
MASTERARBEIT / MASTER’S THESIS

Titel der Arbeit / Title of the Master’s Thesis

Container Based Execution Stack for Neural Networks

verfasst von / submitted by

Benjamin Nussbaum, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Diplom-Ingenieur (Dipl.-Ing.)

Wien, 2018 / Vienna, 2018

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet

A 066 926

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet

Masterstudium Wirtschaftsinformatik

Betreut von / Supervisor Univ.-Prof. Dipl.-Ing. Dr. Erich Schikuta

Erklärung / Declaration

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, dass alle Stellen
der Arbeit, die wörtlich oder sinngemäß aus anderen Quellen übernommen wurden,
als solche kenntlich gemacht und dass die Arbeit in gleicher oder ähnlicher Form noch
keiner Prüfungsbehörde vorgelegt wurde.

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

Ort, Datum Unterschrift
Date Signature

3

Abstract / Zusammenfassung

Abstract

This thesis presents a container based execution stack for neural networks (ConbexNN)
using the Kubernetes container orchestration and a Java based microservice architecture,
which is exposed to users and other systems via RESTful webservices. The whole work-
flow including importing, training and evaluating a neural network model, becomes
possible by using this service oriented approach. This work is influenced by N2Sky, a
framework for the exchange of neural network specific knowledge and aims to support
ViNNSL, the Vienna Neural Network Specification Language. The execution stack runs
on many common cloud platforms. Furthermore it is scalable and each component is
extensible and interchangeable.

Zusammenfassung

Diese Masterarbeit beschreibt einen Ausführungs-Stack für neuronale Netze (genannt
ConbexNN), der unter Verwendung der Kubernes Container-Orchestrierung und einer
Java basierten Microservice-Architektur, für Benutzer und Systeme via RESTful Web-
services zugänglich gemacht wird. Der gesamte Arbeitsfluss, der Import, Training und
Auswertung eines neuronalen Netzwerk-Modells beinhält, wird durch diese service-
basierte Architektur (SOA) unterstützt. Diese Arbeit ist von N2Sky, einem Framework
zum Austausch spezifischen Wissens über neuronale Netze, beeinflusst und unterstützt
ViNNSL, die Vienna Neural Network Specification Language. Der Ausführungs-Stack
läuft auf vielen namhaften Cloud-Umgebungen, ist skalierbar und jede einzelne Kompo-
nente ist einfach erweiterbar und austauschbar.

5

Contents

1 Introduction 13
1.1 Problem Statement . 14
1.2 Motivation . 14
1.3 Structure . 15
1.4 Related Work . 16

1.4.1 ViNNSL . 16
1.4.2 N2Sky . 16

2 State of the Art 17
2.1 Containers . 17

2.1.1 Docker Containers . 17
2.2 Microservices . 17
2.3 Container Orchestration Technologies . 19

2.3.1 Kubernetes . 19
2.3.2 Docker Swarm Mode . 22
2.3.3 Comparison . 24
2.3.4 Decision . 26

2.4 Machine Learning . 26
2.5 Neural Networks . 26

2.5.1 Classification of Neural Networks 26
2.5.2 Backpropagation Networks . 28
2.5.3 Neural Network Frameworks . 29
2.5.4 Decision . 38

3 Requirements 39
3.1 Functional Requirements . 39

3.1.1 User Interface . 40

7

Contents

3.2 Non-Functional Requirements . 40
3.2.1 Quality . 40
3.2.2 Technical . 42
3.2.3 Software . 42
3.2.4 Hardware . 42
3.2.5 Documentation . 42
3.2.6 Source Code . 42
3.2.7 Project Website . 42
3.2.8 Developer Environment . 42

4 Specification 43
4.1 Use Case . 43

4.1.1 Use Case Descriptions . 43
4.2 Sequence Diagram . 48

4.2.1 Sequence of Training . 49
4.3 Data Model Design . 49

4.3.1 vinnsl-service . 49
4.3.2 storage-service . 51

4.4 Overview Microservices . 52
4.4.1 Vinnsl Service (vinnsl-service) . 52
4.4.2 Worker Service (vinnsl-nn-worker) 54
4.4.3 Storage Service (vinnsl-storage-service) 54
4.4.4 Frontend UI (vinnsl-nn-ui) . 54

4.5 User Interface Design . 54
4.6 Service Discovery and Load Balancing . 56

4.6.1 Kubernetes DNS-based Service Discovery 56
4.7 Neural Network Objects State . 58

5 Implementation 61
5.1 Project Website . 61
5.2 Source Code . 61
5.3 Releases . 62
5.4 Framework Dependencies . 62

5.4.1 Spring . 62
5.4.2 Swagger . 63

8

Contents

5.4.3 Fabric8 . 63
5.4.4 Deeplearning4J . 64

5.5 Security . 64
5.6 User Interface . 64

5.6.1 vinnsl-nn-ui (Frontend UI) . 64
5.7 Endpoints . 64

5.7.1 Additional Endpoints . 65
5.8 Class Diagrams . 65

5.8.1 vinnsl-service . 65
5.8.2 vinnsl-storage-service . 66
5.8.3 vinnsl-worker-service . 69
5.8.4 vinnsl-nn-ui . 70

5.9 Limitations . 71
5.9.1 Neural Network Design . 71
5.9.2 Parameters . 71

6 User Interface 73
6.1 vinnsl-nn-ui (Frontend UI) . 73

6.1.1 Architecture . 73
6.1.2 Features . 73
6.1.3 Limitations . 75

7 API Documentation 77
7.1 vinnsl-service . 77

7.1.1 Import a new ViNNSL XML Defintion 77
7.1.2 List all Neural Networks . 80
7.1.3 Delete all Neural Networks . 82
7.1.4 Get Neural Network Object . 82
7.1.5 Remove Neural Network Object 87
7.1.6 Add/Replace File of Neural Network 87
7.1.7 Add/Replace ViNNSL Definition of Neural Network 88
7.1.8 Add/Replace ViNNSL Instanceschema of Neural Network . . . 91
7.1.9 Add/Replace ViNNSL Resultschema of Neural Network 93
7.1.10 Add/Replace ViNNSL Trainingresult of Neural Network 94
7.1.11 Get Status of all Neural Networks 95

9

Contents

7.1.12 Get Status of Neural Network . 96
7.1.13 Set Status of a Neural Network . 97
7.1.14 Get Deeplearning4J Transformation Object of Neural Network . 98
7.1.15 Put Deeplearning4J Transformation Object of Neural Network . . 99

7.2 vinnsl-storage-service . 100
7.2.1 Handle File Upload from HTML Form 100
7.2.2 List all Files . 101
7.2.3 Download File by Original Filename 101
7.2.4 Download or Show File by FileID 102
7.2.5 Delete File by FileID . 103
7.2.6 Get File Metadata by FileID . 104
7.2.7 Upload MultipartFile . 104
7.2.8 Upload File by URL . 105

7.3 vinnsl-worker-service . 106
7.3.1 getWorkingQueue . 106
7.3.2 addToWorkingQueue . 107

8 Deployment 109
8.1 Local Machine . 109
8.2 Virtual Machine . 111

8.2.1 Download . 111
8.3 Google Cloud Instance . 111
8.4 Amazon EKS . 113
8.5 Microsoft AKS . 115

9 Use Cases 117
9.1 Iris Classification Example . 117

9.1.1 Dataset . 117
9.1.2 Prerequisites . 118
9.1.3 Create the neural network . 118
9.1.4 Add ViNNSL Definition to the Neural Network 121
9.1.5 Queue Network for Training . 124
9.1.6 Training . 124
9.1.7 Testing . 126
9.1.8 Evaluation Result . 126

10

Contents

9.2 Wine Score Classification . 127
9.2.1 Dataset . 128
9.2.2 Prerequisites . 129
9.2.3 Create the neural network . 129
9.2.4 Add ViNNSL Definition to the Neural Network 132
9.2.5 Queue Network for Training . 134
9.2.6 Evaluation Result . 134

9.3 MNIST Digit Recognition Example . 135
9.3.1 Dataset . 136
9.3.2 Prerequisites . 136
9.3.3 Create the neural network . 136
9.3.4 Add ViNNSL Definition to the Neural Network 138
9.3.5 Queue Network for Training . 141
9.3.6 Evaluation Result . 141

10 Future Work 143
10.1 ViNNSL Compatibility . 143
10.2 Integration in N2Sky . 143
10.3 Neural Network Backends . 143
10.4 Graphical Neural Network Designer . 144
10.5 Deploy trained Models as Web Service . 144
10.6 Integrate into other Platforms . 145

10.6.1 KNIME . 145
10.7 Full featured Web Application . 145

11 Conclusion 147

12 Acknowledgments 149

List of Figures 151

Bibliography 153

11

1 Introduction

This thesis presents a container based execution stack for neural networks (ConbexNN)
using the Kubernetes1 container orchestration and a Java based microservice architec-
ture, which is exposed to users and other systems via RESTful web services and a web
frontend. The whole workflow including importing, training and evaluating a neural
network model, becomes possible by using this service oriented approach (SOA). The pre-
sented stack runs on popular cloud platforms, like Google Cloud Platform2, Amazon AWS3

and Microsoft Azure4. Furthermore it is scalable and each component is extensible and
interchangeable. This work is influenced by N2Sky [SM13], a framework to exchange
neural network specific knowledge and aims to support ViNNSL, the Vienna Neural
Network Specification Language [Kop15] [BVSW08].

Objectives: The first objective is to specify functional and non-functional requirements
for the neural network system. This is followed by the characteristics of the API and the
implementation of microservices that later define the neural network composition as a
collection of loosly coupled services.

The next step is to setup a Kubernetes cluster to create the basis for container orchestra-
tion.

Finally, the microservices are deployed to containers and combined in a cluster.

Non-Objectives: The prototype of ConbexNN does not fully implement the ViNNSL
in version 2.0, as described in [Kop15] and provides limited data in-/output. Limitations
are described in section 5.9.

1 https://kubernetes.io
2 https://cloud.google.com/kubernetes-engine
3 https://aws.amazon.com/eks
4 https://azure.microsoft.com/services/container-service

13

1 Introduction

1.1 Problem Statement

Getting started with machine learning and in particular with neural networks is not
a trivial task. It is a complex field with a high entry barrier and most often requires
programming skills and expertise in neural network frameworks. In most cases a
complex setup is needed to train and evaluate networks, which is both, a processor-
and memory-intense job. With cloud computing getting more and more affordable and
powerful, it makes sense to shift these tasks into the cloud. There are already existing
cloud platforms for machine learning, but to present research all of them do not fulfil at
least one of the following criteria:

• platform is open-source
• no programming skills required to define and train a neural network model
• can be deployed on-site and in the cloud to your choice
• components extensible and replaceable by developers
• provides a RESTful interface

This thesis showcases an architecture, that achieves all of that.

1.2 Motivation

Machine learning has become a highly discussed topic in information technology in the
past years and the trend is further increasing. It has become an essential part of everyday
life when using search engines or speech recognition systems, like personal assistants.
Self-learning algorithms in applications learn from the input of their users and decide
which news an individual should read next, which song to listen to or which social
media post should appear first. Messages are being analyzed and possible answers
automatically predicted.

A recent Californian study shows that 6.5 million developers worldwide are currently
involved in projects that use artificial intelligence techniques and another 5.8 million de-
velopers expect to implement these in near future [Eva17].

Machine learning is not just a research topic in the United States. Survey results of 264
companies in the DACH region (Germany, Austria and Switzerland) show, that 56 of
them already use that kind of technology in production. 47 companies are evaluating
the use case and 65 already have initial experiences (see figure 1.1). It is seen by a fifth of

14

1.3 Structure

in production
56

first experiences
65

in evaluation
47

not planned
96

Figure 1.1: Distribution of machine learning of 264 companies in the DACH region
[BB16]

the decision-makers as a core area to improve the competitiveness and profitability of
companies. [BB16]

At the same time more and more companies shift their business logic from a monolithic
design to microservices. Each service is dedicated to a single task that can be developed,
deployed, replaced and scaled independently. Test results have shown that not only this
architecture can help reduce infrastructure costs [VGO+16][VGC+15], but also reduces
complexity of the code base and enables applications to dynamically adjust computing
resources on demand [VGC+15].

The presented project combines these techniques and demonstrates ConbexNN, that is
open-source and supported by common cloud providers. Developers can integrate their
own solutions into the platform or exchange components ad libitum.

It also integrates with ViNNSL, a descriptive language that does not require program-
ming skills to define, train and evaluate neural networks.

1.3 Structure

This thesis gives an introduction and comparison to state of the art technologies that
support the microservice architecture pattern using container and container orches-

15

1 Introduction

tration tools. This is followed by the acquaintance of Machine Learning (ML) and
commonly used ML Frameworks. Featuring all these introduced technologies, re-
quirements are defined for the implementation of ConbexNN. Main sections of this
thesis are the specification, implementation and documentation following common
practices. To demonstrate the operational purposes of ConbexNN, two use cases are
presented.

Future work mentions ideas on how ConbexNN can be extended and integrated into
other systems and the conclusion summarizes the motivation and archivements of the
implemented neural network execution stack.

1.4 Related Work

1.4.1 ViNNSL

The Vienna Neural Network Specification Language (ViNNSL) is a domain specific
language developed by the University of Vienna to describe neural network objects and
is designed as a communication framework in service-oriented architectures. It is based
on XML and provides the schemas that allow the creation, training and evaluation of
artificial neural networks. [BVSW08]

1.4.2 N2Sky

N2Sky is a cloud-based platform developed by the University of Vienna that follows the
Neural Networks as a Service paradigm and provides an implementation example of
ViNNSL. It is designed as virtual collaboration platform allowing to exchange neural
network knowledge with a neural network community. The service delivers an inter-
face to create and train neural network objects and subsequently share them with the
community. [SM13][FAS18]

16

2 State of the Art

2.1 Containers

2.1.1 Docker Containers

Containers enable software developers to deploy applications that are portable and
consistent across different environments and providers [Bai15] by running isolated on
top of the operating system’s kernel [BRBA17]. As an organisation, Docker1 has seen
an increase of popularity very quickly, mainly because of its advantages compared to
other solutions, which are speed, portability, scalability, rapid delivery and density
[BRBA17].

Building a Docker container is fast, because images do not include a guest operating
system. The container format itself is standardized, which means that developers just
have to ensure that their application runs inside the container, which is then bundled
into a single unit. The unit can be deployed on any Linux system as well as on various
cloud environments and therefore scales easily. Not using a full operating system makes
containers using less resources than virtual machines, which ensures higher workloads
with greater density. [Joy15]

2.2 Microservices

The micoservice architecture pattern is a variant of a service-oriented architecture (SOA).
An often cited definition originates from Martin Fowler and James Lewis:

1 https://docker.com

17

2 State of the Art

Business
Logic

Data
Access
Layer

UI UI

Monolithic Architecture Microservice Architecture

Figure 2.1: Monolithic Architecture vs. Microservice Architecture

In short, the microservice architectural style is an approach to developing a
single application as a suite of small services, each running in its own process
and communicating with lightweight mechanisms, often an HTTP resource
API. These services are built around business capabilities and independently
deployable by fully automated deployment machinery. There is a bare mini-
mum of centralized management of these services, which may be written in
different programming languages and use different data storage technologies.
[LF14]

Figure 2.1 shows the architectural difference between the monolithic and microser-
vice architecture. Monolithic applications bundle user interface, data access layer
and business logic together as a single unit. In the microservice architecture each
task has its own service. The user interface comprises information from multiple ser-
vices.

18

2.3 Container Orchestration Technologies

2.3 Container Orchestration Technologies

As every single microservice runs as a container, we need a tool to manage, organise
and replace these containers. Services should also be able to talk to each other and
to be restarted if they fail. Services under heavy load should be scaled for better
performance. To deal with these challenges container orchestration technologies come
into place. According to a study from 2017 published by Portworx, Kubernetes is the
most frequently used container orchestration tool in organizations, followed by Docker
Swarm. [Por]

This section describes the architecture of the mentioned container orchestration tech-
nologies and compares them.

2.3.1 Kubernetes

Kubernetes is the third container-management system (after Borg and Omega) devel-
oped by Google [BGO+16] for administering applications, that are provided in contain-
ers, in a cluster of nodes. Services that are responsible for controlling the cluster, are
called master components [Ell16]. Figure 2.2 shows the Kubernetes core architecture,
which includes the Master server, the nodes and the interaction between the compo-
nents.

Master Components

The master consists of the core API server, that provides information about the cluster
and workload state and allows to define the desired state [Bai15]. The master server also
takes care of scheduling and scaling workloads, cluster-wide networking and performs
health checks [Ell16]. Workloads are managed in form of so-called pods, which are vari-
ous containers that conclude the application stacks [Bai15].

etcd Etcd is a key-value store, accessible by a HTTP/JSON API, which can be dis-
tributed across multiple nodes and is used by Kubernetes to store configuration data,
which needs to be accessible across nodes deployed in the cluster. It is essential
for service discovery and to describe the state of the cluster, among other things.
[Ell16]

19

2 State of the Art

Scheduling REST Services

Master

API Server

Scheduler Replication
Controllers etcd

kubectl

Node

kubelet

kube­proxyUser Access

Synchronized
State

Pod 1

Pod 2

Pod n

Figure 2.2: Kubernetes core architecture [Bai15]

Etcd can also watch values for changes [Bai15].

kube-apiserver The API server acts as the main management point for the cluster and
provides a RESTful interface for users and other services to configure workloads in the
cluster. It is a bridge between other master components and responsible of maintaining
health and spreading commands in the cluster. [Ell16]

kube-scheduler The scheduler keeps track of available and allocated resources on
each specific node in the cluster. It has an overview of the infrastructure environment
and needs to distribute workload to an acceptable node without exceeding the avail-
able resources. Therefore each workload has to declare its operating requirements.
[Ell16]

kube-controller-manager The controller manager mainly operates different controllers
that constantly check the shared state of the cluster in etcd via the apiserver [Kubb]
and if the current state differs towards the desired state it takes compensating measures
[Ell16].

