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Abstract

This master’s thesis discusses a nonabelian, classically scale invariant extension of the
Standard Model (SM), where the SM gauge group is enlarged by an additional SU(2)
gauge symmetry. This new gauge group, under which the SM particles transform trivially,
comes along with the appearance of three new gauge bosons. Although classical scale
invariance forbids a bilinear Higgs mass term with operator dimension 2 in the Lagrangian
density, spontaneous symmetry breaking is induced by radiative corrections at one-loop
level (Coleman-Weinberg mechanism). Furthermore, the well-known masses of the top-
quark (∼ 170 GeV) and of the Higgs boson (125 GeV) make it necessary to introduce
additional scalar degrees of freedom to stabilize the effective potential. As a first step, a
new scalar particle is added to the theory, which is a doublet with respect to the new SU(2)
gauge symmetry and a singlet under the SM gauge group. Afterwards, a real scalar singlet
and three right-handed neutrinos are introduced, which enable the implementation of the
seesaw mechanism. After a summary of the theoretical background and the derivation of
the effective potential for a very general theory, the Gildener-Weinberg method is used to
perturbatively analyse both of these models up to one-loop level in great detail.

Zusammenfassung

Diese Masterarbeit behandelt eine nicht-abelsche, klassisch skaleninvariante Erweiterung
des Standardmodells (SM), wobei die Eichgruppe des SM um eine zusätzliche SU(2) Eich-
symmetrie erweitert wird. Diese neue Eichgruppe, unter welcher die Teilchen des SM triv-
ial transformieren, geht einher mit dem Auftreten von drei neuen Eichbosonen. Obwohl
klassische Skaleninvarianz einen bilinearen Higgs-Massenterm mit Operatordimension 2 in
der Lagrange-Dichte verbietet, wird spontane Symmetriebrechung auf 1-Schleifenniveau
durch Strahlungskorrekturen induziert (Coleman-Weinberg Mechanismus). Des Weiteren
machen es die bekannten Massen des Top-Quarks (∼ 170 GeV) und des Higgs-Bosons
(125 GeV) notwendig, zusätzliche skalare Freiheitsgrade einzuführen, um das effektive Po-
tential zu stabilisieren. Als ersten Schritt wird der Theorie ein neues skalares Teilchen
hinzugefügt, welches ein Dublett bezüglich der neuen SU(2) Eichsymmetrie und ein Sin-
glett unter der Eichgruppe des SM ist. Anschließend werden ein reelles skalares Singlett
und drei rechtshändige Neutrinos eingeführt, wodurch die Implementierung des Seesaw-
Mechanismus ermöglicht wird. Nach einer Zusammenfassung der theoretischen Grund-
lagen und der Herleitung des effektiven Potentials für eine allgemeine Theory wird die
Gildener-Weinberg Methode zur detaillierten, störungstheoretischen Analyse dieser bei-
den Modelle auf 1-Schleifenniveau herangezogen.
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1. Introduction

In the Standard Model (SM), the masses of the gauge bosons W± and Z, as well as the
fermion masses, are generated via the famous Higgs mechanism [1, 2], where the vacuum
expectation value (VEV) of the Higgs field H is generated via spontaneous symmetry
breaking (SSB) due to the special form of the tree-level Higgs potential:

V = −µ2H†H +
λ

4

(
H†H

)2
. (1.0.1)

Despite its huge success explaining most of the experimental data, it is clear that the SM
needs to be extended in some way to be able to address some open questions like the
appearance and tininess of neutrino masses1 [3, 4], the nature of dark matter, the stability
of the Higgs potential [5, 6] or the Hierarchy problem of the Higgs mass.

One promising class of such extensions of the SM are so-called classically scale-invariant
(CSI) extensions of the SM, where only terms possessing operator dimension 4 are allowed
in the Lagrangian density (the term −µ2H†H is therefore forbidden) and where the VEV
of a scalar field is not generated at zero-loop order but with the help of radiative corrections
to the tree-level potential (Coleman-Weinberg mechanism [7]). Such theories have to come
along with an extension of the SM gauge group and/or the introduction of additional scalar
fields to explain the experimentally observed Higgs mass of 125 GeV.

In this thesis, we will focus on a (nonabelian) extension of the Standard Model gauge
group [8–15], where we introduce an extra SU(2) gauge symmetry, under which the SM
particle content is invariant, and a corresponding second Higgs doublet, which transforms
nontrivially under this new SU(2) gauge group only. We investigate this model with
the help of the Gildener-Weinberg analysis [16] and try to find constraints on the coupling
parameters as well as on the masses of the new particles. In a second step, we introduce an
additional real scalar singlet and three right-handed neutrino fields to be able to implement
the seesaw mechanism [17–21] in our model and thus, to explain small neutrino masses.

This thesis is structured in the following way: Chapter 2 gives a short overview over
conventions and the notation of this work, as well as a brief introduction into classical scale
invariance. We introduce the Coleman-Weinberg mechanism in chapter 3 and discuss the
effective potential and its properties in detail. An explicit calculation of the effective
potential for a simple toy model with the help of Feynman diagrams can also be found in
this chapter. This is followed by the derivation of the effective potential for a very general
theory in chapter 4, where the path integrals are calculated explicitly, and a discussion
of the Gildener-Weinberg approach in chapter 5. Chapter 6 finally deals with nonabelian
classically scale invariant extensions of the Standard Model and discusses its properties in
great detail.

1A consequence of the observation of neutrino oscillation.
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2. Preliminaries

2.1. Notation and Constants

In this thesis, we work with the following convention for the Minkowski metric (particle
physics or west coast convention):

(gµν) =


1
−1

−1
−1

 . (2.1.1)

If we are dealing with four-vectors, we indicate this by the use of Greek indices, where we
distinguish between upper and lower ones1:

4∑
µ=1

qµ p
µ =

4∑
µ=1

4∑
ν=1

gµν q
µpν . (2.1.2)

Unless not stated otherwise, we sum over repeating indices, if they appear twice in a single
term (Einstein summation):

n∑
i=1

xi yi = x1y1 + x2y2 + . . . xnyn = xi yi . (2.1.3)

4∑
µ=1

qµ p
µ = q0 p0 − q1 p1 − q2 p2 − q3 p3 = qµ p

µ . (2.1.4)

We set the speed of light c equal to one, but still work with

~ = 1.055 · 10−34 Js (2.1.5)

in the first few chapters [22]. In Table 2.1 we list important Standard Model particle
masses.

Particles Pole masses

MZ 91.19 GeV
MW 80.38 GeV
mt 173.0 GeV
MhSM 125.18 GeV

Table 2.1.: Pole masses of Standard Model particles [22].

1Otherwise, we use Latin letters and don’t distinguish between upper and lower indices.
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2. PRELIMINARIES

2.2. Kronecker-Product

To be able to deal in a compact and clear way with the four-dimensional Dirac substructure
of a set ψ of m Dirac bispinor fields, we briefly introduce the Kronecker product and list
its most important and useful properties. A more detailed discussion can be found in [23]
and [24].

Whenever in this thesis a Kronecker product of the form A⊗B appears, the substructure
B is described by a 4× 4 matrix and the dimension of A will be clear from the context or
explicitly displayed otherwise.

2.2.1. Definition

For two matrices A=(aij) ∈ Km×n and B ∈ Kr×s, where Km×n denotes the space of real
or complex m× n matrices, the Kronecker product is defined as:

A⊗B =

a11 ·B . . . a1n ·B
...

. . .
...

am1 ·B . . . amn ·B

 ∈ Kmr×ns . (2.2.1)

2.2.2. Properties

Let A1,2 ∈ Km×n, B1,2 ∈ Kr×s, C ∈ Kn×o, D ∈ Ks×t and α ∈ K. Then

• A⊗B 6= B ⊗A

• (αA)⊗B = A⊗ (αB) = α(A⊗B)

• (A1 +A2)⊗B = (A1 ⊗B) + (A2 ⊗B)

• A⊗ (B1 +B2) = (A⊗B1) + (A⊗B2)

• (A⊗B)(C ⊗D) = AC ⊗BD

• (A⊗B)T = AT ⊗BT

• (A⊗B)† = A† ⊗B† .

Let A ∈ Kn×n and B ∈ Km×m. Then

• Tr(A⊗B) = Tr(A) · Tr(B)

• Det(A⊗B) = Det(A)m ·Det(B)n .

2.3. Classical Scale Invariance

A theory in d dimensions is said to be classically scale invariant, if its action is invariant
under a scale transformation of the form:

x→ ρ x H → ρ−
d−2
2 H

Aµ → ρ−
d−2
2 Aµ ψ → ρ−

d−1
2 ψ .

(2.3.1)
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2.3. CLASSICAL SCALE INVARIANCE

Therefore, only terms with operator-dimension d are allowed in the Lagrangian density,
or, with other words, only terms with dimensionless coupling constants.

To obtain a classically scale invariant version of the Standard Model (SM), we have to
get rid of the imaginary mass term −µ2H†H, which breaks scale invariance, since:∫

ddx µ2H†(x)H(x) −→ ρ2 ·
∫

ddx µ2H†(x)H(x) . (2.3.2)

As a consequence, the potential of the Lagrangian density has to be convex, which seems
to lead to vanishing vacuum expectation values of the scalar fields and hence, no masses
would be generated through the famous Higgs-mechanism. However, as it turns out,
this remains true only at tree level [7] and elevation of classical scale invariance to a
fundamental property of nature can serve as a promising guiding principle for theories
beyond the SM (BSM) with great predictive power.
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3. The Coleman-Weinberg Mechanism

Spontaneous symmetry breaking (SSB) is usually studied within a tree-level approxima-
tion, which simply means that one searches for minima of the potential of the Lagrangian
density (i.e. all the non-derivative terms). From this point of view, SSB should not take
place in a basic ϕ4-theory or in any classically scale invariant theory, due to the absence
of nontrivial minima. However, higher-order effects can change this simple structure and
S.Coleman and E.Weinberg demonstrated in their famous paper [7] that radiative cor-
rections can induce spontaneous symmetry breaking even in theories without nontrivial
vacuum expectation values (VEV) at zero-loop order. They studied a classically scale-
invariant electrodynamic theory with a charged scalar and showed that the scalar boson
gets a nontrivial VEV and becomes, as well as the vector boson, massive due to quantum
effects [7]. Hereby, the appearance of the massive scalar at one-loop level is associated
with the breaking of the scale invariance by higher-order corrections.

An appropriate tool to investigate this described feature of such theories is the so-called
effective potential, a function whose minima give the true vacuum expectation values up
to all orders and coincides at lowest order with the tree-level potential (see section 3.4 and
4.1).

In this section we will follow Coleman’s and Weinberg’s approach [7], which is based on
the work of Jona-Lasinio [25], to get an intuitive understanding of SSB in classically scale
invariant theories and use functional methods and a diagrammatic expansion to obtain
the effective potential and to explore its properties. Many of the following definitions and
derivations can also be found in [26].

3.1. Generating Functional of Correlation Functions

We start with defining the generating functional of correlation functions1 Z[J ] as

Z[J ] := lim
T→∞(1−i0+)

1

N

∫
[dϕ] e

i
~
∫ T
−T d4x

(
L(ϕ)+J(x)ϕ(x)

)
=̂

1

N

∫
[dϕ] e

i
~

(
S(ϕ)+

∫
d4xJ(x)ϕ(x)

)
,

(3.1.1)

where, in order to keep the notation as simple as possible, S[ϕ] describes the classical action
of a theory with only one real scalar field. All of the later arguments are of course still valid
for a more complex theory. The limit T →∞(1− i0+) is rarely displayed explicitly in the
literature, but will become of importance when we calculate path integrals in appendix D.
The extra field J(x) denotes an external source with

J(x)
|x|→∞−→ 0 , (3.1.2)

1The nomenclature will become clear in a few lines.
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3. THE COLEMAN-WEINBERG MECHANISM

and the normalization constant N is chosen as

N =

∫
[dϕ] e

i
~
∫ T
−T d4xL(ϕ) . (3.1.3)

With the help of the functional derivative, which satisfies (see e.g. [26])

δ

δf(y)
f(x) = δ(4)(x− y) , (3.1.4)

and the definition of the n-point correlation function2 [27],

〈0|T (ϕ̂(x1)...ϕ̂(xn))|0〉 = lim
T→∞(1−i0+)

∫
[dϕ] e

i
~
∫ T
−T d4xL(ϕ)ϕ(x1)...ϕ(x1)∫

[dϕ] e
i
~
∫ T
−T d4xL(ϕ)

, (3.1.5)

we find

~
i

δZ[J ]

δJ(x1)

∣∣∣∣
J=0

= lim
T→∞(1−i0+)

∫
[dϕ] e

i
~
∫ T
−T d4xL(ϕ)ϕ(x1)∫

[dϕ] e
i
~
∫ T
−T d4xL(ϕ)

= 〈0|ϕ̂(x1)|0〉 , (3.1.6)

or more generally:

Z(n)(x1, . . . , xn) :=

(
~
i

)n δnZ[J ]

δJ(x1)...δJ(xn)

∣∣∣∣
J=0

= 〈0|T (ϕ̂(x1)...ϕ̂(xn))|0〉 . (3.1.7)

The above relation makes clear why we call Z[J ] the generating functional of correlation
functions and with the help of this very equation (3.1.7) it is straightforward to write
down the generating functional as an expansion of n-point correlation functions Z(n):

Z[J ] =
∞∑
n=0

in

~nn!

∫
d4x1...d

4xn Z
(n)(x1, . . . , xn) J(x1)...J(xn) . (3.1.8)

Furthermore, we realize that the vacuum state is reasonably normalized3 through the
definition (3.1.3) :

Z[0] = 〈0|0〉 = 1 . (3.1.9)

Following equation (3.1.7), we can also define the n-point correlation function in presence
of an external source J0:

Z
(n)
J (x1, . . . , xn) :=

(
~
i

)n δnZ[J ]

δJ(x1)...δJ(xn)
= 〈0|T (ϕ̂(x1)...ϕ̂(xn))|0〉J . (3.1.10)

3.2. Generating Functional of Connected Correlation Functions

As a next step, we introduce the generating functional of connected correlation function
W [J ]:

W [J ] := −i~ · lnZ[J ] . (3.2.1)

2While ϕ(x) is a real valued function, ϕ̂(x) denotes an operator.
3The normalization constant is chosen such that it cancels all the vacuum graphs.
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3.3. THE EFFECTIVE ACTION

Again, the name is revealing and it can be shown (see [26]) that the function

W (n)(x1, . . . , xn) :=

(
~
i

)n−1 δnW [J ]

δJ(x1)...δJ(xn)

∣∣∣∣
J=0

(3.2.2)

is the connected n-point correlation function 〈0|T (ϕ̂(x1)...ϕ̂(xn))|0〉c. Not as a strict proof,
but as an illustration of this statement, it is enlightening to have a look at the first few
relations between Z(n) and W (n)

Z(1)(x1) =W (1)(x1)

Z(2)(x1, x2) =W (2)(x1, x2) +W (1)(x1) ·W (1)(x2)

Z(3)(x1, x2, x3) =W (3)(x1, x2, x3) +W (2)(x1, x2) ·W (1)(x3)

+W (2)(x2, x3) ·W (1)(x1) +W (2)(x3, x1) ·W (1)(x2)

+W (1)(x1) ·W (1)(x2) ·W (1)(x3) .

(3.2.3)

These equations arise from the definitions (3.2.1),(3.1.7) and (3.2.2) and underline the fact
that any n-point correlation function can be written as the sum of all possible combinations
of connected mi-point functions with

∑
mi = n.

As before, we can write down the generating functional as a Taylor series:4

W [J ] =

∞∑
n=1

1

n!

(
i

~

)n−1∫
d4x1...d

4xnW
(n)(x1, . . . , xn) J(x1)...J(xn) . (3.2.4)

By analogy with the definition (3.1.10), we also mention the connected n-point correlation
function in presence of the source J0:

W
(n)
J (x1, . . . , xn) :=

(
~
i

)n−1 δnW [J ]

δJ(x1)...δJ(xn)
. (3.2.5)

3.3. The Effective Action

The effective action Γ[φ] is defined by the functional Legendre-transformation of W [J ],

Γ[φ] = W [J ]−
∫

d4xJ(x)φ(x) , (3.3.1)

with

φ(x) =
δW [J ]

δJ(x)
, (3.3.2)

where J = Jφ is actually an implicit functional of φ(x) and given by the solution of

φ(x) =
δW [J ]

δJ(x)

∣∣∣∣
J=Jφ

. (3.3.3)

4Be aware that W (0) = 0, since Z[0] = 1

9



3. THE COLEMAN-WEINBERG MECHANISM

Furthermore, Γ[φ] fulfils the following relation:

δΓ[φ]

δφ(x)
= −J(x) +

∫
d4y

δJ(y)

δφ(x)

[
δ

δJ(y)
W [J ]− φ(y)

]
︸ ︷︷ ︸

(3.3.2)
= 0

. (3.3.4)

Vice versa, with the help of relation (3.3.4), the field φ = φJ(x) can also be seen as an
implicit functional of J(x),

δΓ[φ]

δφ(x)

∣∣∣∣
φ=φJ

= −J(x) , (3.3.5)

and therefore, the inverse Legendre-Transformation of (3.3.1) is given by:

W [J ] = Γ[φ] +

∫
d4xJ(x)φ(x) . (3.3.6)

We find that φ(x) is just the vacuum expectation value of the scalar field ϕ(x) in presence
of the external source J(x),

δW [J ]

δJ(x)
= φ(x)

(3.2.5)

= W
(1)
J (x)

(3.2.3)

= Z
(1)
J (x)

(3.1.10)

= 〈0|ϕ̂(x)|0〉J , (3.3.7)

and in case we send the external field J(x) to zero (φ(x) = 〈0|ϕ̂(x)|0〉J=0 = 〈0|ϕ̂|0〉5) the
effective action is extremized (compare equation (3.3.5)):

δΓ[φ]

δφ(x)

∣∣∣∣
φ=〈0|ϕ̂|0〉

= 0 . (3.3.8)

We now introduce the shifted field

χ(x) = φ(x)−W (1)(x) , (3.3.9)

and write the effective action as an expansion around W (1)(x) = 〈ϕ̂〉,

Γ[φ] =
∞∑
n=1

1

n!

∫
d4x1..d

4xn
~
i

Γ(n)(x1, .., xn)χ(x1)...χ(xn) , (3.3.10)

with

Γ(n)(x1, .., xn) =
i

~
δΓ[φ]

δφ(x1)..δφ(xn)

∣∣∣∣
φ=〈ϕ̂〉

. (3.3.11)

We want to show that these functions Γ(n)(x1, .., xn) are the one particle irreducible (1PI)
n-point correlation functions, which also go under the catchier name of proper vertices6.
To be precise, this statement is only true for n > 2, because for n = 1 we get zero and for
n = 2 we get the inverse of the full propagator, as we will see in a moment.

5Since we are always dealing with translation invariant theories the VEV has to be a constant quantity.
6For that reason, the effective action is sometimes also referred to as the generating functional of proper

vertices.
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3.3. THE EFFECTIVE ACTION

For that purpose, we follow the methods of [26] and expand φ(x), using equation (3.2.4)
and (3.3.3):

χ(x) =
∞∑
n=2

1

(n− 1)!

(
i

~

)n−1∫
d4x1...d

4xn−1W
(n)(x, x1, . . . , xn−1)J(x1)...J(xn−1)

=
i

~

∫
d4x1 W

(2)(x, x1)J(x1)

+
1

2

(
i

~

)2 ∫
d4x1d4x2W

(3)(x, x1, x2)J(x1)J(x2)

+
1

3!

(
i

~

)3 ∫
d4x1d4x2d4x3W

(4)(x, x1, x2, x3)J(x1)J(x2)J(x3) + . . . .

(3.3.12)
We define the inverse of the connected 2-point correlation function W (2)(y, z) as∫

d4y S(x, y)W (2)(y, z) = δ(4)(x− z) , (3.3.13)

and apply it to equation (3.3.12) to express J(x):

J(x) =
~
i

∫
d4y S(x, y)

(
φ(y)−W (1)(y)

)
−1

2

i

~

∫
d4x1d4x2d4y S(x, y)W (3)(y, x1, x2)J(x1)J(x2)

− 1

3!

(
i

~

)2 ∫
d4x1d4x2d4x3d4y S(x, y)W (4)(y, x1, x2, x3)J(x1)J(x2)J(x3)

+ . . . .

(3.3.14)

The external field J(x) can now be written as a series in powers of φ(x)

J(x) =
~
i

[∫
d4y1 S(x, y1)

(
φ(y1)−W (1)(y1)

)
−1

2

∫
d4y1d4y2 W

(3)
amp(x, y1, y2)

(
φ(y1)−W (1)(y1)

)(
φ(y2)−W (1)(y2)

)
− 1

3!

∫
d4y1d4y2d4y3

(
W (4)

amp(x, y1, y2, y3)

−
∫

d4v d4w
{
W (3)

amp(x, y1, v)W (2)(v, w)W (3)
amp(w, y2, y3)

+W (3)
amp(x, y2, v)W (2)(v, w)W (3)

amp(w, y1, y3)

+W (3)
amp(x, y3, v)W (2)(v, w)W (3)

amp(w, y1, y2)
})

·
(
φ(y1)−W (1)(y1)

)(
φ(y2)−W (1)(y2)

)(
φ(y3)−W (1)(y3)

)
+ . . .

]
,

(3.3.15)

where W
(n)
amp(x1, . . . , xn) denotes the amputated, connected n-point correlation function:

W (n)
amp(x1, . . . , xn) =

∫
d4y1...d

4yn S(x1, y1)...S(xn, yn)W (n)(y1, . . . , yn) . (3.3.16)

11



3. THE COLEMAN-WEINBERG MECHANISM

Comparison of the expansion (3.3.10) and the result we get from equation (3.3.4) and
(3.3.15) leads to the desired relations:

Γ(1)(x1) = 0

Γ(2)(x1, x2) = −S(x1, x2)

Γ(3)(x1, x2, x3) = W (3)
amp(x1, x2, x3)

Γ(4)(x1, x2, x3, x4) = W (4)
amp(x1, x2, x3, x4)

−
∫

d4v d4w
[
W (3)

amp(x1, x2, v)W (3)
amp(w, x3, x4)

+W (3)
amp(x1, x3, v)W (3)

amp(w, x2, x4)

+W (3)
amp(x1, x4, v) W (3)

amp(w, x2, x3)
]
W (2)(v, w)

...

(3.3.17)

As stated above, we find that Γ(1)(x1) is equal to zero and that −Γ(2)(x1, x2) is the
inverse of the full propagator. The amputated, connected three-point correlation function

W
(3)
amp(x1, x2, x3) is already 1PI and to make W

(4)
amp(x1, x2, x3, x4) 1PI we have to subtract

all the one-particle reducible parts.

