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Introduction

Achieving control over macroscopic objects in the quantum regime has become a topic of
large interest in modern quantum science. On the one side this enables tests of quantum the-
ory in a genuinely macroscopic setting, on the other side it can give rise to new applications
in quantum information processing which use those macro-systems. Cavity optomechanics
is a promising approach to obtain the required level of quantum control.
Since the first investigations of cavity optomechanics in the late 60’s of the last century
[BM67, BMT70] this field showed a rapid progress. Some examples for this progress are
ground state cooling of mechanical resonators [TDL+11], measures of mechanical motions
[DK10], quantum squeezed states of motion [WLW+15, PDB+15, LCS+15] and even quan-
tum entanglement [PTSL13, CLRSJS+11, RWM+18, OKDP+18].
Non-classical states between light modes and mechanical motion might play an important
role as a resource for different applications in quantum computation eg. in constructing a
functional network for processing quantum information or as intermediate storage for quan-
tum states.

The motivation for this work is to gain a clear theoretical insight into the currently running
optomechanical experiment at the Faculty of Physics of the University of Vienna [HO17],
which aims to generate and detect entanglement between a light field and a mechanical sys-
tem. In this experiment it is not possible to measure directly the mechanical component of
the system, however, using the optomechanical interaction, it is possible exchange the me-
chanical and optical state.
By using proper filtering functions, which are applied on the measured output-light in post-
processing, it is possible to define two distinct temporal pulses. The first one will contain
contributions of the light from the interaction which generates the entanglement between
the mechanical and optical system. The second one consist of the contribution relevant for
exchange of the mechanical and optical state. With the help of these two pulses and their
non-classical correlations, it is now possible to draw conclusions about the entanglement
shared between the mechanics and the light field .
In addition to this, a “two-sideband”-protocol is used for extracting more non-classical cor-
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relations between the first and second pulse, respectively, in order to detect more entangled
states.

In the course of this thesis, the optomechanical interaction is studied by considering a system
consisting of two highly reflective mirrors, one of which is attached to a spring. The move-
able mirror forms the mechanical component of the system while the light field inside the
cavity represents the optical part of the system. Due to the radiation pressure force acting on
the moveable mirror both, the mechanical and optical system, couple to each other through
optomechanical interaction. This effect makes it possible to create entanglement between the
light mode and the mechanics.
During the discussion, special attention is paid to optomechanical entanglement, its genera-
tion and verification. After introducing the formalism in which covariance matrices are used
and the ways of detecting entanglement using measures and witnesses, the dynamic of the
system is considered by deriving the linearised quantum Langevin equation (QLE) which
will finally be solved in an analytical way. This then leads to the implementation of a pro-
gram which is able to generate the intra-cavity as well as the output-light covariance matrix,
which hold all the important informations for the user to explore entanglement in the system
for different parameter regimes.
The program is then applied to the parameters of the actual experiment taking place on the
University of Vienna in order to study the occurrence of entanglement, the influence the dif-
ferent parameters have on the system and to find the optimal operating parameters for the
detection of entanglement.

Outline

This thesis will be structured into the following chapters

• In Chapter 1, I will discuss the theoretical background of this work, including continu-
ous variable systems, covariance matrices, Gaussian states, entanglement and ways to
detect it qualitatively and quantitatively.

Followed by that, I will give a short introduction of the systems of interest, namely the
mechanical oscillator, the optical cavity and the optomechanical interaction between
them, and I will then characterize the dynamics of the compound system by its quan-
tum Langevin equations.

• Chapter 2 will mainly deal with the different ways of solving the quantum Langevin
equations (QLE). First the solutions for the QLE of the intra-cavity modes and also the
filtered output modes will be discussed in the steady state regime. Also a method for
solving them analytically will be presented.
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• Within Chapter 3 a program is presented, which was written to generate the covariance
matrices for the input- and output modes analytically.In order to see that the program
generates trustworthy covariance matrices we will apply some selected tests. The en-
tanglement between the different systems is then calculated by the methods discussed
in chapter 1.
Moreover, the two-sideband protocol is presented in order to account for intra-pulse
entanglement which might detect entangled states where, without this protocol, a de-
tection of these states would not have been possible.
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Chapter 1

Theory

1.1 Continuous variable systems and entanglement

1.1.1 The covariance matrix

In cavity optomechanics the systems of interest contain mechanical and optical modes which
both are continuous variables (from now on CV) systems [JCLP07]. Let us consider for exam-
ple an electromagnetic field modelled as N non-interacting harmonic oscillators, described
by the Hamiltonian

Ĥ =
N

∑
i=1

h̄ωi

(
â†

i âi +
1
2

)
(1.1)

The description of the system is based on a Hilbert-space H = ⊗N
i=1Hi with infinite dimen-

sional Fock spaces Hi, âi and â†
i are the annihilation and creation operators of the respective

modes i = {1, 2, ...N} satisfying the bosonic commutation relation[
âi, â†

j

]
= δij

[
âi, âj

]
=
[

â†
i , â†

j

]
= 0 (1.2)

The corresponding dimensionless amplitude- and phase-quadratures are given by

X̂i =
âi + â†

i√
2

Ŷi = i
â†

i − âi√
2

(1.3)

with its commutation relation
[
X̂i, Ŷj

]
= iδij.

In general, to completely describe a CV-system implies working in an infinite dimensional
Hilbert space. To avoid this on can use a mapping of the density-matrices onto the phase
space. With this it is possible to reduce the space used to characterize the system to a 2N ×
2N-real vector space where N is the number of (boson-like) modes. Furthermore, as it will be
discussed below, it is possible to gain a full description of Gaussian states via the covariance
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1.1. CONTINUOUS VARIABLE SYSTEMS AND ENTANGLEMENT

matrix.
To achieve this, all quadrature operators are collected in a 2N-dimensional real vector R̂ and
its commutation relation into a matrix Ω ∈ C2N×2N , the so called symplectic form, where

R̂ =
(
X̂1, Ŷ1, ..., X̂N , ŶN

)T[
R̂i, R̂j

]
= iΩij Ω = ⊕N

l=1Ωl

Ωl =

(
0 1
−1 0

) (1.4)

Many physical processes, for example a beam splitter- or two mode squeezing-operation,
can be described as a linear transformation which acts on the system R̂′ = SR̂. Such trans-
formations will leave the symplectic form Ω invariant. All transformation which satisfy this
condition belong to the (real) symplectic group Sp(2N,R) on the 2N-dimensional phase space
([AI07, see sec. 3.2]).

R̂′ = SR̂ S ∈ Sp(2N,R) ⇔ STΩS = Ω (1.5)

In order to gain a description of a CV system with its density operator ρ, so called s-order
characteristic functions χs and their quasi-probability distributions Ws, which are linked to
the characteristic functions by Fourier-transform, are commonly used [AI07, BR97] where

χ(α)s = Tr(ρD̂α)e
s||α||2

2

Ws(R̂) =
1

π2

∫
R2N

d2NζeiζTΩR̂χs(ζ)
(1.6)

Here, α ∈ R2N , ||.|| denotes the euclidean norm and D̂α is defined as the displacement oper-
ator acting on all modes, generating a coherent state, given as

|0〉 = ⊗N
i=1 |0〉i

D̂α = exp(iR̂TΩα) D̂α |0〉 = |α〉
(1.7)

Especially worth mentioning are the quasi-probability distributions for s = {−1, 0, 1} which
corresponds to the Husimi ”Q-function”, the Wigner-function and the singular P-representation,
respectively [AI07, see sec. 2.1].

In this work, the main focus lies on Gaussian states which can be effectively described using
covariance matrices (from now on CM). A wide range of states falls into this definition, for
example coherent states, two-mode squeezed states and thermal states as well as the vacuum
state (see appendix A.1).
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CHAPTER 1. THEORY

The definition of a Gaussian state is rather straight forward [WHTH07]:

A state ρ is Gaussian⇔ χ(α)0 is Gaussian⇔W0(R̂) is Gaussian

ρ is Gaussian⇔ χ0(α) = e
1
2 αTσα+idTα ⇔W0(R̂) =

e−
1
2 (R̂−d)Tσ−1(R̂−d)

π
√

det σ

(1.8)

where d = 〈R̂〉ρ is the mean displacement vector of the system and σ is the covariance matrix
of the system given by:

di = 〈R̂i〉ρ = Tr(ρR̂i)

σij =
〈R̂iR̂j〉ρ + 〈R̂jR̂i〉ρ

2
− 〈R̂i〉ρ 〈R̂j〉ρ

(1.9)

All information that is needed to characterize the system is therefore stored in the first and
second moments of its quadratures. In addition to this, a Hamiltonian which is linear or
bilinear in its modes, e.g. of the form

Ĥ = ∑
i

gi âi + ∑
k,l

gkl âk âl + ∑
m,n

gmn â†
m ân + ∑

m,n
gmn âm â†

n + h.c. (1.10)

with gi and gmn being the corresponding coefficients, preserves the Gaussian character of the
state [Sch86].
It is now convenient to change into a displaced frame in order to set the mean vector of the
quadratures to zero so that di = 〈R̂i〉ρ = 0 which will from now on be always assumed.
This can be achieved by applying a phase-space translation, which is a local operation. Since
entanglement does not change under this kind of operation (see also sec. 1.1.3) the system
correlations are completely described by its CM.

Not every real valued symmetric 2N × 2N matrix describes a meaningful physical state,
i.e. a state that lives in a Hilbert-space and needs to be normalizable. In addition to this
there are some more constrains coming from the commutation relations via the Heisenberg
uncertainty relation which states that the variances of the considered modes cannot be si-
multaneously arbitrarily small [Hol82].

σ +
iΩ
2
≥ 0 (1.11)

This inequality also affects the symplectic eigenvalues λi of the CM σ. Let us consider the
symplectic transformation S ∈ Sp(2N,R) which diagonalizes the CM, this can be always as-
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1.1. CONTINUOUS VARIABLE SYSTEMS AND ENTANGLEMENT

sumed through the Williams-theorem [J36]:

STσS = ν⇔ ν +
iΩ
2
≥ 0

ν = ⊕N
i=1

(
λi 0
0 λi

) (1.12)

In terms of the symplectic eigenvalues λi inequality 1.11 takes the form:

det
[

ν +
iΩ
2

]
≥ 0⇔

N

∏
i=1

(
λ2

i −
1
4

)
≥ 0

λi ≥
1
2

∀i = {1, 2, ..., N}
(1.13)

Under any symplectic transformation of the group Sp(2N,R) the spectrum of the CM will not
change which gives rise to invariants for example the determinant det(σ) and the seralian
∆(σ)

det(σ) =
N

∏
i=1

λ2
i ∆(σ) =

N

∑
i=1

λ2
i (1.14)

which will also play an important role in a later point of this work.
Because of the greater relevance for the following discussion of this work, vacuum and co-
herent states as well as two-mode squeezed and thermal states, including also the most im-
portant symplectic transformations, are presented in the Appendix A.1.

1.1.2 Definition of entanglement using covariance matrices

In order to execute some of the most famous quantum protocols, for example quantum
super-dense-coding, quantum teleportation or quantum computation, the presence of non-
classical correlations, entanglement, is needed. Therefore a proper definition and distinction
between classical and non-classical correlation is indispensable, we consider two cases, pure
and mixed states and restrict to the bipartite case:

A pure state |ψ〉 ∈ H = HA ⊗HB of a bipartite system A and B is separable, and therefore not
entangled, if and only if it can be decomposed into |ψ〉 = |φ〉A ⊗ |ψ〉B .

By using the Schmidt decomposition of the same pure state |ψ〉 = ∑r
i=1 ci |φi〉A ⊗ |ψi〉B, the

presence of entanglement in the system is given if the Schmidt rank r > 1 [Per95, see sec. 5].
Let us now consider mixed states which are commonly described by the density matrix ρ =

∑n
i=1 pi |ψ〉i 〈ψ|i. This can be understood as a mixture of the state |ψ〉i with probability pi > 0

under the condition that ∑i pi = 1.

8



CHAPTER 1. THEORY

NPT-entangled 

PPT-entangled 

seperable 

Figure 1.1: In this schematic draft dif-
ferent sets of quantum states are shown,
the innermost set refers to all separable
states, PPT-entangled states are entan-
gled without violating the PPT-criterion
while NPT-entagled states have a nega-
tive partial transpose.

A physical mixed state of a bipartite system A and B is described by a hermitian semi-definite
trace-class density operator ρ with Tr(ρ) = 1. It is considered separable if and only if

ρ = ∑m
j=1 pjρ

A
j ⊗ ρB

j with pJ > 0 and ∑j pj = 1.

In case of mixed states, the detection of entanglement is not as simple as for pure states since
the decomposition for a mixed state is not unique. The question of entanglement in mixed
states alone has established dedicated research areas within quantum physics. Fortunately,
there are some criteria which help to detect entanglement, some even have a pendant for
Gaussian states of CV systems.

The PPT-criterion is one of the most famous tools for the characterisation of separability
since its computation is simple for pure and mixed states. Additionally this criterion detects
many entangled states. It was stated by A. Peres and the Horodecki family [Per96, HHH96]
that a state given by its density matrix ρs shows separability if its partial transpose over one
of the subsystems A or B is also a physical density matrix and therefore is also represented
by a hermitian semi-definite trace-one class operator

ρs is separable⇒ ρTi
s ≥ 0 i = A, B

with ρs = ∑
ijkl

pij
kl |ik〉 〈jl| and where e.g. ρTB

s = ∑
ijkl

pij
kl |il〉 〈jk|

(1.15)

Only for the case of systems whose description is based on a 2 × 2 or 2 × 3 dimensional
Hilbert space this is a necessary and sufficient condition. In general it is only a necessary
criterion for separability, there even exist states which fulfil the PPT-criterion but are still
entangled (see for example [BHN08]). Such ”bound” entanglement, according to today’s
knowledge, cannot be distilled to pure entanglement by LOCC or used for quantum pro-
tocols as quantum teleportation. On the other side, if the partial transpose of one of the
subsystems has negative eigenvalues, the system must be entangled (see also fig. 1.1).

The concept for bipartite entanglement detection of the PPT-criterion can also be brought to a
handy form for Gaussian CV systems [Sim00] since it corresponds to a sign-flip of all phase-
quadratures in one of the subsystems, for a separable state this sign-flip does not change the

9



1.1. CONTINUOUS VARIABLE SYSTEMS AND ENTANGLEMENT

physicality of the system. In terms of the CM σ of the system this means

P = 1NA ⊕
NB
i=1

(
1 0
0 −1

)
σ̃ = PTσP

σ corresponds to a separable state⇒ σ̃ +
iΩ
2
≥ 0

(1.16)

Where NA and NB are the number of modes for the subsystem A or B respectively. This
reflects the necessity for a separable state to have a positive partial transpose of the density
matrix [AI07, see sec. 4.4.1]. Once again, the criterion is in general necessary but not suffi-
cient, but for a Gaussian state where NA = 1 and NB is arbitrarily large it is also sufficient
[Sim00].
The PPT-criterion can also be expressed in terms of the symplectic eigenvalues λ̃i of σ̃ since,
for a physical CM of a Gaussian CV system, they have to satisfy 1.13 in order to be a separa-
ble state:

σ is a separable state⇒ λ̃i ≥
1
2

∀i = {1, 2, ..., N} (1.17)

so whenever a symplectic eigenvalue of the ”partial-transposed” CM is smaller than 1
2 the

corresponding state is entangled.

1.1.3 Entanglement measures and logarithmic negativity

In many cases, the need arises to not only detect entanglement in a bipartite Gaussian sys-
tem, but also quantify how much entangled a state is or maybe which of two states is most
entangled. Therefore, a measure for entanglement E(ρ) : ρ → E(ρ) ∈ R+ has to show the
characteristics [PV07] below:

1. ρs is separable⇒ E(ρs) = 0

2. Local operations and classical communication (LOCC) will not increase the entangle-
ment⇔ E(ÔLOCCρ) ≤ E(ρ)

3. The entanglement is invariant under local unitary transformations U = UA ⊗UB ⇔
E(Uρ) = E(ρ)

4. The measure is continuous⇔ |ρ1 − ρ2| → 0⇒ |E(ρ1)− E(ρ2)| → 0

Some other features as sub-additivity or convexity are also desired, but not required. A mea-
sure including those would be e.g. the entanglement of formation [PV07]. Unfortunately,
most of the measures which fulfill 1-4 are not very user-friendly since their evaluation is dif-
ficult.

10



CHAPTER 1. THEORY

In this work, we will mainly refer to the logarithmic negativity which is, technically speak-
ing, not a measure but an entanglement monotone since the fourth requirement is not ful-
filled, but in terms of application it is the most easiest to use and is also well defined for CV
systems. The negativity N (ρ) of a system directly quantifies how much the PPT-criterion is
violated by the partial transpose of the system and is given by

N (ρ) =
‖ρTi‖ − 1

2

‖ρ‖ = Tr
√

ρ†ρ

N (ρ) =
∑i |µi| − µi

2

(1.18)

Here µi are the eigenvalues of the corresponding partial transpose ρTi . The logarithmic neg-
ativity EN (ρ) is defined by

EN (ρ) = log(‖ρTi‖) = log(1 + 2N (ρTi)) (1.19)

For Gaussian 1× N states the negativities are a proper quantification of entanglement and
are easy to compute in terms of the symplectic eigenvalues λ̃j of the partial transpose of the
CM [AI07, see sec. 4.5.1] which is shown in more detail in appendix A.2.

