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Abstract

In this Master’s Thesis the bi-objective Ring Star Problem is solved. Different to the
general formulation of the RSP, the assignment problem was extended by User Equilib-
rium constraints. In that way the assignment to ring is not just based on the distance
to it, but also on the "service quality", respectively the incoming flow to a node on the
ring. As a solution approach the NSGA-II was implemented, with nested Clarke&Wright
savings algorithm and Frank Wolfe algorithm. The savings algorithm was used for solv-
ing a TSP for each solution. For the approximation of the User Equilibrium the Frank
Wolfe algorithm was applied, after the assignment problem was transferred into a net-
work flow problem. Since no benchmark solution for such a formulation of a RSP exists,
test instances were generated and enumerated. These were used for the evaluation of the
quality of the implemented solution method.
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Zusammenfassung

In dieser Masterarbeit wird das Ring Star Problem (RSP) als ein bikriterielles Prob-
lem gelöst. Im Unterschied zu der allgemeinen Formulierung des RSP, wird hier die
Zuweisung der Knoten zu dem Ring mit Hilfe des Benutzergleichgewichts bestimmt. Fol-
glich ist diese Zuweisung nicht nur basierend auf der Entfernung eines Knotens zu Ring,
sondern auch auf der "Service Qualität" dort. Diese wird an jedem Knotenpunkt an dem
Ring ermittelt und hängt von den insgesamt zugewiesenen Bedarf ab. Als Lösungsmeth-
ode wurde der NSGA-II implementiert. Die einzelnen Zielfunktionen wurden jeweils mit
dem Clarke&Wright Algorithmus und dem Frank Wolfe Algorithmus gelöst. Wobei der
Savings-Algorithmus ein Traveling Salesman Problem (TSP) für den Ring gelöst hat und
der Frank Wolfe Algorithmus die Zuweisung der Knoten zu dem Ring. Um diesen an-
wenden zu können wurde die zweite Zielfunktion in ein Netzwerk-Problem umformuliert.
Da keine Benchmark Lösungen für dieses Mehrziel-Problem vorliegen wurden kleine Test
Instanzen generiert und enumeriert. Anhand dieser wurde die Lösungsqualität der im-
plementierten Metaheuristik evaluiert.

iii



List of Abbreviations

GA Genetic Algorithm

MCP Median Cycle Problem

MOOP Multi-objective Optimization Problem

NSGA-II Non-dominated Sorting Genetic Algorithm II

OD Origin-Destination

RSP Ring Star Problem

SP Service Point

TSP Travelling Salesman Problem

WE Wardrop Equilibrium

iv



List of Tables

6.1. Test Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2. Test runs of Frank Wolfe algorithm with α = β = 1 . . . . . . . . . . . . . 29
6.3. Changes of average rates by declining β, resp. α with different termina-

tions of the Frank Wolfe Algorithm (↑: rates are rising, ↓: rates are falling,
−: no tendency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.4. Frank Wolfe Algorithm with stopping condition: fkj < ε ∀ k ∈ V, j ∈ V ′ . 31
6.5. Frank Wolfe Algorithm with stopping condition:fj < ε ∀ j ∈ V ′ . . . . . . 32
6.6. Test runs with different mutation rates . . . . . . . . . . . . . . . . . . . . 32
6.7. Computational Results of the Test Instances . . . . . . . . . . . . . . . . . 37

A.1. Demands of the vertices in the test instance for parameter setting . . . . . 42
A.2. Distance matrix between the vertices in the test instance for parameter

setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.3. Test runs of Frank Wolfe Algorithm with α = 1, β = 0.75 . . . . . . . . . 43
A.4. Test runs of Frank Wolfe Algorithm with α = 1, β = 0.5 . . . . . . . . . . 43
A.5. Test runs of Frank Wolfe Algorithm with α = 1, β = 0.25 . . . . . . . . . 44
A.6. Test runs of Frank Wolfe Algorithm with α = 0.75, β = 1 . . . . . . . . . 44
A.7. Test runs of Frank Wolfe Algorithm with α = 0.5, β = 1 . . . . . . . . . . 45
A.8. Test runs of Frank Wolfe Algorithm with α = 0.25, β = 1 . . . . . . . . . 45

v



List of Figures

2.1. Illustration of flows (cf.[10]) . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.1. crowding distance calculation with two objectives (cf. [7]) . . . . . . . . . 18
5.2. Main NSGA-II procedure (cf. [7]) . . . . . . . . . . . . . . . . . . . . . . . 19
5.3. One point crossover operator of two solutions . . . . . . . . . . . . . . . . 20

6.1. Illustration of a hypervolume in a bi-objective solution space . . . . . . . . 27
6.2. Evaluation of H̃ through the NSGA-II with 100 generations and popula-

tion size of 40 (results of 3 runs) . . . . . . . . . . . . . . . . . . . . . . . 33
6.3. Evaluation of H̃ through the NSGA-II with 100 generations and popula-

tion size of 60 (results of 3 runs) . . . . . . . . . . . . . . . . . . . . . . . 34
6.4. Evaluation of H̃ through the NSGA-II with 100 generations and popula-

tion size of 80 (results of 3 runs) . . . . . . . . . . . . . . . . . . . . . . . 34
6.5. Pareto front and the best found approximation of the test instance for the

parameter setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.6. Number of fronts within a population of size 80 in each generation . . . . 36

A.1. Number of fronts within a population of size 80 including a offspring pop-
ulation in each generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vi



Contents

Abstract i

Zusammenfassung ii

List of Tables iv

List of Figures v

1. Introduction 1

2. Problem Fomulation 3
2.1. Basic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. The Travelling Salesman Problem . . . . . . . . . . . . . . . . . . . . . . . 4
2.3. User Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4. RSP with User Equilibrium Constraints . . . . . . . . . . . . . . . . . . . 9

3. Multiobjective Optimization and Genetic Algorithms 11

4. Literature Review 14

5. Solution Method 16
5.1. NSGA-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1.1. General functions of the NSGA-II . . . . . . . . . . . . . . . . . . . 16
5.1.2. Implementation of the NSGA-II . . . . . . . . . . . . . . . . . . . . 19

5.2. Solution Methods of Solving the Partial Problems of the RSP . . . . . . . 21
5.2.1. Clarke&Wright Savings Algorithm for the TSP . . . . . . . . . . . 21
5.2.2. Frank-Wolfe Algorithm for Solving the WE . . . . . . . . . . . . . 22

6. Computational Results 25
6.1. Test Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2. Metric for Performance Measurement . . . . . . . . . . . . . . . . . . . . . 26
6.3. Parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3.1. Parameters Analysis - Frank Wolfe Algorithm . . . . . . . . . . . . 28
6.3.2. Parameter Analysis - NSGA-II . . . . . . . . . . . . . . . . . . . . 32

6.4. Overall Computational Results with the Test Instances . . . . . . . . . . . 36

7. Conclusion 38

References 38

vii



A. Appendix 42
A.1. Test Instance for Parameter Settings . . . . . . . . . . . . . . . . . . . . . 42
A.2. Additional Results of Test Runs for Frank Wolfe Algorithm . . . . . . . . 43
A.3. Additional Results of Test Runs for the NSGA-II . . . . . . . . . . . . . . 46
A.4. Source Code of the Implemented NSGA-II . . . . . . . . . . . . . . . . . . 46

viii



1. Introduction

The purpose of this work is to implement a solution approach to solve a Ring Star Problem
(RSP) which has extended the assignment problem in a way that the service quality at
the ring is also considered. Additionally the RSP will be solved as a multi-objective
optimization problem.
The Ring Star Problem is a two-stage optimization problem. Firstly, a decision maker

chooses from a given set of vertices a subset, the so called Service Points (SP). These
provide a homogeneous good to all other vertices and themselves. The SP’s are connected
by a ring with each other, which represents a tour passing all of them. By this tour the
SP’s are supplied. On the second stage the demand of each vertex is assigned to one of
the SP’s. Each node has a positive demand, which will be fully supplied.
Example of a real-world applications for such a problem formulation is the implemen-

tation of a public transportation system. In this example the stops of a tour of a vehicle
are represented by the SP’s. Additional examples are the planning of location of postal
boxes or offices and the implementation of a network of branch stores. A widely discussed
application of the RSP is for the setup of an emergency facilities network after natural
catastrophes, which helps to provide relief goods to the affected people(cf.[10],[9]).
Two conflicting cost functions arising in this optimization problem: the ring costs and

the assignment costs. The ring costs consist of all costs concerning the ring, such as the
tour costs dependent on its length. These are decreasing if less SP’s are opened. The
assignment costs consist in main literature of the overall travelling costs to the ring and
are minimal if at each vertex a SP is set up. It is observable that the people in real
world application do not always choose the closest stop to supply their demand and take
additional decision factors into consideration. To model such a behaviour a function
representing the service quality at a service point is introduced. The service quality of a
SP decreases with rising demand assigned to it. In sum the assignment problem consists
in optimization of the travelling costs to a SP and the service quality.
In this Master’s Thesis firstly a bi-objective formulation of the RSP is introduced with

an extension of the assignment problem by a service quality function. The two partial
problem are solved independently. Whereby the first stage problem is solved as a travel-
ling salesman problem for the SP’s. The assignment problem is transferred into the User
Equilibrium formulation to solve it. A multi-objective optimization approach was used to
find a set of non-dominated solution, which will be presented to a decision manager. To
do so the non-dominated sorting genetic algorithm II (NSGA-II) was implemented with
the aim to provide a good non-dominated set. Hence this approach is a random search
method, solution heuristics for the partial problems were used. The TSP for the ring was
solved by the Clarke&Wright savings algorithm. The Frank Wolfe algorithm was used to
solve the assignment problem. The performance of the NSGA-II was tested on generated
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test instances. The test results were compared to non-dominated sets resulting out of
enumeration of the test instances.
The Master’s Thesis is organised as followed: In the 2. chapter the mathematical

problem is set up. Firstly, the partial optimization problems are defined and then the
overall formulation is introduced. For better understanding, in chapter 3 the concepts
of multi-objective optimization and genetic algorithms are shortly described. A closer
look at most significant present literature is taken in chapter 4. This is followed by
the introducing and explanation of the optimization method, NSGA-II. Also, the solu-
tion methods for the partial problems are explained in the 5th chapter. Namely the
Clarke&Wright savings algorithm for the TSP and the Frank Wolfe algorithm for solving
the User equilibrium. Followed up by the analysis and presentation of the computational
results in chapter 6.
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2. Problem Fomulation

The Ring Star Problem will be solved as a bi-objective optimization problem. Given
a set of connected vertices a decision maker selects a subset of them, which covers the
demand for a service or a good for all vertices. Further on it is referred to them as
Service Points (SP’s). A cycle through all SP’s is formed, the so-called ring. The first
objective is to minimize the ring costs by solving a Travelling Salesman Problem (TSP).
The ring costs include the non-negative costs, which are connected to the length of the
ring. No other costs related to the ring are considered. Given the information which
vertices are forming the ring, the other nodes are assigned to the vertices on the cycle. In
the classical formulation of the RSP, the closest SP is selected. In this work additionally
to the distance as decision factor of assignment the service quality at a SP is taken into
account. The resulting second objective of the problem is to minimize the non-negative
traveling costs [21] and maximize the service quality at a SP.
In the beginning section of this chapter the basic framework of the bi-objective RSP

will be described. The following sections are splitting the RSP in two different partial
problems. Firstly, the TSP is introduced with its assumptions and constraints. Followed
by the extension of the assignment problem with a service quality function as an ad-
ditional decision factor. The last section will outline the whole bi-objective RSP with
equilibrium constraints.

2.1. Basic Model

The model of bi-objective RSP presented by Liefhooge et al. 2010 [21] and the Median
Cycle Problem (MCP) of Labbé et al. 1999 [19] are used as basic framework in this work.
A complete mixed graph G = (V,E,A) is given, where V = {v1, v2, ..., vn} is the set of
vertices, E = {[vi, vj ]|vi, vj ∈ V, i < j} the set of edges and A = {(vi, vj)|vi, vj ∈ V }
the set of arcs. Please note that A also contains loops (vi, vi). In real-world applications
the n vertices describe settlements or population centre [9]. In this work each vertex
is considered as population centre with specific demand pi which represent the number
of inhabitants of it [9]. The subset V ′ ⊆ V contains the vertices which are denoted as
service points. At least one vertex is in V ′. An empty set V ′ would not make any sense,
because then the demand of no one can be satisfied [10]. It follows that in total there
are (2n − 1) possible combinations of either a vertex is on the ring or not [10]. The
SP’s are supplying the total demand P =

∑
vi∈V pi. The demand at a SP is usually

covered by itself [19]. To each edge [vi, vj ] ∈ E non-negative ring costs cij are assigned.
Consequently, the total ring costs are connected to the length of the ring, which is formed
by edges between the SP’s. By dij the costs of traversing the arc (vi, vj) ∈ A are given.
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These costs are proportional to the length of the corresponding arc.
The first objective function of the bi-objective RSP as proposed in [21] is to minimize

the costs of the ring and is formulated as followed∑
[vi,vj ]∈E

cijxij → min (2.1)

where the variable xij is binary and equal to 1 if and only if the edge [vi, vj ] ∈ E is
assigned to the ring.

xij =

{
1 if edge [vi, vj ] ∈ E belongs to the ring
0 else.

Liefhooge et al. 2010 [21] proposed as the second objective to minimize the total
assignment costs ∑

vi∈V \V ′
min
vj∈V ′

dij → min . (2.2)

For the assignment of a non-visited vertices to the ring the arc with the minimum costs is
chosen. This is equivalent of choosing the closest SP for each population centre. Similar
formulations of the second cost function are found in the most works on the RSP. Hence
the assignment cost are funded by the inhabitants at the settlements is it reasonable to
multiply each arc by pi, which fulfils ( min

vj∈V ′
dij |i∈V \V ′) .

2.2. The Travelling Salesman Problem

Since the 19th century the Traveling Salesman Problem (TSP) is very popular in combina-
torial optimization [14] and widely discussed in different research fields like Mathematics,
Operations Research, Computer Science or Physics and Biology [23].
Given a list of clients the salesman needs to find a closed tour starting from his home on

which he visits each of his clients exactly once and returns home. The distance between
each pair of two stops and between his home and each client is known in advance to the
salesman. The cost of travelling to the clients are connected to the distance needs to be
passed. In general, the salesman is searching for the shortest tour. In the past different
cases of the TSP were introduced, for example the asymmetric TSP and symmetric TSP
or that not all clients have a link between each other. In this work the symmetric case is
considered, where travelling from client i to client j implies the same costs as travelling
reverse. These assumptions give us (n− 1)!/2 feasible solution of a TSP with n vertices
in a tour. Furthermore, it is assumed that all travelling costs are non-negative.
Given a complete graph Ĝ = (V ′, E) with the set of vertices V ′ = {v1, v2, ..., vm} and

E = {[vi, vj ]|vi, vj ∈ V ′, i < j} as the set of edges. The set of vertices contains all stops
on the closed tour of the salesman and his home. Each edge [vi, vj ] has the cost cij of
travelling from vertex vi to vj . Note that for the TSP only the SP’s are considered. The
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mathematical formulation of the TSP is:∑
[vi,vj ]∈E

cijxij → min! (2.3)

s.t.
∑
vi∈V ′
i 6=j

xij = 1 ∀ vj ∈ V ′ (I)

∑
vj∈V ′
i6=j

xij = 1 ∀ vi ∈ V ′ (II)

∑
vi∈S

vj∈V ′\S

xij ≥ 2 ∀ S ⊂ V ′ (III)

xij ∈ {0, 1} ∀ vi, vj ∈ V ′ (IV)

Equation (2.3) is the objective function, where the decision variable xij is equal to 1
if and only if the salesman is visiting vj after visiting vi. In other words, if the edge
[vi, vj ] will be passed on the tour. Otherwise xij is equal to zero. The constraints
(I) and (II) ensure that each city is just visited once. The additional constraints (III)
are preventing any subtours and are called the subtour elimination constraints. These
constraints determine that any two disjoint partitions of the set V ′ should be connected
by at least two edges.
The TSP is known to be a NP-hard combinatorial problem.
As one can see the first objective of the basic model of RSP in section 2.1 is equal to

the objective of the TSP. Since the basic model of RSP fulfils the assumptions of the
TSP, as like completeness of the graph, symmetry of the edges and non-negativity of all
cij , we can use it to find a ring connecting all SP’s on it.

2.3. User Equilibrium

To describe a service orientated assignment of the vertices to the SP’s, the User Equi-
librium will be introduced. The User Equilibrium is used, with its assumptions on the
behaviour of travellers, to describe the flows of people and goods on links in a network
under given traffic conditions. So, the assignment problem of the RSP needs to be trans-
mitted to a system of a flow network. To do so the works of Dz̆ubur (2013) [10], under
consideration of the basic model of the Wardrop Equilibrium (WE) described by Cor-
rea and Stier-Moses (2010) [6] were taken into account. In her Master’s Thesis Dz̆ubur
[10] optimized a Warehouse Location Problem applying the concept of the User Equilib-
rium. Further on in this section the second objective with a service quality function is
introduced and explained.
The User Equilibrium with its assumption is adapted mainly in the research field of

transportation and telecommunication networks, where the flows within the networks are
optimized. Since Wardrop was the first who formulated its principles in his work from
1952 [27], the User Equilibrium is also referred to as Wardrop Equilibrium. The WE is a
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steady state which is obtained after an adjustment phase of the travellers behaviour till
no one can improve his own objective [6]. One objective can be for example to minimize
the cost of travelling a route in terms of distance or time needed to traverse it. Each
route is described by an origin-destination (OD) pair. Given the traffic conditions each
traveller is optimizing non-cooperatively his own objective and chooses a route which
appears to him as most efficient [6]. This non-cooperative behaviour is not necessarily
optimizing the overall performance. Following this Wardrop formulated the following
principles:

Definition 1 (Wardrop’s Principles). 1. The journey times on all routes actually used
are equal or less than those which would be experienced by a single vehicle on any unused
route.
2. At equilibrium the average journey time is minimum.

