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Abstract

The accurate description of ionic contributions to the frequency-dependent polarisability of a solid
is essential for the understanding of optical phenomena in a wide range of materials. While the
calculation of the ionic dielectric function at the DFT groundstate has become a routine task
in electron structure theory, there is no standard method to describe the ionic polarisability at
higher temperatures. This is particularly relevant for systems such as perovskite crystals, whose
structures are notoriously unstable (dynamically stable), and exhibit a series of phase transitions
between the groundstate and room temperature.

In this thesis, we investigate a statistical-mechanical approach to simulate the ionic dielectric
properties of two perovskite systems, barium titanate and strontium titanate, at zero and non-
zero temperatures. By means of the fluctuation-dissipation theorem, we derive an expression for
the Kubo-Green relation of the ionic polarisability. According to this Kubo-Green relation, the
polarisability can be expressed in terms of a time-correlation function of the total dipole fluctua-
tions in a canonical ensemble at a set temperature T>0K.

Furthermore, we present a special case of a Kubo-Green relation which leads to significant reduc-
tion in the computational demands for low but non-zero temperatures, and we show that we can
recover the standard formula for the groud-state polarisability as a limiting case of Kubo-Green.

All three presented methods are then applied to a series of test systems. We give a proof of
principle with the example of the very stable α-SiO2. In addition, we show the effectiveness of
our approach by computing the finite-temperature polarisability of barium titanate and strontium
titanate.
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Zusammenfassung

Die genaue Beschreibung der ionischen Beiträge zur frequenzabhänigen Polarisierbarkeit eines
Festkörpers ist grundlegend für ein Verständnis von optischen Phänomenen für viele verschiedene
Materialien. Während Berechnungen der ionischen dielektrischen Funktion im DFT-Grundzustand
mittlerweile routinemäßig durchgeführt werden, gibt es noch keine Standardmethode für die
Beschreibung der ionischen Polarisierbarkeit bei höheren Temperaturen. Insbesondere für die
Modellierung der strukturell sehr instabilen (dynamisch stabilen) Perowskitkristalle ist dieser Un-
terschied von höchster Relevanz, da diese Kristalle bei der Erwärmung auf Zimmertemperatur
mehrere Phasenübergänge aufweisen, durch die die ionische Polarisierbarkeit stark beeinflusst
wird.

In dieser Arbeit präsentieren wir einen statistisch-mechanischen Zugang zur Modellierung der ion-
ischen dielektrischen Eigenschaften von zwei Perowskitsystemen, Bariumtitanat und Strontiumti-
tanat, im Grundzustand und bei höheren Temperaturen. Mittels des Fluktuations-Dissipations-
Theorems leiten wir einen Ausdruck für die Kubo-Green-Beziehung der ionischen Polarisierbarkeit
ab. Gemäß dieser Kubo-Green-Beziehung lässt sich die Polarisierbarkeit mittels einer Zeit-
Korrelationsfunktion der Fluktuationen des Gesamtdipols in einem kanonischen Ensemble mit
Temperatur T>0 beschreiben.

Weiters diskutieren wir einen Spezialfall der Kubo-Green-Beziehung, der eine signifikante Re-
duktion des Rechenaufwands für niedrige (aber finite) Temperaturen erlaubt, und wir zeigen dass
die Standardformel für die Polarisierbarkeit im Grundzustand als Grenzfall von Kubo-Green erhal-
ten werden kann.

Alle drei vorgestellten Methoden werden an Testsystemen ausprobiert. Mit dem bis zu sehr hohen
Temperaturen stabilen α-Quartz (α-SiO2) können wir die prinzipielle Richtigkeit der Ableitung
darstellen. Darüber hinaus zeigen wir die Effektivität unseres Zugangs durch die Berechung der
ionischen dielektrischen Funktion von Bariumtitanat und Strontiumtitanat bei Zimmertemperatur.
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Chapter 1

Introduction

A comprehensive model of the physical properties of a given material would be incomplete without
a thorough understanding of the interaction of the material with external electromagnetic fields.
In general, an external electromagnetic field will induce a displacement of the electric charge in
the material, which in turn induces an electric dipole field. The strenght of the induced dipole
depends on the polarisability of the material. To linear order, the polarisability can be described
in terms of the frequency-dependent dielectric tensor ε(ω).

The most important contributions to the dielectric function stem from electronic excitations
and the ionic polarisability. While electronic exctitations have characteristic frequencies similar
to visible light and above, peaks of the ionic polarisability are usually found at lower frequencies
ranging up to infrared light. In this thesis, we are exclusively concerned with methods for the
calculation of ionic contributions to the dielectric tensor of a material.

In modern density-functional theory (DFT) calculations, computing the ionic polarisability in
the groundstate is a routine operation. However, in many cases, knowing the optical properties
at 0 K is insufficient to make predictions about the dielectric function at higher temperatures. The
discrepancy between the polarisability in the groundstate and at higher temperatures becomes
most important if the material undergoes a phase transition as a result of increased temperature.

Furthermore, there is an important class of materials, of which perovskites are part, whose
structures become what is known as ’dynamically stable’ at temperatures around 300 K. If a
system at non-zero temperature is dynamically stable, its equilibrium structure consists of not
only one unique configuration, but of many different configurations of approximately the same
energy. The system jumps back and forth between these configurations, and the macroscopic
equilibrium structure can then be best described by an ensemble average of this set of ground-
state structures. This property makes it virtually impossible to determine the dielectric properties
from a single DFT calculation.

The purpose of this thesis is to go beyond the routine method of calulating dielectric prop-
erties in DFT and to present a statistical approach to the calculation of the polarisability at
non-zero temperatures. This is achieved by means of a so-called Kubo-Green relation, which can
be thought of as a generalisation of quantum perturbation theory to statistical mechanics. By
deriving the appropriate Kubo-Green relation, we are able to describe the out-of-equilibrium re-
sponse of a statistical system to an external perturbation in terms of its equilibrium fluctuations.
These relations can be derived from a statistical-mechanical theorem known as the fluctuation-
dissipation (FD) theorem.

The thesis is organised as follows: In chapter 2, we start by presenting the theoretical con-
cepts needed to prepare the proof of the fluctuation-dissipation theorem. Next, we derive the
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FD theorem following two different, and complementary approaches. Lastly, we also discuss the
theoretical foundations of the standard method for computing dielectric properties at 0K, which
is based on a calculation of the phonon spectrum of the crystal. We will refer to this method as
’phonon response’.

In chapter 3, we apply the methods of the previous chapter and derive expressions for the ionic
polarisability of infinite crystals. From the FD theorem, we derive three equivalent formulae for
the dielectric response, and show how they are related among themselves. Furthermore, we dis-
cuss the special case of the Kubo-Green relation for a delta-like perturbation, which will lead to a
substantial reduction of the computational demands of the method. We refer to this simplifica-
tion as ’delta-pulse’ method. Lastly, we motivate the formula for calculating the phonon response
of a crystal and show that it can be obtained as a limiting case of the Kubo-Green relation for
the ionic polarisability.

Chapter 4 is dedicated to the implementation of the Kubo-Green relation for several example
systems in the DFT simulation package VASP. The example systems, barium titanate and
strontium titanate, have very interesting dielectric properties paired with pronounced structural
instability both in the groundstate and at higher temperatures. We discuss the difficult relaxation
process that lead to the inital configurations of the systems, and give computational details for
the simulations.

Consequently, we present and discuss the results of the different approaches in chapter 5. We
show the performance of Kubo-Green both at very low and higher temperatures, and compare
its results to the phonon response at 0 K. Furthermore, we demonstrate the effectiveness of the
delta-pulse method when applied to a fully-relaxed system.

Finally, in chapter 6, we provide a summary of all applied methods and results, and give an
outlook for potential applications of the methods described in this thesis.
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Chapter 2

Theory

The aim of this chapter is twofold: Firstly, we present the basic concepts needed to understand
the FD theorem and show how to prove it. In fact, we will present two derivations of the theorem:
one following the original, mathematically abstract paper by Ryogo Kubo (see ref. [1]), and the
other after a paper by Robert Zwanzig (see [2]), which takes a more physical approach.
Secondly, we will give an overview of the theory that will lead us to the formulation of the
phonon response in the next chapter. We discuss the dynamical matrix of an infinite crystal,
phonon modes and eigenfrequencies, and introduce the concept of Born effective charges.

2.1 Basic concepts

2.1.1 Time-independent perturbation theory

There is definitely no lack of excellent textbooks on perturbation theory, which is why we only
give a brief overview of the topic and to derive the most important equations. For further details
we refer to the book by J.J. Sakurai (see reference [3]).

We consider a quantum system in an d-dimensional Hilbert space (d ≤ ∞), described by the
Hamiltonian H0. Assume that we know all its (normalised) eigenvectors |Ψ0

n〉 and the corre-
sponding eigenenergies E0

n as solutions of the Schrödinger equation

H0|Ψ0
n〉 = E0

n|Ψ0
n〉. (2.1)

From this, we want to construct solutions for a slightly different (’perturbed’) system

H = H0 + λH1, (2.2)

where H0 is our original Hamiltonian, and the effect of λH1 is small compared H0. In other
words, we want to solve the eigenvalue equation

H|Ψn〉 = En|Ψn〉. (2.3)

The main idea of perturbation theory is to expand the eigenstates |Ψn〉 and eigenenergies En
of the full Hamiltonian H in powers of the perturbation. We use a factor λ to help us organise
terms of similar order of the expansion. At the end of this section, λ will be set to 1. We have

En = E0
n + λE1

n + λ2E2
n + ... (2.4)

|Ψn〉 = |Ψ0
n〉+ λ|Ψ1

n〉+ λ2|Ψ2
n〉+ ... (2.5)

The only requirement for the series is that in the limit of vanishing perturbation, we recover the
unperturbed eigenstates and eigenenergies, that is,

lim
λ→0
|Ψn〉 = |Ψ0

n〉 and lim
λ→0

En = E0
n.
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In most cases, one is only interested in first-order corrections to the initial states and energies,
which is why we will always truncate the expansion after the linear term.

For practical purposes, we want the new eigenstates {|Ψn〉} to be normalised to one,

〈Ψn|Ψn〉 = 1 ∀n. (2.6)

Furthermore, we require that the unperturbed eigenstates |Ψ0
n〉 are also normalised. This implies

1 = 〈Ψn|Ψn〉 = 〈Ψ0
n|Ψ0

n〉︸ ︷︷ ︸
=1

+λ〈Ψ0
n|Ψ1

n〉+ λ〈Ψ1
n|Ψ0

n〉+O(λ2),

and in particular,
〈Ψ0

n|Ψ1
n〉 = 0, (2.7)

as λ 6= 0. We rewrite (2.3) using the series expansions,

H|Ψn〉 =
(
H0 + λH1

)(
|Ψ0

n〉+ λ|Ψ1
n〉+ ...

)
=
(
E0
n + λE1

n + ...
)(
|Ψ0

n〉+ λ|Ψ1
n〉+ ...

)
= En|Ψn〉,

and for the first-order correction we obtain

λH0|Ψ1
n〉+ λH1|Ψ0

n〉 = λE0
n|Ψ1

n〉+ λE1
n|Ψ0

n〉. (2.8)

Multiplying another base ket 〈Ψ0
n| from the left, and using equation (2.7), leads to

〈Ψ0
n|H0|Ψ1

n〉+ 〈Ψ0
n|H1|Ψ0

n〉 = E0
n〈Ψ0

n|Ψ1
n〉+ E1

n〈Ψ0
n|Ψ0

n〉

= E0
n��

���〈Ψ0
n|Ψ1

n〉 + 〈Ψ0
n|H1|Ψ0

n〉 = E0
n��

��〈Ψ0
n|Ψ1

n 〉+ E1
n,

and the first-order energy correction becomes

E1
n = 〈Ψ0

n|H1|Ψ0
n〉. (2.9)

The eigenenergies of the full Hamiltonian H is therefore given by

En = E0
n + λ〈Ψ0

n|H1|Ψ0
n〉. (2.10)

We can also derive an expression to compute the first-order correction |Ψ1
n〉 to the eigenstates

of H. To this end, note that it must be possible to expand |Ψ1
n〉 in the basis of unperturbed

eigenstates {|Ψ0
n〉}∞n=0, because they span the whole Hilbert space. Consequently, we write

|Ψ1
n〉 =

∑
m 6=n

cm|Ψ0
m〉 cm = 〈Ψ0

m|Ψ1
n〉

Multiplication of (2.8) from the left by any base ket |Ψ0
m〉 6= |Ψ0

n〉 yields

〈Ψ0
m|H0|Ψ1

n〉+ 〈Ψ0
m|H1|Ψ0

n〉 = E0
n 〈Ψ0

m|Ψ1
n〉︸ ︷︷ ︸

cm

+E1
n 〈Ψ0

m|Ψ0
n〉︸ ︷︷ ︸

0

=⇒ E0
mcm + 〈Ψ0

m|H1|Ψ0
n〉 = E0

ncm

The expansion coefficients cm are given by

cm =
〈Ψ0

m|H1|Ψ0
n〉

E0
n − E0

m

.

We can thus write the first-order state correction |Ψ1
n〉 as

|Ψ1
n〉 =

∑
m6=n

〈Ψ0
m|H1|Ψ0

n〉
E0
n − E0

m

|Ψ0
m〉. (2.11)

The eigenstate of the Hamiltonian H = H0 + λH1 in first-order perturbation theory is

|Ψn〉 = |Ψ0
n〉+ λ

∑
m6=n

〈Ψ0
m|H1|Ψ0

n〉
E0
n − E0

m

|Ψ0
m〉. (2.12)
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2.1.2 Time-dependent perturbation theory

In this subsection, we generalise the idea introduced above to explicitly time-dependent per-
turbations H1(t). Since in quantum mechanics, there are two standard ways to describe the
time-dependence of physical observables, namely the Schrödinger picture and the Heisenberg
picture, we will present the main results of time-dependent perturbation theory in both pictures.

