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Abstract (English)

Microscopic active particles, including self-propelled cells and microorgan-
isms, artificial swimming colloids and nanomotors, have gained a lot of at-
tention due to their relevance in such important fields as biology, biomedicine,
nanoscience and nanotechnology. One important aspect in systems of mi-
croscopic active particles is to reach an e�ective external control of their
motion. Whereas artificial active particles can be designed to allow such
an external control, this feature is di�cult to realise for self-propelled cells
and microorganisms. By means of extensive computer simulations, we ex-
plore theoretically the possibility to control the main direction of motion
in a dispersion of generic microscopic active particles by adding to the car-
rier fluid a viscoelastic bath of ferromagnetic nanoparticles that are known
to self-assemble in chains under the influence of external magnetic fields,
creating an anisotropic environment with a preferred axis defined by the
field direction. We study the influence of the field-assembled structures of
nanoparticles on the motion of the active particles, characterising the con-
ditions that provide a higher control of the system. We show that an active
particle tends to move along the channels built by chains of ferroparticles
and that, depending on the size ration between active and magnetic parti-
cles, one can tune the transport e�ciency (the ratio of di�usion coe�cients
parallel and perpendicular to the magnetic field direction) by changing the
ferroparticle concentration.



Abstract (Deutsch)

Mikroskopische aktive Schwimmer, wie selbst-angetriebene Zellen und Mikro-

organismen oder kunstlich erzeugte schwimmende Kolloide und Nanomo-

toren, erfuhren in den letzten Jahren ein steigendes Interesse durch ihre

Relevanz in der Biologie, Biomedizin, Nanowissenschaft und Nanotechnolo-

gie. Ein häufiges Ziel bei der Erforschung aktiver Mikropartikel ist es, eine

hohe externe Kontrolle dieser Systeme zu erreichen. Kunstlich erzeugte

ak- tive Teilchen können so gebaut werden, dass dies leicht möglich ist, je-

doch tri�t dies nicht auf Zellen und Mikroorganismen zu. Durch Computer-

Simulationen legen wir theoretisch die Möglichkeit dar, die Bewegung eines

generischen aktiven Schwimmers durch Zugabe viskoelastischer ferromag-

netischer Nanoteilchen in die Trägerflüssigkeit, zu beeinflussen. Diese sind

dafür bekannt sich unter einem extern angelegten Magnetfeld zu Ketten

anzuordnen und somit eine anisotrope Struktur hervorzurufen. Wir unter-

suchen den Einfluss dieser Struktur auf die Bewegung eines aktiven Schwim-

mers und zeigen, dass dieser sich entlang der Ketten und somit entlang der

Richtung des angelegten Feldes bewegen. Abhängig von der Größe des ak-

tiven Teilchens, kann so der Transport durch Veränderung der ferromag-

netischen Teilchendichte optimiert werden.
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1 Introduction

In recent years, the interest to systems that are out of equilibrium has been
steadily growing. Those systems, re�ered to as active matter, are not only
of physical, but also biological nature. Both have been intensively studied
theoretically and experimentally in the past years. The term "active" de-
scribes the ability of certain particles or units, to convert energy from their
environment into motion, hence, kinetic energy. This property allows them
to exhibit properties not reachable by matter in equilibrium. Examples of
active matter include systems such as Brownian motors [36], macroscopic
animals like insects and even swarm of birds [22, 24], or artificially created
self-propelled particles[14, 33] with an example seen in figure 1 (a). The
study of systems like these arouses a great hope to discover new physics
and eventually new ways of creating devices and materials with applica-
tions in all fields of science. Another research topic gaining popularity in
the past years, is the behaviour of ferromagnetic nanoparticles and their
self-assembling property under external fields. They are by now commonly
known to cluster in di�erent shapes and structures and can, amongst other
applications, be used to obtain control over a liquid system[31] like, for in-
stance, a suspension of ferromagnetic particles in a solvent as seen in figure
1 (b) . Combining those two phenomena, active matter and self-assembly
in ferromagnetic fluids, we used extensive computer simulations to reveal
and present in this thesis, novel results if an active swimmer finds itself in
a bath of magnetic nanoparticles.

Firstly, the goal of this work is to give a general overview over these highly
interesting topics, active matter and magnetic nanoparticles. I start with
theoretical models for passive and active Brownian motion, covering dif-
ferent dynamic models, such as SET- and RH-model. A summary of run-
and-tumble dynamics is also given to show a contrast to active Brownian
motion. Further, di�usion coe�cient calculation and di�usion properties of
active matter in recent research are shortly presented. Dipolar interactions
and their impact on the behaviour of magnetic fluids are discussed, includ-
ing di�erent possible structures formed by the nanoparticles. The methods
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used to obtain our results, are explained to give a more detailed insight into
how to utilize computer simulations for finding new dynamical properties
of soft matter systems.

All of this, should leave the reader with a basic foundation of active matter,
the concept of self-propulsion and comprehension for the methods used.

(a) Janus-spheres

(b) Ferrofluid

Figure 1: (Close up image of artificially created janus spheres, widely
used to study self propulsion (a). The spheres are in the size scale
of µm. Picture (b) shows a ferromagnetic fluid under an external
magnetic field. The arising spikes form along the magnetic field lines
created by the magnet below the petri dish. Picture (b) by Ubaldo M
Córdova Figueroa Research Group.
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1.1 Properties of self-propelled particles

Self-propelled particles show major property di�erences to normal (passive)
Brownian particles, as they convert environmental energy to kinetic energy.
One of those "out-of-equilibrium-systems" properties, is the interaction rule
among particles. If we consider only collisions between self-propelled parti-
cles without their environment, momentum is not conserved among them.
Additionally, also because we are not in equilibrium, time reversal symme-
try is not there anymore.

Another interesting property is the space distribution in the presence of
an energy potential and the related cluster formation. With no present
forces, particles like gas molecules are uniformly distributed in space and
any concentration gradient would lead to a particle flux, which diminishes
the gradient itself, restoring homogenous density in the gas. This was in-
troduced in 1855 and is called Fick’s law,

J = ≠DÒc, (1)

where J is the flux, D is the di�usion coe�cient and c is the concentration.
This behaviour is not always shown in self-propelled particles, because self-
propulson alone, without forces between the particles, is su�cient for cluster
formation. The cluster formation increases with particle self-propelling ve-
locity and aspect ratio, the ratio of sizes of a geometric shape in di�erent
spatial directions [52, 48, 34, 41].

If there are external forces present, Brownian particles are not homoge-
neously distributed, as they are in a force free case. Macrosocopic quanti-
ties, such as particle density fl, rather follow the Boltzmann distribution,

fl(x) Ã e—U(x) ; — = 1
kBT

. (2)

Here, U(x) is the potential energy, kB the Boltzmann constant and the total
temperature T . Of course, fluctuations of those quantities occur. The den-
sity of self-propelled particles does not follow the Boltzmann-distribution[40].
As mentioned above, already without any external potentials, self-propelled
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particles tend to cluster and create non-uniform density profiles. The stronger
the applied forces are, the bigger the di�erence to the Boltzmann-distribution
gets[40]. I want to quote a simple example for this from "Dynamics of Self-
Propelled Particles: Di�usion, Motility-Sorting, and Rectification" by An-
drea Costanzo[7]: "Suppose to have a single self-propelled particle confined
in one dimension. The particle moves straight and changes its direction of
motion at random times. In the presence of a flat potential, the particle
distribution will be flat and will therefore satisfy the Boltzmann law. On
the other hand, in the presence of potential barriers, which are so steep that
the particles can not overcome them, i.e. the external force is stronger than
the selfpropulsion force, the density profile will strongly deviate from the
Boltzmann distribution. The density profile shows two strong peaks close
to the potential walls. This happens since a particle moving in one direc-
tion reaches the potential wall and stays there not moving, since the self-
propulsion force keeps the particle close to the wall until a random change in
the direction of motion happens. The frequency of the reorientation events,
i.e. the Peclet number, determines the time for which particles stay close to
the walls and therefore the density profile."

