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Abstract

The elastic wave equation describes the evolution of a continuous body within the framework of
classical linearized elasticity. We solve the Cauchy problem for this linear second-order system
of partial differential equations via the variational approach. First we motivate the mathematical
model and show how the elastic wave equation arises from the general equation of motion in
continuum mechanics. Next we discuss the variational solution method which is based on the
concept of weak solutions. In particular, we explain the abstract formulation of this method in
Hilbert spaces. In the main part of the thesis, variational techniques are employed to establish
existence, uniqueness, and regularity results for an abstract Cauchy problem associated to
a general linear second-order evolution equation. Finally we apply these results to the elastic
wave equation in a Sobolev space setting, assuming bounded and positive material parameters.
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Chapter 1

The elastic wave equation

The elastic wave equation describes the evolution of a continuous body in the setting of classi-
cal linearized elasticity. In Section 1.1 we discuss how the linear elastic wave equation arises
from the general nonlinear governing equations in continuum mechanics. Then we introduce
the Cauchy problem for the elastic wave equation (Section 1.2) and explain the connection to
elastic waves (Section 1.3).

This chapter is mainly based on [MH83].

1.1 Modeling the motion of an elastic body

Elasticity is a subdiscipline of continuum mechanics, that describes the behavior of materials
like solids, fluids, or gases. The underlying modeling hypothesis is that the exact molecular
interior structure can be neglected.

Let B ⊆ Rn represent a continuous body that moves and deforms within the time interval
I = [t0, t1]. The evolution is modeled by the motion

ϕ : B × I → Rn. (1.1)

As is illustrated in the figure below, for each t ∈ I, the motion maps a material point X ∈ B to
its new spatial position

x = ϕ(X, t) ∈ Bt := ϕ(B, t) ⊆ Rn.

Remark 1.1 (Admissible motions). Since the function ϕ : B × I → Rn should model the evo-
lution of a continuous body, several physically motivated admissibility conditions are imposed.
For example, it is often required that the map ϕ(., t), for fixed t ∈ I, is Lipschitz continuous,
invertible, and orientation preserving, which locally means that det(∇ϕ(., t)) > 0 a.e. on B. y
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1 The elastic wave equation

First- and second-order time derivatives of the motion ϕ are functionsB×I → Rn that define the
velocity and the acceleration field. We will denote them by ϕ̇ = ∂tϕ = ∂ϕ

∂t and ϕ̈ = ∂2
t ϕ = ∂2ϕ

∂t2
.

The mass density of the body in its reference configuration at time t0 is a function

ρ0 : B → R.

The motion is the solution of the equation of motion, which for (X, t) ∈ B × I reads

ρ0(X) ϕ̈(X, t)− div T PK(X, t) = f(X, t). (1.2)

This evolution equation is the continuum analog of Newton’s Second Law, expressing balance
of forces (conservation of linear momentum). The term ρ0ϕ̈ is the inertia and

f : B × I → Rn

denotes the density of the external forces. These are the body forces describing long-range
interactions. The term div T PK models the contact forces, which represent the short-range
forces that are assumed to exist in the interior of a continuous body. Here

T PK : B × I → Rn×n

is the (first Piola-Kirchhoff) stress tensor and div stands for the row-wise divergence, in com-
ponents (where the last equality explains the summation convention):

(div T PK)i = (∇ · T PK)i = ∂jT
PK
ij :=

∑n
j=1 ∂jT

PK
ij .

(Notation: Components are always defined with respect to Cartesian coordinates (xj)
n
j=1 of Rn,

we write ∂j = ∂
∂xj

, and identify the derivative ∇ϕ with the matrix (∂jϕi)
n
i,j=1.)

We briefly discuss the concept of stress: Contact forces are described via surface densities
τ : B × I → Rn, the traction. By Cauchy’s stress theorem, τ depends linearly on the unit
normal vector ν : S → Rn of the surface S ⊆ B on which it acts, that is,

τ = T PK · ν = (T PK
ij νj)i.

Then, by the divergence theorem, the total surface force acting on a subbody A ⊆ B reads∫
∂A
τ dS =

∫
∂A
T PK · ν dS =

∫
A

div T PK dV,

showing that contact forces have volume density div T PK. Thus the integral balance of forces

d2

dt2

∫
A
ρ0 ϕ dV =

∫
A
f dV +

∫
∂A
τ dS

reduces to the local balance law ρ0ϕ̈ = f + div T PK, which is (1.2).

If B is bounded, the following types of boundary conditions may be prescribed:

ϕ
∣∣
ΓD×I

= ϕD and T PK · ν
∣∣
ΓN×I

= τN . (1.3)

The given functions ϕD and τN correspond to Dirichlet and Neumann data respectively, where
one assumes that ∂B = ΓD ∪ ΓN is a disjoint union (e.g. one set is empty).

To determine the motion ϕ from Equations (1.4) and (1.3), its relation to T PK has to be specified.
This is the role of constitutive equations that define different classes of materials.
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1.1. Modeling the motion of an elastic body

A body B ⊆ Rn is called elastic if there exists a response function r : B×GL(n)→ Rn×n, such
that for all X ∈ B,

T PK(X, .) = r(X,∇ϕ(X, .)).

Here GL(n) := {F ∈ Rn×n : detF 6= 0}, the linear group (invertible matrices, cf. Remark
1.1). We restrict ourselves to the hyperelastic theory, where T PK = r(., F ) = ∂FW (., F ) for the
elastic energy density

W : B ×GL(n)→ R.

The specific form of W completely describes the elastic behavior of a material. The constitutive
requirement of material frame-indifference implies that W actually depends on∇ϕ only through
the strain tensor e(ϕ) := 1

2(∇ϕT · ∇ϕ− 1n×n).

With the constitutive relation for elasticity at hand, the equation of motion (1.2), together with
the boundary conditions (1.3), then become the governing equations of elasticity:

ρ0ϕ̈−∇ · T PK = f with T PK = ∂FW (.,∇ϕ), (1.4)

that is,
ρ0ϕ̈−∇ · (∂FW (.,∇ϕ)) = f.

This is a system of nonlinear partial differential equations for ϕ, that has second order in space
and time variables. More precisely, the system is quasilinear (in space variables):

∇ · T PK = ∇ · (∂FW (.,∇ϕ)) =
(
∂2
FW (.,∇ϕ)

)
: ∇∇ϕ+ (∇ · ∂FW ) (.,∇ϕ)

shows that the highest-order derivative (the Hessian ∇∇ϕ) occurs linearly in the principal part
but the coefficient ∂2

FW (.,∇ϕ), the generalized elasticity tensor, depends on ∇ϕ.

In terms of the displacement

u : B × I → Rn, u(X, t) := ϕ(X, t)−X, (1.5)

we have ϕ̇ = u̇, ϕ̈ = ü, ∇ϕ = 1n×n +∇u, and the governing equations (1.4) read

ρ0ü−∇ · T PK = f with T PK = ∂FW (., 1n×n +∇u).

Classical linearized elasticity results from a linearization of the governing equations around
a stress-free reference state. This linear approximation is valid as long as displacements u,
displacement gradients∇u, and stresses are small. In most applications, especially in the case
of seismic waves, a linear model (possibly generalized to nonzero prestress T 0) is sufficient.

Linearizing the elastic constitutive relation results in Hooke’s law, the famous linear relation
between stress and strain:

T = c : ∇u, that is, Tij = cijkl∂luk.

Here T : B × I → Rn×n is the (linearized Cauchy) stress tensor and c : B → Rn×n×n×n is the
classical (linearized) elasticity tensor, which has the symmetries

cijkl = cjikl = cijlk = cklij . (1.6)

Then, denoting the density by ρ : B → R, the linearization of the equation of motion (1.4) reads

ρ ü−∇ · T = f with T = c : ∇u,

that is,
ρ ü−∇ · (c : ∇u) = f. (1.7)

This linear second-order system of partial differential equations for the displacement field u is
called the elastic wave equation. The name “wave equation” will be explained in Section 1.3.
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1 The elastic wave equation

1.2 The Cauchy problem for linearized elasticity

An important modeling problem in mechanics is to predict the evolution of a body starting from
a known configuration. This is the Cauchy problem for the governing equations.

The Cauchy problem for linearized elasticity is to find the displacement

u : B × I → Rn

that solves the elastic wave equation (1.7),

ρ ü−∇ · T = f with T = c : ∇u,

the boundary conditions

u
∣∣
ΓD×I

= uD and T · ν
∣∣
ΓN×I

= τN , (1.8)

and the initial conditions

u(., t0) = u0 and u̇(., t0) = u1. (1.9)

In the Cauchy problem, the time interval I = [t0, t1], the spatial domain B ⊆ Rn with boundary
∂B = ΓD ∪ ΓN (disjoint), the material parameters ρ : B → R and c : B → Rn×n×n×n, the
source f : B× I → Rn, the boundary data uD : ΓD × I → Rn, τN : ΓN × I → Rn, as well as the
initial data u0 : B → Rn, u1 : B → Rn are all assumed to be given.

1.3 Elastic waves

The relation of (1.7) to elastic waves is revealed if one considers a homogeneous and isotropic
material. If the body B is part of the Earth, then the elastic waves are referred to as the seismic
waves.

In isotropic media the elasticity tensor takes the form (with i, j, k, l = 1, . . . , n)

cijkl = λδijδkl + µ(δikδjl + δilδjk).

Here λ, µ : B → R are the Lamé constants, µ is the shear modulus (rigidity), λ is related to the
bulk modulus (compressibility), and δij is the Kronecker symbol. Hooke’s law then reads

Tij = λ(∂kuk)δij + µ(∂jui + ∂iuj) = (λ(∇ · u)1n×n + µ(∇u+∇uT ))ij .

If the medium is homogeneous, all material parameters λ, µ, and ρ are constant. Then

(∇ · T )i = ∂jTij = λ∂i(∂kuk) + µ(∂2
j ui + ∂i(∂juj)) = ((λ+ µ)∇(∇ · u) + µ4u)i

where 4 = ∇ · ∇ =
∑n

k=1 ∂
2
k is the Laplace operator. Then, with f = 0, (1.7) reduces to

ρ ü = (λ+ µ)∇(∇ · u) + µ4u.

A Helmholtz decomposition

u = uP + uS where ∇× uP = 0 and ∇ · uS = 0,

together with the identity 4u = ∇(∇ · u) − ∇ × (∇ × u), shows that the irrotational part uP

and the divergence-free part uS satisfy ρ üP = (λ + 2µ)4uP and ρ üS = µ4uS respectively.
Consequently, assuming the positivity conditions

ρ > 0, µ > 0, λ+ 2µ > 0, (1.10)
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1.3. Elastic waves

the solution u of the elastic wave equation (1.7) splits into P-waves uP and S-waves uS, that
fulfill the classical wave equations (however, note that uP and uS are vector-valued)

üP = α24uP and üS = β24uS (1.11)

with the real propagation speeds α :=
√

λ+2µ
ρ and β :=

√
µ
ρ .

P- and S-waves are so-called body waves that can travel in all directions. Elastic waves can
also propagate at surfaces, as is seen by solving the wave equations (1.11) in a half space.
These surface waves cause the severe damage in earthquakes. Yet, seismology, which is the
study of seismic waves, is the most accurate method to explore the deep interior of our planet.

We return to the general case of an anisotropic and inhomogeneous medium which is governed
by the general linear elastic wave equation (1.7),

ρ ü−∇ · (c : ∇u) = f.

In components i = 1, . . . , n,
ρ üi − ∂j (cijkl∂luk) = fi.

In more detailed notation at (x, t) ∈ B × I and without summation convention, this is

ρ(x)
∂2ui
∂t2
−

n∑
j,k,l=1

∂

∂xj

(
cijkl(x)

∂uk
∂xl

)
= fi(x, t)

or equivalently

n∑
k=1

δik ρ(x)
∂2uk
∂t2

−
n∑

j,l=1

∂

∂xj

(
cijkl(x)

∂uk
∂xl

) = fi(x, t).

Following [Tré75, Chapter 47, p. 458], a second-order linear partial differential operator of the
form

L :=
∂2

∂t2
−

n∑
j,l=1

∂

∂xj

(
ajl(x)

∂

∂xl

)
(1.12)

is hyperbolic (a wave operator), if the coefficients are bounded, that is ajl ∈ L∞(B), and the
following positivity condition (uniform strong ellipticity, see Remark 4.5) holds:

There exist α > 0 such that for a.a. x ∈ B,

n∑
j,l=1

ajl(x)ξjξl ≥ α|ξ|2 for all ξ ∈ Rn.

Note that this definition includes the classical wave operator L = ∂2
t −4 (choose ajl = δjl).

A comparison with (1.12) suggests that the elastic wave equation (1.7) may indeed be classified
as hyperbolic, provided that the density ρ (through which we have to divide) as well as the
elasticity tensor c are bounded and positive, where positivity of the elasticities cijkl has to be
defined in some appropriate sense. We will return to these issues in Chapter 4.
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Chapter 2

Variational methods

Variational methods for partial differential equations are a versatile solution technique based on
the weak formulation (Section 2.1). In Section 2.2 we discuss Sobolev spaces, which provide
a favorable setting for the definition of weak solutions. The abstract formulation of variational
methods in general Hilbert spaces is presented in Section 2.3. In particular, we outline the
main steps of the variational approach to solve evolution equations.

The results of this chapter are based on [LM72, Tré75, DL88, DL92, RR04, Bre11].

2.1 Weak solutions

To study partial differential equations (PDEs) in a low regularity setting means that solutions,
coefficients, initial, or boundary data are allowed to be non-smooth. In order to correctly state
the equations and investigate solvability, the classical solution concept has to be generalized.

To illustrate the basic idea, consider a PDE Pu = f on an open set Ω ⊆ Rn with f : Ω→ R.

A solution u : Ω→ R is a classical solution, if (Pu)(x) = f(x) holds pointwise for all x ∈ Ω. Yet,
in order to discuss solvability in case of low regularity one has to relax the solution concept and
consider weak solutions (variational solutions). Their definition is based on reformulating
the PDE in duality to suitable test functions and interpreting derivatives in the weak sense (see
Definition 2.1 below).

Formally, a weak form (variational form) of a PDE Pu = f can be obtained as follows: First
one multiplies the equation with a test function ϕ and integrates over the domain,∫

Ω
(Pu)ϕ dV =

∫
Ω
fϕ dV.

Then one tries to move the derivatives occurring in P to the test function side via integration by
parts. By this procedure the regularity requirements on the solution u are gradually reduced.
Moreover, it is guaranteed that classical solutions of the PDE are also weak solutions.

A suitable space of test functions ϕ are the smooth, compactly supported functions,

D(Ω) := {ϕ ∈ C∞(Ω) : supp(ϕ) compact in Ω},

endowed with the topology of uniform convergence of all derivatives with support in a fixed com-
pact set, see e.g. [Tré67, Chapter 21]. The space of distributions D ′(Ω) consists of continuous
linear functionals on D(Ω). The action of a distribution u ∈ D ′(Ω) on a test function ϕ ∈ D(Ω)
is written in terms of a duality bracket: u : ϕ 7→ 〈u, ϕ〉 ∈ R. Distributional duality of u ∈ D ′(Ω)m

and ϕ ∈ D(Ω)m is defined via scalar duality of the components, 〈u, ϕ〉 =
∑m

k=1〈uk, ϕk〉.
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2 Variational methods

If u ∈ L1
loc(Ω), then 〈u, ϕ〉 =

∫
Ω
uϕ dV . Integration by parts,∫
Ω

(∂jf)ϕ dV = −
∫

Ω
f (∂jϕ) dV,

which holds classically for f ∈ C 1(Ω) and ϕ ∈ D(Ω), motivates the following definition:

Definition 2.1 (Distributional derivative, weak derivative). Let Ω ⊆ Rn be open, f ∈ D ′(Ω),
and ϕ ∈ D(Ω). Then, for 1 ≤ j ≤ n, the distributional derivative ∂jf ∈ D ′(Ω) is defined by

〈∂jf, ϕ〉 := −〈f, ∂jϕ〉. (2.1)

Higher-order distributional derivatives are defined by iteration (written in multi-index notation:
α = (α1, . . . , αn) ∈ Nn0 with |α| := α1 + · · ·+αn, Dα := ∂α1

1 · · · ∂αnn , and ∂0
j := 1 for j = 1, . . . , n):

〈Dαf, ϕ〉 := (−1)|α|〈f,Dαϕ〉.

The symbols ∂i and Dα always denote distributional derivatives, which coincide with the clas-
sical derivatives for functions of sufficient regularity. y

For linear PDEs of order m ∈ N0 and with constant or smooth coefficients aα, that is, for PDEs
of the form

∑
|α|≤m aαD

αu = f , the concept of weak solutions naturally leads to functions in the
Sobolev space Hk with 0 ≤ k ≤ m. Whereas most linear PDEs will allow weak formulations in
these Hilbert spaces, weak solutions of simple types of nonlinear PDEs are typically defined in
the Banach spaces W k,p (see Section 2.2 for definitions).

Let us consider an example [DL88, Chapter IV, p. 142]:

Example 2.2 (Variational formulation of the Poisson equation). Let Ω ⊆ Rn be open,
bounded, and with smooth boundary. Then, according to regularity, the solution of

−4u = f with u
∣∣
∂Ω

= 0

can be interpreted as the solution of one of the following problems:

(i) Find u ∈ H2(Ω) ∩H1
0 (Ω) such that

∫
Ω

(4u+ f) v dV = 0 for all v ∈ L2(Ω).

(ii) Find u ∈ H1
0 (Ω) such that

∫
Ω
∇u · ∇v dV =

∫
Ω
f v dV for all v ∈ H1

0 (Ω). (2.2)

(iii) Find u ∈ L2(Ω) such that
∫

Ω
(u4v + f v) dV = 0 for all v ∈ H2(Ω) ∩H1

0 (Ω).

It is option (ii) that balances the regularity requirements on the solution u and on the test function
v in an optimal way. Moreover, only in this case, ∂Ω can even be a Lipschitz domain. Therefore,
a function u ∈ H1

0 (Ω) that satisfies (2.2) is called a weak solution of the Poisson equation. y

Weak solutions may also solve a variational problem:

Example 2.3 (Euler-Lagrange equations). The weak solution u ∈ H1
0 (Ω) defined by (2.2) is a

stationary point of the Dirichlet integral J : H1
0 (Ω)→ R,

J(u) :=

∫
Ω
F (u,∇u) dV with F (u,∇u) :=

1

2
|∇u|2 − fu.

Indeed, for test functions ϕ ∈ D(Ω) (which is dense in H1
0 (Ω)), the stationarity condition reads

d

dε
J(u+ εϕ)

∣∣∣
ε=0

=

∫
Ω

((∂∇uF ) · ∇ϕ+ (∂uF )ϕ) dV =

∫
Ω

(∇u · ∇ϕ− fϕ) dV = 0.

Moreover, the classical Euler-Lagrange equations div(∂∇uF )− ∂uF = 0 give −4u = f . y
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2.2. Sobolev spaces

In general, weak formulations that involve a symmetric bilinear form (like the Dirichlet integral)
will also correspond to a variational problem (see also Lemma 2.10). This connection of weak
solutions to calculus of variations explains the notion “variational solutions”.

2.2 Sobolev spaces

We present a collection of some basic facts about Sobolev spaces.

In this section, Ω ⊆ Rn denotes an open set. A Lipschitz domain is an open, bounded, and
connected set Ω, such that, locally, the boundary ∂Ω is the graph of a Lipschitz continuous
function and Ω only lies on one side of the boundary. An exact definition is given in [Gri85, Def.
1.2.1.1, p. 5].

We recall that Lp(Ω) is the Banach space of (equivalence classes of) Lebesgue measurable
functions f with norm ‖f‖Lp(Ω) <∞, where

‖f‖Lp(Ω) :=


(∫

Ω
|f(x)|p dV

)1/p

1 ≤ p <∞

ess supx∈Ω |f(x)| p =∞.
(2.3)

Here, ‖f‖L∞(Ω) is the essential supremum of |f(x)|, that is, is the greatest lower bound (infi-
mum) of all K such that supx∈Ω |f(x)| ≤ K a.e. on Ω.