20

2.3 Container Orchestration Technologies

One of the node controller’s tasks is to react when nodes go offline or down. The
replication controller makes sure that the defined number of desired pods is identical
to the number of currently deployed pods in the cluster and scales applications up
or down accordingly. The endpoints controller populates the endpoints to services
[Kubb]

cloud-controller-manager Kubernetes supports different cloud infrastructure providers.
As each cloud provider has different features, apis and capabilities, cloud controller
managers act as an abstraction to the generic internal Kubernetes constructs. This has
the advantage that the core Kubernetes code is not dependent on cloud-provider-specific
code. [Kubb]

Node Components

Servers that accomplish workloads are called nodes. Each workload is described as
one or more container/s that has/have to be deployed. Node components run on
every node in the cluster, providing the Kubernetes runtime environment [Kubb], that
establishes networking and communicates with the master components. They also
take care of deploying the necessary containers on a node and keep them running
[Ell16].

kubelet The kubelet is the primary agent running on each node in the cluster, responsi-
ble for running pods [Kubb]. It communicates with the API server to receive commands
invoked by the scheduler. Interaction takes place with the etcd store to read and update
configuration and state of the pod.

Pods are specified by the PodSpec, which defines the workload and parameters on how
to run the containers [Ell16]. The kubelet process is responsible that the containers de-
scribed in the specification are running and are healthy [Kubb].

kube-proxy The proxy service is in charge of forwarding requests of defined services
to the correct containers. On a basic level, also load balancing is done by the proxy.
[Bai15]

21

2 State of the Art

Container Runtime The container runtime is an implementation running containers.
Currently Docker, rkt, runc and OpenContainer runtimes are supported. [Kubb]

Pods A pod is the smallest deployable unit in a cluster consisting of a group of one or
more containers, which share network and storage. [Kubc]

Addons

Cluster DNS Cluster DNS server keeps track of running services in the cluster and
updates DNS records accordingly. This allows an easy way of service discovery. Con-
tainers include this DNS server in their DNS lookups automatically – that way a service
can resolve another service by its name. [Bai15]

Ingress Ingress handles the traffic from outside the cluster and forwards it to the
correct service using the dns service acting as a proxy server. Currently there are two
official implementations: ingress-gce and ingress-nginx. Ingress also provides basic
load balancing. [Kuba]

Dashboard The dashboard is a web-based user interface that allows to manage Kuber-
netes clusters and applications running in the cluster [Kubb]. It also provides access to
log messages in each pod.

Minikube

Minikube is a tool to run a single-node Kubernetes cluster locally on computers support-
ing various virtual machine drivers.

2.3.2 Docker Swarm Mode

Docker Swarm Mode is the successor of Docker Swarm and implements a cluster manage-
ment and orchestration tooling directly built into Docker2 .

2 https://docker.com

22

2.3 Container Orchestration Technologies

Components

Docker hosts can run in swarm mode, a swarm consists of one or more hosts that act as
managers and workers. Hosts can be managers, which means delegators of work, or
workers, that run services, or both. [Doc]

Fig. 2.3 shows a simplified overview.

Service Services are definitions of tasks that will be executed on manager or worker
nodes, specified by which container image to use and which commands to execute
[Doc].

A service has attributes attached to it, that define its optimal state.

Services can be replicated, attached to storage and network resources and expose ports
to the outside, defined by attributes. You can change the attributes during runtime,
without restarting a service. [Doc]

Task A task is a running container itself which is assigned to the service. It is managed
by the swarm manager. Manager nodes assign tasks to worker nodes, respecting the
service scale [Doc].

Nodes A node is a Docker instance that is a participant in the swarm. Nodes are
typically distributed across multiple physical machines (in the cloud), but can also run
on a single computer. [Doc]

Manager Nodes Manager nodes are responsible for deploying applications and dis-
patching tasks to worker nodes. Secondly one elected leader manager node super-
vises functions to maintain the desired state of the swarm (defined by the service).
[Doc]

Worker nodes Worker nodes execute tasks from the manager nodes and notify them
about the current state of its tasks.[Doc]

23

2 State of the Art

Scheduling Discovery

Swarm Manager

Docker API

Swarm Node

Docker
Daemon

IngressUser Access

Docker API Container
1

Container
2

Container
n

Service

Figure 2.3: Docker Swarm Mode core architecture [Doc]

Load balancing & DNS Like Kubernetes, the swarm manager uses ingress to expose
and load balance services.

An internal DNS component assigns each service a DNS entry automatically. [Doc]

Announcements

On October 17, 2017 at the conference DockerCon3, Docker announced that it would
integrate Kubernetes into the Docker platform.

2.3.3 Comparison

Community

The following table shows a comparison of publicly available metrics on GitHub, trying
to represent community interest in the previously mentioned orchestrator softwares.

3 https://europe-2017.dockercon.com/

24

2.3 Container Orchestration Technologies

Both projects are open-sourced and released under the Apache-2.04 license. These metrics
were collected on June 21, 2018 and are rounded to the nearest ten. Comparing the
numbers it can be assumed that the open-source community has currently a stronger
interest in the Kubernetes project. In July 2018, Kubernetes won the OSCON Most Impact
Award at the O’Reillys Open Source Conference [Boh].

Kubernetes 5 Docker Swarm Mode 6

Contributors 1.700 165

Commits 66.820 3.530

Stars 37.830 5.150

Forks 13.220 1.060

Feature Differentiation

The handling of Docker Swarm Mode and Kubernetes is similar in many aspects, like load
balancing with Ingress, service discovery via DNS, and the definition language YAML.
Auto-scaling, which means increasing or decreasing running instances of a service as
the load changes over time, is not directly available in Docker Swarm Mode, in contrast to
Kubernetes.

Docker Swam Mode provides the possibility to mount local volumes or folders into a
container. Kubernetes has two APIs available: Volumes and Persistent Volumes. Volumes
are an abstraction with several different implementations for cloud storages (like AWS,
Azure) and are bound to the lifecycle of a pod. Once a pod is removed, also the volume
data is deleted. Persistent Volumens allow data to be persisted independently from a
pod.

Both technologies provide an easy to install development environment. Kubernetes
is available via the minikube package as well as in the newest version of Docker
Community Edition. Docker Swarm Mode is also available via the Docker applica-
tion.

4 http://www.apache.org/licenses/LICENSE-2.0

25

2 State of the Art

2.3.4 Decision

Taking into account the community size, the feature-richness and the out-of-the-box
support by the major players Amazon AWS, Microsoft Azure and Google Cloud Engine,
Kubernetes is the selected technology for ConbexNN.

2.4 Machine Learning

The term machine learning originates from a 1959 article by Arthur Samuel [Sam59]
presenting a method how computers can learn to play a better game of checkers than
human.

Today, as a research area within artificial intelligence, machine learning is generally
known as the process that trains computers to improve performance specific tasks
through exposure to data, rather than through explicit programming by using statistical
techniques. It is used to conceive complex models that lead themselves to predic-
tion.

There are different approaches to machine learning, like decision trees or predicition
rules [MCM13]. This thesis focuses on neural networks.

2.5 Neural Networks

Neural networks, or more correctly artificial neural networks, are derived from the
neural system of the human brain. Neurons are the basic element of the nervous system
and can be divided into three essential features: the dendrites, the soma and the axon.
The human brain consists of about 10 billon neurons, which communicate through a
network of axons and synapses. Artificial neural networks try to imitate this connection.
[Hau98]

2.5.1 Classification of Neural Networks

This thesis focuses on Backpropagation networks, but to provide a general overview,
Figure 2.4 shows a classification of neural networks by Haun [Hau98] divided into
three levels based on connection type, neuronal behavior and learning methods. The

26

2.5 Neural Networks

first level classifies into feedback and feedforward networks. The second level into
linear and non-linear networks, the third one into supervised and non-supervised
networks.

Feedforward networks

Feedforward networks consist of connections in one direction only. Neurons are con-
nected between different layers and normally spread from input to output through
hidden layers. The output can be calculated from the input directly. Loops are not
allowed [Hau98].

Linear and non-linear networks Linear networks use linear activation functions. The
output of a neuron is bound directly to the value of activation function. Non-linear
networks use non-linear activation functions, which means that the activation value
is one, if the sum of all input values exceed a threshold value, otherwise it is zero.
[Hau98]

A Perceptron network is for example a linear network.

Supervised and unsupervised networks Supervised networks compare its output
values with the correct answer during training and continuously adapt input values to
approximate both values. Unsupervised networks do not have such information and
must learn through an inherent mechanism. It is presumed that impulses and reactions
relate in a way that produces correct behaviour after the learning period is finished.
[Hau98]

Feedback networks

Feedback networks are networks where neurons are also connected between different
layers, but the output of a neuron can be connected to an input of another neuron.
Output values are therefore dependant from previous input values of the neural network.
[Hau98] Feedback networks are further grouped into defined constructed networks and
trained networks. Defined constructed networks already have a defined structure when
the data is presented, for example Hopfield networks. Trained networks can be trained

27

2 State of the Art

Neural Networks

Feedback Networks Feedforward Networks

Non­linear NetworksLinear Networks

Defined constructed
Networks Trained Networks

Supervised Networks Unsupervised Networks

Figure 2.4: Classification of neural networks by Haun [Hau98]

with supervised and unsupervised training, for example the ART-1 (Adaptive Resonance
Theory). [Hau98]

2.5.2 Backpropagation Networks

Backpropagation is not a network design per se, but a supervised learning algorithm.
It is used for example in Multi-Layer-Perceptrons. The purpose is to change weights
on hidden layers in the network, based on a calculated (net) output error, to improve
network accuracy. [Frö]

An input vector is forward-propagated through all layers until the output layer, which
is then compared to the desired output. This step results in the error values, using a
loss function. In process of backpropagation the weights are then updated to minimize
the loss function. The process is repeated until the net error is approximately zero.
[Frö]

28

2.5 Neural Networks

2.5.3 Neural Network Frameworks

Neural network frameworks provide an abstraction and simplification to complex
programming challenges [Mak18] regarding neural network models and the simulation
of the training and evaluation processes. Developers are given helper functions to
build their preferred network. Most frameworks also provide implementations of the
backpropagation algorithm, activation functions and data structures to load training
data into memory. Frameworks can also help to transform raw data, like images, into
data that is more suitable to neural network training.

There are currently many popular neural network frameworks on the market. Google’s
TensorFlow is having the biggest impact in terms of contributions and community (see
Comparison).

TensorFlow

TensorFlow7 is an open-sourced framework, released under the Apache 2.08 license,
that was developed by the Google Brain Team as successor to the proprietary software
DistBelief, which was used for research on various use cases including unsupervised
learning, image classification, object detection and many more. TensorFlow is an in-
terface and implementation for machine learning algorithms, featuring support for
a wide range of devices (from mobile phones to server hardware) and GPU cards.
[Dea15]

According to Google’s whitepaper [Dea15], in their implementation, a tensor is a typed,
multidimensional array, that supports a variety of tensor element types . It can be seen
as abstraction to scalars, vectors and matrices [RM17].

TensorFlow computations are expressed as directed dataflow graph, in which each node
has zero or more inputs and outputs. Values, called tensors, flow along the edges of the
graph. [Dea15]. Figure 2.5 shows a matrix multiplication of input X with a matrix W. Vec-
tor b is then added to this matrix terminating in output O.

These computations can be executed either on local or the distributed implementation,
on a single or multiple devices [Dea15].

7 https://github.com/tensorflow/tensorflow
8 http://www.apache.org/licenses/LICENSE-2.0

29

2 State of the Art

W X

MatrixMulb

Add

O

Figure 2.5: Tensor flow computation graph, adapted from [Dea15]

TensorFlow Programming Stack The TensorFlow programming stack consists of
multiple API layers, as is illustrated in Figure 2.6. On the lowest level, the TensorFlow
Kernel, is the distributed execution engine. The low-level APIs are implemented in
different programming languages, including Python, C++, Java and Go. Currently only
Python provides higher-level TensorFlow APIs.

The mid-level API provides access to layers, datasets and metrics, the high-level API
adds estimators, which encapsulate training, evaluation and prediction of models
[Tena].

Implementation Example For framework demonstration purposes, the source code
classifying the Iris dataset from the first use case (see section 9.1) is implemented us-
ing TensorFlow. For better understanding of the TensorFlow syntax and functional-
ity, this commented code example9, written by the TensorFlow authors, is pointed
out.

In the first step the program features a parser for the Iris dataset and defines feature

9 https://github.com/tensorflow/models/blob/v1.9.0/samples/core/get_started/premade_estimator.py

30

2.5 Neural Networks

TensorFlow
Kernel

Low­level
TensorFlow API

Mid­level
TensorFlow API

High­level
TensorFlow API

TensorFlow Distributed Execution Engine

Python C++ Java Go

Layers Datasets Metrics

Estimators

Figure 2.6: TensorFlow Programming Stack, adapted from [Tenb]

columns. The TensorFlow NetworkClassifier class is then instantiated building a
neural network with two hidden layers of ten nodes each. The classifier offers a function
for network training called train(), which is followed by evaluating the accuracy of the
trained network in the final step.

Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""An Example of a DNNClassifier for the Iris dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import tensorflow as tf

import iris_data

31

2 State of the Art

parser = argparse.ArgumentParser()
parser.add_argument(’--batch_size’, default=100, type=int, help=’batch size’)
parser.add_argument(’--train_steps’, default=1000, type=int,

help=’number of training steps’)

def main(argv):
args = parser.parse_args(argv[1:])

Fetch the data
(train_x, train_y), (test_x, test_y) = iris_data.load_data()

Feature columns describe how to use the input.
my_feature_columns = []
for key in train_x.keys():

my_feature_columns.append(tf.feature_column.numeric_column(key=key))

Build 2 hidden layer DNN with 10, 10 units respectively.
classifier = tf.estimator.DNNClassifier(

feature_columns=my_feature_columns,
Two hidden layers of 10 nodes each.
hidden_units=[10, 10],
The model must choose between 3 classes.
n_classes=3)

Train the Model.
classifier.train(

input_fn=lambda:iris_data.train_input_fn(train_x, train_y,
args.batch_size),

steps=args.train_steps)

Evaluate the model.
eval_result = classifier.evaluate(

input_fn=lambda:iris_data.eval_input_fn(test_x, test_y,
args.batch_size))

print(’\nTest set accuracy: {accuracy:0.3f}\n’.format(**eval_result))

32

2.5 Neural Networks

[...]

if __name__ == ’__main__’:
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run(main)

Deeplearning4J

Deeplearning4J is an open-source machine learning library by the Eclipse Foundation
released under the Apache 2.0 license. It provides a set of components, to read from
various data sources and build neural networks. Deeplearning4J provides support for
CPU and GPU processing. [Met14]

For large processing, the framework supports Hadoop, a way of scaled data storing and
processing across numerous computer servers [Met14].

ND4J The framework is built on top of ND4J, a numerical computing engine, which
implements n-dimensional array objects (tensors) for Java [ND4a]. It is a library, that
is optimized for GPU processing with a CUDA backend and supports all common
operations to manipulate matrices [ND4a]. Parts of core are written in C++ to increase
performance of numerical operations [ND4b].

Main Features The framework supports convolutional and recurrent nets and deep
nets of various types. Furthermore it provides implementation of backpropagation and
optimization algorithms, various activation- and loss functions as well as hyperparame-
ters. [DL4a]

The user interface features a computation graph and visualization tools, further ex-
plained in section 9.1.6.

33

2 State of the Art

Implementation Example For framework demonstration purposes, the source code
classifying the Iris dataset from the first use case (see section 9.1) is implemented using
Deeplearning4J.

For better understanding of the Deeplearning4J syntax and functionality, this commented
code example10, written by the Adam Gibson and released under Apache License Version
2.0, is pointed out.

