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Abstract 

Rock fall is a prominent gravitative process in mountainous regions. Due to road cuts 

and steep slopes with bare rock faces, the Ybbs Valley in Lower Austria is a rock fall 

endangered area. This master’s thesis deals with the detection of small scale rock 

events by means of terrestrial laser scanning. Furthermore, it aims at the evaluation 

of the registration and change detection steps of the processing workflow. The study 

area is the Amtmann, a 40 m high rock monolite in the Ybbs Valley between Opponitz 

and Waidhofen an der Ybbs. The used data consists of high density 3-D point clouds 

acquired from up to three different positions in a total of four scanning campaigns 

between July 2014 and October 2017. For method evaluation, small scale artificial 

manipulation of the surface is performed prior to the last scanning campaign. The data 

processing workflow includes registration, filtering and change detection. Different 

registration methods (MSA, ICP) and different point to point change detection 

approaches are tested. The results are evaluated statistically by comparing 

descriptive parameters and analysed by rank scale test. Moreover, the output is cross-

checked visually. The optimal derived workflow for the thesis includes automated tie 

point registration, the ICP algorithm for fine alignment and the M3C2 algorithm for 

change detection. The results show that small scale changes from ~0.025 m local 

surface change are detectable. Limiting impacts are the accessible scan positions 

which do not allow all around scanning of the Amtmann and shadowing effects of local 

vegetation lead which lead to in incomplete surface data.  

 

 

 



 

 

 

  



 

 

 

Kurzfassung 

Steinschlag ist ein weit verbreiteter Prozess in gebirgigen Regionen. Aufgrund von 

Hanganschnitten durch Straßenbau und frei stehenden Felsstrukturen zählt das 

Ybbstal in Niederösterreich zu steinschlaggefährdeten Gebieten. Diese Masterarbeit 

widmet sich der Erfassung von kleinmaßstäbigen Steinschlagevents unter Einsatz 

von terrestrischem Laserscanning. Das Ziel der Arbeit ist eine Methodenevaluierung 

verschiedener Ansätze für Punktwolkenregistierung und Nachweis von 

Oberflächenveränderungen. Das Untersuchungsobjekt ist der Amtmann, ein 40 m 

hoher Felsturm im Ybbstal zwischen Opponitz und Waidhofen an der Ybbs. Für die 

vorliende Arbeit wurden hochaufgelöste 3-D Punktwolken von vier Feldkampagnen 

verwendet, die bis zu drei verschiedene Scanpositionen beinhalten. Die 

Datenaufnahme wurde zwischen Juli 2014 und Oktober 2017 durchgeführt. Für die 

Evaluierung der Methodik wurden vor der letzten Scankampagne kleinmaßstäbige 

Styroporobjekte auf der gescannten Felsoberfläche installiert. Der 

Datenverarbeitungsprozess beteht aus Registrierung und Filtern der Punktwolken 

sowie Detektierung von Oberflächenveränderungen. Verschiedene methodische 

Ansätze zur Punktwolkenregistrierung (MSA, ICP) und verschiedene 

punktwolkenbasierte Ansätze zum Erkennen von Oberflächenveränderungen wurden 

getestet. Die Ergebnisse wurden durch deskriptive Statistik evaluiert sowie durch 

nicht-parametrische Testverfahren überprüft. Darüber hinaus wurden die Ergebisse 

visuell interpretiert. Die ausgewählten Methoden für die Punktwolkenverarbeitung in 

dieser Masterarbeit beinhalten automatisierte Grobregistrierung mit 

hochreflektierenden Passpunkten, ICP-Algorithmen für Feinregistrierung sowie 

verschiedene punktdatenbasierte Algorithmen (C2C und M3C2) für die Erfassung von 

Oberflächenveränderungen. Die Ergebnisse zeigen eine minimal messbare 

Veränderung von ~0.025 m. Limitierende Faktoren sind die Einschränkung der 

möglichen Scanpositionen durch die lokale Topographie sowie Abschattungeffekte 

lokaler Vegetation, welche zu unvollständiger Oberflächenrepräsentation führen.  
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1. Introduction 

Referring to BURTON ET AL, a “hazard results from the interaction of a natural and a 

social system” (BURTON ET AL 1978: 19). Natural hazards can therefore be defined as 

“all atmospheric, hydrologic, geologic […], and wildfire phenomena that, because of 

their location, severity, and frequency, have the potential to affect humans, their 

structure, or their activities adversely” (DEPARTMENT OF REGIONAL DEVELOPMENT AND 

ENVIRONMENT, EXECUTIVE SECRETARIAT FOR ECONOMIC AND SOCIAL AFFAIRS 

ORGANIZATION OF AMERICAN STATES 1990: 24). According to the the World Disaster 

Report 2016, more than 108 million people were affected by such events in 2015, and 

summing up the annual reports, more than 1.9 billion people in the decade from 2006 

to 2015 (SANDERSON AND SHARMA 2016). 

1.1 Background and problem statement 

In mountainous regions, gravitative processes like landslides, mudslides, rock falls, 

rock slides or snow avalanges are decisive hazardous events (GRACHEVA AND 

GOLYEVA 2009). For damage prevention, it is important to be aware of the occurrence 

of these processes and include them to spatial planning and development (GLADE 

AND RUDOLF-MIKLAU 2015, PROMPER AND RUDOLF-MIKLAU 2015). Especially rock falls, 

occurring not only in natural mountainous regions but also in artificial excavations and 

along road cuts (CROSTA ET AL 2015) and are widespread phenomena in Austria with 

a strong impact on infrastructure even claiming lives (ORF 2017a-h, ORF 2018a-f). In 

general, rock fall is understood as an extremely rapid type of landslide: a mass of rock 

is detached along rock discontinuities and free-falls and bounces or roles down a 

steep slope (VARNES 1976, WHITTOW 2000, BOURRIER ET AL 2012, HUNGR ET AL 2014). 

To reduce the risk that comes with rock fall events, sectoral planning based on hazard 

analysis and risk management provide useful approaches (CLOUET ET AL 2012, GLADE 

AND RUDOLF-MIKLAU 2015). For the estimation of risk and for a substantial base for 

monitoring and taking protective measures like installing rock fall nets nets or building 

rock fall galleries to minimize the effect rock falls, a documentation of occurred events 
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is essential (BMLFUW IV/5 2016). While big events, especially with damage to 

infrastructure or harm to persons, are usually well-documented (e.g. HÜBL ET AL 

2002), also small events with no direct influence on humans or infrastructure are of 

interest for monitoring, risk estimation and rock fall modelling. Moreover, with 

detection of small scale rock falls in centimeter range, active areas can be identified. 

Therefore, it is essential for comprehensive studies to find possibilities to detect rock 

falls of all scales.  

Technical development during the last decades provides various methods for 

detection of surface changes which comes along with rock fall or other gravitational 

movements (ABELLÁN ET AL 2016). One method that offers a possibility of rapid and 

highly accurate surface recording and, when retaken, detection of surface changes, 

is the use of terrestrial laser scanning (TLS). Laser scanning or LiDAR (Light 

Detection and Ranging) is defined as an active photogrammetric procedure using 

laser ranging for distance measurement. In regular vertical and horizontal resolution, 

an object of interest is scanned and geometric information is derivated (ENGSTRÖM 

AND JOHANSSON 2009). From close range 3D object recording to large scale 

topographic mapping, laser scanning has revolutionized the acquisition of 3D data 

since the 1990s. A basic distinction between airborne laser scanning (ALS) and 

terrestrial laser scanning (TLS) is made (KRAUS 2004). Within the last years, TLS, 

next to other remote sensing techniques, developed into an important instrument of 

all kind of natural hazard risk management approaches (METTERNICHT ET AL 2005, 

JABOYEDOFF ET AL 2012, COROMINAS ET AL 2014, KROMER ET AL 2017). Facing recent 

developments of TLS, the technique is constantly getting more rapid and more 

efficient: scanning frequencies and range capabilities are rising, additional information 

like multiple or full-wave echoes or intensity values are included in the scanning data 

and high-resolution images allow coloring of the point cloud which gives the 

opportunity to various data analyses (BARBARELLA AND FIANI 2013a, PIROTTI ET AL 

2013).  

TLS appears as an ideal approach for detection of surface changes. Hence, a detailed 

evaluation of the method for small scale change detection in rockfall endangered is 

necessary to give a profounded statement concering its application in this field. 

1.2 Objectives and research questions 

This thesis is embedded in the NoeSLIDE project managed by the ENGAGE working 

group of the Institute of Geography and Regional Research, University of Vienna, in 

cooperation with the Provincial Government of Lower Austria and the Geological 



1. INTRODUCTION 

 

3 

Survey of Austria. The main objective of this overall project is a detailed long-term 

landslide monitoring of six locations in the districts Waidhofen and der Ybbs, 

Amstetten and Scheibbs in the southwest of Lower Austria. 

Within this project, the following thesis is dedicated to the evaluation of the application 

of TLS for detection of small scale rock fall events focusing on a sub-decimeter range 

of rock surface changes. Therefore, the Amtmann, a 40 m high freestanding rock 

formation in the village Kreilhof in the municipial district of Waidhofen an der Ybbs, 

one of the six locations within the NoeSILDE project, is chosen exemplarily as area 

of interest. Using the data of four different scanning campaigns performed within four 

years, the process from acquisition, preparation and analysis of TLS data is 

examined. The focus of the thesis lies on the evalutation of different point cloud 

registration methods and change detection approaches. Achievable accuracies, 

usability and limitations of propriatory and open source software as well as challenges 

in data processing are examined. Considering these aims, the following main 

research questions are postulated for guidiung further steps: 

RQ1 What point cloud registration methods provide the most 

accurate and efficient approach (regarding usability and 

processing) for the research area? 

The first research question refers to the necessity of relating different point clouds 

within one scanning campaign and between several scanning campaigns for further 

data processing and data analyses. Depending on the study site and the scanning 

process, there are different possibilities of point cloud registration. Also, different 

software packages offer various approaches. 

RQ2 What methods of surface change detection using TLS 

data serve the requirements of the research area best? 

Such as in point cloud registration, also various methods of change detection using 

point cloud data are available. The approach to answer the second research question 

pursues the research of available change detection methods, evaluation of different 

methods considering recent scientific publications and testing chosen approaches on 

the collected point cloud data. 
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RQ 3 What magnitudes of change are detectable using the 

TLS under the given environmental conditions in the 

study area? 

As numerous parameters influence the capabilities of TLS systems, it is not possible 

to specifiy general change detection accuracies. The third research question applies 

to estimation of magnitudes of change for the research area in order to give 

references for similar regions and TLS settings. 

RQ4 Which recommendations can be given for future 

scanning campaigns with regard to data analyses for the 

study site and comparable areas? 

As the thesis in general is addressed to a methodological evaluation of the TLS 

process, a detailed report on the various methods and the workflow is one major 

output. The fourth research question outlines the gathering of the experience gained 

within the whole data collection and data processing procedure.  

1.3 Thesis outline 

This master’s thesis is based on physical principles of laser ranging, the development 

of TLS, a presentation of registration and change detection methods and an overview 

of recent applications of TLS, which are presented in Chapter 2. After this general 

introduction, Chapter 3 includes a description of the data used within the thesis and a 

presentation of the methodology: the data process workflow is summarized and a 

detailed description of the chosen methods is given. In Chapter 4, the research area 

is presented briefly with a short introduction on the characteristics of the physical 

environment as well as an overview of surrounding infrastructure, documentated rock 

fall events and related investigations. The results of the research are stated in Chapter 

5 followed by a detailed discussion of the results and the postulated research 

questions in Chapter 6. In Chapter 7, conclusions from the results and the research 

process are drawn and the findings are integrated into a broader context. In the final 

Chapter 8, an outlook on future perspectives and possibilities of TLS in small scale 

rock fall detection is given. 

  



2. CHANGE DETECTION USING TERRESTRIAL LASER SCANNING 

 

5 

 

2. Change detection using 

terrestrial laser scanning 

When speaking about detection of chance, the methodology is based on the very 

fundamental principle of measuring distances. Measuring in general is one basic 

principle of empirical science. When thinking about measuring in natural sciences and 

engineering, one of the most important disciplines is physical metrology, which 

includes measuring devices based on physical principles used within clocks, 

thermometers or scales (MESCHEDE 2015). An important sub-discipline of physical 

metrology is optical metrology. By exploring the microcosmos using microscopes or 

the macrocosm using telescopes, optic metrology makes a key contribution to the 

science from the 16th and 17th century (DONGES AND NOLL 2015) until present. In the 

following Chapter, the concepts of optical metrology for measuring distances using 

the wave characteristics of a laser beam are presented. Further, the development of 

TLS is introduced, followed by a review of point cloud processing methods and recent 

applications of change detection using TLS. 

2.1 Physical basics of electromagnetic waves and laser  

An electromagnetic wave is defined as a transversal wave and characterized by its 

wavelength (which is indirect proportional to its frequency) and its amplitude 

(MESCHEDE 2015). It is made up of photons of no mass and the energy is proportional 

to the wavelength (HERITAGE AND LARGE 2009b). Graphic representations of 

electromagnetic waves are shown in a coordinate system with time on the x-axis and 

the amplitude on the y-axis as seen in Figure 1. The wavelength 𝜆 is determined by a 

whole cycle of the wave, which can further be divided in different phases (angles) 

measured in radian (rad) with 2 𝜋 as a full wave cycle (MESCHEDE 2015). Physically, 

electromagnetic radiation shows behavior of both, waves and particles (HERITAGE AND 

LARGE 2009b), but in the following chapter, the model of waves for electromagnetic 
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radiation is used. For more information on theory of light, the interested reader is 

referred to Chapter 14 in MESCHEDE (2015). 

 

 

Figure 1: Model of an electromagnetic wave  

 

Originating from Maxwell’s equations on electric and magnetic fields (MAXWELL 1864), 

the existence of electromagnetic waves which propagate with the speed of light was 

theoretically predicted and later empirically detected by Heinrich Hertz in the 1880s 

(MESCHEDE 2015). Visible light was recognized as a special case of an 

electromagnetic wave in the small range from 0.4 µm to 0.8 µm wavelength (DONGES 

AND NOLL 2015). The general spectrum of electromagnetic waves is shown in Figure 

2. Natural light is a mix of electromagnetic waves with a variety of wavelengths and is 

emitted along random trajectories. When the light strikes an object, the radiation is, 

depending on the surface characteristics, partly absorbed, transmitted and reflected. 

What wavelengths are absorbed and what are reflected within the visible spectrum 

defines the color of the object. The reflected part of the radiation is of interest for all 

kinds of optical metrology. Depending on the surface, there are different kinds of 

reflections which are shown in Figure 3: specular reflectance is the reflectance of 

radiation in a single direction, which happens when the roughness of the surface is 

smaller than the wavelength of the radiation. In this case, no radiation returns in the 

direction of the source. When the roughness of the surface is greater than the 

wavelength of the incident radiation, the reflection is diffuse and depends on the angle 

of incident and the arrangement of roughness on the surface. For most natural 
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environments, a combination of both reflectance types (mixed) is found. (HERITAGE 

AND LARGE 2009b) 

 

 

Figure 2: The range of the electromagnetic spectrum (after HERITAGE AND LARGE 2009b: 22) 

 

 

Figure 3:  Surface reflection types: (a) specular, (b) diffuse, (c) mixed. (after HERITAGE AND LARGE 2009b: 
23) 

 

Based on Einstein’s approaches of quantum theory of radiation (EINSTEIN 1916) and 

the theoretical framework on infrared and optical masers of Schawlow and Townes 

(SCHAWLOW AND TOWNES 1958), in 1960, Maiman created a monochromatic radiation 
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with a wavelength of 6943 Å (0.6943 µm) by optical pumping using a ruby as the 

active material (MAIMAN 1960). This is known as the first realization of a laser (DONGES 

AND NOLL 2015). 

To generate laser light, a light source is used to excite electrons of the laser source 

into a higher energetic state. The excited atomic structure is unstable and therefore 

emits energy as a photon as the electron returns to its original state. When the emitted 

photon strikes another excited atom, another photon of the same wavelength and 

direction is emitted. The photons are reflected within the laser source where the 

emission of more photons of the same wavelength and direction continues, while the 

so generated radiation of same wavelength and direction is only allowed to exit the 

laser source through one end as highly coherent and low divergence Light Amplified 

by Stimulated Emission of Radiation – as a LASER. Besides the use of a ruby as a 

solid-state laser material, the variety nowadays includes gas lasers, dye lasers or 

semiconductor diode lasers. (HERITAGE AND LARGE 2009b) 

Laser radiation is characterized by a wavelength from 0.1 µm to 1.0 µm and is 

represented by a plane harmonic wave. A plane harmonic wave is described by five 

independent parameters: intensity, phase angle, direction of propagation, wavelength 

and direction of polarization. (DONGES AND NOLL 2015) 

 

 

Figure 4: Comparison of the radiation of natural light (a) and a laser (b) (after HERITAGE AND LARGE 
2009b: 25) 

 

(a) (b)

(a) Natural light

• Emitted in random directions

• Variable wavelength

• Variable amplitude

• No phase correspondence

(b) LASER light

• Emitted in single direction

• Constant wavelength

• Constant amplitude

• Total phase correspondence
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Comparing a laser beam with natural light (white light), the light beam emitted by a 

laser is coherent, in phase, emitted in one single direction and practically 

monochromatic with a well-defined energy and frequency and wavelength, whereas 

white light is broadband over many wavelengths and amplitudes with no phase 

correspondence and emitted in a spatially isotropic way. (HERITAGE AND LARGE 2009b, 

DONGES AND NOLL 2015) Figure 4 illustrates these differences.  

Lasers are broadly used, for example in communication technology, material 

processing, medicine, data storage, environmental monitoring, laser ablation or laser 

additive manufacturing. Due to special characteristics, lasers are also versatile 

measurement tools. Selected applications are routine testing in manufacturing 

processes, quality assurance, recycling technology, biotechnology or medical 

technology. Laser measurement technology is characterized by its high flexibility, the 

high measuring speed, high precision and the possibility of non-contact 

measurement. (DONGES AND NOLL 2015) Following, different concepts of distance 

measurement using laser beams are presented. 

2.2 Concepts of distance measurement using a laser 

As a fundamental property, light waves travel with a finite and constant velocity 

depending on the given medium. Measuring the time delay of light travelling from a 

source to a reflective surface and back to the source gives a very convenient way to 

calculate the distance between the source of light and the reflecting surface. Laser 

ranging is therefore based on the relation of velocity, time and distance which is 

displayed in the following formula:  

𝑙 =
𝛥𝑡 ⋅ 𝑐𝑛
2

  

 
𝑙 …𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
𝛥𝑡 … 𝑡𝑟𝑎𝑛𝑠𝑖𝑡 𝑡𝑖𝑚𝑒 
𝑐𝑛 …𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑑𝑖𝑢𝑚 

 

 

(Equation 1) 
 

The speed of light in a vacuum is currently defined as c = 299 798 458 m/s. Depending 

on the propagation medium, the velocity must be adapted by dividing c by the correct 

refractive index n. The refractive index of atmospheric air depends on temperature, 

pressure and humidity and is about n  1.00025. (BERLADIN ET AL 2010, DONGES AND 

NOLL 2015) 
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There are different approaches to measure or calculate the transit time or the distance 

which are presented in the following subchapters.  

2.2.1 Pulse based measurement 

One way to measure the transit time is the emission of one laser pulse and measuring 

the time until the echo of a fraction of the pulse returns to the laser scanner. This is 

also referred to the time-of-flight principle. Therefore, the transit time is directly 

measured. For the exact determination of the time of flight, a laser pulse is emitted 

and the detector generates a time-tagged trigger pulse when detecting the echo 

depending on the implemented criterion. Different detection methods are peak 

detection, where a trigger pulse is set at the maximum amplitude of the echo, 

threshold detection, where the trigger pulse is generated when the echo exceeds a 

predefined threshold or constant fraction detection, where the trigger pulse is 

produced at a preset fraction (typically 50%) of its maximum amplitude. (BERALDIN ET 

AL 2010, DONGES AND NOLL 2015) 

 

 

Figure 5: Pulse characteristics of emitted pulse (a) and received echoes (b) measurement (after 
BERLADIN ET AL 2010: 4) 

 

Due to site characteristic (e.g. vegetation), one pulse can lead to multiple echoes. 

Depending on the distance, multiple echoes can be captured. The minimum distance 

for two different echoes E1 and E2 to be detected is calculated by using the pulse 

width 𝛥𝑡𝑝. For discrimination of different surfaces covered by one pulse, it is 
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necessary that the echoes do not overlap, which means that 𝛥𝑡   𝛥𝑡 + 𝛥𝑡𝑝  (𝛥𝑡  and 

𝛥𝑡  being two different measured transit times from the two different echoes resulting 

from one pulse). Transforming the relation and using Equation 1, two echoes can only 

be discriminated if their distance is larger than half of the pulse length 𝑙𝑝. A pulse 

width of 𝛥𝑡𝑝 = 5 ns therefore corresponds with an echo discrimination distance of 

0.75 m. In Figure 5, the principle is visualized. (BERALDIN ET AL 2010) 

Due to white noise, a measuring distance using single pulse includes uncertainty. This 

uncertainty can be estimated with the following equation: 

𝛿 −𝑝 ≈
𝑐𝑛 ⋅ 𝑡 

2√𝑆𝑁𝑅
  

  
𝛿 −𝑝…𝑟𝑎𝑛𝑔𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑓𝑜𝑟 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑢𝑙𝑠𝑒 

𝑐𝑛 …𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑑𝑖𝑢𝑚 
𝑡 …𝑟𝑖𝑠𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑠𝑒𝑟 𝑝𝑢𝑙𝑠𝑒 (𝑠𝑒𝑒 𝐅𝐢𝐠𝐮𝐫𝐞 𝟓) 
𝑆𝑁𝑅… 𝑠𝑖𝑔𝑛𝑎𝑙 − 𝑡𝑜 − 𝑛𝑜𝑖𝑠𝑒 𝑟𝑎𝑡𝑖𝑜 

 

 

(Equation 2) 
 

The signal-to-noise ratio is the dimensionless relation of power of the signal to the 

power of the noise. (BERALDIN ET AL 2010)  

2.2.2 Continuous wave modulation 

Next to the use of short laser pulses, also a modulation of a continuous wave is used 

for distance measurement. The modulation can be applied to several wave 

characteristics, e.g. amplitude modulation (AM) or frequency modulation (FM). 

(BERALDIN ET AL 2010) 

For amplitude modulation, the amplitude of a laser beam is affected by modulating 

the intensity. Therefore, a carrier wave is modulated by a measuring wave as seen in 

Figure 6 (PRICE AND UREN 1989). The transit time is measured indirectly in this 

concept. By measuring the phase difference 𝛥𝜑 between the emitted and the 

collected laser light, the phase difference as fraction of one wavelength can be 

calculated:  

𝛥𝜆𝑚 =
𝛥𝜑

2𝜋
⋅  𝜆𝑚 

 
𝛥𝜆𝑚 …𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑝ℎ𝑎𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 
𝛥𝜑…𝑝ℎ𝑎𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛 
𝜆𝑚 …𝑤𝑎𝑣𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑 𝑤𝑎𝑣𝑒 

 

(Equation 3) 
 



2. CHANGE DETECTION USING TERRESTRIAL LASER SCANNING 

 

12 

 

Figure 6: Amplitude modulation of an electromagnetic wave (after PRICE AND UREN 1989: 167) 

 

The range uncertainty can approximately be calculated by 

𝛿 −𝐴𝑀 ≈
1

4𝜋
⋅
𝜆𝑚

√𝑆𝑁𝑅
  

  
𝜆𝑚 …𝑤𝑎𝑣𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑 𝑤𝑎𝑣𝑒 
𝑆𝑁𝑅… 𝑠𝑖𝑔𝑛𝑎𝑙 − 𝑡𝑜 − 𝑛𝑜𝑖𝑠𝑒 𝑟𝑎𝑡𝑖𝑜  

 

 

(Equation 4) 
 

shown by BERALDIN ET AL 2010. Figure 7 shows the principle of measuring phase 

differences and where the phase angle is found in the continuous wave.  

Translating the graphic representation in a formula, the wanted distance is calculated 

directly without extraction of the transit time 𝛥𝑡:  

=
1

2
(𝑛 ⋅ 𝜆𝑚 + 𝛥𝜆𝑚) 

  
𝑙 …𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
𝑛… 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑙𝑙 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ𝑠 
𝜆𝑚 …𝑤𝑎𝑣𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑 𝑤𝑎𝑣𝑒 
𝛥𝜆𝑚 …𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑝ℎ𝑎𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 
 

 
(Equation 5) 

 

By phase comparison, 𝜆𝑚 is known and only 𝛥𝜆𝑚 can be measured. For the 

calculation of the distance, the quantity of full wavelengths 𝑛 is also required. Coping 

with this problem is known as resolving the ambiguity. Different methods such as 
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increasing the measuring wavelength in multiples of ten (PRICE AND UREN 1989) or 

using multiple frequency waveforms (BERALDIN ET AL 2010) are used. 

 

 

Figure 7: Measuring phase differences of an electromagnetic wave for distance measurement (after 
PRICE AND UREN 1989: 165) 

 

Comparing pulse based measurement and measurement based on phase 

modulation, the advantage of pulse based measurement is a larger range capacity 

while phase-measurement based systems are more accurate and faster in scanning. 

Therefore, pulse based measurement dominates due to its larger range airborne laser 

scanning systems (BERALDIN ET AL 2010, WALTON ET AL 2014). When comparing 

different terrestrial laser scanner, listed in LARGE AND HERITAGE (2009b), there is also 

a domination of pulse based systems, but with a clear deficiency relating to data 

collection rate (up to 50,000 points per second in contrast to 500,000 points per 

second with phase-measurement systems). Including recent product releases of 

market leaders such as Leica Geosystems or Riegl, the technical development allows 

data collection rates in the range of several 100,000 points per second (RIEGL 2017) 

up to 1,000,000 points per second (LEICA 2017) using pulse based measurement. 

2.2.3 Other distance measuring techniques  

Besides pulse based measurements and continuous wave modulation, there are 

other techniques for distance measuring using a laser.  

 𝜆𝑚
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Other forms of continuous wave modulations are frequency modulation where beat 

frequencies are exploited (BERALDIN ET AL 2010) or the use of laser interferometry: 

Interferometry in general uses the behavior of superimposed waves. (MEINERS-

HAGEN ET AL 2009). The basic principle of all laser interferometers works similar: an 

incident laser beam is split into two (or more) coherent sub-beams. After the sub-

beams have traveled along different long optical paths, they are superimposed again 

and the occurring interference pattern is analyzed to figure out the integer and 

fractional order of interference to calculate the asked distance. (DONGES AND NOLL 

2015)  

For short distance measuring (up to 5 m), triangulation-based measurements are 

often used. Therefore, a laser beam is emitted and the scattered light is collected at 

a distinct vantage point. Due to a position-sensitive emitter and detector, the 

projection and the detection angle are known. As the known distance between the 

emitter and the detector represents the base line of a triangle with two known 

adjoining angles, the other dimensions of the triangle which represent the distance of 

interest can be derived using the cosine law. (BERALDIN ET AL 2010) 

Besides the indirect measurement of the distance to the object via the transit time, 

also the amount of power scattered back can be calculated. Of that, detailed 

information on material can be extracted due to different absorption or scattering 

characteristics. (DONGES AND NOLL 2015) 

2.3 Development and concept of terrestrial laser 

scanning  

After the realization of the first solid state ruby laser in 1960 as described in Chapter 

2.1, the period from 1962 to 1968 brought basic development of the technology 

followed by a period of improvement of the reliability of the technique in the 1970s 

(LARGE AND HERITAGE 2009b). Geoscience related use of laser technology started 

with SMULLIN AND FIOCCO in 1962 using laser-generated light with a ruby as a laser 

source for atmospheric research by emitting a laser beam and detecting the 

backscatter. First applications for terrestrial use started with recognizing the potential 

of a laser as an alignment instrument by giving a reference direction with a narrow, 

straight beam. For distance measurement, the theodolite was the most extensively 

used and versatile instrument before the development of measuring instruments using 

electromagnetic radiation (LARGE AND HERITAGE 2009b). By measuring angles in 

horizontal and vertical planes alignments are made and distances are calculated by 

spatial intersection or resection (KAHMEN 2006). The benefits of using a laser for 
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distance measurement – so-called electronic distance measuring (EDM) – are 

discovered soon. In early instruments of EDM, reflectors are necessary to perform 

measurement. Therefore, only selected distinct points are measured (SHAN AND TOTH 

2009). Further on, EDM is proved as an efficient and reliable way of data collection 

for the creation of a digital elevation model (DEM) (LARGE AND HERITAGE 2009b). After 

the development of reflectorless distance measurements in the mid-1990s, devices 

for not only surveying distinct points but for profiling and scanning of are built (SHAN 

AND TOTH 2009).  

First terrestrial laser scanners are built in the early 1990s for robot navigation to detect 

obstacles in the vehicle’s path and to locate the robot on a map. This is referred to as 

laser radar (ladar) (SINGH AND WEST 1991, HANCOCK ET AL 1998). Also, the 

possibilities of terrestrial laser scanning for 3D modelling of real world structures such 

as sculptures (BERALDIN ET AL 2000) or industrial applications such as plant design 

verifications (SEQUEIRA AND GONÇALVES 2003) are discovered soon after. After the 

rapid development of the terrestrial laser scanning technology including improvement 

of the maximum distance in the late 1990s and early 2000s, the applications of TLS 

increased including the creation of 3D models of large surfaces in field like 

architecture, archaeology and topography (ABELLÁN ET AL 2006) and TLS is also 

implemented in monitoring of natural hazards like volcanoes (HUNTER ET AL 2003) and 

landslides (ROWLANDS ET AL 2003, BITELLI ET AL 2004). 

2.3.1 The concept of scanning profiles and surfaces 

To create a profile using EDM, a series of closely spaced points located adjacent to 

one another along a line on the terrain is measured. For a two-dimensional profile, 

distances from the laser ranger to the points and the angles between the points are 

measured. The profile (the elevation differences) can be derived from this data by 

using simple trigonometry. The principle of laser profiling is especially used in airborne 

or spaceborne applications. (SHAN AND TOTH 2009) 

Adding a second direction of motion provides a laser profiler with the ability to not only 

determine elevation values along a line but to scan an area of the terrain. This 

expands the functionality of a laser profiler to a laser scanner. The vertical motion, 

which is given by a rotating mirror or prism is extended by a controlled motion in the 

azimuth direction, usually by implementing a motor drive. From this, position and 

elevation data for the creation of 3D models of the scanned terrain are provided. 

(SHAN AND TOTH 2009) 
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The concept of a terrestrial laser scanner is, as already discussed, based on a fixed 

scanning platform and deflection mechanisms which allow the scanner to adapt the 

horizontal and vertical angles of the beam emission. Addressing the model shown in 

Figure 8, the laser beam is generated in the range finder electronics unit (1) and 

emitted towards the polygonal mirror element (3) which is rotating at relatively high 

speed. On the surface of the mirror, the laser beam (2) is deflected by the changing 

vertical angle 𝜁. Using the concepts of distance measurement described in 2.2, the 

distance 𝑙 between the scanner and the scanned surface is measured for each point. 

After the scanning of a vertical profile line, the whole upper part (4) of the device 

rotates through a small angle 𝛼 to record the neighboring 𝜁-profile. The results of the 

process are point-based spatial data provided in polar coordinates 𝛼, 𝜁 and the 

measured distance 𝑙. The exportable data is usually provided in three-dimensional 

cartesian coordinates with xyz-coordinates for each point. (KRAUS 2004) 

 

 

Figure 8: The principle of a terrestrial laser scanner (Riegl) (after KRAUS 2004: 472) 

 

For creating a 3-D model, an object is usually scanned from different measurement 

positions with an overlap of the point clouds. Connecting the point clouds from several 
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scan positions to one cloud in one coordinate system is called registration of the 

scans. Different methods including tie points or registration algorithms like ICP 

(iterative closest point) are discussed in Chapter 2.4.1. In a further step, the point 

cloud can be transferred from the local coordinate system to a global coordinate 

system by georeferencing. (KRAUS 2004) 

2.3.2 Specifications of a terrestrial laser scanner – the RIEGL VZ 

6000 

To get an idea about the technical specifications of a scanner, the RIEGL VZ 6000 

(shown in Figure 9), the terrestrial laser scanner used for the surveying of thesis, is 

presented. All the following information are presented in the Riegl VZ 6000 data sheet 

(RIEGL 2017). 

 

 

Figure 9: Classical scanning setup: The Riegl VZ 6000 laser scanner on a tripod connected to a laptop 
and a differential GNSS. 
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The Riegl VZ 6000 is classified as a Class 3B Laser Product according to IEC 60825-

1:2014. Class 3B laser radiation is “hazardous to the eyes and in special cases also 

for the skin. Diffuse scattered light is safe usually” (DONGES AND NOLL 2015: 39). The 

measuring principle is pulse based measurement (described in Chapter 2.2.1) with 

single pulse ranging mode of operation. The laser scanner operates with near infrared 

radiation. Scans can be performed within a field of view of 60° vertical and 360° 

horizontal.  

Depending on the pulse frequency, the range of the laser scanner is up to 6000 m 

and can reach performances shown in Table 1. 