Sobolev spaces consist of Lebesgue measurable and power integrable functions whose distri-
butional derivatives also are elements of a Lebesgue space:

Definition 2.4 (Sobolev spaces). The Lp-based Sobolev space of order (exponent) k ∈ N0, is
the set

W k,p(Ω) :=
{
u ∈ Lp(Ω): ∀ α ∈ Nn0 , |α| ≤ k : Dαu ∈ Lp(Ω)

}
, (2.4)

which is a Banach space with the norm

‖u‖Wk,p(Ω) :=


(∑

|α|≤k ‖Dαu‖pLp(Ω)

)1/p
1 ≤ p <∞

max|α|≤k ‖Dαu‖L∞(Ω) p =∞.

The L2-based Sobolev spaces Hk(Ω) := W k,2(Ω) are Hilbert spaces with inner product

〈u|v〉Hk(Ω) :=
∑
|α|≤k〈Dαu|Dαv〉L2(Ω) =

∑
|α|≤k

∫
Ω(Dαu)(Dαv) dV .

Moreover, Hk
0 (Ω) is the completion of D(Ω) with respect to the Sobolev norm ‖.‖Hk(Ω). y

By definition, W 0,p(Ω) = Lp(Ω).

Remark 2.5 (Real exponents). For Ω = Rn, the Fourier transform allows us to define Hs(Rn)
for arbitrary real Sobolev exponents s ∈ R. Thereby, for Lipschitz domains Ω, one may also
generalize Hk(Ω) to real exponents [DL88, Chapter V, §4, Prop. 3, p. 118]. y

If f ∈ W k,p(Ω) then ∂jf ∈ W k−1,p(Ω) for j = 1, . . . , n. In particular, partial derivatives are
continuous maps ∂j : W k,p(Ω)→W k−1,p(Ω),

‖∂jf‖Wk−1,p(Ω) ≤ ‖f‖Wk,p(Ω). (2.5)

Consequently, operators P =
∑
|α|≤m aαD

α with smooth coefficients map Hs(Ω) to Hs−m(Ω).
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2 Variational methods

Dual spaces of Sobolev spaces may again be Sobolev spaces: We have (Hs(Rn))′ = H−s(Rn).
However, since test functions D(Ω) are not dense in Hk(Ω) if Ω ( Rn (and k ∈ N; since D(Ω)
is dense in L2(Ω) = H0(Ω)), we only get

(Hk
0 (Ω))′ = H−k(Ω).

By the standard (operator) norm for dual spaces, ‖f‖H−k(Ω) := sup
‖u‖

Hk0 (Ω)
≤1, u6=0

(
|〈f, u〉|
‖u‖Hk

0 (Ω)

)
.

Similarly, duality for W k,p(Ω) with k ∈ N and 1 ≤ p ≤ ∞ reads (W k,p
0 (Ω))′ = W−k,p

′
(Ω), where

the conjugate exponent p′ is defined by 1
p + 1

p′ = 1, including 1 and∞.

Remark 2.6 (The dual of H1). The lack of density of D(Ω) in H1(Ω) implies that (H1(Ω))′ is not
a space of distributions on Ω. However, the adjoint of the continuous projectionH1(Ω)→ H1

0 (Ω)
defines an embedding H−1(Ω) ↪→ (H1(Ω))′, see [VP65, Section 3]. y

The restriction of Sobolev spaces to surfaces reduces their exponent (e.g. [Tré75, Theorem
26.2], [Wlo87, Theorem 8.8]):

Lemma 2.7 (Trace operator). Let Ω ⊆ Rn be a domain with smooth boundary and k ∈ N.
Then the restriction of u ∈ C∞(Ω) to ∂Ω uniquely extends to a continuous and surjective linear
map T : Hk(Ω)→ Hk− 1

2 (∂Ω) with T (u) = u|∂Ω.

The space Hk
0 (Ω) is the kernel of T . In particular, H1(Ω) has traces in H1/2(∂Ω) and functions

in H1
0 (Ω) vanish on the boundary ∂Ω (Lipschitz ∂Ω is enough for k = 1). Moreover, if u ∈ H1

0 (Ω)
and Ω ⊆ Rn is bounded, then Poincaré’s inequality holds [DL88, Chapter IV, §7, Corollary 2,
p. 126]:

‖u‖2L2(Ω) ≤ cP ‖∇u‖
2
L2(Ω). (2.6)

This implies ‖∇u‖2L2(Ω) ≤ ‖u‖
2
H1(Ω) = ‖u‖2L2(Ω) + ‖∇u‖2L2(Ω) ≤ (1 + cP )‖∇u‖2L2(Ω), showing that

‖u‖H1(Ω) and ‖∇u‖L2(Ω) are equivalent norms on H1
0 (Ω).

Definition 2.8 (Continuous and compact embeddings). Let X, Y be Banach spaces with
X ⊆ Y as a subspace. Then X ↪→ Y (continuous embedding) if there exists an injective
continuous map X → Y (there exists c > 0 with ‖x‖Y ≤ c‖x‖X for all x ∈ X). The embedding
is compact, if X ↪→ Y and bounded sets in X are relatively compact in Y (sequences with
‖xk‖X ≤ C have subsequences (xkl)l that converge in Y to some y ∈ Y ). y

As is clear by definition, Hk(Ω) ↪→ Hm(Ω) for m, k ∈ N0 with m ≤ k. Moreover, on bounded
open sets Ω ⊆ Rn, we have Lp(Ω) ↪→ Lq(Ω) for 1 ≤ q ≤ p ≤ ∞. This translates to Sobolev
spaces in the following way ([AF03, Theorem 4.12, p. 85] and [GT01, Theorem 7.26, p. 171]):

Lemma 2.9 (Sobolev embedding). Let Ω ⊆ Rn be a Lipschitz domain, k ∈ N0, 1 ≤ p <∞.

(i) If k >
n

p
then W k,p(Ω) ↪→ C 0(Ω)∩L∞(Ω) (and compactly in C 0,α(Ω) if 0 < α < k− n

p ≤ 1).

(ii) If k =
n

p
then W k,p(Ω) ↪→ Lq(Ω) for all 1 ≤ q <∞ (also compactly embedded).

(iii) If k <
n

p
then W k,p(Ω) ↪→ Lq(Ω) for q ≤ np

n−kp (and compactly for q < np
n−kp ).

In particular, (i) shows that Sobolev regularity becomes classical regularity for sufficiently high
exponents k, p or in sufficiently low dimension n.
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2.3. Abstract variational problems

2.3 Abstract variational problems

2.3.1 Coercive bilinear forms in Hilbert spaces

Weak formulations of linear PDEs may be defined in Sobolev spaces Hk via duality relations.
This leads us to the following abstract variational problem on a general Hilbert space V :

Find u ∈ V , such that
a(u, v) = L(v) ∀ v ∈ V, (2.7)

where a : V × V → R is bilinear and L : V → R is linear and continuous, that is, L ∈ V ′.

If a is an inner product (bilinear, symmetric, positive definite), then the Riesz representation
theorem for Hilbert spaces yields solvability of the abstract variational problem: There exists a
unique element u ∈ V such that (2.7) holds.

This extends to the following result [Bre11, Corollary 5.8]:

Lemma 2.10 (Lax-Milgram for coercive bilinear forms). Let V be a Hilbert space, L ∈ V ′,
and a : V × V → R be a continuous bilinear form that is coercive, that is, there exists α > 0
such that

a(v, v) ≥ α‖v‖2V ∀ v ∈ V. (2.8)

Then there exists a unique solution u ∈ V of the abstract variational problem (2.7).

Moreover, if a is symmetric, then the solution u minimizes the functional

J : V → R, J(v) :=
1

2
a(v, v)− L(v).

We recall that continuity of the bilinear map a means that there exists ca > 0 such that

|a(u, v)| ≤ ca‖u‖V ‖v‖V ∀ u, v ∈ V. (2.9)

Thus, if the weak formulation of a linear PDE involves a continuous and coercive bilinear form,
then existence and uniqueness of weak solutions are immediate.

Example 2.11 (Existence and uniqueness of weak solutions of the Poisson equation).
The weak form (2.2) corresponds to an abstract variational problem (2.7) with

V = H1
0 (Ω), L = f ∈ V ′, and a : V × V → R, a(u, v) =

∫
Ω
∇u · ∇v dV = 〈∇u|∇v〉L2(Ω).

Bilinearity of a is clear and continuity follows from Cauchy-Schwarz inequality and (2.5):

|a(u, v)| ≤ ‖∇u‖L2(Ω)‖∇v‖L2(Ω) ≤ ‖u‖H1(Ω)‖v‖H1(Ω) = ‖u‖V ‖v‖V .

Coercivity of a follows from ‖u‖2H1(Ω) ≤ (1 + cP )‖∇u‖2L2(Ω) by Poincaré’s inequality (2.6):

a(u, u) = ‖∇u‖2L2(Ω) ≥ α‖u‖
2
H1(Ω) = α‖u‖2V with α =

1

1 + cP
.

Consequently, by Lemma 2.10 there exists a unique weak solution u ∈ V = H1
0 (Ω) of the

Poisson equation −4u = f for f ∈ H−1(Ω). We note that the boundary condition u|∂Ω = 0 is
directly incorporated in the definition of the function space V . y

Remark 2.12 (Classical solutions via elliptic regularity). If f lies in a better Sobolev space
(or in a Hölder space C 0,α), then elliptic regularity implies that the weak solution of −4u = f is
actually C 2, that is, we have found a classical solution, see e.g. [GT01]. y
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2 Variational methods

2.3.2 Outline of the variational method for evolution equations

The variational approach to the solution of partial differential equations consists of the following
main parts (after [DL92, Chapter XVIII, p. 508] or [Bre11, Chapter 8, p. 201]):

I. Variational formulation:

Define the notion of a weak solution that generalizes the classical solution concept.

II. Existence and uniqueness:

Apply a “variational solution method” to prove that weak solutions exist and are unique.

III. Regularity:

Investigate the smoothness of weak solutions (weak solutions might possess enough
regularity to be classical solutions). Moreover, questions of continuous dependence on
data may be discussed.

For linear time-independent equations (equilibrium problems), a possible variational method in
Part II is Lax-Milgram (Lemma 2.10) or the direct solution of the associated minimization prob-
lem. We have illustrated Parts I, II, and III in Examples 2.3, 2.11, and Remark 2.12 respectively.

A versatile variational solution method for evolution equations (dynamic problems) is the so-
called method of energy estimates. In Part I we set up the abstract Cauchy problem P
which involves a weak evolution equation. As in the static case, the boundary conditions of the
PDE should be incorporated in the choice of function spaces. Then existence and uniqueness
of weak solutions in Part II is obtained in the following way:

– Step 0: Prove uniqueness for P .

– Step 1: Define an approximate problem which has a solution um (e.g. by discretization).

Establish “a priori estimates” (the energy estimates).

– Step 2: Based on these estimates, infer boundedness of (um)m in some normed space.

By weak(-∗) compactness, extract a weakly(-∗) convergent subsequence.

– Step 3: Show that the limit satisfies the weak evolution equation.

– Step 4: Show that the limit satisfies the initial conditions.

Thereby, the limit obtained is the sought weak solution u of the abstract Cauchy problem P .

This variational solution method for second-order evolution equations will be discussed in detail
in Chapter 3. The evolutionary counterpart of the abstract variational problem (2.7) will be (3.1),

d

dt
c(u̇, v) + b(u̇, v) + a(u, v) = 〈f, v〉 for all v ∈ V in the sense of D ′(0, T ),

which is coupled to the initial conditions u(0) = u0 and u̇(0) = u1. If the bilinear forms a, b, c
fulfill to certain hypotheses, then this abstract Cauchy problem will be well-posed: There exists
a unique solution u that depends continuously on the data u0, u1, f (see Theorem 3.1 and
Corollary 3.12).

In Chapter 4, we finally apply our findings to the elastic wave equation.
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2.3. Abstract variational problems

2.3.3 Technical tools: Weak convergence, compactness, and continuity

This section gathers various concepts and proves some statements that will be relevant for the
variational solution of evolution equations (Chapter 3). A crucial ingredient is compactness,
which allows us to infer the existence of a limit from mere boundedness of the sequence (see
Part II, Step 2). Since compactness of closed balls with respect to the norm (strong topology)
only holds in finite dimensional Banach spaces, we need to change the topology:

Definition 2.13 (Weak convergence, weak-∗ convergence). Let X be a Banach space with
dual X ′ and write 〈., .〉 := 〈., .〉X′,X . A sequence (xn)n ⊆ X converges weakly to x ∈ X,

xn ⇀ x (n→∞), if 〈x′, xn〉 → 〈x′, x〉 ∀ x′ ∈ X ′ (n→∞).

A sequence (x′n)n ⊆ X ′ converges weakly-∗ to x′ ∈ X,

x′n ⇀
∗ x′ (n→∞), if 〈x′n, x〉 → 〈x′, x〉 ∀ x ∈ X (n→∞). y

Lemma 2.14 (Weak compactness, weak-∗ compactness).
(i) Let X be a reflexive Banach space. Then, from a bounded sequence in X, one can

extract a weakly convergent subsequence (closed balls are weakly compact).

(ii) Let X ′ be the dual of a separable Banach space. Then, from a bounded sequence in X ′,
one can extract a weakly-∗ convergent subsequence (closed balls are weakly-∗ compact).

These definitions and the proofs can be found e.g. in [DL88, Chapter VI, §5] and [Bre11, Theo-
rems 3.17 & 3.16, p. 66].

Solutions of evolutionary PDEs are functions of space and time variables, say (x, t) 7→ u(x, t)
with x ∈ Ω ⊆ Rn and t ∈ [0, T ]. However, in view of the variational formulation it is desirable to
split the regularity requirements with respect to these variables. This leads us to the notion of
functions of t ∈ [0, T ] with values in a Banach space X, that is, “vector-valued” functions. We
list some examples to illustrate the notation:

Let X be a Banach space and t 7→ f(t) ∈ X be measurable on (0, T ). Then

f ∈ Lp((0, T );X) :⇐⇒ t 7→ ‖f(t)‖X is in Lp(0, T ); ‖f‖Lp((0,T );X) := ‖‖f(.)‖X‖Lp(0,T )

f ∈W k,p((0, T );X) :⇐⇒ t 7→ ‖f(t)‖X is inW k,p(0, T ); ‖f‖Wk,p((0,T );X) := ‖‖f(.)‖X‖Wk,p(0,T )

f ∈ C 0([0, T ];X) :⇐⇒ t 7→ ‖f(t)‖X is in C 0([0, T ]); ‖f‖C 0([0,T ];X) := max
t∈[0,T ]

‖f(t)‖X .

Spaces of vector-valued test functions D((0, T );X) and distributions D ′((0, T );X) are defined
in [Tré75, Chapter 39]. We will also need the test function space D([0, T ];X), which consists of
the restrictions of D(R;X) to [0, T ], see [DL92, Chapter XVIII, §1, Lemma 1, p. 473].

Lemma 2.15 (Weak-∗ convergence in L∞ implies weak convergence in L2). Let H be a
Hilbert space. If wn ⇀∗ w in L∞((0, T );H), then wn ⇀ w in L2((0, T );H) as n→∞.

Proof. Let ϕ ∈ L2((0, T );H) ⊆ L1((0, T );H). If wn ⇀∗ w in L∞((0, T );H) as n → ∞, then
wn, w ∈ L∞((0, T );H) ⊆ L2((0, T );H) and we get〈

wn, ϕ
〉
L2((0,T );H), L2((0,T );H)

=
〈
wn, ϕ

〉
L∞((0,T );H), L1((0,T );H)

→
〈
w,ϕ

〉
L∞((0,T );H), L1((0,T );H)

=
〈
w,ϕ

〉
L2((0,T );H), L2((0,T );H)

showing that wn ⇀ w in L2((0, T );H) as n→∞.
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2 Variational methods

By Sobolev embedding (in the time variable), see Lemma 2.9,

H1((0, T );V ′) ↪→ C 0([0, T ];V ′).

This result improves if we have additional spatial regularity, see also (3.59). We follow [RR04,
Lemma 11.4, p. 383]:

Lemma 2.16 (Continuous embedding). If V , H are Hilbert spaces such that V ⊆ H is dense
and with continuous embedding (that is we have V ↪→ H ↪→ V ′), then

L2((0, T );V ) ∩H1((0, T );V ′) ↪→ C 0([0, T ];H). (2.10)

Proof. Let u ∈ D([0, T ];V ), which is dense in L2((0, T );V ) ∩ H1((0, T );V ′). By the product
rule, d

dt‖u‖
2
H = d

dt〈u|u〉H = 2〈u̇|u〉H and integration on (s, t) ⊆ [0, T ] gives

‖u(t)‖2H = ‖u(s)‖2H + 2

∫ t

s
〈u̇(t′)|u(t′)〉H dt′.

Continuity of ‖u(.)‖2H allows us to choose s such that ‖u(s)‖2H equals the mean value of ‖u(.)‖2H
on [0, T ]:

‖u(s)‖2H =
1

T

∫ T

0
‖u(t′)‖2H dt′ =

1

T
‖u‖2L2((0,T );H).

With 〈u̇|u〉H = 〈u̇, u〉V,V ′ ≤ ‖u̇‖V ′‖u‖V we arrive at the inequality

‖u(t)‖2H ≤
1

T
‖u‖2L2((0,T );H) + 2

∫ T

0
‖u̇(t′)‖V ′‖u(t′)‖V dt′.

By Cauchy-Schwarz inequality,∫ T

0
‖u̇(t′)‖V ′‖u(t′)‖V dt′ = ‖‖u̇‖V ′‖u‖V ‖L1(0,T )

≤ ‖‖u̇‖V ′‖L2(0,T )‖‖u‖V ‖L2(0,T ) = ‖u̇‖L2((0,T );V ′)‖u‖L2((0,T );V )

and with H1 ↪→ L2 we obtain

‖u‖2C 0([0,T ];H) = max
t∈[0,T ]

‖u(t)‖2H ≤
1

T
‖u‖2L2((0,T );H) + 2‖u‖H1((0,T );V ′)‖u‖L2((0,T );V ).

This estimate shows that u ∈ L2((0, T );V ) ∩H1((0, T );V ′) implies u ∈ C 0([0, T ];H) with con-
tinuous embedding (cf. Definition 2.8), which completes the proof.

Remark 2.17 (Aubin-Lions Lemma). Lemma 2.16 is similar to the following result on compact
embeddings in Lp((0, T );V ) discussed in [CJL14]: If V1 ↪→ V2 ↪→ V3 are Banach spaces such
that V1 ↪→ V2 is compact and V2 ↪→ V3 is continuous (cf. Definition 2.8), then

Lp((0, T );V1) ∩W 1,q((0, T );V3) ↪→ Lp((0, T );V2),

L∞((0, T );V1) ∩W 1,q((0, T );V3) ↪→ C 0([0, T ];V2)

are both compact (1 < p <∞, 1 ≤ q ≤ ∞). y

Definition 2.18 (Weakly continuous functions f : [0, T ] → X). If X is a reflexive Banach
space, then

C 0
weak([0, T ];X) := {f : [0, T ]→ X : ∀x′ ∈ X ′ : t 7→ 〈x′, f(t)〉X′,X is continuous on [0, T ]}. y
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2.3. Abstract variational problems

Compared to (strongly) continuous functions

C 0([0, T ];X) = {f : [0, T ]→ X : t 7→ f(t) ∈ X is continuous on [0, T ]},

weakly continuous functions are only continuous as scalar-valued functions [0, T ]→ R obtained
after taking the duality (the target space is equipped with the weak topology). Therefore, weak
continuity is also referred to as “scalar continuity”, e.g. [DL92, Chapter XVIII, (5.129)]. Actually,
in view of Remark 2.20 below, this name might be preferable.

