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Econophysics and generalized

eigenvector analysis of networks
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CHAPTER 1
Introduction

Econophysics is an interdisciplinary area of research that applies methodical ap-

proaches from statistical mechanics to economic problems. One of these problems

is the assessment of systemic risk in financial networks, which, in the wake of the

financial crisis of 2007/08, has been extensively studied in recent years.

As the risk factors that lead to a market collapse are not constrained to only affect

financial institutions, the assumption of this work is that private companies may

also have a significant contribution to the systemic risk in the economy.

The goal is therefore to identify companies that would have the biggest impact

on the economy in the case of default. For this purpose, we construct a liability

network of the Austrian economy for the year 2008 by extracting the relevant

information from empirical data provided to the commercial register. This network

is then analyzed with the DebtRank method proposed by Battiston et al. [BPK+12]

in 2012 that is frequently used to quantify systemic risk in financial networks.
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1. Introduction

1.1 Outline

In the first part we will introduce the concepts needed to understand DebtRank, a

method to assess systemic risk based on node centrality for graphs. For this purpose,

we will provide a brief overview of elementary graph theory as well as centrality

measures that are conceptually similar to the DebtRank method in chapter 2. In

chapter 3, applications of the graph theoretic concepts for econophysics will be

discussed. Furthermore, we will present an in-depth explanation of the DebtRank

method. In the second part of this thesis we will report how we employed the

methods covered in the first part to construct a liability network for the Austrian

economy using empirical data. Subsequently, we will quantify the contribution of

private companies to the systemic risk of the economy using the DebtRank method

and present the results in chapter 6. In the final chapter we will summarize and

discuss the results.
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CHAPTER 2
Graph Theory

This chapter starts with a brief introduction to basic graph theory. Subsequently,

various measures of node centrality are introduced. These measures provide the

foundation of the DebtRank method—the main measure of interest for this work—

which will be explained in section 3.3.

2.1 Basic definitions

A graph is a structure that consists of a set of objects with a set of connections

between them. Unless otherwise specified, all graphs in this thesis have directed

edges.

Figure 2.1: Undirected graph on the left, directed graph on the right. Note that
each vertex may be connected to zero, one or many other vertices.
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2. Graph Theory

Definition 2.1 (Undirected graph) A set of vertices V connected by a set of

edges E (also called arcs) form an undirected graph G = (V,E). Each edge is a set

that contains the two vertices it connects.

V = {v1, v2, . . . , vn} short: V = {1, 2, . . . , n}

E = {{vi1 , vj1}, . . . , {vim , vjm}} short: E = {{i1, j1}, . . . , {im, jm}}

Definition 2.2 (Directed graph) In a directed graph an edge is not a set that

contains the two vertices it connects but an ordered pair. The vertex set is defined

the same way as for an undirected graph.

E = {(vi1 , vj1) , . . . , (vim , vjm)} short: E = {(i1, j1) , . . . , (im, jm)}

For a given edge e = (vi, vj) in a directed graph we refer to the first (vi) and second

component (vj) of the edge with e1 and e2. The first component is the start vertex

of the edge, the second component is the end vertex of the edge.

Definition 2.3 (Multigraph) In a multigraph the set of edges E is a multiset.

Two vertices a and b may then be connected with zero, one or multiple edges.

Definition 2.4 (Loop) An edge that connects a vertex with itself is called a loop.

Definition 2.5 (Simple graph) A simple graph is a graph without loops and

without multiple edges.

Remark 2.1 A loop in an undirected graph is not a set but a multiset as it contains

the same vertex twice.

Definition 2.6 (Weighted graph) If each edge has an associated value, the re-

sulting graph is called a weighted graph. A weighted graph comprises a graph
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2.2. Graph representation

G = (V,E) as well as a weight function w : E → R that maps each edge (vi, vj) to

its associated weight Wij.

w(vi, vj) =


Wij if vi and vj are connected

0 if vi and vj are not connected

Remark 2.2 For a multi-graph the weight function must be adapted to enable

edges that connect the same two vertices with different weights.

Definition 2.7 (Bipartite graph) A graph G = (V,E) is a bipartite graph if

and only if the set V can be partitioned into two disjunct sets V1 and V2 such that

all edges e = (v1, v2) connect a vertex from one set with a vertex from the other set.

2.2 Graph representation

Until now, a graph was represented by a tuple of sets containing its elements.

Another way to store this information is the adjacency matrix.

Definition 2.8 (Adjacency matrix) A graph G = (V,E) can be represented as

a N ×N matrix where N = |V | is the number of vertices. This matrix is called the

adjacency matrix. In a graph without multiple edges the adjacency matrix A has

entries that are either 1 (Aij = 1⇔ (vi, vj) ∈ E) or 0 (Aij = 0⇔ (vi, vj) /∈ E).

Remark 2.3 For undirected graphs the adjacency matrix is symmetric as for every

pair of vertices vi and vj there is an edge from vi if and only if there is an edge

from vj to vj and thus Aij = Aji.

Below is an example of a graph and its adjacency matrix representation. The

entries in the adjacency matrix have the same color as the edge associated with

the entry.
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2. Graph Theory

v1

v2

v3 v4

v5
A5×5 =

v1 v2 v3 v4 v5



0 1 0 0 0 v1

1 0 1 0 0 v2

0 0 0 1 0 v3

0 1 0 0 0 v4

0 0 0 0 1 v5

For weighted graphs the weighted adjacency matrix W results from multiplying

each entry Aij of the adjacency matrix with the weight of the corresponding edge,

given by w(vi, vj).

2.3 Paths on graphs

Paths on graphs were of interest since the very beginning of graph theory in the

18th century when it was introduced by Leonhard Euler in a paper about the “Seven

Bridges of Königsberg”-problem [Eul35] which asks for the existence of a path that

uses all edges exactly once (thus subsequently known as Eulerian path).

Definition 2.9 (Walk) A walk on a graph is a sequence of edges where every two

consecutive edges have a common vertex—the target of the first edge is the source

of the second et cetera.

Remark 2.4 (Number of walks of certain length) The adjacency matrix A

of a graph G = (V,E) has entries Aij = 1 for all pairs (i, j) ∈ E, i.e. for all pairs

of vertices that are reachable with a path using only one edge. Taking the n-th power

of the adjacency matrix yields a matrix An where the entries (An)ij correspond to

the number of walks from vi to vj.