Table 1: Range measurement performance of the Riegl VZ 6000 (RIEGL 2017) 

Laser pulse repetition rate 
 

Effective measurement range (meas./s) 

30 kHz 
 

23,000 

50 kHz 
 

37,000 

150 kHz 
 

113,000 

300 kHz 
 

222,000 

Max. measurement range (average 
conditions, ambiguity to be resolved by 
post processing) 

    

   Natural targets with reflectivity > 90% 
 

   Natural targets with reflectivity > 10% 

6,000 m 
 

3,600 m 

6,000 m 
 

3,600 m 

4,200 m 
 

2,400 m 

3,300 m 
 

1,800 m 

Max. number of targets per pulse 
Practically unlimited (laser power is split according to the 

targets) 

 

Under test conditions of 150 m distance from the scanner to the object of interest, the 

accuracy, which is in this context defined as the degree of conformity of a measured 

quantity and its true value, is 15 mm and the precision (the reproducibility) is 10 mm. 

The laser beam has a diameter of 15 mm at the exit and a divergence of 12 mrad with 

the result of 12 mm beam diameter increasing per 100 m distance. The angle 

measurement resolution is defined by the selection of the angular step width 𝛥𝛼 

horizontal and 𝛥𝜁 vertical (see Figure 8) of 0.002°≤  𝛥𝛼 ≤ 0.28°and 

0.002°≤  𝛥𝜁 ≤ 3°. 

Besides the creation of 3D-data, also images with a resolution of 5 megapixels can 

be taken during a scan which can be used to color the point cloud by assigning RGB-

values to every single point. The Riegl VZ 6000 can also digitize the echo signals to 

create full waveform data for echo waveform analysis. For scanning campaigns, the 

laser scanner is fixed and positioned on a tripod and can either perform the scans as 

a stand-alone device or connected to a laptop. 
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To give a glimpse of the speed of progress in the development of terrestrial laser 

scanners, pioneer TLS surveys took place at the end of the 1990s / beginning of the 

2000s with a device designed by Riegl which is able to scan 4 points per second on 

a 10 m range and one point per second on a 2 km range with an accuracy of ±25 mm. 

(PAAR ET AL 2000, SCHEIKL ET AL 2000, HUNTER ET AL 2003)  

2.4 Processing of terrestrial laser scanning data 

To promote the use of point cloud data for change detection, appropriate data analysis 

techniques and workflows are necessary (WALTON ET AL 2014). After data acquisition 

using a terrestrial laser scanner, the data must be processed for further use. 

Depending on the field of application, the scale, the possibilities on the scanning sight 

and accuracy requirements, different processing approaches are suitable. In the 

following chapter, different ways of registration of point clouds, filtering of point cloud 

data and change detection using TLS data are presented. 

2.4.1 Registration of multiple scan positions  

The survey of an object of interest often needs several scans from different positions 

to get comprehensive data. For each scan, a new local coordinate system is 

generated. For further processing, the scans need to be combined using one common 

coordinate system. This process is called registration of the scan positions (GRUEN 

AND AKCA 2005, CHARLTON ET AL 2009, LICHTI AND SKALOUD 2010). The aim is to 

transfer point clouds from the scanner’s own coordinate system (SOCS), which is 

individual for each scan position, to the project coordinate system (PRCS). The SOCS 

defines coordinates with respect to the scanner’s center of rotation mechanism. The 

PRCS is defined arbitrarily (RIVEIRO ET AT 2011). Usually, one of the SOCS is 

determined as the PRCS. Besides the registration of different scan positions to 

compose one point cloud for an object of interest, it’s also necessary to co-register 

scans of different epochs for multitemporal point cloud analysis. The point clouds from 

different epochs are not merged to a single cloud but must be in the same coordinate 

system. Besides co-registration, also the position and the orientation of the scanner 

can be fixed to compare scans from different epochs (LINDENBERG AND PFEIFFER 

2005). 

To transform coordinates from one coordinate system to another in 3D space, the 

Helmert transformation, which belongs to the group of similarity transformations, is 

used. The transformation is based on seven transformation parameters:  
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• Three translations 𝑇𝑋, 𝑇𝑌 and 𝑇𝑍 in direction of the coordinate axes 

• Three rotations 𝜔𝑋, 𝜔𝑌 and 𝜔𝑍 

• A scale factor 𝑞 

With these parameters, whose geometrical application is shown in Figure 10, the 

transformation can be performed (KAHMEN 2006). Theoretically, for the registration of 

two point clouds, it’s only necessary to identify three identical non-collinear points in 

both point clouds but in practice there is a need of at least and extra fourth or fifth 

point to find a unique solution and even more points for an acceptable precision 

(HASHEMI ET AL 2013, MUKUPA ET AL 2017). The most commonly used quality control 

factor is the root-mean-square difference (RMSD) (CHARLTON ET AL 2009). There are 

different approaches for determination of the registration parameters which are 

presented following the differentiation of LICHTI AND SKALOUD (2010) in target-based 

registration, iterative closest point methods and feature based registration. MUKUPA 

ET AL (2017) present a good overview in a recent review paper. 

One possibility to register different scan position is to look for distinct points which can 

be clearly identified in different scans, so-called target points. The points can either 

be artificial or natural. As artificial points, reflective targets can be installed in the 

scanning area. Due to the characteristic reflection, it is possible to clearly identify the 

targets in the scans. Usually, they are scanned in a high resolution for accurate 

positioning. Examples for targets are round or square patches of reflective material or 

solid reflective geometrical objects like cylinders (CHARLTON ET AL 2009, MUKUPA ET 

AL 2017). This procedure is often only one part of the registration process. The coarse 

target-based registration is usually followed by a fine statistical alignment (LIM ET AL 

2005, ROSSER ET AL 2005). 

Fine alignment methods are based on algorithms. The first landmark registration 

method, which is also used in concepts of change detection, is the Iterative Closest 

Point (ICP) algorithm and was developed by BESL AND MCKAY (1992) and similarly 

applied by CHEN AND MEDIONI (1991) and ZHANG (1994). The ICP searches pairs of 

nearest points in two point clouds and estimates parameters for a transformation 

which aligns them. The transformation is then applied on one point cloud and the 

procedure is iterated until convergence. The aim is to minimize the sum of the 

quadratic distance between all corresponding points. The mathematical assumption 

behind the algorithm is that one point cloud is a subset of the other point cloud. The 

ICP requires a coarse registration of the data before the algorithm is used (GRUEN 

AND AKCA 2005, MUKUPA 2017).  
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Figure 10: The principle of registration of point clouds: the Helmert Transformation 

 

Based on the ICP, several improvements and adjustments are created (RUSINKIEWICZ 

AND LEVOY 2001). GRUEN AND AKCA (2005) give a broad review of the research and 

development on registration algorithms. Recent notable algorithms are the Least 

Squares 3D surface matching (LS3D) by GRUEN AND AKCA (2005) which was further 

on used by MONSERRAT AND CROSETTO (2008), the PointReg algorithm by OLSEN ET 
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AL (2011) or the point-to-plane registration developed by GRANT ET AL (2012). The 

algorithms are often also used in the process of change detection. 

There are also multiple approaches of registration methods using algorithms 

specialized on distinct geometric primitives found in the scans. Local search 

algorithms are looking for surface normal vectors, curvature and change of curvature 

as information for corresponding items. Such approaches are for example presented 

by DOLD AND BRENNER (2006) using corresponding planar patches, AL-DURGHAM ET 

AL (2013) using 3D linear features, YANG AND ZANG (2014) using curves as matching 

primitives, BAE AND LICHTI (2004) using geometric primitives in general or HAN (2010) 

using hybrid geometric features involving points, lines, planes and groups of points. 

Besides geometric features, there are also approaches considering image-based 

(IBR) like presented by AL-MANASIR AND FRASER (2006) or intensity-based tested by 

the intensity AKCA (2007).  

There are several possibilities to perform registration as an end user. Commercial 

software products like RiSCAN PRO provide different options such as target-based 

registration or multi station adjustment (MSA) which is based on the ICP algorithm. 

Also, the open source project CloudCompare, started by Girardeau-Montaut in 2003, 

gives several opportunities on registration. Another notable open source project for 

point cloud processing including approaches for point cloud registration is the Point 

Cloud Library (pcl) with the implemented FLANN registration tool. 

Next to transferring several scans into one coordinate system, for some applications, 

especially concerning geosciences, it is necessary to transfer the data of the 

registered point cloud to a global coordinate system. This can also be applied on 

single scans. Georeferencing can be performed directly by a known position of the 

scanner (using differential GNSS or place the scanner on a known fixed survey point) 

or based on known ground control points (GCPs) which is equal to the point based 

registration (ALBA ET AL 2007). As georeferencing is not performed in the following 

thesis it will not be discussed further, the interested reader may find further information 

in ALBA ET AL (2007).  

After the registration (and georeferencing if necessary), points are attributed with x, y 

and z data for determination of the location in space in a suitable coordinate system. 

Optional, additional attributes such as amplitude or echo count are added and 

furthermore, the data is called a registered point cloud. (BERALDIN ET AL 2010, 

VOSSELMAN AND KLEIN 2010).  
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2.4.2 Filtering of point clouds 

According to ABELLÁN ET AL (2014), filtering serves different purposes: removal of 

extraneous points, isolation of the surface of interest and optimization of the data for 

further analysis.  

For removal of unwanted points (e.g. vegetation), algorithms using geometrical 

characteristics of the point cloud for classifications are often used. JABOYEDOFF ET AL 

(2007) use local changes of orientation and inclination of surface normal for 

distinguishing between several classes. BRODU AND LAGUE (2012) present an 

approach where the local organization of the point cloud geometry is analyzed at 

different scales. The classification can be fully automated or customized using training 

areas within the CANUPO plug-in (CAractérisation de NUages de Points – point cloud 

characterization) in CloudCompare. Besides geometry, also other point data 

attributes like intensity and echo number (GOEPFERT ET AL 2008), spectral information 

from high resolution images (LAU ET AL 2015) or the full waveform analysis of the 

returning signal (DI SALVO AND LO BRUTTO 2014) are helpful attributes for filtering. In 

addition to the presented approaches, manual editing is often inevitable (ABELLÁN ET 

AL 2014). 

Besides the extraction of the surface of interest by removing unwanted points, 

scattering and instrumental error effects on the point cloud are issues that shall be 

considered. LINDENBERGH AND PFEIFFER (2004) use a maximum root mean square 

distance (RMSD, see 3.3.2) and a maximum change of the estimated normal vector 

of neighboring points as exclusion criteria. ABELLÁN ET AL (2009) use a nearest 

neighbor averaging technique to reduce errors in raw data comparison. Also, octree 

structures (see Chapter 2.4.3) are used for homogenization point clouds and adapting 

the density, especially when working with large data sets (CLOUDCOMPARE 

COMMUNITY 2018, ELSEBERG ET AL 2011, ELSEBERG ET AL 2013). 

2.4.3 Concepts of change detection 

After the preparatory work of registration and filtering of point clouds, multitemporal 

change analysis is performed to identify surface changes on an object of interest. 

LINDENBERGH AND PIETRZYK (2015) give definitions for the terms change detection 

and deformation analysis: change detection is looking for the binary answer whether 

the geometric state of a scene has changed or not. If changes are detected, 

quantification of these changes can be another aim of research. These is described 

as deformation analysis (LINDENBERGH AND PIETRZYK 2015). Both concepts are of 

interest in this thesis, but the focus lies on a general binary identification of change – 

the term change detection is henceforth used for detection of surface changes and 
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implies the quantification. Also, the term monitoring is often used (TELLING ET AL 2017) 

which also implies comparing data from different epochs looking for differences.  

Traditionally, changes are monitored with point-wise surveying techniques using high 

precision levelling, total stations or GNSS (global navigation satellite system). 

Recently, the benefits of TLS which provides high spatial resolution 3D data have 

gained attention (LOVAS ET AL 2008, MUKUPA ET AL 2017). The technical realization of 

change detection using TLS point cloud data is based on comparison and computing 

distances of point clouds acquired at different dates. There are different approaches 

including direct use of the point cloud data or creating an intermediary model using 

the point cloud (GIRARDEAU-MONTAUT ET AL 2005, MUKUPA ET AL 2017). The 

intermediary models can be 3D models like a surface meshed by triangles (e.g. a 

triangular irregular network – TIN) of a 2.5D model like a digital terrain model (DTM), 

where the elevation dimension z is referred to a regular xy-grid and visualized as 

different grey values (TEZA ET AL 2007). In literature, there are different classification 

of change detection methods: MUKUPA ET AL (2017) and MILL (2016) distinguish three 

methods: point to point, point to surface and surface to surface change detection. 

OHLMANN-LAUBER AND SCHÄFER (2011) present a differentiation into five categories: 

point based strategies, point cloud based models, surface based approaches, 

geometry based methods and parameter based procedures (WUNDERLICH ET AL 

2016). Besides different methods, there are also several output possibilities: volume 

differences, displacement distances or displacement matrices can be specified 

(OPPIKOFER ET AL 2008). Several chosen approaches of change detection are 

presented following. 

A common method for change detection, especially on large planar investigation sites 

in earth sciences, is the calculation of DTMs of difference (DOD). This approach is 

based on gridding the point cloud data to generate a DTM where the information on 

surface elevation is stored pixelwise. The height value for one pixel can either be the 

mean or median of the height of all points within a pixel (binning), the height of the 

point nearest to the center of the pixel or the height using a previously defined 

triangular irregular network (TIN). Two DTMs can further be compared pixel by pixel 

by simply subtracting the elevation values to get distance values for each pixel in the 

two DTMs (VOSSELMAN AND KLEIN 2010, WHEATON ET AL 2010, LAGUE ET AL 2013). A 

quite related approach is gridding of a TIN by interpolation. Here, the data is still stored 

as vector data with the elevation information attributed to the nodes (SCHÄFER ET AL 

2004).  
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GIRARDEAU-MONTAUT ET AL (2005) present the strategy of direct comparison of two 

point clouds (C2C) by calculation of the Hausdorff distance, which computes for each 

point in one cloud the distance to its nearest point in the other cloud. The comparison 

of the point clouds results in a colored visualization of the distances. As already 

presented in Chapter 2.4.1, Girardeau-Montaut initially developed the open source 

software CloudCompare and implemented this point cloud based change detection 

method. Further improvements of the approach include local surface modelling 

strategies. (GIRARDEAU-MONTAUT ET AL 2005, CLOUDCOMPARE COMMUNITY 2018) 

Because of issues finding the real corresponding points using the direct cloud-to-

cloud comparison with the closest point technique on surfaces with high roughness, 

LAGUE ET AL developed the Multiscale Model to Model Cloud Comparison (M3C2) 

presented in LAGUE ET AL (2013): normal vectors are calculated for core points using 

a defined neighborhood and point cloud distances are estimated using the mean point 

position of a defined neighborhood on the surface normals. This distance represents 

the local change of surface including a local roughness indicator using the standard 

deviation of the projected points for each cloud. (LAGUE ET AL 2013) 

Besides the creation of a DOD or the direct comparison of two point clouds, also a 

point cloud and a reference 3D mesh created by triangulation of the reference point 

cloud (or a theoretical model) can be compared. Originating from this approach, also 

two 3D meshes can be compared (M2M). Such as in C2C, these approaches also 

use the Hausdorff distance, but calculating the distance of a point to a triangle 

(CIGNONI ET AL 1998, ASPERT ET AL 2002). This is also applied in point-to-surface 

difference (C2M) calculation presented by CIGNONI ET AL (1998) and ASPERT ET AL 

(2002). 

For high-precision change detection on a small scale, TSAKIRI ET AL (2006) add 

artificial targets as control points to the moving area of interest. The points are 

recognized by the scanning software and so the traditional tacheometric method of 

surveying distinct points is implemented in the comprehensive modelling of the 

structure of interest. (SCHÄFER ET AL 2004, ALBA ET AL 2006, TSAKIRI ET AL 2006).  

The methods discussed above can be assigned to point based, point cloud based and 

surface based approaches according to the classification of OHLMANN-LAUBER AND 

SCHÄFER (2011) and are the preferred approaches point cloud change detection of 

geoscientific objects with a roughly unstructured surface (NEUNER ET AL 2016). As 

geometry and parameter based models are not considered in this thesis, they are not 

discussed further. The interested reader may find further information in OHLMANN-

LAUBER AND SCHÄFER (2011), WUNDERLICH ET AL (2016) or NEUNER ET AL (2016). 
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Another concept of change detection which will not be covered following is the 

description of the movement of distinct structures using roto-translational parameters 

as released in MONSERRAT AND CROSETTO (2008). 

2.5 Applications of TLS change detection 

Change detection using TLS data is currently a quite active field of research. The 

approaches presented in Chapter 2.4.3 have been directly or modified implemented 

in many projects. Outdoor applications, which are of interest for this thesis, can be 

differentiated in monitoring of artificial objects like buildings, dams or tunnels and 

natural structures (NEUNER ET AL 2016) like slopes, landslides, rock faces or cliffs. As 

the thesis is committed to the monitoring of a rock structure, the focus is on chosen 

publications on this topic. For giving an impression on the variety of application of TLS 

in change detection, also usage in monitoring of artificial structures and other natural 

surfaces will be discussed. The main interest is on data processing methods of 

change detection in the different publications. 

2.5.1 Monitoring of artificial objects 

The monitoring of artificial structures, especially in construction and civil engineering, 

is traditionally high-precise point-wise surveying as already mentioned in Chapter 

2.4.3. Recently, also the use of TLS is gaining interest in change detection of artificial 

structures. 

An early use of TLS data on beam loading is presented by GORDON ET AL (2004): two 

stationary laser scanners are used to detect the deflection of loaded and unloaded 

beams. As the scanners are not moved during the experiment, there is no need for 

referencing. The change detection is performed using control points. Besides direct 

use of the point cloud, the beams are also modelled geometrically. In another pioneer 

work SCHÄFER ET AL (2004) use TLS for change detection on the hydropower station 

of Gabčíkovo on the Danube in Slovakia. The point cloud data is gridded to compare 

scans of two different epochs. VAN GOSLINGA ET AL (2006) also use interpolation and 

gridding of the point cloud data for change detection of a bored tunnel, but apply 

cylindric coordinates for gridding as it fits better to the tunnel surface. BARBARELLA ET 

AL (2017a) use the creation of DTMs from point clouds and extraction of profile lines 

from the DTMs for monitoring of airport pavements. 

ALBA ET AL (2006) monitor change detection of the dam of Lake Cancano in Italy using 

multiple approaches. From the point clouds of different epochs, meshes and 

polynomial surface models are created and compared with each other which can be 
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described as different kinds of C2M and M2M comparing methods. HAUPT ET AL 

(2016) also test different change detection method on a gabion wall. Geometric 

approximation, the M3C2 algorithm for C2C comparing and a block gridding method 

proposed by ELDING (2009) are used. 

LINDENBERG AND PFEIFFER (2005) use pointwise change detection along defined 

normal vectors and parameterization for planar patches for change detection of a lock. 

LI ET AL (2012) present an algorithm for point cloud segmentation based on normal 

vectors to select suitable points for change detection in a subway tunnel. LIEBIG ET AL 

(2011) use classification of point segments and pointwise change detection for 

surveying of a motorway bridge. 

Monitoring of artificial structures often implies geometrical modelling like fitting 

structures to geometric primitives like polynomial curves or more complex parametric 

modelling like adjusting Bézier curves to structures (BUREICK ET AL 2016). GONZÁLES-

AGUILERA ET AL (2008) implement this approach in structural monitoring of the large 

Las Corgotas Dam in Avila, Spain, using radial basis functions. CHMELINA ET AL (2012) 

use cylindric modelling for tunnel change detection, WALTON ET AL (2014) developed 

an algorithm to find the best fitting ellipse for monitoring of tunnel cross sections which 

is also used by WENIGHOFER ET AL (2016). VEZOČNIK ET AL (2009) use quadrics for 

changes of pillars’ axes of underground pipelines. SARTI ET AL (2009) and HOLST ET 

AL (2014) also use quadrics for parameterizing of the main reflectors of radio 

telescopes. 

For a more detailed overview of recent publications see NEUNER ET AL (2016) and 

MUKUPA ET AL (2017). 

2.5.2 Monitoring of natural structures 

The use of terrestrial laser scanning as a primary tool for data acquisition in earth 

sciences has strongly increased in the last ten years. There are many recent 

publications using TLS data for monitoring of various applications. The following 

chapter presents a selection of publications.  

An early application of TLS in monitoring of natural structures is presented by HUNTER 

ET AL (2003) at the Mount Etna, Sicily, Italy: scanning campaigns took place in October 

2000. Using a 3-D CAD software package, DTMs are derived from the point cloud. 

From that, detailed contour maps and cross sections are created. There was no 

change detection in this study. 
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A long-term study was published by AVIAN ET AL (2009): Between 2000 and 2008, a 

rock glacier at Hinteres Langtalkar, Hohe Tauern, Austria, was monitored using TLS 

in one or two scanning campaigns per year. For registration, stable targets are used. 

DTMs are generated from the point clouds and further georeferenced. Following, 

simple difference calculations between the DTMs – DODs – are used for change 

detection. 

A large field of research using TLS is the monitoring of landslides. First uses of TLS 

for surveying landslides are presented by ROWLANDS ET AL (2003): a shallow landslide 

in the Cotswolds, England, is scanned. BITELLI ET AL (2004) publish a study in which 

photogrammetry and TLS are compared on the Cà di Malta landslide near Bologna, 

Italy. Two scanning campaigns were conducted, one in 2001 including three scan 

positions and one in 2004 including four scan positions. For registration of the scan 

positions, reflective targets are used. For co-registration of the point clouds from the 

different epochs, manual coarse registration and ICP fine registration implemented in 

PolyWorks software are applied. After filtering, DTMs are created and compared, 

resulting in a DOD as the final output of change detection. TEZA ET AL (2007) release 

a modified approach of the ICP for landslide monitoring: the piecewise alignment 

method (PAM). PAM addresses the problem that the calculation of a global minimum 

for co-registration using the ICP is problematic when the morphological modifications 

that have affected the landslide are relatively small. Using PAM, a first landslide model 

is defined as a reference, and point clouds of following scanning campaigns are 

divided into sub-areas with a side of a few meters and individually aligned to the 

reference model using the ICP algorithm. The change detection is later calculated by 

combining translational and rotational movements. The algorithm is first tested in 

numerical experimentations and later applied on two test sites located in the North-

Eastern Italian Alps affected by high-risk slump type landslides. A recent study is 

presented by KROMER ET AL (2017): automated terrestrial laser scanning with near-

real-time change detection is implemented in monitoring of the Séchilienne landslide 

close to Grenoble, France. Data was collected in a 30 min interval for a six week 

period. The whole cloud processing workflow is designed to work automatically to 

fulfill the near-real time processing aim of the study. After an automatic filtering, the 

registration is performed by initial alignment using the scan position and fine alignment 

by iteratively finding repeatable keypoints using the PCL registration application. For 

change detection, the method described in KROMER ET AL (2015a) is used which is 

C2C-based and similar to the M3C2 algorithm.  

LAGUE ET AL (2013) use the specially developed M3C2 algorithm for TLS-monitoring 

of the rapidly eroding bedrock of the meandering Rangitikei River canyon, New 
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Zealand. Five scanning campaigns took place between February 2009 and December 

2012. For the registrations, targets mounted on tripods and targets bolted to the 

bedrock are used. Registration of the single scan positions and co-registration of the 

different epochs was performed at once. For change detection between the different 

epochs, the M3C2 algorithm presented in Chapter 2.4.3 is first applied. The algorithm 

is used in other recent projects: BARNHARD AND CROSBY (2013) compare the M3C2 

algorithm and the C2M approach applying the methods to 58 scans of the Selawik 

retrogressive thaw slump, Alaska. WESTOBY ET AL (2016) survey the interannual 

surface evolution of an Antarctic blue-ice moraine, Patriot Hills, Antarctica using TLS 

besides structure from motion using an UAV. Two field campaigns took place within 

12 months from December 2012 to January 2014. Registration and co-registration is 

performed using manual point-matching coarse registration and ICP-based fine 

alignment. For change detection, the M3C2 algorithm is used. LEYLAND ET AL (2016) 

use the M3C2 algorithm for monitoring extreme flood-driven fluvial bank erosion using 

a mobile laser scanner along a 2 km study site on the Mekong River 60 km from 

Kratie, Cambodia. For co-registration, FLANN mentioned in Chapter 2.4.1 is 

implemented. MARX ET AL (2017) use TLS for quantifying small-scale vertical 

movements of the ground surface in Arctic permafrost regions in an area located 

within the continuous permafrost zone close to Inuvik, Northwest Territories, Canada. 

Three scanning campaigns with seven scan positions each were performed form June 

2015 to August 2016. The scans were registered and co-registered using stable 

subsidence stations and rods. For the vertical deformation analysis, raster-based 

approaches with DTMs and point-based approaches using M3C2 are tested. 

A different field of research is the use of TLS detecting the growth of plants: MARX ET 

AL (2016) present a study where TLS data is used as reference data for monitoring 

the growth of a maize field in Heidelberg, Germany, for management of crop 

production. The georeferenced crop surface model (CSM) is subtracted from a DEM 

to calculate a crop height model (CHM). CROMMELINCK AND HÖFLE (2016) created an 

automatic approach for this aim, tested also on a maize field in Heidelberg, Germany. 

The registration is automated using the scanner’s position and two point reflectors 

and the ICP implemented in RiSCAN Pro Multistation Adjustment. Like in MARX ET AL 

(2016), a georeferenced CHM with a resolution of 0.25 m was created.  

For further information, a review by TELLING ET AL (2017) gives a summary of the use 

of TLS in Earth Sciences. JABOYEDOFF ET AL (2012) present especially studies on 

landslide monitoring using TLS, EITEL ET AL (2016) present studies on natural surfaces 

with a focus on multitemporal change detection.  
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2.5.3 Monitoring of rock structures 

The earliest found reference of the use of TLS on rock structures is a study by HOBBS 

ET AL (2002) on coastal recessing at twelve different investigation sites in the UK. 

Different scans are combined to create a not more specified topographic model of the 

cliffs. One of the first more detailly described applications of TLS in monitoring rock 

faces is a comparison of different data bases for creation of a high accurate DTM in 

the Vall the Núria, a rock fall endangered valley in the Eastern Pyrenees, Spain, by 

JANERAS ET AL (2004). DTMs are created using airborne and terrestrial laser scanning 

and compared with a photogrammetricly created DTM. The TLS-created DTM 

provides the finest resolution (2 m) comparing to ALS (8 m) and photogrammetry from 

aerial photographies (15 m). Also, ABELLÁN ET AL (2006) present an early study from 

this study area. In this study, there is also no comparison of different epochs but an 

investigation on rock fall source areas and creation of a high accuracy DTM for rock 

fall simulations. For the creation of the DTM, Delauney triangulation and kriging 

interpolation are used. 

ROSSER ET AL (2005) use TLS for measurement of cliff erosion on a cliff in Whitby, 

North Yorkshire, UK. After co-registration of scans of different epochs using control 

points, the scanner’s position and a minimum square best fit between the coordinate 

sets proposed BY LIM ET AL (2005), a TIN created from the first scan is defined as the 

reference surface. The change detection to the point clouds of the following scanning 

campaigns is performed by comparing the point clouds to the reference surface along 

a defined normal vector. The study continued and more results are shown in ROSSER 

ET AL (2007): Monthly scanning campaigns over a period of 32 month are taken, 

changes are calculated using the M2M approach and visualized on a 0.1 m grid. The 

aim of the study is the observation of precursory pattern of small rock falls leading to 

larger failure. 

ABELLÁN ET AL (2009) ask if TLS is suitable for detection of millimetric deformation and 

perform an experiment: a plane, a hemisphere and an irregular form are fixed on a 

vertical plane and displaced in ranges between 5 mm to 25 mm between different 

scans from 50 m distance. Change detection is performed by the procedure proposed 

in ROSSER ET AL (2005). Besides the raw data, also interpolated data created by 

nearest neighbor averaging is tested. The comparison of the raw data shows 

significant results from a displacement up from 15 mm, the interpolated data even 

show good results at 5 mm displacement. The approach is applied to a rock fall event 

at the basalt cliff at Castellfollit de la Roca, Catalonia, Spain, from September 2006 to 

April 2007 which shows deformation of the cliff prior to a great failure in April 2007. In 

ABELLÁN ET AL (2011), the study on the Castellfollit de la Roca was continued.  
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In another study by ABELLÁN ET AL (2010), a rock face, which is the scar of landslide 

in Puigcercos, Catalonia, Spain, form 1881 is monitored. The scans from different 

epochs are co-registered using visual identification of homologous points for a coarse 

registration and ICP algorithm for fine alignment. For change detection, the approach 

from ROSSER ET AL (2005) was used again. Furthermore, volumetric calculations are 

performed using the surface to plane command in Polyworks software. The study site 

is under ongoing investigation, TONINI AND ABELLÁN (2014) perform a statistical cluster 

analysis on more than 600 rock fall events on the rock face evolving the change 

detection method which is based on a k nearest neighbors algorithm with the 

possibility to remove clutters. 

OPPIKOFER ET AL (2008) use TLS for monitoring a large rock fall: the collapse at the 

eastern Eiger flank in the Swiss alps, where the main event occurred on July 13th, 

2006. The distance of slope movements, the volume of the collapse and displacement 

vectors are derived. The co-registration is performed using manual coarse registration 

by point pair matching and the surface-to-surface ICP for fine registration. The basic 

change detection and volumetric calculations are realized by surface interpolation 

(meshing) and comparison (M2M). The displacement vectors of different rockslide 

parts are derived by manual identification of corresponding points. Another large rock 

fall, the Åknes rockslide in Western Norway, is investigated using TLS and presented 

by OPPIKOFER ET AL (2009). For the co-registration, the same procedure as in 

OPPIKOFER ET AL (2008) is used. Instead of creating 3D models by meshing, the point 

clouds are compared directly looking for the nearest neighbor in the reference point 

cloud. As in the previous study, also displacement vectors and roto-translation 

matrices are derived to describe the movement behavior. 

CORSINI ET AL (2013) present a study on long-range TLS at the Piagneto rock slide in 

the northern Apennines, Italy. For the reference data set from April 2010, ALS and 

TLS data is integrated to create a high resolution digital terrain model. The ALS and 

TLS point clouds are registered using homologous points for coarse registration and 

the ICP algorithm for fine registration. Also, the co-registration of the two additional 

point clouds from scanning campaigns in November 2010 and April 2011 is performed 

this way using reflecting targets installed in stable zones as homologous points and 

furthermore stable areas for performing the ICP algorithm. For change detection, the 

point clouds are meshed using the Delaunay triangulation and the distances are 

computed along local normal vector (M2M).  

In a study presented by KROMER ET AL (2015b), the White Canyon of the Thompson 

River valley, British Columbia, Canada, is surveyed before a 2600 m³ rock slide 
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occured in June 2013. The aim of the study is to identify rock slope failure precursors. 

The registration and change detection is implemented using PolyWorks Software: 

registration by rough manual alignment followed by ICP algorithm, change detection 

by comparison of average surface meshes along the shortest distance vector. The 

volumes are calculated using a reference plane. 

In more recent studies, the focus from simple change detection using TLS to more 

complex problems. CARREA ET AL (2015) create a methodology for automatic rock fall 

volume estimation computing concave volumes for every rock fall event of a lateral 

scarp which is the supply area of a landslide in La Cornalle, Vaude, Switzerland. The 

rock fall positions are detected using the approach presented by TONINI AND ABELLÁN 

(2014). OLSEN ET AL (2015) extend this approach by evaluation of hole filling on point 

cloud surface modelling with TLS data from study sites in Alaska, acquired in three 

surveys in summer 2012, 2013 and 2014. 

STRUNDEN ET AL (2015) detect 122 rock falls in a study including nine fields campaigns 

over a period of 18 months in Lauterbrunnen Valley, Switzerland. The software Joint 

Research Center 3-D Reconstructor 2 is used for registration and co-registration of 

the point clouds. For further M2M processing, meshes are created. Locations and 

volumes of the rock falls are detected using the proposed cut and fill algorithm on 

previously by comparison of photographs identified rock fall regions on interest. The 

results are correlated with environmental factors like temperature, precipitation and 

seismicity. 

TOMÁS ET AL (2017) combine different geomorphological, geotechnical and 

geophysical approaches for investigation of rock spreading on an urban slope in 

Finestrat, Spain. TLS is used for extracting rock discontinuities and evaluating the 

activity. Over five years from 2011 to 2016, four TLS field surveys are performed. 

Changes are detected using the M3C2 algorithm on different scales from large 

changes in a range of 5 m up to small scale change detection in a range of 30 cm.  

For a more detailed overview, there are review papers on the topic: besides the 

already mentioned review of Earth science research using terrestrial laser scanning 

by TELLING ET AL (2017), ABELLÁN ET AL (2014) present a review paper on TLS of rock 

slope instabilities. 

2.6 Uncertainties and challenges 

No physical measurement, howsoever carefully made, is completely free of 

uncertainties. In scientific measurements, the term error is used for uncertainties that 
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attend measurements (TAYLOR 1997). To deal with these circumstances, it is 

necessary to understand where errors originate, minimize errors where possible and 

quantify the effects of errors on the end results (SCHÜRCH ET AL 2011).  

