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1. Summary 

Curcumin is a yellowish orange polyphenol with pleiotropic activities. However, it has a poor 

bioavailability due to rapid metabolism in intestine and liver. Since, pharmacokinetics 

(absorption, distribution, metabolism and excretion) plays a determinant role in efficacy, 

toxicity and interaction of drugs; thus, the role of uptake transporters and metabolizing 

enzymes on the activity of curcumin was investigated.  

In the first project, the metabolism of curcumin in human hormone-dependent ZR-75-

1 and hormone independent MDA-MB-231 breast cancer cell lines was elucidated by using 

high-performance liquid chromatography (HPLC) coupled with UV and mass spectrometry 

which clearly showed the formation of cucumin sulfate as the main metabolite. Interestingly, 

sulfation was far more pronounced in ZR-75-1 cells compared to MDA-MB-231 cells leading 

to higher intracellular curcumin sulfate levels, thereby explaining the lower EC50 of curcumin 

in this cell line. For the very first time, our data also confirmed the formation of curcumin 

dimer as a novel minor curcumin metabolite in the breast cancer cells. The concentration of 

curcumin glucuronide and other metabolites was below of the detection limit. 

In the second project, our focus was to investigate the role of organic anionic 

transporting polypeptides (OATPs) in the uptake of curcumin and its main metabolites 

curcumin sulfate, curcumin glucuronide and tetrahydrocurumin. This data may help to 

elucidate whether curcumin and its metabolites can accumulate to bioactive levels in tissues 

and organs. By using the OATP-transfected Chinese hamster ovarian cells (CHO), we found 

that OATP1B1, 1B3 and 2B1 were able to transport curcumin and its sulfated conjugate in 

CHO cell line.  Tetrahydrocurcumin was only transported by OATP1B1 and 1B3 but not by 

OATP2B1. Moreover, all the three OATPs were not able to transport curcumin glucuronide. 

To further prove the importance of OATPs, OATP1B1-knockdown ZR-75-1 cells were 

incubated with curcumin which showed a decreased curcumin uptake compared to the 

OATP1B1 overexpressing wild-type cells. This leads to higher EC50 values and a decreased 

inhibition value of interleukin -induced NF-B reporter expression.  

In the third project, we investigated the spasmolytic activity of curcumin, 

demethoxycurumin, bisdemethoxycurcumin, the major curcumin metabolite 

tetrahydrocurcumin and the non-enzymatic curcumin hydrolysis products ferulic acid, 

feruloyl methane and vanillin in isolated ileum, aorta and pulmonary artery of guinea pig. The 
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ionotropic and chronotropic activities of these compounds were also determined in papillary 

muscles and right atrium of guinea pig, respectively. The biological effects of turmeric 

powder have been already reported but the extent to which demethoxycurcumin and 

bisdemethoxycurcumin, tetrahydrocurcumin and the three main degradation products also 

contribute to pharmacological effects individually, was still unknown. Our results revealed 

that curcuminoids and tetrahydrocurcumin demonstrated significant spasmolytic activity in 

ileum. However, only demethoxycurcumin relaxed pulmonary artery significantly. All three 

curcuminoids, but not tetrahydrocurcumin, exhibited mild negative chronotropic activity. 

Interestingly, curcumin and demethoxycurcumin demonstrated mild positive ionotropic 

activity. In contrast, bisdemethoxycurcumin showed mild negative ionotropic activity. Ferulic 

acid, feruloyl methane and vanillin demonstrated no pharmacological activity at all in the 

various isolated organs. Moreover, we also analyzed the uptake of curcumin, 

demethoxycurcumin, bisdemethoxycurcumin and tetrahydrocurcumin into the various tissue 

samples where concentrations correlated with the pharmacological activity.  

In conclusion, our results show for the first time that curcumin is sulfated in breast 

cancer cells and that intracellular curcumin sulfate levels inversely correlated with 

cytotoxicity. We also demonstrated that OATPs act as cellular uptake transporters for 

curcumin, tetrahydrocurcum and curcumin sulfate, but not for curcumin glucuronide. 

Moreover, our data also showed that demethoxycurcumin and bisdemethoxycurcumin 

demonstrated more pronounced spasmolytic and vasodilating activity than curcumin 

indicating that both the curcuminoids significantly contribute to the observed pharmacological 

effects of Curcuma longa which have to be considered in humans after oral intake of turmeric 

powder. 
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2. Zusammenfassung  

Curcumin ist ein orangegelbes Polyphenol mit pleiotropischen Eigenschaften. Die  

Bioverfügbarkeit  ist gering, bedingt durch sehr rasche Metabolisierung in Darm und Leber. 

Da die Pharmakokinetik (Resorption, Verteilung, Metabolismus und Ausscheidung) einen 

bestimmenden Einfluss auf Effektivität, Toxizität und Arzneistoffwechselwirkungen ausübt, 

wurde die Rolle von Aufnahmetransportern und metabolisierenden Enzymen auf die Aktivität 

von Cucumin untersucht.  

 In der ersten Studie wurde die Metabolisierung von Curcumin in der 

hormonabhängigen ZR-75-1 und der hormonunabhängigen  MDA-MB-231 humanen 

Brustkrebszelllinie mittels Hochleistungsflüsigkeitschromatographie gekoppelt mit UV und 

Massenspektrometrie untersucht, wobei sich deutlich zeigte, dass die Bildung von 

Curcuminsulfat den Hauptmetabolisierungsweg darstellt. Interessanterweise war die Bildung 

von Curcuminsulfat in ZR-75-1-Zellen deutlich stärker ausgeprägt als in MDA-MB-231 

Zellen was die geringeren IC50-Werte von Curcumin  in dieser Zelllinie erklärt. Zum ersten 

Mal bestätigten unsere Daten auch die Bildung eines neunen dimeren Curcumins in humanen 

Brustkrebszelllinien. Die Konzentration von Curcuminglucuronid und anderer 

Biotransformationsprodukte war unterhalb der Nachweisgrenze.  

 Der Fokus der zweiten Studie lag auf der Rolle von „organic anionic transporting 

polypeptides“ (OATPs) auf die zelluläre Aufnahme von Curcumin und dessen 

Hauptmetaboliten Curcuminsulfat, Curcuminglucuronid und Tetrahydrocurcumin. Diese 

Studie sollte bei der Beantwortung der Frage helfen, ob Curcumin und dessen 

Biotransformationsprodukte in Geweben und Organen angereichert werden können um dort 

bioaktive Spiegel zu erreichen. Unter Verwendung von OATP-transfizierten „Chinese 

hamster ovarian cells“ (CHO) konnten wir zeigen, dass Curcumin und Curcuminsufat mittels 

OATP1B1, 1B3 und 2B1  transportiert werden. Tetrahydrocurcumin wird hingegen nur von 

OATP1B1 und 1B3 transportiert, während Curcuminglucuronid kein Substrat für diese drei 

OATPs darstellt. Um die Bedeutung von OATPs für die Aufnahme von Curcumin zu 

unterstreichen wurden OATP1B1-knockdown ZR-75-1-Brustkrebszellen mit Curcumin 

inkubiert, wobei im Vergleich zu überexprimierten Wildtyp-Zellen ein verringerte zelluläre 

Aufnahme von Curcumin gefunden wurde. Dies führte zu höheren IC50-Werten und zu einer 

verringerten Expression von Interleukin -induziertem NF-B. 
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 In einem letzten Projekt untersuchten wir die spasmolytische Aktivität von Curcumin, 

Demethoxycurcumin, Bisdemethoxycurcumin und Tetrahydrocurcumin, sowie der 

Curcuminhydrolyseprodukte Ferulasäure, Feroylmethan und Vanillin in isolierten 

Gewebsstücken des Ileums, der Aorta sowie der Lungenarterie von Meerschweinchen. Eine 

mögliche inotrope und chronotrope Aktivität wurde am isolierten Papillarmuskel und am 

rechten Vorhof untersucht. Die pharmakologische Wirkung von Curcumin wurde bisher nur 

für eine Gelbwurzmischung nachgewiesen nicht hingegen für reines Demethoxycurcumin, 

Bisdemethoxycurcumin und die drei nicht-enzymatischen Zerfallsprodukten.  Unsere 

Ergebnisse zeigten erstmals anschaulich, dass alle drei Curcuminoide sowie 

Terahydrocurcumin eine ausgeprägte spasmolytische Aktivität am Ileum aufweisen, während 

Demethoxycurcumin nur die Pulmonalarterie relaxiert.  Alle drei Curcuminoide, nicht jedoch 

Tetrahydrocurcumin, zeigten weiters eine geringe negative chronotrope Aktivität. 

Bisdemethoxycurumin hingegen zeigte eine geringe positive inotrope Aktivität. 

Interesanterweise konnte für Ferulasäure, Feroylmethan und Vanillin keine pharmakologische 

Aktivität festgestellt werden. In weiteren Versuchen analysierten wir auch die Aufnahme von 

Curcumin, Demethoxycurcumin, Bisdemethoxycurcumin und Tetrahydrocurcumin in die 

verschieden Gewebe und Organe, wobei deren Konzentration mit der pharmakologischen 

Wirkung korrelierte.  

Zusammenfassend zeigten unsere Daten zum ersten Mal, dass Curcumin in humanen 

Brustkrebszellen zu Curcuminsulfat metaboliert wird und dass der intrazelluläre Spiegel von 

Curcuminsulfat eine inverse Korrelation mit der Cytotoxiziät aufweist. Wir konnten weiters 

nachweisen, dass OATPs für die zelluläre Aufnahme von Curcumin, Curcuminsulfat und 

Tetrahydrocurcumin, nicht jedoch von Curcuminglucuronid veranwortlich sind. Darüber 

hinaus konnten wir zeigen, dass Demethoxycurcumin, Bisdemethoxycurcumin eine 

gegenüber Curcumin eine ausgeprägtere spasmolytische, und vasodilatatorische Wirkung 

besitzen. Beide Curcuminoide dürften daher an der pharmakologischen Wirkung von 

Curcuma longa beteiligt sein, was nach peroraler Einnahme von Gelbwurzpulver bei 

Menschen berücksichtigt werden sollte.  
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3. Introduction 

3.1 Curcumin 

Turmeric powder (obtained from the rhizome of Curcuma longa) is a yellowish orange 

powder, used as a spice, colorant and medicine all over the world [1]. Since the ancient times, 

it is used in Indian and Chinese folk medicines with a history of 2000 years [2]. In Indian 

herbal medicines, its paste is topically applied against skin diseases (skin infection, acne, 

eczema, itching and ulcers), vertigo, swelling, bruises, inflammatory joints, diabetic wounds 

as well as insect and reptile bites [3]. Moreover, it is ingested orally for the treatment of 

respiratory diseases (common cold, bronchitis and asthma), for gastrointestinal problems 

(indigestion, gastritis, gastrointestinal reflex disease, diarrhea, flatulence, gut worm, intestinal 

spasm and hepatic diseases), anemia, urinary disorders and diabetic wounds [3,4]. Turmeric 

paste is applied on umbilical cord of the new born babies due to its antiseptic activity [3,5]. In 

Chinese medicine, turmeric powder is used to treat the symptoms caused by blood obstruction 

such as psychataxia and arthralgia [6]. It is also consumed traditionally to cure menstrual 

pain. In veterinary folk medicine, it is used against wounds, parasitic infections, and skin 

disorders [3]. 

Curcuminoids are polyphenols which are active ingredients of Curcuma longa, 

consisting of curcumin (77%), demethoxycurcumin (17%) and bisdemethoxycurcumin (6%) 

[5]. In modern science, it is reported that they have various biological effects including: 

wound healing, anti-inflammatory, anti-oxidant, anti-neoplastic, spasmolytic, anti-diabetic, 

anti-rheumatic and anti-microbial activities [3,7,8]. They also have gastrointestinal, hepatic-, 

cardio-, renal- and neuro-protective properties [3,9-11]. Recent studies have shown that 

curcumin plays beneficiary role against acute myocardial infarction, dyslipidemia, biliary 

disease, bronchial asthma, oral diseases, inflammatory bowel disease, obesity, Alzheimer’s 

disease, depression and dermatitis [12,13]. Curcuma extracts showed spasmolytic effect on 

rabbit intestine by blocking the calcium channels [4], whereas intravenous administration of 

sodium curcuminate caused lowering of blood pressure and bradycardia in anesthetized cats 

and dogs [14]. Curcumin is also involved in relaxing pre-contracted aorta independent of 

nitric oxide synthesis [6]. These results demonstrate that curcumin is a potent spasmolytic 

agent which exerts its antispasmodic activity by blocking the calcium channels.  

Curcumin is also a potent anti-cancer agent and has anti-proliferative activity against 

cancers of skin, stomach, head, neck, colon, breast, liver, pancreas, prostate, nasopharynx, 

lungs, ovaries and uterus [5,15,16]. Curcumin suppresses the expression of cyclin D1; 

modulating transcription factors such as NFκB, AP1, STAT3 and STAT5; modulates  CAMP 
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response element binding proteins and electrophile response elements including Egr-1, PPAR-

γ, β-catenin and Nrf-2 [5,17]. It is also responsible for downregulating expression of BCL2, 

BCL-XL, COX-2, MMP-9, EGFR, HER2 and TNF [5,18]. Recently, it is reported that 

curcumin is involved in reduction of angiogenesis and tumor growth in mouse xenograft of 

human breast cancer by influencing NF-κB. Furthermore, both in vitro and in vivo studies 

exhibit that curcumin and its metabolites are involved in apoptosis and anti-proliferative 

activity against hormone dependent and hormone independent breast tumors [19]. 

 

Fig 1: Metabolism of curcumin. Curcumin is actively metabolized by reductases into major 

metabolites including dihydrocurcumin, tetrahydrocurcumin and hexhydrocurcumin, while by 

sulfotransferase and UDP glucuronosyl transferase; it is converted into curcumin sulfate and 

curcumin glucuronide respectively, which are minor metabolites. 

 

Despite these vast reported biological activities of the curcuminoids, they have not been 

transformed into a drug mainly due to low bioavailability which is due to low oral absorption 

and rapid metabolism. Curcumin is well tolerated after oral dose; 12g/day, [20,21] and upon 

ingestion of 10-12 g of curcumin in a single bolus dose, no free curcumin was detected after 

30 min. However, its glucuronide and sulfated conjugates were detected in plasma samples, 

suggesting that curcumin is extensively metabolized after oral ingestion [21].  

However, when curcumin was injected intravenously or intraperitoneally, it rapidly 

metabolized into dihydrocurcumin, tetrahydrocurcumin, hexahydrocurcumin and 
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hexahydrocurcuminol. Moreover, these phase-I metabolites further undergo sulfate and 

glucuronide conjugation, resulting in dihydrocurcumin glucuronide, tetrahydrocurcumin 

glucuronide, hexahydrocurcumin glucuronide, tetrahydrocurcumin sulfate and 

hexahydrocurcumin sulfate [22]. 

Interestingly, phase-I metabolites including tetrahydrocurcumin, hexahydrocurcumin 

and octahydrocurcumin are pharmacologically active compounds. Tetrahydrocurcumin 

exhibits anti-oxidant, anti-inflammatory, neuro protective, anti-aging, anti-diabetic and anti-

cancer activities [23]. Tetrahydrocurcumin was more active compared to parent compound 

curcumin in modulating some biological targets such as P21, P53, cPLA2, GSK-3β, mTOR, 

GST, GPx, Hb, LPO, PI3K, JNK, SOD and catalase [24]. Similar to tetrahydrocurcumin, 

hexahydrocurcumin and octahydrocurcumin also exhibit anti-inflammatory and anti-oxidant 

activities [25-27]. Hexahydrocurcumin exhibited synergistic effects with 5-flurouracil in 

suppressing colon cancer [28]. Curcumin sulfate was also shown to inhibit prostaglandin E2 

production in vitro and in vivo in rat model [26]. 

Taken together, curcumin, its congeners and its metabolites exhibit pleothora of 

biological activities. However, curcuminoids demonstrated erratic bioavailability due to 

pharmacokinetic issues; hence majorly research is now being focused on improving the 

bioavailability of curcuminoids, thus making them druggable substances. The bioavailability 

of any substance depends on multiple factors starting from absorption, tissue distribution and 

then metabolism. After oral intake, a drug or compound is absorbed into blood stream either 

by simple diffusion or with the help of primary or secondary transporters. The primary and 

secondary transporters, in addition to cardiac output, tissue blood perfusion rate, vascular 

permeability, plasma proteins and drug solubility, play an important role in the cellular uptake 

of the drugs. Thus, drug transporters are a key factor in drug bioavailability and determine 

efficacy and toxicity of a drug. After distribution and cellular uptake, a drug substance is 

metabolized. In humans, liver is the main organ for metabolism however; extrahepatic 

metabolism also takes place in the body. Metabolism is divided into phase-I and phase-II. The 

phase-I metabolism is involved in adding functional group, whereas phase-II metabolism is 

responsible for conjugation (sulfonation or glucuronidation). Metabolism is usually a 

detoxification process but sometimes active metabolites are also produced. Similar to 

transporters, metabolizing enzymes are also important in determining pharmacokinetics of a 

drug. 
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Fig 2: Targets of curcumin vs tetrahydrocurcumin. Different biological targets are modulated 

differentially by curcumin and tetrahydrocurmin, thus indicating differential affinity and 

potency of the both parent compound curcumin and its active metabolite tetrahydrocurcumin.  

 

 In our first manuscript, we focused on phase-II metabolism of curcumin in breast 

cancer cell lines and determined its role in cytotoxicity. We quantified curcumin sulfate and 

curcumin glucuronide after incubating the curcumin with ZR-75-1 and MDA-MB-231 cell 

lines in order to co-relate metabolism of curcumin with cytotoxicity. In the second 

manuscript, we described the role of organic anion transporting polypeptides (OATPs) in the 

cellular uptake of curcumin and its metabolites in OATP1B1, 1B3 and 2B1 transfected 

Chinese hamster ovarian (CHO) cell lines in addition to wild type and OATP1B1 transfected 

ZR-75-1 cell line to determine whether these compounds can accumulate in the cells to 

bioactive level. In our last manuscript, we determined the spasmolytic, ionotropic and 

chronotropic activities of all three curcuminoids and their major metabolite i.e., 

tetrahydrocurcumin in various isolated tissues of Guinea pigs. We also checked tissue levels 

of the curcuminoids and their active metabolite in respective tissue samples to establish a 

correlation in pharmacological activity with the respective tissue uptake. In the following part 

of introduction, we generally described metabolism followed by transporters and then animal 

models to study the drug effects.  
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3.2 Metabolism 

Metabolism also called biotransformation performs a vital role in the clearance of xenobiotics 

with the help of enzymes, hence, protects the body from toxicity. Metabolism is mainly 

divided into two phases; Phase-I (functional group addition) and phase-II (conjugation) [29]. 

 

3.2.1 Phase-I 

The phase-I metabolizing enzymes play a role in adding functional group to their substrates, 

resulting in more polar metabolites [29,30]. N- and O-dealkylation and oxidation, aliphatic 

and aromatic hydroxylation, reduction, cyclization, decyclization and deamination are 

important reactions performed by the phase-I enzymes [30]. Cytochrome P450 (CYP 450) is 

the major enzyme family responsible for phase-I metabolism with up to 60% of all drug 

metabolic reactions [31]. However, several other enzymes including aldehyde oxidase, 

monoamine oxidase, xanthine oxidase, dehydrogenase, flavin monooxygenase, peroxidase 

and hydrolase also play a role in the phase-I metabolism [29]. CYPs are majorly expressed in 

liver however they are also present in intestine, kidney and adrenal gland [29]. CYPs are 

membrane bound enzymes, localized in endoplasmic reticulum, however, its catalytic site is 

found in cytoplasm [32]. Cytochrome 450 is a large superfamily of enzymes, having 18 

families and 41 protein coding subfamilies, encoded by 57 genes [33]. The enzymes having at 

least 40% sequence identity are classified into one family, denoted by the Arabic numeral, 

whereas CYPs having more than 54% sequence identity are placed into one subfamily, 

designated by alphabet letters [33]. CYP 1-4 are encoded by more genes as compared to other 

families. CYP1A2, 2B6, 2C8, 2C9, 2C19, 2E1 and 3A4 are the most predominant enzymes 

with 200 clinical drug substrates. CYP3A4 has the broadest range of substrates due to its 

flexible active site [34,35]. In short, CYPs are important enzymes for drug elimination, and 

metabolize a broad range of drugs; thus, their inhibition or induction may cause drug-drug 

interactions [35]. 

 

3.2.2 Phase-II 

In contrast to the phase-I metabolism, the phase-II metabolism is involved in conjugation of 

xenobiotics and the phase-I metabolites by using glucuronidation, sulfation, acetylation, 

methylation, glutathione and amino acids conjugation reactions [30]. Hence, the phase-II 

metabolizing enzymes convert their substrates into more polar compounds, helping their 

excretion from biliary or renal route. Mostly, the phase-II metabolites are pharmacologically 

less active but there are some exceptions [29,30]. UDP-glucuronosyltransferases, 
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sulfotransferases and glutathione-S-transferases are majorly involved in the phase-II 

reactions, whereas N-acetyl transferases and methyl-transferases play a minor role [29]. 

 

3.2.2.1 UDP-glucuronosyltransferases 

UDP-glucuronotransferases (UGTs) are membrane bound enzymes responsible for 

glucuronidation of their substrates, resulting in the formation of β-D-glucuronide metabolites 

that are easily excreted via biliary or renal route [30]. This enzyme superfamily plays a key 

role in the phase-II detoxification process, involving in conjugation of numerous endo- and 

xenobiotics including bilirubin, hormones (steroid and thyroxine), bile acids, fat soluble 

vitamins, various drugs, environmental pollutant, carcinogens as well as dietary constituents 

[36,37]. Approximately, 40-70% of drugs and their phase-I metabolites undergo 

glucuronidation in humans [38]. Four UGTs families: UGT1, UGT2, UGT3 and UGT8 are 

identified in humans with 22 members (UGT1A1, 1A2, 1A3, IA4, 1A5, 1A6, 1A7, 1A8, 1A9, 

1A10; 2A1, 2A3; 2B4, 2B7, 2B10, 2B11, 2B15, 2B17, 2B28; 3A1, 3A2 and 8A1) [30]. 

UGT1 and UGT2 use uridine-diphospho-α glucuronic acid (UDPGA) as a cofactor for 

glucuronidation of various endo- and xenobiotics (aliphatic alcohols, phenols, thiols 

carboxylic acids as well as primary, secondary and tertiary alcohols) [30,39]. However, UGT8 

is involved in the biosynthesis of substances for nervous system (glycosphingolipids and 

cerebosides) by converting UDP-galactose to UDP-galactosidate ceramides [30]. Recently, 

UGT3A1 is found responsible for N-acetylglucosaminyl transferation [40]. The UGT family 

share at least 40% homology at DNA level and classified by Arabic numbers. The subfamily 

has minimum 60% sequence identity of DNA and sub-classified by alphabet letters after first 

Arabic number whereas second Arabic number describe individual gene [41]. 

Generally, UGTs are localized in endoplasmic reticulum and it is proposed that a co-

factor and the substrate binding sites are located at luminal side, whereas metabolites are 

effluxed from cytosolic side [42,43]. UGTs are widely distributed in various tissues but 

majorly localized in liver. Several UGTs (UGT1A1, 1A3, 1A4, 1A6, 1À9, 2B7 and 2B15) 

play a major role in hepatic glucuronidation [42,44]. Extrahepatic glucuronidation takes place 

in intestine, kidney, placenta, brain, pancreas and nasal epithelium [30,45,46]. UGT1A7, 1A8 

and 1A10 are expressed in intestine and responsible for first pass effect resulting in reduced 

bioavailability of clinical drugs and dietary constituents [47-49]. 
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3.2.2.2 Sulfotransferases 

Sulfotransferases (SULT) are responsible for conjugation of their substrate with the help of 3'-

phosphoadenosine 5'-phosphosulfate (PAPS); a co-factor (source of sulfonate group) [29,30]. 

PAPS is produced in all tissues, and sulfonate group from PAPS is transferred to the 

substrate, leaving behind 3'-phosphoadenosine-5'-phosphate (PAP) [50,51]. Broadly speaking, 

sulfotransferases are classified into two groups; Golgi apparatus membrane bound 

sulfotransferases are responsible for sulfation of several large molecules including proteins, 

peptides, glycosaminoglycans and lipids, resulting in important structural and functional 

modulation. The cytosol sulfotransferases (SULT) play an important role in sulfation of drugs 

and small endogenous molecules such as neurotransmitters, bile acids, hormones and peptides 

[52]. Four families (SULT1, SULT2, SULT4 and SULT6) are found in humans with 13 

isozymes (SULT1A1, 1A2, 1A3, 1A4; 1B1; 1C1, 1C2, 1C4; 1E1; 2A1; 2B1; 4A1 and 6B1) 

[53]. The family shares 45% homology at genetic level and classified by Arabic numbers after 

word ‘SULT’, whereas subfamily shares the 60% homology for their members and sub-

classified by alphabet letter while Arabic number after the alphabet indicates the gene [54]. 