1.1.4 Entanglement witnesses and the DGCZ-sum-criterion

Another, in terms of experimental implementation, practical application for detecting insep-
arability are the so called entanglement witnesses. Given a state ρ is entangled, then there
exist a hermitian operator Ŵ such that

ρ is entangled ⇐ Tr(Ŵρ) < 0

ρ is separable⇒ Tr(Ŵρ) ≥ 0
(1.20)

These kind of witnesses form the class of linear-witnesses since the density operator ρ ap-
pears only linearly in its definition. The set of separable states is not a convex polytope and
because of that a linear witness Ŵopt can be optimized to cover a tangent of the hyperplane
of the set of separable states, but it will never be able to fully detect them. To gain a more
precise description of the set of separable states non-linear witness e.g. of the form Tr(ρ2Ŵ)

can be used (see figure 1.2).
In this work we want to discuss a specific criterion in more detail which was proposed by
Duan et al. in 2000 [DGCZ00], the ”Duan-Giedke-Cirac-Zoller-sum-criterion” (”DGCZ-sum-
citerion”). In this work I will refer to this as Duan-criterion. It is formulated in terms of sec-
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1.1. CONTINUOUS VARIABLE SYSTEMS AND ENTANGLEMENT

Figure 1.2: This sketch shows the geometric
representation of two linear entnanglement wit-
nesses of which one is optimized by Ŵopt, and a
non-liear one.

non-linear-witness

Tr(ρWopt)=0

Tr(ρW)=0

seperable 

entangled

ond moments and therefore very useful using CMs, for a bipartite two-mode system charac-
terised by ρ with subsystems A and B and parameter a ∈ R it states

û = |a|X̂A +
1
a

X̂B

v̂ = |a|ŶA −
1
a

ŶB

ρ is separable⇒ 〈(∆û)2〉ρ + 〈(∆v̂)2〉ρ ≥ a2 +
1
a2 ∀a 6= 0

(1.21)

Here we use the same definition and commutation relation for X̂i and Ŷi as in the former
sections as well as the variances defined by 〈(∆û)2〉 = Tr(ρû2)− Tr(ρû)2. Once again, if a
state violates this inequality, it is entangled. From the definition of the operators û and v̂ it
follows that the Duan-criterion contains at most second moments of the two systems and can
therefore be rewritten in form of CM entries by using the matrix Ŵ(a):

Ŵ(a) =
1

a2 + 1
a2


a2 0 |a|

a 0
0 a2 0 − |a|a
|a|
a 0 1

a2 0
0 − |a|a 0 1

a2


ρ is separable⇒ Tr(Ŵ(a)σ) ≥ 1

ρ is entangled⇐ Tr(Ŵ(a)σ) < 1

(1.22)

For Gaussian states it has been shown that by using the ”standard form” of the CM this leads
to a necessary and sufficient criterion of separability [DGCZ00, see Theorem 2] and therefore
the entanglement witness can be optimized [HE06].
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CHAPTER 1. THEORY

1.2 The mechanical system

The discussed tools in section 1.1.1 can now be directly used to characterise the coupled
mechanical and optical systems which will be presented in the following. As it will be elabo-
rated in the next sections of this work, special interest is paid to the non-classical correlations
shared between both system, this can practically be achieved by the using covariance matri-
ces.
The optomechanical system offers a wide range of possibilities for its experimental realisa-
tion [AKM14, see sec. IV], for this discussion a model of a Fabry-Pérot-cavity, where one of
the mirrors is mounted on a spring as shown in figure 1.3, is used.

Xm

ωm γm,

ain

aout 

ωc κ,

a,a+

ω0

,aout
+

,ain
+

Figure 1.3: Schematic of an optomechanical cavity with its most important parameters and operators
as mentioned in chapter 1. A mirror is mounted onto a spring resulting into the frequency ωm and
mechanical damping rate γm. The cavity of the system is formed by this movable mirror and a second
one right in front of the oscillatably system yielding an intra-cavity field with the mode operators
â/â†, frequency ωc and its energy decay rate κ. The optomechanical system is driven by a laser with
frequency ω0, âout/â†

out and âin/â†
in represent the output- and input-field operators. The position of

the movable mirror is given by the position-operator X̂m.

1.2.1 Classical mechanical oscillators

The problem of an oscillatory system in one dimension and its equation of motion is well
known and studied in classical physics. A mass m attached to a spring with spring-constant

k oscillates at a frequency ωm =
√

k
m . Neglecting all damping effects the canonical equations

of motion of the systems quadratures x and p are given by:

ṗ = −mω2
mx ẋ =

p
m

(1.23)

The energy of the mechanical oscillator is given by its Hamilton functionH

H =
p2

2m
+

kx2

2
(1.24)

Up to here it was always assumed that the oscillator is undamped, in order to describe

13



1.2. THE MECHANICAL SYSTEM

a more realistic situation, linear damping of the velocity (”viscous damping”) in the system
is now introduced. Therefore the equation of motion become for the position quadrature
becomes

mẍ(t) + mγm ẋ(t) + mω2
mx(t) = Fext(t) (1.25)

here γm denotes the damping rate of the system and Fext(t) the sum of all external noise
forces which are assumed to be stochastic. This kind of stochastic differential equation is
also known as Langevin equation. It can be used e.g. to model the system dynamic when
coupling to a thermal bath.
The solution of the equation of motion for this object is then found by applying the Fourier-
transform and introducing the susceptibility χ(ω)

x̃(ω) = χ(ω)F̃ext(ω)

χ(ω) =
ωm

m
[
(ω2

m −ω2) + iγmω
]−1 (1.26)

By using χ(ω) and the fluctuation-dissipation-theorem (FDT) it is now possible to calculate
e.g. the noise-power-spectrum of the position in equilibrium with a thermal bath. For further
purpose, the susceptibility is now used for characterising the stochastic force F (the index
will from now on be dropped).
The noise-power-spectrum of the thermal force, when the oscillator is in contact with the
bath at temperature T, will have the following form [Sau90]

SFF(ω) =
4kbT
h̄ω

Im(χ(ω)−1) =
4kbTγm

h̄ωm
(1.27)

which is connected to the auto-correlation function of the thermal force by the Wiener-
Khinchin theorem

〈F(t)F(t + τ)〉 = 2kbTγm

h̄ωm
δ(τ) (1.28)

Here, 〈.〉 denotes the ensemble average and δ(τ) is the Dirac delta function. In order to gain a
quantum description for the thermal noise, this classical approach is used to introduce noise
operators in the next section.

1.2.2 From classical to quantum

The transition between classical mechanics and quantum-mechanics is now made by replac-
ing the initial quadratures x and p by their corresponding hermitian quantum operators x̂
and p̂ satisfying the well known commutation relation [x̂, p̂] = ih̄. The Hamiltonian in 1.24

14



CHAPTER 1. THEORY

is also an operator valued object Ĥ.

Ĥ =
p̂2

2m
+

kx̂2

2
(1.29)

For further use it is now convenient to introduce dimensionless quadrature operators X̂ and
P̂ as well as the ladder operators already known from sec. 1.1.1 . The annihilation-operator
b̂ and the creation-operator b̂† are defined over X̂ and P̂ by:

b̂ =
X̂ + iP̂√

2
b̂† =

X̂− iP̂√
2[

b̂, b̂†
]
= 1

X̂ = x̂/xzp P̂ = p̂/pzp

xzp =

√
h̄

ωmm
pzp =

√
h̄ωmm

[
X̂, P̂

]
= i

(1.30)

The last identity is a direct consequence of the former commutation relations of x̂ and p̂.
With those operators, the Hamiltonian of the system can be rewritten as

Ĥ =
h̄ωm

2
(
X̂2 + P̂2) = h̄ωm

(
b̂†b̂ +

1
2

)
= h̄ωm

(
n̂b +

1
2

)
(1.31)

Any eigenstate |n〉 of the hermitian number operator n̂b will automatically also be an eigen-
state of the systems Hamiltonian. Since n̂b is a positive operator (see [Sch07]) we know that
its eigenvalues obey n ≥ 0 and from different commutation relations between n̂b,b̂ and b̂† it
follows that:

n̂b |n〉 = n |n〉 n ∈N

Ĥ |n〉 = En |n〉 En = h̄ωm

(
n +

1
2

)
b̂ |n〉 =

√
n |n− 1〉 b̂† |n〉 =

√
n + 1 |n + 1〉

b̂ |0〉 = 0

(1.32)

The states |n〉 are called Fock states and form an orthonormal basis in Fock-space. It gives the
number of excitations in the mode with frequency ωm. As we can see, even for the vacuum
state |0〉 the energy of the system is non-zero with a value of h̄ωm/2 being the zero-point
fluctuation of the position and momentum operator.

Consequently, substituting the thermal force by an operator valued object F →
√

2γm f̂ yields
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1.2. THE MECHANICAL SYSTEM

the quantum Langevin equations (QLE):

˙̂X = ωmP̂ ˙̂P = −ωmX̂− γmP̂ +
√

2γm f̂ (1.33)

The correlation function of the hermitian noise operator f̂ is now given by [Hof15]

〈 f̂ (t) f̂ (t + τ) + f̂ (t + τ) f̂ (t)〉ρ =

1
ωm

∫ ∞

0

dω

π
ω coth(

h̄ω

2kBT
) cos(ωτ))

kbT�h̄ωm' (2n̄ + 1)δ(τ)
(1.34)

Here n̄ represents the mean excitation number of the thermal bath at temperature T and
at frequency ωm. As we can see, the noise in general is not delta-correlated, but for high
temperatures such that kbT � h̄ωm and large quality factors Q = ωm

γm
the approximation

made in 1.34 will hold.
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α

αout1

αin1 αin2

αout2

κ1 κ2

L

Figure 1.4: Fabry-Pérot cavity formed by two highly reflective mirrors separated by a distance L.
Because of this boundary condition the standing wave between the mirrors only allows to have spe-
cific frequencies ωn (represented by the first two modes). The field inside the cavity is described by
the complex field amplitude α, each mirror has his own energy decay rate κi as well as an input and
output-field characterized by the amplitudes αi

in/out where i = 1, 2 for the input and output mirror.

1.3 The optical system

Just like in the case of the mechanical oscillators there are various realisations of the optical
systems. All of them can be effectively described by one structure, the Fabry-Pérot-cavity,
which will also serve as our toy-model to introduce the important concepts and tools we will
use in a later part of this work.

1.3.1 Classical description of optical cavities

A Fabry-Pérot-cavity consists in its simplest version of two highly reflective mirrors which
are placed parallel to each other by a distance L (see figure 1.4).
Because of this boundary condition the standing wave of the light field inside the cavity has
specific frequencies ωn (represented by the first two modes in fig. 1.4 ). The field inside
the cavity is described by the complex field amplitude α, each mirror has its own energy
decay rate κi as well as an input and output-field characterized by the complex amplitudes
α
(i)
in/out where i = 1, 2 stands for the input and output mirror respectively. Inside the cavity,

due to the properties of a standing wave, only frequencies with a specific wavelength λn are
allowed. Those are linked to the frequency and the length of the cavity by:

λn = 2nL n ∈N

ωn =
2cπ

λn
=

cπ

nL

∆ω =
cπ

L

(1.35)
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1.3. THE OPTICAL SYSTEM

where c is the velocity of light. Two modes ωn and ωn+1 with arbitrary n ≥ 1 are therefore
separated by the free-spectral range ∆ω. For the further discussion we will restrict the de-
scription to the fundamental mode ω1 = ωc of the cavity. It is now convenient to define the
finesse F of the cavity by [AKM14]:

F =
∆ω

κ
(1.36)

Here κ is the decay rate of the photon intensity during a specific time interval. For high
Q-factors we can express the decay rate κ as the sum of many loss channels, for example as

κ = κ1 + κ2 + κ̃ (1.37)

where κ1 specifies the losses at the input-mirror while κ2 stands for the very same losses at
the output-mirror. κ̃ covers all other mechanism which arise in the cavity e.g. scattering and
absorption losses.

The different field amplitudes in and outside the cavity, which can be seen in figure 1.4,
will be now introduced. For both mirrors, denoted by the superscripts 1 (input-mirror) and
2 (output-mirror), we have an input and output field. We are mostly interested in the fields
described by α

(1)
in and α

(1)
out since they can easily be accessed through the experiment. More-

over, since we want to deal with an over-coupled cavity, it will be assumed κ1 ≈ κ � κ2, κ̃

which allows one to neglect the fields given by α
(2)
in and α

(2)
out.

Now consider the case of the intra-cavity field α driven by a laser with frequency ω0 and
complex field amplitude E so that α

(1)
in (t) = E e−iω0t. The absolute value of the amplitude

|E |2 can be understood as observed photons per time and is connected to the power P of the
laser by E =

√
P

h̄ω0
.

The time evolution of the intra-cavity field amplitude α(t) is described by

α̇(t) = −
(

iωc +
κ

2

)
α(t) +

√
κ1E(t)e−iω0t (1.38)

We now rotate to a frame of the laser frequency by substituting α(t)→ α(t)e−iω0t. This leads
to the equations of motion given by:

α̇(t) = −
(
−i∆0 +

κ

2

)
α(t) +

√
κ1E(t) (1.39)

Here we have introduced the laser detuning ∆0 = ω0 − ωc. Analogous to the case of a me-
chanical oscillator, we can also define the optical susceptibility by taking the Fourier trans-
form of the upper relation and rearranging the respective terms:

χ(ω) =
α̃(ω)
√

κ1Ẽ(ω)
=
(κ

2
+ i(ω− ∆0)

)−1
(1.40)
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Under the condition that the amplitude of the laser drive is constant in time E(t) = E , the
intra-cavity field amplitude will arrive at a steady state so that α̇ = 0 [AKM14, see sec. II.A.2],
for this case the steady-state amplitude of the intra-cavity field is given by

α̇ = 0 = −
(
−i∆0 +

κ

2

)
α(t) +

√
κ1E

α =

√
κ1E

κ
2 − i∆0

(1.41)

In this situation, the average energy Ē inside the cavity is then given by the product of h̄ωc

and the average photon number n̄ = |α|2:

Ē = h̄ωcn̄ = P
ωc

ω0

κ1

∆2
0 +

κ2

4

(1.42)

1.3.2 Quantum description of the optical system

Analogous to the mechanical system, we can describe the electromagnetic field inside the
cavity by substituting the field amplitudes by operators, more precisely the intra-cavity field
is substituted by α → â and the external fields by α

(i)
in/out → â(i)in/out where we have assumed

the phases of the operators to be zero. However, as the external fields at the output mirror are
not of much interest to us, especially as they would be more difficult to access experimentally,
their contribution to the dynamics of the system will be neglected from now on.
These operators corresponds to that in the mechanical pendant having annihilation- and
creation-operators â and â† whose action on a Fock-state is given by the very same relation
as in eq. 1.32, they will create or annihilate a photon of frequency ωc. The classical relations
of the previous section are obtained by taking the expectation value 〈Ô〉 = Tr(ρÔ) of the
corresponding operators and time derivatives.
The Hamiltonian Ĥ of the optical system has a similar form to the mechanical Hamiltonian,
using the number operator n̂a it is given by:

Ĥ = h̄ωc

(
â† â +

1
2

)
= h̄ωc

(
n̂a +

1
2

)
[

â, â†
]
= 1

(1.43)

This is completely analogous to the relations introduced for the mechanical system in 1.31.
For later use the amplitude- and phase-quadrature operators X̂ and Ŷ, which automatically
satisfy the commutation relation

[
X̂, Ŷ

]
= i, are defined by :

X̂ =
(â† + â)√

2
Ŷ =

i(â† − â)√
2

(1.44)
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We can also formulate QLE in the optical system complementary to 1.38 [GC85] for the
ladder-operators:

˙̂a(t) = −
(

iωc +
κ1

2

)
â(t) +

√
κ1 â1

in(t)[
âin(t), â†

in(t + τ)
]
= δ(τ)

[
â†

in(t), âin(t + τ)
]
= 0

(1.45)

Here, â1
in(t) is the input-field which in this work will be assumed to be in a coherent state

to take into account the driving laser. This means that the mean value of â1
in(t) is not equal

to zero. By introducing a driving Hamiltonian (as done in eq. 1.50) it can be readjusted to
〈â1

in(t)〉ρ = 0. In terms of the amplitude- and phase-quadrature, the corresponding QLE
have the form

˙̂X(t) = −κ1

2
X̂(t) + ωcP̂(t) +

√
κ1X̂1

in(t)

˙̂P(t) = −κ1

2
P̂(t)−ωcX̂(t) +

√
κ1P̂1

in(t)
(1.46)

where we have defined the input-quadratures X1
in(t) and P1

in(t) in accordance with relation
1.44. Comparing these optical QLE with the mechanical QLE in 1.33, we see that both optical
quadratures show a constant decay rate of κ1/2.
Since we are mainly interested in the experimentally accessible input- and output-mode at
the first mirror, a formulation for the output-field is needed. Fortunately, there exists such a
relation coming from time-reversing the QLE of the system [GC85, see sec. B]

â1
out(t) =

√
κ1 â(t)− â1

in(t) (1.47)

These input-output relation can also be formulated for the previously introduced channels
at the second mirror â2

in/out.
â2

out(t) =
√

κ2 â(t)− â2
in(t) (1.48)
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1.4 Optomechanical coupling and interaction

We now consider an optomechanical cavity where one of the mirrors of a Fabry-Pérot-cavity
is mounted to a spring (see figure 1.3). As it will be shown in this section, the radiation
pressure force acting on the movable mirror causes an interaction between the optical and
mechanical system. This results in many interesting effects for example cooling of the me-
chanical motion down to its ground state, entanglement creation and state-swap between
the two subsystems. This will all be described by a linearised Hamiltonian, yielding QLE
which are to be solved in the next chapter 2.

