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German and English Summary 

Zusammenfassung 

Frühwarnsysteme sind im Stande zeitgerecht und effektiv Informationen zu übermitteln, 

um das Risiko vor einer nahenden Gefahrensituation zu vermeiden oder zu reduzieren. Im 

letzten Jahrzehnt wurden in der Hydrologie so genannte Ensembleprognosen in die Hoch-

wasservorhersagesysteme implementiert und folgte damit den erzielten Erfolgen in der 

Wettervorhersage. Dieser probabilistische Ansatz berücksichtigt die inhärente räumliche 

Variabilität geotechnischer und hydraulischer Parameter sowie deren Unsicherheiten und 

bringt sie explizit in die Modellergebnisse ein. 

Die hier vorgestellte Arbeit befasst sich explizit mit zwei Unsicherheitsaspekten auf regio-

naler Maßstabsebene in Frühwarnsystemen für Hangrutschungen. Diese betreffen einer-

seits die Berücksichtigung von Niederschlag als dynamische Komponente und anderer-

seits den Umgang mit räumlicher Variabilität und Unsicherheiten in Parametern für die 

Modellierung. Ein Ansatz, der überwiegend Anwendung findet, um Niederschlag in Han-

grutschungsfrühwarnsystemen zu implementieren, beinhaltet die Verwendung von flä-

chenhaft einheitlichem Niederschlag für ein spezifisches Gebiet basierend auf repräsen-

tativen Niederschlagsmessern. Hier wird eine Alternative vorgestellt, die vorsieht, basie-

rend auf verschiedenen Interpolationsverfahren (deterministisch und geostatistisch), eine 

räumlich differenzierte Niederschlagsverteilung in Echtzeit zu bestimmen. In einer voll au-

tomatisierten Prozesskette werden dazu webbasierte Niederschlagsdaten in mehrere 

Qualitätschecks geprüft, um eine qualitativ hochwertige Datenbasis zu erlangen.  

Für die anschließende Hangrutschungsmodellierung ist das deterministische, physikalisch 

basierte TRIGRS Modell für eine probabilistische Anwendung modifiziert worden. Um die 

innewohnenden Unsicherheiten sowie die räumliche Variabilität von Parametern zu ad-

ressieren, wurde anstatt einer einzelnen vermeintlich optimalen Parameterkonstellation 
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basierend auf tatsächlichen Feldmessungen, ein sehr breiter Parameterbereich aus Lite-

raturquellen berücksichtigt. Aus diesem Parameterbereich wurden in einer Zufallsstich-

probe mehrere Parameterkonstellationen gezogen, die dann für die jeweiligen Modell-

läufe herangezogen wurden. Basierend auf einer Vielzahl von gleichermaßen annehmba-

ren Parameterkonstellationen wurden ebenso viele Modellläufe durchgeführt, die für 

jede Stunde in einer einzelnen räumlich differenzierten Karte der Hangversagenswahr-

scheinlichkeit resultierten. Dadurch wird der relative Beitrag jedes einzelnen Modelllaufs, 

der auf unterschiedlichen, aber gleichermaßen annehmbaren Parametern besteht, be-

rücksichtigt. Dabei deckt die gesamte Spannweite des räumlichen Musters der Hangver-

sagenswahrscheinlichkeit einen Großteil der vorhandenen räumlichen Variabilität und 

Unsicherheiten ab. 

Die Ergebnisse legen nahe, dass für Hangrutschungsmodellierungen auf regionaler Maß-

stabsebene die Modellparametrisierung basierend auf Literaturquellen ausreichend ist, 

da a) verschiedene Parameterkonstellationen ähnlich gute Modellergebnisse liefern und 

damit die Bedeutung einer Modelleichung sowie von teuren und zeitaufwändigen Feld-

messungen reduziert wird, und b) die Modellsensitivität der Hangneigung so dominant ist, 

dass räumliche Unterschiede in der Hangversagenswahrscheinlichkeit mehr durch die 

räumliche Verteilung des Niederschlags oder der Bodenmächtigkeit beeinflusst werden, 

als durch geotechnische und hydraulische Parameter. Der hier vorgestellte voll automati-

sierte Ensembleansatz birgt großes Potential für die zukünftige Ausrichtung von Hangrut-

schungsfrühwarnsystemen, jedoch sind die Anforderungen an herkömmliche Compu-

terhardware noch zu groß, um die Berechnung stündlicher Hangversagenswahrscheinlich-

keiten auf größerer Maßstabsebene in Echtzeit zu bewerkstelligen. 
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Summary 

Early warning aims at providing individuals exposed to a hazard timely and effective infor-

mation to take action in order to avoid or reduce their risk and prepare for effective re-

sponse. In the last decade, hydrological modelers have started integrating ensemble pre-

diction systems into their forecasting systems, following on the success of the use of en-

sembles for weather forecasting. The probabilistic approach acknowledges the presence 

of unavoidable parameter variability and uncertainty at larger scales and explicitly intro-

duces them into the model results.  

The proposed work explicitly addresses two main sources of uncertainties in regional scale 

landslide early warning. Firstly, how rainfall as a dynamic component is treated and sec-

ondly, how spatial variability and uncertainties in geotechnical and hydraulic parameters 

are considered for regional scale model parametrization. A common approach to intro-

duce rainfall information into landslide early warning system consists of using uniform 

areal rainfall from representative rain gauges over a specific area. Here, a fully automated 

process chain is presented that uses web based real-time rain gauge data that is treated 

with multiple quality checks. This data is then applied to multiple automated interpolation 

techniques (deterministic and geostatistical) in order to obtain spatially distributed rain-

fall information. For the landslide prediction, the deterministic, physically based model 

TRIGRS is modified for a fully automated probabilistic application. In an honest attempt 

to address parameter variability and uncertainties, broad parameter ranges from litera-

ture that are appropriate for the study area are used instead of a presumed best-fit set of 

parameter values based on actual in situ field data. Out of this parameter range, multiple 

parameter sets are randomly sampled for iterative model runs. From all parameter sets, 

which resulted in multiple equally acceptable model realizations, a spatially distributed 

probability of failure map is derived for each hour. This way, the relative performance of 

each parameter set is taken into account and depicts the entire model spread with its 

inherent uncertainties.  
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Results suggest that for regional scale study areas purely literature based parametrization 

might be sufficient because a) different parameter sets provide almost equally good re-

sults and thus reduces the importance of costly and time consuming field sampling as well 

as model calibration, and b) slope angle has such a high model sensitivity that in all model 

runs the predicted areas with the highest slope failure probability are more or less at the 

same location and differ primarily due to spatially varying soil depth and rainfall. Although 

the proposed automated landslide ensemble prediction system holds a great potential for 

the future direction of landslide early warning, computational restraints currently hold 

back the real-time application for hourly model predictions at regional scale. 
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1. Background

1.1.  Thesis outline & scope 

Although substantial effort is put into landslide mitigation methods based on improve-

ments in our understanding of instability mechanisms, landslides are still causing a con-

siderable death toll and major economic losses all over the world (Corominas et al. 2014). 

Former Secretary-General of the United Nations Ban-Ki Moon called climate change dur-

ing the 2014 Climate Summit the defining issue of our time (Frigg et al. 2015). However, 

not just climate change, but global change in general will be a critical component in land-

slide research as it is assumed that its consequences will increase the number of landslides 

in the future (Crozier 2010, Gariano et al. 2017, Papathoma-Köhle and Glade 2013). Ad-

vancements in the past within the field of geotechnical engineering have led to an increas-

ing in situ damage control in many parts of the world, however, landslides triggered by 

heavy rainstorms still cause substantial losses where protective structures are scarce or 

where they have not been appropriately designed (Canli et al. 2017a). In this context, 

landslide risk can be defined as “the expected number of lives lost, persons injured, dam-

age to property and disruption of economic activity due to a particular damaging phenom-

enon for a given area and reference period” (Varnes 1984, p. 10). In order to manage 

landslide risk, a multi component analysis is required. The total risk (R) can be expressed 

as the product of hazard (H), vulnerability (V) and the elements at risk (A) (van Westen et 

al. 2006): 

where: 

H Hazard is expressed as the probability of occurrence within a reference period. 

To distinguish hazard from just susceptibility, is has to contain not just the spatial 

probability of occurrence (based on static environmental factors such as soil 

𝑅𝑅 = ��𝐻𝐻 �(𝑉𝑉𝑉𝑉)� (1)
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depth, friction angle, lithology, etc.), but also a dynamic temporal probability 

(e.g. varying rainfall input, historical records, etc.) 

V Vulnerability for a specific type of hazard can be expressed in many ways, such 

as physical vulnerability (e.g. building shape, construction material, etc.) or social 

vulnerability (e.g. age-composition of residents, daytime, etc.) and manifests it-

self in a range from 0 (no loss at all) to 1 (total loss) 

A Elements at risk expressed as their total amount or costs (e.g. number of build-

ings or people in a specific area, cost of buildings) 

Consequently, risk implies also the consequences of an event, not just its probability of 

occurrence. This is important to distinguish at this point, because the scope of this thesis 

almost exclusively encompasses the hazard component which is, according to van Westen 

et al. (2006), by far the most complex to determine. 

While at first sight landslides are generally considered to be phenomena restricted to the 

local scale, they can indeed be regarded as a regional phenomenon at specific times 

(Jaedicke et al. 2014). Contrary, the spatial occurrence of floods, for example, is topo-

graphically much more foreseeable and controllable which is far more challenging to asses 

in distributed landslide prediction due to a landslide’s localized nature (Alfieri et al. 

2012a). As a consequence, structural protective measures are only feasible were critical 

infrastructure or persons are directly affected by a potential landslide hazard. However, 

for covering large areas that are potentially prone to landsliding and where a substantial 

landslide risk is prevalent, spatial landslide early warning systems (EWS) are indispensable 

(Glade and Nadim 2014, Thiebes and Glade 2016). 

Working in this EWS context requires the observation and timely processing of rainfall 

events on small spatio-temporal scales, as this is crucial for the successful operation of 

EWS (Segoni et al. 2009, Thiebes et al. 2013). By far the most common way to implement 

rainfall into EWS involves the employment of empirical-statistical rainfall thresholds. A 

certain rainfall threshold is established for a specific area by determining the rainfall 
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amount that triggered landslides in the past (Gariano et al. 2015). With this relationship it 

is then possible to provide a real-time comparison of current rainfall and the established 

rainfall threshold to form the basis of landslide warnings (Wieczorek and Guzzetti 1999). 

However, such empirically derived thresholds rely purely on the relationship between 

rainfall and landslide occurrence, which reflects quite a strong simplification of the under-

lying physical processes (Reichenbach et al. 1998, Bogaard and Greco 2018). Most cer-

tainly, there is more than just rainfall as the only causative factor involved (Huang et al. 

2015). As opposed to those empirical-statistical threshold based approaches, process 

based approaches are in place that can be used in an early warning context. Those (mostly 

deterministic) models do not simply establish statistical relationships between the de-

pendent variable and its predictors, but use (physically based) equations to actually rep-

resent process interactions. Such process based models are more resembling a white-box 

approach by describing the underlying physical processes that lead up to the phenomenon 

being modelled (Corominas et al. 2014). Although computationally very demanding and 

conceptually challenging to apply at larger scales, physically based models contain “a 

higher predictive capability and are the most suitable for quantitatively assessing the in-

fluence of individual parameters that contribute to shallow landslide initiation” (Coromi-

nas et al. 2014, p. 225). Within the scope of this dissertation, only physically based ap-

proaches and its associated uncertainties are worked on in a potential early warning con-

text. Those uncertainties primarily address the spatial variability and uncertainties in ge-

otechnical and hydraulic parameters at larger scales as well as the uncertainties intro-

duced by how rainfall as the dynamic component is considered.  

With regard to general definitions, this dissertation uses prediction systems and early 

warning systems synonymously for terminological consistency within the landslide com-

munity. However, it is acknowledged that an operative early warning system should addi-

tionally consist of a proper dissemination and response strategy as it is suggested by the 

UNEP (2012). This dissertation also follows the classification scheme of Stähli et al. (2015) 

for EWS. In this classification scheme, EWS are distinguished between Alarm, Warning and 

Forecasting systems. Here, the general term early warning system is actually referring to 
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warning systems, again for terminological consistency. Warning systems after Stähli et al. 

(2015) detect significant changes in time-dependent factors before an even occurs. While 

the initial alert is based on predefined thresholds, the actual alert is only released after 

expert evaluation (as opposed to alarm systems that immediately release an alarm) and 

only then (as opposed to forecasting systems that report current modeling results/sensor 

data in regular intervals). The infinite-slope based landslide modeling approach in this dis-

sertation aims at detecting shallow translational slope failures as this is generally what 

infinite-slope based models are capable to reproduce and what this dissertation is focus-

ing on. Bell et al. (2014) analyzed 142 landslide entries of an inventory in Lower Austria, 

which serves as the study area in this dissertation, and estimated a median landslide 

depth of 1.7 m (mean: 2.2 m). Following the updated Varnes classification for landslides 

of Hungr et al. (2014), shallow translational landslides in this dissertation refer to clay 

and/or silt planar slides. The modelling scale, the proposed study is embedded in, explic-

itly targets the regional scale. Although numerical quantification schemes exist to sharply 

distinguish between different scales (e.g. Corominas et al. 2014 define regional scale in 

the range between 1:25,000 and 1:250,000), a more qualitative distinction is sufficient for 

here in a sense that national scale > regional scale > local scale > site-specific scale. 

1.2.  Research gap and hypotheses 

Summarizing the scope of this dissertation, this work primarily deals with uncertainties of 

regional scale landslide modeling in an early warning context. Uncertainties in this work 

are linked to a dynamic component, which refers to the real-time assessment of spatial 

rainfall information on the one hand, and on how deterministic modeling approaches 

could be improved in a way that spatial parameter variability and uncertainties are ad-

dressed and explicitly introduced into the model results on the other hand. 