Recall that in the Schrödinger picture, states (state vectors) |Ψ〉S are time-dependent while
observables (operators) AS are independent of time, i.e.

|Ψ〉S = |Ψ(t)〉S and AS(t) = AS(0).

Wherever it is not obvious, we use the subscript S to indicate that a state or operator is given
in the Schrödinger picture. Time evolution of the eigenstate |Ψn〉 is determined by the time-
dependent Schrödinger equation

i
∂|Ψn(t)〉

∂t
= H|Ψn(t)〉, (2.13)

whose solution is simply
|Ψn(t)〉 = e−iHt|Ψn(t = 0)〉. (2.14)

As before, we now consider a perturbed system

H = H0 +H1(t),

where the perturbation H1(t) is small compared to H0 (cf. 2.2). Note that we set λ = 1 for the
rest of this text. We simply insert this new Hamiltonian into equation (2.13),

i
∂|Ψn(t)〉

∂t
=
[
H0 +H1(t)

]
|Ψn(t)〉, (2.15)

and impose the initial condition
|Ψn(t = 0)〉 = |Ψ0

n〉,

where |Ψ0
n〉 is the n-th eigenvalue of the unperturbed Hamiltonian H0. In analogy to (2.4) and

(2.5), we expand |Ψn(t)〉 into a series

|Ψn(t)〉 = |Ψ0
n(t)〉+ |Ψ1

n(t)〉+ ...

Insert the series expansion into (2.15), and seperate the constant and linear contributions. We
have

i
∂|Ψ0

n(t)〉
∂t

= H0|Ψ0
n(t)〉, with the solution |Ψ0

n(t)〉 = e−iH
0t|Ψ0

n〉, (2.16)

and

i
∂|Ψ1

n(t)〉
∂t

= H0|Ψ1
n(t)〉+H1(t)|Ψ0

n(t)〉. (2.17)

Integrating (2.17) gives

|Ψ1
n(t)〉 = −ie−iH0t

∫ t

0

eiH
0t′H1(t′)|Ψ0

n(t′)〉dt′ + e−iH
0t|Ψ1

n(t = 0)〉. (2.18)

We can check this by computing the time-derivative of (2.18). As we have to differentiate with
respect to the integration limit, we must respect Leibnitz’ integral rule.
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Using the Leibnitz rule, we obtain

i
∂|Ψ1

n(t)〉
∂t

= H0
[
(−i)e−iH0t

∫ t

0

eiH
0t′H1(t′)|Ψ0

n(t′)〉dt′
]

+H1(t)|Ψ0
n(t)〉+H0e−iH

0t|Ψ1
n(0)〉

= H0|Ψ1
n(t)〉+H1(t)|Ψ0

n(t)〉+H0|Ψ1
n(0)〉.

For simplicity, we can say that the perturbation vanishes before t = 0, which implies |Ψ1(t =
0)〉 = 0. The final solution for (2.15) then becomes

|Ψn(t)〉 = e−iH
0t|Ψ0

n〉 − i
∫ t

0

e−iH
0(t−t′)H1(t′)|Ψ0

n(t′)〉dt′

= e−iH
0t|Ψ0

n〉 − i
∫ t

0

e−iH
0(t−t′)H1(t′)e−iH

0t′|Ψ0
n〉dt′. (2.19)

Next, we turn to the Heisenberg picture. To ensure consistency with results from the Schrödinger
picture, we require that expectation values of the form

〈A〉t = 〈Ψ(t)|AS|Ψ(t)〉S (2.20)

remain invariant under a transformation between pictures. This makes sense, as the expectation
value corresponds to actual physical measurements, which must of course be independent of the
picture we choose to describe it. We can rewrite this expectation value as

〈O〉t = 〈Ψ(0)| eiHtAS e−iHt︸ ︷︷ ︸
:=AH(t)

|Ψ(0)〉S. (2.21)

Note that the index S added to a product 〈Ψ|A|Ψ〉S means that both the bra 〈Ψ| and the ket |Ψ〉
belong to the Schrödinger picture. Following (2.21), operators in the Heisenberg and Schrödinger
pictures are related to one another through

AH(t) = eiHtAS e
−iHt ⇐⇒ AS(t) = e−iHtAH e

iHt. (2.22)

Consequently, states must follow the transformation

|Ψ〉H = eiHt|Ψ(t)〉S ⇐⇒ |Ψ(t)〉S = e−iHt|Ψ〉H (2.23)

With this definition for the Heisenberg representation of the observable AH(t), time-dependence
follows the time-evolution of the operators, and not of the states. The Heisenberg equation of
motion is given by

i
∂AH(t)

∂t
= −HeiHtAS e−iHt + eiHtASHe

−iHt =
[
AH , H

]
. (2.24)

To describe the linear response to an external perturbation in the Hamiltonian, we now have to
expand the operator A(t) into a series,

A = A0(t) + A1(t) + ...,

and insert the expanded operator and the perturbed Hamiltonian into the Heisenberg equation

i
∂

∂t

[
A0(t) + A1(t)

]
=
[
A0(t) + A1(t), H0 +H1(t)

]
. (2.25)

Separation of the constant and first-order terms leads to

i
∂A0(t)

∂t
=
[
A0(t), H0

]
with A0(t) = eiH

0

A0(0)e−iH
0t, (2.26)
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and

i
∂A1(t)

∂t
=
[
A0(t), H1(t)

]
+
[
A1(t), H0

]
. (2.27)

The solution to (2.27) is analogous to (2.18), and is given by

A1(t) = −i
∫ t

0

eiH
0(t−t′)[A0(t), H1(t′)

]
e−iH

0(t−t′)dt′. (2.28)

This can be verified by differentiation; mind again Leibnitz’ integral rule

i
∂A1(t)

∂t
=
[
A0(t), H1(t)

]
−H0

[
i

∫ t

0

eiH
0(t−t′)[A0(t), H1(t′)

]
e−iH

0(t−t′)dt′
]
+

[
i

∫ t

0

e−iH
0(t−t′)[A0(t), H1(t′)

]
e−iH

0(t−t′)
]
H0

=
[
A0(t), H1(t)

]
+
[
A1(t), H0

]
.

Expressions (2.19) and (2.28) are two equivalent descriptions of the first-order response of a
quantum system to a time-dependent perturbation, and it is very easy to transform one into the
other using (2.22) and (2.23).

In the following section, we will present a third picture to describe time evolution and time-
dependent perturbation.

2.1.3 Time-dependent perturbation in the interaction picture

Clearly, the choice of picture to describe the dynamics of a system is arbitrary, as long as the
expectation value (2.20) remains invariant. This means that we have some freedom to select a
description of time-dependence in which equations of time-dependent perturbation theory take a
simple form.

Such a picture exists, it is called the interaction picture (IP), and we will present it in this
section. In the derivation of the FD theorem, we will make repeated use of the interaction pic-
ture representation. As before, states and operators will bear a subscript S, H or I, indicating
the Schrödinger, Heisenberg and interaction picture, respectively.

In the previous section, we saw that computing the time dependence of a state (or observable)
can become somewhat involved if the full Hamiltonian is of the form

H = H0 +H1(t).

Both parts of the full Hamiltonian H contribute to time evolution. The unperturbed H0 gives
rise to what is sometimes called the ’natural’ motion of the system, while the time-dependent
H1(t) causes small deviations from that natural motion. One finds that the equations of motion
in time-dependent perturbation theory can be simplified if time-dependence on H0 and H1(t) is
shared among states and operators.

In the Schrödinger picture, time evolution follows the equation

|Ψn(t)〉 = e−iHt|Ψn(t = 0)〉, (2.14)

whose solution can be expressed by means of the time-evolution operator

TS(t− t0) = e−iH(t−t0),

11



so that the states evolve according to

|Ψ(t)〉S = TS(t)|Ψ(t = 0)〉S.

Taking the derivative of TS(t) with respect to time, we recover a Schrödinger-type equation for
the time-evolution operator (cf. 2.13),

i
∂TS
∂t

= HTS(t). (2.29)

For a perturbed Hamiltonian, the full time evolution in the Schrödinger picture,

TS(t) = e−i(H
0+H1(t))t

can be split up into the two parts,

T 0 = e−iH
0t and TI(t) = e−iH

1(t)t.

The idea of the interaction picture is to transfer the time-dependence caused by H0 away from
the state vector to the operator. This is achieved by the transformation

|Ψ(t)〉I = eiH
0t|Ψ(t)〉S ⇐⇒ |Ψ(t)〉S = e−iH

0t|Ψ(t)〉I . (2.30)

This means that in order to conserve the expectation value, the time-dependence of |Ψ(t)〉I on
H0 must be accounted for in the time evolution of the operator. Thus, the operators in the
interaction picture are linked to the Schrödinger picture according to

AI = eiH
0tAS e

−iH0t ⇐⇒ AS = e−iH
0tAI e

iH0t. (2.31)

A similar relation between the interaction and the Heisenberg picture can be shown easily. In this
case, one has to transfer the time dependence on H1(t) from the operator to the state vector.
The state is then given by

|Ψ(t)〉I = e−iH
1(t)t|Ψ(0)〉H ⇐⇒ |Ψ(t)〉H = eiH

1(t)t|Ψ(0)〉I , (2.32)

and the operator by

AI = eiH
1(t)tAH e

−iH1(t)t ⇐⇒ AH = e−iH
1(t)tAI e

iH1(t)t. (2.33)

To see that this change of picture can indeed simplify our equations of motion, we now derive
the Schrödinger equation in the interaction picture. Starting from (2.13), we write

i
∂

∂t

[
e−iH

0t|Ψ(t)〉I
]

=
[
H0
S +H1

S(t)
]
e−iH

0t|Ψ(t)〉I

⇐⇒ (((
((((

((
H0e−iH

0t|Ψ(t)〉I + ie−iH
0t∂|Ψ(t)〉I

∂t
= ((((

((((
(

H0e−iH
0t|Ψ(t)〉I +H1(t)e−iH

0t|Ψ(t)〉I

⇐⇒ i
∂Ψ(t)〉I
∂t

= eiH
0tH1

S(t)e−iH
0t|Ψ(t)〉I = H1

I (t)|Ψ(t)〉I (2.34)

In the last step, we recovered the perturbation Hamiltonian in the interaction picture (cf. 2.31),

H1
I (t) = eiH

0tH1
S(t)e−iH

0t.

Equation (2.34) is the interaction equation of motion for the system and is equivalent to the
Schrödinger (2.15) and Heisenberg (2.25) equations of motion.

12



We will now look for a solution for the interaction equation of motion. Via

i
∂|Ψ(t)〉I

∂t
= H1

I |Ψ(t)〉I = i
∂TI(t)

∂t
|Ψ(0)〉 = H1

ITI(t)|Ψ(0)〉,

we obtain a differential equation for the partial time-evolution operator TI(t) which is very similar
to equation (2.29),

i
∂TI(t)

∂t
= H1

ITI(t), with TI(t) = e−iH
1(t)t

Integration yields

TI(t, t0) = 1− i
∫ t

t0

H1
I (t′)TI(t

′, t0)dt
′. (2.35)

With TI(t) appearing on either side of the equation, the last step does not seem like a step
forward. However, it is very easy to determine constant and linear contributions to (2.35). All

terms proportional to
(
H1
I (t)

)2
appearing in the expansion for TI(t) are of second order and can

be omitted. Consequently, we move ahead by setting

TI(t0, t
′) = eiH

1
I (t

′−t0) ≈ 1

on the right-hand side of (2.35). We obtain

TI(t, t0) = 1− i
∫ t

t0

H1
I (t′)dt′ +O(HI). (2.36)

With this result for the partial time-evolution operator TI(t), we can solve the equation of motion
in the interaction picture

|Ψ(t)〉I = TI(t)|Ψ(0)〉I = |Ψ(0)〉I − i
∫ t

0

H1
I (t′)|Ψ(0)〉Idt′.

Remember that due to the initial conditions,

|Ψ(t = 0)〉I = |Ψ(t = 0)〉S = |Ψ0
n〉

we have

|Ψn(t)〉I = |Ψ0
n〉 − i

∫ t

0

H1
I (t′)|Ψ0

n〉Idt′. (2.37)

Compare equation (2.37) to the equivalent solution in the Schrödinger picture (2.19). The formal
simplification is obvious. Furthermore, it is straightforward to transform equation (2.37) back to
the Schrödinger picture using (2.30) and (2.31):

|Ψ(t)〉S = e−iH
0t|Ψ0(0)〉S − i

∫ t

0

e−iH
0(t−t′)H1

S(t′)e−iH
0t′ |Ψ0(0)〉Sdt′,

which is exactly the same as (2.19).

Example application: Fermi’s Golden Rule

To conclude this section, we consider a simple example system to which we apply a time-dependent
perturbation H1(t) to H0. With this example, we can show a more general principle known as
Fermi’s Golden Rule.
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Consider a Hamiltonian H = H0 + H1(t) where the time-dependent perturbation is explicitly
given by

H1(t) = V eiωt+ηt.

Here, V is a constant, and the factor eηt (0 < η � 1) simulates a slow turning-on of the pertur-
bation as t goes from −∞ to 0. Also, note that in the limit ω = 0 we recover the special case
of constant perturbation.

At the infinite past, i.e. at t = −∞, the Hamiltonian is in its ground state, i.e. H = H0.
Let |Ψ0

n〉 be an eigenstate of H0 with energy E0
n. In the interaction picture, its time evolution

must follow

|Ψn(t)〉 = TI(t)|Ψ0
n〉 with TI(t) = 1− i

∫ t

t0

H1
I (t′)dt′ +O(HI)

At a later time t > −∞, there is a non-zero overlap between the state |Ψn(t)〉 and another
eigenstate of H0, |Ψ0

m〉, given by

〈Ψ0
m|Ψn(t)〉 = 〈Ψ0

m|TI(t)|Ψ0
n〉 = 〈Ψ0

m|Ψ0
n〉 − i

∫ t

0

dt′〈Ψ0
m|H1

I (t′)|Ψn〉+ ...

