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Abstract

This thesis covers the connection between absolute continuity of Poisson pro-
cesses and absolute continuity of their intensity measures. In the first chapter
we define Poisson processes and prove various important results, which we
will use later on. However the main focus lies in the second chapter, where
we will show that two Poisson processes are mutually absolutely continuous
if and only if their intensity measures are mutually absolutely continuous
and the Hellinger distance between said intensity measures is finite. In case
of mutual absolutely continuity we will also get a nice representation for the
Hellinger distance between the Poisson measures. These results were orig-
inally obtained in a paper by Y.Takahashi. Extending the original work a
little, we try to keep the setting as general as possible and only assume that
our intensity measures are σ-finite and nonatomic. The space we are working
with will only be equipped with a σ-algebra, but no topology.
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Abstract (German version)

Diese Arbeit behandelt den Zusammenhang zwischen absoluter Stetigkeit von
Poisson Prozessen und deren Intensitätsmaßen. Im ersten Kapitel werden wir
Poisson Prozesse definieren und einige wichtige Resultate beweisen, welche
wir im weiteren Verlauf der Arbeit verwenden werden. Das Hauptaugen-
merk der Arbeit liegt jedoch im zweiten Kapitel, in dem wir zeigen werden,
dass zwei Poisson Prozesse genau dann zueinander absolut stetig sind, wenn
deren Intensitätsmaße zueinander absolut stetig sind und die Hellingerdis-
tanz zwischen genannten Intensitätsmaßen endlich ist. Im Falle von abso-
luter Stetigkeit werden wir auch eine einfache Formel für die Berechnung der
Hellingerdistanz zwischen Poisson Maßen herleiten. Diese Resultate wurden
bereits in einem Paper von Y.Takahashi bewiesen. Aufbauend auf diese Ar-
beit, versuchen wir dabei das Setting so allgemein wie möglich zu halten und
fordern lediglich, dass unsere Intensitätsmaße σ-endlich und nicht atomar
sind. Unser Grundraum wird nur mit einer σ-algebra ausgestattet sein und
keiner Topologie.
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1 Introduction

Poisson processes are a class of very important stochastic processes. Intu-
itively one can think of them as a random set of points on some space X.
These points are Poisson distributed with some intensity measure λ, meaning
if we take a measurable subset of our space B ⊆ X, the number of points in
this set is Poisson distributed with parameter λ(B). The points in one such
set also do not influence the number of points in another disjoint set. In other
words the number of points in one set is independent from the number of
points in another disjoint set, or in short Poisson processes have independent
increments.

Poisson processes have many useful properties. For example they behave
nicely under measurable maps. That is if we take a measurable map f and
apply it to a Poisson process, we get another Poisson process and the intensity
measure of the new process is simply f(λ). Similarly we can discard all the
Points in some measurable set C ⊆ X and still end up with a Poisson process.
Another nice property is that we can take the sum of countably many such
processes and again receive a Poisson process.

Our goal is to prove a theorem, which states that under some minor as-
sumptions two Poisson processes are similar in a measure theoretic sense, i.e.
absolutely continuous, if and only if their intensity measures are absolutely
continuous and the Hellinger distance between the intensity measures is fi-
nite. The theorem was first proven by Yoichiro Takahashi, as can be seen in
[2]. The main focus of this paper was to generalize this result and among
others omit the need for a topology on our space.

However to do this, we need to first rigorously define Poisson processes and
prove some important statements, that will aid us, when proving the desired
theorem. This will be the object of the following chapter.

1



2 Poisson Processes

In this section we want to define Poisson processes and give some useful
properties of such processes. Details can be found in [1] chapters 1-5.

2.1 Point Processes

We start by defining point processes, which essentially are random, at most
countable collections of points in some space X. In order to have a very gen-
eral definition of such processes, we want to define them as random counting
measures. A more intuitive, but therefore also less general approach can be
found in [4].

Take some measurable space (X,X ) and let N<∞(X) ≡ N be the space of
measures µ with µ(B) ∈ N0 := N ∪ {0} for all measurable sets B ∈ X . Now
let N(X) ≡ N denote the space of all measures that can be written as a
countable sum of measures from N<∞.

Note that not only Dirac measures δx, for some x ∈ X lie in N, but also
countable sums of dirac measures. That is for some k ∈ N0 := N ∪ {∞}

µ =
k∑

n=1

δxn .

Of course there are also elements of N which do not have such a representa-
tion for general X. To see this, assume X = [0, 1] and let X be the σ-algebra
generated by all finite subsets of X. Now for B ∈ X , consider the measure

µ(B) =

{
0, if B is finite

1, if B is infinite
.

Clearly µ ∈ N, but one cannot write it as a sum of Dirac measures.

Furthermore consider the σ-algebra N (X) = N , which is generated by the
collection of all subsets of N of the form

{µ ∈ N : µ(B) = k}, B ∈ X , k ∈ N.
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In other words, N is the smallest σ-algebra on N such that the mapping
µ→ µ(B) is measurable for all B ∈ X .

Definition 1. A point process on X is a random element η of (N,N ), that
is a measurable mapping η : Ω→ N on some probability space (Ω,F ,P).

Remark 1. The mapping ω → η(ω,B) := η(ω)(B) is a random variable
taking values in N0. We will use the notation η(B) for this random variable.

Definition 2. We say a point process η on X is a proper point process
if there exist random elements X1, X2, ... in X and an N0-valued random
variable κ such that almost surely

η =
κ∑

n=1

δXn .

In the case κ = 0 we interpret this as the zero measure.

This definition is motivated by our intuition of a point process, that is a
random set of points, as stated in the beginning of this chapter. However in
many cases it is sufficient to consider only proper point processes. We will
see later on that each Poisson process is proper up to equality in distribution.
Furthermore one can show that if X is a Borel subspace of a complete metric
space, then any locally finite point process on X is proper, as can be seen in
[1] chapter 6.

Definition 3. The intensity measure of a point process η on X is the meausre
λ definded by

λ(B) := E[η(B)], B ∈ X .

This is indeed a measure. For fixed ω ∈ Ω, η(ω) is a measure, so it is
nonnegative and maps the empty set to zero. Taking expectations does not
change this fact. Finally to check σ-additivity consider some measurable sets
B1, B2, ... ∈ X . Then

3



λ
( ∞⋃
i=1

Bi

)
= E

[
η
( ∞⋃
i=1

Bi

)]
= E

[ ∞∑
i=1

η(Bi)
]

=
∞∑
i=1

E[η(Bi)] =
∞∑
i=1

λ(Bi),

where we used the linearity of expectation in the third step.

Definition 4. The distribution of a point process η on X is the probability
measure Pη on (N,N ) given by A→ P(η ∈ A). If η′ is another point process

with the same distribution as η we write η
d
= η′.

The following definition gives us a powerful tool when working with point
processes and their distributions, as can be seen in the subsequent proposi-
tion.

Definition 5. The Laplace functional of a point process η on X is the map-
ping Lη : R+(X)→ [0, 1] defined by

Lη(u) := E
[
exp
(
−
∫
u(x)η(dx)

)]
, u ∈ R+(X).

Here R+(X) denotes the space of measurable functions on X taking values in
R+ = [0,∞).

Proposition 1. For point processes η and η′ on X the following assertions
are equivalent.

(i) η
d
= η′.

(ii) (η(B1), ..., η(Bm))
d
= (η′(B1), ..., η′(Bm)) for all m ∈ N and all pairwise

disjoint B1, ..., Bm ∈ X

(iii) Lη(u) = Lη′(u) for all u ∈ R+(X)

(iv) for all u ∈ R+(X), η(u)
d
= η′(u) as random variables in R+.

Proof. Can be found in [1] on pages 14-15.
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2.2 Poisson Processes

We are now almost able to define the main subject of this thesis - the Poisson
process. Furthermore let us from here on fix an arbitrary measurable space
(X,X ) to save space.