Mostly, sulfotransferases detoxify the active substances by converting them into more polar 

compounds that can be excreted easily by biliary or renal route [55]. However, it is not always 

the case; some sulfated metabolites are more active or toxic than their parent compounds, for 

example, sulfated metabolites of N-hydroxy heterocyclic amine, N-hydroxyarylamine and 

hydroxyl heterocyclic amines are charged molecules which are carcinogenic and mutagenic 

[55]. Similarly minoxidil (a hair growth and antihypertensive agent), morphine (opioid), 

triamterene (diuretic) and cholecystokinin (a neuroendocrine peptide) are converted into more 

active metabolites upon sulfation [29,52]. In contrast to glucuronidation, sulfation is a low 

capacity and high affinity reaction which predominates at low concentrations while at high 

concentration glucuronidation is a more prominent reaction [53,56]. Sulfotransferases are not 

only involved in sulfation of the primary xenobiotics but also the metabolites from the phase-I 

reaction and glucuronides are substrates for SULTs [29]. SULTs are widely distributed in the 

body including liver, adrenal gland, lung, kidney, brain, intestine, endometrium, platelets, 

leukocytes, prostate and testis [30]. Interestingly, human fetus lacks glucuronidase enzyme 

until 20
th

 week of the gestation, during that period sulfation is mainly responsible for the 

metabolism and detoxification [57], particularly SULT1A1, 2A1, 1C1, 1C2 and 1C4 play a 

vital role [58]. 
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Structure of cytosolic sulfotransferase 

Sulfotransferases are globulins, consisting of single α/β domain. The α helices surrounds 

every side of 5 stranded parallel structure of β domain. The β domain structure is important 

functionally: as PAPS binding site and catalytic residues are located at β domain of SULTs 

[52,59]. The catalytic residues present at β domain is conserved in all SULTs (cytosolic and 

membrane bound) [59]. In addition, the PAPS binding site is almost same in all cytosolic 

SULTs [60]. It is important to know that conformational changes in ‘third loop’ and ‘α14-15’ 

helices of SULTs are needed for the PAPS binding to the enzyme [61,62]. Phosphate binding 

loop (PSB loop) and GxxGxxK motif at loop-3 in addition to residues ‘Arg130’ and ‘Ser138’ 

are important for the PAPS binding [63].  

 

 

Fig 3: Model of human SULT1A1. C-terminus is illustrated by red color; N-terminus is 

shown by blue-color; Coils represent for helices; Spherical models indicate bound ligands: 

PAP is demonstrated in white [64]. 

PSB loop is a P-shaped loop having residues 45-TYPKSGTT-52 (SULT1A1) and is an 

important site for binding of 5'-phosphate of PAPS to SULT [59]. It plays a vital role in 

orientation of the co-factor (PAPS) for the transfer of in line SO3- group to nucleophile 

substrate [59,61,65]. Hydrogen bonding is formed between 5'-phosphate of PAPS and last two 

residues of phosphate binding loop (PSB loop) [65] whereas, residues (257-259) from initial 

region of GxxGxxK motif and two additional residues (Arg130 and Ser138) are binding site 

of 3'-phosphate of PAPS [59]. In addition, four residues; Trp53, Tyr193, Thr227 and Phe229 
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play a determinant role for positioning of adenine ring of PAPS through staking, T-shaped 

interaction and hydrogen bonding [66]. Sulfotransferases have a wide range of substrates; 

however, numerous SULTs subfamilies prefer different substrates. Unlike the conserved 

PAPS binding site, enzymes from SULT family have variable substrate binding site [52].  

 

SULT1A1 was previously known as thermostable phenol sulfotransferase-1 or phenol 

sulfotransferase, which conjugates a wide variety of drugs and other xenobiotics [30,67]. 

Besides liver, it is localized in brain [68], lung, kidney, gastrointestinal tract, breast, adrenal 

gland, platelets, endometrium cells of uterus and placenta, indicating their vital role in 

sulfation [69]. Many phenolic substances including benzyl alcohols, aromatic amines, 

hydroxylamines, monocyclic phenols, naphtols, 4 nitrophenols,  N-hydroxy-2-amino-1-

methyl-6phenylimidazo pyridine, dihydrostilboestrol, dopamine, adrenaline and 

iodothyronines are substrates of sulfotransferases [70]. As most of the therapeutic drugs are 

phenolic compounds hence, SULT1A1 is involved in sulfation of numerous drugs. Human 

liver exhibits the highest expression of SULT1A1 whereas SULT1A1 and 1A3 are 

responsible for 90% of the sulfation process in this organ [29,51]. 

 

SULT1A2 was previously called thermostable sulfotransferase-2 [30]. Its mRNA, but 

not the expressed protein, is detected in humans [52]. It is believed that SULT1A2 is involved 

in sulfation of various pro-carcinogens such as aromatic hydroxylamines, and hence converts 

them into carcinogens by adding charged species into its substrates. This process results in 

covalent binding of these substrates with DNA, and hence damaging it [30]. Furthermore, it is 

also responsible for metabolism of 2-naphthol, 4-nitrophenol and minoxidil in in vitro models 

[53].  

 

SULT1A3 was termed as monoamine sulfotransferase or themolabile sulfotransferase 

and it is only identified in humans [52,67]. It has a considerable affinity for monocyclic 

phenols and is involved in sulfation of catecholamines, thus playing a determinant role in 

maintaining levels of neurotransmitters [71]. Noradrenaline, catechols, monocyclic phenols 

and aromatic molecules are substrates of SULT1A3 [52]. Interestingly, it is not localized in 

adult liver, however, it is distributed in other tissues with highest expression in intestine [72].  

 

SULT1B1 was previously known as dopa/tyrosine sulfotransferase [73]. Thyroid 

hormones and small molecules including 1-naphtol, diethylstilbosterol, iodothyrinines and 4 
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nitrophenol are substrates of SULT1B1 [53,74]. Expression of SULT1B1 is found in white 

blood cells, liver, colon and small intestine. It is a dominant enzyme in intestine and both 

SULT1B1 and 1A3 are responsible for 67% of sulfation in intestine [51,55]. 

 

SULT1C1 is expressed mainly in heart, lungs, gastrointestinal tract and kidney of 

human fetus. Various iodothyroids are weak substrates of SULT1C1 [30,53,75]. 

 

SULT1C2 was detected in human fetus [75]. In addition, its low expressions are also 

detected in adult human gastrointestinal tract [76]. The substrates of SULT1C2 include 4-

nitrophenols and N-hydroxyl-2-acetylaminoflureon [53].  

 

SULT1C4 was identified in lung tissues of human fetus. High mRNA expression of 

SULT1C4 was detected in fetal kidney and lung, whereas low mRNA expressions are 

identified in heart [75]. Ƿ-nitreophenol [77] and N-hydroxyl-2-acetylaminoflourorene [75] are 

known substrate of SULT1C4. Similar to SULT1C2, adult human gastrointestinal tract also 

exhibits low expressions of SULT1C4 [76]. 

 

SULT1E1 was known as estrone sulfotransferase which exhibits highest affinity for 

estrogen compared to all of SULTs. It plays a vital role in metabolism of estrogen, thus 

regulates its activity [30]. Moreover, it also conjugates pregnenolone, genistein, 1-naphtol, 

equilenine, minoxidil, diethylstiboestrol, DHEA and 4-hydroxytemoxifin [52]. SULT1E1 also 

have good affinity for iodothyronines [78]. Lung demonstrates the highest expression for 

SULT1E1 [51]. In addition, expressions of SULT1E1 have also been detected in cytosol of 

jejunum and liver [52,79-81]. Furthermore, high level of SULT1E1 was also found in kidney, 

liver and lung of fetus [52,58]. 

 

SULT2A1 is involved in sulfation of hydroxysteroids, thereby it was also known as 

DHEA sulfotransferase. It exhibits broad specificity of substrates and is responsible for 

sulfation of cyclic amines, steroids, small peptides, planar molecules and various drugs [29]. 

DHEA, pregnenolone, androgen, testosterone, cholesterol, lithocholic acid, minoxidil, estrone 

and bile acids are some important substrates of SULT2A1. Interestingly, sulfate metabolites 

of DHEA and pregnenolone are active neurosteroids [55,82]. SULT2A1 is localized with high 

expression in adult human liver [81] whereas, its low expressions are also detected in human 
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adult and fetal adrenal gland, placenta, prostate, ovary, small intestine, stomach, colon and 

kidney [72,83-86]. 

 

SULT2B1 was also known as cholesterol sulfotransferase. DHEA, estrogen, androgens 

and bile acids are substrates of SULT2B1 [30,72]. In humans, two variants of SULT2B1 are 

detected that differ by their amino acid sequences at N-terminal; SULT2B1a is a shorter 

variant (15 amino acids less) compared to its ‘b’ variant [54,87]. SULT2B1a gives preference 

to the sulfation of 3β-hydroxysteroid such as pregnenolone, DHEA, androstenediol and 

epiandrosterone [88] whereas SULT2B1b prefers sulfation of cholesterol, oxysterols and 3β-

hydroxysteroid hormones [72,87]. SULT2B1a is localized in liver, adrenal gland, placenta, 

lung, kidney, prostate, ovary and small intestine. However, the other variant exhibits wider 

distribution and is localized in lung, kidney, gastrointestinal tract, liver, spleen, thyroid, 

thymus, ovary, prostate, placenta and adrenal gland [89]. 

 

SULT4A1 is expressed particularly in human brain that is why it was initially called as 

“brain sulfotransferase like” (BR-STL) [90]. It is less identical (only 36%) to first two 

families of sulfotransferase [50]. However, no endogenous or xenobiotic substrate of 

SULT4A1 is identified till to date, probably due to missing PAPS binding site [91], thus 

making it an orphan enzyme [92]. 

 

SULT6B1 is localized in kidney [93] and testis [94]. Not much is known about the 

substrate of this enzyme [55]. However, a recent study described that recombinant mouse 

enzymes showed activity for thyroxine, bithionol and chlorinated bisphenol [93]. 

 

3.3 Cellular drug transport 

Besides simple diffusion, active and passive transport are responsible for uptake and efflux of 

xenobiotics. In contrast to the passive transport, the active transport requires energy. The 

active transport is further divided into primary and secondary active transport. The primary 

active transport is unidirectional; consuming energy from ATP hydrolysis and leading to 

conformational changes in transporter. However, the secondary active transport is involved in 

transportation of a co-substance with xenobiotics in the same or opposite direction.  

Drug transporters are membrane proteins that are distributed throughout the body, 

showing specific distribution in various organs. These transporters are liable for accumulation 

of drugs in various tissues, and hence, responsible for drug efficacy, toxicity and drug-drug 
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interactions [95]. Furthermore, it is also reported that various types of tumors exhibit over-

expression of these transporters that leads to an increase in efflux of certain anti-cancer drugs, 

making resistant strains of tumors. This fact makes these transporters as a novel target for 

drug designing. In this instance, it is crucial to know which transporters are involved in the 

uptake and efflux of various drugs [96]. 

Drug transporters principally include ATP binding cassette (ABC transporters) and 

solute carrier (SLC) families [97]. ABC transporters are primary efflux transporters that 

transfer drugs and metabolites out of the cells. These require energy for this process; thus, 

these are primary active transporters. However, SLC transporters are mainly influx or uptake 

transporters and classified as secondary active transporters [97]. 

 

3.3.1 ATP binding cassette-Transporters 

ATP binding cassette transporters (ABC transporters), are comprised of P-glycoproteins (P-

gp/ABCB1), breast cancer resistant protein (BCRP/ ABCG2) and multidrug resistant protein-

1(MRP1/ABCC1). It is a major transporter family that is responsible for transportation of 

endogenous compounds and their metabolites from inside to outside of the cells in eukaryotes,  

thus, principally protecting cells from cytotoxic activities of various xenobiotics and 

responsible for drug resistance during cancer and antimicrobial treatments [98,99]. The fact 

that ABC transporters are main determinants of pharmacokinetics and pharmacodynamics of 

various anticancer drugs which makes these transporters an important target in resistant 

cancer therapy [97]. Human ABC transporters consist of seven families that are encoded by 

49 genes [100,101].  

 

3.3.1.1 P-glycoprotein  

P-glycoprotein (Pgp) is the first member that was discovered in ABC transporters family in 

1986 [102]. It is encoded by MDR1gene [101]. It eliminates a large number of substances 

from the cells that are structurally unrelated to each other by consuming ATP energy [103]. P-

glycoproteins play an important role as detoxifier under normal physiological conditions and 

protect vital organ and tissues from accumulating xenobiotics, toxins and carcinogens 

[101,103]. Additionally, P-glycoproteins are also involved in synthesis and secretion of 

various steroids such as cortisol [104-106]. They extrude various anticancer drugs such as 

colchicine, vinca alkaloids, anthracyclines, taxanes, epipodophyllotoxins and tyrosine kinase 

inhibitors from tumors and cancerous tissues, causing multidrug resistance that leads to failure 
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of therapy [101]. This makes P-glycoprotein as an important target in cancer therapy, 

especially multidrug resistant therapy. 

 

3.3.1.2 Breast cancer resistant protein 

As shown by name, breast cancer resistant protein is the efflux transporter pump that was first 

discovered in MCF-7 a breast cancer cell line. However, it is also expressed in placenta, 

intestine, liver, uterus, adrenal gland, prostate, colon, testis, ovaries, lungs, endothelium of 

brain and central nervous system under normal physiological conditions [100,107]. It is 

encoded by ABCG2 gene. Expression of BCRP has been reported in several malignancies and 

tumors including acute lymphoblastic leukemia, acute myelogenous leukemia, chronic 

myeloid leukemia, intestinal adenocarcinoma, gastric carcinoma, endometrial carcinoma, 

hepatocellular carcinoma, small cell lung cancer, non-small cell lung cancer,  colon cancer 

and melanoma [108,109]. Over 200 xenobiotics, including several anticancer agents such as 

methotrexate, various tyrosine kinase inhibitors, camptothecin derivatives, anthracyclines and 

flavopiridol  are substrates of BCRP, indicating that BCRP can cause various resistant cancers 

[108,109]. 

 

3.3.1.3 Multi drug resistant proteins 

Multi drug resistant proteins are the efflux pumps consisting of 9 subfamilies, MRP1-MRP9; 

these are responsible for resistance of several anticancer agents [100,110]. These are widely 

distributed in several organs including liver, kidney tubules, ileum, duodenum, colon, gut, 

pancreas, gallbladder, skeleton muscles, brain, salivary gland, prostate, spleen and testes [111-

118]. It is important to know that breast cancer shows high level of MRP8 and MRP9 

expression [119,120]. In normal physiological state, MRPs mostly play protective and 

detoxification roles in the body [100,121-123]. Substrates of MRPs include leukotrienes, 

glutathione, glucuronide and sulfate conjugates, reduced folate, cAMP, cGMP,  bile acids, 

various anticancer drugs and other xenobiotics [100,124-127]. Mostly, MRPs exhibit high 

expression in various cancers and cause resistance to several anticancer drugs including 

methotrexate, anthracyclines, camptothecins, imatinib, vinca alkaloids, epipodophyllotoxins, 

cisplatin, taxanes, cyclic and acyclic nucleoside monophosphate as well as their analogs 

[110,118,125,128-133]. Moreover, they are involved in resistance against PEMA, 

dideoxycytidine and ganciclovir [134,135]. 
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3.3.2 Solute carrier- Transporters 

Human solute carrier transporters are secondary active transporters that are principally 

responsible for the uptake of various xenobiotics. They are expressed in various important 

organs such as liver, kidney, intestine and brain; suggesting their determinant role in 

pharmacokinetics of various xenobiotics including several anti-cancer agents. This family 

plays a key role in maintaining homeostasis and any malfunction may result into a disease 

[96]. SLC is an important and large family, consisting of 52 subfamilies and more than 400 

members; most of them are localized in cell membrane [136-139]. Organic anion transporting 

polypeptides (OATPs), organic anionic transporters (OATs) and organic cationic transporters 

(OCTs/OCTNs) are the pivotal subfamilies of solute carrier transporters that are responsible 

for transportation of diverse endogenous and exogenous substrates including anions, cations 

and zwitterionic substances [96,140]. Other important SLC proteins are peptide transporters 

and concentrative and nucleoside transporters that are involved in the uptake of various drugs 

[97,141]. In addition, crucial non-SLC transporters involved in the uptake of several drugs are 

sodium dependent taurocholate transporting proteins (NTCPs) and organic solute transporters 

(OST) [141]. Indeed, SLC transporters are important target for drug development in order to 

achieve critical goals such as improvement in compliance and adherence by alleviating in 

adverse effects and augmenting the chemo sensitivity [139,142]. 

 

3.3.2.1 Organic anionic transporting polypeptides 

Organic anionic transporting polypeptides (OATPs) are encoded by SLCO gene and 

responsible for Na
+
 independent uptake of large hydrophobic anions through the cell 

membranes, generally more than 300kDa [96,143,144]. Human OATPs are classified into six 

families (OATP1-6)  and eleven subfamilies based on their amino acid identity; OATPs 

having more than 40% sequence identity are classified into the same family and members that 

share more than 60% similarity belongs to same subfamily [143,145,146]. They are not only 

extensively expressed throughout the body in normal tissues, especially in liver, kidney, 

intestine and brain but also exhibit altered expression in various cancers [96,143]. OATPs 

have a wide variety of endogenous and xenobiotic substrates; important endogenous 

substrates are bile acids, estrone-3-sulfate, thyroid hormones, eicosanoids, prostaglandins, 

steroids and their conjugates while methotrexate, imatinib, statins and HIV protease inhibitors 

are some examples of xenobiotic substrates of OATPs [96]. 
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Structure of OATPs 

Human OATPs consists of 643-724 amino acids, the only exception is OATP5A1 that has 

848 amino acids [140]. OATPs have twelve transmembrane (TM) domains with N- and C-

terminal [96,97,143]. At C-terminal of several OATPs, a PDZ motif is located that may be 

involved in transport activity, ion channel signaling and other signal transductions [147,148]. 

It is reported that TM 3, 6, 9 and 12 are majorly embedded in membrane, whereas TM 1, 2, 4 

and 5 from N-terminal as well as 7, 8, 10 and 11 from C-terminal mostly interact with 

substrates [97]. OATPs also have five intracellular (ICL) and six extracellular loops (ECL). 

The large fifth ECL is important as all the ten disulfide bonds in cysteine residues present 

here are vital for the surface expression of OATPs and any mutation in these cysteine residues 

may lead to misfolded and easily degraded OATPs [96,140,143,145]. Furthermore, OATPs 

have several conserved N-glycosylation sites in the second and fifth loop which is important 

for OATPs function [96,140,149]. 

 

Fig 4: Model of human OATP1B1; transmembranes are depicted by cylinders; conserved 

cysteine residues in extracellular loops are shown in black circles [145] 

 

OATPs and cancer 

It is interesting to know that not only altered expression of OATPs is detected in various 

cancers and tumors but also OATPs play a vital role in cancer development by facilitating the 

uptake of estrone-3-sulfate, estradiol-17β-glucuronide, testosterone and 
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dehydroepiandrosterone sulfate (DHEA-S) to the cancer tissues [143,150]. Seven out of 

eleven OATPs are involved in the uptake of estrone-3-phosphate [150] and OATP1B3 is 

responsible for the uptake of testosterone [151,152]. Therefore, OATPs can prove an 

important target for cancer detection and therapy as well as for drug interactions [139,150]. 

An alteration in the expression of OATP1A2 was identified in gliomas and various 

cancers including breast, bone, colon and prostate cancers [143,150]. Colon cancer tissues 

show decreased expression of OATP1A2 as compares to healthy colon tissues [153]. Human 

gliomas exhibit the expression of different subtypes of OATP1A2 [154]. High expression of 

OATP1A2 was detected in T47-D and ZR-75-1 breast cancer cell lines while low expression 

was observed in MCF-7, MDA-MB-231 and MDA-MB-468 breast cancer cell lines [143]. 

This was further confirmed in human breast tissue samples showing that cell membrane and 

cytoplasm of breast carcinoma cells express elevated OATP1A2 in comparison to healthy 

tissues particularly in stage-I and stage-IIA cancer [155,156] . A recent study on mouse 

xenograft reported that OATP1A2 is involved in regulation of estrone-3-phosphate and causes 

proliferation of hormone dependent breast cancer [157]. In addition, human prostate cancer 

cell lines; LNCaP and 22RV1 expressing OATP1A2 promote the uptake of DHEA-S, thus, 

resulting in growth of cancer cells in androgen depleted conditions [158]. Increased levels of 

OATP1A2 were detected in bone metastasis from human kidney cancer as well as in human 

osteosarcoma cell lines; HOS and MG-63 [159]. 

OATP1B1 and OATP1B3 are liver specific transporters under normal conditions; 

however, they are also detected in various cancers and cancer cell lines. Several studies 

reported reduced expression of OATP1B1 in hepatocellular carcinoma (HCC) tissue samples 

and cell lines in compassion to normal hepatocytes [160-164]. Expression of OATP1B1 is 

also detected in colon cancer and polyps [153] as well as in ovarian cancer cell line (SK-OV-

3) [165]. OATP1B1 may facilitate the uptake of paclitaxel in ovarian cancer [165]. Reduced 

expressions of OATP1B3 are also observed in primary and metastasized HCC and hepatic 

adenocarcinoma [163,166]. Various cancers and cancer cell lines frequently express 

OATP1B3; including cell lines from stomach (KatoIII), pancreas (MIA-Paca2, BXPC-1, PK-

8, PK-9 and PK-45P), gall bladder (HuCCT-1, OcuchLM1, and TFK-1), colon (DLD-1, 

MIP101, Clone A and CX-1),  lung (A549) and glioblastoma (A172) as well as clinical 

samples from gastric, colorectal, pancreatic, breast, prostate and testis cancers [151,152,167-

169].  In clinical samples taken from breast and prostate cancer, expression of OATP1B3 was 

found in 50 and 56% of samples respectively, and it was linked to better prognosis and 

clinical outcomes as well as reduced reoccurrence in androgen depleted prostate and non-
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estrogen dependent breast cancers [168,169]. High expression of OATP1B3 was also detected 

in the early stage and low grade colorectal tumors [169].  Moreover, expression of OATP1B3 

mRNA is markedly increased in non-small-cell lung cancer [162]. In contrast to OATP1B1 

and 1B3, mRNA of OATP1C1 is only detected in metastasized renal cancer and 

osteosarcomas having highest expression in aneurysmal bone cyst [159]. 

Altered expression of OATP2A1 is found in various cancer and cancer cell lines. For 

instance, expression of OATP2A1 mRNA is detected in breast cancer cell lines including 

MCF-7, MDA-MB-231 and ZR-751 cell lines [170] and elevated expression of this 

transporter are also observed in breast cancer, hepatocellular carcinoma, cholangiocarcinoma, 

liver cancer metastasized from colon cancer and bone cancer metastasized from kidney cancer 

[159,170,171]. In contrast, tumors from colon, stomach, lung, ovary, and kidney exhibit 

reduced expressions of OATP2A1 at mRNA and protein level [172]. 

A change in expression of OATP2B1 was also detected in several tumors and cell lines 

of tumors. Expression of OATP2B1 mRNA was detected in CX-1 (colon cancer cell line) 

[173] and its expression was found higher in bone cysts in comparison to osteosarcoma [159]. 

Both clinical samples (normal and tumor breast specimens) as well as breast cancer cell lines 

express OATP2B1 [174]. A direct correlation of tumor grade and expression of 

OATP2B1was reported [174]. Malignant samples of breast tumors exhibit higher expression 

of OATP2B1 as compared to non-malignant specimens [170]. In contrast, lower expressions 

of OATP2B1 mRNA were quantified in liver and pancreas cancer in comparison to 

surrounding non-malignant tissues [175]. In human gliomas, expression of OATP2B1 was 

localized in endothelial cells of blood brain barrier and blood tumor barrier [154]. 

