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Abstract (german)

Die Opazität oder Extinktion beschreibt die Abschwächung von Strahlung beim Durchqueren
eines Mediums durch Absorption und Streuung. Sie ist somit eine Eigenschaft des betrachteten
Mediums selbst, beeinflusst thermodynamische Größen und in weiterer Folge auch die Dynamik
des Systems, und ist daher vor allem in der Evolution von protoplanetaren Scheiben relevant. Es
gibt zwei Opazitätsmittel, die die über die Frequenzen integrierte Opazität beschreiben. Das
Planck Mittel findet Anwendung für optisch dünne Umgebungen, geht daher in die Strahlungs-
energiegleichung sowie in die innere Energiegleichung ein. Die Gewichtung erfolgt mittels
der Planck Funktion. Das Rosseland Mittel, das für den optisch dicken Fall gilt, wird mit
der Ableitung der Planck Funktion nach der Temperatur gewichtet und geht in die Strahlungs-
flussgleichung sowie in die Bewegungsgleichung ein.
In protoplanetaren Scheiben wird die Opazität durch die Streuungs- und Absorptionseigen-
schaften des Gases sowie der festen Partikeln, i.e. Staub, bestimmt. Mit der Zeit wird sich
Staub gravitativ bedingt in der Äquatorebene der Scheibe ansammeln und zur späteren Planeten-
entstehung beitragen, wohingegegen das leichtere Gas durch den der Gravitation entgegen wirk-
enden Strahlungsdruck eine stärkere vertikale Ausdehnung aufweisen wird. Daher wird eine
getrennte Betrachtung von Staub und Gas, insbesondere in Hinblick auf ihre Opazität wichtig.
Zudem wird sich die Größenverteilungsfunktion für Staub auch durch Aggregation, dem Zusam-
menwachsen von Partikeln, lokalzeitlich verändern, und kann somit nicht als zeitlich konstant
angenommen werden.
Ziel dieser Masterarbeit ist daher die Erstellung von Tabellen für monochromatische als auch
mittlere Staubopazitäten in protostellaren Umgebungen. Um diese für frühe Entstehungsprozesse
der Scheibe als auch spätere Evolutionsphasen, in denen v.a. eine korrekte Modellierung des
Verlustes der dichten Uratmosphäre eines Planeten relevant wird, zu berechnen, werden zwei
verschiedene Größenverteilungsfunktionen, eine für kleinere Partikelgrößen und die zweite für
größere Aggregate, angenommen. Für größere Partikel ist auch der Effekt ihrer Porösität auf die
Opazität relevant.
In dieser Arbeit werden daher monochromatische sowie Rosseland und Planck Mittel mit Hilfe
von Mie Theorie berechnet, einerseits für kompakte sphärische Partikel, die nur aus einem
Material bestehen, und andererseits für Aggregate, die unterschiedliche Porösitäten und Material-
mischungen aufweisen. Die benötigten, mittleren Brechungsindizes für Staubaggregate werden
mit Hilfe der Effective Medium Theory berechnet.
Die höchsten mittleren Opazitäten ergeben sich für kompakte (nicht-poröse) Aggregate mit
Radien von 1-10 µm für Temperaturen ≤425 K. Für weiter zunehmende Partikelgrößen, außer
für sehr kleine Temperaturen, zeigt sich eine generelle Abnahme der mittleren Opazitäten. Die
Annahme von Porösität führt nur für sehr große Aggregate zu einer Opazitätszunahme. Eine
Erhöhung des Vakuumanteils für Partikel, die maximale Radien von <10 µm aufweisen, wirkt
sich umgekehrt aus und geht mit kleineren Opazitäten einher. Bei Temperaturen über 425 K
tragen kleinere Partikel zum Großteil der Extinktion bei.
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Abstract

The opacity of a medium describes how much light is extinct by absorption and scattering while
traversing it. The combination of these two processes is known as extinction and plays an im-
portant role in the evolution of protoplanetary disks since it influences the energy budget of a
medium, thermodynamic quantities and hence, hydrodynamics. There are two quantities that
describe the mean opacity of a medium integrated over the spectral range. The first is known as
the Planck mean, applied to optically thin media with its weighting function being the Planck
function for Black Body radiation. The second uses the derivative of the Planck function with
temperature as the weighting function and is called Rosseland mean. While the Planck mean
enters into the radiation energy equation and the internal energy equation, the Rosseland mean
is needed for the calculation of the radiation flux equation and the equation of motion, and is
suited for optically thick media.
Due to segregation processes during the evolution of a protoplanetary disk, heavier materials,
i.e. dust, will accumulate at the disk’s equator resulting in later planet formation while gas, sup-
ported against gravitation through radiation pressure, will still extend farther outwards. There-
fore, the separation of dust and gas dynamics becomes a necessary issue and seems even more
important for protoplanetary atmospheres. Beside this, also the size distribution function that is
often viewed as constant during the whole disk evolution changes and has large effects on the
mean opacity of the dust medium.
So, the aim of this master thesis is to create opacity tables only for the dust fraction of the
medium. To cover early evolution phases of the disk as well as later stages, in which also correct
modelling of the loss of primordial protoplanetary atmospheres becomes relevant, tow differ-
ent size distributions for smaller and larger aggregate particles are considered. In the case of
aggregates, also the effect of porosity is evaluated. A decrease in opacity by assuming larger
particle sizes leads to a reduction in planet formation time-scales which would be otherwise
comparable to the disk’s lifetime and hence, unrealistic.
In this thesis, monochromatic, as well as Rosseland and Planck mean opacities derived with
full Mie Theory calculations are presented for compact spherical particles of one species and
aggregate particles having different porosities and compositions. Average complex refractive
indices for aggregate particles are calculated with Effective Medium Theory. Considering proto-
planetary atmospheres, a variation of larger aggregate particle size ranges is assumed and hence,
a different size distribution with respect to the standard MRN size distribution.
The highest mean opacities for temperatures≤425 K are obtained from compact aggregates with
particle sizes of 1-10 µm. Varying the size distribution and shifting the size range of particles
to larger ones is especially important for small temperatures where the narrow dip before the
vaporization of water ice becomes lower in magnitude but broader to the left and hence, higher
mean opacities at lower temperatures are present while magnitude decreases for higher ones.
The assumption of high porosities leads only for very large particle size ranges to higher magni-
tudes of mean extinction. For smaller particle ranges and high porosities, slopes being similar to
those for very small particle size ranges are obtained. At temperatures > 425 K small particles
contribute most to extinction.
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1. Introduction

The opacity or extinction of a medium or particle can be described as its non-transmissivity
of light. It is defined as the sum of absorbed and scattered light within this medium or by a
particle. Due to different materials with different scattering and absorption properties, more or
less energy is brought into that system, thereby influencing thermodynamic properties as well as
hydrodynamical quantities that in turn influence the whole evolution of the, in our case, proto-
planetary disk environment or protoplanetary atmosphere.
Dust is the main opacity source in a protostellar environment. Correct modelling of heating and
cooling mechanisms within a protostellar disk or atmosphere is hence determined by a correct
description of the dust opacity depending on size distribution, composition, structure and spatial
and temporal variation.[8]

Due to segregation processes during the evolution of a protoplanetary disk, heavier materials,
i.e. dust, will accumulate at the disk’s equator resulting in later planet formation while gas, sup-
ported against gravitation through radiation pressure, will still extend farther outwards[1]. So,
the separation of dust and gas dynamics becomes a necessary issue and seems even more im-
portant for protoplanetary atmospheres. This can be achieved by creating opacity tables only for
the dust fraction of a medium which is the aim of this Master thesis. There were a few authors
who already did groundwork on this topic for protoplanetary disks (e.g. Pollack et al.[26, 27],
1985; 1994), some of them also considered particle aggregation and the effect of porosity (e.g.
Mathis & Whiffen[20], 1989; Henning & Stognienko[13], 1996; Voshchinnikov et al.[35], 2006).
The most commonly used opacity tables may be the ones of Semenov et al.[31] (2003) continuing
on some of the papers mentioned but having the disadvantage that the opacity means consist of
a prior assumed mixture of gas and dust as one medium. Therefore, they do not allow consid-
eration of segregation processes when feeding them into a protoplanetary disk evolution model.
Beside this reason, also the size distribution function that is often viewed as constant during the
whole disk evolution changes and has large effects on the mean opacity of the dust medium.
Especially when considering the evolutionary time-scale of runaway gas accretion on proto-
planets, the effect of opacity becomes crucial[28, 25, 21]. A decrease in opacity from orders of
1 cm2/g for interstellar dust size distributions to 10−2 cm2/g by assuming larger particle sizes
through aggregation processes, leads to a reduction in planet formation time-scales which would
be otherwise comparable to the disk’s lifetime and hence, unrealistic.

In general, one can describe the change in the irradiation of the light beam occurring when
traversing a medium of thickness ds and density ρ by[3, 5]

dI = −I0κρds, (1.1)

with I0 being the initial irradiation of the light beam and κ being the attenuation or extinction
coefficient describing the attenuation of light in the medium by scattering and absorption.
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1.1 Scattering and Absorption

1.1. Scattering and Absorption

Scattering, in its simplest description, is the change in the light beam’s direction of propagation
when interacting with particles. Whereas absorption by a particle describes the energy loss of
the radiation, changing its initial wavelength to longer, i.e. less energetic, ones. The sum of these
processes is known as extinction since light is removed from the initial direction of propagation.
In more detail, a particle interacts with radiation in the form that the electric field of the incident
wave introduces an oscillatory motion on the electrical charges within the particle, e.g. an exci-
tation of electrons to higher energy levels in the atom. This oscillation of protons and electrons
leads in turn to a secondary radiation, e.g., when the electrons move back to lower energy levels
- a state of least resistance and minimal potential energy -, that is known as scattering. A part of
the energy of the electromagnetic wave is thereby transformed into thermal energy and hence,
absorbed leading to a change in the wavelength of the outgoing radiation. So, these two pro-
cesses are in general not independent from each other and occur in all media except, of course,
in vacuum. Phenomena, like reflection and diffraction, are also outcomes of scattering.[3]

There are different forms of scattering depending on the scattering angle Θ, with cos(Θ)=1
for totally forward scattering and cos(Θ)=0 for isotropic or Rayleigh scattering.[26]

1.1.1. Optical constants

The absorption and scattering properties of a material are defined by its complex refractive index
N which can be determined by laboratory measurements[3]:

N = n+ ik ≡ n′ + in′′ (1.2)

While the imaginary part provides information about the absorption of the incident light within
the particle or medium, the real part determines its phase velocity v = c/n. Both, commonly
denoted as n or n’ (real part) and k or n” (imaginary part), are commonly referred to as optical
constants which can be somewhat confusing since they vary very strongly with wavelength or
frequency.[3]

The above mentioned properties of n’ and n” can be seen when assuming an electromagnetic
plane wave with the electric part/field vector[3]

Ec = E0 exp(ik · x− iωt) (1.3)

with k being the complex wave vector, x the space vector, and ω the oscillation frequency.
Analogue to this, of course, a magnetic wave Hc exists. Splitting k into its real and imaginary
part with k = k′ + ik′′, we get

Ec = E0 exp(−k′′ · x) exp(ik′ · x− iωt) (1.4)

with E0 exp(−k′′ · x) being the amplitude of the electric wave, and Φ = k′ · x− ωt its phase.
Using the Maxwell equations for plane waves and assuming that k, E0 and H0 are perpendicu-
lar, we obtain

k = ω
√
εµ =

ωN

c
(1.5)
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1.1 Scattering and Absorption

with the complex refractive index
N = c

√
εω (1.6)

ε and µ are the electric and magnetic permeability, c is the speed of light. Substituting relation 1.5
into equation 1.4 and taking into account ω/c = 2π/λ yields the above mentioned properties,
i.e. n′′ describing the attenuation of the wave and n′ determining its phase velocity:[3]

Ec = E0 exp

(
−2πn′′ê · x

λ

)
exp

(
2πin′ê · x

λ
− iωt

)
(1.7)
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1.2 Formation of Protostars and Protoplanetary Disks

1.2. Formation of Protostars and Protoplanetary Disks

Protoplanetary disks evolve around young stellar objects in dense molecular cloud cores. When
a dense core collapses, a protostar with a circumstellar disk forms. Later on, through instabilities
and collisions in the protoplanetary disk, material can accumulate to result in a protoplanet. In
general, star formation takes place in clusters. In the following, the interaction between proto-
stars in such an environment is neglected and, for simplification, only the formation of a disk
around a single star is considered.

In a molecular cloud in magneto-static equilibrium thermal pressure and magnetic forces act
against self-gravity. Charged particles gyrating around the magnetic flux lines collide with neu-
trals and thereby counteract gravity by keeping them from drifting inwards. Dense cores are low
ionization fractions of molecular clouds, so more neutrals can slip through the magnetic field
lines. This process is known as ambipolar diffusion. Hence, mass enclosed within the innermost
flux tubes increases due to the inward drift of neutrals while the total magnetic flux threading
the cloud decreases.[32]

With increasing density the core becomes more opaque to its cooling radiation which results,
combined with the ongoing compression, in a rise of the inner temperature. Incoming, by the
enhanced pressure force decelerated material re-radiates energy before settling on the core’s
surface and becoming buried under new matter. This cooling of the outer shell in turn enhances
compression. The material of this first core consists mostly of molecular hydrogen resulting
in an early collapse. A rise in temperature beyond 2000 K initiates the collisional dissociation
of H2. The energy needed for this process is very high compared to the thermal energy of the
molecules. So, energy gained by compression is absorbed while the temperature will not change
immensely. Due to this, at some point, the increase in gravitational force cannot be counteracted
any longer by the internal pressure. This leads to the collapse of the first core after a partially
atomic hydrogen region has formed. The resulting high density (∼10-2 g cm-3) and tempera-
ture (> 105 K) of the central region leads then to the ionization of most of the hydrogen via
collisions, and the formation of a dynamically stable protostar. The luminosity of the new born
star is mainly produced by external mass accretion, and is thus called accretion luminosity. The
kinetic energy of infalling gas is almost completely converted into radiation as it is abruptly
decelerated at the stellar surface. The protostar’s outer boundary is determined by an accretion
shock front, marking the transition between slow, on the protostar settling, and freely infalling
material. There are also minor contributions to the radiation coming from inner contraction and
nuclear fusion, and resulting in turbulent motion, i.e. convection, in the protostar’s interior (see
figure 1). The dust density in the very dense surroundings of the protostar is very high which
is why the star itself remains optically invisible and can only be observed in the IR regime and
longer wavelengths.[32]

Since every molecular cloud is rotating, angular momentum must be removed from the infalling
material that forms the protostar. Otherwise the angular speed of matter would increase with
decreasing radius leading to the disruption of the protostar by the enhanced centrifugal force. So
we should take a step back to look at the evolution and contribution of the magnetic field.[32]

As the density in the dense core rises and the gravitational forces acting on the surrounding mass
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1.2 Formation of Protostars and Protoplanetary Disks

Figure 1: Structure of a protostar (Stahler & Palla,[32] 2004).

increase, also the magnetic field lines are pulled inwards (see fig. 2) since now the neutrals exert
a drag force on the ions and electrons that are coupled to the magnetic field. This effect refers
to magnetic flux freezing in a plasma. Charged particles are bound to the magnetic field and
vice versa, hence the magnetic field lines move with the plasma. As a result, magnetic tension
builds up in the equatorial region (B in fig. 2). Also, a movement of gas perpendicular to the
magnetic field lines, i.e. the direction of least resistance, occurs and leads to the formation of
a somewhat elongated core. In these columns below and above the center (A and A’ in fig. 2)
only thermal pressure acts against the gravitational force and collapse will start when a critical
length of the column, the so called Jeans length, is exceeded. As far as the magnetic tension in
the equatorial region is concerned, an increase in density of the central core does not only lead to
a decrease in the ionization fraction, as matter cools and recombination takes place. Matter will
successfully decouple from the magnetic field as it approaches the center, and its drift velocity
becomes comparable to the free-fall velocity. The residual magnetic field remaining undergoes
magnetic reconnection when coming near other field lines of reversed sign. This results in an
outburst of thermal energy transformed from magnetic flux, known as Ohmic dissipation, and a
rearrangement of the magnetic field lines.[32]

Observations of dense cores show that they are slowly rotating regions. The effect responsible
for the removement of angular momentum is known as magnetic braking and becomes crucial
once the rotation of a magnetized cloud is taken into account. The spin-up of an infalling particle
twists the magnetic field in azimuthal direction (see fig. 3). The slight bending of the magnetic
field line leads to a build-up in magnetic tension acting as a restoring force, and putting the
plasma into oscillation. This creates a magnetic-hydrodynamic wave, i.e. a torsional Alfvén

7



1.2 Formation of Protostars and Protoplanetary Disks

Figure 2: Evolution of dense cores (Stahler & Palla,[32] 2004).

Figure 3: Rotational twisting of a magnetic field line (Stahler & Palla,[32] 2004).

wave, propagating along the magnetic field lines and transporting angular momentum away in
poloidal direction. Magnetic braking is expected to operate from the earliest evolution of a dense
core and enforces co-rotation in a cloud.[32]

But magnetic braking must fail in the deeper interior of a molecular cloud for a disk to evolve.
This fact is given by the assumed removement of the magnetic flux, as discussed above. So once
the magnetic field has decoupled and the thermal pressure, assuming a supersonic velocity, has
decreased, the infall of matter is only regulated by the gravitational and centrifugal force. The
angular momentum in the absence of a significant magnetic field is then conserved, and the an-
gular velocity of matter increases when approaching the protostar. This spin-up results in a rise
of the centrifugal force acting on the infalling material which will then not arrive at the proto-
star’s surface and instead settle farther outside on the equatorial region where a disk will evolve.
The particle’s specific angular momentum distinguishes how far away from the protostar its set-
tlement will be. The extent of this disk is determined by the centrifugal radius, i.e. the maximum
impact distance of gravitationally displaced matter. Due to the described inside-out collapse of
the core, the centrifugal radius will increase with time since Rcen ∝ Ω2t3, with Ω as the angular
rotation rate. This is because material originating farther outside, and thus exhibiting a higher

8



1.2 Formation of Protostars and Protoplanetary Disks

Figure 4: Early growth of a protostellar disk: (a) Before a certain time t1, matter spirals inwards
to fall directly onto the protostar. (b) With ongoing growth of the disk defined by its
centrifugal radius ω̄cen, matter residing farther outwards will be pulled inwards by the
increasing gravitational force, but no longer reaches the central star. Instead, its stream-
lines converge and form a dense ring which transfers mass to an inner disk around the star
(Stahler & Palla,[32] 2004).

specific angular momentum, will be attracted and displaced by the growing central mass’ exerted
gravitation. Due to the ongoing impact of material, another accretion shock covering the whole
disk’s surface forms. Infalling matter from above and below the equatorial plane will conserve
only its horizontal momentum, and is deflected towards the central protostar sustaining its mass
accretion. As the centrifugal radius rises and the accretion shock weakens, matter impacting the
outermost part of the disk will no longer reach the star. As a consequence, the surface density
of the disk will increase. Fig. 4 shows the streamlines of matter elements penetrating towards
the protostar. As the disk grows, the streamlines will meet prior reaching the star and an inner,
nearly circular disk will form. The high-density region is surrounded by a ring of turbulent gas.
Due to the impacting material outside the inner disk, a slight drag force will cause the nearly
circular orbits to slowly spiral inwards. As the centrifugal radius and the inner disk grow, the
drag force exerted by impacting material on the ring will become weaker and the protostar’s
mass accretion will slow down. So another process sustaining mass accretion onto the protostar
is needed to get the observed disk to star mass ratio that is typically around a few percent for
pre-main-sequence stars. Otherwise the disk would soon outgrow its protostar by mass. Hence,
angular momentum transfer from inner to outer regions is needed for matter to penetrate towards
the center. This internal torquing could be provided by internal friction or shear viscosity but
is still not fully understood. Another possibility would be provided by spiral waves that create
gravitational torques. Spiral density waves form when regions within the disk become gravita-
tionally unstable. This happens when the density of a fluid element rises and the self-gravitation
is no longer counteracted by the pressure and centrifugal force. The density perturbations are
then subject to shearing and a spiral pattern forms.[32]
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1.3 Classification of Young Stellar Objects

A stability criterion is given by the Toomre-Parameter with

Q ≡ Ω(r)cs
πGΣ

> 1. (1.8)

Here Ω(r) is the Keplerian speed or angular velocity of a particle, cs is the internal sound speed,
Σ is the surface density and G is the gravitational constant.[1, 32]

The Toomre-Parameter is also important for the formation of planetesimals, as will be mentioned
in section 1.6.[1]

1.3. Classification of Young Stellar Objects

Young stellar objects (YSO’s) can be classified by their spectral energy distribution (SED). It is
the slope of the SED curves that specifies their evolutionary state. A possible infra-red excess,
i.e. an enhanced emission above the black body radiation of the star, signals the existence of a
protoplanetary disk.[1]

Four different classes exist:[1]

• Class 0
In the early stages of protostellar evolution a protostar is still embedded within an envelope
of optically thick gas and dust absorbing stellar radiation. Its SED is therefore marked by
a lack of emission in the visible and near-IR wavelengths. A potentially already formed
disk around the protostar cannot be yet detected.

• Class I
The protostar and its disk are still embedded within gas and their SED curve is still shifted
to longer wavelengths. A strong accretion of material from the disk or the envelope onto
the surface of the star leads to outflows and jets with high velocities.

• Class II
Once the envelope is thinned out due to accretion onto the star and its protostellar disk,
the SED shows the visible emission from the star and near-IR to mm excess added by the
disk. Accretion from the disk onto the star results in an additional UV excess.

• Class III
After a few Myrs the disk has almost dissipated and the object becomes a pre-main-
sequence star.[1]

1.4. Properties of Protoplanetary Disks

The main source of heating for a ’passive disk’ stems from the absorbed stellar radiation. But
within a disk also dissipation of gravitational potential energy, i.e. accretional heating, provided
by material that spirals towards the star occurs. Both sources decrease strongly with increasing
distance from the star. There are some analytical simplifications concerning the shape (razor-
thin, flared, warped) of passive disks. A razor-thin disk re-emits the absorbed stellar radiation
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1.4 Properties of Protoplanetary Disks

Figure 5: Classification of Young Stellar Objects (Armitage,[1] 2009).

locally as a black body. It has a steep temperature profile with Tdisk ∝ r−3/4. A flared disk
is described as having an increasing ratio of hp/r with radius, hp being the height above the
mid-plane where stellar radiation is absorbed. They show a stronger IR excess than thin disks
since they also absorb more stellar radiation. At larger distance from the star the temperature
profile becomes Tdisk ∝ r−1/2.[1]

In reality, of course, the disk does not re-radiate as a single black body. When considering dust as
the dominant opacity source, which absorbs short wavelengths more efficiently than emitting at
longer ones, we must assume an optically thick disk with a surface layer that is optically thin to
longer wavelengths. So, the disk’s emission is the sum of a cool black body component from the
disk’s interior and a warmer one representing the surface layer. While the optically thin layer
re-emits half of the radiation coming from the star back to space, the other half is re-emitted
downwards to be absorbed by the disk’s interior. This two-component disk model (see figure 6)
describes radiative equilibrium disks and can be applied as long as non-radiative cooling due to
collisions between molecules and dust can be neglected. This means that thermal decoupling of
gas and dust is fulfilled as long as the gas density in the optically thick regions is low enough
which is the case, especially at larger radii.[1]
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1.5 Dust in Protoplanetary Disks

Figure 6: Two-component disk model for radiative equilibrium disks (Armitage,[1] 2009).

