
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

„Exact solution approaches for the collaborative
vehicle routing problem“

verfasst von / submitted by

Philipp E.H. Salzmann, BSc.

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc.)

Wien 2017 / Vienna 2017

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

A 066 915

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

Betriebswirtschaftslehre

Betreut von / Supervisor:

Mitbetreut von / Co-Supervisor:

O.Univ.Prof. Dipl.-Ing. Dr. Richard F. Hartl

Mag. Dr. Margaretha Gansterer

Acknowledgement I would like to express my gratitude and appreciation

to Professor Hartl, my research supervisor for the thesis at hand, and Pro-

fessor Dörner, my supervisor in the years to come. In addition I would like

to thank Dr. Gansterer, who took a key role in the completion of this thesis,

for her patient guidance while keeping the schedule somehow on track.

I would like to extend my thanks to the rest of the departments for

Production and Logistics and for Production and Logistics with international

Focus, they offered guidance, encouragement, and useful critics. Especially

Biljana Roljic for the time she spent on proofreading.

Finally, I wish to thank my family and especially my parents, who always

encouraged me to take my own decisions in live and supported me on the

path to accomplish those. I am thankful for the opportunities my parents

provided me.

Contents

Table of contents V

List of Figures VII

List of Tables VIII

List of Algorithms IX

1 Introduction 1

2 Problem description 9

3 Literature review 11

4 Problem formulations 17

4.1 Vehicle flow formulation . 18

4.2 Set partitioning formulation 26

5 Methods 29

5.1 Branch and Cut . 31

5.1.1 General Concept of a Branch and Cut 37

5.1.2 Cuts . 39

5.1.3 Lazy Constraints . 41

5.1.4 Tested Compositions 43

5.2 Benders Decomposition . 45

5.2.1 General Concept . 46

5.2.2 Formulation . 47

5.3 Column Generation . 52

5.3.1 General description . 53

5.3.2 Master Problem . 55

5.3.3 Sub Problem and Labelling 55

5.3.4 Dominance Rules and their Relaxation 56

6 Computational Results 59

6.1 Instances . 59

6.2 Efficiently solving the MDTSPPD 62

6.3 Minimum workload constraints 66

7 Conclusion 73

Bibliography 75

Abstract 85

Zusammenfassung 87

VI

List of Figures

1 Graphic comparing coollborative and non-collborative route

composition. 5

2 Modified distance matrix (Berger and Bierwirth [2010]) 20

3 Box-plot comparing the run times in seconds for different Branch-

and-Cut variants . 44

4 Instance schema for the instances used 61

5 Vehicles used in each of the instances 62

VII

List of Tables

1 Comparison of the Branch-and-Cut approaches 65

2 Comparison of the solution methods in the original setting . . 66

4 Instances that could not be solved by method 68

5 Runtime comparison in the most restrictive workload scenario 69

6 Increase in total cost resulting from workload constraints . . . 70

VIII

List of Algorithms

1 Pseudo code for a Branch and Cut algorithm applied on an

integer minimization problem 36

1 Introduction

The thesis at hand is focusing on modelling and solving a problem from

the sphere of last mile delivery. One of the most common problems in city

logistics is the delivery of parcels and similar logistic units. Usually multiple

service providers will be present in the same area and act as opponents in

the same market. Those markets for the most part are highly competitive in

terms of prices and customer service. In such competitive scenarios carrier

collaboration might be an option. Each of the carriers could improve its

productivity, cost structure, and customer service. Those effects would come

at low or no costs since the required infrastructures are already present.

However, some carriers still have reservations towards collaborative ve-

hicle routing. The main reason for those are trust issues. Those manifest

in the unwillingness of the carriers to exchange or reveal information about

their customers and contracts. By doing so they fear to lose their competitive

advantage. Regardless of the overt advantages, resentments often triumph

over the pledges of collaboration.

The following chapters will deal with one of the most common trans-

portation problems in real world application: the transportation of packages

or letters by different service providers from one customer to another. Such

a service provider could be any carrier transporting goods directly from an

origin to a destination without relocating the packages between different ve-

hicles or carriers. One example could be multiple bike messengers (with an

infinite capacity) or a group of self-employed truck drivers. In the recent

past providers were forced to increase the service level and feasibility as well

1

as to reduce the lead times and costs. New solution approaches tackling

those developments are necessary to maintain competitiveness among car-

riers. Dealing with those challenges by acquiring new and more efficient

technologies (e.g. oversize trucks or sails on container ships) will require

investments and time for implementation. Collaborating carriers could in-

crease their operational flexibility and competitiveness while decreasing their

costs. The structures required to exchange transportation requests are often

already existing and could be used on a regular basis as well.

The research done here is motivated by recent publications considering

horizontal collaboration in the literature for vehicle routing. Horizontal col-

laboration describes partnerships among companies that are located on the

same level of the supply chain. One example would be the exchange of

transportation requests between different courier services in the same city or

region. According to Gansterer and Hartl [2017] collaborative vehicle routing

is an active research area with high potentials in terms of cost and emission

savings.

The transportation of small shipments (e.g. packages) is particularly

interesting for horizontal collaboration. Since packages of different requests,

carriers, or customers can be transported on the same vehicle at the same

time, the degree of collaboration and freedom is much higher than for example

in full truckload transportation planning according to Archetti et al. [2014]

and Gansterer and Hartl [2017].

An important question in this context is how to motivate providers to co-

operate and how to share the gain. This is why the field of collaboration gets

increasingly important in transportation science. And in the last years a few

2

papers already covered this topic and tried to developed strategies for efficient

transportation through carrier collaboration. The most common problem in

this field is how to (re-)assign transportation contracts in the network and

how to deal with information inside such a network. Since the carriers are

competitors, they hesitate to share information about their cost structures

and customer base. A few papers assume a neutral agent reassigning the

jobs inside the system an setting the compensations and therefore the profit

sharing. Those scenarios are referred to as centralized collaborative planning

approaches. For this purpose, a neutral instance would get all the informa-

tion associated with the requests from every carrier, while guaranteeing to

the carriers that they will not use those to their disadvantage. Dai and Chen

[2012a] suggest an online platform as such a neutral instance. A neutral

centralized instance would solve a giant vehicle routing problem (VRP) with

pickup and delivery (VRPPD). The carriers would get the information on

which contracts would be performed by which of the carriers.

For a decentralized approach the carriers have to reveal only a small

proportion of the information they would have to reveal in a centralized ap-

proach. This could increase the acceptance by the practitioners. For both

approaches centralized as well as decentralized the most important questions

are how to divide the gain from collaboration and in the first place how to

(re-)assign the requests . For horizontal collaboration Berger and Bierwirth

[2010] and Gansterer and Hartl [2016] proposed and tested multiple auc-

tions for the collaborative carrier routing problem. Those auctions like other

decentralized solution approaches will most probably create constellations

that are worse than a solution based on a centralised collaborative planning

3

approach. Even though centralised collaborative planning approaches will

hardly be used in practice due to trust issues in competitive environments,

solutions to the centralized problem are still important as a benchmark for

decentralized mechanisms.

In a collaborative carrier routing problem like described in the paper of

Berger and Bierwirth [2010] or Gansterer and Hartl [2016] a classical routing

problem with multiple carriers gets solved. Each of the carriers has its own

depot and vehicle. Since there is no time or capacity constraint, there is no

scenario where more than one vehicle per depot would be beneficial. Every

carrier has multiple contracts with customers which consist of a pickup loca-

tion and a delivery location. Neither a capacity restriction nor a quantity is

given for those contracts. There is a profit for every contract depending on

the distance between pickup and delivery location.

Figure 1 shows a scenario with and without collaboration for a routing

problem with three carriers. The proposed solution is based on equal work-

loads. In the proposed solution every carrier would clearly benefit from the

exchanges. The scenario shown is similar to those solved later on in the

computational results section.

When transferring this problem to a central planning approach one will

end up with a routing problem with as many depots as carriers and one pool

of requests. In contrast to the more common pickup and delivery problems

in research, there are neither capacity nor time constraints. This problem

will be mathematically modelled and solved with multiple exact solution

approaches in the thesis at hand.

4

Figure 1: This figure compares the result of an non collaborative scenario
with the situation with collaboration. (Gansterer and Hartl [2017])

Depot

Pickup

Delivery

+

-
+

-
-

+
-

+
+

-

A

B

C

-+

- ++-
C1

C2
-

C2

C1

C5

+

B1

B2

B3

B2

B3

B1

+

A1

-

A2

A2

A3

+
-

+ C3

C4 C4

C5

C3

-
A1

A3

+

-
-

+
-

+
+

-

Depot

Pickup

Delivery

A

B

C

-+

- ++-
C1

C2
-

C2

C1

C5

+

B1

B2

B3

B2

B3
B1

+

A1

-

A2

A2

A3

+
-

+
C3

C4 C4

C5

C3

-
A1

A3

+

-

5

An important issue for the collaboration of the different carriers is the

workload distribution. In real world application, carriers will be interested

in acquiring a certain percentage of requests. One reason is their interest in

utilizing their infrastructure, the other to feignedly improve their profits or

income by getting compensations. Some researchers argue that the carriers

are more willing to accept solutions from a collaborative scenario, when they

are able to use their own infrastructure to a certain point or percentage. The

previously proposed collaborative carrier routing problems are not taking

such considerations into account.

The thesis at hand contributes to research by providing the following

insights:

• An extensive comparison of exact approaches for a special case of the

Pickup and Delivery Problem (PDP) that reveals the strengths and

weaknesses of those methods.

• Presenting a way to deal with unevenly distributed workloads as well

as investigating the associated effects. The trade-off between solution

quality and level of workload distribution is analysed.

• Offering new benchmarks for heuristic and exact approaches for the

centralized and the decentralized planning approaches.

The exact approaches tested further on are multiple Branch and Cut

variations, two different Benders Decomposition approaches, and a Column

Generation approach. Those approaches are founded on the work done for

similar problems in the literature.

6

The thesis is organized as follows. Chapter 2 is describing the problem

that was solved further on. A literature review focusing on collaborative rout-

ing problems and problems from the sphere of pickup and delivery problems

is presented in Chapter 3. Mathematical models for the proposed problems

are presented in Chapter 4. Chapter 5 describes the exact methods that

were applied to the problem. Computational analysis concerning the run

time and routing costs are presented in Chapter 6. The last chapter sums up

the findings of the thesis and offers recommendations for future research.

7

2 Problem description

The problem studied here was originally proposed by Berger and Bierwirth

[2010] in the context of collaborative carrier routing problems. In collabora-

tive carrier routing problems multiple carriers have to fulfil a certain number

of jobs that are originally assigned to one of them. Each carrier has a fleet of

a certain size and their own depot location. In the problem setting used by

Berger and Bierwirth [2010] and Gansterer and Hartl [2016] the number of

carriers is three and every carrier has one depot and one vehicle. In addition

there is a certain number of jobs, each of them originally assigned to one of

the carriers. The jobs consist of a pickup and a delivery location. The profit

that can be obtained with each of the jobs depends on the distance between

the pickup and the delivery location. Since all jobs have to be serviced and

the profit is independent from the assignment, the problem can be solved as

a minimization problem. Therefore, the objective is to minimize the routing

costs instead of maximizing the profit. In general the collaborative carrier

routing problem could be combined with other constraints like time windows

or some kind of capacity constraint. In the collaborative carrier routing prob-

lem as proposed by Berger and Bierwirth [2010] those or similar constraints

are not present.

Trying to solve the problem proposed by Berger and Bierwirth [2010] one

may end up dealing with a routing problem that on the one side includes

multiple depots and paired pickup and delivery jobs but on the other side

neglects any further constraints. Based on that knowledge one may already

9

see that the problem is pretty unrestricted and only sub-tour elimination and

precedence constraints are restricting the problem at hand.

But one major drawback from real world applications is not considered

in the models proposed. A relevant proportion of the carriers will insist on

utilising their own resources and will ask for a certain percentage of the overall

or their own workload. Those requests may decrease the potential gain from

collaboration. The model solved here was amended with constraints that

take those restrictions into account.

Summing up, the problem at hand is a Multi Depot Travelling Salesman

(or Vehicle Routing Problem) with Pickup and Delivery (MDTSPPD). Each

depot has one vehicle assigned. Because of the missing capacity and time

window restrictions, there is no additional gain from considering multiple

vehicles per depot. The requests that have to be serviced consist of a pickup

location as well as a delivery location. We deal with a so called paired

pickup and delivery problem. The only additional constraint is the so called

minimum customer or workload constraint that requires every carrier to fulfil

a certain number of requests.

