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1 | Motivation

We live in a three-dimensional world. Ourselves and what we can interact with are

in three dimensions. We learn about our world by studying the various phenomena

around us. These phenomena are described as continuous processes. In the beginning

of our education we study function plots in high school. These give an intuitive view

of one-dimensional phenomena. By exploring the relationship between an input fac-

tor and output, we can build an understanding on the relationship between the two.

We can also compare one function plot to another. Visual inspection of these plots

allows us to see common patterns. We use our pattern recognition ability to quickly

categorize these different plots into different types of function behavior. Function

plots can also be used to describe two-dimensional phenomena. These show the ef-

fect due to two input factors. In this case we can use the third dimension or color

encoding to show the function value. From these plots we can also make general

statements about the “shapes” of the behavior like how “peaky” the function is or if

it is monotonically increasing. These shapes give us intuition into the underlying

processes and help us learn about the world [88].

We also interact withmany phenomena around us that are essentiallymulti-dimensional

in nature. For example, the weather in a certain location is determined by the tem-

perature, pressure, humidity, dew point, wind velocity, and wind direction, among

others. A change in any of the factors results in a change in the weather. Each of these

factors can be given a “spatial embedding.” Then, they can be viewed as a dimension

of some space. By “walking” or navigating through this space we can observe the

effect on the weather due to changes in these parameters.

Understandingmulti-dimensional continuous spaces is difficult. As three-dimensional

1



1. MOTIVATION

beings we have real-world analogs for measurement, angle, and position in three di-

mensions. We do not have these once we move beyond three dimensions though.

Nevertheless, visual analysis of these multi-dimensional spaces has produced insights

about the underlying behavior [98, 38]. The issue is how to show more than three

dimensions on a two-dimensional screen.

One strategy is to discretize the dataset through sampling and then use the wealth

of discrete visualization tools available. Much of the work on multi-dimensional data

analysis developed from analysis of tabular data. These datasets are often recorded

from real-world events such as census, species, or text data and contain many dif-

ferent aspects about each entity. Thus, these datasets are inherently multi- or high-

dimensional. Each different aspect of the data items creates a dimension to be ana-

lyzed. In the case of these data the mental model is that of discrete objects like hu-

mans, plants, or documents. Since the mental model is discrete in this case it makes

sense to use data processing and visualization tools designed for discrete data. How-

ever, our mental model for physical data is a continuous one. Therefore, the discrete

data paradigm breaks our mental model [116, 74]. Breaking the mental model means

that the visualization is not conveying the complexities of the continuous phenomena.

Rather, we should use visualization techniques purpose-built for continuous data.

While not as extensively developed, there is previous work on visualizing multi-

dimensional, continuous data. These techniques can be broadly classified into pro-

jection, topological, and slicing methods. Projection methods attempt to distort the

multi-dimensional object in order to view it on a two-dimensional screen. With pro-

jection techniques we can preserve distance, direction, size, or angles, but not all of

these [106]. Depending on the projection method, we may see radically different

representations. The issue is that it is not clear from the resulting visualization what

sort of transformation was performed on the data. Thus it can be difficult to recon-

struct the mental model of the multi-dimensional object. One of the most often seen

multi-dimensional projection techniques is the Schlegel diagram [108] which picks a

“face” of a polytope and projects the remaining faces inside it. Thus, this technique

only works for 4D polytopes. Topological methods search the continuous dataset for

2



1.1. Multi-dimensional spaces

values of interest, such as critical points or contours. Topological visualization tech-

niques also suffer from the issue of unclear transformation. It is difficult to relate the

resulting visualization back to features in the multi-dimensional object.

Slice-based views of multi-dimensional continuous spaces have not been explored

as extensively as other options. This work began with the advent of HyperSlice [119].

HyperSlice extends the idea of slicing frommedical imaging to any number of dimen-

sions. HyperSlice provides the framework for visualizing multi-dimensional con-

tinuous objects as a set of two-dimensional slices. There are
(
d
2

)
subpanels, one for

each pair of dimensions. Each panel shows a 2D slice of the object. The horizontal

axis shows one dimension and the vertical axis shows another dimension. Essentially,

each sub-plot of HyperSlice shows a 2D function plot. With 2D slices of solid multi-

dimensional objects color is often used to encode value.

My work is inspired by the HyperSlice technique. Van Wijk and van Liere in-

troduced the idea of using slice-based views of multi-dimensional data. However,

they did not expand on what data types and tasks are involved in multi-dimensional

continuous data analysis. I build on their work, investigating the usefulness of slice-

based views of continuous multi-dimensional datasets. I also identified tasks involved

in multi-dimensional data analysis. The task analysis informed the development of

one- and two-dimensional slice-based views.

In this thesis I will explore the possibilities of these slice-based views. Through a

number of case study examples, I will demonstrate the power of these views and ways

to address their shortcomings.

1.1 Multi-dimensional spaces

There are a number of domains where one can apply the analysis of continuous multi-

dimensional data. As of yet, there has not been a comprehensive data and task analysis

for multi-dimensional continuous data analysis. For discrete data, there are several

task analyses [103, 16, 3]. However, they are focused on identifying and selecting

particular data items. Continuous datasets consist of ranges of values as well as func-

3



1. MOTIVATION

tions. Functions can be seen as a mapping from ranges of numbers to other ranges.

The analysis task here is to study these ranges, their relationships to each other, and

the mappings between them. Tasks addressing these have not yet been covered by

visualization task analyses. Thus, there is no comprehensive source for what analysis

tasks one wants to perform given a continuous multi-dimensional dataset. Work in

this area has traditionally focused on developing a specific visualization for a specific

task. For example, topological spines extracts critical points from a scalar field [24].

One goal of this thesis is to develop this task taxonomy for visualization of continuous

multi-dimensional data.

These domains can be broadly classified into two types based on their analysis

tasks. One type, manifold analysis, deals with understanding the relationship between

inputs and outputs. This is a functional relationship. The user wants to inspect how

changes in the inputs (independent variables) affect the outputs (dependent variables).

One can also perform shape analysis. Here, in terms of the analysis tasks, there is no

identification of independent and dependent variables. We look at each of these two

in turn.

1.1.1 Manifolds

Studying the mapping between continuous ranges means studying functional rela-

tionships and thus manifolds. The critical issue is understanding the relationship be-

tween independent and dependent variables. Subtasks in manifold analysis include

examining critical points, assessing the sensitivity of parameters, and understanding

the shape of the manifold. One area where understanding the manifold is important

is analyzing optimization surfaces and functions. In this case, the identification of

extrema is important for understanding how many and the relative location of local

optima. In addition, we want to understand the degree to which these are extrema.

These can result in global optimization algorithms “getting stuck” in local optima

rather than continuing to search for the global optimum. Optimization algorithms

need to be carefully tuned to properly detect these features and ignore them where

4



1.1. Multi-dimensional spaces

necessary.

Simulations can be used to run experiments that are impractical or impossible in the

real world. Simulation analysis is another area where the analysis tasks, in the abstract,

are examining functions. If we look back at the weather simulation from before,

the inputs to the function are things like the temperature and pressure. The output

is, for example, the likelihood of rain the next day. The function is the simulation

itself. Computer simulations are deterministic. A deterministic simulation has a fixed

mapping from each unique input parameter configuration to an output value. This is

the same as a functional relationship. The sensitivity and extrema are also important to

simulation analysis. Thus, these can all be analyzed with visualizations of a manifold.

To date, manifold visualizations have concentrated on a particular analysis task

or a particular application domain. For example, visualizations of the Morse-Smale

complex [36] are focused on showing only critical points of the manifold. As with

any visualization designed for a specific task, they must be used in combination with

other views for visual analysis of domain-specific data. Domain-specific visualizations

often used linked views to show different aspects of data to accomplish multiple tasks

at once. However, they are purpose built for a specific domain. While techniques may

transfer from one domain to another [99], it is not always clear how. My goal is to

unify these methods to a certain extent. As I will show in chapter 2, slice-based views

of manifolds can be used for a wide variety of tasks in a wide number of domains.

1.1.2 Shapes

One may also want to understand the relationship or correlation between multiple

continuous values. In the manifold analysis case we have the notion of independent

and dependent variables. This classification does not exist here. In this case we want to

study the relationship of all variables. Careful study of the shape of the dataset can give

insight into the relationship between the various ranges of dimensions of the object.

For example, one may want to know if the overall shape is a sphere, donut, or box. In

addition one may be interested in any kinks or cusps in the dataset. Changes in the

5



1. MOTIVATION

gradient and curvature of the shape are also of great interest. These indicate changes

in correlation or relation.

The analysis tasks of multi-dimensional shapes can be applied to a number of dif-

ferent areas. The study of polytopes is one such area and perhaps the most direct

application of understanding multi-dimensional continuous shapes. Polytopes are the

multi-dimensional generalization of polyhedra and polygons. The tasks are to un-

derstand the symmetries and patterns making up the polytopes [126]. Perhaps a less

obvious connection is the analysis of the tradeoff curves in multi-objective optimiza-

tion. Since we are performing optimization we are interested in the tradeoffs amongst

all the non-dominated points [67]. This is also known as the Pareto front. In this case,

the user wants to understand what are the costs of reducing one or more parameters

in order to increase the value of others. Cusps or large changes in curvature in these

datasets are important since they show critical changes in the rate of tradeoff. With a

proper view of a multi-dimensional object we can also view differences between two

objects directly.

These two different data types and sets of tasks require different visualization con-

siderations. Proper visualization formanifold analysis should focus on the relationships

between independent and dependent variables. Visualizations of shapes do not have

this mapping requirement and instead focus on the relationships between dimensions.

With this categorization in mind, we can now examine the available visualization

techniques to examine these.

1.2 Visualizing multi-dimensional continuous

spaces

Understandingmulti-dimensional space is difficult. As humans, we simply do not have

the spatial analogs in more than three dimensions. A number of methods have been

developed to extract specific features from the multi-dimensional object. For example,

when studying polytopes, the number of faces and symmetries is very important [126].

6



1.2. Visualizing multi-dimensional continuous spaces

However, these only produce an answer without sufficient context. They do not

necessarily give any intuition as to how to transfer our three-dimensional knowledge

to multi-dimensional spaces.

Visualizations ofmulti-dimensional spaces on a 2D screenmust contendwith some

sort of reduction of the information. A proper visualization must select visual encod-

ings that highlight the informationwewant to see. Any sort of data reduction requires

trade-offs. The best visualization choices acknowledge any deficiencies to a particular

visual encoding. By acknowledging these deficiencies, we can design tools to com-

pensate for their shortcomings while still maintaining their advantages. Therefore,

it is worth first looking at the possible mappings of data to visual elements. Then, I

present commonly used visual encodings of multi-dimensional continuous data using

these mappings.

1.2.1 Encoding multi-dimensional data

Multi-dimensional continuous data consists of a set of continuous ranges, one for each

dimension. In the case of manifold analysis, each of these ranges can be additionally

classified as “dependent” or “independent” depending on which side of the mapping

they are on. Typical visualization practice is to give each dimension a separate visual

channel. There are a number of possible visual channels that have been identified.

The ranking of effectiveness of visual channels (shown in Table 1.1) was proposed

by Bertin [12] and confirmed through experiments by Cleveland and McGill [23],

Mackinlay [76], and Heer and Bostock [47]. Munzner [84] provides a summary of

the results. We are also limited in how many channels we can use simultaneously.

According to Ware [120], certain channels, such as red and green are not visually

separable.

The difficulty of visualizing a continuousmulti-dimensional space on a two-dimensional

screen brings a number of challenges. We treat each dimension separately, thus, we

need several different visual channels. However, there are simply not enough visual

channels available to draw a 15-dimensional object in a single view. This is further
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Table 1.1: Rankings of visual encodings of quantitative data

Bertin [12] Cleveland and McGill [23] Mackinlay [76] Munzner [84]

Position Position along a common scale Position Position on common scale
Size Position along identical, nonaligned scales Length Position on unaligned scale
(Grey) Value Length Angle Length (1D size)
Texture Direction Slope Tilt/angle
Color Angle Area Area (2D size)
Orientation Area Volume Depth (3D position)
Shape Volume Density Color luminance

Curvature Color saturation Color saturation
Densities Color hue Curvature
Shading Volume (3D size)
Color saturation

complicated by the fact that separate visual channels are not necessarily visually sep-

arable. Furthermore, each dimension of the multi-dimensional object under study

is treated equally. For example, no particular axis of a polytope is more important

than any other. We should encode each dimension using equally weighted effective-

ness channels. With fewer channels available than data dimensions we either need to

reduce the data or use multiple views to properly visualize the data.

1.2.2 Methods

The common taxonomy of how to view multi-dimensional data on screen is based

on discrete data analysis. There, there are two categories: dimension reduction or

projection. With continuous data, though there is a third possibility, that of slicing.

Therefore, I view the taxonomy of continuousmulti-dimensional data analysis methods

into two categories. Data-driven methods include both projection and dimension

reduction and reduce the dimensionality of the data before visualization. View-based

methods reduce the data during the visualization. Slicing is a view-based method.

Purely data-driven methods are commonly known as feature selection or dimen-

sion reduction. The goal is to find a subset of dimensions that are critical to under-

standing the dataset. Topological techniques take this a step further. They discard

all spatial information about the dataset and only concentrate on the difference in

function value, as in the Morse-Smale complex [41], or evolution of contours, as in

the contour tree [21]. Projections also synthesize the dataset into new dimensions to
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show using visual channels. Principal component analysis [52] is a popular choice in

this area. This rotates the space and thus produces new set of dimensions that are a

linear combination of the input dimensions. Even this relatively simple operation (a

rotation) can be difficult to understand. For example, iPCA [61] was a tool to help

users understand the effects of the dimensional transformation.

View-basedmethods try and producemultiple linked views of amulti-dimensional

dataset from different angles. Each view shows a subset of the dimensions. This way

we can use a proper set of visual channels for each view. We use interaction to link

these different views. These multiple, coordinated, linked views have been one of the

biggest success stories from the visualization community [91]. The traditional Hy-

perSlice [119] technique falls into this category. Each panel of the HyperSlice view

shows two of the input dimensions and the value is encoded with color. The views are

linked through the focus point selection. Changing the focus point in one sub-plot

updates the other sub-plots.

My work focuses on the exploration of the combination of data-driven and view-

based methods. Data-driven methods reduce the data in a way that we can get a

global overview of the dataset. View-based methods are much more detailed but can

only produce a local view of the data. By combining these methods I can achieve

both a global overview as well as an on-demand local view of the dataset in a single

visualization.

1.3 Slices

Slicing offers a number of advantages over othermulti-dimensional visualization tech-

niques. Slicing is a direct visualization of the multi-dimensional object. In contrast

to methods like projection or dimension reduction, slicing does not distort the di-

mensions in order to display them on a two-dimensional screen. Since there is no

distortion, distances in the visual representation are directly proportional to distances

in the object. This is one of the reasons that slicing is popular in the medical imaging

community. Sizes of organs or tumors can be measured visually on screen. Addi-
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tionally, relative sizes correspond to what a doctor would expect to see in the body.

Multi-dimensional data is abstract. It lacks the correspondence to real-world objects

that the medical community uses to understand their two- and three-dimensional

datasets. Nevertheless, it is still important in multi-dimensional data analysis to prop-

erly estimate distances and relative sizes.

Another benefit of the direct visualization is that users do not require extensive

training to understand the visualization. The concept of slicing through a three-

dimensional object is a familiar one. Humans are used to this even from slicing fruits

and vegetables with a knife. This concept of slicing can be extended from this well-

known metaphor to cover multiple slices of multi-dimensional objects.

Slice views use the horizontal and vertical axes for showing the effects due to the

input parameters. These axes are the most perceptually uniform [109] and are con-

sidered the most effective (Table 1.1). One- or two-dimensional plots are replicated

for each combination of dimensions in order to show more than two dimensions at

once. This promotes familiarity of the visualization. Once the user has learned to read

a single panel, they can apply this knowledge to the remaining panels. This approach

follows the principal of small multiples [4].

In order to produce a slice plot one needs to first pick a particular focus point in the

multi-dimensional space. This focus point determines which slices are being viewed.

Selecting a good focus point a-priori is difficult. It either requires a great deal of

luck or careful analysis of the dataset. This is not always possible. Slice-based views

require some sort of interactive focus point selection. Interactively browsing through

the slices requires interaction controls to give the user control over the focus point.

Furthermore, we need some kind of navigation map to show which focus points the

user has selected so that they do not become lost. Neither of these navigation aids are

well developed at this point. This need for interaction is likely one of the reasons that

slice-based views have not developed as much as projection or topological techniques.

Static views are much easier to include in papers and don’t require explanation prior

to use.

The other implementation issue of slice-based views is ensuring that the visual-
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ization can remain interactive. In this case, interactive is defined as the rate at which

the user can maintain their concentration [101]. This is often defined at 10 frames

per second. It can be difficult to compute a 2D slice of an arbitrary complex multi-

dimensional object.

1.4 Upcoming

My goal is to highlight the advantages of slice-based methods for multi-dimensional

data analysis. At the same time I want to address the limitations. The end goal is to

bring slice-based views into the standard toolbox of visualizations.

In chapter 2, I examine how to visualizemanifolds using slices. I present Sliceplorer

which is a system to view one-dimensional slices of multi-dimensional manifolds. I

use projections of these one-dimensional slices instead of showing one focus point at a

time. I also go into detail about the tasks one wants to perform with manifold analysis.

I extend the idea of projections of slices to the second dimension in chapter 3. I

showhow this can be used to effectively visually analyze the shape ofmulti-dimensional

data. In many cases, this data is given as a simplical mesh. I introduce an algorithm

to compute 2D slices of this mesh. Using this algorithm, I show how we can visually

understand datasets like Pareto fronts or polytopes.

Finally, in chapter 4, I discuss howwe can take advantage of themulti-dimensional

geometry and GPU architecture to allow interactive-speed browsing of the focus

points. In addition to this algorithm, I develop a method that can predict the amount

of time needed per element to draw one frame of the visualization. I then show how

this estimation formula can be calibrated to a particular user’s hardware.
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First, we turn to the visual exploration of multi-dimensional continuous functions.

In this case, the user is primarily interested in the relationship between dependent

and independent variables. In this chapter, I discuss how one-dimensional slices can

be a highly intuitive way of visualizing multi-dimensional manifolds. I also discuss

how we can use projections of slices to address the focus point selection issue. The

task analysis in this chapter introduces manifold analysis tasks. This chapter was based

on work published as Thomas Torsney-Weir, Michael Sedlmair, and Torsten Möller.

Sliceplorer: 1D slices for multi-dimensional continuous functions. Computer Graphics

Forum, 36(3):167–177, June 2017.

(a) (c) (e)

(b)

(d)

Figure 2.1: The evolution of Sliceplorer. I adapt the commonly known technique
of 1D function plots (a) to multiple dimensions by taking a small multiples approach
and repeating each plot for each dimension (b). I address the focus point selection
problem by sampling over the parameter space and then projecting the slices in the
corresponding plot (c). The user can mouse over a particular slice in one plot and the
corresponding slices are highlighted in the other dimension plots (d). This allows one
to see the corresponding function behaviors in the other dimensions. Finally, one can
cluster the function slices (e), to show groups of similar behavior in the manifold.
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2.1 Motivation

The visual analysis of multi-dimensional scalar functions is a fundamental aspect in

many areas, from computational sciences (based on computer simulations) to data sci-

ences (based on machine learning techniques) and general optimization algorithms.

Neural networks, for instance, have shown to produce very good results that come in

the form of highly non-linear response manifolds. While understanding these man-

ifolds would greatly help to verify the resulting models, there is currently no estab-

lished way to inspect these multi-dimensional manifolds. In case of an optimization

algorithm, a good visualization of response manifolds could, for instance, help to see

where possible “holes” (local extrema) are that the algorithm may get trapped in and

fail to find the global optimum. By visually examining the optimization functions,

one can develop new insights on how to improve the optimization algorithm. This

work is based on the assumption that visual analyses of these functions will help to

increase understanding of what they are doing, as argued by Gleicher [38].

To examine these functions visually they must be reduced to be displayed on a

2D screen. Currently, the two major approaches used to visualize these spaces are

either two-dimensional slices, a technique known as HyperSlice [119] or dimension

transformation techniques. This includes dimensionality reduction and topological

methods [24, 21]. HyperSlice shows two-dimensional slices (using either a heatmap

or contour view) of the function directly around a particular focus point. It clearly

shows the behavior of the function with respect to the parameters. However, one can

only view one focus point at a time and the approach does not scale well to many di-

mensions. With each additional dimension one must substantially shrink the subplots

so less detail can be seen just like in scatterplot matrices. Topological and dimen-

sionality reduction techniques take the opposite approach. They morph the space to

produce a 2D global view. However, the morphing process is rather complex and it

is unclear what the resulting layout means. This reduces comprehension. Ideally we

would like to somehow combine the global view with local detail.
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In this chapter, I explore the idea of 1D slices to fill this gap. I focus on multi-

dimensional continuous scalar functions. I define these as functions that take two or

more scalar parameters as input and produce a single scalar as output. Towards il-

lustrating the benefits, I propose a concrete technique using projections of 1D slices,

called Sliceplorer [113] (Figure 2.1). 1D slices are traditional function line plots fa-

miliar to anyone with basic mathematics knowledge: one dimensional curves with

respect to changes in a single parameter. Like HyperSlice, they show a separate sub-

plot for each input dimension. For 1D slices, the number of subplots scales linearly

with the number of dimensions, not quadratically as with 2D slices. I address the issue

of having to choose a focus point by sampling focus points and then showing all slices

as a projection. Therefore, my 1D approach can be seen as a hybrid method of slicing

and projection techniques.

In order to evaluate any new technique, we need to consider what data character-

istics and tasks each method is good for. As of yet, there has not been a comprehensive

listing of the tasks a user would want to perform when looking at multi-dimensional

continuous functions. To this end, I begin development of this task summary by ex-

tending the task classification of Amar, Eagan, and Stasko [2]. I use this classification to

evaluate Sliceplorer and compare it to 2D slices and different topological approaches.

This comparison characterizes which technique is best for which tasks and reveals

that 1D slices is the most flexible of the current approaches. That is, it supports the

broadest range of different tasks.

I also provide three usage scenarios comparing Sliceplorer with other state of the

art techniques. These scenarios illustrate that 1D slices can reveal structure in the

functions that could not have been seen before. For example, I discuss how one can use

my method to compare the global prediction manifold of a neural network algorithm

against a support vector machine to guide and better understand the architecture of a

neural network. This is currently an open research question in the machine learning

community.

In summary my contributions are:
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• exploring the idea of 1D slices with a concrete software prototype called Slice-

plorer,

• a task-based analysis of multi-dimensional functions, comparing 1D slices to 2D

HyperSlices and topological techniques, and

• three usage scenarios illustrating the value of 1D slices in common function

visualization scenarios.