The most common approach in contemporary spatial landslide early warning systems uti-

lizes rainfall information from direct rain gauge measurements. Those rain gauges indicate 
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either a representative amount of rainfall for single landslide locations nearby (e.g. Cap-

parelli and Tiranti 2010) or selected rain gauges indicate representative uniform areal 

rainfall for an entire region (e.g. Segoni et al. 2015, Rosi et al. 2015). This is quite unfortu-

nate as it is of utmost importance to know exactly the total precipitation accumulated or 

the rate of precipitation in a given period in order to link on-site rainfall as the triggering 

event to landslide occurrence (Guzzetti et al. 2007). Thus, using just punctual rain gauge 

measurements leads inevitably to a situation where the precise amount of a landslide 

triggering rainfall at a certain location remains mostly unknown. In reality, however, rain 

gauges with the closest proximity to a landslide location or rain gauges with the suppos-

edly best representation of areal rainfall are selected for determining a landslide-trigger-

ing rainfall event (Canli et al. 2017a). Although large efforts are put into establishing ap-

propriate rainfall threshold in early warning applications, an in-depth consideration of the 

accurate spatial distribution of rainfall is often neglected (Thiebes and Glade 2016). There-

fore, parts of this dissertation aim at providing an improved basis for real-time spatio-

temporal rainfall data and its potential implementation in a regional landslide EWS. In-

stead of assuming uniform rainfall over a certain area, different automated interpolation 

methods are presented. This allows for an approximation of spatially distributed, hourly 

rainfall predictions in real-time based on rain gauge data (Canli et al. 2017a), 

The effect of rainfall on landslide detachment alone, however, is difficult to assess quan-

titatively without process based modeling approaches, primarily due to the inherent spa-

tial variability in material properties and its associated uncertainties at larger scales (Chae 

et al. 2017). Although empirical-statistical rainfall thresholds are by far the most common 

approach in spatial landslide early warning, such thresholds pose a quite considerable 

simplification between rainfall occurrence and the physical mechanisms leading to land-

slides by neglecting local environmental conditions and the role of hydraulic processes 

occurring along slopes (Reichenbach et al. 1998, Bogaard and Greco 2018). However, pro-

cess based approaches in spatial landslide early warning are almost non-existent. This can 

be attributed to both, the massive computational power that is required to operate phys-
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ically based modeling approaches in a timely manner and the difficulty to predict the lo-

cation of rather small-scale phenomena such as landslides with purely deterministic mod-

els with currently available data (Canli et al. 2017b). On the contrary, hydrological sciences 

have successfully transitioned from threshold based approaches to process based ap-

proaches by developing probabilistic models that do not eliminate uncertainty, but explic-

itly introduce them into the model results to acknowledge the inevitable spatial variety 

and uncertainties when operating at larger scales (Cloke and Pappenberger 2009). Now 

that high resolution convective-scale numerical weather predictions (NWP) are available 

that are particularly suitable for predicting small-scale phenomena such as flash floods 

and landslides, the next logical step in landslide prediction should be the adaptation of 

such ensemble prediction systems (EPS). Therefore, this dissertation proposes the appli-

cation of a probabilistic regional landslide EPS with the aim of investigating the potential 

of such probabilistic approaches over purely deterministic ones for early warning applica-

tions. 

Consequently, the identified research gaps are formalized into the following hypotheses 

and associated research questions respectively: 

Hypothesis I: Automated interpolation poses an improvement over selective rain gauge 

utilization for providing landslide early warning information. 

 What data sources are appropriate for being used in real-time applications?

 How to approach automated data quality assurance?

 How do different automated interpolation techniques perform?

Hypothesis II: In situ measurements of geotechnical or hydraulic parameters can be 

substituted by literature based values for regional scale landslide model parametrization. 

 How to approach spatial parameter variability and uncertainties?

 How does a parameter range input affect the spatial prediction pattern?

 What parameters manifest the highest sensitivity?
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Hypothesis III: A probabilistic landslide ensemble prediction system is capable of 

providing timely indication of high resolution landslide exposure at regional scale. 

 Does the probability of failure display a realistic image of the most current land-

slide hazard?

 Does infrastructure data improve the interpretation of probabilistic hazard maps?

 Is it possible to operate landslide ensemble prediction in real-time for the applica-

tion in regional landslide early warning systems?
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2. The science and philosophy of
modeling in geomorphology

The philosophical ideas of reductionism have developed and shaped the discipline of 

physical geography for a long time. Reductionist approaches in different dimensions (on-

tological, epistemological, and methodological) looked at independent parts of a phenom-

enon in isolation from each other which culminated in an understanding of the phenom-

enon as a whole when all parts are combined. This was the predominant paradigm in 

physical geography to look at natural phenomena until the 1960s when the more holistic 

and synthetic approach of systems analysis came into play. Systems analysis has devel-

oped as the integrative explanatory framework of physical geography and it changed the 

way of thinking about the physical environment. The rise of systems analysis owes a great 

deal to the attempt to develop an integrated and all-encompassing framework for all sci-

ences in the twentieth century. According to Inkpen (2005) the existence of such a frame-

work implies: 

1.) that all reality is capable of being understood; there are no areas of topics outside 

of its analytical scope. 

2.) All reality can be understood in a common framework using the same sets of 

terms. This means that understanding in supposedly different subject areas does 

not require specialist terms of specialist knowledge, but rather translation of these 

terms to the common terminology of systems analysis. 

3.) As there is a common framework, all reality can be expected to behave as pre-

dicted by this framework. All reality becomes potentially predictable and, by im-

plication, potentially controllable. 

Systems thinking can be represented by a couple of relatively simple ideas (Fig. 2.1). The 

key components of such a system are the variables or elements, the relationships be-

tween the variables or elements, and the bounding of these variables and relationships 
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from the rest of the world (Inkpen 2005).  The system itself can be considered as “a set of 

objectives together with relationships between the objects and between their attributes” 

(Hall and Fagan 1956, p. 18). Defining variables and relationships imply an ability to define 

and divide the world into distinct entities and relations. The same applies to the definition 

and bounding or closure of the system itself which requires a specific view of reality as 

divisible and understandable by this division. The observer considers the reality of the 

physical environment from an outside view by defining his own distinct system made of 

real entities and relations which becomes an entity in itself with its own properties and 

relations to the rest of the physical environment. This observer’s own entity may or may 

not be the sum of its elements and relations, in any case, however, the observer serves as 

a passive and objective interpreter of the system outside of the boundaries he has im-

posed (Inkpen 2005). 

Figure 2.1: A simplified system as a set of objectives together with relationships between the objects and 
between their attributes (Inkpen 2005) 

This omnipresent paradigm in contemporary geomorphology made questions legitimate 

with respect to processes of change and their rates. The late and seemingly immature 

development of the subject relative to hard sciences condemned geomorphology to a 

mere descriptive scientific discipline. The theoretical foundation of systems analysis put 

the identification and understanding of processes in a framework that aimed at system-

atically answering questions with regard to present and past process rates. The develop-

ment of a process orientation in physical geography led to changes in the disciplines’ own 

definition. With this new focus, physical geography reached into other disciplines for the 
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necessary theoretical, field and mathematical techniques. The quest for an integrative ex-

planatory framework for physical geography became somewhat superseded by a search 

for disciplinary homes with their own, existing framework. This problem of discipline def-

inition is a matter that physical geography is still struggling with (Inkpen 2005). 

 

Important to the development of a process basis for physical geography was the develop-

ment of techniques for quantifying landforms and the landscape. The trend to increasingly 

complex representations of the physical environment within each subdiscipline further 

added to the separation of the subject. However, this quantification of the landscape, or 

rather components of the landscape, ultimately triggered the capability of assessing the 

contribution of specific processes to the operation of the landscape system. Despite great 

advances made in technology and data collection, physical geography retained its roots 

from the past (Inkpen 2005). Physical geography, or rather geomorphology, retained a 

focus on landscape development that promoted relevant studies of landforms and land 

forming processes within such features as landslides and, more generally, in environmen-

tal management. A plethora of information, the push for relevancy and the focus on pro-

cess studies – the basic principles of physical geography remained the same: the search 

for universality, the emphasis on the empirical and a concern with change in the form of 

equilibrium and process-response. The matter of scale, however, remains as a sticking 

point for the integration of processes found at different scales and acted as a brake on a 

purely reductionist view of the scientific endeavor in physical geography (Inkpen 2005). 

 

Modeling, in general, gives us the opportunity to test the reliability of our comprehension 

of the nature and its processes and phenomena. Its aim is to generalize, put in order and 

extract all information of interest that are available based on the most current theoretical 

and experimental knowledge. Modeling also requires finding a middle ground between 

how we understand and how we represent the complexity of nature. As a result of prac-

tical demands, older distributed models, for example, are still being used that do not en-

tirely reflect our current understanding of processes (Semenova and Beven 2015). Models 
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are capable of providing a means of understanding and predicting the operation of sys-

tems that are not approachable by experimental methods such as variable control and 

manipulation. Also, for many practical reasons or due to scale issues (both spatial and 

temporal), such analyses would be not feasible, hence the requirement for model formu-

lation (Demeritt and Wainwright 2005). Thorn (1988) distinguishes a model from a system 

in the way how reality is considered.  While a model is a fully specified, yet abstract and 

incomplete, version of reality, a system is viewed as an abstraction that is assumed to 

exist in reality. A model is an abstraction and a simplification of reality and it is recognized 

that it does not, nor is intended to, mirror reality. The distinction is generally made to 

clarify the purpose-led construction of models as opposed to the supposed universal na-

ture of systems. A model is usually created to serve a purpose; it does not, however, need 

to fully specify reality, nor to be agreed by all. A system may be unknowable in full, but 

agreement can be achieved that such a set of entities and relationships exist. Conse-

quently, the system can be considered to hold a more universal status whilst the model 

on the other hand does not (Inkpen 2005). 

Although models can be constructed without an explicit underlying philosophy, Beven 

(2001) considers modeling in the environmental sciences as a form of pragmatic realism. 

A modeler has in general a clear perceptual model of reality in mind that reflects his qual-

itative understanding from experience, training and monitoring, including all current con-

straints that impede model formulation. To add to that, the modeler has to cope with the 

discrepancy of his own perceptual model of reality and the necessity of building a nomo-

logical system with all associated constraints to be able to produce predictions from the 

model. This also means, however, that there is potential for model rejection, model re-

finement and for model improvement as the constraints on modeling change (Inkpen and 

Wilson 2013). Since computational processing became widespread available, study of na-

ture has been strongly driven by this new means of technology. Guzzetti (2005), however, 

expresses his disappointment in that regard that investigators focus too heavily on apply-

ing different tools and methods rather than focusing on the target itself. For the landslide 
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community, this stands more or less valid until this very day. While the degree of sophis-

tication in statistical landslide susceptibility modeling is quite high by now and conceptual 

errors and biases are actively worked on (e.g. Steger et al. 2016a, 2016b), this is less the 

case for dynamic threshold or process based approaches. For empirical-statistical thresh-

old based approaches, Bogaard and Greco (2018) and for deterministic modeling ap-

proaches Canli et al. (2017b) raised important concerns with respect to deficiencies and 

challenges in current model applications. Semenova and Beven (2015) raise the question 

whether this dissatisfaction with current modeling concepts is owed to the current prac-

tice of model calibration that allows for a demonstration of success in matching the avail-

able data. Klemeš (1986) mentioned already three decades ago in a hydrological context 

that the current practice of model calibration should not be the be-all-end-all to rigorous 

model testing and that there is absolutely no guarantee of successfully predicting the fu-

ture state of a system this way. 

In the late 1980s and early 1990s, the paradigm of complex systems research was intro-

duced to geomorphology as an alternative approach to linear explanation of cause and 

effect. This development was initiated due to field observations where seemingly simple 

relationships could not be linked to cause and consequence (Temme et al. 2015). This led 

to the introduction of many new concepts in geomorphology such as complex response, 

lagged behavior and thresholds (e.g. Knox 1972, Schumm 1973, Thomas and Allison 1993). 

As most of those concepts do not originate in geomorphology, critical discussion on dif-

ferent concepts and assumptions with respect to complex systems have only accelerated 

in the last couple of years (e.g. Phillips 2015, Temme et al. 2015, von Elverfeldt et al. 2016).  

While there are many definitions on complexity, there are two fundamental properties 

inherent in complexity theories: a) the system consists of multiple interactive compo-

nents, and b) these interactions give rise to emergent forms and properties which are not 

reducible to the sum of the individual components of an observed system (Keiler 2011). 

This means that cause and effect may not be necessarily related directly as we might think 

and that a response does not behave in a way as expected. Assumed complex, yet random 
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(stochastic) behavior may result from a simple underlying interaction that is just not (yet) 

known. Murray and Fonstad (2007) describe unknown scaling interactions as a possible 

cause for such nonlinear interactions: “Nonlinear interactions often involve multiple feed-

backs that lead to surprising and rich, perpetually changing behaviors – behaviors that 

create themselves, in the sense that ‘events’ do not correspond to changes in the forcing. 

And simple, local nonlinear interactions provide the basis for the self-organization of 

global patterns that do not correspond to any forcing template. The related emergent-

phenomena perspective points out that analyzing the building blocks of a system – the 

small-scale processes within a landscape – may not be sufficient to understand the way 

the larger-scale system works. […] Thus, when nonlinear feedbacks lead to self-organiza-

tion of large-scale patterns and behaviors, causality extends in both directions through 

the scales, and the most ‘fundamental’ scale on which to base an analysis may not be the 

smallest. The extent to which these scale-related phenomena imply that a hierarchy of 

scales for models and understanding is required in geomorphology is still under vigorous 

debate” (Murray and Fonstad 2007, p. 173f). 

 

Complexity research in geomorphology is a rather small subfield that aims at introducing 

tools from non-linear dynamics to explain dynamics and structures of earth surface sys-

tems, however, it is not mainstream in any way (Temme et al. 2015). But since commonly 

applied deterministic modeling approaches have reached their limits of explicability, al-

ternative approaches might see a significant rise in the near future, especially since com-

putational power is getting widely available for considering nonlinear interactions over 

larger scales (Canli et al. 2017b). 