The first principle refers to the selfish behaviour of all participants and describes the
User Equilibrium. It says that no one can improve his own travelling cost in the WE by
changing his behaviour while all other participants keep theirs. The Wardrop Equilibrium
refers just to the first principle of Wardrop. The second principle is added here for the sake
of completeness and describes a Social Equilibrium, where the travellers cooperatively
optimize the total travel costs [6].
To obtain a WE in order to optimize the second objective of the RSP introduced in

section 2.1, this will be formulated as a network system. The complete graph G̃ = (V ∪
{t}, Ã) with a dummy vertex t is given with the set of arcs Ã = {(vi, vj), (vi, t)| vi, vj ∈
V }. Ã contains all possible links between the vertices, as given by A in section 2.1,
and additionally links to the vertex t. Note that for each arc (vi, vj)∀vi,vj∈V ∈ A the
cost of transfer this, are given by dij . The set of commodities C = {(vk, t) | vk ∈ V } is
represented by disjoint OD-pairs, where vk is the origin and t the destination. Hence the
elements of C are just distinguished by the origin, the OD-pairs are indicated just by
the origin, as k ∈ C. The demand of vertex vk is defined by the number of inhabitants
pk within it. Given the set of the vertices on the ring V ′ ⊆ V the aim is to find an
efficient route for the demand pk from its origin to a vertex on the ring and then to the
destination. In other words, all routes are going from a vertex vk ∈ V passing one of
the vertices vj ∈ V ′ to t. The purpose of introducing a dummy variable t is to extend
the graph by arcs to which the total incoming demand in each node on the ring can be
assigned [10]. Figure 2.1 shows an example of such a network with all possible routes.
For each OD-pair k the set of routes is given by Rk = {(vk, vj , t)| vk ∈ V, vj ∈ V ′}

and the set of all possible routes is given by the union R =
⋃
k∈C Rk. Through the

pair (vk, vj) each route r ∈ R is uniquely defined and two kinds of link flows can be
determined. Firstly, the link flow between a vertex vk ∈ V and a vertex vj ∈ V ′ is given
by f(vk,vj) = fkj . This flow represents the number of people who live in vertex vk and
decided to travel to vj . It is assumed, that the demand pk is arbitrarily divisible, because
the decision on a route of a single participant has an insignificant small impact on other
participants [6]. Secondly, the link flow from vj to t is defined by f(vj ,t) = fj , which
represents the demand occurring within the node vj on the ring. Consequently, it is the
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Figure 2.1.: Illustration of flows (cf.[10])

total number of incoming people to vj from different vertices. The non-negative vector
of link flows f = ((fkj), (fj))vk∈V,vj∈V ′ contains all link flows in the network.
Since each route r is uniquely and well-defined, each element of non-negative vector of

route flows h = (hkj)vk∈V,vj∈V ′ provides the unique link flow fkj and it holds hkj = fkj
[10]. As a consequence the demand constraints are given by

∑
vj∈V ′ hkj = pk ∀ vk ∈ V .

Hence the flow conversation constraints need to hold for every vj ∈ V ′, which say that
the incoming flow to vj needs to be equal to the outcoming flow, the flow fj is determined
by fj =

∑
k∈C hkj =

∑
k∈C fkj . Because of the bijective relation of link flows and route

flows, everything can be expressed in terms of link flow [10]. The feasible set of flows
(f, h) is given by X. Its projection into the link flow space Xf is defined by the flow
conversation constraints and demand constraints. It follows Xf is a polytope.
Each participant within the network wants to optimize two quantities, the distance

to the ring and the service quality at a SP. These will be summarized in a weighted
sum of two cost function. By minimizing the distance between vk ∈ V and vj ∈ V ′ the
participant are choosing the closest vertex from the set V ′. Note that by dkj , as defined
above, costs related to the length of an arc connecting two vertices are given. By defining
a link travel cost function tkj(fkj) = φ(dkj) the flow vector (fkj)vk∈V,vj∈V ′ is mapped to
its costs on each arc connecting the vertices with the ring. Hence there are no further
restriction on the link capacities, nor the travelling distance and dkj is independent from
a flow on the corresponding link, φ is a constant function regarding to flow. It follows
that φ is non-negative, since costs are positive, in addition to it φ is also continuous and
non-decreasing. To have a linear function, φ will be defined as a constant value α > 0
[10],

φ(dkj) = αdkj . (2.4)

The service quality at a SP is dependent on the amount of people assigned to it. It is
diminishing with every additional person going to the same SP. As a consequence, the
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service quality at a SP is higher, if less people are assigned to this. In order to minimize
the overall objective of a person the function of service quality need to be expressed as
a cost function. To do so the costs of the diminished service quality by every additional
person at a SP are proposed. A function which is growing with each additional person
coming to the SP, needs to represent this sacrifice. Hence no further restriction at a
SP are made like a capacity, this function needs to be non-decreasing, non-negative
and continuous on R≥0 ∪ {∞} with respect to the amount of incoming people to a SP,
described by fj . The function ω(fj) in (2.5) fulfils the stated properties for the sacrifice
in service quality.

ω(fj) = (fj)
2 (2.5)

Let ω(fj) be the function of loss in service quality conditional on fj and β > 0 a constant
price, then the cost function is: tj(fj) = β ω(fj).
The total cost of the flow f on the route k ∈ C are given by

ckj(f) = φ(dkj) + β ω(fj). (2.6)

This cost function corresponds to the one each person is optimizing independently.
To get the Wardrop Equilibrium the total cost function needs to fulfil the conditions

of non-negativity, continuity and it needs to be non-decreasing. Hence the both partial
costs function are fulfilling these properties, consequently they hold also for the sum of
them. Since all routes in Rk for each k ∈ C are uniquely defined by the pair (k, j), the
flow f is Wardrop Equilibrium if and only if

ckj(f) = min
j′
ckj′(f) (2.7)

holds for all (k, j) with a flow fkj bigger than zero ([10], [6]). If there are two routes
(k, j, t) and (k, j′, t) with a flow bigger than zero, the saving on the travelling costs by
choosing the shorter path compensates for the loss in service quality.
The Wardrop Equilibrium can be computed by optimizing the minimum-cost multi-

commodity flow problem with separable objective function as like in (2.8).

min
f

{∑
k,j

∫ fkj

0
φ(dkj)dz +

∫ fj

0
β ω(z)dz| f ∈ Xf

}
. (2.8)

Beckmann et al. [4] showed such a minimum exists. Hence the cost function tkj(fkj),
tj(fj) and ckj(f) are non-negative, non-decreasing and continuous and the feasible set
Xf is a polytope, it follows a convex minimization problem needs to be solved.
By calculating the integrals, we get the following minimization problem:
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min
f

{
α
∑
vk∈V

∑
vj∈V ′

dkjfkj + β
∑
vj∈V ′

1

3
(fj)

3
}

(2.9)

s.t.
∑
vj∈V ′

fkj = pk ∀ vk ∈ V (I)

∑
vk∈V

fkj = fj ∀ vj ∈ V ′ (II)

The demand constraints are stated in (I) and the flow conversation constraints are
given by (II).
Since the service quality was reformulated as a cost function of sacrifice in service

quality is it reasonable to sum up the travelling costs to a SP with it. Both costs
are funded by the inhabitants of the population centres, differently to the ring costs.
Additionally, the two cost in the above introduced assignment problem are not conflicting
each other and have no influence on each other.

2.4. RSP with User Equilibrium Constraints

In this section all the constraints and assumptions will be brought together to give an
overview of the problem, which will be optimized in this Master’s Thesis.

min
( ∑
[vi,vj ]∈E

cijxij , α
∑
vi∈V

∑
vj∈V ′

dijfij + β
∑
vj∈V ′

1

3
(fj)

3
)

(2.10)

s.t.
∑
vi∈V ′
i 6=j

xij = 1 ∀ vj ∈ V ′ (I)

∑
vj∈V ′
i6=j

xij = 1 ∀ vi ∈ V ′ (II)

∑
vi∈S

vj∈V ′\S

xij ≥ 2 ∀ S ⊂ V ′ (III)

∑
vj∈V ′

fij = pi ∀ vi ∈ V (IV)

∑
vi∈V

fij = fj ∀ vj ∈ V ′ (V)

xij ∈ {0, 1} ∀ vi, vj ∈ V ′ (VI)

The two objectives of (2.10) will be solved simultaneously and independent from each
other after the SP’s are chosen. The constraints (I)-(III) and (VI) are similar to the
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constraint of a TSP. (I)-(II) ensures that each vertex on the ring is exactly once on
a tour along the ring. Since it is desirable to have one tour, (III) gives the subtour
elimination constraints. The decision variables are binary (VI), where xij is equal to 1 if
and only if the edge [vi, vj ] is within the cycle, otherwise 0. The demand constraints for
every vertex are given by (IV) and the flow conversation constraints, which are required
for solving the WE, are stated by (V).
As a consequence of introducing the User Equilibrium and its constraints to the bi-

objective RSP in the special case of V ′ = V still a bi-objective optimization problem is
required to be solved. Since there are cases, in which inhabitants of populous SP’s are
willing to travel to another SP’s in return of a gain in service quality. This behaviour is
strongly related on the choice of β.
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3. Multiobjective Optimization and
Genetic Algorithms

The intention of the following chapter is to give an overview on multi-objective optimiza-
tion. Further on the ideas of genetic algorithms are described for a better understanding
of the remainder of this work.

Multiobjective Optimization

Most real-world problems cannot be solved efficiently by optimizing a single objective
function. Often, there are several different objectives, which need to be optimized si-
multaneously. Often they also tend to be conflicting with each other, in a way that by
optimizing one of them the other are influenced to perform worse. Since a single objec-
tive is easier to handle and one optimum exists, many of the multi-objective optimization
problems (MOOP) are solved as a single objective problem. One method to transfer a
MOOP into a single optimization problem is to sum up all objectives and optimize the
value of that sum. To reflect priorities of a decision maker it is possible to multiply each
objective with a different weight. Since often no further information are given about the
complex solution environment prior, it is hard to mirror the preferences of a decision
maker. Another approach is to consider only one of all objectives and constrain it by the
other objectives. In this case an upper or lower bound is set to each of the remaining
objectives. A solution of such approaches is mostly not an adequate one, hence it is not
able to represent the characteristics of the general optimization problem. The result of a
simultaneous optimization of all objectives is seldom a single optimum, it is rather a set
of solutions which can be arranged into different ranks in terms of domination. With-
out loss of generality we can assume that all objectives are minimized [21], further on
domination, also called pareto efficiency, of a decision vector x is defined as in Definition
2.

Definition 2 (Domination). Given n objective functions and m decision variables and
a MOOP defined as follows:

min y = f(x) = (f1(x), f2(x), ..., fn(x))

s.t. x ∈ X

where the x = (x1, x2, ..., xm) is the set of decision variables and X describes the set
of feasible solutions in the decision space. The objective space is described by the set
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Y , which contains all y = (y1, y2, ..., yn). A decision vector x ∈ X dominates another
decision vector x′ ∈ X (x � x′) if and only if

∀i ∈ 1, 2, ..., n : fi(x
′) ≥ fi(x) ∧

∃j ∈ 1, 2, ..., n : fj(x
′) > fj(x).

Within each resulting non-dominated rank all solutions are equally efficient. Conse-
quently, one set of solutions which are non-dominated by any other solution exists. Such
set is called pareto efficient, pareto optimal or pareto set and is defined as in Definition
3. The image of the pareto set is called the pareto front.

Definition 3 (Pareto set). Given the objective set Y , the non-dominated set of solutions
Y ′ ⊂ Y are those solutions, which are not dominated by any element in Y \ Y ′.

Often it is not possible to find all elements of the pareto front, due to the complexity and
range of the problem [21]. Therefore, a good solution method of solving a MOOP should
provide a good approximation of the pareto front. More precisely this approximation
should have minimum distance to the real pareto front and less cluster of elements along
it. Moreover, it is preferable to have uniform spread along the generated pareto front
and as many elements as possible.
Genetic algorithms perform highly in the search of multiple solutions, since they work

with several solutions in one single simulation run. In the following section this method
is discussed deeper, to understand the underlying mechanism.

Genetic Algorithms

A Genetic Algorithm (GA) is a class of optimization methods from the wide field of
Evolutionary Algorithms [2]. The principles of the evolutionary theory are mimicked to
optimize a solution of a problem.
The operations which are inspired by the evolutionary theory are applied to a popu-

lation of solutions, the so-called chromosomes. A chromosome is one possible encoding
of a solution composed by genes. Each decision variable is represented by one gene and
the value of it is called allele. These values are problem specific and can be for example
binary. As in the biological theory each chromosome in the population get a fitness value
assigned. By intuition it is the objective value of the solution. For a MOOP the fitness
can also be represented as the non-domination rank. The fitness value is required to
compare chromosomes with each other. The goal of an optimization method is to raise
the overall fitness of a population, preferable with each iteration. In other words, with
each generation. A generation is a state of a population at a specific iteration throughout
the algorithm. Therefore, some operations are required to transfer and optimize a popu-
lation from one generation to another. To do so some parent chromosomes are chosen for
reproduction of offspring chromosomes. The general procedure of a GA with the most
common methods used is shortly summarized in the following recital. Please note that
beyond these there are also many other variations of each steps.
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(i) Initialization of the population
An initial population is generated, this is most commonly done randomly. The
size of it needs to be set in advance and is equal to the population size for every
generation. Every member of the population gets a fitness value assigned in terms
of its objective values and the corresponding non- domination rank.

(ii) Selection for reproduction
The parents for reproduction are chosen randomly, whereby each chromosome has
the same probability to be selected. Another possible method is the fitness propor-
tionate selection. In this method the chance to be chosen is related to the fitness
of a chromosome. To put it another way, the "better" solution in terms of fitness
values is more likely to be select for reproduction. Joining the selection, a tourna-
ment between the selected members of the population is taken. Usually a binary
tournament is implemented. Two members are compared by their fitness and the
"winner" is selected for recombination.

(iii) Recombination
The parent chromosomes are recombined into offspring chromosomes. A crossover
operator is used for the recombination, which splits the parent chromosomes at
least in one position and recombines them.

(iv) Mutation
A mutation operator is modifying a solution usually at one random selected gene
and operates with a low probability on a chromosome. Using the mutation possi-
bility diversity is added to the population. This makes it possible to explore deeper
the solution space. The mutation rate needs to be set in advance. Since, it depends
on the problem [2].

(v) Replacement
In the replacement phase the next generation is chosen out of the set containing
the current population and the generated offspring. One possibility to do so is to
replace the previous generation totally by the offspring. This approach has the
disadvantage of a high risk of losing "good" existing solutions. A good replacement
operator should be preventive of losing non-dominated chromosomes and provide
elitism.

(vi) Repeat (ii)-(vi) till a termination condition is met The most popular termi-
nation condition is a maximum number of generations.
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4. Literature Review

In present literature the Ring Star Problem is solved in different formulations and as
well with different solution methods. Labbé et al. (1999) [19] introduced the Median
Cycle Problem (MCP) in two different versions and solved them with the branch-and-
cut algorithm. In general, the MCP is defined on a complete mixed graph with given
non-negative routing costs and non-negative assignment costs on each edge respectively
on each arc. Like in RSP the aim is to find a cycle through a subset of the given vertices
with minimum routing costs, which are determined by the edges on the cycle and with
minimum assignment cost. The assignment costs are determined by choosing the arc with
minimum costs connecting a vertex outside the cycle with one on it. The two versions
of the MCP presented by the authors are distinguished mainly in their objectives. The
first variant is minimizing a weighted sum of assignment cost and routing cost and in
further literature often also referred as RSP [20]. The second variant is minimizing the
routing cost under the constraint of from above bounded assignment costs. This version
is mainly called MCP [20]. Although there are two conflicting cost, the MCP in the
work named above was solved as single objective problem. The two variants were also
solved by Moreno Pérez et al (2003) [22] with a variable neigbourhood tabu search and
by Renaud et al. (2004) [24] using a multi-start greedy add heuristic and the random
keys evolutionary algorithm.
In 2004 Labbé et al. [18] published a polyhedral analysis of the Ring Star Problem as

a single objective optimization problem, with the intention to proof that the RSP can be
solved by a convex optimization method. A weighted sum of the routing cost on the ring
and the assignment costs was considered as the objective. As in [19] the authors provided
a mixed-integer linear program formulation and used the branch-and-cut algorithm to
solve the optimization problem.
The RSP was generally solved as a single objective optimization problem of minimizing

of a weighted sum of both costs, routing and assignment costs. So did Dias et al. (2006)
[8] with a hybrid metaheuristic. A General Variable Neighbourhood Search (GVNS) was
used to improve the Greedy Randomized Adaptive Search Procedure (GRASP) and the
results were compared to the results obtained by the proposed solution approach of Pérez
et al.[22].
A bi-objective formulation of the RSP was proposed by Liefooghe et al. (2008) [20] and

(2010) [21]. The same costs were considered as in the works of Labbé et al. [19], [18] and
[17], namely the ring costs, which are defined by the edges on the ring and assignment
costs defined by the shortest arc between a vertex on the ring and one not on the ring.
Unlike single objective optimization the authors optimized two objectives separately.
The search for an approximation of the pareto front was done with four metaheuristics,
particularly IBMOLS (indicator-based multi-objective local search), IBEA (indicator-
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based evolutionary algorithm), NSGA-II (non-dominated sorting genetic algorithm II)
and SEEA (simple elitist evolutionary algorithm). The last three are evolutionary algo-
rithm and the first one is a local search algorithm. The performance of these solution
methods was measured by their hypervolume and the additive ε-indicator. The two best
methods in terms of the measurement methods were chosen to build a hybrid metaheuris-
tic. The hybrid version combined the SEEA, with a good performance in diversification,
with IBMOLS, which is good at intensification.
A real-world application of the Ring Star Problem was introduced by Dörner et al.

(2007) [9]. The authors optimized a tour planning problem for mobile healthcare facil-
ities for a region in Senegal. Three objectives were considered for this multi-objective
optimization problem with one mobile facility. More precisely, the minimization objec-
tives presented were: (1) effectiveness of workforce employment, which is connected to
the tour length of the ring, (2) average accessibility, this is related to the distance which
every inhabitant needs to travel to the next stop of the mobile facility and (3) the cov-
erage. Hence the inhabitants of the settlements (within a vertex) are not able or willing
to walk every distance, the intention is to minimize the uncovered demand. This op-
timization problem was solved with an ant colony optimization metaheuristic and two
multi-objective genetic algorithms.
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5. Solution Method

The genetic metaheuristic NSGA-II (non-dominated sorting genetic algorithm II) will be
applied to approximate the pareto front of the bi-objective RSP with User-Equilibrium
constraint. Section 5.1 will outline the main functions of the NSGA-II and its implemen-
tation. Hence a GA, in this case the NSGA-II, is minimizing the fitness value in terms
of the non-domination rank (cf. [7]) further solutions methods are needed to solve the
partial problems TSP and User Equilibrium. The Clarke&Wright Savings Algorithm will
be used to find a feasible tour on the ring and calculate its costs for each chromosome
in a population. The assignment of the inhabitants within each settlement under the
conditions of the User Equilibrium is done by the Frank-Wolfe Algorithm. These two
heuristic methods are described in section 5.2.