10

3 Literature review

The following literature review will primarily focus on two different areas of

research. One offering additional information about the collaborative carrier

routing problem, describing different approaches presented in recent research

and the possible impact to real world applications. The other trying to

classify the problem inside the general research for vehicle routing problems

and giving a brief overview over the field of PDP as well as the solution

methods deployed on problems similar to the one presented here.

Collaboration in Transportation The problem at hand has its origin in

the literature and research of collaboration in transportation. Krajewska and

Kopfer [2006] and Cruijssen et al. [2007] first studied the potential benefits

form collaboration between different carriers. Collaboration in this context

means to exchange requests between different carriers. In general one may

distinguish between two scenarios of collaboration: Less than truckload and

full truckload.

In full truckload collaboration empty rides offer an opportunity to reduce

the costs of the participating carriers. The literature proposes joint route

planning and route merging as collaborative tools. Joint route planning was

investigated by Dai and Chen [2012a], Dai and Chen [2012b], Buijs et al.

[2016], and Liu et al. [2010]. Merging preplanned routes as a collaboration

approach was done by Adenso-Dı́az et al. [2014], Ergun et al. [2007], and

Kuyzu [2017]. Those papers focus on merging routes, that each carrier on

its own would consider a full load. A variety based on the same set of

assumptions can be found with Liu et al. [2010] where capacitated vehicles

11

and multiple depots were also considered for a routing problem in carrier

collaboration with full truckloads.

The literature for less than truckload is mostly dealing with collaboration

in courier services. A selection of the research done in this field can be found

in Berger and Bierwirth [2010], Buijs et al. [2016], Gansterer and Hartl [2016],

and Nadarajah and Bookbinder [2013]. For a real world setting you may

consult Lin [2008].

The research described so far mainly focuses on the profit or cost aspects

while other papers like Montoya-Torres et al. [2016], Pérez-Bernabeu et al.

[2015], and Sanchez et al. [2016] also consider pollution, noise and other

negative or harmful side effects. But keeping in mind, that costs and profit

as well as costs and distance have a strong connection and that those side

effects may be represented as cost matrices in a reasonable way. This makes

this research a special case of the more general collaborative scenarios.

The problems solved in literature are usually decomposed in different

stages to tackle the real world problem size. For less than truckload Dai

and Chen [2012b] present such two stage approaches. Dai and Chen [2012b]

combine a mixed integer problem with a lane covering problem and than

construct feasible routes from this combination.

By relaxing the usual assumption that the request may not change the

vehicle between origin and destination Buijs et al. [2016] present a real world

application for the Dutch logistic provider Fritom for in house collaboration

of different business units. Multiple decomposition strategies were considered

to tackle the real world instances.

12

Wang et al. [2014] combined the horizontal collaboration with vertical

collaboration via subcontracting and request exchange. Comprehensive lit-

erature reviews can be found with Verdonck et al. [2013] and Gansterer and

Hartl [2017].

Another field of interest from research that has to be considered is the

class of pickup and delivery problems The collaborative carrier problem with

less than truckload will share most of its features with this problem class.

Pickup and Delivery Problems The PDP in its most general form (ac-

cording to literature) can be observed in Savelsbergh and Sol [1995]. In the

proposed paper the authors try to give a generalised model that incorporates

the characteristics of all the problems in the sphere of routing with pickup

and delivery. The proposed General Pickup and Delivery Problem has a start

depot and an end depot as well as a given capacity per vehicle. According

to Savelsbergh and Sol [1995], the following problems can be seen as special

cases of the generalized version:

• The Pickup and Delivery Problem (PDP) where a certain number of

homogeneous vehicle fulfil a certain number of requests. Each of the

requests consists of an origin, a destination, and a quantity.

• The Dial-a-Ride (DARP) is very similar, though it deals with persons

instead of goods. For more information consult Cordeau and Laporte

[2007].

• The Vehicle Routing Problem (VRP) a version of the Travelling Sales-

man Problem (TSP) with the opportunity that multiple vehicles can

13

be used to fulfil the requests. The special case in the VRP compared

to the PDP is that the pickup or the delivery locations of all requests

are at the depot. In a VRP a vehicle will just bring goods from the dif-

ferent destination to the depot or from a depot to certain destinations

but never transport any amount in between two destinations. For ad-

ditional and more specific information about this standard problem of

operations research and logistics consult Laporte [1992], Golden et al.

[2008], and Toth [2014].

In addition to the generalisation of the problem Savelsbergh and Sol [1995]

propose the following problem characteristics to differentiate the variations

in the sphere of PDP:

• Planning horizon (static vs. dynamic request set)

• Different types of time windows and time constraints

• Different objectives: duration, completion time, travel time, route length,

client inconvenience, number of vehicles, and profit.

In the review which is part of the Savelsbergh and Sol [1995] paper, exact and

heuristic approaches for the static and the dynamic problem with and without

time windows were proposed. Exact approaches were cited and proposed only

for the dial-a-ride problem with a single vehicle or for problems with time

windows. For problems similar to the one at hand no exact approach is cited.

Another comprehensive review for the Pickup and Delivery Problem is

Parragh et al. [2008a]. According to Parragh et al. [2008a] you can classify

the problems derived from the General Pickup and Delivery Problem into

14

two major groups: VRP with backhaul (VRPB) and VRP with pickup and

delivery (VRPPD). The problems of the VRPB kind deal with transportation

requests only from or to a depot, or both at once but there are no requests

that require a transportation from one customer to another. For more in-

formation about VRPB consult Parragh et al. [2008b]. The problems of the

VRPPD kind can be structured into paired and unpaired requests according

to Parragh et al. [2008b]. Unpaired requests allow pickup and deliveries at

every customer and there are homogeneous goods, which means you could

serve a demand at a certain customer with the supply picked up at another

customer. A recent example for such a feature would be Turan et al. [2017].

Here for paired requests a certain object (commodity or person) has to be

transported from a certain origin to a certain destination. The problem of

the paired kind can be furthermore divided to Dial-a-Ride Problems (DARP)

and Pickup and Delivery Problems (PDP). Parragh et al. [2008b] proposed

multiple different methods of heuristic and exact nature. For the heuristic

ones consult the review. Other reviews for the PDP can be found in Berbeglia

et al. [2007] and Berbeglia et al. [2010].

The literature offers multiple exact approaches to the PDP. Kalantari

et al. [1985] developed a Branch-and-Bound approach for the classical prob-

lem definition. For the PDP with time windows Dumas et al. [1991] presented

a Column Generation approach, Ropke et al. [2007] a Branch-and-Cut ap-

proach, and as well as Ropke and Cordeau [2009], Baldacci et al. [2011] and

Baldacci et al. [2010] present Branch-and-Cut-and-Price approaches. The

PDP with shuttle routes got solved by Masson et al. [2014] and the PDP

with multiple stacks by Cherkesly et al. [2015] both using Branch-and-Cut-

15

and-Price algorithms as well. Cordeau et al. [2010] solved a PDP with time

windows, capacity constraints, and loading constraints with a Branch-and-

Cut approach. Xue et al. [2016] use a Branch-and-Cut and a Branch-and-

Price to a similar PDP with loading costs instead of loading constraints.

With Lu and Dessouky [2004b] a PDP with multiple depots, time windows,

and capacity constraints got solved with a Branch-and-Cut algorithm.

Other research that considers multiple depots but is not taking pickup

and delivery precedence requirements in consideration, can be found with e.g.

Dondo and Cerdá [2007] and Currie and Salhi [2003]. Salhi and Nagy [1999]

added backhauls to the problem and Nagy and Salhi [2005] simultaneous

pickup and delivery. PDP with heterogeneous fleets were tackled by Irnich

[2000]. An heterogeneous fleet with soft time windows can be found with

Bettinelli et al. [2014] and an heterogeneous fleet in a Dial-and-Ride setting

by Detti et al. [2017]. In addition to those classic multi depot problems there

is also a class of PDP with multiple regions. A survey and topology can be

found with Dragomir et al. [2017].

To the best of the author’s knowledge the next chapters will offer the first

direct comparison of different exact solution methods for a problem of the

proposed or a similar setting. Furthermore, the thesis at hand will be the

first attempt to use tailored exact approaches to the MDTSPPD in general,

and the first time that minimum workload restrictions are considered, taking

real world application into account.

16

4 Problem formulations

In the following chapter two mathematical formulations will be presented.

One of them is a vehicle flow formulation and the other a path based formu-

lation. The vehicle flow formulation is used for the MIP solver, the Branch

and Cut as well as for the Benders Decomposition approaches. The path

based formulation is required for the Column Generation approach.

For the vehicle flow formulation two concepts were tested. One based

on a Vehicle Routing Problem formulation and one based on a Travelling

Salesman Problem formulation. The TSP based formulation is based on a

Hamiltonian tour formulation and requires less decision variables and only a

small proportion of the constraints required in the VRP based formulation.

The TSP based formulation outperformed the VRP based formulation for

all vehicle flow based methods. Berger and Bierwirth [2010] propose a very

similar one that was also used in Gansterer and Hartl [2016].

The second formulation is required for the applied column generation

approach. A column generation approach decomposes the problem in two

parts. The first part is generating valid paths for the problem and the second

is selecting the cost optimal set of valid paths. For this selection a path based

formulation is proposed. In addition, the path based formulation generates

dual costs. Those are required for the path generation. For more information

about the algorithm you may consult Chapter 5. The formulation of the

mathematical model is similar to routing problems, specifically the VRP.

In addition, a set of constraints is presented for the vehicle flow formula-

tion, that could be used for multiple purposes. For example, they could be

17

used for workload considerations. For the path based formulation the sub

problem will consider those constraints.

In the following two chapters those two mathematical problem formula-

tions will be discussed. The vehicle flow formulation is a complete mathe-

matical model while the proposed path based formulation will only consider

the path selection. How to obtain the set of valid paths is presented in the

method section. The criteria for a valid route can be determined based on

the vehicle flow formulation as accustomed in the literature.

4.1 Vehicle flow formulation

The proposed vehicle flow formulation is based on the model proposed by

Berger and Bierwirth [2010] and Lu and Dessouky [2004b]. It is a Travel-

ling Salesman Problem formulation that incorporates multiple depots, pickup

and delivery, and in addition workload restrictions. The model at hand is

a combination of the Collaborative Carrier Routing Problem by Berger and

Bierwirth [2010] and the Multi Vehicle Pickup and Delivery Problem as de-

scribed by Lu and Dessouky [2004b]. The workload assumptions are new to

the proposed problem class.

In contrast to Berger and Bierwirth [2010] the problem is formulated as a

minimisation problem. This is possible because the profits used in the original

formulation are not depending on the request assignment or the routing. The

profits are constants and just depend on the the distance between pickup and

delivery location.

18

In general, there are two options to model the problem at hand as pre-

viously proposed: VRP or TSP based. Using a classical Vehicle Routing

Problem is the most common strategy to model a routing problem with mul-

tiple vehicles or depots. But since there are no vehicle capacity restriction in

terms of distance, time, or load, there is no reason for an optimal solution to

utilize more than one vehicle at each of the depots. This makes a TSP based

formulation a reasonable option for the mathematical model. Using a TSP

based formulation has major advantages concerning the number of decision

variables as well as the number of constraints. A VRP based formulation will

require decision variables three times the square of the number of customer

plus one while the TSP based formulation will only require square of the

number of customer plus the number of depots. The number of constraints

will behave similar. Both will have an impact on the solution time of cer-

tain algorithms applied. A small disadvantage of the TSP based formulation

arises from the pickup and delivery setting. The TSP based formulation will

require precedence decision variables and constraints of set size square of the

number of customers. A VRP based formulation could solve this feature with

less effort in terms of constraints and variables, but would be more complex

overall.

Comparing both formulations in terms of run times showed, that the TSP

based outperforms the VRP based formulation. This observation holds for all

methods that are based on the flow formulation, namely the MIP solver, all

the proposed Branch and Cut, and the Benders Decomposition approaches.

The following paragraphs will discuss all the components required in the

vehicle flow formulation.

19

Distance matrix An important part of the model is the modified distance

matrix as suggested in Berger and Bierwirth [2010]. This is necessary to

deal with the multiple depots. An additional advantage of the modified

distance matrix is that the set of constraints can be downsized. Some of

the constraints can be handled by so called big M values (high numbers

that punish certain decisions) in the distance matrix. By doing so, some

constraints of the original constraint set become redundant. The following

distance matrix was applied in combination with the proposed mathematical

formulation:

Figure 2: Modified distance matrix (Berger and Bierwirth [2010])

The distance matrix is of size square of two times the customers plus the

number of depots plus one. The size results from the problem structure. On

both axes of the distance matrix the first entries are the pickup locations

followed by the delivery locations. When n is the number of contracts the

pickup location x and delivery location (x + n) are member of the same

paired request. The rest of the nodes on both axes are the depots. Since a

Hamiltonian tour formulation is applied each of the depot nodes equals a start

of a vehicle and an end of another vehicle. So the first depot node is the start

of the first vehicle while the second depot is the start of the second vehicle

20

and the end of the first vehicle. Resulting from this definition there is one

more depot node than actual depots or cars. The most of the connections are

real world or Euclidean distances. But some of them represent a constraint

or a logical connection. The scenarios that are punished with big M values

are:

• the connection of a node with itself.