 

2.1.  Types of models 
 

Modeling in physical geography received a huge boost during the so-called quantitative 

revolution of the 1960s and 1970s which resulted in prominent publications such as Chor-

ley and Haggett’s Models in Geography (1967) which had a substantial impact on research 

undertaken by subsequent generations. Since then, different types of models have been 
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established that aim at representing reality (Inkpen and Wilson 2013). The most com-

monly applied types of models in the field of physical geography can be summarized as 

conceptual models, heuristic approaches, empirical-statistical models and deterministic 

models. 

2.1.1. Conceptual models 

Conceptual models contain a high degree of abstraction and require much knowledge 

about the underlying processes involved and they reflect the researcher’s view of how 

reality, respectively its variables and relations that were identified as crucial components 

for the operation of the section of reality that is under investigation, are interconnected 

(Inkpen and Wilson 2013). Thus, conceptual models reflect the underlying theory about 

the operation of the physical environment as identified by the researcher. Figure 2.2 de-

picts a typical conceptual model in physical geography representing shallow ground-water 

conditions in hillside soils. This figure is a visual representation of the researcher’s thought 

process and how he believes reality to be structured and how the processes in place need 

to be studied in order to understand the dynamics of the system. Consequently, concep-

tual models drive the manner in which research is undertaken (Inkpen and Wilson 2013). 
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Figure 2.2: Conceptual model of shallow ground-water conditions in hillside soils. The unsaturated zone 
above the water table has depth du. The capillary fringe is between the unsaturated zone and the water 

table at depth d. The lower boundary, which is treated as impervious in this model, is at depth Zmax (Baum 
et al. 2008) 

 

2.1.2. Heuristic methods 

Those subjective approaches are based on expert judgement. A group of specialists assign 

probabilities to quantify certain process rates, hazard potential, etc. Traditional methods 

in the domain of heuristic approaches are qualitative or semi-qualitative methods such as 

geomorphological mapping or index overlay mapping (van Westen et al. 2006). A common 

and more recent way to systematize heuristic evaluation is based on decision trees (Wong 

et al. 2005, Corominas et al. 2014). With an increasing number of possible feature charac-

teristics and outcomes, the visual representation of a decision tree spreads out like the 

branches of a tree (hence its name). Fig. 2.3 shows an example of a decision tree for clas-

sifying landslide susceptibility. In general, expert judgement serves as a classifier with re-

spect to variable importance (e.g. average slope angle > 28.7° has a high impact on slope 

stability). This means that in order to quantify the probabilities of a certain alternative, 

the branching node probabilities have to be determined. The product of the respective 
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branching node probabilities ultimately results in a particular outcome, such as a slope 

failure map (Corominas et al. 2014). Although heuristic methods are highly subjective, ex-

pert based selection and weighting of variables can indeed serve as a valid alternative to 

purely automated selection of potentially biased input data, especially when applied over 

larger areas (van Westen et al. 2006, Steger et al. 2016a). 

Figure 2.3: Example of a decision tree for classifying landslide susceptibility in which leaves with high land-
slide susceptibility (more than 5) are emphasized. Variables are listed in the original source in Saito et al. 

2009 

2.1.3. Empirical-statistical models 

“Empirical-statistical models use statistical methods to obtain mathematical expressions 

that are meant to represent the physical system under study. […] In this way dependent 

variables are modelled by independent variables and causation is implicit within the 

model structure” (Inkpen and Wilson 2013, p. 181). Statistical models are highly depend-

ent on the input data and the data has to be available in a suitable format. For statistical 

landslide susceptibility assessment for example, the dependent variable is usually the 

landslide initiation location, either as points or polygons, based on a digital elevation 

model or its derivatives while the independent variables (predictors) trying to explain a 
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landsliding location are commonly distributed maps representing, amongst others, geol-

ogy, vegetation cover, slope, aspect or distance from rivers. Landslide inventories are of-

ten purposefully generated for the use in statistical models (Petschko et al. 2015). Empir-

ical-statistical models are often attributed as simplified input-output models that aim at 

matching input variables to output values through the development of a mathematical 

expression (Inkpen and Wilson 2013). However, this simplicity comes with a number of 

drawbacks (van Westen et al. 2006): 

 in most cases, only factors that can easily be mapped or derived from a digital

elevation model are taken into account

 the generalization of causative factors: landslides are assumed to occur under the

same combination of conditions throughout the study area and through time

 different landslide types have different causative factors: a complete and unbiased

landslide inventory is almost impossible to come by and in most cases, a proper

differentiation of landslide types is lacking

However, in case the underlying data set serving as the modeling basis is good, results of 

statistical models can perform reasonably well as was demonstrated by rigorous model 

validation (Steger et al. 2016b). More commonly applied statistical models in landslide 

research belong to the group of linear models (e.g. logistic regression), while non-linear 

statistical models (e.g. generalized additive models) or flexible machine learning tech-

niques (e.g. Support Vector Machines, Random Forest) are being increasingly used to in-

crease predictive performance (Micheletti et al. 2014, Goetz et al. 2015, Pham et al. 2016). 

Although none of these models explicitly state why input and output are intertwined, an 

appropriate variable selection “does imply a set of processes and a view of the physical 

system and its operation. Likewise, even if the system and processes cannot be stated 

accurately, the fact that the model seems to produce predictable results may be sufficient 

for the model to function adequately in its particular context” (Inkpen and Wilson 2013, 

p. 181).
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2.1.4. Deterministic models 

Deterministic models, as opposed to statistical models, do not simply establish statistical 

relationships between dependent and predictor variables, but use mathematical expres-

sions to actually represent relationships between elements. Working from this basis, “re-

lationships are deduced and the operation of the resultant model can be explained by 

reference back to these basic principles. The important aspect of this type of modeling is 

that the relationships must be formalised as mathematical expressions. The behavior of 

the resultant model is explainable by reference back to the basic principles and their for-

mal relationships. Deterministic modeling relies upon any variable or entity and its rela-

tionships being expressed or reduced to a set of basic and fundamental physical principles. 

This means that it is essential that abstract axioms are linked to real-word entities” (Ink-

pen and Wilson 2013, p. 180).  

Deterministic model output is more concrete and consistent when compared with heuris-

tic and statistical modeling approaches, “given the white-box approach of describing the 

underlying physical processes leading up to the phenomena being modelled” (Corominas 

et al. 2014, p. 225). Scale issues are a major concern when applying distributed determin-

istic models in physical geography when the scale and number of relationships defining 

the reality under study increases. This ultimately leads to the question whether appropri-

ate laws or relations that are valid for one scale are transferable to another scale since 

the scale of measurement generally differs significantly from the scale at which the ap-

plied model requires ‘effective’ parameter values to be specified (Beven 1996). 

In physical geography, a common distinction of physically based models is made with re-

spect to how the temporal components are treated: models are attributed as either static 

or dynamic. Static models aim towards the determination of the stimuli that cause, for 

example, slope instability. Dynamic models consider a temporal component in order to 

identify cause and effect relationships which makes them especially suitable for simulat-

ing future changes under varying initial conditions (van Westen et al. 2012). Based on the 

used model, physically based modeling approaches are capable both for addressing the 
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spatial and temporal variation of landslide initiation (Horton et al. 2013, Formetta et al. 

2016, Zieher et al. 2017) or runout (Hussin et al. 2014, McDougall 2017, Strand et al. 2017). 

Commonly, their main drawbacks are stated as being computationally very demanding 

due to the high spatial resolution that is required and a sufficiently high measurement 

precision of input parameters (van Westen et al. 2012). Therefore, deterministic methods 

used to be limited to site-specific or local scale applications only (Tab. 2.1). Additionally, 

the geological and geomorphological conditions should be fairly homogenous and land-

slides should ideally be rather simple in order to reduce bias and additional uncertainties. 

As opposed to statistical based approaches, which require a comprehensive landslide in-

ventory that serves as the dependent variable, an incomplete inventory can be sufficient 

for physically based models as the inventory serves only as a means for model validation 

and calibration (Corominas et al. 2014). 

Table 2.1: Traditionally recommended quantitative methods for landslide susceptibility analysis at different 
scales (Corominas et al. 2014) 

For larger scale applications, infinite-slope based approaches are the most commonly ap-

plied family of landslide models as they generally outperform other approaches that try 

to introduce more complex landslide geometries (Zieher et al. 2017). The most popular 

static infinite-slope based models for large scale applications are SINMAP (Pack et al. 

1998) or SHALSTAB (Dietrich and Montgomery 1998), with regard to dynamic models, 
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TRIGRS (Baum et al. 2008, 2010), STARWARS+PROBSTAB (van Beek 2002) or r.slope.sta-

bility (Mergili et al. 2014a and 2014b) should be mentioned. Albeit its drawbacks, physi-

cally based models contain “a higher predictive capability and are the most suitable for 

quantitatively assessing the influence of individual parameters that contribute to shallow 

landslide initiation” (Corominas et al. 2014, p. 225). Recent advancements in deterministic 

landslide modeling aim towards a more probabilistic attempt on how to treat spatial pa-

rameter variability and uncertainties over larger study areas (Lari et al. 2014, Raia et al. 

2014, Salciarini et al. 2017, Canli et al. 2017b). 

2.2.  Issues in modeling – parametrization, validity and 
 uncertainty 

Philosophical questions arise with respect to obtaining data in various ways (Frigg et al. 

2015): a) the theory-ladenness of observations. Strictly speaking, instrument obtained 

data has to be independently tested and confirmed; b) model-filtered raw data and their 

symbiotic relationship between data and models. Again, those have to be independently 

tested and confirmed. It is doubtful whether such model-filtered data can be trusted if 

the models were tested only by the data that they are supposed to be correcting and 

filtering (confirmatory circle); c) the suitability of proxy data in the absence of directly 

measurable raw data. In geosciences, data is extensively used in the construction of mod-

els: models in general contain many observationally derived approximations and heuris-

tics with parametrizations that represent processes incapable of explicitly resolving the 

spatial or temporal resolution of the model. Consequently, they are replaced by simplified 

data-driven processes (data-laden models) that are partly also physically motivated (Frigg 

et al. 2015). This data-ladenness is a widely acknowledged phenomenon in modeling en-

vironmental processes in which landslide modeling makes no exception. 

Model application requires the researcher to make some a priori decisions when deciding 

upon which model to use for the underlying research question. Model building itself un-

dergoes the same thought process as building a system, namely making the initial decision 
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to what include and exclude from the model and where to draw the boundaries. This de-

cision predetermines the entities and relationships that will be modelled and explained. 

Any other attributes not considered in the model will be viewed as irrelevant for the 

model for the sake of simplicity, yet they define and determine the behavior outside of 

the model’s scope. Modeling then requires the parametrization of the defined entities 

where the choice of these assigned values can substantially affect the operation of the 

model. The range of input values that are suitable and acceptable for an entity in a model 

may reflect the experience of the modeler or constraints in the modeling process (Inkpen 

and Wilson 2013). With regard to empirical-statistical models, dependent variable values 

are calculated as a mathematical function on independent variable values. Such models 

can be considered as black-box models since they do not specify anything about how or 

why inputs are transformed into outputs. This inevitably runs the risk of making erroneous 

associations between variables whose statistical correlation may either be coincidental or 

contingent upon some intervening process ignored by the model. Critical realists tend to 

reject such empirical-statistical models by claiming that they commit the inductivist fallacy 

of affirming the consequent and failing to explain why the value of a dependent variable 

necessarily depends on that of an independent one (Demeritt and Wainwright 2005).  

 

On the contrary, deterministic models are generally seeking for a grand unifying theory 

that tries to find an answer to the question whether processes at higher scales can entirely 

be reducible to those operating at lower scales. Scale related questions still remain unan-

swered in most cases and physical geographers tend to be more concerned with practical 

and computational difficulties of a strictly deductive-deterministic approach to process 

modeling. According to Demeritt and Wainwright (2005), there are especially those two 

technical issues that lead to this situation: 

 

a) Implicit parametrization: The laws of physics are so abstract that it is required to 

specify certain boundaries and initial conditions in order to close the gap between 

the model’s underlying theory and its contextual application. In many (if not all) 

cases, those values to specific certain entities are incompletely known. In general, 
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the process of parametrization links field and other data with the model. As it is 

usually not possible to measure all parameters directly, implicit parametrization is 

required that is applicable to the original modeling scale. Often it is the parameters 

that are just unsuitable rather than the model itself. 

b) Appropriateness of equations: The identification of suitable equations that are

both appropriate and analytically tractable is difficult for environmental processes, 

especially when changes over time are involved. Additionally, most deterministic

models consist of non-linear differential equations (such as the commonly used

Richard’s equation to represent the movement of water in unsaturated soils) that

are difficult to approximate due to the absence of a closed-form analytical solu-

tion. Hence, model developers try to find an approximation by means of numerical

iteration or finite difference calculation to provide analytically tractable solutions.

This means that values that were initially fixed by reference (e.g. direct measurements or 

literature values) need alteration or they become optimized (or fine-tuned). This optimi-

zation based on real-world data is often referred to as physically based – with the conse-

quence of limiting the modeling application to the time and place specific domain of op-

timization. The model then may precisely match the outputs of the empirical data set. For 

example, an optimized set of soil cohesion and friction angle values may be good for ex-

plaining variations in distributed slope stability in a specific location for a particular time 

period, but they are not as good at explaining variations somewhere else during other 

time periods. This means that due to parameter tweaking in a model constructed and 

explained in terms of physical processes, it is entirely unknown whether the physical 

model is correct and a valid explanation of the empirical data or whether the model is 

only correct because the parameters have been adjusted to achieve the greatest possible 

match to the empirical data (Inkpen and Wilson 2013).  