Expression of both OATP3A1 and 4A1 mRNA are elevated in numerous cancerous cell 

lines such as; HOS, MG-63 (osteocarcinoma) [159]; GI-101 (breast carcinoma) [173]; GI-102 

(ovarian carcinoma) [173]; GI-103 (pancreatic carcinoma); CX-1, GI-112 (colon 

adenocarcinoma) [173]; LX-1, GI-117 (lung carcinoma) [173]; T-47D (breast ductal 

carcinoma) [176,177] and MCF-7 (breast adenocarcinoma) [178]. At protein level, expression 

of OATP3A1 and 4A1 are markedly higher in aneurismal bone cyst compared to 

osteosarcoma [159]. Both transporters are over-expressed in primary as well as in metastatic 

liver cancers [171]. Elevated expression of OATP4A1 mRNA is reported in colorectal cancer 

samples and is associated with reduced sensitivity of cyclic nucleotides in colorectal neoplasia 

[179]. Moreover, expression of OATP4A1 is detected both in normal tissues as well as in 

breast tumors [170], whereas OATP3A1, OATP4C1 and OATP5A1 are localized in 

membrane and cytoplasm of malignant breast cancer tissues only [180]. Additionally, mRNA 
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and protein expression of OATP5A1 are up-regulated in liver cancer [171] and in small cell 

lung cancer [181]. Transfection of HEK-293 cells with OATP5A1 resulted in resistance of 

satraplatin therapy [181]. In short, frequent alterations of OATPs in several cancers are 

reported, indicating that they can act as a promising tool for detection and therapy of 

respective cancers. 

 

OATP1A2 is the first cloned human OATP and is widely expressed throughout the 

body with highest expression in brain [96,140]. Besides luminal membrane of endothelial 

cells of brain, it is also localized in apical membrane of distal nephrons, enterocytes of 

duodenum, apical membrane of cholangiocytes of liver, epithelium of retinal pigment, lung, 

testis and placenta [96,140,143,182,183]. Localization of OATP1A2 in critical organs enable 

it to regulate absorption, distribution and excretion of drugs [140].  Under normal 

physiological condition, OATP1A2 regulates drug secretion into bile and urine as well as 

permeation of xenobiotics by blood brain barrier. It also mediates absorption of xenobiotics in 

intestine and testis. Estrone-3-sulfate, estradiol 17β glucuronide, dehydro epiandrosterone 

sulfate (DHEA-S), T3, T4, prostaglandin E2 and bile acids are some classic endogenous 

substances transported by OATP1A2 [143]. However, typical drug substrates of OATP1A2 

include β-blockers, statins, fexofenadine, fluoroquinolones, HIV protease inhibitors, labetalol, 

sotalol and anti-cancer agents; methotrexate, imatinib, paclitaxel, docetaxel and 

doxorubicin.[143,150,184-188] 

 

OATP1B1 is a liver specific transporter and localized in basolateral membrane of 

hepatocyte throughout the lobes of liver [96,140]. It is involved in transportation of 

amphiphilic organic substances into liver in Na
+
 and ATP independent fashion [96]. Several 

endogenous substances including bile salts (conjugated and unconjugated), bilirubin 

(conjugated and unconjugated), estradiol 17β glucuronide, estrone-3-sulfate, DHEA-S, 

leukotrienes, prostaglandin E2, thromboxane B2 and various thyroid related substrates are 

transported by OATP1B1 [143,145]. Whereas, statins, antiviral agents, ACE inhibitors, 

sartans, bosentan, caspofungin, cefazolin, ezetimibe, rifampicin, troglitazone, and various 

anticancer agents including methotrexate, paclitaxel, docetaxel, doxorubicin, rapamycin, are 

some examples of drugs transported by OATP1B1 [143,150].  

 

OATP1B3 is also a liver specific transporter and localized at basolateral membrane of 

hepatocyte near central vein [143] however, mRNA of OATP1B3 has also been detected in 
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retina recently [189]. OATP1B3 shares 80% of structure similarity with OATP1B1 [185]. 

Thus, it is responsible for the uptake of same endogenous substances that is transported by 

OATP1B1, in addition to gastrointestinal peptide cholecystokinin-8 (CCK-8); that is the only 

OATP1B3 specific substrate [143,145,190]. Exogenous substances transported by OATP1B3 

are similar to OATP1B1. However, digoxin is transported by OATP1B3 only [143,150,185]. 

 

Table 1: Substrates of human OATPs transporters 

Protein Gene Endogenous substrates Exogenous substrates 

OATP1A2 SCLO1A2 Estrone-3-sulfate, Estradiol 

17βglucuronide, DHEA-S, 

T3, T4, PGE2, Bile 

acids[143] 

β blockers, Statins, Fexofenadine, 

Fluoroquinolones, HIV protease 

inhibitors, Methotrexate, Imatinib, 

Paclitaxel, Docetaxel, Doxorubicin [143] 

OATP1B1 SLCO1B1 Bile salt, bilirubin,  Estradiol 

17β glucuronide, Estrone-3-

sulfate, PGE2, DHEA-S, 

Leukotrienes, thromboxane 

B2,  thyroids [143,145] 

Statins, Antiviral agents, ACE inhibitors, 

Sartans, Bosentan, Caspofungin, 

Cefazolin, Ezetimibe, Rifampicin, 

Troglitazone, Methotrexate, Paclitaxel, 

Docetaxel, Doxorubicin, Rapamycin 

[143,150] 

OATP1B3 SCLO1B3 Similar to OATP1B1 and 

CCK-8 [143,190] 

Similar to OATP1B1 and Digoxin 

[143,185] 

OATP1C1 SCLO1C1 Taurocholate, Estradiol 17β-

glucuronide, Estrone -3-

sulfate, T3,  rT3, T4, thyroxine 

sulfate [150,191,192] 

Not known 

OATP2A1 SCLO2A1 Prostaglandins, 

Thromboxane B2 [193,194] 

Latanoprost [193] 

OATP2B1 SCLO2B1 Estrogen-3-sulfate, DHEA-

S, Thyroxin, Bile acid salts, 

PGE2 [143,195] 

Statins, Ezetimibe, Glibenclamide, 

Montelukast and Talinolol [143,186] 

OATP3A1 SCLO3A1 Estrone-3-sulfate, PGE1,2, 

Throxine, Vasopressin 

[191,196] 

Benzylpenicillin, BQ-123, Deltorphin 

[196] 

OATP4A1 SCLO4A1 Estradiol-17β-glucuronide, 

Estrone-3-sulfate, T3, T4, 

Benzylpenicillin,  

Unoprostone metabolite [173,198] 
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rT3, Taurocholate, PGE2 

[173,197] 

OATP4C1 SCLO4C1 cAMP, Estrone-3-sulfate, 

T4, rT3, Bile salts [145] 

Cardiac glycosides, Methotrexate [145] 

OATP5A1 SCLO5A1 Not known Not known 

OATP6A1 SCLO6A1 Not known Not known 

Anti-cancer agents are represented in italics in the table 

 

OATP1C1 is detected in brain and testes [199] while protein expression of OATP1C1 

is localized in placenta [96], basolateral membrane of choroid plexus epithelium cells [200], 

glial cells of hypothalamus [201], pars para of pigmented ciliary body epithelium [202] and 

leydig cells of testes [199]. OATP1C1 shows high affinity for rT3 and T4 and is responsible 

for their transportation in brain [150]. Endogenous substances transported by OATP1C1 

includes; taurocholate, [191] estradiol 17β-glucuronide, estrone-3-sulfate, T3,  rT3, T4, [199] 

thyroxine sulfate [192] and BSP [143]. Till to date, no anti-cancer drug is reported to be 

transported by OATP1C1. 

 

OATP2A1 is an example of ubiquitously expressed transporter [203,204]. Expression 

of OATP2A1 mRNA is detected in various tissues and organs, for instance: brain, heart, liver, 

kidney, colon, pancreas, spleen, small intestine, skeleton muscle, ovary, placenta and prostate 

[205]. Protein expression of OATP2A1 is localized in epithelial cells of retina as well as epi- 

and endothelial cell membrane of various eye tissues, for example in ciliary body [193]. 

Moreover, it is also distributed in glandular and luminal epithelium of endometrium, [206] in 

neurons of the frontal gyrus of brain [207] as well as in pyloric cells antrum and parietal cells 

of gastric corpus [208]. OATP2A1 is also called human prostaglandin transporter and it is 

involved in transportation of various prostaglandins including prostaglandin E1, E2, F2α, H2, 

D2 and 8-iso-prostaglandin F2α [193,194]. In addition to prostaglandins, OATP2A1 also 

transports thromboxane B2 [194]. Furthermore, latanoprost is only known drug that is 

transported by OATP2A1 into eye [193].  

 

OATP2B1 mRNA is detected in various organs with highest levels in liver [143,209]. 

Whereas, protein expression of this transporter is localized in basolateral membrane of liver 

cells [209], brush border membrane of enterocyte of small intestine [210], in luminal 

membrane of blood brain barrier [154], in endothelial cells of heart [211], in myoepithelium 
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of mammary gland duct [176], in syncytiotrophoblast of placenta [212], in keratinocytes 

[213], in pars plicata of ciliary body [193,198], in platelets [214] and skeleton muscles [215]. 

It is responsible for transportation of estrogen-3-sulfate, DHEA-S, thyroxin, bile acid salts and 

prostaglandin E2 [143,195]. Moreover, statins [186,211,216], ezetimibe, glibenclamide, 

montelukast and talinolol are some examples of drugs that are transported by OATP2B1 

[143].  

 

OATP3A1 is an abundantly expressed transporter and highest levels of its mRNA are 

detected in brain, testes, lung and heart followed by spleen, peripheral blood leukocytes and 

thyroid gland [196,217]. At protein level, two splice variants of OATP3A1 are detected in 

humans, usually localized either in different cells or in different membrane of same cell [196]. 

For instance, OATP3A1 variant 1 and variant 2 are expressed in germ cells and sertoli cells of 

testes respectively. Estrone-3-sulfate [191], prostaglandin E1 and E2 [196], thyroxine [191] 

and vasopressin are some endogenous substrates transported by both variants of OATP3A1. 

In contrast, arachidonic acid is only transported by variant 2 [196]. OATP3A1 is involved in 

the uptake of drugs and drug candidates such as; benzylpenicillin [173], BQ-123 and 

deltorphin [196]. 

 

OATP4A1 is another example of ubiquitously expressed transporter [143] having 

highest levels of mRNA in heart and placenta, followed by lung, liver, skeleton muscles, 

kidney and pancreas [173,197]. However, OATP4A1 protein is localized in apical membrane 

of syncytiotrophoblast of placenta [218,219], epithelium of human ciliary body [198], adult 

and fetal cerebral cortex [220] and mammary gland [176]. Endogenous substrates of this 

transporter include estradiol-17β-glucuronide, estrone-3-sulfate, T3, T4, rT3, taurocholate and 

prostaglandin E2 [173,197]. Thus far, benzylpenicillin [173] and unoprostone metabolites 

[198] are known drugs transported by OATP4A1. 

 

OATP4C1 was considered a kidney specific transporter and it is localized in sinusoidal 

membrane of proximal tubules [221]. However, a recent microarray report shows that it is 

also expressed in liver [222] and at low levels in normal breast tissues [170]. OATP4C1 is 

responsible for the uptake of cAMP, estrone-3-sulfate, T4, rT3, bile salts, cardiac glycosides 

(digoxin, auabain), methotrexate and sitagliptin and uremic acid toxins [145].  
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OATP5A1 mRNA was found in fetal and adult brain [222,223], skeletal muscles, 

prostate, thymus [222] and heart [223]. The protein of OATP5A1 is localized at plasma 

membrane of epithelial lining of lactiferous ducts in breast [180]. Substrates of OATP5A1 is 

still poorly understood [96].  

 

OATP6A1 mRNA is detected in testes. In addition, its weak expression is also found in 

spleen, fetal and adult brain as well as in placenta [224]. Thus far, a little is known about its 

function and substrate [96] 

As OATPs are distributed in numerous organs and localized in important tissues of the 

body as well as responsible for transportation of wide variety of endogenous substances and 

drugs so, they play a determinant role in pharmacokinetics, drug-drug and drug food 

interaction of several drugs. 

3.4 Cell and animal experimental models 

Cell and animal experimental models are the major tool for evaluation of both 

pharmacokinetics and pharmacodynamics of drugs and xenobiotics. Several kinds of models 

including cell culture, isolated animal tissues or organs, whole animals, transgenic and 

humanized animals are used in biomedical and pharmaceutical studies, depending upon the 

specific research question. Since, every model has merits, demerits and limitations, thus, 

usually more than one model is combined to confirm the research findings. 

 

3.4.1 Cell culture 

After development of immortal cell lines, mammalian cell culture has become a popular 

model in biomedical research as it is a convenient, comparatively cheap and easy to handle. In 

addition, established cell lines are very homogeneous and experiments are performed in 

strictly controlled and replicable environment [225]. Both human and animal cell lines of 

several organs including intestine, liver, lung, breast, intestine, ovaries, heart and spleen are 

available for biomedical and pharmaceutical studies. In addition, several diseases especially 

cancer cell lines of various organs are now developed to understand the underline mechanisms 

and impact of different drugs and xenobiotics on these diseases. Breast cancer (MDA-MB-

231, MCF-7, and ZR-75-1), liver cancer (HepG2, SNU-182, SNU-423, and ALM-12), 

pancreatic cancer (BXPC3, AsPC-3), lung cancer (A-549 VIM RFP, NCI-H128) kidney 

cancer (HEK293, CaKi-1, CaKi-2), colon cancer (HT-29, SW-480, LS-180) cell lines are 

some examples of cancer cell lines that are developed for cancer studies [226]. 
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With the advancement of biomedical and molecular research, it became possible to 

transfect or knock out specific genes from cell lines and it is much easier to transfect the cell 

lines in comparison to whole animal. Thus, cell lines are important tool for understanding the 

role of different proteins including drug transporters and enzymes. OATP, MRP, 

sulfotransferase and UDP-glucuronsyltransferase, transfected and knock out cell lines are 

commonly used in uptake and metabolism studies [227]. The 3D cell culture model is an 

advanced type of cell culture, allowing cell to grow in three dimensional direction to achieve 

more relevant physiological behavior including apical basal polarization of cells, formation of 

lumen, more relevant RNA and proteins expression and representation of better hallmark of in 

vivo tissues [228,229]. Thus, 3D cell culture is used to co-culture the cells (combining the cell 

lines in such a way that they represent the tissues and organs), to control the fluids spatially 

by microfluid system, to elucidate the angiogenesis and tumor invasion assay and to develop 

vasculature models [228]. 

Since, human normal and cancer cell lines are derived from human beings, thus, 

these cell lines are close to the human models. However, as cell lines are not the whole 

organs, thus it does not give the answer of some questions. 

 

3.4.2 Isolated organs 

Isolated organs of animal and humans also play an important role in biomedical and 

pharmaceutical studies. The diseased or normal organs are used in these studies. Intestine, 

heart, arteries, muscles and liver are important organs used for biomedical studies [230-232]. 

Usually surgically removed diseased organs or tumors from humans, whereas healthy as well 

as chemical or germ induced diseased organs from animals are used in these studies, either to 

elucidate the effect of xenobiotics or to identify transporters, enzymes or other cancer 

hallmarks [227]. Isolated organs are the better experimental models for certain types of 

studies such as studying heart rate, ionotropic, chronotropic, spasmolytic and identifying 

transporters, metabolites and cancer hallmarks in the samples. However, isolated organs are 

not much suitable for the complex studies involving several organs and immune systems.  
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Fig 5: Cells and animal experimental model; Cell culture and isolated animal organs are 

considered in vitro studies; whole animal, transfected and humanized animals are considered 

in vivo studies 

 

3.4.3 Whole animal 

With the development of identical breeds, the use of animals in life sciences field is much 

increased. Guinea pig, mice, rats and primates are commonly used in biomedical research 

[233]. Usually drug or xenobiotics are fed to the healthy animals and impact of substances is 

studied. However, with the advancement of science, it is also possible to induce the disease in 

animals by using germs or substances. For example, mice with liver cancer can be produced 

by using liver toxins, whereas mice with cystic fibrosis or pneumonia can be induced with 

respective germs [234]. 

While using the whole animal model, one should be really very careful in choosing 

the animal because the course of disease may be different in human and the animal. For 

example, cystic fibrosis in mice can develop intestinal disease similar to human but fails to 

develop pulmonary complications similar to human beings. However, Swine model can 

replicate the intestinal as well as pulmonary complications [235]. We should also be careful in 

doing extrapolation of animal studies to the humans because drug transporters and 

metabolism enzymes may be different in animals compared to humans. For example, study 

28



 

conducted for metabolism of curcumin both in rat and human models reveals that sulfation of 

curcumin is five folds in rat intestine as compared to human intestine [22]. 

After reorganization of impact of GIT and dermal flora on research, the germ free mice 

or mice having one or two defined micro-organism strains is possible to develop with the help 

of Caesarian birth, flexible film isolated cage and irradiated food [236]. 

 

3.4.4 Transgenic animals 

Transgenic animal having knock in or knock out genes can act as an excellent model when 

traditional models fails to answer the research question [233]. With the advancement of 

genetics, transgenic rats, mice, chicken, cats, dogs, rabbit, sheep, goat, cattle, pigs, zebra fish 

and non-human primates are developed to study the role of certain proteins or enzymes 

[233,237]. 

 

3.4.5 Humanized animals 

Humanized animals are the transfected animals carrying human genes. Rats expressing human 

major histocompatibility locus, HLA-B27 are an example of such models. In addition, 

introduction of mutated human genes in animals have enabled the scientist to mimic the 

genetic diseases of humans in those animals [233]. For example, creation of human immune 

system in mice by implanting the human fetal lymphoid tissues or peripheral blood leukocytes 

allowed researchers to investigate hematopoiesis, basic immunology, infectious disease and 

autoimmune related studies [238]. Similarly, animals having human liver are important source 

of drug metabolism and viral hepatitis related studies [233,239]. 

Thus, it is concluded that cells and animals plays a key role in bio medical and 

pharmaceutical field. 
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4. Aims of the Thesis 

Curcumin is a yellowish orange polyphenol demonstrating several pharmacological effects. 

However, the major hurdle to use it as a therapeutic drug is its poor bioavailability because of 

its low uptake and rapid metabolism.  Organic anion transporting proteins (OATPs) are the 

secondary active transporters involved in the uptake of several xenobiotics and endogenous 

compounds. Their distribution throughout the body especially in liver, kidney and intestine 

describes their vital role in drug uptake, distribution and elimination. However, limited data is 

available about expression and function of OATPs in tumor cells and their role in chemo-

resistance. Thus, role of OATPs in the uptake of curcumin and its metabolites may advance 

the understanding of curcumin uptake process. Moreover, it is documented that after oral 

intake curcumin is metabolized to curcumin sulfate and curcumin glucuronide by phase-II 

metabolizing enzymes; sulfotransferases and glucuronidases. However, limited information 

was present to describe how curcumin is metabolized in breast cancer cells. Furthermore, all 

three curcuminoids as well as their major metabolite; tetrahydrocurcumin are 

pharmacologically active compounds; however, the exact contribution of these compounds in 

pharmacological effect and correlation of their activity with tissue uptake is still unknown. 

Thus, the main aims of thesis are to elucidate  

 

i. Metabolic fate of curcumin in breast cancer cell lines and impact of metabolism on 

cytotoxicity. 

ii. The impact of OATPs on transport of curcumin and its metabolites. 

iii. The in vitro activities of curcuminoids and its metabolite on isolated organs of guinea 

pig and correlation of uptake with their activities. 

This thesis consists of three manuscripts. The first manuscript describes the role of 

sulfotransferases on cytotoxicity of curcumin in hormone dependent ZR-75-1 and hormone 

independent MDA-MB-231 cell line. The second manuscript illustrates the differential role of 

OATP1B1, 1B3 and 2B1 in the uptake of curcumin in Chinese hamster ovarian (CHO) cell 

line. In addition, it also elaborates the role of OATP1B1 on the uptake of curcumin by using 

wild type and OATP1B1-knockdown ZR-75-1 breast cancer cell line. The third manuscript 

explains the differential spasmolytic activities of curcumin, its derivatives and metabolites on 

ileum, aorta and pulmonary artery of guinea pig while chronotropic and ionotropic activities 

on papillary muscle and right atrium respectively. It also describes the correlation of 

described activities with the tissue uptake.  
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5. Results 

5.1 Original papers and manuscripts 

5.1.1    Manuscript 1 

Qurratul Ain Jamil, Natharath Jaerapong, Martin Zehl, Kanokwan Jarukamjorn, Walter 

Jäger; Metabolism of curcumin in human breast cancer cells: impact of sulfation on 

cytotoxicity; Planta Medica, (impact factor 2.494) Aug; 2017; 83(12/13) 1028-1034 DOI: 

10.1055/s-0043-107885. 

I performed transport and metabolism studies, HPLC analysis, cytotoxicity assay, and 

determination of protein concentration. 

 

5.1.2    Manuscript 2 

Qurratul Ain Jamil, Shahid Muhammad Iqbal, Walter Jaeger, Christian Studenik; 

Vasodilating, spasmolytic, ionotropic and chronotropic activities of curcuminoids from 

Curcuma Longa in isolated organs preparations of guinea pig; Journal of Physiology and 

Pharmacology (impact factor 2.478), manuscript accepted 

I performed HPLC quantification of curcumin, demethoxycurcumin, 

bisdemethoxycurcumin and tetrahydrocurcumin in respective tissue samples, data analysis 

and manuscript preparation. 

 

5.1.3    Manuscript 3 

Nattharath Jaerapong, Qurratul Ain Jamil, Juliane Riha, Daniela Milovanovic, Geoge 

Krupitza, Bruno Stieger, Kanokwan Jarukomjorn, Walter Jaeger; The contribution of organic 

anion-transporting polypeptides 1B1, 1B3 and 2B1 to the antitumor activity of curcumin and 

its main metabolites against human breast cancer cells; International Journal of Oncology 

(impact factor 3.3), manuscript submitted 

 I collected, analysed and interpreted the data for OATP uptake experiments and 

cytotoxicity in CHO and ZR-75-1 cells. 
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ABSTRACT

Curcumin is a natural polyphenol with promising anticancer

properties that undergoes pronounced metabolism in hu-

mans. In order to determine whether metabolism of curcumin

also occurs in tumor cells and whether biotransformation has

any impact on cytotoxicity, metabolism experiments were

conducted with hormone-dependent ZR-75-1 and hormone-

independent MDA‑MB‑231 human breast cancer cells. By us-

ing HPLC‑ESI‑Qq-TOF‑MS, it was possible to identify one main

metabolite, namely curcumin sulfate, in both cell lines. Its

concentration in the cytoplasm and culture medium was 1.6-

to 1.7-fold higher in ZR-75-1 cells than in MDA‑MB‑231 cells,

concomitant with a 2-fold higher IC50 value in the ZR-75-1 cell

line (14 µM compared to 7.3 µM). The net result of sulfation

seems to lower the intracellular concentration of curcumin,

thereby decreasing its growth inhibitory activity. Interesting-

ly, for the first time, we also found the formation of a curcu-

min dimer in the cytoplasm but not in the cellular medium of

both cell lines. Compared to curcumin sulfate, however, its

maximal intracellular concentrations were up to 4-fold lower,

indicating only a minor contribution to the overall curcumin

clearance. In conclusion, our data elucidated the metabolism

of curcumin in breast cancer cells, which must be considered

in humans following oral uptake of dietary curcumin as a che-

mopreventive agent.

Metabolism of Curcumin in Human Breast Cancer Cells:
Impact of Sulfation on Cytotoxicity*
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Introduction

Breast cancer is the most common cancer for women and the sec-
ond leading cause of cancer-related deaths among females world-
* Dedicated to Professor Dr. Max Wichtl in recognition of his outstanding

contribution to pharmacognosy research.

Ain Jamil QU et al. Metabolism of Curcumin… Planta Med
56
wide. Chemoprevention in combination with anticancer treat-
ment is therefore crucial for reducing the incidence and the mor-
tality of this disease. Evidence from epidemiological and experi-
mental studies indicates that natural constituents present in the
diet can act as chemopreventive agents to inhibit mammary car-
cinogenesis [1, 2]. One of these compounds is curcumin, a bright
yellow colored polyphenol extracted from the rhizome of the
plant Curcuma longa L. (Zingiberaceae). Tumeric has been used
for over 2000 years as a traditional medicine in China and India in



▶ Fig. 1 Representative HPLC chromatograms of curcumin (CUR) and its metabolites curcumin sulfate (CUR‑S) and curcumin dimer (CUR‑D) in the
cytoplasm of MDA‑MB‑231 (A) and ZR-75-1 cells (B) taken 3 h after incubation. For details, see Materials and Methods.
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the prevention and treatment of various human diseases [3]. The
breast cancer preventing activity of curcumin has been very re-
cently first demonstrated in a mouse xenograft breast cancer
model, which showed that the consumption of a curcumin sup-
plemented diet inhibited tumor growth and angiogenesis [4].
The antiproliferative property of curcumin has been shown in vitro
and in vivo against hormone-dependent and hormone-indepen-
dent human breast cancer cells due to induction of apoptosis via
modulating multiple intracellular signaling pathways including
the transcriptional factors STAT3, NFkB, and AP-1, the receptors
HER2 and CXCR4, the kinases EGFR, ERK, and JAK, and the cyto-
kines TNF, IL, and MP [5–7]. Curcumin also reduces the expression
of major matrix metalloproteinases (MMPs) due to reduced NFkB
activity and transcriptional downregulation of AP-1 [8]. Reduced
NFkB/AP-1 activity and MMP expression also lead to a significantly
lower number of lung metastasis in immunodeficient mice after
intercardiac injection of ER-negative human breast cancer
MDA‑MB‑231 cells [8].