Definition 6. A measure ν on X is said to be s-finite if ν can be written as
a countable sum of finite measures.

Note that every measure µ ∈ N is s-finite. Another nice property of s-
finite measures is that, in contrast to σ-finite measures, any countable sum
of s-finite measures is again s-finite.

We will also use the fact that each σ-finite measure is indeed also s-finite.
To see this one can simply divide the whole space into countably many sets
of finite measure, as in the definition for σ-finiteness, and restrict the given
measure to each set respectively. The initial measure is then the countable
sum of the restricted measures.

Definition 7. A random variable X is said to have Poisson distribution
Po(γ) with parameter γ ≥ 0 if

P(X = k) = Po(γ; k) :=
γk

k!
e−γ, k ∈ N0.

Where we use the convention 00 = 1. We also allow γ = ∞, in this case
P(X =∞) = 1, which implies Po(∞, k) = 0 for k ∈ N.

Remark 2. The Laplace transform of a Po(γ) distributed random variable
X is given by

E[e−tX ] = exp[−γ(1− e−t)], t ≥ 0. (1)

Definition 8. Let λ be an s-finite measure on X. A Poisson process with
intensity measure λ is a point process η on X with the following two defining
properties

(i) for every B ∈ X the distribution of η(B) is Poisson with parameter
λ(B), that is P(η(B) = k) = Po(λ(B); k) for all k ∈ N0.
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(ii) For every m ∈ N and all pairwise disjoint sets B1, ..., Bm ∈ X the
random variables η(B1), ..., η(Bm) are independent.

In other words a Poisson process is a point process, for which the number of
points in a given set has Poisson distribution (if the process is proper) and
which has independent increments.

Proposition 2. Let η and η′ be two Poisson processes on X with the same

s-finite intensity measure. Then η
d
= η′

Proof. Follows directly from Proposition 1.

2.3 Useful Properties of Poisson Processes

In this section we want to briefly mention some important and useful theo-
rems regarding Poisson processes.

Theorem 1. (Superposition theorem) Let ηi, i ∈ N be a sequence of indepen-
dent Poisson processes on X with intensity measures λi. Then

η :=
∞∑
i=1

ηi

is again a Poisson process with intensity measure λ :=
∑∞

i=1 λi.

Proof. It is easy to see that η is again a point process. So let us begin with
checking the first characterising property of the Poisson process. Let n ∈ N
and B ∈ X , then the random variable ξn(B) :=

∑n
i=1 ηi(B) has Poisson

distribution with parameter
∑n

i=1 λi(B). Of course we have ξn(B) ↗ η(B)
and thus for all k ∈ N0

P(η(B) ≤ k) = lim
n→∞

P(ξn(B) ≤ k)

= lim
n→∞

k∑
j=0

Po
( n∑
i=1

λi(B); j
)

=
k∑
j=0

Po
( ∞∑
i=1

λi(B); j
)
.
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In other words η(B) has distribution Po(λ(B)). Note that we used the
fact that Po(γ, j) is continuous in γ for fixed j, as well as the continuity of
probability in this computation.

To check the second property let B1, ..., Bn ∈ X be pairwise disjoint sets.
Now consider ηi(Bj), 1 ≤ j ≤ m, i ∈ N. These form a family of inde-
pendent random variables. Since we can group sums of independent ran-
dom random variables without losing independence, the random variables∑

i ηi(B1), ...,
∑

i ηi(Bm) are also independent and thus η has independent
increments.

Definition 9. Let V be a probability measure on N0 and Q be a probability
measure on X. Furthermore let X1, X2, ... be a sequence of random elements
in X with distribution Q and κ be a random variable with distribution V,
which is independent of (Xn). Then

η :=
κ∑
k=1

δXk

is called a mixed binomial process with mixing distribution V and sampling
distribution Q.

Proposition 3. If V = Po(γ) for some γ ≥ 0, then η is a Poisson process
with intensity measure γQ.

Proof. Let κ and (Xn) be as in the definition above. Consider a sequence
B1, ..., Bm ∈ X of pairwise disjoint sets and assume without loss of generality,
that

⋃m
i=1 Bi = X, as we could simply add the complement otherwise. Now

let k1, ..., km ∈ N0 and k =
∑m

i=1 ki. Then

P(η(B1) = k1, ...η(Bm) = km)

= P(κ = k)P
( k∑
j=1

1{xj ∈ B1} = k1, ...,

k∑
j=1

1{xj ∈ Bm} = km

)
=
γk

k!
e−γ

k!

k1!, ..., km!
Q(B1)k1 ...Q(Bm)km

=
m∏
j=1

(γQ(Bj))
kj

kj!
e−γQ(Bj),
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where we used the fact that the probabilities in the second row are Poisson
and multinomial respectively. The last equivalence is simply a reordering of
the line above. Now if we sum over k2, ..., km we get that η(B1) is Poisson dis-
tributed with parameter γQ(B1) and analogously for η(B2), ..., η(Bm). Thus
η(B1), ..., η(Bm) are independent and we have shown both defining properties
of Poisson processes.

Theorem 2. (Existence theorem) Let λ be an s-finite measure on X. Then
there exists a Poisson process on X with intensity measure λ.

Proof. The statement is trivial for λ(X) = 0, so let us first assume that
0 < λ(X) < ∞. Let (Xn) ∈ X be a sequence of independent random ele-
ments with distribution λ(.)/λ(X) and κ be a random variable with distri-
bution Po(λ(X)), which is independent of (Xn). Now let η be the mixed
binomial process with mixing distribution Po(λ(X)) and sampling distribu-
tion λ(.)/λ(X). Then by Proposition 3, η is a Poisson process with intensity
measure λ.

Finally suppose λ(X) =∞. Consider a sequence (λi) of measures on (X,X )
with 0 < λi(X) < ∞ for each i ∈ N and set λ =

∑∞
i=1 λi. Furthermore

let (ηi) be a sequence of Poisson processes with intensity measure λi respec-
tively. Note that the first part of the proof ensures that these exist. Now by
the superposition Theorem, η =

∑∞
i=1 ηi is a Poisson process with intensity

measure λ.

Corollary 1. Let λ be an s-finite measure on X. Then there is a probability
space (Ω,F ,P), supporting random elements X1, X2, ... of X and κ ∈ N0,
such that

η :=
κ∑

n=1

δXn (2)

is a Poisson process with intensity measure λ. In other words every Poisson
process is proper up to equality in distribution.

Proof. Assume that λ(X) = ∞, as the other case follows immediately from
Proposition 3. As in the proof above, consider a sequence (λi) of mea-
sures on (X,X ) with 0 < λi(X) < ∞ and set γi = λi(X) and Qi = λi/γi.
Now take (Ω,F ,P) as the product of the spaces (Ωi,Fi,Pi), which again
are products of the spaces (Ωij,Fij,Pij), where Ωi0 = N0, Pi0 = Po(γi) and
(Ωij,Fij,Pij) = (X,X ,Q) for j ≥ 1. On this space we can define independent
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random elements κi with distribution Po(γi) and Xij with distribution Qi.
Now we can simply use the construction in the proof above to define (Xn)
and κ to arrive at (2).

We have already mentioned that the Laplace functional is a powerful tool
for analysing point processes. In the case of Poisson processes one gets the
following characterisation.

Theorem 3. Let λ be an s-finite measure on X and let η be a point process
on X. Then η is a Poisson process with intensity measure λ if and only if

Lη(u) = exp
[
−
∫

(1− e−u(x))λ(dx)
]
, u ∈ R+(X).

