — TF(p)N
and the dual map to Fi(p) = (Fy), is the cotangent map of F’
E} - Tf)N = T,M.
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Thus, if ¢ is a chart of M on U C M, a local trivialization of TM on U is given by

oo TN U) = | | THM — o(U) x R" 22U x R”
pelU
(s vp) > (2(p), px(p)vp).

The transition function p of T'M associated to two charts ¢ and v of M, i.e. associated to the
local trivializations ¢, and 1., is just the Jacobi matrix of 1o p~1. Hence, if ¢*(p) = (p«(p))*,
then

" T U) = | | TEM — o(U) x R" 22U x R”
peU
(0 &) — (2(p), ¥* (P)&p)-

and the transition function p is the transpose of the Jacobi matrix of ¢ o ¢~!. The smooth
sections of TM and T*M are called the vector fields of M and the 1-forms of M, respectively.
The Lie bracket [X, Y] of two vector fields X and Y is the vector field given by

(X, Y]f = X(Y[)-Y(X[f) fe&M).

The set of vector fields X(M) = E(M,TM) thus is a Lie algebra, i.e. an algebra with the Lie
bracket as multiplication.
An integral curve of X € CY(M,TM) is a curve v : R D I — M that satisfies the equation
dr(t)
—— =X t).
o o (1)
If p€ M and X € C'(M,TM) then there is always an integral curve 7% of X such that the
domain of definition (d,,cp) C R of v is maximal. The (local) flow H = Hx of X is defined as
the map

H: RxMD2{(r,p)|peM, 7€ (0pep)} — M
that is defined by H™ (p) = H(7,p) = 7% (7).

A mapping F': M — N is said to be an immersion iff the tangent map F, : T,M — TF(p)N
is injective for all p € M. If M’ C M is a subset of a manifold M and M’ is itself a manifold
such that the inclusion ¢ : M’ — M is an immersion then M’ is called an immersed submanifold
of M. If « additionally is an homeomorphism on the image then we say that M’ is an (regular)
submanifold of M.

Let £ C X(M) a Lie subalgebra of vector fields on M. We say that an immersed submanifold
M’ of M is an integral manifold of £ iff

L (TyM) = £() = {X(0) | X € £}

for all p € M’. An integral manifold M’ of L is called maximal if for any integral manifold M"
with M’ C M" it follows that M’ = M".

In general, the differential forms of degree k on M are the smooth sections of A (T*M),
i.e. the elements of A¥(M) := (M, N\*(T*M)). If o € AF(M) is a k-form and 8 € A*(M) then
the exterior product a A 3 € A¥*¢(M) is defined by

(@A B)p = ap A Bp.
If F: M — N is a smooth map then the pullback of a k-form w € A¥(N) by F is the k-form
F*w € AF(M) that is pointwise defined by
Frup(X),.... X)) =w(RX),...,F.X))

where X!, ... X" € X(M). Obviously the definition makes also sense for F' only a C'-mapping
and a k-form w of class C1, i.c. w € CY(N, A¥ T*N). That leads to F*w € C*(M, \* T*M).
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If (U,¢) is a local chart of M with coordinate functions ¢(p) = (z1(p),...,zn(p) then a
local basis of vector fields on U, i.e. a set of elements Vi,...,Vy € E(U,TM) such that the
vector fields Vj are linearly indepedent on U, is given by

1 0 .
Vj_%l(a%) J=1...,n.

We may identify the coordinates on U and ¢(U) and write V; = ;. Similarly a local basis
of 1-forms on U is given by dz;, 7 = 1,...,n. Then dx; A --- A dz, is a local basis of A" =
E(M, \"T*M). More generally, the k-forms of the form dxj, A--- Adzj,, where 1 < j; < jo <
-+ < ji, < n, constitute a local basis of A*(M).

The exterior derivative of a k-form w that is locally given by

w= Z fivegpdxgy N-- - Ndag,
1K< <jr<n
is defined by

do= > dfj,. Nz A Aday,
1<j1 < <jp<n
where dfj, ., = Z;L:l 0;fj..j.dxj is the usual exterior derivative of the function f; ;. It
can be shown that the extorier derivative d : A¥(M) — A*+1(M) is well defined and satisfies
dod=0.
The Lie derivative of an k-form w € A*(M) with respect to a vector field X € X(M) is the
k-form given by
d
ch = %
where H7 is the flow of X, c.f. [38].
A function f : M — C is said to be locally integrable, iff for any parametrization ¢ : U — M
the composition f o ¢ is locally integrable on U.

A complex density on a (real) vector space V of dimension N is a mapping d : A V*\{0} —
C such that for all A € R\{0} and all w € A V*\ {0} we have

dOw) = A - d(w).

Since /\N V* is 1-dimensional a density is completely determined by its value on one element
of AV V*\{0}. Hence the space of densities vol(V) is a complex vector space of dimension 1.

If M is a manifold then the complex density bundle vol(M) is defined fiberwise by vol(M ), =
vol(T,M). For more details, see e.g. [74] or [37]. The complex density bundle is a com-
plex line bundle, i.e. its complex fiber dimension is 1. If (U,¢) is a local chart and ¢(p) =
(z1(p),...,zn(p)) for p € U and consider the section |dx; A -+ A dzy| of volM that is defined
by |dzi A -+ Adxy|p((dzy A -+ ANdxy)p) = 1 for all p € U. then |dzy A --- A dxy| generates
C(M,vol(M)).

One important feature of the complex density bundle is that it is possible to integrate
continuous sections of vol(M). More precisely, let ¢ be a chart of M on U C M, K CC U a
compact set and d € C(M,vol(M)) a density with support in K. Then d is of the form

d=d|dzi A--- Adzy,|
where d € C(U) with suppd C K and we define

/d:: / d(p(z)) da.
K P(K)

It can be shown to be well-defined, c.f. [74]. If one uses partitions of unity then the integral
over more general sections of vol(M) can be defined in the usual way.
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If vol(M) is the complex density bundle we define
D(M,vol(M)) := {¢ € E(M,vol(M)): suppyp CC M}

as the space of compactly supported sections of vol(M) equipped with the usual topology. Its
strong dual D’'(M) is the space of distributions on M, for more details see e.g. [23] or [37].
Note that a function f: M — C is locally integrable if and only if

/]f7\<oo

M

for all 7 € D(M,vol(M)). Therefore any locally integrable function f can be considered as a
distribution on M in the usual way.
If F is a vector bundle on M then we consider similarly

D(M,E @ vol(M)) = {w € E(M, E ®vol(M)): suppw CC M }

the space of compactly supported smooth sections of E®vol(M).
The strong dual of D(M, E ® vol(M)) is the space of distributions (or generalized sections)
on M with values in E*
D'(M,E*) = (D(M, E ® vol(M)))’'
If wh,...,w” is a local basis of £(U, E|y), U € M open, and wj = (w)*, j = 1,...,v, the
dual basis then a distribution ) € D'(M, E*) is locally of the form

Vv = ujw; (A)
j=1

where u; € D'(U). We also say that a section § € I'(M, E*) is locally integrable iff

JEGIE
M
for all 7 € D(M, E ® vol(M)).
We note that, beside the usual duality bracket for 9 € D/(M, E*) and w € D(M, E) by
(), w), there is another bracket

{.,.}: D'(M,E*) x &(M,E) — D'(M),
which is defined locally as follows: On U C M open as above we have the local representation
for  and we can write w|y = > fijw’ with f; € E(U). We define
{9, wlu =Y fu; € D'(U),
J

We may write 9 (w) = w(2)) = {D,w}.
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CHAPTER 1

Denjoy-Carleman functions

1.1. Introduction

Troughout this and the next chapter ) is going to denote an open subset of R™. A weight
sequence is a sequence of positive real numbers (M) cn, with the following properties

My =1
A4? < A4},1Ad}+1 7 €N

DEFINITION 1.1.1. Let M = (M;); be a weight sequence. We say that a function f € £(12)
is wltradifferentiable of class {M} iff for every compact set K CC  there exist constants C
and h such that for all multi-indices o € N

|Df(z)] < ChI*M, 2 € K. (1.1.1)

We denote the space of ultradifferentiable functions of class {M} on 2 as Epq(Q2). It is
always a subalgebra of £(£2) ([48]).

EXAMPLE 1.1.2. For any s > 0 consider the sequence M* = ((k!)**1),. The space of
ultradifferentiable functions associated to M?* is the well known space of Gevrey functions
G5t = Eps of order s + 1, cf. e.g. [68]. If s = 0 then G = 0 = O is the space of
real-analytic functions.

REMARK 1.1.3. Tt is easy to see that E,¢(2) is an infinite-dimensional vector space, since it
contains all polynomials. In fact Ea¢(Q2) is a complete locally convex space, see e.g. [48]. The
topology on Ex(2) is defined as follows. If K CC  is a compact set such that K = K° then
we define for f € £(K)

h
[fI% := sup
reK
aeNY

‘ D f(x)
Bl Mg

and set
EME) = {f € E(K) | || fIlk < oo}
It is easy to see that £}, (K) is a Banach space. Moreover, ER((K) C EX,(K) for h < k and
the inclusion mapping ¢f : £ (K) — X (K) is compact. Hence the space

Enm(K) = {f € E(K) | 3h > 0: ||y < oo} = lim £4((K)
h

is a (LB)-space. We can now write

Exn(Q) = lim Exa(K)
K

as a projective limit. For more details on the topological structure of E,¢(2) see [48].

We call Ea4(Q2) also the Denjoy-Carleman class on §2 associated to the weight sequence M.
If M and N are two weight sequences then

1
M.\ k
MIN = Sup<k> < oo
keNo \ Vi

1



defines a reflexive and transitive relation on the space of weight sequences. Furthermore it
induces an equivalence relation by setting

M==N = M<Nand N 5 M.

It holds that Exq C Ep if and only if M x N and Epq = Ey if and only if M =~ N, see [56],
c.f. also [66] and [78]. For example, if r < s then G C Gs*1,
The weight function wp (c.f. [56] and[48]) associated to the weight sequence M is defined
by
) tog 0
wam(t) := sup log — t >0,
jeNy M
wa(0) := 0.

It follows that wa, is a continuous increasing function on [0, 00), vanishes on the interval [0, 1]
and wpg oexp is convex. In particular wp(t) increases faster than log tP for any p > 0 as ¢ tends
to infinity [48), [56]. It is possible to extract the weight sequence from the weight function ([56],
[48]), i.e.

+k

My = sup 75

If f and g are two continuous functions defined on [0, co) then we set f ~ g iff f(t) = O(g(t))
and g(t) = O(f(t)) for t — oco. It can be shown that the weight function ws for the Gevrey
space G511 satisfies

1
w(t) ~ £+,

Sometimes the classes £y are defined using the sequence my = % instead of (Mjy)x and
(1.1.1) is replaced by

‘Daf(a:)‘ < Ch‘a|\a|!m|a|.
1

Infrequently the sequences pp = MMk—:l or L =M kk are also used, with an accordingly modified
version of , c.f. also Remark The main reason for the different ways of defining
the Denjoy-Carleman classes is the following. In order to show that these classes satisfy certain
properties, like the inverse function theorem, one has to put certain conditions on the defining
data of the spaces, i.e. the weight sequence, c.f. [67]. Often these conditions are easier to write
down in terms of these other sequences instead of using (M;);. In the following our point of view
is that the sequences (M), (mg)k, (tk)r and (Lg)g are all associated to the weight sequence
M. We are going to use especially the two sequences (m;); and (M;); indiscriminately.

We may note that sometimes ultradifferentiable functions associated to the weight sequence
M are defined as smooth functions satisfying for all h > 0 on each compact K, see e.g.
[32]. One says then that f is ultradifferentiable of class (M) and the corresponding space is
the Beurling class associated to M. On the other hand £y, is then usually called the Romieu
class associated to M, c.f. [48] and [67].

From now on we shall put certain conditions on the weight sequences under consideration.

DEFINITION 1.1.4. We say that a weight sequence M is regular iff it satisfies the following
conditions:

mo=mji = 1 (Ml)

sup f/ Ml oo (M2)
k m

mi < Mp_1Mps1 keN (M3)

lim {/my = oo (M4)
k—o0

2



The last condition just means that the space O of all real-analytic functions is strictly
contained in & whereas the first is an useful normalization condition that will help simplify
certain computations. It is obvious that if we replace in the number 1 with some other
positive real number we would not change the resulting space €.

If M is a regular weight sequence, then it is well known that the associated Denjoy-Carleman
class satisfies certain stability properties, c.f. e.g. [12} [67]. For example Erq is closed under
differentiation, i.e. if f € Epq(Q) then D¥f € Epq(Q) for all a € Nj.

REMARK 1.1.5. The fact that Ex¢(€2) is closed under differentiation implies immediately
another stability condition, namely closedness under division by a coordinate ([12]):

Suppose that f € Ep(2) and f(x1,...,2j-1,0,%j41,...,2,) = 0 for some fixed a € R and
all xy, k # j, with the property that (x1,...,2j-1,a,%j41,...,2,) € Q. Then we apply the
Fundamental Theorem of Calculus to the function

fitt— f(z1,...,zj_1,t(xj —a)+ a,zjq1,...,2Tn)
and obtain
18f 1 of
f(CL') = 87;([‘&) dt = (‘TJ —CL) /%(xla o 7'Ij*1,t('1"j —CL) —|—a,LE]'+1, cee 7xn) dt = (xj _a)g($)
J
0 0

It is easy to see that g € E,¢(Q) using g?Tfj € Em(N).

For the proof of the properties above only (M2)) was used. If we apply also (M3|) then it is
possible to show that E,(2) is inverse closed, i.e. if f € Exq(Q) does not vanish at any point

of Q then

L]f_n € SM(Q)7

c.f. [67] and the remarks therein.
In fact, if M is a regular weight sequence then the associated Denjoy-Carleman class satisfies
also the following stability properties.

THEOREM 1.1.6. Let M be a regular weight sequence and 1 C R™ and Q29 C R"™ open sets.
Then the following holds:

(1) The class Epq is closed under composition (Romieu [T0] see also [12]) i.e. let F :
Q1 — Qg be a Epq-mapping, that is each component F; of F' is ultradifferentiable of
class {M} in Qy, and g € Epm(Q2). Then also go F € Epq(§21).

(2) The inverse function theorem holds in the Denjoy-Carleman class Epq (Komatsu [49] ):
Let F : Q1 — Qg be a Epq-mapping and py € Q1 such that the Jacobian F'(pg) is
invertible. Then there exist neighbourhoods U of py in Q1 and V' of qo = F(xp) in Qo
and a Ep-mapping G 1V — U such that G(qo) = po and F o G = idy .

(3) The implicit function theorem is valid in Enq (J49]): Let F : R™ D Q — R be a
Em-mapping and (xg,y0) € Q such that F(xo,yo) = 0 and %—i(xo,yo) s tnvertible.
Then there exist open sets U C R™ and V. C R? with (x0,y0) € U x V C Q and a
Em-mapping G : U — V such that G(x¢) = yo and F(x,G(z)) =0 for allxz € V.

Furthermore it is true that E,¢(2) is closed under solving ODEs.

THEOREM 1.1.7 (Yamanaka [81] see also [50]). Let M be a regular weight sequence, 0 €
I CR an open interval, U CR", V C R open and F € Ep(I x U x V).
Then the initial value problem

2 (t) = F(t,z(t),\) tel,\cV
z(0) = xg o e U
has locally a unique solution x that is ultradifferentiable near 0.

3



More precisely, there is an open set Q@ C I x U X V that contains the point (0,29, \) and an
Epm-mapping x = x(t,y,\) : @ — U such that the function t — x(t, yo, Ao) is the solution of the
initial value problem

2'(t) = F(t,x(t), \o)
z(0) = vo.

For any regular weight sequence M we can define the associated weight by

hM(t):i%ft'fmk ift>0 & hap(0)=0. (1.1.2)
Similarly to above we have that
my, = sup hm(t)
k . tk

In order to describe the connection between the weight and the weight function associated to a
regular weight sequence we set

t
Wm(t) := sup log —
J€No my

ha(t) = inf tk My,

for t > 0 and @ (0) = A (0) = 0.

LEMMA 1.1.8. If M is a regular weight sequence then

) ) (1.1.3)
hM (t) = ein (?)
PROOF. We prove only the equality for haq. Of course, the verification of the other equation

is completely analogous. If ¢ > 0 is chosen arbitrarily we have by the monotonicity of the
exponential function that

1 1 1 1 1
7 —_ = l = = = .
(an(5) )=o) = = =

O

We obtain that ha is continuous with values in [0, 1], equals 1 on [1,00) and goes more
rapidly to O than t? for any p > 0 for t — 0. Albeit the weight function is the prevalant concept,
the weight was used e.g. by Dyn’kin [28, [29] and Thilliez [77].

ExamMpLE 1.1.9. If M = M? is the Gevrey sequence of order s then we know already that

1
the associated weight function satisfies ws(t) ~ tT+s. Hence ([1.1.3)) shows for s > 0 that if we
set

1
fS (t) = e_ts
then there are constants C1, Co, @1 and (2 > 0 such that
les(Qlt) < hs(t) < CZfs (QQt)

for t > 0.



hi

w1

s=1

It is well known (see e.g. [57], [58] or [79]) that a function f is smooth on € if and only
if there is an almost-analytic extension F' of f, i.e. there exists a smooth function F' on some
open set 2 C C™ with Q NR™ = () such that

- 0 1/ 0 .0

0 F = asz =3 (&rj —Hayj)F
is flat on Q and F|q = f. The idea is now that if f is ultradifferentiable then one should find
an extension F' of f such that the regularity of f is translated in a certain uniform decrease
of 9;F near Q (c.f. [30]). Such extensions were constructed e.g. by [63] and [2] under relative
restrictive conditions on the weight sequence. The most general result in this regard though
was given by Dyn’kin 28], [29].

__ TuHEOREM 1.1.10. Let M be a reqular weight sequence, K CC R"™ a compact set with K =
K°.Then f € Em(K) if and only if there exists a test function F' € D(C") with F|x = f and if
there are constants C, Q) > 0 such that

0;F(2) < Chpm(Qdk(2)) (1.1.4)
where 1 < j < n and dg is the distance function with respect to K on C"\ K.

We shall note that Dyn’kin used the function hq(t) = infmt*~! instead of the weight
ha. It is easy to see that hi(t) = haq(t)/t. Since hp is rapidly decreasing for ¢ — 0 we can
interchange these two functions in the formulation of Theorem In fact, Dyn’kin’s proof
gives immediately the following result.

COROLLARY 1.1.11. Let M be a regular weight sequence, p € Q and f € D'(Q). If f is
ultradifferentiable of class {M} near p, i.e. there exists a compact neighbourhood K of p such
that flx € Em(K), then there are an open neighbourhood W C Q, a constant p > 0 and a
function F € E(W 4 iB(0, p)) such that Flw = flw and

|0;F (x +1y)| < Cha(Qlyl) (1.1.5)
for some positive constants C,Q and all 1 < j <n and z + iy € W +iB(0, p).

The following theorem is the M-almost analytic version of the ”almost-holomorphic” im-
plicit function theorem of Lamel [53].

THEOREM 1.1.12. Let M be a reqular weight sequence, U C CN a neighbourhood of the
origin, A € CP and F : U x CP — CV of class {M} on U and polynomial in the last variable
with F(0,A) = 0 and Fz(0, A) invertible. Then there exists a neighbourhood U' x V' of (0, A)
and a smooth mapping ¢ = (¢1,...,¢0n) : U x V! = CN with (0, A) = 0 with the property

5



that if F(Z,Z,W) = 0 for some (Z,W) € U' x V' then Z = ¢(Z,Z,W). Furthermore, there
are constants C,~v > 0 such that
0p;
07y,
forall1 < j,k < N and ¢ is holomorphic in W.

Proor. We write F(Z,Z,W) = F(x,y, W), where (z,y) € RY x RY are the underlying
real coordinates of (CN, ie. Zj=uxz;+iy; for 1 < j < N. Let Uy C RY be a neighbourhood of
0 such that Uy x Uy C U. Using Theorem |1.1.10| we find a smooth mapping

F=UyxRY x Uy xRN x C? — CV
such that F(z, ', y,y, W) imyi=0 = F(z,y,W) and if we write & = xzy + ix}, m = yr + iy,
for k=1,..., N and set ¢ = (&, n), then for each compact subset K CC CP there are constants
C,~ > 0 such that

(Z2,Z,W)| < Chp(v|0(Z,Z,W) — Z|) (1.1.6)

25 6.6)| < Chaalr ) (1.17)

~k

GGG, W)| < Chaotng) (1.1.70)
Tk

for (¢,W) € (Up+iRN)?2 x K and 1 < j,k < N. Note also that F is still polynomial in the
variable W.
We introduce new variables x = (x1,...,xn) € CV by

A 7 —
€ = k+ Xk _— k .Xk 1<k<N
2 21
and note that
_ Zk+ Xk Kk — Xk
Lk = 9 - Yk = 9 -
Xk=2k t Xe=2

We also set G(Z, Z,x, X, W) = F(g,g,n,ﬁ, W). The function G is therefore smooth in the
first 2V variables in some neighbourhood of the origin and polynomial in the last p variables.
Due to the definition of G we have

oG 10F 109F
oz ~20¢ "2ian
oG 10F 109F
ox 206 2on
We are going to compute the real Jacobian of G at the point (0, A). We obtain

oG oF
and
oG 1/0F OF
Sr0 = (G -Shon) o
and thus
gg  9¢ OF 2
det ( 3¢ 52| (0,4) = deta—Z(O,A) #0
0Z 98Z

by assumption. Hence, by the smooth implicit function theorem, there is a smooth mapping
1 defined in some open neighbourhood of (0, A), valued in CV and holomorphic in the vari-
able W such that Z = 9(x, X, W) solves the equation G(Z, Z,x, X, W) = 0 uniquely. Since
G(Z,2,Z,Z,W) = F(Z,Z,W), this fact implies that if F(Z,Z,W) =0 then Z = (Z,Z,W).
We set ¢(Z, Z, W) = (Z,Z,W) and claim that ¢ satisfies (1.1.6)).