3.4. The Effective Potential

In contrast to equation (3.3.10), it is also possible to expand Γ in powers of ∂µφ [7]:

Γ[φ] =

∫
d4x

(
−V (φ) +

1

2
Z(φ)(∂µφ)2 + Y (φ)(∂µφ)4 + . . .

)
. (3.4.1)

Since the VEV of the scalar field is a constant quantity, it is justified to evaluate Γ[φ] also
for a constant field φc only. Therefore, we obtain the simpler expression

Γ[φc] = −
∫

d4xV (φc) , (3.4.2)

where we call the function V (φc) the effective potential and we find from equation (3.3.8)
that the effective potential is extremized at φc = 〈0|ϕ̂|0〉:

δΓ[φc]

δφc

∣∣∣∣∣
φc=〈0|ϕ̂|0〉

= −∂V (φc)

∂φc

∣∣∣∣∣
φc=〈0|ϕ̂|0〉

= 0 . (3.4.3)

Hereby, we achieved our goal of finding a function, the effective potential V (φc), whose
minima give the true vacuum expectation values without any approximations.

Since a perturbative expansion of the effective potential leads in general to a non-convex
function [28, 29], the extremum is ambiguous. For a classically scale-invariant theory with
radiative induced SSB for example, one of the extrema is still the trivial tree-level VEV.
To get the other one, we had to introduce the external source J(x) as a perturbation,

12



3.4. THE EFFECTIVE POTENTIAL

ϕ

V

J(x)

Figure 3.1.: Perturbation of the unstable, trivial vacuum state (grey dot) leads to a stable
vacuum state away from zero (black dot). Afterwards the perturbation can
be turned off.

although in the end, we set it equal to zero anyway. Otherwise we only would have been
able to find the tree-level VEV W (1)(x) = 0. This feature is illustrated in Fig. 3.1.

To find a useful expression for the effective potential, we write down the Fourier trans-
form Γ̃(n)(k1, . . . , kn) of the vertex function Γ(n)(x1, . . . , xn)

(2π)4δ4

(
n∑
i=1

ki

)
Γ̃(n)(k1, . . . , kn) =

∫
d4x1...d

4xn e
−i(k1x1+...+knxn) Γ(n)(x1, . . . , xn) ,

(3.4.4)
where the total momentum conservation corresponds to the translation invariance of the
vertex function Γ(n)(x1, . . . , xn) [26] and k denotes the wavevector.

From now on we will concentrate on classically scale-invariant theories, where the one-
point function W (1)(x1) is equal to zero and therefore, after setting all external momenta
to zero, we can use equation (3.4.4) to write the effective action (eq. (3.3.10)) as

Γ[φc] = (2π)4δ4(0)

∞∑
n=2

1

n!

~
i
Γ̃(n)(0, . . . , 0)φnc . (3.4.5)

If we realize that δ4(k) is the Fourier transform of 1,

δ4(k) =
1

(2π)4

∫
d4x e−ikx

(2π)4δ4(0) =

∫
d4x 1 ,

(3.4.6)

we find from equation (3.4.2) and (3.4.5) for the effective potential

−V (φc) =

∞∑
n=2

1

n!

~
i

Γ̃(n)(0, . . . , 0)φnc , (3.4.7)

where Γ̃(n)(0, . . . , 0) are the 1PI n-point correlation functions in momentum space with
vanishing external momenta.7

7For a classically scale invariant theory this is even true for n = 2, as we will see in subsection 3.4.2.
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3. THE COLEMAN-WEINBERG MECHANISM

3.4.1. The Loop Expansion

Since it is clear that it is impossible to write down the exact effective potential for a non-
trivial model, we have to come up with an appropriate approximation method. Coleman
and Weinberg demonstrated in [7] that an expansion in powers of an overall factor a of
the form

L(ϕ, ∂µϕ, a) = a−1L(ϕ, ∂µϕ) (3.4.8)

corresponds to a loopwise expansion of the effective potential. The reason for this corre-
lation is that every propagator, as the inverse of the quadratic terms in the Lagrangian,
carries a factor of a and every vertex a factor of a−1. For an arbitrary 1PI diagram the
power of a, P , is then given by

P = I − V , (3.4.9)

where I denotes the number of internal lines and V the number of vertices. The num-
ber of loops, L, corresponds to the number of momenta as variables of integration and is
the difference between the number of momenta, I, and the number of energy-momentum
δ-functions, V , without counting one δ-function for the total energy-momentum conserva-
tion:

L = I − V + 1 . (3.4.10)

If we combine the equations (3.4.9) and (3.4.10), we finally find the connection between
the power of a and the number of loops:

P = L− 1 . (3.4.11)

As Coleman and Weinberg stated [7], the important point is not that a has to be a
small parameter (actually a can be equal to 1), but that we found a suitable organization
scheme for an infinite sum of Feynman-diagrams where each higher order of the expansion
contributes less than the one before and that the parameter a, as an overall factor of the
Lagrangian density, is not affected by shifts of the fields. Furthermore, as discussed in [30]
and [31], ~ is an appropriate choice for the overall factor a (compare the prefactor of the
Lagrangian density in equation (3.1.1)) and therefore, a loop-expansion corresponds to an
expansion in powers of ~. That is the reason why we made the effort to set ~ not equal to
1 from the beginning.

3.4.2. A Simple Example of the Derivation of the Effective Potential via
Feynman Diagrams

Just as Coleman and Weinberg in [7], we compute the one-loop effective potential for the
simplest case of a massless, quartically self-interacting scalar field with the Lagrangian
density8:

L =
1

2
(∂ϕ0)2 − λ0

4!
ϕ4

0 . (3.4.12)

If we explicitly display ~, the Feynman rules for the propagator and the vertex are scaled
with ~ and 1

~ respectively and are given in Fig. 3.2 9. With the help of equation (3.4.7)
and knowledge of the loop expansion we are now in the position to write down the effective

8The subscript 0 identifies the parameters as bare quantities.
9All the Feynman diagrams in this work have been generated with the help of TikZ-Feynman [32].
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3.4. THE EFFECTIVE POTENTIAL

= − iλ0

~

=
i~

k2 + i0+

Figure 3.2.: Feynman rules for an overall factor ~−1 of the Lagrangian density.

potential up to one-loop order. Therefore, we define the vertex functions with vanishing

external momenta at l-loop order Γ̃
(n)
l and write the effective potential as

V (φc) = i~
∞∑
l=0

∞∑
n=2

1

n!
Γ̃

(n)
l φn0c =

∞∑
l=0

~lVl(φ0c) , (3.4.13)

where Vl(φ0c) denotes the l-loop contribution to the effective potential.
The only possible tree-level diagram for the theory under consideration is shown in

Figure 3.3 and contributes to the effective potential in the form

V0 = i~
∞∑
n=2

1

n!
Γ̃

(n)
0 φn0c = i~

1

4!
Γ̃

(4)
0 φ4

0c =
λ

4!
φ4

0c , (3.4.14)

which is, as it should be, equal to the potential of the Lagrangian density (i.e. all the
non-derivative terms).

Γ̃
(4)
0 =

Figure 3.3.: Tree-level contribution to the effective potential.

At one-loop order we have to deal with the special case of Γ̃(2)(0, 0) as the negative
inverse full propagator. But since the full propagator is given by(

−Γ̃(2)(−k, k)
)−1

=

= + + + ...

=
i~

k2 −
(
m
~
)2

+ i0+

∞∑
n=0

(
iΠ

i~
k2 −

(
m
~
)2

+ i0+

)n
=

i~
k2 −

(
m
~
)2

+ ~Π + i0+
,

(3.4.15)
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3. THE COLEMAN-WEINBERG MECHANISM

where the self-energy Π(k) is related to the 1PI 2-point diagrams,

iΠ(k) = , (3.4.16)

the vertex-function Γ̃(2)(0, 0) for the given massless theory is just:

Γ̃(2)(0, 0) = iΠ(0) = + + . . . . (3.4.17)

Therefore, we have to consider the infinite sum of all 1PI 2n-point correlation functions
with vanishing external momenta at one-loop level

∞∑
n=1

Γ̃
(2n)
1 = S1 · + S2 · + S3 · + S4 · + . . . , (3.4.18)

and for the next-order contribution to the effective potential we find:

V1 = i
∞∑
n=1

1

(2n)!

∫
d4k

(2π)4
Sn

(
λ0

k2 + i0+

)n
︸ ︷︷ ︸

Γ̃
(2n)
1

φ2n
0c . (3.4.19)

To determine the symmetry factor Sn we have to count the number of different graphs we
can get by reordering of n vertices and 2n external lines:

There are (n − 1)! different ways to connect n vertices and the irrelevance of the di-
rection of the internal lines is accounted by an extra factor of 1

2 . The 2n external lines
can be interchanged in (2n!) different ways, but since the pairwise exchange of direct con-
nected external lines is equivalent to the exchange of vertices, these n! different graphs
are already covered by the factor (n− 1)! (Fig. 3.4). For that reason, we have to add an
additional factor of 1

n! . Furthermore, due to the fact that two scalars at the same vertex
are indistinguishable, the swap of two external lines at the same vertex does not lead to a
new graph, which gives an extra factor of 1

2n .
Hence, the symmetry factor Sn has the form

Sn =
(n− 1)!

2
· (2n!)

2nn!
, (3.4.20)

and we obtain for the effective potential up to one-loop order

V =
λ0

4!
φ4

0c + i~
∫

d4k

(2π)4

∞∑
n=1

1

2n

(
1
2λ0φ

2
0c

k2 + i0+

)n
, (3.4.21)

which is in perfect agreement with the result of [7]. The computation of this integral can
be found in appendix A.1 and leads to the renormalized effective potential:

V =
λ

4!
φ4
c + ~

λ2φ4
c

256π2

(
ln

1
2λφ

2
c

Λ2
− 3

2

)
. (3.4.22)
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a d

b c

b1

b2

c1

c2
(a)−→

a d

b c

c1

c2

b1

b2

a d

b c

b1

b2

c1

c2
(b)−→

a d

c b

b1

b2

c1

c2

Figure 3.4.: Pairwise exchange of direct connected external lines (a) leads to the same
diagram as the interchange of vertices (b).

This result confirms that a loopwise expansion of the effective potential corresponds to an
expansion in powers of ~ and the discrepancy between the final expression of the effective
potential in [7] and equation (3.4.22) arises from a different choice of renormalization
schemes (cutoff instead of MS).

Furthermore, we find that scale invariance is broken by the loop contributions to the
tree-level potential, since∫

d4x φ4 lnφ2 −→
∫

d4x φ4
(
lnφ2 − lnρ2

)
. (3.4.23)

This simple example illustrates the drastic change of the potential caused by radiative
corrections and the supposed appearance of a new, nontrivial minimum (Fig.3.5), which
meaning is further discussed in [7].

Since it is much more complicated to find the minimum of the effective potential for
a theory with multiple scalar particles, Gildener and Weinberg (GW) came up with a
new method to study the effective potential of arbitrary classically scale invariant gauge
theories [16]. But before we discuss in detail the GW analysis of the effective potential in
chapter 5, we want to derive the one-loop effective potential for a general gauge-invariant
and renormalizable Lagrangian density. For this purpose, we choose a pure functional
approach and explicitly evaluate path integrals instead of performing a diagrammatic
expansion. The lack of visualizability is compensated by the ability to apply this approach
to a much more general theory.
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ϕ

V (ϕ)

(a)

ϕ

V (ϕ)

(b)

Figure 3.5.: Illustration of the difference between the tree-level potential (a) and effective
potential at one-loop level (b).

18



4. Derivation of the Effective Potential

In section 3.4, we calculated the effective potential for a simple model with the help of
Feynman diagrams up to one-loop order and discovered that an expansion of the effective
potential in powers of ~ corresponds to a loopwise expansion. In this chapter, we choose
a slightly different approach, in which we perform a semiclassical expansion and compute
path integrals explicitly.

4.1. The Semiclassical Expansion

By analogy with chapter 3, we start with considering a simple theory with only one real
scalar field ϕ and stress that all later results are still valid for a more complex theory,
only more attention would have to be paid to the computation of the path integrals (see
appendix D). The following discussion is based on [26] and [33].

According to equation (3.1.1), the generating functional of correlation functions reads

Z[J ] =
1

N

∫
[dϕ]e

i
~

(
S[ϕ]+

∫
d4xJ(x)ϕ(x)

)
. (4.1.1)

In the classical limit, S � ~, the path integral is dominated by the classical field ϕcl(J),
given by the solution of the saddle-point equation

δS[ϕ]

δϕ

∣∣∣∣
ϕcl(J)

= −J , (4.1.2)

since an expansion of the field ϕ around this saddle-point solution,

ϕ = ϕcl +
√
~ ϕ̄ , (4.1.3)

leads to

Z[J ] =
Z̄[J ]

Z̄[0]
, (4.1.4)

with

Z̄[J ] = e
i
~(S[ϕcl]+

∫
d4xJ(x)ϕcl(x))

∫
[dϕ̄] e

i
2

∫
dx1dx2

δS[ϕ]
δϕ(x1)δϕ(x2)

∣∣∣
ϕcl

ϕ̄(x1)ϕ̄(x2)+O(
√
~)

. (4.1.5)

The linear terms vanish due to equation (4.1.2) and the contributions proportional to
√
~

are suppressed due to cancellations caused by rapidly varying phases (Method of stationary
phase). Therefore, the semiclassical solution of the path integral is given by:

Z̄[J ] ≈ e
i
~(S[ϕcl]+

∫
d4xJ(x)ϕcl(x))

∫
[dϕ̄]e

i
2

∫
dx1dx2

δ2S[ϕ]
δϕ(x1)δϕ(x2)

∣∣∣
ϕcl

ϕ̄(x1)ϕ̄(x2)

= e
i
~(S[ϕcl]+

∫
d4xJ(x)ϕcl(x)) Ĉ

Det
δ2S[ϕ]

δϕ(x1)δϕ(x2)

∣∣∣∣∣
ϕcl

− 1
2

.

(4.1.6)
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4. DERIVATION OF THE EFFECTIVE POTENTIAL

The calculation of the path integral can be found in appendix D.1.2 and the exact form of
the constant Ĉ shall not bother us here, since it gets canceled anyway (compare equation
(4.1.4)).

For the generating functional of connected correlation functions we find from equation
(3.2.1) and (4.1.6)

W [J ] = −i~ ln(Z) =

(
S[ϕcl] +

∫
d4xJ(x)ϕcl(x)− S[ϕ0

cl]

)

+
i~
2

(
ln Det

δ2S[ϕ]

δϕ(x1)δϕ(x2)

∣∣∣∣∣
ϕcl

− ln Det
δ2S[ϕ]

δϕ(x1)δϕ(x2)

∣∣∣∣∣
ϕ0
cl

)
+O(~2)

= W0(J) + ~W1(J) +O(~2) ,

(4.1.7)

where the superscript 0 indicates that the external source J is equal to zero (ϕ0
cl = ϕcl(0)).

Therefore, at tree level, the classical saddle-point solution ϕcl is indistinguishable from the
vacuum expectation value of the field in presence of the external source J :

〈ϕ̂(x)〉J =φ(x)
(3.3.7)
≈ δW0[J ]

δJ(x)
=

∫
d4y

 δS[ϕcl]

δϕcl(y)

δϕcl(y)

δJ(x)
+ J(y)

δϕcl(y)

J(x)︸ ︷︷ ︸
(4.1.2)

= 0

+ ϕcl(x) .

(4.1.8)
As a consequence, the classical field ϕ0

cl is constant for a translation-invariant theory.
With the help of the Legendre transformation and equation (3.3.1) we can now relate

W0[J ] with the tree-level effective action Γ0[φ],

W0[J ] = Γ0[φ] +

∫
d4xJ(x)φ(x)

= S[ϕcl] +

∫
d4xJ(x)ϕcl(x)− S[ϕ0

cl] ,

(4.1.9)

and find that the effective action differs from the classical action at tree level at most by
an insignificant constant term:

Γ0[φ] = S[φ]− S[φ0] . (4.1.10)

At one-loop order, we discover from an expansion of the field φ(x),

φ(x) =
δ(W0(J) + ~W1(J))

δJ(x)
= ϕcl(x) + ~φ1(x) , (4.1.11)

that we still can identify the classical field ϕcl(x) with the vacuum expectation value φ(x)
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4.1. THE SEMICLASSICAL EXPANSION

in the course of the calculation of the effective action:

Γ0[φ] + ~Γ1[φ] = W0[J ] + ~W1[J ]−
∫

d4xJ(x)φ(x)

= S[ϕcl] +

∫
d4xXXXXJ(x)ϕcl − S[ϕ0

cl]−
∫

d4J(x) (XXXXϕcl(x) + ~φ1(x))

+
i~
2

(
ln Det

δ2S[ϕ]

δϕ(x1)δϕ(x2)

∣∣∣∣∣
ϕcl

− ln Det
δ2S[ϕ]

δϕ(x1)δϕ(x2)

∣∣∣∣∣
ϕ0
cl

)

= S[φ]− ~
∫

d4x

 δS[ϕ]

δϕ(x)

∣∣∣∣∣
ϕcl

+ J(x)

φ1(x)

− S[φ0] + ~
∫

d4x
δS[ϕ]

δϕx

∣∣∣
ϕ0
cl

φ0
1(x)

+
i~
2

(
ln Det

δ2S[ϕ]

δϕ(x1)δϕ(x2)

∣∣∣∣∣
φ−~φ1

− ln Det
δ2S[ϕ]

δϕ(x1)δϕ(x2)

∣∣∣∣∣
φ0−~φ01

)

(4.1.2)
= S[φ]− S[φ0] +

i~
2

(
ln Det

δ2S[ϕ]

δϕ(x1)δϕ(x2)

∣∣∣∣∣
φ

− ln Det
δ2S[ϕ]

δϕ(x1)δϕ(x2)

∣∣∣∣∣
φ0

)
+O(~2) .

(4.1.12)

The effective action at one-loop order is then given by

Γ1[φ] =
i

2

(
ln Det

δ2S[ϕ]

δϕ(x1)δϕ(x2)

∣∣∣∣∣
φ

− ln Det
δ2S[ϕ]

δϕ(x1)δϕ(x2)

∣∣∣∣∣
φ0

)
, (4.1.13)

and, as we know from section 3.4, the relation between the effective action and the effective
potential for a constant field φc reads:

Γ0[φc] + ~Γ1[φc] = −
∫

d4x
(
V0(φc) + ~V1(φc)

)
. (4.1.14)

4.1.1. A Simple Example of the Derivation of the Effective Potential via
Semiclassical Expansion

Once again, we consider the Lagrangian density of a massless, quartically self-interacting
scalar field1,

L =
1

2
(∂ϕ0)2 − λ0

4!
ϕ4

0 , (4.1.15)

1Compare subsection 3.4.2 and remember that the subscript 0 indicates that we are dealing with bare
quantities.
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and find from equation (4.1.13) for Γ1[φ0c]
2:

Γ1[φ0c] =
i

2

(
ln Det

(−∂µ∂µ − λ0
2 φ

2
0c

−∂µ∂µ
δ4(x− y)

))

=
i

2

(
ln Det

(∫ d4k

(2π)4

k2 − λ0
2 φ

2
0c

k2
ei k(x−y)

))
.

(4.1.16)

Since we know from appendix D.1.2 that

ln Det
(
A(x− y)

)
=

∫
d4x

∫
d4k

(2π)4
ln det

(
Ã(k)

)
= Tr

∫
d4x

∫
d4k

(2π)4
ln
(
Ã(k)

)
, (4.1.17)

where

A(x− y) =

∫
d4k

(2π)4
Ã(k)ei k(x−y) , (4.1.18)

we obtain for V1(φ0c):

V1(φ0c) = − i

2
Tr

∫
d4k

(2π)4
ln

(
k2 − λ0

2 φ
2
0c

k2

)
. (4.1.19)

This integral is after a Wick rotation in agreement with the potential from (A.1.1) and
therefore, we reproduce the result from (3.4.22),

V =
λ

4!
φ4
c + ~

λ2φ4
c

256π2

(
ln

1
2λφ

2
c

Λ2
− 3

2

)
, (4.1.20)

which demonstrates that both the diagrammatic and the semiclassical approach lead to
the same effective potential.

4.2. Derivation of the Effective Potential for a General
Lagrangian Density

As discussed in detail in appendix B, a general Lorentz-invariant, gauge-invariant3 and
renormalizable Lagrangian density can be written as4 (see e.g. [34–37])

LYM = − 1

4
Fµνa Fµν,a +

1

2
(Dµϕ)i (Dµϕ)i − V0(ϕ)

+ ψ i /Dψ − 1

2

(
ωLM(ωL)c + (ωL)cM † ωL

)
,

(4.2.1)

where ϕ denotes a set of n real spinless boson fields and ψ a set of m Dirac bispinor
fields. The generalized field strength tensor Fµνα has the form

Fµνa = ∂µAνa − ∂νAµa − Λ̃
4−d
2 fajkA

µ
jA

ν
k , (4.2.2)

2φ0
0c = φ0c(J = 0) = 0.

3With respect to a direct product of SU(N) and U(1) gauge-groups.
4For the sake of simplicity we choose to work from now on with ~ = 1.
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with the totally antisymmetric structure constant fajk and s real gauge fields Aa. The
covariant derivative, acting on bosonic and fermionic fields, is defined as

(Dµϕ)i = ∂µϕi + i Λ̃
4−d
2 (θa)ik ϕkA

µ
a (4.2.3)

(Dµψ)i = ∂µψi + i Λ̃
4−d
2 (ta)ik ψkA

µ
a , (4.2.4)

and for the potential V (ϕ) we choose the most general 4th-order polynomial

V0(ϕ) = Λ̃
d−4
2 κiϕi + µikϕiϕk + Λ̃

4−d
2 ρikmϕiϕkϕm + Λ̃4−dλikmnϕiϕkϕmϕn . (4.2.5)

The vector ωL is built up by the left-handed fields5 ψL and (ψR)c,

ωL =

(
ψL

(ψR)c

)
, (4.2.6)

and the symmetric matrix M is given by

M =

[
ML + Λ̃

4−d
2 ΓL,iϕi MD + Λ̃

4−d
2 ΓD,iϕi

MT
D + Λ̃

4−d
2 ΓT

D,iϕi MR + Λ̃
4−d
2 ΓR,iϕi

]
⊗ 14×4 , (4.2.7)

where Γ{L,R,D},i labels the m×m Yukawa coupling matrices and M{L,R,D} refers to possible
explicit Dirac or Majorana mass terms in the Lagrangian density. Furthermore, the factor
Λ̃, with [Λ̃] = E, keeps the dimension of the coupling constants unchanged with respect to
d = 4 and enables us to work in d dimensions and to perform dimensional regularization
in subsection 4.2.2.

