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German and English Summary

Zusammenfassung

Frihwarnsysteme sind im Stande zeitgerecht und effektiv Informationen zu tGbermitteln,
um das Risiko vor einer nahenden Gefahrensituation zu vermeiden oder zu reduzieren. Im
letzten Jahrzehnt wurden in der Hydrologie so genannte Ensembleprognosen in die Hoch-
wasservorhersagesysteme implementiert und folgte damit den erzielten Erfolgen in der
Wettervorhersage. Dieser probabilistische Ansatz bertlicksichtigt die inharente raumliche
Variabilitat geotechnischer und hydraulischer Parameter sowie deren Unsicherheiten und

bringt sie explizit in die Modellergebnisse ein.

Die hier vorgestellte Arbeit befasst sich explizit mit zwei Unsicherheitsaspekten auf regio-
naler MaRstabsebene in Friihwarnsystemen fir Hangrutschungen. Diese betreffen einer-
seits die Berlicksichtigung von Niederschlag als dynamische Komponente und anderer-
seits den Umgang mit raumlicher Variabilitat und Unsicherheiten in Parametern fir die
Modellierung. Ein Ansatz, der Giberwiegend Anwendung findet, um Niederschlag in Han-
grutschungsfriihwarnsystemen zu implementieren, beinhaltet die Verwendung von fla-
chenhaft einheitlichem Niederschlag fiir ein spezifisches Gebiet basierend auf reprasen-
tativen Niederschlagsmessern. Hier wird eine Alternative vorgestellt, die vorsieht, basie-
rend auf verschiedenen Interpolationsverfahren (deterministisch und geostatistisch), eine
raumlich differenzierte Niederschlagsverteilung in Echtzeit zu bestimmen. In einer voll au-
tomatisierten Prozesskette werden dazu webbasierte Niederschlagsdaten in mehrere

Qualitatschecks geprift, um eine qualitativ hochwertige Datenbasis zu erlangen.

Fiir die anschlieRende Hangrutschungsmodellierung ist das deterministische, physikalisch
basierte TRIGRS Modell fiir eine probabilistische Anwendung modifiziert worden. Um die
innewohnenden Unsicherheiten sowie die raumliche Variabilitat von Parametern zu ad-

ressieren, wurde anstatt einer einzelnen vermeintlich optimalen Parameterkonstellation
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basierend auf tatsachlichen Feldmessungen, ein sehr breiter Parameterbereich aus Lite-
raturquellen beriicksichtigt. Aus diesem Parameterbereich wurden in einer Zufallsstich-
probe mehrere Parameterkonstellationen gezogen, die dann fir die jeweiligen Modell-
laufe herangezogen wurden. Basierend auf einer Vielzahl von gleichermaRen annehmba-
ren Parameterkonstellationen wurden ebenso viele Modellldufe durchgefiihrt, die fir
jede Stunde in einer einzelnen raumlich differenzierten Karte der Hangversagenswahr-
scheinlichkeit resultierten. Dadurch wird der relative Beitrag jedes einzelnen Modelllaufs,
der auf unterschiedlichen, aber gleichermalien annehmbaren Parametern besteht, be-
ricksichtigt. Dabei deckt die gesamte Spannweite des raumlichen Musters der Hangver-
sagenswahrscheinlichkeit einen GroRteil der vorhandenen raumlichen Variabilitdt und

Unsicherheiten ab.

Die Ergebnisse legen nahe, dass fir Hangrutschungsmodellierungen auf regionaler MaR-
stabsebene die Modellparametrisierung basierend auf Literaturquellen ausreichend ist,
da a) verschiedene Parameterkonstellationen dhnlich gute Modellergebnisse liefern und
damit die Bedeutung einer Modelleichung sowie von teuren und zeitaufwandigen Feld-
messungen reduziert wird, und b) die Modellsensitivitat der Hangneigung so dominant ist,
dass raumliche Unterschiede in der Hangversagenswahrscheinlichkeit mehr durch die
raumliche Verteilung des Niederschlags oder der Bodenmachtigkeit beeinflusst werden,
als durch geotechnische und hydraulische Parameter. Der hier vorgestellte voll automati-
sierte Ensembleansatz birgt groRes Potential flr die zukiinftige Ausrichtung von Hangrut-
schungsfriihwarnsystemen, jedoch sind die Anforderungen an herkdmmliche Compu-
terhardware noch zu gro, um die Berechnung stiindlicher Hangversagenswahrscheinlich-

keiten auf grofRerer MaRstabsebene in Echtzeit zu bewerkstelligen.
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Summary

Early warning aims at providing individuals exposed to a hazard timely and effective infor-
mation to take action in order to avoid or reduce their risk and prepare for effective re-
sponse. In the last decade, hydrological modelers have started integrating ensemble pre-
diction systems into their forecasting systems, following on the success of the use of en-
sembles for weather forecasting. The probabilistic approach acknowledges the presence
of unavoidable parameter variability and uncertainty at larger scales and explicitly intro-

duces them into the model results.

The proposed work explicitly addresses two main sources of uncertainties in regional scale
landslide early warning. Firstly, how rainfall as a dynamic component is treated and sec-
ondly, how spatial variability and uncertainties in geotechnical and hydraulic parameters
are considered for regional scale model parametrization. A common approach to intro-
duce rainfall information into landslide early warning system consists of using uniform
areal rainfall from representative rain gauges over a specific area. Here, a fully automated
process chain is presented that uses web based real-time rain gauge data that is treated
with multiple quality checks. This data is then applied to multiple automated interpolation
techniques (deterministic and geostatistical) in order to obtain spatially distributed rain-
fall information. For the landslide prediction, the deterministic, physically based model
TRIGRS is modified for a fully automated probabilistic application. In an honest attempt
to address parameter variability and uncertainties, broad parameter ranges from litera-
ture that are appropriate for the study area are used instead of a presumed best-fit set of
parameter values based on actual in situ field data. Out of this parameter range, multiple
parameter sets are randomly sampled for iterative model runs. From all parameter sets,
which resulted in multiple equally acceptable model realizations, a spatially distributed
probability of failure map is derived for each hour. This way, the relative performance of
each parameter set is taken into account and depicts the entire model spread with its

inherent uncertainties.
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Results suggest that for regional scale study areas purely literature based parametrization
might be sufficient because a) different parameter sets provide almost equally good re-
sults and thus reduces the importance of costly and time consuming field sampling as well
as model calibration, and b) slope angle has such a high model sensitivity that in all model
runs the predicted areas with the highest slope failure probability are more or less at the
same location and differ primarily due to spatially varying soil depth and rainfall. Although
the proposed automated landslide ensemble prediction system holds a great potential for
the future direction of landslide early warning, computational restraints currently hold

back the real-time application for hourly model predictions at regional scale.
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1. Background

1.1. Thesis outline & scope

Although substantial effort is put into landslide mitigation methods based on improve-
ments in our understanding of instability mechanisms, landslides are still causing a con-
siderable death toll and major economic losses all over the world (Corominas et al. 2014).
Former Secretary-General of the United Nations Ban-Ki Moon called climate change dur-
ing the 2014 Climate Summit the defining issue of our time (Frigg et al. 2015). However,
not just climate change, but global change in general will be a critical component in land-
slide research as it is assumed that its consequences will increase the number of landslides
in the future (Crozier 2010, Gariano et al. 2017, Papathoma-Kohle and Glade 2013). Ad-
vancements in the past within the field of geotechnical engineering have led to an increas-
ing in situ damage control in many parts of the world, however, landslides triggered by
heavy rainstorms still cause substantial losses where protective structures are scarce or
where they have not been appropriately designed (Canli et al. 2017a). In this context,
landslide risk can be defined as “the expected number of lives lost, persons injured, dam-
age to property and disruption of economic activity due to a particular damaging phenom-
enon for a given area and reference period” (Varnes 1984, p. 10). In order to manage
landslide risk, a multi component analysis is required. The total risk (R) can be expressed

as the product of hazard (H), vulnerability (V) and the elements at risk (A) (van Westen et

R = z (1 E(VA)) (1)

al. 2006):

where:

H Hazard is expressed as the probability of occurrence within a reference period.
To distinguish hazard from just susceptibility, is has to contain not just the spatial

probability of occurrence (based on static environmental factors such as soil
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depth, friction angle, lithology, etc.), but also a dynamic temporal probability
(e.g. varying rainfall input, historical records, etc.)

V  Vulnerability for a specific type of hazard can be expressed in many ways, such
as physical vulnerability (e.g. building shape, construction material, etc.) or social
vulnerability (e.g. age-composition of residents, daytime, etc.) and manifests it-
self in a range from 0 (no loss at all) to 1 (total loss)

A  Elements at risk expressed as their total amount or costs (e.g. number of build-

ings or people in a specific area, cost of buildings)

Consequently, risk implies also the consequences of an event, not just its probability of
occurrence. This is important to distinguish at this point, because the scope of this thesis
almost exclusively encompasses the hazard component which is, according to van Westen

et al. (2006), by far the most complex to determine.

While at first sight landslides are generally considered to be phenomena restricted to the
local scale, they can indeed be regarded as a regional phenomenon at specific times
(Jaedicke et al. 2014). Contrary, the spatial occurrence of floods, for example, is topo-
graphically much more foreseeable and controllable which is far more challenging to asses
in distributed landslide prediction due to a landslide’s localized nature (Alfieri et al.
2012a). As a consequence, structural protective measures are only feasible were critical
infrastructure or persons are directly affected by a potential landslide hazard. However,
for covering large areas that are potentially prone to landsliding and where a substantial
landslide risk is prevalent, spatial landslide early warning systems (EWS) are indispensable

(Glade and Nadim 2014, Thiebes and Glade 2016).

Working in this EWS context requires the observation and timely processing of rainfall
events on small spatio-temporal scales, as this is crucial for the successful operation of
EWS (Segoni et al. 2009, Thiebes et al. 2013). By far the most common way to implement
rainfall into EWS involves the employment of empirical-statistical rainfall thresholds. A

certain rainfall threshold is established for a specific area by determining the rainfall
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amount that triggered landslides in the past (Gariano et al. 2015). With this relationship it
is then possible to provide a real-time comparison of current rainfall and the established
rainfall threshold to form the basis of landslide warnings (Wieczorek and Guzzetti 1999).
However, such empirically derived thresholds rely purely on the relationship between
rainfall and landslide occurrence, which reflects quite a strong simplification of the under-
lying physical processes (Reichenbach et al. 1998, Bogaard and Greco 2018). Most cer-
tainly, there is more than just rainfall as the only causative factor involved (Huang et al.
2015). As opposed to those empirical-statistical threshold based approaches, process
based approaches are in place that can be used in an early warning context. Those (mostly
deterministic) models do not simply establish statistical relationships between the de-
pendent variable and its predictors, but use (physically based) equations to actually rep-
resent process interactions. Such process based models are more resembling a white-box
approach by describing the underlying physical processes that lead up to the phenomenon
being modelled (Corominas et al. 2014). Although computationally very demanding and
conceptually challenging to apply at larger scales, physically based models contain “a
higher predictive capability and are the most suitable for quantitatively assessing the in-
fluence of individual parameters that contribute to shallow landslide initiation” (Coromi-
nas et al. 2014, p. 225). Within the scope of this dissertation, only physically based ap-
proaches and its associated uncertainties are worked on in a potential early warning con-
text. Those uncertainties primarily address the spatial variability and uncertainties in ge-
otechnical and hydraulic parameters at larger scales as well as the uncertainties intro-

duced by how rainfall as the dynamic component is considered.

With regard to general definitions, this dissertation uses prediction systems and early
warning systems synonymously for terminological consistency within the landslide com-
munity. However, it is acknowledged that an operative early warning system should addi-
tionally consist of a proper dissemination and response strategy as it is suggested by the
UNEP (2012). This dissertation also follows the classification scheme of Stahli et al. (2015)
for EWS. In this classification scheme, EWS are distinguished between Alarm, Warning and

Forecasting systems. Here, the general term early warning system is actually referring to
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warning systems, again for terminological consistency. Warning systems after Stahli et al.
(2015) detect significant changes in time-dependent factors before an even occurs. While
the initial alert is based on predefined thresholds, the actual alert is only released after
expert evaluation (as opposed to alarm systems that immediately release an alarm) and
only then (as opposed to forecasting systems that report current modeling results/sensor
data in regular intervals). The infinite-slope based landslide modeling approach in this dis-
sertation aims at detecting shallow translational slope failures as this is generally what
infinite-slope based models are capable to reproduce and what this dissertation is focus-
ing on. Bell et al. (2014) analyzed 142 landslide entries of an inventory in Lower Austria,
which serves as the study area in this dissertation, and estimated a median landslide
depth of 1.7 m (mean: 2.2 m). Following the updated Varnes classification for landslides
of Hungr et al. (2014), shallow translational landslides in this dissertation refer to clay
and/or silt planar slides. The modelling scale, the proposed study is embedded in, explic-
itly targets the regional scale. Although numerical quantification schemes exist to sharply
distinguish between different scales (e.g. Corominas et al. 2014 define regional scale in
the range between 1:25,000 and 1:250,000), a more qualitative distinction is sufficient for

here in a sense that national scale > regional scale > local scale > site-specific scale.

1.2. Research gap and hypotheses

Summarizing the scope of this dissertation, this work primarily deals with uncertainties of
regional scale landslide modeling in an early warning context. Uncertainties in this work
are linked to a dynamic component, which refers to the real-time assessment of spatial
rainfall information on the one hand, and on how deterministic modeling approaches
could be improved in a way that spatial parameter variability and uncertainties are ad-

dressed and explicitly introduced into the model results on the other hand.

The most common approach in contemporary spatial landslide early warning systems uti-

lizes rainfall information from direct rain gauge measurements. Those rain gauges indicate
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either a representative amount of rainfall for single landslide locations nearby (e.g. Cap-
parelli and Tiranti 2010) or selected rain gauges indicate representative uniform areal
rainfall for an entire region (e.g. Segoni et al. 2015, Rosi et al. 2015). This is quite unfortu-
nate as it is of utmost importance to know exactly the total precipitation accumulated or
the rate of precipitation in a given period in order to link on-site rainfall as the triggering
event to landslide occurrence (Guzzetti et al. 2007). Thus, using just punctual rain gauge
measurements leads inevitably to a situation where the precise amount of a landslide
triggering rainfall at a certain location remains mostly unknown. In reality, however, rain
gauges with the closest proximity to a landslide location or rain gauges with the suppos-
edly best representation of areal rainfall are selected for determining a landslide-trigger-
ing rainfall event (Canli et al. 2017a). Although large efforts are put into establishing ap-
propriate rainfall threshold in early warning applications, an in-depth consideration of the
accurate spatial distribution of rainfall is often neglected (Thiebes and Glade 2016). There-
fore, parts of this dissertation aim at providing an improved basis for real-time spatio-
temporal rainfall data and its potential implementation in a regional landslide EWS. In-
stead of assuming uniform rainfall over a certain area, different automated interpolation
methods are presented. This allows for an approximation of spatially distributed, hourly

rainfall predictions in real-time based on rain gauge data (Canli et al. 2017a),

The effect of rainfall on landslide detachment alone, however, is difficult to assess quan-
titatively without process based modeling approaches, primarily due to the inherent spa-
tial variability in material properties and its associated uncertainties at larger scales (Chae
et al. 2017). Although empirical-statistical rainfall thresholds are by far the most common
approach in spatial landslide early warning, such thresholds pose a quite considerable
simplification between rainfall occurrence and the physical mechanisms leading to land-
slides by neglecting local environmental conditions and the role of hydraulic processes
occurring along slopes (Reichenbach et al. 1998, Bogaard and Greco 2018). However, pro-
cess based approaches in spatial landslide early warning are almost non-existent. This can

be attributed to both, the massive computational power that is required to operate phys-
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ically based modeling approaches in a timely manner and the difficulty to predict the lo-
cation of rather small-scale phenomena such as landslides with purely deterministic mod-
els with currently available data (Canli et al. 2017b). On the contrary, hydrological sciences
have successfully transitioned from threshold based approaches to process based ap-
proaches by developing probabilistic models that do not eliminate uncertainty, but explic-
itly introduce them into the model results to acknowledge the inevitable spatial variety
and uncertainties when operating at larger scales (Cloke and Pappenberger 2009). Now
that high resolution convective-scale numerical weather predictions (NWP) are available
that are particularly suitable for predicting small-scale phenomena such as flash floods
and landslides, the next logical step in landslide prediction should be the adaptation of
such ensemble prediction systems (EPS). Therefore, this dissertation proposes the appli-
cation of a probabilistic regional landslide EPS with the aim of investigating the potential
of such probabilistic approaches over purely deterministic ones for early warning applica-

tions.

Consequently, the identified research gaps are formalized into the following hypotheses

and associated research questions respectively:

Hypothesis I: Automated interpolation poses an improvement over selective rain gauge

utilization for providing landslide early warning information.

. What data sources are appropriate for being used in real-time applications?
= How to approach automated data quality assurance?
. How do different automated interpolation techniques perform?

Hypothesis Il: In situ measurements of geotechnical or hydraulic parameters can be

substituted by literature based values for regional scale landslide model parametrization.

= How to approach spatial parameter variability and uncertainties?
. How does a parameter range input affect the spatial prediction pattern?
= What parameters manifest the highest sensitivity?
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Hypothesis Ill: A probabilistic landslide ensemble prediction system is capable of
providing timely indication of high resolution landslide exposure at regional scale.
=  Does the probability of failure display a realistic image of the most current land-
slide hazard?
=  Does infrastructure data improve the interpretation of probabilistic hazard maps?
= |sit possible to operate landslide ensemble prediction in real-time for the applica-

tion in regional landslide early warning systems?







2. The science and philosophy of
modeling in geomorphology

The philosophical ideas of reductionism have developed and shaped the discipline of
physical geography for a long time. Reductionist approaches in different dimensions (on-
tological, epistemological, and methodological) looked at independent parts of a phenom-
enon in isolation from each other which culminated in an understanding of the phenom-
enon as a whole when all parts are combined. This was the predominant paradigm in
physical geography to look at natural phenomena until the 1960s when the more holistic
and synthetic approach of systems analysis came into play. Systems analysis has devel-
oped as the integrative explanatory framework of physical geography and it changed the
way of thinking about the physical environment. The rise of systems analysis owes a great
deal to the attempt to develop an integrated and all-encompassing framework for all sci-
ences in the twentieth century. According to Inkpen (2005) the existence of such a frame-

work implies:

1.) that all reality is capable of being understood; there are no areas of topics outside
of its analytical scope.

2.) All reality can be understood in a common framework using the same sets of
terms. This means that understanding in supposedly different subject areas does
not require specialist terms of specialist knowledge, but rather translation of these
terms to the common terminology of systems analysis.

3.) As there is a common framework, all reality can be expected to behave as pre-
dicted by this framework. All reality becomes potentially predictable and, by im-

plication, potentially controllable.

Systems thinking can be represented by a couple of relatively simple ideas (Fig. 2.1). The
key components of such a system are the variables or elements, the relationships be-

tween the variables or elements, and the bounding of these variables and relationships
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from the rest of the world (Inkpen 2005). The system itself can be considered as “a set of
objectives together with relationships between the objects and between their attributes”
(Hall and Fagan 1956, p. 18). Defining variables and relationships imply an ability to define
and divide the world into distinct entities and relations. The same applies to the definition
and bounding or closure of the system itself which requires a specific view of reality as
divisible and understandable by this division. The observer considers the reality of the
physical environment from an outside view by defining his own distinct system made of
real entities and relations which becomes an entity in itself with its own properties and
relations to the rest of the physical environment. This observer’s own entity may or may
not be the sum of its elements and relations, in any case, however, the observer serves as
a passive and objective interpreter of the system outside of the boundaries he has im-

posed (Inkpen 2005).

System variables and
-+ relations

Y

INPUTS ‘\ . OUTPUTS

— / —

SYSTEM

ENVIRONMENT

Figure 2.1: A simplified system as a set of objectives together with relationships between the objects and
between their attributes (Inkpen 2005)

This omnipresent paradigm in contemporary geomorphology made questions legitimate
with respect to processes of change and their rates. The late and seemingly immature
development of the subject relative to hard sciences condemned geomorphology to a
mere descriptive scientific discipline. The theoretical foundation of systems analysis put
the identification and understanding of processes in a framework that aimed at system-
atically answering questions with regard to present and past process rates. The develop-
ment of a process orientation in physical geography led to changes in the disciplines’ own

definition. With this new focus, physical geography reached into other disciplines for the
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necessary theoretical, field and mathematical techniques. The quest for an integrative ex-
planatory framework for physical geography became somewhat superseded by a search
for disciplinary homes with their own, existing framework. This problem of discipline def-

inition is a matter that physical geography is still struggling with (Inkpen 2005).

Important to the development of a process basis for physical geography was the develop-
ment of techniques for quantifying landforms and the landscape. The trend to increasingly
complex representations of the physical environment within each subdiscipline further
added to the separation of the subject. However, this quantification of the landscape, or
rather components of the landscape, ultimately triggered the capability of assessing the
contribution of specific processes to the operation of the landscape system. Despite great
advances made in technology and data collection, physical geography retained its roots
from the past (Inkpen 2005). Physical geography, or rather geomorphology, retained a
focus on landscape development that promoted relevant studies of landforms and land
forming processes within such features as landslides and, more generally, in environmen-
tal management. A plethora of information, the push for relevancy and the focus on pro-
cess studies — the basic principles of physical geography remained the same: the search
for universality, the emphasis on the empirical and a concern with change in the form of
equilibrium and process-response. The matter of scale, however, remains as a sticking
point for the integration of processes found at different scales and acted as a brake on a

purely reductionist view of the scientific endeavor in physical geography (Inkpen 2005).

Modeling, in general, gives us the opportunity to test the reliability of our comprehension
of the nature and its processes and phenomena. Its aim is to generalize, put in order and
extract all information of interest that are available based on the most current theoretical
and experimental knowledge. Modeling also requires finding a middle ground between
how we understand and how we represent the complexity of nature. As a result of prac-
tical demands, older distributed models, for example, are still being used that do not en-

tirely reflect our current understanding of processes (Semenova and Beven 2015). Models
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are capable of providing a means of understanding and predicting the operation of sys-
tems that are not approachable by experimental methods such as variable control and
manipulation. Also, for many practical reasons or due to scale issues (both spatial and
temporal), such analyses would be not feasible, hence the requirement for model formu-
lation (Demeritt and Wainwright 2005). Thorn (1988) distinguishes a model from a system
in the way how reality is considered. While a model is a fully specified, yet abstract and
incomplete, version of reality, a system is viewed as an abstraction that is assumed to
exist in reality. A model is an abstraction and a simplification of reality and it is recognized
that it does not, nor is intended to, mirror reality. The distinction is generally made to
clarify the purpose-led construction of models as opposed to the supposed universal na-
ture of systems. A model is usually created to serve a purpose; it does not, however, need
to fully specify reality, nor to be agreed by all. A system may be unknowable in full, but
agreement can be achieved that such a set of entities and relationships exist. Conse-
guently, the system can be considered to hold a more universal status whilst the model

on the other hand does not (Inkpen 2005).

Although models can be constructed without an explicit underlying philosophy, Beven
(2001) considers modeling in the environmental sciences as a form of pragmatic realism.
A modeler has in general a clear perceptual model of reality in mind that reflects his qual-
itative understanding from experience, training and monitoring, including all current con-
straints that impede model formulation. To add to that, the modeler has to cope with the
discrepancy of his own perceptual model of reality and the necessity of building a nomo-
logical system with all associated constraints to be able to produce predictions from the
model. This also means, however, that there is potential for model rejection, model re-
finement and for model improvement as the constraints on modeling change (Inkpen and
Wilson 2013). Since computational processing became widespread available, study of na-
ture has been strongly driven by this new means of technology. Guzzetti (2005), however,
expresses his disappointment in that regard that investigators focus too heavily on apply-

ing different tools and methods rather than focusing on the target itself. For the landslide
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community, this stands more or less valid until this very day. While the degree of sophis-
tication in statistical landslide susceptibility modeling is quite high by now and conceptual
errors and biases are actively worked on (e.g. Steger et al. 2016a, 2016b), this is less the
case for dynamic threshold or process based approaches. For empirical-statistical thresh-
old based approaches, Bogaard and Greco (2018) and for deterministic modeling ap-
proaches Canli et al. (2017b) raised important concerns with respect to deficiencies and
challenges in current model applications. Semenova and Beven (2015) raise the question
whether this dissatisfaction with current modeling concepts is owed to the current prac-
tice of model calibration that allows for a demonstration of success in matching the avail-
able data. Klemes (1986) mentioned already three decades ago in a hydrological context
that the current practice of model calibration should not be the be-all-end-all to rigorous
model testing and that there is absolutely no guarantee of successfully predicting the fu-

ture state of a system this way.

In the late 1980s and early 1990s, the paradigm of complex systems research was intro-
duced to geomorphology as an alternative approach to linear explanation of cause and
effect. This development was initiated due to field observations where seemingly simple
relationships could not be linked to cause and consequence (Temme et al. 2015). This led
to the introduction of many new concepts in geomorphology such as complex response,
lagged behavior and thresholds (e.g. Knox 1972, Schumm 1973, Thomas and Allison 1993).
As most of those concepts do not originate in geomorphology, critical discussion on dif-
ferent concepts and assumptions with respect to complex systems have only accelerated

in the last couple of years (e.g. Phillips 2015, Temme et al. 2015, von Elverfeldt et al. 2016).

While there are many definitions on complexity, there are two fundamental properties
inherent in complexity theories: a) the system consists of multiple interactive compo-
nents, and b) these interactions give rise to emergent forms and properties which are not
reducible to the sum of the individual components of an observed system (Keiler 2011).
This means that cause and effect may not be necessarily related directly as we might think

and that a response does not behave in a way as expected. Assumed complex, yet random
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(stochastic) behavior may result from a simple underlying interaction that is just not (yet)
known. Murray and Fonstad (2007) describe unknown scaling interactions as a possible
cause for such nonlinear interactions: “Nonlinear interactions often involve multiple feed-
backs that lead to surprising and rich, perpetually changing behaviors — behaviors that
create themselves, in the sense that ‘events’ do not correspond to changes in the forcing.
And simple, local nonlinear interactions provide the basis for the self-organization of
global patterns that do not correspond to any forcing template. The related emergent-
phenomena perspective points out that analyzing the building blocks of a system — the
small-scale processes within a landscape — may not be sufficient to understand the way
the larger-scale system works. [...] Thus, when nonlinear feedbacks lead to self-organiza-
tion of large-scale patterns and behaviors, causality extends in both directions through
the scales, and the most ‘fundamental’ scale on which to base an analysis may not be the
smallest. The extent to which these scale-related phenomena imply that a hierarchy of
scales for models and understanding is required in geomorphology is still under vigorous

debate” (Murray and Fonstad 2007, p. 173f).

Complexity research in geomorphology is a rather small subfield that aims at introducing
tools from non-linear dynamics to explain dynamics and structures of earth surface sys-
tems, however, it is not mainstream in any way (Temme et al. 2015). But since commonly
applied deterministic modeling approaches have reached their limits of explicability, al-
ternative approaches might see a significant rise in the near future, especially since com-
putational power is getting widely available for considering nonlinear interactions over

larger scales (Canli et al. 2017b).

2.1. Types of models

Modeling in physical geography received a huge boost during the so-called quantitative
revolution of the 1960s and 1970s which resulted in prominent publications such as Chor-
ley and Haggett’'s Models in Geography (1967) which had a substantial impact on research

undertaken by subsequent generations. Since then, different types of models have been
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established that aim at representing reality (Inkpen and Wilson 2013). The most com-
monly applied types of models in the field of physical geography can be summarized as
conceptual models, heuristic approaches, empirical-statistical models and deterministic

models.

2.1.1. Conceptual models

Conceptual models contain a high degree of abstraction and require much knowledge
about the underlying processes involved and they reflect the researcher’s view of how
reality, respectively its variables and relations that were identified as crucial components
for the operation of the section of reality that is under investigation, are interconnected
(Inkpen and Wilson 2013). Thus, conceptual models reflect the underlying theory about
the operation of the physical environment as identified by the researcher. Figure 2.2 de-
picts a typical conceptual model in physical geography representing shallow ground-water
conditions in hillside soils. This figure is a visual representation of the researcher’s thought
process and how he believes reality to be structured and how the processes in place need
to be studied in order to understand the dynamics of the system. Consequently, concep-

tual models drive the manner in which research is undertaken (Inkpen and Wilson 2013).
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Figure 2.2: Conceptual model of shallow ground-water conditions in hillside soils. The unsaturated zone
above the water table has depth d,. The capillary fringe is between the unsaturated zone and the water
table at depth d. The lower boundary, which is treated as impervious in this model, is at depth Z .. (Baum
et al. 2008)

2.1.2. Heuristic methods

Those subjective approaches are based on expert judgement. A group of specialists assign
probabilities to quantify certain process rates, hazard potential, etc. Traditional methods
in the domain of heuristic approaches are qualitative or semi-qualitative methods such as
geomorphological mapping or index overlay mapping (van Westen et al. 2006). A common
and more recent way to systematize heuristic evaluation is based on decision trees (Wong
et al. 2005, Corominas et al. 2014). With an increasing number of possible feature charac-
teristics and outcomes, the visual representation of a decision tree spreads out like the
branches of a tree (hence its name). Fig. 2.3 shows an example of a decision tree for clas-
sifying landslide susceptibility. In general, expert judgement serves as a classifier with re-
spect to variable importance (e.g. average slope angle > 28.7° has a high impact on slope
stability). This means that in order to quantify the probabilities of a certain alternative,

the branching node probabilities have to be determined. The product of the respective
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branching node probabilities ultimately results in a particular outcome, such as a slope
failure map (Corominas et al. 2014). Although heuristic methods are highly subjective, ex-
pert based selection and weighting of variables can indeed serve as a valid alternative to
purely automated selection of potentially biased input data, especially when applied over

larger areas (van Westen et al. 2006, Steger et al. 2016a).
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Figure 2.3: Example of a decision tree for classifying landslide susceptibility in which leaves with high land-
slide susceptibility (more than 5) are emphasized. Variables are listed in the original source in Saito et al.
2009

2.1.3. Empirical-statistical models

“Empirical-statistical models use statistical methods to obtain mathematical expressions
that are meant to represent the physical system under study. [...] In this way dependent
variables are modelled by independent variables and causation is implicit within the
model structure” (Inkpen and Wilson 2013, p. 181). Statistical models are highly depend-
ent on the input data and the data has to be available in a suitable format. For statistical
landslide susceptibility assessment for example, the dependent variable is usually the
landslide initiation location, either as points or polygons, based on a digital elevation

model or its derivatives while the independent variables (predictors) trying to explain a
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landsliding location are commonly distributed maps representing, amongst others, geol-
ogy, vegetation cover, slope, aspect or distance from rivers. Landslide inventories are of-
ten purposefully generated for the use in statistical models (Petschko et al. 2015). Empir-
ical-statistical models are often attributed as simplified input-output models that aim at
matching input variables to output values through the development of a mathematical
expression (Inkpen and Wilson 2013). However, this simplicity comes with a number of

drawbacks (van Westen et al. 2006):

= in most cases, only factors that can easily be mapped or derived from a digital
elevation model are taken into account

= the generalization of causative factors: landslides are assumed to occur under the
same combination of conditions throughout the study area and through time

= different landslide types have different causative factors: a complete and unbiased
landslide inventory is almost impossible to come by and in most cases, a proper

differentiation of landslide types is lacking

However, in case the underlying data set serving as the modeling basis is good, results of
statistical models can perform reasonably well as was demonstrated by rigorous model
validation (Steger et al. 2016b). More commonly applied statistical models in landslide
research belong to the group of linear models (e.g. logistic regression), while non-linear
statistical models (e.g. generalized additive models) or flexible machine learning tech-
niques (e.g. Support Vector Machines, Random Forest) are being increasingly used to in-
crease predictive performance (Micheletti et al. 2014, Goetz et al. 2015, Pham et al. 2016).
Although none of these models explicitly state why input and output are intertwined, an
appropriate variable selection “does imply a set of processes and a view of the physical
system and its operation. Likewise, even if the system and processes cannot be stated
accurately, the fact that the model seems to produce predictable results may be sufficient
for the model to function adequately in its particular context” (Inkpen and Wilson 2013,

p. 181).
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2.1.4. Deterministic models

Deterministic models, as opposed to statistical models, do not simply establish statistical
relationships between dependent and predictor variables, but use mathematical expres-
sions to actually represent relationships between elements. Working from this basis, “re-
lationships are deduced and the operation of the resultant model can be explained by
reference back to these basic principles. The important aspect of this type of modeling is
that the relationships must be formalised as mathematical expressions. The behavior of
the resultant model is explainable by reference back to the basic principles and their for-
mal relationships. Deterministic modeling relies upon any variable or entity and its rela-
tionships being expressed or reduced to a set of basic and fundamental physical principles.
This means that it is essential that abstract axioms are linked to real-word entities” (Ink-

pen and Wilson 2013, p. 180).

Deterministic model output is more concrete and consistent when compared with heuris-
tic and statistical modeling approaches, “given the white-box approach of describing the
underlying physical processes leading up to the phenomena being modelled” (Corominas
et al. 2014, p. 225). Scale issues are a major concern when applying distributed determin-
istic models in physical geography when the scale and number of relationships defining
the reality under study increases. This ultimately leads to the question whether appropri-
ate laws or relations that are valid for one scale are transferable to another scale since
the scale of measurement generally differs significantly from the scale at which the ap-

plied model requires ‘effective’ parameter values to be specified (Beven 1996).