This well-established calibration procedure raises the legitimate question whether such a 

model is transferable to other places and other times. Important in that regard is estimat-

ing the validity of a model. Usually this is done by matching the model outcomes to reality 
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which in turn requires the modeler to define a set of criteria against which the outcome 

properties and the real properties can be compared (Inkpen and Wilson 2013). Often, val-

idation and verification are used interchangeably, which is not quite correct from a philo-

sophical point of view. The term validation does not necessarily denote an establishment 

of truth. Rather, it provides a legitimacy in terms of arguments and methods (Oreskes et 

al. 1994). When it comes to validating single model outputs based on a best-fit realization 

(either for statistical or deterministic approaches), there always lies the confirmation bias 

trap that is omnipresent in landslide research. When comparing a result predicted by a 

model with observational data and the comparison is unfavorable, the modeler continues 

to work on the model until a fit is achieved. But the even bigger dilemma awaits if there 

is a match between the model result and observational data because the modeler may be 

tempted to claim that the model was verified. But again, this would be committing the 

logical fallacy of affirming the consequent (Oreskes et al. 1994).  

If a model fails to reproduce observed data, this gives a hint that the model is not yet 

reliable in some way, but the reverse is rarely the case. Even when using a calibrated 

model, it is safe to say, at best, that it is empirically adequate. But admitting that cali-

brated models do need ‘additional refinements’ suggests that the empirical adequacy of 

numerical models is forced. So even if a model is consistent with present and past obser-

vational data, there is no guarantee that the model will perform in equal measure when 

predicting the future (Oreskes et al. 1994). But when is it sufficient to attribute a model 

as a valid representation of reality? Inkpen and Wilson (2013) identified two important 

issues: “First, how close does the match have to be for the model to be validated? Second, 

even if a match can be identified how does the modeler know that the match to reality is 

for the reasons modelled? The matching of model outcomes to observations relies upon 

there being a clear correspondence or translation from model to some measurable prop-

erty of reality. Even if a clear and justifiable translation exists, the issue of how ‘close’ the 

match in values needs to be before the model is validated needs to be clear. This decision 

is likely to be driven by the researcher(s) themselves, by the traditions and training in the 
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subject as well as by the potential requirements of the models used” (Inkpen and Wilson 

2013, p. 188). 

Brown (2004) distinguishes a tripartite division of reality: a) real mechanisms; b) actual 

events; and c) empirical observations. Those interactions create a feedback loop in which 

the past persists through the present and into the future to form an environmental chain 

of causality. Within this chain, the observational part always depicts the outcomes of 

those interactions, but not the causal mechanisms themselves. However, assessing pat-

terns of similarities or difference can indeed provide insights into the real mechanisms 

involved and also poses the essence of research that goes beyond what pure observation 

is capable to answer. Due to the non-linear behavior of most environmental processes, a 

lack of process understanding, multiple (interacting) parameter values, different meas-

urement scales, spatial and temporal heterogeneity or the dependence on the model 

structure, uncertainties on all ends of environmental modeling are inevitable. This leads 

environmental processes to be highly dependent upon their contingent conditions as a 

result of our inability to explain a unique causal world (Brown 2004).  

Consequently, uncertainties can either be of epistemic or ontological (aleatory) nature. 

While the first arises through our lacking knowledge about the nature of the reality and 

the system under study, the latter occurs as a result of the inherent variability of the real-

ity under investigation (Walker et al. 2003). Lehmann and Rillig (2014) suggest to clearly 

distinguish between uncertainty and variability that manifests in time and space. While 

uncertainty is considered as a measure of unexplained variation (i.e. measurement errors, 

also lack of understanding about cause and effect), spatial and temporal variability in en-

vironmental sciences reveal themselves as spatial heterogeneity and will not shrink with 

scientific progress. Known variation should consequently not be referred to as uncer-

tainty, but explained as variability (Fig. 2.4). Thus, working with environmental systems 

requires the researched to distinguish between a lack of process understanding and the 

failure to adequately capture the heterogeneity of responses (Lehmann and Rillig 2014).  
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Figure 2.4: Comparison between uncertainty and variation. The reduction in confidence due to unexplained 
variation, such as uncertainty, decreases through progress in science. Progress in science, however, will not 

decrease the total variation (Lehmann and Rillig 2014) 

Environmental systems reveal a high degree of non-linearity as many of its entities and 

relations are indeterminate because their causes of change are unknown a priori (e.g. 

weather predictions based on the same initial conditions may vary drastically the longer 

the forecasting period). It is generally accepted that our knowledge and understanding of 

nature is limited, yet deterministic strategies remain to be quite popular in geomorphol-

ogy. Such strategies “obscure the context of ‘what we know’, as well as ‘how we come to 

know’ and fail to encourage the transparency of reasoning required for policy-relevant 

research where even the definitions of an environmental problem may be highly con-

tested” (Brown 2004, p. 368f). Acknowledging the presence of many plausible theories is 

the core of the equifinality concept that challenges deterministic believe. Equifinality re-

volves around the rejection of the concept of the optimal model in favor of multiple pos-

sibilities for producing acceptable simulators (Beven and Freer 2001). This concept should 

not come surprising given our understanding of physical theory that there is a plethora of 
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interactions among the components of a system whose resulting representations may be 

equally acceptable.  

Research generally follows a working paradigm that should lead to realistic representa-

tions of the real processes and characteristics. This idea of identifying a single optimal 

representation of reality is very distinct in environmental sciences. A major problem arises 

from the scale discrepancy between sampling and distributed modeling where the use of 

global parameters undoubtedly leads to errors in predicting local responses at points with 

unique characteristics (Beven and Freer 2001). By acknowledging that there are many dif-

ferent model structures or many possible parameter sets scattered throughout the pa-

rameter space, the range of predicted variables is likely to be larger than linearized solu-

tions would suggest. This equally means acknowledging that there are uncertainties in-

herent surrounding the area of parameter space around the optimum. As a result, such 

approaches allow non-linearity to be taken into account (Beven and Freer 2001). 

Geomorphological systems can indeed be considered as transient, inheriting remnants of 

past and present processes. Environmental systems can exhibit certain degrees of chaotic 

behavior which results in an inability to express the trajectory of their development on 

the basis of present-day evidence alone. As a consequence, equifinality should not be 

considered as an indication of a poorly developed methodology, but as something inher-

ent in geomorphological systems (Beven 1996). While it can be of benefit to perform anal-

yses of uncertainty, it needs to be stressed that many uncertainties cannot be quantified 

or remain difficult to quantify with available information. Uncertainty analysis, however, 

promotes openness, which implies according to Brown (2004, p. 375): 

a) the criteria for evaluating uncertainty are made clear;

b) different ‘informed opinions’ are canvassed when decisions involve large risks or

are taken in the ‘public interest’ (i.e. different ‘confidence models’ are proposed

alongside different environmental models, and their ‘goodness’ evaluated);

c) the criteria for selecting ‘informed opinions’ are clear;
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d) the purpose of assessing uncertainty is clear and

e) expressions of uncertainty are interpretable by different groups of scientists and

by non-scientists.

In those cases where decision makers (scientists, practitioners, politicians, etc.) are only 

interested in reinterpretations or absolute statements of reality, uncertainty analysis 

might not be the appropriate tool as it is unlikely that decision-making is improved in the 

short-term. However, if uncertainty analysis is performed as an act of volition and deter-

mination to achieve transparency and accountability in scientific research, this can lead 

to improvements in the quality of data and models and ultimately to our understanding 

of environmental processes (Brown 2004). 
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3. Physically based landslide modeling
and early warning systems —
current approaches and challenges

3.1.  Spatial variability and uncertainties in regional scale 
 landslide modeling 

Using averaged parameter values from locally measured geotechnical and hydraulic pa-

rameters is a common practice for parameterizing physically based landslide models (e.g. 

Thiebes 2014, Tofani et al. 2017, Zieher et al. 2017). Additionally, databases, published or 

unpublished technical reports or lookup tables may serve as a source for common param-

eters (e.g. Schmidt et al. 2008, Kuriakose et al. 2009, Mergili et al. 2014b). In more recent 

years, the probabilistic treatment of modeling parameters has gained quite some popu-

larity in the landslide community. Probabilistically derived parameters have the potential 

to consider uncertainties and inherent variability in a way that can be quite beneficial in 

the absence of a very dense measurement network (Canli et al. 2017b). In general, ge-

otechnical and hydraulic parameters are represented with a univariate distribution con-

sisting of random variables that are based on an underlying probability density function 

and statistical characteristics (Fan et al. 2016). Common parameters in deterministic land-

slide modeling that are treated in a probabilistic way are the friction angle or cohesion 

(e.g. Park et al. 2013, Chen and Zhang 2014, Raia et al. 2014, Salciarini et al. 2017). 

While very dense measurement networks at regional scale for assessing required model-

ing parameters are highly desirable, this goal is hardly achievable in reality. Performing 

geotechnical and hydraulic measurements at regional scale is difficult, time-consuming 

and very expensive. Consequently, using such parameters within spatially distributed 

physically based models is a rather challenging task and in general there is no approach 

that is universally accepted (Tofani et al. 2017). Even if there is measured data available 

for one, some or even all parameter values in a model to be able to specify distributions 
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and covariances for the parameter values, some methodological obstacles remain. There 

is, for example, no guarantee that values measured at one scale will reflect the effective 

values required in the model to achieve satisfactory predictions of observational data 

(Beven and Freer 2001). 

Reasons that lead to this spatial variability in soil formation processes are manifold. 

Weathering processes, biological perturbations, atmospheric interactions, etc. are com-

monly listed processes that lead to spatially varying soil and hydraulic properties (Fan et 

al. 2016). Yet again, scale matters a lot when considering sampling locations for a regional 

scale study area. At the slope or catchment scale, variability lacks a pronounced spatial 

organization. Case study based subsurface exploration, such as Canli et al. (in prep.), 

clearly demonstrate this randomness in spatial organization (Fig. 3.1). This is less the case 

at larger scales, where several superimposing factors contribute to spatial variation, such 

as topography, differences in soil depth, -type and -texture, vegetation characteristics, as 

well as rainfall patterns. This suggests that the larger the scale, the more soil forming pro-

cesses manifest a persistent deterministic signature due to the predetermined topogra-

phy, geology, climate, and other factors (Seyfried and Wilcox 1995, Fan et al. 2016). 
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Figure 3.1: Proposed underground model of the Salcher landslide (Austria) based on all obtained infor-
mation (inclinometers, drill cores, penetration resistance). Spatial variation in both, horizontal and vertical, 
direction seem to lack a pronounced spatial organization, which is a challenge for slope scale modeling, yet 

an even bigger challenge for model parametrization at regional scale (Canli et al. in prep.) 

To overcome this problem, Neves Seefelder et al. (2016) suggested to apply parameter 

ranges in physically based modeling applications as their findings yielded results compa-

rable in quality to those derived with best-fit narrow ranges. By acknowledging the fact 

that at larger scales geotechnical and hydrological parameters are highly variable, uncer-

tain and often poorly understood, narrow parameter rangers or even singular combina-

tions of parameters come with the risk of being highly inaccurate (Neves Seefelder et al. 

2016). Canli et al. (2017b) therefore suggest that it might be sufficient to work with liter-

ature data for model parametrization alone instead of in situ measured data when work-

ing at regional scale.  
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3.2.  Consideration of spatial and temporal dynamics: rainfall as 
 a crucial component 

Providing precise and timely rainfall information, no matter whether the approach of the 

warning system is based on empirical rainfall thresholds or combined hydraulic and slope 

stability modeling, can be regarded as the most important aspect of any landslide early 

warning system (Canli et al. 2017a). The spatial variability of real-time rainfall distribution 

is a crucial aspect to be considered, yet it is insufficiently addressed in early warning ap-

plications where the scarcity of rain gauges is a common argument (Chiang and Chang 

2009). Common approaches for threshold based early warning systems to determine rain-

fall for a single landslide site or a specific region are: 

 utilization of single rain gauges near a specific landslide site (e.g. Capparelli and

Tiranti 2010)

 selection of rain gauges as representative locations for a predefined region (e.g.

Segoni et al. 2015, Rosi et al. 2015)

However, using only single point measurements as representative locations is often not 

really suitable, given the fact that such locations are not only dependent on the distance 

from the landslide itself, but also from other influencing factors such as elevation, aspect 

or the wind direction (Aleotti 2004). In a more advanced attempt, Lagomarsino et al. 

(2013) artificially split their study area in smaller units (territorial units; TU) and assigned 

one representative rain gauge to each TU that indicates areal rainfall for each TU. While 

this area can be arbitrarily large or small, rainfall is still only considered as uniform across 

the entire area. 

The representation of areal rainfall based on rain gauge measurement is quite common 

in landslide modeling and early warning (e.g. Segoni et al. 2015, Rosi et al. 2015). However, 

this approach is rather critical since measurements representing an entire area have been 

taken from a continuum in space (Oliver and Webster 2014). As a consequence, spatial 
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prediction methods were applied to point measurements to regionalize rainfall in a spatial 

manner. Historically, spatial prediction was undertaken by purely mathematical interpo-

lation approaches that considered only systematic or deterministic variation, but not any 

error. Geostatistical prediction, and here it is primarily kriging, is the logical successor that 

overcomes most of these drawbacks contained in deterministic methods (Webster and 

Oliver 2001). Geostatistics aims explicitly at correctly portraying spatial variation of spatial 

random variables such as rainfall (Srivastava 2013). 

There is a substantial amount of literature available that aims at comparing different in-

terpolations methods for assessing spatial rainfall distribution, mainly in the fields of hy-

drology or hydro-meteorology (e.g. Ly et al. 2013, Mair and Fares 2011, Schuurmans et al. 

2007, Haberlandt et al. 2007, Goovaerts et al. 2000). Literature generally suggests a sep-

aration between deterministic and geostatistical approaches. The most common methods 

for the deterministic estimation of rainfall are Thiessen polygons and Inverse Distance 

Weighting (IDW) (Ly et al. 2013). The Thiessen polygon method is one of the earliest and 

simplest techniques. The targeted region is divided into polygons by perpendicular bisec-

tors between the individual sampling locations. In each polygon, all points are nearer to 

its enclosed sampling point (the rain gauge) than to any other sampling point (Webster 

and Oliver 2001). Godt et al. (2006), for example, used this technique to characterize rain-

fall for shallow landsliding in their study area.  