Proof. Let us first assume that η is a Poisson process with intensity measure
λ. We want to prove this part via measure theoretic induction. There-
fore consider the simple function u := c1BC1 + ...cm1Bm for some m ∈ N,
c1, ..., cm ∈ (0,∞) and Bm ∈ X pairwise disjoint. Now

Lη(u) = E
[
exp
(
−
∫
u(x)η(dx)

)]
= E

[
exp
(
−

m∑
i=1

ciη(Bi)
)]

= E
[ m∏
i=1

exp(−ciη(Bi))
]

=
m∏
i=1

E
[
exp(−ciη(Bi))

]
=

m∏
i=1

exp(−λ(Bi)(1− e−ci) = exp
(
−

m∑
i=1

λ(Bi)(1− e−ci
)

= exp
(
−

m∑
i=1

∫
Bi

(1− e−u)dλ
)

= exp
(
−
∫
X
(1− e−u)dλ

)
.

Note that in this calculation we used the complete independence to pull the
product out of the expectation and Remark 2 to compute the expectation.

Now for general u ∈ R+(X), we can find a sequence un of simple functions
such that un ↗ u as n→∞ and by using the monotone convergence theorem,
as well as the dominated convergence theorem multiple times we get

9



Lη(u) = E
[
exp
(
−
∫
u(x)η(dx)

)]
= E

[
exp
(
−
∫

lim
n→∞

un(x)η(dx)
)]

= lim
n→∞

E
[
exp
(
−
∫
un(x)η(dx)

)]
= lim

n→∞
exp
(
−
∫
X
(1− e−un)dλ

)
= exp

(
−
∫
X
(1− e−u)dλ

)
Finally the prove the other direction assume that (3) holds and let η′ be a
Poisson process with intensity measure λ. By the first part of the proof we
already know that the Laplace functional of η′ is of the form (3), that is

Lη(u) = Lη′(u). Now by Proposition 1 this implies that η
d
= η′, which means

that η is indeed a Poisson process, by Proposition 2 .

Theorem 4. (Mecke equation) Let λ be an s-finite measure on X and let η
be a point process on X. Then η is a Poisson process with intensity measure
λ if and only if

E
[ ∫

f(x, η)η(dx)
]

=

∫
E[f(x, η + δx)]λ(dx) (3)

for all f ∈ R(X×N).

Proof. To begin with, let us first note that the mapping (x, µ) → µ(B) +
1B(x) is measurable for every B ∈ X . Let us first prove the ”if” direction. So
assume that (3) holds. Consider some disjoint measurable sets B1, ..., Bm ∈
X of finite measure and k1, ..., km ∈ N0, where k1 ≥ 1. Define the function

f(x, µ) = 1B1(x)
m∏
i=1

1{µ(Bi) = ki}, (x, µ) ∈ X×N.

Then

E[

∫
f(x, η)η(dx)] = E

[
η(B1)

m∏
i=1

1{η(Bi = ki)}
]

= k1P
( m⋂
i=1

{η(Bi = ki)}
)
.

10



On the other hand however we have

∫
E[f(x, η + δx)] =

∫
1B1(x)P(η(B1) = k1 − 1, η(B2) = k2, ..., η(Bm) = km).

Putting this together yields

k1P
( m⋂
i=1

{η(Bi = ki)}
)

= λ(B1)P
(
η(B1) = k1,

m⋂
i=2

{η(Bi) = ki}
)
. (4)

Now if P
(⋂m

i=2{η(Bi) = ki}
)

= 0, then it is trivial that the two events

η(B1 = k1) and
⋂m
i=2{η(Bi) = ki} are independent. So assume that said

event has positive probability and denote

πk = P
( m⋂
i=2

{η(Bi) = k}
)
, k ∈ N0.

Then (4) simplifies to

kπk = λ(B1)πk−1

and thus π∞ = 0. The only distribution satisfying this is Po(λ(B1), k) = πk.

In other words η(B1) is Poisson distributed and independent of P
(⋂m

i=2{η(Bi) =

ki}
)

. Now use induction to see that η(B1), ..., η(Bm) are independent. For

general B ∈ X of finite measure we can simply write it as a disjoint union of
measurable sets and still get our desired result. Lastly for B ∈ X of infinite
measure we get

P(η(B) = k − 1) = 0

and thus

P(η(B) =∞) = 1

which again is the Po(∞) distribution.

11



Now let us prove the ”only if” direction. By Corollary 2 we can assume that η
is proper. Let us furthermore assume λ(X) <∞. We can then write λ = γQ
for some γ ≥ 0 and probability measure Q. By Proposition 3 assume that
η is a mixed binomial process with mixing distribution Po(γ) and consider
some function f ∈ R+(X×N). Then

E
[ ∫

f(x, η)η(dx)
]

=
∞∑
k=1

e−γ
γk

k!
E
[ k∑
i=1

f(Xi, δXi
)
]

=
∞∑
k=1

k∑
i=1

e−γ
γk

k!
E[f(Xi, δXi

)].

Now since the Xi are independent with distribution Q, we can also write this
as

= e−γ
∞∑
k=1

γk

k!
E
[
k

∫
f
(
y,

k∑
i=1

δXi
+ δy

)
Q(dy)

]
, y ∈ X

= e−γγ
∞∑
k=1

γk−1

(k − 1)!

∫
E
[
f
(
y,

k∑
i=1

δXi
+ δy

)
Q(dy)

]
=

∫
E[f(y, η + δy)λ(dy)].

Finally let us assume that λ(X) =∞. As in the proof of the existence The-
orem consider proper independent Poisson processes ηi of finite total mea-
sure such that η =

∑∞
i=1 ηi. Now since we can group independent processes

without losing independence, consider ξi =
∑

j≤i ηj and χi
∑

j≥i+1 ηj, where
obviously ξi ↗ η. Then by the monotone convergence Theorem

E
[ ∫

f(x, η)η(dx)
]

= E
[ ∫

lim
i→∞

f(x, ξi + χi)ξi(dx)
]

= lim
i→∞

E
[ ∫

f(x, ξi + χi)ξi(dx)
]
.

Now using the previous part of the proof yields

12



= lim
i→∞

∫
E[f(x, ξi + χi + δx)]λ

′
i(dx)

= lim
i→∞

∫
E[f(x, η + δx)]λ

′
i(dx),

where λ′i =
∑i

j=1 λj. Finally using Fatou’s lemma we get

=

∫
E[f(x, η + δx)]λ(dx),

which completes the proof.

Remark 3. We will only use this theorem for f that do not depend on η
and also typically not as a characterisation, but as a way to compute the
expecation on the left-hand side.

Theorem 5. (Mapping theorem) Let η be a point process on X with intensity
measure λ, let (Y,Y) be a measurable space and let T : X → Y be a mea-
surable mapping. Then the push-forward T (η) := η ◦ T−1 is a point process
with intensity measure T (λ). If η is a Poisson process, then T (η) is again a
Poisson process.

Proof. Let us first observe that T (µ) ∈ N for any µ ∈ N. Which is easy to
see, since if we can write µ =

∑∞
j=1 µj, then T (µ) =

∑∞
j=1 T (µj) and since

all µj are N0-valued, so are the T (µj).

Now let us consider C ∈ Y , then T (η)(C) is a random variable and by using
the definition of the intensity measure we get

E[T (η)(C)] = E[η(T−1C)] = λ(T−1C) = T (λ)(C).

Also a rather similar computation gives us

P(T (η(B)) = k) = P(η(T−1(B)) = k)

= Po(λ(T−1(B)); k)

= Po(T (λ); k),

13



that is T (η)(B) has Poisson distribution with parameter T (λ). The second
defining property of the Poisson distribution - the independent increments -
follows from the fact that for two disjoint sets A,B ∈ X , also the preimages
T−1(A) and T−1(B) are disjoint and thus

P(T (η(A)) ∩ T (η(B))) = P(η(T−1A) ∩ η(T−1B))

= P(η(T−1A))P(η(T−1B))

= P(T (η(A)))P(T (η(B))).