From the estimate (t1, t2 ∈ [0, T ], x′ ∈ X ′)

|〈x′, f(t1)〉X′,X − 〈x′, f(t2)〉X′,X | = |〈x′, f(t1)− f(t2)〉X′,X | ≤ ‖x′‖X′‖f(t1)− f(t2)‖X

it is clear that (strongly) continuous functions are weakly continuous (in the sense of Definition
2.18):

C 0([0, T ];X) ⊆ C 0
weak([0, T ];X).

Additional boundedness improves the continuity result (the statement is similar to Lemma 2.16,
but with interchanged roles of space and time):

Lemma 2.19 (Weak continuity). Let V ↪→ H be Hilbert spaces with V dense in H. Then

C 0([0, T ];H) ∩ L∞((0, T );V ) ⊆ C 0
weak([0, T ];V ),

C 0([0, T ];V ′) ∩ L∞((0, T );H) ⊆ C 0
weak([0, T ];H).

Proof. We follow [RR04, Section 11.2.4, p. 392]. Let u ∈ C 0([0, T ];H) ∩ L∞((0, T );V ) and
t ∈ (0, T ). We first show u(t) ∈ V for every t ∈ (0, T ), which will follow from the inequality

‖u(t)‖V ≤ ‖u‖L∞((0,T );V )

which we now prove (the nontrivial part is that the inequality holds for every t). By contradiction,
suppose that there exists t ∈ (0, T ) with

‖u‖L∞((0,T );V ) < ‖u(t)‖V .

Since H is dense in V ′ there exists h ∈ H with ‖h‖V ′‖u(t)‖V = 〈h, u(t)〉. Consequently, multi-
plication with ‖h‖V ′ gives ‖h‖V ′‖u‖L∞((0,T );V ) < 〈h, u(t)〉. By the assumption u ∈ C 0([0, T ];H),
the inequality also holds for s ∈ (0, T ),

‖h‖V ′‖u‖L∞((0,T );V ) < 〈h, u(s)〉,

as long as |s− t| < ε for some ε > 0 (note that it suffices to assume u ∈ C 0
weak([0, T ];H)).

Then the function g : (0, T )→ H, g(s) :=

{
h, |s− t| < ε
0, otherwise

satisfies

∫ T

0
〈g(s), u(s)〉 ds =

∫ T

0
〈h, u(s)〉 ds >

∫ T

0
‖h‖V ′‖u‖L∞((0,T );V ) ds = T‖h‖V ′‖u‖L∞((0,T );V ).

But ‖g‖L1((0,T );V ′) =

∫ T

0
‖g(s)‖V ′ ds =

∫ T

0
‖h‖V ′ ds = T‖h‖V ′ . Thus we obtain

∫ T

0
〈g(s), u(s)〉 ds > ‖g‖L1((0,T );V ′)‖u‖L∞((0,T );V )

which contradicts Hölder’s inequality. This shows that u(t) is bounded in V for every t ∈ (0, T ).
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2 Variational methods

To show weak continuity, let f ∈ V . By density, there exists a sequence (fn)n in H such that

fn → f in V ′ (n→∞).

Then ũn := 〈fn, u(.)〉 converges uniformly to ũ := 〈f, u(.)〉 on [0, T ], because

|ũn(t)− ũ(t)| = |〈fn, u(t)〉 − 〈f, u(t)〉| = |〈fn − f, u(t)〉| ≤ ‖fn − f‖V ′‖u(t)‖V

holds for all t ∈ [0, T ]. With u ∈ C 0([0, T ];H) ⊆ C 0
weak([0, T ];H), the functions ũn are continuous

on [0, T ]. Hence uniform convergence of ũn implies continuity of the limit ũ = 〈f, u(.)〉. This
shows that u is weakly continuous, u ∈ C 0

weak([0, T ];V ). The proof of the second statement is
similar.

Remark 2.20 (Another concept of weak continuity for maps F : X → R). The notion of weak
continuity according to Definition 2.18 must not be confused with the following weak continuity
property for scalar-valued functions defined on a Banach space X [RR04, Definition 10.12, p.
347]: A map F : X → R that satisfies

lim
n→∞

F (xn) = F (x) whenever xn ⇀ x inX (n→∞)

is called (sequentially) weakly continuous. Here the domain is equipped with the weak topology,
which (in contrast to C 0

weak) is more restrictive than (sequential, strong) continuity F ∈ C 0(X),
which is formulated via strong convergence xn → x (see also Definition 2.21). y

Definition 2.21 (Lower semicontinuity, weak lower semicontinuity). Let X be a Banach
space and F : X → R. If

lim inf
n→∞

F (xn) ≥ F (x) whenever xn → x inX (n→∞), (2.11)

then F is called (sequentially) lower semicontinuous (l.s.c.).
If

lim inf
n→∞

F (xn) ≥ F (x) whenever xn ⇀ x inX (n→∞), (2.12)

then F is called (sequentially) weakly lower semicontinuous (w.l.s.c.). y

Lemma 2.22 (Composition with C 0
weak). Let X be a Banach space.

(i) If F : X → R is (strongly) continuous and convex, then F is w.l.s.c.

(ii) The norm ‖.‖X : X → R is w.l.s.c.

(iii) If g ∈ C 0
weak([0, T ];X) and f : X → R is w.l.s.c, then f ◦ g : [0, T ]→ R is l.s.c.

In particular, if g ∈ C 0
weak([0, T ];X) then t 7→ ‖g(t)‖X is l.s.c. on [0, T ].

Proof. Claim (i) is established in [Bre11, Section 3.3, Remark 6, p. 61]. Claim (ii) then follows
from (i) because of continuity and convexity of the norm: Let x, y ∈ X, λ ∈ [0, 1], and consider
F = ‖.‖X : X → R. Then |F (x)− F (y)| = |‖x‖X − ‖y‖X | ≤ ‖x− y‖X → 0 as x→ y; moreover

F (λx+ (1− λ)y) = ‖λx+ (1− λ)y‖X ≤ λ‖x‖X + (1− λ)‖y‖X = λF (x) + (1− λ)F (y).

We prove Claim (iii): If tn → t (n → ∞) in [0, T ], then wn := g(tn) ⇀ g(t) =: w in X from
Definition 2.18. But since f is w.l.s.c, we obtain from (2.12) that

lim inf
n→∞

(f ◦ g)(tn) = lim inf
n→∞

f(g(tn)) = lim inf
n→∞

f(wn) ≥ f(w) = f(g(t)) = (f ◦ g)(t).

All these concepts of continuity will be relevant to establish the regularity of weak solutions.
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Chapter 3

Variational solution of linear
second-order evolution equations

We discuss the solution of linear evolution problems of second order with the variational ap-
proach, including detailed proofs. In view of the elastic wave equation, our focus lies on the
solution of hyperbolic problems. In Section 3.1 the weak formulation of the evolution equation
is introduced in the abstract Hilbert space setting and the solvability result is announced. Then
we discuss a priori estimates based on the energy equality (Section 3.2). Next, uniqueness and
existence of weak solutions are established in Sections 3.3 and 3.4 respectively. We present
two different proofs for each of the statements. We conclude with the proof of continuity of weak
solutions (Section 3.5).

The presentation closely follows [DL92, Chapter XVIII] and [RR04, Chapter 11], but we restrict
to time-independent coefficients and real-valued functions.

3.1 The abstract Cauchy problem

3.1.1 Definition of the weak evolution equation

Within the context of linear evolutionary PDEs, the most natural Hilbert space framework for
the dynamical variable u is L2((0, T );H) with a Hilbert space H and for finite time 0 < T <∞.
At each time instant t, some sort of energy of the solution is required to be bounded, which is
modeled by the condition u(t) ∈ V for another Hilbert space V ⊆ H.

In this Hilbert space framework for space and time, the Cauchy problem is formulated as the
following abstract variational problem:

Find t 7→ u(t) ∈ V that solves the weak evolution equation

d

dt
c(u̇, v) + b(u̇, v) + a(u, v) = 〈f, v〉 for all v ∈ V in the sense of D ′(0, T ) (3.1)

and satisfies the initial conditions

u(0) = u0, u̇(0) = u1. (3.2)

Here a, b, c are bilinear forms on V or on H, u̇ = du
dt denotes the time derivative of u, and f

represents the source.

We specify the assumptions on the Hilbert spaces: It is assumed that H and V are separable
real Hilbert spaces where V ⊆ H is a dense subspace with continuous embedding, that is,

17



3 Variational solution of linear second-order evolution equations

V ↪→ H. Let V ′ denote the dual space of V . The Hilbert space H is identified with its dual H ′.
Therefore we obtain the following sequence of continuous and dense embeddings, a so-called
variational triple with pivot space H:

V ↪→ H ↪→ V ′.

We write 〈.|.〉H for the inner product in H and ‖.‖H for the associated norm; ‖.‖V and ‖.‖V ′ are
the norms in V and V ′ respectively. The duality between V and V ′ is denoted by

〈., .〉 := 〈., .〉V ′,V .

The continuity of the embeddings implies the existence of cV , c′V > 0 such that

1

c′V
‖v‖V ′ ≤ ‖v‖H ≤ cV ‖v‖V ∀ v ∈ V. (3.3)

Moreover, the duality 〈., .〉 between V and V ′ is a continuous extension of the duality of H ′ = H
and H, that is,

〈., .〉 = 〈.|.〉H on H × V. (3.4)

Indeed, the inner product on H may be identified with the duality bracket and explicitly intro-
ducing the embedding ι : V → H and its adjoint ι′ : H ′ = H → V ′, where ι and ι′ are given by
ιv = v and ι′u = u for v ∈ V and u ∈ H respectively, we obtain

〈u, v〉 = 〈u, v〉V ′,V = 〈ι′u, v〉V ′,V = 〈u, ιv〉H′,H = 〈u, v〉H′,H = 〈u|v〉H ∀ u ∈ H, v ∈ V.

Next we list the assumptions on the bilinear forms: We assume that a is a continuous bilinear
form on V ,

a : V × V → R, a = a0 + a1. (3.5)

By continuity there exists ca > 0 such that

|a(u, v)| ≤ ca‖u‖V ‖v‖V ∀ u, v ∈ V.

The principal part a0 is symmetric and V -coercive with respect to H: There exist α, λ > 0 such
that

a0(u, v) = a0(v, u) and a0(u, u) ≥ α‖u‖2V − λ‖u‖
2
H ∀ u, v ∈ V. (3.6)

The bilinear form a1 possesses additional regularity: There exist ca1 > 0 and c′a1
> 0 such that

|a1(u, v)| ≤ ca1‖u‖V ‖v‖H ∀ u, v ∈ V (3.7)

and
|a1(u, v)| ≤ c′a1

‖u‖H ‖v‖V ∀ u ∈ H, v ∈ V. (3.8)

The bilinear forms b, c are continuous on H,

b, c : H ×H → R. (3.9)

By continuity there exist cb > 0 and cc > 0 such that

|b(w, v)| ≤ cb‖w‖H‖v‖H and |c(w, v)| ≤ cc‖w‖H‖v‖H ∀ w, v ∈ H.

In addition c is symmetric and H-coercive, i.e. there exists γ > 0 such that

c(w, v) = c(v, w) and c(w,w) ≥ γ‖w‖2H ∀ w, v ∈ H. (3.10)

The assumptions on a, b, c aim at the modeling of hyperbolic equations. In the parabolic case, b
is only defined on V and possesses a coercive principal part, which describes viscous damping
(see Section 3.4.2).
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3.1. The abstract Cauchy problem

3.1.2 The existence and uniqueness result

With the hypotheses on V , H, V ′ and a, b, c given above, we are ready to state the main result
for the abstract Cauchy problem (3.1), (3.2):

Theorem 3.1 (Existence and uniqueness for the Cauchy problem). Given the data

u0 ∈ V, u1 ∈ H, and f ∈ L2((0, T );H), (3.11)

there exists a unique solution

u ∈ C 0([0, T ];V ) ∩ C 1([0, T ];H) (3.12)

of the weak evolution equation (3.1),

d

dt
c(u̇, v) + b(u̇, v) + a(u, v) = 〈f, v〉 for all v ∈ V in the sense of D ′(0, T ),

satisfying the initial conditions (3.2), that is, u(0) = u0 and u̇(0) = u1.

This theorem coincides with the results of [DL92, Chapter XVIII, §5, Problem (P2), p. 570;
Theorems 3 and 4], restricting to time-independent operators and real-valued functions.

Let us check whether the weak formulation (3.1) makes sense as an equation in D ′(0, T ), if u
has the asserted regularity (3.12): The validity of (3.1) as an equation for all v ∈ V in the sense
of D ′(0, T ) means that for all ψ ∈ D(0, T ),〈 d

dt
c(u̇, v) + b(u̇, v) + a(u, v), ψ

〉
D ′(0,T ),D(0,T )

=
〈
〈f, v〉, ψ

〉
D ′(0,T ),D(0,T )

,

which with the definition of the distributional derivative reads

−
〈
c(u̇, v), ψ̇

〉
D ′(0,T ),D(0,T )

+
〈
b(u̇, v) + a(u, v), ψ

〉
D ′(0,T ),D(0,T )

=
〈
〈f, v〉, ψ

〉
D ′(0,T ),D(0,T )

.

Consequently, with (3.12), that is, u ∈ C 0([0, T ];V ) and u̇ ∈ C 0([0, T ];H), all terms are defined.

We note that the equations above actually also make sense if we only assume f ∈ L2((0, T );V ′),
u ∈ L2((0, T );V ), and u̇ ∈ L2((0, T );H) (see also Lemma 3.3). Thus we call any function

u ∈ L2((0, T );V ) ∩H1((0, T );H) or u ∈ L∞((0, T );V ) ∩W 1,∞((0, T );H) (3.13)

(which is a subset), that satisfies the weak evolution equation (3.1), a weak solution. However
without any further assumption, the weak regularity (3.13) is not enough to make the initial
conditions defined. By Sobolev embedding we only obtain

u ∈ H1((0, T );H) ↪→ C 0([0, T ];H). (3.14)

Further regularity will follow from the validity of the evolution equation, which eventually yields
(3.12), see Section 3.5.

The principal part (with respect to time) in the abstract formulation (3.1) typically corresponds
to the acceleration term (more precisely, inertia) in wave equations. In our setting c is time-
independent. Therefore we can write d

dtc(u̇, .) = d2

dt2
c(u, .). Yet, pulling the derivative inside the

bilinear form, d
dtc(u̇, .) = c(ü, .) requires more regularity, e.g. H2((0, T );H) (cf. Lemma 3.2 and

Remarks 3.4, 3.5).
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3 Variational solution of linear second-order evolution equations

3.1.3 Strong form

The continuous bilinear forms a, b, c on V,H correspond to continuous linear operators A, B, C
acting between V , H, V ′. If X, Y are Banach spaces then

〈Fx, y〉Y ′,Y = f(x, y) ∀ x ∈ X, y ∈ Y

allows us to identify a continuous bilinear form f : X × Y → R with an operator F ∈ Lin(X,Y ′).

Specifically, a = a0 + a1 corresponds to the operator

A = A0 +A1 ∈ Lin(V, V ′)

defined by
〈Au, v〉 = a(u, v) ∀ u, v ∈ V.

The additional regularity conditions (3.7) and (3.8) give

A1 ∈ Lin(V,H) ∩ Lin(H,V ′). (3.15)

Similarly, setting

〈Bw|v〉H = b(w, v) and 〈Cw|v〉H = c(w, v) ∀ w, v ∈ H

yields the following operators corresponding to b and c:

B, C ∈ Lin(H,H).

Coercivity of C on H, that is 〈Cw|w〉H ≥ γ‖w‖2H , implies ker(C) = {0} and hence invertibility:

C−1 ∈ Lin(H,H).

In terms of the operators A,B,C the weak evolution equation (3.1),

d

dt
c(u̇, v) + b(u̇, v) + a(u, v) = 〈f, v〉,

reads
d

dt
〈Cu̇|v〉H + 〈Bu̇|v〉H + 〈Au, v〉 = 〈f, v〉,

or by (3.4),
d

dt
〈Cu̇, v〉+ 〈Bu̇, v〉+ 〈Au, v〉 = 〈f, v〉.

A slightly better regularity than (3.13) is enough to pull the time derivative inside the first duality:

Lemma 3.2 (Acceleration term). If u ∈ L2((0, T );V )∩H1((0, T );H) and d
dt(Cu̇) ∈ L2((0, T );V ′)

then for all v ∈ V
d

dt
c(u̇, v) = 〈 d

dt
(Cu̇), v〉 in D ′(0, T ). (3.16)

Formula (3.16) is [DL92, p. 559, Prop. 3], where it is formulated for u̇ ∈ L2((0, T );V ) (but C
time-dependent); here we establish the assertion in the case u̇ ∈ L2((0, T );H) by adapting the
proof of [DL92, p. 477, Prop. 7].
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3.1. The abstract Cauchy problem

Proof. By the assumptions m := Cu̇ ∈ L2((0, T );H) with ṁ = d
dt(Cu̇) ∈ L2((0, T );V ′). Let

ψ ∈ D(0, T ). The duality 〈., .〉 = 〈., .〉V ′,V satisfies the product rule:

d

dt
〈m(t), ψ(t)v〉 = 〈ṁ(t), ψ(t)v〉+ 〈m(t), ψ̇(t)v〉.

Taking into account the conditions ψ(0) = ψ(T ) = 0, integration yields∫ T

0
〈ṁ, ψ v〉 dt+

∫ T

0
〈m, ψ̇ v〉 dt = 〈m,ψ v〉

∣∣∣T
0

= 0

which gives the integration by parts formula∫ T

0
〈ṁ, ψ v〉 dt = −

∫ T

0
〈m, ψ̇ v〉 dt.

The regularity of m guarantees that 〈ṁ, v〉 and 〈m, v〉 are elements of L1
loc(0, T ) and thus

〈
〈ṁ, v〉, ψ

〉
D ′(0,T ),D(0,T )

=

∫ T

0
〈ṁ, v〉ψ dt =

∫ T

0
〈ṁ, ψ v〉 dt = −

∫ T

0
〈m, ψ̇ v〉 dt = −

∫ T

0
〈m, v〉ψ̇ dt

= −
〈
〈m, v〉, ψ̇

〉
D ′(0,T ),D(0,T )

=
〈 d
dt
〈m, v〉, ψ

〉
D ′(0,T ),D(0,T )

,

where the last equality holds by definition of the derivative in D ′(0, T ). Consequently

d

dt
c(u̇, v) =

d

dt
〈Cu̇, v〉 =

d

dt
〈m, v〉 = 〈ṁ, v〉 = 〈 d

dt
(Cu̇), v〉 in D ′(0, T ),

which is (3.16).

Lemma 3.2 enables us to write the evolution equation (3.1) in (distributional) operator form:

〈 d
dt

(Cu̇) +Bu̇+Au, v〉 = 〈f, v〉 for all v ∈ V in the sense of D ′(0, T ),

that is,
d

dt
(Cu̇) +Bu̇+Au = f in D ′((0, T );V ′).