Definition 2.10 (Path) A path is a walk where no vertex is visited more than

once, i.e. any vertex vi occurs in at most two edges (one edge leading to vi and one

8



2.3. Paths on graphs

edge leading away from vi)1.

Definition 2.11 (Connected vertices) Two vertices are connected iff there ex-

ists a path from the first to the second vertex. This relationship is only necessarily

symmetric for undirected graphs.

Definition 2.12 (Connected component) For an undirected graph G = (V,E)

a set of vertices C ⊆ V is a connected component iff for every pair of nodes x, y ∈ C

there exists a path from x to y using edges from E.

Definition 2.13 (Strongly connected component) For a directed graph G =

(V,E) a strongly connected component is a set of vertices C ⊆ V iff for every pair

of vertices x, y ∈ C there exists a path from x to y using edges from E.

Definition 2.14 (Weakly connected component) For a directed graph G =

(V,E) a set of vertices C ⊆ V is a weakly connected component iff for every

pair of vertices x, y ∈ C there exists a path from x to y using edges from E ′ =

{{vi, vj}|(vi, vj) ∈ E} (E ′ is a set of undirected edges).

Definition 2.15 (Distance) For two vertices vi and vj in a graph G = (V,E)

the distance d(vi, vj) is defined as the number of edges on the shortest path with vi

as the first and vj as the last vertex.

Remark 2.5 (Distance for directed graphs) For a directed graph the distance

usually takes the edge directions into account, therefore d(vi, vj) is not necessarily

equal to d(vj, vi).

Remark 2.6 (Distance for unconnected vertices) If a graph consists of more

than one connected component there are vertices that are not connected by a path.

If vi and vj are such vertices, the distance is usually defined as d(vi, vj) =∞.
1This definition allows paths that start and end at the same vertex. These are called cycles.
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2. Graph Theory

2.4 Centrality measures

In a graph, some vertex or some vertices may be more important than others. For

this purpose several centrality measures are used to highlight different properties

of interest.

The most basic centrality measure is the degree centrality (section 2.4.1) which only

considers local information. Closeness and betweenness centrality (sections 2.4.2

and 2.4.3) are path based measures. The last class of centrality measures outlined

here are variants of the eigenvector centrality (sections 2.4.4, 2.4.5 and 3.3) where

the centrality of a vertex depends on the centrality of the other vertices.

2.4.1 Degree centrality

Degree centrality is a very basic centrality measure that only counts the number of

edges that are incident upon a vertex. In an undirected graph the degree centrality

CD for a vertex vi is thus defined as

CD(vi) = |{e ∈ E|vi ∈ e}| .

The degree centrality of a vertex is often called the degree of a vertex or deg(vi).

In fig. 2.2 the degree centrality of a graph is illustrated.

11
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1

1 1

7 2

11

1
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2
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4
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Source: [Jac17, Lecture 16, 2.4]

Figure 2.2: Each vertex labelled and colored according to its degree centrality.
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2.4. Centrality measures

For a directed graph, there exist two additional measures of degree centrality,

one for the outgoing and one for the ingoing arcs. The sum of the in-degree and

out-degree centrality is the degree centrality as defined before:

CDi(vi) = |{e ∈ E|vi = e2}|

CDo(vi) = |{e ∈ E|vi = e1}|

CD (vi) = |{e ∈ E|vi = e1 ∨ vi = e2}| .

In fig. 2.3 the degree centrality is illustrated for an undirected and for a directed

graph.

4

0
1

1
2

2 0
4

0
0

1
0

1
0 2

0

1
1

Figure 2.3: On the left is an undirected graph, on the right is the same graph with
directed edges. Vertices of the undirected graph are labelled with degree centrality
CD; vertices of the directed graph are labelled with in-degree CDi (top) and out-
degree CDo (bottom) centrality. Note that the sum CD = CDi +CDo for each vertex
of the right graph is the value of the degree centrality of the corresponding vertex
on the left.
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2. Graph Theory

Applications

Source: [Eul35]

5

3

3

3

3 3

4 4

2

Figure 2.4: Left: Eulers illustration of the “Seven Bridges of Königsberg” problem.
Center: a graph of the “Seven Bridges. . . ” problem where each vertex is labelled
with its degree centrality. Right: The “Haus des Nikolaus” riddle where only the
two vertices with odd degree centrality can be used as start and end vertices to
draw the figure in a single stroke.

In Leonhard Eulers paper on the “Seven Bridges of Königsberg” problem [Eul35],

the fact that the graph had more than two vertices with odd degree centrality

was used to prove that there is no Eulerian path that uses all edges in the graph.

In fig. 2.4 the sketch from the original publication as well as a simplified version

where vertices are labelled with their degree centralities are depicted. Since there

are more than two vertices with odd degree there cannot exist a path that uses

each bridge/edge as only the start and end vertex of the path may have an odd

degree. A better-known version of this is the “Haus des Nikolaus” riddle where the

two bottom vertices have an odd degree centrality and the other corners have even

degree centrality (see fig. 2.4). It follows that each successful attempt has to start

at one of the two bottom vertices and end at the other one.

2.4.2 Closeness centrality

The closeness centrality was introduced in 1950 by Alex Bavelas [Bav50] who

analyzed different communication patterns in groups. He defined the “relative

12



2.4. Centrality measures

centrality” of a vertex vi as

CC(vi) =
∑

vk∈V

∑
vl∈V d(vk, vl)

2∑vk
d(vi, vk) ,

where the denominator is the sum of the distances from vi to all other vertices

and the numerator is the sum of the distances for all vertices summed up. The

factor two in the denominator is due to the fact that the double sum counts every

distance twice, once as d(vk, vl) and once as d(vl, vk).

In an undirected network a high closeness centrality of a vertex corresponds to

a short average path length to other vertices. In a communication network of

politicians, this translates to a capacity for more efficient communication, which,

according to Hafner-Burton et al. [HBM10], can be leveraged for more power and

influence.

For directed graphs the closeness centrality may be either based on distance from

or on distance to other vertices.

CCf (vi) =
∑

vk∈V

∑
vl∈V d(vk, vl)

2∑vk
d(vi, vk)

CCt(vi) =
∑

vk∈V

∑
vl∈V d(vk, vl)

2∑vk
d(vk, vi)

,

An example for this would be a politician that can use public broadcasting to

efficiently communicate his ideas to a population that can only respond by casting

a vote once every few years (and, thanks to the wonders of our time, by ranting on

social media).