5.1. NSGA-II

5.1.1. General functions of the NSGA-II

The NSGA-II was introduced by Deb et al. (2002) [7]. The characteristic parts of it are
the fast non-dominated sorting approach and the diversity preservation by introducing
the crowded-comparison operator using a crowding distance. Based on them an improved
replacement procedure of the current generation in the main loop is proposed. The first
NSGA (1994) [25] was outperformed by NSGA-II in terms of diversity of the found
solution set, elitism and computational complexity [7]. Before the main loop will be in-
troduced, the non-dominated sorting and the crowded comparison operator are described
in the following paragraphs.
The aim of the non-dominated sorting operator shown in Algorithm 1 is to assign a

rank to each chromosome in a population P. This rank corresponds to the front the
chromosome is a member of and represents its fitness. The authors of [7] introduced two
entities to make the sorting faster, these are a domination count np and a set of solutions
Sp. The domination count np of a chromosome p gives the number of chromosomes by
which p is dominated. Whereby the set Sp contains all chromosome which are dominated
by p. Within a population P every chromosome needs to be compared to the others
regarding dominance. Algorithm 1 line 5 to 9 show how the domination count np and the
set Sp are evaluated. If a solution is not dominated by any other solution, it consequently
belongs to the first front and gets the rank 1 assigned. To identify the next front with its
members the set Sp of every element of the first front is taken under consideration. For
all the solution q in the set Sp of prank = 1 the domination count np will be reduced by
one [7]. If nq is equal to zero now, then it gets the rank 2, qrank = 2. This procedure is
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repeated until all elements in the population get a rank assigned, respectively all fronts
are identified.

Algorithm 1 Fast-Non-Dominated-Sorting [7]
1: function fast-non-dominated-sort(P)
2: for each p ∈ P do
3: Sp = ∅
4: np = 0
5: for each q ∈ P do
6: if p ≺ q then
7: Sp = Sp ∪ {q}
8: else if q ≺ p then
9: np = np + 1

10: if np = 0 then
11: prank = 1
12: F1 = F1 ∪ {p}
13: i = 1
14: while F 6= ∅ do
15: Q = ∅
16: for each p ∈ Fi do
17: for each q ∈ Sp do
18: nq = nq − 1
19: if nq = 0 then
20: qrankd = i+ 1
21: Q = Q∪ {q}
22: i = i+ 1
23: Fi = Q

Another attribute additional to the rank needs was introduced, which makes it pos-
sible to compare chromosome with the same rank. This should also preserve a good
spread of solutions, since diversity is a goal of a good result of a GA [7]. Therefore, the
crowding distance between chromosome within a front is defined. This will provide more
information of the density around a particular solution. For each solution the average
distance between its next top and bottom neighbour along each objective is determined.
This gives an estimation of the perimeter of a cuboid formed by the nearest neighbours
of a particular solution [7]. Figure 5.1 illustrates the idea of the crowding distance with
two objectives. Note that the points are members of the same front.
The crowding distance for every member of a front I is calculated according to the

Algorithm 2, which was proposed by [7]. After the initialization of the distance for each
i ∈ I, the solutions within a front are sorted regarding each objective. The chromosomes
with boundary values get an infinite value assigned as their crowding distance. For
all other solutions the distance is calculated as set in Algorithm 2 line 9. Note that
a solution with a lower crowding distance has a higher density and therefore is more
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Figure 5.1.: crowding distance calculation with two objectives (cf. [7])

crowded. Consequently, chromosome within a front with a higher crowding distance are
preferred.

Algorithm 2 Assignment of the crowding distance [7]
1: function crowding-distance-assignment(I)
2: l = |I| . number of solutions in I
3: for each i ∈ I do
4: I[i]distance = 0

5: for each objective m do
6: I = sort(I,m)
7: I[1] = I[l] =∞
8: for i = 2 to (l − 1) do
9: I[i]distance = I[i]distance + (I[i+ 1].m− I[i− 1].m)/(fmax

m − fmin
m )

Using the crowding distance and the rank of a chromosome the authors of [7] defined
the crowded-comparison operator (≺n).

Definition 4 (Crowded-Comparison Operator≺n). Given for each i ∈ P a non-dominated
rank irank and a crowding distance idistance, a partial order ≺n is defined as

i ≺n j :⇔

if (irank < jrank)

or (irank = jrank) and (idistance > jdistance).

Since the less crowded solution are more likely to be chosen the population is pushed
with every generation to an uniform spread along the approximated pareto front [7].
The procedure of the NSGA-II in Figure 5.2 describes main loop in the t-th generation.

It starts with a fusion of the current population Pt and the generated offspring Qt. Each
has the same size N . The resulting population of size 2N is sorted into non-domination
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fronts. The next generation is filled first with the members of the best non-domination
fronts. As long as the number of solution has not reached N all elements of a front are
added to it, beginning with the first. When the size of a front exceeds the number of
free places in the next generation Pt+1, the solutions within this front with the highest
crowding distance are chosen to be in it.

Figure 5.2.: Main NSGA-II procedure (cf. [7])

By combining the offspring with the current population and sort them according to
the non-domination the elitism is retained [7], since the efficient solutions are kept.
All other steps belonging to a GA, like initialization of the population, crossover and

mutation are free to be selected according to the optimization problem and coding and
will be explained in the following section.

5.1.2. Implementation of the NSGA-II

To gain a good result to the optimization problem stated in chapter 2 the choice of the
encoding, crossover operator and the mutation operator need to be done carefully. Since
they influence the approximation to the pareto front significantly. During the implemen-
tation phase different methods were used and analysed and the following remarks are
describing the ones which were used in the final version of the NSGA-II in this thesis.
A chromosome which describes a solution of the optimization problem defined in section

2.4 contains n = |V | genes. Each gene is representing a vertex vi ∈ V . An intuitive
encoding of a chromosome is the usage of binary variables. A gene at position i take
the value 1 if and only if a SP is opened at vi, else it has the value 0. Note that
each chromosome contains just the information about which vertex is on the ring. One
member of a population in generation t is defined by its chromosome, its costs, number
of the front, which it belongs to and the crowding distance. These attributes are used to
describe the fitness of a solution.
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To initialize the algorithm a population of solutions and their fitness is needed. There-
fore, an initial population of a in advanced set population size N is created. This is
done randomly, where a uniform distribution is used to evaluate a value for each gene in
each chromosome. Furthermore, the corresponding ring costs and assignment costs are
determined with the savings algorithm and Frank-Wolfe algorithm. Based on these costs
the non-dominated sorting is identifying the fronts within the starting population.
In each generation a reproduction step is performed, where N new solutions are gen-

erated out of the existing population, the so-called offspring. Four members of the
population are chosen randomly for a binary tournament. In which always two of the
four members are compared to each other by using the crowded-comparison operator.
Afterwards an one-point crossover operator is performed on the resulting two solution
to created two new solutions. One splitting point is randomly selected, at which the
two chromosomes are cut and put crossed together. In figure 5.3 this procedure is illus-
trated. The probability of all possible split points is uniformly distributed. The possible
crossover points were limited to be between after the first gene and before the last one.
An advantage of this crossover operator is it easy to implement and nevertheless it is
providing diversity. Since it can change the solution in a way that a different cycle within
the vertices is created. This new cycle differ in size and members of it. Additionally to
secure diversity with every crossover it was checked that not two identical solutions were
selected for the crossover. Furthermore the resulting offspring was tested for being a
duplicate of an existing solution (cf. A.4).

Figure 5.3.: One point crossover operator of two solutions

By applying of a mutation operator, the solution space can be explored deeper by
changing randomly some of the found solutions. It is performing with a low probability
on the offspring chromosomes. This probability need to be adjusted to the problem and
test instances. A too low probability does not provide the desired effect of higher diversity
and a too high probability will make the search too random, which leads to unstable
results. A mutation is performed on each gene of the chromosome of an offspring after
the crossover, with the respective mutation rate. It operates by changing the gene values
to 1 if it was previously 0 and to 0 it was 1.
The main loop of the metaheuristic is implemented as proposed by Deb et al. [7] except
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one modification. Throughout the test runs the algorithm produced many duplicates and
this contradicts the goal of diversity. So, an additional condition was added to the loop of
selecting the population in the next generation, which did not allow to accept duplicates.
Since the chromosomes were encoded binary just the chromosomes of each member are
compared (cf. A.4).
Set the population sizeN and maximal number of generations T the following NSGA-II

version is adapted:

• While |P0| < N

– create random chromosome

– calculate the ring cost using the Clarke&Wright Savings Algorithm

– calculate the assignment costs using the Frank-Wolfe Algorithm

• For t = 1 : T

– non-dominated sorting (Pt−1)
– for each front Fi in Pt−1 calculate for each member of it the crowding distance

– Reproduction

∗ choose 4 random members out of the current population

∗ binary tournament

∗ one-point crossover operator

∗ mutation operator

∗ calculate the ring cost using the Clarke&Wright Savings Algorithm

∗ calculate the assignment costs using the Frank-Wolfe Algorithm

∗ repeat Reproduction till |Ot| = N

– merge current population with offspring: Rt = Pt−1 ∪ Ot
– non-dominated sorting(Rt)
– for each front Fi in Rt calculate for each member of it the crowding distance

– select next generation Pt

5.2. Solution Methods of Solving the Partial Problems of
the RSP

5.2.1. Clarke&Wright Savings Algorithm for the TSP

The Savings Algorithm introduced by Clarke and Wright (1964) [5] was intending to solve
Vehicle Routing Problems. Nevertheless, this heuristic was also used to build a feasible
tour for the TSP ([12], [13]). The general idea of the Savings Algorithm is to make
connections between nodes in a way that the saving in costs or distance are maximized
compared to the previous setting. The algorithm consist of the following main steps:
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1. select a vertex as a depot (starting node) and denote it with 1

2. compute savings: sij = ci1 + c1j − cij

3. sort the savings in a decreasing order

4. starting at the top of the savings list and moving downwards, form lager tours by
linking appropriate cities i and j

5. repeat step 4 until a complete tour is formed.

Please note that the tour build by the Saving Algorithm is not optimal.

5.2.2. Frank-Wolfe Algorithm for Solving the WE

For each chromosome the assignment problem with User Equilibrium constraints is solved
by the Frank-Wolfe Algorithm. This section will give a general idea of this solution
approach. The Frank-Wolfe Algorithm is implemented in the way Dz̆ubur [10] introduced
it in her Master’s Thesis about the optimization of a Warehouse Location Problem.
Frank and Wolfe introduced 1956 [11] a gradient and interpolation method, further

known as the Frank-Wolfe Algorithm, to solve constraint non-linear programming prob-
lems. This method is also popular for solving traffic assignment problems, hence to its
inexpensive memory requirements and its simplicity [1]. The Frank-Wolfe Algorithm is
applied to optimize convex problems of the form

{minω(f)|f ∈ X ⊂ Rn≥0},

which satisfy the following conditions

• ω(f) is a convex function and continuously differentiable and

• X ⊂ Rn≥0 is a compact and convex set of feasible solutions.

Given these conditions a solution for that kind of problem exists and it is unique if ω
is strictly convex. The formulation of the assignment of the nodes to the ring using the
concept of the WE in section 2.3 fulfils these conditions.
In each iteration a linear approximation of the objective through the current solution

(ω(f) ∼= ω(f (t))+5ω(f (t))(f − f (t))) is minimized within in the constraint set X ⊂ Rn≥0
to find a search direction (s(t)) and detemine a new and better feasible solution (f (t+1)).
Please note that a solution to the problem discussed in this work is given by the flows on
different routes between all OD-pairs. As a consequence, in each iteration a single route
for each OD-pair is considered [15]. The search direction is defining the solution used in
the next iteration and is the minimizer of the linearisation:

s(t) := argmin
s∈X

(ω(f (t)) +5ω(f (t))(s− f (t))

⇔ argmin
s∈X
5 ω(f (t))s.
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A sequence of solutions is created throughout the algorithm, which is converging against
the optimum of the problem. Although the Frank-Wolfe Algorithm is converging to
an equilibrium, the convergence is asymptotic. It means around the optimum it slows
significantly down in term of convergence and tends to behave in "zig zag" manner
[15]. This is due to the fact that the algorithm prefers to accept corner solution as a
consequence of avoiding infeasibility [15]. To handle this behaviour a modification was
introduced.
The line search approach is using a fixed step size ξt ∈ [0, 1] to determine the next

solution. This is defined by a convex combination of the current solution and the search
direction:

f (t+1) = (1− ξt)f (t) + ξts(t).

As in her work, Dz̆ubur [10] set the step size to ξt = 2
t+2 in iteration t. With each

iteration the weight is more on the previous solution than on the search direction due to
the fact that lim

t→∞
2
t+2 = 0. This setting was also adopted in the implementation in this

work.
Applying the Frank-Wolfe Algorithm to the assignment problem of section 2.3 one

needs to remind that due to the fact that everything can be expressed in terms of fkj
only the demand constraints are of interest for all vertices k = 1, ..., n. Given the n×m-
matrix, (fkj)k∈V ;j∈V ′ each vector k describes the distribution of the demand pk on the m
vertices on the ring. Therefore the vector (fk1, fk2, ..., fkm)′ is an element of the standard
simplex Spkm in Rm, which is by the factor pk enlarged (cf. [10]).

Spkm = {(x1, ..., xm) ∈ Rm|x1 + ...+ xm = pk, xj ≥ 0, j = 1, ...,m}

It follows that the feasible set Xf is polyhedron, precisely a Cartesian product of enlarged
simplices (Sp1m × ...×Spnm ) [10]. This fact leads to the conclusion that with each iteration
step the search direction s(t) is not a point, but rather a (n×m) matrix

s(t) := argmin{
n∑
k=1

m∑
j=1

∂ω(f (t))

∂fkj
skj |s = (skj) ∈ Sp1m × ...× Spnm }.

This problem can be broken down into n partial problems, for each k ∈ V [6], [10]:

s
(t)
k = argmin{

m∑
j=1

∂ω(f (t))

∂fkj
skj |sk = (sk1, ..., skm)

′ ∈ Spkm }.

For each problem the solution is given by a corner point of the corresponding simplex. It
follows s(t) = (s

(t)
1 , ..., s

(t)
n ) = (p1ej∗(1), ..., pnej∗(n))

′, where the index of the minimizer of
the k-th problem is given by j∗(k) and ej is the j-th unit vector in Rm [10]. Using fk =
1
m

∑m
j=1 pkej = 1

m

∑m
j=1 pk(1, ..., 1)

′ for the flows for each simplex and ξ0 = 1 as initial
values, algorithm 3 describes the implemented version of the Frank-Wolfe Algorithm.
Since the algorithm is converging to the optimal solution ω(f∗) in a zig zag manner,

it is reasonable to define an upper and a lower bound of the objective value within
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Algorithm 3 Frank-Wolfe Algorithm [10]
1: function Frank-Wolfe(f)
2: for t = 1 : tmax do
3: for k = 1 : n do
4: Find the optimal corner point sk = dkej∗(k) whitin the simplex Sdkm s.t.
5: j∗(k) = arg min{...}
6: Set s = (s1, ..., sn)

7: Set ξ =
2

t+ 2
8: Set f = (1− ξ)f + ξs
9: for j = 1 : m do

10:
∑n

k=1 fkj = fj

each iteration. Using the best known upper and lower bounds throughout the algorithm
is providing an alternative termination criterion by considering the gap between these
values. The equation below gives a relation which is used to define the lower (LBDt)
and upper (UBDt) bound in each iteration:

ω(f (t)) +5ω(f (t))(s(t) − f (t)) ≤︸︷︷︸
(I)

ω(f (t)) +5ω(f (t))(f∗ − f (t)) ≤︸︷︷︸
(II)

ω(f∗) ≤︸︷︷︸
(III)

ω(f (t+1)).

The inequality (II) and (III) follow from the convexity of ω and optimality of ω(f∗).
Since (s(t) − f (t)) is the optimal search direction within iteration t which is not neces-
sarily true for (f∗ − f (t)) in t, inequality (I) holds. It follows that LBDt := ω(f (t)) +
5ω(f (t))(s(t) − f (t)) and UBDt := ω(f (t+1)). The interval [LBDt, UBDt] contains the
optimal value and is decreasing, since the sequence LBDt approximates from below to
the optimal objective value and UBDt from above. In chapter 6 the gap, more precisely
the relative gap, between the best known upper (UBD) and lower (LBD) bound is used to
analyse the computational results of the Frank-Wolfe Algorithm and evaluate the quality
of its results. As in the work of Dz̆ubur [10] the relative gap is:

UBD − LBD
LBD

.
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6. Computational Results

All the results discussed in the following chapter were calculated by using the software
"Microsoft Visual C++ 2015 Express Edition" on the same PC with 2.60 GHz and 8 GB
RAM.

