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Preface 
          
The work presented in this dissertation was performed between February 2015 and March 

2018 at the Pharmacoinformatics Research Group of the University of Vienna, under the 

supervision of Prof. Gerhard F. Ecker. 

           

Part I describes the motivation behind the work, provides the biological background of ABC-

transporters and introduces the structure-based methods used in this thesis. It includes two 

book chapters containing major contributions of the thesis author. While a certain 

information overlap is inevitable, the individual scopes of the parent volumes are different, 

which has been stated in the introductory part of each section. Finally, the contributions of 

this thesis are listed. 

 

Part II, Chapter 3 focuses on ligand-based approaches to address the prominent problem of 

imbalanced datasets in the field of drug discovery. It reports the results obtained after 

evaluating the performance of seven distinct meta-classifiers in predicting transporter-related 

hepatotoxicity endpoints. 

  

Part II, Chapter 4 reports the structure-based work undertaken during this period. The results 

presented in the BCRP study are so far unpublished, but a synthesis-oriented manuscript is in 

preparation in collaboration with Dr. Vittorio Pace (University of Vienna). 

 

Finally, part III contains the concluding discussion of the Thesis. The major contributions of 

each chapter are discussed as well as the main outcomes and take-home-messages of these 

studies. 

 

The compounds used in the BCRP study (Chapter 4.2) were synthesised by Dr. Vittorio Pace 

(University of Vienna). In vitro assays for BCRP inhibition for those compounds were 

performed by Anna Cseke and Dr. Katrin Wlcek at the University of Vienna under the 

supervision of Prof. Gerhard F. Ecker. 

 

 

 

IV



Index 

 
Acknowledgements          I 

Preface            IV 

I. Background          1 

1. Introduction          2 

 1.1. Motivation and aim of the thesis      2 

  1.2. Biological background of liver ABC transporters   5 

1.2.1. P-glycoprotein (P-gp)      6 

1.2.2. Bile salt export pump (BSEP)     7 

1.2.3. Breast cancer resistance protein (BCRP)   8 

  1.3. Structure-based Methods in Computational Drug Design  10 

   1.3.1. Homology modelling      10 

   1.3.2. Molecular docking      12 

    1.3.2.1. Scoring functions     14 

   1.3.3. Hierarchical Clustering      15 

   1.3.4. Molecular Dynamics Simulations    16 

  1.4. Contribution of this thesis      18 

2. Status quo in field         19 

2.1. Kotsampasakou et al., “Transporter in Hepatotoxicity”, Computational 

Toxicology: Risk Assessment for Chemicals, 145–174   19 

2.2. Multi-target prediction       50 

2.2.1. Kickinger et al., “Linked open data: ligand-transporter 

interaction profiling and beyond”, Multi-Target Drug Design Using 

Chem-Bioinformatic Approaches     50 

 

II. Result and Discussion                64 

 3. Ligand-based studies        65 

3.1. Jain et al. 2018, “Comparing the performance of meta-classifiers – A case 

study on a set of imbalanced data sets relevant for prediction of liver toxicity”, 

Journal of computer aided molecular design, 1-8    66 

 4. Structure-based studies        75 



4.1. Structure-based modeling studies on BSEP    76 

4.1.1. Jain et al. 2017, “Structure based classification for bile salt 

export pump (BSEP) inhibitors using comparative structural modeling 

of human BSEP”, Journal of computer aided molecular design, 

31:507–521        76 

4.2. Structure-based modeling studies on BCRP    92 

4.2.1. A hypothesis of the molecular basis for the inhibition of BCRP 

by arylmethyloxphenyl phenyl analogues using the BCRP crystal 

structure        92 

  4.3. Data transferability for Predictive in silico Modeling   103 

4.3.1. Jain et al. 2018, “Interspecies comparison of putative ligand 

binding sites of human, rat and mouse P-glycoprotein” (manuscript 

submitted)        104 
 

III. Concluding Discussion                  130 

IV. Appendix                    135 

 5. Supplements to Section 3.1          136 

 6. Supplements to Section 4.1.1       151 

 7. Supplements to Section 4.3.1       191 

 8. Publications and poster        213 

9. List of Abbreviations        216 

 

Bibliography                    218 

Abstract                     232 

Zusammenfassung                             234 

Curriculum vitae                     236 

 

 
 

 





 

 

 

I. Background 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1



 

1. Introduction  

 

1.1 Motivation and aim of the thesis 
 

The ATP-binding cassette transporters (ABC transporters) are a superfamily of active 

transmembrane proteins that selectively aid the movement of molecules in the cell by binding 

to them and undergoing a conformational change [1]. These transporters participate in active 

transport, i.e. they hydrolyze ATP and use the energy to transport their substrates. Some of 

these transporters transfer a large number of structurally and functionally diverse cytotoxic 

compounds including toxins of natural origin. The overexpression of such transporters has 

been implicated in multidrug resistance (MDR), a phenomenon in which a cell (cancerous or 

bacterial) becomes resistant to multiple drugs [2](Figure 1). Thus, besides protecting the cells 

and tissues against toxic agents, an increase in the efflux activity leads to resistance of tumor 

cells to a variety of drugs commonly used in chemotherapy [3–5]. Two primary members of 

the ABC family involved in cancer multidrug resistance are P-glycoprotein (P-gp, gene 

ABCB1) and the breast cancer resistance protein (BCRP, gene ABCG2). 

   

 
 

Figure 1: MDR as a result of the overexpression and/or increased efflux activity of ABC transporters 

[3–5]. Reprinted and edited by permission from Springer Nature: Nature Reviews Cancer, Fletcher et 

al.[6], copyright 2010.      
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Failure of several anticancer drug therapies has marked the MDR-related ABC-transporters 

as one of the widely studied transporters [7–11]. With an aim to overcome MDR, inhibitors 

of these transporters have been extensively studied [12, 13]. Due to toxicity concerns, none 

has reached the market yet [8, 14–16]. After several years of research, it can be understood 

that inhibiting ABC-transporters may not be the best solution to overcome MDR [9, 17, 18]. 

However, this had little impact on the increasing interest in studying these transporters. 

 

Most ABC-transporters are expressed under normal physiological conditions in important 

tissues and membranes such as intestine, liver, kidney, placenta, testis and the capillary 

endothelial cells of the brain [19, 20]. They influence the absorption, distribution, 

metabolism, excretion and toxicity (ADMET) of pharmacological agents [21, 22]. Genetic 

variations in their related genes are known to cause a large number of disorders in humans, 

such as cystic fibrosis, cholesterol and bile transport defects, neurological disease, to name a 

few [23]. ABC transporters expressed in liver canaliculi in particular (P-gp, BSEP, BCRP, 

MRP2 and MRP4), are responsible for efflux of many drugs and other xenobiotics [24, 25]. 

Dysfunction of any of these transporters or their inhibition by small molecules is known to 

lead to drug-drug interactions and drug-induced liver injuries [26–30]. In this context, 

regulatory authorities and organizations such as the United States Food and Drugs 

Administration (US FDA) and the International Transporter Consortium (ITC) recommends 

screening of candidate drugs for inhibition of P-gp, BCRP and BSEP [31–33]. Therefore, 

understanding the molecular basis of inhibition of these relevant ABC-transporters by small 

molecules is highly essential to be able to develop comprehensive in silico models that can 

predict these interactions.  

 

Lack of substantial structural information at higher resolutions, limits the structure-based 

drug design studies for predicting inhibitors of the ABC transporters [34–36]. Thus far, in 

silico studies to predict inhibitors primarily focused on ligand-based approaches such as 

quantitative structure-activity relationship (QSAR) modeling and machine learning [37]. 

While these models have proved to be efficient, they do not consider the properties of the 

protein and thus a lot of information necessary for understanding the inhibition process is 

ignored. Another problem associated with ligand-based studies is the increasing amount of 

data generated in drug discovery. In this context, problems data imbalance is being frequently 

reported in the literature [38–40] The field of toxicity is no exception and considering the 
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number of liver transporters implicated in serious adverse events, it is essential to deal with 

this issue and provide recommendations to handle such datasets. 

 

The general purpose of this thesis is to provide the community with useful in silico 

models to evaluate the probability of a new compound to be a canalicular liver ABC-

transporter inhibitor by employing structure-based modeling approaches. We hope to 

gain a better understanding of the mechanism of inhibition itself and also evaluate data 

transferability across species in development of predictive in vivo and in vitro models. 

Furthermore, a comprehensive comparison of different machine learning methods is 

expected to resolve the limitations associated with data imbalance and provide 

guidelines for handling highly imbalanced datasets. 

 

In the light of this, we performed structure-based modeling of three liver canalicular 

transporters BSEP, BCRP and P-glycoprotein. The release of an experimentally determined 

crystal structure of BCRP facilitated us to propose a binding hypothesis that could explain the 

activity trends within an inhibitor class. Further, a comprehensive comparison of the binding 

sites of human, rat and mouse P-gp transporters helped us to evaluate the transferability of in 

vitro human P-gp data for development of models to predict in vitro and in vivo outcomes in 

rat and mouse. We also addressed the issue of learning on imbalanced datasets by evaluating 

seven distinct meta-classifiers on different datasets in the toxicity domain that are known to 

possess a varying degree of class imbalance.  

 

We believe that the outcomes of this work would improve the understanding of the 

transporter mechanism at the molecular level and help us filter out unwanted compounds or 

prioritize interesting candidates in the early stages of drug discovery in an effort to save time 

and money. 
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1.2 Biological background of liver ABC transporters 
   

ABC transporters can be further classified into exporters and importers. Depending on their 

architecture and mechanism, the importers can be further grouped into two classes (I and II) 

[41–44]. Humans possess a total of 49 ABC-transporters, which can be divided into seven 

subfamilies [45], ABCA to ABCG. These groups include transmembrane drug transporters, 

ion transporters, peptide transporters and others. The ubiquitous ABC transporters are 

characterized by two nucleotide-binding domains (NBD) and two transmembrane domains 

(TMD). Conformational changes in TMD, driven by the ATP hydrolysis on the NBD, result 

in an alternating access from inside and outside of the cell, facilitating a unidirectional 

transport across the lipid bilayer [44] (Figure 2). Few ABC-transporters are referred to as 

"half-transporters". Their genes encode only for one transmembrane and one nucleotide 

binding domain, which necessitates the dimerization of these transporters in order to be 

functional. The first structural insights on the tertiary structure of ABC transporters were 

based on the nucleotide-binding domain (NBD) of histidine permease, determined at atomic 

resolution [46]. By 2009, eight crystal structures of complete ABC transport proteins were 

solved by X-ray crystallography [47].  Figure 3 represents the ribbon representations of 

different ABC proteins and their localization within the bilayer membrane. Since then, 

several other full-length structures of ABC export proteins were solved at the atomic level, 

providing detailed insights about their conformational variability [48].  

 

 
 

Figure 2: Schematic representation of the Transport cycle for ABC exporters. Reprinted and edited 

by permission from The American Association for the Advancement of Science: Science, Dong et al. 

[49], copyright 2005.   

5



 

 
 

Figure 3: Ribbon representations of different ABC proteins. (a) Sav1866 (Dawson and Locher et al. 

[50]). (b) MalFGK2 in complex with MBP (Oldham et al.[51]). (c) ModBC in complex with ModA 

(Hollenstein et al.[52]). (d) BtuCD (Locher et al.[53]). (e) Putative metal chelate transporter H10796 

(Pinkett et al.[54]). (f) Methionine transporter MetNI (Kadaba et al.[55]). (g-i) Lipid flippase MsbA 

from Salmonella typhimurium, Vibrio cholera, and Escherichia coli, respectively (Ward et al.[56]). (j) 

Mouse Pgp (Aller et al.[57]). Reprinted by permission from Springer Nature: Cellular and Molecular 

Life Sciences, Kos and Ford et al. [47], copyright 2009.  

 

Till date, P-glycoprotein (Pgp, MDR1, ABCB1), an efflux transporter, is the most extensively 

studied ABC protein. Together with breast cancer resistance protein (BCRP, ABCG2) and 

multidrug resistance-associated protein 1 (MRP1, ABCC1), Pgp is well known for its role in 

MDR in tumor cells [58]. These transporters share a low sequence similarity when their 

transmembrane domains (TMDs) are compared, which could explain the differences in their 

substrate and inhibitor specificities [47].          

    

In the following sections, we detail the structure, function, and small molecule interactions of 

the three liver ABC-transporters of significant relevance to this thesis work. 

       

1.2.1 P-glycoprotein (P-gp) 

   

P-glycoprotein (gene ABCB1) was the first membrane protein identified to be able to confer 

multidrug resistance to cancer cells [23]. In 1976, Juliano and Ling linked MDR to the 

expression of a membrane protein, P- glycoprotein in Chinese hamster ovary cell line [59]. 

6



 

Later, the structure was determined in 2009 by Aller and coworkers [57], which was further 

improved by Li et al. [60] in 2014. P-gp is a "full transporter," i.e. the ABCB1 gene encodes 

for two transmembrane domains (TMDs) and two nucleotide binding domains (NBD's) that 

constitute the transporter. The two TMD and NBD regions of the transporter differ in their 

amino acid sequence. 

 

In humans, P-gp is expressed in the blood-brain barrier, placenta, testis, hepatocytes, exocrine 

cells of the pancreas, gastrointestinal tract, kidney, bladder, spleen and lungs among other 

tissues [61, 62]. In case of cancer, P-gp expression increases in colon, kidney, adrenal gland, 

pancreas and other tumour cells [63, 64]. 

 

P-gp influences the ADMET (absorption, distribution, metabolism, excretion, and toxicity) 

properties of many compounds. If a drug is a substrate of P-gp, it could face the risk of 

increased metabolism in intestinal cells. Besides, if the co-administered drugs are substrates 

or inhibitors of P-gp, their pharmacokinetic profiles can be altered by P-gp modulating 

compounds, due to drug-drug interaction, leading to severe side effects [65–67]. Digoxin, an 

inhibitor of the cardiac Na+/K+-ATPase used for treating heart failures or arrhythmia, is a 

classic example of drug-drug interactions in the context of P-gp. Digoxin is a substrate of P-

gp and is excreted by the kidneys. Inhibition of this transporter by quinidine or ritonavir has 

caused decreased clearance of digoxin [68, 69], which could potentially lead to 

cardiotoxicity. Thus, early identification of P-gp inhibitors is highly important in drug safety 

considerations. 

 

1.2.2 Bile salt export pump (BSEP) 

 

BSEP (gene ABCB11) is an ABC transporter of the B subfamily and is primarily expressed 

in the cholesterol-rich canalicular membrane of hepatocytes [70]. It facilitates secretion of 

bile salts from the liver into the bile canaliculi [70–72]. Bile salts are conjugated bile acids 

which are negatively charged at physiological pH. Bile acids are products of the catabolism 

of cholesterol in the liver [73–75]. They conjugate with phospholipids to form micelles, 

which increase their excretability into bile and thus promote digestion and absorption of 

dietary fat [76]. Bile salts, through an enterohepatic cycle, are transported from the liver to 

bile to duodenum and again back into the enterohepatic blood circulation. They are then 
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picked up by the transporter Na+-taurocholate cotransporting polypeptide (NTCP) at the 

basolateral membrane of hepatocytes [25]. 

 

Genetic variations in ABCB11 result in different forms of progressive familial intrahepatic 

cholestasis (PFIC) [77, 78]. PFIC is characterized by an early onset of cholestasis and 

eventually leads to liver cirrhosis and failure [79–81]. 

 

BSEP is inhibited by many drugs and drug metabolites [27, 82, 83]. This is a potential 

mechanism leading to drug-induced cholestasis. Thus BSEP is a crucial transporter protein 

that is often studied in the recent research on drug safety. Drugs such as bosentan, rifampicin, 

troglitazone [84] cause intracellular accumulation of bile salts which is an unwanted effect 

directly related to the inhibition of BSEP. In few cases, it could result in liver injury and 

thereby liver transplantation. Dysfunction of individual bile salt transporters such as BSEP, 

due to genetic mutation, suppression of gene expression, disturbed signaling, or steric 

inhibition, are other factors leading to cholestatic liver disease. Therefore, it is highly 

essential to screen for BSEP inhibition in the drug discovery pipeline to limit the post-

marketing drug withdrawals associated with drug-induced liver toxicity.   

  

1.2.3 Breast cancer resistance protein (BCRP)  

 

Breast cancer research protein (BCRP) was first identified in 1998 [4, 85]. Thereafter, a large 

number of BCRP inhibitors and substrates were reported, which not only include therapeutic 

agents but also physiological substances such as estrone-3-sulfate and uric acid. Taylor et al. 

have recently reported a crystal structure of the transporter, determined by cryo-electron 

microscopy [86], that provides the first high-resolution insight into a human multidrug 

transporter. Two cholesterol molecules were observed to be bound in the multidrug binding 

pocket, which is located in a central, hydrophobic, inward-facing translocation pathway. 

Today, BCRP (~655 amino acids) is considered among the three major transporters 

responsible for drug resistance in mammalian cells [87]. It is a half ABC transporter, with 

one nucleotide-binding domain (NBD) and one membrane-spanning domain (MSD) [88, 89]. 

Topologically, the N-terminal of BCRP contains the cytoplasmic NBD while the C-terminal 

contains the TMD, which is a characteristic of the G-subfamily of the ABC transporters. 

While multimerized forms of BCRP have been reported [90–92], but be functional, it is 
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supposed to be in a homodimer state [93, 94]. Readers can refer to the work by Ni et al. [88] 

for greater details on the structural and functional aspects of BCRP. 

  

BCRP is highly expressed in the intestinal epithelium, the liver hepatocytes, the renal 

proximal tubular cells, the endothelial cells of brain microvessels, and the apical membranes 

of the placental syncytiotrophoblasts [95]. Thus it plays an important role in the absorption, 

distribution, elimination of drugs and endogenous compounds, as well as tissue protection 

against xenobiotic exposure. Consequently, the FDA perceived it among the key drug 

transporters for clinical drug disposition [71, 95]. Although a large number of substrates and 

inhibitors are already known, the structure-activity relationship (SAR) trend is not clearly 

known for this elusive transporter [96]. Furthermore, several single nucleotide 

polymorphisms (SNPs) were already reported [97–100] for this transporter, including a few 

that may alter pharmacokinetics and lead to drug toxicity. For example, SNP Q141K, 

frequently found among the Asian population (35%) [101], leads to decrease in membrane 

expression and ATPase activity [102]. Variation of BCRP function by small molecule 

inhibitors could also lead to drug-drug interactions. For instance, when the chemotherapeutic 

agent topotecan (a substrate of BCRP) was administered orally along with elacridar (inhibitor 

of BCRP with an IC50 below 1 µM) [103, 104], it doubled the bioavailability and tripled the 

peak plasma concentration of topotecan [105]. Therefore, it is highly essential to prevent such 

drug-drug interactions that can lead to toxicity. 
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1.3 Structure-based Methods in Computational Drug Design 
 

Development of faster computers has led to their increasing use in studying biomolecular 

processes. With a large number of protein structures yet to be resolved and increasing 

availability of tertiary structure prediction tools and servers, protein structure prediction 

serves as an appropriate alternative in cases where it is not feasible to determine the structure 

of interest using experimental techniques [106, 107]. Furthermore, computational modeling 

of 3D protein structures is among the most common starting points for drug design in both 

academic and industrial pharmaceutical research. 

 

Below we describe the computational methods which were widely used in this thesis. 

 

1.3.1 Homology modeling 

 

Experimental techniques such as nuclear magnetic resonance (NMR) and X-ray diffraction 

can resolve the protein's three-dimensional structure [108, 109], but are challenged by several 

limitations which include the size of the protein, costs involved and difficulty in purification 

or crystallization [110, 111]. Homology modeling, also known as comparative modeling, 

refers to construction of an atomic resolution model of a protein from its amino acid sequence 

and the experimentally determined 3D structure of a template protein with which it shares 

reasonable sequence identity [106, 112–116]. It is based on the assumption that proteins 

sharing similar sequences form similar structure. Due to the challenges associated with other 

methods, homology modeling has become one of the most used and reliable method. Figure 4 

lists different steps in homology modeling. 
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Figure 4: Steps of homology modeling. Reprinted by permission from Annual Reviews, Inc: Annual 

review of biophysics, Martí-Renom et al.[117], copyright 2008. 

 

The first step is to construct a multiple sequence alignment between the sequences of the 

target protein and the identified template protein. For this, sequence similarity is performed 

by using BLAST searches [118–120] against sequences of known structures and other 

sequences of proteins from the same family as the query. This helps to get an estimate of 

consensus sequence motifs, the degree of conservation and general features of the family. 

Then the obtained alignment is corrected for positions of insertions and deletions, accurate 

alignment of active site residues and also conserved residues. Next step is to construct 

backbone and model loops, generate side chains and optimize conformations using the 

software like MODELER [121, 122]. This tool requires three input files: an alignment of the 

template and the target sequence, the template PDB structure and a script containing the 

commands and file paths. 
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In case of complex models, use of multiple softwares/servers and a comparison of the results 

is recommended. Finally, the generated structure model is optimized and validated. For this, 

the final model is selected from a pool of generated models, based on energy functions, 

Ramachandran plots and agreement with mutational data. The Discrete Optimized Protein 

Energy (DOPE) [123] function assesses the model quality using a statistical potential 

function. Third-party tools such as PROCHECK [124] also facilitate calculation of 

Ramachandran plots [125] while the QMEAN server can be used to obtain a Z-score [126, 

127], which indicates the deviation from experimental structures. At times, errors in 

backbone could lead to an incorrect prediction of rotamers. These can be corrected by 

performing refinements and by applying energy minimization using different types of force 

fields. The models could still consist errors and require further validation if the bond angles, 

lengths, torsion angles, etc. are within the desired ranges. 

 

Homology modeling has been successful in drug design, providing more insights into the 

architecture and function of the protein[128]. In our case, based on sequence identity and 

resolution, the corrected mouse P-gp (4M1M) structure was selected as the template for 

homology modeling of BSEP and P-gp. 

 

1.3.2 Molecular docking  

 

Molecular docking is a prominent computational technique in structural biology and 

computer-aided drug design, useful in predicting the binding modes of a ligand within the 

binding pockets in the three-dimensional structure of a protein. It is widely employed for 

tasks such as virtual screening, generation of hypotheses for target inhibition by a ligand and 

lead optimization. The technique was first reported in the 1980s [129]. Over the time, the 

algorithms have evolved and many standalone docking tools such as AutoDock [130], 

GLIDE [131, 132], GOLD [133, 134] and several online services (ZDOCK [135, 136], 

SwissDock [137]) are now available. 

 

AutoDock is the most commonly used open-source docking software that is freely available 

for academic research [130]. It supports flexible side chains, checks the syntactic correctness 

of the input, verifies invariance of the covalent bond lengths and avoids imposing artificial 

restrictions. Another popular package Schrodinger [138, 139], though not freely available, is 
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a comprehensive software suite with packages for lead discovery, lead optimization, target 

preparation, docking and various modeling tools with options for automation. Schrodinger's 

Glide [131, 132] package enables docking of flexible ligands by grid construction in rigid 

protein models and rapid sampling of the conformational, orientational, and positional 

degrees of freedom of the ligand. Another method available in Schrodinger is induced-fit 

docking (IFD) [140, 141] wherein protein flexibility can also be accounted. It employs Prime 

package along with Glide to explore all possible binding modes and possible conformational 

changes in the receptor’s active sites. In IFD, the ligand is docked using Glide which 

generates different ligand poses, followed by the structure prediction using the Prime module 

to accommodate the ligand by reorienting nearby side chains. Then the residues and ligand 

are minimized and all the ligands are re-docked into their corresponding low energy protein 

structures. Prime’s advance refinement process further enhances the accuracy of Glide. 

  

Genetic Optimization of Ligand Docking (GOLD) [133, 134] is an another widely used 

commercial docking software. GOLD facilitates users to define the protein binding pocket 

with a radius along the given coordinates or by a reference ligand from a co-crystal structure. 

On the protein and the ligand surfaces, hydrophobic and hydrogen bond (HB) fitting points 

are then created. Protein flexibility can be accounted by a brute force exploration of all 

possible angles or as defined in a rotamer database [142]. Additionally, the location and 

orientation of water molecules can also be predicted. Furthermore, a harmonic potential can 

be used to fix the distance between two atoms (within the protein and/or between protein and 

ligand atoms). This is especially useful to reduce the number of docking poses in concurrence 

with the experimental data (when available). 

 

GOLD uses a genetic algorithm to generate a docking pose. For this, 

1) Bit strings (chromosome) are generated from the ligand torsional angles. 

2) A scoring function is then applied and two random poses are selected and weighted by 

their score. 

3) Of those two chromosomes, genetic operations of mutation, crossover and migration 

are applied. 

Steps 1-3 are repeated, until the desired number of poses are obtained. 

 

The strength of molecular docking is its capability to provide insights into different binding 

possibilities, that can be used for screening of large compound libraries and also as a tool for 
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defining a starting complex for molecular dynamics (MD) simulations. Depending on the 

focus of the study, docking poses can be generated by either using constraints into a specific 

binding pocket or without any constraints, which provide a probability distribution of the 

binding mode. The docking poses can be further clustered on the basis of their placement into 

specific binding pockets. Further, it is also recommended to energy minimize the ligand and 

residues within a certain radius for re-scoring purposes. An elaborated overview of different 

software available for docking is provided by Pagadala et al. [143]. 

 

1.3.2.1 Scoring functions 

 

Scoring functions are mathematical methods used to predict the binding affinity between the 

ligand and active site of the protein structure after they are docked. They can be divided into 

three classes: 

 

Force-field based scoring functions - These scoring functions are estimated on the basis of 

intermolecular van der Waals and electrostatic interactions between all atoms of the protein 

and the ligand using a force field used in molecular dynamics (MD) simulations [144, 145]. 

 

Knowledge-based scoring functions - Also known as statistical potential functions. These 

are based on the probability of finding protein and ligand atoms within a certain distance 

estimated by observing intermolecular close contacts in 3D databases like Protein Data Bank 

(PDB) [146] and Cambridge Structural Database (CSD) [147]. This method is based on the 

assumption that close intermolecular interactions between certain functional groups which 

occur more frequently in comparison to others are likely to be energetically favourable [148–

151].  

 

Empirical scoring functions - It is the most commonly employed category of scoring 

functions, the reason being that these are faster than force-field based scoring functions and 

more reliable than the knowledge-based scoring functions. They are based on different types 

of interaction between the ligand and the receptor protein [152]. They consist of energy terms 

with coefficients determined by multiple linear regression (MLR) trained on experimental 

protein-ligand complexes. 
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Scoring functions can also be applied after docking, i.e. re-scoring. This would also allow 

obtaining a consensus scoring from multiple scoring functions, which could be used to 

prioritize a binding hypothesis [153]. The GOLD software provides several scoring functions, 

such as GoldScore [133, 154], ChemScore [152, 154], ChemPLP [155] and the Astex 

Statistical Potential (ASP) [156]. GoldScore is a force-field based scoring function. This 

performs well but is relatively slow compared to ChemPLP. ChemPLP is a piecewise linear 

potential function that uses the Ants algorithm[155]. ChemScore is mostly used in the case of 

metal complexes since it contains terms for that [152]. Glide [131, 132] scoring function from 

Schrodinger [138, 139] is reported to outperformed GOLD against the same target in a 

similar virtual screening experiment [143].  

 

The external scoring function X-Score[157], which is validated against a set of 800 protein-

ligand complexes is also known to perform well in most cases. It uses the van der Waals and 

electrostatic terms and also approximates the ligand entropic contribution by taking its 

number of rotatable bonds into account[158]. 

 

Though the scoring functions are very useful in screening large compound libraries, they are 

limited by low predictability. This is due to the fact that these scoring functions estimate 

score based on a single snapshot of the protein-ligand complex whereas binding affinity is 

related to a Boltzmann weighted average of different states of a complex. Furthermore, many 

scoring functions do not account for desolvation, the entropy of the binding pocket and 

interactions with water. Further, studies reported that machine-learning methods outperform 

Multiple Linear Regression (MLR) trained scoring functions[159]. Nonetheless, the choice of 

the scoring function strongly depends on the research question and a combination of several 

scoring functions, referred to as consensus scoring, is recommended [160]. 

 

1.3.3 Hierarchical Clustering 

 

Hierarchical clustering is a useful method to cluster the poses of different ligands with same 

scaffold [161]. It is believed that ligands that share a common chemical scaffold fit in the 

same fashion in a protein binding pocket [161–163]. The docking poses can be clustered 

based on the root mean square distance (RMSD) matrix of the heavy atoms in the Euclidean 

space. The large number of poses in a typical range of 2 Å indicates that the binding modes 

15



 

have higher probabilities of being active. For this, the scaffolds of ligands are first extracted 

from docking poses and saved as SMILES strings with coordinates in the database. Next, 

different clustering methods such as complete-linkage method can be used to cluster the 

poses with least distance together and construct a dendrogram. Further, a cut-off on the 

RMSD can be used to remove the outliers from the cluster. Visual inspection of the 

dendrogram facilitates the selection of a cut-off value on the RMSD. 

 

In our study, clustering of arylmethyloxyphenyl derivatives docked into the BCRP binding 

pocket helped us to propose a binding hypothesis for the series of analogues. 

 

1.3.4 Molecular Dynamics Simulations 

 

Molecular dynamics (MD) is a computer-aided simulation method to study the dynamic 

movement of atoms and molecules[164]. It is an important tool in drug discovery [165], 

which facilitates simulation of both individual membrane proteins and more complex 

systems[166]. MD simulations provide a detailed description of particles in motion as a 

function of time by iteratively solving Newton's classical equation of motion for each 

molecule [167]. MD simulations are particularly useful when the system cannot be studied by 

the experimental methods such as mass spectroscopy or crystallization methods such as NMR 

or X-ray crystallography [168]. Therefore, they hold great significance in understanding the 

physical basis of the structure and function of proteins and other biological macromolecules 

[113]. 

 

In an MD simulation, interactions between the atoms can be defined by different potential 

energy functions of a given force field (OPLS [169], CHARMM [170, 171] or GROMOS 

[172]). The bonded interactions within the system such as stretching, bending and dihedral 

terms are modeled by employing harmonic potentials while the non-bonded interactions are 

described by the Lennard-Jones potential for van der Waals interactions and by the 

Coulomb's law for electrostatic interactions. Calculation of the non-bonded terms is 

computationally expensive, which necessitates the employment of algorithms such as 

SHAKE [173] or LINCS [174] that correct for the interatomic distance in every step. 
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Protein systems are typically simulated in a box using periodic boundary conditions in order 

to emulate crystal structure conditions and to prevent undesirable boundary effects [175–

177]. Membrane proteins should be placed in a lipid bilayer which approximates their 

indigenous biological conditions. Further, the system is energy minimized to get rid of any 

overlapping van der Waals cores. The book “Molecular Modeling of Proteins” [178] provides 

an excellent review on various aspects of these issues. 