1.5. Dust in Protoplanetary Disks

The chemistry in protoplanetary disks is linked to disk dynamics. Together with grain evolu-
tion, it influences the ionization structure of the disk and hence, magnetohydrodynamics and the
transport of angular momentum. Because of its dependence on temperature, density and radia-
tion fields, it is in turn influenced by the dynamics of the disk.[14]

In general, molecular hydrogen and helium account for the dominant mass fraction in a proto-
planetary disk. Dust particles are mostly present in the form of amorphous silicates, crystalline
forsterite, water ice and other molecular ices having sizes that can grow far beyond the typi-
cal sub-micron sizes of interstellar dust grains.[14] They constitute the main opacity source for
a protoplanetary disk, except in the inner regions where the temperature exceeds vaporization
temperatures (∼1500 K) and dust is destroyed. Within the inner disk, the mean free path of ther-
mal radiation is small compared to the disk’s scale-height resulting in an approximately isotropic
and black body radiation field.[1]

In the colder outer mid-plane of the disk, molecules freeze out on grain surfaces. Most of the
molecular line emission observed in the sub-mm range where the dust is optically thin, origi-
nates from here. This is in contrast to infra-red (IR) wavelengths where dust is optically thick
and the bright dust continuum emission overlaps molecular line emission. Hence, high spectral
resolution is needed to distinguish between them. Since the different wavelength ranges cor-
respond to different temperatures, they can be used to study different regions of the disk (see
figure 7). Inner disk chemistry is best observed in the IR while for the outer disk sub-mm wave-
length observations are needed. Beside the destruction of molecules due to photo-dissociation,
the observation of molecular lines delivers important information considering the, above men-
tioned, freeze-out on solid grains and hence, dust growth.[14]

Observational evidence shows that emission in the mid-IR of T Tauri and Herbig Ae/Be stars
is dominated by vibrational resonances in amorphous and crystalline silicates, especially crys-
talline forsterite, enstatite and, to some extent, silica, originating from the warm surface layer
with temperatures above 100 K. The strength and shape of the observed 10 µm feature in spectra
of Herbig Ae/Be stars, originating from porous iron-poor amorphous silicates, suggests strong
grain growth to micron-sized particles. With ongoing settling of the dust grains the optically
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1.5 Dust in Protoplanetary Disks

Figure 7: Physical and chemical structure of a 1-5 Myr old protoplanetary disk around a Sun-like
star (Henning & Semenov,[14] 2013).

thick disk region expands while the disk’s vertical structure flattens. Dust emission in the mm
and cm-wavelength regimes proves the existence of grains up to cm-sizes.[14]

Crystalline silicates are present as sharp bands in nearly all disk spectra and have mass frac-
tions ranging from 1 to 30%. This is in contrast to molecular clouds and the diffuse interstellar
medium (ISM) which lack in crystalline silicates. The occurring crystallization can be explained
by mechanisms of strong thermal processing in the disks, like thermal annealing and condensa-
tion in the inner regions or shock heating in the outer ones. Varying with location, the forsterite
to enstatite mass ratio is lower in the inner disk and higher in the outer regions with forsterite
particles being, in general, nearly iron-free. Fe and FeS particles have not yet been detected
by IR spectroscopy but should certainly be present. This could be due to a lack in abundance,
maybe too large sizes to show strong features or because they simply do not show intrinsic IR
bands. In disks seen edge-on, absorption features suggesting evidence for molecular ices are
present.[14]

Due to the strong vertical and radial temperature and density gradients in protoplanetary disks
the chemistry is manifold and subject to various chemical reactions.[14]
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1.6 Formation of Protoplanets

1.6. Formation of Protoplanets

The formation of planets can be divided into 3 main stages - planetesimal formation, terrestrial
planet formation and giant planet formation and core migration.[1] I will focus only on the first
two stages since for this thesis only the atmosphere of terrestrial protoplanets is relevant.

1.6.1. Dust Settling

Before planetesimals of sizes of approximately 1-100 km will form in the mid-plane of the disk,
dust has to settle near the disk’s equator. Whereas gas is supported against the gravitational
force through radiation pressure, small solid particles are not and will be accelerated downwards
(i.e. in the direction normal to the disk’s equator). At some point, the gravitational force they
experience will be balanced out by an aerodynamic force. Depending on the particle size s and
the mean free path λ of the gas molecules, one distinguishes between Epstein drag (s . λ) -
derived by considering the frequency of collisions between gas represented as molecules with
a Maxwellian velocity distribution and solid particles - and Stokes drag (s & λ) - treating the
gas as a fluid and neglecting its molecular nature - as the dominant drag forces. Both scale
with the frontal area πs2 of the particle meaning that the drag force exerted on the particle, and
hence the acceleration, decrease with increasing particle size and become less important once
planetesimals have formed.[1]

The Epstein drag is defined as:[1]

FD,E = −4π

3
ρs2vthv (1.9)

It acts in the opposite direction of the particle’s relative velocity v to the gas. vth and ρ are the
mean thermal velocity of the molecules and the particle’s density, respectively.[1]

Stokes drag is proportional to ram pressure acting on a particle with[1]

FD,S = −CD
2
πs2ρvv. (1.10)

The drag coefficient CD for spherically assumed particles is independent of shape and propor-
tional to, as well as scaled with, the fluid Reynold’s number Re = 2sv/νm that describes the
flow motion (turbulent/laminar) by taking into account the molecular gas viscosity vm. The tran-
sition between Epstein and Stokes drag occurs at particle sizes of s = 9λ/4.[1]

When balance between gravitational and drag force is achieved, the solid particle will drift to-
wards the mid-plane with a terminal velocity, i.e. the settling velocity. The friction time-scale,
tfric = mv/|FD|, describes how fast this balance is achieved, i.e. the time in which the relative
velocity is modified significantly by drag to become the settling velocity. In the Epstein regime,
balance between gravitational and drag force yields for the settling velocity:[1]

vsettle =
ρm

ρ

s

vth
Ω2z = tfricΩ

2z (1.11)
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1.6 Formation of Protoplanets

with Ω, z and ρm being the Keplerian angular velocity, the height above mid-plane and the ma-
terial density, respectively.[1]

The settling velocity leads to the definition of a settling time tsettle = z/|vsettle| that is rather
short compared to the disk’s lifetime when turbulence acting against the settling is neglected.
Also the coagulation due to collisions of solids must be accounted for. The growth in particle
size and mass increases the gravitational force and decreases the aerodynamic force acting on
the particles. Hence, also the settling velocity increases leading to a faster collapse of the dust
towards the equator. Due to turbulence substantial particle growth is required for dust to settle.[1]

Hence, an initial assumed size distribution for dust particles in the protoplanetary disk changes
during its evolution.

1.6.2. Radial Drift

Gravitational forces acting on the gas in the disk are only partially counteracted by an outward
pressure gradient. Due to this fact, gas orbits a star of massM∗ at sub-Keplerian velocity and will
slowly spiral inwards since the centrifugal force will not balance out the gravitational force.[1]

Hence, the orbital velocity of the gas is defined as[1]

v2
Φ,gas

r
=
GM∗
r2

+
1

ρ

dP

dr
. (1.12)

Assuming a mid-plane pressure defined as a power-law in radius, P = P0(r/r0)−n, and substi-
tuting P0 = ρ0c

2
s , with cs being the speed of sound, it can be rewritten as

vΦ,gas = vK(1− η)1/2, (1.13)

with Keplerian velocity vK =
√
GM∗/r and η = nc2

s/v
2
K.[1]

Small dust particles are aerodynamically coupled to the gas and will therefore spiral inwards.
But also larger bodies that show less coupling to the gas will, since the aerodynamic forces exert
perturbations on the motion of the bodies that orbit close to the Keplerian speed. Via this effect
they act as a brake and result in the loss of angular momentum enhancing again the inward drift
of the bodies.[1]

The radial (r) and azimuthal (Φ) momentum equations for solids exposed to aerodynamic drag
forces within the gas are:[1]

dvr

dt
=
v2

Φ

r
− Ω2

K −
1

tfric
(vr − vr,gas), (1.14)

d(rvΦ)

dt
= − r

tfric
(vΦ − vΦ,gas). (1.15)
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1.6 Formation of Protoplanets

The azimuthal equation simplifies when assuming inward spiralling of almost circular, Keplerian
orbits, meaning that the specific angular momentum is close to Keplerian and hence,[1]

d(rvΦ)

dt
' vr

d(rvK)

dr
=

1

2
vrvK (1.16)

and
vΦ − vΦ,gas ' −

1

2

tfricvrvK

r
. (1.17)

Substituting the relations 1.13 and 1.17 in the radial momentum equation (1.14) and defining a
dimensionless stopping time τfric ≡ tfricΩK yields for the radial velocity:[1]

vr =
τ−1

fricvr,gas − ηvK

τfric + τ−1
fric

(1.18)

Small particles tightly coupled to the gas (τfric � 1) will hence experience a radial drift relative
to the gas that linearly increases with the dimensionless stopping time with vr ' vr,gas−ητfricvK.
The opposite is the case for very large particles. The highest drift velocity vr,peak ' −1/2ηvK

occurs at τfric ' 1 and depends only on the pressure gradient.[1]

The minimum radial drift time-scale, defined as the ratio of particle/body distance from the
star to the maximum radial drift velocity tdrift = r/|vr,peak|, is for reasonable disk parameters
very short, in the order of < 103 years, when considering aerodynamic drag and sub-Keplerian
velocities. From this, it becomes clear that the formation of planetesimals must proceed rapid
through collisions. Otherwise, most solids would just spiral towards the star and evaporate again
in the hotter inner disk regions. Since the radial drift velocity depends on the size of particles,
local enhancements or depletions of solids relative to the gas surface density will occur. The
introduction of a relative velocity between bodies facilitates collisions. This can lead to particle
growth or break-up depending on the magnitude of radial velocities and hence, particle sizes.[1]

1.6.3. Turbulence

Turbulence has a stronger effect on the vertical settling than on the radial inward drift of solids.
Especially considering larger bodies, the latter can only be altered by very strong turbulence
creating local pressure maxima which force solid particles, drifting always in the direction of
the pressure gradient, to flow towards them and pile up. This can happen on time-scales even
shorter than the global drift time-scale and can prevent the usual inward drift of larger particles.
Small particles coupled to the gas are more exposed to turbulent motion.[1]

The time-scale for vertical diffusion across a scale z to efficiently erase spatial gradients in
particle concentrations and hence, oppose vertical settling, can be described by the turbulent
diffusion coefficient D as[1]

tdiffuse =
z2

D
. (1.19)

Equating the settling and diffusion time-scale yields an expression for the diffusion coefficient
D. Although the vertical turbulence is not equivalent to the radial diffusion of angular momen-
tum given by the anomalous viscosity ν, numerical simulations suggest that D ≈ ν and hence,
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the diffusion coefficient can be written as[1]

D ≈ ν =
αc2

s

Ω
. (1.20)

The Shakura Sunyaev α parameter is defined as the efficiency of angular momentum transport
by turbulence. Due to the assumption above, a criterion for α, above which turbulence prevents
vertical settling, can be defined by the ratio of the column density of a single dust particle to that
of the disk:[1]

α ≥ πe1/2

2

ρms

Σ
(1.21)

The critical value for α is very small for particles in the micron range and hence, turbulence
opposes vertical settling in this regime. For particles of sizes s ≈1 mm, α is in the order of 10−2

which is comparable to estimates for protoplanetary disks. Hence, these particle sizes will no
longer be efficiently stirred up by turbulence and settle down.[1]

For the radial transport of solids within a turbulent disk one must consider aerodynamic drag,
advection with the mean flow and turbulent diffusion. When considering advection and diffu-
sion as the two dominant processes, radial diffusion is important only for small particles (s .
1 mm) and for a relatively low Schmidt number Sc ≡ ν/D, i.e. the ratio of the two transport
coefficients, namely the viscosity ν of the disk and the turbulent gaseous diffusion coefficient
D. When considering larger particles, aerodynamic drag becomes the main process for radial
drift and leads to the large-scale redistribution of solids.[1]

1.6.4. Formation of Planetesimals

While the coagulation and growth of small particles via frequent collisions are well understood,
the larger relative velocities of bodies with sizes of s & 1 m complicate coagulation during
collisions. The probability for solids to stick together depends on particle masses, collision ve-
locities and additional parameters describing shape and strength of the particles involved. The
sticking efficiency is a function of the particle size, composition (including internal structure
and strength) and relative velocity. Relative velocities cover a range from ∆v ∼ 0.1 cm s-1 for
micron-sized dust particles to ∆v ∼ 10-100 m s-1 for meter-sized bodies. Two particles can re-
main bound when for a given impact velocity the surface forces are strong enough to make them
stick together or the internal structure can absorb the energy of the impact efficiently. The first
case is especially important for small solids. Neutral dust particles can adhere due to induced
dielectric forces during collisions. While for spherical particles with s ≈ 0.5 µm the transition
between adhesion and bouncing is very sharp with a threshold velocity of around 1-2 m s-1,
dust grains of irregular shape have no threshold velocity but the sticking efficiency declines with
increasing relative velocity up to 100 m s-1 at which the sticking probability becomes 0. For
larger bodies the surface area to mass ratio declines, rendering surface forces less important but
enhancing the significance of the ability to dissipate energy within.[1]
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1.6 Formation of Protoplanets

Figure 8: (I) At first solids and gas are well mixed within the disk. (II) With time solids settle near
the disk’s equator and an inner disk forms. Collisional growth of particles acts against tur-
bulence that hinders settling and becomes less effective for larger solids. The increase in
surface density is also supported by the radial inward drift. (III) The disk becomes gravi-
tationally unstable due to increasing surface density and/or decreasing velocity dispersion
leading to the formation of planetesimals (Armitage,[1] 2009).

As the number of solids rises they also become dynamically important for the whole disk. So,
other effects leading to the formation of planetesimals may occur. These can be gravitational
instabilities in the denser layer near the disk’s mid plane, turbulence modified by gas-solids feed-
backs and two-fluid instabilities including clumping of solid particles around over-densities. The
gravitational stability of the disk can be described, like mentioned before, by the Toomre Param-
eter (see equation 1.8). As the surface density rises and/or the velocity dispersion decreases,
the inner disk becomes locally gravitationally unstable leading to clumping and agglomeration
of particles and finally, the formation of planetesimals. This mechanism is also known as the
Goldreich-Ward mechanism and is pictured in figure 8. This gravitational collapse of a layer
of small particles leading to fragmentation and formation of planetesimals, bypasses all the
constraints that arise from prior assumed coagulation and growth of particles with sizes in the
meter-scale range. It hence forms a welcomed theory to overcome this problem. Since solids
build up only 1% of the total surface density, the particle layer must be very thin to become un-
stable. In addition to this, turbulence becomes a counteracting force. If the particles are small,
their radial drift is slowly. In very turbulent regions of the disk the Goldreich-Ward mechanism
would fail. Even in an initially laminar flow a dense solid particle layer would excite turbulence.
So, much larger local over-densities are needed to overcome this effect and initiate collapse.[1]

18
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Figure 9: Gravitational focusing (Armitage,[1] 2009).

Other instabilities may enhance particle densities resulting in the formation of clumps, streams,
spiral arms, etc. Also, considering our knowledge about the Solar system, the mechanism re-
sponsible for the formation of planetesimals must happen rapidly, on time-scales of less then
105 years across the whole extent of the disk. Solid bodies of varying composition show a rather
smooth radial distribution across the Solar system.[1]

1.6.5. Formation of Terrestrial Planets

After planetesimals have formed, further growth is controlled by gravitational interaction be-
tween them. Bodies of higher masses will gravitationally attract other bodies with trajectories
nearby. Hence, their collisional cross-section will be larger than their physical cross-section by a
derived factor of (1 + v2esc

σ2 ). This mechanism, the boost of the cross-section beyond its physical,
is called gravitational focusing (see figure 9). Energy balance between two bodies of mass m at
initial and final state, i.e. the closest approach at Rc and velocity vmax, yields

1

4
mσ2 = mv2

max −
Gm2

Rc
, (1.22)

with σ being the relative velocity at infinity.[1]

Angular momentum conservations leads to vmax = bσ/(2Rc) and to the definition of the largest
impact parameter that will result in a physical collision of two bodies:

b2 = R2
s +

4GmRs

σ2
= R2

s

(
1 +

v2
esc

σ2

)
(1.23)

with Rs and v2
esc = 4Gm/Rs being the sum of their physical radii and the escape velocity from

the point of contact, respectively.[1]

The smaller the random velocity of the bodies compared to the escape velocity from the point
of contact, the higher their collisional cross-section and the more likely a collision occurs. A
“cold” planetesimal disk with σ � vesc and hence, v2

esc/σ
2 � 1 will show fast planet growth

due to gravitational focusing.[1]
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Figure 10: Trajectories of particles on almost circular orbits. Only particles with σ > vH will enter
the Hill sphere (dashed) and collide with the protoplanet. Particles with orbits too close
to the protoplanet’s are in the shear dominated regime and hence, will not enter the Hill
sphere (Armitage,[1] 2009).

In protostellar environments we first have to consider at least three bodies when formulating
gravitational interaction - star, protoplanet and planetesimal. The radius within which the gravity
of the protoplanet dominates over that of the star, and the dynamics hence reduce to a two-body
problem between protoplanet and third body, is defined as the Hill radius. As a first estimate, it
can be derived by equating the orbital frequency of the protoplanet around the star and that of
the third body orbiting the planet at radius r,

√
GM∗/a3 =

√
GMP/r3. A more appropriate

derivation over the so called Hill’s equations is given in Armitage[1] (2009) and yields

rH ≈
(
MP

3M∗

)1/3

a. (1.24)

Accordingly, the orbital velocity around the protoplanet at this distance is called the Hill velocity:[1]

vH ≈
√
GMP

rH
(1.25)

One can distinguish between shear dominated and dispersion dominated systems. If the initial
velocity of the third body is small compared to the Hill velocity (σ < vH), it will not enter the
Hill sphere (see figure 10). In this case a three-body effect must be considered. This applies to
bodies moving on orbits close to the protoplanet around the star and is called shear dominated
regime. If, on the other hand, the initial velocity is larger than the Hill velocity (σ > vH), the
system is determined by two-body dynamics and is said to be dispersion dominated.[1]

When particles enter the Hill sphere and collision takes place, there are three possible outcomes
(see figure 11). The first one is accretion of most of the impactor’s mass on the protoplanet or
net growth. The collision can also lead to shattering of the protoplanet. But it can again become
one object after re-accretion of the fragments. The third outcome would be total dispersal where
the pieces of the protoplanet will not re-accumulate again and are not gravitationally bound
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Figure 11: Possible outcomes of collisions (Armitage,[1] 2009).

any more. Besides mass ratio, impact angle, shape, composition (porosity) and rotation rate of
the bodies involved, the outcome of the collision depends also on the specific energy Q of the
impact.[1]

A massive body surrounded by a couple of smaller planetesimals in the dispersion dominated
regime will undergo runaway growth due to gravitational focusing as the dominant process. The
rapid growth rate will slow down with time since the velocity dispersion of the planetesimals
increases as the protoplanet grows.[1]

For the shear dominated regime a "feeding zone" can be defined, i.e. the shell surrounding the
protoplanet within which bodies will be deflected towards trajectories that will enter the Hill
sphere.[1]

The maximum mass a protoplanet can attain during runaway growth, i.e. the isolation mass, can
be derived assuming the body has "eaten up" all planetesimals in its surrounding. In the shear
dominated regime this applies only for bodies that can enter the feeding zone ∆amax = 2

√
3rH

to be deflected towards the Hill sphere with radius rH. As the planet grows also the feeding zone
expands, but the mass of new planetesimals increases more slowly. Assuming values typical for
our planet, the mass at which a planet is isolated lies around 0.07 M⊕.[1]

Changes in the velocity dispersion of planetesimals are governed by viscous stirring - the ex-
citation of motions due to weak gravitational encounters in the initially cold disk for bodies of
equal masses -, dynamical friction - energy is transferred from massive bodies to smaller, less
massive ones -, aerodynamic drag and inelastic collisions that result in energy dissipation.[1]

In an initially cold disk gravitational scattering or viscous stirring heats up the disk, the en-
counter velocities increase and so does the vertical extent of the disk with time as σ(t) ∝ t1/4.
The time-scale for heating by viscous stirring is short with ∼103 years, and hence one of the
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main mechanisms for heating before larger bodies have formed. Later on, when a different
mass spectrum can be applied to the disk, energy equipartition between more massive and less
massive bodies becomes relevant known as dynamical friction. As a result, the mean eccentric-
ity and inclination of planetesimals or protoplanets become mass dependent. Also the relative
velocity between a protoplanet and a planetesimal becomes smaller while it is larger between
two planetesimals of similar masses. This enhances collisions due to gravitational focusing by
increasing the collisional cross-section of the protoplanet. Hence, dynamical friction plays an
important role in understanding runaway growth and the formation of terrestrial planets.[1]

Gas drag becomes important only for smaller bodies to stay on almost circular orbits despite
gravitational scattering. Together with dynamical friction that leads to a ’cooling’ of the larger
bodies, it acts against the heating imposed by viscous stirring by keeping the overall velocity
dispersions low and hence, supports the effect of gravitational focusing. Additionally, inelastic
collisions between smaller bodies, significant only for σ > vesc, lead to damping of velocity
dispersions and hence, eccentricities and inclinations. This process therefore acts as an addi-
tional cooling mechanism but is less important than gas drag. The motion of planetesimals can
also be excited by turbulent fluctuations of the gas. Larger bodies are no longer aerodynamically
but can be gravitationally coupled to the gas. Disk turbulence, such as emerging from magneto-
rotational instability, can change the local gas surface density and thereby create gravitational
fluctuations that lead to excitation of the random velocities of planetesimals. It provides an ad-
ditional heating mechanism that is yet not well investigated.[1]

After a few massive planetesimals or protoplanets have formed via runaway growth, the on-
going heating of smaller bodies by viscous stirring from protoplanets is only partially cooled by
gas drag. This leads to a new phase, known as oligarchic growth, during which gravitational
focusing is not that strong any more. It describes a stage in which the growth of protoplanets
with respect to planetesimals dominates. The "isolated" protoplanets resume coagulation within
their growing feeding zones. At the end of these two very fast growth phases (0.01 to 1 Myr)
102 to 103 bodies of masses ranging from 10-2 to 0.1 M⊕ will have formed within the terrestrial
planet zone. Once dynamical friction can no longer maintain a low velocity dispersion due to
the depletion of the planetesimal disk by the "oligarchs", strong interaction between the massive
bodies starts and ends the prior isolated oligarchic growth. This final stage of planetary growth
is characterized by chaotic conditions, large collisions and strong scattering of smaller objects
and continues to at least 10 Myrs.[1]

1.7. Protoplanetary Atmospheres

After the runaway accretion of planetesimals has depleted the protoplanetary feeding zone, the
evolution enters a phase where both dust and gas accretion are small and time-independent. This
phase is the dominant determinant for the whole evolutionary time. When solid and gas masses
become nearly equal, a runaway accretion of gas starts and results in the development of an
initial dense atmosphere around the planet.[28, 21]

At the time of planetary formation the size distribution for dust in the disk has already changed
significantly and it becomes even more different within a protoplanetary atmosphere. The de-
struction of in-falling planetesimals changes the amount of particles. Larger solid particles result
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in a decrease of the opacity of the protoplanetary atmosphere. This decrease can be 3 orders in
magnitude compared to the initially assumed interstellar opacity.[21] The in the following chap-
ters described Mie Theory to compute scattering and absorption properties for compact particles
becomes inaccurate since the assumption of spherical particle shapes is no longer valid for larger
sizes.[3] A good representation to model the loss of this initial atmosphere for Earth-like planets
on realistic time-scales, i.e. time-scales not comparable to the lifetime of the disk, becomes
necessary.
Several authors modelling this final gas contraction on the protoplanet claim that it is very sensi-
tive to opacity. A decrease in opacity is the key for a more rapid planet formation[28, 25]. Lower
opacities lead to a more rapid heat loss which results in an earlier contraction of the proto-
planetary envelope.[22]

Terrestrial planets should lose their primordial hydrogen/helium atmosphere which would be
far too dense for the evolution of life as we know it. Processes within the atmosphere causing
mass loss, i.e. heating of in-falling planetesimals, as well as ultraviolet and soft X-ray radiation
from the host star after the depletion of the disk, determine the final amount of atmosphere.[33]

After the depletion of the gas disk around a protoplanet and a decrease in the temperature of
the planet’s core due to a decrease of in-falling planetesimals heating the core, the accumulated
primordial atmosphere contracts and is exposed to the XUV radiation of the host star leading to
thermal escape of the hydrogen envelope of the planet.[16, 33]

Considering the rough structure of a protoplanetary atmosphere, density will decrease with
height. The lower atmosphere’s temperature is determined by the planet’s luminosity and hence,
by the accretion rate of planetesimals on the planet’s core. The atmosphere around the proto-
planet can be divided into an optically thin envelope in the upper levels and an optically thick
part near the surface. In the optically thin upper atmosphere absorption of stellar XUV radi-
ation leads to ionization, dissociation and heating processes which in turn result in expansion
and thermal escape of the upper hydrogen envelope. Only a minor part of the XUV radiation
penetrates through the optically thick lower atmosphere. The vertical temperature gradient be-
tween the optically thin and thick region leads to a downward thermal energy flux. The amount
of molecules will increase downwards to the optically thick region and hence, goes along with
enhanced IR-cooling. This results in a temperature minimum near the boundary of the optically
thin and thick layer.[16]
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2. Theory

For the sake of simplicity, only the interaction of light with spherical compact homogeneous
particles consisting of one material species, as well as spherical particle aggregates consisting
of multiple species inclusions is treated in this thesis. Both can be described using Mie Theory
since we assume sphericity. The optical constants of particle aggregates assuming different
degrees of porosity can be calculated with the Effective Medium Theory (EMT). The porosity
relates to the volume fraction of vacuum within the particle.