2.2 Related Work

The question of how to comprehend multi-dimensional data is a heavily researched

area in visualization. There are two principal approaches, projection techniques (such

as scatterplots) and slicing techniques (such asHyperSlice). Projection techniques gen-

erally show all of the data and, therefore, represent a more global view. On the other

hand, slicing techniques present more of a local view around a point of interest (which

we call focus point). The lion’s share of previous work is concerned with projection

approaches of discrete data. In contrast, I focus on continuous multi-dimensional

scalar functions and seek to combine the strengths of projection and slicing. Given

the focus on continuous data, the options for a visual exploration are limited and could

be categorized into three areas (a) discretization, (b) local methods, (c) global methods.

2.2.1 Discretization

There are a number of different approaches to display discretized multi-dimensional

functions. The typical approaches are scatterplotmatrices [46], parallel coordinates [58],

star coordinates [62], and RadVis [51]. Star coordinates and RadVis were generalized

into one framework by Lehmann and Theisel [69]. These can all be combined with

a variety of dimensionality reduction techniques [52]. However, all of these seem in-

appropriate if the mental model of the function we are studying is a continuous one.

In such a case all of these projection techniques would fail to properly convey the

complexity of the underlying continuous phenomenon. Hence, while discretization
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seems like an easy way out, it is not a proper alternative for studying continuousmulti-

dimensional functions, such as regression functions or classification boundaries. Here,

one of the main concerns is understanding a continuous phenomenon and a good vi-

sualization design should thus respect this mental model [116, 99, 74].

2.2.2 Local methods

The idea of a local technique is to focus on a part of the function. Interaction is

used to explore other parts of the function. One of the oldest approaches here is the

HyperSlice technique by van Wijk and van Liere [119]. HyperSlice is a technique

where the function is shown directly but in multiple 2D slices laid out similar to a

scatterplot matrix. In many ways, Sliceplorer was inspired by this work. One of the

drawbacks of HyperSlice is that one has to choose a focus point — a point common

to all 2D slices. Exploring the full data set then shifts over to exploring all possible

focus points. Although not created for HyperSlice specifically, techniques like the

grand tour [5], projection pursuit [55], and optimal sets of projections [68] might be

appropriate to tackle this issue. All of these approaches are still local though. A mental

image of the global function can only be built up over time and with mental effort by

browsing through the focus points. Our approach seeks to overcome this limitation

while keeping the benefits of ease of understanding.

Note that for some tasks a local view might in fact suffice, such as when one is

interested in the robustness of an extrema value. For example, Tuner [112] used 2D

continuous slices, letting the user navigate them via selecting Pareto optimal focus

points in a separate view. Berger et al. [10] use coordinated views of scatterplots and

parallel coordinates to show additional (continuous) prediction uncertainty. Having

a discrete approach provided extra space to display information about the prediction

uncertainty for the currently selected point.
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2.2.3 Global methods

The visualization community has developed many global views of multi-dimensional

continuous functions. Continuous scatterplots [6] and continuous parallel coordi-

nates [49] can encode a multi-dimensional density field into either two dimensions

or more than two dimensions respectively. Here, we are not as concerned with the

density field, rather we are concerned with the manifold created from a continuous

multi-dimensional scalar function.

Topological methods like topological spines [24], the work by Gerber et al. [36],

and contour trees [21] extract extrema and saddle points from a function and then

show these. These methods are good for seeing the relative relation of extrema in a

function. However, they do not work for important tasks like robust optimization.

Here, one does not necessarily want to find the global optimum but wants an optimum

in a relatively “flat” area of the parameter space.

With Sliceplorer, we use line plots together with the widely-used technique of

projection to overdraw 1D slices. This approach is similar to the work by Hall et

al. [42] but differs in two major ways. (1) They showed 2 primary dimensions with

slices and then used the third for color limiting their view to three dimensions and

(2) they were concerned with isosurface extraction. This technique can scale to any

number of dimensions and the evaluation is based on a much broader set of tasks and

applications, such as parameter space analysis.

2.3 Sliceplorer

When developing Sliceplorer, I first identified design requirements with respect to

tasks that a user would perform when analyzing multi-dimensional scalar functions. I

continuously evaluated how the technique fits with these requirements and iteratively

adapted it to encompass as many tasks as possible. A static slice view itself does not

address many of the tasks required so I use interaction methods to address these and

create a comprehensive technique.
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2.3.1 Design requirements

When analyzing a function visually, there are a number of features that the user wants

to see.

R-peaks: The most obvious feature is identifying peaks and valleys. This is pri-

marily done to find the global optimum of a function.

R-robust: The relative height around each optima is important to detecting the

robustness of that optimum. In some cases one may prefer a local optimum over a

global one if it is more stable. This is very common in simulations of manufacturing

processes where variations in manufacturing tolerances should not affect the perfor-

mance of a part too much [10].

R-bowl: Similarly, we may be interested in how “bowl”-shaped the area around

an optimum is. The goal is similar to robust optimization but rather than looking

for “flat” areas of the function we are looking for areas with smooth gradients. The

amount of this smoothness is important for correctly parameterizing optimization al-

gorithms [7]. An incorrect parameterization can either cause them to get “stuck” at

some local minimum or make unreasonably slow progress towards the global mini-

mum.

R-overall: Finally, we want to understand the overall “shape” of the function. It

is important to understand if it is smooth everywhere and how much variance there

is in the function. When building a surrogate regression model we need to know if

the function has consistent variance and we need to choose a model that captures this

behavior.

All of these requirements mean that we need to view more than just the maxima

and minima of a function.

2.3.2 Intuition

If we were analyzing one-dimensional continuous functions then the choice would be

obvious: a line plot like the one in Figure 2.1a. The x-axis is used for the independent

variable or parameter setting and the y-axis is used for the dependent variable or scalar
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value of the function. The function response is shown with a line. This is a metaphor

that anyone who has taken high-school algebra can comprehend. The vertical and

horizontal location channels visually encode the primary values of interest. These are

the “best” visual channels to use in terms of accuracy and sensitivity to differences

according to Bertin and others [12, 76].

Figure 2.1 shows the evolution of our technique from a one-dimensional function

to the full, multi-dimensional Sliceplorer view. To extend this simple technique to

multi-dimensional functions, each parameter receives its own one-dimensional plot

(Figure 2.1b). There will be d plots where d is the number of dimensions in the

function. In the same way that HyperSlice [119] is inspired by the SPloM layout, one

can use any layout technique for multiple histograms. 2D slices scale asO(d2)which is

worse than theO(d) for 1D slices. 1D slices also give us separable channels remaining

for encoding of additional information such as uncertainty or optimization traces (see

Sec. 2.5.3).

Slicing offers a number of advantages over projection-based views like scatterplots

and histograms. Slices give context around a particular focus point. We can see the

precise shape of the function at this point. For example, peaks and valleys (R-peaks),

flat areas (R-robust), and variance in the function can all be seen directly. While

scatterplots and histograms can be used to see general trends, they suffer from “false

distances” where points that are visibly close to each other are not actually close to

each other [124].

2.3.3 Focus point projection

Showing a local 1D slice requires the selection of a single focus point, i.e. a point in

multi-D through where all 1D slices intersect. Once this focus point is selected, one

can use an off-the-shelf 1D function plot drawing method to draw the slice itself.

Rather than only showing one focus point (i.e. one slice line per dimension) at a time

and having the user choose a focus point Sliceplorer selects multiple focus points auto-

matically. This enables a more global view of the function (R-overall). Now, all 1D
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slices (one per focus point and dimension) are projected onto the same plot (see Fig-

ure 2.1c). In doing so, users do not need to memorize the previously seen slices, they

can look among them to see general trends. This approach combines the ideas of slic-

ing and projection, and fosters one of the core strengths of visualization: “perception

beats recall” [84].

I use a Sobol sequence [107] to select the focus points themselves. The Sobol se-

quence is a space-filling, quasi-random, low-discrepancy sequence that is designed

for sampling in high dimensional spaces. The Sobol sequence will sample the multi-

dimensional parameter space with an economy of samples. This will maximize the

chances that we will see extrema (R-peaks), plateaus (R-robust), and bowls (R-bowl)

in the 1D slices. In addition, using a Sobol sequence makes it easy to adjust the num-

ber of 1D slices shown (i.e. focus points) on the fly. Specifically, it avoids a complete

resampling of the parameter space like we would need with a Latin hypercube sam-

pling.

2.3.4 Linked selection

One disadvantage with 1D views over 2D views is that we cannot see the two-

dimensional interactions anymore. I compensate for this with interaction. The user

can mouse over a particular slice which will highlight all slices corresponding to that

focus point. That is, one slice in each view is highlighted. I also superimpose the focus

point itself on these lines. In doing so, the user can see the behavior of the function

with respect to the other parameters around that focus point (see Figure 2.1d).

2.3.5 Clustering

Similar to visual encoding techniques such as parallel coordinate plots, projected 1D

slices might mask certain patterns due to overdrawing. Figure 2.2a is an example

where it is difficult to tell if the slices are monotonic or bowl-shaped (R-bowl). The

interactive slice highlighting can give some insight into how individual slices are be-

having but lacks a global method to distinguish groups. Sliceplorer offers a clustered
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(a) (b)

Figure 2.2: 500 projected slices of the 5th dimension of the 5D Zakharov [7] function.
It is difficult to see if the slices are bowl shaped or two sets of monotonically decreasing
and increasing curves. It is much clearer in the cluster view that there are actually
three sets of curves: there is a set of monotonically decreasing curves and a set of
monotonically increasing curves. The very low-value curves form a third set.

Table 2.1: This table shows the summary of the task-based evaluation. I extended
the discrete data-focused tasks of Amar, Eagan, and Stasko [2] to directly address
continuous data, with the exception of “sort” (see section 2.4). The table shows the
scores from our qualitative results inspection as well as the expert study on a scale from
“none” , “partially” , “mostly” , to “fully” where “none” means that the task is
not addressed at all and “fully” means that this task is directly supported by this view.
There are quotes of the general description from Amar, Eagan, and Stasko’s paper in
the “discrete” column for reference.
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Task Task	description	for	discrete	data	items	from	[AES05] Our	adaption	to	continuous	scalar	functions

Retrieve	value "Given	a	set	of	specific	cases,	find	attributes	of	those	cases" Given	an	x,	what	is	the	function	value? 3 1 1 1 3 2 0 0 0 2

Filter

"Given	some	concrete	conditions	attribute	values,	find	data	cases	satisfying	

those	conditions." For	what	parameter	values	is	the	function	equal	or	over	x? 2 3 2 2 3 1 0 1 0 2

Compute	derived	value

"Given	a	set	of	data	cases,	compute	an	aggregate	numeric	representation	

of	those	data	cases" Summary	statistics:	variance,	mean,	SA 0 1 0 1 2 2 0 0 1 2

Find	extremum

"Find	data	cases	possessing	an	extreme	value	of	an	attribute	over	its	range	

within	the	data	set" Find	local/global	min/max 0 3 3 3 3 1 1 2 2 2

Determine	range

"Given	a	set	of	data	cases	and	an	attribute	of	interest,	find	the	span	of	

values	within	the	set" What	is	the	range	of	possible	outputs? 1 1 3 3 3 2 0 1 1 2

Characterize	distribution

"Given	a	set	of	data	cases	and	a	quantitative	attribute	of	interest,	

characterize	the	distribution	of	that	attribute’s	values	over	the	set" What	types	of	shapes	do	the	manifolds	have 1 0 0 0 3 1 1 1 2 2

Find	anomalies

"Identify	any	anomalies	within	a	given	set	of	data	cases	with	respect	to	a	

given	relationship	or	expectation,	e.g.	statistical	outliers" Do	areas	of	the	manifold	have	shapes	unlike	any	others 1 0 0 0 3 1 1 0 1 2

Cluster 	"Given	a	set	of	data	cases,	find	clusters	of	similar	attribute	values" Areas	of	the	manifold	have	similar	shapes 0 0 0 1 3 0 0 0 0 2

Correlate

"Given	a	set	of	data	cases	and	two	attributes,	determine	useful	

relationships	between	the	values	of	those	attributes" 1D	vs	2D	relationships 3 0 0 0 1 2 0 0 0 1

QRI	results Expert	study	results

slice view to address this (Figure 2.2b). The clustering is done with a k-nearest neigh-

bor algorithm using the L2 distance between two slices as the distance metric. This

allows us to group the slices into distinct groups of behavior and color-code these

groups to distinguish them.

2.4 Task-based evaluation

I first evaluate 1D slices in terms of their flexibility to deal with a broad set of different

low-level tasks. Task taxonomies give a basis for comparing visualization techniques
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Figure 2.3: The four techniques we used to compare with 1D slices. With the ex-
ception of HyperSlice, the images are from the respective papers and show different
datasets used in their context.

to each other [84]. If a technique addresses a large number of tasks, that is usually

a good indicator of its flexibility. Over the last years, many different taxonomies

have been proposed [2, 16, 48, 98]. However, to the best of my knowledge, none

of these taxonomies thus far had a dedicated focus on the visual analysis of multi-

dimensional continuous data. I thus took a popular taxonomy for tasks on discrete data,

by Amar, Eagan, and Stasko [2], and extended each of their task categories to directly

address continuous data. This is an initial step towards more consideration of multi-

dimensional continuous data as a first class citizen when developing task hierarchies.

Using this list of tasks, I compare 1D slices to other state of the art techniques for
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multi-dimensional continuous data: HyperSlice [119], topological spines [24], con-

tour trees [20], and the technique by Gerber et al. [36] (see Figure 2.3). We refer to

topological spines, contour trees, and the work by Gerber et al. as topological tech-

niques when it makes sense to compare them as a group. We evaluate based on all

tasks, except for “sort”, for which I could not find a suitable extension to continuous

functions. The guiding theme in the extensions is that users want to view the relation-

ship of independent variables to the dependent variable and to see how the dependent

variable changes with respect to the independent values. The extensions are shown in

Table 2.1 along with the results of two investigations we conducted based on them,

as detailed in the following section.

2.4.1 Study design

To perform a task-based evaluation, I investigated the different techniques in two

different ways. First, I used a qualitative result inspection approach [59]. I iteratively

analyzed the techniques with different datasets and summarized our discussion and

analysis on a four point scale: “None” means that it is not possible to perform the task

with the technique, “partly” means that it requires major interaction with the view

to accomplish the task, “mostly” means that one can accomplish the task with little

interaction, and “fully” means that this task is directly addressed by the technique.

Second, in order to get a more objective judgment I also asked four visualization

experts familiar with examining multi-dimensional spaces like parameter space explo-

ration to examine the eight datasets with different techniques and rate how well each

task can be accomplished with each technique on the same scale. Figure 2.3 shows the

averaged results along with the results of the qualitative result inspection in Figure 2.3.

For the techniques, I use my own implementation of HyperSlice and topological

spines since no codewas available. I used the msrRpackage [37]which implements the

algorithm of Gerber et al. [36]. For the contour tree I used the libtourtre library and

then rendered the trees using GraphViz using the Sugiyama [35] layout. As datasets,

I chose the 2D sinc function, 5D Rosenbrock [95] function, 6D Ackley function, a 26
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node hidden layer neural network built on the Boston housing dataset [70], a support

vector machine with Gaussian kernel built on the housing dataset, the fuel 3D volume

dataset [94], and the neghip 3D volume dataset [94]. Not all datasets could be rendered

with all techniques due to software errors.

2.4.2 Results

In this section, I summarize our discussion about the strengths and weaknesses of each

technique in terms of performing the task. For more details, there is also a website that

contains details of how each visualization technique can solve each task. The website

is available at http://sliceplorer.cs.univie.ac.at.

Retrieve value: In the discrete case, the user should be able to look at a point

and get the detailed values of it. In the continuous case we are interested in what the

function value is for a certain input parameter setting. All the techniques support this

although with the topological methods this is only possible for the extrema and saddle

points as all other points are filtered out. For example, there could be many points

between node 4 and 5 in the contour tree (Figure 2.3c). With slicing techniques, both

1D and 2D, the values can be read directly off the chart. Of course, for all techniques

the adding of interaction, such as a tooltip, can make retrieving concrete values even

easier.

Filter: Amar, Eagan, and Stasko describe this task as a general filtering query

on data points. In the continuous case, the user wants to understand the outputs of

the function. This is a query as to where the function value is in a certain range.

With continuous data this is the domain of isosurface extraction. This is possible with

slicing techniques by visual examination. With HyperSlice, though, one must be

careful to view sufficient focus points to get a general idea of where the function equals

certain values. Topological spines also shows this directly and they use concentric areas

(Figure 2.3b) to give a general idea of the area that a particular value range takes up.

The other topological techniques allow one to see if a certain value is possible, for

example, we can see that the function represented by the contour tree in Figure 2.3c
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takes the values greater than 4 somewhere by seeing that there are edges from node

4 to nodes 5 and 6. However, there is no relation back to the parameter settings that

will produce these values.

Compute derived value: The direct interpretation of this task to continuous data

is to compute derived value results about the curves like mean and variance. Many of

these values can also be perceived visually. Topological methods compute the persis-

tence value between the function to determine what to show but with the exception

of topological spines this is hidden from the user. Topoplogical spines show a graph of

the persistence and “saturated persistence” which allows the user to select which nodes

to filter. Projections of 1D curves allows us to see the distribution. In Figure 2.1c we

can see that there are very few function values around the global minimum and the

function has two types of behavior: a periodic sine wave across the domain and a

general parabola shape.

Find extremum: All the topological techniques we evaluated support this in some

way. With HyperSlice one needs substantial guidance on setting the focus point to

find extrema (like a histogram of function outputs). 1D slices is a global technique

showing all slices at once, one can find extrema by inspecting the graphs. As previously

mentioned, topological methods are purpose built to extract extrema from continuous

data. For example, it is easy to see that the function using the method by Gerber et al.

(Figure 2.3d) has five maxima and the function of the contour tree (Figure 2.3c) has

four maxima.

Determine range: Amar, Eagan, and Stasko describe this as finding the range of

possible values for a particular attribute. There is really only one attribute of interest:

the values of the multi-dimensional scalar function. Any view from which we can

read the global minimum or the global maximum allows us to do this. Contour trees,

Gerber et al., and 1D slices all allow us to read these off the view. Topological spines

either show the global maximum or the global minimum, but not both. HyperSlice

has no way to do this directly by adjusting the focus point. However, one expert

noticed that they could simply read the range of the function off of the color legend.

Characterize Distribution: Here again there is one key value of interest that we
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want to characterize: the function value. This requires a global view. Projections of

slices directly show how the function slices are distributed. We can see in Figure 2.1d

that there are very few function values around the global minimum but many around

high values. It would be difficult to use HyperSlice to truly understand the distribution

of values. The user would somehow have to browse around the focus points and then

memorize the function values. Topology throws away the spatial element and just

shows the relationships between extrema and saddles.

Find anomalies: Anomalies in the discrete case are single point outliers. While

that is also possible in the continuous case, wemay also have entire parts of the function

that are unlike any other part. These should also be identified. In a global view like

projected 1D slices these will show up visually. The slices will stand out from the rest

similar to other projection-based techniques like scatterplots. With HyperSlice we

must browse around until we can see one directly. However, we will see it if we can

find it. Topological methods will only show extrema in terms of maxima or minima

values but not shape and hence mask anomalies and outliers.

Cluster: Since we are looking at manifold behaviors, we want to be able to group

the functions into areas of similar behavior. For example, are they monotonically in-

creasing or decreasing? Furthermore, can we find areas where the variance changes?

The topological technique of Gerber et al. [36] was created to address just this. They

split the function into areas of monotonic behavior and then show a line indicating

how those monotonic regions are related to each other. However, the way they re-

construct the function between extrema and saddle points does not allow us to view

the variance between these points as the 1D slice view allows. Clustering the 1D slices

tries to split the slices into groups of similar behavior (see Figure 2.2b).

Correlate: Finally, we consider correlation. In the discrete data case the goal

is to find correlation between attributes. With continuous data, we already have a

dependency between the independent and dependent variables. What we would like

to learn is howmany variables have an influence on the function. With 2D views (that

only HyperSlice provides) one can see both 1D and 2D interactions with the function.

We can see that the function in Figure 2.3a has radial behavior so the function value
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depends on both 1D and 2D interactions. None of the other techniques are capable

of showing 2D interactions between parameters.

2.4.3 Summary

From the summary in Table 2.1 we can see that the 1D slices technique addresses

more of the tasks than any other technique. It is not always the highest performing

view though. HyperSlice is the only technique evaluated that could show more than

one-dimensional interactions but it does not do well on global tasks like extrema de-

tection. The various topological techniques directly address tasks related to extrema

detection and comparison but do not perform as well on others. The experts often

commented that they felt they needed more knowledge about what exactly the topo-

logical techniques were doing in order to interpret the results. Thus, the ratings for

these techniques may be artificially low. I conclude that 1D slices are a very flexible

technique indeed.

2.5 Usage scenarios

In addition to evaluating 1D slices with a low-level task hierarchy, I also provide

usage scenarios to understand their value in real-world applications. First, I begin

with an illustrative example using the 2D sinc function. I then use our 1D slices

approach to illustrate how it can help better understand neural network architectures

for a regression problem. Finally, I use 1D slices to investigate the effect of initial

position on optimization algorithm performance.

The purpose of these evaluations is a proof of concept that 1D slices can be used

for real-world problems. In particular, it is not meant as a comparative evaluation as

provided in the previous section. To the best of my knowledge, neither HyperSlices

nor topological techniques have been applied to understanding neural networks nor

optimization algorithms so far. A full adaption of, and comparison to, these techniques

for the provided use cases are beyond the scope of this thesis, and are left for future

work.
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(a) Surface plot (b) 1D slices

(c) pLevel = 0.0 (d) pLevel = 0.05 (e) pLevel = 0.1

Figure 2.4: Different views of the 2D sinc function. I show the surface plot in (a) for
reference. My 1D slice view is shown in (b). The central peak as well as the sub peaks
are prominent. For comparison I show the method of Gerber et al. [36] in (c)–(e) at
different levels of persistence filtering. With no filtering (c) the graph looks much like
the original function. The plot is very sensitive to the filtering level. (d) and (e) are all
very different from each other.

2.5.1 2D sinc function

Imagining how a function in more than 3-dimensions looks is difficult if not impos-

sible. In order to illustrate how Sliceplorer visualizes functions we show the 2D sinc

function. I am using the formulation where y(x1, x2) = sin(πx1)
πx1

sin(πx2)
πx2

. For refer-

ence, Figure 2.4a shows a 3D surface plot of this function. The global maximum is

at x1, x2 = 0, 0 where y = 1. There are a number of local maxima and minima of

decreasing value radiating out from the origin.

Figure 2.4b shows the 1D slice view using Sliceplorer with 50 slices in each of the

2 plots. We can clearly see that the maximum value occurs when x1, x2 = 0, 0 in the

graph at around y = 1. We can also see the decreasing extrema radiating out from

the origin. In addition, we can precisely measure the height and x-location of the
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extrema. If we want to examine a particular trace then we can highlight it in the view

and see the full slice highlighted on screen.