6



In fact, if we differentiate the implicit equation G(¢(x, X, W), ¥ (x, X, W), x, X, W) = 0 then
we obtain

Gy + Gz + Gy =0
Gzl/;x + sz)z + G)Z =0.
If we multiply the last line with G ZGEI and substract the result from the first line then
(Gz — G4G,'Gz)y = GG Gy — Gx.
Hence we have in a small neighbourhood of (0, A) that
Gzégléx - Gx
Gy — Gzégléz

02(2,2,W) = ¥(2,2,W) = ( ) (v(2,2,W),0(Z,2,W),2,2,W).
This formula shows that any function dz, ¢; is a sum of products each of which contains a factor
of the form Gz, or Gy, for some ¢. Note also that by definition Im¢§ = %(ImZ + Im x) and
Imn = —%(ReZ — Rex).

Hence (I.1.7) implies on some compact neighbourhood of (0, A), where det G,* is bounded,

|02(2.2,W)| < Chu <§7(Ilm¢(2, Z,W) —TIm Z|>+|Re Z — Re ¢(Z, Z, W)|2)$)

= Chm(116(2,2, W) - Z|)
for some positive constants C' and 7. O

One of the main questions in the study of ultradifferentiable functions is if the class under
consideration behaves more like the ring of real-analytic functions or the ring of smooth func-
tions. E.g., does the class contain flat functions, that means nonzero elements whose Taylor
series at some point vanishes? That leads to following definition.

DEFINITION 1.1.13. Let E C £(f2) be a subalgebra. We say that E is quasianalytic iff for
f € E the fact that D*f(p) = 0 for some p € Q and all o € Nj implies that f = 0 in the
connected component of {2 that contains p.

In the case of Denjoy-Carleman classes quasianalyticity is characterized by the following
theorem.

THEOREM 1.1.14 (Denjoy[26]-Carleman([22), 21]). The space Exm(Q) is quasianalytic if and
only if

o

My
> YAk (1.1.8)
k=1

We say that a weight sequence is quasianalytic iff it satisfies ([1.1.8]) and non-quasianalytic
otherwise.

EXAMPLE 1.1.15. Let o > 0 be a parameter. We define a family N7 of weight sequences by
N = k!(log(k + e))ak.
The weight sequence N7 is quasianalytic if and only if 0 < o < 1 [78].
REMARK 1.1.16. Obviously Dap(Q2) = D(2) N Ea(N2) is nontrivial if and only if Eaq() is
non-quasianalytic [71]. It is well known that the sequences M? are non-quasianalytic if and only

if s > 0. In fact there is a non-quasianalytic regular weight sequence M such that M = M?
for all s > 0 [66], p.125]. Hence

N s+1
0cenc (o
s>0
7



1.2. Ultradifferentiable manifolds

From now on, unless explicitly stated otherwise, M will always be assumed to be a regular
weight sequence. Using Theorem we are able to define

DEFINITION 1.2.1. Let M be a smooth manifold and M a weight sequence. We say that
M is an ultradifferentiable manifold of class { M} iff there is an atlas A of M that consists of
charts such that

1

@ op T €lpm

for all p, ¢ € A.

If M C RY is an ultradifferentiable submanifold of class {M} then the following character-
ization is proven exactly as the analogous result in the smooth setting.

PROPOSITION 1.2.2. Let M C RY be a smooth manifold of dimension n andp € M and M
be a weight sequence. The following statements are equivalent:

(1) The manifold M is ultradifferentiable of class { M} near p.
(2) There are an open neighbourhood U C RN of p and an Erxr-mapping p : U — RN
such that dp # 0 on W and

p H0)=MnNU.

A mapping F': M — N between two manifolds of class { M} is ultradifferentiable of class
{M} iff p o F o p~! € Ep for any charts ¢ and 1 of M and N, respectively. We can now
consider the category of ultradifferentiable manifolds of class {M}. In particular, it is possible
to consider the usual constructions like vector bundles, vector fields or differential forms.

DEFINITION 1.2.3. Let M be an ultradifferentiable manifold of class {M}. We say that a
smooth vector bundle 7 : E — M is an ultradifferentiable vector bundle of class { M } iff for any
point p € M there is a neighbourhood U of p and a local trivialization x of class {M} on U.

REMARK 1.2.4. Let E be an ultradifferentiable vector bundle of class {M}. Then E can
also be considered as a smooth vector bundle or as a vector bundle of class {N'} for any weight
sequence N = M. We observe in particular that a local basis of Erq(M, E) is also a local basis
of Ex(M, E) and E(M, E), respectively.

We denote by X (M) = Epm(M, T M) the Lie algebra of ultradifferentiable vector fields on
M. Note that, if M is a regular weight sequence, an integral curve of an ultradifferentiable
vector field of class {M} is an Epq-curve by Theorem [1.1.7]

The next result is an ultradifferentiable version of Sussmann’s Theorem [76].

THEOREM 1.2.5. Let pg €  and a collection © of ultradifferentiable vector fields of class
{M}. Then there exists an ultradifferentiable submanifold W of Q through py such that all
vector fields in ® are tangent to W at all points of W and such that the following holds:

(1) The germ of W at py is unique, i.e. if W' is an ultradifferentiable submanifold of Q
containing po and to which all vector fields of © are tangent at every point of W' then
there is a neighbourhood V- C 2 of pg such that WNV CW'NV.

(2) For every open set U C Q) containing po there exists J € N and open neighbourhoods
Vi C Vo C U of pg such that every point p € W NV can be reached from py by a
polygonal path of J integral curves of vector fields in © contained in W N V.

The proof of Theorem is essentially the same as in the smooth setting, c.f. e.g. [8], due
to Theorem [L.1.7

The (unique) germ of the manifold W will be denoted as the local Sussmann orbit of pg
relative to ©. The local Sussman orbit does not depend on 2.

We are going to close this section with a proof of a quasianalytic version of Nagano’s theorem
[59]. We follow mainly the presentation given in [8].

8



THEOREM 1.2.6. Let U be an open neighbourhood of pg € R™ and M a quasianalytic regular
weight sequence. Furthermore let g be a Lie subalgebra of X ap(U) that is also an Enqg-module,
ie. if X € g and f € Epm(U) then fX € g.

Then there exists an ultradifferentiable submanifold W of class {M} in U, such that

T,W = g(p) Vp e W. (1.2.1)
Moreover, the germ of W at pg is uniquely defined by this property.
PROOF. We choose coordinates = (x1, ..., x,) vanishing at pp and vector fields Xy, ..., X,
in g,

ijzajk(w)aTjk ajr €EmWU), j=1,....r
k=1

such that X;(0),...,X,(0) form a basis of g(0) and
=

X;(0) = a2, lo

j=1,...,nr

Hence
det (a;()) 1<jp<r 70

for x in some neighbourhood of 0. Since the conclusion of the theorem is local, we shall assume
that this neighbourhood is U. Thus, after an Ex((U)-linear transformation on the vector fields
X1,...,X,, we may write

j b =1,...
] a$]+ Z jk’ 8xk J ) T

with b,(0) = 0. Let ) be the vector space over R spanned by the vector fields Xi,..., X,
above and denote by gg the set of vector fields in g which are of the form

= 0
Z cp(x)=—.
k=r+1 axk

Note that go is a Lie subalgebra of g and a Ex¢(U)-module. Moreover all elements in gy vanish
at the origin. We put

Z=Y+ do
and deduce
[Zl,ZQ] €EgC 2 V21,29 € Z.

Hence Z is a Lie subalgebra of g, that is proper if » > 0 and we have Z(z) = g(x) for all x € U.
In order to finish the proof we need a lemma:

LEMMA 1.2.7. Let V be a neighbourhood of 0 in R"™ and A a Lie subalgebra of X (V') with
the property that all commutators of vector fields in A vanish at 0. If X € A vanishes at the
origin then it vanishes on any integral curve t — expytY forY € A.

PRrOOF. Let X,Y € A as above and assume Y (0) # 0 (otherwise, there is nothing to prove).

We write
- 0 & 0
X =3 ajx)s—, ¥ =2 b)
j=1 J j=1

If (adY)(X) = [Y, X] then it is easy to conclude that

n n 4
(adY)* = Y’faj ZZ Spibi) 5
j=1 j=1p=1



where Sp; = ViVa...V, . is a string of length £,; < k with V; € A such that at least one V;
vanishes at 0. Indeed, for £ = 1 the commutator

[Y,X]:zn:Ya] +ZXb
j=1

is of the desired form. If we suppose that we have for k = kg > 1 a representation of (ad Y')*0(X)
as above, then

(ad YY)kt X = [Y, (ad V)" X]

- TR d
- ;y(y’f% + pz_: Spjb; ) oz, + Z((adY)koX)bja—xj

j=1

’f“] o) ZZZ V'S — (ad V) 0 X)b;

j=1j=1p=1

Il
M: i

<.
Il
—

is also of the form as wished since (ad Y)* X = [V, (ad Y))**~1 X] vanishes as a commutator of
two vector fields in A. Now let S = ViVa...V; be a string of length j with V; € A and at least
one of the V; vanishes at 0. Then all coefficients of the operator S vanish. This is obvious if
V1(0) = 0. If V5(0) = 0 then we use the fact that

ViVaVs ...V, = VoW Vs ... Vi + Vi, Val Vs ... V.

By the assumption on A we have that [V1,V5](0) = 0 and hence the right-hand side of the
equation above vanishes at 0. The general statement follows in a straight-forward manner by
induction.

For k > 1 we have that (ad Y)*(X)(0) = 0 and thus by the arguments above we conclude
Y*a;(0) = 0 for all j =1,...,n. Now, let y(t) = expy(tY) be the integral curve of Y through
the origin and put a; = aj oy. Then

d*a;
i_yk,
dtk
and we conclude that the curve a; is flat at the origin. Since the class £aq is quasianalytic it
follows that a; vanishes on the complete curve . O

We continue with the proof of Theorem [I.2.6] By Lemma we conclude that for any
X €goand Y € Y, X vanishes on the integral curve ¢ — expytY .
We define the manifold W C U by the following parametrization

T
R" 3 (t1,...,t) — ®(t1,...,t,) = exp, thXj ev

for (t1,...,t,) in a sufficiently small neighbourhood V of 0 in R", such that the rank of ® is r
in V. Thus the parametrization defines a manifold in a neighbourhood of 0 in U. Lemma [1.2.7]
implies that go(z) = 0 for all x € W and hence g(z) = Z(z) =Y for z € W. In order to prove
it suffices then to show, due to dimensionality, that Y C T, W for all x € W. For this,
we choose p € W and X € Y. We want to show that X (p) € T,W. Since p € W, there exists
(t9,...,t%) € V such that

-
D = expPy Z t(;Xj
j=1

In other words, p is the point with time one on the integral curve of the vector field Y = Zj t?Xj
from 0. Consider the mapping

f(s,t) := expg (t(sX +Y)).
10



It is defined on R = {(s,t) € R? | |s| <&, t € (—=§,1+ J)}, where §,& > 0 are chosen suitably,
and maps R into W. We claim that for any ¢t € (—4,1 4 §) we have

of

55 (0:8) =X ((f(0,1) = X (£(0,1)) (1.2.2)
We regard f and all other vector fields like, e.g., X o f as vector-valued functions R — R". We
first differentiate f(s,t) with respect to t

0
O = SX(f(5,0) + Y (J(s,1) (1:23)
and hence
o2 f - Y a fj
gsot 0 = 2:: T )55 1)
Note that o7
g((), 0) =0.
We conclude that the function
of
u: t— B —(0,1)
satisfies the following system of ordinary differential equations
ou
5,0 =X(£0.8) + Z u;(t), u(0) = 0. (1.2.4)

The claim, i.e. (1.2.2)), will be proven, in view of the uniqueness of solutions of ordinary differ-
ential equations, if we show that the function a(t) = tX (f(0,¢)) also solves (1.2.4). Obviously
%(0) = 0. Furthermore

d 6f
- (EX(£(0.1)) = X (£(0,1)) +tz D)2 (0,1)
and using we obtain
d
5 (EX(f(0.8) = X(£(0,1) +tz ax] Y;(£(0,1)
= X(£(0,1)) + t[Y, X](f(0, 1) +Z 8x ) (tX;(£(0,1))).

Lemma [1.2.7] gives that [Y, X](f(0,¢)) = 0 for all ¢ and hence it follows that @ satisfies (1.2.4)).
Since f maps R into W, the vector %(s, t) is in the tangent space Tr(s,nW. In particular,
implies that X (p) is in T,W and since both p € W and X € Y were chosen arbitrarily
we have Y(z) C T, W for all x € W which proves as indicated above.
It remains to prove the uniqueness. Suppose that W' is another manifold of class {M}
through 0 satisfying . Necessarily dim W’ = dim g(0) = dim W. Thus it suffices to show

that there is an open neighbourhood U; of the origin in U such that
WnuU; C w'n U,

Let V be a convex neighbourhood of 0 in V' C R” and define W = &(V) C W. We choose an
open neighbourhood U; of 0 such that W NU; = W. We can choose V and U; so small that
W'NU; is closed in U;. Let py € w. By definition, there exists a vector field Y € g such that
the integral curve ~(t) = expo(tY’) goes through p; at time 0. Since V is convex we have that
v(t) € W c U for t € [0,1]. Furthermore, since

Y(p) € T,W' (1.2.5)

11



for all p € W’ by assumption we infer that v(¢) € W’/ N Uy if ¢ is small enough. The proof is
finished if we can show that p; = (1) € W/ NU;y. Let E := {tp € [0,1] | v(t) e W/ NU; Vit €
[0,t0]} € [0,1]. By E is open, but E is also closed since W' N U; is closed in V' and
v([0,1]) is contained in V. Thus E = [0, 1] and therefore W NU; = W' N Uy. O

We call the uniquely defined germ ~,,(g) of the manifold constructed in Theorem the
local Nagano leaf of g at pg. From now on all Lie algebras of ultradifferentiable vector fields
that are considered are assumed to be also Eyq-modules. As in the analytic category, c.f. [§],
we have the following result.

COROLLARY 1.2.8. Let M be quasianalytic and © C Xr(2) a collection of ultradifferen-
tiable vector fields. If g = go is the Lie algebra generated by © and py € §2 then the local
Sussman orbit of pg, relative to ®, coincides with the local Nagano leaf of g.

Proor. Let Wy be a representative of the local Nagano leaf of g at pg and Wg a repre-
sentative of the local Sussman orbit of pg, relative to ®. By Theorem m (1) there exists an
open neighbourhood V' of py such that We NV C Wy NV. On the other hand g(p) = T,Wn
for all p € Wy and g(p) € T,Ws at every p € Wy, hence g(p) = T,Ws for p € Wg NV,
The uniqueness part of Theorem [1.2.6] gives the equality of the local Nagano leaf and the local
Sussman orbit. O

Following [59], c.f. also [8], we can also give a global version of Theorem [1.2.6]

THEOREM 1.2.9. Let M be a quasianalytic regular weight sequence. If g is a Lie subalgebra
of Xpm(Q) then g admits a foliation of Q, that is a partition of by maximal integral manifolds.

ProoF. For z € ) set M, to be the set of all embedded connected submanifolds W C €}
such that (1.2.1]) holds in some neighbourhood of z. We need a Lemma in order to proceed.

LEMMA 1.2.10. Let W C Q be an immersed connected Epn-manifold such that
tTyW = g(tw) Yw e W’ (1.2.6)
where ¢ is the embedding of W into Q and W' is an open subset of W. Then (1.2.6) holds for
all points in W.

PROOF. Suppose that W’ # W otherwise there would be nothing to prove. W.l.o.g. assume
that W’ is the maximal open set such that holds. Let wg € OW' C W and choose a local
basis of the ultradifferentiable vector fields &1, ..., & tangent to W near wq. If we choose a small
enough neighbourhood Wy of wg then due to ¢ being an immersion there is similar to the smooth
case (c.f. [25] Corollary 2.4.10]) an ultradifferentiable local diffeomorphism ¢ : R™ D Uy — Q
near t(wp) such that Uy is open and connected, ¢(0) = ¢(wp) and

QD:L|5010¢: UoﬂRk—>W0

is a well-defined ultradifferentiable diffeomorphism. If Uy is small enough, then after a coordinate
change we may write

0

1 .

Ui Py 5_ ]—1,...,]{3,
J J 6.%3

on Uy NRF. On the other hand let X7, ..., X,, be a local basis of g near ((wp) and thus

n
_ 0
YVZQZJ*IXV: E az’”% I/:].,...,m
(=1

where ag,, € Ep(Up). We observe that by assumption we have that on U’ := ¢~ (Wy N W)

Yol GspangM(m,...,nk) v=1,...,m.
However that means by, = (asu)lfoyxrn—+ is zero on U’ for £ = k + 1,...,n. Thence the
functions by,, £ = k + 1,...,n have to vanish on ¢ '(W;). That is a contradiction to the

assumption that W’ is maximal relative to the property (1.2.6). O

12



We continue the proof of Theorem [1.2.9] and define the global Nagano leaf through x as the

manifold
[z(g) = U w

Wwem,
together with the final topology induced by the embeddings W — T';(g). Then T',(g) is an
immersed connected ultradifferentiable manifold of class M and by Lemma at any point
y € I';(g) the global Nagano leaf I';(g) contains the local Nagano leaf 7,(g) through y. That
shows I'y(g) = I';(g). Hence the global Nagano leafs define a foliation of €. O

1.3. Division Theorems

In this section we want to transfer the results pertaining the division of smooth functions
in [35] section 4] to the category of ultradifferentiable functions of class {M}. This is possible
because these classes are closed under division by a coordinate, c.f. Remark

LEMMA 1.3.1. Let X\ be an ultradifferentiable function of class { M} defined near 0 € R that
is non-flat at the origin, i.e. there is a positive integer k € N such that \9) (0) = 0 for all
integers 0 < j < k—1 and )\(k)(()) =% 0. Further assume that there is a locally integrable function
u defined near 0 such that the product f = Au is of class {M} in some neighbourhood of the
oTigin.

Then u is ultradifferentiable of class {M} near the origin.

PROOF. First, we note that the zero of A at 0 is isolated. Therefore we restrict ourselves to
an open interval I that contains the origin and such that 0 is the only zero of A on I. Iterating
the argument given in Remark we see that there is a function \ of class {M} defined near
0 such that A\(0) # 0 and

Mz) = 2F A (x).
In order to proceed we want a similar decomposition of f. But, since we are not able to say
anything apriori about the values of the derivatives of f at the origin, we can only find an
ultradifferentiable function f; such that

f(x) = zfi(z)
in a neighbourhood of 0. If k£ > 1 then we would have that
U(ZL‘) — l,l—kf (JJ)

A(z)
in a punctured neighbourhood of 0. Hence, if f1(0) # 0 then u ~ x'=* for  — 0. This is a
contradiction to the assumption that u is locally integrable. Therefore fi(0) = 0 and there has
to be a function fo of class {M} such that f(z) = x?f2(z) near 0. Repeating this argument
if necessary, we obtain that there is a function f; ultradifferentiable of class { M} defined near
the origin such that
f@) = 2" fi(x).
It follows that

in some neighbourhood of 0. (]

PROPOSITION 1.3.2. Let pg € R™ and A an ultradifferentiable function of class { M} defined
in a neighbourhood of po and \(pg) = 0. Suppose that A\=*(0) is a hypersurface of class {M}
near po and that there are v € R™ and k € N such that 83 (p) = 0 for 0 < j < k and 0%(p) # 0
for all p € \71(0) N U where U is a neighbourhood of po.

If u is a locally integrable function defined near the origin in R™ such that A-u = f is ultra-
differentiable of class { M} near py then u has also to be of class { M} in some neighbourhood
of po-

13



PROOF. We can choose ultradifferentiable coordinates (z1,...,zp—1,2,) = (2/,2,) in a
neighbourhood V' of py in R™ such that pg = 0, A=1(0) NV = {(2/,2,) € V | 2, = 0} and

J

Zro=0 0<j<h
9\

55@(0)#:0

Similarly to above, using Remarkwe conclude, if we shrink V, that there is A € Exq(V)
with the following properties: A(z) # 0 and A(z) = z¥X(z) for all points = € V. There is also
a Denjoy-Carleman function f; on V such that f(2/,x,) = x, f1(2, z,,). We want to show, as
in the 1-dimensional case, that fi(z/,0) = 0 for (2/,0) € V if £ > 1: Suppose that there exists
some y € R"! with (y,0) € V and fi(y,0) # 0. Then there is a neighbourhood W of (y,0)
such that fi(x) # 0 and also A(z) # 0 for 2 € W. W.lLo.g. the open set W is of the form
W=W'xIcCR"! xR and set

F(xy,) := /

W/

f1

X(x) dz

for x,, € I. We conclude that

/|u(:1;)| dx = /|:cn|1kF(a:n) dx = o0
W 1

and hence u cannot be locally integrable near (y,0) which contradicts our assumption. Therefore
we obtain by iteration a function f of class {M} defined near the origin in R" such that
f(z' 2,) = aF f(2', 2,,). Hence u = f/\ is also of class {M} in a neighbourhood of 0. O

COROLLARY 1.3.3. Let U C R"™ a neighbourhood of 0, A € Epq(U) and suppose that A is of
the form \(z) = z*\(z) where o € NI and X € Epq(U) with A(0) # 0.

If u is a locally integrable function near O with the property that the product f := X\ -u s of
class {M} near the origin, then u is also ultradifferentiable near 0.

Proor. Note first that, if @« = aje; then the statement is just Proposition In the
general case we argue as follows: Set f = f/)\ and

Jj=k+1

The function f is of class { M} whereas the functions uy are locally integrable near 0. Further-
more we define uy,1 = u and obtain

2w (z) = f(x)

:czﬁlukﬂ(a:) = ug(x) 1<k<n.
Hence repeated application of Proposition [I.3.2] finishes the proof. O

In the literature the focus regarding questions of divisibility of functions seems to be more
on the problem if it is possible to show that functions that are formally divisible, i.e. their
Taylor series are divisible, are actually divisible. Indeed, the Weierstrass division theorem for
example implies that two real-analytic functions that are formally divisible are also divisible as
functions.

However, the equivalent of the Weierstrass division theorem does not hold for general quasi-
analytic Denjoy-Carleman classes [1],[62], c.f. also [33]. In general the algebraic structure of
quasianalytic Denjoy-Carleman classes is far more complicated than that of the space of real-
analytic functions, c.f. the survey of Thilliez [7§].