For change detection, the quantification of uncertainties and resulting errors based on 

assessment of the instrumentation and data processing are essential. The 

determination of the minimum change that can be detected is based on these errors 

(OPPIKOFER ET AL 2009). Especially when calculating volumes, the consideration of 

errors is important, as very small uncertainties in elevation can lead to large 

uncertainties in volume (SCHÜRCH ET AL 2011). For evaluating uncertainties in point 

clouds, LAGUE ET AL (2013) identify three main sources:  

• Uncertainty of point clouds: position uncertainties are characteristics of the 

scanning instrument. As discussed in 2.3.2, the range accuracy of the Riegl 

VZ 6000 is 15 mm and the precision is 10 mm at a range of 150 m under test 

conditions. Besides the range, there are also uncertainties in vertical and 

horizontal angular measurement. Also, increased laser footprint size at low 

incidence angles, variation in surface reflectance, variable point density and 

multiple reflections cause faulty points in the raw data. Additionally, the point 

density is lower at the boundaries of the surveyed area because of the 

distance from the instrument – and it is not trivial to define where the density 

is sufficiently high to get reliable data. Furthermore, multiple reflections from a 

single beam and climatic conditions like rain can cause erroneous points which 

must be filtered. 

• Registration uncertainty between point clouds: for registration of point clouds, 

the two general approaches as discussed in 2.4.1 are using ground control 

points (GCPs) that are fixed between surveys and cloud matching algorithms. 

Errors occurring within registration are a complex function of the registration 

method, the number of scan positions and the scanning instrument 

characteristics. At overlapping areas with imperfect matching, the registered 

point cloud separates into distinct layers with each layer belonging to one scan 

position. The quality of the registration can be assessed by independent 

control points which are not used for the registration process. In natural 

environments, the registration errors are typical within a few cm. 

• Surface roughness related errors: These errors are results of the difficulty of 

recondition the same scan position between surveys for scanning the same 

surface points and shadowing effects due to rough surfaces. Therefore, spatial 

sampling of rough surfaces is never identical between surveys and even if the 
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surface did not change, small difference will be systematically measured. 

These errors can be handled by defining a confidence interval which correctly 

identifies non-statistically significant distances. 

(LAGUE ET AL 2013, SCHÜRCH ET AL 2011, WALTON ET AL 2014, HOLST AND 

KUHLMANN 2016, BARBARELLA ET AL 2017b)  

Also, environmental conditions such as humidity, light conditions or temperature can 

affect the data quality within the data acquisition process (CHARLTON ET AL 2009). 

Especially with larger measurement range, environmental parameters are of interest. 

As the measurement distance within the field survey of the thesis is comparatively 

small within a range of about 20 m to 100 m, these factors are not taken in account. 

Further uncertainties arise from editing the point cloud or the creation of models based 

on the point clouds. For example, edits like filtering to remove vegetation or other non-

surface objects from the data can lead to further uncertainties (BARBARELLA ET AL 

2017b). Also, when gridding the point cloud by creating a DTM where one grid cell 

may contain tens to hundreds of points, finding the optimal elevation for each grid cell 

is not trivial and results in increasing of uncertainties (SCHÜRCH ET AL 2011).  

Evaluations of the accuracy of the points can be performed based on footprint size 

and resolution. These evaluations are helpful but do not include further processing 

steps as registration, editing or modelling. It must be considered that the instrument 

accuracy specification provided by the manufacturers is more a theoretical value, but 

the precision of the survey and the output product are of other uncertainties. The final 

accuracy of the point cloud is basically unknown. (BARBARELLA ET AL 2017b) 

Besides uncertainties, there are other limits in the use of TLS: there is, although quite 

large for terrestrial monitoring, a maximum range – recent instrument can perform 

scans over max. 6 km under optimal circumstances. Furthermore, even after merging 

scans from several positions, there can still be shadowed areas (occlusions) (ABELLÁN 

ET AL 2014). Moreover, single measurements cannot be exactly repeated as no 

explicit points are aimed and publications like TSAKIRI ET AL (2006) use this fact to 

justify that exact deformation extraction can’t be performed using TLS point clouds. 

There are also limits when considering details: the actual spatial resolution, which 

governs the level of identifiable detail within a scanned point cloud, is also limited and 

depends on sampling steps and laser beamwidth (BARBARELLA ET AL 2017b).  

Another issue in TLS data processing is the presence of vegetation. Dense 

vegetation, especially grass, makes distinguishing the true ground surface difficult 
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(BARBARELLA AND FIANI 2012b). Especially in long range applications, the influence of 

atmospheric conditions must be considered (HEJBUDZKA ET AL 2010).  

Summarizing all the considerations made, there are different error sources which 

must be considered when performing change detection using TLS and it is necessary 

for any measurement to know the involving uncertainties. The measured physical 

quantity of change must be larger than the estimated error (SIMENOI AND ZANEI 2008).  
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3. Data and Methods 

In the following Chapter, the different methods used within the thesis and the provided 

and collected data are presented. The methods are chosen after a comprehensive 

review of the methodological approaches used within recent scientific publications 

(see Chapter 2.4). The workflow, from field work to final data processing, is shown in 

Figure 11. Within the thesis, for point cloud processing, the proprietary software 

RiSCAN PRO and the open source software CloudCompare are used. When referring 

to the software further on, RiSCAN PRO refers to the software version 2.1.1 and 

CloudCompare to the software version 2.9.1. 

 

 

Figure 11: Workflow of point cloud data processing 

 

While in literature (LIM ET AL 2009, ABELLÁN ET AL 2014), filtering is recommended 

before the registration process (registration and co-registraion), due to software 

requirements these two steps are changed within the workflow of this thesis. 

Automatic tie point registration is a useful registration tool provided by the scanner’s 

own software RiSCAN PRO. There is no possibility found to use this tool on point 

clouds which are preprocessed (filtering) using other software packages. In addition, 

filtering after registration leads to a homogenous density of the point cloud. Therefore, 

these two processing steps are switched. 

3.1 Field work 

Within this thesis, three scanning campaigns are performed. For the scanning, the 

Riegl VZ 6000 (see Chapter 2.3.2) is used. The campaigns took place on October 

24th, 2016 (SC2016) and October 5th, 2017 (SC2017a and SC2017b).  

Survey 

planning and 

scanning

Coarse data 

cropping and 

export

Registration Co-registration Filtering Change 

detection



3. DATA AND METHODS 

 

38 

3.1.1 The scanning process 

Before starting the scanning campaigns, different scan positions are discussed to 

allow the best coverage of the area of interest. For the data acquisition, the scanner 

is fixed on a tripod on a stable underground and adjusted to face the area of interest. 

The scanning jobs can either be created directly on the GUI (graphical user interface) 

of the scanner, or the scanner is connected to a laptop and the scanning is performed 

using the RiSCAN PRO environment. RiSCAN PRO is the accompanying software 

package for the Riegl VZ 6000 for acquisition, visualization and manipulation of laser 

scanning data. The program structure is project oriented – all data including scan 

data, calibrated photographs, information on registration etc. is stored within a single 

directory structure (RIEGL 2015). For the SC2016 and SC2017a, the scanner is 

connected to the laptop using RiSCAN PRO infrastructure for the scanning process. 

The SC2017b was performed using only the scanner and the internal memory. The 

data is exported later and a project file is created separately.  

The scanning process starts with a 360° overview scan with low resolution which is 

shown on the scanner’s display. The area of interest is chosen by manual selection 

in the overview scan and a fine scan is performed. The resolution of the fine scan is 

chosen in consideration of preventing overlapping footprints but gaining a fine 

resolution doing a rough estimation of the scanning distance and the therefore 

expected footprint size. In 2016, 25 reflector patches (tie points) are installed: the flat 

circular retroreflectors with a diameter of 5 cm were fixed directly onto the upper part 

of the Amtmann using industrial adhesive. Therefore, after the fine scan, an 

automated reflector search and reflector fine scan is performed in order to simplify the 

registration process later on. During SC2014 and SC2016, also images are produced 

using the scanner integrated camera. 

3.1.2 Manipulation of the surface 

As no visual changes between 2016 and 2017 are detected, in order to validate the 

change detection, the surface is manipulated between SC2017a and SC2017b. 

Inspired by ABELLÁN ET AL (2009), for the manipulation, eight different shapes are 

prepared. Therefore, polystyrene objects are used. Three different sizes of spheres 

and one semi-torus are adapted: The objects are cut in half, one half is used in the 

original geometric form, and the other half is manipulated to get closer to representing 

a natural surface. The volume of the geometrically original objects is calculated using 

the diameters, the volume of the manipulated objects is measured by measurement 

of water displacement, where an accuracy of ± 5 cm³ is reached.  
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The objects are shown in Figure 12 A, the volume measurement is visualized in Figure 

12 B/C. The results of the volume calculation and measurement are shown in Table 

2. 

Table 2: Dimensions of the objects for surface manipulation 

Object 
Volume [cm³] 

geometrical half manipulated half 

 

semi-torus 193.6 155 

 

sphere 1  452.4 200 

 

sphere 2 134 60 

 

sphere 3 16.8 8 

 

 

Figure 12: Preparing and performing surface manipulation. A: Polystyrene objects – original and 
adapted forms. B/C: Measuring the volume of the adapted objects by water displacement. 
D: Fixing the manipulation objects to the Amtmann. E/F: Manipulated surface.  

3.2 Data 

The data used in the thesis covers four different scanning campaigns which are 

performed between June 2014 and October 2017. The data from the first scanning 
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campaign in 2014 is provided by the ENGAGE working group, Institute for Geography 

and Regional Research, University of Vienna. The SC2016, SC2017a and SC2017b 

are performed within the thesis.  

 

 

Figure 13: Data overview of the different used scans from all four scanning campaigns 
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From several overview and detail scans, 11 scans (three from SC2014, SC2016 and 

SC2017a and two from SC2017b) are chosen for further processing. Figure 13 shows 

an overview of the data, more detailed information concerning the single scans in 

each scanning campaign is presented in Appendix A. The SC2017a and SC2017b 

are performed on the same day before and after installing features for the evaluation 

of change detection. Within SC2014 and SC2016, also images are taken and RGB-

information is added to the data points. As reflectors are installed during the scanning 

campaign in 2016, for the scans from 2016, 2017a and 2017b, high-resolution tie point 

scans are avaliable. Besides the geometric information, also the echo number and 

the amplitude of the reflected beam are gathered. Also, the full waveform of the 

received pulse is stored, but this data will not be considered in this thesis. 

For further data processing and analysis, the single scans are coarsely cropped to 

get rid of artefacts and points clearly out of area of interest. Also, the scans are 

exported from RiSCAN PRO to the commonly usable data format .las. 

3.3 Registration 

The first step of data processing within this thesis is the registration of different scan 

positions. First, the parameters for the transformation are estimated followed by a 

transformation of the data from individual SOCS to one PRCS using a 3D rigid body 

transformation, as there are no differences in scale between the single scan positions 

(LICHTI AND SKALOUD 2010). For this thesis, target-based and ICP-based approaches 

using RiSCAN PRO and CloudCompare are used and combined for the tests and 

processing steps. This methodogical choice includes the common methods used in 

recent scientific publications. Following the differentiation of LICHTI AND SKALOUD 

(2010) presented in Chapter 2.4.1, only feature based registration due to a lack of 

suitable objects within the scanning area is not considered. 

3.3.1 Target-based registration 

The most basic approach is to find corresponding points in all different scan positions. 

For the data of 2014, the so-called “point pair picking” is used for the coarse 

registration of the scans. Scan position 1 is set as the master position and therefore 

defines the PRCS. The possibility of “point pair picking”-registration is implemented 

in RiSCAN PRO as well as in CloudCompare. For the estimation of the transformation 

parameters, four corresponding point pairs for each master position and the to-be 

registered scan positions 2 and 3 are manually identified. The results are validated 

visually and numerically by combining the point clouds and by providing the 
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registration error which is the standard deviation of the distances between 

corresponding points in meters in RiSCAN and the root-mean-square deviation in 

meters in CloudCompare. 

The second used point-based approach is the registration using tie points. The tie 

points in the scanning campaign are white retro-reflective flat circular patches 

(reflectors) with a diameter of 5 cm. During the overview scanning process, the 

reflectors are automatically identified due to the high reflectance values. In addition to 

the scan of the whole area of interest, a detailed scan of the reflectors with higher 

resolution is performed during the scanning campaign and a tie point list (TPL) is 

created. RiSCAN PRO provides a module for registration via tie points. The “find 

corresponding points” function uses the tie point list to define point pairs. The minimize 

error mode is used for the point pair definition; alternatively, point pairs can also be 

found by name. The default settings for tolerance (the maximum distance between 

two corresponding points) and the minimum number of point pairs of 0.1 m tolerance 

and a minimum of 3 corresponding points are used. Within the tie point registration, it 

is possible to define more than one fixed position to improve the accuracy of the 

results. The quality of the registration is evaluated by the given registration error, 

which is defined by the standard deviation of the distances between the point pairs in 

meters. As the reflectors are installed within the SC2016, this approach is used as 

point-based coarse registration on the 2016 and 2017 data.  

3.3.2 Iterative closest point (ICP) registration in CloudCompare 

For more exact and more resilient registration results, the use of more points is 

expedient. The methods for fine registration used in this thesis are all based on the 

ICP algorithm. As already described in 2.4.1, the ICP algorithm is based on an 

iterative process of minimizing the distances between two point clouds. The following 

steps are extracted from the original consideration made by BESL AND MCKAY (1992). 

For the application of the ICP algorithm, it is necessary that the point clouds are 

roughly registered to ensure a useful starting point. The point clouds are defined as 

“data” (to be registered) and “model” (reference). Following, these designations are 

hereinafter used within this thesis. The algorithm then runs though the following steps: 

• Computation of the closest point of the model point cloud for each point in the 

data point cloud 

• Computation of the transformation matrix which leads to the minimum root-

mean-square difference (RMSD) for the distance between all point pairs 
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• Applying the registration on the data point cloud 

• Iteration until the change of the RMSD is lower than a preset threshold  

The RMSD in context of point cloud registration is described as the quadratic root of 

the squared sum of all distances divided by the number of associated point pairs 

(nearest neighbors).  

𝑅𝑀𝑆𝐷 = √
∑ (𝑑𝑖)

 𝑛
𝑖= 

𝑛
  

𝑅𝑀𝑆𝐷…𝑟𝑜𝑜𝑡 −𝑚𝑒𝑎𝑛 − 𝑠𝑞𝑢𝑎𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 
𝑑𝑖 …𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝 𝑖  𝑎𝑛𝑑 𝑝 𝑖  (𝑠𝑒𝑒 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7) 
𝑛…𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑝𝑎𝑖𝑟𝑠 (𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟) 
(CLOUD COMPARE COMMUNITY 2018) 

 

 
(Equation 6) 

 

To find the closest point in the model point cloud for each point in the data point cloud 

(further referred to as a point pair), the calculations are vector-based and the distance 

between two points is defined using the Euclidean metric: 

𝑝 = (

𝑥 𝑖
𝑦 𝑖
𝑧 𝑖
)  𝑝 = (

𝑥 𝑖
𝑦 𝑖
𝑧 𝑖
) 

 

𝑑𝑖 =  𝑑(𝑝 𝑖  𝑝 𝑖) = ‖𝑝 𝑖 − 𝑝 𝑖‖ = √(𝑥 𝑖 − 𝑥 𝑖)
 + (𝑦 𝑖 − 𝑦 𝑖)

 + (𝑧 𝑖 − 𝑧 𝑖)
    

 
𝑝 𝑖 …𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑝𝑜𝑖𝑛𝑡 𝑐𝑙𝑜𝑢𝑑 
𝑝 𝑖 …𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡 𝑐𝑙𝑜𝑢𝑑 
𝑑𝑖 =  𝑑(𝑝 𝑖  𝑝 𝑖) …𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚𝑒𝑡𝑟𝑖𝑐) 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝 𝑖  𝑎𝑛𝑑 𝑝 𝑖   

 

 
(Equation 7) 
 

After the definition of the point pairs, in the next step, a transformation is wanted that 

brings the point pairs together in the best possible way. The best fitting transformation 

matrix (combination of rotation and translation) is defined looking for the minimum 

RMSD of all point pairs. The transformation matrix consists of a 3x3 rotation matrix 

and a translation vector. The function to be minimized by differentiation in order to get 

the parameters is 

𝑓(𝑝) =
1

𝑛
∑‖𝑝 𝑖 − 𝑹𝑝 𝑖 − 𝑞𝑇‖ 

𝑛

𝑖= 

 

𝑛…𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑝𝑎𝑖𝑟𝑠 
𝑹…3𝑥3 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 
𝑞𝑇 …3𝑥1 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟. 
 

 
(Equation 8) 
 

The transformation matrix is then applied on the to-be-registered point cloud, and the 

process starts over until the optimization by another iteration (the change of the 
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RMSD) is lower than a given threshold. For more detailed explanation, the interested 

reader is referred to BESL AND MCKAY (1992). 

The fine registration in CloudCompare is using the described ICP algorithm. Either 

the number of iterations or the minimal change in RMSD between two iterations can 

be chosen as varying parameters. Furthermore, the final overlap of the point clouds 

can be defined. The registration is performed on a randomly chosen sample of the 

data point cloud, where the number of chosen points can be defined. If point clouds 

should only be rotated or translated, specific axis rotations or translations can be 

locked. Also weights and farthest points removal can be activated. 

The minimal change of RMSD is set to 10-5 m. The fine registration of the point cloud 

is applied to the coarsely by target-based registration aligned point clouds using 

different combination of the settings. The random sampling limit is set to 50,000, 

500,000 and 5,000,000 points, the final overlap changed between 25%, 50%, 75% 

and 100%. Within the performed registration process, all rotations and translations 

are enabled but the scale adjustment is disabled. Also, options on the use of weights 

and farthest points removal are omitted. The accuracy of the registration in 

CloudCompare is described using the final RMSD.  

3.3.3 Multi station adjustment (MSA) registration in RiSCAN PRO 

The fine registration in RiSCAN PRO is performed using the multi station adjustment 

(MSA). Different input data such as tie points, tie object, polydata objects (derivates 

from the original point cloud such as filtered or segmented data) or measured scan 

positions are used to perform an ICP-based registration. Individual weights can be 

assigned to the input data. 

To derive polydata which can be used for the MSA, a plane patch filter (PPF) is 

applied. This is the only form of filtered polydata which is accepted by the MSA. The 

plane patch filter algorithm looks for planar areas in the point cloud. Therefore, the 

point cloud is segmented to equal size cubes. For each cube, the best fitting plane 

(estimated using the least-square method) is identified. If the standard deviation of all 

normal distances between the points in the cube and the plane is smaller than the 

preset maximum plane error, the center of gravity of the points and the normal vector 

are saved. Otherwise, the cube is divided into eight even sub-cubes. The plane 

estimation is repeated until all points fulfil the condition of the minimum plane error or 

a predefined minimum number of points per plane or minimum search cube size is 

reached (RIEGL 2015). The adjustable parameters are therefore the maximum plane 

error, the minimum number of points per plane, and the minimum and maximum 
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search cube size in an interval of 0.016 m to 262.144 m. The different adjustments 

presented in Table 3 are used. 

Table 3: Settings of the different plane patch filters used for MSA tests 

Name 
Maximum 

plane error [m] 

Minimum number 
of points per 

plane  

Minimum search 
cube size [m] 

Maximum 
search cube size 

[m] 

PPF1  0.05 50 0.512 32.768 

PPF2 0.03 10 0.256 1.024 

PPF3 0.02 8 0.064 1.024 

PPF4 0.005 3 0.016 1.024 

 

For the MSA, input data can be chosen and various parameters can be set. The MSA 

is performed using the recommended all nearest points mode. The search radius 

defines the distance within the algorithm searches for corresponding plane patch 

gravity points. The maximum tilt angle is another sorting criteria: if the angle between 

the normal vectors (which are stored with the gravity points of the plane patch filter) 

is larger than the maximum tilt angle, the point pair is also dismissed. These two 

parameters are varied within the MSA adjustments. Fixed parameters are the 

minimum change of error 1 and 2. The minimum change of error 1 represents the 

minimum improvement of the error between two iterations before the corresponding 

planes are again newly defined. The minimum change of error 2 defines the minimum 

change of error before the final alignment. These two parameters are set to the default 

values of 0.1 m (min. change of error 1) and 0.01 m (min. change of error 2), as 

variations of these values do not show notable changes in results. Furthermore, 

outliers beyond 2 sigma (standard deviation) are eliminated. The recommended least 

square fitting calculation mode, which is more sensible to outliers then the robust 

fitting, is used. 

3.3.4 Registration tests and final fine registration 

Two different registration tests are done. First, all scan positions per epoch are 

registered at once always using scan position 1 as the reference point cloud. The 

registration parameters are constantly refined using search radii of 0.5 m, 0.2 m, 

0.1 m, 0.05 m and 0.02 m (the smallest one only for PPF3 and 4) and maximum tilt 

angles from 15° to 10° and 5°. All the settings are used with the four different plane 

patch filter options, which leads to 56 different MSA adjustments per epoch. 
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The second registration test is performed to obtain results that can be compared with 

the CloudCompare registration. Therefore, one model and one data point cloud of one 

epoch are used and after each change of settings, the registration is set back to the 

target-based registration output. The search radius values are extended to 3 m, 5 m 

and 10 m and maximum tilt angles of 45°, 90° and 180° are considered. Only PPF3 

and PPF4 are used for this test.  

The output of the MSA is the error (the standard deviation of the differences of all the 

point pairs) in meters as well as a histogram of all the residues. Also, the number of 

used data (tie points and polydata) and the running time is available. The standard 

deviation is used as measure for the accuracy of the registration and is defined by  

𝑠 =   √
∑ (𝐷𝑖 − 𝐷̅)

 𝑛
𝑖= 

𝑛
  

𝑠 … 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑝𝑎𝑖𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 
𝐷𝑖 …𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑎𝑛 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑝𝑎𝑖𝑟  
𝐷̅  …𝑚𝑒𝑎𝑛 𝑝𝑜𝑖𝑛𝑡 𝑝𝑎𝑖𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 
𝑛…𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑝𝑎𝑖𝑟𝑠. 

 

 
(Equation 9) 

 

The difference between an associated point pair is not equal to the distance shown in 

Equation 7. While the distance is per definition a positive value, the point pair 

difference includes the relative positions of the points. The values can therefore be 

positive or negative, depending on whether the data point is closer to (the amount of 

the vector is smaller) or further away from (the amount of the vector is larger) the 

coordinate origin than the associated model point.  

The tests aim to point out if there are differences in fine registration quality between 

the MSA and the ICP. If showing comparable or better results, the decision is made 

in favor of ICP in CloudCompare, as the thesis aims to prefer open source software 

over proprietary software. After the testing of the different registration approaches and 

the different settings, the ICP registration implemented in CloudCompare is applied 

using 25% theoretical overlapping and 5,000,000 points of random sample limit. 

Besides the description of the registration quality using the RMSD, the registration 

quality is checked by visual interpretation. 

3.4 Co-registration and extraction 

For comparing clouds of different epochs, the next step after the registration and 

merging of the several scan positions within one scanning campaign is the co-

registration of the produced point clouds. Therefore, the same procedure as for the 
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registration is used: initially, the point clouds are coarsely co-registered by target-

based approaches. Therefore, the 2016 point cloud is used as model point cloud for 

all registrations. The 2014 point cloud is coarsely co-registered by point pair picking, 

the 2017 point clouds are co-registered using tie point registration (see 3.3.1). 

Before the fine registration, the area of interest is chosen and the data is cropped to 

a smaller all overlapping area.  

The fine co-registration is also performed using the ICP algorithm implemented in 

CloudCompare with the same settings as used for the fine registration described in 

3.3.4. Also, the co-registration is visually evaluated. 

3.5 Filtering 

The filtering process is, as proposed in Chapter 2.4.2, separated in filtering of the 

vegetation and homogenization of the point cloud. The vegetation extraction is applied 

first, so that the final change detection can be tested on the raw data as well as on 

the homogenized data. For the vegetation filtering, the implementation of the 

approach presented by BRODU AND LAGUE (2012) is chosen. As the method is 

designed for distinction of different natural surfaces (differentiation of ripaian 

vegetation and ground surfaces in fluvial environments or classification of surfaces in 

rockfall endangered cliff environments), acceptable results are expected for the point 

cloud data used within this thesis. Further, the fact that the algorithm is implemented 

in CloudCompare and therefore easily available and applicable, including the aspect 

of general usability, is an argument in favor for this approach. Within the process, also 

the intensity values (AKCA 2007, PESCI ET AL 2008) are integrated in the vegetation 

filtering process. The homogenization is performed using the statistical standard tools 

provided in CloudCompare. 

3.5.1 Removing the vegetation 

For filtering of vegetation, an approach combining geometrically based filtering and 

filtering on intensity values is used.  

The geometrical filtering approach is based on the CANUPO-algorithm developed by 

BRODU and LAGUE and is initially presented in their 2012 published paper about 

classifications of complex natural scenes used in a case study about point cloud 

classification in fluvial environment. As already mentioned in Chapter 2.4.2, within this 

paper, it is pointed out that distinctive properties of natural surfaces are defined at 

different scales. Therefore, the algorithm considers local dimensionality of 
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neighboring points at different scales – it is classified if the point cloud is locally rather 

linear (f.e. small branches at a medium scale), planar (f.e. rock surface at small 

scales) or distributed in the whole volume (f.e. bushes on medium to large scale) of 

the considered sphere.  

The classification is trained using manually chosen data samples for the different 

classes. The data on different dimensionalities at different scales is projected in a 

plane of maximal separability between the classes using an adapted form of the 

principal component analysis (PCA): instead of maximizing the projected variance 

between the classes, a criterion for optimizing the class separability – the linear 

discriminant analysis (LDA) - is used for deriving the projection parameters. 

Furthermore, a line which can be manually adapted separates the classes. For 

classification quality, a validation using 50,000 test points per class is performed. 

Furthermore, the Fisher Discriminant Ratio (FDR) is used as a quality parameter: The 

mean of the distances of each point of a class to the class separating line is calculated 

for both classes and the distance of both means is derived. This distance is divided 

by the product of the two squared standard deviations to include inner class 

scattering. Therefore, higher FDR-values indicate a better class discrimination. The 

trained classifier is then applied on the to-be-classified point clouds. (BRODU AND 

LAGUE 2012)  

The interested reader is referred to the original paper. For the classification, 50 

different scales from 0.01 m to 0.5 m with steps of 0.01 m are used with a 

consideration of two dimensions per scale. Furthermore, all the points of the selected 

point cloud are used as core points for the vegetation and no further advanced 

settings are chosen. Results of the CANUPO Classification tool are two additional 

attributes for each point of the point cloud: the class and a confidence value for each 

point.  

Besides the geometrically based filtering, also intensity is used for optimization of the 

vegetation filtering process. The intensity values show the amplitude ratio of the 

emitted and received signal during the scanning process (RIEGL 2015). The 

measuring unit is decibel (dB), which reflects the ratio in a logarithmic scale 

(MESCHEDE 2015). 

Within the filtering, the CANUPO-algorithm, which is implemented in CloudCompare, 

is trained by two manually extracted training areas “rock” and “vegetation”. The point 

clouds from the four different scanning campaigns are then spit in three to nine 

sections (each between 4*106 to 7*106 points) segmented along the z-axis to provide 

crashing of the plug-in. Then, the classification is applied to the different sections.  
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Figure 14: Vegetation filtering process: Combination of filtering based on geometrical information, 
intensity and manual editing 

 

As the algorithm shows general classification problems on borders and within the 

classification on the Amtmann case-related false classifications in cleavages, the 
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vegetation-classified values with lower than 95% confidence are extracted. As higher 

intensity values (a lower receiving amplitude) are reached within cleavages, the 

extracted point cloud is then split by intensity of 24 dB, which is chosen from visual 

interpretation.  

Larger gaps are expected between the different segments. Therefore, layers of 5 cm 

along the borders of the sections are extracted from the vegetation-classified point 

cloud. Finally, the point cloud classified as rock within the CANUPO-classification, the 

intensity-classified point cloud with a lower CANUPO-classification certainty then 95% 

and the extracted point cloud along the borders of the sections are merged and 

manually cleaned by visual final distinguishing. The workflow of the vegetation filtering 

is illustrated in Figure 14. 

3.5.2 Further filtering methods 

For change detection, a homogenous point cloud is preferable. Therefore, filter with 

a smoothing and balancing effect are applied after the vegetation filtering. For these 

processing steps, the possibilities offered by CloudCompare are used.  

 

 

Figure 15: Spatial conctept of the octree-structure (after CHÁVET AND KARSTOFT 2012) 

 

The base of all filter tools and a lot of other point cloud manipulations in 

CloudCompare is structuring the point cloud using an octree. The structure is already 
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mentioned in Chapter 2.4.3 and further described more in detail. Octrees are three-

dimensional hierarchical data structures using spatial subdivision of 3D data (CHÁVEZ 

AND KARSTOFT 2012). Therefore, the starting point is a bounding box which encloses 

the entire data. The box is constantly subdivided into a maximum of eight non-empty 

even sub-cubes (voxels) until a given level of subdivision or until a cube only contains 

one data point (VOSSELMANN AND KLEIN 2010). This data structure allows efficient 

storing and reasonable processing time even on point clouds of several million points 

(GIRARDEAU-MONTAUT ET AL 2005). Figure 15 visualizes the concept of octree 

structuring. 

The statistical outlier removal (SOR) filter tool calculates the average distance of each 

points to its k neighbors. Following, the points showing an average distance larger 

than the overall average distance plus n times the standard deviation are rejected. 

For the filtering, the number k of nearest neighbors for the calculation and the n times 

of standard deviation are the adjustable parameters. Therefore, the filter removes 

scattered single points (CLOUDCOMPARE COMMUNITY 2018). For the SOR-filtering of 

the point clouds, k = 15 neighbor points and n = 2 standard deviations are chosen. 

To harmonize the density of all point clouds, subsampling of the point cloud is used. 

The subsamples can be random, spatial or octree-based. Within random 

subsampling, a specified number of points is picked in a random manner. Spatial 

subsampling is defined by a minimum distance between two points. Further on, points 

from the original point cloud are picked on condition that the minimum distance 

between all points of the output point cloud is the chosen value. Octree subsampling 

divides the point cloud to a defined level of subdivisions and exports for each octree 

voxel the point which is nearest to the center. On the contrary, the resample octree 

tool exports the gravity point of each octree voxel to the new point cloud 

(CLOUDCOMPARE COMMUNITY 2018). For the point cloud processing of this thesis, the 

minimum distance condition with a value of 0.01 m is chosen. 

3.6 Change detection 

As described in Chapter 2.4.3, there are numerous different approaches of change 

detection using point cloud data. While raster based approaches (DODs) are suitable 

for rather large scale and plane structures, mesh or point-based methods are 

applicable for three dimensional structures. As the focus of the thesis is on small scale 

change detection on a three-dimensional object, using point cloud data instead of 

derivates like meshes or TINs is preferred. Therefore, the two point to point (MUKUPA 

ET AL 2017, MILL 2016) or point and point cloud based (OHLMANN-LABER AND SCHÄFER 
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2011) approaches C2C and M3C2, which are used in several scientific publications 

(see Chapter 2.4.3) and easily accessible as implemented tools in CloudCompare, 

are chosen. As for the registration, the roles of the two point clouds are defined. One 

point cloud is set as reference or model point cloud and one as data or comparing 

point cloud. The results of the approaches are displacement distances. 

3.6.1 Cloud to cloud distance C2C 

The Cloud to Cloud distance tool (C2C) is based on a nearest neighbor distance 

measurement. Therefore, for each point of the point cloud S, the Euclidean distance 

(see Equation 7) to the nearest neighbor in the point cloud S’ is calculated. This 

distance is called the Hausdorff distance and defined as shown below in Equation 10. 

𝑑(𝑝 𝑆′) =  min
𝑝′∈𝑆′

‖𝑝 − 𝑝′‖   

𝑝…𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝑐𝑙𝑜𝑢𝑑 𝑆 
𝑆′…𝑝𝑜𝑖𝑛𝑡 𝑐𝑙𝑜𝑢𝑑 𝑆′ 
𝑝′…𝑝𝑜𝑛𝑡 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝑐𝑙𝑜𝑢𝑑 𝑆′ 
 
(𝐺𝑖𝑟𝑎𝑟𝑑𝑒𝑎𝑢 −𝑀𝑜𝑛𝑡𝑎𝑢𝑡 2005) 

 

 
(Equation 10) 
 

As shown in Figure 16, the Hausdorff distance does not necessarily map the “real” 

distance of the data and the reference surface. Therefore, also local surface modelling 

of the model point cloud can be performed. Further on, this is referred to as C2C with 

local modelling. It differences slightly from C2M, as the model surface and the surface 

normal is computed for each point individually by using a defined neighborhood. 