2.1. Mie Theory

Scattering of light by a particle depends on its shape, size, orientation and the optical properties
of its composition, i.e. its optical constants. The electromagnetic field of a wave incident on a
particle is defined by its electrical and magnetic components Ei and Hi with[3]

Ei = E0 exp(ik · x− iωt), Hi = H0 exp(ik · x− iωt), (2.1)

and must satisfy the Maxwell equations:[3]

∇ · E = 0 (2.2)

∇ ·H = 0 (2.3)

∇× E = iωµH (2.4)

∇×H = −iωεE (2.5)

The incident field gives rise to an internal field (E1,H1) within the particle. The electro-
magnetic field surrounding the particle (E2,H2) can be expressed as the superposition of the
incident and the scattered field (Es,Hs):[3]

E2 = Ei + Es, H2 = Hi + Hs (2.6)

To determine the scattering properties of a particle one must find solutions to the Maxwell
equations for the field inside and outside the particle. They must also satisfy the boundary
condition:[3]

[E2(x)−E1(x)]× n̂ = 0, [H2(x)−H1(x)]× n̂ = 0 (2.7)

n̂ is the unit vector pointing outward, normal to the particle surface S with x on S. The transition
region between particle and medium forms a discontinuity requiring that the tangential compo-
nents are continuous across that boundary.[3]

Due to the linearity of the Maxwell equations and the boundary condition the principle of su-
perposition can be applied, i.e. if A and B are solutions to the equations, also their sum A+B is
a solution. Therefore, considering scattering of a plane monochromatic wave is justified since
any arbitrarily polarized wave can be understood as a superposition of plane waves of different
polarization states.[3]

Any point in the particle can be described by a Cartesian coordinate system (see figure 12)
with the z-axis defined by the incident light beam’s direction of propagation, hence êz pointing
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2.1 Mie Theory

Figure 12: Scattering by an arbitrary particle (Bohren & Huffman,[3] 1983).

in forward direction, and forming an orthogonal system with x and y. The scattering plane is
defined by the scattering direction êr and êz and is determined by the azimuthal angle Φ. The
scattering angle Θ defines the angle between forward and scattering direction. The incident field
Ei can be split into its two components parallel and normal to the scattering plane with the new
defined unit vectors ê‖i and ê⊥i forming again an orthonormal basis with êz.[3]

Ei = E‖iê‖i + E⊥iê⊥i (2.8)

The same holds for the scattered field Es in the far-field region (kr � 1) where Es can be
assumed being transverse to êr with Es · êr = 0.[3]

Es = E‖sê‖s + E⊥sê⊥s (2.9)

The scattering direction êr together with êΦ and êΘ are orthonormal basis vectors of the spher-
ical coordinate system with the parallel component of the scattered field E‖s in direction ê‖s =
êΘ and E⊥s in direction ê⊥s = −êΦ. Because of the linearity of the boundary conditions the
amplitude of the scattered field can be written as a linear function of the incident field:[3](

E‖s
E⊥s

)
=
eik(r−z))

−ikr

(
S2 S3

S4 S1

)(
E‖i
E⊥i

)
(2.10)

Sj are the complex elements of the amplitude scattering matrix that depend on azimuthal angle
Φ and scattering angle Θ.[3]
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2.1.1. Absorption and Scattering by a Sphere

The aim is to reduce the problem of finding solutions for the field equation to the simpler problem
of finding solutions to the scalar wave equation. To start with, one can define vector functions
or vector harmonics M and N with[3]

M = ∇× (cΨ) (2.11)

N =
∇×M

k
(2.12)

that satisfy the vector wave equation, are divergence-free (given for any function that is de-
fined as a curl) and are proportional to the curl of each other. The generating function ψ is a
scalar function, c is an arbitrary constant vector also called guiding or pilot vector. Since scat-
tering by a sphere is the matter of interest and we seek solutions in spherical coordinates of the
form ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ), the radius vector r is chosen as the guiding vector. The scalar
wave equation is then[3]

1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin θ

∂2ψ

∂φ2
+ k2ψ = 0, (2.13)

and split into its spherical components

d2Φ

dφ2
+m2Φ = 0, (2.14)

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

[
n(n+ 1)− m2

sin2 θ

]
Θ = 0, (2.15)

d

dr

(
r2dR

dr

)
+
[
k2r2 − n(n+ 1)

]
R = 0, (2.16)

with m and n being separation constants determined by subsidiary conditions. Linearly indepen-
dent and finite solutions at θ = 0 and θ = π for equation 2.15 are provided by the associated
orthogonal Legendre functions of the first kind, Pm

n (cos θ) of degree n and order m. For equa-
tion 2.16 linearly independent solutions are the spherical Bessel functions zn.[3]

The according generating functions with even (e) and odd (o) components are then:[3]

ψemn = cosmφPm
n (cos θ)zn(kr) (2.17)

ψomn = sinmφPm
n (cos θ)zn(kr) (2.18)

From these Memn, Momn, Nemn and Nomn can be generated. Any solution of the field equa-
tion can now be expanded into an infinite series of the vector spherical harmonics. A detailed
derivation for the expansion of a plane wave in spherical harmonics is given by Bohren &

26
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Huffman[3] (1983, p.89-93) and yields for the remaining case m = 1:

Ei = E0

∞∑
n=1

in
2n+ 1

n(n+ 1)
(M

(1)
o1n − iN

(1)
e1n), (2.19)

Hi =
−k
ωµ

E0

∞∑
n=1

in
2n+ 1

n(n+ 1)
(M

(1)
o1n − iN

(1)
e1n) (2.20)

For m 6= 1 all the coefficients vanish due to the orthogonality of the vector harmonics. For
Hi the connection with Ei given in equation 2.4 is used. The superscript specifies the radial
dependence of the generating functions with (1) being the first kind spherical Bessel function
jn(kr). This is required since the field is finite at the origin whereas the second kind spherical
Bessel function yn(kr) is rejected because of its infinity at the origin.[3]

2.1.2. Coefficients of the scattered and internal field

The internal and scattered fields can be expanded into[3]

E1 =

∞∑
n=1

En(cnM
(1)
o1n − idnN

(1)
e1n), (2.21)

H1 =
−k1

ωµ1

∞∑
n=1

En(dnM
(1)
o1n + icnN

(1)
e1n) (2.22)

Es =
∞∑
n=1

En(ianM
(3)
o1n − bnN

(3)
e1n), (2.23)

Hs =
k

ωµ1

∞∑
n=1

En(ibnM
(3)
o1n + anN

(3)
e1n) (2.24)

with En = inE0(2n + 1)/(n(n + 1)), µ1 as the magnetic permeability of the sphere and k1

as the wave number in the sphere. The superscript (3) in the expansion of the scattered field
indicates that the spherical Bessel function of the third kind, also known as Hankel function
h

(1)
n (kr) = jn(kr) + iyn(kr), with (1) corresponding to an outgoing spherical wave, describes

the radial dependence of the generating functions.[3]

an and bn are the scattering coefficients, cn and dn are the coefficients of the field inside the
particle. From the boundary conditions four independent equations can be obtained for a given
n that lead to the formulation of four linear equations from which the expansion coefficients can
be derived:[3]

an =
µm2jn(mx)[xjn(x)]′ − µ1jn(x)[mxjn(mx)]′

µm2jn(mx)[xh
(1)
n (x)]′ − µ1h

(1)
n (x)[mxjn(mx)]′

, (2.25)

bn =
µ1jn(mx)[xjn(x)]′ − µjn(x)[mxjn(mx)]′

µ1jn(mx)[xh
(1)
n (x)]′ − µh(1)

n (x)[mxjn(mx)]′
, (2.26)
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cn =
µ1jn(x)[xh

(1)
n (x)]′ − µ1h

(1)
n (x)[xjn(x)]′

µ1jn(mx)[xh
(1)
n (x)]′ − µh(1)

n (x)[mxjn(mx)]′
, (2.27)

dn =
µ1mjn(x)[xh

(1)
n (x)]′ − µ1mh

(1)
n (x)[xjn(x)]′

µm2jn(mx)[xh
(1)
n (x)]′ − µ1h

(1)
n (x)[mxjn(mx)]′

(2.28)

Functions with a prime are derivatives with respect to the argument in brackets. x = ka = 2πNa/λ
is the size parameter depending on particle radius a and m = k1

k = N1
N is the relative refractive

index with N1 being the refractive index of the particle and N of the medium.[3]

By the definition of the Riccati-Bessel functions withψn(kr) = krjn(kr) and ξn(kr) = krh
(1)
n (kr)

the scattering coefficients (equations 2.25 and 2.26) simplify to[3]

an =
mψn(mx)ψ′n(x)− ψn(x)ψ′n(mx)

mψn(mx)ξ′n(x)− ξn(x)ψ′n(mx)
(2.29)

bn =
ψn(mx)ψ′n(x)−mψn(x)ψ′n(mx)

ψn(mx)ξ′n(x)−mξn(x)ψ′n(mx)
(2.30)

2.1.3. Cross sections and efficiencies

The net rate of electromagnetic energy crossing a sphere with surface A can be written as[3]

Wa = −
∫
A
S · êrdA (2.31)

with the Poynting vector S = E × H determining the magnitude and direction of the rate
at which electromagnetic energy is transferred at all points in space - so it represents the elec-
tromagnetic energy flux density. The minus sign stands for the outward normal. If Wa > 0
there is a net transfer of electromagnetic energy into the volume which means energy is ab-
sorbed by the particle. Therefore the index a indicating absorption is applied, and it holds
Wa = Wi −Ws + Wext. Because Wi = −

∫
A Si · êrdA vanishes in a non-absorbing medium,

the rate at which energy is extinct across the surface A is the sum of the rate of energy scattered
and the rate of energy absorbed:[3]

Wext = Ws +Wa (2.32)

The cross sections are defined as the ratio of the rate of energy extinct, absorbed or scattered to
the incident irradiation:[3]

Cext =
Wext

Ii
, Csca =

Ws

Ii
, Cabs =

Wa

Ii
(2.33)

The efficiencies can be understood as dimensionless cross sections in being the ratio of the cross
section to the particle’s cross-sectional area projected onto a plane normal to the incident beam,
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G = πa2 with a as the radius of a sphere:[3]

Qext =
Cext

G
, Qsca =

Csca

G
, Qabs =

Cabs

G
(2.34)

Following chapter 3.4 of Bohren & Huffman[3] (1983) that gives additional information to the
above roughly defined quantities as well as chapter 4.4.1 in calculating the net rate Wa in a non-
absorbing surrounding medium, a more applicable description is given for the cross sections:

Csca =
2π

k2

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2) (2.35)

Cext =
2π

k2

∞∑
n=1

(2n+ 1)<{an + bn} (2.36)

It follows from the relations in 2.34 and the introduction of the size parameter x = kr = 2πr
λ :[3]

Qsca =
2

x2

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2) (2.37)

Qext =
2

x2

∞∑
n=1

(2n+ 1)<{an + bn} (2.38)

<{} is the real part of the argument.

2.1.4. Radiation pressure efficiency

Light carries energy and momentum. The latter is defined as the ratio of energy to the speed of
light. Due to extinction momentum will be removed from the initial light beam. The momentum
removed by absorption will not be replaced whereas the scattered part of momentum carried in
the forward scattered radiation still needs to be accounted for.[34]

The total momentum of the forward scattered radiation is proportional to <cos θ>Csca with
<cos θ>=β being the mean of cos θ weighted by the scattering function, called the asymme-
try parameter. The removed part of the forward momentum that is not replaced by the forward
momentum of the scattered light is proportional to the radiation pressure cross section that is
defined as:[34]

Cpr = Cext − βCsca (2.39)

Hence, in contrast to the extinction cross section, the radiation pressure cross section still in-
cludes the energy/momentum of the forward scattered light that is not removed from the light
beam.[34] It therefore can be applied as a corrected extinction cross section including anisotropic
scattering.[26, 27, 13]

Analogue to this, the radiation pressure efficiency is[26, 13]

Qpr = Qext − βQsca = Qext(1− ωβ) (2.40)
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with ω = Qsca

Qext
being the scattering albedo. Like already mentioned the factor (1− ωβ) gives a

correction for anisotropic scattering. β = 0 is for isotropic, i.e. Rayleigh scattering, and β = 1
for totally forward scattering.[26, 13]

2.1.5. Mass attenuation coefficient

The attenuation or extinction coefficient in equation 1.1 is of course a function of the cross
section and is defined for a single particle species j as

κext,j = ΥjCext,j = Υj(Cabs,j + Csca,j) (2.41)

with Υj being the number of particles per unit volume. The total attenuation coefficient is then
the sum of all individual particle coefficients κext,j:

κext =
∑
j

ΥjCext,j (2.42)

Relating κext,j to a volume (for the sake of better illustration the index j is neglected) we obtain

κext,v =
fCext

v
(2.43)

with f = 1/Υ being the volume fraction of particles in the medium and v being the volume of
a single particle.[3] The mass attenuation or mass extinction coefficient can then be written as

κext,m =
f

ρ

Cext

v
(2.44)

with ρ as the density of the particle.[3]

It is important to note that the extinction cross section per unit volume Cext/v or mass Cext/ρv
provides more physical information than the extinction efficiency Qext which only describes the
cross section over an unit area. Strictly said, rather a quantity defined over an unit volume or
mass should be called efficiency. Hence, it often makes more sense to plot Cext/v = 3Qext/4r
as a function of size instead of Qext alone.[3]
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2.2 Effective Medium Theory

2.2. Effective Medium Theory

With the help of the Maxwell-Garnett Effective Medium Theory we can calculate the average
dielectric function ε of certain material compositions consisting of inclusions embedded in a
medium with εm.[3, 6] Beside the complex refractive index, the complex dielectric function or
complex dielectric constant ε = ε′ + iε′′ provides another set of quantities that describe the
optical properties of a material. They are derived from the Lorentz model in which electrons
and ions are treated as simple harmonic oscillators that are excited by radiation.[3] The relation
between dielectric constant and complex refractive index N = n+ ik is given with[3, 6]

ε′ + iε′′ = (n+ ik)2. (2.45)

The average dielectric function ε of a spherical inclusion with ε0 embedded in a homogeneous
medium with εm is defined as[6]

ε = εm

[
1 + 3fv

(
ε0 − εm
ε0 + 2εm

)(
1− fv

(
ε0 − εm
ε0 + 2εm

))−1
]

(2.46)

with fv being the particle volume fraction of the inclusion. The Garnett EMT equation can
be generalized for aggregates containing multiple inclusions of species j embedded in vacuum,
hence εm=1.
Following Cuzzi et al.[6] (2014) it yields after separation of complex and imaginary parts:

ε = ε′ + iε′′ =
1 + 2

∑
j fvjσj + i6

∑
j fvjγj

1−
∑

j fvjσj − i3
∑

j fvjγj
(2.47)

with

σj =
(n2

j − k2
j − 1)(n2

j − k2
j + 2) + 4n2

j k
2
j

(n2
j − k2

j + 2)2 + 4n2
j k

2
j

(2.48)

and
γj =

2njkj

(n2
j − k2

j + 2)2 + 4n2
j k

2
j

(2.49)

already transformed to being a function of (n,k) instead of (ε′,ε′′) according to relation 2.45.
The average complex refractive index is then obtained via[6]

N = n+ ik =

[√
ε′2 + ε′′2 + ε′

2

]2

+ i

[√
ε′2 + ε′′2 − ε′

2

]2

. (2.50)

The average mass density ρ of a composite particle depends on its porosity φ and the solid
average particle density ρ̄ with[6]

ρ = (1− φ)ρ̄. (2.51)
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The total particle volume fraction of inclusions is given with fv =
∑

j fvj = 1− φ. It is defined
for an inclusion of species j with[6]

fvj =
vj

V
=

mj

ρjV
=
ραj

ρjα
=

(1− φ)ρ̄αj

ρjα
. (2.52)

The total mass fraction of all species j per disk gas mass, later indicated as f (see equation 2.73),
is here defined as α to avoid confusion with the particle volume fraction fv.
It therefore holds for the solid particle density[6]

ρ̄ =
α∑

j(αj/ρj)
. (2.53)

After deriving average complex refractive indices for aggregates of different composition or
porosity, Mie Theory can again be used to determine their optical properties like efficiencies and
asymmetry factors. Although, one has in general to be careful when assuming aggregates of
large particle sizes which are no longer spherical and influence the amount of forward scattered
light by enhanced diffraction and hence, the asymmetry parameter becomes (g=cos θ=1), making
the total extinction being dominated by absorption for particle sizes r � λ.[6]
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2.3. Rosseland Mean Opacity

A derivation for the Rosseland mean opacity is given by Clayton (1968)[5]. It descends from
the radiative transfer equation which can be defined by introducing the radiation field intensity
as the integral over the specific intensity depending on the direction angle θ in the frequency
interval dν:[5]

I(θ) =

∫ ∞
0

Iν(θ)dν (2.54)

As mentioned in the chapters before, a light beam traversing a medium of thickness ds and
density ρ can be weakened due to extinction. This change of the specific intensity dIν can be
written separately for the two mechanisms causing it, namely scattering and absorption:[5]

dIν,abs = −κν,absρIνds, dIν,sca = −κν,scaρIνds

∫
Ω′
p(cos θ′)

dΩ′

4π
(2.55)

κ defines the according coefficient for absorption (abs) or scattering (sca), θ′ is the angle of scat-
tered radiation relative to the direction angle. The scattering phase function p(cos θ′) describes
the angular distribution of the energy removed by scattering and is normalized, so that the inte-
gral on the right hand side of the second equation in 2.55 becomes 1. For isotropic scattering,
p(cos θ′) = 1, the removed energy due to scattering is equally redistributed to all solid angles
dΩ′. Because of the definition of the phase function, its integral over all solid angles being
unity, it is a needless complexity when calculating the change in specific intensity. However, it
is needed for the computation of the amount of energy scattered into the beam.[5]

Accordingly, the total change in the specific intensity due to scattering and absorption becomes:[5]

dIν = −(κν,abs + κν,sca)ρIνds (2.56)

In addition to extinction also emission occurs and increases the specific intensity:[5]

dIν(θ) = +jν(θ)ρds (2.57)

The emission term of radiative transfer is simplified by the assumption of local thermody-
namic equilibrium. A small temperature gradient sustains this assumption.[5]

For the further definition of the emission coefficient jν(θ) we assume a thin slab of thickness dx
and an unit cross-sectional area with an energy absorption rate of[5]

dEν(θ) = −κν,absρdlIν(θ) cos θ, (2.58)

with dl = dx/ cos θ being the absorbing path length of the slab and Iν cos θ taking into account
the inclination angle of the impinging specific intensity. It can then be rewritten by the integral
over all solid angles[5]

dEν(θ) = −κν,absρdx

∫
Iν(θ)dΩ = −κν,absρdxcuν , (2.59)

using the relation
∫
Iν(θ)dΩ = cuν , with uν as the radiation energy density of frequency ν per
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unit frequency interval and c as the speed of light. Since dm = ρdx it follows for the energy
absorption rate per unit mass:[5]

dEν
dm

= −κν,abscuν (2.60)

For local thermodynamic equilibrium and hence, a balance between emission and absorption,
known as Kirchoff’s law, we get[5]

jν(θ) = κν,abs
cuν
4π

= κν,absBν(T ). (2.61)

Since the emission coefficient jν(θ) is defined per unit solid angle and isotropic in local ther-
modynamic equilibrium, the factor 4π is applied. The source or Planck function for emission in
thermodynamic equilibrium or Black Body radiation is defined as:[5]

Bν(T ) =
2hν3

c2

1

exp(hν/kT )− 1
, (2.62)

T is the temperature, h is the Planck constant and k is the Boltzmann constant.[5]

There are different forms of emission. Spontaneous emission results only from the temperature
of the material. Induced emission is caused by transitions in atoms exerted to a radiation field.
The probability of this downward transitions is described by the Einstein coefficient Bij . This
effect produces radiation having the same frequency and propagation direction as the incident
light. The fraction of the spontaneous to total emission can be derived with the help of the
Einstein coefficients and yields:[5]

spontaneous emission

total emission
= 1− e−hν/kT (2.63)

There are also mechanisms other than transitions between discrete atomic states like for example
ionization in the case of absorption, and its inverse process accounting for emission, radiative
recombination. The ratio of spontaneous to total emission by recombination is the same as in
equation 2.63.[5]