Curcumin also shows a synergistic effect in vitro and in vivowith
other anticancer drugs. A very recent study demonstrated a syn-
ergistic effect of paclitaxel in combination with curcumin against
human MCF-7 and MDA‑MB‑231 cells [9]. Improved clinical re-
sponses were also observed in a phase I clinical trial of docetaxel
plus curcumin in patients with advanced and metastatic breast
cancer, indicating curcumin as a favorable agent in combination
with other anticancer drugs [10]. Most importantly, many clinical
studies confirmed that the consumption of curcumin is safe. The
European Food Safety Authority (EFSA) established an acceptable
daily intake (ADI) of 3mg/kg body weight per day based on the
NOAEL (no observed adverse effect level) of 250–320mg/kg body
weight per day [11]. Studies conducted in laboratory animals have
reported an extensive biotransformation of curcumin in the small
intestine and liver mainly to curcumin sulfate and curcumin glucu-
ronide [12], explaining its very low bioavailability (< 1%) after per-
oral administration. Curcumin bioavailability is also poor in hu-
mans, as indicated by a pilot study of a standardized curcuma ex-
tract in colorectal cancer patients [13]. Curcumin undergoes
metabolic phase II conjugation to curcumin glucuronide and cur-
cumin sulfate, and phase I bioreduction to tetrahydrocurcumin,
hexahydrocurcumin, octahydrocurcumin, and hexahydrocurcu-
5

minol [14,15]. Reduced curcumins are also extensively biotrans-
formed to glucuronides and sulfates [14]. Based on the rapid
metabolic reduction and conjugation, free curcumin is undetect-
able in plasma even at high oral doses of 10 or 12 g to human vol-
unteers. Curcumin glucuronide and sulfate, however, were easily
quantified in the plasma samples of all 12 human volunteers with
maximal concentrations in the very low microgram/mL range. In-
terestingly, glucuronidation was favored over sulfation with a ratio
of glucuronide to sulfate of 1.9 :1 [11].

It is still unknown how curcumin is metabolized in human
breast cancer cells and whether biotransformation has any impact
on cytotoxicity. Data from our lab showed resveratrol, like curcu-
min a natural polyphenol, is almost exclusively metabolized to its
sulfate in breast cancer cells, whereas glucuronide formation was
below the detection limit [16]. We therefore hypothesized that
this might also be true for curcumin. Therefore, the aim of the
present study was to investigate the metabolic fate of cucumin in
hormone-dependent ZR-75-1 and hormone-independent MDA-
MB‑231 breast cancer cell lines. Furthermore, the chemical struc-
tures of biotransformation products should be identified by
LC‑MS/MS and by using identical standards. The consequences of
concentration- and time-dependent metabolism in combination
with cellular uptake should then be correlated with cytotoxicity
in order to better explain curcumin efficacy against breast cancer.
Results

Exponentially growing estrogen-dependent ZR-75-1 and estro-
gen-independent MB‑MDA‑MB‑231 breast cancer cell lines were
incubated with curcumin (10–100 µM) for up to 24 h. The cyto-
plasm and the cellular medium were subsequently analyzed by
HPLC for curcumin and its metabolites. Typical HPLC chromato-
grams from these experiments are shown in ▶ Fig. 1A,B for
MDA‑MB‑231 and ZR-75-1 breast cancer cells, respectively. In
addition to curcumin, two biotransformation products could be
detected in the cytoplasm, but only one in the medium samples
of both cell lines. Analysis of these samples by HPLC‑ESI‑Qq-
TOF‑MS showed an [M – H]− ion atm/z 447, which showed a char-
acteristic loss of 80 Da (SO3) upon collision-induced dissociation
Ain Jamil QU et al. Metabolism of Curcumin… Planta Med
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▶ Fig. 2 HRMS showing the [M – H]− ion of a new curcumin me-
tabolite tentatively identified as dimer of curcumin with the sum
formula C43H40O12.
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in agreement with the molecular weight of curcumin monosulfate
(data not shown). Based on an identical retention time (tr =
15.79min) and negative ion mass spectra compared to a com-
mercial standard, the structure of this metabolite was confirmed
as curcumin sulfate. Further analysis of the samples showed a se-
ries of nearly coeluting metabolites whose [M – H]− ions were de-
tected in the range of m/z 650–760 (data not shown). The most
abundant of these metabolites, with a retention time of tr =
19.35min, was assigned the sum formula C43H40O12, which is
similar but not identical to previously published curcumin dimers
(C42H38O12) (▶ Fig. 2). Thus, we assume that this biotransforma-
tion product originates from dimerization of curcumin by a differ-
ent mechanism than published previously [17], which is not sur-
prising considering that the formerly reported dimers originated
from chemical oxidation in nonaqueous media. The formation of
other known main curcumin metabolites, namely curcumin glu-
curonide and tetrahydrocurcumin, was below the detection limit
in all cytoplasm and medium samples.

To further evaluate differences in the formation of curcumin
sulfate and curcumin dimer in the breast cancer cell lines,
MDA‑MB‑231 and ZR-75-1 cells were incubated for 24 h with in-
creasing concentrations of curcumin (10–100 µM) and the cyto-
plasm and cellular supernatant were assayed for both biotransfor-
mation products by HPLC. In accordance with literature data [18],
we found that curcumin was quite unstable at pH 7.4, leading to
several degradation products like vanilin, ferulic acid, and feruloyl
methane. We therefore terminated all incubations after 3 h. At
this time, intracellular concentrations of unconjugated curcumin
increased from 4.9 ± 1.9 pmol/h/mg protein at 10 µM curcumin
to 3765 ± 608 pmol/h/mg protein at 100 µM curcumin in
MDA‑MB‑231 cells (▶ Fig. 3A). In ZR-75-1 cells, however, intracel-
lular amounts of curcumin were significantly lower, especially at
the higher curcumin concentration (472 ± 94 pmol/h/mg protein
for ZR-75-1 at 100 µM) (▶ Fig. 3B). Curcumin content in the cellu-
Ain Jamil QU et al. Metabolism of Curcumin… Planta Med
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lar membranes was low (< 5%) compared to the concentrations in
the cytoplasm.

As shown in ▶ Fig. 4A and ▶ Table 1, the kinetics of curcumin
sulfation at 10–100 µM in ZR-75-1 and MDA‑MB‑231 cells fitted
both to the Michaelis-Menten kinetics resulting in slightly higher
Vmax values (34.1 ± 2.8 pmol/h/mg protein and 27.1 ± 4.2 pmol/
h/mg protein) but significantly lower Km values (40.6 ± 8.0 µM
and 72.5 ± 21.4 µM) for ZR-75-1 cells. Clearance rates (Vmax/Km)
were therefore 2.3-fold higher in ZR-75-1 compared to
MDA‑MB‑231 cells (0.84 ± 0.15 µL/h/mg protein and 0.37 ±
0.04 µL/h/mg protein, respectively). In order to investigate differ-
ences in the efflux of this metabolite, we also analyzed the cellular
medium for curcumin sulfate. Efflux of curcumin sulfate was fast,
indicating an active and rapid transport system out of the cells
into the medium. Concentration-dependent efflux followed
classical Michaelis-Menten kinetics with 2.2-fold higher Vmax val-
ues for ZR-75-1 than for MDA‑MB‑231 cells (▶ Fig. 4B). Clearance
rates (Vmax/Km) were 1.4-fold higher in ZR-75-1 compared to
MDA‑MB‑231 cells (7.91 ± 1.16 µL/h/mg protein and 5.61 ±
1.04 µL/h/mg protein, respectively).

Interestingly, we also found, for the first time, the formation of
several curcumin dimers in the cytoplasm, but not in the cellular
medium of both cell lines. The Michaelis Menten kinetics of the
most abundant one is shown in ▶ Fig. 5 and ▶ Table 2. Analogous
to curcumin sulfate, Vmax was more than 2-fold higher in ZR-75-1
compared to MDA‑MB‑231 cells leading to about a 1.9-fold higher
cellular clearance (Vmax/Km) of 0.28 ± 0.04 versus 0.15 ± 0.05 µL/
h/mg protein. Compared to curcumin sulfate, however, Vmax

values were up to 4-fold lower, indicating a less pronounced for-
mation of this biotransformation product.

The cytotoxicity of curcumin to the human hormone-depen-
dent ZR-75-1 and hormone-independent MDA‑MB‑231 breast
cancer cell lines was quantified by using a CellTiter-Blue assay. As
shown in ▶ Fig. 6, curcumin exhibited significantly lower IC50 val-
ues towards MDA‑MB‑231 cells (7.3 ± 0.59 µM) compared to ZR-
75-1 cells (14.0 ± 1.2 µM).
Discussion

In the present study, uptake and metabolism of curcumin was in-
vestigated in hormone-dependent ZR-75-1 and hormone-inde-
pendent MDA‑MB‑231 breast cancer cells with increasing concen-
trations of curcumin (10–100 µM). The main metabolite in both
cell lines is curcumin sulfate, in which the formation in ZR-75-1
was about 2-fold higher than in MDA‑MB‑231 cells. Surprisingly,
curcumin glucuronide, which is the major biotransformation
product in human liver and intestines, could not be detected.
Preferential formation of sulfates over glucuronides in breast can-
cer cells is in accordance with literature data and has already been
shown for other compounds, such as estrogen, 2-methoxyestra-
diol, genistein, and resveratrol [16,19,20]. Curcumin sulfate con-
centration in the cellular medium was up to 12-fold higher com-
pared to the cytoplasm, indicating a not yet identified active
transport system for this metabolite. A likely candidate for the cel-
lular transport into the medium is the breast cancer resistance
protein (BCRP, ABCG2), which is distributed in several tissues,



▶ Table 1 Kinetic parameters of curcumin sulfate formation in and its efflux out of breast cancer cells.

Intracellular formation of sulfate Efflux of sulfate into medium

Cell lines Km (µM) Vmax (pmol/h/
mg protein)

Vmax/Km (µL/h/
mg protein)

Km (µM) Vmax (pmol/h/
mg protein)

Vmax/Km (µL/h/
mg protein)

ZR-75-1 40.6 ± 8.01* 34.1 ± 2.76 0.84 ± 0.15* 62.4 ± 14.6 459.5 ± 53.3* 7.91 ± 1.16*

MDA‑MB‑231 72.5 ± 21.4 27.1 ± 4.22 0.37 ± 0.04 37.9 ± 11.0 205.6 ± 23.5 5.61 ± 1.04

Parameters are calculated using data obtained after 3 h of incubation and presented as the mean ± SD.*Significant difference fromMDA‑MB‑231 cells

▶ Fig. 3 Concentration-dependent cellular uptake of curcumin into the cytoplasm of MDA‑MB‑231 (A) and ZR-75-1 (B) breast cancer cells after 3 h
of incubation. Error bars indicate means ± SD of three independent experiments.

▶ Fig. 4 Kinetics of curcumin sulfate formation in the cytoplasm (A) and its concentration-dependent efflux into the medium (B) of ZR-75-1 and
MDA‑MB‑231 breast cancer cells after 3 h of incubation. Error bars indicate means ± SD of three independent experiments.
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such as placenta, small intestine, colon, and the hepatic canalicu-
lar membrane, but also in breast ductal cells, and plays an impor-
tant role in the efflux of sulfated conjugates of steroids and xeno-
biotics [21]. Interaction of curcumin with BCRP has already been
documented and may also apply to its sulfate [22].

Higher formation rates of curcumin sulfate in ZR-75-1 cells as
compared with rates in MDA‑MB‑231 cells prompted us to sug-
gest that sulfation may be important in the intrinsic drug activity
in breast cancer cell lines. Indeed, curcumin inhibited the growth
of ZR-75-1 cells with an IC50 value of 14 µM. In contrast,
MDA‑MB‑231 cells are more sensitive to growth inhibition by cur-
5

cumin with an IC50 value of 7.3 µM. MDA‑MB‑231 cell lysates con-
tained lower amounts of curcumin sulfate as determined by HPLC.
The majority (91%) of this metabolite was found in ZR-75-1 cell
media, maintaining significantly lower concentrations of curcu-
min in ZR-75-1 cells. In contrast, since less pronounced metabo-
lism occurs in MDA‑MB‑231 cells, intracellular concentrations of
curcumin were about 8-fold higher in this cell line. These data sug-
gest that the differential sensitivity of ZR-75-1 and MBA‑MB‑231
cells to curcumin growth inhibition could be due to the intracellu-
lar formation of curcumin sulfate and its excretion from ZR-75-1
cells. Our results are in line with recent experiments from our lab
Ain Jamil QU et al. Metabolism of Curcumin… Planta Med
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▶ Fig. 5 Kinetics of curcumin dimer in the cytoplasm of ZR-75-1
and MDA‑MB‑231 breast cancer cells after 3 h of incubation. Error
bars indicate means ± SD of three independent experiments.
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also demonstrating lower IC50 values for resveratrol in the hor-
mone-independent breast cancer cell line MDA‑MB‑231 cells
compared to the hormone-dependent ZR-75-1 one [16]. Up to
now, it is not known which of the SULT enzymes are responsible
for the observed differences in curcumin sulfation between the
two breast cancer lines. A very recent work showed that SULT1A3,
SULT1C4, and SULT1E1 are the major isoforms catalyzing sulfation
of curcumin; SULT1A1 and SULT2A1 demonstrated lower forma-
tion rates [23]. RT‑PCR analysis in our lab revealed that only SUL-
T1A1 mRNA levels were significantly higher in ZR-75-1 cells
whereas SULT1A3 is equally expressed. SULT1E1 and SULT2A1
mRNA levels were below the detection limit in both cell lines
[20]. As SULT1C4 mRNA only has been found at high levels in hu-
man fetal lung, liver, small intestine, and kidney, and at low levels
in adult kidney, ovary, and spinal cord but not in breast tissue [24],
we hypothesized that SULT1A1 may mainly contribute to curcu-
min sulfation in ZR-75-1 and MDA‑MB‑231 cells leading to de-
creased anticancer activity. Our hypothesis is further supported
by data of Irison and coworkers who indeed showed that curcu-
min sulfate has less biological activities compared to curcumin
[11].

For the first time, we could also demonstrate the intracellular
formation of curcumin dimers. The main dimer followed Michae-
lis-Menten formation, but its maximal concentrations in the cyto-
plasm were up to 4-fold lower compared to curcumin sulfate, in-
dicating only a minor contribution to the overall curcumin clear-
ance. It is not known whether curcumin dimers exhibit antitumor
activities. However, a pharmacological activity is very likely, as
gnetin, a resveratrol dimer, demonstrated cytotoxicity values
comparable with resveratrol [25].

In conclusion, we found that curcumin is metabolized in hu-
man breast cancer cells mainly to curcumin sulfate. This biotrans-
formation product does not remain inside the cells, but is rapidly
excreted into the cellular medium. The net result of this action is
to lower the intracellular concentration of curcumin, thereby de-
creasing its growth inhibitory activity as observed in ZR-75-1 cells.
Curcumin sulfation may therefore also be present in breast cancer
tissue in patients following oral uptake of dietary curcumin.
Materials and Methods

Chemicals

Curcumin (98% pure) and tetrahydrocurcumin (95% pure) were
purchased from Sigma; curcumin sulfate and curcumin glucuro-
nide was obtained from TLC Pharmaceutical Standards Ltd.;
MeOH and water were of HPLC grade (Merck). All other chemicals
and solvents were commercially available and of analytical grade
and were used without further purification.

Cell culture

Human malignant MDA‑MB‑231 and ZR-75-1 breast cancer cell
lines were purchased from the ATCC and were maintained in RPMI
medium supplemented with 10% FCS, 100 U/mL penicillin,
100 µg/mL streptomycin, and 1% GlutaMAX (Life Technologies).
Cells were grown in T-flasks with a 25-cm2 growth area (BD Bio-
sciences), maintained at 37 °C under 5% CO2 and 95% relative hu-
Ain Jamil QU et al. Metabolism of Curcumin… Planta Med
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midity. The cells were passaged once a week and were used up to
passage 55.

Transport and metabolism studies

MDA‑MB‑231 and ZR-75-1 cells (106 cells, each) were plated on 6-
well plates and allowed to attach overnight. Curcumin was dis-
solved in DMSO and diluted with medium (final DMSO concentra-
tion < 0.5%) to a concentration of 10–100 µM. The experiments
were performed under each set of conditions in triplicate. Control
experiments contained DMSO in the medium in place of curcu-
min. After 3 h, the medium (1.0mL per well) was aspirated via
suction, and aliquots (100 µL) were subsequently analyzed
through HPLC. The cells were then trypsinized by the addition of
100 µL of trypsin, washed three times with phosphate buffered sa-
line, and lysed by repeated (5 times) shock freezing in liquid nitro-
gen and thawing. Following centrifugation at 13500 g for 5min,
80 µL of the supernatant (cytoplasm) was subsequently analyzed
by HPLC. Additionally, the cell pellets containing the membranes
(cell pellets) were extracted with 200 µL of methanol and analyzed
by HPLC for their curcumin content. The protein concentration in
the cell pellets was determined using a BCA assay kit (Pierce Sci-
ence), with bovine serum albumin as a standard.

HPLC analysis

Curcumin and its biotransformation products were quantified by
HPLC using a Dionex UltiMate 3000 system equipped with an L-
7250 injector, an L-7100 pump, an L-7300 column oven (set at
35 °C), a D-7000 interface, and an L-7400 UV detector (Thermo
Fisher Scientific) set at a wavelength of 420 nm (for tetrahydro-
curcumin: 280 nm). Separation of curcumin and its metabolites
was carried out at 35 °C using a Hypersil BDS‑C18 column (5 µm,
250 × 4.6mm I.D., Thermo Fisher Scientific), preceded by a Hy-
persil BDS‑C18 precolumn (5 µm, 10 × 4.6mm I.D.). The mobile
phase consisted of a continuous linear gradient, mixed from
10mM ammonium acetate/acetic acid buffer, pH 5.0 (mobile
phase A) and methanol (mobile phase B). The flow rate was kept
at 1mL/min. The filtration of the mobile phase was performed
through a 0.45-µM filter (HVLP04700; Millipore). The gradient
range was from 10% methanol (0min) to 90% methanol at
17min followed by another increase to 95% at 18min where it re-
mained constant until 25min. Subsequently, the percentage of



▶ Table 2 Kinetic parameters of curcumin dimer formation in breast cancer cells.

Cell lines Km (µM) Vmax (pmol/h/mg protein) Vmax/Km (µL/h/mg protein)

ZR-75-1 50.8 ± 11.5 13.9 ± 1.43* 0.28 ± 0.04*

MDA‑MB‑231 48.3 ± 21.0 6.76 ± 1.31 0.15 ± 0.05

Parameters are calculated using data obtained after 3 h of incubation and presented as the mean ± SD.*Significant difference fromMDA‑MB‑231 cells

▶ Fig. 6 Cytotoxicity of curcumin to human breast cancer ZR-75-1
and MDA‑MB‑231 breast cancer cells. Dose-response curves were
obtained by nonlinear curve fitting using the GraphPad Prism 6.0
program. Note that the concentration is shown as a logarithmic
function. Error bars indicate means ± SD of three independent ex-
periments.
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methanol was decreased within 2min to 10% in order to equili-
brate the column for 8min before application of the next sample.
Calibration of the chromatogram was accomplished using the ex-
ternal standard method. Linear calibration curves were performed
by spiking drug-free cell culture medium with standard solutions
of curcumin and curcumin sulfate to give a concentration range
from 0.01 to 10 µg/mL (average correlation coefficients:
> 0.999). Coefficients of accuracy and precision for these com-
pounds were < 11%. Because a standard for curcumin dimer was
not available in adequate amounts, quantification of this metabo-
lite was based on the assumption that the molar extinction coeffi-
cient of curcumin dimer is similar to that of curcumin.

Structure identification of curcumin metabolites

HPLC‑ESI‑Qq-TOF‑MS measurements of diluted cytoplasm sam-
ples (20 µL plus 80 µL water) were performed using an UltiMate
3000 RSLC-series system (Dionex/Thermo Scientific) coupled to a
maXis HD ESI‑Qq-TOF mass spectrometer (Bruker Daltonics). Col-
umn, mobile phase, gradient, flow rate, and injection volume
were identical to those used in the analytical HPLC assay (see
above). After passing the DAD, the eluate flow was split approxi-
mately 1 :8 and the following ESI ion source settings were applied:
capillary voltage: ± 4.5 kV, nebulizer: 2.0 bar (N2), dry gas flow:
8.0 L/min (N2), and dry temperature: 200 °C. Full scan mass spec-
tra were recorded in the range of m/z 55–1000 in positive and
negative ion modes. The sum formulas of the detected ions were
determined using Bruker Compass Data Analysis 4.2 based on the
6

mass accuracy (Δm/z ≤ 3 ppm) and isotopic pattern matching
(SmartFormula algorithm).

Cytotoxicity assay

CellTiter-Blue (Promega) is a type of a colorimetric and fluores-
cent assay used to measure cell viability via nonspecific redox en-
zyme activity (reduction from resazurin to resorufin by viable
cells). MDA‑MB‑231 and ZR-75-1 cells (50000 cells, each) were
seeded into 96-well flat-bottomed plates and incubated for 24 h
at 37 °C under 5% CO2. For cytotoxicity assays, the cells were incu-
bated with various concentrations of curcumin (1–100 µM) for
72 h. The CellTiter-Blue (20 µL) reagent was added to the wells,
and the plate was incubated for 2 h, protected from light. The ab-
sorbance was recorded for resazurin (605 nm) and resorufin
(573 nm). The assay results were measured on a Tecan M200 mul-
timode plate reader (Tecan). The absorbance was also measured
in CellTiter-Blue assays in blank wells (without curcumin) and de-
ducted from the values from experimental wells. The viability of
the treated cells was expressed as a percentage of the viability of
the corresponding control cells. All experiments were repeated at
least three times.

Determination of protein concentrations

Total protein was determined using the colorimetric bicinchoninic
acid protein (BCA) assay kit (Pierce Science) with bovine serum al-
bumin as a standard and quantification at a wavelength of 562 nm
on a spectrophotometer (UV-1800; Shimadzu). Raw data were an-
alyzed using UVProbe software (version 2.31; Shimadzu). The pro-
tein concentrations were consistent among the plates (0.150 ±
0.005mg/well).

Data analysis

Kinetic analysis of curcumin metabolite formation was performed
over a substrate concentration range of 10 to 100 µM for 3 h. The
data were fitted to the Michaelis-Menten model. Kinetic parame-
ters were calculated using the GraphPad Prism Version 6.0 soft-
ware program for Michaelis-Menten: V = Vmax · S/(Km + S), where
V is the rate of the reaction, Vmax is the maximum velocity, Km is
the Michaelis constant, and S is the substrate concentration. The
intrinsic clearance, which is defined as the ratio Vmax/Km, quanti-
fies the transport capacity. IC50 values were calculated by fitting
dose-response curves using the GraphPad Prism Version 6.0 soft-
ware program. Significant differences of the kinetic values be-
tween both cells lines were determined using a Studentʼs paired
t-test at a significance level of p < 0.05.
Ain Jamil QU et al. Metabolism of Curcumin… Planta Med
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 SUMMARY 

Turmeric is a yellowish orange spice, widely used in Asian cuisine and obtained from the 

rhizome of Curcuma longa. It is a mixture of three curcuminoids namely, curcumin, 

demethoxycurcumin and bisdemethoxycurcumin. Turmeric has been used as a medicinal 

substance since ancient times for respiratory and gastrointestinal problems. The aim of the 

present study was to investigate which curcuminoid contributes to the observed 

pharmacological activities, all three curcuminoids, the major curcumin metabolite 

tetrahydrocurcumin, and the non-enzymatic curcumin hydrolysis products ferulic acid, 

feruloyl methane and vanillin were analyzed for spasmolytic, inotropic and chronotropic 

activity. Furthermore, their uptake in respective tissue samples was also investigated and 

correlated with activity.  Spasmolytic activity was determined in guinea pig ileum, aorta and 

pulmonary artery. Inotropic and chronotropic activity was determined on guinea pig 

papillary muscles and right atrium respectively, while tissue uptake was quantified by using 

high-performance liquid chromatography (HPLC). All the curcuminoids exhibited significant 

spasmolytic activity with highest EC50 values for bisdemethoxycurcumin (5.8 ± 0.6 µM) 

followed by curcumin (12.9 ± 0.7 µM), demethoxycurcumin (16.8 ± 3 µM) and 

tetrahydrocurcumin (22.9 ± 1.5 µM). While only demethoxycurcumin was able to 

significantly relax the pulmonary artery with EC50 value of 15.78 ± 0.85 µM. All three 

curcuminoids showed mild negative chronotropic effects in the isolated right atrium; 

tetrahydrocurcumin demonstrated no activity. Curcumin and bisdemethoxycurcumin also 

showed mild positive inotropic effect whereas demethoxycurcumin and tetrahydrocurcumin 

exhibited weak negative inotropic one.  