Each of these measures must be adapted in some way for graphs that consist of

more than one (strongly) connected component, as the distance of two vertices

that are not connected is usually defined to be ∞ (see remark 2.6).

13



2. Graph Theory

2.4.3 Betweenness centrality

Betweenness centrality is measures the importance of a vertex for connecting other

vertices introduced by Freeman [Fre77]. For a vertex vi of the graph G = (V,E)

it is defined as the sum of the number of shortest paths connecting all pairs of

vertices in the set V ′ = V \ {vi} that pass through vi (pi) divided by the number

of paths that do not pass through vi (p):

CB(vi) =
∑

vk∈V ′

∑
vl∈V ′

pi(vk, vl)
p(vk, vl)

.

According to Hafner-Burton et al. [HBM10] betweenness centrality can be used for

brokerage power.

2.4.4 Eigenvector centrality

The eigenvector x of a matrix A is defined by the formula

λx = Ax, (2.1)

where λ is the eigenvalue corresponding to the eigenvector x.

When the matrix A is the adjacency matrix (see definition 2.8) of the graph

G = (V,E) and λ is the largest real eigenvalue2 of A, the i-th entry xi of the

eigenvector x corresponds to the eigenvector centrality CE(vi) of the of the vertex vi.

Reformulating eq. (2.1) yields

CE(vi) = 1
λ

∑
j

AijCE(vi) = 1
λ

∑
vj∈N(vi)

CE(vi) ,

where N(vi) is the set of neighbors of the vertex vi. From this equation, the

centrality notion that eigenvector centrality [Bon72] captures is more obvious:
2Using the largest real eigenvalue guarantees real and strictly positive eigenvector entries as

asserted by the Perron–Frobenius theorem.
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2.4. Centrality measures

Being connected to vertices with high centrality leads to a higher centrality. This

is illustrated in fig. 2.5.

0.12
0.12

0.12

0.12

0.12
0.12

0.39
0.31

0.120.12

0.12

0.50

0.21

0.16

0.11

0.16

0.36

0.25

Source: [Jac17, Lecture 16, 2.4]

Figure 2.5: Vertices labelled with their eigenvector centrality. Note that the two
vertices highlighted with a dashed red border both have a degree centrality of 2
but the left vertex has a considerably higher eigenvector centrality due to being
connected to more central vertices.

2.4.5 Katz centrality

Whereas eigenvector centrality only takes the centrality of neighboring vertices into

account to calculate the centrality of a vertex vi, Katz centrality [Kat53] extends

this by also including the centralities of vertices that are reachable from vi with

walks of arbitrary length.

Using the property from remark 2.4 Katz centrality is defined as

CK(vi) =
∞∑

k=1

∑
vj∈V

αk(Ak)ij (2.2)

where α is an attenuation factor that weights paths according to their length. This

factor must be chosen to be smaller than the inverse of the absolute value of the

largest eigenvalue of A to ensure that CK converges. Using a smaller value for α

reduces the contribution of walks with longer distance. This is a desired property as

for example in a social context having a a more direct connection to an influential

person increases the possible benefit from this connection.
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2. Graph Theory

Katz centrality can be calculated in closed form by using the geometric series

1
1− x = 1 + x+ x2 + x3 + . . . =

∞∑
i=0

xi .

Substituting αA for x and reducing the result by the multiplicative identity yields

the operator

(I − αA)−1 − I

which can be applied to ~I (a vector with each entry equal to 1) to get a vector ~K

with entries Ki = CK(vi)

~K = ((I − αA)−1 − I)~I . (2.3)

16



CHAPTER 3
Econophysics

Econophysics is an interdisciplinary research field where methods with roots in

statistical physics are applied to economic systems to gain a better understanding

of various phenomena, including but not limited to scaling laws [SAB+96] and

failure modes of economic systems, such as the market crashes that provide the

motivation for the analysis in this work.

In the first section of this chapter we will outline the idea of the science of complex

systems and its relation to physics. The second section is a brief overview of how

the graph theoretic concepts from chapter 2 are applied to the study of economic

systems. Furthermore, we will explain the model of the financial network used for

the analysis in this work and its properties.

The third section is an introduction to the DebtRank method and is followed in the

final section of this chapter by a selection of notable applications of the DebtRank

method.

17



3. Econophysics

3.1 Complex Systems

In statistical mechanics, macroscopic properties of a material emerge from the

microscopic interactions of its molecules. For this purpose, statistical methods

are applied to derive the macroscopic properties from interactions based on the

fundamental forces.

The science of complex systems is an extension of physics where instead of the

fundamental interactions a multitude of possibly non-linear interactions are studied.

These interactions often do not work on a homogeneous space with a distance

metric but on a network of components with arbitrarily complex neighborhoods.

Spin glass models (e.g. the Ising model, a model for ferromagnetism) in physics

are similar insofar as they consist of interacting components (the spins), and the

interactions of these components are limited to a discrete neighborhood. When

first devised by Ernst Ising [Isi25], the spins were laid out on a regular lattice with

interactions between a spin and its nearest neighbors. More recently, Ising models

on general graphs were also studied [Bre15].

3.2 Economic networks

The economy is a complex system that consists of a multitude of entities (factory

owners, factories, employees, products and consumers) interacting in various ways,

for example:

• investing, owning: Factory owners invest in factories

• being employed by: employees are employed by factory owners

• working at: employees work at factories

18



3.2. Economic networks

• producing: employees produce products

• buying: consumers buy products

This can be modelled by a graph that represents the entities by sets of vertices

(one set for each entity type) and the interactions by edges (again, a set for each

possible interaction type). The resulting graph is then:

G = (V,E, V1, V2, . . . , E1, E2, . . .) ,

with V = ⋃
i Vi and E = ⋃

i Ei. A vertex v could possibly be in two different sets

Vi and Vj at the same time, for example a person could own a factory and be a

consumer.

3.2.1 Financial networks

A financial network is a special case of an economic network where the links between

nodes only represent financial dependencies, for example liabilities or investments.

Liability and asset network

The financial network of interest for this work is only between companies and banks

which interact through lending money. The companies and banks are referred to

as nodes, each of which is represented by a vertex in the graph that represents the

financial network. The nodes are subdivided into two disjunct sets, the banks B

and companies C and their union is the set of vertices V = B ∪ C.