6.1. Test Instances

To the best knowledge of the author the bi-objective RSP was not solved with User
Equilibrium constraints until the present time, therefore there are no existing instances
with a known pareto front or best-known results. For that reason, test instances were
generated and enumerated. Due to the computational effort of the enumeration of all
possible combinations of a binary encoded solution and the connected calculation of the
optimal objectives, each test instance contains 10 vertices. The vertices were randomly
generated in a [0, 100]x[0, 100] square. The Euclidean distance between two nodes was
rounded to the next integer and corresponds to the costs of travelling from one vertex
to another. The instances were created with different distributions among the vertices,
namely uniform distribution and two different clusters. The demand within the vertices
was also randomly generated within a given interval. Whereby the instances are also
distinguished by a weak spread of demand, [20, 40] and a strong spread [20, 80]. Table
6.1 shows all generated instances with their characteristics. The first letter in the name
of the instance indicates which distribution of the vertices was used and the following
number gives the information about the demand spread. Three instances with same
characteristics of each kind were created and the last number in the name distinguishes
them. Overall 18 test instances were created to test the performance of the proposed
solution approach.
For the evaluation of the optimal ring costs for each possible combination of the vertices

all permutation of them were enumerated. To calculate the exact and optimal solution of
the second objective would go beyond the scope of this Master’s Thesis. Hence, the result
of Frank-Wolfe Algorithm is approximating closer to the optimum with more iterations,
it was reasonable to solve this problem with the heuristic method with more iterations.
The assignment costs for each solution of each instance were calculated by the Frank-
Wolfe Algorithm with a termination condition of maximum of iterations. This was set
to 2000 iterations, based on the results of the testing phase described in section 6.3.1.
Since it appeared that some solutions achieve a significant small rate of change between
two iterations after less than 2000 iterations, an additional termination condition was
plugged into the algorithm. This condition applied only if the change rates between two
iterations of all fkj were smaller than 0.001 and additional the change rates of all fj
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were smaller than 0.01. These extra conditions were set with the intention of saving
computational time.
The values of weights α and β were set based on the analysis and discussion of them

in section 6.3.1: α = 1 & β = 0.25. The computational time of the enumeration was on
average for one instance 90 minutes.

Name Distribution Demand-
Interval

Pareto-
Front
size

Max
Ring
Cost

Max Assignment Cost

U 40 1 uniform [20,40] 19 283 2 161 190.7500
U 40 2 uniform [20,40] 24 352 1 432 044.3750
U 40 3 uniform [20,40] 32 270 2 599 781.7500
U 80 1 uniform [20,80] 27 284 9 838 769.0000
U 80 2 uniform [20,80] 22 247 5 639 906.0000
U 80 3 uniform [20,80] 37 328 15 964 275.0000
C2 40 1 2 clusters [20,40] 28 237 2 095 425.3750
C2 40 2 2 clusters [20,40] 25 294 2 270 927.0000
C2 40 3 2 clusters [20,40] 34 231 1 690 995.6250
C2 80 1 2 clusters [20,80] 22 208 9 535 862.0000
C2 80 2 2 clusters [20,80] 28 263 10 454 375.0000
C2 80 3 2 clusters [20,80] 27 217 11 151 995.0000
C3 40 1 3 clusters [20,40] 24 333 1 623 154.3750
C3 40 2 3 clusters [20,40] 30 279 3 042 835.7500
C3 40 3 3 clusters [20,40] 24 322 1 676 903.6250
C3 80 1 3 clusters [20,80] 26 304 7 575 794.5000
C3 80 2 3 clusters [20,80] 33 311 8 688 215.0000
C3 80 3 3 clusters [20,80] 28 321 10 832 994.0000

Table 6.1.: Test Instances

6.2. Metric for Performance Measurement

To measure the performance of the proposed solution approach a metric needs to be
introduced. This should provide information about the above-named quality goals of an
approximation of the pareto front. Namely small distance to the true pareto front, a
good spread along it and high number of elements.
A measurement metric which performs satisfactorily is the hypervolume metric, which

was initially proposed by Zitzler and Thiele (1999) [28]. The area in the objective space
which is covered by the set of non-dominated solutions is the target of it. For each member
of the non-dominated set an area defined by its objective values and an in advance chosen
reference point is considered. In the case of bi-objective optimization they are forming a
rectangle. The hypervolume H is defined by the union of those rectangles of all members
of the non-dominated set. Figure 6.1 illustrates a hypervolume in a two dimensional
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space bounded by the points ’a’ to ’e’ and the reference point.

f1

f2 reference point

a
b

c
d

e

Figure 6.1.: Illustration of a hypervolume in a bi-objective solution space

Frequently the relative Hypervolume H̃ ∈ [0, 1] is used, where the fraction of coverage
of the area between the zero point and reference point is measured. Therefore, a better
non-dominated set has a higher H̃. Another approach of the Hypervolume measurement
is to use the Hypervolume difference indicator I−. This indicator is computed by taking
the difference of two Hypervolumes. This approach is often used if a reference set is given
in advance, such as the pareto set. A good approximation of the pareto front has a small
value for the I−. The Hypervolume difference indicator can be calculated by using values
of the area calculation or the relative hypervolume values. The scaling of the volume
or the objective values has no influence on the comparison analysis [16]. Therefore,
the relative values of the Hypervolume will be taken under consideration further in the
analysis.
The choice of the reference point should be made more thoughtfully, since it is directly

affecting the size of the areas. The reference point is influencing the comparison of two
different sets in terms of performance measure (cf.[16]). Since the goal of the optimization
problem in this work is to get a good approximation of the pareto front, for each test
instance the maximum of both objective values will give the reference point. These
maximum values are taken from the enumeration results.
Note that the hypervolume metric gives only meaningful information if the true pareto

front and the objective value space are convex [26]. As shown in chapter 2 is it the case
here.

6.3. Parameter Settings

For the section of testing different parameter setting an instance with uniform distribution
of the vertices in a [0, 100]x[0, 100] square with a strong spread of the demand [20, 80]
among the vertices was created and enumerated. The tables A.1 and A.2 in the appendix
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give the exact demand values for each node and the Euclidean distance between them.
All results in this section are rounded to the fourth decimal place.

6.3.1. Parameters Analysis - Frank Wolfe Algorithm

To run the Frank Wolfe Algorithm three parameters need to be analysed in advance, since
they influence the outcome and the approximation of the result to the equilibrium. The
weights α and β in the second objective are crucial due to the fact that they describe the
willingness to travel additional distance to gain more service quality in exchange. There-
fore, these two weights have also a big impact on the flows of the model. The number
of iterations of the Frank Wolfe Algorithm will be set as the termination criterion of the
algorithm used in the NSGA-II implementation. This decision is based on the recom-
mendation in [10]. Nevertheless, the maximal number of iterations need to be chosen
carefully, since with more iterations the algorithm approaches closer to the equilibrium
and simultaneously the CPU time raises. Additionally, the approximation slows down
while getting closer to the equilibrium.
No further assumptions were made on capacities at the SP’s nor on the maximum

travelling distance to the ring in the model discussed in this work. Further on the relation
between the weights will be analysed with reason to get an idea of their influence on the
different kind of flows and on the approximation of the algorithm.
Three different cases are of a special interest in this analysis, namely:

• β
α = 1⇔ α = β

• β
α > 1⇔ α < β

• 0 < β
α < 1⇔ α > β.

It is assumed that both weights, α and β, are bigger than zero.
The setting of β = 0 and α = 1 is describing the general RSP, where the demand of a

vertex is served by the closest SP regardless the service quality at it. The results of the
assignment are equal for any α > 0. Hence the focus of this work is to analyse a solution
approach of solving the RSP with User Equilibrium constraints, this setting will be not
observed further.
The opposite case is to set α = 0 and choose β to be bigger than zero. Here the

participants are willing to travel any distance to gain more service quality vice versa to
reduce their costs of sacrifice in service quality. The equilibrium in this case is given by
the static incoming flows fj =

∑
k∈V dk
|V ′| ∀j ∈ V

′. Each SP has the same incoming flow
and therefore also the same service quality, which results in the same assignment costs
for each participant. No one can improve his costs by changing his behaviour. From the
relation fj =

∑
k∈V fkj for all j ∈ V ′ and that the distance to a SP is irrelevant, one can

follow that fkj = dk
|V ′| ∀k ∈ V,∀j ∈ V

′ are the equilibrium flows between each vertex and
the available SP’s. Since these results are obvious and taking just one cost into account
of the assignment, this setting was also excluded from the further analysis. Please note
that these results were also tested to be true.
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To get a first idea of the influence of the weights on the output, the case where α
is equal to β was analysed. Table 6.2 presents the results of running the Frank-Wolfe
Algorithm with setting α = β = 1 with different numbers of iterations. The first three
columns give information about the settings of the test runs, to be exact the weight
values and the number of iterations. These are followed by the relative gap between
the best known UBD and LBD (relatively to the LBD). The next three columns show
the change of the objective value in percent, the absolute change of the flow fj and the
absolute change of the flows between a vertex and a SP (fkj). The change rate is always
considered between the last two iteration steps. The CPU running time is listed in the
last column and gives the total running time of the Frank Wolfe Algorithm for all possible
solutions (2n − 1). Since the stated setting were run for all possible solutions the first
value is the average result and is followed by the maximum in brackets. The results of
each test run with the other relation between α and β are presented in the appendix
section A.2 in tables A.3 to A.8 and will be considered into the discussion in this section.
Table 6.2 and the tables A.3 to A.8 shows that all rates decline with rising number of

α β #
iter-
ation

(UBD-
LBD)/LBD

change of
objective
value

change fj change in
fkj

CPU
time

1 1

50 0.0248 (0.1) 0.0486%
(1.3339%)

5.8147
(15.9525)

0.5815
(2.5571)

2min 6s

100 0.0176
(0.0677)

0.0093%
(0.4445%)

2.9355
(7.9738)

0.2937
(1.2488 )

4min 14s

200 0.0151
(0.0445)

0.0070%
(0.1001%)

1.4497
(3.9461)

0.1473
(0.6410)

8min 36s

500 0.0095
(0.0173)

0.0023%
(0.0123%)

0.4886
(1.5070)

0.0553
(0.2709)

20min
48s

1000 0.0043
(0.0081)

0.0006%
(0.0024%)

0.1754
(0.7241)

0.0232
(0.1344 )

46min
43s

1500 0.0024
(0.0045)

0.0003%
(0.0013%)

0.0914
(0.4828)

0.0131
(0.0901)

1h 1min
44s

Table 6.2.: Test runs of Frank Wolfe algorithm with α = β = 1

iterations.
It occurs that the average change rates of the objectives values are less than 1% even

with few iterations. By taking a closer look at the average rates within the different
setting of the weights and number of iterations it stands out that there is no clear
tendency of the rates by changing the values of α and β. If α is fixed and β diminishing,
the average rates of the objective values for the different iteration numbers do not change
in a same manner. In table 6.3 the observations are summarized. For 50, 100 and 200
iterations the average rates are rising with a diminishing β and declining for 1000 and
1500 iterations. If the algorithm stops after 500 iterations no tendency is noticeable. For
a fixed β and diminishing α the average rates of the objective values are rising if the
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iterations are higher than 50.
The analysis of the influence of the different settings of the weights on the change rates

of the relative gap between the best known UBD and LBD shows also that it is difficult
to say how they are adjust. For a diminishing β the rates are rising for the termination
criterion of 50, 100 and 200 iterations. For higher tested iteration it is falling with a
declining β. Similar behaviour was observed for a diminishing α (table 6.3).
The rates of changing of the flows fkj and fj seem to react uniformly throughout the

different tested iterations (cf. tables 6.3, A.3 - A.8). Note that considering the rates
after 50 iterations of the Frank Wolfe Algorithm one might not detect a trend how the
flow rates are influence by a declining β. For higher iterations the average rates of the
flows are falling with a diminishing β. However, the rates are rising if α is diminished.
These leads to the assumption that the flows adjust fast for a lower β value in the setting
α > β and it takes more iterations to adjust them for a lower α, when α < β.

Iterations 50 100 200 500 1000 1500 Average rate of change
α = 1 > β ↓ ↑ ↑ ↑ − ↓ ↓ objective value
α ↓< β = 1 − ↑ ↑ ↑ ↑ ↑
α = 1 > β ↓ ↑ ↑ ↑ ↓ ↓ ↓ (UBD-LBD)/LBD
α ↓< β = 1 ↓ ↓ ↓ ↓ − ↑
α = 1 > β ↓ − ↓ ↓ ↓ ↓ ↓

fkjα ↓< β = 1 ↑ ↑ ↑ ↑ ↑ ↑
α = 1 > β ↓ − ↓ ↓ ↓ ↓ ↓

fjα ↓< β = 1 ↑ ↑ ↑ ↑ ↑ ↑

Table 6.3.: Changes of average rates by declining β, resp. α with different terminations
of the Frank Wolfe Algorithm (↑: rates are rising, ↓: rates are falling, −: no
tendency)

In the further discussion a closer look will be taken onto the flows and how their
approximation behaviour is influenced by different weights. For this purpose, the Frank
Wolfe Algorithm was run for each solution until the change rate between two iterations
is smaller than a certain value (ε) for all flows. Additionally it was sophisticated between
two kinds of flows, fkj and fj and different setting of α and β. Table 6.4 and 6.5 present
the average and maximum number of iterations needed until the termination condition
was met.
Concerning the flows fkj , if ε = 1 the average number of iterations until the algorithm

stops does not vary significantly. It is constant if the value of α is diminished. For
a declining β the average number of iterations slightly declines. The lowest average
number within the test runs settings, is reached with β = 0.25 and is 6.48% less than
for β = α = 1. The same observations hold for the maximum values. If ε is set to
0.1, bigger variations of the average number of iterations are observed by changing the
weights. The lowest value is reached again with the set-up of β = 0.25 and α = 1. The
average value is reduced by 24.40% from the initial setting of α = β = 1. The average
number of iterations until the termination condition is met is declining with a diminishing
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β (β < α) and rising for a diminishing α (α < β) (cf. table 6.4). By comparing the
average numbers of the two threshold values, it appears that for the different weights the
increase is not the same. For α = β = 1 it takes about 8 times more iterations on average
to fulfil the stopping condition of ε = 0.1 than ε = 1. For β = 0.25 it is about 6.5 times
more for a threshold value of 0.1 than 1. Even though the average and maximum values
of the iterations do not vary for different α with ε = 1, the increase of them does differ
if ε is set to 0.1. The average number of iterations is increased by about 10 times of the
number for ε equal to 1 and α = 0.25 by using 0.1 as threshold value. For α = 0.75 it
is 8.5 times more. It follows that the weights α and β have an influence on how fast the
flows fkj approximate to a stable state.

ε = 1 ε = 0.1

α β avg # it-
erations

max #
itera-
tions

CPU time avg # it-
erations

max #
itera-
tions

CPU time

1 1 108 127 3min 51s 869 1068 32min 4s
1 0.75 108 127 3min 53s 815 1064 27min 11s
1 0.5 107 123 3min 43s 747 1028 24min 35s
1 0.25 101 118 3min 28s 657 959 22min 2s

0.75 1 108 127 3min 51s 924 1136 33min 9s
0.5 1 108 127 3min 51s 995 1183 37min 29s
0.25 1 108 127 3min 51s 1072 1217 40min 10s

Table 6.4.: Frank Wolfe Algorithm with stopping condition: fkj < ε ∀ k ∈ V, j ∈ V ′

Table 6.5 shows the results of testing the Frank Wolfe Algorithm with a termination
condition using a threshold value ε on the absolute change rate between two iterations of
the flows fj . The first what is noticed is that it requires more iterations than using the
threshold value for fkj until the algorithm is determined, for both values of ε. As above
the analysis will begin with ε = 1. In the reference case of α = β = 1 on average 434
iterations are required, and maximum 724, until the algorithm stops. Likewise, above the
lowest number is reached with setting β = 0.25 with an average number of iterations of
211, which is 51.38% less than the reference case. Unlike above the number of iterations
differ for different values of α. They rise with a declining α. For α = 0.25 the average
number of iterations is increased by 57.83% from the case α = 1(= β). The same trends
are observable for ε = 0.1, the number of iterations after which the termination condition
is met are falling with a declining β and rising with a declining α. The change of the
threshold ε from 1 to 0.1 is approximately tripling the average number of iterations for
all weights. The highest increase is with α = 0.25 and β = 1 of about 3.7 times of the
685 to 2534 average number of iterations.
Since there are no restrictions on the flows or the capacities and after the analysis of

the weights the decision on how to set them is made with respect to their influence on
the approximation to a stable state. A β which is smaller than α is preferred. Since it
takes less iteration until the changes between two steps are adequate.
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ε = 1 ε = 0.1

α β avg # it-
erations

max #
itera-
tions

CPU time avg # it-
erations

max #
itera-
tions

CPU time

1 1 434 724 15min 14s 1183 6039 38min 8s
1 0.75 374 680 11min 20s 1027 4878 35min 47s
1 0.5 296 679 10min 41s 857 4530 30min 38s
1 0.25 211 604 6min 32s 665 4530 21min 58s

0.75 1 499 725 16min 39s 1378 6039 44min 37s
0.5 1 593 755 20min 29s 1723 6040 55min 1s
0.25 1 685 792 30min 36s 2534 6795 1h 22min 4s

Table 6.5.: Frank Wolfe Algorithm with stopping condition:fj < ε ∀ j ∈ V ′

6.3.2. Parameter Analysis - NSGA-II

Mutation Rate

The influence of the mutation rate to the outcome of the proposed NSGA-II will be
analysed using the same test instance as above. For evaluation of the outcome the
relative Hypervolume was used. The enumeration of the instance gave the reference point
at maximum ring cost of 308 and maximum assignment costs of 7 775 196. For the test
runs the population size was set to 40 and the NSGA-II stopped after 20 generations.
Table 6.6 presents the average results of 5 runs with each setting and the standard
deviation values, whereby only the mutation rate was changed.

mutation rate average H̃ standard deviation
0 0.8878 0.00785
0.1 0.8944 0.00016
0.2 0.8891 0.01059
0.5 0.8713 0.02351
0.8 0.8778 0.00732

Table 6.6.: Test runs with different mutation rates

The rates of 0.5 give lower average values of the Hypervolume with the highest devi-
ation. Whereby a probability of 0.8 returns on average a slightly better Hypervolume
with a much smaller standard deviation than a mutation rate of 0.5. A rate of 0, means
that the test runs were done without any randomness provided by a mutation operator.
Nevertheless, the outcome of this setting did not give the worst results, neither in the
average value nor in the standard deviation. The best performance gave the setting of 0.1
mutation probability. It gave the highest average H̃ and the smallest deviation. These
results suggest the conclusion that a rate of 0.1 gives stable results and provides still
some randomness to the solution search.
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Population Size and Number of Generations

The parameter population size is giving the number of solutions in each generation and
how many offspring chromosomes are generated. Therefore, it has an impact on the search
of a good non-dominated set in the objective space, since it defines the intensity and how
widely the objective space is explored in combination with number of generations.
The enumeration results are giving a pareto set for each test instance. Given the size

of these pareto fronts it is argumentative to conclude that the size of a population should
not undercut these. As it is in table 6.1 shown the biggest pareto set has 37 solutions and
the average size of the non-dominated sets over all test instances is about 27 members.
Thus the minimum number of solutions within a population will be set to be 40.
The performance of the NSGA-II was tested with different settings of the population

size, 40, 60 and 80. For each of them the genetic algorithm was run three times with 100
generations. Figures 6.2 to 6.4 show how the relative Hypervolume changed through the
algorithm in three runs. The figures are distinguished by the size of the population and
each set of points represents one test run. It appears that all the test runs are approxi-
mating the same maximum relative Hypervolume value, this is for all three settings the
same (0.8944). This maximum is just slightly less than the relative Hypervolume which
is cover by the pareto front (0.8948) of the test instance.