Next we show that the additional regularity d
dt(Cu̇) ∈ L2((0, T );V ′) required in the Lemma

already follows from the validity of the weak evolution equation alone. Moreover, the operator
form holds in the strong L2 sense:

Lemma 3.3 (Strong form of the evolution equation). Solutions u ∈ L2((0, T );V )∩H1((0, T );H)
of the weak evolution equation (3.1) satisfy

d

dt
(Cu̇) +Bu̇+Au = f a.e. in L2((0, T );V ′). (3.17)

Proof. Let u ∈ L2((0, T );V ) ∩H1((0, T );H) and v ∈ V . Then, by the assumptions,

Cu̇ ∈ L2((0, T );H) ⊆ L2((0, T );V ′) ⊆ D ′((0, T );V ′)

On one hand, the second inclusion shows 〈Cu̇, v〉 ∈ D ′(0, T ) and by construction of C we
obtain d

dt〈Cu̇, v〉 = d
dtc(u̇, v) ∈ D ′(0, T ). By the first inclusion 〈Cu̇, v〉 ∈ L2(0, T ) and therefore
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3 Variational solution of linear second-order evolution equations

we get with ψ ∈ D(0, T ),〈 d
dt
〈Cu̇, v〉, ψ

〉
D ′(0,T ),D(0,T )

= −
〈
〈Cu̇, v〉︸ ︷︷ ︸
∈L2(0,T )

, ψ̇
〉

D ′(0,T ),D(0,T )

= −
∫ T

0
〈Cu̇, v〉 ψ̇ dt = −

∫ T

0
〈Cu̇, ψ̇ v〉 dt = −

∫ T

0
〈Cu̇, d

dt
(ψ v)〉 dt

= −
〈
Cu̇,

d

dt
(ψ v)

〉
D ′((0,T );V ′),D((0,T );V )

=
〈 d
dt

(Cu̇), ψ v
〉

D ′((0,T );V ′),D((0,T );V )
.

On the other hand, the weak evolution equation (3.1) in terms of A,B,C yields〈 d
dt
〈Cu̇, v〉, ψ

〉
D ′(0,T ),D(0,T )

=
〈
〈f −Bu̇−Au, v〉︸ ︷︷ ︸
∈L2(0,T )⊆L1

loc(0,T )

, ψ
〉

D ′(0,T ),D(0,T )

=

∫ T

0
〈f −Bu̇−Au, v〉ψ dt

=
〈
f −Bu̇−Au,ψ v

〉
D ′((0,T );V ′),D((0,T );V )

.

Consequently, by the density of tensor products of test functions

D(0, T )⊗ V := {(t, x) 7→ ψ(t)v(x) : ψ ∈ D(0, T ), v ∈ V }

in D((0, T );V ), we thus have derived the following representation of (3.1): For all ϕ ∈ D((0, T );V ),〈 d
dt

(Cu̇) +Bu̇+Au , ϕ
〉

D ′((0,T );V ′),D((0,T );V )
=
〈
f, ϕ

〉
D ′((0,T );V ′),D((0,T );V )

,

that is, d
dt(Cu̇) +Bu̇+Au = f in D ′((0, T );V ′). Therefore, by the assumptions on u, A, B, f ,

d

dt
(Cu̇) = f −Bu̇−Au ∈ L2((0, T );V ′),

which completes the proof.

Consequently, if u is a weak solution of (3.1), then d
dt(Cu̇) ∈ L2((0, T );V ′) holds by Lemma 3.3

and then Lemma 3.2 yields (3.16), that is, d
dtc(u̇, v) = 〈 ddt(Cu̇), v〉.

Remark 3.4 (Strong and classical regularity). If u ∈ H2((0, T );V ), which sometimes is called
strong regularity, then (3.17) reads

Cü+Bu̇+Au = f a.e. in L2((0, T );V ′). (3.18)

With classical regularity conditions, u ∈ C 2([0, T ];V ) and f ∈ C 0([0, T ];V ′), Equation (3.18)
holds in C 0([0, T ];V ′), i.e. everywhere on [0, T ]. y

Remark 3.5 (Better properties of the acceleration operator).

(i) Assuming the higher regularity d
dt(Cu̇) ∈ L2((0, T );H) compared to Lemma 3.2, (time-

independence and) invertibility of C on H yields, with u ∈ L2((0, T );V ) ∩H1((0, T );H),

d

dt
(Cu̇) = Cü ∈ L2((0, T );H) =⇒ ü ∈ L2((0, T );H),
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and thus u ∈ H2((0, T );H). Then (3.16) gives

d

dt
c(u̇, v) = 〈 d

dt
(Cu̇), v〉 = 〈 d

dt
(Cu̇)|v〉H = 〈Cü|v〉H = c(ü, v) in D ′(0, T ).

Thereby the weak evolution equation (3.1) reads

c(ü, v) + b(u̇, v) + a(u, v) = 〈f, v〉 in D ′(0, T ). (3.19)

(ii) However, as A ∈ Lin(V, V ′), the condition d
dt(Cu̇) ∈ L2((0, T );H) does not follow from the

weak evolution equation (3.1) but we only get d
dt(Cu̇) ∈ L2((0, T );V ′), see Lemma 3.3.

Yet, with C and C−1 ∈ Lin(H,H), the implication

d

dt
(Cu̇) ∈ L2((0, T );V ′) =⇒ ü ∈ L2((0, T );V ′)

generally does not hold. Its validity requires the existence of an extension ofC to Lin(V ′, V ′)
which is invertible. By transposition (due to symmetry of c), this amounts to the hypothesis
that

C ∈ Lin(V, V )

and is invertible. In this case the representation (3.19) is obtained as above. Moreover we
may apply C−1 to the strong evolution equation (3.17) to get ü+C−1B u̇+C−1Au = C−1f ,
that is

ü+ B̃ u̇+ Ã u = f̃ a.e. in L2((0, T );V ′) (3.20)

where Ã := C−1A ∈ Lin(V, V ′), B̃ := C−1B ∈ Lin(H,V ′), and f̃ := C−1f ∈ L2((0, T );V ′).

(iii) In typical applications the variational triple V ↪→ H ↪→ V ′ consists of L2-based Sobolev
spaces. Within this framework operators C ∈ Lin(H,H) that are elliptic pseudodifferential
operators of order zero (e.g. nonzero multiplication or convolution operators) possess the
desired properties. Thus the representations (3.19) and (3.20) are defined in this case. y

Remark 3.6 (First-order system). If u is a weak solution and one defines

U :=

(
u
Cu̇

)
, M :=

(
0 C−1

−A −BC−1

)
, F :=

(
0
f

)
then d

dt(Cu̇) +Bu̇+Au = f (3.17) can be written as the following system, [DL92, p. 559]:

d

dt
U = M U + F a.e. in L2((0, T );H)× L2((0, T );V ′).

Indeed, M U + F =

(
C−1Cu̇

−Au−BC−1Cu̇

)
+

(
0
f

)
=

(
u̇

−Au−Bu̇+ f

)
=

(
u̇

d
dt(Cu̇)

)
=

d

dt
U .

Similarly, the first-order version of ü+ B̃ u̇+ Ã u = f̃ (3.20) is

d

dt
Ũ = M̃ Ũ + F̃ a.e. in L2((0, T );V ′)2

with Ũ :=

(
u
u̇

)
, M̃ :=

(
0 IdH
−Ã −B̃

)
, and F̃ :=

(
0

f̃

)
. y

3.2 A priori estimates

A priori estimates are inequalities that a solution of an equation must necessarily satisfy, if it is
assumed to exist. In case of the weak evolution equation (3.1), these estimates will be obtained
as a consequence of the energy equality by employing the coercivity and continuity conditions.
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3 Variational solution of linear second-order evolution equations

3.2.1 Energy equality and integration by parts

The derivation of the energy equality relies on the generalization of the product rule (Leibniz
rule) and integration by parts formula to continuous bilinear forms [DL92, Prop. 1 & 2, p. 558]:

Lemma 3.7 (Integration by parts for bilinear forms). If u, ϕ ∈ H1((0, T );V ), then∫ T

0
〈u, ϕ̇〉 dt = −

∫ T

0
〈u̇, ϕ〉 dt+ 〈u, ϕ〉

∣∣∣T
0

(3.21)

and ∫ T

0
a0(u, ϕ̇) dt = −

∫ T

0
a0(u̇, ϕ) dt+ a0(u, ϕ)

∣∣∣T
0
. (3.22)

In particular, ∫ T

0
a0(u, u̇) dt =

1

2
a0(u, u)

∣∣∣T
0
, (3.23)

that is a0(u, u̇) =
d

dt

1

2
a0(u, u).

If in addition d
dt(Cu̇) ∈ L2((0, T );V ′), then∫ T

0
〈 d
dt

(Cu̇), ϕ〉 dt = −
∫ T

0
c(u̇, ϕ̇) dt+ c(u̇, ϕ)

∣∣∣T
0
. (3.24)

In particular, ∫ T

0
〈 d
dt

(Cu̇), u̇〉 dt =
1

2
c(u̇, u̇)

∣∣∣T
0
, (3.25)

that is 〈 d
dt

(Cu̇), u̇〉 =
d

dt

1

2
c(u̇, u̇).

Proof. The higher regularity u̇(t) ∈ V (instead of only u̇(t) ∈ H) allows us to apply the product
rule to the bilinear forms 〈., .〉H = 〈., .〉, a0, and c: If u, ϕ ∈ D([0, T ];V ), then

d

dt
〈u, ϕ〉 = 〈u, ϕ̇〉+ 〈u̇, ϕ〉 =⇒

∫ T

0
(〈u, ϕ̇〉+ 〈u̇, ϕ〉) dt = 〈u, ϕ〉

∣∣∣T
0

which results in (3.21). Moreover

d

dt
a0(u, ϕ) = a0(u, ϕ̇) + a0(u̇, ϕ) =⇒

∫ T

0
(a0(u, ϕ̇) + a0(u̇, ϕ)) dt = a0(u, ϕ)

∣∣∣T
0

which gives (3.22). Similarly,

d

dt
c(u̇, ϕ) = c(ü, ϕ) + c(u̇, ϕ̇) =⇒

∫ T

0
(c(ü, ϕ) + c(u̇, ϕ̇)) dt = c(u̇, ϕ)

∣∣∣T
0

and (3.24) holds since

〈 d
dt

(Cu̇), .〉 = c(ü, .)

for u ∈ D([0, T ];V ). The identities (3.23) and (3.25) follow by symmetry and upon setting u = ϕ.
Density of D([0, T ];V ) in H1((0, T );V ) concludes the proof.
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3.2. A priori estimates

By density of V in H, (3.21) and (3.24) also hold for u ∈ H1((0, T );H) and ϕ ∈ H1((0, T );V ).
Moreover, we note that if u ∈ H2((0, T );H) then (3.25) corresponds to

〈 d
dt

(Cu̇), u̇〉 = 〈Cü|u̇〉H = c(ü, u̇) =
d

dt

1

2
c(u̇, u̇). (3.26)

We are ready to discuss the following important necessary condition for a weak solution u of
the abstract Cauchy problem [DL92, Lemma 7, p. 578]:

Proposition 3.8 (Energy equality). Let u ∈ L∞((0, T );V ) ∩W 1,∞((0, T );H) satisfy (3.1) for
the data u(0) = u0 ∈ H, u̇(0) = u1 ∈ V , and f ∈ L2((0, T );H). Then, for t ∈ [0, T ],

1

2

(
c(u̇(t), u̇(t)) + a0(u(t), u(t))

)
+

∫ t

0

(
b(u̇(t′), u̇(t′)) + a1(u(t′), u̇(t′))

)
dt′

=
1

2

(
c(u1, u1) + a0(u0, u0)

)
+

∫ t

0
〈f(t′)|u̇(t′)〉H dt′. (3.27)

The pointwise validity on [0, T ] follows from property (3.12), u ∈ C 0([0, T ];V ) ∩ C 1([0, T ];H).

Equation (3.27) is called energy equality, because in typical applications the function

E(u) : [0, T ]→ R, E(u)(t) :=
1

2

(
c(u̇(t), u̇(t)) + a0(u(t), u(t))

)
(3.28)

can be interpreted as the stored energy of the solution u as a function of time. In particular,
the energy splits into the kinetic energy 1

2c(u̇, u̇) plus the potential energy 1
2a0(u, u).

In terms of E, (3.27) expresses energy balance:

E(u)(t) +

∫ t

0
(b(u̇, u̇) + a1(u, u̇)) dt′ = E(u)(0) +

∫ t

0
〈f |u̇〉H dt′

or
d

dt
E(u) + (b(u̇, u̇) + a1(u, u̇)) = 〈f |u̇〉H ,

where b(u̇, u̇) +a1(u, u̇) corresponds to the dissipation rate and 〈f |u̇〉H is the external power.

We present a heuristic argument to prove the energy equality: First we write (3.1) via d
dtc(u̇, v) =

〈 ddt(Cu̇), v〉 from (3.16):

〈 d
dt

(Cu̇), v〉+ b(u̇, v) + a(u, v) = 〈f, v〉 for all v ∈ V in the sense of D ′(0, T ).

Evaluation at a fixed time t′ ∈ (0, T ] for the test function v = u̇(t′) and applying integration by
parts (formulas (3.25) and (3.23) of Lemma 3.7) yields

〈 d
dt

(Cu̇), u̇〉+ b(u̇, u̇) + a(u, u̇) = 〈f, u̇〉

=⇒ 1

2
c(u̇, u̇)

∣∣∣t
0

+

∫ t

0
(b(u̇, u̇) + a(u, u̇)) dt′ =

∫ t

0
〈f, u̇〉 dt′

=⇒ 1

2
(c(u̇, u̇) + a0(u, u))

∣∣∣t
0

+

∫ t

0
(b(u̇, u̇) + a1(u, u̇)) dt′ =

∫ t

0
〈f, u̇〉 dt′.

This coincides with (3.27), because by (3.4) 〈f, u̇〉 = 〈f |u̇〉H if f ∈ H and u̇ ∈ V . The result
may alternatively be derived by taking u̇ in duality with the strong form (3.17):〈 d

dt
(Cu̇) +Bu̇+Au, u̇

〉
L2((0,T );V ′),L2((0,T );V )

=
〈
f, u̇
〉
L2((0,T );V ′),L2((0,T );V )

.
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3 Variational solution of linear second-order evolution equations

However, the calculations above are only formal since Theorem 3.1 only gives u̇ ∈ C 0([0, T ];H).
Hence v = u̇(t′) ∈ H for t′ ∈ (0, T ), which might not be a valid test function v ∈ V . The problem
is that u̇ ∈ L2((0, T );H) is not in duality with the equation, which only holds in L2((0, T );V ′).
A rigorous proof of Proposition 3.8 based on double regularization techniques is provided in
[LM72, Chapter 3, Section 8.4, Lemma 8.3, p. 276].

Nevertheless, what has been established by the calculation is the following result under the
higher regularity u̇ ∈ L2((0, T );V ):

Lemma 3.9 (Energy equality for higher regularity). Let u ∈ H1((0, T );V ) satisfy (3.1) for the
data u(0) = u0 ∈ H, u̇(0) = u1 ∈ V , and f ∈ L2((0, T );V ′). Then the energy equality (3.27)
holds for a.a. t ∈ (0, T ).

As will be seen in Section 3.4.2, Lemma 3.9 proves the energy equality for parabolic problems.

3.2.2 Energy estimate

The next statement is a key ingredient to obtain a priori estimates:

Lemma 3.10 (Gronwall’s inequality). Let φ ∈ L∞(0, T ) and µ ∈ L1(0, T ) be such that φ, µ ≥ 0
a.e. in (0, T ). Let K ∈ R and t ∈ (0, T ). If

φ(t) ≤ K +

∫ t

0
µ(t′)φ(t′) dt′,

then
φ(t) ≤ K e

∫ t
0 µ(t′) dt′ .

In particular, if K = 0, we deduce φ = 0 a.e. in (0, T ).

Proof. We follow [DL92, Chapter XVIII, §5, Lemma 1, p. 559]. The assumptions φ ∈ L∞ and
µ ∈ L1 imply φµ ∈ L1. Consequently, the function F : [0, T ]→ R,

F (t) := K +

∫ t

0
µ(t′)φ(t′) dt′

is absolutely continuous, F ∈ Cabs, with derivative F ′ = φµ a.e. in (0, T ). By the positivity
assumptions on φ and µ we deduce

φ ≤ F =⇒ F ′ = φµ ≤ Fµ =⇒ F ′

F
≤ µ.

Integration gives

ln

(
F (t)

F (0)

)
≤
∫ t

0
µ(t′) dt′ =⇒ F (t) ≤ F (0) e

∫ t
0 µ(t′) dt′

for a.a. t ∈ (0, T ), which with F (0) = K completes the proof.

The main result of this section is the a priori energy estimate. Specifically, it bounds the norm
of a weak solution u ∈ L∞((0, T );V ) ∩W 1,∞((0, T );H) in terms of the coefficients and data.

Proposition 3.11 (Energy estimate). Let u be a solution of (3.1) for the data u(0) = u0 ∈ H,
u̇(0) = u1 ∈ V , and f ∈ L2((0, T );H). Then, for t ∈ [0, T ],

‖u(t)‖2V + ‖u̇(t)‖2H ≤ k1 e
k2t (3.29)
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3.2. A priori estimates

with

k1 :=
(ca + 2λc2

V )‖u0‖2V + cc‖u1‖2H + ‖f‖2L2((0,T );H)

min(α, γ)
(3.30)

and
k2 :=

1 + ca1 + 2cb + 2λT

min(α, γ)
. (3.31)

In particular, equivalence of norms in R2 implies that there exists k ≥ 0 such that for all t ∈ [0, T ]

‖u(t)‖V + ‖u̇(t)‖H ≤ k(‖u0‖V + ‖u1‖H + ‖f‖L2((0,T );H)). (3.32)

The constant k is independent of the solution u or the data u0, u1, f .

Proof. Our starting point is twice the energy equality (3.27):

c(u̇(t), u̇(t)) + a0(u(t), u(t)) = c(u1, u1) + a0(u0, u0)

+ 2

∫ t

0
〈f |u̇〉H dt′ − 2

∫ t

0
(b(u̇, u̇) + a1(u, u̇)) dt′.

The left-hand side is bounded from below thanks to coercivity of c and a0,

c(u̇, u̇) + a0(u, u) ≥ γ‖u̇‖2H + α‖u‖2V − λ‖u‖
2
H .

We estimate the right-hand side from above: Due to continuity of c and a0,

c(u1, u1) + a0(u0, u0) ≤ cc‖u1‖2H + ca‖u0‖2V ,

and by continuity of b and a1, the Cauchy-Schwarz inequality

〈f |u̇〉H ≤ ‖f‖H‖u̇‖H ,

as well as the estimate 2xy ≤ x2 + y2 for (the norms) x, y ∈ R:

2

∫ t

0
〈f |u̇〉H dt′ − 2

∫ t

0
(b(u̇, u̇) + a1(u, u̇)) dt′

≤ 2

∫ t

0
(‖f‖H‖u̇‖H + cb‖u̇‖2H + ca1‖u‖V ‖u̇‖H) dt′

≤
∫ t

0
(‖f‖2H + ‖u̇‖2H + 2cb‖u̇‖2H + ca1‖u‖

2
V + ca1‖u̇‖

2
H) dt′

=

∫ t

0
(‖f‖2H + (1 + ca1 + 2cb)‖u̇‖2H + ca1‖u‖

2
V ) dt′.

Combining both estimates yields the inequality

γ‖u̇(t)‖2H + α‖u(t)‖2V ≤ λ‖u‖
2
H + cc‖u1‖2H + ca‖u0‖2V

+

∫ t

0
(‖f‖2H + (1 + ca1 + 2cb)‖u̇‖2H + ca1‖u‖

2
V ) dt′.

The term λ‖u(t)‖2H is estimated based on the fundamental theorem of calculus

u(t) = u0 +

∫ t

0
u̇(t′) dt′,
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3 Variational solution of linear second-order evolution equations

which also holds for u ∈ H1((0, T );H) ⊆ Cabs([0, T ];H) [DL92, Chapter XVIII, §5, p. 561]:

‖u(t)‖H = ‖u0 +
∫ t

0 u̇ dt′‖
H
≤ ‖u0‖H +

∫ t

0
‖u̇‖H dt′

≤ ‖u0‖H +
( ∫ t

0 12 dt′︸ ︷︷ ︸
= t

)1/2(∫ t
0 ‖u̇‖

2
H dt′

)1/2

=⇒ ‖u(t)‖2H ≤
(
‖u0‖H +

√
t
∫ t

0 ‖u̇‖
2
H dt′

)2

≤ ‖u0‖2H + 2‖u0‖H
√
t
∫ t

0 ‖u̇‖
2
H dt′︸ ︷︷ ︸

≤‖u0‖2H+t
∫ t
0 ‖u̇‖

2
H dt′

+ t

∫ t

0
‖u̇‖2H dt′

=⇒ ‖u(t)‖2H ≤ 2‖u0‖2H + 2t

∫ t

0
‖u̇‖2H dt′.