Among the deterministic spatial interpolation techniques, the IDW method is one of the 

most popular ones. It is based on inverse functions of distance that put a larger weight on 

unknown locations that are closer to a sampling point that those further away. The ad-

vantage of weighting by inverse squared distance is the quick diminishing of the relative 

weights with increasing distance, making the interpolation sensibly local. The weighting 

function itself, however, is arbitrary (Webster and Oliver 2001). For modeling rainfall-in-

duced landslides, Chiang and Chang (2009) apply an IDW approach to characterize the 

spatial rainfall distribution for their study area. 
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Kriging, on the other hand, is the predominant geostatistical method that links mathemat-

ical concepts with geoscientific requirements. Kriging is a generalized least squares re-

gression technique that accounts for the spatial dependence between observations 

(Schuurmans et al. 2007). Unlike deterministic interpolation techniques, kriging offers a 

measure of certainty (the kriging variance). In kriging, a weighted sum of the available 

point observations is calculated in order to estimate the unknown target variable. This is 

done by minimizing the variance so that the interpolation is biased as little as possible (Ly 

et al. 2013). This assumption of stationarity in kriging allows to have the same degree of 

variation from place to place and that the covariance between two observations only de-

pends on the distance between these observations (Oliver and Webster 2014, Ly et al. 

2013).  

Univariate kriging techniques, such as ordinary kriging, use rain gauge information alone 

while multivariate kriging techniques, such as kriging with external drift or ordinary 

cokriging, incorporate additional predictor values (e.g. weather radar information or ele-

vation) to improve the kriging prediction (Goovaerts 1997). Spatial interpolation based on 

kriging is in general a labor-intensive task as many a priori decisions are necessary for 

fitting the underlying variogram, on which kriging is based on. Automating attempts in 

that regard exists, however, when fitting a variogram without supervision, errors might 

occur. Interpolated rainfall in landslide research is rarely used as an alternative to purely 

rain gauge based single point measurements. However, specifically for the purpose of im-

plementing interpolated rainfall data into landslide early warning applications, Canli et al. 

(2017a) proposed an approach to automate the creation of the underlying variogram. In-

itial modeling parameters were defined and iteratively fitted to the most suitable vario-

gram model. Validation results demonstrated the feasibility of this approach, especially 

as it is possible to couple the automated interpolation methods with web scraped real-

time rainfall data from multiple sources (Canli et al. 2016). Fig. 3.2 shows as an example 

automated hourly spatial interpolation results from Canli et al. (2017a). 
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Figure 3.2: Results from the automated spatial interpolation: a) Hourly rain gauge data; b) Ordinary 
Kriging (OK) without filtering; c) OK with filtering; d) IDW interpolation; e) Thiessen polygons. Lines in 
the b) and c) estimates indicate areas with equal amounts of rainfall (isohyets). Points in the maps (b) 

through(d) indicate rain gauge locations 
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Weather radar data is an attractive alternative, or more a supplement, to determine con-

tinuous rainfall fields in near real-time. Due to their high spatial (approx. 1 km) and tem-

poral (10 minutes and less) resolution, Doppler radar technology is highly beneficial for 

providing spatially distributed rainfall data for landslide studies (Chiang and Chang 2009). 

The quantification of rainfall estimates using Doppler radar can provide a real-time com-

parison with rainfall thresholds to form the basis of landslide warnings (Wieczorek and 

Guzzetti 1999). In case the rain gauge network in a region is not sufficiently dense, radar 

data is capable of capturing the spatial variation of rainfall fields much better than gauged 

data (Yang et al. 2004, Segond et al. 2007). However, Doppler radar is only capable of 

indirectly measuring precipitation, since this technology quantifies rainfall amounts as a 

magnitude of measured reflectivity from hydrometeors in the atmosphere (Harpold et al. 

2017). This requires calibration with actual rain gauge data in order to adjust the high 

resolution spatial pattern that radar data offers with actual measured rainfall amounts. 

The potential of rainfall radar for applications in landslide related research questions re-

mains underexploited as there are only few relevant studies addressing this technology 

(e.g. Crosta and Frattini 2003, Schmidt et al. 2008, Chiang and Chang 2009, Segoni et al. 

2009). Although radar technology has undergone a lot of progress in recent years, the 

associated uncertainties, and generally low success rates (in terms of correctly predicted 

landslide occurrences), reduce its applicability within the landslide community (Canli et al. 

2017a). Schmidt et al. (2008) and Segoni et al. (2009) concluded that the meteorological 

uncertainty has the highest influence on slope stability analyses that serves as the basis 

for physically based landslide early warnings. The hydro-meteorological community is far 

more involved with the utilization of radar data for the deduction of continuous rainfall 

fields. However, they share the same concerns (Jasper et al. 2002) or even have taken a 

step further by implementing numerical weather predictions (Cloke and Pappenberger 

2009).  

With emerging high-resolution satellite technology, this means of assessing the spatial 

extent of rainfall could bring huge benefits for dynamic landslide modeling approaches at 
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larger scales (Rossi et al. 2017). This is even more so the case where rain gauge or radar 

rata is unavailable. Satellite-based rainfall estimates provide synoptic estimates of the 

spatial distribution of precipitation events (Chappell et al. 2013). Recent satellite data pro-

vides those estimates at 0.5 to 3 hours intervals and spatial resolutions between 0.07° and 

0.25° (Joyce et al. 2004, Kubota et al. 2007, Huffman et al. 2007, 2010). Until recently, 

NASA’s Tropical Rainfall Measuring Mission (TRMM), which accumulated almost two dec-

ades of precipitation data by now, provided the most valuable data archive for global pre-

cipitation data (Kirschbaum and Petel 2016). When NASA launched the Global Precipita-

tion Mission (GPM) as a follow-on mission to TRMM in 2014, a huge popularity boost in 

satellite based precipitation data could be observed (Harpold et al. 2017). GPM provides 

rainfall and snowfall estimates every three hours. It is equipped with sensors that are far 

more advanced and that permit better quantification of the physical properties of precip-

itation particles (Hou et al. 2014). Not many landslide studies have been conducted that 

incorporate satellite based precipitation data (e.g. Rossi et al. 2012, Kirschbaum et al. 

2015, Rossi et al. 2017), and those that exist still rely on TRMM data. In the upcoming 

years, however, near real-time GPM data with higher spatial resolution holds great po-

tential for the applications in landslide early warning systems (Rossi et al. 2017, Stanley et 

al. 2017). 

All those previously described means of assessing rainfall magnitudes (single location 

gauged data, interpolated data, radar data, satellite data) share one common ground: 

they all rely on direct observations. However, for providing timely and effective infor-

mation that allows individuals exposed to a hazard to act and to avoid or reduce their risk 

and prepare for effective response, rainfall data as the main trigger for landslides needs 

to be provided in advance. This inevitably suggests the utilization of numerical weather 

predictions for such purposes to shift the current paradigm of warn on detection towards 

a warn on forecast approach (Stensrud et al. 2009). Flood forecasters in hydrological sci-

ences have adopted such NWP in the last decade into so-called ensemble prediction sys-

tems (EPS). The World Meteorological Organization (WMO 2012) defines them as follows: 

“numerical weather prediction (NWP) systems […] allow us to estimate the uncertainty in 
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a weather forecast as well as the most likely outcome. Instead of running the NWP model 

once (a deterministic forecast), the model is run many times from very slightly different 

initial conditions. Often the model physics is also slightly perturbed, and some ensembles 

use more than one model within the ensemble (multi-model EPS) or the same model but 

with different combinations of physical parametrization schemes (multi-physics EPS). […] 

The range of different solutions in the forecast allows us to assess the uncertainty in the 

forecast, and how confident we should be in a deterministic forecast. […] The EPS is de-

signed to sample the probability distribution function (pdf) of the forecast, and is often 

used to produce probability forecasts – to assess the probability that certain outcomes 

will occur” (WMO 2012, p. 1). 

 

EPS approaches started to be viable for smaller scale processes (such as landslides or flash 

floods) when accurate convective-scale precipitation forecasting was available (as op-

posed to previously used EPS systems that relied on global or regional rainfall predictions). 

With spatial resolutions ranging from 1-4 km, convective-scale NWP aim at predicting 

small-scale atmospheric features such as location and the intensity of thunderstorms 

(WMO 2012). Besides technical advances, it was mainly the computational challenges that 

withheld this technology from operational mode and that saw its practical implementa-

tion only within this decade (WMO 2012). In, 2012, the German Weather Service 

(Deutscher Wetterdienst - DWD) started operational mode for their COSMO-DE-EPS with 

a resolution of 2.8 km (Baldauf et al., 2011, Gebhardt et al., 2011). Similar operational 

forecasting systems with comparable spatial resolutions have been implemented in the 

last couple of years, e.g. the AROME model in France (Seity et al., 2011), the MOGREPS-

UK model in the UK (Golding et al., 2016) and High Resolution Rapid Refresh (HRRR) model 

in the USA (Ikeda et al., 2013). 
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3.3.  Current issues in probabilistic landslide modeling and early 
 warning 

In the last couple of years, regional scale probabilistic modeling approaches gained in-

creasing popularity. The two most significant explanations for this observation lie in the 

reduction of computational costs on the one hand, and decreasing confidence in purely 

deterministic approaches on the other hand (Canli et al. 2017b). Haneberg (2004), Park et 

al. (2013), Raia et al. (2014), Lee and Park (2016), Zhang et al. (2016) or Salciarini et al. 

(2017) and others use a probabilistic approach to characterize soil properties at regional 

scale by randomly selecting variables from a given probability density function. 

In two recent studies, Neves Seefelder et al. (2016) and Canli et al. (2017b) propose the 

application of rather broad parameter ranges for model parametrization instead of best-

fit narrow ranges as this is suggested to be a more honest approach in selecting modeling 

parameters. Canli et al. (2017b) uses this rather broad parameter range in a probabilistic 

approach to produce a multitude of ensemble members based on hourly rainfall input to 

express the range of equally possible model iterations. Their case study revealed that 

broad parameter ranges are indeed feasible for achieving rather narrow ensemble 

spreads over large areas in a fully automated approach. However, as they were severely 

lacking computational power to use their result in a real-time scenario for issuing hourly 

probability of failure maps, it is not yet ready to be used in an early warning context. 

Schmidt et al. (2008) proposed a coupled regional forecasting system in New Zealand 

based on multiple process based models (NWP, soil hydrology, slope stability). However, 

as innovative their research was, it did not find any continuation, probably due to unsat-

isfying initial results with the rather coarse data back then. Consequently, none of those 

probabilistic approaches are operated in spatial real-time early warning systems, not even 

on a prototype basis. 

While hydrological sciences have started operational mode of probabilistic ensemble pre-

diction systems (EPS) based on NWP input (Alfieri et al. 2012b, Bartholmes and Todini 
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2005, Siccardi et al. 2005, Thielen et al. 2009, Vincendon et al. 2011), landslide forecasting 

is still far from there. Reasons for that shortfall might be found on the conceptual side of 

model formulation and on the funding situation in landslide research in general (Canli et 

al. 2017b). With respect to the conceptual difficulties in landslide prediction, Greco and 

Pagano (2017) distinguish between three stages of a typical predictive system’s architec-

ture: I) the predisposing stage, II) the triggering and propagation stage, and III) the col-

lapse stage. While in hydrological applications (II) and (III) are hardly distinguishable from 

each other, for rainfall-induced landslides this is not necessarily the case. While the pre-

disposing stage (I) is determined by e.g. increasing pore water pressure due to a varying 

length of rainfall input that worsens the slope stability conditions, the triggering and prop-

agation stage (II) spans from first local slope failures until the formation of associated slip 

surfaces. The collapse phase (III) ultimately consists of the mobilization of the entire mass 

leading to the actual failure. However, the time between stages (II) and (III) may vary sig-

nificantly based on differences in local geomorphology, soil, vegetation, etc. and spans 

from a couple of minutes (e.g. flow slides in slopes covered with shallow coarse-grained 

soils) to years (e.g. earth flows in slopes of fine grained soils) (Greco and Pagano 2017). 

Thus, even the most accurate rainfall predictions might hold significant uncertainties with 

respect to predicting the spatial and temporal occurrence of landslides given the current 

approaches of landslide modeling and early warning. 

This inability to precisely predict landslide occurrence has therefore consequences on the 

funding situation of landslide research in general and stands in a stark contrast to hydro-

logical sciences. According to Baum and Godt (2010), losses from landslides are perceived 

mainly as private and localized economic losses with the result that only few public re-

sources have been allocated to develop appropriate spatial landslide early warning sys-

tems. Among the main disaster events, hydrological and meteorological events rank 

among the costliest ones when comparing global and multi-peril loss databases, while ge-

ophysical events take only a small fraction in absolute numbers (Alfieri et al. 2012a, Wirtz 

et al. 2014). According to Petley (2012), landslide losses are vastly underestimated. Rea-
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sons for this observation are manifold: a) major disaster databases, e.g. the NatCatSER-

VICE from the reinsurance company Munich Re, associate landslides as subordinated haz-

ard types of geophysical (amongst earthquakes) or hydrological hazards (amongst floods 

or avalanches) (Wirtz et al. 2014); b) landslide databases are inconsistent, incomplete or 

entirely absent and most of the existing inventories severely lack historical data (Wood et 

al. 2015, Herrera et al. 2017). As a consequence, much needed initiatives such as the Hy-

drological Ensemble Prediction Experiment (HEPEX) were not established in the landslide 

community so far. This ongoing bottom-up initiative aims at investigating on how to pro-

duce, communicate and use hydrologic ensemble forecasts in a multidisciplinary approach 

to make use of NWP in flood forecasting (Schaake et al. 2007). This superior position of 

hydrological forecasting can be primarily attributed to the greater interest international 

bodies demonstrated towards flood forecasting and thus, the resulting political and finan-

cial situation has led to the advancement of ensemble prediction systems in hydrology 

(Canli et al. 2017b). This is particularly the case with major transboundary flood events 

that are typically more severe in their consequences, affect larger areas and cause more 

damage and overall losses (Thielen et al. 2009). 