/**
* @author Adam Gibson
*/

public class CSVExample {

private static Logger log = LoggerFactory.getLogger(CSVExample.class);

public static void main(String[] args) throws Exception {

//First: get the dataset using the record reader. CSVRecordReader handles
loading/parsing
int numLinesToSkip = 0;
char delimiter = ’,’;
RecordReader recordReader = new CSVRecordReader(numLinesToSkip,delimiter);
recordReader.initialize(new FileSplit(new
ClassPathResource("iris.txt").getFile()));

//Second: the RecordReaderDataSetIterator handles conversion to DataSet
objects, ready for use in neural network
int labelIndex = 4; //5 values in each row of the iris.txt CSV:
4 input features followed by an integer label (class) index.
Labels are the 5th value (index 4) in each row
int numClasses = 3; //3 classes (types of iris flowers) in the
iris data set.
Classes have integer values 0, 1 or 2
int batchSize = 150; //Iris data set: 150 examples total. We are
loading all of them into one DataSet (not recommended for large data sets)

10 https://github.com/deeplearning4j/dl4j-examples/blob/master/dl4j-examples/src/main/java/
org/deeplearning4j/examples/dataexamples/CSVExample.java

34

2.5 Neural Networks

DataSetIterator iterator = new
RecordReaderDataSetIterator(recordReader,batchSize,labelIndex,numClasses);
DataSet allData = iterator.next();
allData.shuffle();
SplitTestAndTrain testAndTrain = allData.splitTestAndTrain(0.65);
//Use 65% of data for training

DataSet trainingData = testAndTrain.getTrain();
DataSet testData = testAndTrain.getTest();

//We need to normalize our data. We’ll use NormalizeStandardize (which
gives us mean 0, unit variance):
DataNormalization normalizer = new NormalizerStandardize();
normalizer.fit(trainingData); //Collect the statistics (mean/

stdev)
from the training data. This does not modify the input data
normalizer.transform(trainingData); //Apply normalization to

the training data
normalizer.transform(testData); //Apply normalization to

the test data.
This is using statistics calculated from the *training* set

final int numInputs = 4;
int outputNum = 3;
long seed = 6;

log.info("Build model....");
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()

.seed(seed)

.activation(Activation.TANH)

.weightInit(WeightInit.XAVIER)

.updater(new Sgd(0.1))

.l2(1e-4)

.list()

.layer(0, new DenseLayer.Builder().nIn(numInputs).nOut(3)
.build())

35

2 State of the Art

.layer(1, new DenseLayer.Builder().nIn(3).nOut(3)
.build())

.layer(2, new
OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)

.activation(Activation.SOFTMAX)

.nIn(3).nOut(outputNum).build())
.backprop(true).pretrain(false)
.build();

//run the model
MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
model.setListeners(new ScoreIterationListener(100));

for(int i=0; i<1000; i++) {
model.fit(trainingData);

}

//evaluate the model on the test set
Evaluation eval = new Evaluation(3);
INDArray output = model.output(testData.getFeatureMatrix());
eval.eval(testData.getLabels(), output);
log.info(eval.stats());

}

}

Further Neural Network Frameworks

There are several other popular neural network frameworks [Mak18], that should be
mentioned here. The following table lists this projects including their website.

Framework Name Projekt Website

Caffe http://caffe.berkeleyvision.org

Microsoft Cognitive
Toolkit/CNTK

https://www.microsoft.com/en-us/cognitive-
toolkit

36

2.5 Neural Networks

Framework Name Projekt Website

PyTorch https://pytorch.org

Keras https://keras.io/

Comparison

Community Statistics (like stars, contributors and forks) of open-source projects hosted
on the version control platform GitHub, increasingly influence the community and other
developers. Every user on GitHub can show interest in a project by giving it a star,
or copy the complete source code (a fork). Programmers that contributed code to a
project are called contributors. In a blog article11, the founder of a machine learning
framework called Leaf announced the suspension of the development. The announce-
ment featured a screenshot that compared Leaf to TensorFlow by the amount of stars on
GitHub.

TensorFlow is currently the leading framework in terms of stars and contributors. Backed
by Google, TensorFlow is fully integrated into the Google Cloud and Android platform.
It has also been adopted by several large companies, like IBM, Twitter and Airbus
[Mak18]. Furthermore tech blogs rather report on TensorFlow than other frameworks.
A search for TensorFlow on the popular tech blog DZone.com returns over 5.300 results,
while Deeplearning4J got less than 500 (as of July 17, 2018). The following table compares
the statistics of the two mentioned projects on GitHub.

TensorFlow 12 Deeplearning4J 13

Contributors 1.500 225

Commits 36.450 23.260

Stars 105.120 9.320

Forks 65.410 4.350

11 https://medium.com/@mjhirn/tensorflow-wins-89b78b29aafb

37

2 State of the Art

2.5.4 Decision

ConbexNN will be implemented in the Java programming language. Deeplearning4J
is based on C/C++ with a Java based library on top, while TensorFlow is based on
Python. Deeplearning4J has a clear and understandable framework architecture, broad
support for machine learning algorithms and data transformation. It further offers
a model import tool for TensorFlow models. From the author’s point of view, the
source code of Deeplearning4J programs is cleaner and easier to interpret, as well
as the transformation from the ViNNSL to Deeplearning4J is preferable to alterna-
tives.

As part of future work it is desirable to implement a native TensorFlow worker service
in addition to Deeplearning4J.

38

3 Requirements

This section defines functional and non-functional requirements for ConbexNN. The
neural network execution stack focuses on two main target groups: data scientists and
developers.

Data scientists use the provided services in a deployed environment (cloud or own com-
puter) to develop and train their neural networks. The system should be easy to setup
and no programming knowledge should be needed to get started.

Developers can extend the neural network stack with features or use the provided web
services to implement their own custom solution.

3.1 Functional Requirements

Due to the fact that neural network training requires a lot of computing power, the main
requirement is to design an architecture that can be executed in the cloud or on-site
cluster hardware.

To enable developers to extend the application, it is designed as a platform that is open-
sourced and documented. The easy setup on local computers and the micro-services,
that feature a clear structure and manageable code base, make it easier to get acquainted
with the architecture.

The neural network platform should also offer a way to be extended or used by external
applications and services, therefore a documented RESTful webservice is provided, that
can be consumed by various clients.

39

3 Requirements

3.1.1 User Interface

The user interface shall be a web application that gives a quick overview of all neural
networks and their training status. The frontend uses the RESTful API as backend source
and does not cover the whole function range of the API.

Mockup

Figure 3.1 shows a sketch of the user interface. On the left side the user can see a list of
all created or imported neural networks. Next to the names of the networks, there is an
icon representing the training status. In the detailed view on the right side, the title and
id of the network is shown followed by an indicator when training is in progress. The
visualisation of a neural network is divided into tabs.

The tabs “Description”, “Definition”, “Instance” and “Result” represent the eponymous
ViNNSL Description XML file into a graphical tree view. When enough information is
provided by ViNNSL XML files, the worker service performs a transformation into the
internally used model representation of the Deeplearning4J Framework. The Deeplearn-
ing4J Tab shows the transformed object. In the “Files” tab, imported files of the storage
services are listed and can be selected as training- or testset.

3.2 Non-Functional Requirements

3.2.1 Quality

ConbexNN shall comply with the following quality features:

• Standard RESTful API
• the user interface works on all common browsers and devices (responsive design)
• loading time of the user interface should be less than three seconds

40

3.2 Non-Functional Requirements

http://neuralnetworkcloud.ac.at

NN Cloud

Digit Recognition
Iris Classification Network

Definition Instance DL4J Transformation Result FilesDescription

Metadata
name : Backpropagation Classification
description: Iris Classification Example
creator : Ronald Fisher

Problem Domain
Endpoints
Execution Environment
Structure
Parameters
Data





Training
Status

Indicator

Iris Classification Network
 ID: 5ac74926b6add3e7e6788cae

ViNNSL
Network Tree

Represent-
ation

Training in Progress

List of Neural
Networks

Name, ID and
Status

Information
ViNNSL Schemas

Figure 3.1: Mockup: User Interface of Frontend Service

41

3 Requirements

3.2.2 Technical

3.2.3 Software

• Kubernetes
• Docker
• Java Standard Platform
• Maven Plugin for Java

3.2.4 Hardware

• Kubernetes compatible hardware or Cloud account (Amazon Web Services, Google
Cloud Engine)

3.2.5 Documentation

The documentation is provided in Section 7 or online on SwaggerHub1.

3.2.6 Source Code

The source code is released on GitHub 2.

3.2.7 Project Website

A project website is hosted on Github 3.

3.2.8 Developer Environment

Developers can use any Java Based development environment.

1 https://app.swaggerhub.com/apis/a00908270/
2 https://github.com/a00908270/
3 https://a00908270.github.io

42

4 Specification

4.1 Use Case

Figure 4.1 shows the UML use case diagram.

4.1.1 Use Case Descriptions

Use Case Import Neural Network

Description An existing ViNNSL XML file with a neural network
description is imported via the vinnsl web service into the
database.

Priority primary

Actors Data Scientist

Preconditions ViNNSL neural network XML description file

Postconditions —

Normal Course of
Events

The actor sends a POST request to the ViNNSL web service
including a XML body. The web service validates and
imports the XML file and returns the HTTP status code 201
CREATED

Alternative Courses The post request is sent by an application or other service

Exceptions If the validation fails or an error occurs, the web service
returns the HTTP status code 500

Assumptions Access to the vinnsl-service

43

4 Specification

Data Scientist

uc Use Case Neural Network Service

Import Neural
Network

Train Neural
Network Evaluate Neural

Network

Upload Files Link Files to
Neural Network

Monitor Training
Status

<<extend>>

<<extend>>

<<extend>>

List Neural
Networks

Extend Service

Replace Service
Developer

Figure 4.1: UML Use Case Diagram

44

4.1 Use Case

Use Case Train Neural Network

Description An imported neural network is trained by passing the
configuration over to the worker service.

Priority primary

Actors Data Scientist

Preconditions Imported ViNNSL neural network XML description,
definition and instance file

Postconditions —

Normal Course of
Events

The actor sends a POST request to the working service
including the identifier of the neural network that should
be trained. The webservice validates the request, adds the
network into the training queue and returns the HTTP
status code 200.

Alternative Courses The post request is sent by an application or other service

Exceptions If the validation fails or an error occurs, the webservice
returns the HTTP statuscode 500

Assumptions Access to the vinnsl-nn-worker

Extensions Monitor Training Status, Evaluate Neural Network

Use Case Monitor Training Status

Description The Data Scientist monitors the training status to evaluate
the trained network afterwards.

Priority secondary

Actors Data Scientist

Preconditions Training of neural network started

Postconditions —

Normal Course of
Events

The actor sends a GET request to the status endpoint of the
vinnsl service including the identifier of the neural network
that is in progress. The web service validates the request,
and returns the training status along the HTTP status code
200.

Alternative Courses The post request is sent by an application or other service

45

4 Specification

Use Case Monitor Training Status

Exceptions If the validation fails or an error occurs, the web service
returns the HTTP statuscode 500

Assumptions Access to the vinnsl-service

Extensions —

Use Case Evaluate Neural Network

Description The Data Scientist evaluates the accuracy of the network
after its training

Priority primary

Actors Data Scientist

Preconditions Training of neural network successfully finished

Postconditions —

Normal Course of
Events

The actor sends a GET request to the status endpoint of the
vinnsl service including the identifier of the neural network
that is finished. The web service validates the request, and
returns the ViNNSL XML file including the result scheme.

Alternative Courses The post request is sent by an application or other service

Exceptions If the validation fails or an error occurs, the webservice
returns the HTTP statuscode 500

Assumptions Access to the vinnsl-service

Extensions —

Use Case Upload Files

Description The Data Scientist uploads files, that are usable as datasets
(e.g. CSV files or pictures) to the storage service

Priority primary

Actors Data Scientist

Preconditions —

Postconditions —

46

4.1 Use Case

Use Case Upload Files

Normal Course of
Events

The actor sends a POST request to the storage service
endpoint containing a multipart file. The web service
validates the request, and returns the unique identifier of
the file along the HTTP status code 200.

Alternative Courses The post request is sent by an application or other service.
The file is uploaded with the provided HTML upload form
provided by the storage service.

Exceptions If the upload fails or an error occurs, the web service
returns the HTTP statuscode 500

Assumptions Access to the vinnsl-storage-service

Extensions —

Use Case List Neural Networks

Description Imported neural networks are listed

Priority primary

Actors Data Scientist

Preconditions Imported ViNNSL neural network XML description file

Postconditions —

Normal Course of
Events

The actor sends a GET request to the ViNNSL web service
optionally including a neural network identifier. The web
service validates and returns the XML file(s).

Alternative Courses The request is sent by an application or other service

Exceptions If the validation fails or an error occurs, the web service
returns the HTTP statuscode 500

Assumptions Access to the vinnsl-service

Use Case Extend Service

Description An existing micro service can be extended by developers

Priority secondary

Actors Developer

47

4 Specification

Use Case Extend Service

Preconditions source code and developer environment present

Postconditions —

Normal Course of
Events

The developer downloads the source code and extends
functionality of a micro service. The modified service is
deployed into kubernetes.

Alternative Courses —

Exceptions —

Assumptions —

Use Case Replace Service

Description An existing micro service can be replaced by developers

Priority secondary

Actors Developer

Preconditions source code and developer environment present

Postconditions —

Normal Course of
Events

The developer writes a new implementation of an existing
service respecting the API definition (see API
Docuentation). The service is deployed into kubernetes.

Alternative Courses —

Exceptions —

Assumptions —

4.2 Sequence Diagram

Figure 4.2 shows the sequence diagram of a neural network training process and which
microservices are involved in the communication. The vinnsl service is the main commu-
nication hub that enables access to the neural network object and all of its data and also
provides interfaces to update it. The vinnsl storage service most importantly stores neces-
sary binary data used by the neural network objects. On one hand that are tables and
pictures on the other hand the binary (trained) Deeplearning4J model. The vinnsl worker

48

4.3 Data Model Design

service has the role of training the neural network models.

4.2.1 Sequence of Training

New neural networks are created by sending a POST request including a XML ViNNSL
network description in the request body. The vinnsl service creates a new neural network
based on the definition and answers with the HTTP status code 201 (CREATED). The
location header points to the URL where the created network can be retrieved. The
URL contains the unique identifier. Using this identifier the next step is to add the
ViNNSL definition XML file to the network. This is done via a POST request appending
the id and the /definition endpoint. The XML file is placed in the request body.
Resources that are required for the training (like the training set) need to be uploaded
to the storage service, which returns a unique file id. Before the training can start, the
training set needs to be linked to the neural network. This is possible with the /addfile
endpoint.

Next, the network is marked for training by calling the worker service with its identi-
fier. The worker service confirms that the training is queued. As soon as the train-
ing is finished, the worker service updates the neural network object with the re-
sult schema and uploads the trained binary model to the storage service for retrain-
ing.

A simple GET request to the vinnsl service along with the identifier returns the current
trained neural network model.

4.3 Data Model Design

4.3.1 vinnsl-service

All neural network data managed by the vinnsl-service is stored in a documented-
oriented database. The saved documents will internally be mapped to Java Classes. The
main object is vinnsl.

vinnsl is the primary object owning the _id field that is unique. The nncloud property
stores the status of the network and the representation of the transformed Deeplearn-
ing4J network. description, definition, instance, training and result represent

49

4 Specification

:VinnslService :VinnslStorage :VinnslWorker:RestClient

Import XML of
ViNNSL Network

Vinnsl Micro­
service

Storage Micro­
service

Worker Micro­
service

POST /vinnsl

CREATED /vinnsl/{id}

POST /vinnsl/{id}/definition

OK

POST /storage/upload

OK

Add Definition to
ViNNSL Network

Add File to
ViNNSL Storage
Service

POST /vinnsl/{id}/instanceschema

OK

POST /worker/queue/{id}

POST /vinnsl/{id}/resultschema

POST /storage/upload

OK

Add Instance
Scheme to ViNNSL
Network

Add network to
working queue

Browser/Rest
Client/VinnslUI

Worker posts Result
Schema to ViNNSL
service and uploads
trained model to
Storage Service

GET /vinnsl/{id}Get trained
ViNNSL network
XML XML File

Figure 4.2: Training Sequence Diagram

50

4.3 Data Model Design

TRIA
L

result

tfile

vinnsl

_id
t_class

description
definition
result
nncloud

nncloud

tstatus
tdl4jNetwork

definition

tidentifier
problemDomain

tendpoints
executionEnvironment
structure
resultSchema
parameters
data

description

tidentifier
metadata
creator
problemDomain
endpoints
structure
parameters
data

Default Layout Page 1 - 0 DbSchema 3-May-2018

Figure 4.3: NoSQL Data Model

the ViNNSL 2.0 Schema, generated from the provided XML Schema Definition files.
See [Kop15] to get a listing and description on all provided properties of ViNNSL
2.0.

Figure 4.3 shows the data schema.

4.3.2 storage-service

The storage-service stores binary files and their metadata, either directly in the file
system or inside a database. Each file needs to have a unique id, a filename, a content
type and an upload date.

51

4 Specification

Attribute field Description

Attribute field Description

id a unique file id that can be referred to (f.ex in vinnsl-service)

filename the original filename when uploaded

content type the MIME type standardized in RFC 6838 (f.ex text/plain)

upload date date and time of original upload

metadata a field for arbitrary additional information

Example of stored file:

{
"_id" : ObjectId("5ab4e69c8f136a16bf81f093"),
"filename" : "iris.txt",
"aliases" : null,
"chunkSize" : NumberLong(261120),
"uploadDate" : ISODate("2018-03-23T11:35:56.700Z"),
"length" : NumberLong(2700),
"contentType" : "text/plain",
"md5" : "f0e89bd71f7bb9e584e685aeb178a5aa"

}

4.4 Overview Microservices

ConbexNN consists of four main services that expose a RESTful API to users and two sup-
porting services in charge of persisting data. Figure 4.4 displays an overview of the ser-
vice architecture, including the exposed endpoints and storage backends.

