
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

Benchmarking a parallelized agent-based
simulation in economics

verfasst von / submitted by

Mag.rer.soc.oec. Oliver Reiter, Bakk.rer.soc.oec,
Bakk.rer.soc.oec

angestrebter akademischer Grad / in partial fulfilment of the requirements for the
degree of

Diplom-Ingenieur (Dipl.-Ing.)

Wien, 2018 / Vienna, 2018

Studienkennzahl lt. Studienblatt/ A 066 940
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt/ Scientific Computing UG2002
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Dipl.-Ing.
Dr. Wilfried Gansterer, M.Sc.

I, Oliver Reiter, confirm that the work presented in this thesis is my own.
Where information has been derived from other sources, I confirm that this
has been indicated in the thesis.

Abstract

Agent-based simulations are gaining popularity in the social sciences, also
in economics. As such simulation models grow in size and features, there is
a growing need that these simulations are executed in parallel.

We will study the performance behaviour of a parallelized agent-based model,
the so called “benchmark” model by Caiani et al. (2016), implemented in the
FLAME framework. The parallel performance of the model is tested on a
commodity hardware laptop, a multicore machine and the Vienna Scientific
Cluster1.

We find that the performance of the simulation is a) poor, especially when
MFLOPS per second are used as benchmark but also that b) super-linear
speedups are possible. We trace both these finding back to an inefficient
design of how the agent’s data is read and stored. An exaggerated amount of
data is transferred to the CPU, which makes the application I/O bound and
leads to the observed poor performance. Furthermore, when the simulation
is executed on more processes, data transfers are better distributed leading
to the super-linear speedups.

1The simulation results presented here have been achieved in part using the Vienna
Scientific Cluster (VSC).

i

Zusammenfassung

Agenten basierte Simulationen erfreuen sich steigender Beliebtheit in the
Sozialwissenschaften. Auch in der Ökonomie sind sie auf dem Vormarsch.
Das Wachsen der Modelle in Größe und Umfang macht es notwendig, die
Simulationen in parallel und möglichst effizient auszuführen.

Wir werden die Performance Eigenschaften des sogenannten “Benchmark”
Modells von Caiani et al. (2016) untersuchen, welches mithilfe des FLAME
frameworks implementiert wurde. Wir testen die Performance auf drei ver-
schiedenen Maschinen: auf einen gewöhnlichen Laptop, auf eine Multicore
Maschine und am Vienna Scientific Cluster2.

Die Resultate zeigen, dass die Performance der Simulation einerseits schlecht
ist, speziell wenn die erreichten MFLOPS pro Sekunde herangezogen wer-
den dass aber andererseits auch super-lineare Speedups möglich sind. Un-
sere Untersuchungen zeigen, dass sich beide Ergebnisse auf ein ineffizientes
Design auf die Art und Weise wie Daten der Agenten geladen und gespe-
ichert werden zurückführen lassen. Da eine stark überhöhte Menge an Daten
transferiert wird, ist diese Applikation I/O bound was zur enttäuschenden
Performance führt. Wenn dieser Datentransfer dann auf mehrere Prozesse
aufgeteilt wird, kommt es zu den super-linearen Speedups.

2The simulation results presented here have been achieved in part using the Vienna
Scientific Cluster (VSC).

ii

Acknowledgements

I would like to thank my supervisor Prof. Wilfried Gansterer for his support
and guidance throughout creating this thesis.

My girlfriend Gerlinde deserves my gratefulness for her encouragement and
support to finish my studies even when this meant putting aside her own
interests.

My sincere thanks also go out to my sister Karina for reading and correcting
this thesis.

Furthermore, I would like to thank my family and friends for their support
during my studies.

iii

Table of Contents

Abstract i

Zusammenfassung ii

Acknowledgements iii

1 Introduction 3
1.1 Problem setting . 3
1.2 Motivation . 3
1.3 Synopsis . 4

2 Related work 6
2.1 Agent-based modelling . 6
2.2 Computer Science . 7
2.3 Economics . 21

3 Investigated model 23
3.1 Description of the benchmark model 23
3.2 Implementation of the model 24
3.3 Parallelization . 26

4 Numerical simulations 29
4.1 Hardware setup and configuration 29
4.2 Metrics . 34
4.3 Results . 34
4.4 Interpretation of the results 50

5 Conclusion 53

A Detailed results 55
A.1 Additional results on laptop 55
A.2 Additional results on VSC . 57
A.3 Flags activated by gcc and -march=native 58

References 61

1

Chapter 1

Introduction

1.1 Problem setting

Since the economic crisis in 2008 and the failure of the economic profession
to warn about the turmoils to come, economic theory is orientating itself
anew. Renowned economists are calling for new approaches and techniques.
Agent-based models (ABM) are one of those new methods that have been
gaining traction recently. Caiani et al. (2016) propose a “agent-based stock-
flow consistent macroeconomic” benchmark model in this area of economic
research.