Figure 6.2.: Evaluation of H̃ through the NSGA-II with 100 generations and population
size of 40 (results of 3 runs)

The spread of figure 6.2, with a population size of 40, is higher than the spread of the
other figures with a bigger population size for low generation numbers. In one test run
more than 45 generations were needed to reach the maximum value of 0.8944. Whereby
with a population size of 80 solutions each of the three test runs got to it within less
than 15 generations. To see the impact clearer another 5 test runs where made with this
setting but with just 20 generations. For a population size of 40 the average H̃ was 0.8886
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(standard deviation: 0.008), for 60 it was 0.8944 (standard deviation: 0.000006). For the
size of each generation of 80 the average H̃ was 0.8944 without any variance. In other
words, with a larger population less generations are needed until the best approximation
of the pareto set is found.

Figure 6.3.: Evaluation of H̃ through the NSGA-II with 100 generations and population
size of 60 (results of 3 runs)

Figure 6.4.: Evaluation of H̃ through the NSGA-II with 100 generations and population
size of 80 (results of 3 runs)

By analysing in particular the elements of the best found non-domination set and the
pareto front given from the enumeration it appeared that the elements differ slightly from
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each other. Because of the heuristic approach of solving the partial problems there exists
an upper bound for the relative hypervolume formed by the best found non-domination
set. Whereby this best-found approximation is very close to the pareto front resulting
from the enumeration, as shown in figure 6.5 and resulting difference between the relative
hypervolume.

Figure 6.5.: Pareto front and the best found approximation of the test instance for the
parameter setting

Moreover, through the test runs another observation was made for all the settings of
population size and generation numbers. The number of fronts within a population is
shrinking through the generations. To validate this for all test runs the number of fronts
was tracked in each test run. Figure 6.6 shows one series of number of fronts for a test
run with a population size of 80 solutions and 100 iterations. The initial population
was sorted in terms of domination into 10 fronts. With each iteration the number of
them is falling until it reaches the first time a minimum of 3 in the 9th generation. In
further execution of the algorithm it switches between 3 and 4 fronts, whereby there are
mostly just 3 fronts in the population. The enumeration results display that the 80 best
solutions can be sorted into three fronts by applying the non-domination sorting. This
is supported by the test results. All test runs for N = 80 the number of fronts was not
smaller than 3.
For the sake of completeness, the number of fronts for a population inclusive the

offspring was also tracked. Figure A.1 in the appendix shows the series of number of
fronts of generation including the offspring before the selection of the next generation.
From this figure it follows that there is no trend for a size of fronts for population with its
offspring. Even though this number is pushed for the population to a certain minimum,
the operations of reproduction and mutation create different new solutions in terms of
objective functions and as well of domination.
The named observation on the progress of the fronts within a population was made also
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on other test runs. In figure 6.4 is shown that for a population size of 80 the NSGA-II
finds roughly after 15 iterations it best found non-dominated set. It follows that there is
no clear connection between the number of fronts and the quality of the approximation
of the pareto front. The number of fronts can be used as an indicator for a best found
solution, but not as a quality measurement or a stopping condition for the NSGA-II.

Figure 6.6.: Number of fronts within a population of size 80 in each generation

6.4. Overall Computational Results with the Test Instances

The final test runs using the test instances were done with the setting of a population
size of 40 and the generation number 50. Given the results discussed above it followed
that either a big population size with less generations or a smaller population with more
generation need to be set to gain adequate results. The computational time is rising with
both parameters and execution of the NSGA-II with a population of 80 solutions and 20
generations takes about 45 minutes and as well with the chosen setting. The mutation
rate is set to be 0.10 for each gene on a chromosome. The Frank Wolfe Algorithm was
executed with 700 iterations and α = 1 and β = 0.25.
Each test instance had three independent test runs and table 6.7 presents the resulting

average difference indicator of the relative Hypervolumes and the standard deviation. The
last column is showing the maximal computing time of the test runs for each instance.
The instances with a standard deviation of 0 had the same results in all three runs.
The overall performance of the implemented solution method was good, in terms of
the difference indicator I−

H̃
. The uniformly distributed instances were slightly better

solved by the NSGA-II than the clustered. 4 out of 6 instances were solved without a
deviation and had a difference to the Hypervolume of the pareto front of less than 0.001.
The Hypervolume of these instances was less than 0.1% smaller than the Hypervolume
covered by the pareto set. The results of the clustered instances are less stable and
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deviate more. Nevertheless, the average difference indicator of the cluster instance is
not exceeding 0.1. The biggest difference resulted from the instance "C2 80 3", which
was on average 0.0136. The NSGA-II is performing with nearly the same quality on the
uniform distributed instances, as on instance with clusters. The observed results do not
distinguish between the different demand spread in the instances.

Instance Average I(−)
H̃

Standard Deviation max CPU

U 40 1 0.0002 0 49min 16s
U 40 2 0.0007 0 43min 5s
U 40 3 0.0057 0.0095 41min 24s
U 80 1 0.0002 0 47min
U 80 2 0.0002 0 52min 15s
U 80 3 0.0093 <0.0001 59min 9s
C2 40 1 0.0003 0.0003 47min 18s
C2 40 2 0.0005 <0.0001 41min 28s
C2 40 3 0.0045 0.0037 38min 54s
C2 80 1 0.0001 <0.0001 53min 4s
C2 80 2 0.0002 0 1h 1min 59s
C2 80 3 0.0136 0.0011 46min 30s
C3 40 1 0.0003 0 47min 49s
C3 40 2 0.0002 <0.0001 38min 36s
C3 40 3 0.0004 0 52min 43s
C3 80 1 0.0053 0 45min 29s
C3 80 2 0.0001 <0.0001 40min 45s
C3 80 3 0.0033 0.0054 47min 2s

Table 6.7.: Computational Results of the Test Instances
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7. Conclusion

The bi-objective Ring Star Problem was solved by the genetic algorithm NSGA-II.
Whereby the assignment problem was extended by User Equilibrium constraints. This
made it possible to modify the assignment of the vertices to a Service Point based on
distance and additionally based on the service quality. A function, which represents the
costs of sacrifice in the service quality dependent on the total served demand at a SP,
was introduced. To solve this partial problem, it was formulated as a network system,
for which the User Equilibrium could be solved by the Frank Wolfe Algorithm. The cal-
culation of the ring costs was done by solving the TSP using the Clarke&Wright Savings
Algorithm. The quality of the implemented NSGA-II was measured on generated test
instances by using the Hypervolume metric.
During the adjustment phase of the parameter settings it got noticeable that the

implemented solution approach was performing very good on these small instances. This
early guess was proven to be true by the final test runs. The computation time of the
approximated pareto fronts was halved compared to the enumeration time. Whereby the
results on average covered just less than 1% of the Hypervolume given by the pareto set.
The NSGA-II gave stable results independently of the characteristics of the test instance.
The explanation for the good performance of the solution method can be assumed to be

the encoding of the solution. This allows a fast and easy comparison of two chromosomes.
This gave the advantage that during the selection phase of the population, duplicates of
already selected chromosome where excluded independent of their dominance.
For future research it is suggested to test the NSGA-II on bigger test instance and

compare it with other optimization methods. For example, methods with different en-
coding of the chromosomes as like the random keys sequencing (cf. [3], [21]). The random
keys sequencing might improve the overall runtime of the optimization method, hence
no additional heuristic of solving the TSP is required.
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A. Appendix

A.1. Test Instance for Parameter Settings

Vertex 1 2 3 4 5 6 7 8 9 10
∑

Demand 56 65 47 71 56 34 34 25 24 41 453

Table A.1.: Demands of the vertices in the test instance for parameter setting

Vertex 1 2 3 4 5 6 7 8 9 10
1 0 24 85 83 65 57 27 77 82 52
2 24 0 89 91 87 47 40 81 83 56
3 85 89 0 16 77 53 59 9 12 34
4 83 91 16 0 63 62 56 15 27 36
5 65 87 77 63 0 91 51 69 83 64
6 57 47 53 62 91 0 44 48 43 30
7 27 40 59 56 51 44 0 50 57 27
8 77 81 9 15 69 48 50 0 14 26
9 82 83 12 27 83 43 57 14 0 30
10 52 56 34 36 64 30 27 26 30 0

Table A.2.: Distance matrix between the vertices in the test instance for parameter
setting
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A.2. Additional Results of Test Runs for Frank Wolfe
Algorithm

α β #
iter-
ation

(UBD-
LBD)/LBD

change of
objective
value

change fj change in
fkj

CPU
time

1 0.75

50 0.0296
(0.1077)

0.0559%
(1.4089%)

5.8139
(15.8159)

0.5815
(2.58706)

2min 11s

100 0.0223
(0.0725)

0.0142%
(0.4320%)

2.9289
(7.9737)

0.2936
(1.2482 )

4min 23s

200 0.0184
(0.0453)

0.0097%
(0.0988%)

1.4027
(3.8657)

0.1462
(0.6605)

9min 26s

500 0.0095
(0.0174)

0.0026%
(0.0131%)

0.4265
(1.4476)

0.0521
(0.2632)

26min 7s

1000 0.0038
(0.0073)

0.0006%
(0.0022%)

0.1467
(0.6790)

0.0206
(0.1384 )

40min
12s

1500 0.0021
(0.0045)

0.0002%
(0.0010%)

0.0787
(0.4527)

0.0114
(0.0940)

1h
12min
21s

Table A.3.: Test runs of Frank Wolfe Algorithm with α = 1, β = 0.75

α β #
iter-
ation

(UBD-
LBD)/LBD

change of
objective
value

change fj change in
fkj

CPU
time

1 0.5

50 0.0389
(0.1402)

0.0665%
(1.4663%)

5.8283
(15.7925)

0.5832
(2.5849)

2min 2s

100 0.0305
(0.0872)

0.0300%
(0.4260%)

2.8949
(7.9410)

0.2936
(1.3238 )

3min 57s

200 0.0227
(0.0431)

0.0140%
(0.0847%)

1.2771
(3.8636)

0.1421
(0.6599)

7min 47s

500 0.0087
(0.0150)

0.0025%
(0.0102%)

0.3500
(1.4469)

0.0462
(0.2705)

19min
12s

1000 0.0031
(0.0067)

0.0005%
(0.0024%)

0.1178
(0.6790)

0.0171
(0.1303)

39min
35s

1500 0.0016
(0.0033)

0.0002%
(0.0009%)

0.0618
(0.4526)

0.0092
(0.0888)

1h
10min 8s

Table A.4.: Test runs of Frank Wolfe Algorithm with α = 1, β = 0.5
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α β #
iter-
ation

(UBD-
LBD)/LBD

change of
objective
value

change fj change in
fkj

CPU
time

1 0.25

50 0.0607
(0.1439)

0.1305%
(1.5333%)

5.6865
(15.5018)

0.5781
(2.6620)

2min 1s

100 0.0433
(0.0917)

0.0542%
(0.3080%)

2.5298
(7.4944)

0.2810
(1.3359)

3min 54s

200 0.0228
(0.0436)

0.0144%
(0.0571%)

0.9869
(3.6081)

0.1229
(0.6813)

7min 42s

500 0.0061
(0.0130)

0.0019%
(0.0106%)

0.2338
(1.4458)

0.0338
(0.2823)

19min
22s

1000 0.0020
(0.0048)

0.0003%
(0.0019%)

0.0791
(0.6034)

0.0118
(0.1398)

45min
51s

1500 0.0010
(0.0033)

0.0001%
(0.0007%)

0.0425
(0.4024)

0.0063
(0.0917)

1h
21min
57s

Table A.5.: Test runs of Frank Wolfe Algorithm with α = 1, β = 0.25

α β #
iter-
ation

(UBD-
LBD)/LBD

change of
objective
value

change fj change in
fkj

CPU
time

0.75 1

50 0.0211
(0.0879)

0.0448%
(0.3498%)

5.8236
(15.9900)

0.5824
(2.4971)

2min 36s

100 0.0139
(0.0631)

0.0074%
(0.0445%)

2.9415
(8.0735)

0.2942
(1.2642)

5min 17s

200 0.0118
(0.0441)

0.0037%
(0.1150%)

1.4723
(4.0030)

0.1477
(0.6489)

486s

500 0.0088
(0.0347)

0.0021%
(0.0141%)

0.5273
(1.5493)

0.0575
(0.2633)

20min
53s

1000 0.0047
(0.0087)

0.0006%
(0.0028%)

0.2062
(0.7243)

0.0254
(0.1333)

42min
26s

1500 0.0028
(0.0047)

0.0003%
(0.0012%)

0.1098
(0.4828)

0.0148
(0.0928)

1h 5min
44s

Table A.6.: Test runs of Frank Wolfe Algorithm with α = 0.75, β = 1

44



α β #
iter-
ation

(UBD-
LBD)/LBD

change of
objective
value

change fj change in
fkj

CPU
time

0.5 1

50 0.0173
(0.0737)

0.0445%
(0.4251%)

5.8323
(15.9789)

0.5832
(2.5078)

2min 18s

100 0.0101
(0.0457)

0.0065%
(0.0378%)

2.9459
(8.0721)

0.2946
(1.2656)

4min 25s

200 0.0082
(0.0348)

0.0012%
(0.0090%)

1.4801
(4.0067)

0.1480
(0.6281)

9min 15s

500 0.0070
(0.0180)

0.0013%
(0.0159%)

0.5722
(1.5815)

0.0590
(0.2639)

23min
21s

1000 0.0048
(0.0087)

0.0006%
(0.0034%)

0.2459
(0.7543)

0.0278
(0.1304)

45min 9s

1500 0.0031
(0.0058)

0.0003%
(0.0012%)

0.1380
(0.4830)

0.0170
(0.0897)

57min
15s

Table A.7.: Test runs of Frank Wolfe Algorithm with α = 0.5, β = 1

α β #
iter-
ation

(UBD-
LBD)/LBD

change of
objective
value

change fj change in
fkj

CPU
time

0.25 1

50 0.0136
(0.0549)

0.0457%
(0.3201%)

5.8324
(15.9716)

0.5832
(2.5078)

2min 16s

100 0.0064
(0.0275)

0.0055%
(0.0571%)

2.9458
(8.0711)

0.2946
(1.2656)

4min 55s

200 0.0044
(0.0204)

0.0008%
(0.0049%)

1.4802
(4.0564)

0.1480
(0.6359)

8min 45s

500 0.0039
(0.0148)

0.0003%
(0.0126%)

0.5931
(1.6075)

0.0594
(0.2531)

22min 3s

1000 0.0035
(0.0091)

0.0003%
(0.0037%)

0.2875
(0.7760)

0.0296
(0.1330)

49min
26s

1500 0.0030
(0.0061)

0.0002%
(0.0015%)

0.1784
(0.5174)

0.0192
(0.0866)

1h 8min
30s

Table A.8.: Test runs of Frank Wolfe Algorithm with α = 0.25, β = 1
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A.3. Additional Results of Test Runs for the NSGA-II

Figure A.1.: Number of fronts within a population of size 80 including a offspring popu-
lation in each generation

A.4. Source Code of the Implemented NSGA-II

1 // l i b r a r y i n c l ud e s
2 #include <iostream>
3 #include <fstream>
4 #include <vector>
5 #include <random>
6 #include <time . h>
7 #include <Windows . h>
8 #include <cmath>
9 #include <algorithm>

10 #include <numeric>
11 #include <map>
12 #include <l i s t >
13 #include <ctime>
14 #include <iomanip>
15

16 using namespace std ;
17

18 // ∗∗∗∗∗∗∗∗∗∗∗∗ g l oba l va r i ab l e s , s t r u c t u r e s and constans ∗∗∗∗∗∗∗∗∗∗∗∗∗
19

20 // INPUT−VARIABLES: i n i t i a l i z a t i o n
21 vector<vector<f loat>> distanceMatr ix ; // symmetric matrix with d i s t an c e s

between the v e r t i c e s
22 vector<f loat> demand ; // vec to r o f the demand at each

ver tex
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23

24 f loat alpha = 1 ; // co s t o f t r a v e l i n g a l ength un i t
on an arc

25 f loat beta = 0 . 2 5 ; // co s t o f l o s s in s e r v i c e qua l i t y
per an add i t i ona l person coming to a SP

26 int nrVe r t i c e s = 10 ; // t o t a l number o f v e r t i c e s = V = {
v_1 , . . . , v_n}

27

28 int N = 40 ; // s i z e o f the populat ion in every
gene ra t i on (NSGA−I I )

29 int T = 50 ; // number o f g ene ra t i on s (NSGA−I I )
30

31 f loat maxR = 283 ; // maximum Ring Cost o f the
in s t ance ( r e s u l t from the enumeration )

32 f loat maxA = 2161190 .75000 ; // maximum Assignment Cost o f the
in s t ance ( r e s u l t from the enumeration )

33

34 // VARIABLES FOR THE SAVINGS−ALGORITHM
35 struct EDGE // s t ru c tu r e o f two nodes , which

form an edge , needed f o r c a l c u l a t i o n o f sav ings
36 {
37 int c1 , c2 ;
38 } ;
39

40 // VARIABLES FOR THE NSGA I I
41 struct INDIVIDUAL // i nd i v i dua l member o f the

popua l t ion
42 {
43 vector<int> chromosome ; // binary coded chromosome o f s i z e

n rVe r t i c e s
44 f loat r ingCost ;
45 long f loat assignmentCost ;
46 int domCount ; // number o f s o l u t i o n s which

dominate the cur rent s o l u t i o n
47 vector<int> domSet ; // the s e t o f i n d i v i d u a l s which are

dominated by cur rent i nd i v i dua l
48 int rank ; // the rank o f the i nd i v i dua l =

f i t n e s s = f r on t
49 f loat crowdingDist ; // crowding d i s t ance o f chromosome

between other chromosomes with in the same rank
50 } ;
51 vector<INDIVIDUAL> populat ion ; // vec to r o f a l l members o f s i z e N
52