Figure 2: Simulation snapshots of self-propelled rods froming clusters
at increasing Peclet number ((a) lowest, (c) highest), clusters of size
n=3,10,22 (d), and cluster size distribution (e). Picture by Yingzi
Yang et al., Physical Review E 82.3 (2010)[51]
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1.2 Passive Brownian motion

Before discussing the theoretical description of active particles, it is impor-
tant to show the di�erences between active and passive Brownian motion.
Passive Brownian particles behaviour is determined by (stochastic) collision
of the particle with its surrounding medium. The most common way for
the description of such units is Newtonian mechanics considering friction
and stochastic forces[26]. The Langevin equation provides the description
of motion of a Browinian particle including the Stokes friction coe�cient “

in a space dependent potential U(r),

m
dv
dt

= ≠“v ≠ ÒU(r) + F (t) ; v = dr
dt

. (3)

With ÒU = 0 in his original publication, Langevin assumed temporally
short correlated random forces F (t), independence between coordinate r(t)
and velocity v(t), and the equipartition theorem Èv2Í = 3kBT/m. The
stochastic forces F (t) should be Gaussian distributed according to Ornstein
and Uhlenbeck[42], with independent components and ”-correlated time de-
pendence,

ÈF (t)Í = 0 ; ÈFi(t)Fj(tÕ)Í = 2Dp”i,j”(t ≠ tÕ) ; i, j = x, y, z. (4)

The components of F are called Gaussian white noise with intensity Dp.
The noise strength Dp for the momentum, is simply connected with the
noise strength for the velocities by the relation Dp = m2D. We can rewrite
the Langevin equation as,

m
dv
dt

= ≠“v ≠ ÒU(r) +
Ô

2D›(t), (5)

with the stochastic process terms (Gaussian white noise) › obeying,

È›(t)Í = 0 ; È›i(t)›j(tÕ)Í = ”(t ≠ tÕ). (6)

We consider now the dynamics in two spatial dimensions. Furthermore we
consider a force free, homogeneous environment. A useful representation of
the equation of motion is given in polar coordinates, where rotational and
translational motions are decoupled. Thus, the equations of motion for a
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passive Brownian particle in two dimensions are,

ẋ =
Ò

2Dt›x ; ẏ =
Ò

2Dt›y ; „̇ =
Ò

2Dr›„, (7)

where x and y are the coordinates and „ the orientation of the particle.
ẋ, ẏ and „̇ are the time derivates of the quantities, respectively. Since the
motion of a passive Brownian particle is purely di�usive, we can give the
di�usion coe�cient Dt for translational and Dr for rotational di�usion,

Dt = kBT

6fi÷R
; Dr = kBT

8fi÷R3 , (8)

with T beeing the total temperature and ÷ the fluid viscosity. At this point
it is worth pointing out the independence of rotational and translational
di�usion coe�cient of the particle radius R. While Dt depends linearly on
R, Dr depends on the third power of R.

1.3 Active Brownian motion

As shortly mentioned above, active particles can be biological agents and,
therefore, for example macroscopic animals, or artifical particles. If inves-
tigated, it is most likely to find that they have a preferred direction of
motion. This can occur due to asymmetries of the swimming body, which
is more obvious for organic organisms, but also because of di�erences in the
propulsion mechanism[19, 29]. There are also several examples of synthetic
self-propelled particles at di�erent length scales with a prefered orienta-
tion. These include chemically powered particles, like the so-called Janus
particles, coated on one side with one material and on the other side with
another material, such that the chemical reactions of the materials with
the environment produce a net constant force on the particle which is then
self-propelled[45, 50]. This orientation is called heading and is defined now
without any further knowledge about the origin. The heading is then simply
defined by a time dependent unit vector eh, which is, if we again consider
two dimensions as above, determined by a single angle „,

eh(t) = (cos(„(t)), sin(„(t))). (9)
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The velocity v can be either positive or negative and is then called going
forwards or backwards with respect to the heading. We can write the veloc-
ity vector as v = veh, using the heading unit vector introduced above. To
span all of the two dimensional space, a second vector is needed. For this
we can take the angular direction perpendicular to the heading direction,

e„(t) = (≠sin(„(t)), cos(„(t))). (10)

Figure 2 schematically shows the idea with heading and velocity of a polar
particle in motion.

Figure 3: Visualization of a moving polar particle with heading unit
vector eh and angular unit vector e„. The dotted line and l(t)
indicates the trajectory. Picture from Romanczuk, Pawel, et al.,
2012.[37]

I wanted to highlight the idea with the heading, to show a simple but
important di�erence between active and passive Brownian particles. While
passive "Brownians" don’t show a prefered direction of motion, it is often
detected on active ones. Below I show how this phenomenon manifests
itself, leading to the di�erences in the equations of motion for an active and a
passive Brownian. The equations for the passive motion are already written
down in equation (7). The equations of motion for an active Brownian
particle in two dimensions are,

ẋ = vcos(„) +
Ò

2Dt›x ; ẏ = vsin(„) +
Ò

2Dt›y ; „̇ =
Ò

2Dr›„. (11)
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All varibales are the same as in equation (7), ecxept for an additional particle
velocity v. We see in contranst, that the new equations are coupled. The
reason for that is, that for a self propelled particle the direction of motion
is itself subjected to the rotational di�usion[3].

1.4 Dynamic models

We now have equations of motion for an active Brownian particle consid-
ering that it has a direction of motion. I would also like to provide a more
general approach to the dynamics of active particles, by writing down their
Langevin equation as I did before for passive Brownians, see (5). We see
there, that we have a constant friction term “. To realize a particle that
self-propells, we consider the friction to be dependent on the velocity.

mv̇ = ≠“(v)v ≠ ÒU(r) +
Ô

2D›(t). (12)

All variables are similar as that in the Langevin equation 5 above and the
white noise terms obey to the same rules. Furthermore, mostly a friction
coe�cient is used that depends non linearly on the velocity, that is negative
for small velocities and positive for large ones, also meaning that its zero at
some finite speed. The property that the friction can get negative, makes
the whole system an "out-of-equilibrium-one".

There are two widely used models for active Brownian particles. One was
introduced by Schweitzer, Ebeling, and Tilch[38] and is called the simplified-
depot-model or SET-Model. It uses the friction function

“SET (v) = “0
Ë
1 ≠ —

1 + v2

È
, (13)

which gives rise to self-propulsion for — > 1. It has zeros at v = ±
Ô

— ≠ 1,
is negative at velocities between and positive beyond these values. Another
choice for the friction function is given by Rayleigh-Helmholtz in the RH-
Model[35, 13].

“RH(v) = “0[v2 ≠ –], (14)
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– beeing bigger than 0. The function has zeros at ±
Ô

–, is negative between
and positive beyond these values.

At this point it is worth pointing out, that in the original model of SET
and RH, there is no force term ÒU in the Langevin equation (12). They
only use the symmetric friction function. It is though, for several reasons,
interesting to consider a non symmetric function. First of all, no symmetric
case is generic. As mentioned in section 1.3, active particles may have a
preferred direction of motion, such as molecular motors having it along fila-
ments. Also, cells are not always rotationally symmetric which may lead in
conjunction with their internal force-generating mechanisms to a drift to-
wards a specific direction. Furthermore, active particles are not isolated in
an empty space, but interact with their invironment. Therefore it is inter-
esting to introduce a force term which breaks the symmetry of the system
and may lead to the revelation of new dynamical properties.

Figure 4: Trajectories of the RH model obtained by integrating the
Langevin equation (12), with noise D = 1 and F/“0 0.00 (a), 0.01
(b) and 0.10 (c). There are 10 trajectories in each graph, starting
at the same point with parameters “0 = 20 and – = 1. Picture from
Romanczuk, Pawel, et al., 2012.[37]

1.4.1 Chiral active Brownian motion

To have a perfect symmetry along the initial propulsion velocity is an excep-
tion and not often to be found on particles. It can be achieved by creating
perfect Janus-spheres or rods, but in biological systems the sysmmetry is
almost always broken. This leads away from a straight motion to a circu-
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lar motion. Even small deviation from the symmetry can make the motion
chiral and it is said to be dextrogyre if the particle moves clockwise and levo-
gyre if it moves counterclockwise. Jennings[18] discovered this behaviour of
circular swimming by microoganisms already a century ago and also helical
swimming in three dimensions was observed by bacteria and sperm cells[4].
In the following figure, some examples of chiral motion can be seen. In fig-
ures 5 (a) and (b), the trajectories of E. coli bacteria near a glass surface and
at a liquid-air interface are shown. Figures 5 (c) and (d) show trajectories
of artificial L-shaped active particles.