• all connections between a pickup location and a depot - since it is not

allowed to enter a depot with a request

• all connections from a depot to any delivery node - since deliveries can

only be performed when a pickup was performed

• all connections from a certain delivery to its pickup node - since those

actions can be performed only in one direction

• almost all connections between depots are forbidden - since the only

depot a vehicle can finish its tour at is by definition the direct successor

For the rest of the connections the distance between the two coordinates

is used except for the following two exceptions: The costs between a node

representing the start and the end of the same vehicle is zero since one is not

forced to use multiple vehicles in the solution.

Mathematical formulation The mathematical model for the MDTSPPD

is formulated based on the models proposed in Berger and Bierwirth [2010]

and Lu and Dessouky [2004b] using the notation similar to the one from

Gansterer and Hartl [2016]. The parameters and sets required are:

21

n . . . number of customers

m . . . number of depots

P . . . set of pickup vertices, P = {1, . . . , n}

D . . . set od delivery vertices, D = {n+ 1, . . . , 2n}

W . . . set of depot vertices, W = {2n+ 1, . . . , 2n+m+ 1}

N . . . set of all vertices, N = P ∪D ∪W = {1, . . . , 2n+m+ 1}

A . . . set of all arcs, A = N ×N

cij . . . cost for the arc from vertice i to vertice j

The decision variables used are:

xij . . . decision variable indicating whether arc ij is used

bij . . . decision variables indicating whether vertice i is visited before j

As previously discussed, the objective is to minimize the sum of the rout-

ing costs:

min
∑

(i,j)∈A

xijcij (1)

Since all deliveries and pickups as well as all depot nodes have to be

serviced exactly once the following constraints are necessary:

∑
i∈N

xij = 1 ∀j ∈ N (2)∑
j∈N

xij = 1 ∀i ∈ N (3)

22

The next set of constraint is used to copy the values of the routing decision

variables to the precedence decision variables:

bki ≤ bkj + (1− xij) (4)

∀(i, j) ∈ A/{2n+m+ 1, 2n+ 1}, k ∈ N\{i} (5)

bkj ≤ bki + (1− xij)

∀(i, j) ∈ A/{2n+m+ 1, 2n+ 1}, k ∈ N\{i} (6)

xij ≤ bij ∀(i, j) ∈ A

The next set of constraints is necessary to align the pickup and the deliv-

ery nodes of the same customer as well as the depots based on the precedence

decision variables. The constraints required are:

bii = 0 ∀i ∈ N (7)

bn+i,i = 0 ∀i ∈ P (8)

bi,i+n = 1 ∀i ∈ P (9)

bij = bn+i,j ∀i ∈ P, j ∈ W (10)

bi,2n+1 = 0 ∀i ∈ N (11)

bij = 1 ∀i, j ∈ W | i < j (12)

bji = 0 ∀i, j ∈ W | i < j (13)

bi,2n+m+1 = 1 ∀i ∈ N\{2n+m+ 1} (14)

xij = {0, 1} ∀i, j ∈ N (15)

bij = {0, 1} ∀i, j ∈ N (16)

23

Constraint (7), (11), (12), (13), and (14) are implicitly defined through

the distance matrix and are not necessary for solving the mixed integer linear

program. Constraint (10) is used to ensure that the pickup and the delivery

of the same contract are scheduled for the same vehicle. While constraints

(12) and (13) ensure the direction of the depots, constraint (14) ensures that

the depot (2n+m+ 1) is the last node in the Hamiltonian tour. While it is

necessary to ensure that the routing decision variable xij is binary, one may

relax the definition of the precedence variable according to the proof that can

be found in Lu and Dessouky [2004b]. This will reduce the complexity of the

mathematical problem. By taking advantage of this relaxation the problem

complexity now equals the one of a multi vehicle routing problem without

pickup and delivery according to Lu and Dessouky [2004b].

An explicit sub-tour elimination is not necessary since it is implicitly

included in the constraints (5) - (7).

The minimum workload or customer constraint As proposed, the

original model was extended to incorporate the workload or customer spread

considerations. For this purpose an additional set of decision variables and

constraints is required.

The applied concept could also be used for other resource or capacity

restrictions. For each resource a decision variable and constraints of size

2n+m+1 is required. The following variables and the constants are required

for the implementation of the constraints:

qi . . . the used amount of some limited resource at node i

εi . . . the resources consumed by i - this could also be cij

24

Ri . . . maximum workload or resource per route from depot i

Ri . . . minimum workload or resource per route from depot i

The constraint sets consists of:

qj ≤ qi + εi −M(1− xij) ∀i ∈ N\{2n+m+ 1}, j ∈ N (17)

qj ≥ qi + εi +M(1− xij) ∀i ∈ N\{2n+m+ 1}, j ∈ N (18)

qi − qi−1 ≤ Ri ∀i ∈ W\{2n+ 1} (19)

qi − qi−1 ≥ Ri ∀i ∈ W\{2n+ 1} (20)

qi ≥ 0 ∀i ∈ N (21)

The constraint set (17) and (18) are required to derive the current amount

of the regulated resource along the route. Those constraints were both re-

quired in a min or max scenario. Constraint (19) is required if a resource

is restricted (max), while 20 is required if some kind of workload distribu-

tion is applied (min). This formulation could also be applied if the resource

constant is a decision variable too.

The following chapters assume a workload allocation constraint where a

certain number of jobs per vehicle is defined. The required resource constant

εi equals 1 if the node is a pickup node and the constant Ri equals the number

of customers or jobs required per route or depot.

25

4.2 Set partitioning formulation

One of the methods applied is a column generation algorithm. As other

algorithms applied to similar problems, the path based formulation applied

in the master problem is a set covering formulation based on a set of valid

paths. While the flow formulation focuses on the routing decision, the set

partitioning formulation focuses on selecting the cost optimal set of routes

from a given set of valid routes.

For the set partitioning formulation the following new constants, decision

variables, and sets were required:

cγ,d . . . the costs of path y when serviced by depot d

Γ . . . the set of valid paths - defined by the sub problem

αi,γ . . . a constant that indicates if customer i is on route γ

yγ,d . . . decision variable indicating if path γ is in the solution and which

depot d is used to service the route

Corresponding to the flow formulation, the objective it to minimize the

routing costs. In the path formulation this is considered with:

min
∑

γ∈Γ,d∈D

yγ,dcγ,d (22)

In addition the following constraints have to be considered:

∑
γ∈Γ,d∈D

yγ,dαi,γ = 1 ∀i ∈ N\W (23)

26

∑
γ∈Γ

yγ,d = 1 ∀d ∈ W (24)

yγ,d = {0, 1} ∀γ ∈ Γ, d ∈ W (25)

The first constraint ensures that every customer or job is serviced once.

The other constraint makes sure that every depot is used once. Both con-

straints can be relaxed as well as the decision variable. By relaxing constraint

(23) to greater or equal and constraint (24) to smaller or equal, the prob-

lem complexity can be decreased. In addition, the decision variable yγ,d can

be linearised since the problem structure will ensure integer solutions at all

times.

27

5 Methods

The following chapter presents the methods applied to the problem at hand.

Those will be benchmarked against each other and a MIP solver (IBM Cplex)

implementation in the last Chapter 6. Starting from a Mixed Integer Prob-

lem (MIP), based on the better performing TSP formulation, multiple exact

approaches were tested.

The problem at hand shares the most similarities with classical TSPs. So

methods performing well for those as Branch and Cut in multiple compo-

sitions based on the work of Lu and Dessouky [2004b] and Laporte [1992]

were tested first. The Branch and Cut algorithms applied included methods

like lazy constraints as well as different types of callbacks used in the imple-

mentation of the proposed user cuts. The valid equalities and inequalities

applied are adaptations of those presented in the literature and they are able

to outperform predefined Branch and Cut algorithm of the MIP solver (IBM

CPLEX) easily.

But the self proclaimed target to solve all proposed instances in less than

30 min could not be met. The second set of methods tested and proposed

are two Benders Decomposition based algorithms. For the proposed problem

a ”classical” Benders Decomposition and a logic-based Benders Decomposi-

tion were implemented. The more common ”classical” and the logic-based

approach are described in Chapter 5.2.2. The row based decomposition seems

to be the most efficient approach for the classical problem setting at hand.

After testing multiple compositions of the problem, especially with the

workload constraint, the weaknesses of the approaches used became obvious.

29

The approaches that performed well on the less restrictive instances were not

able to efficiently solve the more restrictive problem variations. Therefore,

workload constraint seem to have a strong impact on the efficiency of the

different approaches. In real world problems the solution space will be more

restrictive than in those investigated here. One reason could be the presence

of time window restrictions or similar features. For those reasons and for

the purpose of completeness also decomposition by the columns was tested.

The applied approach can be seen as worst case scenario since additional

restrictions for the routing would be highly beneficial for the algorithm used.

The following sub chapters are dedicated to the description and configu-

ration of the methods applied and tested. Computational results for those

methods under different parameter setting are discussed in the Chapter 6

computational results.

30

5.1 Branch and Cut

With the intention of generating an efficient Branch and Cut approach for

the problem at hand, multiple combinations of classical components were

tested. All of the pieces used were previously proposed in the literature and

adapted to the specifics of the problem presented above.

The following components were tested: lazy constraints for sub-tour elim-

ination and for certain parts of the original vehicle flow formulation as well

as multiple user defined cuts. All of the applied cuts or very similar ver-

sions were priviously described in Lu and Dessouky [2004a] and Ropke and

Cordeau [2009]. Minor changes and adaptations are necessary to adapt some

of the cuts to the problem at hand. A major part of the cuts presented in

the literature for similar problems is not accessible for the problem at hand.

The cuts based on capacity or time window restrictions could not be used

but they seem to be a major key to the performance of the most solution

approaches in the literature. In addition to the cuts and lazy constraints the

impact of sub-tour elimination via lazy constraints was tested.

In the next chapter the basic problem setting will be discussed, the sub-

tour elimination used as well as cuts and lazy constraints applied were dis-

cussed. At the end of this chapter the combinations tested for the compu-

tational experiments are defined. Before discussing the actual method, the

following paragraphs will briefly discuss two general concepts: how a branch

and bound procedure works and the difference between a lazy constraint

and a user cut. Those concepts are important for understanding the actual

methods applied.

31

Branch and Bound In general the Branch and Bound procedure is an

algorithm or part of an algorithm that is used to systematically enumerate the

solution space. The method was originally proposed by Land and Doig [1960]

and introduced to routing problems by Little et al. [1963]. The proposed

concepts were also used in other methods as for example Branch & Cut or

Branch & Price. The basic concept applied in a Branch & Bound procedure is

to ’divide and conquer’. The algorithm iteratively solves and creates subsets

of the original solution space.

The Branching procedure describes the separation procedure that splits

the current solution space into multiple new subsets. Each of those new sub-

sets would be represented by a branch originating from the current solution.

Those branches (usually) describe disjoint subsets of the previously solved

subset. The number of branches created from a current solution depends

on the branching strategy and the problem type. Applying the branching

procedure recursively on its own would mean that the algorithm explores the

whole solution space. So in addition another strategy is required to create

an efficient strategy.

The Bounding procedure describes a way to reduce the number of branches

(disjoint subsets) that are required to evaluate and further on branched. Two

values are necessary to identify the nodes that can be eliminated, those are

called bounds. No matter if one deals with a minimisation or a maximisa-

tion problem one may have to deal with a current lower and a current upper

bound. But the definition of those varies depending on the problem type.

For a maximisation problem the (tightest or best) lower bound is the best

so far identified solution. This solution has to be a feasible solution to the

32

overall problem, but is probably not the optimal solution. The upper bound

is the objective value of a subset that is evaluated based on the information so

far accessible. The objective value of the problem subset is an upper bound

to the original problem since the the degree of freedom for it is greater (or

equal) than the one of the original problem. The upper bound may be not

a feasible solution to the original maximisation problem, but the subsets

created based on the current one will never create a solution with a higher

solution value.

On the other side for a minimisation problem the upper bound is the

(tightest or best) so far identified feasible solution to the original problem.