To avoid integrating over physically equivalent gauge fields in the path integral6, we
have to add a gauge-fixing term to the Lagrangian density, where we choose to work with
the t’Hooft-Rξ-Gauge [34]

LGF = −ξ
2

(
∂µA

µ
a + iΛ̃

4−d
2 ξ−1φi (θa)ik (ϕk − φk)

)2
, (4.2.8)

with the gauge parameter ξ. The corresponding Faddeev-Popov-Ghost term is then given
by [27, 38]

LFP = +Λ̃
4−d
2 (∂µχ

∗
a)fabcχbA

µ
c + ∂µχ

∗
a∂

µχa − Λ̃4−d 1

ξ
χ∗aφi (θaθb)ik ϕkχb , (4.2.9)

where χ denotes a vector of s anticommuting complex scalar ghost-fields and our whole
Lagrangian density finally reads:

L = LYM + LGF + LFP . (4.2.10)

5Therefore (ωL)c is right-handed.
6Due to the general gauge transformation Aµa(x) −→ Aµa(x)− ∂µαa(x) + fabcA

µ
b (x)αc(x) (see (B.1.3)),

all gauge fields of the form Aµa(x) = ∂µαa(x)− fabcAµb (x)αc(x) are equivalent to Aµa(x) = 0.
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4.2.1. Semiclassical Expansion of the General Lagrangian Density

We want to apply the semiclassical approach to the general Lagrangian density (4.2.1)
and perform an expansion of the fields around their saddle-point solutions (see (4.1.2)):

ϕ(x) = ϕcl(x) + ϕ′(x)

A(x) = Acl(x) +A′(x)

χ(x) = χcl(x) + χ′(x)

ψ(x) = ψcl(x) + ψ′(x) .

(4.2.11)

As we just demonstrated, up to one-loop level, the saddle-point solutions can be identified
with the vaccuum expectation values in presence of an external source and for translation
invariant theories, it is justified to assume them to be constant in the progress of the
derivation of the effective potential. Furthermore, to avoid breaking of Lorentz symmetry,
we claim that only scalar fields can acquire a nonzero VEV and hence, we get

ϕcl(x) = φ(x) = φc , (4.2.12)

as well as
∂µφc = Acl = χcl = ψcl = 0 . (4.2.13)

Therefore, we can write the classical action in the presence of external fields7 up to order
one as

SJ [ϕ,A,ψ,χ] :=

∫
ddx
(
LYM+Jiϕi+fµaA

µ
a+χ∗aεa+χaε

∗
a+ηψ+ψη+ηcψc+ψcηc

)
=

∫
ddx (−V (φc) + Jiφc,i)︸ ︷︷ ︸

SJcl

+
(
Sϕ′ + SA′ + Sψ′ + Sχ′

)
, (4.2.14)

where the fields decouple8 and the various parts read:

• Scalar term Sϕ′ :

Sϕ′ = −
∫

ddx
1

2
ϕ′

T
(
1n×n∂

2 +
1

ξ
Λ̃4−dθaφcφ

T
c θa +M2

ϕ

)
︸ ︷︷ ︸

Kϕ=KT
ϕ

ϕ′

(4.2.15)

with

(M2
ϕ)ik =

∂2V0(ϕ)

∂ϕi∂ϕk

∣∣∣∣∣
ϕ=φc

(4.2.16)

7Since we are only interested in the derivation of the effective potential and the calculation of the scalar
VEV, we could have set all external fields, except for J(x), equal to zero right from the beginning. They
are only of importance for the computation of correlation functions.

8The mixture term between scalar and gauge fields cancel due to our choice of the gauge fixing condition.
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• Gauge term SA′ :

SA′ =

∫
ddx

1

2
A′µ,a

[
δab g

µν∂2 − δab(1− ξ)∂µ∂ν + gµν(M2
A)ab

]
A′ν,b

=−1

2

∫
ddx A′T

(
−1⊗ g ∂2+ 1⊗ (g ∂∂T g) · (1−ξ)−M2

A⊗ g
)︸ ︷︷ ︸

KA=KT
A

A′
(4.2.17)

with
(M2

A)ab = Λ̃4−dφc,i(θaθb)ijφc,j (4.2.18)

• Ghost term Sχ′ :

Sχ′ =

∫
ddx χ′

∗
a

[
−δab∂2 − 1

ξ
(M2

A)ab

]
χ′b

=

∫
ddx χ′

†
[
−1s×s∂2 − 1

ξ
M2
A

]
︸ ︷︷ ︸

Kχ=K†χ

χ′ (4.2.19)

• Fermionic term Sψ′ :

Sψ′=−
1

2

∫
ddx ω′

T
(1⊗ C−1)

[
I ⊗ i/∂ −Mψ ⊗ PL −

(
IM †ψI

)
⊗PR

]
︸ ︷︷ ︸

Kψ=−KT
ψ

ω′

(4.2.20)

with

ω′ =

(
ψ′

ψ′c

)
, I =

[
0 1

1 0

]
, (4.2.21)

and

Mψ =

[
ML + Λ̃

4−d
2 ΓL,iφc,i MD + Λ̃

4−d
2 ΓD,iφc,i

MT
D + Λ̃

4−d
2 ΓT

D,iφc,i MR + Λ̃
4−d
2 ΓR,iφc,i

]
. (4.2.22)

We can now easily write down the semiclassical expansion of the generating functional

Z[J ] =

∫
[dϕ′][dA′][dω′][dχ′][dχ′∗] exp

[
iSJcl + i

(
Sϕ′ + SA′ + Sψ′ + Sχ′

)]
∫

[dϕ′][dA′][dω′][dχ′][dχ′∗] exp
[
iSJ=0

cl + i
(
S0
ϕ′ + S0

A′ + S0
ψ′ + S0

χ′

)] , (4.2.23)

where the superscript zero in the denominator reveals that the terms are evaluated at
φ0

c = φc(J = 0). Solving the above Gaussian integrals (see appendix D and especially
(D.1.23),(D.2.24) and (D.2.26)) leads to

Z = ei(S
J
cl−S

J=0
cl )Det

(
K0
A

KA

) 1
2

·Det

(
K0
ϕ

Kϕ

) 1
2

·Det

(
Kψ

K0
ψ

) 1
2

·Det

(
Kχ

K0
χ

)
. (4.2.24)

Again, we can express the generating functional Z through the connected generating
functional W and a loop expansion,

Z[J ] = eiW [J ] = eiW0[J ]eiW1[J ] . . . , (4.2.25)
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helps us to find (compare (D.1.25), (D.2.25) and (D.2.26)):

W0[J ] = SJcl − SJ=0
cl

W1[J ] = i

∫
ddx

∫
ddk

(2π)d

[
1

2

(
ln detK̂A(k)− ln detK̂0

A(k)
)

+
1

2

(
ln detK̂ϕ(k)− ln detK̂0

ϕ(k)
)

− 1

2

(
ln detK̂ψ(k)− ln detK̂0

ψ(k)
)

−
(

ln detK̂χ(k)− ln detK̂0
χ(k)

)]
.

(4.2.26)

4.2.2. Explicit Calculation of the Effective Potential

We want to solve these decoupled integrals separately and start with the

I: Scalar field term

Wϕ :=
i

2

∫
ddx

∫
ddk

(2π)d

(
ln detK̂ϕ(k)− ln detK̂0

ϕ(k)
)
. (4.2.27)

Since the determinant can be rewritten as9

detK̂ϕ(k) = det
(
− 1 · (k2 + i0+) +Dϕ

)
= (−k2 − i0+)n · det

(
1− Dϕ

k2 + i0+

)
,

(4.2.28)

where the diagonal matrix D is given by

Dϕ = P−1
ϕ

(
1

ξ
Λ̃4−dθaφcφ

T
c θa +M2

ϕ

)
Pϕ , (4.2.29)

we get

Wϕ =
i

2

∫
ddx

∫
ddk

(2π)d

(
ln det

(
1− Dϕ

k2 + i0+

)
− ln det

(
1−

D0
ϕ

k2 + i0+

))
.

(4.2.30)
If we further perform a Wick rotation and make use of the identity

ln detA = Tr lnA , (4.2.31)

9The appearance of +i0+ is explained in appendix D.1.2 and enables us to perform the Wick rotation.
Afterwards it is safe to set it to zero, i0+ → 0.
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the integral reads:

Wϕ = −1

2

∫
ddx

∫
ddkE
(2π)d

(
ln det

(
1+

Dϕ

k2
E − i0+

)
− ln det

(
1+

D0
ϕ

k2
E − i0+

))

= −1

2
Tr

∫
ddx

∫
ddkE
(2π)d

(
ln

(
1+

Dϕ

k2
E

)
− ln

(
1+

D0
ϕ

k2
E

))

= −1

2

n∑
i=1

∫
ddx

∫
ddkE
(2π)d

(
ln

(
1 +

(Dϕ)ii
k2
E

)
− ln

(
1 +

(D0
ϕ)ii

k2
E

))
(A.1.5)

= −1

�2

n∑
i=1

∫
ddx

�2

d

Γ(1− d
2)

(4π)
d
2

(
(Dϕ)

d
2
ii − (D0

ϕ)
d
2
ii

)

= −
∫

ddxTr

[
1

d

Γ(1− d
2)

(4π)
d
2

((
1

ξ
Λ̃4−dθaφcφ

T
c θa +M2

ϕ

)d
2

−
(

1

ξ
Λ̃4−dθaφ

0
cφ

0
c

T
θa+M0

ϕ
2
)d

2

)]
.

(4.2.32)
For d = 4− 2ε dimensions we can expand the above expression in powers of ε,

1

4− 2ε

1

(4π)2−ε Γ(−1 + ε) A2−ε =

=
1

64π2

(
1+

ε

2

)
(1+ε ln4π)

(
−1

ε
+ γE − 1 +O(ε)

)
Λ̃−2ε Λ̃2ε︸︷︷︸

1+ε lnΛ̃2

A2 (1− ε lnA) +O(ε)

=
1

64π2

[(
− 1

ε
− 3

2

)
Λ̃−2εA2 +A2 ln

A

Λ2

]
+O(ε) ,

(4.2.33)
where γE denotes the Euler–Mascheroni constant and with Λ̃2 = Λ2 · eγE−ln(4π).
Therefore, in the MS-scheme the counter term reads

CTϕ=Λ̃−2ε

(
1

ε

)[(
1

ξ
Λ̃2εθaφcφ

T
c θa +M2

ϕ

)2

−
(

1

ξ
Λ̃2εθaφ

0
cφ

0
c

T
θa +M0

ϕ
2
)2
]
,

(4.2.34)
and the limit ε→ 0 yields:

Wϕ=− 1

64π2

∫
d4xTr

[(
1

ξ
θaφcφ

T
c θa +M2

ϕ

)2

·

(
ln

(
1
ξ θaφcφ

T
c θa +M2

ϕ

Λ2

)
− 3

2

)

−
(

1

ξ
θaφ

0
cφ

0
c

T
θa +M0

ϕ
2
)2

·

(
ln

(
1
ξ θaφ

0
cφ

0T
c θa +M02

ϕ

Λ2

)
− 3

2

)
− CTϕ

]
.

(4.2.35)
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Since the integral of the

II: Ghost field term

Wχ :=−i

∫
ddx

∫
ddk

(4π)d

[
ln det

(
1− ξ−1MA

2

k2 + i0+

)
− ln det

(
1−

ξ−1M0
A

2

k2 + i0+

)]
,

(4.2.36)
has the exact same structure as the scalar part (4.2.27) we can immediately write
down the result

Wχ=
2

64π2

∫
d4xTr

[
1

ξ2
MA

4 ln

(
MA

2

ξ Λ2
− 3

2

)
− 1

ξ2
M0
A

4
ln

(
M0
A

2

ξ Λ2
− 3

2

)
−CTχ

]
,

(4.2.37)
with

CTχ = Λ̃−2ε 1

ε

1

ξ2

[
MA

4 −M0
A

4
]
. (4.2.38)

Next, we consider the

III: Gauge field term

WA :=
i

2

∫
ddx

∫
ddk

(2π)d

(
ln detK̂A(k)− ln detK̂0

A(k)
)
, (4.2.39)

with

K̂A(k) =

(
1s×s⊗g

)(
1s×s⊗k2

1d×d−(1−ξ) ·1s×s⊗ kkTg−M2
A⊗1d×d

)
. (4.2.40)

The d×d dimensional matrix kkTg has one eigenvector k̂ ‖ k with eigenvalue k2 and
d− 1 eigenvectors k̃ ⊥ k with eigenvalue 0. Hence, we can find a matrix PA,

PA =

(
PMs×s ⊗ P kd×d

)
, (4.2.41)

with

PMs×sDA

(
PMs×s

)−1
= M2

A and P kd×d diag
(
k2, 0, . . . , 0

)
(P kd×d)

−1 = kkTg (4.2.42)

such that

K̂A(k) =

(
1s×s ⊗ g

)
PA

1s×s ⊗ (k2 + i0+)


ξ

1
. . .

1

−DA ⊗ 1d×d

P−1
A

=

(
1s×s ⊗ g

)
PA

1s×s ⊗ (k2 + i0+)


ξ

1
. . .

1




·

1s×s ⊗ 1d×d − 1

k2 + i0+
DA ⊗


1
ξ

1
. . .

1


P−1

A ,

(4.2.43)
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where we again have displayed the +i0+ term in the last equation. The diago-
nalization matrix PA does not play any role in the course of the derivation of the
determinant and since K̂A(k) and K̂0

A(k) both exhibit the same factor

(
1s×s ⊗ g

)
·

1s×s ⊗ (k2 + i0+)


ξ

1
. . .

1


 , (4.2.44)

they cancel each other out. Therefore, after a Wick rotation and applying the
identity (4.2.31) we are left with:

WA = −1

2
Tr

∫
ddx

∫
ddkE
(2π)d

[
ln

1s×s ⊗ 1d×d +
1

k2
E

DA ⊗


1
ξ

1
.

1




− ln

1s×s ⊗ 1d×d +
1

k2
E

D0
A ⊗


1
ξ

1
.

1



]

= −1

2

s∑
i=1

∫
ddx

∫
ddkE
(2π)d

[
ln

(
1 +

1
ξ (DA)ii

k2
E

)
+(d−1)·ln

(
1 +

(DA)ii
k2
E

)

− ln

(
1 +

1
ξ (D0

A)ii

k2
E

)
+(d−1)·ln

(
1 +

(D0
A)ii
k2
E

)]
.

(4.2.45)
By analogy with the above calculations we find in the MS-scheme

CTA = Λ̃−2ε 1

ε

[(
3 +

1

ξ2

)(
MA

4 −M0
A

4
)]

, (4.2.46)

and for ε→ 0:

WA = − 1

64π2

∫
d4x Tr

[
M4
A

(
3 ·
(

ln
M2
A

Λ2
− 5

6

)
+

1

ξ2

(
ln
ξ−1M2

A

Λ2
− 3

2

))

−M0
A

4

(
3 ·

(
ln
M0
A

2

Λ2
− 5

6

)
− 1

ξ2

(
ln
ξ−1M0

A
2

Λ2
+

3

2

))
− CTA

]
.

(4.2.47)

The last missing part is the

IV: Fermion field term

Wψ :=− i

2

∫
ddx

∫
ddk

(4π)d

[
Tr ln

(
12n×2n⊗14×4+A

)
−Tr ln

(
12n×2n⊗14×4+A0

)]
,

(4.2.48)
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with

A =

[
0 1

1 0

]
Mψ ⊗

/k

k2 + i0+
PL +M †ψ

[
0 1

1 0

]
⊗

/k

k2 + i0+
PR , (4.2.49)

where we already have canceled the factor

(
12n×2n ⊗ C−1

)([0 1

1 0

]
⊗−/k

)
, (4.2.50)

and made use of equation (4.2.31). Since the trace of an odd number of gamma
matrices vanishes,

Tr
(
γ1...γ2n+1

)
= Tr

(
γ1...γ2n+1γ5γ5

)
(C.1.4)

= −Tr
(
γ5γ1...γ2n+1γ5

)
= −Tr

(
γ1...γ2n+1

)
= 0 ,

(4.2.51)

and we know that (see appendix C.3)

PLPR = PRPL = 0

TrPL = TrPR = 2

P 2
L = PL

P 2
R = PR ,

(4.2.52)

we find for the trace of the logarithm

Tr ln
(
1+A

)
= Tr

∞∑
l=1

(−1)l+1A
l

l
= Tr

∞∑
l=1

(−1)2l+1 (A2)l

2l

= Tr

∞∑
l=1

(−1)2l+1

2l

(
1

k2 + i0+

([
0 1

1 0

]
MψM

†
ψ

[
0 1

1 0

]
⊗ PR +M †ψMψ ⊗ PL

))l

= 2 · Tr

∞∑
l=1

(−1)l+1

l

(
− 1

k2 + i0+
MψM

†
ψ

)l
= 2 · Tr ln

(
1−

MψM
†
ψ

k2 + i0+

)
.

(4.2.53)

Therefore, we have reduced our integral to the meanwhile well known form

Wψ = −i
∫

ddx

∫
ddk

(4π)d

[
ln det

(
1−

MψM
†
ψ

k2 + i0+

)
− ln det

(
1−

M0
ψM

0
ψ
†

k2 + i0+

)]
,

(4.2.54)
and thus we get

Wψ =
2

64π2

∫
d4x Tr

[(
MψM

†
ψ

)2
ln

(
MψM

†
ψ

Λ2
− 3

2

)

−
(
M0
ψM

0
ψ
†
)2

ln

(
M0
ψM

0
ψ
†

Λ2
− 3

2

)
− CTψ

]
,

(4.2.55)
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with

CTψ = Λ̃−2ε 1

ε

[(
MψM

†
ψ

)2
−
(
M0
ψM

0
ψ
†
)2
]
. (4.2.56)

With the help of equation (3.4.2) we can now finally write down the effective potential at
one-loop order as10

V (φc)=V0(φc)+
1

64π2
Tr

[(
1

ξ
θaφcφ

T
c θa +M2

ϕ

)2

·

(
ln

(
1
ξ θaφcφ

T
c θa+M2

ϕ

Λ2

)
− 3

2

)

+M4
A

(
3 ·
(

ln
M2
A

Λ2
− 5

6

)
− 1

ξ2

(
ln
ξ−1M2

A

Λ2
− 3

2

))
− 2 ·

(
MψM

†
ψ

)2
ln

(
MψM

†
ψ

Λ2
− 3

2

)]
+ const.+ CT ,

(4.2.57)
where the counterterm CT is given by:

CT =
1

64π2
Tr
[
− CTϕ − CTA + 2CTχ + 2CTψ

]
. (4.2.58)

This effective potential is for Dirac fermions11 and in Landau gauge (ξ → ∞), up to a
different choice of renormalization schemes, in perfect agreement with the result found in
[16].

10The derivation of this general effective potential for a general Rξ gauge was done in cooperation with
M. Fink and thus can also be found in his master’s thesis [39].

11For Dirac fermions (ML = MR = 0) the eigenvalues of the 2m× 2m mass matrix MψM
†
ψ degenerate

and the trace delivers an extra factor of 2.
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5. The Gildener-Weinberg Approach

To be able to determine the minimum of the effective potential for theories with an arbi-
trary number of massless scalar particles, E.Gildener and S.Weinberg came up with a new
efficient method to explore SSB in such classically scale invariant theories. Since we want
to apply this Gildener-Weinberg approach to a SU(2)-extension of the Standard Model in
the next section, we give a short review of their work, based on their paper [16].

We consider a general, classically scale invariant and renormalizable gauge theory with
n weakly-coupled real scalar fields ϕi. The tree-level potential is then given by

V0(ϕ) =
1

24
λiklmϕiϕkϕlϕm . (5.0.1)

Since the coupling constant λiklm, which we assume to be totally symmetric, depends on
the renormalization scale Λ, λiklm = λiklm(Λ), we can choose Λ = ΛGW such that the
potential V0 possesses a nontrivial minimum along some ray ϕflat

i = niσ (Figure 5.1).

(a) Tree-level potential for arbitrary Λ (b) Tree-level potential for Λ = ΛGW

Figure 5.1.: Illustration of the appearance of a flat direction for the right choice of the
renormalization scale - here for a theory with 2 real scalar fields.

To find this special direction we claim that the effective potential has to fulfill the following
condition for its minimum on the unit sphere:

min
NjNj=1

(
λiklm(ΛGW)NiNkNlNm

)
= 0 . (5.0.2)

Therefore, if the potential V0(N) is equal to zero for a unit vector Ni = ni, the potential
is also zero along the ray ϕflat

i = niσ, which gives the flat direction of Figure 5.1. The
Gildener-Weinberg condition (5.0.2) puts one single constraint on the coupling constants
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5. THE GILDENER-WEINBERG APPROACH

and enables us to trade a dimensionless coupling constant for the dimensionful Gildener-
Weinberg scale ΛGW. This phenomenon is known as dimensional transmutation and is, as
described in [7], a general feature of SSB in classically scale invariant theories .

To ensure that the flat direction defines a minimum of the tree-level potential, we have
to claim that the Hessian matrix P is positive semidefinite:

Pikuiuk =
∂2V0(ϕ)

∂ϕi∂ϕk

∣∣∣∣∣
ϕ=n

uiuk =
1

2
λiklm(ΛGW)uiuknknl ≥ 0 , ∀u . (5.0.3)

Furthermore, higher order contributions δV to the zero-loop potential V0 lead to a small
curvature in the flat direction, which produces a distinct minimum, and to a small shift
δϕi of this minimum in the direction of ϕi. Therefore, the extremum is defined by

0 =

[
∂

∂ϕi

(
V0(ϕ) + δV (ϕ)

)]
n〈σ〉+δϕ

, (5.0.4)

which reads at one-loop order1

0 = Pikδϕk 〈σ〉2 +
∂V1(ϕ)

∂ϕi

∣∣∣∣∣
n〈σ〉

. (5.0.5)

In the last line we made use of the fact that n is an eigenvector of Pik with eigenvalue 0,

Piknk = 0 , (5.0.6)

since a necessary condition for the minimum in the direction of n is just:

λiklm(ΛGW)nknlnm = 0 . (5.0.7)

For a gauge symmetry with the infinitesimal transformation law

ϕ→ ϕ+ iε αaΘa ϕ , (5.0.8)

each broken generator, Θan 6= 0, corresponds to a massless Goldstone boson and delivers
another eigenvector of P with eigenvalue zero (Goldstone’s theorem [40]):

Pik (Θn)k = 0 . (5.0.9)

We can now make use of equation (5.0.6) and contract equation (5.0.5) with ni to find
a condition, which determines 〈σ〉:

0 = ni
∂V1(ϕ)

∂ϕi

∣∣∣∣∣
n〈σ〉

=
∂V1(nσ)

∂σ

∣∣∣∣∣
〈σ〉

. (5.0.10)

The one-loop effective potential (in Landau gauge) along the ray ϕflat = nσ can be written
in a very compact way as (compare equation (4.2.57))2

V1(nσ) = Aσ4 +B σ4 ln

(
σ2

Λ2
GW

)
, (5.0.11)

1δV = V1 + V2 + . . .
2We ignore possible constant terms and postpone the discussion of the counterterms and renormaliza-

tion to the next chapter.
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with the dimensionless constants

A =
1

64π2 〈σ〉4
Tr

[
m4
ϕ

(
ln

(
m2
ϕ

〈σ〉2
− 3

2

))
+ 3m4

A

(
ln

(
m2
A

〈σ〉2
− 5

6

))

−2
(
mψm

†
ψ

)2
(

ln

(
mψm

†
ψ

〈σ〉2
− 3

2

))]
,

(5.0.12)

and

B =
1

64π2 〈σ〉4
Tr

[
m4
ϕ + 3m4

A − 2
(
mψm

†
ψ

)2
]
. (5.0.13)

The matrices mϕ, mA and mψ are the tree-level mass matrices of the scalar bosons, gauge
bosons and fermions3,

(
m2
ϕ

)
ik

=
(
M2
ϕ

)
ik

∣∣∣∣∣
n〈σ〉

(4.2.16)
=

∂2V0(ϕ)

∂ϕi∂ϕk

∣∣∣
n〈σ〉(

m2
A

)
ab

=
(
M2
A

)
ab

∣∣∣
n〈σ〉

(4.2.18)
= ni (ΘaΘb)ik nk 〈σ〉

2

mψ = Mψ

∣∣∣
n〈σ〉

(4.2.22)
=

[
ΓL,ini ΓT

D,ini
ΓD,ini ΓR,ini

]
· 〈σ〉 ,

(5.0.14)

and hence, we can write the constant B as a sum over all tree-level masses m̂h, m̂g and
m̂f of scalar bosons, gauge bosons and fermions respectively:

B =
1

64π2 〈σ〉4

[∑
h

m̂4
h + 3

∑
g

m̂4
g −

∑
f

cfm̂
4
f

]
. (5.0.15)

For Dirac fermions (ΓL = ΓR = 0) the eigenvalues of the mass matrix degenerate and
therefore the factor cf is 4 for Dirac fermions and 2 for Majorana fermions.