 

 

Figure 16: Hausdorff distance vs. "true" distance (after CLOUDCOMPARE COMMUNITY 2018) 

 

Hausdorff 

distance

„true“ 

distance
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Figure 17: Concepts of local surface modelling for C2C. A: least square plane, B: Delaunay 
triangulation, C: quadric modelling 

 

For the local modelling, either a number of neighbors or a spatial neighborhood (set 

by the radius around the point) is defined. The local modelling concepts provided by 

the C2C in CloudCompare are least square plane, a 2.5D Delaunay triangulation and 

a quadric function. The least square plane computes the locally best fitting plane (with 

the least square distance of all included points to the plane) for the reference point 

cloud and calculates the normal distance of the plane and the corresponding point of 

the comparing point cloud. The local model of the 2.5D Delaunay triangulation defines 

a local mesh of the reference point cloud using the points as vertices. For the 

measuring distance of the compared points and the created mesh, the normal 

direction of the least square plane is used. For a smoother surface, the third local 

surface modelling concept is defined by a quadric function. Also, the distance 

measurement direction is defined here by the surface normal calculated from the best 

fitting local plane model. Figure 17 shows the different local surface modelling 

concepts. The local modelling can be adapted to the given circumstances. 2.5D 

Delaunay triangulation is described to be the best model for representation of sharp 

edges, whereas the quadric function can represent smooth and curvy surfaces. As 

being the most versatile local model option, the quadric function is recommended by 

default. All different modelling approaches are based on an octree structure of the 

point cloud. (GIRARDEAU-MONTAUT ET AL 2005, CLOUDCOMPARE COMMUNITY 2018) 

3.6.2 Cloud to cloud distance M3C2 

LAGUE ET AL present in their 2013 article the cloud to cloud comparing multiscale 

model to model cloud comparison (M3C2) approach which adapts better to rough 

surfaces. The general concept is already described in Chapter 2.4.3, the change 

detection is hereafter specified more in detail. The following explanations are all 

gathered from LAGUE ET AL (2013). Figure 18 illustrates the concepts that are 

described. 

 

𝑁 𝑁𝑁A B C
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Figure 18: Illustration of the M3C2 change detection concept (after LAGUE ET AL 2013) 

 

As for some applications, general trends of change are sufficient. For the M3C2, it is 

optional to define core points used for the following computing steps for a more 

efficient calculation. The core points are either defined by a minimum point spacing of 

the reference point cloud or other subsampling methods (see Chapter 3.5.2).  

In a first step, for a given point i, a normal vector is defined. Therefore, using the points 

within a given radius D/2 are set as the used neighborhood. A best fitting plane, 

equivalent to local modelling of the least square plane in Chapter 3.6.1, is defined. 

Illustration A in Figure 18 visualizes the concept. When defining D, it has to be taken 

into account that D must be large enough to not being influenced by local roughness, 

but small enough to reflect general changes of surface orientation. Finding the optimal 

D is addressed as a key aspect of point cloud comparison. M3C2 provides an 

empirical approach of searching for the best plane fitting over different scale levels 

performing a PCA. The standard deviation of the distance of the neighboring points 

to the plane gives a measurement unit for the local roughness of the surface. The 

normal direction used for distance measurement can either be the estimated 

reference cloud normal, the estimated comparing cloud normal or an average of both 

normal directions.  

In a next step, the projection scale d is defined for the observed point i of the 

comparing point cloud. Therefore, the chosen normal is placed through the point i and 

a cylinder with a radius d/2 using the normal as the central axis is defined. For 

estimating the position of the surface for both point clouds, the points within the 

D/2

𝑁

𝑁
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defined cylinder are projected on the central axis. The mean positions ir and ic of the 

projected points are estimated separately for both point clouds. The distance between 

these two averaged projected positions defines the distance of i to the reference point 

cloud. Illustration B in Figure 18 shows this methodical step. If there is no according 

point in the reference point cloud, the point is defined as not classified. 

Besides the distance, also a spatially variable confidence interval is defined for each 

point. It reflects the local distance measurement accuracy and is used to distinguish 

if the detected change is statistically significant at the given confidence interval 

(usually 95%). As the confidence level boundary coincides with the minimum 

detection change, it is also called the Level of Detection at x% of confidence (LODx%). 

For detailed specification of the calculation of the confidence intervals, the interested 

reader is referred to the original paper (LAGUE ET AL 2013). 

3.6.3 Application and evaluation of chosen change detection 

approaches 

For change detection and method evaluation within this thesis, different epochs and 

different point cloud sections are compared. The 2014 and 2017a point clouds are 

compared using the 2014 point cloud as the reference data, the 2016 and 2017a point 

clouds are compared using 2016 as the reference point cloud and 2017a and 2017b 

point clouds using 2017a as the reference point cloud.  

Two different settings of the C2C approach are used: the Hausdorff distance as well 

as the quadric modelling approach. For the octree modelling, the default settings are 

used. Within the M3C2, the concept of core points addresses a lower resolution which 

is needed for results of change detection. As the change detection of this thesis aims 

high resolution results, all the points of the point clouds are used as core points. As 

LAGUE ET AL justify using the estimated reference point cloud normal for 

geomorphological applications, this setting is used for the cloud comparing within this 

thesis. Also, the automatically estimated parameter d and D are applied.  

The results of the different approaches and settings are divided in classes of <0.01 m, 

0.01 m – 0.1 m and >0.01 m detected change. The class from 0.01 m to 0.1 m is 

examined more in detail with a selection of areas of interest. The output of the change 

detection is a color-coded visualization of the point cloud. For the visualization of the 

distances, the points of the compared point clouds are used for the two C2C based 

approaches, the M3C2 algorithm creates new mean point positions for displaying the 

distances. 
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The comparison of the 2017a and 2017b point cloud is more extensive. Besides the 

comparison of the point clouds using a color-coded output, also histograms for the 

different approaches of the detected changes are generated and the data is examined 

by descriptive statistical analyses and statistical testing using the Wilcoxon rank sum 

test. In addition, the manipulated area is closer examined using the different change 

detection methods on different processing steps of the point cloud on two test areas 

to evaluate the methods. For M3C2, the parameters d and D are fixed to 0.05 m. 

Therefore, two sections of the 2017a and 2017b point clouds are taken. The first one 

coveres only the area surrounding the installed objects, the second section is 

enlarged in order to cover areas with vegetation. The points are manually classified 

in areas with change and no change by selecting the visible structures and 

subsequently classified using the different algorithms at different processing steps of 

the point cloud. Therefore, two different levels of significance for change (0.1 m and 

0.2 m) are used, and the points are divided in groups classified as change or no 

change by the algorithm-based change detection with respect to the chosen treshold.  
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4. Research Area 

In the following chapter, the research area is described. The focus of the 

characterization is on the relevant physical environmental factors like geology, climate 

and hydrology and details of infrastructure as this is relevant for risk estimations.  

 

 

Figure 19: Upper part of the Amtmann, a free-standing rock structure in the Ybbs Valley 

 

The object of research is a 40 m (above street level) high, freestanding rock formation 

called Amtmann, shown in Figure 19, one of 321 geotopes in Lower Austria (WESSELY 

2006). The rock structure shows an inhomogenous, rugged surface with overgrowing 

vegetation. 
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4.1 Location and infrastructure 

The Amtmann is in the Ybbs valley orographically left of the Ybbs river in the village 

Kreilhof in the municipal district of Waidhofen an der Ybbs in the southwest of Lower 

Austria. The location is shown in Figure 20. The municipal district is part of the 

microregion Ybbstal-Eisenstraße for regional development and the province-crossing 

area Eisenwurzen, which also includes areas of the neighboring federal states Upper 

Austria and Styria and is characterized by former iron industry. 

 

 

Figure 20: Location of the Amtmann in the Ybbs Valley, Lower Austria 

 

Next to the Amtmann on the orographical left side of the Ybbs river, the Ybbstal 

highway (B31) passes which leads from Waidhofen an der Ybbs to Göstling an der 

Ybbs 44 km along the Ybbs valley. The Amtmann is located at km 6.0 to km 6.3 of 

the Ybbstal highway. Until 2010, the Ybbs Valley Railway, a narrow-gauge railway, 

connecting Waidhofen an der Ybbs and Kienberg-Gaming also passed the Amtmann 

on the orographical right side of the Ybbs river (STANFEL 2014). Today, the Ybbstal 

Cycle Trail, a major touristic project of the region costing 10 million Euro, which was 

inaugurated on June 17th 2017 (NÖN 2017), uses the former railway line. The public 

transport is covered by an hourly local bus from Waidhofen an der Ybbs to Lunz/See 

with the bus station Gaissulz Amtmann right next to the research object. 

Location of the Amtmann

basemap.at

N
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4.2 Environmental characteristics of the research area 

Geologically, the Amtmann is located in the Northern Calcareous Alps at the transition 

zone of the Lunzer nappe and the Frankenfelser nappe with deposit of Jura and 

Tithon-Neokom with dominant rocks of limestone and marlstone and quaternary 

sediments in the valley floor (SCHNABEL 2002, WESSELY 2006). The material of the 

Amtmann is Rauhwacke, a porous calcite breccia with various accessory minerals 

(MÜLLER 1982). The area is tectonically undisturbed with a rare occurrence of 

earthquakes (WESSELY 2006).  

Surrounding the Amtmann, the land cover is a managed mixed forest at a relatively 

steep slope up to 70% in the immediate vicinity of the Amtmann and more than 100% 

in a 100 m radius (AMT DER NIEDERÖSTERREICHISCHEN LANDESREGIERUNG 2017). 

The valley in which the Amtmann is located is described as a V-shaped valley and is 

dominated by the Ybbs river, a 138 km long tributary of the Danube river which 

originates close to Mariazell and flows into the Danube at Ybbs an der Donau. In 

Opponitz, about 7 km upstream of the Amtmann, the Ybbs flow volume varies from a 

minimum of 10.8 m²/s in October to a maximum of 37.5 m²/s in April, according to a 

mean day flow volume, averaged from 1951 to 2014. (EHYD 2017) 

 

 

Figure 21: Climate diagramm Waidhofen an der Ybbs, 1971-2000 (data: ZAMG 2017) 
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Using the Köppen-Geiger-Classification (KOTTEK ET AL 2006, KÖPPEN 1918), the 

climate in the research area is described as warm temperature, fully humid climate 

with warm summers (Cfb). As shown in the climate diagram in Figure 21, the highest 

temperatures occur in July with a monthly average of 17.8 °C, the coldest month is 

January with an average of -1.6 °C. The precipitation reaches its maximum in July 

with average 144.4 mm, the lowest monthly precipitation is detected in February with 

average 66.5 mm. The annual precipitation rate is 1133.6 mm averaged from 1971 to 

2000. There is an annual average of 100.5 days of frost (minimum daily temperature 

below 0 °C), 24.7 days of ice (all day temperature below 0°C), 43.4 summer days 

(maximum daily temperature over 25 °C) and 6.3 hot days (maximum temperature 

over 30 °V). (ZAMG 2017) 

4.3 Rock falls and related investigations 

Due to road construction, the slope in the Ybbstal valley is cut which lead to a 

loosened structure of the uncovered bedrock. The area from km 4.85 to km 9.18 of 

the Ybbstal highway, including the location of the Amtmann, is under constant 

monitoring (HOFMANN 2004, SCHWEIGL 2005a, SCHWEIGL 2005b, SCHOBER 2007, 

SCHWEIGL 2012). Potential rock fall areas are detected and investigations are made.  

 

 

Figure 22: Car hit during a rock fall event in 2010 (photo: Freiwillige Feuerwehr Opponitz 2010) 
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Besides this, also natural rock faces with fissures and uphill situated stone pits are 

potential sources of rock falls. In the 1970, galleries were built along the street around 

km 9.0 to prevent the traffic from rock fall and snow avalanches. Since then, a lot of 

rock fall protection systems like wire mesh fences, anchored retaining walls or 

shotcrete seal are installed.  

A documented harmful rock fall event occurred on the 21.03.2010 at km 9.15: a rock 

of 0.75 m³ hit a passing car (see Figure 22). The driver suffered from minor injuries, 

the car was totally damaged. Referring to the damage report, the initial area of the 

rock fall is 100 m upslope the street and triggering factors were the precipitation of 

the previous days, freeze-thaw cycles which led to expansion of fissure and the root 

pressure of a tree located in the initial area. (AMT DER NIEDERÖSTERREICHISCHEN 

LANDESREGIERUNG 2010) 
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5. Results 

The following chapter shows the results achieved within this thesis. The chapter is 

separated in the different processing steps presenting results of different test settings 

and final data processing. 

5.1 Field work 

The field work took place on October 24th, 2016 and on October 5th, 2017. Before 

starting the campaigns, the scan positions are chosen. As the western side of the 

Amtmann is facing upslope a forest area, it is decided to skip this side and focus on 

the east side of the structure which is facing the street. The resulting scan positions 

in 2016 and 2017 are shown in Figure 13.  

Within the field campaign 2016, 25 reflector patches are installed. For the scanning, 

the Riegl VZ 6000 scanner (see Chapter 2.3.2), is connected to the thoughbook and 

the scanning project is directly created in RiSCAN PRO. Several scanning attempts 

are necessary at SP03, as the scanning process aborted by the scanner due to the 

inclination of the instrument. Finally, fine scans from all three scan positions including 

high resolution images and fine scans of the extracted reflectors are taken. 

The second field day is split into two scanning campaigns. The first campaign of the 

field day (2017a) is performed connecting the laptop to the scanner and performing 

scans from three different scan positions (see Figure 13). Fine scans from all three 

scan positions are taken. At SP03, the tie points are detected but due to software 

failure not fine-scanned. Subsequently, the eight objects for surface manipulations 

are installed in 8 m to 9 m down the top at the north-eastern face of the Amtmann. 

During the installation process, one object (the manipulated hemisphere 2) got lost. 

The second scanning campaign is performed directly on the scanner as the 

connection to the laptop failed. Two fine scans are performed including fine tie point 

scans. For all two campaigns of the field day, temperature and humidity are measured 
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and set as (optional) parameters within the scanning process day. Furthermore, due 

to software problems, no high-resolution images are taken. 

5.2 Initial check of the raw data 

As a first step of data analysis, the original scans are checked in RiSCAN PRO. For 

the scan positions of 2014, 2016 and 2017a, a project file is already available as the 

scanner was connected to the laptop and the scanning was performed using RiSCAN 

PRO. For 2017b data, a new project file is created, the single scans are exported from 

the instrument to a hard drive after the field work and imported to the new project file. 

The data in general is detailed described in Chapter 3.2 and Appendix A. Therefore, 

only chosen noticeable details are described following. As also noticed in the field 

work, a first rough overview of the different scan position and epochs does not indicate 

any evident changes of the rock surface. 

 

 

Figure 23: Selected views of the initial data check. A/B/C: Zooming in 2016 SP01 data. D. Close-up 
of the 2014 data. E/F: Same part of the 2017a (E) and 2017b (F) data – added structures 
visible on F within the red indications. 

 

Figure 23 shows selected sections of the initial data review. The images A-C show 

zooming stages of SP01 of the 2016 data. The point cloud is greyscaled using the 

intensity values. Therefore, the reflector patches are clearly visible as white dots 

within the point cloud due to their high reflectivity values. B shows the structure of the 

A B C

D E F
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rock: several cleavages which are about 25° inclined to the horizontal plane are 

identifiable and the structure of the rock is better visible at this zooming level.  

Besides the rock surface, individual trees and branches and leaves can be 

distinguished, as well as missing rock surface points due to shadowing effects. The 

third zoom level in C shows the structure of the point cloud. The single points with 

varying point density due to different surface structures are distinguishable. Also, the 

surface structure is visible more in detail. Image D shows a close-up of the 2014 data. 

Because of the different horizontal and vertical scanning resolution presented in 

Chapter 3.2, the points are arranged in pairwise vertical stripes of high density with 

gaps about double the size of a point-stripe pair. The distance between the double-

stripes varies around 5 cm. E and F show the rock surface section before and after 

adding the polystyrene objects. Within the red indications, the two parts of the 

semitorus and two hemispheres are visible within the point cloud section in F. For 

further processing, the data of all four epochs are joined in one single project file. 

5.3 Registration 

Within a first sighting of the data, the raw point clouds are coarsely cropped to exclude 

obvious measurement errors and points that are clearly out of the area of interest. 

Following, different registration tests are performed which lead to a final registration 

of the point clouds of the different scanning campaigns.  

5.3.1 Initial coarse registration: point pair picking and tie points 

The initial coarse registration is performed using tie point registration in RiSCAN PRO 

for 2016, 2017a and 2017b (including initial co-registration of these two scanning 

campaigns) and manual registration by point pair picking in CloudCompare for the 

2014 scans. Table 4 shows the accuracy of the initial coarse registration. 

For the 2014 data, three distinctive points on the Amtmann (characteristic points at 

cleavages) which are identified in the three different scans are picked for the point 

pair registration. The registration using these points lead to a RMSD in the magnitude 

of 0.011 m for the registration of the first two scan positions, increasing to 0.036 m 

when adding the third scan position. In this calculation, only the identified points are 

included.  

The tie point registration is performed using the automated tie point registration 

function in RiSCAN PRO. The accuracies from the tie point registration (the standard 

deviation of the differences from the data point cloud and the model point cloud) are 
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in a sub-cm magnitude for all registrations. For this calculation, only the tie points are 

considered. Adding the third scan position leads to accuracy improvement for the 

2016 data and to a slight decreasing of accuracy in 2017a.  

As the number of tie points with a maximum of 14 per registration process is a small 

sample and a normal distribution of the distances around 0 can’t be assumed, the 

RMSD and the standard deviation can’t be compared directly. Though, the differences 

in RMSD and standard deviation point to a better registration quality of tie point 

registration.  

Table 4: Resulting errors of the initial coarse registration 

  
2014   

point pair picking  
CloudCompare 

2016 
tie points 

RiSCAN PRO 

2017a 
tie points 

RiSCAN PRO 

2017b 
tie points 

RiSCAN PRO 

  
number 

of 
points 

RMSD 
[m] 

number 
of 

points 

standard 
deviation 

[m] 

number 
of 

points 

standard 
deviation 

[m] 

number 
of 

points 

standard 
deviation 

[m] 

SP01 
(model) & 
SP02 (data) 

3 0.01068 14 0.0081 10 0.0028 12 0.0034 

SP01+SP02 
(model) & 
SP03 (data) 

3 0.03594 10 0.0056 7 0.0032 - - 

 

5.3.2 Fine registration: testing different options 

For the fine registration, different settings and approaches are tested for finding an 

optimal fine registration solution for the data. The first test deals with different settings 

using the MSA in RiSCAN PRO. Therefore, various polydata (objects created from 

the plane patch filter) from all scan positions for all epochs using the settings 

presented in Chapter 3.3.3 are produced. The various settings result in a different 

number of points used for the registration shown in Table 5.  

Table 5: Number of data points resulting from the plane patch filter 

Used 
plane 
patch 
filter 

2014 2016 2017a 2017b 

SP01 SP02 SP03 SP01 SP02 SP03 SP01 SP02 SP03 SP01 SP02 

PPF1 28261 16520 17428 6416 7542 5561 5981 7796 7994 6299 8578 

PPF2 135724 73442 90816 39770 43692 32595 36176 48059 47140 37559 51401 

PPF3 784330 461236 561421 174243 263540 133334 161474 257570 287236 173682 309100 

PPF4 5308953 3152770 5308953 659542 1161000 510000 618731 1000467 1249129 677662 1296548 
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The number of points is increasing with lowering the maximum plane error, the 

minimum number of points and the minimum and maximum search radii. The points 

resulting from PPF4 are roughly 100 to 200 times the points resulting from PPF1. 

While for SP01 in 2016, 6416 points of PPF1 are 0.1% of the original 6,002,675 points 

of SP01, the proportion rises to about 11% of the original data using PPF4. It shall be 

emphasized, that the points resulting from the plane patch filter are no original raw 

data points but the center of gravity of the area of points used for the filtering (see 

Chapter 3.3.3). 

Figure 24 shows where the polydata of the different plane patch filter are distributed 

over the point cloud. The increasing density is clearly visible from PPF1 to PPF4 with 

a domination of polydata on the vegetated areas and, considering PPF4, rock 

cleavages. 

 

 

Figure 24: Distribution of the polydata extracted by plane patch filter, exemplarly for SP01 of 2016 
data 

 

Using this polydata and the tie points, the MSA is performed allowing for variable 

settings. One scan position is set as model point cloud and two (or one in 2017b) as 

data point cloud. The settings are refined within the testing process. Therefore, the 

test is an iterative process with primary a constant convergence of the point clouds. 

Following, the results for 2016 (see Table 6) are presented, the results of the other 

epochs and the histograms of the residues for all MSAs are attached in Appendix B 

and Appendix D.  
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Table 6: Example of the MSA registration test: test data 2016, SP01 as model point cloud, SP02 and 
SP03 as data point clouds, histograms of the residues added in Appendix D 

Epoch Input Data 

Parameters Statistics 
Histogram of 
residues (see 
Appendix D) 

Search 
radius 

[m] 

Maximum 
tilt angle 
[degree] 

Error: 
standard 

deviation [m] 

Number of observations 
used for calculation 

Tie points Polydata 

2016 
 (3 SP) 

Tiepoints 
no changes with 
changing settings 

0.0058 30 0 2016-TP 

Tie points & 
Polydata 
(PPF 1) 

0.5 15 0.0291 33 4010 2016-PPF1-01 

0.2 15 0.0177 33 1670 2016-PPF1-02 

0.1 15 0.0143 33 602 2016-PPF1-03 

0.05 15 0.0103 33 175 2016-PPF1-04 

0.5 10 0.0264 33 2573 2016-PPF1-05 

0.2 10 0.016 33 1089 2016-PPF1-06 

0.1 10 0.013 33 430 2016-PPF1-07 

0.05 10 0.0095 33 132 2016-PPF1-08 

0.5 5 0.0229 33 936 2016-PPF1-09 

0.2 5 0.0143 33 423 2016-PPF1-10 

0.1 5 0.0103 33 166 2016-PPF1-11 

0.05 5 0.0079 33 55 2016-PPF1-12 

Tie points & 
Polydata 
(PPF 2) 

0.5 15 0.0738 33 33421 2016-PPF2-01 

0.2 15 0.0172 33 14266 2016-PPF2-02 

0.1 15 0.0124 33 6225 2016-PPF2-03 

0.05 15 0.0095 33 2102 2016-PPF2-04 

0.5 10 0.0717 33 20384 2016-PPF2-05 

0.2 10 0.0159 33 8296 2016-PPF2-06 

0.1 10 0.0115 33 3654 2016-PPF2-07 

0.05 10 0.0088 33 1270 2016-PPF2-08 

0.5 5 0.068 33 6920 2016-PPF2-09 

0.2 5 0.015 33 2668 2016-PPF2-10 

0.1 5 0.0103 33 1245 2016-PPF2-11 

0.05 5 0.0076 33 462 2016-PPF2-12 

Tie points & 
Polydata 
(PPF 3) 

 

0.5 15 0.0913 33 330404 2016-PPF3-01 

0.2 15 0.0397 33 126438 2016-PPF3-02 

0.1 15 0.0169 33 48476 2016-PPF3-03 

0.05 15 0.0099 33 16173 2016-PPF3-04 

0.02 15 0.0059 33 2635 2016-PPF3-05 

0.5 10 0.1127 33 236735 2016-PPF3-06 

0.2 10 0.0394 33 69867 2016-PPF3-07 

0.1 10 0.0159 33 25525 2016-PPF3-08 

0.05 10 0.0091 33 8699 2016-PPF3-09 

0.02 10 0.0055 33 1481 2016-PPF3-10 

0.5 5 0.1319 33 95909 2016-PPF3-11 

0.2 5 0.0383 33 20784 2016-PPF3-12 

0.1 5 0.0146 33 7400 2016-PPF3-13 

0.05 5 0.0082 33 2593 2016-PPF3-14 

0.02 5 0.0052 33 502 2016-PPF3-15 

Tie points & 
Polydata 
(PPF 4) 

 

0.5 15 0.0564 33 1856606 2016-PPF4-01 

0.2 15 0.0392 33 1074177 2016-PPF4-02 

0.1 15 0.0188 33 515352 2016-PPF4-03 

0.05 15 0.0081 33 219192 2016-PPF4-04 

0.02 15 0.0039 33 54233 2016-PPF4-05 

0.5 10 0.0805 33 1596878 2016-PPF4-06 

0.2 10 0.0427 33 721725 2016-PPF4-07 

0.1 10 0.0183 33 300454 2016-PPF4-08 

0.05 10 0.0075 33 117766 2016-PPF4-09 

0.02 10 0.0036 33 29021 2016-PPF4-10 

0.5 5 0.1181 33 984885 2016-PPF4-11 

0.2 5 0.0435 33 282239 2016-PPF4-12 

0.1 5 0.0172 33 96244 2016-PPF4-13 

0.05 5 0.007 33 34902 2016-PPF4-14 

0.02 5 0.0034 33 8679 2016-PPF4-15 
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With a maximum tilt angle of 15°, the best results considering the standard deviation 

(smaller than 0.01 m) are shown using PPF4, 3 and 2 and a low search radius of 

0.02 m or 0.05 m. The used polydata varies from 2102 points with a maximum search 

radius of 0.05 m and PPF2 to 219192 points with a maximum search radius of 0.05 m 

and PPF4. Similar results considering the relations of PPF, search radius, number of 

points and standard deviation are shown with a maximum tilt angle of 10° and 5°. A 

lowering of the maximum tilt angle leads to a decreasing number of used polydata 

used errors. While the number of used polydata is roughly halved when using a 

maximum tilt angle of 10° instead of 15°, the decreasing of the standard deviation 

emerges only in the range of 10-4 m. With 10° maximum tilt angle, six test settings 

lead to a sub-centimeter standard deviation. Lowering the maximum tilt angle from 

10° to 5°, the number of polydata used for the registration is lowered to less than 1/3, 

while the decreasing of the error is still in sub-millimeter range and still six settings 

show sub-centimeter standard deviations. 

Taking the search radius in focus, it is shown that this setting is more sensitive using 

fine plane patch filter. A search radius of 0.5 m leads to standard deviation values of 

0.056 m, increasing with PPF2, 3 and 4. The highest errors over 0.1 m correspond 

with PPF3 and 4 and maximum tilt angles of 5° and 10°. PPF1 leads to the lowest 

error values when using a 0.5 m search radius – all three maximum tilt angle settings 

are followed by standard deviations lower than 0.03 m. Lowering the search radius 

leads to lower error values and decreasing of the number of used polydata, but the 

results are not as proportional as for change of maximum tilt angle described above. 

While a search radius of 0.2 m or 0.1 m shows the smallest errors using polydata from 

PPF1 and 2, lowering the search radius to 0.05 m leads to the smallest error values 

using PPF4 corresponding with a higher number of polydata in comparison to PPF2 

and PPF1. The search radius of 0.02 m is only tested on PPF3 and PPF4, as the 

number of polydata used on PPF1 and PPF2 is lower than 100 with these settings. 

Therefore too little improvement in number of points has been accomplished 

(considering the tie point registration).  

The overall smallest standard deviation is reached using PPF4, a search radius of 

0.02 m and a maximum tilt angle of 5°: the resulting error is 0.0034 m and 33 tie points 

and 8679 polydata points are used. Increasing the maximum tilt angle to 10° leads to 

more than triple polydata points (29021) with an error of 0.0036 m. All in all, 17 

different settings lead to sub-centimeter errors with the largest number of polydata 

(219192) using PPF4, a 0.05 m search radius and 15° maximum tilt angle.  
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The visual interpretation of the histograms of the residues (Appendix D) shows that 

the residues are symmetrically distributed around 0 m. 

For comparing the performance of MSA in RiSCAN PRO and ICP in CloudCompare, 

SP01 and SP02 from the 2016 data are used as test samples. As CloudCompare only 

allows to register one point cloud to another at a time, the tests for the MSA are 

performed again using only SP01 as model point cloud and SP02 as data point cloud. 

For the first test, the original point cloud data is used. For a second test run, the point 

clouds are cropped to the upper part of Amtmann decreasing the total number of 

points to 5.2% on SP01 (314,536 of 6,002,675) and to 3.3% on SP02 (385.323 of 

11,765,226). The idea behind the second test run is, that the main interest is on a 

good registration of the point clouds for the focus area. If the results for the registration 

of the selected area are significantly better than for the whole point cloud, the 

transformation parameters for the main area of interest are applied to the rest of the 

data. For the MSA, PPF4 is used as it leads to the largest number of polydata. The 

tests are also performed using PPF3. The results are, next to the detailed results of 

PPF4, depicted in Appendix C, but not further discussed. The ICP in CloudCompare 

is also performed using a large number of points (the raw data) and it is intended that 

the results are on some level comparable. The settings for the MSA are the same as 

in the first test run, adding three test runs with 3 m search radius and 45° maximum 

tilt angle, 5 m search radius and 90° maximum tilt angle and 10 m search radius with 

180° maximum tilt angle. These settings are chosen on purpose to lower and finally 

eliminate the effect of the surface normal within the polydata of the plane patch filter. 

Furthermore, after every MSA, the registration is set back to the results of tie point 

registration to prevent effects of convergence. The ICP in CloudCompare is 

performed with varying the chosen settings of the maximum number of points used 

as a random sampling limit (5*104, 5*105 for both data sets and additionally 5*106 for 

the original data set) and different settings on final overlap of the point cloud of 100%, 

75%, 50% and 25%. As in RiSCAN PRO, the original tie point registration was 

restored after every test. 

Although both MSA and ICP are based on the ICP-algorithm, the customizing 

parameters vary between the two methods. While the ICP registration in 

CloudCompare uses a fixed maximum number of sample points (the number is lower 

if the maximum of the available points is lower than the defined level), the number of 

polydata RiSCAN PRO uses within the MSA arises from the settings of search radius 

and maximum tilt angle. Another difference is, that CloudCompare works with (a 

subset of) original data points, while the MSA uses the polydata objects which result 

from the plane patch filter and are defined by the gravity point of the extracted planes. 
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Concerning the error which represents the quality of registration, CloudCompare 

gives the RMSD of the related point pairs and RiSCAN PRO the standard deviation 

of the distance between the related point pairs. While the RMSD (see Equation 6) is 

simply based on the distance between the related points using the Euclidian metric 

(see Chapter 3.3.2), the standard deviation (see Equation 9) is based on the 

difference between two related points and the mean difference of all point pairs (see 

3.3.4). As the MSA does not allow to export the residues of the registration 

numerically, the histograms are used for further considerations. As seen in the 

histograms of the residues in Appendix D and already described above within the first 

registration tests, the residues of the MSA are symmetrically distributed around 0 m. 

Therefore, it is assumed that the mean value of the MSA residues is 0 m, resulting in 

equating of RMSD and standard deviation as squaring leads to a positive value which 

eliminates the impact of the plus/minus sign depicted in Equation 11. 

𝑠 = √
∑ (𝐷𝑖 − 𝐷̅)

 𝑛
𝑖= 

𝑛
   
𝐷̅= 
⇒    𝑠 =  √

∑ (𝐷𝑖)
 𝑛

𝑖= 

𝑛
 =  √

∑ (𝑑𝑖)
 𝑛

𝑖= 

𝑛
= RMSD          

𝑠 … 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑝𝑎𝑖𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 
𝐷𝑖 …𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑎𝑛 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑝𝑎𝑖𝑟  
𝐷̅  …𝑚𝑒𝑎𝑛 𝑝𝑜𝑖𝑛𝑡 𝑝𝑎𝑖𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 
𝑑𝑖 …𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑎𝑛 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑝𝑎𝑖𝑟  
𝑛…𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑝𝑎𝑖𝑟𝑠 
𝑅𝑀𝑆𝐷…𝑟𝑜𝑜𝑡 −𝑚𝑒𝑎𝑛 − 𝑠𝑞𝑢𝑎𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

 

 
(Equation 11) 
 

 

Consequentially, the two error values (standard deviation for MSA and RMSD for ICP) 

can be compared, as they are measuring the same. Furthermore, the points used for 

the registration within the ICP as well as the polydata (gravity points with normal 

vectors) used for MSA are treated equally. 

After dealing with theoretical considerations on comparing the two registration 

approaches, the registration tests on the 2016 data are performed. The results of the 

two comparing registration tests are visually prepared in Figure 25 and Figure 26. The 

numerical results are listed in Appendix C. In both illustrations, the upper semicircle 

plotting area shows the results of the MSA, the lower semicircle plotting area the 

results of the ICP. The distance to the center point, which is marked with a small x in 

the center of the corresponding bubble, represents the registration quality using the 

equivalent standard deviation and RMSD on a logarithmic scale up to 1 m. The 

legends on the right side of the figure show the chosen settings, which differ between 

the registration methods. The customized MSA-settings are visualized in the color-

coded search radius and the maximum tilt angle, which is indicated in the inclination 
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of the axis. The variable settings of the ICP are the number of points used for the 

calculation which is shown by the bubble area and derived from the random sample 

limit and the theoretical overlap in percentage, which is differentiated by the angle of 

the axis in the lower semicircle plotting area. For the MSA, the size of the circle is also 

a result of the registration process and is therefore also described within the plotting 

area. It is stressed that both bubble area legends within one figure use the same 

scale, the double implementation is just due to better clarity of the whole figure. 