In physical geography, a common distinction of physically based models is made with re-
spect to how the temporal components are treated: models are attributed as either static
or dynamic. Static models aim towards the determination of the stimuli that cause, for
example, slope instability. Dynamic models consider a temporal component in order to
identify cause and effect relationships which makes them especially suitable for simulat-
ing future changes under varying initial conditions (van Westen et al. 2012). Based on the

used model, physically based modeling approaches are capable both for addressing the
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spatial and temporal variation of landslide initiation (Horton et al. 2013, Formetta et al.
2016, Zieher et al. 2017) or runout (Hussin et al. 2014, McDougall 2017, Strand et al. 2017).
Commonly, their main drawbacks are stated as being computationally very demanding
due to the high spatial resolution that is required and a sufficiently high measurement
precision of input parameters (van Westen et al. 2012). Therefore, deterministic methods
used to be limited to site-specific or local scale applications only (Tab. 2.1). Additionally,
the geological and geomorphological conditions should be fairly homogenous and land-
slides should ideally be rather simple in order to reduce bias and additional uncertainties.
As opposed to statistical based approaches, which require a comprehensive landslide in-
ventory that serves as the dependent variable, an incomplete inventory can be sufficient
for physically based models as the inventory serves only as a means for model validation

and calibration (Corominas et al. 2014).

Table 2.1: Traditionally recommended quantitative methods for landslide susceptibility analysis at different
scales (Corominas et al. 2014)

Quantitative methods

Data-driven Deterministic
statistical physically based
methods methods
National scale No No
(<1:250,000)
Regional scale Yes No
(1:25.000-1:250,000)
Local scale Yes Yes
(1:5,000-1:25.000)
Site-specific No Yes
(=1:5,000)

For larger scale applications, infinite-slope based approaches are the most commonly ap-
plied family of landslide models as they generally outperform other approaches that try
to introduce more complex landslide geometries (Zieher et al. 2017). The most popular
static infinite-slope based models for large scale applications are SINMAP (Pack et al.

1998) or SHALSTAB (Dietrich and Montgomery 1998), with regard to dynamic models,
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TRIGRS (Baum et al. 2008, 2010), STARWARS+PROBSTAB (van Beek 2002) or r.slope.sta-
bility (Mergili et al. 2014a and 2014b) should be mentioned. Albeit its drawbacks, physi-
cally based models contain “a higher predictive capability and are the most suitable for
guantitatively assessing the influence of individual parameters that contribute to shallow
landslide initiation” (Corominas et al. 2014, p. 225). Recent advancements in deterministic
landslide modeling aim towards a more probabilistic attempt on how to treat spatial pa-
rameter variability and uncertainties over larger study areas (Lari et al. 2014, Raia et al.

2014, Salciarini et al. 2017, Canli et al. 2017b).

2.2. Issues in modeling - parametrization, validity and
uncertainty

Philosophical questions arise with respect to obtaining data in various ways (Frigg et al.
2015): a) the theory-ladenness of observations. Strictly speaking, instrument obtained
data has to be independently tested and confirmed; b) model-filtered raw data and their
symbiotic relationship between data and models. Again, those have to be independently
tested and confirmed. It is doubtful whether such model-filtered data can be trusted if
the models were tested only by the data that they are supposed to be correcting and
filtering (confirmatory circle); c) the suitability of proxy data in the absence of directly
measurable raw data. In geosciences, data is extensively used in the construction of mod-
els: models in general contain many observationally derived approximations and heuris-
tics with parametrizations that represent processes incapable of explicitly resolving the
spatial or temporal resolution of the model. Consequently, they are replaced by simplified
data-driven processes (data-laden models) that are partly also physically motivated (Frigg
et al. 2015). This data-ladenness is a widely acknowledged phenomenon in modeling en-

vironmental processes in which landslide modeling makes no exception.
Model application requires the researcher to make some a priori decisions when deciding

upon which model to use for the underlying research question. Model building itself un-

dergoes the same thought process as building a system, namely making the initial decision
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to what include and exclude from the model and where to draw the boundaries. This de-
cision predetermines the entities and relationships that will be modelled and explained.
Any other attributes not considered in the model will be viewed as irrelevant for the
model for the sake of simplicity, yet they define and determine the behavior outside of
the model’s scope. Modeling then requires the parametrization of the defined entities
where the choice of these assigned values can substantially affect the operation of the
model. The range of input values that are suitable and acceptable for an entity in a model
may reflect the experience of the modeler or constraints in the modeling process (Inkpen
and Wilson 2013). With regard to empirical-statistical models, dependent variable values
are calculated as a mathematical function on independent variable values. Such models
can be considered as black-box models since they do not specify anything about how or
why inputs are transformed into outputs. This inevitably runs the risk of making erroneous
associations between variables whose statistical correlation may either be coincidental or
contingent upon some intervening process ignored by the model. Critical realists tend to
reject such empirical-statistical models by claiming that they commit the inductivist fallacy
of affirming the consequent and failing to explain why the value of a dependent variable

necessarily depends on that of an independent one (Demeritt and Wainwright 2005).

On the contrary, deterministic models are generally seeking for a grand unifying theory
that tries to find an answer to the question whether processes at higher scales can entirely
be reducible to those operating at lower scales. Scale related questions still remain unan-
swered in most cases and physical geographers tend to be more concerned with practical
and computational difficulties of a strictly deductive-deterministic approach to process
modeling. According to Demeritt and Wainwright (2005), there are especially those two

technical issues that lead to this situation:

a) Implicit parametrization: The laws of physics are so abstract that it is required to
specify certain boundaries and initial conditions in order to close the gap between
the model’s underlying theory and its contextual application. In many (if not all)

cases, those values to specific certain entities are incompletely known. In general,
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the process of parametrization links field and other data with the model. As it is
usually not possible to measure all parameters directly, implicit parametrization is
required thatis applicable to the original modeling scale. Often it is the parameters
that are just unsuitable rather than the model itself.

b) Appropriateness of equations: The identification of suitable equations that are
both appropriate and analytically tractable is difficult for environmental processes,
especially when changes over time are involved. Additionally, most deterministic
models consist of non-linear differential equations (such as the commonly used
Richard’s equation to represent the movement of water in unsaturated soils) that
are difficult to approximate due to the absence of a closed-form analytical solu-
tion. Hence, model developers try to find an approximation by means of numerical

iteration or finite difference calculation to provide analytically tractable solutions.

This means that values that were initially fixed by reference (e.g. direct measurements or
literature values) need alteration or they become optimized (or fine-tuned). This optimi-
zation based on real-world data is often referred to as physically based — with the conse-
guence of limiting the modeling application to the time and place specific domain of op-
timization. The model then may precisely match the outputs of the empirical data set. For
example, an optimized set of soil cohesion and friction angle values may be good for ex-
plaining variations in distributed slope stability in a specific location for a particular time
period, but they are not as good at explaining variations somewhere else during other
time periods. This means that due to parameter tweaking in a model constructed and
explained in terms of physical processes, it is entirely unknown whether the physical
model is correct and a valid explanation of the empirical data or whether the model is
only correct because the parameters have been adjusted to achieve the greatest possible

match to the empirical data (Inkpen and Wilson 2013).
This well-established calibration procedure raises the legitimate question whether such a

model is transferable to other places and other times. Important in that regard is estimat-

ing the validity of a model. Usually this is done by matching the model outcomes to reality
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which in turn requires the modeler to define a set of criteria against which the outcome
properties and the real properties can be compared (Inkpen and Wilson 2013). Often, val-
idation and verification are used interchangeably, which is not quite correct from a philo-
sophical point of view. The term validation does not necessarily denote an establishment
of truth. Rather, it provides a legitimacy in terms of arguments and methods (Oreskes et
al. 1994). When it comes to validating single model outputs based on a best-fit realization
(either for statistical or deterministic approaches), there always lies the confirmation bias
trap that is omnipresent in landslide research. When comparing a result predicted by a
model with observational data and the comparison is unfavorable, the modeler continues
to work on the model until a fit is achieved. But the even bigger dilemma awaits if there
is a match between the model result and observational data because the modeler may be
tempted to claim that the model was verified. But again, this would be committing the

logical fallacy of affirming the consequent (Oreskes et al. 1994).

If a model fails to reproduce observed data, this gives a hint that the model is not yet
reliable in some way, but the reverse is rarely the case. Even when using a calibrated
model, it is safe to say, at best, that it is empirically adequate. But admitting that cali-
brated models do need ‘additional refinements’ suggests that the empirical adequacy of
numerical models is forced. So even if a model is consistent with present and past obser-
vational data, there is no guarantee that the model will perform in equal measure when
predicting the future (Oreskes et al. 1994). But when is it sufficient to attribute a model
as a valid representation of reality? Inkpen and Wilson (2013) identified two important
issues: “First, how close does the match have to be for the model to be validated? Second,
even if a match can be identified how does the modeler know that the match to reality is
for the reasons modelled? The matching of model outcomes to observations relies upon
there being a clear correspondence or translation from model to some measurable prop-
erty of reality. Even if a clear and justifiable translation exists, the issue of how ‘close’ the
match in values needs to be before the model is validated needs to be clear. This decision

is likely to be driven by the researcher(s) themselves, by the traditions and training in the
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subject as well as by the potential requirements of the models used” (Inkpen and Wilson

2013, p. 188).

Brown (2004) distinguishes a tripartite division of reality: a) real mechanisms; b) actual
events; and c) empirical observations. Those interactions create a feedback loop in which
the past persists through the present and into the future to form an environmental chain
of causality. Within this chain, the observational part always depicts the outcomes of
those interactions, but not the causal mechanisms themselves. However, assessing pat-
terns of similarities or difference can indeed provide insights into the real mechanisms
involved and also poses the essence of research that goes beyond what pure observation
is capable to answer. Due to the non-linear behavior of most environmental processes, a
lack of process understanding, multiple (interacting) parameter values, different meas-
urement scales, spatial and temporal heterogeneity or the dependence on the model
structure, uncertainties on all ends of environmental modeling are inevitable. This leads
environmental processes to be highly dependent upon their contingent conditions as a

result of our inability to explain a unique causal world (Brown 2004).

Consequently, uncertainties can either be of epistemic or ontological (aleatory) nature.
While the first arises through our lacking knowledge about the nature of the reality and
the system under study, the latter occurs as a result of the inherent variability of the real-
ity under investigation (Walker et al. 2003). Lehmann and Rillig (2014) suggest to clearly
distinguish between uncertainty and variability that manifests in time and space. While
uncertainty is considered as a measure of unexplained variation (i.e. measurement errors,
also lack of understanding about cause and effect), spatial and temporal variability in en-
vironmental sciences reveal themselves as spatial heterogeneity and will not shrink with
scientific progress. Known variation should consequently not be referred to as uncer-
tainty, but explained as variability (Fig. 2.4). Thus, working with environmental systems
requires the researched to distinguish between a lack of process understanding and the

failure to adequately capture the heterogeneity of responses (Lehmann and Rillig 2014).
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Figure 2.4: Comparison between uncertainty and variation. The reduction in confidence due to unexplained
variation, such as uncertainty, decreases through progress in science. Progress in science, however, will not
decrease the total variation (Lehmann and Rillig 2014)

Environmental systems reveal a high degree of non-linearity as many of its entities and
relations are indeterminate because their causes of change are unknown a priori (e.g.
weather predictions based on the same initial conditions may vary drastically the longer
the forecasting period). It is generally accepted that our knowledge and understanding of
nature is limited, yet deterministic strategies remain to be quite popular in geomorphol-
ogy. Such strategies “obscure the context of ‘what we know’, as well as ‘how we come to
know’ and fail to encourage the transparency of reasoning required for policy-relevant
research where even the definitions of an environmental problem may be highly con-
tested” (Brown 2004, p. 368f). Acknowledging the presence of many plausible theories is
the core of the equifinality concept that challenges deterministic believe. Equifinality re-
volves around the rejection of the concept of the optimal model in favor of multiple pos-
sibilities for producing acceptable simulators (Beven and Freer 2001). This concept should

not come surprising given our understanding of physical theory that there is a plethora of
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interactions among the components of a system whose resulting representations may be

equally acceptable.

Research generally follows a working paradigm that should lead to realistic representa-
tions of the real processes and characteristics. This idea of identifying a single optimal
representation of reality is very distinct in environmental sciences. A major problem arises
from the scale discrepancy between sampling and distributed modeling where the use of
global parameters undoubtedly leads to errors in predicting local responses at points with
unique characteristics (Beven and Freer 2001). By acknowledging that there are many dif-
ferent model structures or many possible parameter sets scattered throughout the pa-
rameter space, the range of predicted variables is likely to be larger than linearized solu-
tions would suggest. This equally means acknowledging that there are uncertainties in-
herent surrounding the area of parameter space around the optimum. As a result, such

approaches allow non-linearity to be taken into account (Beven and Freer 2001).

Geomorphological systems can indeed be considered as transient, inheriting remnants of
past and present processes. Environmental systems can exhibit certain degrees of chaotic
behavior which results in an inability to express the trajectory of their development on
the basis of present-day evidence alone. As a consequence, equifinality should not be
considered as an indication of a poorly developed methodology, but as something inher-
ent in geomorphological systems (Beven 1996). While it can be of benefit to perform anal-
yses of uncertainty, it needs to be stressed that many uncertainties cannot be quantified
or remain difficult to quantify with available information. Uncertainty analysis, however,

promotes openness, which implies according to Brown (2004, p. 375):

a) the criteria for evaluating uncertainty are made clear;

b) different ‘informed opinions’ are canvassed when decisions involve large risks or
are taken in the ‘public interest’ (i.e. different ‘confidence models’ are proposed
alongside different environmental models, and their ‘goodness’ evaluated);

c) the criteria for selecting ‘informed opinions’ are clear;
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d) the purpose of assessing uncertainty is clear and
e) expressions of uncertainty are interpretable by different groups of scientists and

by non-scientists.

In those cases where decision makers (scientists, practitioners, politicians, etc.) are only
interested in reinterpretations or absolute statements of reality, uncertainty analysis
might not be the appropriate tool as it is unlikely that decision-making is improved in the
short-term. However, if uncertainty analysis is performed as an act of volition and deter-
mination to achieve transparency and accountability in scientific research, this can lead
to improvements in the quality of data and models and ultimately to our understanding

of environmental processes (Brown 2004).
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3. Physically based landslide modeling
and early warning systems —
current approaches and challenges

3.1. Spatial variability and uncertainties in regional scale
landslide modeling

Using averaged parameter values from locally measured geotechnical and hydraulic pa-
rameters is a common practice for parameterizing physically based landslide models (e.g.
Thiebes 2014, Tofani et al. 2017, Zieher et al. 2017). Additionally, databases, published or
unpublished technical reports or lookup tables may serve as a source for common param-
eters (e.g. Schmidt et al. 2008, Kuriakose et al. 2009, Mergili et al. 2014b). In more recent
years, the probabilistic treatment of modeling parameters has gained quite some popu-
larity in the landslide community. Probabilistically derived parameters have the potential
to consider uncertainties and inherent variability in a way that can be quite beneficial in
the absence of a very dense measurement network (Canli et al. 2017b). In general, ge-
otechnical and hydraulic parameters are represented with a univariate distribution con-
sisting of random variables that are based on an underlying probability density function
and statistical characteristics (Fan et al. 2016). Common parameters in deterministic land-
slide modeling that are treated in a probabilistic way are the friction angle or cohesion

(e.g. Park et al. 2013, Chen and Zhang 2014, Raia et al. 2014, Salciarini et al. 2017).

While very dense measurement networks at regional scale for assessing required model-
ing parameters are highly desirable, this goal is hardly achievable in reality. Performing
geotechnical and hydraulic measurements at regional scale is difficult, time-consuming
and very expensive. Consequently, using such parameters within spatially distributed
physically based models is a rather challenging task and in general there is no approach
that is universally accepted (Tofani et al. 2017). Even if there is measured data available

for one, some or even all parameter values in a model to be able to specify distributions
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and covariances for the parameter values, some methodological obstacles remain. There
is, for example, no guarantee that values measured at one scale will reflect the effective
values required in the model to achieve satisfactory predictions of observational data

(Beven and Freer 2001).

Reasons that lead to this spatial variability in soil formation processes are manifold.
Weathering processes, biological perturbations, atmospheric interactions, etc. are com-
monly listed processes that lead to spatially varying soil and hydraulic properties (Fan et
al. 2016). Yet again, scale matters a lot when considering sampling locations for a regional
scale study area. At the slope or catchment scale, variability lacks a pronounced spatial
organization. Case study based subsurface exploration, such as Canli et al. (in prep.),
clearly demonstrate this randomness in spatial organization (Fig. 3.1). This is less the case
at larger scales, where several superimposing factors contribute to spatial variation, such
as topography, differences in soil depth, -type and -texture, vegetation characteristics, as
well as rainfall patterns. This suggests that the larger the scale, the more soil forming pro-
cesses manifest a persistent deterministic signature due to the predetermined topogra-

phy, geology, climate, and other factors (Seyfried and Wilcox 1995, Fan et al. 2016).
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Figure 3.1: Proposed underground model of the Salcher landslide (Austria) based on all obtained infor-
mation (inclinometers, drill cores, penetration resistance). Spatial variation in both, horizontal and vertical,
direction seem to lack a pronounced spatial organization, which is a challenge for slope scale modeling, yet

an even bigger challenge for model parametrization at regional scale (Canli et al. in prep.)

To overcome this problem, Neves Seefelder et al. (2016) suggested to apply parameter
ranges in physically based modeling applications as their findings yielded results compa-
rable in quality to those derived with best-fit narrow ranges. By acknowledging the fact
that at larger scales geotechnical and hydrological parameters are highly variable, uncer-
tain and often poorly understood, narrow parameter rangers or even singular combina-
tions of parameters come with the risk of being highly inaccurate (Neves Seefelder et al.
2016). Canli et al. (2017b) therefore suggest that it might be sufficient to work with liter-
ature data for model parametrization alone instead of in situ measured data when work-

ing at regional scale.
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3.2. Consideration of spatial and temporal dynamics: rainfall as
a crucial component

Providing precise and timely rainfall information, no matter whether the approach of the
warning system is based on empirical rainfall thresholds or combined hydraulic and slope
stability modeling, can be regarded as the most important aspect of any landslide early
warning system (Canli et al. 2017a). The spatial variability of real-time rainfall distribution
is a crucial aspect to be considered, yet it is insufficiently addressed in early warning ap-
plications where the scarcity of rain gauges is a common argument (Chiang and Chang
2009). Common approaches for threshold based early warning systems to determine rain-

fall for a single landslide site or a specific region are:

= utilization of single rain gauges near a specific landslide site (e.g. Capparelli and
Tiranti 2010)
= selection of rain gauges as representative locations for a predefined region (e.g.

Segoni et al. 2015, Rosi et al. 2015)

However, using only single point measurements as representative locations is often not
really suitable, given the fact that such locations are not only dependent on the distance
from the landslide itself, but also from other influencing factors such as elevation, aspect
or the wind direction (Aleotti 2004). In a more advanced attempt, Lagomarsino et al.
(2013) artificially split their study area in smaller units (territorial units; TU) and assigned
one representative rain gauge to each TU that indicates areal rainfall for each TU. While
this area can be arbitrarily large or small, rainfall is still only considered as uniform across

the entire area.

The representation of areal rainfall based on rain gauge measurement is quite common
in landslide modeling and early warning (e.g. Segoni et al. 2015, Rosi et al. 2015). However,
this approach is rather critical since measurements representing an entire area have been

taken from a continuum in space (Oliver and Webster 2014). As a consequence, spatial
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prediction methods were applied to point measurements to regionalize rainfall in a spatial
manner. Historically, spatial prediction was undertaken by purely mathematical interpo-
lation approaches that considered only systematic or deterministic variation, but not any
error. Geostatistical prediction, and here it is primarily kriging, is the logical successor that
overcomes most of these drawbacks contained in deterministic methods (Webster and
Oliver 2001). Geostatistics aims explicitly at correctly portraying spatial variation of spatial

random variables such as rainfall (Srivastava 2013).

There is a substantial amount of literature available that aims at comparing different in-
terpolations methods for assessing spatial rainfall distribution, mainly in the fields of hy-
drology or hydro-meteorology (e.g. Ly et al. 2013, Mair and Fares 2011, Schuurmans et al.
2007, Haberlandt et al. 2007, Goovaerts et al. 2000). Literature generally suggests a sep-
aration between deterministic and geostatistical approaches. The most common methods
for the deterministic estimation of rainfall are Thiessen polygons and Inverse Distance
Weighting (IDW) (Ly et al. 2013). The Thiessen polygon method is one of the earliest and
simplest techniques. The targeted region is divided into polygons by perpendicular bisec-
tors between the individual sampling locations. In each polygon, all points are nearer to
its enclosed sampling point (the rain gauge) than to any other sampling point (Webster
and Oliver 2001). Godt et al. (2006), for example, used this technique to characterize rain-

fall for shallow landsliding in their study area.

Among the deterministic spatial interpolation techniques, the IDW method is one of the
most popular ones. It is based on inverse functions of distance that put a larger weight on
unknown locations that are closer to a sampling point that those further away. The ad-
vantage of weighting by inverse squared distance is the quick diminishing of the relative
weights with increasing distance, making the interpolation sensibly local. The weighting
function itself, however, is arbitrary (Webster and Oliver 2001). For modeling rainfall-in-
duced landslides, Chiang and Chang (2009) apply an IDW approach to characterize the

spatial rainfall distribution for their study area.
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Kriging, on the other hand, is the predominant geostatistical method that links mathemat-
ical concepts with geoscientific requirements. Kriging is a generalized least squares re-
gression technique that accounts for the spatial dependence between observations
(Schuurmans et al. 2007). Unlike deterministic interpolation techniques, kriging offers a
measure of certainty (the kriging variance). In kriging, a weighted sum of the available
point observations is calculated in order to estimate the unknown target variable. This is
done by minimizing the variance so that the interpolation is biased as little as possible (Ly
et al. 2013). This assumption of stationarity in kriging allows to have the same degree of
variation from place to place and that the covariance between two observations only de-
pends on the distance between these observations (Oliver and Webster 2014, Ly et al.

2013).

Univariate kriging techniques, such as ordinary kriging, use rain gauge information alone
while multivariate kriging techniques, such as kriging with external drift or ordinary
cokriging, incorporate additional predictor values (e.g. weather radar information or ele-
vation) to improve the kriging prediction (Goovaerts 1997). Spatial interpolation based on
kriging is in general a labor-intensive task as many a priori decisions are necessary for
fitting the underlying variogram, on which kriging is based on. Automating attempts in
that regard exists, however, when fitting a variogram without supervision, errors might
occur. Interpolated rainfall in landslide research is rarely used as an alternative to purely
rain gauge based single point measurements. However, specifically for the purpose of im-
plementing interpolated rainfall data into landslide early warning applications, Canli et al.
(2017a) proposed an approach to automate the creation of the underlying variogram. In-
itial modeling parameters were defined and iteratively fitted to the most suitable vario-
gram model. Validation results demonstrated the feasibility of this approach, especially
as it is possible to couple the automated interpolation methods with web scraped real-
time rainfall data from multiple sources (Canli et al. 2016). Fig. 3.2 shows as an example

automated hourly spatial interpolation results from Canli et al. (2017a).
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Weather radar data is an attractive alternative, or more a supplement, to determine con-
tinuous rainfall fields in near real-time. Due to their high spatial (approx. 1 km) and tem-
poral (10 minutes and less) resolution, Doppler radar technology is highly beneficial for
providing spatially distributed rainfall data for landslide studies (Chiang and Chang 2009).
The quantification of rainfall estimates using Doppler radar can provide a real-time com-
parison with rainfall thresholds to form the basis of landslide warnings (Wieczorek and
Guzzetti 1999). In case the rain gauge network in a region is not sufficiently dense, radar
data is capable of capturing the spatial variation of rainfall fields much better than gauged
data (Yang et al. 2004, Segond et al. 2007). However, Doppler radar is only capable of
indirectly measuring precipitation, since this technology quantifies rainfall amounts as a
magnitude of measured reflectivity from hydrometeors in the atmosphere (Harpold et al.
2017). This requires calibration with actual rain gauge data in order to adjust the high

resolution spatial pattern that radar data offers with actual measured rainfall amounts.

The potential of rainfall radar for applications in landslide related research questions re-
mains underexploited as there are only few relevant studies addressing this technology
(e.g. Crosta and Frattini 2003, Schmidt et al. 2008, Chiang and Chang 2009, Segoni et al.
2009). Although radar technology has undergone a lot of progress in recent years, the
associated uncertainties, and generally low success rates (in terms of correctly predicted
landslide occurrences), reduce its applicability within the landslide community (Canli et al.
2017a). Schmidt et al. (2008) and Segoni et al. (2009) concluded that the meteorological
uncertainty has the highest influence on slope stability analyses that serves as the basis
for physically based landslide early warnings. The hydro-meteorological community is far
more involved with the utilization of radar data for the deduction of continuous rainfall
fields. However, they share the same concerns (Jasper et al. 2002) or even have taken a
step further by implementing numerical weather predictions (Cloke and Pappenberger

2009).

With emerging high-resolution satellite technology, this means of assessing the spatial

extent of rainfall could bring huge benefits for dynamic landslide modeling approaches at
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larger scales (Rossi et al. 2017). This is even more so the case where rain gauge or radar
rata is unavailable. Satellite-based rainfall estimates provide synoptic estimates of the
spatial distribution of precipitation events (Chappell et al. 2013). Recent satellite data pro-
vides those estimates at 0.5 to 3 hours intervals and spatial resolutions between 0.07° and
0.25° (Joyce et al. 2004, Kubota et al. 2007, Huffman et al. 2007, 2010). Until recently,
NASA’s Tropical Rainfall Measuring Mission (TRMM), which accumulated almost two dec-
ades of precipitation data by now, provided the most valuable data archive for global pre-
cipitation data (Kirschbaum and Petel 2016). When NASA launched the Global Precipita-
tion Mission (GPM) as a follow-on mission to TRMM in 2014, a huge popularity boost in
satellite based precipitation data could be observed (Harpold et al. 2017). GPM provides
rainfall and snowfall estimates every three hours. It is equipped with sensors that are far
more advanced and that permit better quantification of the physical properties of precip-
itation particles (Hou et al. 2014). Not many landslide studies have been conducted that
incorporate satellite based precipitation data (e.g. Rossi et al. 2012, Kirschbaum et al.
2015, Rossi et al. 2017), and those that exist still rely on TRMM data. In the upcoming
years, however, near real-time GPM data with higher spatial resolution holds great po-
tential for the applications in landslide early warning systems (Rossi et al. 2017, Stanley et

al. 2017).

All those previously described means of assessing rainfall magnitudes (single location
gauged data, interpolated data, radar data, satellite data) share one common ground:
they all rely on direct observations. However, for providing timely and effective infor-
mation that allows individuals exposed to a hazard to act and to avoid or reduce their risk
and prepare for effective response, rainfall data as the main trigger for landslides needs
to be provided in advance. This inevitably suggests the utilization of numerical weather
predictions for such purposes to shift the current paradigm of warn on detection towards
a warn on forecast approach (Stensrud et al. 2009). Flood forecasters in hydrological sci-
ences have adopted such NWP in the last decade into so-called ensemble prediction sys-
tems (EPS). The World Meteorological Organization (WMO 2012) defines them as follows:

“numerical weather prediction (NWP) systems [...] allow us to estimate the uncertainty in
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a weather forecast as well as the most likely outcome. Instead of running the NWP model
once (a deterministic forecast), the model is run many times from very slightly different
initial conditions. Often the model physics is also slightly perturbed, and some ensembles
use more than one model within the ensemble (multi-model EPS) or the same model but
with different combinations of physical parametrization schemes (multi-physics EPS). [...]
The range of different solutions in the forecast allows us to assess the uncertainty in the
forecast, and how confident we should be in a deterministic forecast. [...] The EPS is de-
signed to sample the probability distribution function (pdf) of the forecast, and is often
used to produce probability forecasts — to assess the probability that certain outcomes

will occur” (WMO 2012, p. 1).

EPS approaches started to be viable for smaller scale processes (such as landslides or flash
floods) when accurate convective-scale precipitation forecasting was available (as op-
posed to previously used EPS systems that relied on global or regional rainfall predictions).
With spatial resolutions ranging from 1-4 km, convective-scale NWP aim at predicting
small-scale atmospheric features such as location and the intensity of thunderstorms
(WMO 2012). Besides technical advances, it was mainly the computational challenges that
withheld this technology from operational mode and that saw its practical implementa-
tion only within this decade (WMO 2012). In, 2012, the German Weather Service
(Deutscher Wetterdienst - DWD) started operational mode for their COSMO-DE-EPS with
a resolution of 2.8 km (Baldauf et al., 2011, Gebhardt et al., 2011). Similar operational
forecasting systems with comparable spatial resolutions have been implemented in the
last couple of years, e.g. the AROME model in France (Seity et al., 2011), the MOGREPS-
UK model in the UK (Golding et al., 2016) and High Resolution Rapid Refresh (HRRR) model
in the USA (lkeda et al., 2013).

38



PHYSICALLY BASED LANDSLIDE MODELING AND EARLY WARNING SYSTEMS
—CURRENT APPROACHES AND CHALLENGES

3.3. Current issues in probabilistic landslide modeling and early
warning

In the last couple of years, regional scale probabilistic modeling approaches gained in-
creasing popularity. The two most significant explanations for this observation lie in the
reduction of computational costs on the one hand, and decreasing confidence in purely
deterministic approaches on the other hand (Canli et al. 2017b). Haneberg (2004), Park et
al. (2013), Raia et al. (2014), Lee and Park (2016), Zhang et al. (2016) or Salciarini et al.
(2017) and others use a probabilistic approach to characterize soil properties at regional

scale by randomly selecting variables from a given probability density function.

In two recent studies, Neves Seefelder et al. (2016) and Canli et al. (2017b) propose the
application of rather broad parameter ranges for model parametrization instead of best-
fit narrow ranges as this is suggested to be a more honest approach in selecting modeling
parameters. Canli et al. (2017b) uses this rather broad parameter range in a probabilistic
approach to produce a multitude of ensemble members based on hourly rainfall input to
express the range of equally possible model iterations. Their case study revealed that
broad parameter ranges are indeed feasible for achieving rather narrow ensemble
spreads over large areas in a fully automated approach. However, as they were severely
lacking computational power to use their result in a real-time scenario for issuing hourly
probability of failure maps, it is not yet ready to be used in an early warning context.
Schmidt et al. (2008) proposed a coupled regional forecasting system in New Zealand
based on multiple process based models (NWP, soil hydrology, slope stability). However,
as innovative their research was, it did not find any continuation, probably due to unsat-
isfying initial results with the rather coarse data back then. Consequently, none of those
probabilistic approaches are operated in spatial real-time early warning systems, not even

on a prototype basis.

While hydrological sciences have started operational mode of probabilistic ensemble pre-

diction systems (EPS) based on NWP input (Alfieri et al. 2012b, Bartholmes and Todini
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2005, Siccardi et al. 2005, Thielen et al. 2009, Vincendon et al. 2011), landslide forecasting
is still far from there. Reasons for that shortfall might be found on the conceptual side of
model formulation and on the funding situation in landslide research in general (Canli et
al. 2017b). With respect to the conceptual difficulties in landslide prediction, Greco and
Pagano (2017) distinguish between three stages of a typical predictive system’s architec-
ture: I) the predisposing stage, Il) the triggering and propagation stage, and lll) the col-
lapse stage. While in hydrological applications (1) and (lll) are hardly distinguishable from
each other, for rainfall-induced landslides this is not necessarily the case. While the pre-
disposing stage (l) is determined by e.g. increasing pore water pressure due to a varying
length of rainfall input that worsens the slope stability conditions, the triggering and prop-
agation stage (ll) spans from first local slope failures until the formation of associated slip
surfaces. The collapse phase (lll) ultimately consists of the mobilization of the entire mass
leading to the actual failure. However, the time between stages (ll) and (Ill) may vary sig-
nificantly based on differences in local geomorphology, soil, vegetation, etc. and spans
from a couple of minutes (e.g. flow slides in slopes covered with shallow coarse-grained
soils) to years (e.g. earth flows in slopes of fine grained soils) (Greco and Pagano 2017).
Thus, even the most accurate rainfall predictions might hold significant uncertainties with
respect to predicting the spatial and temporal occurrence of landslides given the current

approaches of landslide modeling and early warning.

This inability to precisely predict landslide occurrence has therefore consequences on the
funding situation of landslide research in general and stands in a stark contrast to hydro-
logical sciences. According to Baum and Godt (2010), losses from landslides are perceived
mainly as private and localized economic losses with the result that only few public re-
sources have been allocated to develop appropriate spatial landslide early warning sys-
tems. Among the main disaster events, hydrological and meteorological events rank
among the costliest ones when comparing global and multi-peril loss databases, while ge-
ophysical events take only a small fraction in absolute numbers (Alfieri et al. 2012a, Wirtz

et al. 2014). According to Petley (2012), landslide losses are vastly underestimated. Rea-
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sons for this observation are manifold: a) major disaster databases, e.g. the NatCatSER-
VICE from the reinsurance company Munich Re, associate landslides as subordinated haz-
ard types of geophysical (amongst earthquakes) or hydrological hazards (amongst floods
or avalanches) (Wirtz et al. 2014); b) landslide databases are inconsistent, incomplete or
entirely absent and most of the existing inventories severely lack historical data (Wood et
al. 2015, Herrera et al. 2017). As a consequence, much needed initiatives such as the Hy-
drological Ensemble Prediction Experiment (HEPEX) were not established in the landslide
community so far. This ongoing bottom-up initiative aims at investigating on how to pro-
duce, communicate and use hydrologic ensemble forecasts in a multidisciplinary approach
to make use of NWP in flood forecasting (Schaake et al. 2007). This superior position of
hydrological forecasting can be primarily attributed to the greater interest international
bodies demonstrated towards flood forecasting and thus, the resulting political and finan-
cial situation has led to the advancement of ensemble prediction systems in hydrology
(Canli et al. 2017b). This is particularly the case with major transboundary flood events
that are typically more severe in their consequences, affect larger areas and cause more

damage and overall losses (Thielen et al. 2009).