1.4.1 Basics of the optomechanical interaction

In order to study the rudimentary process behind the optomechanical interaction we start
with the free evolution Hamiltonian of the mechanical oscillator and the Fabry-Pérot-cavity

Ĥ0 = h̄ωc â† â + h̄ωmb̂†b̂ (1.49)

The vacuum contribution to the systems Hamiltonian is neglected since it will not affect the
dynamics, especially the QLE. To model a constant laser drive with laser-frequency ω0 we
will add to the original Hamiltonian Ĥ0 a driving Hamiltonian Ĥdrive with the, in general,
time-dependent driving-strength E(t)

Ĥdrive = ih̄
(
E(t)â†e−iω0t − E∗(t)âeiω0t

)
(1.50)

In the model of a Fabry-Pérot-cavity as given in fig. 1.3, the frequency of the cavity is
not a constant since the length of the cavity depends on the displacement of the mirror by
L(xm) = L− xm (here xm carries the dimension as discussed in sec. 1.2). For positive values
of xm, assuming that no displacement means xm = 0, the cavity length decreases, the fre-
quency ωc becomes bigger, therefore the energy stored inside the cavity also increases. This
energy-loss can be intuitively understood as the momentum- and energy-transfer between
the mechanical oscillator and the optical field, the same holds the other way around for neg-
ative values of xm.
The frequency, dependent on the mirrors displacement, is then given by

ωc(xm) =
πc

L(xm)
=

πc
L− xm

ωc(xm) ≈ ωc(0) +
∂ωc(xm)

∂xm

∣∣∣∣
xm=0

xm +O(xm)
2

ωc(xm) ≈ ωc +
ωc

L
xm +O(xm)

2

(1.51)
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The approximation made here is very precise for small displacements as they are typically
obtained experimentally. Neglecting terms of quadratic or higher order in the displacements
and substituting the position operator xm → x̂m, original Hamiltonian takes the form:

Ĥ0 = h̄ωc(x̂m)â† â + h̄ωmb̂†b̂ = h̄ωc â† â + h̄ωmb̂†b̂ + h̄
ωc

L
x̂m â† â (1.52)

Together with the driving-Hamiltonian and the dimensionless position-operator of the me-
chanical system X̂m the systems Hamiltonian is given by:

Ĥ = Ĥ0 + Ĥdrive = h̄ωc â† â + h̄ωmb̂†b̂ + h̄g0X̂m â† â

+ih̄
(
E(t)â†e−iω0t − E∗(t)âeiω0t

)
g0 =

ωcxzp

L

(1.53)

Here g0 is the bare photon coupling and it describes the interaction between one cavity pho-
ton and a quantized excitation, a phonon, of the mechanical oscillator. For further use it is
convenient to change into a rotating frame with the laser frequency ω0 in order to drop the
time dependence of the drive-Hamiltonian. We therefore have the Hamiltonian

Ĥ = −h̄∆0 â† â + h̄ωmb̂†b̂ + h̄g0X̂m â† â + ih̄
(
E(t)â† − E∗(t)â

)
(1.54)

Here we use the laser detuning ∆0 = ω0−ωc. As it can be seen, this Hamiltonian consists of
linear and non-linear terms since it also involves the interaction ∝ X̂m â† â = â† â(b̂† + b̂)/

√
2

with three mode operators.
With the Hamiltonian from eq. 1.54 and the relations presented in the previous section, the
following QLE can be derived [GC85]

˙̂Xm = ωmP̂m

˙̂Pm = −ωmX̂m − γmP̂m − g0 â† â +
√

2γm f̂

˙̂a = (i∆0 −
κ

2
)â− ig0X̂m â + E(t) +

√
κâin

(1.55)

1.4.2 Linearising the systems QLE and Hamiltonian

The coupling between mechanics and optics characterized by the bare photon-coupling g0

can be rather small and will not cause any observable effects. However it is possible to effec-
tively increase the coupling between the two subsystems with the help of the driving laser.
This increases the number of photons travelling inside the cavity which, as it will be shown,
introduces a stronger coupling and allows to linearise the QLE. Using this method, it will be
possible to neglect non-linear terms which scale with the bare photon coupling, in this ap-
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proximation it is possible to extract a Hamiltonian which shows two-mode-squeezing (TMS)
and also beam-splitting (BS) interaction.

Let us consider the cavity field-amplitude as the sum of an average field amplitude 〈â〉 = α

and some zero-mean field-fluctuation δâ which are small compared to α. We also apply this
transformation to the mechanical latter-operators

â = α + δâ 〈δâ〉 = 0

b̂ = β + δb̂ 〈δb̂〉 = 0
(1.56)

The QLE for the fluctuations of â and b̂ can be found by formally changing into a displaced
frame using the unitary operator Û(α, β) = D̂αD̂β:

D̂αD̂β âD̂†
αD̂†

β = â− α = δâ⇔ δ ˙̂a = ˙̂a− α̇

D̂αD̂βb̂D̂†
αD̂†

β = b̂− β = δb̂⇔ δ ˙̂b = ˙̂b− β̇
(1.57)

In this new frame, the QLE of the fluctuations are given by

δ ˙̂a =

(
i∆0 −

κ

2
− i

g0√
2
(δb̂† + δb̂)

)
δâ− i

g0√
2
(β + β∗)δâ− i

g0√
2
(δb̂† + δb̂)α

+

(
i∆0 −

κ

2
− i

g0√
2
(β + β∗)

)
α + E(t)− α̇ +

√
κâin

δ ˙̂b = −iωmδb̂ +
γm

2
(δb̂† − δb̂)− i

g0√
2

δâ†δâ− i
g0√

2
(αδâ† + α∗δâ) + i

√
γm f̂

−iωmβ− i
g0√

2
|α|2 + γm

2
(β∗ − β)− β̇

(1.58)

The time-evolution of the fluctuation operators δâ and δb̂ is described by the sum of terms
including the very same fluctuation operators as well as average field amplitudes α and β.
Considering only these average field amplitudes and their time evolution from above, they
can be demanded to fulfil the following differential equations:

α̇ =

(
i∆0 −

κ

2
− i

g0√
2
(β + β∗)

)
α + E(t)

β̇ = −iωmβ− i
g0√

2
|α|2

(1.59)

These equations correspond to the classical evolution of the amplitudes found by averaging
over the non-linearised QLE in eq. 1.55. In the case of constant driving strength E(t) = E
and only looking at the steady-state, the field-amplitudes will not change any more in time
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and therefore reach the following values:

α =
E

i∆0 − κ
2 − i g0√

2
(β + β∗)

β = − g0|α|2√
2ωm

(1.60)

Please note that for the steady state the momentum-average will disappear since (β∗ − β) =

0, but the position of the oscillator will be displaced to a new equilibrium-position. It de-
pends strongly on the intra-cavity field amplitude α which can be enhanced by choosing a
sufficiently big drive strength.
Assuming that the average field amplitudes satisfy 1.59, the QLE for the fluctuations (to
simplify our notation I will drop the δ for all operators), keeping in mind that quantum
fluctuations of the respective fields are considered here, can be rewritten in the form:

˙̂a =
(

i∆− κ

2

)
â− i

g0√
2
(b̂† + b̂)â− i

g0α√
2
(b̂† + b̂) +

√
κâin

˙̂b = −iωmb̂ +
γm

2
(b̂† − b̂)− i

g0√
2

â† â− i
g0√

2
(αâ† + α∗ â) + i

√
γm f̂

∆ =

(
∆0 −

g0√
2
(β + β∗)

) (1.61)

Here we introduced a new detuning ∆ and neglect second-order fluctuation terms e.g. b̂â,b̂† â
or â† â since they all scale with bare-photon coupling g0. The bare photon coupling is rather
small compared to g0α, but all linear terms now have coefficients which scale with the term
g0α. The coupling can now be enhanced by choosing the absolute value of the drive-strength
E sufficiently big so that |α|2 � 1. We can also choose the phase of E such that α ∈ R (which
will be assumed from now on).
Using that X̂in = (â†

in + âin)/
√

2 as well as P̂in = i(â†
in− âin)/

√
2, for the systems quadratures

the final linearised QLE arise:

˙̂Xm = ωmP̂m

˙̂Pm = −ωmX̂m − γmP̂m −
√

2g0αX̂c +
√

2γm f̂
˙̂Xc = −

κ

2
X̂c − ∆P̂c +

√
κX̂in

˙̂Pc = −
κ

2
P̂c + ∆X̂c −

√
2g0αX̂m +

√
κP̂in

(1.62)

With the upper approximations it is possible to formulate a new linearised Hamiltonian Ĥlin
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which reproduces the newly found QLE of the field fluctuations.

Ĥlin = −h̄∆â† â + h̄ωmb̂†b̂ + h̄g(b̂† + b̂)(â† + â)

g =
g0α√

2

(1.63)

Here g is the optomechanical coupling-strength which emerges from the bare-photon cou-
pling by a multiplication of the average field amplitude α/

√
2. By choosing a sufficiently

high driving-strength therefore increases the coupling between the mechanical and optical
subsystems fluctuations.

Expanding the last term of this Hamiltonian, we find two interactions which can be en-
hanced by the right choice of the detuning ∆ (see fig. 1.5). Let us first consider all terms
which preserve the absolute number of photons and phonons in the system

h̄g(â†b̂ + âb̂†) (1.64)

We will refer to this part of the Hamiltonian as beam-splitter-interaction (BS). For every
photon annihilated there is a phonon created and vice-versa so that the absolute number
of quanta is conserved trough this process. This interaction can be used as a state-swap-
operation from the mechanics onto the optical mode and the other way around or, in the
case of ωm � κ, for ground-state cooling of the mechanical motion [Hof15, see sec. 1.4].
On the other hand, we have an interaction-term which creates both mechanical and optical
excitation at the same time and therefore might create entanglement between the mechanical
and optical modes. We will refer to this as two-mode-squeezing-interaction (TMS)

h̄g(â†b̂† + âb̂) (1.65)

If we look at the Hamiltonian in the interaction picture by applying the unitary Û(t) =

exp(−i∆â† ât + iωmb̂†b̂t) we find that

Ĥ I = Û(t)ĤlinÛ(t)† = −h̄∆â† â + h̄ωmb̂†b̂+

h̄g(âb̂†ei(∆+ωm)t + â†b̂e−i(∆+ωm)t) + h̄g(â†b̂†e−i(∆−ωm)t + âb̂ei(∆−ωm)t)
(1.66)

If we set the detuning to ∆ = ωm, the BS interaction shows a rotation frequency which is pro-
portional to 2ωm while the TMS part will not oscillate at all. Now taking the rotating-wave-
approximation (RWA), the fast oscillating BS-terms can be neglected and the TMS-interaction
becomes the leading effect in the Hamiltonian. We will call this the ”blue-detuned”-regime
since ∆ > 0.
On the other side, if we have ∆ = −ωm and therefore work in the ”red-detuned”-regime,
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Δ=-ωm

ωm

ωc

Δ=ωm

ωm

ωc

Figure 1.5: Another way of understanding the TMS- and BS-interaction is by a three-mode scattering
scheme. For a red-detuned laser drive ∆ = −ωm (left-hand side represented by the red arrow), a
phonon of frequency ωm in the mechanical system is annihilated and a photon with energy h̄ωc is
created in the optical field. On the other hand, if the cavity is driven by a blue-detuned laser ∆ = ωm
(right-hand side represented by the blue arrow), the lasers energy is used for creating a phonon with
energy h̄ωm and a photon in the cavity field while the laser photon is annihilated in this process.

only the BS interactions survive the RWA while the TMS terms, which are now oscillating
with frequency ∝ −2ωm, will ”average out”. In this situation it is possible to use the effect
of the state-swap as well as the finite decay-width of the cavity for cooling the mechanical
system down to its ground state. A more detailed discussion is given in A.4.

A collection of the most important relations, including the QLE and correlations of differ-
ent operators used throughout this chapter, are summarized in appendix A.3.
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Chapter 2

Solving the QLE

In this chapter I will discuss some possibilities of solving the QLE we found in section 1.4.2
in eq. 1.62 for the intra-cavity light modes and the mechanical oscillator. This will also serve
as a starting point to solve the QLE for the output light field and the mechanical system. This
will finally lead to the systems covariance matrix which will allow us to discuss and detect
entanglement shared between two temporal separated pulses in the output-light field and
the oscillator as well as between the pulses themselves.

2.1 The intra-cavity field

2.1.1 Basic definitions and relations

In the previous chapter we found the final QLE given in eq. 1.62 which we will now restruc-
ture in order to gain a clearer insight.
First, we will collect all quadratures of the mechanical and the light modes in one vector
X(t) =

(
X̂m(t), P̂m(t), X̂c(t), P̂c(t)

)T which will give us the following set of stochastic differ-
ential equations for the intra-cavity system

Ẋ(t) = AX(t) + N(t) (2.1)

Here we define N(t) =
(

0,
√

2γm f̂ (t),
√

κX̂in(t),
√

κP̂in(t)
)T

is the vector of all noise opera-
tors in the system and the matrix A is given by

A =


0 ωm 0 0
−ωm −γm −2g 0

0 0 − κ
2 −∆

−2g 0 ∆ − κ
2

 (2.2)
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2.1. THE INTRA-CAVITY FIELD

where we use the same definitions of the parameters as in the last chapters. This set of dif-
ferential equations can generally be solved by the ”variation of constants”-technique which
will yield

X(t) = eAtX(0) +
∫ t

0
dt′eA(t−t′)N(t′) (2.3)

As already discussed in sec. 1.1.1, the formalism behind covariance matrices allows to deal
with these type of CV systems in a very practical manner. Therefore the time-evolution of
the systems CM, which is of great interest for the further discussion, is given by:

σ̇(t) = Aσ(t) + σ(t)AT + D

σ(t) = eAtσ(0)eAT t +
∫ t

0
dt′eA(t−t′)DeAT(t−t′)

D = diag
(

0, γm(2n̄ + 1),
κ

2
,

κ

2

) (2.4)

The matrix D collects the correlations of the different noise channels as modelled in this
work. Here, it was also assumed that the correlations of the thermal bath coupling to the
mechanical oscillator shows the correlations discussed in eq. 1.34, which is a good approx-
imation for kbT � h̄ωm and large quality factors. The matrix D, as it is discussed in more
detail in sec. B.2, is found by:

〈Ni(t)Nj(t′) + Nj(t′)Ni(t)〉
2

= Dijδ(t− t′) (2.5)

Since most of the different noise channels in N are uncorrelated the matrix D will have the
diagonal form shown above.
In this work we will restrict the discussion onto the systems steady state. The steady-state
is reached after a sufficiently long time and can safely be assumed if the real part of the
eigenvalues of the matrix A are all negative, this condition is well characterised by the Routh-
Hurwitz-stability-criterion [GR80]. The detailed definition of Routh-Hurwitz-criterion as
well as the Hurwitz matrices are given in B.1, for further discussion only the results will be
used in here.
In order to ensure the steady state of the system, the following two criteria must be fulfilled:

γmκ

([
κ2

4
+ (ωm + ∆)2

] [
κ2

4
+ (ωm − ∆)2

]
+ γm

[
(γm + κ)(

κ2

4
+ ∆2)

]
+ κω2

m

)
−4∆ωmg2(γm + κ)2 > 0

ωm

(
κ2

4
+ ∆2

)
+ 4g2∆ > 0

(2.6)
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For the case of a blue-detuning ∆ > 0 the second condition is automatically fulfilled while
the first one needs to be checked, and vice-versa for a red-detuning ∆ < 0. In the parameter
regime which is of interest in this work, blue-detuning of the driving-laser will introduce in-
stability in the system while the red-detuned case gives a wide range of stability depending
on the specific choice of all the systems parameters. Using a blue detuned drive laser en-
hances the TMS-interaction in the optomechanical system leading to generation of phonons
in the oscillator and therefore heating up the mechanical system. But from now on it will
always be assumed that both conditions are satisfied.

With the above assumptions, the system will reach its steady states for t → ∞ and the time
evolution from eq. 2.4 simplifies to

σss = σ(∞) =
∫ ∞

0
dt′eAt′DeAT t′ (2.7)

In terms of the differential equation for σ(t) in eq. 2.4 , the time-derivative of the systems
steady-state CM σss will be zero, it follows that the CM can also be found by solving the
following system of linear equations:

σ̇ss = 0 = Aσss + σss AT + D

Aσss + σss AT = −D
(2.8)

These type of relation is called continuous ”Lyapunov”-equation, a special case of the Sylvester
equation, which will yield a unique and symmetric solution for σss. For this special problem
there already exist algorithms [BS72] to find its solution supported by many computing sys-
tems for example Mathematica or MATLAB.

2.1.2 Solutions in Fourier-space

After the above discussion of the different ways of solving the QLE in an exact or approxi-
mated way, we will now have a look onto another approach which will come handy for the
out-put fields we will discuss in the next sections. The now presented tools are based on the
work of Genes et al. [GMTV08].
Considering the set of differential equations as we formulated them in eq. 2.1, by applying
the Fourier-transform F and using its properties for time-derivatives we have

X̃(ω) = F [X](ω) =
1√
2π

∫ ∞

−∞
dteiωtX(t)

F [Ẋ](ω) = −iωX̃(ω) = AX̃(ω) + Ñ(ω)

X̃(ω) = −(iω1 + A)−1Ñ(ω)

(2.9)
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2.1. THE INTRA-CAVITY FIELD

In order to get the systems dynamics, one has to find the inverse of (iω1 + A) and perform
an inverse Fourier-transform on both sides of the last line. However, as one can easily see,
this is a demanding procedure in terms of finding an analytical solution and it would be
much more interesting if there were a less complex way for this. Fortunately, if we look at
the systems CM, the problem becomes much clearer and also a method for performing the
exact calculation can be stated.
Referring back to the definition of the CM in 1.9, by replacing each vector-entry X(t)i/j by its
Fourier-transform and, as already justified in sec. 1.1.1, assuming the mean vector 〈X(t)i/j〉
to be zero yields

σij =
1

4π

∫∫
R2

dωdω′e−it(ω+ω′) 〈X̃i(ω)X̃j(ω
′) + X̃j(ω

′)X̃i(ω)〉 (2.10)

It was also assumed that the operators collected in X are correlated at the same time which
will result in the exponential factor under the integral as given here.
Using the previous relations for the Fourier-transform of Xi gives

σij =
1

4π

∫∫
R2

dωdω′e−it(ω+ω′)×

∑
k,l
〈Mik(ω)Mjl(ω

′)Ñk(ω)Ñl(ω
′) + Mik(ω)Mjl(ω

′)Ñl(ω
′)Ñk(ω)〉

M(ω) = (iω1 + A)−1

(2.11)

For further simplification, the noise correlation matrix in Fourier-space is introduced by

〈Ñk(ω)Ñl(ω
′) + Ñl(ω

′)Ñk(ω)〉
2

= Dklδ(ω + ω′)

D = diag
(

0, γm(2n̄ + 1),
κ

2
,

κ

2

) (2.12)

As already mentioned there are no expected correlations between the different noise chan-
nels and quadratures, therefore the matrix D must be of diagonal form also for its Fourier-
transformation. A more detailed calculation is given in appendix B.2. In here the approxi-
mation from eq. 1.34 was used, the exact expression would be D22(ω) = γmω

ωm
coth( h̄ω

2kbT ). But
as already discussed in sec. 1.2, even for temperatures around 10K the factor h̄ω/2kbT � 1
for typical frequencies and in addition with a large quality factor the approximation meets
the needed requirements.
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Reinserting this into the expression for the CM one gets to

σij =
1

2π

∫∫
R2

dωdω′e−it(ω+ω′) ∑
k,l

Mik(ω)Dkl(ω)δ(ω + ω′)Mjl(ω
′)

σ =
1

2π

∫
R

dωM(ω)D(ω)MT(−ω)

(2.13)

Having a closer look at M(ω) one recognizes that it can be separated into a polynomial
Q(ω) in the denominator and a matrix pij(ω) in the nominator also consisting of different
polynomial.