Figure 5: (a): E. coli cells swimming in circular trajectories near a
glass surface. Superposition of 8-s video images.[27] (b): E. coli bac-
teria swimming over liquid-air interfaces. Direction is reversed.[9]
(c) adn (d):artificial microswimmers driven by self-di�usiophoresis.
The red points represent the initial positions and the two blue squares
the position after 1 and 2 minutes. The arrow on te insets mark the
coating on the L-shaped particles, which is not visible here. Picture
by Kümmel et al., 2013.[25]

1.4.2 Run and Tumble

All the dynamics described until now is completely deterministic and in
order to simulate organic and biological agents, this approach is not always
suitable. Rather useful is to consider the so called Run and Tumble dynam-
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ics. It consists of two states, one in which the particle performs a straight
motion (run), and one, where it performs a rotation (tumble). The two
states happen independent from each other, meaning that when a rotation
move is performed, the translational propulsion is deactivated. The tum-
bling event consists of a randomly applied torque resulting in a rotation by
an angle Ê œ [≠fi, fi] if the particle is free to rotate. The traveled distance
between every tumbling event follows an exponential distribution e≠‹t, since
the the tumbling events happen at random times. This leads to a Poisson
distributed number of rotating events per unit time, with mean frequency
‹. The e�ective frequency ‹eff = ‹/(1 + ‹·tb) is commonly used, because
a frequency considering ‹ alone does not allow for the fixed duration ·tb of
the tumbling event.

Figure 6: Schematic run and tumble motion: The circles represent
the run and tumble particle at positions X. Between the straight
translational moves vn≠1 and vn, the tumbling move around the an-
gle Ên takes place. Picture by Yukio Magariyama et al., Biophysical
journal 88.5 (2005).[28]

The rotational di�usion coe�cient of a single free swimming particle is

Dr = ‹eff
(2Ê)2

12 , (15)

where (2Ê)2/12 is the mean square angle, since the angle is evenly dis-
tributed in [-Ê,Ê]. The di�erence between the model for run and tumble
particles as compared to the models used for active Brownian motion is
crucial. While run and tumble dynamics consists of the 2 states explained
above, for active Brownian particles rotational noise and self-propulsion are
both constantly present.
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An interesting example of possible behaviour di�erences between active
Brownian and run and tumble particles is shown by Maryam Khatami et
al.[23] When both are sent into mazes of di�erent geometry, they show large
di�erences in their stationary probability distributions. In particular, run-
and-tumble particles enter the maze and easily move towards the center,
while active Brownian particles escape faster towards the rim. In a steady
state, persistent ABPs (Active Brownian Particles) accumulate in the out-
ermost region of the maze, while RTPs (Run and Tumble Particles) spread
more uniformly in all regions. This is due to the random walk, performed
by the ABPs along the maze walls, allowing them to readily find openings
in the wall, whereas, the dynamics of RTPs detaches the particles from the
walls and therefore lowers the probability for them to find an opening. This
peculiar phenomenon is more pronounced in mazes with curved boundaries.

Figure 7: Stationary distribution of active particles inside suare and
circular mazes. Pr is the persistance number, which is the persis-
tance length in units of the swimmer diameter. Picture by Maryam
Khatami et al., Scientific reports 6 (2016).[23]
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1.5 Di�usion

For the study of dynamic properties of particles, the translational and ro-
tational di�usion coe�cient is of decisive importance. Especially for active
particles, the dependence of those coe�cients on parameters like particle
density, as well as their dependence on each other1, are yet to be intensly
studied.

If we consider a given trajectory {r(t), p(t)} at which one can measure the
observables A(r(t), p(t)) and B(r(t), p(t)), one can give the time correlation
function CAB as a time average,

CAB(t) = 1
·

⁄ ·

0
A(s)B(s + t) ds, (16)

which we will denote as CAB(t) = ÈA(s)B(s + t)Í. For a stationary state,
the correlation can only depend on the time di�erence t, so we can write:

CAB(t) = ÈA(0)B(t)Í. (17)

The time correlation functions are simply connected to transport coe�-
cients like the translational di�usion coe�cient, which can be written as
the autocorrelation of the velocity,

D = 1
3

⁄ Œ

0
Èv(0)v(t)Í dt. (18)

A better approach for computational physics is to compute the di�usion
coe�cient with the mean square displacement (msd), which describes how
fast a particle di�uses, e.g. how fast a particle moves away from a fixed
point in space. Note that this calculation is valid for a long-time-limit only.

lim
tæŒ

msd(t) = lim
tæŒ

1
N

Nÿ

i=1
|ri(t ≠ t0) ≠ ri(t0)|2 = 2dDt. (19)

Here, ri(t) is the position of particle i at time t, and d is the dimension of
the space. Again, this is the translational di�usion coe�cient. Typically,
the msd for active Brownians initially increases quadratically in time, called

1
See coupling of angle and position in equations (11)
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the ballistic regime. Ater some time ·B, it shows a crossover to the di�usive
regime, where it gets linearly dependend.

Figure 8: Mean square displacement of an active brownian particle
for di�erent velocities: v = 0µms≠1 (circles), v = 1µms≠1 (trian-
gles), v = 2µms≠1 (squares), v = 3µms≠1 (diamonds). Picture by
Bechinger et al., 2016.[3]

In the figure above, one can nicely see the transition from the ballistic
to the di�usive regime. While for a passive Brownian particle the motion
(v = 0µms≠1) is always di�usive, dor active Brownians it is di�suive at very
short time scales · π ·B with di�usion coe�cient Dt from equation (8),
then translates into the ballistic regime with quadratic dependence on tau

for intermediate time scales · ¥ ·B. It then goes to a di�usive regime again
for scales · ∫ ·B, but this time with an enhanced di�usion coe�cient.
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1.6 Self-propulsion mechanisms

The driving force which makes a particle self propelled can be not only of
natural, but also of artificial origin like for the mentioned Janus particles.
These particles are coated with di�erent materials on each side, creating a
net force due to the reactions of the sides with their environment. Applied
examples are polystyrene spheres with a platinum cap placed in a hydrogen
peroxide solution, where the platinum catalyzes the local decomposition of
hydrogen peroxide into water and oxygen. The resulting asymmetric dis-
tribution of reaction products propels the particle by self-di�usiophoresis.
During this process, gas is created, inducing another propulsion mechanism
called bubble-propulsion. The creation and release of gas bubbles gives rise
to the driving force on the coated particle. Although self-di�usiophoresis
is the primary motor for platinum covered polystyrene spheres, bubble re-
coil can cause velocities as high as 1mm/s that is enough to overcome the
background fluid flow in blood vessels[46]. Janus particles can be formed
as spheres or rods, but are not limited to those shapes. Especially in the
design of micromotors, asymmetrical shapes are more frequent[53, 49]. The
examples given here are presenting just two possible ways of creating micro-
motor propulsion, others are self-electrophoresis[30], magnetic fields[39], the
Marangoni e�ect[12] and enzymatic reactions[44]. All of them are nowadays
studied intensively to enhance our understanding and advance the field of
active matter.

Figure 9: Schematic representation of a nano-motor moving under
the di�usiophoresis propulsion mechanism. Picture by Loai KEA Ab-
delmohsen et al., Journal of Materials Chemistry B 2.17 (2014).[1]
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1.7 Dipole interactions

For the research I performed in this work, along with active matter, it is
essential to also discuss the behaviour of dipolar fluids, or ferrofluids, if they
are exposed to an external field. An approximate model for the behaviour
of such a bulk of dipoles considers them as hard spheres with point dipoles
in the center. The interactions are then determined by the potential:

udip(r, µi, µj) =
µi · µj

r3 ≠
3(µi · r)(µj · r)

r5 . (20)

Here, µi is the magnetic dipole moment vector of the i-th particle , r denotes
the length of the displacement vector r between particles i and j. When all
dipoles are coaligned with an externally applied strong magnetic field, due
to the Zeeman-e�ect, potential (20) changes to

udip(r, ◊) = kBT
“

2

3
‡

r

4 1
1 ≠ 3cos2◊

2
, (21)

where ‡ is the particle diameter. ◊ is the angle enclosed between the vector
of the magnetic field and the interparticle vector r; “ for a magnetic field is

“ = fi–2‡3µs|Hloc|2

8kBT
. (22)

Here – = (µp ≠ µs) / (µp + 2µs) and Hloc = H + Hdip is the local magenetic
field. This potential is limited to the simplified model of spheres of same
size and with identical magnetic moments.