A stationary point of the potential, see equation (5.0.10), is given by the condition

ln

(
〈σ〉2

Λ2
GW

)
= −1

2
− A

B
, (5.0.16)

and as long as ln
(
〈σ〉2
Λ2
GW

)
is of order unity, perturbation theory should be valid [16]. Since

the one-loop potential is not bounded from below for B < 0 and purely quartic for B=0,
we have to require that

B > 0 . (5.0.17)

Furthermore, it is not hard to show that the value of the potential at this nontrivial
stationary point is smaller than its value at the origin V (0) = 0:

V (n〈σ〉)=V1(n〈σ〉) = A 〈σ〉4+B 〈σ〉4 ln

(
〈σ〉2

Λ2
GW

)
(5.0.16)

= −1

2
B 〈σ〉4 < 0 . (5.0.18)

3We are dealing with a classically scale invariant theory and therefore, explicit fermion mass terms are
forbidden.
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Since the squared masses of the scalar bosons at tree level are just the eigenvalues of
the matrix

(m2
ϕ)ik =

∂2V0(ϕ)

∂ϕiϕk

∣∣∣∣∣
n〈σ〉

= Pik 〈σ〉2 , (5.0.19)

we immediately see from equation (5.0.6) and (5.0.9) that we find at zero-loop order -
apart from a set of massive bosons corresponding to positive eigenvalues of m2

ϕ and a set
of massless Goldstone bosons - one extra massless scalar boson, the scalon [16].

If we consider the one-loop contributions to the mass matrix

(
m2
ϕ + δm2

ϕ

)
ik

=
∂2 (V0(ϕ) + V1(ϕ))

∂ϕi∂ϕk

∣∣∣∣∣
n〈σ〉+δϕ

, (5.0.20)

we find at one-loop order:

(
δm2

ϕ

)
ik

= λiklm nl 〈σ〉 δϕm +
∂2V1(ϕ)

∂ϕi∂ϕk

∣∣∣∣∣
n〈σ〉

. (5.0.21)

As long as δm2
ϕ is only a small perturbation compared to m2

ϕ, the positive eigenvectors of
m2
ϕ remain positive at higher orders and if we assume that the effective potential is still

invariant under Θ at higher loop orders, the Goldstone bosons stay massless.
The squared mass of the scalon at one-loop order is just the eigenvalue of the mass

matrix m2
ϕ + δm2

ϕ with respect to the eigenvector ni + δϕi and given by:

m2
s = (ni + δϕi)

Pik 〈σ〉2 + λiklm nl 〈σ〉 δϕm +
∂2V1(ϕ)

∂ϕi∂ϕk

∣∣∣∣∣
n〈σ〉

 (nk + δϕk)

(5.0.6)
= nink

∂2V1(ϕ)

∂ϕiϕk

∣∣∣∣∣
n〈σ〉

=
∂2V1(nσ)

∂2σ

∣∣∣∣∣
〈σ〉

(5.0.16)
= 8B 〈σ〉2 .

(5.0.22)

Therefore, we found that the scalon becomes massive at one-loop order4, where its mass
is determined by the tree-level masses of the other particles contained in the theory under
consideration:

m2
s =

1

8π2 〈σ〉2

[∑
h

m̂4
h + 3

∑
g

m̂4
g − 2

∑
f

cfm̂
4
f

]
. (5.0.23)

As long as the negative fermion contributions are compensated by the other particle masses
(or simpler, as long as B > 0), all eigenvalues are positive-definite and the zero-loop result,
that n 〈σ〉+ δϕ is a local minimum, is still valid at one-loop order.

4For that reason we call the scalon a pseudo-Goldstone boson.
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6. Classically Scale Invariant Extensions of
the Standard Model

If we trust in classical scale invariance as a guiding principle of model building, it might
be tempting to apply the GW approach to the classically scale invariant version of the
well-investigated Standard Model (SU(3)c× SU(2)L× U(1)Y), which is simply achieved by
getting rid of the imaginary scalar mass term −µ2H†H in the Lagrangian density.

6.1. The Classically Scale Invariant Standard Model

The classically scale invariant Lagrangian density reads1 (see e.g. [36, 37])

LSM =− 1

4
W a
µνW

a,µν − 1

4
GAµνG

A,µν − 1

4
BµνB

µν

+ iQL /DQL + i uR /DuR + i dR /DdR

+ i L /DL+ i lR /D lR + (DµH)† (DµH)− VSM

−QLΓ
(d)
D DRH −QLΓ

(u)
D UR (iτ2H

∗) + h.c.

− LΓ
(l)
D lRH + h.c. ,

(6.1.1)

with the CSI tree-level potential:

VSM =
λ

4

(
H†H

)2
. (6.1.2)

The complex scalar field H denotes the Higgs doublet

H =
1√
2

(
h1 + ih2

h3 + ih4

)
, (6.1.3)

and the quark and lepton fields are defined as

QL =



(
u
d

)
L(

c
s

)
L(

t
b

)
L

 , UR =

uR

cR

tR

 , DR =

dR

sR

bR

 , L =



(
νe
e−

)
L(

νµ
µ−

)
L(

ντ
τ−

)
L

 , lR =

e−Rµ−R
τ−R

 ,

(6.1.4)
where the quark fields transform as triplets with respect to SU(3)c

2. The weak isospins
and weak hypercharges (T, Y ) of these fields can be found in Table 6.1 and the electric

1We simplify our notation a little bit and do not explicitly display the Dirac structure of the fermions
anymore.

2e.g. u := (ur ug ub).
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Fields (T, Y )

QLi ∼
(

1
2 ,

1
3

)
URi ∼

(
0, 4

3

)
DRi ∼

(
0,−2

3

)
Li ∼

(
1
2 ,−1

)
lRi ∼ (0,−2)
H ∼

(
1
2 , 1
)

Table 6.1.: Weak isospin and weak hypercharge.

charge is then given by

Q = T3 +
Y

2
. (6.1.5)

The covariant derivative can be written as

Dµ = ∂µ + igs
TA
2
GµA + ig

Ta
2
Wµ
a + ig′

Y

2
Bµ , (6.1.6)

where GµA labels the eight gluon gauge fields and Wµ
a and Bµ denote the four electroweak

gauge bosons. The generators TA are the Gell-Mann matrices λA when applied to SU(3)c

triplets and zero otherwise, the generators Ta are the Pauli matrices τa for SU(2)L doublets
and equal to zero for SU(2)L singlets. Furthermore, the field strength tensors are defined
by

GAµν = ∂µG
A
ν − ∂νGAµ − igsf

ABCGBµG
C
ν ,

W a
µν = ∂µW

a
ν − ∂νW a

µ − ig εabcAbµA
c
ν ,

Bµν = ∂µBν − ∂νBµ ,
(6.1.7)

and Γ
(d)
D , Γ

(u)
D and Γ

(l)
D label the complex 3× 3 Yukawa matrices.

6.1.1. Tree-Level Masses

If we assume that the Higgs field acquires a vacuum expectation value of the form

〈H〉 =
1√
2

(
0
〈h3〉

)
=

v√
2

(
0
1

)
, (6.1.8)

we obtain the following gauge boson mass term from the kinetic scalar term:

L(g)
m =

v2

8

[
g2 (Aµ1 + iAµ2 ) (Aµ1 − iAµ2 ) +

(
g′Bµ − gAµ2

)2]
. (6.1.9)

The mass eigenstates are then given by

W±µ =
W1µ ∓ iW2µ√

2(
Aµ
Zµ

)
=

[
cos θW sin θW
− sin θW cos θW

](
Bµ
W3µ

)
, (6.1.10)

where θW labels the Weinberg angle,

cos θW =
g√

g2 + g′2
, (6.1.11)
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and the corresponding masses are

M2
W =

1

4
g2v2 and M2

Z =
1

4

(
g2 + g′

2
)
v2 . (6.1.12)

The Yukawa generated Dirac mass term for the leptons read

L(l)
D = −lL

v√
2

Γ
(l)
D lR + h.c. , (6.1.13)

and after a suitable unitary transformation,

U
(l)
R lR = l′R

U
(l)
L L = L′ ,

(6.1.14)

where l′R and L′ denote the mass eigenfields, the diagonalized leptonic mass matrix is given
by:

M
(l)
D = U

(l)
L

v√
2

Γ
(l)
D U

(l)
R

†
= diag(me,mµ,mτ ) . (6.1.15)

If we rewrite the Lagrangian density in terms of these leptonic mass eigenstates, all the
unitary transformation matrices cancel and thus no interactions between different gener-
ations of leptons appear.

Furthermore, we find by analogy with the leptonic case for quark fields

L(q)
D = −DL

v√
2

Γ
(d)
D DR − UL

v√
2

Γ
(u)
D UR + h.c. , (6.1.16)

and introducing the mass eigenstates

V
(d)

R DR = D′R

V
(d)

L DL = D′L

V
(u)

R UR = U ′R

V
(u)

L UL = U ′L ,

(6.1.17)

yields the diagonalized quark mass matrices:

M
(u)
D = V

(u)
L

v√
2

Γ
(u)
D V

(l)
R

†
= diag(mu,mc,mt)

M
(d)
D = V

(d)
L

v√
2

Γ
(d)
D V

(d)
R

†
= diag(md,ms,mb) .

(6.1.18)

This time, rewriting the Lagrangian density with the help of the quark mass eigenfields
leads to the CP-violationg term

g√
2
γµW+

µ U ′L V
(u)

L

†
V

(d)
L︸ ︷︷ ︸

VCKM

D′L + h.c. , (6.1.19)

where VCKM labels the unitary Cabibbo-Kobayashi-Maskawa matrix [41, 42], and thus
transitions between different generations of quark fields can occur.
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6.1.2. Scalon Mass

Since the SM Higgs boson, h3 := hSM, is the only massive scalar particle of such a theory,
it is clear that we have to identify it with the scalon. Therefore, at tree level massless, it
should acquire its mass (125.09 GeV) by radiative corrections at one-loop order3:

(125.09GeV)2 !
= m2

s = 8B 〈σ〉2 =
1

8π2 〈σ〉2

[
3 ·
(
2 ·M4

W +M4
Z

)
− 4 · 3 ·m4

t︸ ︷︷ ︸
−(318 GeV)4

]
< 0 .

(6.1.20)
Obviously, this result is in contradiction to the requirement B > 0 for finding a minimum
of the potential and we are not able to reproduce the experimentally measured Higgs
mass. Hence, a classically scale invariant version of the SM is clearly excluded by mass
measurements.

The failure of this reduced Standard Model is caused by the dominating top quark mass.
Nevertheless, this negative fermionic contribution could be compensated by additional
scalars (extended Higgs sector) and/or gauge bosons (extended gauge group).

Out of the vast amount of possible classically scale invariant extentions of the SM, we
choose to concentrate on a nonabelian extension (see for example [8–14]) for the following
discussion. There, we first introduce an extra SU(2) gauge group, as well as a correspond-
ing scalar doublet, and add a real scalar singlet in a second step to be able to implement
the seesaw mechanism and to explain nonzero neutrino masses.

6.2. A Classically Scale Invariant SU(2) Extension of the
Standard Model

We consider the classically scale invariant version of the SM from above and extend the
SM gauge group GSM by an additional SU(2)X symmetry,

SU(3)c × SU(2)L ×U(1)Y −→ SU(3)c × SU(2)X × SU(2)L ×U(1)Y , (6.2.1)

under which all the SM particles act like singlets. Furthermore, we introduce a new scalar
boson Φ as a doublet with respect to SU(2)X, which transforms trivially under GSM. Hence,
the whole Lagrangian density is given by4

L = L′SM −
1

4
XµνX

µν +
(
D̃µΦ

)† (
D̃µΦ

)
− V0(Φ, H) , (6.2.2)

with

Φ =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
and H =

1√
2

(
h1 + ih2

h3 + ih4

)
. (6.2.3)

The covariant derivative has the form

D̃µΦi = ∂µΦi + igxX
µ
a

(τa)ik
2

Φk , (6.2.4)

3The factor 3 in front of the top quark mass arises from the three different color charges and all the
other fermion masses are neglected due to their smallness. The particle masses can be found in Table 2.1.

4We define LSM = L′SM − VSM.
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with the new coupling constant gx and the SU(2)x related gauge fields5 Xa, and the
corresponding field strength tensor Xµν is defined by

Xµν = ∂µXν
a − ∂νXµ

a − gxεabcX
µ
b X

ν
c . (6.2.5)

The classically scale invariant potential reads

V0(Φ, H) = λφ

(
Φ†Φ

)2
+ λH

(
H†H

)2
− 2λp

(
Φ†Φ

)(
H†H

)
, (6.2.6)

where λφ, λH and λp denote dimensionless and real6 coupling constants and since the field
Φ interacts with the Standard Model only via the mixing term −2λp

(
Φ†Φ

)(
H†H

)
, this

interaction is sometimes referred to as Higgs portal.
We can decompose the two complex scalar doublets into their real components,

Φ̃ =


φ1

φ2

φ3

φ4

 and H̃ =


h1

h2

h3

h4

 , (6.2.7)

or

ϕ =

(
Φ̃

H̃

)
, (6.2.8)

and rewrite the potential as

V0(Φ̃, H̃) =
1

4
λφ

(
Φ̃iΦ̃i

)2
+

1

4
λH

(
H̃iH̃i

)2
− 1

2
λp

(
Φ̃iΦ̃i

)(
H̃kH̃k

)
, (6.2.9)

which enables us to apply the Gildener-Weinberg approach, as described in the last chap-
ter.

Firstly, we realize that we can use the SU(2) and SU(2)X symmetry to restrict the flat
direction of the tree-level potential to the plane

ϕflat = nσ =



0
0
n1

0
0
0
n2

0


· σ =̂

(
n1

n2

)
· σ , (6.2.10)

so that we are able to simplify the above potential along this flat direction to

V0(ϕflat) ∝ 1

4
λφn

4
1 +

1

4
λHn

4
2 −

1

2
λpn

2
1n

2
2 . (6.2.11)

From equation (5.0.2) follows that the conditions

I : λφ (ΛGW)n2
1 −λp (ΛGW)n2

2 = 0

II : λH (ΛGW)n2
2 −λp (ΛGW)n2

1 = 0
(6.2.12)

5As the gauge boson Xa does not interact with the SM, we sometimes refer to it as dark boson.
6The action has to be a real quantity.
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have to be fulfilled to obtain V0(ϕflat) = 0. Therefore, the GW condition at the GW scale
reads

λ2
p (ΛGW) = λφ (ΛGW)λH (ΛGW) , (6.2.13)

and we find7

ϕflat =

(
n1

n2

)
· σ =

√ λp
λp+λφ√
λφ

λp+λφ

 · σ :=

(
cos(α)
sin(α)

)
· σ , σ > 0 , 0 ≤ α ≤ π

2
, (6.2.14)

where we have dropped the explicit scale dependence of the coupling constants in the last
equation for brevity and from now keep in mind that λ ≡ λ (ΛGW). Furthermore, the
conditions (6.2.12) can only be nontrivially satisfied if

sgn(λp) = sgn(λH) = sgn(λφ) . (6.2.15)

The vacuum expectation values of the scalar fields, defined by the minimum of the
potential at one-loop level, can be expressed as8

〈ϕ〉 =

(
〈φ3〉
〈h3〉

)
:=

(
〈φ〉
〈h〉

)
=

(
cos(α)
sin(α)

)
· 〈σ〉 . (6.2.16)

Since only the scalar field h interacts with the particles of the Standard Model and pos-
sesses a nontrivial VEV, the mass of the W -boson is, after symmetry breaking, given
by

m2
W =

1

4
g2 〈h〉2 , (6.2.17)

and with the definition of the Fermi coupling constant [43],

GF =

√
2g2

8m2
W

= 1.166 · 10−5 (GeV)−2 , (6.2.18)

we find
〈h〉 = sin(α) 〈σ〉 = 246 GeV , (6.2.19)

and hence:

〈φ〉 =
246 GeV

tan (α)
, 〈σ〉 =

246 GeV

sin(α)
. (6.2.20)

Furthermore, the mass term of the dark gauge bosons Xµ
a reads (compare (6.1.9))

L(gx)
m =

〈φ〉2

8
g2
x

(
X2

1 +X2
2 +X2

3

)
, (6.2.21)

and thus the masses of the dark gauge bosons are degenerated:

M2
X =

1

4
g2
x 〈φ〉

2 . (6.2.22)

7Actually, one finds four different flat directions (compare figure 5.1), but all of them are physically
identical and we choose to work with ni ≥ 0 and σ > 0.

8We assume δϕ to be small enough to safely ignore it.
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The second derivatives of the tree-level potential are given by(
∂2V0(Φ̃, H̃)

∂ϕi∂ϕk

)
=

λφ ((Φ̃TΦ̃− λp
λφ
H̃TH̃)1+ 2Φ̃Φ̃T

)
−2λpH̃Φ̃T

−2λpΦ̃H̃
T λH

(
(H̃TH̃ − λp

λH
Φ̃TΦ̃)1+ 2H̃H̃T

) ,
(6.2.23)

which, when evaluated at the vacuum expectation value n 〈σ〉, yields the squared scalar
tree-level mass matrix (see (5.0.19)):

m2
ϕ =

(
∂2V0

∂ϕi∂ϕk

) ∣∣∣∣∣
n〈σ〉

. (6.2.24)

Considering the conditions from (6.2.12), this mass matrix reduces to the simpler form

m2
ϕ =

[
3λφn

2
1 − λpn4

2 −2λpn1n2

−2λpn1n2 3λHn
2
2 − λpn2

1

]
· 〈σ〉2 , (6.2.25)

where all other entries of the 8× 8 matrix vanish and n1 and n2 are defined by equation
(6.2.14). Therefore, we find 6 massless Goldstone bosons and the two eigenvalues

m2
s = 0 and m2

h = 2λp 〈σ〉2 (6.2.26)

of the remaining matrix correspond to the squared tree-level masses of the scalon field hs
and a second Higgs field hm respectively, where the requirement of positive definiteness
restricts λp to be positive. The mass of the scalon is then generated at one-loop order and
reads for this model

m2
s = 8B 〈σ〉2 =

1

8π2 〈σ〉2

[
3 ·
(
2 ·M4

W +M4
Z + 3 ·M4

X

)
+m4

h − 4 · 3 ·m4
t

]
!
> 0 .

(6.2.27)
Furthermore, the scalar flavour eigenstates φ and h can be written as a mixture of the
mass eigenstates hs and hm(

φ
h

)
=

(
〈φ〉+ φ′

〈h〉+ h′

)
= n 〈σ〉+ nhs + n⊥hm

=

(
〈φ〉+ cos(α)hs − sin(α)hm
〈h〉 + sin(α)hs + cos(α)hm

)
.

(6.2.28)

Therefore, the two scalar mass eigenstates are both candidates for the Standard Model
Higgs field hSM, where it is far from clear which of them has to be linked with the SM
Higgs mass of 125 GeV.

Before we investigate these two possible scenarios, we first want to derive the beta
functions for all the coupling parameters of this model.

6.2.1. Running Couplings

We will catch up on the discussion about renormalization of the effective potential, which
we skipped in section 4.2 and chapter 5 and concentrate on the pure scalar part of the
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Lagrangian density,

Lscalar =

(
∂µ

(
φ0

h0

))T(
∂µ
(
φ0

h0

))
−1

4
Λ̃2ελ0

φ φ
4
0 −

1

4
Λ̃2ελ0

H h
4
0 +

1

2
Λ̃2ελ0

p φ
2
0 h

2
0︸ ︷︷ ︸

−V0(ϕ)

, (6.2.29)

where we have explicitly displayed the bar quantities and work in d = 4− 2ε dimensions.
Introducing the scale-dependent renormalized scalar fields and coupling constants up to
one-loop order, (

φ0

h0

)
= Z

1
2
ϕ

(
φ
h

)
=

1 + 1
2δZφφ δZ

1
2
φh

δZ
1
2
hφ 1 + 1

2δZhh

(φ
h

)
, (6.2.30a)

λ0
φ = Zλφλφ =

(
1 + δZλφ

)
λφ ,

λ0
H = ZλHλH = (1 + δZλH )λH ,

λ0
p = Zλpλp =

(
1 + δZλp

)
λp ,

(6.2.30b)

leads to

Lscalar =

(
∂µ

(
φ
h

))T(
∂µ
(
φ
h

))
− 1

4
Λ̃2ελφ φ

4 − 1

4
Λ̃2ελH h

4 +
1

2
Λ̃2ελp φ

2 h2

+

(
∂µ

(
φ
h

))T  δZφφ δZ
1
2
φh + δZ

1
2
hφ

δZ
1
2
φh + δZ

1
2
hφ δZhh

(∂µ(φ
h

))
− 1

4
Λ̃2ε (δZλH + 2δZhh)λHh

4

− 1

4
Λ̃2ε

(
δZλφ + 2δZφφ

)
λφφ

4 +
1

2
Λ̃2ε

(
δZλp + δZhh + δZφφ

)
λp φ

2 h2

− Λ̃2ε (λφ − λp) δZ
1
2
hφ φ

3h− Λ̃2ε (λH − λp) δZ
1
2
φh φh

3 .

(6.2.31)
As demonstrated in section 4.2, the effective potential comes at one-loop level along with
the counterterm (compare equation (4.2.58))

CT =
1

64π2
Tr
[
− CTϕ − CTA + 2CTψ

]
, (6.2.32)

where we find for our model9

Tr CTϕ
(4.2.34)

= Λ̃−2ε 1

ε
Tr

(
∂2V0

∂ϕi∂ϕk

)2
(6.2.23)

= Λ̃2ε 1

ε

[ (
12λ2

φ + 4λ2
p

)
φ4 +

(
12λ2

H + 4λ2
p

)
h4

+
(
8λ2

p − 12λφλp − 12λHλp
)
φ2h2

]
,

Tr CTA
(4.2.46)

= Λ̃−2ε 3

ε
TrM4

A
(4.2.18)

= Λ̃2ε 3

ε

[
1

16

(
3g4 + 2g2g′

2
+ g′

4
)
h4 +

3

16
g4
xφ

4

]
,

Tr CTψ
(4.2.56)

= Λ̃−2ε 1

ε
Tr
(
MψM

†
ψ

)2 (4.2.22)
= Λ̃2ε 6

ε

y4
t

4
h4 .