The lower bound is here the objective value of a subset of the original problem

that may be infeasible concerning the original problem. But the lower bound

is the best possible outcome of all subsets that may be created based on the

subset evaluated.

The bounds were then used to identify those subsets that should be ob-

served and used further on. Some subsets can be eliminated based on the

knowledge provided by the bounds.

For a minimization problem those subsets that currently have an higher

objective value than the current upper bound can be eliminated and do not

have to be explored further on. On the other hand, for maximisation prob-

lems, subsets that are lower than the current lower bound may be eliminated.

For both problem types the upper and the lower bound restrict the solution

space that contains the optimal solution of the original problem. The upper

bound of maximisation problems and the lower bound of minimisation prob-

lems is based on a mathematical relaxation of the original problem or the

33

solution of an heuristic. The lower bound of a maximisation problem and

the upper bound of a minimisation problem is always a solution to a feasible

and the so far best solution concerning the original problem.

Each subsets solved in the branch and bound is a mathematical relax-

ation or generated by an heuristic. Since the problem at hand applies an

exact algorithm, the problem relaxation is applied here. There are multiple

strategies on how to relax the original problem depending on its type. The

kind of relaxation applied will also influence the bounding procedure applied

as well as how many new branches may be or have to created from each of

the current subsets.

In general a certain part of the original problem definition is ignore in

the beginning. Probably the most common strategy is to reduce the problem

complexity by relaxing the definition of the decision variables. One option

would be to consider the decision variables to be linear instead of integer or

binary.

Since the problem proposed previously is a binary problem (routing de-

cision based on vehicle flow formulation) the applied procedure will be dis-

cussed briefly as an example for one of the branching schemes that will be

applied. The solutions of the relaxed problem may contain non-binary de-

cision variables. If one of the decision variables is not binary, branching is

required. Two branches will be created. One represents a certain decision

variable to be one, the other sets it to zero. Which one to pick for the branch-

ing depends on the strategy applied. The branching will define new subsets

based on the previous one that only differentiates from the previous one by

the definition of the decision variable used for the branching. All subsets

34

further on created in that branch will take the decisions made in previous

branches into account. The problems get more restricted since the number of

decision variables previously defined increases with every level of the branch

and bound tree reached. Branching has to be applied until a feasible solution

with respect to the original problem is found. The feasible solution found is a

upper bound when solving a minimization problem and a lower bound when

solving a maximisation problem. The current one is the one most restrictive

to the solution space.

The optimal solution is found when all branches are solved or eliminated

based on the bounding procedure. The gap which is the difference between

an upper and a lower bound is then zero. The quality of the solution created

within the branch and bound algorithm can be judged based on the gap.

Which branches to evaluate and eventually branch next is defined by a

branching strategy. Those strategies differ in their focus. Some may find

feasible solutions other good bounds earlier. This algorithm or principals

can be combined with other strategies as further on described.

Lazy Constraint vs. (User) Cuts For the approach presented in this

chapter two general concepts were used: user defined cuts and lazy con-

straints. Both of these constraints were added only if required. For every

node in the Branch and Bound tree, the lazy constraints and the user cuts

were checked and added, if the solution is not fulfilling one of these con-

straints. But in addition to those similarities they have a major difference.

Lazy constraints are part of the problem definition while the user defined

cuts are only used to strengthen the existing problem definition.

35

Algorithm 1 Pseudo code for a Branch and Cut algorithm applied on an
integer minimization problem

bestObj=NULL;
branchSet=∅;
while branchSet not empty do

select a branch from branchSet (depending on branching strategy);
remove selected branch from branchSet;
generate a subset problem branch for selected decision variable being 0
and one being 1;
solve the relaxed subset problem to obtain obj ;
if obj is bigger than upperbound then

continue
else if solution is binary then

bestObj is obj
else

add branches to branchSet
end if

end while

Based on those traits, lazy constraints are constraints from the original

problem formulation. But instead of adding all of them in the beginning

of the solution process, one will only add them to the problem definition

when required. Theoretically you could use any constraint as lazy constraint

that is part of the original problem definition. The evaluation process for

the lazy constraints is rather time intensive and will be repeated until all

violated constraints are identified. Therefore, an assessment between keeping

constraints in the initial constraint set or introducing them to the set of lazy

constraints is rather important. Those constraints that are binding in a high

number of potential solutions should most probably be defined in the initial

constraint set. Those constraints are only relevant in a few of the potential

solutions, thus it is more beneficial to define them as lazy constraints. A

36

classical example in routing for a lazy constraint is the sub-tour elimination

constraint.

User defined cuts on the other side are not an element in the original

problem formulation. They are used to strengthen the problem formulation

originally defined. By adding them, a certain proportion of the solution

space can be discarded. The cuts try to eliminate parts of the linear solution

that are invalid for the integer solution space. By doing so, the number of

nodes required to generate the optimal integer solution within the branch

and bound tree may be decreased.

5.1.1 General Concept of a Branch and Cut

The branch and cut approach is very similar to the branch and bound ap-

proach. The main difference is the way the solution in the different nodes of

the branch and bound tree get evaluated.

Every time a candidate solution is found, the algorithm checks if it is

valid concerning the lazy constraints. If a lazy constraints is not fulfilled, its

added to the problem definition and the problem associated to the node in

the branch and bound tree gets re-evaluated. When its not required to add

additional lazy constraints a valid solution to the linear problem is found.

In a next phase we test the found solution for the proposed cuts. The gen-

eral principal is similar to the one applied with the lazy constraints. When-

ever a constraint defined as one of the cuts is not ensured, it gets added

to the linear problem and the problem gets re-evaluated until a solution is

obtained that fulfils all cuts proposed.

37

When a valid solution for the current node concerning the lazy constraints

and the cuts is identified, that is also integer, the final node of the branch

is found. It is not required to create new offspring of that branches. If the

solution is linear the branching procedure gets applied.

In the branch and cut approach presented here, the vehicle flow formula-

tion presented earlier was used. The initial model is only reduced by those

constraints defined as lazy constraints and the binary condition for the deci-

sion variables get relaxed to generate a linear problem.

For the problem presented here the sub tour elimination is done before the

lazy constraints or the precedence constraints were tested. Since applying sub

tour elimination may reduce the number of precedence constraints required.

The lazy constraints and cuts applied are presented further on.

The conditions for an optimal solution are the same as in a branch and

bound procedure. The reason for this is the link of the integer and the linear

problem formulation. The linear problem formulation will always be the

lower bound to the integer solution. The best integer solution found within

the branch and bound tree is the valid upper bound. In general when the

upper and lower bound get the same solution and therefore their gap is zero,

optimality is proven. So when no node with a linear solution is left that is

below the best inter solution that represents the current upper bound, the

best integer solution is proven optimal since the linear solution can not be

improve any further.

38

5.1.2 Cuts

The following cuts were applied to the linear relaxations of the original prob-

lem in every node of the Branch and Bound algorithm:

Transfer Constraints: The proposed constraint ensures that pickup nodes

get visited before the associated delivery node can be routed. Node i has to

be visited before node n+ i.

bn+i,h1 +
k−1∑
j

bhj ,hj+1
+ bhk , i ≤ k (26)

∀i ∈ (h1, . . . , hk) ∈ N\{i, 2n+m+ 1}, 1 ≤ k ≤ |N | − 2

Adjacent restrictions: This constraints strengthen the precedence con-

straints by checking the requirement for pairs of directly connected nodes.

Whenever a pickup node i is visited before some node k, the delivery node

”i+n” has to be visited after k.

bk,i + bk,i+n ≥ xi,k + xk,i ∀i ∈ P, k ∈ N\{i, i+ n} (27)

bi,k + bi+n,k ≥ xi+n,k + xk,i+n ∀i ∈ P, k ∈ N\{i, i+ n} (28)

Pairing restrictions: Also taking in consideration the pickup and delivery

restrictions, the following constraints ensures for every job pair that they were

scheduled for the same depot.

∑
k∈N

bki + 1 ≥
∑
k∈N

bk,i+n ∀i ∈ P (29)

39

Demand restrictions: In most PDPs there is a certain demand associated

to each of the jobs. The pickup locations are associated with the same

demand since they are paired. For the purpose of deriving the capacity for

every node, it is required to associate the pickup node with a positive demand

and the equivalent delivery node with a negative demand of the same value.

Making use of this characteristics Lu and Dessouky [2004a] present a cut

that can be applied to strengthen the problem formulation at hand even

if it does not incorporate demands. Lu and Dessouky [2004a] try to take

advantage of the demand definition in the mathematical model to make sure

the pickup and the delivery node were associated with the same depot (in

our case it would be same depot).

The idea is that only a very few combinations will be able to result in the

same equilibrium than the one resulting from having the pickup and delivery

nodes of the paired jobs on the same vehicle. This cut depends on a high

level of deprivation in demand between the different nodes. If the nodes were

fairly similar, the cuts have only a small impact to the solution procedure

since combinations of non paired nodes could also fulfil the constraint.

Since here such a set of demands is not given, artificial demands were

associated to each of the jobs. The artificial demand has to be unique for

this purpose and will benefit from being not constructable from a set of

other demands. The easiest way to find such a set of demands is using prime

numbers. Since the number of jobs is limited, the number of known primal

numbers is more than enough to ensure the uniqueness of every possible

pairing in this constraint. This trick might even be beneficial for those PDPs

40

with demands since the constraint gets more restrictive by doing so without

eliminating any valid solution.

The following constant is required for the the proposed cut:

dk . . . originally the demand of node k ; for pickup positive and negative

for delivery

The constant would be defined a primal number in our definition or setting

for the cut. The cut 30 is just taking the sum over all demands served on

the same vehicle or by the depot.

∑
k∈N

(bkidk) = 0 ∀i ∈ W (30)

Proof: All cuts can be proven by contradiction. For the proof one may

consult Lu and Dessouky [2004a] or one of the other papers presenting those

or similar constraints.

5.1.3 Lazy Constraints

The concept behind a lazy constraint is to introduce certain constraints only

when required. In a lot of mathematical problems there are certain con-

straints that exist in high numbers even if they are not binding in the most

of the solution steps. In some cases it might be better to add those con-

straints only when required. By adding those constraints only when required

the solution time can be decreased. For the implementation at hand two

kinds of lazy constraints were used.

41

Sub Tour Elimination The concept of sub tour elimination is an elemen-

tary problem in the context of routing. A sub tour is when the solution

contains cycles instead of offering a continuous route for every vehicle. The

sub tour elimination comes for free in problems like those using time win-

dow restrictions or similar concepts. In the problem at hand the precedence

constraints offer free sub tour elimination.

The general model is ensuring that the solutions are free from sub tours

and cycles. But since the constraints responsible for the sub tour elimination

are used as lazy constraints, it might be beneficial to test for sub tours with

lazy constraints to speed up the solution process.

The constraint added to the problem when required is:

∑
e∈E(S)

xe ≤ |S| − 1 (31)

The lazy constraint applied will enforce for every sub set of nodes S that

the sum of connections inside this subset is smaller than the size of the sub

set.

Precedence Constraints Based on the assumption, that those constraints

that are present in high numbers but only binding in a small portion of so-

lution steps and in accordance to Lu and Dessouky [2004a], the precedence

constraints were used as lazy constraints.

Lu and Dessouky [2004a] used constraints (6) to (7) as lazy constraints,

but after pretests it seemed to be more beneficial to only transfer the con-

42

straints (6) and (7) from the set of normal constraints to the set of Lazy

constraints.

5.1.4 Tested Compositions

The last chapter presented multiple methods commonly used in Branch and

Cut. Three different versions of the Branch and Cut were tested to identify

which parts of the algorithm used are most promising:

• Cuts and Lazy Constraints and Sub tour Elimination: This

method includes the full range of features implemented. Every time

a solution is found it is first tested for the sub tour elimination con-

straints and afterwards for the precedence constraints. If a sub tour

elimination constraint is added the precedence constraints were not

tested to save computational efforts. When both groups of lazy con-

straints were checked and the found solution was a valid solution the

cuts were also tested and added if required. The constraints (6) and

(7) are not present in the initial model.

• Cuts and Lazy Constraints: Since the precedence constraints will

also eliminate sub tours, the sub tour elimination was excluded from

the process, due to the fact that the high number of possible constraints

was to expensive in terms of computational time. Since the problem

at hand is not requiring explicit sub tour elimination, the set of initial

constraints stays the same.

• Cuts: The most basic version tested is the one using the full vehicle

flow formulation in combination with the proposed cuts.

43

For all of the methods presented here an additional trick was used to improve

the run time. As Lu and Dessouky [2004a] proposed and also in accordance

with modern standards in solver, those constraints dominated by other con-

straints were purged to reduce the constraint set. By doing so the number of

constraints can be decreased with a low amount of additional computational

effort. The methods proposed by the used software (IBM CPLEX) were used

without any adaptations.