Dipolar systems were heavily investigated during the past years[5, 47], also
by Antti-Pekka Hynninen and Marjolein Dijkstra[17], who explored a sys-
tem of dipolar hard spheres with the potential,

uHS =

Y
_]

_[

Œ for r < ‡

0 for r > ‡
(23)

as steric interactions, showing that the dipoles assemble into chains as seen
in figures 10 and 11. They show a snapshot of a simulation of a dipolar
hard-sphere system with a magnetic field in the z direction . The behaviour
of chain formation is clearly seen in the smaller inlet in the lower figure.
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This alignment appears in the parallel direction to the magnetic field in
order to minimise the free energy arising from the field-dipole interaction,

uf = ≠µ · H . (24)

Figure 10: (a): Dipole-Dipole interaction between two particles with
diameter ‡ and magntic susceptibility µp. The solvent has a mag-
netic susceptibility µs. The vector of the magnetic field and the in-
terparticle vector enclose an angle ◊. In case of an electric field, the
particles have a dielectric constant ‘. (b): The dipoles (indicated by
white arrows) favour positions where they are aligned head-to-toe.
Picture by Antti-Pekka Hynninen and Marjolein Dijkstra, 2005 [17]

Figure 11: Simulation snapshot of a dipolar hard-sphere system. Pic-
ture by Antti-Pekka Hynninen and Marjolein Dijkstra, 2005[17]
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If there is no field present, self-assembly is not restricted to the formation
of chains. Especially for higher concentrations of magnetic particles, where
the assumption of non interacting chains is not anymore defensable, one
has to consider the formation of more complex structures such as rings,
Y and X-shapes and eventually, networks. This has been shown by S.
Kantorovich, A. Ivanov, et al., 2015[20], using Monte Carlo simulations and
Density Functional Theory of dipolar hard sphere systems. The resulting
formations are seen in figure 12.

Figure 12: Top row: photographs of commercially available magnetic
beads; middle row: topological classification, here black indicates
chain segments and blue - rings; bottom row: structures extracted
from Monte Carlo computer simulations. Picture by S. Kantorovich,
A. Ivanov, et al., 2015[20]

In the model that we will use, steric interactions are governed by a transfor-
mation of the Lennard-Jones potential, which approximates the interaction
between a pair of neutral atoms or molecules.

uLJ = 4‘

C3
‡

r

412
≠

3
‡

r

46D

. (25)

The transformation is realized by a shift that happens at the potential
minimum at r = 6Ô2‡, which cuts away the attractive part of the Lennard-
Jones potential for r > 6Ô2‡, making it purely repulsive. The resulting
potential is called the Weeks-Chandler-Andersen potential,

uW CA =

Y
_]

_[

0 for r > 6Ô2‡

uLJ + ‘ for r < 6Ô2‡
(26)



1.8 Getting control over active systems 25

where ‘ is the depth of the potential-well.

1.8 Getting control over active systems

Taking into account the models and research introduced so far, I conclude
shortly the interesting but also problematic properties of both, active and
dipolar systems, if one wants to gain higher control over the systems motion.

Looking at active matter or active particles, it is immediately understood
that the property of interest for research lies in the conversion of environ-
mental to kinetic energy. One big advantage of this self-propulsion is that
it can arise from a variety of mechanisms, providing many possibilities to
scientists for its realization. A disadvantage of active matter systems, es-
pecially if their origin is of biological nature, is the di�culty to control and
direct their motion, as they are in general, non magnetic and una�ected by
fields.

Unlike active matter, dipolar particles are well controllable by applied fields.
We see field induced chain and structure formation, which can be analyzed
and quantified for better understanding of the system. The interesting prop-
erty of active matter, self-propulsion, is lacking in these particles.

The work in my thesis aims at combining those two types of systems, taking
the advantage of each to get an active matter system that can be influenced
and, in the end, controlled by using dipolar particles and magnetic fields.
The methods and ideas of how this is realized, are described in the following
chapters.
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2 Methods

2.1 Molecular Dynamics

Molecular dynamics (MD) simulations are a widely used technique to inves-
tigate the dynamics of classical many body systems, which means that it is
made up by classical laws rather than quantum mechanical laws of physics.
Though this already makes MD only an approximation, it is su�cient for a
plethora of materials and systems. First, the system of interest is prepared
in a microscopic state which is specified by the positions and momenta of
all particles. This can be a state close to the systems equilibrium, but also
far from it. Starting from this initial state, the Newton equation of motion

mi
¨̨ri = F̨i(rN) (27)

is solved for all N particles of the system in small time steps. This is
commonly done using a finite di�erence approach, where the integrating
algorithm should have the desired properties:

• It should be fast and require little memory

• It should allow the use of large time steps

• It should recreate the classical trajectory as closely as possible

• It should satisfy known conservation laws

• It should be simple to program

2.1.1 Velocity-Verlet

The most used algorithm for MD simulations is the velocity verlet algorithm.
It can easily be derived by taking

ẋ(t) = v(t),

v̇(t) = F (x(t))/m,
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and using taylor expansions. First on x(t + �t):

x(t + �t) = x(t) + �tẋ(t) + �t2

2 ẍ(t) + O(�t3).

By eliminating ẋ with v and ẍ with F/m, we get:

x(t + �t) = x(t) + �tv(t) + �t2

2
F (x(t))

m
+ O(�t3). (28)

Then expanding v(t + �t),

v(t + �t) = v(t) + �tv̇(t) + �t2

2 v̈(t) + O(�t3),

and eliminating v̇ with F/m and v̈ by expanding v̇(t), so we get:

v(t + �t) = v(t) + �tv̇(t) + �t

2 (v̇(t + �t) ≠ v̇(t)) + O(�t3).

Finally, using the equation of motion, this can be rewritten as

v(t + �t) = v(t) + �t

2m
(F (x(t + �t)) + F (x(t))) + O(�t3). (29)

The derived equations form the velocity verlet algorithm.

Velocity-Verlet integrator:

x(t + �t) = x(t) + �tv(t) + �t2

2
F (x(t))

m
+ O(�t3);

v(t + �t) = v(t) + �t

2m
(F (x(t + �t)) + F (x(t))) + O(�t3).

Note that the velocities can only be computed after the new positions
and hence the new forces are known. This integrating scheme has excellent
energy conserving properties as it is phase space volume conserving[32].
Note also that a simulation can be run from initial conditions

Ó
rN(0), pN(0)

Ô

and the scheme is therefore said to be "self-starting".
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2.1.2 Langevin dynamics

What one would want to achieve if a simulation is to be made in an NVT-
ensemble is constant temperature. To do so, it is not su�cient to integrate
the Newton equations of motion, but rather the Langevin equation that was
already shown in equation (5). The random forces are used to a�ect particles
motion and therefore control temperature. This method is called Langevin
thermostat. We now have to find a new integrator for the new modified
equation of motion. This was done by Eijden and Ciccotti[43]. We first
write the Langevin equation in one dimension in a di�erential form:

dr(t) = v(t)dt, (30)

dv(t) = f(r(t))dt + “v(t)dt + ‡dw(t). (31)

The above equations show some di�erences to the Langevin equation already
introduced. To be able to derive the algorithm needed, the force term
≠ÒU/m is simply written as f(r(t)) and ‡ is

Ò
2kbT“/m, but the random

forces have to be considered specifically. The random forces F (t) can not
be di�erentiated and they are therefore written as the integrals of a process
w(t) such that F (t) = dw/dt. Those processes are called Wiener processes
with the main property:

Èw(s)w(sÕ)Í =
⁄ s

0

⁄ sÕ

0
ÈF (t)F (tÕ)ÍdtdtÕ =

⁄ s

0

⁄ sÕ

0
”(tÕ ≠ t)dtdtÕ = min(s, sÕ).

(32)

Wiener processes are discussed by Karatzas, Ioannis, and Steven Shreve[21],
but are not further handled here. By integrating equations (30) and (31)
from t to t + �t, you get

r(t + �t) = r(t) +
⁄ t+�t

t
v(s)ds, (33)

v(t+�t)+v(t)+
⁄ t+�t

t
f(r(s))ds≠“

⁄ t+�t

t
v(s)ds+‡[w(t+�t)≠w(t)]. (34)
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Starting with the velocity integral that occurs in both equations, we use the
lowest order

v(s) ¥ v(t) + (s ≠ t)f(r(t)) ≠ (s ≠ t)“v(t) + ‡[w(s) ≠ w(t)],

where t 6 s 6 t + �t, to get

⁄ t+�t

t
v(s)ds = �tv(t) + �t2

2 [f(r(t)) ≠ “v(t)] + ‡
⁄ t+�t

t
[w(s) ≠ w(t)]ds

¸ ˚˙ ˝
C(t)

.

(35)

We have now found an approximation for the velocity integral in (33) and
(34). The force integral in the latter, is computed in a similar fashion using

df

dt
= ˆf

ˆr
ṙ = ˆf

ˆr
v

to get

f(r(s)) = f(r(t)) +
⁄ s

t
v(y)f Õ(r(y))dy ¥ f(r(t)) + (s ≠ t)v(t)f Õ(r(t)).