However, transferring over knowledge and past experiences made in hydrological fore-
casting to the landslide community could significantly change the way how landslide pre-
diction is approached in the near future. An automated landslide EPS framework could
open up ways for finetuning input parameters by means of multiple model runs, attrib-
uting parameter uncertainties, and, first and foremost, real-time applications with a con-
tinuous consideration of antecedent and forecasted rainfall information (Alvioli and Baum
2016). Including measured real-time rainfall magnitudes derived from multiple sources
(e.g. rain gauges, radar, satellite) could act as a means of data assimilation to further in-
crease the accuracy of quantitative precipitation estimates and offer a real chance for a
shift from the current warn on detection to a much needed warn on forecast paradigm in

landslide early warning (Stensrud et al. 2009, Canli et al. 2017b).
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4. Uncertainties in regional scale
landslide prediction —
a methodological approach

4.1. Uncertainties in rainfall information

Hourly rainfall data, based on rain gauge measurements that is published regularly on
different web pages provided by different operators, is used as the basis for creating spa-
tially distributed rainfall raster in near real-time. Hourly data is used to reflect the short-
term rainfall intensity that can be considered as the main trigger for rainfall induced land-
slides in the study area (Lower Austria). Since there were no APIs available (an agreed-on
programming interfaces for providing a structure to download and link data), a web scrap-
ing service was established. Web scraping mimics the human user interaction with a web-
site by autonomously accessing it, parsing its content to find and extract relevant infor-
mation and to save those for further use. This automated, time-based scheduling of ob-
taining hourly rainfall data provides a means of merging multiple data sources into a single

database that can be used for storing raw rainfall data.

Multiple automated filters were applied to the raw data to ensure that there is as few
errors and uncertainties as possible. This dissertation proposes three filters for quality
assurance: a) a range filter to ensure physical plausibility; b) a spatial consistency filter to
ensure there are no suspiciously high or low rain gauges based on the information of
neighboring rain gauges within a certain distance; c) an autocorrelation filter specifically
tailored towards the geostatistical interpolation approach to reduce biases from rain
gauges that hold no relevant information and that would adversely influence variogram
modeling. Figure 4.1 shows an overview of the automated workflow from obtaining web
based rainfall data through the application of different filters to reduce errors and uncer-

tainties in the raw data. The automated spatial interpolation methods applied in Canli et
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al. (2017a) are the deterministic Inverse Distance Weighting (IDW) method and the Thies-

sen polygon method, for the geostatistical interpolation an Ordinary Kriging approach was
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Figure 4.1: Flow chart of the proposed methodology showing the automated workflow from obtaining
web based rainfall data, through multiple quality assurance filters, to the application of different inter-
polation techniques for producing hourly real-time rainfall raster maps (Canli et al. 2017a)
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The big advantage of kriging is the consideration of variations in rainfall as a function of
distance rather than distance alone in deterministic methods. This means that rain gauges
that are in proximity to each other provide data values at unknown sampling locations in
between that are quite similar rather than being reduced through the increasing distance
from the respective rain gauges. In an automated iterative process, different variogram
models are tested to find the best fitting one. A variogram is, in general, a plot of the
average squared differences between data pair values and thus a central component in
kriging. While creating a suitable variogram is usually a quite labor-intensive task, the pro-
posed approach in this dissertation focusses on a rapid estimation of an appropriate vari-
ogram model for real-time applications. Therefore, some a priori decisions based on plau-
sible initial values for the automated processing were made. Details on this automated
procedure as well as the more straightforward deterministic interpolation methods are
contained in more detail in Canli et al. (2017a). Based on this automated process chain,
hourly rainfall was predicted at unsampled locations (on 1-km raster cells) to have a spa-
tially distributed estimate of the most recent rainfall. Kriging additionally comes with the
benefit, by being a statistical approach, of calculating the kriging variances. Those serve
as an estimation error to reveal the interpolation certainty in a spatially distributed way.
Performance comparison between sampling points (rain gauges) and distributed raster
map was carried out with a) a leave-one-out cross-validation procedure, and b) by splitting

the sampled points randomly into a training and test dataset.

4.2. Uncertainties in geotechnical and hydraulic
parametrization at regional scale

Besides rainfall as the dynamic component in a regional rainfall triggered landslide early
warning system, process based modelling approaches additionally require a physically
based model parametrization. The most common approaches in model parametrization
in process based landslide modeling encompass the application of averaged values from
field measurements (e.g. Thiebes 2014, Tofani et al. 2017, Zieher et al. 2017) or the utili-

zation of existing data from databases, lookup tables or other published/unpublished data

45



UNCERTAINTIES IN REGIONAL SCALE LANDSLIDE PREDICTION —
A METHODOLOGICAL APPROACH

sources (e.g. Schmidt et al. 2008, Kuriakose et al. 2009, Mergili et al. 2014b). Model para-
metrization at larger scales is by no means a trivial task, mainly due to the lacking spatial
comprehension of the spatial organization of involved geotechnical and hydraulic input
parameters (Fan et al. 2016). Also, field sampling at more or less representative locations
over a large area might be highly biased (what qualifies as a representative location?) or
even inappropriate for the modeling itself, as there is no guarantee that measured field
values at a single location will reflect the effective values required by the model to achieve

satisfactory predictions over a much larger area (Beven and Freer 2001).

Consequently, based on the premise that precise parameters over large areas are essen-
tially unknown or highly uncertain at best, two assumptions were made in an honest at-
tempt to address this lack of spatial comprehension: a) parameters taken from geotech-
nical literature are sufficient as those values are derived from on a multitude of repeated
field and lab measurements and represent typical material properties; b) not a singular
combination of parameters is used, but the entire parameter range from which parameter
sets are randomly sampled in an attempt to cover the entire possible range of material

properties.

Therefore, the proposed research suggests a probabilistic approach to derive model pa-
rameters based on purely literature based values. In a rather extensive study, Tofani et al.
(2017) performed 59 site investigations to parametrize their slope stability model. This is
a remarkably large amount of in situ sampled locations and offer a quite unique possibility
to determine the underlying probability density function for all measured parameters. Al-
beit Tofani et al. (2017) reduce the information they use in their modeling attempt to just
the median value for each lithological unit, their boxplots suggested normal to lognormal
parameter distributions throughout all measured parameters. Wang et al. (2015) argue
that this is a common observation and might be a result of the central limit theorem which
indicates that lumping data from many different sampling sites tends to yield normal to
lognormal distributions. Since the study area in Canli et al. (2017b) is rather large (over

1350 km?), plausible parameter ranges with a normally distributed state function based
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on geotechnical textbooks to charac-
terize modeling parameters were used
as it would be expected that taking
many samples over such a large and ra-
ther homogenous area would result in
quite comparable results. Instead of
using a (supposedly) single best-fit
value for each parameter (e.g. the me-
dian of a sampled value range), a
Monte Carlo simulation approach was
used to randomly choose multiple pa-
rameters sets within a predefined pa-
rameter range as the basis for incorpo-
rating the inherent parameter variabil-
ity and uncertainties at larger scales
into the model (Fig. 4.2). This way, the

subsequent modeling approach is not

—A METHODOLOGICAL APPROACH
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Figure 4.2: Probabilistically derived model parameters
(Soil depth, Cohesion, Friction angle) based on random
sampling from a normally distributed state function (Canli
etal. 2017b)

initialized with a single best-fit set of parameters (as it is the case in a purely deterministic

model), but run many times from slightly different initial conditions based on the sampled

parameter range. This range of different solutions reveals the uncertainty in the model

output and how confident we should be in a deterministic forecast (WMO 2012).

4.3. Uncertainties in probabilistic modeling

Probabilistic predictions assess the probability that a certain outcome will occur and thus

making them particularly desirable (Krzysztofowicz 2001). In the last decade, hydrological

models have started integrating ensemble prediction systems (EPS) into their forecasting

systems, following on the success of the use of ensembles for weather forecasting (Cloke
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and Pappenberger 2009). The probabilistic approach acknowledges the presence of una-
voidable variability and uncertainty at larger scales and explicitly introduces them into the
model results. EPS use ensembles of numerical weather predictions (NWP) to iteratively
calculate, for example, a multitude of such probabilistically derived hydrographs for flood
events (Cloke and Pappenberger 2009). This results in an expression of the entire model
spread with its inherent uncertainties not in absolute terms, but it reveals the relative
performance of a model based on different equally probable input parameters. This range
of different solutions in the prediction allows for an assessment of uncertainty and how

confident modelers and decision makers should be in a prediction (WMO 2012).

This dissertation proposes a fully automated landslide EPS based on different sets of input
parameters that are randomly sampled from a broad range of possible parameter values
based on geotechnical literature. Due to a lack of NWP data that was not available for this
dissertation, spatially distributed rainfall input was considered from hourly geostatistical
interpolation (as proposed in Canli et al. 2017a). Strictly speaking, this leaves the rainfall
input in a deterministic state (only one rainfall raster per hour), while the probabilistic
component is only added through variations in geotechnical and hydraulic parameters.
However, the entire model structure is flexible enough to immediately replace the rainfall
raster with a multitude of probabilistic NWP raster data sets. Parameters considered in a
probabilistic way for the modeling application are soil depth, effective cohesion, effective
friction angle and soil saturation (Canli et al. 2017b). As for the modeling itself, the open
source, physically based TRIGRS model (transient rainfall infiltration and grid-based re-
gional slope-stability analysis) was used (Baum et al 2008 and 2010). TRIGRS is a quite
popular deterministic landslide model that is based on an infinite-slope model approach.
Due to its popularity and flexibility, first attempts towards a probabilistic modification
were made in the recent past (e.g. TRIGRS_P from Raia et al. (2014) or PG_TRIGRS from
Salciarini et al. (2017)). None of those model, however, are operated in an automated way

with the purpose of predicting landslides in real-time.
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TRIGRS was developed with the aim of modeling the potential occurrences of shallow
landslides by incorporating transient pressure response to rainfall and downward infiltra-
tion processes (Baum et al. 2008). However, by imposing simplifying assumptions and ap-
proximations, the underlying models of ground water flow and slope stability in TRIGRS
are subject to limitations. Baum et al. (2008) mention, amongst others, the following re-

strictions:

= TRIGRS assumes flow in homogeneous, isotropic soil. Additionally, the slope sta-
bility model is based on an infinite-slope analysis, which assumes uniform slope,
physical properties, thickness, and that pore water pressure is a function of depth
and time alone. To reduce errors imposed by abruptly shifting topography and ma-
terial properties, the study area in this dissertation is limited to a single geological
unit (the Rhenodanubian Flyschzone) to keep the subsurface as homogeneous as
possible.

= TRIGRS models only one-dimensional vertical infiltration although Baum et al.
(2008) acknowledge that during longer storms or periods between storms, lateral
flow contributes increasingly to the magnitude and distribution of pore water
pressure. This dissertation follows the suggestion to set the initial water table at
the ground surface and locking the steady background flux to zero to estimate a
worst-case scenario, also due to a lack of appropriate initial water conditions.

= TRIGRS does not account for evapotranspiration, which might be quite substantial
in the aftermath of a rainfall event. Also, only surface runoff is considered, but not
horizontal subsurface flow. Consequently, tracking water conditions and its decay

over time is not straightforward if carried out in an automated operational mode.

Being a deterministic model by default, TRIGRS computes a factor of safety (FoS) for each
raster cell (10 m spatial resolution). Based on a set of equations, the FoS can be summa-
rized as the ratio of resisting forces (the resisting basal Coulomb friction) and driving
forces (the downslope basal driving stress) on the potential failure plane. A FoS 2 1.0 in-
dicates stable slope conditions, a FoS < 1.0, on the other hand, slope instability. In the
proposed research, TRIGRS was modified in an R and python programming language en-

vironment to modify the model to accept probabilistic input in an automated way. This
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way, multiple model iterations can be calculated (in this case 25), which results in as many
equally probable model results based on the different input parameters. Each unstable
cell (FoS < 1.0) from all model iterations is tracked and used to calculate the spatially dis-
tributed probability of a raster cell to fail. The result is an autonomously generated prob-
ability of failure (PoF) map that shows an indication of the most recent slope failure loca-
tions. The visualized ensemble spread (the variation in slope failure locations based on
probabilistic parameter or rainfall input) gives an indication of the model’s precision, and
therefore how certain we can be about a prediction, even in the uncalibrated direct model

output.
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5. Discussion of results and hypotheses

Hypothesis I: Automated interpolation poses an improvement over selective

rain gauge utilization for providing landslide early warning information.

For in-depth results and discussion, refer to Canli et al. 2016, Canli et al. 2017a.

This dissertation proposes a fully automated workflow from the hourly, web based collec-
tion of rain gauge data to the generation of spatially differentiated rainfall predictions
based on deterministic and geostatistical methods. The ultimate goal is to utilize those
products in both, threshold based approaches and dynamic physically based modeling ap-
proaches to substitute the prevalent practice of using single rain gauge information as a
proxy for areal rainfall. The entire methodology proposed in Canli et al. (2017a) was exe-
cuted purely on an open source basis to make it as easily reproducible as possible. To
make use of multiple data sources and with the aim to densify the network of utilized rain

gauges, web based hourly rain gauge data was obtained in an automated data workflow.

The results suggested that the Thiessen polygons do not offer any benefit over conven-
tional approaches of selecting single rain gauges as a proxy for areal rainfall due to their
arbitrary polygon boundaries that are being unrealistically rough. The IDW method could
be a suitable method in case the rain gauge network is sufficiently dense. However, vali-
dation results suggested that automated spatial interpolation with kriging yielded the best
fit with the available observational data. Additionally, the applied filters further improved
the spatial rainfall prediction pattern which resulted in good spatial representations of
current rainfall. However, the results also showed that the presence of small-scale, con-
vective heavy rainfall events adversely affect variogram modeling to a rather high degree.
This is unfortunate, as many landslide triggering rainfall events originate from such small-
scale heavy rainfall events that are based on convection rather than prolonged frontal
rainfall. Possible solutions and extension to this approach are the implementation of mul-

tivariate kriging methods that use additional predictor variables (such as radar data) or
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attempt a more probabilistic approach such as conditional simulation that additionally
alleviates the smoothing effects of kriging by producing many equally likely scenarios ra-

ther than just a best fit scenario.

Therefore, it can be concluded that this dissertation provides a novel approach by apply-
ing automated spatial interpolation techniques for producing real-time spatial rainfall pat-
terns from multiple web based sources. Validation results suggested a high spatial agree-
ment with observational data and thus making this approach a possible alternative to
purely utilizing single rain gauges as areal rainfall proxy. However, and with regard to the
hypothesis, based on the analyses provided in this thesis, it cannot be answered whether
the proposed methodology does indeed lead to improved early warning situations as no
associated case study was conducted due to a lack of appropriate landslide event data. In
order to evaluate whether there is any real benefit, a comparative study in a threshold
based or physically based modeling setting is suggested. As a consequence, the results do
not support the hypothesis as of yet and need to be further tested in a study area with

appropriate landslide event data.
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Hypothesis II: In situ measurements of geotechnical or hydraulic parameters

can be substituted by literature based values for regional scale landslide model

parametrization.

For in-depth results and discussion, refer to Canli et al. 2017b.

Poor spatial comprehension of the spatial organization of the involved geotechnical and
hydraulic input parameters makes model parametrization at larger scales a difficult task.
Park et al. (2013), Raia et al. (2014), Lee and Park (2016), Zhang et al. (2016) or Salciarini
et al. (2017) treat soil parameters in regional scale landslides studies in a probabilistic way
to address those inherent parameter uncertainties when it comes to model parametriza-
tion. In the probabilistic slope stability modeling approach proposed in this dissertation,
each ensemble member was initialized with such probabilistically derived parameters. Re-
sults in Canli et al. (2017b) indicate quite significant changes in slope stability across indi-
vidual members, but also quite high similarities although parameters change drastically
between some of the members. For example, a depth of 2.5 m, an effective cohesion of
13.4 Nm™ and an effective friction angle of 35 degree in a singular deterministic output
reveals almost the identical spatial distribution of modeled slope failure as a model run
with a depth of 2.0 m, an effective cohesion of 5.4 Nm and an effective friction angle of
22.7 degree. By using a probabilistic representation that merges the information of all
individual ensemble members into a combined representation of slope stability (the prob-
ability of failure), the entire range of spatial variability and uncertainty is explicitly intro-
duced into the modeling results. Interestingly, the results of the probability of failure map
suggest quite narrow ensemble spreads, which indicates that the different input parame-
ter ranges result in quite similar individual outcomes. This means, that the predicted areas
with the highest slope failure probability are consistently modelled more or less at the
same locations. Differences in spatial occurrence can thus be considered as some kind of

spatial confidence buffer that covers the entire range of used input parameters.
However, the fact that quite broad parameter ranges that are based on textbooks lead to

quite similar spatial failure locations, indicates the paramount importance of slope angle

as the most sensitive model parameter. This does not come surprising as slope failures
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are in general associated with higher slope angles (Liao et al. 2011). Also, Neves Seefelder
et al. (2016) and Zieher et al. (2017) identified slope angle as the most sensitive modeling
parameter in the same model (TRIGRS) as applied in this thesis. This would suggest that
no matter how much the parameters within a plausible range vary, it will be consistently
the same slope segments that will result in the highest slope failure probabilities. It also
suggests that slope failure probability will ultimately only vary based on differences in the
most recent spatially distributed dynamic components (e.g. rainfall or soil moisture distri-
bution) or spatially differentiated slope depth maps. As discussed in more detail in Canli
et al. (2017b), this raises the question whether model calibration is physically even advis-
able or if useful conclusions could be drawn from direct model output alone. As a possible
explanation, which could also be shown in this dissertation, it can be argued that most
models contain multiple combinations of parameter values that provide almost equally
good fits to the observed data and that changing the calibration period or the goodness-
of-fit-measure results in altered rankings of parameter sets to fit the observations. Con-
sequently, as further pointed out by Beven (1996), there is no single parameter set (or
model structure) that serves as the characteristic parameter input for any given area, but
there is a certain degree of model equifinality involved when reproducing observations
with model predictions. Therefore, given the issues with multiple (interacting) parameter
values, measurement scales, spatial and temporal heterogeneity or the dependence on
the model structure, there can never be a single set of parameter values for the calibration
process that represents an optimum for the study area, but calibration can contribute to
the reduction of range in the possible parameter space (Beven 1996, Neves Seefelder et
al. 2016, Canli et al. 2017b).

With regard to the hypothesis it can be stated that it indeed appears to be the case that
for physically based model applications at regional scale, purely literature based parame-
ter ranges can substitute cost and labor intensive in situ field measurements due to the
dominant sensitivity of slope angle and the high degree of equifinality. Thus, the carried-
out analysis supports the hypothesis but it is suggested that a comparative study in an
area with comprehensive geotechnical and hydraulic data is carried out to empirically af-

firm this adequacy.
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Hypothesis lll: A probabilistic landslide ensemble prediction system is capa-
ble of providing timely indication of high resolution landslide exposure at re-

gional scale.

For in-depth results and discussion, refer to Canli et al. 2017b.

In ensemble predictions, small perturbations are made to the modeling parameters to be
iteratively re-run with those slightly changed starting conditions. If those individual en-
semble members are rather similar to each other (small ensemble spread), the prediction
confidence is rather high. In case the ensemble spread is large or if they all develop differ-
ently, the confidence is much smaller (WMO 2012). As demonstrated for hypothesis II,
using even quite large parameter ranges can indeed lead to rather narrow ensemble
spreads in the model output as a result of equifinality and the dominant sensitivity of
slope angle. To further supplement the resulting probability of failure (hazard) map with
additional information to assist decision makers, this thesis suggests the combination with
infrastructure data (buildings, roads) towards an exposure map to additionally account

for possible consequences (Fig. 5.1).
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Figure 5.1: Probability of failure shown as a proportion of the individual ensemble members that predict an
event to occur (FoS < 1.0). Building information was added as an additional layer to express an individual
building’s exposure to landslides. Building and roads are used from the freely accessible OpenStreeMap da-
tabase (Canli et al. 2017b; Forest/River/Road data © OpenStreetMap contributors)

As soon as convective-scale numerical weather predictions are readily available for the
implementation in such probabilistic landslide ensemble prediction systems to account
for small-scale precipitation input, an operational mode is thinkable from a conceptual
point of view. In reality, however, there are some drawbacks. Operating at small spatial
scales or even at the scale of individual buildings, as proposed in this dissertation, could
suggest a certainty in the modeling results that is simply not achievable. This seems quite
disappointing and highly detrimental to what predictive models should be capable of
providing: a positionally and temporally accurate mitigation tool. Compared to flood fore-
casting, where the spatial occurrence of floods is topographically foreseeable and control-
lable, this is much more difficult in spatial landslide modeling due to the very localized

nature of landslide occurrence (Alfieri et al. 2012a). Salciarini et al. (2017) argues that such
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tools are suitable for a first susceptibility screening of an area prone to landsliding, but
less so for single slope/single landslide analyses. As shown in this dissertation, the mod-
elled probability of failure map revealed a high degree of spatial discontinuity in its spatial
prediction pattern which undoubtedly puts a decision maker potentially at risk of missing
some real landslide occurrences. A more in-depth discussion on the topic of model relia-
bility in landslide prediction and the contribution of model calibration can be found in
Canlietal. (2017b). Another drawback in operating landslide ensemble prediction systems
in a timely manner is the computational burden involved. The computational time in this
thesis to produce an hourly probability of failure map based on 25 individual ensemble
members for the entire study area took around 18 hours. Ensembles of numerical weather
prediction as dynamic rainfall input would additionally increase computation time quite
significantly. Even if the code structure would be optimized to reduce computational time,
this is far from what is acceptable in an operational mode. Newer developments in land-
slide modeling suggest a shift towards parallel computing in order to significantly cut
down computation time (Formetta et al. 2016, Mergili et al. 2014a) or even the utilization

of high-performance computing (HPC) clusters (Alvioli and Baum 2016).

To conclude this discussion on the feasibility of automated landslide ensemble prediction
systems to explicitly introduce uncertainties from geotechnical parameters or from rain-
fall into the model output, it has to be clearly stated that this is still very much in its in-
fancy. This thesis demonstrated that automated probabilistic landslide prediction is pos-
sible with a sufficiently small ensemble spread that indicates a rather high confidence in
the spatial prediction pattern. All computational hindrances aside, it is inevitable to apply
this model structure in a region with a comprehensive landslide event catalogue to eval-
uate whether such a high-resolution representation of landslide failure probability is ca-
pable of accurately predicting real landslide occurrences. Thus, this dissertation only
partly supports the underlying hypothesis: it shows the technical feasibility of automated
landslide ensemble predictions, yet it lacks meaningful and rigorous quantitative model

validation due to a lack of appropriate landslide event data.
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6. Conclusion and perspectives

Decision makers and practitioners in many earth science related fields prefer absolute
model outputs. This is especially the case when public safety is at stake and clear thresh-
olds need to be established for liability reasons. However, there is nothing such as an ab-
solute certainty and relying on deterministic models provide an illusion of certainty at best
due to a lack of full access to the phenomena of interest, both in time and space (Oreskes
et al. 1994). Hence, probabilistic modeling provides an opportunity to increase the relia-
bility and certainty of model outputs by expressing the entire model spread with its inher-
ent uncertainties not in absolute terms, but by showing the relative performance of a
model with respect to observational data (Canli et al. 2017b). Since probabilities in deci-
sion making are attributed with a lot of concerns, such probabilistic modeling results are
not widely accepted yet, however according to Krzysztowicz (2001), this turned out to be
unwarranted in a hydrological context. For communicating such probabilistic results, it
could be beneficial to use judgmental terms given as a set of likelihood ranges (e.g. virtu-
ally certain >99%; very likely >90%; likely >66%; about as likely as not 33% to 66%; unlikely
<33%; very unlikely <10%; extremely unlikely <5%; exceptionally unlikely <1%) to express
the assessed probability of occurrence (Aven and Renn 2015). In the past decade, the In-
tergovernmental Panel on Climate Change (IPCC) has brought some tremendous research
to light with respect to communicating uncertainty information to provide formal classifi-
cations for subjective and objective information (Risbey and Kandlikar 2007, Doyle et al.
2014, Wesselink et al. 2015, Aven and Renn 2015). Based on those IPCC key findings, Lee
(2015) reviews attempts to provide a conceptual framework for communicating uncer-

tainty and confidence to decision-makers in landslide risk assessment.

From a modeling point of view, validating deterministic models works on a best-fit reali-
zation by assessing the empirical adequacy of a singular model output with its associated
observational data (Oreskes et al. 1994). Since this dissertation aims specifically towards

the landslide modeling community, the focus lies on describing a potential application of
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the ROC curve for measuring probabilistic skill as it is by far the most commonly used
measure of prediction skill in landslide research, both for rainfall threshold and statistical
modeling applications (e.g. Frattini et al. 2010, Petschko et al. 2014, Gariano et al. 2015,
Hussin et al. 2016, Steger et al. 20164, Piciullo et al. 2017, Steger et al. 2017) and physically
based ones (e.g. Chen and Zhang 2014, Mergili et al. 20144, Raia et al. 2014, Formetta et
al. 2016, Gioia et al. 2016, Lee and Park 2016). Contingency tables indicate the quality of
a forecast system by considering its ability to anticipate correctly the occurrence or non-
occurrence of predefined events that are expressed in binary terms, e.g. landslide oc-
curred yes or no (Mason and Graham 1999). The contingency table, basically a two-by-
two confusion matrix, holds four possible outcomes, given a certain classifier and in-
stance: if the instance is positive and it is classified as positive, it is counted as a true pos-
itive (a hit); if it is classified as negative, it is counted as false negative (a false alarm). If
the instance is negative and it is classified as negative, it is counted as true negative (a
correct rejection); if it is classified as positive, it is counted as a false positive (a miss)

(Fawcett 2006).

For deterministic forecasts, the ROC curve is generated by plotting the hit and false alarm
rate for the forecast against the hit and false alarm rates obtained for perpetual warning
(equals 1.0) and no-warning (equals 0.0). This means that there is skill only when the hit
rate exceeds the false alarm rate. Thus, the ROC curve will ideally lie above the 45° line
from the origin if the forecast system is skillful. The closer it is situated to 1.0, the more
skillful it is (Mason and Graham 1999). The actual ROC score to compare classifiers can be
expressed as the area under the ROC curve (AUC or AUROC), a single scalar value defined
as a portion of the area of the unit square, hence creating values between 0 and 1 (Faw-

cett 2006).

For probabilistic forecasts, a warning can be issued in case the forecast probability for a
predefined event exceeds some threshold. For example, if a warning should only be issued
when there is at least a 75% confidence that a landslide event will occur (FoS < 1.0), a new

contingency table that reflects the occurrences in areas exceeding a 75% probability is
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constructed. Different warning thresholds can be used for the predefined event, and a set
of hit and false-alarm rates can then be determined (which is accordingly used to generate
the ROC curve). Consequently, the ROC curve is useful in identifying an optimum warning
criterion by indicating the trade-off between misses and false alarms. For a probabilistic
system, the greatest value is not necessarily achieved at which the likelihood ratio is max-
imized. Instead, each decision maker evaluates possible consequences differently and/or
has a different cost-loss operating structure, and hence the relative frequencies of hits,
false alarms, and misses have to be optimized. In an operational environment, the warn-
ing is provided in advance, hence it is not known whether an event is going to occur, but
if a warning has been issued. So, there is indeed additional value in knowing the probabil-
ity of an event occurring, contingent upon the forecast probability (Mason and Graham
1999). Greco and Pagano (2017) suggest calibrating the sensitivity of an EWS based on a
cost-benefit analysis that takes several peculiarities into account, such as the uncertainty
of the prediction, the cost suffered by the community in case of a false alarm or the costs

resulting from a missing alarm with catastrophic event occurrence.

Clearly, efforts put into the validation of probabilistic outcomes in the landslide modeling
community are scarce and need substantially more research as of today. In hydrologic
sciences on the other hand, some measures to validate probabilistic predictions are in
practice. Some are better, some less suitable for distributed model output that is com-
monly the main form of data representation in landslide modeling and early warning.
Thus, it remains to be seen, which skill scores are also feasible for validating probabilistic
landslide model predictions. Mason and Graham (1999) and the WMO (2012) mention a

few skill scores that are used in validating probabilistic hydrological predictions:

= Brier Score: a root-mean-square error for probability forecasts of a particular
event threshold;

= Brier Skill Score: compares the Brier Score of the forecasts with the Brier Score of
some reference forecast system;

= Reliability: measures how well forecast probabilities match observed frequencies;
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= Receiver (or Relative) Operating Characteristics (ROC): measure how good the
forecasts are for decision making
= Relative Operating Levels (ROL): designed to represent the skill of a forecast sys-

tem from the perspective of the forecasts

The main drawback in this regard is most definitely — not just within this dissertation —
the lack of appropriate event data. Complete landslide inventories at regional scale are
rarely available — if at all. While statistical landslide susceptibility modelers are paying
more and more attention to inventory biases (e.g. Hussin et al. 2016, Steger et al. 2016b,
Steger et al. 2017), this does not apply as much to the landslide early warning community
(be it the physically based modelers or the rainfall threshold community). On the one
hand, this does seem natural since landslide locations serve as the dependent variable in
statistical landslide susceptibility mapping that are explained by a set of static preparatory
environmental factors (e.g. slope, lithology). Often, landslide inventories are specifically
optimized for statistical or machine learning approaches (Petschko et al. 2015). For deter-
ministic modeling approaches, however, the landslide inventory is independent from the
modeling itself and serves as a means of validating and calibrating the model. Besides
mapping biases (e.g. only reported landslides) or positional uncertainties from remote
mapping, the most crucial aspect in dynamic applications is the temporal component.
There are only very few event catalogues available that contain all the relevant infor-
mation: precise location and precise timing of landslide initiation, which is crucial for

model calibration (Gariano et al. 2015).

Calibration is usually referred to as the process of adjusting model parameters to repre-
sent the observation in the model output (landslide initiation at a specific location at a
specific time). This implies, however, that the location and the time of landslide initiation
is correct. Steger et al. (2016b) found that the only landslide inventory in Austria that oc-
casionally contains temporal landslide information (the Building Ground Registry), exhib-

its substantial positional biases. The consequences for model calibration therefore are ap-

62



CONCLUSION AND PERSPECTIVES

parent: calibrating a deterministic model to represent optimized parameters at the land-
slide location might be incorrect, when the location of landslide occurrence is not precise.
The same applies to the temporal component, when the landslide initiation time is not
exactly known. A common practice to compile an event catalogue retroactively includes
incorporating information from newspapers (e.g. Gariano et al. 2015). It seems obvious
that this information can only be a rough estimate on where and when a landslide oc-
curred and leads to the following question: how do positionally and temporally erroneous
landslide catalogues influence deterministic model output when parameters are cali-
brated for imprecise landslide observations? Peres et al. (2017) performed such an in-
depth analysis to quantify the effects of imprecise identification of triggering rainfall on
the assessment and performance of landslide triggering thresholds, Nikolopoulos et al.
(2014) analyzed the effect of rain gauge location and density of rainfall networks for the
establishment of rainfall thresholds. Both studies concluded that the presence of report-
ing errors in landslide triggering instants yield thresholds that are significantly underesti-
mated, i.e. lower than the correct ones. Consequently, ubiquitous errors in observed da-
tasets generate further uncertainties in threshold assessment that is of significant magni-
tude (Peres et al. 2017). Since the landslide inventories with event-based information are
the same for physically based approaches, this leads to the assumption that the same
issues transfer over accordingly. Hence, probabilistic modeling approaches might alleviate
some of those issues in the calibration process by exhibiting the probability of failure for
a larger area that could potentially be affected by landsliding (by accommodating spatial
uncertainties from larger parameter ranges). Consequently, the likelihood that an inaccu-
rately mapped landslide lies in an area that was predicted to fail in some of the model

ensemble members, is higher.

Another model related issue that needs to be considered in upcoming physically based
modeling attempts in an early warning context is the application of data assimilation tech-
niques. Data assimilation refers to the blending of multiple sources of dynamic infor-
mation (for example rainfall or soil moisture data from different sources sampled at dif-

ferent scales) to increase the accuracy of the input data. This has been identified as an
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increasingly important factor for improving hydrological predictions (Reichle 2008). For
dynamic landslide modeling applications, one of the most sensitive calibration parame-
ters, that is usually not readily available at a larger scale, is the steady seepage initial con-
dition. Water flow above the water table (in the unsaturated zone) is dependent on the
downward rate of advance of the wetting front, which, in return, depends on antecedent
soil moisture conditions. Hence, using a hydrological model with antecedent precipitation
and infiltration rates from real-time monitoring could significantly improve slope stability
analyses in the long run (Baum et al. 2010). This again gives some indication on the im-
portance of data assimilation by blending multiple sources of information to increase the
skill of physically based landslide predictions and to allow for better informed real-world
decision making (Liu et al. 2012). Hydrological earth observation is on the verge of a break-
through in delivering high resolution, accurate soil moisture input on very short time in-
tervals for large regions (McCabe et al. 2017). This has huge potential to overcome the
inherent scale incompatibility when using in situ field data that does not necessarily re-
flect the effective values required by the model itself. Blending those information, to-
gether with convection-permitting NWP, into a probabilistic slope stability model could
have huge implications on how landslides might be accurately forecasted in the near fu-

ture.