53 vector<vector<int>> f r on t s ; // vec to r o f a l l f r o n t s / ranks with
t h e i r members

54

55 vector<int> nrFrontsPop ; // conta in s the number o f f r o n t s in each
gene ra t i on a f t e r s e l e c t i o n phase ( populat ion )

56 vector<int> nrFrontsOf f ; // conta in s the number o f f r o n t s
in each genera t i on i n c l u s i s e the o f f s p r i n g ( populat ion + o f f s p r i n g )

57 int runTime ; // CPU time o f the a lgor i thm
58 f loat hv ; // hypervolume covered by the 1 . f r o n t s a f t e r T

generat ions , us ing the max va lue s as r e f e r e n c e po int
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59

60

61 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ FUNCTIONS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
62

63 // read ing a . txt f i l e , which conta in s the demand va lue s and the d i s t anc e
matrix

64 void readDataFi le ( )
65 {
66 i f s t r e am dataF i l e ( "U␣20_40␣1␣e . txt " ) ;
67 int tmp = 0 ; // temporary va r i ab l e
68 // read the va lue s o f the demand vec to r
69 for ( int i = 1 ; i <= nrVer t i c e s ; i++)
70 {
71 dataF i l e >> tmp ;
72 i f ( ! da taF i l e . f a i l ( ) )
73 {
74 // tmp i s i n s e r t e d in to the vec to r from behind
75 demand . push_back (tmp) ;
76 }
77 }
78

79 // read the va lue s f o r the d i s t ance Matrix
80 vector<f loat> tmp1 ;
81 for ( int i = 1 ; i <= nrVer t i c e s ; i++)
82 {
83 int tmp2 = 0 ;
84 for ( int j = 1 ; j <= nrVer t i c e s ; j++)
85 {
86 dataF i l e >> tmp ;
87 i f ( ! da taF i l e . f a i l ( ) )
88 {
89 tmp1 . push_back (tmp) ;
90 }
91 }
92 di s tanceMatr ix . push_back ( tmp1) ;
93 tmp1 . c l e a r ( ) ;
94 }
95 dataF i l e . c l o s e ( ) ;
96 }
97

98 // wr i t i ng a . txt f i l e with the r e s u l t s
99 void wr i teDataFi l e ( )

100 {
101 ofstream output ;
102 output . open ( "Result ␣U␣20_40␣ 1 . txt " ) ;
103 output << "Runtime␣ : ␣" << runTime << endl ; // in seconds
104 output << "Hypervolume : ␣" << f i x ed << s e t p r e c i s i o n (10) << hv << endl ;
105 output << endl << " L i s t ␣ o f ␣ f r o n t s ␣with in ␣a␣ gene ra t i on : ␣" << endl << f i x ed

<< s e t p r e c i s i o n (0 ) ;
106 for ( int i = 0 ; i < nrFrontsPop . s i z e ( ) ; i++)
107 {
108 output << nrFrontsPop [ i ] << endl ;
109 }
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110 output << endl << " L i s t ␣ o f ␣ f r o n t s ␣with␣2N: ␣\n" ;
111 for ( int j = 0 ; j < nrFrontsOf f . s i z e ( ) ; j++)
112 {
113 output << nrFrontsOf f [ j ] << endl ;
114 }
115 output << endl << " So lu t i on ␣Number" << "␣␣␣␣" << "Ring␣Cost" << "␣" << "

Assignment␣Cost" << "␣␣␣" << " So lu t i on ␣" << "␣␣␣" << "Rank␣\n" ;
116 for ( int i = 0 ; i < populat ion . s i z e ( ) ; i++)
117 {
118 output << ( i + 1) << "␣␣␣␣" << f i x ed << s e t p r e c i s i o n (0 ) << round (

populat ion [ i ] . r ingCost ) << "␣␣␣" << f i x ed << s e t p r e c i s i o n (5 ) <<
populat ion [ i ] . ass ignmentCost << "␣␣␣␣" ;

119 output << f i x ed << s e t p r e c i s i o n (0 ) ;
120 for ( int p = 0 ; p < nrVer t i c e s ; p++)
121 {
122 output << populat ion [ i ] . chromosome [ p ] << "␣" ;
123 }
124 output << "␣␣␣" << populat ion [ i ] . rank << "\n" ;
125 }
126 output . c l o s e ( ) ;
127 }
128

129 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗FUNCTIONS FOR THE SAVINGS ALGORITHM
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

130 // c r e a t i n g the sav ing l i s t , with double ent rys o f the sav ing and the
cor re spond ing edge

131 void ca l cSav ing s ( int s ta r t , multimap<f loat , EDGE> &l i s tSav , INDIVIDUAL
chrom , vector<int> c i t i e s )

132 {
133 EDGE edge ;
134 // the sav ings o f a l l edges are c a l c u l a t ed
135 for ( int i = 0 ; i < c i t i e s . s i z e ( ) ; i++)
136 {
137 // i f the ver tex i i s open −> =1
138 i f ( c i t i e s [ i ] != 0 && i != s t a r t )
139 {
140 for ( int j = 0 + i ; j < c i t i e s . s i z e ( ) ; j++)
141 {
142 i f ( i != j && c i t i e s [ j ] != 0) //
143 {
144 f loat sav = 0 . 0 ;
145 edge . c1 = i ;
146 edge . c2 = j ;
147 // s i n c e the multimap i s s o r t i n g the sav ing automat ic ly in r i s i n g

order
148 sav = (−1) ∗( d i s tanceMatr ix [ i ] [ s t a r t ] + dis tanceMatr ix [ s t a r t ] [ j ] −

di s tanceMatr ix [ i ] [ j ] ) ;
149 l i s t S a v . i n s e r t (make_pair ( sav , edge ) ) ;
150 }
151 }
152 }
153 }
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154 }
155

156 // i n i t i a l i z e routes , from s t a r t i s to every v i s i t e d ver tex a route c rea ted
157 void i n i tRoute s ( int s ta r t , INDIVIDUAL chrom , l i s t <l i s t <int>> &in i t i a lRou t e s

, vector<int> c i t i e s )
158 {
159 // f o r every ver tex i in the r ing , which i s not the s t a r t o f the tour a

route i s c r ea ted ( s ta r t , i , s t a r t )
160 // whereby the s t a r t node i s added at the end o f the sav ings a lgor i thm
161 for ( int i = 0 ; i < c i t i e s . s i z e ( ) ; i++)
162 {
163 i f ( c i t i e s [ i ] == 1 && i != s t a r t )
164 {
165 l i s t <int> route ;
166 route . push_back ( i ) ;
167 i n i t i a lR ou t e s . push_back ( route ) ;
168 }
169 }
170 }
171

172 // c l e a r route s which are merged
173 void c learRoute ( int tour , INDIVIDUAL chrom)
174 {
175 // a f t e r two route s are merged , the o ld route s are c l e a r ed
176 int dim = count ( chrom . chromosome . begin ( ) , chrom . chromosome . end ( ) , 1) ;
177 for ( int i = 0 ; i < dim ; i++) ;
178 {
179

180 }
181 }
182

183 // merging two edges i f the re i s a p o s i t i v sav ing
184 void mergeEdges ( int s ta r t , l i s t <int> &tour , l i s t <l i s t <int>> &in i tRoutes ,

multimap<f loat , EDGE> &l i s tSav , INDIVIDUAL chrom)
185 {
186 EDGE e ;
187 // f i nd the edge be long ing to the sav ing
188 e = l i s t S a v . begin ( )−>second ;
189

190 // v a r i a b l e s f o r merging two edges
191 l i s t <int> t1 ;
192 l i s t <int> t2 ;
193 l i s t <l i s t <int>>:: i t e r a t o r i t 1 ;
194 l i s t <l i s t <int>>:: i t e r a t o r i t 2 ;
195 bool b1 = false , b2 = fa l se ;
196

197 // i t e r a t i o n through i n i t i a l r oute s to f i nd the v e r t i c e s o f the edge and
merge them to one route

198 for ( l i s t <l i s t <int>>:: i t e r a t o r i t = in i tRoute s . begin ( ) ; i t != in i tRoute s .
end ( ) ; i t++)

199 {
200 // f i nd two routes , so the edge e can be added
201 i f ( ! b1 && i t−>f ron t ( ) == e . c1 )
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202 {
203 i t 1 = i t ;
204 t1 = ∗ i t ;
205 b1 = true ;
206 }
207 else i f ( ! b1 && i t−>f ron t ( ) == e . c2 )
208 {
209 i t 1 = i t ;
210 t1 = ∗ i t ;
211 b1 = true ;
212 }
213 else i f ( ! b2 && i t−>back ( ) == e . c1 )
214 {
215 i t 2 = i t ;
216 t2 = ∗ i t ;
217 b2 = true ;
218 }
219 else i f ( ! b2 && i t−>back ( ) == e . c2 )
220 {
221 i t 2 = i t ;
222 t2 = ∗ i t ;
223 b2 = true ;
224 }
225

226 i f ( b1 && b2 )
227 {
228 // d e l e t e the two i n i t i a l r oute s from i n i t i a l r oute s l i s t : ( s t a r t , a ,

s t a r t ) & ( s ta r t , b , s t a r t )
229 i n i tRoute s . e r a s e ( i t 1 ) ;
230 i n i tRoute s . e r a s e ( i t 2 ) ;
231

232 // add one merged tour : ( s t a r t , a , b , s t a r t )
233 l i s t <int> newTour ;
234 newTour . i n s e r t ( newTour . end ( ) , t2 . begin ( ) , t2 . end ( ) ) ;
235 newTour . i n s e r t ( newTour . end ( ) , t1 . begin ( ) , t1 . end ( ) ) ;
236

237 // c l e a r the route s which are merged
238 i f ( t1 . s i z e ( ) > 1)
239 {
240 l i s t <int >:: i t e r a t o r i t = t1 . begin ( ) ;
241 i t ++;
242 while ( i t != t1 . end ( ) && next ( i t ) != t1 . end ( ) )
243 {
244 c learRoute (∗ i t , chrom) ;
245 i t ++;
246 }
247 }
248 i f ( t2 . s i z e ( ) > 1)
249 {
250 l i s t <int >:: i t e r a t o r i t = t2 . begin ( ) ;
251 i t ++;
252 while ( i t != t2 . end ( ) && next ( i t ) != t2 . end ( ) )
253 {
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254 c learRoute (∗ i t , chrom) ;
255 i t ++;
256 }
257 }
258 // add the new route to the l i s t o f routes , whereby at the end t h i s

l i s t conta in s j u s t one f i n a l route
259 i n i tRoute s . push_front (newTour ) ;
260 return ;
261 }
262 }
263 // d e l e t e the used sav ing from l i s t
264 multimap<f loat , EDGE>:: i t e r a t o r i tD e l e t e = l i s t S a v . begin ( ) ;
265 l i s t S a v . e r a s e ( i tD e l e t e ) ;
266 }
267

268 // c l a c u l a t i o n o f the tour l ength
269 f loat tourLength ( l i s t <int> tour )
270 {
271 f loat d i s t anc e = 0 . 0 ;
272 l i s t <int >:: i t e r a t o r i t 1 = tour . begin ( ) ;
273 l i s t <int >:: i t e r a t o r i t 2 = tour . begin ( ) ;
274 i t 2++;
275 while ( i t 2 != tour . end ( ) )
276 {
277 d i s t anc e += dis tanceMatr ix [∗ i t 1 ] [ ∗ i t 2 ] ;
278 i t 2++;
279 i t 1++;
280 }
281 return d i s t anc e ;
282 }
283

284 // c a l c u l a t i o n o f r i ng c o s t s f o r each s ou l t i o n us ing the Clarke&Wright
Savings−Algorithm

285 void calcRingCost (INDIVIDUAL &chrom)
286 {
287 double costRoute = 0 . 0 ;
288 vector<int> open = chrom . chromosome ;
289

290 // i f more than one ver tex i s chosen to be v i s i t e d c a l c r i ng co s t
291 // e l s e the r ing co s t are zero , because there i s no r ing
292 int t e s t = count ( open . begin ( ) , open . end ( ) , 1) ;
293 i f ( t e s t > 1)
294 {
295 multimap<f loat , EDGE> l i s t S a v ; // l i s t o f a l l s av ings with

corre spond ing edge
296 l i s t <l i s t <int>> in i t i a lR ou t e s ; // i n i t i a l Routes f o r s t a r t

the sav ings a lgor i thm
297 l i s t <int> f ina lTour ; // l i s t o f the sequence o f the

f i n a l tour
298 int s t a r t ;
299

300 // w. l . o . g . the f i r s t v i s i t e d node i s the s t a r t i n g node o f the route
301 for ( int i = 0 ; i < open . s i z e ( ) ; i++)
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302 {
303 i f ( open [ i ] != 0)
304 {
305 s t a r t = i ;
306 break ;
307 }
308 }
309

310 // SAVINGS−ALGORITHM
311 // c a l c u l a t i o n o f the sav ings
312 ca l cSav ing s ( s ta r t , l i s t Sav , chrom , open ) ;
313

314 // i n i t i a l i z a t i o n o f (n−1) route s : f o r each v i s i t e d ver tex a route from
s t a r t and back i s c r ea ted

315 i n i tRoute s ( s ta r t , chrom , i n i t i a lRou t e s , open ) ;
316

317 // as long as the sav ings are p o s i t i v(<=> sma l l e r than zero , s i n c e they
mult impl ied by (−1) ) , merge route s

318 while ( l i s t S a v . s i z e ( ) > 0)
319 {
320 multimap<f loat , EDGE>:: i t e r a t o r i tL i s t S av = l i s t S a v . begin ( ) ;
321 i f ( i tL i s tSav−>f i r s t <= 0)
322 {
323 mergeEdges ( s ta r t , f ina lTour , i n i t i a lRou t e s , l i s t Sav , chrom) ;
324 }
325 else i f ( i tL i s tSav−>f i r s t > 0)
326 break ;
327 }
328

329 l i s t <l i s t <int>>:: i t e r a t o r t ou r I t = i n i t i a lR ou t e s . begin ( ) ;
330 f i na lTour . i n s e r t ( f i na lTour . end ( ) , (∗ t ou r I t ) . begin ( ) , (∗ t ou r I t ) . end ( ) ) ;
331

332 // add s t a r t to the beg ing ing and end o f the f i n a l tour sequence −> fo r
c a l c u l a t i o n o f the l ength

333 f i na lTour . push_front ( s t a r t ) ;
334 f i na lTour . push_back ( s t a r t ) ;
335

336 // c a l c u l a t e the tour l ength
337 costRoute = tourLength ( f ina lTour ) ;
338 }
339 chrom . r ingCost = costRoute ;
340 }
341

342

343 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗FUNCTIONS FOR FRANK−WOLFE ALGORITHM: c a l c u l a t i o n o f
user equ i l i b r i um ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

344 /∗ The Frank−Wolfe Algorithm i s used to c a l c u l a t ed the Wardrop Equi l ibr ium
(= User Equi l ibr ium ) .

345 The output o f t h i s f unc t i on i s a matrix o f t o t a l i n f l ow s to each v i s i t e d
v i l l a g e . ∗/

346

347 // matrix mu l t i p l i c a t i o n
348 vector<vector<f loat>> mul t i p l i c a t i onMat r i x ( vector<vector<f loat>> matrixA ,
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vector<vector<f loat>> matrixB , int s i z eMatr ix )
349 {
350 vector<vector<f loat>> AB;
351 vector<f loat> l ineVec ;
352 for ( int i = 0 ; i < s i z eMatr ix ; i++)
353 {
354 for ( int j = 0 ; j < s i z eMatr ix ; j++)
355 {
356 double sum = 0 ;
357 for ( int k = 0 ; k < s i z eMatr ix ; k++)
358 {
359 sum += (matrixA [ i ] [ k ] ∗ matrixB [ k ] [ j ] ) ;
360 }
361 l i neVec . push_back (sum) ;
362 }
363 AB. push_back ( l ineVec ) ;
364 l i neVec . c l e a r ( ) ;
365 }
366 return AB;
367 }
368

369 // mu l t i p l i c a t i o n o f a matrix A with a vec to r b −> Ab
370 vector<f loat> mult ip l i cat ionMatVec ( vector<vector<f loat>> matrix , vector<

f loat> vec )
371 {
372 int n = vec . s i z e ( ) ;
373 vector<f loat> Ab;
374 for ( int i = 0 ; i < n ; i++)
375 {
376 f loat sum = 0 . 0 ;
377 for ( int j = 0 ; j < n ; j++)
378 {
379 sum += (matrix [ i ] [ j ] ∗ vec [ j ] ) ;
380 }
381 Ab. push_back (sum) ;
382 }
383 return Ab;
384 }
385

386 // i n i t i a l i z e matr i ze s with z e ro s
387 vector<vector<f loat>> in i t Z e r o s ( int row , int column )
388 {
389 vector<f loat> zeroVec ( column , 0 . 0 ) ; // i n i t i a l i z e the vec to r o f s i z e

column and with z e ro s
390 vector<vector<f loat>> matrix ( row , zeroVec ) ;
391 return matrix ;
392 }
393

394 // Frank−Wolfe Algorithm
395 void FrankWolfAlg ( int n r I t e r a t i on s , INDIVIDUAL chrom , long f loat &

ass ignCost )
396 {
397 // number o f t o t a l v e r t i c e s
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398 int n = chrom . chromosome . s i z e ( ) ;
399 // number o f SP ’ s
400 int m = count ( chrom . chromosome . begin ( ) , chrom . chromosome . end ( ) , 1) ;
401 // copy chromosome coding to a vec to r −> ea s i e r to handle
402 vector<int> open = chrom . chromosome ;
403 // ho lds the d i s t an c e s from a l l v e r t i c e s to the SP
404 vector<vector<f loat>> distanceSP ;
405

406 //~~~~~~~~ i n i t i a l i z a t i o n o f matr i ce s and vec to r s~~~~~~~~
407

408 // i nd i c a t o r matrix with zero e n t r i e s
409 vector<vector<f loat>> ind i ca to rMatr ix = i n i t Z e r o s (n , n) ;
410

411 // s e t the d iagona l va lue s equal to one , i f ve r tex i i s a SP
412 for ( int i = 0 ; i < n ; i++)
413 {
414 i f ( open [ i ] == 1)
415 {
416 i nd i ca to rMat r ix [ i ] [ i ] = 1 ;
417 }
418 }
419