Interestingly, ferulic acid, feruloyl methane and vanillin demonstrated no pharmacologicical 

activity at all in the various isolated organs.  All three curcuminoids and tetrahydrocurcumin 

64



 

showed high uptake into the various tissues where concentrations correlated with 

pharmacological activity. The results indicate pronounced differences in the in vitro 

pharmacological activities of curcumin, demethoxycurcumin, bisdemethoxycurcumin and 

tetrahydrocurcumin which have to be considered in humans after per-oral intake of turmeric 

powder. 

 

Key words: curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin, 

spasmolytic activity, guinea pig 

65



 

INTRODUCTION 

Turmeric is a yellowish-orange spice obtained from the rhizome of Curcuma longa (C. 

longa). It is a mixture of three phenolic compounds collectively called curcuminoids, which 

consist of mainly curcumin and smaller amounts of demethoxycurcumin and 

bisdemethoxycurcumin (1). Around the world turmeric is used as a spice, colorant, flavorant 

and condiment. Beside its culinary value it is also widely used by traditional healers since the 

ancient times for anemia, cough, fever, pain, jaundice, wound healing, insect bite, itching, 

eczema, liver disorders, urinary diseases and joint problems (2, 3). In Chinese herbal 

medicine curcuma is traditionally used against various syndromes caused by the obstruction 

of blood circulation like psychataxia and arthralgia (4). It is also used against diarrhea, 

flatulence, gastritis, gastroesophageal reflux disease, asthma, cough and cold (2, 5-7). These 

traditional uses indicate antispasmodic and/or smooth muscle relaxant effects of curcuma 

drugs which are well corroborated by pharmacological studies. Curcuma extracts from 

different species relaxed pre-contracted aorta independent of NO synthesis (4), while the 

extract prepared from the rhizomes of C. longa exhibited spasmolytic effect on rabbit 

intestinal preparation with the indications for calcium channel blocking activity (2). Sodium 

salt of curcumin reduced blood pressure and heart rate in anesthetized dogs and cats when 

administered intravenously. This hypotensive and bradycardic effect was not antagonized by 

pretreatment with propranolol, mepyramine, atropine or bilateral vagotomy thus excluding 

β-adrenergic, histaminergic, muscarinic or vagal nerve involvement (8). The blood pressure 

lowering effect and bradycardia was also reported in conscious rats by methanolic extract of 

C. longa which was attributed to calcium channel blockade (9). It also exerted spasmolytic 

effect on smooth muscles of guinea pig vas deferens and intestine of dogs (8). 
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Since, crude curcumin is a mixture of three curcuminoids and it is still unknown which 

specific compound contribute to the spasmolytic activity. Curcumin itself is sensitive to 

oxygen, UV and visible light and quite unstable at physiological  pH, (10). When curcumin 

was added to 0.1 M phosphate buffer, pH 7.4, curcumin was stable after 1 h and then 

started degrading gradually. Almost 50% and 90% of curcumin is degraded after 3 and 8h of 

incubation, mainly forming  ferulic acid, feruloyl methane and vanillin due to non-enzymatic 

hydrolysis (Fig. 1) (11). In comparison to curcumin, demethoxycurcumin and 

bisdemethoxycurcumin are much more stable (1). Interestingly, the instability was 

dependent on the concentration of the curcuminoids and was most pronounced at low 

concentrations (11). Moreover, curcumin have extensive intestinal metabolism (12) and in 

body it is rapidly metabolized by alcohol dehydrogenase into dihydrocurcumin, 

octahydrocurcumin (minor metabolites) and tetrahydrocurcumin, (major metabolite). These 

reductive metabolites are extensively  conjugated with glucuronic acid and sulfuric acid and 

rapidly  excreted into  feces (1). Up to now, only few studies have reported about the 

spasmolytic activity of a turmeric extract containing curcumin, demethoxycurcumin and 

bisdemethoxycurcumin (13) Whether curcumin is the only active compound or 

demothoxycurcumin and bisdemethoxycurcumin, the main curcumin metabolite 

tetrahydrocurcumin as well as the curcumin degradation products ferulic acid, feruloyl 

methane and vanillin may also contribute to spasmolytic activity is not known yet. Thus, in 

the present study we investigated for the first time the spasmolytic activity of curcumin, 

desmethoxy curcuminoids, tetrahydrocurcumin and the three curcumin degradation 

products on guinea pig aorta, ileum, papillary muscle, pulmonary artery and right atria. As 

pharmacological activity is strongly dependent on tissue concentration, we also determined 

for the first time the tissue uptake of these compounds into different tissue preparations by 
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a sensitive high-performance liquid chromatography (HPLC) assay and correlated uptake 

with observed pharmacological effects.  

MATERIALS AND METHODS 

Chemicals 

Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin, ferulic 

acid, vanillin and feruloyl methane were purchased from Sigma-Aldrich (Munich, Germany 

(purity:  ≥98.0%). Methanol and water were of HPLC grade and obtained by Merck, 

Darmstadt, Germany. All other chemicals and solvent were of analytical grade, commercially 

available, and used without further purification. 

Experiments on isolated tissue preparations 

Guinea pigs of either sex weighing 340 - 480 g were obtained from the Department of 

Laboratory Zoology and Genetics, Medical University, Himberg, Austria. Animals were kept in 

air-conditioned room at a temperature of 22 - 24 °C and relative humidity 50 - 60% with 12 

hour photo period. On the day of experiments animal was sacrificed by a blow on the neck 

followed by, animal heart, aorta, pulmonary artery and ileum were surgically excised and 

kept in Krebs-Henseleit solution (NaCl 144.9 mM, KCl 4.73 mM, CaCl2 3.2 mM, MgSO4 1.18 

mM, NaHCO3 24.9 mM, KH2PO4 1.18 mM and glucose 10 mM; pH 7.2 - 7.4), continually 

aerated with 95% O2 and 5% CO2. Papillary muscles were dissected from the right ventricle 

of heart and cleared from Purkinje fibers to avoid spontaneous activity. We used muscles 

having diameter less than 0.87 mm to ensure proper oxygen supply. The right atrium was 

also dissected to check the chronotropic activity. Both aorta and pulmonary artery were 

cleaned and rings of 5 mm were cut while ileum was cut from the terminal portion into 

pieces of 1 - 2 cm. One end of the dissected tissues was tied with silver wire for attachment 
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with tissue holder while the other end was connected with force transducer (Transbridge™, 

4-Channel Transducer Amplifier, World Precision Instruments, Sarasota, FL, USA). Terminal 

ileum was contracted by 60 mM KCl while pulmonary artery and aorta rings with 90 mM KCl 

solution which produce sustained contractions in respective tissues.  The test conditions 

might be therefore stated as “vasodilatory effect during high K-pre-constricted state”. 

Papillary muscles were electrically stimulated by an Anapulse Stimulator model 301-T and an 

Isolation UnitModel 305-1 (WPI, Hamden, CT, USA) with rectangular pulses of 3 ms at a 

frequency of 1 Hz. The amplitude of stimulation pulse was kept 10% above the threshold 

level. To obtain maximum contractility from the respective tissues, a constant resting 

tension of 3.9 mN for papillary muscle, 4.9 mN for terminal ileum, 10.4 mN for right atrium 

and 19.6 mN for aorta and pulmonary artery rings was applied throughout the experiment. 

After a control period of 15 min, different concentrations of test compounds were applied 

cumulatively in a bath solution every 30 min until steady effect was obtained. The responses 

were recorded by a chart recorder (BD 112 Dual Channel, Kipp & Zonen) and evaluated later. 

Stock concentrations for test compounds were made with distilled water and where 

required with DMSO. To exclude the effect of DMSO, experiments were performed with 

solvent only and observed effect was subtracted from the response of the test compounds.  

Tissue uptake and HPLC analysis 

For uptake experiments tissue samples were incubated in Krebs-Henseleit at 37°C 

containing 100 µM curcumin, desmethoxycurcumin and bisdesmethoxycurcumin and 

tetrahydrocurcumin, respectivity. After 30 min, tissue samples were washed 5 times with ice 

cold Phosphate buffer saline (PBS) and subsequently homogenized by ULTRA TURAX® 

homogenizer and diluted three times with PBS followed by centrifugation at 13,500 g for 10 

min (4 °C). Supernatant was carefully collected for detection and quantification of 
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compounds on HPLC as described previously with some minor modifications (14). For HPLC 

analysis a Dionex UltiMate 3000 system equipped with an L-7250 injector, an L-7100 pump, 

an L-7300 column oven (set at 35 ◦C), a D-7000 interface, and an L-7400 UV detector 

(Thermo fischer Scientific) set at the wavelength of 420nm for curcumin, 

demethoxycurcumin, bisdemethoxycurcumin and 280 nm for tetrahydrocurcumin was used. 

Separation of curcuminoids and their metabolite tetrahydrocurcumin was carried out at 35◦C 

with the help of Hypersil BDS-C18 column (5 µm, 250 × 4.6 mm I.D., Thermo Fischer 

Scientific), followed by Hypersil BDS Precolumn (5 µm, 10 × 4.6 mm I.D.). The mobile phase 

consisted of a continuous linear gradient, mixed from 10 mM ammonium acetate/acetic acid 

buffer, pH 5.0 (mobile phase A) and methanol (mobile phase B), having a flow rate of 1 

mL/min. A filter (0.45µM, HVLP04700; Millipore) was used for mobile phase filtration. The 

gradient was ranged from 10 - 90% methanol from 0 - 17 min followed by another increase 

at 18 min, and then it remained constant till 25 min. Subsequently, the percentage of 

methanol was decreased within 2 min to 10% for equilibrating the column for 8 min before 

administration of the next sample. External standard method was used for calibration of 

chromatogram. Linear calibration curves were performed with standard solution of the 

compounds, with a concentration range of 0.01 - 10 µg/ml (average correlation coefficients 

>0.999). Coefficients of accuracy and precision of these compounds were <11%. 

Statistical analysis 

For statistical analysis mean and standard error of mean (SEM) was calculated for “n” 

experiments and significance was determined by applying student’s t-test for paired values 

(Sigma Plot version 9.0). Two-way ANOVA was used in order to evaluate statistical 

significance in a group and between groups of tissue samples from different organs for 

uptake studies by using GraphPad Prism 7.  
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RESULTS 

Spasmolytic activity on Guinea pig ileum 

In order to identify and compare the spasmolytic activity of curcumin, 

demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin, ferulic acid, feruloyl 

methane and vanillin we used guinea pig ileum, pre-contracted by 60 mM KCl solution. All 

curcuminoids but not the degradation products ferulic acid, feruloyl methane and vanillin 

exhibited significant spasmolytic activity in a concentration dependent manner with EC50 

values of 12.9 ± 0.7 µM for curcumin, 16.8 ± 3 µM for demethoxycurcumin, 5.8 ± 0.6 µM for 

bisdemethoxycurcumin and 22.9 ± 1.5 µM for tetrahydrocurcumin (Fig. 2A). To rule out the 

involvement of NO in curcuminoid mediated spasmolytic activity (15), we inhibited 

endothelial nitric oxide synthase (eNOS) in pre-contracted terminal ileum by incubating with 

100 µM nitro-L-arginine (L-NNA) for 45 min. After this incubation period curcuminoids and 

their metabolite tetrahydrocurcumin was administered in a bolus dose of 20 µM to 

investigate any effect on spasmolytic activity. The inhibition of eNOS does not exhibit any 

significant effect on spasmolytic activity (Fig. 2B).  

Vasodilating activity on pulmonary artery and aorta 

The vasodilating potency of curcuminoids and their metabolite was assessed on 

pulmonary artery and aorta pre-contracted by 90 mM KCl solution. Demethoxycurcumin 

significantly alleviated the spasm of pre-contracted pulmonary artery with EC50 value of 

15.78 ± 0.85 µM. Contrary to demethoxycurcumin, curcumin, bisdemethoxycurcumin and 

tetrahydrocurcumin only modestly dilated the pulmonary artery with a relative vasodilating 

potency of 38.5 ± 2.8%, 24.3 ± 6.8% and 37.6 ± 8.9%, respectively, indicating that 

demethoxycurcumin is primarily responsible for relaxation of pulmonary artery (Fig. 3A). In 
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pre-contracted aorta tissue rings, demethoxycurcumin, bisdemethoxycurcumin and 

tetrahydrocurcumin declined the spasm by 35.1 ± 9.6%, 18.6 ± 5.6% and 27.9 ± 7.2% at 100 

µM concentration, while no effect was observed for curcumin (Fig. 3B), ferulic acid, feruloyl 

methane and vanillin. 

Inotropic activity 

Inotropic activity was performed on papillary muscles. Demethoxycurcumin and 

tetrahydrocurcumin showed negative ionotropic activity of 23.5 ± 8.9% and 29.2 ± 2.6% 

respectively, curcumin demonstrated a positive ionotropic effect in papillary muscles of 28.9 

± 8.9%. Interestingly, bisdemethoxycurcumin initially showed ionotropic activity of about 

20% at 30 µM which was reduced to 15.2 ± 5.6% at 100 µM (Fig. 4). The degradative 

products ferulic acid, feruloyl methane and vanillin did not exhibit any activity.  

Chronotropic activity 

Chronotropic activity was determined on isolated guinea pig right atrium. Curcumin, 

demethoxycurcumin and bisdemethoxycurcumin exhibited a negative chronotropic activity 

with a reduction of 27.6 ± 4.5%, 35.5 ± 5.2% and 13.4 ± 5.6% in beating frequency at 100 µM 

(Fig. 5). In contrast, tetrahydrocurcumin, ferulic acid, feruloyl methane and vanillin did not 

exhibit any chronotropic activity. 

Tissue Uptake  

For uptake experiments tissue samples of the terminal ileum, aorta, pulmonary 

artery, right atria and papillary muscles were incubated at 37°C with 100 µM curcumin, 

demethoxycurcumin and bisdemethoxycurcumin tetrahydrocurcumin, respectively. After 30 

min tissue samples were washed 5 times with PBS and immediately homogenized and 
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analyzed by HPLC. As shown in Fig. 6, our HPLC assay allowed the clear separation of 

curcumin (tr = 20.63 min), desmethoxycurcumin (tr = 19.60 min), bisdesmethoxycurcumin (tr 

= 18.39 min) and tetrahydrocurcumin (tr = 17.74 min).  Furthermore, all three curcuminoids 

and tetrahydrocucumin demonstrated sufficient stability at physiological pH at least for 30 

min as no further peaks from metabolites or degradation products showed up in the 

chromatograms (Fig. 6). The two peaks at 3.2 and 3.8 min in the chromatogram of 

tetrahydrocurcumin are impurities from the incubation medium and only seen at 280 nm 

and not at 420 nm, which was used for the detection of the other three curcuminoids.  

Uptake of curcuminoids and tetrahydrocurcumin strongly differs in the various tissue 

samples (Fig. 7).  While bisdemethoxycurumin concentration was highest in the terminal 

ileum, desmethoxycurcumin showed the highest uptake by the pulmonary artery. In the 

aorta, demethoxycurcumin and bisdemethoxycurcumin levels were high and at about in the 

same amount. This was also true for the papillary muscle and right atrium which also 

showed the highest uptake for demethoxycurcumin (see Fig. 7 and Table 1).   As ferulic acid, 

feruloyl methane and vanillin did not show any activity in the isolated organ model no 

uptake experiments were carried out. 

DISCUSSION 

Turmeric powder is a commonly used spice in Asian cuisine and obtained from C. 

longa. It contains 40.36 mg/g of curcuminoids with the relative proportion of each 

compound is approximated as 4.18 - 22.8 mg/g of curcumin, 1.08 - 9.26 mg/g of 

demethoxycurcumin and 0.40 - 9.50 mg/g of bisdemethoxycurcumin (16). In Southeast Asia 

daily dietary consumption of turmeric powder is approximated as 1.5 g/day. Turmeric 

powder is also available as a popular over-the-counter food supplement with the high doses 
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up to 10 g/day. Many of these supplements use piperine in combination with turmeric 

powder which can increase bioavailability of curcumin in humans up to 2000% (17). 

Curcuminoids are relatively safe compounds as observed in dose escalation studies, where a 

consumption of single dose 12 g curcumin by healthy human volunteers did not exhibit any 

serious side effects (18). Up to now, there are only few data in the literature about the 

pharmacological activities of the three curcuminoids. Recent in vitro studies showed that the 

potency of demethoxycurcumin and bisdemethoxycurcumin to modulate inflammatory- and 

cell-proliferating signaling via suppression of tumor necrosis factor (TNF)-induced nuclear 

factor-kappaB (NF-kappaB) activation was only slightly lower than curcumin in various 

human cancer cell lines (19) . Tetrahydrocurcumin, a major metabolite of curcumin, was also 

shown to possess various biological activities. For example, tertrahydrocurcumin inhibited 

lipoxygenase to the same extent as curcumin (IC50: 1 µM), (20) and was more than 3-fold 

more active than curcumin in relieving the sciatic nerve injury of rats (21).  

The three curcumin degradation products ferulic acid, feruloyl methane and vanillin 

were also shown to demonstrate pharmacological activity. So was the free radical 

scavenging properties of ferulic acid, which was about 7-fold higher compared to curcumin 

(22).  Vanillin is capable of attenuating cancer metastasis by modulating angiogenesis in 

A549 lung cancer cells (23) and has been shown to have minor anti-inflammatory effects via 

inhibition of cyclooxygenase 2 (COX-2) (24).   

Therefore, in the present work, we investigated the spasmolytic activity of three 

curcuminoids and their major metabolite tetrahydrocurcumin along with degradative 

products ferulic acid, feruloyl methane and vanillin on guinea pig ileum, aorta and 

pulmonary artery. We also evaluated the chronotropic and inotropic activities of these 

compounds on isolated right atrium and papillary muscles respectively. Beside these 
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biological activities we quantified the uptake of curcuminoids and tetrahydrocurcumin in 

respective tissue samples and compared it with biological activities. 

In isolated organ preparations of ileum all compounds exhibited significant 

spasmolytic activity (Fig. 2A), thus confirming the beneficial effects of turmeric powder 

against gastrointestinal spasm like irritable bowel syndrome (25, 26).  In a pilot study of 105 

irritable bowel syndrome patients consuming 144 mg of turmeric extract for 8 weeks, 

abdominal pain and discomfort was reduced in 25% of the patients (27). As nitric oxide has 

been described to modulate gastrointestinal movements (28, 29), we assessed the effect of 

eNOS blockade by L-NNA on curcuminoid mediated spasmolytic activity. However, our 

experiments demonstrated that blockade of eNOS does not affect the spasmolytic activity of 

curcuminoids and their metabolite (Fig. 2B). The observed spasmolytic effect of 

curcuminoids may be therefore attributed to a blockade of calcium influx from voltage-gated 

calcium channels (9, 30, 31), since plant materials relaxing high potassium induced 

contractions possess calcium channel blocking activity (32-35). In a further experimental 

setting, curcumin, bisdemethoxycurcumin and tertrahydrocurcumin only modestly whereas 

demethoxycurcumin significantly relaxed KCl-induced contractions in pulmonary artery with 

EC50 value of 15.78 ± 0.85 µM (Fig. 3A). These finding indicates that demethoxycurcumin and 

not the other curcuminoids are mainly responsible for the vasorelaxation of C. longa extracts 

(9). This effect of demethoxycurcumin on pulmonary artery can be additionally attributed to 

the inhibition of phosphodiesterase-5 as observed in rat pulmonary artery where only 

demethoxycurcumin inhibited phosphodiesterase-5 and produced strong vasorelaxation 

while curcumin and bisdemethoxycurcumin produced mild vasorelaxation by interfering 

with calcium ion movement (36). In aorta tissue preparation, curcumin showed mild 

vasoconstriction whereas demethoxycurcumin, bisdemethoxycurcumin and 
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tetrahydrocurcumin exhibited vasorelaxant effect (Fig. 3B). This explains the previously 

reported dual effect of C. longa crude extract on aorta rings, where it showed weak 

vasoconstriction in the absence of any agonists and vasorelaxation in agonist- induced 

contractions (2, 31). Recent data demonstrated that low concentrations of curcumin (<5 µM) 

stimulates the expression of COX-2 mRNA and protein in human coronary artery endothelial 

cells (37). Furthermore, it also increased the expression of prostaglandin I2 (PGI2) and 

prostaglandin E2 (PGE2) synthase mRNA with resultant enhancement of the production of 

PGE2 and PGI2 when adequate amounts of arachidonic acid were present (37). As PGI2 is a 

potent vasodilator (38), PGI2 might contribute, at least partly, to the observed vasorelaxant 

property of demethoxycurcumin and bisdemethoxycurcumin in the isolated aorta rings of 

guinea pigs. Crude extract of C. longa has been reported to exhibit a variable response 

including both a hypotension and hypertension on arterial blood pressure in anesthetized 

rats (2). So, we also screened for both inotropic and chronotropic effect of individual 

curcuminoids and their metabolite tetrahydrocurcumin in right atrium and papillary muscles. 

All the compounds mildly suppressed rate of atrial contractions thus exhibiting a bradycardic 

effect (Fig. 5). However, in papillary muscle preparation both curcumin and 

bisdemethoxycurcumin exhibited mild positive inotropic effect whereas demethoxycurcumin 

and tetrahydrocurcumin showed mild negative inotropic effect (Fig. 4). This explains why 

previously a variable response both (hypotensive and hypertensive) was observed by crude 

extract of C. longa (2).  Our results are also in line with a more recent study which observed 

that curcumin lead to a short time (3 ± 1 min) hypotensive response in non-anesthetized rats 

and a more prolonged (15 ± 1 min) bradycardic effect (9). This indicates the antagonizing 

effect of curcuminoids may be beneficial in normalizing the blood pressure. However, 

pharmacokinetic interactions have been reported after concomitant use of curcuminoids 
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with cardiovascular drugs. Cautions should be therefore taken especially after a high dose of 

curcuminoids (39, 40).  

Uptake of curcuminoids and of tetrahydrocurcumin into various tissue samples 

correlated with pharmacological activities. Bisdemethoxycurcumin not only demonstrated 

the most potent spasmolytic activity in the ileum, its concentration in this organ was also far 

highest.  This was also true for the uptake of demethoxycurcumin into the pulmonary artery 

and in the aorta where highest concentration was well correlated with the vasodilating 

activity. Chronotropic activity in the right atrium also correlated with far highest 

concentrations of demethoxycurcumin in the right atrium while tetrahydrocurcumin with 

negligible tissue levels showed no activity. A correlation with tissue levels was also true for 

demethoxycurcumin and tetrahydrocurcumin which both showed the most pronounced 

inotropic activity. Besides tissue levels we also observed substrate specificity at least for 

curcumin which selectively showed a positive inotropic effect. The higher uptake of 

demethoxycurcumin and bisdemethoxycurcumin in different organ preparations might be 

due to increased stability at physiological pH preventing their degradation to non-active 

ferulic acid, feruloyl methane and vanillin (41). Also tetrahydrocurcumin is considered much 

more stable compared to curcumin both in plasma and 0.1M phosphate buffer, irrespective 

to pH (42).  