Regarding the MSA shown in Figure 25 with a focus on the maximum tilt angles of 5°, 

10° and 15°, the search radius of 0.5 m leads to more accurate registration with 

increasing of the tilt angle. Hence, the number of observations used for the calculation 

rises. This also applies for the search radius of 0.2 m, but the decreasing of the 

standard deviation is smaller. Beginning with the search radius of 0.1 m and smaller, 

the standard deviation rises with increasing of the maximum tilt angle. The number of 

observations is still constantly increasing with higher maximum tilt angle values. For 

investigation of results using unusually large maximum tilt angles and search radii, 

the settings 45° maximum tilt angle with 3 m search radius, 90° maximum tilt angle 

with 5 m search radius and 180° maximum tilt angle with 10 m search radius are 

tested. Apart from long computational time (more than 6 hours for the 180°/10 m 

settings), the results according to standard deviation are, especially referring to the 

180°/10 m settings with a standard deviation of 0.0066 m, in the range of the finer 

settings. Therefore, for 180°, the other used search radii are also tested. Comparing 

the results of low maximum tilt angle registration with complete exclusion of the 

maximum tilt angle by setting the value to 180°, the standard deviation values with a 

search radius of 0.5 m, 0.2 m and 0.1 m are smaller than with the tilt angles of 5°, 10° 

or 15° by a higher number of used polydata. Looking at the search radius of 0.05 m 

and 0.02 m, the standard deviation is slightly higher, but the number of polydata used 

for the calculation is 6.5 up to 53 times higher. It is furthermore noted, that the 

computational time drops down to 2 minutes and 3 seconds or less when using 0.5 m 

or less as search radius at a maximum tilt angle of 180°. Overall, 9 settings lead to a 

standard deviation smaller than 0.01 m. These are primary settings with a small 

search radius (the lowest 4 standard deviation values all go with 0.02 m search 

radius), but also the test setting of 10 m with 180° is with a standard deviation of 

0.0066 m in this range. The number of used polydata varies from more than 1.1 million 

to 3620.  

The registration results of the associated ICP are shown in the lower semicircle of 

Figure 25. For all test settings, except of 5 million points and 25% theoretical overlap 

(due to lack of more points, only 2.94 million points are used), the number of points 
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used for the calculation is equivalent to the chosen sample limit. Lowering the 

theoretical final overlap corresponds for all sample limits with decreasing of the final 

RMSD. A theoretical overlap of 100% corresponds with RMSD-values in the range of 

0.37 m up to 0.55 m. For all other theoretical overlap settings, the RMSD drops (with 

one exception on 75% and 50,000 points) under 0.1 m. With more points used, the 

RMSD gets smaller within one theoretical overlap setting. The lowest RMSD, which 

is also the only one in sub-centimeter range, is 0.0079 m and comes with 2.94 million 

points and 25% theoretical overlap. 

 

 

Figure 25: Output of MSA and ICP using different settings (test data: 2016, SP01 with 6,002,675 
points and SP02 with 11,765,226 points) 

 

Comparing the results of the MSA and the ICP shown in Figure 25, the first obvious 

difference is the number of points/observations used for the registration. While the 

number of observations used for the MSA registration results from the chosen settings 
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of maximum tilt angle and search radius and ranges from 3,629 to 1.15 million 

polydata, ICP registration uses the number of points as an (indirect) input parameter, 

and the numbers range from 50,000 to 5 million points. In contrary to the link of 

increasing number of points used for registration and decreasing RMSD in ICP 

registration, the greater number of polydata generally goes with a higher standard 

deviation when using MSA registration. While one registration test using ICP reaches 

a sub-centimeter error, 9 registration tests are linked with sub-centimeter standard 

deviation with the MSA. Although it is noted that the one sub-centimeter ICP 

registration is calculated on 2.5 times the number of points as the highest sub-

centimeter registration with MSA. The upper end of all over error values is dominated 

by the three 100% final overlap settings of ICP.  

 

 

Figure 26: Output of MSA and ICP using different settings (test data: 2016, SP01 segmented using 
314,536 points and SP02 segmented using 275,534 points) 
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For all the test settings chosen for the registration of the cropped point cloud, the 

computation time is 1 minute 7 seconds or lower. Referring to the results in Figure 26 

(it is noted that the area legend is not equivalent to the area legend in Figure 25) and 

taking the maximum tilt angles from 5° to 15° in account, for the registration tests 

using the cropped point cloud, the same patterns as in Figure 25 are discovered: for 

0.5 m and 0.2 m search radius, the standard deviation drops with higher maximum tilt 

angles, beginning from 0.1 m and smaller search radius and it rises slightly with a 

higher maximum tilt angle. Also, the number of observations is constantly rising with 

bigger search radii and greater maximum tilt angles. Furthermore, for the 180° 

maximum tilt angle, the search radii of 0.02 m, 0.05 m and 10 m show sub-centimeter 

standard deviation values which are higher than the values with the same search radii. 

From 0.1 m to 0.5 m search radius, the standard deviation values for 180° maximum 

tilt angle are all between 0.011 m and 0.012 m and therefore smaller than the 

corresponding results with lower maximum tilt angles by 1.1 up to 16.7 times the 

number of used polydata. The test leads to ten settings with a standard deviation 

smaller than 0.01 m. These are, like the results from Figure 25, settings with a small 

search radius (the lowest four standard deviation results with 0.02 m search radius 

and also all 0.05 m search radius settings are included), but also the test settings of 

10 m with 180° and 5 m and 90° are sub-centimeter. The number of polydata of the 

sub-centimeter results varies from 190 to 40916. 

The registration results of the performed ICP using the cropped point cloud are shown 

in the lower semicircle of Figure 26. As the chosen random sample limit of 5*105 is 

not reached for all different final overlap settings, the setting 5*106 is not tested for 

this data. As with the original data, lowering the theoretical final overlap leads to 

decreasing of the final RMSD for all sample limits. A theoretical overlap of 100% gives 

RMSD-values of 0.122 m to 0.139 m. The theoretical overlap settings of 75% and 

lower result in RMSD values of smaller than 0.035 m. The smallest and only sub-

centimeter RMSD corresponds with 96,330 points for computation and 25% 

theoretical overlap. 

The number of used polydata/observations for registration is, as seen in Figure 25, 

the most notable difference between ICP and MSA: all ICP registration tests work with 

more data points than the largest number of polydata. Also, the increasing number of 

points used for registration leads to a decreasing RMSD in ICP registration, and more 

used polydata leads mostly to a higher standard deviation when using MSA 

registration. From the eleven sub-centimeter error results, one (25% theoretical 

overlap and 96,330 used points) is a result of ICP registration. The two overall highest 
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error values with 0.122 m and 0.139 m are the ICP registrations with 100% final 

overlapping. 

The same settings of the MSA used on the polydata extracted from the whole point 

cloud (Figure 25) and the polydata from the cropped sample (Figure 26) lead for the 

maximum tilt angles from 5° to 15° to differences from 0.0004 m to 0.0063 m. 

Considering the higher maximum tilt angles settings, 45° and 3 m lead to a difference 

of 0.0214 m, all other differences range from 0.0001 m to 0.0086 m. The number of 

observations for the same settings for the original data is 18 up to 98 times the number 

of observations of the cropped data. Comparing the results of the two ICP registration 

test data sets, the absolute differences of the RSDM range from 0.042 m to 0.41 m 

with same settings on random sampling limit and theoretical final. In perspective, the 

RMSD values of all data registration are 2.9 to 4 times the RMSD values of the 

cropped data registration by the same number of points for the 5*104 random sampling 

limit and 1.3 to 5.2 times the number of points for the 5*105 random sampling limit.  

Figure 27 contrasts the errors and numbers of used data points of MSA and ICP in 

two scatter plots. For this illustration, also the results of the MSA from testing with 

PPF3 are used. Both plots show that ICP reaches a larger number of observations. 

On the contrary, MSA gives the lower registration error results.  

 

 

Figure 27: Comparing MSA and ICP - Error and numbers of observations used for registration. A: 
using all data, B: using cropped data 

 

Concluding from the overall evaluation, the fine registration of the data for further 

processing is performed using the ICP in CloudCompare with a theoretical final 

overlap of 25%. (due to changing vegetation, especially considering the co-
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registration, and smallest RMSD). In order to get overall acceptable results, all data 

are used and the maximum sample limit is set to of 5 million points. This decision is 

based on the comparable sub-centimeter ICP and MSA results within the registration 

test, the globally spread points used for the registration of ICP in comparison to the 

domination of vegetation based polydata for MSA and the preference of using open 

source software. 

5.3.3 Fine registration: final registration 

The parameters of the registration for all scan positions using ICP in CloudCompare 

are shown in Table 7. Within all fine registration steps, lowering the RMSD compared 

to the initial coarse registration is reached. While the final RMSD of 2016, 2017a and 

2017b with all scan positions is in sub-centimeter range or just above (1.09 cm for 

2017a), the 2014 data gives a final RMSD of 5.62 cm.  

Table 7: Output of the final registration realized using ICP (CloudCompare). Settings: minimum change 
of RMS per iteration of 10-5 m, final overlap 25%, random sampling limit 5*106 points 

 2014 2016 2017a 2017b 

SP01 (model) & SP02 (data) 

Initial RMSD [m] 0.02377 0.00802 0.00921 0.01203 

Number of points 
used for computation 

3,055,450 2,941,306 2,345,237 3,223,577 

Final RMSD [m] 0.01387 0.00797 0.00852 0.00923 

  merge SP01 and SP02 

  

  

  SP01+SP02 (model) & SP03 (data) 

Initial RMSD [m] 0.06247 0.00811 0.01218 

Number of points 
used for computation 

3,167,136 1,170,890 3,132,487 

Final RMSD [m] 0.05623 0.00777 0.01088 

  merge and export 

Number of points 43,756,493 22,451,461 27,614,924 19,269,988 

 

Figure 28 shows the visual results of the registration. The big greyscale image 

illustrates the result colored by intensity. The red lines indicate the cross-sections 

(parallel to the x-y plane) shown below the point cloud image. On the right side, for all 

epochs, the different scan positions are shown in different colors with a last image 

combining all scan positions colored in the colors of the point clouds.  
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Figure 28: Visual presentation of the final registration for all four epochs 

 

The cross-sections below the image are also colored using the point colors of the 

corresponding scan positions. Referring to all SP illustration in B, C and D, a mixture 

of the colors of the different scan positions is shown, whereas in the all SP illustration 

in A representing the 2014 data, the three colors representing the three different scan 

positions can clearly be distinguished. Concerning the different cross sections of 
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2016, 2017a and 2017b data, one rock surface can be identified drawn by a line of 

points representing the different scan positions. Considering the cross sections of the 

2014 data, scattering of points does not allow to identify distinct surface borders. 

5.4 Extraction and co-registration 

The co-registration of the different epochs follows the same workflow as the 

registration of the different scan positions. Between the coarse and the fine 

registration, the point cloud of the different epochs is cropped to the final area of 

interest. The 2016 point cloud is chosen as the model point cloud for all co-

registrations and defines therefore the final coordinate system for the data processing 

within this thesis. 

For the coarse registration of the 2014 data, initially seven point pairs distributed along 

the upper part of the rock structure are identified (see Figure 29). The seven point 

pairs lead to an achievable RMSD of 0.2983 m. Different combinations of subsets of 

the point pairs are tested to lower the RMSD, and finally five point pairs with a RMSD 

of 0.0667 m are used for the manual coarse registration. 

 

 

Figure 29: Screenshot: Coarse co-registration using manual point pair picking in CloudCompare 
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For the registration of 2017a and 2017b data, coarse registration, which was already 

performed during the scan position registration, is further used. Table 8 shows the 

errors (RMSD for the manual point picking registration performed in CloudCompare 

and the standard deviation for the tie point registration in RiSCAN PRO) of the coarse 

co-registration. While the standard deviation values from the tie point registration are 

below 0.005 m, the manual coarse registration is, as already described, with 0.067 m 

more than ten times higher. After the coarse registration, the point clouds are cropped 

to the final area of interest which is covered by the point clouds of all different epochs. 

Therefore, 35% - 36.5% of the points of each point cloud are removed. 

Table 8: Co-registration of the point clouds from the different scanning campaigns 

c
o
a
rs

e
 r

e
g
is

tr
a
ti
o

n
 

Model point cloud 2016 – 22,451,461  points 
Data point clouds [SC / number of 
points] 

2014 2017a 2017b 
59,107,864 27,614,942 19,269,998 

Method point pair picking tie point registration tie point registration 
Number of used point 5 13 15 
RMSD / standard deviation [m] 0.0667 0.0038 0.0046 

cropping to the final area of interest 

fi
n
e

 r
e
g
is

tr
a

ti
o

n
 

Model point cloud 2016 - 14,449,463 points 
Data point clouds 

2014 2017a 2017b 
38,412,243 points 17,787,617 points 12,238,307 points 

Method ICP (CloudCompare) ICP (CloudCompare) ICP (CloudCompare) 
Selected points for registration 
[number of points / percentages of the 
point cloud] 

17,628,563 (45%) 13,976,446 (78%) 9,667,165 (78%) 
Initial RMSD (calculated on the 
selected points) [m] 0.0230 0.0086 0.0081 
Number of points used for 
computation 4,999,999 3,059,576 4,446,904 
Final RMSD [m] 0.0197 0.0077 0.0077 

 

The fine co-registration is performed on the cropped point clouds, using again 2016 

as model data for fine co-registration of the other epochs. The different processing 

parameters and the results are shown in Table 8. Chosen a final theoretical overlap 

of 25%, 45% of the 2014 data points and 78% of the 2017a and 2017b data points 

are selected by the algorithm. The initial RMSD is calculated on these selected points. 

For the 2014 data, this value shows with 0.023 m a 0.044 m lower RMSD as 

calculated on the five manually picked point pairs. On the contrary, the initial RMSD 

calculated on the 2017a and 2017b is higher than the standard deviation from the tie 

point registration. It shall be emphasized, that, with a low sample of only 13 or 15 

points for the tie point registration, the mean cannot be assumed as 0 and therefore 
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the standard deviation cannot be directly compared with the RMSD. The ICP fine 

registration results for all three to be registered epochs in decreasing of the initial 

RMSD. For 2014, with 0.0033 m the largest absolute reduction is reached, for 2017a, 

the RMSD is lowered 0.0009 m and for 2017b 0.0004 m. For 2017a and 2017b, with 

a final RMSD of 0.0077 m for both epochs, a sub-centimeter range is reached. For 

2014, the final RMSD amounts 0.0197 m.  

 

 

Figure 30: Cross-sections of the four co-registered point clouds revealing the co-registration quality 

 

Figure 30 shows cross-sections of the co-registered point clouds. For all four sections, 

the white, red and green points representing the scanning campaigns of 2016, 2017a 

and 2017b overlap, the blue points, representing the scanning campaign 2014, are 

partly covering the other point data, as well as exhibit parts of clear distance to the 

points of the other three scanning campaigns.  

5.5 Filtering 

The filtering process is divided to the removal of the vegetation and homogenization 

of the point cloud. For the vegetation removal, a combination of classification based 

on the geometry of the point cloud and intensity values is used. The homogenization 

of the point cloud is based on statistical outlier removal and minimum point distance. 
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5.5.1 Removing the vegetation 

The vegetation removal includes geometric and intensity based filtering. In a first step, 

the “rock” and “vegetation” areas for the training of the CANUPO filtering algorithm 

are defined and the training is performed. The results of the classification training are 

shown in Figure 31. Rock surfaces (1.2 million points) and different vegetation 

structures (6.5 million points) are extracted from the 2016 point cloud. The adapted 

PCA identifies the projection of the N dimension (N = 100 in this case, as 50 scale 

levels considering two different dimensions are chosen) which discriminates the two 

groups best using the LDA criteria on a plane. The discrimination line is left on the 

default value. The classification results in a balanced accuracy of 0.95, which 

indicates that 95% of the training data set points are correctly rated by the statistical 

classification. Looking to the sample classification, the classification of rock reaches 

1.6 percentage points more truly classified points than vegetation. The Fisher 

Discriminant Ratio, describing the quality of the class discrimination, shows a value 

of 6.88. 

 

 

Figure 31: Training of the CANUPO classification using the 2016 point cloud data 

 

The trained classifier is applied to the point cloud of the different epochs. Figure 32 

shows the workflow of the vegetation filtering on the example of the 2014 data. All the 

mentioning of illustrations in the following paragraph refers to parts of Figure 32. In a 

first step, the data is split into nine sections, as the CANUPO plugin crashes with too 

large input point clouds. The sections are shown in the left illustration A. The CANUPO 

classification is applied separately on the different sections, and the results are 

merged again. The data classes rock, vegetation and separately vegetation with lower 

than 95% confidence of classification are exported to individual point clouds. The low-

confidence classified vegetation point cloud is again filtered. Only points with intensity 

values higher than 26 dB are exported again to a new point cloud. As already 

announced in Chapter 3.5.1, the classification is problematic at the border of the point 

clouds – this is reflected in stripes of missing points in the merged rock class point 
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cloud. Therefore, these stripes are exported from the data classified as vegetation. 

Illustration B shows the single derivates, which are merged (Illustration C) for the final 

manual classification. The results of the algorithm based filtering still include obvious 

vegetation point clouds. The final filtering is performed manually by selecting and 

deleting vegetation points. Therefore, the point cloud is sliced in sections of 2 m height 

along the z-axis for better visibility and orientation and merged again after the 

cleaning. The result of this process is shown in illustration D. Illustration E shows a 

close-up of the upper part of the final vegetation filtered point cloud. The “pinstribe” 

structure of the data, resulting from the different vertical and horizontal resolution, is 

clearly visible. Illustration F shows a cross-section of the point cloud. Different layers 

of points resulting from the registration of the different scan positions can be identified. 

Illustration G shows a close-up from the lower part of the point cloud: the point cloud 

surface is not consistent – a lot of point cloud gaps are visible. 

 

 

Figure 32: Workflow of vegetation filtering by the example of the 2014 data. A: Point cloud cut to 9 
sections for filtering. B: Derivates from the filtering process. C: Merged combination of the 
selected derivates. D: Final result of the filtering after manually filtering. E: Close-up from 
the upper part of the vegetation-filtered Amtmann. F: Cross-section of the point cloud. D: 
Close-up of a lower part of the point cloud. 

 

The procedure for the vegetation filtering of the 2016, 2017a and 2017b data is equal 

to the 2014 vegetation filtering described in the last paragraph (except of only splitting 

the data to three sections). Therefore, the workflow for this data is not presented in 

detail. Figure 33 shows some chosen samples of the vegetation filtering process of 

these data sets. Illustration A and B demonstrate the effect of the CANUPO 

classification: A shows the original point cloud, B the points classified as rock after 

the CANUPO classification. Vegetation is clearly removed, but points scattered in the 

former vegetation area are still visible. Also, enlarging of the missing point data within 
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the region of cleavages is detected. Especially in the lower right corner of the 

illustration, missing rock surface points due to shadowing effects of the vegetation are 

noticed. Illustration C shows the cleavage-filling effect of the low-vegetation-

confidence and high-intensity derivate (red data points) to the rock-classified data 

points (greyscale points) of the 2016 point cloud. A clear reduction of the missing data 

points in the cleavage areas is visible. Illustration D shows the final result of the 

vegetation filtering (including manual filtering) of the 2017b point cloud. The point 

cloud does not show a continuous surface, gaps on different scales are visible all over 

the point cloud. Four cross-sections of one m height with distances of 12 m, indicated 

by light-grey coloring of the points in the all over data view, are shown in the circles 

on the right side. For all cross-sections, only one surface layer is detected. 

 

 

Figure 33: Examples of detailed results of the vegetation filtering. A: Original top part of the 2016 
point cloud. B: Classified as "rock”: detail section shown in A after applying the CANUPO 
filter. C: Close-up of 2017a data: points classified as rock and filling of the gaps using 
intensity filtered low confidence vegetation data. D: Results after the final manual 
vegetation filtering of the 2017b data with four cross-sections. 

 

5.5.2 Further filtering 

After the removal of the vegetation, further steps of processing of the point cloud are 

performed. For visualization of detailed changes, a close-up of the results of the two 

following filtering steps for all four point clouds is shown in Figure 34. The following 

description refers to single images within this figure. To exclude points, which are far 

away from the rest of the point cloud and are therefore no benefit in representing the 

rock surface, the SOR-filter is applied. For the calculation of the statistical outlier 

removal, 15 neighbor points are taken in account and two standard deviations define 

Class Rock

A

B

C

D
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the outlier distance. The sections of the point cloud shown in the second row are the 

results of this filtering. Looking at the 2014 data, it is visible, that scattering points in 

the upper right part of the section are removed with this filter. On the very spot, the 

2016 data shown shrinking of a separated point cluster after applying the SOR-filter. 

Also, several single points are removed. On the lower left part of the section, an area 

with lower point density is more thinned out, which is resulting in a surface gap. The 

2017a and 2017b data show similar effects of SOR-filtering: scattered points in the 

upper right part of the sections are removed with a few single remaining points in the 

area. The following subsampling adapts the point density – the differences between 

the single years and the variation of density within one point cloud due to overlapping 

of different scan positions are adjusted.  

 

 

Figure 34: Close-up of the point clouds showing the different filtering steps (unit of the scale bar in 
m) 

 

As the RMSD for registration and co-registration is, except for the 2014 data, below 

0.01 m, a minimum distance of 0.01 m is chosen. The third row of images shows the 

results of the subsampling. For 2014, the vertical resolution of the point cloud is clearly 

thinned out. As the horizontal gaps of the vertical point lines are more than the chosen 

minimum distance of 0.01 m, no unification of the point cloud density in vertical and 
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horizontal direction is reached. In regions with overlapping scan positions, the gaps 

are not as dominant, but there is still a stripe structure visible and the point cloud does 

not have a consistant pattern. The higher point density of the SOR-filtered 2016 data 

in the lower right corner is thinned out by the subsampling. The 2017a and 2017b 

point clouds reveal again similar patterns: The points of the overlapping line structure 

caused by overlapping scan positions are reduced to a reasonably structured pattern 

with similar horizontal and vertical resolution. Only the points in the upper right corner 

appear still unstructured after the subsampling. 

After the detailed results, the final processed point clouds are presented on a larger 

scale. The final representations of the rock surface after registration and filtering are 

shown in Figure 35. Due to final filtering, 53% to 83% of the points are excluded. The 

final number of points for all epochs ranges between 1.8 million and 2.5 million points.  

 

 

Figure 35: Final point clouds of the different epochs (colored by grey-scaled intensity values) 

 

For all four epochs, the point clouds do not represent a continuous surface. Especially 

on the northern to north-eastern face of the Amtmann (represented by the right part 

of the illustrations in Figure 35), the surface can only be indicated by a few spotty 

clusters of points. The same applies to the south-eastern face, which is mapped at 

2014 2016 2017a 2017b

1,806,133 points 2,476,874 points 2,442,027 points 1,802,235 points
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the left side of the illustrations. Comparing these areas to the raw data, they come 

along with dense vegetation cover. From the upper right corner to the left center, a 

band of dense points represent, with a few gaps, a continuous part of the rock surface. 

The lower part of the illustrations of all epochs shows various intensity values and 

gaps of points scattered over the represented surface. Summarizing, for the four 

scanning epochs covered in this thesis, the collected TLS-data does not allow to 

extract a comprehensive point cloud representing the Amtmann’s rock surface by 

using the presented registration and filtering methods. 

5.6 Change detection 

Change detection is performed using two different C2C and the M3C2 algorithm. 

Therefore, three different data combinations are used. Change detection is run 

combining 2014 and 2017a data, 2016 and 2017a data and 2017a and 2017b data. 

In all cases, the more recent data is used as the to-be-compared point cloud and the 

prior data as the reference point cloud. The results are presented visually with a focus 

on changes between 0.01 m and 0.1 m. Changes <0.01 m are precluded due to 

registration errors. Further, the distribution of the classes of distances <0.01 m, 

0.01 m to 0.1 m and >0.1 m is discussed. Therefore, the focus is on the hot-spot-

areas of the different classes. Chosen areas are extracted and presented separately. 

The 2017a-2017b change detection in examined more extensively. 

5.6.1 Change detection comparing different epochs 

Figure 36 shows the results of the 2014-2017a change detection. The C2C change 

detection with no local modelling classifies 9% of the 2.44 million compared points of 

the 2017a point cloud with a distance <0.01 m to the related 2014 point cloud. The 

majority of the points, 61.3%, have distances between 0.01 m and 0.1 m to the 2014 

point cloud. About 30% of the points show distances >0.1 m. The mean distance is 

0.1481 m with a standard deviation of 0.3132 m. View A reveals, that the point 

distances <0.01 m are located especially in the upper center region of the Amtmann, 

surrounded by areas of point distances between 0.01 m to 0.1 m. Point distances 

>0.1 m are most likely to be found in the lower part of the point cloud and on the 

border regions. Taking a closer look on the point distances from 0.01 m to 0.1 m (view 

B), the general trend of the distribution continues within this interval. The smaller 

distances are found in the center region, whereas larger distances up to 0.1 m are in 

the lower region of the point cloud. Adding the local quadric modelling to the C2C 

change detection algorithm leads to a higher percentage of point distances <0.01 m 
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(20.7%). The point distances between 0.01 m and 0.1 m represent also about 61% of 

all point distances, while the large distances >0.1 m are down to 18.3%.  

 

 

Figure 36: Results of the 2014-2017a change detection 
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View C reveals a distribution of the different classes similar to the distances of the 

C2C without local modelling. The occurrence of distances <0.01 is more widespread 

within the yellow area, which represents the 0.01 m to 0.1 m distances. The mean of 

the distances is 0.1358 m with a standard deviation of 0.2415 m – therefore, both 

parameters are slightly lower than without local modelling. The differentiated look on 

the 0.01 m to 0.1 m distances (View D) exhibits a more inhomogeneous lower region 

with a mixture of distances between 0.01 m and 0.1 m. Generally, the visualization of 

the change interval of 0.01 m to 0.1 m is dominated by smaller distances which are 

displayed in blue color. The distribution of the three different distance classes using 

the M3C2 algorithm is illustrated in View E. The smallest distances up to 0.01 m (12% 

of the point distances) are again located in the center of the point cloud spreading to 

the upper right region of the view and to the lower parts of the point cloud. The 

distances from 0.01 m to 0.1 m (45.8% of the point distances) are located along the 

vertical center axis, while distances >0.1 m (20.1%) are found at the lower and at the 

very top part of the point cloud. The mean distance is 0.1485 m with a standard 

deviation of 0.3203 m. Both parameters are higher than the according C2C modelling 

results.  

Further, 22.1% of the reference cloud points are not attributed with a distance to points 

of the 2014 point cloud and therefore displayed in grey color. These points are primary 

in the lower part of the Amtmann and on the borders of the point cloud. Comparing to 

the two C2C approaches, the point distances within the interval from 0.01 m to 0.1 m 

(view F) are less blended. The center region, colored in blue, is dominated by point 

distances close to 0.01 m. Adjoining, green areas point out an increased occurrence 

of distances around 0.05 m, where distances up to 0.1 m, indicated by red color, are 

found on the very top cloud and in the lower regions of the point cloud.  

The red marks in views B, D and F indicate the location of the areas of interest shown 

in the left part of Figure 36. For the comparison of the areas of interest, only the point 

distances from 0.01 m to 0.1 m are considered. Area 1 shows a section with notable 

green spots within the surrounding blue area. While the C2C without local modelling 

shows large green to yellow areas, which indicate distances of 0.04 m to 0.07 m, the 

green areas with local quadric modelling are smaller. M3C2 points out a different 

pattern with fewer but larger greenish areas. Looking at the original point clouds from 

2014 and 2017a, some of the spots with distances >0.05 m correspond with point 

cloud holes in the 2014 data which don’t occur in the 2017a data. Area 2 and area 3 

are 0.1 m high intersections of the point clouds. The combination of the 2014 and 

2017a data shows the divergence of the surfaces of the two point clouds. In area 2, 

C2C without local modelling derives small distances on the left part of the intersection 
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and larger distances up to 0.1 m on the right part. C2C with quadric modelling shows 

similar patterns on the left part but smaller distances on the right part. Using M3C2, 

clearly less points are within the range from 0.01 m to 0.1 m, and the visible distances 

are mostly 0.03 m or larger. Area 3 shows mainly distances from 0.06 m to 0.1 m for 

the C2C without local modelling, smaller point distances but more values within the 

considered range for the quadric C2C and the least number of point distances, most 

likely 0.05 m or higher, for the M3C2 approach. 

Figure 37 illustrates the results of the 2016-2017a change detection. C2C without 

local modelling derives for 56.8% of the 2.44 million 2017a data points distances 

<0.01 m. 40.8% of the points show distances between 0.01 m and 0.1 m, 2.3% 

distances >0.1 m. These results are illustrated in view A. The mean distance of the 

point clouds is 0.0188 m with a standard deviation of 0.0464 m. The distances 

<0.01 m, as visible in view A, are strongly present in the center areas of the point 

cloud and correspond with the originally vegetation-free parts of the Amtmann. 

Distances between 0.01 m and 0.1 m are mainly found in the lower part of the point 

cloud and in the top and left border regions. Distances >0.1 m are selectively visible 

on the margin of the point cloud. Focusing on the 0.01 m to 0.1 m range, most of the 

point distances are colored in blue which indicates distances close to 0.01 m. Green 

areas revealing distances around 0.05 m are primary at the lower region and at the 

margins, but also small green areas are within the blue area in the center region. 

Distances up from 0.07 m to 0.1 m are limited to the margins of the point cloud. C2C 

with local quadric modelling increases the class of <0.01 m distances up to 71.2%, 

27.8% of the point distances are in the range from 0.01 m to 0.1 m and 1% of the 

points exhibit distances >0.1 m. Also, the mean distance with 0.0114 m and the 

standard deviation with 0.0303 m are smaller than the corresponding C2C without 

local modelling values. Contemplating view C, distances <0.01 m are spread all over 

the point cloud, with yellow points revealing the distances from 0.01 m to 0.1 m spread 

in the lower region, the upper left part of view C and at the margins. The general 

pattern is similar to view A but with lower point density. Distances >0.1 m are only 

visible in a few margin regions of view C. When taking a closer look to the 0.01 m to 

0.1 m range, also the pattern of the corresponding view B is reflected. Points with 

distances close to 0.01 m are again widespread with spots of distances around 0.05 m 

up to 0.1 m in margin regions. The point cloud density is comparatively low, as the 

total number of points in this range is about 1/3 less than using C2C without local 

modelling. The M3C2 modelling goes along with further increasing of the amount of 

point distances <0.01 m to 75.8%. 17.8% of the points are in the range of 0.01 m to 

0.1 m with this modelling approach. 1.5% show distances >0.1 m and with 4.9% of 
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the point cloud, about 118,000 points of the 2017a data are not attributed with 

distances to the 2016 point cloud.  

 

 

Figure 37: Results of the 2016-2017a change detection 
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The visualization of the distribution of the three classes shown in view E reveals the 

clear domination of the <0.01 m distances. Yellow points indicating the 0.01 m to 

0.1 m range are located primary in the lower part of the point cloud with a few clusters 

in the center and upper part. The distances >0.1m show similar patterns, but with less 

appearances. Non-classified points are clearly visible at some margin regions of the 

point cloud. Focusing on the range from 0.01 m to 0.1 m in view F, the density of the 

point cloud is in comparison to the views B and D quite low, as it consists of less than 

half of the points of view B and about 1/3 less than view D. The visible points are 

dominated by distances close to 0.01 m with a more homogenous scattering of higher 

distance values up to 0.05 m. High values up to 0.1 m are confined to relatively few 

punctual areas. 

Highlighted by three red circles in views B, C and D, noticeable areas of the 0.01 m 

to 0.1 m range are examined more in detail in the lower left illustrations in Figure 37. 

Area 1 shows a closeup of three triangularly arranged spots standing out with 

distances up to 0.75 m in the C2C with no local modelling. The point clouds from 2016 

and 2017a show a small rock cleavage leading horizontally through the area. 

Moreover, the lower two spots are point cloud holes in 2016 but covered with points 

in 2017a. While the two lower identified spots are holes of the point cloud in 2016 and 

filled in 2017a, the spot on the upper part of the section shows lower point density in 

2016 compared to 2017a data. This gives the impression of a protruding object in the 

2016 data which is not present in 2017a. While the lower right spot is prominent in 

C2C without local modelling, the point distances are reduced in C2C with quadric 

modelling and nearly vanished with M3C2. Moreover, the prominence of the lower left 

spot decreases, although not as strong, with the different modelling approaches. In 

contrast, the upper spot shows slightly lower distance values using quadric C2C than 

no local modelling C2C, but gains on prominence and distance values with the M3C2 

distance modelling. Area 2 reveals how the different algorithms handle point cloud 

holes. While the section of the point cloud is holey in 2016 data, only one point cloud 

gap in the center of the left region section is visible in 2017a data. The C2C without 

local modelling specifies distances up to 0.075 m at almost all areas without point 

data in 2016. With quadric modelling, the derived distances are smaller and less, but 

similarly distributed, while M3C2 shows different distance patterns with prominent 

focus on higher distances at the upper and the center left part of the section. Area 3 

displays a section of the point cloud which shows a clean surface in 2016 data, but a 

surface with additional lower density points on top in 2017a. In C2C without local 

modelling, the different layers of distance to the surface are clearly visible up to 0.1 m 

and not representing the points furthest away from the surface. The change detection 
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results of C2C with quadric modelling are more inhomogeneous and are not 

represented by a continuous layer gradient but including more points. M3C2 projects 

calculated distances mainly on the surface layer with values from 0.01 m up to 0.05 m 

with individual points of different distances of the whole range from 0.01 m to 0.1 m 

above the surface.  