 

A general protocol to setup an MD simulation, as described by Jurik et. al.[113], can be found 

below: 

1) select the forcefield taking into account the parameters for the protein and the ligand 

2) place the protein into the membrane 

3) solvate the system and add ions to neutralize excess charges and adjust the final ion 

concentration 

4) perform energy minimization on the system 

5) run MD for ~5-10ns with restraints on all protein heavy atoms 

6) equilibrate without restraints 

7) run production MD 

8) perform analysis 

 

The main advantage of using MD is that it strives to mimic the structure of interest and can 

be effective in comprehending the structure-to-function relationships of macromolecular 

structures [164]. Multiple conformations are generated, that could describe protein-ligand 

interactions in the dimension of time. Furthermore, it is possible to achieve precise 

interaction energy values that facilitate the interpretation of ligand binding and unbinding 

events. A classical MD simulation, unlike Monte Carlo or Markov Chain methods, does not 

efficiently sample the conformational space. Based on the starting structure, the trajectories 

could be confined within a multidimensional energy minimum. This limitation can be 

handled by increasing the simulation time or by employing enhanced sampling techniques 

such as steered molecular dynamics or essential dynamics[164]. Further, recent advancement 

in computational hardware, especially the use of graphical processing units (GPUs) and high 

performance computing (HPC) clusters facilitate simulation of much larger systems in shorter 

times, allowing greater conformational changes to be sampled [179]. 
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1.4 Contribution of this thesis 

      

We hope that this thesis work sheds light on the thus far unexplored protein-ligand 

interactions to reveal the molecular basis of inhibition of ABC-transporters. This would 

facilitate the development of in silico prediction models and assist lead optimization. Due to 

the constraints on data availability and duration of the Ph.D. thesis, we focused on the ABC-

transporters BSEP, BCRP and P-gp. Since multiple ligand-based studies have already 

reported prediction models for inhibition of these transporters, we primarily focused on 

structure-based approaches. 

 

More precisely, the key contributions of this thesis are: 

 

- A benchmarking study to evaluate the performance of seven different meta-classifiers in 

handling imbalanced drug discovery datasets: Bagging, under-sampled stratified bagging, 

cost-sensitive classifier, MetaCost, threshold selection, SMOTE and ClassBalancer. 

 

- Comparative structural modeling of human BSEP and structure-based classification of 

BSEP/ABCB11 inhibitors. 

 

- Protein-ligand interaction fingerprint (PLIF) based method and analysis for identification of 

functional group-binding site residue interactions that reveal the molecular basis of inhibition 

of the transporter protein by a wide range of ligands.  

            

- A hypothesis for the molecular basis of the inhibition of BCRP by arylmethyloxyphenyl 

analogues using the BCRP crystal structure. 

 

- Structure-based approaches to compare the binding site interaction profiles of human, rat 

and mouse P-gp to evaluate the transferability of in vitro human activity data in the 

development of in vivo prediction models for rat and mouse. 
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2. Status quo in field 

 

2.1 Transporter in Hepatotoxicity 
 
Eleni Kotsampasakou, Sankalp Jain, Daniela Digles Gerhard F. Ecker, Transporter in 

Hepatotoxicity, Computational Toxicology: Risk Assessment for Pharmaceutical and 

Environmental Chemicals, 2nd edition, Sean Ekins, ISBN: 978-1-119-28256-3 

 

In the following chapter, we summarize the role of different transporters in hepatotoxicity. 

We then briefly describe the data sources available and the difficulties in obtaining the data 

for the related transporters proteins. Further, we present different ligand-based and structure-

based studies performed to predict in silico whether a small molecule is an inhibitor or a 

substrate of a given transporter. We also mention the in vitro models available to predict liver 

toxicity. The majority of these models focus on predicting BSEP inhibition, which is directly 

related to liver toxicity. 

         

  

E. Kotsampasakou wrote the introduction, basolateral transporter and canalicular transporter, 

D. Digles wrote Data Sources for Transporters in Hepatotoxicity, S. Jain performed the 

literature search and wrote In Silico Transporters Models, ligand-based approaches and 

structure-based approaches, G.F. Ecker supervised the work and revised the chapter.  
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6.1 Introduction

Transmembrane transporters are essential for regulation of the uptake and
efflux of endobiotics and xenobiotics at the cellular level as well as in barrier
tissues (e.g., blood–brain barrier, kidney, liver, enterocytes). Among them,

Computational Toxicology: Risk Assessment for Chemicals, First Edition. Edited by Sean Ekins.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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Figure 6.1 Transporters located in the hepatocyte. The medium grey symbols represent the
canalicular transporters and dark grey ones the basolateral transporters. Cycles represent
uptake transporters and ellipses refer to efflux transporters. The arrows define the direction
of transport.

hepatic transporters possess a vital role, as the liver is the main organ of
metabolism and detoxification [1, 2]. Figure 6.1 depicts the main hepatic
transporters and their respective location in the hepatocyte. In the following
section, we will briefly introduce their significance in selected liver toxicity
manifestations.

6.2 Basolateral Transporters

Regarding the basolateral uptake transporters, the sodium (Na+) taurocholate
co-transporting polypeptide (NTCP) is quite important in the enterohepatic
circulation of bile salts, thus contributing to liver homeostasis [3, 4]. It has
been proposed that the mechanistic basis of some hepatotoxic – and, in par-
ticular, cholestatic - drugs includes the inhibition of NTCP [5]. In addition, the
potential association of organic anion transporting polypeptides 1B1 and 1B3
(OATP1B1 and OATP1B3) inhibition with hyperbilirubinemia, a pathological
accumulation of conjugated or unconjugated bilirubin in sinusoidal blood [6, 7],
is worth mentioning. Hyperbilirubinemia can be drug-induced [6, 7] or genet-
ically induced, such as in the case of the Rotor syndrome [7–13]. Figure 6.2
shows the cycle of bilirubin and how transporters might be involved in the
development of this condition.
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Bilirubin cycle in liver

Sinusoidal

Canalicular

UGT1A1
Hepatocyte

MRP1 MRP4 MRP3

Bilirubin

Glu

Glu
BCRP MRP2

OATP1B1 OATP1B3

Figure 6.2 The cycle of bilirubin in the liver. Bilirubin is taken up from sinusoidal blood by
OATP1B1 and OATP1B3. It is metabolized by UGT1A1 into mono- and bi-glucuronidated
products that are exported into bile primarily by MRP2 and in smaller extent (smaller arrow)
by BCRP. A portion of the glucuronidated or unglucuronidated bilirubin is effluxed into
sinusoidal blood by MRP4 and the cycle is repeated. Source: Adapted from Sticova and Jirsa
2013 [11].

For the other major basolateral uptake transporters, such as the organic
anion transporters (OATs) and the organic cation transporters (OCTs), there is
low incidence for a potential role in toxicity phenotypes in the liver. However,
there is one exception, namely, some polymorphisms and mutations in human
OCT1 that lead to decreased transport activity of OCT1 in the liver, which
can obstruct the biliary excretion of hydrophobic cationic drugs [14].

Regarding the basolateral efflux transporters, the organic solute transporter
alpha-beta (OSTα–OSTβ) dimer is upregulated as a protective mechanism
against the accumulation of toxic bile salts in the hepatocyte [15]. The same
accounts for most of the multidrug resistance-associated proteins (MRPs).
Several reviews describe an increase in mRNA levels of MRP1, MRP3, MRP4,
and MRP5 [4], as well as an increase in protein levels of MRP3 and MRP4
[16] in hepatobiliary pathological conditions. Moreover, MRP3 as well as
MRP1 may act as a compensatory mechanism to alleviate the potential toxic
effects of high bile acid concentrations in the liver, when the canalicular
efflux transporters such as the bile salt export pump (BSEP) and multidrug
resistance-associated protein 2 (MRP2) are blocked [1, 17].
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6.3 Canalicular Transporters

For canalicular transporters, the most prominent example is the contribution
of both genetically – [3, 18–21] and drug-induced [18, 20, 22–24] BSEP inhibi-
tion in the development of cholestatic conditions. MRP2, due to its important
role in bilirubin and bile salts transport, is also suggested to be correlated with
drug-induced hyperbilirubinemia [11, 25] and cholestasis [26–28]. Similarly,
BCRP is also believed possibly contribute to the efflux of bilirubin conjugates
into bile [11]. Deficiency of BCRP is also suspected to result in accumulation
of toxic bile salts in the liver, which induce toxicity issues [29]. MDR3 main-
tains the integrity of the membrane and conducts the phospholipid flow across
the canalicular membrane of the hepatocyte [30]. It has also been associated
with genetically – [1, 16, 26, 29–33] and drug-induced [16, 26, 29, 30, 34, 35]
cholestatic conditions.

Furthermore, MDR1 (P-glycoprotein, P-gp) is also expressed in the liver.
MDR1 plays a prominent role in drug resistance during cancer therapy [36,
37] and has also been associated with drug-drug interactions. Nevertheless, in
most of the cases of drug-induced hepatotoxicity or cholestasis, the implication
of P-gp is attributed to its localization in several organ membranes and its
great number of its substrates, rather than to direct effects in the liver [38, 39].

The ATP-binding cassette subfamily G members 5 and 8 (ABCG5 and
ABCG8) heterodimer, the ATPase class I type 8B member 1, also known as
ATPase-aminophospholipid transporter (ATP8B1 or FIC1), the multidrug and
toxin extrusion transporter 1 (MATE1), the cystic fibrosis transmembrane
conductance regulator (CFTR), the copper-transporting P-type ATP-ase
(ATP7B), and the manganese transporter SLC30A10 are also liver transporters
with an important physiological role. Despite the fact that they are associated
with several diseases – including manifestations of liver toxicity, to our
knowledge they are not associated with any pathological drug-induced liver
condition.

With this list of transporters and their important role it becomes evident,
that any distortion in the proper function of hepatic transporters might result
in manifestation of hepatotoxic phenomena. Therefore, knowledge of the
inhibitory profile of drugs currently in the market, as well as the ones under
development, is vital in order to avoid potential side effects. One step in this
direction is the collection of the available data and another step further is the
development of robust predictive models for these transporters.

6.4 Data Sources for Transporters in Hepatotoxicity

Currently several large-scale initiatives collect and predict toxicity data for
both drugs and environmental chemicals. These include, among others,
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projects funded by the innovative medicines initiative (IMI) such as eTOX
(http://www.etoxproject.eu/) and MIP-DILI (http://www.mip-dili.eu/), the
Horizon 2020 EU-ToxRisk project (www.eu-toxrisk.eu) and the Toxicology in
the 21st Century (Tox21) initiative [40] (http://tox21.org). EU-ToxRisk aims
at advancing in vitro and in silico tools for toxicology, thereby focusing on
mechanism-based approaches. Adverse outcome pathways (AOPs) introduced
by the Organisation for Economic Co-operation and Development (OECD)
play an important role here. One example for an AOP relevant to hepatotoxicity
is “cholestatic liver injury induced by inhibition of the BSEP (ABCB11)” [41].

Searching for data on hepatotoxicity in bioactivity databases, such as
ChEMBL [42, 43] or PubChem [44], is difficult owing to the way biological
data are organized. While searches for bioactivity data for protein targets
are straightforward, hepatotoxicity as a “target” is more difficult to define.
For example, an assay search in ChEMBL version 22 [43] (accessed October
5, 2016) for “hepatotoxicity” returns 585 different assays mentioning hepa-
totoxicity in the assay description. Here, the target is for example the tissue
Liver, the cell-line hepatocyte, or the general target ADMET. However, the
phenotype “hepatotoxicity” is available as target directly (CHEMBL1697861)
and is connected with 31 assays. These include, among others, datasets mined
from literature [45, 46], the drug induced liver injury prediction system
(DILIps) training set [47], and the food and drug administration (FDA) liver
toxicity knowledge base benchmark dataset (LTKB-BD) [48]. Of note for
hepatotoxicity, but not yet available in ChEMBL, is a recent work by Chen
et al. [49], where a reference list for drug-induced liver injury (DILI) was
presented.

While identifying activity values for a specific transporter is more straight-
forward, interpreting the data can be challenging. As an example, a search for
BCRP easily identifies the human protein (CHEMBL6020), which shows a total
of 1799 bioactivity values. While a large portion of the values are reported as
IC50 values in nanomolar (nM) units (615), others are given as inhibition in
percentage (357), activity in percentage or fold increase of control (278), or
EC50 in nM (213). Several activities are reported as ratios (58) or other activ-
ity types (275), for example, fluorescence intensity, drug transport, intrinsic
activity, or permeability. This makes a direct comparison of the values rather
difficult. In addition, measurements of different assay setups cannot always be
directly compared, as shown for P-gp inhibitors [50].

To retrieve bioactivity values for transporters (e.g., to build computational
models), a list of relevant transporters is needed first. This can be achieved
by reviewing the literature, but data collections such as the Gene Ontology
(geneontology.org) [51] can be helpful as well. For example, the molecu-
lar function of “canalicular bile acid transmembrane transporter activity”
(GO:0015126) can be used to retrieve a list of BSEP proteins from different
organisms.
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6.5 In Silico Transporters Models

Table 6.1 summarizes some of the available computational models of hepatic
transporters implicated in hepatotoxicity, namely, BSEP, MRP2, MDR1,
BCRP, MATE1, OCT1, OCT2, OATP1B1, OATP1B3, MRP3, MRP4, NTCP,
ASBT, and OATPs. Owing to the heterogeneity of experimental reports
in terms of assay types, test concentrations, and experimental conditions,
most computational studies focus on classification models of varying pre-
diction performances. These models are built to distinguish inhibitors from
non-inhibitors [79]. Only a few models for prediction of binding affinity or
inhibition at a quantitative level are available. Their predictivity is usually
limited to small sets of compounds with measurements from assays with
similar experimental conditions [79].

6.6 Ligand-Based Approaches

Considerable progress has been made in the development of in silico prediction
models for canalicular transporters such as BSEP, MRP2, MDR1, and BCRP. In
addition, there were also recent advances for in silico models for basolateral
transporters.

6.7 OATP1B1 and OATP1B3

Karlgren et al. proposed a computational model for OATP1B1 [52] based
on 146 compounds (2/3 training set; 1/3 test set) using orthogonal partial
least-squares discriminant analysis (OPLS-DA). The model used a set of
molecular descriptors and achieved a performance of 80% sensitivity and 91%
specificity for a test set. Subsequently, they reported classification models for
OATP1B1, OATP1B3, and OATP2B1 inhibitors at a 20μM potency threshold,
with accuracies between 75% and 93% [53]. Following a proteochemomet-
ric modeling approach, De Bruyn et al. [80] combined protein-based and
ligand-based molecular descriptors using random forest (RF) as classifier.
They used 2,000 compounds for training and 54 compounds as an external
test set. An additional OATP1B1 classification model was published by van
de Steeg et al. [81] Their Bayesian model was based on a training set of 437
compounds (37 inhibitors and 400 non-inhibitors) and an internal set of 155
compounds for validation (12 inhibitors and 143 non-inhibitors), resulting
from the screening of a commercial library of 640 FDA-approved drugs. The
overall model performance was greater than 80%, both for leave-one-out
cross-validation and external validation. Kotsampasakou et al. [54] developed
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ić
et

al
.[

72
]

O
PL

S-
DA

(C
l.i

nh
ib

)
79

%
80

/4
3

M
at

ss
on

et
al

.[
73

]
Ph

ar
m

ac
op

ho
re

(C
l.i

nh
ib

)
66

%
30

/7
9

Pa
n

et
al

.[
74

]
Lo

gis
tic

re
gr

es
sio

n
(C

l.i
nh

ib
)

64
%

(le
av

e-
so

ur
ce

s-o
ut

CV
);

83
%

(1
0-

fo
ld

CV
)

97
8

M
on

ta
na

ri
et

al
.

[7
5]

AS
BT

Li
ne

ar
re

gr
es

sio
n

(b
in

di
ng

affi
ni

ty,
Ki

)
R2

=
0.7

3
29

/1
Go

nz
ále

ze
ta

l.[
76

]

Li
ne

ar
re

gr
es

sio
n

(b
in

di
ng

affi
ni

ty,
Ki

)
R2

=
0.6

8
23

/4
Zh

en
ge

ta
l.[

77
]

Li
ne

ar
re

gr
es

sio
n

(b
in

di
ng

affi
ni

ty,
Ki

)
R2

=
0.8

9
31

/1
Ra

is
et

al
.[

78
]

kN
N

(C
l.s

ub
st.

)
Ac

c.
=

94
%

80
/2

0
Se

dy
kh

et
al

.[
55

]
RF

(C
l.i

nh
ib

)
Ac

c.
=

88
%

12
0/

30
Se

dy
kh

et
al

.[
55

]

Th
et

yp
eo

ft
ra

ns
po

rte
ra

nd
th

es
um

m
ar

yf
or

th
eb

es
tm

od
el

(a
lgo

rit
hm

,p
er

fo
rm

an
ce

,d
at

as
ize

,a
nd

or
igi

na
lp

ub
lic

at
io

n)
ar

ep
ro

vid
ed

.
Cl

.in
hi

b.,
cla

ss
ifi

ca
tio

n
of

in
hi

bi
to

rs
;C

l.s
ub

st.
,c

las
sifi

ca
tio

n
of

su
bs

tra
te

s;
Ac

c.,
ac

cu
ra

cy
;T

S,
te

st
se

t;
EV

,e
xt

er
na

lv
ali

da
tio

n
se

t;
RF

,r
an

do
m

fo
re

st;
SV

M
,s

up
po

rt
ve

ct
or

m
ac

hi
ne

;P
LS

,p
ar

tia
lle

as
ts

qu
ar

es
re

gr
es

sio
n;

O
PL

S-
DA

,o
rth

og
on

al
pa

rti
al

lea
st-

sq
ua

re
sp

ro
jec

tio
n

to
lat

en
ts

tru
ct

ur
es

di
sc

rim
in

an
ta

na
lys

is;
Co

M
FA

,c
om

pa
ra

tiv
em

ol
ec

ul
ar

fie
ld

an
aly

sis
;C

oM
SI

A,
co

m
pa

ra
tiv

em
ol

ec
ul

ar
sim

ila
rit

yi
nd

ex
an

aly
sis

;L
DA

,li
ne

ar
di

sc
rim

in
an

t
an

aly
sis

;S
M

O,
Ko

ho
ne

n
se

lf-
or

ga
ni

zin
gm

ap
s;

BP
NN

,b
ac

k-
pr

op
ag

at
io

n
ne

ur
al

ne
tw

or
k;

Q
SA

R,
qu

an
tit

at
ive

str
uc

tu
re

–a
ct

ivi
ty

re
lat

io
ns

hi
p;

AN
N,

ar
tifi

cia
ln

eu
ra

ln
et

wo
rk

;k
NN

,k
-n

ea
re

st
ne

igh
bo

r;
SA

-P
LS

,s
im

ul
at

ed
an

ne
ali

ng
-p

ar
tia

lle
as

ts
qu

ar
es

.

28



❦

❦ ❦

❦

154 Computational Toxicology

a set of classification models for OATP1B1 and OATP1B3 inhibition based on
1,700 curated compounds from the literature. Virtual screening of DrugBank
drugs followed by biological testing of 10 top-ranked hits confirmed the
validity of the models, yielding in an accuracy of 90% for OATP1B1 and 80%
for OATP1B3, respectively.

6.8 NTCP

A study by Greupink et al. [56] proposed a ligand-based common feature
pharmacophore model consisting of two hydrogen bond acceptors and three
hydrophobic features. This model, based on five NTCP substrates, was then
applied to screen large chemical libraries. In the virtual screening procedure,
10 compounds were selected out of which 6 notably inhibited taurocholate
uptake in NTCP overexpressing cells.

6.9 OCT1

Three pharmacophore models have been reported for OCT1 so far [82–84].
Ahlin et al. [57] investigated the inhibition patterns of OCT1 using registered
oral drugs to develop predictive computational models. Increased lipophilicity
and positive net charge were found to be key physicochemical properties that
positively correlated with OCT1 inhibitory activity. Moreover, dipole moment
and multiple hydrogen bonds were found to be negatively correlated. The data
were used to generate orthogonal partial least-squares projection to latent
structures discriminant analysis (OPLS-DA) models for OCT1 inhibitors so
as to discriminate the inhibitors from the non-inhibitors. The final model
correctly predicted 82% of the inhibitors and 88% of the non-inhibitors from
the test set.

6.10 OCT2

A 2D-QSAR model based on 34 OCT2 inhibitors that inhibit tetraethylammo-
nium (TEA) transport was reported by Suhre et al. [58]. Another study by Zolk
et al. [85] analyzed 26 commonly used drugs for inhibition of MPP+ uptake. A
significant correlation was found between the topological polar surface area
(TPSA) and activity on MPP+ uptake inhibition. Kido et al. [86] experimentally
screened 910 compounds, of which 244 compounds inhibited OCT2-mediated
transport of 4-(4-(dimethylamino)styryl)-N-methylpyridinium(ASP+). Using
computational analysis, molecular charge was identified as one of the key
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properties for differentiating inhibitors from non-inhibitors. The 10 most
potent OCT2 inhibitors were used to generate a two-point pharmacophore,
showing a pattern of an ion-pair interaction site and a hydrophobic aromatic
site separated by 5.0 Å.

Xu et al. [59] designed a scheme for screening combinations of pharma-
cophores based on hypotheses established using 162 OCT2 inhibitors. The
final model comprises four individual pharmacophores. The combinatorial
model provided an overall accuracy of about 70% on a test set containing 81
OCT2 inhibitors and 218 non-inhibitors.

6.11 MRP1, MRP3, and MRP4

van Zanden et al. [60] studied the effect of flavonoids on MRP1 and MRP2
transfected MDCKII cells. A QSAR model for the inhibition of MRP1 was
obtained [60]. Pharmacophore-based models are reported for MRP1 inhibition
by Chang et al. [87], Tawari et al. [61], and Pajeva et al. [62].

Owing to lack of experimental measurements, very few computational
studies exist for the basolateral bile acid efflux transporters MRP3 and MRP4
(Table 6.1). Sedykh et al. [55] reported classification models of MRP4 inhibitors
at a 10 μM threshold with accuracy of 70% on external dataset. The modeling
was based on a rather small set of 64 molecules. In a recent study, Akanuma
et al. [88] attempted structural analysis of MRP4 transport for several groups
of β-lactam antibiotics.

6.12 BSEP

For the human BSEP, Warner et al. [20] used a recently described in vitro mem-
brane vesicle BSEP inhibition assay to quantify transporter inhibition for a set
of 624 compounds. A support vector machine (SVM) learning model, employ-
ing in-house descriptor sets comprising 2D, 3D, and fingerprint-like features,
led to prediction accuracy of 87%. Relating a set of physicochemical proper-
ties of the compounds to BSEP inhibition, they demonstrated that lipophilicity
and molecular size are significantly correlated with BSEP inhibition. The model
could be further used to minimize the propensity of drug candidates to inhibit
BSEP. Saito et al. [63] reported a BSEP inhibition model based on multiple
linear regression using 37 diverse druglike compounds and their chemical frag-
ment descriptors. However, the model was not validated further to evaluate its
applicability. The model proposed by Hirano et al. [89], based on as few as 37
compounds, does not allow in silico profiling of chemically diverse compound
libraries. Later, Pedersen et al. [90] built two OPLS-DA models on 163 com-
pounds. They report an accuracy of 89% on a test set of randomly selected 86
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compounds. Nevertheless, none of the aforementioned models were applied in
prospective studies to mark BSEP inhibitors in real-life settings.

In a more recent study, Montanari et al. [65] developed a classification
model based on a set of physicochemical descriptors. The model revealed the
importance of hydrophobicity, aromaticity, and H-bond donor characteristics
in distinguishing inhibitors from non-inhibitors. One major finding of these
studies was bromocriptine - a known drug - being identified as BSEP inhibitor.
The accuracies of the BSEP models on external datasets ranged from 70%
to 90%.

6.13 MRP2

Several publications have proposed prediction models for MRP2 inhibition
(Table 6.1) using linear and nonlinear modeling methods. For linear models,
mainly partial least squares (PLS) regression and discriminant analysis were
used, while nonlinear modeling methods include SVM, k-nearest neighbors
(kNN), and RF [55, 64, 91]. Ng et al. developed a QSAR model of binding affin-
ity to rat MRP2 for 25 methotrexate analogs as well as a pharmacophore for
their binding mode [66]. Zhang et al. [91] have constructed a pharmacophore
for MRP2 inhibitors, which performed slightly worse than their SVM-based
model. Pinto et al. [68] applied different machine learning methods for the
development of models for putative substrate/non-substrate classification for
MRP2. Although the prediction performance is not excellent, the study can be
marked as the first of its kind for classification of a huge set of putative MRP2
substrates and non-substrates.

6.14 MDR1/P-gp

P-gp is a thoroughly studied ABC transporter protein. A number of
ligand-based approaches have been proposed already, including conven-
tional methods such as Hansch analysis, linear and nonlinear classification
algorithms, pharmacophore modeling, and even more advanced methods such
as supervised and unsupervised artificial neural networks [92–97]. One of the
groundbreaking contributions is the work of Broccatelli et al. [69], who used a
combination of molecular field analysis, pharmacophore-based representation
of the compounds, as well as physicochemical descriptors to develop both
global and local models for P-gp inhibitors. The final model indicated that
flexibility, hydrophobic surface area, and log P are the discriminating physico-
chemical properties for inhibitors and non-inhibitors. The model, which was
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based on 1275 compounds extracted from 61 studies, also points toward shape,
a 3D descriptor/feature, as a crucial discriminative property. With a reported
accuracy of 86%, the model demonstrated a sensitivity of 0.9, a specificity of
0.8, and Cohen’s kappa of 0.7 when tested on an external set. In addition to
binary classifiers, a number of other 2D-QSAR models [98–107] and machine
learning methods were successfully applied for prediction of P-gp substrates
and inhibitors [108, 109].

Wang et al. [109] used unsupervised machine learning methods such as
Kohonen self-organizing maps, which were also employed to predict P-gp sub-
strates and inhibitors. The best model, based on a dataset of 206 compounds,
correctly predicted 83% of substrates and 81% of inhibitors. Models based
on recursive partitioning and Naïve Bayes methods were developed by Chen
et al. [70] on a dataset containing 1273 compounds. The best model accurately
predicted 81% of the compounds in the test dataset. Klepsch et al. [71] used
BestFirst as a feature selection method using a dataset of 1608 P-gp inhibitors
and non-inhibitors. Random forest and SVM models were reported as the
best classifiers, accurately predicting a total of 86% and 83% of the training set
compounds and 73% and 75% of the test set compounds, respectively.

Different studies, employing a range of simple to complex methods, showed
satisfactory prediction performance and have contributed to identification of
molecular features that are involved in P-gp mediated MDR reversal. However,
the applicability of the models is questionable, taking into account the still rel-
atively small number of molecules investigated in each of these studies [110].

6.15 MDR3

Multidrug resistance protein 3 (MDR3) is the closest homologe to P-gp sharing
a sequence identity of 75%. Only five substrates could be identified in previous
studies [111]. Regarding inhibitors, a study by He et al. [34] led to the discov-
ery of nine drugs that inhibit MDR3, while a more recent study by Mahdi et al.
showed inhibition of MDR3 by antifungal azoles. In addition, their data indi-
cated a potential increased cholestatic effect in case of simultaneous inhibition
of BSEP and MDR3 [35]. However, this information is not sufficient to establish
in silico prediction models.

6.16 BCRP

Several global machine learning-based classification models have been
proposed to predict BCRP inhibition. Erić et al. [72] extracted and merged
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literature data on BCRP inhibition to build neural network and SVM models
based on 96 compounds. The models provided test set accuracies over 82%,
sensitivities over 83%, and specificities over 80%. Matsson and colleagues [73]
developed models that could distinguish BCRP inhibitors from non-inhibitors
using a diverse training set of 80 compounds and the descriptors log D and
polarizability. The best model had a sensitivity of 83% and a specificity of 76%
on a test set of 43 compounds. Pan et al. [74] developed a Bayesian classi-
fication model and a set of pharmacophores on 203 compounds. Screening
the collaborative drug discovery (CDD) database [112] with these models led
to selection and testing of 33 compounds. Among them, two compounds,
flunarizine and pimozide, showed significant BCRP inhibition at 10 μM. All
these models were built on rather small datasets, without using all the data
available at the respective times of their studies.

Montanari et al. [113] compiled the largest set of 978 BCRP compounds
available up to now by extracting information from 47 different studies. The
authors reported an accuracy of 0.92 and an area under the ROC curve (AUC)
of 0.85 in cross validation based on a naïve Bayes model. Later on, this dataset
was used [75] to build a global binary classification model for prediction of
BCRP inhibition. The final model was used to screen all the approved drugs in
DrugBank to identify potential BCRP inhibitors. Ten drugs were selected and
tested in BCRP-expressing PLB985 cells. Among them, two drugs, cisapride
(IC50 = 0.4 μM) and roflumilast (IC50 = 0.9 μM), showed inhibition in the sub
micromolar range.

6.17 MATE1

Protein-ligand interactions for organic cation transporters and the multidrug
and toxin extrusion (MATE) transporter have been investigated using pharma-
cophores and quantitative structure-activity relationships [58, 82, 85, 86, 114].
In a recent study, Astorga et al. [114], characterized the relative selectivity of
MATE1 and MATE2-K for some clinically important organic cations (OCs).
Novel inhibitors for these transporters were identified and predictive models of
MATE1 selectivity were developed. Using the IC50 values, a common-feature
pharmacophore could be developed along with quantitative pharmacophores
for hMATE1. Furthermore, a Bayesian model suggesting molecular features
favoring and not favoring the interaction of ligands with hMATE1 was intro-
duced [114].

In another study, Wittwer et al. [115] proposed an RF classification model to
identify MATE1 inhibitors and non-inhibitors. The average AUC for 10 tests
was 0.70± 0.05 (permutation test; p-value< 0.0001), indicating that models of
good quality had been obtained.
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6.18 ASBT

Efforts from Zheng et al. [67, 77], Rais et al. [78, 116], and González et al. [76]
provided several QSAR models and pharmacophore models for ASBT binding
affinity, with R2 values between 0.68 and 0.89. All were trained on small
congeneric series of conjugated bile acid derivatives. Classification QSARs of
ASBT inhibitors based on 10 and 100 μM potency thresholds were reported
by Sedykh et al. [55] and Zheng et al. [67], respectively.