Again, like the velocity integral, we integrate from t to t + �t:

⁄ t+�t

t
f(r(s))ds = �tf(r(t)) + �t2

2 v(t)f Õ(r(t)) = �t
f(r(t + �t + f(r(t))

2 ,

(36)

where the derivative f Õ(r(t)) is replaced by the use of

f(r(t + �t)) = f(r(t)) + f Õ(r(t))v(t)�t.

As the force and velocity terms are integrated, the only terms left to consider
are w(t + �t) ≠ w(t) and C(t). To do so, properties of the Wiener processes
and functions are used. In order to save space in this chapter, the derivation
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of those terms is found in Appendix A, which leads to

⁄ t+�t

t
(w(s) ≠ w(t))ds = �t3/2

A
›Ô
3

+ ◊

2
Ô

3

B

, (37)

where › and ◊ are two uncorrelated random numbers. Plugging back in
the derived approximations for the integrals in equations (33) and (34) we
obtain

Integrator for the Langevin equation (second order):

r(t + �t) = r(t) + �tv(t) + C(t);

v(t + �t) = v(t) + �t

2 [f(r(t + �t)) + f(r(t))] ≠ �t“v(t)+

‡
Ô

�t›(t) ≠ “c(t);

c(t) = �t

2 [f(r(t)) ≠ “v(t)] + ‡�t3/2
A

›Ô
3

+ ◊

2
Ô

3

B

.

If “ and ‡ are both set to be 0, this scheme becomes the already discussed
Velocity-Verlet integrator.

2.1.3 Force calculation

Typically, the computation of the forces is the most time consuming part
in an MD simulation. In the absence of a magnetic field, the force F i on
particle i is given by the negative gradient of the potential energy U(rN):

F i = ≠ÒiU(rN), (38)

where U(rN) is in general a complex function of particle coordinates. While
for atomistic systems the potential energy arises from the solution of Schrödinger
equation, for a pairwise additive potential, the force calculation becomes an
easier task, as the potential energy can be written as a sum:

U(rN) =
ÿ

i<j

u(tij), (39)
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where rij is the distance between the i-th and the j-th particle. The force
on a particle is then given by:

F i = ≠ÒiU(rN) =
ÿ

j ”=i

f ij, (40)

where

f ij = ˆu(rij)
ˆrij

rij

rij

(41)

is the force experienced on an particle j by an particle i. From the pairwise
additive nature of the potential follows that

f ij = ≠f ij.

Although the use of pairwise additive potentials simplifies the force calcu-
lation, there is still the need to compute N(N ≠1)/2 pair distances. Hence,
the computational cost of a full force calculation scales with N2. In order
to keep the the computational cost reasonably low for larger N , one can
make use of some tricks that reduce the e�ort to a linear scaling. They can
be used for short-range interaction potentials (interactions that decay faster
than 1/r2). I describe some of these tricks below.

2.1.4 Verlet lists

As there is a cuto� rc used for the pairwise additive potential, most pairs
of atoms do not contribute to the total potential energy, especially if one
simulates large systems. It is now advantageous to drop the force calcula-
tion for those pairs in order to save computing time. This can be achieved
by utilising verlet lists or neighbour lists. For that, a new cuto� rl > rc is
introduced. For each particle i, a list is created that contains all particles
within rl from this particle i. Then, only particles in this list have to be
considered for the force calculation. Since for the calculation of the lists one
has to loop over all particle pairs, it results again in N2 scaling, but once
this has been done the force evaluation scales linearly.

The method of Verlet lists is only of advantage if the lists do not have to
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Figure 13: Schematic idea behind Verlet lists. rc is the cuto� of
the potential and rl the newly introduced cuto� used for the verlet
list creation. The distances from the green to all blue particles are
computed, the purple ones are neglected. Picture by Massachusetts
Institute of Technology.

be recomputed at every time step. Thus, rl has to be chosen appropriately,
since a recalculation of the lists needs to take place if a particle moves
further than the distance rl ≠ rc. Although the computation of the lists
only happens every couple of time steps, it becomes the most significant
factor for the computational cost.

2.1.5 Cell lists

Another trick is not to construct lists for every particle in the system, but
to create a list of particles in a certain region of space. This is called the cell
list method or linked list method. The simulation box is divided into cells
with sides a bit larger than rc and for each cell a list is constructed, which
contains all particles within the given cell. As the side length of the cells is
chosen to be bigger than the cuto�, a particle only interacts with particles
in its own, or its neighbouring cells. This scales the force computation down
to the order of N. A combination of both, verlet and cell lists, is possible
and of advantage.
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Figure 14: Schematic idea behind cell lists. The orange shaded cells
indicate the periodic pictures of the simulation space which are used
with periodic boundary conditions. Picture by Pedro Gonnet[11].

2.1.6 Instability

Our goal with making an MD simulation, is to model the dynamics of
particles in our chosen system. Starting from some initial condition x0 =
Ó
rN(0), pN(0)

Ô
, we solve the equations of motion producing a trajectory

xi�t =
Ó
rN(0)i�t, pN(0)i�t

Ô
that consists of points in phase space. Is it

realistic that this trajectory mimics the true trajectory of the real system?
As it turns out, it is impossible to follow a systems real dynamics, especially
for long time scales. This fact is part of the chaos theory. A system of
di�erential equations is said to be chaotic, if its dynamics is highly sensitive
to small changes in the initial conditions. So if a system is chaotic, such
small changes will lead to a completely di�erent time evolution for longer
time scales. What does this imply for MD? We consider an exact trajectory
xt(x0) with initial conditions x0. If we now displace these conditions by a
small amount ”0 =

Ó
”rN(0), ”pN(0)

Ô
, we get the exact trajectory xÕt = xt +

”t. For many systems, the displacement ”xt = xÕt ≠ xt grows exponentially:

| ”xt |≥| ”x0 | e⁄t, (42)

which means that the initially close trajectories quickly start to diverge. ⁄ is
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called the Lyapunov exponent and in 3 dimensions, there are 6N exponents.

Figure 15: Deviation of trajectories with di�erent initial conditions

This seems dramatic at first, as we just learned that it is not possible to
know the true dynamics of a system, but as we are interested in statistical
measures such as correlation functions and we also only know the statistical
distribution of initial conditions, MD simulations are still a powerful tool
in computational science.

2.1.7 P3M-Method

As already said, force computation is the most time consuming part of MD
simulations. Especially expensive are long-range magnetostatic or electro-
static interactions, such as, for example, forces introduced in section 1.7.
Using lists and/or cut-o�s for such potentials might lead to serious errors,
but direct methods are also very costly. It is therefore useful to use an en-
hanced algorithm for their computation. An example for such a procedure
is the P 3M -Method (Particle-Particle/Particle-Mesh)[6]. It combines two
ways to sum magnetostatic forces. The first is the simple Particle/Particle-
Method (PP), which is the brute-force approach as it sums over all pairs of
particles. A desired feature of PP, is that no sum is in any way approxi-
mated, and its accuracy is limited only by machine precision. Unfortunately,
PP is not feasible for large numbers of particles due to its scaling behaviour
of N2. The second is the Particle-Mesh-Method (PM). The main idea is to
discretize space and to solve the Poisson equation
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Ò2� = cfl;

U = Ò�,

on the applied grid (mesh) of the discretization. The forces of the grid
points can be calculated by taking the gradient of the potential U . The
forces not located at grid points are computed as the interpolation to the
closest grid point, or simply as the force at the grid point itself.

In order to solve the Poisson equation, the density function fl (in the case
of magnetostatics, fl is the dipole density), must be determined. This can
be achieved in di�erent ways:

• Nearest gridpoint: The particle property is assigned to the grid-
point closest to the particle

• Cloud-in-Cell: The particle property is weighted over the closest
surrounding cells (4 in 2D, 8 in 3D), with the weighting beeing pro-
portional to the intersection of the "cloud" surrounding the particle
and the cells.

• Higher order interpolation: The weighting function can be inter-
polated with higher orders, thus it is covering more cells.

After the density function is determined, the potential and therefore the
forces can be computed. The weak spot of the PM is the constraint in space
resolution, resulting in incorrect modelling of interactions smaller than the
grid spacing. The P 3M -Method[6] combines the accuracy of PP at small
ranges, with the e�ciency of PM at bigger ranges.