In Figure 3 the run times for the different methods were plotted. On

average the best results could be obtained, using only the proposed cuts and

starting with the original complete problem formulation.

Figure 3: Box-plot comparing the run times in seconds for different Branch-
and-Cut variants

44

5.2 Benders Decomposition

The following section will discuss an alternative decomposition approach

within a branch and bound framework. For the first method proposed, the

Branch and Cut explained in the previous chapter, additional constraints (so

called cuts) were used to strengthen the linear relaxations in every node of

the branch and bound procedure. In this chapter Benders Decomposition is

used to strengthen the linear relaxation. In every node the linear relaxations

of the original problem including the fixed integer values from the branch

and bound procedure were solved with a Benders Decomposition approach.

Benders Decomposition used to iteratively explore and restrict the solution

space.

The so called Benders Decomposition was originally proposed by J.F.

Benders a Dutch mathematician in Benders [1962]. Embedding Benders De-

composition in a Branch and Bound/Cut approach is for example described

in Sridhar and Park [2000].

In the following sections the general concepts applied in the Benders De-

composition approaches, the master problem, and the sub problems tested

are described. For the problem at hand one master problem was tested with

two different sub problems. The main difference between the two sub prob-

lems tested are the cuts used in combination with the proposed sub-problem:

Logical Benders Cuts and ”classical” Benders Feasibility Cuts.

45

5.2.1 General Concept

The general concept used in Benders Decomposition is to solve multiple

smaller problems at a time instead of one big problem at once. The origi-

nal problem gets divided in multiple stages with each of those containing a

certain set of constraints and decision variables. Most of the Benders De-

composition approaches consist of only two stages but in general there is no

limit to the number of stages one may apply. But it is necessary to assign

all decision variables of the same type to the corresponding stages.

For the general explanations only two stages are assumed to be used.

This is the classical setting of a Benders Decomposition based algorithm as

well as the setting used for the actual implementation. The two stages will

be iteratively solved. The first stage contains the so called master problem

while the other stages contain so called sub-problems. When ever a solution

of the first stage is obtained, the second stage is solved based on the first

stage solution in order to validate the first stage solution. As long as the

first stage solution results is an invalid second stage solution new constraints

will be added to the associated first (or next higher) stage problem. Those

iteratively added constraints are based on the second stage information and

called Benders cuts. The algorithm tries to find an optimal solution to the

original problem by considering only as many constraints as required.

Since this algorithm adds additional constraints until an optimal solutions

is obtained, it is also called row generation (the contrary concept of column

generation that will be discussed in the next chapter). In a matrix repre-

sentation of a mathematical model, every column will represent a variable

46

and every row a constraint. An entry in the matrix represents the constant

associated to a certain decision variable. If the constant is zero the decision

variable associated to that column is not present in the constraint. Adding

a constraint will add an additional row to the matrix representation. The

number of rows and therefore the size of the matrix will increase with every

iteration until the optimal solution is found.

The optimal solution is found when the first stage solution leads to a

valid second stage solution and then it is not necessary to add additional

Benders Cuts. The effectiveness of a Bender Decomposition approach is

highly dependent on the structure of the problem. Choosing the right set

of constraints and decision variables for each of the stages is crucial for an

effective Benders Decomposition approach.

5.2.2 Formulation

The problem described in Chapter 4.1 has two (main) decision variables,

one for the routing decision and one for the precedence relations. Since the

precedence relations will restrict the routing decisions, they are an obvious

choice for the second stage problem.

For the problem at hand the first stage will generate routes. Those routes

do not incorporate the precedence constraints and may contain sub tours.

The second stage will ensure that those solutions containing sub-tours and

not scheduled pickup nodes before the paired delivery nodes, will be itera-

tively withdrawn from the solution space.

By dividing the problem in a master problem with a routing decision

and a sub problem with a scheduling decision, similarities to the concept of

47

Sexton and Bodin [1985a] and Sexton and Bodin [1985b] can be seen. Sexton

and Bodin [1985a] solved a single vehicle routing problem that incorporated

desired delivery times.

Minimum Customer Constraint: Considering the minimum customer

constraint in the solution method is fairly simple. The required constraints

and decision variables can either be add to the first (master problem) or

second stage problem. A small set of tests suggested that using the first stage

(master problem) might be the better option. Since the complexity and the

number of constraints as well as decision variables is limited, the difference

for the first stage (master problem) solution process is rather small. By doing

so the second stage model as well as the cuts were not affected by the change.

Master Problem: The master problem is a routing problem of TSP kind

without any form of sub tour elimination. The original problem formulation

of the first stage will only ensure that every customer is entered once and left

once as defined in the following formulation:

min
∑

(i,j)∈A

xijcij (32)

s.t.
∑

(i)∈N

xij = 1 ∀j ∈ N (33)

∑
(j)∈N

xij = 1 ∀i ∈ N (34)

xij = {0, 1} ∀(i, j) ∈ A (35)

48

The solutions generated like this are then tested within the second stage

problem.

Second Stage: For the second stage, one model was used in combination

with two different cuts. The second stage of the Benders decomposition

approach applied is based on the constraint (5) - (7). The solutions that

are infeasible in terms of the precedence constraints should be identified and

then excluded by adding additional Benders Cuts. The first stage problem

will be iteratively resolved with a growing set of constraints until a feasible

solution is identified. When the second stage problem proves the feasibility

of an first stage solution the optimal solution is identified.

When applying Benders Decomposition the second stage is a dual problem

based on the original formulation ((5) - (7)). The second stage formulation

as primal, based on the first stage solution x′, is defined as:

min 0 (36)

s.t bki ≤ bkj + (1− xij′) (37)

∀(i, j) ∈ A/{2n+m+ 1, 2n+ 1}, k ∈ N\{i}

bkj ≤ bki + (1− xij′) (38)

∀(i, j) ∈ A/{2n+m+ 1, 2n+ 1}, k ∈ N\{i}

xij′ ≤ bij ∀(i, j) ∈ A (39)

A disadvantage to consider is that a few of the constraints, that were

previously ensured implicitly, have to be considered explicitly when decom-

49

position is applied. Those constraints are (7) - (16) from the original problem

formulation.

Benders Cuts: The Benders Cuts applied are actually feasibility cuts that

exclude invalid solutions from the routing problem. First stage solutions may

be invalid because they are not taking the precedence constraints into account

or include sub tours.

Two types of those feasibility cuts were tested: logic-based Benders Cuts

and ”classical” Benders Feasibility Cuts. Logic based Benders Decomposition

is introduced and described for binary problems in Hooker and Ottosson. The

”classical” Benders Feasibility Cuts using the dual information of the second

stage problem are well explained in Sridhar and Park [2000].

Both cuts try to exclude solutions similar to the ones that previously

resulted in invalid second stage problems. The ”classical” Benders Feasibility

cuts will exclude a whole area of the first stage solution space by introducing

cuts based on the dual information of the second stage problem. Since the

second stage problem is a dual problem, its dual information can be used to

restrict the first stage solution space.

The logic-based Benders Decomposition approach will only exclude the

previously chosen solution instead of the whole area. To exclude the invalid

solutions from the first stage problem the logic-based Benders Decomposition

approach introduces the following cuts:

∑
(i,j)∈A:xij ′=1

xij +
∑

(i,j)∈A:xij ′=0

(1− xij) (40)

50

The ”classical” Benders Decomposition approach seems to be far superior

to the logic-based approach in terms of solution time. The simplicity that is

offered with the logic-based approach comes with an high wastage in terms

of obtained information. Both options will solve the same basic problem but

the ”classical” Benders Feasibility Cuts will most probably exclude bigger

portions of the first stage solution space at a time. This makes ”classical”

Benders Feasibility Cuts more competitive and the method of choice for the

further investigations.

51

5.3 Column Generation

The concept behind Column Generation again could be described as a divide

and conquer strategy. Instead of solving one big flow problem and reducing

runtime with a wide range of sophisticated tricks, it might be more beneficial

to solve two easier problems at a time. In a Column Generation approach a

predefined number of constraints (rows) is given and fixed but the number of

decision variables (columns) will increase over time. This is the exact oppo-

site to the Benders Decomposition approach shown in the previous chapter.

Column Generation separates the routing decision (path creation) from

the path selection. The path selection is done by the so called master prob-

lem. In the problem presented here the master problem is a linear version of

the path based formulation proposed in Chapter 4.2. The routing decision

is a shortest path problem with additional restrictions. Important for such

an approach is how to define or identify a promising route which is benefi-

cial to generate and consider in the set partitioning problem. The common

approach to do this are the dual values associated to the decision if a certain

node or customer is considered to be introduced to a certain route.

The required components for a column generation approach will be dis-

cussed in the following sub chapter: the general algorithm, the master prob-

lem (route selection) used, the method to solve the sub problem (path gen-

eration problem) as well as methods to improve the performance such as

dominance rules.

52

5.3.1 General description

As previously proposed the column generation approach requires two parts:

a method to identify and select promising paths and a way to generate new

once. Both of this parts interact with each other. Over multiple iterations

they try to detect new paths that might decrease the objective value of the

master problem until no further improvement can be achieved.

The algorithm starts with an initial set of feasible solutions. Those can

be generated with a limited run of the proposed solution method for the sub

problem or with any other method (e.g. an heuristic). The routes generated

with the methods of choice were introduced to the master problem which is

a linear relaxation of the original optimization problem. By solving the so

called master problem one obtains dual information for each of the constraints

that help to identify new candidate solutions for the master problem. For

the identification of new routes there are multiple options as well: heuristics,

mathematical programming (shortest path problem), or labelling algorithms.

In general all methods suitable to solve the shortest path problem can

be applied to generate new paths in the sub problem. As long as the last

iterations of the sub problem were solved with an exact approach, the found

solution is proven optimal. When solving the master problem the costs used

are based on the negative reduced costs from the master problem. The dual

values indicate how much it might save to introduce a certain node into a

route. The sub problem to solve is not a shortest path problem based on

the initial distance, but rather a shortest path problem based on the actual

routing costs as well as the dual values or negative reduced costs obtained

53

in the master problem in the last iteration. While generating new routes

or solving the sub problem, the new potential solutions get evaluated with

the sum of their routing costs minus the sum of the dual values of every

node on the route. When adding a new set of paths to the master problem

those were added to the master problems objective function with the actual

routing costs. The actual routing costs are those that are not depending

on the dual information. In general, all routes with negative reduced costs

have to be identified since those have the potential to decrease the current

objective value of the master problem.

When all or a sufficiently sized set of new paths is generated, the set is

added to the master problem and the master problem is solved once again.

The process of solving the master problem and generating new paths will be

repeated as long as new paths can be identified. When an exact approach

such as labelling or an MIP is not able to identify new paths, the optimal

solution is considered to be found. It is possible to use an exact or an

heuristic approach to generate new routes within the column generation.

But optimality can only be proven when at least one full run of an exact

approach is applied to the sub problem that is not able to find new paths

with negative reduced costs.

In addition to those basic parts some useful addition can be included to

decrease column generations run time: starting with a beneficial set of paths

in the first iteration, applying dominance rules that decrease the number of

paths in the sub problem, and the correct assessment of the amount of time

spend at each iteration of the sub problem.

54

5.3.2 Master Problem

The master problem used for the Column Generation approach is the previ-

ously presented path based formulation of the MDTSPPD. The objective is

to minimize the cots while servicing all of the nodes or customers. Each of

the depots is allowed or forced to service one route. For the original prob-

lem formulation without workload considerations empty routes are present

in the initial set. Every depot has to service one route, only if a workload

(or a similar) constraint is present. The master problem has two purposes:

selecting a beneficial set of routes based on the set of generated routes and

offering insides which routes might be a good complement for the existing or

previously identified set of routes (dual information).

5.3.3 Sub Problem and Labelling

The sub problem at hand is a variation of a classical shortest path problem.

Additional requirements arise from the paired pickup and delivery jobs, the

multiple depots, and the workload requirements contained in the extensions.

The basis concept used for the labelling algorithm is similar to other col-

umn generation approaches. Starting from the origin (a depot) one gradually

expands the route by a new node or customer. Every time doing so one has

to check the feasibility of the newly created path. Upper capacity limits can

be checked after each extension while lower limits can only be checked at

the end depot. The distances and the dual costs of the label get updated.

Every time a route gets extended the new and the existing routes will be com-

pared through dominance rules and those paths dominated will get discarded.

55

When a path gets extended back to the depot the dual costs associated with

the depot will be added as well. All paths that can be extended to the final

depot and that are not dominated throughout the labelling algorithm as well

as fulfil all minimum constraints (e.g. min workload) will be added to the

master problem further on.