5.6.2 Evaluation of change detection approaches 

Figure 38 shows the results of the 2017a-2017b change detection. For this analysis, 

the 2017a is used as reference data and the 2017b data as compared data. Such as 

for the other change detection analyses, the detected distances are projected on the 

to-be-compared point cloud for the C2C approaches and on mean point positions of 

the to-be-compared point cloud for M3C2. Theoretically, only 346 points (0.0002% of 

the point cloud and therefore neglected for the following description) are affected by 

surface manipulation and should therefore show distances, as the data were collected 

on the same day without other change noticed. Therefore, this comparison presents 

an evaluation of the method.  

C2C without local modelling calculates for 61.2% of the 1.8 million points distances 

<0.01 m. 36% of the points are in the range from 0.01 m to 0.1 m, 1.9% of the points 

are attributed with distances >0.1 m. The mean distance is 0.0207 m with a standard 

deviation of 0.1103 m. The distribution of the different classes is illustrated in view A. 

The distances up to 0.01 m are dominant in the left part of the center region and the 

right part of the upper section of the view. These areas overlap with the not vegetation-

covered areas of the original point cloud. Yellow points representing distances from 

0.01 m to 0.1 m are primary located in the lower part of the point cloud and on the 

margins of the view. Distances >0.1 m are clearly visible at distinct spots on the point 

cloud borders. Taking a closer look on the 0.01 m to 0.1 m range, small distances 

close to 0.01 m are clearly dominant. Areas with clear overlapping of green to red 

points which represent distances from 0.05 m up to 0.1 m are limited to the lower part, 

the margins and two hot spot areas in the center-right part of view B. Adding local 

quadric modelling to the C2C change detection approach leads to increasing of point 

distances <0.01 m to 77%. 21.9% of the point distances range between 0.01 m and 

0.1 m within this modelling approach, 1.1% show distances >0.1 m. The mean 

distance decreases to 0.0118 m with a standard deviation of 0.0622 m. As visible in 

view C, the distribution of the three classes is in general similar to the C2C without 

local modelling with a clear thinning out of the yellow points representing the range of 

0.01 m to 0.1 m. The cyan points revealing point cloud distances >0.1 m also 

correspond with the location of the points of the same class in view A and are therefore 
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located at single margin regions. The more precise breakdown of the range from 

0.01 m to 0.1 m (View D) shows less point cloud density in the center region. Again, 

there is a clear domination of the distances around 0.01 m with, compared to view B, 

less appearance of points around 0.05 m and only few spots of point cloud distances 

up to 0.1 m at point cloud border regions. M3C2 modelling leads again to an 

increasing amount of point distances <0.01 m (83%), 12.5% of point distances 

between 0.01 m and 0.1 m and 1.2% of distances >0.1 m. 3.4% of the point distances 

are not classified. The mean distance with 0.0131 m and the standard deviation of 

0.0949 are between the parameters of C2C without local modelling and C2C with 

quadric modelling. The visualization of the distribution in the three classes in view E 

is dominated by a base of distances <0.01 m with isolated yellow clusters in the middle 

and upper region of the view and scattered 0.01 m to 0.1 m distances in the lower 

part. Points indicating distances >0.1 m are scattered in the lower region, not 

classified areas partly overlap with the >0.1 m distances in C2C change detection. 

The data in view F, showing the range from 0.1 m to 0.01 m, hardly represent a 

surface due to many point cloud holes. It is still dominated by distances close to 

0.01 m, but overall scattered point distances >0.05 m occur. 

The three red circles in view B, D and F show the location of the areas of interest, 

closer examined in the illustrations on the lower left part of Figure 38. Area 1 displays 

the region, where the surface was manipulated between SC2017a and SC2017b by 

adding polystyrene objects. C2C without local modelling points out four of the seven 

objects by distances >0.025 m. Besides the objects, scattered distance points around 

0.01 m and distances up to 0.08 m in the point cloud border region in the right part of 

the section are visible. C2C with local quadric modelling is characterized by 

decreasing of the scattered blue points around 0.01 m and revealing the objects and 

the point cloud border region similarly to C2C without local modelling. M3C2 results 

in only identifying distances related to four of the seven objects and a cluster of points 

on the right-hand point cloud border. Moreover, three single points occur within the 

section. For all approaches, the lower polystyrene objects (the original geometric 

forms) are better visible in the change detection point clouds. Area 2 shows the 

reaction of the different algorithms to point cloud holes. C2C without local modelling 

indicates the pointless area of 2017a with distances from 0.05 m up to single points 

showing distances around 0.1 m over a comprehensive occurrence of distances 

around 0.01 m in the center and upper part of the sections. With local quadric 

modelling, the 0.01 m values are thinning out, with hardly any change in the center 

region. M3C2 leads to increasing of the point density in the center region showing 

distances around 0.05 m, surrounded by blue points displaying distances around 



5. RESULTS 

 

95 

0.01 m and no point cloud distances in the range from 0.01 m to 0.1 m in the border 

regions of the section. 

  

 

Figure 38: Results of the 2017a-2017b change detection 
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Area 3 shows a closeup of a point cloud border, where 2017a data is sharply cut and 

the 2017b data has a frayed border region. While C2C only shows point close to the 

2017a point cloud border with a clear gradient within the 0.01 m to 0.1 m distance 

range, C2C with quadric modelling also includes points further away from the 2017a 

border. In comparison, M3C2 indicates less change and the location of the change 

detection points is, as in C2C without local modelling, limited to the 2017a border 

region. 

 

 

Figure 39: Histograms showing the results of the 2017a-2017b change detection 
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strong occurrence of smaller point distances, especially considering the logarithmic 

scale, for all change detection approaches. The cumulative percentages are shown 

on a secondary axis. Using C2C with quadric modelling and M3C2, the class of the 

smallest distances contains the most points: 50.1% of the points are <0.005 m using 

C2C with local quadric modelling, 65.8% of the classified points using M3C2. For C2C 

without local modelling, the smallest class is not the largest group. 13.3% of the point 

distances are <0.005 m using this approach. With no local modelling, the distances 

from 0.005 m to 0.01 m have the most frequent occurrence with 48.8% of all 

calculated point distances. Distances >0.1 m range between 1.07% (C2C quadric) 

and 1.94% (C2C without local modelling). M3C2 assigns 3.37% of the reference 

compared points undefined distances. 
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Figure 40: Boxplots and chosen quantiles from the analysis of the 2017a-2017b change detection 
results 

 

The boxplots in Figure 40 make the difference of the distributions easier comparable. 

The y-axis is cut at a detected change of 0.025 m and excludes some outliers. The 

C2C without local modelling shows the median at 0.0086 m. With the use of local 

quadric modelling, the median decreases to 0.005 m with another reduction to 

0.003 m using M3C2. The medians are, especially with C2C and M3C2 modelling, 

located in the lower part of the box, which indicates again the right skewed-distribution 

of the point distances. The interquartile range reaches from 0.006 m (M3C2) to 

0.0071 m (C2C quadric). The 0.90 and the 0.95 quartile show a ranking similar to the 

medians with the highest values for C2C without local modelling, followed by C2C 

with quadric modelling and the lowest values for M3C2. With the 0.99 quartile, C2C 

with quadric modelling shows with 0.1075 m the lowest result.  

To support the descriptive analyses, statistical tests are performed. As the data is not 

normally distributed, the Wilkoxon rank sum test is used. For testing of equal 

distribution of the data, a significance level of 0.01 is chosen. Statistical testing 

confirms the assumption taken from the descriptive analyses of the data, that M3C2 

leads to the overall smallest detected changes between 2017a and 2017b data, 

followed by C2C with quadric modelling and C2C without local modelling: the 

Wilkoxon rank sum test, which is used pairwise on the data of the three different 

change detection results, gives p-values of 2.22*10-16 < 0.01 significane for all 

different combinations leading to reject the null hypothesis and accept the alternative 

hypothesis which indicates that the location shift is not equal to 0 and the samples 

are therefore from different distributions. As 60679 points (3.37%) are not classified 

in M3C2 change detection and it is presumed that these points have comparatively 

large distances to the nearest points in the reference point cloud, the tests are rerun 

exluding also the largest 3.37% of the distances of C2C without local modelling and 

C2C C2C quadric M3C2

Q
u

a
n

ti
le

s
 [

m
]

Minimum 0.0001 0.0000 0.0000

Q0.25 0.0063 0.0023 0.0010

Q0.5 0.0086 0.0050 0.0030

Q0.75 0.0125 0.0094 0.0070

Q0.9 0.0230 0.0172 0.0130

Q0.95 0.0408 0.0270 0.0210

Q0.99 0.2262 0.1075 0.1530

Maximum 3.5914 3.5914 2.3500C2C C2C quadric M3C2

change detection approach

0
.0

0
1

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

d
is

ta
n

c
e

s
[m

]



5. RESULTS 

 

98 

C2C with quadric modelling. The Wilcoxon rank sum test leads to the same results. 

Hence, it can be concluded, that M3C2 leads significantly to the smallest point cloud 

distances of the three considered approaches for the 2017a-2017b change detection, 

followed by C2C with quadric modelling and C2C without local modelling.  

5.6.3 Detailed change detection evaluation for test areas 

For a detailed evaluation of the surface manipulation between SC2017a and 

SC2017b, the point cloud is cropped to the area of the manipulated surface. Two 

areas of interest are defined: test area 1 containing only rock surface and a broader 

test area 2 including vegetation in the original point clouds.  

The two test areas are shown in Figure 41. The three different change detection 

approaches C2C without local modelling, C2C with quadric modelling and M3C2 are 

applied on different point cloud processing levels: the different change detection 

algorithms are tested on the original point cloud, on the result of the CANUPO filtering, 

on the CANUPO filtering combined with the intensity based filtering and on the final 

filtered point cloud including the statistical outlier removal and the minimum distance 

filter. For the evaluation of the change detection, the manipulated objects are 

separated manually by visual interpretation from the rest of the surface for the point 

cloud of all different processing steps. From the seven installed objects, five are 

included in the analysis, as the two smallest objects are not clearly detectable in the 

point cloud. The classification in change of surface and no change of surface is shown 

in Figure 42.  

Furtheron, the change detection approaches are applied on the whole data and the 

results are split up by the defined “objects” and “rest” classification. 829 points 

represent the objects point class in the unfiltered data. Test area 1 has 26,452 rest 

points, test area 2 128,580 rest points – also considering the unfiltered point cloud. 

For M3C2, only the points with calculated distances are included in the analyses. The 

amount of the compared data points with no calculated distances ranges from 0% to 

1.5%. The data points are classified with threshold values of changes >/≤ 0.01 m and 

0.02 m. Figure 43 and Figure 44 illustrate the results of the classification. The detailed 

numerical results are attached in Appendix E and Appendix F. For comparable results, 

the D and d values for the M3C2 (see Chapter 3.6.2) are fixed to 0.05 m.  
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Figure 41: Test areas for the detailed change detection evaluation (unfiltered point cloud) 
 

 

Figure 42: Area of changed surface (left) and area of no surface change (right) within test area 1 
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First, the graphs in Figure 43 using 0.01 m as a change detection threshold are 

discussed. For test area 1, which is limited to rock surface, using the original data, the 

CANUPO rock classification and the cleaned rock leads to similar results within the 

different change detection methods – the values vary up to 0.4%. C2C without local 

modelling identifies 80.2% to 80.5% of the object points of original, CANUPO and final 

filtered data with changes >0.01 m. For the same data varieties, the changes >0.01 m 

for C2C with quadric modelling range between 69.4% and 69.8%, M3C2 shows values 

from 81.0% to 81.4%. The rest representing the area without modification has change 

values >0.01 m for 4.4% to 4.8% of the C2C without local modelling, 2.2% to 2.5% for 

local quadric modelling and 0.6% to 1.0% for M3C2. After the final filtering, the pattern 

changes: while the object classification shows stable results in C2C without local 

modelling (increasing to 81.4%), the percentages of the rest classified as changes 

triples up to 14.7%. For C2C with quadric modelling, the percentages of the object 

points classified >0.01 m change increase with the final filtered data about 9 

percentage points to 78.3%. For the rest, the proportion of the points >0.01 m change 

doubles to 4.9%. Such as C2C without local modelling, M3C2 shows similar results 

for the object classification using the final filtered data (80.9%), the percentages of 

the data >0.01 m change of the rest increase to 2.3%. Overall, for test area 1, the 

highest percentage of objects points attributed with changes >0.01 m is derived with 

M3C2 using the original data (81.4%) and the lowest percentages of rest points with 

changes >0.01 m also by M3C2 using the CANUPO classified data (0.6%).  

Test area 2 includes vegetation in the original data section. The distinction between 

changes >0.01 m and ≤ 0.01 m is, as in area 1, for the object areas for all three change 

detection methods stable for the first three data processing steps. With exception of 

changes up to 0.2% with M3C2, the same values as in test area 1 are shown. The 

results using the final filtered point clouds deviate in similar patterns as in test area 1 

with the same values including the same exception of 0.4 percentage points 

increasing to 81.3% with M3C2. Considering the not manipulated rest data points, the 

share of points with changes >0.01 m increases comparing to test area 1 and varies 

over the different data processing steps. For C2C without local modelling, 22.7% of 

the points show changes >0.01 m using the original data, decreasing to 13.8% using 

the CANUPO classification and 15.4% with the cleaned rock data and rises to a high 

of 30.9% with the final filtered data. Similar patterns occur for the other two change 

detection approaches. C2C with quadric modelling has 13.6% of changes >0.01 m for 

the rest points of the original data, 7.3% using the CANUPO classified data, 8,4% for 

the cleaned rock data and 15.1% for the final filtered data. M3C2 change detection 

results in 13.3% of detected changes >0.01 m for rest class using the original data, 
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5.8% for the CANUPO classified data, 7.1% for the cleaned rock and 13.6% for the 

final filtered data. For test area 2, M3C2 has the overall highest value of object points 

with detected changes >0.01 m with 81.6% using the original data and the overall 

lowest value for rest points with changes >0.01 m of 5.8% using the CANUPO 

classified data.  

 

 

Figure 43: Results of the detailed change detection evaluation 2017a-2017b of the manipulated 
surface for the different processing steps of the point cloud, 0.01 m threshold for change 

 

Figure 44 shows the results of change classification using a threshold value of 0.02 m. 

The results of the object classification are, as with the 0.01 m threshold in Figure 43, 

Test area 1

objects

rest

objects

rest

objects

rest

objects

rest

o
ri
g

in
a
l

C
A

N
U

P
O

ro
c
k

ro
c
k
 

c
le

a
n
e
d

fi
n
a
l 

fi
lt
e
ri
n
g

M
3
C

2
 m

o
d
e
lli

n
g

, 
D

 =
 0

.0
5
 m

, 
d
 =

 0
.0

5
 m

 

objects

rest

objects

rest

objects

rest

objects

rest

o
ri
g

in
a
l

C
A

N
U

P
O

ro
c
k

ro
c
k
 

c
le

a
n
e
d

fi
n
a
l 

fi
lt
e
ri
n
gC

2
C

 q
u
a
d
ri
c
 l
o
c
a
l 
m

o
d
e
lli

n
g

objects

rest

objects

rest

objects

rest

objects

rest

o
ri
g

in
a
l

C
A

N
U

P
O

ro
c
k

ro
c
k
 

c
le

a
n
e
d

fi
n
a
l 

fi
lt
e
ri
n
g

C
2
C

 n
o
 l
o
c
a
l 
m

o
d
e
lli

n
g

0% 20% 40% 60% 80% 100% 100% 80% 60% 40% 20% 0%

objects

rest

objects

rest

objects

rest

objects

rest

o
rig

in
a
l

C
A

N
U

P
O

ro
c
k

ro
c
k
 

c
le

a
n
e
d

fin
a
l 

filte
rin

g

C
2
C

 n
o
 lo

c
a
l m

o
d
e
llin

g

objects

rest

objects

rest

objects

rest

objects

rest

o
rig

in
a
l

C
A

N
U

P
O

ro
c
k

ro
c
k
 

c
le

a
n
e
d

fin
a
l 

filte
rin

g

C
2
C

 q
u
a
d
ric

 lo
c
a
l m

o
d
e
llin

g

objects

rest

objects

rest

objects

rest

objects

rest

o
rig

in
a
l

C
A

N
U

P
O

ro
c
k

ro
c
k
 

c
le

a
n
e
d

fin
a
l 

filte
rin

g

M
3
C

2
 m

o
d
e
llin

g
, D

 =
 0

.0
5
 M

, d
 =

 0
.0

5
 m

changes > 0.01 m changes ≤ 0.01 m

Test area 2



5. RESULTS 

 

102 

constant for the first three data processing steps for test area 1 and test area 2. For 

C2C without local modelling, the amount ranges for both test areas between 45.2% 

and 45.5%. With this classification method, also the results using the final filtered data 

are within this range. Using C2C with local quadric modelling, the percentages of 

object distances >0.02 m are lower: 36.1% - 36.3% of the compared points of the first 

three processing steps show distances >0.02 m, 43.3% using the final filtered point 

cloud for both test areas. M3C2 leads to the highest shares from 48.9% to 49.6% of 

distances >0.02 m for the original, CANUPO classified and cleaned data and 45.4% 

to 45.5% for the final filtered data. The share of the rest data with distances >0.02 m 

varies for test area 1 for all change detection methods for the original, the CANUPO 

classified and the cleaned rock data set between 0.3% and 0.8%. The final filtered 

data leads to 1.0% of distances >0.02 m for M3C2 and C2C with quadric modelling 

and 1.9% for C2C without quadric modelling. Overall, M3C2 using the CANUPO 

classified data leads with 49.6% to the highest amount of object points with distances 

>0.02 m for test area 1, M3C2 using the CANUPO data and the cleaned rock data as 

well as C2C with local quadric modelling using the cleaned rock data lead to the 

lowest percentages (0.3%) of points of the rest data with distances >0.02 m. 

For test area 2, the object data is already inspected in the paragraph above. While 

the object data is quite stable, the values for the rest data differ from test area 1. For 

all three change detection methods, the amount of points with distances >0.02 m 

using the original data and the final filtered data resemble as well as the values for 

the CANUPO classified data and the cleaned rock data. C2C without local modelling 

shows values of 5.9% respectively 5.5% for the original data and the final filtered data, 

2.1% and 2.6% for the CANUPO filtered data and the cleaned rock data. Comparing 

to test area 1, the shares are up to 7 times higher using test area 2. The values for 

C2C with quadric modelling are 3.5% and 3.1% for original and final filtered data, 

1.0% and 1.3% for CANUPO classified and cleaned rock data and up to 6.5 times 

higher with test area 1. M3C2 shows the highest increasing in comparison to test area 

1: the amount of distances >0.02 m is 8.3% using the original data, 2.9% with the 

CANUPO classified data, 3.8% using the cleaned rock data and 7.2% for the final 

filtered data. This shows, regarding to the original data, an increase of 1820%. For 

the test area 2 and the distance threshold of 0.02 m, M3C2 using the CANUPO filtered 

data gives with 49.6% the largest amount of points with distances >0.02 m. The 

smallest share of rest points >0.02 m distance is given by the C2C with local quadric 

modelling: 1.0% of the points show distances >0.02 m.  

Comparing the results of the object classification shown in Figure 43 and Figure 44, 

the percentages of distances higher than the chosen threshold decreases explicitly 
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with increasing of the threshold. For C2C without local modelling, the amount of the 

points with distances higher than the threshold is reduced about 44.5% with 

increasing the threshold from 0.01 m to 0.02 m. For C2C with quadric modelling, the 

distinction shows reductions of 48% for the first three data processing steps and 

44.7% for the final cleaned data. M3C2 leads to the smallest change: 38.7% to 39.7% 

less points of the first three data processing steps and 44% for the final filtered data 

are classified higher than the threshold when increasing it from 0.01 m to 0.02 m. 

 

 

Figure 44: Results of the detailed change detection evaluation 2017a-2017b of the manipulated 
surface for the different processing steps of the point cloud, 0.02 m threshold for change 
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Considering the rest data for test area 1, increasing the threshold to 0.02 m leads to 

stronger decrement of the amount of points higher than the threshold value. For C2C 

without local modelling, the amount of points decreases 82.6% (original data) to 

87.9% (cleaned rock data) when using 0.02 m as the threshold distance. C2C with 

quadric modelling exhibits reductions in the range from 78.2% to 87.5% from 0.01 m 

to 0.02 m threshold distance. M3C2 shows the relative smallest reductions in the 

range of 52.7% to 58.6%. The rest data for test area 2 shows less decreasing than 

test area 1 data when rising the threshold value from 0.01 m to 0.02 m For C2C, 

74.1% to 84.9% less distances are higher than the threshold value, for C2C with 

quadric modelling the range is 74.5% to 86.0%. For M3C2, the relative reduction 

values range from 37.8% to 49.7%.  

Summarizing, M3C2 leads for all scenarios to the highest amounts of values larger 

than the chosen threshold value for the object data points. While for the data of test 

area 1 which just covers rock surface, the results mentioned above are reached using 

the original point cloud, the CANUPO filtered data gives the highest values for the 

broader defined test area 2 including vegetation. Considering the rest data which is 

not manipulated between the two scanning campaigns, M3C2 with the CANUPO 

filtered data results in the lowest amount of data >0.01 m for both test areas. 

Increasing the threshold to 0.02 m leads to three options of the lowest value of 0.3%: 

M3C2 with CANUPO data and the cleaned rock data as well as C2C with quadric 

modelling using the cleaned rock data. Test area 2 shows the lowest share of >0.02 m 

for the rest data using C2C with quadric modelling. 
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6. Discussion 

In the first chapter, four research questions are defined to guide the research of this 

thesis. While the previous chapter gives a descriptive presentation of the results, in 

the following chapter, these results are discussed. The discussion is not limited to the 

research questions and includes challenges and limitations on data processing and 

impacts of the different processing steps along the workflow. Next to the discussion 

of the data processing within this thesis, relations to chosen publications are 

established, especially considering potential for optimization. Like the results, the 

discussion is structured in different sections of data processing, completed with a final 

section of drawing conclusions for the postulated research questions. 

6.1 Data 

As emphasized in the preface of HERITAGE AND LARGE (2009a), laser scanning 

provides a “cost effective way to acquire massive amounts of high resolution 3D digital 

data” (HERITAGE ET AL 2009a: ix). Especially under these circumstances, it is important 

to adjust parameters for data acquisition for the selected research area to gain the 

optimal spatial resolution for the defined research. Moreover, to achieve good 

comparability for multitemporal analyses, constant acquisition settings and scan 

positions are preferable.  

The data used within this thesis is heterogenous concerning the resolution and scan 

positions. The 2014 data shows a vertical resolution of 0.001°, which is even out of 

the range defined by the manufacturer (see Chapter 2.3.2), up to 20 times higher than 

the horizontal resolution of 0.02° of 0.015°. Although not as high as in 2014, the two 

2017 scanning campaigns also show differences of 2.5 to 3 times of horizontal and 

vertical resolution. Only the data of SC2016 has an equal vertical and horizontal 

resolution of 0.01°. Detailed information on the data is shown in Appendix A. Already 

with the first data inspection, following data processing challenges arise: the stripe-

like structure of the 2014 data (see Figure 23) leads to concentration of the data in 
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vertical direction and comparatively large data gaps in horizontal direction resulting in 

challenges in data registration and limited scope for filtering and homogenization. The 

various scan positions of the different scanning campaigns are also a cause of varying 

point densities in registered point clouds. These issues already reflect that major 

impacts on point cloud processing are generated within the data acquisition process. 

The scanners’ generated default settings do not necessarily reflect the optimal 

scanning parameters for the research area – different concepts of optimization of 

scanning resolutions are for example discussed in LICHTI (2004), LICHTI AND JAMTHSO 

(2006) and PESCI ET AL (2011). 

6.2 Registration 

Registration uncertainty represents a major cause of uncertainties in following data 

processing steps and point cloud comparing (LAGUE ET AL 2013, MUKUPA ET AL 2017). 

Hence, high registration accuracy is desirable for further point cloud processing. 

Within this thesis, the registration process is separated in a point based coarse 

registration and fine algorithm based registration. For the fine registration, two 

approaches (ICP and MSA, see Chapter 3.3) are tested. 

For the coarse registration, two different methods are used. As the high reflective tie 

points are only installed during the SC2016, for the registration and co-registration of 

the 2014 data, the point pairs for coarse registration are manually picked. For the 

registration and co-registration of the other scanning campaigns, automated tie point 

registration implemented in RiSCAN PRO is applied for coarse registration. The 

results of the coarse registration are presented in Chapter 5.3.1. Strictly speaking, 

RMSD, the reference value for the 2014 data and standard deviation for the rest of 

the data can’t be compared directly. Still, the differences of the registration errors are 

up to one order of magnitude: while tie point registration shows sub-centimeter error 

values using 7 to 14 tie points, the point pair picking RMSD values are up to 0.04 m 

using with three points only a third or a quarter of the number of points. The co-

registration in Chapter 5.4 shows similar results. The lack of artificial structures 

complicates the manual identification of point pairs for registration. As natural rock 

surfaces do not show easily identifying straight structures, sharp edges or narrow 

planes, the extraction of distinct points in different point clouds, especially from 

different scanning perspectives, is difficult. Moreover, manual point pair picking is a 

highly time-consuming processing step. In comparison, artificial high reflective targets 

are clearly visible in the scans and are automatically detected and matched by the 

used software. Only a review of the detected point pairs is necessary. Considering 
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the error values and the work effort, it can be concluded that installing high reflective 

tie points and automatic tie point registration is the preferable method of coarse 

registration for the work within this thesis and can be recommended generally for 

scanning of natural surfaces. 

Chapter 5.3.2 focusses on testing of different fine registration methods. Within the 

thesis, two different applications of ICP are examined: MSA, which is implemented in 

RiSCAN PRO, uses the ICP algorithm on data of the point cloud extracted by the 

plane patch filter, which also takes surface normals into account. Besides the 

parameters for the plane patch filter, the search radius and the maximum tilt angle 

can be varied within this fine registration method. The fine registration algorithm in 

CloudCompare uses the original ICP (further referred to as ICP). The modifiable 

parameters include the number of points used for the calculation and the theoretical 

overlap of the to-be-registered point clouds. The differences of the two software 

approaches are elaborated in detail in Chapter 5.3.2. Listing the adjustable 

parameters already gives a hint that finding optimal settings is a complex process.  

Running the fine registration tests, it is tried to gain an overview of the outcome that 

results from varying different settings. Figure 25 and Figure 26 show an attempt of 

visualizing these results. Depending on the settings, the results range from sub-

centimeter registration error values up to order of 0.1 m. This variety reflects the 

strong impact of the registration setting selection. For RiSCAN PRO, interesting 

conclusions considering software evaluation can be drawn: while the software intents 

to gain better results by iteratively lowering the maximum tilt angle differences of the 

surface normals, a total exclusion of the tilt angle by setting the possible range to 180° 

leads to preferable results. Comparable registration errors are reached with more data 

points used for the registration process. The MSA registration approach is, referring 

to the performance, not optimized for fine registration of natural surfaces without plane 

areas. Assuming patterns within the plots and disregarding other settings, the 

registration error increases with more data included using MSA for most settings, 

whereas more data points for registration lead to smaller registration errors using ICP. 

Only with 180° maximum tilt angle large search radii, MSA shows similar patterns to 

ICP. It is assumed that with these settings, conditions of the original ICP are 

simulated. All over, as fine registration based on ICP which counts for both 

approaches is an iterative process, for an optimal output, a decent coarse registration 

is necessary, which is given for the 2016 data used for the registration test. 

Summarizing, both MSA and ICP approach lead to sufficient registration accuracies 

with registration errors <0.01 m for several settings, as shown in Figure 27.  
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For all the registration tests, it must be stressed that the registration error calculation 

only includes points that are used for the registration and not all the data points. 

Moreover, the distributions of points used for registration vary between the different 

methods. Therefore, comparing different approaches is challenging and additionally, 

drawing conclusions for the point position certainty is difficult: as mentioned by 

BARBARELLA ET AL (2017), the true position of the point is unknown, and the evaluation 

of uncertainties in registration is hence not trivial. LAGUE ET AL (2013) suggest 

therefore quality assessment using independent control points with a known position. 

For this approach, registration of the point cloud is not sufficient – the data must be 

georeferenced for this evaluation. 

For the registration of the scan positions of one scanning campaign and the co-

registration of the different scanning campaigns within this thesis, ICP implemented 

in CloudCompare with 25% overlap, a maximum of 5 million points and the default 

termination condition of a minimum RMS difference of 10-5 m between two iterations 

is used. With closer examination, there is possibly potential of further optimization of 

the settings, but the reached values serve the accuracy striven for this thesis. The 

decision for the approach is based on various factors. ICP leads to a sufficient 

accuracy. Further, ICP uses points all over the point clouds and not only polydata 

resulted from plane patch filtering. The plane patch filter results are concentrated on 

vegetation areas for the point cloud data used for this thesis and therefore not on the 

surface area of interest. Another advantage is the implementation of ICP in open 

source software. Moreover, the algorithm is, relating to efficienty, more adapted to 

inhomogenous structures. 

The registration results in a final RMSD of 0.056 m for the 2014 data, 0.008 m for 

2016, 0.011 m for 2017a and 0.009 m for 2017b. The co-registration of the different 

epochs, using 2016 as model data, show 0.020 m for the 2014 data and 0.008 m for 

the 2017a and 2017b data. As already mentioned, the registration errors are 

calculated from the data used for registration. It is difficult to put the values in 

perspective as data of comparable studies is often scanned from various distances 

and under different circumstances and information on registration quality is often not 

provided. Moreover, if registration errors are presented, registration settings are not 

revealed within the publications. Still, values from chosen studies are mentioned at 

this point. OPPIKOFER ET AL (2009) reach registration errors of 0.027 m for scanning 

of a rock slide from 300 m to 400 m distance, CORSINI ET AL (2013) present final mean 

registration errors of 0.03 m to 0.04 m for scanning a rock slide in the northern 

Apennines with a scanning distance of 1.2 km and exact known GNSS position of the 
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scanner, STUNDEN ET AL (2015) reach registration errors from 0.16 m to 0.022 m for 

large scale rock wall monitoring in a deglaciated valley in Switzerland.  

Putting the values reached within the point cloud processing into context, the 

registration of the 2016, 2017a and 2017b data leads comparatively to good results. 

The difference of the registration error to the 2014 data demonstrates the 

disadvantages of manual coarse registration. An approach for visual validation of the 

results is shown in Figure 28 for the registration and Figure 30 for the co-registration. 

The superimposed and color-coded registered point clouds in Figure 28 confirm by 

visual interpretation the registration error distribution: for the 2014 point cloud, the 

distinction of the different original point clouds is clearly noticeable, while the 

superimposed point clouds and the cross sections of the other years are blended and 

confirm the better registration quality. The same statements can be made for the co-

registration illustrated in Figure 30. 

6.3 Filtering 

Although the process of filtering is not directly addressed in the research questions in 

Chapter 1.2, it turned out to be an important step during data processing and is 

discussed following. For optimal data analyses, the raw point cloud should be filtered 

by cutting out extraneous points and to extract the surface of interest (ABELLÁN ET AL 

2014). Within this thesis, for removing the vegetation, a combination of an algorithm 

based on point cloud geometry (BRODU AND LAGUE 2012) and intensity-based filtering 

is used. For homogenization of the point cloud, the filtering process is finalized by 

statistical filtering.  

The filtering process starts with training the CANUPO classification algorithm. The 

balanced accuracy of 95.01% comes close to the results in the original study be 

BRODU AND LAGUE (2012), where a balanced accuracy values from 95.7% to 97.0% 

for different dimensions and scales is reached. Therefore, the reached accuracy in 

this thesis is proposed as sufficient. The parameters for the registration (dimensions 

and scale level) estimated by the algorithm are used, adaptions are not further tested. 

Like for the registration, for optimization, further evaluation can be useful. Applying 

the trained CANUPO classification leads to partially good removal of the vegetated 

areas: while most of the trees and branches are removed, scattered points of leave 

areas are still present and cleavage areas of the rock surface are removed. Possible 

explanations for the misclassification of the algorithm are confusing leaves with small 

plane rock areas and interpreting the geometry of cleavages as branches. Also, as 

already proposed in BRODU AND LAGUE (2012), the algorithm struggles with edge 
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regions of the point cloud. Filling the filtered point cloud up with intensity-based filtered 

points partially solves the problem of missing cleavage areas but also adds again 

more not surface related points. The following manual filtering is time consuming and 

error-prone. Especially registration inaccuracies of the 2014 data lead to difficulties in 

visual interpretation: dividing the data for manual filtering reveals the various point 

surface layers of the different scan positions and complicates the extraction of the 

vegetation of originally individual scans. The statistical filtering leads, as shown in 

Figure 34, to homogenous structure of the 2016, 2017a and 2017b point cloud with 

approximately same horizontal and vertical resolution and continuous point spacing. 

For the 2014 data, this is not reached, as the adjusting the data to the coarse vertical 

resolution would result in massive data loss. 