14



Despite this there are some positive results known for quasianalytic regular classes, e.g.
Bierstone and Milman [12] showed that certain desingularization theorems hold in these classes
whereas Rolin, Speissegger and Wilkie [69] proved that quasianalytic regular Denjoy-Carleman
classes define o-minimal structures. Both of these approaches can be used to prove division
theorems. Especially the following result was shown by Nowak [61].

THEOREM 1.3.4. Let p € R", M quasianalytic and f,g € Enrq are defined near p with power
series expansions f and g at p. If f € G- C[[z]] then f € g-Enm near p.
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CHAPTER 2

Geometric microlocal analysis in the ultradifferentiable
category

2.1. Introduction

In 1971 Hoérmander [41] proved the following local characterization of Eyq via the Fourier
transform:

PROPOSITION 2.1.1. Let u € D'(Q) and py € Q. Then u is ultradifferentiable of class
{M} near po if and only if there are an open neighbourhood V' of py, a bounded sequence
(un)n C E'(U) such that uly = (un)|y and some constant Q > 0 so that

€1V [ (6))]
sup ————— < 0
NeNy

Subsequently he used this fact to define analogously to the smooth category:

DEFINITION 2.1.2. Let u € D'(R2) and (z0,&) € T*Q\{0}. We say that u is microlocal
ultradifferentiable of class {M} at (xo, &) iff there is a bounded sequence (uy)n C E'(Q) such
that un|y = uly, where V' € U(zp) and a conic neighbourhood T' of &y such that for some
constant Q > 0

€1 ||
sup

cer QN My
NeNg

The ultradifferentiable wavefront set WF o u is then defined as
WFru = {(z,€) € T*Q\{0} | u is not microlocal of class {M} at (z,&)}.

REMARK 2.1.3. We need to point out that Hérmander in [41] defined WF 5 for weight
sequences that satisfy weaker conditions then those we imposed in Definition He required,
as we have done, (M2)) and that O C Exq, but (M3) is replaced by the monotonic growth of the

sequence

< . (2.1.1)

1
Ly = (MN)W. (2.1.2)
This condition still implies that £p¢ is an algebra but gives only that £xq is closed under
composition with analytic mappings.

More precisely, in terms of the sequence (Ly)y the conditions that Hérmander imposed
take the following form. First, N < Ly and Ly < CLy41 for all N and a constant C' > 0
independent of N. Furthermore as mentioned before the sequence (Ly )y is also assumed to be
increasing.

Note that his classes might not even be defined by weight sequences in the sense of section
Hence Hormander in [45] was able to define WF y u for distributions u on real analytic
manifolds but not on arbitrary ultradifferentiable manifolds of class {M}; note that the im-
plicit function theorem may not hold in an arbitrary ultradifferentiable class defined by weight
sequences obeying his conditions. Similarly he proved that

WFr u € WFE 5 PuU Char P

for linear partial differential operators P with analytic coefficients but not for operators whose
coefficients might be only of class {M}.
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As mentioned before it is possible to modify the arguments of Hormander in the case of
regular weight sequences to show that the above inclusion holds for partial differential operators
with ultradifferentiable coefficients. Similarly we are able to define WF 4 u for distributions
defined on manifolds of class { M}, in this instance using Dyn’kin’s almost-analytic extension
of ultradifferentiable functions.

However, since regular weight sequences also fulfill the conditions of Hérmander we can use
all of his results on WF . Indeed, in terms of Ly, we have that implies that k < ~vLy
for all £ € Ny and a constant v > 0 independent of k by Sterling’s formula whereas is
equivalent to the existence of a constant A > 0 such that L < ALj_1. We note that the last
estimate implies Ly < AN for N € Ny since L; = 1. On the other hand, it is well-known that
if (My)n satisfies then (Ly)n is an increasing fsequence, see [56].

The following result by Hormander shows that we may choose the distributions uy in
Definition [2.1.2] in a special manner.

PROPOSITION 2.1.4 ([45] Lemma 8.4.4.). Let u € D'(Q) and let K C Q be compact, F C R™
a closed cone such that WFyun (K x F) =0. If xy € D(K) and for all o

18]
D Pxn| < CohlP' MY 1B < N

for some constants C,, hq > 0.
Then it follows that xnu is bounded in E'S if u is of order S in a neighbourhood of K, and
further
QYN My
€N

IXvu() < C NeN, EeF

for some constants C,Q > 0.
We summarize the basic properties of WF r( according to [45].

THEOREM 2.1.5 ([45] Theorem 8.4.5-8.4.7). Let u € D'(Q) and M,N weight sequences.
Then we have

(1) WFE A u is a closed conic subset of  x R™\{0}.
(2) The projection of WEpqw in € is

m1 (WFpu) = sing suppyu = {z € Q| BV € U(z) : uly € Em(U)}

(3) WFu C WFyuC WEy u if M N.
(4) If P = Y paD® is a partial differential operator with ultradifferentiable coefficents of
class {M} then WF pq Pu C WF 7 u.

Additionally we note WF o u satisfies the following microlocal reflection property:
(x,€) ¢ WFpu <= (z,—-§) ¢ WF @ (2.1.3)

In particular, if u is a real-valued distribution, i.e. 4 = u, then WF yqu|, := {{ € R" | (z,§) €
WF yu} is symmetric at the origin.

EXAMPLE 2.1.6. It is easy to see that WF a6, = {p} x R™"\ {0} for any regular weight
sequence M.

REMARK 2.1.7. The complicated form of Definition [2.1.2] compared with the definition of the
smooth wavefront set stems from the fact that quasianalytic weight sequences are allowed. Thus
in general there may not be any nontrivial test functions of class {M}. However if Dy, # {0}
then we can choose in Definition the constant sequence uy = @u for some ¢ € Dr(Q2)

with ¢(z9) =1 and (2.1.1)) is equivalent to
3C.Q >0 [gu(©)| < CmfQVMylg™N  veer
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thus implies
Fue)] < cfw(§|> < Cexp<_w <|§2|>>

We conclude that (c.f. e.g. [68] in the case of Gevrey-classes) that for non-quasianalytic weight

sequences M (2.1.1]) is equivalent to

3Q >0 sup e"JM(QKD‘@(ﬁ)‘ < 00.
el

Proposition [2.1.1] is then only a restatement to the well-known fact that for non-quasianalytic
weight sequences we have that ¢ € D if and only if ¢ < CeMQIED for some constants C, Q.
Therefore it is possible to define ultradifferentiable classes using appropriately defined weight
functions instead of weight sequences, see e.g. in a somehow generalized setting [13]. However,
this approach leads only to non-quasianalytic spaces. This restriction was removed by [19]
who reformulated the defining estimates of these classes to allow also quasianalytic classes. A
wavefront set relative to these classes was introduced in [3], c.f. section 2.4 The complicated
connection between the classes defined by weight sequences and those given by weight func-
tions was investigated in [15]. Recently a new approach to define spaces of ultradifferentiable
functions was introduced in [66], which encompasses the classes given by weight sequences and
weight functions, see also [67].

2.2. Invariance of the wavefront set under ultradifferentiable mappings

Our aim in this section is to develop, using the almost-analytic extension of functions in
Eam given by Dyn’kin, a geometric description of WF 54 similarly to the one that was presented
in [55], section 4] for the smooth wavefront set.

We need to fix some notations: If I' C R? is a cone and r > 0 then

L,={yel]| |y <r}.

If I’ C T is also a cone we write [V cC T iff (T' N S91) cc (I'nsd-1).

Similarly to [55] section 2.1] (c.f. also [53] section 2]) in the smooth category we say that,
if M is a weight sequence, a function F € £(Q x U x T,), U C R? open, is M-almost analytic
in the variables (z,y) € U x I, with parameter 2’ € Q iff for all K CC Q, L CC U and cones
I CC T there are constants C, Q > 0 such that for some 1’ we have

F
’gi(l‘/away)‘ < ChM(Q|y|) (1",%‘73/) € K xLx F/r’a Jj=1....d (221)
J

where 8%]_ = %(&rj +1i0y,;) and hy is the weight associated to the regular weight sequence M

as defined by (1.1.2]).

We may also say generally that a function g € C(2 x U x I}) is of slow growth in y € ', if
forall K cC Q, L cC U and I CcC T there are constants ¢,k > 0 such that

g,z y)| < ey ™ (2w, y) € K x Lx T (2.2.2)
The next theorem is a generalization of [45, Theorem 4.4.8].

THEOREM 2.2.1. Let F € £(QxU xI';) be M-almost analytic in the variables (z,y) € U xT,
and of slow growth in the variable y € I'.. Then the distributional limit u of the sequence
us = F(.,.,e) € E(Q xU) exists. We say that u = bp(F) € D'(Q x U) is the boundary value
of F. Furthermore, we have

WFpu C (2% U) x (R* xI'°)

where T° = {n € R? | (y,n) >0 Vy € T'} is the dual cone of T in RZ.
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PROOF. Let ¢ € D(Q x U) and Yy € I's. Then there are K CC 2, L CC U such that
supp¢ C K x L and constants ¢, k > 0 exists such that (2.2.2)) holds. We set

w2z, y) Zﬁxgoxx )

la|<k

for k > k. Obviously F-®,, can be extended to a smooth function on R™ x R? x 'y that vanishes
outside K x L x I's. We consider the function

u: : R (0,7) — F(2/,@ + oYy, e + 1Y) ®u (', oY, TY0)

where ' € R", & € Y55 = {z € R? | (2,Y)) = 0}. If a < b are chosen such that ¢(z', #+0Yp) = 0
forallz’ € R", 7 € Yj- and 0 < aor ¢ > bthen uc(o,7) = 0 for all 7 € [0,1]. If R = [a, b] x [0, 1]
then Stokes’ Theorem states that

/us ¢ = /6“5 ¢ A d¢ (2.2.3)

where we have set { = o + 7.
A simple computation gives

o d ot-e; (i)/o)a""ej
2i5e (n(a!, T +0Yo, 7Y0)) = |Z<); 0!, & + oYo)rlol e —
vy
Z N C —l—a%)\a\r“"l(loﬁ)
la|<w :

W

= Z oz, & + oY) T~ i

1<|a|<k+1 j=1
(0%
Z oz, & + oYp)|a|ro— 1 (% )
1<[a<k
yoya
=(k+1)7 Z Yo, x—i—aYo)(l O')
|al=k+1 o
Hence formula (2.2.3) means in detail that
b b
/F(:r’, oYy, e)p(', oY) do = /F(x’, oYy, e+ Yy)®u (2, oYy, Vo) do
a a

+2i [ [ 05,6 +7%6).Y0) (s’ Yo, 7Y0) drio

a0
b1

e
H+1/ F(a/,0Yp,e +7Yp)" > 2? drdo
a

ﬁl

|a|=k+1
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and thus integrating over ) x YOJ- yields

/ F(@!,2,2)p(a ) dA (2, ) = / F(a!\2,e 4+ Yo)Bu(a', z, Yo) dA (&', )
QxU QxU

2 / /<5F(x,7x’5+7_Y0)aYO>‘1)n(CL‘,,l‘,TYb)de)\(fL‘,,aj)

QxU 0
1 (Yo"
I€+1)//F.’E x, e+ TY))T Z Yo', ) 0') d\(2, x).
QxU 0 |Oé‘ K+1 '

(2.2.4)

Since by assumption |7"F(z/,z,¢ + 7Yp)| < c for some constant ¢ and 9;F decreases rapidly
for I, 5 y — 0 (c.f. the remarks after Lemma |1.1.8]) the bounded convergence theorem implies
that the right-hand side converges for € — 0. Hence we define

(u, @) := /F(x’,:E,YO)CI)K(:E',m,YO)d)\(x',m)

QxU
2i / /<(§F(ac',x,TYO),YO><I>,{(m',x,TYO)de)\(:U',x) (2.2.5)
QxU 0
+(k+1) // 2, x, TYy)T Z Y) drd\(x', x).
)7 al

QXU 0 lo|=r—+1

Since there is a constant C only depending on F' and K x L such that

|<u,cp)]§é’ sup ( Z ‘ (2, :):‘)

(z',x)e KX L 18]<r-+1

we deduce that the linear form u on D(2 x U) given by is a distribution.

Now, let pg € 2 x U and wy X Vo CC w1 x V3 CC Q) x U two open neighbourhoods of py.
Using [45] Theorem 1.4.2] we can choose a sequence (¢, ) C D(w1 x V1) such that ¢|w,x1, =1
and for all v € Nj™ we have that

1D | <(Cym+ 1) I8l < k1 (2.2.6)

for a constant Cy > 1 independent of . As before we set for each s

'y)“
(o, x ,Y) Z o ( x ,T) o
o<k '
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We aim to estimate @,u. In order to do so let (£,1) € R™ x R? and notice that (2.2.5)) implies
for k > k

Pru(&,n) = <u e*i<-,(s,n>>%>
N /F(x/’ @, Yo)e (@@ (o 2 Yp) dA(2, @)

QxU

+ 20 / /<8F(:z:’,:1;,TY0),Y0>ei(m/H(H”YO)”)@H(azl,JJ,TYO)de)\(a:’,x)
QxU 0

, (iYp)™
+(k+1) //F oz, 7Yy e TN o R e ,) drd\(z', x)

QxU 0 Ia\—ﬂﬂ

for some fixed, but arbitrary Yy € I', (note that k& depends on u, w; x V; and Yp). Condition
(2.2.6|) gives the following estimate for 0 < py < kK + 1

> eu(a,x) 'Z‘)a < CH(k Z’ (k + 1)¥

lal=p lal=p
where [Y|y = > [Y;| for Y = (Y1,...,Yy) € R9. Hence we have

@, (2, 2, 7Yp)| < CFF!

(iYO)a
(k+1) Z 20 (2, ) o SC’fH
|a|=k+1

WY1

!

for €y = 2e“Y0lt and 7 € [0,1]. We obtain

1
[Gru(g,m)| < CF e 207 C / haa(Qr[Yo|)e ™™ dr + O+ / R ke 4y
0

1
< CQF <€"Y° + Mg / Tﬁkeny‘)) = C2Q7 <€77Y° + my(k — k)!(—Yon)k%fl)
0

for some constants Cy, Q1 and Yyn < 0. If we set Yy = (0,Yy) € R® x R then obviously

<Yb: 57 > - 1/07 )
Therefore we have for k > k and ¢ = (£, n) that

[@ru(O)] = C5Qf <e’7°< + Mgk — k:)!(—f/og)k_“—1>

and Yp¢ < 0.

Now for any (y € R"t¢ with ()70, ¢p) < 0 we can choose an open cone V' C R+ such that
(o € V and for some constant ¢ > 0 we have (Y, ¢) < —¢|¢| if ¢ € V. Furthermore we set
g = Pr+r—1u. Clearly the sequence (uy), is bounded in £(Q X U) and uy|woxvy, = Ulwyxvs-
Also using the inequality e~¢l¢<| < k!(¢[¢|)™" we conclude

s (Q)] = C5Q7 (H!(C\C\)“ + mp—1(k — 1)!(C\CI)H> < C3Q5myklC™" (e V.

Hence (po, (o) ¢ WF o u and therefore
WFru C (2% U) x (R" x I°)\{(0,0)}
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It is clear that the proof requires only F' € C'. From now the constants used in the proofs
will be generic, i.e. they may change from line to line.

REMARK 2.22. If F € £(Q2 x U x V) is M-almost analytic with respect to the variables
(x,y) € UxV we will often write F'(z/, x+iy) or F(2', z, Z) and consider F' as a smooth function
on Q x (U +1iV). If Q =0 then we just say that F' is M-almost analytic.

EXAMPLE 2.2.3. Consider the holomorphic function F(z) = 1 on C\{0}. It is well known
that the boundary values of F' onto the real line from above and beneath, commonly denoted
by

1 1
x+10 y—=0+ x + 1y
1
x — 10 y—=0+ T — 1y

satisfy the jump relations (c.f. e.g. [27]), in particular

1 1
2i0 = — — —.
z—1i0 x+10
We have that both ﬁ and ﬁ are real-analytic outside the origin. Hence the application of

Theorem together with the jump relations imply that

1
WF — | =10} x R4..
M <x * iO) {0 R
There is a partial converse to the last theorem.

THEOREM 2.2.4. Let I' C R™ be an open convex cone and u € D'(Q) with WFy(u € Q x T°.

If V.cC Q and TV is an open convex cone with T CT'U{0} then there is an M-almost analytic
function F on V + il of slow growth for some r > 0 such that uly = bp/(F)

PrOOF. By [45, Theorem 8.4.15] we have that u can be written on a bounded neighbour-
hood U of V' as a sum of a function f € Ex(U) and the boundary value of a holomorphic
function of slow growth on U + iI"). for some 7. To obtain the assertion use Corollary to
extend f almost-analytically on V. U

In order to proceed we need a further refinement of a result of Hérmander.

LEMMA 2.2.5. Let I'; CR"\{0}, j = 1,..., N, be closed cones such that |J;T'; = R™\ {0}
and V.CC Q. Any u € D'(Q) can be written on V as a linear combination uly = > uj of
distributions uj € D'(V') that satisfy

WEMu; € WEFApun (V er)

PROOF. Set v = pu where ¢ € D(Q) such that ¢ =1 on V. [45] Corollary 8.4.13] gives the
existence of v; € §'(R") such that

WEF pv; C WE 0N (R x T).
Set U; = (vj)|U' U
Together with the above Lemma Theorem [2.2.4] implies

COROLLARY 2.2.6. Let u € D'(R) and (z9,&) € Q x R*"\{0}. Then (z0,&) ¢ WFru if
and only if there are a neighbourhood U of xq, open convex cones I'y, ..., 'y with the properties
&l <0,5=1,...N and I'; N Ty = 0 for j # k, and M-almost analytic functions h; on
U +ily,, 7; >0, of slow growth such that

N
u]U = Z br]. (h])
Jj=1
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Proor. W.lo.g. assume that WEaqu # 0. If (20,&) ¢ WFAqu one can find closed cones
Vi,...,Vn with nonempty interior and V; NV, has measure zero for j # k such that & is
contained in the interior of Vi and Vi N WE u = () whereas & ¢ V; are acute cones and
WFEyunVy#0for j=2,...,N. By Lemma we can write v on an open neighbourhood
U of g as a sum u = uj + ZjVZQ uj with u; being an ultradifferentiable function defined on U
and uj € D'(U) such that WF yu; C WFpuNnVj, j=2,...,N. The cones Va,...,Vy are the
dual cones of open convex cones I'g,..., 'y, ie. I‘; = V;. We can choose cones F; cc Iy and
using Theorem we find M-almost analytic functions h; on U + zT;«m of slow growth such
that u; = b]_“;(hj). It remains to note that §oy <0 forally € I}, j=2,..., N. O

Let 21 CR™ and Q9 C R"” be open. If F': 1 — Qs is a Ey-mapping then we denote as in
[45], page 263] the set of normals by
Np ={(F(z),n) € Q2 x R" : DF(z)n = 0}.

where DF' denotes the transpose of the Jacobian of F'. The following is a generalization of [45],
Theorem 8.5.1]

THEOREM 2.2.7. For any u € D'(Q2) with Np N WFpqu = () we obtain that the pull-back
F*u € D'(Q) is well defined and

WFo((F*u) C F*(WF A u). (2.2.7)

PROOF. The first part of the statement is [45, Theorem 8.2.4]. For the proof of the second
part of the theorem assume first that there is an open convex cone I' such that u is the boundary
value of an M-almost analytic function ® on Q9+, of slow growth. Hence WF pqu C Q9 x I'°.
If xg € Q1 and DF(z9)n # 0 for n € I°\{0} then DF(z()I'° is a closed convex cone. We claim
that

WEF M (F )|z € { (20, DF(z0)n) : n € T°\ {0}}.
We adapt as usual the argument of [45]. We can write (see [45] page 296])
DF (zo)I® = {¢€ € R"| (h,&) >0, F'(z))h € T'}.

If I denotes an M-almost analytic extension of F' onto Xo+iR", Xy € U (zp) relatively compact
in Qy, which exists due to Theorem [[.1.10] then Taylor’s formula implies that

Im F(x +ich) € T x € Xo
for F'(xo)h € T if Xy and € > 0 are small.
Recalling (2.2.4) we see that the map
Rxg x (TU{0}) 3 (,y) —> @(c,y) := ®(F(. + ich) +iy) € D'(X)

is continuous. If ¢ — 0 then D(e,y) — ©(0,y) = ®(F(. + 0i) +iy) in D’ and if now y — 0 we
have by definition ®(0,y) — F*u. On the other hand if first y — 0 then ®(e,y) — ®(,0) =

®(F(. +ieh)). Hence by continuity
F*u=lim ®(F(. +ich))
e—0
in D'(Xo) and by the proof of Theorem [2.2.1]

WE A |z € {(20,8) | (h,€) > 0}.
The claim follows.

Now suppose that (F(zg),n0) ¢ WFaq u. By Corollary 2.2.6) we can write a general distribu-
tion u on some neighbourhood Uy of F(xg) as Z;VZI u; where the distributions u;, j =1,..., N,
are the boundary values of some M-almost analytic functions ®; on Uy +¢I'j, where the I'; are
some open convex cones such that noI'; < 0 for all j =1,..., N. By assumption DF(z)n # 0
when (F(z),n) € WFpu for # € F~1(Up). Hence we can assume that DF(z)n # 0 for
nel; for all j =1,...,N and x € F~1(Up) since in the proof of Corollary the cones I';,
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7 =1,..., N, can be chosen such that the set F;’\WF M u has small measure. By the arguments
above we have for a small neighbourhood V of xg that

N
F*u‘v = ZF*UJ"V

j=1
and WE M (F*uj)|zy € {(z0, DF(z0)n) | n € I'5\{0}} for all j. However, since nol’; < 0 it
follows that (xg, DF(zo)no) ¢ WF A (F*u;) and therefore (xo, DF (zo)no) ¢ WF A (F*u). O

REMARK 2.2.8. If F' is an Eyq-diffeomorphism we obtain from Theorem that
WEF y (Fu) = F*(WFpqu).

Hence if M is an &pyq-manifold and u € D/(M) we can define WF 5 u invariantly as a subset
of T*M\{0}. More precisely, there is a subset K, of T*M such that the diagram

— T

T*o(UNV) D WF v P s WF yvg CT*(UNV)

commutes for any two charts ¢ and ¥ of M on U C M and V C M, respectively. We have
set p=1op v =¢*u € D(pUNV)) and vy = *u € D'(H(U NV)). Tt follows that
K, C T*M\{0} has to be closed and fiberwise conic. We set WF v u := K,,.