For actual decision making in landslide early warning situations, however, a combination
of different modeling approaches could be beneficial. In the exposure approach presented
in this dissertation, every region and every building is treated equally. Since statistical
landslide susceptibility approaches have a very long tradition in landslide modeling, some
very sophisticated methods have evolved over time that have the potential to supplement
probabilistic modeling output. A high statistical likelihood of landslide occurrence means
that in those areas it is more likely in the future that landslides occur again (based on
available landslide information from the past). Based on a qualitative approach by match-
ing the spatial agreement of statistical susceptibility maps (high spatial likelihood of future
occurrence) with real-time probabilistic outcomes (high temporal likelihood of occur-

rence), this information could serve as an additional layer for decision-making (e.g. low
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susceptibility + high probability leads to a reduced warning level compared to a spatial
match of high susceptibility + high probability). Attempts to combine statistical and phys-
ically based landslide susceptibility models were proposed in recent years (e.g. Goetz et
al. 2011, Canli et al. 2015, Oliveira et al. 2017). A more simplistic approach could involve
the designation of varying safety standards for different regions or objects. Again, for this
exposure approach, hospitals or schools for example could be attributed with a higher
safety standard that might require action to be taken at lower failure probabilities than a
regular building. Similar systems for flood protection and management are in place in the
Netherlands where economic analyses were used to differentiate safety standards for dif-

ferent regions (Pilarczyk 2007).

Additionally, and this has to be strongly emphasized, probabilistic forecasts temper the
potential for misperception of responsibilities and misattribution of decisions. The task of
forecasting, that incorporates solely the principles of science, and the task of decision
making, which involves the decision maker’s evaluation of consequences, is entirely de-
coupled (Krzysztowicz 2001). For example, instead of issuing a factor of safety map for a
certain area that pinpoints a single estimate, the forecaster may specify a certain proba-
bility of failure to be exceeded based on the user’s needs. The choice of protection level
is thus left entirely to the decision maker, as it should be. There is a long history of discon-
tinued operational landslide early warning systems which can partly be attributed to this

mismatch of responsibilities (Baum and Godt 2010).
To conclude this dissertation, five future research topics are proposed:

= Performance comparison of process based or threshold based landslide EWS
with rainfall input from automated interpolation techniques versus uniform
areal rainfall based on representative rain gauges. This dissertation suggests
an approach that is capable of predicting rainfall at unsampled locations in
real-time from web based data sources. Validation between predicted and ob-
served values resulted in quite satisfactory performance. However, due to a
lack of event based landslide data, a performance comparison between the

common application of uniform areal rainfall based on representative rain
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gauges versus the proposed approach of automated rainfall interpolation is
pending.

Performance comparison of a regional scale process based landslide EWS
with parameters derived from in situ sampling versus purely literature based
parametrization. The proposed research indicates an adequacy of purely liter-
ature based model parametrization at regional scale. Starting from the prem-
ise that selective in situ sampling at representative locations is not only biased,
but also potentially unsuitable due to scale discrepancies between sampling
resolution and model requirements, the entire parameter range for the re-
spective geological unit was used. First approaches in that direction exist that
suggest the application of rather broad parameter ranges (e.g. Neves Seefelder
et al. 2016) by acknowledging that best-fit narrow ranges in geotechnical and
hydraulic parameters might be off target. Results in this dissertation indeed
show that the ensemble spread across all members is rather narrow, and thus
suggesting a quite sharp prediction, but it also shows that the geotechnical/hy-
draulic parameter sensitivity is much lower than the sensitivity of the slope
angle. Due to a lack of actual in situ field data from the study area as well as
missing event based landslide data, a comparative study in an appropriate
study area is suggested. This study should aim at evaluating the performance
of literature based parametrization over parametrization with actual field data
that was sampled in this specific study area.

Development of validation techniques for probabilistic model output in op-
erational landslide early warning. Model validation with an underlying contin-
gency table considers the ability of a prediction system to correctly differenti-
ate between occurrence or nonoccurrence of predefined events that are ex-
pressed in binary terms (e.g. landslide occurred yes/no). Using this contin-
gency table in a ROC plot evaluates the skill of the prediction system. However,
for probabilistic predictions systems, warnings can be issued for different pre-
defined exceedance thresholds, and thus multiple contingency tables may ex-

ist (e.g. an own contingency table that reflects landslide occurrences in areas
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exceeding a 75% probability). Therefore, multiple warning thresholds may be
used for the predefined event which results in unique sets of hit and false-
alarm rates. By doing so, an optimum warning criterion can be identified by
indicating those trade-offs between misses and false alarms. The greatest
value in validating such probabilistic systems does not necessarily come from
maximizing this likelihood ratio, but by respecting a decision maker’s needs.
Possible consequences might be evaluated differently or decision makers use
different cost-loss operating structures, which results in a requirement for op-
timized relative frequencies of hits, false alarms, and misses. Such a toolset for
validating probabilistic model output based on a decision maker’s require-
ments is missing in landslide research for the most part.

Performance comparison of a landslide ensemble prediction system versus
common approaches of landslide early warning. Ensemble prediction systems
(EPS) have proven to be quite successful in flood forecasting. While empirical-
statistical approaches (e.g. rainfall thresholds) only pose a simplification be-
tween the physical mechanisms leading to landslides and rainfall occurrence,
process based deterministic approaches use mathematical expressions to rep-
resent relationships between elements. Instead of offering a deterministic
best-fit model realization that entirely hides predictive uncertainties, probabil-
istic approaches do not eliminate uncertainty, but they explicitly introduce
them into the model results. By considering the proportion of the individual
ensemble members that predict slope failure, an estimate of how likely a land-
slide will occur can be made. This dissertation proposes a fully automated land-
slide EPS in an early prototype stage. However, due to a lack of numerical
weather prediction data as well as event based landslide data, no performance
comparison with more established means of landslide early warning could be
made. Therefore, such a comparison is proposed in a study area where NWP
data is available and that contains a comprehensive landslide event catalogue

in order to perform rigorous model validation. Also, performing model code
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optimization and the application within a high performance computing facility
is highly recommended to significantly reduce computation time.

Forming up larger interdisciplinary research initiatives for the advancement
of landslide ensemble prediction systems. Based out of a need to aid the
World Climate Research Program’s Global Water and Energy Cycle Experiment
to meet their water-resource applications objectives, HEPEX was launched in
March 2004 at a meeting of the European Centre for Medium Range Weather
Forecasts (ECMWF). HEPEX stands for Hydrological Ensemble Prediction Exper-
iment and is a project specifically designed by hydrologists, meteorologists,
and users affiliated with several international organizations. This ongoing initi-
ative aims towards the investigation on how to produce, communicate and use
hydrologic ensemble forecasts. HEPEX is an open, participatory project not di-
rectly funded by any agency, but rather evolved from a bottom-up initiative by
scientists and users who strongly believe that improved forecast techniques
arise from interdisciplinary collaboration (Schaake et al. 2007). Although many
probabilistic modelling approaches exist in landslide research to address pa-
rameter uncertainties and although it is acknowledged by some that such ap-
proaches could be the next step forward in landslide prediction (e.g. Alvioli and
Baum 2016), no such impactful initiatives have been fostered within the land-
slide community. This dissertation poses only a small step in that direction, but
further cooperation across disciplinary boundaries (e.g. with hydrologists, me-
teorologists, computer scientists) is envisaged to learn from forecasting expe-
riences made in the last decade and to pursue research towards the improve-

ment of such landslide ensemble prediction systems.
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ABSTRACT:

Web scraping is the automated process of gathering data from the internet. This data

is stored in a database for further analyses Scraped data is especially valuable for time dependant
research questions, as no own measurement or monitoring devices are necessary to collect real time
data. This paper airgs at introducing 2 novel approach for generating large, high quality weather data-
bases from frecly available internet weather sources and applying them (o near-real-time spatial landslide
assessments. We present a {irst step by antomating the procedure from gathering real-time weather data
o geostatistical analyses for assessing the spatial patiern of rainfall. The cutput will be used for the
immediate implementation in regional, physical-based landshde sugceptbility models.

1 INTRODUCTION

Increasing temperature (eg. Bdhm et al. 2001)
and precipitation variability {eg. Casty et al
2005) across the European Alps males it neces-
sary to understand relationships between climate
change and landsliding (Crozier 2010}, However,
it is widely accepted that losses from landsliding
are vastly underestimated (Petley 2012). Besides
common monitoring and spatial assessment, this
increasingly demands reliable and timely landslide
warnings. Spatio-temporal predictions of land-
stides are challenging, mainly due to data con-
straints. This is even more the case in developing
countries, also because the global distribution of
fatal landslides clearty shows a strong clustering in
such countries. Scarcity of high-guality meteoro-
logical data s often referred to as one of the meain
constraints for performing real-time landslide sus-
ceptibility/hazard analysis (e.g. Thicbes etal 2014},
Meteorological data may be expensive or not up-
te-date any more soon after it (s acquired.

The internet is a great sowrce of freely available,
high quality real-Hme weather data from various
operators. By now, web scraping has emerged into &
highly valuable technique for extracting information
from websites. Hercby, web scraping {(or screen scrap-
ing) is the process of automatically gathering data
from theinternet and using those self-generated data-
bases for further analyses (Beran et al. 2009), This
technique is of great value for weather data that is
released at least howrly o the public, but may be
applicable to any other type of continucusly released

L

data. Scraping weather data from the internet is fur-
thermore not just limited to sowrces from officially
operated weather stations, but may take advantage
of privaiely operated weather stations whose data
is available at online services such as hittpi/open-
weathermap.org. Additionally, research mstitutions
in developing countries can easily generaie their own
weather databases without the need of purchasing
expensive, ready-made weather data.

In this paper we present a novel approach
in landslide research for generating large, high
quality weather databases from readily available
internet weather sources and applying them to a
prefiminary step in dynamic landslide susceptibil-
ity assessments. The objectives of this paper are
covering the following points:

— outhning the technigque of web scraping for
generating spatially widespread near-real-time
weather databases, and

- the instant conversion of each new dataset into
a continuous ramnfall map based on geostatistical
interpolation for subsequent physically based
landslide susceptibility analysis,

2 METHODS

21 Web scraping

In the last few vears environmental sciences are
witnessing an increasing amount of published
informationen on the internet (Vitolo et al. 2013).
Therefor Web scraping (olien also named Web data
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extraction/Web  harvesting/Web  Mining/Screen
Scraping), a technique for extracting data and infor-
mation trom websites and storing it in a database,
can be used to generate the datasources needed.
There is a large variety of different web scraping
solutions that range [rom manual examination and
copy-and-paste to fully automated systems. In this
paper, two dillerent approaches are disposed for
scraping data [rom the internet. Firstly, the (recly
available web scraping software Kimonolabs was
applyed to access data from the Austrian Cen-
tral Institute for Meteorology and Geodynamics
{(ZAMG). Secondly, a programming approach was
used (o retrieve data [rom the Lower Austrian gov-
crnment (NOEL), which runs its own stations,

The framework used for storing the data is
Mecteor]S, an open source, cohesive, pure JavaS-
cript [ramework and development platform. With
NodeJS on the server, MongoDB on the backend
and a huge varicty ol [reely available packages and
librarics, MeteorlS offers an casy and fast way o
develop web applications. Figure 1 illustrates the
whole [ramework usced in this paper.

2.1.1  MeteorJS

Mecteor]S was choosen in this work because it
allows a rapid prototyping and with a few lines
ol code a server/client application ¢an be sct up.

EAN
ZAMG data NOEL data
Kimonolabs /
|
/
MeteorS
percolate:synced-cron -
N http MongoDB
v
cheerio nimble:restivus
Kriging
Figure 1. Framework for the automated scraping

and storing procedure for weather data from different
providers.

MongoDB, classitied as a NoSQL database, stores
data as JSON-like (Javascript Object Notation)
documents making it a fast way to store scraped
data. Furthermore, Meteor]S offers a packaging
system called Atmosphere]S. For accessing data
via APIs (Kimonolabs) and raw HTML content
(Cheerio) the http-package was used, which pro-
vides an HTTP request API on the client and
server. For automatical time-based scheduling the
percolate:synced-cron package was used, which
synchronizes jobs between multiple processes. For
data cvaluation, the mimble:restivus-package was
used to create REST APIs and setup CRUD end-
points [or the delined MongoDB collections.
Additionally, NoSQL databases provide more
flexibility than relational databases because of the
changcabilily of their schema, so the data can be
accessed faster in other projects (Vitolo et al. 2013).

2.1.2  Kimonolabs

Kimonolabs is a browscr based soltware that ena-
bles Lo glean specilic data [rom any website without
coding. It offers an User Interlace (UT) that recog-
nizes elements on a webpage that are structurally
similar (o what is selected. In the background it
generales a data model that trics to determine a
common pattern. The user is able to edit the queries
and combine specilic parts via the UL I thereis a
need for more complex modifications, the results
can be modified by writing javascript functions in
the UL After setting up the scraping mechanism,
Kimonolabs creates a REST API which then can
be used to scrape the data. Kimonolabs was used
to scrape hourly data for 53 weather stations in
Lower Austria from the Austrian Central Institute
for Meteorology and Geodynamics (ZAMG).

2.13  Cheerio

Web scraping with Cheerio is another way of
accessing the DOM (Document Object Model) of
any website. Cheerio is based on jQuery, designed
specilically for NodeJS. Via Melcor’s Arip-pack-
age, the HTML content was loaded. To get cleaner
data submodifications on the HTML, the content
was preprocessed using the Node JS module hmi-
parser2. Alterwards the weather data was extracted
and stored in MongoDB. Using Cheerio, hourly
data [rom the Lower Austrian governmental web-
site (NOEL) was scraped [tom 63 weather stations.

2.2 Automated interpolation of scraped
rainfall data

widespread and dense rainfall data are of great
importance lor the hydrological modelling
component in regional slope  stability models.
Geostatistical methods (such as kriging) are widely
applied in spatial interpolation that transfer point
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measurements (o continuous surfaces (Kitsanidis
1997). In this paper we used a kriging approach for
automatically generating continuous rainfall maps
every hour. Spatial interpolation with geostatistical
and Inverse Distance Weighting (IDW) algorithims
haveshown to oulperlform interpolation with Thies-
sen polygons that are used in various hydrological
maodels. Incorporating elevation information from
a DEM may aid for multivariate geostatistical anal-
ysis, however, Ly et al. (2011} have shown that inte-
grating elevation into kriging did not improve the
interpolation accuracy for daily rainfall. For hourly
rainfall data, aberlandt (2007) also mentioned
that ¢levation information plays only @ minor role.
Goovaerts (2000) concluded that the benefit of
incorporating elevation to multivariate techniques
may be marginal, if correlations between rainfall
and any descriptor (such as elevation) becomes too
small which might be the cage for rainfall during
shorter ime steps. In this study we use hourly time
steps, therefore we neglect the clevation informa-
tion as a deseriptor variable and apply the ordinary
kriging (ORK) method to our datasel.

Kriging aims at estimating the value of a ran-
dom variable al one or more unsampled points
from more or less sparse sample data on a given
support (Webster & Oliver 2007). Spatial interpo-
lation can be generalized as:

Z,=3 AZs, (1
i=1

where Zg is the interpolated value at point g; 7s, is
the observed value at point i; ns is the total number
ol observed points (rain gauges) and A, is the weight
contributing to the interpolation. The most crucial
step in performing spatial interpolation, thus also in
kriging, lies in the calculation of the weights. Values
of regionalized variables tend to be related, whereas
two points close to cach other are more similar than
at more widely separated places. The initial step in
kriging containg the variogram analysis. The vari-
ogram (or theoretical variogram) is a tool for quan-
tifying spatial correlation and is a mathematical
expression of the sermivariogram (also empirical or
experimental variogram) which is computed from
the data. The variogram is approximated by a range
of different models (such ag Spherical, Gaussian,
Exponential, ete.) that ensure validity. More in-
depth information on geostatistical theories can be
found in Goovaerts (1997), Kitanidis (1997) or Web-
ster & Oliver (2007). The behavior ol the variogram
at greater distances determines whether the function
is stationary. For such lunctions the semivariogram
should stabilize around a value, called sill. Tn case
ol a stationary [unction, the length scale at which
the sillis obtained determines the scale at which two
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measurements of the variable become practically
uncorrelated (the so called range). In cage of non-
slationarity, the variogram would keep increasing
beyond the separation distance ol interest.

The fitting of the semivariogram with a theo-
retical model is most commonly d manual [itling
procedure. This ongoing work presented here
ultimately aims at producing automated, unsu-
pervised spalal interpolaion ol near-real-time
rainfall data based on kriging on an hourly basis.
Thus, the semivariogram plays an important role
as the variogram is selected solely on an automatic
model fitting procedure. The coefficients derived
from the applied model were then used to deter-
mine the weights for the subsequent kriging. Tn
this study we implemented an automated vario-
gram fitting procedure based on a Gaussian model
with correlation lengths that are one third of the
arca’s square root range. The sill is automatically
determined by the variance ol each time slices’ rain
gange measurements. To fit the variogram sills to
the data, a residual {or restricted) maximum like-
lihood (REML) estimation was used. The advan-
tage of REML over the more common Ordinary
Least Squares (OLS) and Maximum Likelihood
(ML) estimation lies in providing unbiased esti-
mates of the variance parameters (thus neglecting
nuisance paramelers) (Lark & Cullis 2004, Web-
ster et al. 2006). In our ordinary kriging procedure,
we consider the semivariogram solely as 4 measure
of spatial correlation that is independent from ori-
entation or direction, thus, anisotropy is not taken
into account. A Cross Validation (CV) was per-
formed whereas the goodness of fit was expressed
by the related Pearson’s r. Additionally, the kriging
variance was calculated to take spatial uncertainties
into account. We forego the estimation of a Root
Mean Square Error (RMSE), although a common
performance criterion, as it usually provides little
information on the reliability of kriging estimates
(Goovaerts 2000, Ly et al. 2011).

Thewholeinterpolation chain is automated with
R (open source software for statistical computing)
and additional packages for geospatial analysis (R
Core Team 2015). The R packages used for kriging
arc: sp (allows R to deal with spatial objects), gstat
(containing geostatistical wools) and rgda! (for han-
dling projection/transformation operations of spa-
tial objects directly in R).

3 RESULTS

3.1 Web scraping

The two used approaches in this paper gave slightly
different results with respect to reliability of the
seraping procedure. On the one hand, Kimonolabs
as a [ree third party scraping tool was easy toimple-
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Figurc 2. Hillshade of Lower Austria with rain gauges
from ZAMG and NOEL that are currently scraped.

ment, but sometimes did not respond properly and
therefore produced outage. On the other hand,
Cheerio required more development time. as all of
the scraping was done by scripl. Regarding the reli-
ability of both approaches, the extraction of hourly
data worked in 72% ol cases with Kimobolabs,
whereas scraping with Cheerio worked in 96% ol
cases. Unfortunately. the reasons [or those outages
with Kimobolabs could not be traced, as the error
logged by the system is not sufficiently documented
(*300 Server error” which refers to “something
went wrong on our end” https:/www.kimonolabs.
com/apidocs#Limit). The minimal outage using
Cheerio can be explained by downtimes of the
scraped website. We used 3 scraped datasets of rain
gauges Lo perlorm the subsequent spatial interpola-
tion: 53 ZAMG stations, 63 NOEL stations and all
116 stations together. Figure 2 shows the distribu-
tion of the rain gauges in Lower Austria.

3.2 Spatial distribution of hourly rainfall

Following the extreme heat wave in Central Europe
in summer 20135, heavy rainfall and hailstorms hit
Lower Austria on the evening of July &, 2015. This
storm event brought large amounts of rainfall in
the southern part of Lower Austria during the
night, whereas the northern part was mostly unal-
lected. We picked this storm event as it shows a
clear spatial differentiation in its rainfall pattern
according 1o the information [rom the distributed
rain gauges. We used 3 consecutive hours (19:00,
20:00 and 21:00) to produce automatically gener-
ated rainfall maps.

For every hour, variogram models for all three
dalasets were generated with an automalted proce-
dure (Fig. 3). Our findings arc similar to those of
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Ly ¢t al. (2011), except that we used only a Gaus-
sian model for best (its. As a measure of the disper-
sion of all observations, the semivariance increased
in accordance with the separation distance. This
means that rainfall data close to each other are
morc similar (and their squared difference less sig-
nificant) than those further apart.

After generating the variograms, kriging was
performed with the same 3 datasets [or the same
3 consecutive hours. The results are calculated
lora 1 x 1 km raster output. Figure 4 shows the
maps that resulted from kriging with the related
maps of spatial variance contained in the output.
The overall picture shows a relatively similar pat-
tern, given the fact that not the distance alone, but
weights [rom surrounding measurements are used
to predict values at each grideell. Thus, the amount
ol rain gauges and their distribution significantly
influence the overall result, although the same
automated procedure for creating the variogram
was applied to all dalasets. The areas with lower

Semivariograne 51 ZAWG ran gauges (L7.2016 = 2040]

Sartogram: 43 NOBL ram gauges (812915 = 20:00)

et 11 g 120 T4

Tigure 3.  Semivariograms for 20:00 on July 8, 2015 on
all 3 datasets with antomatically fitted variogram based
on a (vaussian modcl with REML cstimates.
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Figure 4. Raster maps (1 x 1 km grid size) produced
from automated kriging. Map a and ¢ represent the same
timeslice (20:00) for the NOEL (a) and ZAMG (c) data-
set. Map b and d show the associated spatial variance.
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Table 1. Validation results for all datasets.
Dataset Rain gauges Pearson’s
ZAMG 19:00 53 0.63
ZAMG 20:00 53 0.74
ZAMG 21:00 53 0.79
NOELL 19:00 63 0.30
NOEL 20:00 63 0.69
NOEL 21:00 63 0.48
ALL 19:00 116 0.43
ALL 20:00 116 0.74
ALL 21:00 116 0.68

rainfall amounts in the northern part are almost
identically calculated, whereas the most evident
deviation between the three datasets occurred in
the south-eastern part. This may be attributed to
a sparsely distributed number of rain gauges in the
area in one dataset, but also to orographic effects
that cannot be resolved with Ordinary Kriging
alone, as this method neglects correlated second-
ary variables (such as elevation). Also, the variance
significantly increases towards the margin of the
study area. This can be referred to omitted rain
gauges in neighboring states or countries and
thus affecting the distance in the semivariogram,
as only available gauges in greater distances in a
certain direction can be used to calculate the vari-
ogram. I'or the goodness of fit estimation we used
a cross validation approach to obtain the linear
correlation coellicients between the observed and
predicted rainfall. Table 1 gives an overview of the
calculated Pearson’s r values.

4 CONCLUSIONS AND OUTLOOK

Theabundance of data the internet is fed with every
day opens up new paths on how geosciences can be
pursued in the future. Lots of research done in the
field of natural hazards is kind of static and does
not incorporate real-time data, which is remark-
able, as most natural hazards are often related to
immediate events due to external triggering factors.
The landshide community does not make an excep-
tion, as a majority of modelling approaches deal
with retrospect cases. On the contrary, the rainfall
threshold community that indeed aims towards
carly warning of landslide occurrence, relies on
the triggering component alone. Only few works so
far addressed real-time dynamic components [or
regional landslide susceptibility and even hazard
assessment.

With this paper we aim at taking a prelimi-
nary step in combining spatially distributed
real-time clements with spatial landslide sucsep-
tibility and hazard assessments. Automated web
scraping has proven Lo be a great technique [or
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extracting informaton from the internet, but (o
our best knowledge, this has not been applied in
landshde research vet to acquire real-tme data
that is implemented in dynamic landslide model
ling approaches. In this paper we present a novel
approach on how to extract real-time meteorologi-
cal data and produce automated, spatially distrib-
uted rainfall maps based on geostatistical methods.
The results presented here belong to our first iters-
tion in producing real-time rainfall maps, however,
the results are quite promising. We are vet dealing
with a couple of obstacles that arise from differ-
entsources. The first step in the workflow consists
of building a database containing meteorological
data. However, some rain gauges produce incon-
sistent entries that need to be handled beforehand.
The more regular snd reproducible such incon-
sistencies are, the easier it is to catch them in the
error handling process. Another problem arises
from ran gauge mallunctioning. A single ramn
gauge that is not working during a heavy rainfall
event but still shows up on the internet produces
a massive bias as the semivariogram gets rather
incoherent. This asks for a plausibility check that
is vet to be implemented. So a prerequisite for the
automated geostatistical analyses 18 a cleaned up,
homogenous dataset. With respect to the scraping
procedure itself, we currently advise to get up own
scripts to gather all the desired web data in order
o mcrease dafa availability However, third party
web scraping applications (such as Kimonolabs
tested in this work) can become a good alterna-
tive, especiadly for non-programmers and for fast
development.

The overall lower correlation coeflicients for
the 19:00 datasets require further investigation, as
other factors clearly coniribute to & much higher
degree to the predicted amount of rainfall than
distance alone (thus the model is underfitied). The
automated modelling of the variogram as a func-
tion describing the degree of spatial dependence
hetween measurement locations, is common prac-
tice, but not as straightforward as a manual fitting
procedure. Additionally, the antomated fitting for
the 19:00 variogram, even when feasible for other
times and/or datasets, may not be the best solution
in this cage. Therefore, a more flexible automating
procedure is necessary for tteratively checking for
the most suitable model for fitting the variogram.

Ultimately we aim at connecting the rainfall
maps immediately into an automated, dynamic
slope stability model to assess factor of safety
esfimations every hour. This workflow will be
accompanted by implementing locally monitored
hvdrological parameters {ground water levels,
pore water pressure} that change dynamically o
case of a prolonged rainfall event (Bordoni ¢t al.
2015).
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Abstract Crucial to most landslide early warning system (EWS) is the precise prediction of
rainfall in space and time. Researchers are aware of the importance of the spatial variability
of rainfall in landslide studies. Commonly, however, it is neglected by implementing sim-
plified approaches (e.g. representative rain gauges for an entire area). With spatially dif-
ferentiated rainfall information, real-time comparison with rainfall thresholds or the
implementation in process-based approaches might form the basis for improved landslide
warnings. This study suggests an automated workflow from the hourly, web-based collection
of rain gauge data to the generation of spatially differentiated rainfall predictions based on
deterministic and geostatistical methods. With kriging usually being a labour-intensive,
manual task, a simplified variogram modelling routine was applied for the automated pro-
cessing of up-to-date point information data. Validation showed quite satisfactory results, yet
it also revealed the drawbacks that are associated with univariate geostatistical interpolation
techniques which solely rely on rain gauges (e.g. smoothing of data, difficulties in resolving
small-scale, highly intermittent rainfall). In the perspective, the potential use of citizen
scientific data is highlighted for the improvement of studies on landslide EWS.

Keywords Rainfall prediction - Web scraping - Geostatistics - Landslides - Early
warning system

1 Introduction

Rainfall-induced landslides pose a threat to people and infrastructure around the world
(e.g. Guzzetti et al. 1999; Crosta and Frattini 2003; van Westen et al. 2008; Giinther et al.
2013). Rising temperature (e.g. Gobiet et al. 2014) and rainfall variability (e.g. Casty et al.
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2005) in the European Alps make it of great importance to increase efforts in dealing with
the consequences of global change on landslide susceptibility. Albeit advancements in the
past within the field of geotechnical engineering have led to an increasing in situ damage
control in many parts of the world, landslides triggered by heavy rainstorms still cause
great losses where no protective structures are available or where they have not been
appropriately designed. Indeed, fatal landslide-triggering rainstorm events are occutring in
many places around the globe. Recent examples include Messina 2009 (Lombardo et al.
2014) or Rio de Janeiro 2010 (Calvello et al. 2015). Besides those landslides occurring in
natural, undisturbed conditions, also established geotechnical mitigation measures are not
sufficient and fail in many cases. Although landslides are usually restricted to local sites
when investigating single events, they can indeed occur in clusters in the aftermath of a
storm event and consequently they can be regarded as a regional phenomenon at specific
times (Jaedicke et al. 2014). Floods, on the other hand, are not locally restricted either;
however, their spatial occurrence is topographically foreseeable and controllable. This
situation shows the necessity of landslide early waming systems (EWS) (Glade and Nadim
2014; Thiebes and Glade 2016).

The observation of intense rainfall events on small spatio-temporal scales is crucial
for the development of a landslide EWS (Segoni et al. 2009; Thiebes et al. 2013). The
predominant approach in implementing rainfall data into landslide EWS is the
employment of empirical rainfall thresholds. This requires the precise knowledge of total
precipitation accumulated in a given period, or the rate of precipitation in a period, most
commonly measured in millimetres/inches per hour (Guzzetti et al. 2007). A certain
threshold is then defined for a given spatial extent by determining the rainfall amount that
triggered landslides. Hereby, it is important to differentiate the lowest and highest
landslide-triggering rainfall thresholds as the lower and upper limit, below which
landslides were never reported and above which landslide were always reported (Gariano
et al. 2015).

One major challenge within this approach is, how the recorded landslide-triggering
rainfall events were selected. In almost all cases, the precise amount of a landslide-
triggering rainfall at a certain location remains unknown. In practice, rain gauges with the
closest proximity to a landslide location or which provide the best representation of a
certain region are selected for determining a landslide-triggering rainfall event. An in-
depth consideration of the accurate spatial distribution of rainfall is often neglected for
landslide EWS (Thiebes and Glade 2016).

Consequently, the aim of this paper is to provide a useful basis for real-time spatio-
temporal rainfall data and to show its potential integration in a regional landslide
EWS. Instead of assuming uniform rainfall over a certain area, an automated geo-
statistical approach is presented. This allows for an approximation of spatially dis-
tributed, hourly rainfall predictions in real time based on gauged rainfall data available
on the Internet.

2 Review of current approaches
2.1 Landslide early warning systems

The UNEP (2012) suggests four key elements which are required for any operational EWS:
(a) a comprehensive assessment of the risks, (b) the implementation of monitoring and
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predicting capabilities, (c) a reliable, synthetic and simple dissemination strategy and
(d) development of response strategies combined with the need for raising public aware-
ness and education. Besides financial constraints, however, many operational landslide
EWS are discontinued due to the fact that only the purely technical components are
considered, and the social aspects such as the elements (c) and (d) (UNEP 2012) are not
addressed (Baum and Godt 2010). Not many cases of an integrated approach have been
published (e.g. Thiebes 2012; Heil et al. 2014).

Many studies describe the calculation of rainfall thresholds best suitable for a given
region {e.g. Glade et al. 2000; Guzzetti et al. 2007; Aleotti 2004). The region under
consideration for a certain threshold may range from local scale (Keefer et al. 1987) to
global scale (Hong et al. 2007). Commonly used thresholds are either attributing rainfall
directly or consider additionally the antecedent rainfall. The first one calculates rainfall
thresholds for a certain region based on rainfall intensity over a certain time span that
caused landslides (e.g. intensity—duration threshold), the latter takes the antecedent rainfall
before slope failure into account (e.g. antecedent rainfall threshold), thus considering
indirectly also the soil moisture conditions. Literature reports a landslide EWS in Hong
Kong implemented in 1977 probably as the first one of its kind {Chan et al. 2003). The first
operational landslide EWS in the USA were implemented in the early 1980s (Baum and
Godt 2010). A notable mention is the landslide EWS in the San Francisco bay area in 1985
(Keefer et al. 1987) which is said to be the pioneer of modern landslide EWS in combi-
nation with rainfall thresholds (Stihli et al. 2015). Ultimately, every successful landslide
EWS is a function of expectations that does not only satisfy the requirements of the
developers, but also the decision-makers, end-users and the regulations of the prevalent
legal system (Thiebes and Glade 2016).

Based on reviewing over 50 EWS for mass movements in Switzerland, Stahli et al.
(2015) suggested the following classification scheme for EWS:

(a) Alarm systems are directly coupled to sensors that immediately release an alarming
upon exceeding a predefined threshold. The accuracy of the prediction is high and
the lead time very short (e.g. rockfall).

(b) Warning systems detect significant changes in time-dependent factors before an
event occurs (e.g. a rainfall threshold). The initial alert is based on predefined
thresholds too but ultimately the alarm is released after an expert evaluation. With
an extended lead time, warning systems are mainly used for processes with
progressive stages of failure (e.g. rock slides, translational and rotational soil slides).

(c) Forecasting systems do not use any predefined thresholds, but the level of danger is
evaluated in regular intervals. Experts are issuing warnings based on modelling
results or sensor data (e.g. degree of avalanche danger for the next day).

Those thresholds involved in landslide EWS can be derived by different approaches.
Alarm systems can be based on direct displacement measurements (e.g. Intrieri et al.
2012), while warning systems and forecasting systems obtain their respective thresholds
based on rainfall measures (e.g. Capparelli and Tiranti 2010; Aleotti 2004) or deterministic
models (e.g. Montrasio et al. 2014; Chien et al. 2015). The most common types applied in
landslide EWS are basic rainfall thresholds. Dealing with thresholds always implies a
certain amount of a priori knowledge. This knowledge is not readily available in most
cases, especially with respect to the precise date and time of landslide occurrence {van
Westen 2006, 2008) and its respective rainfall conditions that ultimately triggered the
failure (Wieczorek and Guzzetti 1999).
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When dealing with landslide EWS and having the various data constraints in mind, it is
evident that it is impossible to cover all early warning situations {Casagli et al. 2010).
Although the calculation of rainfall thresholds is the most common approach for assessing
regional landslide early warning situations, they only represent a simplification of the
physical processes involved {(Reichenbach et al. 1998). This means that in most cases there
is more than just this one causative factor (rainfall) involved (Huang et al. 2015).