Since agent-based modelling is computationally intensive it is a natural field
of investigation for computer scientists. As such model grow in size, i.e. as
the modelled population increases, and in features, e.g. through more re-
alistic modelling of the agent’s behaviour, performance considerations are
becoming more and more important.

However, performance analyses for this class of models are still scarce. With
this thesis I try to fill this gap and implement a parallelized version of
the benchmark model of Caiani et al. (2016) and carry out performance
measurements on three different machines: a commodity hardware laptop,
a multicore machine and computer cluster.

1.2 Motivation

My motivation to undertake this research is twofold. First, from the per-
spective of computer science, agent-based models are a form of simulation
and simulations are considered to be a “ ‘third pillar’ of scientific inquiry”1.

1See Reed et al. (2005), p. 1.

3

Furthermore, agent-based models are nowadays used in all sciences. Com-
putational social science is one new research area that uses simulations and
agent-based models heavily. I want to contribute to this literature by pro-
viding a thorough performance analysis of a seminal model in agent-based
economics. Additionally, I want to use the opportunity and experiment
with that model on an Austrian supercomputer, the Vienna Scientific Clus-
ter (VSC).

Secondly, as an economist I am interested trying out new models and meth-
ods that can help us to better understand the causes of, e.g., the financial
crisis in 2008. Agent-based models show promising properties for this en-
deavour.

1.3 Synopsis

The upcoming chapter 2 reviews the related work. It begins by emphasiz-
ing the role of scientific simulations, especially agent-based models. Then
the link from agent-based models to object-oriented programming to par-
allelization is described and two prominent frameworks for implementing
agent-based models are presented.

The next section of this chapter contains additional topics in parallelization
of simulations, such as load balancing, shared memory multithreading and
applications on GPGPU and supercomputers.

The ensuing section shifts the focus to economics. It surveys the shortcom-
ings of traditional macroeconomic models, especially in light of the failure
of economists to forecast the financial crisis and proposes agent-based stock-
flow consistent models as a possible remedy.

The chapter closes with a summary of results of my preparational research.
I implemented a simple agent-based economic model in two frameworks
(FLAME and Repast) and compared their runtime behaviour for a range
of problem sizes and parameters. FLAME showed great potential as it
outperformed Repast in all settings.

Chapter 3 describes the investigated “benchmark model” in greater detail.
It also gives an overview of the implementation and parallelization of the
model. How the initial state is calibrated so that it obeys the requirements
of stock-flow consistency is presented in section 3.2.1.

The first part of chapter 4 describes the hardware of the machines that are
used in the performance tests. For each of the three machines (a laptop, a
server at the University of Vienna called “Lewis” and the Vienna Scientific
Cluster), the system’s topology, its theoretical peak performances and the
compiler and MPI library that are used to compile the code are presented.

4

The next part of the chapter explains how the experiments were conducted
and which metrics were used to characterize the performance behaviour of
the parallel application.

The remainder of chapter 4 presents the findings of the performance tests.
It consists again of three parts. The first part is about the results on the
laptop. It shows that even for small problem sizes, the parallel FLAME
code is able to achieve a considerable speedup compared to the serial code.

The results on Lewis are inconclusive: While we see large speedups, we
also find falling MFLOPS/s with increasing problem size. The experiments
show further that cache misses occur proportionally more in simulation runs
with a low number of processes. The performance metrics show efficiency
values (sometimes considerably) larger than one, meaning we see super-linear
speedup.

All in all are the results on the VSC similar to the results from Lewis. Again,
there is the occurrence of super-linear speedup, though at a lower level. The
achieved MFLOPS/s are disappointing in light of how many GFLOPS/s
would have been possible. Additional tests on the VSC show that a) the
parallel FLAME code weakly scales almost linearly, b) hyperthreading does
not yield any big additional performance improvements and c) load imbal-
ance can be quite high, especially in small problem sizes and a high number
of processes.

The rest of the chapter tries to explain the results. The main driver behind
the results can be found in an inefficient memory design which leads to
exaggerated amount of data being transferred between memory and CPU.
This leads to a) the observed poor performance as the CPU is constantly
waiting for data retrievals to complete and b) super-linear speedups when
the data fetching can be distributed to separate hardware.