Analogously we define the wavefront set of a distribution v € D'(M, E) with values in an
ultradifferentiable vector bundle locally by setting

WFM u|v = U Uj
7=1

where V' C M is an open subset such that there is a local basis w!,...,w” of Ep(V, E) and
uj € D'(V) are distributions on V such that

14
uly = Z ujw? .
j=1
We close this section by observing that Theorem allows us to strengthen a uniqueness

result of Boman [14]:

THEOREM 2.2.9. Let M be a quasianalytic weight sequence and S C R™ an Epq-submanifold.
If w is a distribution defined on a neighbourhood of S such that

WE uNN*S =10
and
0%uls =0 Va € N,
then u vanishes on some neighbourhood of S.
Indeed, locally S is diffeomorphic to
S = {(m’,:c”) c Rt | 2" = 0} CR"

and the assumptions of the theorem translate to the corresponding conditions for the pullback
w = F*u where F : R" — R" is the local £y-diffeomorphism that maps S’ to S. Then the
proof of Theorem 1 in [14] gives w = 0 in a neighbourhood of S’
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2.3. A generalized version of Bony’s Theorem

We have seen that for a distribution u the wavefront set WF x4« can be described either
using the Fourier transform or by its M-almost analytic extensions. The similar fact is true for
the analytic wavefront set using holomorphic extensions. The latter was the original approach
of Sato [72]. However, [20] used the classical FBI-Transform to describe the set of microlocal
analytic singularities. It was Bony [18] who proved that all three methods describe actually
the same set. In the ultradifferentiable setting [24], see also [47], used the FBI transform to
define an ultradifferentiable singular spectrum for Fourier hyperfunctions. However, they did
not mention how this singular spectrum in the case of distributions may be related to WF  as
defined by Hérmander. Our next aim is to show an ultradifferentiable version of Bony’s theorem.
We will work in the generalized setting of Berhanu and Hoepfner[9]. We shall note that recently
Hoepfner and Medrado [39] also proved a characterization of the ultradifferentiable wavefront
set by this generalized FBI transform for a certain class of non-quasianalytic weight sequences.

Let p be a real, homogeneous, positive, elliptic polynomial of degree 2k, k € N, on R", i.e.

p(.ﬂ?) = Z aaxa aq € R,
a=2k

and there are constants ¢, C' > 0 such that
clz|?* < p(z) < Oz z € R"

Let ¢,' = [ e P@dz. As in [0, section 4] we consider the generalized FBI transform with
generating function e ? of a distribution of compact support u € £&'(R™), i.e.

Fult, &) = cp<u($), eiﬁ(t—w>e—\s|p<t—x>>.

The inversion formula is

u= lim / € eI Fu (¢, )| €] 2F dtde (2.3.1)
€ oo
R7 xR"™

where of course the distributional limit is meant.

THEOREM 2.3.1. Let u € D'(Q) and (x9,&) € T*Q\{0}. Then (x9,&) ¢ WFE A u if and
only if there is a test function ¥ € D(Q) with Y|y = 1 for some neighbourhood U of xg such
that

sup  eMOED|F(pu)(t,€)] < oo (2.3.2)
(t,£)eV T

for some conic neighbourhood V- x T of (x0,&p) and some constant v > 0.

PRrROOF. First, assume that (zg, &) ¢ WFru. By Corollary we know that for some
neighbourhood U of zg

N
uly = b (Fy)
j=1

where F; are M-almost analytic on U x Fij for cones TV with fOI‘j < 0. Hence it suffices to
prove the necessity of for u = br(F') being the boundary value of an M-almost analytic
function on U x I'y where I' is a cone with the property that £&I' < 0. W.l.o.g. g = 0 and let
7 > 0 such that By,(0) CC U and v € D(B2,(0)) such that |, ) = 1. Furthermore we choose
v € I'y and set
Q(tvgvx) = lg(t - ‘T) - |€’p(t - $)
Then
F(u)(t, €) = lim eQEETHTV) () F (& + i7v) dex.
T—0+
BZT'(O)
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As in the proof of Theorem 4.2 in [9] we put z = = + iy, ¥(z) = ¥(x) and
D, := {x—i—iavEC” | z € By = By (0), 7 <0 < )\}
for some A > 0 to be determined later and consider the n-form
eCLEED () F(2)dzy A -+ A dzy.
Since 1 € D(B2,(0)) Stokes’ theorem implies

[T @@t iy de = [ QS ()Pl i) da

BQT B2r
+ Z /eQ(t’g’Z)aij(w(z)F(z)) dz; Ndzy N\ -+ Ndzy
jleT

= /eQ(t’g’””H)‘”)zﬂ(a:)F(x + i\v) dx

BQT
n A A
+ Z //eQ(t’f’“'w“)(x +iov)F(x + iov) dodz

jle2T J 8Zj
nooh OF
+Z;//£wmﬂww@+wma_@+wmmmm
=
j:1B27‘ T ’

(2.3.3)

We need to estimate the integrals on the right-hand side of (2.3.3)). Since &) - v < 0 there
is an open cone I'; containing &y such that £ - v < —¢gl||v| for all £ € T’y and some constant
co > 0. We note that for £ € I'y and ¢ in some bounded neighbourhood of the origin we have

ReQ(t, &, x + idv) = A(&v) — [{|Rep(t — x — iAv)
= Mgv) — [€](Rep(t — 2) + O [v]?)
< A(6v) = clé|(Jt — z[** + O(A?)[v]?)
< —covllg] + O (A7) [¢].
Hence for A small enough
i%@@§x+MW§—%Mmm (2.3.4)
where £ € I'1, x € Bg, and t is in a bounded neighbourhood V' of 0. We conclude that

/eQ(t’g’“”H’\”)w(x)F(m +iv)dz | < Cre Mkl
BQT

for some constants 1, C; > 0 and (¢,£) € V xI'1. We note that (M4]) implies that wa(t) = O(¢)
for t — oo, c.f. e.g. [48] or [15], thence

/eQ(t’ﬁ’I'H)‘”)Q,Z)(x)F(J: +idv) da | < Cremwmnlé
Bar

for (t,£) e V x I'y.
On the other hand we can also estimate

Re Q(t,&, x +iov) < o(€v) — cft — z**[¢] + O(N?) [¢]
< —clt — z*|¢] + O (N?) [¢]
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since {v < 0 for all £ € T'y. If « € supp(0vy/0%;) then |z| > r. Therefore if |¢t| < r/2 and A small
enough we obtain that there is a constant vo > 0 such that

ReQ(t,§, = +iov) < —72f¢]
for all £ € I';. Hence

Z // Qe 5’“‘”” (x +iov)F(x 4 iov) dodz | < Coe 2Kl < Cpemwm(2lE)
'] 1B27‘
for £ €Ty, [t| <r/2and all 0 <7 < A

In order to estimate the third integral in (2.3.3)) we remark that by (2.3.4)) we have for a
generic constant C3 > 0 and all k € Ny that

F [o¢]
Z // t§w+wv )gz(ﬂs +iov)dodx | < Cs /G_coglvlﬂhM(QU’UD do
J

ji BQT 0

< Cy /6‘00”'”'5'Q’“0k|v!kmk do
0

= Cngkaak|§’_kk!
::C%QTAﬂJﬂ_k'

Hence by Lemma [1.1.8

Z// (1&,a+iow) ) (:c—l-zav)dadx <CshM(Q1|f\ D)

= 1B2'r T
< Cze Mm@l

In view of ([2.3.3) we have shown that for £ € I'; and ¢ in a small enough neighbourhood of
0 there are constants C', () > 0 such that

/eQ(t’§7x+iT“)w(m)F(x +irv) dz| < CewMm@IED,
BQT

Note that in the estimate the constants C' and ) depend on A but not on 7 < A. Thus
is proven.

On the other hand, assume that holds for a point (z9,&p), i.e. that there is a neigh-
bourhood V' of zy, an open cone I' C R" containing &y and constants C,~y > 0 such that

S (pu)(z, )| < CemmUED eV, ¢eT (2.3.5)

for some test function ¢ € D(Q2) that is 1 near xg. We may assume that g = 0. We have to
prove that (0,&p) ¢ WF g u or, equivalently, (0,&) ¢ WF v where v = pu. We invoke the
inversion formula (2.3.1)) for the FBI transform

v=1lim [ eSeeel gy, €)[¢ |2 drd
R7™ xR™

and split the occuring integral into 4 parts
a0 e G 1, €)|¢| 2 dtdg = IF(x) + [5(2) + [5(0) + [5(@)  (2.3.6)

R7 xR™
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where

:/ /eig(:ct)efﬂzgv(t’g)‘g’;c dtd€

R™ |t|<a

[5(””):/ / (a0l s € (€| 3 dta

[§]<Ba<[t|<A

I5() :/ / a0 —¢lP 3y (1, €)[€ |3 dra

R™ |t|>A

/ / (i€ el€l g (1 ) |¢|3F dtde

[§]=B a<[t|<A

for certain constants a, A and B to be determined. We modify the approach in [11}, [9] and
analogously to the analytic case we are going to show that the last three integrals converge
for ¢ tending to 0 to holomorphic functions that are defined near the origin in C" without
using . Our assumption that holds will allow us to prove that I] converge to a
distributions that can be written as the sum of boundary values of certain M-almost analytic
functions.

We begin with the easiest case. We see immediately that for any choice of these constants
the function I5 extends to an entire function on C" and if ¢ — 0 these functions converge
uniformly on compact subsets to the entire function

/ / EE0Fo(t, €)[¢]2F dtd.

|€|<B a<|t|<A

If we choose A > 4 large enough for

A
supp(v) C {y eR" | |yl < 4} (2.3.7)
to hold, then we have similar to before that for |[t| > A

ReQ(t, &, ) = —p(t — z)[¢]

< —clt — x|*|¢|
k
< —cle|(t] — A/4)*
A2 g
= —cl¢|| 1t]* - *ltlA + )
k
1 A2
< —cl¢] <2|t|2 + 24>
|t|2y A2(k—7)
<- \s|Z (j) (i
t 2k AQ]{)
< —cl¢] (’ + 24;,3)
< -

\s|<“ 4>.

. A
Fot, ©)] < oo (1+4)

Hence
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for some generic constants C' and ¢ independent from £ and thus we conclude that

. A 7 ~
/ ST u(t, &) dt | < 06_025l/p"1605|p dp
A

11>

o0
_A An—1,—¢l¢lA -1 :
— Ce 2l ‘ " / o263 g
cl¢] cl¢]
A
< CeCAlEl

when |£] > 1 and the constants do not depend on £. But this means

€i§($+iy)—€\5|2|£‘% / e Tt &) dt | < C|£‘%e(—01+ly|)|§\
[t|>A
and hence
i€ (2—t) n
B = [ [ D506l arg
R™ [¢>A
constitutes a holomorphic function near the origin of C™. Therefore we obverse that the entire

functions /5 converge uniformly in some neighbourhood of 0 to I3 for ¢ — 0.
In order to examine I we write

/ ,g‘zk oila—y)E—lElp(t—y)— e|§|2> dedt.
Yy

|€|>B
a<|t|<A

Since v € £'(Q2) there has to be a sequence v; € D(2) such that v; — v in £ and without loss
of generality suppv; C K = {y eR™| |y < 4}. Then

- Iim / / €| 2% / \eile—DElelpt—0)—<lél g ey

|£|>B
a<|t]<A

By the Theorem of Fubini and the exponential decrease in the variable £ we deduce

/ m%/ Yeile=wE=lElp(t—v)—<lel® gy qeqr — // /‘ﬂﬂei(my)ﬁlﬁp(ty)EI&IQ dedydt

€>B o<liica  le>B
a<l|t|<A K

and thus
Ii(z) = (v, G*(x,y)),
where
G (z,y) == / /|§§€6i(wy)§£|p(ty)€£l2 dedt.
a<|t|<A¢]>B

Note that G* and therefore also I} extend to entire functions for all ¢ > 0.
We recall from [I1] that the function g(£) = log || has a holomorphic extension into the
region W = {¢ € C" | |Re(¢| > [Im |} which we denote by log((), where

2

1 n n
log{¢) = Jlog y ¢F =log | (7
j=1 j=1
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1
for a suitable branch of the complex logarithm. Of course, the function g¢;({) = (¢)2k and

92(¢) = (¢) are also holomorphic on W. We consider the exact form
Fo(Ci,y, 1) = gu (€)@ 920p=0)=202(0 gy A A G
on W and the n-cycle
Fr=TLUT?UT%,UTY
consisting of the regions
Ih={CeC"|m¢ =0, B<|Rec| < R}
I?={¢eC"||Re(|=B,Im(=o0s(z—y), 0< o <1}
Ih={¢eC"|(=¢+isl¢|(x—y), E€R", B<[¢ < R}
I} :{CEC" | |IRe¢| =R, Im( =0s(z—y), 0< o< 1}

where s is a parameter that is later specified and R > B. Stokes’ Theorem tells us that for x,
y and t fixed we have

/FE(C;x,y,t) =0.
T'r
If R — oo we observe that [ F*(¢;2,y,t) — 0 uniformly for z, y and ¢ varying in compact
R

subsets. As a result we obtain that

Gg(x’ y) = / /gl(c)QT;Cei(CL‘—y)C—gg(C)p(t—y)—agg(C)Q d¢dt

a<|t|<A TS

N / / gl@%6"(“9%—92(c)p<t—y)—eg2<<>2 d¢dt

a<|t|<AT?

where I = {( € C" | ( = { +is[¢|(w —y), £ R, B <[¢]}).

Since I's is compact we conclude that the second integral on the right-hand side constitutes
an entire function that converges to an entire function for € tending to 0.

On the other hand let us consider

Pe(z,y,t,€) == i(z — )& = slz — yP[€] = 92(C(€)p(t — y)eg2(C(6))?
with ((§) := & + is|¢|(Rez —y). We need to estimate Re P.. If we assume that |z| < ¢ for §
small, |y| < g (recall (2.3.7)) and s = s(d, A) small enough then
1
5

(2.3.8)

eyl <
We conclude for |z| < § and |y| < % that
Re Pe(z,y,t,€) < [Tmz|[¢] = (slz — y[> + p(t —v)) €] — elé]*(1 - 5°[z — yI?)
< 0l¢l = (slz =yl + pt =) l€] - Sl¢ P
< 8l¢] + min(—slz — y P, —p(t — ) I¢] - SI¢P
If |y| < § then
min(—s|z —y|*, —p(t —y)) < —clt —y** < —6(9)%-

2
On the other hand, if § < |y| < % and § < § then

2 a2

min(—s|z — y|?, —p(t — y)) < _S<Z> .

So if we choose § > 0 small enough and let z € Bs(0) C C", |y| < 4 and [t/ > a then
RePE(Z7y>ta£) < _C,’€|
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for some constant ¢ > 0. It follows that the first integral in extends to an entire function
with respect to the variable x and converges uniformly for z in a small neighbourhood of the
origin and |y| < £ to

/ /91 (€) 9% o1 (@=y)C—g2(Q)p(t—y) d¢dt.
a<|t|[<A T3

This fact implies the uniform convergence of If(z) = (v, G%(z, .)) to the holomorphic function
I4(z) = (v,G(z, .)) as long as z is in a small neighbourhood of 0 in C".

It remains to look at I{. Suppose that a is small enough such that B,(0) € V. Let Cj,
1 < 5 < N be open, acute cones such that

N —
- UCJ
j=1

and the intersection @j N Cj, has measure zero for j # k. Furthermore, let & € Cy, C; C I' and
& ¢ Cj for j # 1. In particular that means that (2.3.5) holds on B,(0) x Cy, i.e.

F(pu) (2, &) < Cem=MOED 2 € B,(0), € €y (2.3.9)

Furthermore for j = 2,..., N we can choose open cones I'; with the property that {I'; < 0
and there is some positive constant c¢; such that

(v,&) > ¢jlv| - €] VYo e Ty, V€ € C;. (2.3.10)

We set
filoviy) = [ [ im0 g, ¢l 3 dnag

C]' B.(0)

for j € {2,..., N}. Note that each [5 is entire if € > 0 and for ¢ tending to 0 the functions f7
converge uniformly on compact subsets of the wedge R™ + iI'; to

fi(x + iy) = / / 01 )|¢|3F dtde
C;j Ba(0)

which are also holomorphic on R x ¢I'; due to ([2.3.10).
Similarly we define

“(2) = / / CHEa——<IE 3 (1 €)[€ |3k dtde

C1 Bq(0)

// @O0 (1, €)|¢| 2k dbde.

C1 Bq(0

and

The functions f{, € > 0, extend to entire functions whereas f; is smooth due to (2.3.9) since
e~“M is rapidly decreasing (c.f. the remark after the proof of Lemma[1.1.3). This decrease also
shows that f{ converges uniformly to f; in a neighbourhood of 0 since

|fi(z) — fi(z)| S/ /’30155H§|2T;f‘1_e—6£|2‘dtd§

C1 Bq(0

<C/|5|2ke Ol =il

dg

and the last integral converges to 0 by the monotone convergence theorem.
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In fact f; € Eaq because

i) < [ 16l |eg(e, )| g
C1

< C/,ﬂ{}ﬁlalewmvlél) dé
C1

C D _op 2n+\a|il <1> d
< C/ra% R I

n
< 0772n+|a‘M2n+|a\ /|§‘2]€_2n d§
C1
< Cf}/'a‘M\ah
where in the last step (M2 is used.

So we have showed that on an open neighbourhood U of the origin and some open cones
I'j, 5 =2,...,N that satisfy {xI'; < 0 we can write

N
U‘U = Vo + Zbrjfj
=2

with vg € Ep(U) and f; holomorphic on U +iI'; for j = 2,..., N. Hence (0,&) ¢ WFyv. O

We summarize our results regarding the description of WF p4 v in order to obtain the gen-
eralized Bony’s Theorem alluded in the beginning of this section (c.f. [39]).

THEOREM 2.3.2. Let u € D'(R). For (z9,&) € T*Q\{0} the following statements are
equivalent:
(1) (z0,%0) ¢ WEMmu _ 4
(2) There are U € U(xg), open convex cones IV C R™ with Y < 0 and M-almost analytic
functions F; of slow growth in U x Ffoj, pj>0andj=1,...,N for some N € N such

that
N
j=1

(3) There are ¢ € D(Q) with ¢ =1 near xo, V € U(xg) and an open cone I' containing &y

such that (2.3.2) holds.

We can also give a local version of Theorem [2.3.2

COROLLARY 2.3.3. Let u € D'(Q) and p € Q. Then the following is equivalent:

(1) The distribution u is of class Eaq near p.

(2) There is a bounded sequence (uny)n C E'() and an open neighbourhood V. C Q of p
such that un|y = uly for all N € Ny and holds for I' = R™ and some constant
Q >0.

(3) There exists an open neighbourhood W C Q of p, r > 0 and a smooth function F on
W +1iB(0,r) such that Flw = ulw and holds for some constants C,Q > 0.

(4) There is a testfunction 1 € D(Q) such that oy = 1 for some neighbourhood U of p
and constants C,vy > 0 such that

sup  e“MOED|F(yu) (¢, )] < oo
(t,£)eV XR™

for some V- € U(p).
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PRrROOF. The equivalence of (1) and (2) is just Proposition whereas Corollary (1.1.11
shows that (1) implies (3). For the fact that (4) implies (1) we note that by Theorem [2.3.1
we have that for all £ € R"\ {0} (p,&) ¢ WF ru. Therefore u has to be ultradifferentiable
of class {M} near p. Now we show that (4) follows from (3): Suppose that u € Er(V) on
a neighbourhood of p and let F' € £(W + iR™) be an M-almost analytic extension of u on a
relatively compact neighbourhood W CcC V of p. We choose p € D(W),0< ¢ <1land p =1
near p. We consider the map

, §
0:y—0(y)=y— zsw(y)m-
for some 1 > s > 0 to be determined.

Finally let ¢ € D(V) such that v» = 1 on W. As in the proof of Theorem we set

Y(z) =(x) for z =x + iy € C". We put v = ¢F and consider the n-form
eQEE (2 dzy A N dzy,
on
D, = {a:+iacp(x)é eC"|0<o<s, € suppv}.

Stokes’ Theorem gives us

Fu(t, &) = ¢p / eQlEN (2, 2) dzy A - Adzy

O(R™)
- Q(t7§9z) a'U > >
—i—cpz e a—%(z,z)dzj/\dzl/\--‘/\dzn.
jleS

The second integral above is estimated in the same way as the last integral in (2.3.3). On the
other hand the first integral on the right-hand side equals

G(t.€) = ¢y [ XN u(6(y)) dett'(y) dy
Rn
We note that
Re Q(t,€,0(y)) < —sp(y)[¢](1+ O(sp(y)) — colt — y**
and hence
IG(t,€)| < C /eReQ(t,f,e(y)) dy + C / ReQULEIW)) g

Bs(p) R™\ Bs(p)

yEsupp(vol)
- Il(t7§) + IQ(tvf)a

where Bs(p) C {x € R" | ¢(x) = 1}, can be estimated as follows, c.f. [I1]. Set s = §/4. We
obtain
Il(t,f) S Ce_clﬂ

for all £ € R™ if ¢ is in some bounded neighbourhood of p. Furthermore

5\ 2k
bit,z) < C / et gy < 0o (3) I

Rn\Br (p)
yEsupp(uob)

for all ¢ and [t —p| < 3.
Hence we have showed that there are constants ¢, C' > 0 such that

IFu(t, &) < Ce—wmlclé])
for all £ € R™ and t in a bounded neighbourhood of p. U
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2.4. Elliptic regularity

As mentioned in the introduction Albanese, Jornet and Oliaro [3] used the pattern of
Hormander’s proof [45, Theorem 8.6.1] to prove elliptic regularity for operators with coeffi-
cients that are all in the same ultradifferentiable class defined by a weight function, c.f. Remark
Similarly Hérmander’s methods were applied in [64] and [65] for certain classes that are
defined by more degenerate sequences. It is easy to see that the approach of Albanese, Jornet
and Oliaro can be used to show elliptic regularity for operators with £,-coefficients as long as
M is a regular weight sequence. However, they considered only scalar operators. We show here
that Hormander’s proof can be modified in a way to investigate the regularity of solutions of a
determined system of linear partial differential equations

Phuy+ -+ Ppu, = fi

Pylu1+"'+Pul/uV:fV

where P;;, 1 < j,k < v, is a partial differential operator with £xs-coefficients. Since we have
showed in section that WF g u is well defined for distributions u on £sg-manifolds, we can
work in the following setting (see [45] chapter 6] and [23]).