To summarize this part, based on the data presented in Table 6.1, confined
size of datasets has been a major limitation in developing highly accurate in
silico prediction models to identify the drug interaction potential of hepatic
transporters. The conformational flexibility of membrane transporters, the
diverse chemical space covered by their substrates, and the inconsistency
in data availability from experimental assays limit the predictive power of
computational models even further.

6.19 Structure-Based Approaches

As stated earlier, the nonnavailability of resolved 3D structures of a number of
membrane transporters is the reason for limited progress in structure-based
approaches for transporter interaction prediction. However, in recent years, a
number of 3D structures of ABC transporters have been resolved [117, 118].
Thus, improved performance of experimental approaches [119] has led to the
development of structure-based models with decent performance.

Bikadi et al. [120] used SVM prediction and molecular docking approaches
to predict P-gp substrate binding modes. Dolghih et al. [121] separated P-gp
binders from non-binders via induced fit docking into the crystal structure of
mouse P-gp (PDB ID: 3G60) [117] and using the docking score for subsequent
classification. Further, Chen et al. [93] performed docking studies using
245 P-gp substrates and non-substrates, but could not clearly separate them
on the basis of the Glide docking scores [122]. Klepsch et al. [123] docked a set
of propafenones into a homology model of human P-gp. The study revealed
that the binding poses are consistent with QSAR data, indicating that the
observations can be exploited in identification of new P-gp inhibitors [124].
This study was further extended to structure-based classification of nearly
2000 compounds, which showed a prediction accuracy of 61% for the external
test set compounds [71].

Although ligand-based approaches, owing to their high speed and accura-
cies, remain the method of choice for classification of transporter ligands,
structure-assisted docking models show reasonable prediction accuracies
in addition to providing valuable information on putative protein-ligand
interactions at the molecular level.
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6.20 Complex Models Incorporating Transporter
Information

As described in the introduction, there is ample of evidence for the associa-
tion between hepatic transporters and toxicity manifestations in the liver. This
knowledge generated the idea that transporter information (inhibition, expres-
sion, or upregulation) could be incorporated within in vitro or in silico models,
together with other assay data and physicochemical and/or biological descrip-
tors. This is also in line with the FDA recommendations for transporters to
be tested during drug development [125, 126]. Curiously, despite the fact that
information on drug-transporter interactions is quite important and there are
several in vitro and in silico models available for transporters per se, as out-
lined in the next section, there are only few studies combining the transporters
information with other data.

6.21 In Vitro Models

There have been some well-established assays for hepatic transporters inhibi-
tion to predict liver toxicity. Especially in the case of BSEP, whose inhibition is
linked with cholestasis, the respective screening is considered essential at the
early stages of drug development. However, although there are several meth-
ods to measure BSEP inhibition, not all of them are equally suitable. In their
review, Kis et al. [22] describe several appropriate in vitro methods that can
predict BSEP-drug interactions. Furthermore, Szakács et al. present several in
vitro methods and models for elucidating the ADMET profile of ABC trans-
porters [127].

Thomson et al. have proposed a combination of assays for cytotoxicity [128].
Their suggestion is the use of a hazard matrix based on covalent binding, in con-
junction with an array of five in vitro assays, addressing cytotoxicity in different
cell lines and inhibition of the canalicular transporters BSEP and MRP2, with
individual cutoff values for each assay. Aleo et al. have shown that the severity of
human DILI is highly associated with the dual inhibition of mitochondrial func-
tion and BSEP, flagging them as two very important liability factors that should
be checked during pharmaceutical screening [129]. Another study by Schadt
et al. [130] proposed a methodology based on a compilation of assays to predict
DILI for drug candidates. Among these assays are BSEP inhibition, glutathione
adduct assay, CYP3A time-dependent inhibition, cytotoxicity in human hepa-
tocytes, mitochondrial toxicity, and cytotoxicity in NIH 3T3 mouse fibroblasts.
As a training set, 81 marketed or withdrawn compounds with differing DILI
classes (according to FDA) were used. The resulted modeling approach yielded
a performance of 79% overall accuracy, 76% sensitivity, and 82% specificity for
the external test set composed of 39 compounds [130].
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On a slightly different level, Dawson et al.s’ [18] testing of 85 drugs for human
BSEP inhibition, as well as its rat ortholog Bsep, followed by statistical analysis
showed that inhibition of BSEP/Bsep correlates with the drug potential to cause
DILI with an r2 = 0.94. Moreover, all drugs with human BSEP IC50 < 300 μM
had molecular weight> 250, ClogP > 1.5, and nonpolar surface area> 180 Å
[18].

Similarly, in the work of Köck et al. [131], 88 drugs (100 μM) were investigated
regarding their inhibitory effect on MRP3- and MRP4-mediated substrate
transport. 50 BSEP non-inhibitors (24 non-cholestatic; 26 cholestatic) and 38
BSEP inhibitors (16 non-cholestatic; 22 cholestatic) were examined. MRP4
inhibition was associated with an increased cholestatic risk among BSEP
non-inhibitors. In this group, for each 1% increase in MRP4 inhibition, the
odds of the drug being cholestatic increased by 3.1%. By implementing a cutoff
value of 21% for inhibition, which predicted a 50% chance of cholestasis, 62% of
the cholestatic drugs inhibited MRP4 (P < 0.05). Nevertheless, merely 17% of
non-cholestatic drugs were MRP4 inhibitors. Among BSEP inhibitors, MRP4
inhibition did not provide additional predictive value for cholestatic potential,
as almost all BSEP inhibitors were also MRP4 inhibitors. The study failed to
prove statistically significant association of MRP3 inhibition and cholestasis,
regardless of the drug’s capability to inhibit BSEP.

6.22 Multiscale Models

During the last decades, there has been a vast development in biomedical
research, which allows the investigation of biological systems with higher
level of detail and accuracy [132]. Multiscale models, that is, complex mod-
els that couple high- and low-resolution models thus allowing the study
of biological systems from atomic to macroscopic levels [133], have made
considerable contribution in this direction. The virtual liver network (VLN)
is a characteristic example where several multiscale models are combined
to simulate the function of a single organ [132]. Similar initiatives have also
taken place previously for heart, such as the Virtual Heart (http://thevirtual
heart.org/) [134] and the Living Heart Project (http://www.3ds.com/products-
services/simulia/solutions/life-sciences/the-living-heart-project/) [135]. They
combine information from the level of molecular targets, move toward
molecular pathways/processes, then cellular/tissue processes, and end up at
a tissue or whole-organ endpoint. This approach, apart from modeling the
physiological function of an organ, can further be implemented for modeling
whole-organ toxicity [136]. These multiscale models might facilitate the
discovery of potentially hazardous drugs/chemicals at the early stages of drug
discovery in a more efficient way than the single models, as more parameters
that contribute to toxicity are taken into account.
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In this direction, Diaz Ochoa et al. [137] developed a multiscale modeling
framework for spatiotemporal prediction of substances’ distribution that may
result in hepatotoxicity. This framework consists of cellular models, a 2D liver
model, and a whole-body model. Several mechanistic, genome-based in silico
cells composite the 2D liver model and the whole-body model, including also
the function of MRP2, MRP3, and MRP4. In principle, they use cellular sys-
tems for kinetic modeling and their aim was not only to calculate the drug
concentration in the organ, but also the cell viability [137].

Another systems biology approach based on the analysis of dynamic adapta-
tions in parameter trajectories (ADAPT) pointed out the important role of liver
X receptor (LXR) activation for the development of steatosis [138]. Hijmans
et al. showed that both input and output fluxes to hepatic triglyceride content
can be induced by LXR activation, and during the early stages of LXR activa-
tion, steatosis can be induced by just a small imbalance between input/output
fluxes of triglycerides. For the modeling analysis, mRNA levels of several mice
genes were used, including Abcg1, which is known for its major role in choles-
terol efflux from macrophage foam cells [139], and Abcg5, which forms a het-
erodimer with Abcg8 to translocate cholesterol and other plant sterols from the
canalicular membrane into bile [16, 19, 39].

In addition, recent modeling approaches in our lab concerning prediction
of hepatotoxicity endpoints by incorporating transporter interaction profiles
follow the multiscale model concept. Apart from the prediction of hepato-
toxicity endpoints, these models also aim to investigate the putative link of
transporters inhibition with the respective toxicity endpoints. Initially, we used
physicochemical descriptors of chemical compounds together with predictions
of OATP1B1 and OATP1B3 inhibition [54] to predict hyperbilirubinemia
[140]. In total a dataset of 836 compounds (86 positives and 749 negatives)
for hyperbilirubinemia was used for training. Combination of MetaCost [141]
and SMO (the SVM implementation in the WEKA [142] software package)
using 93 interpretable 2D MOE [143] descriptors gave a performance of 68%
accuracy and AUC. However, with respect to hyperbilirubinemia-transporter
association, we only saw a weak relationship. For sure, more studies are
expected in this field, which will allow targeting complex in vivo endpoints
on a more sophisticated level than conventional machine learning methods
currently allow.

6.23 Outlook

Transmembrane transport proteins represent a considerable fraction of the
human genome. Their substrates cover a broad chemical space and range from
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neurotransmitters via hormones up to a large panel of xenobiotics. Further-
more, they are also strongly involved in ADME and toxicity. One of the organs
where a proper transporter homeostasis plays an important role is the liver.
Imbalance in the function of the numerous transport proteins expressed in the
liver has a big impact in its physiological function and subsequently in human
health.

In the past decade, the community has faced a tremendous increase in knowl-
edge on transmembrane transporters, their function, and their ligands. Several
high-resolution structures were deposited in the Protein Data Bank, and spe-
cialized databases composed of inhibitors and substrates for transport proteins
became available. These served in the development of in silico models for pre-
dicting transporter ligands. However, coverage is still quite limited and there is
a strong need for high-quality data for particular transporters (NTCP, MRPs,
MDR3) in order to develop more robust models for transporter inhibition. Fur-
thermore, as generally observed for all target classes, the data available suffer
from a “positive data bias,” that is, they are heavily biased toward biologically
active compounds. In addition, in most cases, the respective assay conditions
are not available in a standardized form, which renders it difficult to compare
data retrieved from different assays. Thus, it would be of major importance
to have public available data depositories, which allow the deposition of both
positive and negative data. These transporter data hubs should also follow the
findable accessible, integratable reuse (FAIR) principles of data access [144] and
allow data upload in a standardized format, especially with respect to assay
conditions.

With respect to in silico toxicity prediction tools, multiscale models and vir-
tual organs might be the near future of toxicity prediction. They are able to cap-
ture the necessary information from the molecular interaction with individual
targets to the cellular response up to the whole tissue or organ. Of course, this is
a complex challenge, but the first success stories for the heart demonstrate the
advantage of a more holistic view on organ function and dysfunction. In addi-
tion, in this case, high-quality data are the key. They need to be provided on
different levels, ranging from molecular interactions up to time/concentration
series of solutes. In our opinion, all the tools necessary to pursue such a task for
the liver are there already, and it just needs a concerted effort to make it happen.

Finally, following the increasing automation in life sciences, genotyping of
patients will become routine soon. This opens up the whole field of single
nucleotide polymorphisms (SNPs) and their consequences on response rates
to medication. In addition, in the field of transporters, numerous SNPs are
known which influence function and ligand recognition. This will add another
layer of complexity to holistic prediction tools, but finally will link transporter
informatics to precision medicine.
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7Abstract

8Multi-target drug design is an innovative new paradigm AU1in the drug development process. With the help of
9growing open data sources, in silico modeling approaches have become successful tools to discover and
10investigate multi-target drugs. In this chapter, we describe a workflow for retrieving and curating informa-
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13analysis.
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171 Introduction

18Multi-target drug design is an emerging new paradigm to treat
19complex diseases by regulating multiple targets at the same time to
20achieve the desired physiological responses [1–4]. Traditionally,
21drugs have been designed to selectively modulate a so-called on-tar-
22get in order to avoid side effects by modulating “off-targets.” How-
23ever, several approved drugs retrospectively have been shown to hit
24more than one target, which turned out to contribute to the thera-
25peutic efficacy [5, 6]. Furthermore, in recent years many drugs failed
26in phase II clinical trials because of a lack of therapeutic efficacy
27[7]. Therefore, multi-target drug design represents an innovative
28principle to overcome lack of efficacy. Different approaches to dis-
29cover and investigate multi-target drugs have been reviewed by
30Zhang et al. [8] addressing data-driven, ligand-based, or structure-
31based methods [4, 9–14]. Most of these methods focus on drug
32repurposing (i.e., to find new targets for known drugs) such as the
33ligand-based methods SPiDER [15] and SEA [16], which are based
34on 2D fingerprint or 3D shape similarity. Furthermore, structure-
35based methods such as TarFisDOCK [17], INVDOCK [14, 18], or
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36VinaMPI [18] could be used to dock potential ligands into many
37target structures at the same time [19, 20]. With the help of growing
38open data sources such as Open PHACTS [21], ChEMBl [22], and
39freely available medicinal chemistry literature, data-driven in silico
40modeling approaches have also proven to be capable of effectively
41identifying protein-ligand interactions at an early stage in the drug
42discovery pipeline [23]. However, increase in complexity and size
43and diversity of public data sources necessitate judicious curation of
44the data before using them. With the availability of workflow tools
45like KNIME [24] or pipeline pilot [25], complex querying for
46multiple drug targets became a feasible task without the need of
47comprehensive programming skills [26]. In this chapter, we present
48a protocol which starts with mining the Open PHACTS Discovery
49Platform to collect a data-set of suitable size and quality for
50subsequent structure-based selectivity profiling studies. As concrete
51case study, we chose the human serotonin (hSERT) and dopamine
52transporter (hDAT). Both proteins belong to the neurotransmitter
53sodium symporter family which represents the largest group of
54transporters in the human genome. hSERT and hDAT are responsi-
55ble for the reuptake of serotonin and dopamine, respectively, from
56the presynaptic cleft after signaling [27, 28]. Numerous drugs have
57been developed which interact with these transporters and are used
58as therapeutic agents to treat neurological disorders such as depres-
59sion. In addition, there is a wealth of compounds which are abused as
60illicit drugs [28–30]. Even though hSERT and hDAT share high
61sequence and structural similarity, they fulfill different physiological
62roles. Substances increasing dopamine levels in the mesolimbic path-
63way of the brain can influence the reward system, whereas increased
64levels of serotonin are involved in several other neurotransmitter
65systems, most importantly influencing mood [31]. A profound
66understanding of the structural basis for hSERT and hDAT ligand
67selectivity is therefore of major interest for designing ligands that
68either hit one of these transporters or both. This chapter will tackle
69this research question by reviewing the data mining and curating
70process for hSERTand hDAT bioactivities present in the linked open
71data domain. This is followed by a comprehensive scaffold analysis in
72order to analyze the chemical space, which allowed to identify a
73congeneric series of compounds suitable for structure-activity rela-
74tionship studies and experimental data guided ligand docking. The
75power of this protocol is based on the combination of mining the
76available knowledge in the open data domain and its breakdown to
77concrete molecular interactions. This chapter thus gives an overview
78of the overall workflow, points out the potential of retrieving data for
79multiple drug targets from the open domain, provides insights into
80structure-based approaches, and discusses the hurdles to be consid-
81ered in data analysis.
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822 Materials

83Data retrieval and scaffold analysis

84l Knime [24]: Knime is an open-source platform that provides an
85integrated solution for the data mining process across the drug
86discovery pipeline. It can be downloaded from https://www.
87knime.com/software. It also provides a visual assembly of data
88workflows drawn from an extensive repository of tools. Addi-
89tionally, it also offers nodes for machine learning (classification
90and regression analysis).

91Homology modeling

92l MODELLER [32]: Modeller is a widely used open-source soft-
93ware for comparative modeling of protein three-dimensional
94structures. The program also incorporates limited functions for
95ab initio structure prediction of loop regions of proteins, which
96are often highly variable even among homologous proteins and
97thus difficult to predict by homology modeling. It can be down-
98loaded from https://salilab.org/modeller.

99Molecular docking and visualization

100l Schrödinger [33]: Schrödinger is one of the leading commercial
101software packages in the field of drug design. It includes small
102molecule modeling and simulations, macromolecular modeling
103and simulations, lead discovery, and lead optimization, visualiza-
104tion, and automation (https://www.schrodinger.com/maestro).
105Glide [34] is the molecular docking module in Schrödinger that
106places the ligand in the protein binding pocket and ranks the
107generated poses with an empirical scoring function.

108l Molecular Operating Environment (MOE) [35]: MOE is a
109commercial drug discovery software platform that integrates
110visualization, modeling, and simulations, as well as methodology
111development, in one package (http://www.chemcomp.com/).

112Molecular dynamics

113l Desmond [36]: Desmond is a freely available software package
114developed at D. E. Shaw Research to perform high-speed molec-
115ular dynamics simulations of biological systems (http://www.
116deshawresearch.com/index.html). Schrödinger provides an
117easy-to-use graphical user interface for performing molecular
118dynamics simulations with Desmond [37].
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1193 Methods

120Sophisticated approaches are necessary to tackle multi-target drug
121design. The great variety of methodological possibilities demands
122well-informed decisions on which individual path to embark. In this
123section, we describe the methods in detail which we used to retrieve
124and curate information on two drug targets. Note that this example
125was driven by the solid basis of available experimental data and
126previous findings on these drug targets. All technical parameters
127described in the methods section are either the default options
128recommended by the software developers or adapted due to specific
129biological evidence relevant for the focus of the study.

3.1 Data Collection
and Data Mining

130Open data sources such as ChEMBL [22], DrugBank [38], KEGG
131[39], or Open PHACTS [21] provide a large collection of linked
132information on compounds including their structures, biological
133targets, pathways, bioactivities, and experimental details on
134biological assays. ChEMBL and other resources extract their infor-
135mation from the literature in an automated or semiautomated fash-
136ion. The collected data therefore originate from a variety of different
137resources resulting in a collection of bioactivity data of different
138activity endpoints (Ki, IC50, % inhibition, etc.) that was measured
139in different assay types and under varying assay conditions (see Note
1401). However, using such diverse data for modeling or virtual screen-
141ing was reported to show inconsistent performance, and hence
142recommendations were proposed to deal with the experimental
143uncertainty associated with such data [40, 41]. For our case study,
144bioactivity data for hSERT and hDAT were extracted from the Open
145PHACTS Discovery Platform via a KNIME workflow. The applica-
146tion programming interface (API) call was used to retrieve pharma-
147cology data from ChEMBL20 for both proteins. In the present case
148study, we decided to include the bioactivity endpoints IC50 and Ki,
149because these bioactivities have been demonstrated to be most reli-
150ably in large data analysis [41, 42] and because they can be correlated
151with each other. In order to investigate the uncertainty of the data
152that was introduced by combining these different activity endpoints
153from different assays, the correlation between pIC50 and pKi

154(p ¼ negative log) values from duplicate measurements for hSERT
155and hDAT was calculated. This showed that the observed correla-
156tions are within the same range as the calculated correlations for
157duplicate measurements within only one of the activity endpoints
158[43]. As a next step, classification of the data into active and inactive
159compounds has to be performed in order to extract the actives.
160Setting reasonable activity thresholds is a challenging task, and it
161requires considering the focus of the study. In the present case, the
162thresholds were tailored according to the lowest known activity
163endpoints (IC50 and Ki) that still showed pharmacological activity.
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164If a dataset is used for calculating structure-activity relationships
165(SAR), the compounds must be measured for the same activity
166endpoint (i.e., either IC50 alone or Ki alone). However, if a dataset
167is designed for the construction of machine learningmodels, also the
168use of activity annotations is possible (i.e., active, 1, inactive, 0). In
169this scenario, the data from different endpoints can be merged
170(as described above). To increase the accuracy of the classification
171of the dataset, data points close to the activity thresholds might be
172omitted. Inconsistent data points with conflicting activity data
173should in general be omitted from the dataset. In order to visualize
174the diversity of the dataset and to see if there are scaffolds showing
175pronounced selectivity for one or both targets, Bemis-Murcko scaf-
176fold analysis [44] was performed. Out of the 53 most populated
177scaffolds, four scaffolds were identified as hDAT selective, 10 as
178hSERT selective, and 24 as promiscuous. In order to perform quan-
179titative structure-activity relationship (SAR) calculations, scaffolds
180that contained congeneric series of compounds, which showed selec-
181tivity for one of the targets and were measured in the same assay,
182were prioritized. A congeneric series of 56 compounds sharing a
183cathinone substructure was identified that showed pronounced
184selectivity for hDAT over hSERT. A detailed description of the
185KNIME workflow for data retrieval, filtering, preprocessing, and
186analyses can be found in [43]. The whole workflow can be down-
187loaded frommyExperiment [45]. Out of the whole set of derivatives,
188six compounds were further selected for subsequent structure-based
189studies in order to link the observed selectivity profile to specific
190molecular interactions.
191

3.2 Ligand-Based
Methods

192In general, ligand-based methods can be used to find trends in the
193data (as discussed above) or to classify compounds with machine
194learning methods. However, their application depends strongly on
195the data quality. In our case study, we analyzed the SAR of the
19656 cathinones to get first insights which molecular features trigger
197their selectivity profiles. Since the compounds show selectivity for
198hDAT (over hSERT), we performed multiple linear regression
199(classical Hansch analysis) with hDAT pIC50 values and selectivity
200(¼ log(hSERT IC50/hDAT IC50)) as dependent variables using a
201limited set of descriptors characterizing the molecules (Van der
202Waals volume (overall, Cα- and N-substituents), partition coeffi-
203cient (log P (o/w)), molar refractivity, constants for the substitu-
204ents on the aromatic ring, and indicator variables for meta- and
205para-substitutions). Briefly, both calculated equations showed a
206first trend that the substituent on the Cα-atom to the carbonyl
207group of the compounds influences hDAT activity and selectivity.
208Details on the approach can be found in [43]. This information is
209subsequently used to guide the prioritization of docking poses.
210
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3.3 Structure-Based
Methods

211Structure-based methods require 3D coordinates from available
212high-resolution crystal structures, NMR experiments, or homolo-
213gous template structures. A plethora of crystal structures is depos-
214ited in the Protein Data Bank [46] (PDB, www.rcsb.org) and can
215be downloaded free of charge. All selected crystal structures should
216be checked thoroughly whether the resolution and B-factors are
217appropriate, if certain amino acids are annotated with multiple
218possible rotamers, and if there are relevant amino acids missing
219(see Note 2). This procedure can be performed with commercial
220protein visualization software (MOE [35] or Schrödinger Suite
221[33]) or free software (VMD [47] or pymol [48]). A lot of infor-
222mation can be already taken from the downloaded pdb files them-
223selves, as they are written in text format and include the
224experimental data and setup. A visual inspection of PDB structures
225is also possible in a web browser using the LiteMol viewer [49, 50]
226in PDBe (https://www.ebi.ac.uk/pdbe/) [51]. Since many crystal
227structures are models retrieved by X-ray crystallography based on
228experimentally measured diffraction patterns, it is furthermore
229advisable to check the placement of the protein and its ligands in
230the experimentally measured electron density map [31, 52]. Elec-
231tron density maps can be visualized with commercial software
232(Schrödinger [33], MOE [35]) and free software (Coot [53]) or
233in the web browser (LiteMol [49, 50], PDBe [51]). By considering
234the abovementioned procedures, one can identify the areas of the
235crystal structure where the structure can be trusted or should be
236taken with caution. In the case of our study, no crystal structures of
237hSERT and hDAT were resolved back then. Consequently, homol-
238ogy modeling needs to be performed to obtain decent models
239based on suitable template crystal structures.

240

3.3.1 Homology

Modeling

241Homology modeling or comparative modeling refers to the tech-
242nique of using a resolved crystal structure to model an unknown
243homologous protein structure. It is believed that overall fold is far
244more conserved among different proteins than sequence identity
245[54]. There are four crucial steps in homology modeling. First, a
246suitable crystal structure is chosen as a template. At the time this
247analysis was performed, the PDB provided two different types of
248homologous template structures for modeling hSERT and hDAT:
249crystal structures of the bacterial leucine transporter (LeuT,
250sequence 20%) [55] and the drosophila dopamine transporter
251(dDAT, sequence identity 70%) [56]. In the present case study,
252the dDAT PDB structure 4M48 was chosen as the most suitable
253template due to higher sequence identity and the fact that it shows
254the desired outward-open conformation (see Note 3). Second, the
255desired protein sequence needs to be aligned with the template
256structure. This task was performed with the tool ClustalX [57]. All
25712 transmembrane helices (TMs) of hSERT and hDAT are highly
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258conserved and can be easily aligned with the template structure.
259Third, models are generated and refined, e.g., with the program
260Modeller, which was also the program of choice in this study
261[32]. Within Modeller it is possible to also implement experimental
262data in the model generation process by setting restraints for sec-
263ondary structure elements, disulfides or salt bridges. Fourth, the
264models’ quality needs to be assessed with help of, e.g., the DOPE
265score (see Note 4) [58]. Additional quality assessment can be
266performed with ProCHECK (https://www.ebi.ac.uk/thornton-
267srv/software/PROCHECK/index.html) [58, 59] and ProQM
268(http://bioinfo.ifm.liu.se/ProQM/index.php) [60]. Procheck
269additionally provides Ramachandran plots and information on resi-
270due properties. ProQM was specifically optimized for membrane
271proteins. Nevertheless, the quality of the homology model depends
272highly on the quality of the available crystal structures and the
273amount of available structural information. A more detailed
274description of homology modeling was recently provided by Lush-
275ington [61]. The generated hSERT and hDAT homology models
276were then further used for molecular docking experiments.
277

3.3.2 Docking 278Molecular Docking is a common method in structure-based drug
279design to calculate the possible positions of a ligand in the binding
280site of its target protein. A great variety of software packages is
281available that provide different algorithms and all kinds of settings
282[62]. In the present example, six selected compounds of a congeneric
283series sharing a cathinone scaffold were docked into the central
284binding site of both the homology models of hDAT and hSERT
285with Glide 6.8 [34] from the Schrödinger release 2015-2 [33]. In
286Glide, the protein is kept rigid during the docking process, and the
287ligands are placed into the space between defined binding site resi-
288dues. This setting was sufficient for our task, as we were docking
289small compounds with respect to the outward-open binding site of
290the transporters and we wanted to keep the side chain rotamers of
291the homology models as close as possible to the dDAT template
292crystal structure 4M48 at this stage. Furthermore, we restrained the
293cationic amine function of the compounds to be placed within 2–4 Å
294to the carbonyl oxygen of F76 in hDAT and Y95 of hSERT, because
295several X-ray structures of related proteins with co-crystallized
296ligands are available in the PDB showing a similar distance (for
297further details, see [43]). The decision on how much flexibility
298should be allowed during the docking process is strongly depending
299on the availability of experimental data—which is very rich in this
300case. Consequently, the introduced bias caused by applying docking
301constraints was justified by the available experimental data. The
302models and ligands were prepared in the Schrödinger suite using
303default options (seeNote 5). Once the docking output is generated,
304which usually results in about 100 poses per ligand, a reasonable pose
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305analysis and interpretation approach are needed. The poses are
306ranked by a specific docking score, which gives an orientation how
307well the program was able to place the ligand into the defined
308binding site. The docking score includes relevant energetic and steric
309terms to achieve a most accurate placement and ranking. The Glide-
310Score (used in this study) consists of such components (van der
311Waals energy, Coulomb energy, lipophilic term, hydrogen-bonding
312term, metal-binding term, as well as several rewards and penalties for
313relevant features) [33] to predict the binding mode of the ligand
314most accurately. However, these algorithms cannot include individ-
315ual information such as the details known from biological experi-
316ments about proposed binding modes for a certain target. In this
317case a common scaffold clustering approach of all gained poses is
318recommended [63]. In this approach, the common scaffold shared
319by all docked ligands is extracted, and an RMSDmatrix of all poses is
320generated from these atoms. Subsequently, the clusters are calculated
321at a defined similarity level which corresponds to the maximal dis-
322tance within a cluster in Ångström. This helps to bundle the large
323amount of poses into assessable bins which can be analyzed for
324common characteristics and compared with the knowledge from
325biological experiments in a more quantitative way. The analysis of
326the docking study revealed certain trends explaining the observed
327ligand selectivity of hSERT over hDAT showing slightly more nega-
328tive overall glide scores, less steric clashes, and hydrogen bonding
329exclusively in hDAT.
330

3.3.3 Molecular

Dynamics Simulations

331In general, molecular dynamics (MD) simulations are used to study
332the motions of molecules over time and are therefore the method of
333choice to characterize dynamic interactions within and between
334biomolecules. Using such methods requires a lot of considerations
335regarding the force field, ligand parameters, membrane and solvent
336type, ion concentration, system size, and many more. Experimental
337data about the respective systems and facts from profound literature
338ideally guide these decisions. The book Molecular Modeling of
339Proteins [64] provides an excellent review on various aspects of
340these issues. This case study focuses on the protein-ligand interac-
341tions between cathinone compounds and hSERT and hDAT. Inves-
342tigating the structure-activity relationships of these compounds and
343a subsequent docking study showed trends in the ligand selectivity
344and provided possible binding modes. To further evaluate these
345hypotheses, MD simulations of one compound representing the
346previous findings (see [43]) were conducted. In this context, the
347primary aim is to verify the stability of the complexes gained from
348docking and to review the motions of the ligand inside the binding
349site over time. MD simulations are computationally expensive and
350need comprehensive analysis, so it is crucial to take the actual
351research question into consideration before choosing the simulation
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352settings. For example, the simulation time to check the ligand stabil-
353ity can be short (20 ns) if the binding mode is well defined, whereas
354free simulation of unbinding might take up to micro or even milli-
355seconds [65–67]. For this study, a system instability or an unfavor-
356able starting pose of the ligand would already be observed within the
357first nanoseconds of the simulation, because the biological data
358provide a solid basis for our current understanding. The major
359criteria to prove stability is a convergence of the root-mean-square
360deviation (RMSD) of the protein and the ligand in unrestrained
361simulations. For the protein, it is important to solely consider the
362RMSD of the backbone atoms as the higher side chain movement
363could hide major conformational changes in the backbone. The
364stability of the protein-ligand interactions can be observed by inves-
365tigating all interactions of the ligand with the protein residues over
366the whole simulation time. This identifies the involved residues and
367shows the duration of each interaction. Key interactions should be
368present over the whole simulation time. The structure-based part of
369this work was all done in the Schrödinger software suite [33]. The
370MD simulations were prepared in Maestro 10.2 [68] and conducted
371in 20 ns simulations with Desmond 4.2 [69]. The MD studies
372showed that the selected poses were stable and could also confirm
373the observed trends in the ligand selectivity profiles for the two target
374proteins.
375

3.4 Summary 376Designing ligands which target multiple targets with a defined
377affinity pattern represents a powerful approach to overcome lack
378of efficacy. With this case study, we present a holistic workflow
379starting from data mining across public data sources and ending
380with molecular dynamics simulations of a concrete ligand-
381transporter complex, which revealed the stability of the ligand-
382binding mode suggested by experimental data guided docking. As
383parts of the protocols described are implemented in KNIME work-
384flows, they can be easily adapted to other targets of interest.
385

3864 Notes

3871. In ChEMBL, more than 5000 measurement types are consid-
388ered including, e.g., “%max,” “Activity,” “Efficacy,” “EC50,”
389“Kd,” and “Residual Activity” [41]. Depending on the focus of
390the study, these filters can be modified.