To summarize, our data showed that demethoxycurcumin and 

bisdemethoxycurcumin showed more pronounced spasmolytic, vasodilating and negative 

inotropic activity than curcumin indicating that both curcuminoids significantly contributed 

to the observed pharmacological effects of C. longa extract. Enriched C. longa extracts with a 

higher content of demethoxycurcumin and bisdemethoxycurcumin is therefore highly 

favorable leading to more therapeutic efficacy.  Unfortunately, there are no data in the 
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literature about the bioavailability and pharmacokinetics of demethoxycurcumin, 

bisdemethoxycurcumin and tetrahydrocurcumin. Further studies are therefore highly 

warranted to elucidate bioavailability and pharmacokinetics of these compounds in animal 

models and humans.   

Acknowledgement 

Qurrat Ul Ain Jamil and Shahid Muhammad Iqbal were supported by a fellowship of OeAD, 

Austria, in collaboration with the Higher Education Commission of Pakistan. 

Conflict of interest 

The authors declare no conflict of interest. 

78



 

REFERENCES 

1. Metzler M, Pfeiffer E, Schulz SI, Dempe JS. Curcumin uptake and metabolism. 

Biofactors 2013; 39(1): 14-20. 

2. Gilani AH, Shah AJ, Ghayur MN, Majeed K. Pharmacological basis for the use of 

turmeric in gastrointestinal and respiratory disorders. Life Sci 2005; 76(26): 3089-105. 

3. Chander MP, Kartick C, Vijayachari P. Ethnomedicinal knowledge among Karens of 

Andaman & Nicobar Islands, India. J Ethnopharmacol 2015; 162: 127-33. 

4. Sasaki Y, Goto H, Tohda C, et al. Effects of curcuma drugs on vasomotion in isolated 

rat aorta. Biol Pharm Bull 2003; 26(8): 1135-43. 

5. Eigner D, Scholz D. Ferula asa-foetida and Curcuma longa in traditional medical 

treatment and diet in Nepal. J Ethnopharmacol 1999; 67(1): 1-6. 

6. Islam MK, Saha S, Mahmud I, et al. An ethnobotanical study of medicinal plants used 

by tribal and native people of Madhupur forest area, Bangladesh. J Ethnopharmacol 2014; 

151(2): 921-30. 

7. Neamsuvan O, Phumchareon T, Bunphan W, Kaosaeng W. Plant materials for 

gastrointestinal diseases used in Chawang District, Nakhon Si Thammarat Province, Thailand. 

J Ethnopharmacol 2016; 194: 179-87. 

8. Rao TS, Basu N, Seth SD, Siddiqui HH. Some aspects of pharmacological profile of 

sodium curcuminate. Indian J Physiol Pharmacol 1984; 28(3): 211-5. 

79



 

9. Adaramoye OA, Anjos RM, Almeida MM, et al. Hypotensive and endothelium-

independent vasorelaxant effects of methanolic extract from Curcuma longa L. in rats. J 

Ethnopharmacol 2009; 124(3): 457-62. 

10. Vijaya Saradhi UV, Ling Y, Wang J, et al. A liquid chromatography-tandem mass 

spectrometric method for quantification of curcuminoids in cell medium and mouse plasma. 

J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878(30): 3045-51. 

11. Pfeiffer E, Hohle S, Solyom AM, Metzler M. Studies on the stability of turmeric 

constituents. J Food Eng 2003; 56(2-3): 257-9. 

12. Ravindranath V, Chandrasekhara N. In vitro studies on the intestinal absorption of 

curcumin in rats. Toxicology 1981; 20(2-3): 251-7. 

13. Itthipanichpong C, Ruangrungsi N, Kemsri W, Sawasdipanich A. Antispasmodic effects 

of curcuminoids on isolated guinea-pig ileum and rat uterus. J Med Assoc Thai 2003; 86 

Suppl 2: S299-309. 

14. Jamil QUA, Jaerapong N, Zehl M, Jarukamjorn K, Jager W. Metabolism of Curcumin in 

Human Breast Cancer Cells: Impact of Sulfation on Cytotoxicity. Planta Med 2017; 83(12-13): 

1028-34. 

15. Wang TT, Zhou ZQ, Wang S, et al. Mechanisms of vasorelaxation induced by total 

flavonoids of Euphorbia humifusa in rat aorta. J Physiol Pharmacol 2017; 68(4): 619-28. 

80



 

16. Li R, Xiang C, Ye M, Li HF, Zhang X, Guo DA. Qualitative and quantitative analysis of 

curcuminoids in herbal medicines derived from Curcuma species. Food Chem 2011; 126(4): 

1890-5. 

17. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine 

on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 1998; 

64(4): 353-6. 

18. Lao CD, Ruffin MT, Normolle D, et al. Dose escalation of a curcuminoid formulation. 

BMC Complement Altern Med 2006; 6(1): 10. 

19. Sandur SK, Pandey MK, Sung B, et al. Curcumin, demethoxycurcumin, 

bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-

inflammatory and anti-proliferative responses through a ROS-independent mechanism. 

Carcinogenesis 2007; 28(8): 1765-73. 

20. Novaes JT, Lillico R, Sayre CL, et al. Disposition, Metabolism and Histone Deacetylase 

and Acetyltransferase Inhibition Activity of Tetrahydrocurcumin and Other Curcuminoids. 

Pharmaceutics 2017; 9(4). 

21. Greeshma N, Prasanth KG, Balaji B. Tetrahydrocurcumin exerts protective effect on 

vincristine induced neuropathy: Behavioral, biochemical, neurophysiological and histological 

evidence. Chem Biol Interact 2015; 238: 118-28. 

81



 

22. Mancuso C, Santangelo R. Ferulic acid: pharmacological and toxicological aspects. 

Food Chem Toxicol 2014; 65: 185-95. 

23. Lirdprapamongkol K, Sakurai H, Kawasaki N, et al. Vanillin suppresses in vitro invasion 

and in vivo metastasis of mouse breast cancer cells. EUR J PHARM SCI 2005; 25(1): 57-65. 

24. Murakami Y, Hirata A, Ito S, et al. Re-evaluation of cyclooxygenase-2-inhibiting 

activity of vanillin and guaiacol in macrophages stimulated with lipopolysaccharide. 

Anticancer Res 2007; 27(2): 801-7. 

25. Annaházi A, Róka R, Rosztóczy A, Wittmann T. Role of antispasmodics in the 

treatment of irritable bowel syndrome. World J Gastroenterol 2014; 20(20): 6031-43. 

26. Rahimi R, Abdollahi M. Herbal medicines for the management of irritable bowel 

syndrome: a comprehensive review. World J Gastroenterol 2012; 18(7): 589-600. 

27. Bundy R, Walker AF, Middleton RW, Booth J. Turmeric extract may improve irritable 

bowel syndrome symptomology in otherwise healthy adults: a pilot study. J Altern 

Complement Med 2004; 10(6): 1015-8. 

28. Konturek SK, Konturek PC. Role of nitric oxide in the digestive system. Digestion 1995; 

56(1): 1-13. 

29. Li CG, Rand MJ. Nitric oxide and vasoactive intestinal polypeptide mediate non-

adrenergic, non-cholinergic inhibitory transmission to smooth muscle of the rat gastric 

fundus. Eur J Pharmacol 1990; 191(3): 303-9. 

82



 

30. Kim K, Kim JJ, Jung Y, et al. Cyclocurcumin, an Antivasoconstrictive Constituent of 

Curcuma longa (Turmeric). J Nat Prod 2017; 80(1): 196-200. 

31. Micucci M, Aldini R, Cevenini M, et al. Curcuma longa L. as a therapeutic agent in 

intestinal motility disorders. 2: Safety profile in mouse. PLoS One 2013; 8(11): e80925. 

32. Iqbal SM, Jamil Q, Jamil N, Kashif M, Mustafa R, Jabeen Q. Antioxidant, antibacterial 

and gut modulating activities of Kalanchoe Laciniata. Acta Pol Pharm 2016; 73(5): 1221-7. 

33. Iqbal SM, Mushtaq A, Jabeen Q. Antimicrobial, antioxidant and calcium channel 

blocking activities of Amberboa divaricata. Bangladesh J Pharmacol 2014; 9(1): 29-36. 

34. Janbaz KH, Qayyum A, Saqib F, Imran I, Zia-Ul-Haq M, de Feo V. Bronchodilator, 

vasodilator and spasmolytic activities of Cymbopogon martinii. J Physiol Pharmacol 2014; 

65(6): 859-66. 

35. Kitic D, Brankovic S, Radenkovic M, et al. Hypotensive, vasorelaxant and 

cardiodepressant activities of the ethanol extract of Sideritis raeseri spp. raeseri Boiss & 

Heldr. J Physiol Pharmacol 2012; 63(5): 531-5. 

36. Kruangtip O, Chootip K, Temkitthawon P, et al. Curcumin analogues inhibit 

phosphodiesterase-5 and dilate rat pulmonary arteries. J Pharm Pharmacol 2015; 67(1): 87-

95. 

83



 

37. Tan X, Poulose EM, Raveendran VV, Zhu BT, Stechschulte DJ, Dileepan KN. Regulation 

of the expression of cyclooxygenases and production of prostaglandin I(2) and E(2) in human 

coronary artery endothelial cells by curcumin. J Physiol Pharmacol 2011; 62(1): 21-8. 

38. Vane JR, Botting RM. Pharmacodynamic profile of prostacyclin. The American journal 

of cardiology 1995; 75(3): 3A-10A. 

39. Bahramsoltani R, Rahimi R, Farzaei MH. Pharmacokinetic interactions of 

curcuminoids with conventional drugs: A review. J Ethnopharmacol 2017; 209: 1-12. 

40. Hu CW, Sheng Y, Zhang Q, et al. Curcumin inhibits hERG potassium channels in vitro. 

Toxicol Lett 2012; 208(2): 192-6. 

41. Hoehle SI, Pfeiffer E, Solyom AM, Metzler M. Metabolism of curcuminoids in tissue 

slices and subcellular fractions from rat liver. J Agric Food Chem 2006; 54(3): 756-64. 

42. Pan MH, Huang TM, Lin JK. Biotransformation of curcumin through reduction and 

glucuronidation in mice. Drug Metab  Dispos 1999; 27(4): 486-94. 

  

84



 

Fig. 1. Chemical structures of the three curcuminoids curcumin, demethoxycurcumin, 

bisdesmethoxycurcumin, the curcumin metabolite tetrahydrocurcumin and the 

curcumin degradation products ferulic acid, feruloyl methane and vanillin.  

Fig. 2. Spasmolytic activity of curcuminoids and their metabolite. (A), concentration 

response curves for curcumin, demethoxycurcumin, bisdemethoxycurcumin and 

tetrahydrocurcumin determined on isolated guinea pig terminal ileum. Data is 

presented as Mean ± SEM (n = 4 - 5). (B), bar graph representing the spasmolytic activity 

of curcumin (CUR), demethoxycurcumin (DMC), bisdemethoxycurcumin (BDMC) and 

tetrahydrocurcumin (THC), after 45 min incubation with L-NNA. Data is presented as 

Mean ± SEM (n = 4) and significance was determined by applying 2-way ANOVA 

followed by Tukey´s posttest. 

Fig. 3. Vasodilatory activity of curcuminoids and their metabolite. Concentration response 

curve for curcumin (CUR), demethoxycurcumin (DMC), bisdemethoxycurcumin (BDMC) 

and tetrahydrocurcumin (THC), determined on guinea pig (A) pulmonary artery (n = 5), 

and (B) Aorta (n = 5 - 6). Data is represented as Mean ± SEM. 

Fig. 4. Inotropic activity of curcuminoids and their metabolite. Concentration response curve 

for curcumin (CUR), demethoxycurcumin (DMC), bisdemethoxycurcumin (BDMC) and 

tetrahydrocurcumin (THC), determined on papillary muscle from guinea pig right 

ventricle. Data is represented as Mean ± SEM (n = 4). 

Fig. 5. Chronotropic activity of Curcuminoids and their metabolite. Concentration response 

curves for curcumin (CUR), demethoxycurcumin (DMC), bisdemethoxycurcumin (BDMC) 

and tetrahydrocurcumin (THC), determined on guinea pig right atria. Data is 

represented as Mean ± SEM (n = 4). 
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Fig. 6. Representative HPLC chromatograms of curcumin (CUR) (A), demethoxycurcumin 

(DMC) (B),  bisdemethoxycurcumin (BDMC) (C) and terahydrocurcumin (THC) (D) in the 

pulmonary artery after 30 min at 37°C with 100 µM of the pure compounds.  

Fig. 7. Tissue uptake experiments for curcuminoids and their metabolite. Bar graphs 

representing uptake of (A), curcumin (B), demethoxycurcumin (C), 

bisdemethoxycurcumin (D), tetrahydrocurcumin in respective tissue samples. Data is 

presented as Mean ± SEM (n = 3) 
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Table 1. Relative uptake of curcumin, demethoxycurcumin, bisdemethoxycurcumin and 

tetrahydrocurcumin in respective tissue samples. Each data point represents Mean ± SEM of 

three experiments performed on different tissue samples. 

Tissue Curcumin Demethoxycur
cumin 

Bisdemethoxy
curcumin 

Tetrahydrocur
cumin 

 Mean ± SEM  
(mg/g) 

Mean ± SEM 
(mg/g) 

Mean ± SEM 
(mg/g) 

Mean ± SEM 
(mg/g) 

Ileum 0.79 ± 0.07 0.18 ± 0.04 2.61 ± 0.28 0.23 ± 0.00 

Aorta 3.26 ± 0.36 10.56 ± 1.50 10.58 ± 0.01 7.48 ± 0.47 

Right Atrium 1.00 ± 0.12 13.96 ± 4.44 2.23 ± 0.25 0.31 ± 0.01 

Papillary Muscles 1.93 ± 0.17 17.99 ± 5.05 2.233 ± 1.09 4.82 ± 0.63 

Pulmonary Artery 4.13 ± 1.00 35.62 ± 1.83 28.83 ± 5.12 0.94 ± 0.01 
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Abstract. Curcumin is a natural polyphenolic compound with pronounced anticancer 

properties. These effects are observed despite its low bioavailability, which is 

particularly caused by extensive phase II metabolism. It is unknown whether 

curcumin and its metabolites can accumulate to bioactive level in organs and tissues 

through protein-mediated transport mechanism. Because organic anion transporting 

polypeptides (OATPs) mediate the uptake of many clinically important drugs, we 

investigated their role in the cellular transport of curcumin and its major glucuronides 

and sulfates in OATP-expressing Chinese hamster ovary (CHO) and breast cancer 

(ZR-75-1) cells. The uptake rates for curcumin in OATP1B1-, OATP1B3- and 

OATP2B1-transfected CHO cells were 2- to 3 - fold higher compared to wild-type 

cells. Curcumin sulfate again was transported by all three OATPs, however, to a 

much lesser extent, while uptake of tetrahydrocurcumin was only demonstrated by 

OATP1B1 and OATP1B3. Interestingly, curcumin glucuronide did not show any 

affinity for these OATPs. The much higher mRNA levels for OATP1B1 is found in 

wild-type compared to OATP1B1 knockdown ZR-75-1 cells, which are correlated with 

higher initial uptake leading to decreased IC50 values and a slightly more pronounced 

inhibition of NF-κB. In conclusion, our data reveal that OATPs act as cellular uptake 

transporters for curcumin and its major metabolites, this may also be apply to human, 

following oral uptake of dietary curcumin. 
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Introduction 

 

Breast cancer is the most predominant form for female and the secondary leading 

cause of the disease related mortality among females globally. Chemoprevention in 

association with anticancer treatment is crucial for reduction in the incident and the 

mortality of this disease. Evidence from epidemiological and experimental studies 

shows that natural components available in the food can act as chemopreventive 

factors to prevent mammary carcinogenesis (1,2). One of these constituents is 

curcuma, a bright-yellow-colored polyphenol got from rhizome of the crop Curcuma 

longa L. (Zingiberaceae). Tumeric has been in use for over two millennia as an 

herbal therapy in China and India in the prevention and cure of different human 

diseases (3). The breast cancer preventing activity of curcumin has been recently 

demonstrated in a mouse xenograft breast cancer model, which proved that the in-

take of a curcumin-supplemented meal prevented tumor growth and angiogenesis 

(4). The anti-proliferative feature of curcumin has been elucidated in vitro and in vivo 

against hormone-reliant and hormone-free human breast cancer cells. Curcumin was 

found to interfere with apoptosis through regulating many intracellular showing routes 

as well as the transcriptional factors STAT3, NFkB, and AP-1, the receptors HER2 

and CXCR4, the kinases EGFR, ERK, and JAK, and the cytokines TNF, IL and MP 

(5-7). Curcumin also attenuates the expression of major matrix metalloproteinases 

(MMPs) owing to diminished NFkB operation and transcriptional down regulation of 

AP-1 (8). Abridged NFkB/AP-1 function and MMP performance results in sizeably 

lower number of lung metastasis in immunodeficient mice after intracardiac injection 

of estrogen receptor (ER)-negative human breast cancer MDA-MB-231 cells (8).  

Curcumin also shows a synergistic effect in vitro and in vivo with other 

anticancer drugs. The most current research revealed a synergistic result of 

paclitaxel in combination with curcumin against human MCF-7 and MDA-MB-231 

cells (9). Better clinical responses were also noticed in a phase I clinical trial of 

docetaxel plus curcumin in patients with prolonged and metastatic breast cancer 

showing curcumin as a favourable agent in combination with other anticancer drug 

(10). Studies carried out in laboratory animals have reported extensive 

biotransformation of curcumin in the small intestine and liver yielding mainly curcumin 

sulfate and curcumin glucuronide (11) thereby explaining its very low bioavailability 

(<1%) after per oral administration. Curcumin bioavailability is also negligible in 
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humans, as shown by a pilot study of standardized curcuma-derived extract in 

colorectal cancer patients (12). Curcumin undergoes metabolic phase II conjugation 

to curcumin glucuronide and curcumin sulfate and phase I bio-reduction majorly to 

tetrahydrocurcumin and to a minor part to hexahydrocurcumin, octahydrocurcumin, 

and hexahydrocurcuminol (13,14). Reduced curcumins are subsequently further 

conjugated to glucuronides and sulfates (13). Based on the rapid metabolism free 

curcumin is not noticed in plasma even after large oral doses of 10 g or 12 g to 

human volunteers. Curcumin glucuronide and sulfate, nevertheless, was easily 

measured in the plasma derived from all human 12 participants with maximal 

concentrations in the very low microgram/ml range (15).  

Current experiments in our lab confirmed the formation of curcumin sulfate as 

the major metabolite in hormone-dependent ZR-75-1 and hormone-independent 

MDA-MB-231 breast cancer cells; curcumin glucuronide concentrations were below 

the detection limit (16). Interestingly, curcumin sulfate concentration in the cellular 

medium was up to 12-fold higher compared to the cytoplasm indicating a not yet 

identified active efflux system for this metabolite. A likely candidate for the cellular 

transport from the cytoplasm into the medium is the breast cancer resistance protein 

(BCRP, ABCG2), which is expressed in numerous tissues, such as placenta, small 

intestine, colon, and the hepatic canalicular membrane, but also in breast ductal 

cells, and performs a significant function in the efflux of sulfated conjugates of 

steroids and xenobiotics (17). Interplay of curcumin with BCRP has already been 

described and may also be apply for its sulfate (18).  

The observed pharmacological activities of curcumin cannot be explained by 

the very low blood and tissue concentrations of unchanged curcumin leading to 

pronounced levels of conjugates. Currently, limited information is available regarding 

the possible benefits of curcumin metabolites. In vitro data, however, suggest that the 

main metabolites curcumin sulfate and curcumin glucuronide are less potent than 

curcumin against various tumor cell lines. Though, the in vitro work of curcumin 

metabolites may not particularly reflect their in vivo function given that intracellular 

sulfatases or β-glucuronidases might quickly change the conjugates back to 

curcumin.  

Uptake mechanisms into tumor cells might be therefore even more significant 

than efflux movement for the efficiency of curcumin because they are factors for 

intracellular drug concentration. One main cellular uptake mechanism is via members 
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of the organic anion transporting polypeptide (OATP) family (19-21). Among the 11 

human OATPs, OATP1B1 and OATP1B3 are highly expressed in the liver and 

mediate the uptake of several drugs into hepatocytes. OATP2B1 is expressed in liver 

and in addition demonstrates substantial expression in the apical membrane of 

enterocytes, where it contributes to the intestinal absorption of many endogenous 

compounds and clinically important drugs, thereby affecting drug disposition (22-23). 

Data from our laboratory have also shown a high expression of various OATPs in 

human hormone receptor-positive (MCF-7) and negative (MDA-MB-231) breast 

cancer cell lines (24). As pronounced curcumin uptake into the cytoplasm was also 

observed in these two cell lines (16), we hypothesized that members of the OATP 

family may mediate intracellular curcumin concentrations, thereby affecting cell 

growth. In the present study, we therefore investigated the time and concentration-

dependent transport of curcumin, curcumin sulfate, curcumin glucuronide and 

tetrahydrocurcumin in stably OATP1B1-, OATP1B3- and OATP2B1-transfected CHO 

cells. Furthermore, the impact of OATP 1B1 on cytotoxicity and NF-κB inhibition of 

curcumin-treated human breast cancer cells ZR-75-1 was also investigated.  

 

Materials and methods 

 

Materials. Curcumin (98% pure) and tetrahydrocurcumin (95% pure) were purchased 

from Sigma; curcumin sulfate and curcumin glucuronide were obtained from TLC 

Pharmaceutical Standards Ltd; MeOH and water were of HPLC grade (Merck). All 

other chemicals and solvents were commercially available and of analytical grade 

and were used without further purification. 

 

Cell culture. Chinese hamster ovary (CHO) cells that were stably transfected with 

OATP1B1, OATP1B3 and OATP2B1 and wild-type CHO cells were provided by the 

Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, 

Switzerland, which have been extensively characterized previously (25,26). The CHO 

cells were grown in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 

10% FCS, 50 µg/ml L-proline, 100 U/ml penicillin and 100 μg/ml streptomycin. The 

selective medium for stably transfected CHO cells additionally contained 500 µg/ml 

geneticin sulfate (G418) (27). All of the media and supplements were obtained from 

Invitrogen (Karlsruhe, Germany). The mammalian ZR-75-1 breast cancer cell line 
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was purchased from the American Type Culture Collection (ATCC, Rockville, MD, 

USA) and was maintained in RPMI medium supplemented with 10% FCS, 100 U/ml 

penicillin, 100 μg/ml streptomycin and 1% GlutaMAX. The cells were grown in T-

flasks with a 25-cm2 growth area (BD Biosciences, Franklin Lakes, NJ, USA), 

maintained at 37°C under 5% CO2 and 95% relative humidity. The cells were 

passaged once a week and were used up to passage 55 (21). 

 

OATP1B1 knockdown in ZR-75-1 cells. For lentiviral transduction, ZR-75-1 cells were 

plated in 24-well tissue culture plates at a density of 40,000 cells/well in 0.5 ml of 

growth medium. After 24 hours, 250 µl of medium supplemented with 8 µg/ml 

polybrene (Sigma, H9268) was added. Transductions were performed by the addition 

of 10 µl of shRNA (Mission® Transduction Particles NM_006446, Sigma, 

TRCN0000043203 coding sequence: CCGGGCCTTCATCTAAGGCTAACATCTCG-

AGATGTTAGCCTTAGATGAAGGCTTTTTG). Twenty-four hours after transduction, 

the cell culture medium was changed, and 1 ml of growth medium supplemented with 

1 or 5 µg/ml of puromycin (Sigma, P9620) was added to select infected cells after an 

additional 24 hours. The obtained silencing efficiency was evaluated after 3 weeks 

via real-time PCR and immunofluorescence. 

 

Real-time RT-PCR. Total RNA was extracted from cell lines using the TRIzol reagent 

(Invitrogen) according to the manufacturer's instructions. The concentration, purity, 

and integrity of the RNA samples were determined through UV absorbance and 

electrophoresis. Two μg of total RNA were reverse transcribed to cDNA using 

random hexamer primers and the RevertAid™ H Minus M-MuLV Reverse 

Transcriptase system (Fermentas, St. Leon-Rot, Germany), as recommended by the 

manufacturer. TaqMan® Gene Expression Assays (Applied Bio-systems, Warrington, 

United Kingdom) were purchased for human OATP1B1. The 18S gene was used as 

a reference gene as previously described (24). Multiplex quantitative real-time RT-

PCR was performed in an amplification mixture with a volume of 20 μl. The target 

gene amplification mixture contained 10 μl of 2X TaqMan® Universal PCR Master 

Mix, 1 μl of the appropriate Gene Expression Assay, 1 μl of the TaqMan® 

endogenous control (human β-actin or 18S), 10 ng of template cDNA diluted in 5 μl of 

nuclease-free water and 3 μl of nuclease-free water. The thermal cycling conditions 

were as follows: 2 min at 50°C and 10 min at 95°C, followed by 40 cycles of 15 s at 
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95°C and 1 min at 60°C. Fluorescence generation due to TaqMan® probe cleavage 

via the 5'→3' exonuclease activity of DNA polymerase was measured with the ABI 

PRISM 7700 Sequence Detection System (Applied Bio-systems). All samples were 

amplified in triplicate. To cover the range of expected Ct values for the target mRNA, 

a standard curve of six serial dilutions from 50 ng to 500 pg of pooled cDNA was 

analyzed using Sequence Detection Software (SDS 1.9.1., Applied Bio-systems). 