The money-lending and borrowing connections are modelled as edges connecting

the vertices representing the nodes involved in the transaction. Therefore edges

represent outstanding debts, either in the form of loans from banks or as deposits

from companies at banks.

19



3. Econophysics

Figure 3.1: Illustration of a network of banks and companies . Banks have
connections to companies and to each other, whereas companies do not interact
with each other but only with banks. Connections are either loans , or deposits

.

Each outstanding debt can be either viewed as an asset or as a liability: From the

point of view of the lending party the debt is an asset, if viewed from the borrowing

party the debt must be paid back and is therefore a liability.

If the graph G = (V,E) represents the assets network, the transposed graph

G′ = (V,E ′) (which is obtained by reversing the direction of all edges) is the

liability or exposure network. The weighted adjacency matrices of these two graphs

are therefore called assets matrix (A) and liability (exposure) matrix (L) where

A = L> and Lij = Aji.

Figure 3.1 is an illustration of a bank-company network.

3.3 DebtRank

A financial crisis from the viewpoint of econophysics results from the spread of an

initial market-shock in an ecosystem. Depending on the resilience of the ecosystem,
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the spread of the shock can either be locally constrained or extend over large parts

of the system.

The method used to analyze these dynamics, called DebtRank, was introduced

by Battiston et al. [BPK+12] in 2012. It is a form of generalized eigenvector

analysis that identifies systemically important nodes by assessing the fraction of

the economic value of the system that is affected by a shock diffusing from a given

node or a set nodes.

3.3.1 Idea of the DebtRank method

In a financial liability network a node d may default and therefore not be able to

satisfy its liabilities to other nodes. If j is one of the nodes that was exposed to

the default-risk of node d it incurs a loss on its loan (or deposit/investment) to

c. Node j then tries to mitigate its own default by compensating the loss with its

capital. If the capital of node j is not sufficient to offset the incurred loss, node j

also defaults. From here the process continues recursively until the set of defaulting

nodes remains stable.

3.3.2 Formal definition

The financial dependencies of the nodes in the network are given in a liability

matrix L with entries Lij denoting that node j has given node i a loan (or

investment/deposit) of size Lij. Additionally, there is a capital (or equity) vector

C with entries Ci denoting the capital of node i.

The relative economic value of a node i is given by

vi = Li∑
j Lj

(3.1)

where Li = ∑
j Lji is the sum of the outstanding liabilities of node i.
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3. Econophysics

The default of node i then affects all nodes j where Lij > 0. The impact of the

default of i on j is defined as

Wij = min
(
Lij

Cj

, 1
)
. (3.2)

The impact of a shock is thus measured as the fraction of capital loss due to the

credit default. It is therefore a value in the range [0, 1] with the semantics Wij = 0

if the default of node i does not affect node j, and Wij = 1 if the default of node i

results in a loss that matches or exceeds the capital of node j.

The economic value of the impact is obtained by multiplying the impact with the

relative economic value from eq. (3.1). The economic value of the impact of i on

its neighbors is therefore given by

Ii =
∑

j

Wijvj (3.3)

Though if the neighbors of i do not have enough capital to compensate for the

default of i they default themselves, leading to reverberations in the network. It is

possible to account for this by modifying eq. (3.3) in a way resembling the adaption

of eigenvector centrality (see section 2.4.4) for Katz centrality (see section 2.4.5):

Ii =
∑

j

Wijvj + α
∑

j

WijIj . (3.4)

Equation (3.4) can be simplified similar to eqs. (2.2) and (2.3). Also, the same

restrictions apply for the dampening factor α.

The problem with formula eq. (3.4) though is that the impact from a default

spreads along walks of arbitrary length on the graph defined by the matrix W . If

W contains a cycle the impact from the default of node i spreads along the edges

until it reaches i again (due to the cycle), possibly resulting in another default of i.

To fix this, Battiston et al. proposed to only take walks without repeating edges1.
1Walks without repeating edges are sometimes referred to as trails
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3.3. DebtRank

This is done by introducing two additional state variables for each node, si and hi

(both dependent on the time step t). The variable si takes one of three values:

si(t) Interpretation

U Node i is undistressed at time t

D Node i is in distress at time t

I Node i is inactive at time t

The variable hi has a value in the range [0, 1] and is the level of distress, with 0

meaning undistressed and hi(t) = 1 in the case of default. The value of hi(t) is

defined as

hi(t) = min
1, hi(t− 1) +

∑
j|sj(t−1)=D

Wjihj(t1)
 , (3.5)

whereas si(t) is given by:

si(t) =



D if hi(t) > 0 ∧ si(t− 1) 6= I,

I if si(t− 1) = D,

si(t− 1) otherwise

(3.6)

To calculate the DebtRank of a node d (d for defaulting), the distress hi and status

si at time step t = 1 are initialized as follows:

hi(1) =


1 if i = d

0 otherwise
si(1) =


D if i = d

U otherwise
. (3.7)

Then the values of si and hi are calculated for every node i and time step t,

according to eqs. (3.5) and (3.6) until all nodes are either inactive or undistressed

(see fig. 3.2 for an example of the resulting dynamics).

When the distress levels of the nodes are converged at time step t = T , the

DebtRank of node d can be calculated as the sum of the distress level multiplied
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Figure 3.2: Example of DebtRank computation. Each node is labelled with its
index i, si(t) and current distress level hi(t) (see legend on bottom left). Graph is
based on the impact matrix W where all entries Wij are either 0 (no edge from
i to j) or 0.5. In each step the neighbors of nodes that were distressed at the
previous time step get a contribution to their level of distress. The first time hi

is updated from 0.0 to a value > 0, the node goes in distress. If the node was in
distress at the previous time step, its status is updated to inactive and does not
further contribute to the distress level of adjacent nodes (at t = 4 at node i the
contribution is 1/2× h5(3) = 1/8 and does not increase further at t = 5 because v5
is already inactive when its distress rises from 1/4 to 3/8).