For comparison, I show several visualizations of the 2D sinc function rendered

using the msr package [37] in R. This package implements the visualization of the

Morse-Smale complex from Gerber et al. [36]. I sampled the function with 2000

sample points using a Sobol sequence. The 1D slices view is showing 50 focus points

with 21 samples for each slice. I chose 2000 sample points in order to use a similar

sampling method and number of samples to the Sliceplorer method. The function

can do persistence-based filtering of the graph before rendering. This is controlled

by the pLevel parameter which filters all persistences less than a certain value. In

Figure 2.4c we show the view with the filtering level set to 0, i.e. no filtering. The

view does a very good job showing the critical points of the graph. It looks very

similar to the surface plot (Figure 2.4a). However, the visualization is very sensitive

to the filtering level. In Figure 2.4d and Figure 2.4e we show the sinc function with

the filtering level set to 0.05 and 0.1 respectively. The 1D slice view does not suffer

from this issue of parameterization.

2.5.2 Neural networks

Artificial neural networks are currently gaining a lot of attention in machine learn-

ing. The goal of these algorithms is to produce a multi-dimensional function fitted

to the training points. Neural networks, in particular, have proven to be very good

at producing accurate, generalizable predictions. One of the major challenges for

designers of such models, however, is to properly architect these networks. For in-

stance, how many hidden layers does one need and how many nodes should be put

into each layer? These architectural choices can drastically change the predictions.

While these choices are crucial, currently, there is only little guidance available for

designers. A typical rule of thumb is to use a hidden layer two times the size of the

input dimensions. There are also some general proofs regarding what type of func-

tions neural networks can represent [54, 32]. However, there are no formal guidelines

30



2.5. Usage scenarios

Neural network - 26 SVM - polynomial Neural network 5+3 SVM - radial

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 2.5: Two different views of the predictions of four different machine learning
regression models on the Boston housing dataset. The top row (a – d) shows pre-
dictions by each model compressed to two dimensions with t-SNE. The point color
indicates the function value on a continuous color scale with dark blue being 0 and
light blue the highest value. The bottom row (e – h) shows a 1D slice view of the first
dimension of the dataset, crime rate. We show the slices of the remaining dimensions
in chapter A. The 1D slices reveal interesting information about how the models per-
form and can assist with model selection. We may not want to use the SVM with
polynomial kernel (f ), for example, since it predicts that home price will go up with
higher crime rates.

for designing these networks [39] and the way these models make predictions is still

obtuse.

One of the ways we can increase the understandability of neural network regres-

sion models is by viewing the response function directly [38]. If we want to un-

derstand how the network architecture affects the prediction we could compare the

prediction manifold to one produced by a “simpler” machine learning model [93],

for example a support vector machine [105]. Support vector machines have known

guarantees on error rate with the number of training samples. With this comparison

we may be able to get some better insight about how the neural network learning

algorithms are performing.

To compare, I chose the Boston housing dataset [70] from the UCI repository.

This dataset contains median home prices given 13 factors including crime rate, age

of the house, and proximity to highways. I then trained a neural networkwith a single

hidden layer of 26 nodes, a neural network with 2 hidden layers: one of 5 and one
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of 3 nodes, a support vector machine with a polynomial kernel, and a support vector

machine with a radial (Gaussian) kernel.

I compare 1D slices with an adaption of the common way of viewing classifica-

tion algorithms to continuous data. The results of classification models are commonly

visualized by using MDS [66] or t-SNE [118] to reduce the input dimensions to two

and then present a scatterplot with the predictions colored by class. I extended this by

sampling the prediction model with 1, 000 samples from a Latin hypercube [110] (a

space-filling design), converting the points to two dimensions with t-SNE, and then

coloring the points on a continuous scale which shown in Figure 2.5 (top row). The

bottom row of the figure shows the 1D slice view of the same four prediction models.

Only the first dimension is shown due to space reasons. The full 13 dimension slice

view image in chapter A.

Showing the changes in home price as it corresponds directly to the crime rate

can help to increase confidence in a model. From the prediction lines, one may not

want to use the SVM with a polynomial kernel. By and large the prediction lines are

increasing. This means that the home price is increasing as the crime rate goes up.

This does not really make sense. The model is not generalizing well. Similarly, the

neural network with a single hidden layer (left column) also has a number of curves

that increase as crime increases. The neural network with two hidden layers does not

have this problem. Maybe this is the best model to use in this case.

In summary, this usage scenario illustrated that a direct inspection of a model’s

response surfaces can give intuition of its behavior, and can lead to a better model

selection and a better intuition of the modeling process. 1D slices can help to gain

important insights in this process.

2.5.3 Optimization algorithm

General purpose optimization algorithms try to find the global minimum (or equiva-

lently, the global maximum) of a function of arbitrary dimension. Many optimization

algorithms such as Nelder-Mead [86] work by starting at a particular parameter set-
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ting and evaluating the “shape” of the function around that point. The algorithm

then determines where the function is decreasing the greatest, and “jumps” a certain

distance in that direction. The “jump,” starting position, and termination tolerance

parameters are user-settable parameters. Depending on how they are set, the algo-

rithm can get stuck in a local minima or take unreasonably long to finish.

When one is trying to parameterize or build optimization algorithms then one

wants to evaluate the trace of the optimization on an easy function that is fast to

compute first. This analysis helps to better understand how to parameterize for more

complex problems but are too computationally expensive to analyze directly. Visual

inspection of the easy function before running the optimization algorithm, as well as

viewing the trace of the optimization algorithm (the sequence of steps it took) is a

good way to ensure that the algorithm is converging towards the global minimum.

I compare 1D slices with HyperSlice [119] as this is the only technique that also

directly visualizes the parameter space. I ran theNelder-Mead optimization algorithm

on the 5D Ackley function [1], a popular optimization algorithm testing function.

To examine the effect of starting position, I tried different starting positions: x =

(1, 1, 1, 1, 1) and x = (2, 2, 2, 2, 2). Figure 2.6 shows the trace of the optimization

algorithm overlaid on both 1D slices and HyperSlice.

The 1D slice view allows us to see the path that the algorithm took and the gen-

eral shape of the function simultaneously. In addition, the 1D slice view shows that

the distribution of values around the global minimum is small. Most of the slices are

clustered around y = 10 with only one slice descending close to y = 0. Since the

sampling is uniform in the parameter space this means that it is very difficult to se-

lect slices around the global minimum. In fact, this is a known property of the Ackley

function. It is easy to see that the optimization algorithm got stuck at a local minimum

when started at x = (2, 2, 2, 2, 2). However, with the HyperSlice view it is difficult

to see the difference in value and steepness of the function at x = (1, 1, 1, 1, 1) versus

x = (2, 2, 2, 2, 2). Humans are not good at perceiving fine differences in color [84],

but is required for this task. We learn a lot more about the behavior of the optimiza-

tion algorithm from the 1D slice views (see Figure 2.6a and Figure 2.6c) than the
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(a) (b)

(c) (d)

Figure 2.6: 1D slice and HyperSlice views showing traces of an optimization algo-
rithm searching for the global minimum of a 5D Ackley function. (a) and (b) show
the trace starting at the point (1, 1, 1, 1, 1) while (c) and (d) show the trace starting at
the point (2, 2, 2, 2, 2).

HyperSlice view. However, the HyperSlice view does clearly show that that opti-

mization algorithm is moving in multiple directions at once. This is not clear in the

1D slice views.

2.6 Discussion

The above examples illustrated that the technique of 1D slices as presented are quite

flexible and useful for various low- and high-level tasks. However, I do not intend to

claim that it is the only and best method for all problems out there. Rather, I would

like to argue that it is a valuable (and thus far overlooked) technique in a toolbox

of visual inspection methods for multi-dimensional functions. I hope that this work

inspires a discussion and exploration of guidelines for tasks, proper visual encoding,
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and interaction techniques for various application areas. Along these lines I would like

to put forth our current experience with various techniques.

Topological techniques are helpful for a global overview: Topological tech-

niques allow us to compare between optima but are not as good at evaluating the area

around an optimum since these areas are typically abstracted away. Topological spines

attempts to compensate for this by showing the area covered by a particular optimum

as an area around the node. However, many of the tasks like “correlate” and “clus-

ter” are best served by viewing the response manifold directly. In a larger system,

the topological techniques could be used effectively as a global overview of the func-

tion with a HyperSlice or 1D slice showing local context. Selecting a point in the

topological view would change the focus point in the local view.

HyperSlice is goodwhen you need to show 2D interactions: HyperSlice is the

only technique that can displaymore than one dimension of data interaction. So, if this

is a requirement then HyperSlice is the best option. However, one can use 1D slices

to get a general overview of the dependence of the function on each dimension. The

dimensions that are not interesting because, for example, the function is not sensitive

to them could easily be eliminated from further consideration. This would reduce the

number of subplots that we need to view in the HyperSlice plot.

1D slices should be used for a “first pass” visualization: 1D slices addresses

many of the tasks that a user wants to perform. The technique does a very good job

on a wide variety of tasks. 1D slices are easy to implement, easy to understand, and

the static view provides a lot of information.

2.7 Limitations and future work

The 1D slice view consists of a projection of many lines. The distribution of slices

are shown through direct projection. Techniques like contour boxplots [123] and

curve boxplots [78] build a distribution model of curves which could help to address

the “characterize distribution” task in Table 2.1. However, neither of these or any of

the other time curve visualization techniques have been applied to multi-dimensional
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functions. Evaluating these techniques for this purpose is an exciting topic for future

work.

When developing the 1D continuous slicing technique I only considered multi-

dimensional continuous scalar functions in terms of requirements, tasks, and compar-

isons. I do not consider multi-field (i.e. functions with multiple outputs) or complex-

valued functions in the analysis. There are multi-field topology techniques to address

this [30, 56, 19] which I do not consider but the technique and analysis would need

to be extended to this domain. This is left for future work.

The x-axis of each 1D slice is independent of the x-axes of the other 1D slices.

This allows each plot to scale individually if the range of inputs have different values.

The x-axis and y-axis automatically change to incorporate their respective minimum

and maximum ranges. While the x-axis scales itself independently, the y-axis is the

same for each plot. This is also the default behavior in many of-the-shelf plotting

packages. The plots will adjust automatically to shifts. For the x-axis we use axis-

aligned projections. Therefore, the views are sensitive to rotational transformations

of the function.

Finally, the Sliceplorer technique is also based on sampling, just like the techniques

used in the comparison. As with any technique based on sampling one must be careful

to take an adequate number of samples in order to properly capture all desired behav-

ior. If the function is not smooth we may see a slice that is an “outlier,” i.e. one slice

is much higher or lower than all the others. In this case all other slices will be com-

pressed into either the top or bottom of the chart. This is often a problem with many

common visualization techniques like bar graphs or scatterplots and can be addressed

with log scaled axes, for example.

2.8 Conclusion

In this paperwe have presented Sliceplorer, a visualizationmethod formulti-dimensional

functions based on one-dimensional slices. We defined a task taxonomy specific to

multi-dimensional continuous functions and found that, while some state of the art
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techniques are very good at addressing specific tasks, our method supports a wide va-

riety of tasks. Consequently, our technique may be a good first pass when visualizing

multi-dimensional continuous functions. It is easy to implement, easy to understand,

and addresses a greater variety of tasks than any other technique.
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One-dimensional slices cannot do everything. When we are examining shapes then

we need to examine the relationship between dimensions. Thus, 2D slices are the

minimum number necessary to examine these relationships (see Table 2.1). If we

have a function describing the multi-dimensional shape we are examining then we

can generate two-dimensional slices by constraining all but two of the parameters to

a particular value and then computing the two-dimensional outline directly. How-

ever, there are domains, such as polytopes, where we have a simplical mesh of the

continuous object. In this case, we cannot use the dimension constraining method.

(a) Global view (b) Local view

Figure 3.1: The interface for browsing slices created by the Hypersliceplorer algo-
rithm. We show a plot for each pair of dimensions laid out in the same way as Hy-
perSlice [119]. The interface has two modes: global and local view. The global view
(a) shows the results of sampling over a number of focus points. The views are linked
through highlighting a slice. The local view (b) shows a single selected slice and then
the user can add additional slices by clicking the “+ fp” button.
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In this chapter, I develop an algorithm for generating two-dimensional slices of these

multi-dimensional simplical objects. This chapter is based on joint work with Torsten

Möller, Michael Sedlmair, and R. Mike Kirby currently under submission to the 20th

EG/VGTC Conference on Visualization (EuroVis 2018).

3.1 Motivation

The visual analysis of multiple dimensions is one of the central themes of visualization

research. In principle there are two conceptual types of problems that amount to two

different mental models. (1) Often, the data set is considered to be truly discrete and

projection methods, such as scatterplots and dimensionality reduction techniques, are

used for its analysis. Typical examples include business applications, in which one is

analyzing customer data. The focus of my work is different in that (2) I am focusing

on continuous multi-dimensional data spaces. For computational purposes, the data

set is then merely a set of points sampled from a continuous phenomenon of study.

This is rather common in simulation and engineering applications or for the study

of continuous algorithmic parameters in modeling environments, including machine

learning applications [98]. Of course, for such scenarios, projection based visualization

might be of help as well. However, they do not respect the mental model of the object

of study [115].

To comprehend these continuous data spaces, I extend theHyperSlice [119]method,

which presents a number of slices through data space, all connected through one point

in data space (called the focus point). Slicing has a number of advantages including

undistorted views of the space and the preservation of distances. The disadvantage is

that only one focus point can be shown at a time. Vastly different views of the object

may be seen depending on the location of the focus point. Navigatingmultiple dimen-

sions, the user may also lose their place during interaction. I create a two-dimensional

slice by constraining all but two parameters to the focus point value.

In Sliceplorer [113], I suggest to present 1D slices instead of 2D slices in such cases.

While a 1D slice carries less information than a 2D slice, they could now present a
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global view of the multidimensional object by over-plotting many 1D slices. This

advantage was worth the loss of 2D information. Here, I take the idea of more global

overviews and revisit 2D slices for closed multi-dimensional objects, whose overall

multi-dimensional shape is of great importance. This has beenmotivated by a number

of real-world application scenarios, from comprehension of multi-dimensional poly-

topes by geometers, to applications in computational science, to multi-dimensional

Pareto-front analysis. Polytopes are the generalization of polygons and polyhedra to

multiple dimensions. By showing only slices of the outlines of these polytopes we

can again create global views of these data sets through over-plotting of many focus

points.

I address the issue of selecting a focus point by sampling a number of focus points

and producing projections of 2D slices (Figure 3.1). This global view gives the user an

overview of the behavior of the object without having to navigate manually. Since

we are viewing just the outer hull of the object, I draw these as a projection of a set

of 2D slices. I use linked highlighting to show all slices for a particular focus point. In

addition, the user can click on a particular slice and switch to the local view. The local

view begins by showing the particular slice the user clicked on. The user can add addi-

tional focus points and select particular slices for comparison. This interaction models

Shneiderman’s mantra: “overview first, filter and zoom, details on demand” [103].

My major contribution is an algorithm called Hypersliceplorer for computing the

intersection of a 2D slice with a simplical mesh in any dimension (see section 3.3

and Figure 3.2). The issue is that a 2D plane does not have a well-defined normal in

spaces higher than three. Therefore, one cannot use the typical point-normal form of

a plane in order to compute the intersection of the plane with the simplex. Instead,

I treat the plane as a point with two free parameters representing the plane. Then, I

show how this representation allows us to compute how a multi-dimensional simplex

intersects a 2D plane. This approach lets one compute slices of a multi-dimensional

object without a parametric form of the surface. I also demonstrate the results of this

algorithm with an interactive interface I developed.

I evaluate our algorithm and interface in two ways representing their recom-
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mended evaluation methods according to the nested model [83]. For the overall tech-

nique and interactive viewer, I demonstrate the effectiveness of Hypersliceplorer by

presenting three case studies. For the underlying algorithm I present an analysis of

the running time.

In summary, my contributions are:

• an algorithm for computing 2D slices of multi-dimensional polytopes defined

by a simplical mesh,

• an interactive viewer combining both global and local views of slices,

• three case studies demonstrating the technique,

• and an analysis of the running time of the slicing algorithm.

3.2 Related work

Multi-objective optimization and multi-dimensional objects are two areas where it

is important to study shapes in over three dimensions. I discuss these areas below.

Topological techniques are based on viewing critical points of manifolds [24, 36] or

how contours merge and split [21]. I do not discuss them further here. Manifold

analysis is very different than visualizing shapes and this is discussed chapter 2.

The need to understandmulti-dimensional polytopes is apparent to geometers [126].

However, there are a number of cases in computational science where the under-

standing of the size and the shape of a sub-section of the parameter space is of impor-

tance [11, 98]. One of these cases is highlighted in subsection 3.5.2. Another use case

is the study of multi-dimensional Pareto fronts (subsection 3.5.3).

3.2.1 Multi-objective optimization

In multi-objective optimization there are several scalar values that we wish to opti-

mize. The set of optimal points is known as the Pareto front. If each objective measure

is continuous then we have a continuous hull in one orthant. We want to use this hull
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to analyze the trade-offs between objective measures. Interactive decision maps [75]

show a 3D Pareto front as a series of 2D slices. Any objectives past three must be con-

strained to a value however. Objective functions are difficult to sample since we often

do not have control over the sampling of the range of a function. To generate this

hull one often samples the objective functions and then computes the Pareto points

using an algorithm such as NSGA-II [26] or the skyline algorithm [14]. We can then

generate the hull using multi-dimensional marching cubes [13], the quickhull algo-

rithm [8], or alpha shapes [31]. These can then be viewed in Hypersliceplorer as I do

in subsection 3.5.3.

An alternative is to treat the samples as a fixed set and then visualize the relationship

between possible combinations of objectives. Typically this is done by examining the

weight space through interaction. LineUp [40] uses a ranked list approach and shows

the user how rankings will change as the user changes the relative weighting for each

objective. WeightLifter [87] extends this by also showing the stability of rankings.

The user can understand howmuch a particular objective is affected by its weighting.

This can help speed interactive exploration. Finally, the joint contour net [18] can be

used to compute how often two objectives hold particular values simultaneously. In

my case, the mental model is a continuous one. Thus it makes more sense to show a

continuous Pareto front.

3.2.2 Multi-dimensional objects

When speaking of 3D polytopes, their source is usually either from reconstruction of

3D point clouds (see Dey [28]) or from iso-surfacing techniques (see Wenger [122]).

There are extensions to iso-surfacing techniques in multiple dimensions [13], but in

more than three dimensions wemust distort the space somehow to visualize the object.

For the visualization of 4D polytopes, there are a number of techniques for moving

from four to three dimensions. The Schlegel diagram [108] is one such method based

on projection. We pick a face of the figure, usually the largest, which is a three-

dimensional object. Then, all other faces are “packed” inside this face in such a way
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that we can show the connections between faces. The Schlegel diagramworks well for

regular polytopes where we have some previous intuition about the faces. However,

for an arbitrary simplical mesh, any face is a simplex which we need to project into.

All Schlegel diagrams of a simplical mesh look like a simplex with a number of other

simplices inside them. It can be difficult to recover what the original object looks

like because the cross section is lost. An alternative approach is to treat the fourth

dimension as time and then produce an animation of the evolution of the shape in

three dimensions. In this case each frame of the animation is a 3D slice of the object.

Rather than first projecting from 4D to 3D and then rendering the projection, Hanson

and Cross [44] propose a method to first render the object in 4D and then view the

three-dimensional projection. This allows them to show unique lighting effects from

the 4D surfaces. As with all projection methods, if the user is unaware of the details

of the method it can be difficult to build a mental model of the shape under study.

Hasse diagrams [9] are based on showing the connectivity between vertices of an

object. These can be seen as network diagrams where the vertices of the figure are

the nodes in the graph and the edges of the graph are the edges in the figure. These

have a number of layout issues. For visual understanding, humans prefer a 2D planar

graph [65]. Good layouts of the Hasse diagram must balance human aesthetic needs

like few edge crossings with the geometric interpretation. There are automatic layout

algorithms, such as the one by Battista et al. [9], but these do not work in all cases.

Formore than four dimensions, projectionmethods no longer work as well. Tech-

niques based on slicing the space can be extended to any number of dimensions. The

techniques to perform this so far, such as HyperSlice [119], HyperMoVal [90], and

Sliceplorer [113], are designed to show slices of multi-dimensional manifolds. They

produce slices by constraining all but two (for 2D slices) or one (for 1D slices) of the

dimensions to the focus point value and then producing a heatmap, contour plot, or

function plot. Sliceplorer addressed the focus point issue by sampling over a number of

focus points and projecting them down. Exploded view diagrams [63] offer a hybrid

method between a 3D volume visualization and slicing. However, they are limited to

3D objects. The global view of Hypersliceplorer is inspired by the idea of examining
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cross sections. Hypersliceplorer also has a local view which permits the user to look

at a small number of self-selected slices. I developed a method to produce slices based

on a simplical mesh which is very useful given a discretized surface (see Figure 3.2).

3.3 Algorithm

(a) Slicing a mesh (b) Slicing a simplex (c) 2D slice

Figure 3.2: An overview of how the algorithm functions. The goal is to compute
the intersection of a slice with a polytope defined as a simplical mesh (a). The slice
is defined by selecting a focus point and then extending it in two directions. Each
simplex in the mesh (b) is treated independently in order to compute the intersection
of the simplex with the slice (see Algorithm 1). The collection of all intersections for
a particular plane is shown as a line plot (c). This process is repeated over a number of
randomly sampled focus points.

There are a several ready-made solutions to creating a number of uniformly dis-

tributedmulti-dimensional samples (e.g. Sobol sequence [107] or Latin hypercube [77]).

These methods are based on ensuring that the distance between sample points is as

even as possible. These will be our focus points. Based on this, the main contribution

of Hypersliceplorer is an algorithm that computes slices of a multi-dimensional poly-

tope. The algorithm will produce a single, two-dimensional, axis-aligned slice for a

single focus point. To produce the full multi-dimensional view this process is repeated

for each focus point and dimension pair.

3.3.1 Conceptual overview

Other slicing techniques, like Sliceplorer [113] or HyperSlice [119], show slices of

multi-dimensional manifolds. In this case we can fix all but one or two of the pa-

rameters, the parameters representing the slice, to a fixed value based on the focus
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point. This gives us a two-dimensional function which we can draw as a one- or

two-dimensional function plot.

When we have a simplical hull instead of a functional description then we cannot

use the parameter fixing method. This hull can be computed as a convex hull of a

point cloud using an algorithm such as quickhull [8] or they can be pre-defined. In

either case, a simplical hull is a set of d− 1-dimensional simplices for a d-dimensional

space. A two-dimensional slice is equivalent to a two-dimensional plane. So, in order

to compute the two-dimensional slice, we need to compute the intersection of a two-

dimensional plane with a set of d− 1-dimensional simplices (see Figure 3.2a).

The method often used in graphics for computing a plane/simplex intersection is

to represent the plane as a point and normal vector. Then, we find the intersection by

checking, for each pair of points, if they are on opposite sides of the plane. This works

for 2D planes (slices) in 3D space since the normal to the plane is unique. However, in

more than three dimensions we cannot use this method to compute the intersection

of a 2D planar object. This planar object does not have a well-defined concept of a

“side” in a multi-dimensional space. The analogy to this is a line in three-dimensions.