However, transferring over knowledge and past experiences made in hydrological fore-

casting to the landslide community could significantly change the way how landslide pre-

diction is approached in the near future. An automated landslide EPS framework could 

open up ways for finetuning input parameters by means of multiple model runs, attrib-

uting parameter uncertainties, and, first and foremost, real-time applications with a con-

tinuous consideration of antecedent and forecasted rainfall information (Alvioli and Baum 

2016). Including measured real-time rainfall magnitudes derived from multiple sources 

(e.g. rain gauges, radar, satellite) could act as a means of data assimilation to further in-

crease the accuracy of quantitative precipitation estimates and offer a real chance for a 

shift from the current warn on detection to a much needed warn on forecast paradigm in 

landslide early warning (Stensrud et al. 2009, Canli et al. 2017b). 
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4. Uncertainties in regional scale
landslide prediction —
a methodological approach

4.1.  Uncertainties in rainfall information 

Hourly rainfall data, based on rain gauge measurements that is published regularly on 

different web pages provided by different operators, is used as the basis for creating spa-

tially distributed rainfall raster in near real-time. Hourly data is used to reflect the short-

term rainfall intensity that can be considered as the main trigger for rainfall induced land-

slides in the study area (Lower Austria). Since there were no APIs available (an agreed-on 

programming interfaces for providing a structure to download and link data), a web scrap-

ing service was established. Web scraping mimics the human user interaction with a web-

site by autonomously accessing it, parsing its content to find and extract relevant infor-

mation and to save those for further use. This automated, time-based scheduling of ob-

taining hourly rainfall data provides a means of merging multiple data sources into a single 

database that can be used for storing raw rainfall data.  

Multiple automated filters were applied to the raw data to ensure that there is as few 

errors and uncertainties as possible. This dissertation proposes three filters for quality 

assurance: a) a range filter to ensure physical plausibility; b) a spatial consistency filter to 

ensure there are no suspiciously high or low rain gauges based on the information of 

neighboring rain gauges within a certain distance; c) an autocorrelation filter specifically 

tailored towards the geostatistical interpolation approach to reduce biases from rain 

gauges that hold no relevant information and that would adversely influence variogram 

modeling. Figure 4.1 shows an overview of the automated workflow from obtaining web 

based rainfall data through the application of different filters to reduce errors and uncer-

tainties in the raw data. The automated spatial interpolation methods applied in Canli et 
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al. (2017a) are the deterministic Inverse Distance Weighting (IDW) method and the Thies-

sen polygon method, for the geostatistical interpolation an Ordinary Kriging approach was 

carried out (Fig. 4.1).  

Figure 4.1: Flow chart of the proposed methodology showing the automated workflow from obtaining 
web based rainfall data, through multiple quality assurance filters, to the application of different inter-

polation techniques for producing hourly real-time rainfall raster maps (Canli et al. 2017a) 
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The big advantage of kriging is the consideration of variations in rainfall as a function of 

distance rather than distance alone in deterministic methods. This means that rain gauges 

that are in proximity to each other provide data values at unknown sampling locations in 

between that are quite similar rather than being reduced through the increasing distance 

from the respective rain gauges. In an automated iterative process, different variogram 

models are tested to find the best fitting one. A variogram is, in general, a plot of the 

average squared differences between data pair values and thus a central component in 

kriging. While creating a suitable variogram is usually a quite labor-intensive task, the pro-

posed approach in this dissertation focusses on a rapid estimation of an appropriate vari-

ogram model for real-time applications. Therefore, some a priori decisions based on plau-

sible initial values for the automated processing were made. Details on this automated 

procedure as well as the more straightforward deterministic interpolation methods are 

contained in more detail in Canli et al. (2017a). Based on this automated process chain, 

hourly rainfall was predicted at unsampled locations (on 1-km raster cells) to have a spa-

tially distributed estimate of the most recent rainfall. Kriging additionally comes with the 

benefit, by being a statistical approach, of calculating the kriging variances. Those serve 

as an estimation error to reveal the interpolation certainty in a spatially distributed way. 

Performance comparison between sampling points (rain gauges) and distributed raster 

map was carried out with a) a leave-one-out cross-validation procedure, and b) by splitting 

the sampled points randomly into a training and test dataset. 

4.2.  Uncertainties in geotechnical and hydraulic 
 parametrization at regional scale 

Besides rainfall as the dynamic component in a regional rainfall triggered landslide early 

warning system, process based modelling approaches additionally require a physically 

based model parametrization. The most common approaches in model parametrization 

in process based landslide modeling encompass the application of averaged values from 

field measurements (e.g. Thiebes 2014, Tofani et al. 2017, Zieher et al. 2017) or the utili-

zation of existing data from databases, lookup tables or other published/unpublished data 
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sources (e.g. Schmidt et al. 2008, Kuriakose et al. 2009, Mergili et al. 2014b). Model para-

metrization at larger scales is by no means a trivial task, mainly due to the lacking spatial 

comprehension of the spatial organization of involved geotechnical and hydraulic input 

parameters (Fan et al. 2016). Also, field sampling at more or less representative locations 

over a large area might be highly biased (what qualifies as a representative location?) or 

even inappropriate for the modeling itself, as there is no guarantee that measured field 

values at a single location will reflect the effective values required by the model to achieve 

satisfactory predictions over a much larger area (Beven and Freer 2001).   

Consequently, based on the premise that precise parameters over large areas are essen-

tially unknown or highly uncertain at best, two assumptions were made in an honest at-

tempt to address this lack of spatial comprehension: a) parameters taken from geotech-

nical literature are sufficient as those values are derived from on a multitude of repeated 

field and lab measurements and represent typical material properties; b) not a singular 

combination of parameters is used, but the entire parameter range from which parameter 

sets are randomly sampled in an attempt to cover the entire possible range of material 

properties.  

Therefore, the proposed research suggests a probabilistic approach to derive model pa-

rameters based on purely literature based values. In a rather extensive study, Tofani et al. 

(2017) performed 59 site investigations to parametrize their slope stability model. This is 

a remarkably large amount of in situ sampled locations and offer a quite unique possibility 

to determine the underlying probability density function for all measured parameters. Al-

beit Tofani et al. (2017) reduce the information they use in their modeling attempt to just 

the median value for each lithological unit, their boxplots suggested normal to lognormal 

parameter distributions throughout all measured parameters. Wang et al. (2015) argue 

that this is a common observation and might be a result of the central limit theorem which 

indicates that lumping data from many different sampling sites tends to yield normal to 

lognormal distributions. Since the study area in Canli et al. (2017b) is rather large (over 

1350 km²), plausible parameter ranges with a normally distributed state function based 
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on geotechnical textbooks to charac-

terize modeling parameters were used 

as it would be expected that taking 

many samples over such a large and ra-

ther homogenous area would result in 

quite comparable results. Instead of 

using a (supposedly) single best-fit 

value for each parameter (e.g. the me-

dian of a sampled value range), a 

Monte Carlo simulation approach was 

used to randomly choose multiple pa-

rameters sets within a predefined pa-

rameter range as the basis for incorpo-

rating the inherent parameter variabil-

ity and uncertainties at larger scales 

into the model (Fig. 4.2). This way, the 

subsequent modeling approach is not 

initialized with a single best-fit set of parameters (as it is the case in a purely deterministic 

model), but run many times from slightly different initial conditions based on the sampled 

parameter range. This range of different solutions reveals the uncertainty in the model 

output and how confident we should be in a deterministic forecast (WMO 2012).  

4.3.  Uncertainties in probabilistic modeling 

Probabilistic predictions assess the probability that a certain outcome will occur and thus 

making them particularly desirable (Krzysztofowicz 2001). In the last decade, hydrological 

models have started integrating ensemble prediction systems (EPS) into their forecasting 

systems, following on the success of the use of ensembles for weather forecasting (Cloke 

Figure 4.2: Probabilistically derived model parameters 
(Soil depth, Cohesion, Friction angle) based on random 
sampling from a normally distributed state function (Canli 
et al. 2017b) 
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and Pappenberger 2009). The probabilistic approach acknowledges the presence of una-

voidable variability and uncertainty at larger scales and explicitly introduces them into the 

model results. EPS use ensembles of numerical weather predictions (NWP) to iteratively 

calculate, for example, a multitude of such probabilistically derived hydrographs for flood 

events (Cloke and Pappenberger 2009). This results in an expression of the entire model 

spread with its inherent uncertainties not in absolute terms, but it reveals the relative 

performance of a model based on different equally probable input parameters. This range 

of different solutions in the prediction allows for an assessment of uncertainty and how 

confident modelers and decision makers should be in a prediction (WMO 2012). 

This dissertation proposes a fully automated landslide EPS based on different sets of input 

parameters that are randomly sampled from a broad range of possible parameter values 

based on geotechnical literature. Due to a lack of NWP data that was not available for this 

dissertation, spatially distributed rainfall input was considered from hourly geostatistical 

interpolation (as proposed in Canli et al. 2017a). Strictly speaking, this leaves the rainfall 

input in a deterministic state (only one rainfall raster per hour), while the probabilistic 

component is only added through variations in geotechnical and hydraulic parameters. 

However, the entire model structure is flexible enough to immediately replace the rainfall 

raster with a multitude of probabilistic NWP raster data sets. Parameters considered in a 

probabilistic way for the modeling application are soil depth, effective cohesion, effective 

friction angle and soil saturation (Canli et al. 2017b). As for the modeling itself, the open 

source, physically based TRIGRS model (transient rainfall infiltration and grid-based re-

gional slope-stability analysis) was used (Baum et al 2008 and 2010). TRIGRS is a quite 

popular deterministic landslide model that is based on an infinite-slope model approach. 

Due to its popularity and flexibility, first attempts towards a probabilistic modification 

were made in the recent past (e.g. TRIGRS_P from Raia et al. (2014) or PG_TRIGRS from 

Salciarini et al. (2017)). None of those model, however, are operated in an automated way 

with the purpose of predicting landslides in real-time.  
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TRIGRS was developed with the aim of modeling the potential occurrences of shallow 

landslides by incorporating transient pressure response to rainfall and downward infiltra-

tion processes (Baum et al. 2008). However, by imposing simplifying assumptions and ap-

proximations, the underlying models of ground water flow and slope stability in TRIGRS 

are subject to limitations. Baum et al. (2008) mention, amongst others, the following re-

strictions: 

 TRIGRS assumes flow in homogeneous, isotropic soil. Additionally, the slope sta-

bility model is based on an infinite-slope analysis, which assumes uniform slope,

physical properties, thickness, and that pore water pressure is a function of depth

and time alone. To reduce errors imposed by abruptly shifting topography and ma-

terial properties, the study area in this dissertation is limited to a single geological

unit (the Rhenodanubian Flyschzone) to keep the subsurface as homogeneous as

possible.

 TRIGRS models only one-dimensional vertical infiltration although Baum et al.

(2008) acknowledge that during longer storms or periods between storms, lateral

flow contributes increasingly to the magnitude and distribution of pore water

pressure. This dissertation follows the suggestion to set the initial water table at

the ground surface and locking the steady background flux to zero to estimate a

worst-case scenario, also due to a lack of appropriate initial water conditions.

 TRIGRS does not account for evapotranspiration, which might be quite substantial

in the aftermath of a rainfall event. Also, only surface runoff is considered, but not

horizontal subsurface flow. Consequently, tracking water conditions and its decay

over time is not straightforward if carried out in an automated operational mode.

Being a deterministic model by default, TRIGRS computes a factor of safety (FoS) for each 

raster cell (10 m spatial resolution). Based on a set of equations, the FoS can be summa-

rized as the ratio of resisting forces (the resisting basal Coulomb friction) and driving 

forces (the downslope basal driving stress) on the potential failure plane. A FoS ≥ 1.0 in-

dicates stable slope conditions, a FoS < 1.0, on the other hand, slope instability. In the 

proposed research, TRIGRS was modified in an R and python programming language en-

vironment to modify the model to accept probabilistic input in an automated way. This 



50 

UNCERTAINTIES IN REGIONAL SCALE LANDSLIDE PREDICTION — 
A METHODOLOGICAL APPROACH 

way, multiple model iterations can be calculated (in this case 25), which results in as many 

equally probable model results based on the different input parameters. Each unstable 

cell (FoS < 1.0) from all model iterations is tracked and used to calculate the spatially dis-

tributed probability of a raster cell to fail. The result is an autonomously generated prob-

ability of failure (PoF) map that shows an indication of the most recent slope failure loca-

tions. The visualized ensemble spread (the variation in slope failure locations based on 

probabilistic parameter or rainfall input) gives an indication of the model’s precision, and 

therefore how certain we can be about a prediction, even in the uncalibrated direct model 

output. 
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5. Discussion of results and hypotheses

Hypothesis I: Automated interpolation poses an improvement over selective 

rain gauge utilization for providing landslide early warning information. 

For in-depth results and discussion, refer to Canli et al. 2016, Canli et al. 2017a. 

This dissertation proposes a fully automated workflow from the hourly, web based collec-

tion of rain gauge data to the generation of spatially differentiated rainfall predictions 

based on deterministic and geostatistical methods. The ultimate goal is to utilize those 

products in both, threshold based approaches and dynamic physically based modeling ap-

proaches to substitute the prevalent practice of using single rain gauge information as a 

proxy for areal rainfall. The entire methodology proposed in Canli et al. (2017a) was exe-

cuted purely on an open source basis to make it as easily reproducible as possible. To 

make use of multiple data sources and with the aim to densify the network of utilized rain 

gauges, web based hourly rain gauge data was obtained in an automated data workflow.  

The results suggested that the Thiessen polygons do not offer any benefit over conven-

tional approaches of selecting single rain gauges as a proxy for areal rainfall due to their 

arbitrary polygon boundaries that are being unrealistically rough. The IDW method could 

be a suitable method in case the rain gauge network is sufficiently dense. However, vali-

dation results suggested that automated spatial interpolation with kriging yielded the best 

fit with the available observational data. Additionally, the applied filters further improved 

the spatial rainfall prediction pattern which resulted in good spatial representations of 

current rainfall. However, the results also showed that the presence of small-scale, con-

vective heavy rainfall events adversely affect variogram modeling to a rather high degree. 