While the spontaneous emission determined solely by the temperature of the material depends
on the source function Bν(T ) also in non-thermodynamic equilibrium conditions, the induced
emission does not. It is then proportional to the actual specific radiation intensity:[5]

jν(θ) = κν,abs(1− e−hν/kT )Bν(T ) + κν,abse
−hν/kT Iν(θ) (2.64)

Photons scattered into the beam must also be considered. The energy scattered per unit solid
angle into the beam propagating in the direction (θ, φ) from another cone specified by (θ′, φ′)
is[5]

jν,sca = κν,sca
1

4π

∫ π ∫ 2π

p(θ, φ; θ′, φ′)Iν(θ′, φ′) sin θ′dθ′dφ′. (2.65)

p(θ, φ; θ′, φ′) is the scattering phase function between the light beam (θ, φ) and any other cone
or pencil (θ′, φ′).[5]

We can now establish an energy balance for a small cylinder with unit cross section and
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coaxial length dl, by demanding that the radiation leaving the top of the cylinder equals the
radiation entering at the bottom minus the absorption within and plus the emission entering
from outside:[5]

Iν(r + dr, θ)− Iν(r, θ) =
∂Iν
∂r

dr =

− (κν,abs + κν,sca)Iν(r, θ)ρdl + κν,abs(1− e−hν/kT )Bν(T )ρdl

+ κν,abse
−hν/kT Iν(r, θ)ρdl

+ κν,sca
ρdl

4π

∫ Ω′

p(θ, φ; θ′, φ′)Iν(r, θ′, φ′)dΩ′

(2.66)

Dividing through the total mass ρdl and defining κ∗ν,abs = κν,abs(1− e−hν/kT ), as well as using
the relation dr/dl = cos θ, yields the radiative transfer equation for a plane parallel atmosphere
in local thermodynamic equilibrium:[5]

1

ρ

∂Iν
∂r

cos θ =− (κ∗ν,abs + κν,sca)Iν(r, θ) + κ∗ν,absBν(T )

+ κν,sca
1

4π

∫ Ω′

p(θ, φ; θ′, φ′)Iν(r, θ′, φ′)dΩ′
(2.67)

We further multiply by cos θ and integrate over all solid angles dΩ. The single terms (I)-(IV )
then become:[5]

(I)
1

ρ

∂

∂r

∫
Iν cos2 θdΩ =

c

ρ

∂Pν
∂r

(II)

∫
(κ∗ν,abs + κν,sca)Iν cos θdΩ = −(κ∗ν,abs + κν,sca)Hν

(III)

∫
κ∗ν,absBν(T ) cos θdΩ = 0

(IV ) κν,sca
1

4π

∫
Ω

∫
Ω′

cos θp(θ, φ; θ′, φ′)Iν(r, θ′, φ′)dΩdΩ′

(2.68)

Pν is the radiation pressure that still equals the energy density uν with a factor 1
3 , even if the

radiation field is slightly anisotropic. Hν is the monochromatic heat flux per unit area.[5]

One can check the relations used in the terms (I) and (II) in Clayton (1968)[5] (p. 107-108)
stating that the energy density u, the net flux of energy or heat flux H and the radiation pressure
Pr are related to the three moments of the radiation field I(θ). The term (III) vanishes since
the source function Bν(T ) is isotropic and hence, its integral over all solid angles becomes 0.[5]

The integral in (IV ) vanishes if the scattering phase function contains only even powers of the
cosine. Holding θ′ and φ′ fixed, one can assume the integral over dΩ as the sum of light beams
in the direction θ and the direction opposite to it. So, p will have the same value for both while
the cosine will take equal but opposite values and hence, the integral will vanish.[5]
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So only terms (I) and (II) remain. Furthermore, the total heat flux per unit area is

H =

∫ ∞
0

Hνdν = − c

3ρ

∫ ∞
0

1

κ∗ν,abs + κν,sca

duν
dr

dν = − c

3ρ

∫ ∞
0

1

κ∗ν,abs + κν,sca

duν
dT

dT

dr
dν,

(2.69)
using duν

dr = duν
dT

dT
dr since in local thermodynamic equilibrium the energy density is only a

function of temperature. The temperature gradient is independent of frequency and hence, can
be written outside the integral. Normalization by the integral

∫∞
0

duν
dT dν = d

dT

∫
uνdν = du

dT =
4aT 3, with a being a constant then yields:[5]

H = −4ac

3ρ
T 3dT

dr

∫∞
0

1
κ∗ν,abs+κν,sca

duν
dT dν∫∞

0
duν
dT dν

(2.70)

Since in local thermodynamic equilibrium uν ∝ Bν(T )[5], we can replace it in the integrals and
introduce the Rosseland mean opacity κR as the inverse of the last term[26, 13]:

κR =

∫∞
0

∂Bν(T )
∂T dν∫∞

0
1

<κν,pr>
∂Bν(T )
∂T dν

(2.71)

with ∫ ∞
0

∂Bν(T )

∂T
dν =

∂B(T )

∂T
=

4σ

π
T 3 (2.72)

Instead of κν,ext = κ∗ν,abs +κν,sca the radiation pressure coefficient <κν,pr>, defined as sum over
all coefficients of the individual grain species j present in the considered medium, is used:[26, 13]

< κν,pr >=

J∑
j=1

fjκ
j
ν,pr (2.73)

with fj being the mass fraction of species j and

κj
ν,pr =

1

dj

∫∞
0 nj(r)r

3C
j
ν,pr(r)
vj

dr∫∞
0 nj(r)r3dr

(2.74)

following equation 2.44. Like mentioned in chapter 2.1.4 the radiation pressure coefficient fol-
lows from conservation of momentum[34] and constitutes a corrected extinction coefficient in-
cluding anisotropic scattering.
A size distribution function nj(r) that takes into account the different size spectrum of particles
for each species j is introduced, redefining κj

ν,pr as averages over their grain size distribution.
Cjν,pr is the radiation pressure cross section depending on radius and frequency of the incident
light, dj is the density of species j. According to the relation between Cjν,pr and the radia-
tion pressure efficiency Qjν,pr (see equation 2.34), one can rewrite κj

ν,pr as a function of the

36



2.4 Planck Mean Opacity

latter:[26, 13]

κj
ν,pr =

3

4dj

∫∞
0 nj(r)r

2Qjν,pr(r)dr∫∞
0 nj(r)r3dr

(2.75)

Smaller monochromatic opacities are stronger weighted in the Rosseland mean opacity than
larger ones. This represents a situation where more radiation travels through a medium where
opacity is smaller. The Rosseland mean is used in optically thick regions.[30]

2.4. Planck Mean Opacity

The Planck mean opacity is the opacity weighted by the black body intensity, and defined as[30]:

κP =

∫∞
0 < κν,pr > Bν(T )dν∫∞

0 Bν(T )dν
=

∫∞
0 < κν,pr > Bν(T )dν

B(T )
=

π

σT 4

∫ ∞
0

< κν,pr > Bν(T )dν

(2.76)
It is applicable in optically thin media. In contrast to the Rosseland mean opacity, high κ(ν)
contribute most to the Planck mean opacity.
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3. Computational Methods

3.1. Mean Opacity Code

In programming the monochromatic and mean opacities for assumed mixtures of dust (see sec-
tion 4.2), I followed the methods explained by Pollack et al.[26, 27] (1985, 1994) and by Henning
& Stognienko[13] (1994). Abbreviations are made concerning the Mie Theory code used and the
applied integration method.

First of all, as can be seen from equation 2.75, the radiation pressure efficiency for each single
predefined particle radius r and frequency ν must be computed. For the calculation of extinc-
tion and scattering efficiencies, as well as the asymmetry parameter, I used an already existing
Mie Theory code, called Mie.m[17, 18, 39]. This MATLAB code is programmed according to the
Fortran code CALLBH.f[40] from Bohren & Huffman[3] (1983). A matrix Qj(ν,r) is then cal-
culated for every material at frequencies at which optical constants/complex refractive indices
are defined, and for particle sizes of a predefined vector r. This vector r is generated with 50
logarithmic intervals, each consisting again of 51 equidistant sampling points. Afterwards, Qj

is linearly interpolated to frequencies ν for which no optical constants are provided. The vector
ν is generated the same way as r but with a higher resolution, having 100 logarithmic defined
intervals with 101 equidistant points within.

The integrals in equation 2.75 are obtained by summing over n sub-integrations, carried out
for each logarithmic interval (ri, ri+1) in r, with i = 0, 1, ...n − 1. For this, numerical inte-
gration with 1/3 Simpson’s rule over N+1 equidistant points (ri,0, ri,1, ..., ri,N ), in between the
logarithmic subintervals (ri, ri+1), was used. The last sampling point is always equal to the first
in the new subinterval: ri,N = ri+1,0 (see figure 13).
This method was used to cover also very small radii and prevent from doing a complete logarith-

mic numerical integration, in which all formulas must be logarithmized and become quite long
and confusing. Hence, this facilitates the occurrence of errors. The consistency of the scheme is
checked in section 5.1.4 by comparing it to results from just one numerical integration with 1/3

logarithmic subintervals

r
i,0

r
i

r
i,1

r
i,2

r
i,N−1

r
i,N

r
i+1

r
i−1

N+1 equidistant points in between subintervals (r
i
,r

i+1
)

Figure 13: Sketch for construction of the particle size vector r consisting of n logarithmic subinter-
vals (red) with N + 1 equidistant sample points in between (black).
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3.2 Mie Code

Simpson’s rule, with n equidistant sample points over the whole interval r0, rn−1. Of course,
here a much higher resolution, i.e. more sample points n, is/are needed.
Following Pollack et al.[26, 27] (1985, 1994) and Henning & Stognienko[13] (1994), the monochro-
matic opacities κj(ν) are then multiplied by their specified mass fractions fj and summed up to
κ(ν) over each particle species j existing in the specified temperature and density range of the
medium. The medium density ρm is only represented in the mean opacity via the vaporization
temperature of the particle species:

fj =

{
fj, T ≤ Tvap(ρm)

0, T > Tvap(ρm)
(3.1)

For the integrals in equation 2.71 for the Rosseland and equation 2.76 for the Planck mean
opacities, the same method like for the integrals in equation 2.75 is used.
Regarding composite particles of different porosity, I followed the equations derived by Cuzzi
et al.[6] (2014) in section 2.2. Optical properties for the new, via Garnett Effective Medium
Theory computed, average refractive indices were again obtained with Mie Theory, although the
assumption of sphericity is no longer entirely valid for the large particle radii in question, i.e.
from micron sizes up to 1 cm.

3.2. Mie Code

To compute the extinction, scattering and radiation pressure efficiencies I used an external full
Mie Theory code. Unfortunately, I could not obtain or reproduce the Mie code used by Pollack
et al. (1985, 1994)[26, 27] since in their previous papers no information was provided for re-
computation. The difference in results arising from this circumstance is not a small one, and is
demonstrated in section 5.1.2. To check the external code for errors, I also provide a comparison
with the traditional Mie Theory code BHMIE.f[40], presented in section 5.1.3 from Bohren &
Huffman[3] (1983).

3.2.1. Mie.m

The MATLAB code provided by Maetzler[17, 18, 39] (2002a,b) is based on BHMIE.f[40]. Accord-
ingly, the following steps for the calculation of extinction, scattering, absorption efficiencies and
asymmetry parameter are implemented.
For the truncation of the infinite series after nmax terms the following criteria for stability is
given by Bohren & Huffman[3] (1983), according to Wiscombe[37] (1980):

nmax = x+ 4x1/3 + 2 (3.2)

With the recurrence relations[3]

ψ′n(x) = ψn−1(x)− nψn(x)

x
, ξ′n(x) = ξn−1(x)− nξn(x)

x
, (3.3)
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3.2 Mie Code

and the logarithmic derivative that also satisfies the recurrence relation (since the Bessel func-
tions also do)[3]

Dn(mx) =
d

d(mx)
lnψn(mx), Dn−1 =

n

mx
− 1

Dn + n/(mx)
(3.4)

the equations for the scattering coefficients (2.29, 2.30) transform to a more computable form
used in the MATLAB code:[3, 39]

an =
[Dn(mx)/m+ n/x]ψn(x)− ψn−1(x)

[Dn(mx)/m+ n/x]ξn(x)− ξn−1(x)
(3.5)

bn =
[mDn(mx)/m+ n/x]ψn(x)− ψn−1(x)

[mDn(mx)/m+ n/x]ξn(x)− ξn−1(x)
(3.6)

For the calculation of Dn(mx) a downward scheme is used since it is more stable. This is due
to the downward stability of the spherical Bessel function jn.[3] The spherical Bessel functions
are the Bessel functions of first and second kind Jn and Yn, respectively, and multiplied by a
factor:[3]

jn(x) =

√
π

2x
Jn+1/2(x), yn(x) =

√
π

2x
Yn+1/2(x) (3.7)

The first orders are given with[3]

j0(x) =
sinx

x
, y0(x) = −cosx

x
. (3.8)

After the calculation of the scattering coefficients with equations 3.5 and 3.6 with the MATLAB
function Mie_ab.m called in Mie.m, the efficiencies Qsca, Qext, Qabs are computed using equa-
tions 2.37 and 2.38, as well as the relation Qabs = Qext −Qsca.[3]

The asymmetry parameter is computed with a somewhat longer formula[3]

< cos θ >=
4

Qscax4

[∑ n(n+ 2)

n+ 1
<
{
ana
∗
n+1 + bnb

∗
n+1

}
+
∑
n

2n+ 1

n(n+ 1)
<{anb

∗
n}

]
, (3.9)

with <{} being the real part of the complex argument in the brackets.

3.2.2. BHMIE.f

To make sure Mie.m works properly according to the original code by Bohren & Huffman[3] (1983),
I compared results from Mie.m to those obtained from a slightly modified version of BHMIE.f
by B. T. Draine[41]. The modification consists in including the computation of the asymmetry pa-
rameter. A comparison of efficiencies obtained by BHMIE.f and by Mie.m is given in figure 19
in section 5.1.3.
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4. Data

4.1. Size Distribution Function for Protostellar Environments

The best analogue for dust in protoplanetary disks is probably realized by interstellar dust.[26]

Mathis et al.[19] (1977) fitted the observed interstellar extinction with a particle size distribution
of uncoated graphite, enstatite, olivine, silicon carbide, iron, and magnetite and defined a power
law with n(r) ∝ r−3.5, known as MRN size distribution function (SDF). For graphite this
applies to a size range between 0.005 to 1 µm, for the other materials the size range is much
narrower. The according wavelength range for extinction is between 0.11 and 1 µm. Pollack
et al.[26] (1985) introduced an additional particle size range between 1 and 5 µm with a SDF
according in shape to terrestrial aerosols. It is as well used in later studies[27, 13, 31, 6] and called
modified MRN size distribution function:

n(r) =


1, r < 0.005µm ≡ P0,

(P0/r)
3.5, P0 ≤ r < 1 µm,

(1/P0)2(P0/r)
5.5, 1 ≤ r < 5 µm,

0, r ≥ 5 µm.

(4.1)

Although protoplanets evolve in the protoplanetary disk, the same SDF should not be used as a
first assumption for their initial atmospheres. Due to grain growth, a broader size range should
be considered, and a less steep slope regarding larger radii.
As proposed in Cuzzi et al.[6] (2014), I will use the following SDF for aggregate particles when
computing opacity tables for protoplanetary atmospheres and consider particle radii from 1 µm
upwards, and a slope s being 3.1:

n(r) = n0r
−s, 1 µm ≤ r ≤ 1 cm (4.2)

It is to keep in mind that using Mie Theory for these large radii demands more computational
time since, according to the stability criterion for nmax (see equation 3.2 in section 3.2.1) after
which the infinite series of the scattering coefficients an, bn are truncated, large size parameters
x will lead to a significant increase of nmax.

4.2. Optical Constants, Mass Fractions and Densities

For the computation of monochromatic and mean opacities dust properties of the following
papers are applied.

• Pollack et al.[27] (1994)
They provide complex refractive indices for wavelength ranges from 0.1 µm up to 0.1 m
and assume different compositions for molecular clouds and accretion disks. Compared to
their first paper[26], they excluded compositional properties of chondritic meteorites like
hydrated silicates and magnetite, probably formed by aqueous alteration processes on the
parent bodies, and consider only observational determined compositions from molecular
clouds, accretion disks, solar system bodies and the diffuse ISM. The material mixture
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4.2 Optical Constants, Mass Fractions and Densities

Table 1: Density and mass fraction of different species, according to Pollack et al.[27] (1994).
Species Density Mass fraction

(g cm-3) Molecular cloud Accretion disk
Iron Fe 7.87 2.53 × 10−4 1.26 × 10−4

Fe (T > 680 K) 6.14 × 10−4

Olivine [Fe0.3Mg0.7]2SiO4 3.49 2.51 × 10−3 2.64 × 10−3

Orthopyroxene Fe0.3Mg0.7SiO3 3.40 7.33 × 10−4 7.70 × 10−4

Troilite FeS 4.83 5.69 × 10−4 7.68 × 10−4

Refractory and 1.50 3.53 × 10−3

volatile organics CHON (1:1:0.5:0.12) 1.00 6.02 × 10−4

Water ice H2O 0.92 1.19 × 10−3 5.55 × 10−3

consists of troilite, metallic iron, water ice, refractory and volatile organics and anhydrous
silicates, being Mg-rich olivine ([Mg,Fe]2SiO4) and orthopyroxene ([Mg,Fe]SiO3) with
an Fe/(Fe+Mg) ratio of 0.3. Troilite represents the dominant source of condensed sulphur
with 50% residing in it in molecular cloud cores and 75% in accretion disks. It appears as
an additional infra-red continuum source of opacity close to its condensation temperature.
After the vaporization of troilite around 680 K to solid Fe and H2S gas, the mass fraction
of iron is increased. Mass fractions and material densities are listed in table 1. Water ice is
assumed to constitute 11% of the available oxygen in molecular clouds and 52% in accre-
tion disks. These assumptions arise from the comparison of the strength of the 3 µm H2O
band in the IR spectra of molecular clouds to features of other grain components. In the
case of accretion disks, it can be determined from its cometary abundance. They obtained
vaporization temperatures by performing thermodynamic equilibrium calculations and fit-
ting a Clausius-Clapeyron equation to them. The vaporization of refractory and volatile
organics is controlled by kinetics and hence, the critical temperature is determined from
laboratory and observational data for relevant time-scales, i.e. the free-fall time at 1 AU
from a 1 M� star, corresponding to 3 × 106 s, and the age of disks of interest, being
around 1014 s. The vaporization temperatures are given in table 2.

Henning & Stognienko[13] (1996) emphasize that optical constants data from Pollack
et al.[27] (1994) does not always fulfill the Kramers-Kronig relation, an integral rela-
tion between imaginary and real part of a complex function[3]. Extrapolations to longer
wavelengths for silicates were carried out according to measurements by Campbell &
Ulrichs[4] (1969), by assuming k being constant.[27, 13]

• Henning & Stognienko[13] (1996)
They took optical constants for organics from Pollack et al.[27] (1994). The main differ-
ence between them is that measurements of refractive indices from silicates are mainly of
amorphous samples, taken from Dorschner et al.[7] (1995) (as seen in figure 16 and also
partly present in figure 15 for data from Semenov et al. [31], 2003), with the imaginary
refractive index k showing smoother peaks in the near-IR region (. 1 µm) and a broader
feature around 20 µm. Note that the optical constants for olivine differ greatly in mag-
nitude from those of Pollack et al.[27] (1994) and Semenov et al.[31] (2003). New optical
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4.2 Optical Constants, Mass Fractions and Densities

Table 2: Vaporization temperatures of different species for molecular clouds (mc) and accretion
disks (ad), according to Pollack et al.[27] (1994).

Vaporization temperature (K)
Gas density (g cm−3)

Species 10−18 10−16 10−14 10−12 10−10 10−8 10−6 10−4

Iron mc/ad 835 908 994 1100 1230 1395 1612 1908
Olivine mc/ad 929 997 1076 1168 1277 1408 1570 1774
Orthopyroxene mc/ad 920 980 1049 1129 1222 1331 1462 1621
Troilite mc/ad 680 680 680 680 680 680 680 680
Refractory organics mc 575 575 575 575 575 575 575 575

ad 425 425 425 425 425 425 425 425
Volatile organics mc 375 375 375 375 375 375 375 375

ad 275 275 275 275 275 275 275 275
Water ice mc 106 115 125 138 153 172 197 230

ad 109 118 129 143 159 180 207 244

constants for iron are taken from Ordal et al.[23] (1988), being quite similar to that by
Pollack et al.[27] (1994), for troilite from Begemann et al.[2] (1994) and for water ice from
Hudgins et al.[15] (1993). Regarding silicates and their strong dependence of refractive in-
dices on the iron content, Dorschner et al. (1995) assume a ratio of Fe/(Fe+Mg)=0.0...0.1.
Henning & Stognienko[13] (1996) assumed iron-poor silicates Fe/(Fe+Mg)=0, with the
mass fraction of metallic iron being twice the value given by Pollack et al.[27] (1994) in
table 1 for T > 680 K, and being 3.6 times the value given by Pollack et al.[27] (1994) for
lower temperatures, and iron-rich silicates Fe/(Fe+Mg)=0.5, with mass fractions of 1/4 of
Pollack et al.[27] (1994) for T > 680 K and zero below. The mass fraction of troilite is only
1/20 of that by Pollack et al.[27] (1994).
Extrapolation of optical constants of silicates for longer wavelengths was done assuming
k ∝ λ−1, instead of k being constant like in Pollack et al.[27] (1994). For wavelengths
longer than 500 µm, the Rosseland mean is not that sensitive to slight changes in absorp-
tion coefficients. In the case of troilite, new absorption features around 30 µm, measured
by Begemann et al. (1994), are present. The new included data is in the range 10 to
500 µm, for the other regions k from Pollack et al.[27] (1994) was adopted. For organics
the Kramer Kronig analysis of optical constants from Pollack et al.[27] (1994) yielded sim-
ilar values, with a small reduction of∼5% in n for long wavelengths. Optical constants of
amorphous water ice at a temperature of 100 K are provided by Hudgins et al.[15] (1993)
and replace the Pollack et al.[27] (1994) data of hexagonal phase between 2.5 and 200 µm.
Although optical constants data by Henning & Stognienko[13] (1996) is not available on-
line, the new included data from the above mentioned sources is and replaces the Pollack
et al.[27] (1994) data in the specified wavelength ranges. New computed real parts of re-
fractive indices and extrapolations are not available, but changes are partly present in the
data by Semenov et al.[31] (2003). A comparison is therefore provided with the mentioned
new optical constants sources in figure 14-15 and in figure 16 for silicates from Dorschner
et al.[7] (1995).
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Figure 14: Real complex refractive index n for different materials from Pollack et al.[27] (1994;
P94), Semenov et al.[31] (2003; S03), Ordal et al.[23] (1988), Begemann et al.[2] (1994)
and Hudgins et al.[15] (1993).