The process shows that filtering is a complex topic: besides different settings, also 

different filtering combinations of geometrical, intensity based and statistical filtering 

approaches can possibly lead to better results. Especially varying the order of different 

steps or repeating filters on different positions of the process could improve the 

automated approach and minimize the manual rework. Nevertheless, it can be 

concluded there is no standardized filtering approach and filtering must be adapted to 

the given circumstances. Moreover, filtering of the point cloud reveals the original 

incompleteness of the surface of interest: Figure 35 shows that the final surface model 

of the Amtmann is, for all scanning campaigns, not only incomplete due to missing 

scans from the western upslope area, but also the point cloud representing the 

surface of the scanned parts of the Amtmann is holey. As stressed by BRODU AND 

LAGUE (2012), this is a common issue when working with TLS data and a result of 

shadowing effects, missing data due to the position of the laser scanner and 

roughness characteristics of natural surfaces. Moreover, it is possible that suboptimal 

filtering increases the missing data within the filtering concept used in this thesis. For 

instance, not all rock surface data removed by the CANUPO algorithm is restored by 

the intensity-based filtering. Moreover, statistical filtering cleans the point cloud on the 

one hand, but removes points from point cloud borders and enlarges therefore data 

holes on the other hand. At this point of data processing it must be stressed that a 

comprehensive change detection for the research area on a sub-decimetric scale is 

not possible with the used data. 

6.4 Change detection 

After all the previous work, which can be referred to as data pre-processing, change 

detection represents the final data analysis. As this thesis aims analysis of small scale 



6. DISCUSSION 

 

111 

change detection in a sub-decimetric range, high and accurate data density is 

desirable. Therefore, data reduction like deriving grids or meshes from the point cloud 

is renounced and the point cloud data is used for change detection. Three different 

approaches of change detection using point cloud data are chosen. The most basic 

concept is C2C without local modelling: the nearest neighbor in the comparing point 

cloud, the so-called Hausdorff-distance (see Figure 16), is calculated. By deriving 

surface normals, the enhanced C2C with local modelling adds a topological 

dimension to the point cloud. For this thesis, C2C with quadric surface modelling is 

used. Distances are therefore calculated with regard to the estimated object surface. 

M3C2 improves the local surface modelling by including the variation of the surface 

and averaging the point positions. (GIRARDEAU-MONTAUT ET AL 2005, LAGUE ET AL 

2013, GIRARDEAU-MONTAUT 2017, CLOUDCOMPARE COMMUNITY 2018) 

Before going into detailed discussion, it is mentioned that no obvious changes of the 

Amtmann’s rock surface are detected by visual interpretation during the different 

scanning campaigns. Moreover, it is expected that the results improve with using the 

different approaches from C2C without local modelling to C2C with quadric modelling 

and M3C2.  

As the deficient registration and co-registration quality of the 2014 data is known at 

this point, drawing conclusions from comparing the 2014 and the 2017a data is 

difficult. The mean point cloud distances are between 0.13 m and 0.15 m for all three 

change detection approaches with a clear global pattern for the whole point cloud. 

The lowest change values are shown condensed in the center area which is used for 

coarse co-registration, and largest distances or not classified points for M3C2 in the 

lower part and at the borders of the point cloud. Despite to these overall effects, local 

differences of change can be recognized. Visual verification of chosen areas identified 

as change by the algorithms with differences in change magnitude to the surrounding 

areas shows that these are results of various point cloud hole areas between the 

different years and differences in point cloud densities. Furthermore, cross-sections 

show, that changes can also be traced back to registration inaccuracies. Comparing 

the different change detection methods, no explicit differences or qualities can be 

concluded for the 2014 to 2017a change detection. 

The change detection of the 2016 and 2017a data shows with means from 0.01 m to 

0.02 m values with one magnitude lower than the 2014-2016 change detection data. 

The global pattern is quite similar, with a clear shift of the derived distances to smaller 

values. This can be explained by better registration accuracy, both in registration of 

the single point cloud within one scanning campaign for all used data and the more 
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precise co-registration. The overall distribution of the different distance classes shows 

again that the concentration of low calculated distances corresponds with the location 

of reflective tie points. For this comparison, a clear reduction of overall distances from 

C2C without local modelling to C2C with quadric modelling and M3C2 becomes clear. 

To eliminate overall effects, again areas with local change of distances are closer 

examined. Besides point cloud holes, carelessly filtered vegetation is identified as 

another reason of falsely indicated changes. The chosen examples show that C2C 

without and with quadric modelling react in a similar way to point holes or vegetation, 

with less susceptibility of the C2C with quadric modelling approach. One of the 

examined small scale changes of 2016-2017a change detection shown in Figure 45 

cannot be clearly associated with data issues. The area, which is highlighted by all 

three change detection methods, but getting more prominent with M3C2, can’t be 

explained by data holes or clearly identifiable vegetation. Also examining the original 

unfiltered point cloud and adding the 2017b data shows local surface changes 

between the 2016 and 2017 scanning campaigns. For clear validation, it would be 

necessary to examine the area in the field.  

 

 

Figure 45: Small scale surface changes between 2016 and 2017 referring to the analyses in Figure 
37. A/C: different views of the point cloud section. B: cross section revealing the different 
surfaces 

 

Finally, it can be concluded that for the 2014 to 2016 change detection, data quality 

issues do not allow assure findings for surface changes. From 2016 to 2017a, surface 

changes, which are not related to the discussed issues, are detected, but data issues 

can’t be completely excluded. It is not clear that the surface change is based on rock 

fall and evaluation in the field is necessary. Also, comprehensive photo documentary 

is useful for evaluation. Moreover, it cannot be excluded that there are more areas of 
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surface change within the point cloud, as only chosen examples are closer examined. 

Regarding the method, true surface changes are difficult to detect due to large 

amounts of indicated changes which are based on data holes or filtering issues. For 

the used methods, a visual check is necessary. For further research, it can be tested 

if a combination of the methods (differences of M3C2 and C2C quadric) provides 

better outcomes. 

Further change detection of 2017a and 2017b serves as a general evaluation of the 

method, as the two compared epochs are scanned during one day, before and after 

applying the objects for surface manipulation. As already stressed in Chapter 5.6.2, 

the manipulated objects represent only 0.0002% of the whole point cloud and are 

therefore negligible for the overall interpretation. Mean distance values between 

0.01 m and 0.02 m and considering the distribution of the defined distance classes, 

the data shows similar results to the 2016-2017a change detection. This is also an 

indication of the stable registration outcome using the automated tie point registration 

and the ICP algorithm. The detailed examination includes the section of the installed 

objects. Five installed objects are clearly visible in all three change detection 

approaches, the two smallest hemispheres with a height up to 0.02 m are not visible. 

This reveals already first ideas of the detectable changes. 

The 2017a-2017b change detection is also statistically examined. From this, 

conclusions for the global change detection can be drawn. Plotting the distribution of 

the distances as histograms reveals the strong concentration of the distance values 

in small classes and therefore a strong right-skewness of the distribution. The amount 

of values in lower classes increases from C2C without local modelling to C2C with 

quadric modelling to M3C2 change detection. The drawn conclusion of smaller overall 

detected changes for the different approaches in this order is reinforced by the boxplot 

visualization and confirmed by the Wilkoxon rank test: using a significance of 0.01, 

the three data samples do not show the same distributions. M3C2 leads to the 

smallest detected changes, followed by C2C with quadric modelling, C2C without 

local modelling leads to the largest distances. M3C2 is therefore globally significantly 

the most precise of the tested algorithms for revealing stable surfaces of the data 

within this thesis. 

For evaluation of local effects and small scale change detection, the area of the 

manipulated surface is examined in detail. The different approaches are tested on the 

different point clouds of the data processing. The statistical analyses are only 

descriptive but also reveal valuable results. The following discussion only considers 

the results using the 0.01 m threshold value. For the areas of no change, referred to 
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as “rest”, M3C2 shows the least false positive classifications (indicated change 

although no change occurred) for the bare rock surface area with values of <=1% for 

all tested data. Enlarging the test area and including vegetation leads to increasing of 

the false-positive classified changes up to 31%. M3C2 and C2C with quadric 

modelling lead to more similar results, with the lowest values (5.8% - 8.4%) for two 

vegetation free but not statistically filtered data sets. The false-negative respectively 

true-positive classification must be interpreted carefully as some changes within the 

object area smaller than the threshold value: as the hemispheres decrease in height 

towards the borders, the simulated changes are, at some point, smaller than the 

defined threshold value. Nevertheless, relative interpretations comparing the different 

approaches are possible. As the objects are not covered by vegetation, the results of 

the two different test areas are similar. Also, the results concerning different data only 

varies marginally: C2C without local modelling and M3C2 lead to 80.2% to 81.6% 

true-positive classified values, C2C with local modelling shows lower reliability with 

69.4% to 69.8%. Summarizing, M3C2 leads to the best results for the combination of 

detecting small scale changes and revealing surfaces without change for this test 

areas. 

Using the results of the CANUPO classification leads to the overall smallest false-

positive classification values, but it must be considered that CANUPO also excludes 

surface points. The cleaned rock surface leads with 7.1% to the second smallest 

results for false-positive classification and shows small improvement considering the 

true-positive value comparing to CANUPO. Choosing one approach for the test area, 

applying the M3C2 on the vegetation-free, but not statistically filtered data provides 

the best all over outcome for detecting changes and identifying areas of no change. 

This raises the question of the necessity of statistical filtering – but the results only 

count for small point cloud areas, conclusions for using the whole point cloud can’t be 

drawn from this point and require further testing.  

6.5 Research questions 

To extract the essence of the discussed results, in the following concluding discussion 

chapter, it is tried to summarize findings with regard to the postulated research 

questions. 

RQ1 What point cloud registration methods provide the most 

accurate and efficient approach (regarding usability and 

processing) for the research area? 
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As discussed in Chapter 6.2, for the research area, the combination of automated tie 

point coarse registration using RiSCAN PRO and ICP-based fine registration 

implemented in CloudCompare yields the most preferable outcome of the tested 

approaches.  

It is stressed that for co-registration of different epochs, the assumption is taken that 

the installed tie points and, considering the fine registration, the whole rock structure 

are stable between the different scanning campaigns. Therefore, this registration 

approach can only be used for local small scale change detection. Movements of the 

whole structure can’t be detected as the points used for registration are in that case 

also exposed to the motion. For global change detection, tie points must be installed 

on stable locations around the Amtmann. 

RQ2 What method of surface change detection using TLS 

data serves the requirements of the research area best? 

While raster approaches are usable for plane areas, for change detection on 

structures like the Amtmann, 3D data is needed. After literature research it is 

presumed, that for small scale change detection, working with the original point cloud 

data leads to the best output. Therefore, three different change detection approaches 

using point clouds are tested. 

Already before the development of M3C2, ABELLÁN ET AL (2009) performed tests of 

different TLS change detection scenarios with the conclusion, that averaging the point 

positions including the nearest neighbors leads to more accurate results than working 

with the raw data. LAGUE ET AL (2013) implemented averaging of positions in the 

M3C2 algorithm and got promoted for small scale TLS change detection of complex 

surfaces (BANHARD AND CROSBY 2013, ABELLÁN 2016, MARX ET AL 2017). The 

research within this thesis can confirm that M3C2 provides, comparing to the other 

two evaluated approaches, the best outcomes concerning overall and local disclosure 

of stable areas and detection of small scale changes for the explored rock surface of 

the Amtmann.  

RQ 3 What magnitudes of change are detectable using the 

TLS under the given environmental conditions in the 

study area? 
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Studies focusing on small scale change detection in landslide monitoring conclude 

that 0.02 m to 0.07 m is the range of the minimal detectable change using M3C2 

(BARNHART AND CROSBY 2013, MARX ET AL 2017). For the study within this thesis, the 

minimum detectable changes can therefore be ranged in the lower region of this 

proposed range, as objects from 0.025 m are detectable within the M3C2 point 

distance calculation. The range accuracy of 0.015 m and the precision of 0.01 m of 

the scanner given by the manufacturer (see Chapter 2.3.2) are also lower than this 

threshold range. The findings are based on visual interpretation and therefore imply 

subjective influence, for more statistical based evaluation, the examination of the 

certainty level for each point provided in M3C2 is recommended (LAGUE ET AL 2013).  

In despite of the given results, the question can’t be comprehensively answered, as 

several issues arose during the research process: unsatisfying vegetation filtering 

leads to false-positive indications of change and point cloud holes. Shadowing effects 

and unfavourable scan positions may also provide false information on change or lead 

to areas of missing data. Separation between real surface changes and point cloud 

data and getting comprehensive data are possible topics for further research. 

RQ4 Which recommendations can be given for future 

scanning campaigns with regard to data analyses for the 

study site and comparable areas? 

The answers to this research question, which are summarized in the following bullet 

points, are not directly derived from the results but a personal evaluation of the all 

over data processing. The list does not claim to be exhaustive and is rather seen as 

subjective advice for further research on this topic, especially within the project on this 

research area. 

• Optimize the scan positions to be sure to cover the area of interest 

comprehensively. Also, positions are preferable where tilting the scanner is 

not required for the recording, as this leads to performace problems. 

Moreover, GNSS-measurement of the scan positions can further improve 

coarse registration. Also, keep the scan positions constant over different 

scanning campaigns. 

• If possible, install high reflective tie points for registration – it usually increases 

the registration accuracy and minimizes the work effort. For large scale 
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change detection, tie points on ensured stable positions outside of the object 

of interest are necessary. 

• Make sure to have cosistant and optimized settings (e.g. resolution) for all 

scans within one campaign and for following campaigns.  

• Add high resoslution images during the scanning process as it simplifies visual 

interpretation of the point cloud. 

• If possible, perform scans outside the vegetation period to reduce effects of 

vegetation like shadowing effects and following filtering issues. 
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7. Conclusion 

In the introduction of this thesis it is already accented that TLS provides rapid and 

highly accurate surface recording and has revolutionized 3D data acquisition over the 

last 20 years in various fields of applied science. The gaining popularity of the method 

is accompanied by a raising number of publications. The first conclusion that can be 

drawn is that the enormous amount of research using TLS results in challenges of 

gaining an overview of the current state of the art, as new publications are arising up 

every day. 

Thereby, also the amount of proposed data processing methods is extensive. 

Although many approaches are built on the same basic algorithms, there are a great 

variety and numerous different modifications of methods in registration, filtering and 

change detection. Hence, extracting the optimal combination of approaches and 

parameter settings is therefore difficult, especially considering individual requirements 

for a distinct research area. Moreover, not only the combination of methods, but also 

the order of processing steps results in different outputs and must therefore be 

considered. For an ensured choice of method, it is moreover necessary to perform 

and evaluate the point cloud processing iteratively over the various steps, which goes 

beyond the scope of this thesis. 

The main emphases of this thesis are on the registration of point clouds and change 

detection, which are the opposite ends of the processing chain – implying a major 

issue of this thesis: clearing and filtering of the point cloud, situated inbetween the two 

steps chosen for closer examination, turned out to be the crux of the matter of data 

processing with a great influence on the outcome of the change detection. Moreover, 

filtering reveals the incompleteness of point clouds making it impossible to offer 

satisfactory reponses to the original problem statement of a comprehensive detection 

of small scale rock falls. 

To improve the usability of the method for detecting small scale rock falls in the 

research area, optimizing the vegetation removal can lead to a major improvement in 
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change detection: falsely indicated changes can be minimized and therefore the 

extraction of real events simplified.  

Nevertheless, shadowing effects by vegetation and the fact that there are no optimal 

scan positions to get a whole 3D model of the Amtmann will continue to be an issue. 

Furthermore, this leads to incomplete point cloud surfaces and therefore makes the 

detection of all the appearing rock falls impossible using TLS. Despite, it does not 

mean that using TLS as a method for small scale rock fall detection on the Amtmann 

is worthless – though it can’t be used for comprehensive monitoring, with the use of 

TLS general dynamics can be identified and statements about the activity of small 

scale rock fall over time for the research area can be given.  
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8. Outlook 

Concluding the findings gained within this thesis, both a more detailed look on the 

applied methods as well as a broader methodological framework are approaches for 

further research in the topic of small scale rock fall detection. 

A lot of parameters influence the accuracy during the different steps of processing 

TLS data. These can be examined more in detail with a deeper look into the used 

algorithms combined with comprehensive statistical analyses of the different results. 

Adjustable parameters can be optimized, sound statistical threshold values for 

detectable change can be derived and therefore the output can possibly be improved. 

Further, additional impacts like environmental effects on the scanning and systematic 

obersevational errors, which are not directly addressed within this thesis, can be 

considered in more detail.  

Moreover, various approaches for the different processing steps have also the 

potential to optimize the point cloud processing. Although the output of the registration 

within this thesis is already satisfying, other concepts, e.g. implying geometry (HE ET 

AL 2017, TULADHAR ET AL 2017), could bypass the problems of coarse registration 

when installation of tie points is not possible. Numerous concepts of filtering and 

classifying are worth considering, like analyses of echoes and the returning 

waveforms and varying of footprint sizes (DANSON ET AL 2009, DI SALVO AND LO 

BRUTTO 2014), multispectral information, especially near infrared bands for extraction 

of vegetation (LAU ET AL 2015, EKHTARI ET AL 2017, LI AT AL 2018) or different 

geometric approaches (WILLIAMS ET AL 2018). Furthermore, for change detection, 

there are various approaches which could improve the output, e.g. modifications of 

the M3C2 (LEYLAND ET AL 2016, WILLIAMS ET AL 2018). 

Besides the classical TLS, there are also other approaches of 3D surface generation 

are available. Mobile laser scanners have the advantage of no need for a static 

position (LEYLAND ET AL 2016) and even more flexibility and possibilities for 

comprehensive scanning when combining the laser scanner with an UAV (RIEGL 
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2018). Aside from high-end laser scanning devices, also tests with cheaper 

alternatives like Microsoft’s Kinect lead to remarkable results for surface recording 

(LAHAMY ET AL 2016, HÄMMERLE ET AL 2014). Structure from motion – the use of 

images for 3D surface modelling – stands out with low acquisition costs, comparable 

results and more flexibility considering the use of UAVs for image acquisition (BEMIS 

ET AL 2014, SCAIONI ET AL 2015, SMITH ET AL 2015, ELTNER ET AL 2016, LONGCHAMP ET 

AL 2016, GUERIN ET AL 2017).  

Summarizing, there is broad methodical potential for detection of small scale rock 

falls. With optimizing the data acquisition and the processing in consideration of the 

discussed limitations, further deployment of TLS for small scale rock fall detection on 

the Amtmann is useful, but other approaches can also be considered. 
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Appendix 

Appendix A: Detailed presentation of the provided and collected scanning data of all scanning campaigns 

 

A B C

front view (A), top view (B) and left view (C) of the point cloud, 

colored using the true color channel (color from images).

Data: 1.6 GB

Measurements

vertical horizontal

Covered range 57.896 36.120 

Count 61 725 rows 1 807 columns

Given angular step width 0.001 0.02 

Derived angular step width 0.000983 0.02 

Total number of transmitted laser beams 111 537 075

Laser Pulse Repetition Rate
300 kHz (peak), effective measurement 

rate of 222 000 meas./s. 

Scanning time 7 min 35 s

Point cloud

Measurements 98 087 984

Echo distribution Targets per beam Measurements

1 66 493 741

2 23 449 191

3 6 801 964

4 1 342 308

5 445

6 35

Total targets (number of points) 139 170 282

Range (distance to scanner) 0.042 m to 533.399 m 

Derived range of beam diameter 15 mm to 64 mm

Amtmann, scanning campaign 2014, scan position 1

A B C

front view (A), top view (B) and left view (C) of the point cloud, 

colored using the true color channel (color from images).

Data: 681.6 MB 

Measurements

vertical horizontal

Covered range 41.589 14.340 

Count 44 363 rows 957 columns

Given angular step width 0.001 0.015 

Derived angular step width 0.000937 0.015 

Total number of transmitted laser beams 42 455 391

Laser Pulse Repetition Rate
300 kHz (peak), effective measurement 

rate of 222 000 meas./s. 

Scanning time 3 min 3 s

Point cloud

Measurements 36 804 459

Echo distribution Targets per beam Measurements

1 19 546 774

2 11 742 663

3 4 438 008

4 1 076 710

5 275

6 29

Total targets (number of points) 60 654 513

Range (distance to scanner) 0.042 m to 533.637 m 

Derived range of beam diameter 15 mm to 64 mm

Amtmann, scanning campaign 2014, scan position 2

A B C

front view (A), top view (B) and left view (C) of the point cloud, 

colored using the true color channel (color from images).

Data: 628.1 MB 

Measurements

vertical horizontal

Covered range 58.289 16,500 

Count 62 176 rows 826 columns

Given angular step width 0.001 0.02 

Derived angular step width 0.000937 0.02 

Total number of transmitted laser beams 51 357 376

Laser Pulse Repetition Rate
300 kHz (peak), effective measurement 

rate of 222 000 meas./s. 

Scanning time 2 min 47 s

Point cloud

Measurements 37 078 652

Echo distribution Targets per beam Measurements

1 23 121 795

2 9 569 281

3 3 434 064

4 953 257

5 227

6 28

Total targets (number of points) 56 376 880

Range (distance to scanner) 0.042 m to 533.235 m 

Derived range of beam diameter 15 mm to 64 mm

Amtmann, scanning campaign 2014, scan position 3
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front view (A), top view (B) and left view (C) of the point cloud, 

colored using the true color channel (color from images).

Data: 570.5 MB

Measurements

vertical horizontal

Covered range 56.401 68.35 

Count 5 823 rows 6 836 columns

Given angular step width 0.01 0.01 

Derived angular step width 0.00969 0.01 

Total number of transmitted laser beams 39 806 028

Laser Pulse Repetition Rate
300 kHz (peak), effective measurement 

rate of 222 000 meas./s. 

Scanning time 16 min 38 s

Point cloud

Measurements 31 458 885

Echo distribution Targets per beam Measurements

1 20 125 007

2 6 022 505

3 3 189 007

4 102

5 62

6 12

Total targets (number of points) 50 226 845

Range (distance to scanner) 0.247 m to 528.028 m 

Derived range of beam diameter 15 mm to 63 mm

Amtmann, scanning campaign 2016, scan position 1

A B C

A B C

front view (A), top view (B) and left view (C) of the point cloud, 

colored using the true color channel (color from images).

Data: 314.4 MB 

Measurements

vertical horizontal

Covered range 48.757 14.340 

Count 5 034 rows 957 columns

Given angular step width 0.01 0.01 

Derived angular step width 0.00969 0.01 

Total number of transmitted laser beams 20 785 386

Laser Pulse Repetition Rate
300 kHz (peak), effective measurement 

rate of 222 000 meas./s. 

Scanning time 9 min 52 s

Point cloud

Measurements 15 642 501

Echo distribution Targets per beam Measurements

1 7 558 686

2 4 668 200

3 2 450 953

4 964 662

5 -
6 -

Total targets (number of points) 28 106 593

Range (distance to scanner) 0.248 m to 526 603 m 

Derived range of beam diameter 15 mm to 63 mm

Amtmann, scanning campaign 2016, scan position 2

A B C

front view (A), top view (B) and left view (C) of the point cloud, 

colored using the true color channel (color from images).

Data: 244 MB 

Measurements

vertical horizontal

Covered range 38 886 35.170 

Count 4 015 rows 3 518 columns

Given angular step width 0.01 0.01 

Derived angular step width 0.00969 0.01 

Total number of transmitted laser beams 51 357 376

Laser Pulse Repetition Rate
300 kHz (peak), effective measurement 

rate of 222 000 meas./s. 

Scanning time 8 min 12 s

Point cloud

Measurements 12 387 262

Echo distribution Targets per beam Measurements

1 6 028 232

2 3 676 803

3 1 867 886

4 814 341

5 -

6 -

Total targets (number of points) 22 242 860

Range (distance to scanner) 0.373 m to 524.584 m 

Derived range of beam diameter 15 mm to 63 mm

Amtmann, scanning campaign 2016, scan position 3
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A B C

front view (A), top view (B) and left view (C) of the point cloud, 

colored using the reflectance as intensity.

Data:  379.1 MB

Measurements

vertical horizontal

Covered range 42.612 25.55 

Count 10 490 rows 2 556 columns

Given angular step width 0.004 0.01 

Derived angular step width 0.00406 0.01 

Total number of transmitted laser beams 26 812 440

Laser Pulse Repetition Rate
300 kHz (peak), effective measurement 

rate of 222 000 meas./s. 

Scanning time 4 min 31 s

Point cloud

Measurements 18 633 719

Echo distribution Targets per beam Measurements

1 10 296 336

2 4 377 271

3 2 857 216

4 1 102 896

5 -

6 -

Total targets (number of points) 32 034 110

Range (distance to scanner) 0.234 m to 358.98 m 

Derived range of beam diameter 15 mm to 43 mm

Amtmann, scanning campaign 2017a, scan position 1

A B C

front view (A), top view (B) and left view (C) of the point cloud, 

colored using the reflectance as intensity.

Data:  648.2 MB

Measurements

vertical horizontal

Covered range 50.934 40.15 

Count 11 643 rows 4 016 columns

Given angular step width 0.004 0.01 

Derived angular step width 0.00436 0.01 

Total number of transmitted laser beams 46 758 288

Laser Pulse Repetition Rate
300 kHz (peak), effective measurement 

rate of 222 000 meas./s. 

Scanning time 7 min 33 s

Point cloud

Measurements 33 764 774

Echo distribution Targets per beam Measurements

1 19 026 148

2 8 469 968

3 4 469 390

4 1 799 268

5 -

6 -

Total targets (number of points) 56 571 326

Range (distance to scanner) 0.235 m to 499.943 m 

Derived range of beam diameter 15 mm to 60 mm

Amtmann, scanning campaign 2017a, scan position 2

A B C

front view (A), top view (B) and left view (C) of the point cloud, 

colored using the reflectance as intensity.

Data:  400 MB

Measurements

vertical horizontal

Covered range 43.274 23.56 

Count 10 653 rows 4 016 columns

Given angular step width 0.004 0.01 

Derived angular step width 0.00406 0.01 

Total number of transmitted laser beams 25 109 121

Laser Pulse Repetition Rate
300 kHz (peak), effective measurement 

rate of 222 000 meas./s. 

Scanning time 4 min 10 s

Point cloud

Measurements 20 529 474

Echo distribution Targets per beam Measurements

1 10 621 105

2 5 316 880

3 3 015 758

4 1 575 731

5 -

6 -

Total targets (number of points) 36 605 063

Range (distance to scanner) 0.235 m to 442.172 m 

Derived range of beam diameter 15 mm to 53 mm

Amtmann, scanning campaign 2017a, scan position 3
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A B C

front view (A), top view (B) and left view (C) of the point cloud, 

colored using the reflectance as intensity.

Data:  722.2 MB

Measurements

vertical horizontal

Covered range 46.155 41.45 

Count 12 309 rows 4 146 columns

Given angular step width 0.004 0.01 

Derived angular step width 0.00375 0.01 

Total number of transmitted laser beams 51 033 114

Laser Pulse Repetition Rate
300 kHz (peak), effective measurement 

rate of 222 000 meas./s. 

Scanning time 7 min 30 s

Point cloud

Measurements 38 590 617

Echo distribution Targets per beam Measurements

1 22 996 345

2 8 610 862

3 4 738 819

4 2 244 591

5 -

6 -

Total targets (number of points) 63 412 890

Range (distance to scanner) 0.235 m to 522.485 m 

Derived range of beam diameter 15 mm to 63 mm

Amtmann, scanning campaign 2017b, scan position 1

A B C

front view (A), top view (B) and left view (C) of the point cloud, 

colored using the reflectance as intensity.

Data:  485.9 MB

Measurements

vertical horizontal

Covered range 40.769 24.15 

Count 13 047 rows 2 416 columns

Given angular step width 0.003 0.01 

Derived angular step width 0.00313 0.01 

Total number of transmitted laser beams 31 521 552

Laser Pulse Repetition Rate
300 kHz (peak), effective measurement 

rate of 222 000 meas./s. 

Scanning time 4 min 13 s

Point cloud

Measurements 25 949 575

Echo distribution Targets per beam Measurements

1 13 779 268

2 7 259 220

3 3 539 004

4 1 372 083

5 -

6 -

Total targets (number of points) 44 403 052

Range (distance to scanner) 0.24 m to 501.206 m 

Derived range of beam diameter 15 mm to 60 mm

Amtmann, scanning campaign 2017b, scan position 2
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Appendix B: Detailed results of the MSA registration test for the 2014, 2017a and 2017b data 

Epoch Input Data 

Parameters Statistics 

Histogram residues (see 
Appendix D) Search 

radius [m] 

Maximum 
tilt angle 
[degree] 

Error: 
standard 
deviation 

[m] 

Number of 
observations used for 

calculation 

Tie points Polydata 

2014 
 (3 SP) 

Polydata 
(PPF 1) 

0.5 15 0.0842 0 2189 2014-PPF1-01 

0.2 15 0.0318 0 756 2014-PPF1-02 

0.1 15 0.024 0 230 2014-PPF1-03 

0.05 15 0.0215 0 63 2014-PPF1-04 

0.5 10 0.0703 0 1371 2014-PPF1-05 

0.2 10 0.0279 0 467 2014-PPF1-06 

0.1 10 0.0228 0 145 2014-PPF1-07 

0.05 10 0.0271 0 44 2014-PPF1-08 

0.5 5 0.0618 0 459 2014-PPF1-09 

0.2 5 0.0228 0 160 2014-PPF1-10 

0.1 5 0.0284 0 47 2014-PPF1-11 

0.05 5 0.0138 0 20 2014-PPF1-12 

Polydata 
(PPF 2) 

0.5 15 0.1287 0 28870 2014-PPF2-01 

0.2 15 0.0362 0 7753 2014-PPF2-02 

0.1 15 0.0213 0 2874 2014-PPF2-03 

0.05 15 0.0143 0 830 2014-PPF2-04 

0.5 10 0.1344 0 17927 2014-PPF2-05 

0.2 10 0.0348 0 4499 2014-PPF2-06 

0.1 10 0.0199 0 1680 2014-PPF2-07 

0.05 10 0.0131 0 508 2014-PPF2-08 

0.5 5 0.1327 0 5653 2014-PPF2-09 

0.2 5 0.0332 0 1344 2014-PPF2-10 

0.1 5 0.0173 0 507 2014-PPF2-11 

0.05 5 0.0131 0 166 2014-PPF2-12 

Polydata 
(PPF 3) 

0.5 15 0.0752 0 427272 2014-PPF3-01 

0.2 15 0.0505 0 211115 2014-PPF3-02 

0.1 15 0.0304 0 74038 2014-PPF3-03 

0.05 15 0.0163 0 18061 2014-PPF3-04 

0.02 15 0.0079 0 1908 2014-PPF3-05 

0.5 10 0.0929 0 358859 2014-PPF3-06 

0.2 10 0.0576 0 141804 2014-PPF3-07 

0.1 10 0.0314 0 41254 2014-PPF3-08 

0.05 10 0.0161 0 9362 2014-PPF3-09 

0.02 10 0.0079 0 1048 2014-PPF3-10 

0.5 5 0.132 0 205415 2014-PPF3-11 

0.2 5 0.0661 0 50113 2014-PPF3-12 

0.1 5 0.0322 0 11568 2014-PPF3-13 

0.05 5 0.0159 0 2468 2014-PPF3-14 

0.02 5 0.0081 0 297 2014-PPF3-15 

Polydata 
(PPF 4) 

0.5 15 0.0568 0 2263079 2014-PPF4-01 

0.2 15 0.0414 0 1238365 2014-PPF4-02 

0.1 15 0.0288 0 552414 2014-PPF4-03 

0.05 15 0.0184 0 168900 2014-PPF4-04 

0.02 15 0.0084 0 17544 2014-PPF4-05 

0.5 10 0.0646 0 2101334 2014-PPF4-06 

0.2 10 0.0438 0 1110277 2014-PPF4-07 

0.1 10 0.0298 0 480983 2014-PPF4-08 

0.05 10 0.0187 0 139558 2014-PPF4-09 

0.02 10 0.0084 0 17890 2014-PPF4-10 

0.5 5 0.0961 0 1608215 2014-PPF4-11 

0.2 5 0.0618 0 628033 2014-PPF4-12 

0.1 5 0.0377 0 182912 2014-PPF4-13 

0.05 5 0.0207 0 35351 2014-PPF4-14 

0.02 5 0.0085 0 2768 2014-PPF4-15 
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Epoch Input Data 

Parameters Statistics 

Histogram residues (see 
Appendix D) Search 

radius [m] 

Maximum 
tilt angle 
[degree] 

Error: 
standard 
deviation 

[m] 

Number of 
observations used for 

calculation 

Tie points Polydata 

2017a  
(3 SP) 

Tie points 
no changes with 

changing of settings 
0.0039 22 0 2017a-TP 

Tie points & 
Polydata 
(PPF 1) 

0.5 15 0.0355 23 3908 2017a-PPF1-01 

0.2 15 0.0191 23 1588 2017a-PPF1-02 

0.1 15 0.0155 23 570 2017a-PPF1-03 

0.05 15 0.0103 23 168 2017a-PPF1-04 

0.5 10 0.0306 23 2322 2017a-PPF1-05 

0.2 10 0.0163 23 972 2017a-PPF1-06 

0.1 10 0.0134 23 379 2017a-PPF1-07 

0.05 10 0.0091 23 109 2017a-PPF1-08 

0.5 5 0.028 23 795 2017a-PPF1-09 

0.2 5 0.0143 23 331 2017a-PPF1-10 

0.1 5 0.095 23 126 2017a-PPF1-11 

0.05 5 0.0058 23 40 2017a-PPF1-12 

Tie points & 
Polydata 
(PPF 2) 