5

Chapter 2

Related work

My master thesis research combines the two fields of science that I am
most interested in, computer science and economics. I want to apply my
knowledge about computational techniques to problems in the domain of
economics. Thus, my research is focused on computational intensive prob-
lems in economics that cannot be solved by “standard” software but require
special knowledge and attention.

This field of research has already existed for quite some time and is called
Computational Economics, a subfield of Computational Social Science.

2.1 Agent-based modelling

My thesis is centered around simulations, more exactly simulations which
are based on agent-based models. These kinds of simulations will henceforth
be referred to as ABMs; similarly I will abbreviate agent-based simulation
as ABS.

Agent-based models are used when researchers want to model a (whole)
system. However, this is done not by modelling the system as a whole, but
by modelling the parts that make up the system and the interactions of the
parts with one another.

These parts are what we called the “agents”. An agent can be any part of a
system that can act on its own, that has its own behaviour. The behaviour
of one agent can then influence other agents. This mutual influence may
lead to the endogenuous emergence of global, i.e., system-wide, phenomena.
An example is the emergence of business cycles in economic simulations.

In applications of ABMs in biology, an agent could be a cell and the system a
fiber/cell structure such as an organ. In the social sciences, where ABM have

6

recently gained more attention, an agent is typically a person, institution or
another (legal) entity and the system to be modelled is a group or a society.
In this thesis, I will concentrate on applications of agent-based models in
economics, where consumers, firms, banks and governments constitute the
agents and the system is, for instance, a (national) economy.

As my thesis combines two quite diverging areas of science, I will present
the related literature in parts: First, I will give an overview of work in com-
puter science concerned with simulations and how to carry them out most
efficiently. Special focus will be laid on parallelization and high performance
computing. Secondly, a review of work in economics concerned with agent-
based models will be presented. I will mostly focus on the methodological
advancements, not on how models were implemented.

2.2 Computer Science

Methodological advances in computer science as well as increases in compu-
tational power have made it possible to carry out ABM simulations with an
ever larger number of agents and increasingly complex, i.e. computationally
intensive, behaviour.

Simulations are a topic in its own right in computer science and touch upon
a series of other topics currently discussed in computer science, such as
parallelization, cloud computing, “big data” and heterogeneous computing.

2.2.1 Simulations

The following list provides an overview of key terms and definitions used in
the thesis at hand:

• A model is an abstraction of a real-world phenomenon, process or
system.

• A simulation, then, is the operation of a model.
• A simulation is, thus, a dynamic imitation of the modelled real-world

system.

Simulations are used in all fields of science. In 2005, the U.S. Presiden-
tial Information Technology Advisory Committee published a report that
stresses the importance of computational science in scientific discovery and
claims that posits it as the “third pillar”1 of doing science, besides theory
and experiments.

1See Reed et al. (2005), p.1.

7

There is a long list of types of simulations that have been developed over the
years which include, for example, physical simulation, interactive simulation,
continuous simulation and many more. Of those, discrete event simulation is
the most interesting type of simulation for agent-based models in economics.
Discrete event simulations model time passing by means of a timeline of
discrete events. At the time of each event, the system modelled can change
its state. Since it is assumed that the system does not change between those
events, it is not necessary to model the time between discrete events.

Events can take place either at regular or irregular time intervals, depending
on which model is being operated. Regular time intervals could be, for
instance, every quarter of a year in an economic simulation or every day
in a simulation of an ant population. Irregular events, on the other hand,
could be aircraft arrivals or departures in a simulation of an airport.

Computer scientists are, however, not only concerned with the implemen-
tation of such a simulation. The need and desire of researchers to model
increasingly large and complex systems led to a growing focus on the efficient
execution of simulation. This field, called parallel discrete event simulation
(PDES), is concerned with developing strategies to efficiently carry out sim-
ulations using more than just one process2.

PDES is an active topic of research, see Fujimoto (2016) and Carothers et
al. (2017) for an overview of currently pursued research avenues. Collier
& North (2013) review current work on PDES with regard to agent-based
modelling.

Before going deeper into current work in simulation and modelling, I want
to establish an understanding of a what an agent-based model is. This will
help us to better see the requirements for the efficient (parallel) execution
of an agent-based simulation.

2.2.2 Agent-based models in computer science

Bandini et al. (2009) give an overview of agent-based modelling from the
perspective of computer science. They define three key elements of an ABM:

An agent-based model contains:

1. Autonomous, interacting agents with (possibly) heterogeneous be-
haviour. The agents’ behaviour can be either reactive or pro-active.
Reactive agents are typically defined by simple condition-action rules
and are memoryless. Pro-active or cognitive agents, on the other

2I use the most common definition of ‘processes’ or ‘threads’: A process is (an instance
of) a computer program that has its own address space. A ‘thread’ is a part/subroutine
of a process and shares the address space of the “parent” process.