3912. If there are several rotamers possible fitting in the observed
392electron density, the “right” rotamer is not necessarily the one
393selected by the crystallographer! High B-values are also an indi-
394cator for high flexibility. Make sure to check which rotamer is
395relevant for the specific research question.
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3963. When dealing with flexible proteins such as transporters, choos-
397ing the right conformation of your template structure is essen-
398tial. We believe that classical inhibitors most probably bind and
399stabilize the outward-open conformation of the transporter and
400therefore hinder the transporter from adopting other conforma-
401tions in the transport cycle [55]. Substrates most likely bind to
402the occluded transporter state as the translocation process
403requires among others the adaptation of an outward-occluded
404transporter conformation [70].

4054. The DOPE score is the most widely used quality assessment
406parameter even though it is only optimized for soluble proteins
407[58]. It has been successfully used for scoring homology models
408of different membrane proteins [71, 72], nevertheless, it is
409advisable to not only rely on this parameter when modeling
410membrane proteins. Scores specifically optimized for membrane
411proteins such as the ProQM score should be taken into consid-
412eration as well for selecting the best model.

4135. The Schrödinger Suite [33] offers preparation modules for both
414proteins and ligands. It is strongly recommended to conduct
415both preparation and docking procedure in the same software
416package as the used algorithms are compatible.
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3. Ligand-based studies  

 
Quantitative structure-activity relationship (QSAR) methods have been highly successful in 

modeling physicochemical and biological properties of small molecules. They facilitate 

screening of millions of compounds with a goal to accurately distinguish active compounds 

from inactive compounds. These methods are also beneficial in understanding the change in 

activity of a molecule due to changes in its structure. Besides being a low-cost approach, 

modeling of large chemical libraries has become highly productive with QSAR modeling. 

Additionally, it is possible to predict properties of non-existing and non-synthesized 

compounds [180, 181]. These factors significantly affect the success of drug discovery and 

development. 

 

On the other hand, unfavourable safety, efficacy and pharmacokinetic profiles have been the 

major reasons contributing to the failure of the majority of candidate drugs, thereby 

hampering the success of drug discovery projects to incur huge burden on pharmaceutical 

companies [182]. Therefore, early identification of lead compounds with unacceptable 

ADMET profile is highly essential. In this respect, data mining techniques employing 

machine- learning methods (e.g., support vector machines and decision trees) are highly 

essential to construct models using these large datasets and establish a relationship between 

compounds and observed activity. However, the non-balanced and diversified nature of 

chemical datasets present a challenging problem in the successful application of these 

techniques and need to be dealt with. 
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3.1 Comparing the performance of meta-classifiers – A case study 

on a set of imbalanced data sets relevant for prediction of liver 

toxicity 
 

Sankalp Jain, Eleni Kotsampasakou, and Gerhard F. Ecker 
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In the following study, we evaluated the performance of seven distinct meta-classifiers 

namely 1) Bagging, 2) Under-sampled stratified bagging, 3) Cost-sensitive classifier, 4) 

MetaCost, 5) Threshold Selection, 6) SMOTE and 7) ClassBalancer on four datasets that are 

directly (cholestasis) or indirectly (via inhibition of organic anion transporting polypeptide 

1B1 and 1B3) related to hepatotoxicity with varying degree of class imbalance. We used 

three different sets of molecular descriptors for model development. From the investigated 

meta-classifiers, Stratified Bagging provided the highest balanced accuracies while MetaCost 

and CostSensitiveClassifier achieved better sensitivity. The findings are expected to improve 

the understanding and selection of an optimal strategy to handle imbalanced datasets. 

           

E. Kotsampasakou compiled the datasets, generated the models developed in WEKA (for 

Random Forest, Cost-sensitive classifier, MetaCost, Threshold Selection, SMOTE and 

ClassBalancer), did the statistical testing. S. Jain performed the modeling on OCHEM for 

Bagging and Stratified Bagging, wrote the R code to generate the plots and wrote the 

manuscript. G.F. Ecker supervised the work and revised the manuscript. All three authors 
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Abstract
Cheminformatics datasets used in classification problems, especially those related to biological or physicochemical proper-
ties, are often imbalanced. This presents a major challenge in development of in silico prediction models, as the traditional 
machine learning algorithms are known to work best on balanced datasets. The class imbalance introduces a bias in the 
performance of these algorithms due to their preference towards the majority class. Here, we present a comparison of the 
performance of seven different meta-classifiers for their ability to handle imbalanced datasets, whereby Random Forest is 
used as base-classifier. Four different datasets that are directly (cholestasis) or indirectly (via inhibition of organic anion 
transporting polypeptide 1B1 and 1B3) related to liver toxicity were chosen for this purpose. The imbalance ratio in these 
datasets ranges between 4:1 and 20:1 for negative and positive classes, respectively. Three different sets of molecular 
descriptors for model development were used, and their performance was assessed in 10-fold cross-validation and on an 
independent validation set. Stratified bagging, MetaCost and CostSensitiveClassifier were found to be the best performing 
among all the methods. While MetaCost and CostSensitiveClassifier provided better sensitivity values, Stratified Bagging 
resulted in high balanced accuracies.
Graphical Abstract

Keywords Imbalanced datasets · Machine learning · Classification model · Meta-classifiers · Stratified bagging · Cost 
sensitive classifier
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SMOTE  Synthetic minority over-sampling technique
SVM  Support vector machines

Introduction

A wide range of classification and regression methods have 
been applied in QSAR studies. However, many classification 
methods assume that datasets are balanced in terms of the 
number of instances of each class and thus give equal impor-
tance to all classes, often resulting in classification models 
of poor accuracy [1, 2]. A major problem that arises in this 
context is class imbalance, i.e. the number of instances of 
one class substantially differ from those of the other classes. 
Especially in the field of drug discovery, imbalanced data-
sets [2–4] need to be frequently dealt with [2]. Character-
istically, a classifier developed on an imbalanced data set 
shows a low error rate for the majority class and a high error 
rate for the minority class [5, 6]. Nevertheless, a few studies 
pointed out that the class imbalance is not a main obstacle 
in learning [7, 8], and several methods have been developed 
to address this issue. These methods can be broadly divided 
into (1) data-oriented/re-sampling techniques; (2) algorithm-
oriented methods; and (3) combinatorial/ensemble/hybrid 
techniques [2, 3, 7, 9, 10].

Several studies compared classifiers that handle imbal-
anced datasets. Schierz et al. [11] compared four WEKA 
classifiers (Naïve Bayes, SVM, Random Forest and J48 tree) 
and reported SVM and J48 to be the best performing for bio-
assay datasets. Lin and Chen in 2013 found SVM threshold 
adjustment as the best performing classifier (among linear 
discriminant analysis, Random Forest, SVM and SVM-
threshold adjustment) to deal with imbalanced HTS datasets 
[9]. Later, Zakarov et al. used under-sampling and thresh-
old selection techniques on several imbalanced PubChem 
HTS assays to test and develop robust QSAR models in the 
program GUSAR [12]. In a recent study, Razzaghi et al. 
reported multilevel SVM-based algorithms to outperform 
conventional SVM, weighted SVM, neural networks, linear 
regression, Naïve Bayes and C4.5 tree using public bench-
mark datasets having imbalanced classes and missing values 
and real data in health applications [13].

A comprehensive comparison of the performance of dif-
ferent meta-classifiers on datasets with different levels of 
class imbalance, which would provide guidance for choos-
ing the appropriate method for an imbalanced dataset, has 
not been attempted so far. Herein, we evaluated the perfor-
mance of seven distinct meta-classifiers from the three afore-
mentioned categories on four datasets from the toxicology 
domain. The imbalance ratio of the datasets ranges from 
1:4 to 1:20 for the positive and the negative class, respec-
tively. The meta-classifiers were applied to build classifi-
cation models based on three different sets of descriptors. 

Considering its wide applicability in modeling imbalanced 
datasets, Random Forest was used as the common base-clas-
sifier for all models [14–18]. Further, we discuss the reasons 
behind the superior performance of certain meta-classifiers 
in comparison to the others while explaining their intrinsic 
limitations.

Methods

Training datasets

Four different datasets from the biomedical sciences domain 
were used in this study. Two of these are the OATP1B1 and 
OATP1B3 inhibition datasets consisting of 1708 and 1725 
compounds, respectively. Both were compiled and used in 
our previous study that reported classification models for 
OATP1B1 and 1B3 inhibition [19]. The other two datasets 
come from the toxicology domain and are related to drug-
induced cholestasis for human data and animal data which 
comprise 1766 and 1578 compounds, respectively. Both 
datasets were published in a previous study that reported 
computational models for hepatotoxicity and other liver tox-
icity endpoints [20].

External test datasets

The external test sets for OATP1B1 and 1B3 inhibition 
from our previous study served as test datasets in this study 
[19]. The test set for human cholestasis was compiled in 
two stages from two previous studies [21]. The positives for 
human cholestasis were compiled from literature [22–25] 
and from the SIDER v2 database [26, 27]. As cholestasis is 
one of the three types of drug induced liver injury (DILI), 
and the compounds that are negative for DILI will also be 
negative for cholestasis, the negatives for drug-induced liver 
injury compiled in a previous study [21] were used as nega-
tives for cholestasis. Overall, the external human cholestasis 
dataset consisted of 231 compounds. No data were available 
for animal cholestasis to be used as an external test data-
set. The composition and degree of class imbalance of each 
training and test dataset is presented in Table 1.

The chemotypes in the datasets were curated using the 
following protocol:

– Removed all inorganic compounds according to chemical 
formula in MOE 2014.09 [28].

– Removed salts and compounds containing metals and/or 
rare or special atoms.

– Standardized chemical structures using Francis Atkinson 
Standardiser tool [29].

– Removed duplicates and permanently charged com-
pounds using MOE 2014.09 [28].
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– 3D structures were then generated using CORINA (ver-
sion 3.4) [30], and energy minimized with MOE 2014.09 
[28], using default settings (Forcefield MMF94x, gradi-
ent 0.05 RMS kcal/mol/A2, preserving chirality).

Molecular descriptors

Three different sets of descriptors were calculated for each 
of the datasets:

1. All 2D MOE [28] descriptors (192 descriptors in total).
2. ECFP6 fingerprints (1024 bits) calculated with RDKit 

[31].
3. MACCS fingerprints (166 bits), calculated with PaDEL 

software [32].

Machine learning methods

Random Forest [33] implemented in the WEKA software 
suite [34, 35] was used as a base-classifier along with all the 
meta-learning methods evaluated in this study. The number 
of trees was arbitrarily set to 100 (default), since it has been 
shown that the optimal number of trees is usually 64–128, 
while further increasing the number of trees does not neces-
sarily improve the model’s performance [36]. The following 
meta-classifiers were investigated: (1) Bagging, (2) Under-
sampled stratified bagging, (3) Cost-sensitive classifier, (4) 
MetaCost, (5) Threshold Selection, (6) SMOTE and (7) 
ClassBalancer.

1. Bagging (Bootstrap AGGregatING) [37] is a machine 
learning technique that is based on an ensemble of mod-
els developed using multiple training datasets sampled 
from the original training set. It calculates several mod-
els and averages them to produce a final ensemble model 
[37]. A traditional bagging method generates multiple 
copies of the training set by selecting the molecules 
with replacement from training set in a random fashion. 

Because of random sampling, about 37% of the mol-
ecules are not selected and left out in each run. These 
samples create the “out-of-the-bag” sets, which are used 
for testing the performance of the final model. A total 
of 64 models were used for our analysis, since it was 
shown in an earlier study by Tetko et al. [38] that larger 
numbers of models per ensemble (e.g. 128, 256, 512 
and 1024) did not significantly increase the balanced 
accuracy of models.

2. Under-sampled stratified bagging [2, 8, 38] In this 
method, the total bagging training set size is double the 
number of the minority class molecules. Although a 
small set of samples was selected each time, the major-
ity of molecules contributed to the overall bagging pro-
cedure, since the datasets were generated randomly. The 
performance of the developed models is tested with mol-
ecules from the “out-of-the-bag” set [38]. Since only one 
way of stratified learning, i.e., under-sampling stratified 
bagging, was used in the study, we refer to it as “Strati-
fied Bagging”.

  Bagging and Stratified Bagging were used as imple-
mented in the Online Chemical Modeling Environ-
ment (OCHEM) [39, 40]. For other meta-classifiers, 
WEKA(v. 3-7-12) [34, 35] was used.

3. Cost sensitive classifier [2–4, 10, 11] is a meta-classi-
fier that renders the base classifier cost-sensitive. Two 
methods can be used to introduce cost-sensitivity: (i) 
reweighting training instances according to the total cost 
assigned to each class, i.e. the weights are applied dur-
ing learning, or; (ii) predicting the class with minimum 
expected misclassification cost (rather than the most 
likely class), i.e. the “cost-sensitive” is introduced in 
the test phase. In our case, the cost sensitivity was intro-
duced according to method (i) using the CostSensitive-
Classifier from the set of meta-classifiers of the WEKA 
software [34, 35].

4. MetaCost [41] is another application that provides the 
methodology to perform cost-sensitive training of a clas-
sifier in a generalized meta-learning manner independent 
of the underlying classifier. It is a combination of Cost-

Table 1  An overview of the training and test datasets used in this study

Dataset name Total number of 
compounds

Number of 
positives

Number of 
negatives

Imbalance ratio (nega-
tives: positives)

Source

OATP1B1 inhibition training 1708 190 1518 8:1 Kotsampasakou et al. [19]
OATP1B1 inhibition testing 201 64 137 2:1 Kotsampasakou et al. [19]
OATP1B3 inhibition training 1725 124 1601 13:1 Kotsampasakou et al. [19]
OATP1B3 inhibition testing 209 40 169 4:1 Kotsampasakou et al. [19]
Cholestasis human training 1766 347 1419 4:1 Mulliner et al. [20]
Cholestasis human testing 231 53 178 3:1 Kotsampasakou et al. [21]
Cholestasis animal training 1578 75 1503 20:1 Mulliner et al. [20]
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sensitive meta-classifier and Bagging [37]. The algo-
rithm uses class-relabeling, i.e. it modifies the original 
training set by changing the class labels to the so-called 
“optimal classes”. The classifier is then trained on this 
modified training set, which results in having the error 
rate minimized according to the cost matrix provided 
to the MetaCost algorithm. This implementation uses 
all bagging iterations when reclassifying training data. 
MetaCost is advantageous as, unlike CostSensitiveClas-
sifier, a single cost-sensitive classifier of the base learner 
is generated, thus giving the benefits of fast classifica-
tion and interpretable output (if the base learner itself is 
interpretable). MetaCost further differs from traditional 
bagging by the fact that the number of examples in each 
resample may be smaller than the training set size. This 
variation improves the efficiency of the algorithm. More 
details about the method can be found in [41].

  For both CostSensitiveClassifier and MetaCost, sev-
eral trials of different cost matrices were applied, until 
a satisfactory outcome was retrieved.

5. ThresholdSelector [42] is a meta-classifier implemented 
in WEKA [34, 35] that sets a threshold on the probabil-
ity output of a base-classifier. Threshold adjustment for 
the classifier’s decision is one of the methods used for 
dealing with imbalanced datasets [2, 43]. By default, the 
WEKA probability threshold to assign a class is 0.5, i.e. 
if an instance is attributed with a probability of equal or 
less than 0.5, it is classified as negative for the respec-
tive class, while if it is greater than 0.5, the instance is 
classified as positive. For our study, the optimal thresh-
old was selected automatically by the meta-classifier by 
applying internal fivefold cross validation to optimize 
the threshold according to FMeasure (Eq. 7), a measure 
of a model’s accuracy which considers both precision 
and sensitivity [44].

6. SMOTE [45] (Synthetic minority over-sampling tech-
nique) increases the minority class by generating new 
“synthetic” instances based on its number of nearest 
neighbours. SMOTE, as implemented in WEKA, was 
used to generate synthetic examples. For our study, five 
nearest neighbours of a real existing instance (minor-
ity class) were used to compute a new synthetic one. 
For different datasets, different percentages of SMOTE 
instances were created, which can be found in the sup-
plementary information (Table S1). The complete algo-
rithm is explained in [45].

7. ClassBalancer [34, 35, 46] reweights the instances so 
that the sum of weights for all classes of instances in 
the data is the same, i.e. the total sum of weights across 
all instances is maintained. This is an additional way to 
treat class imbalance, unlike CostSensitiveClassifier or 
MetaCost, which try to minimize the total misclassifica-
tion cost.

With respect to parameters, not for all classifiers a param-
eter optimization was performed. For instance, no parameters 
were adjusted for ClassBalancer since it automatically reas-
signs weights to the instances in the dataset such that each 
class has the same total weight [46]. For Bagging and Strati-
fied Bagging, the only parameter to optimize would be the 
number of bags. In our case, the number of bags was adjusted 
to 64 as a previous study [38] suggests that generation of 64 
models provides satisfactory results without exponentially 
increasing the computational cost. In case of ThresholdSe-
lector, an optimal threshold was selected automatically via 
fivefold cross-validation before selecting the final model on 
the basis of FMeasure. For both CostSensitiveClassifier and 
MetaCost, the cost for misclassification was initially applied 
in accordance with the imbalance ratio, which, in case it did 
not provide a sensitivity of at least 0.5, was further increased 
to arrive at the final model. In case of SMOTE, similar prin-
ciples were applied: initially, the number of the synthetic 
instances created was set to a number that balances the two 
classes. If insufficient, it was further increased until no fur-
ther improvement in sensitivity (with no reduction in speci-
ficity) was observed. The detailed parameter settings of the 
best performing models for each method are provided in the 
supplementary material (Table S1).

Validation

All models were evaluated in a 10-fold cross-validation fol-
lowed by an external validation performed on independent 
test sets, except for Bagging and Stratified Bagging. For 
Bagging and Stratified Bagging, since multiple training data-
sets were generated by selecting the molecules with replace-
ment from training set in a random fashion, this leaves out 
about 37% of the instances in each run. Therefore, these 
molecules that constitute the ‘out-of-the-bag’ sets are later 
used for testing the performance of the final model.

Model performance assessment: selection 
of the optimal method

Prior to identifying the best performing method, an opti-
mal model for each meta-classifier was selected. The best 
parameters for the model were selected using linear search 
(as explained in the “Methods” section). For all models, dif-
ferent performance measures including sensitivity (Eq. 1), 
specificity (Eq. 2), accuracy (Eq. 3), balanced accuracy 
(Eq. 4), Matthews correlation coefficient (MCC, Eq. 5), area 
under the curve (AUC) and precision (Eq. 6) were calculated. 
A model was considered eligible for selection if the 10-fold 
cross-validation provided a sensitivity value of at least 0.5 
and a specificity value not less than 0.5. As the datasets are 
relevant to different toxicological endpoints, sensitivity was 
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considered more important. For a highly imbalanced data-
set, accuracy may be misleading. Therefore we considered 
balanced accuracy (which considers both sensitivity and 
specificity) as a more appropriate performance measure to 
compare different classifiers for their ability to handle imbal-
anced datasets. If two models provided the same sensitivity, 
the model that demonstrated higher balanced accuracy was 
prioritized for selection. Furthermore, 20 iterations were per-
formed by varying the seed for cross validation [by assigning 
values from 1 (default) to 20]. For Bagging and Stratified 
Bagging, the 20 iterations were performed by changing the 
random seed for the Random Forest generation by assigning 
values from 1 (default) to 20. After cross-validation, average 
values for different performance measures were calculated 
and compared. The best method was then evaluated by per-
forming a statistical t-test in R [47], as well as on the basis of 
the performance on external test sets. The individual settings 
used in selecting the best model for each meta-classifier can 
be found in the supplementary information (Table S1).

(1)Sensitivity =
TP

(TP + FN)

(2)Specificity =
TN

(TN + FP)

(3)Accuracy =
(TP + TN)

(TP + FP + TN + FN)

(4)Balanced Accuracy =
1

2

(

(TP)

(TP + NP)
+

(TN)

(TN + FP)

)

(5)
MCC =

{(TP× TN) − (FP× FN)}

{(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)}1∕2

TP: true positives; TN: true negatives; FP: false positives; 
FN: false negatives.

Results and discussion

Tables S2–S5 in the supplementary material report the per-
formance measures for predictions on all datasets used in 
this study. The performance values of the base-classifier 
(Random Forest) are also reported to facilitate a comparison 
with the investigated methods. For each dataset, the mean 
and the standard deviation values of performance of the best 
performing models (based on 20 iterations) were calculated 
and are reported in Tables S6–S9 (supplementary material). 
Figure 1a–c, Figure S1(a–d) in the supplementary material 
provide a comparison of performances of different meta-
classifiers on the three test datasets (no test set available for 
animal cholestasis) and four training sets respectively.

Irrespective of the dataset and the descriptor set used, 
Random Forest was found to be the weakest performing clas-
sifier as anticipated. Except on the test dataset for human 
cholestasis, Random Forest alone did not yield a sensitivity 
greater than 0.5, which indicates that assistance of a meta-
classifier indeed consistently improves performance when 
handling imbalanced datasets. Among the Meta-Classifier 
based methods, bagging provided the lowest performance. 
A simple reason behind the failure of Bagging is that it only 

(6)Precision =
(TP)

(TP + FP)

(7)FMeasure =
2TP

(2TP + FP + FN)

Fig. 1  Comparison of performances of different meta-classifiers on 
test sets a OATP1B1 inhibition b OATP1B3 inhibition c human chol-
estasis. x-axis corresponds to the sensitivity and on the y-axis is the 
specificity. The squares correspond to MOE descriptors, the trian-
gles correspond to ECFP6 fingerprints and the circles correspond to 

MACCS fingerprints. Each classifier is depicted in a different color: 
red for RF standalone, green for Bagging, blue for Stratified Bagging, 
dark pink for CostSensitiveClassifier, cyan for MetaCost, yellow for 
ThresholdSelector, orange for SMOTE and dark violet for ClassBal-
ancer. Please note that the scaling for the two axes are different
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does resampling without any effort to balance or weight the 
two classes.

Threshold Selection was frequently found to be among 
the good performing methods. In many cases, this classifier 
could handle imbalance very well. However, the sensitivity 
measures were poor in comparison to other classifiers. This 
could be due to the fact that the thresholds were selected 
on the basis of FMeasure, as accuracy and specificity are 
not suitable due to the high impact of the majority class. If 
the selection of best models is done purely on the basis of 
sensitivity, this classifier yields very good sensitivity val-
ues (0.8–1.0), however with a radical decrease in specificity 
(0.2–0). Notably, Threshold Selection provided better results 
in combination with a second meta-classifier. But since the 
aim of the study was to compare the classifiers individually, 
this trend was not investigated further.

Stratified Bagging, CostSensitiveClassifier and Meta-
Cost were consistently the best performing classifiers in 
both cross-validation and test set validation for all the data-
sets (see Fig. 1, Figure S1 in the supplementary material). 
Further, the t-test on the basis of 95% confidence interval 
(exact p-values not shown here) indicated a statistically 
significant difference in performance between the selected 
methods (meta-classifiers). The statistical test was per-
formed pair-wise for all the obtained performance meas-
ures, with more stress on sensitivity and balanced accuracy. 
Both MetaCost and CostSensitiveClassifier tended to yield 
higher sensitivities while Stratified Bagging, on the other 
hand, was found to be superior in terms of MCC, balanced 
accuracy and AUC. An advantage of Stratified Bagging is 
that it is a straightforward method with only one parameter 
to optimize, i.e. the number of bags. On the other hand, cost-
sensitive approaches tend to give more weight to sensitivity 
when needed, which is an advantage for toxicity prediction. 
Although both methods provided comparable performances, 
the cost that had to be applied was greater in case of Cost-
SensitiveClassifier in comparison to MetaCost. This is due 
to the fact that the latter is a hybrid classifier which com-
bines Bagging with the application of a cost, thus equili-
brating the dataset more easily. It should further be noted 
that the computational cost for MetaCost is higher than that 
for CostSensitiveClassifier. On the other hand, Stratified 
Bagging is not computationally demanding (for the optimal 
parameter of 64 bags). Since each bag is double the size of 
the minority class, the calculation of models using Stratified 
Bagging requires less computational time, compared to the 
models built using Bagging (the bags are of the same size 
as the training set) and MetaCost (includes both bagging 
and weighting).

SMOTE and ClassBalancer were only in a few cases able 
to provide a sensitivity of at least 0.5 in both cross-validation 
and test set evaluation. Considering its reputation in han-
dling such problems, the poor performance of SMOTE was 

quite surprising. We assume that the small size of the data-
sets could be the primary reason behind SMOTE’s poor per-
formance. The datasets used in this study are much smaller 
in size compared to the HTS datasets in which the minority 
class has enough instances for SMOTE to generate synthetic 
instances, although the overall imbalance ratio is typically 
in the range of 100:1 [12, 45, 48].

With respect to the different sets of descriptors used, the 
performance of the classifiers on different datasets remained 
almost the same. Of all the descriptors, 2D MOE descrip-
tors and MACCS fingerprints provided the best performance 
across many of the datasets, while ECFP6 fingerprints 
consistently performed lower. Considering the amount of 
information encoded in ECFP6 (1024 bits) in comparison 
to MACCS fingerprints (166 bits) and the MOE descriptors, 
it might be assumed that the poor performance of ECFP6 
is subject to the individual datasets in this study. This also 
highlights the fact that sometimes simple set of descriptors 
could provide better results than complex and highly popu-
lated descriptors. Moreover, in other recent studies [49–51] 
different descriptor and fingerprint combinations did not 
demonstrate significant differences in performance.

Overall, the best classifiers performed well regardless of 
the type of data (toxicity endpoint or a general or specific 
in vitro endpoint), the type and number of descriptor sets 
used, or the degree of class imbalance. However, there were 
instances where a dataset related to in vivo toxicity (animal 
cholestasis) could not be successfully handled by the best 
classifiers. Finally, highly sophisticated meta-classifiers 
such as Stratified Bagging and MetaCost, that combine re-
sampling and a way to weight the two classes, performed in 
principle better than Bagging and ClassBalancer.

Conclusions

In this study, we compared the performance of seven differ-
ent meta-classifiers for their ability to handle imbalanced 
datasets. We demonstrated that, for all datasets used in the 
study, Stratified Bagging performed at least as good as cost-
sensitive approaches such as MetaCost and CostSensitive-
Classifier and in most cases outperformed them. Random 
Forest (as a standalone classifier) and Bagging were unable 
to address the imbalance issue. Interestingly, the choice of 
descriptors did not play a substantial role in ranking the 
performance of different classifiers. Thus, considering that 
Stratified Bagging can be directly used in combination with 
any machine-learning method without parameter optimiza-
tion, a general recommendation for handling imbalanced 
datasets is to wrap the modeling process in the stratified bag-
ging loop. However, one should also consider the computa-
tional cost, as extensive re-sampling can be computationally 
expensive. Therefore, a method that balances between the 
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complexity of the algorithm and computational cost would 
be an ideal choice to obtain optimal results.
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4. Structure-based studies  

 

The modern pharmaceutical research aims to develop novel molecules with a desired 

bioactivity profile against one or more drug targets and, at the same time, avoid unwanted 

side effects. In this regard, it is very important to elucidate drug-target interactions as this 

information could provide insights into the mode of action for a particular bioactive 

molecule[112]. Increasing availability of protein 3D structures in the Protein Data Bank 

(PDB) [183] and advancements in the computational techniques has motivated researchers all 

over the world for a structure-based elucidation of protein targets. 
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4.1 Structure-based modeling studies on BSEP 
 

4.1.1 Structure based classification for bile salt export pump (BSEP) 

inhibitors using comparative structural modeling of human BSEP 

 

Sankalp Jain, Melanie Grandits, Lars Richter, Gerhard F. Ecker 

 

J Comput Aided Mol Des 31:507–521. doi: 10.1007/s10822-017-0021-x 

 

In this study, we present a homology model of BSEP developed using the corrected mouse P-

glycoprotein structure (PDB ID: 4M1M) that was used for molecular docking, in order to 

predict BSEP inhibitors and non-inhibitors. Among the several docking protocols employed, 

the best performing one correctly predicted 88% of the compounds in the training set and 

77% of the compounds in an external test set. Further, we analyzed the protein-ligand 

interaction fingerprints, which revealed certain functional group-binding site residue 

interactions that could play a key role in ligand binding. Finally, combining the structure-

based model with our previously published ligand-based classification model in a sequential 

order (sequential modeling) improved the precision and reduced the calculation time.  
 

S. Jain performed the study and wrote the manuscript. M. Grandits assisted with molecular 
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protein-ligand interaction fingerprint (PLIF) analysis.  G.F. Ecker supervised the work and 
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their high speed and accuracy, remain the method of choice 
for classification of BSEP inhibitors, structure-assisted 
docking models demonstrate reasonably good prediction 
accuracies while additionally providing information about 
putative protein–ligand interactions.

Keywords BSEP · Structure-based classification · 
Drug-induced cholestasis · Inhibiton · Transporters · 
Classification model

Introduction

Transmembrane transport proteins selectively aid in the 
translocation of molecules across biological membranes 
by binding the substrate molecules followed by a confor-
mational change [1]. Members of the ATP-binding cassette 
(ABC) superfamily facilitate the transport of their solutes 
by using the energy from hydrolysis of ATP. While some 
ABC-transporters allow specific passage of inorganic ions, 
others facilitate ATP-dependent transport of organic com-
pounds including xenotoxins, short peptides, lipids, bile 
acids, glutathione, and glucuronide conjugates. There-
fore, ABC-transporters affect the absorption, distribution, 
metabolism, excretion and toxicity of numerous pharmaco-
logical agents. Genetic variations in the genes that encode 
these transporters lead to disorders such as cystic fibrosis, 
cholesterol and bile transport defects, as well as neurologi-
cal diseases [2].