The solution to this problem relies on two key observations. The plane can be

represented as a point with two free parameters and then see if this point lies on the

boundary of the simplex using barycentric coordinates. A barycentric coordinate

defines the location of a point on the face of a simplex. For a single focus point,

choose a point somewhere in the domain. Then, select two axis-aligned directions

and create a plane by setting the values of that point to free parameters, denoted x and

y. These free parameters create a 2D plane. The next step is to see where this plane

intersects the simplex (Figure 3.2b). A point is located on the boundary of a simplex

whenever at least one barycentric coordinate is zero and the rest are between zero and

one. If there is a solution then there will be a formula for the line segment through

the simplex (Algorithm 1). These line segments are computed for each plane/simplex

intersection. The collection of intersecting lines forms the image of the slice on the

plane (see Figure 3.2c).

The simplical hull of a shape consists of d1-dimensional simplices. However, in
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order to convert to barycentric coordinates without using a pseudoinverse we need

a d-dimensional simplex where every point has a unique representation. Using the

focus point as an additional vertex will yield a d-dimensional simplex. This will lead

us to a square matrix, which is easy to invert. Any intersections with the extra point

are removed at the end of the algorithm.

3.3.2 Algorithm details

The algorithm requires that the shape to be sliced is specified as a set of simplices.

Each combination of simplex, pair of slicing dimensions, and focus point is handled

independently. These can be looped through, as in the pseudocode (see Algorithm 2),

or in parallel, as in the actual implementation.

To illustrate how the slicing algorithm works I first introduce some notation. We

begin with a d-dimensional focus point fp and a simplex s consisting of d + 1 d-

dimensional points, x1, . . . , xd+1. The slice is denoted as f ′
p in the formulas below.

Without loss of generality, I will assume the slicing dimensions to be (d1, d2) = (1, 2).

Then, the two free variables for the specification of the slice, x and y, will replace

the first two components of the focus point (Equation 3.2). Let T be the matrix to

convert a point from barycentric coordinates to Cartesian coordinates (including a

homogeneous component of 1). The columns of T are the d + 1 points defining

the simplex. The final row of ones ensure that the barycentric coordinates sum to

one. The inverse of T will convert a point from Cartesian coordinates (including a

homogeneous component of 1) back to barycentric coordinates.
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fp = [p1, p2, . . . , pd, 1] (3.1)

f ′
p = [x, y, p3, . . . , pd, 1] (3.2)

T =




x1,1 x2,1 · · · xd+1,1

x1,2 x2,2 · · · xd+1,2

...
...

. . .
...

x1,d x2,d · · · xd+1,d

1 1 · · · 1




(3.3)

(3.4)

The next step is to convert the slice, f ′
p, to barycentric coordinates, λ.

T−1 =




α1,1 α2,1 · · · αd+1,1

α1,2 α2,2 · · · αd+1,2

...
...

. . .
...

α1,d+1 α2,d+1 · · · αd+1,d+1




(3.5)

λ = T−1f ′
p (3.6)

=




α1,1x +α2,1y +α3,1p3 + · · · +αd+1,1

α1,2x +α2,2y +α3,2p3 + · · · +αd+1,2

...

α1,d+1x +α2,d+1y +α3,d+1p3 + · · · +αd+1,d+1




(3.7)

This equation is essentially a linear equation in x and y and we denote its coefficients

by λx, λy, and λc respectively. Thus, each component is an equation of a line (t is

denoting the transpose).

λx = [α1,1, α1,2, . . . , α1,d+1]
t (3.8)

λy = [α2,1, α2,2, . . . , α2,d+1]
t (3.9)

λc =

[
d+1∑

i=3

αi,1p
′
i, . . . ,

d+1∑

i=3

αi,d+1p
′
d+1

]t
(3.10)

λ = λxx+ λyy + λc (3.11)
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Here, x and y correspond to the horizontal and vertical coordinates of the inter-

section of the plane with the simplex. Each component of λ reflects the influence of

one of the (d+ 1) points of the simplex. If the influence is zero (i.e. for the i-th point

we have λi = 0) then we are on the boundary of the simplex. An intersection of a

plane with a simplex must cross the boundaries (Figure 3.2b) so it suffices to turn each

component of λ, λi, to zero in turn. It is possible that the plane will intersect multiple

faces. Each component of λ is set to 0 in turn the range of x and y in the remain-

ing components are checked to see if they are valid barycentric coordinates (i.e. are

between zero and one). If this is the case, then the plane intersects the simplex. Other-

wise, there is no intersection. In other words, if we are trying to find the intersection

for face i, we need to solve λi = 0 such that ∀j 6= i, 0 ≤ λj ≤ 1. This can be solved

either with a linear constraint solver or directly by solving for y setting λi = 0 and

substituting it into each row j of Equation 3.7 and then finding an interval for x and

y that allows each λj to be between 0 and 1. This can be done by individually finding

the valid x, y interval for each j and then taking the intersection of all the individual

intervals. If the intersection is non-empty then this is the interval of values for x in

the intersection. The x values can be substituted into the formula to find the interval

of values for y. These intervals are drawn as line segments on the screen (Figure 3.2c).

Algorithm 1 Slicing a single simplex

function SLICE(p, s, d1, d2)
T ← [s 1]t ⊲ from barycentric to Cartesian coordinates
r ← p
r[d1, d2]← [x, y]
λxx+ λyy + λc ← T−1r ⊲ convert to barycentric coordinates
rng

x
← [−∞,∞]

rng
y
← [−∞,∞]

for i← 1 to d+ 1 do ⊲ each face of the simplex
(rng′

x
, rng′

y
)← SOLVE(λx,ix+ λy,iy+ λc,i = 0, s.t.∀j 6= i, 0 ≤ λx,jx+ λy,jy+

λc,j ≤ 1)
rng

x
← rng

x
∩ rng′

x

rng
y
← rng

y
∩ rng′

y

end for
return

(
rng

x
, rng

y

)

end function
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Algorithm 2 Finding slices for all simplices

for d1 = 1 to d− 1 do
for d2 = d1 to d do ⊲ all pairs of dimensions

slices← [∅,∅,∅,∅] ⊲ 4 column matrix for min/max x and y
for p ∈ FP do ⊲ all focus points

for s ∈ S do ⊲ all simplices
ranges← SLICE(p, s, d1, d2)
if ranges 6= ∅ then ⊲ add new row if we found an intersection

slices←
[
slices
ranges

]

end if
end for

end for
PLOT(slices, d1, d2) ⊲ plot slices to proper subplot

end for
end for

3.4 Interface

I developed an interactive viewer to browse and select slices of interest in order to

build up an understanding of the object we are viewing. Slicing is an inherently

interactive operation. Depending on what focus point we will see different aspects of

the data. In a multi-dimensional space, it is easy to get lost navigating freely without

guidance. However, if we show all slices at once the user cannot closely examine one

particular aspect of the data. Thus, the interactive interface, shown in Figure 3.1, has

two modes: a global view and a local view. The global view is designed to give an

overview of the general shape. By selecting a slice and corresponding focus point of

interest, the user can then switch to the local view and gradually add additional slices

at new focus points.

3.4.1 Global view

The global view (Figure 3.1a) gives an overview of the possible cross sections of the

object. By default we show slices for the first 50 focus points sampled using a Sobol

sequence [107]. This has the advantage of being both space-filling and easy to add

additional sample points if required. Since we are slicing hulls of simplical meshes,
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each slice is a contiguous line plot in the view. We use alpha blending in order to

show the distribution of hull shapes in each pair of dimensions. From this the user can

get insight into whether or not a shape has a regular structure.

With more than one slice one cannot easily tell how the slices correspond between

panels in the layout. I address this by using linked highlighting between the plots. If

the user mouses over a slice in one plot the slices corresponding to that focus point

are highlighted in the other plots. In addition, the user can click on a particular slice

of interest to focus in on that particular slice. This brings the user into the local view

mode.

3.4.2 Local view

The local view mode of the interface allows the user to narrow in on a particular

focus point and then explore how other slices of the figure relate to that one. The

focus point is represented as a dot projected on each sub plot. The user can change

the focus point by dragging the focus point dot to a new location. Thus, the user

can change one or two focus point values per dragging interaction. The user can

also add additional focus points by clicking the “+ fp” button in the upper left of the

interface. Each focus point is automatically colored based on a discrete color map from

ColorBrewer [45]. The slices themselves and the focus points are linked through a

similar color. For example, one mode of exploration this view supports is examining

the faces orthogonal to one of the slices. The user can return to the global view by

clicking the “deselect” button on the top left of the interface.

3.5 Case studies

Three areas where Hypersliceplorer can be used is in the visual analysis of multi-

dimensional polytopes, differences between spaces, and multi-objective optimization.

I examine each of these in turn in the sections below.
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3.5.1 Polytopes

Polytopes are the generalization of polygons and polyhedra to any number of dimen-

sions. Naturally, in more than three dimensions we have no way of viewing these

objects directly. Common ways to view them is either through projections, such as

the Schlegel diagram [108], or as a graph representation, like the Hasse diagram [9].

Projection methods do not accurately show distances or angles. These must be dis-

torted to show a multi-dimensional object in two or three dimensions. Network

diagrams do not necessarily show symmetries or structure unless care is taken during

layout.

As an alternative, we can slice these polytopes and examine the slices. Regular

polytopes have well-studied structure and symmetries so I use these as verification

examples. I examine these with Hypersliceplorer and see if the structure matches

reality. For example, in Figure 3.3 I show a 16-cell which is the four-dimensional

version of an octahedron in both Hypersliceplorer (Figure 3.3b) and as a Schlegel

diagram (Figure 3.3a) using the Stella4D software [121]. The Schlegel diagram picks

a face of the 16-cell and projects the remaining structure inside it. In this case, each

face of the 16-cell is a simplex. From the Schlegel diagram it is difficult to see that

the dual of the 16-cell is the hypercube (i.e. each vertex of the hypercube corresponds

to a face of the 16-cell and vice versa). However, in Hypersliceplorer this property

is clear from looking at the cross sections. We can see that each cross section looks

like a rotated cube which comes from the dual property. In addition, we can see the

simplical faces from the horizontal and vertical lines in the view. These result from

intersections of the 2D slice with a face of the 16-cell directly.

Further, Hypersliceplorer allows us the visualization 3D or 5D analogs of the 16-

cell (the octahedron in 3D, Figure 3.3c, as well as the 5-orthoplex in 5D, Figure 3.3d).

The Schlegel diagrams cannot be scaled to higher dimensions.

We can also look at other regular polytopes in the same fashion. Figure 3.4 shows

a hypercube in 3-, 4-, and 5-dimensions. From these plots we can clearly see the

generalization of the square, to the cube, to higher dimensions. One of the advantages
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(a) Schlegel diagram: 16-cell (4D) gener-
ated using Stella4D [121] (b) Hypersliceplorer: 16-cell (4D)

(c) Hypersliceplorer: Octahedron (3D) (d) Hypersliceplorer: 5-orthoplex (5D)

Figure 3.3: This figure shows the 16-cell, the 4-dimensional regular orthoplex (4D
version of an octahedron) as (a) a Schlegel diagram and (b) the Hypersliceplorer view.
The Hypersliceplorer view shows the outside shape of the figure and the repeating
structure. We can also see the repeating structure in the 3D (c) and 5D (d) views.

of my method is that I do not need to choose a face to project into. For example, with

a discretized hypersphere, there are many faces. We can see in Figure 3.5 the regular

cross section of a sphere as well.

3.5.2 Positive and Bernstein polynomials

In physics, it is sometimes necessary to fit data with a function that is positive every-

where on its domain. An example of such data is density; it is a positive quantity and

any regression on it should be positive. In numerical methods, we often use poly-
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(a) 3D (b) 4D (c) 5D

Figure 3.4: 3-, 4-, and 5-dimensional hypercubes. We can see the regular structure
in the cubes. The cross sections are all the same size since the cube is oriented to the
axes. The cross lines in the plots are due to the simplical mesh.

(a) 3D (b) 4D (c) 5D

Figure 3.5: 3-, 4-, and 5-dimensional hyperspheres. We can see the concentric rings
from slicing the sphere at different points. The irregularity of the slices is due to
sampling.

nomials as a means of representation, and hence we want to find polynomials that

are positive on some compact domain, without loss of generality say, [0, 1]. It is very

difficult to control a polynomial such that it is positive during the fitting process us-

ing a linear constraint solver. One method used by physicists is to restrict the fitting

process to Bernstein polynomials [89]. By only using positive Bernstein coefficients,

Bernstein polynomials are restricted to be strictly positive. However, physicists do

not know how “representative” are the positive Bernstein expansions of the space of

positive polynomials. In other words, can every positive polynomial be represented

by a corresponding Bernstein polynomial? To show these differences, I select a large

number of polynomials and visually compare the spaces in order to understand the

differences.

A Bernstein polynomial of degree n is a linear combination of n+1 basis polyno-
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mials.

Bn(x) =
n∑

i=0

βibi,n(x)

where βi is a scalar factor and bi,n is a Bernstein basis polynomial. These are defined

as,

bi,n(x) =

(
n

i

)
xi(1− x)n−i.

Each of the Bernstein basis polynomials is positive in the range [0, 1], therefore if we

constrain all βi ≥ 0 then the resulting polynomial will also be positive.

Sampling method

The space of a polynomial of degree n is the range of each of its coefficients. For

example, a 2nd degree polynomial, a0 + a1x+ a2x
2, has three coefficients: a0, a1, and

a2. Since we are only concerned with positivity, any polynomials that differ from each

other by a positive factor are equivalent. Thus, the polynomials 0.2x2 + 0.1x+ 2 and

0.1x2+0.05x+1will be positive in the same range. Therefore, I constrain the sampling

by setting one of the coefficients to 1 or −1 and then sampling the rest between −1

and 1. I used 10, 000 sample points to get a representative sample. Since one coefficient

is constrained in turn to either −1 and 1 there are 2n possible polynomials where the

remaining n coefficients range between [−1, 1]. I then test to see if each polynomial is

positive in the domain [0, 1]. I also determine if the equivalent Bernstein polynomial

has all βi ≥ 0. We can compute the βi factors because each coefficient aj is a linear

combination of Bernstein coefficients. For our two-dimensional example: a0 = β0,

a1 = 2(β0 − β1), and a2 = β0 − 2β1 + β2. Then, for each polynomial, it is either

non-positive, positive without positive Bernstein coefficients, or positive with positive

Bernstein coefficients. I perform this process to examine polynomials of degree 3, 4,

and 5. Constraining a coefficient to ±1 produces a face of the space of polynomials.

These faces are convex so I can generate a convex hull of these points and examine

them using Hypersliceplorer. Since we are only interested in how these spaces differ,

we examine the difference views.
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(a) global view (b) local view

Figure 3.6: The difference between possible coefficient values for general positive
polynomials, a0 + a1x + a2x

2 + a3x
3 + x4, and polynomials that can be represented

with positive Bernstein coefficients. From the global view (a) we can see that the
area of the slices is quite large. This means that the difference between spaces is quite
large, especially with respect to the higher-order coefficients. We can narrow into a
particular slice in the local view (b) we can see the orthogonal faces to the slice in the
a2 × a3 plot.

The current assumptions is that, while there is a difference between the set of all

positive polynomials and the set of all Bernstein polynomials with positive coefficients,

that difference is small. However, the Hypersliceplorer visualization shows that this

is not the case. Figure 3.6a shows all 4th degree polynomial with the x4 term fixed

to 1. We can see that for almost an entire range of the x2 and x3 coefficients a1, a2

there are positive polynomials for which one cannot find a Bernstein polynomial with

positive Bernstein coefficients. Using the local view (Figure 3.6b), we can see that this

difference is also large in the other dimensions. Other patterns become apparent, such

that a0 > 0 which could lead to novel hypothesis that can be tested.

The global overview also lets us compare across degrees of polynomials. In Fig-

ure 3.7 I show a 3rd, 4th, and 5th degree polynomial with the coefficient of the x2 term

set to 1. Here we can see that the a0 × a1 plots all look the same. In fact, the width

across all the panels including a0 are the same. In this case this means that for these

ranges of a0 (the constant term) we will not be able to find a Bernstein polynomial

with positive Bernstein coefficients no matter the degree of polynomial.
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(a) degree 3 polynomials (b) degree 4 polynomials (c) degree 5 polynomials

Figure 3.7: Examining differences in the space of general positive polynomials and
Bernstein polynomials with positive Bernstein coefficients. In this example the x2

term is set to 1. We can see that across degrees of polynomials, the space differences
in the a0 and a1 coefficients is relatively consistent. The empty plot in c for the a3, a4
plot is because the focus point sampling did not hit a particular slice. The solution is
to add additional focus point samples.

(a) 3D (b) 5D

Figure 3.8: Hypersliceplorer views of spherical Pareto fronts in 3D (a) and 5D (b).
The smoothest possible Pareto front is the positive orthant of a hypersphere. From
the Hypersliceplorer view we can clearly see the concentric arcs. Each arc allows the
user to compare the trade-offs between two objectives given that all other objectives
are fixed. Changing from one arc to another means changing other objective settings.

3.5.3 Pareto fronts

A Pareto front (also known as the efficient frontier) is the set of all points that are

optimal with respect to some trade-off between objectives. Algorithms such as the

skyline algorithm [14] or NSGA-II [26] can extract these points automatically. The

issue with multi-objective optimization is this trade-off is not always known. Thus

visual analysis of the trade-offs is necessary. With two objectives, this can be visualized
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(a) 3-objective (b) 5-objective

Figure 3.9: Visualization of the 3-objective (a) and 5-objective (b) DLTZ1 prob-
lems [27] in Hypersliceplorer. The DLTZ1 Pareto front is a hyperplane that cuts
diagonally across the objective dimensions. In the 3-objective case we can see the
slices of the hyperplane. The NSGA-II [26] algorithm tends to push points towards
one objective. This becomes much more pronounced in higher dimensions (b) where
the Pareto front is squared off.

using a scatterplot or line plot of the two objectives against each other.

In more than two dimensions this is no longer a curve, it is a hull. The common

technique is to use a scatterplot matrix with discretely sampled points. This, however,

hides the trade-offs between points in the other dimensions. Instead, we can examine

the hull of the Pareto front by slicing using Hypersliceplorer.

The smoothest possible Pareto front is a sphere in the positive orthant of the objec-

tive space. In order to illustrate our technique we show a 3D and 5D positive orthant

section of a sphere in Figure 3.8. Each arc is the trade-off holding all other parameters

fixed. In the multi-dimensional view, setting the focus point is analogous to fixing all

but two parameters. Thus, in one plot one can directly see the trade-off between two

of the objective measures given that all other objectives are held in place. However,

the user can also see at a glance what are the possible trade-off curves for a pair of ob-

jectives. This helps the user to understand what are the costs and benefits of changing

one of the remaining objectives.

I also show a popular multi-objective test problem, DLTZ1 [27] with 5 objectives.

I find the Pareto points using the NSGA-II [26] algorithm. I used the same settings
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for the algorithm as in Deb et al. [27]. In real-world situations, the Pareto front is not

convex. One can use, for example, alpha shapes [31] to generate a non-convex hull

of a set of points. For this example, we use the convex hull of the points generated

using the quickhull [8] algorithm since the Pareto front of DLTZ1 is convex. The

Pareto front is a hyperplane that cuts diagonally across the objective dimensions. In

the 3-objective case (Figure 3.9a) we can see how the NSGA-II algorithm is getting

close to fitting the points to the hyperplane. It does not find it exactly though which is

why the lines appear bent in the figure. In addition, NSGA-II pushes some points out

to the maximum value for each objective. This creates the horizontal and vertical lines

at the edges of the plots. This becomes much more pronounced in higher dimensions

(Figure 3.9b) where the Pareto front appears as a corner shape.

3.6 Algorithm performance

Table 3.1: Results of timing the Hypersliceplorer algorithm on a number of different
datasets. I ran the algorithm setting the number of slices to 1, 000. I record the number
of simplices created by the quickhull algorithm [8], the total time for all slices, and
the time per simplex. The time per simplex is the total time divided by the number of
plots (i.e. dimension pairs, the number of simplices, and the number of focus points.
The time per simplex is roughly constant.

Dataset Dims Simplices Total time (sec) Time/simplex (ms)

Cube 3 12 48 1.345

Octahedron 3 8 38 1.624

Sphere 3 596 1,243 0.696

Tesseract 4 58 289 0.833

16-cell 4 16 108 1.135

3-sphere 4 2,567 14,283 0.927

5d-cube 5 316 2,378 0.753

5d-ortho 5 32 258 0.808

4-sphere 5 12,886 130,453 1.012

Klein bottle 4 36,258 129,158 0.594

In order to test the running time of the slicing algorithm I ran a number of exper-

iments to understand the timing. I tested regular polytopes in 3, 4, and 5 dimensions
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Figure 3.10: Chart showing the number of slicing operations (simplices × number
of plots) versus timing results from running our algorithm on a number of different
datasets. The axes are on a log-log scale. The points are all clustered around the “1
ms/simplex” line showing that the running time is roughly one millisecond per slicing
operation.

as well as hyperspheres. I also tested the four-dimensional version of the Klein bottle

because it has a large number of simplices in its mesh. For each test, I ran the slicing

algorithm for all pairs of dimensions and for 1, 000 focus points. I recorded the total

wall clock time as well as the number of simplices given by the quickhull algorithm.

The testing machine has an 8-core 3.2GHz Intel i7-6900K with 64GB of RAM.

The results are shown in Table 3.1. The total number of slicing checks (Algo-

rithm 1) is the number of simplices, times the number of pairs of dimensions (
(
d
2

)
),

times the total number of focus points (1, 000). I divide the total time by this number

to show the time per simplex.

As we can see, the times are roughly constant between the number of dimensions

and simplices (see Figure 3.10). The reason the Klein bottle is faster is because many

slices do not hit any simplices and the algorithm will exit early once this is detected.

Right now this algorithm is not optimized. For example, it would be greatly beneficial
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to pre-compute a spatial data structure so that only slices that are likely to intersect

simplices are evaluated. Currently, the algorithm must check every simplex against

every focus point for every pair of dimensions. This is a lot of extra work for figures

such as the Klein bottle with many simplices.

3.7 Conclusion and future work

In this chapter I have presented Hypersliceplorer, an algorithm to compute 2D slices

of multi-dimensional shapes defined as a simplical mesh. I also discussed an interac-

tive interface we developed to view the slices. I evaluated our method in two ways:

through three target use case scenarios and with measuring the running time.

In the future I will improve the speed of our algorithm by integrating a spatial

data structure such as a k-d tree or bounding box method. The current algorithm

must find an intersection with every simplex in the figure even if no intersection is

possible. The data structure will help to avoid these extra checks. This should improve

the speed of the algorithm by avoiding unnecessary intersection tests.

Currently, I have only tested our method with convex hulls of shapes. I plan to also

examine the visualization possibilities with non-convex hulls and with pre-generated

hulls. Perhaps this method will lead to new insights in mesh generation algorithms.

I will also work closely with target user groups to customize the interface for their

specific goals. For example, geometry users may more integration with the Schlegel

diagram while multi-objective optimization users may need better support for local

neighborhoods.
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With slicing, the user should be able to interactively set the focus point to any posi-

tion they desire. If we cannot update the view quickly enough then this will break the

cognitive connection between the mental model of the user and what they are view-

ing on screen [101]. The multi-dimensional structures we are visualizing often have

some regular geometric structure like simplices or spheres. In this chapter I examine

how we can take advantage of the power of the parallelism of the graphics process-

ing unit on any modern computer to create interactive-time focus point selection of

multi-dimensional objects [111]. This chapter is based on work published as Thomas

Torsney-Weir, Steven Bergner, Derek Bingham, and Torsten Möller. Predicting

the interactive rendering time threshold of Gaussian process models with HyperSlice.