This is unfortunate, as many landslide triggering rainfall events originate from such small-

scale heavy rainfall events that are based on convection rather than prolonged frontal 

rainfall. Possible solutions and extension to this approach are the implementation of mul-

tivariate kriging methods that use additional predictor variables (such as radar data) or 
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attempt a more probabilistic approach such as conditional simulation that additionally 

alleviates the smoothing effects of kriging by producing many equally likely scenarios ra-

ther than just a best fit scenario. 

Therefore, it can be concluded that this dissertation provides a novel approach by apply-

ing automated spatial interpolation techniques for producing real-time spatial rainfall pat-

terns from multiple web based sources. Validation results suggested a high spatial agree-

ment with observational data and thus making this approach a possible alternative to 

purely utilizing single rain gauges as areal rainfall proxy. However, and with regard to the 

hypothesis, based on the analyses provided in this thesis, it cannot be answered whether 

the proposed methodology does indeed lead to improved early warning situations as no 

associated case study was conducted due to a lack of appropriate landslide event data. In 

order to evaluate whether there is any real benefit, a comparative study in a threshold 

based or physically based modeling setting is suggested. As a consequence, the results do 

not support the hypothesis as of yet and need to be further tested in a study area with 

appropriate landslide event data. 
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Hypothesis II: In situ measurements of geotechnical or hydraulic parameters 

can be substituted by literature based values for regional scale landslide model 

parametrization. 

For in-depth results and discussion, refer to Canli et al. 2017b. 

Poor spatial comprehension of the spatial organization of the involved geotechnical and 

hydraulic input parameters makes model parametrization at larger scales a difficult task. 

Park et al. (2013), Raia et al. (2014), Lee and Park (2016), Zhang et al. (2016) or Salciarini 

et al. (2017) treat soil parameters in regional scale landslides studies in a probabilistic way 

to address those inherent parameter uncertainties when it comes to model parametriza-

tion. In the probabilistic slope stability modeling approach proposed in this dissertation, 

each ensemble member was initialized with such probabilistically derived parameters. Re-

sults in Canli et al. (2017b) indicate quite significant changes in slope stability across indi-

vidual members, but also quite high similarities although parameters change drastically 

between some of the members. For example, a depth of 2.5 m, an effective cohesion of 

13.4 Nm-2 and an effective friction angle of 35 degree in a singular deterministic output 

reveals almost the identical spatial distribution of modeled slope failure as a model run 

with a depth of 2.0 m, an effective cohesion of 5.4 Nm-2 and an effective friction angle of 

22.7 degree. By using a probabilistic representation that merges the information of all 

individual ensemble members into a combined representation of slope stability (the prob-

ability of failure), the entire range of spatial variability and uncertainty is explicitly intro-

duced into the modeling results. Interestingly, the results of the probability of failure map 

suggest quite narrow ensemble spreads, which indicates that the different input parame-

ter ranges result in quite similar individual outcomes. This means, that the predicted areas 

with the highest slope failure probability are consistently modelled more or less at the 

same locations. Differences in spatial occurrence can thus be considered as some kind of 

spatial confidence buffer that covers the entire range of used input parameters. 

However, the fact that quite broad parameter ranges that are based on textbooks lead to 

quite similar spatial failure locations, indicates the paramount importance of slope angle 

as the most sensitive model parameter. This does not come surprising as slope failures 
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are in general associated with higher slope angles (Liao et al. 2011). Also, Neves Seefelder 

et al. (2016) and Zieher et al. (2017) identified slope angle as the most sensitive modeling 

parameter in the same model (TRIGRS) as applied in this thesis. This would suggest that 

no matter how much the parameters within a plausible range vary, it will be consistently 

the same slope segments that will result in the highest slope failure probabilities. It also 

suggests that slope failure probability will ultimately only vary based on differences in the 

most recent spatially distributed dynamic components (e.g. rainfall or soil moisture distri-

bution) or spatially differentiated slope depth maps. As discussed in more detail in Canli 

et al. (2017b), this raises the question whether model calibration is physically even advis-

able or if useful conclusions could be drawn from direct model output alone. As a possible 

explanation, which could also be shown in this dissertation, it can be argued that most 

models contain multiple combinations of parameter values that provide almost equally 

good fits to the observed data and that changing the calibration period or the goodness-

of-fit-measure results in altered rankings of parameter sets to fit the observations. Con-

sequently, as further pointed out by Beven (1996), there is no single parameter set (or 

model structure) that serves as the characteristic parameter input for any given area, but 

there is a certain degree of model equifinality involved when reproducing observations 

with model predictions. Therefore, given the issues with multiple (interacting) parameter 

values, measurement scales, spatial and temporal heterogeneity or the dependence on 

the model structure, there can never be a single set of parameter values for the calibration 

process that represents an optimum for the study area, but calibration can contribute to 

the reduction of range in the possible parameter space (Beven 1996, Neves Seefelder et 

al. 2016, Canli et al. 2017b). 

With regard to the hypothesis it can be stated that it indeed appears to be the case that 

for physically based model applications at regional scale, purely literature based parame-

ter ranges can substitute cost and labor intensive in situ field measurements due to the 

dominant sensitivity of slope angle and the high degree of equifinality. Thus, the carried-

out analysis supports the hypothesis but it is suggested that a comparative study in an 

area with comprehensive geotechnical and hydraulic data is carried out to empirically af-

firm this adequacy. 
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Hypothesis III: A probabilistic landslide ensemble prediction system is capa-

ble of providing timely indication of high resolution landslide exposure at re-

gional scale. 

For in-depth results and discussion, refer to Canli et al. 2017b. 

In ensemble predictions, small perturbations are made to the modeling parameters to be 

iteratively re-run with those slightly changed starting conditions. If those individual en-

semble members are rather similar to each other (small ensemble spread), the prediction 

confidence is rather high. In case the ensemble spread is large or if they all develop differ-

ently, the confidence is much smaller (WMO 2012). As demonstrated for hypothesis II, 

using even quite large parameter ranges can indeed lead to rather narrow ensemble 

spreads in the model output as a result of equifinality and the dominant sensitivity of 

slope angle. To further supplement the resulting probability of failure (hazard) map with 

additional information to assist decision makers, this thesis suggests the combination with 

infrastructure data (buildings, roads) towards an exposure map to additionally account 

for possible consequences (Fig. 5.1).  
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Figure 5.1:  Probability of failure shown as a proportion of the individual ensemble members that predict an 
event to occur (FoS < 1.0). Building information was added as an additional layer to express an individual 
building’s exposure to landslides. Building and roads are used from the freely accessible OpenStreeMap da-
tabase (Canli et al. 2017b; Forest/River/Road data © OpenStreetMap contributors) 

As soon as convective-scale numerical weather predictions are readily available for the 

implementation in such probabilistic landslide ensemble prediction systems to account 

for small-scale precipitation input, an operational mode is thinkable from a conceptual 

point of view. In reality, however, there are some drawbacks. Operating at small spatial 

scales or even at the scale of individual buildings, as proposed in this dissertation, could 

suggest a certainty in the modeling results that is simply not achievable. This seems quite 

disappointing and highly detrimental to what predictive models should be capable of 

providing: a positionally and temporally accurate mitigation tool. Compared to flood fore-

casting, where the spatial occurrence of floods is topographically foreseeable and control-

lable, this is much more difficult in spatial landslide modeling due to the very localized 

nature of landslide occurrence (Alfieri et al. 2012a). Salciarini et al. (2017) argues that such 
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tools are suitable for a first susceptibility screening of an area prone to landsliding, but 

less so for single slope/single landslide analyses. As shown in this dissertation, the mod-

elled probability of failure map revealed a high degree of spatial discontinuity in its spatial 

prediction pattern which undoubtedly puts a decision maker potentially at risk of missing 

some real landslide occurrences. A more in-depth discussion on the topic of model relia-

bility in landslide prediction and the contribution of model calibration can be found in 

Canli et al. (2017b). Another drawback in operating landslide ensemble prediction systems 

in a timely manner is the computational burden involved. The computational time in this 

thesis to produce an hourly probability of failure map based on 25 individual ensemble 

members for the entire study area took around 18 hours. Ensembles of numerical weather 

prediction as dynamic rainfall input would additionally increase computation time quite 

significantly. Even if the code structure would be optimized to reduce computational time, 

this is far from what is acceptable in an operational mode. Newer developments in land-

slide modeling suggest a shift towards parallel computing in order to significantly cut 

down computation time (Formetta et al. 2016, Mergili et al. 2014a) or even the utilization 

of high-performance computing (HPC) clusters (Alvioli and Baum 2016). 

To conclude this discussion on the feasibility of automated landslide ensemble prediction 

systems to explicitly introduce uncertainties from geotechnical parameters or from rain-

fall into the model output, it has to be clearly stated that this is still very much in its in-

fancy. This thesis demonstrated that automated probabilistic landslide prediction is pos-

sible with a sufficiently small ensemble spread that indicates a rather high confidence in 

the spatial prediction pattern. All computational hindrances aside, it is inevitable to apply 

this model structure in a region with a comprehensive landslide event catalogue to eval-

uate whether such a high-resolution representation of landslide failure probability is ca-

pable of accurately predicting real landslide occurrences. Thus, this dissertation only 

partly supports the underlying hypothesis: it shows the technical feasibility of automated 

landslide ensemble predictions, yet it lacks meaningful and rigorous quantitative model 

validation due to a lack of appropriate landslide event data. 
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6. Conclusion and perspectives

Decision makers and practitioners in many earth science related fields prefer absolute 

model outputs. This is especially the case when public safety is at stake and clear thresh-

olds need to be established for liability reasons. However, there is nothing such as an ab-

solute certainty and relying on deterministic models provide an illusion of certainty at best 

due to a lack of full access to the phenomena of interest, both in time and space (Oreskes 

et al. 1994). Hence, probabilistic modeling provides an opportunity to increase the relia-

bility and certainty of model outputs by expressing the entire model spread with its inher-

ent uncertainties not in absolute terms, but by showing the relative performance of a 

model with respect to observational data (Canli et al. 2017b). Since probabilities in deci-

sion making are attributed with a lot of concerns, such probabilistic modeling results are 

not widely accepted yet, however according to Krzysztowicz (2001), this turned out to be 

unwarranted in a hydrological context. For communicating such probabilistic results, it 

could be beneficial to use judgmental terms given as a set of likelihood ranges (e.g. virtu-

ally certain >99%; very likely >90%; likely >66%; about as likely as not 33% to 66%; unlikely 

<33%; very unlikely <10%; extremely unlikely <5%; exceptionally unlikely <1%) to express 

the assessed probability of occurrence (Aven and Renn 2015). In the past decade, the In-

tergovernmental Panel on Climate Change (IPCC) has brought some tremendous research 

to light with respect to communicating uncertainty information to provide formal classifi-

cations for subjective and objective information (Risbey and Kandlikar 2007, Doyle et al. 

2014, Wesselink et al. 2015, Aven and Renn 2015). Based on those IPCC key findings, Lee 

(2015) reviews attempts to provide a conceptual framework for communicating uncer-

tainty and confidence to decision-makers in landslide risk assessment. 

From a modeling point of view, validating deterministic models works on a best-fit reali-

zation by assessing the empirical adequacy of a singular model output with its associated 

observational data (Oreskes et al. 1994).  Since this dissertation aims specifically towards 

the landslide modeling community, the focus lies on describing a potential application of 
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the ROC curve for measuring probabilistic skill as it is by far the most commonly used 

measure of prediction skill in landslide research, both for rainfall threshold and statistical 

modeling applications (e.g. Frattini et al. 2010, Petschko et al. 2014, Gariano et al. 2015, 

Hussin et al. 2016, Steger et al. 2016a, Piciullo et al. 2017, Steger et al. 2017) and physically 

based ones (e.g. Chen and Zhang 2014, Mergili et al. 2014a, Raia et al. 2014, Formetta et 

al. 2016, Gioia et al. 2016, Lee and Park 2016). Contingency tables indicate the quality of 

a forecast system by considering its ability to anticipate correctly the occurrence or non-

occurrence of predefined events that are expressed in binary terms, e.g. landslide oc-

curred yes or no (Mason and Graham 1999). The contingency table, basically a two-by-

two confusion matrix, holds four possible outcomes, given a certain classifier and in-

stance: if the instance is positive and it is classified as positive, it is counted as a true pos-

itive (a hit); if it is classified as negative, it is counted as false negative (a false alarm). If 

the instance is negative and it is classified as negative, it is counted as true negative (a 

correct rejection); if it is classified as positive, it is counted as a false positive (a miss) 

(Fawcett 2006). 

For deterministic forecasts, the ROC curve is generated by plotting the hit and false alarm 

rate for the forecast against the hit and false alarm rates obtained for perpetual warning 

(equals 1.0) and no-warning (equals 0.0). This means that there is skill only when the hit 

rate exceeds the false alarm rate. Thus, the ROC curve will ideally lie above the 45° line 

from the origin if the forecast system is skillful. The closer it is situated to 1.0, the more 

skillful it is (Mason and Graham 1999). The actual ROC score to compare classifiers can be 

expressed as the area under the ROC curve (AUC or AUROC), a single scalar value defined 

as a portion of the area of the unit square, hence creating values between 0 and 1 (Faw-

cett 2006). 