Mij(ω) =
pij(ω)

Q(ω)
(2.14)

The matrix pij(ω) can be set to be, up to a determinant, the inverse matrix of iω1 + A. This
is in linear algebra also known as the ”adjugate matrix” of iω1 + A:

p(ω)(iω1 + A) = (iω1 + A)p(ω) = det(iω1 + A) (2.15)

With this and the definition of M(ω) the exact form of the polynomial Q(ω) is also deter-
mined

M(ω)(iω1 + A) =
p(ω)

Q(ω)
(iω1 + A) = 1⇔ Q(ω) = det(iω1 + A) (2.16)

Therefore, reinserting this into eq. 2.13 the matrices can be decomposed into integrals over
rational functions. This gives for the final frequency integral

σij =
1

2π

∫ ∞

−∞
dω ∑

k

pik(ω)Dkk(ω)pT
kj(−ω)

Q(ω)Q(−ω)
(2.17)

Here the diagonal form of D(ω) was already taken into account, next, a study of the degree
of the polynomials seems to be useful.
The simplest polynomial, Q(ω), can only be of fourth order in ω which can easily be seen in
the investigation of stability in eq. B.1. The parameter λ is thereby replaced by the frequency
−iω, this will allow to make statements about the new parameter coming from the stability-
criterion. For the system reaching a steady-state, the eigenvalues of the matrix A must have
negative real parts or equivalently fulfil the Routh-Hurwitz-criterion. This can be directly
translated into a condition for the roots of Q(ω) keeping in mind that:

λ = −iω

Re(λ) = Im(ω) Im(λ) = −Re(ω)

Re(λ) < 0⇔ Im(ω) < 0

(2.18)
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The roots of the polynomial Q(ω) therefore have to lie on the lower half of the complex plane
to guarantee the system’s stability.
For the entries of the polynomials ∑k pik(ω)Dkk(ω)pT

kj(−ω), making statements about their
order in ω is more difficult. Arguing with the units of the systems matrix A: it has the
units of a frequency, its inverse has time units. Since the polynomial Q(ω) is fourth or-
der in ω, the matrix entries of pij(ω) are at most of order 3. Therefore the polynomial
Gij(ω) = ∑k pik(ω)Dkk(ω)pT

kj(−ω) will be maximally of sixth order in ω.

In summary, to find the CM of the intra-cavity field and the mechanics, assuming that the
system has reached the steady-state, the following integral needs to be evaluated for every
entry of the CM:

σij =
1

2π

∫ ∞

−∞
dω

Gij(ω)

Q(ω)Q(−ω)
(2.19)

2.1.3 Integrals of rational functions

In the last section we have seen that, in order to find the analytical form of the CM, the
integral of rational function as formulated in eq. 2.19 needs to be solved. Fortunately, there
exist a solution to this special problem as it can be seen in [GR80, Hof15] and for the proof
[HJ47].
For an integral consisting of polynomials of the form

∫ ∞

−∞

gn(x)
hn(x)hn(−x)

dx

hn(x) = a0xn + a1xn−1 + ... + an gn(x) = b0x2(n−1) + b1x2(n−2) + ... + bn− 1
(2.20)

with all the roots of hn(x) in the upper complex half-plane. The polynomial gn(x) might also
have odd powers of x, but only x2n−1 at most, the final solution is given by:

In =
∫ ∞

−∞

gn(x)
hn(x)hn(−x)

dx =
iπ(−1)n+1Λn

a0∆n

with ∆n =

∣∣∣∣∣∣∣∣∣∣
a1 a0 0 · · ·
a3 a2 a1 · · ·
a5 a4 a3 · · ·
...

...
...

...

∣∣∣∣∣∣∣∣∣∣
Λn =

∣∣∣∣∣∣∣∣∣∣
b0 a0 0 · · ·
b1 a2 a1 · · ·
b2 a4 a3 · · ·
...

...
...

...

∣∣∣∣∣∣∣∣∣∣

(2.21)
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by looking at the definition of the Hurwitz-matrix defined for the stability criterion in eq.
B.2, it is clear that ∆n is just the determinant of the “full” Hurwitz-matrix of the polynomial
hn(x) and for Λn one replaces the first column of the “full” Hurwitz-matrix with the coeffi-
cients of the polynomial gn(x).
To get a clear understanding of this result, the solution for the first three powers in n are
given in the appendix B.3.
With the help of this relation, the solution to the CM in eq. 2.19 is found for the intra-cavity
field. By using the CM’s symmetry, one can reduce this to effectively ten entries which need
to be taken care of. Even if the roots of the polynomial Q(ω) do not lie on the upper half of
the complex plane, the roots of Q(−ω) do and therefore the newly found integration scheme
can be applied.
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Filtering operation 

Optomechanical system

Filtered output-modes

Output mode

Figure 2.1: Sketch of the output field and the filtering scheme applied to the laser-driven system. As
discussed below, the output field will consist of a red- and blue-detuned contribution according to the
sidebands which are continously excited, in order to differentiate between those two contributions, a
filtering operation is applied which enables one to only access one of the contributions.

2.2 The output field

As already discussed in sec. 1.3.2, the description of the intra-cavity field and the mechani-
cal oscillator are more of theoretical interest since from the experimental side it is usually not
possible to access them.
However, the output field can be measured in experiments and therefore it makes sense to
have a look at the output mode. The main interest lies on the question whether the output
light and the mechanical oscillator are entangled or not. From the experimental side, it is
hard to check for the mechanical mode, but it might be possible to detect non-classical corre-
lations in the output-field. More precise, by applying a special filtering scheme to the output-
modes, it could be possible to find entanglement between two different temporal pulses. As
elaborated later in this work, one of these pulses will contain the TMS-contribution of the
optomechanical interaction while the other one will contain mainly the BS-part. Observing
non-classical correlations between those two pulses might allow to infer on the entangle-
ment shared between the light-mode and the mechanical system. Therefore the entangle-
ment shared between both pulses might serve as a marker for light-mechanic entanglement
in the system.

As seen in section 1.4.2, linearising the composite systems Hamiltonian leads to a BS- and
TMS-interaction. Each of these interactions can be enhanced or suppressed depending on
the detuning of the laser drive. Assuming a continuous resonant drive ∆ = 0 both interac-
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tion parts are equally driven at any time and therefore will also contribute to the output light
equally.
From the TMS-interaction, light with frequency ωc − ωm is scattered into the output. From
the BS-interaction, a state swap between the excited phonon state onto the light field takes
place and will result in a mode with frequency ωc + ωm (see also sec. 1.4.2). Therefore it is
possible to distinguish between the TMS- and BS-interaction by their different frequencies
(e.g. by applying a filtering scheme).

For the output mode, a general time-evolution as formulated for the intra-cavity field is not
needed since from the (time-reversed) QLE of the system [GC85, see sec. B] the input-output
relation can be formulated:

âout(t) =
√

κâ(t)− âin(t)
[

âout(t + τ), â†
out(t)

]
= δ(τ) (2.22)

The output field has now by its definition the same commutation relation and correlation
functions as the input field. Since the input-output relation is linear in the annihilation and
creation operators it will also be linear in its amplitude and phase quadratures.
Therefore, in terms of the previously introduced vector of collected quadratures and noise
operators, X(t) and N(t), the input-output relation can be reformulated as:

xout(t) = CX(t)− PN(t)

C = diag
(
1, 1,
√

κ,
√

κ
)

P = diag
(

0, 0,
1√
κ

,
1√
κ

) (2.23)

As it can be seen here, for the first two entries of X(t), which represents the mechanical
quadratures, the “output” modes equal the “input” modes from the intra-cavity quadrature
vector.

2.2.1 Mode functions

As emphasized above, to extract the quantum correlations between the different light modes
from the TMS- and BS-interaction, a filtering procedure for the output mode needs to be ap-
plied.
The filtering should not only sort the modes into different frequencies, but also into two
distinct time intervals [HO17, see sec. 5.3.1 ] so that one can speak of two pulses. The red-
detuned contribution from the TMS at earlier times can then be extracted and correlated with
the later blue-detuned BS light mode.
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The mode functions are chosen to have the form:

α(t) = NαeΓte−iωmt for t ≤ 0

β(t) = Nβe−Γteiωmt for t ≥ 0
(2.24)

The first one will filter the TMS-contribution with an exponential envelope e−Γt while the
other one has a filtering effect on the BS-contribution. To see this, the impact of the filter
functions onto a general signal field-operator âsig(t) can be investigated (the next steps follow
directly from sec 5.3.1 in [HO17]). This signal field is thought to have three contributions,
one part at zero carrier-frequency, the two other parts at frequencies ±ωm given by:

âsig(t) = â0(t) + â+(t)e−iωmt + â−(t)eiωmt (2.25)

Here, â0(t),â+(t) and â−(t) represent amplitudes which show small variation when looking
at mechanical time-scales τ = 1/ωm. Therefore, the following relation holds:∣∣∣∣∫ t+τ

t
dt′ â0,+,−(t′)e∓iωmt′

∣∣∣∣� ∣∣∣∣∫ t+τ

t
dt′ â0,+,−(t′)

∣∣∣∣ (2.26)

Now consider the multiplication of âsig(t) with the mode-function α(t) to study the effect
of filtering on a signal:

∫ 0

−∞
dtα(t)âsig(t) ≈

∫ 0

−∞
dteΓt

(
â0(t)e−iωmt + â+(t)e−2iωmt + â−(t)

)
≈
∫ 0

−∞
dteΓt â−(t)

(2.27)

In the last approximation-step, the relation from eq. 2.26 was used as it was shown here,
the mode function ”averages”, with weight-function eΓt, the contribution â−(t) with carrier-
frequency −ωm of the output signal while all other contributions are suppressed.
The very same calculation can be done for the mode function β(t) but with an averaging over
the upper-frequency contribution â+(t). Depending on the “pulse”-width Γ the function will
gather more or less information about the chosen mode from future/past times. This will
also have a great impact on the entanglement shared between the different modes as it will
be shown later on.
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The mode functions are applied to the output operators in the following way:

âα
out(t) =

∫ t

−∞
dt′α(t′ − t)âout(t′)

âβ
out(t) =

∫ ∞

t
dt′β(t′ − t)âout(t′)

(2.28)

In terms of a convolution, which comes in handy for further use, new mode-functions will
be introduced by choosing αnew(t) = α(−t) and βnew(t) = β(−t). The filtered output-modes
will then have the form:

âα
out(t) =

∫ ∞

−∞
dt′αnew(t− t′)âout(t′) = (αnew ∗ âout) (t)

âβ
out(t) =

∫ ∞

−∞
dt′βnew(t− t′)âout(t′) = (βnew ∗ âout) (t)

(2.29)

This result will be used later on to simplify the Fourier-transform of the filtered signal.
But for the gained output modes there are still some requirements which need to be fulfilled.
First of all, the commutator for different filtered modes should vanish. This allows to finally
calculate correlations between the different filtered modes and detect entanglement. It also
helps to interpret and understand the two temporal pulses as quantum systems and there-
fore apply the introduced tools of covariance matrices and entanglement detection in this
formalism. Second, for the same output the operators should obey the bosonic commutation
relations so that: [

âα
out(t)

(†), âβ
out(t)

(†)
]
= 0[

âα
out(t), âα

out(t)
†
]
=
[

âβ
out(t), âβ

out(t)
†
]
= 1

(2.30)

The first requirement is automatically fulfilled since the mode functions do not have any
overlap in time, for the second one, the normalisation factors of the two functions have to
be adapted. This can be achieved by having a deeper look onto the bosonic commutations
relations:[

âα
out(t), âα

out(t)
†
]
=
∫∫ t

−∞
dt1dt2α(t1 − t)α∗(t2 − t)

[
âout(t1), â†

out(t2)
]

︸ ︷︷ ︸
δ(t1−t2)

=

∫ t

−∞
dt1|α(t1 − t)|2 !

= 1∫ 0

−∞
dτ|α(τ)|2 = |Nα|2

∫ 0

−∞
dτe2Γτ =

|Nα|2
2Γ

!
= 1

(2.31)

The very same relation will also hold for Nβ (which will not be shown here explicitly), con-
sequently the normalisation factor have to be Nα/β =

√
2Γ.
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The next question one has to deal with is how this filtering scheme can be applied to the
systems quadratures. By defining the filtered output quadratures as X̂α/β

out (t) = (âα/β
out (t) +

âα/β
out (t)

†)/
√

2 and P̂α/β
out (t) = i(âα/β

out (t)
† − âα/β

out (t))/
√

2 the following transformation arises
for the X-quadrature with the mode function α(t)

X̂α
out(t) =

âα
out(t) + âα

out(t)
†

√
2

=
∫ t

−∞
dt′

α(t′ − t)âout(t′) + α∗(t′ − t)âout(t′)†
√

2
=∫ t

−∞
dt′Re(α)(t′ − t)X̂out(t′)−

∫ t

−∞
dt′Im(α)(t′ − t)P̂out(t′)

(2.32)

This very same consideration can be made for all other quadratures so that at the end, the
filtering transformation can be reduced to:

Xout(t) =
∫ ∞

−∞
dt′T(t′ − t)xout(t′)

Xout(t) =
(

X̂m(t), P̂m(t), X̂α
out(t), P̂α

out(t), X̂β
out(t), P̂β

out(t)
)T

T(t) =



δ(t) 0 0 0 0 0
0 δ(t) 0 0 0 0
0 0 Re(α)(t) −Im(α)(t) 0 0
0 0 Im(α)(t) Re(α)(t) 0 0
0 0 0 0 Re(β)(t) −Im(β)(t)
0 0 0 0 Im(β)(t) Re(β)(t)



(2.33)

The vector xout(t) had been extended by adding two more entries at the end which are equal
to the third and fourth ones. It would also be possible to define the filtering matrix T(t) as
a 6× 4-matrix instead of a 6× 6-matrix. However, this will not make any difference for the
computation of the output-CM.
In order to later make use of the convolution theorem, we introduce the filtering matrix
T(t) = Tnew(−t), the whole integral is then given by the convolution of the matrix Tnew(t)
and the vector xout(t)

Xout =
∫ ∞

−∞
dt′T(t′ − t)xout(t′) = (Tnew ∗ xout) (t) (2.34)
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2.2.2 Covariance matrix for the filtered output modes

Collecting all the insights of the last sections, for the filtered output-field the following vector
of quadrature-operators arises:

Xout =
∫ ∞

−∞
dt′T(t′ − t)xout(t′) =∫ ∞

−∞
dt′T(t′ − t)

(
CX(t′)− PN(t′)

)
= (Tnew ∗ (CX− PN)) (t)

(2.35)

Here also the relation from eq. 2.23 was used, keeping in mind that the intra-cavity and
noise-quadratures as well as the matrices C and P need to be adapted, e.g. P and C are now
6× 4-matrices in order to be able to apply a different filtering scheme onto the same light
mode.