4.4.1 Vinnsl Service (vinnsl-service)

The vinnsl-service is responsible for handling the import, management and mani-
pulation of neural network objects and their status. It maps the CRUD1 operations

1 Create, Read, Update, Delete

52

4.4 Overview Microservices

Neural Network Execution Stack

User / System exposed

Cluster intern

­ save trained network models
­ save result files

vinnsl­nn­worker
Neural Network Worker

/worker

upload/
download
files

vinnsl­storage­service
Neural Network Store

/storage

Communication via Rest API

vinnsl­nn­ui
Frontend UI

/

REST Client

vinnsl­storage­db
Mongo DB Storage

vinnsl­db
Mongo DB Storage

vinnsl­service
Management Service

/vinnsl /status /dl4j

store / load
data

store / load
neural network

objects

­ load trained models for retraining
­ get training/testset

update
status and models

queue for
training

Access Cluster Endpoints

import/update/get
models

Load Balancing /
Proxy

scalable
service

Legend

HTTP Request

Figure 4.4: Architectural Overview of the Neural Network Stack

53

4 Specification

to HTTP methods. A new neural network is created by sending a POST request to
the /vinnsl endpoint containing a ViNNSL Definition XML as body. Sending a GET
request to the /vinnsl route returns a JSON containing all ViNNSL neural network
objects.

The vinnsl-service depends on the vinnsl-db service, which runs a MongoDB database
to store the objects.

4.4.2 Worker Service (vinnsl-nn-worker)

The vinnsl-nn-worker implements a queue management for neural network training
and transforms ViNNSL neural network models into Deeplearning4J models. It provides
a wrapper of the Deeplearning4J platform, that handles the training or evaluation of the
network.

4.4.3 Storage Service (vinnsl-storage-service)

Binary files, like trained network models, images or csv files are essential in the pro-
cess of creating and training neural networks. File management is handled by the
vinnsl-storage- service.

4.4.4 Frontend UI (vinnsl-nn-ui)

The Frontend UI is a web application that gives a brief overview of all neural network
models, their training status and linked files.

4.5 User Interface Design

Based on the mockup in section 3.1.1, a user interface design has been created, that will
later be implemented as a web application. Buttons to import or delete a neural network
and to refresh the user interface have been added to the design.

Figure 4.5 shows the user interface design for the frontend web service.

54

4.5 User Interface Design

http://neuralnetworkcloud.ac.at

NN Cloud

Digit Recognition
Iris Classification Network

Definition Instance DL4J Transformation Result FilesDescription

Metadata
name : Backpropagation Classification
description: Iris Classification Example
creator : Ronald Fisher

Problem Domain
Endpoints
Execution Environment
Structure
Parameters
Data




Iris Classification Network
ID: 5ac74926b6add3e7e6788cae

Training in Progress

 Refresh

 Import Neural Network 

Description

Figure 4.5: User Interface Design for vinnsl-nn-ui

55

4 Specification

4.6 Service Discovery and Load Balancing

Service Discovery is the process of finding a way to connect to a specific service. This
applies within the cluster, which is typically firewalled from the internet. As Kubernetes
allows services to be scaled, there is also a logic that knows and decides how network
traffic is routed. This is called Load Balancing. Figure 4.6 shows an overview of the
microservices, their endpoint URL and the domain name service. External access to
specific services is managed by Ingress.

4.6.1 Kubernetes DNS-based Service Discovery

kube-dns is the Kubernetes add-on that starts a pod with a DNS service and configures
the kubelets to resolve DNS names over this service. It listens on port 53, the standard
DNS port. Services in a cluster are assigned a DNS A record derived from their service
metadata name specified in the ServiceSpec. [Kubd]

The following code snippet is an extract of the ServiceSpec for the vinnsl-service
defining the metadata name:

{
"kind": "Service",
"apiVersion": "v1",
"metadata": {

"name": "vinnsl-service",
...

}
}

Structure of the Hostname

The full hostname record is composed of the zone, kind, namespace of the cluster and
the metadata name of the service.

Name Description

zone the cluster domain (default using minikube: cluster.local)

56

4.6 Service Discovery and Load Balancing

Name Description

kind kind of pod (default for services: svc)

ns namespace (default using minikube: default)

hostname hostname from service metadata name

Example The vinnsl-service running on a local minikube cluster gets the following
DNS record name: vinnsl-service.default.svc.cluster.local.

Service Discovery

Using the Kubernetes DNS, a microservice instance (kubelet) can now lookup other
services by using DNS Queries.

Example For example the tool nslookup can query the DNS service for the IP address
of the vinnsl-service within the cluster.

/ # nslookup vinnsl-service
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local

Name: vinnsl-service
Address 1: 10.102.84.122 vinnsl-service.default.svc.cluster.local

In this example the service is reachable at the IP address 10.102.84.122.

External Access and Load Balancing

External access from outside the cluster to specific services is managed and provided
through the Ingress API object. The associated implementation is called Ingress controller
and is obligatory. Currently there are two official implementations: ingress-gce and
ingress-nginx. [Kuba]

57

4 Specification

vinnsl­nn­worker
Neural Network Worker

/worker

vinnsl­storage­service
Neural Network Worker

/storage

vinnsl­nn­ui
Frontend UI

/

kube­dns
DNS Service

vinnsl­storage­db
Mongo DB Storage

vinnsl­db
Mongo DB Storage

vinnsl­service
Management Service

/vinnsl /status /dl4j

Figure 4.6: Service Discovery with kube-dns

Minikube runs the ingress-nginx implementation as default and also provides basic load
balancing by configuring a nginx 2 web server. Kubernetes configures nginx to use the
least-connected load balancing mechanism, which means that the next request is assigned to
the server with the least number of active connections [ngi].

4.7 Neural Network Objects State

The state of neural network objects is saved in the NnCloud object. When the object is
instantiated, the default value is CREATED. When the network is queued, the worker
service gathers all the necessary data from the vinnsl and vinnsl storage service and
changes the state to QUEUED. During the network training, the worker changes the state
to INPROGRESS. As soon as the training is finished, the worker service uploads the results
and updated network state to the storage service and subsequently changes the state
to FINISHED. Trained networks can be queued for retraining: in that case the state
returns to QUEUED. If errors occur during the training process the state will be set to
ERROR.

Figure 4.7 visualizes the state changes in a state machine.

2 https://archive.ics.uci.edu/ml/datasets/iris

58

4.7 Neural Network Objects State

sm neual network training

queueCREATEDcreatesf startQUEUED INPROGRESS

queue again

FINISHEDfinish

fail

queue again
ERROR

Figure 4.7: State Machine of a Neural Network

59

5 Implementation

Following the specification, this section showcases an implementation of ConbexNN,
using microservices glued together by Kubernetes. This represents the execution stack
for neural networks. Backend components are realized with Java and the Spring Boot
framework and expose a RESTful API. The processing and training of neural networks
is done by the Deeplearning4J framework. Database and file storage are powered by
MongoDB. The frontend service is implemented using Vue.js and the Twitter Bootstrap UI
framework, visualizing and consuming backend services.

5.1 Project Website

A project website is hosted on Github 1 and provides general information and instruc-
tions for the deployment of ConbexNN.

5.2 Source Code

The source code of the implemented microservices is released on GitHub. The fol-
lowing table gives an overview of available services and their corresponding reposi-
tory.

Name Repository Link

vinnsl-service https://github.com/a00908270/vinnsl-service

vinnsl-nn-ui https://github.com/a00908270/vinnsl-nn-ui

vinnsl-storage-service https://github.com/a00908270/vinnsl-storage-service

vinnsl-nn-worker https://github.com/a00908270/vinnsl-nn-worker

1 https://a00908270.github.io

61

5 Implementation

The ViNNSL XSD schema, specified in [Kop15], including (generated) examples, is
released on GitHub with permission from Dipl.-Ing. Thomas Kopica. JAXB class
generation of the XML files is already included in the release with the intention of
making it easier to include ViNNSL into new services.

Name Repository Link

vinnsl-schema https://github.com/a00908270/vinnsl-schema

5.3 Releases

Docker Contrainers ready for deployment in a Kubernetes cluster are released on Docker-
Hub. The following table references the released repositories.

Name Repository Link

vinnsl-service https://hub.docker.com/r/a00908270/vinnsl-service/

vinnsl-nn-ui https://hub.docker.com/r/a00908270/vinnsl-nn-ui/

vinnsl-storage-service https://hub.docker.com/r/a00908270/vinnsl-storage-
service/

vinnsl-nn-worker https://hub.docker.com/r/a00908270/vinnsl-nn-worker/

5.4 Framework Dependencies

All services are written in Java and built using the Apache Maven build automation and
dependency management tool.

5.4.1 Spring

Spring is a Java framework consisting of many modules. Most importantly this project
uses its feature so set up RestController instances that listen on specified endpoints.

62

5.4 Framework Dependencies

Used in following services: vinnsl-service, vinnsl-nn-ui, vinnsl-storage-service,
vinnsl-nn-worker

Spring Boot

Spring Boot is an extension to the framework that allows Java applications to run stand-
alone by embedding a web server directly into the application. [Spra]

Used in following services: vinnsl-service, vinnsl-nn-ui, vinnsl-storage-service,
vinnsl-nn-worker

Spring Data MongoDB

Spring Data provides an abstracted database access layer to MongoDB in form of a POJO
(Plain Old Java Object). [Sprb]

Used in following services: vinnsl-service, vinnsl-storage-service

5.4.2 Swagger

Swagger is used to generate a live documentation of all web service endpoints in this
project and allows to try out requests directly in the user interface.

Used in following services: vinnsl-service, vinnsl-storage-service, vinnsl-nn-worker

5.4.3 Fabric8

Fabric8 packs the generated executables from the build process into a Docker container
that can run in a Kubernetes cluster.

Used in following services: vinnsl-service, vinnsl-nn-ui, vinnsl-storage-service,
vinnsl-nn-worker

63

5 Implementation

5.4.4 Deeplearning4J

Deeplearning4J is used by the worker service to train and evaluate neural networks.

A detailed introduction to Deeplearning4J can be found in Section 2.5.3.

Used in following services: vinnsl-nn-worker

5.5 Security

Ingress supports HTTPS encrypted connections. Authentication or restrictions are not
implemented in the prototype.

5.6 User Interface

5.6.1 vinnsl-nn-ui (Frontend UI)

The vinnsl-nn-ui is a single page application (SPA) that displays all neural networks
and their details in a web based frontend. See section 6.

5.7 Endpoints

The following table gives an overview of the RESTful endpoints by different services.
They are made available via Ingress outside the Kubernetes cluster.

Service Name Exposed Endpoints

vinnsl-service /vinnsl, /status, /dl4j

vinnsl-nn-ui /

vinnsl-storage-service /storage

vinnsl-nn-worker /worker

64

5.8 Class Diagrams

5.7.1 Additional Endpoints

Additional endpoints are used internally and are not directly exposed outside the
Kubernetes cluster. They can be reached by using port forwarding to directly access the
service in the cluster.

/health The health endpoints returns the status of the application. UP if the application
is running as expected, DOWN if parts of the application fail (like lost connection to
the database). Kubernetes and Ingress use this endpoint to detect disturbances in the
application.

/swagger The API, provided by the services, is documented and Swagger provides a
web interface to the documentation.

5.8 Class Diagrams

This section features class diagrams of the provided RESTful services. All of them, as
mentioned, are based on Java Spring Boot and use the Spring Boot Data layer if connecting
to a database.

5.8.1 vinnsl-service

The vinnsl service is the main communication hub that enables access to the neural net-
work objects and all of its data and provides interfaces to update it. The service connects
to a MongoDB database where all its persisted data is stored via the Spring Data template.
Fig. 5.1 shows the class diagram of the vinnsl service.

VinnslServiceApplication

VinnslServiceApplication is the main class that initializes the Spring Boot configuration
and MongoDB repository.

65

5 Implementation

VinnslServiceController

VinnslServiceController is a Spring RestController implementing all Mappings for
the endpoint /vinnsl. All required dependencies on MongoDB are injected by Spring
Boot.

NnStatusController

NnStatusController provides methods to get the current training status of one or all
individual neural network(s). Methods are exposed at the /status endpoint. Other ser-
vices, like the vinnsl worker service can also update the status.

Dl4JServiceController

Dl4JServiceController is a controller that allows manipulation of the Deeplearning4J
property of a neural network using the /dl4j endpoint.

Vinnsl

The vinnsl class is a POJO2 representation of the ViNNSL XML structure and used across
different services.

NnCloud

The NnCloud class is an extension to Vinnsl, used to store the status and the Deeplearn-
ing4J representation of a neural network.

5.8.2 vinnsl-storage-service

The vinnsl storage service is a web service for storing and retrieving files in a MongoDB
database. GridFS, which enables to store large data is activated. Figure 5.2 shows the
class diagram.

2 Plain Old Java Object

66

5.8 Class Diagrams

Figure 5.1: Class Diagram of vinnsl-service

67

5 Implementation

Figure 5.2: Class Diagram of vinnsl-storage-service

VinnslStorageApplication

VinnslStorageApplication is the main class that initializes the Spring Boot configuration
and MongoDB repository.

VinnslStorageController

VinnslStorageController makes retrieving and uploading files available via the /storage
endpoint.

An HTML form that enables a Multipart file upload from a browser, which is handled
by the handleFileUpload() method. Alternatively, instead of directly uploading a file,
a URL can be passed as parameter via the handleRestFileUploadFromUrl. The storage
service takes care of downloading and storing the file. The controller uses the GridFS
template as an abstraction to the MongoDB database.

68

5.8 Class Diagrams

5.8.3 vinnsl-worker-service

The vinnsl worker service is the component, which is used for training and evaluating
neural networks, executing the Deeplearning4J framework. Figure 5.3 shows the class
diagram.

MappingUtil / VinnslDL4JMapperImpl

The classes MappingUtil and VinnslDL4JMapperImpl are responsible for mapping a
Vinnsl to a DeepLearning4J network that can be trained.

The mappings are done in the inner classes of the MappingUtil. VinnslDL4JMapperImpl
initializes the necessary objects and calls the right methods to perform the mapping.

Worker Controller

WorkerController is a RestController that exposes the /worker/queue endpoint and
can be used to schedule neural networks for training.

WorkerQueue

WorkerQueue is the data structure that stores the identifiers of the queued networks in
memory.

Worker

The worker class checks the WorkerQueue periodically and if not empty polls the first el-
ement. It fetches the associated Vinnsl network from the vinnsl-service and hands it over to
the Dl4JNetworkTrainer. The service further sets the training status to INPROGRESS.

69

5 Implementation

Figure 5.3: Class Diagram of vinnsl-worker-service

Dl4JNetworkTrainer

The training is initiated by the Worker class. The network trainer fetches and parses
the training data if necessary (for example comma separed value files) and initializes the
MappingUtil. The transformed Deeplearning4J model contains the neural network struc-
ture and parameters, required for training and is attached to the ViNNSL model.

Next the Deeplearning4J UI Server is initialized, which visualizes the training process.
Test and training data is split and the training is started. After the training process is
finished, the result is uploaded to the storage service.

5.8.4 vinnsl-nn-ui

The frontend service consists of one single controller named VinnslUI. The getStatus()
method retrieves all neural network ids and their status. This is stored in vinnslList.
When selecting a neural network from the list, the neural network object is loaded by exe-
cuting getDetailsById(). The response is stored in currentVinnslItem.

Figure 5.4 gives an overview of the used methods and stored variables.

70

5.9 Limitations

VinnslUi
vinnslList:Object

currentVinnslItem:Object
getStatus()

getDetailsById(id)
deleteById(id)

getFiles()
applyFile(id fileID)

Figure 5.4: VinnslUI Vue Class

5.9 Limitations

5.9.1 Neural Network Design

The prototyped ViNNSL to Deeplearning4J mapper currently supports only multi-layers
and fully connected backpropagation networks.

5.9.2 Parameters

The ViNNSL to Deeplearning4J mapper currently supports the following parame-
ters:

1. learningrate
2. momentum
3. biasInput
4. epochs
5. threshold
6. activationfunction
7. seed
8. dl4jTrainerClass (special training class implemented in the worker service)
9. labelIndex (index of label column in CSV dataset file)

71

6 User Interface

6.1 vinnsl-nn-ui (Frontend UI)

The vinnsl-nn-ui is a single page application (SPA) that displays all neural networks
and their details in a web based frontend. Figure 6.1 shows a screenshot of the user
interface.

6.1.1 Architecture

The web application is a Javascript based frontend, using the Vue.js and Twitter Bootstrap
framework. The single main controller, called VinnslUI, provides methods to fetch a
list of neural networks and their status. Additionally it queries for available files from the
storage service and enables to connect them to a neural network.

6.1.2 Features

List of Neural Networks

On the left side the user can see a list of all created or imported neural networks.
Next to the names of the networks, there is a colored text stating the training sta-
tus.

73

6 User Interface

VINNSL-NN-UI
Status

5ac74926b6add3e7e6788cae FINISHED ID 5ac74926b6add3e7e6788cae

Iris Classification Example
Author: Ronald Fisher

FINISHED

Description Definition Data Instance Result

Status Files DL4J Transformation

Description
"identifier": ""

"paradigm": "classification"
"name": "Backpropagation Classification"
"description": "Iris Classification Example"

"major": 1
"minor": 0

"name": "Ronald Fisher"
"contact": "ronald.fisher@institution.com"

"id": "Input1"
"dimension": null

"min": 4
"max": 4

"id": "Hidden1"
"dimension": null

"id": "Hidden2"
"dimension": null

"id": "Output1"
"dimension": null

"min": 3
"max": 3

"connections": null

"description":►

"metadata":►

"version":►

"creator":►

"problemDomain": 4 properties►

"endpoints": 3 properties►

"executionEnvironment": 0 items►

"structure":►

"input":►

"size":►

"hidden":►

0:►

"size": 2 properties►

1:►

"size": 2 properties►

"output":►

"size":►

"parameters": 1 property►

"data": 3 properties►

Figure 6.1: User Interface of ConbexNN

74

6.1 vinnsl-nn-ui (Frontend UI)

Detail View

In the detailed view on the right side, the title, id and author of the network. The
visualisation of a neural network is divided into tabs.