The bile salt export pump (BSEP, gene ABCB11) is a 
canalicular-specific exporter predominantly expressed in 
the cholesterol-rich apical membrane of hepatocytes [3]. 
BSEP facilitates secretion of bile salts from the liver into 
the bile canaliculi [4–6]. The main function of bile acids 
is to promote digestion and absorption of dietary fat via 

Abstract The bile salt export pump (BSEP) actively 
transports conjugated monovalent bile acids from the 
hepatocytes into the bile. This facilitates the formation of 
micelles and promotes digestion and absorption of dietary 
fat. Inhibition of BSEP leads to decreased bile flow and 
accumulation of cytotoxic bile salts in the liver. A number 
of compounds have been identified to interact with BSEP, 
which results in drug-induced cholestasis or liver injury. 
Therefore, in silico approaches for flagging compounds as 
potential BSEP inhibitors would be of high value in the 
early stage of the drug discovery pipeline. Up to now, due 
to the lack of a high-resolution X-ray structure of BSEP, 
in silico based identification of BSEP inhibitors focused 
on ligand-based approaches. In this study, we provide a 
homology model for BSEP, developed using the corrected 
mouse P-glycoprotein structure (PDB ID: 4M1M). Subse-
quently, the model was used for docking-based classifica-
tion of a set of 1212 compounds (405 BSEP inhibitors, 807 
non-inhibitors). Using the scoring function ChemScore, 
a prediction accuracy of 81% on the training set and 73% 
on two external test sets could be obtained. In addition, the 
applicability domain of the models was assessed based on 
Euclidean distance. Further, analysis of the protein–ligand 
interaction fingerprints revealed certain functional group-
amino acid residue interactions that could play a key role 
for ligand binding. Though ligand-based models, due to 
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formation of micelles [7]. Apart from this, they are increas-
ingly being shown to have hormonal actions throughout the 
body [8, 9]. Variations in the ABCB11 gene result in dif-
ferent forms of progressive familial intrahepatic cholestasis 
(PFIC) [10, 11]. PFIC is characterized by an early onset of 
cholestasis and eventually leads to liver cirrhosis and fail-
ure [12–14].

Inhibition of BSEP can result in accumulation of bile 
salts in the liver, which is considered to be a primary 
mechanism leading to drug-induced cholestasis—one of 
the reasons for drug-induced liver injury (DILI) [15–17]. 
By inhibiting BSEP, drugs such as bosentan, rifampicin 
and troglitazone cause intracellular accumulation of bile 
salts and decreased bile flow [18]. Dysfunction due to sup-
pression of gene expression, disturbed signaling or steric 
inhibition are other important factors leading to DILI [19]. 
In its Guideline on the Investigation of Drug Interactions 
(effective: January 2013), the European Medicines Agency 
(EMA) indicated that BSEP inhibition assessment should 
be “preferably investigated”. Additionally, EMA states: 
“If in  vitro studies indicate BSEP inhibition, adequate 
biochemical monitoring including serum bile salts is rec-
ommended during drug development” [20]. Furthermore, 
studies indicate that a majority of drugs that showed 
in  vitro inhibition of BSEP have led to DILI, suggesting 
that decreased BSEP inhibition is likely to be associated 
with reduced risk for DILI [17, 21, 22].

With the increasing knowledge of the importance of 
ABC-transporter for ADMET, also in silico models for 
predicting ligand-transporter interaction became available 
[23]. With respect to BSEP, QSAR modeling was applied 
by Warner et  al. [24] in which a support vector machine 
(SVM) model provided the highest accuracy of 87% in the 
classification of BSEP inhibitors and non-inhibitors on a 
dataset of 624 compounds [24]. Our group recently pub-
lished a classification model based on a set of 670 com-
pounds, which allowed the identification of bromocrip-
tine as a BSEP inhibitor [25]. With first X-ray structures 
of ABC-transporters being published, also structure-based 
models became available. Bikadi et al. used SVM to predict 
P-gp substrate binding modes [26, 27]. Dolghih et al. sepa-
rated P-gp binders from non-binders by applying induced 
fit docking into the crystal structure of mouse P-gp using 
the docking score for classification [28]. High area under 
the curve (AUC) scores of 0.93 and 0.90, respectively were 
observed for two independent datasets (126 and 64 com-
pounds, respectively). Also Chan et al. [29] evaluated the 
prediction capability of docking by using 245 P-gp sub-
strates and non-substrates, but the classes were not clearly 
separated based on the Glide docking scores.

Klepsch et  al. [30] showed that docking of a set of 
propafenones into a homology model of human P-gp 
reveals poses consistent with QSAR data, and that this can 

be exploited for the identification of new P-gp inhibitors 
[31]. Recently, this was enhanced towards a structure-based 
classification of almost 2000 compounds [32]. Although 
the docking-based classification showed significantly 
lower performance than ligand-based models derived from 
machine learning, it offers information on the molecular 
basis of protein ligand interaction.

Up to now, due to the lack of a high-resolution X-ray 
structure of BSEP, no structure-based studies have been 
performed for this protein. In the present study, we use 
comparative modeling [33] to create a protein homology 
model for BSEP by using the corrected mouse P-glycopro-
tein structure (PDB ID: 4M1M) as template. Subsequently, 
we developed structure-based classification models using 
a dataset comprising 408 compounds (113 inhibitors and 
295 non-inhibitors) as training set and two external test 
sets containing 166 compounds (44 inhibitors and 122 non-
inhibitors) and 638 compounds (248 inhibitors and 390 
non-inhibitors), respectively.

Materials and methods

Dataset

A set of 408 compounds (113 inhibitors and 295 non-inhib-
itors) from the work of Warner et al. [24] was used as the 
training set and another set containing 166 compounds (44 
inhibitors and 122 non-inhibitors) from Pedersen et al. [34] 
was used as external test set. Both studies provide in vitro 
inhibition data on human BSEP. While Warner et al. classi-
fied compounds with a mean  IC50 ≤ 300 μM as BSEP inhib-
itors, in our study we decided to use a much lower thresh-
old (mean  IC50 ≤ 10  μM) in order to retain only strong 
inhibitors. Compounds with mean  IC50 > 300  μM were 
considered non-inhibitors, and the remaining compounds 
were excluded from the dataset. Finally, we have a total of 
113 strong inhibitors and 295 non-inhibitors. The Pedersen 
et al. data set is based on inhibition of bile salt export pump 
(BSEP)-mediated taurocholate (TA) transport in inverted 
membrane vesicles. After removal of compounds that over-
lapped with those in our training set, we had a total of 166 
compounds (44 strong inhibitors and 122 non-inhibitors) to 
be used as external test set. In addition, a dataset provided 
by AstraZeneca within the framework of the IMI project 
eTOX (http://www.etoxproject.eu) was used as a second 
external test set to further evaluate our models. The data 
was measured in a [3H]-taurocholate transport assay per-
formed in Sf21 membrane vesicles using the protocol as 
described by Dawson et  al. [17] and contains the BSEP 
inhibitory potencies of 1092 compounds as  IC50 values. 
Removing the overlapping compounds from the first two 
datasets resulted in 638 compounds (248 inhibitors and 390 
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non-inhibitors). All datasets were standardized using the 
protocol previously described in Montanari et al. [25] and 
Pinto et al. [35].

Homology modeling

For human BSEP (UNIPROT ID: O95342), based on 
sequence identity and atomic resolution, the corrected 
mouse P-glycoprotein structure (PDB ID: 4M1M) was 
selected as the most structurally related template protein. 
Multiple homology models were constructed using MOD-
ELLER 9.13 [36] and the Prime module in Maestro [37, 
38]. Energy minimized models were then evaluated using 
DOPE score [39], and GA341 score [40, 41]. The quality 
of the stereochemical parameters and the normality of the 
structures were checked using the PROCHECK program 
included in the PDBsum analysis [42]. Ramachandran plot 
[43] and G-factor [44], and finally the Q-score [45, 46] val-
ues were evaluated to identify the top ranked homology 
model.

Molecular dynamics simulation

Molecular dynamics (MD) simulation was carried out in 
Gromacs 5.0.4 [47–50] using the GROMOS 54a7 force-
field [51]. The protein was placed inside a rectangular box 
of size 16 × 16 × 16  nm3 including approximately 34,000 
simple point charge (SPC) water molecules [52]. Sodium 
and chloride ions were added to gain a neutral system. 
Energy minimization was carried out with a maximum 
force of 1000  kJ/mol/nm using the steepest descent algo-
rithm. After the minimization, a NVT equilibration was 
performed at a constant temperature of 300 K for 100 ps. 
Followed by a NPT equilibration step for 1  ns, with the 
pressure set constant at 1 atm and a constant temperature of 
300 K. The production simulation was performed at 300 K 
for 20 ns. The LINCS algorithm [53] was used to constrain 
the covalent bonds and PME [54] was used to calculate the 
electrostatic interactions during the simulation. The stabil-
ity of the protein structure was evaluated by calculating the 
secondary structure over the simulation time according to 
the Kabsch and Sander rules [55] and the root-mean-square 
fluctuation (rmsf) of active site residues (Fig. S1 in the sup-
plementary material). All graphs were created using the 
XMGrace tool [56].

Molecular docking and scoring

In order to avoid any bias in the docking studies, the 
binding site was defined as the complete TM region, 
taking 20 Å around the coordinate of the center point to 
allow subsequent flexible docking studies of a series of 
BSEP inhibitors. The protein was prepared using Protein 

Preparation Wizard of the Schrödinger Suite (2015) [57, 
58]. During this process, hydrogen atoms were added, 
and optimal protonation states and ASN/GLN/HIS flips 
were determined. To assess their correct protonation 
states, ligands were prepared using the LigPrep module 
of Schrödinger Suite [58, 59] which produces low-energy 
3D structures that can be further used for docking stud-
ies. The OPLS_2005 force field was used for the minimi-
zation of the structures. Different ionization states were 
generated by adding or removing protons from the ligand 
at a target pH of 7.0 ± 2.0 using Epik version 3.1 [60, 
61]. Tautomers were generated for each ligand. To gener-
ate stereoisomers, the information on chirality from the 
input file for each ligand was retained as is for the entire 
calculation. This gave a dataset of 1865 structures (318 
inhibitors and 1547 non-inhibitors) for the training set, 
2009 structures (858 inhibitors and 1151 non-inhibitors) 
for the external test set from Pedersen et  al. and 1560 
structures (668 inhibitors and 892 non-inhibitors) for the 
external test set from AstraZeneca, which were used for 
docking with the genetic algorithm-based GOLD suit 
(version 5.2.0) [62, 63].

All the docking runs were performed in high-throughput 
mode with GOLD. The fitness functions GoldScore (GS) 
and ChemScore (CS) were used. GlideXP [64, 65] dock-
ing from Maestro was also used in order to compare differ-
ent scoring functions. Finally, all the poses were rescored 
using an external scoring function, XScore [66]. To gain 
deeper insights on the binding modes of BSEP inhibitors 
and non-inhibitors, the protein–ligand interaction finger-
prints (PLIF) of the resultant complexes were retrospec-
tively analyzed.

Machine learning-based model building

The open source software WEKA (version 3.7.10) [67] 
was used for building binary classification models. The 
machine learning classifiers: J48, Random Forest, REP-
Tree, LibSVM and Naive Bayes were used with the default 
parameters along with tenfold internal cross-validation.

Network-based representation of the dataset

Tanimoto (Tc) similarities between the inhibitors and non-
inhibitors of the training set were calculated using MACCS 
fingerprints [68]. A chemical space network (CSN) [69, 70] 
was constructed and analyzed in order to assess the struc-
tural similarity shared by the compounds of both groups. 
To show connections between the compounds, a threshold 
value of 0.7 was set based on the average of Tanimoto max-
similarity in the dataset.
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Functional group analysis

Functional group analysis was performed in two stages. 
First, the substructure patterns of 100 functional groups in 
SMARTS notation were extracted from the Daylight web-
site (http://www.daylight.com/dayhtml_tutorials/languages/
smarts/smarts_examples.html#GROUP). Next, the pattern 
matching was performed using the SMARTSQueryTool 
implemented in the Chemistry Development Kit (CDK) 
[71]. For each functional group, the occurrences of the 
fragments in a given set of molecules were calculated.

Protein ligand interaction fingerprints (PLIF)

A PLIF summarizes the interactions between a ligand and a 
protein using a fingerprint scheme. Here we generated three 
types of PLIFs that differ in the information encoded. In 
the first approach, the PLIF encodes the residues involved 
in an interaction with the ligand in each bit. The second 
one encodes not only the residue but also the nature of the 
interaction (e.g. hydrogen bond donor) with the ligand. The 
third category encodes the functional group of the ligand 
that interacts with the residue. All the PLIF bits were cal-
culated with the MOE [72] built-in function CalculateRaw-
Interactions using a 1% threshold for molecular interactions 
and a 20% threshold for surface contacts. The function was 
embedded in an SVL in-house script and was post pro-
cessed to enable to calculate functional group PLIFs.

Applicability domain assessment

An applicability domain (AD) analysis was performed to 
evaluate if the chemical space covered by the training set 
used for developing the model is applicable to predict the 
outcomes of the test sets used to evaluate the model per-
formance. Therefore, AD could provide a first hint if a 
new chemical structure is covered within the chemical 
structures or descriptor space of the training set. Many 
approaches were proposed to estimate AD, for instance 
based on descriptor ranges, Euclidean distance or probabil-
ity density, each having their pros and cons. In this study, 
we implemented the Euclidean distance approach using the 
KNIME [73] node APD [74, 75] to evaluate if the test sets 
are within the AD of the training set.

Performance evaluation

In order to evaluate the quality of our classification models 
based on the docking studies, we used standard parameters 
such as count of true positives (TP), false positives (FP), 
true negatives (TN) and false negatives (FN). Sensitivity 
(Eq. 1), specificity (Eq. 2) and accuracy (Eq. 3) values were 
calculated for each model based on the aforementioned 

parameters to estimate its performance in classifying inhib-
itors and non-inhibitors. To measure the overall quality of 
the model, the G-mean (Eq.  4), which takes into account 
both sensitivity and specificity, and the Matthews’s correla-
tion coefficient (MCC, Eq. 5) were also calculated.

Calculating the probability of prediction

We examined the distribution of docking scores [Chem-
score, Goldscore, GlideXP, Xscore (Chemscore) and 
Xscore (Goldscore)] for the training set molecules. Based 
on the minimum and maximum score values, the scores 
were binned in different intervals. Each bin is characterized 
by the corresponding number of inhibitors and non-inhib-
itors. Based on these values, we calculated the probability 
for a molecule to be an inhibitor or a non-inhibitor. A p 
value (Chi square test) is calculated for each bin to identify 
the best scoring range that can be used to separate inhibi-
tors from non-inhibitors.

Results and discussion

Chemical space network of the dataset

Figure  1 shows the CSN with well-resolved community 
structures for a set of inhibitors and non-inhibitors from the 
training set. The representative compounds of some com-
munities are shown in Fig. S2 in the supplementary mate-
rial. Major community structures [69] (communities with 
at least five representative members) were algorithmically 
detected and are color-coded. For our CSN designs, the 
Fruchterman–Reingold algorithm [76] was applied. The 
node size is proportional to the activity value  (pIC50) i.e. 
the more active the compound, the bigger the node size and 
vice versa.

A majority of the nodes do not have a connection indi-
cating a high structural diversity in the training dataset. The 
test dataset from Pedersen et al., showed only three clusters 

(1)Sensitivity =
TP

(TP + FN)

(2)Specificity =
TN

(TN + FP)

(3)Accuracy =
(TP + TN)

(TP + FP + TN + FN)

(4)G−mean =
√

Sensitivity× Specificity

(5)

MCC =
{(TP × TN) − (FP × FN)}

{(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)}1∕2
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in the CSN with at least five representative members (Fig. 
S3 in the supplementary material).

Homology modeling

Applying the Prime module from Maestro (Schrödinger, 
Inc. V-10.1.013), a set of homology models of BSEP were 
created and refined, using the refined mouse P-gp struc-
ture as template (PDB ID: 4M1M). The sequence align-
ment was done using Prime’s alignment program STAin 
maestro [37, 38] (Fig. S4 in the supplementary material). 
Analyzing the models with the structure assessment pro-
gram PROCHECK [42], the best model had a normalized 
Dope score of −0.625, G-factor −0.12, and Qmean score 
of 0.597. Furthermore, the Ramachandran plot (Fig. S5 
in the supplementary material) showed excellent results, 
with only 1.9% of residues in generously allowed or dis-
allowed regions. These were all located in the nucleotide 
binding domains (NBD) or extracellular loops (ECL), and 
are therefore not involved in drug binding (Fig. S6 in the 
supplementary material). Based on the study by Mochizuki 
et al., Asn109, Asn116, Asn122, and Asn125 are residues 

predicted to be potential glycosylation sites in the extracel-
lular loop (No.1) (EL No.1) of human BSEP [77]. In our 
final BSEP homology model (Fig. 2), these residues were 
also found in EL No.1, thus occurring in the correct region 
of the transmembrane domain (TMD, Fig. S7 in the sup-
plementary material). For further validation, the best model 
based on normalized Dope score and Qmean score was 
subject to molecular dynamics simulations for 20 ns. Both 
the secondary structure of the protein (Fig. 3) as well as the 
root mean square fluctuation (RMSF < 0.25  nm) of active 
site residues showed the stability of the structure.

Docking (structure-based classification)

We recently could demonstrate that a validated homology 
model of P-glycoprotein allowed docking-based classifica-
tion of inhibitors and non-inhibitors with reasonable perfor-
mance [32]. Thus, in this study we extended this approach 
also to BSEP, using a set of 408 compounds (113 inhibi-
tors and 295 non-inhibitors) published by Warner et  al. 
[24] as training set and two data sets as external test set 
(see “Materials and methods” section). The scores obtained 

Fig. 1  CNS representation 
of the training set compounds 
based on MACCS Tc similarity 
threshold of 0.70. Communities 
with at least five representative 
members are color coded
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from different fitness functions were binned and the inter-
section point of the curves for inhibitors and non-inhibitors 
in the training set served as classification criterion (Fig. 4). 
Respective confusion matrix parameters and other perfor-
mance measures are summarized in Table  1. The Chem-
Score docking run using Xscore as rescoring function 
retrieved the best performing model with AUC (0.918) 
and MCC (0.689) measures comparable to the models 

developed by Warner et al. [24] and Montanari et al. [25]. 
This model accurately predicted 88% of the training set 
compounds and 72% of the external test set compounds 
derived from Pedersen et al. [34] as well as 77% of a set 
of AstraZeneca internal compounds. The area under the 
ROC curve (AUC) measure, being independent from class 
distribution [78, 79], is a good metric for evaluating per-
formance of virtual screening approaches. High AUC val-
ues (above 0.8) were observed, indicating a high capacity 
of the model in ranking compounds by their probability of 
being inhibitors of BSEP (Figs. S8–S12 in the supplemen-
tary material). The results from the AD assessment also 
show that all compounds from both test sets were found to 
be within the chemical domain of the training compounds 
(Table S1 in the supplementary material). Interestingly, the 
accuracy of predictions did not improve when a consensus 
of different scoring functions was used.

Probability of prediction

For the training set using ChemScore scoring, bin 35–40 
gave the maximum number of inhibitors. 88% of inhibi-
tors and 12% of non-inhibitors had the docking score in 
this range with a p value of 5.9 × 10−8. For both test sets, at 
least 75% of the inhibitors were found to be in this range. 
Results for different scoring functions can be found in the 
Table  S2 in the supplementary material. Also with the 
rescoring of ChemScore using Xscore, a particular range 
could be defined which significantly distinguishes between 
inhibitors and non-inhibitors. However, this is not the case 

Fig. 2  Homology model structure of human BSEP in the inward-facing state. a Front view of the transporter. b Side view after a 90° rotation. c 
Top view from the extracellular space

Fig. 3  Secondary structure of the protein over the simulation time
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for GoldScore scoring. With this scoring function no par-
ticular docking score range could be identified for the three 
sets (training set, both test sets) to differentiate between 
the two classes of compounds with a significant p value. 
Similar results were obtained using the GlideXP scoring 
function.

Analysis of protein ligand interactions

The Maestro tool allows the computation of different 
molecular interactions between binding site residues and 
the corresponding ligand conformation. In this study, the 
receptor–ligand interaction fingerprint analysis was per-
formed both for the true positives (TPs) and for the true 
negatives (TNs) on the basis of the docking poses gener-
ated. For the training set (Fig. 5) and the two external test 
sets (Figs. S13, S14 in the supplementary material), the 
inhibitors showed significantly more hydrophobic interac-
tions with Phe334, Leu364, Tyr772, Phe776 and Leu1026 
than non-inhibitors. More than 75% of the inhibitors in the 

training set and the external test sets showed hydrophobic 
interactions with Phe334 and Tyr772 (Fig. 5a). In contrast, 
non-inhibitors showed a higher number of hydrogen bond 
interactions than inhibitors (Fig. 5b), which points towards 
the fact that non-inhibitors are more hydrophilic.

The significant contribution of hydrophobic interactions 
prompted us to assess the importance of simple molecu-
lar descriptors such as logP and molecular weight. Fig-
ure  6 represents the distribution of molecular weight and 
logP(o/w), respectively, for the training set compounds. 
Similar distributions, represented in Fig. S15 in the sup-
plementary material, were observed with the external 
test sets from Pedersen et  al. [34] and from AstraZeneca 
(Fig. S16 in the supplementary material). As proposed by 
Warner et  al. [24], molecular properties such as molecu-
lar weight (MW) and logP(o/w) could separate the groups 
quite well (Table 2). At the intersection of MW = 390 and 
logP(o/w) = 3.6, 79 and 77% of the compounds were clas-
sified correctly. Accordingly, compounds with a molecu-
lar weight of 390 or higher or a logP of 3.6 or higher were 

Fig. 4  Distribution of BSEP inhibitors and non-inhibitors (training set) based on ChemScore scoring. Sensitivity, specificity, precision and 
MCC were calculated from the confusion matrix based on the intersection point of both curves

Table 1  Models obtained from 
different scoring functions 
based on the training set

The scoring function in brackets were used to generate the docking poses

Scoring function Intersection point AUC Sensitivity Specificity Accuracy G-mean MCC

ChemScore 29.50 0.87 0.60 0.88 0.81 0.73 0.50
GoldScore 53.50 0.82 0.74 0.75 0.75 0.74 0.45
GlideXP −6.80 0.77 0.80 0.65 0.69 0.72 0.39
Xscore (ChemScore) 6.15 0.92 0.71 0.95 0.88 0.82 0.69
Xscore (GoldScore) 6.10 0.93 0.68 0.95 0.88 0.80 0.68
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considered as inhibitors while others were considered as 
non-inhibitors.

The models based on docking scores (ChemScore 
and XScore) in combination with molecular weight and 
logP(o/w) (each normalized) outperformed the other mod-
els in terms of MCC and precision. ChemScore and XScore 
based models, when combined with the physicochemi-
cal properties [molecular weight and logP(o/w)] correctly 
predicted 87 and 88% of training set compounds, giving a 
MCC value of 0.673 and 0.701 respectively. These models 
also showed high accuracies as compared to other models 
for the two external test sets. Detailed accuracy measures 
are presented in Table S3 in the supplementary material.

Also when poses, generated with GoldScore scor-
ing function and rescored with XScore, were combined 

with the normalized molecular weight and logP(o/w), it 
provided accuracies comparable to the former models 
(Table  S3 in the supplementary material). This indicates 
that considering physicochemical properties of molecules 
that influence their activity significantly improves the per-
formance of structure-based prediction models.

Distribution of BSEP inhibitors and non-inhibitors using 
different scoring functions and in combination with phys-
icochemical properties (molecular weight, logP) are pre-
sented in Figs. S17–S32 in the supplementary material. A 
single intersection point could not be obtained, when the 
rescoring using Xscore (pose generated with GoldScore) 
was combined with logP(o/w) and thus was not used for the 
classification of inhibitors and non-inhibitors (Fig. S31 in 
the supplementary material).

Fig. 5  a Hydrophobic interaction, b hydrogen bond interaction fingerprints of true positives (TP) and true negatives (TN) of the training set. 
The classification of the compounds is based on the ChemScore scoring function
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Fig. 6  Distribution of BSEP inhibitors and non-inhibitors based on the a molecular weight, b logP(o/w) of the training set

Table 2  Models based on 
physicochemical properties Molecular property Intersection 

point
Sensitivity Specificity Accuracy G-mean MCC

Molecular weight 390 0.76 0.80 0.79 0.78 0.54
logP 3.6 0.57 0.87 0.77 0.71 0.47

85



516 J Comput Aided Mol Des (2017) 31:507–521

1 3

Using the best performing docking scores (Chem-
Score, XScore) and the descriptors (molecular weight 
and logP(o/w)) as parameters, we additionally developed 
machine-learning based binary classification models using 
J48, Random Forest, REPTree, LibSVMand Naive Bayes in 
WEKA [67]. These models performed well with accuracies 
and MCC values (Table S4 in the supplementary material) 
comparable to those from machine-learning based classifi-
cation models of Warner et al. [24] and our models previ-
ously developed [25].

Analysis of functional groups and protein–ligand 
interactions

Next, we investigated the distribution of functional groups 
between inhibitors and non-inhibitors to identify structural 
features that are responsible for differences in the activity 
(inhibitor vs. non-inhibitor). About 70 SMARTS patterns 
representing the most common functional groups were 
extracted from the Daylight website (http://www.daylight.
com/dayhtml_tutorials/languages/smarts/smarts_examples.
html). Basically, groups such as halide/halogen, ether, car-
bonyl, vinyl carbons (sp2 hybridized) and amide were more 
frequently found in the inhibitors compared to the non-
inhibitors (Fig. 7, S33 in the supplementary material). This 
further points towards more hydrophobic-driven interac-
tions for inhibitors.

In addition, we also identified the most frequently 
occurring interactions between residues and functional 
groups for the training set compounds. A heat map 
(Fig.  8a) was generated to illustrate the outcomes of 
PLIF analysis by displaying the contact residues against 
the functional groups of the interacting ligands. The 
color scale represents the amount of ligands which are 
involved in interactions. Therefore, the most significant 

interactions between a specific residue and a specific 
functional group could be visually detected.

We found that the interactions of arene and carbonyl 
functional groups with tyrosine and leucine are more 
prominently found among the inhibitors in comparison 
to the non-inhibitors. We furthered with retrospective 
assessment of the docking results to check the pres-
ence of the aforementioned interactions and evaluated 
the chances to prioritize a compound as a BSEP inhibi-
tor. Figure  8b represents the docking pose of Glimepir-
ide (yellow) in which its carbonyl groups interact with 
the residues Tyr337, Tyr772 and Asn996. The residue 
Leu364 shows a hydrophobic interaction with the arene 
moiety of the ligand. Similarly, the functional group-
residue interactions were confirmed to be present in 
the docking results of both external test datasets (Figs. 
S34–S36 in the supplementary material).

Although the functional groups analysis suggests that 
halide/halogen, carbonyl, ether, vinyl and amide groups 
were significantly over represented in the inhibitors, only 
carbonyl group, amide were found to frequently interact 
with the protein. According to the heat map (Fig. 8a), hal-
ide/halogen and vinyl groups do not appear to have a sig-
nificant number of contacts with the residues. At the same 
time, arene was found at a similar rate in inhibitors (nearly 
95%) and non-inhibitors (nearly 85%), but the PLIF analy-
sis revealed that the arene moiety participates in a signifi-
cant number of interactions with residues such as Leu364 
and Leu1026. This indicates that significant differences in 
the functional group composition between inhibitors and 
non-inhibitors (Fig. 7) does not necessarily indicate or pro-
vide an outlook on the nature of interactions. This would 
rather depend on the position of these functional groups in 
the molecular structure, nature of the binding site residues 
as well as the size of the binding pocket.

Fig. 7  Distribution of functional groups in the training dataset
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Fig. 8  a Heat map illustrating the PLIF analysis of the training set 
inhibitors (x-axis contact residues; y-axis functional groups of the 
ligand showing an interaction with the residue; color scale number 

of interacting ligands). b Docking pose of Glimepiride (yellow) in 
which its carbonyl groups interact with the residues Tyr337, Tyr772 
and Asn996
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Finally, preliminary results show that the PLIF can also 
be used as predictor for inhibitor/non inhibitor properties 
by calculating the Tanimoto distance to known inhibitors. 
A more detailed description of this approach can be found 
in the supplementary material.

Analysis of misclassified compounds

Nearly 90 compounds, altogether from different datasets, 
were incorrectly classified by all the four scoring functions 
used in the study. More than 59% of the training set com-
pounds and 48% of the test set compounds were correctly 
classified by all the scoring functions. Of the 19 misclassi-
fied compounds from the training set, nine were predicted 
as inhibitors and ten were predicted as non-inhibitors.

The training set compound Ebselen was wrongly pre-
dicted as non-inhibitor by all scoring functions. Examin-
ing its molecular properties revealed that both molecular 
weight (274) and logP(2.74) fall in the range of non-inhib-
itors (Table  2). Moreover, the structure of Ebselen was 
found to be structurally more similar to a set of non-inhib-
itors compared to the set of inhibitors. Benzylpenicillin 
(Penicillin G) also belongs to the property space of non-
inhibitors (molecular weight = 333.38 and logP = 1.74). 
Interestingly, both Ebselen and Benzylpenicillin are strong 
inhibitors  (IC50< 10 μM) [24]. On the other hand, Phytom-
enadione (molecular weight = 450.70, logP = 9.05), despite 
being a non-inhibitor  (IC50 Y > 1000), was always misclas-
sified as inhibitor. Similar trend was noticed in both exter-
nal test sets. In total, six inhibitors and 13 non-inhibitors 
were misclassified from the Pedersen et  al. [34] dataset. 
Interestingly, all six inhibitors were found to be strongly 
hydrophobic and the molecular properties of about 80% 
of the non-inhibitors fall in the range of inhibitors. This 
strengthens the inclusion of this physicochemical proper-
ties into the classification model.

Combining ligand- and structure-based classification 
(sequential modeling)

Although the structure-based models performed reason-
ably well, ligand-based methods are considerably faster and 
perform equally well. Thus, we evaluated if a sequential 
approach that starts with a ligand-based method and pro-
ceeds with screening the positives using structure-based 
models would improve the precision and reduce the false 
positives. Therefore, we used an external test set contain-
ing 39 inhibitors and 113 non-inhibitors as a starting point. 
After applying ligand-based classification using the work-
flow from Montanari et  al. [25], 30 inhibitors were cor-
rectly predicted (TPs) and there were nine FPs, which leads 
to a precision of 0.77. After application of our structure-
based model based on ChemScore and rescoring using 
XScore, the precision improved to 0.83, reducing the 
number of FPs to 5. Further performance measures on the 
sequential approach are provided in Table  3. Thus, com-
bining ligand- and structure-based models in a sequential 
setting increased the precision and reduced the calculation 
time. This might be a versatile approach to reduce the num-
ber of FPs when performing large scale in silico screening.