X(t) =
(
X̂m(t), P̂m(t), X̂c(t), P̂c(t),

)T

N(t) =
(

0,
√

2γm f̂ (t),
√

κX̂in(t),
√

κP̂in(t)
)T

C =



1 0 0 0
0 1 0 0
0 0

√
κ 0

0 0 0
√

κ

0 0
√

κ 0
0 0 0

√
κ


P =

1√
κ



0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 1 0
0 0 0 1


(2.36)

Finding the solutions for the output-field will therefore require solving the intra-cavity prob-
lem stated in eq. 2.9 which includes finding a very complex integral. This solution needs then
to be put into the previous relations, multiplied with different matrices and then once again
integrated.
On the other side, the CM stores all information of the system, this means knowing the sys-
tems CM amounts to knowing the whole system. The definition of the CM in eq.1.9 and
already using the Fourier-transform therefore yields:

σout
ij =

1
4π

∫∫
R2

dωdω′e−it(ω+ω′) 〈X̃out
i (ω)X̃out

j (ω′) + X̃out
j (ω′)X̃out

i (ω)〉 =

1
2

∫∫
R2

dωdω′e−it(ω+ω′)T̃new
ik (ω)T̃new

jm (ω′)
(
CklX̃l(ω)− Pkl Ñl(ω)

) (
CmnX̃n(ω

′)− PmnÑn(ω
′)
)

+T̃new
ik (ω)T̃new

jm (ω′)
(
CmnX̃n(ω

′)− PmnÑn(ω
′)
) (

CklX̃l(ω)− Pkl Ñl(ω)
)

(2.37)
Here, Einstein summation convention as well as the convolution theorem onto the identity
of eq. 2.35 were used, reinserting the relations found for the Fourier-transform X̃(ω) (see
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also eq. 2.9 ), the final output-covariance-matrix is given by

σout =
∫∫

R2
dωdω′e−it(ω+ω′)T̃new(ω) (CM(ω) + P) Dδ(ω + ω′)

(
CM(ω′) + P

)T T̃new(ω′)T

(2.38)
D is given by the noise correlations as already defined in eq. 2.12, since the noise channels
are only self-correlated, the matrix D is given by a 4× 4 diagonal matrix :

D = diag
(

0, γm(2n̄ + 1),
κ

2
,

κ

2

)
(2.39)

The matrix M(ω) = (iω1 + A)−1 has the same form as in the previous sections, T̃new(ω) is
simply the Fourier-transform of Tnew(t). For further simplification, the matrices CM(ω) + P
will be brought together into one matrix V(ω).
Altogether, the systems output-CM takes the simple form

σout =
∫

R
dωT̃new(ω)V(ω)DV(−ω)T T̃new(−ω)T (2.40)

Now the question arises: Does there exist a possibility to solve this integral similar to the
way it was done for the intra-cavity field by using an integral over rational functions?
Consider first the matrix V(ω): as shown in the previous section the matrix M(ω) can be
decomposed into a rational function. By applying this knowledge onto V(ω) it can be de-
composed into

V(ω) = CM(ω) + P =
Cp(ω) + PQ(ω)

Q(ω)
(2.41)

with p(ω) and Q(ω) being the same as in eq.2.15 and 2.16. So indeed it is possible to decom-
pose this part of the integral.
The matrix T̃new(ω), which is simply the Fourier-transform of Tnew(t) = T(−t), is given by:

T̃new(ω) =



1√
2π

0 0 0 0 0

0 1√
2π

0 0 0 0

0 0
√

Γ
π
−Γ+iω
pol(−ω)

√
Γ
π

ωm
pol(−ω)

0 0

0 0
√

Γ
π
−ωm

pol(−ω)

√
Γ
π
−Γ+iω
pol(−ω)

0 0

0 0 0 0
√

Γ
π
−Γ−iω
pol(ω)

√
Γ
π

ωm
pol(ω)

0 0 0 0
√

Γ
π
−ωm

pol(ω)

√
Γ
π
−Γ−iω
pol(ω)


pol(ω) = [ω− (−ωm + iΓ)] [ω− (ωm + iΓ)]

(2.42)

As it can be checked, the roots of the polynomial pol(ω) lie in the upper half of the complex
plane. This now allows to pull out all the polynomials in the denominator from the matrix
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T̃new(ω), which leaves a new (reduced) matrix T̃red(ω) of polynomials (e.g. Tred(ω)11 =

pol(ω)pol(−ω)/
√

2π), which gives:

T̃new(ω) =
1

pol(ω)pol(−ω)
T̃red(ω) (2.43)

Recombining all the steps discussed in this section, the output-CM is given by

σout =
∫

R
dω

T̃red(ω) (Cp(ω) + PQ(ω))

pol(ω)pol(−ω)Q(ω)
D
(Cp(−ω) + PQ(−ω))T T̃red(−ω)T

pol(ω)pol(−ω)Q(−ω)
(2.44)

In the nominator of this integral, a 6 × 6-matrix with polynomials in each entry appears.
What needs to be checked is if the order of all polynomials satisfies the condition assumed
for the integral in eq. 2.20.
The maximal power of ω in T̃red(ω) is given by its first and second diagonal elements. It is
of fourth order at most, this clearly holds for its counterpart T̃red(−ω)T.
The sum Cp(ω) + PQ(ω) is dominated in its power of ω by the polynomial Q(ω) since the
matrix p(ω) needs to be (with the same arguments as in the intra-cavity case) of order n ≤ 3.
Therefore this sum must be of order 4 in ω at most because of the appearing polynomial
Q(ω).
Altogether, the polynomials which appear in the now defined nominator-matrix Gn(ω) will
be bounded by the order of 14 from above while the integration scheme presented in Ap-
pendix B.3 also allows for fifteenth order in ω.

Gn(ω)ij := T̃red
ik (ω) (Cp(ω) + PQ(ω))kl Dlm(ω) (Cp(−ω) + PQ(−ω))nm T̃red

nj (−ω) (2.45)

On the other side, in the denominator the overall polynomial, which has all its roots in the
upper plane, is given by

Hn(ω) := pol(ω)pol(ω)Q(−ω) (2.46)

Looking at pol(ω) and knowing that Q(ω) is a fourth order polynomial, one could check that
Hn(ω) shows terms of order 8 in ω at most. Therefore, the matrix Gn(ω) and the polynomial
Hn(ω) indeed fulfil the conditions for solving the integral below using Hurwitz-matrices
and the same procedure as in the previous section can be applied.

σout
ij =

∫ ∞

−∞
dω

Gn(ω)ij

Hn(ω)Hn(−ω)
(2.47)

To generate the output-CM, 6× 6 = 36 integrals need to be evaluated, using once again the
special symmetry of σout this reduces to a maximal number of 21 integrals. Using this aspect,
it might be possible to save up to 40 % of computational time.
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Chapter 3

The program

In this chapter, the main discussion will be about the explanation of the program which is
used to generate the intra-cavity and, most importantly, the output-CM. The structure of
the program is roughly presented followed by some tests of already known physical effect,
such as ground-state cooling of the mechanical system, in order to convince the reader of the
correctness of the implemented code.

3.1 The intra-cavity program

As already mentioned in sec. 1.3.2, the knowledge of the intra-cavity fields dynamics has no
further experimental interest since this field might not be accessible for the experiment. Still,
a short presentation of the program structure as well as some tests will be presented.

3.1.1 Basic structure

The whole program was written in Mathematica which allows to handle symbolic calcula-
tions and to treat problems in an analytical way. If there is an interest in numerical values
it is possible to hand parameters to the program which then generates the CMs of the intra-
cavity mechanics-light-system.
First, the matrix A and the noise-correlation D, given by its definition in eq. 2.2 and 2.4 ,
are initialized into the program. Those two are the only inputs which the program effec-
tively needs since all other matrices and polynomials are derived from A and D. Using the
very same relations found in the previous chapter, the program generates p(ω) and Q(ω),
together with D the “polynomial” matrix G(ω) (see also eq. 2.19) is calculated.
The source code, which was implemented to solve the integral in eq.2.19, was kindly pro-
vided by Dr. Sebastian Hofer. It uses the Hurwitz-matrices of each entry of G(ω) and from
there constructs the determinants ∆n and Λn by using the polynomial Q(ω).

43



3.1. THE INTRA-CAVITY PROGRAM

At the end of each calculation routine, the program returns a CM which only depends on the
systems parameters ωm,γm, ∆, κ, g and n̄. By the variation of these parameters the system can
be examined for entanglement between the mechanical oscillator and the intra-cavity light-
field. Therefore another routine was written which calculates the logarithmic negativity in
this two-mode system by using eq. A.7.

3.1.2 Testing the intra-cavity field program

It is now of interest to see if the program indeed reproduces correct and meaningful CMs.
Therefore, a few test are applied to the system to study its dynamics in order to gain trust in
the program.

One of the easiest tests which can be applied to the program is the zero-coupling case. As-
suming that the coupling g between the optical and mechanical system is zero, both modes
will evolve independently and therefore the light mode will show a shot-noise covariance
matrix (see e.g. A.1) while the mechanical oscillator will end up in a thermal state (see eq.
A.2). This can be understood by the fact that in this situation both systems couple only to
their noise-channel, more precisely the mechanics to the thermal bath given by f̂ and the
intra-cavity field only to the optical noise which arises from X̂in and P̂in in the linearised
QLE. Moreover, the bath was modelled to initially be in a thermal state and the optical noise
channel is assumed to be in a vacuum state since we changed into a displaced frame where
only fluctuations are considered.
This should also be independent of all parameters except the number of excitation in the me-
chanical thermal bath n̄ assuming initial thermalisation of the system with the environment.
For testing the program, the thermal bath is assumed to be at temperature T ≈ 10K which
corresponds to n̄ ≈ 1.76× 105 when ωm = 2π × 1.18MHz.

As it can be seen in fig. 3.1, the matrix plot of the CM shows the expected behaviour. The
only non-zero entries are the diagonals which are formed by the variances of the position-
and momentum-quadratures of the mechanical system (σ11 and σ22) and the intra-cavity light
field amplitude- and phase-quadratures (σ33 and σ44).
The off-diagonal elements are all equal to zero which matches the interpretation of two non-
interacting systems. This is in direct contrast to a system in a TMS-state discussed in eq. A.5.
Therefore calculating the logarithmic negativity EN (σ) from eq. A.7 will yield zero as well
as the Duan-criterion given in eq. 1.22 will not show any violation independent from the
choice of the parameter a as defined in section 1.1.4 since there is no entanglement stored in
this system.
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Figure 3.1: Matrix plot of the CM with zero coupling (g = 0) with a thermal bath temperature
T = 10K. For a mechanical frequency ωm = 2π × 1.18MHz this yields n̄ ≈ 1.76 × 105. The first
two diagonal entries correspond to the position- and momentum-quadratures of the mechanical os-
cillator being in a thermal state as discussed in sec. 1.1.1 , the third and fourth entries represent the
intra-cavity light field amplitude- and phase-quadratures being in shot-noise state. No correlations
between the mechanical and the optical system, which would be represented by non-zero off-diagonal
element (e.g. σ13 6= 0), are observed in this case.

Another test for the program which was taken into account for this work is the ground-
state cooling of the mechanical system [AKM14, see sec. VII.A] as presented in more detail
in A.4.
The information about the photon number in the mechanical system can be extracted from
the CM since it is stored in the first diagonal entries:

n = 〈n̂〉 = 〈X̂
2
m〉+ 〈P̂2

m〉 − 1
2

=
σ11 + σ22 − 1

2
(3.1)

Here n represents the mean phonon number in the mechanical oscillator. From a theoreti-
cal point of view, ground-state cooling is well known and studied so that it is also possible
to calculate the expected n for a given system. Introducing the rates A±, which charac-
terise the absorption or emission of one phonon by scattering one laser photon, n is given by
[GVT+08]:

A± =
g2κ

κ2

4 + (∆∓ωm)

n ≈ γmn̄ + A+

γm + A− − A+

(3.2)

With greater red-detuning of the drive-laser the rate A− becomes greater than A+, effectively
decreasing n. For the limits of ωm � n̄γm, g, κ and κ � γm, g, eq.3.1 and eq.3.2 yield approx-
imately the same result (for more details see [GVT+08]).
Ideally the program reproduces this behaviour of the mechanical system with different laser-
detuning, but it is more likely that the results between the program and the theoretical pre-
diction only differ slightly from each other since the expression given in 3.2 is only an ap-
proximation.
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Figure 3.2: Plotted in this graph are the effective mean phonon number coming from the theoretical
approach in eq. 3.2 (solid black line) as well as the prediction made by the intra-cavity program from
eq.3.1 (red dots in the plot) for different red-detuning of the drive-laser. For this plot, the parameters
from table 3.1 where used in accordance with the conditions ωm � n̄γm, g, κ and κ � γm, g.

ωm/2π [Hz] γm/2π [Hz] g/2π [Hz] κ/2π [Hz] n̄

1.18× 107 1.62× 10−1 4.06× 103 4.06× 105 1.76× 104

Table 3.1: Table with parameters used for the plots in fig. 3.2.

In fig. 3.2 both predictions are plotted using the parameters from table 3.1. As it can be seen
in the figure, the program makes the same predictions on the phonon number as the theory,
the maximal cooling is reached for a red-detuning of the drive-laser of ∆ = −ωm.
Also considered, but not shown in this work, was the maximal relative error between the
prediction in eq. 3.1 and 3.2 which is in this regime smaller than 10−3. Therefore it can
be safely assumed that the program reproduces the ground-state-cooling of the mechanical
oscillator in a trustworthy way.

3.1.3 Entanglement in the intra-cavity field

Although the intra-cavity light field is harder to access in the experiment, it can be of great
interest to study its dynamics, especially the occurrence of entanglement in dependence of
multiple parameters. These insights can be used for the output-field program in order to get
an estimation in which parameter regime entanglement might be expected.

First of all the stability of the system needs to be studied by considering the results found in
sec. 2.1.1. From the Ruth-Hurwitz stability criterion it follows that for a red-detuned drive-
laser, the first condition from eq. 2.6 is automatically satisfied while the second one needs to
be checked in order to find a stable parameter-regime.
For the plot of the stability region in fig. 3.3, the systems parameters of table 3.2 where used.
These parameters are also observed in the experiment, which is currently being carried out
at the University of Vienna. This is also why they are also of great interest for the further
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ωm/2π [Hz] γm/2π [Hz] κ/2π [Hz] n̄

1.18× 106 1.62× 10−1 4.06× 106 1.76× 105

Table 3.2: Table with parameters used for the plots in fig. 3.3 and 3.4.

discussion in this work.
For the exploration of entanglement in the system it is crucial that stability is always guar-
anteed, the whole discussion done in chapter 2 is based on the assumption that the system
is found in its steady state. If this is not given, the program reproduces CMs which will not
fulfil the requirement discussed in sec. 1.1.1, e.g. the CMs will not have real valued entries.
Therefore also the generated plots of the entanglement between the mechanical and optical
system cannot be considered to be credible.

Figure 3.3: Plotted in this graph is the stability region of the system which parameters are given by
table 3.2 in dependence from the detuning ∆ and the coupling g. The blue area represents regions
where the second condition coming from the Ruth-Hurwitz criterion in eq. 2.6 is not satisfied while
the orange region will yield stability. The red line in this plot represents the transition from stability
to instability. The criterion is fulfilled for a wide region for a detuning ∆ from zero up to five times
the mechanical frequency ωm and a coupling from zero up to less than one ωm. It should also be
emphasized that for detuning around ∆ > −0.5ωm the condition is even given for coupling higher
than g = ωm.

The entanglement shared between the mechanical and optical subsystems is measured by
the logarithmic negativity discussed in sec. 1.1.3. Values under zero are therefore also al-
lowed in order to get an insight about how far away the two subsystems are away from
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being entangled. In fig. 3.4, the values of the logarithmic negativity in dependence of both,
the detuning and the coupling are shown. Once again, the parameters of table 3.2 were used
as well as the stability region were chosen for ∆ and g.
The plot shows that entanglement between the intra-cavity field and the mechanical oscil-
lator is expected for sufficiently high detuning and coupling. Especially the detuning plays
an important role since for ∆ close to zero, independent of the coupling g, no entanglement
is detected at all. But already for a slight detuning ∆ ≈ 0.1ωm the border of entanglement
is shifted towards smaller coupling. The green contour in fig. 3.4 underlines this effect by
showing the effective mean phonon number of the mechanical system being n = 1. The cool-
ing of the mechanics, mediated trough the BS-interaction and the finite energy decay κ of the
optical subsystem, even though the BS-part benefits in favour of the TMS-interaction. There-
fore it supports the generation of entanglement and suppresses the effects of the coupling
between the thermal bath and the mechanics.

Figure 3.4: Logarithmic negativity as a function of detuning ∆ and coupling g. The red line repre-
sents the border of entanglement, all CMs which are generated with parameters under this line do not
show non-classical correlation at all. Between zero detuning and ∆ ≈ −0.1ωm the border of entangle-
ment decreases for decreasing detuning, the maximum logarithmic negativity is found for ∆ ≈ −ωm
and a maximal coupling g = 0.9. The green contour shows region of n = 1 and represents ground-
state cooling of the mechanical system. Please note that the range of g was adapted in comparison to
3.3 in order to assure a stable system.
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3.2 The output-field program

The output field of the system is, in comparison to the intra-cavity field, the one which is the
easiest to access in terms of the experiment. The output-field part of the program allows now
to directly generate the CM of the experimental measurable filtered output modes and the
mechanical system. With the results from the previous section 3.1 it might also be possible to
find a parameter regime where entanglement between the two filtered output modes could
be achieved.
In extension to this, an optimized protocol called ”two-sideband”-evaluation is discussed in
terms of the final program. This enables the program to extract even higher entanglement in
the output-field and detect entangled states which would have been considered as separable
in the first case.

3.2.1 Basics structure

The same matrix A and D as in the intra-cavity system is handed to the program as well as
the filter matrix T̃new(ω) from eq. 2.42. The filtering matrix includes the information about
the mode-functions as discussed in sec. 2.2.1. In addition to this, the matrices C and P as in
eq. 2.36 are constructed by the program. With those matrices, the main objects of interest,
namely the matrix of polynomials Gn(ω) and the denominator polynomial Hn(ω) (accord-
ing to eq. 2.45 and 2.46) are generated.
The integration scheme which solves the final integrals is once again the same one as for
the intra-cavity case, everything is done by the polynomials Hurwitz-matrices and determi-
nants. At the end of the routine, the program returns CM which solely depend on the systems
parameters ωm,γm, ∆, κ, g and n̄. Additionally, the pulse-width Γ needs to be handed to the
program to evaluate the CMs numerically.