The dominance criteria reduces the required amount of paths to be con-

sidered within the labelling algorithm. Most of the time that is spend in the

labelling algorithm will be spend with checking those labels. Reducing the

number of active paths will directly reduce the time spend in the associated

routines. The labelling algorithm is the most time consuming element in the

whole column generation approach. Improving its efficiency will drastically

improve the run time performance of the overall algorithm.

An easy to implement strategy for the multi depot problem is to deal

with the paths of all (three) depots at once. By introducing an artificial

depot with a distance of zero to each of the customers the basic shortest

path problem with pickup and delivery can be used. But every path that

gets extended until the final depot has to be extended to each of the depots,

then checked for dominance, and afterwards added to the master problem if

not dominated.

5.3.4 Dominance Rules and their Relaxation

Since the exact labelling approach will find multiple permutations of equiv-

alent or similar routes, it is beneficial to invest the available solution time

only on those with the highest potential (heuristic runs) or those required to

be checked (exact runs).

56

Contardo and Martinelli [2014] present a set of dominance rules consider-

ing multiple depots and Cordeau et al. [2008] present a set of rules that can

be applied to pickup and delivery problems. By combining those two sets of

dominance rules, a set applicable to the MDTSPPD can be obtained.

The set of dominance rules applied when solving the sub problem of the

MDTSPPD is defined as:

x.costs ≤ y.costs (41)

x.nodesV isited ⊇ y.nodesV isited (42)

x.openRequests ⊆ y.openRequests (43)

x.lastNodeOfTour = y.lastNodeOfTour (44)

x.depotUsed = y.depotUsed (45)

A route x may dominate another route y in a pairwise comparison when

its not more expensive than the other, visited at least the same set of nodes,

having the same set of nodes still to visit (pickup nodes visited define a

delivery node to include), and using the same depot (or dummy) for it. The

number of routes can be reduced by just dealing with the routes without

any depot connection. This reduces the number of routes to test by the

factor of up to three. For the implementation two dummy depots were used

that represent the start and the end of a tour. The actual depots were only

considered when the routes were extended to the dummy end depot while

being not dominated. Dominated tours get not considered further on. The

pairwise comparison is done whenever a tour is extended to a new node. All

57

previously created non dominated nodes were checked that end on the same

node.

Most of the algorithm’s time is spent at the dominance rules. So, they

have to be applied efficiently. Route x can be dominated by route y if one (or

more) criteria are not met. Every dominance rule will require one comparison

per route tested. By sorting them according to the probability that they are

not fulfilled, one may save running time. Those with the lowest probability to

be fulfilled were checked first. Identifying the appropriate sequence is done

with a small set of test cases. Be reminded that by using bit vectors the

complexity of comparing the costs of a route is equivalent to the comparison

of two sets. The structure of the tests ensures that the last node of the tour

is the same.

The dominance rules were tested in the following order:

If the extension of the route was to the end depot it gets checked first.

Otherwise the costs were the first criterion followed by the sets for the nodes

visited and the open requests. The nodes visited include pickup and delivery

nodes. The size of the vector is neither limited nor impacts the solution time.

As proposed by Contardo and Martinelli [2014] the dominance rules can

be applied heuristically. By applying only a subset of presented dominance

criteria the computational efforts in early stages of the Column Generation

approach may be reduced. For the proposed problem no improvement could

be obtained by reducing the set of dominance rules used in early stages of

the labelling algorithm. Hence, for the tested Column Generation approach

all dominance rules proposed were present at all times.

58

6 Computational Results

The following chapter will compare the proposed methods in terms of their

average runtime for the original problem formulation and the extended prob-

lem formulation with workload constraints. In addition, the costs of intro-

ducing the minimum workload constraints in terms of the average runtime

and the increase in routing costs will be discussed.

The comparison will be performed based on the instances proposed by

Berger and Bierwirth [2010]. Those instances will be described in the next

section.

6.1 Instances

The test instances used in the following chapters were designed by Berger and

Bierwirth [2010] for the Collaborative Carrier Routing Problem. They are

generated based on the Solomon instance R101. The Solomon instances were

originally generated for the Vehicle Routing Problem with time windows.

Berger and Bierwirth [2010] took instance R101 which contains 101 nodes.

Three of the Nodes were defined as depots: 10, 54 and 93. In the original

Problem definition by Berger and Bierwirth [2010] node pairs were assigned

to one of the depot consisting of a pick and delivers location. Each instance

consists of nine jobs (18 nodes). Three jobs were associated with each of the

depots. For the MDTSPPD it is not important to which depot a job was

originally assigned. But discussing the optimal solutions later on will require

some knowledge of the process during which they were created in the first

place. For each job associated to one of the depots Berger and Bierwirth

59

[2010] selected two nodes from a certain region of the node space. The node

space is defined by two things: the depot and instance class. Three different

classes were created: Set A, Set O and Set I. Set A is strongly clustered.

Nodes were picked from areas that are only associated to one of the depots.

Set O is slightly more clustered. There is a certain area that is accessible

for jobs of two (or even three) depots. This should enhance the collaborative

potential. The last Set I is picking the pickup and delivery location randomly

from all nodes of the R101 Solomon instance.

The node distribution of the R101 Solomon instance as well as the parti-

tion can be seen in the Figure 4.

Solution Characteristics: The Collaborative Carrier Routing Problem

(or the MDTSPPD) is a problem without capacity or time restriction. Its

solution characteristics were mainly driven by: the existences of multiple

depots, the level of clustering in the instance class, and the paired pickup

and delivery requests. As Figure 5 shows, for most of the instances created

by Berger and Bierwirth [2010] solutions with only one route are optimal.

This behaviour results from certain characteristics of the problem at hand.

For problems of this kind with only one depot it is easy to access that so-

lutions with only one route being optimal in the original setting. Since the

tour length is not limited by any kind of capacity constraint a Hamiltonian

tour will be the optimal solution. The pickup and delivery request are no

reason to use multiple tours.

But the effect of the multiple depots has to be discussed. When only

multiple depots would be present without the pickup and delivery feature,

60

Figure 4: Instance schema for the instances used

61

Figure 5: Vehicles used in each of the instances

the closeness of the nodes and depots will be elemental to determine the

probability of solutions with routes from more than one depot. For more

clustered instances the chances will be higher than for those with less clus-

tered neighbourhoods.

By considering pickup and delivery in a multi depot scenario, the chances

for multiple routes will decrease. The main reason for that is that pickup

nodes that are in one region might force routes to also access other regions

of the instance and therefore overcome the clustering.

Therefore the introduction of the workload constraint will have a negative

impact on the solution quality in the most cases as explained later on.

6.2 Efficiently solving the MDTSPPD

In this part of the computational results section the performance of the pro-

posed solution methods on the original instances by Berger and Bierwirth

[2010] (without workload constraints) will be discussed. We will start off

by identifying the most promising and robust variant of the previously pro-

posed Branch-and-Cut algorithms. In a second step also the other exact

62

approaches, namely Benders Decomposition (with Feasibility Cuts) and Col-

umn Generation, were considered.

Branch and Cut As proposed by Lu and Dessouky [2004a] the Branch-

and-Cut approach included Lazy constraints as well as explicit sub tour elim-

ination. Although those mechanisms seemed to be beneficial for the problem

formulation proposed in Lu and Dessouky [2004b], for the problem at hand

this seems to be different.

For the problem at hand there is no approach of the three proposed once

that is able to dominate the other two for all the instances proposed by

Berger and Bierwirth [2010]. From the proposed 90 instances the approach

including the lazy constraints as well as explicit sub tour elimination was

the fastest for seven of the instances, the approach using only the lazy con-

straints was the best in twenty instances, and the approach only using the

cuts was dominating the other to approaches in 59 instances. In terms of

average run times the version only using cuts is far superior to the other

versions. The good performance in terms of average run times per instance

set can be observed in Table 1 as well as in the boxplot in figure 3. The re-

sults show that the distribution or clustering of the instances has an impact

on the performance of the solution methods. With less clustering the appli-

cation of lazy constraints and sub tour elimination in the Branch-and-Cut

seem to become more competitive. But even in the completely randomly dis-

tributed instances the Breach-and-Cut without explicit sub tour elimination

and lazy constraints will outperform the other two versions in the most of

the instances. In addition, using only the cuts seems to have the least disad-

63

vantages in terms of run times compared to the fastest one in the particular

instances if it is not the fastest method. On the other side, in almost all

cases, where the Branch-and-Cut could outperform the other to method, it

does it by a fairly high percentage.

In addition to the differences in run times, there were also minor differ-

ences concerning the number of instances that could not be solved by each

of the approaches. Overall just three instances could not be solved within

the time limit of 30 minutes by at least one of the proposed approaches.

The approach applying lazy constraints, explicit sub tour elimination, and

cuts could solve two instances that could not be solved by the other two ap-

proaches. Using cuts and lazy constraints could only solve one instance that

the other two could not solve. And the far superior method also concerning

the number of instances solved, was the version only applying the cuts that

strengthen the formulation. This approach was able to solve four additional

instances compared to the other to versions of the Branch-and-Cut.

Overall the Branch-and-Cut focusing on the cuts seems to be the most

promising constellation of the three proposed Branch-and-Cut approaches

in terms of average run times as well as number of instances that could be

solved. The reason for such a behaviour is that (at least on the instances

used for the tests) both types of lazy constraints are often binding constraints.

Since they are the only constraint restricting the problem this behaviour is

not surprising. For further comparisons the focus will be put on the best

performing Branch-and-Cut approach. The one used for further analysis is

the one only applying (user) cuts to strengthen the original formulation.

64

Table 1: Average runtime in seconds of CPLEX and the three proposed
Branch-and-Cut variants; MIP = CPLEX, LC = Lazy Constraints, SE =
Subtour Elimination, BC = Branch and Cut, and oC = only Cuts.

Branch and Cut

Average for MIP LC & SE LC oC

Set A (clustered) 257.04 341.93 332.73 195.94

Set I (slightly clustered) 434.36 599.67 599.14 329.00

Set O (random) 677.87 850.27 747.19 703.99

For all sets 456.42 597.29 559.69 397.68

Solving the MDTSPPD The most promising approaches or versions

from the set of Branch-and-Cut, Benders Decomposition, and Column Gen-

eration variations were identified. Now those will be tested on the original

Berger and Bierwirth [2010] instances.

In Table 2 the average performance in terms of run times of CPLEX (as

reference), the best performing Branch-an-Cut, the Benders Decomposition,

and the Column Generation approach applied are shown. The Benders De-

composition approach outperforms the other methods based on the average

run time for all three instance types. Also in terms of instances that could

not be solved within the time limit of 30 minutes, the Benders Decomposi-

tion approach is performing well with only three instances that could not be

solved. Those three also could not be solved with one of the other solution

approaches.

Important to note is that the Column Generation approach was not able

to solve any of the instances within 30 minutes. The fastest three instances

with Column Generation required 2928, 4000, and 6747 seconds. Those three

instances could be solved by Benders decomposition with less than 2 seconds

65

each. For the rarely restricted solution space of the original problem formu-

lation, the Column generation approach is clearly unable to provide com-

petitive results. But this is not surprising, since Column Generation based

methods are more beneficial for solution spaces with a small set of valid so-

lutions. The solution space here is the exact opposite and the amount of

solutions that are invalid is only restricted by the precedence constraints.

The proposed changes, to add workload constraint, will restrict the solution

space and therefore be beneficial for Column Generation based methods.

Table 2: Average runtime in seconds of CPLEX (MIP), Branch-and-Cut
(BC), Benders Decomposition (BD), and Column Generation (CG) for each
instance set.

Average for MIP BC BD CG

Set A (clustered) 257.04 195.94 27.35 -

Set I (slightly clustered) 434.36 321.00 179.42 -

Set O (random) 677.86 703.99 434.02 -

For all sets 456.42 397.68 213.60 -

6.3 Minimum workload constraints

This part of the computational results is dedicated to the changes that result

from introducing the minimum workload constraints to the original problem

formulation by Berger and Bierwirth [2010]. Two aspects will be analysed:

the solution time and general performance of the proposed methods under

different workload settings as well as the change in terms of costs that arise

from those constraints.