Conclusion

Development of structure-based methods for transmem-
brane transporters of the ABC-family has been less pro-
nounced due to limited availability of experimentally 
determined 3D structures. However, recent efforts that 
used homology models of P-glycoprotein provide promis-
ing evidences that structure-based classification methods 
can be applied to these highly flexible and promiscuous 
proteins. In this study, we used comparative modeling 
to generate a homology model for the ABC-transporter 
BSEP and developed structure-based models to classify 

Table 3  Ligand-based and 
structure-based classification

The best model of the combined approach is highlighted in bold as well as the ligand-based classification
TP true positives, TN true negatives, FP false positives, FN false negatives, LBC Ligand-based classifi-
cation (Montanari et  al. [25]), SBC_C Structure-based classification using ChemScore scoring function, 
SBC_G Structure-based classification using GoldScore scoring function, SBC_C_X Structure-based clas-
sification using ChemScore scoring function (rescoring using Xscore). Consensus Combination of LBC, 
SBC_C and SBC_C_X

Model type TP TN FP FN Sensitivity Specificity Accuracy MCC Precision

LBC 30 104 9 9 0.77 0.92 0.88 0.69 0.77
SBC_C 27 91 22 12 0.69 0.81 0.78 0.47 0.55
SBC_G 26 79 34 13 0.67 0.70 0.69 0.33 0.43
SBC_C_X 27 96 17 12 0.69 0.85 0.81 0.52 0.61
LBC + SBC_C 24 107 6 15 0.62 0.95 0.86 0.62 0.80
LBC + SBC_C_X 25 108 5 14 0.64 0.96 0.88 0.66 0.83
Consensus 27 106 7 12 0.69 0.94 0.88 0.66 0.79
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inhibitors and non-inhibitors. Including logP and molecu-
lar weight as an additional layer of information besides 
the scoring function further increased the performance 
of the models. PLIF analysis revealed certain functional 
group-residue interactions that could help to understand 
the molecular basis of inhibition of the transporter pro-
tein by a wide range of ligands. Applicability domain of 
the models was assessed using Euclidean distance. Fur-
thermore, we estimated the probability of prediction by 
employing a binning scheme and identified a docking 
score range that can distinguish a majority of inhibitors 
from non-inhibitors with high confidence. Finally, com-
bining the structure-based model with our previously 
published ligand-based classification model in a sequen-
tial order provided additional improvement.

Combining ligand- and structure-based models to 
enhance the performance of virtual screening is of course 
not a new approach. For receptors and enzymes identifica-
tion of new ligands quite often starts with a pharmacoph-
ore-based screening followed by docking of the top-ranked 
hits to further refine the shopping list [80]. However, in 
case of ABC-transporters such as P-glycoprotein, which 
shows a pronounced polyspecificity in its ligand profile, 
there is a broad variety of pharmacophore models available. 
This would render a sequential approach quite challenging. 
Furthermore, due to the eminent role of ABC-transporters 
like P-gp, BSEP, and the breast cancer protein (BCRP) in 
ADME and toxicity, the focus for in silico screening lays 
more on flagging potentially toxic compounds rather than 
on the identification of new inhibitors for further develop-
ment as drug candidates. In this setting, machine learning-
based classification models might be a better tool for a first 
computational pre-screening. Therefore, a workflow com-
prising of prescreening with simple descriptors, classifica-
tion by machine learning techniques and post processing by 
structure-based methods might be the workflow of choice 
to provide accurate prediction combined with additional 
information on the molecular basis of compound-trans-
porter interaction.
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4.2 Structure-based modeling studies on BCRP  
 

BCRP and P-gp have multiple common substrates and inhibitors [184, 185]. Several drugs 

including anti-cancer agents, statins, antibiotics and environmental toxins are BCRP 

substrates [186]. As stated earlier, BCRP also plays a major role in cancer resistance and 

tumor progression/development [186–188]. Recently, a cryo-electron microscopy structure of 

BCRP was published by Taylor et al. [86] that provided the first high-resolution insight into 

this human multidrug transporter. This motivated us to perform structure-based studies on 

BCRP. 
 

4.2.1 A hypothesis of the molecular basis for inhibition of BCRP by 

arylmethyloxyphenyl analogues using the BCRP crystal structure  

 

In the following chapter, we employed a structure-based modeling approach to elucidate 

molecular hypothesis for the binding of arylmethyloxyphenyl derivatives to BCRP. The 

structure-activity relationship knowledge from ligand-based investigations guided us through 

the quest for a flexible depiction of the protein side. Our binding hypothesis suggests that the 

activity of arylmethyloxyphenyl derivatives is driven by strong hydrophobic interactions and 

provides a rationale for the development of highly potent derivatives. 

 

This work was performed in collaboration with Dr. Vittorio Pace (University of Vienna) and 

a synthesis-oriented manuscript is in preparation and is planned to be submitted soon. 
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A hypothesis of the molecular basis for inhibition of BCRP by 

arylmethyloxyphenyl analogues using the BCRP crystal structure 

 

Introduction 
In 2006, Colabufo et.al. [1] published a medicinal chemistry study in which 

arylmethyloxyphenyl derivatives and their potential use as P-glycoprotein inhibitors was 

explored.  A set of eight derivatives was synthesized and tested for their ability to revert P-

gp-mediated vinblastine transport in human epithelial colorectal adenocarcinoma cells (Caco-

2). Two compounds obtained EC50 values below 30 µM and showed no ATPase activation. 

Further exploration of the arylmethyloxyphenyl scaffold followed [2, 3].  

 

The most potent  P-gp modulators from these studies [2, 3] were tested for their ability to 

inhibit the bile salt export pump  (BCRP) in [3H]-mitoxantrone displacement assays. The 

tests revealed high inhibitory activity of amino derivatives (EC50 <2 µM) towards the 

transporter. Based on these findings, Dr. Vittorio Pace group at University of Vienna further 

synthesized arylmethyloxyphenyl analogues. Six of these analogues were tested in an 

intracellular mitoxantrone accumulation assay in PLB985 cells overexpressing BCRP [4, 5] 

and a spread of 0.12 – 18 µM in IC50 was observed (Figure 1). From these findings, some 

structure-activity relationships (SAR) could be inferred. It was shown that a lipophilic linker 

(SM-562, SM-565), connecting ring B and C, was more favourable than a hydrophilic linker 

(GP199-1, GP196-2). Furthermore, it was noted that a carbonyl moiety was less favourable 

than a hydroxyl moiety in the linker region. Additional increase in activity was observed by 

the introduction of methoxy moieties at ring A (GP199-1 versus GP196-2, GS4 versus GS3). 

 

The inferred SAR in conjunction with the release of the BCRP crystal structure in May 2017 

[6] motivated us to conduct structure based studies with the aim to propose a binding mode 

that could explain the spread in activity within the arylmethyloxyphenyl series. BCRP is a 

half transporter containing one nucleotide binding domain and one transmembrane domain. 

Thus, in order to be functional, the transporter has to undergo dimerization [7, 8], which 

renders the transporter symmetric. 
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Figure 1: Ligand structures and codes along with their activity values (IC50) used in the 

study. 

 

Method 

 

Molecular Docking 

For the docking studies, 6 arylmethyloxyphenyl derivatives (Figure 1) were selected with 

their known SAR. LigPrep module of Schrödinger Suite [9, 10] was then used to generate 

their correct protonation states for these derivatives. The OPLS_2005 force field was applied 

for the minimization of the structures. Different ionization states were generated by adding or 

removing protons from the ligand at a target pH of 7.0 ± 2.0 using Epik version 3.1 [11, 12] . 

Tautomers were also generated for each ligand. To generate stereoisomers, the information 

on chirality from the input file for each ligand was retained as is for the entire calculation. 

Further ConfGen module from Schrödinger Suite [9, 13] was used to generate maximum 

possible conformations of the input ligand, which were then used for the docking studies. 

This gave us a dataset of 1588 ligands. PDB structure (PDB: 5NJ3) retrieved from Protein 

Data Bank database was prepared for docking procedure using Protein Preparation Wizard of 

the Schrödinger Suite (2015) [9, 14]. During the protein preparation, hydrogen atoms were 
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added, water molecules were removed, and correct bond types were set. As the active site is 

not known, complete transmembrane domain was defined as the binding site (Figure 2).  

 

 
Figure 2: Structure of human ABCG2 and its potential ligand-binding site.  

 

All the docking runs were performed in high-throughput mode with GOLD [15, 16]. The 

implemented Gold scoring function “GoldScore” was used for evaluation of the complexes. 

A total of 5 poses per conformation were generated, which led us to 7940 poses. This would 

help us avoid any bias introduced by scoring functions, as large amount of docking poses was 

generated.  

 

Clustering of docking poses 

A RMSD matrix of all 7940 poses was generated on basis of the common scaffold of the 6 

arylmethyloxyphenyl derivatives. The matrix was used for cluster analysis applying complete 

linkage algorithm in R[17]. A clustering height of 2 Å was used.  

 

Result and Discussion 

 

Cluster Analysis 

Although docking simulations have their limitations depending on the validity of the target 

structure, the results of docking of the 6 arylmethyloxyphenyl derivatives into BCRP crystal 
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structure (PDB: 5NJ3) are very consistent. 

  

A total of 109 clusters were obtained. Highly populated clusters that contained poses of all 

docked compounds are considered the most promising. Cluster 2 was the only cluster that 

contained greater than 50 poses per ligand and was selected for further analysis (Figure 3). In 

cluster 2, the top docking poses of the 6 compounds are largely overlapping (Figure 4). While 

ring B consistently shows pi-pi and hydrophobic interactions with Phe439 (chain A), ring A 

and C are accommodated in identical hydrophobic sub pockets of the homodimer shaped by 

residues Phe431, Phe432, Asn436, Val546. Interestingly, the main scaffold of the ligands 

shows itself features of symmetry (Figure 1). All derivatives show strong hydrophobic 

interaction of ring A with Phe432 (chain A), ring B with Phe439 (chain A), ring C with 

Phe439 (chain B) (Figure 5).  

 

Our binding hypothesis suggest that the activity of arylmethyloxyphenyl derivatives is driven 

by strong hydrophobic interactions.  

 

 
Figure 3: Distribution of poses of cluster 2 in the human ABCG2 
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Figure 4: Top scored poses of the 6 arylmethyloxyphenyl derivatives. SM-562 (Green), SM-

565 (Blue) GP199-1 (Yellow), GP196-2 (Pink), GS4 (Grey), GS3 (Dark blue) 

 

 

Figure 5: Hydrophobic interactions for SM-562. Ring A interacts with Phe432 (chain A), 

ring B with Phe439 (chain A), ring C with Phe439 (chain B). 

 

The retrieved binding mode (cluster 2) was compared with the SAR found in the six 

analogues. Our binding hypothesis provides a rationale for the highest activity of SM-562 

(IC50 = 0.12 µM) and SM-565 (IC50 = 0.30 µM) in the dataset. Poses of these ligands can 

adopt a conformation that allows additional pi-pi interaction of ring C with Phe439 (chain B) 

(Figure 6). The SAR shows that additional -OCH3 groups at ring A or C lead to increase in 

activity, as reflected in compounds SM-562 and SM-565. These facts align with our binding 

mode as the additional -OCH3 groups would occupy the hydrophobic sub pockets 
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surrounding ring A and C more efficiently (Figure 7). In detail, the methoxy moiety (-OCH3) 

at ring A interacts with Phe431 (chain A, chain B) and Met 549 (chain A) through 

hydrophobic interactions. The methoxy moiety at ring C at meta and para position show 

strong hydrophobic interaction with Phe 439 (chain B) and Phe 432 (chain B) respectively 

(Figure 5). Further evidence is found in the compound pair GP199-1 and GP196-2. Here the 

loss of methoxy group in ring A (GP196-2) leads to 4 times lower activity. This could be due 

to the loss of hydrophobic interactions between the methoxy moiety and Phe 431 (chain A, 

chain B), and Met 549 (chain A). Similar observation was obtained for GS4 (I50= 7.1 µM) 

and GS3 (I50= 18 µM).  

 

          
(A)                                                                               (B) 

Figure 6: (A) SM-562, (B) SM-565 showing Pi-Pi interactions of ring B with Phe439 (chain A) 

and ring C with Phe439 (chain B). 

 

 
Figure 7: Top poses of the 6 arylmethyloxyphenyl derivatives aligned in the hydrophobic 

binding pocket. SM-562 (Green), SM-565 (Blue) GP199-1 (Yellow), GP196-2 (Pink), GS4 

(Grey), GS3 (Dark blue) 
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GP199-1 differs from SM-565 by an additional hydroxyl group in the linker between ring B 

and C. The addition of the polar substituent led to a 4-fold decrease in activity, which can 

also be reflected in our binding hypothesis. The introduced polar hydroxyl-group is partly 

solvent exposed but it also placed in unfavourable hydrophobic environment shaped by 

phenylalanine. The activity of arylmethyloxyphenyl is further diminished by exchanging the 

hydroxyl group in the linker by a carbonyl moiety, exemplified by the GP199-1(1.4) and GS4 

(7.1) pair. While GP199-1 is flexible enough to sustain partial solvation in our binding 

hypothesis, the introduction of a carbonyl-moiety leads to a twist in ligand conformation, 

forcing the carbonyl-moiety to be deeply buried in the hydrophobic pocket (Figure 8). 

Additionally we performed docking pose analysis using SeeSAR[18] to check for the 

desolvation penalty for the  carbonyl analogues GS4 and GS3 versus its hydroxy analogues 

GP199-1 and GP196-2, respectively. For the carbonyl (=O) of GS4, we observed Hyde 

score[19, 20] of +5.5 KJ/mol (ligand desolvation energy of +6.4 KJ/mol and receptor 

desolvation energy of -1.1KJ/mol). When this carbonyl moiety was replaced by hydroxy 

(GP199-1), the Hyde score was only -0.1 KJ/mol (ligand desolvation energy of +1.1 KJ/mol 

and receptor desolvation energy of -1.2 KJ/mol). Similar outcome was observed for 

GS3(ligand desolvation energy of +6.3 KJ/mol and receptor desolvation energy of -

3.6KJ/mol) and GP196-2 (ligand desolvation energy of +0.7 KJ/mol and receptor desolvation 

energy of -1.2 KJ/mol)). Thus the drop in GS4 and GS3 activity to GP199-1 and GP196-2, 

respectively could be due to the desolvation penalty of carbonyl moiety at the linker. 

 

 
Figure 8: Pose orientation of GP199-1 (Yellow), GS4 (Grey). 
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Conclusion 

In this study, we identified the binding mode of arylmethyloxyphenyl analogues in BCRP by 

means of molecular docking. Our binding hypothesis suggests that the activity of 

arylmethyloxyphenyl derivatives is driven by strong hydrophobic interactions. In order to 

overcome the difficulties of docking scoring functions in pose ranking, we applied an 

unconventional protocol that prioritized poses which show a high degree of SAR congruency. 

The pose evaluation leads to one sound binding mode, which after additional experimental 

validation can guide rational optimization of this compound class towards high potency. 

Furthermore, the uncovered ligand orientation may also be helpful to improve the 

mechanistic understanding of BCRP inhibition and could invoke the design of novel 

experiments. While further validations remain to be performed, we report here for the first 

time a binding hypothesis for arylmethyloxyphenyl inhibitors of BCRP that fit with the 

experimental data.  
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4.3 Data transferability for Predictive in silico Modeling   

 

The efflux transporter P-glycoprotein (P-gp) is a protein of high interest in drug discovery 

among other major anti-targets. In early stages of drug development, the pharmacokinetic and 

toxicity profiles of a drug candidate are determined in animal models (usually rodents) before 

being tested in humans. European Union initiatives such as the Horizon 2020 EU-ToxRisk 

project (www.eu-toxrisk.eu) drive the required paradigm shift in toxicological testing from 

‘black box’ animal testing towards a toxicological assessment based on human cell responses 

[189–191]. Similar initiatives across the world are progressing towards the 3R goals - 

refinement, reduction and replacement of animal trials [192–194].  

 

In the light of this, besides developing predictive in silico models for the identification of 

inhibitors of human P-gp, it is beneficial to establish predictive models for mouse and rat to 

reduce the number of compounds to be tested in later stages. Though a substantial amount of 

experimental data against human P-gp is already available and has been utilized for the 

development of in silico models [195, 196], sufficient data is not available to build predictive 

models for rat and mouse P-gp. Further, lack of availability of an experimentally determined 

three-dimensional (3D) structure for human P-gp also limits the development of reliable 

structure-based models. Thus, employing the human P-gp data in the structure-based 

modeling of resolved 3D structures, for instance the mouse P-gp structure, would reveal 

potential ligand-target interactions with high certainty. 
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4.3.1 Interspecies comparison of putative ligand binding sites of human, rat 

and mouse P-glycoprotein 

 
Sankalp Jain, Melanie Grandits and Gerhard F. Ecker 

 

Submitted to the European Journal of Pharmaceutical Sciences; under peer review. 

 
In the following manuscript, we used a structure-based approach to compare the binding site 

interaction profiles of human, rat and mouse P-gp to assess if in vitro human activity data 

could be successfully employed for development of in vivo prediction models for rodents. A 

comparison of the per-residue interaction energies of the docking poses and analysis of the 

protein-ligand interaction fingerprints indicate a significant overlap between the binding site 

interacting residues across the three species. This would help to improve our understanding of 

protein-ligand interactions at the molecular level, stimulating scientists to conduct new 

experiments and thus aid to extrapolation of molecular hypotheses from rodents to humans 

and vice-versa. 

 
S. Jain performed the study and wrote the manuscript. M. Grandits and G.F. Ecker 

supervised the work and revised the manuscript. 
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Abstract 
 

Prior to the clinical phases of testing, safety, efficacy and pharmacokinetic profiles of lead 

compounds are evaluated in animal studies. These tests are primarily performed in rodents, 

such as mice and rats. In order to reduce the number of animal experiments, computational 

models that predict the outcome of these studies and thus aid in prioritization of preclinical 

candidates are heavily needed. However, although computational models for human off-

target interactions with decent quality are available, they cannot easily be transferred to 
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rodents due to lack of respective data. In this study, we assess the transferability of human P-

glycoprotein activity data for development of in silico models to predict in vivo effects in rats 

and mouse using a structure-based approach. P-glycoprotein (P-gp) is an ATP-dependent 

efflux transporter that transports xenobiotic compounds such as toxins and drugs out of cells 

and has a broad substrate and inhibitor specificity. It influences the bioavailability and 

toxicity of drugs and plays a major role in multidrug resistance. Comparing the binding site 

interaction profiles of human, rat and mouse P-gp derived from docking studies with a set of 

common inhibitors suggests that the inhibitors share potentially similar binding modes. These 

findings encourage the use of in vitro human P-gp data for predicting in vivo effects in 

rodents and thus contributes to the 3Rs of animal experiments. 
 
Keywords: 

Species differences, P-glycoprotein, binding site comparison, transmembrane domain, 

protein-ligand interaction fingerprint. 

 

1. Introduction 
 

The efflux transporter P-glycoprotein (P-gp) is a protein of high interest among other major 

anti-targets (Cramer et al., 2007). It is expressed in tissues such as intestine, liver, kidney, 

placenta, testis, and in the capillary endothelial cells of the brain (Seelig, 1998; Thiebaut et 

al., 1987), and plays an important role in the absorption, distribution and excretion of many 

drugs. Overexpression of P-gp has been implicated in resistance to multiple chemotherapeutic 

drugs and is a widely accepted mechanism underlying multidrug resistance (Aller et al., 

2009; Fojo et al., 1987; Widmer et al., 2003). Co-administration of a P-gp inhibitor with a 

drug can lead to altered disposition of the latter, resulting in elevated plasma levels of the 

drug which could lead to adverse effects (Bussey, 1982; Tsuji, 2002; Verschraagen et al., 

1999). In this respect, the United States Food and Drug Administration (US FDA) guidance 

requires new drug candidates to be routinely screened against P-gp as part of the clinical drug 

interaction studies (“Clinical Drug Interaction Studies — Study Design, Data Analysis, and 

Clinical Implications Guidance for Industry,” 2017; Klepsch et al., 2011). Therefore, 

computational methods that characterize P-gp interactions and thus guide the prioritization of 

compounds in the early phase of the drug discovery process are of considerable interest 

(Schneider, 2010). 
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In early stages of drug development, pharmacokinetic and toxicity profiles of a candidate 

drug are evaluated in animal models (typically rats or mouse) prior to the clinical phases of 

testing in humans. A substantial amount of experimental data against human P-gp is already 

available and has been utilized for the development of in silico models (see e.g. 

livertox.univie.ac.at). However, besides developing in silico models for the prediction of 

ligands for human P-gp, it would be beneficial to also establish models for rat and mouse P-

gp in order to predict the outcomes of preclinical animal studies. Unfortunately, limited 

availability of experimental data for rat and mouse P-gp restricts the development of such 

models. In this context the question arises, whether predicted interaction profiles of ligands 

with human P-gp could be transferred to rodent P-gp. This would require a comprehensive 

comparison of the putative binding sites of the P-gp structures across species. Literature 

sheds little light on this, suggesting the need for exploration of species-related differences in 

P-gp mediated drug transport activity (Martignoni et al., 2006; Schwab et al., 2003; 

Suzuyama et al., 2007). 

Inhibition of P-gp activity as a result of drug interactions has been reported in both animals 

and humans (Bussey, 1982; Choo et al., 2000; Pedersen, 1985), but only a few studies 

discussed species-related differences in the inhibitory effects on the P-gp function (Chu et al., 

2013; Suzuyama et al., 2007; Zolnerciks et al., 2011). A few studies proposed moderate 

species differences, human vs. rat (Molden et al., 2000), human vs. mouse (Adachi et al., 

2001; Lin and Yamazaki, 2003) and also among the three species (human vs. rat vs. mouse) 

(Katoh et al., 2006), while a few other studies reported no significant differences between 

human, rat and  mouse P-gp (Chu et al., 2013; Feng et al., 2008; Hsiao and Unadkat, 2012). 

However, it must be noted that only a small number of compounds were tested in these 

studies. It might thus well be that the inhibitory effects on P-gp-mediated drug transport are 

subjective to both the chemical structure of substrates/inhibitors and to the species. Moreover, 

it is not yet clear if the possible species differences in the inhibitory effects of P-gp activity 

are due to differences in binding site residues of P-gp, which is therefore worth investigating. 

 

To the best of our knowledge, no computational study compared the binding site interaction 

profiles of P-gp across different species (human, rat and mouse) so far. In this study, we used 

a structure-based approach to compare their binding sites in order to derive information 

concerning potential species differences in P-gp-mediated drug transport. Since an X-ray 

crystal structure is available for mouse P-gp alone, homology modeling was performed to 
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construct the models for human P-gp and for rat P-gp. Subsequently, docking of common 

inhibitors of rat, mouse and human P-gp was performed. Next, known inhibitors of human P-

gp were docked into the models of the three species followed by an analysis of the 

interactions between the inhibitors and binding site residues. The interaction profiles of the P-

gp binding sites of the three species were then compared to evaluate the transferability of in 

vitro human P-gp data for development of models to predict effects in rat and mouse. 

 

2. Methodology  
2.1. Dataset  

A substantial amount of human P-gp data is made publicly available through previous 

literature reports (Broccatelli et al., 2011; Chen et al., 2011; Klepsch et al., 2014). However, 

due to the limited availability of rat P-gp data in public domain bioactivity databases such as 

ChEMBL(Gaulton et al., 2012; Willighagen et al., 2013) and BindingDB(Liu et al., 2007), an 

exhaustive literature search was performed. A total of 18 rat P-gp inhibitors could be 

identified that are known to also inhibit both human P-gp and mouse P-gp. Due to the 

inconsistencies in the assay conditions, these compounds unfortunately could not be utilized 

to compare inhibitory profiles across the species. Suzuyama et al. (Suzuyama et al., 2007) 

studied the species differences (human, monkey, canine, rat and mouse) in the inhibitory 

effects of the prototype P-gp inhibitors quinidine and verapamil. These two drugs served as 

the starting point for in silico comparison of binding site interaction profiles across the 

species. Further, we also extracted the human P-gp data from Broccatelli et al. (Broccatelli et 

al., 2011) in order to perform protein-ligand interaction fingerprint  (PLIF) analysis and to 

identify the common functional group residue interactions among the three species. The 

dataset was standardized according to the procedure described in Pinto et al., 2012. (Pinto et 

al., 2012) The final dataset contained a total of 1161 compounds (612 inhibitors and 549 non-

inhibitors). 

 

2.2. Homology modeling 

For human P-gp (UNIPROT ID: P08183), rat P-gp (MDR1a-UNIPROT ID: Q9JK64; 

MDR1b-UNIPROT ID: P43245) and mouse P-gp (mdr1b-UNIPROT ID: P06795), the 

corrected mouse P-gp structure (mdr1a-UNIPROT ID: P21447; PDB ID: 4M1M) was 

selected as the most structurally related template protein. Rat and mouse P-gp proteins are 

encoded by two paralogous genes namely MDR1a and MDR1b that show a sequence identity 
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of 83% (Chu et al., 2013; Devault and Gros, 1990). Therefore, we constructed in total four 

homology models to consider the paralogs too. Homology models were constructed using 

MODELLER 9.13 (Eswar et al., 2007) and the Prime module in Maestro (Schrödinger, Inc. 

V-10.1.013)(Jacobson et al., 2004, 2002). The energy minimized models were further 

evaluated using DOPE score (Shen and Sali, 2006) and GA341 score (John and Sali, 2003; 

Melo et al., 2002). Quality of the stereochemical parameters and the normality of the 

structures were checked using the PROCHECK program, included in the PDBsum analysis 

(Laskowski et al., 1993). Ramachandran plot (Zhou et al., 2011) and G-factor (Engh and 

Huber, 1991), and finally the Q-score (Benkert et al., 2008, 2009) values were evaluated to 

identify the best homology models. The electrostatic potential surface (EPS) of each of the 

three best models for the three species was also calculated and compared using MOE 2013 

(Molecular Operating Environment (MOE), 2013.08, n.d.). 

 

2.3. Sequence alignment 

Sequence alignment was performed using ClustalX (Larkin et al., 2007) and verified by 

including secondary structure predictions. Subsequently, the alignment was analyzed using 

Jalview (Supplementary Fig. S1-S4) (Clamp et al., 2004; Waterhouse et al., 2009). 

 

2.4. Binding site identification and molecular docking 

In order to avoid any bias, the binding site for all five structures was defined as the complete 

transmembrane region, taking 20 Å around the coordinate of the center point to allow 

subsequent flexible docking of a series of P-gp inhibitors. The protein was prepared using the 

Protein Preparation Wizard of the Schrödinger Suite (2015)  (Sastry et al., 2013; Schrödinger 

Release 2015-1: Maestro, version 10.1, Schrödinger, LLC, New York, NY, 2015., n.d.). 

Hydrogen atoms were added, and optimal protonation states and ASN/GLN/HIS flips were 

determined. To assess their correct protonation states, ligands were prepared using the 

LigPrep module of the Schrödinger Suite, (Schrödinger Release 2015-1: LigPrep, version 

3.3, Schrödinger, LLC, New York, NY, 2015., n.d., Schrödinger Release 2015-1: Maestro, 

version 10.1, Schrödinger, LLC, New York, NY, 2015., n.d.) which produces low-energy 3D 

structures that can be used for docking. The OPLS_2005 force field was used for 

minimization of the structures. Different ionization states were generated by adding or 

removing protons from the ligand at a target pH of 7.0 ± 2.0 using Epik version 3.1., 

(Greenwood et al., 2010; Shelley et al., 2007) and tautomers were generated for each ligand. 

To generate stereoisomers, the information on chirality from the input file for each ligand 
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was retained as is for the entire calculation. All docking runs were performed in high-

throughput mode with GlideXP(Friesner et al., 2006; Halgren et al., 2004) docking in 

Maestro. We also used the genetic algorithm-based GOLD suit (version 5.2.0) (Jones et al., 

1997; Verdonk et al., 2003) for docking. 

 

2.5. Protein ligand interaction fingerprint (PLIF) 

A PLIF summarizes the interactions between a ligand and a protein using a molecular 

fingerprint scheme. We generated two types of PLIFs that differ in the information encoded. 

The first PLIF encodes residues involved in an interaction with the ligand at each bit position. 

The second type encodes the functional group of the ligand that interacts with the residue. For 

this, the substructure patterns of 100 functional groups (in SMARTS notation) were extracted 

from the Daylight website 

(http://www.daylight.com/dayhtml_tutorials/languages/smarts/smarts_examples.html#GROU

P). All PLIF bits were calculated with the MOE 2013 (Molecular Operating Environment 

(MOE), 2013.08, n.d.) built-in function CalculateRawInteractions using a 1% threshold for 

molecular interactions and a 20% threshold for surface contacts. The function was embedded 

in an in-house SVL script and was post-processed to enable calculation of functional group 

PLIFs. 

 

3. Results and Discussion  
 

Predicting interactions of small molecules with membrane protein structures has always been 

challenging. Nevertheless, visualization of the 3D models contributes to the comprehension 

of the physical and chemical properties of these biomolecules, and of their intermolecular 

interactions with endogenous and exogenous compounds. Due to the lack of crystal structures 

for human and rat P-gp, homology modeling and computational ligand docking were used to 

generate structure-based hypotheses for protein-ligand-interactions.  

 

3.1. Homology modeling 

ABC transporters are transmembrane proteins that are in general difficult to be resolved via 

crystallization (Klepsch et al., 2010). In such cases, homology modelling is the method of 

choice for structure-based studies. The homology models generated in this study resemble the 
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open-inward (or apo/ground) state of P-gp. This state was considered because it resembles the 

first step of the basic catalytic cycle for drug-binding in P-gp (Wilkens, 2015). 

 

Since January 2014, a refined  X-ray structure of a eukaryotic ABC efflux pump, ABCB1 

(mouse) is available (Li et al., 2014) (PDB code: 4M1M, resolution: 3.8 Å). High sequence 

identities with human MDR1 (86%), rat MDR1a (94%), rat MDR1b (82%), mouse mdr1b 

(83%) and a moderate resolution of 3.8 Å renders 4M1M a reasonable template for homology 

modeling  (Pajeva et al., 2009). Moreover, the secondary structure elements (NBDs and 

TMDs) are also conserved among the species. When only the TMD was analysed, the 

sequence identity is greater than 85% for all structures (Supplementary Fig. S5). The best 

models had a normalized Dope score of less than −0.6, G-factors less than −0.12, and Qmean 

scores of greater than 0.60 (see Table 1). For all modelled structures, the Ramachandran plot 

(Supplementary Fig. S6-S9) showed excellent results with less than 1.9% of residues in 

generously allowed or disallowed regions. All of these residues are located in the nucleotide 

binding domains (NBD) or extracellular loops (ECL) and are therefore not involved in drug 

binding (Supplementary Fig. S10-S13). Table 1 summarizes the model assessment details for 

the best structure. The X-ray crystal structure and site directed mutagenesis studies on 

ABCB1 serve as validity tests for both helix orientation in the template (Ward et al., 2007), 

and the alignment used for ABC transporter modelling (Supplementary Fig. S1-S4). The 

homology models as well as the crystal structure displayed a V-shaped structure with 

analogos domain orientations. 