Since we know H1
I (t) explicitly, we can evaluate the bracket in the integral,

〈Ψ0
m|H1

I (t′)|Ψ0
n〉 = 〈Ψ0

m|eiH
0tV e−iH

0t|Ψ0
n〉eiωt+

η
2
t = e−i(E

0
n−E0

m)t′〈Ψ0
m|V |Ψ0

n〉eiωt+ηt.

To simplify notation, we define

ωmn := E0
n − E0

m and Vmn := 〈Ψ0
m|V |Ψ0

n〉.

A non-zero overlap between states leads to a non-zero transition probability, which is simply the
absolute square of the transition amplitude,

pn→m(t) =
∣∣〈Ψ0

m|TI(t)|Ψ0
n〉
∣∣2 =

∣∣∣∣∣
∫ t

−∞
Vmne

i(ω−ωmn−iη)t′dt′

∣∣∣∣∣
2

= |Vmn|2
∣∣∣∣∣ ei(ω−ωmn−iη)tω − ωmn − iη

∣∣∣∣∣
2

= |Vmn|2
e2ηt

(ωmn − ω)2 + η2
.

At t = 0, the first-order transition probability pn→m is given by

pn→m(t = 0) lim
η→0

=
|Vmn|2

(ωmn − ω)2 + η2
. (2.38)

Furthermore, we can use the identity

lim
η→0

η

(x− x0)2 + η2
= πδ(x− x0)

to compute the rate

dpn→m
dt

= lim
η→0
|Vmn|2

2η

(ω − ωmn)2 + η2
e2ηt = 2π|Vmn|2δ(ωmn − ω). (2.39)

Equation (2.81) is known as Fermi’s Golden Rule and describes the rate of the transitions
caused by an external potential. It describes the probability per unit time for a particle to be
excited from an initial state |Ψ0

n〉 to an excited state |Ψ0
m〉.
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2.1.4 Density matrix and phase-space integration in classical and quan-
tum mechanics

Before we move on to the actual derivation of Kubo-Green, we introduce the concept of phase
space integration in classical and quantum mechanics and discuss some properties of the density
matrix.

As we will see in the next section, the fluctuation-dissipation theorem is only valid for statis-
tical ensembles. It relates the fluctuations of an obervable around its equilibrium value to the
response to an external perturbation. In most cases, we do not have direct access to the total
energy of the system, but we can control its temperature. Such systems are then best described
in a canonical ensemble. In this section, we introduce the density matrix of a canonical ensemble
and show some of the properties which will be useful later on.

First, consider some quantity A = A(q, p) defined on a classical, 6N -dimensional phase space Γ,
where N is the number of particles, q denotes the 3N position coordinates and p denotes the 3N
momenta. To obtain the phase-space average of A, we have to evaluate the phase-space integral

〈A〉 =

∫
dΓA(q, p)f(q, p). (2.40)

In (2.40), f(q, p) is the density of states in Γ. In a canonical ensemble at temperature T , this
density of states is given by

f(q, p) =
1

Q
e−βE(q,p), (2.41)

where the factor β = (kBT )−1 is the inverse temperature, kB is Boltzmann’s constant, the total
energy associated to the state (q, p) is E(q, p), and Q is the canonical partition function

Q =

∫
dΓe−βE(q,p).

In equilibrium, the density of states f(q, p) is by definition time-independent.

If we want to derive an expression similar to (2.40) for a quantum system, we must introduce the
concept of the density matrix of a state. We call

ρ = |Ψ〉〈Ψ|

the density operator of the ’pure’ state |Ψ〉. The pure state is described by a wavefunction, but
does not necessarily have to be an energy eigenstate. More generally, we can also define a density
operator for a mixed state

|Ψ〉 =
∑
i

pi|Ψi〉

as
ρ :=

∑
i

pi|Ψi〉〈Ψi|. (2.42)

The mixed state is a statistical superposition of pure states, where each individual state is mea-
sured with a (real) probability pi. The |Ψi〉 are normalised, and we will assume that they are
orthogonal to one another. Also the operator ρ must fulfil a normalisation condition, given by

Tr
(
ρ
)

= 1

The trace of the operator A is defined as

Tr (A) =
∑
n

〈φn|A|φn〉,
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where the states |φn〉 form an orthonormal basis of the Hilbert space. Note that the trace has
the cyclic property

Tr
(
ABC

)
= Tr

(
BCA

)
= Tr

(
CAB

)
. (2.43)

Imposing normalisation to (2.42) implies

Tr
(
ρ
)

= Tr
[∑

i

pi|Ψi〉〈Ψi|
]

= Tr
[∑

i

pi〈Ψi|Ψi〉
]

=
∑
i

pi = 1.

To see why ρ has the property of a density, note that the expectation value of an observable A
with respect to the mixed state |Ψ〉 can be conveniently expressed as

Tr
(
ρA
)

= Tr
[∑

i

pi|Ψi〉〈Ψi|A
]

=
∑
i

pi〈Ψi|A|Ψi〉 = 〈A〉. (2.44)

In analogy to (2.41), we write the density matrix of a system in a canononical ensemble at inverse
temperature β as

ρβ =
e−βH

Tr e−βH
=

e−βEn∑
n e
−βEn

,

where the second equation is only strictly true in the basis which diagonalises the Hamiltonian
H. The quantum partition function Q for the canonical ensemble is obviously Q = Tr e−βH .

Like the density of states f(q, p) in the classical case, ρβ describes the density of states in equi-
librium, i.e. ρβ is independent of time. This can be seen easily if we insert ρβ in the Heisenberg
equation of motion,

i
∂ρβ
∂t

=
[
ρβ, H

]
=

1

Tr e−βH
[
e−βH , H

]
= 0. (2.45)

To see why last equality in (2.45) holds we just have to remind ourselves that the matrix expo-
nential eH is defined via the infinite series

eH =
∞∑
n=0

(H)n

n!
,

and that [
Hn, H

]
= 0.

Finally, we introduce a very special property of the canonical density matrix. This property, known
as Kubo transform, will play a central part in the derivation of the FD theorem, compare equation
(3.7) in ref. [1].[

A, e−βH
]

= e−βH
∫ β

0

eHτ
[
H,A]e−Hτdτ = −ie−βH

∫ β

0

eHτ Ȧe−Hτdτ

=− ie−βH
∫ β

0

Ȧ(−iτ)dτ. (2.46)

According to (2.46), the commutator of some operator A with e−βH can be written as an integral
over the time-derivative of A evaluated between 0 and the inverse temperature along the axis of
imaginary time iτ . To calculate Ȧ(−iτ), one first has to take the ordinary time-derivative of A
along the real axis, extend its domain to the imaginary axis, and evaluate it at iτ .

To prove the Kubo transform (2.46), we proceed in the opposite direction:

e−βH
∫ β

0

Ȧ(−iτ)dτ = e−βH
∫ β

0

[
eτHAe−τH , H

]
dτ = e−βH

∫ β

0

dτ
d

dτ

(
eτHAe−τH

)
= e−βH

[
eτHAe−τH

]β
τ=0

= Ae−βH − e−βHA =
[
A, e−βH

]
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2.2 Derivation of the Kubo-Green relation

Having covered the basic concepts in section (2.1), we can now move on to the proof of the
fluctuation-dissipation (FD) theorem. With the result of the FD theorem (equation 2.64), we
will derive a Kubo-Green relation that will allow us to compute the frequency-dependent ionic
polarisability χ(ω) of an infinite crystal at non-zero temperature.

The FD theorem shows that, in the same way that we can describe the first-order response
of a simple quantum-mechanical system to some external perturbation in terms of its equilibrium
eigenstates, we can also express the linear out-of equilibrium response of a large statistical-
mechanical system by means of some equilibrium property.

In the framework of the FD theorem, the linear response of an observable in a large system
to a perturbation is described as a time-correlation function of the fluctuations of that observable
around its equilibrium value. The exact type of correlation function required depends on the
type of perturbation that we want to describe. As we will see in the next chapter, the ionic
polarisability ε(ω) can be obtained from the equilibrium fluctuations of the total dipole moment
of the system.

2.2.1 Kubo’s proof of the fluctuation-dissipation theorem

Although it may be inaccurate to attribute the idea of the FD theorem to Ryogo Kubo alone1,
it remains true that his paper on the ’Statistical-Mechanical Theory of Irreversible Processes I’
(ref. [1]) is regarded as the standard reference in this field. In the following, we give a detailed
account of his results.

We consider a quantum-mechanical system H0 in equilibrium which experiences a time-dependent
perturbation H1(t). Initially, that is at time t < 0, the perturbation vanishes, and the system in
equilibrium is described by some density matrix

ρ0 =
∑
i

pi|Ψ0
i 〉〈Ψ0

i |,

satisfying the equilibrium condition (2.45)

i
∂ρ0

∂t
=
[
ρ0, H0

]
= 0.

At time t = 0, we turn on a small perturbation H1(t). With this, we get a new total density
ρ(t), which we can expand, as before, in a series

ρ(t) = ρ0 + ρ1(t) + ...

The full density operator evolves over time according to the Heisenberg equation (2.25),

i
∂ρ(t)

∂t
=
[
ρ0 + ρ1(t), H0 +H1(t)

]
,

whose solution, according to (2.26) and (2.28), is

ρ(t) = ρ0 − i
∫ t

0

eiH
0(t−t′)[ρ0, H1(t′)

]
e−iH

0(t−t′)dt′ (2.47)

1Compare e.g. the introductory remarks of chapter 2 in Zwanzig’s paper [2]
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As in (2.44), we use our density matrix (2.47) to express the expectation value of some quantity
B defined in the Hilbert space. As the density matrix ρ = ρ(t) now dependends on time explicitly,
also the expectation value 〈B(t)〉 becomes time-dependent:

〈B(t)〉 = Tr
[
ρ(t)B

]
. (2.48)

We can seperate the constant and linear terms of B(t) = B0 +B1(t) as

〈B0〉 = Tr
[
ρ0B

]
and

〈B1(t)〉 = Tr
[
ρ1(t)B

]
= −iTr

[∫ t

0

eiH
0(t−t′)[ρ0, H1(t′)

]
e−iH

0(t−t′)B(t′) dt′

]
. (2.49)

Comparison with (2.31) shows that

eiH
0(t−t′)[ρ0, H1(t′)

]
S
e−iH

0(t−t′) =
[
ρ0, H1(t− t′)

]
I

is just the representation of the commutator in the interaction picture, and we can rewrite (2.49)
as

〈B1(t)〉 = −iTr

[∫ t

0

[
ρ0, H1(t− t′)

]
B(t′) dt′

]
.

After a shift of the integration variable t′ → t− t′, we recover the relation

〈B1(t)〉 = −i
∫ t

0

Tr

[[
ρ0, H1(t′)

]
B(t− t′)

]
dt′, (2.50)

where all operators are to be taken in the interaction picture. Equation (2.50) is the central
result of the FD theorem. In close analogy to our result in section 2.1, we were able to express
the first-order response B1(t) in terms of the equilibrium flucutations B0(t).

To simplify notation, we want to write the change of 〈B(t)〉 as an integral over time of a
response function φ(t), i.e.,

〈B1(t)〉 =

∫ t

0

φ(t− t′)dt′. (2.51)

Comparison with (2.50) gives us

φ(t− t′) = −iTr

[[
ρ0, H1(t′)

]
B(t− t′)

]
. (2.52)

Observing the cyclic property of the trace,

Tr
(
ABC

)
= Tr

(
BCA

)
= Tr

(
CAB

)
, (2.43)

we arrive at

φ(t− t′) = iTr

[
ρ0
[
H1(t′), B(t− t′)

]]
. (2.53)

Finally, we want that the response function φ(t) decays to zero for very large times, i.e. that

lim
t→∞

φ(t) = 0.

However, if the Fourier transform of φ(t) has a non-zero value at ω = 0, the response will instead
converge towards a finite constant. Therefore, we redefine φ(t) according to

φ(t)→ φ(t)− lim
t→+∞

φ(t).
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Assume that for large t, φ(t) converges towards some non-zero constant φ0. Then we can take
the limit as

lim
t→∞

φ(t) =
1

t

∫ t

0

φ(t) = φ0
t

t
= φ0,

and we get

lim
t→∞

Trρ0
[
H1(0), B(t)

]
= lim

t→∞

1

t

∫ t

0

Trρ0
[
H1(0), B(t′)

]
dt′ = Trρ0

[
H0, B0

]
The zero-frequency component of the argument ρ0

[
H1(0), B0(t)

]
is simply its value before the

perturbation. Our final result for the response function is therefore given by

φ(t− t′) = iTr ρ0
[
H1(t′), B(t− t′)

]
− iTr ρ0

[
H0, B0

]
. (2.54)

Complex admittance, relaxation function and time-derivative

After the derivation of the explicit form of φ(t− t′), Kubo proceeds in the third chapter of refer-
ence [1] by defining three quantities that are closely related to the response funtion. We shall do
the same here, as they will prove to be helpful in the implementation of the Kubo-Green relation
to compute the ionic polarisability.

First of all, consider the special case of the response function which we obtain when we ap-
ply a uniform perturbation H1(t) = H1 from t = −∞ to t = 0. After the perturbation is
switched off, the value of B1(t) will relax according to

B1(t) =

∫ 0

−∞
φ(t− t′)dt′.

We shift the integration variable according to t′ → t− t′, and we get

B1(t) = −
∫ t

∞
φ(t′)dt′ =

∫ ∞
t

φ(t′)dt′ for t > 0.

We call the quantity

Φ(t) = lim
η→0+

∫ ∞
t

φ(t′)e−ηt
′
dt′ (2.55)

the relaxation function associated to φ(t), as it describes the relaxation of B1(t) after the per-
turbation is lifted. As we will see in a moment, Φ(t) can be thought of as the primitive function
for φ(t).