(6.2.33)

9Since the counterterms appear only at one-loop order, we don’t have to distinguish between bare and
renormalized quantities and can work with the renormalized ones.
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Since we want to obtain a finite effective potential

V = V0 + V1 + CT
!

= finite (6.2.34)

the following relations have to hold in the MS scheme10:

(
δZλφ + 2δZφφ

)
λφ =

1

ε

1

16π2

[
12λ2

φ + 4λ2
p +

9

16
g4
x

]
. (6.2.35a)

(δZλH + 2δZφφ)λH =
1

ε

1

16π2

[
12λ2

H + 4λ2
p +

3

16

(
3g4 + 2g2g′

2
+ g′

4
)
− 3y4

t

]
. (6.2.35b)

(
δZλp + δZhh + δZφφ

)
λp =

1

ε

1

32π2

[
− 8λ2

p + 12λφλp + 12λHλp

]
. (6.2.35c)

The field strength renormalization counterterms δZφφ and δZhh can be calculated with
the help of the scalar self energy Π(k2) (see appendix A.2) and read

δZφφ =
1

ε

9g2
x

64π2

δZhh =
1

ε

9g2 + 3g′2 − 12y2
t

64π2
.

(6.2.36)

Since Λ̃2ελ0 has to be scale-invariant, we find

0 =
d

d lnΛ

(
Λ̃2ελ0

)
=

d

d lnΛ

(
Λ̃2ε Zλ λ

)
= 2 ε Λ̃2ε Zλ λ+ Λ̃2ε dδZλ

d lnΛ
λ+ Λ̃2ε (1 + δZλ)

dλ

d lnΛ
,

(6.2.37)

and hence, we get up to one-loop order

β(λ) :=
dλ

d lnΛ
= −2 ε λ− dδZλ

d lnΛ
λ . (6.2.38)

In addition to that, this relation reads for gauge and Yukawa couplings at tree level

β(g) =
dg

d lnΛ
= −ε g and β(yt) =

dyt
lnΛ

= −ε yt . (6.2.39)

Therefore, the derivation of equation (6.2.35a) with respect to lnΛ gives

−β(λφ)− 2 ελφ+ 2
d δZφφ
d lnΛ︸ ︷︷ ︸
−2· 9g

2
x

64π2

λφ−2ε
(
δZλφ + 2 δZφφ

)
λφ︸ ︷︷ ︸

1
ε

1
16π2

(
12λ2φ+4λ2p+ 9

16
g4x

)=
1

ε

1

16π2
4 ε

(
−12λ2

φ − 4λ2
p −

9

16
g4
x

)
,

(6.2.40)
which yields in the limit ε→ 0:

β(λφ) =
1

(4π)2

[
−9λφg

2
x + 24λ2

φ + 8λ2
p +

9

8
g4
x

]
. (6.2.41)

10In addition to these relations we also find: δZφh = δZhφ = 0
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In exactly the same way as above we find

β(λH) =
1

(4π)2

[(
12y2

t − 9g2 − 3g′
2
)
λH+24λ2

H + 8λ2
p +

3

8

(
3g4 + 2g′

2
g2 + g′

4
)
−6y4

t

]
,

(6.2.42)
and

β(λp) =
1

(4π)2
λp

[
−9

2
g2
x −

9

2
g2 − 3

2
g′

2
+ 6y2

t + 12λφ + 12λH − 8λp

]
. (6.2.43)

These one-loop renormalization group equations (RGEs) are, despite of a slightly different
definition of the coupling constants, in perfect agreement with the results found in [9]
and [10]. The initial conditions for these scalar couplings will be defined at the Gildener-
Weinberg scale Λ = ΛGW.

The beta function of the gauge coupling gx can be calculated with the help of the general
result for a SU(N) gauge group ([44], [45])

β(g) = − g3

(4π)2

[
11

3
N − nf

4

3
T (R)− ns

1

6
T (R)

]
, (6.2.44)

where nf and ns are the number of fermions and real scalars (without Goldstone bosons),
which transform under this gauge group, and T (R) is defined by the trace of the generators
Ta in the corresponding representation:

Tr [TaTb] = T (R)δab . (6.2.45)

For our SU(2)X gauge group11 we therefore find N = 2, nf=0, ns=1, T (R) = 1 and thus

β(gx) = − 1

(4π)2

43

6
g3
x , (6.2.46)

where we define:

gx(Λ = MX) =
2MX

〈φ〉
. (6.2.47)

The Standard Model couplings are not affected by the introduction of the new gauge
group and the corresponding beta functions are hence given by (see [46])

β(g′) =
1

(4π)2

41

6
g′

3

β(g) =
1

(4π)2

(
−19

6

)
g3

β(gs) =
1

(4π)2
(−7) g3

s ,

(6.2.48)

11For real scalars the generators read: T1 = 1
2

(
0 12×2

12×2 0

)
, T2 = 1

2

 0

(
0 1
−1 0

)
(

0 −1
1 0

)
0

 and

T3 = 1
2

(
12×2 0

0 −12×2

)
.
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and

β(yt) =
1

(4π)2

(
9y2
t

2
− 17g′2

12
− 9g2

4
− 8g2

s

)
yt . (6.2.49)

The initial conditions for the Standard Model coupling constants at Λ = Mt are taken
from [46]:

g′(Λ = Mt) = 0.358

g(Λ = Mt) = 0.648

gs(Λ = Mt) = 1.167

yt(Λ = Mt) = 0.937 .

(6.2.50)

6.2.2. General Constraints

As we know from equation (6.2.28), the scalar field h′ can be written as a linear combina-
tion of the mass eigenstates hs and hm,

h′ = sin(α)hs + cos(α)hm , (6.2.51)

and interacts, unlike the second scalar field φ′, with the SM particles. Thus, depending
on whether hs or hm is related to the SM Higgs boson, the couplings of the Higgs boson
to the other SM particles get rescaled by sin(α) or cos(α). Therefore, we have to claim
that the respective scaling factor is of order one to avoid coming into conflict with the
experimentally verified predictions of the Standard Model and more precisely, we can use

sin(α) > 0.87 ⇐⇒ hs=̂hSM (6.2.52a)

cos(α) > 0.87 ⇐⇒ hm=̂hSM (6.2.52b)

as a lower bound for our model [12].
Furthermore, from B > 0 follows the condition

9M4
X +m4

h > (318 GeV)4 , (6.2.53)

and the validity of perturbation theory is guaranteed as long as12

λH(Λ)� 8π2

3
, λφ(Λ)� 8π2

3
and λp(Λ)� 4π2

3
. (6.2.54)

Our tree-level potential (6.2.9) can be rewritten as

V0(φ̃, H̃) =
1

4

(
H̃2 − λp

λH
φ̃2

)2

+
1

4

(
λφ −

λ2
p

λH

)
φ̃4 , (6.2.55)

and thus we can read off the tree-level conditions for vacuum stability:

λH ≥ 0 and λ2
p ≤ λφλH . (6.2.56)

12For a theory with the potential λ
4!
φ4 the condition λ� (4π)2 has to be fulfilled.
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As argued in [47], these conditions have to hold for large scales even at one-loop order and
we already found out that λH(Λ) is positive at the GW scale as well. However, the GW
condition for symmetry breaking reads

λ2
p(ΛGW) = λφ(ΛGW)λH(ΛGW) , (6.2.57)

and thus, we have to assume that at least the second vacuum stability condition is violated
for scales less than the GW scale and that the potential in this region is stabilized by
radiative corrections.

Our extended Lagrangian density (6.2.2) contains four free parameters: λφ, λH , λp and
gx. This number can be halved by the condition (6.2.19) for the vacuum expectation value
and by the identification of one of the mass eigenstates with the SM Higgs particle hSM.
In addition to that, it would also be possible to trade one of the coupling constants for the
Gildener-Weinberg scale ΛGW (Dimensional transmutation). Therefore, we are now going
to investigate this 2-dimensional parameter space for our two different possible choices of
interpreting the physically observed Higgs boson.

6.2.3. Identification of the Mass Eigenstate hm with the Physically Observed
Higgs Boson hSM

In this case, we can identify the experimentally measured Higgs mass MhSM with mh and
find from equation (6.2.20) and (6.2.26)

m2
h = 2λp 〈σ〉2 = 2λp

〈h〉2

sin2(α)

!
= M2

hSM
, (6.2.58)

and thus:

λp =
M2
hSM

2 〈h〉2
· sin2(α) . (6.2.59)

Using the definition of sin(α) (see equation (6.2.14)) and the Gildener-Weinberg condition
(6.2.13) immediately leads to

λφ =
2 〈h〉2 λ2

p

M2
hSM
− 2 〈h〉2 λp

, (6.2.60)

and

λH =
M2
hSM

2 〈h〉2
− λp . (6.2.61)

Considering (6.2.52b) and the experimentally measured values of M2
hSM

and 〈h〉 strongly

restrict the allowed parameter space13:

0 < λφ < λp < 0.031 (6.2.62a)

0.098 < λH < 0.129 (6.2.62b)

13Be once more reminded that all these scalar coupling parameters are defined at the Gildener-Weinberg
scale ΛGW .
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In addition to that, we get from (6.2.53) a lower bound for the mass of the dark bo-
son:

MX =
1

2
gx 〈φ〉 ≥ 183 GeV . (6.2.63)

We choose λp and gx as our free parameters, which are restricted by condition (6.2.62a)
and (6.2.63). The resulting allowed parameter space is displayed in Figure 6.1, where gx
is assumed to be of the order of the other gauge couplings14. Further restrictions could be

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.0

0.2

0.4

0.6
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1.0
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gx

MX=800 GeV

MX=200 GeV

MX=600 GeV

MX=300 GeV

MX=400 GeV

ms=1 GeV

ms=20 GeV

ms=50 GeV

ms=100 GeV

Figure 6.1.: The dark area of the parameter space is excluded and the blue lines and the
dashed red lines represent fixed values of MX and ms respectively.

found by considering stability requirements, where one would have to scan over the whole
allowed parameter space of Figure 6.1 and perform an analysis of the running of the scalar
couplings. Since this would go well beyond the scope of this master’s thesis, we refer to
[8] and discuss stability only for two exemplary points of the parameter space:

14A too large gauge coupling would spoil our perturbative analysis.
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Example 1: λp(ΛGW) = 0.005 and gx(Mx) = 1.5

For these values we find

MX = 923 GeV , ms = 229 GeV and ΛGW = 783 GeV , (6.2.64)

and the RG evolution is shown in Figure 6.2, where we used the beta functions and
initial conditions from subsection 6.2.1. Furthermore, we also display the running of the

Figure 6.2.: Running couplings for λp(ΛGW) = 0.005 and gx(Mx) = 1.5.

Gildener-Weinberg condition in Figure 6.3 and together with the results from Figure 6.2
this demonstrates that the tree-level conditions for stability (compare (6.2.56)) are fulfilled
at one-loop order for large scales, but necessarily violated for Λ < ΛGW.

Example 2: λp(ΛGW) = 0.025 and gx(Mx) = 0.9

We perform our analysis in the same way as before and get

MX = 227 GeV , ms = 24 GeV and ΛGW = 294 GeV . (6.2.65)

The scale dependence of the couplings and the GW condition is shown in Figure 6.4 and
Figure 6.5. In contrast to the first example we find that both tree-level stability conditions
are obviously violated for large scales and hence assume the potential to be instable.
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Figure 6.3.: Scale dependence of the GW condition for λp(ΛGW) = 0.005 and
gx(Mx) = 1.5.

Figure 6.4.: Scale dependence of the GW condition for λp(ΛGW) = 0.025 and
gx(Mx) = 0.9.

In addition to that, we notice the appearance of a second Gildener-Weinberg scale at
8.9 ·104 GeV, which corresponds to a second flat direction and thus to a second extremum
of the potential. Knowing all coupling parameters at this new scale enables us to calculate
A and B (A and B depend on the flat direction n) and with the help of equation (5.0.16)
we get

B > 0 ,
A

B
≈ 1 and 〈σ′〉 ≈ 3 · 104 GeV . (6.2.66)

Thus, perturbation theory should be valid (compare chapter 5) and we find a second
minimum, which is smaller than the minimum corresponding to ΛGW = 294 GeV and
〈h〉 = 246 GeV:

V (n 〈σ〉)
V (n′ 〈σ′〉)

≈ 10−6 . (6.2.67)

Hence, this is another evidence for the instability of this potential. Nevertheless, a more
precise investigation of this new minimum, and in general of the appearance of a second
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Figure 6.5.: Running couplings for λp(ΛGW) = 0.025 and gx(Mx) = 0.9.

Gildener-Weinberg scale, is rescheduled to later research.

6.2.4. Identification of the Mass Eigenstate hs with the Physically Observed
Higgs Boson hSM

We set the scalon mass equal to the Standard Model Higgs mass,

m2
s =

sin2(α)

8π2 〈h〉2
[
3 ·
(
2 ·M4

W +M4
Z + 3 ·M4

X

)
+m4

h − 12 ·m4
t

] !
= M2

hSM
, (6.2.68)

and find from the experimental restriction (6.2.52a):

(540 GeV)4 ≤ 9 ·M4
X +m4

h ≤ (575 GeV)4 . (6.2.69)

Hence, the upper mass bounds read

mh ≤ 575 GeV and MX ≤ 332 GeV . (6.2.70)

With the help of the definitions of these two masses,

M2
X

(6.2.17)
=

1

4
g2
x 〈φ〉

2 =
1

4
g2
x

〈h〉2

tan2(α)
, (6.2.71)
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and

m2
h

(6.2.26)
= 2λp 〈σ〉2 = 2λp

〈h〉2

sin2(α)
, (6.2.72)

we can rewrite sin(α) as a function of gx and λp, which leads together with (6.2.52a) to
the restricted parameter space in Figure 6.6. Thus, if we assume gx to be smaller than

Figure 6.6.: The dark area of the parameter space is excluded and the lines represent
contours of fixed values of sin(α).

4.5, λp has to be at least greater than 1.5, which leads in any case to the appearance of a
Landau pole (Figure 6.7a). Larger values of the gauge coupling would allow smaller scalar
couplings, but spoil perturbation theory for small scales (Figure 6.7b) and therefore the
identification of the scalon with the physically observed Higgs Boson is rather excluded.

6.2.5. Conclusion

We demonstrated that we have to identify the Standard Model Higgs boson with our mass
eigenstate hm to be able to find a parameter space (gx, λp), which does not lead to any
inconsistencies. All experimental observations that are predicted by the SM can then also
be explained by our SU(2)X extended model. In addition to the particle content of the
SM, one obtains a second scalar particle and three additional dark gauge bosons, which
are possible candidates for dark matter [8–10]. We also showed that the the running of
the Gildener-Weinberg condition can be used to find possible other minima of the effective
potential (in addition to the one reproducing 〈h〉 = 246 GeV), where a deeper investigation
of this feature is required.

Nevertheless, the experimentally observed neutrino oscillations and the resulting ap-
pearance of light, but massive, left-handed neutrinos cannot be explained in a satisfactory
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(a) Illustration of the appearance of a Landau
Pole for λp = 2.1 and gx = 1.

220 240 260 280 300
Λ(GeV)

10

20

50

gx(Λ)

(b) Behaviour of the dark gauge coupling for
small scales for λp = 0.3 and gx = 5.

Figure 6.7.: Exemplary behaviour of λp and gx in case of hs=̂hSM.

manner within this theory. Classical scale invariance prohibits explicit right-handed neu-
trino Majorana mass terms, which would enables us to explain the lightness of the observed
neutrinos (with respect to the masses of the other Leptons) with help of the seesaw mecha-
nism15. This problem can be solved by the introduction of an additional real scalar singlet,
which acquires a nontrivial vacuum expectation value. Such a model was also discussed
in detail in [14].

6.3. A Classically Scale Invariant SU(2) Extension of the
Standard Model with Implemented Seesaw Mechanism

The Lagrangian density of our extended model reads

L = L′SM −
1

4
XµνX

µν +
(
D̃µΦ

)†(
D̃µΦ

)
+

1

2
(∂µs) (∂µs) +

1

2
νR i /∂ νR

− V0(Φ, H, s)−
(
LΓ

(ν)
D (iτ2H

∗) +
1

2
(νR)cΓ

(ν)
R s

)
νR + h.c. ,

(6.3.1)

where s denotes the new real scalar boson, which is a singlet under the gauge group (6.2.1),
and νR labels a vector of three right-handed neutrinos16. In contrast to the simpler model
before, we added a Dirac-type and a Majorana-type neutrino Yukawa interaction term

with the corresponding complex 3 × 3 Yukawa matrices Γ
(ν)
D and Γ

(ν)
R to the Lagrangian

density and enlarged the tree-level potential to

V0(Φ, H, s) = λφ

(
Φ†Φ

)2
+ λH

(
H†H

)2
+

1

4
λss

4

− 2λp

(
Φ†Φ

)(
H†H

)
− λφs Φ†Φ s2 − λHsH†Hs2 ,

(6.3.2)

15Of course, we could add right-handed neutrinos to our theory and generate a Dirac mass via a Yukawa
interaction term in the same way we did for the other leptons. However, this would leave open the question
of the tininess of neutrino masses.

16As discussed in [48], at least two SU(2) Higgs doublets are necessary to generate neutrino masses
at one-loop order. Since we are dealing with one SU(2) and one SU(2)X Higgs doublet, we thus have to
introduce three right-handed neutrinos to describe three massive left-handed neutrinos.

54



6.3. CSI SU(2) EXTENSION WITH IMPLEMENTED SEESAW MECHANISM

with real and dimensionless coupling constants.
We perform the analysis of the Gildener-Weinberg mechanism in the same way as before

and decompose the two complex doublets into their real components

Φ̃ =


φ1

φ2

φ3

φ4

 and H̃ =


h1

h2

h3

h4

 , (6.3.3)

and define the real vector

ϕ =

Φ̃

H̃
s

 . (6.3.4)

The potential can then be written as

V (Φ, H, s) =
1

4
λφ

(
Φ̃iΦ̃i

)2
+

1

4
λH

(
H̃iH̃i

)2
+

1

4
λss

4

− 1

2
λp

(
Φ̃iΦ̃i

)(
H̃iH̃i

)
− 1

2
λφs Φ̃iΦ̃i s

2 − 1

2
λHs H̃iH̃is

2 ,

(6.3.5)

and with the help of the SU(2) and the SU(2)X gauge symmetry we restrict the flat
direction to

ϕflat = nσ =



0
0
n1

0
0
0
n2

0
n3


· σ =̂

n1

n2

n3

 · σ . (6.3.6)

Hence, the above potential along this direction is given by

V0(ϕflat) ∝ 1

4
λφn

4
1 +

1

4
λHn

4
2 +

1

4
λsn

4
3

− 1

2
λpn

2
1n

2
2 −

1

2
λφsn

2
1n

2
3 −

1

2
λHsn

2
2n

2
3 ,

(6.3.7)

and since the flat direction has to fulfill equation (5.0.2), the conditions

I : λφn
2
1 − λpn2

2 − λφsn
2
3 = 0

II : λHn
2
2 − λpn2

1 − λHsn2
3 = 0

III : λsn
2
3 − λφsn2

1 − λHsn2
2 = 0

(6.3.8)

have to hold. Again, all scalar couplings are evaluated at the Gildener-Weinberg scale
ΛGW. The Gildener-Weinberg relation reads

λs =
λ2
φsλH + 2λφsλpλHs + λ2

Hsλφ

λφλH − λ2
p

, (6.3.9)
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and the flat direction can be written as

ϕflat =

n1

n2

n3

 · σ =

cos(α) sin(β)
sin(α) sin(β)

cos(β)

 · σ , σ > 0 , 0 ≤ α, β ≤ π

2
, (6.3.10)

with

sin(α) =

√
λφsλp + λHsλφ

λφs (λH + λp) + λHs (λp + λφ)
, (6.3.11)

and

sin(β) =

√
λφs (λH + λp) + λHs (λp + λφ)

λφλH − λ2
p + λφs (λH + λp) + λHs (λp + λφ)

. (6.3.12)

For
sgn (λφ) = sgn (λH) = sgn (λs) = sgn (λp) = sgn (λφs) = sgn (λHs) (6.3.13)

we can find a nontrivial solution of (6.3.8), where none of the components n1, n2 or n3 are
allowed to be equal to zero. While we cannot follow the argumentation of [14] that this
would only be true if one of the mixing scalar couplings (i.e. λp, λφs, λHs) is negative17,
all the other results are in perfect agreement with [14].

The vacuum expectation values take the form

〈ϕ〉 =

〈φ3〉
〈h3〉
〈s〉

 :=

〈φ〉〈h〉
〈s〉

 =

cos(α) sin(β)
sin(α) sin(β)

cos(β)

 · 〈σ〉 , (6.3.14)

and for the same reason as in section 6.2 we find

〈h〉 = 246 GeV , (6.3.15)

and thus:

〈φ〉 =
246 GeV

tan(α)
.

〈s〉 =
246 GeV

sin(α) tan(β)
.

〈σ〉 =
246 GeV

sin(α) sin(β)
.

(6.3.16)

Furthermore, the angles α and β, which define the flat direction, are given by the simple
relations:

tan2(α) =
〈h〉2

〈φ〉2
and tan2(β) =

〈h〉2 + 〈φ2〉
〈s〉2

. (6.3.17)

17Especially in that case it would be possible to find a nontrivial solution with one vanishing component.
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In a next step, we aim to find expressions for the scalar masses in terms of the scalar
couplings. Therefore, we have to calculate the second derivatives of the tree-level potential
(see (5.0.19)): (

∂2V0(Φ̃, H̃, s)

∂ϕi∂ϕk

)
= (6.3.18)



λφ

(
Φ̃TΦ̃− λp

λφ
H̃TH̃ − λφs

λφ
s2
)
1

+2λφΦ̃Φ̃T

−2λpH̃Φ̃T −2λφs s φ̃

−2λpΦ̃H̃
T

λH

(
H̃TH̃ − λp

λH
Φ̃TΦ̃− λHs

λH
s2
)
1

+2λHH̃H̃
T

−2λHs s h̃

−2λφs s φ̃
T −2λHs s h̃

T 3λs s
2 − λφs φ̃Tφ̃

−λHs h̃Th̃


Considering the conditions (6.3.8) reduces the resulting mass matrix to

m2
ϕ =

(
∂2V0

∂ϕi∂ϕk

) ∣∣∣∣∣
n〈σ〉

= 2 ·

 λφn
2
1 −λpn1n2 −λφsn1n3

−λpn1n2 λHn
2
2 −λHsn2n3

−λφsn1n3 −λHsn2n3 λφsn
2
1 + λHsn

2
2

 · 〈σ〉2

= 2 ·

 λφ cos2(α) sin2(β) −λp cos(α) sin(α) sin2(β)

−λp cos(α) sin(α) sin2(β) λH sin2(α) sin2(β)

−λφs cos(α) sin(β) cos(β) −λHs sin(α) sin(β) cos(β)

−λφs cos(α) sin(β) cos(β)

−λHs sin(α) sin(β) cos(β)(
λφs cos2(α) + λHs sin2(α)

)
sin2(β)

 · 〈σ〉2 ,

(6.3.19)

where all other entries of the 9× 9 matrix vanish. Since we already know the eigenvector

v1 =

cos(α) sin(β)
sin(α) sin(β)

cos(β)

 (6.3.20)

with eigenvalue 0, we can rotate our squared mass matrix with the help of the orthogonal
matrix

D =

cos(α) sin(β) − sin(α) − cos(α) cos(β)
sin(α) sin(β) cos(α) − sin(α) cos(β)

cos(β) 0 sin(β)

 , (6.3.21)

which obeys

D

1
0
0

 = v1 and detD = 1 , (6.3.22)
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and find18:

DTm2
ϕD =

2

〈φ〉2 + 〈h〉2

·

0 0 0

0 λHs 〈φ〉2 〈h〉2 + λp

(
〈φ〉2 + 〈h〉2

)2
+ λφs 〈h〉2 〈s〉2 (λφs − λHs) 〈φ〉 〈h〉 〈s〉 〈σ〉

0 (λφs − λHs) 〈φ〉 〈h〉 〈s〉 〈σ〉 λφs 〈φ〉2 〈σ〉2 + λHs 〈h〉2 〈σ〉2



= 2 ·

0 0 0
0 w11 w12

0 w21 w22

 .