The tabs “Description”, “Definition”, “Instance” and “Result” represent the eponymous
ViNNSL Description XML file into a graphical tree view. When enough information
is provided by ViNNSL XML files, the worker service performs a transformation into
the internally used model representation of the Deeplearning4J Framework. The “DL4J
Transformation” tab shows the transformed object.

Assign training- and testset In the “Files” tab, imported files of the storage services
are listed and can be selected as training- or testset.

6.1.3 Limitations

The user interface is read-only and designed to provide a graphical overview of neural
networks, their data and training result. The actual creation and training of neural net-
works must be done via the RESTful API, as documented in section 7.

75

7 API Documentation

Base URL

http[s]://<clusterip>

7.1 vinnsl-service

7.1.1 Import a new ViNNSL XML Defintion

POST /vinnsl

Parameters

Type Name Description Schema

Body vinnsl required vinnsl Vinnsl

Responses

HTTP Code Description Schema

201 Created No Content

500 Server Error Error

77

7 API Documentation

Consumes

• application/xml

Produces

• */*

Tags

• vinnsl-service-controller

Example HTTP request

Header

Content-Type: application/xml

Body

<vinnsl>
<description>

<identifier><!-- will be generated --></identifier>
<metadata>

<paradigm>classification</paradigm>
<name>Backpropagation Classification</name>
<description>Iris Classification Example</description>
<version>

<major>1</major>
<minor>0</minor>

</version>
</metadata>
<creator>

<name>Benjamin Nussbaum</name>

78

7.1 vinnsl-service

<contact>nussbaum@institution.com</contact>
</creator>
<problemDomain>

<propagationType type="feedforward">
<learningType>supervised</learningType>

</propagationType>
<applicationField>Classification</applicationField>
<networkType>Backpropagation</networkType>
<problemType>Classifiers</problemType>

</problemDomain>
<endpoints>

<train>true</train>
<retrain>true</retrain>
<evaluate>true</evaluate>

</endpoints>
<structure>

<input>
<ID>Input1</ID>
<size>

<min>4</min>
<max>4</max>

</size>
</input>
<hidden>
<ID>Hidden1</ID>
<size>

<min>3</min>
<max>3</max>

</size>
</hidden>
<hidden>
<ID>Hidden2</ID>
<size>

<min>3</min>
<max>3</max>

</size>
</hidden>
<output>

79

7 API Documentation

<ID>Output1</ID>
<size>

<min>3</min>
<max>3</max>

</size>
</output>

</structure>
<parameters/>
<data>

<description>iris txt file with 3 classifications,
4 input vars</description>
<tabledescription>no input as table possible</tabledescription>
<filedescription>CSV file</filedescription>

</data>
</description>

</vinnsl>

Example HTTP response

Statuscode: 201 CREATED

Header

Location: https://<baseURL>/vinnsl/5ade36bbd601800001206798

7.1.2 List all Neural Networks

GET /vinnsl

Responses

HTTP Code Description Schema

200 OK < Vinnsl > array

80

7.1 vinnsl-service

HTTP Code Description Schema

404 Not Found No Content

500 Server Error Error

Produces

• application/json

Tags

• vinnsl-service-controller

Example HTTP Response

[
{

"identifier": "5ab91658e8cc45946600ea11",
"description": {},
"definition": {},
"data": {},
"instance": {},
"trainingresult": {},
"result": {},
"nncloud": {

"status": "CREATED",
"dl4jNetwork": "{}

}
},
...

]

81

7 API Documentation

7.1.3 Delete all Neural Networks

DELETE /vinnsl/deleteall

Responses

HTTP Code Description Schema

200 OK object

204 No Content No Content

500 Server Error Error

Produces

• application/json

Tags

• vinnsl-service-controller

7.1.4 Get Neural Network Object

GET /vinnsl/{id}

Parameters

Type Name Description Schema

Path id required id string

Responses

82

7.1 vinnsl-service

HTTP Code Description Schema

200 OK Vinnsl

404 Not Found No Content

Produces

• application/xml
• application/json

Tags

• vinnsl-service-controller

Example HTTP response

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vinnsl>

<identifier>5ab91658e8cc45946600ea11</identifier>
<description>

<identifier></identifier>
<metadata>

<paradigm>classification</paradigm>
<name>Backpropagation Classification</name>
<description>Face Recognition Example</description>
<version>

<major>1</major>
<minor>5</minor>

</version>
</metadata>
<creator>

<name>Autor 1</name>
<contact>author1@institution.com</contact>

</creator>
<problemDomain>

83

7 API Documentation

<propagationType type="feedforward">
<learningType>supervised</learningType>

</propagationType>
<applicationField>EMS</applicationField>
<applicationField>Operations</applicationField>
<applicationField>FaceRecoginition</applicationField>
<networkType>Backpropagation</networkType>
<problemType>Classifiers</problemType>

</problemDomain>
<endpoints>

<train>true</train>
<retrain>true</retrain>
<evaluate>true</evaluate>

</endpoints>
<structure>

<input>
<ID>Input1</ID>
<dimension>

<min>1</min>
<max>1</max>

</dimension>
<size>

<min>960</min>
<max>960</max>

</size>
</input>
<hidden>

<ID>Hidden1</ID>
<dimension>

<min>1</min>
<max>1024</max>

</dimension>
</hidden>
<output>

<ID>Output1</ID>
<dimension>

<min>1</min>
<max>1</max>

84

7.1 vinnsl-service

</dimension>
<size>

<min>1</min>
<max>1</max>

</size>
</output>

</structure>
<parameters/>
<data>

<description>Input are face images with 32x30 px</description>
<tabledescription>no input as table possible</tabledescription>
<filedescription>prepare the input as file by reading
the image files</filedescription>

</data>
</description>
<definition>

<identifier></identifier>
<problemDomain>

<propagationType type="feedforward">
<learningType>supervised</learningType>

</propagationType>
<applicationField>EMS</applicationField>
<applicationField>Operations</applicationField>
<applicationField>FaceRecoginition</applicationField>
<networkType>Backpropagation</networkType>
<problemType>Classifiers</problemType>

</problemDomain>
<endpoints></endpoints>
<executionEnvironment>

<serial>true</serial>
</executionEnvironment>
<structure>

<input>
<ID>Input1</ID>
<dimension>1</dimension>
<size>960</size>

</input>
<hidden>

85

7 API Documentation

<ID>Hidden1</ID>
<dimension>1</dimension>
<size>1024</size>

</hidden>
<output>

<ID>Output1</ID>
<dimension>1</dimension>
<size>1</size>

</output>
<connections/>

</structure>
<resultSchema>

<instance>true</instance>
<training>true</training>

</resultSchema>
<parameters>

<valueparameter name="learningrate">0.4</valueparameter>
<valueparameter name="biasInput">1</valueparameter>
<valueparameter name="biasHidden">1</valueparameter>
<valueparameter name="momentum">0.1</valueparameter>
<comboparameter name="ativationfunction">sigmoid</comboparameter>
<valueparameter name="threshold">0.00001</valueparameter>
<comboparameter name="activationfunction">sigmoid</comboparameter>

</parameters>
<data>

<description>Input are face images with 32x30 px</description>
<dataSchemaID>iris.txt</dataSchemaID>

</data>
</definition>
<data>

<identifier>5ab4e69c8f136a16bf81f093</identifier>
<data>

<file>5ab4e69c8f136a16bf81f093</file>
</data>

</data>
</vinnsl>

86

7.1 vinnsl-service

7.1.5 Remove Neural Network Object

DELETE /vinnsl/{id}

Parameters

Type Name Description Schema

Path id required id string

Responses

HTTP Code Description Schema

200 OK ResponseEntity

204 No Content No Content

500 Server Error No Content

Produces

• */*

Tags

• vinnsl-service-controller

7.1.6 Add/Replace File of Neural Network

PUT /vinnsl/{id}/addfile

Parameters

87

7 API Documentation

Type Name Description Schema

Path id required id string

Query fileId required fileId string

Responses

HTTP Code Description Schema

200 OK Vinnsl

404 Not Found No Content

500 Server Error Error

Consumes

• application/json

Produces

• application/xml
• application/json

Tags

• vinnsl-service-controller

7.1.7 Add/Replace ViNNSL Definition of Neural Network

PUT /vinnsl/{id}/definition

Parameters

88

7.1 vinnsl-service

Type Name Description Schema

Path id required id string

Body def required def Definition

Responses

HTTP Code Description Schema

200 OK Vinnsl

404 Not Found No Content

500 Server Error Error

Consumes

• application/xml
• application/json

Produces

• */*

Tags

• vinnsl-service-controller

Example HTTP request

Request body

89

7 API Documentation

<definition>
<identifier><!-- will be generated --></identifier>
<metadata>

<paradigm>classification</paradigm>
<name>Backpropagation Classification</name>
<description>Iris Classification Example</description>
<version>

<major>1</major>
<minor>0</minor>

</version>
</metadata>
<creator>

<name>Nussbaum</name>
</creator>
<problemDomain>

<propagationType type="feedforward">
<learningType>supervised</learningType>

</propagationType>
<applicationField>Classification</applicationField>
<networkType>Backpropagation</networkType>
<problemType>Classifiers</problemType>

</problemDomain>
<endpoints>

<train>true</train>
</endpoints>
<executionEnvironment>

<serial>true</serial>
</executionEnvironment>
<structure>

<input>
<ID>Input1</ID>
<size>4</size>

</input>
<hidden>
<ID>Hidden1</ID>
<size>3</size>

</hidden>
<hidden>

90

7.1 vinnsl-service

<ID>Hidden2</ID>
<size>3</size>

</hidden>
<output>
<ID>Output1</ID>
<size>3</size>

</output>
<connections>
<!--<fullconnected>

<fromblock>Input1</fromblock>
<toblock>Hidden1</toblock>
<fromblock>Hidden1</fromblock>
<toblock>Output1</toblock>

</fullconnected>-->
</connections>

</structure>
<resultSchema>

<instance>true</instance>
<training>true</training>

</resultSchema>
<parameters>

<valueparameter name="learningrate">0.1</valueparameter>
<comboparameter name="activationfunction">tanh</comboparameter>
<valueparameter name="iterations">500</valueparameter>
<valueparameter name="seed">6</valueparameter>

</parameters>
<data>

<description>iris txt file with 3 classifications,
4 input vars</description>
<dataSchemaID>name/iris.txt</dataSchemaID>

</data>
</definition>

7.1.8 Add/Replace ViNNSL Instanceschema of Neural Network

PUT /vinnsl/{id}/instanceschema

91

7 API Documentation

Parameters

Type Name Description Schema

Path id required id string

Body instance required instance Instanceschema

Responses

HTTP Code Description Schema

200 OK object

404 Not Found No Content

500 Server Error Error

Consumes

• application/xml
• application/json

Produces

• */*

Tags

• vinnsl-service-controller

Example HTTP request

Request body

92

7.1 vinnsl-service

<instanceschema>
</instanceschema>

7.1.9 Add/Replace ViNNSL Resultschema of Neural Network

PUT /vinnsl/{id}/resultschema

Parameters

Type Name Description Schema

Path id required id string

Body resultSchema required resultSchema Resultschema

Responses

HTTP Code Description Schema

200 OK object

404 Not Found No Content

500 Server Error Error

Consumes

• application/xml
• application/json

Produces

• */*

93

7 API Documentation

Tags

• vinnsl-service-controller

Example HTTP request

Request body

<resultschema>
</resultschema>

7.1.10 Add/Replace ViNNSL Trainingresult of Neural Network

PUT /vinnsl/{id}/trainingresult

Parameters

Type Name Description Schema

Path id required id string

Body trainingresult required trainingresult Trainingresultschema

Responses

HTTP Code Description Schema

200 OK object

404 Not Found No Content

500 Server Error Error

94

7.1 vinnsl-service

Consumes

• application/xml
• application/json

Produces

• */*

Tags

• vinnsl-service-controller

Example HTTP request

Request body

<trainingresult>
</trainingresult>

7.1.11 Get Status of all Neural Networks

GET /status

Responses

HTTP Code Description Schema

200 OK object

404 Not Found No Content

95

7 API Documentation

Produces

• application/json

Tags

• nn-status-controller

HTTP response example

{
"5ab91658e8cc45946600ea11": "INPROGRESS"

}

7.1.12 Get Status of Neural Network

GET /status/{id}

Parameters

Type Name Description Schema

Path id required id string

Responses

HTTP Code Description Schema

200 OK object

404 Not Found No Content

96

7.1 vinnsl-service

Produces

• application/json

Tags

• nn-status-controller

7.1.13 Set Status of a Neural Network

PUT /status/{id}/{status}

Parameters

Type Name Description Schema

Path id required id string

Path status required status enum (CREATED, QUEUED, INPROGRESS,
FINISHED, ERROR)

Responses

HTTP Code Description Schema

200 OK object

404 Not Found No Content

500 Server Error Error

Consumes

• application/json

97

7 API Documentation

Produces

• application/json

Tags

• nn-status-controller

7.1.14 Get Deeplearning4J Transformation Object of Neural Network

GET /dl4j/{id}

Parameters

Type Name Description Schema

Path id required id string

Responses

HTTP Code Description Schema

200 OK string

404 Not Found No Content

Produces

• application/json

Tags

• dl4j-service-controller

98

7.1 vinnsl-service

7.1.15 Put Deeplearning4J Transformation Object of Neural Network

PUT /dl4j/{id}

Parameters

Type Name Description Schema

Path id required id string

Body dl4J required dl4J string

Responses

HTTP Code Description Schema

200 OK ResponseEntity

404 Not Found No Content

500 Server Error Error

Consumes

• application/json

Produces

• application/json

Tags

• dl-4j-service-controller

99

7 API Documentation

7.2 vinnsl-storage-service

7.2.1 Handle File Upload from HTML Form

POST /storage

Parameters

Type Name Description Schema

FormData file required file file

Responses

HTTP Code Description Schema

200 OK string

201 Created No Content

404 Not Found No Content

Consumes

• multipart/form-data

Produces

• */*

Tags

• vinnsl-storage-controller

100

7.2 vinnsl-storage-service

7.2.2 List all Files

GET /storage

Responses

HTTP Code Description Schema

200 OK Model

404 Not Found No Content

Produces

• application/json

Tags

• vinnsl-storage-controller

7.2.3 Download File by Original Filename

The original filename is the name and extension at the time of the upload.

GET /storage/files/name/{filename}

Parameters

Type Name Description Schema

Path filename required filename string

101

7 API Documentation

Responses

HTTP Code Description Schema

200 OK string (byte)

404 Not Found No Content

Produces

• */*

Tags

• vinnsl-storage-controller

7.2.4 Download or Show File by FileID

GET /storage/files/{fileId}

Parameters

Type Name Description Schema

Path fileId required fileId string

Query download optional download boolean

Responses

HTTP Code Description Schema

200 OK string (byte)

404 Not Found No Content

102

7.2 vinnsl-storage-service

Produces

• */*

Tags

• vinnsl-storage-controller

7.2.5 Delete File by FileID

DELETE /storage/files/{fileId}

Parameters

Type Name Description Schema

Path fileId required fileId string

Responses

HTTP Code Description Schema

200 OK ResponseEntity

204 No Content No Content

403 Forbidden No Content

Produces

• */*

103

7 API Documentation

Tags

• vinnsl-storage-controller

7.2.6 Get File Metadata by FileID

GET /storage/metadata/{fileId}

Parameters

Type Name Description Schema

Path fileId required fileId string

Responses

HTTP Code Description Schema

200 OK < string, object > map

404 Not Found No Content

Produces

• */*

Tags

• vinnsl-storage-controller

7.2.7 Upload MultipartFile

POST /storage/upload

104

7.2 vinnsl-storage-service

Parameters

Type Name Description Schema

FormData file required file file

Responses

HTTP Code Description Schema

200 OK object

201 Created No Content

404 Not Found No Content

Consumes

• multipart/form-data

Produces

• application/json

Tags

• vinnsl-storage-controller

7.2.8 Upload File by URL

GET /storage/upload

Parameters

105

7 API Documentation

Type Name Description Schema

Query url required url string

Responses

HTTP Code Description Schema

200 OK object

404 Not Found No Content

Produces

• application/json

Tags

• vinnsl-storage-controller

7.3 vinnsl-worker-service

7.3.1 getWorkingQueue

GET /worker/queue

Responses

HTTP Code Description Schema

200 OK < string > array

401 Unauthorized No Content

106

7.3 vinnsl-worker-service

HTTP Code Description Schema

403 Forbidden No Content

404 Not Found No Content

Produces

• */*

Tags

• worker-controller

7.3.2 addToWorkingQueue

PUT /worker/queue/{id}

Parameters

Type Name Description Schema

Path id required id string

Responses

HTTP Code Description Schema

200 OK < string > array

201 Created No Content

401 Unauthorized No Content

403 Forbidden No Content

404 Not Found No Content

107

7 API Documentation

Consumes

• application/json

Produces

• application/json

Tags

• worker-controller

108

8 Deployment

ConbexNN can be deployed locally or in the cloud in various environments. After de-
ployment the following endpoints can be called with Browser or RESTful client.

endpoint Service

/#/ Vinnsl NN UI

/vinnsl Vinnsl Service

/status Vinnsl NN Status

/worker/queue Worker Queue

/storage Storage Service

/train/overview DL4J Training UI (while training)

8.1 Local Machine

Prerequisites

• Install kubectl tool from: https://kubernetes.io/docs/tasks/tools/install-kubectl
• Install minikube tool from: https://github.com/kubernetes/minikube/releases
• git tool installed

Run minikube minikube start

Starts the minikube cluster

109

8 Deployment

Check status

minikube status

Should return

minikube: Running
cluster: Running
kubectl: Correctly Configured: pointing to minikube-vm at 192.168.99.102

Setting up Clone the repository

git clone https://github.com/a00908270/conbexnn.git
cd /deploy/local_minikube/

Run Services in Cluster

MongoDB for vinnsl-service
kubectl create -f mongo_small.yaml
Vinnsl Service
kubectl create -f vinnsl-service.yaml
MongoDB for vinnsl-storage-service
kubectl create -f mongo-storage-service.yaml
Vinnsl Storage Service
kubectl create -f vinnsl-storage-service.yaml
Vinnsl NN Worker Service
kubectl create -f vinnsl-nn-worker.yaml
Vinnsl Frontend UI Webapp
kubectl create -f vinnsl-nn-ui.yaml

Enable and Set Up Ingress Sets up a proxy to make services available at the endpoint
specified in the API Specification.

kubectl apply -f ingress.yaml

110

8.2 Virtual Machine

Check status with Dashboard

minikube dashboard

This commands opens the dashboard and lets you check the status of the services. This
can take a few minutes.