 

Table 1: Results from the stereochemical validation of the homology models. 

 

Model Dope score G-factor Qmean score Residues in generously allowed 

or disallowed regions (%) 

Human MDR1 -0.633 -0.13 0.68 1.7 

Rat MDR1a -0.795 -0.03 0.70 1.7 

Rat MDR1b -0.703 -0.16 0.65 1.8 

Mouse mdr1b -0.808 -0.06 0.69 2.0 
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3.2. Sequence alignment and binding site analysis 

The amino acid sequence is highly conserved among the three species (Supplementary Fig. 

S5), suggesting a high structural similarity (see Table 2). 

 

Table 2: Sequence identity/similarity [%] between human, rat and mouse P-gp. 

 

 Human-
MDR1 

Rat MDR1a Rat MDR1b Mouse 
mdr1a 

Mouse 
mdr1b 

Human-
MDR1 

100 87/93 80/90 86/92 80/90 

Rat MDR1a 87/93 100 84/91 94/97 84/92 

Rat MDR1b 80/90 84/91 100 82/91 93/97 

Mouse 
mdr1a 

86/92 94/97 82/91 100 83/91 

Mouse 
mdr1b 

80/90 84/92 93/97 83/91 100 

 

 

Experimental techniques such as cysteine and arginine scanning and photoaffinity labeling 

were previously employed to determine the drug binding sites of P-gp (Loo and Clarke, 2008; 

Pleban et al., 2005; Seeger and van Veen, 2009; Shilling et al., 2006). Multiple binding sites 

were identified and binding at different sites could lead to different inhibitory effects. Well 

characterized binding sites are the ones of Hoechst 33342 and Rhodamine, the so called H-

sites and R-site (Loo and Clarke, 2002; Qu and Sharom, 2002). Studies also suggest the 

presence of an allosteric regulatory site as well as a progesterone and prazosin binding region 

(Martin et al., 2000; Shapiro et al., 1999). The H-site and R-site residues, (characterized by 

Ferreira et.al (Ferreira et al., 2013)) of the three species were compared and showed a high 

sequence identity. This would indicate the similar arrangement of the binding sites residues 

and thus further pointing to the presence of a similar binding/interaction profile of the 

inhibitors. Mostly identical or similar residues were present in the five structures. The H-site 

and R-site had 77% and 65% residues identical within the three species. Those residues 

which show a difference, have mostly similar properties. For example, Glu180 in mouse 

mdr1a is replaced with Aspartic Acid in mouse mdr1b and in ratMDR1b. Both residues are 
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charged and have acidic properties. In a few instances, charged (basic) amino acids are 

replaced by polar (neutral) or hydrophobic (aliphatic) amino acids in the other species but 

most of these residues did not participate in interactions with docked ligands. In general, the 

H-site has a higher percentage of charged residues (lysine, histidine, and glutamic acid 

residues), while the R-site has a high number of glycine, glutamine, and proline residues. 

Interestingly, threonine and tyrosine were not found in the H-site and R-sites, respectively. A 

detailed comparison of the H-site and R-site residues of the five structures is shown in 

Supplementary Table S1. These observations signify the harmony of electrostatic properties 

and molecular features of the drug recognition site (central binding cavity) in the three 

species. Supplementary Fig. S14-S18 represents the electrostatic potential surface (EPS) of 

the substrate recognition area of each of the ABC-transporter models. The EPS of the 

substrate recognition area in the TMDs of the human model is neutral with negative and 

weakly positive areas, similar to the EPS of rat and mouse models. 

 

3.3. Molecular Docking 

In order to analyze the putative binding pocket of the transport protein in the three species, 

we proceeded with docking of a set of inhibitors. Ligand docking is a commonly used 

approach to identify ligand-protein interactions. However, in case of P-gp, this appears to be 

challenging due to various reasons. Firstly, P-gp possesses a high degree of flexibility with a 

large binding cavity consisting of multiple binding sites. Secondly, it can harbor more than 

one ligand simultaneously (Loo et al., 2003a; Lugo and Sharom, 2005). And finally, lack of a 

high resolution crystal structure of human P-gp necessitates the use of homology models, 

which add additional layers of uncertainty. A large binding pocket could also be seen in a 

recent structure (PDB id : 4M1M) wherein large cyclopeptides bind at different sites with 

partially overlapping residues (Li et al., 2014). Some of these residues are identical to those 

involved in rhodamine or verapamil binding (Loo et al., 2006; Loo and Clarke, 1997). Other 

studies reported different prazosin binding sites in hamster (Isenberg et al., 2001) and human 

P-gp (Ambudkar et al., 2003). Overall, it is understood that P-gp possesses a huge binding 

pocket with at least four distinct binding sites, with TM 6 as the helix primarily involved in 

binding (Klepsch et al., 2010). Therefore, we considered the complete TMD as drug binding 

site (DBS) and generated a large number of docking poses to prevent any bias introduced by 

scoring functions.  
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We started with docking of verapamil and quinidine into the binding pocket (complete TMD) 

of all models. These two compounds were chosen since IC50 values measured under the same 

assay conditions were available for all three species. Our study revealed that the top ranked 

docking poses of verapamil were found in the R-site of P-gp in all three species, which is in 

agreement with previous reports (Ferreira et al., 2013). The top scored docking pose for each 

of the five models was found in the same region of the binding pocket (R-site) are shown in 

Fig. 1. 

 

 
 

Fig. 1: Best scored docking pose of verapamil: green (human MDR1), yellow (rat MDR1a), 

pink (rat MDR1b), red (mouse mdr1a), blue (mouse mdr1b), secondary structure of human P-

gp. 

 

We used the GlideXP scoring function from Maestro (Friesner et al., 2006; Halgren et al., 

2004) to evaluate the binding poses. GlideXP docking also provides the per residue 

interaction energies for a particular docking pose. For each model, the residue interaction 

energy (RIE) for the top scored docking poses was calculated. Phe303, Tyr307, Tyr310, 

Phe336, Phe343, Phe728, Phe983, Met986 and Gln990 (numbering according to human-

MDR1) are residues that showed more negative interaction energy values in all three species, 

indicating their higher contribution to binding. Residue interaction energies for all residues 

which are involved in interactions with verapamil can be seen in Supplementary Table S2. 

For example, the residues corresponding to Tyr307 in human MDR1 are Tyr306 (RIE:-3.229 

kcal/mol), Tyr306 (RIE:-3.714 kcal/mol), Try303 (RIE:-6.96 kcal/mol) and Tyr299 (RIE:-5.1 
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kcal/mol) in rat MDR1a, rat MDR1b, mouse mdr1a and mouse mdr1b, respectively. Each of 

these residues contributes to the binding with more negative interaction energy. We observed 

less negative RIE values with residues which are different within the species (e.g. human 

MDR1: Met68, rat MDR1a: Leu67, rat MDR1b: Leu66, mouse mdr1a and mdr1b: Met67), 

suggesting their small influence on  - and involvement in - interactions with verapamil. Thus, 

the comparison of the per residue interaction energies of the best docking pose of the three 

species revealed that similar binding site residues (as per the alignment) are involved in 

strong interactions with the ligand (see Fig. 2).  

 
 

Fig. 2: Residue interaction energy for common interaction residues in human MDR1, rat 

MDR1a, rat MDR1b, mouse mdr1a and mouse mdr1b. x-axis denotes residue number in the 

order human MDR1, rat MDR1a, rat MDR1b, mouse mdr1a and mouse mdr1b, y-axis 

denotes the corresponding residue interaction energy (kcal/mol). 

 

In case of quinidine, the human MDR1 residues Phe336 (RIE:-2.41 kcal/mol), Gln725 (RIE:-

11.577 kcal/mol), Phe728 (RIE:-2.479 kcal/mol), Ser979 (RIE:-1.535 kcal/mol), Phe983 

(RIE:-8.114 kcal/mol) and Met986 (RIE:-2.162 kcal/mol) interacted with greater negative 

interaction energies. The corresponding residues in rat MDR1a, rat MDR1b, mouse mdr1a 

and mouse mdr1b that demonstrated more negative interaction energies can be found in 

Supplementary Table S3. Supplementary Fig. S19 shows the RIE for common residues 

involved in interaction in human MDR1, rat MDR1a, rat MDR1b, mouse mdr1a and mouse 

mdr1b with the top scored docking pose of quinidine. Replacing a phenyl alanine in human 
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(Phe303) and mouse (Phe299 in mdr1a and mdr1b) with another hydrophobic residue, for 

instance Tyr302 in MDR1a and MDR1b, still showed negative RIE values. Supplementary 

Fig. S20 shows the top scored docking poses of quinidine in the five models. 

 

Thus, similar amino acids, as observed with verapamil and quinidine, also confirm the 

homogeneous nature of the binding site residues in different species. This would further 

support the hypothesis of similarity in their binding sites. Site directed mutagenesis studies on 

human ABCB1 also indicated that Ile306 (TMH5) (Loo et al., 2006; Loo and Clarke, 2005), 

Ile340 (TMH6) (Loo and Clarke, 2002), Phe343 (TMH6) (Loo et al., 2003b, 2006), Phe728 

(TMH7) (Loo et al., 2006), and Val982 (TMH12) (Loo and Clarke, 2002, 2005) may 

participate in ligand binding. As shown in Fig. 3, these residues may form a substrate 

recognition site in the human ABCB1 model. The involvement of these residues in ligand 

binding was also confirmed by Li et al (Aller et al., 2009; Li et al., 2014). 

 

 
 

Fig. 3: Key residues of the substrate recognition site in the human ABCB1 model from 

literature (Loo et al., 2003b, 2006, Loo and Clarke, 2002, 2005). 

 

In our previous work, we demonstrated that the Chemscore scoring function from the GOLD 

docking suit facilitated docking-based classification of inhibitors and non-inhibitors for P-

gp(Klepsch et al., 2014) and the bile salt export pump (BSEP) (Jain et al., 2017) with 

reasonable accuracies. Therefore, we used the Chemscore scoring function to perform 

docking of all human P-gp inhibitors into human MDR1, rat MDR1a, rat MDR1b, mouse 
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mdr1a, and mouse mdr1b structures in order to compare the interaction profiles of the 

binding site residues in the three species via PLIF analysis. 

 

3.4. Protein ligand interaction fingerprint (PLIF) 

Maestro allows computation of different molecular interactions between binding site residues 

and a ligand in a specific pose. A PLIF summarizes the interactions between a ligand and a 

protein using a fingerprint scheme. It provides a detailed picture of the binding modes of 

different inhibitors. We retrospectively analyzed the PLIFs of complexes of verapamil and 

quinidine with structures of all three species (human MDR1, rat MDR1a, rat MDR1b, mouse 

mdr1a and mouse mdr1b) derived from docking, in order to compare their interaction 

profiles. In case of verapamil, in human MDR1, around 70% of the poses showed 

hydrophobic interactions with Phe336, Ile340, Phe343, Phe728 and Met986. Also, over 85% 

of the poses displayed interaction with Met69, Tyr310, Tyr 953, Phe983 (Fig. 4). In the rat 

structure, more than 73% of the residues showed interaction with Phe328, Phe335, Phe720, 

Met978 and over 85% residues showed interaction with Phe295, Ile298, Tyr299, Tyr302, 

Phe975 (Fig. 4). The percentage of binding poses in which specific residues are involved in 

interactions with verapamil in rat MDR1b, mouse mdr1a, and mouse mdr1b models can also 

be seen in Fig. 4. Supplementary Fig. S21 provides the same information for quinidine. 

 
Fig. 4: Hydrophobic interactions common in human MDR1, rat MDR1a, rat MDR1b, mouse 

mdr1a and mouse mdr1bfor verapamil. X-axis denotes residue number in the order human 

MDR1, rat MDR1a, rat MDR1b, mouse mdr1a and mouse mdr1b, Y-axis denotes frequency 

of interacting residues (%). 
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For both verapamil and quinidine, the interacting residues that contributed to a significant 

number of binding poses were at similar positions in the 3D structures of the five transporters 

(Fig. 4, Supplementary Fig. S21). Specifically, for verapamil, Tyr310 (human MDR1), 

Tyr302 (rat MDR1a), Tyr310 (rat MDR1b), Tyr309 (mouse mdr1a and mdr1b) showed an 

interaction in more than 95% of the poses in all five docked structures. Interestingly, when an 

amino acid in one species was replaced with another amino acid in another species, a similar 

percentage of docking poses interacted with this residue. For instance, the exchange of Ile340 

in human MDR1 with Leucine in rat MDR1b and mouse mdr1b showed hydrophobic 

interactions in almost 80% of the poses for verapamil, indicating that the interaction pattern 

did not change when two hydrophobic residues were interchanged. Similar PLIF-based 

observations could be inferenced after evaluation of the docking poses of quinidine for the 

three species. However, due to the lower degree of freedom (flexibility) of quinidine, 

relatively fewer docking poses could be obtained. 

 

We also identified the interacting residues for a set of 612 human P-gp inhibitors that were 

docked into these five structures. For human P-gp, more than 70% of the inhibitors interacted 

with Ile306, Tyr310, Phe336, Phe343, Tyr953, Phe983 and Met986. Fig. 5 shows interacting 

residues common to human, rat and mouse structures. Supplementary Table S4 lists the 

occurrence of commonly interacting residues in the three species. PLIFs obtained from 

docking of a diverse set of human P-gp inhibitors into the five models revealed that similar 

residues were involved in the interactions, thereby further strengthening the existence of 

analogous binding site residues and interaction profiles in the three species. 
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Fig. 5: Hydrophobic interactions common in human MDR1, rat MDR1a, rat MDR1b, mouse 

mdr1a and mouse mdr1b for human P-gp inhibitors. X-axis denotes residue number in the 

order human MDR1, rat MDR1a, rat MDR1b, mouse mdr1a and mouse mdr1b, y-axis 

denotes frequency of interacting residues (%). 

 

3.5. Analysis of the interactions of functional groups with protein residues 

Investigation of the functional group-residue interactions for the set of 612 P-gp inhibitors 

docked revealed similar interaction patterns with all three species. Functional groups ether, 

carbonyl, alkyl carbon, nitrogen and arene showed more prominent interactions with Tyr310, 

Phe343, Phe983, and Met986 (numbering as per human MDR1). Corresponding residues in 

other species that participated in interactions are shown in Supplementary Table S5. To 

illustrate the outcomes, a heat map (Fig. 6, Supplementary Fig. S22-S25) plotting the 

interacting residues against the functional groups of ligands was generated. The color scale of 

the heat map represents the number of inhibitors involved in a particular interaction between 

a specific residue and a specific functional group. Thus, the most significant interactions 

could be visually identified. 
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Fig. 6: Heat map illustrating the PLIF analysis of the human P-gp inhibitors for human 

MDR1. X-axis denotes contact residues. Y-axis denotes functional groups of the ligand 

which are showing an interaction with the residue. Color scale signifies the number of 

interacting ligands. 

 

In the three species, the H-site and R-site showed high sequence identity, suggesting the 

presence of similar residues at specific positions in the 3D structure. Additionally, similar 

functional group-residue interaction patterns were observed for human (MDR1), rat (rat 

MDR1a, rat MDR1b) and mouse (mouse mdr1a, and mouse mdr1b) (Supplementary Fig. 

S22-S25). This further strengthens the idea of utilizing human P-gp activity data, collated 

from in vitro studies, for structure-based modeling of rodent ligand-target interactions. 

 

A study by Schwab et al. (Schwab et al., 2003) reported comparable IC50 values in a calcein-

AM assay for human MDR1, mouse mdr1a and mouse mdr1b for 28 reference compounds. 

Zolnerciks et al.(Zolnerciks et al., 2011) also observed comparable IC50 values for a set of 

compounds against human and rat P-gp transporter and also suggested that multiple P-gp 

substrates would be needed to accurately predict clinically significant P-gp drug interactions, 

in both in vitro and in vivo (including human) drug-drug interaction studies. As mentioned 

earlier, Suzuyama et al. (Suzuyama et al., 2007) evaluated the inhibitory effects of quinidine 

and verapamil on P-gp-mediated drug transport using MDR1 transfected cell lines of 

different species. As a common observation, although the IC50 values differ between the 

species, it was less than 10-fold. This along with our molecular docking and PLIF analysis 
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results signify the possibility of similar interaction profiles in the three species (human, rat 

and mouse), suggesting the usability and transferability of in vitro human data for 

development of prediction models for rat and mouse.  

 

4. Conclusion 
P-glycoprotein is a transmembrane efflux transporter that plays an important role in drug 

absorption, disposition, metabolism, and toxicity. It is essential to investigate the interactions 

of P-gp with candidate drugs not only to understand the contribution of P-gp to the 

pharmacological properties of candidate drugs, but also to evaluate their drug-drug 

interaction (DDI) profiles and thereby their clinical implications. In this regard, it is 

important to understand the binding site interaction profiles of P-gp in rodents which is 

poorly addressed so far due to the limited availability of experimental data. In this 

communication, we compared the P-gp binding sites across human, rat and mouse using 

molecular docking and protein-ligand interaction fingerprint analysis. To the best of our 

knowledge, this is the first in silico study of its kind that compares the binding sites across 

three different species with emphasis on their inhibitory interaction profile. Our results show 

a significant overlap between the binding site interacting residues across the three species. 

This strengthens the likelihood of similar binding mode of human, rat and mouse P-gp 

inhibitors, thus supporting the transferability of in vitro human P-gp data for development of 

computational models to predict effects in rat and mouse. As shown recently, the 

incorporation of predicted ligand transporter interaction profiles increases the performance of 

selected in vivo toxicity prediction models. The transferability of human P-gp data to rodent 

in silico models might thus increase the predictivity of rodent in vivo toxicological outcomes, 

which was a major aim of the eTOX project (www.etoxproject.eu) (Briggs et al., 2012; 

Hartmann and Pognan, 2017). This will subsequently improve the quality of drug candidates 

while lowering the attrition rate during subsequent phases of drug development, and, most 

remarkably, reduce the number of animal experiments in preclinical studies. 
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This thesis aims to investigate the potential of structural-based modeling methods to provide 

detailed insights into the mechanism of inhibition of membrane-associated liver transporters 

(BSEP, BCRP and P-gp), which might assist in the development of in silico prediction 

models and lead optimization. The transporters studied are implicated in multidrug resistance 

and hepatotoxicity. Exploring the mechanisms of inhibition of these transporters is highly 

essential not only to understand the pharmacological behavior of candidate drugs, but also to 

evaluate the potential drug-drug interaction liabilities and their clinical implications. Part I, 

section 1.2 provides the biological background of these transporters and emphasizes on their 

role in liver toxicity. 

 

A majority of the in silico studies related to these transporters focused on ligand-based 

approaches that include QSAR modeling, pharmacophore modeling and machine learning 

methods, among others [37]. However, ligand-based models do not consider the structural 

aspects of the protein that are valuable in understanding the inhibition process. The lack of 

high-resolution structural information has been a primary reason behind the limited focus on 

structure-based approaches. Section 2.1 provides a detailed overview of the currently 

available ligand-based and structure-based models to predict inhibitors of different liver 

transporters. Experimentally resolved protein structures deposited in the Protein Data Bank 

and the inhibitors and substrates available from other dedicated resources serve in the 

development of in silico models for predicting transporter ligands. However, the coverage is 

still limited as high-quality data is still not available for certain transporters (e.g. NTCP, 

MRPs and MDR3). 

 

Currently, a vast amount of open data is being generated in the drug discovery domain. In the 

light of this, issues with imbalanced datasets are frequently reported [38, 39, 197–199]. 

Chapter 3, section 3.1 in part II emphasizes on the problems with learning from imbalanced 

data and details various approaches to address them. Seven distinct meta-classifiers were 

evaluated on four highly imbalanced datasets to identify that while MetaCost and 

CostSensitiveClassifier achieve better sensitivities, Stratified Bagging provides the best 

balanced accuracies. An additional advantage of Stratified Bagging is that it is 

computationally less expensive and can be directly combined with any machine-learning 

method without any parameter optimization. In general, a method that balances between the 

complexity of the algorithm and the computational cost should be considered an ideal choice 

to obtain optimal results. On this basis, we provided a general recommendation to wrap the 
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modeling process in the stratified bagging loop when handling imbalanced data sets. 

Nevertheless, the performance of an in silico model depends on both quantity and quality of 

the underlying data. With few exceptions, such as P-gp, BCRP and BSEP, the limited 

availability of activity data in the public domain has been a major limiting factor in 

developing reliable models for ABC transporters. This highlights the need for publicly 

available data repositories that facilitate the deposition of high-confidence activity data 

comprising both positive and negative results. 

 

Chapter 4 in part II presents the results of the structure-based studies on the three liver 

transporters (BSEP, BCRP and P-gp). Recent studies that employed homology models of P-

glycoprotein provide promising evidences that structure-based classification methods could 

be valuable in studying these highly flexible and promiscuous transporters [196]. Section 

4.1.1 reports a homology model for BSEP and the structure-based models to classify 

inhibitors and non-inhibitors. The significance of hydrophobic interactions of the inhibitors 

guided us to use molecular weight and logP(o/w) as additional descriptors, which further 

improved the prediction performance. Molecular docking enables the exploration of protein-

ligand interactions, which facilitates understanding the biology at the molecular level and 

provides the rationale for the discovery, design, and development of safer and effective drugs. 

In our study, PLIF analysis revealed that certain functional group-amino acid residue 

interactions play a key role in ligand binding. While the functional groups halide, carbonyl, 

ether, vinyl and amide are overrepresented among the inhibitors, specific groups such as 

carbonyl and amide frequently participated in the interactions with the protein. The 

interactions of arene and carbonyl groups with tyrosine and leucine residues were more 

prominently noticed among inhibitors as compared to the non-inhibitors. These insights could 

further guide lead optimization. Thus, a sequential modeling approach, i.e. combining the 

structure-based model with ligand-based classification model would be a valuable approach 

to reduce the number of false positives in large-scale virtual screening efforts. 

 

Structure-based methods can only be as good as the information they are provided with. The 

recent release of the BCRP crystal structure [86] motivated us to conduct structure-based 

studies with the aim to propose a binding mode that could explain the spread in activity 

within the arylmethyloxyphenyl series (Section 4.2.1). Our binding hypothesis, based on the 

results from docking studies, suggests that the activity of arylmethyloxyphenyl analogues is 

driven by strong hydrophobic interactions with residues Phe431, Phe432 and Phe439 that are 

132



 

consistently involved in aromatic (pi-pi) and hydrophobic interactions. Thus, structure-based 

exploration of protein-ligand interactions is valuable in understanding the SAR of ligands 

which would be further useful in the development of potent and selective inhibitors for 

BCRP. 

 

Development of in silico models that can predict in vitro and in vivo outcomes in animals is a 

valuable approach to reduce the number of animal experiments in preclinical development. 

However, limited availability of experimental data on rat and mouse P-gp activity restricts the 

development of such models. Section 4.3.1 presents the results from our structure-based 

assessment of the transferability of in vitro human P-gp data for development of in silico 

models to predict outcomes in rodents. We identified that similar binding site residues are 

involved in interactions across the three species, which strengthens the likelihood of similar 

binding modes for their inhibitors. To the best of our knowledge, this is the first in silico 

study of its kind that compares the binding sites of a protein across three different species 

with an emphasis on the interaction profiles of their inhibitors. However, only a small number 

of compounds were employed to validate the docking studies due to the limited availability of 

high-confidence experimental data in the public domain. Data from proprietary sources such 

as the pharmaceutical industry should be valuable for a more comprehensive validation. 

 

Taken together, availability of high-resolution structures is a prerequisite, especially when 

studying membrane proteins. The lack of resolution therefore generates a blurry layer of 

uncertainty on top of the investigated problem and presents a challenging scenario to reveal 

useful structural insights. Performing docking or applying scoring functions on low-

resolution structures for pose selection adds another layer of uncertainty and may as well lead 

to artefacts that do not represent the correct binding modes [200]. Therefore, these 

approaches have to be cautiously employed and must be completed by evidences gathered 

about the protein and the ligands of interest [201]. Nevertheless, since understanding the 

mechanism of inhibition of transporters is crucial, structure-based methods are essentially an 

ideal choice. 

 

In a nutshell, this thesis work provides structural insights into the inhibition of three liver 

transporters (BSEP, BCRP and P-gp). The comparative modeling approach was successful in 

facilitating a better understanding of the mechanisms of inhibition while also emphasizing 

that structural information from the protein structure is essential for complete understanding 
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of the ligand SAR. Further, the protein-ligand interaction fingerprint (PLIF) analysis 

identified the most frequently occurring interactions between binding site residues and 

specific functional groups that provide detailed insights to understand the molecular basis of 

inhibition of the transporter proteins by a wide range of ligands. 
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Supplementary material 

Comparing the performance of meta-classifiers – A case study on 
selected imbalanced data sets relevant for prediction of liver toxicity 
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aUniversity of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, 
Austria 
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*Corresponding author: E-Mail: gerhard.f.ecker@univie.ac.at; Phone: +43-1-4277-55110; eFax: 
+43-1-4277-855110 

Tables 

Table S1.Tuned settings of the best performing models for each meta-classifier/method  

a. OATP1B1 dataset 

Method 2D MOE 
descriptors 

ECFP6 
fingerprints 

MACCS fingerprints 

Stratified Bagging - - - 
CostSensitiveClassifier cost 30:1   

matrix: [0.0, 1.0; 
30.0, 0.0] 

cost 100:1   
matrix: [0.0, 1.0; 
100.0, 0.0] 

cost 100:1   
matrix: [0.0, 1.0; 
100.0, 0.0] 

MetaCost cost 10:1   
matrix: [0.0, 1.0; 
10.0, 0.0] 

cost 30:1   
matrix: [0.0, 1.0; 
30.0, 0.0] 

cost 25:1   
matrix: [0.0, 1.0; 25.0, 
0.0] 

SMOTE 1500% synthetic 
instances 

2000% synthetic 
instances 

1500% synthetic 
instances 

 

b. OATP1B3 dataset 

Method 2D MOE 
descriptors 

ECFP6 
fingerprints 

MACCS fingerprints 

Stratified Bagging - - - 
CostSensitiveClassifier cost 70:1   cost 280:1   cost 200:1   
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matrix: [0.0, 1.0; 
70.0, 0.0] 

matrix: [0.0, 1.0; 
280.0, 0.0] 

matrix: [0.0, 1.0; 
200.0, 0.0] 

MetaCost cost 13:1   
matrix: [0.0, 1.0; 
13.0, 0.0] 

cost 50:1   
matrix: [0.0, 1.0; 
50.0, 0.0] 

cost 40:1   
matrix: [0.0, 1.0; 40.0, 
0.0] 

SMOTE 1500% synthetic 
instances 

2000% synthetic 
instances 

1300% synthetic 
instances 

 

c. Cholestasis human dataset 

Method 2D MOE 
descriptors 

ECFP6 
fingerprints 

MACCS fingerprints 

Stratified Bagging cost 2:1 cost 2:1 cost 2:1 
CostSensitiveClassifier cost 14:1   

matrix: [0.0, 1.0; 
14.0, 0.0] 

cost 12:1   
matrix: [0.0, 1.0; 
12.0, 0.0] 

cost 12:1   
matrix: [0.0, 1.0; 12.0, 
0.0] 

MetaCost cost 8:1   
matrix: [0.0, 1.0; 
8.0, 0.0] 

cost 8:1   
matrix: [0.0, 1.0; 8.0, 
0.0] 

cost 8:1   
matrix: [0.0, 1.0; 8.0, 
0.0] 

SMOTE 1300% synthetic 
instances 

3000% synthetic 
instances 

1300% synthetic 
instances 

cost 2:1 for Stratified Classifier: Stratified bagging used in combination with MetaCost with 
matrix: [0.0, 1.0; 2.0, 0.0]. For the case of human cholestasis dataset, Stratified Bagging on its 
own was not able to handle the dataset in such satisfactory way.  Thus Stratified Bagging was 
combined with the application of a slight cost of 2:1 in favor of the minority class 

d. Cholestasis animal dataset 

Method 2D MOE 
descriptors 

ECFP6 
fingerprints 

MACCS fingerprints 

Stratified Bagging cost 2:1 cost 2:1 cost 2:1 
CostSensitiveClassifier cost 450:1   

matrix: [0.0, 1.0; 
450.0, 0.0] 

cost 500:1   
matrix: [0.0, 1.0; 
500.0, 0.0] 

cost 500:1   
matrix: [0.0, 1.0; 
500.0, 0.0] 

MetaCost cost 45:1   
matrix: [0.0, 1.0; 
45.0, 0.0] 

cost 45:1   
matrix: [0.0, 1.0; 
45.0, 0.0] 

cost 50:1   
matrix: [0.0, 1.0; 50.0, 
0.0] 

SMOTE 3000% synthetic 
instances 

3000% synthetic 
instances 

3000% synthetic 
instances 

cost 2:1 for Stratified Classifier: Stratified bagging used in combination with MetaCost with 
matrix: [0.0, 1.0; 2.0, 0.0]. For the case of animal cholestasis dataset, Stratified Bagging on its 
own was not able to handle the dataset in such satisfactory way.  Thus Stratified Bagging was 
combined with the application of a slight cost of 2:1 in favor of the minority class.
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Figures 

Figure S1 (a-d). Comparison of performances of different meta-classifiers on the four training 
datasets (after one round of 10-fold cross validation). x-axis corresponds to the sensitivity and on 
the y-axis is the specificity. The squares correspond to MOE descriptors, the triangles correspond 
to ECFP6 fingerprints and the circles correspond to MACCS fingerprints.  Each classifier is 
depicted in a different color: red for RF standalone, green for Bagging, blue for Stratified Bagging, 
dark pink for CostSensitiveClassifier, cyan for MetaCost, yellow for ThresholdSelector, orange 
for SMOTE and dark violet for ClassBalancer. 

(a) 

    

(b)  
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6. Supplements to Section 4.1.1 

Supplementary Material 

Structure Based Classification for Bile Salt Export Pump (BSEP) 
Inhibitors using Comparative Structural Modeling of Human 
BSEP  

Sankalp Jaina, Melanie Granditsa, Lars Richtera, Gerhard F. Eckera  

aUniversity of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 
Vienna, Austria  

E-Mail: gerhard.f.ecker@univie.ac.at; Phone: +43-1-4277-55110; eFax: +43-1-4277-855110 

Tables 

Table S1. Summary view of the applicability domain (AD) analysis with information about 
the percentage of the reliable and the unreliable predictions. 