(6.3.23)
Therefore, the diagonalized squared scalar mass matrix reads

ATDTm2
ϕDA =

1 0 0
0 cos(γ) sin(γ)
0 − sin(γ) cos(γ)

DTm2
ϕD

1 0 0
0 cos(γ) − sin(γ)
0 sin(γ) cos(γ)



=

0 0 0
0 m2

1 0
0 0 m2

2

 ,

(6.3.24)

with

tan(2γ) =
2w12

w11 − w22
, (6.3.25)

and the tree-level mass eigenvalues are given by

m2
s = 0 (6.3.26)

and

m2
1,2 = w11 + w22 ∓

√
(w11 − w22)2 + 4w2

12

= (λHs + λp) 〈h〉2 + (λφs + λp) 〈φ〉2 + (λHs + λφs) 〈s〉2

∓
√

(λHs − λp)2 〈h〉4 +
(

(λHs − λφs) 〈s〉2 + (λp − λφs) 〈φ〉2
)2

+2 (λHs − λp) 〈h〉2
(

(λHs − λφs) 〈s〉2 + (λφs − λp) 〈φ〉2
)
.

(6.3.27)

The mass of the scalon is again generated at one-loop order and given by

m2
s =

1

8π2 〈σ〉2

[
3 ·
(
2 ·M4

W +M4
Z + 3 ·M4

X

)
+m4

1 +m4
2 − 4 · 3 ·m4

t − 2
3∑
i=1

m4
νi

]
!
> 0 ,

(6.3.28)

18Be aware that 〈σ〉2 = 〈φ〉2 + 〈h〉2 + 〈s〉2.
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where mνi denotes the masses of the heavy right-handed Majorana neutrinos. Therefore,
the mass inequality

9 ·M4
X +m4

1 +m4
2 − 2 ·

3∑
i=1

m4
νi > (318GeV)4 (6.3.29)

has to be fulfilled.
The eigenvectors, which correspond to the mass eigenvalues, take the form

vs =

cos(α) sin(β)
sin(α) sin(β)

cos(β)


v1 =

− sin(α) cos(γ)− cos(α) cos(β) sin(γ)
cos(α) cos(γ)− sin(α) cos(β) sin(γ)

sin(β) sin(γ)


v2 =

 sin(α) sin(γ)− cos(α) cos(β) cos(γ)
− cos(α) sin(γ)− sin(α) cos(β) cos(γ)

sin(β) cos(γ)

 ,

(6.3.30)

and hence, the scalar fields φ, h and s can be written as a mixture of mass eigenstates:φh
s

 =

〈φ〉+ φ′

〈h〉+ h′

〈s〉+ s′

 =

〈φ〉〈h〉
〈s〉

+ vshs + v1hm1 + v2hm2 . (6.3.31)

In particular, we find:

h = 〈h〉+ sin(α) sin(β)hs +
(

cos(α) cos(γ)− sin(α) cos(β) sin(γ)
)
hm1

−
(

cos(α) sin(γ) + sin(α) cos(β) cos(γ)
)
hm2 .

(6.3.32)

All these results are again in agreement with [14].

6.3.1. Seesaw mechanism

We want to review the seesaw mechanism [17–21] and apply it to our model to explain
small neutrino masses.

After spontaneous symmetry breaking, the Lagrangian density (6.3.1) delivers a Dirac
neutrino mass term,

LD,ν = −νL
〈h〉√

2
Γ

(ν)
D︸ ︷︷ ︸

MD

νR + h.c. , (6.3.33)

as well as a Majorana neutrino mass term,

LM,ν = −1

2
(νR)c 〈s〉Γ(ν)

R︸ ︷︷ ︸
MR

νR + h.c. , (6.3.34)
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with MR = MT
R (see subsection B.3.3). Introducing the left-handed vector

ωL =

(
νL

(νR)c

)
(6.3.35)

enables us to combine these two mass terms to

LD+M,ν = −1

2
ωL

[
0 MD

MT
D MR

]
︸ ︷︷ ︸

Mν=MT
ν

(ωL)c + h.c. . (6.3.36)

Since Mν is a complex and symmetric matrix, there exists a unitary matrix U such that

M̂ν = U †MνU
∗ = diag (m̂1, m̂2, . . . , m̂6) (6.3.37)

is diagonal and non-negative [49, 50], where the diagonal elements m̂i are the positive

square roots of the eigenvalues of MνM
†
ν [24, 51]. Defining

ωL = Uω′L (6.3.38)

leads to

LD+M,ν = −1

2
NM̂νN = −1

2

6∑
i=1

νi m̂i νi , (6.3.39)

where

N =


ν1

ν2
...
ν6

 = ω′L +
(
ω′L
)c

(6.3.40)

satisfies the Majorana condition
N c = N . (6.3.41)

Therefore, introducing a Dirac-Majorana mass term yields mass eigenstates, which are
Majorana fields. Furthermore, with the help of the decomposed matrix U [48],

U =

(
UL

U∗R

)
, (6.3.42)

the neutrino weak eigenfields can be expressed as linear combinations of these mass eigen-
states:

νL = ULω
′
L = ULPLN , νR = UR

(
ω′L
)c

= URPRN . (6.3.43)

If we assume that the eigenvalues of MR are much bigger than the elements of MD

(〈s〉 � 〈h〉), we can block-diagonalize the matrix Mν (up to corrections ∝ M−1
R MD) by

performing a unitary transformation [51–53],

W †
[

0 MD

MT
D MR

]
W ∗ =

[
Mlight 0

0 Mheavy

]
, (6.3.44)

with

W ≈
(

1− 1
2JJ

† J
−J† 1− 1

2J
†J

)
, J = MDM

−1
R , (6.3.45)
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and where Mlight and Mheavy are symmetric 3× 3 matrices:

Mlight ≈ −MDM
−1
R MT

D , Mheavy ≈MR . (6.3.46)

Hence, we obtain three light and three heavy neutrinos, where the tininess of the mass of
the observed neutrinos is naturally explained by the existence of heavy neutrinos.

6.3.2. Running couplings

For the sake of completeness, we also derive the RGE’s of the scalar couplings for this
model (compare subsection 6.2.1). The pure scalar part of the Lagrangian density reads

Lscalar =

∂µ
φ0

h0

s0

T∂µ
φ0

h0

s0

− 1

4
Λ̃2ελ0

φ φ
4
0 −

1

4
Λ̃2ελ0

H h
4
0 −

1

4
Λ̃2ελ0

s s
4
0

+
1

2
Λ̃2ελ0

φs φ
2
0 s

2
0 +

1

2
Λ̃2ελ0

Hs h
2
0 s

2
0 +

1

2
Λ̃2ελ0

p φ
2
0 h

2
0 ,

(6.3.47)

and introducing the scale-dependent, renormalized scalar fields and coupling constants19,

φ0

h0

s0

 = Z
1
2
ϕ

φh
s

 =


1 + 1

2δZφφ δZ
1
2
φh δZ

1
2
φs

δZ
1
2
hφ 1 + 1

2δZhh δZ
1
2
hs

δZ
1
2
sφ δZ

1
2
sh 1 + 1

2δZss


φh
s

 , (6.3.48a)

λ0
i = Zλiλi = (1 + δZλi)λi , (6.3.48b)

leads to

Lscalar =

∂µ
φh
s

T∂µ
φh
s

− 1

4
Λ̃2ελφ φ

4 − 1

4
Λ̃2ελH h

4 − 1

4
Λ̃2ελs s4

+
1

2
Λ̃2ελφs φ

2 s2 +
1

2
Λ̃2ελHs h

2 s2 +
1

2
Λ̃2ελp φ

2 h2

+

∂µ
φh
s

T((
Z

1
2
ϕ

)T
Z

1
2
ϕ − 1

)∂µ
φh
s

− 1

4
Λ̃2ε (δZλH + 2δZhh)λHh

4

− 1

4
Λ̃2ε

(
δZλφ + 2δZφφ

)
λφφ

4 − 1

4
Λ̃2ε (δZλs + 2δZss)λss

4

+
1

2
Λ̃2ε

(
δZλp + δZhh + δZφφ

)
λp φ

2 h2 +
1

2
Λ̃2ε

(
δZλφs + δZφφ + δZss

)
λφs φ

2 s2

+
1

2
Λ̃2ε (δZλHs + δZhh + δZss)λHs h

2 s2 + Terms (∝ δZφh,∝ δZφs,∝ δZhs)

+ higher orders .
(6.3.49)

19No summation over i.
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The counterterms for our model are given by20

Tr CTϕ=Λ̃2ε 1

ε

[(
12λ2

φ + 4λ2
p + λ2

φs

)
φ4+

(
12λ2

H + 4λ2
p +λ2

Hs

)
h4+

(
9λ2

s + 4λ2
φs + 4λ2

Hs

)
s4

+
(
8λ2

p − 12λφλp − 12λHλp + 2λφsλHs
)
φ2h2

+
(
8λ2

φs − 12λφλφs − 6λsλφs + 8λpλHs
)
φ2s2

+
(
8λ2

Hs− 12λHλHs− 6λsλHs+ 8λpλφs
)
h2s2

]
,

Tr CTA=Λ̃2ε 3

ε

[
1

16

(
3g4 + 2g2g′

2
+ g′

4
)
h4 +

3

16
g4
xφ

4

]
,

Tr CTψ=Λ̃2ε 1

ε

(
6
y4
t

4
h4 + Tr (ΓRΓ∗RΓRΓ∗R) s4

)
,

(6.3.50)
and from equation (6.2.34) follows that the relations

(
δZλφ + 2δZφφ

)
λφ =

1

ε

1

16π2

[
12λ2

φ + 4λ2
p + λ2

φs +
9

16
g4
x

]
, (6.3.51a)

(δZλH + 2δZφφ)λH =
1

ε

1

16π2

[
12λ2

H + 4λ2
p + λ2

Hs +
3

16

(
3g4 + 2g2g′

2
+ g′

4
)
− 3y4

t

]
,

(6.3.51b)

(δZλs + 2δZss)λs =
1

ε

1

16π2

[
9λ2

s + 4λφs + 4λHs − 2 Tr (ΓRΓ∗RΓRΓ∗R)
]
, (6.3.51c)

(
δZλp + δZhh + δZφφ

)
λp =

1

ε

1

32π2

[
− 8λ2

p + 12λφλp + 12λHλp − 2λφsλHs

]
, (6.3.51d)

(
δZλφs + δZφφ + δZss

)
λφs =

1

ε

1

32π2

[
− 8λ2

φs + 12λφλφs + 6λsλφs − 8λpλHs

]
, (6.3.51e)

(δZλHs + δZhh + δZss)λHs =
1

ε

1

32π2

[
−8λ2

Hs+12λHλHs+6λsλHs−8λpλφs

]
, (6.3.51f)

have to hold. With the help of the field strength renormalization counterterms from
appendix A.2,

δZφφ =
1

ε

9g2
x

64π2

δZhh =
1

ε

9g2 + 3g′2 − 12y2
t

64π2

δZss =
1

ε

(
− 4

64π2
Tr (ΓRΓ∗R)

)
,

(6.3.52)

the RGE’s of the scalar couplings are calculated by analogy with subsection 6.2.1 and take
the form:

20We only consider contributions from heavy neutrinos and neglect light neutrinos.
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β(λφ) =
1

(4π)2

[
− 9λφg

2
x + 24λ2

φ + 8λ2
p + 2λ2

φs +
9

8
g4
x

]
.

β(λH) =
1

(4π)2

[(
12y2

t − 9g2 − 3g′
2
)
λH+24λ2

H + 8λ2
p + 2λ2

Hs

+
3

8

(
3g4 + 2g′

2
g2 + g′

4
)
−6y4

t

]
.

β(λs) =
1

16π2

[
18λ2

s + 8λ2
φs + 8λ2

Hs − 4 Tr (ΓRΓ∗RΓRΓ∗R) + 4 Tr (ΓRΓ∗R)

]
.

β(λp) =
1

(4π)2

[
λp

(
− 9

2
g2
x −

9

2
g2 − 3

2
g′

2
+ 6y2

t + 12λφ

+ 12λH − 8λp

)
− 2λφsλHs

]
.

β(λφs) =
1

(4π)2

[
λφs

(
2 Tr (ΓRΓ∗R)− 9

2
g2
x + 12λφ + 6λs − 8λφs

)
− 8λpλHs

]
.

β(λHs) =
1

(4π)2

[
λHs

(
2 Tr (ΓRΓ∗R)− 9

2
g2 − 3

2
g′2 + 6y2

t + 12λH

+ 6λs − 8λHs

)
− 8λpλφs

]
.

(6.3.53)

Once more, these results are in perfect agreement with [14].

6.3.3. Interpretation of the Physically Observed Higgs Boson

As discussed in subsection 6.3.1, the existence of heavy neutrinos is mandatory to explain
the observed small neutrino masses (with respect to the masses of the other Leptons) via
the seesaw mechanism. If we assume the heavy neutrino masses to lie in the TeV region
(or above), we get

〈h〉
〈s〉

(6.3.15)
= sin(α) tan(β)� 1 , (6.3.54)

because we know that
Mheavy ≈MR ∝ 〈s〉 . (6.3.55)

Accordingly, the scalon as the physically observed Higgs boson is excluded, since this
identification would require

sin(α) sin(β) ≈ 1 . (6.3.56)

Otherwise, we would come into conflict with the experimentally observed values for the
coupling constants21. Thus, we find

m1 = 125 GeV or m2 = 125 GeV . (6.3.57)

21See equation (6.3.32) and compare with the argumentation in subsection 6.2.2
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6.3.4. Conclusion

We demonstrated that the introduction of an additional real scalar field, which acquires a
nontrivial vacuum expectation value and is a singlet with respect to our extended gauge
group (6.2.1), enables us to implement the seesaw mechanism in our model and thus to
explain small neutrino masses in a satisfactory manner. Furthermore, we argued that
the scalon, which gets massive at one-loop order, cannot be identified with the physically
observed Higgs particle at 125 GeV. This is a consequence of the requirement of heavy
neutrino masses.

In addition to the particle content of the Standard Model, we obtain two new scalar
particles, three dark gauge bosons, which are again possible candidates for dark matter
[14] and three heavy neutrinos. The mass inequality (6.3.29) demands large scalar and/or
dark gauge boson masses (comparable to the heavy neutrino masses), in order to obtain
a positive squared scalon mass.

Our extended version of the SM contains many free dimensionless coupling parameters:
6 scalar couplings (λφ, λH , λs, λp, λφs, λHs), the dark gauge coupling gx and the Yukawa

couplings Γ
(ν)
D and Γ

(ν)
R . This number gets reduced by two after identifying one scalar

mass with 125 GeV and the vacuum expectation value 〈h〉 with 246 GeV. In spite of this
reduction, a scan over the remaining parameter space is still quite challenging, but it was
shown in [14] that it is possible to choose the free parameters such, that no inconsistencies
with experimental observation occur and all requirements for stability and perturbativity
are met.

Altogether, this model is a promising classically scale invariant extension of the Standard
Model, since it is not in contradiction to experimental data and explains small neutrino
masses via the seesaw mechanism. Furthermore, it predicts additional scalar particles as
well as vector dark matter, which may be probed and discovered in future experiments.
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A. Auxiliary Calculations

A.1. Explicit Calculation of the Effective Potential for a Simple
Toy Model

To compute the integral of equation (3.4.21), we start by performing a Wick rotation and
write the infinite sum as a logarithm:

V1 =
1

2

∫ ∞
−∞

dkE0

(2π)4

∫
d~kE

∞∑
n=1

(−1)n+1

n

(
1
2λ0φ

2
0c

k2
E0 + ~k2

E

)n
︸ ︷︷ ︸

ln

(
1+

1
2λ0φ

2
0c

k2
E

)
. (A.1.1)

To calculate this integral with the help of dimensional regularization, our theory is con-
tinued to a d-dimensional space-time,

V1 =
1

2

∫
ddkE
(2π)d

ln

(
1 +

1
2 Λ̃4−dλ0 φ

2
0c

k2
E

)
, (A.1.2)

where the factor Λ̃4−d, with [Λ̃] = 1
L , arises from a redefinition of the coupling constant,

λ0 → Λ̃4−dλ0, to keep the dimension of λ0, [λ0] = 1
EL , unchanged in a d-dimensional

space-time.

An integral of the form of equation (A.1.2) can easily be rewritten as∫
ddkE
(2π)d

ln

(
k2
E + a

k2
E + b

)
=

∫ a

b
d∆

∫
ddkE
(2π)d

1

k2
E + ∆

, (A.1.3)

and is linked to the well-known and common integral ([27, 54]):∫
ddkE
(2π)d

1

k2
E + ∆

=
1

(4π)
d
2

Γ(1− d
2)

Γ(1)
∆

d
2
−1 . (A.1.4)

Therefore, we can solve equation (A.1.3),∫
ddkE
(2π)d

ln

(
k2
E + a

k2
E + b

)
=

2

d

Γ(1− d
2)

(4π)
d
2

(
a
d
2 − b

d
2

)
, (A.1.5)

and find for the special case, a = 1
2 Λ̃4−dλ0φ

2
0c and b = 0, in d = 4− 2ε dimensions:

V1 =
1

64π2

(
1

2
λ0φ

2
0c

)2(
−1

ε
Λ2ε + ln

(
1

2
λ0φ

2
0c

)
+ γe − ln(4π)− ln(Λ̃2)− 3

2

)
+O(ε) .

(A.1.6)

69



A. AUXILIARY CALCULATIONS

To get rid of the divergency in the limit ε → 0, we introduce the MS-renormalized, Λ-
dependent parameters λ(Λ) and φc(Λ),

λ0 = Zλ λ(Λ) = (1 + δZλ)λ(Λ)

φ0c = Z
1
2
ϕφc(Λ) = (1 +

1

2
δZϕ)φc(Λ) ,

(A.1.7)

with the one-loop renormalization constants δZλ and δZϕ and find at one-loop order:

V =
λ

4!
φ4
c + ~

λ2φ4
c

256π2

(
ln

1
2λφ

2
c

Λ2
− 3

2

)
+

(
2δZϕ + δZλ −

1

ε

3~λ
32π2

)
Λ2ε λ

4!
φ4
c . (A.1.8)

In the MS-scheme, with Λ̃2 = Λ2 · eγE−ln(4π) and for

2δZϕ + δZλ =
1

ε

3~λ
32π2

, (A.1.9)

the effective potential reads:

V =
λ

4!
φ4
c + ~

λ2φ4
c

256π2

(
ln

1
2λφ

2
c

Λ2
− 3

2

)
. (A.1.10)
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A.2. Computation of the Field Strength Renormalization Matrix

Since the full scalar propagator (see equation (3.4.15)) reads for our classically scale in-
variant theory (compare equation (6.2.31))

ϕi ϕk =
i

p2 +
(

(Z
1
2
ϕ )TZ

1
2
ϕ − 1

)
ik
p2 + Πik(p2)

, (A.2.1)

the scalar self energy Π(p2), which is just the sum of all 1PI 2-point diagrams (equation
(3.4.16)),

iΠ(p2) = , (A.2.2)

is related to the renormalized one by ([55, 56])[
Πφφ(p2) Πφh(p2)
Πhφ(p2) Πhh(p2)

]
=

[
Π

(r)
φφ(p2) Π

(r)
φh(p2)

Π
(r)
hφ(p2) Π

(r)
hh(p2)

]
−

[
δZφφ δZ

1
2
φh + δZ

1
2
hφ

δZ
1
2
φh + δZ

1
2
hφ δZhh

]
p2 . (A.2.3)

Hence, we have to calculate all infinite, momentum-dependent contributions to the scalar
1PI 2-point correlation functions to obtain the field strength renormalization matrix.

In the course of the following calculations, we make use of the Feynman parametrization
[27]

1

AB
=

∫ 1

0
dx

1

(xA+ (1− x)B)2 , (A.2.4)

and that hence

1

((p− k)2 −m2 + i0+) (k2 −m2 + i0+)
=

=

∫ 1

0
dx

1

((k − (p(1− x))2 + p2x(1− x)−m2 + i0+)2 ,

(A.2.5)

where afterwards one is able to perform a shift, kµ → pµ(1 − x), in momentum space.
Furthermore, we are aware of the well-known d-dimensional integral in Minkowski space
[27] ∫

ddk

(2π)d
1

(k2 −∆ + i0+)n
= i

(−1)n

(4π)d
Γ(n− d

2)

Γn

(
∆− i0+

) d
2
−n

, (A.2.6)

and [57] serves as a helpful source for Feynman rules. Therefore, the relevant Feynman
diagrams are given by:

71



A. AUXILIARY CALCULATIONS

iΠf
hh = h h

p

p+ k

k

p

= −3 Λ̃4−d y
2
t

2

∫
ddk

(2π)d
Tr
[
(/p+ /k +mt)(/k +mt)

](
(p+ k)2 −m2

t + i0+
) (
k2 −m2

t + i0+
)
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t

2

∫
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t + i0+
) (
k2 −m2
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t

∫
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t
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k2 −m2
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)

= −3 Λ̃4−d y2
t

∫
ddk

(2π)d
4m2
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(p+ k)2 −m2

t + i0+
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k2 −m2
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) + . . .

= −3 Λ̃4−d y2
t

∫
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∫ 1

0
dx

4m2
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t︸ ︷︷ ︸
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t
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dx
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4m2
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) i
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2)

Γ(2)

(
∆− i0+

) d
2
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+ . . .

d=4−2ε
= −3 y2

t

∫ 1

0
dx
(

4m2
t − p2

) i

(4π)2

(
1 + ε ln4π

)
·
(1

ε
− γE +O(ε)

)(
1− ε ln∆

)(
1 + ε lnΛ̃2

)
+ . . .

= i
1

ε

3

(4π)2
y2
t p

2 + . . .