Thus, with ‖.‖H ≤ cV ‖.‖V from (3.3) we obtain

λ‖u(t)‖2H ≤ 2λc2
V ‖u0‖2V + 2λT

∫ t

0
‖u̇‖2H dt′

and the energy estimate takes the intermediate form

γ‖u̇(t)‖2H + α‖u(t)‖2V ≤ cc‖u
1‖2H + (ca + 2λc2

V )‖u0‖2V +

∫ t

0
‖f‖2H dt′

+

∫ t

0
((1 + ca1 + 2cb + 2λT )‖u̇‖2H + ca1‖u‖

2
V ) dt′, (3.33)

from which we deduce

min(α, γ)
(
‖u(t)‖2V + ‖u̇(t)‖2H

)
≤ cc‖u1‖2H + (ca + 2λc2

V )‖u0‖2V +

∫ t

0
‖f‖2H dt′

+ (1 + ca1 + 2cb + 2λT )

∫ t

0

(
‖u‖2V + ‖u̇‖2H

)
dt′.

In terms of the auxiliary function

φ := ‖u‖2V + ‖u̇‖2H ∈ L
∞(0, T )

the estimate reads

min(α, γ)φ(t) ≤ cc‖u1‖2H +(ca+2λc2
V )‖u0‖2V +

∫ T

0
‖f‖2H dt′+(1+ ca1 +2cb+2λT )

∫ t

0
φ(t′) dt′.

Consequently,

φ(t) ≤ k1 + k2

∫ t

0
φ(t′) dt′ (3.34)

with constants (3.30) and (3.31):

k1 =
(ca + 2λc2

V )‖u0‖2V + cc‖u1‖2H +
∫ T

0 ‖f‖
2
H dt′

min(α, γ)
and k2 =

1 + ca1 + 2cb + 2λT

min(α, γ)
.

Gronwall’s inequality (Lemma 3.10) then gives ‖u(t)‖2V + ‖u̇(t)‖2H ≤ k1 e
k2t, which is (3.29).
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3.3. Uniqueness

The energy estimate (3.29) quantifies how the total energy of the solution on the time interval
[0, T ] depends on the initial data ‖u0‖V and ‖u1‖H , the source ‖f‖L2((0,T );H), as well as on the
operators and spaces, i.e. on the coercivity constants α, λ, γ, the continuity constants ca, ca1 ,
cb, cc, and the constant cV for the embedding V ↪→ H from (3.3).

Moreover, due to linearity of the problem, the following statement is a direct consequence of
the energy estimate (cf. [DL92, Theorem 2, p. 567]):

Corollary 3.12 (Continuous dependence on data). Let u1 be a solution of (3.1) for the data
u1(0) = u0

1 ∈ H, u̇1(0) = u1
1 ∈ V , f1 ∈ L2((0, T );H). Let u2 be another solution for the data

u2(0) = u0
2 ∈ H, u̇2(0) = u1

2 ∈ V , f2 ∈ L2((0, T );H). Then there exists k > 0 such that

‖u1 − u2‖L∞((0,T );V ) + ‖u̇1 − u̇2‖L∞((0,T );H)

≤ k(‖u0
1 − u0

2‖V + ‖u1
1 − u1

2‖H + ‖f1 − f2‖L2((0,T );H)). (3.35)

Proof. Since problem (3.1) is linear, the difference u := u1 − u2 is the solution of (3.1) with the
initial data u0 := u0

1 − u0
2, u1 := u1

1 − u1
2 and the force given by f := f1 − f2. Consequently we

have the estimate (3.32),

‖u(t)‖V + ‖u̇(t)‖H ≤ k(‖u0‖V + ‖u1‖H + ‖f‖L2((0,T );H)).

with the same constant k. Taking supt∈(0,T ) completes the proof.

The estimate (3.35) shows how the distance of the two solutions u1 and u2 is bounded in
terms of the distances of their data. Therefore, it expresses continuity of the solution as a
function of the data. Together with existence and uniqueness, which will be established in the
two subsequent sections, the continuous dependence of the solution on the data is one of the
essential features of a well-posed problem.

3.3 Uniqueness

3.3.1 Proof by the energy equality

Uniqueness in Theorem 3.1 immediately follows from Corollary (3.12), which is based on the
energy estimate (3.29),

‖u(t)‖2V + ‖u̇(t)‖2H ≤ k1 e
k2t,

which in turn was a consequence of the equality (3.27) (see Propositions 3.8 and 3.11).

We briefly repeat this quick approach to prove uniqueness:

Proof. Consider two different solutions of the weak evolution equation (3.1),

ũ, ˜̃u ∈ C 0([0, T ];V ) ∩ C 1([0, T ];H).

Then, by linearity, their difference u := ũ− ˜̃u solves the homogeneous equation

d

dt
c(u̇, v) + b(u̇, v) + a(u, v) = 0 for all v ∈ V in the sense of D ′(0, T )

with zero initial values u0 = 0 and u1 = 0. But these conditions imply k1 = 0, see (3.30), and
the energy estimate (3.29) gives

‖u‖2V + ‖u̇‖2H = 0 a.e. on (0, T ).
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3 Variational solution of linear second-order evolution equations

Consequently we deduce

u = 0, that is, ũ = ˜̃u in L∞((0, T );V ) ∩W 1,∞((0, T );H).

Since C 0([0, T ];V ) ∩ C 1([0, T ];H) is contained in L∞((0, T );V ) ∩W 1,∞((0, T );H) this shows
that solutions of (3.1) are unique.

3.3.2 Proof by an integrated energy equality

Uniqueness in Theorem 3.1 may be also established in an alternative way, which does not
depend on the energy equality (3.27). The key idea is to choose a special integrated test
function: In contrast to the derivative u̇ used in the heuristic proof of the energy equality, the
antiderivative

∫
u dt is a valid test function in the weak formulation. We follow [DL92, p. 572].

Proof. Assume that u ∈ L2((0, T );V ) ∩H1((0, T );H) is a solution of (3.1),

d

dt
c(u̇, v) + b(u̇, v) + a(u, v) = 〈f, v〉 for all v ∈ V in the sense of D ′(0, T ),

with u(0) = u0 ∈ V and u̇(0) = u1 ∈ H. Let s ∈ (0, T ) and define the integrated test function

ϕ(t) :=

 −
∫ s

t
u(t′) dt′, t < s

0, t ≥ s.

By construction, ϕ ∈ L2((0, T );V ) with

ϕ(T ) = 0, ϕ(s) = 0, and ϕ̇(t) =

{
u(t), t < s

0, t ≥ s.

In particular, the last property shows that ϕ̇ ∈ L∞((0, T );V ), implying

ϕ ∈W 1,∞((0, T );V ) ⊆ H1((0, T );V ).

The validity of the weak evolution equation gives d
dt(Cu̇) ∈ L2((0, T );V ′) (Lemma 3.3) and

therefore (3.16) holds: d
dtc(u̇, v) = 〈 ddt(Cu̇), v〉. Evaluating the weak evolution equation (3.1) for

v = ϕ(t) ∈ V and integration thus leads to∫ T

0

(
〈 d
dt

(Cu̇), ϕ〉+ b(u̇, ϕ) + a(u, ϕ)

)
dt =

∫ T

0
〈f, ϕ〉 dt.

For u ∈ H1((0, T );H) and ϕ ∈ H1((0, T );V ) the integration by parts formula (3.24) applies:∫ T

0
〈 d
dt

(Cu̇), ϕ〉 dt = −
∫ T

0
c(u̇, ϕ̇) dt− c(u, ϕ)

∣∣∣T
0
.

Consequently, the integrated weak evolution equation reads∫ T

0
((a0 + a1)(u, ϕ) + b(u̇, ϕ)− c(u̇, ϕ̇)) dt =

∫ T

0
〈f, ϕ〉 dt− c(u, ϕ)

∣∣∣T
0
.

Upon changing T to s and by the properties of ϕ we obtain [DL92, Eq. (5.106)]∫ s

0
(a0(ϕ̇, ϕ) + a1(u, ϕ) + b(u̇, ϕ)− c(u̇, u)) dt =

∫ s

0
〈f, ϕ〉 dt+ c(u1, ϕ(0)).
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3.3. Uniqueness

Since the problem is linear, it suffices to show that the evolution equation (3.1) with zero data
and source, i.e. with u0 = 0, u1 = 0, and f = 0, has the solution u = 0. With these assumptions
the right-hand-side of the equation above vanishes and we get an integrated energy equality:∫ s

0

(
1

2

d

dt
a0(ϕ,ϕ) + a1(u, ϕ) + b(u̇, ϕ)− 1

2

d

dt
c(u, u)

)
dt = 0

=⇒ a0(ϕ(0), ϕ(0)) + c(u(s), u(s)) = 2

∫ s

0
(a1(u, ϕ) + b(u̇, ϕ)) dt

=⇒ a0(ϕ(0), ϕ(0)) + c(u(s), u(s)) = 2

∫ s

0
(a1(u, ϕ)− b(u, u)) dt. (3.36)

The last implication follows from bilinearity of b and the conditions u0 = 0, ϕ(s) = 0:

0 = b(u, ϕ)
∣∣∣s
0

=

∫ s

0

d

dt
b(u, ϕ) dt =

∫ s

0
(b(u̇, ϕ) + b(u, ϕ̇)) dt =

∫ s

0
(b(u̇, ϕ) + b(u, u)) dt.

In the following we proceed as in the proof of the energy estimates (Proposition 3.11). Since
u(t) ∈ V ⊆ H and ϕ(t) ∈ V , the additional regularity (3.8), i.e. A1 ∈ Lin(H,V ′), gives
|a1(u(t), ϕ(t))| ≤ c′a1

‖u(t)‖H ‖ϕ(t)‖V and continuity of b on H yields |b(u(t), u(t))| ≤ cb‖u(t)‖2H .
Thus we deduce an estimate for the right-hand-side of (3.36):

2

∫ s

0
(a1(u, ϕ)− b(u, u)) dt ≤ 2

∫ s

0
(|a1(u, ϕ)|+ |b(u, u)|) dt

≤ 2

∫ s

0

(
c′a1
‖u(t)‖H ‖ϕ(t)‖V + cb‖u(t)‖2H

)
dt.

By coercivity of a0 and c, the left-hand side of (3.36) has the lower bound

a0(ϕ(0), ϕ(0)) + c(u(s), u(s)) ≥ α‖ϕ(0)‖2V − λ‖ϕ(0)‖2H + γ‖u(s)‖2H .

In combination we get the inequality

α‖ϕ(0)‖2V + γ‖u(s)‖2H ≤
∫ s

0

(
c′a1

2‖u(t)‖H ‖ϕ(t)‖V︸ ︷︷ ︸
≤‖u(t)‖2H+‖ϕ(t)‖2V

+2cb‖u(t)‖2H
)

dt + λ‖ϕ(0)‖2H︸ ︷︷ ︸
≤λ

∫ s
0 ‖u(t)‖2H dt

.

Here, the estimate for the λ-term follows from ϕ(0) = −
∫ s

0
u(t) dt and the triangle inequality

for integrals:

‖ϕ(0)‖2H =
∥∥∥− ∫ s

0
u(t) dt

∥∥∥2

H
≤
∫ s

0
‖u(t)‖2H dt.

Thus
α‖ϕ(0)‖2V + γ‖u(s)‖2H ≤

∫ s

0

(
(c′a1

+ 2cb + λ)‖u(t)‖2H + c′a1
‖ϕ(t)‖2V

)
dt

and we arrive at the estimate [DL92, (5.108)]

‖ϕ(0)‖2V + ‖u(s)‖2H ≤M
∫ s

0

(
‖ϕ(t)‖2V + ‖u(t)‖2H

)
dt with M :=

c′a1
+ 2cb + λ

min(α, γ)
.

Next we consider the antiderivative v of the solution u:

v(t) :=

∫ t

0
u(t′) dt′.

By definition, v ∈ H1((0, T );V ) and satisfies

v(s) =

∫ s

0
u = −ϕ(0) and v(s)− v(t) =

∫ s

t
u = −ϕ(t) for t ≤ s.
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3 Variational solution of linear second-order evolution equations

These properties enable us to replace the integrated test function ϕ in the estimate by v:

‖v(s)‖2V + ‖u(s)‖2H ≤M
∫ s

0

(
‖v(s)− v(t)‖2V + ‖u(t)‖2H

)
dt.

With ∫ s

0
‖v(s)− v(t)‖2V dt ≤ 2

∫ s

0

(
‖v(s)‖2V + ‖v(t)‖2V

)
dt = 2s‖v(s)‖2V + 2

∫ s

0
‖v(t)‖2V dt

this yields

‖v(s)‖2V + ‖u(s)‖2H ≤M
∫ s

0

(
2‖v(t)‖2V + ‖u(t)‖2H

)
dt+ 2Ms‖v(s)‖2V

and hence

(1− 2Ms)‖v(s)‖2V + ‖u(s)‖2H ≤M
∫ s

0

(
2‖v(t)‖2V + ‖u(t)‖2H

)
dt.

Now we choose s ≤ s0 such that 1− 2Ms0 > 0, i.e.

s0 <
1

2M
=

min(α, γ)

2(c′a1
+ 2cb + λ)

(note that we can not simply assume 1 − 2Ms0 ≥ 1, because this gives s0 ≤ 0). Then the
estimate is of the form

‖v(s)‖2V + ‖u(s)‖2H ≤M
′
∫ s

0

(
‖v(t)‖2V + ‖u(t)‖2H

)
dt

with a constant M ′ > 0. Finally Gronwall’s inequality (Lemma 3.10) yields

‖v‖2V + ‖u‖2H = 0 a.e. in (0, s0).

In particular u = 0 a.e. on (0, s0). This implies uniqueness on the interval (0, s0). Then we
consider the weak evolution problem (3.1) on (s0, T ) and by proceeding as above step-by-step
we eventually get u = 0 a.e. in (0, T ), showing uniqueness of weak solutions (3.13). Starting
from u ∈ C 0([0, T ];V ) ∩ C 1([0, T ];H) (3.12) will give u = 0 everywhere in [0, T ].

3.4 Existence

3.4.1 Proof by the Faedo-Galerkin method

We discuss the Faedo-Galerkin method and will mainly follow [RR04, Section 11.2.2, p. 389].

Definition 3.13 (Galerkin approximation). Let {Vm}m∈N be a family of finite dimensional sub-
spaces of a separable Hilbert space V :

Vm ⊆ V with dm := dimVm <∞.

The space Vm is called the Galerkin approximation of V of order m, if Vm → V (m → ∞) in
the sense that there exists a dense subspace W ⊆ V such that for all v ∈ W there exists a
sequence (vm)m∈N with vm ∈ Vm and vm → v in V (see [DL92, p. 504]). y
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3.4. Existence

By definition, if {Vm}m∈N is a Galerkin approximation of V , then every u ∈ V can be obtained
as a limit of some sequence (vm)m with

vm ∈ Vm and vm → u in V (m→∞).

The Galerkin approximation of the abstract evolution equation leads to an approximated evolu-
tion problem, that corresponds to a space discretization of the PDE. This procedure is called
the Faedo-Galerkin method (in contrast to the Galerkin method for time-independent problems).

Let {Vm}m∈N be a Galerkin approximation of V (which exists thanks to separability of V ). Den-
sity of V in H implies that {Vm}m∈N also is a Galerkin approximation of H. Consequently, there
exist two sequences (u0

m)m, (u1
m)m with

u0
m ∈ Vm, u0

m → u0 in V,

u1
m ∈ Vm, u1

m → u1 in H.

In particular, if Πm : V → Vm and Pm : H → Vm are the orthogonal projections, we may choose

u0
m := Πmu

0 and u1
m := Pmu

1. (3.37)

Let
{wm;j}j=1, ..., dm ⊆ Vm

denote a basis of Vm. Then the original Cauchy problem (3.1), (3.2) is associated to the follow-
ing approximated Cauchy problem of order m: Find the solution

um : t 7→ um(t) =

dm∑
k=1

gk(t)wm;k ∈ Vm with gk : [0, T ]→ R

of the system

c(üm, wm;j) + b(u̇m, wm;j) + a(um, wm;j) = 〈f, wm;j〉 (3.38)
for j = 1, . . . , dm and in the sense of D ′(0, T ),

that satisfies
um(0) = u0

m, u̇m(0) = u1
m. (3.39)

Lemma 3.14 (Existence and uniqueness for the approximated Cauchy problem). Problem
(3.38), (3.39) possesses a unique solution

um ∈ H2((0, T );Vm). (3.40)

In particular, um ∈ C 1([0, T ];Vm), u̇m ∈ C 0([0, T ];Vm), and üm ∈ L2((0, T );Vm).

Proof. We observe that (3.38) is a linear second-order system of ordinary differential equations
(ODEs) with constant coefficients for the components of the dm-dimensional coefficient vector

g := (gk)
dm
k=1 : [0, T ]→ Rdm .

Indeed, due to bilinearity of a, b, c, the approximated evolution equation reads

dm∑
k=1

(ckj g̈k + bkj ġk + akj gk) = fj for j = 1, . . . , dm (3.41)

with the constant (i.e. time-independent) scalar coefficients

akj := a(wm;k, wm;j), bkj := b(wm;k, wm;j), ckj := c(wm;k, wm;j),
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3 Variational solution of linear second-order evolution equations

and the right-hand side
fj := 〈f, wm;j〉 ∈ L2(0, T )

for k, j = 1, . . . , dm. The initial data are

g(0) = g0 := (g0
k)
dm
k=1 and ġ(0) = g1 := (g1

k)
dm
k=1

with components g0
k and g1

k given according to (3.39): u0
m =

dm∑
k=1

g0
kwm;k and u1

m =

dm∑
k=1

g1
kwm;k.

Solutions of linear ODE-systems with constant coefficients always exist and are unique. In
particular, in view of the invertibility of the leading coefficient matrix (ckj) and since the source
vector (fj)

dm
j=1 has components in L2(0, T ), we deduce (e.g. by Fourier transform) the existence

of a unique solution g of (3.41) that satisfies

g ∈ H2(0, T )dm .

Consequently g̈ ∈ L2(0, T )dm and Sobolev embedding yields ġ ∈ H1 ⊆ C 0 and g ∈ H2 ⊆ C 1.
Thus um =

∑dm
k=1 gkwm;k ∈ H2((0, T );Vm), which concludes the proof.

The main result is the following:

Proposition 3.15 (Existence for the original Cauchy problem). For m → ∞ the sequence
(um)m of solutions of the approximated Cauchy problem (3.38), (3.39) converges to a limit u in
D ′((0, T );H), which possesses the weak regularity (3.13):

u ∈ L∞((0, T );V ) ∩W 1,∞((0, T );H).

Moreover u solves the original Cauchy problem, i.e. satisfies (3.1) with initial conditions (3.2).

Proof. Let um ∈ H2((0, T );Vm) be the approximate solution obtained in Lemma 3.14. We
proceed in four steps (cf. Section 2.3.2): Convergence of um follows from boundedness results
which are obtained via energy estimates (Steps 1 & 2). This also yields the asserted regularity
of the limit u. In Step 3 we check whether this limit constructed from solutions um of the
approximated problems solves the original evolution equation (3.1). In Step 4 we verify the
initial conditions (3.2).

– Step 1: Energy estimates. Multiplication of (3.38) by ġj and summation in j from 1 to dm
gives

c(üm, u̇m) + b(u̇m, u̇m) + a(um, u̇m) = 〈f, u̇m〉.