8

hand, keep track of their states and their behaviour may depend on
external and internal influences.

2. An environment that manages the (ensemble of) agents and the overall
system. The environment may also govern some laws to which the
agents are subject (e.g. the maximum number of interactions an agent
is allowed to undertake).

3. A mechanisms for interaction between the agents: an infrastructure
that enables the agents to communicate and/or influence each other.
There are two possibilities of how the agent interaction can be handled:
either through direct, point-to-point communication or through indi-
rect communication. In a direct communication infrastructure, agents
usually have a unique identifier that allows an agent to actively and di-
rectly address any other agent. Direct communication infrastructure
is the more prevalent option among the ABM frameworks. In indi-
rect communication, agents communicate through spatial features or
a special artifact. A spatial feature could be a position in space, from
which agents emit certain message(s) upon arrival (e.g. a traffic light
or a gravitational force “message” in an particle motion model). A
communication artifact is similar, however, it lacks the explicit spatial
aspect: Think of a bulletin board where the status updates of agents
are passively posted in certain points in time.
The way agents interact is an important property of the simulation.
A given ABM might much more easily be realized and run more effi-
ciently with one ABS programming framework than with another. The
question is how well the ABM (and its three components described
above) can be mapped to available functionality of the programming
framework.
Furthermore, the interaction mechanism is very crucial when it comes
to parallel execution of the simulation as it is a main predictor of the
parallel performance (in terms of execution time).

2.2.3 From ABM to OOP and Parallelization

Almost all ABM frameworks rely on object-oriented programming methods.
The types of agents are defined as agent classes where class member variables
are the memory while state of the agent and methods of the class refer to the
behaviour of the agent. In the simulation, multiple objects (the “agents”)3

are then instantiated from one agent class and manipulated in the course of
the simulation. As each object contains its own data fields, different objects
(from the same agent class) can act very differently (to the same external

3“Agent” and “object” will be used synonymously from here on out.

9

influence)4. Then, as each object is self-contained, these ABM simulations
lend themselves very well to parallelization5.

Parry & Bithell (2012) argue that there are two strategies of how to success-
fully parallelize an ABS: either “agent-parallel” or “environment-parallel”.
In the “agent-parallel” approach, a given agent population is distributed (in
some optimal way) over all available processes. Thus, load balancing tends to
be easier but increased communication between the processes may be needed
to synchronize events on separate processes. ”Environment-parallelization**
is used if there is a geographical space in the simulation which can be dis-
tributed to the processes. This approach reduces the communication costs
of local agent interactions but increases communication costs if the agents
are very mobile and need to be migrated from one process to another fre-
quently. Additionally, as agents can be distributed very unevenly among
the processes, load balancing is difficult to achieve.

2.2.4 ABM frameworks and toolkits

I will now present two frameworks in the agent-based modelling domain that
each follows another one of the above mentioned parallelization strategies.
Repast (Recursive Porous Agent Simulation Toolkit) HPC is an example of
an environment-parallel approach but in the course of which the environment
does not necessarily need to be a spatial dimension. The environment can
also be defined on the basis of to relations between the agents (modelled
as nodes and edges). The second framework, FLAME (Flexible Large-Scale
Agent Modelling Environment), follows the agent-parallel approach.

There is a large number of agent-based modelling tools available nowadays.
Rousset et al. (2014) and Abar et al. (2017) both provide an overview of
the available tools and their functionality. Abar et al. (2017) survey more
than 80 different applications.

2.2.4.1 FLAME

FLAME (Coakley et al. (2006), Coakley et al. (2012)) follows a unique ap-
proach to ABMs: It uses “communicating X-machines” as a formal basis for
the agents’ memory and behaviour. A communicating X-machine is similar
to a finite state machine, but extended with random access to memory.

4This mapping from agents to objects is so self-evident that researchers in the ABM
domain are now even adopting the UML specification for describing their models (see
Bersini (2012)).

5Parallelization of applications is one of the most important topics in performance
critical computations since improvements in the clock rate of a CPU came to a halt
around 2002.