3.2.2 Testing the output-field program

In order to test the output part of the program, once again, the zero-coupling situation for the
output field and the mechanical oscillator can be considered. As in the case of the intra-cavity
field the parameters used for this are ωm = 2π × 1.18MHz and T ≈ 10K which corresponds
to n̄ ≈ 1.76× 105.
In fig. 3.5 the 6× 6-covariance matrix of the system is shown. The mechanical subsystem is
indeed generated to be in a thermal state while the filtered output modes are in shot-noise
state. Once again, no-correlations between the different subsystems are observed since all
non-diagonal matrix elements σij = 0 with i 6= j.
On the other side, testing the program via the effect of ground-state cooling also seems to be
a good approach for testing the mechanical side of the CM.
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Figure 3.5: Matrix plot of the output-CM with zero coupling (g = 0) with a thermal bath temperature
T = 10K. For a mechanical frequency ωm = 2π × 1.18MHz this yields n̄ ≈ 1.76× 105. The first two
diagonal elements correspond to the quadratures of the position and momentum in the mechanical
system which are in a thermal state, the third and fourth as well as the fifth and sixth entries represent
the amplitude- and phase-quadratures of the first and second output mode filtered by the mode
functions α(t) and β(t) in eq. 2.24 respectively. Both of the output-light modes are found to be in a
shot-noise state and no correlations are observed between the mechanical and optical subsystems.

This time we test the effects of ground state cooling using a slightly other parameter regime
where the previous assumptions as formulated in sec. 3.1.2, namely ωm � n̄γm, g, κ and
κ � γm, g, do not hold. As discussed in [GVT+08], the theory gives the following prediction
on the mean phonon number n in the mechanical system:

n =
〈X̂2

m〉+ 〈P̂2
m〉 − 1

2
≈

1
γm + A− − A+

[
(1 + a)

A− + A+

2
+ γmn̄

(
1 +

1
η

)
+

γmn̄(A− − A+)

2κ

(
1 +

b
η

)]
a =

κ2 + 4∆2 + 4ηω2
m

η(κ2 + 4∆2 + 4ω2
m)

b =
(4∆2 − κ2)− 2ω2

m
1
2 (κ

2 + ∆2)

η = 1 +
4g2∆

ωm(κ2 + 4∆2)

(3.3)

The two scattering rates A± are defined in the very same way as in eq. 3.2. With this more
complicated expression for n it is now possible to access other parameter-regimes for the
ground state cooling of the mechanical system.
This time, the parameters are chosen to have the same typical values as for the experiment
done at the University of Vienna on generation and verification of optomechanical entangle-
ment, the systems parameters are given in table 3.3.
In fig. 3.6 the mean phonon number for the theoretical approach as well as for the predic-
tion by the programs CM can be seen. Once again, both expressions yield very close results,
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therefore the maximal relative error is of the order 10−3.
Also for the output-field part of the program the effect of ground-state cooling in the me-
chanical oscillator is trustworthy reproduced.

Figure 3.6: This graph shows the effective mean phonon number of the mechanical system as a
function of the detuning ∆, the red dots represent the results from the output-field program while
the solid black line gives the theory’s prediction from eq. 3.3. The laser is always assumed to be
red-detuned to ensure the systems steady-state-stability condition, all other parameters used for this
plot are given in table 3.3.

3.2.3 Entanglement in the output-field

In contrast to the intra-cavity system, the output-field program allows to distinguish be-
tween three different parties which might share some entanglement. On the one hand there
is the mechanical system, on the other hand the two differently filtered output-modes which
characterize the two temporal separated pulses.
One could for example consider the reduced system of the mechanical subsystem and the
first-light mode whose information is stored in the third and fourth entries of the CM. This
first light-mode is filtered by the mode function α(t) given in 2.24. Therefore the mode-
function filters the light-field in such a way that this light-mode mainly contains contribu-
tions from the TMS-interaction as discussed in sec. 2.2.1.
But also the second reduced system of the mechanics and the other filtered output-light-
mode can be considered. This light-mode, generated by the use of β(t), is dominated by the
contribution from the BS-interaction of the linearised Hamiltonian.
Finally, it is also possible to extract and detect the entanglement between the two different
output-light-modes, the whole situation is shown graphically in fig. 3.7.

ωm/2π [Hz] γm/2π [Hz] g/2π [Hz] κ/2π [Hz] n̄

1.18× 106 1.62× 10−1 2.05× 105 4.06× 106 1.76× 105

Table 3.3: Table with parameters used for ground-state cooling and entanglement detection in the
output-field program.
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Filtering 

Optomechanical system

Filtered output-modes

Output mode

Figure 3.7: In this graphic the different types of entanglement parties are represented in the op-
tomechanical system.Turquoise dotted-line: the reduced system is formed by the mechanical subsys-
tem and the first filtered-light-mode which mainly includes contribution from the TMS-interaction.
Brown dotted-line: on the other side, the contribution from the upper-sideband (the BS-interaction)
is contained in the second filtered-output-mode. This interaction, as discussed in sec. 1.4.2, will
perform a state-swap between the intra-cavity field and the mechanics, and will not generate any
entanglement. Violet solid-line: the third reduced system is formed by the two output-light modes.

Intuitively now the question arises where entanglement is expected and which of the re-
duced systems share the highest non-classical correlations?

Consider first the reduced system formed by the mechanics and the different filtered output-
modes. The first output-mode is generated by the mode function α(t) from eq. 2.24, as
already discussed in sec. 2.2.1 this mode contains mainly the contributions from the TMS-
interaction. This interaction, which arises from the linearised Hamiltonian (see A.8), gen-
erates non-classical correlations between the intra-cavity field and the mechanical system.
These correlations are mediated onto the out-put field trough the input-output-relation so
that entanglement between the upper-sideband and the mechanical oscillator can be ex-
pected.
The other reduced system is formed by the mechanics and the second output-mode filtered
by β(t). This filter function suppresses contributions from the TMS-interaction, the BS-
interaction is the dominant part in this mode. The interaction acts as a state-swap-operation
on the mechanics and the intra-cavity light mode, therefore the entangled state of the me-
chanics, which was previously introduced, is exchanged onto the intra-cavity mode. Once
again, through the input-output relation this mediates onto the output-field where this con-
tribution is filtered.

This intuitive image can already be tested with the program by examining the various en-
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tries of the covariance matrix of the full system. The entanglement is once again measured
by the logarithmic negativity from sec. 1.1.3, the results are shown in fig. 3.8 as a function of
the pulse-width Γ, while the parameters from table 3.3 are used.
From the plot it can indeed be seen that the entangling-mode, containing the TMS-contribution,
and the mechanics (blue dots) shows definitely entanglement in contrast to the system formed
by swap-mode with the BS-contributions and the mechanics (red dots). For smaller pulse-
widths Γ the non-classical correlations decrease for the entangling-mode. The effect can be
understood via the decoherence of the mechanical system since smaller pulse-widths corre-
spond to longer interaction times in the optomechanical system. But this favours the cou-
pling to the thermal bath of the oscillator which destroys the shared correlations. On the
other side, if Γ becomes too large, and therefore the interaction time too short, the systems
will not build up any entanglement which manifests in a decrease of the logarithmic nega-
tivity and a state similar to the shot-noise state is achieved by the program which also reflect
in the values of the logarithmic negativity as it can be seen in fig. 3.8.

Figure 3.8: Plot of the entanglement shared between the entangling-mode (blue dots) and the swap-
mode (red dot) with the mechanical system respectively generated with the parameters from table
3.3 and a detuning of ∆ = −200kHz. The first output-light-mode is, in contrast to the other one,
definitely entangled with the mechanics , due to the mechanical decoherence, the logarithmic nega-
tivity decreases for smaller pulse-widths Γ as well as for broader pulses which can be argued by the
limited time for the optomechanical interaction. This will leave the optical system in a state similar
to shot-noise state and no correlations are gathered by the mode-function.

In the further course of this work, the entanglement between the entangling-mode and the
mechanics is discussed in more detail. The task is to find a parameter regime where the
entanglement between the two subsystems are sufficiently large so that also non-classical
correlations between the different filtered output-modes is expected. For further discussion,
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Figure 3.9: ∆ = −200kHz Figure 3.10: ∆ = −500kHz

Shown here are the different contour plots of the logarithmic negativity as a function of the pulse-
width Γ and the coupling strength g. The detuning of the driving-laser is given by ∆ = −200kHz in
fig. 3.9 and ∆ = −500kHz in fig. 3.10 , all other parameters are the same as for the previous plot 3.8
and can be found in table 3.3. The solid red line indicates the border to separable states where the
logarithmic negativity is found to be below or equal zero, the dotted lines represent regions of equal
cooperativities C = 1 (green), C = 10 (black) and C = 40 (red). The most entanglement is found in a
parameter regime of g = 0.2− 0.7ωm and Γ = 5 · 105 − 107rad · Hz.

we will now introduce the systems cooperativity C:

C =
4g2

κγm(n̄ + 1)
(3.4)

It compares the optomechanical interaction with the coupling of the mechanics to the ther-
mal bath and the optical system to its noise channel. Bigger cooperativity is connected to a
stronger optomechanical interaction and therefore favours the generation of entanglement
in the system. For the typical systems parameters of table 3.3, the cooperativity is given by
C = 1.45.

In fig. 3.9 and 3.10 the entanglement, measured by the logarithmic negativity, for the reduced
system of the oscillator and the entangling-pulse are plotted as a function of the pulse-width
Γ and the coupling strength g , all other parameters of the system, as found in table 3.3,
where kept constant.
The logarithmic negativity is maximal in a region around Γ = 5 · 105 − 107rad · Hz as well
as for high couplings. Typical experimental values for the cooperativity are found between
C = 1–10 so that all other values above are more of theoretical interest. But already for
reasonable cooperativity around C = 10 the program definitely generates and detects non-
classical correlations.
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Furthermore, an investigation of the entanglement between the filtered output-modes, which
is also accessible in the experiment, is more interesting because it can be regarded as a marker
of entanglement between mechanics and light field.

Figure 3.11: Shown in this plot is the logarithmic negativity as a measure for entanglement, shared
between first and second pulse, in dependence of the pulse width Γ, the detuning is set to ∆ =
−200kHz all other parameters are the same as for fig. 3.6. The pulses show entanglement for pulse-
widths around Γ = 4 · 105 − 4 · 106rad · Hz and decreases for higher pulse widths before returning to
a state with only classical correlations and therefore no entanglement.

In fig. 3.11, the entanglement, given by the logarithmic negativity, for the two temporal
pulses (black dots) is shown in dependence of the pulse-width. In addition to this, the loga-
rithmic negativity for the reduced system of the mechanics and the earlier/later pulse from
fig 3.8 is also shown for comparison. Interestingly, the light-light curve shows a drop below
logarithmic negativity values of zero, which leads to the interpretation that there are no de-
tectable non-classical correlations, for pulse widths of about Γ = 4 · 106rad · Hz in contrast to
the entanglement curve of the first pulse and the mechanical system given by the blue dots.
Even for pulses with Γ > 5 · 106rad · Hz there are still non-classical correlations between the
oscillator and the first pulse and therefore also a two-mode-squeezed like state in this re-
duced system, thus, the entanglement process is still present in this regime. The effect can
perhaps be understood by the small interaction times of the optomechanical system which
suppresses the optimal state-swap between the mechanics and the light modes and results
in a separable state. The critical pulse-width from the left-hand side is once again given due
to the decoherence time of the mechanical system since smaller pulses correspond to longer
interaction times in which the mechanical system also has a higher opportunity for exchang-
ing photons and phonons with the thermal bath.
For broad pulses, due to the limited interaction time, the mode-functions only collect noise
which decreases the entanglement in the system and results in a state similar to the two-
mode-shot-noise state.
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Figure 3.12: ∆ = −200kHz Figure 3.13: ∆ = −500kHz

Different contour plots of the logarithmic negativity as a function of the pulse-width Γ and the cou-
pling g , with detuning given by ∆ = −200kHz in fig. 3.12 and ∆ = −500kHz in fig. 3.13. The other
parameters are the same as for the previous plots and are collected in 3.3. The solid red line again
indicates the border to logarithmic negativities below or equal zero. In contrast to fig. 3.9and 3.10 the
logarithmic negativity drops below zero for larger pulse widths independently of the coupling. Nev-
ertheless, bigger detuning results in higher logarithmic negativities and wider entanglement regions.

The program now allows the user to explore a wide range of parameters which can be
changed in the system. Which are the parameters which improve the entanglement stored in
the system? From an experimental point of view, which parameters can be varied and how
much?
From the experimental side, changing the detuning of the drive-laser might be an uncompli-
cated adaptation to the experiment. This is why a more detailed exploration of the detunings
influence on the system and the entanglement shared between the two pulses might be help-
ful to find the optimal working regime for the experiment. Is it possible to increase the
entanglement with higher detuning?
In fig. 3.12 and 3.13 the logarithmic negativity as a function of the cooperativity, varied by
the coupling strength g and the pulse widths Γ is shown. As it can be seen in those plots,
the entanglement in the system decreases once again for bigger pulse widths Γ while higher
detuning improves the entanglement shared between the different pulses, in addition, the
possible pulse width for which it occurs also slightly increases.
On the one hand, a stronger red-detuning results in lower generation of quantum correlated
photon-phonon pairs of the mechanical state with the intra-cavity field. On the other hand,
the BS-interaction is enhanced which, due to the ground-state cooling effect as discussed in
sec. 3.2.2, mainly reduces the mean phonon number of the oscillator. In addition to this, en-
hancing the BS-interaction together with the cooling effect optimizes the state-swap between
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the intra-cavity light and the mechanics.
To confirm this thought, the maximal entanglement for different red-detuning of the drive-
laser as a function of the cooperativity is shown in fig. 3.14. In this case, the pulse-width
generated between Γ = 105 − 108rad · Hz was considered and the maximal logarithmic neg-
ativity extracted while keeping the coupling constant. For coupling-strengths g ≤ 0.3ωm

different red-detuning will not lead to a significant rise in the maximal logarithmic negativ-
ity, but for bigger values, there is indeed a difference for higher detuning of the laser resulting
in more detected entanglement in the system.

Figure 3.14: Plot of the maximal entanglement as a function of the coupling for different detuning
∆ = −200khz (red curve),−ωm (blue curve),−3ωm (green curve). The maximum of the logarithmic
negativity was found by generating pulse widths between Γ = 105 − 108rad · Hz while keeping the
coupling constant. For higher optomechanical coupling g > 0.3ωm bigger red-detuning improves the
maximal logarithmic negativity found in the system. The other systems’ parameters are the same as
in the plots before.

In fig. 3.15 the maximal logarithmic negativity, found by scanning over a pulse width
Γ = 105 − 108rad · Hz, is shown in dependence of the detuning ∆ and the coupling g, both
in terms of the mechanical frequency ωm. From this plot one can see, in accordance with
the results from fig. 3.14, that higher detuning does not affect the maximal logarithmic neg-
ativity significantly for lower couplings g < 0.3ωm. On the other side, for higher coupling
strengths the right choice of the laser-detuning can enhance the logarithmic negativity, and
therefore the entanglement. For example, consider a coupling of g = 0.5ωm which corre-
sponds to a cooperativity of C ≈ 12 with the parameters used for the plot (as given in table
3.3). For this high coupling of the system, adjusting the detuning towards ∆ = −ωm also
helps in improving the systems logarithmic negativity. With the detuning of ∆ = −200kHz
considered in the previous plots of this section, the logarithmic negativity yields a value of
around logneg(σ) = 0.56 while for a detuning at resonance with the mechanical frequency
the maximal value is generated to be logneg(σ) = 0.65.
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It seems that the influence of the detuning in the system becomes evident with higher cou-
pling and cooperativities, therefore choosing a red-detuning of the drive-laser around ∆ ≈
−ωm does not decrease the entanglement found between the two temporal pulses in the
“worst” case of small coupling. On the other hand, in the best case scenario of sufficiently
high coupling and cooperativites, a more red-detuned drive-laser improves the generation
of entanglement in the system and could as well be a serious option for the optimization of
the experiment.
From now on, if not stated otherwise, a detuning of ∆ = −200kHz is considered, keeping in
mind that even higher red-detuning might increase the detected entanglement in the system.

Figure 3.15: Plot of the maximal entanglement as a function of the coupling and detuning maximized
by scanning trough a pulse-width of Γ = 105 − 108rad · Hz, all other parameters can be found in
table 3.3. For coupling g < 0.3ωm the detuning has almost no effect on the maximal logarithmic
negativity while for higher couplings the improvement is significant especially for detuning around
the mechanical frequency ∆ = −ωm. The dashed lines indicate parameters of equal cooperativity
C = 1 (green) and C = 10 (black). The solid red line represents the border between entangled and
separable states.

Let us now consider the mechanics quality factor Q and the coupling strength g in the sys-
tem. The latter can be changed by the input power of the laser-drive as discussed in sec. 1.3
as long as the stability in the system is given (see sec. 2.1.1 and fig. 3.3). The mechanical
quality factor scales with γ−1

m , therefore lower damping rates will improve Q.
In fig. 3.16 the maximal logarithmic negativity, found by scanning over pulse widths from
Γ = 105− 108rad · Hz, as a function of the coupling strength and the quality factor are shown.
Improving the systems Q-factor results in an increasing logarithmic negativity and more en-
tanglement in the output-modes. However, also increasing the systems coupling g will not
automatically yield higher entanglement. In fact from fig. 3.16 one can learn that there
indeed is a optimal region around g = 0.2 − 0.8ωm for which a stronger optomechanical
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Figure 3.16: The logarithmic negativity as a function of the quality factor and coupling, the detuning
of the driving-laser is given by ∆ = −200kHz, other system parameters are given in table 3.3. The
solid red line indicates the border to logarithmic negativity below or equal zero. The dashed lines
represent contours of equal cooperativites with C = 1 (green), C = 10 (black) and C = 40 (red).

coupling will not improve the logarithmic negativity significantly.
In addition, it is questionable to what extent the Q-factor can be increased in the experiment.
In most cases the quality factor is given for a certain geometry of the mechanical system and
the bath temperature, so that it can realistically only be improved by cooling the entire sys-
tem.