Proceeding as in the heuristic proof of the energy equality is now rigorous as u̇m ∈ Vm ⊆ V
(see Lemma 3.9): We integrate twice the equation from 0 to t ∈ (0, T ), split a = a0 + a1, and
employ the integration by parts formulas (3.23) and (3.25) to obtain

1

2
c(u̇m, u̇m)

∣∣∣t
0

+

∫ t

0
(b(u̇m, u̇m) + a(um, u̇m)) dt′ =

∫ t

0
〈f, u̇m〉 dt′

=⇒ 1

2
(c(u̇m, u̇m) + a0(um, um))

∣∣∣t
0

+

∫ t

0
(b(u̇m, u̇m) + a1(um, u̇m)) dt′ =

∫ t

0
〈f, u̇m〉 dt′.

Insertion of the initial conditions u0
m = um(0) and u1

m = u̇m(0) from (3.39) yields the following
approximated energy equality, which is similar to (3.27):

1

2

(
c(u̇m(t), u̇m(t)) + a0(um(t), um(t))

)
+

∫ t

0

(
b(u̇m(t′), u̇m(t′)) + a1(um(t′), u̇m(t′))

)
dt′

=
1

2

(
c(u1

m, u
1
m) + a0(u0

m, u
0
m)
)

+

∫ t

0
〈f(t′), u̇m(t′)〉 dt′. (3.42)
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In complete analogy to the proof of Proposition 3.11, coercivity and continuity of the bilinear
forms then imply energy estimates for um, valid for t ∈ [0, T ]:

‖um(t)‖2V + ‖u̇m(t)‖2H ≤ k1 e
k2t. (3.43)

– Step 2: Boundedness and convergence to a limit. The constants k1, k2 in the energy
estimate (3.43) for um are the same as (3.30), (3.31) in the energy estimate for u:

k1 =
(ca + 2λc2

V )‖u0‖2V + cc‖u1‖2H + ‖f‖2L2((0,T );H)

min(α, γ)
and k2 =

1 + ca1 + 2cb + 2λT

min(α, γ)
,

where k1 is obtained with the help of the projections to Vm, see (3.37):

‖u0
m‖V = ‖Πmu

0‖V ≤ ‖u
0‖V and ‖u1

m‖H = ‖Pmu1‖H ≤ ‖u
1‖H .

Since the constants do not depend on the approximation order m, (3.43) implies that

(i) um lies in a bounded set of L∞((0, T );V )

(ii) u̇m lies in a bounded set of L∞((0, T );H), (3.44)

with bounds that are uniformly in m. Weak-∗ compactness allows us to extract corresponding
subsequences which weakly-∗ converge as m→∞, written here without relabeling:

(i) um ⇀∗ u in L∞((0, T );V )

(ii) u̇m ⇀∗ u̇ in L∞((0, T );H). (3.45)

Actually, we first only get u̇m ⇀∗ w in L∞((0, T );H) but w = u̇ then follows from uniqueness of
limits in D ′((0, T );H). Thus there exists a limit function u ∈ L∞((0, T );V )∩W 1,∞((0, T );H) as
was claimed in (3.13).

– Step 3: The limit satisfies the evolution equation. Let hj ∈ D([0, T ]) and set

ϕ :=
n∑
j=1

hjwm;j ∈ D([0, T ])⊗ Vm

with n ≤ dm; functions of this form are dense in D([0, T ];V ). Multiplication of the approximated
equation (3.38) by hj , summation in j from 1 to n, and time integration gives∫ T

0
(c(üm, ϕ) + b(u̇m, ϕ) + a(um, ϕ)) dt =

∫ T

0
〈f, ϕ〉 dt,

from which by (3.24),
∫ T

0
c(üm, ϕ) dt = c(u̇m, ϕ)

∣∣∣T
0
−
∫ T

0
c(u̇m, ϕ̇) dt, and in terms of operators,

〈Cu̇m, ϕ〉
∣∣∣T
0
−
∫ T

0
〈Cu̇m, ϕ̇〉 dt+

∫ T

0
(〈Bu̇m, ϕ〉+ 〈Aum, ϕ〉) dt =

∫ T

0
〈f, ϕ〉 dt. (3.46)

The assumptions A ∈ Lin(V, V ′), B,C ∈ Lin(H,H) together with the uniform boundedness of
um in L∞((0, T );V ) and of u̇m in L∞((0, T );H), see (3.44), imply that

(i) Aum lies in a bounded set of L∞((0, T );V ′)

(ii) Bu̇m, Cu̇m lie in bounded sets of L∞((0, T );H),

and weak-∗ compactness gives

(i) Aum ⇀∗ Au in L∞((0, T );V ′)

(ii) Bu̇m ⇀∗ Bu̇, Cu̇m ⇀∗ Cu̇ in L∞((0, T );H). (3.47)
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3 Variational solution of linear second-order evolution equations

These convergence properties of Aum, Bu̇m, and Cu̇m are sufficient to take the limit m → ∞
in (3.46).

In order to verify the evolution equation we further restrict to test functions

ϕ ∈ D(0, T )⊗ Vm

making the first term in (3.46) disappear. The limit m→∞ then gives

−
∫ T

0
〈Cu̇, ϕ̇〉 dt+

∫ T

0
(〈Bu̇, ϕ〉+ 〈Au,ϕ〉) dt =

∫ T

0
〈f, ϕ〉 dt

which coincides with〈 d
dt

(Cu̇) +Bu̇+Au,ϕ
〉

D ′((0,T );V ′),D((0,T );V )
=
〈
f, ϕ

〉
D ′((0,T );V ′),D((0,T );V )

.

By density of functions ϕ in D((0, T );V ), the limit u indeed satisfies the evolution equation (3.1).

– Step 4: The limit satisfies the initial conditions. We need to show u(0) = u0 and u̇(0) = u1.
For this purpose we consider test functions that vanish only at t = T :

ϕ ∈ D([0, T ];V ) with ϕ(T ) = 0.

We first consider the equation for u. Since u ∈ H1((0, T );H), integration by parts (3.21) applies:∫ T

0
〈u̇, ϕ〉 dt = −〈u(0), ϕ(0)〉 −

∫ T

0
〈u, ϕ̇〉 dt.

With um(0) = u0
m the discrete analogue is∫ T

0
〈u̇m, ϕ〉 dt = −〈u0

m, ϕ(0)〉 −
∫ T

0
〈um, ϕ̇〉 dt.

The convergences (3.45), um ⇀∗ u in L∞((0, T );V ), u̇m ⇀∗ u̇ in L∞((0, T );H), and u0
m → u0

in V allow us to take the limit m→∞:∫ T

0
〈u̇, ϕ〉 dt = −〈u0, ϕ(0)〉 −

∫ T

0
〈u, ϕ̇〉 dt.

Comparison shows 〈u(0), ψ(0)〉 = 〈u0, ψ(0)〉, which with ϕ(0) ∈ V gives u(0) = u0 in V ′.

Next we prove the equation for u̇. On one hand, we already know from Step 3 that u is a
solution, whence by Lemma 3.3, d

dt(Cu̇) ∈ L2((0, T );V ′). Consequently, taking the strong form
(3.17) in duality with with ϕ and integrating by parts via (3.24) gives

−
∫ T

0
〈Cu̇, ϕ̇〉 dt+

∫ T

0
(〈Bu̇, ϕ〉+ 〈Au,ϕ〉) dt = 〈Cu̇(0), ϕ(0)〉+

∫ T

0
〈f, ϕ〉 dt.

On the other hand, with the approximated initial condition u̇m(0) = u1
m, (3.46) reads

−
∫ T

0
〈Cu̇m, ϕ̇〉 dt+

∫ T

0
(〈Bu̇m, ϕ〉+ 〈Aum, ϕ〉) dt = 〈Cu1

m, ϕ(0)〉+

∫ T

0
〈f, ϕ〉 dt

which with u1
m → u1 in H converges to

−
∫ T

0
〈Cu̇, ϕ̇〉 dt+

∫ T

0
(〈Bu̇, ϕ〉+ 〈Au,ϕ〉) dt = 〈Cu1, ϕ(0)〉+

∫ T

0
〈f, ϕ〉 dt.

By comparison, 〈Cu̇(0), ϕ(0)〉 = 〈Cu1, ϕ(0)〉, which thanks to invertibility of C shows u̇(0) = u1

in H and completes the proof.
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We have established the existence of a weak solution u ∈ L∞((0, T );V ) ∩W 1,∞((0, T );H) of
(3.1) that satisfies the initial conditions (3.2). Uniqueness has been proven in Section 3.3. The
only missing assertion of Theorem 3.1 is the regularity u ∈ C 0([0, T ];V ) ∩ C 1([0, T ];H) (3.12),
which does not follow from the Faedo-Galerkin method.

Remark 3.16 (Existence for weaker assumptions on A1). As the Faedo-Galerkin method
suggests, existence can be established under the assumption A1 ∈ Lin(V,H) instead of
A1 ∈ Lin(V,H) ∩ Lin(H,V ′) (3.15). Yet, the condition A1 ∈ Lin(H,V ′) (3.8), seems to be
indispensable in proving uniqueness [DL92, Chapter XVIII, §5, Remark 8, p. 574]. In both our
uniqueness proofs, it is used to estimate the term involving a1 in the energy equation (3.27) or
its integrated counterpart (3.36). y

Remark 3.17 (An alternative proof of u(0) = u0). We recall that weak-∗ convergence in
L∞((0, T );H) implies weak convergence in L2((0, T );H) (Lemma 2.15). Consequently, prop-
erties (i) um ⇀∗ u in L∞((0, T );V ) and (ii) u̇m ⇀∗ u̇ in L∞((0, T );H) of (3.45) imply

(i)’ um ⇀ u in L2((0, T );H)

(ii)’ u̇m ⇀ u̇ in L2((0, T );H)

from which we further deduce

um ⇀ u in H1((0, T );H).

By Sobolev embedding, H1((0, T );H) ↪→ C 0([0, T ];H) and thus the map u 7→ u(0) is continu-
ous. This shows

um(0) ⇀ u(0) in H.

However, by definition of initial condition (3.39) in the approximated Cauchy problem,

um(0)→ u0 in V.

Therefore u(0) = u0 holds, cf. [RR04, p. 390] but also [DL92, (5.127)]. y

Remark 3.18 (Limit of the approximated energy equality). With strong convergence of um
and u̇m, the energy equality (3.27) would directly follow from the approximated analog (3.42):

1

2

(
c(u̇m(t), u̇m(t)) + a0(um(t), um(t))

)
+

∫ t

0
(b(u̇m, u̇m) + a1(um, u̇m)) dt′

=
1

2

(
c(u1

m, u
1
m) + a0(u0

m, u
0
m)
)

+

∫ t

0
〈f, u̇m〉 dt′.

However, at the moment we only have the weak or weak-∗ convergences of um and u̇m at
hand. These are not sufficient, because products of weakly (-∗) convergent sequences do not
necessarily possess a limit. y

3.4.2 Proof by parabolic regularization

An alternative existence proof is based on parabolic regularization (vanishing viscosity
method): The solution of the hyperbolic problem (3.1), (3.2) is constructed as the limit of
solutions of associated parabolic problems as their viscosity vanishes (Proposition 3.23). The
method exploits the better regularity of solutions in the parabolic case. We follow [DL92, Chap-
ter XVIII, §5, Problem (P2ε), p. 575].
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3 Variational solution of linear second-order evolution equations

Parabolic regularization of the evolution equation relies on changing the operatorB ∈ Lin(H,H)
to Bε ∈ Lin(V, V ′), which models a damping term with viscosity ε > 0. The definition is

Bε := B + ε(A0 + λ IdV ),

which splits in
Bε = B1 +B0,ε ∈ Lin(V, V ′)

with the bounded contribution B1 := B ∈ Lin(H,H) and the principal part

B0,ε := ε(A0 + λ IdV ) ∈ Lin(V, V ′).

The artificial viscosity operator B0,ε disappears in the limit ε→ 0 (the exact meaning of “disap-
pears” will be specified in the proof of Proposition 3.23).

On the level of bilinear forms, b : H ×H → R is replaced by

bε : V × V → R

defined by bε(w, v) := 〈Bεw, v〉, that is

bε(w, v) = b(w, v) + ε
(
a0(w, v) + λ〈w, v〉

)
for w, v ∈ V. (3.48)

Again, the term b1 := b is a bounded perturbation of the principal viscous part

b0,ε := ε (a0(., .) + λ〈., .〉) .

Lemma 3.19 (Properties of the viscosity term). The map bε is a continuous bilinear form on
V × V , where

|bε(w, v)| ≤ cbε‖w‖V ‖v‖V ∀ w, v ∈ V (3.49)

holds with cbε := (cb + ε(ca + λ))c2
V > 0. The principal part b0,ε is symmetric and V -coercive,

b0,ε(w,w) ≥ βε‖w‖2V ∀ w ∈ V (3.50)

with βε := εα > 0. The bounded component b1 = b has more regularity:

|b1(w, v)| = |b(w, v)| ≤ cb‖w‖H‖v‖H .

Proof. By our assumptions, bilinearity of bε is immediate. Let v, w ∈ V . Then (3.4) allows us
to replace 〈w, v〉 = 〈w|v〉H in the definition of bε. The properties of b and a0, together with the
continuous embedding (3.3), ‖.‖H ≤ cV ‖.‖V , yield

|bε(w, v)| ≤ |b(w, v)|+ ε (|a0(w, v)|+ λ|〈w|v〉H |)
≤ (cb + ε(ca + λ))‖w‖H‖v‖H
≤ (cb + ε(ca + λ))c2

V ‖w‖V ‖v‖V = cbε‖w‖V ‖v‖V ,

showing continuity of bε on V × V . Symmetry and coercivity of a0 and 〈.|.〉H directly transfer to
the principal part,

b0,ε(v, w) = b0,ε(w, v) and b0,ε(w,w) = ε
(
a0(w,w) + λ‖w‖2H

)
≥ εα‖w‖2V = βε‖w‖2V .

Finally, continuity of b1 = b : H ×H → R is simply our hypothesis (3.9).

The proof shows that the desired V -coercivity of the artificial viscosity term b0,ε is constructed
based on V -coercivity with respect to H of a0.

We have the following variational solution of the regularized Cauchy problem:
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Theorem 3.20 (Existence and uniqueness for the regularized Cauchy problem). With bε
defined by (3.48), given the data

u0 ∈ V, u1 ∈ H, and f ∈ L2((0, T );H), (3.51)

there exists a unique solution

uε ∈ L2((0, T );V ), u̇ε ∈ L2((0, T );V ),
d

dt
(Cu̇ε) ∈ L2((0, T );V ′) (3.52)

of the weak evolution equation

d

dt
c(u̇ε, v) + bε(u̇ε, v) + a(uε, v) = 〈f, v〉 for all v ∈ V in the sense of D ′(0, T ), (3.53)

satisfying the initial conditions (3.2), i.e. uε(0) = u0 and u̇ε(0) = u1.

Due to V -coercivity of b0,ε the evolution equation (3.53) may be interpreted as a parabolic
equation. In particular, comparing conditions (3.52) with (3.12) shows that weak solutions are
more regular than in the hyperbolic case: We have u̇ε(t) ∈ V , which means that the initial
condition u̇ε(0) = u1 ∈ H is smoothened by the evolution.

Proof. We first establish a priori energy estimates. Let uε be a weak solution of the parabolic
problem (3.53) with regularity (3.52). Then uε ∈ H1((0, T );V ) and the following calculation – in
contrast to the hyperbolic case – is rigorous (see Lemma 3.9):

〈 d
dt

(Cu̇ε), u̇ε〉+ bε(u̇ε, u̇ε) + a(uε, u̇ε) = 〈f, u̇ε〉

=⇒ 1

2
c(u̇ε, u̇ε)

∣∣∣t
0

+

∫ t

0
(bε(u̇ε, u̇ε) + a(uε, u̇ε)) dt′ =

∫ t

0
〈f, u̇ε〉 dt′

=⇒ 1

2
(c(u̇ε, u̇ε) + a0(uε, uε))

∣∣∣t
0

+

∫ t

0
(bε(u̇ε, u̇ε) + a1(uε, u̇ε)) dt′ =

∫ t

0
〈f, u̇ε〉 dt′.

Thereby every weak solution uε satisfies the analog of the energy equality (3.27) for a.e. t ∈
(0, T ). Splitting of bε = b1 + b0,ε and multiplication by two gives

c(u̇ε(t), u̇ε(t)) + a0(uε(t), uε(t)) + 2

∫ t

0
b0,ε(u̇ε, u̇ε) dt′

= c(u1, u1) + a0(u0, u0) +

∫ t

0
〈f, u̇ε〉 dt′ − 2

∫ t

0
(b1(u̇ε, u̇ε) + a1(uε, u̇ε)) dt′, (3.54)

which is the starting point for estimates. In principle, the individual steps are the same as
hyperbolic case (see the proof of Proposition 3.11). Upon replacing b1 = b and also employing
the coercivity of b0,ε (Lemma 3.19), we arrive at the following counterpart of the intermediate
estimate (3.33):

γ‖u̇ε(t)‖2H + α‖uε(t)‖2V + 2βε

∫ t

0
‖u̇ε‖2V dt′ ≤ cc‖u1‖2H + (ca + 2λc2

V )‖u0‖2V

+

∫ t

0
‖f‖2H dt′ +

∫ t

0
((1 + ca1 + 2cb + 2λT )‖u̇ε‖2H + ca1‖uε‖

2
V ) dt′. (3.55)

With βε = εα and estimating 2α ≥ α ≥ min(α, γ) this yields

‖uε(t)‖2V + ‖u̇ε(t)‖2H + ε

∫ t

0
‖u̇ε‖2V dt′ ≤ k1 + k2

∫ t

0
(‖uε‖2V + ‖u̇ε‖2H) dt′, (3.56)
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3 Variational solution of linear second-order evolution equations

where the constants are the same as in the hyperbolic case, (3.30) and (3.31):

k1 =
(ca + 2λc2

V )‖u0‖2V + cc‖u1‖2H +
∫ T

0 ‖f‖
2
H dt′

min(α, γ)
and k2 =

1 + ca1 + 2cb + 2λT

min(α, γ)
.

In terms of φε = ‖uε‖2V + ‖u̇ε‖2H we thus obtained

φε(t) + ε

∫ t

0
‖u̇ε(t′)‖2V dt′ ≤ k1 + k2

∫ t

0
φε(t

′) dt′.

In particular, omitting the viscosity term ε
∫ t

0 ‖u̇ε‖
2
V dt′ ≥ 0 also yields the estimate (3.34)

φε(t) ≤ k1 + k2

∫ t

0
φε(t

′) dt′.

Then Gronwall’s inequality (Lemma 3.10) gives the energy estimate

‖uε(t)‖2V + ‖u̇ε(t)‖2H ≤ k1 e
k2t.

Uniqueness then follows by the arguments given in Section 3.3.2. Existence may be deduced
by the Faedo-Galerkin method similarly as in Section 3.4.1. Details and further results are
provided in [DL92, Chapter XVIII, §5, Problem (P1), p. 552].

Lemma 3.21 (Continuity in the parabolic case). If u satisfies (3.52), that is

u ∈ L2((0, T );V ), u̇ ∈ L2((0, T );V ),
d

dt
(Cu̇) ∈ L2((0, T );V ′),

then
u ∈ C 0([0, T ];V ) ∩ C 1([0, T ];H).

In particular, the initial conditions (3.2), i.e. u(0) = u0 ∈ V and u̇(0) = u1 ∈ H, make sense.

Proof. If u has the regularity (3.52) then u̇ ∈W and u ∈ W̃ for the Hilbert spaces

W := {w ∈ L2((0, T );V ) :
d

dt
(Cw) ∈ L2((0, T );V ′)},

W̃ := {u ∈ L2((0, T );V ) : u̇ ∈ L2((0, T );V ),
d

dt
(Cu̇) ∈ L2((0, T );V ′)}. (3.57)

These are Hilbert spaces with norms ‖.‖W and ‖.‖
W̃

given by

‖w‖2W = ‖w‖2L2((0,T );V ) + ‖ d
dt

(Cw)‖2L2((0,T );V ′) =

∫ T

0
‖w(t)‖2V dt+

∫ T

0
‖ d
dt

(Cw(t))‖2V ′ dt,

‖u‖2
W̃

= ‖u‖2L2((0,T );V ) + ‖u̇‖2W =

∫ T

0
‖u(t)‖2V dt+

∫ T

0
‖u̇(t)‖2V dt+

∫ T

0
‖ d
dt

(Cu̇(t))‖2V ′ dt.