Another important theorem closely related to the mapping theorem is the
restriction theorem, which tells us that we can actually discard all points
outside of a given set B ∈ X and still end up with a Poisson process. Formally
we define the restriction νB of a measure ν to the set B ∈ X by

νB(B′) := ν(B ∩B′), B′ ∈ X .

Theorem 6. (Restriction theorem) Let η be a Poisson process on X with s-
finite measure λ and let C1, C2, ... ∈ X be pairwise disjoint. Then the restric-
tions ηC1 , ηC2 , ... are independent Poisson processes with intensity measures
λC1 , λC1 , ..., respectively.

Proof. The only part that we really need to prove is the independence, since
the rest is already covered by the mapping theorem, as we could just use the
maps 1Ci

to get new Poisson processes.

So to prove the independence let us first assume without loss of generality
that

⋃
iCi = X, otherwise simply add the complement of this union to the

sequence. The existence theorem ensures that we can find a sequence ηi,
i ∈ N of independent Poisson processes with intensity measures λCi

and by
the superposition theorem summing those ηi gives us again a Poisson process

with intensity measure
∑

i λCi
= λ. Thus by Proposition 2 we have η

d
= η′.

Now for any k ∈ N and f1, ..., fk ∈ R(N)
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E
[ k∏
i=1

fi(ηCi
)
]

= E
[ k∏
i=1

fi(η
′
Ci

)
]

= E
[ k∏
i=1

fi(ηi)
]

=
k∏
i=1

E[fi(ηi)] =
k∏
i=1

E[fi(ηCi
)].

2.4 More Tools from Probability Theory

The next theorem can be found in [2] on page 635, where it is given without
proof. It is however a very well known theorem that can be found in pretty
much every book on probability theory.

Theorem 7. (Three series theorem) Let (Zi)i≥1 be independent random vari-
ables. Then

∑
i

Zi converges almost surely,

if and only if for every positive constant a the three series

∑
i

P{|Zi| > a},
∑
i

E[Z
[a]
i ] and

∑
i

E[(Z
[a]
i )2]

converge, where

Z
[a]
i := Zi if |Zi| ≤ a and Zi := 0 otherwise.

Remark 4. For bounded random variables Zi we actually only need to look
at

∑
i

E[Zi] and
∑
i

E[Z2
i ]

since for big enough a, the probability that |Zi| > a is zero and also Z
[a]
i = Zi.
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The last part of this section covers uniform integrability and can be found in
[3] on pages 26-30.

Definition 10. Let (Ω,F ,P) be a probability space. A subset K ⊆ L1 is
called uniformly integrable if

sup
f∈K

∫
{|f |>a}

|f | dP→∞ as a→∞.

Remark 5. It follows directly from the definition that every finite subset of
L1 is uniformly integrable.

The following Proposition will be very useful when dealing with uniform in-
tegrability in proofs.

Proposition 4. A subset K ∈ L1 is uniformly integrable if and only if K is
L1-bounded and for every ε > 0, there is a δ > 0 such that

sup
f∈K

∫
A

|f |dP < ε (5)

for any measurable set A with P(A) < δ.

Proof. Consider a positive function f ∈ L1
+, a measurable set A and some

a > 0, then it is easy to see that

∫
A

f dP =

∫
A∩{f≤a}

f dP +

∫
A∩{f>a}

f dP ≤ a · P(A) +

∫
{f>a}

f dP

and thus

sup
f∈K

∫
A

|f |dP ≤ a · P(A) + sup
f∈K

∫
{|f |>a}

|f |dP. (6)

Now first let us assume that K is uniformly integrable and choose A = Ω,
then (6) gives us
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sup
f∈K
‖f‖1 ≤ a+ sup

f∈K

∫
{|f |>a}

|f |dP <∞.

Furthermore to check the second statement for a given ε > 0, choose a > 0
so large that

sup
f∈K

∫
{|f |>a}

|f |dP < ε

2

and choose δ = ε/2a. Then by using (6) again we get

sup
f∈K

∫
A

|f |dP < ε if P(A) < δ.

Finally to prove the other direction assume L1- boundedness as well as (5).
Now let us denote M = supf∈K

∫
A
|f |dP and choose a = M/δ. A rather

similar computation as in the beginning of the proof yields for positive f ∈ L1

∫
A

f dP =

∫
A∩{f≤a}

f dP +

∫
A∩{f>a}

f dP ≥
∫
A∩{f≤a}

f dP + a · P({|f | > a})

and thus

sup
f∈K

∫
A

|f |dP ≥ sup
f∈K

∫
A∩{f≤a}

f dP + a · P({|f | > a}).

In other words supf∈K P ({|f | > a}) ≤ M/a = δ. If we plug this into (5) we
get

∫
{|f |>a}

|f |dP < ε

for all f ∈ K and thus

sup
f∈K

∫
{|f |>a}

|f |dP→ 0 as a→∞.
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However with our definition of uniform integrability it is rather difficult to
check if a set of functions is uniformly integrable. Fortunately there is a very
useful Proposition that helps us with this task.

Proposition 5. If K ⊆ L1 and there is a positive increasing funcion φ
defined on [0,∞) such that lim

t→∞
φ(t)
t

=∞ and

sup
f∈K

∫
Ω

(φ ◦ |f |) dP <∞,

then K is uniformly integrable.

Proof. Let M = supf∈K
∫

Ω
(φ ◦ |f |) dP, ε > 0 and a = M/ε. Now choose t0

such that

φ(t)

t
≥ a for t > t0.

If we use that, we see that on the set {|f | > t0} we have

|f | ≤ (φ ◦ |f |)
a

and thus

∫
A

|f |dP ≤ 1

a

∫
A

(φ ◦ |f |)dP ≤ M

a
= ε.

Corollary 2. If K is Lp bounded for some p > 1, then K is uniformly
integrable.

Proof. Choose φ(t) = tp and use the proposition above.

The reason why uniform integrability is such a useful property is its connec-
tion to L1-convergence as can be seen in the following theorem.

Theorem 8. If fn ⊆ L1 and f is a random variable, then the following are
equivalent

(i) (fn) is uniformly integrable and fn → f in probability,
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(ii) f ∈ L1 and fn converges to f in L1.

Proof. Let us first assume that (i) holds. The convergence in probability
implies that there exists a subsequence fnk

, which converges almost surely to
f . Now the uniform integrability implies that E[|fn|] < ∞ for every n and
thus by using Fatous lemma we get

E[|f |] ≤ lim sup
k→∞

E[|fnk
|] <∞.

To prove L1 convergence let ε > 0 and consider the set Anε = {|fn − f | > ε},
then

‖fn − f‖1 ≤
∫

Ω\An
ε

|fn − f |dP +

∫
An

ε

|fn − f |dP

≤ ε+

∫
An

ε

|fn|dP +

∫
An

ε

|fn|dP.

However since P(Anε ) → 0 as n → ∞ both integrals are bounded by ε by
Proposition 4 and thus ‖fn − f‖1 → 0 as n→∞.

Now for the second direction of the statement assume (ii). Convergence in L1

already implies convergence in probability, so the only part left to be shown
is the uniform integrability. Consider a measurable set A, then

∫
A

|fn|dP ≤
∫
A

|f |dP + ‖fn − f‖1 <∞ for all n ≥ 1 (7)

and thus in particular supn
∫

Ω
|fn|dP < ∞. Let ε > 0 and take n0 such

that ‖fn − f‖1 < ε/2 for n ≥ n0. Now consider the finite sequence F =
{f1, f2, ..., fn0 , f}. This F is uniformly integrable by Remark 5, so by Propo-
sition 4 there exists a δ > 0 such that

∫
A

|g|dP < ε

2

for g ∈ F and P(A) < δ. However using (7) we get
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∫
A

|fn|dP < ε

for all n ≥ 1 if P(A) < δ and thus by Proposition 4 again that the whole
sequence fn is uniformly integrable.