The results were imported into Microsoft Excel for further analysis. Comparable 

cDNA contents in the experimental samples were calculated according to the 

standard curve method. Relative gene expression data are given as the n-fold 

change in transcription of target genes normalized to the endogenous control. Real-

time RT-PCR was performed with the following prefabricated TaqMan® Gene 

Expression Assays (Applied Bio-systems) containing intron-spanning primer 

Hs00272374_m1 for OATP1B1. 

 

Immunofluorescence. ZR-75-1 OATP1B1-knockdown cells and ZR-75-1 cells 

transfected with the empty vector were allowed to attach on culture slides overnight 

(8-Chamber Polystyrene Vessel Tissue Culture-Treated Glass Slides, BD Falcon). 

Formalin fixation was followed by a washing step and a blocking step (by 5% BSA). 

The primary antibody against OATP1B1 (OATP1B1/1B3 mMDQ mouse monoclonal 

antibody; Acris Antibodies, Herford, Germany) was diluted 1:100, and incubation was 

performed for 2 hours. Optimal antibody concentrations were determined by titrating 

serial antibody dilutions. The applied dilutions corresponded to the minimum 

concentration necessary to produce a positive signal. Wild-type and OATP1B1-

transfected CHO cells were used as negative and positive controls, respectively. 

Following incubation with the secondary antibody (1:1,000 dilution; Alexa Fluor® 488 

Goat Anti-Rabbit IgG; Invitrogen, Carlsbad, CA) for 30 min, cell nuclei were stained 

with 0.5 μg/ml Hoechst 33342 (Sigma-Aldrich, St. Louis, MO). Thereafter, the slides 

were rinsed with distilled water before being mounted in Mowiol 4-88 (Carl Roth, 

Karlsruhe, DE). Fluorescent staining was visualized with an Axioplan 2 microscope 

(Carl Zeiss, Jena, DE). Images were captured using an AxioCam HRc2 Color CCD 

digital camera and Axiovision 4.8 software (Carl Zeiss Vision GmbH, Aalen, DE). To 

minimize background signals and to make the signal intensity and extension in 

different samples comparable, the exposure times for the individual antibodies were 

evaluated and kept constant between the samples. 
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Cellular uptake. Transport assays were performed on 12-well plates as described in 

detail elsewhere (28). Briefly, OATP-transfected CHO cells were seeded at a density 

of 350,000 cells per well on 12-well plates (BD Biosciences, Franklin Lakes, NJ, 

USA). Uptake assays were generally performed on day 3 after seeding when the 

cells had grown to confluence. Twenty-four hours before starting the transport 

experiments, the cells were additionally treated with 5 mM sodium butyrate (Sigma-

Aldrich, St. Louis, MO, USA) to induce nonspecific gene expression (29). Curcumin 

and its metabolites were dissolved in DMSO and were diluted with uptake buffer (pH 

7.4; final DMSO concentration of 0.5%, which was constant in all transport 

experiments) to 25–600 µM. The experiments run under each set of conditions were 

performed in triplicate. Control experiments contained DMSO in the medium in place 

of curcumin and its biotransformation products, respectively. Prior to the transport 

experiment, the cells were rinsed twice with 2 ml of pre-warmed (37°C) uptake buffer 

(116.4 mM NaCl, 5.3 mM KCl, 1 mM NaH2PO4, 0.8 mM MgSO4, 5.5 mM D-glucose 

and 20 mM Hepes; pH adjusted to 7,4). Uptake was initiated by adding 0.25 ml of 

uptake buffer containing the substrate. After the indicated time period at 37°C, uptake 

was stopped by removing the uptake solution and washing the cells five times with 2 

ml of buffer (pH 7.4). The cells were then trypsinized by the addition of 100 µl of 

trypsin and transferred into test tubes. Next, the cell membranes were disrupted via 

repeated (5 times) shock freezing in liquid nitrogen and thawing. Following 

centrifugation at 13,500 g for 5 min, 100 µl of the supernatant was diluted with 

methanol/water (2:1; v/v), and aliquots (80 µl) were analyzed via HPLC. 

 

Transport of curcumin in wild-type ZR-75-1 and OATP1B1-knockdown ZR-75-1 cells. 

Cells were plated on 6-well plates and allowed to attach overnight. Curcumin was 

dissolved in DMSO and diluted with medium (final DMSO concentration < 0.1%) to a 

concentration of 25-200 µM. The experiments were performed under each set of 

conditions in triplicate. Control experiments contained DMSO in the medium in place 

of curcumin. After 72 hours, the medium was aspirated via suction, and aliquots (100 

µl) were subsequently analyzed through HPLC. The cells were then trypsinized by 

the addition of 100 µl of trypsin, washed three times with phosphate buffered saline, 

and lysed by repeated (5 times) shock freezing in liquid nitrogen and thawing. 

Following centrifugation at 13,500 g for 5 min, 80 µl of the supernatant (cytoplasm) 
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was subsequently analyzed by HPLC. Additionally, the cell pellets containing the 

membranes were extracted with 200 µl of methanol and analyzed by HPLC for their 

curcumin content. The protein concentration in the cell pellets was determined using 

a BCA assay kit (Pierce Science, Rockford, IL, USA), with bovine serum albumin as a 

standard. 

 

Cytotoxicity assay. CellTiter-Blue (Promega, Southampton, UK) is the type of a 

colorimetric and fluorescent assay used to measure cell viability via non-specific 

redox enzyme activity (reduction from resazurin to resorufin by viable cells). ZR-75-1 

cells (50,000 cells/ml) were seeded into 96-well flat-bottomed plates and incubated 

for 24 hours at 37°C under 5% CO2. For cytotoxicity assays, ZR-75-1 wild-type and 

OATP1B1-knockdown ZR-75-1 cells were incubated with various concentrations of 

curcumin (2.5-100 µM) for 72 hours. The Cell Titer-Blue (20 μL) reagent was added 

to the wells, and the plate was incubated for 2 hours, protected from light. The 

absorbance was recorded for resazurin (605 nm) and resorufin (573 nm). The assay 

results were measured on a Tecan M200 multimode plate reader (Tecan Austria 

GmbH, Groedig, Austria). The absorbance was also measured in Cell Titer-Blue 

assays in blank wells (without curcumin) and deducted from the values from 

experimental wells. The viability of the treated cells was expressed as a percentage 

from the viability of the corresponding control cells. All experiments were repeated at 

least three times. 

 

Determination of protein concentrations. Total protein was determined using the 

colorimetric bicinchoninic acid protein (BCA) assay kit (Pierce Science, Rockford, IL, 

USA) with bovine serum albumin as a standard and quantification at a wavelength of 

562 nm on a spectrophotometer (UV-1800, Shimadzu). Raw data were analyzed 

using UV Probe software (version 2.31, Shimadzu). The protein concentrations were 

consistent among the plates (0.150 ± 0.005 mg/well). 

 

HPLC analysis. Curcumin and its biotransformation products were quantified by 

HPLC using a Dionex UltiMate 3000 system equipped with an L-7250 injector, an L-

7100 pump, an L-7300 column oven (set at 35°C), a D-7000 interface and an L-7400 

UV detector (Thermo Fisher Scientific) set at a wavelength of 420 nm (for 

tetrahydrocurcumin: 280 nm). Separation of curcumin and its metabolites was carried 
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out at 35°C using a Hypersil BDS-C18 column (5 µm, 250 x 4.6 mm I.D., Thermo 

Fisher Scientific), preceded by a Hypersil BDS-C18 precolumn (5 µm, 10 x 4.6mm 

I.D.). The mobile phase consisted of a continuous linear gradient, mixed from 10 mM 

ammonium acetate/acetic acid buffer, pH 5.0 (mobile phase A) and methanol (mobile 

phase B). The flow rate was kept at 1mL/min. The filtration of the mobile phase was 

performed through a 0.45µM filter (HVLP04700, Millipore, Austria). The gradient 

range was from 10% methanol (0 min) to 90% methanol at 17 min followed by 

another increase to 95% at 18 min where it remained constant until 25 min. 

Subsequently, the percentage of methanol was decreased within 2 min to 10% in 

order to equilibrate the column for 8 min before application of the next sample. 

Calibration of the chromatogram was accomplished using the external standard 

method. Linear calibration curves were performed by spiking drug-free cell culture 

medium with standard solutions of curcumin, curcumin sulfate, curcumin glucuronide, 

and tetrahydrocurcumin, respectively, to give a concentration range from 0.01 to 10 

µg/mL (average correlation coefficients: >0.999). Coefficients of accuracy and 

precision for these compounds were < 11%. 

 

NF-κB-luciferase reporter assay. 100,000 ZR-75-1 wild-type and OATP1B1-

knockdown ZR-75-1 cells were seeded in 24-well plates and grown to 70% 

confluency for transfection. Simultaneous transfection with pTAL-NF-κB (NF-κB 

response element - Firefly luciferase reporter; Clonetech, Paolo Alto, CA, USA) and 

pRL-TK (Control - Renilla luciferase; Promega, Mannheim, Germany) was performed 

with Lipofectamine 2000 (Life Technologies, Carlsbad, CA, USA; Cat No.: 11668) 

according to the manufacturer’s protocol. NF-κB was blocked for 30 min with 10 µM 

BAY11-7082 or 100 µM curcumin respectively. Then 10 ng/ml interleukin 1β (IL-1β) 

was added and incubated for 90 min, immediately followed by luciferase assay 

(Promega, Mannheim, Germany; Cat No.: E1910). Briefly, cells were lysed with lysis 

buffer and incubated with the first substrate to measure the Firefly luciferase signal. 

Upon addition of the second substrate signals for Renilla luciferase were measured. 

 

Data analysis and statistics. Kinetic analysis of the uptake of curcumin and its 

metabolites was performed over a substrate concentration range of 25 to 600 µM. 

Prior to these experiments, the linearity of cellular uptake over time (1, 3 and 10 min) 

was individually determined for wild-type and OATP-transfected CHO cells by using 
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curcumin (50 µM) as a substrate. Cellular uptake rates are presented after 

normalization for the incubation time and total protein content. Net uptake rates were 

calculated as the difference in the uptake rate of the transfected and wild-type cells 

for each individual concentration. The data were fitted to the Michaelis–Menten 

model. Kinetic parameters were calculated using the Graph-Pad Prism Version 6.0 

software program (GraphPad Software, San Diego, CA) for Michaelis–Menten: V = 

Vmax * S / (Km + S), where V is the rate of the reaction; Vmax is the maximum 

velocity; Km is the Michaelis constant and S is the substrate concentration. The 

intrinsic clearance, which is defined as the ratio Vmax/Km, quantifies the transport 

capacity. The same software package was also used for all statistical analyses. All 

values were expressed as the mean ± SD of three independent biological replicates 

and one-way ANOVA combined with Tukey’s post-test were used to compare 

differences between control samples and treatment groups. The statistical 

significance threshold was defined as P<0.05 for all calculations. 

 

Results 

 

Accumulation of curcumin and metabolites in transfected CHO cells. To investigate 

whether curcumin and its major conjugates are substrates of OATPs, uptake 

analyzes were performed in OATP1B1-, OATP1B3- and OATP2B1-transfected CHO 

cells which show high expression of these transporters in the plasma membrane 

(data not shown). CHO cells only transfected with the vector were used as controls. 

Uptake of curcumin (25-200 µM) for all three OATPs was linear for up to 1 min (data 

not shown). We, therefore, finalized all experiments at 1 min (initial linear phase). As 

shown in Table 1 and Fig. 1A-C, the initial (OATP-transfected CHO cells – CHO cells 

only transfected with the vector) OATP1B1-, OATP1B3- and OATP2B1-mediated 

accumulation rates for curcumin followed Michaelis-Menten kinetics, with higher 

Vmax values for OATP1B1 compared to OATP1B3 and OATP2B1 (Vmax: 310 vs. 

205 vs. 167 pmol/mg protein/). Km-values were similar for all three OATPs and in the 

range of 46.9 – 51.9 µM. The uptake of curcumin sulfate (25-300 µM) in OATP1B1- 

OATP1B3- and OATP2B1-transfected CHO cells, however, was less pronounced, 

showing Vmax values of only 45.0, 33.9 and 24.3 pmol/mg protein/min, respectively 

(Table 1 and Fig. 2A-C). It’s affinity, however, for OATP1B1 and OATP1B3 but not for 

OATP2B1 was 1.9- and 1.4-fold higher with Km values of 89.1 and 67.7 compared to 
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curcumin. Tetrahydrocurcumin was taken up by OATP1B1 and OATP1B3 with higher 

Vmax values (872 and 493 pmol/mg protein/min, respectively); Km values were 38.6 

µM and 83.7 µM (Table 1 and Fig. 3A-C). The uptake of curcumin glucuronide by 

OATP1B1-, OATP1B3- and OATP2B1-transfected and wild-type CHO cells was 

below the detection limit.  

 

OATP1B1-knockdown in ZR-75-1 cells. The PCR data from various lentiviral-

transfected clones revealed an up to ten-fold reduction of OATP1B1 expression in 

ZR-75-1-cells. The cells exhibiting the lowest expression of OATP1B1 (relative 

mRNA expression was reduced from 14.78 ± 0.26 to 1.19 ± 0.02 based on the 

change to the calibrator) were chosen for further experiments. Because ZR-75-1 cells 

do not express OATP1B3 and OATP2B1 but do express OATP1B1 (24), the 

expression of the OATP1B1 protein was confirmed via immunofluorescence using a 

specific OATP1B1/1B3 mouse monoclonal antibody (data not shown). 

 

Curcumin accumulation in wild-type and ZR-75-1 OATP1B1-knockdown cells. Based 

on the much higher OATP1B1 mRNA level found in the wild-type ZR-75-1 breast 

cancer cell line compared to the OATP1B1-knockdown clone, we expected that 

OATP1B1 expression might be directly correlated with intracellular curcumin 

concentrations. For kinetic analysis, an incubation time of 1 min was selected in order 

to prevent cellular uptake from interference with cellular efflux mechanisms like 

MRPs and BCRP. Fig. 4 depicts representative Michaelis-Menten plots for curcumin 

uptake by ZR-75-1wild-type and ZR-75-1 OATP1B1-knockdown cells, where 

significantly higher uptake rates and Km values were found in the OATP1B1-

expressing control cells (Vmax: 3,535 vs. 1741 pmol/mg protein/min; Km: 85.1 vs. 

56.7 µM), thus strongly indicating the impact of OATP1B1 curcumin transport. 

 

Cytotoxicity of curcumin in ZR-75-1 OATP1B1-knockdown cells. The cytotoxicity of 

curcumin in ZR-75-1 wild-type and OATP1B1-knockdown ZR-75-1 breast cancer 

cells was quantified using the CellTiter-Blue test kit from Promega, as described 

above. As shown in Fig. 5, curcumin exhibited a lower IC50 value in wild-type ZR-75-1 

cells (12.4 µM) compared to the OATP1B1 knockdown clone (15.2 µM), supporting 

the importance of OATP1B1-dependent curcumin uptake. 
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Inhibition of NF-κB-luciferase by curcumin in ZR-75-1 OATP1B1-knockdown cells. To 

further evaluate the OATP1B1-dependent differences in the activity of curcumin, WT, 

and OATP1B1-knockdown ZR-75-1 breast cancer cells were simultaneously 

transfected with an NF-κB promoter sequence connected to a luciferase reporter. 

Prior NF-κB reporter induction by 10 ng/ml IL-1β for 90 min, cells were treated with 

curcumin or BAY11-7082 for 30 min, and the luciferase signals measured. As shown 

in Fig. 6, curcumin significantly inhibited IL-1β-induced NF-κB reporter expression by 

30.9 ± 10.13% in WT and by 40.12 ± 7.78% in OATP1B1 knockdown cells. Notably, 

curcumin was almost as potent as the known NF-κB inhibitor BAY11-7082, used as a 

positive control. 

 

Discussion 

To identify the relevance of uptake transporters to the in vivo activity and to elucidate 

the human OATP isoforms responsible for the hepatic uptake of curcumin and its 

major metabolites curcumin sulfate, curcumin glucuronide and tetrahydrocurcumin 

we employed cells that stably expressed these OATPs. As indicated in Fig. 1 and 

Table 1, curcumin displays saturable uptake kinetics for OATP1B1, OATP1B3, and 

OATP2B1 with similar Km values range from 46.9-51.9 µM indicating high affinity to 

the transporter. The affinity for curcumin sulfate was in the similar range for 

OATP2B1 but higher for OATP1B3 and OATP1B1 (Km values: 50.0, 67.7 and 89.1 

µM, respectively). Interestingly, tetrahydrocurcumin was only transported by 

OATP1B1 and OATP1B3 with a reduced affinity for OATP1B1 (Km: 83.7 µM) but with 

an increased affinity (Km: 38.6 µM) for OATP1B3. Curcumin glucuronide was not 

transported by any of these three OATPs. Interestingly, OATP-dependent uptake was 

compound specific. While the transport capacity (Vmax/Km) for curcumin sulfate was 

low for all three OATPs (0.51, 0.50 and 0.48 µl/min/mg protein, respectively),the 

uptake of curcumin into OATP1B1, OATP1B3 and OATP2B1-transfected cells were 

6.3-, 8.7- and 13.7-fold higher. Uptake of tetrahydrocurcumin by OATP1B1 was even 

more pronounced and 44.3-fold higher compared to curcumin. These data show that 

OATP1B1 could be the far most significant uptake transporter for tetrahydrocurcumin, 

whereas the three OATPs are equally significant for the cellular uptake of curcumin 

and curcumin sulfate. Nevertheless, based on the Michaelis-Menten parameters, the 

actual contribution of OATP2B1 in the gut and of OATP1B1, OATP1B3 and 

OATP2B1 in the liver to the overall uptake of curcumin and its major metabolites in 
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humans cannot be determined. This is the consequence of a great inter individual 

variability (up to 10 fold) of OATP protein levels as determined by quantitative 

proteomics or by Western blotting (30-32). Because of the low bioavailability, the 

portal concentration of curcumin is probably lower than the Km values. In fact, 

application of 3.63 g curcumin daily for up to twelve weeks to six patients with 

colorectal cancer resulted in only 4.31 ng/ml (11.68 nM), 5.84 ng/ml (10.65 nM) and 

3.3 ng/ml (7.38 nM) mean plasma concentrations of curcumin, curcumin glucuronide, 

and curcumin sulfate, respectively, 1h after administration (15). But, total tissue 

concentrations of conjugates (curcumin sulfate + curcumin glucuronide) are much 

higher in mice 1 h after i.p. administration of curcumin (0.1 g/kg) leading to 

concentrations of 26.1 µg/g (52.6 µM) and 26.9 µg/g (54.3 µM) and 117 µg/g (236 

µM) in the spleen, liver, and intestine, respectively (33). As found in plasma, the 

concentration of unconjugated curcumin in these tissue samples was very low. 

However, it should be kept in mind that other criteria such as local pH (36) may also 

affect the transport rate of the OATPs expressed in cancer cells. 

To further proof the significance of OATB1 for the uptake of curcumin and its 

sulfates, hormone-dependent ZR-75-1 cells that were previously shown to express 

high levels of OATP1B1, but not OATP1B3 and OATP2B1 (24), were incubated for 

48 hours with increasing concentrations of curcumin. Indeed, the intake of curcumin 

by the ZR-75-1 OATP1B1-knockdown cells was significantly reduced compared to 

control cells, as shown by higher Km and lower Vmax values (Fig. 4 and Table 2). 

Concomitant with the reduced uptake found in ZR-75-1 knockdown cells, we also 

observed non-significant higher IC50 values in the cytotoxicity assay compared to 

OATP1B1-expressing wild-type cells (15.2 vs 12.4 µM; Fig. 5). The decrease uptake 

of curcumin by the ZR-75-1 OATP1B1-knockdown cells also resulted to a decreased 

inhibition of IL-1β-activated NF-κB reporter expression, which was, however, not 

significant (Fig. 6). As the pro-inflammatory transcription factor NF-κB is highly 

expressed in breast cancer, thereby facilitating growth and progression (34), a 

considerable number of studies on cancer prevention at different stages have 

indicated curcumin as a favorable agent for cancer chemoprevention, used either on 

its own, or in combination with other anticancer drugs (34-35). 

Any variations in OATP expression can greatly change the uptake of 

curcumin, curcumin sulfate, and tetrahydrocurcumin into specified cells and tissues, 

thereby strongly impacting on the effectiveness of treatment. Patients with little or no 
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detectable expression of OATP1B1, OATP1B3, and OATP2B1 may, as a result 

exhibit decreased response rates or even no response to curcumin and its primary 

metabolites. Concomitant administration of OATP inhibitors may also interfere with 

the uptake of curcumin and its major metabolites, resulting in transporter-mediated 

drug/drug interactions. Potential inhibitors include clarithromycin, erythromycin and 

roxithromycin, which inhibit the intake of pravastatin in OATP1B1- and OATP1B3-

transfected HEK293 cells (showing IC50 values of 32-37 µM) (31). Moreover, 

cyclosporin A significantly decreases the OATP1B1- and OATP1B3-dependent 

uptake of bosentan (26) and fexofenadine (36) in HEK293 and CHO cells. In addition 

to clinically applied drugs, naturally occurring flavonoids also interfere with the OATP-

dependent uptake of DHEAS, thus indicating that they constitute a novel class of 

group of OATP1B1 modulators (37). Ongoing studies are verifying the interaction of 

drugs and dietary supplements with the OATP1B1-, OATP1B3- and OATP2B1-

mediated uptake of curcumin, curcumin sulfate, and tetrahydrocurcumin. Whether 

other transporters like OATP2A1 and OATP4C1 which are expressed in ZR-75-1 wild 

type cells (24) are also involved in the uptake of curcumin and its main metabolites is 

not yet known. Potential candidates may be organic anion transporters (OATs) which 

were also shown to be involved in the transport of polyphenol conjugates clearly 

showing substrate specificity. While OAT1-overexpressing human embryonic kidney 

293H cells demonstrated improved uptake for sulfate and glucuronide conjugates, 

such as quercetin-3’-O-sulfate, daidzein-7-O-glucuronide, genistein-7-O-glucuronide 

and quercetin-3’-O-glucuronide, OAT3 seems to have a higher affinity for sulfates 

such as quercetin-3’-O-sulfate but not for the isoflavone glucuronides (38,39). Most 

important, we could not confirm any passive diffusion mechanism for the uptake of 

curcumin, curcumin sulfate, and tetrahydrocurcumin as uptake kinetics in wild-type 

and OATP1B1-knockdownZR-75-1 cells was saturable and thus strongly indicating 

protein mediated transport. Uptake and efflux transport works in concert it was not 

possible to discriminate each part from another in our breast cancer cell model. 

In conclusion, our data revealed that OATPs act as transporters for curcumin, 

curcumin sulfate, and tetrahydrocurcumin but not for curcumin glucuronide. The 

OATP-dependent uptake of curcumin sulfate in concert with intracellular sulfatases, 

which rapidly deconjugate sulfates to the pharmacologically active parent compound, 

represents a key factor explaining the observed pharmacological activity of curcumin. 
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Future in vivo studies should focus not only on the concentration of curcumin and its 

conjugates in target tissues but also on the expression levels of OATPs. 
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Figure legends: 

 

Figure 1. Concentration dependence of curcumin uptake in OATP1B1- (A), 

OATP1B3- (B) and OATP2B1- (C) transfected CHO cells. 350,000 cells were seeded 

in 12-well plates and allow to grow to confluence. Then cells were incubated with 

curcumin (25-200 µM) for 1 min at pH 7.4, 37°C and the cytoplasm analyzed for 

curcumin by HPLC. The data represent the mean ± SD of 3 individual determinations. 

 

Figure 2. Concentration dependence of curcumin sulfate uptake in OATP1B1- (A), 

OATP1B3- (B) and OATP2B1- (C) transfected CHO cells. 350,000 cells were seeded 

in 12-well plates and allow to grow to confluence. Then cells were incubated with 

curcumin sulfate (25-300 µM) for 1 min at pH 7.4 (37°C) and the cytoplasm analyzed 

for curcumin sulfate by HPLC. The data represent the mean ± SD of 3 individual 

determinations. 