2.2 Observation of rainfall and its spatial representation in landslide EWS

The most important aspect of any landslide EWS is the precise and timely determination of
rainfall, no matter whether the approach of the system is based on empirical rainfall
thresholds or combined hydrological and slope stability modelling in a landslide fore-
casting framework. Most researchers are aware of the importance of the spatial variability
of rainfall in landslide research. In applications, however, it is commonly not addressed
due to the scarcity of available rain gauges (Chiang and Chang 2009). With respect to
rainfall thresholds, common approaches to determining the actual rainfall for a single
landslide site or a certain region are to utilize single rain gauges near a specific landslide
site {e.g. Capparelli and Tiranti 2010) or selected rain gauges as representative locations
for a predefined region (e.g. Segoni et al. 2015; Rosi et al. 2015). Aleotti (2004) pointed
out that using representative rain gauge locations is dependent on the distance not only
from the landslide, but also from other settings such as elevation, aspect or the wind
direction. Lagomarsino et al. (2013) present a more advanced approach in their SIGMA
warning system by not using a single rainfall threshold for the entire territory of Emilia
Romagna (Italy). Instead, they artificially split the region into smaller spatial units, so-
called territorial units (TU), which is each characterized by its own threshold. However,
each TU is characterized by single rain gauges, thus only offering uniform raintall for the
entire area. With respect to the amount of rain gauges used to characterize aerial rainfall,
Guzzetti et al. (2004), for example, use seven rain gauges for an area of ca. 5500 km? for
their rainfall-induced landslide studies. Similarly, Bathurst et al. (2006) use five for ca.
500 km? or Schwab et al. (2008) just one rain gauge for 324 km?.

Another seemingly very attractive approach to determining continuous rainfall fields is
the utilization of radar technology. Radar technology is capable of offering spatially
varying rainfall fields at temporal resolutions of 10 min (and less) and spatial resolutions of
around 1 km, which is highly desirable for landslide studies (Chiang and Chang 2009). In
addition, there is also vertically differentiated information on precipitation values avail-
able. The quantification of rainfall estimates using Doppler radar can provide a real-time
comparison with rainfall thresholds to form the basis of landslide warnings (Wieczorek and
Guzzetti 1999). Radar data may capture the spatial variation of rainfall fields better than
gauged data, especially in mountainous regions where rain gauges are sparsely distributed
{(Yang et al. 2004; Segond et al. 2007). At the same time, however, terrain obstacles may
cause (partial) beam blockage (or beam shielding) when radars are operated in moun-
tainous regions. Beam blockage correction offers ways to enhance rainfall estimates in
mountainous regions, but sometimes beam occlusion cannot be prevented in a region of
complex terrain (Lang et al. 2009; Anagnostou et al. 2010). On the other hand, radar
coverage is not available everywhere (Chappell et al. 2013). What also must be kept in
mind is that radar is not capable of measuring precipitation directly. Instead, the rainfall
magnitudes are derived from the magnitude of measured reflectivity from the hydrome-
teors in the atmosphere (Harpold et al. 2017). This procedure requires calibration with rain
gauge data in order to adjust the high-resolution spatial pattern with actual measured
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rainfall data. There is an abundance of literature dealing with this merging process (e.g.
Collier et al. 1983; Jewell and Gaussiat 2015; Velasco-Forero et al. 2009; Berndt et al.
2014).

Within the landslide community, the potential of radar data remains often underex-
ploited. There are only few studies implementing spatially continuous rainfall data from
radar technology for landslide research (e.g. Crosta and Frattini 2003; Chiang and Chang
2009), even fewer for early waming purposes in combination with numerical weather
prediction models and radar data (e.g. Schmidt et al. 2008; Segoni et al. 2009). Although
the technology has made great advancements in recent years, the associated uncertainties
and generally low success rates (in terms of comectly predicted landslide occurrences)
reduce its application within the landslide community. Schmidt et al. (2008) proposed a
coupled regional forecasting system in New Zealand based on multiple process-based
models {weather forecast, soil hydrology, slope stability). Segoni et al. (2009) proposed a
similar approach, yet with the same conclusion that the meteorological uncertainty has the
highest mfluence on the final Factor of Safety map that serves as the basis for landslide
early warning. The hydro-meteorological community is far more involved with the uti-
lization of radar data for the deduction of continuous rainfall fields. However, they share
the same concerns (Jasper et al. 2002) or even have taken a step further by implementing
numerical weather predictions (Cloke and Pappenberger 2009).

Another emergent technology for assessing the spatial extent of rainfall is satellite
precipitation data, especially in regions without rain gauges and ground radar coverage.
Satellite-based rainfall estimates provide synoptic estimates of the spatial distribution of
precipitation events (Chappell et al. 2013). This information is provided at 0.5-3-h
intervals at spatial resolutions between 0.07° and 0.25° (Joyce et al. 2004; Kubota et al.
2007; Huffman et al. 2007, 2010). Tian and Peters-Lidard (2010) questioned the overall
accuracy of satellite rainfall products; however, NASA’s Tropical Rainfall Measuring
Mission (TRMM) has collected precipitation data for over 17 years by now, which is a
valuable data archive for global precipitation data (Kirschbaum and Patel 2016). The
popularity of satellite-based precipitation data experienced a considerable rise in February
2014 when NASA launched the Global Precipitation Mission (GPM) as a follow-on
mission to TRMM (Harpold et al. 2017). GPM provides rainfall and snowfall estimates
every 3 h with sensors that are far more advanced and permit better quantification of the
physical properties of precipitation particles (Hou et al. 2014). With respect to landslide
research, there are only few studies available that utilize satellite-based precipitation data
(e.g. Rossi et al. 2012; Kirschbaum et al. 2015), all of which still rely on TRMM data. It
will be interesting to observe how near real-time GPM data with higher spatial resolution
will be adopted by the landslide community in terms of early warning applications (Stanley
et al. 2017).

What has not been covered in detail for landslide studies so far is the wide topic of
spatial interpolation for the generation of continuous rainfall fields, which will be
addressed in the next chapter as the focus of this study.

2.3 Spatial interpolation techniques for the generation of continuous rainfall
fields

Spatial prediction is almost always based on samples, but in reality the measurements
represent a continuum in space from which the samples have been taken (Oliver and
Webster 2014). Historically, spatial prediction was undertaken by purely mathematical
approaches that considered only systematic or deterministic variation, but not any error.
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Geostatistical prediction, namely kriging, is the logical successor that overcomes most of
these drawbacks (Webster and Oliver 2001). Geostatistics aim explicitly at correctly
portraying spatial variation (Srivastava 2013), or more precisely, kriging has become a
term for several related least-squares methods that provide best linear unbiased predictions
(BLUP), in which best is meant in the sense of minimum variance (Oliver and Webster
2014). The atmosphere, or any other environmental feature, is the sum of all kinds of
physical, chemical or biological interactions. Although physically determined, they still
remain more or less a black box due to its complex interactions that are not fully under-
stood, thus making the variation appear to be random (Oliver and Webster 2014). Con-
sequently, many environmental variables, such as rainfall, can be considered as spatial
random variables.

There are many studies available that compare different interpolation methods for
assessing spatial rainfall distribution, the majority from the hydrological or hydro-mete-
orological communities (e.g. Ly et al. 2013; Mair and Fares 2011; Schuurmans et al. 2007;
Haberlandt 2007; Goovaerts 2000). Most studies focus on monthly or annual rainfall
estimates (Ly et al. 2013). There is only a small number of studies available that uses
hourly time steps for the spatial interpolation of rainfall {e.g. Haberlandt 2007; Velasco-
Forero et al. 2009; Schiemarmn et al. 2011; Verwom and Haberlandt 2011). Very few
studies are available for landslide applications (e.g. Chiang and Chang 2009). The liter-
ature suggests a differentiation between deterministic and geostatistical approaches. The
most frequently used deterministic methods for estimating rainfall are Thiessen polygons
and inverse distance weighting (IDW) (Ly et al. 2013). The Thiessen polygon method (also
Voronoei polygons, Dirichlet tessellation) is one of the earliest and simplest techniques. The
region sampled is divided into polygons by perpendicular bisectors between the sampling
locations. In each polygon, all points are nearer to its enclosed sampling point than to any
other sampling point {Webster and Oliver 2001). For example, Godt et al. (2006) used this
technique to characterize rainfall for shallow landsliding in Seattle (USA). The IDW
method is rather popular among deterministic spatial interpolation techniques. It is based
on inverse functions of distance with the result that unknown locations to the sampling
point carry larger weight than those further away. The advantage of weighting by inverse
squared distance is the quick diminishing of the relative weights with increasing distance,
making the interpolation sensibly local. However, the selection of the weighting function is
arbitrary; also there is no indication of error (Webster and Oliver 2001). Chiang and Chang
(2009), for example, used IDW to characterize the spatial rainfall distribution for mod-
elling rainfall-induced landslides.

With respect to geostatistical approaches, kriging is the predominant method by con-
necting mathematical concepts with geoscientific requirements. Kriging is a generalized
least-squares regression technique that offers accounting for the spatial dependence
between observations (Schuurmans et al. 2007). A huge benefit that comes with this
technique is the provision of a measure of certainty. In kriging, the unknown target variable
is estimated using a weighted sum of the available point observations. The weights of the
data are chosen so that the interpolation is unbiased and the variance is minimized (Ly
et al. 2013). One important assumption is that the process under consideration is stationary.
This allows researchers to assume that there is the same degree of variation from place to
place and that the covariance between two observations only depends on the distance
between these observations (Oliver and Webster 2014; Ly et al. 2013). For kriging
applications, a graphical summary is used to analyse and understand spatial variation: the
variogram {(or more correctly: the semivariogram, as it depicts half the variance of the
difference of the covariance, but for the sake of simplicity it is mostly called variogram).
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The variogram plots variation as a function of distance. This means that rain gauges, for
example, being in close proximity will have data values that are more similar to each other
than rain gauges further away. Thus, the variogram is a plot of the average squared
difference between pairs of data values and thus the central part of any subsequent kriging
prediction. Just as the variance, the units of the variogram are the square of the units of
measurement (Srivastava 2013). The plotted variogram based on the sampled data is called
experimental variogram (Oliver and Webster 2014). There are three key characteristics of a
variogram: (a) sill: the plateau that is reached by the variogram estimating the variance of
the random process; (b) nugget: the y-intercept for the unresolved variation; and (c) range:
distance at which the variogram reaches the sill (Srivastava 2013). To make the variogram
applicable for the kriging prediction, a curve has to be fitted to the experimental variogram
to neglect any inherent point-to-point erratic fluctuations. This fitted curve has a mathe-
matical expression that describes the variance of random processes with changing distance
and guarantees non-negative variances in the predictions (Oliver and Webster 2014).
Commonly used correlation functions deriving the theoretical variogram are exponential,
spherical, Matérm or Gaufian. In practice, there are different types of kriging. In the
geoscientific literature, common prediction techniques are (a) ordinary kriging (OK),
(b) kriging with external drift (KED), and (c) ordinary cokriging (OCK). Applied to spatial
precipitation pattern, OK uses only rain gauge information, while the other two techniques
incorporate sampled secondary information (e.g. weather radar information or elevation) to
improve the kriging prediction {Goovaerts 1997). There is an abundance of related geo-
statistical literature available that readers are referred to for more in-depth information
(e.g. Isaaks and Srivastava 1989; Cressie 1993; Goovaerts 1997; Webster and Oliver 2001).

3 Materials and methods
3.1 Obtaining real-time weather information from antomated web scraping

This study uses web-based, hourly rain gauge data being obtained in an automated data
workflow. Hourly time steps were selected due to the fact that longer observation periods
would average rainfall intensity, which is detrimental for landslide early warning purposes
due to the underestimation of peak (maximum) rainfall (Guzzetti et al. 2007). In this study,
hourly time steps are considered as a compromise that still allows for creating spatially
distributed rainfall information in near real-time and reflects the short-term rainfall
intensity requirements for early warning applications, although shorter time steps would be
even more desirable. In the past few years, environmental sciences are witnessing an
increasing amount of published information on the Internet (Vitolo et al. 2015), which
includes high-quality real-time weather data from various data sources. In many scientific
fields, data obtained from the Intemet are being used in a different way, ranging from
simple data extraction tasks to fully automated data processing workflows. This growing
demand leads many operators of databases and servers that exhibit a certain volume of
traffic and where well-profiled usage expectations are available, to design publicly avail-
able application programming interfaces, so-called APIs. Data APIs are agreed-on pro-
gramming interfaces providing a structure to download and link large chunks of
heterogeneous data. Although such web services are the standard and recommended way to
enable external access, such APIs are not always available, especially when the potential
user base, and consequently the related demand on data, is minor. In such cases, web
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scraping is an alternative and valuable method for extracting and combining content from
the Internet in a systematic way, even in the absence of an API {Glez-Peiia et al. 2013).

Web scraping mimics the human user interaction with a website in a systematic way.
The web scraping application is accessing as many websites as desired, parses its content to
find and extract relevant information and structures it in a way ready to use for subsequent
analyses. Although there are some desktop-based web scraping solutions (Glez-Pefia et al.
2013 list a few), the most common approach is to use any suitable programming language
to achieve maximum flexibility. There are many third-party, open source libraries available
for implementing them in the source code for developing own web scraping applications.
Figure 1 shows arough overview of the entire web scraping process on how hourly rainfall
data from various data sources is fetched, parsed and stored so that it can be retrieved for
the generation of spatially distributed rainfall information. To establish the web scraping
application to obtain hourly real-time weather data, the JavaScript based Meteor]S web
framework was used in this study. It allows for rapid prototyping and the establishment of a
server/client application. The scraped website access is executed by accessing the docu-
ment object model (DOM) of the HTML content. This is done with Cheerio, which is
based on the jQuery library to simplify client-side scripting. Cheerio (https://atmospherejs.
com/fermuch/cheerio) itself is specifically designed for the Node.js runtime environment.
With Meteor’s http-package, the HTML content was loaded. To ease parsing, the Node.js
module Atml-parser2 (https://www.npmjs.com/package/htmlparser2) was used. To provide
the extracted data also for later usage and not just real-time applications, the obtained
information is stored in Meteor’s default database (MongoDRB) in a structured way (Fig. 2).
For automated, time-based scheduling of the scraping process, the syrced-cron-package
{(https://atmosphere]js.com/percolate/synced-cron) was used. To access the data directly
from the database in the source code of our subsequent analyses, the restivus-package
(https://atmospherejs.com/nimble/restivus) was used to create RESTful APIs. The Mon-
goDB used can be classified as a NoSQL database that stores data as JSON-like (JavaScript
Object Notation) documents which makes it a fast and far more flexible way to store
scraped data.
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Fig. 1 Flow chart of the implemented web scraping application fo fetch, parse and store real-time rainfall
data for subsequent analyses
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Fig. 2 a One of the websites providing hourly weather related data (Source: ZAMG); b corresponding
MongoDB entry from the scraped web data

3.2 Automated spatial interpolation

There are always reliability concerns with respect to web-based data (de Vos et al. 2016).
Although no crowdsourced weather data are included in this study at present, there is still
the possibility of erroneous or bogus data involved. The quality issues of rain gauge data
come from remotely, automated data sampling and the electronic transmission of the data
through several ports before being used in an application (Kondragunta and Shrestha
2006). Therefore, real-time rain gauge quality control (QC) is necessary to detect major
inconsistencies. Additionally, single-station QC checks alone are not sufficient due to the
high spatial variability of rainfall; thus, adjacent stations have to be taken into consider-
ation too. For this purpose, three automated QC/plausibility checks were implemented in
this study: (a) a range filter; (b) a spatial consistency filter; and {c) an autocorrelation filter
(for the kriging application only). The range filter is a simple check performed on a single
observation for a given location for a specific time. Rain gauges with hourly rainfall
intensities below 0 mm (physically impossible) or above 25 mm (very unlikely in that
area) are excluded for subsequent analyses. The spatial consistency filter uses a distance
matrix to calculate the 95th percentile of all available rain gauge intensities within 20 km
(Fig. 3a). This distance was chosen to cover a substantial amount of neighbouring rain
gauges and due to pronounced spatial autocorrelation that was shown in the variogram
within this distance. If a rain gauge contains an intensity greater than the 95th percentile, it
is discarded for subsequent analyses, but only if the intensity is higher than 15 mm. This
threshold was chosen due to the fact that predominantly high rainfall intensities are
important for landslide early warning purposes while the severe weather centre in Austria
{(Unwetterzentrale) defines heavy rainfall from 17 mm. Therefore, some tolerance was
added to that boundary condition. The spatial consistency filter does not serve purely as a
plausibility check, but also as a means to deal with outliers for the geostatistical inter-
polation, although we cannot know whether an unexpectedly large value is a real outlier
(i.e. punctual high-intensity rainfall) or not. Outliers cause serious distortions in a vari-
ogram and should be removed if they are suspected to belong to a process other than the
one interested (Oliver and Webster 2014). Therefore, we exclude such outliers from the
data set to model the spatial relationship between the rain gauges, but use the entire data set
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Fig. 3 a The spatial consistency filter removes rain gauges from an howly data set thaf contain suspiciously
high rainfall intensities compared to surrounding rain gauges; b the autocorrelation filter removes rain
gauges from an hourly data sef that contain zero rainfall and have only rain gauges with zero rainfall in their
vicinity. Rain gauges thaf have zero rainfall but confain rain gauges within ifs vicinity that exhibit rainfall,
are kept due to very apparent spatial dependency. The x and y axes refer to projected UTM coordinates.
Triangles indicate retained rain pauges, sguares indicate eliminated rain gauges, large circles indicate
search radius for the distance matnix, and rumbers refer to rainfall amount (mm hfl)

for the kriging prediction. This way, the vanogram modelling is not corrupted by outliers,
but the kriging surface still accounts for the extreme values.

The last implementation is the autocorrelation filter. When examining the distribution
of environmental parameters, it often tends to be positively skewed towards the smaller
values. This is also the case with hourly rainfall where some regions contain a certain
amount of rainfall and other regions do not receive any rainfall at all. So there is a strong
clustering of natural zero values in the distribution which makes transformation difficult.
The comparison between means of observations is more unreliable because the variances
are likely to differ from one set of data to another {Webster and Oliver 2001). Therefore,
non-transformed data are used but isolated zero values are treated with the autocorrelation
filter with regard to variogram modelling.

Schuurmans et al. {2007) also point out some problems arising with zero rainfall for
kriging estimates. Geostatistics is based on the premise of autocorrelation. In an area where
rainfall is recorded, there is a certain autocorrelation between the rain gauges. In an area
without rainfall, zero values are negligible for the purpose of this study. The boundary
between an area containing rainfall and an area without rainfall is, however, still relevant
because stations close together are still autocorrelated to a rather high degree. The auto-
correlation filter has, consequently, three conditions that must be satisfied: (a) keep all
stations that have at least 0.1 mm rainfall; (b) remove all stations that have 0 mm rainfall
and only have stations with 0 mm rainfall within distance; and (c) keep all stations that
have 0 mm rainfall, but have stations with at least 0.1 mm rainfall within distance
(Fig. 3b). As with the spatial consistency filter, the search distance equals 20 km. Addi-
tionally, the filtered data set is used for the variogram modelling, but all sample points are
used for the kriging prediction. Naturally, this automated filter approach does not work in
all situations, especially when the amount of remaining rain gauges is significantly reduced
(Webster and Oliver (1992) point out the effect of sample size on variogram estimation).
Therefore, a set of data with and without this filter is used in subsequent analyses and
omitted on poorer validation results. Large areas with no rainfall that had their rain gauges
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Fig. 4 Flow chart showing the automated workflow from a web-based data generation, the application of
various filters to the raw rainfall data to eventually exclude single rain pauges, through b the inferpolation
procedures for producing hourly real-time rainfall raster maps

removed this way have a significantly higher variance consequently. Figure 4a shows an
overview of all filters that are applied to the raw web-based rainfall data.

3.2.1 Geostatistical methods

Exploratory data analysis was the initial step to assess how representative and consistent
the available rain gauges are distributed in the study area. For geostatistical analyses, areas
with a high point density provide more reliable estimates at unsampled locations than areas
with only a few rain gauges. To assess whether the average distance from an arbitrary point
to the next nearest sample point is significantly short, testing for complete spatial ran-
domness (CSR) might give an indication (Diggle 2003). The function behind estimating
CSR is a nearest neighbour distance distribution function (7). Testing for CSR covers the
horizontal domain. To check whether there are significant differences in distribution with
respect to elevation, an overlay sampling of the rain gauge locations was performed on a
digital elevation model and tested with a nonparametric KS test. Kriging uses the semi-
variances based on a fitted variogram function. Creating a theoretical variogram is usually
a labour-intensive task as many choices must be made (such as finding suitable range, sill,
nugget values). There are attempts to automate the procedure, yet it carries risks when
fitting a variogram without surveillance. Cressie (1985), for example, suggests a specific
variogram where the weighted sum of squares between experimental and theoretical var-
iogram becomes a minimum. However, the sensitivity of the variogram estimation on the
interpolation itself is often not quite high. On the other hand, if a precise estimation of the
error variance is needed (e.g. for uncertainty assessment), a solid variogram estimation is
required (Haberlandt 2011). Therefore, the focus of this study lies in the rapid estimation of
a suitable variogram for real-time applications.

The initial step for the variogram modelling is importing the georeferenced rain gauge
data (filtered and unfiltered) from the web scraping application which happens every hour
as soon as up-to-date information is available. To proceed, usually the variogram
parameters range, sill and nugget should be estimated by exploratory analysis or expert
knowledge. To automate this procedure, the decision is made to assign some plausible
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initial values. Therefore, the initial range is defined as 0.1 time the diagonal of the input
shapefile that defines the boundaries of the study area (the bounding box). The initial sill is
calculated as the mean of the maximum and median of the semivariance; the initial nugget
is defined as the minimum of the semivariance. The next step uses a loop to iterate over
multiple permitted variogram models (Spherical, Matérn incl. M. Stein’s parameterization,
Gaussian, etc.) to select the model with the smallest residual sum of squares (Oliver and
Webster 2014). Additionally, all kappa values are tested for the Matém model. This
procedure with its associated values is based on the automap-package in R (Hiemstra et al.
2009). Omnidirectional variograms are created for both filtered and unfiltered input data. In
case there is uniformly no rainfall at all or just very little in just a few sampling locations,
the variogram is basically a horizontal line, indicating a pure nugget variogram due to the
fact that there is no variance between the samples. The prediction in that case would be
everywhere the same and thus the mean of the data (Oliver and Webster 2014). It would be
difficult to interpret a pure nugget estimate, but the physical justification was given more
weight: uniformly zero, or almost zero, rainfall does not matter too much for the under-
lying research question, which is more interested in larger rainfall intensities for landslide
applications. And those are never uniformly distributed.

Here, a univariate approach is applied for spatial prediction, namely ordinary kriging
(OK). Adding auxiliary variables as additional predictors might be helpful in some cases,
but Ly et al. {2011) have shown, that adding elevation does not improve interpolation
accuracy for short time intervals. Also Haberlandt (2007) found that elevation information
plays a minor role for hourly rainfall data. When incorporating additional predictors to
multivariate approaches, the benefit might be marginal if correlations become too small, as
concluded by Goovaerts (2000). Figure 4b shows a flow chart of the antomated kriging
procedure used in this study. Using OK, hourly rainfall was estimated at unsampled
locations on a 1-km square grid across the study area. The 1-km grid spacing used here was
set for consistency and subsequent comparison with the radar data that contains the same
grid size. Also according to Hengl (2006), who provided some empirical and analytical
rules for the selection of suitable grid sizes, the selection of a 1-km grid size is justified
based on the amount of rain gauges available. Kriging estimates might take negative values
when negative kriging weights are applied. This is undesirable because this can lead to
non-physical estimates. Possible solutions to avoid negative estimates are either a poste-
riori corrections of the kriging weights, as suggested by Deutsch (1996), or simply
replacing all negative values with zero (Ly et al. 2013). In this study, the latter approach
was used to achieve a physically sound rainfall estimation.

3.2.2 Deterministic methods

With regard to deterministic estimation procedures, the inverse distance weighting (IDW)
and Thiessen polygon methods are used. The IDW method gives each rain gauge a weight
that is inversely proportional to the distance between that rain gauge and an unknown
sample point. Critical user input to this method is a distance parameter (an exponent) that
controls the degree of dependence to a rain gauge in closest proximity {Srivastava 2013), A
smaller value gives rain gauges further away higher importance, while accordingly larger
exponent values assign higher importance to closer rain gauges. IDW is not capable of
providing any quantitative indicator of reliability; therefore, an iterative approach was used
to test multiple exponent values between 2 and 3, which was considered a plausible range
for avoiding biased estimates. The distance exponent with the highest goodness of fit, in
terms of the highest coefficient of determination in the validation process, is ultimately
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used for the final IDW based rainfall estimate (Fig. 4b). Another deterministic method
used to compare kriging and IDW estimates is the Thiessen polygon method. This method
simply divides the study area into polygons by perpendicular bisectors between the rain
gauge locations. Within a polygon, all unknown points are closer to its enclosed rain gauge
than to any other rain gauge (Webster and Oliver 2001).

3.3 Radar rainfall estimates

In 1965, Austro Control (the Austrian air navigation services provider) started operational
service of its first weather radar at the airport Wien-Schwechat. Since then, many
improvements have been made until 2011, when the first dual-polarization ground radar
was installed. Those new-generation systems enable the transmission of radio signals with
both horizontal and vertical polarization, while the conventional Doppler systems only
transmitted and received radio waves with single horizontal polarization (Harpold et al.
2017). Since 2001, radar data in Austria are available with a spatial resolution of
1 x 1 x 1 km and a temporal resolution of 3 min. The operational weather radar network
in Austria consists of five stations, each with a range of 224 km covening the entire
territory of Austria (Kaltenbock 2012). The used 2d-weather radar composites contain 14
quantization steps given in reflectivity (dBZ). Each radar composite has a spatial resolution
of 1 x 1 km and contains data from a 5-min scan. Consequently, the 5-min rainfall
reflectivity was summed by hour and divided by 12 for the hourly average to match the
information from the rain gauges. To convert the reflectivity Z to rainfall intensity R (in
mm h ™), the empirical Marshall-Palmer equation was used with the relation Z = 200R"®
(Lovejoy et al. 2008). For this study, the radar data remained uncalibrated; thus, the
converted rainfall rates from the radar data cannot be directly compared with the rainfall
rates from the interpolated rain gauge data, but are used as a qualitative means of
validation.

4 Study area

The study area includes the entire federal state of Lower Austria (Niedertsterreich) in the
north-eastern part of Austria. The size of the study area is 7408 km?. The mean annual
precipitation rates in Lower Austria for the period 2001-2010 show a gradient from lower
rates in the northeast (approximately 500 mm) to higher rates in the southwest {(approxi-
mately 1600-1700 mm) (Petschko et al. 2015). Schweigl and Hervas (2009) and Schwenk
(1992) mention exceptional rainfall and/or snow melt as main triggers for landsliding in
Lower Austria. A recently compiled landslide inventory for Lower Austria based on 1-m
LiDAR DTM derivatives and orthofoto mapping reveals 13,166 landslides (Petschko et al.
2015).

The Cretaceous—Early Tertiary Rhenodanubian Flyschzone (RDF) contains approxi-
mately 6300 mapped landslides but contributes only to 14% of the territory of Lower
Austria. Although there has been extensive work on statistical landslide susceptibility
assessment in Lower Austria {e.g. Petschko et al. 2014; Steger et al. 2015, 2017), there are
no published rainfall thresholds or process-based modelling approaches available.

To test the proposed methodology, a rainfall event from June 2009 that triggered many
landslides in the southemn parts of Lower Austria was selected. In total, 92 rain gauges were
available to apply different spatial interpolation techniques for the automated generation of
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Fig. 5 a Destroved infrastructure near Stossing (Lower Austria) caused by the June 2009 rainfall event

(Image: Bertsch); b elevation map of Lower Austria; dots indicate rain gauge locafions used in this study
(DEM: CC BY 3.0 AT—Federal state of Lower Austria)

real-time continuous rainfall fields (Fig. 5). All rain gauges used in this study are contained
in officially operated, automatic weather station networks from different weather service
providers.

5 Results
5.1 Variogram modelling

Exploratory data analysis was performed as a first step to check how the rain gauges are
spatially distributed in the study area with respect to spacing and elevation. Figure 6a
shows the CSR plot of the empirical function é(r) against the theoretical expectations
G(r), indicating whether the average distance from an arbitrary point to the next nearest
sample point is significantly short. The upper and lower simulation envelopes are calcu-
lated based on 100 simulations and indicate significance bands {the number of simulations
was chosen arbitrarily but was found justified as no significant changes are expected

0

130 1600 1300

Gir)
Elevation (m)
700 1000

e 100 400

o 2000 4000 8806 &000 40000
range (m)

Fig. 6 a Testing for complete spatial randomness (CSR) to assess the spatial representativeness of the rain
gauge distribution (“sampling design”) with respect to geographical space. G(r) represents the empirical
function (continwous line), G(r) the theoretical expectation (dashed line) within its significance bands
(“envelopes™); b relative frequency distribution of rain gauges with respect to overall distribution of
elevation in the study area
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Fig. 7 Exponential variograms for the same time but without data filtering (a) and with filtering (b). In. this
case, the filtering leads to a slightly decreased sill which indicates lower variance of the residuals at greater
distances

beyond that). Given the fact that there was no sample design involved in the selection of
the rain gauge locations and that the average spacing between the rain gauges is around
10 ki, the distribution of the sample locations is quite representative with respect to
geographical space. With respect to elevation, using a nonparametric KS test showed that
the distribution of rain gauges is not significant with respect to the overall distribution of
the elevation in the study area (Fig. 6b). Especially higher elevations and elevations in the
400-500 m range are overrepresented by rain gauges.

Variance in every rainfall event differs; thus, also each variogram is different. From the
automated fitting procedure, it can be concluded that generally there is quite a large
variability in fitted ranges across hourly events. On a multitude of variograms, however,
the range is between 30 and 50 km. But there remain many variograms with a very large
range leading to spurious autocorrelations, probably caused by large-scale trends extending
throughout the study area. From the iterative model fitting procedure, the most common
applied model was the Matérn model with Stein’s parametrization (resulting from itera-
tively comparing the smallest residual sum of squares). In some cases, the filtering pro-
cedure also leads to a reduction in sill (Fig. 7).

5.2 Real-time rainfall interpolation

To demonstrate the different interpolation techniques described in Methods, three con-
secutive hours of a frontal rainfall event were selected that caused landslides in the
southem parts of Lower Austria. 92 rain gauges served as the basis for the spatial inter-
polation. Figure 8 shows a composite of those 3 h for all rainfall predictions. All pre-
dictions were performed ona 1 x 1 km grid. All predicted rainfall fields are in good visual
accordance; however, the Thiessen polygons (Fig. 8e) are considered to grant no real
advantages over the conventional representative rain gauge approach to characterizing
spatially distributed rainfall for a certain area as the transition between the arbitrary
polygon boundaries is unrealistically rough. This is even more extreme for very short time
intervals and in mountainous regions where recorded rainfall intensities may vary signif-
icantly within short distances. Also in just those 3 h, two problems associated with the
kriging technique are apparent. When considering the point information from the rain
gauges (Fig. 8a), rainfall in areas with high intensities is much lower for the kriging
estimates (Fig. 8b, ¢). Thus, kriging loses variance by smoothing, yet it gives the best
estimates from a statistical point of view. The second issue with kriging is the presence of
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Fig. 8 Results from the automated spatial interpolation: a hourly rain gauge data; b ordinary kriging (OK)
without filtering; ¢ OK with filtering; d IDW interpolation; e Thiessen polygons. Lines in the (b) and
(¢) estimates indicate areas with equal amounts of rainfall {isohyets). Poinfs in the maps (b) through
(d) indicate rain gauge locations
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punctually very high intensities. At 01:00 24 June, 2009 (left column in Fig. 8b), a single
high-intensity rain gauge is present that leads to a strange, bullseye-like structure. This rain
gauge was removed with the automated filtering (Fig. 8c), still it seems that a spatially
limited high-intensity rain cell causes a big influence in this part of the study area that
cannot be properly resolved by the automated variogram modelling.

5.3 Performance comparison for hourly interpolation

To estimate the performance of the OK, filtered OK and IDW predictions, two different
types of validation were performed. The leave-one-out cross-validation (1ooCV) removes
one rain gauge at a time and recalculates its value from the remaining data. Validation was
also performed by splitting the sample size randomly into a training (80%) and a test (20%)
subset. The training subset was then used to predict the values of the test subset. For the
three consecutive hours shown here, the validation results are presented in Fig. 9a. The
problems in the kriging estimates for the local high-intensity rain cell at 01:00 24 June,
2009, are also reflected in the validation results showing much lower coefficients of
determination {around 0.65). The next 2 h produced more balanced kriging estimates
resulting also in better validation results (arcund 0.8). For those 2 h, the application of the
different filters {range, spatial consistency and autocorrelation filter) also leads to a slight
increase in performance. For every rainfall prediction, a standardized residual plot is
generated which measures the strength of the difference between observed and predicted
values (Fig. 9¢). The residuals from the automated rainfall prediction tend to be sym-
metrically distributed (homoscedastic) and there are no clear patterns in general, which
indicates that the automated model prediction is feasible.