0.5 15 0.0873 23 38206 2017a-PPF2-01 

0.2 15 0.0207 23 14188 2017a-PPF2-02 

0.1 15 0.0144 23 6039 2017a-PPF2-03 

0.05 15 0.0108 23 1987 2017a-PPF2-04 

0.5 10 0.0867 23 22785 2017a-PPF2-05 

0.2 10 0.0195 23 8129 2017a-PPF2-06 

0.1 10 0.0133 23 3538 2017a-PPF2-07 

0.05 10 0.0102 23 1231 2017a-PPF2-08 

0.5 5 0.0845 23 7509 2017a-PPF2-09 

0.2 5 0.0176 23 2580 2017a-PPF2-10 

0.1 5 0.0121 23 1167 2017a-PPF2-11 

0.05 5 0.0092 23 445 2017a-PPF2-12 

Tie points & 
Polydata 
(PPF 3) 

0.5 15 0.095 23 421956 2017a-PPF3-01 

0.2 15 0.0456 23 151690 2017a-PPF3-02 

0.1 15 0.0203 23 52344 2017a-PPF3-03 

0.05 15 0.0114 23 16067 2017a-PPF3-04 

0.02 15 0.0064 23 2479 2017a-PPF3-05 

0.5 10 0.1175 23 301896 2017a-PPF3-06 

0.2 10 0.0459 23 81857 2017a-PPF3-07 

0.1 10 0.0193 23 26751 2017a-PPF3-08 

0.05 10 0.0108 23 8361 2017a-PPF3-09 

0.02 10 0.006 23 1364 2017a-PPF3-10 

0.5 5 0.1426 23 122372 2017a-PPF3-11 

0.2 5 0.0445 23 23748 2017a-PPF3-12 

0.1 5 0.0178 23 7631 2017a-PPF3-13 

0.05 5 0.0101 23 2496 2017a-PPF3-14 

0.02 5 0.0061 23 459 2017a-PPF3-15 

Tiepoints & 
Polydata 
(PPF 4) 

0.5 15 0.0603 23 2203402 2017a-PPF4-01 

0.2 15 0.0447 23 1210324 2017a-PPF4-02 

0.1 15 0.0227 23 512814 2017a-PPF4-03 

0.05 15 0.01 23 188933 2017a-PPF4-04 

0.02 15 0.0045 23 40490 2017a-PPF4-05 

0.5 10 0.0864 23 1871435 2017a-PPF4-06 

0.2 10 0.0489 23 774813 2017a-PPF4-07 

0.1 10 0.022 23 283050 2017a-PPF4-08 

0.05 10 0.0093 23 99149 2017a-PPF4-09 

0.02 10 0.0042 8 21603 2017a-PPF4-10 

0.5 5 0.1296 23 1117371 2017a-PPF4-11 

0.2 5 0.0503 23 278568 2017a-PPF4-12 

0.1 5 0.0207 23 85846 2017a-PPF4-13 

0.05 5 0.0086 23 28756 2017a-PPF4-14 

0.02 5 0.0038 6 6538 2017a-PPF4-15 
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Epoch Input Data 

Parameters Statistics 

Histogram residues (see 
Appendix D) Search 

radius [m] 

Maximum 
tilt angle 
[degree] 

Error: 
standard 
deviation 

[m] 

Number of 
observations used for 

calculation 

Tie points Polydata 

2017b  
(2 SP) 

Tie points 
no changes with changing of 

settings 0.0046 12 0 2017b-TP 

Tie points & 
Polydata 
(PPF 1) 

0.5 15 0.0349 12 1773 2017b-PPF1-01 

0.2 15 0.0224 12 835 2017b-PPF1-02 

0.1 15 0.018 12 320 2017b-PPF1-03 

0.05 15 0.0119 12 94 2017b-PPF1-04 

0.5 10 0.0304 12 1156 2017b-PPF1-05 

0.2 10 0.0196 12 537 2017b-PPF1-06 

0.1 10 0.0148 12 211 2017b-PPF1-07 

0.05 10 0.0111 12 71 2017b-PPF1-08 

0.5 5 0.026 12 388 2017b-PPF1-09 

0.2 5 0.0186 12 200 2017b-PPF1-10 

0.1 5 0.0114 12 77 2017b-PPF1-11 

0.05 5 0.0095 12 26 2017b-PPF1-12 

Tie points & 
Polydata 
(PPF 2) 

0.5 15 0.0835 12 15666 2017b-PPF2-01 

0.2 15 0.0222 12 6441 2017b-PPF2-02 

0.1 15 0.0159 12 2848 2017b-PPF2-03 

0.05 15 0.0114 12 891 2017b-PPF2-04 

0.5 10 0.084 12 9751 2017b-PPF2-05 

0.2 10 0.0206 12 3838 2017b-PPF2-06 

0.1 10 0.0143 12 1694 2017b-PPF2-07 

0.05 10 0.0111 12 568 2017b-PPF2-08 

0.5 5 0.0812 12 3360 2017b-PPF2-09 

0.2 5 0.0191 12 1261 2017b-PPF2-10 

0.1 5 0.0133 12 578 2017b-PPF2-11 

0.05 5 0.0102 12 217 2017b-PPF2-12 

Tie points & 
Polydata 
(PPF 3)  

0.5 15 0.0896 12 170527 2017b-PPF3-01 

0.2 15 0.0453 12 68266 2017b-PPF3-02 

0.1 15 0.0212 12 25476 2017b-PPF3-03 

0.05 15 0.0122 12 8082 2017b-PPF3-04 

0.02 15 0.0069 12 1226 2017b-PPF3-05 

0.5 10 0.1129 12 125308 2017b-PPF3-06 

0.2 10 0.0466 12 38303 2017b-PPF3-07 

0.1 10 0.0206 12 13206 2017b-PPF3-08 

0.05 10 0.0118 12 4247 2017b-PPF3-09 

0.02 10 0.0071 12 649 2017b-PPF3-10 

0.5 5 0.1389 12 53848 2017b-PPF3-11 

0.2 5 0.0467 12 11673 2017b-PPF3-12 

0.1 5 0.0195 12 3821 2017b-PPF3-13 

0.05 5 0.0112 12 1236 2017b-PPF3-14 

0.02 5 0.0075 12 203 2017b-PPF3-15 

Tie points & 
Polydata 
(PPF 4) 

0.5 15 0.0584 12 839573 2017b-PPF4-01 

0.2 15 0.043 12 485235 2017b-PPF4-02 

0.1 15 0.0224 12 223785 2017b-PPF4-03 

0.05 15 0.01 12 89927 2017b-PPF4-04 

0.02 15 0.0043 0 21319 2017b-PPF4-05 

0.5 10 0.084 12 723637 2017b-PPF4-06 

0.2 10 0.0472 12 322217 2017b-PPF4-07 

0.1 10 0.0218 12 129734 2017b-PPF4-08 

0.05 10 0.0093 12 49190 2017b-PPF4-09 

0.02 10 0.004 0 11681 2017b-PPF4-10 

0.5 5 0.125 12 442276 2017b-PPF4-11 

0.2 5 0.0489 12 124434 2017b-PPF4-12 

0.1 5 0.0205 12 42361 2017b-PPF4-13 

0.05 5 0.0086 12 15092 2017b-PPF4-14 

0.02 5 0.0037 0 3586 2017b-PPF4-15 
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Appendix C: Detailed results of the comparison of the MSA registration test and the ICP registration test for 2016 
data (SP01 as model point cloud, SP02 as data point cloud) 

Input Data: 
SP01 

(6,002,675 
points) and 

SP02 
(11,765,226 
points) 2016 

Parameters Statistics 

Computational time 
Histogram residues 
(see APPENDIX D) 

Search 
radius 

[m] 

Max. Tilt 
angle 

[degree] 

Error: 
standard 
deviation 

[m] 

Number of 
observations used for 

calculation 

Tie points Polydata 

Tie Points   0.0088 14 0 < 1 min - 

Tie points & 
Polydata 
(PPF 3) 

10 180 0.0112 14 259613 19 min 52 s C2016-PPF3-17 

5 90 0.0248 14 259515 6 min 8 s C2016-PPF3-16 

3 45 0.0506 14 252609 2 min C2016-PPF3-18 

0.5 15 0.0894 14 130923 < 1 min C2016-PPF3-01 

0.2 15 0.0399 14 51298 < 1 min C2016-PPF3-02 

0.1 15 0.0171 14 20419 < 1 min C2016-PPF3-03 

0.05 15 0.0101 14 7092 < 1 min C2016-PPF3-04 

0.02 15 0.0061 11 1117 < 1 min C2016-PPF3-05 

0.5 10 0.1115 14 94874 < 1 min C2016-PPF3-06 

0.2 10 0.0399 14 28913 < 1 min C2016-PPF3-07 

0.1 10 0.0162 14 10921 < 1 min C2016-PPF3-08 

0.05 10 0.0093 14 3816 < 1 min C2016-PPF3-09 

0.02 10 0.0058 11 606 < 1 min C2016-PPF3-10 

0.5 5 0.1319 14 39804 < 1 min C2016-PPF3-11 

0.2 5 0.039 14 8838 < 1 min C2016-PPF3-12 

0.1 5 0.015 14 3196 < 1 min C2016-PPF3-13 

0.05 5 0.0085 14 1144 < 1 min C2016-PPF3-14 

0.02 5 0.0054 11 215 < 1 min C2016-PPF3-15 

Tiepoints & 
Polydata 
(PPF 4) 

10 180 0.0066 14 1154878 6 h 3 min 51 s C2016-PPF4-17 

0.5 180 0.012 14 1004421 2 min 3 s C2016-PPF4-19 

0.2 180 0.0108 14 922995 1 min 11 s C2016-PPF4-20 

0.1 180 0.0109 14 814835 < 1 min C2016-PPF4-21 

0.05 180 0.009 14 581305 < 1 min C2016-PPF4-22 

0.02 180 0.0055 14 190758 < 1 min C2016-PPF4-23 

5 90 0.0149 14 1148333 1 h 44 min 52 s C2016-PPF4-16 

3 45 0.0322 14 1123344 36 min 37 s C2016-PPF4-18 

0.5 15 0.0538 14 744164 1 min 48 s C2016-PPF4-01 

0.2 15 0.0396 14 435265 < 1 min C2016-PPF4-02 

0.1 15 0.0193 14 208080 < 1 min C2016-PPF4-03 

0.05 15 0.0085 14 89534 < 1 min C2016-PPF4-04 

0.02 15 0.004 10 23165 < 1 min C2016-PPF4-05 

0.5 10 0.079 14 645935 < 1 min C2016-PPF4-06 

0.2 10 0.0433 14 291950 < 1 min C2016-PPF4-07 

0.1 10 0.0189 14 121730 < 1 min C2016-PPF4-08 

0.05 10 0.008 14 48697 < 1 min C2016-PPF4-09 

0.02 10 0.0038 9 12214 < 1 min C2016-PPF4-10 

0.5 5 0.1188 14 402138 1 min 43 s C2016-PPF4-11 

0.2 5 0.0446 14 115532 < 1 min C2016-PPF4-12 

0.1 5 0.0177 14 40140 < 1 min C2016-PPF4-13 

0.05 5 0.0074 14 14603 < 1 min C2016-PPF4-14 

0.02 5 0.0035 9 3620 < 1 min C2016-PPF4-15 
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Input Data: 
SP01 

(314,536 
points) and 

SP02 
(385,323 

points) 2016 
selected 

Parameters Statistics 

Computational time 
Histogram residues 
(see APPENDIX D) 

Search 
radius 

[m] 

Max. Tilt 
angle 

[degree] 

Error: 
standard 
deviation 

[m] 

Number of 
observations used for 

calculation 

Tie points Polydata 

Tie Points - 

Tie points & 
Polydata 
(PPF 3) 

10 180 0.0101 0 40896 < 1 min S2016-PPF3-17 

5 90 0.0126 0 40699 < 1 min S2016-PPF3-16 

3 45 0.0209 0 40859 < 1 min S2016-PPF3-18 

0.5 15 0.0967 0 26196 < 1 min S2016-PPF3-01 

0.2 15 0.0385 0 9743 < 1 min S2016-PPF3-02 

0.1 15 0.0162 0 3835 < 1 min S2016-PPF3-03 

0.05 15 0.0088 0 1318 < 1 min S2016-PPF3-04 

0.02 15 0.0061 0 199 < 1 min S2016-PPF3-05 

0.5 10 0.1165 0 18538 < 1 min S2016-PPF3-06 

0.2 10 0.0388 0 5343 < 1 min S2016-PPF3-07 

0.1 10 0.0167 0 1926 < 1 min S2016-PPF3-08 

0.05 10 0.0086 0 646 < 1 min S2016-PPF3-09 

0.02 10 0.0058 0 104 < 1 min S2016-PPF3-10 

0.5 5 0.1308 0 7318 < 1 min S2016-PPF3-11 

0.2 5 0.0382 0 1625 < 1 min S2016-PPF3-12 

0.1 5 0.0161 0 560 < 1 min S2016-PPF3-13 

0.05 5 0.0102 0 197 < 1 min S2016-PPF3-14 

0.02 5 0.0088 0 32 < 1 min S2016-PPF3-15 

Tiepoints & 
Polydata 
(PPF 4) 

10 180 0.0051 0 40916 < 1 min S2016-PPF4-17 

0.5 180 0.0115 0 39790 < 1 min S2016-PPF4-19 

0.2 180 0.0115 0 36397 < 1 min S2016-PPF4-20 

0.1 180 0.0108 0 29071 < 1 min S2016-PPF4-21 

0.05 180 0.0067 0 13408 < 1 min S2016-PPF4-22 

0.02 180 0.0017 0 1932 < 1 min S2016-PPF4-23 

5 90 0.0063 0 40428 1 min 7 s S2016-PPF4-16 

3 45 0.0108 0 41342 < 1 min S2016-PPF4-18 

0.5 15 0.0582 0 34921 < 1 min S2016-PPF4-01 

0.2 15 0.0383 0 20137 < 1 min S2016-PPF4-02 

0.1 15 0.0165 0 9854 < 1 min S2016-PPF4-03 

0.05 15 0.0072 0 4738 < 1 min S2016-PPF4-04 

0.02 15 0.0034 0 1213 < 1 min S2016-PPF4-05 

0.5 10 0.0853 0 30230 < 1 min S2016-PPF4-06 

0.2 10 0.0404 0 13333 < 1 min S2016-PPF4-07 

0.1 10 0.0158 0 5836 < 1 min S2016-PPF4-08 

0.05 10 0.0066 0 2634 < 1 min S2016-PPF4-09 

0.02 10 0.0034 0 629 < 1 min S2016-PPF4-10 

0.5 5 0.1179 0 17512 < 1 min S2016-PPF4-11 

0.2 5 0.0413 0 5247 < 1 min S2016-PPF4-12 

0.1 5 0.0153 0 1980 < 1 min S2016-PPF4-13 

0.05 5 0.0059 0 804 < 1 min S2016-PPF4-14 

0.02 5 0.0028 0 190 < 1 min S2016-PPF4-15 
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Input Data 
Random sample 

limit 

Number of 
points used for 
the calculation 

theoretical 
overlap 

Final RMS Computational Time 

SP01 (6,002,675 
points) and 

SP02 
(11,765,226 
points) 2016 

5*10^4 

50,000 100 0.553216 < 1 min 

50,000 75 0.134607 < 1 min 

50,000 50 0.0926671 < 1 min 

50,000 25 0.0566543 < 1 min 

5*10^5 

500,000 100 0.40637 < 1 min 

500,000 75 0.0531079 < 1 min 

500,000 50 0.0334238 < 1 min 

500,000 25 0.0203148 < 1 min 

5*10^6 

5,000,000 100 0.368419 17 min 1 s 

5,000,000 75 0.0268709 4 min 37 s 

5,000,000 50 0.0143889 2 min 44 s 

2,941,306 25 0.00794865 4 min 8 s 
 

SP01 (314,536 
points) and 

SP02 (385,323 
points) 2016 

selected 

5*10^4 

50,000 100 0.139379 < 1 min 

50,000 75 0.0346795 < 1 min 

50,000 50 0.0231414 < 1 min 

50,000 25 0.0146627 < 1 min 

5*10^5 

385,323 100 0.122446 < 1 min 

288,992 75 0.0183232 < 1 min 

192,611 50 0.0108526 < 1 min 

96,330 25 0.0065997 < 1 min 
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Appendix D: Histograms of the residues of the MSA registration tests 

     

2014-PPF1-01 2014-PPF1-02 2014-PPF1-03 2014-PPF1-04 2014-PPF1-05 

     

2014-PPF1-06 2014-PPF1-07 2014-PPF1-08 2014-PPF1-09 2014-PPF1-10 

     

2014-PPF1-11 2014-PPF1-12 2014-PPF2-01 2014-PPF2-02 2014-PPF2-03 

     

2014-PPF2-04 2014-PPF2-05 2014-PPF2-06 2014-PPF2-07 2014-PPF2-08 

     

2014-PPF2-09 2014-PPF2-10 2014-PPF2-11 2014-PPF2-12 2014-PPF3-01 

     

2014-PPF3-02 2014-PPF3-03 2014-PPF3-04 2014-PPF3-05 2014-PPF3-06 

     

2014-PPF3-07 2014-PPF3-08 2014-PPF3-09 2014-PPF3-10 2014-PPF3-11 

     

2014-PPF3-12 2014-PPF3-13 2014-PPF3-14 2014-PPF3-15 2014-PPF4-01 

     

2014-PPF4-02 2014-PPF4-03 2014-PPF4-04 2014-PPF4-05 2014-PPF4-06 
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2014-PPF4-07 2014-PPF4-08 2014-PPF4-09 2014-PPF4-10 2014-PPF4-11 

    

 

2014-PPF4-12 2014-PPF4-13 2014-PPF4-14 2014-PPF4-15 
 

     
2016-TP 2016-PPF1-01 2016-PPF1-02 2016-PPF1-03 2016-PPF1-04 

     

2016-PPF1-05 2016-PPF1-06 2016-PPF1-07 2016-PPF1-08 2016-PPF1-09 

     

2016-PPF1-10 2016-PPF1-11 2016-PPF1-12 2016-PPF2-01 2016-PPF2-02 

     

2016-PPF2-03 2016-PPF2-04 2016-PPF2-05 2016-PPF2-06 2016-PPF2-07 

     

2016-PPF2-08 2016-PPF2-09 2016-PPF2-10 2016-PPF2-11 2016-PPF2-12 

     

2016-PPF3-01 2016-PPF3-02 2016-PPF3-03 2016-PPF3-04 2016-PPF3-05 

     

2016-PPF3-06 2016-PPF3-07 2016-PPF3-08 2016-PPF3-09 2016-PPF3-10 
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2016-PPF3-11 2016-PPF3-12 2016-PPF3-13 2016-PPF3-14 2016-PPF3-15 

     

2016-PPF4-01 2016-PPF4-02 2016-PPF4-03 2016-PPF4-04 2016-PPF4-05 

     

2016-PPF4-06 2016-PPF4-07 2016-PPF4-08 2016-PPF4-09 2016-PPF4-10 

     

2016-PPF4-11 2016-PPF4-12 2016-PPF4-13 2016-PPF4-14 2016-PPF4-15 

     
2017a-TP 2017a-PPF1-01 2017a-PPF1-02 2017a-PPF1-03 2017a-PPF1-04 

     

2017a-PPF1-05 2017a-PPF1-06 2017a-PPF1-07 2017a-PPF1-08 2017a-PPF1-09 

     

2017a-PPF1-10 2017a-PPF1-11 2017a-PPF1-12 2017a-PPF2-01 2017a-PPF2-02 

     

2017a-PPF2-03 2017a-PPF2-04 2017a-PPF2-05 2017a-PPF2-06 2017a-PPF2-07 

     

2017a-PPF2-08 2017a-PPF2-09 2017a-PPF2-10 2017a-PPF2-11 2017a-PPF2-12 
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2017a-PPF3-01 2017a-PPF3-02 2017a-PPF3-03 2017a-PPF3-04 2017a-PPF3-05 

     

2017a-PPF3-06 2017a-PPF3-07 2017a-PPF3-08 2017a-PPF3-09 2017a-PPF3-10 

     

2017a-PPF3-11 2017a-PPF3-12 2017a-PPF3-13 2017a-PPF3-14 2017a-PPF3-15 

     

2017a-PPF4-01 2017a-PPF4-02 2017a-PPF4-03 2017a-PPF4-04 2017a-PPF4-05 

     

2017a-PPF4-06 2017a-PPF4-07 2017a-PPF4-08 2017a-PPF4-09 2017a-PPF4-10 

     

2017a-PPF4-11 2017a-PPF4-12 2017a-PPF4-13 2017a-PPF4-14 2017a-PPF4-15 

     

2017b-TP 2017b-PPF1-01 2017b-PPF1-02 2017b-PPF1-03 2017b-PPF1-04 

     

2017b-PPF1-05 2017b-PPF1-06 2017b-PPF1-07 2017b-PPF1-08 2017b-PPF1-09 

     

2017b-PPF1-10 2017b-PPF1-11 2017b-PPF1-12 2017b-PPF2-01 2017b-PPF2-02 
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2017b-PPF2-03 2017b-PPF2-04 2017b-PPF2-05 2017b-PPF2-06 2017b-PPF2-07 

     

2017b-PPF2-08 2017b-PPF2-09 2017b-PPF2-10 2017b-PPF2-11 2017b-PPF2-12 

     

2017b-PPF3-01 2017b-PPF3-02 2017b-PPF3-03 2017b-PPF3-04 2017b-PPF3-05 

     

2017b-PPF3-06 2017b-PPF3-07 2017b-PPF3-08 2017b-PPF3-09 2017b-PPF3-10 

     

2017b-PPF3-11 2017b-PPF3-12 2017b-PPF3-13 2017b-PPF3-14 2017b-PPF3-15 

     

2017b-PPF4-01 2017b-PPF4-02 2017b-PPF4-03 2017b-PPF4-04 2017b-PPF4-05 

     

2017b-PPF4-06 2017b-PPF4-07 2017b-PPF4-08 2017b-PPF4-09 2017b-PPF4-10 

     

2017b-PPF4-11 2017b-PPF4-12 2017b-PPF4-13 2017b-PPF4-14 2017b-PPF4-15 

   

    

C2016-PPF3-01 C2016-PPF3-02 C2016-PPF3-03 C2016-PPF3-04 C2016-PPF3-05 
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C2016-PPF3-06 C2016-PPF3-07 C2016-PPF3-08 C2016-PPF3-09 C2016-PPF3-10 

     

C2016-PPF3-11 C2016-PPF3-12 C2016-PPF3-13 C2016-PPF3-14 C2016-PPF3-15 

     

C2016-PPF3-16 C2016-PPF3-17 C2016-PPF3-18 C2016-PPF4-01 C2016-PPF4-02 

     

C2016-PPF4-03 C2016-PPF4-04 C2016-PPF4-05 C2016-PPF4-06 C2016-PPF4-07 

     

C2016-PPF4-08 C2016-PPF4-09 C2016-PPF4-10 C2016-PPF4-11 C2016-PPF4-12 

     

C2016-PPF4-13 C2016-PPF4-14 C2016-PPF4-15 C2016-PPF4-16 C2016-PPF4-17 

     

C2016-PPF4-18 C2016-PPF4-19 C2016-PPF4-20 C2016-PPF4-21 C2016-PPF4-22 

     

C2016-PPF4-23 S2016-PPF3-01 S2016-PPF3-02 S2016-PPF3-03 S2016-PPF3-04 

     

S2016-PPF3-05 S2016-PPF3-06 S2016-PPF3-07 S2016-PPF3-08 S2016-PPF3-09 
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S2016-PPF3-10 S2016-PPF3-11 S2016-PPF3-12 S2016-PPF3-13 S2016-PPF3-14 

     

S2016-PPF3-15 S2016-PPF3-16 S2016-PPF3-17 S2016-PPF3-18 S2016-PPF4-01 

     

S2016-PPF4-02 S2016-PPF4-03 S2016-PPF4-04 S2016-PPF4-05 S2016-PPF4-06 

     

S2016-PPF4-07 S2016-PPF4-08 S2016-PPF4-09 S2016-PPF4-10 S2016-PPF4-11 

     

S2016-PPF4-12 S2016-PPF4-13 S2016-PPF4-14 S2016-PPF4-15 S2016-PPF4-16 

     

S2016-PPF4-17 S2016-PPF4-18 S2016-PPF4-19  S2016-PPF4-20  S2016-PPF4-21  

  

   

S2016-PPF4-22 S2016-PPF4-23    
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Appendix E: Detailed results of change detection C2C 

   

T1 
original 

T1 
class_rock 

T1 rock 
cleaned 

T1 filtering 
final 

T2 
original 

T2 
class_rock 

T2 rock 
cleaned 

T2 filtering 
final 

Total number of points 27281 27101 27133 8674 129409 106152 110810 42442 

number of 
points - object 

absolut 829 820 826 323 829 820 826 323 

% 3.0% 3.0% 3.0% 3.7% 0.6% 0.8% 0.7% 0.8% 

number of 
points - rest 

absolut 26452 26281 26307 8351 128580 105332 109984 42119 

% 97.0% 97.0% 97.0% 96.3% 99.4% 99.2% 99.3% 99.2% 

C
2
C

 n
o

 l
o

c
a
l 
m

o
d

e
ll
in

g
 

to
ta

l 

> 0.01 1931 1842 1831 1491 29794 15181 17642 13284 

% 7.1% 6.8% 6.7% 17.2% 23.0% 14.3% 15.9% 31.3% 

< 0.01 25350 25259 25302 7183 99615 90971 93168 29158 

% 92.9% 93.2% 93.3% 82.8% 77.0% 85.7% 84.1% 68.7% 

> 0.02 597 541 515 302 7934 2567 3186 2444 

% 2.2% 2.0% 1.9% 3.5% 6.1% 2.4% 2.9% 5.8% 

< 0.02 26684 26560 26618 8372 121475 103585 107624 39998 

% 97.8% 98.0% 98.1% 96.5% 93.9% 97.6% 97.1% 94.2% 

o
b

je
c
ts

 

> 0.01 667 658 664 263 667 658 664 263 

% 80.5% 80.2% 80.4% 81.4% 80.5% 80.2% 80.4% 81.4% 

< 0.01 162 162 162 60 162 162 162 60 

% 19.5% 19.8% 19.6% 18.6% 19.5% 19.8% 19.6% 18.6% 

> 0.02 377 372 374 146 377 372 374 146 

% 45.5% 45.4% 45.3% 45.2% 45.5% 45.4% 45.3% 45.2% 

< 0.02 452 448 452 177 452 448 452 177 

% 54.5% 54.6% 54.7% 54.8% 54.5% 54.6% 54.7% 54.8% 

re
s
t 

> 0.01 1264 1184 1167 1228 29127 14523 16978 13021 

% 4.8% 4.5% 4.4% 14.7% 22.7% 13.8% 15.4% 30.9% 

< 0.01 25188 25097 25140 7123 99453 90809 93006 29098 

% 95.2% 95.5% 95.6% 85.3% 77.3% 86.2% 84.6% 69.1% 

> 0.02 220 169 141 156 7557 2195 2812 2298 

% 0.8% 0.6% 0.5% 1.9% 5.9% 2.1% 2.6% 5.5% 

< 0.02 26232 26112 26166 8195 121023 103137 107172 39821 

% 99.2% 99.4% 99.5% 98.1% 94.1% 97.9% 97.4% 94.5% 

C
2
C

 l
o

c
a
l 
q

u
a

d
ri

c
 m

o
d

e
ll
in

g
 

to
ta

l 

> 0.01 1232 1151 1143 664 18080 8250 9829 6623 

% 4.5% 4.2% 4.2% 7.7% 14.0% 7.8% 8.9% 15.6% 

< 0.01 26049 25950 25990 8010 111329 97902 100981 35819 

% 95.5% 95.8% 95.8% 92.3% 86.0% 92.2% 91.1% 84.4% 

> 0.02 443 392 369 222 4775 1369 1758 1445 

% 1.6% 1.4% 1.4% 2.6% 3.7% 1.3% 1.6% 3.4% 

< 0.02 26838 26709 26764 8452 124634 104783 109052 40997 

% 98.4% 98.6% 98.6% 97.4% 96.3% 98.7% 98.4% 96.6% 

o
b

je
c
ts

 

> 0.01 579 569 576 253 579 569 576 253 

% 69.8% 69.4% 69.7% 78.3% 69.8% 69.4% 69.7% 78.3% 

< 0.01 250 251 250 70 250 251 250 70 

% 30.2% 30.6% 30.3% 21.7% 30.2% 30.6% 30.3% 21.7% 

> 0.02 301 296 298 140 301 296 298 140 

% 36.3% 36.1% 36.1% 43.3% 36.3% 36.1% 36.1% 43.3% 

< 0.02 528 524 528 183 528 524 528 183 

% 63.7% 63.9% 63.9% 56.7% 63.7% 63.9% 63.9% 56.7% 

re
s
t 

> 0.01 653 582 567 411 17501 7681 9253 6370 

% 2.5% 2.2% 2.2% 4.9% 13.6% 7.3% 8.4% 15.1% 

< 0.01 25799 25699 25740 7940 111079 97651 100731 35749 

% 97.5% 97.8% 97.8% 95.1% 86.4% 92.7% 91.6% 84.9% 

> 0.02 142 96 71 82 4474 1073 1460 1305 

% 0.5% 0.4% 0.3% 1.0% 3.5% 1.0% 1.3% 3.1% 

< 0.02 26310 26185 26236 8269 124106 104259 108524 40814 
 % 99.5% 99.6% 99.7% 99.0% 96.5% 99.0% 98.7% 96.9% 
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Appendix F: Detailed results of change detection M3C2 

 

 T1 
original 

T1 
class_rock 

T1 rock 
cleaned 

T1 
filtering 

final 

T2 
original 

T2 
class_rock 

T2 rock 
cleaned 

T2 
filtering 

final 

T
o

ta
l 

n
u

m
b

e
r 

o
f 

p
o

in
ts

 no distance 
calculated 

79 89 38 60 1893 584 660 519 

distance 
calculated 

27202 27012 27095 8625 127516 105568 110150 41923 

significance does 
not comply with 

class 
13289 13168 13226 6189 61004 48815 51810 27553 

significance does 
not comply with 

class 
13913 13844 13869 2436 66512 56753 58340 14370 

p
o

in
ts

 c
la

s
s
 o

b
je

c
ts

 no distance 
calculated 

2 1 0 0 1 0 0 0 

distance 
calculated 

904 893 905 346 904 895 905 343 

significance does 
not comply with 

class 
879 869 878 304 877 870 876 303 

significance does 
not comply with 

class 
25 24 27 42 27 25 29 40 

p
o

in
ts

 c
la

s
s
 r

e
s
t 

no distance 
calculated 

77 88 38 60 1892 584 660 519 

distance 
calculated 

26298 26119 26190 8279 126612 104673 109245 41580 

significance does 
not comply with 

class 
12410 12299 12348 5885 60127 47945 50934 27250 

significance does 
not comply with 

class 
13888 13820 13842 2394 66485 56728 58311 14330 

to
ta

l 
(c

la
s
s
if

ie
d

 p
o

in
ts

) > 0.01 990 877 933 469 17630 6752 8476 5936 

% 3.6% 3.2% 3.4% 5.4% 13.8% 6.4% 7.7% 14.2% 

< 0.01 26212 26135 26162 8156 109886 98816 101674 35987 

% 96.4% 96.8% 96.6% 94.6% 86.2% 93.6% 92.3% 85.8% 

> 0.02 564 509 527 239 10957 3476 4614 3161 

% 2.1% 1.9% 1.9% 2.8% 8.6% 3.3% 4.2% 7.5% 

< 0.02 26638 26503 26568 8386 116559 102092 105536 38762 

% 97.9% 98.1% 98.1% 97.2% 91.4% 96.7% 95.8% 92.5% 

o
b

je
c
ts

 (
c
la

s
s
if

ie
d

 

p
o

in
ts

) 

> 0.01 736 723 735 280 738 725 736 279 

% 81.4% 81.0% 81.2% 80.9% 81.6% 81.0% 81.3% 81.3% 

< 0.01 168 170 170 66 166 170 169 64 

% 18.6% 19.0% 18.8% 19.1% 18.4% 19.0% 18.7% 18.7% 

> 0.02 444 443 445 157 442 444 443 156 

% 49.1% 49.6% 49.2% 45.4% 48.9% 49.6% 49.0% 45.5% 

< 0.02 460 450 460 189 462 451 462 187 

% 50.9% 50.4% 50.8% 54.6% 51.1% 50.4% 51.0% 54.5% 

re
s
t 

(c
la

s
s
if

ie
d

 p
o

in
ts

) > 0.01 254 154 198 189 16892 6027 7740 5657 

% 1.0% 0.6% 0.8% 2.3% 13.3% 5.8% 7.1% 13.6% 

< 0.01 26044 25965 25992 8090 109720 98646 101505 35923 

% 99.0% 99.4% 99.2% 97.7% 86.7% 94.2% 92.9% 86.4% 

> 0.02 120 66 82 82 10515 3032 4171 3005 

% 0.5% 0.3% 0.3% 1.0% 8.3% 2.9% 3.8% 7.2% 

< 0.02 26178 26053 26108 8197 116097 101641 105074 38575 

% 99.5% 99.7% 99.7% 99.0% 91.7% 97.1% 96.2% 92.8% 

 