Secondly, note that the time-derivative of φ(t) is given by

φ̇(t− t′) = iTr ρ0
[
H1(t′), Ḃ(t− t′)

]
. (2.56)

Thirdly, we define the complex admittance χ(ω) as the (damped) Fourier transform of φ(t).
Introducing a damping factor e−ηt, where η � 1, ensures convergence of the integral. The
admittance χ(ω) can be calulated by

χ(ω) = lim
η→0

∫ ∞
0

φ(t)e−iωt−ηtdt (2.57)

Lastly, note that it is equally possible to define admittance functions that are associated to the
responses Φ(t) and φ̇(t), respectively:

X(ω) = lim η → 0

∫ ∞
0

Φ(t)e−iωt−ηtdt, (2.58)
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and

χ̇(ω) = lim η → 0

∫ ∞
0

φ̇(t)e−iωt−ηtdt, (2.59)

where the dot in χ̇ is purely symbolic and does not indicate an actual time-derivative of the
frequency-dependent admittance.

Remember that in frequency space, taking a derivative with respect to time amounts to a multi-
plication by iω, while an integral over time is the same as a division by iω. We can use this fact
to relate the different admittance functions to one another:

χ(ω) = lim
η→0

∫ ∞
0

φ(t)e−iωt−ηtdt

= lim
η→0

1

iω + η

[
φ(0) +

∫ ∞
0

φ̇(t)e−iωt−ηtdt
]

= lim
η→0

1

iω + η

[
φ̇(0) + χ̇(ω)

]
(2.60)

and

χ(ω) = lim
η→0

∫ ∞
0

φ(t)e−iωt−ηtdt = Φ(0)− iω
∫ ∞
0

Φ(t)e−iωtdt = Φ(0)− iωX(ω). (2.61)

Response functions in a canonical ensemble

In this section, we will look at the results of the FD theorem in a canonical ensemble at tem-
perature T > 0K. We will derive exact expressions for the response functions and the related
quantities defined above and investigate the classical limit.

We use the density operator in the canonical ensemble,

ρβ =
e−βH

0

Tr e−βH0 .

When computing the response function (cf. 2.52),

φ(t− t′) = −iTr

[[
ρβ, H

1(t′)
]
BI(t− t′)

]
,

we encounter terms of the form
[
e−βH

0
, H1(t)

]
. Applying Kubo’s transformation (2.46), we

obtain [
e−βH

0

, H1(t)
]

= i e−βH
0

∫ β

0

Ḣ1(t− iτ) dτ, (2.62)

or indeed [
ρβ, H

1(t)
]

= iρβ

∫ β

0

Ḣ1(t− iτ) dτ.

It follows that the response function of a system in the canonical ensemble is given by

φ(t− t′) = iTr

[[
ρβ, H

1(t′)
]
B(t− t′)

]
=−

∫ β

0

Tr

[
ρβḢ

1(t′ − iτ)B(t− t′)
]
dτ

=

∫ β

0

Tr

[
ρβH

1(t′ − iτ)Ḃ(t− t′)
]
dτ. (2.63)

In the classical limit, the notion of imaginary time iτ vanishees, and also the inverse temperature
β = (kBT )−1 becomes very small for T � OK. Therefore, we neglect the dependence on iτ ,
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and to first order the integral gives a factor of β. Using again the definition of the phase space
average in quantum theory, we obtain

φ(t− t′) = β〈H1(t′)Ḃ(t− t′)〉 = −β〈Ḣ1(t′)B(t− t′)〉 − β〈H0B0〉. (2.64)

Equation (2.64) will be the starting point for our calculation of the ionic polarisability.

To complete this section, we will also give the explicit forms of the relaxation function and
the time-derivative of the response function.

With (2.55), we get

Φ(t) = i

∫ ∞
t

Trρ0
[
B(t′), H1(0)

]
dt′ = i

∫ ∞
t

dt′
∫ β

0

dτ Trρ0H1(−iτ)B(t′).

which in the classical limit becomes

Φ(t) = β〈H1(0)B(t)〉 − β〈H0B0〉. (2.65)

Finally, for the time-derivative of φ(t) in the canonical ensemble, we get

φ̇(t− t′) = iTr
[
ρ0, H1(t)

]
Ḃ(t− t′) = iTrρ0

[
H1(t′), Ḃ(t− t′)

]
= (−i) Trρ0

[
Ḣ1(t′), B(t− t′)

]
= −

∫ β

0

Trρ0Ḣ1(t′ − iτ)Ḃ(t− t′) dτ,

and its classical limit simply becomes

φ̇(t− t′) = −β〈Ḣ1(0)Ḃ(t− t′)〉. (2.66)

2.2.2 Derivation following Zwanzig: Electrical conductivity

After this rather abstract derivation, let us now take a different, more practical look at the
FD Theorem. The following derivation was presented by Robert Zwanzig in his review of non-
equilibrium statistical mechanics, published in the 1960s (see ref. [2]). Ideally, it will lead us to
a more intuitive understanding of the theorem.

In this paper, Zwanzig makes a comparison of computing the electrical conductivity with an
actual measurement of the conductivity of a material in an experiment. This works along the
following lines:

We perform a measurement of an electric current along a conducting wire following the ap-
plication of an external electric field. A series of measurements yields the following relation
between the average electric current 〈J〉 and the applied field:

〈J〉 = σE +O(E2). (2.67)

In the language of the FD theorem, the electric field E corresponds to a (small) perturbation H1(t)
in the Hamiltonian , and J is represented by the observble B(t) whose change we want to describe.

We rewrite (2.67) in the form

〈J〉 =

∫ t

0

φ(t− t′)E(t′)dt′ +O(E2),
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with the response function φ(t). Transformation to Fourier space yields

〈Jω〉 =

∫ ∞
0

e−iωt
∫ t

0

φ(t− t′)E(t′)dt′dt.

We recognise that the conductivity σ(ω) is simply the complex admittance χ(ω) associated with
the response function φ(t), i.e. that

σ(ω) =

∫ ∞
0

dt e−iωtφ(t),

and we have
〈Jω〉 = σ(ω)Eω.

Now assume that we want to measure the electrical current through our piece of wire. We can
describe such an experiment in three stages: the initial preparation of the system (described by
the unperturbed Hamiltonian H0), the switching-on of the field (i.e. the perturbation H1(t)),
and the measurement of the current.

Preparation of the system

As usual, we start from the unperturbed Hamiltonian H0, whose eigenstates and eigenenergies
are assumed to be known via

H0|Ψ0
n〉 = E0

n|Ψ0
n〉.

The equilibrium Hamiltonian H0 gives rise to the natural motion of the states |Ψ0
n〉 in the usual

way
|Ψ0

n(t)〉 = e−iH
0t|Ψ0

n〉, (2.68)

causing the state |Ψ0
n(t)〉S to explicitly depend on time. Note that in this sections, all states and

operators are to be taken in the Schrödinger picture. We repeat the measurement many times at
non-zero temperature T > 0. As we have seen in section (2.1.4), the actual state of the system
can then be described by a mixed state

|Ψ〉 =
∑
n

e−βE
0
n|Ψ0

n(t)〉〈Ψ0
n(t)|

with the corresponding density matrix

ρ =
e−βH

0

Tre−βH0 .

Switching on the field

Next, we perturb the system by applying some time-dependent external electric field E(t). The
Hamiltonian of the perturbation can be written as

H1(t) = −P · E(t) = −
3∑

α=1

PαEα(t),

where α is the index for the directions (x, y, z), and P is the total dipole moment of the system.
We look for solutions of the perturbed time-dependent Schrödinger equation

i
∂|Ψn(t)〉

∂t
=
[
H0 +H1(t)

]
|Ψn(t)〉 (2.69)

with the initial condition

|Ψn(t = 0)〉I = |Ψ0
n(t = 0)〉S = |Ψ0

n〉.
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We already solved this in equation (2.19):

|Ψ0
n(t)〉 = e−iH

0t|Ψ0
n〉 − i

∫ t

0

e−iH
0(t−t′)H1(t′)e−iH

0t′|Ψ0
n〉dt′. (2.19)

Using the closure relation

1 =
∑
m

|Ψ0
m〉〈Ψ0

m|,

we get to

|Ψn(t)〉 = e−iE
0
nt|Ψ0

n〉 − i
∑
m 6=n

∫ t

0

e−iE
0
m(t−t′)H1

mne
−iE0

nt
′ |Ψ0

m〉dt′, (2.70)

which is the same as the equation on page 73 in [1].

Measurement of the Current With the knowledge of what the wavefunction looks like after
the electric field has been switched on, we can compute the resulting current by averaging over
the current operator in the basis of the new time-dependent mixed state |Ψ(t)〉 (cf. 2.48).

Remember that if P is the total dipole of a system, then J = Ṗ is the electric current re-
sulting from the change of the dipole over time.

At first, let us write down the expectation value for Jα in a single pure (but time-dependent)
state |Ψn(t)〉 of the ensemble. As always, we will neglect terms proportional to E2 and higher:

〈Jα(t)〉 = 〈Ψn(t)|Jα|Ψn(t)〉 = 〈Ψ0
n|Jα|Ψ0

n〉 − i
∑
m6=n

∫ t

0

(Jα)nme
−i(E0

m−E0
n)(t−t′)H1

mn(t′)dt′

+i
∑
m 6=n

∫ t

0

(Jα)mne
i(E0

m−E0
n)(t−t′)H1

nm(t′)dt′. (2.71)

To describe the full canonical ensemble, we now have to average over all |Ψn(t)〉, weighted by
the canonical density of states. That is, we turn (2.71) into the weighted sum

〈Jα(t)〉 =
∑
n

ρ0n〈Ψn(t)|Jα|Ψn(t)〉,

where we use the shorthand

ρ0n =
e−βE

0
n∑

m e
−βE0

m

for the statistical weight of the state with energy E0
n. We continue,

〈Jα(t)〉 =
∑
n

ρ0n〈Ψ0
n|Jα|Ψ0

n〉

− i
∑
n

ρ0n
∑
m6=n

∫ t

0

[
e−i(E

0
m−E0

n)(t−t′)(Jα)nm(Pβ)mn − ei(E
0
m−E0

n)(t−t′)(Jα)nm(Pβ)mn

]
Eβ(t′)dt′.

(2.72)

In (2.72), we used that the perturbation is just H1(t) = P · E(t), and that Eα, the electric field
component in direction j, is a scalar factor. In the end, we want to write the result in the form

〈Jα(t)〉 = 〈Jα〉eq +

∫ t

0

dt′φαβ(t− t′)Eβ(t′) (2.73)

23



with the average current at equilibrium 〈Jα〉eq, and the after-effect function φαβ(t). By compar-
ison of equations (2.72) and (2.73), we see that the equilibrium current 〈Jα〉eq is equal to the
first term in (2.72),

〈Jα〉eq =
∑
n

ρ0n(Jα)nn = 0.

For this particular system, we can assume that the equilibrium current is zero. Furthermore, we
can read off the definition of the response function,

φαβ(t) =
∑
n,m
m 6=n

(−i)ρ0n
[
e−i(E

0
m−E0

n)t(Jα)nm(Pβ)mn − ei(E
0
m−E0

n)t(Jα)nm(Pβ)mn

]
. (2.74)

The matrix elements of the current, (Jα)mn, are computed with respect to the eigenvectors of
H0. This allows us to make the transformation

(Jα)mn = 〈Ψ0
m|Jα|Ψ0

n〉 = 〈Ψ0
m|Ṗα|Ψ0

n〉 = i〈Ψ0
m|
[
H0, Pα

]
|Ψ0

n〉

= iE0
m〈Ψ0

m|Pα|Ψ0
n〉 − iE0

n〈Ψ0
m|Pα|Ψ0

n〉 = i(E0
m − E0

n)〈Ψ0
m|Pα|Ψ0

n〉. (2.75)

A similar consideration leads us to

ei(E
0
m−E0

n)t(Jα)mn = 〈Ψ0
m|eiE

0
mt Jα e

−iE0
nt|Ψ0

n〉

= 〈Ψ0
m|eiH

0t Jα e
−iH0t|Ψ0

n〉 =
[
Jα(t)

]
mn
, (2.76)

where Jα(t) is the current operator in the interaction picture. With (2.75) and (2.76), we can
simplify the response function to

φαβ(t) =
∑
n,m
m 6=n

e−βE
0
n(Jα)mn

[
Jβ(t)

]
mn

e−β(E
0
n−E0

m) − 1

E0
m − E0

n

. (2.77)

We can re-write (2.77) using the integral

φαβ(t) = i
∑
m

ρm

∫ β

0

dτ
(
Jα(t′)

)
nm

(
Jβ(−iτ))mn. (2.78)

In (2.78), φ(t) is identical to the result obtained in (2.63) but with the perturbation H1(t) = P·E,
and the observable B(t) is in this particular case the current J(t). Following (2.64), we know
the classical limit for the conductivity tensor, namely

φαβ(t) = β〈JαJβ(t)〉 = β〈ṖαṖβ(t)〉. (2.79)

Observe, that in (2.79), there is no constant offset to subtract, as we can reasonably assume that
there is no current without an external electric field. With this, we have found the expression
for the electric conductivity of a system of dipoles in terms of the equilibrium fluctuations of the
total dipole moment

σαβ(ω) = β

∫ ∞
0

〈JαJβ(t)〉e−iωtdt. (2.80)
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2.3 Linear response methods in solids

After the proof of the fluctuation-dissipation theorem, we now have to take a step back to discuss
general linear response methods in solids. In the next chapter, we will derive the ionic polarisabil-
ity in a crystal both from a Kubo-Green relation and using an already well-known method starting
from the phonon spectrum. The main drawback of the phonon response function is that in an
ordinary density-functional theory simulation, it can only give results for the ground-state of a sys-
tem, that is at a temperatur of 0K, while Kubo-Green is in principle applicable at any temperature.

In the next chapter, we will show that the ground-state ionic polarisability obtained from the
phonon spectrum can be obtained as a limiting case of the respective Kubo-Green relation, and
in chapter 5, we will support this claim using simulations of the dielectric function of two per-
ovskite systems in the groundstate and at higher temperatures.

Beforehand, however, we must discuss two basic ideas needed to understand the phonon re-
sponse. In this section, we describe a crystal as a system of coupled oscillating dipoles. The
application of an external electric field generally excites the dipole oscillators, and causes a time-
dependent dipole field as a response to the initial perturbation.