Then the identities

u ∈ W̃ ⊆ C 0([0, T ];V ) and u̇ ∈W ⊆ C 0([0, T ];H)

hold by (3.58) and (3.59) below: The first result is true by Sobolev embedding,

W̃ ↪→ H1((0, T );V ) ↪→ C 0([0, T ];V ). (3.58)

Secondly we have the Aubin-Lions type result [DL92, (5.28), Remark 1, p. 555]

W ↪→ C 0([0, T ];H). (3.59)
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If C = IdV (or if C ∈ Lin(V, V ) is symmetric and invertible) then W reduces to

W = {w ∈ L2((0, T );V ) : ẇ ∈ L2((0, T );V ′)}.

In this case the embedding (3.59) coincides with

L2((0, T );V ) ∩H1((0, T );V ′) ↪→ C 0([0, T ];H),

which is (2.10) of Lemma 2.16. In fact, by positivity and symmetry of C ∈ Lin(H,H), one may
obtain (3.59) by the same proof, with 〈w|w〉H replaced by c(w,w) = 〈Cw|w〉H .

However, weak solutions of the hyperbolic evolution equations like (3.1) lie in

˜̃
W := {u ∈ L2((0, T );V ) : u̇ ∈ L2((0, T );H),

d

dt
(Cu̇) ∈ L2((0, T );V ′)}, (3.60)

which is larger than W̃ (3.57). In particular, in contrast to the parabolic case, u ∈ ˜̃W does not
directly imply u̇ ∈ C 0([0, T ];H); the proof of continuity requires more efforts (see Section 3.5).

Remark 3.22 (Perturbation of the viscosity term in parabolic problems). In order to prove
existence and uniqueness of the parabolic problem (cf. Theorem 3.20), it suffices to assume
that b1 : V × V → R enjoys additional regularity in only its second slot, that is, there exists
cb1 > 0 such that

|b1(w, v)| ≤ cb1‖w‖V ‖v‖H ∀ w, v ∈ V.

From the algebraic inequality 2xy ≤ (1/δ)x2 + δy2 applied to the norms and for δ = cb1/β 6= 0
one then obtains the estimate

2|b1(u̇, u̇)| ≤ 2cb1‖u̇‖V ‖u̇‖H ≤ β‖u̇‖2V + (c2
b1/β)‖u̇‖2H .

The term β‖u̇‖2V is eventually absorbed in the coercivity estimate 2b0(u̇, u̇) ≥ 2β‖u̇‖2V on the
left-hand-side of (3.55). y

We are ready to prove existence for the hyperbolic problem by letting the viscosity go to zero:

Proposition 3.23 (The vanishing viscosity limit). If ε → 0 then the solutions uε of the regu-
larized problem (3.53) converge to u in D ′((0, T );H) which has the weak regularity (3.13):

u ∈ L∞((0, T );V ) ∩W 1,∞((0, T );H).

Moreover, u is a solution of the original Cauchy problem (3.1), (3.2).

Proof. Let uε ∈ W̃ = {u ∈ L2((0, T );V ) : u̇ ∈ L2((0, T );V ), d
dt(Cu̇) ∈ L2((0, T );V ′)} be

the solution of the regularized problem obtained in Theorem 3.20. As for the Faedo-Galerkin
method, we take the steps of a variational method (cf. Section 2.3.2): Convergence of uε follows
from boundedness, which comes from the estimates (Steps 1 & 2). Then we prove that the limit
solves the original evolution equation (3.1) and check the initial conditions (3.2) (Steps 3 & 4).

– Step 1: Energy estimates. A priori energy estimates for uε have already been derived in the
proof of Theorem 3.20. In particular, we have (3.56), where k1, k2 do not depend on ε:

‖uε(t)‖2V + ‖u̇ε(t)‖2H + ε

∫ t

0
‖u̇ε‖2V dt′ ≤ k1 + k2

∫ t

0
(‖uε‖2V + ‖u̇ε‖2H) dt′.
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3 Variational solution of linear second-order evolution equations

– Step 2: Boundedness and convergence to a limit. The energy estimate implies the follow-
ing results for uε, with uniform bounds in ε:

(i) uε lies in a bounded set of L∞((0, T );V ),

(ii) u̇ε lies in a bounded set of L∞((0, T );H), (3.61)

(iii)
√
ε u̇ε lies in a bounded set of L2((0, T );V ).

By weak-∗ compactness, (i) & (ii) allow us to extract subsets (uεk)k ⊆ (uε)ε & (u̇εk)k ⊆ (u̇ε)ε
that are weakly-∗ convergent sequences as k → ∞. To simplify the notation we again denote
these sequences by uε & u̇ε and take the limit ε → 0 (as before, convergence of u̇ε to u̇ holds
because limits in D ′((0, T );H) are unique):

(i) uε ⇀
∗ u in L∞((0, T );V )

(ii) u̇ε ⇀
∗ u̇ in L∞((0, T );H).

Thereby, if ε→ 0 then uε converges a limit u, the vanishing-viscosity solution with the weak
regularity (3.13):

u ∈ L∞((0, T );V ) and u̇ ∈ L∞((0, T );H).

– Step 3: The limit satisfies the evolution equation. Our aim is to take the limit ε→ 0 in the
evolution equation (3.53),

d

dt
c(u̇ε, v) + bε(u̇ε, v) + a(uε, v) = 〈f, v〉,

that is,
d

dt
(Cu̇ε) +Bεu̇ε +Auε = f a.e. in L2((0, T );V ′).

With A = A0 +A1 ∈ Lin(V, V ′) and B,C ∈ Lin(H,H), the uniform bounds (3.61) imply that

(i) Auε lies in a bounded set of L∞((0, T );V ′),

(ii) Bu̇ε, Cu̇ε lie in bounded sets of L∞((0, T );H),

(iii) wε :=
√
ε(A0u̇ε + λu̇ε) lies in a bounded set of L2((0, T );V ′)

and weak-∗ compactness gives

(i) Auε ⇀
∗ Au in L∞((0, T );V ′),

(ii) Bu̇ε ⇀
∗ Bu̇, Cu̇ε ⇀

∗ Cu̇ in L∞((0, T );H), (3.62)

(iii) wε ⇀ w in L2((0, T );V ′)

as ε→ 0. By (iii), the artificial viscosity term disappears in the limit:

B0,εu̇ε = ε (A0u̇ε + λu̇ε) =
√
ε wε ⇀ 0 in L2((0, T );V ′).

Indeed, if ϕ ∈ L2((0, T );V ) then〈√
ε wε, ϕ

〉
L2((0,T );V ′),L2((0,T );V )

=
√
ε
〈
wε, ϕ

〉
L2((0,T );V ′),L2((0,T );V )

→ 0 (ε→ 0).

↓ ↓ (iii)

0
〈
w,ϕ

〉
L2((0,T );V ′),L2((0,T );V )
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Since weak-∗ convergence in L∞ implies weak convergence in L2 (see Lemma 2.15), proper-
ties (i), (ii) of (3.62) further imply

(i)’ Auε ⇀ Au in L2((0, T );V ′),

(ii)’ Bu̇ε ⇀ Bu̇, Cu̇ε ⇀ Cu̇ in L2((0, T );H), and thus also in L2((0, T );V ′).

In particular, we have obtained the following convergence result for Bε = B +B0,ε as ε→ 0:

(iii)’ Bεu̇ε ⇀ Bu̇ in L2((0, T );V ′),

or, bε(u̇ε, v) = 〈Bεu̇ε, v〉 → 〈Bu̇, v〉 = b(u̇, v) for v ∈ V and a.e. in (0, T ).

The regularized evolution equation and the convergence properties (i)’ and (iii)’ imply

d

dt
(Cu̇ε) = f −Auε −Bεu̇ε ⇀ f −Au−Bu̇ in L2((0, T );V ′).

Moreover, since by (ii)’ we already know Cu̇ε ⇀ Cu̇ in L2((0, T );H), uniqueness of distributional
limits eventually gives equality

d

dt
(Cu̇) = f −Au−Bu̇.

This shows that the limit u of the solution uε of the regularized problem satisfies the original
hyperbolic equation in the vanishing viscosity limit ε→ 0.

– Step 4: The limit satisfies the initial conditions. On may argue similarly as in the proof of
Proposition 3.15. An alternative way is suggested in [DL92, (5.127)], see Remark 3.17.

Finally we note that similar arguments as for the Faedo-Galerkin method (Remark 3.18) prevent
us from deducing the energy equality (3.27) from its regularized counterpart (3.54) by ε→ 0.

3.5 Regularity

From Sections 3.3 and 3.4 it follows that there exists a unique solution u of the evolution equa-
tion (3.1) with weak regularity (3.13):

u ∈ L∞((0, T );V ) ∩W 1,∞((0, T );H).

In order to complete the proof of Theorem 3.1, we still need to show the continuity property
(3.12):

u ∈ C 0([0, T ];V ) ∩ C 1([0, T ];H).

We have already seen that Sobolev embedding and the validity of the evolution equation yield
the following additional regularity properties of weak solutions (see (3.14) and Lemma 3.3):

u ∈ C 0([0, T ];H) and
d

dt
(Cu̇) ∈ L2((0, T );V ′).

Let us summarize the results gathered so far:

Lemma 3.24 (An intermediate regularity result). If u is a weak solution of (3.1), then the
following continuity and boundedness properties hold:

u ∈ C 0([0, T ];H) ∩ L∞((0, T );V ), (3.63)

Cu̇ ∈ C 0([0, T ];V ′) ∩ L∞((0, T );H). (3.64)
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Proof. Recall from assumption (3.13) that u ∈ L∞((0, T );V ) and u̇ ∈ L∞((0, T );H). With the
Sobolev embedding result (3.14), relation (3.63) is immediate. Boundedness in (3.64) follows
from

u̇ ∈ L∞((0, T );H) and C ∈ Lin(H,H) =⇒ Cu̇ ∈ L∞((0, T );H).

Thus Cu̇ ∈ L∞((0, T );H) ⊆ L2((0, T );H) ⊆ L2((0, T );V ′) and with d
dt(Cu̇) ∈ L2((0, T );V ′)

from the evolution equation we obtain

Cu̇ ∈ H1((0, T );V ′). (3.65)

Sobolev embedding then gives continuity: Cu̇ ∈ C 0([0, T ];V ′).

Remark 3.25 (Result for u̇). If C ∈ Lin(V ′, V ′) then (3.65) shows that weak solutions satisfy
u̇ ∈ H1((0, T );V ′). Hence (3.64) holds with u̇ instead of Cu̇ (this is the result in [DL92, (5.128)]):

u̇ ∈ C 0([0, T ];V ′) ∩ L∞((0, T );H).

Moreover, ü ∈ L2((0, T );V ′) and with u ∈ L2((0, T );V ) we get u ∈ H2((0, T );V ′). y

The Equations (3.63) and (3.64) are called “intermediate” because they assert continuity with
the spaces H, V ′ that are too large compared to V , H in (3.12). However, we already have
weak continuity for u, u̇ in the correct target spaces, because by Lemma 2.19,

C 0([0, T ];H) ∩ L∞((0, T );V ) ⊆ C 0
weak([0, T ];V ),

C 0([0, T ];V ′) ∩ L∞((0, T );H) ⊆ C 0
weak([0, T ];H).

We briefly recall that C 0([0, T ];X) ⊆ C 0
weak([0, T ];X) where (see Definition 2.18)

f ∈ C 0([0, T ];X) ⇐⇒ t 7→ ‖f(t)‖X is continuous on [0, T ],

f ∈ C 0
weak([0, T ];X) ⇐⇒ ∀ x′ ∈ X ′ : t 7→ 〈x′, f(t)〉X′,X is continuous on [0, T ].

Thus Equations (3.63), (3.64) imply that u and u̇ are weakly continuous, if u is a weak solution
of (3.1):

u ∈ C 0
weak([0, T ];V ) and u̇ ∈ C 0

weak([0, T ];H). (3.66)

Here the result for u̇ is deduced from Cu̇ ∈ C 0
weak([0, T ];H) and from invertibility of C on H.

In order to show continuity, that is

u ∈ C 0([0, T ];V ) and u̇ ∈ C 0([0, T ];H),

we first establish continuity of a variant of the stored energy:

Lemma 3.26 (Continuity of the energy). Let u be a weak solution of (3.1). Then

t 7→ Eλ(u)(t) := c(u̇(t), u̇(t)) + a0(u(t), u(t)) + λ‖u(t)‖2H is continuous on [0, T ].

With the energy E(u) defined in (3.28), we thus have

Eλ(u) = c(u̇, u̇) + a0(u, u) + λ‖u‖2H = 2E(u) + λ‖u‖2H .

The crucial observation is that coercivity and continuity of c and a0 yield the estimates

γ‖u̇‖2H + α‖u‖2V ≤ Eλ(u) ≤ cc‖u̇‖2H + ca‖u‖2V . (3.67)

Next we present two proofs of Lemma 3.26. The first proof relies on the energy equality
(Proposition 3.8), which is the approach taken in [DL92, Chapter XVIII, 5.3.3 (ii), p. 578]:
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Proof. Let s, t ∈ [0, T ] such that s < t. Then, by the energy equality (3.27),

Eλ(u)(t) = λ‖u(t)‖2H + c(u̇(t), u̇(t)) + a0(u(t), u(t))

= λ‖u(t)‖2H + c(u1, u1) + a0(u0, u0) + 2

∫ t

0
(〈f |u̇〉H − b(u̇, u̇)− a1(u, u̇)) dt′

and analogously for Eλ(u)(s). Consequently,

|Eλ(u)(t)− Eλ(u)(s)| =
∣∣∣λ‖u(t)‖2H − λ‖u(s)‖2H + 2

∫ t

s
d(t′) dt′

∣∣∣
≤ λ

∣∣∣‖u(t)‖2H − ‖u(s)‖2H
∣∣∣+ 2

∫ t

s
|d(t′)| dt′

with the dissipative term

d(t′) := 〈f(t′)|u̇(t′)〉H − b(u̇(t′), u̇(t′))− a1(u(t′), u̇(t′)).

Since by (3.13) weak solutions satisfy u ∈ L∞((0, T );V ), u̇ ∈ L∞((0, T );H), and f ∈ L2((0, T );H),
it follows that d is bounded:

d ∈ L∞(0, T ) ⊆ L1
loc(0, T ) =⇒ lim

s→t

∫ t

s
|d(t′)| dt′ = 0.

With u ∈ C 0([0, T ];H) from (3.14) we get

lim
s→t
‖u(s)‖2H = ‖u(t)‖2H .

Therefore, Eλ(u)(s)→ Eλ(u)(t) as s→ t, which shows that Eλ(u) is continuous.

In [RR04, Section 11.2.4, p. 393] another proof of Lemma 3.26 is presented. It is based on
the approximated energy equality obtained from the Faedo-Galerkin method, but does not
depend on the validity of the exact energy equality (Proposition 3.8):

Proof. We first show that Eλ(u) is right-continuous at t = 0, that is,

lim
t→0+

(Eλ(u)(t)) = Eλ(u)(0) = c(u1, u1) + a0(u0, u0) + λ‖u0‖2H . (3.68)

If Eλ(u) is considered as a function of u and u̇ separately, we obtain

Ẽλ(u,w) := c(w,w) + a0(u, u) + λ‖u‖2H

for u ∈ L∞((0, T );V ) and w ∈ L∞((0, T );H). By definition, Ẽλ(u, u̇) = Eλ(u). Moreover, by
(3.67)

γ‖w‖2H + α‖u‖2V ≤ Ẽλ(u,w) ≤ cc‖w‖2H + ca‖u‖2V .

Therefore sup
t∈[0,s]

(Ẽλ(., .)(t)) is equivalent to the squared norm in L∞((0, s);V )× L∞((0, s);H),

sup
t∈[0,s]

(Ẽλ(u,w)(t)) ∼=
∥∥∥∥(uw

)∥∥∥∥2

L∞((0,s);V )×L∞((0,s);H)

:= sup
t∈[0,s]

(
‖u(t)‖2V + ‖w(t)‖2H

)
,

for any s ∈ (0, T ]. In particular, t 7→ Ẽλ(u, u̇)(t) = Eλ(u)(t) is (equivalent to) the composition
f ◦ g of g : t 7→ (u(t), u̇(t)) and f the norm in the product space V ×H. But since g is weakly
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continuous by (3.66) and f is w.l.s.c. as a norm, their composition is l.s.c. (Lemma 2.22).
Thereby we obtain the first inequality

lim inf
t→0+

(Eλ(u)(t)) = lim inf
t→0+

(
Ẽλ(u, u̇)(t)

)
≥ Ẽλ(u, u̇)(0) = Eλ(u)(0).

Next, the converse inequality will be deduced with the help of the energy equality (3.42) for the
solution um ∈ H2((0, T );Vm) of the approximated Cauchy problem (Lemma 3.14): For t ∈ [0, T ],

c(u̇m(t), u̇m(t)) + a0(um(t), um(t))︸ ︷︷ ︸
= Eλ(um)(t)−λ‖um(t)‖2H

= c(u1
m, u

1
m) + a0(u0

m, u
0
m) + 2

∫ t

0
〈f |u̇m〉H dt′

− 2

∫ t

0
(b(u̇m, u̇m) + a1(um, u̇m)) dt′,

=⇒ Ẽλ(um, u̇m)(t) = Eλ(um)(t) = c(u1
m, u

1
m) + a0(u0

m, u
0
m) + λ‖um(t)‖2H

+ 2

∫ t

0
(〈f |u̇m〉H − b(u̇m, u̇m)− a1(um, u̇m))︸ ︷︷ ︸

=: dm(t′)

dt′. (3.69)

From the approximated energy estimate (3.43),

sup
t∈[0,s]

(
Ẽλ(um, u̇m)(t)

)
<∞

which by equivalence of norms means that the pair (um, u̇m) lies in a bounded subset of the
product space L∞((0, s);V )×L∞((0, s);H). Bounded sets in this space are weakly-∗ compact
and, in particular, weakly-∗ closed. Hence the limit (u, u̇) = lim

m→∞
(um, u̇m) exists and has the

same bounds:

sup
t∈[0,s]

(
Ẽλ(u, u̇)(t)

)
= lim

m→∞

(
sup
t∈[0,s]

(
Ẽλ(um, u̇m)(t)

))
≤ lim sup

m→∞

(
sup
t∈[0,s]

(
Ẽλ(um, u̇m)(t)

))
.

Actually, the weak-∗-convergence of (um, u̇m) has already been established in the course of the
proof of Proposition 3.15, where we obtained (3.45):

(i) um ⇀∗ u in L∞((0, T );V )

(ii) u̇m ⇀∗ u̇ in L∞((0, T );H).

Let us discuss the limits of the terms on the right hand side of (3.69) asm→∞. By construction
of the Galerkin approximation (3.37), we have u0

m → u0 in V and u1
m → u1 in H, which by

continuity of a0 and c gives

c(u1
m, u

1
m) + a0(u0

m, u
0
m)→ c(u1, u1) + a0(u0, u0).

Moreover, um ∈ H2((0, T );V ) ⊆ C 0([0, T ];H) by Sobolev embedding and u ∈ C 0([0, T ];H) by
(3.14), which with um ⇀∗ u in L∞((0, T );H) from (i) implies that

‖um(t)‖2H → ‖u(t)‖2H

holds for all t ∈ [0, T ]. In particular we can write

sup
t∈[0,s]

‖u(t)‖H = max
t∈[0,s]

‖u(t)‖H = ‖u‖C 0([0,s];H).
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With

sup
t∈[0,s]

∫ t

0
|dm(t′)| dt′ ≤

∫ s

0
|dm(t′)| dt′,

we then obtain in the limit superior m→∞, that

sup
t∈[0,s]

(
Ẽλ(u, u̇)(t)

)
≤ c(u1, u1) + a0(u0, u0) + λ‖u‖2C 0([0,s];H) + lim sup

m→∞

∫ s

0
|dm(t′)| dt′.