66

Solution time The average solution time increases with increasing mini-

mum workloads for the most of the methods. But for one methods the more

restricted solution space is beneficial, Column Generation is able to become

more competitive for the more restrictive scenarios. For the unrestricted and

only slightly restricted scenario, the Benders Decomposition approach pro-

posed seems to be the method of choice. But while the other approaches

at least double their average solution time when increasing the workload re-

striction from zero to one third, column generation decreases its by more

than a third. The most restrictive scenarios asked for at least two third of

the amount of customers originally assigned to each of the carrier. In that

setting the Benders decomposition approach gets even slower and therefore

is the approach that takes the longest to solve the proposed instances. The

Branch-and-Cut approach is able to maintain its average solution time com-

pared to the previous scenario. The new best performing method is Column

Generation that once more was able to reduce its average solution time, by

more than the factor ten. The average solution times for the proposed meth-

ods under different workload settings can be found in Table 3.

Table 3: Average runtime in seconds of CPLEX (MIP), Branch-and-Cut
(BC), Benders Decomposition (BD), and Column Generation (CG) for all
instances and three different settings of the minimum workload constraint.

Min Customers MIP BC BD CG

no min customer 456.04 456.42 213.60 -

1/3 of the customer 1286.44 1023.72 432.72 -

2/3 of the customer 1689.62 1023.01 1056.88 566.55

67

The number of instances that the proposed approaches can solve within

the time limit behave similarly. CPLEX is be able to solve only ten of the

ninety instances in the more restrictive cases. Benders Decomposition and

Branch-an-Cut solve slightly less than half of the instances. The interesting

part is the behaviour when the minimum workload restriction is further in-

creased. CPLEX and Benders Decomposition were able to solve less instances

the more restrictive the minimum workload constraint got. The Branch-and-

Cut approach loses a lot of its power when workload constraints were first

introduced to the model. But, the number of instances that could be solved

seems to be relatively robust against further changes. The Column Genera-

tion approach is the most competitive one in the most restrictive setting. It

can solve all instances in the most restrictive setting. So those approaches

behave similar in terms of average run times and number of instances that

could be solved. The detailed changes in the number of instances that could

be solved can be found in Table 4.

Table 4: Number of instances that could not be solved with each of the meth-
ods; MIP = CPLEX, BC = Branch and Cut, BD = Benders Decomposition,
and CG = Column Generation.

Min Customers MIP BC BD CG

no min customer 11 11 4 90

1/3 of the customers 51 40 12 90

2/3 of the customers 80 41 43 0

Worth to notice is also the impact of the clustering in the different in-

stance sets. Their impact of the clustering for the most restrictive scenario

can be seen in Table 5. As previously in the other settings the less clustered

68

and therefore more typical scenarios for a courier service are much harder

for the most methods than the clustered once. Only Column Generation is

able to to solve all three instance types in approximately the same average

run time. If there is a difference for Column Generation based on the level

of clustering in the instance then Column Generation seems to be able to

solve the apparently harder instances (based on the performance of the other

methods) even faster than the apparently easier once.

Table 5: Average runtime in seconds of CPLEX (MIP), Branch-and-Cut
(BC), Benders Decomposition (BD), and Column Generation (CG) for each
instance set with a 2/3 min workload constraint.

(2/3 min Customer)

Average for MIP BC BD CG

Set A (clustered) 1494.48 382.74 484.67 596.05

Set I (slightly clustered) 1793.03 1256.32 1099.20 593.51

Set O (random) 1781.33 1429.95 1586.76 510.09

For all sets 1689.62 1023.01 1056.88 566.55

Costs of workload distribution The other interesting part when analysing

the results from introducing this additional set of constraints is: How much

does it cost to share the workload between the different carriers?

The results for the original problem setting without workload constraint

have shown that in most of the solutions only one or sometimes two vehicles

will be used. Based on this observation it is obvious that the costs will

increase.

The introduction of a minimum of one third of the customers will already

result in an cost increase of more than 18%. If the value even increases to

69

two thirds the cost will increase on average by 30%. Another interesting

result is that for those instances that represent urban scenarios with higher

competition, the cost increase is even higher with almost 25% respectively

over 45% on average for the two workload scenarios. Additional information

can be found in Table 6.

Table 6: Increase in total cost resulting from workload constraints

Average for no min customer 1 / 3 of cust. 2 / 3 of cust.

Set A (clustered) 270.49 12.64% 21.87%

Set I (slightly clustered) 263.00 17.41% 28.49%

Set O (random) 267.49 24.91% 45.52%

For all sets 267.00 18.32% 31.96%

One may conclude two important things from those numerical experi-

ments. The method that should be applied depends on two things: the level

of clustering and the presence of workload constraints (or similar concepts).

For the most part Benders decomposition will be the method of choice. But

for special cases, namely those with a high level of clustering or with very

restrictive workload constraints, Column Generation might be the only fea-

sible choice. But keep in mind that those special cases will be in real world

application the more common scenario. The best scenarios in real world ap-

plications with a high probability of collaboration will be those markets with

highly competitive situations and those with almost no clustering.

The other important information that can be extracted from the proposed

information is the impact of the workload constraints. The amount of profit

that could be ruined by insisting on minimum workloads is pretty high and

will increase with the level of competition between the different carriers (less

70

clustered). The most harm will be done by workload constraints in the sce-

narios that are most promising for collaboration, those that are less clustered

and therefore more competitive.

71

7 Conclusion

The thesis at hand investigated a routing problem from the sphere of collab-

orative carrier routing with a centralized decision maker. In the collaborative

carrier routing problem request, that consist of a pickup and a delivery loca-

tion, were reassigned between the different carrier to decrease the costs and

therefore increase the profit for all participants. Those problems are often

solved decentralized because competitors hesitate to share their information

and therefore their competitive advantage. Here a centralized planning was

assumed to investigate the maximal gain that collaboration could achieve.

In addition to the basic problem formulation an extended formulation was

proposed to consider an important real world feature: workload balancing.

In real world application, solutions with unevenly distributed workloads are

often considered unattractive for the participating carriers even when they

are optimal in terms of costs.

Three different well-established exact solution methods and some vari-

ants for them were proposed. They were benchmarked without workload

constraints and under different settings of the workload constraints.

The computational results show that for the benchmark instances in the

most settings Benders Decomposition should be applied. But for more re-

stricted scenarios with the proposed workload restrictions, the proposed Col-

umn Generation approach was able to dominate the other methods in all

instances.

The results also show the strong impact of the workload constraints on

the routing costs. Assigning each of the carriers, at least request equal to

73

one third of the amount on contracts, they originally added to the request

pool, will increase the routing costs on average by 18%. For more competi-

tive scenarios with less clustered structures, it will even increase up to 25%.

Considering a workload of two thirds the cost increase will be more than 30%

on average and even up to 45% for less clustered scenarios.

Based on the presented findings, future approaches for collaborative prob-

lems based on centralized or decentralized planning may be benchmarked.

The insights generated on the performance of the different methods tested

are useful when generating benchmarks for similar problems in science or

real world application. By introducing and testing the proposed workload

constraints in the given setting, it was shown how strong their impact on the

potential gain were.

74

References

B. Adenso-Dı́az, S. Lozano, S. Garcia-Carbajal, and K. Smith-Miles. As-

sessing partnership savings in horizontal cooperation by planning linked

deliveries. Transportation Research Part A: Policy and Practice, 66:268–

279, 2014. ISSN 0965-8564.

C. Archetti, M. G. Speranza, and D. Vigo. Vehicle routing problems with

profits. Vehicle Routing: Problems, Methods, and Applications, 18:273,

2014. ISSN 1611973589.

R. Baldacci, E. Bartolini, A. Mingozzi, and R. Roberti. An exact solu-

tion framework for a broad class of vehicle routing problems. Com-

putational Management Science, 7(3):229–268, 2010. ISSN 1619-6988.

doi: 10.1007/s10287-009-0118-3. URL http://dx.doi.org/10.1007/

s10287-009-0118-3.

R. Baldacci, E. Bartolini, and A. Mingozzi. An exact algorithm for the

pickup and delivery problem with time windows. Operations Research, 59

(2):414–426, 2011.

J. F. Benders. Partitioning procedures for solving mixed-variables program-

ming problems. Numerische mathematik, 4(1):238–252, 1962. ISSN 0029-

599X.

75

http://dx.doi.org/10.1007/s10287-009-0118-3
http://dx.doi.org/10.1007/s10287-009-0118-3

G. Berbeglia, J.-F. Cordeau, I. Gribkovskaia, and G. Laporte. Static pickup

and delivery problems: a classification scheme and survey. TOP, 15(1):

1–31, 2007. ISSN 1863-8279. doi: 10.1007/s11750-007-0009-0. URL http:

//dx.doi.org/10.1007/s11750-007-0009-0.

G. Berbeglia, J.-F. Cordeau, and G. Laporte. Dynamic pickup and delivery

problems. European Journal of Operational Research, 202(1):8–15, 2010.

ISSN 03772217.

S. Berger and C. Bierwirth. Solutions to the request reassignment problem in

collaborative carrier networks. Transportation Research Part E: Logistics

and Transportation Review, 46(5):627–638, 2010. ISSN 1366-5545.

A. Bettinelli, A. Ceselli, and G. Righini. A branch-and-price algorithm for

the multi-depot heterogeneous-fleet pickup and delivery problem with soft

time windows. Mathematical Programming Computation, 6(2):171–197,

2014. ISSN 1867-2949.

P. Buijs, J. A. L. Alvarez, M. Veenstra, and K. J. Roodbergen. Improved

collaborative transport planning at dutch logistics service provider fritom.

Interfaces, 46(2):119–132, 2016. ISSN 0092-2102.

M. Cherkesly, G. Desaulniers, and G. Laporte. Branch-price-and-cut algo-

rithms for the pickup and delivery problem with time windows and last-

in-first-out loading. Transportation Science, 49(4):752–766, 2015. ISSN

0041-1655. doi: 10.1287/trsc.2014.0535.

76

http://dx.doi.org/10.1007/s11750-007-0009-0
http://dx.doi.org/10.1007/s11750-007-0009-0

C. Contardo and R. Martinelli. A new exact algorithm for the multi-

depot vehicle routing problem under capacity and route length con-

straints. Discrete Optimization, 12:129–146, 2014. ISSN 15725286. doi:

10.1016/j.disopt.2014.03.001.

J.-F. Cordeau and G. Laporte. The dial-a-ride problem: models and algo-

rithms. Annals of Operations Research, 153(1):29–46, 2007. ISSN 1572-

9338. doi: 10.1007/s10479-007-0170-8. URL http://dx.doi.org/10.

1007/s10479-007-0170-8.

J.-F. Cordeau, G. Laporte, and S. Ropke. Recent models and algorithms

for one-to-one pickup and delivery problems. In B. Golden, S. Ragha-

van, and E. Wasil, editors, The Vehicle Routing Problem: Latest Advances

and New Challenges, volume 43 of Operations Research/Computer Science

Interfaces, pages 327–357. Springer US, Boston, MA, 2008. ISBN 978-0-

387-77777-1. doi: 10.1007/978-0-387-77778-8{\textunderscore}15.

J.-F. Cordeau, M. Iori, G. Laporte, and J. J. Salazar González. A branch-

and-cut algorithm for the pickup and delivery traveling salesman problem

with lifo loading. Networks, 55(1):46–59, 2010. ISSN 00283045. doi: 10.

1002/net.20312.

F. Cruijssen, O. Bräysy, W. Dullaert, H. Fleuren, and M. Salomon. Joint

route planning under varying market conditions. International Journal of

Physical Distribution & Logistics Management, 37(4):287–304, 2007. ISSN

0960-0035.

77

http://dx.doi.org/10.1007/s10479-007-0170-8
http://dx.doi.org/10.1007/s10479-007-0170-8

R. H. Currie and S. Salhi. Exact and heuristic methods for a full-load, multi-

terminal, vehicle scheduling problem with backhauling and time windows.

Journal of the operational Research Society, 54(4):390–400, 2003. ISSN

0160-5682.

B. Dai and H. Chen. Profit allocation mechanisms for carrier collaboration

in pickup and delivery service. Computers & Industrial Engineering, 62

(2):633–643, 2012a. ISSN 03608352. doi: 10.1016/j.cie.2011.11.029.

B. Dai and H. Chen. Mathematical model and solution approach for carriers’

collaborative transportation planning in less than truckload transporta-

tion. International Journal of Advanced Operations Management, 4(1-2):

62–84, 2012b. ISSN 1758-938X.

P. Detti, F. Papalini, and G. Z. M. de Lara. A multi-depot dial-a-ride problem

with heterogeneous vehicles and compatibility constraints in healthcare.

Omega, 70:1–14, 2017. ISSN 0305-0483.

R. Dondo and J. Cerdá. A cluster-based optimization approach for the multi-

depot heterogeneous fleet vehicle routing problem with time windows. Eu-

ropean Journal of Operational Research, 176(3):1478–1507, 2007. ISSN

03772217.