420 // mu l t i p l i c a t i o n o f i n d i c a t o r matrix with d i s t ance matrix
421 // only the e n t r i e s o f d i s t an c e s to SP ’ s are l e f t
422 distanceSP = mul t i p l i c a t i onMat r i x ( ind icatorMatr ix , d i stanceMatr ix , n ) ;
423

424 // t e s t i n g vec to r with ones
425 vector<int> t e s t (n , 1) ;
426

427 // mu l t i p l i c a t i o n the columns o f the distanceToStop matrix with t e s t
vector , f o r t e s t i n g i f the row i i s l e ad ing to a SP

428 // i f a row conta in s j u s t zero−en t r i e s , i t i s e rased
429 for ( int i = (n − 1) ; i >= 0 ; i−−)
430 {
431 f loat tmp = 0 ;
432 for ( int j = 0 ; j < n ; j++)
433 {
434 tmp += ( distanceSP [ i ] [ j ] ∗ t e s t [ j ] ) ;
435 }
436 i f (tmp == 0)
437 {
438 distanceSP . e ra s e ( distanceSP . begin ( ) + i ) ;
439 }
440 }
441

442 // setup f low matrix with m rows and n columns −> m SP ’ s and n t o t a l
v e r t i c e s

443 // f low from vertex j . . n to SP i . .m
444 vector<vector<f loat>> flowSPVil = i n i t Z e r o s (m, n) ;
445

446 // setup a matrix f o r search d i r e c t i o n s / optimal co rne rpo in t s
447 vector<vector<f loat>> matrixG = in i t Z e r o s (m, n) ;
448
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449 // vec to r o f incoming f l ows in to each SP
450 // sum of a l l incoming f l ows to a SP
451 vector<f loat> flowSP (m, 0) ;
452

453 // s t e p s i z e o f Frank−Wolfe −> l i n e a r i z a t i o n o f the search
454 f loat x i = 1 ;
455

456 // matrix with co rne rpo in t s o f the j−th s implex
457 vector<vector<f loat>> corne rpo in t ;
458 for ( int k = 0 ; k < n ; k++) // f o r each ver tex
459 {
460 co rne rpo in t = i n i t Z e r o s (m, m) ; // setup o f a m∗m simplex f o r each

v i l l a g e
461 for ( int j = 0 ; j < m; j++) // f o r each SP
462 {
463 // extend s implex with demand va lue s
464 co rne rpo in t [ j ] [ j ] = demand [ k ] ;
465 }
466 for ( int i = 0 ; i < m; i++) // f o r each SP
467 {
468 f loat sum = accumulate ( co rne rpo in t [ i ] . begin ( ) , co rne rpo in t [ i ] . end ( ) ,

0) ;
469 f lowSPVil [ i ] [ k ] = sum / m;
470 }
471 co rne rpo in t . c l e a r ( ) ;
472 } // end k
473