Many studies indicate the root-mean-square error (RMSE) as a performance indicator.
We refrain from this practice as it does not give justice to the spatially differentiated
variances involved in kriging estimates. We found a spatially distributed representation of
kriging variances (the estimation error) to be a more suitable tool (Fig. 9b). This map also
reveals much larger variances near the boundaries of the study area due to the reduced
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Fig. 9 a Validation results (coefficient of determination) for the ordinary kriging (OK) and IDW estimates.
(1ooCV = leave-one-out cross-validation; subsample = sub-sampling info training and test subset;
OK_f = OK filtered); b kriging variances for an unfiltered (Jeft) and filtered (right) prediction serving as
a spatially distributed error estimation; ¢ antomatically generated standardized residual plot indicating
constant variance
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Fig. 10 Uncalibrated radar data for three consecufive howrs used for qualitafive validation (hence the
deliberately omitted legend). The spatial pattern is in good visual accordance with the interpolation rainfall
estimates shown in Fig. 8

number of rain gauges in close proximity. Additionally to this quantitative validation, a
qualitative validation was performed based on the visual comparison with radar rainfall
data. To use the radar imagery for a quantitative validation or as an auxiliary variable for
multivariate kriging approaches, it needs to be calibrated first. This would be highly
desirable for an additional means of quantitative validation because it provides an inde-
pendent data set from the interpolation results. Comparing the radar data from Fig. 10 with
the interpolated rainfall predictions from Fig. 8, the overall picture shows a rather good
match. However, the radar technique is capable of capturing more fine structured, inter-
mittent rainfall fields.

6 Discussion

This study suggests a fully automated workflow from the hourly, web-based collection of
rain gauge data to the generation of spatially differentiated rainfall predictions based on
deterministic and geostatistical methods. The underlying research question envisages the
implementation of those hourly rainfall predictions into a dynamic, combined hydrological
and slope stability modelling application with the purpose of estimating landslide failure
probabilities in near real time. The entire methodology was implemented solely with open
source technology (JavaScript, R, Python, QGIS).

When web data are used, legal and policy issues have to be considered. Legal impli-
cations with web data are not always clear in all cases and countries; however, the terms of
use should always be respected to limit the permitted data requests within a certain amount
of time or, in general, to prevent copyright infringement (Glez-Pefia et al. 2013). The usage
of meteorological data is better regulated. The Twelfth World Meteorological Congress in
Geneva in June 1995 approved a resolution on the intemational exchange of meteoro-
logical data and products (WMO 1996). This resolution stipulates the member states of the
World Meteorological Organization the right to use data and products at no costs for non-
commercial use. When using web scraping for data generation instead of an API request, a
problem might arise in the way how the data are automatically parsed from a website. As
soon as the structure of an HTML document is changed, the web scraping application does
not work anymore and has to be readjusted, thus requiring constant maintenance. Using
these data for geostatistical analyses is usually a very labour-intensive work.

Modelling the variogram is critical for the quality of the kriging estimates; thus,
automating this procedure is not so straightforward and required some simplifications in
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terms of defining initial modelling parameters (i.e. sill, range, nugget). Therefore, a
stronger emphasis was put on creating a feasible workflow that produced good quality
rainfall predictions for further use. Also worth mentioning is that anisotropy was not
considered in this study, although rain gauges recording frontal rainfall are likely to be
directionally dependent. However, detecting anisotropy in an automated workflow is not
straightforward and could only be approached by iteratively calculating multiple direc-
tional variograms and perform kriging predictions for all of them accordingly while
comparing their respective validation results. On the other hand, not all rainfall situations
are directional (e.g. convective rainfall); therefore, omnidirectional variogram models were
used in this study. Additionally, this suggested procedure is only feasible for rainfall and
no other forms of precipitation, as only direct rain gauge readings are considered. This is
acceptable for this study area due to highest rainfall intensities recorded in the summer
months which is relevant for landslide initiation. When passing along those automatically
generated rainfall predictions to a landslide modelling application, a solid quality indicator
is required as a diagnostic tool beforehand in order to guarantee a good performing model.
Or in other words: where to set the threshold between good and bad rainfall predictions.
One may use the coefficient of determination or, as suggested by Oliver and Webster
(2014), the mean-squared deviation ratio (MSDR) which is the mean of the squared errors
divided by the comresponding kriging variances. Possible thresholds would be high coef-
ficients of determination or MSDR values close to 1. However, this has to be extensively
tested in the landslide application which one is the most suitable with respect to the
underlying research question.

Another major issue commonly reported in other studies (e.g. Schuurmans et al. 2007;
Kann et al. 2015) is the presence of small-scale, convective heavy rainfall events, mostly
occurning in summer or spatially highly intermittent rainfall (e.g. Chappell et al. 2013).
Thus, different types of rainstorms may provide different levels of performance for the
proposed methodology. Simple ordinary kriging purely relying on distance-based rain
gauge information might not be capable of solving this problem with a limited number of
sampling locations alone. In that case, using multivariate kriging approaches that incor-
porate radar data as additional predictors might be more appropriate. Another interesting
approach to mimicking true in situ variability on short-scale changes is the utilization of
conditional simulation, or how Srivastava (2013) describes it: the spatial version of Monte
Carlo procedures. Kriging usually produces a smoothed surface by losing variance and thus
underestimating large values and overestimating small values. Also, kriging estimates
produce only a single prediction. Conditional simulation, on the other hand, produces many
equally likely scenarios (so-called realizations) by using the same variogram, but at the
cost of accuracy. Consequently, this probabilistic procedure produces a more realistic
picture of small-scale variations, but should be complemented by kriging estimates when
spatial variability and errvor estimates are crucial for the underlying research question
(Srivastava 2013).

With regard to regional landslide EWS, this study offers a direct integration for both
threshold-based and process-based approaches. The methodology presented in this study is
especially suitable for the implementation in warning systems (following the classification
of Stihli et al. 2015) that contain predefined thresholds and are mainly used for processes
with progressive stages of failure (e.g. rock slides, translational and rotational soil slides).
Instead of using uniformly distributed rainfall for an entire region, spatially differentiated
rainfall values can be used for a real-time comparison with previously established rainfall
thresholds. Similarly, hourly rainfall predictions can also serve as the time-dependent input
in process-based approaches that determine how changes in pore-water conditions alter
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slope stability conditions. Raia et al. (2014) presented a promising approach where the
dynamic, infinite-slope-based model TRIGRS (Baum et al. 2008) was used for the fore-
casting of rainfall-induced shallow landslides over large regions. In their probabilistic
modification of the model, however, they assumed constant rainfall intensity to force slope
instability for the entire study area. Salciarini et al. (2017) followed a similar probabilistic
approach. It would be interesting to observe how spatially distributed rainfall intensities
will behave on slope stability conditions when compared to uniformly distributed rainfall
input.

7 Outlook

A major issue in almost all natural sciences is data scarcity. Especially in landslide
research proper event data are often lacking. With the rise of Web 2.0 applications,
however, there was a large boost in collaborative and fast data acquisition initiatives.
Olyazadeh et al. {2016) present a WebGIS Android App for fast data acquisition of
landslide hazard, and Klonner et al. (2016) present a review of how volunteered geo-
graphical information is collected in natural hazard analysis. Baum et al. {2014) highlight
the Report a landslide website operated by the USGS for engaging public in the identi-
fication of geological hazards. With respect to weather data, there are already much longer
lasting initiatives in operation. Such citizen science initiatives have proven to be highly
valuable for supplementing primary instrumented rain gauge networks (Harpold et al.
2017). The National Weather Service Cooperative Observer Program (COOP) in the USA
was formally created in 1890 for volunteers to take observations. There are many websites
that provide open weather data collected by weather enthusiasts that even offer APIs for
direct data integration (e.g. http://openweathermap.com/ or http:/wunderground.com/ with
their personal weather station network). Those privately operated weather stations that are
hosted by such online weather networks have explicit terms of service that facilitate API
data usage.

Quality issues might be a big concern with such data; however, the benefit of offering a
highly densified rain gauge network providing rainfall data in real-time is not to be
underestimated and should clearly be addressed in the near future. This paper suggests an
automated workflow that enables the quick integration of additional real-time rainfall data
from multiple online sources with either an API or web scraping integration. Therefore,
very dense rain gauge networks could be established for providing accurate spatially
distributed rainfall predictions for the integration in regional landslide EWS. Future work
will incorporate this approach in dynamic, grid-based regional slope stability analysis to
evaluate in a real-word hindcast sitvation if and to what degree spatially distributed rainfall
information in landslide research contribute to improving regional landslide EWS.
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Abstract

Rainfall triggered landslides around the globe pose a major threat to both, human life and
infrastructure. By now, it is widely accepted that human induced climate change alters temperature
and precipitation patterns in some parts of the world. While acknowledging precipitation as the main
trigger for landslides, an increased landslide activity can be expected in the near future. This calls for
long-term landslide monitoring sites in order to understand kinematic behaviour and triggering
conditions. Here, we present a recently established monitoring site on an active landslide in Austria
that targets at a decadal persistence. The aim of this study is to characterise the internal structure,
assess the current landslide dynamics and to analyse process activity by means of surface and
subsurface monitoring installations. Surface methods currently cover terrestrial laserscanning, GNSS,
and total station measurements. These reveal actual surface movement rates of several cm per year
in the most active part of the landslide. Inclinometer measurements together with results from core
drillings and penetrations tests suggest a shear plane in approx. 3 m depth. The combination of
different methods within this study provide valuable information for a proper understanding of the
landslide structure and its kinematics. As the landslide shows a moderate displacement velocity, it
represents an ideal study site for testing new monitoring techniques, developing novel analysis

methods, and proposing alert and warning schemes.

Keywords: Landslide monitoring, Rhenodanubian Flyschzone, GNSS, total station, terrestrial

laserscanning, inclinometer, core drillings, penetration tests
Introduction

Landslides are natural phenomena that pose a substantial hazard and risk worldwide. Seismic shaking
and intense rainstorms are commonly the main triggering agents for landslide occurrences. Strong
earthquakes can trigger large numbers of landslides which may cause thousands of fatalities, e.g.
during the 2008 Wenchuan earthquake in China (Yin et al. 2009). In addition, rainfall-triggered

landslides frequently damage infrastructure and cause significant loss of life. Petley (2012) studied
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the effects of non-seismic-triggered landslide using a 7-year statistic and approximated an average

annual death toll of more than 4,600.

An increased number of landslides is frequently attributed to the future global change, however,
large uncertainties remain (Crozier 2010). To better understand the future frequency and magnitude
relationship of landslides, and to be able to develop improved alerting and warning capabilities, long-

term landslide monitoring systems are required (Thiebes 2012).

A large number of methods have been utilised for landslide monitoring systems (Mikkelsen 1996;
Thiebes 2012; Thiebes and Glade 2016). The methods can be grouped into approaches, which
analyse the triggering factors, e.g. rainfall and soil-water conditions, or the landslide movement
itself. The former include for example piezometers to measure the position of groundwater tables
(Massey et al. 2013), TDR (time domain reflectometry) probes to analyse volumetric soil water
content (Camek et al. 2010), tensiometers for measuring pore water pressures (Montrasio and
Valentino 2007), and also electrical resistivity tomography (ERT) which can give a spatially distributed

estimation of soil wetness (Supper et al. 2014; Gance et al. 2016).

Landslide movement monitoring can broadly be distinguished between surface and subsurface
methods. Traditionally, total stations (Burghaus et al. 2009; Reyes and Ferndndez 1996), as well as
GNSS-based techniques (Corsini et al. 2012; Yin et al. 2010b) were the primary surface
measurements methods. In recent years, terrestrial laserscanning (Abellan et al. 2011; Canli et al.
2015), radar interferometry (Mazzanti et al. 2014; Monserrat et al. 2014; Mulas et al. 2015) and
photogrammetry-based methods (Gance et al. 2014; Stumpf et al. 2015; Travelletti et al. 2008) have
become popular because they are suitable for displacement measurements over wider areas.
Inclinometers, either operated manually or automatic, remain somewhat the gold standard for
monitoring of subsurface displacements (Bell and Thiebes 2010; Jongmans et al. 2008; Yin et al.

2010a).

Only few monitoring systems have been actively used for more than a decade. However, these are
extremely useful to investigate long-term movement patterns in relation to potential triggers, to be
able to test new monitoring equipment, to develop new landslide analysis methods, and to propose
novel alerting and warning schemes. Here, we present the characterisation of a complex landslide in
the Austrian Prealps as a preparatory step for the installation of a long-term landslide observatory.
The aim of the monitoring system is not only to improve the understanding of the landslide under
investigation but also to develop and test new methods which then can be implemented on other
potentially dangerous landslides, or contribute to already existing systems. We describe the

environmental and geomorphological conditions of the landslide, and the results of investigative
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studies. An outlook highlights the next steps of the implementation of a comprehensive monitoring

system, which includes several novel approaches but also reliable traditional methods.
Study Area

The study site is located in the western part of the federal state of Lower Austria in the municipality
of Gresten (Scheibbs district in Austria). Gresten is located in a geologically complex area in which
three different lithological units are present within a very narrow band of about two kilometres (Fig.
1b). In the alpine SW-NE striking direction, from north to south, the Rhenodanubian Flyschzone is
followed by the Gresten Klippen Zone and the Northern Calcareous Alps. The Cretaceous-Early
Tertiary Rhenodanubian Flyschzone (RDF) is located at the northern foothills of the East Alps. It is a
paleogeographic-tectonic unit as part of the oceanic Penninic zone that was mostly eliminated in the
subduction process involved in the Alpine orogeny (Hesse 2011). Flysch materials in the study area
are deeply weathered and mainly consist of alterations of pelitic layers (clayey shales, silty shales,
marls) and sandstones. The Gresten Unit, mostly termed as the Gresten Klippen Zone (GKZ), is
situated in front of the Northern Calcareous Alps. It forms several “Klippen” originating from Jurassic
and Lower Cretaceous deposits covered by variegated marls (in German: Buntmergelserie) with
intercalated sandy limestones (Hock et al. 2005). Being part of the Helvetic system, the GKZ is
entirely overthrusted by the main nappe of the RDF. In Lower Austria, both, the RDF and the GKZ as
low mountain regions with a highly undulating terrain, are exceptionally prone to landsliding
(Gottschling 2006; Petschko et al. 2014). Both units exhibit around five landslides per km? in Lower

Austria (Petschko et al. 2014).

The study area is located in a warm-temperate, fully humid area characterized by hot summers and
cold winters. The mean annual air temperature is 7.0°C, whereas the mean annual rainfall exhibits
1212.9 mm (normal period 1981-2011). However, heavy rainfall events exceeding 100 mm per day
may occur. Such events (e.g. September 6, 2007 and June 23, 2009) caused major flooding and
triggered landslides in Gresten and other parts Lower Austria. In addition to strong rainfall events,
rapid snowmelt has been identified as one of the main triggering factors of landslides in the region

(Schwenk 1992; Schweigl and Hervas 2009).

Fig 1 a) The study site is located in the western part of Lower Austria (Digital elevation model (DEM) with overlain
arthophoto of the Salcher landslide); b) The Salcher landslide is situated in the municipality of Gresten that is embedded in
a highly diverse geological setting between the Flyschzone, the Gresten Klippen Zone, and the Northern Calcareous Alps

The Salcher landslide

The Salcher landslide is situated on a non-forested, east exposed slope on an elevation of ca. 500 m

a.s.l. with slope angles between 10° and 20°. The size of the active landslide part is ca. 4000 m?. The



landslide is located centrally in the municipality of Gresten and two roads surround it. Three

residential buildings are situated underneath the main sliding direction of the landslide (Fig. 1a).
Historical information

Prior to its initial activation, the Salcher slope was used as a skiing track from the 1950ies onwards
(Fig. 2a). In the 1970ies, skiing activities ceased due to repeated skewing of the lift pillars {Irmgard
Plank, pers. comm. 2015). Initial significant slope movements were reported in July 1975. Heavy
rainfall in the period between June 29 and July 3 in 1975 was assumed to be the triggering cause
(internal technical report BD-3120/1-1975 by the Geological Survey of Lower Austria). The weather
conditions were also made responsible for the occurrences of 236 other landslides in the region.
During this period, precipitation values exceeded the average monthly rainfall amount by more than

200% (Schwenk et al. 1992).

In autumn 1975, remedial measures on the Salcher landslide were carried out on the slope and
comprised levelling of the terrain and filling of cracks. Although awareness of the problematic water
conditions on the slope existed, countermeasures with respect to the implementation of an upslope
drainage system were not realised. Three years later, parts of the landslide were reactivated by a
heavy rainfall event on May 31, 1978. For this day, the rainfall record in nearby Randegg exhibited
101.9 mm. Similarly to the rainfall event in 1975, many other landslides and flooding were assigned
to this extreme rainfall event (Schwenk 1979). A prominent slope concavity is situated above the
currently pronounced scarps (Fig. 1a). The planar and circular area was levelled out in the year 2000
in order to use it as a vaulting area {Hans Plank, pers. comm. 2015). In the course of a rainy period in
the first week of August 2006, repeated movements set in. Rainfall measurements indicated 162.5
mm for the period between August 1 and August 7, 2006. The movements caused the formation of
tensile cracks, which exhibited 20 m in width and revealed fracture openings of 10 em. This was

accompanied by the creation of fresh minor scarps and hummaocks (Fig. 2b).

Fig 2 a) Historical view of the Salcher landslide surface (roughly late 1950s). Photograph: Marcel Mallik; b) Comparison of
the Salcher landslide surface in 2007 and 2014

In July 2014, during fieldwork for the current monitoring system, a tree root sample was discovered
in a drill core on the landslide in 2.6 m depth. Radiocarbon dating of the wooden sample revealed a
calibrated date of 1670 AD (with a conventional *C age of 265 % 30 BP). OxCal (Bronk Ramsey 2013)
with IntCall3 atmospheric curve (Reimer et al. 2013) were used for calibration. This is interesting for
two reasons; a) the oldest obtainable photographs of the Salcher slope {1950s) reveal already a
treeless surface, and b} the depth and ambient material of the sample location, which represents a
densely bedded, greyish and reducing environment, thus a long time of undisturbed groundwater

conditions. This leads to a possible conclusion, that the Salcher slope might have been forested once
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under relatively stable slope conditions and that the place of discovery was once overrun by the

landslide.
Previous monitoring activities

After the reactivation in August 2006, the Geological Survey of Lower Austria set up geodetic piles for
total station surveys of the area. Surveys started in April 2007 and were conducted biannually until
November 2012. The survey campaigns revealed a total displacement of 0.925 m on the most active
part of the Salcher landslide. However, measurements ceased in November 2012 as annual
displacement rates between December 2009 and November 2012 totalled only 5 cm, whereas the
displacement between April 2007 and December 2009 excelled 4 cm per month on average
(unpublished technical report BD1-G-142/001-2007 and GZ-BD5-12476 by the Geological Survey of
Lower Austria). The initial survey ended in 2012 because the displacement rates on the landslide
were considered as low to very low and no displacement at all was recorded at the elements at risks

(three houses and public road).

Jochum et al. (2008) performed a mineralogical characterisation of offsite drill cores together with
resistivity measurements and penetration tests. Clay mineral analyses revealed an absence of
smectite in the samples. The main mineral content among all samples is weakly crystalized kaolinite.
Moreover, illite was determined in all samples. The general occurrence of chlorite in the deepest
samples was explained by an early stage of weathering. The interpretation from resistivity
measurements pointed towards the existence of an upper active part of the landslide, situated
between O m and 4 m, and a lower, currently inactive, part between 4 m and 9 m. Based on
penetration resistance, slope morphology, and resistivity measurements, a weathering horizon

between 9 m and 14 m was suggested.
Methodology

Field measurements conducted at the Salcher landslide consist of surface (GNSS, total station and
terrestrial laserscanning) and subsurface methods (dynamic probing heavy, percussion drillings, and
inclinometers). Setting up the monitoring site at the Salcher landslide was accompanied by a couple
of activities, ranging from preliminary desk study and field reconnaissance to concomitant laboratory

and data analysis. Fig. 3 shows the methodological approach of this study.

Fig 3 Methadological approach of this study

Desk study and geomorphological mapping

A better understanding of the historical kinematics was necessary to specify the locations for

subsurface investigations and later monitoring. Hence, it was required to assess available
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professional opinions, damage reports, and findings from previous investigations to get an overview
of the kinematic and morphological conditions and changes on the slope. With the intention to
identify surface displacement of prominent surface structures from an early stage of fieldwork, GNSS
based mapping was initially carried out in 07/2014. Prominent morphological surface structures were
surveyed with a Leica GPS 1200. Correction signals were obtained from the Austrian Positioning

Service (APOS) that enable measurements with a 3D-uncertainty lower than 1.5 cm.
Total station surveys

The already presented network of geodetic benchmark piles was surveyed via electronic distance
measurements. Distance measurements were taken with a Leica TCRP 1201 together with reflecting
prisms. The manual of the manufacturer indicates an accuracy of 1 mm. Both, the GNSS and Total

station survey data, were visualised with ArcGIS 10.1.
Terrestrial Laserscanning

Two field campaigns (10/2014 and 12/2014) were performed in order to obtain multi-temporal TLS
data. Those scans were carried out with a Riegl VZ-6000 long-range terrestrial laserscanner (TLS). The
Geological Survey of Lower Austria provided another point cloud of the Salcher landslide dating back
to early 2007. Data acquisition consisted of several steps, using a similar approach as Prokop and
Panholzer (2009):

1. Location of suitable scan positions that minimize occlusions in the final point clouds.

2. Mounting a GNSS receiver onto the TLS that receives correction signals from the Austrian
Positioning Service (APOS). Thus, the point clouds from the respective scan positions were
already in the correct coordinate system and coarsely registered. Each scan position was
recorded separately by the GNSS so those can act as tie points in the fine registration process
afterwards.

3. The scan process itself. This included taking pictures with the integrated, calibrated camera,

5o the point cloud could be enhanced with RGB information.

The post processing started with the fine registration of each set of point clouds for the 10/2014 and
12/2014 survey. This has been done with the ICP (Iterative Closest Point) algorithm provided by the
RiScan Pro software from Riegl. This multi station adjustment {MSA) tool modifies the orientation
and position of each scan position in an iterative way in order to calculate the best overall fit. To
compare the scan positions, surface data of the scanned objects were used to align the scan
positions. Two methods for detecting corresponding plane surface patches were applied: a) manual
definition of plane surface patches (from nearby house walls and a street). Hereby, the MSA modifies

the scan position by minimising the distance between the defined planes, and b) application of an
6
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automatic plane patch filter to detect corresponding points using ICP. Therein, the point cloud is
divided in equal sized cubes of a certain size. For each cube, a best-fit plane (least-squares method) is
estimated from all points within the cube. After each set of point clouds from a single scan survey is
properly registered, another MSA is performed between the three point clouds to match the surfaces
from all three available scan surveys (2007, 10/2014, and 12/2014).

For vegetation filtering, we used the RiScan Pro terrain filter that analyses the distance of the points
from an estimated ground surface. Based on this analysis, the points are either classified as ground
points or non-ground points. After exporting the filtered point cloud for each of the three scan
surveys, the point clouds have been used for distance measurements calculations. For this, a DEM of
difference {DoD) was created. Therefore, the point clouds have been converted to DEM and
hillshades using OPALS (Orientation and Processing of Airborne Laser Scanning data) software
(Pfeifer et al. 2014). The DEMs have been created with a cell size of 10 cm. The differences in height

(z-axis) were calculated using ArcMap 10.2.
Dynamic Probing Heavy

Dynamic probing heavy (DPH)} was performed by using the SRS-15 (German type) penetrometer.
The apparatus is shown in Fig. 4a. The aim of this method was to detect changes in mechanical
resistance of the subsurface material based on penetration tests (Springman et al. 2009}. The
device is pneumatically operated with a drop weight of 50 kg. A cone with 43.7 mm in diameter
and a dropping height of 500 mm ensured a standardised application according to the European
Standard EN ISO 22476-2 for DPH. The number of blows required for each 10 ¢cm was counted.

Subsequent to every advanced meter increment, the rods were rotated to minimize skin friction.

Fig 4 Fieldwork on the Salcher landslide: a-c) Dynamic probing on site DPH1; d-e) Drilling operation with drill core
extraction; f) Water outburst of drill core B6; g-h) Inclinometer installation with bentonite grout injection; i) Inclinometer
data acquisition

Percussion drilling

Core drillings were carried out with a crawler drill GTR 780V from Geotool. This augering
technique is a common method for obtaining only slightly disturbed core samples (Van Den
Eeckhaut et al. 2007). The rig can access moderately steep locations with little waterlogging (Fig.
4b). It operates with a standardised weight of 63.5 kg and dropping height of 75 cm. A casing
drilling approach was applied to prevent borehole collapses and water inflow. In order to protect
the material, drilling progress stopped at a blow-count of 100 for a 10 cm increment. The probe

was then extracted from the ground by a vertical-lift hydraulic tube clamp.

Inclinometer measurements



Inclinometer casings obtained from Glotzl were used for field installation (Fig. 4c). The casings
consist of flexible acrylonitrile butadiene styrene (ABS) compounds. Each casing is 3 m long and
has a diameter of 55 mm. The casings were riveted together to reach the respective final
installation depth. The lower end was furnished with a plastic cap. Water tightness of the
inclinometer casing was improved by wrapping plastic petrolatum tapes on a polypropylene
fleece material base around the connecting elements. Upon reaching the target depth, the drill
pipe was removed and the casing was inserted and subsequently filled with water. This way,
potentiometric equilibrium with the surrounding was established. Care was taken to orientate
the alignment of the leading grooves in direction of the estimated slope movement (Dunnicliff
1993). A tight connection between the casing and the surrounding stratum was achieved by
using a bentonite-grout backfill (Bassett 2011}. Zero readings were performed after three weeks,
which allowed the borehole to settle and the bentonite-grout backfill to harden. Measurements
were taken in 50 cm increments using the NMG probe from Glotzl. The probes measuring
accuracy varies between 0.01 — 0.1 mm per measurement increment. In order to average errors,
the probe was turned by 180° before the second reading. Additionally, surface positions of the
inclinometers were determined (Dunnicliff 1993, Stark and Choi 2008). Subsurface displacement
was calculated using the software GLNP V4 from Glotzl. Each measurement series was set in
relation to the zero reading. Cumulative deformation curves were calculated, which visualize

displacement values at corresponding depths.
Core sample analysis

The use of plastic inliners allowed continuous sampling of soil specimens in the lab, which
permitted a soil-physical characterisation of the material {Prinz and StrauR 2011). In the
laboratory, particle size, natural water content, carbonate content, and consistency were
determined. The natural water content was determined according to Austrian standard for
gravimetric and volumetric water content (ONORM L 1062). The state of consistency was
investigated by kneading tests based on the German standard for soil classification in civil
engineering (DIN 18196). Particle size analysis was performed by a combined sieving and
sedimentation analysis. The samples were split into a coarse soil fraction (> 63 um) and a fine
soil fraction (< 63 pm}. Sieve analysis of the coarse fraction was performed in accordance with
ONORM L 1061-1. Sedimentation analysis of the fine fraction followed ONORM L 1061-2. For
the sieve analysis, mechanical shakers and test sieves with 2 mm, 630 um, 200 um, and 63 um
opening diameter (DIN-ISO 3310/1) were used to derive the weight fractions of gravel, coarse

sand, medium sand, and fine sand.
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The finer fractions of silt and clay were determined by using a particle size analyser. The
respective diameter thresholds were set to 63 pm, 20 um, 6 um and 2 pm to establish
comparability to the relevant Austrian standard. The SediGraph 5120 and auto sampler
MasterTech 052 from Micromeritics were used for analysis. The machine performs X-Ray
monitored gravity sedimentation to determine the particle size, which resulted in cumulative
finer mass percent versus particle diameter. Prior to analysis, fine soil samples were treated with
0.1% Tetrasodium pyrophosphate, which acts as a deflocculant for clays and prevents
coagulation. Additionally, ultrasonic sound was applied before sedimentation analysis to break
agglutinated grain matrixes. Granulometric curves were then calculated for each sample. The soil

type was determined by plotting the textural composition on the Austrian soil textural triangle.

Results

In several field campaigns between 07/2014 and 02/2015, dynamic probing, core drillings, the
installation of inclinometers, terrestrial laserscanning, total station surveys, and inclinometer
data acquisition were carried out on the Salcher landslide. Notwithstanding difficult ground
conditions and technical limitations with the used drilling rig, six boreholes were drilled, thirteen
sites were investigated with DPH, and three inclinometers were installed (Fig. 5). Morphological
features and geodetic piles were surveyed and point cloud data acquired during field campaigns.

Fig 5 Overview of surface and subsurface investigation sites

Geomorphological mapping

GNSS-based mapping during 07/2014 was carried out to assess visible scarps to compare them
to the measurements from 2007. Heavily waterlogged areas in the perimeter of the lower
bulged area was determined. In general, surface morphological observations were consistent
with the findings from Jochum et al. (2008), yet with a more pronounced frontal part. Slightly
below the slope concavity, several scarps are visible. The missing vegetation and rough surface
morphology indicate higher landslide activity in this part. The currently invisible main scarp, as
suggested by Jochum et al. (2008), and the lower bulged area delineate the upper and lower
boundary of the depletion and transport zone. Altogether, the currently active landslide area
was calculated to cover approximately 4000 m?. The uppermost visible scarp of the landslide is
approximately 110 m long whereas several minor scarps delimit a structure that resembles
characteristics of a rotational landslide head. The inclined concrete foundation (a remnant of the
skiing lift) on top of the head is turned against the hill by approximately 20°. The steep landslide

toe is pointing towards east and stops at approximately 30 m distance to the former lift house.
9



Since 2007, the toe area remained stagnant in its location, but steepened quite significantly.
Apart from some very steep areas, the mostly hummocky landslide surface is densely vegetated
with grass. The scarps are mostly free from vegetation, indicating recent activity. The
waterlogged areas are covered with patches of Juncus effusus.

Terrestrial laserscanning

The ICP algorithm used for registration of point clouds had some problems in defining proper
planar surfaces on natural surfaces (e.g. trees). With the automatic plane patch filter, the
registration error was in the range of 20-30 mm. After manually defining 10 plane patches
distributed across the point cloud (mainly on artificial structures such as house walls or streets
that are available at the lower margin of the landslide), the standard deviation of error could be
reduced to 10 mm. The RiScan Pro terrain filter removed all points that are non-surface points,
however, the dense grass cover was problematic and ground surface information could not be
obtained. In both cases (in the 2007 and 12/2014 scan), the grass vegetation remained more or
less the ground surface. However, both scans were performed outside the growing season, so
that grass conditions on both point clouds can be assumed comparable. For further analyses, we
used the filtered point clouds for creating the DEM of difference (DoD).

The DoD between 2007 and 12/2014 revealed an elevation loss along the currently visible scarps
up to 75 cm (Fig. 6}. Accumulation was identified below the crescent course of the uppermost
visible scarp and on the landslide surface that was subject to bulging of slope material.
Accumulation was also determined along the toe area of the landslide (up to 85 cm).
Nevertheless, these values need to be interpreted with caution, as some uncertainties remain
due to possible differences in grass vegetation, registration errors, and DEM surface
interpolation. However, the overall pattern is in accordance to the findings of the
geomorphological mapping that was done previously and the interpretation of historical photos.

Fig 6 DoD based on point clouds obtained in 2007 and 2014

Total station surveys

Discontinuous total station measurements performed since 2007 showed highly variable movement
rates. The most active part of the landslide revealed movement rates up to almost 4 cm per month
between 07/2008 and 12/2009, whereas movement rates between 12/2009 and 11/2012 were lower
than 0.5 cm per month. A continuation of total station measurements at the persisting geodetic
network started in 01/2015. The results indicate substantial movements of PF3 and PF4, which
showed displacements of 10.9 cm and 45.7 cm, respectively, corresponding to approximately 0.5
and 2 ¢cm on average per month (Fig. 7). These values are in respect to the previous
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measurements from 12/2012. The total displacement at the most active part of the landslide
surface was captured at PF4 with 1.36 m since 04/2007. The southeast trend of the deformation
of PF3 and PF4 is consistent for all measurements that were performed since 2007. PF2 heaved
quite significantly until 01/2015, when total station measurements reveal a vertical difference of
5.1 cmin comparison to 2012. Two benchmark points were mounted on the former ski-lift house
that showed displacements of 1.4 cm with respect to 2012. Total station measurements were
performed assuming PF5 and PF1 to be stable over time. However, benchmark 103 and 104
showed deviations of 1.4 and 1.2 cm in southern direction. Both benchmark points are located
on the walls of the buildings below the landslide.

Fig 7 Results from total station measurements

Inclinometer measurements

An anchorage below the suggested upper shear zone was achieved in Inc1, which was installed
to a depth of 13 m. The inclinometer neighbours geodetic pile PF4 and corresponds to drill core
B2 and the sites of dynamic probing DPH4, DPH12, and DP13 (see Fig. 5 for locations). Inc1 was
placed in the upper part of the currently active landslide part. Inc2 neighbours PF3 and was
drilled to a final depth of 6.5 m. The site corresponds to drill core B4 and DPH8 and monitored
the subsurface conditions near the right flank of the landslide body. Inc3 was drilled to a final
depth of 6.5 m; the site corresponds to drill core B1 and DPH3.

Given the average inclination of the three inclinometers, which is below 5.5°, an overall
measuring accuracy margin of 0.01 mm to 0.1 mm per measuring step was achieved. In
accordance with this benchmark, an error margin of 0.26 to 2.6 mm was attained in Inc1, 0.13 to
1.3 mm in Inc2 and Inc3, respectively (Bell and Thiebes 2010). Inclinometer Inc1 was installed in
06/2014. Manual inclinometer measurements of Incl commenced in 07/2014. The reading in
09/2014 already showed 6 mm downslope displacement, at 3 m depth. The reading of Incl in
01/2015 revealed substantial deformation at 3 m depth. Within 189 days, Incl recorded a
cumulative displacement of 38.8 mm in downslope direction (A-axis). The perpendicular
movement component, which is measured along the B-axis, revealed little to no deformation
(Fig. 8). The final reading reported here was carried out in 02/2015 and confirmed this
evaluation. An additional displacement of 0.6 mm lies within the error margin, hence no change
to the reading in January could be determined.