In the case of dipolar interactions, the use of Ewald summation is of advan-
tage[6]. It splits the dipolar pair interaction

u(r, µi, µj) =
µi · µj

r3 ≠
3(µi · r)(µj · r)

r5 ,

shown in section (1.7) into two parts:

u(r, µi, µj) = (µi · Òri)(µj · Òrj )(Â(r) + „(r)). (43)
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Here Â(r) contains the short distance part of the Coulomb interaction and
„(r) contains its long distance part. There are multiple choices for the split-
ting functions[10, 16], but the standard way is to choose Gaussian functions:

Â(r) := erfc(–r)
r

;

„(r) = erf(–r)
r

,

(44)

where erf and erfc are the error- and the complementary error function.
The so called splitting or Ewald parameter – weights the importance of one
term with respect to the other. This parameter can be chosen to optimize
the performance of the method and automatic algorithms for this tuning
are available.

The short ranged interactions are summed as already discussed in the PPM,
but for computing the long ranged part, Fourier transforms bring signifi-
cant acceleration to the method since long range interactions transform to
short ranged interactions in Fourier space (k-space). The splitting of the
potential leads to the well known Ewald-formula

U = U (r) + U (k) + U (self) + U (surf), (45)

with

U (r) = 1
2

Nÿ

i,j=1

ÿ

nœZ3
(µi · Òri)(µj · Òrj )Â(r);

U (k) = 1
2V

ÿ

kœK3
|fl̂(k) · ik|2„̂(k);

U (self) = ≠ 2–3

3
Ô

fi

Nÿ

i1

µ2
i ;

U (surf) = 2fi

(2‘ + 1)V

1ÿ

i=1

Nÿ

j=1
µi · µj.

(46)

Here V is the box volume and ‘ is the dielectric constant of the medium
surrounding the replica boxes. The energies that contribute to the Ewald-
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formula, are the real-space energy U (r), the reciprocal-space energy U (k),
and the surface energy U (surf). The quantities fl̂ and „̂ are the Fourier
transforms of fl and „, respectively. The self energy U (self) describes the
interaction of a dipole with itself and is therefore undesired and subtracted
from the total energy. For the forces, due to U (self) and U (surf) being particle
position independent, follow:

F i = F
(r)
i + F

(k)
i . (47)

The P 3M -Method uses Fast Fourier Transforms (FFT) instead of standard
Fourier Transforms, as for example the dipolar Ewald summation, hence
it reduces the computational operations from N3/2 to N log N . However,
because the FFT is a mesh operation, the need to mesh all dipoles onto a
grid and solving the Poisson equation builds a restriction the on speed of
this method. A comparison of the force calculation speed between Ewald
and P 3M Method is seen in figure 16.

Figure 16: Time taken for force and torque computation dependent
on the number of particles. Circles represent the optimal dipolar
Ewald-Method and squares the introduced P 3M-Method. The force
accuracy is �F = 10≠4 and both methods have optimal parameters
for this value. The dipole density N/V = 0.1. The continuous and
dotted lines have slope 1 and 3/2 respectively. Picture by Juan J.
Cerda et al., "P3M algorithm for dipolar interactions" (2008).
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2.1.8 Reduced units

In molecular dynamics, we often find the Lennard-Jones potential intro-
duced in section 1.7, as the prominent pair interaction potential. If this
is the case, it is sensible to use a set of units, called reduced units, which
are completely specified by the parameters ‘ and ‡ of the Lennard-Jones
potential. This is achieved by using ‘ as a fundamental unit of energy and
‡ as a fundamental unit of length, so that for reduced physical quantities
(usually marked with an "ú" symbol) follows:

T ú = kBT/‘ Temperature

Eú = E/‘ Energy

flú = fl‡3 Density

f ú = f‡/‘ Force

tú = t/‘ Torque

and so on. The technical advantages of using reduced units appear, if ‡

and ‘ have been given a value of unity so they do not need to appear in a
simulation at all, saving time on computing forces, energies etc.

2.2 Delaunay triangulation

A method used in the analysis part of this work is the Delaunay triangula-
tion, named after Boris Delaunay for his work on this topic in 1934[8]. Trian-
gulation, the decomposition of space into simple triangles, can be achieved
in di�erent forms. By defining the Delaunay condition, which states that
for a given set of points, the circumcircle of every triangle resulting from the
triangulation is empty, one gets the Delaunay triangulation. This property
is also called "empty circle property".
Figure 17 shows an example for a Delaunay triangulation of 6 points in 2 di-
mensions. The solid circles show the circumcircles of the triangles resulting
from the procedure, which are per Delaunay condition empty. The dashed
circle shows a non empty circumcircle of a triangle span up by 3 points,
thus, it is not usable for the final triangulation.
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Figure 17: Example for a Delauney triangulation of 6 points in 2
dimensions. Picture from lecture note "Theory of combinatoral al-
gorithms", https://www.ethz.ch/de.html

While the goal of a triangulation itself is not to have empty circumcir-
cles, Delaunays method satisfies an interesting and useful property. The
triangulation maximises the smallest angles, meaning that long and skinny
triangles are unfavoured and appear less than in other triangulation meth-
ods. This leads to a more equiliteral triangle distribution which makes it
widely used in computer science.
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2.3 Active Brownian in ferromagnetic fluid

After having summarised essential facts concerning active particles and self
assembly of magnetic nanoparticles in applied fields, I would describe the
scenario implemented in my thesis. We consider a viscoelastic carrier fluid
of dipolar particles and switch on a constant strong magnetic field. Due to
minimization of the free energy, the dipoles will align with the field. The
alignment of nanoparticle chains, as well a the increase of chain length,
were predicted. Thus, the system becomes lightly anisotropic. The idea of
my work is to place a generic non magnetic active Brownian particle in a
solution of magnetic particles subjected to a strong field, and analyze its
trajectory. Since the anisotropy of the system will heavily a�ect its motion,
the expected outcome is that the active particle will move along the chains,
as through the tunnels, once the magnetic field is switched on. To break
the idea down to one sentence: We want to control the motion of a non
magnetic active Brownian particle, with a magnetic field using magnetic
nanoparticles.

2.3.1 ESPResSo

This scenario was investigated using molecular dynamic simulations, more
specifically, using a molecular dynamics package called ESPResSo (Exten-
sible Simulation Package for Research on Soft matter)[2].

This package was developed at the univer-
sity of Mainz and solves the equations of
motion for coarse grained modeled many
body systems with the velocity Verlet al-
gorithm. ESPResSo consists of two main
parts. First the main code written in the
C programming language, second the TCL
(Tool Command Language) environment,
that builds the bridge between user and computer. In order to set-up a
simulation, one has to write a TCL script, using commands provided by
ESPResSo. The script then gives control to the kernel, which executes the
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commands and therefore runs the main simulation loops. A massively im-
portant feature of ESPResSo is its parallelization as it brings a significant
boost to the simulation, especially for many particle systems. Therefore,
the parallel version of ESPResSo was used for obtaining all results shown
in this thesis.

2.3.2 Vienna Scientific Cluster

Since molecular dynamic simulations of many particle systems demands for
large amounts of computational power, running it on a regular household
PC would not be time e�cient. Therefore, our simulations were executed on
the Vienna Scientific Cluster, which consists of 3 units (VSC 1, VSC 2 and
VSC 3). After installing ESPResSo on the cluster, jobs could be uploaded,
which are then queued in to a waiting list and eventually executed.

2.4 Set-up

To simulate the active particle in a bath of magnetic nanoparticles de-
scribed above, we set up a cubic simulation box. In my work I only use
NVT-ensembles. Among N magnetic particles, there is one active Brow-
nian particle which has a constant velocity. For all simulations, periodic
boundary conditions were included in all directions. From this arises an
important constraint for the size of the simulation box. While the active
particle travels through the ferromagnetic fluid, it pushes away the magnetic
particles due to the steric interactions. Especially in higher density fluids,
this leads to the formation of tunnels created by the active particle itself.
This e�ect will result in unphysical data, if the simulation box is chosen to
be too small and the active particle builds tunnels for its periodic self. It is,
therefore, a necessity to choose a box size that prevents this unwanted e�ect.

All particles interact according to the Week-Chandler-Andersen potential
seen in equation (26), which is a pairwise additive potential and therefore
fairly straightforward to compute. Verlet lists and cell lists as described in
sections 2.1.4 and 2.1.5 are used to keep the computational cost at a min-
imum. The dipole-dipole interactions are computed according to equation
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(20), utilising the P 3M method. A workflow chart of the simulation is seen
in the figure below.