IEEE Transactions on Visualization and Computer Graphics, 23(2):1111–1123, February

2017.

4.1 Motivation

Many scientific studies investigate the relationship between several explanatory vari-

ables (inputs) and one or more system response variables (outputs), thereby leading

to multi-dimensional data sets. Such data can arise in exploration of the input-output

map for applications ranging from weather, physics and biological processes to image

segmentation systems. In these cases, the output is actually a complex object such as

a segmented image or 3D+time weather data. A key step towards learning about the

mechanisms that are present in a computational model or laws that govern natural

phenomena is to study how changes in the input variables affect the output. Visual
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inspection of individual outputs is suitable in small multiples, but does not scale well

with increasing numbers of parameters, because of the large number of runs that are

required to adequately represent model behavior in the region of interest. To more

comprehensively compare outputs, automation can be taken a step further, for in-

stance, by processing the outputs with feature extractors or fitness functions that are

relevant to the driving questions. An interactive, visual investigation of the resulting

feature density distribution or fitness landscape then becomes possible [33, 82, 90],

but is subject to some fundamental numerical challenges that are topic of this chapter.

The general approach to study deterministic computer models is known in the

statistics community as the design and analysis of computer experiments [97]. This method

involves reconstructing a continuous functional representation of the relationships

among variables of the system from a discrete set of samples and then investigating the

input/output relationship of the function. Numerical methods for this purpose include

local derivative computation, global sensitivity indices [96], and response surface ex-

ploration [15]. However, these derived computations have to be set up carefully to

yield meaningful results.

The most well known example of non-interactive visualizations of the relation-

ships is the scatterplot matrix for viewing discrete samples. Another example are con-

tinuous plots of “average” behavior over the range of each dimension, as exemplified

in Chapman et al. [22]. However, any 2D or 3D view of a multi-dimensional space

necessarily requires aggregation of that space. We can only “see” a subsection of the

parameter space at one time. Therefore, one must create multiple static views, each

looking at the data from a different perspective. A scatterplot matrix, for example,

shows a 2D projection of the data for each pair of dimensions.

By allowing for user interaction one is not limited to a predetermined set of views.

When the view selection changes then a new view of the data must be built on the fly.

However, if the visualization system does not respond quickly to the user’s interac-

tion then the cognitive connection with the visualization is lost [101] along with the

advantage of adding interaction in the first place. Arguments about what exact re-

sponse time makes a visualization interactive vary. However, view updates somewhere
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between 10fps to 60fps are typically deemed acceptable.

One interactive, multi-dimensional, continuous visualization method is Hyper-

Slice [119], which presents the user with a matrix of 2D slices of a multi-dimensional

continuous function around a particular viewpoint in space. HyperSlice allows the

user to change the location of the viewpoint around which they are inspecting. Given

this method, it would be ideal to know if the number of points or the dimensionality

of the dataset will overwhelm the graphics capabilities of the user’s machine and slow

the frame rate. Hence, we need a way to evaluate a priori what the frame rate will

be given some data. The main aim of this chapter is developing a methodology to

estimate the rendering time of a multi-dimensional visualization system in the form

of a predictive formula. We can even invert this formula so that, given a desired frame

rate, we can compute the number of points possible to render in the given time. This

inversion can be used, for example, to automatically sub-sample the dataset when the

predicted rendering time will be too slow.

In order to be able to predict the rendering time we need a function for the average

rendering time based on the size of the N × d multi-dimensional dataset as well as

the search distance, r, over all possible view points. The advantage of a predictive

formula is that, once fit, one can estimate the rendering time for all unknown values

ofN , d, and r. In addition, we can use this function to examine the time and accuracy

trade-off in terms of point spread versus number of samples.

A proper prediction function should describe the number of pixels that will need

to be drawn based on the scene geometry. Adapting this function to each user’s hard-

ware platform, requires a universal methodology that can be run on each user’s envi-

ronment to make accurate predictions. Combining this strong theoretical foundation

with a fitting step makes our method robust to further developments in GPU tech-

nology and algorithm development. One can simply recompute the time it takes the

GPU to filter and draw the points without having to worry about hardware-specific

optimizations.

The contributions of this chapter are:
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• An evaluation of how to render multi-dimensional slices on the GPU and how

one can use that to predict the number of pixels drawn on screen.

• A fitting procedure for predicting rendering times on an individual user’s hard-

ware.

• An application of the prediction formula where I show an algorithm for sub-

sampling data until I can render interactively. I also show a UI dialog box for

selecting the number of samples based on the predicted rendering time.

4.2 Related work

The prediction of rendering times is a staple of the 3D rendering community, (e.g.,

see early work by Funkhouser and Séquin [34]). However, these are focused on

the three-dimensional rendering domain. It has yet to be analyzed in the multi-

dimensional domain, which I do here. Another difference with this setting is that

I have a known scene geometry that I can take into account. Furthermore, my focus

is on the conversion of this high-dimensional data representation to 2D views and not

global illumination.

One could perform an iterative search method, for example bisection search, on

the number of sample points that one could render in interactive time. However,

that would need to be performed for every different combination of dimensionality,

number of samples, and search distance (d, N , and r respectively). Furthermore, this

bisection search may be prohibitively expensive if we are determining the number of

samples of a complex simulation where each sample takes hours or days to compute.

4.2.1 Multi-D visualization

Analyzing multi-dimensional data locally is typically done by constraining each di-

mension within an interval [102]. Arguably, the most popular method to visually

inspect multi-dimensional data is a scatter plot or scatter plot matrix (SPloM). Alter-

natively, one can use parallel coordinates [58] or some type of radial chart [60].
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The Prosection Matrix [117] allows the user to explore the density of input pa-

rameter settings that match certain performance criteria. The user specifies what con-

stitutes suitable output parameters as well as a “tolerance box” which represents the

possible range for input settings. The system then shows a number of 2D density plots

— one for each pair of parameters— indicating howmany of the performance criteria

were in compliance. HyperMoVal [90] also relies on the user to define a slab around a

particular 2D slice. The sample points within this slab are considered relevant to the

view and drawn on screen. The focus of HyperMoVal is visualizing how well a model

fits sampled data. Their desire is to show how “close” data points fall to a regression

line.

Often, data points represent samples of a continuous function. Hence, it is quite

common to reconstruct this function as best as possible from samples and visually in-

spect reconstructed continuous, multi-dimensional function. In this regard, Hyper-

Slice [119] plots two-dimensional orthogonal slices of a continuous function around

a local viewpoint. This allows the user to visually inspect the behavior of the function

around this point. One advantage of HyperSlice is that it improves the quantitative

means for analysis of our multi-dimensional function at least locally by measuring 2D

distances. It is difficult to understand distances in multi-dimensional spaces and 2D

has been shown to work better for quantitative understanding than 3D [114].

Tuner [112] uses the HyperSlice method to visualize the effects of each parameter

around a particular candidate point. Tuner is focused on finding the optimum param-

eter settings for a computer simulation subject to a number of criteria. The optimum

parameter setting must be “high” in the sense of maximizing the objective function

but also “stable” in the sense that changes in the parameter settings will not produce

large changes in the objective measure. This local sensitivity analysis is visually sup-

ported with a HyperSlice view of the high-dimensional parameter space.
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4.2.2 Multi-D interpolation

For estimating a continuous function, a popular technique is kernel regression [104].

In this case, the estimated value at a particular point in the parameter space, x′, is com-

puted by averaging over all sample points weighted by a kernel function. Formally

this can be expressed as

f̂(x) =
n∑

i=1

ϕ(xi − x′)f ′(xi) (4.1)

for n sample points, xi. The function ϕ(·) is an approximating kernel. In this case

f ′(xi) is the normalized sample value of the function f(·) at location xi ∈ R
d in pa-

rameter space. The normalization factor ensures that we can compute the known

values of the sample points. This factor is either automatically computed as in the case

of Gaussian process regression or explicitly computed from the local neighborhood.

Often the squared exponential kernel is chosen for ϕ(·). This function has one

or more bandwidth parameters which control the amount of smoothing between

each sample point. The amount of smoothing also affects the distance at which a

data point will have an effect on our regression function. While the bandwidth can

be set manually, it can also be set by examining the spatial variation in f(x). The

Gaussian process model (GP) [92], uses statistical variation to fit the kernel bandwidth

appropriately. In the squared exponential case,

ϕ(xi − x′) =
d∑

j=1

eθj(xi,j−x′

j)
2

, (4.2)

where j denotes the particular value for a certain dimension so xi,j is the value of

the jth dimension of sample i. The value xj is the jth dimension of the prediction

point. Therefore, there is a separate parameter, θj to fit for each dimension. Another

approach, exemplified by Hong et al. [53], is to set the kernel bandwidth to take into

account the Voronoi cells around each data point. In either case, I recognize that

setting the bandwidth is data-dependent. Therefore, I test rendering performance for

a number of different kernel sizes.
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4.3 Problem description

One method of studying the input/output relationship of computer simulations is

known as the black-box model. The black-box in this case refers to the simulation

code itself. The simulation code is complex and expensive to run so direct analysis is

difficult. Under this analysis method one does not make any assumptions as to the in-

ner workings of the simulation code. Instead, we model the simulator as an unknown

continuous function that takes a number of numerical inputs and produces a number

of numerical outputs. We know the domain of the inputs. We want to study how

varying the inputs affects the output.

While we don’t know anything about how the simulationworks internally, we can

sample it by selecting a particular input setting through the simulation and recording

the outputs. We can then use a continuous reconstructionmethod built from a number

of samples in order to estimate the response surface. This fitted continuous function is

known as an emulator in the statistics literature. We can then study the input/output

relationship using the emulator instead.

4.3.1 1D analysis example

A common choice in the statistics community for this emulator is known as the Gaus-

sian process model [92]. One advantage of the Gaussian process model is that the form

is very well known and easy to analyze. It also allows us to measure the uncertainty

of the estimation. In order to illustrate the advantages we will go through a 1D ex-

ample here using a known function f(x) = sin(x) + cos(2x) as a stand-in for some

simulation code.

We begin by taking a number of discrete samples of the function. Ideally we take

as many as possible but this may be limited in terms of time or budget. Since we do not

know anything about the behavior of the function in the region we are sampling, we

sample in some uniform random fashion. The function as well as the sample locations

are shown in Figure 4.1.
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Figure 4.1: An example of taking 10 uniformly distributed samples of the function
f(x) = sin(x) + cos(2x). The dots show the sampling locations.

Wewould prefer to take as many samples as possible in order to identify the various

peaks and valleys. The interpolationmethodwe choose depends on howwe expect the

values to change between the sample points. If we expect linear behavior then fitting a

piecewise linear functionwould be ideal. If we expect more complex behavior thenwe

should fit higher-order functions. I show 3 different fitting methods for the function

in Figure 4.2: piecewise linear (blue), cubic spline (green), andGaussian process model

(red) along with the true function (black). In this case the cubic spline and Gaussian

process model interpolations are very close to the true function, but the true function

normally would not be known beforehand.

The basic assumption of the Gaussian process model, however, is that the function

behavior between the sample points is random in the sense it could take any path as

long as it intersects the points and the correlation function we select gives the general

form of the function between the points. The distribution of possible paths follows

a multi-variate Gaussian distribution through the selected sample points. The mean

of this distribution is the most likely path, which is typically what is visualized. By

modeling the behavior this way we also get a model for the uncertainty at any point

in the domain. This uncertainty grows in proportion to the distance to the sample
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Figure 4.2: Here, I show different interpolation methods of the function f(x) =
sin(x) + cos(2x) using the same 10 uniformly random distributed sample points. I
show the true function as well as piecewise linear, cubic spline, and Gaussian process
interpolations.

points. In Figure 4.3 I show the Gaussian process estimation of the above function

given the sample points along with the standard error of the estimation. The error

grows very quickly when extrapolating, for example when x < 1. This is because we

are moving away from all sample points. This is why in real applications it is important

to sample near the edge of the domain.

Parameterizing a Gaussian process model means correctly parameterizing the cor-

relation functions to the data samples. If the function varies a lot between the sample

points then we would expect low correlation between the sample points, while if the

function is relatively stable between the sample points then we would expect high

correlation between the points. In the spatial sense, this high and low correlation can

be seen as the amount of influence the value of a particular sample point has on the

value at another location a particular distance away.
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Figure 4.3: The Gaussian process interpolation of the function f(x) = sin(x) +
cos(2x) from 10 uniformly distributed samples. The standard error of estimation from
the model is shown in gray. Note that the standard error increases with the distance
from the sample points.

4.3.2 Applications in multi-D

Gaussian process regression is very common in the statistics community to analyze

simulations among other types of data. There exist a number of examples where

Gaussian process regression along with a uniformly distributed experimental design

is used in order to run an analysis. Using uniform sampling with a Gaussian pro-

cess model has been applied in an optimization scenario, as with Couckuyt et al. [25].

They used a sparse initial sampling and then built a GP model to emulate microwave

filter and textile antenna simulations. They then incrementally ran additional samples

of the simulation in order to find optimal parameter settings. This process of finding

additional sample locations can be quite expensive computationally. Hutter et al. [57]

develop a method to find new sample locations when under a time budget. They then

applied this method to find optimal parameters for a search algorithm for a proposi-

tional satisfyability solver. This method was also used to perform a sensitivity analysis

of an arctic sea ice prediction model [22]. They decomposed the Gaussian process
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model to find “average” behavior due to each model parameter. Linkletter et al. [71]

used Gaussian process models to measure the sensitivity of parameters to a cylinder

deformation simulation to reduce the parameter space from 14 input factors to seven.

Kaufman et al. [64] use compactly supported correlation functions to build Gaussian

process models efficiently on very large data sets. This was applied to cosmological

data. Hensman et al. [50] used an approach to train a Gaussian process model on

700, 000 data points in an 8-dimensional space to build a model to predict flight delays

using a lower rank covariance matrix. Shepherd and Owenius [100] used Gaussian

process models as a classification tool in order to classify voxels in dPET images in

order to find tumor sites.

Table 4.1: A summary of the literature described in subsection 4.3.2. I show the
domain of application of each paper, their analysis goal, as well as the number of
samples and number of input parameters (dimensions) of the simulation used to train
the GP model.

Reference Application Dimensions Samples Goal

Couckuyt et al. [25] Microwave filter 5 51 Optimization

Couckuyt et al. [25] Textile antenna 2 14 Optimization

Hutter et al. [57] Propositional logic satisfyability 4 25 Optimization

Chapman et al. [22] Sea ice prediction 13 157 Sensitivity analysis

Linkletter et al. [71] Cylinder deformation model 14 118 Sensitivity analysis

Kaufman et al. [64] Cosmological data 4 20,000 Prediction

Hensman et al. [50] Flight delays 8 700,000 Prediction

Shepherd and Owenius [100] dPET data in radiation oncology 4 6 patient images Classification

As one can see, there are a wide variety of application domains. However, all

these analyses share commonalities. I show the summary information of these studies

in Table 4.1. The number of inputs is typically on the order of 5–15 inputs. Each

of these may correspond to a known factor that can vary in the real world like wind

speed or the velocity of a particle, or an unknown fixed-quantity in the real world like

Planck’s constant or the gravitational constant. The simulation code typically creates

a complex object like a 3D+time model of the world or a segmented image. On these

outputs scientists define a number of feature extractors or objective functions which

reduce the complex output to a set of numerical attributes [98]. Therefore, for each

simulation run we get a vector of scalar input factors and the corresponding vector

of scalar outputs. Each scalar output can be considered in a separate analysis so in this
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chapter we assume that there is only one scalar output for each input configuration.

The practical number of simulation samples range from a few hundred to hundreds

of thousands. This is due to either time or monetary constraints. Running more

simulations than this simply takes too long or costs too much. Based on these data I

test my timing function on dimensions 3–8 and run up to 1, 000, 000 sample points.

4.3.3 Pipeline description

Despite the wide variety of application areas, all the simulation studies mentioned fol-

low a standard procedure for analysis. They start with a uniform sampling of the

parameter space. This is usually done with a space-filling design like a Latin hyper-

cube [77], Halton sequence [43], or Centroidal Voronoi tesselation [29]. Without any

knowledge of the relative importance of the dimensions they are sampled equally.

The simulation is run using each sample and the outputs are recorded. If the output

is a complex object then feature extractors are run on the outputs to generate scalar

results. Then, an emulator is built of this process. Prediction using this emulator

must be fast as we will want to evaluate it at many points. Often, a Gaussian process

model [92] is selected for the emulator.

With this emulator the user can now analyze the input/output relationship of the

simulation. This can be done in a variety of ways, either by looking at static plots [22]

or by interactively exploring the response surface [112]. We show an example of the

HyperSlice technique for interactively exploring the response surface as implemented

in Tuner [112] in Figure 4.4. In this case we show the conditional mean of the Gaus-

sian process model. Tuner can also show the estimation variability if desired.

Interactive exploration of the Gaussian process model is a relatively new technique

as it is more complex to implement and the limits in terms of the number of points

and how the size of the kernels affects interactivity is not yet understood. The rest

of this chapter will discuss how to address both these questions. I present a rendering

algorithm which is similar to splatting [80] to render the Gaussian process prediction

function using HyperSlice. I also develop a method to determine when the interactiv-
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Figure 4.4: Screenshot of Tuner [112] demonstrating the HyperSlice [119] method
for rendering an 8-dimensional parameter space using squared exponential kernel re-
construction on an image segmentation dataset. Here we show the view using the
conditional mean of the Gaussian process model.

ity of the rendering will fail taking into account the geometric interpretation of the

Gaussian process model as well as the performance of an individual user’s machine.

4.4 Requirements

Sampling the Gaussian process prediction formula Equation 4.3 directly in sufficient

density to draw the slices is expensive because each evaluation requires computing

the dot product of two size N vectors. Instead, I render the prediction formula in

order to exploit the inherent parallelism provided by the GPU. Before describing the
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algorithm itself, we first need to consider what the multi-dimensional “scene” we are

trying to render looks like. The fundamental data type we are given are sample points

of the simulation. This section describes how these sample points are transformed into

higher-order geometric primitives and thenwhat happens when slicing them in order

to be drawn on screen.

4.4.1 Scene geometry

Here I will describe the spatial interpretation of the Gaussian process model so that

one can build an intuition for the geometric portion of the prediction formula. This

spatial interpretation is very close to the form used for the splatting algorithm.

The spatial interpretation of the Gaussian process model using squared exponential

correlation is a set of multi-dimensional ellipsoids, one for each sample point. Onemay

be tempted to think this is due to uncertainty at the sample points but this is not the

case here as the outputs of a computer simulation are considered exact. The ellipsoids

are due to giving the correlation functions compact support. In order to see why

this is the case we first begin by looking at the formula for the “best linear unbiased

prediction,” at an arbitrary location in the parameter space, x′, which is,

ŷ(x′) = µ+ ~r(x′)R−1(~Y − µ)′, (4.3)

here ~r is a vector of functions, one per sample point and each element of r, ri, is the

correlation between sample point xi and x′. ~Y is a vector of the sampled outputs. µ is

the estimated process mean. R is the N × N correlation matrix between the sample

points using the same correlation function. We also note that neither R−1 nor (Y −µ)

depend on x′ so let the vector, ~Υ = R−1(~Y −µ)′. Then, we can write Equation 4.3 in

a linear form,

ŷ(x′) = µ+ r(x′)~Υ

= µ+
N∑

i=1

ri(x
′)Υi.
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The value Υi is f ′(xi) and ŷ is f̂ from Equation 4.1 which is normalized by R−1 from

Equation 4.3.

A common choice for r(·) is the squared exponential correlation function which

has infinite support and is strictly positive meaning that it is defined everywhere in

the domain and always returns some positive value however small. There is a different

falloff parameter for each dimension. For visualization purposes these small values

don’t contribute a perceivable effect. Therefore, I set a lower bound on the correlation

value which we denote, ǫ = 1 × 10−9, essentially giving the correlation function

compact support. This can also be done using specific compactly supported correlation

functions as in Kaufman et al. [64]. The squared exponential correlation function

is radial meaning the correlation amount between points decreases as the distance

increases. This ǫ value essentially creates a d-dimensional ellipsoid region around each

sample point with principal axis lengths related to the correlation falloff parameter.

The sample point will only influence predictions within this region.

4.4.2 HyperSlice effect on scene geometry

The last step is using somemethod to examine this multi-dimensional scene on a com-

puter screen. My chosen display method is the HyperSlice [119] technique to which

will draw 2-dimensional slices through these multi-dimensional ellipsoids on screen.

HyperSlice relies on the user selecting a viewpoint which determines the location in

the multi-dimensional parameter space where to position of the slices. In Figure 4.5 I

show the representation for the HyperSlice technique in both 2 and 3 dimensions. In

2D the slicing plane (what one sees) is a line. In 3D it is a 2D plane slicing through

the space. In higher dimensions it is also a 2D slicing plane.

Only the points within range r of the slicing plane have an effect on the final

image on the slice. The conceptual algorithm works by first filtering out all points

that do not fall within range, r, of the slicing plane. Then, for all points within this

range, I determine where the drawing plane intersects the ellipsoid which determines

its impact on the drawing plane.
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r

Plane intersection

Plane

(a) 2D view

r

Plane intersection

Plane

(b) 3D view

Figure 4.5: Diagrams showing how the HyperSlice [119] method “slices” through
the kernels of the Gaussian process model in both 2D (a) and 3D (b). The slicing
plane is denoted as “Plane” in the figure. This is the plane the user views. Only the
points, denoted in green, fall within a distance r of the slicing plane will influence the
rendered image. All other points can be filtered out as they do not affect the image.
We then compute the influence of the unfiltered (green) points on the slicing plane.

4.4.3 Algorithm

The GPU has vertex and fragment processing stages. This is analogous to the filtering

and rendering stages of our rendering algorithm. I present the full schematic of the

rendering algorithm in Algorithm 3.

The distance to the slice is a d− 2 dimensional distance since the remaining 2 di-

mensions are projected on to the slice directly. I compute the projection of the point

onto the current 2D slice in Algorithm 3 (Algorithm 3). I then compute the distance

of the sample point to the slice in Algorithm 4. Because I am only interested in the

distance to the slice itself, and not a particular point on that slice, I don’t include the

two dimensions of the slice in the distance computation. If this distance is smaller than

the size of the reconstruction kernel, I render a 2D slice through this reconstruction

kernel. A speed-up for drawing exponential functions often used in GPU-based splat-

ting algorithms is to use a template exponential distribution drawn onto a quad [80].

However, since these splat-like slices have different distances from each subplot they

affect the subplot by different amounts depending on the distance. Therefore, I need

to scale the intensity value of the texture by its distance to the slice (Algorithm 6).