Now we let s tend to zero. As in the previous proof, the dissipative term dm as well as its limit d
are bounded. Consequently

lim
s→0

(
lim sup
m→∞

∫ s

0
|dm(t′)| dt′

)
= 0

and we arrive at

lim sup
t→0+

(Eλ(u)(t)) = lim sup
t→0+

(
Ẽλ(u, u̇)(t)

)
≤ c(u1, u1) + a0(u0, u0) + λ‖u0‖2H = Eλ(u)(0).

Together, the inequalities for lim inf
t→0+

and lim sup
t→0+

imply lim
t→0+

Eλ(u)(t) = Eλ(u)(0), that is (3.68).

The same arguments with another arbitrary starting time instead of t = 0 allow us to deduce
right-continuity of t 7→ Eλ(u)(t) at all t ∈ [0, T ]. Finally, time-reversibility of the equations imply
that we have actually established continuity of Eλ(u) on [0, T ].

The following result eventually finishes the proof of Theorem 3.1:

Corollary 3.27 (Continuity). If u is a weak solution of (3.1), then u possesses the regularity
(3.12), that is u ∈ C 0([0, T ];V ) and u̇ ∈ C 0([0, T ];H).

Proof. Let s, t ∈ [0, T ]. Coercivity, bilinearity, and symmetry give rise to the following long but
simple calculation ([DL92, RR04] proceed along the same lines):

0 ≤ γ‖u̇(s)− u̇(t)‖2H + α‖u(s)− u(t)‖2V
≤ c(u̇(s)− u̇(t), u̇(s)− u̇(t)) + a0(u(s)− u(t), u(s)− u(t)) + λ〈u(s)− u(t)|u(s)− u(t)〉H
= c(u̇(s), u̇(s))− 2c(u̇(s), u̇(t)) + c(u̇(t), u̇(t))

+ a0(u(s), u(s))− 2a0(u(s), u(t)) + a0(u(t), u(t))

+ λ〈u(s)|u(s)〉H − 2λ〈u(s)|u(t)〉H + λ〈u(t)|u(t)〉H
= Eλ(u)(s)− 2 (c(u̇(s), u̇(t)) + a0(u(s), u(t)) + λ〈u(s)|u(t)〉H) + Eλ(u)(t) =: ξ(s, t).

In the limit s→ t,

ξ(s, t) = Eλ(u)(s)︸ ︷︷ ︸
→Eλ(u)(t)

+Eλ(u)(t)− 2 (〈Cu̇(t)|u̇(s)〉H + 〈A0u(t), u(s)〉+ λ〈u(t)|u(s)〉H)︸ ︷︷ ︸
→〈Cu̇(t)|u̇(t)〉H+〈A0u(t),u(t)〉+λ〈u(t)|u(t)〉H=Eλ(u)(t)

→ 0,

where the first convergence follows from continuity of Eλ(u) (Lemma 3.26) and the second
convergence holds by weak continuity (3.66) of u and u̇. Consequently

0 ≤ γ‖u̇(s)− u̇(t)‖2H + α‖u(s)− u(t)‖2V ≤ ξ(s, t)→ 0, (s→ t).

This shows
lim
s→t
‖u(s)− u(t)‖V → 0 and lim

s→t
‖u̇(s)− u̇(t)‖H = 0,

completing the proof.
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Chapter 4

Application to the elastic wave
equation

We solve the Cauchy problem for linearized elasticity by the variational method. In Section
4.1 the weak formulation of the Cauchy problem is introduced. Then we discuss the positivity
conditions that will imply coercivity (Section 4.2). Finally, existence and uniqueness of weak
solutions of displacement and traction problems is established (Section 4.3).

4.1 The weak form of the elastic wave equation

The Cauchy problem for the linear elastic wave equation was introduced in Section 1.2. We
consider the problem on the open and bounded set Ω ⊆ Rn and the time interval I = [0, T ]. To
avoid a clash of notation with the bilinear forms in the abstract setting, the classical elasticity
tensor c will be denoted by Λ. First we simplify the boundary conditions (1.8) and restrict to
conditions of homogeneous Dirichlet type (∂Ω = ΓD and uD = 0).

The task is to find the displacement u : Ω× [0, T ]→ Rn solving the elastic wave equation (1.7),

ρ ü−∇ · (Λ : ∇u) = f,

under the homogeneous displacement conditions

u
∣∣
∂Ω×[0,T ]

= 0,

and the initial conditions (1.9), u(., 0) = u0 and u(., 0) = u1.

Written at (x, t) ∈ Ω× [0, T ], (1.7) reads

ρ(x) ü(x, t)−∇ ·
(
Λ(x) : ∇u(x, t)

)
= f(x, t).

We also recall the component version:

ρ(x) üi(x, t)−
n∑

j,k,l=1

∂j

(
Λijkl(x) ∂luk(x, t)

)
= fi(x, t) for i = 1, . . . , n.

Classical solutions of the elastic wave equation are functions

u ∈ C 2(Ω× [0, T ])n,

where it is assumed that density, elastic coefficients, force, and initial data have the regularity
ρ ∈ C 0(Ω), Λijkl ∈ C 1(Ω) for all i, j, k, l = 1, . . . , n, f ∈ C 0(Ω× [0, T ])n, and u0, u1 ∈ C 0(Ω)n.
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4 Application to the elastic wave equation

Next we derive the variational formulation (Part I, see Section 2.3.2). If u is a classical solution,
we can take the scalar product (in Rn) with a spatial test function v ∈ D(Ω)n, integrate over
Ω, slightly rewrite the first term, and employ the divergence theorem in the second term:∫

Ω
(ρ ü−∇ · (Λ : ∇u)) · v dV =

∫
Ω
f · v dV

=⇒ d

dt

(∫
Ω
ρ u̇ · v dV

)
+

∫
Ω

(Λ : ∇u) : ∇v dV =

∫
Ω
f · v dV.

This expression makes sense as an equation in D ′(0, T ), if the coefficients ρ, Λ are in L∞(Ω),

u ∈ L2((0, T );H1
0 (Ω)n) and u̇ ∈ L2((0, T );L2(Ω)n),

and for test functions v ∈ H1(Ω)n. This motivates the following definition:

Definition 4.1 (Weak formulation). Let ρ ∈ L∞(Ω), Λijkl ∈ L∞(Ω), and set

H := L2(Ω)n and V := H1
0 (Ω)n. (4.1)

Then a weak solution of the elastic wave equation is a function u ∈ L2((0, T );V )∩H1((0, T );H)
that satisfies

d

dt
c(u̇, v) + a(u, v) = 〈f, v〉 for all v ∈ V in the sense of D ′(0, T ), (4.2)

where f ∈ L2((0, T );H) and

a : V × V → R, a(u, v) :=

∫
Ω

(Λ : ∇u) : ∇v dV, (4.3)

c : H ×H → R, c(w, v) :=

∫
Ω
ρw · v dV. (4.4)

With the initial conditions (3.2), u(0) = u0 ∈ V and u̇(0) = u1 ∈ H, this defines a weak solution
of the Cauchy problem for the elastic wave equation. y

The spaces chosen in (4.1) indeed are separable real Hilbert spaces and satisfy V ↪→ H ↪→ V ′

with continuous and dense embeddings (variational triple):

H1
0 (Ω)n ↪→ L2(Ω)n ↪→ H−1(Ω)n.

Equation (4.2) has the same form as the weak evolution equation (3.1), with a = a0 and b = 0.
Moreover, since f has values in H, the right hand side of (4.2) reads 〈f, v〉 = 〈f |v〉H .

Remark 4.2 (Time-dependent coefficients). The methods developed in Chapter 3 can be
extended to coefficients ρ, Λ (bilinear forms a, b, c) that are C 1 functions of time, see [DL92,
Chapter XVIII]. In this case the weak form (4.2) contains an additional term b : H ×H → R:

ρ ü =
d

dt
(ρ u̇)− ρ̇ u̇ =⇒

∫
Ω
ρ ü · v dV =

d

dt

(∫
Ω
ρ u̇ · v dV

)
−
∫

Ω
ρ̇ u̇ · v dV =

d

dt
c(u̇, v) + b(u̇, v).

The form of the terms a (4.3) and c (4.4) is unchanged; they only involve t as an additional
parameter via Λ(., t) and ρ(., t) respectively. y
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4.2. Positivity conditions for the elasticity tensor

4.2 Positivity conditions for the elasticity tensor

In order to apply the theory developed in Chapter 3, coercivity of a and c has to be ensured.
This is straightforward for c if the density ρ is strictly positive. In case of a, the elasticity tensor
has to be positive definite in the sense given below:

Assumption 1 (Positivity of material parameters). Let ρ ∈ L∞(Ω) and Λijkl ∈ L∞(Ω).

(i) The density ρ is positive and uniformly bounded away from zero, that is, there exists µ > 0
such that for a.a. x ∈ Ω:

µ < ρ(x).

(ii) The elasticity tensor Λ is uniformly positive definite, in the sense that there exists λ > 0
such that for a.a. x ∈ Ω:

X : Λ(x) : X ≥ λ X : X for all X ∈ Rn×n, (4.5)

that is in components (and summation convention), Λijkl(x)XijXkl ≥ λXijXij . y

The positivity condition (ii) in Assumption 1 is the strict convexity of the quadratic form asso-
ciated to Λ(x) ∈ Rn×n×n×n as a bilinear map on Rn×n (uniformly in x ∈ Ω).

Remark 4.3 (Convexity of the elastic energy density). Strict convexity of Λ is equivalent to
strict convexity of the associated linearized elastic energy density W : Rn×n → R,

W (ε) =
1

2
ε : Λ : ε =

1

2
∇u : Λ : ∇u

where ε := 1
2(∇u+∇uT ) is the (symmetric) linearized strain tensor. The second equality follows

from the minor symmetries Λijkl = Λjikl = Λijlk. In particular, Λ = ∂2
εW , that is, Λijkl = ∂2W

∂εij∂εkl
,

which implies the major symmetry Λijkl = Λklij . y

Remark 4.4 (Rank-one convexity and reality of wave speeds). Strict convexity implies rank-
one convexity (which is also known as the Legendre-Hadamard condition or strong ellipticity):
There exists λ > 0, such that for a.a. x ∈ Ω,

(ξ ⊗ η) : Λ(x) : (ξ ⊗ η) ≥ λ |ξ|2|η|2 for all ξ, η ∈ Rn, (4.6)

that is in components (and summation convention), ξiηj Λijkl ξkηl ≥ λ ξ2
i η

2
j . This condition is

equivalent to the positive definiteness of the acoustic tensor A(η) ∈ Rn×n, Aik(η) := Λijklηjηl
for all propagation directions η ∈ Rn (indeed, Aik(η) ξi ξk ≥ α |ξ|2 with α := λ |η|2 > 0). In
particular, rank-one convexity guarantees that plane wave solutions of ρ ü−∇ · (Λ : ∇u) = 0 in
Ω = Rn will propagate with real wave speeds [MH83, p. 240]. y

Remark 4.5 (Ellipticity). Let P =
∑
|α|≤m aαD

α be a linear partial differential operator with
smooth coefficients aα on an open set Ω ⊆ Rn. Then P is called (uniformly) elliptic on Ω, if its
principal symbol p : Ω× Rn → C, p(x, ξ) :=

∑
|α|=m aα(x) (iξ)α fulfills

p(x, ξ) 6= 0 for all x ∈ Ω, ξ ∈ Rn, ξ 6= 0.

If P has second order, then ξ 7→ p(., ξ) is a quadratic form on Rn, that is, p(., ξ) = ξ · A · ξ with
A : Ω→ Rn×n. If A is uniformly positive definite, that is, if there exists α > 0 such that

p(x, ξ) ≥ α|ξ|2 for all x ∈ Ω, ξ ∈ Rn, (4.7)

i.e. for all x ∈ Ω, A(x) only has positive eigenvalues, then P is (uniformly) strongly elliptic. y

51



4 Application to the elastic wave equation

4.3 Solution of displacement and traction problems

Application of Theorem 3.1 to the weak elastic wave equation yields the following result (which
covers Parts II and III of the variational approach outlined in Section 2.3.2):

Theorem 4.6 (Existence and uniqueness for the homogeneous displacement problem).
Let ρ ∈ L∞(Ω) and Λijkl ∈ L∞(Ω) both satisfy the positivity conditions of Assumption 1 and let
a and c be defined by (4.3) and (4.4). With the choice (4.1) of spaces,

H = L2(Ω)n and V = H1
0 (Ω)n,

and given the data
u0 ∈ V, u1 ∈ H, and f ∈ L2((0, T );H),

there exists a unique solution u ∈ C 0([0, T ];V )∩C 1([0, T ];H) of the weak elastic wave equation
(4.2),

d

dt
c(u̇, v) + a(u, v) = 〈f, v〉 for all v ∈ V in the sense of D ′(0, T ),

satisfying the initial conditions u(0) = u0 and u̇(0) = u1.

Proof. It suffices to check the hypotheses (3.5) to (3.10) on a : V × V → R and c : H ×H → R
defined by (4.3) and (4.4):

a(w, v) =

∫
Ω

(Λ : ∇w) : ∇v dV and c(w, v) =

∫
Ω
ρw · v dV.

We use the abbreviations L2 := L2(Ω), H1 := H1(Ω), L∞ := L∞(Ω) and will not indicate the
dimension of spaces.

– Properties of a. Let w, v ∈ V . Continuity of a follows from boundedness of Λ:

|a(w, v)| = |〈Λ : ∇w|∇v〉L2 | ≤ ‖Λ‖L∞‖∇w‖L2‖∇v‖L2 ≤ ‖Λ‖L∞‖w‖H1‖v‖H1 = ‖Λ‖L∞‖w‖V ‖v‖V .

Symmetry of a is a consequence of the major symmetry Λijkl = Λklij :

a(w, v) =

∫
Ω

(Λ : ∇w) : ∇v dV =

∫
Ω
∇v : Λ : ∇w dV =

∫
Ω

(Λ : ∇v) : ∇w dV = a(v, w).

Finally, positive definiteness of Λ from Assumption 1 (ii) yields coercivity of a:

a(w,w) =

∫
Ω
∇w(x) : Λ(x) : ∇w(x)︸ ︷︷ ︸

≥ λ∇w(x):∇w(x)

dV ≥ λ〈∇w|∇w〉L2 = λ‖∇w‖2L2 = λ‖w‖2H1 − λ‖w‖2L2

=⇒ a(w,w) ≥ λ‖w‖2V − λ‖w‖
2
H .

– Properties of c. Let w, v ∈ H. Boundedness of ρ gives continuity of c:

|c(w, v)| = |〈ρw|v〉L2 | ≤ ‖ρ‖L∞‖w‖L2‖v‖L2 = ‖ρ‖L∞‖w‖H‖v‖H .

Symmetry of c is clear and coercivity follows from the positivity of ρ, Assumption 1 (i):

c(w,w) =

∫
Ω
ρw · w dV =

∫
Ω
ρ(x)︸︷︷︸
>µ

|w(x)|2 dV ≥ µ‖w‖2L2 = µ‖w‖2H .

Since the bounded terms vanish identically (a1 = 0, b = 0) the proof is complete.
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4.3. Solution of displacement and traction problems

An inspection of the proof shows that the continuity and coercivity constants of the bilinear
forms are ca = ‖Λ‖L∞ , cc = ‖ρ‖L∞ and α = λ, γ = µ. These material properties will appear in
the energy estimates ‖u(t)‖2V + ‖u̇(t)‖2H ≤ k1 e

k2t (3.29) through the constants k1, k2.

Remark 4.7 (Weaker convexity assumptions). Existence and uniqueness of weak solutions
of the Cauchy problem in classical linearized elasticity is still guaranteed, if the strict convexity
(4.5) is replaced by rank-one convexity (4.6), see [HM78, MH83]. In the nonlinear setting also
the intermediate conditions of polyconvexity and quasiconvexity play an important role, see
[Bal02, Ant05]. y

If Ω is a Lipschitz domain, then u(t) ∈ V = H1
0 (Ω)n implies that the boundary conditions

u
∣∣
∂Ω×[0,T ]

= 0 hold in H1/2(∂Ω) in the sense of the Sobolev trace, (see Lemma 2.7).

More general boundary conditions can be incorporated by adapting the definition of the Hilbert
spaces (4.1). The pivot space H = L2(Ω)n stays the same, but V will be defined as a closed
subspace with

H1
0 (Ω)n ⊆ V ⊆ H1(Ω)n.

In particular, if one chooses V = H1(Ω)n, then the results of Theorem 4.6 will remain true for
the homogeneous traction conditions

(Λ : ∇u) · ν
∣∣
∂Ω×[0,T ]

= 0.

On Lipschitz domains, these conditions can be interpreted to hold in H−1/2(∂Ω). We note that
traction conditions arise as natural boundary conditions in the associated variational problem
of stationary energy.

The mixed conditions

u
∣∣
ΓD×[0,T ]

= 0 and (Λ : ∇u) · ν
∣∣
ΓN×[0,T ]

= 0

are covered by the choice V = {u ∈ H1(Ω)n : u|ΓD = 0}. Finally, as is shown in [DL92,
Example 10, p. 610], a modification of the source term in the weak formulation allows us to
incorporate the general inhomogeneous conditions (1.8).

This flexibility is one of the main advantages of the variational approach to the solution of partial
differential equations.

Remark 4.8 (Analysis for nonlinear elasticity). Problems concerning existence, uniqueness,
and regularity of solutions of the nonlinear governing equations of elastodynamics (1.4),

ρ0ü−∇ · T PK = f with T PK = ∂FW (., 1n×n +∇u),

are challenging [MH83, Bal02, Ant05, Daf16]. The principal difficulty is quasilinearity, which
makes the occurrence of shock waves possible; solvability results can typically only be es-
tablished on short time intervals [HKM77, DH85]. Moreover, important requirements of frame-
indifference, positive orientation, and global injectivity (Remark 1.1) are not easy to incorporate.
In particular, they are partly incompatible with standard convexity assumptions and growth
conditions. These difficulties already arise in elastostatics, where the equations reduce to
∇ · T PK = 0. This time-independent equation is typically formulated as an energy minimization
problem and the direct method of calculus of variations can be invoked [Bal76, BM84, Cia88].
Yet, many questions, for instance concerning the regularity of minimizers and the validity of the
Euler-Lagrange equations, are still open [Bal02]. y
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Zusammenfassung

Die elastische Wellengleichung beschreibt das zeitliche Verhalten eines Kontinuums im Rah-
men der klassischen linearen Elastizitätstheorie. In der vorliegenden Arbeit wird die Lösung des
Cauchyproblems für dieses System linearer partieller Differentialgleichungen zweiter Ordnung
mit Hilfe von Variationsmethoden präsentiert. Zunächst wird gezeigt, wie sich die elastische
Wellengleichung aus der allgemeinen Bewegungsgleichung der Kontinuumsmechanik ergibt,
wodurch das mathematische Modell motiviert wird. In weiterer Folge wird die variationelle
Lösungsmethode diskutiert, welche auf dem Konzept von schwachen Lösungen beruht. Ins-
besondere wird die abstrakte Version dieser Methode in Hilberträumen erklärt. Die Beweise
von Existenz, Eindeutigkeit und Regularität von Lösungen des abstrakten Cauchyproblems für
eine allgemeine lineare Evolutionsgleichung zweiter Ordnung bilden den Hauptteil der Arbeit.
Schließlich werden diese Ergebnisse auf die elastische Wellengleichung angewandt und somit
die Lösbarkeit in Sobolewräumen für beschränkte und positive Materialparameter gezeigt.
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