Let M be an ultradifferentiable manifold of class {M} and E and F two vector bundles
of class {M} on M with the same fiber dimension v. An ultradifferentiable partial differential
operator P : Ep(M,E) — Epm(M, F) of class { M} is given locally by

Py o P\ (wm
Pu=1|: - : (2.4.1)
Pl/l te Pl/l/ Uy
where the Pj;, are linear partial differential operators with ultradifferentiable coefficients defined
in suitable chart neighbourhoods. If

QD)= Y qa(z)D*
Ja|<m

is a differential operator of order < m on some open set {2 C R then the principal symbol q is

defined to be
Q(-Taé) = Z ana.

la|=m
Hence the order of P is of order < m iff no operator Pj;, on any chart neighbourhood is of order
higher than m and P is of order m if the operator is not of order < m —1. The principal symbol
p of P is an ultradifferentiable mapping defined on T2 with values in the space of fiber-linear
maps from E to F' that is homogenous of degree m in the fibers of T#Q). It is given locally by

p1(x, &) ... pu(z,§)
p(z,§) = : : (2.4.2)
pyl(xaf) s Puu(%f)

where pjj, is the principal symbol of the operator Pjj. See [23] for more details. We say that P
is non-characteristic at a point (z,&) € T*M\{0} if p(x, ) is an invertible linear mapping. We
define the set of all characteristic points

Char P = {(z,&) € T*M\{0} : P is characteristic at (z,¢)}.

THEOREM 2.4.1. Let M be a Epr-manifold and E, F two ultradifferentiable vector bundles
on M of the same fiber dimension. If P(x, D) is a differential operator between E and F with
Enm-coefficients and p its principal symbol, then

WFp u C WEp(Pu)UChar P uwe D' (M,E). (2.4.3)
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PRrROOF. We write f = Pu. Since the problem is local we work on some chart neighbourhood
Q such that in suitable trivializations of E and F we may write u = (uq,...,u,) € D'(Q,C"),
f=(f,---,fy) € D(Q,C") and P and its principal symbol p are of the form (2.4.1) and
(2.4.2)), respectively. In particular, P is of order m on ).

We have to prove that if (zg, &) ¢ WF ¢ f UChar P then (z¢, &) ¢ WF o u. Assuming this
we find that there has to be a compact neighbourhood K of xy and a closed conic neighbourhood
V of & in R™\{0} satisfying

det p(x,&) #0 (x,§) e K xV (2.4.4)
(K xV)NWFpm(Pu); =0  j=1,...,v

We consider the formal adjoint Q = P! of P with respect of the pairing

(1.9) = [#@r(a)da f.g€DEOC).
T=1

If P = (Pj)jx then Q = (Qj)jx = (Py;)jx where P denotes the formal adjoint of the scalar
operator Pj(z, D) = > p$(2)D%, ie. for v e £(Q)

Pli(z, D)o = 3 (=D)° (sfilw)o(x)).
o] <m

Let (An)n € D(K) be a sequence of test functions satisfying A\y|y = 1 on a fixed neigh-
bourhood U of xg for all N and for all « € Njj there are constants Cy, hy > 0 such that

|DFPAN| < Ca(haN)Pl, 8] < N. (2.4.6)

If u=(u',...,u”) € D'(Q,C¥), then we have that the sequence u} = Agnu” is bounded in &’
and each of these distributions is equal to «” in U for all 7. Hence we have to prove that (u})n

satisfies (2.1.1)), i.e.

for a constant Q > 0 independent of N.
In order to do so, set A} = Ane, € D'(2,CY) and observe
’&R}(f) = <UT7 €7i< ) )\2N> = <u7 €7i< ) ’£>A72—N>

Following the argument of Hérmander [45, Theorem 8.6.1] we want to solve the equation
Qg™ = e‘”ngN. We make the ansatz

g‘l' — efing(xjg),w‘r

where B(z,€) is the inverse matrix of the transpose of p(x,¢), which exists if (z,£) € K x V
and is homogeneous of degree —m in &; note that the principal symbol of Q = P! is B~!(x, —¢).
Using this we conclude that w has to satisfy

w" — Rw™ = Ajy. (2.4.7)
Here R = Ry + -+ + Ry, with R;|¢]’ being (matrix) differential operators of order < j with

coefficients in £y that are homogeneous of degree 0 in { if x € K and £ € V.
A formal solution of (2.4.7]) would be

(o)
w” =Y RFAZy.
k=0

However, this sum may not converge and even if it would converge, in the estimates we want
to obtain we are not allowed to consider derivatives of arbitrary high order. Hence we set

T , AT
Wy = E Rj, - Rj, Ay
jit i <N—m
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and compute
Wi - Ruk =My~ Y. Rjy...Rj Ay = Ay - ok
SZi:ljs>N*mZSZi:2js
Equivalently, we have
Qe Bz, wly) = e (Afy (@) — pi(x,6)).
We obtain now
(&) = (u, eI AGy)
= (u, Qe B, ) + (w e (-, 6)) (24.8)
= (£, OB OuR) + (u, e R (L, 8)

and continue by estimating the right-hand side of (2.4.8]). For this purpose we need the following
Lemma.

LEMMA 2.4.2. There exists constants C and h depending only on R and the constants ap-
pearing in (2.4.6) such that, if j = j1+ -+ jr and j+|5| < 2N, we have

J+18] ,
DP (R, . Ry Aay),| < CRVNME [ e Vio=1,.,w (2.4.9)

PROOF. Since both sides of (2.4.9) are homogeneous of degree —j in £ € V it suffices to
prove the lemma for |£| = 1. Moreover we can write

(le"'RjkAgN)U:R;)\QN o=1,...,v

Especially the coefficients of R7 are all of class {M} on a common neighbourhood of K and
since there are only finitely many of them we may assume that they all can be considered as
elements of £} ,(K) for some ¢ > 0. Recall also from Remark m that /My — oo and that
there has to be a constant § > 0 such that N < § ¥/My. Hence (2.4.6) implies that for all
a € Nj there are constants C, > 0 and h, > 0 such that

with R; being a certain linear combination of products of components of the operators R;

18
D PAN| < CohlPln Y (2.4.10)
for |3| < N. Therefore the proof of the lemma is a consequence of the following result. O

LEMMA 2.4.3. Let K C Q be compact, (AN)n C D(K) a sequence satisfying (2.4.10) and
ai,...,aj-1 € SXA (K). Then there are constants C,h > 0 independent of N such that for j < N
we have

1
‘Dh (alDQ (ag . Dij_l (aj_lDij /\N) e ))‘ S Ch]MK[V . (2.4.11)

PROOF. We begin by noting that implies that m;m;_; < my, for all j < k € N c.f.
[56]. Obviously the expression Dj,a1Dj,az ... Di,_ja;1D;; Ay is a sum of terms of the form
(D*ay)--- (D% 'aj_1)D% Ay where |oq| + - + || = 7.

We set h > max(q, ho). If there are Cy, ., terms with || = k1,...,|a;| = k; then we
have the following estimate on K

k;
e ks =L
‘Dilathag N Dij_1aj—1Dij>\N‘ S CZ qJ k]Ckl,...,kjmkzl . -mkj71k1! e k’j_llhO]M]{;V
kj
< CH Z mj,ijkh,,,kjkl! s kj_l!M]éV
k.
. kl! A ]’v'j—ll 23
< CH Z Chy,... k WMj—ijjfrv-
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Now observe that since ¥/ My is increasing we have
N

k; i= Z k; j—k]- k; j
. N J—kj N N _ N
Mj_j, My = M;_ 7 My <MY MY =My.

As noted in [3] it is possible to estimate
k:l!.'--kj,l! _ kll.---k‘j,llkj‘!j! < ijl!-:-kj!,
(7 = k)! (7 = kj)kjlgt J!
and also (c.f. [45] p. 308])

> Crpoiybial -+ kit = (25 — DI,

(25=1t

T S 1 we obtain

Since

A

NCLESVIN.

‘DilalDi2CL2...D' j'QJ

'Lj 1

CLJ 1D AN‘ <C 4h)

L
< C4hy MY .
O

In order to estimate 4}, we note that due to the boundedness of the sequence (u} )y C &’
the Banach-Steinhaus theorem implies that there are constants x and ¢ such that

la| < e(1+[¢])"
for all N and therefore if |{| < N
€N aR| < eNN(1+N)" < eV CN My (2.4.12)

for some constant C. Hence it suffices to estimate the terms on the right-hand side of
for £ € V, |¢] > N. We begin with the second term.

As in the scalar case there are constants p and C' > 0 that only depend on u and K such
that for all ¢ € D(Q,C") with suppy) C K

’(u w < C Z sup’DO%b’

e <p
Note that supp, pj(.,&) C K for all £ € V and N € N. Thence
‘(we <-,£> < C Z Zmlal 3] Sup‘DB ‘
o] <p B<ax
<C Y el sup| Dy (@)
lor|<p

for £ € V, |¢] > 1 and N € N. There are at most 2 terms of the form Rj, ... R; ATy in p%
and each term can be estimated by (2.4.9) setting j > N — m and hence

N+|of
|D2p(x,6)| < RN 2N g~ Nar N

for x € K and £ € V, |£| > 1. Therefore

A Ntu
[(u, e 0o (L, €))| < CRN2N T g ptm=Npp N < O |grtm=N pry. (2.4.13)

The first term in (2.4.8]) is more difficult to estimate. Recall from Remark that by
assumption V/My is increasing and that there is a constant § such that N < § ¥/My. Lemma
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B gives
N—m+|8|
| D wio(2,6)| < ChN My N g™
Nom+|5|
< ChNMQN 2N Nm—N
N N—m+|f] N
< ChV My 2V 5™ N My N
N—m+|8| m—N
< C'hN]W2N N MY
181
< ChRN MY
for N >m, |8 < Nand ¢ € V, €] > N. Recall that for N < m we have set w}, = AJy = A yer.
Hence by the above and (2.4.10)) it follows that

18]
|DPwiy(a,€)| < CRNV MAY (2.4.14)

forall N e N, |f| < Nand £ €V, || > N.

On the other hand, since the components of B(z,&) are ultradifferentiable of class {M}
and homogeneous in £ € V of degree —m we note that it is possible to show similarly to above,
using an analogue to Lemma the following estimate for N.

181
| D7 (wh (z, ©)IE[" B(x,€))| < CRYMZY |8 < N, €V, [¢] > N. (24.15)

In order to finish the proof of Theorem we need an additional lemma.

LEMMA 2.4.4. Let f € D'(Q), K be a compact subset of Q and V' C R™\{0} a closed cone
such that

WFu f N (K x V) =0,
Furthermore let wy € E(QL x V) such that suppwy C K x V and (2.4.14) holds.
If 1w denotes the order of f in a neighbourhood of K then
N F()] = [(wn( ) f, e )| < RV PN My, (2.4.16)
for N>p+nand €T, | > N.
PRrROOF. By Proposition we can find a sequence (fy)n that is bounded in £* and

equal to f in some neighbourhood of K and
QYN My
N

where W is a conic neighbourhood of I'. Then wy f = wy fn/ for N\ = N — . —n.
If we denote the partial Fourier transform of wy(x, &) by

b (1,€) = / ey (2, €) da

Q

|in(m)| <C new (2.4.17)

then obviously (2.4.14) is equivalent to

18
[P (n, &) < CRN MZY

for |5| < N, &€V, [ > N and n € R". Since |n| < y/nmax|n;| we conclude that

N
In[* i (n,€)] < ChN MZY

39



for { < N,neR"and £ € V, || > N. Hence we obtain

1 N N N _k_
(!n! + MY ) )] =3 () MET 10 Mo (a.)
k=0
v (N |k Nk (2.4.18)
<oy ) M My
k=0
N
< CRN MY

ifneR™ £ €V and |{| > N. Like [45] and [3] we consider

(€)= oy Jintn.&dwe —nyan
= (2710” / Wy (1,€) fa (€ —n) dn + @ / Wy (1,€) far (€ =) dn
Inl<cle] Inl>cle]

for some 0 < ¢ < 1. The boundedness of the sequence (fx)y in £ implies as before that

|Inv(©)] < o1+ g)r.

Hence we conclude that

(2m)"

wnF(©)| <

N (|, sup |fv(m)|+C /\wmn,ﬁ)\(Hc1)“(1+|nr>“dn
[E—n|<clé] nlSele]

since [n] > cf¢] gives [€ + 7] < (1 —¢7)|n].
On the other hand there is a constant 0 < ¢ < 1 such that n € W when { € V and
|€—n] < c|¢|. Then |n| > (1—c)[§] and we can replace the supremum above by sup, cy | fn(1)]-

Furthermore by ([2.4.18))

in( Oy, = [lin(n.6)]dn

Rn

N
<oy [(nl+ 3/ 3hw) " an
R
N 7 -N
= ChN MRY / (r—l— X MQN) r"ldr
0
o0

N —N'—1
< ChNMZY / (r+ *Vbw) dr



if N > p 4 n. Note that (M2)) implies that there is a constant § such that /My < &V for all
N € N. Thence it follows for £ € V, || > N, that

&V funF©)| < 1@ =7 [lan(. )] sup
new

Fr )|l

_1\N/ 7
T+ Cy(14 )N /(1+|?7!)“|77|N oy (1,€)] dn

ntp , -
< CthMQJQVN QN MN’ + CQhN +MMN’+;L

< Oy AN SN N+ oY Moy

< Ch™N My
where we have also used (2.4.17)). O
Due to (2.4.15) we can replace wy in (2.4.16) with (w}/|¢{|"B)s, 0 = 1,...,v, and obtain
[(fre A B, OwR)| < CRNEF N My (2.4.19)

for £ €V, €] > N.
We consider now the sequence (V)N = (U} 4pipi )N HEEV, [E] < N, then by (2.4.12)

€[ ox | < ChN My
On the other hand (2.4.8]), (2.4.13) and (2.4.19) give

‘QN @fv(f)‘ < Clh{VMN-i-m‘g’im + CQhévMN+u+m+n’§rn
< CIRY MyN™™ 4 Cohd MyN™
< Ch My
for£ eV, €] > N.
Therefore we have shown for all 7 = 1,...,v that the bounded sequence (vi)n C &'()
satisfies N’ ‘
€17 vn ()
SUp —————— < 00
cev  QNMy
NeN

for some @ > 0. Obviously v |y = (v})|v and hence

(z0,&0) € WEMmu”
forall T=1,...,v. O

For elliptic operators, i.e. operators P with Char P = (), the following holds obviously.
COROLLARY 2.4.5. If P is elliptic and u € D’ then
WF A Pu=WFpu
for all weight sequences M.

2.5. Uniqueness Theorems

Hérmander [41] and Kawai (see [73]) independently noticed that results like Theorem [2.4.1]
in the analytic category can be used to prove Holgrem’s Uniqueness Theorem [40]. We show
here that Theorem [2.4.1|can also be used to give a quasianalytic version of Holgrem’s Uniqueness

Theorem. We follow mainly the presentation in [45].
First recall [44, Theorem 6.1.]:

PROPOSITION 2.5.1. Let I C R be an interval and xg € dsuppu then (xg,£1) € WFu
for any quasianalytic weight sequence M.
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As Hormander noted in [44] Proposition immediately generalizes to a result in higher
dimensions (c.f. [45][Theorem 8.5.6], see [47] for a similar result):

THEOREM 2.5.2. Let M be a quasianalytic weight sequence, u € D'(Q), x¢ € suppu and
f:Q = R a function of class { M} with the following properties:

df(w0) £0, f(2) < f(z0) if w0 # 7 € suppu
Then we have
(z0, £df (z0)) € WEp u.

PROOF. If we replace f by f(x) — |z — 20|? we see that we may assume that f(x) < f(xo)
for xp # x € suppu. Furthermore, since df (z¢) # 0 we can assume that o = 0 and f(z) = x,,.
Next we choose a neighbourhood U of 0 in R"™! so that U x {0} cC Q. By assumption
suppu N (U x {0}) = {0}. Hence there is an open interval I C R with 0 € I such that

UxIccQ & suppun (0U xI) =0.

If A is an entire analytic function in the variables 2’ = (z1,...,2,—1) then we consider the
pushforward Uy = A,u (c.f. [27]). By [45] Theorem 8.5.4’] we have that

WFM(UA) C {(:Un,ﬁn) e I xR\{0}| 3" €U : (2/,2,,0,&,) € WF u}
Note that (2/, x,) above must be close to 0 for x,, small.
Assume, e.g., that (0,e,) ¢ WF A u, e, = (0,...,0,1). Then I can be chosen so small that

(z,en) & WFpu for z € U x I. We conclude that (x,,1) ¢ WFE Uy if x,, € I. Proposition
2.5.1| implies that U4 = 0 on [ since U4 = 0 on I N {x,, > 0}. That means actually that

<u\UX1,A®<p> =0

for all ¢ € D(I). Since A was chosen arbitrarily from a dense subset of £(R"~!) it follows that
u=0onU x I. 0O

In order to give Theorem a more invariant form we need to recall some facts from [45].

DEFINITION 2.5.3. Let I be a closed subset of a C?> manifold X. The exterior normal set
N (F) C T*X\{0} is defined as the set of all points (zg,&y) such that ¢ € F' and there exists
a real valued function f € C3(X) with df (xg) = & # 0 and f(z) < f(zo) when x € F.

In fact, following the remarks in [45] p. 300] we observe that it would be sufficient for f to
be defined locally around zo. Furthermore f could then also be chosen real-analytic in a chart
neighbourhood near zg. If g is C! near a point & € F and dg(%) = £ # 0 then (Z,&) € N.(F) C
T*X\{0}. It is clear that if (zg,&)) € Ne(F') then xg € OF. In fact, if 7 : T*Q — Q is the
canonical projection then 7(N.(F')) is dense in OF, see [45], Proposition 8.5.8.]. The interior
normal set N;(F) C T*X\{0} consists of all points (xg, &y) with (zg, —&p) € Ne(F'). The normal
set of F' is defined as N(F) = N.(F)U N;(F) C T*X\{0}.

In this notation Theorem takes the following form.

THEOREM 2.5.4. Let M be a quasianalytic weight sequence and u € D'(Q). Then

N(suppu) C WFpu

Theorem [2.5.4] combined with Theorem [2.4.1] implies

THEOREM 2.5.5. Let M be a quasianalytic weight sequence, P a partial differential operator
with Eaq-coefficients and u € D'(Q) a solution of Pu = 0. Then

N(suppu) C Char P,
i.e., the principal symbol p,, of P must vanish on N (suppu).

In fact, we can now derive the quasianalytic Holgrem Uniqueness Theorem. We recall that
a C'-hypersurface M is characteristic at a point = with respect to a partial differential operator
P, iff for a defining function ¢ of M near z we have that (z,dy(z)) € Char P.
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COROLLARY 2.5.6. Let M be quasianalytic and P a partial differential operator with Exq-
coefficients. If X is a Ct-hypersurface in Q that is non-characteristic at xo and u € D'() a
solution of Pu = 0 that vanishes on one side of X near xg then u = 0 in a full neighbourhood
of xg.

In fact, (c.f. Zachmanoglou [82]) it is possible to reformulate Corollary

COROLLARY 2.5.7. Let M be quasianalytic and P a differential operator with coefficients in
Em(Q). Furthermore let F € Ep(R™) be a real-valued function of the form

F(l‘):f(.%'/)—.%'n, = (x1,...,Tn_1)
where f € Ep(R™Y) and suppose that the level hypersurfaces of F are nowhere characteristic
with respect to P in Q. Set also Q. = {x € Q| F(z) < c} for ce R. If u € D'(Q) is a solution

of P(x,D)u = 0 and there is ¢ € R such that Q. Nsuppu is relatively compact in 2, then u =0
mn Q.

Proor. We set for ¢ € R
we={z € Q| F(z) =c}.
Note that each ¢ € R w, is not relatively compact in €. Therefore also {2, is not relatively
compact in 2 for any c since 092, = w,.
By assumption there is a ¢ € R such that K = suppu N €, is compact in Q. In particular,
K is bounded in §2. Hence there has to be ¢ < ¢ such that

KC{zeQ|é<F(z) <c}.
Let ¢1 < ¢ be the greatest real number such that the inclusion above holds for ¢ = ¢;. Since K
is compact there is a point p € K such that F(p) = ¢;. It follows that p € 9 supp uNw,,. Thus
we can apply Corollary because we, is nowhere characteristic for P. Hence u vanishes in

a full neighbourhood of p. This contradicts the choice of ¢;. We conclude that u has to vanish
on (). O

Note that in [43] Hormander used the analytic version of Corollary to prove Holgrem’s
Uniqueness Theorem.

REMARK 2.5.8. We have formulated our results for scalar operators on open sets of R™ but
they remain of course valid on ultradifferentiable manifolds. Actually, all the conclusions in this
section hold even for determined systems of operators and vector-valued distributions. Indeed,
we have only to verify that Theorem holds also for distributions with values in C¥, but
this is trivial: If f(z) < f(xo) for € suppu then f(x) < f(xo) for all € suppu; and any

1 < j < n, since suppu = |Jj_, supp u;. Hence Theorem implies

(x(),ﬂ:df .’L‘o mWFMu] C WF p u.
j=1

Following an idea of Bony ([16), 17]) it is possible to generalize the results above. For the
formulation we need some additional notation. Consider a smooth real valued function p on
T*Q. The Hamiltonian vector field Hy, of p is defined by

8@ 8% Oxj 0¢;
An integral curve of Hp, i.e. a solutlon of the Hamilton-Jacobi equations
d:L‘] 8p

d§;  Op
dftj = —870],(5075),

43



j=1,...,n,is called a bicharacteristic if p vanishes on it. If ¢ is another smooth real valued
function on T%() then the Poisson bracket is defined by {p, ¢} := H,(q) or in coordinates
"/ dp Oq dp Oq
{pa) = Z(agam ~ 80,08, )
j=1 J J J J

See [36] or [45] for more details.
We continue by recalling a result of Sjostrand [75] (see also [45]).