474 // t o t a l f l ows with in each DC
475 for ( int j = 0 ; j < m; j++)
476 {
477 flowSP [ j ] = accumulate ( f lowSPVil [ j ] . begin ( ) , f lowSPVil [ j ] . end ( ) , 0 . 0 ) ;
478 }
479 // ~~~~~~~~~~~~~~~~~~ Frank−Wolfe Algorithm loop

~~~~~~~~~~~~~~~~~~~~~~~~~~~
480

481 for ( int t = 0 ; t < n r I t e r a t i o n s ; t++)
482 {
483 // d e f i n i n g prev ious f l ows
484 vector<vector<f loat>> f1 = flowSPVil ;
485 vector<f loat> flow1 = flowSP ;
486

487 // determinat ion o f increment per i t e r a t i o n ( x i = 2/( t+2) )
488 x i = 2 ∗ x i / ( x i + 2) ;
489

490 // s e r v i c e qua l i t y va lue s at each SP
491 vector<f loat> se rv i c eQua l i t y (m, 0) ; // mx1 vec to r with z e ro s

i n i t i a l i z e d
492 for ( int i = 0 ; i < m; i++)
493 {
494 // the s e r v i c e qua l i t y depends on the incoming t o t a l f low to a SP
495 s e r v i c eQua l i t y [ i ] = ( ( flowSP [ i ] ∗ flowSP [ i ] ) ) ;
496 }
497
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498 f loat sum = accumulate ( s e r v i c eQua l i t y . begin ( ) , s e r v i c eQua l i t y . end ( ) ,
0 . 0 ) ;

499

500 // determinat ion o f search d i r e c t i o n ( vec to r to edgepo int ) with optimal
va lue with in each s implex k

501 for ( int k = 0 ; k < n ; k++) // f o r each ver tex
502 {
503 // s t a r t i n g value f o r search f o r opt imal edge
504 f loat minval = LLONG_MAX;
505

506 // overwr i t e prev ious va lue s o f co rne rpo in t with z e ro s
507 co rne rpo in t = i n i t Z e r o s (m, m) ;
508

509 // extend s implex with demand va lue s
510 for ( int j = 0 ; j < m; j++) // f o r each SP
511 {
512 co rne rpo in t [ j ] [ j ] = demand [ k ] ;
513 }
514

515 for ( int j = 0 ; j < m; j++) // f o r each SP
516 {
517 // c a l c u l a t i o n t o t a l d i s t anc e and s e r v i c e f o r a s o l u t i o n
518 long f loat tmpSumDis = 0 . 0 ;
519 long f loat tmpSumSer = 0 . 0 ;
520 // mu l t i p l i c a t i o n o f d i s tanceMatr ix ’ s l i n e vec to r k with

co rne rpo in t s matrix ’ s vec to r j
521 // mu l t i p l i c a t i o n o f s e r v i c eQua l i t y vec to r with co rne rpo in t s matrix

’ s vec to r j
522 for ( int dc = 0 ; dc < m; dc++)
523 {
524 tmpSumDis += ( distanceSP [ dc ] [ k ] ∗ co rne rpo in t [ dc ] [ j ] ) ;
525 tmpSumSer += ( s e r v i c eQua l i t y [ dc ] ∗ co rne rpo in t [ dc ] [ j ] ) ;
526 }
527

528 // c a l c u l a t i o n o f o b j e c t i v e func t i on
529 f loat obj = ( alpha ∗tmpSumDis ) + ( beta ∗tmpSumSer ) ;
530 i f ( obj < minval )
531 {
532 minval = obj ;
533 // update search d i r e c t i o n s i f b e t t e r ob j e c t i v e va lue i s found
534 for ( int d = 0 ; d < m; d++)
535 {
536 // the edge with the be t t e r ob j e c t i v e ge t s a new search

d i r e c t i o n
537 matrixG [ d ] [ k ] = corne rpo in t [ d ] [ j ] ;
538 }
539 } // end i f−loop
540 } // end j : determinat ion o f matrixG
541

542 // determinat ion o f f l ows on the i n t e r v a l between the prev ious f low
and the search d i r e c t i o n dep . o f increment

543 for ( int d = 0 ; d < m; d++)
544 {
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545 f lowSPVil [ d ] [ k ] = ( (1 − x i ) ∗ f lowSPVil [ d ] [ k ] ) + ( x i ∗matrixG [ d ] [ k ] ) ;
546 }
547 co rne rpo in t . c l e a r ( ) ;
548 }// end k . . n
549

550

551 // update the f low va lue s with in the SP from newly determined f l ows
552 for ( int j = 0 ; j < m; j++)
553 {
554 flowSP [ j ] = accumulate ( f lowSPVil [ j ] . begin ( ) , f lowSPVil [ j ] . end ( ) , 0 . 0 )

;
555 }
556 } //end Frank−Wolfe loop
557

558 // c a l c u l a t i o n o f ass ignment co s t a f t e r max i t e r a t i o n s
559 // f i r s t the d i s t an c e s
560 for ( int k = 0 ; k < n ; k++)
561 {
562 for ( int j = 0 ; j < m; j++)
563 {
564 ass ignCost += alpha ∗distanceSP [ j ] [ k ] ∗ f lowSPVil [ j ] [ k ] ;
565 }
566 }
567 for ( int j = 0 ; j < m; j++)
568 {
569 long f loat b = beta ∗ ( (pow( flowSP [ j ] , 3) ) / 3) ;
570 ass ignCost += b ;
571 }
572 }
573 // c a l c u l a t i o n ass ignment c o s t s based on the f l ows r e s u l t i n g from Frank−

Wolfe a lgor i thm
574 long f loat ca l cAss ignCost (INDIVIDUAL chrom)
575 {
576 long f loat ass ignCost = 0 . 0 ;
577 int i t e r a t i o n s = 700 ;
578 FrankWolfAlg ( i t e r a t i o n s , chrom , ass ignCost ) ;
579 return ass ignCost ;
580 }
581

582 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗FUNCTIONS FOR THE NSGA I I
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

583 // the f a s t non domination s o r t introduced by Deb et a l .
584 void FastNonDominatedSort ( )
585 {
586 // be f o r e s o r t i n g c l e a r prev ious f r on t s , because o f new s o r t i n g and

domination r e l a t i o n s
587 f r o n t s . c l e a r ( ) ;
588 // s e t with a l l p in populat ion which has no rank yet . . . f i r s t j u s t

s o l u t i o n s with dominanceCount = 0 , are a s s i gned to rank 1
589 vector<int> setNoRank ;
590 // i n i t i a l i z a t i o n o f ranks
591 vector<int> Rank_i ;
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592 // i n i t i a l i z e the dominance count and c l e a r domSet
593 for ( int p = 0 ; p < populat ion . s i z e ( ) ; p++)
594 {
595 populat ion [ p ] . domCount = 0 ;
596 populat ion [ p ] . domSet . c l e a r ( ) ;
597 }
598 // compare each i nd i v i dua l with each other regard ing t h e i r f i t n e s s in

terms o f the o b j e c t i v e s
599 for ( int p = 0 ; p < populat ion . s i z e ( ) ; p++)
600 {
601 for ( int q = (p + 1) ; q < populat ion . s i z e ( ) ; q++)
602 {
603 i f ( populat ion [ p ] . r ingCost <= populat ion [ q ] . r ingCost && populat ion [ p

] . ass ignmentCost <= populat ion [ q ] . ass ignmentCost )
604 {
605 i f ( populat ion [ p ] . r ingCost < populat ion [ q ] . r ingCost && populat ion [ p

] . ass ignmentCost <= populat ion [ q ] . ass ignmentCost )
606 {
607 populat ion [ p ] . domSet . push_back (q ) ;
608 populat ion [ q ] . domCount++;
609 }
610 else i f ( populat ion [ p ] . r ingCost <= populat ion [ q ] . r ingCost &&

populat ion [ p ] . ass ignmentCost < populat ion [ q ] . ass ignmentCost )
611 {
612 populat ion [ p ] . domSet . push_back (q ) ;
613 populat ion [ q ] . domCount++;
614 }
615 }
616 i f ( populat ion [ p ] . r ingCost >= populat ion [ q ] . r ingCost && populat ion [ p

] . ass ignmentCost >= populat ion [ q ] . ass ignmentCost )
617 {
618 i f ( populat ion [ p ] . r ingCost > populat ion [ q ] . r ingCost && populat ion [ p

] . ass ignmentCost >= populat ion [ q ] . ass ignmentCost )
619 {
620 populat ion [ q ] . domSet . push_back (p) ;
621 populat ion [ p ] . domCount++;
622 }
623 else i f ( populat ion [ p ] . r ingCost >= populat ion [ q ] . r ingCost &&

populat ion [ p ] . ass ignmentCost > populat ion [ q ] . ass ignmentCost )
624 {
625 populat ion [ q ] . domSet . push_back (p) ;
626 populat ion [ p ] . domCount++;
627 }
628 }
629 }//q−pop . s i z e
630

631 // i n i t i a l i z a t i o n o f the f i r s t f r on t
632 i f ( populat ion [ p ] . domCount == 0)
633 {
634 populat ion [ p ] . rank = 1 ;
635 Rank_i . push_back (p) ;
636 }
637 else

59



638 {
639 setNoRank . push_back (p) ;
640 }
641 }//p−pop . s i z e ( )
642

643 f r o n t s . push_back (Rank_i ) ; // keep track o f ranks and i t s members
644

645 // deteminat ion o f other f r o n t s = ranks
646 // best rank has the number "0"
647 int i = 0 ;
648

649 // number o f s o l u t i o n which need to be as s i gned to a rank
650 int n = setNoRank . s i z e ( ) ;
651

652 // whi l e the re are s o l u t i o n without a rank , a s s i gn ranks
653 while ( setNoRank . s i z e ( ) > 0)
654 {
655 i++; // rank number
656 vector<int> tmp = Rank_i ;
657 Rank_i . c l e a r ( ) ;
658 for ( int j = 0 ; j < tmp . s i z e ( ) ; j++)
659 {
660 // the s e t o f dominated s o l u t i o n s by p
661 for ( int q = 0 ; q < populat ion [ tmp [ j ] ] . domSet . s i z e ( ) ; q++)
662 {
663 int a = populat ion [ tmp [ j ] ] . domSet [ q ] ;
664 // reduce dominance count o f the members o f the s e t by one
665 populat ion [ a ] . domCount−−;
666 // i f dominance count i s ze ro now , pop [ a ] i s a member o f the next

f r on t / rank and can be as s i gned to i t
667 i f ( populat ion [ a ] . domCount == 0)
668 {
669 populat ion [ a ] . rank = ( i + 1) ;
670 Rank_i . push_back ( a ) ;
671 setNoRank . e r a s e ( f i nd ( setNoRank . begin ( ) , setNoRank . end ( ) , a ) ) ; //

remove the as s i gned s o l u t i o n from the s e t without ranks
672 }
673 }
674 }
675 f r o n t s . push_back (Rank_i ) ;
676 }
677 }
678

679 // c a l c u l a t i o n o f the crowding d i s t anc e f o r each s o l u t i o n with in a f r on t /
with the same rank

680 // introduced by Deb et a l .
681 void crowdingDistance ( )
682 {
683 // i d e t i f y a l l s o l u t i o n in same rank
684 for ( int i = 0 ; i < f r o n t s . s i z e ( ) ; i++)
685 {
686 // p l a c eho ld e r f o r a s o r t by r ing co s t and a s o r t by ass ignment co s t

each f r on t and the corre spond ing chromosome number in the
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populat ion vec to r
687 multimap<f loat , int> sortR ;
688 multimap<long float , int> sortA ;
689 int n = f r on t s [ i ] . s i z e ( ) ;
690 for ( int j = 0 ; j < f r on t s [ i ] . s i z e ( ) ; j++)
691 {
692 populat ion [ f r o n t s [ i ] [ j ] ] . crowdingDist = 0 ;
693 sortR . emplace (make_pair ( populat ion [ f r o n t s [ i ] [ j ] ] . r ingCost , f r o n t s [ i ] [

j ] ) ) ;
694 sortA . emplace (make_pair ( populat ion [ f r o n t s [ i ] [ j ] ] . assignmentCost ,

f r o n t s [ i ] [ j ] ) ) ;
695 }
696

697 vector<int> sortByRing ;
698 vector<int> sortByAssign ;
699

700 // the corre spond ing i n t e g e r s are i n s e r t e d in so r t ed order in to a
vector , we need j u s t to know the s o l u t i o n s be long ing to min and max

701 for (multimap<f loat , int >:: i t e r a t o r itR = sortR . begin ( ) ; itR != sortR .
end ( ) ; itR++)

702 {
703 sortByRing . push_back ( itR−>second ) ;
704 }
705

706 for (multimap<long float , int >:: i t e r a t o r itA = sortA . begin ( ) ; itA !=
sortA . end ( ) ; itA++)

707 {
708 sortByAssign . push_back ( itA−>second ) ;
709 }
710

711 // s e t boundary po in t s to i n f i n i t y −> very big number
712 populat ion [ sortByRing [ 0 ] ] . crowdingDist = populat ion [ sortByRing [ n − 1 ] ] .

crowdingDist = populat ion [ sortByAssign [ 0 ] ] . crowdingDist =
populat ion [ sortByAssign [ n − 1 ] ] . crowdingDist = 100000000;

713 f loat maxRing = populat ion [ sortByRing [ n − 1 ] ] . r ingCost ;
714 f loat minRing = populat ion [ sortByRing [ 0 ] ] . r ingCost ;
715 long f loat maxAssign = populat ion [ sortByAssign [ n − 1 ] ] . ass ignmentCost ;
716 long f loat minAssign = populat ion [ sortByAssign [ 0 ] ] . ass ignmentCost ;
717

718 for ( int k = 1 ; k < (n − 1) ; k++)
719 {
720 populat ion [ sortByRing [ k ] ] . crowdingDist += ( populat ion [ sortByRing [ k +

1 ] ] . r ingCost − populat ion [ sortByRing [ k − 1 ] ] . r ingCost ) / (maxRing
− minRing ) ;

721 populat ion [ sortByAssign [ k ] ] . crowdingDist += ( populat ion [ sortByAssign [
k + 1 ] ] . ass ignmentCost − populat ion [ sortByAssign [ k − 1 ] ] .
ass ignmentCost ) / (maxAssign − minAssign ) ;

722 }
723 }
724 }
725

726 // i n i t i a l i z a t i o n o f a populat ion o f s i z e N, with i n d i v i d u a l s (= s o l u t i o n s )
coded binary
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727 // entry i i s 1 i f f ve r tex i i s v i s i t e d , e l s e 0
728 void i n i tPopu l a t i on ( )
729 {
730 INDIVIDUAL chrom ;
731 random_device rd ;
732 uni form_int_distr ibut ion<int> d i s t r i b u t i o n (0 , 1) ;
733 mt19937 engine ( rd ( ) ) ;
734 // N d i f f e r e n t i n d i v i d u a l s need to be c rea ted
735 for ( int i = 0 ; i < N; i++)
736 {
737 // code the binary chromosome
738 for ( int gene = 0 ; gene < nrVer t i c e s ; gene++)
739 {
740 int geneValue = d i s t r i b u t i o n ( eng ine ) ;
741 chrom . chromosome . push_back ( geneValue ) ;
742 }
743 // c a l c u l a t i o n o f f i t n e s s va lue s
744 calcRingCost ( chrom) ;
745 chrom . assignmentCost = ca lcAss ignCost ( chrom) ;
746 populat ion . push_back ( chrom) ;
747 chrom . chromosome . c l e a r ( ) ;
748 }
749 // c a l c u l a t i o n o f rank and crowding d i s t ance f o r the i n i t i a l populat ion
750 FastNonDominatedSort ( ) ;
751 nrFrontsPop . push_back ( f r o n t s . s i z e ( ) ) ; // keep track o f number o f f r o n t s

through the a lgor i thm f o r the populat ion o f s i z e N
752 crowdingDistance ( ) ;
753 }
754

755 // check f o r dup l i c a t s and d e l e t e them : r e tu rn s true , i f chrom i s a
dup l i c a t o f an i nd i v i dua l in the cur rent populat ion

756 bool f i ndDup l i c a t e ( vector<INDIVIDUAL> &somePop , vector<int> chrom)
757 {
758 bool dup l i c a t e = fa l se ;
759 i f ( somePop . s i z e ( ) != 0)
760 {
761 for ( int i = 0 ; i < somePop . s i z e ( ) ; i++)
762 {
763 i f ( equal ( somePop [ i ] . chromosome . begin ( ) , somePop [ i ] . chromosome . end ( ) ,

chrom . begin ( ) , chrom . end ( ) ) )
764 dup l i c a t e = true ;
765 }
766 }
767 return dup l i c a t e ;
768 }
769

770 // mutation operator −> f l i p a gene with a s p e c i f i c mutation ra t e
771 void mutation ( vector<int> &candidate )
772 {
773 random_device rd ;
774 uni form_int_distr ibut ion<int> d i s t r i b u t i o n (1 , 100) ;
775 uni form_int_distr ibut ion<int> uni (0 , nrVert i c e s −1) ;
776 mt19937 engine ( rd ( ) ) ;
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777

778 for ( int i = 0 ; i < nrVer t i c e s ; i++)
779 {
780 int value = d i s t r i b u t i o n ( eng ine ) ;
781 // 10% probab i l i t y f o r each gene
782 i f ( va lue >=10 && value < 20)
783 {
784 int gene = uni ( eng ine ) ;
785 i f ( candidate [ i ] != 0)
786 candidate [ i ] = 0 ;
787 else
788 candidate [ i ] = 1 ;
789 }
790 }
791 }
792

793 // c r o s s ov e r operator , INPUT: two parent s o l u t i on s , OUTPUT: two o f f s p r i n g
s o l u t i o n s and c a l c u l a t i o n s o f the o b j e c t i v e s

794 void crossOver ( vector<INDIVIDUAL> parents , vector<INDIVIDUAL> &o f f s p r i n g )
795 {
796 // p o s s i b l e c r o s s ov e r po in t s : (0 , 1 , 2 , 3 , . . . , ( n rVer t i c e s −1) ) −> cut

w i l l be made in f r on t o f the chosen po s i t i o n
797 // hence the re i s no sense to cut be f o r e 0 , or j u s t f l i p one gene o f each

s o l u t i o n
798 int min = 1 ;
799 int max = nrVert i ce s −2; //
800

801 random_device rd ; // only used once to i n i t i a l i s e seed
802 mt19937 rng ( rd ( ) ) ; // random−number eng ine used
803 uni form_int_distr ibut ion<int> uni (min , max) ;
804 int po s i t i o n = uni ( rng ) ;
805

806 vector<int> parent_1 = parents [ 0 ] . chromosome ;
807 vector<int> parent_2 = parents [ 1 ] . chromosome ;
808

809 INDIVIDUAL off_1 ;
810 INDIVIDUAL off_2 ;
811 // f i r s t check i f the chromosome are i d en t i c , i f not cont inue
812 i f ( ! equal ( parent_1 . begin ( ) , parent_1 . end ( ) , parent_2 . begin ( ) , parent_2 .

end ( ) ) )
813 {
814 vector<int> gene_1 ;
815 vector<int> gene_2 ;
816 // c r o s s ov e r
817 for ( int i = 0 ; i < po s i t i o n ; i++)
818 {
819 gene_1 . push_back ( parent_1 [ i ] ) ;
820 gene_2 . push_back ( parent_2 [ i ] ) ;
821

822 parent_1 [ i ] = gene_2 [ i ] ;
823 parent_2 [ i ] = gene_1 [ i ] ;
824 }
825 // check with the parent populat ion i f a dup l i c a t e i s produced
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826 // f i ndDup l i c a t e r e tu rn s true , i f o f f s p r i n g i s a dup l i c a t e o f an
e x i s t i n g member o f the populat ion

827 bool dupl_1 = f indDup l i c a t e ( populat ion , parent_1 ) ;
828 bool dupl_2 = f indDup l i c a t e ( populat ion , parent_2 ) ;
829 i f ( ! dupl_1 | ! dupl_2 ) // i f at l e a s t one i s not a dup l i c a t e
830 {
831 i f ( dupl_1 && ! dupl_2 ) // i f parent_1 i s a dup l i c a t e and parent_2 not

( these are now the o f f s p r i n g )
832 {
833 parent_1 . c l e a r ( ) ;
834 for ( int i = 0 ; i < nrVer t i c e s ; i++)
835 {
836 off_2 . chromosome . push_back ( parent_2 [ i ] ) ;
837 }
838 mutation ( off_2 . chromosome ) ;
839 calcRingCost ( off_2 ) ;
840 off_2 . ass ignmentCost = ca lcAss ignCost ( off_2 ) ;
841 o f f s p r i n g . push_back ( off_2 ) ;
842 }
843 i f ( dupl_2 && ! dupl_1 ) // i f parent_2 i s a dup l i c a t e and parent_1 not

( these are now the o f f s p r i n g )
844 {
845 parent_2 . c l e a r ( ) ;
846 for ( int i = 0 ; i < nrVer t i c e s ; i++)
847 {
848 off_1 . chromosome . push_back ( parent_1 [ i ] ) ;
849 }
850 mutation ( off_1 . chromosome ) ;
851 ca lcRingCost ( off_1 ) ;
852 off_1 . ass ignmentCost = ca lcAss ignCost ( off_1 ) ;
853 o f f s p r i n g . push_back ( off_1 ) ;
854 }
855 i f ( dupl_2 && dupl_1 ) // i f both are dup l i c a t e s
856 {
857 parent_1 . c l e a r ( ) ;
858 parent_2 . c l e a r ( ) ;
859 }
860 }
861 i f ( parent_1 . s i z e ( ) != 0 && parent_2 . s i z e ( ) != 0) // i f both not

dup l i c a t e s and not c l e a r ed
862 {
863 for ( int i = 0 ; i < nrVer t i c e s ; i++)
864 {
865 off_1 . chromosome . push_back ( parent_1 [ i ] ) ;
866 off_2 . chromosome . push_back ( parent_2 [ i ] ) ;
867 }
868 mutation ( off_1 . chromosome ) ;
869 mutation ( off_2 . chromosome ) ;
870

871 ca lcRingCost ( off_1 ) ;
872 off_1 . ass ignmentCost = ca lcAss ignCost ( off_1 ) ;
873

874 ca lcRingCost ( off_2 ) ;
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875 off_2 . ass ignmentCost = ca lcAss ignCost ( off_2 ) ;
876

877 o f f s p r i n g . push_back ( off_1 ) ;
878 o f f s p r i n g . push_back ( off_2 ) ;
879 }
880 }
881 }
882

883 // random operator f o r choos ing two s o l u t i o n s f o r tournament
884 void randomSelectionForTournament (INDIVIDUAL &a , INDIVIDUAL &b)
885 {
886 // need to s e l e c t two s o l u t i o n s out o f the populat ion
887 int min = 0 ;
888 int max = (N − 1) ; // s i n c e the count ing s t a r t s with zero not with one
889 vector<int> numbers ;
890 random_device rd ;
891 // two random numbers are needed
892 mt19937 rng ( rd ( ) ) ;
893 uni form_int_distr ibut ion<int> uni (min , max) ;
894 a = populat ion [ uni ( rng ) ] ;
895 b = populat ion [ uni ( rng ) ] ;
896 }
897

898 // two tournaments between two so l u t i on s , winner i s taken to reproduct ion ,
r e tu rn s two s o l u t i o n s f o r reproduct ion = c ro s s ov e r

899 // CROWDED COMPARISON OPERATOR i s the tournament procedure
900 void tournament ( vector<INDIVIDUAL> &winner )
901 {
902 // two binary tournaments
903 for ( int i = 0 ; i < 2 ; i++)
904 {
905 INDIVIDUAL a ;
906 INDIVIDUAL b ;
907 randomSelectionForTournament (a , b) ;
908 // compare the rank , i f "a" has sma l l e r rank , i t wins
909 i f ( a . rank < b . rank )
910 winner . push_back ( a ) ;
911 // i f equal rank , compare the crowding d i s t ance −> so l u t i o n with b igge r

crowding d i s t ance wins
912 else i f ( a . rank == b . rank )
913 {
914 i f ( a . crowdingDist > b . crowdingDist )
915 winner . push_back ( a ) ;
916 else
917 winner . push_back (b) ;
918 }
919 else
920 winner . push_back (b) ;
921 }
922 }
923

924 // s e l e c t i o n o f the members o f the next gene ra t i on
925 // vector<INDIVIDUAL>
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926 void s e l e c tNextGenerat ion ( vector<INDIVIDUAL> &nextGenerat ion )
927 {
928 for ( int i = 0 ; i < f r o n t s . s i z e ( ) ; i++)
929 {
930 i f ( (N − nextGenerat ion . s i z e ( ) ) != 0)
931 {
932 // as long a l l members o f one whole rank f i t t i n g in to next gene ra t i on

without exceed ing N, i n s e r t a l l members o f the f r on t
933 i f ( f r o n t s [ i ] . s i z e ( ) <= (N − nextGenerat ion . s i z e ( ) ) )
934 {
935 for ( int j = 0 ; j < f r on t s [ i ] . s i z e ( ) ; j++)
936 {
937 // j u s t f e a s a b l e s o l u t i o n −> at l e a s t one SP i s open
938 i f ( count ( populat ion [ f r o n t s [ i ] [ j ] ] . chromosome . begin ( ) , populat ion

[ f r o n t s [ i ] [ j ] ] . chromosome . end ( ) , 1) > 0)
939 {
940 bool d = f indDup l i c a t e ( nextGeneration , populat ion [ f r o n t s [ i ] [ j

] ] . chromosome ) ; // no dup l i c a t e s are a l lowed
941 i f (d != true )
942 {
943 nextGenerat ion . push_back ( populat ion [ f r o n t s [ i ] [ j ] ] ) ;
944 }
945 }
946 }
947 }
948 // j u s t the (N−nextGenerat ion . s i z e ( ) ) chromosome so r t ed by crowding

d i s t ance are s e l e c t to get in to next gene ra t i on
949 // b igge r crowding d i s t ane i s b e t t e r
950 else i f ( f r o n t s [ i ] . s i z e ( ) > (N − nextGenerat ion . s i z e ( ) ) )
951 {
952 vector<int> tmp( f r o n t s [ i ] . begin ( ) , f r o n t s [ i ] . end ( ) ) ;
953 int l = (N − nextGenerat ion . s i z e ( ) ) ;
954 for ( int m = 0 ; m < l ; m++)
955 {
956 int pos = 0 ; ;
957 f loat max = 0 ;
958 bool c = fa l se ;
959 for ( int k = 0 ; k < tmp . s i z e ( ) ; k++)
960 {
961 i f ( count ( populat ion [ tmp [ k ] ] . chromosome . begin ( ) , populat ion [

tmp [ k ] ] . chromosome . end ( ) , 1)>0)
962 {
963 i f ( populat ion [ tmp [ k ] ] . crowdingDist > max)
964 {
965 max = populat ion [ tmp [ k ] ] . crowdingDist ;
966 pos = tmp [ k ] ;
967 c = true ;
968 }
969 }
970 }
971 i f ( c ) // a max value was found , the i f loop was executed
972 {
973 bool d = f indDup l i c a t e ( nextGeneration , populat ion [ pos ] .
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chromosome ) ; // no dup l i c a t e s are a l lowed
974 i f (d != true )
975 {
976 nextGenerat ion . push_back ( populat ion [ pos ] ) ;
977 }
978 tmp . e r a s e ( f i nd (tmp . begin ( ) , tmp . end ( ) , pos ) ) ;
979 }
980 }
981 i f ( nextGenerat ion . s i z e ( ) == N)
982 break ;
983 }
984 }// end o f i f ( (N − nextGenerat ion . s i z e ( ) ) == 0)
985 else // i f ( (N − nextGenerat ion . s i z e ( ) ) == 0)
986 break ;
987 }
988 }
989

990 // c a l c u l a t i o n o f the hypervolume us ing the f i r s t f r on t o f the generated
popua l t ion a f t e r t g ene ra t i on s

991 // r e f e r e n c e po int i s g iven by the max r ing co s t and max assignment c o s t s
from the enumeration r e s u l t s

992 // t h i s algorothm ju s t works f o r bi−ob j e c t i v e opt imiza t i on problems
993 void calcHypervolumen ( vector<INDIVIDUAL> &a l l S o l , vector<int> &pareto ,

f loat &maxRing , f loat &maxAssignment , f loat &hypervolume )
994 {
995 multimap<long float , int> sortA ;
996 // s o r t a l l member o f the pareto f r on t accord ing to the re ass ignment

c o s t s in r i s i n g order
997 for ( int i = 0 ; i < pareto . s i z e ( ) ; i++)
998 {
999 sortA . emplace (make_pair ( a l l S o l [ pareto [ i ] ] . assignmentCost , pareto [ i ] ) ) ;

1000 }
1001 // i t e r a t e through the po in t s i f the so r t ed l i s t accord ing the ass ignment

c o s t s
1002

1003 multimap<long float , int >:: i t e r a t o r i t = sortA . end ( ) ;
1004 i t −−; // po in t ing to the l a s t element with the b i gg e s t ass ignment c o s t s
1005 // i n i t i a l i z a t i o n o f the hypervolume
1006 hypervolume += (maxRing − a l l S o l [ i t−>second ] . r ingCost ) ∗(maxAssignment −

a l l S o l [ i t−>second ] . ass ignmentCost ) ;
1007 i t −−; // po in t ing to the second b i gg e s t ass ignment c o s t s
1008

1009 multimap<long float , int >:: i t e r a t o r i t 2 = sortA . end ( ) ;
1010

1011 for ( i t ; i t != sortA . begin ( ) ; i t −−)
1012 {
1013 i t 2 −−;
1014 hypervolume += (maxRing − a l l S o l [ i t−>second ] . r ingCost ) ∗( a l l S o l [ i t 2−>

second ] . ass ignmentCost − a l l S o l [ i t−>second ] . ass ignmentCost ) ;
1015 }
1016 // c a l c r e l a t i v e coverage
1017 hypervolume = hypervolume / (maxRing∗maxAssignment ) ;
1018 }
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1019 // ∗∗∗∗ main func t i on ∗∗∗∗
1020 int main ( )
1021 {
1022 // ho lds the INDIVIDUALS o f next gene ra t i on
1023 vector<INDIVIDUAL> nextPop ;
1024

1025 // read . txt Data F i l e
1026 readDataFi le ( ) ;
1027

1028 // s t a r t count ing the time
1029 clock_t s t a r t = c lo ck ( ) ;
1030 time_t time (NULL) ;
1031

1032 // i n i t i a l i z e f i r s t gene ra t i on o f s i z e N & ca l c u l a t i o n o f a l l va lue s o f a
s o l u t i o n at once

1033 i n i tPopu l a t i on ( ) ;
1034

1035 // T gene ra t i on s
1036 for ( int t = 0 ; t < T; t++)
1037 {
1038 vector<INDIVIDUAL> o f f s p r i n g ;
1039 vector<INDIVIDUAL> parents_CO ; // parents f o r c r o s s over
1040

1041 // c r ea t e o f f s p r i n g as long number o f o f f s p r i n g i s lower than N
1042 while ( o f f s p r i n g . s i z e ( ) < N)
1043 {
1044 tournament ( parents_CO) ; // i n c l ud e s the procedure o f random choos ing

the parents
1045 crossOver ( parents_CO , o f f s p r i n g ) ; // i n c l ud e s the mutation operator

on the o f f s p r i n g
1046 parents_CO . c l e a r ( ) ;
1047 }
1048

1049 // merge parent gene ra t i on with o f f s p r i n g gene ra t i on
1050 for ( int i = 0 ; i < o f f s p r i n g . s i z e ( ) ; i++)
1051 {
1052 populat ion . push_back ( o f f s p r i n g [ i ] ) ;
1053 }
1054

1055 // c a l c rank f o r everyone : 2N chromosomes ( populat ion + o f f s p r i n g )
1056 FastNonDominatedSort ( ) ;
1057 nrFrontsOf f . push_back ( f r o n t s . s i z e ( ) ) ; // keep track o f the number o f

f r o n t s with in ( populat ion + o f f s p r i n g )
1058 // c a l c crowding d i s t ance f o r a l l ranks (2N chromosomes ( populat ion +

o f f s p r i n g ) )
1059 crowdingDistance ( ) ;
1060

1061 s e l e c tNextGenerat ion ( nextPop ) ;
1062

1063 // r ep l a c e cur rent populat ion with nextPop
1064 populat ion . c l e a r ( ) ;
1065 for ( int p = 0 ; p < nextPop . s i z e ( ) ; p++)
1066 {
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1067 populat ion . push_back ( nextPop [ p ] ) ;
1068 }
1069 nextPop . c l e a r ( ) ;
1070

1071 // c a l c rank f o r everyone f o r new populat ion o f s i z e N
1072 FastNonDominatedSort ( ) ;
1073 nrFrontsPop . push_back ( f r o n t s . s i z e ( ) ) ;
1074 // c a l c crowding d i s t ance
1075 crowdingDistance ( ) ;
1076

1077 }// end t
1078

1079 // stop c l o ck
1080 clock_t stop = c lock ( ) − s t a r t ;
1081 runTime = stop / CLOCKS_PER_SEC;
1082

1083 calcHypervolumen ( populat ion , f r o n t s [ 0 ] , maxR, maxA, hv ) ;
1084

1085 // c r ea t e . txt F i l e with r e s u l t s
1086 wr i teDataFi l e ( ) ;
1087

1088 system ( "pause" ) ;
1089 getchar ( ) ;
1090

1091 return EXIT_FAILURE;
1092 }
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