This leads to the next parameter of interest namely the influence of the temperature T of
the system characterized by the thermal occupation number n̄(T) as discussed in sec. A.1.
The temperature of the system can be assumed to be at T = 10K (n̄ ≈ 1.76 · 105) which can
be achieved helium cooling, using a dilution refrigerator might enable the experimentalists
to even access regions below one Kelvin.
For further discussion the considered minimal thermal occupation will be at around n̄min =

104 which, for this oscillator, corresponds to approximately T = 570mK and a maximal value
of n̄max = 2 · 105 with T = 11.3K.
The plot generated by the program for this situation is presented in fig. 3.17. A lowering of
the temperature allows to detect higher entanglement for smaller optomechanical coupling
which can intuitively be understood by the decoherence time of the mechanical system. It
is given by (n̄γm)−1 and improves with lower thermal occupation numbers. Therefore the
system tends to lose its quantum correlations time-scales above this critical value.

As discussed and shown in detail in this chapter, the program allows the user to explore
various relationships between entanglement and the parameters of the system. Starting with
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Figure 3.17: Plots of the logarithmic negativity as a function of the coupling and thermal occupation
n̄. The detuning is chosen to be ∆ = −200kHz, all other parameters are given in table 3.3. The solid
red line indicates the border where the logarithmic negativity is found to be below zero, the dotted
lines represent the systems cooperativity of C = 1 (green), C = 10 (black) and C = 40 (red).

the linearised QLE, it is now possible to study the steady-state dynamics of the optomechan-
ical system in a very idealised situation. This makes the program particularly interesting
for considerations before the actual experiment, or advantageous precise knowledge about
entanglement regions without resorting to (usually time-consuming) simulations.
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3.3 The two-sideband protocol

Up to now, only the lower-sideband in the pulse at early times and the upper-sideband at
later times were correlated by the mode-functions α(t) and β(t). This was argued by the fact
that first the TMS-interaction generates the entanglement while the BS-interaction swaps the
states between the mechanics and the intra-cavity light which is then mediated onto the
output-field.
In reality, both processes take place at the very same time so that there also exists an upper-
sideband in the earlier pulse and a lower one for later pulse times. Therefore only taking
into account the correlations between those two pulses separated in time neglects effects of
correlations between upper- and lower-sideband in the same pulse, this will be referred to as
intra-pulse-correlations/entanglement from now on (see also sec. 5.8 in [HO17]). This leads
to a decrease in entanglement detected in the system, in the extreme case it might be possible
to even detect a non-entangled state while, with the two-sideband protocol, the state would
be inseparable.
To improve the entanglement detection in the program, it is useful to define two more mode-
functions which extract the contribution for the upper-sideband, due to the BS-interaction,
in the earlier pulse and the lower-sideband, due to the TMS-interaction, in the later second
pulse. All together, in this detection scheme the four mode functions are given by:

α(t)± =
√

2ΓeΓte±iωmt for t ≤ 0

β(t)± =
√

2Γe−Γte±iωmt for t ≥ 0
(3.5)

The mode functions α(t)− and β(t)+ are the ones considered for the filtering of the lower-
sideband and upper-sideband in the earlier and later pulses respectively as they were al-
ready introduced in sec. 2.2.1.
On the other side, α(t)+ and β(t)− extract the discussed contribution of the BS/TMS-interaction
in the earlier/later pulses as discussed above, now enabling the program to detect intra-
pulse correlations. Still, the newly introduced mode-functions need to satisfy the output-
field bosonic commutation relation which effectively means they need to be orthogonor-
malised with respect to each other, the more precise argument is given in the appendix C.1.
For the mode functions in two different pulses, this is automatically given since they do not
have a time-overlap, this means only the inter-pulse functions α(t)+ and α(t)− as well as
β(t)+ and β(t)− need to be considered. This orthonormalization can be e.g. carried out by
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the Gram-Schmidt process and yields for the new mode-functions α(t)+ and β(t)−:

α(t)+ =

√
2Γ(Γ2 + ω2

m)

ωm
eΓt
(

eiωmt − Γ
Γ− iωm

e−iωmt
)

for t ≤ 0

β(t)− =

√
2Γ(Γ2 + ω2

m)

ωm
e−Γt

(
e−iωmt − Γ

Γ− iωm
eiωmt

)
for t ≥ 0

(3.6)

Now the mode functions { α(t)±, β(t)±} form an orthonormal set of functions with the
scalar product 〈 f , g〉 =

∫ ∞
−∞ f (t)∗g(t)dt, therefore also the bosonic commutation relation for

the ouput-modes are satisfied. Unfortunately the newly introduced mode-functions lose
their optimal shape of eq. 3.5, which, however, has to be accepted for the application of the
already discussed analytical approach.

To pass the mode functions to the program and include them in the systems CM it is now
also needed to evaluate the Fourier-transformations of the real and imaginary parts of the
functions α(t)+ and β(t)− as discussed in 2.2.1. This will also yield informations about how
the functions enter the matrix T̃new(ω) from eq. 2.42 and how the polynomial Hn(ω) from
eq. 2.46 needs to be adapted.
The filtering matrix T̃new

ts (ω), which appears for the two-sideband protocol, is then a 10× 10
matrix formed by the direct sum of:

T̃new
ts (ω) = T̃new(ω)

⊕
T̃ts(ω) (3.7)

With the matrix T̃ts(ω):
F [Re(α+(−t))] (ω) −F [Im(α+(−t))] (ω) 0 0
F [Im(α+(−t))] (ω) F [Re(α+(−t))] (ω) 0 0

0 0 F [Re(β−(−t))] (ω) −F [Im(β−(−t))] (ω)

0 0 F [Im(β−(−t))] (ω) F [Re(β−(−t))] (ω)


(3.8)

Also the matrices P and C in eq. 2.36, which account for the input-output relation of the
intra-cavity light field, need to be extended to 10× 4 matrices so that for the two-sideband
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protocol the new matrices Cts and Pts arise in the following way:

Cts =

(
C
C′

)
Pts =

(
P
P′

)

C′ =


0 0

√
κ 0

0 0 0
√

κ

0 0
√

κ 0
0 0 0

√
κ

 P′ =
1√
κ


0 0 1 0
0 0 0 1
0 0 1 0
0 0 0 1


(3.9)

The final stems covariance matrix will then also be of dimension 10× 10 with the new intra-
pulse output-mode functions in the last four entries of the CM.

The two-sideband protocol in the program is once again tested via a zero coupling system
and the ground-state cooling as in the case of the intra-cavity and output-field code. Also
for this protocol the program correctly reproduces these effects, the result of the ground
state cooling will not be discussed in more detail in here. The zero-coupling CM of the two-
sideband protocol generated by the program with n̄ = 1.76 · 105 and g = 0 is given in fig.
3.18, again the mechanics is found in a thermal state while all four light-modes end up in the
shot-noise state since both systems only couple to their respective noise-channels.

Figure 3.18: Zero coupling matrix (g = 0) in the two-sideband protocol with a thermal bath tempera-
ture T = 10K and mechanical frequency ωm = 2π× 1.18MHz so that n̄ ≈ 1.76× 105. The mechanical
system, represented by the first two diagonal entries, is found to be in a thermal state due to the cou-
pling to the thermal bath. The four light modes only couple to the optical noise channel, this is also
the reason why all modes are found around shot-noise state.

In the next plot, we compare the entanglement detected between the mechanical system
and the first pulse as well as for both temporal pulses using the two-mode-protocol and the
regular protocol introduced in the previous section 3.2. Defining and implementing two ad-
ditionally mode functions, which extract the upper- and lower-sideband contribution in the
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first and second pulse, helps to increase the entanglement found in both reduced systems as
it can be seen in fig. 3.19. Shown is the logarithmic negativity as a function of the pulse width
for the two-sideband- as well as for the “single-sideband”-protocol as formulated in sec. 3.2.
All points which are plotted in circles represent the entanglement between the earlier pulse
and the mechanical system. The dots on the other side give the entanglement between the
two temporal pulses. Once again the logarithmic negativity was used as measure of en-
tanglement, red colour refers to the single-sideband evaluation as performed in the former
section, the black colour represents the two-sideband protocol.
The entanglement found in the two-sideband protocol is always larger or equal to the one
found without using the additional mode functions. Expanding the program onto the two-
sideband protocol now allows one to find a wider pulse-regime for light-mechanics and
light-light entanglement as for the single-sideband case. The logarithmic negativity for the
mechanical system and the earlier temporal pulse is positive (and therefore the systems are
entangled) for Γ > 7 · 104rad · Hz while in the single-sideband protocol the same holds for
pulse widths Γ > 105rad · Hz. Also for the entanglement shared between the earlier and
the later temporal pulse the detection range increases from Γ > 3 · 105rad · Hz in the single-
sideband scenario to Γ > 105rad · Hz in the two-sideband protocol. Additionally, there is
no dip of the logarithmic negativity observed as in light-light entanglement as in the single-
sideband protocol.

Figure 3.19: Logarithmic negativity in dependence of the pulse width Γ plotted for the system
formed by the mechanics and earlier pulse in the two-sideband (black circles) and single-sideband
protocol (red circles). Also included in this plot is the reduced system of the earlier and later pulse
(black dots for two-sideband evaluation and red dots for single sideband evaluation). As for the plots
before, the parameters from table 3.3 where used.

As we have seen in this section it is indeed possible to increase the detectable entanglement
for the reduced system of the mechanical oscillator and the earlier temporal pulse as well as
for the system of the two distinct temporal pulses by introducing proper additional mode
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functions and therefore also account for intra-pulse non-classical correlations.
Moreover, we are also able to detect entangled states in this two-sideband protocol where
using the single-sideband evaluation from the former section 3.2 would have detected a sep-
arable state.
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Chapter 4

Conclusion and outlook

In this work it was shown that, starting from the linearised quantum Langevin equations, it
is possible to find the steady-state covariance matrix of an optomechanical system, consider
the intra-cavity field as well as a special filtered output-light field and to extract the entangle-
ment shared between the various parties. This is done without any further approximation
and in a completely analytical way such that the results of the proposed program can be
considered exact.
In addition, a ”two-sideband”-protocol was proposed which can be incorporated into the
code without major complications and leads to an increase in the detected entanglement in
the system.

Using this code it was possible to study the experiment currently running at the University
of Vienna. As it was shown in the last chapter, with the help of the program the dependence
of the occurring entanglement on the different systems parameters can be studied.
As shown in section 3.2, a higher red-detuning and power (which also increases the coupling
strength of the optomechanical interaction) of the drive-laser might be a simple adaptation
in terms of experimental realisation to increase the detectable entanglement for the two tem-
porally separated pulses. Especially for higher cooperativity, and therefore also for a suffi-
ciently high coupling strength, choosing the right detuning of the drive-laser also increases
the values of the logarithmic negativity in the system and therefore also the entanglement
stored.
While it is probably more tedious from the experimental side, reducing the temperature of
the systems environment as well as improving the mechanical quality factor clearly has pos-
itive effects on the maximal entanglement in the system. In this cases it is also possible to
find an optimal coupling strength.

The proposed scheme for finding the systems steady state dynamics has some interesting
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advantages, for example it could be used before realising the actual experiment for scanning
a wide variety of parameter regimes to get an initial impression of the entanglement in the
system as well as the numerical values of the necessary parameters. Moreover, the compu-
tational time needed for this program is short compared to the simulations currently used in
the running experiment.
One of the disadvantages is clearly that the whole scheme works only for an idealised exper-
iment e.g. no losses in the detection are modelled, furthermore classical noise is completely
neglected.

In addition to this, we also considered an oscillator where only one mechanical mode takes
part in the optomechanical interaction, but it might be interesting for future applications of
the program to implement multiple modes which show no interaction among themselves.
Having a multi-mode mechanical system and neglecting some of the modes in the final en-
tanglement detection might leave the user unable to detect non-classical correlations even if
they are present in the first place [HO17, see sec. 5.7].
Let us consider two non-interacting modes in order to give a rough idea of the expansion to
multi-mode structures.In this case, the form of eq. 2.1 changes slightly since one has to also
account for another mechanical mode so that:

Ẋ(t) = AX(t) + N(t)

X(t) =
(
X̂m1(t), P̂m1(t), X̂m2(t), P̂m2(t), X̂c(t), P̂c(t)

)T

N(t) =
(

0,
√

2γm1 f̂ (t), 0,
√

2γm2 f̂ (t),
√

κX̂in(t),
√

κP̂in(t)
)T

A =



0 ωm1 0 0 0 0
−ωm1 −γm1 0 0 −2g1 0

0 0 0 ωm2 0 0
0 0 −ωm2 −γm2 −2g2 0
0 0 0 0 − κ

2 −∆
−2g1 0 −2g2 0 ∆ − κ

2



(4.1)

The indices {m1, m2} correspond to the first and second modes of the mechanical system.
Both modes couple to the intra-cavity light-field by the, in general different, couplings g1 and
g2. This change in matrix A has consequences for all other variables and matrices discussed
in sec. 2.1 and 2.2, only the most important are discussed here.
One of those consequences can be observed on the noise-correlation matrix D given in eq.
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2.12, since the additional mechanical mode completely loses its diagonal shape:

D =



0 0 0 0 0 0
0 γm1(2n̄ + 1) 0

√
γm1γm2(2n̄ + 1) 0 0

0 0 0 0 0 0
0
√

γm1γm2(2n̄ + 1) 0 γm2(2n̄ + 1) 0 0
0 0 0 0 κ

2 0
0 0 0 0 0 κ

2


(4.2)

The matrix M(ω) from eq. 2.11 and the polynomial Q(ω) from eq. 2.16 will be defined the
very same way as for the initial intra-cavity system as discussed in sec. 2.1 so that with those
small adaptations the intra-cavity field can be generated in the multi-mode case.

For the output field, however, the situation is not as trivial and simple as for the intra-cavity
field. First, new mode-functions must be introduced which filter the lower- and upper-
sideband for each mechanical mode in the first and second pulse. In the situation of two
mechanical modes, this means two additional mode-functions, one for the lower-sideband
in the earlier, and one for the upper-sideband in the later one. For the output-field-modes to
obey the bosonic commutation-relation, the mode functions must form an orthonormal set,
this will lead to a non-idealized form of at least two, temporal separated, mode functions as
already discussed in sec. C.1.
Should it then be of further interest to implement a two-sideband protocol, then two intra-
pulse filter functions must be defined for each mechanical mode, increasing the size of the
systems CM onto a 20× 20-matrix, the integration scheme behind this program would not
change at all, but the computing time would be higher than for the simple case of a single-
mode system.
In general, for m non-interacting mechanical modes, the final CM will be of the dimension
6m× 6m without using the two-sideband protocol, including the intra-pulse correlations this
increases to 10m× 10m dimensions.
From a theoretical point of view, based on enough computing power and time, there is noth-
ing against the implementation, testing and application of a multi-mode program.

Finally, it should be noted that it still requires further testing e.g. by computing power
spectral densities of the output light quadratures and comparing the results with theoret-
ical predictions. This should prove that the program reproduces the correct CMs and right
physical effects, even though the zero-coupling and ground-state cooling test we applied to
it in the last chapter were already promising.
Once fully tested it might be interesting for a larger optomechanics community to make the
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presented program publicly available.
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Appendix

A Appendix to “Theory”

A.1 Important Gaussian states and symplectic transformations

The simplest Gaussian state probably is the N-mode vacuum state |0〉 = ⊗N
i=1 |0k〉 (note that

all other number states in general are not Gaussian ) whose CM can be calculated straight
forwardly from its definition in 1.9.This is also one of the states which yields an equality in
1.11 and 1.13:

σ|0〉 = ⊕N
i=1

1
2

(
1 0
0 1

)
(A.1)

Another state of great interest is the state at thermal equilibrium with temperature T of a
single mode described by the density matrix ρ(n̄) where n̄ = Tr(ρâ† â) is the mean thermal
excitation number in the specific mode with frequency ω. Also in this case, the CM follows
directly from 1.9

n̄ =
(

eh̄ω/kbT − 1
)−1

ρ(n̄) =
∞

∑
n=0

n̄n

(1 + n̄)1+n |n〉 〈n|

σTh =
2n̄ + 1

2

(
1 0
0 1

) (A.2)

This can also easily be expanded to the multi-mode thermal state.
The action of an ideal (phase free) beam-splitter on two modes is described by the symplectic
transformation

S(θ)BS =


cos θ 0 sin θ 0

0 cos θ 0 sin θ

sin θ 0 − cos θ 0
0 sin θ 0 − cos θ

 (A.3)

where θ determines the transitivity of the beam-splitter, for example θ = π/4 corresponds
to a 50:50-beam-splitter.
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The action of the two-mode-squeezing operator with squeezing parameter ζ = reiθ is repre-
sented by the symplectic transformation

S(ζ)TMS =


cosh r 0 − cos θ sinh r sin θ sinh r

0 cosh r sin θ sinh r − cos θ sinh r
− cos θ sinh r sin θ sinh r cosh r 0

sin θ sinh r cos θ sinh r 0 cosh r

 (A.4)

By applying the two-mode-squeezing symplectic transformation onto the CM of the two-
mode vacuum state σ|00〉 it is possible to generate the CM of the two-mode squeezed state
σTMS

σ(ζ)TMS = S(ζ)T
TMSσ|00〉S(ζ)TMS =

1
2


cosh 2r 0 − cos θ sinh 2r sin θ sinh 2r

0 cosh 2r sin θ sinh 2r cos θ sinh 2r
− cos θ sinh 2r sin θ sinh 2r cosh 2r 0

sin θ sinh 2r cos θ sinh 2r 0 cosh 2r


(A.5)

A.2 Logarithmic negativity in covariance matrix formalism

The negativityN (σ) of a CM σ as well as the logarithmic negativity EN (σ) can be formulated
in a practical and easy to calculate way using the symplectic eigenvalues λ̃j of the partial
transpose of the CM defined in 1.16:

N (σ) =


1
2 ∏j

(
λ̃−1

j − 2
)

for j : λ̃j <
1
2

0 if ∀j : λ̃j ≥ 1
2

EN (σ) =

−∑j log(2λ̃j) for j : λ̃j <
1
2

0 if ∀j : λ̃j ≥ 1
2

(A.6)