2.5 The Hellinger Distance

Before we start with the main chapter, there is one subject left that we should
discuss, namely the Hellinger Distance between two measures. Details can
be found in [7].

Definition 11. Consider two measures P and Q with densities p and q with
respect to a dominating measure λ. The Hellinger distance between P and
Q is defined as the L2-distance between the square roots of their densities
multiplied by the factor 1

2
. That is

d(P,Q)2 =
1

2

∫
X
(
√
p−√q)2dλ =

1

2

∫
X
(p+ q + 2

√
pq)dλ

=
1

2
(P (X) +Q(X))−

∫
X

√
pq)dλ.

Moreover we call the term
∫
X
√
pq dλ, the Hellinger affinity, which is denoted

by α2(P,Q).

Remark 6. Note that if P and Q give finite measure to the whole space
X, the Hellinger distance is finite, as can easily seen by the last expression
in the definition above, when considering the fact that the square roots of p
and q are square integrable.

Furthermore the Hellinger distance does not depend on the choice of λ, as
the densities p and q are chosen with respect to λ.

The factor 1
2

is chosen so that in the case, where P and Q are probability
measures, the Hellinger distance satisfies 0 ≤ d(P,Q) ≤ 1.

Since
√
pq ≥ p ∧ q, we also have
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∫
X

√
pq dλ ≥

∫
X
p ∧ q dλ

and thus d(P,Q)2 ≤ ||P −Q||1, where ||.||1 denotes the total variation norm.

On the other hand for P (X), Q(X) < ∞ we get by the Cauchy-Schwarz
inequality

||P −Q||21 =
(∫

X
|√p−√q| |√p+

√
q|dλ

)2

≤
∫
X
|√p−√q|2dλ

∫
X
|√p+

√
q|2dλ

= 2d(P,Q)2(P (X) +Q(X) + 2α2)

≤ c · d(P,Q)

for some positive constant c ∈ R. Putting this together yields

d(P,Q) ≤ ||P −Q||1 ≤ c · d(P,Q).

In other words convergence of the Hellinger distance is equivalent to conver-
gence in the total variation norm for finite measures P and Q.
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3 Absolute Continuity of Poisson processes

In this section we want to analyse the connection between Poisson processes
and their intensity measures. For a given measure λ on X, we denote the
Poisson process with intensity measure λ by ηλ. Details for this section can
be found in [2].

3.1 Preparation

Definition 12. Let ηλ be a Poisson process with intensity measure λ. We
denote the distribution of this process by πλ and call it the Poisson measure,
since it is a probability measure on the space of counting measures (N,N ).

Furthermore we call two Poisson processes ηλ and ηρ mutually absolutely
continuous, if their distributions πλ and πρ are mutually absolutely continu-
ous in the usual measure theoretic sense, i.e. they have the same null sets.

Remark 7. Note that with this notation we can actually write expectations,
for example in the Laplace functional or the Mecke equation, as integrals over
the space of counting measures ξ and integrate with respect to πλ(dξ).

We ultimately want to prove the following theorem.

Theorem 9. Let λ and ρ be two σ-finite, nonatomic measures on X. Then
the Poisson processes ηλ and ηρ are mutually absolutely continuous if and
only if

(i) λ and ρ are mutually absolutely continuous and

(ii) the Hellinger distance d(ρ, λ) between ρ and λ is finite, that is

d(ρ, λ)2 :=
1

2

∫
X
|
√
dρ−

√
dλ|2 <∞.

Furthermore for the Hellinger Distance D(πρ, πλ) between the Poisson mea-
sures πρ and πλ the following formula holds in the case of absolute continuity

D(πρ, πλ)
2 :=

1

2

∫
X
|
√
dπρ −

√
dπλ|2 = 1− exp{−d(ρ, λ)2}.

Note that since the Hellinger distance is symmetric, λ and ρ are interchange-
able.
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This theorem was established in [2] in a slightly less general setup, where X
was assumed to be a locally compact Hausdorff space with countable basis
and the intensity measures λ and ρ were nonatomic infinite nonnegative
Radon measures.

One reason why this theorem is interesting, is because one could start with
some Poisson process ηλ with intensity measure λ and use some measurable
transformation T on this process. By the Mapping theorem this is again a
Poisson process. To see if the processes ηλ and T (ηλ) are basically the same,
i.e. are absolutely continuous, one only needs to check mutual absolute con-
tinuity for the intensity measures λ and T (λ), as well as the finiteness of the
Hellinger distance, if one has access to the theorem above.

Remark 8. Statement (i) in the theorem implies that the Radon-Nikodym
derivative φ := dρ

dλ
is positive and finite λ-almost everywhere.

Furthermore statement (ii) can be rewritten as

√
φ− 1 ∈ L2(X, λ). (8)

This can be easily checked by plugging in φ into (ii)

∫
X
|
√
dρ−

√
dλ|2 =

∫
X
|
√
φ− 1|2dλ.

Let us also recall the formula for the Laplace functional for Poisson processes

∫
N

πλ(dξ)exp{−〈ξ, u〉} = exp
{
−
∫
X
(1− e−u)dλ

}
.

For easier notation we write the integral on the left hand side as a functional

∫
u(x)ξ(dx) = 〈ξ, u〉.

Also we write the expectation as integral, so that the Poisson measure πλ
can be seen in the formula.
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3.2 Finite Measure Case

Let us first consider the case where the whole space X has finite measure
under λ and ρ respectively.

As we have seen in Remark 6, the Hellinger distance between two measures
λ and ρ is finite, if the measures give finite measure to the whole space. This
gives us a much simpler version of our main theorem.

Theorem 10. Let λ and ρ be two finite, nonatomic, measures on X. Then
the Poisson processes ηλ and ηρ are mutually absolutely continuous if and
only if λ and ρ are mutually absolutely continuous.

We can prove the ”only if” direction using the Laplace functional. To see
this let B ∈ X be a measurable set and let

u(x) :=

{
∞, if x ∈ B
0, else

Now if we plug this u(x) into the formula for the Laplace functional, we get

∫
N

πλ(dξ)exp{−〈ξ, u〉} = exp
{
−
∫
X
(1− e−u) dλ

}
= exp

{
−
∫
B

(1− 0) dλ
}

= exp{−λ(B)}

and on the other hand

∫
N

πλ(dξ)exp{−〈ξ, u〉} =

∫
{ξ(B)=0}

πλ(dξ) · 1

= πλ{ξ : ξ(B) = 0}.

So in summary this yields

πλ{ξ : ξ(B) = 0} = exp{−λ(B)}

and thus of course also
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πλ{ξ : ξ(B) > 0} = 1− exp{−λ(B)}.

However this already proves the ”only if” direction. We formulate it as a
Lemma.

Lemma 1. If πλ and πρ are mutually absolutely continuous, then for each
measurable set B ∈ X

0 < λ(B) if and only if 0 < ρ(B).

In other words, the measures λ and ρ are mutually absolutely continuous.

For the ”if” direction note that in the finite case the total variation of the
signed measure ρ− λ is finite, that is

∫
X
|dρ− dλ| =

∫
X
|φ− 1|dλ <∞.

This is because, as we have seen in section 2.5., for finite measures conver-
gence of the Hellinger distance is equivalent to convergence in total variation
norm.

Proof of the ”if”-direction (finite case). Let u ∈ R+(X). Then by using the
Laplace functional we get

∫
N

πρ(dξ)exp{−〈ξ, u〉} = exp
{
−
∫
X
(1− e−u)dρ

}
= exp

{
−
∫
X
(1− e−u)φ dλ

}
.