3.3. DebtRank

by the relative economic value of each node except node d:

Rd =
∑

i

hi(T )vi − hd(1)vd (3.8)

Simultaneous default of multiple nodes

It would be possible to calculate the combined DebtRank of a set S of nodes by

replacing the i = d conditions in the initialization (eq. (3.7)) by i ∈ S and changing

eq. (3.8) to one of the following equations:

RS =
∑

i

hi(T )vi −
∑
d∈S

hd(1)vd (3.9)

RS =
∑

i

hi(T )vi (3.10)

Equation (3.9) excludes the impact of the initial shock, whereas eq. (3.10) does

not.

In this work, DebtRank is calculated on two different networks, the interbank

network B and the full network F . We use RF and RB to discern between the two

measures.
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3.4 Applications of the DebtRank method

Since its introduction, the DebtRank has been frequently used to measure either

systemic risk itself or effectiveness of policies that try to rein in systemic risk. In

this section we will present a selection of notable applications of the DebtRank

method.

3.4.1 DebtRank transparency [TP13]

Individual institutions cannot decide whether another institution is systemically

risky and therefore they cannot decide whether borrowing from or lending to them

would be advisable. Thurner and Poledna propose to alleviate this by making the

systemic risk of financial institutions accessible to enable financial institutions to

make better informed decisions.

3.4.2 Systemic risk transaction tax [PT16]

Poledna and Thurner developed a method to quantify the marginal contribution of

systemic risk by single transactions and proposed to introduce a tax on systemically

risky transaction, thus providing an incentive for banks and companies to mitigate

not only transactions with high credit default risk but also transactions with high

systemic risk.

They run simulations with an agent based model to compare their proposed policy

with a financial transaction (Tobin-like) tax. Their results suggest that their

method has a smaller impact on the transaction volume of the interbank market

and is simultaneously more effective at reducing systemic risk in the network.
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3.4. Applications of the DebtRank method

3.4.3 Systemic risk in multi-layer networks [PMBMJ+15]

In contrast to the analysis of a single layer financial network in this thesis, Poledna

et al. analyzed the systemic risk in the Mexican interbank network with four layers,

reflecting the different types of exposure between banks (derivatives, securities,

foreign exchange and liabilities). They show that considering only one layer (as

done in this thesis) vastly underestimates the systemic risk.

27





Part II

DebtRank analysis of the

Austrian economy using empirical

data

29





CHAPTER 4
Introduction

Lending and borrowing between financial institutions introduces exposures from

one institution to another and enables propagation of market shocks in the financial

network. Due to this, the default of a credit may not only affect the directly

involved parties but also institutions with exposures to them, potentially rendering

large portions of the system non-functioning.

The crisis of 2007–2008 has demonstrated the societal costs of neglecting this

systemic risk in financial markets. This sparked the developments of methods for

quantifying systemic risk [BPK+12, SC13, AB16, APPR17, PL16]. These methods

were used to assess systemic risk in a multitude of financial networks [TSGo13,

PMBMJ+15, PCB14] and for research on the effectiveness of crisis resolution

mechanisms[KPFT15], regulations [PBT17] as well as policies and taxing schemes

that counteract the build-up of systemic risk [TP13, PT16, AB16, APPR17,

LPT16].

As market shocks are propagated via exposures between financial institutions,

interconnectedness is a necessary condition (either directly through financial de-

pendencies [BPK+12] that default or via mutually held assets that deprecate due
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4. Introduction

to synchronized behavior, e.g. fire sales [PBT17, PPT17, AB16]) for systemic

collapses and thus systemic risk. Therefore the analysis of systemic risk is until now

primarily focussed on the interbank market due to its role as the “disease vector”

for the contagion of market disturbances. This neglects the possible influence of

companies as origin and propagator of systemic collapses. My goal is therefore

to expand upon the existing research by analyzing a financial network that not

only includes interbank liabilities but also liabilities and deposits between banks

and companies. We do this by using empirical data from the commercial register

to build a bank-company liability network which will then be connected with the

interbank liability network, provided by the Austrian national bank (see chapter 5).

We then use the DebtRank method proposed by Battiston et al. [BPK+12] (see

section 3.3) to identify systemically important companies. Furthermore, we will

investigate how adding the bipartite bank-company to the interbank network affects

the ranking of banks. In chapter 6 the results of the analysis will be presented,

followed by a discussion in chapter 7.
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CHAPTER 5
Statistics and reconstruction from

empirical data

The data used for this analysis consists of two main parts, annual financial sta-

tements of companies and balance sheets of banks. The company data is from

the commercial register of Austria and extracted and collected by the Bureau

van Dijk. The bank data is from the Austrian Central Bank (OeNB). The public

financial statements were collected from the official homepage1, the interbank

network was also provided by the Austrian Central Bank as an anonymized and

linearly transformed data set.

In the first section we will provide some statistics describing the different data sets.

Then we will outline how the financial network as described in section 3.2.1 was

constructed from the raw data.

1https://www.oenb.at/jahresabschlusski/jahresabschlusski
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5. Statistics and reconstruction from empirical data

5.1 Statistics

As the data sets for the interbank liability network—and the commercial register

data—only overlapped for 2008, only data for this year was considered.

Figure 5.1 shows a stacked bar chart of the the different liability types of the 106 919

companies in the commercial register grouped by the number of bank connections

for the calendar year 2008 (individual accounts only, most recent account if multiple

balance sheets submitted in same year).
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Figure 5.1: Different liability types in the commercial register aggregated over all
companies with a given number of bank connections. Liability types are sorted
according to the total sum per type. Companies without bank connections are
discarded, which affects approximately 27.3% of the liabilities.
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5.2. From raw data to the liability network

In fig. 5.2 the distribution of the number of unique bank connections per company

is shown. Approximately 51.4% of the companies provide no bank connection

and therefore cannot be used for the DebtRank analysis. The impact of this

missing-data problem is alleviated by the fact that primarily smaller companies are

affected by it. As fig. 5.1 shows only 27.3% of the total liabilities are associated with

companies dropped due to not providing information about their bank connections.
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Figure 5.2: Number of companies that provide a certain number of bank connections
in the commercial register. Up to six banks are possible.

As most companies are not legally obliged to provide an exact breakdown of their

different liability types, the “Liabilities towards banks”, which was needed for our

further analysis, was estimated by average ratio of companies working in the same

line of business, as indicated by their OeNACE code.