In my vertex shader implementation I filter the points as well as compute the sliced
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Algorithm 3 Rendering multi-dimensional data using HyperSlice and Gaussian pro-
cess regression

Input: viewpoint ~v, maximum distance r
Output:

(
d
2

)
slices through an N-point, d-dimensional data set

for all
(
d
2

)
subplots Si do ⊲ filtering

for all N points p in the vertex buffer do
p2D ← the 2D projection of p onto the slice Si

dist← the distance of p to the slice Si

if dist < r then ⊲ rendering
tex← the Gaussian splat scaled by dist
p̂2D ← transform p2D into screen coordinates
w ← compute the splat width (

√
r2 − dist2)

send 2D quads (p̂2D(x) ± w, p̂2D(y) ± w) to the fragment shader to be
shaded with tex

end if
end for

end for

splat size. This splat size is used to generate a quad that I send to the fragment shader.

I use the fragment shader to compute the final pixel color values within the slice. For

practical visualizations this final pixel color value should be passed through a colormap.

Therefore, in such practical applications, I recommend rendering the pixel values to a

floating point texture. Then this floating point texture can be rendered to the screen

with a colormap shader program to convert the floating point values to color values.

One of the main bottlenecks in the rendering pipeline is transferring vertex data

from CPU memory to GPU memory. This is due to the slower speed of the bus

compared to the GPU. I do not want the GPUwaiting for pixel data. The best way to

address this, as specified byXue and Crawfis [125], is to store vertex data in display lists

on the GPU. Then, before calling a draw command, I only need to update the small

amount of viewpoint information to render the group of slices to the GPU. Hence, I

store all N d-dimensional data points on the GPU. Memory of current GPUs is large

enough that we can easily store millions of points in a number of dimensions directly

on the card.
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4.5 Derivation of scene geometry

We now turn to a formulation for the expected total running time to draw N points

in d dimensions within a slice distance of r using our algorithm above. My complex-

ity analysis is based on the fact that my rendering algorithm can be decomposed into

a pipeline with filtering and drawing steps. I also assume, as exemplified in subsec-

tion 4.3.2, that my points are uniformly distributed in data space. My mathematical

derivation also assumes that the ellipsoids generated by the Gaussian process model

are, in fact, hyperballs. While this may seem like an over-simplification, the principal

axes of the ellipsoids are axis-aligned with respect to the parameter space (see subsec-

tion 4.4.1). An ellipse is simply “stretching” the parameter space by a fixed amount in

each direction.

The two stages of rendering mean that the measured time is the time to run the

filtering stage plus the time to run the drawing stage. However, because of the pipeline

setup of the GPU, a low number of fragments can be drawn “for free” on the spare

compute capacity of the card not being used for filtering. Once this spare capacity is

exhausted, the rendering time will dominate the total drawing time. Therefore, the

total drawing time, ttotal, is the time to filter the points plus the time to render the

points on screen but only after a certain number of fragments are drawn. I represent

this breaking point with I(frags > a) which is an indicator function that returns 0

when the number of fragments is less than the break-point, a, and 1 otherwise.

ttotal = tfilter + I(frags > a) ∗ trender (4.4)

4.5.1 Filtering

In the filtering step (lines Algorithm 4 and Algorithm 5 of Algorithm 3) I take each

data point and compute its distance to each plot in order to determine if it is worth the

effort to actually draw the quad. For each sample point and for each slice, I compute

the distance from the sample point to the slice. If the distance is less than r I draw it.
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Since there are subplots for each pair of dimensions there are
(
d
2

)
subplots in total.

Filtering is a constant time per point but is architecture-dependent. I denote this time

tf and the total filtering time, tfilter, is

tfilter = tf

(
d

2

)
N . (4.5)

4.5.2 Rendering

During the rendering step, the algorithm only needs to process a fraction of the N

points that are visible. I call this fractionN ′. The rest of the points are discarded in the

filtering code on the GPU. In the case of HyperSlice, the rendering time is significant.

Besides having to determine the size of the quad to be rendered in lines Algorithm 7

and Algorithm 8 of Algorithm 3, the actual rendering time depends on the number of

pixels covered by the quad since each pixel requires a constant time to draw. Because

of this, my formulation for the rendering time must include the quad size for each

point rendered, qi, and the time to render each pixel in a quad, tH,

trender = tH

N ′∑

i=1

qi. (4.6)

4.5.3 Expected total time

Equation 4.4 gives the total running time for a particular configuration of N sample

points in d dimensions and for a particular viewpoint ~v. However, I am interested in

how well the rendering algorithm performs under many different configurations of

points and viewpoints. The worst case performance is when the full kernel needs to be

drawn. In other words, when the kernels are not cut off by the edges of the parameter

space and the view point is in the center. However, it is important to know how

the rendering will perform as the user views a set of different plots. Hence, a much

more useful measurement is the average time to draw the view over all possible point

configurations and all possible viewpoints. In order to compute this, the expected

rendering time, E[ttotal], is an average over all point configurations and viewpoints in

the unit cube [0, 1]d:
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E[ttotal] = tf

(
d

2

)
N + I(frags > a)tHE[N ′]E[q], (4.7)

Here, the first term represents the time to filter all N points over the
(
d
2

)
plots and the

second term is the time to draw any points that pass the filter.

The total amount of rendering that needs to be done is the number of points

passing the filtering stage times the size of these points on the slice. The quantity

tH is the time to draw a single fragment using the HyperSlice method, E[N ′] is the

expected number of points within a distance of r from all 2D slices of the subplot

matrix, and E[q] is the expected size of a quad drawn.

E[N ′] is based on the total number of sample points we need to process times

the expected percentage of points that will be within range of the slices. There are N

points to process for each of the
(
d
2

)
subplots. For a single 2D slice, denote the expected

percentage of points within a distance r in d dimensions N̂ ′(r, d). The percentage of

points can be expanded into

E[N ′] =

(
d

2

)
N · N̂ ′(r, d)

=

(
d

2

)
N ·

d−2∑

i=0

(−1)i
(
d− 2

i

)
πd−2−ird−2+i

Γ
(
d−2+i

2
+ 1
) . (4.8)

N̂ ′(r, d) is the sum of higher and higher dimensional spheres as they are sliced by

2-dimensional planes. For the full derivation, please see chapter B.

For the HyperSlice technique, the quantity E[q] depends on the size of the spher-

ical reconstruction kernel which depends on r and d. Denote this quantity Q̂(r, d).

This represents the expected number of fragments produced on a particular slice when

the sample point is within a distance r of the slice. As described in chapter C of the
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appendix, E[q] expands into,

E[q] = Q̂(r, d)

=
1

N̂ ′(r, d)

d−2∑

i=0

(−1)i
(
d− 2

i

)
[corner(d, i, r)

− side(d, i, r)

+ center(d, i, r)]

=
1

N̂ ′(r, d)

d−2∑

i=0

(−1)i
(
d− 2

i

)[
4π(d−i)/2−1rd+i

Γ((d+ i)/2 + 1)

− 3π(d−i−1)/2rd+i+1

Γ((d+ i+ 3)/2)

+
2π(d−i)/2−1rd+i+2

Γ((d+ i)/2 + 2)

]
. (4.9)

Here the corner(d, i, r), side(d, i, r), and center(d, i, r) functions correspond to deriva-

tions 1, 2, and 3 listed in subsection B.3.2 of the appendix respectively. While the cur-

rent formula appears quite complex, it is fast and easy to evaluate on a computer. In

fact without this formula the computations would be intractable. There might exist a

more comprehensible formula, however, this is beyond the scope of this paper and is

a subject for future work.

These formulas take into account the size of the kernel even if part of it is clipped

by the edge of the parameter space. This is very important for larger kernels in higher

dimensions. There, the volume of a kernel is very small but the radius may be very

large and therefore the kernel is always clipped by the edges of the parameter space.

These corner and edge terms will dominate in higher dimensional cases or for large

values of r. In lower dimensional cases, or smaller values of r the center term will

contribute more to the final rendering time.

4.6 Fitting

With a proper mathematical formulation of the scene geometry in terms of howmany

pixels are produced on screen, I now describe the second missing piece of the predic-

tion, namely, a procedure for tuning this formula to a particular user’s implementation
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and hardware configuration. The values tf and tH in Equation 4.7 are dependent on a

particular hardware. Hence, I engage in an empirical stage to determine these values

for a particular rendering environment. For the purposes of these timings I set my

correlation cutoff value (see subsection 4.4.1), ǫ, to 1× 10−9. This value allows me to

link the kernel radius, r, with the kernel bandwidth parameter in the GP model.

The architecture of each GPU is different and what is efficient on one architecture

may not carry over to another. Therefore, it is impossible to argue fromfirst-principles

how to derive tf and tH for a particular GPU. I fit these parameters by doing a re-

gression analysis on empirical results obtained from examining the time to render a

frame for various values of d, N , and r. While the specific values I derive are specific

to a particular architecture, the method we present is applicable elsewhere.

In order to fit Equation 4.7 I note that the first term represents the number of

points we need to check to be filtered. This is constant with respect to the kernel size,

r. The second term, the drawing time, increases with respect to r. The filtering time

dominates for small values of rwhile the drawing time dominates for larger values of r.

Therefore, there will be a point in terms of number of fragments drawn, designated

a, at which point the dominant term will change from the first to the second. In

order to fit this behavior I used a segmented regressionmodel which changes behavior

according to the value of a {0,1} indicator function, I(frags < a), where frags is the

total number of fragments drawn. This function returns 0 if frags < a. I form the

regression formula as:

trender = N

(
d

2

)
tf + I(frags > a)tHfrags. (4.10)

This formula contains three parameters to be estimated: tf (the time to filter one

sample point), tH (the time to render one fragment), and a (the crossover point).

4.6.1 Sampling

For each dimension, I must ensure that I have good coverage of the number of frag-

ments being drawn. Hence, I must choose different values of r for each d. In order

to obtain a sensible range of values for Q̂(r, d) we begin by using dimension 3 as a
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baseline and vary radii from 0 to 0.5 in that dimension to come up with a reasonable

range of Q̂(r, d). Given this desired range of fragments, for the remaining dimensions

I numerically invert Equation 4.9, given d and hence, obtain a range of radii r.

The final issue is that for each setting of d, N , and r I must generate enough

iterations such that the average number of points affecting the slices, N ′, converges

to the theoretical expected value, E[N ′]. This is the expected number of points need

to be drawn over all possible uniform distributions of points and viewpoints. In my

case we found that 20 viewpoint changes, redrawing the screen for a fixed viewpoint

5 times, and 3 sample point distributions for a total of 300 timing measures resulted

in good convergence.

I compute the number of fragments drawn on screen internally by the applica-

tion. I can do this because we know the position of the focus point, locations of all

the sample points, and the kernel information. The number of fragments in the cal-

culations is the percentage the quad takes up on the subplot. In other words, if a quad

takes up an entire subplot then it has area 1. This measurement serves as a proxy

for the number of fragments generated in the GPU. OpenGL offers a query object,

GL_SAMPLES_PASSED, that should return the number of fragments needed to draw

the screen. This is very convenient and would correctly account for the rasterization

method used. However, in my experiments this query would return several different

values for the exact same scene, which does not make sense. Due to this inconsistency,

I used an internal calculation.

I can record the rendering time with either the CPU timer or the GPU timer.

The CPU timer better represents the user’s perception of how long it takes to draw

the screen since it includes the time necessary to transfer data back and forth to the

GPU. However, this timer is much noisier than the GPU timer. In my tests I found

that on average the CPU timing differed from the GPU timing by a constant amount.

Therefore, I used the GPU timer for the timing. The GPU timer is still quite noisy

however and in order to smooth out this noise I redrew each screen five times for each

change of viewpoint and then averaged the times.
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4.6.2 Final model

If we then apply these estimates of filter and draw time to Equation 4.7, the full form

of the prediction model, conditional on the dimension, d, is

ttotal(d,N, r) = tf (d)

(
d

2

)
N + I(frags > a)tH(d)E[N ′]E[q]

= tf (d)

(
d

2

)
N + I(frags > a)tH(d)

(
d

2

)
NN̂ ′(r, d)Q̂(r, d)

ttotal(d,N, r) =

(
d

2

)
N

[
tf (d) + I(N̂ ′(r, d)Q̂(r, d) > a(d))tH(d)N̂ ′(r, d)Q̂(r, d)

]
, (4.11)

where tf (d), tH(d), and a(d) are the parameters fit and N̂ ′(r, d) and Q̂(r, d) are from

Equation 4.8 and Equation 4.9 respectively. The parameters are conditional on the

dimension, d, because I fit each dimension separately so there is a different value of

tf , tH, and a for each dimension. I fit these parameters using segmented regression as

described in subsection 4.7.1.

4.7 Timing results

I now present the results of running the timing experiments. My test machine is a

Macbook Pro with Retina display with a 2.6GHz Intel Core i7, 16GB of RAM, and

an NVIDIA GeForce GT 650M graphics card with 1GB of graphics memory. In

order to produce consistent results I disabled the GPU power management extension.

With it enabled the system varies the clock speed of the GPU while the experiments

are running, producing inconsistent results.

4.7.1 Data fitting

I plot the rendering time as a function of number of fragments, drawn in Figure 4.6

for different values of N , d, and r. Each dimension is treated separately as my esti-

mation procedure is volume-based and volumes are not readily comparable between

dimensions. In particular, the units of volume depend on the dimensionality and the
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Figure 4.6: Scatterplots of the time to render using the HyperSlice method. Each
dimension is analyzed separately. The x-axis is the number of fragments drawn on
screen and the y-axis is the number of seconds recorded by the GPU timer for the
frame to draw. The blue line is the predicted rendering time using my fitted formula.

relationship between radius and volume, for example, a 3-dimensional ball is very

different from a 5-dimensional ball. Furthermore, the dimensionality of the data is

usually given and not variable while one can vary the number of sample points. The

x-axis in the figure is the actual number of fragments drawn on screen and the y-axis

is the time, in seconds, to draw the frame. As predicted by Equation 4.7, the rendering

time remains constant while the GPU is primarily filtering points and then increases

linearly with the number of fragments once the drawing stage dominates.

To fit these data I first computed the fragments and rendering time per sample

by dividing the recorded fragments and time by N
(
d
2

)
since our prediction function,

Equation 4.10, is linear inN
(
d
2

)
. I also filtered out any experiments where the render-

ing time was greater than 1 second since this would extend the sampling time and I am

primarily concerned with finding interactive times. I then fit a basic linear model and

a 2-segment regression model using the segmented package [81] in R. If the slope of

the two segments did not differ significantly then I simply used the linear model and

set the break-point to 0. For these dimensions the rendering time always dominates.

I found that if the ratio between slopes of the 2-segment regression was greater than
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10 then I got a better fit with the 2-segment regression than with a single linear fit.

The blue line shown in Figure 4.6 is the predicted rendering time versus the num-

ber of fragments drawn. Here the blue line goes directly through the cloud of timing

points. The multiple horizontal lines within each dimension correspond to the dif-

ferent values of N we used in our experiments. We can also see as the dimensionality

increases, the filtering time begins to dominate. This is because for each subplot of the

HyperSlice the algorithmmust filter allN points and the number of subplots increases

asO(d2). We can also see how the slope of the rendering time line (tH in Equation 4.10

and Table 4.2) decreases as the dimensions increase. This is because the screen size

for running the experiments is fixed so as the number of dimensions increase the area

of each individual plot becomes smaller since we have
(
d
2

)
HyperSlices. Therefore, in

higher dimensions we have fewer pixels to process.

The table of parameters by dimension formy reference system is listed in Table 4.2.

Here the relationship between the number of dimensions and the fitted parameters

is more apparent. For lower numbers of dimensions (3–5), it is difficult to directly

measure the filtering time (tf ) as the rendering time always dominates. In this case

tf is just the y-intercept of the fit line for the rendering time. For higher values

of d (d > 5), one can directly measure the filtering time. The reason tf increases

between dimensions 8 and 9 is because in the filtering code I parallelize the distance

computations in OpenGL using the vec4 type for every group of dimensions. So, an

additional group of vec4s is required for dimensions 9–12 and computing distances

with these additional vec4s takes slightly more time.

4.7.2 Accuracy

As with the filtered scatterplot, I compared our predicted running time against new

timing data using the same experimental conditions. I do this in order to test new

values of r. I then compared the predicted rendering time against the empirically

recorded ones. Figure 4.7 shows the absolute and relative errors for prediction using

the HyperSlice method and squared exponential kernel regression.
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Table 4.2: Table showing the calibrated parameters, a, tf , and tH, as a result of running
a segmented regression fit using the data I gathered from my timing experiments and
Equation 4.11. The factors tf and tH are in nanoseconds and a is defined in terms of
fragments per sample.

d a tf (ns) tH (ns)

3 0.000 48.100 3470

4 0.000 15.600 2130

5 0.000 7.430 1380

6 0.00504 8.550 1030

7 0.00859 8.560 755

8 0.0123 8.400 569

9 0.0214 11.200 427

10 0.0267 11.200 342

11 0.0316 11.100 263

12 0.0404 11.100 255
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Figure 4.7: Histograms showing actual (a) and relative (b) error rates for the Hyper-
Slice method comparing predictions using Equation 4.10 to empirical results. I show
(b) as a scatterplot in order to demonstrate that the largest relative errors occur when
the drawing times are smallest. Each dimension is treated separately since the units
of volume differ for each dimension and I have computed the filtering time, tf , and
drawing time, tH, separately for each dimension.

Many of the largest relative errors occur for the smallest total rendering times so

any miscalculation will result in a large relative error. The actual difference, is shown

as a histogram in Figure 4.7a. Each sub-plot is a separate dimension. I show the

difference between the predicted and measured rendering times, in seconds, on the

x-axis. Every dimension has a strong spike at 0 indicating that most of the predictions

are off by a very small amount with only a few being very inaccurate. I also show
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the relative error as a hexagonal-binned plot in Figure 4.7b. A hexagonal-binned

plot [17] is a 2d density plot using a hexagonal grid as the binning primitive. The

x-axis is the percent error between the predicted time and the measured time relative

to the recorded time and the y-axis is the measured time to render the frame. Many

of the rendering times are very small so any error in the prediction results in a very

high relative error.

In order to check the predictive ability of our procedurewe also performed a 5-fold

cross validation. For each dimension, we split the data so that 20% is used for building

the model and the remaining 80% used for testing. We then use the testing set to

compute the difference between the predicted and expected rendering times. We

then repeat this procedure four more times using the next 20% partition for training.

We then compute the root-mean squared error andmaximum absolute error between

the prediction and the recorded values. The results are shown in Table 4.3. While the

relative errors may seem high these occur when predicting very small times so any

error will be high on a relative basis. I also show the Nash-Sutcliffe efficiency [85]

for each dimension, which is the ratio of variance explained by our model to the total

variance. This ranges from −∞ to 1 where values close to 1 mean that the model

explains most of the total variance. A value over 0 is considered an acceptable level of

performance [79]. All of the values in Table 4.3 are very close to one so my model

contains a great deal of information from the data.

4.8 Application scenarios

As was mentioned in section 3.1, there are a number of ways to apply our prediction

methodology in a practical visualization system. To this end I show two application

scenarios where mymethod can be used to control the number of samples to maintain

interactive rates. I show how our method may be used to sample the simulation in

order to maintain a desired frame rate and to subsample an existing dataset in order

to attain interactive frame rates.
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Table 4.3: Results of the cross-validation procedure. For each dimension I compute
the root-mean squared error of prediction as well as the Nash-Sutcliffe efficiency [85],
and the relative maximum error. The Nash-Sutcliffe efficiency is the ratio of the
variance explained by our prediction model to the total variance. All errors are in
terms of seconds.

d RMSE Nash-Sutcliffe Relative max error

3 0.0685 0.931 0.624

4 0.0669 0.922 0.703

5 0.0702 0.888 0.403

6 0.0735 0.848 1.340

7 0.0726 0.801 0.383

8 0.0661 0.791 0.556

9 0.0398 0.920 0.601

10 0.0246 0.977 0.461

11 0.0127 0.996 0.386

12 0.00456 1.000 0.233

4.8.1 Constrain sampling

Figure 4.8 is a dialog box for the Tuner [112] system. The task is to enter the number

of sample points to take from the simulation. The dialog is driven by Equation 4.10.

When the user changes the number of samples directly (a), the dialog computes the

expected frame rate and displays that to the user in (b). As an alternative method, the

user may value interactivity highly and consequently selects the number of sample

points to take by entering the desired frame rate (b) and letting the system select the

number of samples.

4.8.2 Subsample points

The goal of this algorithm, presented as Algorithm 4 is to reduce the sample size, N ,

such that the rendering time reaches an acceptable 30fps. Normally this is done by

removing samples from the set. An issue with simply removing points and rebuilding

the Gaussian process model is that the bandwidth parameters, θ will change.

In Figure 4.9 I show the trade-off between the radius, r, and the number of points,

N , that can be drawn in 30fps. When subsampling data I expect that the radius around
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Figure 4.8: A prototypical example use case for my prediction formula, Equation 4.10.
The user is able to either enter the number of sample points directly in field (a) and
the system displays the expected fps in (b) or enter the desired fps in (b) first and the
system calculates the number of sample points.

each sample point increases as the number of sample points decreases. The goal of

Algorithm 4 is to lower the number of sample points until this line is reached.

In this fashion one can have a progressive rendering setup using 2 GP models, a

low-resolution model for fast rendering and a high-resolution one for detail views.

The system could dynamically switch between these two when interacting.
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Algorithm 4 A proposed algorithm for subsampling data in order to achieve interac-
tive rendering times using the Gaussian process model with the HyperSlice rendering
technique.

Input: Calibrated prediction formula E[tHtotal](N, d, r), calibrated GP model parame-
ters ~θ
tpred ← E[tHtotal](N, d, r)
while tpred < 30fps do

N30fps ← Numerically solve E[tHtotal](N, d, r) for an N that will give 30fps ren-
dering times

Uniformly remove N −N30fps sample points
r′ ← Rebuild the GP model, thereby recomputing r
tpred ← E[tHtotal](N30fps, d, r

′)
end while
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Figure 4.9: Average number of points that can be rendered in 30 frames per second
for the HyperSlice technique.

4.9 Limitations and future work

In this chapter I have presented the characteristics of data used for analyzing computer

simulations under the design and analysis of computer experiments framework [97]. I

investigated how interactive rendering times may be used in this framework using

the HyperSlice [119] rendering technique implemented on the GPU. I then describe a

method using both the scene geometry and estimates of the user’s machine capabilities

in order to make an accurate prediction of the rendering time. I find that timing,
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especially using wall-clock time, is extremely noisy and makes fitting very difficult. It

is much more reliable to use the timer on the GPU itself, however one must take into

account the time needed to return back from the GPU which in our experiments is

about 1ms.

In the future, I will investigate how to reduce the number of trials needed to prop-

erly fit the formula. Currently each dimension takes about 6 hours to complete and

requires the machine to be dedicated to running the timing code. Reducing the num-

ber of trials will help to alleviate this time consuming task.