• Semenov et al.[31] (2003)
They re-estimated the absolute abundance of silicates, iron and troilite given by Henning &
Stognienko[13] (1996) for the iron-rich (Fe/(Fe+Mg)=0.4) and iron-poor (Fe/(Fe+Mg)=0)
case from iron stoichiometry. In contrast to Pollack et al.[27] (1994), they account only
for six roughly specified temperature regions by assuming for silicates and iron the same
vaporization temperature range which will not be applied here when using their optical
constants data. New densities and mass fractions for iron, silicates and troilite with re-
spect to the normal, iron-rich and iron-poor assumptions for silicates, are listed in table 3.
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Figure 15: Imaginary complex refractive index k for different materials from Pollack et al.[27] (1994;
P94), Semenov et al.[31] (2003; S03), Ordal et al.[23] (1988), Begemann et al.[2] (1994)
and Hudgins et al.[15] (1993).

• Cuzzi et al.[6] (2014)
They use the optical constants of Pollack et al.[27] (1994), but do not differ between sil-
icates, or between volatile and refractory organics. Hence, they only assume 5 instead
of 7 species and make slight changes in the optical constants, as well as the mass frac-
tion and density for silicates. They also calculate average optical constants for aggregate
particles of different compositions via EMT. I will not use their average optical constants
here when dealing with aggregates, but provide a comparison to newly calculated ones by
considering the whole range of species given in Pollack et al.[27] (1994) in section 5.2.

Vaporization temperatures and material densities (except for iron-rich and iron-poor silicates)
are taken from Pollack et al.[27] (1994) for all optical constants data used. The mass fractions are
applied according to Pollack et al.[27] (1994), Semenov et al.[31] (2003) and the therein specified
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Table 3: Density and mass fraction of different species for normal, iron-rich and iron-poor silicates,
according to Semenov et al.[31] (2003).

"normal" "iron-rich" "iron-poor"
Fe/(Fe+Mg)=0.3 Fe/(Fe+Mg)=0.4 Fe/(Fe+Mg)=0

Species ρ f ρ f ρ f
(g cm−3) (g cm−3) (g cm−3)

Fe 7.87 1.26 × 10−4 - - 7.87 7.97 × 10−4

Fe (T > 680 K) 6.15 × 10−4 2.42 × 10−4 1.29 × 10−3

Fe2xMg2−2xSiO4 3.49 2.64 × 10−3 3.59 3.84 × 10−3 3.20 6.30 × 10−4

FexMg1−xSiO3 3.40 7.70 × 10−4 3.42 4.44 × 10−5 3.20 1.91 × 10−3

FeS 4.83 7.68 × 10−4 4.83 3.80 × 10−4 4.83 7.68 × 10−4

Refractory and 1.50 3.53 × 10−3 1.50 3.53 × 10−3 1.50 3.53 × 10−3

volatile CHON 1.00 6.02 × 10−4 1.00 6.02 × 10−4 1.00 6.02 × 10−4

H2O 0.92 5.55 × 10−3 0.92 5.55 × 10−3 0.92 5.55 × 10−3

 Silicates (Dorschner et al., 1995)
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Figure 16: Complex refractive indices for silicates from Dorschner et al.[7] (1995).

definitions or sources of complex refractive indices. All of the four papers that compute mean
or monochromatic opacities make usage of the MRN size distribution function. Only Cuzzi et
al.[6] (2014) additionally use a flatter SDF when considering larger particle sizes of aggregates.
While it is unclear which exact Mie code was used by Pollack et al.[27] (1994), Henning &
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Stognienko[13] (1996) and Semenov et al.[31] (2003) use Mie Theory for at least smaller parti-
cles. All of them additionally assume aggregate particles. Cuzzi et al.[6] (2014) used approxi-
mation methods depending on the size parameter regimes, but sometimes give additionally full
Mie Theory calculations for comparison. For the computation of aggregate particles, Cuzzi et
al.[6] (2014), as well as Pollack et al.[27] (1994), use the Maxwell-Garnett Effective Medium
Theory. Henning & Stognienko[13] (1996) use the Bruggeman mixing rule generalized for mul-
tiple components by Ossenkopf[24] (1991). The main difference is that the Bruggeman rule
allows interactions between inclusions while Garnett EMT assumes a material mixture with
sub-grains interacting independently with light. These interactions would become important in
the resonance region. With organics being the most abundant in the assumed dust mass fraction
and having optical constants far from the resonance region, the differences between this two
mixing rules would hence occur after the vaporization temperature of organics.[13] Semenov et
al.[31] (2003) assume particles from different coagulation processes, namely particle-cluster ag-
gregation (PCA) and cluster-cluster aggregation (CCA), both making up 50% of the total amount
and having 0.01 µm spherical inclusions. Beside the homogeneous/composite, compact/porous
structure, they also consider multishell spherical particles, having all species distributed as lay-
ers in concentric spherical shells, and follow calculations for their aggregate model proposed by
Henning & Stognienko[13] (1996).
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5. Results

5.1. Testing the Code

In this section the code is tested using the optical constants for olivine, iron, orthopyroxene,
troilite, organics and water ice from Pollack et al.[27] (1994), available as download in [42].

5.1.1. Checking numerical integration scheme for mean opacities

To test the numerical integration code for the computation of the Rosseland and Planck opacity
means and compare it to the results of Pollack et al.[27] (1994), I used recalculated coefficients
from Henning & Stognienko[13] (1996, see [43]), derived from the optical constants from Pollack
et al.[27] (1994). They also recalculated the Rosseland mean opacity for molecular clouds with
a gas density of ρ=10-8 g cm-3 (see [43]). Since coefficients were only available for 74 different
wavelengths with unequally spaced intervals, numerical integration of the weighting function
using the trapezoidal rule seemed more appropriate since Simpson’s rule can only be applied to
equally spaced intervals. To overcome this, and test my code which carries out sub-integrations
of the logarithmic intervals and is further used for computation, I simulated N = 48 equally
spaced sampling points between all available wavelengths. A linear interpolation was used to
obtain coefficient values for the new generated points. This, of course, has no physical mean-
ing at all, it moreover seems like an unnecessary manipulation of data or additional work when
applying Simpson’s rule integration over completely linear data, but was just done to exclude
possible errors arising from the code. All in all, the values are well reproduced by using the
trapezoidal rule, as can be seen in figure 17, although the resolution, i.e. the number of wave-
lengths for which the coefficients are defined, is very small. Also, there are no errors in the
numerical integration scheme I used for further computations. Four out of seven coefficients
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for different material mixtures corresponding to different temperature regimes from Henning &
Stognienko[13] (1996) are plotted in the right sub-figure.

5.1.2. Comparison of coefficients

The data provided by Henning & Stognienko (1996) was calculated with the Mie code from
Pollack et al.[27] (1994). It was not possible for me to obtain this code for reproducing the
radiation pressure coefficients needed for the calculation of the mean opacities. So, only a com-
parison with the full Mie Theory code I used is possible. The error arising from these different
codes for the coefficients is not a small one, as can be seen in figure 18 for olivine. The shape
of the curves for both scattering coefficients seems well reproduced in the left sub-figure but the
magnitude is not. Interestingly the cut-off of scattering and absorption coefficient of Henning &
Stognienko (1996) from the newly calculated values already happens at very low frequencies.
This is not the case for the radiation pressure coefficient which shows a very steep increase af-
ter approximately 1500 THz. This strong increase cannot be reproduced by my computations.
Below 1500 THz the curves of both radiation pressure coefficients nearly match but the sum
of absorption and scattering coefficient, i.e. the extinction coefficient, is well below my calcu-
lated values, although the spread between extinction and scattering is nearly the same for both
methods. Hence, the difference in magnitude in this range, resulting in almost equal radiation
pressure coefficients, is caused solely by the different asymmetry factors entering in the correc-
tion term (see equation 2.40).
Above 1500 THz the spread between scattering and extinction coefficient increases, as does the

deviation of the radiation pressure coefficient curve from my calculated values. This could be

0 0.5 1 1.5 2 2.5 3

x 10
6

0
 

20
 

40
 

60
 

80
 

100
 

120
 

140
 

160
 

180
 

200
 

220
 

240
 

Coefficient κ
olivine

ν [GHz]

κ
 [

cm
2
/g

]

 

 
κ

pr
 (this work)

κ
pr

 (HS 96)

κ
ext

 (this work)

κ
ext

 (HS 96)

κ
sca

 (this work)

κ
sca

 (HS 96)

0 0.5 1 1.5 2 2.5 3

x 10
6

−20

0

 

20

 

40

 

60

 

80

 

100

 

120

 

140

Difference ∆κ
olivine

ν [GHz]

κ
H

S
9
6
 −

 κ
 [

cm
2
/g

]

 

 
∆κ

pr

∆κ
ext

∆κ
sca

Figure 18: Recalculation of absorption, scattering and radiation pressure coefficients for olivine
(left) using a full Mie Theory code (this work, black) and comparison to the recalculated
coefficients by Henning & Stognienko[13] (1996, red) using a Mie Theory code from
Pollack et al.[27] (1994). Note that coefficients are already multiplied with the assumed
mass fraction. The optical constants and mass fractions according to molecular clouds
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is plotted in the right diagram.
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probably because with increasing frequency or decreasing wavelength the error in efficiencies,
arising for very large radii compared to the wavelength, r � λ, becomes more and more appar-
ent in a Mie approximation code than in a full Mie Theory code. In other words, the decrease in
the wavelength leads to an increase in the overall size parameters and errors occur for methods
valid only in the smaller size parameter range which makes the question, how the Mie calcula-
tions were done by Pollack et al.[27] (1994), even more relevant. Unfortunately, I cannot provide
a detailed code comparison and draw more meaningful conclusions.

5.1.3. Checking the Mie Theory code

To make sure that no errors enter through the external code Mie.m, I also computed efficien-
cies Q with a slightly modified version of the code[41] of Bohren & Huffman (1983) and com-
pared them to the results of Mie.m. As can be seen in figure 19, the curves of the efficiencies
derived from both codes completely match for all materials. So an error arising for the efficien-
cies from Mie.m can be excluded.

In general, considering large size parameters X � 1, the efficiencies calculated by a full
Mie Theory code converge towards the geometrical optics limit. As can be seen in figure 19
and is pointed out by several authors (see e.g., Bohren & Huffman, 1983), the extinction effi-
ciency Qext heads towards the value 2 for increasing size parameters X . This is known as the
extinction paradox since it states that a large body would remove twice the energy incident on
it, and is twice the limit obtained from geometrical optics. While geometrical optics provides a
good approximation by assuming a large particle as a planar obstacle with the same projected
area, it neglects edge deflections adding to the total extinction. This circumstance, requiring the
extinction cross section to be twice the geometrical cross section, is not always observed due to
limited acceptance angles of detectors when measuring extinction by very large particles.[3]

When converging towards the geometrical optics limit, some materials show an additional struc-
ture, called interference structure, that is, according to the definition of the extinction phe-
nomenon, due to the interference between incident and forward scattered light. The existence
of the fine ripple structure in between relates mathematically to conditions where the denomina-
tors of the scattering coefficients an and bn vanish. Both structures are hence due to scattering
and should not be confused with bulk absorption peaks when the complex refractive index k, and
hence absorption, is large, as can be seen for solid iron and troilite. In such cases the interference
and ripple structure becomes damped and is almost not present.[3]

5.1.4. Resolution

For the numerical integration over particle radius (dr) 50 sub-integrations n between logarithmic
intervals with 51 equidistant points (N + 1) in between were chosen. For the frequency, testing
yielded an optimal selection of n = 100 and N = 100. Higher resolutions lead to no significant
effort compared to runtime since they would bring only changes after the fourth position after
decimal point, mostly due to rounding. Since opacity means for aggregates with larger particle
sizes show only decreases in the order of 10, very small improvements by choosing more sam-
ple points for integration can be neglected without any further concern in order to achieve an
acceptable runtime.
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Figure 19: Efficiencies derived from BHMIE.f and Mie.m for different materials at λ = 1µm.

In table 4 the peaks in Rosseland mean extinction coefficient (over the considered temperature
range), derived from Simpson’s rule integration over the whole frequency interval, are compared
to those summing up different Simpson’s rule sub-integrations for logarithmic intervals. At first
with a higher resolution for dr, but afterwards compared with two smaller resolutions that show
only slight changes in the fourth position after decimal point (see table 5a+b). The peaks over
the temperature range relate to the vaporization temperatures of the different materials in molec-
ular clouds according to a medium density of ρ = 10−8 g cm−3, i.e. 172 K for water ice, 375 K
for volatile organics, 575 K for refractory organics, 680 K for troilite, 1331 K for orthopyroxene
and 1395 K for solid iron.
Using sub-integrations for logarithmic specified intervals yields better results for a smaller
amount of sample points along with a shorter runtime. This is, of course, due to its consid-
eration of more values in the longer wavelength/lower frequency range, already at small reso-
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lutions. In contrast, a single integration with equidistant subintervals has most of its sampling
points covering the smaller wavelength/higher frequency range. The amount of points, or the
length of the frequency vector, for which the efficiencies Q are interpolated, is determined by
npoints = (N + 1)(n − 1) − (n − 2) for using sub-integrations for logarithmic intervals or by
npoints = N + 1 for a single integration with N subintervals. Furthermore, the highest change
is seen for lower temperatures where the Planck curve is in general broader and more shifted to
longer wavelengths and hence, weights them stronger than it is the case at higher temperatures.
So the inclusion of more longer wavelengths, i.e. lower frequencies, in the numerical integration
scheme clearly makes a difference for opacities the lower temperature region.

sub-integrations subintervals mean opacity peaks [cm2/g]
(n) (N) 172 K 375 K 575 K 680 K 1331 K 1395 K
50 50 4.0562 7.0902 8.1937 2.9847 4.1095 3.5851

100 100 4.0562 7.0904 8.1939 2.9847 4.1096 3.5852
200 100 4.0562 7.0904 8.1939 2.9847 4.1096 3.5852

1 10000 4.0475 7.0868 8.1927 2.9841 4.1092 3.5848
1 20000 4.0582 7.0911 8.1941 2.9848 4.1096 3.5852

Table 4: Testing different resolutions for the numerical integration of the weighting function in equa-
tion 2.71 with 1/3 Simpson’s rule for nr,points = 9901 (nr = 100, Nr = 100).

(a) nr=30, Nr=30
sub-integrations subintervals mean opacity peaks [cm2/g]

(n) (N) 172 K 375 K 575 K 680 K 1331 K 1395 K
50 50 4.0562 7.0902 8.1937 2.9846 4.1094 3.5850

100 100 4.0562 7.0904 8.1939 2.9847 4.1095 3.5851

(b) nr=50, Nr=50
sub-integrations subintervals mean opacity peaks [cm2/g]

(n) (N) 172 K 375 K 575 K 680 K 1331 K 1395 K
50 50 4.0562 7.0902 8.1937 2.9847 4.1095 3.5852

100 100 4.0562 7.0904 8.1939 2.9848 4.1096 3.5852

Table 5: Testing different resolutions for the numerical integration of the weighting function in
equation 2.71 with 1/3 Simpson’s rule for (a) nr,points = 871 (nr = 30, Nr = 30) and
(b) nr,points = 2451 (nr = 50, Nr = 50).

particle radius (r) frequency (ν) points
n N npoints n N npoints (nr × nν)
50 50 2451 50 50 2451 6007401
50 50 2451 100 100 9901 24267351
100 100 9901 100 100 9901 98029801

Table 6: Comparison of different variations in vector length of particle radius (r) and frequency (ν).
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5.1.5. Comparison of mean coefficients

Figure 20 gives a comparison of the Rosseland mean opacity for a gas density of 10-8 g cm-3 re-
calculated by Henning & Stognienko (1996) and this work. There is a clear, but almost constant
offset from the original curve in each temperature regime corresponding to different mixtures
of material species. This is probably explained by differences in the Mie Theory codes used,
as shown in the previous chapters. For the different peaks the deviation from the values by
Henning & Stognienko (1996) is given with +4.16% at 172 K, +5.39% at 375 K, +6.53% at
575 K, +18.52% at 680 K, +11.21% at 1331 K, +13.63% at 1395 K and +0.97% at 1408 K.
The highest deviation is found in the temperature regime after the vaporization of organics, in
the range of 576-680 K, corresponding to a dust mixture of olivine, orthopyroxene, iron and
troilite with deviations ranging from +18.68% at 576 K to +18.52% at 680 K at which troilite is
vaporized.

In table 13-14 in Appendix A.3 the recalculated Planck and Rosseland mean opacities are listed
for a temperature range of 10-1908 K and for gas densities ranging from 10-18 to 10-4 g cm-3.
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Figure 20: Recalculated Rosseland mean opacity for molecular clouds with a gas density of
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from optical constants data of Pollack et al.[27] (1994).
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5.2. Optical Constants for Aggregates

Optical constants for aggregated particles of different mixture were calculated with the Effec-
tive Medium Theory (see section 2.2) that gives average refractive indices for particles hav-
ing different species inclusions. Following Cuzzi et al.[6] (2014), I computed optical constants
for nine different kinds of aggregates with properties and compositional inclusions listed in ta-
ble 7-8, according to the temperature regime where they can exist, taken again from Pollack et
al.[27] (1994). The particle volume fractions fv for the nine aggregates are given for the compact
case (porosity φ=0) in table 9. Note that when assuming porosity, fmathrmv and the aggregate
particle density is reduced by the factor (1− φ), with respect to their non-porous values.
In contrast to Cuzzi et al.[6] (2014), I used the full range of particle species given by Pollack et
al.[27] (1994) and did not melt two species to being only one, namely olivine and orthopyroxene
to silicates and volatile and refractory organics to organics. This is why the optical constants for
aggregates of this work (see figure 21a) and those of Cuzzi et al.[6] (2014) (see figure 22, i.e.
figure 6 in their paper) show small differences, but the overall features appear to be quite similar.
Note that the peak <0.5 µm that also exists for the single species olivine, orthopyroxene, water
ice and organics (see figure 14 in section 4.2) and hence, is produced here by their presence as
inclusions, is absent in figure 22 because Cuzzi et al.[6] (2014) apparently do not present val-
ues at this small wavelengths. The higher the volume fraction of silicates within the aggregate
particle becomes, the more the peak grows in magnitude. Also, the feature of two small peaks
appearing between 50 and 100 µm in figure 22, both in real and imaginary refractive index,
is perhaps due to a higher weighting of water ice compared to the other species (being only 4
instead of 7 in their paper) and appears in figure 21a only as one peak.
As a comparison, optical constants for the porous aggregates of different composition are plot-
ted in figure 21b. Note the decrease in magnitude for both real and imaginary refractive indices
relating to a reduced particle volume fraction and hence, a smaller difference between denomi-
nator and numerator in equation 2.47 resulting in a lower ratio. The porosity is assumed to be
90%.

Table 7: Compact aggregate density and mass fraction for aggregates of nine different compositions.
Properties of aggregates

Composition
compact aggregate gas mass fraction
density ρ̄ (g cm−3) f =

∑
j fj

Fe, Olivine, Orthopyroxene, FeS, CHON refr., vol., Water ice 1.38 1.399×10−2

Fe, Olivine, Orthopyroxene, FeS, CHON refr., vol. 2.05 8.436×10−3

Fe, Olivine, Orthopyroxene, FeS, CHON refr. 2.23 7.834×10−3

Fe, Olivine, Orthopyroxene, FeS 3.72 4.304×10−3

Fe, Olivine, Orthopyroxene 3.79 4.024×10−3

Olivine, Orthopyroxene 3.47 3.410×10−3

Fe, Olivine 3.90 3.254×10−3

Olivine 3.49 2.640×10−3

Fe 7.87 6.140×10−4
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Table 8: Temperature regime of aggregates according to the vaporization temperatures of their vari-
ous species inclusions given by Pollack et al.[27] (1994).

Temperature regime (K) for aggregates
Gas density (g cm−3)

Composition 10−18 10−16 10−14 10−12 10−10 10−8 10−6 10−4

all Tmin 1
Tmax 109 118 129 143 159 180 207 244

without water ice Tmin 110 119 130 144 160 181 208 245
Tmax 275

without volatile organics Tmin 276
Tmax 425

without organics Tmin 426
Tmax 680

without troilite Tmin 681
Tmax 835 908 994 1100 1222 1331 1462 1621

silicates Tmin 836 909 995 1101 - - - -
Tmax 920 980 1049 1129 - - - -

iron + olivine Tmin - - - - 1223 1332 1463 1622
Tmax - - - - 1230 1395 1570 1774

olivine Tmin 921 981 1050 1130 1231 1396 - -
Tmax 929 997 1076 1168 1277 1408 - -

iron Tmin - - - - - - 1571 1775
Tmax - - - - - - 1612 1908

Table 9: Particle volume fraction of inclusions for nine aggregates with different compositions.
Particle volume fraction fv of inclusions for different compositions

Fe Olivine Orthopyroxene FeS CHON refr. vol. Water ice
1.6×10−3 7.46×10−2 2.23×10−2 1.57×10−2 2.319×10−1 5.93×10−2 5.946×10−1

3.9×10−3 1.839×10−1 5.51×10−2 3.87×10−2 5.721×10−1 1.464×10−1

4.6×10−3 2.154×10−1 6.45×10−2 4.53×10−2 6.702×10−1

1.38×10−2 6.532×10−1 1.956×10−1 1.373×10−1

7.35×10−2 7.130×10−1 2.135×10−1

7.696×10−1 2.304×10−1

9.35×10−2 9.065×10−1

1
1
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Optical constants for aggregate particles (φ=0)
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Figure 21: Complex refractive indices for (a) compact and (b) porous aggregates (φ=0.9) obtained
from EMT by using the optical constants and defined species properties of Pollack et
al.[27] (1994).

Figure 22: Complex refractive indices for aggregates obtained from EMT by Cuzzi et al.[6] (2014,
figure 6 in their paper).
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5.3. Monochromatic Coefficients

5.3.1. Compact and porous aggregate particles

As can be seen in figure 23, porous aggregates show stronger features between 0.1 and 50 µm
in their radiation pressure coefficients, relating to the already mentioned interference struc-
ture. This is because compact aggregates have a larger imaginary refractive index than porous
aggregates and hence, these features resulting from scattering are more strongly damped by ab-
sorption. When converging towards the geometrical optics limit r � λ (to the left side in the
figure), compact aggregates approach a constant value, while adding porosity results in an in-
crease since it mimics the behaviour of smaller particles[10] existing in a vacuum. Hence, their
curves are more similar to a MRN SDF, as can be seen in figure 24. At longer wavelengths,
the existence of larger particle sizes results in higher monochromatic radiation pressure coeffi-
cients. This is because for particles with r � λ absorption becomes the dominant process[3, 6].
The absence of scattering when approaching longer wavelengths results in a significant decrease
in extinction. The bump that indicates this decrease in scattering is hence shifted more to the
right for aggregates with higher rmax. With increasing rmax also the interference structure for
porous aggregates becomes less pronounced, and also the magnitude of κpr decreases due to an
increasing amount of particle sizes being already in their geometrical optics regime.