Firstly, we will give a general - and very compact - overview of the theory of eigenmodes (phonon
modes) in a periodic crystal. We will see how an excited ion in a periodic crystal can only move
along a very specific direction, determined by its eigenmode, and only do so at particular fre-
quency, its eigenfrequency.

Secondly, we will determine the dipole activity of the modes. This is equivalent to asking if
the movement of an ion along an eigenmode leads to a displacement of electric charge within
the unit cell, and if yes by how much. One would, for instance, expect strong dipole activity
from a mode if it causes contraction and expansion of the bond length between two strongly
polar atoms, for instance in an ionic bond. If, on the other hand, the motion of an ion along an
eigenmode leaves the effective charge distribution in the cell unchanged, the mode is said to be
not dipole-acitve. A measure for dipole activity (correct up to linear order) is provided by the
’Born effective charge’ of an ion.

2.3.1 Phonons in solids

In this subsection, we will derive the dynamical matrix of a system in the harmonic approximation.
As we will see further down, up to linear order, the eigenvectors of the dynamical matrix can
be identified with the eigenmodes of the crystal. The corresponding eigenvalues give the eigen-
frequencies of the oscillations. This subsection follows the derivation given in chapter 5 of ref. [4].

The position of an atom in a unit cell can be specified by

rni = Rn + ri,

where n is the unit cell index and i the index of the atom within the unit cell. Starting from the
equilibrium configuration of the system, we can expand the total potential energy U for small
displacements ∆rin into a series

U({rni}) = U0 +
∑
n,i,α

∂U

∂r niα
∆r inα +

1

2

∑
n,m
i,j
α,β

∂2U

∂r niα ∂rmjβ

∆rniα ∆rmjβ + ...

Greek indices {α, β, ...} indicate the cartesian directions x, y and z. In equilibrium, the first
derivatives ∂U/∂rniα must of course vanish. In the harmonic approximation, we neglect contribu-
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tions from all higher derivatives of the energy, and we can express the potential energy as

U = U0 +
1

2

∑
n,m
i,j
α,β

∂2U

∂r niα ∂rmjβ

∆rniα ∆rmjβ . (2.81)

The second derivatives of the potential at the equilibrium position have dimensions of spring con-
stants (elastic constants), and correspond to a generalisation of the spring constant of a harmonic
oscillator to a system with more than one degree of freedom. We introduce the shorthand

Cnimj
αβ =

1

2

∂2U

∂r niα ∂rmjβ

for the tensor of elastic constants of the crystal. If we know all the elastic constants of the
system, and we were to displace atom j in cell m in direction β, we can give a straightforward
expression for the resulting force on atom i of cell n in direction α, namely

F ni
α = −Cnimj

αβ ∆rmjβ . (2.82)

For all real materials, the second derivatives appearing in (2.82) are generally non-zero, which
means that the motion of a single particle always causes subsequent motion of all other particles.
Therefore, any description of the dynamics of ions in a crystal must capture the collective motion
of all N particles in the system.

To do so, write down an equation of motion for the N -particle system, which is just a gen-
eralised harmonic oscillator equation in terms of the displacements ∆r,

mi
∂ 2∆r niα
∂t2

+
∑
m,j,β

C nimj
αβ ∆rmjβ = 0, (2.83)

where we introduced mi, the mass of particle i.

In a crystal consisting of N atoms, equation (2.83) defines a system of 3N coupled differen-
tial equations. At first glance, this may seem like a big number, but the periodicity of the system
will allow us to reduce the complexity of the problem. In a periodic system, we expect to be able
to write the solution as a linear combination of plane waves of the form

∆rniα =
1
√
mi

aniα (q)ei(q·R
n−ωt),

where q is a vector in the reciprocal lattice. This family of plane waves is only defined at the
grid points R. Inserting this ansatz into (2.83) yields

−ω2aniα (q) +
∑
mj,β

1
√
mimj

C nimj
αβ eiq·(R

n−Rm)amjβ (q) = 0 (2.84)

Due to translation invariance, the exponent eiq·(R
n−Rm) only depends on the difference Rn−Rm.

Summing over all m, we obtain

D ij
αβ(q) =

∑
m

1
√
mimi′

C nimj
αβ eiq·R

m

, (2.85)

which is independent of the lattice index n. We call (2.85) the dynamical matrix of the system.
We can use it to rewrite (2.84) as

−ω2aniα (q) +
∑
m,j,β

D ij
αβ(q)amjβ (q) = 0.
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As in our expression for the dynamical matrix we have summed over all lattice vectors. The
remaining expression is just a system of 3Nc equations, where Nc is the number of atoms in the
unit cell, rather than of 3N equations, with N being the total number of atoms. The general
solution of the equation of motion (2.83) is a linear combination of eigenvectors of the dynamical
matrix (2.85).

We can conclude that, due to the interaction of all ions in the crystal via (2.82), only such
movements of the ions are allowed which satisfy the equation of motion (2.83). Using the ansatz
for plane waves in solids, we were able to set up the dynamical matrix, whose eigenvectors exactly
satisfy the equation of motion. These eigenvectors of the dynamical matrix are called phonon
modes.

2.3.2 Born effective charges

Following the derivation by Wu, Vanderbilt and Hamann in ref. [5], we generalise the core idea
of the previous section, namely the series expansion of the potential energy, to arrive at an ex-
pression for the Born effective charges.

While in the previous subsection the perturbation is a field of displacements ∆rni, we can con-
sider the total energy also to be a function of a (homogeneous) external electric field E. As in
the previous section, translation invariance in the crystal lattice will allow us to make general
statements about the crystal lattice from considerations in the unit cell alone, so that we can
omit the unit cell index n, and write the displacement as ∆ri.

We will expand the potential energy U up to second order in powers of displacements and external
electric field. After the series expansion, we can systematically define all response properties as
derivatives of the energy U per unit volume with respect to the perturbations.

To ensure consistency of all derived quantities we have to introduce a small modification to
the definition of the total energy (see [5]). In the presence of an external electric field, U
becomes an electric enthalpy per (undeformed) volume Ω, and is thus given by

U(∆r,E) =
U0 − E · P

Ω
,

where U0 is the initial potential energy in a vanishing field, and P is the total dipole moment in
the unit cell.

We can expand the total energy in powers of ∆r and E,

U(∆r,E) = U0 +
∑
i

[
∂U

∂riα
∆riα +

∂U

∂Eα
Eα

+
1

2

∂2U

∂riα∂r
j
β

∆riα∆rjβ +
1

2

∂2U

∂riα∂Eβ
∆riαEβ +

1

2

∂2U

∂Eα∂Eβ
EαEβ

]
+ ... (2.86)
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In fact, we can associate known quantities to most first and second derivatives appearing in
(2.86). These are

F i
α =Ω

∂U

∂riα
, the force on particle i in direction α after displacement ∆riα,

Pα =Ω
∂U

∂Eα
, the dipole moment in direction α,

Cij
αβ =

Ω

2

∂2U

∂riα∂r
j
β

, the matrix of elastic constants, and

χαβ =Ω
∂2U

∂Eα∂Eβ
, the ionic polarisability tensor.

In addition, we define the Born effective charge tensor Zαβ as

Zαβ = −Ω
∂2U

∂riα∂Eβ
= −∂Pβ

∂riα
. (2.87)

According to equation (2.87), the Born effective charge is defined as the change of the dipole
moment in direction α caused by a displacement of an atom in direction i. The full expansion of
U up to second order corrections is therefore given by

U(∆r,E) = U0 +
1

Ω

∑
i,α

[
F i
α∆riα − PαEα

]

+
1

Ω

∑
i,j
αβ

[
Cij
α β∆riα∆rjβ + Zαβ∆riαEβ +

1

2
χαβEαEβ

]
+ ...
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Chapter 3

Ionic polarisability in solids

The purpose of this thesis is to present with the Kubo-Green relations for many-particle systems
a more general method to determine the first-order dielectric response at non-zero temperature.
In this chapter, we introduce the specific equations for the ionic polarisability as derived from
Kubo-Green, we demonstrate how the limiting case of a delta-like perturbation leads to a great
reduction in the computational demands when using Kubo-Green at or close to zero temperature,
and we show that the ground-state phonon response can be obtained from the central formula
of the fluctuation-dissipation theorem.

3.1 Kubo-Green relation for the ionic polarisability

3.1.1 Ionic polarisability from Kubo-Green

If we introduce a piece of matter into an external electric field E, the resulting field D inside the
material follows the equation (in the CGS system)

D = E + 4πP.

Here, P is the total induced dipole which appears as a response to the external field E. Another
way of denoting this relation is by means of the dielectric function ε(ω) through

D = ε(ω)E.

In general, the dielectric function is a tensorial quantity, and we will write it as

εαβ(ω) = δαβ +
4πe2

Ω
χαβ(ω), (3.1)

where e is the unit charge, Ω is the unit cell volume, and χαβ(ω) is the frequency-dependent
polarisability, defined in the previous section via

χαβ = Ω
∂2U

∂Eα∂Eβ
=
∂Pα
∂Eβ

.

In particular, this implies the relation

〈P〉 = χ(ω)E +O(E2),

which is very similar to the definition of the electric conductivity

〈J〉 = σ(ω)E (2.67)

Note the connection between σαβ and χαβ via

∂P(t)

∂t
= J(t). (3.2)
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In analogy to the derivation in the Zwanzig paper, we compute 〈Ψ(t)|Pα|Ψ(t)〉, i.e. we ’measure’
the change of the dipole after the perturbation by the external electric field. We get

〈Pα(t)〉 = 〈Ψ0
n(t)|Pα|Ψ0

n(t)〉

= 〈Ψ0
n|Pα|Ψ0

n〉 − i
∑
m 6=n

∫ t

0

(Pα)nme
−i(E0

m−E0
n)(t−t′)H1

mn(t′)dt′

+ i
∑
m 6=n

∫ t

0

(Pα)mne
−i(E0

n−E0
m)(t−t′)H1

nm(t′)dt′.

This time, the response function φ(t) must be

φαβ(t) = −i
∑
n,m
m6=n

e−βE
0
n

[
e−i(E

0
m−E0

n)t(Pα)nm(Pβ)mn − ei(E
0
n−E0

m)t(Pα)nm(Pβ)mn

]
,

and after the same maniuplations as above, we obtain for the classical limit the expression

φαβ(t) = β〈Jα(0)Pβ(t)〉 = β〈Ṗα(0)Pβ(t)〉. (3.3)

The admittance function is therefore given by

χαβ(ω) = β

∫ ∞
0

〈Ṗα(0)Pβ(t)〉e−iωtdt, (3.4)

or indeed by

χαβ(ω) = β

∫ ∞
0

〈Jα(0)Pβ(t)〉e−iωt. (3.5)

Comparing (3.5) with the Kubo equation

φ(t− t′) = β〈H1(t′)Ḃ(t− t′)〉 − β〈H0B0〉 = −β〈Ḣ1(t′)B(t− t′)〉 − β〈H0B0〉, (2.64)

we see that the relevant observable B(t) to compute the polarisability is the total dipole moment
P(t) of the unit cell. The Hamiltonian for the perturbation by an external electric field is, as
before,

H1(t) = P · E(t).

3.1.2 Equivalent dielectric functions

Comparing the response functions related to the conductivity (2.79) and the polarisability (3.3),

σαβ : φαβ(t) = β〈Ṗα(0)Ṗβ(t)〉,

χαβ : φαβ(t) = β〈Ṗα(0)Pβ(t)〉

it is clearly visible that one is the time derivative of the other. We could already expect this from
equation (3.2). In other words, we can associate the conductivity σαβ(ω) to the admittance of
the time-derivative of the response function defined in equation (2.59).

In linear response theory, in linear response theory, one can distinguish between density-density
correlation, density-current correlation, or current-current correlation (see ref. [6]). In the frame-
work of Kubo-Green, this nomenclature is reflective of the actual correlation function used to
determine the response function.
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For instance, if the perturbation is of the form H1(t) = P · E(t), and we correlate the per-
turbation with the induced dipole P(t), we obtain the density-density correlation function of the
system

χρραβ(ω) = χαβ(ω) = β

∫ ∞
0

〈Pα(0)Ṗβ(t)〉e−iωtdt. (3.6)

Bear in mind that the Kubo transformation introduces one extra time-derivative.

Equivalently, the case of the electric conductivity σαβ, we correlated the perturbation with the
current J(t) induced in the system, giving rise to the density-current correlation function

χρj
αβ(ω) = σαβ(ω) = β

∫ ∞
0

〈Jα(0)Ṗβ(t)〉e−iωtdt. (3.7)

As established in section (2.2.1), these correlation functions are related to one another, as well
as to the primitive correlation function

Xαβ(ω) = β

∫ ∞
0

〈Pα(0)Pβ(t)〉e−iωtdt, (3.8)

through
χρj(ω) = iω χρρ(ω) = −ω2X(ω) (3.9)

and

X(ω) =
1

iω
χρρ(ω) = − 1

ω2
χρj(ω). (3.10)
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3.2 Delta pulse method

The results of the fluctuation-dissipation theorem are valid up to linear order irrespective of the
exact shape or duration of the perturbation. One can use this fact and try to find a function for
the external perturbation which simplifies the computation of a response function.

Possibly the greatest simplification can be achieved by using a perturbing potential that is delta-
like in time. Take the example of the density-density correlation function χρρ(ω) which connects
the polarisability P to an external electric field E(t). For the dipole moment P we have the
relationship (cf. 2.73)

〈P(t)〉 = 〈P〉eq +

∫ t

0

dt′φ(t− t′)E(t′),

which we rewrite as

〈P(t)〉 − 〈P〉eq =

∫ t

0

dt′φ(t− t′)E(t′).

We know that the Fourier transform of φ(t) is

χρρ(ω) =

∫ ∞
0

dt φ(t)e−iωt.