Now since

(1− φ)− (1− e−u+log φ) = (1− φ)− (1− e−uφ) = −(1− e−u)φ

we can also write the expression above as
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= exp
{∫

X
(1− φ)dλ

}
exp
{
−
∫

X

(1− e−u+log φ)dλ
}

= exp
{∫

X
(1− φ)dλ

}∫
N

πλ(dξ)exp{−〈ξ, u− log φ〉}

=

∫
N

πλ(dξ)exp
{∫

X
(1− φ)dλ+ 〈ξ, log φ〉

}
exp{−〈ξ, u〉}

and thus

dπρ
dπλ

= exp
{
〈ξ, log φ〉+

∫
X
(1− φ)dλ

}
.

3.3 Proof of ”Only If” direction

Let us from here on assume that λ and ρ give infinite measure to the whole
space X. As in the finite case, we get the first part of this direction rather
quickly using the Laplace functional. To see this let B ∈ X be a measurable
set and let

u(x) :=

{
∞, if x ∈ B
0, else

If we plug this u(x) into the formula for the Laplace functional we get anal-
ogously to the finite case

πλ{ξ : ξ(B) = 0} = exp{−λ(B)} (9)

πλ{ξ : ξ(B) > 0} = 1− exp{−λ(B)}. (10)

This gives us the following Lemma, which already covers the first part of the
”only if” direction of our theorem.

Lemma 2. If πλ and πρ are mutually absolutely continuous, then for each
measurable set B ∈ X

0 < λ(B) <∞ if and only if 0 < ρ(B) <∞.

In particular, the measures λ and ρ are mutually absolutely continuous.
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From here on let us assume mutual absolute continuity between πλ
and πρ for the rest of this subsection.

The next Lemma due to Kakutani can be found in [6].

Lemma 3. (Kakutani) Let Xn be a sequence of random variables and con-
sider the σ-algebras

F = σ(Xk, k ∈ N), Fn = σ(Xk, 1 ≤ k ≤ n).

Furthermore let fn and gn be two everywhere positive density functions on
our probability space and let P and Q be the according probability densities,
under which Xn are independent. If Q is absolutely continuous with respect
to P , then the Radon-Nikodym derivative dQ

dP
is given by

dQ

dP
=
∞∏
i=1

Yi ∈ (0,∞) P -almost surely,

where Yi = gi(Xi)
fi(Xi)

.

Proof. Can be found in [6] on pages 150 - 151.

Lemma 4. For every positive constant M we have

(i) λ{x ∈ X : φ(x) > 1 +M} <∞

(ii)
∫
φ>1+M

φ dλ <∞.

Proof. Statement (ii) follows from (i) with Lemma 2 since

ρ{x ∈ X : φ(x) > 1 +M} =

∫
φ>1+M

φ dλ.

We want to prove (i) by contradiction, so let us assume the contrary. Then
there exists an infinite partition {Bi} of the set

{x ∈ X : φ(x) > 1 +M},

such that for each i

λ(Bi) = 1.
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Note that this can be done since λ is assumed σ-finite and nonatomic and
the range of nonatomic measures are compact intervals, see for example [5]
on page 39. Now consider

Xi := sgn ξ(Bi) =

{
1 if ξ(Bi) > 0

0 if ξ(Bi) = 0

where ξ are the counting measures one gets from the Poisson processes ηρ
and ηλ. Let P and Q be the laws of (Xi)i≥1 under ηλ and ηρ respectively.
Then by using (9) and (10)

Q(Xi = 0) = e−ρ(Bi), Q(Xi = 1) = 1− e−ρ(Bi)

P (Xi = 0) = e−1 and P (Xi = 1) = 1− e−1.

Since ηρ and ηλ are mutually absolutely continuous, so are the probability
measures P and Q and by Lemma 3

dQ

dP
=
∞∏
i=1

(
1[Xi=0]

e−ρ(Bi)

e−1
+ 1[Xi=1]

1− e−ρ(Bi)

1− e−1

)
.

Or maybe more elegantly

dQ

dP
= exp

{ ∞∑
i=1

Zi

}
∈ (0,∞) P -almost surely, (11)

where

Zi := 1[Xi=0](1− ρ(Bi)) + 1[Xi=1]log
1− e−ρ(Bi)

1− e−1
.

Since every Zi only depends on the corresponding Xi and the Xi are clearly
independent, so are the random variables Zi. Now (11) implies that

∑
i Zi

converges almost surely, which means in particular that

P (Zi < −M infinitely often) = 0.
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By using the second Borel-Cantelli lemma we get

∑
i

P (Zi < −M) <∞.

On the other hand however if Xi = 0

Zi = 1− ρ(Bi) = 1−
∫
Bi

dρ = 1−
∫
Bi

φ dλ < 1−
∫
Bi

1 +M dλ

= 1−
∫
Bi

dλ−
∫
Bi

M dλ = 1− λ(Bi)−Mλ(Bi) = −M

and thus

∑
i

P (Zi < −M) ≥
∑
i

P (Xi = 0) =
∑
i

e−1 =∞,

which is clearly a contradiction and we are finished with the proof.

Lemma 5. For every positive constant M we have

(i) λ{x ∈ X : φ(x) < 1−M} <∞

(ii) ρ{x ∈ X : φ(x) < 1−M} =
∫
φ<1−M φ dλ <∞.

Proof. The first statement can be proved similarly to the previous lemma by
interchanging the roles of λ and ρ and the second statement follows immedi-
ately from (i).

We are now ready to prove the ”only if” direction of our main Theorem.

Proof of the ”only if” direction. Let M be an arbitrary positive constant.
Using the two previous lemmas we get

∫
φ>eM orφ<e−M

|φ− 1|dλ <∞.

Where we replaced φ by |φ − 1|, which has no influence on the finiteness of
the integral and instead of 1 + M and 1 −M we wrote eM and e−M , which
is nothing but a change in notation. Also since for nonnegative x
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|
√
x− 1|2 ≤ |(

√
x− 1)2| ≤ |x− 2

√
x+ 1| ≤ |x+ 1|

we get

∫
φ>eM orφ<e−M

|
√
φ− 1|2dλ <∞.

So the only part left to show is

∫
1<φ≤eM

|
√
φ− 1|2dλ <∞ and (12)∫

1>φ≥e−M

|
√
φ− 1|2dλ <∞. (13)

We will only look at (12), since (13) follows immediately by interchanging
ρ and λ. Now if the set {x ∈ X : 1 < φ(x) ≤ eM} is finite under λ, the
statement is trivial. Therefore consider the opposite, then we can take a
partition of measurable sets Bi of this set with λ(Bi) = 1 and

Bi is contained in {x ∈ X : bi ≥
√
φ(x)− 1 ≥ bi+1}

for some nonincreasing sequence b1 ≥ b2 ≥ ... ≥ bn → 0. Let us use the same
notation as in the proof of lemma (4) for the bounded random variables Zi.
We have already seen, that if we have a partition of measurable sets, then∑

i Zi <∞ almost surely, so by using the three series theorem we get for the
expectation with respect to P that

∑
i

E[Z2
i ] <∞.

Note that by the boundedness of Zi we do not need to write E[(Z
[a]
i )2] as in

the statement of the three series theorem. We can now use the expectation
restricted to the event Xi = 0 to find an upper bound

E[Z2
i ] ≥ E[Z2

i 1[Xi=0]] = P (Xi = 0)(ρ(Bi)− λ(Bi))
2

= e−1(ρ(Bi)− 1) = e−1
{∫

Bi

(φ− 1)dλ
}2
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and therefore

∑
i

{∫
Bi

(φ− 1)dλ
}2

<∞.

Now on Bi we have

φ− 1 = (
√
φ− 1)(

√
φ+ 1) = (

√
φ− 1)((

√
φ− 1) + 2) ≥ b2

i+1 + 2bi+1.