For this work we will relax the last condition for the logarithmic negativity which will allow
us to get a feeling of how far away the state is from being entangled.
Especially for a two-mode Gaussian state, since the numbers of eigenvalues NNPT which
violate 1.17 is bounded from above by NNPT = min(NA, NB), the only possible existing
eigenvalue with λ̃− < 1

2 can be computed by the invariants of the CM det(σ) and ∆(σ)
[AIDS03]:

λ̃− =
1√
2

√
∆(σ)−

√
∆(σ)2 − 4 det(σ) (A.7)
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A.3 Linearised QLE and important relations

〈 f̂ (t) f̂ (t + τ) + f̂ (t + τ) f̂ (t)〉 ' (2n̄ + 1)δ(τ) 〈 f̂ (t)〉 = 0[
âin(t), â†

in(t + τ)
]
= δ(τ)

[
â†

in(t), âin(t + τ)
]
= 0 = 〈â†

in(t)âin(t + τ)〉

âout(t) =
√

κâ(t)− âin(t)

g0 =
ωcxzp

L
g =

g0α√
2

∆0 = ω0 −ωc ∆ =

(
∆0 −

g0√
2
(β + β∗)

)
Ĥlin = −h̄∆â† â + h̄ωmb̂†b̂ + h̄g(b̂† + b̂)(â† + â)

˙̂Xm = ωmP̂m

˙̂Pm = −ωmX̂m − γmP̂m − 2gX̂c +
√

2γm f̂
˙̂Xc = −

κ

2
X̂c − ∆P̂c +

√
κX̂in

˙̂Pc = −
κ

2
P̂c + ∆X̂c − 2gX̂m +

√
κP̂in

(A.8)

A.4 Ground state-cooling of the mechanical system

As already discussed in section 1.4.2 the optomechanical coupling of the mechanical and op-
tical system gives rise to the Hamiltonian Ĥlin (see also A.8). This new Hamiltonian shows
a TMS- and BS-interaction which can be enhanced or suppressed by a proper choice of the
laser detuning.
Choosing a red-detuning on the one side will suppress the direct transition from a state
|0, m〉 → |1, m〉 and the one which adds a phonon to the mechanical system |0, m〉 →
|0, m + 1〉 as illustrated in fig. A.1. On the other side, the BS-interaction is enhanced and
therefore the initial state is brought from |0, m〉 → |1, m− 1〉.Because of the finite decay rate
κ � ωm of the cavity this state decays to |0, m− 1〉 and a photon shifted to higher frequen-
cies by ωm will leave the cavity effectively cooling the system. This effect can even be used
to cool the mechanics down to its ground state.
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E

|0,m

|1,m-1

|1,m+12ωm

ωc

|1,m

|0,m+1

|0,m-1

Figure A.1: Level diagram of groundstate cooling where |0, m〉 = |0〉c |m〉m represents a state with
zero photons in the optics and m excitations in the mechanical system . The transitions, in here the
direct transition |0, m〉 → |1, m〉 and the one mediated by the TMS-interaction |0, m〉 → |0, m + 1〉,
represented by dotted lines are suppressed due to the red-detuning of the laser while the one coming
from the BS-interaction |0, m〉 → |1, m− 1〉 is enhanced. Due to the finite decay rate κ of the cavity,
this state will decay and emit one photon of energy h̄ωc, effectively lowering the phonon number in
the mechanical system to a state |0, m− 1〉.

B Appendix to “Solving the QLE”

B.1 Ruth-Hurwitz-criterion and matrices

The Ruth-Hurwitz criterion states that for a n × n- matrix to have eigenvalues with nega-
tive real parts, the corresponding 1, ..., n Hurwitz matrices will have positive determinants.
The criterion is discussed in here by using the matrix A defined in eq. 2.2, lets consider its
characteristic polynomial

χA(λ) = det(A− λ14) = a0λ4 + a1λ3 + a2λ2 + a3λ + a4 (B.1)

Here we assume that a0 6= 0 and that all coefficients are real numbers which can be easily
checked. The Hurwitz-matrices are given by [Hof15, see appendix B.4 ]

H(n)ij = a2i−j 1 ≤ i, j ≤ n

H(n)ij = 0 j > 2i

eigenvalues of A have negative real parts⇔ det(H(n)) > 0 ∀n ≤ 4

(B.2)
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The four Hurwitz-matrices which need to be consider in the case of matrix A are given by:

H(1) = a1

H(2) =

(
a1 a0

a3 a2

)

H(3) =

a1 a0 0
a3 a2 a1

0 a4 a3



H(4) =


a1 a0 0 0
a3 a2 a1 a0

0 a4 a3 a2

0 0 0 a4



(B.3)

The stability of the system is then given if the determinants of all Hurwitz-matrices are pos-
itive, in this case the real parts of the corresponding eigenvalues of A will have negative
values which is needed for reaching the systems steady state:

eigenvalues of A have negative real parts⇔ det(H(n)) > 0 ∀n ≤ 4 (B.4)

For the first two Hurwitz-matrices, the criterion is automatically fulfilled so that only the
determinants of H(3) and H(4) need to be considered. The determinants are given by:

det(H(3)) =

γmκ

([
κ2

4
+ (ωm + ∆)2

] [
κ2

4
+ (ωm − ∆)2

]
+ γm

[
(γm + κ)(

κ2

4
+ ∆2)

]
+ κω2

m

)
−4∆ωmg2(γm + κ)2 > 0

det(H(4)) = det(H(3))
[

ω2
m

(
κ2

4
+ ∆2

)
− 4g2∆ωm

]
> 0

(B.5)

This can be reduced to two conditions for the stability of the system since the determinant of
the third Hurwith-matrix appears in the determinant of the fourth one:

γmκ

([
κ2

4
+ (ωm + ∆)2

] [
κ2

4
+ (ωm − ∆)2

]
+ γm

[
(γm + κ)(

κ2

4
+ ∆2)

]
+ κω2

m

)
−4∆ωmg2(γm + κ)2 > 0

ωm

(
κ2

4
+ ∆2

)
+ 4g2∆ > 0

(B.6)
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B.2 Derivation of the noise-correlation matrix and its Fourier-transformation

It is of interest to study the noise-correlations which arise in section 2.1.1 in eq. 2.5 in more

detail. The vector N(t) =
(

0,
√

2γm f̂ (t),
√

κX̂in(t),
√

κP̂in(t)
)T

contains the noise-operators
which appear in the final linearised QLE equations as summarized in sec. A.3. The different
noise-channels coming from the thermal bath of the mechanical oscillator f̂ (t) as well as the
optical noise characterised by X̂in and P̂in do not show any correlations.
In addition to this, there is no correlation observed for the different optical noise-quadratures,
for simplicity only terms which have non-zero correlators will be kept in this derivation:

〈X̂in(t)P̂in(t′) + P̂in(t′)X̂in(t)〉 =
i
2
〈âin(t)â†

in(t
′)− âin(t′)â†

in(t)〉 = 0
(B.7)

But the optical noise-quadratures as well as the mechanical noise-operator f̂ (t) are indeed
self correlated, using the relations summarized in A.3 this yields

〈X̂in(t)X̂in(t′) + X̂in(t′)X̂in(t)〉 = ... =
1
2
〈âin(t)â†

in(t
′) + âin(t′)â†

in(t)〉 = δ(t− t′)

〈P̂in(t)P̂in(t′) + P̂in(t′)P̂in(t)〉 = ... =

i2

2
〈−âin(t)â†

in(t
′)− âin(t′)â†

in(t)〉 = δ(t− t′)

〈 f̂ (t) f̂ (t′) + f̂ (t′) f̂ (t)〉 ' (2n̄ + 1)δ(t− t′)

(B.8)

For the last relation we used the approximation discussed in 1.34 assuming hight tempera-
tures such that kbT � h̄ωm as well as high quality factors.
In this derivation we modelled the noise to be Markovian which means that the thermal
bath as well as the optical noise-channel behave as if they have no memory of previous
times. These results can now be used to construct the noise-correlation matrix as it will be
used throughout this work (see eq. 2.5):

〈Ni(t)Nj(t′) + Nj(t′)Ni(t)〉
2

= Dijδ(t− t′)

D = diag
(

0, γm(2n̄ + 1),
κ

2
,

κ

2

) (B.9)

Within our approximations, the different noise-channels are strictly uncorrelated and even
cross-correlation between the optical noise-quadratures vanish. Alone this allows us to ap-
ply the discussed method of finding the solution to the QLE in sec. 2 and is therefore the
centre of the whole approach in this thesis.
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The found relations can be used as a starting point for the derivation of the Fourier-transformed
noise-correlation operator as it is used for the discussion in sec. 2.1.2

〈Ñi(ω)Ñj(ω
′) + Ñj(ω

′)Ñi(ω)〉
2

=

1
2π

∫∫
R2

dt′dte−iωte−iω′t′ 〈Ni(t)Nj(t′) + Nj(t′)Ni(t)〉
2

=

1
2π

∫∫
R2

dt′dte−iωte−iω′t′Dijδ(t− t′) =
1

2π

∫
R

dte−i(ω+ω′)tDij =

δ(ω + ω′)Dij

(B.10)

B.3 Integrals over rational functions

An integral over rational functions of the form:

∫ ∞

−∞

gn(x)
hn(x)hn(−x)

dx (B.11)

with the two polynomials:

hn(x) = a0xn + a1xn−1 + ... + an gn(x) = b0x2(n−1) + b1x2(n−2) + ... + bn− 1 (B.12)

can be solved by using Hurwitz-matrices of the polynomial hn(x). One condition for these
schemes to be successfully applied is that the roots of the polynomial need to lie in the
upper-half of the complex-plane so that the path of integration C closes all poles in this
plane [GR80], this is illustrated in fig. B.1.
The other condition on the polynomials states that the polynomial gn(x) is of order 2n− 1

at most, it can even contain lower odd powers since they will not contribute in the final inte-
gral.
If the two conditions are satisfied, the integral can be solved by using the nth Hurwitz matrix
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Real

Imaginary

C

-R R

Figure B.1: In order to apply the discussed Integration scheme, all roots of the polynomial hn(x),
illustrated by black dots, need to lie in the upper-half complex-plane. The integration path is given
by the semicircle C with radius R, in the limit of R → ∞ the integral approaches zero [HJ47, sec. 7.9]
and therefore has no contribution to the final results.

Hh(n) of h(x) as defined in B.2 ( see also [HJ47, Hof15]):

∆n = det(Hh(n)) =

∣∣∣∣∣∣∣∣∣∣
a1 a0 0 · · ·
a3 a2 a1 · · ·
a5 a4 a3 · · ·
...

...
...

...

∣∣∣∣∣∣∣∣∣∣
Λn =

∣∣∣∣∣∣∣∣∣∣
b0 a0 0 · · ·
b1 a2 a1 · · ·
b2 a4 a3 · · ·
...

...
...

...

∣∣∣∣∣∣∣∣∣∣
In =

∫ ∞

−∞

gn(x)
hn(x)hn(−x)

dx =
iπ(−1)n+1Λn

a0∆n

(B.13)

The second variable Λn is found by substituting the first column of Hh(n) by the coefficients
of the polynomial gn(x).
For a clearer understanding, the results for the integrals for polynomials hn(x) with n ≤ 3
and any general polynomial gn(x) is presented:

I1 =
∫ ∞

−∞

g1(x)
h1(x)h1(−x)

dx =
iπb0

a0a1

I2 =
∫ ∞

−∞

g2(x)
h2(x)h2(−x)

dx =
iπ(a0b1 − b0a2)

a2a1a0

I3 =
∫ ∞

−∞

g3(x)
h3(x)h3(−x)

dx = iπ
(a0b1 − b0a2)a3 − a0a1b2

(a0a3 − a2a1)a0a3

(B.14)
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C Appendix to “The program”

C.1 Orthonormalization in the two-sideband protocol

In the two-sideband protocol, in order to encounter for correlations between lower and up-
per sidebands in each of the temporal pulses, the following mode functions were introduced

α(t)± =
√

2ΓeΓte±iωmt for t ≤ 0

β(t)± =
√

2Γe−Γte±iωmt for t ≥ 0
(C.1)

These mode functions are then applied to the output-mode operator âout so that the following
filtered output-modes arise

âα±
out(t) =

∫ t

−∞
dt′α±(t′ − t)âout(t′)

âβ±
out(t) =

∫ ∞

t
dt′β±(t′ − t)âout(t′)

(C.2)

However, to use the introduced tools of covariance matrices to detect the shared entangle-
ment, the bosonic commutation relations for those new output modes need to be fulfilled
meaning that [

âα±
out(t), âα∓

out(t)
†
]
= 0[

âβ±
out(t), âβ∓

out(t)
†
]
= 0[

âα±
out(t), âα±

out(t)
†
]
=
[

âβ±
out(t), âβ±

out(t)
†
]
= 1

(C.3)

Please note that all other commutation relation which are automatically satisfied are not
shown in here, e.g. the ones between output-modes of the different temporal pulses due to
the non-temporal overlap of the mode functions.
The consequences on the mode functions can be illustrated on the example of

[
âα+

out(t), âα−
out(t)

†]
as well as

[
âα+

out(t), âα+
out(t)

†] and can be extended to all other mode functions with same argu-
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ment [
âα+

out(t), âα−
out(t)

†
]
=
∫∫

R2
dt1dt2α+(t1 − t)α∗−(t2 − t)

[
âout(t1), â†

out(t2)
]

︸ ︷︷ ︸
δ(t1−t2)

=

∫ t

−∞
dt1α+(t1 − t)α∗−(t1 − t) !

= 0[
âα+

out(t), âα+
out(t)

†
]
=
∫∫

R2
dt1dt2α+(t1 − t)α∗+(t2 − t)

[
âout(t1), â†

out(t2)
]

︸ ︷︷ ︸
δ(t1−t2)

=

∫ t

−∞
dt1|α+(t1 − t)|2 !

= 1

(C.4)

Therefore the mode functions { α(t)±, β(t)±} must form a set of orthonormal functions us-
ing the scalar product 〈 f , g〉 =

∫ ∞
−∞ f (t)∗g(t)dt. This orthonormalisation can now be carried

out by the Gram-Schmidt process, however one will lose the optimal shape of eq. C.1 of the
two mode functions α−(t) and β+(t).
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Abstract

The motivation behind my master thesis is to gain a clear theoretical insight into the currently
running experiment at the University of Vienna within the research group of Univ.-Prof. Dr.
Markus Aspelmeyer for the generation and detection of CV entanglement in optomechanical
systems [HO17].
In this experiment, non-classical correlations between the light field and the mechanical com-
ponent of an optomechanical structure are to be demonstrated. Since the mechanical compo-
nent of the experiment is difficult to access for detection, this type of correlations is detected
via two temporally separated pulses in the light field emerging from the cavity, whereby the
state of the mechanical subsystem is be transferred to the light field by the optomechanical
interaction.

In the first part of my work, we consider an optomechanical system consisting of a Fabry-
Pérot cavity wiht a moving end mirror. We are especially interested in the interaction be-
tween the optical and the mechanical subsystem, which are described by the linearised quan-
tum Langevin equations (QLE).
In the second part of my thesis, I present a way to analytically solve the obtained linearised
QLE for the steady state of the system. In addition to this, I discuss the application of two
filter functions to the emerging light field, which makes it possible to define two temporally
separated modes corresponding to the pulses in the actual experiment and to explore their
entanglement.

All discussed aspects will ultimately culminate in the implementation of a program which
allows the user to generate the covariance matrices for different constellations of subsys-
tems. With the help of this program, influences of different parameters on the entanglement
in the system of the above mentioned experiment will be studied that enable predictions for
optimal experimental parameters.
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Zusammenfassung

Die Motivation hinter meiner Masterarbeit ist es einen klaren theoretischen Einblick in das
gerade laufende Experiment an der Universität Wien innerhalb der Arbeitsgruppe von Univ.-
Prof. Dr. Markus Aspelmeyer zur Erzeugung und Detektion von CV Verschränkung in op-
tomechanischen Systemen [HO17] zu erhalten.
In diesem Experiment sollen nicht-klassische Korrelationen zwischen Lichtfeld und mecha-
nischen Komponente eines optomechanischen Aufbaus nachgewiesen werden. Da die mech-
anische Komponente des Experiments jedoch nur schwer für die Detektion zugänglich ist
wird diese Art der Korrelationen über zwei zeitlich getrennten Pulsen im aus der Cavity
austretenden Lichtfeld nachgewiesen wobei durch die optomechanische Interaktion der Zu-
stand des mechanischen Subsystems auf das Lichtfeld übertragen wird.

Im ersten Teil meiner Arbeit betrachten wir ein optomechanisches System bestehend aus
einem Fabry-Pérot-cavity mit einem beweglichen Endspiegel. Im speziellen sind wir an der
Interaktion zwischen dem optischen und dem mechanischen Subsystem interessiert, welche
durch die linearisierten Quanten Langevin Gleichungen (QLG) beschrieben wird.
Im zweiten Teil meiner Arbeit präsentiere ich einen Weg um die erhaltenen linearisierten
QLG für den Gleichgewichtszustands des Systemes auf analytische Weise zu lösen. Zusätzlich
diskutiere ich die Anwendung zweier Filterfunktionen auf das austretende Lichtfeld wodurch
es möglich ist zwei zeitlich getrennte Moden entsprechend den Pulsen im eigentlichen Ex-
periment zu definieren und ihre Verschränkung zu untersuchen.

Alle diskutierten Aspekte gipfeln letztendlich in der Implementation eines Programmes welches
es dem Anwender erlaubt die Kovarianzen Matrizen für unterschiedliche Konstellationen
von Subsysteme zu generieren. Mit Hilfe dieses Programmes werden Einflüsse verschiedener
Parameter auf die Verschränkung im System des oben genannten Experimentes untersucht
und so sodass Vorhersagen für optimale experimentelle Parameter gemacht werden können.
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