A. G. Dragomir, D. Nicola, A. Soriano, and M. Gansterer. Multi-depot

pickup and delivery problems in multiple regions: A typology. Interna-

tional Transactions in Operational Research, forthcoming, 2017.

78

Y. Dumas, J. Desrosiers, and F. Soumis. The pickup and delivery problem

with time windows. European Journal of Operational Research, 54(1):7–22,

1991. ISSN 03772217. doi: 10.1016/0377-2217(91)90319-Q.

Ö. Ergun, G. Kuyzu, and M. Savelsbergh. Shipper collaboration. Computers

& Operations Research, 34(6):1551–1560, 2007. ISSN 03050548.

M. Gansterer and R. F. Hartl. Request evaluation strategies for carriers

in auction-based collaborations. OR Spectrum, 38(1):3–23, 2016. ISSN

1436-6304. doi: 10.1007/s00291-015-0411-1.

M. Gansterer and R. F. Hartl. Collaborative vehicle routing: a survey. arXiv

preprint arXiv:1706.05254, 2017.

B. Golden, S. Raghavan, and E. Wasil, editors. The Vehicle Routing Problem:

Latest Advances and New Challenges. Operations Research/Computer Sci-

ence Interfaces. Springer US, Boston, MA, 2008. ISBN 978-0-387-77777-1.

doi: 10.1007/978-0-387-77778-8.

J. N. Hooker and G. Ottosson. Logic-based benders decomposi-

tion. Mathematical Programming, 96(1):33–60. ISSN 1436-4646.

doi: 10.1007/s10107-003-0375-9. URL http://dx.doi.org/10.1007/

s10107-003-0375-9.

S. Irnich. A multi-depot pickup and delivery problem with a single hub and

heterogeneous vehicles. European Journal of Operational Research, 122(2):

310–328, 2000. ISSN 03772217.

79

http://dx.doi.org/10.1007/s10107-003-0375-9
http://dx.doi.org/10.1007/s10107-003-0375-9

B. Kalantari, A. V. Hill, and S. R. Arora. An algorithm for the traveling

salesman problem with pickup and delivery customers. European Journal

of Operational Research, 22(3):377–386, 1985. ISSN 03772217. doi: 10.

1016/0377-2217(85)90257-7.

M. A. Krajewska and H. Kopfer. Collaborating freight forwarding enterprises.

OR Spectrum, 28(3):301–317, 2006. ISSN 1436-6304.

G. Kuyzu. Lane covering with partner bounds in collaborative truckload

transportation procurement. Computers & Operations Research, 77:32–

43, 2017. ISSN 03050548.

A. H. Land and A. G. Doig. An automatic method of solving discrete pro-

gramming problems. Econometrica, 28(3):497–520, 1960. ISSN 00129682,

14680262. doi: 10.2307/1910129.

G. Laporte. The vehicle routing problem: An overview of exact and ap-

proximate algorithms. European Journal of Operational Research, 59(3):

345–358, 1992. ISSN 03772217. doi: 10.1016/0377-2217(92)90192-C.

C. K. Lin. A cooperative strategy for a vehicle routing problem with pickup

and delivery time windows. Computers & Industrial Engineering, 55(4):

766–782, 2008. ISSN 03608352.

J. D. C. Little, K. G. Murty, D. W. Sweeney, and C. Karel. An algorithm

for the traveling salesman problem. Operations Research, 11(6):972–989,

1963. doi: 10.1287/opre.11.6.972.

80

R. Liu, Z. Jiang, R. Y. K. Fung, F. Chen, and X. Liu. Two-phase heuris-

tic algorithms for full truckloads multi-depot capacitated vehicle routing

problem in carrier collaboration. Computers & Operations Research, 37

(5):950–959, 2010. ISSN 03050548.

Q. Lu and M. Dessouky. An exact algorithm for the multiple vehicle pickup

and delivery problem. Transportation Science, 38(4):503–514, 2004a. ISSN

0041-1655. doi: 10.1287/trsc.1030.0040.

Q. Lu and M. Dessouky. An exact algorithm for the multiple vehicle pickup

and delivery problem. Transportation Science, 38(4):503–514, 2004b. ISSN

0041-1655.

R. Masson, S. Ropke, F. Lehuédé, and O. Péton. A branch-and-cut-and-

price approach for the pickup and delivery problem with shuttle routes.

European Journal of Operational Research, 236(3):849–862, 2014. ISSN

03772217. doi: 10.1016/j.ejor.2013.08.042.

J. R. Montoya-Torres, A. Muñoz-Villamizar, and C. A. Vega-Mej́ıa. On

the impact of collaborative strategies for goods delivery in city logistics.

Production Planning & Control, 27(6):443–455, 2016. ISSN 0953-7287.

S. Nadarajah and J. H. Bookbinder. Less-than-truckload carrier collabo-

ration problem: modeling framework and solution approach. Journal of

Heuristics, 19(6):917–942, 2013. ISSN 1381-1231.

81

G. Nagy and S. Salhi. Heuristic algorithms for single and multiple depot

vehicle routing problems with pickups and deliveries. European Journal of

Operational Research, 162(1):126–141, 2005. ISSN 03772217.

S. N. Parragh, K. F. Doerner, and R. F. Hartl. A survey on pickup and de-

livery problems. Journal für Betriebswirtschaft, 58(1):21–51, 2008a. ISSN

1614-631X. doi: 10.1007/s11301-008-0033-7. URL http://dx.doi.org/

10.1007/s11301-008-0033-7.

S. N. Parragh, K. F. Doerner, and R. F. Hartl. A survey on pickup and

delivery problems. Journal für Betriebswirtschaft, 58(2):81–117, 2008b.

ISSN 1614-631X. doi: 10.1007/s11301-008-0036-4. URL http://dx.doi.

org/10.1007/s11301-008-0036-4.

E. Pérez-Bernabeu, A. A. Juan, J. Faulin, and B. B. Barrios. Horizontal

cooperation in road transportation: a case illustrating savings in distances

and greenhouse gas emissions. International Transactions in Operational

Research, 22(3):585–606, 2015. ISSN 1475-3995.

S. Ropke and J.-F. Cordeau. Branch and cut and price for the pickup and

delivery problem with time windows. Transportation Science, 43(3):267–

286, 2009. ISSN 0041-1655.

S. Ropke, J.-F. Cordeau, and G. Laporte. Models and branch-and-cut algo-

rithms for pickup and delivery problems with time windows. Networks, 49

(4):258–272, 2007. ISSN 00283045. doi: 10.1002/net.20177.

82

http://dx.doi.org/10.1007/s11301-008-0033-7
http://dx.doi.org/10.1007/s11301-008-0033-7
http://dx.doi.org/10.1007/s11301-008-0036-4
http://dx.doi.org/10.1007/s11301-008-0036-4

S. Salhi and G. Nagy. A cluster insertion heuristic for single and multiple de-

pot vehicle routing problems with backhauling. Journal of the operational

Research Society, pages 1034–1042, 1999. ISSN 0160-5682.

M. Sanchez, L. Pradenas, J.-C. Deschamps, and V. Parada. Reducing the

carbon footprint in a vehicle routing problem by pooling resources from

different companies. NETNOMICS: Economic Research and Electronic

Networking, 17(1):29–45, 2016. ISSN 1385-9587.

M. W. P. Savelsbergh and M. Sol. The general pickup and delivery problem.

Transportation Science, 29(1):17–29, 1995. ISSN 0041-1655.

T. R. Sexton and L. D. Bodin. Optimizing single vehicle many-to-many op-

erations with desired delivery times: I. scheduling. Transportation Science,

19(4):378–410, 1985a. ISSN 0041-1655.

T. R. Sexton and L. D. Bodin. Optimizing single vehicle many-to-many

operations with desired delivery times: Ii. routing. Transportation Science,

19(4):411–435, 1985b. ISSN 0041-1655.

V. Sridhar and J. S. Park. Benders-and-cut algorithm for fixed-charge capac-

itated network design problem. European Journal of Operational Research,

125(3):622–632, 2000. ISSN 03772217.

P. Toth, editor. The vehicle routing problem: Problems, methods, and appli-

cations. MOS-SIAM series on optimization. SIAM, Philadelphia, Pa., 2.

ed. edition, 2014. ISBN 9781611973587. URL http://dx.doi.org/10.

1137/1.9781611973594.

83

http://dx.doi.org/10.1137/1.9781611973594
http://dx.doi.org/10.1137/1.9781611973594

B. Turan, S. Minner, and R. F. Hartl. A vns approach to multi-location

inventory redistribution with vehicle routing. Computers & Operations

Research, 78:526–536, 2017. ISSN 03050548. doi: 10.1016/j.cor.2016.02.

018.

L. Verdonck, A. N. Caris, K. Ramaekers, and G. K. Janssens. Collaborative

logistics from the perspective of road transportation companies. Transport

Reviews, 33(6):700–719, 2013. ISSN 0144-1647. doi: 10.1080/01441647.

2013.853706.

X. Wang, H. Kopfer, and M. Gendreau. Operational transportation planning

of freight forwarding companies in horizontal coalitions. European Journal

of Operational Research, 237(3):1133–1141, 2014. ISSN 03772217.

L. Xue, Z. Luo, and A. Lim. Exact approaches for the pickup and delivery

problem with loading cost. Omega, 59:131–145, 2016. ISSN 0305-0483.

doi: 10.1016/j.omega.2015.05.012.

84

Abstract

The thesis is dealing with an optimization problem with multi-

ple collaborating transportation service providers. In the recent past

the conditions for the whole branch of transportation, especially for

the delivery of packages, got increasingly demanding. The guaran-

teed delivery times got shorter and there is a constant price pressure.

Those developments require new solution procedures. Collaboration

and sharing the existing infrastructures may be one way to address

those conditions.

Exact solution procedures are applied to a basic problem formula-

tion from the literature and a new variant. The new variant introduces

workload constraints. Those workload constraints make it possible to

divide the overall workload between the different carriers, e.g. in or-

der to increase the perceived fairness. For both variants exact solution

methods have been developed, based on those presented in the litera-

ture for similar problems.

The objective of the thesis is to identify suitable solution methods

for the different problem variants and to determine the costs arising

from considering those workload constraints.

The experiments show that the method should be chosen based on

the problem variant and the restrictiveness of the workload constraints

and that the costs of introducing such constraints are considerably

high.

85

Zusammenfassung

Die Masterarbeit beschäftigt sich mit einem Optimierungsproblem,

welches bei der Zusammenarbeit mehrerer Tansportdienstleister auf-

tritt. In den letzten Jahren sind die Anforderungen an die Logistik-

branche, insbesondere jene im Bereich Pakettransport, immer wei-

ter gestiegen. Die Verkürzung der zugesicherten Lieferzeiten und der

stetige Preisdruck erfordern neue Lösungsansätze. Eine Zusammen-

arbeit durch gemeinsame Verwendung der vorhandenen Ressourcen

über Unternehmensgrenzen hinaus ist eine Möglichkeit diesen Um-

weltumständen Rechnung zu tragen.

Es werden exakte Lösungsmethoden auf ein bereits in der Literatur

vorgestelltes Modell als auch auf eine neue Variante dieses Problemes

angewendet. Die neue Variante ermöglicht es die Arbeitslast zwischen

den verschiedenen Teilnehmern aufzuteilen, um so zum Beispiel die

wahrgenommene Fairnis zu erhöhen. Für beide Modellvarianten wur-

den verschiedene exakten Lösungsverfahren erarbeitet, basierend auf

jenen Methoden, die in der Literatur für ähnliche Probleme vorgestellt

wurden.

Ziel der Arbeit ist es für die verschiedene Problemvarianten ge-

eignete Lösungsmethoden zu identifizieren und festzustellen, welche

Kosten durch die Berücksichtigung von Nebenbedingungen zur Ver-

teilung der Arbeitslast entstehen.

Die vorliegende Arbeit zeigt, dass die Wahl der Lösungsmethode

von der Restriktivität der Nebenbedingung abhängig gemacht wer-

den sollte und dass die Kosten, die durch die Berücksichtigung einer

solchen Nebenbedingung entstehen, vergleichsweise hoch sind.

87

	Table of contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Problem description
	Literature review
	Problem formulations
	Vehicle flow formulation
	Set partitioning formulation

	Methods
	Branch and Cut
	General Concept of a Branch and Cut
	Cuts
	Lazy Constraints
	Tested Compositions

	Benders Decomposition
	General Concept
	Formulation

	Column Generation
	General description
	Master Problem
	Sub Problem and Labelling
	Dominance Rules and their Relaxation

	Computational Results
	Instances
	Efficiently solving the MDTSPPD
	Minimum workload constraints

	Conclusion
	Bibliography
	Abstract
	Zusammenfassung