Figure 18: Workflow-chart of the simulation script

Before the script is executed, it is necessary to give various parameters such
as particle numbers, magnetic moment, magnetic field strength, tempera-
ture and velocity of the active particle. All parameters are quantitatively
given in the result section 3, as for now I will describe the general scheme
of the simulation set-up. The script first places the particles on random
locations inside the box. The density of the fluid is given as a dimensionless
number density flú

d = Nfi‡3
dd/6V , where ‡dd is the magnetic bead diameter.

The next crucial step is to warm-up the system. Due to the random loca-
tions that are given to all particles, the probability arises that two of them
overlap and the highly repulsive force resulting from the Weeks-Chandler-
Andersen potential at small distances would then "shoot them out" of the
box. This is solved, by first integrating the equations of motions with a
much smaller time step than for production integration. Additionally, a
"force cap" is applied to the potential, setting the potential to be constant
below a certain distance, which prevents the repulsive forces from becoming
too big during equilibration. The warm-up stops when a minimum distance
between the particles is reached. After the first warm-up, magnetic inter-
actions and the magnetic field is turned on. Then equilibration is executed
again. At this point ,the alignment of the dipoles happen, which can be
seen in the simulation snapshot in figures 19 and 20 below.
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Production integration is started after the second equilibration. At this
point, until the end of the simulation, the position of the active particle is
saved for further analysis. The simulation must run at constant tempera-
ture, so a Langevin thermostat is used to take energy from the system and
therefore keep the temperature constant. With the collected data the Mean
Square Displacement as seen in equation (19) is calculated for every spatial
direction.
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Figure 19: Unaligned: 2D projected simulation snapshot of only the
magnetic fluid (without active particle) before the equilibration with
an applied magnetic field. In (a) the field is directed into the plane,
in (b) its directed from left to right.
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Figure 20: Aligned: 2D projected simulation snapshot of only the
magnetic fluid (without active particle) after the equilibration with
an applied magnetic field. In (a) the field is directed into the plane,
in (b) its directed from left to right.
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(a) Unaligned

(b) Aligned

Figure 21: 3D simulation snapshots before (a) and after (b) equili-
brating the system with magnetic interactions turned on. The blue
dots represent the dipoles that build chains under the presence of
a magnetic field (b). The red particle represents the active Brown-
ian particle. The magnetic field is constant in the z-direction (blue
arrow).
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3 Results

The first qualitative analysis of the system can be done on the ferrofluid
without the inserted active particle. The ferrofluid shows the behaviour
of self-assembling in chains (figures 19, 20 and 21) as explained in section
(1.7) for dipolar hard spheres. Knowing the properties of this environment,
the following section presents the results obtained from molecular dynamic
simulations including the active particle inside a bath of magnetic particles.
All units displayed, are dimensionless reduced units, which are marked with
a symbol "ú" above the respected quantity, where the unit length is the
Lennard-Jones sigma ‡dd from the steric dipole interaction and the energy
unit is ‘=1 . For all simulations employed to obtain the following results,
these parameters were used:

T ú = 1 Temperature

µ2ú = 5 Magnetic moment of ferroparticles

vú = 2 Velocity of active particle

Hú
z = 3 Magnetic field along z-axis

rú
D = 0.5 Radius of the magnetic beads

mú
D = 1 Mass of the magnetic beads

3.1 Size ratio 1:5

Although we investigate generic active particles, it would be useless to look
at systems where the active particle has unphysical sizes compared to the
magnetic nanoparticles, hence for example the same size. The reduced value
for the magnetic bead size approximately corresponds to, for example, mag-
netite particles with a 20nm diameter. Therefore, the lower border for this
system to be physical is a ratio of 1 to 5 between the size of the magnetic
and the size of the active particle, where the mass ratio is 1 to 25[3].

The main measure taken from the system, is the mean square displace-
ment of the active particle. This and the resulting di�usion coe�cient can
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be seen in figure 21. For all following MSD and di�usion coe�cient plots,
colors represent di�erent ferrofluid number-densities flú

d which are marked in
the legend. Solid lines show the displacement parallel to the magnetic field
(z-direction) and dashed lines the mean of the perpendicular directional
displacements ((x+y)/2).
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Figure 22: Mean-Square-Displacement (a) and di�usion coe�cient
(b) for a dipole to active particle size ratio of 1:5.
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There it is seen, that the mean square displacement for the spatial direction
perpendicular and parallel to the applied magnetic field shows significant
deviations from each other. This becomes clearly visible in the relaxed
regime, starting at · ¥ 102 for flú

d =0.085, above the ballistic part of the
curve and indicates that di�usion is not the same in every direction like it is
for a free active particle. Furthermore, it is noticeable that this said di�er-
ence varies for changing number-densities flú

d of the ferromagnetic particles.

Why does this system behave like that? To find the answer, one has to
take a closer look at the environment the active particle finds itself in. The
path it will take is determined by the space not occupied by magnetic parti-
cles. Since the latter form chains and therefore e�ective tunnels, a measure
of interest is the width of those tunnels, or in general the space between the
formed chains. This can be realized by taking all the chains in a snapshot
of the simulation (leaving out single particles or chains of length 2 and 3,
as they do not considerably contribute to directing the active particle) and
look at the particles in single x-y planes. By triangulation of the result-
ing 2 dimensional projection of particles, one can find the space in between
the chains. The results of this calculation are shown in figure 23 and 24.
It was done by applying the Delaunay-triangulation method to several x-y
planes of multiple snapshots. To increase statistical accuracy, the 8 nearest
periodic images of the simulation box were taken into account . Error bars
result from averaging over many x-y planes in di�erent snapshots, and the
histogram bin uncertainty.



48 3 RESULTS

200 600 1000 1400
0

2

4

6

8

10

flú
d =0.001

Fr
eq

ue
nc

y[
%

]

200 600 1000 1400
0

2

4

6

8

10

12
flú

d =0.005

200 600 1000 1400
0

2

4

6

8

flú
d =0.01

Fr
eq

ue
nc

y[
%

]

200 600 1000 1400
0

2

4

6

8

10

12
flú

d =0.03

200 600 1000 1400
0

2

4

6

8

10

flú
d =0.06

Area[‡2
dd]

Fr
eq

ue
nc

y[
%

]

200 600 1000 1400
0

2

4

6

8

10 flú
d =0.15

Area[‡2
dd]

Figure 23: Distribution of areas of the triangles resulting from tri-
angulating dipoles that are in the same x-y plane. Each graph shows
the distribution for a di�erent flú

d (increasing from top left to bottom
right).
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triangulating dipoles that are in the same x-y plane. Each graph
shows the distribution for a di�erent flú

d (increasing from top left to
bottom right).
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The two distributions in figures 23 and 24 show the triangle areas and the
inscribed circle radii, for ferrofluid number-densities ranging from flú

d=0.001
to flú

d=0.15. Both distributions drastically shift to smaller sizes with in-
creasing densities, meaning that the active particle gets trapped between
the chains at higher densities. This fact and the already mentioned di�er-
ence of spatial di�usion, suggests the following idea. For low densities, the
active particle can move rather freely through the box, as it is not substan-
tially directed by the alignment of magnetic particles into any direction.
For very high densities, the chains are too close to each other and do not
allow the di�usion of the active particle in any direction as it gets trapped
inside the dense fluid. In between those two scenarios, there should be a
case in which the active particle is blocked from moving in the x-y plane,
but can still travel through the e�ective tunnels formed along the magnetic
field direction. It, therefore, becomes interesting to look at the ratio of the
di�usion parallel and perpendicular to the field direction. This measure is
displayed for a range of ferrofluid number-densities in figure 25. Error bars
for this measure result from time averages by splitting the simulation runs
into equally sized parts, computing the measure for each part individually.
It is clearly seen, that the e�ciency for the transport strongly depends on
the environmental density and peaks at flú

d=0.08 for a 1:5 particle size ratio.
As it has been already discussed, this arises from the limited freedom of
space the swimmer experiences at higher densities. This further suggests,
that di�erent size ratios should be investigated as the space which allows
a bigger active particle to move freely must shift to lower densities of its
surrounding. Therefore, the same measures as above are now presented for
a magnetic to active particle size ratios of 1:7 (mass ratio 1:70) and 1:10
(mass ratio 1:200).
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Figure 25: Ratio of parallel to perpendicular di�usion, with respect to
the applied magnetic field, at times much bigger than the relaxation
time ·r for a magnetic to active particle size ratio of 1:5. The peak
e�ciency occurs for flú

d = 0.08 ferrofluid number-density.
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3.2 Size ratio 1:7
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Figure 26: Mean-Square-Displacement (a) and di�usion coe�cient
(b) for a dipole to active particle size ratio of 1:7.
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Figure 27: Ratio of parallel to perpendicular di�usion, with respect to
the applied magnetic field, at times much bigger than the relaxation
time ·r for a magnetic to active particle size ratio of 1:7. The peak
e�ciency occurs at flú

d =0.065.