A comparison to the monochromatic coefficients obtained from a MRN SDF and for aggregates
of different compositions, relating to different temperature regimes where they are assumed to
exist, is given in figure 24. In addition, to provide a better understanding of the behaviour of the
mean opacity curves in section 5.4.2, vertical lines are plotted indicating at which wavelength
for the given temperatures the weighting functions for the Planck mean (black) and the Rosse-
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Figure 23: Radiation pressure coefficient for compact (φ=0) and porous (φ=0.9) aggregates.
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Figure 24: Radiation pressure coefficients for different compositions, corresponding to different
temperature ranges, for compact homogeneous particles (black) and compact aggregates
(blue) having a MRN SDF, as well as compact (φ=0; solid) and porous (φ=0.9; dashed)
aggregates having a SDF with slope 3.1 and a particle range from 1-10 µm (cyan), 1-
100 µm (red), 1 µm-1mm (green) and 1 µm-1cm (magenta). The solid vertical lines
correspond to the wavelength where the Planck function B(T ) (black) and its deriva-
tive with temperature ∂B/∂T (darkred) have its maximum and hence, coefficients are
weighted stronger and will contribute most to the mean opacities. The dashed vertical
lines indicate wavelengths at which the maximum of the corresponding weighting func-
tion has decreased by 1/10.

land mean (darkred) have their maximum. The dashed curves relate to wavelengths at which the
maxima of the weighting functions have decreased to 10%.
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5.4. Mean Opacities

Recalculations of mean opacities were carried out for molecular clouds (figure 20 in section 5.1.5)
and accretion disks (see table 15-16 in the Appendix A.3) with optical constants from Pollack et
al.[27] (1994) and, only for accretion disks, with optical constants from Semenov et al.[31] (2003).
In both cases, spherical homogeneous compact particles having a MRN SDF were assumed. In
addition, mean opacities of compact and porous aggregates for two different size distributions
and different particle size ranges are presented.

5.4.1. Compact spherical particles

Newly calculated Rosseland and Planck mean opacities from optical constants data of Semenov
et al.[31] (2003) for compact spherical particles are presented in table 17-22 in Appendix A.3 and
for a density of 10−8 g cm−3 in figure 25 for three different metallicity cases.
Considering iron-rich silicates, when all of the iron is at first only contained in silicates and to
a lesser extent - compared to the other two cases - in troilite, the Rosseland and Planck mean
curves both show a smoother increase between the peaks than in the iron-poor silicates and
normal case. Due to the low mass fraction of troilite for the iron-rich case, the curve is also well
below the others, especially after the vaporization of organics (T>425 K), a temperature region
where troilite obviously strongly contributes to the mean opacity in the other two cases. After the
vaporization temperature of troilite (T< 680 K) the existence of metallic iron as solid particles
but, especially, the higher mass fraction of olivine results in a sharper increase compared to the
other two metallicity assumptions. The dip after the vaporization temperature of orthopyroxene
is almost not present since its mass fraction compared to olivine is assumed to be two order
of magnitudes smaller in the case of iron-rich silicates (see table 3). The high mass fraction of
olivine therefore results in higher mean extinctions in the higher temperature regime of the curve
compared to the other two assumptions.
The highest amount of solid metallic iron particles is given from the beginning in the case of iron-
poor silicates. This is reflected in the steep slope of the curve between the peaks compared to the
other two cases. Before the vaporization of troilite, the relation of olivine:orthopyroxene:iron
is 1:0.3:0.05 for the normal silicates assumption with Fe/(Fe+Mg)=0.3, 1:0.01:1 for assuming
iron-rich silicates with Fe/(Fe+Mg)=0.4, and 0.33:1:0.42 for the iron-poor silicates case. For
T > 680 K it is 1:0.01:0.23, 1:0.01:0.06, and 0.33:1:0.68 for normal, iron-rich and iron-poor
silicates, respectively.

5.4.2. Compact and porous aggregated particles

New mean opacities for compact, as well as porous particles were calculated for the average op-
tical constants obtained by EMT. As can be seen in figure 26, the curves for compact solids and
compact aggregates with a MRN size distribution function are quite similar at smaller tempera-
tures, then the aggregates show a significant deviation from the compact monospecies particles,
especially after the vaporization of organics. Both curves match again at higher temperatures.
This effect becomes clear when looking at the radiation pressure coefficients for aggregates con-
sisting of iron, silicates and troilite in figure 24. There is a significant deviation of the curve
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Figure 25: Rosseland and Planck mean opacity for accretion disks using optical constants data from
Semenov et al.[31] (2003) considering normal, iron-rich and iron-poor silicates.

representing the standard mixture of compact, homogeneous particles from the curve of com-
pact aggregates with a MRN SDF between the two red lines, indicating the wavelength range in
which ∂B/∂T is maximal at the considered temperatures. Hence, these radiation pressure coef-
ficients contribute the most to the Rosseland mean opacity, producing a decrease in magnitude
compared to the "standard" MRN case. When inspecting the radiation pressure coefficient of
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aggregates consisting of iron and silicates, we notice that at those wavelengths where weighted
most heavily, the coefficients lay slightly above the curve of compact monospecies and hence,
we see a stronger slope in the Rosseland mean curve up to the vaporization temperature of or-
thopyroxene.
The SDF with a slope of 3.1 is applied for particle ranges of 1 µm up to maximum sizes of
10 µm (cyan), 100 µm (red), 1 mm (green) and 1 cm (magenta), like in Cuzzi et al. [6] (2014).
Dashed curves relate to aggregates having a porosity of 90%, whereas solid is used for com-
pact aggregates. The maximum opacity is obtained for temperatures smaller than the vaporiza-
tion temperature of organics for a size range of 1-10 µm. Interestingly, adding porosity to the
aggregates does here not result in an opacity increase, whereas it does for broader size ranges
with higher maximal particle radii. Increasing the maximum particle radius leads to a higher
opacity at small temperatures and a smoother increase up to the maximum opacity that is always
at temperatures close to the vaporization temperature of water ice. In the case of rmax=100 µm,
adding porosity even changes the trend of the curve to steeper slopes, as seen for smaller particle
ranges, and a clear increase in magnitude in the region where water ice no longer but organics
still exist, i.e. between∼173 and 425 K. The assumption of small sizes and high porosities simu-
lates the behaviour of even smaller monospecies, the inclusions of the aggregate, as independent
single particles in a matrix consisting of vacuum. That is why when looking at 1 to 10 µm sizes,
adding porosity results in a decrease in magnitude.
When considering the high temperature regime, it becomes obvious that larger size particles
exert a very smooth trend in opacity. At these high temperatures the derivative of the Planck
mean with respect to temperature has its maximum at higher frequencies/shorter wavelengths
and hence, efficiencies in this regime are stronger weighted. Since with increasing rmax, the
higher amount of compact aggregates of larger sizes interact with radiation at these frequen-
cies already beyond their geometrical optics limit, and Qext and κpr approach a constant value.
This is the case for all compact aggregates, even smaller ones in ranges of 1-10µm. Porous
aggregates are sometimes below their compact counterparts since the frequency region where
κpr is weighted the most, relates to a dip in their curves. Note that for a temperature of 425 K
the wavelength where ∂B/∂T has its maximum is around∼5µm. The Rosseland mean opacities
in figure 26 are quite similar to the ones obtained by Cuzzi et al.[6] (2014), although the magni-
tude is somewhat different, especially when considering larger rmax where the mean opacities
for porous aggregates of sizes 1 µm-100 cm are well above the ones for compact aggregates
of 1 µm-1 mm (see their figure 11). This difference may occur from the usage of different
efficiency calculations, based on Mie approximations in their work and on full Mie Theory here.
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Figure 26: Rosseland and Planck mean opacity for compact particles (MRN SDF; black), compact
aggregate particles (MRN SDF, blue), aggregate particles having different size ranges
and a SDF with slope 3.1 (solid: compact, dashed: porosity=90%).
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6. Conclusion

Considering aggregates, the shape of the Rosseland mean opacity over temperature from Cuzzi
et al.[6] (2014), as well as the influence of porosity and larger particle sizes, could be well re-
produced. Only some differences in magnitude remain since I used full Mie Theory instead
of Mie approximations. The methods applied for Mie scattering calculations by Pollack et
al.[26, 27] (1985, 1994) were somewhat harder to comprehend due to a lacking or not so obvious
description in their previous papers. Nevertheless, the recalculated Rosseland mean opacity for
molecular clouds using full Mie Theory yielded values having a maximum deviation of +18.7%
at temperatures before the vaporization of troilite (∼425-680 K) that can be viewed as sufficient
when considering the higher change in results exerted by the influence of particle growth and
porosity.

Although these calculations and simplified assumptions can serve as a good first approxima-
tion for the opacity in protostellar environments, several shortcomings should be kept in mind:

1. Considering very large particle sizes, the assumption of sphericity demanded by Mie The-
ory becomes invalid. Furthermore, the stability criterion by Wiscombe[37] (1980) demands
that nmax at which the series expansion of the scattering coefficients is truncated, increases
with particle radius which makes the use of full Mie Theory computational intensive.
For large particles scattering also depends on the shape and orientation.[3] Some authors[27, 9]

apply Discrete Dipole Approximation (DDA) when regarding non-spherical particles.
This method first proposed by Purcell & Pennypacker[29] (1973) and further developed
by Draine & Lee[9] (1984) treats the grain as a set of dipoles, but is computationally
intensive.[38]

2. When using opacity tables in evolution models, a constant adjustment of the size distribu-
tion would be needed for correct modelling of disk and later protoplanetary atmosphere
dynamics. Keeping this in mind, it would make sense to create efficiency tables highly
resolved in particle radii that can be later used to calculate the monochromatic coefficients
for different size ranges and distributions.

3. Porosity assumptions among literature vary very strongly. We do not have yet observa-
tional evidence for dust properties in protoplanetary atmospheres, although there is ongo-
ing work to determine interstellar dust properties. In many studies, one finds high poros-
ity assumptions of 0.8-0.9 (e.g. Mathis & Whiffen,[20] 1989; Voshchinnikov et al.,[35]

2006; Cuzzi et al.,[6] 2014) obtained by fitting their models to the extinction curve to-
wards specific stars. Heng & Draine[12] (2009) rule out the existence of grains having
porosities &0.55 from diagnostics based on optical and X-ray properties of the dust halo
around the galactic binary GX13+1. Considering cometary dust, density deductions in-
dicate the existence of very high grain porosities, reaching from 0.68 to 0.975[10]. These
very high porosities (>95%) in cometary dust seem to be confirmed by experiments car-
ried out on high porosity aggregates with a nephelometer, resulting in the construction of
polarimetric phase curves matching that of cometary dust.[11]
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4. Refractive indices sometimes vary with measurement methods, structure (crystalline/amor-
phous) and show temperature dependencies, especially ices. The effect of temperature on
optical constants, except for water ice (see e.g. Warren,[36] 1984; Hudgins et al.,[15] 1993)
but not considered in this work, is not well studied since most of the measurements are
carried out at room temperature.

5. One disadvantage in this work using EMT is that we already assume that the mass fraction
of a certain species that is used later in the calculation of the monochromatic coefficients,
is the same as the particle volume fraction of that species as aggregate inclusion (like in
Cuzzi et al.,[6] 2014). So, when applying changes to the considered mass fraction which
is especially relevant in protoplanetary atmospheres, optical constants via EMT must also
be updated and the whole procedure must be repeated which is computationally time con-
suming. Of course, one can label this effect as ’minor’ since, like mentioned before, there
is yet not enough observational evidence to correctly determine sizes, porosity and compo-
sition which would probably produce higher errors in monochromatic and mean opacities
than neglecting changes in prior assumed gas mass fractions.

The highest opacity is always found shortly before the vaporization of water ice near 172 K
for accretion disks. The highest opacity < 425 K is obtained for compact aggregates having radii
of 1-10 µm and a not so steep slope (3.1) in their size distribution, compared to the MRN SDF.
Further particle growth and aggregation leads to an overall decrease in magnitude, except at very
low temperatures where they exert a higher mean extinction coefficient than the typical MRN
SDF. Increasing the porosity for very large particle radii can again lead to an increase in opacity.
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A. Appendix

A.1. Optical Constants

Optical constans for compact aggregates (Φ=0) obtained via EMT (see section 2.2) are pre-
sented in tables 10-11. The aggregate compositions relate to material species and their proper-
ties like gas mass fractions, vaporization temperatures and particle densities given in Pollack et
al.[27] (1994). The optical constants for different species are available as download in [42].
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A.1 Optical Constants

Real part n of complex refractive index
λ

all
Fe+Si+FeS Fe+Si+FeS

Fe+Si+FeS Fe+Si Fe+Ol Ol Si Fe
[µm] +Org +Org (refr)

0.1 1.4964 1.4511 1.4497 1.4201 1.4023 1.5694 1.6350 1.4299 1.1093
0.2 1.5266 1.7151 1.7285 1.9282 2.0053 1.9848 1.9396 1.9766 1.1684
0.3 1.4861 1.7414 1.7446 1.7889 1.8603 1.8820 1.7340 1.7434 1.3534
1.0 1.4434 1.6857 1.6968 1.8596 1.7657 1.8010 1.6521 1.6501 2.9408
2.0 1.4239 1.6760 1.6878 1.8634 1.7571 1.7896 1.6407 1.6415 3.2905
6.0 1.4185 1.6218 1.6256 1.6784 1.6025 1.6272 1.4846 1.4916 4.0278
7.0 1.4208 1.5941 1.5916 1.5568 1.4763 1.4815 1.3406 1.3667 4.8936
8.0 1.4090 1.5841 1.5779 1.4940 1.4107 1.4088 1.2683 1.3015 5.6764
8.5 1.4037 1.5597 1.5499 1.4210 1.3358 1.3496 1.2091 1.2267 6.0848
9.0 1.3986 1.5539 1.5433 1.3975 1.3136 1.3307 1.1925 1.2081 6.5081

10.0 1.3720 1.6479 1.6539 1.6324 1.5542 1.5870 1.4596 1.4575 7.3760
10.5 1.3276 1.6899 1.7048 1.8139 1.7378 1.7740 1.6407 1.6368 7.8096
11.0 1.2992 1.7093 1.7296 1.9759 1.9048 1.9358 1.7961 1.7978 8.2387
11.5 1.3321 1.7026 1.7228 2.0085 1.9404 1.9485 1.8070 1.8306 8.6640
12.5 1.4818 1.6814 1.6995 1.9834 1.9158 1.9100 1.7663 1.8035 9.5060
13.0 1.5474 1.6751 1.6927 1.9606 1.8917 1.9003 1.7561 1.7794 9.9243
13.5 1.5712 1.6553 1.6702 1.8905 1.8196 1.8239 1.6814 1.7086 10.3417
14.0 1.5906 1.6447 1.6582 1.8551 1.7834 1.7946 1.6526 1.6729 10.7589
15.0 1.6237 1.6695 1.6769 1.7807 1.7082 1.7251 1.5851 1.5992 11.5953
15.5 1.6256 1.6853 1.6905 1.7615 1.6893 1.7019 1.5628 1.5809 12.0173
16.5 1.6271 1.7401 1.7406 1.7480 1.6772 1.7080 1.5700 1.5701 12.8832
17.0 1.6205 1.7427 1.7439 1.7610 1.6913 1.7322 1.5946 1.5848 13.3327
18.5 1.6460 1.8448 1.8500 1.8970 1.8317 1.9127 1.7743 1.7257 14.7796
19.5 1.6533 1.8744 1.8833 1.9550 1.8903 1.9712 1.8331 1.7847 15.8510
20.5 1.6582 1.9080 1.9214 2.0356 1.9723 2.0602 1.9206 1.8656 17.0079
22.0 1.6484 1.9290 1.9495 2.1664 2.1069 2.2069 2.0632 1.9972 18.8237
23.5 1.6327 1.9509 1.9801 2.3729 2.3228 2.4574 2.3046 2.2070 20.6229
26.0 1.6103 1.9773 2.0078 2.4978 2.4573 2.5385 2.3815 2.3367 23.3692
27.0 1.6048 1.9874 2.0165 2.4979 2.4582 2.5281 2.3710 2.3370 24.3977
29.0 1.6070 2.0504 2.0759 2.4985 2.4585 2.5126 2.3549 2.3365 26.3999
30.0 1.5988 2.0554 2.0806 2.4997 2.4591 2.5089 2.3508 2.3368 27.3956
35.0 1.5436 2.2199 2.2373 2.5105 2.4661 2.5088 2.3498 2.3430 32.6822
40.5 1.5259 2.3077 2.3209 2.5197 2.4724 2.5111 2.3517 2.3489 39.1164
50.0 1.8414 2.3274 2.3386 2.5067 2.4559 2.4908 2.3320 2.3328 50.1464
100 2.0173 2.3360 2.3410 2.4111 2.3202 2.3499 2.1954 2.2002 114.135
170 2.0073 2.3216 2.3259 2.3858 2.2689 2.3155 2.1619 2.1500 222.125
400 1.9746 2.3024 2.3045 2.3326 2.2014 2.2486 2.0968 2.0840 369.221
500 1.9760 2.3005 2.3021 2.3246 2.1912 2.2402 2.0886 2.0739 416.469
800 1.9756 2.3015 2.3034 2.3286 2.1920 2.2398 2.0882 2.0748 528.011

1000 1.9752 2.3023 2.3043 2.3318 2.1944 2.2420 2.0904 2.0771 588.923
1300 1.9752 2.3023 2.3042 2.3311 2.1939 2.2424 2.0908 2.0766 668.46
2000 1.9747 2.2998 2.3017 2.3288 2.1913 2.2418 2.0901 2.0741 817.008
5000 1.9749 2.3005 2.3024 2.3295 2.1920 2.2420 2.0904 2.0747 1258.52

10000 1.9755 2.3024 2.3042 2.3293 2.1918 2.2420 2.0904 2.0745 1778.93
20000 1.9756 2.3030 2.3048 2.3293 2.1917 2.2420 2.0904 2.0745 2540.49
50000 1.9753 2.3020 2.3039 2.3307 2.1931 2.2420 2.0904 2.0758 3998.57

100000 1.9757 2.3033 2.3050 2.3295 2.1919 2.2420 2.0904 2.0746 5831.30

Table 10: Real part of complex refractive index for compact aggregates of different compositions.
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A.1 Optical Constants

Imaginary part k of complex refractive index
λ

all
Fe+Si+FeS Fe+Si+FeS

Fe+Si+FeS Fe+Si Fe+Ol Ol Si Fe
[µm] +Org +Org (refr)

0.1 0.4181 0.9172 0.9266 1.0529 1.0937 0.9664 0.9621 1.1054 1.0000
0.2 0.0783 0.2246 0.2300 0.3203 0.2906 0.2764 0.0625 0.1221 1.5028
0.3 0.0495 0.1494 0.1533 0.2096 0.1228 0.1586 0.0264 0.0209 2.1204
1.0 0.0129 0.0383 0.0430 0.1184 0.0211 0.0271 0.0005 0.0008 4.2207
2.0 0.0077 0.0217 0.0218 0.0237 0.0084 0.0105 0.0001 0.0004 6.7248
6.0 0.0637 0.0723 0.0680 0.0064 0.0053 0.0049 0.0025 0.0035 12.0870
7.0 0.0529 0.0689 0.0649 0.0110 0.0094 0.0071 0.0056 0.0081 14.0212
8.0 0.0494 0.0695 0.0669 0.0336 0.0322 0.0253 0.0243 0.0313 16.0718
8.5 0.0525 0.0908 0.0910 0.0939 0.0942 0.0714 0.0712 0.0941 16.9952
9.0 0.0817 0.1710 0.1825 0.3234 0.3297 0.2301 0.2315 0.3311 17.8125

10.0 0.1481 0.3165 0.3501 0.8139 0.8260 0.7359 0.7239 0.8150 19.0733
10.5 0.1831 0.3010 0.3319 0.8208 0.8349 0.7100 0.6943 0.8200 19.5839
11.0 0.2344 0.2685 0.2910 0.6927 0.7068 0.6117 0.5959 0.6925 20.0938
11.5 0.2654 0.2466 0.2619 0.5393 0.5497 0.5100 0.4969 0.5386 20.6526
12.5 0.3345 0.1930 0.1924 0.1835 0.1825 0.2158 0.2104 0.1787 22.0799
13.0 0.3027 0.2036 0.1958 0.0589 0.0538 0.0458 0.0440 0.0523 22.9856
13.5 0.2618 0.2421 0.2339 0.0958 0.0918 0.0938 0.0914 0.0899 23.9792
14.0 0.2335 0.2577 0.2494 0.1125 0.1088 0.1137 0.1111 0.1068 25.0211
15.0 0.2235 0.3143 0.3073 0.2013 0.1998 0.2169 0.2133 0.1972 27.1019
15.5 0.2284 0.3564 0.3498 0.2521 0.2518 0.2653 0.2612 0.2488 28.0744
16.5 0.2148 0.3879 0.3861 0.3604 0.3627 0.3532 0.3477 0.3585 29.8422
17.0 0.2049 0.3899 0.3920 0.4220 0.4256 0.4116 0.4047 0.4204 30.6503
18.5 0.1741 0.3823 0.3988 0.6405 0.6498 0.6300 0.6150 0.6385 32.8462
19.5 0.1638 0.3860 0.4092 0.7597 0.7722 0.7557 0.7361 0.7573 34.1795
20.5 0.1463 0.3652 0.3926 0.8291 0.8439 0.8467 0.8228 0.8262 35.4766
22.0 0.1299 0.3511 0.3789 0.8700 0.8872 0.9146 0.8863 0.8668 37.4790
23.5 0.1167 0.3326 0.3570 0.8613 0.8814 0.9128 0.8817 0.8590 39.6932
26.0 0.1350 0.3883 0.4034 0.7328 0.7461 0.7935 0.7662 0.7265 43.9664
27.0 0.1458 0.4093 0.4204 0.6571 0.6650 0.7234 0.6988 0.6477 45.7302
29.0 0.1607 0.4226 0.4280 0.5351 0.5342 0.5800 0.5605 0.5204 49.0386
30.0 0.1690 0.4274 0.4304 0.4891 0.4848 0.5161 0.4989 0.4724 50.5013
35.0 0.1831 0.3289 0.3294 0.3382 0.3212 0.3142 0.3038 0.3130 57.0121
40.5 0.4162 0.2842 0.2833 0.2681 0.2415 0.2416 0.2337 0.2354 65.3905
50.0 0.4981 0.2503 0.2504 0.2510 0.2175 0.2281 0.2207 0.2121 79.6328
100 0.1330 0.1615 0.1643 0.2055 0.1551 0.1664 0.1615 0.1515 146.507
170 0.0778 0.1063 0.1094 0.1543 0.1125 0.1142 0.1109 0.1100 228.107
400 0.0195 0.0453 0.0472 0.0752 0.0494 0.0499 0.0485 0.0484 377.062
500 0.0137 0.0307 0.0327 0.0613 0.0398 0.0404 0.0392 0.0389 425.374
800 0.0076 0.0154 0.0174 0.0447 0.0287 0.0282 0.0274 0.0281 527.635

1000 0.0064 0.0135 0.0154 0.0414 0.0286 0.0278 0.0270 0.0280 580.033
1300 0.0056 0.0123 0.0140 0.0376 0.0287 0.0280 0.0272 0.0281 651.580
2000 0.0045 0.0109 0.0124 0.0335 0.0288 0.0286 0.0278 0.0281 801.145
5000 0.0035 0.0098 0.0112 0.0302 0.0287 0.0287 0.0279 0.0280 1279.99

10000 0.0030 0.0088 0.0100 0.0270 0.0261 0.0255 0.0248 0.0255 1786.06
20000 0.0026 0.0077 0.0088 0.0238 0.0231 0.0218 0.0212 0.0226 2573.68
50000 0.0023 0.0070 0.0080 0.0216 0.0211 0.0191 0.0186 0.0206 4150.85

100000 0.0022 0.0071 0.0080 0.0213 0.0207 0.0184 0.0179 0.0203 6111.45

Table 11: Imaginary part of complex refractive index for compact aggregates of different composi-
tions.
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A.2 Monochromatic Coefficients