Fig 8 Inclinometer measurements (locations shown on Fig 9)

The first zero readings of Inc2 and Inc3 were carried out in 09/2014. The top of the flexible

inclinometer casing was subject to minor pulling forces, which occurred when the probe was

11



lifted to the top. The slight bending of the deformation curve in the uppermost meter was
caused by this and should therefore be neglected. In 01/2015, Inc2 was assumed to be sheared
off, because the blind probe could not be lowered below 3 m depth. The inclinometer was
therefore investigated with a borehole camera and found to be intact. It took several attempts
to lower the probe down for a reading. The measurement revealed substantial displacement at 3
m depth (Fig. 11a). A maximum lateral displacement of 44.2 mm was detected at 2 m depth.
Compared to the downslope component (A} of the movement, negative B values of
approximately 2.6 mm indicate a minor trend towards the North. The unfavourable bend in the
casing geometry of Inc2 was made responsible for the difficulties with the probe. Likewise Inc2,
zero readings of Inc3 were performed in 09/2014. Similarly to Inc2, slight bending of the top of
the casing could be seen in the form of minor deflections in downslope direction. Hence, the
uppermost measurement was neglected for interpretation. Manual inclinometer measurements
in 01/2015 revealed downslope displacements, which were confirmed in the February readings.
A deformation of approximately 18.9 mm in positive A-direction and 4.3 mm in positive B-
direction could be limited to the zone between 1 m and 2 m depth.

Core sample analysis

Soil-physical properties (particle size, water content, carbonate content, consistency state) of six
drill cores were investigated. The location of the drill sites is indicated in Fig. 5. For drill core B1,
a total of 17 specimens were extracted, based on transitions in colour and consistency state.
According to the Austrian ONORM L1050, soil specimens were classified as loam, loamy clay, silty
loam, sandy loam, and loamy silt (Fig. 9).

Fig 9 Drill core samples from drilling site B1 with the corresponding soil textures (according to ONORM L1050)

The clay fraction varied between 21.5% and 47.9%. Silt takes the largest share in the overall
particle size distribution of B1. Whereas the highest values of 66.4% were found in the deepest
samples between 4.6 m and 5 m, the lowest values were found within the uppermost meter and
range from 29.1% at 0.3 m depth to 34% between 0.7 m and 1 m depth. Sand is present in
smaller proportions, ranging from 3.6% to 17.4%. Soil skeleton portion varied between 35.8%
and 0.2%, and was highest in the uppermost samples. Fig. 10 summarises particle size,
corresponding water content, penetration resistance, and carbonate content, obtained from drill

core B1.

Fig 10 Visualisation of particle size, water content, penetration resistance, and carbonate content at corresponding depth in
B1

The water content varied strongly between the uppermost 1.5 m and the lowest samples.

Highest values and very soft consistency were determined in the uppermost samples and
12
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reached 34.4%. The lowest values corresponded to the deepest samples and totalled 7.8%. Apart
from elevated levels at approximately 3 m depth, a steady decline towards the bottom of the soil
column can be observed. This is in agreement with the constantly increasing blow count of DPH3
at approximately 3 m depth. As seen in B1, the soil samples in B2 were purely cohesive, highest
in silt content, and exhibited clay values reaching up to 43.6%. Lowest clay values of 14.1% were
determined between 2.8 m and 2.95 m. Within the next 5 cm, however, a transition to loam was
determined (Fig. 11). The loamy sample is marked by its stiffness and greyish reduced colour.

Fig 11 Sharp textural transition in 2.95 m depth in B2

Compared to the other drill cores, the water content of B4 was consistently high and exceeded
40% at 0.5 m, 2 m and 3.5 m. The overall cohesive soil samples therefore showed very soft and
even slurry consistence. Between 3.45 m and 4 m, as well as just below the surface, clay was
generally lower compared to the other drill cores. The synthesis of all drill core analyses is shown

in the proposed underground model for the Salcher landslide in the discussion part (Fig. 12)

Discussion and conclusions

Over the period of seven years of total station monitoring, PF3 and PF4 represented by far the
most active zones of the landslide. Current total station measurements of the benchmark piles
confirm recent slope displacements similar to the most active period in 2009. Particularly PF4
showed surface deformation values of approximately 20 cm per year. However, the long
surveying interval of two years does not permit drawing conclusions on a steady movement rate.
It is also possible that a sudden displacement of 40 cm occurred in the course of two years. Apart
from this, the formation of new tension cracks occurred below the proposed landslide head and
indicated the highest activity in this area as well. Based on the findings of the TLS change
detection and GNSS measurements, the most active area of the landslide was allocated in the
immediate vicinity of PF4. Substantial change in aforementioned areas can also be seen in a
comparison of oblique imagery of the slope.

Surface morphological information, together with data from the core analysis, penetration
resistance, and inclinometer data, was used to create an underground model of the landslide.
The proposed underground model (Fig. 12) suggests that the landslide consists of several
interconnected sliding bodies, which resembles the geometry of a larger rotational landslide.
The area between the visible scarps and the bulged foot slope exhibits structural characteristics
of a translational landslide. The deepest shear zone was determined at approximately 8 m below
the surface of the slope concavity. The course of its upper end (dotted line) was drawn based on
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surface observation and an assumed gradient, which was derived from core analysis. The
courses of the minor scarps were derived from local displacement measurements by
inclinometers and the structural interpretation of drill core data. The remaining course of the
shear zone was constructed based on the interpretation of the surface morphclogy and blow
count values from dynamic probing.

The depth of the shear zone in the lower part of the depletion and transport zone and the
bulging zone of accumulation was derived from dynamic probing data and displacement

measurements in Inc3.

Fig 12 Proposed underground model of the Salcher landslide based on all obtained information (inclinometers, drill cores,
penetration resistance)

Inclinometer-derived movement data demonstrate ongoing movement over the course of the
study. Furthermore, core drillings and inclinometers reveal information only at single point
locations, limiting their informational value. However, for the time of inquiry, Incl and Inc2
underwent a downslope displacement of approximately 4 cm and 2 cm, respectively. What could
further be concluded from the inclinometer measurements was that movements in the zone of
depletion and transport zone occurred within narrow bands of approximately 1 m thickness in a
depth of 3 m in the case of Incl and Inc2, and at 2 m depth in Inc3. This is interpreted as the
existence of a traceable sliding plane over a longitudinal section.

For the drill cores B1, B2 and B4, a depth related correlation to elevated clay content could be
shown. Clay rich soil materials usually undergo a reduction of shear strength over the course of
shear processes and residual strength is usually lower due to decreased friction angles. With
respect to the composition of the materials in the clay fraction, reference could be made to the
findings from Jochum et al. (2008}, whose investigations indicated a dominating presence of
weakly crystallised kaolinite throughout depth. In conclusion it can be stated, that all of the
sampled drill cores showed textural heterogeneity that is interpreted as signs of dynamic
behaviour, which cannot be explained by soil diagenetic aspects alone. Movements are assumed
to be triggered upon saturation of sensible clay rich layers, which were determined at 2 m depth
in drill core B1, and at approximately 3 m depth in drill core B2 and B4. The findings in this study
further revealed that the transient parameter water content could not be used to gain
straightforward information on the landslide structure. This could be seen in layers, which were
underlain by clay rich aguiclude layers. The samples of these layers do not indicate accumulation
trends of percolating water above impervious beds. Given the relatively high permeability of the
lowest sections of drill core B3, elevated water contents were to be expected above the stiff to

hard layer at 8.5 m depth. Despite the use of sealed plastic inliners, evaporation must be taken
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into account in the two-month timespan between sampling and laboratory analysis of the drill
cores. Core loss and resulting empty space in the inliners might have favoured the outgassing of
the liquid phase even further. Because little core loss was experienced in drill core B4 and that
less time had elapsed between sampling and analysis, the water content in B4 could be used to
demonstrate accumulation trends above the depth of 3 m. However, B4 was drilled without a
casing, and its drilling was performed several weeks after the drilling of B1-B3. Hence, it cannot
be ruled out that water from a perched water table may have biased the results in B4. Likewise,
it has to be assumed that different local precipitation conditions and consequently varying soil
water conditions were present prior to the sampling campaign of B4.

Moreover, the overall high mixing of material classes, which could be observed in drill core B1,
indicates high activity near toe of the landslide. Several clay anomalies did indicate processes,
which presumably have rearranged more advanced weathering products on less weathered
products. However, no statements with respect to the origin of the clay particles can be made
within this study.

Another interesting finding was that the parameter penetration resistance could be used to
delineate shear zones at the depth of confirmed movements. Together with drill core
interpretation, the assumed shear plane from inclinometer measurements (Fig. 12} could also be
traced from dynamic probing and core interpretation alone (Fig. 14).

Fig 13 Proposed scheme of the landslide dimensions solely based on dynamic probing and core analysis

Outlook

The first months of ongoing fieldwork at the Salcher landslide observatory revealed first results
of the internal structure and the dynamics of the landslide. However, conclusions towards future
slope stability or even triggering conditions cannot be drawn yet. In addition, the discontinuous
surface and subsurface measurement intervals of the installed devices aggravate any further
predictions. Yet, this preliminary study highlights the importance of long-term monitoring efforts
for active landslides in urban areas.

An important issue that could not be addressed in this study is the source of the water for this
landslide, which has yet to be determined. It is expected that permanent electrical resistivity
tomography (ERT}, that has started only recently along the entire length of the slope, will deliver
interesting insights into the hydrologic response behaviour. Measurement interval for the ERT is
currently at three hours. Likewise, the recently set up weather station on the landslide surface
and the implemented piezometers for measuring changes in ground water level are expected to
enable investigations on the hydraulic response of the slope in near future. Additionally, TDR
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probes in different depths are installed for assessing in situ soil water content. An innovative
device that is currently being worked on is a permanent terrestrial laserscanning (pTLS) system
(Canli et al. 2015). Most of the monitoring devices installed contain only point information,
whereas TLS data enables spatially widespread information about surface changes over time.
However, until now the main constraint of TLS surveys is the temporal resolution. Data is being
acquired only very sporadic due to labour costs and time requirements for field campaigns. With
this newly developed system, high-resolution point cloud data is obtained once a day and
processed in a fully automated way, including data transmission and registration, vegetation
filtering and change detection. Movement data then correlated with a newly installed automatic
inclinometer and rainfall data (both with 10 min measurement interval). For all automatic
measurement devices, a reliable data infrastructure has been implemented by now. Permanent
electricity and internet is available on the entire landslide area and data is transferred to a data
server in Vienna in (near) real-time. Ultimately, the data gained is used within further analyses
including data correlation, threshold analysis, and spatio-temporal slope stability analysis. At
present, automatic data post-processing, as well as web-based visualisation of measured data

are being developed.
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148

Fig 2 a) The study site is located in the western part of Lower Austria (Digital elevation model (DEM) with overlain
orthophoto of the Salcher landslide); b) The Salcher landslide is situated in the municipality of Gresten that is embedded in
a highly diverse geological setting between the Flyschzone, the Grasten Klippen Zone, and the Northern Calcareous Alps

21



ANNEX

Fig 2 a) Historical view of the Salcher landslide surface {roughly late 1950s). Photograph: Marcel Mallik; b} Comparison of
the Salcher landslide surface in 2007 and 2014
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ANNEX

Fig 4 Fieldwork on the Salcher landslide: a-c) Dynamic probing on site DPH1; d-e) Drilling operation with drill core

extraction; f) Water outburst of drill core B6; g-h) Inclinometer installation with bentonite grout injection; i) Inclinometer
data acquisition
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Fig 8 Inclinometer measurements (locations shown on Fig 9}
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Fig 11 Sharp textural transition in 2.95 m depth in B2
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Abstract, Landslide early warning has a long tradition in landslide research. Early warning can be defined as the provision of
timely and effective mformation that allows individuals exposed to a hazard to take action to avoid or reduce their risk and
prepare for effective response. In the last decade, hydrological forecasting started operational mode of so called ensemble
prediction systems (EPS) following on the success of the use of ensembles for weather forecasting. Those probabilistic
approaches acknowledge the presence of unavoidable variability and uncertainty at larger scales and explicitly introduce them
into the model results. Now that convective-scale numencal weather predictions and high-performance computing are getting
more commor, landshde early warning should attempt to learn from past experiences made in the hydrological forecasting
community. This paper reviews and summarizes concepts of ensemble prediction in hydrology and how ties to landslide
research could improve landslide forecasting. Three future research directions were identified: 1.) evaluation of how and to
what degree probabilistic landslide forecasting improves predictive skill, 2.) adaptation and development of methods for
validating and calibrating probabilistic landslide models; 3.) application of data assimilation methods to increase the quality
of physical parametrization and increased forecasting accuracy.

Keywords: ensemble prediction systems, probabilistic forecasting, landslide early warning

1. Introduction

Landshide prediction at regional scale 1s a hot topic within the scientific community as the time-varying aspects of landshide
susceptibilities, hazards and even risks are crucial for emergency response planning and protecting public safety (Baum et al.,
2010, Glade and Crozier, 2015). Further, the number of landslides is assumed to increase due to global change (Crozier, 2010,
Gariano et al., 2017, Papathoma-Kéhle and Glade, 2013). This calls for an increased demand in early warning procedures with
the aim of issuing timely warmnings of an upcoming hazardous event to temporarily reduce the exposure of vulnerable persons
or mfrastructure (Thiebes and Glade, 2016). In this paper, we use prediction systems synonymously with early warning systems
for terminological consistency within the landslide community although we acknowledge that early warning should also cover
dissemination and response strategies (UNEP, 2012). Warnings can be considered as calls for the public to take protective

action, and the time scale of a warning depends on the associated weather event (Stensrud et al., 2009). For natural hazard
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types with a rapid onset. such as shallow landslides and flash floods, rainfall can be considered as the main triggering
mechanism. Ramnfall nowcasting, or short-term rainfall forecasting, 1s an important and well-estabhished tool for numerical
weather predictions (NWPF) in meteorological and hydrological applications that offer rainfall predictions several hours ahead.

While it is evident that processes with potentially very short response time require more effort for timely early warning than

A

Just real-time measurement of rainfall, real forecasting nitiatives are scarce especially in the landshde community (Tirant et
al., 2017).
The reasons for the rare application of NWP products within the landslide early warning community are manifold. One reason
might be the complexity of single landslide detachments: the same landslide triggering event does not necessarily cause other
landslides as the ime between propagation stage and the collapse phase may vary significantly based on differences in local
10 conditions of topography, materials such as soil, regolith and rock, vegetation, etc. and spans from minutes (e.g. flow slides
on slopes covered with shallow coarse-grained soils) to years (e.g. earth flows in slopes of fine grained soils) (Greco and
Pagano, 2017). Based on empirical-statistical relationships between landslide occurrence and its associated rainfall event,
rainfall thresholds within a certain confidence interval aim at accounting for those differences in slope failure behavior (Glade,
2000). Guzzetti et al. (2007) give an overview of rainfall and climate variables used in the hterature for the definition of rainfall
15  thresholds for the initiation of landslides, however, such empirical-statistical approaches only pose a simplification between
rainfall occurrence and the physical mechanisms leading to landslides, neglecting local environmental conditions and the role
of the hydrological processes occurring along slopes (Reichenbach et al, 1998, Bogaard and Greco, 2017). Attempts to relate
landslide-triggering thresholds to weather and other physically based characteristics can be very challenging given the quality
of currently available data (Peres et al., 2017). Another reason for the negligence of physically based forecasting imtiatives
20 used to be the lacking spatial resolution and computational power for considering such convective-scale phenomena which are
of particular interest for modelling small scale related phenomena with a rapid onset such as shallow landslides and flash
floods. This became, however, increasingly less of an 1ssue. Convective-scale NWF with spatial resolutions of 1 to 4 km issued
in very short time intervals are already available in many parts of the world. The hydrological community has recently adopted
to those advancements by implementing such convective-permiting models into operational flood prediction systems
25 (Hapuarachchietal, 2011, L etal, 2012, Yu et al, 2015).
This paper reviews and summarizes concepls of ensemble prediction systems (EPS) in hydrology and how those can be
translated to be applicable also in process-based landslide early warmning systems. A strong emphasis is put on how to deal with
spatial uncertainties by demonstrating the benefits of probabilistic model application which does not eliminate uncertainty, but
it expheitly introduces in into the model results. In a case study, we highlight possible spatially distributed physically based
30 landslide early warnming products for decision makers and pomnt out specific challenges that landslide research has to face in
the upcoming years. The aims of this paper are:
a) to critically evaluate the current state of physically based landslide early warning, its limitations and possible ties to

hydrological forecasting,
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b} on this basis, to foster cooperation across disciplinary boundaries to bring together scientists from different fields to

pursue research based on forecasting experiences gained in the last couple of years.

2. Probabilistic forecasting in hydrology and ties to landslide research

When considering ensemble prediction systems (EPS), one should clarify what is expressed with the term ensemble and why
EPS should be used at all since it is virtually unused in the landslide community. In the Guidelines on Ensemble Prediction
Systems and Forecasting issued by the World Meteorological Orgamization (WMO, 2012}, EPS are defined as “numerical
weather prediction (WWPF) systems that allow us to estimate the uncertainty in a weather forecast as well as the most likely
outcome. Instead of running the NWPF model once (a deterministic forecast), the model is run many times from very slightly
different initial conditions. Often the model physics is also slightly perturbed, and some ensembles use more than one model
within the ensemble (multi-model EPS) or the same model but with different combinations of physical parametrization
schemes (multi-physics EPS). [... | The range of different solutions in the forecast allows us to assess the uncertainty in the
forecast, and how confident we should be in a deterministic forecast. [...] The EPS is designed to sample the probability
distribution function (pdf) of the forecast, and is often used to produce probability forecasts — to assess the probability that
certain outcomes will oceur™ (WMO, 2012, p. 1).

Kreysztofowicz (2001) argues that forecasts should be stated in probabilistic, rather than deterministic, terms and that this “has
been argued from common sense and decision-theoretic perspectives for almost a century” (Krzysztofowicz, 2001, p. 2). But
still, by the new millennium, most operational hydrological forecasting systems relied on deterministic forecasts and there was
4 too strong emphasis on finding the best estimates rather than quantifying the predictive uncertainty (Krzysztofowicz, 2001).
However, those times have been overcome a decade later (Cloke and Pappenberger, 2009), From a scientific and historical
perspective, landslide prediction has very strong roots in empirical-statistical threshold based approaches (Wieczorek and
Glade, 2005, Guzzetti et al.,, 2007). This stands valid until today, since most operational landslide early wamning systems rely
purely on the relationship between ramnfall and landshide occurrence, thus representing only a simplification of the underlying
physical processes. Baum and Godt (2010), Alfieri et al. (2012a), Thiebes (2012) and Thiebes and Glade (2016) give an
overview of present and past operational landslide early warning systems (EWS). Bogaard and Greco (2017) eritically analyze
the role of rainfall thresholds for shallow landslides and debris flows from a hydro-meteorological point of view.

One reason why landslide forecasting is seemingly more challenging can be attributed to the spatial and temporal predictability
of landslide processes. The spatial oceurrence of floods is topographically foreseeable and controllable which is much more
difficult to assess for landslides in distributed modelling due to their very localized nature (Alfieri et al., 2012a, Canli et al.,
2017). Also, the prediction domain in flooding, which is usually streamflow, is rather straightforward to observe and to be
measured accurately over a long time. In the past 15 years, a mindset of adapting probabilistic concepts to account for inherent

uncertainties has taken over in the hydrologic community and the move towards ensemble prediction systems (EPS) in flood
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forecasting represents the state of the art in forecasting science, following on the success of the use of ensembles for weather
forecasting (Buzzia et al., 2005, Cloke and Pappenberger, 2009).
Unfortunately, imitiatives such as the Hydrological Ensemble Prediction Experiment (HEPEX) were not fostered in the

landslide community to date. The general aims of this ongoing bottom-up initiative are to investigate how to produce,

A

communicate and use hydrologic ensemble forecasts in a multidisciplinary approach (Schaake et al., 2007). One reason for the
absence of such cooperative efforts might be the political, and therefore also financial, situation that led to the advancement
of ensemble predictions in hydrology. Many international bodies demonstrated their interest in EPS which led to this superior
position of hydrological prediction. This is even more so the case when taking into account transboundary floods that are
typically more severe in their magnitude, affect larger areas and cause more damage and overall losses (Thielen et al., 2009).
10 Beven (1996) argues that the importance of water resources management led to considerably higher efforts by both researchers
and government agencies in hydrological data collection.
Losses from landslides are perceived as mainly private and localized economic losses and thus, only few public resources have
been allocated to develop sound spatial landslide early warning systems (Baum and Godt, 2010%. As a result, spatial operational
landslide early warning systems are scarce and many of them never surmounted their prototype status. Consegquently, long
15  monitoring time series, which are indispensable for sound and reliable early warning systems (such as available e.g. for floods,
storms, etc.), are commonly not available. Additionally, methodological issues or inadequate monitoring together with
insufficient warning criteria significantly reduce the ability of existing systems to issue effective warnings (Baum and Godt,
2010). When looking at the raw numbers, hydrological events rank among the main disaster events together with
meteorological events when comparing events in global and multi-peril loss databases, while geophysical events take only a
20 small fraction in absolute numbers (Alfieri et al., 2012a, Wirtz et al., 2014). However, it is widely accepted that landslide
losses are vastly underestimated (Petley, 2012). There are several reasons for this observation: a) major disaster databases, e.g.
the NatCatSERVICE from the reinsurance company Munich Re, associate landslides as subordinated hazard types of
geophysical (amongst earthquakes) or hydrological hazards (amongst floods or avalanches) (Wirtz et al., 2014); b) landslide
databases are inconsistent, incomplete or entirely absent and most of the existing inventories severely lack historical data

25 (Wood et al, 2015).

3. Benefits and types of probabilistic approaches

Generally speaking, in an ensemble forecast small changes (perturbations) are made to the model parameters and then the
maodel 15 re-run with these slightly perturbed starting conditions. If the different model realizations (ensemble members) are
similar to each other, the forecasting confidence is rather high. Contrary, if they all develop differently, the confidence is much
30 lower (WMO, 2012). By considering the proportion of the ensemble members that predict a storm or a landslide, we can make

an estimate of how likely the storm or landslide oceurs.
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The term ensemble prediction for environmental applications was coined in the field of meteorology, thus describing the
application of numerical weather prediction systems, but it 15 used m different ways in neighboring disciplines. The
atmospheric component 1s consistently described as weather ensemble input, vet the same applies to how observations of the
land surface are incorporated into distributed forecasting models. In the data assimilation stage, ensembles of plausible land
surface state observations (initial streamflow, soil moisture, snowpack, etc.) are created. Using multiple feasible parameter
sets for each model or for each model run will realistically increase the spread of possible outcomes, yet it is more objective
in terms of considered input parameters that were not directly observed (Schaake et al., 2007). Thus, the term ensemble
prediction may be used in any instance of multi-parametric or multi-model data input that is used for forecasting the target
variable.

In landslide research, there are a few attempts that explicitly address ensemble techriques as a means of overcoming limitations
from purely deterministic approaches or by increasing the predictive performance of statistically based susceptibility mapping.
Mone of them, however, incorporate ensemble techniques in real-time applications. Pradhan et al. (2017) used an ensemble
approach to evaluate the output of a physically based model for a statistical machine learning model in varyving hydrological
conditions. Their ensemble model is based on a maximum entropy model that creates and combines multiple models to improve
modeling results. However, their distributed output does not predict when or exactly where landslide will occur, but yields a
classified map with information where landslide occurrence can be expected over the long-term. Thus, their presented
ensemble approach indicates landslide susceptibility that may be applicable for regional/spatial planning. While the term
ensemble 15 by no means used a lot in landslide studies, it seems that it 15 predominantly used by the statistical landslide
susceptibility modeling community (e.g. Lee and Oh, 2012, Althuwaynee et al., 2014a, Althuwaynee et al, 2014b). It is,
however, not used in any way to address uncertainties in a forecasting model (Bartholmes and Todini, 2005, Vincendon et al.,
2011). In avery promising approach, Chen et al. (2016) couple a determ inistic model with probabilistically treated geotechnical
parameters with rainfall input from an operational multi-scale and multi-member NWP system (GRAPES) to forecast spatial
landslide occurrences with their ensemble prediction model (GRAPES-Landslide).

While there are not many landshde studies using or at least addressing ensemble techniques, there has been quite some work
done on probabilistic landslide hazard analysis in the recent past. Lari et al. (2014) propose a probabilistic approach expressing
hazard as a function of landslide destructive power where landslide intensity (in terms of displacement rate) is considered
rather than their magnitude. Haneberg (2004), Park et al. (2013), Raia et al. (2014), Lee and Park (2016) and Zhang et al.
{2016) treat soil properties at regional scale applications in a probabilistic way by randomly selecting variables from a given
probability density function, mostly by means of Monte Carlo (MC) simulation. Salcianm et al. (2017) tried to enhance those
approaches by considering geostatistical methods to provide the spatial distribution of soil properties and by using the Foint
Estimate Method (PEM) as a computationally more efficient method compared to MC simulation. But still, none of those
probabilistic approaches are operated in spatial real-time early warning systems, not even on a prototype basis. The research

of Schmidt et al. (2008) represents a remarkable exception: they proposed a coupled regional forecasting system in MNew
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Zealand based on multiple process-based models (INWWT, soil hydrology. slope stability). Unfortunately, a continuation of this
research was not further pursued.
In general, it is possible to distinguish between three types of EPS: global, regional and convective-scale EPS. They each

address different spatial and temporal scales in the forecast. For rainfall-induced landslide applications, the latter is the most

A

appealing; thus, we will focus on this one alone. Convective-scale NWPF, with model grid sizes of 1-4 km, can attempt to
predict details such as the location and intensity of thunderstorms (WMO, 2012). Therefore, those systems reduce the effect
of highly intermittent rainfall events that cause serious issues with small-scale rainfall events when applying geostatistical
rainfall interpolation techniques (Canli et al., 2017). Convective-scale NWP models are likely to better resolve the intensity
and spatal scale of local precipitation, especially in convective precipitation when topographic foreing is involved. Therefore,
10 they are particularly valuable for predicting small scale phenomena, such as flash floods or landslides. However, the major
drawback of convective-scale EPS is the immense cost of running (WMO, 2012).
In the past 15 years, many experimental and operational mesoscale EPS have been developed, yet very few with regard to
convection-permitiing EPS. In, 2012, the German Weather Service (Deutscher Wetterdienst - DWDY) started operational mode
for their COSMO-DE-EFS with a resolution of 2.8 km (Baldauf et al., 2011, Gebhardt et al., 2011} Similar operational
15 forecasting svstems have been implemented in the last couple of years by the weather services of France using their 2.5 km
AROME model (Seity et al., 2011), the UK with their 2.2 km MOGREPS-UK model (Golding et al., 2016) and the TUSA using
the 3 km High Resolution Rapid Refresh (HRRR) model (Ikeda et al., 2013).

4. The hydrological equivalent of rainfall-induced shallow landslides: the case of flash floods

One major difference between flood and landshde early warning is the available lead time. While the lead time in larger river
20 basins is sufficiently long to prevent any hazardous situations from river flooding, shallow landslides, in the case of first time
failures, generally occur suddenly and spatially unforeseeable in a specific area susceptible to landsliding. As opposing to
regular floods, however, flash floods can indeed be considered as an appropnate counterpart to ranfall-induced shallow
landslide occurrence. Flash floods are, similar to shallow landslides, characterized by the superior importance of small-scale
extreme precipitation events and their rapid onset, which leaves only little response time. it 15 therefore appropriate to examine
25  how flash flood forecasting is performed and how it is applicable to landslide forecasting. What makes landslide forecasting
particularly challenging is the evolutionary sequence of the process.
Greco and Pagano (2017) distinguish between three stages of a typical predictive system’s architecture: I) the predisposing
stage, 1) the triggering and propagation stage, and 111} the collapse stage. While in hvdrological applications (11) and (111} are
hardly distinguishable from each other, for rainfall-induced landslides this is not necessarily the case. While the predisposing
30 stage (T) is determined by e.g. increasing pore water pressure due to a varying length of rainfall input that worsens the slope
stability conditions, the trigeering and propagation stage (I1) spans from first local slope failures until the formation of

associated slip surfaces. The collapse phase (IIT) ultimately consists of the mobilization of the entire mass leading to the actual

6
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failure. However, the time between stages (11) and (III) may vary significantly based on differences in local geomorphology,
soil, vegetation, etc. and spans from a couple of minutes (e g. flow slides in slopes covered with shallow coarse-grained soils)
to vears (e.g. earth flows in slopes of fine grained soils) (Greco and Pagano, 2017). Even when spatially distributed process-
hased landslide predictions are performed in relatively homogeneous regions, this time offset still prevails and makes landslide
modelling in any context a challenging task. Therefore, warmings should generally be 1ssued during indications of stage (I1)
since the lead time of stage (111} might be too short given the rapid kinematic characterization of the post-failure behavior, as
recent disastrous examples in Italy have shown (Greco and Pagano, 2017).

Hydrological forecasting systems relying only on rainfall observations do not allow for a sufficiently long lead time for
warnings. Extending this forecasting lead time further than the watershed response times requires the use of quantitative
precipitation forecasts (QPF) from numerical weather predictions (NWWP) (Vincendon et al., 2011). Additionally, models to
represent hydrologic and hydraulic processes within a catchment to determine how rainfall-runoff accumulates is required
{Hapuarachchi et al, 2011). With regard to producing quantitative precipitation estimates (QFE) in real-time, research has
gone mnto blending multiple sources of information (radar, satellite and gauged data) to increase the accuracy of QPEs. Thus
process is generally referred to as date assimilation and 1s considered as increasingly important for improving hydrological
predictions (Reichle, 2008).

For predicting flash floods, however, longer lead times are necessary and thus high resolution QPFs with 1-6-hour lead times
are generated. In recent years, the spatial (<5 km) and temporal (<1 h) resolutions of NWWP model rainfall forecasts have
significantly improved, while the combination of such WWP model forecasts with blends of the advected patterns of recent
radar, satellite and gauged rainfall data additionally increased the accuracy of noweasting products (Hapuarachchi et al., 2011).
Based on those high-resolution NWP model forecasts, probabilistic ensemble prediction systems have aided in exploring and
quantifying uncertainties. Numerous studies have used those probabilistic precipitation forecasts to drive hydrological models
(Vincendon et al., 2011, Bartholmes and Todini, 2005, Siccardi et al., 2005, Thielen et al., 2009). The application of such
convective-permitting ensemble NWP is computationally very demanding and still in its infancy with respect to flash flood
prediction (Alfien et al., 2012b). However, a further reduction of the spatial uncertamnties of high-resolution ramfall fields 1s
highly desirable, given the fact that rainfall 1s stll considered as the most uncertain parameter in hydrological forecasting

systems (Hapuarachchi et al., 2011, Alfieri et al., 2012h).

5. Many sizes fit all: the concept of equifinality

The concept of equifinality is deeply rooted in the hydrological community, [t expresses an acceptance that many sets of
parameters may provide equally acceptable forecasts (Beven, 1996, Beven and Freer, 2001, Collier, 2007). The concept of
equifinality revolves around the rejection of the concept of the optimal model in favor of multiple possibilities for producing
acceptable simulators (Beven and Freer, 2001). This concept 15 based on the understanding of physical theory and relates to

the plethora of interactions among the components of a system whose resulting representations may be equally acceptable.
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Research generally follows a working paradigm that should lead to realistic representations of the real processes and
charactenistics. This idea of identifying a single optimal representation of reality 1s very distinet in environmental sciences. A
major problem arises from the scale discrepancy between sampling and distributed modeling where the use of global

parameters undoubtedly leads to errors in predicting local responses at points with unique characteristics (Beven and Freer,

A

2001). By acknowledging that there are many different model structures or many possible parameter sets scattered throughout
the parameter space, the range of predicted variables is likely to be larger than linearized solutions would suggest. This equally
means acknowledging that there are uncertainties inherent surrounding the area of parameter space around the optimum. As a
result, such approaches allow nonlinearity to be considered for predictions (Beven and Freer, 2001).
Geomorphological systems can indeed be considered as transient, inheriting remnants of past and present processes.
10 Environmental systems can exhibit certain degrees of chaotic behavior which results in an inability to express the trajectory of
their development based on present-day evidence alone. Therefore, equifinality should not be considered as an indication of a
poorly developed methodology, but as something inherent in geomorphological systems (Beven, 1996). However, it should
most certanly mof serve as a loophole for an inadequate methodology or model setup! A practical consequence of this
equifinality may lead to a more robust approach to testing the viability of different model setups with the aim to reject some,
15 but to retain many of the offered solutions (Beven, 1996). Similarities and differences in model results should ultimately lead

to an improved process understanding and, hence, predictive models with a higher sensitivity and specificity.