10

An X-Machine is defined as a 8-tuple

X = (Σ, Γ, Q, M, Φ, F, q0, m0)

that consists of

• the input (Σ) and output (Γ) alphabets
• a finite set of states Q,
• memory M ,
• state transition functions Φ that map the input alphabet and memory

address to the output alphabet and (possibly different) memory
• a state transition diagram F that maps one state to the next
• q0 and m0 are the initial state and initial memory

At every state transition, the X-machine is able to access its memory, read
input messages and send output messages. The state transitions chained to-
gether, then, define the “acyclical state machine”6 that is also the behaviour
of the agent during an iteration of the simulation7.
Although an X-machine is very close to an agent class definition (as in
Repast below), it significantly reduces the complexity of the code as well as
the amount of code a user has to write as FLAME takes care of, for instance,
scheduling the state transition functions8.
For communication, the X-machine can use incoming and outgoing messages.
These messages can be used as point-to-point messages or as broadcast mes-
sages without a specific receiver. Internally, FLAME uses “message boards”
to coordinate the communication process. All outgoing messages are col-
lected at a message board and synchronized across all processes. FLAME,
as Repast, uses the MPI library for the inter-process communication. Dur-
ing the synchronization of a message board, agents can execute the next
state transition function(s) until they need to read from this (or another)
message board. If the synchronization of the message boards has already
finished, the agents are free to read the messages available in the message
board. If this is not the case, the agents have to wait until the synchroniza-
tion is finalized. Thus, the simulation is only synchronized at message board
reads even though FLAME is also an event-based simulation like Repast.
By means of clever setting (or re-arranging, if possible) of the state transition
functions and their input/output messages, the user can increase the work

6See Coakley et al. (2012), p. 539
7In this section, “agent” and “X-machine” are synonymous.
8In principle, the tight corset of an X-machine offers great potential for optimizing

the execution of the state transitions. However, this potential is only tapped in the next
version of FLAME, FLAME II. See Chin et al. (2012) for a detailed explanation of the
optimization plans.

11

an agent does while waiting for the next message board to be ready for
reading and, thus, reduce the time a process remains idle. The content of a
message can be freely set by the user.
FLAME consists of a parser called xparser and a separate message board
library called libmboard (which exists in a serial and a parallel version).
FLAME requires the user to write the model definition file (in XMML, which
is a XML-dialect), where the user defines

• environment variables,
• the agents as well as

– the variable that define the memory of an agent,
– the states and the transition functions (with possible input and

output messages) between the states and

• the messages and their variables.

Figure 2.1: Production workflow with FLAME

The agent transition functions themselves are written in C in separate files.
xparser parses the model definition, combines it with the agent functions and
generates the simulation code. The produced simulation code can be either
serial or parallel. The simulation code can then be compiled and linked with
the corresponding serial or parallel message board library. Figure 2.1 gives
an overview of the steps that need to be carried out.
All parallelization is actually done through the usage of message boards. The
agents do not send and receive messages themselves, they only post message
to their local message board. Similarly, the users do not need to work with
the message board library as the xparser will generate the methods that

12

make use of the functionality provided by libmboard. Section 3.3 explains
in further detail how the message boards work and how parallelization is
achieved.
Algorithm 1 gives a rough overview of the structure of the main function
that is generated by FLAME.

begin
Initialisation of variables, MPI, message boards, etc;
Distribution of agent data etc;
N is the number of iterations to be done
for i← 1 to N do

the following code fragment is generated for every state transition
function f of an agent {

while message boards needed for f not yet synchronized do
block;

end
the set X contains all agents on this process that do this transition

function
for x ∈ X do

x.f();
end
start synchronization of messages posted in f ;
}

end
end

Algorithm 1: Schematic structure of the generated main

2.2.4.2 Repast

Collier & North (2013) present the Repast framework, which is, after NetL-
ogo9, probably the best known ABM framework. There are two versions of
Repast available:

1. Repast Simphony, a Java-based modelling tool that is meant for learn-
ing and implementing small simulations.

2. Repast HPC, a C++-based modelling system that is targeted at
performance-critical applications and can be run on large computing
clusters and supercomputers.

For the topic of this master thesis, Repast HPC is clearly the more interest-
ing alternative.

9See Tisue & Wilensky (2004)

13

Repast HPC uses the object-oriented programming paradigm to implement
the agent’s memory and behaviour. Every agent has an identifier, an id,
which has the ability to uniquely identify an agent (across all processes).
Every process manages its status and is responsible for a subset of the agent
population (how this subset is defined is explained further below). Further-
more, each process has access to a scheduler that executes functions at a
pre-defined schedule. A schedule is made up of “ticks”; a tick indicates a
particular stage of the simulation. At each tick, all processes are synchro-
nized ensuring that all processes coincide (?) at the same tick. Collier
& North (2013) call this a “conservative PDES synchronization”10. Thus,
it is the user’s task to ensure that the load is evenly distributed over the
processes.