THEOREM 2.5.9. Let F' be a closed subset of Q@ and suppose that p € E(T*Q\{0}) is real
valued and vanishes on Ne(F). If (zg,&0) € Ne(F') then the bicharacteristic t — (x(t),£(t)) with
(£(0), £(0)) = (0, o) stays for |t] small in No(F).

The analogous statement is of course also true for N;(F') replacing N¢(F'). It follows

COROLLARY 2.5.10 (Bony). Let F' be a closed subset of ) and set
Np:={pe&(T*Q\{0}) |[p=0 on N(F)}.
Then N is an ideal in E(T*Q\{0}) that is closed under Poisson brackets.
We obtain the quasianalytic version of a result of Bony [16, 17].

THEOREM 2.5.11. Let M be quasianalytic, P a differential operator with Eaq-coefficients on
Q and IT the Poisson algebra that is generated by all functions f € E(T*Q\{0}) that vanish on
Char P.

If u € D'(Q) is a solution of the homogeneous equation Pu = 0 then all functions in 11 have
to vanish on N (suppu).

COROLLARY 2.5.12. If the elements of 11 have no common zeros and u vanishes in a neigh-
bourhood of a point pg €  then u must vanish in the connected component of  that contains

Do-

We continue by taking a closer look at Theorem Let 7 : T*Q — Q be the canonical
projection and (xg,&) € T*Q\{0}. If ¢ is a smooth function on 7%Q\{0} that vanishes on
N(F), F C Q closed, and A(t) the bicharacteristic through (xg,&p) then we conclude that the
bicharacteristic curve y(t) = m o XA must stay in OF for small ¢ in view of the remarks before
Theorem 2.5.4]

Now suppose that ) is a real vector field on 2 and g its symbol. If we denote by ~ the
integral curve of @) through z¢ and by A the bicharacteristic of ¢ through (xg,&y) where (zg, &)
then it is trivial that v = mo A.

DEFINITION 2.5.13. We say that a partial differential operator P on 2 with &4-coefficients
is M-admissible iff there are ultradifferentiable real-valued vector fields @)1, ..., Q4 with symbols
q1,---,qq such that each g; vanishes on Char P.

Following the approach of Sjostrand [75] we can generalize results of Zachmanoglou [83]
(c.f. also [17]) to the quasianalytic setting.

PROPOSITION 2.5.14. Let M be quasianalytic and P be an M-admissible operator. If L =
L(Q1,...,Qq) is the Lie algebra generated by the vector fields Q;, j = 1,...,d, ¢ € C*(Q,R)
near a point xog € Q such that (zg, ¢’ (x0)) € Char P and u € D'(Q) a solution of Pu = 0 such
that near xo we have xo € suppu C {¢ > 0}. Then each Q € L is tangent to {¢ = 0} at xo
and the local Nagano leaf vz, (L) is contained in supp u.

PROOF. By assumption all Q1,...,Qq are tangent to {¢ = 0} at z¢ and hence also all
Q € L. From the remarks before Definition and Theorem we see that all integral
curves of the vector fields in £ must be contained in dsuppu for a small neighbourhood of
xo. Inspecting the construction of the representative of the local Nagano leaf in the proof of
Theorem we see that v, (L) C supp u near . O
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In fact, we have the following global theorem (see for the analytic case [83], c.f. [L7, Theorem
2.4.])

THEOREM 2.5.15. Let M be quasianalytic and P an M-admissable differential operator. If
u € D'(Q) is a solution of Pu= 0 and py ¢ supp u then every integral curve of the vector fields

Q1,...,Qq through py stays in 2\ supp u.

PrOOF. Let I' = I'y, (£) be the global Nagano leaf of £ = L(Q1,...,Qq) through py and
suppose that dsuppu NI # (). Then there has to be a point go € I' N d supp u such that for all
neighbourhoods V' C Q2 of xg we have

(CNV)N (2 suppu) # 0.

Let V small enough such that I' NV is the representative of the local Nagano leaf of £ at gg
constructed in the proof of Theorem Then

'\ suppunV # .

Thence there is a vector field X € £ such that if y(¢) = exptX is the integral curve of X
through ¢g then v(0) = go and (1) = ¢1 € V\suppu. Possibly shrinking V' and applying an

ultradifferentiable coordinate change in V' we may assume that ¢o = 0, ¢ = (0,...,0,1) and
0
X=—.
0xy

We note that in these new coordinates the assumption on P can be stated in the following way.
Let £ € R™ with &, # 0 then p,,(x,&) # 0 for all z € V. There is also a neighbourhood V; C V
of ¢ such that u vanishes on V7.

We adapt the proof of [82, Theorem 1]. Let » > 0 and 6 > 0 small enough so that

U={zeR"|]2/|<r, -6 <z, <1}
is contained in V' and
{e eR" ||| <7, @a =1} C VA
We consider the real-analytic function

|’

F(z)=(1+9) — 0 — .

2
,
The normals of the level hypersurfaces of F' are always nonzero in the direction of the n-th unit

vector. It follows that the level hypersurfaces are everywhere non-characteristic with respect to
Pin V. Set

0
Ul_{er: F(x)<—2}
and note that if x € Uj then x,, > —0/2. It is easy to see that U; Nsupp u is relatively compact in

U. We conclude that v = 0 in U; by Corollary That is a contradiction to the assumption

qo € Osupp u. O
ExaMPLE 2.5.16. If Q1,...,Qq are real valued vector fields with £4-coefficients, then the
operators
Py=Q1+1Q2
d
P, = Z Q* keN
j=1

are M-admissible.
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CHAPTER 3

CR manifolds of Denjoy-Carleman type

In this chapter M is always going to denote an ultradifferentiable (sub-)manifold of class
{M}, where M is a regular weight sequence. Here though we may also allow to let M = () be
the empty sequence, i.e. Eo¢ = £. In this particular case this chapter might not contain any new
results, c.f. the references given in the individual sections for the results in the smooth case.

3.1. Introduction

In this section we rapidly recall the basic definitions of CR geometry, for more details see [8].
We begin with the embedded case. Let M C CN be a real submanifold of CV, then T,M C Tp(CN
(p € M) as real vector spaces, but TP(CN = R2N = CV inherits a complex structure from C¥.
Hence there is a maximal complex subspace T7M of Tp(CN such that TAM C T,M C Tp(CN .

DEFINITION 3.1.1. A submanifold M C C¥ is said to be CR if the mapping
M > pr— dimc TyM
is constant. The CR dimension of M is then defined as dimcr M := dim¢ Ty M.

Note that any real hypersurface M C CV is CR. An arbitrary submanifold M C CV of
codimension d is said to be generic iff it can be realized as the intersection of d real hypersurfaces
whose complex tangent spaces are in general position as complex vector spaces. The manifold
M is said to be generic at a point p € M iff there is a neighbourhood U of p in CV such that
M N U is generic. We recall that if M C CV is a generic submanifold of CR dimension n and
real codimension d then n+d = N.

It is easy to see that for a CR manifold M we can consider the complex tangent bundle
T°M C TM. However the complex tangent bundle, although being a vector bundle over
C, is realized as a subbundle of the real bundle TM. Often it is more convenient to take a
different approach for the definition of CR manifolds. For this end consider the complexified
tangent bundle CI'M = C ® TM of a manifold M C CVN. Furthermore let p € M and set
(CTp(CN = Tpl’O(CN &) T]?’l(CN. If zj =x; +1y;, 7 = 1,..., N denote the coordinates of C" then
the spaces TI}’O(CN and T]?’lCN are generated by 0/0z;|, and 0/0%;|p, j = 1,..., N, respectively.
If we set V, = CT,M N T,? 1CN then dim¢ V, = dim¢c TyM. If M is a CR submanifold, then
V= |_|p Vp is said to be the CR bundle associated to M. It is easy to see that V is involutive, i.e.
[V, V] CV, and VNV = {0}. Using this it is possible to generalize the notion of CR manifold.

DEFINITION 3.1.2. Let M be a manifold (not necessarily embedded) and V C CT'M a
subbundle. We say that (M,V) is an abstract CR manifold iff V is an involutive bundle and
VNV = {0}. The CR dimension of M is defined as dimcg M = dim V. If dimg M = m +n
then the CR codimension is given by d = m — n.

If M is a CR manifold of class {M} then a CR vector field L is an ultradifferentiable section
of V,ie. L € EM(M,V). If p € M and n = dimeg M then a local basis of CR vector fields
near p consists of n CR vector fields L, ..., L, defined near p that are linearly independent.
We also set L* = L{" --- L% for o € Nj.

A CR function or CR distribution is a function or distribution on M that is annihilated by
all CR vector fields. We refer to 7"M := V' as the holomorphic cotangent bundle. 7"M is a
complex vector bundle on M with fiber dimension N = n + d. Its ultradifferentiable sections
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are called holomorphic forms. The real subbundle T7°M C T'M that consists of the real dual
vectors that vanish on V @ V is called the characteristic bundle of M and its sections of class
{M} are the characteristic forms on M. Note that if L is a CR vector field, we have generally
that Char L C T°M, hence we obtain for any CR distribution « that WF g u C TOM.

A C'-mapping H between two CR manifolds (M, V) and (M’,V’) is CR iff for all p € M we
have H.(V,) C V}{(p). Here H, denotes the tangent map of H. If M’ C CV' is an embedded

CR submanifold and Z' = (Z},..., Z,) some set of local holomorphic coordinates in CV' then
H; = Z; oH,1<j<N'is a CR function on the CR manifold M for all 1 < j < N'.
We continue with a first look at specific results about ultradifferentiable CR manifolds.

PROPOSITION 3.1.3. Let M C CV be a generic manifold of class {M} of codimension d
and pg € M. If n denotes the CR dimension of M then there are holomorphic coordinates
(z,w) € C" x C? defined near py that vanish at py and a function o € Ep(U x V,RY) defined
on a neighbourhood U x V' of the origin in R?™ x R with ¢(0) = 0 and V¢ (0) = 0, such that
near po the manifold M is given by

Imw = ¢(z,z, Rew). (3.1.1)
ProoF. We follow the proof of [§] for the result in the smooth category.
After an affine transformation we may assume that pg = 0. Let p = (p1, ..., pq) be a defining
function for M near 0. The complex differentials dp1,...,0pq are linearly independent over C
near 0 since M is generic. For each k € {1,...,d} we write

N
Pk(Z» Z) = Z (aerr + bkryr) + 0(2)
r=1
where O(2) denotes terms that vanish at least of quadratic order at 0. Since py, is real-valued,
the coefficients ay, and by, have to be real numbers. We define a linear form ¢; on C by
N
(Z) = (bry + i) 2y
r=1

and thus the above equation becomes
ok(Z,Z) = Tm 0(Z) + O(2).

The linear forms ¢x, k = 1,...,d are linearly indepedent over C since the differentials 0py,
k =1,...,d, are C-linearly indepedent. After renumbering the coordinates Z; we can assume
that
AT/ ST /4
are linearly indepedent as linear forms over C.
We define new holomorphic coordinates (z,w) near (0,0) € C**¢ by

zj=2Zj 1<j<n
wy, = Uk(2) n+1<k<N=n+d.
In these new coordinates we have, if we set j(z, z,w, @) = p(Z(z,w), Z(z,w)),
p(z,z,w,w) = Imw + O(2) (3.1.2)
and therefore we can locally near 0 solve the equation
oz, z,w,w) =0 (3.1.3)

with respect to ¢ = Imw according to Theorem We obtain an ultradifferentiable solution
¢ of class {M} defined near 0 € R?"*% = C" x R? and valued in R?. The properties ©(0) = 0

and V(0) = 0 are easy consequences of (3.1.2)) and (3.1.3)). We also see that in view of (3.1.2)

and
ﬁ(Z, Z,5+ Z.QD(Zv Z, 8)’ $— ZQO(Z, Z, S)) =0
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the function ¥ (z, z,s,t) = t — ¢(z, 2, s) is also a defining function for M near 0. This finishes
the proof. O

REMARK 3.1.4. We note that Proposition [3.1.3] can be used to give a special local basis of
CR vector fields. Indeed, let M C CN be a generic submanifold of codimension d that is given
locally near a point pg € M by a defining function p = (p1,...,pq). If we use the coordinates
(z,w) € C"*¥ from above then we can formally view p as a function on the variables (z, Z, w, 0).
Let p., pz, pw and pg the Jacobi matrices of p with respect to z, zZ, w and w respectively. We
can assume that p, and pg are invertible in a neighbourhood of py. According to [8], §1.6] a
local basis of CR vector fields near pg is given by

(L) = (0z) — "pz prfl(aw)
where we have used the following notation
Ly 0z, O,
Ly=1: 1. @) =1 : | (0n) = | :
L, 0z Ow,
If we use the defining function p = t — ¢ induced by then this local basis is of the

following form

0 0
L; = a- Qba —
J 0%; ; " ow,
d
0 .0
— A= — b, —
0%; ; "0s,,
with )
B 2‘det Bj,
B0 det®
Here we used
L+i(pr)s, - ilp1)s,
Q= ps = : :
i(pa)ss 0 1+i(pa)s,

and BZ is the following matrix. Let 6,, be the Kronecker delta defined by d,,, = 1 and 6, =0
otherwise and set

d1w +i(p1)s, (901)51‘
(()0)51/ = and (‘P)?j =
Sav +i(a)s, (a)z
Then
Bip=((@)si -+ @sus @z (PDsurn - (P)sa) -

In particular, if M C C"*! is a real hypersurface of class {M?} locally given by the equation

Imw = ¢(z, Z, Rew) where ¢ € Exq then the vector fields
AR Y < A
0%; 1 +ips Ow

N

form a local basis of the CR vector fields of M. When we use the local coordinates (z, Z, s) of
M induced by (3.1.1)) then this basis takes the form

8 . 902]' ﬁ

L, = — _
1T 0z Ttip, 0s

j=1...,n.

We close the section with a first result on the structure of ultradifferentiable CR manifolds.
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DEFINITION 3.1.5. Let M C CV a CR submanifold. The CR orbit Orb, of p € M is the
local Sussman orbit of p in M relative to the set of ultradifferentiable sections of T°M.

Note that if pg € M then by construction T7Orby,, = T;M for all p € Orby, thence Orby,
is the germ of a CR submanifold of CV of CR dimension n.

DEFINITION 3.1.6. Let M C CV a CR manifold and py € M.

(1) We say that M is minimal at pg iff there is no submanifold S C M through pg such
that TAM C T),S for all p € S and dimg S < dimg M.

(2) The manifold M is said to be of finite type at pg iff there are vector fields X1, ..., Xj €
Em(M,TM) such that the Lie algebra generated by the Xj,..., X evaluated at pg
is isomorphic to T},, M.

It is well known that finite type implies minimality and that the two notions coincide for real-
analytic CR manifolds, c.f. [8]. We are going to show that this fact holds also for quasianalytic
CR submanifolds.

THEOREM 3.1.7. Let M be a quasianalytic weight sequence and M C CN an ultradifferen-
tiable CR manifold of class {M}. The following statements are equivalent:
(1) M is minimal at po.
(2) dimpg Orby, = dimgr M
(3) M is of finite type at pg.

PRrROOF. The equivalence of (1) and (2) holds even if M is non-quasianalytic. Following the
arguments in [8 §4.1.] we see that, if we assume that M is nonminimal then dimg Orb,, <
dimr M. On the other hand if dimg Orb,, < dimg M then any representative W of Orb,, is
by the remark below Definition a submanifold of M and TAW =T;M for all p € W. It
remains to prove that (2) implies (3).

By Corollarywe have that Orb,, = ,,(g), where g is the Lie algebra generated by the
ultradifferentiable sections of T°U with U being a sufficiently small neighbourhood of pg and
Ypo (@) the local Nagano leaf of g at pg. Hence dimg Orb,,, = dimp 7,,(g) = dimg g(po)-

On the other hand M is of finite type at pg if and only if dimg g(po) = dimg M. O

We shall note we could have shown the equivalence of and by citing the corre-
sponding proof in the smooth category in [8, Theorem 4.1.3.]. Indeed, let M C C¥ be an
ultradifferentiable CR submanifold of class {M} and py € M. Then we can consider M also as
an smooth CR manifold and define similar to [8] Orb,, as the Sussman Orbit relative to the
smooth sections of T°M near py.

However, if X1,..., X, is a local basis of Ex(M,T°M) near py then we have that Orb,,
is generated by © = {Xi,...,X,}, c.f. Theorem m On the other hand, since the vector
fields X1, ..., X, constitute also a local basis of £(M,T°M) near py we obtain also that Orb,,

is generated by ©. It follows that Orb,, = Orb,, as germs of manifolds at py.
The next example is a straightforward generalization of [8, Example 1.5.16.].

ExXAMPLE 3.1.8. Let M be a non-quasianalytic weight sequence and ¥ € Ep(R) a real
valued function such that ¢ (y) = 0 for y < 0 and ¥(y) > 0 for y > 0. We define a real
hypersurface in C? by

M = {(z,w) € C* | Imw = ¢(Im z)}.
Then M is minimal at the origin but not of finite type at 0. Indeed, if M is non-minimal at 0
then according to [8, Theorem 1.5.15] there is a holomorphic hypersurface S C M through the
origin. Since 0/0z is tangent to S at 0 it follows that S is given near the origin by the defining
equation w = h(z) where h is a holomorphic function defined in some neighbourhood of 0 € C
with h(0) = 0. We conclude that due to S C M we necessarily have that

h(z) — h(z) = 2ip(Re 2)
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in some neighbourhood of 0. It follows that 1 has to be real-analytic near 0 which contradicts
the definition of .
Since 1 is flat at the origin, it follows that M cannot be of finite type at O.

3.2. An ultradifferentiable reflection principle

The aim of this section is to prove generalizations of results of Bernhard Lamel and Berhanu-
Xiao. Lamel proved that a finitely nondegenerate CR mapping that extends holomorphically
to a wedge between two generic submanifolds is real analytic if the manifolds are real analytic
([52]) and smooth if the manifolds are both smooth ([53]). Our main result states that if the
two CR manifolds are both ultradifferentiable of class {M} then H has to be ultradifferentiable
of the same class {M}. We begin with recalling the definition of finite nondegeneracy of a CR
map.

DEFINITION 3.2.1. Let M be an abstract CR manifold and M’ C CY a generic submanifold.
Furthermore let p’ = (p}, ..., ply) be a defining function of M’ near a point go € M’, L1,..., L,
a local basis of CR vector fields on M near pg € M and H : M — M’ a C"™-CR mapping with
H(po) = qo-

For 0 < k < m define an increasing sequence of subspaces Ej(po) C CV " by

ol -
Ey(po) := SpanC{Laagl (H(Z),H(Z))|z=po : 0< |o| <k, 1 <1< d’}.

We say that H is kg-nondegenerate at py (0 < kg < m) iff Ex,—1(po) € Ek,(po) = cV,

Furthermore if I' C R? is an open convex cone, pg € M and U C CV an open neighbourhood
of po then a wedge W with edge M centered at py is an open subset of the form W :={Z € U |
p(Z,Z) € T'}, where p is a local defining function of M.

THEOREM 3.2.2. Let M C CN and M’ C CN' be two generic ultradifferentiable submanifolds
of class {M}, po € M, pyy € M’ and H: (M,py) — (M’,p}) a Ck0-CR mapping that is ko-
nondegenerate at pg. Suppose furthermore that H extends continuously to a holomorphic map
in a wedge W with edge M. Then H is ultradifferentiable of class { M} in a neighbourhood of

Do-

PROOF. Since the assertion of the theorem is local, we are going to work on a neighbourhood
Q C CVN of pg. If Q is small enough then by Proposition there are open neigbourhoods
U C C"and V C R? of the origin and a function ¢ € Ep(U x V,R%) with ¢(0,0) = 0 and
V(0,0) = 0 such that

MNQ={(z,w) € Q| Imw = ¢(z,z,Rew)}.

From now we denote M N2 by M. If we choose U and V to be small enough we can consider
the diffeomorphism

U: UxV— M
(225) — (225 +ip(z, 2,5)
If we shrink the neighbourhoods U, V' a little bit (such that ¢ € E,(UxV,R%)) we can extend

the mapping ¥ M-almost analytically in the s-variables, i.e. there exists a smooth function

U: UxV xR*— CVN such that \11|va><{0} ¥ and for each component Uy, k=1,...,N, of

¥ we have B
oV,
ow;

(z,z,s,t)‘ < Chm(ylt)  j=1,....d, (3.2.1)

for some constants C,v > 0. Here w' =s+it € V +iR% We see that there is some 7 > 0 such
that W[y« B, (0) is a diffeomorphism.
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By assumption H = (Hy,...,Hy’) extends continuously to a holomorphic mapping on a
wedge W near 0. If we shrink W we may assume that 0H;, j = 1,..., N’, is bounded on W.
By definition

W={ZeQ|p(Z2)eT}

for a neighbourhood € of the origin in CV and an open acute cone I € R%. If we shrink U, V,
when necessary, and choose a suitable open and acute cone I', we achieve that

\f/(UxVxF(;)CW

for some r > 6 > 0. Note that \i/(U x V x Ts) is open in CV. For each j = 1,..., N’ set
hj =H;oW and u; = Hj o ¥. Since

H; 0
Za 0, j=1,....N, k=1,...,d

awk 0Zy 0wy,

and 0H; is bounded, each function h; is M-almost analytic on U x V' x I's due to and
extends u; € C* (U x V). Hence Theorem implies

WF pu; C (U % V) x (R*™ x I'°)\{0}. (3.2.2)
IfL;,j=1,...,n,is a basis of the CR vector fields on M = M N, then A; = U*L; defines
a CR structure on U x V and Ajup =0for j=1,...,nand k=1,...,N".
Let o be a defining function of M’ near p) = 0 € CV '. Then there are ultradifferentiable
functions ®, (2", Z', W) for |a| < ko, £ = 1,...,d, defined in a neighbourhood of {0} x CKo C
CN' x CKo and polynomial in the last Ko = N’ - |{a € N | |a| < ko}| variables such that

A% (pyou) (2,2, 5) = Bpq (u(z, z,5), (2, 7, 5), (Ma(z, 7, 5)) ~0 (3.2.3)

|B|§k0>
and
Al 70 (u, @) (0,0,0) = @407 (0,0, (A°a(0,0,0)) 5<k,)

Since H is kyp-nondegenerate there are multi-indices o, ..., oV and ¢*,... N € {1,...,d'}

such that if we set
¢ = (<I>417a1, cee (I)ZN',aN’)
the matrix ®, is invertible. Hence by Theorem there is a smooth function ¢ =
(¢1,...,¢n7) defined in a neighbourhood of (0, (A”@(0,0,0))5) in CN'" x CKo such that, if
we shrink U x V accordingly,
u;j(z,2,8) = ¢; (u(z,é, s),u(z, z, 8), (Aﬁﬂ(z,é, 5))\ﬁ|Sk0> (2,8) eUxV, j=1,...,N’

and (1.1.6)) holds. If we further shrink U x V and § and choose I" CC I' appropriately we see
that

9j(2,2,8,t) = ¢; (h(z, z,8,—1),h(z, 2,5, —t), (ilg”g(z, Z, 37t>£e{1,...,N’};|B\§ko) (3.2.4)

is well defined for ¢t € —TI'%. Here ﬁ is the M-almost analytic extension of Aﬁﬂj on U xV x

(—T%), which exists due to -, Proposition and Theorem [2.2.4] - It is also easy

to see that h(z, z,s, —t) is /\/l almost analytic on U X V X ( 5)- We have that
N’

N’ N’
agj o 8¢>J 6hk 8¢J 8h 8¢] 8hk5
ow, ~ 2oz 0u] " 2 07 ol T 22 2 Gy, oul

k=1 |B8|<ko

for j =1,...,N" and £ = 1,...,d. Note that we can choose U x V and I'§ so small that all
functions appearing on the right-hand side are uniformly bounded. Hence, since 8%71 = 8%}1,
gj is an M-almost analytic extension on U x V x (—I'§) of u; due to (1.1.6) and thus

WFpu; € (U x V) x (R x (I U=T")°)\{0} = (U x V) x (R"\{0} x {0}).
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On the other hand, since each u; is CR we have that WF yqu;|o € {0} x R\ {0} and we de-
duce that in fact WF yq ujlo = @ forall j = 1,..., N'. Hence the mapping H is ultradifferentiable
of class {M} near py. O

If we recall the well-known result of Tumanov [80] which states that any CR function on a
minimal CR submanifold M extends to a holomorphic function on a wedge with edge M, then
we obtain the following corollary.