In order to determine the electric susceptibility of the material, we will apply a homogenous
electric field for an infinitesimally short amout of time, i.e. E = E0 δ(t), and keep track of the
change of the polarisation of the material P(t). We have

〈P(t)〉 − 〈P〉eq =

∫ t

0

dt′ φ(t− t′)E0 δ(t
′) = φ(t)E0. (3.11)

In order to get rid of the dipole moment in equilibrium, we apply another delta pulse of the
same magnitude in the opposite direction. A non-zero equilibrium dipole will cause the response
function obtained after the second pulse to differ from the one in equation (3.11). We indicate
this by writing φ̃(t):

〈P̃(t)〉+ 〈P〉eq = −φ̃(t)E0. (3.12)

We add equations (3.11) and (3.12), divide by the field strength

〈P(t)〉+ 〈P̃(t)〉
E0

= φ(t)− φ̃(t)

and define the total response function as

φtot(t) =
1

2

(
φ(t)− φ̃(t)

)
,

so that in the limit of 〈P(t)〉eq = 0 we simply get φtot(t) = φ(t). Having obtained a simple
expression for the response function,

[φtot(t)]αβ =
Pα(t) + P̃α(t)

2E0,β

,

all that is left to do is a transformation to frequency space:

[χρρ(ω)]αβ =

∫ ∞
0

dt [φtot(t)]αβe
−iωt =

1

2E0,β

∫ ∞
0

dt
(
Pα(t) + P̃α(t)

)
e−iωt (3.13)
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3.3 Phonon response

Lastly, we want to recover the formula for the phonon response as implemented in VASP (see
ref. 3.26) from a limiting case of Kubo-Green.

First, we derive the relation for a single harmonic oscillator. To compute the dielectric response
χ(ω) via the Kubo relation

χ(ω) =

∫ ∞
0

〈p(0)ṗ(t)〉e−iωtdt, (3.6)

we need an approximation for the dipole moment p(t). We assume

p(t) = Zr(t), where r(t) = a cos(ω′t+ φ),

the factor ω′ is the eigenfrequency of the oscillator, and Z is its Born effective charge in units of
the elementary charge e. To determine the maximum elongation a, we remind ourselves that in a
canonical ensemble at temperature T > 0 K, the equipartition theorem states that the average
potential energy of a single independent harmonic oscillator is just

〈U〉 =
1

2
kBT =

1

2β
. (3.14)

At the same time, we also know that the relation

〈U〉 =
1

2
mω′2〈r2(t)〉 =

1

2
mω′2〈a2 cos2(ω′t+ φ)〉 =

1

4
mω′2a2 (3.15)

holds for the potential energy of a harmonic oscillator, where m is the oscillating mass and ω′

is again the eigenfrequency of the oscillator. We conclude that the position coordinate of the
harmonic oscillator follows the trajectory

r(t) =

√
2

βmω′2
cos(ω′t+ φ). (3.16)

Note that the factor

a =

√
2

βmω′2
(3.17)

does indeed have the dimension of length. The dipole p(t) is given by

p(t) = Z

√
2

βmω′2
cos(ω′t+ φ). (3.18)

In this simple case, the Born effective charge tensor Z is simply the actual charge of the harmonic
oscillator. The time-derivative of the dipole is given by

ṗ(t) = −Z
√

2

βm
sin(ωt′ + φ) (3.19)

To evaluate the time-average 〈p(0)ṗ(t)〉, we integrate over one period of the oscillation and divide
by the factor 2π. The arbitrary phase factor φ is eliminated in the course of the integration. We
get

〈p(0)ṗ(t)〉 =
1

2π

−2Z2

βmω′

∫ 2π

0

cos(ω′t′) sin(ω′(t+ t′))dt′

=
−Z2

βmω′
sin(ω′t) +

1

4π

Z2e2

βmω′2

[
cos(ω′(t+ 4π))− cos(ω′t)

]
(3.20)
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According to Kubo, we obtain the dielectric function χ(ω) if we multiply (3.20) by β and compute
its damped Fourier transformation. Later on, we will only only be interested in the imaginary
part coming out of the Fourier transformation of the sine, so that we can write

χ(ω) = lim
η→0

∫ ∞
0

β〈p(0)ṗ(t)〉e−iωt−ηtdt

= lim
η→0

∫ ∞
0

β
−Z2

βmω′
sin(ω′t)e−iωt−ηtdt

= lim
η→0

Z2

mω′

∫ ∞
0

1

2

[
eiω

′t − e−iω′t
]
e−iωt−ηtdt

= lim
η→0

Z2

2mω′

∫ ∞
0

[
ei(ω

′−ω+iη)t − e−i(ω′+ω−iη)t
]
dt. (3.21)

After the intergration, we obtain

χ(ω) = lim
η→0

Z2

2mω′

[
1

ω′ − ω + iη
+

1

ω + ω′ + iη

]
(3.22)

Equation (3.22) is our result for the dielectric function of a single harmonic oscillator with mass
m and charge Z.

The next step is to generalise this result for the case of a cystalline system with n atoms and N
phonon modes in a unit cell of volume Ω. To determine the dielectric admittance χ(ω), we have
to sum over all phonon modes (a)ν . Furthermore, we must keep track of the effective charge
displaced by one single phonon mode (a)ν , which is achieved by replacing the particle charge Z
by the expression ∑

i,α

Zi
βα(aiα)ν , (3.23)

where Zi
βα is again the Born effective charge in direction α caused by a displacement aiα of ion

i in direction β. The mass of ion i is mi. With these modifications, the expression for the
polarisability of an n-particle system is

χα(ω) =
∑
i,ν

|Zi
αβ(aiβ)ν |2

2mi ω′ν

[
1

ω′ν − ω + iη
+

1

ω + ω′ν + iη

]
. (3.24)

Equation (3.24) is essentially the same as the formula used in VASP to compute the phonon
response function. A full discussion of this can be found in [7]. The actually implemented formula
does not compute the polarisability χ(ω) as defined in (3.1), but rather the dimensionless ratio
between external field E and induced field D, that is

χ̂αβ = εαβ − δαβ,

where the ratio χ̂ is related to our polarisability χ via

χ̂αβ =
4πe2

Ω
χαβ. (3.25)

In (3.25), the factor Ω is the volume of the unit cell, making χ̂ a dimensionless response function
per unit volume. Together with (3.24), we finally obtain the phonon response function for an
infinite crystal at zero temperature as

χ̂α(ω) =
4πe2

Ω

∑
ν

|Zi
αβ(aiβ)ν |2

2mi ω′ν

[
1

ω′ν − ω + iη
+

1

ω + ω′ν + iη

]
. (3.26)
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Chapter 4

Implementation

In the previous chapter, we derived three independent methods for describing the linear response
of a polarisable material to an external electrical field. Now, we will test these methods on a
selection of crystalline systems with interesting electronic properties. More specifically, we run a
series of computer simulations using a code package for Density-Functional Theory (DFT) sim-
ulations, namely the Vienna Ab-Initio Simulation Package, or VASP (see [8], [9] and [10]).

Using VASP, we will simulate the time-evolution of three example systems in a canonical ensem-
ble, both in the groundstate and at non-zero temperature. The most basic function of VASP is
the computation of the DFT groundstate energy of an infinite crystal. Starting from the ground-
state energy, it can compute the inter-atomic forces within the unit cell, which in turn can be
used for the time-integration in a simulation of the molecular dynamics (MD simulation). We
will describe the time-evolution of our example systems in such an MD simulation.

At first, we give a brief introduction on the functionality of the simulation package. Next,
we present the example systems and how the respective simulations have been initialised. Finally,
we discuss the actual implementation of the Kubo-Green relation, the delta pulse method and
the phonon response for the calculation of the ionic polarisability.

At the beginning of every simulation in VASP, we compute the DFT-groundstate energy of
the considered system. For such a computation, one has to supply four input files, called IN-
CAR, POSCAR, POTCAR and KPOINTS.

The INCAR file is used to control all free parameters of the calculation, such as the DFT
iteration algorithm, the convergence threshold, the cutoff-energy, etc.

In POSCAR, one enters the lattice vectors of the crystal, as well as the coordinates and atom
types of the ions in the unit cell.

The atom types in POSCAR must match the pseudopotentials in the POTCAR file. These
pseudopotentialsprovide the input about the ions in terms of a projector-augmented wave poten-
tial (PAW).

Finally, one needs to specify the number of k-points in the reciprocal space on which the wave-
function should be computed. This is done in the KPOINTS file.
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4.1 Initialisation of the test systems

4.1.1 A simple model: α-SiO2

At first, we consider silicon dioxide in its α-phase (α-SiO2), which is a very well-studied material
and has the advantage of having a very stable structure from the ground state up to very high
temperatures of around 840 K. As we will see later on, stability of the structure is an important
property when applying the delta pulse to the system, as a very large pulse may move an unstable
system to a new local potential minimum.

Figure 4.1: α-SiO2 in a monoclinic unit cell.
Note that SiO2 is symmetric under rotations of 60◦ in the xy-plane.

All images of crystals were produced using the free visualisation software VESTA, see ref. [11].
The initial structure of the right-handed P3121 α-quartz structure was taken from [12]. We
consider three SiO2 units in a monoclinic supercell, with lattice parameters and atomic positions
given in the table below.

lattice constants angles
a b c α β γ

4.914 4.914 5.406 120◦ 60 ◦ 90 ◦

atomic positions
atom type Wyckoff symbol fractional coordinates

Si 3a (0.4648 0.0000 0.3333)
O 6c (0.4104 0.2751 0.2206)

For silicon, we used the PBE PAW pseudopotential including both the 2s and 2p orbitals in the
valence with an energy cutoff of 500 eV; for oxygen, we also used a PBE pseudopotential includ-
ing the 2s and 4p orbitals. All calculations were performed with very strict convergence criteria,
the convergence energy was set at 10−8 eV, and the force convergence threshold at 10−3 eV/Å.
Given the size of the unit cell, a 2× 2× 2 k-point grid was used.

The initial structure was relaxed using a conjugate-gradient method for ionic and volume re-
laxation. A useful test to assess the stability of the ground state can be a calculation of the
phonons following the structural relaxation. At the stable potential energy minimum configura-
tion, the dynamical matrix (2.85), i.e. the matrix of second-order derivatives of the energy with
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respect to ionic displacements must be positive definite, indicating a point of positive curvature
in the energy landscape.

As the eigenvalues of a positive definite matrix can only assume positive values, one should
only expect real phonon eigenfrequencies. Imaginary phonon eigenfrequencies in the spectrum of
the dynamical matrix hint at a structural instability in the configuration. Indeed, for our relaxed
SiO2 structure, we only found positive eigenfrequencies.

4.1.2 A simple perovskite system: BaTiO3

Barium titanate (BaTiO3 or BTO) has a perovskite structure and is an interesting material for its
strong polarity and its flat potential energy surface around the potential minimum, which makes
it very unstable.

At high temperatures (> 400K), BTO appears in its cubic phase (see ref. [13]), with six oxygen
atoms forming an octahedron within the cubic cell. The centre of the octahedron is occupied
by a titanium atom. The main instability of BTO stems from the fact that the central titanium
atom is actually too small to occupy the whole space inside the octahedron. Furthermore, there
exists a strong dipole between the Ti and O atoms, which, at temperatures below 400K, leads to
a displacement of the titanium along one of the lattice vectors, thereby spontaneously breaking
the cubic symmetry. The recovered phase has tetragonal symmetry. This effect is referred to as
ferroelectric distorsion. At 278K, a second phase transition leads to another displacement of the
titanium along a second lattice vector, yielding the orthorhombic phase of BTO. In other words,
the central atom is now displaced along one face diagonal of the cube. Finally, at temperatures
below 183K, BTO is rhombohedral, with the titanium atom displaced along the space diagonal
of the cube.

Figure 4.2: cubic BaTiO3

The 6-fold cubic symmetry is intact, but we
observe three imaginary modes.

Figure 4.3: rhombohedral BaTiO3.
Note the displacement of the central titanium
atom along

[
1, 1, 1

]
.

The cubic structure of BaTiO3, which will serve as a starting structure for all high-temperature
MD simulations, was taken from ref. [14]. After initial relaxation, the lattice parameters for the
cubic structure are given in the table below.
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lattice constants angles
a b c α β γ

4.028 4.028 4.028 90◦ 90 ◦ 90 ◦

atomic positions
atom type Wyckoff symbol fractional coordinates

Ba 1a (0.000 0.000 0.000)
Ti 1b (0.500 0.500 0.500)
O 3c (0.500 0.500 0.000)

Next to the cubic structure, we also need the true groundstate structure of BTO. Starting from
the cubic configuration, the central Ti atom was displaced in the

[
1, 1, 1

]
-direction. Then, the

cell shape, but not the ionic positions, was relaxed, followed by a relaxation of the volume and
the ions, respectively. This relaxation procedure was iterated several times until convergence was
reached. The final rhombohedral structure is indeed lower in energy than the cubic structure, with
an energy difference of 97.25 meV in the simple unit cell. It has the following lattice parameters:

lattice constants angles
a b c α β γ

4.071 4.071 4.071 89.68◦ 89.68 ◦ 89.68 ◦

atomic positions
atom type Wyckoff symbol fractional coordinates

Ba 1a (0.000 0.000 0.000)
Ti 1a (0.484 0.484 0.484)
O 3b (0.028 0.484 0.484)

For barium, a PBE pseudopotential including the 5s, 5p, and 6s orbitals was used; titanium
was simulated using a PBE pseudopotential with 3s, 3p, 4s, and 3d orbitals included, and for
oxygen, we considered, as above, the 2s and 4p orbitals. The energy cutoff was set at 500 eV
and the convergence threshold was 10−8 eV/Å. In the relaxation runs, the force convergence was
set to be reached at 10−3 eV, and the accuracy of the force calculations was increased by setting
PREC=Accurate. In the single unit cell, a 4× 4× 4 k-point grid is used, while in the 2× 2× 2
supercell, we use a 2× 2× 2 k-point grid. This implies that we have the same k-point density in
both cells.

While the fully relaxed rhomohedral structure exhibits no imaginary phonon modes and is there-
fore (locally) stable, the cubic structure suffers from 3 imaginary modes, i.e. there are three
possible displacements of atoms that would lead to a lower total energy.