5.2 From raw data to the liability network

The liability network was reconstructed from the unweighted network of companies,

banks and their connections by assigning a weight to each edge. This company-bank

liability network was then connected with the interbank liability network provided

by the Austrian Central Bank.
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5.2.1 Data cleaning

Four banks had a leverage (loan-equity ratio) of 10.15, 11.34, 61.84 and 293.03,

above the allowed threshold of 10. We assume that this is due to an error with the

reporting of their equity (Tier 1 capital). This was fixed by increasing the equity

of the affected banks to ensure that the leverage of all banks was ≤ 10.

Apart from that we encountered one company that had liabilities, which increased

by a factor of approximately 10 from 2007 to 2008 and decreased again to the level

from 2007 a year later. We assumed that this was due to a misplaced decimal point

and removed the company from our data set.

5.2.2 Company-bank adjacency matrix

The unweighted network connecting companies with banks was created using the

bank connections provided by the companies in the commercial register. The result

was a bipartite graph G = (V,E,B,C) with B (the set of banks) and C (the

set of companies) being two disjunct sets of nodes. The sets have the following

cardinalities:

|V | = 52 776

|E| = 71 439

|C| = 51 980

|B| = 796

The adjacency matrix of the graph G is called L0 subsequently.

5.2.3 Weighted company-bank network

To get from the adjacency matrix to the weighted liability network used for the

DebtRank-analysis, the edges were assigned weights by distributing the aggregated
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5.2. From raw data to the liability network

liability/asset data from each node to its incident2 connections as follows:

• For every company c, take the liabilities Lc from its balance sheet submitted

to the commercial register. If the company provides detailed data take the

“Liabilities towards banks”, else use the average ratio of companies in the

same line of business to estimate the share of liabilities to banks from total

“Liabilities”.

• Take the set of aggregated loans (referred to as assets, or Ai where i is the

index of the bank) of all banks from their balance sheets.

• For every company c calculate the vector `c in the following way:

`c
b =


0 if Lcb = 0

Ab else

For every company c the vector `c has an entry for every bank b, where the

entry `c
b equals the aggregated assets of bank b if the company is connected

to the bank and zero else.

• Normalize the resulting vector with the L1 norm.

ˆ̀c = `c∑
i |`c

i |

• Partition the aggregated liabilities Lc of each company c with the distribution
ˆ̀c to get the entries for the company-bank liability network:

L:c = Lc � ˆ̀c

where � is the operator for element wise multiplication.
2In a graph the edges starting or ending at a vertex are incident to this vertex.
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This essentially partitions the liabilities of each company to the banks it is connected

to according to the relative size of the banks.

This rather naïve approach was used for the network reconstruction because the

row and column sums of the data did not match. This is due to the fact that

this analysis only considers loans from banks to companies in Austria whereas the

banks only provide their aggregated data which additionally include e.g. loans to

private citizens or to companies abroad. The applied method assumes that this

inflation is the same for all banks. If more precise data were available this should

be incorporated into the reconstruction and more advanced methods should be

applied [MSFG14, BEST04].

These steps were repeated for the bank deposits of the companies to get the

liabilities of the banks to the companies.

5.2.4 The full liability network

To get the complete bank-company liability network, the interbank network provided

by the Austrian National Bank and the weighted bipartite asset and liability

networks of the companies were combined and padded with zeros to get the full

liability network.

The resulting liability matrix L has the following form:

Ln×n =

BBb×b BCb×c

CBc×b CCc×c = 0

 , n = c+ b . (5.1)

Here c and b denote the number of companies and banks. The matrix consists of

the following four parts:

• interbank network BB connecting banks with banks
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• bank-company network BC containing information about deposits companies

have at financial institutions

• company-bank network CB containing information about liabilities companies

have to financial institutions

• company-company network CC with inter-company liabilities, omitted in

this work thus CCxy = 0 ∀x, y ∈ [1, c].

Each entry Lij indicates the liability that node i (which is a bank if i ≤ b and a

company if i > b) has to node j (the same applies here).

5.3 Graph visualizations

We used the graph layout algorithms from Hu Yifan [Hu06] and Shawn et al. [SBB11],

implemented in Gephi [BHJo09] to create the graph illustrations in this section

and in chapter 6.
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Figure 5.3: Plot of liability network containing all 796 banks and 51 980 compa-
nies . Nodes have sizes corresponding to their total assets. In the center mostly
banks that operate nationally and companies with ties to them are located. The
clusters further out are companies operating in certain regions being connected to
the regional branch of a bank in close vicinity. Hierarchies stem from the federal
structure of Austria.
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Figure 5.4: Plot of liability network containing all 796 banks and the 5 000
companies with the biggest liabilities to financial institutions. Node sizes
correspond to their total assets. This network was used for the DebtRank analysis
in chapter 6. As the total assets of the companies are small compared to the
biggest banks in the data set, most of the nodes have the minimum node size in
the visualization. Figure 6.5 shows the distribution of asset sizes of the analyzed
network.
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5.4 Network statistics

The degree distributions of the banks in the networks analyzed in this work are

illustrated in figs. 5.5 to 5.7. The in- and outdegree distributions are depicted in

fig. 5.5 for the full network F and in fig. 5.6 for the interbank network B. Figure 5.7

shows the undirected degree in both, the full network and the interbank network

for banks. In figs. 5.5 to 5.7 the outer plots show the whole range, whereas the

insets provide additional details about the ranges with higher density.

Figure 5.8 shows the degree distribution of companies in the full network (similar

to fig. 5.2, but restricted to companies with degree > 0 and only containing the

5000 companies with the biggest liabilities). Note, that the in- and outdegree for

companies are identical as the bank connections provided to the commercial register

were used for both types of connections between companies and banks (deposits &

liabilities).

The undirected and unweighted global clustering coefficients 〈Ci〉 (calculated accor-

ding to [WS98]) of the full network and of the interbank network are significantly

higher than the the clustering coefficient of a random graph with identical number

of nodes and vertices 〈Ci〉rand, as shown in table 5.1.