It would also be interesting to extend the approach to the analysis of HyperSlice

rendering in general. The basic geometrical operation in our mathematical model is

slicing multi-dimensional spheres with 2D planes and estimating the area. Therefore

our method should work directly with any radial basis function reconstruction tech-

nique like the work by Hong et al. [53] although I have not directly tested this. I

would also like to extend my mathematical model to take the shape of the reconstruc-

tion primitive into account. This would allow the analysis of the timing of HyperSlice

rendering using a much more broad set of reconstruction methods like nearest neigh-

bor or linear regression. The framework can also be used to estimate the rendering

time of density estimation by setting f(xi) = 1 in Equation 4.1. Repeating the analysis

using box primitives would allow me to estimate the time complexity of some of the

recent real-time large-data aggregation and visualization methods like imMens [73]

and NanoCubes [72]. Both these methods use rectangular binning in their density

estimation.

I will also implement our subsampling strategy. There is a lot of overdrawing

occurring which does not contribute at all to the final plot as the color channel is ef-

fectively maxed out, especially as the value of N and r increases. By detecting when

this occurs and only rendering the first few points we could improve rendering effi-

ciency.
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Understanding multi-dimensional spaces is difficult. Visualization can give us con-

text to help understand the geometry. With the direct visualization of these multi-

dimensional continuous datasets through slice views, we can use a familiar concept to

give context and meaning to a complex task.

Multi-dimensional continuous functions are commonly visualized with 2D slices

or topological views. With Sliceplorer, I explore 1D slices as an alternative approach to

show such functions. My goal with 1D slices is to combine the benefits of topological

views, that is, screen space efficiency, with those of slices, that is a close resemblance

of the underlying function. I compare 1D slices to 2D slices and topological views,

first, by looking at their performance with respect to common function analysis tasks.

I also demonstrate 3 usage scenarios: the 2D sinc function, neural network regression,

and optimization traces. Based on this evaluation, I characterize the advantages and

drawbacks of each of these approaches, and show how interaction can be used to

overcome some of the shortcomings.

I also presented Hypersliceplorer, an algorithm for generating 2D slices of multi-

dimensional shapes defined by a simplical mesh. Often, slices are generated by using

a parametric form and then constraining parameters to view the slice. In this case, I

developed an algorithm to slice a simplical mesh of any number of dimensions with a

two-dimensional slice. In order to get a global appreciation of the multi-dimensional

object, I show multiple slices by sampling a number of different slicing points and

projecting the slices into a single view per dimension pair. These slices are shown in

an interactive viewer which can switch between a global view (all slices) and a local

view (single slice). I show how this method can be used to study regular polytopes,
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differences between spaces of polynomials, and multi-objective optimization surfaces.

Finally, I develop a method for predicting the rendering time to display multi-

dimensional data for the analysis of computer simulations using the HyperSlice [119]

method with Gaussian process model reconstruction. Mymethod relies on a theoreti-

cal understanding of how the data points are drawn on slices and then fits the formula

to a user’s machine using practical experiments. I also describe the typical charac-

teristics of data when analyzing deterministic computer simulations as described by

the statistics community. I then show the advantage of carefully considering how

many data points can be drawn in real time by proposing two approaches of how this

predictive formula can be used in a real-world system.

5.1 Future

Mywork has had a major focus on using direct visualization techniques to understand

multi-dimensional continuous spaces. My intention is that this work can be expanded

upon to herald in a new era of multi-dimensional data analysis. In my opinion, the

major innovations preventing this technique from being used in a broader applica-

tion are a library for slicing multi-dimensional spaces and more user-focused projects.

Building on these two thrusts will move multi-dimensional continuous data analysis

to the mainstream.

One of the reasons for the lack of adoption for slice-based visualization of multi-

dimensional objects is the complete lack of software to generate even static slice views.

There are many libraries for popular data analysis languages like Python, Javascript,

and R. In order to make slice based views more viable I plan to develop an inter-

active slice-based visualization software based on the prototype tools I have already

developed. This will lower the cost of entry of slice-based views of multi-dimensional

continuous datasets. The end result is more users familiar with this visualization type.

In addition, more focused projects with end-users in the form of design studies [99]

will help to develop both the task taxonomy and the visualization techniques. As part

of the task abstraction, we can learn how these users’ tasks fit in with the task and data
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taxonomy proposed in this thesis. Then we can refine and extend the task and data

taxonomy. This taxonomy will allow visualization researchers to identify gaps and

develop tools to address them, thus creating more effective visualizations of multi-

dimensional continuous data.

5.2 Implications

The main goal of my thesis was to explore what is possible with slice-based visualiza-

tions of continuous multi-dimensional datasets. My hope is that this work will serve

as a basis for an increasing focus on direct visualization of multi-dimensional objects.

Often it seems that the default analysis technique for more than three dimensions is

to reduce the dimensionality of the data and then render the reduced data on screen.

This suffers from issues of distortion of distances and relative sizes. The analysis tasks

for multi-dimensional data are all developed around understanding the carefully cho-

sen dimensions. Hence, transforming these dimensions takes away a lot of contextual

knowledge about the simulation.

I also hope to bring more attention to continuous multi-dimensional data analysis.

In the visualization community, most of the work on multi-dimensional and high-

dimensional data has focused on the discrete case. There are many task taxonomies,

techniques, and applications for discrete data. My hope with this thesis is that by de-

veloping a task and data taxonomy as well as an in-depth study of direct visualization

techniques will bring similar attention to multi-dimensional continuous data analysis.

There are a number of under-explored application areas in this field. I have identified

some in my own work, but with further research in this field will bring more knowl-

edge and understanding about how we, as three-dimensional beings can understand

multi-dimensional continuous datasets.
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A | Full sliceplorer views

Here I show the full table for Figure 2.5.

Neural network - 26 SVM - polynomial Neural network 5+3 SVM - radial

Per capita crime rate

Slice viewer
ҬҮ boston_nn_ҭұ Fetch samples

Ұҫ

Dims

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

cri
m

zn
ind

us
ch
as

no
x

Slice viewer
Ҭ3 boston_svm_poly Fetch samples

5ҫ

Dims

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

cri
m

zn
ind

us

Slice viewer
Ҭ3 boston_nn_5x3 Fetch samples

5ҫ

Dims

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

cri
m

zn
ind

us
ch
as

no
x

rm

Slice viewer
Ҭ3 boston_svm_radial Fetch samples

5ҫ

Dims

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

cri
m

zn
ind

us
ch
as

no
x

rm

Residential lots over

25,000 sq.ft.

Slice viewer
ҬҮ boston_nn_ҭұ Fetch samples

Ұҫ

Dims

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

cri
m

zn
ind

us
ch
as

no
x

Slice viewer
Ҭ3 boston_svm_poly Fetch samples

5ҫ

Dims

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

cri
m

zn
ind

us

Slice viewer
Ҭ3 boston_nn_5x3 Fetch samples

5ҫ

Dims

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

cri
m

zn
ind

us
ch
as

no
x

rm

Slice viewer
Ҭ3 boston_svm_radial Fetch samples

5ҫ

Dims

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

cri
m

zn
ind

us
ch
as

no
x

rm

Non-retail business

acres

Slice viewer
ҬҮ boston_nn_ҭұ Fetch samples

Ұҫ

Dims

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

cri
m

zn
ind

us
ch
as

no
x

Slice viewer
Ҭ3 boston_svm_poly Fetch samples

5ҫ

Dims

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

cri
m

zn
ind

us

Slice viewer
Ҭ3 boston_nn_5x3 Fetch samples

5ҫ

Dims

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

cri
m

zn
ind

us
ch
as

no
x

rm

Slice viewer
Ҭ3 boston_svm_radial Fetch samples

5ҫ

Dims

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

cri
m

zn
ind

us
ch
as

no
x

rm

1 if tract bounds river

Slice viewer
ҬҮ boston_nn_ҭұ Fetch samples

Ұҫ

Dims

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

cri
m

zn
ind

us
ch
as

no
x

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

ch
as

no
x

rm

Slice viewer
Ҭ3 boston_nn_5x3 Fetch samples

5ҫ

Dims

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

cri
m

zn
ind

us
ch
as

no
x

rm

Slice viewer
Ҭ3 boston_svm_radial Fetch samples

5ҫ

Dims

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

cri
m

zn
ind

us
ch
as

no
x

rm

Nitric oxide concen-

tration

Slice viewer
ҬҮ boston_nn_ҭұ Fetch samples

Ұҫ

Dims

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

cri
m

zn
ind

us
ch
as

no
x

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

ch
as

no
x

rm

Slice viewer
Ҭ3 boston_nn_5x3 Fetch samples

5ҫ

Dims

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

cri
m

zn
ind

us
ch
as

no
x

rm

Slice viewer
Ҭ3 boston_svm_radial Fetch samples

5ҫ

Dims

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

cri
m

zn
ind

us
ch
as

no
x

rm

113



A. FULL SLICEPLORER VIEWS

Neural network - 26 SVM - polynomial Neural network 5+3 SVM - radial

Average number of

rooms per dwelling

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

rm
ag
e

dis
rad

tax

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

ch
as

no
x

rm

Slice viewer
Ҭ3 boston_nn_5x3 Fetch samples

5ҫ

Dims

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

cri
m

zn
ind

us
ch
as

no
x

rm

Slice viewer
Ҭ3 boston_svm_radial Fetch samples

5ҫ

Dims

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

cri
m

zn
ind

us
ch
as

no
x

rm

Units built prior to

1940

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

rm
ag
e

dis
rad

tax

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

ag
e

dis
rad

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

ag
e

dis
rad

tax
ptr
ati
o

bla
ck

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

ag
e

dis
rad

tax
ptr
ati
o

bla
ck

Distances to employ-

ment centres

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

rm
ag
e

dis
rad

tax

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

ag
e

dis
rad

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

ag
e

dis
rad

tax
ptr
ati
o

bla
ck

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value
ag
e

dis
rad

tax
ptr
ati
o

bla
ck

Accessibility to radial

highways

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

rm
ag
e

dis
rad

tax

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

ag
e

dis
rad

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

ag
e

dis
rad

tax
ptr
ati
o

bla
ck

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

ag
e

dis
rad

tax
ptr
ati
o

bla
ck

Property-tax rate

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

rm
ag
e

dis
rad

tax

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

tax
ptr
ati
o

bla
ck

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

ag
e

dis
rad

tax
ptr
ati
o

bla
ck

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

ag
e

dis
rad

tax
ptr
ati
o

bla
ck

Pupil-teacher ratio

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

ptr
ati
o

bla
ck

lst
at

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

tax
ptr
ati
o

bla
ck

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

ag
e

dis
rad

tax
ptr
ati
o

bla
ck

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

ag
e

dis
rad

tax
ptr
ati
o

bla
ck

Proportion of blacks

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

ptr
ati
o

bla
ck

lst
at

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

tax
ptr
ati
o

bla
ck

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

ag
e

dis
rad

tax
ptr
ati
o

bla
ck

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

variance min_value max_value avg_value

ag
e

dis
rad

tax
ptr
ati
o

bla
ck

% lower income sta-

tus of the population
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variance min_value max_value avg_valuelst
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B | The expected number of points

in a parameter space

With the formulation for the expected percentage of points appearing on a slice,

N̂ ′(r, d), I now turn to the derivation of the expected number of fragments that need

to be drawn per point on a slice, Q̂(r, d). Only the points which pass the filtering

stage of the algorithm are taken into account at this point. To do this, I derive the

expected area of the quad each point will create on the slice given that the point is

a certain distance, t, from the slice. Even though each point drawn leaves a circular

splat, it is still represented as a quad since the GPU does not support circle primitives.

To discard a sample point I generate a quad of area 0.

B.1 Expected number of fragments

Given that we need to draw a particular data point, the question is how large an impact

in terms of number of fragments does it make on the 2D slice. As the distance from a

sample point to the slice, t, increases the area of the quad, q, decreases. This is due to

the slice passing through a smaller area of the hyperspherical kernel surrounding the

data point. Figure B.1a shows the relationship between t and the half-length of one

of the sides of the quad u. In Figure B.1a, (as usual) r is the maximum search distance.

Therefore, u is related to t through

u =
√
r2 − t2 (B.1)

and the maximum area of the quad is 4u2. However, the quad size is not always 4u2.
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u
r

t

(a)

1
 -

 2
u

1 - 2u

u

u

1

1

(b)

Figure B.1: (a) A 2D cross-section of a hypersphere of radius r representing the spher-
ical kernel centered around a particular sample point. The slice we are viewing in-
tersects the kernel at a distance, t, away. This creates an impression of side length
2u = 2

√
r2 − t2 on the slice. We need to draw a quad on screen for this impression.

(b) shows the possible regions on the slice (the outer square) in which the center of
the sample point lies. If the sample point does not lie in the center region then some
of the quad will be clipped by the edges of the screen and we will not have to render
as many fragments.

If the center of the quad is within u of the edge of the slice then the quad will be

clipped and it will be smaller than 4u2. This “maximum size” area is the inner square

in Figure B.1b. We can formulate the expected quad size as a function of u: E[q](u).

To find E[q](u) we must integrate the quad size given a location on the slice (x, y)

over all possible positions of sample points,

E[q](u) =

∫ 1

x=0

∫ 1

y=0

q(x, y, u) dy dx.

Note that there are three regions on the slice a point may fall in, the probability

of the point falling into each region is a direct result of the area of each region:

• corner: where the quad size ranges from u2 to 4u2 with probability P = 4u2

• side: where the quad size ranges from 2u2 to 4u2 with probability P = 4u(1−

2u)

• center: where the quad size is 4u2 with probability P = (1− 2u)2
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B.1. Expected number of fragments

Therefore, the formulation for E[q](u) can be split into 3 integrals:

E[q](u) = 4

∫ u

x=0

∫ u

y=0

(x+ u)(y + u) dy dx

+ 4

∫ 1−u

x=u

∫ u

y=0

(2u)(y + u) dy dx

+

∫ 1−u

x=u

∫ 1−u

y=u

4u2 dy dx

= 4A+ 4B + C.

Where A, B, and C are the corner, side, and center cases respectively. We solve

each integral individually:

A =

∫ u

x=0

∫ u

y=0

(x+ u)(y + u) dy dx

=

∫ u

x=0

(x+ u)

∫ u

y=0

(y + u) dy dx

=

∫ u

x=0

(x+ u)

(
y2

2
+ uy

∣∣∣∣
u

0

)
dx

=

∫ u

x=0

(x+ u)

(
3u2

2

)
dx

=
3u2

2

(
x2

2
+ xu

∣∣∣∣
u

0

)

A =
9u4

4
,

B =

∫ 1−u

x=u

∫ u

y=0

(2u)(y + u) dy dx

=

∫ 1−u

x=u

(2u)

∫ u

y=0

(y + u) dy dx

= 2u

∫ 1−u

x=u

(
y2

2
+ yu

∣∣∣∣
u

0

)
dx

= 2u

∫ 1−u

x=u

(
u2

2
+ u2

)

= 2u(1− u− u)
3u2

2

= 2u(1− 2u)
3u2

2

= (2u− 4u2)
3u2

2

B = 3u3 − 6u4,
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B. THE EXPECTED NUMBER OF POINTS IN A PARAMETER SPACE

and

C =

∫ 1−u

x=u

∫ 1−u

y=u

4u2 dy dx

= (1− u− u)(1− u− u)(4u2)

= (1− 2u)(1− 2u)(4u2)

= (1− 4u+ 4u2)(4u2)

C = 4u2 − 16u3 + 16u4.

Substituting A, B, and C back into the formula we get,

E[q](u) = 4A+ 4B + C

= 4
9u4

4
+ 4(3u3 − 6u4) + (4u2 − 16u3 + 16u4)

= 9u4 + 12u3 − 24u4 + 4u2 − 16u3 + 16u4

E[q](u) = 4u2 − 4u3 + u4. (B.2)

B.2 Expected 3D quad size

Now I can turn to a formulation of Q̂(r, d) which is the expected quad size over all

0 ≤ t ≤ r. We need to take into account the likelihood of a point lying at a particular

value of t, denoted Pt:

Q̂(r, d) =

∫ r

0

E[q](u)Pt dt.

There are 2 cases to consider, the d = 3 case and the d > 3 case. I first derive

Q̂(r, d) for the simpler 3D case in order to illustrate the basic procedure combining

the expected impact size with the number of points drawn.

When d = 3 all points lie on a line extending on either side of the slice. Therefore,

Pt = 2, which is also the surface area of a 1-dimensional sphere. Since all distances

are equally likely in this case, we can simply integrate E[q](u) over all t:

Q̂(r, d) =

∫ r

0

E[q](u)Pt dt

=

∫ r

0

(4u2 − 4u3 + u4)2 dt.
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B.3. Expected quad size for the d > 3 case

We can rewrite the formula in terms of t by using Equation B.1

= 2

∫ r

0

4(
√
r2 − t2)2 − 4(

√
r2 − t2)3 + (

√
r2 − t2)4 dt.

To make things easier to integrate we substitute t with spherical coordinates:

t = r sin θ

dt = r cos θ dθ

√
r2 − t2 = r cos θ,

which leads to

Q̂(r, d) = 2

∫ π/2

0

(
4(r cos θ)2 − 4(r cos θ)3 + (r cos θ)4

)
r cos θ dθ

= 2

∫ π/2

0

4r3 cos3 θ − 4r4 cos4 θ + r5 cos5 θ dθ

= 8r3
∫ π/2

0

cos3 θdθ − 8r4
∫ π/2

0

cos4 θdθ + 2r5
∫ π/2

0

cos5 θ dθ

= 8r3
(
cos2 θ sin θ

3
+

2

3

∫
cos θdθ

)∣∣∣∣
π/2

0

− 8r4
(
cos3 θ sin θ

4
+

3

4

∫
cos2 θdθ

)∣∣∣∣
π/2

0

+ 2r5
(
cos4 θ sin θ

5
+

4

5

∫
cos3 θdθ

)∣∣∣∣
π/2

0

= 8r3
(
cos2 θ sin θ

3
+

2

3
sin θ

)∣∣∣∣
π/2

0

− 8r4
(
cos3 θ sin θ

4
+

3

4

(
θ

2
+

1

4
sin 2θ

))∣∣∣∣
π/2

0

+ 2r5
(
cos4 θ sin θ

5
+

4

5

∫
cos3 θdθ

)∣∣∣∣
π/2

0

= 8r3
(
2

3

)
− 8r4

(
3π

16

)
+ 2r5

(
8

15

)

Q̂(r, d) =
16r3

3
− 6πr4

4
+

16r5

15
.

B.3 Expected quad size for the d > 3 case

When d > 3, two of the dimensions are determined by the slice. However, the

sample point’s position with respect to the remaining (d − 2)-dimensions determine
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B. THE EXPECTED NUMBER OF POINTS IN A PARAMETER SPACE

its distance to the slice. All points with the same (d − 2)-dimensional distance will

have the same impact on the slice. Therefore, we can view all points at distance t as

lying along the surface of a hyperball. However, this hyperball may be clipped by the

edges of the parameter space so the likelihood of a point lying at distance t is given by

the surface area of the clipped hypersphere at t. Similar to a sphere, this can be found

by taking the derivative of Equation C.11 with respect to r:

S(t, d) =
dN̂ ′(t, d)

dt

=
d
[∑n

i=0(−1)i
(
n
i

)
π(n−i)/2tn+i

Γ(n+i
2

+1)

]

dt

=
n∑

i=0

(−1)i
(
n

i

)
(n+ i)π(n−i)/2tn+i−1

Γ(n+i
2

+ 1)

=
n∑

i=0

(−1)i
(
n

i

)
2π(n−i)/2tn+i−1

Γ(n+i
2
)

.

We then integrate this together with the expected area of a quad (Equation B.2) over

all 0 ≤ t ≤ r to find Q̂(r, d):

Q̂(r, d) =

∫ r

0

E[q](u)Pt dt

=

∫ r

0

(4u2 − 4u3 + u4)
S(t, d)

N̂ ′(r, d)
dt

=

∫ r

0

(
4(
√
r2 − t2)2 − 4(

√
r2 − t2)3 + (

√
r2 − t2)4

) S(t, d)

N̂ ′(r, d)
dt

=
1

N̂ ′(r, d)

∫ r

0

(
4(
√
r2 − t2)2 − 4(

√
r2 − t2)3 + (

√
r2 − t2)4

)
S(t, d) dt

=
1

N̂ ′(r, d)

∫ r

0

(
4(
√
r2 − t2)2 − 4(

√
r2 − t2)3 + (

√
r2 − t2)4

)

(
n∑

i=0

(−1)i
(
n

i

)
2π(n−i)/2tn+i−1

Γ(n+i
2
)

)
dt.

Just to simplify the writing a bit we can replace the factors of the formula that

don’t depend on t by,

Ki = (−1)i
(
n

i

)
2π(n−i)/2

Γ((n+ i)/2)
.

Ki is the expected area of the hypersphere clipped by all possible combinations of the

i-dimensional space.
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B.3. Expected quad size for the d > 3 case

With this substitution we get,

Q̂(r, d) =
1

N̂ ′(r, d)

∫ r

0

(
4(
√
r2 − t2)2 − 4(

√
r2 − t2)3 + (

√
r2 − t2)4

)( n∑

i=0

Kit
n+i−1

)
dt.

Rather than integrating over square roots, we can use trigonometric substitution

to simplify the formula:

t = r sin θ

dt = r cos θ dθ

√
r2 − t2 =

√
r2 − (r sin θ)2

= r cos θ.

Then we get,

=
1

N̂ ′(r, d)

∫ π/2

0

(
4(r cos θ)2 − 4(r cos θ)3 + (r cos θ)4

)

(
n∑

i=0

Ki(r sin θ)
n+i−1

)
r cos θ dθ

=
1

N̂ ′(r, d)

∫ π/2

0

(
4r3 cos3 θ − 4r4 cos4 θ + r5 cos5 θ

)

(
n∑

i=0

Kir
n+i−1 sinn+i−1 θ

)
dθ.

Expanding this out gives us 3 terms which are the three possible ways a sample

point will show up on the slice. Each one requires some complex algebra to integrate

so we handle each one as a separate derivation below.