 

Figure 3. Concentration dependence of tetrahydrocurcumin uptake in OATP1B1- (A), 

OATP1B3- (B) and OATP2B1- (C) transfected CHO cells. 350,000 cells were seeded 

in 12-well plates and allow to grow to confluence. Then cells were incubated with 

tetrahydrocurcumin (50-600 µM) for 1 min at pH 7.4 (37°C) and the cytoplasm 

analyzed for tetrahydrocurcumin by HPLC. The data represent the mean ± SD of 3 

individual determinations. 

 

Figure 4. Concentration dependent uptake rates of curcumin in ZR-75-1 empty 

vector-transfected cells compared to ZR-75-1 OATP1B1-knockdown cells. 1 x 106 

cells were seeded in 6-well plates and allowed to grow to confluence. The cells were 

incubated with curcumin (25- 200 µM) for 1 min at 37°C and the cytoplasm analyzed 

for curcumin by HPLC. The data represent the mean ± SD of 3 individual 

determinations. 

 

Figure 5. Cytotoxicity of curcumin to ZR-75-1 and OATP1B1 knockdown ZR-75-1 

cells. After incubation of 50,000 cells for 72 h with 2.5-100 µM curcumin at 37°C 

viable cells were determined. Dose response curves were obtained by nonlinear 

curve fitting using GraphPad Prism 6.0 program. The data represent the mean ± SD 

of three individual determinations. 
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Figure 6. Inhibition of NF-kB activity by curcumin. 100,000 ZR-75-1 wild type and ZR-

75-1 OATP1B1-knockdown cells were seeded in 24-well plates and allowed to grow 

to 70% confluence. Cells were then pre-treated with 10 µM Bay11-7082 (BAY) or 100 

µM curcumin (CUR) for 30 min or with solvent (DMSO; Co). Thereafter, where 

indicated, cells were stimulated with interleukin-1β (10 ng/ml IL-1β for 90 min), when 

cells were lysed and Firefly luciferase activity was determined, which was normalized 

to Renilla luciferase activity (measured subsequently; RLU: relative light unit). 

Experiments were done in triplicate, error bars indicate +/- SD and asterisks 

significance between the IL-1β-induced positive controls and the IL-1β-induced BAY 

and CUR treatment groups (significance: P<0.05; t-test). 
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Table 1. Michaelis-Menten parameters for the uptake of curcumin,  

curcumin sulfate, tetrahydrocurcumin and curcumin glucuronide in  
OATP-transfected CHO cells  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Values are means ± SE of 3 individual determinations. The net OATP- 
mediated uptake values were calculated by subtracting the values  
obtained with the wild-type CHO cells from those obtained with the  
stably-transfected cells. Kinetic parameters were calculated by fitting  
the data to the Michaelis-Menten equation with nonlinear regression.  
Cur, curcumin; Cur-S, curcumin sulfate; TH-cur; tetrahydrocucumin;  
Cur-G, curcumin glucuronide; nd., not determined 
 
  

Substrate 
Km 
[µM] 

Vmax 
[pmol/mg/min] 

Vmax/Km 
[µl/min.µg] 

OATP1B1    

Cur  51.9  ± 13.6 167 ± 14.8 3.21 ± 0.64 

Cur-S 89.1 ± 16.4 45.0 ± 3.34 0.51 ± 0.06 

TH-cur  38.6 ± 7.9 872 ± 35.6 22.6 ± 3.86 

Cur-G  n.d. n.d. n.d. 

OATP1B3    

Cur 46.9 ± 7.5 205 ± 10.7 4.37 ± 0.48 

Cur-S 67.7 ± 15.3 33.9 ± 2.76 0.50 ± 0.076 

TH-cur 83.7 ± 13.4 493 ± 22.5 5.89 ± 0.69 

Cur-G n.d. n.d.  n.d. 

OATP2B1    

cur 48.6 ± 12.7 310 ± 26.6 6.37 ± 1.27 

Cur-S 50.0 ± 12.6 24.3 ± 1.87 0.48 ± 0.102 

TH Cur n.d. n.d. n.d. 

Cur-G n.d. n.d. n.d. 
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Table 2. Michaelis-Menten parameters of curcumin uptake determined in ZR-75-1 

wild-type and OATP1B1-knockdown ZR-75-1 cells  
 

 

 

 

                      ZR-75-1 
   OATP1B-knockdown    
              ZR-75-1 

Substrate 

 
Km 
[µM]  

Vmax 
[pmol/mg/min] 

Km 
[µM] 

Vmax 
[pmol/mg/min] 

Curcumin  85.± 9.1 3535 ± 342 56.7± 5.8 1741 ± 122 
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6. Discussion and future aspects 

The aim of the thesis was to elucidate the impact of cellular uptake and metabolism of 

curcumin on its activity. To investigate the role of phase-II metabolizing enzymes, we used 

hormone dependent ZR-75-1 and hormone independent MDA-MB-231 cell lines to detect the 

metabolic fate of curcumin. Our results showed that curcumin sulfate is a major metabolite in 

breast cancer cell lines. Interestingly, curcumin glucuronide was not detected in the breast 

cancer cells despite that it is a major metabolite in liver and intestine [1]. Preference of sulfate 

conjugation over glucuronidation in breast cancer cells are in line with the previous studies 

and several xenobiotics including resveratrol, genistein, 2-methoxy estradiol and estrogen 

which also display the same metabolic fate [2-4]. Since, curcumin sulfate is less active than 

curcumin and devoid of anti-cancer activity [5], so, we also quantified the concentration of 

curcumin sulfate produced by both the cell lines and analyzed the cytotoxicity in the 

respective cells. We found that ZR-75-1 cells are able to produce double amount of curcumin 

sulfate as compared to MDA-MB-231.  Furthermore, we also quantified the concentration of 

curcumin sulfate in cellular medium and determined that concentration of curcumin sulfate 

was 12 times higher in medium as compared to the cytoplasm, suggesting that curcumin 

sulfate is immediately effluxed by some unidentified transporters. Breast cancer resistant 

protein (BCRP), multi drug resistance protein (MRP) and p-glycoprotein (P-gp) can play an 

important role in this efflux [6,7]. BCRP is expressed in several tissues including breast ductal 

cells and involved in efflux of several drugs or xenobiotics [8]. It is already reported that 

BCRP is responsible for the efflux of curcumin and this may also be true for its sulfate 

conjugate [9]. Furthermore, MRP8 and MRP9 exhibits high expressions in human breast 

cancer cells [10,11]; however, their interaction with curcumin or its sulfate metabolite is yet 

not identified and can be a future direction for further research work. By comparing both the 

cells lines, it was also revealed that effluxed curcumin sulfate was also double in ZR-75-1 cell 

line as compared to MDA-MB-231. 

This formation and greater efflux of curcumin sulfate in ZR-75-1 cells resulted in 

significantly lower accumulation of unconjugated curcumin in the cytoplasm, leading to 

higher EC50 value (14µM) exhibited by curcumin in ZR-75-1 cells. The concentration of 

unconjugated curcumin was 8 times higher in MDA-MB-231 cells due to reduced formation 

of curcumin sulfate in this cell line that could be the reason for high sensitivity and lower 

EC50 value of curcumin exhibited in MDA-MB-231 cells. This data clearly indicates that 

cellular sulfation plays a major role in cytotoxic activity of curcumin in breast cancer cells. 
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Our results are in line with previous data of our lab regarding resveratrol [2]. Till to date, it is 

unknown which individual isoform is responsible for this differential sulfation of curcumin in 

breast cancer cells. However, a very recent study reveals that SULT1A3, 1C4 and 1E1 are 

major enzymes involved in conjugation of curcumin; whereas SULT1A1 and 2A1 also 

demonstrate lower sulfation rate of curcumin [12]. Moreover, RT-PCR studies conducted in 

our lab revealed that mRNA of SULT1A1 has higher expression in ZR-75-1 cell line in 

comparison to MDA-MB-231 cells whereas SULT1A3 has same expression levels in both 

cell lines [2]. Additionally, 1E1 and 2A1 were below detection limit in both the cell lines [2]. 

SULT1C4 is highly expressed in fetal liver, kidney and small intestine [13]. Thus, we 

hypothesized that SULT1A1is responsible for this differential sulfation of curcumin in breast 

cancer cell lines. However in future, our hypothesis may be confirmed experimentally. 

For the very first time, we also detected the formation of curcumin dimers in breast 

cancer cells. However, its Vmax value was 4 times lower than sulfation, suggesting that these 

dimers play a minor role in growth inhibition activity of curcumin. In short, our study 

revealed that sulfation of curcumin in breast cancer cells is main the biotransformation 

pathway. 

In our second manuscript, we used stably transfected OATP expressing Chinese 

hamster ovarian (CHO) cell line in order to determine the role of OATP1B1, 1B3 and 2B1 on 

the cellular uptake of curcumin, its phase-I metabolite, tetrahydrocurcumin and phase-II 

conjugates curcumin sulfate and glucuronide. Till now, no study was conducted to elucidate 

OATP mediated transportation of curcumin. However, we identified that OATP1B1, 1B3, and 

2B1 are involved in active transportation of curcumin and its sulfated conjugates into the 

cells. OATP2B1 exhibited highest affinity for curcumin with Km value 35.3µM, whereas 

OATP1B1 and 1B3 demonstrated 1.6 and 2.7 fold lower affinity for curcumin. Interestingly, 

OATP1B1 and 1B3 have similar affinities for curcumin sulfate, whereas its uptake by 

SULT2B1 exhibits far lower affinity. In addition, Vmax/km value for OATP1B1 and 1B3 

mediated uptake of curcumin sulfate is also close to each other (0.4 and 0.6 µl/min/µg 

respectively). 

It is worth noting that curcumin glucuronide is not transported by any of the three 

OATPs, suggesting that curcumin sulfate, instead of curcumin glucuronide, supplies the 

intracellular pool for curcumin generation. This fact is further supported by already 

documented reports that sulfate metabolites of several polyphenols can be easily converted 

back to their parent compounds with the help of sulfatases [14]. Moreover, 

tetrahydrocurcumin was only transported by OATP1B1 and 1B3, not by OATP2B1 with Km 
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value of 24.38µM and 84.24µM respectively. As tetrahydrocurcumin is pharmacologically 

active compound, thus the uptake of tetrahydrocurcumin is very important and may play an 

important role in curcumin activity. 

Furthermore, quantitative protein analysis and Western blot results revealed high inter-

individual variability of OATPs, thus it is difficult to estimate exact role of OATP1B1 and 

OATP1B3 in liver as well as OATP2B1 in gut for the uptake of curcumin and its metabolites 

based upon Michaelis-Menten equation [15,16]. According to our results, OATP1B1, 1B3 and 

2B1 are low affinity transporters, having plasma concentrations significantly lower than Km 

values. The oral administration of 3.6 g of curcumin daily up to 4 months to human 

volunteers, demonstrated peak plasma concentration of 3.6µM for unconjugated curcumin 

[17]. Moreover, the phase-I clinical trial after 3.6g oral dosing of curcumin up to 28 days 

daily in colorectal patients reveals that maximum plasma concentrations for curcumin, 

curcumin sulfate and curcumin glucuronide are 11, 16 and 9 nmol/L respectively [18]. In spite 

of the fact, that curcumin shows low plasma concentration with respect to its Km value, 

curcumin uptake into cancer cells is slow but pharmacodynamically effective. It is already 

reported that OATP mediated transportation is higher at low pH [19].  Since, OATP2B1 is 

localized in upper gut where the pH is relatively low and the literature data indicates local pH 

of cancerous tissues is also acidic, this similarity suggests that pH dependency of OATP 

mediated uptake of curcumin and its conjugates should be considered during in vivo therapy 

especially in cancer treatment [20]. 

In order to confirm the role of OATP1B1 for the uptake of curcumin in hormone 

dependent ZR-75-1 breast cancer cell line, we incubated the increasing concentrations of 

curcumin in wild type and OATP1B1 knockdown ZR-75-1 cell line for 1 min. Notably, it is 

already documented that ZR-75-1 cell line shows high expression for OATP1B1 but not for 

OATP1B3 and 2B1 [21]. As expected, we found out that OATP1B1 knockout cells 

transported significantly lower curcumin in comparison to wild type with higher Km and 

lower Vmax values (Vmax 1840 for OATP1B1 knockdown versus 3377 pmol/mg/min for WT 

ZR-75-1 cells). This trend was also seen in curcumin mediated interleukin inhibition activity 

in both cell lines.  

Curcumin uptake mediated by OATP1B1, 1B3 and 2B1 may prove to be clinically 

significant due to expression of these transporters in various tumors such as in colorectal, 

pancreatic, liver, ovarian and prostate cancer cells [22]. Any alteration in OATP expression 

may considerably change the transportation of curcumin and its metabolites into targeted cells 

and tissues, thus influencing the treatment efficacy. Indeed, patients with reduced expression 
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of wild type OATP1B1, 1B3 and 2B1 or patients carrying polymorphic OATP allele may 

thereby demonstrate lower response for therapy. In addition, transporter mediated drug-drug 

interactions have also been observed after co-administration of OATP inhibitors with 

curcumin. As rifampicin is already reported specific inhibitor of OATP [23], and contaminant 

administration of rifampicin and curcumin may demonstrate drug-drug interaction. The other 

potential OATPs inhibitors are clarithromycin, erythromycin and roxithromycin that are 

involved in inhibition of pravastatin transport in OATP1B1 and 1B3 transfected HEK293 

cells with IC50 value 32-37µM [24]. In addition, cyclosprin-A also considerably inhibits the 

OATP1B1 and 1B3 mediated uptake of fexofenadine [25] and bosentan [26] in CHO and 

HEK293 cell line. It is still unknown whether all OATPs inhibitors influence the curcumin 

uptake in tumor cells but care should be taken in administrating OATPs inhibitors in 

combination of curcumin. Ongoing studies are confirming drug as well as dietary supplement 

interaction with OATP1B1, 1B3 and 2B1 mediated uptake of curcumin and its metabolites. 

We have elucidated the role of OATP1B1, OATP1B3 and OATP2B1 for the uptake of 

curcumin and its metabolites; however, several other OATPs transporters including 

OATP2A1 and OATP4C1 are also expressed in wild type ZR-75-1 breast cancer cell line. 

Thus, it is still unknown about their role in transportation of curcumin and its metabolites. 

Furthermore, a very recent study reveals that organic anion transporters (OATs) such as 

OAT1 and OAT3 are involved in the uptake of curcumin in HEK293 cells. However, 

curcumin glucuronide is only transported by OAT3, [27] indicating that OATs, in addition to 

OATPs, also contribute in transportation of curcumin and its metabolites into the cells. The 

role of OATP2A1 and 4C1 in ZR-75-1 cell line can be a next step for further studies. In 

addition, a study can be conducted using increasing concentration of curcumin and its 

metabolites in OATs expressing cells to establish the Michaelis-Menten plot, determining Km 

and Vmax for curcumin and its metabolites. 

In short, we demonstrated that OATPs act as transporter for curcumin, 

tetrahydrocurcumin and curcumin sulfate but not for curcumin glucuronide. This OATP 

mediated transported curcumin sulfate is de-conjugated into curcumin by sulfatase, explaining 

the observed pharmacological effects of curcumin. Thus, we suggest that future studies should 

also consider the expression levels of OATPs in addition to concentration of curcumin and its 

metabolites into the target tissues. 

In our third manuscript we determined the spasmolytic effect of all three curcuminoids 

and their metabolite; tetrahydrocurcumin on ileum, aorta and pulmonary artery. In addition, 

we also investigated ionotropic and chronotropic activities on isolated papillary muscles and 
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right atrium of guinea pig, respectively. In addition to pharmacological activities, we also 

quantified uptake of these compounds in respective tissue samples and correlated them with 

their observed pharmacological effects.  

All the four compounds demonstrated significant antispasmodic effect in isolated 

ileum, thereby, confirming the beneficial effects of turmeric powder in gastrointestinal 

problems such as in irritable bowel disease [28]. As observed in a pilot study where 144 mg 

of turmeric extract was given to 105 patients suffering from irritable bowel syndrome, 25% of 

them felt reduced abdominal pain and discomfort [29]. Since, nitric acid is already reported to 

be involved in modulation of gastrointestinal movements; hence, we used L-NNA to evaluate 

the effect of eNOS blockage on spasmolytic activity of curcuminoids. However, we did not 

observe any effect by eNOS blockade on curcumin mediated spasmolytic activity. So, the 

observed spasmolytic activity of curcuminoids may be attiributed to the blockade of calcium 

influx from voltage gated calcium channels since it relaxed high-K
+
 pre-contracted tissues 

[30]. Curcumin, bismethoxycurcumin and tetrahydrocurcumin were able to modestly relax 

KCl-contracted pulmonary artery whereas demethoxycurcumin significantly relaxed pre-

contracted pulmonary artery with EC50 value 15.78µM, suggesting that demthoxycurcumin 

was responsible for Curcuma longa extract mediated vasodilatory effect. It was reported 

previously that Curcuma longa extract demonstrated mild vasoconstriction in the absence of 

any agonist [31]. However, it showed vasorelaxation against agonist induced contractions 

[31,32]. This enigma of dual activity of Curcuma longa extract on aorta samples is solved by 

our results that curcumin demonstrated mild vasoconstriction whereas other two curcuminoids 

and tetrahydrocurcumin showed vasorelaxation in isolated aorta samples. 

Curcuma longa extract also exhibits variable effect on arterial pressure of anesthetized 

mice, demonstrating both hypotension and hypertension. Thus, we determined both ionotropic 

and chronotropic activity of all compounds in right atrium and papillary muscles respectively. 

All three curcuminoids mildly attenuated atrial contraction rate, leading to bradycardia. 

However, these compounds showed variable ionotropic activity; curcumin and 

bismethoxycurcumin demonstrated mild positive ionotropic activity, whereas 

demethoxycurcumin and tetrahydrocurcumin showed mild negative ionotropic activity, 

explaining the reason behind variable response by crude extract.  

As previously reported, curcumin has wide distribution after oral intake[33] , thus we 

also determined the tissue uptake of curcumin in different organs. Our results demonstrated 

that intestine is the rate limiting organ for curcumin uptake. The uptake of curcuminoids and 

tetrahydrocurcumin was somehow correlated with the activity. Bisdemethoxycurcumin not 
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only showed the most potent spasmolytic activity in ileum but also exhibited highest 

concentration in this tissue. Similarly, demethoxycurcumin has highest concentration in 

pulmonary artery which is well correlated with its vasodilating effect. Highest concentration 

of demethoxycurcumin was observed in pulmonary artery, whereas lowest concentration of 

tetrahydrocurcumin was found in right atria. This trend was also observed in chronotropic 

activities caused by them; demethoxycurcumin showed highest chronotropic activity, whereas 

tetrahydrocurcumin demonstrated negligible effects. Furthermore, highest ionotropic activities 

shown by demethoxycurcumin and tetrahydrocurcumin were well correlated to their highest 

tissue concentration.  We observed that demethoxycurcumin and bisdemethoxycurcumin have 

higher tissue uptake than curcumin; this may be due to the higher stability of these 

compounds at physiological pH, preventing them from degradation into non active freulic 

acid, feruloyl methane and vanillin. Furthermore, tetrahydrocurcumin is also reported of 

having better stability than curcumin. 

In short, demethoxycurcumin and bismethoxycurcumin exhibited higher spasmolytic, 

vasodilating and ionotropic activities than curcumin, suggesting their contribution to observed 

effects. As, ileum is found main rate limiting organ in our studies, thus, in future, studies may 

be conducted to identify the drug transporters responsible for uptake and efflux of 

curcuminoids and its metabolites from ileum. This may improve our knowledge about these 

transporters and help in increasing bioavailability of curcuminoids. 
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7.  Conclusion 

Curcumin is a polyphenol having numerous biological activities however, it has poor 

bioavailability. The uptake of curcumin takes place with the help of OATP1B1, 1B3 and 2B1 

in the Chinese hamster ovarian cell line whereas in ZR-75-1 cell line, OATP1B1 plays an 

important role in the uptake of curcumin. Curcumin is metabolized into curcumin sulfate, not 

to curcumin glucuronide, by the breast cancer cell lines; ZR-75-1 and MDA-MB-231. Thus, 

sulfotransferases are vital for the phase-II metabolism of curcumin in case of breast cancer. 

Our experimental results improve the understanding of the cellular uptake of curcumin and 

metabolism of curcumin in breast cancer, which may help to improve bioavailability of the 

compound in case of breast cancer. By taking one step further, we also determined that ileum 

is the main barrier for the uptake of curcumin. Furthermore, curcumin is found to possess a 

potent spasmolytic activity on ileum. Further studies are required to elucidate the role of other 

uptake transporters and metabolizing enzymes and interplay of uptake transporters with 

metabolizing enzyme to illustrate the complete picture of the fate of curcumin in cancer and 

normal tissues.  
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8.  List of abbreviations 

HPLC High performance liquid chromatography 

UV Ultra violet 

OATPs Organic anionic transporting polypeptides 

CHO Chinese hamster ovarian cells 

IC50 Half maximal inhibitory concentration 

NFκB Nuclear factor kappa B 

AP1 Activator protein 1 

STAT3 Signal transducer and activator of transcription 3 

STAT5 Signal transducer and activator of transcription 5 

CAMP A hemolysis factor 

Egr-1 Early growth response protein 1 

PPAR-γ Peroxisome proliferator activated receptors 

Nrf-2 Nuclear factor 2 

BCL-XL B-cell lymphoma-extra large 

COX-2 Cyclooxygenase-2 

MMP-9 Matrix metalloproteinase-9 

EGFR Epidermal growth factor receptor 

HER2 Human epidermal growth factor receptor 2 

TNF Tumor necrosis factor 

P21 Name of  protein; also called Cyclin dependent kinase interacting protein 1 

P53 Name of protein 

cPLA2 cytosolic phospholipase A2 

GSK-β3 Glycogen synthase kinase β3 
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mTOR Mammalian target of rapamycin 

GST Glutathione S transferase 

GPx Glutathione peroxidase 

Hb Hemoglobin 

LPO Lipid hydro peroxidase 

PI3K Phosphoinositide 3 kinase 

JNK c-Jin NH2-terminal kinase 

SOD Superoxide dimutase 

HO-1 Heme oxygenase-1 

DNMT DNA methyltransferase 1 

iNOS Inducible nitric oxide synthase 

CRAC Calcium release-activated calcium 

VEGF Vascular endothelial growth factor 

GSH glutathione 

P300 Name of protein 

5LOX 5-lipooxygenases 

IKK2/IKK1 IκB kinase 1/2 

Bcl-2 B cell lymphoma 2 

Bax Bcl-2 associated X protein 

PGE2 Prostaglandin 2 

IAV-HA Influenza A viruse -hemaglutinin 

ROS Reactive oxygenase species 

p-38 Name of protein 
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FOXO3a Forkhead transcription factor 3a 

CYP450 Cytochrome 450 

UGTs UDP glucurotransferases 

UDPGA Uridine-diphospho-α glucuronic acid 

SULT Sulfotransferases 

PAPS 3'-phosphoadenosine 5' phosphosulfate 

PAP 3'-phosphoadenosine-5'-phosphate 

Arg Arginine 

Ser Serine 

SO3- Sulfonate group 

PSB Phosphate binding loop 

Thr Threonine 

Phe Phenylalanine 

DNA Deoxyribonucleic acid 

mRNA Messenger ribonucleic acid 

GIT Gastro intestinal tract 

DHEA Dehydroepiandosrerone 

C terminal Carboxyl terminal 

N terminal Amino acid terminal 

BR-STL Brain sulfotransferase like 

ATP Adenosine triphosphate 

ABC transporters ATP binding cassette transporters 

SLC family Solute carrier family 
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P-gp P-glycoproteins 

ABCB1 Gene encoding P-glycoproteins 

BCRP Breast cancer resistant protein 

ABCG2 Gene encoding breast cancer resistant protein 

MRP1 Multidrug resistant protein-1 

ABCG2 Gene encoding multidrug resistant protein-1 

cAMP Cyclic adenosine monophosphate 

cGMP Cyclic guanosine monophosphate 

PEMA Phenylethylmalonamide 

OATs Organic anionic transporters 

OCTs/OCTNs Organic cationic transporters 

NTCPs Sodium dependent taurocholate transporting proteins 

OST Organic solute transporters 

SLCO Gene encoding OATPs 

HIV Human immunodeficiency virus 

TM Transmembrane 

ECL Extracellular loops 

ICL Intracellular loops 

T3 Triiodothyronine 

rT3 Reverse-triiodothyronine 

T4 Thyroxine 

3D Three dimensional 
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