Several options exist as to how agents can interact in Repast:

1. Since all agents are objects, agents can simply call methods from other
agents. However, the programmer has to make sure in advance that
the agent object accessed is present on the current process.

2. Projections: Collier & North (2013) introduce the notion of a projec-
tion. A projection imposes a structure on the agents. This can be a
simple graph structure where edges between agent nodes define some
sort of relationship between them. Repast then ensures that all neigh-
bours of a certain agent X (i.e. all agents which are connected through
edges with X) are copied/synchronized to X’s process.
In Repast terminology, agents can be local or non-local to a process:
Local agents are agents that are located at the current process and
non-local agents are agents that are located on another process but
can be copied to the current process (e.g. if there is a connecting edge
between them). Repast takes care of the synchronization so that all
non-local agents are up-to-date.
There are two types of projections that have a spatial meaning: a grid
space and a continuous space. In a grid space, the position of an agent
is defined by two integers while the position is defined by two floating
point numbers in continuous space. Grid space is helpful because it
allows a very fast query on neighbours of an agent X (i.e. agents that
are geographically close to X). A process is responsible for a certain
part of the grid (or continuous) space and manages all agents that are
– at that moment – situated in this part of the grid. If an agent moves
across the boundary of a process, Repast transfers the agent to the
correct process.

10See Collier & North (2013), p. 9

14

The projections define which agents have to be synchronized or moved from
one process to another. This communication between processes is estab-
lished by means of serialization. Repast maintains a list of agents that have
to be synchronized for every process. The “sender” process serializes the
agents and sends them to the “receiver” process using MPI functions. The
receiver process then de-serializes the received, non-local agents and either
updates an existing agent copy or creates a new agent.

Though Repast takes care of the task of keeping non-local agents syn-
chronized, the user still has to supply the methods for serializing and
de-serializing.

Projections are a very powerful feature, especially when implementing a
simulation with a spatial dimension and agent movement. In economic sim-
ulations, however, there is rarely an explicit spatial dimension. Further-
more, most economic interactions between agents involve exchanging rela-
tively small bits of information (e.g. consumers sending an order for goods
to a firm requires only two floating point numbers: the amount of good
requested and the maximal price they are willing to pay. The firm responds
again with two floats: the amount it can deliver and the price it charges).
When Repast synchronizes agents across processes, much more information
than really needed is transferred. Thus, the communication structure is not
well-suited for accommodating an economic ABM11.

2.2.5 Topic in Parallelization

2.2.5.1 Load balancing

There is another aspect of ABMs that influences the performant execution
of a parallelized simulation: the distribution of the agents to the processes.
This distribution determines the amount of interaction that happens be-
tween agents that are on different processes and, subsequently, the amount
of inter-process communication.

As inter-process communication is much more costly than intra-process com-
munication, minimizing the former while increasing the latter is a prof-
itable strategy for increasing performance. The problem of minimizing inter-
process communication boils down to a graph partition problem where the
agents represent nodes and the interactions between the agents constitute
edges. Antelmi et al. (2015) evaluate five approaches of how to partition a
graph (of a distributed agent-based model) and relate them to the execution
time of the simulation. They find that the graph partition algorithm and the
partition strategy have a strong influence on the simulation’s performance .

11See the results of the practical course that are presented in section 2.2.6.

15

Collier et al. (2015) set out to test a graph partitioning with the Repast HPC
framework and a large-scale epidemiological ABM. The agents, reflecting
persons in this simulation, move around a city (Chicago) and may meet
other, possibly already infected agents. Collier et al. (2015) distribute the
agents over the processes according to the agents’ known activity profiles
(the graph-separating problem) and achieve a speedup of 1.25 compared to
a random separation of the agents.

Márquez et al. (2013) follow a similar path: they extent the FLAME frame-
work with agent migration routines and a load balancing algorithm. Based
on the execution times of the last iteration, every process computes an “im-
balance factor” and a certain number of agents is then moved from an over-
loaded process to an underutilized one. They are able to decrease the overall
execution time of their example simulation by 17 to 27 %. In a follow-up
research, Márquez et al. (2015) extend the load balancing algorithm with
an indicator for message connectivity. This allows them to move agents not
only based on the execution time of the process, but also depending on the
connectivity pattern of the agent. They can, thus, try to minimize the nec-
essary inter-process communication. In several tests, Márquez et al. (2015)
manage to achieve a reduction of up to 30 % of the execution time.