(A.2.7)
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iΠW±
hh = h

W±

G±h
h

p

−k

−p− k

p

=−2 Λ̃4−d g
2

4

∫
ddk

(2π)d
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1
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2
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2
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(
1
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2p
2 − 1

2k
2
)2](
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)
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2

∫
ddk
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1
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2

∫
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[
1
2p

2(
k2 −M2
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)
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+
1
4p

2(
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+ . . .

]

=−Λ̃4−d 4g2

2

∫
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0
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1
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2
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]
+ . . .
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= −i

1

ε

6

4(4π)2
g2 p2 + . . .

(A.2.8)

iΠZ
hh = h

Z

G0
h

h

p

−k

−p− k

p

= −Λ̃4−d g
′2 + g2

4

∫
ddk

(2π)d
(2p+ k)µ(2p+ k)ν
k2 −M2

Z + i0+

(
gµν − kµkν

(k2 + i0+)

)(
1

(k + p)2 + i0+

)
= . . .

d=4−2ε
= −i

1

ε

3

4(4π)2

(
g′

2
+ g2

)
p2 + . . .

(A.2.9)

73



A. AUXILIARY CALCULATIONS

iΠX
φφ = φ

Xi

Giφ φ

p

−k

−p− k

p

= −3 Λ̃4−d g
2
x

4

∫
ddk

(2π)d
(2p+ k)µ(2p+ k)ν
k2 −M2

X + i0+

(
gµν − kµkν

(k2 + i0+)

)(
1

(k + p)2 + i0+

)
= . . .

d=4−2ε
= −i

1

ε

9

4(4π)2
g2
x p

2 + . . .

(A.2.10)
Since none of the other Feynman diagrams possess infinite and p-dependent contributions,
we finally obtain the following results for the scalar field strength renormalization matrix:

δZφφ =
1

ε

9g2
x

64π2
and δZhh =

1

ε

9g2 + 3g′2 − 12y2
t

64π2
. (A.2.11)

In case of a theory with an additional real scalar field and right-handed neutrinos (see
section 6.3 and especially (6.3.1)), we also have to calculate δZss (compare (6.3.48a)) and
hence have to consider the diagram

iΠN
ss = s

νi

νi
s

p

p+ k

k

p

(A.2.12)

with a Majorana fermion loop. Using the Feynman rules for Majorana fields from [58] and
neglecting light neutrino masses1 leads by analogy with (A.2.7) to

iΠN
ss = i

1

ε

1

(4π)2 Tr (ΓRΓ∗R) p2 + . . . , (A.2.13)

and thus:

δZss =
1

ε

(
− 4

64π2
Tr (ΓRΓ∗R)

)
. (A.2.14)

1∑ m̂2
i ≈ Tr (ΓRΓ∗R) - see subsection 6.3.1.
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B. General Lagrangian Density

Since we do not want to restrict our derivation of the effective potential in section 4.2 only
to some special cases, the aim of this section is to construct a general Lorentz-invariant,
gauge-invariant and renormalizable1 Lagrangian density for a theory with n real spinless
fields, m Dirac bispinor fields and s real gauge fields. In the following discussion we draw
some inspiration from Steven Weinberg ([34–37]) and adapt his formalism here and there.

B.1. Gauge Field Lagrangian Density

We assume that the Lagrangian density is gauge-invariant with respect to a gauge group
G, which can be written as a direct product of subgroups SU(n) and U(1). Hence, the
s various generators Ta of the gauge group G are hermitian and obey the commutation
relation

[Ta, Tb] = ifabcTc , (B.1.1)

with the real and totally antisymmetric structure constant fabc. The generalized field
strength tensor is defined as

Fµνa = ∂µAνa − ∂νAµa − fabcA
µ
bA

ν
c , (B.1.2)

where the s real gauge fields Aa transform as:

Aµa(x) −→ Aµa(x)− ∂µαa(x) + fabcA
µ
b (x)αc(x). (B.1.3)

Out of the field strength tensor Fµνa we can build up a general Lorentz- and gauge-invariant
Lagrangian density of the simple form

LA = −1

4
Fµνa Fµν,a , (B.1.4)

since the second possible term c · ερσµν F ρσa Fµνa can be written as a total derivative .

B.1.1. Parity-violating Gauge Term

We want to show as a little exercise that the term ερσµνF aρσF
a
µν can indeed be rewritten

as a total derivative. Using the fact that the Levi-Civita-Symbol is total antisymmetric,
it is easy to expand the above expression in the following way:

ερσµνF aρσF
a
µν = ερσµν

(
2 · ∂ρAaσ + fabcAbρA

c
σ

)(
2 · ∂µAaν + fadeAdµA

e
ν

)
=

= ερσµν

4 · (∂ρAaσ)(∂µA
a
ν)︸ ︷︷ ︸

I

+ 4 · fabcAbµAcν(∂ρA
a
σ)︸ ︷︷ ︸

II

+ fabcfadeAbρA
c
σA

d
µA

e
ν︸ ︷︷ ︸

III

 .
(B.1.5)

1For ~ = 1, only coupling constants with mass dimension ≥ 0 are allowed.
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I: The first part is straight forward,

4 · ερσµν(∂ρA
a
σ)(∂µA

a
ν) = 4 · ερσµν [∂ρ (Aaσ ∂µA

a
ν)−Aaσ ∂ρ∂µAaν ]

= 4 · ερσµν∂ρ (Aaσ ∂µA
a
ν) ,

(B.1.6)

since ερσµν is antisymmetric in ρ and µ, while ∂ρ∂µ is symmetric.

II: If we realize that fabc is also totally antisymmetric, we can write the second term
as:

4 · ερσµνfabcAbµAcν(∂ρA
a
σ) =

4

3
· ερσµνfabc ∂ρ

(
AaσA

b
µA

c
ν

)
. (B.1.7)

III: We can relabel the Latin indices and write the third part in the form

ερσµνfabcfadeAbρA
c
σA

d
µA

e
ν =

1

3
· ερσµν [ fabcfadeAbρA

c
σA

d
µA

e
ν

+facdfabeAcρA
d
σA

b
µA

e
ν

+fadbfaceAdρA
b
σA

c
µA

e
ν ] = ,

(B.1.8)

and if we relabel the Greek indices as well and have the antisymmetry of ερσµν in
mind, we find

=
1

3
· ερσµν

[
fabcfade + facdfabe + fadbface

]
AbρA

c
σA

d
µA

e
ν . (B.1.9)

Since the structure constants satisfy the Jacoby identity

fabcfade + facdfabe + fadbface = 0 , (B.1.10)

the third term is equal to zero.

Therefore, we are finally able to write down the above expression as a total derivative:

ερσµνF aρσF
a
µν = 4 · ερσµν∂ρ

(
Aaσ ∂µA

a
ν +

1

3
·AaσAbµAcν

)
. (B.1.11)

B.2. Scalar Lagrangian Density

Seeing that a complex scalar field ϕ(x) can always be rewritten with the help of two real
spinless fields ϕ1,2,

ϕ(x) = Re[ϕ(x)] + i Im[ϕ(x)] = ϕ1(x) + i ϕ2(x) , (B.2.1)

it is sufficient to consider a theory with only real scalar fields and hence, we define ϕ to
be a set of n such real fields.

B.2.1. Kinetic Term

A general kinetic term,

LKin =
1

2
Zik
(
∂µϕ

′
i

) (
∂µϕ′k

)
, (B.2.2)
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with the real and symmetric2 mixing matrix Z, can easily be diagonalized with the help
of an orthogonal matrix O through

Z = OTẐO , (B.2.3)

and after an appropriate field redefinition,

ϕ = Ẑ
1
2Oϕ′ , (B.2.4)

the Lagrangian density reads:

LKin =
1

2
(∂µϕ)i (∂µϕ)i . (B.2.5)

Since this Lagrangian density is clearly not invariant under an arbitrary gauge transfor-
mation of the form

ϕ→ eiαa(x) θaϕ , (B.2.6)

we have to introduce the covariant derivative

(Dµϕ)i = ∂µϕi + i(θa)ikϕkA
µ
a , (B.2.7)

where θa denotes the matrix representation of the generator Ta in the representation of G,
under which the scalar fields ϕi transform. These s antisymmetric and hermitian n × n
gauge coupling matrices (group generators) are proportinal to the gauge coupling constants
and satisfy the commutation relation

[θa, θb] = ifabcθc . (B.2.8)

From the transformation behaviour of gauge fields (B.1.3) follows that Dµϕ changes under
a gauge transformation in the same way as ϕ and we finally obtain a gauge invariant kinetic
Lagrangian density:

LKin =
1

2
(Dµϕ)i (Dµϕ)i . (B.2.9)

For a more detailed discussion of (non-abelian) gauge invariance the interested reader is,
amongst others, referred to [27, 36, 37, 59].

B.2.2. Interaction Term

For the potential V0(ϕ) we choose the most general 4th-order polynomial

V0(ϕ) = κiϕi + µikϕiϕk + ρikmϕiϕkϕm + λikmnϕiϕkϕmϕn , (B.2.10)

with real coefficients κi, µik, ρikm and λikmn. Gauge invariance requires that the condition

∂V0(ϕ)

∂ϕi
(θa)ik ϕk = 0 (B.2.11)

is fulfilled, since an infinitesimal gauge transformation yields

V0(ϕ)
!

= V0(eiαaθaϕ) = V0(ϕ) + iαa
∂V0(ϕ)

ϕi
(θa)ik ϕk . (B.2.12)

2A consequence of the fact that the Lagrangian has to be a real quantity and that the antisymmetric
parts cancel each other out.
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B.3. Fermionic Lagrangian Density

B.3.1. Kinetic Term

If we consider a set ψ of m Dirac bispinor fields and want to be able to describe the
dynamics of the fermions (and antifermions) of the theory, we have to introduce a kinetic
term of the general form3

LKin =
1

2

[
ψ (1⊗ iγµ∂

µ) (A⊗ 1+ i ·B ⊗ γ5)ψ

+ψc (1⊗ iγµ∂
µ)
(
AT ⊗ 1+ i ·BT ⊗ γ5

)
ψc

+ ψ (1⊗ iγµ∂
µ) (E ⊗ 1+ i · F ⊗ γ5)ψc

+ψc (1⊗ iγµ∂
µ) (E ⊗ 1+ i · F ⊗ γ5)†ψ

]
,

(B.3.1)

with the adjoint spinor
ψi = ψ†i γ0 , (B.3.2)

and the charge-conjugated field (see appendix C.2)

ψc
i = CγT

0 ψ
∗
i . (B.3.3)

We already made use of the identities (see (C.4.4))

ψc (1⊗ iγµ∂
µ) (A⊗ 1+ i ·B ⊗ γ5)ψc =

= ψ (1⊗ iγµ∂
µ)
(
AT ⊗ 1+ i ·BT ⊗ γ5

)
ψ ,

(B.3.4)

and (see (C.4.5)) [
ψ (1⊗ iγµ∂

µ) (E ⊗ 1+ i · F ⊗ γ5)ψc

]†
=

= ψc (1⊗ iγµ∂
µ) (E ⊗ 1+ i · F ⊗ γ5)†ψ ,

(B.3.5)

and introduced the Kronecker product, denoted by ⊗, to deal with the 4-dimensional
substructure of the m Dirac bispinor fields ψi. Furthermore, one can show that (see
(C.4.6)) [

ψ (1⊗ iγµ∂
µ) (A⊗ 1+ i ·B ⊗ γ5)ψ

]†
=

= ψ (1⊗ iγµ∂
µ) (A⊗ 1+ i ·B ⊗ γ5)† ψ ,

(B.3.6)

and hence, A and iB have to be hermitian matrices. The kinetic part of the Lagrangian
density can then be written in a very compact way:

LKin =
1

2

(
ψ ψc

)︸ ︷︷ ︸
ω

(12m ⊗ iγµ∂
µ)


[
A E
E† AT

]
⊗ 1+ i ·

[
B F
−F † BT

]
⊗ γ5︸ ︷︷ ︸

Y


(
ψ
ψc

)
︸ ︷︷ ︸

ω

.

(B.3.7)
Since the Matrix Y is hermitian, it can be diagonalized with the help of a unitary matrix
U ,

Y = UŶ U † , (B.3.8)

3ψiγµψj and ψiγµγ5ψj transform as four-vectors and therefore, Lorentz-invariance is guaranteed.
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and after a suitable redefinition of the fermionic fields,

ω′ = Ŷ
1
2U †ω , (B.3.9)

we find

LKin =
1

2
ω (12m ⊗ iγµ∂

µ)ω = ψ (1m ⊗ iγµ∂
µ)ψ , (B.3.10)

where we immediately have dropped the apostrophe for the sake of simplicity.
Again, we have to introduce the covariant derivative,

(Dµψ)i = ∂µψi + i (ta)ik ψkA
µ
a , (B.3.11)

to make the Lagrangian density invariant under an arbitrary gauge transformation of the
form:

ψ → eiαa(x) taψ . (B.3.12)

The m hermitian gauge coupling matrices ta, which are the matrix representations of the
generators Ta in the representation of G, under which the fermion fields ψ transform, are
proportional to the gauge coupling constants and satisfy the commutation relation

[ta, tb] = ifabctc . (B.3.13)

For the same reason as for the scalar Lagrangian density we obtain a gauge invariant
kinetic fermionic Lagrangian density:

LKin =
1

2
ω
(
12m ⊗ i /D

)
ω = ψ

(
1m ⊗ i /D

)
ψ . (B.3.14)

To be able to deal with chiral theories (e.g. the weak interaction), we rewrite the
Lagrangian density with the help of left-handed and right-handed fermion-fields (appendix
C.3)

ψL,i =
1

2
(1− γ5)ψi and ψR,i =

1

2
(1+ γ5)ψi , (B.3.15)

and find (compare (C.4.10))

LKin = ψL

(
1⊗ i /D

)
ψL + ψR

(
1⊗ i /D

)
ψR . (B.3.16)

B.3.2. Dirac-Mass-Term

An explicit Dirac mass term for a set ψ of m Dirac bispinor fields has the form4

LD = −1

2

[
ψ (A⊗ 1+ i ·B ⊗ γ5)ψ + ψc

(
AT ⊗ 1+ i ·BT ⊗ γ5

)
ψc
]
, (B.3.17)

where A and B must be hermitian matrices, due to the fact that the Lagrangian has to
be real and (see (C.4.7))[

ψ (A⊗ 1+ i ·B ⊗ γ5)ψ
]†

= ψ
(
A† ⊗ 1+ i ·B† ⊗ γ5

)
ψ . (B.3.18)

4ψiψj and ψiγ5ψj transform as scalars and pseudoscalars respectively.
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Furthermore, we already used the relation (see (C.4.8)):

ψc (A⊗ 1+ i ·B ⊗ γ5)ψc = ψ
(
AT ⊗ 1+ i ·BT ⊗ γ5

)
ψ , (B.3.19)

to simplify (B.3.17). With the help of the chiral fields ψL and ψR we rewrite the above
expression (see (C.4.11)),

ψ [A⊗ 1+ i ·B ⊗ γ5]ψ =

=ψL [A⊗ 1+ i ·B ⊗ γ5]ψR + ψR [A⊗ 1+ i ·B ⊗ γ5]ψL =

=ψL

[
(A+ i ·B)︸ ︷︷ ︸

MD

⊗1
]
ψR + ψR

[
(A− i ·B)︸ ︷︷ ︸

M†D

⊗1
]
ψL ,

(B.3.20)

and we finally get:

LD = −1

2

[
ψL

(
MD ⊗ 1

)
ψR + ψR

(
M †D ⊗ 1

)
ψL

+(ψL)c(M∗D ⊗ 1) (ψR)c + (ψR)c(MT
D ⊗ 1

)
(ψL)c

]
(B.3.19)

= −ψL (MD ⊗ 1)ψR − ψR

(
M †D ⊗ 1

)
ψL .

(B.3.21)

We have to emphasize that only those matrix elements are allowed to be nonzero, which
lead to gauge invariant mass terms. Since chiral fermion fields transform under an arbitrary
gauge transformation as (appendix (C.3))

ψR → eiαi(x)tR,iψR

ψL → eiαi(x)tL,iψL ,
(B.3.22)

the following relation has to be fulfilled:

tL,i (MD ⊗ 1)− (MD ⊗ 1) tR,i = 0 . (B.3.23)

For the chiral Standard Model this condition is only true for MD = 0, due to the fact that
right-handed fermions are singlets with respect to the weak interaction (tR,SU(2) = 0, but
tL,SU(2) 6= 0).

Nevertheless, even forbidden explicit Dirac mass terms can still appear in the Lagrangian
density after spontaneous symmetry breaking. This can be achieved through the famous
Higgs mechanism, where two fermions couple to a real scalar field ϕi (Yukawa interaction)
with a nonzero vacuum expectation value:

LYuk
D = −1

2

[
ψL

(
ΓD,iϕi ⊗ 1

)
ψR + ψR

(
Γ†D,iϕi ⊗ 1

)
ψL

+(ψL)c(Γ∗D,iϕi ⊗ 1) (ψR)c + (ψR)c(ΓT
D,iϕi ⊗ 1

)
(ψL)c

]
(B.3.19)

= −ψL

(
ΓD,iϕi ⊗ 1

)
ψR − ψR

(
Γ†D,iϕi ⊗ 1

)
ψL .

(B.3.24)

Again, only those matrix elements of the Yukawa coupling matrix ΓD,i are nonzero that
lead to gauge invariant terms. From the equations (B.2.6) and (B.3.22) we find the fol-
lowing condition for gauge invariance:

tL,i(ΓD,m ⊗ 1)− (ΓD,m ⊗ 1)tR,i = ΓD,n(θi)nm ⊗ 1 . (B.3.25)
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B.3.3. Majorana-Mass-Term

We are able to obtain a second type of mass terms, the so called Majorana mass term, if
we connect fermions with antifermions and from the identity (see (C.4.9))[

ψc (A2 ⊗ 1+ i ·B2 ⊗ γ5)ψ

]†
= ψ

(
A†2 ⊗ 1+ i ·B†2 ⊗ γ5

)
ψc , (B.3.26)

we find:

LMaj = −1

2

[
ψ (A⊗ 1+ i ·B ⊗ γ5)ψc + ψc

(
A† ⊗ 1+ i ·B† ⊗ γ5

)
ψ
]
. (B.3.27)

After defining

A =
1

2

(
M †R +ML

)
B =

i

2

(
M †R −ML

)
,

(B.3.28)

we can rewrite the above Lagrangian density as

LMaj = −1

2

[
ψ

(
ML ⊗

1

2
(1+ γ5) +M †R ⊗

1

2
(1− γ5)

)
ψc

+ψc

(
M †L ⊗

1

2
(1− γ5) +MR ⊗

1

2
(1+ γ5)

)
ψ

]
,

(B.3.29)

and if we again introduce the chiral fields ψL and ψR, we finally get:

LMaj = −1

2

[
ψL

(
ML ⊗ 1

)
ψc

L + (ψL)c(M †L ⊗ 1)ψL

+ψR

(
M †R ⊗ 1

)
(ψR)c + (ψR)c(MR ⊗ 1

)
ψR

]
.

(B.3.30)

Since chiral antifermions transform, analog to equation (B.3.22), as

(ψR)c → e−iαi(x)t∗R,i (ψR)c

(ψL)c → e−iαi(x)t∗L,i (ψL)c ,
(B.3.31)

the condition for gauge-invariance is given by:

tL,iML +MLt
∗
L,i = 0

tR,iM
†
R +M †Rt

∗
R,i = 0 .

(B.3.32)

In the Standard Model, this is only nontrivially true for sterile fermions, e.g. right-handed
neutrinos, which only interact via gravity.

Furthermore, we realize that ML and MR are symmetric matrices

ML = MT
L and MR = MT

R , (B.3.33)

since the following identity holds (see (C.4.12)):

ψL (ML ⊗ 1) (ψL)c = ψL

(
MT

L ⊗ 1
)

(ψL)c . (B.3.34)
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Again, primary forbidden terms can be generated via Yukawa interactions and sponta-
neous symmetry breaking:

LYuk
Maj = −1

2

[
ψL

(
ΓL,iϕi ⊗ 1

)
(ψL)c + (ψL)c(Γ†L,iϕi ⊗ 1)ψL

+ (ψR)c(ΓR,iϕi ⊗ 1
)
ψR + ψR

(
Γ†R,iϕi ⊗ 1

)
(ψR)c

]
.

(B.3.35)

Gauge invariance is guaranteed as long as

tL,i (ΓL,m ⊗ 1) + (ΓL,m ⊗ 1) t∗L,i = ΓL,n(θi)nm ⊗ 1

tR,i(Γ
†
R,m ⊗ 1) + (Γ†R,m ⊗ 1)t∗R,i = Γ†R,n(θi)nm ⊗ 1

(B.3.36)

is fulfilled and for the same reason as above, ΓL,i and ΓR,i are symmetric m×m matrices.
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C. Fun with Gamma Matrices

We want to prove some of the relations used in appendix B and start with a short summary
about gamma matrices, charge-conjugation and chiral fermion fields. For more details see
[51, 60] .

C.1. Gamma Matrices

The 4× 4 gamma matrices (γµ) = (γ0, γ1, γ2, γ3) are defined by the commutation relation

{γµ, γν} = γµγν + γνγµ = 2gµν1 , (C.1.1)

and satisfy

γ†0 = γ0

γ†i = −γi .
(C.1.2)

Furthermore, the fifth gamma matrix, γ5, is given by

γ5 := iγ0γ1γ2γ3 , (C.1.3)

and from (C.1.1) and (C.1.2) follow:

{γ5, γµ} = 0

γ†5 = γ5 .
(C.1.4)

C.2. Charge-Conjugation

The charge-conjugation operator interchanges particles and antiparticles and hence flips all
internal quantum numbers (charges). For a Dirac bispinor field ψi the charge conjugated
field ψc

i is given by:

ψc
i = CγT

0 ψ
∗
i . (C.2.1)

The charge conjugation matrix C is defined by the relation

C−1γµC = −γT
µ , (C.2.2)

and obeys [51]:

C† = C−1

CT = −C .
(C.2.3)

For the adjoint charge conjugated spinor we find

ψc
i =

(
CγT

0 ψ
∗)† γ0

(C.2.3)
= ψTγ∗0C

−1γ0
(C.2.2)

= −ψT(γ0γ
†
0)TC−1 (C.1.1)

= −ψTC−1 , (C.2.4)
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and from (C.1.1) and (C.2.2) we get a commutation relation for γ5 and C:

C−1γ5 = γT
5 C
−1 . (C.2.5)

C.3. Chiral Fermion Fields

If we want to deal with chiral theories, we have to introduce the two projection operators

PL =
1

2
(1− γ5) and PR =

1

2
(1+ γ5) , (C.3.1)

with the simple properties:
PL + PR = 1

PL · PR = 0

(PL/R)2 = PL/R .