6. Calibration and validation of probabilistic forecasts

A model is an abstraction and a simplification of reality, hence the need for assessing its validity. Model validation provides
a legitimacy in terms of arguments and methods (Oreskes et al., 1994). However, model validation is difficult
20 when the most interesting events are rare, which 1s generally the case for flash floods or landshdes. Also, calibration might be
difficult for certain variables, or where suitable observations are not available. The WO (2012) suggests that direct model
output (DMO) from ensembles, although not ideal, still provide valuable information (WMO, 2012). The probabilistic
forecasts with a DMO might not be as sharp (e.g. larger ensemble spread), but they still offer an estimate of the uncertainties
and thus pose an advantage over purely deterministic forecasts. But even where measurements of modeling parameters are
25  available, it has often shown that those parameters cannot be assumed constant in space or time, which makes calibration even
more difficult. Additionally, the scale of measurement generally differs significantly from the scale at which the applied model
requires “effective” parameter values to be specified (Beven, 1996).
Deterministic models for landslide prediction synthesize the interaction between hydrology, topography, vegetation and soil
mechanmics in order to physically understand and predict the location and timing that tngger landslides. These models usually
30 contain a hydraulic and a slope stability component with different degrees of simplification (Formetta et al., 2016). In most

cases, the target variable s the slope safety factor (FoS), which is useful as it enables decision makers to take actions when if
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falls short of a certain threshold (e.g. FoS < 1.0). Also, when talking about the probability of an event occurring, this event
must be defined:

*  What is the threshold value to be exceeded?

= What is the exact time or time period to which the forecast refers?

®*  What is the exact location or area to which the forecast applies?

=  Which uncertainties are considered and what is their role in the modelling process?

With regard to those questions and as a starting point, the Fo3 is a suitable variable for probabilistic forecasting. Yet it has two
major flaws: a) it 1s only a ratio of resisting forces to driving forces that 1s commonly not directly measured in the field and
cannot be directly monitored, and b) landslide events are rare and (unlike streams for example) their future location of
oceurrence remains unknown until they occur. This makes landslide calibration a really challenging task. And there are
limitations of model calibration in the case of rare events. Commonly, calibration will improve the reliability of forecasts (i.e.
the match of the target variable or forecast probabilities to frequency of observations of the event) but reduce the resolution of
the forecast (the ability to discriminate whether an event will oceur or not). Consequently, cahibration will improve forecasts
of common events, but will also lead to the underprediction of more extreme events. The WMO (2012) argues that this is the
case for rare events, since the statistical distributions are trained to the more common occurrences. For rare events, hence,
calibration cannot be expected to provide significant improvement over the raw forecasts.

Besides model calibration, validation 1s an important part within forecasting. Validation unfortunately comes with a rather
strong emphasis on either-or-situations. In practice, few (if any) models are entirely confirmed by observational data, and few
are completely refuted (Oreskes etal., 1994). On top of that, for most models there may be multiple combinations of parameter
values that provide almost equally good fits to the observed data. Thus, changing the calibration period or the goodness-of-fit
measure results in an altered ranking of parameter sets to fit the observations. Consequently, there is no single parameter set
{or model structure) that serves as the characteristic parameter input for any given area, but there 1s a certamn degree of model
equifinality involved when reproducing observations with model predictions (Beven, 1996). Therefore, given the issues with
multiple (interacting) parameter values, measurement scales, spatial and temporal heterogeneity or the dependence on the
model structure, there can never be a single set of parameter values for the calibration process that represents an optimum for
the study area, but calibration can contribute to the reduction of range in the possible parameter space.

As aresult, this is a field where probabilistic model output really shines, as it expresses the entire model spread with its inherent
uncertainties not in absolute terms, but shows the relative performance of a model with respect to observational data. Many
decision makers and practitioners in all kind of earth science related fields still favor absolute model output, especially in areas
where public policy and public safety 1s at stake. Unfortunately, certainty is an illusion and ultimately the reason for modeling:
the lack of full access, either in time or space, to the phenomena of interest (Oreskes et al., 1994). In practice, there are many
measures that attempt to validate probabilistic forecasts. Some are better, some less suitable for distributed model output that

15 commonly the main form of data representation in landslide early warming. Without going into detail in this paper, we
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highlight the work of Mason and Graham (1999) and the WO (2012) that mention a few skill scores suitable for probabilistic

outcomes.

7. Case Study

In a simplified ensemble modelling approach applied to a larger study area in Austria (approx. 1366 km?), this specific case
5 study aims to investigate a) how equifinality influences modelling outcome with purely literature based geotechnical
parametrization, b) which ways of visual representation are viable for presenting probabilistic data, and ¢) how mnfrastructure

data can further supplement early warmning procedures in an exposure context.

7.1 Study Area

The Ehenodanubian Flyschzone (RDF) in the federal state of Lower Austria stretches over approx. 130 km m a SW-NE
10 striking direction. The study area is limited to this geological zone in order to keep the subsurface as homogeneous as possible
(Fig. 1). The Cretaceous—early Tertiary RDF 13 located in the northern foothills of the East Alps, in between the Molasse basin
to the North and the Northern Calcareous Alps to the South. The RDF 1s a palecgeographic-tectonic unit as part of the oceanic
Penninic zone that was to a large part eliminated in the subduction process involved in the Alpine orogeny (Hesse, 2011).
Flysch materials in the RDF are typically deeply weathered and mamly consist of alterations of pelitic layers (clayey shales,
15  silty shales, marls) and sandstones. Physiographically, the RDF can be characterized as a low mountain region with a highly
undulating terrain, It is exceptionally prone to landsliding, exhibiting around five landslides per km2 (Petschko et al,, 2014).
Heavy rainfall events (exceeding 100 mm per day) as well as rapid snowmelt are considered to be the main triggering factors

for slope failure in the region (Schwenk, 1992, Schweigl and Hervas, 2009).

20 Figure 1: (A) Location of the Rhenodanubian Flyschzone in Lower Austria (DEM: CC BY 3.0 AT-Federal state of Lower Austria);
(B) Typical earth slide in Lower Austria after a heavy rainfall event in May 2014 (Picture: K. Gokesch).

7.2 Modeling Approach
7.2.1 TRIGRS

Physically based models used to be atinbuted to local scale applications (e.g. Corominas et al., 2014, van Westen et al,, 2008)
25 because of their computational requirements and data constraints. This has clearly shifted in the last couple of vears and by
now, physically based models can be quite commonly found to evaluate rainfall-induced landslide susceptibility at the regional
scale. The majority is infinite-slope model based with only a few necessary input parameters to be suitable at a regional scale.
Increasing the physical basis of a model comes at the cost of introducing even more parameters, while the available data for
calibration does not merease at the same time and could lead to problematic overparameterization (Beven, 1996). Even the

30 simplest infinite-slope stability models generally require more parametrization than can be justified by available data.
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However, there are some general features of hillslope hydrology that are relevant to slope instability that can be considered to
a certain degree by infimite-slope models: vertical infiltration, dependence of mfiliration on initial soil moisture conditions,
varying time scales for infiltration and lateral flow (Baum et al., 2010). As a result, TRIGRS (transient rainfall infiltration and
grid-based regional slope-stability analysis, refer to Baum et al. (2008) for details), which we use in this case study, offers a
good trade-off between model complexaty and flexibility while we acknowledge the availability of other dynamie, physically
based models that were applied at a regional scale, such as STARWARS/PROBSTAB (Kuriakose et al, 2009) or
r.slope.stability (Mergili et al., 2014a). Raia et al. (2014) with their TRIGRS_P model and Salciarini et al. (2017) with their
PG_TRIGES model have already attempted a probabilistic TRIGRS derivative in the recent past that gave us the confidence
to use TRIGES in an automated probabilistic approach.

TRIGRS was specifically developed for modeling the potential occurrences of shallow landslides by incorporating transient
pressure response to rainfall and downward infiltration processes (Baum et al., 2008). Initial soil conditions are assumed either
saturated or tension-saturated. TRIGRS computes transient pore-pressure changes to find analytical solutions to partial
dhfferential equations, representing one-dimensional vertical {low in isotropic, homogeneous materials due to ranfall
infiltration from ramnfall events with durations ranging from hours to a few days. It uses a generalized version of Iverson’s
(2000 infiltration model solution to the boundary problem posed by Richard’s equation. This solution assesses the effects of
transient rainfall on the timing and location of landslides by modeling the pore water pressure of a steady component and a
transient component (Liao et al, 2011). However, the model is limited by its distributed one-dimensional modeling approach
with nominteracting grid cells and its simplified soil-water characteristic curve (Baum et al., 2010). The entire theoretical basis
together with all model related assumptions and equations can be found in Baum et al. (2008, 2010). TRIGES computes a
factor of safety (FoS) for each grid cell based on an infinite-slope model. It allows for the implementation of spatially varying
raster input (e.g. rainfall, property zones, soil depth, infiltration, etc.) to account for horizontal heterogeneity. The FoS can
generally be referred to as the ratio of resisting forces (the resisting basal Coulomb friction) over driving forces (the
gravitationally induced downslope basal driving stress) on the potential failure surface, with a FoS < 1.0 indicating slope

nstability and a FoS = 1 slope stability respectively.

7.2.2 Model Setup

The probabilistic modeling setup is realized entirely in an open source framework. This was done not only to make it as easily
reproducible as possible, but also because it offered the largest flexibility. TRIGRS, which itself is open source, is operated by
providing input text files that contain many lines. Those input files are used to specify the numerical values of the input
parameters, the location of the input raster files in the filesystem, and all other relevant grids to be considered (e.g. spatially
dhstributed rainfall maps, different property zones to subdivide the study area in homogenous regions, spatially distributed soil
depth maps, etc.). We used python programming language in a script for all string formatting procedures that receives its data
from an mitialization file. That python seript s also used for parsing the raw mput into vanables usable for TRIGRS. User
provided arguments in this initialization file hold the number of property zones needed, the rainfall duration pattern, number
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of timesteps and all variables that are used for the probabilistic treatment of parameters, such as min/max values for soil depth,
effective cohesion and effective friction angle as well as the number of model runs. The most recent ranfall input can be
automatically imported by predefined naming conventions.

We used the GDAL package (GDAL Development Team, 2017) for reading and writing raster files and the NumPy package
(van der Walt et al., 2011) for all raster calculations in the python seript. Based on the number of predefined model runs, for
each run a single deterministic output 1s generated based on the selected input parameters derived randomly from a normal
distribution. We computed 25 model runs for each hour which resulted in 25 equally probable model results based on the
different input parameters. After the initial deterministic model run, a new file is updated after each iteration that 1s used as the
probability of failure (PoF) output. It tracks for each raster cell the imtial value of the determimistic factor of safety output, and
in case a cell holds a FoS < 1.0 (unstable cell), the corresponding PoF raster cell receives this information by diving the count
of unstable raster cells by the number of model runs in order to calculate a probability value for this raster cell to fail at this
location given the different input parameters. All used variables, deterministic model outputs (the Fo3 maps) and the
probabilistic model output (the PoF map) are parsed through to R (R Core Team, 2017). In R, all piped arguments from the
python script are used for producing ready-to-use maps (packages: rgdal (Bivand et al., 2017), sp (Pebesma and Bivand, 2005))
or to visualize performance measures such as ROC plots (package: ROCR (Sing et al., 2005)). The entire procedure from
importing raw data to producing usable maps is fully automated within an executable file that may be initiated every hour.
This open code structure is flexible enough to enable the direct implementation of the most recent available data (rainfall data,

so1l moisture data, etc.) with minimal effort and thus makes it a useful tool in considering data assimilation techniques.

7.2.3 Parametrization

Model parametrization over large areas is a difficult task given the poor spatial comprehension of the spatial organization of
involved geotechnical and hydraulic input parameters. Tofam et al. (2017) performed 39 site investigations to parametrize
their distributed slope stability model. This amount of in situ soil samplings with associated lab measurements 15 exceptional
and a great source to determine the prescribed probability density function of all measured parameters, especially since all
measurements from all sampling sites were published. Although Tofani et al. (2017) ultimately used the median value for each
lithological class, the boxplots suggested normal to lognormal parameter distributions. This 1s a common observation and
might be a result of the central limit theorem, which indicates that lumping data from many different sources (1e. different in
situ soil sampling sites in this case) tends to result in a normal or lognormal distribution (Wang et al., 2015). This gives us
confidence to use plausible parameter ranges with a normally distributed state function based on geotechnical textbooks to
characterize soils in our study area.

In accordance to the generalized likelihood uncertainty estimation {(GLUE) methodology proposed by Beven and Binley
(19923, we use a simple Monte Carlo simulation of multiple randomly chosen parameter sets within a predefined parameter
range and within a single model structure as the basis for incorporating the inherent parameter uncertainties. Parameters that
are considered in a probabilistic way are soil depth, effective cohesion and the effective friction angle (Fig. 2). We assume
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fully saturated conditions (8 = 40%) and slope-parallel groundwater flow for the sake of simplicity and given the absence of
appropriate initial water conditions. Using all this information, it 1s now possible to have a spatially distributed probabilistic
assessment of the FolS, expressed as the probability of failure (PoF). As TRIGES is capable of calculating the increase in pore
water pressure within the soil, the result is a distributed representation of the decrease in shear strength until slope failure (FoS

< 1.0) 15 reached at a certain depth.

Figure 2: Probabilistically derived modeling parameters based on random sampling from a normally distributed state function.
Jittering dots (to prevent overplotting) indi individual ples within a plausible par {er range.

=)

The raster cell size of the DEM to derive all model relevant topographical parameters used in this case study, is 10 meters.
Thus cell size allows for a sufficiently high representation surface topography without losing too much information through
surface aggregation and smoothing. For the rainfall input, three hourly timesteps were applied with spatially distributed rainfall
raster maps representing hourly rainfall based on automated geostatistical interpolation (the methodology is described in detail
in Canh et al. (2017)). Using interpolated ramnfall input 1s sufficient as a proof on concept for this case study. but this can be
immediately exchanged for any other raster input, such as numerical weather predictions, in a real-time application. The
selection of hourly rainfall input as well as the decision to choose a three-hour timeframe to force the model was made
arbitrarily as for the study area there are no published information available on the hydrological response of landslides to
rainfall. The spatial resolution of 1 km for the rainfall input was resampled to match the cell size of the DEM, which is a
prerequisite of TRIGRS.

7.3 Results

Fig. 3 shows the results for 24 model iterations for the same time based on spatially distributed, hourly rainfall input over the
last three hours. Each ensemble member was initialized with probabilistically derived parameters that are displayed on each
map. The WO (2012) describes this form of EPS representation postage stamp map that shows each individual ensemble
member which allows the forecaster to view the scenarios in each member forecast. The results indicate quite significant
changes across individual members, but also quite high similarities although parameters change drastically between some of
the members. For example. a depth of 2.5 m, an effective cohesion of 13.4 Nm*? and an effective [riction angle of 35 degree
in one of the deterministic outputs reveal almost the 1dentical Fo3 distribution with a depth of 2.0 m, an effective cohesion of

5.4 Nm™ and an effective friction angle of 22,7 degree.

Figure 3: Postage stamp map for 24 model iterations for the same time. Each ensemble member was initialized with altered
parameters within a plausible range to account for variability and spatial uncertainty. Factor of Safety (FoS) values < 1 indicate
slope instability.

By using a probabilistic representation, this variability and uncertainty is accounted for. Here, the probability is estimated as a

proportion of the ensemble members that predict an event to occur (FoS < 1.0) at a specific raster cell. For example, a
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probability between 0.75 and 1.0 means that a specific raster cell, under varying input parameters, indicates slope failure in
75% to 100% of all model runs for this specific time.
To provide additional information, which supports different actors responsible to manage landslide hazards, the PoF 1s

underlain with accurately mapped building polygons and roads for a direct exposure visualization of the elements at risk

A

towards landslides (Fig. 4). Buildings and roads are imported from the {reely accessible OpenSireethap (OSM) database.
3M covers almost the entirety of existing buildings in Austria and is based off official Austrian administrative data, which
stands under an open government data (OGD) license. Building exposure is a result of a simple spatial join that assigns each
building the highest PoF value within 25 m. This value, while arbitrarily chosen, further accounts for spatial uncertainties since
TRIGES models only the location of actual landslide initation. High building exposure along the river is a modeling artifact
10 introduced by the steep retamning wall and the associated sudden and steep decline in slope angle. Results of the Pol map
suggest quite a narrow ensemble spread, which means that the different input parameters indicate an expression of equifinality.
This can be considered as some kind of spatial confidence buffer that gives some reliance that under varying rainfall forcing

the location of possible slope failure 15 modelled quite consistently at the more or less same location.

15 Tigure 4: Probability of Failure depicted as a proportion of the ensemble members that predict an event to occur (Fo$ < 1.0). Building
exposure to current slope failure predictions adds an additional information layer for decision makers. Buildings and roads are
imported from the freely accessible OpenStreetMap (OSM) database (© OpenStreetMap contributors).

8 Discussion

Since landslides generally tend to occur in steeper slopes (Liao et al., 2011), this spatial confidence buffer modelled in the

20 probabilistic approach presented here could partially alleviate two issues: a) reduce the influence of positionally imprecise
landshide mventory data in the calibration process since a larger slope proportion reveals mstability; b) reduce the false alarm
ratio since landslide locations are more hkely to be situated within a certain slope failure probability segment (as would be the
case in Liao et al,, 2011 for example). In this case study, we can only perform some kind of qualitative validation for the
following reasons: a) for Lower Austria a very comprehensive and spatially accurate landslide inventory based on high-

25 resolution airborne LiDAR based DEM mapping exists (Petschko et al., 2015), however, it does not contain any temporal
information; b} the Building Ground Registry (BGE) is the most comprehensive source of reported damage causing landslides
in Austria, however, its spatial and temporal accuracy is insufficient for physically based model calibration and validation.
Cualitative validation by visual comparison (Fig. 5) indicate, for this specific time and under the given ramnfall input, that there
15 an agreement between some of the landslide mitiation points and areas of high failure probability.

30 For personnel responsible to manage landslides in a given region, however, this situation would be quite challenging in order
to take appropriate action. The probabilistic approach depicts spatial variability and uncertainty much better than any purely
deterministic result, yet there are still many unaccounted uncertainties involved with respect to actual slope failure prediction.

Thus, a map representation of slope failure probability at such high spatial resolution could suggest a certainty that simply 1s
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not achievable in landslide modeling. It has to be stressed that this probabilistic approach does not eliminate uncertainty, but
it explicitly introduces it into the model results. This is quite detrimental to the ultimate goal of predictive modeling: to be a
positionally and temporally accurate mitigation tool. Salciarini et al. (2017) points out that such a tool can be suitable for a
first susceptibility screening of an area prone to landsliding, but not for single slope/single landslide analyses. Since such a
map reveals a high degree of spatial discontinuity in its spatial prediction pattern, this undoubtedly puts the forecaster at risk
of missing some real landsliding occurrences. This raises the question whether putting high efforts into probabilistic landslide
forecasting is warranted compared to a combination of statistical susceptibility maps with an early warning approach including
empirical-based rainfall thresholds (see conclusions Challenge 2: Rare events and model averaging). Kirschbaum etal (2012)

present such a nowcasting attempt at a regional and global scale by using remotely sensed precipitation data.

Figure 5: Probability of failure map detail for a specific time under prevailing rainfall conditions. Known historic landslide initiation
points (ellipses) partly overlap with current slope stability conditions. However, high spatial resolution, and therefore a high degree
of spatial discontinuity, poses a risk for missing many real landslide events in an early warning situation.

This spatial confidence buffer that indicates a rather narrow ensemble spread is an equifinal result of the main predetermining
factor: slope angle. Neves Seefelder et al. (2016) and Zicher et al. (2017) 1dentified slope angle as one of the most sensitive
modeling parameter in TRIGRS, which is not surprising since slope failures are in general associated with higher slope angles
(Liao et al., 2011). Therefore, no matter what the geotechnical or hydraulic input parameters are, it will be always the same
slope segments that will result the highest slope failure probability. Slope failure probability will ultimately vary only based
on the dynamic component (here: rainfall) or if a spatially distributed soil depth map 1s provided. The ensemble members in
Fig. 3 indicate very similar results under greatly varying input parameters because of equilinality. This raises the question if
model calibration is physically advisable or if we could draw useful conclusions from the direct model output alone (see
conclusions Challenge 1: Parameter uncertainties at regional scale modeling).

Deterministic forecasts suppress information and judgement about uncertainty. They generally pretend to be absolute based
on an optimal set of input parameters. Empirical approaches, such as the commonly used rainfall thresholds in landslide early
warning applications, started to incorporate estimates of uncertainty only recently by defining rainfall thresholds at different
exceedance probabilities (e.g. Mehllo et al., 2016, Picwllo et al, 2017), yet they rely on very good landshde event catalogues
and thus purely on past reportings, which adds a remendously large source of error (Peres et al., 2017). Gariano et al. (2015)
found that an underestimation of only 1% in the number of considered landslides can result in a significant decrease in the
performance of a threshold based landslide EWS. Additionally, rainfall thresholds represent a simplification of the underlying
physical processes by establishing purely a relationship between rainfall and landslide occurrence (Bogaard and Greco, 2017).
Both, determimstic and empirical approaches may create the 1llusion of certainty n a user’s mind, which can easily lead to
wrong conclusions. Krzysziofowiez (2001) mentions a notable event in the spring of 1997, where a falsely issued deterministic
forecast on the Red River in Grand Forks, Morth Dakota, led to evacuations and left a devastated city. After the event a City

Council Member in Grand Forks stated (p. 3): ... the National Weather Service continued to predict that the river’s crest at

15
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Grand Forks would be 49 ft. . If someone had told us that these estimates were not an exact science,... we may have been better
prepared.”
Based on these words, the presumption that hiding the predictive uncertainty behind the fagade of a precise estimate serves

better the public need is wrong and careless. Concerns about the acceptance of probahilities in decision making tured out to

A

be unwarranted (Krzysziofowicz, 2001). Based on our observations we found that many published landslide studies dealing
with physically based hindeasting applications rely too strong on purely number based validation outputs. Determ inistic results
are taken as given when the modellers achieve satisfactory results based on the model validation, without defining what the
criteria are for this satisfaction or when this state of satisfaction is reached. Beven (1996) argues that this is generally owed to
relativism, when there is a need to adopt less stringent critenia of acceptability or to acknowledge that it is not possible to
10 predict all the observations all the time (with common arguments ranging from scale issues, spatial heterogeneity, uncertainty
in model structure or process understanding, etc.). In all other cases, probabilistic approaches should be prioritized since they
allow not only for the incorporation of parametric uncertainties, but also facilitate the geomorphic plausibility control in the
absence of proper calibration/vahdation data. However, narrowing down uncertainties 1s a good first step, but not the be-all
and end-all of ensemble approaches. It is the differences that matter between model predictions and determining and unpicking
15  those differences should be the ultimate goal of ensemble approaches which requires high quality data (Challinor et al., 2014).
The scarcity of such high-quality data in landslide research is well known. The potential of local-scale studies to draw
conclusions for a larger scale (e.g. Bordoni et al., 2015) remains to be a very important field of study in the near future. In this
regard, data assimilation might be a key factor for producing accurate model predictions while reducing those inherent
uncertainties. Data assimilation can be referred to as (real-time) parameter updating with observations of flow, soil moisture,
20 groundwater, displacement or rainfall (continuously measured through e.g. radar, rain gauges, etc.) and appropriate uncertainty
modeling to correct model predictions (Collier, 2007, Reichle, 2008). Liu et al. (2012) give an in-depth review on the current
state of data assimilation applications in both, hydrologic research and operational practices that are in many parts valid for
landslide prediction too. While there are a few adaptive systems in landslide early warning based on empirical thresholds (e.g.
the SIGMA early warning system mn Italy (Martellom et al., 2012, Segom et al., 2017)), there are none that use physically
25 based predictions with blends of most recent QFEs or other independent observations. For extreme events, this might be key
if the probability of extreme {loods or landslides occurring 15 continuously and objectively evaluated and updated in real-time,
especially when it comes to assimilating new observations from multiple sources across a range of spatiotemporal scales (Liu

etal,, 2012).
9 Conclusions
30 We would like to conclude this paper by raising awareness for a couple of technical and conceptual challenges the landslide

forecasting community has to face in the near future. Since physically based, probabilistic landslide forecasting is sull in its
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infancy, we refrain from addressing challenges in operational practices that are currently discussed in hydrological forecasting

({e.g. Pagano et al., 2014, but are of equal importance for the operational use of landslide forecasting nonetheless.

Challenge 1: Parameter uncertainties at regional scale modeling

Current practices for geotechnical parametrization in physically based landslide modeling include the application of averaged
values from in situ measurements (e.g. Thiebes, 2014, Tofam et al., 2017, Zicher et al., 2017) or using values from existing
databases, lookup tables or other published/unpublished sources (e.g. Schmidt et al,, 2008, Kuriakose et al., 2009, Mergili et
al., 2014b). In the landslide research community, probabilistic treatment of input parameters for regional model application
has seen arise only in the last couple of years. Probabilistic approaches allow for a more thorough consideration of uncertainties
and mherent variability of model specific parameters. Spatially varying parameters (both geotechmical and hydraulic) are
usually represented as univariate distributions of random variables based on an underlying probability density function and
statistical characteristics (Fan et al., 2016). Friction angle and cohesion are commonly considered as such varying variables
that are treated in a probabilistic way for model parametrization (e.g. Park et al, 2013, Chen and Zhang, 2014, Raia et al.,
2014, Salciarini et al., 2017). Interestingly. in hydrological streamflow prediction the parameter uncertainty of the hydraulic
model is often neglected in favor of a deterministic parameter input. This is explained by the superior proportion of total
estimation uncertainty introduced by the weather predictions alone, which blurs the streamflow variability that the
meteorological input data cannot explain (Alfieri et al., 2012b).

Measuring geotechnical and hydrological parameters for large areas is difficult, ime-consuming, and expensive. Therefore,
applying spatially distributed physically based models with spatially variable geotechnical parameters is not straightforward
and it is impossible to find an approach that is universally accepted (Tofani et al.,, 2017). Even if there is a sufficiently large
amount of measured values available for one, some or even all parameter values in a model up to the point that it is possible
to specify distributions and covanances for the parameter values, there remain some methodological obstacles. For example,
there is no guarantee that values measured at one scale will reflect the effective values required in the model to achieve
satisfactory predictions of observed variables (Beven and Freer, 2001). At larger scales (e.g. = 1:25,000), there are several
factors that cause spatial variation of, for example, soil water content, topography, differences in soil depth, -type and -texture,
vegetation characteristics, as well as ranfall patterns. Additionally, spatially varying soil and hydraulic properties are
influenced by interrelated soil formation processes (such as weathering processes, biological perturbations, atmospheric
interactions) (Fan et al., 2016), and thus making selective in situ soil sampling a tricky task when performed at a larger scale.
Small scale (e.g. < 1:10,000) variability usually lacks a spatial organization, hence its representation as stochastic process. The
larger the scale, however, the more soil forming processes manifest a persistent deterministic signature due to the
predetermined geology, topography, chimate, ete. (Seylried and Wilcox, 1995, Fan et al, 2016). Neves Seefelder et al. (2016)
suggest applying rather broad ranges of parameters for physically based approaches to be on the “safe side™ as they vield
results comparable in quality to those derived with best-lit narrow ranges. By acknowledging the fact that geotechnical and
hydrological parameters — when applied on a larger scale — are highly vanable, uncertain and often poorly known, narrow
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parameter ranges or even singular combinations of parameters come with the risk of being off target (Neves Seefelder et al.,
2016). This basically implies that, when working at a regional scale and beyond, an actual parametrization with i situ
measured samples might not be necessary at all when using literature values instead. This could mean enormous savings in

time and money spent, yet this clearly needs further research to evaluate whether there 1s and to what degree the benefits of

A

actual sampled in situ data are compared to just utilizing literature values in broad ranges when modeling at larger scales.

Challenge 2: Rare events and model averaging

Like flood events, landslides types with a rapid onset can indeed be considered as an extreme event. Hereby, extreme does not
necessarily refer to huge displaced landslide volumes — also small landslides might be considered as extreme in terms of
potential consequences. While it is possible to continuously monitor and forecast regular streamflow, extreme events are scarce
10 which makes model calibration and, consequently, forecasting a real challenge. We argue that this is even more so the case for
landslides since there are no directly observable target variables to be monitored ata regional scale. Landslide models can only
be calibrated on a case by case basis. Shallow landslides are one of the most common landslide types (van Asch et al., 1999).
While they oceur quite in abundance when locking at their spatial distribution, they are typically low-frequency events. And
most of them do oceur in so called “low-risk” environments as defined by Khimes et al (2017): low annual frequency of
15 landslides; the majority of the landslides are of small size and are low impact events. Due to the scarcity of such extreme
events, Collier (2007) argues that such events may lie outside of what model calibration if capable of providing for forecasting
approaches. Commonly, calibration will improve the reliability of forecasts (1.e. the match of the target variable or forecast
probabilities to frequency of observations of the event) but reduce the resolution of the forecast (the ability to discriminate
whether an event will oceur or not). Consequently, calibration will improve forecasts of common events, but reduces the
20 probability of forecasting more extreme events.
The WhO (2012) argues that this i1s the case when events are rare, since the statistical distributions are trained to the more
commeon events. For rare events, hence, calibration cannot be expected to provide significant improvement over the raw
forecasts. Therefore, it is very difficult to validate a model for future use, as it can be only continually evaluated in the light of
the most recent data (Oreskes et al, 1994, Challinor et al., 2014). And landslides are per se extreme events with no common
25 events attnbuted to them as they only occur under exceptional circumstances given the environmental interactions mvolved.
Thus raises the question if any averaged model output, and that is by definition every model output based on model calibration
from past events, will ever be able to precisely forecast extreme events at the regional scale. The sensitivity of the model had
to be lowered in a way that much larger areas of slope failure need to be forecasted to catch a few real extreme events at the
cost of significantly raising the number of false alerts. This 1s especially the case when engineering conservatism comes into
30 play in decision making, thus leaving probabilistic forecasting attempts in a nonsuperior state over purely deterministic
approaches. This is a known issue (e.g. Baum et al., 20107 in a way that FoS computations usually are more likely to wlentify

areas prone to slope failure during a given rainfall event rather than predicting exact locations of specific landshdes. A term
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such as landslide susceptibility forecasting seems more appropriate in that case. Our results in the Flyschzone of Lower Austria
seem to point in that direction so far. This 1s definitely an 1ssue that needs far more in-depth research in the future.

What else has to be kept in mind are the technical specifications of the modeling approach for slope stability analysis at a
regional scale. The most commonly applied modeling approach relies on the infinite-slope stability model which reduces the
landslide geometry to a slope-parallel layer of mfinite length and width. Modeling approaches that try to introduce more
complex landslide geometries in a GIS environment are generally outperformed by the infinite-slope stability model (Zieher
etal, 2017). Consequently, parameters representing the landslide geometry assumed by the model (i.e. slope angle and depth)
are highly sensitive (Zieher et al., 2017). This means that the underlying model itself already performs some sort of averaging

too since the precise landslide geometry cannot be adequately resolved in the infinite-slope stability model.

Challenge 3: Computational burden

In literature, physically based approaches for modeling rainfall-induced shallow landslides were suggested to be applied to
smaller scale study areas while statistical based approaches were recommended for larger scale susceptibility assessments (e.g.
van Westen et al., 2006, Corominas et al., 2014). One reason usually mentioned is the poor comprehension of the spatial
organization of the geotechmecal and hydraulic input parameters (e.g. Tofam et al., 2017, Park et al., 2013). However, as
outlined ahove, it does not make too much difference whether the underlying study area is 50 km? or 5000 km? investigated at
a scale of 1:1,000 or 1:25,000 — the model is still influenced by errors or uncertainties from the input parameters to the same
degree given the fact how input parameters are derived. Therefore, one major drawback used to be the computational costs
involved when modeling physically based at a regional scale. Because as soon as computational power was available at
reasonable costs, the area size, associated with a high-resolution DEM, steadily increased over time for physically based
applications and currently exceeding thousands of square kilometers (e.g. Tofani et al., 2017, Alvioli and Baum, 2016).
Recent landslide model development is aiming towards featuring multithreading and parallelization. Since high resolution
DEM are available in many parts of the world, the computational demands increased sigmificantly, especially when applied in
a dynamic/time-dependent modeling framework. Parallelization has great potential in grid-based landslide modeling,
especially for the time-consuming hydraulic model components, for several reasons: in case of TRIGRS, for example, which
15 a coupled slope stability and hydraulic model, only excess water from infiltration 15 directed to the neighboring cells which
makes it the only variable that relies on explicit neighborhood relations. This needs to be done only once, however. Vertical
groundwater flow and one-dimensional slope stability in a two-dimensional array of noninteracting columns can subsequently
be computed independently for each cell, which is a prime example for parallelization purposes (Baum et al., 2010, Alvioli
and Baum, 2016). Besides TRIGRS v2.1, which received its parallel implementation by Alvioli and Baum {2016) only recently,
other models for physically based landslide applications are using a parallelized module: New Age-JGrass (Formetta et al,
2016) or r.slope stability (Mergili et al., 2014a).

In our case study, the computational time for one model iteration 1s about 45 minutes, which is far too long for computing a

large set of different ensemble members in an operational real-time application. We did not yet use the parallel implementation
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of TRIGRS on our regular commeodity machine (3.40GHz quad-processor equipped with 32GB RAM), but Alvioli and Baum
(2016) reported that parallel computation on a multi-core node already led to a significant speedup compared to a single-node
local machine. When applied to a HPC (High-Performance Computing) cluster, they were even able to reduce running time
from one day to one hour. This allows the exploration of new possibilities in how landslide forecasting can be approached in
5 the future. While HPC applications are common in meteorological (Bauer et al., 2015) and hydrological forecasting (Shi et al |
2015), this 1s a field clearly underexploited in the field of landslide forecasting. This opens up possibilities to encompass fine
tuning of input parameters by means of multiple model runs, probabilistic applications and, first and foremost, real-time

applications with a continuous consideration of antecedent and forecasted rainfall information (Alvioli and Baum, 2016).
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