4.1.3 The unstable system: SrTiO3

Strontium titanate (SrTiO3 or STO) also belongs to the class of perovskites, and a priori has
properties which are very similar to barium titanate. As before, we have three phase transitions,
from cubic to tetragonal, from tetragonal to orthorhombic, and from orthorhombic to rhombo-
hedral, which are related to the ferro-electric instabilities of the TiO3 cage.
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Figure 4.4: cubic SrTiO3

The 6-fold cubic symmetry is intact, but we ob-
serve three imaginary phonon modes.

Figure 4.5: rhombohedral SrTiO3

Note the displacement of the central titanium
atom along

[
1, 1, 1

]
.

However, there is another complication: The strontium atoms in SrTiO3 are equivalent to the
barium atoms in BaTiO3, but due to their lower atomic number, they are smaller and lighter
than barium. This introduces another instability in the system, called anti-ferroelectric distorsion
(see [14]). This distorsion amounts to a rotation of the O-octahedra in neighbouring unit cells
in clockwise and anticlockwise direction around the O-Ti-O axis, respectively. As the rotation in
any cell is always opposite the rotation in any cell next to it, this distorsion is only possible in√

2×
√

2× 1 or even larger supercells.

Figure 4.6: Anti-ferroelectric distorsion can only appear in a supercell where ions of neighbouring
cells can move in opposite directions.

To initialise the structure of SrTiO3, we start from the cubic structure given in [14]. After a first
structural relaxation, the lattice parameters for the cubic structure of STO are given below.
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lattice constants angles
a b c α β γ

3.936 3.936 3.936 90◦ 90 ◦ 90 ◦

atomic positions
atom type Wyckoff symbol fractional coordinates

Sr 1a (0.000 0.000 0.000)
Ti 1b (0.500 0.500 0.500)
O 3c (0.500 0.500 0.000)

As for BTO, we then also create the rhombohedral groud-state structure by displacing the central
Ti atom along the space diagonal. With an energy cutoff of 500 eV and an energy convergence
threshold of 10−8 eV, we first relax the cell shape, then the volume, then the ionic positions.
The force convergence threshould is set at 10−3 eV/Å, and the accuracy of the force calculation
is increased. The resulting lattice parameters are then given by

lattice constants angles
a b c α β γ

3.950 3.950 3.950 89.91 ◦ 89.91 ◦ 89.91 ◦

atomic positions
atom type Wyckoff symbol fractional coordinates

Sr 1a (0.000 0.000 0.000)
Ti 1a (0.496 0.496 0.496)
O 3b (0.479 0.479 0.021)

In the rhombohedral unit cell, a check of the phonon spectrum confirms that a structural energy
minimum has been reached, while in the cubic unit cell, three imaginary phonon modes persist.

Next, we multiply the rhombohedral unit cell to obtain a 2 × 2 × 2 supercell. A quick cal-
culation of the phonon spectrum shows that in the large cell, several phonon modes become
imaginary. This means that the structure possesses further instabilities at wavevectors commen-
surate with the 2× 2× 2 supercell, e.g. at the X, Y or Z point or along face or room diagonals.

A good way to further relax the structure is to displace the ions along an eigenmode belonging to
an imaginary phonon frequency. In the supercell of rhombohedral STO, these remaining imagi-
nary phonon modes correspond exactly to the anti-ferroelectric distorsion. This is also observed in
experiment and consistently appears in DFT calculations, regardless of the employed pseudopo-
tential. As was shown in [14], we can conclude that this distorsion is not a computational artefact.

After manually displacing the atoms along the imaginary phonon modes, the structure is again
relaxed until convergence is reached.
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Figure 4.7: rhombohedral SrTiO3 in a 2×2×2
supercell
The central Ti atoms are displaced along the space
diagonal, but imaginary phonon modes persist.

Figure 4.8: rhombohedral SrTiO3 with anti-
ferroelectric distorsion.
Note that neighbouring oxygen cages are rotated
in opposite directions around the Ti-O axis.

4.2 Implementation of Kubo-Green

To compute the ionic polarisability from Kubo-Green, we need to implement equation (3.4),

χαβ(ω) = β

∫ ∞
0

〈Ṗα(0)Pβ(t)〉e−iωtdt.

We will describe the time-dependent dipole moment P(t) by the trajectory of the total dipole
moment in the unit cell by means of a molecular dynamics simulation (MD). In particular, we
want to sample the dipole fluctuations at a predefined temperature. Furthermore, we require a
large amount of independent dipole trajectories, as we need to compute a sample average. We
will thus follow the following procedure:

1. Initialise independent starting configurations We select the initial configuration (cubic
or rhombohedral phase) depending on the temperature at which we want to simulate the dipole
flucutations. For a simulation below the first phase transition, we initialise the system in the
rhombohedral phase, while for simulations at high temperature, we start from the configuration
in the cubic phase.

For the systems and the temperature range that interest us, decorrelation times in an MD simu-
lation are very long. One way to obtain independent samples of the dipole moment is to start a
very long NVT run, estimate the decorrelation time of the system and pick intermediate struc-
tures from the NVT run at sufficiently large intervals. However, since this approach takes a lot
of computing time, we will rather use a different routine implemented in VASP.

In VASP, it is possible to create a sample of configurations of a given system whose total
energy follows the Maxwell-Boltzmann distribution of kinetic energies in a thermodynamic sys-
tem at temperature T . This is done using the PHON LMC routine. This routine assigns, on
average, a kinetic energy of kBT/2 to each quadratic degree of freedom in the system. The
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motion of the atoms is restricted to the specific displacement vector determined by the eigen-
mode of the system. Note, that the kinetic energy is sample from a classical distribution function.

At first, phonon modes and phonon eigenfrequencies of the whole system are computed. Then,
for each ion individually, the routine draws a random configuration from the density matrix of
a classical harmonic oscillator in a canonical ensemble at temperature T and assigns it to the
ion. Thus we create a configuration where each ion is displaced along the eigenmode and the
magnitude of the displacement is commensurate with the temperature of the entire system. This
way, we can make sure to produce fully independent initial structures for the MD run.

2. Equilibration in a canonical ensemble Follwing the initialisation, we run an MD simu-
lation in VASP with an Andersen thermostat to fully equilibrate the system at temperature T .
This is required, since the initialisation described above relies on the harmonic approximation,
i.e., it only accounts for the quadratic terms in the potential energy surface.

The unit time step of the MD is 1 femtosecond and the usual runtime is 2,000 to 10,000 steps.
In every step, VASP computes the configuration energy and inter-ionic forces for the following
timestep.

In a microcanonical ensemble (NVE ensemble), only interatomic forces are taken into account.
In a canonical ensemble, however, one also needs to simulate the external heat bath, which
alters the phase space of admissible microstates. Using the Andersen thermostat, the contact
with the heat bath is simulated by resetting the kinetic energy of a randomly selected parti-
cle to a value drawn from a Maxwell-Boltzmann distribution at temperature T . This resetting
should not occur too frequently in order not to interfere with the internal dynamics of the system.

Observation of the temperature fluctuations helps to assess whether the considered system has
reached thermal equilibrium. For STO and BTO, this was usually reached already after several
hundred timesteps.
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Figure 4.9: Thermal equilibration of 10 independent BaTiO3 systems in the cubic 2 × 2 × 2
supercell using an Andersen thermostat at 300 K. This simulation was erroneously initialised
using Bose-Einstein statistics. During the classical MD simulation, the initial temperature turns
out to be slightly too high, however, the Andersen thermostat quickly equilibrates the system
properly.
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Figure 4.10: Thermal equilibration of 10 independent SrTiO3 systems in the cubic unit cell using
an Andersen thermostat at 300 K

Note that the system in the supercell consists of 40 atoms, while the system in the unit cell only
has 8 atoms. Thermal fluctuations in a system of N particles are proportional to 1/

√
N , which

explains why the fluctuations in the unit cell are so much larger than in the larger supercell. In
fact, the ratio between the size of the fluctuation should be approximately

√
40/8 =

√
5 ≈ 2.236.

3. Dipole time-autocorrelation in the NVE ensemble On average, the final structures
of the equilibration in the NVT run should represent the canonical ensemble at temperature T .
In the last step, we compute a trajectory for the total dipole moment of the material for every
individual system in the sample.
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Figure 4.11: Trajectory of the total dipole of SiO2 at 100 K. The dipole moment, set to zero
initially, is given in units of elementary charge times Angstrom
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First, the Born effective charges are computed in the unit cell. Then, the MD simulation in a
microcanonical ensemble is started. The displacements of the ions at each step are stored. The
change of the dipole over the runtime is simply given by the multiplication of the change of the
ionic positions times the Born effective charges (cf. equation 3.23).

Note that the initial dipole is, somewhat arbitrarily, set to zero. The concept of Born effec-
tive charges can only be employed when the dipole changes as a result of a change of ionic
positions. We cannot obtain a value for the initial total dipole from the Born effective charges.
However, as discussed in section 3.1.2, there is a very simple connection between the response
function and its time derivative. Since by taking the derivative with respect to time, the constant
offset of the dipole vanishes, and we can compute the response function using equation (3.7).

Also, it is important to note that the runtime and timestep for the NVE run must be cho-
sen such that a good resolution of the resonance frequencies can be achieved. From the theory of
Fourier transformation we know that we can only resolve frequencies that lie between the inverse
of the total runtime (lower bound) and the inverse of twice the length of the timestep (upper
bound).

Having obtained a sufficiently large set of dipole trajectories, we should be able to implement
equation (3.4). However, there is one last complication: Since we do not know the initial value
of the total dipole, we have to take a small detour and compute the time-derivative Ṗ(t) of the
dipole P(t). Thusly, we get rid of the constant offset of the initial position, and we can simply
use the expression we previously derived for the electric conductivity,

χρj
αβ(ω) = σαβ(ω) = β

∫ ∞
0

〈Ṗα(0)Ṗβ(t)〉e−iωtdt, (3.7)

and recover (3.4) via the identity

χρραβ(ω) =
1

iω
χρj
αβ(ω). (3.9)

We compute the time-derivative of the dipole moment using central differences, compute the
autocorrelation function Ṗ(0)Ṗ(t) and average over all samples of the ensemble by computing
the mean value. This quantity is then Fourier transformed and scaled by β.

0 50 100 150 200 250 300
frequency [meV]

-10

-5

0

5

10

R
e 

ε

44



0 50 100 150 200 250 300
frequency [meV]

0

5

10

15

20

Im
 ε

 [
eV

/f
s]

Figure 4.12: Damped Fourier transform of the single dipole trajectory of SiO2 at 100 K from
figure 4.11.

4.3 Implementation of the delta pulse method

The implementation of the Delta pulse method requires less computing time, but is only appli-
cable to very low temperatures. Furtermore, depending on the system, we found it more difficult
to apply, often necessiting a careful evaluation of a large number of parameters, so that many
MD runs were needed to obtain satisfactory results.

We start again from the relaxed ground-state configuration and start a molecular dynamics sim-
ulation. In the very first time step, we apply a (small) electric field across the unit cell, which
excites all dipole-active phonon modes. Using the same procedure as above, we keep track of the
total dipole moment of the unit cell over time, and compute its Fourier transformation.

As we have seen in section 3.2, it may be necessary to eliminate contributions from a non-
zero initial dipole moment. This is achieved by applying the electric field once in positive and
once in negative direction, and then by subtracting the response obtained from the pulse in neg-
ative direction from the one obtained from the one in positive direction.

According to equation (3.13), the actual field strength applied in the first MD step should have
no influence on the outcome of the frequency-dependent polarisability, as in the formula for the
response function, we divide out the dependence on the field strength. However, since the formula
we derived is only correct for the description of linear response, it is only those contributions that
are not affected by the strength of the electric field.

Depending on the system, there may be significant anharmonic effects which can be ampli-
fied by an increasing size of the perturbation. Strong anharmonic effects can in fact spoil the
signal of the dipole moment, as can be seen at the example of SiO2 in figure 4.13. The larger
the applied electric field, the more pronounced the artefacts at certain frequencies become.
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Figure 4.13: Detail of the imaginary dielectric function of SiO2 at 100 K. Artefacts around 10
meV, 75 meV and above 150 meV can at least in part be explained by anharmonic effects as a
consequence of a large external electric field.

Before employing the delta pulse method, it is important to test the convergence of the results
with respect to the applied field to make sure that on the one hand, the signal of the dipole
moment is visible, but also that on the other hand, anharmonic effects do not cause too much
noise in the signal.
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Figure 4.14: Trajectory of the dipole moment of cubic BaTiO3.
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An extreme case, in which anharmonic effects spoil the simulation of the linear response, are
structurally unstable systems, or such systems which are very close to a structural instability. If
we apply only a small electric pulse to a system like cubic BaTiO3, whose dynamical matrix is
not positive definite, we can cause the entire system to move into a new local energy minimum.
The resulting dipole trajectory is shown in figure 4.14.

Often, these local energy minima will be lower in energy, but some may also have a slightly
higher potential energy. These problems can also appear in a system whose dynamical matrix is
positive definite, but whose structures exhibits many local energy minima in the neighbourhood
of the global miminum. If the system moves to a new energy minimum, the evaluation of the
polarisability becomes virtually impossible. It is instructive to take a look at the dipole trajectory,
to understand why this causes problems.

Even though the applied electric field in figure 4.14 was very small, the large jumps in the dipole
trajectory hint at the occurrence of phase transitions in the course of the simulation. While it is
still possible to obtain good results for cubic BaTiO3 from Kubo-Green, the delta-pulse method
is limited to dynamically stable systems. The Fourier-transformed signal from figure 4.14 does
not show any discernible pattern.
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Figure 4.15: Fourier-transformed dipole moment of cubic BaTiO3
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Chapter 5

Results and Discussion

5.1 First application and testing: SiO2

First, we compare the Kubo-Green result for the ionic polarisation with the standard method
using the phonon spectrum. As SiO2 is stable up to high temperatures, the Kubo run was per-
formed at 100 K. The selected timestep was 2.0 femtoseconds and the total runtime was 5000
femtoseconds. The resulting dielectric function is shown below.