Usage After a few minutes you can open the cluster ingress ip address to view the
Vinnsl-NN-UI You can get the address by executing

minikube ip

Open your Browser https://minikubeip/#/ to open Vinnsl-NN-UI.

8.2 Virtual Machine

A virtual machine has been assembled, that comes preconfigured with Kubernetes
running all necessary ConbexNN services and a neural network training set for test-
ing.

It is a VirtualBox image running Lubnutu 18.04 64 bit. Firefox and Postman for testing
come preinstalled.

8.2.1 Download

The virtual machine can be downloaded at the project website: https://a00908270.github.io/vm

8.3 Google Cloud Instance

This section describes how to deploy ConbexNN into a Kubernetes cluster in the Google
Kubernetes Engine.

111

https://minikubeip/#/

8 Deployment

Prerequisites

• Google Account with activated billing or credits

• kubectl tool on local machine installed: (https://kubernetes.io/docs/tasks/
tools/install-kubectl/#install-kubectl)

• gcloud SDK locally installed (https://cloud.google.com/sdk/downloads)

Create Cluster

gcloud beta container --project "nn-cloud-201314" clusters create "cluster-2"
--zone "us-central1-a" --username "admin" --cluster-version "1.9.7-gke.6"
--machine-type "n1-standard-1" --image-type "COS" --disk-type "pd-standard"
--disk-size "100" --scopes "https://www.googleapis.com/auth/compute",
"https://www.googleapis.com/auth/devstorage.read_only"
,"https://www.googleapis.com/auth/logging.write"
,"https://www.googleapis.com/auth/monitoring"
,"https://www.googleapis.com/auth/servicecontrol"
,"https://www.googleapis.com/auth/service.management.readonly"
,"https://www.googleapis.com/auth/trace.append"
--num-nodes "3" --enable-cloud-logging --enable-cloud-monitoring
--network "projects/nn-cloud-201314/global/networks/default"
--subnetwork "projects/nn-cloud-201314/regions/us-central1/subnetworks/default"
--addons HorizontalPodAutoscaling,HttpLoadBalancing,KubernetesDashboard
--no-enable-autoupgrade --enable-autorepair

Clone the repository Clone the vinnsl-nn-cloud project and swtich into the google-
cloud folder.

git clone https://github.com/a00908270/conbexnn.git
cd deploy/cloud/google/

112

https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl
https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl
https://cloud.google.com/sdk/downloads

8.4 Amazon EKS

Run Services in Cluster

MongoDB for vinnsl-service
kubectl create -f mongo_small.yaml
Vinnsl Service
kubectl create -f vinnsl-service.yaml
MongoDB for vinnsl-storage-service
kubectl create -f mongo-storage-service_small.yaml
Vinnsl Storage Service
kubectl create -f vinnsl-storage-service.yaml
Vinnsl NN Worker Service
kubectl create -f vinnsl-nn-worker.yaml
Vinnsl Frontend UI Webapp
kubectl create -f vinnsl-nn-ui.yaml

Enable and Set Up Ingress Sets up a proxy to make services available at the endpoint
specified in the API Specification.

kubectl apply -f ingress_gke.yaml

8.4 Amazon EKS

This section describes how to deploy ConbexNN into a Kubernetes cluster in the Amazon
Elastic Container Service (EKS).

Prerequisites

• AWS Account with activated billing or credits
• kubectl tool on local machine installed: (https://kubernetes.io/docs/tasks/
tools/install-kubectl/#install-kubectl)

113

https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl
https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl

8 Deployment

Create Cluster Log into the AWS Management Console1 and select the Service Elastic
Container Service for Kubernetes. Create a new cluster in the user interface. Configure
kubectl for EKS using the current documentation2.

Clone the repository Clone the vinnsl-nn-cloud project and switch into the google-
cloud folder.

git clone https://github.com/a00908270/conbexnn.git
cd deploy/cloud/amazon/

Run Services in Cluster

MongoDB for vinnsl-service
kubectl --context $CONTEXT create -f mongo_small.yaml
Vinnsl Service
kubectl --context $CONTEXT create -f vinnsl-service.yaml
MongoDB for vinnsl-storage-service
kubectl --context $CONTEXT create -f mongo-storage-service_small.yaml
Vinnsl Storage Service
kubectl --context $CONTEXT create -f vinnsl-storage-service.yaml
Vinnsl NN Worker Service
kubectl --context $CONTEXT create -f vinnsl-nn-worker.yaml
Vinnsl Frontend UI Webapp
kubectl --context $CONTEXT create -f vinnsl-nn-ui.yaml

Enable and Set Up Ingress Sets up a proxy to make services available at the endpoint
specified in the API Specification.

kubectl --context $CONTEXT apply -f ingress.yaml

1 https://console.aws.amazon.com/eks
2 https://docs.aws.amazon.com/eks/latest/userguide/configure-kubectl.html

114

8.5 Microsoft AKS

8.5 Microsoft AKS

This section describes how to deploy ConbexNN into a Kubernetes cluster in the Azure
Kubernetes Service (AKS).

Prerequisites

• Azure Account
• Azure Cloud Shell

Set up Login into Azure Portal and open Cloud Shell

Create cluster

az group create --name conbexnn --location eastus
az aks create --resource-group conbexnn --name
conbexnnCluster --node-count 2 --enable-addons monitoring
--generate-ssh-keys

Configure kubectl

az aks get-credentials --resource-group conbexnn --name conbexnnCluster

Setup Services

Checkout Git Repo Checkout the repo containing the config files

git clone https://github.com/a00908270/conbexnn.git
cd deploy/cloud/azure

115

8 Deployment

Setup Services

kubectl apply -f mongo_small.yaml
kubectl apply -f vinnsl-service.yaml
kubectl apply -f vinnsl-nn-ui.yaml
kubectl apply -f mongo-storage-service_small.yaml
kubectl apply -f vinnsl-storage-service.yaml
kubectl apply -f vinnsl-nn-worker.yaml

Enable Service Discovery with Ingress

helm init
helm install stable/nginx-ingress --namespace kube-system
kubectl apply -f ingress.yaml

Usage After a few minutes you can open the cluster ingress load balancer ip address to
view the Vinnsl-NN-UI You can get the “EXTERNAL-IP” by executing

kubectl get service -l app=nginx-ingress --namespace kube-system

116

9 Use Cases

As a demonstration of the implemented ConbexNN, this thesis features two use cases
with practical relevance. The training was executed on the following hardware:

Model Macbook Pro 15” Mid-2015

Processor Intel Core i7 4870HQ @ 2.5 GHz

Memory 16 GB DDR3 @ 1600 MHz

Environment Kubernetes on Docker CE Edge 18.06.1-ce-mac73 (26764)

9.1 Iris Classification Example

Ronald A. Fisher published 1936 in his paper The use of multiple measurements in taxonomic
problems [Fis] a dataset that is known as the Iris flower data set.

The data set [Fis] features 50 examples of three Iris species: Iris setosa, Iris virginica and
Iris versicolor. A table lists four measured features from each sample: the length and the
width of the sepals and petals.

This use case shall showcase the use of the implemented prototype to create a neural
network, train and evaluate it, using this dataset.

9.1.1 Dataset

The dataset exists in the UCI Machine Learning Repository [DKT17] as a CSV (comma
separated value) file1 which will be used for training. The first example has a sepal
length/width of 5.1cm/3.5cm, a petal length/width of 1.4cm/0.2cm and is an Iris
setosa.

1 https://archive.ics.uci.edu/ml/datasets/iris

117

9 Use Cases

The first lines of the dataset explain the structure of the dataset. The columns are format-
ted for better readability. The species column is an enumerated value.

Index Iris species

0 Iris setosa

1 Iris virginica

2 Iris versicolor

Sepal length, Sepal width, Petal length, Peta width, Iris species
5.1 , 3.5 , 1.4 , 0.2 , 0
4.9 , 3.0 , 1.4 , 0.2 , 0
<more lines>

9.1.2 Prerequisites

• Kubernetes Cluster running
• Services from the Neural Network Execution Stack deployed in cluster
• Hostname cluster.local resolves to Minikube instance

9.1.3 Create the neural network

Request

POST https://cluster.local/vinnsl

BODY

<vinnsl>
<description>

<identifier><!-- will be generated --></identifier>
<metadata>

<paradigm>classification</paradigm>
<name>Backpropagation Classification</name>

118

9.1 Iris Classification Example

<description>Iris Classification Example</description>
<version>

<major>1</major>
<minor>0</minor>

</version>
</metadata>
<creator>

<name>Nussbaum</name>
</creator>
<problemDomain>

<propagationType type="feedforward">
<learningType>supervised</learningType>

</propagationType>
<applicationField>Classification</applicationField>
<networkType>Backpropagation</networkType>
<problemType>Classifiers</problemType>

</problemDomain>
<endpoints>

<train>true</train>
<retrain>true</retrain>
<evaluate>true</evaluate>

</endpoints>
<structure>

<input>
<ID>Input1</ID>
<size>

<min>4</min>
<max>4</max>

</size>
</input>
<hidden>
<ID>Hidden1</ID>
<size>

<min>3</min>
<max>3</max>

</size>
</hidden>
<hidden>

119

9 Use Cases

<ID>Hidden2</ID>
<size>

<min>3</min>
<max>3</max>

</size>
</hidden>
<output>
<ID>Output1</ID>
<size>

<min>3</min>
<max>3</max>

</size>
</output>

</structure>
<parameters>

<valueparameter>learningrate</valueparameter>
<valueparameter>biasInput</valueparameter>
<valueparameter>biasHidden</valueparameter>
<valueparameter>momentum</valueparameter>
<comboparameter>ativationfunction</valueparameter>
<valueparameter>threshold</valueparameter>

</parameters>
<data>

<description>iris txt file with 3 classifications,
4 input vars</description>
<tabledescription>no input as table possible</tabledescription>
<filedescription>CSV file</filedescription>

</data>
</description>

</vinnsl>

Response

201 CREATED

Aside from the HTTP Status Code, we also get HTTP headers in the response. The
one needed for further requests is named location. The value of this field is the URL

120

9.1 Iris Classification Example

of the network, that was created and can be used to get and update fields on the
dataset.

In this example the following value is returned:

Header Name Header Value

location https://cluster.local/vinnsl/5b1811a046e0fb0001fa28cc

The id of the new dataset is 5b1811a046e0fb0001fa28cc. In the following requests the id
is shortened as {id}.

9.1.4 Add ViNNSL Definition to the Neural Network

The ViNNSL definition XML contains metadata like name and description of the network
as well as the stucture of the neural network model. There is one input and one output
layer defined. In between there are two hidden layers. It is also possible to specify
additional parameters.

The activation function is set to tangens hyperbolicus, the learning rate is 0.1 and the
training is limited to 500 iterations. A seed, set to 6, allows a reproducible training score.
The label index specifies which column in the CSV file represents the iris species starting
which zero. In this case it is the index with number 4.

Request

POST https://cluster.local/vinnsl/{id}/definition

BODY

<definition>
<identifier><!-- will be generated --></identifier>
<metadata>

<paradigm>classification</paradigm>
<name>Backpropagation Classification</name>
<description>Iris Classification Example</description>

121

9 Use Cases

<version>
<major>1</major>
<minor>0</minor>

</version>
</metadata>
<creator>

<name>Nussbaum</name>
</creator>
<problemDomain>

<propagationType type="feedforward">
<learningType>supervised</learningType>

</propagationType>
<applicationField>Classification</applicationField>
<networkType>Backpropagation</networkType>
<problemType>Classifiers</problemType>

</problemDomain>
<endpoints>

<train>true</train>
</endpoints>
<executionEnvironment>

<serial>true</serial>
</executionEnvironment>
<structure>

<input>
<ID>Input1</ID>
<size>4</size>

</input>
<hidden>
<ID>Hidden1</ID>
<size>3</size>

</hidden>
<hidden>
<ID>Hidden2</ID>
<size>3</size>

</hidden>
<output>
<ID>Output1</ID>
<size>3</size>

122

9.1 Iris Classification Example

</output>
<connections>
<fullconnected>

<fromblock>Input1</fromblock>
<toblock>Hidden1</toblock>
<fromblock>Hidden1</fromblock>
<toblock>Output1</toblock>

</fullconnected>
</connections>

</structure>
<resultSchema>

<instance>true</instance>
<training>true</training>

</resultSchema>
<parameters>

<valueparameter name="learningrate">0.1</valueparameter>
<comboparameter name="activationfunction">tanh</comboparameter>
<valueparameter name="iterations">500</valueparameter>
<valueparameter name="seed">6</valueparameter>
<valueparameter name="labelIndex">4</valueparameter>

</parameters>
<data>

<description>iris txt file with 3 classifications,
4 input vars</description>
<dataSchemaID>name/iris.txt</dataSchemaID>

</data>
</definition>

Response

200 OK

Figure 9.1 shows a graphical visualisation of the neural network data structure, after
adding the description and definition in ViNNSL XML. It is noticeable that description
and definition have been transformed into objects. The status is initialized with the value
CREATED.

2 https://www.robomongo.org

123

9 Use Cases

Figure 9.1: Neural Network Datastructure visualized in the Robo3T2 application

9.1.5 Queue Network for Training

Request

POST https://cluster.local/worker/queue/{id}

Response

200 OK

9.1.6 Training

During the training it is possible to open the graphical user interface, called DL4J Training
UI in a browser, that is provided with the Deeplearning4J package, to see the learning
progress of the neural network.

https://cluster.local/train/overview

124

9.1 Iris Classification Example

VINNSL-NN-UI
Status

Debug
Show Response details

5b1811a046e0fb0001fa28cc INPROGRESS ID 5b1811a046e0fb0001fa28cc

Iris Classification Example
Author: Ronald Fisher

INPROGRESS

Description Definition Data Instance Result

Status Files DL4J Transformation

Status
INPROGRESS

Figure 9.2: ViNNSL NN UI shows training in progress

DL4J Training UI

Figure 9.3 shows the network training of the Iris Classification. The overview tab
provides general information about network and training.

• Top left: score vs iteration chart - value of the loss function
• Top right: model and training information
• Bottom left: Ratio of parameters to updates (by layer) for all network weights

vs. iteration
• Bottom right: Standard deviations (vs. time) of: updates, gradients and activations

[Dee]

The second tab provides information about the neural network layers of the model.
Information includes:

• Table of layer information
• Layer activations over time
• Histograms of parameters and updates
• Learning rate vs. time

[Dee]

125

9 Use Cases

07/06/2018 DL4J Training UI

http://localhost:9000/train/overview 1/2

DL4J Training UI

�Overview

¿Model (model)

åSystem (system)

Ē Language

Model Score vs. Iteration Model and Training Information

Update:Parameter Ratios (Mean Magnitudes): log Standard Deviations: log10 10 ActivationsGradientsUpdates

Score : -1.62346, Iteration : 289

50 100 150 200 250 300 350 400 450

0.0

0.2

0.4

0.6

0.8

score

summary

Model Type MultiLayerNetwork

Layers 3

Total Parameters 39

Start Time

Total Runtime

Last Update 2018-06-07 19:02:43

Total Parameter Updates 491

Updates/sec 312.50

Examples/sec 30312.50

Ratio : 0.00001, log Ratio : -4.90775 , Iteration: 477

50 100 150 200 250 300 350 400 450

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

0_W

1_W

2_W

 10 St. Dev : 5.95536, log St. Dev : 0.77491 , Iteration: 176

50 100 150 200 250 300 350 400 450

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0

1

input

 10

Figure 9.3: DL4J Training UI shows training progress of Iris Classification network

Figure 9.4: Neural Network Datastructure of the finished network visualized in the
Robo3T3 application

9.1.7 Testing

Testing takes place automatically after training and evaluates the accuracy of the trained
neural network. In this case 65 percent of the dataset is used for training and 35 percent
for testing.