COROLLARY 3.2.3. Let M C CN and M’ C CN' generic submanifolds of class {M}, py €
M, pyy € M', M minimal at py and H : (M,py) — (M’',p}) a C*-CR mapping that is ko-
nondegenerate at py. Then H is ultradifferentiable of class {M} in some neighbourhood of
Po-

A CR manifold M is said to be kp-nondegenerate, as introduced in [5], iff id : M — M is
ko-nondegenerate. For a discussion of this nondegeneracy condition see [8] or [31]. We note
here only the fact that any CR diffeomorphism between two kp-nondegenerate CR manifolds is
ko-nondegenerate. This leads to the following.

COROLLARY 3.2.4. Let M C CN and M’ C CN' generic submanifolds of class { M} that are
ko-nondegenerate at pg € M and py € M’, respectively. Furthermore assume that M is minimal
at po and let H : M — M’ a CR diffeomorphism that is C* near py and satisfies H(po) = pj.
Then H has to be ultradifferentiable of class {M} near py.

Recently Berhanu-Xiao [10] showed that it is possible to slightly weaken the prerequisites
of the smooth reflection principle of Lamel. In particular, the source manifold M can be chosen
to be an abstract CR manifold. Using the methods developed previously we can also generalize
this result to the ultradifferentiable category.

THEOREM 3.2.5. Let (M, V) be an abstract CR manifold and M' C CN' be a generic sub-
manifold, both of class {M}. Furthermore let po € M, H: M — M’ a C*-CR mapping that is
ko-nondegenerate at py and there is a closed acute cone I' C R such that WF g H |,y C {0} x T
Then H is ultradifferentiable of class {M} near pg.

PROOF. Since the assertation is local we will work on a small chart neighbourhood Q2 =
UxV xW CR"xR" xR% of M of py = 0. Here n denotes the CR-dimension of M whereas d
is the CR-codimension of M. We use coordinates (z,y, s) on  and write z = x + iy. In these
coordinates a local basis of the CR vector fields of M is given by

IS o P o A T
70z P Jk@zk 19 054 J= e

a=1
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From the assumptions we conclude that if 2 is small enough that there is an open, convex cone
I'1 € RV\{0} such that

N/

WFum H = JWFy H; CQx T} (3.2.5)

j=1
due to the closedness of WF g H in T*M\{0}. If we further shrink Q (resp. U, V and W) and
choose an open convex cone I'y C RN X{O} such that 'y, C T'; U {0} we have by Theorem m
that there is an M-almost extension F' with slow growth of H onto 2 x I's. If we now choose
an open convex cone I's € R%\ {0} with {0} x I's C 'y we infer that

F = Floy({0yxTs)
is an M-almost analytic function on U x V x W x I's with values in CV" and

lim F(.,., .. 6)=H
I's3t—0

in the sense of distributions.

Let p' = (p!,...,p\/) be an ultradifferentiable defining function of M’ near p{ = H(po).
As before in the proof of Theorem [3.2.2] we conclude that there are ultradifferentiable functions
Do (2,2, W) for |a| < kg, £ =1,...,d, defined in a neighbourhood of {0} x CKo ¢ CN’ x CKo
and polynomial in the last Ko = N’|[{a € NI | |a| < ko}| variables. From now on we can follow
the proof of Theorem verbatim. O

3.3. Infinitesimal CR automorphisms and multipliers

In this and the next section we show how the results in [35] concerning the smoothness
of infinitesimal CR automorphisms transfer to the ultradifferentiable setting. We begin with
recalling the basic definitions. Here (M, V) is always an ultradifferentiable abstract CR manifold
of class {M}.

DEFINITION 3.3.1. Let U C M an open subset and X : U — T'M a vector field of class C'.
We say that X is an infinitesimal CR automorphism iff its flow H”, defined for small 7, has the
property, that there is € > 0 such that H” is a CR mapping provided that |7| < e.

We need for the proofs of the regularity results a more suitable characterization of infini-
tesimal CR automorphisms. We call a section ) € I'(M, (T"M)*) a holomorphic vector field on
M.

Apparently every vector field X € T'(M,TM) gives rise to a holomorphic vector field by
first extending X to CTM and then restricting the extension to T*M. For a partial converse,
we recall from [35] the following purely algebraic result.

LEMMA 3.3.2. LetQ) € T'(M, (T'M)*). Then there exists a unique vector field X e T'(M, T M)
such that Q) is induced by X if and only if Y(1) = Y(7) for all characteristic forms .

Indeed, since (CTM)* = V* + V" and CTOM = (V @ V)*+, we can decompose any form
w = a + [ with «, holomorphic forms in a nonunique manner. Thus %) gives rise to a real
vector field X via .
X() = 5 (a(®) +5(9))

which is well defined provided that 2)(7) = 2)(7) for all 7 € I'(M,CT'M) or equivalently, that
(7) =Y(r) for all 7 € I'(M,T°M), both of which are equivalent to the definition of X above
being independent of the decomposition w = « + 5. From now on we shall not distinguish
between X being a real vector field or a holomorphic vector field.

We recall the well-known identity, see e.g. [38],
Lxa(Y)=da(X,Y)+Ya(X)=XaY) - a([X,Y]),
which holds for arbitrary complex vector fields X, Y and complex forms o on smooth manifolds.
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We conclude that accordingly the Lie derivative
Lrw(.)=dw(L,.)

of a holomorphic form w with respect to a CR vector field L is again a holomorphic form. It
is now possible to make the following definition. We shall say that a holomorphic vector field
Y e (M, (T"M)*) is CR iff

Lw(Y) = dw(L,Y)
for every CR vector field L and holomorphic form w. In particular a real vector field X is CR
if and only if

w([L, X]) =0

for all CR vector fields L and holomorphic forms w. We recall from [35] the following fact.

ProposiTION 3.3.3. If X is an infinitesimal CR automorphism on M, then X considered
as a holomorphic vector field, i.e. X € CY(M, (T"M)*) is CR.

PRrROOF. Let H™ denote the flow of X. By definition, H™ satisfies the following differential
equation
dHT
dr
We note that H? = id, is trivially a CR map, but by assumption we know that if 7 is small
then

(p) = X o Hy(p).

w((HT)L) =0
for any CR vector field L and any holomorphic form w, i.e. w(L) = 0.
We begin with the following general claim: For any triple (Y, B, ), where

0
Y:Z)fja?j Y, eR

7=1
m .
o= Z o’ dz’
j=1
are defined near 0 and a(B) = 0, we have, if K7 is the flow of Y,

& (&Y aB)|,_y = a((B.Y)

near the origin. For the convenience of the reader, we shall include the computation below.
Recalling the fact

(K7)"a(B)(p) = a((K7).B)(K™(0)) = 3 > (0F 0 K7) () By () ok 0)
j=1k=1 J
we can compute
o T)*a<B>)<p>=;;jT (oo K7) ) G b 5,0
NN % 0K]
= o KT Yo K™ k (p)B,;
>335 (5, )0 5700 E 0B,
15 9) D) DT ] C oy IRE e
j=1k=1¢=1 J



This leads immediately to

d - T e [ Ok Y%
E((K) ZZ(M eBk-i-a 3B>
k=1 ¢=1
- — OB Y
k k kOLE
= —aY,
ZZ( “ Coxy ta Ay £>
k=1 ¢=1
= a( B,Y] )
Now we set Y = X, B= L and a = w as above. Then we have
d *
0= —(H7w(L))|,_, = w([L, X])
and hence X is CR. U

We are now able to generalize the notion of infinitesimal CR automorphism. To this end
consider the space D'(M, (T'M)*) of distributions with values in (7'M )*.

DEFINITION 3.3.4. An infinitesimal CR diffeomorphism with distributional coefficients on
M is a generalized holomorphic vector field §) € D'(M, (T"M)*) that satisfies

Lw(Y) = (Lrw)(D) (3.3.1)
for every CR vector field L and holomorphic form w and
() =D(7) (3.3.2)

for all characteristic forms 7.

Note that is in fact a CR equation for ). If U C M is an open subset of M then we
say that 9 € D'(M, (T'M)*) is an infinitesimal CR automorphism on U iff (3.3.1)) and (3.3.2)
hold for all local sections L € Eapq(U, V|y) and 6 € Ex (U, T°M |y ), respectively. Let the subset
U C M is small enough such that there is a local basis L1, ..., L, of CR vector fields and also a
local basis {w!, ... JwlV } of the space of holomorphic forms. We recall that locally a distribution
Q) € D'(M,(T'M)*) is of the form

N
V=D Xjw (3.3.3)
j=1
with X; € D/(U). We introduce also the following operators on U
L 0
Lj:Lj'IdN:
0 L;

and note that since dwk(Lj, .) is again a holomorphic form we have
Z B}, '
with B;?’g € Em(U). We observe that 9 is CR on U if and only if

Li Xy, = Lj(w"(D)) = dw* (L;,9)) ZBk X0

foralll1<j<mnand 0 <k <N. We set

1 1
Bj1 BN
Bj = : :
N N
By BN
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Furthermore, using its local representation (3.3.3]), we can identify 2) with the vector X =
(X1,...,XxN). Hence (3.3.1) turns into

L;X=DB;-X
or
P;X =0
respectively, where
P;=L; - B;
In particular we infer from above and Theorem that
WF Q) C TOM. (3.3.4)

For the formulation of the main regularity results we need one more definition. To begin we
introduce for the ultradifferentiable CR manifold M the following sequence of spaces of sections.

Ep={(Lr,...Lx,0:5 <k, K4 EMM,V),0€Epm(M,TOM)).

We note that Ey = Ep(M, T°M), and E; C Ep(M, T'M) for all j € Ny, and set E = J ieny Bi-
We associate to the increasing chain Ej, the increasing sequence of ideals S¥ c E,((M, C),
where

Vi) ... VHYw)

k _ N _ . Y/J . / *
St =N\ B = det VI € By, Q5 € Em(M, (T'M)*)

VY@ . VN@)

Weset S = S(M) = Upen, S k and call it the space of multipliers of M. In fact each S* and thus

also S can be considered actually as ideal sheaves, if we define E¥(U) and S*(U) accordingly.

Note that locally one can find smaller sets of generators: Let U C M be open, and assume
that L1, ..., L, is a local basis for T'(U, V), that 6, ..., 6% is a local basis for T'(U, T°M), and that
wl,...,w" is a local basis of T"M. We write Lj=Lyp; forj=1,...,nand L% = LT Lo
for any multi-index o = (aq,...,a,) € N®. We note that, since V is formally integrable, the
L%, where |a| = k, generate all k-th order homogeneous differential operators in the £;, and we
thus have

Ek|U:<£°‘9”: 1<pu<d, |oz|§l<:>.

We can expand

N
Log" = APy (3.3.5)
/=1
and for any choice a = (a!,...,a") of multi-indices a',..., o € N* and r = (ry,...,ry) €
{1,...,d}" we define the functions
1 1
AT LAY
D(a,r) = det : : . (3.3.6)
N N
AT TN AT

With this notation, we have
S|, = (D(a,r): [o?] < k)
we shall denote the stalk of S* at p by 81’; .
The space of multipliers of a CR manifold M clearly encodes the nondegeneracy properties of

M. We close this section by taking a closer look at the connection of S with finite nondegeneracy.
We recall from [8] the definition of finite nondegeneracy for abstract CR manifolds.

57



DEFINITION 3.3.5. Let M be an abstract CR manifold and
Ep(p) = (LK, ... Lk,0(p): j <k, Kq€EM,V),0€EMTM)). (3.3.7)

for p € M and k € N. Then M is kp-nondegenerate at pg € M ift Ey 1 C Ey, = T:zlzoM' We
say that M is finite nondegenerate iff M is finite nondegenerate at every point.

REMARK 3.3.6. This definition is in fact local, since by [8, Proposition 11.1.10.] if Ly,..., L,
is a local basis of CR vector fields and @', ...6% is a local basis of characteristic forms near py
then M is kp-nondegenerate if and only if

T} M = spanc{L0"(po): |a] < ko, p € {1,...,d}}.

Hence we may replace M with any open neighbourhood U C M of pg in . Thus we observe
that a CR submanifold M is ko-nondegenerate at pg € M if and only if S50 = (Eat)p,-

More precisely, let U C M be an open subset and ¢ € U. Then M is kg-nondegenerate at ¢
if and only if there is a multiplier f € S¥(U) that does not vanish at ¢, i.e. f(q) # 0.

Indeed, if f(q) # 0 then obviously FEy,(q) = T,M. On the other hand, if g(q) = 0 for all

multipliers g € S¥(U) then necessarily Ej,(q) # T, oM.

3.4. Regularity of infinitesimal CR automorphisms

DEFINITION 3.4.1. Let (M, V) be an ultradifferentiable abstract CR manifold of class { M},
and ) an infinitesimal CR diffeomorphism with distributional coefficients of M, see section [3.3]

We say that ) extends microlocally to a wedge with edge M iff there exists a set I' € TOM
such that for each p € M, the fiber ', C T)M\{0} is a closed, convex cone, and

WEMm(w(®)) €T
for every holomorphic form w € Ex (M, T'M).

Note that the condition I' C T°M is not as strict as it seems, because WF p((w(2)) € T'M
by (B34).

THEOREM 3.4.2. Let (M,V) be an ultradifferentiable abstract CR structure of class {M},
and ) an infinitesimal CR diffeomorphism of M with distributional coefficients which extends
microlocally to a wedge with edge M.

Then, for any w € E, the evaluation w(%)) is ultradifferentiable, and for any A € S, the
vector field \) is also of class {M}.

PROOF. Since the assertion is local we will work in a suitable small open set U C M such
that there are local bases Ly, ..., L, of Ex(U, V) and w?, ... ,w" of Ex(U, T'M), respectively.
We recall that we can represent 2) on U by or by X = (Xy,...,Xn) € D'(U,CY). By
assumption we know that there is a closed convex cone I' C TOM\ {0} such that WF X; C T
for each j = 1,...,N. If we set W = ()¢ C T°M \ {0}, then WFy X; N WT = @ for all
j=1,...,N. We may refer to this fact by saying that X; extends above. On the other hand, if
we analogously put W~ = (=TI')¢ C T9M\ {0} then WFx X; "W~ = 0 by (2.1.3); we say that
X extends below.

Furthermore let {61, ...,69} be a generating set of Ea¢(U, T°M) and recall (3.3:5), i.e.

N
Lo = APV
/=1

with A" € Epm(U) for o € N and v = 1,...,d. In particular, (3.3.2), i.e. 6(2) = 0(2)), turns

into
N N
Z AS:I/XE _ Z A?,VXZ
/=1 /=1
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and applying £% to (3.3.2)) yields
S a3 S s
=1 |o|<|al

where (Cf " € Em(U). Note that in both equations above the left hand side extends above,
while the right hand side extends below.

Now choose any N-tuple a = (al,...,a) € NJ'" of multi-indices with |a| < k for all
j=1,...,Nandr = (r1,...,7N) e {1,...,d}". Then we have
1 —
AT A (X > 05 LR,
N ' N : Ngogo
AT AN | \XN Y C5 LPX,
If we multiply the equation with the classic adjoint of the matrix
1 1
AT LAY
v L
AT TN ALY
then we obtain
ar
> DEjLix;
18I<k
{=1,....N

for each j =1,..., N where the Do”.n are ultradifferentiable functions on U. It follows that the
right hand side of this equation extends below, whereas the left hand side obviously extends
above. Hence WF ( D(a,7)X = (. We conclude that AX € Ey(U) for any A € S*(U) since
Sk(U) is generated by the functions D(a, 7). O

The next statement is an obvious corollary of Theorem

COROLLARY 3.4.3. Let (M,V) be an ultradifferentiable finitely nondegenerate abstract CR
structure and X an infinitesimal CR diffeomorphism of M with distributional coefficients which
extends microlocally to a wedge with edge M. Then X is ultradifferentiable of class {M}.

However, the condition that M is actually finitely nondegenerate is far too restrictive. We
shall say that (M,V) is CR-regular if for every p € M there exists a multiplier A € S with the
property that near p, the zero set of A is a finite intersection of real hypersurfaces in M, and
such that A does not vanish to infinite order at p. Thence we can apply Proposition [1.3.2] or

Corollary respectively.

THEOREM 3.4.4. Let (M,V) be an abstract CR structure, p € M, and assume that M s
CR-reqular near p. Then any locally integrable infinitesimal CR diffeomorphism X of M which
extends microlocally to a wedge with edge M is of class { M} near p.

Without boundedness conditions on X this theorem is actually in some sense optimal as we
are going to see later on.

In general it might be difficult to determine if a certain CR manifold is CR-regular. In the
forthcoming we want to present some instances of CR-regular manifolds. But first we take a
closer look at the Lie derivatives of characteristic forms.

Suppose that M is a CR manifold and near a point pg € M there are local coordinates
(z,y,s) of M such that the vector fields

d

0 ;0 .
szazj_zjlbjfa&v J=1n, 25 =25+ Y, (3.4.1)

T=
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where bl € Em, are a local basis of CR vector fields near pg. In this setting (c.f. Remark |3.1.4))
the characteristic bundle is spanned by the forms

n n
0" =ds, + Y bldz+ > bdzy, T=1,...4d
j=1 j=1

Furthermore, the forms 0™, 7 =1,...,d, and w’/ = dz;j, j = 1,...,n, constitute a local basis of
holomorphic forms on M near py. We also define the functions

ik . T 75 T .k
AT = Lyb), — L;b),
forj,k=1,...,nand p=1,...,d.
Consider a general holomorphic form

d n
n= ZO’MHH —i—ijwj.
p=1 j=1

The Lie derivative of n with respect to the CR vector field Ly, is

d d n d
Lxn=dn(Lg, .) = Z (Lkau — Z o (blrj)su> o+ + Z (Lkﬂj + Z U;L)‘{ik> W (3.4.2)
j=1 p=1

'u,:l v=1

Let o« € Nj a multi-index of length || = m. We introduce the finite sequence m; :=
Zegj ag, j = 1,...,n, and set mgy := 0 and associate to « the function p, : {0,1,...,m} —
{0,1,...,n} which is defined by

pa(g) =7 if /¢ (mj,l,mj]

for £ =1,...,m and p,(0) = 0. We also associate the following sequences of multi-indices to «
a(l) ::Zepa(q) ¢=0,1,...,m,
q<t
a(l) == Z €p(q)s
>4

where e; is the j-th standard unit vector in R".
With this notation and (3.4.2]) we can now state what the Lie derivative of the characteristic
form 04 (n=1,...,d) is:

d n
LOPH — ZTS#QT + Z A?"“wj (3.4.3)
=1 j=1
The functions 77" and A" are defined iteratively by
T = 6,7,
~ d A
Tt = Lpa(l)Tf(l)’“ _ Z(bﬁ(l))s Tl?‘(l)’“ (3.4.4a)
v=1
and
m d )
A;"’“ — Z Z 1,0(k=1) (Tg—a(k)vu)\gpa(k)) (3.4.4b)
k=1v=1

We are now able to give the first example of a CR regular submanifold of C¥.

DEFINITION 3.4.5. We say that a real hypersurface M C CV is weakly nondegenerate at pq
iff there exist coordinates (z,w) € C™ x C near pg and numbers k,m € N such that pp = 0 in
these coordinates and near pg M is given by an equation of the form

Imw = (Rew)™p(z, z, Rew),
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where
ool dlely
0,0,0) =
0z (0,0,0) 0zw

(0,0,0) =0, |o| <k,

and

spanc{@.z«(0,0,0): |a| < k} = C".
If ko is the smallest k for which the preceding condition holds, we say that M is weakly ko-
nondegenerate at pg.

PROPOSITION 3.4.6. Let M C CN be an ultradifferentiable real hypersurface, po € M, and
assume that M is weakly ko-nondegenerate at py. Then M is CR regular near py. In particular,
any locally integrable infinitesimal CR diffeomorphism of M which extends microlocally to a
wedge with edge M near pg is ultradifferentiable near pg.

PROOF. In order to show that M is CR regular we are going to construct a multiplier A € &
of the form

Az, 2, 5) = s“(z, 2, 5)

in suitable local coordinates and with 1) € £, not vanishing at s =0 and ¢ € N.