Test set (Pedersen et al.) 

Scoring function Reliable percentage 
(%)  

Unreliable 
percentage (%) 

AD limit 
(Threshold) 

Chemscore 100 (166/166) 0 (0/166) 4.302 

Xscore_chemscore 100 (166/166) 0 (0/166) 0.564 

Goldscore 100 (166/166) 0 (0/166) 8.809 

Xscore_goldscore 100 (166/166) 0 (0/166) 0.552 

Glidescore 99.4 (165/166) 0.60 (1/166) 1.393 

Test set (AstraZeneva-unpublished et al.) 

Chemscore 100 (638/638) 0 (0/638) 4.302 

Xscore_chemscore 99.7 (636/638) 0.30 (2/638) 0.564 

Goldscore 99.8 (637/638) 0.20 (1/638) 8.809 

Xscore_goldscore 99.8 (637/638) 0.20 (1/638) 0.552 
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Figures 

Figure S1. Residues which show hydrophobic interactions with a high interaction rate and a 
low root mean square fluctuation. 

 

Figure S2. CNS representation of the training set compounds based on MACCS Tc similarity 
threshold of 0.70. Communities with at least five representative members are color coded. 
Also shown below are the few exemplary compound (with their IC50 value in µM) of 
highlighted communities. 
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Figure S3. CNS representation of the test set compounds (Pedersen et al.) based on MACCS 
Tc similarity threshold of 0.70. Communities with at least five representative members are 
color coded. Also shown are the few exemplary compound of these communities. 

 

 

Figure S4.Sequence alignment of human BSEP with corrected mouse P-glycoprotein 
structure (PDB ID: 4M1M). The residues are colored according to the ClustalX scheme using 
Jalview. 
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Figure S5. Ramachandran plot for the final homology model of human BSEP taken from 
PDBsum. 

 

Figure S6. Residues that are present in the disallowed region in the final BSEP homology 
model. 

 

Figure S7. The location of Asn109, Asn116, Asn122 and Asn125 in EL1 of the BSEP 
homology model. The carbon atoms of the amino acids are colored in yellow for a better 
visibility. 
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Figure S8. The ROC curve of ChemScore scores of training set compounds. The area under 
the ROC curve is 0.87. 

 

Figure S9. The ROC curve of GoldScore scores of training set compounds. The area under 
the ROC curve is 0.82. 

 

Figure S10. The ROC curve of GlideXP scores of training set compounds. The area under the 
ROC curve is 0.77. 
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Figure S11. The ROC curve of Xscore(ChemScore) scores of  training set compounds. The 
area under the ROC curve is 0.92. 

 

Figure S12. The ROC curve of  Xscore(GoldScore) scores of  training set compounds. The 
area under the ROC curve is 0.93. 

 

Figure S13. (a) Hydrophobic interaction - (b) hydrogen bond interaction fingerprints of true 
positives (TPs) and true negatives (TNs) of the test set (Pedersen et al.). The classification of 
the compounds is based on the ChemScore scoring function. 

a 
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b 

 

Figure S14. (a) Hydrophobic interaction - (b) hydrogen bond interaction fingerprints of true 
positives (TPs) and true negatives (TNs) of the test set (AstraZeneca-unpublished). The 
classification of the compounds is based on the ChemScore scoring function. 

a 

 

b 

 

 

180



 

 

Figure S15. Distribution of BSEP inhibitors and non-inhibitors based on the (a) Molecular 
Weight (b) logP(o/w) of the test set (Pedersen et al.) 

a            

 

b   

 

 

 

 

 

 

 

 

Figure S16. Distribution of BSEP inhibitors and non-inhibitors based on the (a) Molecular 
Weight (b) logP(o/w) of the test set (AstraZeneca-unpublished) 

a            
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Figure S17. Distribution of BSEP inhibitors and non-inhibitors (training set) based on 
GoldScore scoring. Sensitivity, specificity, precision and MCC were calculated from the 
confusion matrix based on the intersection point of both curves. 

 

Figure S18. Distribution of BSEP inhibitors and non-inhibitors (training set) based on 
GlideXP scoring. Sensitivity, specificity, precision and MCC were calculated from the 
confusion matrix based on the intersection point of both curves. 
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Figure S19. Distribution of BSEP inhibitors and non-inhibitors (training set) based on 
rescoring using Xscore score (poses generated using ChemScore). Sensitivity, specificity, 
precision and MCC were calculated from the confusion matrix based on the intersection point 
of both curves.  

 

Figure S20. Distribution of BSEP inhibitors and non-inhibitors (training set) based on 
rescoring using Xscore score (poses generated using GoldScore). Sensitivity, specificity, 
precision and MCC were calculated from the confusion matrix based on the intersection point 
of both curves.  

 

Figure S21. Distribution of BSEP inhibitors and non-inhibitors (training set) based on 
ChemScore scoring and molecular weight. Sensitivity, specificity, precision and MCC were 
calculated from the confusion matrix based on the intersection point of both curves.  
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Figure S22. Distribution of BSEP inhibitors and non-inhibitors (training set) based on 
ChemScore scoring and logP. Sensitivity, specificity, precision and MCC were calculated 
from the confusion matrix based on the intersection point of both curves.  

 

Figure S23. Distribution of BSEP inhibitors and non-inhibitors (training set) based on 
ChemScore scoring and Molecular Weight and logP. Sensitivity, specificity, precision and 
MCC were calculated from the confusion matrix based on the intersection point of both 
curves.  

 

Figure S24. Distribution of BSEP inhibitors and non-inhibitors (training set) based on 
GoldScore rescoring  and Molecular Weight. Sensitivity, specificity, precision and MCC were 
calculated from the confusion matrix based on the intersection point of both curves.  
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Figure S25. Distribution of BSEP inhibitors and non-inhibitors (training set) based on 
GoldScore scoring and logP. Sensitivity, specificity, precision and MCC were calculated from 
the confusion matrix based on the intersection point of both curves.  

 

Figure S26. Distribution of BSEP inhibitors and non-inhibitors (training set) based on 
GoldScore scoring and Molecular Weight and logP. Sensitivity, specificity, precision and 
MCC were calculated from the confusion matrix based on the intersection point of both 
curves.  

 

Figure S27. Distribution of BSEP inhibitors and non-inhibitors (training set) based on Xscore 
(ChemScore) and Molecular Weight. Sensitivity, specificity, precision and MCC were 
calculated from the confusion matrix based on the intersection point of both curves.  
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Figure S28. Distribution of BSEP inhibitors and non-inhibitors (training set) based on Xscore 
(ChemScore) and logP. Sensitivity, specificity, precision and MCC were calculated from the 
confusion matrix based on the intersection point of both curves. 

 

Figure S29. Distribution of BSEP inhibitors and non-inhibitors (training set) based on Xscore 
(ChemScore) and Molecular Weight and logP. Sensitivity, specificity, precision and MCC 
were calculated from the confusion matrix based on the intersection point of both curves. 

 

Figure S30. Distribution of BSEP inhibitors and non-inhibitors (training set) based on Xscore 
(GoldScore) and Molecular Weight. Sensitivity, specificity, precision and MCC were 
calculated from the confusion matrix based on the intersection point of both curves. 
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Figure S31. Distribution of BSEP inhibitors and non-inhibitors (training set) based on Xscore 
(GoldScore) and logP. Sensitivity, specificity, precision and MCC were calculated from the 
confusion matrix based on the intersection point of both curves. 

 

 

Figure S32. Distribution of BSEP inhibitors and non-inhibitors (training set) based on Xscore 
(GoldScore) and Molecular Weight and logP. Sensitivity, specificity, precision and MCC 
were calculated from the confusion matrix based on the intersection point of both curves. 

 

Figure S33. Distribution of functional groups in the test set (a) Pedersen et al. (b) 
AstraZeneca (unpublished) dataset classified using ChemScore rescoring function. 

a 
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b 

 

Figure S34. Heat map from PLIF analysis for training set non-inhibitors (x-axis: contact 
residues; y-axis: functional groups in the ligand showing interaction with the residue; color 
scale: number of interacting ligands). 

 

Figure S35.Heat map from PLIF analysis for test set (a) inhibitors (b) non-inhibitors 
(Pedersen et al.) (x-axis: contact residues; y-axis: functional groups in the ligand showing 
interaction with the residue; color scale: number of interacting ligands). 

a 
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b 

 

Figure S36.Heat map from PLIF analysis for test set (a) inhibitors (b) non-inhibitors 
(AstraZeneca-unpublished) (x-axis: contact residues; y-axis: functional groups in the ligand 
showing interaction with the residue; color scale: number of interacting ligands). 

a 

 

b 
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Classification using Protein Ligand Interaction Fingerprints (PLIF) 

Finally, we wanted to assess a measure of PLIF homogeneity within the inhibitors of the 
training set. Therefore, we calculated the Tanimoto coefficients for each inhibitor versus the 
remaining inhibitors on basis of their PLIFs, and finally averaged the resulting coefficients. 
The averaged PLIF Tanimoto coefficient describes an inhibitor’s PLIF similarity in relation to 
all inhibitors. The same procedure was undertaken for all inhibitors in the training set. From 
the distribution of averaged coefficients we calculated the mean and the standard deviation. 
Finally, a critical value was defined by subtraction of the standard deviation from the mean. 
This critical value was used as a threshold to classify compounds as inhibitors or non-
inhibitors from the test dataset. To classify a test compound with this approach, the PLIF 
vector of the compound is used to calculate Tanimoto similarites against all compounds of the 
inhibitors in the training set. After averaging the calculated coefficients of the test compound, 
the resulting mean is compared against the critical value. If the averaged Tanimoto 
coefficients of the test compound is greater than the critical value, it is classified as an 
inhibitor, otherwise as a non-inhibitor. The PLIF-based classification provided accuracy 
measures comparable to those obtained from the docking score based classification (Table S5 
in the supplementary material). 

Moreover, information obtained using PLIF analysis in a sequential fashion i.e. reassessment 
of true positives and false positives obtained via the docking score based classification using 
PLIF-based similarity, improved the classification precision for both the training and the 
external test datasets (Table S5 in the supplementary material). The highest precision was 
obtained using the third PLIF approach that encoded residues along with the functional groups 
of the interacting ligand. Using this method, we achieved a precision of 0.87 (accuracy = 
84%) for the training set. The same model showed a precision of 0.72 for the test dataset from 
Pedersen et al. [34] (accuracy = 84%) and 0.79 for the test dataset from AstraZeneca 
(accuracy = 76%).  Overall, the number of false positives could be significantly reduced using 
the PLIF based classification. 
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Appendix 

Supplementary Tables 

Supplementary Table S1. Mapped residues in the H-site and R-site in the five models. For 
example, residue His61 in human corresponds to His60 (rat MDR1a), His59 (rat MDR1b), 
His60 (mouse mdr1a) and His60 (mouse mdr1b). 
 
Human MDR1 Rat MDR1a Rat MDR1b Mouse mdr1a Mouse mdr1b 
H-site 
His61 His60 His59 His60 His60 
Val125 Val117 Val124 Val121 Val124 
Leu126 Leu118 Leu125 Leu122 Leu125 
Ala129 Ala121 Ala128 Ala125 Ala128 
Gln132 Gln124 Gln131 Gln128 Gln131 
Val133 Val125 Val132 Val129 Val132 
Trp136 Trp128 Trp135 Trp132 Trp135 
Cys137 Cys129 Cys136 Cys133 Cys136 
Asn183 Asn175 Asn182 Asn179 Asn182 
Glu184 Glu176 Asp183 Glu180 Asp183 
Gly185 Gly177 Gly184 Gly181 Gly184 
Ile186 Ile178 Ile185 Ile182 Ile185 
Gly187 Gly179 Gly186 Gly183 Gly186 
Asp188 Asp180 Asp187 Asp184 Asp187 
Ile190 Ile182 Leu189 Ile186 Ile189 
Gly191 Gly183 Gly190 Gly187 Gly190 
Met192 Met184 Met191 Met188 Met191 
Phe194 Phe186 Phe193 Phe190 Phe193 
Gln195 Gln187 Gln194 Gln191 Gln194 
Leu245 Gln237 Gln244 His241 Gln244 
Ser344 Ser336 Ser343 Ser340 Ser343 
Val345 Val337 Ile344 Val341 Ile344 
Gln347 Gln339 His346 Gln343 His346 
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Ser349 Ser341 Ala348 Ser345 Ala348 
Pro350 Pro342 Pro349 Pro346 Pro349 
Ser351 Asn343 Asn350 Asn347 Asn350 
Glu353 Glu345 Glu352 Glu349 Glu352 
Ala354 Ala346 Ala353 Ala350 Ala353 
Ala355 Ala347 Ala354 Ala351 Ala354 
Arg680 Gly642 Arg678 Arg676 Arg678 
Lys681 Glu673 Arg679 Lys677 Arg679 
Leu682 Leu674 Leu680 Leu678 Leu680 
Leu879 Leu871 Leu879 Leu875 Leu877 
Ser880 Ser872 Ser880 Ser876 Ser878 
Leu884 Leu876 Leu884 Leu880 Leu882 
Ala901 Ala893 Ala901 Ala897 Ala899 
Lys934 Lys926 Lys934 Lys930 Lys932 
Phe938 Phe930 Phe938 Phe934 Phe936 
Phe942 Phe934 Phe942 Phe938 Phe940 
Ser943 Ser935 Ala943 Ser939 Ser941 
Gln946 Gln938 Gln946 Gln942 Gln944 
Ala947 Ala939 Ala947 Ala943 Ala945 
Tyr950 Tyr942 Tyr950 Tyr946 Tyr948 
Asp997 Asp989 Asp997 Asp993 Asp995 
Lys1000 Lys992 Lys1000 Lys996 Lys998 
R-site 
Ala233 Ala225 Ala232 Ala229 Ala232 
Thr240 Thr232 Thr239 Thr236 Thr239 
Asp241 Asp233 Asn240 Asp237 Asn240 
Leu244 Leu236 Leu243 Leu240 Leu243 
Leu245 Gln237 Gln244 His241 Gln244 
Ile293 Ile285 Ile292 Ile289 Ile292 
Asn296 Asn288 Asn295 Asn292 Ser295 
Ile299 Met291 Ile298 Met295 Ile298 
Gly300 Gly292 Gly299 Gly296 Gly299 
Phe303 Phe295 Tyr302 Phe299 Tyr302 
Leu304 Leu296 Leu303 Leu300 Leu303 
Ile340 Ile332 Leu339 Ile336 Leu339 
Phe343 Phe335 Phe342 Phe339 Phe342 
Ser344 Ser336 Ser343 Ser340 Ser343 
Val345 Val337 Ile344 Val341 Ile344 
Gly346 Gly338 Gly345 Gly342 Gly345 
Gln347 Gln339 His346 Gln343 His346 
Ala348 Ala340 Leu347 Ala344 Leu347 
Ser349 Ser341 Ala348 Ser345 Ala348 
Pro350 Pro342 Pro349 Pro346 Pro349 
Glyu353 Glu345 Glu352 Glu349 Glu352 
Gln678 Gln670 Gln676 Gln674 Gln676 
Asp679 Asp671 Glu677 Asn675 Glu677 
Arg680 Gly672 Arg678 Arg676 Arg678 
Asn721 Asn713 Asn719 Asn717 Asn719 
Leu724 Leu716 Ile722 Leu720 Ile722 
Gln725 Gln717 Gln723 Gln721 Gln723 
Phe728 Phe720 Phe726 Phe724 Phe726 
Ser766 Ser758 Ser764 Ser762 Ser764 
Thr769 Thr761 Thr767 Thr765 Thr767 
Phe770 Phe762 Tyr768 Phe766 Tyr768 
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Gln773 Gln765 Gln771 Gln769 Gln771 
Gly774 Gly766 Gly772 Gly770 Gly772 
Phe777 Phe769 Phe775 Phe773 Phe775 
Gly778 Gly770 Gly776 Gly774 Gly776 
Gly782 Glu774 Glu780 Glu778 Glu780 
Ala823 Ala815 Ser821 Ala819 Ser821 
Gln824 Gln816 Asn822 Gln820 Ser822 
Val825 Val817 Val823 Val821 Val823 
Lys826 Lys818 Lys824 Lys822 Lys824 
Gly827 Gly819 Gly825 Gly823 Gly825 
Gly989 Gly981 Gly989 Gly985 Gly987 
Gln990 Gln982 Asn990 Gln986 Asn988 
Ser992 Ser984 Ser992 Ser988 Ser990 
Ser993 Ser985 Ser993 Ser989 Ser991 
Phe994 Phe986 Phe994 Phe990 Phe992 
Ala995 Ala987 Ala995 Ala991 Ala993 
Pro996 Pro988 Pro996 Pro992 Pro994 
Asp997 Asp989 Asp997 Asp993 Asp995 
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Supplementary Figures  
 
Supplementary Fig. S1. Sequence alignment of human MDR1 with corrected mouse P-
glycoprotein structure (PDB ID: 4M1M). The residues are colored according to the ClustalX 
scheme using Jalview. 
 

 
 
Supplementary Fig. S2. Sequence alignment of rat MDR1a with corrected mouse P-
glycoprotein structure (PDB ID: 4M1M). The residues are colored according to the ClustalX 
scheme using Jalview. 
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Supplementary Fig. S3. Sequence alignment of rat MDR1b with corrected mouse P-
glycoprotein structure (PDB ID: 4M1M). The residues are colored according to the ClustalX 
scheme using Jalview. 
 

 
 
Supplementary Fig. S4. Sequence alignment of mouse mdr1b with corrected mouse P-
glycoprotein structure (PDB ID: 4M1M). The residues are colored according to the ClustalX 
scheme using Jalview. 
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Supplementary Fig. S5. Sequence alignment of human MDR1, rat MDR1a, rat MDR1b, 
mouse mdr1a and mouse mdr1b. TMD’s are indicated in boxes. 
 

 
 

202



 

 

Supplementary Fig. S6. Ramachandran plot for the final homology model of human MDR1 
taken from PDBsum. 
 

 

Supplementary Fig. S7. Ramachandran plot for the final homology model of rat MDR1a 
taken from PDBsum. 
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Supplementary Fig. S8. Ramachandran plot for the final homology model of rat MDR1b 
taken from PDBsum. 
 

 
 
 
Supplementary Fig. S9. Ramachandran plot for the final homology model of mouse mdr1b 
taken from PDBsum. 
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Supplementary Fig. S10. Residues that are present in the disallowed region in the final 
human MDR1 homology model 
 

 
 
 
Supplementary Fig. S11. Residues that are present in the disallowed region in the final rat 
MDR1a homology model 
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Supplementary Fig. S12. Residues that are present in the disallowed region in the final rat 
MDR1b homology model 
 

 
 
Supplementary Fig. S13. Residues that are present in the disallowed region in the final 
mouse mdr1b homology model 
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Supplementary Fig. S14. Electrostatic potential surface (EPS) of the central binding cavity 
of human MDR1. Binding site surface detected using Site Finder from MOE 2013. EPS 
generated at the dummy atoms in the central binding cavity. 
 

 
 
 
Supplementary Fig. S15. Electrostatic potential surface (EPS) of the central binding cavity 
of rat MDR1a. Binding site surface detected using Site Finder from MOE 2013. EPS 
generated at the dummy atoms in the central binding cavity. 
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Supplementary Fig. S16. Electrostatic potential surface (EPS) of the central binding cavity 
of rat MDR1b. Binding site surface detected using Site Finder from MOE 2013. EPS 
generated at the dummy atoms in the central binding cavity. 
 

 
 
 
Supplementary Fig. S17. Electrostatic potential surface (EPS) of the central binding cavity 
of mouse mdr1a. Binding site surface detected using Site Finder from MOE 2013. EPS 
generated at the dummy atoms in the central binding cavity. 
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Supplementary Fig. S18. Electrostatic potential surface (EPS) of the central binding cavity 
of mouse mdr1b. Binding site surface detected using Site Finder from MOE 2013. EPS 
generated at the dummy atoms in the central binding cavity. 
 

 
 
Supplementary Fig. S19 . Residue interaction energy for common interaction residues in 
human MDR1, rat MDR1a, rat MDR1b, mouse mdr1a and mouse mdr1b. x-axis denotes 
residue number in the order human MDR1, rat MDR1a, rat MDR1b, mouse mdr1a and mouse 
mdr1b, y-axis denotes the corresponding residue interaction energy (kcal/mol). 
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Supplementary Fig. S20. Binding poses for Quinidine.  
Residues: Human MDR1 (grey), Rat MDR1a (orange), Rat MDR1b (blue purple), Mouse 
mdr1a (maroon), Mouse mdr1b (turquoise).  
Quinidine: Green (Human MDR1), Yellow (Rat MDR1a), Pink (Rat MDR1b), Red (Mouse 
mdr1a), Blue (Mouse mdr1b) 
 
 

 
 
Supplementary Fig. S21. Hydrophobic interactions common in human MDR1, rat MDR1a, 
rat MDR1b, mouse mdr1a and mouse mdr1b for quinidine. x-axis denotes residue number in 
the order human MDR1, rat MDR1a, rat MDR1b, mouse mdr1a and mouse mdr1b, y-axis 
denotes frequency of interacting residues (%). 
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Supplementary Fig. S22. Heat map illustrating the PLIF analysis of the human P-gp 
inhibitors for rat MDR1a. x-axis denotes contact residues. y-axis denotes functional groups of 
the ligand which are showing an interaction with the residue. Color scale denotes number of 
interacting ligands. 
 

 
 
Supplementary Fig. S23. Heat map illustrating the PLIF analysis of the human P-gp 
inhibitors for rat MDR1b. x-axis denotes contact residues. y-axis denotes functional groups of 
the ligand which are showing an interaction with the residue. Color scale denotes number of 
interacting ligands. 
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Supplementary Fig. S24. Heat map illustrating the PLIF analysis of the human P-gp 
inhibitors for mouse mdr1a. x-axis denotes contact residues. y-axis denotes functional groups 
of the ligand which are showing an interaction with the residue. Color scale denotes number 
of interacting ligands. 
 

 
 
 
Supplementary Fig. S25. Heat map illustrating the PLIF analysis of the human P-gp 
inhibitors for mouse mdr1b. x-axis denotes contact residues. y-axis denotes functional groups 
of the ligand which are showing an interaction with the residue. Color scale denotes number 
of interacting ligands. 
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9. List of Abbreviations 
 
ABC-transporter: ATP-binding cassette transporter� 

MDR: multi-drug resistance� 

P-gp: P-glycoprotein� 

BCRP: breast cancer resistance protein 

ADMET: absorption, distribution, metabolism, excretion and toxicity 

BSEP: bile salt export pump 

MRP: multidrug resistance-related protein� 

DILI: drug-induced liver injury 

FDA: Food and Drugs Administration 

ITC: International Transporter Consortium 

QSAR: quantitative structure-activity relationship 

NBD: nucleotide-binding domains 

TMD: transmembrane domains 

NTCP: Na+-taurocholate cotransporting polypeptide 

PFIC: progressive familial intrahepatic cholestasis 

MSD: membrane-spanning domain 

SAR: structure-activity relationship 

SNPs: single nucleotide polymorphisms 

NMR: nuclear magnetic resonance 

BLAST: Basic Local Alignment Search Tool 

DOPE: Discrete Optimized Protein Energy 

GOLD: Genetic Optimization of Ligand Docking 

HB: hydrogen bond 

MD: molecular dynamics 

PDB: Protein Data Bank� 

CSD: Cambridge Structural Database 

MLR: multiple linear regression 

RMSD:  root mean square distance 

GPU: graphical processing units 

HPC: high performance computing 

Cryo-EM: cryo-electron microscopy� 
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AUC: area under the curve� 

CV: cross-validation� 

MCC: Matthews correlation coefficient� 

RF: random forest� 
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Abstract 
ABC-transporters such as the bile salt export pump (BSEP), the breast cancer resistance 

protein (BCRP) and P-glycoprotein (P-gp) play an important role in the pharmacokinetics of 

several drugs and small molecules. Predicting inhibition of these transporters by small 

molecules facilitates identification of potential drug-drug interactions and adverse effects 

such as drug-induced liver injuries. Thus far, in silico identification of inhibitors is dominated 

by ligand-based approaches that most often employed Quantitative structure–activity 

relationship (QSAR) and machine learning methods. Although the models based on these 

methods are reported to be efficient, they do not consider the properties of the protein and 

thus fail to provide insights into the mechanism of inhibition. While structure-based studies 

could investigate these details, the lack of high-resolution structural information and the 

polyspecific binding behaviour of these transporters pose a serious obstacle. 

 

This thesis outlines three independent studies that explore structure-based methods to 

investigate the molecular basis of inhibition of transporter proteins relevant to liver toxicity 

and another study that employs ligand-based methods to deal with the imbalanced datasets. 

The structure-based studies presented here describe the use of homology modeling and 

molecular docking to uncover the protein-ligand interactions involved in the mechanism of 

inhibition. 

 

In our first study, a homology model was constructed for BSEP, followed by the development 

of structure-assisted, docking-based classification models for prediction of BSEP inhibitors. 

Further, we analyzed the protein-ligand interaction fingerprints which revealed specific 

functional group-amino acid residue interactions that could play a key role in ligand binding. 

In the BCRP study, a structure-based modeling approach facilitated elucidation of binding 

hypothesis for arylmethyloxyphenyl derivatives, which after experimental validations could 

guide rational optimization of this compound class to improve potency. In the third study, we 

compared the binding site interaction profiles of human, rat and mouse P-gp structures to 

reveal a significant overlap between the binding site interacting residues which suggests the 

transferability of in vitro human P-gp activity data in the development of in silico models to 

predict in vitro and in vivo effects in rodents. In our ligand based study, we dealt with the 

problem of learning on imbalanced datasets relevant to toxicity by evaluating the 
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performance of seven distinct meta-classifiers and provided recommendations in choosing an 

appropriate classifier depending on the dataset in hand. 

 

The results of this thesis work further improve our understanding of protein-ligand 

interactions at the molecular level, stimulating scientists to conduct new experiments and thus 

also aid in the extrapolation of molecular hypotheses from rodents to humans and vice-versa. 

Furthermore, combining ligand-based and structure-based approaches would significantly 

enhance the performance of virtual screening experiments in drug discovery and provide 

detailed insights on the molecular features involved in crucial interactions, thereby assisting 

lead optimization. 
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Zusammenfassung  

ABC-Transporter wie z.B. die Gallensalzexportpumpe BSEP (bile salt export pump), der 

Effluxtransporter BCRP (breast cancer resistance protein) oder das P-Glykoprotein (P-gp) 

spielen eine wichtige Rolle in der Pharmakokinetik zahlreicher Wirkstoffe und kleiner 

organischer Moleküle. Die Vorhersage der Transporterhemmung durch chemische 

Verbindungen ermöglicht die Identifizierung von potenziellen Arzneistoffwechselwirkungen 

und unerwünschten Wirkungen wie z.B. der arzneistoffinduzierten Leberschädigung. 

Heutzutage wird die Identifizierung von Hemmern mittels computergestützter Methoden von 

ligandenbasierten Studien (z.B. QSAR (Quantitative Struktur Wirkungs Beziehung), Machine 

Learning Methoden) dominiert. Obwohl die resultierenden Modelle als effizient gelten, 

können sie die Proteineigenschaften nicht miteinbeziehen und daher keine Informationen über 

den Mechanismus der Hemmung liefern. Diese Details können anhand strukturbasierter 

Studien untersucht werden, jedoch ist sowohl der Mangel an hochaufgelösten 3D-Strukturen 

als auch die Polypharmakologie dieser Transporter problematisch.  

 

Diese Dissertation umfasst drei unabhängige Studien, die strukturbasierte Methoden zur 

Untersuchung der Transporterhemmung im Bereich der Lebertoxizität auf molekularer Ebene 

vorstellen sowie eine weitere ligandenbasierte Studie über Machine Learning für 

imbalancierte Datensätze. Die hier präsentierten strukturbasierten Studien beschreiben die 

Verwendung von Homologiemodellen und molekularem Docking zur Untersuchung der 

Protein-Liganden-Wechselwirkungen, die dem Mechanismus der Hemmung  zugrunde liegen. 

 

In unserer ersten Studie wurde ein Homologiemodell von BSEP erstellt und anschließend 

strukturunterstützte, dockingbasierte Klassifikationsmodelle zur Vorhersage von BSEP-

Inhibitoren entwickelt. Weiters haben wir die Protein Ligand Interaction Fingerprints 

analysiert, welche spezifische Interaktionen zwischen funktionellen Gruppen der Liganden 

und den Aminosäuren des Proteins aufzeigen und damit eine Schlüsselrolle in der 

Ligandenbindung spielen könnten. In der BCRP Studie ermöglichte strukturbasiertes 

Modeling die Aufklärung der Bindungshypothese von Arylmethyloxyphenylderivaten welche 

nach experimenteller Validierung zur rationalen Optimierung mit Potenzsteigerung dieser 

Substanzklasse verwendet werden kann. In der dritten Studie verglichen wir die 

Interaktionsprofile in der Bindungstasche der P-gp Strukturen von Mensch, Ratte und Maus. 

Die Resultate zeigen signifikante Überschneidungen bei den interagierenden Aminosäuren der 

234



Bindungstaschen, welche die Übertragbarkeit humaner in vitro P-gp Aktivitätsdaten für die 

Entwicklung von in silico Modellen zur Vorhersage von Effekten in vitro als auch in vivo bei 

Nagetieren nahelegen. In unserer ligandenbasierten Studie stellten wir uns der 

Herausforderung durch unausgewogene Datensätze mit Toxizitätsrelevanz mittels 

Evaluierung der Performance von sieben unterschiedlichen Meta-Klassifizierern und konnten 

Empfehlungen zur Auswahl angemessener Klassifizierer in Abhängigkeit desvorliegenden 

Datensatzes abgeben. 

 

Die Ergebnisse dieser Dissertation verbessern unser Verständnis von Protein-Liganden-

Interaktionen auf der molekularen Ebene, inspirieren damit neue Experimente und 

unterstützen die Extrapolierung molekularer Hypothesen vom Tierversuch zum Menschen 

und wieder zurück. Darüber hinaus erhöht die Kombination von liganden- und 

strukturbasierten Methoden die Qualität virtueller Screenings in der 

Medikamentenentwicklung und verschafft uns detailierte Einblicke in die relevanten 

molekularen Eigenschaften wichtiger Wechselwirkungen, welche zur Unterstützung der 

Leitstruktur-Optimierung beitragen. 
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