2.2.5.2 Shared memory multithreading

Despite the seeming agreement of researchers to use MPI for parallelization,
there is also the alternative of using OpenMP. Massaioli et al. (2005) ar-
gue that there is a potential to use OpenMP for accelerating ABMs. A
disadvantage of OpenMP is that it was designed to be used with “classic
numerical codes, where there are arrays and loops on indices”12. In ABS
however, agents are objects that are often kept in linked links. Iteration
then happens over those lists, which cannot simply be parallelized with a
#pragma omp for directive. Still, Massaioli et al. (2005) show three ways13

to speed up the list traversal and are able to achieve efficiencies close to 1
from two to 16 threads (given a large agent population).

2.2.5.3 GPGPU computing platform

Lysenko & D’Souza (2008) proposed using a GPU for carrying out an ABS.
They show that porting a simple model (insects moving around a 2D plane)
to a GPU can lead to a speedup of around 9000.

12See Massaioli et al. (2005), p. 7
13One way is to use #pragma omp parallel before and #pragma omp single nowait

after the declaration of the for-loop. This way, only one thread will work on one iteration
while the remaining threads move on to the next iteration.

16

A few years later, researchers at the University of Sheffield presented an
extension of the FLAME framework that is able to offload the computation
of an ABM on to a GPU (Kiran et al. (2010), Richmond et al. (2010)).
The FLAME GPU framework is used by Heywood et al. (2015), who model
road networks and their utilization. This sort of simulation is well-suited for
being computed on a GPU as there is only one type of agents (a car) and the
agents’ only action is to iteratively update its current position (depending
on the position of cars in front of them). They are able to model up to
260000 agents in reasonable time. FLAME GPU has also been used in the
domain of biology: Konur et al. (2015) model a “pulse generator” with up
to 100000 cells and Richmond et al. (2009) are able to achieve speedups
ranging from 100 to over 10000 (depending on the problem size) for a model
of keratinocyde cells.

There exist several other agent-based models whose computation is done on
a GPU. These models are, however, mostly simple, demonstrational models
which were specifically programmed for that purpose and which often have a
spatial dimension. Research in this area has been conducted by, for instance,
Wang et al. (2014) (investigate how mood spreads) or Tang & Bennett (2011)
(construct a model of spatial opinion diffusion).

A problem with porting an ABM to the GPU is that a parallel ABM is closer
to the SPMD14 technique while GPU are well-suited for SIMD15 applications.
Thus, only ABMs that are simple rather than complex and contain a large
agent population can be ported to the GPU and achieve good performance
results.

2.2.5.4 Applications on supercomputers

Though many research articles concerning ABM tag themselves with the
label of “High performance computing”, not much of them are executed on
a supercomputer. High performance computing is mostly used to refer to
“non-standard” computing hardware, such as an Intel Xeon Phi accelerator.

An older, but well-known agent-based model that has been executed on a
supercomputer is an epidemiological model for pandemics, described in Ep-
stein (2009). Said model builds on a previous one concerning the spread of
disease, but is scaled up considerably: It enables the modelling of an agent
population of 6.5 billion. This model is implemented on the Global Scale
Agent Model (GSAM, Parker & Epstein (2011)). GSAM is written in Java
and follows a hybrid parallelization strategy: At every node, a JVM runs

14SPMD stands for Single Program, multiple data in Flynn’s taxonomy of computer
architectures, see Flynn (1972).

15SIMD stands for Single Instruction, Multiple Data in Flynn’s taxonomy of computer
architectures, see Flynn (1972).

17

with several worker threads at its disposal. GSAM follows an environment-
parallel strategy. Communication is achieved through Remote Method Invo-
cation where RMIs are transferred in bulks between nodes. Parker & Epstein
(2011) also provide tables of performance measurements, weak/strong scal-
ing, etc. When scaling the application from one to 32 nodes, they achieve
the following efficiencies: a value of 40.6% when considering weak scaling
and 31.5% with strong scaling.

Collier & North (2013) report timings of a rumour-spreading model that
they implemented in Repast HPC. The model simulation is then run on an
IBM Blue Gene/P machine with up to 40k processes.

The EURACE model, described further below, is an agent-based macroeco-
nomic model and is implemented in FLAME. In Deissenberg et al. (2008),
EURACE is claimed to have been let run on a supercomputer but there are
no mentions of any time measurements.

In another contribution to the literature, in Kiran et al. (2008), they do test
and report the parallel performance of the EURACE. Their results remain
inconclusive: On one tested machine, a Cray XT4 scalar supercomputer
with a total of 22,656 cores, they run the EURACE model on four to 16
processes and find only modest improvements in average iteration execution
time. On two other machines, the average iteration time either increases
with an increasing number of processes or fluctuates heavily.