Network Nodes Edges 〈Ci〉 〈Ci〉rand

Full network F 5796 28127 0.77 0.005
Interbank network B 796 12783 0.89 0.043

Table 5.1: Undirected and unweighted global clustering coefficient 〈Ci〉 of networks
analyzed in this work and global clustering coefficient of random graph with same
number of nodes and edges. Random graph has considerable lower 〈Ci〉. as both
networks.
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Figure 5.5: In- and outdegree distribution of banks in the full company-bank
network F . Outer plot has 60 uniform bins on the interval [0, 3000], the inset shows
the distribution of degrees in the range [0, 100].
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Figure 5.6: In- and outdegree distribution of banks in the interbank network
B. Outer plot has 60 uniform bins on the interval [0, 360], the inset shows the
distribution of degrees in the range [0, 100].
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Figure 5.7: Undirected degree distribution of banks in the full network F [ ] and
in the interbank network B [ ]. Outer plot has 50 uniform bins on the interval
[0, 5000], the inset shows the distribution of degrees in the range [0, 600] (75 bins).
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Figure 5.8: In- and outdegree distribution of companies in full network. Values are
identical for all companies because loans and deposits (BC and CB network, see
section 5.2) use the same adjacency matrix, based on the bank connections in the
commercial register.



CHAPTER 6
Results

The results from the analysis of the liability network with the DebtRank method

will be presented in this chapter and then discussed and summarized in the final

chapter. For these results the liability graph L was reduced to the subgraph induced

by the union of the set of all 796 banks and the 5 000 biggest companies ordered by

their total liabilities. This graph is referred to as the “full graph”—the DebtRank

calculated on this graph is therefore abbreviated with RF (F for full). For the

second part of the analysis (see section 6.2) additionally the interbank network

consisting of the 796 banks and their connections to each other was considered.

The DebtRank calculated on this bank-only network is abbreviated with RB (B for

bank).

6.1 DebtRank of companies and banks

Figure 6.1 visualizes the DebtRanks RF of the full graph, though only companies

and banks with a DebtRank RF ≥ 0.01 are depicted to improve legibility. Nodes

are either banks (squares) or companies (circles), with sizes corresponding to their
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total assets and colored according to their DebtRank.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

DebtRank RF :

Figure 6.1: Subgraph of the analyzed network (fig. 5.4) with nodes restricted to
those having a DebtRank RF ≥ 0.01. Banks are depicted as squares, companies
as circle. Both, banks and companies are colored according to their DebtRank RF

and have sizes corresponding to their total assets. Most companies have a similar
size as their total assets are small compared to the total assets of the biggest banks.
Figure 6.5 shows the distribution of asset sizes of the analyzed network.
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6.1. DebtRank of companies and banks

Figure 6.2 shows the distribution of DebtRanks of banks and companies with a

histogram (range = [0, 0.7], 70 bins). The DebtRanks of companies tend to be

lower but there is considerable overlap in the distributions.
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Figure 6.2: Histogram of DebtRanks RF in the full network of banks [ ] and
companies [ ]. Banks and companies have a qualitatively similar DebtRank-
distribution. The highest DebtRank of a company is 0.39

Figure 6.3 is a bar plot of the first 45 banks and companies (left) and companies

(right) ranked according to their DebtRank. The right plot only depicts companies

and is labelled with the first character of the ONACE code (a system used in

Austria to classify companies according to the sector they operate in, see [Wir08]).

Banks are not labelled due to confidentiality. Comparing the profiles of both

distributions seems to confirm the hypothesis that the impact from the default of a

company may also affect a significant portion of the economy.
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Figure 6.3: DebtRank of companies and banks sorted by their DebtRank from top
to bottom in decreasing order. Distribution of banks and companies (left) similar
to distribution of companies only (right). In the right plot the bars are labelled
and colored according to the economic sector in which the companies operate, as
per the first character of their OeNACE code (a system used in Austria to classify
companies by sector [Wir08]). The banks are unlabelled due to confidentiality.



6.2. Impact of companies on the DebtRanks of banks

DebtRanks of companies and banks plotted against their total liabilities are depicted

in depicted in fig. 6.4. Figure 6.5 is the DebtRank of companies and banks plotted

against their total assets. The area with dashed box in the left figure is magnified

in the right figure for both plots. The relation between liabilities and DebtRank

(fig. 6.4) is more pronounced as between total balance and DebtRank (fig. 6.5).
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Figure 6.4: DebtRank of companies and banks depending on their total liabilities.
Companies have a cutoff at 2× 106 EUR as only the first 5 000 companies ranked
by their total liabilities were used.

6.2 Impact of companies on the DebtRanks of

banks

Figure 6.6 and fig. 6.7 illustrate how adding the bipartite company bank network

influences the DebtRank of the 796 banks in two different ways.

Each bank bi has a DebtRank RF (bi) in the full bank-company network, as well as

a DebtRank RB(bi) in the bank-only network. Then rF (bi) and rB(bi) are defined

as the ranks of bank i when the banks are sorted in ascending order according to

RF or RB, respectively.
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Figure 6.5: DebtRank of companies and banks plotted against their total assets
in Euro. Distribution of banks and companies do not seem to be qualitatively
different. Companies as well as banks with more assets tend to have a higher
DebtRank. Nevertheless, companies with similar DebtRank have asset sizes that
differ by multiple orders of magnitude.

The line plot of fig. 6.6 [ ] uses rF (bi) as its x-axis value whereas the scatter

plot [ ] uses rB(bi). The y-value in both cases is RF (bi). The resulting figure

illustrates the impact of the bank-company network on the DebtRank of the banks:

The horizontal distance between a point of the scatter plot and the line is the

change of rank whereas the vertical distance is related to the change of DebtRank

value. Although it should be noted that the DebtRank values cannot be compared

directly as DebtRank is a relative measure and the denominator (the economic

value in the network) differs.

Figure 6.7 shows the two different rankings rF (bi) and rB(bi) plotted against each

other. If the ranking of the banks would not change by adding the companies to

the network the points of the scatter plot [ ] would be on the y = x line [ ].
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Figure 6.6: Sorting the DebtRank values of the banks in the network of companies
and banks yields the curve [ ]. Using the DebtRank of the bank in the subgraph
induced by the banks only (i.e. the interbank network, IB) results in [ ]. For
the points above the curve, using the DebtRank in the interbank network RB

underestimates the impact from a possible default.
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Figure 6.7: Rank of banks with and without bank-company network plotted against
each other. The rank of some banks is vastly underestimated if only the interbank
network is considered. The marks of the banks [ ] are closer to the line [ ]
when the DebtRank is not influenced by taking only the bank-induced subgraph
into account.
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6. Results

6.3 Quantifying the total contribution from

companies and banks

As usually only the interbank network is used for the analysis of systemic risk we

try to quantify how severely this underestimates systemic risk. For this purpose we

define two ratios, one for assessing the split of the systemic risk in the full network

and one for comparing the total systemic risk of the interbank network and of the

full network.