9.1.8 Evaluation Result

As soon as the training and testing process is finished, a file with the testing report is
ready on the storage server. Figure 9.4 clarifies the updated data structure of the neural
network object. A result file with id 5b19972052faff0001cb6bbf was uploaded to the
storage service. The status is changed to FINISHED and the transformed Deeplearning4J
model representation is updated in the field dl4jNetwork.

126

9.2 Wine Score Classification

In the ViNNSL NN UI, the result file can be viewed by switching to the Data tab and
selecting See File under the headline Result Data.

[...]

Examples labeled as 0 classified by model as 0: 24 times
Examples labeled as 1 classified by model as 1: 15 times
Examples labeled as 2 classified by model as 2: 14 times

==========================Scores==
of classes: 3
Accuracy: 1.0000
Precision: 1.0000
Recall: 1.0000
F1 Score: 1.0000

Precision, recall & F1: macro-averaged (equally weighted avg. of 3 classes)
==
Training took 0.841000 seconds

By examining the result file, it can be noticed that the accuracy of the network was at
100 percent. After 500 training iterations, all iris flowers were classified correctly. The
training took 0.84 seconds to finish.

9.2 Wine Score Classification

The second use case shows that a very similar ViNNSL Network can be used on a
different data set containing a large collection of wine reviews from a platform called
WineEnthusiast4. The dataset’s feature columns were reduced and the lines limited to
twenty-thousand.

3 https://www.robomongo.org
4 https://www.winemag.com/?s=&drink_type=wine

127

9 Use Cases

9.2.1 Dataset

The dataset which will be used for training, contains 60.000 elements with two feature
columns and two possible classes. The first feature column is the category of wine (red
or white wine), the second is the price (numerical). There are two possible classes: the
first class is applicable if the rating score, that has possible values between 0 and 100, is
below 90. Otherwise the second class is applicable.

Possible Classification

Index Review Rating Score

0 Review rating score <= 90

1 Review rating score > 90

Wine Category

Index Wine Category

0 Red wine

1 White wine

The first wine has a rating score higher than 90, is a red wine and costs 235 US-
Dollars. The second wine is also red, has also a rating over 90, but costs only 65
US-Dollars.

The first lines of the dataset explain the structure of the dataset. The columns are
formatted for better readability.

Rating Score Class, Category, Price (US$)
1 , 0 , 235
1 , 0 , 65
<more lines>

128

9.2 Wine Score Classification

9.2.2 Prerequisites

• Kubernetes Cluster running
• Services from the Neural Network Execution Stack deployed in cluster
• Hostname cluster.local resolves to Minikube instance

9.2.3 Create the neural network

Request

POST https://cluster.local/vinnsl

BODY

<vinnsl>
<description>

<identifier><!-- will be generated --></identifier>
<metadata>

<paradigm>classification</paradigm>
<name>Backpropagation Classification</name>
<description>Wine Classification Example</description>
<version>

<major>1</major>
<minor>0</minor>

</version>
</metadata>
<creator>

<name>Nussbaum</name>
<contact>nussbaum@institution.com</contact>

</creator>
<problemDomain>

<propagationType type="feedforward">
<learningType>supervised</learningType>

</propagationType>
<applicationField>Classification</applicationField>
<networkType>Backpropagation</networkType>

129

9 Use Cases

<problemType>Classifiers</problemType>
</problemDomain>
<endpoints>

<train>true</train>
<retrain>true</retrain>
<evaluate>true</evaluate>

</endpoints>
<structure>

<input>
<ID>Input1</ID>
<size>

<min>2</min>
<max>2</max>

</size>
</input>
<hidden>
<ID>Hidden1</ID>
<size>

<min>3</min>
<max>3</max>

</size>
</hidden>
<hidden>
<ID>Hidden2</ID>
<size>

<min>3</min>
<max>3</max>

</size>
</hidden>
<output>
<ID>Output1</ID>
<size>

<min>2</min>
<max>2</max>

</size>
</output>

</structure>
<parameters>

130

9.2 Wine Score Classification

<valueparameter>learningrate</valueparameter>
<valueparameter>biasInput</valueparameter>
<valueparameter>biasHidden</valueparameter>
<valueparameter>momentum</valueparameter>
<comboparameter>ativationfunction</valueparameter>
<valueparameter>threshold</valueparameter>

</parameters>
<data>

<description>wine csv file with 2 classifications,
2 input vars</description>
<tabledescription>no input as table possible</tabledescription>
<filedescription>CSV file</filedescription>

</data>
</description>

</vinnsl>

Response

201 CREATED

Aside from the HTTP Status Code, we also get HTTP headers in the response. The
one needed for further requests is named location. The value of this field is the URL
of the network, that was created and can be used to get and update fields on the
dataset.

In this example the following value is returned:

Header Name Header Value

location https://cluster.local/vinnsl/5ac6a8796522050001dfff3b

The id of the new dataset is 5ac6a8796522050001dfff3b. In the following requests the id
is shortened as {id}.

131

9 Use Cases

9.2.4 Add ViNNSL Definition to the Neural Network

The ViNNSL definition XML contains metadata like name and description of the network
as well as the stucture of the neural network model. There is one input and one output
layer defined. In between there are two hidden layers. It is also possible to specify
additional parameters.

The activation function is set to tangens hyperbolicus, the learning rate is 0.1 and the
training is limited to 500 iterations. A seed, set to 6, allows a reproducible training
score.

Request

POST https://cluster.local/vinnsl/{id}/definition

BODY

<definition>
<identifier><!-- will be generated --></identifier>
<metadata>

<paradigm>classification</paradigm>
<name>Backpropagation Classification</name>
<description>Wine Classification Example</description>

<version>
<major>1</major>
<minor>0</minor>

</version>
</metadata>
<creator>

<name>Nussbaum</name>
<contact>nussbaum@institution.com</contact>

</creator>
<problemDomain>

<propagationType type="feedforward">
<learningType>supervised</learningType>

</propagationType>
<applicationField>Classification</applicationField>

132

9.2 Wine Score Classification

<networkType>Backpropagation</networkType>
<problemType>Classifiers</problemType>

</problemDomain>
<endpoints>

<train>true</train>
</endpoints>
<executionEnvironment>

<serial>true</serial>
</executionEnvironment>
<structure>

<input>
<ID>Input1</ID>
<size>2</size>

</input>
<hidden>
<ID>Hidden1</ID>
<size>3</size>

</hidden>
<hidden>
<ID>Hidden2</ID>
<size>3</size>

</hidden>
<output>
<ID>Output1</ID>
<size>2</size>

</output>
<connections>
<fullconnected>

<fromblock>Input1</fromblock>
<toblock>Hidden1</toblock>
<fromblock>Hidden1</fromblock>
<toblock>Output1</toblock>

</fullconnected>
</connections>

</structure>
<resultSchema>

<instance>true</instance>
<training>true</training>

133

9 Use Cases

</resultSchema>
<parameters>

<valueparameter name="learningrate">0.1</valueparameter>
<comboparameter name="activationfunction">tanh</comboparameter>
<valueparameter name="iterations">500</valueparameter>
<valueparameter name="seed">6</valueparameter>

</parameters>
<data>

<description>wine csv file with 2 classifications,
2 input vars</description>
<dataSchemaID>name/wines.csv</dataSchemaID>

</data>
</definition>

Response

200 OK

9.2.5 Queue Network for Training

Request

POST https://cluster.local/worker/queue/{id}

Response

200 OK

9.2.6 Evaluation Result

As soon as the training and testing process is finished, a file with the testing report
is ready on the storage server. A result file with id 5ac6a8796522050001dfff3b was
uploaded to the storage service. The status is changed to FINISHED and the transformed
Deeplearning4J model representation is updated in the field dl4jNetwork.

134

9.3 MNIST Digit Recognition Example

In the ViNNSL NN UI, the result file can be viewed by switching to the Data tab and
selecting See File under the headline Result Data.

[...]

Examples labeled as 0 classified by model as 0: 15528 times
Examples labeled as 0 classified by model as 1: 1209 times
Examples labeled as 1 classified by model as 0: 2369 times
Examples labeled as 1 classified by model as 1: 1894 times

==========================Scores==
of classes: 2
Accuracy: 0.8296
Precision: 0.7390
Recall: 0.6860
F1 Score: 0.5143

==
Training took 29.109000 seconds

By examining the result file, it can be noticed that the accuracy of the network was
82.96 percent after 500 iterations. The network was pretty good at classifying the ratings
soly based on wine category and price. The training took less than 30 seconds to
finish.

9.3 MNIST Digit Recognition Example

The third use case shows a deep neural network example, using the popular MNIST
dataset 5 [LC10], an image collection of handwritten digits. Deeplearning4J provides
an own data set iterator for this dataset. To make use of this implementation, a
dl4jTrainerClass is specified in the ViNNSL network definition as a parameter.

5 http://yann.lecun.com/exdb/mnist/

135

9 Use Cases

9.3.1 Dataset

The dataset which will be used for training, contains 60.000 elements, the test set 10.000
examples of handwritten digit images from zero to nine, so there are ten possible classi-
fication classes. The images have a size of 28x28 pixels.

9.3.2 Prerequisites

• Kubernetes Cluster running
• Services from the Neural Network Execution Stack deployed in cluster
• Hostname cluster.local resolves to Minikube instance

9.3.3 Create the neural network

Request

POST https://cluster.local/vinnsl

BODY

<vinnsl>
<description>

<identifier><!-- will be generated --></identifier>
<metadata>

<paradigm>Deep Learning</paradigm>
<name>MNIST Digit Recognition</name>
<description>MNIST Digit Recognition Example</description>
<version>

<major>1</major>
<minor>0</minor>

</version>
</metadata>
<creator>

<name>Author</name>
<contact>author@institution.com</contact>

136

9.3 MNIST Digit Recognition Example

</creator>
<problemDomain>

<propagationType type="feedforward">
<learningType>supervised</learningType>

</propagationType>
<applicationField>DeepLearning</applicationField>
<networkType>Backpropagation</networkType>
<problemType>DeepLearning</problemType>

</problemDomain>
<endpoints>

<train>true</train>
<retrain>true</retrain>
<evaluate>true</evaluate>

</endpoints>
<structure>

<input>
<ID>Input1</ID>
<size>

<min>784</min>
<max>784</max>

</size>
</input>
<hidden>
<ID>DenseLayer</ID>
<size>

<min>1000</min>
<max>1000</max>

</size>
</hidden>
<output>
<ID>Output1</ID>
<size>

<min>10</min>
<max>10</max>

</size>
</output>

</structure>
<parameters>

137

9 Use Cases

</parameters>
<data>
</data>

</description>
</vinnsl>

Response

201 CREATED

Aside from the HTTP Status Code, we also get HTTP headers in the response. The
one needed for further requests is named location. The value of this field is the URL
of the network, that was created and can be used to get and update fields on the
dataset.

In this example the following value is returned:

Header Name Header Value

location https://cluster.local/vinnsl/5b8f16bb5d298600014f1ec1

The id of the new dataset is 5b8f16bb5d298600014f1ec1. In the following requests the id
is shortened as {id}.

9.3.4 Add ViNNSL Definition to the Neural Network

The ViNNSL definition XML contains metadata like name and description of the network
as well as the stucture of the neural network model. There is one input and one output
layer defined. In between there are two hidden layers. It is also possible to specify
additional parameters.

The parameter dl4jTrainerClass defines a special worker class, that adds additional
attributes to the ViNNSL Network programatically.

The Network has one input, one dense and one output layer. The learning rate is set to
0.006, the momentum to 0.9. The dense layer uses Rectified Linear Unit (ReLu) and the
output layer Softmax as activation function.

138

9.3 MNIST Digit Recognition Example

Request

POST https://cluster.local/vinnsl/{id}/definition

BODY

<definition>
<identifier><!-- will be generated --></identifier>
<metadata>

<paradigm>Deep Learning</paradigm>
<name>MNIST Digit Recognition</name>
<description>MNIST Digit Recognition Example</description>
<version>

<major>1</major>
<minor>0</minor>

</version>
</metadata>
<creator>

<name>Author</name>
<contact>author@institution.com</contact>

</creator>
<problemDomain>

<propagationType type="feedforward">
<learningType>supervised</learningType>

</propagationType>
<applicationField>Deep Learning</applicationField>
<networkType>Backpropagation</networkType>
<problemType>Deep Learning</problemType>

</problemDomain>
<endpoints>

<train>true</train>
</endpoints>
<executionEnvironment>

<serial>true</serial>
</executionEnvironment>
<structure>

<input>
<ID>Input1</ID>

139

9 Use Cases

<size>784</size>
</input>
<hidden>
<ID>DenseLayer</ID>
<size>1000</size>

</hidden>
<output>
<ID>Output1</ID>
<size>10</size>

</output>
<connections>
<!--<fullconnected>

<fromblock>Input1</fromblock>
<toblock>DenseLayer</toblock>
<fromblock>DenseLayer</fromblock>
<toblock>Output1</toblock>

</fullconnected>-->
</connections>

</structure>
<resultSchema>

<instance>true</instance>
<training>true</training>

</resultSchema>
<parameters>

<valueparameter name="learningrate">0.006</valueparameter>
<valueparameter name="epochs">15</valueparameter>
<valueparameter name="seed">123</valueparameter>
<valueparameter name="momentum">0.9</valueparameter>
<comboparameter name=
"dl4jTrainerClass">at.ac.univie.a00908270.nnworker.dl4j
.Dl4jMnistNetworkTrainer</comboparameter>

</parameters>
<data>

<description>DL4J MNIST Dataset</description>
</data>

</definition>

140

9.3 MNIST Digit Recognition Example

Response

200 OK

9.3.5 Queue Network for Training

Request

POST https://cluster.local/worker/queue/{id}

Response

200 OK

9.3.6 Evaluation Result

As soon as the training and testing process is finished, a file with the testing report
is ready on the storage server. A result file with id 5b8f2092852b830001ec105a was
uploaded to the storage service. The status is changed to FINISHED and the transformed
Deeplearning4J model representation is updated in the field dl4jNetwork.

In the ViNNSL NN UI, the result file can be viewed by switching to the Data tab and
selecting See File under the headline Result Data.

[...]

==========================Scores==
of classes: 10
Accuracy: 0.9836
Precision: 0.9836
Recall: 0.9835
F1 Score: 0.9835

Precision, recall & F1: macro-averaged (equally weighted avg. of 10 classes)
==

141

9 Use Cases

Training took 211.468000 seconds

By examining the result file, it can be noticed that the accuracy of the network was 98,4
percent after fifteen training epochs. The training took three minutes and thirty seconds
on the tested hardware.

142

10 Future Work

The flexibility of the presented neural network stack opens up many opportunities for
further work and integration into already existing frameworks and applications. This
section points out a few ideas.

10.1 ViNNSL Compatibility

ViNNSL compatibility is limited in the current prototype of ConbexNN and could be
fully implemented to be fully compatible with other systems. See section 5.9 for current
limitations.

10.2 Integration in N2Sky

N2Sky features a graphical editor to design the neural network structure and training of
the model, as seen in Figure 10.1. N2Sky also uses the ViNNSL language to model neural
networks. It enables to run the training process in the neural network stack by using the
provided API.

10.3 Neural Network Backends

Presently the Deeplearning4J platform undertakes the task of network training. ViNNSL
XML files are transformed into a Deeplearning4J model before training. With manageable
development effort the API could be extended to support direct import of Deeplearning4J
models. Furthermore the Framework provides support for Keras1, a python framework
that is fitted to run on top of TensorFlow, Microsoft Cognitive Toolkit and Theano [DL4b]

1 https://keras.io

143

10 Future Work

Figure 10.1: N2Sky Neural network evaluation process [FAS18]

[ker18]. By extending the API to enable an import of these frameworks, demand from
other target audiences could be covered.

10.4 Graphical Neural Network Designer

The ViNNSL XML scheme could be used to design and validate ViNNSL networks in a
graphical editor, presenting a drag&drop interface. Another possible function could be
an integration of the neural network stack directly into the visual designer to import and
train networks into the cluster without leaving the application.

10.5 Deploy trained Models as Web Service

After the training of a neural network model is finished, a useful functionality would be
to expose the result for further predictions as a web service. Client applications could run
their requests against the trained models to receive model predictions.

144

10.6 Integrate into other Platforms

10.6 Integrate into other Platforms

There are neural network platforms on the market that could be integrated. According to
a Gartner report from February 2018, KNIME is currently leading in the category “Data
Science and Machine Learning Platforms” [Gar].

10.6.1 KNIME

KNIME Analytics Platform2 is open-source at its core3 and already features a Deeplearn-
ing4J integration4. Figure 10.2 shows a screenshot of the application designing a Multi
Layer Perceptron network and exporting it to a Deeplearning4J model. As the application
is open-source and extensible, an option to export and train models using the presented
execution stack could be added.

10.7 Full featured Web Application

The graphical interface of ConbexNN provides a quick overview over neural networks
and their status, but does not cover all features specified in the RESTful API. It could
be extended to behave like a fully featured web application that can be used as an
alternative to the API. It could also provide a functionality to integrate plugins into the
user interface.

2 https://www.knime.com
3 https://github.com/knime/knime-core
4 https://github.com/knime/knime-dl4j

145

10 Future Work

Figure 10.2: Screenshot of KNIME Analytics Platform using Deeplearning4J Integration

146

11 Conclusion

This thesis presented ConbexNN, an open-source execution stack for neural network
simulation in an effective and efficient way using simple RESTful webservices fostering
Kubernetes Cloud container orchestration and microservices. Using this technique it be-
comes possible to scale individual services easily and automatically according to current
load. Each component is fully interchangeable, as long as the documented RESTful API
is implemented. ConbexNN was demonstrated and evaluated on the Iris flower and a
wine rating data set. Furthermore various ideas to integrate this solution into other neu-
ral network platforms, were given. It is easy to set-up on popular cloud platforms, like
Amazon AWS, Google Cloud Engine and Microsoft Azure.