Next we want to use this and the fact that λ(Bi) = 1

∞ >
∑
i

(∫
Bi

(φ− 1)dλ
)2

≥
∑
i

(∫
Bi

(b2
i + 2bi)dλ

)2

=
∑
i

((b2
i + 2bi)λ(Bi))

2 ≥
∑
i

b2
i .

Using convergence of this sum and λ(Bi)) = 1 again we get

∫
1<φ≤eM

|
√
φ− 1|2dλ =

∑
i

∫
Bi

|
√
φ− 1|2dλ

≤
∑
i

λ(Bi)b
2
i

=
∑
i

b2
i <∞

and therefore (12) and by interchanging ρ and λ also (13), which were the
only two parts left to be shown and the result is proven.

3.4 Proof of ”If” direction

In this section let us assume finiteness of the Hellinger distance d(ρ, λ) and
mutual absolute continuity between ρ and λ.
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Lemma 6. Assume that the total variation of the signed measure ρ − λ is
finite, that is

∫
X
|dρ− dλ| =

∫
X
|φ− 1| dλ <∞.

Then πρ and πλ are mutually absolutely continuous and

dπρ
dπλ

(ξ) = exp
{
〈ξ, log φ〉+

∫
X
(1− φ)dλ

}
.

Proof. This is basically just the proof of the ”if” direction for the finite case,
since we never actually used the finiteness of the space X in the computation
for said proof.

Lemma 7. For every positive constant M , the following holds

∫
φ>eM

(φ+ 1)dλ <∞ and (14)∫
φ<e−M

(φ+ 1)dλ <∞. (15)

Proof. By symmetry in ρ and λ it suffices to prove (14). This however follows
from the fact that

(
√
x− 1)2 = x+ 1− 2

√
x > C(x+ 1) if x > eM

for some constant C depending on M . Now the finiteness of the integral
follows immediately from (8).

Corollary 3. Set

E :=
{
x : φ(x) ≥ 2 or φ(x) ≤ 1

2

}
,

then

∫
E

|φ− 1|dλ <∞.
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Proof. ChooseM = log(2) in the Lemma above and use the fact that |φ−1| ≤
(φ+ 1) on E.

The following Lemma can be found in [1] chapter 12.

Lemma 8. Let f, g ∈ L1(λ) ∩ L2(λ) and let us use the notation

I(f) =

∫
N

f πλ(dξ)−
∫
X
fdλ.

Then

E[I(f)I(g)] =

∫
X
fg dλ.

Proof. Can be found in [1] on page 112.

Let us consider a sequence Ci of measurable sets with finite measure under
λ such that

⋃
iCi = X. Now the sets

Kn :=
n⋃
i=1

Ci

form an exhausting, increasing sequence of measurable sets of finite measure.

Lemma 9. Let (Ki)i≥0 be an exhausting, increasing sequence of measurable
sets of finite measure as constructed above and set

B0 := E and Bn := E ∪Kn (n ≥ 1).

Furthermore let ξB be the restriction of the measure ξ to the measurable set
B and set

Yn(ξ) := 〈ξBn , log φ〉+

∫
Bn

(1− φ)dλ.

Then the following limit exists πλ-almost everywhere:

Y (ξ) = lim
n→∞

Yn(ξ).
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Moreover the convergence also holds in L2(πλ).

Proof. Set B′n := Bn \Bn−1. Since the B′n are disjoint, the random variables
ξB′n are pairwise independent by the Restriction Theorem. Thus the random
variables

Zn := Yn − Yn−1 and Z0 := Y0

are also independent. The case where φ(x) ≥ 2 or φ(x) ≤ 1
2

it is clear that
the integral is finite, so let 1

2
≤ φ(x) ≤ 2. Since in this case φ(x) is finite we

can always find a constant C such that

|log φ+ 1− φ| ≤ C(
√
φ− 1)2 and |log φ|2 ≤ C(

√
φ− 1)2. (16)

To see why this is useful we need to do a little computation

∞∑
n=1

E[Zn] =
∞∑
n=1

∫
N

πλ(dξ)
(
〈ξB′n , log φ〉+

∫
B′n

(1− φ)dλ
)

=
∞∑
n=1

∫
B′n

(1− φ)dλ+

∫
N

πλ(dξ)〈ξB′n , log φ〉

=
∞∑
n=1

∫
B′n

(1− φ)dλ+

∫
B′n

log φ dλ

=
∞∑
n=1

∫
B′n

(log φ+ 1− φ)dλ,

where we used the Mecke equation in the third step. Similarly, although a
bit more complicated, we can compute

∑
n E[Z2

n]. For this let us first recall
Lemma 8 for f = g = log φ ∈ L1(λ) ∩ L2(λ), that is

E[I(log φ)2] =

∫
X
(log φ)2 dλ. (17)

Now the left hand side of this can be rewritten as
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E
[( ∫

N

πλ(dξ)log φ
)2

− 2
(∫

X
log φ dλ

)(∫
N

πλ(dξ)log φ
)

+
(∫

X
log φ dλ

)2]
=
(∫

X
log φ dλ

)2

− 2
(∫

X
log φ dλ

)
E
[( ∫

N

πλ(dξ)log φ
)]

+ E
[( ∫

N

πλ(dξ)log φ
)2]

=
(∫

X
log φ dλ

)2

− 2
(∫

X
log φ dλ

)2

+ E
[( ∫

N

πλ(dξ)log φ
)2]

.

Putting this and (17) together yields

E
[( ∫

N

πλ(dξ)log φ
)2]

=

∫
X
(log φ)2dλ+

(∫
X
log φ dλ

)2

.

Thus for fixed n we get

E[Z2
n] =

(∫
B′n

(1− φ)dλ
)2

+ 2

∫
B′n

(1− φ)dλE
[ ∫

N

πλ(dξ)log φ
]

+

∫
B′n

(log φ)2dλ+
(∫

B′n

log φ dλ
)2

=
(∫

B′n

(1− φ)dλ
)2

+ 2

∫
B′n

(1− φ)dλ

∫
B′n

log φ dλ

+

∫
B′n

(log φ)2dλ+
(∫

B′n

log φ dλ
)2

=
(∫

B′n

(log φ+ 1− φ) dλ
)2

+

∫
B′n

(log φ)2dλ.

Since the Zn are disjoint, we can simply sum over n to finally get

∞∑
n=1

E[Z2
n] =

∞∑
n=1

(∫
B′n

(log φ+ 1− φ) dλ
)2

+
∞∑
n=1

∫
B′n

(log φ)2dλ.

Now by combining (16) and (8) we get that the series
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∞∑
n=1

E[Zn] =
∞∑
n=1

∫
B′n

(log φ+ 1− φ)dλ and (18)

∞∑
n=1

E[Z2
n] =

∞∑
n=1

(∫
B′n

(log φ+ 1− φ)dλ
)2

+
∞∑
n=1

∫
B′n

(log φ)2dλ (19)

are absolutely convergent. Thus by the three-series theorem
∑

n Zn converges
almost surely.

Note that it is sufficient to only check those two sums, since the random
variables Zn are bounded by the boundedness of φ and λ(B′n). Also by (19)
the sum converges in L2(πλ). In summary we have shown that the limit of
Yn exists almost surely and in L2(πλ) and we are finished with the proof.

Lemma 10. The limit Y (ξ) defined in the lemma above satisfies

∫
N

πλ(dξ)expY (ξ) = 1.