Q1 is therefore the ratio of the sum of the DebtRanks of all companies divided by

the sum of all DebtRanks in the full network:

Q1 =
∑

i∈C R
F
i∑

i∈F R
F
i

. (6.1)

To compare the systemic risk of the interbank network with the systemic risk of

the full network we define a similar ratio Q2, though it is necessary to take the

different economic value of the two networks into account as DebtRank is a relative

measure.

Q2 = V B ∑
i∈B R

B
i

V F
∑

i∈F R
F
i

(6.2)

where V B and V F refer to the total economic values of the interbank network and

the full network, respectively.

We get Q1 = 0.55, which means that companies contribute 55% of the systemic

risk in the full network. For Q2 we get Q2 = 0.29, i.e. the total systemic risk

from the interbank network amounts to 29% of the total systemic risk of the full

network. The remaining systemic risk stems from the liabilities between companies

and banks and from the increased economic value V F of the full network.
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CHAPTER 7
Discussion

Using methods partly inspired from statistical mechanics, we analyzed a network of

companies and banks reconstructed from empirical data. By extending the analysis

from the interbank network to (large parts of) the whole economy, we were able

to identify companies that have significant contributions to the overall systemic

risk. In the full network, the systemic risk contribution of companies exceeds that

of banks, with 55% and 45% respectively. Furthermore, we find that only taking

the interbank network into account considerably underestimates the total systemic

risk. According to our analysis, only 29% of the total systemic risk is due to the

interbank network.

For both—companies and banks—it is possible to have a comparable DebtRank

while having total assets that differ by multiple orders of magnitude. A few

companies contribute a significant amount of systemic risk to the system, despite

being rather small in terms of total assets. As systemically risky companies induce

systemic risk in a similar way as banks, it seems that the concept of “too connected

to fail”, as coined by Battiston et al. [BPK+12], does also apply to companies and

the notion of systemically important banks (G-SIBs [Ban13]) could be generalized
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7. Discussion

to companies. As some companies inherit a significant part of the systemic risk

through their financial connections (loans from risky banks) to banks, it may be

advisable to evaluate the extension of regulations and tax policies that try to rein in

systemic risk in financial networks from banks to the real economy. The companies

that would be subject to those macro-prudential regulations should be chosen

depending on their systemic impact, for which company size is an insufficient proxy.

Furthermore, we compared the DebtRank of banks in two networks: the interbank

network, containing only banks, as well as the full network comprised of banks and

companies. We found that for some banks the DebtRank of the interbank network

RB vastly underestimates the systemic importance compared to the DebtRank in

the full network RF . In most cases the DebtRanks in both networks are similar,

nevertheless it may be beneficial to take the whole economy into account for the

analysis of systemic risk or its possible countermeasures.

A possible avenue for further research would be the extension of the analysed

network with additional layers that have not been considered in this work, such as

financial dependencies between companies (shadow banking [AS09]), exposures via

mutually held assets or the shareholder network.
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Kurzfassung

In dieser Arbeit haben wir Methoden verwendet, die von Diffusion aus der statisti-

schen Physik inspiriert sind, jedoch auf diskrete Netzwerke angewandt werden, um

das systemische Risiko in Österreich zu untersuchen. Man spricht von systemischem

Risiko, wenn durch einen Marktschock nicht nur direkt betroffene, sondern durch

kaskadierende Effekte (möglicherweise große) Teile des Systems außer Kraft gesetzt

werden. In einem finanziellen Netzwerk führen Kredite von Banken untereinander

zu systemischem Risiko, da Verleihen von Geld dazu führt, dass man dem Mark-

trisiko anderer Institute ausgesetzt ist. Methoden wie DebtRank wurden in den

vergangenen Jahren verwendet, um die möglichen Auswirkungen von systemischen

Risiko in einem finanziellen Netzwerk zu analysieren.

In der vorliegenden Arbeit erweiterten wir das untersuchte System von Banken und

ihren Krediten untereinander um Firmen und ihre Verbindlichkeiten und Einlagen

bei Banken. Basierend auf diesem derart erweiterten Netzwerk verwendeten wir die

DebtRank Methode um das systemische Risiko von Firmen zu ermitteln. Außerdem

ermittelten wir, wie sich die Bewertung des systemischen Risikos von Banken durch

die Erweiterung des untersuchten Netzwerks verändert.

Der Beitrag von Firmen zum systemischen Risiko im erweiterten Netzwerk beträgt

55%. Ein Beschränken des untersuchten Netzwerks auf Banken führt dazu, dass

man das gesamte systemische Risiko sogar um etwa 70% unterschätzt. Des Weiteren
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können selbst verhältnismäßig kleine Firmen überproportional systemisch riskant

sein, wenn ihre Verbindlichkeiten zu einer ungünstiger Auswahl an Banken bestehen.

Es könnte daher ratsam sein, Maßnahmen, die versuchen der Entwicklung von

systemischem Risiko entgegenzuwirken, auch bei Firmen anzuwenden.
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Abstract

We used methods partly inspired from statistical physics to analyze systemic risk

in the Austrian economy. Systemic risk is the notion that a shock may not only

render directly affected components but (possibly large) parts of the system non-

functioning due to cascading effects. In a financial network this systemic risk

stems from the exposures of lending institutions to one another. Network measures

such as DebtRank were used to estimate the possible impact on the interbank

network resulting from a market shock. In this work, we extended the analysis of

systemic risk from financial institutions to the whole economy and found that the

DebtRank distribution of companies and of financial institutions is qualitatively

similar. Companies may have exposures to a disadvantageous set of banks, thus

enabling the propagation of an impact through large parts of the network. Even

though larger companies tend to have a higher DebtRank, there are firms sharing a

very similar DebtRank with total assets that span multiple orders of magnitude. We

found that the systemic risk of the companies amounts to 55% of the total systemic

risk and that only using the interbank network underestimates the total systemic

risk by approximately 70%. The results suggest that the default of a systemically

important company can be similarly harmful as the default of a financial institution.

It may therefore be beneficial to take companies into account when designing and

assessing policies that try to alleviate systemic risk. Possibly even the extension of

regulations to systemically risky companies may be advisable.
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