Using ViNNSL as domain specific modelling language, enables users to define neural
networks without explicit programming skills.

147

12 Acknowledgments

I would like to thank my whole family, girlfriend and friends for the support and patience
during the time I was occupied doing research, the long nights I was programming code,
who were always pushing me forwards to achieve my goals.

Furthermore I would like to express my deepest appreciation to my supervisor and
lecturer Mr. Univ.-Prof. DI Dr. Erich Schikuta for his ideas, support and input, which
made this thesis possible.

149

List of Figures

1.1 Distribution of machine learning of 264 companies in the DACH region
[BB16] . 15

2.1 Monolithic Architecture vs. Microservice Architecture 18
2.2 Kubernetes core architecture [Bai15] . 20
2.3 Docker Swarm Mode core architecture [Doc] 24
2.4 Classification of neural networks by Haun [Hau98] 28
2.5 Tensor flow computation graph, adapted from [Dea15] 30
2.6 TensorFlow Programming Stack, adapted from [Tenb] 31

3.1 Mockup: User Interface of Frontend Service 41

4.1 UML Use Case Diagram . 44
4.2 Training Sequence Diagram . 50
4.3 NoSQL Data Model . 51
4.4 Architectural Overview of the Neural Network Stack 53
4.5 User Interface Design for vinnsl-nn-ui . 55
4.6 Service Discovery with kube-dns . 58
4.7 State Machine of a Neural Network . 59

5.1 Class Diagram of vinnsl-service . 67
5.2 Class Diagram of vinnsl-storage-service 68
5.3 Class Diagram of vinnsl-worker-service 70
5.4 VinnslUI Vue Class . 71

6.1 User Interface of ConbexNN . 74

9.1 Neural Network Datastructure visualized in the Robo3T application . . 124
9.2 ViNNSL NN UI shows training in progress 125
9.3 DL4J Training UI shows training progress of Iris Classification network . 126
9.4 Neural Network Datastructure of the finished network visualized in the

Robo3T application . 126

151

List of Figures

10.1 N2Sky Neural network evaluation process [FAS18] 144
10.2 Screenshot of KNIME Analytics Platform using Deeplearning4J Integration 146

152

Bibliography

[Bai15] Baier, Jonathan: Getting Started with Kubernetes. Packt Publishing, 2015

[BB16] Björn Böttcher, Dr. Carlo V. Daniel Klemm K. Daniel Klemm: Ma-
chine Learning im Unternehmenseinsatz / Crisp Research AG.
Version: 2016. https://www.unbelievable-machine.com/downloads/
studie-machine-learning.pdf. 2016. – Forschungsbericht

[BGO+16] Burns, Brendan; Grant, Brian; Oppenheimer, David; Brewer, Eric; Wilkes,
John: Borg, Omega, and Kubernetes. In: Communications of the ACM 59
(2016), apr, Nr. 5, 50–57. http://dx.doi.org/10.1145/2890784. – DOI
10.1145/2890784

[Boh] Bohn, Björn: OSCON: Kubernetes gewinnt den Preis in der Kategorie
"Größte Auswirkung". https://www.heise.de/developer/meldung/
OSCON-Kubernetes-gewinnt-den-Preis-in-der-Kategorie-Groesste-Au\
swirkung-4116762.html, Retrieved: 2018-07-20

[BRBA17] Bashari Rad, Babak; Bhatti, Harrison; Ahmadi, Mohammad: An Introduction
to Docker and Analysis of its Performance. In: IJCSNS International Journal of
Computer Science and Network Security 17 (2017), 03, Nr. 3, S. 228–235

[BVSW08] Beran, P. P.; Vinek, E.; Schikuta, E.; Weishaupl, T.: ViNNSL - the Vienna
Neural Network Specification Language. In: 2008 IEEE International Joint Con-
ference on Neural Networks (IEEE World Congress on Computational Intelligence),
2008. – ISSN 2161–4393, S. 1872–1879

[Dea15] Dean, Jeff: TensorFlow: Large-scale machine learning on heterogeneous systems.
Nov 2015

[Dee] Deeplearning4J: Visualize, Monitor and Debug Network Learning. https:
//deeplearning4j.org/visualization, Retrieved: 2018-06-08

153

https://www.unbelievable-machine.com/downloads/studie-machine-learning.pdf
https://www.unbelievable-machine.com/downloads/studie-machine-learning.pdf
http://dx.doi.org/10.1145/2890784
https://www.heise.de/developer/meldung/OSCON-Kubernetes-gewinnt-den-Preis-in-der-Kategorie-Groesste-Au\swirkung-4116762.html
https://www.heise.de/developer/meldung/OSCON-Kubernetes-gewinnt-den-Preis-in-der-Kategorie-Groesste-Au\swirkung-4116762.html
https://www.heise.de/developer/meldung/OSCON-Kubernetes-gewinnt-den-Preis-in-der-Kategorie-Groesste-Au\swirkung-4116762.html
https://deeplearning4j.org/visualization
https://deeplearning4j.org/visualization

Bibliography

[DKT17] Dheeru, Dua; Karra Taniskidou, Efi: UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml. Version: 2017

[DL4a] DL4J Authors, The: Features. https://deeplearning4j.org/features, Re-
trieved: 2018-07-20

[DL4b] DL4J Authors, The: Importing Models From Keras to Deeplearning4j. https:
//deeplearning4j.org/model-import-keras, Retrieved: 2018-06-20

[Doc] Docker: Swarm mode key concepts. https://docs.docker.com/engine/
swarm/key-concepts/, Retrieved: 2018-06-18

[Ell16] Ellingwood, Justin: An Introduction to Kubernetes - DigitalOcean.
Version: 2016. https://www.digitalocean.com/community/tutorials/
an-introduction-to-kubernetes, Retrieved: 2018-05-08

[Eva17] Evans Data Corporation: AI, ML, and Big Data Survey 2017, Vol.
2. Version: 2017. https://evansdata.com/reports/viewRelease.php?
reportID=37

[FAS18] Fedorenko, Andrii; Adamenko, Aliaksandr; Schikuta, Erich: N2Sky - A
Neural Network Problem Solving Environment Fostering Virtual Resources.
In: IJCNN 2018 : International Joint Conference on Neural Networks, 2018

[Fis] Fisher, Ronald A.: The Use Of Multiple Measurements In Taxonomic Prob-
lems. In: Annals of Eugenics 7, Nr. 2, 179-188. http://dx.doi.org/10.1111/
j.1469-1809.1936.tb02137.x. – DOI 10.1111/j.1469–1809.1936.tb02137.x

[Frö] Fröhlich, Jochen: Neural Networks with Java - Backpropagation. https://www.
nnwj.de/backpropagation.html, Retrieved: 2018-07-20

[Gar] Gartner: Magic Quadrant for Data Science and Machine-Learning Platforms

[Hau98] Haun, M.: Simulation Neuronaler Netze: eine praxisorientierte Einführung ; mit
23 Tabellen. expert-Verlag, 1998 (Reihe Technik). – ISBN 9783816915447

[Joy15] Joy, A. M.: Performance comparison between Linux containers and vir-
tual machines. In: 2015 International Conference on Advances in Computer
Engineering and Applications, 2015, S. 342–346

[ker18] Keras: The Python Deep Learning library. https://keras.io. Version: 5 2018,
Retrieved: 2018-06-10

154

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://deeplearning4j.org/features
https://deeplearning4j.org/model-import-keras
https://deeplearning4j.org/model-import-keras
https://docs.docker.com/engine/swarm/key-concepts/
https://docs.docker.com/engine/swarm/key-concepts/
https://www.digitalocean.com/community/tutorials/an-introduction-to-kubernetes
https://www.digitalocean.com/community/tutorials/an-introduction-to-kubernetes
https://evansdata.com/reports/viewRelease.php?reportID=37
https://evansdata.com/reports/viewRelease.php?reportID=37
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://www.nnwj.de/backpropagation.html
https://www.nnwj.de/backpropagation.html
https://keras.io

Bibliography

[Kop15] Kopica, Thomas: Vienna Neural Network Specification Language 2.0, Masterthe-
sis, 2015

[Kuba] Kubernetes Authors, The: Ingress. https://cloud.google.com/
kubernetes-engine/docs/tutorials/http-balancer, Retrieved: 2018-05-
31

[Kubb] Kubernetes Authors, The: Kubernetes Components. https://kubernetes.io/
docs/concepts/overview/components/, Retrieved: 2018-05-10

[Kubc] Kubernetes Authors, The: Kubernetes Concepts - Pods. https://kubernetes.
io/docs/concepts/workloads/pods/pod/, Retrieved: 2018-05-12

[Kubd] Kubernetes Authors, The: Kubernetes DNS-Based Service Discovery. https:
//github.com/kubernetes/dns/blob/master/docs/specification.md, Re-
trieved: 2018-05-31

[LC10] LeCun, Yann; Cortes, Corinna: MNIST handwritten digit database. (2010).
http://yann.lecun.com/exdb/mnist/, Retrieved: 2018-09-01

[LF14] Lewis, James; Fowler, Martin: Microservices: a definition of this new architectural
term. 2014

[Mak18] Makadia, Mitul: Top 8 Deep Learning Frameworks. In: DZone (2018), 03

[MCM13] Michalski, R.S.; Carbonell, J.G.; Mitchell, T.M.: Machine Learning: An Artifi-
cial Intelligence Approach. Springer Berlin Heidelberg, 2013 (Symbolic Com-
putation). https://books.google.at/books?id=-eqpCAAAQBAJ. – ISBN
9783662124055

[Met14] Metz, Cade: The Mission to Bring Google’s AI to the Rest of the World. https:
//www.wired.com/2014/06/skymind-deep-learning/. Version: 2014, Re-
trieved: 2018-07-20

[ND4a] ND4J Authors, The: N-Dimensional Arrays for Java. https://nd4j.org/
index.html, Retrieved: 2018-07-20

[ND4b] ND4J Authors, The: Speed. https://nd4j.org/benchmarking, Retrieved:
2018-07-20

[ngi] nginx: Using nginx as HTTP load balancer. http://nginx.org/en/docs/http/
load_balancing.html, Retrieved: 2018-05-31

[Por] Portworx: Portworx Annual Container Adoption Survey 2017

155

https://cloud.google.com/kubernetes-engine/docs/tutorials/http-balancer
https://cloud.google.com/kubernetes-engine/docs/tutorials/http-balancer
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://github.com/kubernetes/dns/blob/master/docs/specification.md
https://github.com/kubernetes/dns/blob/master/docs/specification.md
http://yann.lecun.com/exdb/mnist/
https://books.google.at/books?id=-eqpCAAAQBAJ
https://www.wired.com/2014/06/skymind-deep-learning/
https://www.wired.com/2014/06/skymind-deep-learning/
https://nd4j.org/index.html
https://nd4j.org/index.html
https://nd4j.org/benchmarking
http://nginx.org/en/docs/http/load_balancing.html
http://nginx.org/en/docs/http/load_balancing.html

Bibliography

[RM17] Raschka, S.; Mirjalili, V.: Machine Learning mit Python und Scikit-Learn und
TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive An-
alytics und Deep Learning. mitp-Verlag, 2017 (mitp Professional). – ISBN
9783958457355

[Sam59] Samuel, Arthur L.: Some studies in machine learning using the game of
Checkers. In: IBM JOURNAL OF RESEARCH AND DEVELOPMENT (1959),
S. 71–105

[SM13] Schikuta, Erich; Mann, Erwin: N2Sky - Neural networks as services in the
clouds. In: The 2013 International Joint Conference on Neural Networks (IJCNN),
IEEE, aug 2013. – ISBN 978–1–4673–6129–3, 1-8

[Spra] Spring: Spring Boot. https://spring.io/projects/spring-boot, Retrieved:
2018-06-03

[Sprb] Spring: Spring Data MongoDB. https://projects.spring.io/
spring-data-mongodb/, Retrieved: 2018-06-03

[Tena] TensorFlow Authors, The: Estimators. https://www.tensorflow.org/
versions/master/guide/estimators, Retrieved: 2018-07-15

[Tenb] TensorFlow Authors, The: Getting Started for ML Beginners.
https://www.tensorflow.org/versions/r1.5/get_started/get_
started_for_beginners, Retrieved: 2018-07-15

[VGC+15] Villamizar, M.; Garcés, O.; Castro, H.; Verano, M.; Salamanca, L.; Casallas, R.;
Gil, S.: Evaluating the monolithic and the microservice architecture pattern
to deploy web applications in the cloud. In: 2015 10th Computing Colombian
Conference (10CCC), 2015, S. 583–590

[VGO+16] Villamizar, M.; Garcés, O.; Ochoa, L.; Castro, H.; Salamanca, L.; Verano, M.;
Casallas, R.; Gil, S.; Valencia, C.; Zambrano, A.; Lang, M.: Infrastructure Cost
Comparison of Running Web Applications in the Cloud Using AWS Lambda
and Monolithic and Microservice Architectures. In: 2016 16th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2016,
S. 179–182

156

https://spring.io/projects/spring-boot
https://projects.spring.io/spring-data-mongodb/
https://projects.spring.io/spring-data-mongodb/
https://www.tensorflow.org/versions/master/guide/estimators
https://www.tensorflow.org/versions/master/guide/estimators
https://www.tensorflow.org/versions/r1.5/get_started/get_started_for_beginners
https://www.tensorflow.org/versions/r1.5/get_started/get_started_for_beginners

	Introduction
	Problem Statement
	Motivation
	Structure
	Related Work
	ViNNSL
	N2Sky

	State of the Art
	Containers
	Docker Containers

	Microservices
	Container Orchestration Technologies
	Kubernetes
	Docker Swarm Mode
	Comparison
	Decision

	Machine Learning
	Neural Networks
	Classification of Neural Networks
	Backpropagation Networks
	Neural Network Frameworks
	Decision

	Requirements
	Functional Requirements
	User Interface

	Non-Functional Requirements
	Quality
	Technical
	Software
	Hardware
	Documentation
	Source Code
	Project Website
	Developer Environment

	Specification
	Use Case
	Use Case Descriptions

	Sequence Diagram
	Sequence of Training

	Data Model Design
	vinnsl-service
	storage-service

	Overview Microservices
	Vinnsl Service (vinnsl-service)
	Worker Service (vinnsl-nn-worker)
	Storage Service (vinnsl-storage-service)
	Frontend UI (vinnsl-nn-ui)

	User Interface Design
	Service Discovery and Load Balancing
	Kubernetes DNS-based Service Discovery

	Neural Network Objects State

	Implementation
	Project Website
	Source Code
	Releases
	Framework Dependencies
	Spring
	Swagger
	Fabric8
	Deeplearning4J

	Security
	User Interface
	vinnsl-nn-ui (Frontend UI)

	Endpoints
	Additional Endpoints

	Class Diagrams
	vinnsl-service
	vinnsl-storage-service
	vinnsl-worker-service
	vinnsl-nn-ui

	Limitations
	Neural Network Design
	Parameters

	User Interface
	vinnsl-nn-ui (Frontend UI)
	Architecture
	Features
	Limitations

	API Documentation
	vinnsl-service
	Import a new ViNNSL XML Defintion
	List all Neural Networks
	Delete all Neural Networks
	Get Neural Network Object
	Remove Neural Network Object
	Add/Replace File of Neural Network
	Add/Replace ViNNSL Definition of Neural Network
	Add/Replace ViNNSL Instanceschema of Neural Network
	Add/Replace ViNNSL Resultschema of Neural Network
	Add/Replace ViNNSL Trainingresult of Neural Network
	Get Status of all Neural Networks
	Get Status of Neural Network
	Set Status of a Neural Network
	Get Deeplearning4J Transformation Object of Neural Network
	Put Deeplearning4J Transformation Object of Neural Network

	vinnsl-storage-service
	Handle File Upload from HTML Form
	List all Files
	Download File by Original Filename
	Download or Show File by FileID
	Delete File by FileID
	Get File Metadata by FileID
	Upload MultipartFile
	Upload File by URL

	vinnsl-worker-service
	getWorkingQueue
	addToWorkingQueue

	Deployment
	Local Machine
	Virtual Machine
	Download

	Google Cloud Instance
	Amazon EKS
	Microsoft AKS

	Use Cases
	Iris Classification Example
	Dataset
	Prerequisites
	Create the neural network
	Add ViNNSL Definition to the Neural Network
	Queue Network for Training
	Training
	Testing
	Evaluation Result

	Wine Score Classification
	Dataset
	Prerequisites
	Create the neural network
	Add ViNNSL Definition to the Neural Network
	Queue Network for Training
	Evaluation Result

	MNIST Digit Recognition Example
	Dataset
	Prerequisites
	Create the neural network
	Add ViNNSL Definition to the Neural Network
	Queue Network for Training
	Evaluation Result

	Future Work
	ViNNSL Compatibility
	Integration in N2Sky
	Neural Network Backends
	Graphical Neural Network Designer
	Deploy trained Models as Web Service
	Integrate into other Platforms
	KNIME

	Full featured Web Application

	Conclusion
	Acknowledgments
	List of Figures
	Bibliography