Remember that the dielectric function is in general a tensorial quantity. Since α-quartz has
a three-fold rotation symmetry around the z-axis, the xx-component is the same as the yy-
component of the dielectric tensor. The broadening of the peaks in the Kubo-Green method
decreases with the length of the total simulation time, and increases with the temperature. The
increase with temperature is a real physical effect, caused by phonon-phonon scattering which
decreases the lifetime of harmonic states.
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Figure 5.1: Real part of the xx-component of the dielectric tensor of α-SiO2.

48



0 50 100 150 200 250 300
frequency [meV]

0

50

100

150

200

250

300

Im
 ε

 [
eV

/f
s]

phonon response

Kubo-Green, 100K

Figure 5.2: Imaginary part of the xx-component of the dielectric tensor of α-SiO2.

A necessary condition for accurate results in both the Kubo-Green and the delta pulse approach
is energy conservation during the MD simulation. As the trajectory of the dipole is always
computed in a microcanonical ensemble, we expect the total energy of the system to be conserved
throughout the simulation. In all our simulations, energy conservation was satisfying. Throughout
the Kubo-Green run for SiO2, the total, potential and kinetic energies yielded the results given
below.
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Figure 5.3: Total, potential and kinetic energy of SiO2 throughout the molecular dynamics
simulation; note the different energy axes for total and potential as well as kinetic energy

The net energy drift in figure 5.3 is of the order of 1.5 meV. According to the equipartition
theorem, we have

Ekin =
f

2
kBT,
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where f is the number of degrees of freedom in the system. In a system of 9 atoms, we have
27 position coordinates, of which three are translational and therefore do not contribute to the
thermal energy. If we distribute the kinetic energy equally among the remaining 24 degrees of
freedom, we can estimate the energy loss to be equivalent to a thermal energy of about 0.7 K.
Compared to the 100 K at which the simulation was run, this amount of thermal energy seems
negligible.
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Figure 5.4: Real part of the xx-component of the dielectric tensor of α-SiO2.
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Figure 5.5: Imaginary part of the xx-component of the dielectric tensor of α-SiO2.
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Next, we consider the results of the delta pulse method for SiO2. The polarisability functions
shown in figures 5.4 and 5.5 were obtained from a run of 4000 fs with a timestep of 1 fs.

Again, we check energy conservation during the MD in the microcanonical ensemble. We regis-
tered the following behaviour.
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Figure 5.6: total, potential and kinetic energy of SiO2; note the initial jump in the total energy
due to the applied delta pulse

Note that the average kinetic energy observed in the simulation following the delta pulse is
smaller by a factor of almost three orders of magnitude. Indeed, the delta pulse simulation ran
at a temperature of only around 0.1 K. This also explains, why the absolute values of the energy
fluctuations observed in the delta pulse method are several orders of magnitude smaller than
those in the Kubo-Green simulation.

The energy drift in figure 5.4 is smaller than 0.01 meV, which means a loss of thermal en-
ergy of less than 0.05 K. An energy drift of this magnitude may in fact not be negligible any
more, however, the results were still satisfactory.
On the basis of figures 5.1 to 5.4, we can confirm that both methods, the Kubo-Green relation
and the delta pulse method, can indeed yield reliable results for the polarisability of a material.
After this rather simple and very stable system, we will now move on to applying the same
procedure to the more interesting cases of BaTiO3 and SrTiO3.
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5.2 Barium titanate: ionic response

We begin with the low-temperature phase of BaTiO3, the rhombohedral structure in the simple
unit cell. To investigate the polarisability close to the absolute zero, we first compare the delta
pulse and phonon response methods.
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Figure 5.7: Real part of the xx-component of the dielectric tensor of rhombohedral BaTiO3 at
very low temperature
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Figure 5.8: Imaginary part of the xx-component of the dielectric tensor of rhombohedral BaTiO3

at very low temperature.
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For the fully-relaxed rhombohedral barium titanate, the delta pulse and phonon response methods
give largely identical results. However, further investigation of the question why the delta pulse
method exhibits two extra peaks at 33 meV and 68 meV is required. Also, note that the modes
involved in the polarisability of barium titanate are by a factor 10 more dipole active than in SiO2.

Again, energy conservation is reasonably good for the delta pulse method. In the following
graph, we show the total, potential and kinetic energy from the first of the two delta pulse runs;
the pattern in the second run is very similar.
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Figure 5.9: Total, potential and kinetic energy of rhombohedral BaTiO3 at low temperature.

Note again the energy axis. The shift of the total energy is less than 0.16 meV. In a system
of five atoms, this is the equivalent of about 1.9 Kelvin. Compared to the total temperature of
about 5 Kelvin, this energy drift may not be negligible anymore. However, the total results are
still satisfactory.

Next, we compare the results from the Kubo-Green relation for the dielectric function at low
temperatures to the phonon response. We run two Kubo-Green simulations, one at 10 K and one
at 50 K, both far below the temperature of the first phase transition, and compare the results to
the phonon response.

The positions of the individual peaks mostly agrees with the linear-response approach. This
is particularly true at the lower temperature of T=10 K, while at T=50 K, a significant broad-
ening of the peaks is observed. This indicates very strong anharmonicities in BaTiO3, leading to
a sigificant reduction of the life time of the phonon modes.
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Figure 5.10: Real part of the xx-component of the dielectric tensor of rhombohedral BaTiO3 at
low temperature.
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Figure 5.11: Imaginary part of the xx-component of the dielectric tensor of rhombohedral BaTiO3

at low temperature.

This is in fact quite remarkable, since the simulation temperatures are still far below the transition
temperatures to the next higher symmetry structure. Already at T=10 K, the peak at 34 meV
shows a shoulder at 32 meV. This shoulder was also present in the delta-peak simulations, but
less pronounced. Clearly, this is the first mode to be affected by anharmonic effects. At T=50 K,
the spectrum is again fairly smooth, but the peaks are shifted to lower frequencies by about 10%
compared to the phonon response.
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Lastly, let us turn to the high-temperature behaviour of BaTiO3. In the figure below, we compare
the results of the Kubo-Green polarisability for barium titanate in the simple unit cell with the
results obtained in the 2× 2× 2 supercell.
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Figure 5.12: Real part of the low- and high-temperature dielectric functions of cubic BaTiO3 as
obtained from Kubo-Green
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Figure 5.13: Imaginary part of the low- and high-temperature dielectric functions of cubic BaTiO3

as obtained from Kubo-Green.
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Both curves are converged with respect to the total runtime. However, the observed difference
between the two curves hints at the fact that a simple unit cell is not large enough to provide
a comprehensive description of the dielectric properties of the material in the rhombohedral phase.

In the supercell, we observe stronger resonance at lower frequency, which hints at the existence
of very soft modes which are only accessible in a supercell. We believe that these are related to
the clockwise and counter-clockwise rotations which were discussed in figure 4.6. As mentioned
in the introduction, these anti-ferroelectric modes are stable in BaTiO3, but fluctuations along
these modes are still possible. However, since these modes are anti-ferroelectric, their net dipole
is - in principle - zero. This means that they can only couple to an external field via strong
anharmonic effects.

Note that we did not compare the results to the phonon response. This is because the dy-
namical matrix of cubic BaTiO3 is not positive definite. This can lead to imaginary contributions
to the ionic polarisability. Since it is unclear how one should treat these contributions, the only
reasonable way to describe the high-temperature polarisability of such systems is by means of a
Kubo-Green relation.

Again, the total energy was conserved in all considered the MD simulations. In figure 5.14,
we present the total energy of the MD simulation of cubic BaTiO3 in the supercell at 300 Kelvin.
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Figure 5.14: energy conservation in cubic BaTiO2 in a 2× 2× 2 supercell

The total energy drift amounts to 171.5 meV, which is the equivalent of around 35K. This appears
to be satisfactory again.
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5.3 Strontium titanate: ionic response

Eventually, we turn to the most complicated and unstable of our test systems, strontium titanate
(STO). First, we look at the rhombohedral structure of STO at T=0K and compare the results
obtained from the delta pulse and the phonon response. The delta pulse simulation was run with
a stepsize of 2.0 fs and a total runtime of 10,000 femtoseconds.
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Figure 5.15: Real part of the xx-component of the dielectric tensor of rhombohedral SrTiO3 at
low temperature.
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Figure 5.16: Imaginary part of the xx-component of the dielectric tensor of rhombohedral SrTiO3

at low temperature.
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As expected, the delta pulse results for fully relaxed SrTiO3 in the single unit cell coincide with
the phonon response function. As before, energy conservation is satisfactory.

Similar to figures 5.10 and 5.11, we want to compare this result to the Kubo polarisability
at low temperatures. The phase transition from rhombohedral to orthorhombic STO occurs at
roughly 100 K, which is why we expect good results from the Kubo run at 10 K.
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Figure 5.17: Real part of the xx-component of the dielectric tensor of SrTiO3 at low temperatures.

0 10 20 30 40 50 60 70 80 90 100
frequency [meV]

0

500

1000

1500

2000

2500

3000

3500

4000

Im
 ε

 [
eV

/f
s]

phonon response

Kubo-Green, 10K

Kubo-Green, 50K

Figure 5.18: Imaginary part of the xx-component of the dielectric tensor of SrTiO3 at low tem-
peratures.
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Comparing figures 5.17 and 5.18 with 5.10 and 5.11, we observe that in SrTiO3, anharmonic
effects even at temperatures far below the first phase transition play a very important role. Both
the real and the imaginary part of the Kubo-Green solution at 50 K have very little to do with
the ground-state polarisability obtained from the phonon response. We can attribute this to the
pronounced instabilites in the structure.

The SrTiO3 structure posses multiple local minima very close to the global lowest energy struc-
ture. Specifically, further ferroelectric distortions e.g. with the Ti and O atoms moving in the
+x and -x direction by about 0.1 Åcan occur. These structures are local minima with a slighlty
greater energy than the groundstate structure.

Even at 10 K, if the simulations are run long enough, transitions from the global minimum
into these local higher energy minima can occur. Typically this is accompanied by a recrossing
into the lower energy structure after several picoseconds. Whenever such a transition occurs, the
Fourier transform of the dipole-dipole correlation function shows oddities, for instance a strong
shift in the peaks.

For the evaluation of the final spectral function, we have removed all trajectories where such
a transition took place. Still the spectrum shows a singular peak around ω=0, indicating a very
soft global energy mimimum.

To conclude this section, we consider another Kubo-Green dielectric function for SrTiO3, this
time obtained in a 2 × 2 × 2 supercell. In figure 5.20, we see the difference between a Kubo
run in the single unit cell and the supercell. As for BaTiO3, the results for the unit cell and the
supercell are qualitatively very different. In the 2×2×2 supercell, the anti-ferroelectric distorsions
are possible, and neighbouring octahedra can perform clockwise/anti-clockwise rotations. In the
supercell, we observe a single low-frequency peak, as well as another one at 67 meV.
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Figure 5.19: Real part of the xx-component of the dielectric tensor of cubic SrTiO3 at high
temperature.
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Figure 5.20: Imaginary part of the xx-component of the dielectric tensor of cubic SrTiO3 at high
temperature.
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Chapter 6

Conclusion

Starting from very simple theoretical considerations on time-dependent perturbation theory, we
have presented two derivations of the fluctuation-dissipation theorem. This theorem has been
the starting point for obtaining the Kubo-Green relation for the frequency-dependent dielectric
tensor of polarisable materials. We have shown that the usual phonon response function can be
obtained as a limiting case of the Kubo-Green relation and presented the delta pulse method, in
which a special form of perturbation helps to significantly reduce the computional expenses of
Kubo-Green.

In the subsequent calculations, we have shown that the three presented approaches, Kubo-Green,
delta pulse and phonon response, can be used in a complementary fashion to further the under-
standing of dielectric properties of materials.

Although computationally rather expensive, the Kubo-Green method allows us to describe di-
electric properties at non-zero temperatures up to linear order. Even more importantly, we are
also able to describe the polarisability of structurally instable systems, such as barium titanate
and strontium titanate. The main complication in these cases stems from the fact that their
potential energy landscape is very flat and exhibits several local minima around the global min-
imum. At higher temperatures, the structure assumes a series of different configurations with
different dielectric properties. This implies that in order to compute the polarisability at higher
temperatures we need to average over this series of dielectric functions. For sufficiently long
runtimes - and sufficiently good statistics - this is achieved by Kubo-Green.

In the limit of low but non-zero temperatures, the delta pulse method can give reliable results
at a much lower cost than Kubo-Green. However, the delta pulse can only give reliable results
if the system is perfectly stable and does not exhibit very soft modes. In our test system, SiO2,
whose energy landscape is harmonic up to relatively high temperatures, we have been able to
reproduce the results of the phonon response with very high accuracy. In most systems, however,
this method requires a fair amount of testing, as anharmonic effects can arise as a consequence
of the finite size of the electric pulse. This can introduce features to the dielectric function which
do not appear within the harmonic approximation.

Lastly, in the groundstate, the phonon response is the method of choice provided that the sys-
tem is stable. In the presence of negative phonon modes, the results for the phonon response
can generally not be trusted. Also, for many applications, the polarisability of a material at the
groundstate is not particularly insightful, as phase transitions can severly alter the ionic polaris-
ability.

Using Kubo-Green, we have been able to describe the evolution of the polarisability as a function
of temperature for both barium titanate and strontium titanate. The low-temperature results for
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the rhombohedral phase in both systems are very close to the polarisability at the ground state. In
the cubic phase at higher temperatures, however, many small-scale features get lost and the dipole
active modes tend to become softer. The latter can at least in part be attributed to the structural
weakness of both compounds. This is most obvious in the case of cubic strontium titanate, which
in a larger supercell exhibits further structural instabilities, known as anti-ferroelectric distorsion.

Kubo-Green can be the entry point to a vast field of possible subsequent investigations of the
dielectric properties of diverse types of materials. With our small selection of test systems, we
were barely able to scrape the surface of what would be very well possible - and even rather easily
realisable.
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