(C.3.2)

Therefore, we can decompose a Dirac spinor ψi in its left-handed and right-handed com-
ponents,

ψi = (PL + PR)ψi = PLψi + PRψi = ψiL + ψiR , (C.3.3)

which transform differently under a chiral gauge transformation and are eigenstates of γ5:

γ5ψR = ψiR and γ5ψiL = −ψiL . (C.3.4)

The behavior of the chiral fields under a general gauge transformation can be easily inves-
tigated for infinitesimal transformations,

ψ →
(
1+ itiαi(x)

)
ψ =

=

(
1+ i (t1,i ⊗ 1+ t2,i ⊗ γ5)αi(x)

)
(ψR + ψL) =

=

(
1+ i (t1,i + t2,i) ⊗ 1︸ ︷︷ ︸

tR

αi(x)

)
ψR

+

(
1+ i (t1,i − t2,i) ⊗ 1︸ ︷︷ ︸

tL

αi(x)

)
ψL ,

(C.3.5)

which leads, as required, to

ψR → eiαi(x)tR,iψR

ψL → eiαi(x)tL,iψL .
(C.3.6)

Furthermore, a charge conjugated left-handed field is right-handed and vice versa:

(ψL)c (C.2.1)
= CγT

0 ψ
∗
L = CγT

0

1

2
(1− γ∗5)ψ∗

(C.1.4)
= C

1

2
(1+ γ∗5) γT

0 ψ
∗ (C.2.5)

=
1

2

(
1+ γ†5

)
CγT

0 ψ
∗

(C.1.4)
= PRψ

c = (ψc)R .

(C.3.7)
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C.4. Useful Relations

Due to the fact that fermion fields anticommute,

ψiψj = −ψjψi , (C.4.1)

we find that the transpose of an expression of the following form comes along with a change
of sign:

ψT (Am×m ⊗ Z4×4) ψ = (ψi)aAijZab(ψj)b

= (ψi)a(A
T)ji(Z

T)ba(ψj)b
(C.4.1)

= −(ψj)b(A
T)ji(Z

T)ba(ψi)a

= −ψT (Am×m ⊗ Z4×4)T ψ .

(C.4.2)

With the help of the relations (C.1.1) - (C.4.2) we are now going to prove the identities
used in appendix B and ignore total derivatives of the form:

ψ (A⊗ 1+ i ·B ⊗ γ5)

(
1⊗ iγµ

←
∂µ
)
ψ =

(C.1.4)
= ψ

(
1⊗ iγµ

←
∂µ
)

(A⊗ 1− i ·B ⊗ γ5)ψ

= ψ

(
1⊗ iγµ(−

→
∂µ)

)
(A⊗ 1− i ·B ⊗ γ5)ψ

+ total derivative .

(C.4.3)

• Relation (B.3.4)

ψc

(
1⊗ iγµ∂

µ

)
(A⊗ 1+ i ·B ⊗ γ5)ψc = ψ

(
1⊗ iγµ∂

µ

)(
AT ⊗ 1− i ·BT ⊗ γ5

)
ψ

ψc (1⊗ iγµ∂
µ) (A⊗ 1+ i ·B ⊗ γ5)ψc =

(C.2.4)
= −ψT

(
1⊗ C−1

)
(1⊗ iγµ∂

µ) (A⊗ 1+ i ·B ⊗ γ5)
(
1⊗ CγT

0

)
ψ∗

(C.2.2)(C.2.5)
= ψT

(
1⊗ iγT

µ ∂
µ
) (
A⊗ 1+ i ·B ⊗ γT

5

) (
1⊗ C−1

) (
1⊗ CγT

0

)
ψ∗

(C.4.2)
= −ψ† (1⊗ γ0)

(
AT ⊗ 1+ i ·BT ⊗ γ5

)(
1⊗ iγµ

←
∂µ
)
ψ

(C.1.4)
= ψ

(
1⊗ iγµ

→
∂µ
)(

AT ⊗ 1− i ·BT ⊗ γ5

)
ψ �

(C.4.4)
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• Relation (B.3.5):[
ψ (1⊗ iγµ∂

µ) (E ⊗ 1+ i · F ⊗ γ5)ψc

]†
= ψc (1⊗ iγµ∂

µ) (E ⊗ 1+ i · F ⊗ γ5)†ψ

[
ψ (1⊗ iγµ∂

µ) (E ⊗ 1+ iF ⊗ γ5)ψc
]†

=

(C.1.2)(C.1.4)
= ψT

(
1⊗ γT

0 C
−1
) (
E† ⊗ 1− i · F † ⊗ γ5

)(
1⊗ (−i)γ†µ

←
∂µ
)

(1⊗ γ0)ψ

(C.2.2)(C.4.4)
= ψT

(
1⊗ (−C−1γ0)

)
(1⊗ γ0)

(
1⊗ iγµ

→
∂µ
)

(E ⊗ 1+ i · F ⊗ γ5)† ψ

(C.1.1)(C.2.4)
= ψc (1⊗ iγµ∂

µ) (E ⊗ 1+ i · F ⊗ γ5)† ψ �
(C.4.5)

• Relation (B.3.6)[
ψ (1⊗ iγµ∂

µ) (A⊗ 1+ i ·B ⊗ γ5)ψ

]†
= ψ (1⊗ iγµ∂

µ) (A⊗ 1+ i ·B ⊗ γ5)† ψ

[
ψ (1⊗ iγµ∂

µ) (A⊗ 1+ i ·B ⊗ γ5)ψ
]†

=

(C.1.2)(C.1.4)
= ψ†

(
A† ⊗ 1− i ·B† ⊗ γ5

)(
1⊗ (−i)γ†µ

←
∂µ
)

(1⊗ γ0)ψ

(C.1.1)(C.1.4)
= ψ

(
1⊗ iγµ

→
∂µ
)

(A⊗ 1+ i ·B ⊗ γ5)† ψ �

(C.4.6)

• Relation (B.3.18)[
ψ (A⊗ 1+ i ·B ⊗ γ5)ψ

]†
= ψ

(
A† ⊗ 1+ i ·B† ⊗ γ5

)
ψ

[
ψ (A⊗ 1+ i ·B ⊗ γ5)ψ

]† (C.1.2)(C.1.4)
= ψ†

(
A† ⊗ 1− i ·B† ⊗ γ5

)
(1⊗ γ0)ψ

(C.1.4)
= ψ

(
A† ⊗ 1+ i ·B† ⊗ γ5

)
ψ �

(C.4.7)

• Relation (B.3.19)

ψc

(
A⊗ 1+ i ·B ⊗ γ5

)
ψc = ψ

(
AT ⊗ 1+ i ·BT ⊗ γ5

)
ψ

ψc (A⊗ 1+ i ·B ⊗ γ5)ψc (C.2.4)
= −ψT

(
1⊗ C−1

)
(A⊗ 1+ i ·B ⊗ γ5)

(
1⊗ CγT

0

)
ψ∗

(C.2.5)
= −ψT

(
A⊗ 1+ i ·B ⊗ γT

5

) (
1⊗ γT

0

)
ψ∗

(C.4.2)
= ψ† (1⊗ γ0)

(
A† ⊗ 1+ i ·BT ⊗ γ5

)
ψ �

(C.4.8)
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• Relation (B.3.26)[
ψc (A⊗ 1+ i ·B ⊗ γ5)ψ

]†
= ψ (A† ⊗ 1+ i ·B† ⊗ γ5)ψc

[
ψc (A⊗ 1+ i ·B ⊗ γ5)ψ

]†
(C.1.2)

= ψ†
(
A† ⊗ 1− i ·B† ⊗ γ5

)
(1⊗ γ0)ψc

(C.1.4)
= ψ† (1⊗ γ0)

(
A† ⊗ 1+ i ·B† ⊗ γ5

)
ψc �

(C.4.9)

• Relation (B.3.16)

ψ

(
1⊗ i /D

)
ψ = ψL

(
1⊗ i /D

)
ψL + ψR

(
1⊗ i /D

)
ψR

ψL

(
1⊗ i /D

)
ψR

(C.1.4)
=

1

4
ψ† (1⊗ (1− γ5)) (1⊗ γ0) (1⊗ iγµD

µ) (1⊗ (1+ γ5))ψ

(C.1.4)
=

1

4
ψ (1⊗ iγµD

µ) (1⊗ (1− γ5)) (1⊗ (1+ γ5))︸ ︷︷ ︸
=0

ψ = 0 �

(C.4.10)

• Relation (B.3.20)

ψ

[
A⊗ 1+ i ·B ⊗ γ5

]
ψ = ψL

[
A⊗ 1+ i ·B ⊗ γ5

]
ψR + ψR

[
A⊗ 1+ i ·B ⊗ γ5

]
ψL

ψR(A⊗ 1+ i ·B ⊗ γ5)ψR
(C.1.4)

= ψ(A⊗ 1+B ⊗ γ5)PLPRψ

(C.3.2)
= 0 �

(C.4.11)

• Relation (B.3.35)

ψL

(
ML ⊗ 1

)
(ψL)c = ψL

(
MT

L ⊗ 1
)

(ψL)c

ψL

(
ML ⊗ 1

)
(ψL)c (C.2.1)

= ψ† (1⊗ γ0) (ML ⊗ 1)
(
1⊗ CγT

0

)
ψ∗L

(C.4.2)
= −ψ†L

(
1⊗ γ0C

T
) (
MT

L ⊗ 1
) (
1⊗ γT

0

)
ψ∗L

(C.2.3)
= ψL

(
MT

L ⊗ 1
)

(ψL)c �

(C.4.12)
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D. Gaussian Integrals

We want to calculate various Gaussian Integrals, which are of great use in section 4.2 in
the course of the derivation of the effective potential for a general Lagrangian density at
one-loop order. This discussion is based on [27, 61, 62].

D.1. Bosonic Gaussian Integrals

We start with concentrating on Gaussian integrals over ordinary commuting quantities
and consider integrals over real variables as well as over real fields.

D.1.1. Gaussian Integral over Real Coordinates

The one-dimensional Gaussian integral, with a = |a| eiγ , −π
2 < γ < π

2 ,
1 is given by∫ ∞

−∞
dx e−

1
2
ax2 =

√
2π

a
, (D.1.1)

since it is not hard to show that[∫ ∞
−∞

dx e−
1
2
ax2
]2

=

∫ ∞
−∞

dx dy e−
1
2
a(x2+y2) = 2π

∫ ∞
0

dr r e−
ar2

2 =
2π

a
, (D.1.2)

and where the complex square root is defined as:

√
a =

√
|a| · ei γ

2 . (D.1.3)

We can use this result to compute the n-dimensional real-valued integral of the form

In =

∫ ∞
−∞

dnx e−
1
2
xiAijxj , (D.1.4)

with the real, symmetric2 and positive definite Matrix Aij . Hence, there exists a real,
orthogonal matrix Q such that

D =

λ1

. . .

λn

 = QTAQ , (D.1.5)

and if we define
x̄ = Qx , (D.1.6)

1The integral converges only for Re a > 0.
2The antisymmetric part cancels due to xTAx = xTATx.
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we get

∫ ∞
−∞

dnx e−
1
2
xTAx =

∫ ∞
−∞

dnx̄ |detQT| e−
1
2
x̄TDx̄ =

n∏
i=1

∫ ∞
−∞

dx̄i e
− 1

2
λix̄

2
i

=

n∏
i=1

√
2π

λi
=

√
(2π)n

detA
,

(D.1.7)

where we used the fact that the determinant of an orthogonal matrix is ±1.
We can also consider the related integral

In =

∫ ∞
−∞

dnRe(z) dnIm(z) e−z
†Az

=

∫ ∞
−∞

dnRe(z) dnIm(z) e(Re(z)−i Im(z))TA (Re(z)+i Im(z)) ,

(D.1.8)

with the hermitian and positive definite matrix A. With the help of the unitary matrix U
we can diagonalize the matrix A

D =

λ1

. . .

λn

 = U †AU , (D.1.9)

and after defining
z̄ = Uz , (D.1.10)

we find3∫ ∞
−∞

dnRe(z̄) dnIm(z̄) e−z
†Az =

∫ ∞
−∞

dnRe(z) dnIm(z) |detU †| e−z̄†Dz̄

=

n∏
i=1

∫ ∞
−∞

dRe(z̄i) dIm(z̄i) e
−λiRe(z̄i)

2−λiIm(z̄i)
2 (D.1.7)

=
πn

detA
.

(D.1.11)

D.1.2. Gaussian Integral over Real Fields

We want to calculate a path integral of the form∫
[dφ] eiS[φ] , (D.1.12)

with the classical action

S[φ] = −1

2

∫
d4yd4x φT(x)A(x− y)φ(y) , (D.1.13)

3|detU†| = 1 since U is a unitary matrix.
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where φ denotes a vector of s real fields and A a real and symmetric s × s matrix. We
limit our space-time volume to V = L4 and write the fields and the matrix with the help
of a Fourier series as

φ(x) =
1

V

∑
n

eiknxφ̂(kn)

A(x− y) =
1

V

∑
n

eikn(x−y)Â(kn) .

(D.1.14)

Due to the finite volume and the choice of periodic boundary conditions the wave vector
is discretized and given by

kµn =
2πnµ

L
, (D.1.15)

where nµ is an integer. Inserting these expansions back in (D.1.13) it is not hard to show
that one gets:

S[φ] = − 1

2V

∑
n

φ̂T(−kn)Â(kn)φ̂(kn) . (D.1.16)

Although φ(x) and A(x− y) are real quantities, φ̂(kn) and Â(kn) are in general complex
and have to obey

φ̂(−kn) = φ̂∗(kn)

Â(−kn) = Â∗(kn) .
(D.1.17)

Furthermore, from the symmetry of A, A(x− y) = AT(y − x), follows

Â(kn) = ÂT(−kn) = ÂT(k−n) , (D.1.18)

and the relations from (D.1.17) enable us to find

S[φ] = − 1

2V

∑
n

φ̂†(kn)Â(kn)φ̂(kn)
(S=S∗)

= − 1

2V

∑
n

φ̂†(−kn)Â(−kn)φ̂(−kn)

=− 1

2V
φ̂T(0)Â(0)φ̂(0)− 1

V

∑
n>0

φ̂†(kn)Â(kn)φ̂(kn) .
(D.1.19)

The measure of the path integral can then be written as

[dφ] = C · dsφ̂(0)
∏
n>0

dsRe(φ̂(kn)) dsIm(φ̂(kn)) , (D.1.20)

where we are not interested in the exact form of the constant factor C, since we are always
dealing with fractions of Gaussian integrals. Of course, the notation n > 0 for a vector is
a misnomer and needs clarification. We define the vector n to be ”positive” if

n0 > 0 ∨ n0 = 0 , n1 > 0 ∨ n0 = 0 , n1 = 0 , n2 > 0 ∨ . . . , (D.1.21)

which is only one possible choice to systemize the sum over all n.
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We can now reduce our path integral to simpler Gaussian integrals over real coordinates
and we find from (D.1.7) and (D.1.11):∫

[dφ]eiS[φ] = C

∫
dsφ̂(0)

∏
n>0

dsRe(φ̂(kn)) dsIm(φ̂(kn))

· e−
i

2V
φ̂T(0)Â(0)φ̂(0)− i

V

∑
n>0 φ̂

†(kn)Â(kn)φ̂(kn)

= C ·

√
(iV 2π)s

detÂ(0)

∏
n>0

(iV π)s

detÂ(kn)
.

(D.1.22)

If we realize that detA = detAT and use relation (D.1.18), we can simply the above result
to ∫

[dφ]eiS[φ] = C̄ ·
∏

all kn

√
1

detÂ(kn)
= C̄ ·

√
1

DetA
, (D.1.23)

with the new overall factor C̄ and the functional determinant DetA.
The alert reader might have cast doubt on the legitimacy of our calculation of the

path integral in (D.1.22), since the Gaussian integrals seems not to converge at all, due
to the purely imaginary phase. But, as defined in equation (3.1.1), we actually perform
the integral in the limit T → ∞(1 − i0+), and therefore, we should have changed all k0

n

to k0
n + i0+ 4 [27], where the term i0+ delivers a real contribution to the phase and the

necessary convergence factor.
In a final step, we perform the limit L→∞, where the sum over the discretized momenta

becomes again an integral,
(2π)4

V

∑
all kn

→
∫

d4k , (D.1.24)

and in the end the path integral reads∫
[dφ]eiS[φ] = Ĉ e

− 1
2

∫
d4x

∫
d4k
(2π)4

ln detÂ(k)
. (D.1.25)

D.2. Fermionic Gaussian Integrals

We can also deal with Gaussian integrals over non-commuting quantities, so-called Grass-
mann numbers. Again we distinguish between integrals over variables and fields and start
with a short introduction about these special numbers.

D.2.1. Grassmann Numbers

Grassmann numbers are anticommuting quantities (i.e. fermionic fields), which obey

{ψ, χ} = 0 , (D.2.1)

and
ψψ = χχ = 0 . (D.2.2)

4If we perform a Fourier transformation a shift of the T -axis in the direction −i0+ has to be compen-
sated by a shift of the k0-axis in the direction +i0+.
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Therefore, a Taylor series expansion of a function f(ψ) has the simple form:

f(ψ) = a+ b · ψ . (D.2.3)

By analogy with an integral over ordinary numbers we can also introduce an integral over
Grassmann numbers (Berezin integral [63]), which is defined as a linear functional:∫

dψ (a · f(ψ) + b · g(ψ)) = a ·
∫

dψ f(ψ) + b ·
∫

dψ g(ψ) . (D.2.4)

The integral over a function f(ψ) is then given by∫
dψ f(ψ) = a

∫
dψ + b

∫
dψ ψ , (D.2.5)

and if we claim that such an integral should be invariant under a simple shift ψ → ψ + c,∫
dψ f(ψ) =

∫
dψ f(ψ + c) = (a+ bc)

∫
dψ + b

∫
dψ ψ , (D.2.6)

we find: ∫
dψ = 0 . (D.2.7)

The second integral is not determined and is therefore set to be equal to 1:∫
dψ ψ = 1 . (D.2.8)

As a consequence, integration and differentiation are identical for Grassmann variables:∫
dψ =

∂

∂ψ
. (D.2.9)

Furthermore, it follows from equation (D.2.7) and (D.2.8) that5:∫
dnψ ψ1 . . . ψm =

∫
dψn . . . dψ1 ψ1 . . . ψm =

{
1, if m = n.

0, otherwise.
(D.2.10)

D.2.2. Gaussian Integral over Grassmann Variables

With all this knowledge about Grassmann numbers we can now consider an integral of
the form

Im =

∫
dmψ e

1
2
ψTAψ . (D.2.11)

First of all, we notice from equation (D.2.10) that this integral is zero for an odd dimension
m and that we can write:

Im = I2n =

∫
d2nψ

1

n! 2n
(ψiAijψj)

n . (D.2.12)

5The ordering of dψi is conventional and different choices can result in a different sign. Since we always
consider fractions of Gaussian integrals over Grassmann variables an overall factor does not bother us.
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Moreover, due to the antisymmetry of ψiψj , the symmetric part of A cancels and hence,
we assume A to be antisymmetric from the beginning. Since ψiψi = 0 (no summation
over i), we can further simplify the integral and find

I2n =

∫
d2nψ

1

n! 2n

∑
σ∈Sn

Aσ(1)σ(2)...Aσ(2n−1)σ(2n) ψσ(1)...ψσ(2n)︸ ︷︷ ︸
εσ(1)..σ(2n)ψ1...ψ2n

(D.2.10)
=

1

n! 2n
εi1i2...i2n Ai1i2 ...Ai2n−1i2n ,

(D.2.13)

where Sn denotes the symmetric group. The result we found is just the definition of the
pfaffian of the matrix A, which turns out to be the square root of the determinant for an
antisymmetric complex matrix [64],6

pf A =
1

n! 2n
εi1i2...i2n Ai1i2 ...Ai2n−1i2n =

√
detA , (D.2.14)

and therefore, we finally get: ∫
d2nψ e

1
2
ψTAψ =

√
detA . (D.2.15)

The second Gaussian integral over Grassmann variables we want to have a look at, is of
the form: ∫

dnχdnχ∗ eχ
†Aχ . (D.2.16)

If we realize that χ∗iχj just acts as a c-number,

χ∗iχj χ
∗
mχn = χ∗mχn χ

∗
iχj , (D.2.17)

and that

ψ1χ1ψ2χ2...ψnχn = (−1)1+2+...+(n−1)ψ1ψ2...ψnχ1χ2...χn

= (−1)
n·(n−1)

2 ψ1ψ2...ψnχ1χ2...χn ,
(D.2.18)

the above integral can be written as∫
dnχdnχ∗ eχ

†Aχ (D.2.10)
=

1

n!

∫
dnχdnχ∗ (χ∗iAijχj)

n

(D.2.17)
=

1

n!

∫
dχn...dχ1dχ∗n...dχ

∗
1 n! ·

∑
σ∈Sn

χ∗1A1σ(1)χσ(1)...χ
∗
nAnσ(n)χσ(n)

(D.2.18)
= (−1)

n·(n−1)
2

∫
dχn...dχ1dχ∗n...dχ

∗
1 εi1...inA1i1 ...Aninχ

∗
1...χ

∗
nχ1...χn ,

(D.2.19)

and we find: ∫
dnχdnχ∗ eχ

†Aχ = (−1)
n·(n−1)

2 detA . (D.2.20)

6Actually pfA = ±
√

detA, but again, we don’t care about an overall factor.
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D.2.3. Gaussian Integral over Grassmann Fields

By analogy with the bosonic path integral we can also compute an integral of the form

I =

∫
[dω] eiS[ω] =

∫
[dω] e−

i
2

∫
d4xd4y ωT(x)A(x−y)ω(y) , (D.2.21)

with the antisymmetric 2n× 2n matrix A and the 2n complex Grassmann fields ωi.
Again, we limit our space-time volume to V = L4 and after performing a Fourier

series (compare equation (D.1.14)) it follows from the antisymmetry of the matrix A,
A(x− y) = −AT(y − x), that:

Â(kn) = −ÂT(−kn) . (D.2.22)

This condition and the anticommutativity of Grassmann variables leads to

S[ω] = − 1

2V
ω̂T(0)Â(0)ω̂(0)− 1

V

∑
n>0

ω̂T(−kn)Â(kn)ω̂(kn) , (D.2.23)

and the path integral then reads

I = C

∫
dω̂(0)

∏
n>0

dω̂(kn)dω̂(−kn) e−
i

2V
ω̂T(0)Â(0)ω̂(0)− i

V

∑
n>0 ω̂

T(−kn)Â(kn)ω̂(kn)

= C̄

√
detÂ(0)

∏
n>0

detÂ(kn) = Ĉ
∏

all kn

√
detÂ(kn) = Ĉ

√
DetA ,

(D.2.24)
where we applied equation (D.2.15) and (D.2.20) and used that detÂ(kn) = detÂ(−kn)7.
Therefore, we finally get∫

[dω] e−
i
2

∫
d4xd4y ωT(x)A(x−y)ω(y) = Ĉ e

1
2

∫
d4x

∫
d4k
(2π)4

ln detÂ(k)
. (D.2.25)

The calculation of the path integral version of the Grassmann integral (D.2.20) is now
straightforward and leads to:∫

[dχ][dχ∗] ei
∫

d4xd4y χ†(x)A(x−y)χ(y) = Ĉ
∏

all kn

detÂ(kn) = Ĉ DetA

L→∞
= Ĉ e

∫
d4x

∫
d4k
(2π)4

ln detÂ(k)
.

(D.2.26)

7detÂ(kn) = det
(
−ÂT(−kn)

)
= (−1)2ndetÂ(−kn)
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