For probabilistic forecasts, a warning can be issued in case the forecast probability for a 

predefined event exceeds some threshold. For example, if a warning should only be issued 

when there is at least a 75% confidence that a landslide event will occur (FoS < 1.0), a new 

contingency table that reflects the occurrences in areas exceeding a 75% probability is 
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constructed. Different warning thresholds can be used for the predefined event, and a set 

of hit and false-alarm rates can then be determined (which is accordingly used to generate 

the ROC curve). Consequently, the ROC curve is useful in identifying an optimum warning 

criterion by indicating the trade-off between misses and false alarms. For a probabilistic 

system, the greatest value is not necessarily achieved at which the likelihood ratio is max-

imized. Instead, each decision maker evaluates possible consequences differently and/or 

has a different cost-loss operating structure, and hence the relative frequencies of hits, 

false alarms, and misses have to be optimized. In an operational environment, the warn-

ing is provided in advance, hence it is not known whether an event is going to occur, but 

if a warning has been issued. So, there is indeed additional value in knowing the probabil-

ity of an event occurring, contingent upon the forecast probability (Mason and Graham 

1999). Greco and Pagano (2017) suggest calibrating the sensitivity of an EWS based on a 

cost-benefit analysis that takes several peculiarities into account, such as the uncertainty 

of the prediction, the cost suffered by the community in case of a false alarm or the costs 

resulting from a missing alarm with catastrophic event occurrence. 

Clearly, efforts put into the validation of probabilistic outcomes in the landslide modeling 

community are scarce and need substantially more research as of today. In hydrologic 

sciences on the other hand, some measures to validate probabilistic predictions are in 

practice. Some are better, some less suitable for distributed model output that is com-

monly the main form of data representation in landslide modeling and early warning. 

Thus, it remains to be seen, which skill scores are also feasible for validating probabilistic 

landslide model predictions. Mason and Graham (1999) and the WMO (2012) mention a 

few skill scores that are used in validating probabilistic hydrological predictions: 

 Brier Score: a root-mean-square error for probability forecasts of a particular

event threshold;

 Brier Skill Score: compares the Brier Score of the forecasts with the Brier Score of

some reference forecast system;

 Reliability: measures how well forecast probabilities match observed frequencies;
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 Receiver (or Relative) Operating Characteristics (ROC): measure how good the 

forecasts are for decision making 

 Relative Operating Levels (ROL): designed to represent the skill of a forecast sys-

tem from the perspective of the forecasts 

 

The main drawback in this regard is most definitely – not just within this dissertation –  

the lack of appropriate event data. Complete landslide inventories at regional scale are 

rarely available – if at all. While statistical landslide susceptibility modelers are paying 

more and more attention to inventory biases (e.g. Hussin et al. 2016, Steger et al. 2016b, 

Steger et al. 2017), this does not apply as much to the landslide early warning community 

(be it the physically based modelers or the rainfall threshold community). On the one 

hand, this does seem natural since landslide locations serve as the dependent variable in 

statistical landslide susceptibility mapping that are explained by a set of static preparatory 

environmental factors (e.g. slope, lithology). Often, landslide inventories are specifically 

optimized for statistical or machine learning approaches (Petschko et al. 2015). For deter-

ministic modeling approaches, however, the landslide inventory is independent from the 

modeling itself and serves as a means of validating and calibrating the model. Besides 

mapping biases (e.g. only reported landslides) or positional uncertainties from remote 

mapping, the most crucial aspect in dynamic applications is the temporal component. 

There are only very few event catalogues available that contain all the relevant infor-

mation: precise location and precise timing of landslide initiation, which is crucial for 

model calibration (Gariano et al. 2015).  

 

Calibration is usually referred to as the process of adjusting model parameters to repre-

sent the observation in the model output (landslide initiation at a specific location at a 

specific time). This implies, however, that the location and the time of landslide initiation 

is correct. Steger et al. (2016b) found that the only landslide inventory in Austria that oc-

casionally contains temporal landslide information (the Building Ground Registry), exhib-

its substantial positional biases. The consequences for model calibration therefore are ap-
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parent: calibrating a deterministic model to represent optimized parameters at the land-

slide location might be incorrect, when the location of landslide occurrence is not precise. 

The same applies to the temporal component, when the landslide initiation time is not 

exactly known. A common practice to compile an event catalogue retroactively includes 

incorporating information from newspapers (e.g. Gariano et al. 2015). It seems obvious 

that this information can only be a rough estimate on where and when a landslide oc-

curred and leads to the following question: how do positionally and temporally erroneous 

landslide catalogues influence deterministic model output when parameters are cali-

brated for imprecise landslide observations? Peres et al. (2017) performed such an in-

depth analysis to quantify the effects of imprecise identification of triggering rainfall on 

the assessment and performance of landslide triggering thresholds, Nikolopoulos et al. 

(2014) analyzed the effect of rain gauge location and density of rainfall networks for the 

establishment of rainfall thresholds. Both studies concluded that the presence of report-

ing errors in landslide triggering instants yield thresholds that are significantly underesti-

mated, i.e. lower than the correct ones. Consequently, ubiquitous errors in observed da-

tasets generate further uncertainties in threshold assessment that is of significant magni-

tude (Peres et al. 2017). Since the landslide inventories with event-based information are 

the same for physically based approaches, this leads to the assumption that the same 

issues transfer over accordingly. Hence, probabilistic modeling approaches might alleviate 

some of those issues in the calibration process by exhibiting the probability of failure for 

a larger area that could potentially be affected by landsliding (by accommodating spatial 

uncertainties from larger parameter ranges). Consequently, the likelihood that an inaccu-

rately mapped landslide lies in an area that was predicted to fail in some of the model 

ensemble members, is higher. 

Another model related issue that needs to be considered in upcoming physically based 

modeling attempts in an early warning context is the application of data assimilation tech-

niques. Data assimilation refers to the blending of multiple sources of dynamic infor-

mation (for example rainfall or soil moisture data from different sources sampled at dif-

ferent scales) to increase the accuracy of the input data. This has been identified as an 
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increasingly important factor for improving hydrological predictions (Reichle 2008). For 

dynamic landslide modeling applications, one of the most sensitive calibration parame-

ters, that is usually not readily available at a larger scale, is the steady seepage initial con-

dition. Water flow above the water table (in the unsaturated zone) is dependent on the 

downward rate of advance of the wetting front, which, in return, depends on antecedent 

soil moisture conditions. Hence, using a hydrological model with antecedent precipitation 

and infiltration rates from real-time monitoring could significantly improve slope stability 

analyses in the long run (Baum et al. 2010). This again gives some indication on the im-

portance of data assimilation by blending multiple sources of information to increase the 

skill of physically based landslide predictions and to allow for better informed real-world 

decision making (Liu et al. 2012). Hydrological earth observation is on the verge of a break-

through in delivering high resolution, accurate soil moisture input on very short time in-

tervals for large regions (McCabe et al. 2017). This has huge potential to overcome the 

inherent scale incompatibility when using in situ field data that does not necessarily re-

flect the effective values required by the model itself. Blending those information, to-

gether with convection-permitting NWP, into a probabilistic slope stability model could 

have huge implications on how landslides might be accurately forecasted in the near fu-

ture. 

For actual decision making in landslide early warning situations, however, a combination 

of different modeling approaches could be beneficial. In the exposure approach presented 

in this dissertation, every region and every building is treated equally. Since statistical 

landslide susceptibility approaches have a very long tradition in landslide modeling, some 

very sophisticated methods have evolved over time that have the potential to supplement 

probabilistic modeling output. A high statistical likelihood of landslide occurrence means 

that in those areas it is more likely in the future that landslides occur again (based on 

available landslide information from the past). Based on a qualitative approach by match-

ing the spatial agreement of statistical susceptibility maps (high spatial likelihood of future 

occurrence) with real-time probabilistic outcomes (high temporal likelihood of occur-

rence), this information could serve as an additional layer for decision-making (e.g. low 
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susceptibility + high probability leads to a reduced warning level compared to a spatial 

match of high susceptibility + high probability). Attempts to combine statistical and phys-

ically based landslide susceptibility models were proposed in recent years (e.g. Goetz et 

al. 2011, Canli et al. 2015, Oliveira et al. 2017). A more simplistic approach could involve 

the designation of varying safety standards for different regions or objects. Again, for this 

exposure approach, hospitals or schools for example could be attributed with a higher 

safety standard that might require action to be taken at lower failure probabilities than a 

regular building. Similar systems for flood protection and management are in place in the 

Netherlands where economic analyses were used to differentiate safety standards for dif-

ferent regions (Pilarczyk 2007).  

 

Additionally, and this has to be strongly emphasized, probabilistic forecasts temper the 

potential for misperception of responsibilities and misattribution of decisions. The task of 

forecasting, that incorporates solely the principles of science, and the task of decision 

making, which involves the decision maker’s evaluation of consequences, is entirely de-

coupled (Krzysztowicz 2001). For example, instead of issuing a factor of safety map for a 

certain area that pinpoints a single estimate, the forecaster may specify a certain proba-

bility of failure to be exceeded based on the user’s needs. The choice of protection level 

is thus left entirely to the decision maker, as it should be. There is a long history of discon-

tinued operational landslide early warning systems which can partly be attributed to this 

mismatch of responsibilities (Baum and Godt 2010). 

To conclude this dissertation, five future research topics are proposed: 

 Performance comparison of process based or threshold based landslide EWS 

with rainfall input from automated interpolation techniques versus uniform 

areal rainfall based on representative rain gauges. This dissertation suggests 

an approach that is capable of predicting rainfall at unsampled locations in 

real-time from web based data sources. Validation between predicted and ob-

served values resulted in quite satisfactory performance. However, due to a 

lack of event based landslide data, a performance comparison between the 

common application of uniform areal rainfall based on representative rain 
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gauges versus the proposed approach of automated rainfall interpolation is 

pending.  

 Performance comparison of a regional scale process based landslide EWS

with parameters derived from in situ sampling versus purely literature based

parametrization. The proposed research indicates an adequacy of purely liter-

ature based model parametrization at regional scale. Starting from the prem-

ise that selective in situ sampling at representative locations is not only biased,

but also potentially unsuitable due to scale discrepancies between sampling

resolution and model requirements, the entire parameter range for the re-

spective geological unit was used. First approaches in that direction exist that

suggest the application of rather broad parameter ranges (e.g. Neves Seefelder

et al. 2016) by acknowledging that best-fit narrow ranges in geotechnical and

hydraulic parameters might be off target. Results in this dissertation indeed

show that the ensemble spread across all members is rather narrow, and thus

suggesting a quite sharp prediction, but it also shows that the geotechnical/hy-

draulic parameter sensitivity is much lower than the sensitivity of the slope

angle. Due to a lack of actual in situ field data from the study area as well as

missing event based landslide data, a comparative study in an appropriate

study area is suggested. This study should aim at evaluating the performance

of literature based parametrization over parametrization with actual field data

that was sampled in this specific study area.

 Development of validation techniques for probabilistic model output in op-

erational landslide early warning. Model validation with an underlying contin-

gency table considers the ability of a prediction system to correctly differenti-

ate between occurrence or nonoccurrence of predefined events that are ex-

pressed in binary terms (e.g. landslide occurred yes/no).  Using this contin-

gency table in a ROC plot evaluates the skill of the prediction system. However,

for probabilistic predictions systems, warnings can be issued for different pre-

defined exceedance thresholds, and thus multiple contingency tables may ex-

ist (e.g. an own contingency table that reflects landslide occurrences in areas
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exceeding a 75% probability). Therefore, multiple warning thresholds may be 

used for the predefined event which results in unique sets of hit and false-

alarm rates. By doing so, an optimum warning criterion can be identified by 

indicating those trade-offs between misses and false alarms. The greatest 

value in validating such probabilistic systems does not necessarily come from 

maximizing this likelihood ratio, but by respecting a decision maker’s needs. 

Possible consequences might be evaluated differently or decision makers use 

different cost-loss operating structures, which results in a requirement for op-

timized relative frequencies of hits, false alarms, and misses. Such a toolset for 

validating probabilistic model output based on a decision maker’s require-

ments is missing in landslide research for the most part. 

 Performance comparison of a landslide ensemble prediction system versus

common approaches of landslide early warning. Ensemble prediction systems

(EPS) have proven to be quite successful in flood forecasting. While empirical-

statistical approaches (e.g. rainfall thresholds) only pose a simplification be-

tween the physical mechanisms leading to landslides and rainfall occurrence,

process based deterministic approaches use mathematical expressions to rep-

resent relationships between elements. Instead of offering a deterministic

best-fit model realization that entirely hides predictive uncertainties, probabil-

istic approaches do not eliminate uncertainty, but they explicitly introduce

them into the model results. By considering the proportion of the individual

ensemble members that predict slope failure, an estimate of how likely a land-

slide will occur can be made. This dissertation proposes a fully automated land-

slide EPS in an early prototype stage. However, due to a lack of numerical

weather prediction data as well as event based landslide data, no performance

comparison with more established means of landslide early warning could be

made. Therefore, such a comparison is proposed in a study area where NWP

data is available and that contains a comprehensive landslide event catalogue

in order to perform rigorous model validation. Also, performing model code
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optimization and the application within a high performance computing facility 

is highly recommended to significantly reduce computation time. 

 Forming up larger interdisciplinary research initiatives for the advancement

of landslide ensemble prediction systems. Based out of a need to aid the

World Climate Research Program’s Global Water and Energy Cycle Experiment

to meet their water-resource applications objectives, HEPEX was launched in

March 2004 at a meeting of the European Centre for Medium Range Weather

Forecasts (ECMWF). HEPEX stands for Hydrological Ensemble Prediction Exper-

iment and is a project specifically designed by hydrologists, meteorologists,

and users affiliated with several international organizations. This ongoing initi-

ative aims towards the investigation on how to produce, communicate and use

hydrologic ensemble forecasts. HEPEX is an open, participatory project not di-

rectly funded by any agency, but rather evolved from a bottom-up initiative by

scientists and users who strongly believe that improved forecast techniques

arise from interdisciplinary collaboration (Schaake et al. 2007). Although many

probabilistic modelling approaches exist in landslide research to address pa-

rameter uncertainties and although it is acknowledged by some that such ap-

proaches could be the next step forward in landslide prediction (e.g. Alvioli and

Baum 2016), no such impactful initiatives have been fostered within the land-

slide community. This dissertation poses only a small step in that direction, but

further cooperation across disciplinary boundaries (e.g. with hydrologists, me-

teorologists, computer scientists) is envisaged to learn from forecasting expe-

riences made in the last decade and to pursue research towards the improve-

ment of such landslide ensemble prediction systems.
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