A.2. Monochromatic Coefficients

Recalculated radiation pressure coefficients for material species taken from Pollack et al.[27] (1994)
are shown in table 12. Note that these monochromatic coefficients are not yet multiplied with
their gas mass fraction f .
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A.2 Monochromatic Coefficients

Monochromatic radiation pressure coefficient κν [cm2/g]

λ [µm]
Material species

Iron Olivine Orthopyroxene Troilite Organics refr. Organics vol. Water ice
0.1 17403.0385 35257.7633 50764.8036 23307.1600 79344.3647 119016.5470 50510.7208
0.2 17095.4052 14317.9314 19886.1028 20060.0333 33906.1210 50859.1816 16185.9838
0.3 13672.2355 8728.1434 8223.2646 17805.6264 25750.1760 38625.2640 9482.8858
1.0 4978.5899 3114.2538 3169.6504 9916.4420 7465.1081 11197.6622 3235.6980
2.0 2827.8014 1687.6529 1764.8375 5188.8886 4260.8787 6391.3181 1345.0981
6.0 981.2251 203.9055 256.5451 2127.1854 1729.2288 2593.8432 1540.1896
7.0 787.6550 95.6273 208.3457 1803.7993 1364.9928 2047.4892 1026.2180
8.0 633.2329 134.9791 312.2375 1506.0655 1074.9535 1612.4303 763.4778
9.0 517.7167 872.9519 2425.3087 1228.3030 1007.4115 1511.1172 553.8872

10.0 432.2360 2074.2578 3137.5026 973.2260 1035.3659 1553.0488 906.3398
10.5 397.6439 1727.4929 2908.0219 869.3039 1015.3938 1523.0908 1700.2208
11.0 366.9850 1339.9016 2132.4002 781.5563 1042.3767 1563.5650 2758.4080
11.5 339.4686 1089.7219 1401.9122 707.8155 1073.5861 1610.3792 3199.9617
12.5 291.5740 488.0117 221.1949 591.9188 1112.6799 1669.0198 3894.3761
13.0 270.5261 155.1944 241.3967 544.5760 1296.6171 1944.9257 3145.8013
13.5 251.3320 228.0019 226.3106 502.1166 1430.9682 2146.4523 2288.5181
14.0 233.9419 252.1643 223.7439 463.6010 1445.8587 2168.7881 1756.4024
15.0 204.2237 413.3809 287.6584 396.6132 1498.8068 2248.2102 1243.9625
15.5 191.6814 483.8516 384.4657 368.0856 1571.9397 2357.9095 1085.4255
16.5 170.4409 586.9508 677.9505 320.4017 1416.7501 2125.1252 802.4236
17.0 161.4210 645.9193 783.0452 300.7405 1303.8512 1955.7768 680.8867
18.5 139.3011 771.8295 1022.1849 254.8464 889.7080 1334.5621 429.9731
19.5 127.7670 817.2882 1053.1199 232.0777 751.2165 1126.8248 325.6609
20.5 118.0783 797.1309 969.9165 213.2097 604.1805 906.2707 242.9564
22.0 105.8578 706.3693 816.6619 189.9690 532.3621 798.5431 154.4117
23.5 95.3524 554.8947 680.6239 171.2804 505.4314 758.1470 111.3487
26.0 80.2554 418.0706 403.0871 146.8055 639.6846 959.5268 134.6079
27.0 75.1140 372.3778 314.9556 138.4644 678.2142 1017.3213 166.3977
29.0 66.4370 284.8543 226.6873 123.6634 653.5055 980.2582 248.7805
30.0 62.8659 246.8240 210.6590 117.1598 650.3040 975.4560 285.2833
35.0 50.0929 129.0252 151.3259 93.3614 375.9608 563.9412 513.8944
40.5 40.9408 84.0618 89.6351 79.2420 260.6910 391.0365 1474.9602
50.0 31.6515 63.1161 54.0474 63.4868 174.5033 261.7549 1111.8927
82.3 20.1579 33.7465 21.9698 44.0357 69.2102 103.8154 158.6007

100.0 17.0478 24.8487 18.3042 36.5249 47.6379 71.4569 94.2048
170.0 11.6257 10.2714 10.6256 16.8873 17.1345 25.7017 30.0293
268.1 7.5001 4.4391 5.0302 8.4296 6.8300 10.2449 4.2963
300.4 6.7565 3.4464 3.9812 6.9422 5.5324 8.2987 2.7800
400.0 5.1898 2.0138 2.1443 4.4882 2.7943 4.1914 1.6334
500.0 4.1801 1.3127 1.3715 3.0188 1.2491 1.8737 0.9985
800.0 2.6547 0.5727 0.6808 1.3919 0.1767 0.2651 0.4104
1000 2.1256 0.4508 0.5569 0.8786 9.71e-02 0.1456 0.2625
1300 1.6136 0.3494 0.4263 0.4565 6.90e-02 0.1035 0.1596
2000 0.9835 0.2321 0.2652 0.1459 3.96e-02 5.95e-02 6.71e-02
5000 0.2972 9.32e-02 0.1031 1.17e-02 1.41e-02 2.12e-02 1.14e-02

10000 0.1097 4.15e-02 5.04e-02 2.01e-03 6.22e-03 9.34e-03 3.64e-03
20000 3.76e-02 1.77e-02 2.46e-02 4.17e-04 2.63e-03 3.94e-03 1.43e-03
50000 8.01e-03 6.21e-03 9.74e-03 7.00e-05 9.67e-04 1.45e-03 2.05e-04

100000 2.39e-03 2.99e-03 5.02e-03 1.72e-05 5.58e-04 8.37e-04 3.64e-05

Table 12: Monochromatic radiation pressure coefficient for different material species as defined in
density and optical constants in Pollack et al.[27] (1994). These coefficients are not yet
multiplied by their individual gas mass fraction f .
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A.3 Mean Coefficients

A.3. Mean Coefficients

Tables 13-22 contain recalculated Rosseland and Planck mean opacities using optical constants
data by Pollack et al.[27] (1994) and Semenov et al. [31] (2003) and a MRN size distribution func-
tion (see definition (4.1) in section 4.1) assuming compact spherical and homogeneous particles.
Unusual temperatures listed often relate to vaporization temperatures at different gas densities
(see table 2 in section 4.2 defined by Pollack et al.[27], 1994).
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A.3 Mean Coefficients

Rosseland mean extinction coefficients [cm2/g]

T [K]
ρ [g cm-3]

10−18 10−16 10−14 10−12 10−10 10−8 10−6 10−4

10 0.0165 0.0165 0.0165 0.0165 0.0165 0.0165 0.0165 0.0165
20 0.0653 0.0653 0.0653 0.0653 0.0653 0.0653 0.0653 0.0653
40 0.2700 0.2700 0.2700 0.2700 0.2700 0.2700 0.2700 0.2700
60 0.6225 0.6225 0.6225 0.6225 0.6225 0.6225 0.6225 0.6225
80 1.1005 1.1005 1.1005 1.1005 1.1005 1.1005 1.1005 1.1005

100 1.6673 1.6673 1.6673 1.6673 1.6673 1.6673 1.6673 1.6673
106 1.8501 1.8501 1.8501 1.8501 1.8501 1.8501 1.8501 1.8501
115 1.5026 2.1332 2.1332 2.1332 2.1332 2.1332 2.1332 2.1332
125 1.7475 1.7475 2.4583 2.4583 2.4583 2.4583 2.4583 2.4583
138 2.0827 2.0827 2.0827 2.8934 2.8934 2.8934 2.8934 2.8934
153 2.4866 2.4866 2.4866 2.4866 3.4059 3.4059 3.4059 3.4059
172 3.0105 3.0105 3.0105 3.0105 3.0105 4.0562 4.0562 4.0562
197 3.6931 3.6931 3.6931 3.6931 3.6931 3.6931 4.8819 4.8819
200 3.7730 3.7730 3.7730 3.7730 3.7730 3.7730 3.7730 4.9769
230 4.5328 4.5328 4.5328 4.5328 4.5328 4.5328 4.5328 5.8633
300 5.9660 5.9660 5.9660 5.9660 5.9660 5.9660 5.9660 5.9660
375 7.0904 7.0904 7.0904 7.0904 7.0904 7.0904 7.0904 7.0904
400 6.3770 6.3770 6.3770 6.3770 6.3770 6.3770 6.3770 6.3770
500 7.4130 7.4130 7.4130 7.4130 7.4130 7.4130 7.4130 7.4130
575 8.1939 8.1939 8.1939 8.1939 8.1939 8.1939 8.1939 8.1939
680 2.9847 2.9847 2.9847 2.9847 2.9847 2.9847 2.9847 2.9847
700 2.0732 2.0732 2.0732 2.0732 2.0732 2.0732 2.0732 2.0732
835 2.4518 2.4518 2.4518 2.4518 2.4518 2.4518 2.4518 2.4518
908 1.6853 2.6748 2.6748 2.6748 2.6748 2.6748 2.6748 2.6748
920 1.7117 1.7117 2.7125 2.7125 2.7125 2.7125 2.7125 2.7125
929 1.2394 1.7316 2.7409 2.7409 2.7409 2.7409 2.7409 2.7409
980 1.8470 2.9044 2.9044 2.9044 2.9044 2.9044 2.9044
994 1.3515 2.9500 2.9500 2.9500 2.9500 2.9500 2.9500
997 1.3568 1.8864 2.9599 2.9599 2.9599 2.9599 2.9599

1049 2.0095 3.1318 3.1318 3.1318 3.1318 3.1318
1076 1.5000 3.2225 3.2225 3.2225 3.2225 3.2225
1100 3.3037 3.3037 3.3037 3.3037 3.3037
1129 2.2056 3.4027 3.4027 3.4027 3.4027
1168 1.6744 3.5370 3.5370 3.5370 3.5370
1222 3.7249 3.7249 3.7249 3.7249
1230 3.1003 3.7529 3.7529 3.7529
1277 1.8896 3.9183 3.9183 3.9183
1331 4.1096 4.1096 4.1096
1395 3.5852 4.3378 4.3378
1408 2.1574 4.3843 4.3843
1462 4.5778 4.5778
1570 4.1045 4.9656
1612 1.3470 5.1164
1621 5.1486
1774 4.7075
1908 1.5963

Table 13: Rosseland mean extinction coefficients [cm2/g] for molecular clouds recalculated from
optical constants data of Pollack et al.[27] (1994).
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A.3 Mean Coefficients

Planck mean extinction coefficients [cm2/g]

T [K]
ρ [g cm-3]

10−18 10−16 10−14 10−12 10−10 10−8 10−6 10−4

10 0.0387 0.0387 0.0387 0.0387 0.0387 0.0387 0.0387 0.0387
20 0.1659 0.1659 0.1659 0.1659 0.1659 0.1659 0.1659 0.1659
40 0.7283 0.7283 0.7283 0.7283 0.7283 0.7283 0.7283 0.7283
60 1.4906 1.4906 1.4906 1.4906 1.4906 1.4906 1.4906 1.4906
80 2.2489 2.2489 2.2489 2.2489 2.2489 2.2489 2.2489 2.2489

100 3.0112 3.0112 3.0112 3.0112 3.0112 3.0112 3.0112 3.0112
106 3.2439 3.2439 3.2439 3.2439 3.2439 3.2439 3.2439 3.2439
115 2.8666 3.5960 3.5960 3.5960 3.5960 3.5960 3.5960 3.5960
125 3.2346 3.2346 3.9891 3.9891 3.9891 3.9891 3.9891 3.9891
138 3.6952 3.6952 3.6952 4.4970 4.4970 4.4970 4.4970 4.4970
153 4.1946 4.1946 4.1946 4.1946 5.0672 5.0672 5.0672 5.0672
172 4.7706 4.7706 4.7706 4.7706 4.7706 5.7456 5.7456 5.7456
197 5.4272 5.4272 5.4272 5.4272 5.4272 5.4272 6.5368 6.5368
200 5.4984 5.4984 5.4984 5.4984 5.4984 5.4984 5.4984 6.6232
230 6.1278 6.1278 6.1278 6.1278 6.1278 6.1278 6.1278 7.3855
300 7.1503 7.1503 7.1503 7.1503 7.1503 7.1503 7.1503 7.1503
375 7.9047 7.9047 7.9047 7.9047 7.9047 7.9047 7.9047 7.9047
400 7.0627 7.0627 7.0627 7.0627 7.0627 7.0627 7.0627 7.0627
500 7.8820 7.8820 7.8820 7.8820 7.8820 7.8820 7.8820 7.8820
575 8.5986 8.5986 8.5986 8.5986 8.5986 8.5986 8.5986 8.5986
680 3.5088 3.5088 3.5088 3.5088 3.5088 3.5088 3.5088 3.5088
700 2.7016 2.7016 2.7016 2.7016 2.7016 2.7016 2.7016 2.7016
835 3.0638 3.0638 3.0638 3.0638 3.0638 3.0638 3.0638 3.0638
908 2.4362 3.2972 3.2972 3.2972 3.2972 3.2972 3.2972 3.2972
920 2.4647 2.4647 3.3373 3.3373 3.3373 3.3373 3.3373 3.3373
929 1.8486 2.4864 3.3677 3.3677 3.3677 3.3677 3.3677 3.3677
980 2.6139 3.5442 3.5442 3.5442 3.5442 3.5442 3.5442
994 1.9813 3.5938 3.5938 3.5938 3.5938 3.5938 3.5938
997 1.9876 2.6579 3.6044 3.6044 3.6044 3.6044 3.6044

1049 2.7964 3.7920 3.7920 3.7920 3.7920 3.7920
1076 2.1581 3.8910 3.8910 3.8910 3.8910 3.8910
1100 3.9798 3.9798 3.9798 3.9798 3.9798
1129 3.0184 4.0879 4.0879 4.0879 4.0879
1168 2.3641 4.2344 4.2344 4.2344 4.2344
1222 4.4386 4.4386 4.4386 4.4386
1230 3.6663 4.4689 4.4689 4.4689
1277 2.6134 4.6475 4.6475 4.6475
1331 4.8527 4.8527 4.8527
1395 4.1898 5.0953 5.0953
1408 2.9145 5.1445 5.1445
1462 5.3479 5.3479
1570 4.7343 5.7505
1612 1.4862 5.9052
1621 5.9382
1774 5.3470
1908 1.7180

Table 14: Planck mean extinction coefficients [cm2/g] for molecular clouds recalculated from opti-
cal constants data of Pollack et al.[27] (1994).
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A.3 Mean Coefficients

Rosseland mean extinction coefficients [cm2/g]

T [K]
ρ [g cm−3]

10−18 10−16 10−14 10−12 10−10 10−8 10−6 10−4

10 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218
20 0.0924 0.0924 0.0924 0.0924 0.0924 0.0924 0.0924 0.0924
40 0.4360 0.4360 0.4360 0.4360 0.4360 0.4360 0.4360 0.4360
60 1.0915 1.0915 1.0915 1.0915 1.0915 1.0915 1.0915 1.0915
80 1.9762 1.9762 1.9762 1.9762 1.9762 1.9762 1.9762 1.9762

100 2.9429 2.9429 2.9429 2.9429 2.9429 2.9429 2.9429 2.9429
109 3.3847 3.3847 3.3847 3.3847 3.3847 3.3847 3.3847 3.3847
118 1.6081 3.8289 3.8289 3.8289 3.8289 3.8289 3.8289 3.8289
129 1.8880 1.8880 4.3757 4.3757 4.3757 4.3757 4.3757 4.3757
143 2.2629 2.2629 2.2629 5.0781 5.0781 5.0781 5.0781 5.0781
159 2.7082 2.7082 2.7082 2.7082 5.8854 5.8854 5.8854 5.8854
180 3.3022 3.3022 3.3022 3.3022 3.3022 6.9330 6.9330 6.9330
200 3.8583 3.8583 3.8583 3.8583 3.8583 3.8583 7.8883 7.8883
207 4.0475 4.0475 4.0475 4.0475 4.0475 4.0475 8.2075 8.2075
244 4.9776 4.9776 4.9776 4.9776 4.9776 4.9776 4.9776 9.7236
275 5.6520 5.6520 5.6520 5.6520 5.6520 5.6520 5.6520 5.6520
300 5.3073 5.3073 5.3073 5.3073 5.3073 5.3073 5.3073 5.3073
400 6.6080 6.6080 6.6080 6.6080 6.6080 6.6080 6.6080 6.6080
425 6.8879 6.8879 6.8879 6.8879 6.8879 6.8879 6.8879 6.8879
500 2.6539 2.6539 2.6539 2.6539 2.6539 2.6539 2.6539 2.6539
680 3.3729 3.3729 3.3729 3.3729 3.3729 3.3729 3.3729 3.3729
700 2.1415 2.1415 2.1415 2.1415 2.1415 2.1415 2.1415 2.1415
835 2.5332 2.5332 2.5332 2.5332 2.5332 2.5332 2.5332 2.5332
908 1.7720 2.7643 2.7643 2.7643 2.7643 2.7643 2.7643 2.7643
920 1.7997 1.7997 2.8033 2.8033 2.8033 2.8033 2.8033 2.8033
929 1.3036 1.8207 2.8328 2.8328 2.8328 2.8328 2.8328 2.8328
980 1.9420 3.0023 3.0023 3.0023 3.0023 3.0023 3.0023
994 1.4215 3.0496 3.0496 3.0496 3.0496 3.0496 3.0496
997 1.4271 1.9835 3.0598 3.0598 3.0598 3.0598 3.0598

1049 2.1129 3.2382 3.2382 3.2382 3.2382 3.2382
1076 1.5777 3.3323 3.3323 3.3323 3.3323 3.3323
1100 3.4166 3.4166 3.4166 3.4166 3.4166
1129 2.3190 3.5193 3.5193 3.5193 3.5193
1168 1.7612 3.6587 3.6587 3.6587 3.6587
1222 3.8538 3.8538 3.8538 3.8538
1230 3.1980 3.8829 3.8829 3.8829
1277 1.9875 4.0547 4.0547 4.0547
1331 4.2534 4.2534 4.2534
1395 3.7005 4.4905 4.4905
1408 2.2692 4.5388 4.5388
1462 4.7399 4.7399
1570 4.2391 5.1430
1612 1.3470 5.2998
1621 5.3334
1774 4.8647
1908 1.5963

Table 15: Same as table 13 but for accretion disks.
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A.3 Mean Coefficients

Planck mean extinction coefficients [cm2/g]

T [K]
ρ [g cm−3]

10−18 10−16 10−14 10−12 10−10 10−8 10−6 10−4

10 0.0603 0.0603 0.0603 0.0603 0.0603 0.0603 0.0603 0.0603
20 0.3283 0.3283 0.3283 0.3283 0.3283 0.3283 0.3283 0.3283
40 1.8690 1.8690 1.8690 1.8690 1.8690 1.8690 1.8690 1.8690
60 3.6554 3.6554 3.6554 3.6554 3.6554 3.6554 3.6554 3.6554
80 4.7986 4.7986 4.7986 4.7986 4.7986 4.7986 4.7986 4.7986

100 5.6557 5.6557 5.6557 5.6557 5.6557 5.6557 5.6557 5.6557
109 6.0503 6.0503 6.0503 6.0503 6.0503 6.0503 6.0503 6.0503
118 3.0409 6.4728 6.4728 6.4728 6.4728 6.4728 6.4728 6.4728
129 3.4513 3.4513 7.0303 7.0303 7.0303 7.0303 7.0303 7.0303
143 3.9506 3.9506 3.9506 7.7927 7.7927 7.7927 7.7927 7.7927
159 4.4826 4.4826 4.4826 4.4826 8.6986 8.6986 8.6986 8.6986
180 5.1108 5.1108 5.1108 5.1108 5.1108 9.8641 9.8641 9.8641
200 5.6333 5.6333 5.6333 5.6333 5.6333 5.6333 10.8793 10.8793
207 5.7993 5.7993 5.7993 5.7993 5.7993 5.7993 11.2047 11.2047
244 6.5461 6.5461 6.5461 6.5461 6.5461 6.5461 6.5461 12.6418
275 7.0331 7.0331 7.0331 7.0331 7.0331 7.0331 7.0331 7.0331
300 6.4380 6.4380 6.4380 6.4380 6.4380 6.4380 6.4380 6.4380
400 7.3282 7.3282 7.3282 7.3282 7.3282 7.3282 7.3282 7.3282
425 7.5348 7.5348 7.5348 7.5348 7.5348 7.5348 7.5348 7.5348
500 3.3498 3.3498 3.3498 3.3498 3.3498 3.3498 3.3498 3.3498
680 3.9099 3.9099 3.9099 3.9099 3.9099 3.9099 3.9099 3.9099
700 2.8071 2.8071 2.8071 2.8071 2.8071 2.8071 2.8071 2.8071
835 3.1808 3.1808 3.1808 3.1808 3.1808 3.1808 3.1808 3.1808
908 2.5615 3.4225 3.4225 3.4225 3.4225 3.4225 3.4225 3.4225
920 2.5915 2.5915 3.4641 3.4641 3.4641 3.4641 3.4641 3.4641
929 1.9443 2.6143 3.4957 3.4957 3.4957 3.4957 3.4957 3.4957
980 2.7484 3.6787 3.6787 3.6787 3.6787 3.6787 3.6787
994 2.0840 3.7301 3.7301 3.7301 3.7301 3.7301 3.7301
997 2.0906 2.7947 3.7412 3.7412 3.7412 3.7412 3.7412

1049 2.9404 3.9359 3.9359 3.9359 3.9359 3.9359
1076 2.2699 4.0387 4.0387 4.0387 4.0387 4.0387
1100 4.1310 4.1310 4.1310 4.1310 4.1310
1129 3.1737 4.2433 4.2433 4.2433 4.2433
1168 2.4865 4.3955 4.3955 4.3955 4.3955
1222 4.6077 4.6077 4.6077 4.6077
1230 3.7961 4.6392 4.6392 4.6392
1277 2.7487 4.8248 4.8248 4.8248
1331 5.0382 5.0382 5.0382
1395 4.3392 5.2905 5.2905
1408 3.0654 5.3416 5.3416
1462 5.5531 5.5531
1570 4.9043 5.9718
1612 1.4862 6.1327
1621 6.1670
1774 5.5402
1908 1.7180

Table 16: Same as table 14 but for accretion disks.
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A.3 Mean Coefficients

Rosseland mean extinction coefficients [cm2/g]

T [K]
ρ [g cm−3]

10−18 10−16 10−14 10−12 10−10 10−8 10−6 10−4

10 0.0170 0.0170 0.0170 0.0170 0.0170 0.0170 0.0170 0.0170
20 0.0749 0.0749 0.0749 0.0749 0.0749 0.0749 0.0749 0.0749
40 0.3389 0.3389 0.3389 0.3389 0.3389 0.3389 0.3389 0.3389
60 0.8473 0.8473 0.8473 0.8473 0.8473 0.8473 0.8473 0.8473
80 1.5836 1.5836 1.5836 1.5836 1.5836 1.5836 1.5836 1.5836