Note that in figures 26 and 22, showing the mean square displacement, we
experience a crossover between perpendicular and parallel components at
the transition to the relaxed regime. The origin of this occurrence is not yet
clear, and further investigation is needed but would go beyond the intentions
of this thesis.
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3.3 Size ratio 1:10

In figure 29a, additionally to the mean square displacement, two short black
lines are plotted, showing the slope of the curve. This is done for the
lowest density fld=0.001 and resembles the trend of a free active particle
as depicted in figure 8 by Bechinger et al., 2016.[3] This behaviour, though
not explicitly marked, is the same for the 1:5 and 1:7 size ratios, which
indicates that the active particle experiences an almost unbiased transport
for the lowest density in all directions. The deviation from this behaviour for
higher densities, especially along the x and y axis, shows again the influence
of the magnetic particles on the swimmer.
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Figure 28: Ratio of parallel to perpendicular di�usion, with respect to
the applied magnetic field, at times much bigger than the relaxation
time ·r for a magnetic to active particle size ratio of 1:10. The peak
e�ciency occurs at flú

d =0.01.
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Figure 29: Mean-Square-Displacement (a) and di�usion coe�cient
(b) for a dipole to active particle size ratio of 1:10. The black lines
in (a) indicate the growing behaviour in the ballistic and di�usive
regime of the curve.
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3.4 Comparison between di�erent size ratios

Figure 30 combines the results for the ratios of parallel and perpendicular
di�usion for all particle size ratios. The peak of the transport e�ciency
shifts to lower densities for bigger active particles, as suggested above. This
means further, that we can find for each active particle size an optimal
environmental density to maximize the transport e�ciency in a desired di-
rection, realized by the orientation of the applied magnetic field.
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Figure 30: Ratio of parallel to perpendicular di�usion, with respect to
the applied magnetic field, at times much bigger than the relaxation
time ·r for magnetic to active particle size ratios of 1:5, 1:7 and 1:10.
The peak e�ciencies occur at flú

d =0.1, 0.065 and 0.8, respectively.

Those densities can be related to the features of the systems of magnetic
particles. The incircle radii distributions shown in figure 31, correspond
to the densities where the transport e�ciency experiences a peak, with
respect to particle size ratio. It is seen, that the mean µ of the distribution,
approximately coincides with the radius of the active particle, hence, the
swimmer gets trapped in the perpendicular field direction if the tunnels are
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roughly equal to its own size. This result is crucial, as it gives us the ability
to make a definite choice for the ferrofluid density depending on the size of
the active particle, giving us greater control over the systems motion.
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Figure 31: Distribution of radii of the inscribed circles with mean µ,
resulting from triangulating dipoles that are in the same x-y plane
for densities at the peak transport e�ciencies.
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4 Conclusion and outlook

Active matter research experienced a rapid growth over the past years, due
to its significance in many fields such as biology, biomedicine, nanoscience
and nanotechnology. The investigation of these systems, weather they are
biological organisms or artificially created swimming colloids or nanomotors,
brought up various models to theoretically study active matter by utilizing
computer simulations.

Run-and-tumble dynamics were intensively used for the examination of bac-
terial motion as well as free[7] and constrainted partciles[23]. Langevin dy-
namics have been primarily employed to have a look at active Brownian
particles and their di�usive behaviour, commonly using the SET- and RH-
model[37] which di�er in form of the velocity dependet friction coe�cient in
the Langevin equation. This di�usive behaviour is highly influenced by the
environment the active particle finds itself in and might be used to a�ect
its motion. Therefore, the active particle has to be set in an environment
that can be controlled.

One example for this are fluids with magnetic particles, or simply ferrofluids.
These consist of ferromagnetic particles and have been intensively studied
over the past years, showing highly applicable properties. It is by now com-
monly known, that ferromagnetic particles tend to self-assemble if exposed
to external magnetic or electric fields[17]. The most common formed shapes
associated with this process are chains, but it has also been shown that in
the absence of external fields, especially for high density fluids, the forma-
tion of rings, X-, Y- and Z-structures, up to complicated network structures
is possible[20].

Combining these two phenomena, by using extensive molecular dynamic
simulations, we introduce a theoretical approach to control the motion of a
generic non magnetic active particle. The active particle is placed in a bath
of ferromagnetic particles exposed to a magnetic field which causes chain
formation along the field direction. The formed e�ective tunnels allow the
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active particle to preferably move into the direction parallel to the applied
external field and the e�ciency of this motion for di�erent sized swimmers,
depends then on the density of the ferromagnetic particles. Analysis of this
system reveals, that the maximum e�ciency for the transport along the
field direction appears at densities where the interaction distance is close
to the active particles diameter. This novel result allows us to control non
magnetic active matter with externally applied fields in magnetoresponsive
environments.

Future studies could even further focus on this system, looking at velocity
dependence of the active particle, magnetic coupling strength and hydro-
dynamic interactions. This might open up even more possibilities to take
control of this system, increasing the transport e�ciency.

Furthermore, there are some aspects that have to be mentioned regarding
the investigated system. We were exploring an active particle with constant
velocity. While in computer simulations this feature is easily implemented,
it is not the case for experimental set-ups. It would be therefore interesting
not to look at constant velocity, but constant force particles. This change
could increase the studied e�ect of directional swimming, as a particle with
constant velocity is more likely to break through a chain than just be di-
rected by it.

A simplification in our model is the assumption of equally sized ferromag-
netic particles. There, further investigation into polydisperse systems and
their influence on the transport e�ciency of active matter could add to the
understanding of the e�ect.

The choice for the medium in which the ferromagnetic particles are sus-
pended to create a ferrofluid is also of crucial physical importance. A stan-
dard choice for a solvent is kerosene, but organic active swimmers will not
be able to swim in this medium and it is restricted to use with artificial
particles only. Water based ferromagnetic fluids exist, but they are electro-
statically stabilised. This means that the interactions between the active
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particle and the charges have to be considered additionally.

The production of artificial active matter is another non trivial task, forcing
scientists to invent new ways of synthesising these microscale particles. One
idea to create controllable active motors, brought to life by Prof. Annette
Schmidt from the university of Cologne[15], is to create cube shaped mag-
netic dipoles that provide the sensitivity to magnetic fields, and to attach
spherical active particles to said cube which then provide the propulsion. A
snapshot from a computer model for such a unit is seen in figure 32 .This
project is now investigated in collaboration with Prof. Schmidt, experimen-
tally and theoretically.

Figure 32: Computer model of an active motor with cube shaped
dipolar body and attached active swimmer (light blue)
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Appendices

A Appendix

For the computation of C(t) in equation (35) and w(t + �t) ≠ w(t) in
equation (34), we use the property (32) of the wiener processes to show

e
(w(t + �t) ≠ w(t))2

f
=

e
w2(t + �t) + w2(t) ≠ 2w(t + �t)w(t)

f
= �t.

The random variable w(t + �t) ≠ w(t) can be generated at any timestep by
using a gaussian distributed random number › with zero mean and unitary
variance, as follows,

w(t + �t) ≠ w(t) =
Ô

�t›. (48)

For C(t), we use again (32) to show:
K

(w(t + �t) ≠ w(t))
⁄ t+�t

t
dsÕ(w(sÕ) ≠ w(t))

L

= �t2

2 , (49)

K⁄ t+�t

t
ds(w(s) ≠ w(t))

⁄ t+�t

t
dsÕ(w(sÕ) ≠ w(t))

L

= �t3

3 . (50)

Equation (50) can be fulfilled when

⁄ t+�t

t
ds(w(s) ≠ w(t)) = �t3/2÷, (51)

with ÷ beeing a random number. A problem arises if the above equation
and (48) is put into (50), as it is found that È›÷Í = 1/2, meaning that
the two random numbers are correlated. To avoid this, ÷ is split into two
uncorrelated random numbers ,

÷ = a› + b◊,

where È›◊Í = 0 and È◊2Í = 1. a and b can be determined if one imposes
È›÷Í = 1/2 and È÷2Í = 1/3, which leads to a = 1/3 and b = 1/(2

Ô
3). This
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finally leads to:

⁄ t+�t

t
(w(s) ≠ w(t))ds = �t3/2

A
›Ô
3

+ ◊

2
Ô

3

B

, (52)

which is the result as shown in (37).
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