Proof. On one hand

∫
N

πλ(dξ)expYn =

∫
N

πλ(dξ)exp(〈ξ, log φ〉 − 〈λ, φ− 1〉)

= exp
{∫

X
φ− 1 dλ

}∫
N

πλ(dξ)exp{〈ξ, log φ〉}

= exp
{∫

X
φ− 1 dλ

}
exp
{∫

X
1− elog φdλ

}
= exp

{∫
X
φ− 1 dλ

}
exp
{∫

X
1− φ dλ

}
= e0 = 1

Where we used the Laplace functional to compute the integral over N. Now
we get with the Fatou lemma

∫
N

πλ(dξ)expY =

∫
N

πλ(dξ) lim inf
n→∞

expYn

≤ lim inf
n→∞

∫
N

πλ(dξ)expYn = 1.
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On the other hand we can use the computation above and the Jensen in-
equality to get

∫
N

πλ(dξ)expY =

∫
N

πλ(dξ)exp{Y − Yn}

≥ exp
{∫

N

πλ(dξ)(Y − Yn)
}

≥ exp
{∫

N

πλ(dξ)|Y − Yn|2
}

as n → ∞ this expression converges to 1 by lemma 9 and the proof is
finished.

Proof of the ”if” direction. The proof is rather similar to the proof of lemma
6 with some extra steps that arise when no finiteness of the total variation
is assumed. First consider a function u ∈ R+(X) for which there exist an
integer n such that the support of u is containted in Bn except for a null set,
where the Bn are as defined in Lemma 9. Then

∫
N

πρ(dξ)exp{−〈ξ, u〉} =

∫
N

πρ(dξ)exp{−〈ξBn , u〉}

= exp
{
−
∫
Bn

(1− e−u)dρ
}

= exp
{
−
∫
Bn

(1− e−u)φ dλ
}

= exp
{∫

Bn

(1− φ)dλ
}
exp
{
−
∫
Bn

(1− e−uφ)dλ
}

=
n∏
k=0

exp
{∫

B′k

(1− φ)dλ
}
exp
{
−
∫
B′k

(1− e−uφ)dλ
}

=
n∏
k=0

∫
N

πλ(dξ)exp{−〈ξB′k , u〉+ Yk(ξ)− Yk−1(ξ)},

where we used the Laplace functional in the second and last step. Now since
Poisson processes on disjoint sets are independent, we can interchange the
product and the integral to get
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∫
N

πλ(dξ)exp{−〈ξBn , u〉+ Yn(ξ)} =

∫
N

πλ(dξ)exp{Yn(ξ)}exp{−〈ξ, u〉}.

By Lemma 9 we can let n→∞ to get

∫
N

πρ(dξ)exp{−〈ξ, u〉} =

∫
N

πλ(dξ)exp{Y (ξ)}exp{−〈ξ, u〉}.

Now for general u ∈ R+(X), let us consider a sequence of measurable func-
tions un := 1Bnu. Of course these un converge to u as n tends to ∞ and
since

exp{−〈ξ, un〉} ↘ exp{−〈ξ, u〉} ≥ 0

we can use the monotone convergence theorem twice to see that

∫
N

πρ(dξ)exp{−〈ξ, u〉} =

∫
N

lim
n→∞

πρ(dξ)exp{−〈ξ, un〉}

= lim
n→∞

∫
N

πρ(dξ)exp{−〈ξ, un〉}

= lim
n→∞

∫
N

πλ(dξ)exp{Y (ξ)}exp{−〈ξ, un〉}

=

∫
N

lim
n→∞

πλ(dξ)exp{Y (ξ)}exp{−〈ξ, un〉}

=

∫
N

πλ(dξ)exp{Y (ξ)}exp{−〈ξ, u〉}.

Therefore the measures πρ and πλ are mutually absolutely continuous and
the Radon-Nikodym derivative is given by

dπρ
dπλ

(ξ) = exp Y (ξ),

which completes the proof.
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3.5 Computation of the Hellinger distance

The last part of the theorem that remains to be shown is the explicit expres-
sion for the Hellinger distance in case of mutual absolute continuity.

Lemma 11. If the total variation of the signed measure ρ− λ is finite, that
is

∫
X
|dρ− dλ| =

∫
X
|φ− 1| dλ <∞,

then the Hellinger distance D(πρ, πλ) can be written as

D(πρ, πλ) = 1− exp{−d(ρ, λ)},

where d(ρ, λ) is the Hellinger distance between ρ and λ.

Proof. To prove the lemma let us first recall that in case of mutual absolute
continuity and finiteness of the total variation, we can write the Radon-
Nikodym derivative of the Poisson measures explicitly:

dπρ/dπλ = exp{〈ξ, log φ〉 − 〈λ, φ− 1〉}.

We therefore find

D(πρ, πλ) =
1

2

∫
N

|
√
dπλ −

√
dπρ|2

=
1

2

∫
N

dπλ |1−
√
dπρ
dπλ
|2

=
1

2

∫
N

dπλ |1−
√
exp{〈ξ, log φ〉 − 〈λ, φ− 1〉}|2

=
1

2

∫
N

dπλ |1− 2
√
exp{〈ξ, log φ〉 − 〈λ, φ− 1〉}+ exp{〈ξ, log φ〉 − 〈λ, φ− 1〉}|.

Now we can pull out the first and the last term of the integral and use Lemma
10 to simplify this expression to
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= 1−
∫
N

dπλexp
{1

2
〈ξ, log φ〉 − 〈λ, φ− 1〉

}
= 1− exp

{
− 1

2
〈λ, φ− 1〉

}∫
N

dπλ exp
{
〈ξ, 1

2
log φ

}
.

Next we use the Laplace functional and get

= 1− exp
{
− 1

2
〈λ, φ− 1〉

}
exp
{∫

X
1− e

1
2
log φdλ

}
= 1− exp

{
− 1

2
〈λ, φ− 1〉

}
exp
{∫

X
1−

√
φ dλ

}
.

However since

−1

2
(φ− 1) +

√
φ− 1 = −1

2
φ+

1

2
+
√
φ− 1

= −1

2
φ+

√
φ− 1

2
= −1

2
(
√
φ− 1)2

we can simplify the expression for the Hellinger distance D(πρ, πλ) even fur-
ther to

= 1− exp
{
− 1

2
〈λ, (

√
φ− 1)2〉

}
= 1− exp{−d(ρ, λ)}.

and we have proven the lemma.

It is now time to prove the final part of the theorem, the expression for the
Hellinger distance in case of mutual absolute continuity.

Proof of the final Part of the Theorem. Similar to the proof above, let us re-
call, that in case of absolute continuity without the assertion of finiteness of
the total variation, we can write the Radon-Nikodym derivative as

dπρ/dπλ = exp Y,
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where Y = lim
n→∞

Yn and

Yn(ξ) = 〈ξBn , log φ〉+

∫
Bn

(1− φ)dλ.

Another way of writing Yn however is the following

Yn(ξ) = 〈ξ,log φn〉+ 〈λ, 1− φn〉,

where

φn :=

{
φ, on Bn

1, else
.

Now

D(πρ, πλ) =
1

2

∫
N

|
√
dπρ −

√
dπλ|2

=
1

2

∫
N

|
√
dπρ√
dπλ
− 1|2

=
1

2

∫
N

|exp Y − 2exp
√
Y + 1|2

=
1

2
+

1

2
−
∫
N

dπλexp
1

2
Yn

= 1− lim
n→∞

∫
N

dπλexp
1

2
Yn,

where we used the fact that exp 1
2
Yn are uniformly integrable functions by

corollary 2 and thus converge in L1 by theorem 8, in the last step to pull
out the limit. However we have already computed a similar integral in the
previous proof, as the total variation is of course finite for each n. This leads
us to

= 1− lim
n→∞

exp
{
− 1

2

∫
X
(
√
φn − 1)2dλ

}
.
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Finally since |
√
φn − 1| ≤ |

√
φ− 1| and |

√
φ− 1| is square integrable by (8),

we can use the dominated convergence theorem to interchange integral and
limit again to get

= 1− exp
{
− 1

2

∫
X
(
√
φ− 1)2dλ

}
= 1− exp{−d(ρ, λ)2},

which completes the proof.
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