100 2.4800 2.4800 2.4800 2.4800 2.4800 2.4800 2.4800 2.4800
109 2.9224 2.9224 2.9224 2.9224 2.9224 2.9224 2.9224 2.9224
118 1.6979 3.3855 3.3855 3.3855 3.3855 3.3855 3.3855 3.3855
129 2.0163 2.0163 3.9758 3.9758 3.9758 3.9758 3.9758 3.9758
143 2.4454 2.4454 2.4454 4.7573 4.7573 4.7573 4.7573 4.7573
159 2.9574 2.9574 2.9574 2.9574 5.6724 5.6724 5.6724 5.6724
180 3.6403 3.6403 3.6403 3.6403 3.6403 6.8601 6.8601 6.8601
200 4.2761 4.2761 4.2761 4.2761 4.2761 4.2761 7.9185 7.9185
207 4.4910 4.4910 4.4910 4.4910 4.4910 4.4910 8.2630 8.2630
244 5.5320 5.5320 5.5320 5.5320 5.5320 5.5320 5.5320 9.8120
275 6.2666 6.2666 6.2666 6.2666 6.2666 6.2666 6.2666 6.2666
300 5.9294 5.9294 5.9294 5.9294 5.9294 5.9294 5.9294 5.9294
400 7.2791 7.2791 7.2791 7.2791 7.2791 7.2791 7.2791 7.2791
425 7.5659 7.5659 7.5659 7.5659 7.5659 7.5659 7.5659 7.5659
500 3.2626 3.2626 3.2626 3.2626 3.2626 3.2626 3.2626 3.2626
680 4.0538 4.0538 4.0538 4.0538 4.0538 4.0538 4.0538 4.0538
700 2.5663 2.5663 2.5663 2.5663 2.5663 2.5663 2.5663 2.5663
835 3.0366 3.0366 3.0366 3.0366 3.0366 3.0366 3.0366 3.0366
908 2.3328 3.3153 3.3153 3.3153 3.3153 3.3153 3.3153 3.3153
920 2.3690 2.3690 3.3624 3.3624 3.3624 3.3624 3.3624 3.3624
929 1.8482 2.3963 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980
980 2.5544 3.6030 3.6030 3.6030 3.6030 3.6030 3.6030
994 2.0160 3.6602 3.6602 3.6602 3.6602 3.6602 3.6602
997 2.0239 2.6082 3.6725 3.6725 3.6725 3.6725 3.6725

1049 2.7763 3.8884 3.8884 3.8884 3.8884 3.8884
1076 2.2370 4.0023 4.0023 4.0023 4.0023 4.0023
1100 4.1044 4.1044 4.1044 4.1044 4.1044
1129 3.0436 4.2289 4.2289 4.2289 4.2289
1168 2.4953 4.3980 4.3980 4.3980 4.3980
1222 4.6348 4.6348 4.6348 4.6348
1230 3.9607 4.6701 4.6701 4.6701
1277 2.8126 4.8787 4.8787 4.8787
1331 5.1203 5.1203 5.1203
1395 4.6012 5.4087 5.4087
1408 3.2057 5.4675 5.4675
1462 5.7123 5.7123
1570 5.2886 6.2037
1612 1.2912 6.3949
1621 6.4359
1774 6.0883
1908 1.5447

Table 17: Recalculation for Fe/(Fe+Mg)=0.3 ("normal" silicates; nrm) from optical constants data
from Semenov et al.[31] (2003).
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A.3 Mean Coefficients

Planck mean extinction coefficients [cm2/g]

T [K]
ρ [g cm−3]

10−18 10−16 10−14 10−12 10−10 10−8 10−6 10−4

10 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532
20 0.2461 0.2461 0.2461 0.2461 0.2461 0.2461 0.2461 0.2461
40 1.5433 1.5433 1.5433 1.5433 1.5433 1.5433 1.5433 1.5433
60 3.2187 3.2187 3.2187 3.2187 3.2187 3.2187 3.2187 3.2187
80 4.5084 4.5084 4.5084 4.5084 4.5084 4.5084 4.5084 4.5084

100 5.7357 5.7357 5.7357 5.7357 5.7357 5.7357 5.7357 5.7357
109 6.3408 6.3408 6.3408 6.3408 6.3408 6.3408 6.3408 6.3408
118 3.6640 6.9845 6.9845 6.9845 6.9845 6.9845 6.9845 6.9845
129 4.1541 4.1541 7.8119 7.8119 7.8119 7.8119 7.8119 7.8119
143 4.7427 4.7427 4.7427 8.8940 8.8940 8.8940 8.8940 8.8940
159 5.3582 5.3582 5.3582 5.3582 10.1078 10.1078 10.1078 10.1078
180 6.0669 6.0669 6.0669 6.0669 6.0669 11.5624 11.5624 11.5624
200 6.6392 6.6392 6.6392 6.6392 6.6392 6.6392 12.7324 12.7324
207 6.8173 6.8173 6.8173 6.8173 6.8173 6.8173 13.0871 13.0871
244 7.5944 7.5944 7.5944 7.5944 7.5944 7.5944 7.5944 14.5164
275 8.0768 8.0768 8.0768 8.0768 8.0768 8.0768 8.0768 8.0768
300 7.4658 7.4658 7.4658 7.4658 7.4658 7.4658 7.4658 7.4658
400 8.2709 8.2709 8.2709 8.2709 8.2709 8.2709 8.2709 8.2709
425 8.4601 8.4601 8.4601 8.4601 8.4601 8.4601 8.4601 8.4601
500 4.1771 4.1771 4.1771 4.1771 4.1771 4.1771 4.1771 4.1771
680 4.7035 4.7035 4.7035 4.7035 4.7035 4.7035 4.7035 4.7035
700 3.4389 3.4389 3.4389 3.4389 3.4389 3.4389 3.4389 3.4389
835 3.8730 3.8730 3.8730 3.8730 3.8730 3.8730 3.8730 3.8730
908 3.3154 4.1600 4.1600 4.1600 4.1600 4.1600 4.1600 4.1600
920 3.3532 3.3532 4.2097 4.2097 4.2097 4.2097 4.2097 4.2097
929 2.7274 3.3820 4.2474 4.2474 4.2474 4.2474 4.2474 4.2474
980 3.5517 4.4668 4.4668 4.4668 4.4668 4.4668 4.4668
994 2.9161 4.5285 4.5285 4.5285 4.5285 4.5285 4.5285
997 2.9251 3.6104 4.5418 4.5418 4.5418 4.5418 4.5418

1049 3.7953 4.7763 4.7763 4.7763 4.7763 4.7763
1076 3.1683 4.9005 4.9005 4.9005 4.9005 4.9005
1100 5.0120 5.0120 5.0120 5.0120 5.0120
1129 4.0925 5.1480 5.1480 5.1480 5.1480
1168 3.4631 5.3325 5.3325 5.3325 5.3325
1222 5.5902 5.5902 5.5902 5.5902
1230 4.8130 5.6286 5.6286 5.6286
1277 3.8209 5.8544 5.8544 5.8544
1331 6.1143 6.1143 6.1143
1395 5.5020 6.4222 6.4222
1408 4.2540 6.4846 6.4846
1462 6.7430 6.7430
1570 6.2208 7.2551
1612 1.4708 7.4521
1621 7.4941
1774 7.0305
1908 1.7021

Table 18: Recalculation for Fe/(Fe+Mg)=0.3 ("normal"; nrm) from optical constants data from
Semenov et al.[31] (2003).
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A.3 Mean Coefficients

Rosseland mean extinction coefficients [cm2/g]

T [K]
ρ [g cm−3]

10−18 10−16 10−14 10−12 10−10 10−8 10−6 10−4

10 0.0220 0.0220 0.0220 0.0220 0.0220 0.0220 0.0220 0.0220
20 0.0879 0.0879 0.0879 0.0879 0.0879 0.0879 0.0879 0.0879
40 0.3710 0.3710 0.3710 0.3710 0.3710 0.3710 0.3710 0.3710
60 0.9018 0.9018 0.9018 0.9018 0.9018 0.9018 0.9018 0.9018
80 1.6465 1.6465 1.6465 1.6465 1.6465 1.6465 1.6465 1.6465

100 2.5218 2.5218 2.5218 2.5218 2.5218 2.5218 2.5218 2.5218
109 2.9452 2.9452 2.9452 2.9452 2.9452 2.9452 2.9452 2.9452
118 1.6779 3.3844 3.3844 3.3844 3.3844 3.3844 3.3844 3.3844
129 1.9740 1.9740 3.9406 3.9406 3.9406 3.9406 3.9406 3.9406
143 2.3696 2.3696 2.3696 4.6740 4.6740 4.6740 4.6740 4.6740
159 2.8388 2.8388 2.8388 2.8388 5.5338 5.5338 5.5338 5.5338
180 3.4646 3.4646 3.4646 3.4646 3.4646 6.6604 6.6604 6.6604
200 4.0528 4.0528 4.0528 4.0528 4.0528 4.0528 7.6846 7.6846
207 4.2539 4.2539 4.2539 4.2539 4.2539 4.2539 8.0240 8.0240
244 5.2524 5.2524 5.2524 5.2524 5.2524 5.2524 5.2524 9.6015
275 5.9897 5.9897 5.9897 5.9897 5.9897 5.9897 5.9897 5.9897
300 5.6723 5.6723 5.6723 5.6723 5.6723 5.6723 5.6723 5.6723
400 7.1490 7.1490 7.1490 7.1490 7.1490 7.1490 7.1490 7.1490
425 7.4627 7.4627 7.4627 7.4627 7.4627 7.4627 7.4627 7.4627
500 3.2222 3.2222 3.2222 3.2222 3.2222 3.2222 3.2222 3.2222
680 4.0375 4.0375 4.0375 4.0375 4.0375 4.0375 4.0375 4.0375
700 2.6764 2.6764 2.6764 2.6764 2.6764 2.6764 2.6764 2.6764
835 3.1070 3.1070 3.1070 3.1070 3.1070 3.1070 3.1070 3.1070
908 1.3591 3.3562 3.3562 3.3562 3.3562 3.3562 3.3562 3.3562
920 1.3791 1.3791 3.3980 3.3980 3.3980 3.3980 3.3980 3.3980
929 0.4106 1.3943 3.4296 3.4296 3.4296 3.4296 3.4296 3.4296
980 1.4822 3.6103 3.6103 3.6103 3.6103 3.6103 3.6103
994 0.4439 3.6605 3.6605 3.6605 3.6605 3.6605 3.6605
997 0.4454 1.5122 3.6713 3.6713 3.6713 3.6713 3.6713

1049 1.6060 3.8598 3.8598 3.8598 3.8598 3.8598
1076 0.4875 3.9587 3.9587 3.9587 3.9587 3.9587
1100 4.0472 4.0472 4.0472 4.0472 4.0472
1129 1.7556 4.1547 4.1547 4.1547 4.1547
1168 0.5383 4.3002 4.3002 4.3002 4.3002
1222 4.5030 4.5030 4.5030 4.5030
1230 2.8516 4.5331 4.5331 4.5331
1277 0.6004 4.7108 4.7108 4.7108
1331 4.9158 4.9158 4.9158
1395 3.2516 5.1594 5.1594
1408 0.6768 5.2090 5.2090
1462 5.4149 5.4149
1570 3.6679 5.8264
1612 2.7084 5.9860
1621 6.0202
1774 4.1409
1908 3.2402

Table 19: Recalculation for Fe/(Fe+Mg)=0 ("iron-poor" silicates; ips) from optical constants data
from Semenov et al.[31] (2003).
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A.3 Mean Coefficients

Planck mean extinction coefficients [cm2/g]

T [K]
ρ [g cm−3]

10−18 10−16 10−14 10−12 10−10 10−8 10−6 10−4

10 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550
20 0.2462 0.2462 0.2462 0.2462 0.2462 0.2462 0.2462 0.2462
40 1.5221 1.5221 1.5221 1.5221 1.5221 1.5221 1.5221 1.5221
60 3.1383 3.1383 3.1383 3.1383 3.1383 3.1383 3.1383 3.1383
80 4.3238 4.3238 4.3238 4.3238 4.3238 4.3238 4.3238 4.3238

100 5.4179 5.4179 5.4179 5.4179 5.4179 5.4179 5.4179 5.4179
109 5.9608 5.9608 5.9608 5.9608 5.9608 5.9608 5.9608 5.9608
118 3.2236 6.5441 6.5441 6.5441 6.5441 6.5441 6.5441 6.5441
129 3.6448 3.6448 7.3026 7.3026 7.3026 7.3026 7.3026 7.3026
143 4.1570 4.1570 4.1570 8.3083 8.3083 8.3083 8.3083 8.3083
159 4.7039 4.7039 4.7039 4.7039 9.4535 9.4535 9.4535 9.4535
180 5.3544 5.3544 5.3544 5.3544 5.3544 10.8499 10.8499 10.8499
200 5.9030 5.9030 5.9030 5.9030 5.9030 5.9030 11.9962 11.9962
207 6.0792 6.0792 6.0792 6.0792 6.0792 6.0792 12.3491 12.3491
244 6.8885 6.8885 6.8885 6.8885 6.8885 6.8885 6.8885 13.8105
275 7.4332 7.4332 7.4332 7.4332 7.4332 7.4332 7.4332 7.4332
300 6.8829 6.8829 6.8829 6.8829 6.8829 6.8829 6.8829 6.8829
400 7.9173 7.9173 7.9173 7.9173 7.9173 7.9173 7.9173 7.9173
425 8.1499 8.1499 8.1499 8.1499 8.1499 8.1499 8.1499 8.1499
500 3.9585 3.9585 3.9585 3.9585 3.9585 3.9585 3.9585 3.9585
680 4.5285 4.5285 4.5285 4.5285 4.5285 4.5285 4.5285 4.5285
700 3.2626 3.2626 3.2626 3.2626 3.2626 3.2626 3.2626 3.2626
835 3.6314 3.6314 3.6314 3.6314 3.6314 3.6314 3.6314 3.6314
908 2.0962 3.8678 3.8678 3.8678 3.8678 3.8678 3.8678 3.8678
920 2.1120 2.1120 3.9085 3.9085 3.9085 3.9085 3.9085 3.9085
929 0.5463 2.1242 3.9394 3.9394 3.9394 3.9394 3.9394 3.9394
980 2.1990 4.1184 4.1184 4.1184 4.1184 4.1184 4.1184
994 0.5822 4.1687 4.1687 4.1687 4.1687 4.1687 4.1687
997 0.5839 2.2258 4.1796 4.1796 4.1796 4.1796 4.1796

1049 2.3126 4.3702 4.3702 4.3702 4.3702 4.3702
1076 0.6302 4.4711 4.4711 4.4711 4.4711 4.4711
1100 4.5616 4.5616 4.5616 4.5616 4.5616
1129 2.4579 4.6719 4.6719 4.6719 4.6719
1168 0.6863 4.8216 4.8216 4.8216 4.8216
1222 5.0307 5.0307 5.0307 5.0307
1230 3.1310 5.0619 5.0619 5.0619
1277 0.7545 5.2452 5.2452 5.2452
1331 5.4565 5.4565 5.4565
1395 3.5369 5.7071 5.7071
1408 0.8373 5.7579 5.7579
1462 5.9689 5.9689
1570 3.9528 6.3880
1612 3.0852 6.5497
1621 6.5842
1774 4.4186
1908 3.5702

Table 20: Recalculation for Fe/(Fe+Mg)=0 ("iron-poor" silicates; ips) from optical constants data
from Semenov et al.[31] (2003).
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A.3 Mean Coefficients

Rosseland mean extinction coefficients [cm2/g]

T [K]
ρ [g cm−3]

10−18 10−16 10−14 10−12 10−10 10−8 10−6 10−4

10 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153
20 0.0697 0.0697 0.0697 0.0697 0.0697 0.0697 0.0697 0.0697
40 0.3247 0.3247 0.3247 0.3247 0.3247 0.3247 0.3247 0.3247
60 0.8213 0.8213 0.8213 0.8213 0.8213 0.8213 0.8213 0.8213
80 1.5482 1.5482 1.5482 1.5482 1.5482 1.5482 1.5482 1.5482

100 2.4433 2.4433 2.4433 2.4433 2.4433 2.4433 2.4433 2.4433
109 2.8880 2.8880 2.8880 2.8880 2.8880 2.8880 2.8880 2.8880
118 1.6702 3.3546 3.3546 3.3546 3.3546 3.3546 3.3546 3.3546
129 1.9899 1.9899 3.9506 3.9506 3.9506 3.9506 3.9506 3.9506
143 2.4215 2.4215 2.4215 4.7398 4.7398 4.7398 4.7398 4.7398
159 2.9360 2.9360 2.9360 2.9360 5.6615 5.6615 5.6615 5.6615
180 3.6190 3.6190 3.6190 3.6190 3.6190 6.8476 6.8476 6.8476
200 4.2477 4.2477 4.2477 4.2477 4.2477 4.2477 7.8882 7.8882
207 4.4580 4.4580 4.4580 4.4580 4.4580 4.4580 8.2222 8.2222
244 5.4552 5.4552 5.4552 5.4552 5.4552 5.4552 5.4552 9.6848
275 6.1328 6.1328 6.1328 6.1328 6.1328 6.1328 6.1328 6.1328
300 5.7343 5.7343 5.7343 5.7343 5.7343 5.7343 5.7343 5.7343
400 6.8753 6.8753 6.8753 6.8753 6.8753 6.8753 6.8753 6.8753
425 7.1195 7.1195 7.1195 7.1195 7.1195 7.1195 7.1195 7.1195
500 2.5639 2.5639 2.5639 2.5639 2.5639 2.5639 2.5639 2.5639
680 3.1944 3.1944 3.1944 3.1944 3.1944 3.1944 3.1944 3.1944
700 2.4087 2.4087 2.4087 2.4087 2.4087 2.4087 2.4087 2.4087
835 2.8954 2.8954 2.8954 2.8954 2.8954 2.8954 2.8954 2.8954
908 2.7882 3.1867 3.1867 3.1867 3.1867 3.1867 3.1867 3.1867
920 2.8331 2.8331 3.2361 3.2361 3.2361 3.2361 3.2361 3.2361
929 2.8299 2.8671 3.2735 3.2735 3.2735 3.2735 3.2735 3.2735
980 3.0636 3.4895 3.4895 3.4895 3.4895 3.4895 3.4895
994 3.0791 3.5499 3.5499 3.5499 3.5499 3.5499 3.5499
997 3.0909 3.1306 3.5630 3.5630 3.5630 3.5630 3.5630

1049 3.3397 3.7920 3.7920 3.7920 3.7920 3.7920
1076 3.4080 3.9132 3.9132 3.9132 3.9132 3.9132
1100 4.0223 4.0223 4.0223 4.0223 4.0223
1129 3.6727 4.1554 4.1554 4.1554 4.1554
1168 3.7931 4.3369 4.3369 4.3369 4.3369
1222 4.5921 4.5921 4.5921 4.5921
1230 4.5825 4.6302 4.6302 4.6302
1277 4.2671 4.8561 4.8561 4.8561
1331 5.1188 5.1188 5.1188
1395 5.3794 5.4338 5.4338
1408 4.8561 5.4983 5.4983
1462 5.7670 5.7670
1570 6.2474 6.3092
1612 0.5081 6.5211
1621 6.5666
1774 7.2701
1908 0.6079

Table 21: Recalculation for Fe/(Fe+Mg)=0.4 ("iron-rich" silicates; irs) from optical constants data
from Semenov et al.[31] (2003).
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A.3 Mean Coefficients

Planck mean extinction coefficients [cm2/g]

T [K]
ρ [g cm−3]

10−18 10−16 10−14 10−12 10−10 10−8 10−6 10−4

10 0.0526 0.0526 0.0526 0.0526 0.0526 0.0526 0.0526 0.0526
20 0.2459 0.2459 0.2459 0.2459 0.2459 0.2459 0.2459 0.2459
40 1.5470 1.5470 1.5470 1.5470 1.5470 1.5470 1.5470 1.5470
60 3.2347 3.2347 3.2347 3.2347 3.2347 3.2347 3.2347 3.2347
80 4.5517 4.5517 4.5517 4.5517 4.5517 4.5517 4.5517 4.5517

100 5.8143 5.8143 5.8143 5.8143 5.8143 5.8143 5.8143 5.8143
109 6.4347 6.4347 6.4347 6.4347 6.4347 6.4347 6.4347 6.4347
118 3.7718 7.0923 7.0923 7.0923 7.0923 7.0923 7.0923 7.0923
129 4.2760 4.2760 7.9338 7.9338 7.9338 7.9338 7.9338 7.9338
143 4.8770 4.8770 4.8770 9.0283 9.0283 9.0283 9.0283 9.0283
159 5.4986 5.4986 5.4986 5.4986 10.2482 10.2482 10.2482 10.2482
180 6.2023 6.2023 6.2023 6.2023 6.2023 11.6978 11.6978 11.6978
200 6.7579 6.7579 6.7579 6.7579 6.7579 6.7579 12.8511 12.8511
207 6.9279 6.9279 6.9279 6.9279 6.9279 6.9279 13.1977 13.1977
244 7.6468 7.6468 7.6468 7.6468 7.6468 7.6468 7.6468 14.5688
275 8.0682 8.0682 8.0682 8.0682 8.0682 8.0682 8.0682 8.0682
300 7.4048 7.4048 7.4048 7.4048 7.4048 7.4048 7.4048 7.4048
400 8.0091 8.0091 8.0091 8.0091 8.0091 8.0091 8.0091 8.0091
425 8.1547 8.1547 8.1547 8.1547 8.1547 8.1547 8.1547 8.1547
500 3.7596 3.7596 3.7596 3.7596 3.7596 3.7596 3.7596 3.7596
680 4.1155 4.1155 4.1155 4.1155 4.1155 4.1155 4.1155 4.1155
700 3.5184 3.5184 3.5184 3.5184 3.5184 3.5184 3.5184 3.5184
835 3.9924 3.9924 3.9924 3.9924 3.9924 3.9924 3.9924 3.9924
908 3.9787 4.3110 4.3110 4.3110 4.3110 4.3110 4.3110 4.3110
920 4.0294 4.0294 4.3665 4.3665 4.3665 4.3665 4.3665 4.3665
929 4.0261 4.0680 4.4086 4.4086 4.4086 4.4086 4.4086 4.4086
980 4.2941 4.6542 4.6542 4.6542 4.6542 4.6542 4.6542
994 4.3140 4.7235 4.7235 4.7235 4.7235 4.7235 4.7235
997 4.3277 4.3720 4.7385 4.7385 4.7385 4.7385 4.7385

1049 4.6164 5.0025 5.0025 5.0025 5.0025 5.0025
1076 4.6994 5.1426 5.1426 5.1426 5.1426 5.1426
1100 5.2687 5.2687 5.2687 5.2687 5.2687
1129 5.0072 5.4225 5.4225 5.4225 5.4225
1168 5.1514 5.6317 5.6317 5.6317 5.6317
1222 5.9244 5.9244 5.9244 5.9244
1230 5.9145 5.9680 5.9680 5.9680
1277 5.7016 6.2249 6.2249 6.2249
1331 6.5211 6.5211 6.5211
1395 6.8114 6.8721 6.8721
1408 6.3697 6.9433 6.9433
1462 7.2382 7.2382
1570 7.7542 7.8226
1612 0.5788 8.0473
1621 8.0952
1774 8.8196
1908 0.6698

Table 22: Recalculation for Fe/(Fe+Mg)=0.4 ("iron-rich" silicates; irs) from optical constants data
from Semenov et al.[31] (2003).
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