Recall that by assumption there are coordinates (z,w) € C™ x C such that pg = 0 and M
is given locally by

Imw = (Rew)™¢(z, Z, Rew)
where m €N and ¢ is an ultradifferentiable real-valued function defined near 0 with the property
that e (0) =z (0)=0 for |a| < kp and
spanc{¢.z2(0,0,0): 0 < |a| < ko} = C™.

In these coordinates a local basis of the CR vector fields on M is given by

0 .0
Li=——b— 1<i<
=%z 0s =7 =
with
Sm(pfj

V=it i(s™p)s

whereas the characteristic bundle is spanned near the origin by

)

6:d8+ibjd2j+ibjdzj
=1 j=1

and 6 together with the forms w/ = dz; constitute a local basis of 7" M near the origin.
We observe that for 1 < j, ¢ <n

X) = Ljb* — Lob
_gm i(péjZe(l +i(s™p)s) + Pz (Sm‘PEj)s
(1+i(s™p)s)?
L P ((8™2,)s (1 +i(s™p)s) — 1™z, (8™ P)ss)
(1+i(s™p)s)?
i@2125(1 +i(s™p)s) + Pz; (Smgoz[)s
(14 i(s™p)s)?
o Pz ((‘Sm(péj)s(l + Z.(Smgo)s) - Sm(PEj (Smgp)ss)
(1+i(s™p)s)?

= SmX%
and Xg(()) = 2iz,,(0) by the assumptions on .
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In this setting (3.4.3) takes the form

L0 =T0 + i A%
j=1
and implies that
T = LT — (W) 700 10 =1
o] )
Ag =37 = 1ot (e Y.
k=1

If we use the two simple facts for smooth functions f, g, namely (s9f)s = s471f 4 s9f, for
q € N we sce that TP = s~ 1G? for |8 > 1. Hence, if m > 2 we have

2ipzaz, (2,2, 9)
14 (s™p(2, 2, 9))3

On the other hand we obtain for m = 1 the following representation

Af(z,z,8) =s™ + s*m IR (2, 2,5) = s B (2, Z, 5).

2ipzaz,(2, 2, 5)
1+ (p(z,2,8) + sps(z, 2, 8))
where S7* is a sum of products of rational functions with respect to ¢ and its derivatives. Each
of these summands contains at least one factor of the form ¢s or s with |5| < |a| < ko and
therefore S§*(0) = 0.
By assumption there have to be multi-indices o', ..., a" # 0 of length shorter than ky such
that

Af(z,2,s) =s

5 +850(2,2,8) + s’R%(2,2,5) = sBy(z, %, 8),

{©,501(0), ..., 0.z (0)}
is a basis for C". Now we choose a = (0,a,...,a") and calculate according to (3.3.6)) the
multiplier D(a) = D(a, 1) (note that d = 1):

1 0o ... O
At oAt LAY
D(a) =det [ .
Agh AT LAY
1 o ... 0
Aet Byt ... BY
= 5" det .9 1 "
Ag‘n By" B
where
1 0 0 g Ba!
Ag' By Bg' ! »
Q(a) = det ) i = det : : ,
hence
©.za1(0)
Q(a)(0) = (2)" det : # 0.
Przam (0)
We conclude that M is CR-regular. O
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Obviously, a similar approach as in the hypersurface case above can be used to find manifolds
of higher codimension that are CR-regular.

DEFINITION 3.4.7. We say that a CR manifold M C C¥ of codimension d is weakly nonde-
generate at pg € M (in the first codimension) iff there are local coordinates (z,w) € C"*¥ near
po such that M is given by the equations

Imw, = (Rew)wcpu(z,é, Rew), p=1,...,d,
with v' < 4%, v =2,...,d, and |y'| > 2. Furthermore the function ¢; satisfies for some k
spanc{(cpl)zza(0,0,0) Dl < k} =C".

If kg is the smallest integer k for which the above condition holds, we say that M is weakly
ko-nondegenerate at py.

PROPOSITION 3.4.8. Let M C CV be a generic ultradifferentiable CR submanifold of codi-
mension d, pg € M, and assume that M s weakly nondegenerate at pg. Then any locally
integrable infinitesimal CR diffeomorphism of M which extends microlocally to a wedge with
edge M near pgy is ultradifferentiable near pg.

PROOF. Similar to before we have to construct a multiplier A € S of the form A(z,z,s) =
sP9(z, 2, 5) where 1 € Epq and 1(0) # 0. By assumption there are coordinates (z,w) € C**9
near pg = 0 such that M is given by

Imw, = (Rew)”“«pu(z,Z,Rew), w=1,...,d.

In particular note that o' < o# for p=2,...,d.
We deduce from Remark 3.1.4] that the vector fields

are a local basis of the CR vector fields near the origin. The coefficients bf; are of the form
bl, = i(det(Idg +i®)) " - det B

where ® denotes the Jacobi matrix of the map (s7"¢,), with respect to the variables s =
(s1...,84) and

L4+i(7 01)sr oo (87 01)s 8 (01)z (8T Oy oo i(8T 01)sy
Bi = Z’(Sw‘/’u)& ce i(Sw @u)s#—1 s (SOM)ZJ- i(sw‘»@u)suﬂ cee i(Sw ‘Pu)scz
od oad i, o L od
Z(S’y ‘pd)& s Z(S’Y ('pd)sufl s7 (@d)ij Z(S'Y (pd)s,url N Z(S'Y Spd)sd

Hence for all j =1,...nand p=1,...,d we have

b, = is"" (det(Idy +i®)) ' det O3 (3.4.5)
with
L4i(s7 o1)s, oo (7 00y (01)z W 0)en oo (87 @1)s,
C;{ = Z'(SW‘PM)Q e i(sw‘»@u)su—1 s7" (SOM)ZJ' i(S’YHSO,U)S;H—l cee i(svﬂ‘Pu)Sd
i(s’ydgpd)sl s i(s’ydgpd)sﬂfl S:Yd(wd)fj i(s’ydgpd)s,url e 1+ Z.(S’ydgpd)sd
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and ¥* = v* — ! > 0. We observe that
det Cf| _, = (¢1)5(2,2,0) (3.4.6a)
det CIJL =0 w=2...,d, (3.4.6b)

since |y > |y!| > 2.
Furthermore the forms

0" =ds,+ Y bldz + Y bldzy, p=1,....d,
j=1 j=1

span the characteristic bundle near 0 and 0*, = 1,...,d and w’ = dzj, j =1,...,n, form a
local basis of the holomorphic forms on M. From (3.4.3]) we recall for « € Nj and p=1,...,d
that

d n
LoOGH = T 4+ A

=1 j=1
and from (|3.4.4))
TOH =6,
d
ToH = L, (I)Tﬁ(lm _ Z(bg(l)) T4
v=1 ’
|al
A = ZZLQ (k=1) (Ta (k) s \Jipa )),
k=1v=1

We recall that
MNF = Lyl — Lbk

= ()., Zb’“ ), = (1), + 2B (B),

and note that (3.4.5) and ( 1mply that
)\,ij = 2¢571R9;’f v=1,....d,
where
J,k —
Rl )SZO - (SOI)Zij

ok
It

s=0

:0 I/:]_,...,d.
s=0

It is easy to see that also TTO““|S:O = 0 for a # 0. We conclude that for all a # 0, and
i=1....n

(€ 2722 ; 'Yl A0 _
AT = 2is Aj uw=1,....d

where

1ol _

Aj s=0 N ((pl)zazj s=0

A?’MSZO:() w=2,...,d.

By assumptation there are multi-indices o', ..., a™ € Ng of length at most kg such that the

vectors

(@1)220“7 (0)7 .7: 17"'7”7
form a basis of C".
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We compute the multiplier D(@, r) for a = (0, ...

By (3.3.6) we have

1 0 0 0
b ot 0o .. 1 0 .0
frg 1 1 1 1
(@r)=det | pati - pall gala o gald
LTt A A
Aot AX
= det :
AL Agt
21871/1&1’1 257 AX 1
= det :
2187114(11 1 22571%1% -1
Aot Aot

— (20)"s™ det | :
A A
= (20)"s™ Ala, 7).
We conclude
(901)220‘1 (O)
Aa,7)(0) = det : # 0.

(Sol)zian (O)
(]

In the preceding results we required the involved manifolds to have a special form in order
to simplify the necessary calculations, but of course there are many more CR regular manifolds.
The next example gives a CR manifold that is not weakly nondegenerate at 0 in the sense of

Definition but is still CR regular.
EXAMPLE 3.4.9. Let M C C? the CR manifold given by
Imw; = Rew; |2|*
Imwy = Rews 2|2
The CR bundle V of M is spanned by

9 . s1z 0 . sz 0
B e B
0z  1+1i|2|20s1 1+1i|z|? so

Thus a basis of the characteristic form is given by

. S1%2 _ . S1%2
0t =d dz — d
81+Z1+z’]2\2 Z Zl—i!z\Q Z
LS9z B LS9z
0% =d dz — dz.
2ERRY T T ip

We know that 6%, 2 and w = dz is a basis of T'M. If a = e; we recall from (3.4.3) that
L9 =T + T30 + A% w.
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Using (3.4.4)) we observe that

Ta,l _ _-#
1 T2
Tt =0
1— 4
At = g5 LIE
(1+1z]4)

Hence, if we set o = (0,0, ) and r = (1,2, 1) then the multiplier D(a,r) of M given by (3.3.6)
is

10 0 Lt
D(a,r) = det 0 1 0 | —2i817Z42
. . 1—|z 1
“impe 0 HsiEmye (411

and thus M is CR regular.

Next we are going to present an example that shows that the local integrability condition
in Theorem Proposition and Proposition [3.4.8] respectively, is essential for the
conclusions in these statements to hold. More precisely, we construct two different infinitesimal
diffeomorphisms with distributional coefficents on a real hypersurface in C? such that the two
diffeomorphisms are not locally integrable. We also construct a multiplier such that the products
of this multiplier with each diffeomorphism coincide and are ultradifferentiable. We further
note that the coeflicients of both diffeomorphisms are closely related to the non-extendable CR
distribution for nonminimal CR submanifolds given by Baouendi and Rothschild [7].

EXAMPLE 3.4.10. We begin with the calculation of the multiplier in a more general setting
in order to simplify the computations. We will later on restrict ourselves to real hypersurfaces in
C2. Let (M,V) be a 3-dimensional abstract CR structure of hypersurface type that is generated
in some coordinates by the vector field

L= % - smb(z,é)%.
The characteristic bundle 7°M is spanned by
0 = ds + s"b(z, 2)dz + s™b(z, 2)dz
and thus the forms w = dz and 6 form a basis of 7M. We obtain (c.f. (3.4.2)))

do(L, .) = —2is™ Im(Zi) (2, 2)w — ms™ 1b(z, 2)6.

We calculate the simplest nontrivial multiplier: for a! =0, o? =1 and r = (1,1) (note that
N =2 and d = 1) we have by (3.3.6]
1 0

—ms™1b(z,2) —2is™ Im (gg) (2,2)

= —2is™ Im(?i) (z,2).
Yz
Trip
open neighbourhood V of 0 € C, i.e. M is an embedded real hypersurface of class {M} in C?

given near the origin by the defining function

D(a,7) = det

Nowlet m=1,b=1

for some ultradifferentiable real-valued function v defined in an

p(z,zZ,w,w) = Imw — Rew - ¢(z, 2).
Then the multiplier D(a,r) from above is of the form
. ¢z2 ¢Z¢2’¢
D(a,7) = 218<|\IJ|2 -2 L
66

> = 2isG(z, 2),



where we have set ¥ := 1+i1). Note also that w; = w = dz and we = dw = VYds+isy,dz+isyzdz
is an alternative basis for 7"M in this situation.

Since M is a real hypersurface in C?> we have the following decomposition of an open
neighbourhood € of 0 € C?

Q=U,UMUU_

with Uy = {(z,w) € Q: p(z,2,zZ,w,w) > 0} and U_ = {(z,w) € Q: p(z, z,w,w) < 0} being
open subsets of 2. We shall also assume that QN (C x {0}) =V x {0}.

If we consider the holomorphic function

1

F: —

(7)o
on C x C\ {0} then we see that F' is of slow growth for w — 0 on both Uy and U_. We write
uy = by F for the boundary value of F|y, and u_ = b_F for the boundary value of F|y_,

respectively. Note that by the Plemelj-Sokhotski jump relations (see, e.g., [27]) we have

2me
Uy = Ugp — U_ = _F(l ®0).

Note also that ug is essentially (up to the factor —27i) the non-extendable CR distribution from
[7], c.f. also [8], for the hypersurface M.

We claim that WE o uy = R0y 01 and WFpyqu— = R_0|y 40y, respectively (c.f. Ex-
ample [2.2.3): Note that u; and u_ are ultradifferentiable outside V x {0} C M and that
WEpug = (R\{0}) 0]y« {0} Furthermore we know that WF g uy. and WF o u— must each be
contained in (R\{0})é since both are CR distributions. However, since uy extends holomor-
phically to U, it follows that WE  uy NR_6 = () (c.f. the proof of Theorem and by
symmetry we have also WFy u_ NR;.0 = (. Now let p = (2,0) € V x{0} and suppose that,
e.g., RO, NWF  uq = (0. Then we would have that R, 6, N WF v up = () which is obviously
a contradiction to above.

We consider the following vector fields with distributional coefficients

Xy = u+g’ —I-erg’
0z M 0z M
and
0 0
X-= uf@‘M —HL%’M'
We claim that both vector fields constitute infinitesimal CR, diffeomorphisms on M if
oy oY
or oy

where z = x4 1y. We show this for X, the argument for X_ is completely analagous of course.
First we see that X is real since

0 0
Xy = Reu+% u +Imu+8—y o

Furthermore note that the regular distributions (v > 0)
1
sW +iv
on M converge to uy in D’ for v — 0. We have

Uy =

Xyip=—s,Reuy — stpyImuy
= ;i_rf(l)(—szpm Rew, — sy, Im ul,)
(—52(% —Yy) + 81/>
2+ (50 +0)?

= lim sv|u,|? = 0
v—0

= lim
v—0
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with convergence in D'. Hence X € D'(M,TM). We conclude further
L(wi1(X4)) = Luy =0,
L(wz(X4)) =0
and since dw; =0, (j = 1,2)
dwi (L, Xy) =0,
dwy (L, Xy) = 0.
Since w1 (X4+) = w1 (X_) = uy, wa(Xy) = wa(X4) = 0and wy (X_) = u_ all the assumptions

of Theorem [3.4.2] are satisfied for both X, and X_.

Indeed Gz 2)
G(z,z
D(a,r)uy = D(a,m)u_ = 22\1](27 B

hence D(a, )Xy = D(a,r)X_ € Epm. Note also that D(a, m)ug = 0.

€ Em(M)

We close this section with a look into the case of quasianalytic manifolds. We begin with
recalling the following definition from [8, § 11.7]. Let M C C" be a CR submanifold with
defining functions p = (p1,...,pq) near po € M. A formal holomorphic vector field at po is a
vector field of the form

al )
X = ;%(Z)(?Zj

with the coefficients a; being formal power series in Z — pyp with complex coefficients. The
formal vector field X is said to be tangent iff there exists a d x d matrix ¢(Z, Z) consisting of
formal power series in the variables Z — py and Z — pg such that

Xp(Z, Z) ~ c(Z, Z)p(Z, Z)’

where ~ denotes equality as formal power series in Z — py and Z — py. Note that the existence
of nontrivial holomorphic vector fields at py tangent to M does not depend on the choice of
holomorphic coordinates and defining equations near py.

DEFINITION 3.4.11. A generic submanifold M C CV is formally holomorphically nondegen-
erate at pg € M iff there is no nontrivial formal holomorphic vector field at pg that is tangent
to M.

REMARK 3.4.12. If M is formally holomorphically nondegenerate at py then M is formally
holomorphically nondegenerate at every point of some neighbourhood U of pg. Furthermore if
M is holomorphically nondegenerate on an open set U C M then M is finitely nondegenerate
on an open and dense subset V C U, c.f. [8] Theorem 11.7.5].

THEOREM 3.4.13. Let M be a quasianalytic reqular weight sequence and M C CN a generic
submanifold of class {M} that is formally holomorphically nondegenerate.

Every smooth CR diffeomorphism %) that extends microlocally to a wedge with edge M is
ultradifferentiable of class {M}.

PROOF. As usual we argue locally near a point pg. After a choice of local bases of CR vector
fields and holomorphic forms and selecting a generating set for the characteristic forms we can
use the representation near pg. By Theorem we know that for any multiplier A the
product A; = X - X is ultradifferentiable for j = 1,..., N. Since X; is smooth by assumption
we have that the equality holds also for the formal power series at py of A;, A and X;. Since
M is formally holomorphically nondegenerate at pg there has to be a multiplier A € § with
nontrivial formal power series at py. Indeed, if the power series of A at pg equals 0 then A itself
has to vanish in a neighbourhood of py by the quasianalyticity of M. On the other hand in
every neighbourhood of pg there is a point ¢ at which M is finitely nondegenerate [8, Theorem
11.7.5]. Hence by Remark there has to be a nontrivial multiplier X" defined on some
neighbourhood U of pyg.
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We conclude that the formal power series of A;- = XX at po is divisible by the Taylor series
of X at py. Hence Theorem m gives that X is ultradifferentiable of class {M} near py. O
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Abstract

The main topic of this thesis is the study of regularity of CR mappings between ultradif-
ferentiable CR manifolds. Ultradifferentiable is understood in the sense of Denjoy-Carleman
classes, i.e. subalgebras of smooth functions defined by weight sequences. We consider mainly
Denjoy-Carleman classes that are defined by weight sequences, which are regular in the sense
of Dyn’kin.

In particular, reflection principles of Lamel and Berhanu-Xiao for finitely nondegenerate
CR mappings are generalized to the ultradifferentiable category. More precisely, any finitely
nondegenerate CR mapping between two ultradifferentiable CR manifolds of the same Denjoy-
Carleman class, that extends near a point holomorphically into a wedge, is ultradifferentiable
near this point of the same regularity as the manifolds.

In order to prove the aforementioned result, a geometric theory of the ultradifferentiable
wavefront set with respect to Denjoy-Carleman classes, that was initially defined by Hérmander,
is developed for regular weight sequences. In particular, using a theorem of Dyn’kin on the
characterizations of elements in regular Denjoy-Carleman class by almost-analytic extensions,
a characterization of the ultradifferentiable wavefront set either by almost-analytic extensions
into flat wedges or by the generalized FBI transform in the sense of Berhanu-Hounie is proven.
This allows to show that the ultradifferentiable wavefront set can be invariantly defined on ul-
tradifferentiable manifolds of the same Denjoy-Carleman class. Moreover an ultradifferentiable
microlocal elliptic regularity theorem for vector-valued distributions and partial differential op-
erators with ultradifferentiable coefficients is proven, what generalizes statements of Hormander,
Albanese-Jornet-Oliaro and others.

Besides the proof of the ultradifferentiable reflection principle, the statements mentioned
above on the ultradifferentiable are used to generalize directly the results on the regularity
of infinitesimal CR automorphisms on smooth abstract CR manifolds by Fiirdos-Lamel to the
ultradifferentiable setting. As a further straightforward application of the microlocal techniques
quasianalytic generalizations of statements of Holmgren, Hérmander, Bony and Zachmanoglou
about the uniqueness of solutions of homogeneous equations.
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Zusammenfassung

Das Hauptthema dieser Arbeit ist die Untersuchung der Regularitdt von CR Abbildungen
zwischen ultradifferenzierbaren CR Mannigfaltigkeiten. Ultradifferenzierbar ist hier im Sinne
von Denjoy-Carleman Klassen gemeint, d.h. von Teilalgebren glatter Funktionen die durch
Gewichtsfolgen definiert werden. Es werden hier hauptsachlich Denjoy-Carleman Klassen be-
trachtet, die (durch im Sinne von Dyn’kin regulére) Gewichtsfolgen definiert sind.

Insbesondere werden Reflektionsprinzipe von Lamel und Berhanu-Xiao fiir endlich nicht-
degenerierte CR Abbildungen in die ultradifferenzierbare Kategorie verallgemeinert. Genauer
wird gezeigt, dass jede endlich nichtdegenerierte CR, Abbildung zwischen zwei ultradifferenzier-
baren CR Mannigfaltigkeiten von derselben Denjoy-Carleman Klasse, die nahe eines Punktes
eine holomorphe Ausdehnung in einen Wedge besitzt, nahe dieses Punktes ultradifferenzierbar
von der gleichen Regularitit wie die Mannigfaltigkeiten ist.

Fiir den Beweis der obigen Aussage wird eine geometrische Theorie der ultradifferenzier-
baren Wellenfrontmenge im Sinne von Denjoy-Carleman Klassen, welches urspriinglich von
Hormander definiert wurde, fiir reguldre Gewichtsfolgen entwickelt. Insbesonders wird ein Satz
von Dyn’kin {iber die Charakterisierung von Elementen reguldrer Denjoy-Carleman Klassen
durch fast-analytische Ausdehnungen verwendet, um die Charakterisierung der ultradifferen-
zierbaren Wellenfrontmenge durch fast-analytische Ausdehnungen in flache Wedges bzw. durch
die verallgemeinerte FBI Transformation im Sinne von Berhanu-Hounie zu zeigen. Dies er-
laubt die invariante Definition der ultradifferenzierbare Wellenfrontmenge auf ultradifferenzier-
bare Mannigfaltigkeiten der selben Denjoy-Carleman Klasse zu geben. Weiters wird ein Satz
iiber ultradifferenzierbare mikrolokale elliptische Regularitit fiir vektorwertige Distributionen
und Differentialoperatoren mit ultradifferenzierbaren Koeffizienten bewiesen, was Resultate von
Hoérmander, Albanese-Jornet-Oliaro und anderen verallgemeinert.

Weiters werden die oben genannten Resultate fiir die ultradifferenzierbare Wellenfrontmenge
dazu verwendet die Aussagen von Fiirdés-Lamel beziiglich der Regularitdt von infinitesimalen
CR Automorphismen auf abstrakten CR Mannigfaltigkeiten in die ultradifferenzierbare Kate-
gorie zuverallgemeinern.

Als weitere direkte Anwendung der mikrolokalen Techniken werden quasianalytische Verall-
gemeinerungen von Resultaten von Holmgren, Hormander, Bony und Zachmanoglou iiber die
Eindeutigkeit von Losungen homogener Gleichungen gegeben.
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