B.3.1 Identities

During the derivation we will need the following trigonometric identities to solve our

derivations in subsection B.3.2. First, some basic identities used during the computa-
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B. THE EXPECTED NUMBER OF POINTS IN A PARAMETER SPACE

tion of I1(m), I2(m), and I3(m) below,

∫
cosn(θ) sinm(θ) dθ =

sinm+1(θ) cosn−1(θ)

m+ n

+
n− 1

m+ n

∫
cosn−2(θ) sinm(θ) dθ (B.3)

∫ π/2

0

sinm(θ) dθ = − cos(θ)F1

(
1

2
,
1−m

2
,
3

2
, cos2(θ)

)∣∣∣∣
π/2

0

= 0 + F1

(
1

2
,
1−m

2
,
3

2
, 1

)

=

√
πΓ
(
m+1
2

)

2Γ
(
m
2
+ 1
) . (B.4)

Each of the derivations in subsection B.3.2 will make use of one of the following

identities based on the value of n in the cosn(θ) term:

I1(m) =

∫ π/2

0

cos3(θ) sinm(θ) dθ

=
sinm+1(θ) cos2(θ)

m+ 3

∣∣∣∣
π/2

0

+
2

m+ 3

∫ π/2

0

cos(θ) sinm(θ) dθ

= 0 +
2

m+ 3

sinm+1(θ)

m+ 1

∣∣∣∣
π/2

0

=
2

m+ 3

(
1

m+ 1
− 0

)

I1(m) =
2

(m+ 1)(m+ 3)
, (B.5)
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B.3. Expected quad size for the d > 3 case

I2(m) =

∫ π/2

0

cos4(θ) sinm(θ) dθ

=
sinm+1(θ) cos3(θ)

m+ 4

∣∣∣∣
π/2

0

+
3

m+ 4

∫ π/2

0

cos2(θ) sinm(θ) dθ

= 0 +
3

m+ 4

[
sinm+1(θ) cos(θ)

m+ 2

∣∣∣∣
π/2

0

+
1

m+ 2

∫ π/2

0

sinm(θ) dθ

]

=
3

m+ 4

[
0 +

1

m+ 2

√
πΓ((m+ 1)/2)

2Γ(m/2 + 1)

]

=
3
√
π

2(m+ 2)(m+ 4)

Γ((m+ 1)/2)

Γ(m/2 + 1)

=
3
√
π

8((m+ 2)/2)((m+ 4)/2)

Γ((m+ 1)/2)

Γ(m/2 + 1)

=
3
√
π

8(m/2 + 1)(m/2 + 2)

Γ((m+ 1)/2)

Γ(m/2 + 1)

I2(m) =
3
√
πΓ((m+ 1)/2)

8Γ(m/2 + 3)
, (B.6)

and

I3(m) =

∫ π/2

0

cos5(θ) sinm(θ) dθ

=
sinm+1(θ) cos4(θ)

m+ 5

∣∣∣∣
π/2

0

+
4

m+ 5

∫ π/2

0

cos3(θ) sinm(θ) dθ

= 0 +
4

m+ 5

∫ π/2

0

cos3(θ) sinm(θ) dθ

=
4

m+ 5
I1(m)

=
4

m+ 5

2

(m+ 1)(m+ 3)

I3(m) =
8

(m+ 1)(m+ 3)(m+ 5)
. (B.7)

B.3.2 Component derivation

Derivation 1 This integral represents the expected number of fragments drawn if the sample

point is clipped by all possible combinations of the n-dimensional subspaces and the sample
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B. THE EXPECTED NUMBER OF POINTS IN A PARAMETER SPACE

point appears in the corner of the slice we are viewing:

∫ π/2

0

(
4r3 cos3 θ

)
(

n∑

i=0

(−1)i
(
n

i

)
2π(n−i)/2rn+i−1 sinn+i−1 θ

Γ((n+ i)/2)

)
dθ

4
n∑

i=0

(−1)i
(
n

i

)
2π(n−i)/2rn+i+2

Γ((n+ i)/2)

∫ π/2

0

cos3 sinn+i−1 dθ.

We can replace the integral with I1(n+ i− 1) from Equation B.5

4
n∑

i=0

(−1)i
(
n

i

)
2π(n−i)/2rn+i+2

Γ((n+ i)/2)
I1(n+ i− 1)

4
n∑

i=0

(−1)i
(
n

i

)
2π(n−i)/2rn+i+2

Γ((n+ i)/2)

2

(n+ i)(n+ i+ 2)

4
n∑

i=0

(−1)i
(
n

i

)
2π(n−i)/2rn+i+2

Γ((n+ i)/2)

2
4
4
(n+ i)(n+ i+ 2)

4
n∑

i=0

(−1)i
(
n

i

)
2π(n−i)/2rn+i+2

Γ((n+ i)/2)

2

4(n+i
2
)(n+i

2
+ 1)

4
n∑

i=0

(−1)i
(
n

i

)
π(n−i)/2rn+i+2

Γ((n+ i)/2 + 2)
.

Derivation 2 This integral represents the expected number of fragments drawn if the sample

point is clipped by all possible combinations of the n-dimensional subspaces and the sample

point appears in the side of the slice we are viewing:

∫ π/2

0

(
4r4 cos4 θ

)
(

n∑

i=0

(−1)i
(
n

i

)
2π(n−i)/2rn+i−1 sinn+i−1 θ

Γ((n+ i)/2)

)
dθ

8
n∑

i=0

(−1)i
(
n

i

)
π(n−i)/2rn+i+3

Γ((n+ i)/2)

∫ π/2

0

cos4 θ sinn+i−1 θ dθ.

We can replace the integral with I2(n+ i− 1) from Equation B.6

8
n∑

i=0

(−1)i
(
n

i

)
π(n−i)/2rn+i+3

Γ((n+ i)/2)
I2(n+ i− 1)

8
n∑

i=0

(−1)i
(
n

i

)
π(n−i)/2rn+i+3

Γ((n+ i)/2)

3
√
πΓ((n+ i)/2)

8Γ((n+ i− 1)/2 + 3)

3
n∑

i=0

(−1)i
(
n

i

) √
ππ(n−i)/2rn+i+3Γ((n+ i)/2)

Γ((n+ i)/2)Γ((n+ i− 1)/2 + 3)

3
n∑

i=0

(−1)i
(
n

i

)
π(n−i+1)/2rn+i+3

Γ((n+ i+ 5)/2)
.
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B.3. Expected quad size for the d > 3 case

Derivation 3 This integral represents the expected number of fragments drawn if the sample

point is clipped by all possible combinations of the n-dimensional subspaces and the sample

point appears in the center of the slice we are viewing:

∫ π/2

0

(
r5 cos5 θ

)
(

n∑

i=0

(−1)i
(
n

i

)
2π(n−i)/2rn+i−1 sinn+i−1 θ

Γ((n+ i)/2)

)
dθ

2
n∑

i=0

(−1)i
(
n

i

)
π(n−i)/2rn+i+4

Γ((n+ i)/2)

∫ π/2

0

cos5 θ sinn+i−1 θ dθ.

We can replace the integral with I3(n+ i− 1) from Equation B.7

2
n∑

i=0

(−1)i
(
n

i

)
π(n−i)/2rn+i+4

Γ((n+ i)/2)
I3(n+ i− 1)

2
n∑

i=0

(−1)i
(
n

i

)
π(n−i)/2rn+i+4

Γ((n+ i)/2)

8

(n+ i)(n+ i+ 2)(n+ i+ 4)

2
n∑

i=0

(−1)i
(
n

i

)
π(n−i)/2rn+i+4

Γ((n+ i)/2)

8

8((n+ i)/2)((n+ i+ 2)/2)((n+ i+ 4)/2)

2
n∑

i=0

(−1)i
(
n

i

)
π(n−i)/2rn+i+4

Γ((n+ i)/2)

8

8((n+ i)/2)((n+ i)/2 + 1)((n+ i)/2 + 2)

2
n∑

i=0

(−1)i
(
n

i

)
π(n−i)/2rn+i+4

Γ((n+ i)/2 + 3)
.

B.3.3 Final derivation

Putting together derivations 1–3 yields the final form for Q̂(r, d) for the d > 3 case:

Q̂(r, d) =
1

N̂ ′(r, d)

[
4

n∑

i=0

(−1)i
(
n

i

)
π(n−i)/2rn+i+2

Γ((n+ i)/2 + 2)

− 3
n∑

i=0

(−1)i
(
n

i

)
3π(n−i+1)/2rn+i+3

Γ((n+ i+ 5)/2)

+ 2
n∑

i=0

(−1)i
(
n

i

)
π(n−i)/2rn+i+4

Γ((n+ i)/2 + 3)

]

=
1

N̂ ′(r, d)

n∑

i=0

(−1)i
(
n

i

)[
4π(n−i)/2rn+i+2

Γ((n+ i)/2 + 2)
− 3π(n−i+1)/2rn+i+3

Γ((n+ i+ 5)/2)
+

2π(n−i)/2rn+i+4

Γ((n+ i)/2 + 3)

]
.

Which gives the final result for Q̂(r, d) for a given dimension, d, and kernel radius

r. This is the formula I used in the paper.
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C | Derivation of Q̂(r, d)

For this derivation, assume a d-dimensional centred unit cube1 [−0.5, 0.5]d with co-

ordinate axes x1, x2, . . . , xd. Without loss of generality, we specify a 2D slice by a

(d − 2)-dimensional (focus) point ~s and assume that the two additional coordinates

are the coordinates within the slice.

As explained in subsection 4.5.3, N̂ ′(r, d) is the expected percentage of points

within distance r from a single 2D slice in d dimensions. In the case of a uniform

point distribution, this essentially measures the volume of a slab with thickness 2r

around the slice. The extent of this slab in the dth and d− 1 dimensions is one, since

we have a d-dimensional unit cube. Hence, the volume of the slab is the (d − 2)-

dimensional volume V (~s) around the (d − 2)-dimensional point ~s multiplied by one

for each direction (d− 1) and d:

V (~s) = 1 · 1 ·
∫

[−0.5,0.5]d−2

Br(~s− ~x)d~x, (C.1)

where, Br is the constant (d− 2)-ball with radius r:

Br(~x) =





1 if ||~x|| < r

0 otherwise.

Considering the (d − 2)-dimensional centred unit box Π(~x), we express Equa-

1Note, that in chapter 4 I specified a non-centred unit cube [0, 1]d. However, the centering does
not impact the result, but is mathematically easier to deal with.
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tion C.1 as a convolution:

V (~s) =

∫

[−0.5,0.5]d−2

Br(~s− ~x)d~x

=

∫

[−∞,∞]d−2

Π(~x)Br(~s− ~x)d~x

= Π ∗Br(~s).

Since N̂ ′(r, d) is the average volume over all possible slice positions within the

(d− 2)-dimensional unit cube, we conclude:

N̂ ′(r, d) =

∫

[−0.5,0.5]d−2

V (~s)d~s

=

∫

[−∞,∞]d−2

Π(~0− ~s)Π ∗Br(~s)d~s

N̂ ′(r, d) = (Π ∗ Π ∗Br)
(
~0
)
.

The beauty of this last expression is, that it is a convolution of three different

piecewise-constant (the constant being one) functions evaluated at zero. This allows

us to reinterpret this expression as an integral of the convolution of two of these func-

tions over the domain of the third function:

N̂ ′(r, d) =

∫

Br

T (~x)d~x, (C.2)

where T (~x) = Π∗Π(~x) is the convolution of two unit-cubes or the (d−2)-dimensional

triangle function2. Hence, in the positive orthant, we can write:

T+(~x) =
d−2∏

i=1

max(0, (1− xi)),

where ~x = (x1, x2, ..., xn) and, in general, f+(~x) shall denote the positive orthant of

some function f(~x).

In the remainder of this appendix we will evaluate the integral in Equation C.2

for the case of HyperSlice. Since this is an integral in a (d − 2)-dimensional space,

we will, for brevity, be using n to equal (d− 2) in the remainder of this appendix. In

the case of the HyperSlice the distance metric is the L2 norm and the volume Br is an

2Also known as the tensor-product of the linear B-spline or the (d− 2)-linear interpolator
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n-dimensional sphere of radius r. Hence, Equation C.2 becomes:

N̂ ′(r, d) = 2n
∫

B+
r

T+(~x)d~x. (C.3)

We will solve this integral using polar coordinates.

C.1 Polar coordinates in n dimensions

Expressing ~x = (x1, x2, ..., xn) in polar coordinates ~ϕ = (R, φ1, φ2, . . . , φn−1) can be

done as follows:

x1 = R cos(φ1)

x2 = R sin(φ1) cos(φ2)

x3 = R sin(φ1) sin(φ2) cos(φ3)

...

xn−1 = R sin(φ1) · · · sin(φn−2) cos(φn−1)

xn = R sin(φ1) · · · sin(φn−2) sin(φn−1),

where φi ∈ [0, π] for i = 1, . . . , n− 2 and φn−1 ∈ [0, 2π].

The Jacobian, needed to properly substitute the integration variables in Equa-

tion C.3 of the transformation from spatial coordinates ~x to polar coordinates ~ϕ, can

be computed as follows:

d~x

d~ϕ
= Rn−1

n−1∏

i=1

sinn−1−i(φi)

d~x = Rn−1dR
n−1∏

i=1

sinn−1−i(φi)dφi. (C.4)

C.2 Derivation

In this section, we will assume that the radius r never grows above one. This is a

reasonable assumption, which holds for the experiments I performed. We can now
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simplify Equation C.3 as follows:

N̂ ′(r, d) = 2n
∫

B+
r

n∏

i=1

max(0, (1− xi))d~x

= 2n
∫

B+
r

n∏

i=1

(1− xi)d~x

= 2n
∫

B+
r

n∑

i=0

(−1)iti(~x)d~x

= 2n
n∑

i=0

(−1)i
∫

B+
r

ti(~x)d~x, (C.5)

where ti(~x) is the sum of all products of i distinct coordinates. In other words,

t0(~x) = 1

t1(~x) =
n∑

j=1

xj

t2(~x) =
n∑

j,k=1;j 6=k

xjxk

...

Because of symmetry in the first orthant around any axis xi = xj of the hyper-

sphere, we have:

∫

B+
r

xjxkd~x =

∫

B+
r

x1xkd~x =

∫

B+
r

x1x2d~x,

which holds for any product of arbitrary terms. Hence, we can simplify Equation C.5

in the following way:

N̂ ′(r, d) = 2n
n∑

i=0

(−1)i
∫

B+
r

ti(~x)d~x

= 2n
n∑

i=1

(−1)i
(
n

i

)∫

B+
r

i∏

k=1

xkd~x+ 2n
∫

B+
r

d~x

= 2n
n∑

i=1

(−1)i
(
n

i

)
Ai +B.

B is the volume of an n-dimensional sphere of radius r:

B = 2n
∫

B+
r

d~x =

∫

Br

d~x =
π

n
2 rn

Γ(n
2
+ 1)

.
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We are left to compute the product integrals Ai, for which we use polar coordi-

nates. For i ≤ n, we have (using Equation C.4):

Ai =

∫

B+
r

i∏

k=1

xkd~x

=

∫

~ϕ+

i∏

k=1

xk(~ϕ)R
n−1dR

n−1∏

j=1

sinn−1−j(φj)dφj

=

∫

~ϕ+

Ri

i∏

k=1

cos(φk) sin
i−k(φk)R

n−1dR
n−1∏

j=1

sinn−1−j(φj)dφj

=

∫

~ϕ+

Rn+i−1dR

i∏

k=1

cos(φk) sin
i−k(φk)

n−1∏

j=1

sinn−1−j(φj)dφj

=

∫

~ϕ+

Rn+i−1dR

i∏

k=1

cos(φk) sin
n−1+i−2k(φk)

n−1∏

j=i+1

sinn−1−j(φj)dφj

= AR
i

i∏

k=1

Ac
i,k

n−1∏

j=i+1

As
i,j , (C.6)

where

AR
i =

∫ r

0

Rn+i−1dR

Ac
i,k =

∫ π/2

0

cos(φk) sin
n−1+i−2k(φk)

As
i,j =

∫ π/2

0

sinn−1−j(φj)dφj ,

where we used the fact that the proper positive orthant integration bounds by ~ϕ+ =

[0, R]× [0, π/2]n−1.

Solving for these three types of integrals yields:

AR
i =

∫ r

0

Rn+i−1dR =
1

n+ i
rn+i,

Ac
i,k =

∫ π/2

0

cos(φk) sin
n−1+i−2k(φk)

=
1

n+ i− 2k
sinn+i−2k(φk)

∣∣π/2
0

=
1

n+ i− 2k
,
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as well as

As
i,j =

∫ π/2

0

sinn−1−j(φj)dφj

= − cos(φj)F1(0.5, (j − n+ 2)/2, 1.5, cos2(φj))
∣∣π/2
0

= F1(0.5, (j − n+ 2)/2, 1.5, 1)

=
Γ(3/2)Γ((n− j)/2)

Γ(1)Γ(0.5 + (n− j)/2)

=
π1/2

2

Γ((n− j)/2)

Γ((n− j + 1)/2)
,

where F1 is the hypergeometric function and Γ is the gamma function. Putting this

all together (for i ≤ n) into Equation C.6, we get:

Ai = AR
i

i∏

k=1

Ac
i,k

n−1∏

j=i+1

As
i,j

=
1

n+ i
rn+i

i∏

k=1

1

n+ i− 2k

n−1∏

j=i+1

π1/2

2

Γ((n− j)/2)

Γ((n− j + 1)/2)

= rn+i

i∏

k=0

1

n+ i− 2k

π
n−1−i

2

2n−1−i

Γ(1/2)

Γ((n− i)/2)

= rn+iπ
n−1−i

2

2n−1−i

π1/2

Γ((n− i)/2)

i∏

k=0

1

n+ i− 2k

=
π

n−i
2

2n−1−i

rn+i

Γ((n− i)/2)

i∏

k=0

1

n+ i− 2k
. (C.7)

This formula can be further simplified by noting that if we expand out the product

we get,

i∏

k=0

1

n+ i− 2k
=

1

(n+ i)(n+ i− 2)(n+ i− 4) · · · (n+ i− 2i)

=
1

2i+1

2i+1 (n+ i)(n+ i− 2)(n+ i− 4) · · · (n+ i− 2i)

=
1

2i+1
(
n+i
2

) (
n+i
2
− 1
) (

n+i
2
− 2
)
· · ·
(
n+i
2
− i
)

=
1

2i+1
(
n+i
2

) (
n+i
2
− 1
) (

n+i
2
− 2
)
· · ·
(
n−i
2

) .

This expansion combined with 1
Γ((n−i)/2)

means that instead of,

1

Γ((n− i)/2)

i∏

k=0

1

n+ i− 2k
,
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we can write,

1

2i+1Γ((n+ i)/2)
.

Therefore, we can simplify Equation C.7 as,

Ai =
π

n−i
2

2n−1−i

rn+i

Γ((n− i)/2)

i∏

k=0

1

n+ i− 2k

=
π

n−i
2

2n−1−i

rn+i

2i+1Γ(n+i
2

+ 1)

=
π

n−i
2

2n
rn+i

Γ(n+i
2

+ 1)
. (C.8)

Intuitively, Ai measures the expected area of a hypersphere that is clipped by the

edges of the parameter space for all possible combinations of the i-dimensional sub-

spaces.

Finally, we can put everything together:

N̂ ′(r, d) = 2n
n∑

i=1

(−1)i
(
n

i

)
Ai +B

= 2n
n∑

i=1

(−1)i
(
n

i

)
Ai +B

= 2n
n∑

i=1

(−1)i
(
n

i

)[
π

n−i
2

2n
rn+i

Γ(n+i
2

+ 1)

]
+B

=
n∑

i=1

(−1)i
(
n

i

)[
π

n−i
2 rn+i

Γ(n+i
2

+ 1)

]
+

π
n
2 rn

Γ(n
2
+ 1)

. (C.9)

Now we note that if i = 0,

(−1)i
(
n

i

)[
π

n−i
2 rn+i

Γ(n+i
2

+ 1)

]
= (−1)0

(
n

0

)[
π

n−0
2 rn+0

Γ(n+0
2

+ 1)

]

=
π

n
2 rn

Γ(n
2
+ 1)

. (C.10)

Which is the n-dimensional volume of the ball. If we include i = 0 in the summation

and substitute Equation C.10 into Equation C.9 then we can write N̂ ′(r, d) as,

N̂ ′(r, d) =
n∑

i=0

(−1)i
(
n

i

)
π

n−i
2 rn+i

Γ(n+i
2

+ 1)
. (C.11)
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Abstract

Many physical data are continuous and many phenomena that we want to study are

influenced by a number of factors. To understand these phenomena we need to ex-

amine multi-dimensional continuous data. Visual analysis of these phenomena can

lead to many insights. However, the question remains of how to visualize something

in more than three dimensions on a 2D screen. Most of the higher (i.e. more than

three) dimensional data analysis tools have focused on discrete data. These methods

cannot represent the full richness of the continuous process. Most continuous data vi-

sualization methods focus on either a particular domain area or a particular task (e.g.

optimization).

In this thesis I explore the possibilities of creating general-purpose tools for multi-

dimensional continuous data analysis. I do this through four key developments. First,

I introduce a task taxonomy for continuous multi-dimensional data. Second, I in-

vestigated the use of 1D slices to understand multi-dimensional continuous functions.

Third, I developed an algorithm to generate 2D slices of simplical meshes and demon-

strated how these can be used to understand shapes. Forth, I developed an algoritm

to render slices in interactive time. The algorithm takes advantage of regular ge-

ometry of the multi-dimensional space as well as the GPU architecture on a modern

computer.

The results of this work can be used as a basis for research on direct visualization

methods of multi-dimesnsional continuous data. Through this work, I have started

a discussion of the tasks involved and given concrete examples of how visualizations

can be evaluated based on these tasks. My hope is that these developments will herald

additional research on general methods for multi-dimensional continuous data visu-
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alization.
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Zusammenfassung

Kontinuierliche Daten machen einen großen Teil der physikalischen Daten aus und

zahlreiche Phänomene, die man untersuchen möchte werden von unterschiedlichen

Faktoren beeinflusst. Um diese Phänomene zu verstehen, müssen mehrdimensionale

kontinuierliche Daten untersucht werden. Die visuelle Analyse solcher Phänomene

kann viele Erkenntnisse liefern. Es stellt sich jedoch die Frage, wie man etwas in

mehr als drei Dimensionen auf einem 2D-Bildschirm darstellen soll. Ein Großteil der

Analysetools für hochdimensionale Daten (mehr als drei Dimensionen) konzentriert

sich auf diskrete Daten. DieseMethoden können jedoch nicht die gesamte Bandbreite

des kontinuierlichen Prozesses darstellen. Die meisten Methoden zur Visualisierung

kontinuierlicher Daten konzentrieren sich entweder auf ein bestimmtes Gebiet oder

eine bestimmte Aufgabe (z.B. Optimierung).

Im Rahmen dieser Dissertation suche ich nach Möglichkeiten, um Universaltools

zur Analyse von mehrdimensionalen kontinuierlichen Daten zu schaffen. Dies tue ich

mittels vier wesentlicher Problemlösungsschritte. Erstens führe ich eine Task Tax-

onomy für mehrdimensionale kontinuierliche Daten ein. Zweitens untersuche ich

die Verwendung von 1D-Scheiben, um mehrdimensionale kontinuierliche Funktio-

nen zu verstehen. Drittens entwickelte ich einen Algorithmus, um 2D-Scheiben von

Simplical Meshes zu erzeugen. Somit konnte ich zeigen, wie diese zum Begreifen von

Formen genutzt werden können. Viertens habe ich einen Algorithmus entwickelt,

um Scheiben in interaktiver Zeit zu erzeugen. Dieser Algorithmus macht sich die

regelmäßige Geometrie des mehrdimensionalen Raumes zu Nutze, sowie die GPU-

Architektur eines modernen Computers.

Die Ergebnisse dieser Arbeit können als Basis für Forschungen an Methoden di-
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rekter Visualisierung von mehrdimensionalen kontinuierlichen Daten genutzt wer-

den. Mit dieser Arbeit habe ich eine Diskussion über die damit verbundenen Auf-

gaben begonnen sowie konkrete Beispiele dafür gegeben, wie die Visualisierungen

anhand dieser Aufgaben beurteilt werden können. Ich hoffe, dass die Ergebnisse

dieser Arbeit zu weiteren Forschungen an allgemeinen Methoden zur Visualisierung

von mehrdimensionalen kontinuierlichen Daten führen.
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