Makarov et al. (2014) report supercomputer applications of ABMs. They
develop a socio-economic simulation for Russia. Even though they know of
the existence of FLAME and Repast HPC, they choose to develop their own
software stack. Using a supercomputer with up to 4000 processes, they are
able to model 100 million agents over 50 years (one iteration is a year) in
just 90 seconds.

2.2.6 Preparational results

As a preparation and first inquiry into the area of parallel agent-based mod-
elling, I chose to implement and study a simple agent-based computational
model, specifically the model given in Lengnick (2013)16.

This agent-based model features a set of households and a set of firms. The
households sell their labor to a firm and receive a wage in return. From the
wage they buy goods that the firms produce. If a household is unemployed,
it searches for work by asking firms for open vacancies. Firms employ house-
holds/workers to be able to produce goods. They sell the goods to house-
holds (for a small profit) and distribute the profits back to their owners,

16This work was done in the course of a practical course that serves as a preparation
for the master thesis at the University of Vienna, faculty of Computer Science.

18

again the households. This model is – despite its simplicity – able to show
the endogenous emergence of business cycles, without any “disturbance” or
“shock” from outside.

The model primarily captures the day-to-day actions of households and firms.
It is mainly concerned with the consumption planning of the households and
the planning of production by the firms. It is not, contrary to the benchmark
model that is examined in this master thesis, focused on correctly modelling
the flows of money between institutional sectors. Nevertheless, this simple
model is a good indicator of the suitability of an modelling framework for a
typical ABM in economics.

I implemented the model in both FLAME and Repast and studied their
runtime behaviour in different parameter settings to gain an understanding
of which of the two frameworks is better suited for a more sophisticated
economical ABM.

Figure 2.2: Performance comparison of FLAME and Repast

Figure 2.2 shows the key results of the performance experiments. Every
panel depicts the results for a given combination of a number of processes
and communication intensity (abbreviated “Comm Intensity”). Communi-
cation intensity measures the number of firms a household interacts with
on a daily basis, i.e., potentially buys goods from. When a households ad-
dresses more firms, there is more communication between agents and thus
also more (costly) inter-process communication. A communication intensity

19

of five is meant to be the lower bound and ten a upper bound17. Addition-
ally, I created a model with proportional communication intensity, where
the number of firms a household interacts with rises with the total agent
population. These three communication intensity specifications are shown
in the rows of figure 2.2.

The x-axis shows the problem size, given as the number of households that
are simulated.

We can see that FLAME outperforms Repast in every parameter setting.
Especially with a smaller number of processes is the discrepancy very large.
The y-axis (log scale) shows that the difference in execution time, e.g. for four
processes, is almost in the magnitude of 100. The difference in runtime gets
smaller as more processes are used to execute the simulation, but FLAME
tends to do better every time.

Another interesting observation is that the curves of execution times of
FLAME tend to start at a higher level but also to get flatter as more pro-
cesses are employed. That means, with enough processes, the execution
times of FLAME are independent of the problem size (at least for the range
of problem sizes that are tested here).

Repast tends to gain some ground the more processes are utilized, but all
in all it performs worse than FLAME. This might be a consequence of the
design of Repast: Repast creates a graph of connections between the agents
and makes sure that the neighbours (all agents an agent has connections
with) of each agent are synchronized to the process of that agent. However,
there is already a large number of networks present in this simple model: a
work-search network, a goods-price-inquiry network, a goods-order network,
a goods-delivery network and so on. This leads to an almost p-fold dupli-
cation of the agent population (where p is the number of processes) and
consequently a large amount of inter-process communication that has to be
done several times during one iteration.

FLAME on the other hand uses message boards to exchange information be-
tween the agents. Nearly all of the exchanged data between agents contains
only one or two floating point numbers or integers (such as a price quote,
amount of goods demanded by the household or a boolean indicator whether
there is an open vacancy at the firm). Messages are synchronized between
the processes while the agents can continue their actions. Taking this all
together, FLAME seems to be a much better fit for the implementation of
a sophisticated ABM.

17This values are taken from Lengnick (2013).

20

2.3 Economics

In economics, ABMs are part of Agent-based Computational Economics and
are, thus, often called ACE models. I will use ABM and ACE, in the context
of economics, interchangeably.

After the economic crisis of 2008, where a large part of the economics pro-
fession failed to see that a crash was coming, voices grew louder that called
for new and better models, e.g. in Farmer & Foley (2009), Colander et al.
(2009) or Korinek (2015). The then most-used class of models, called DSGE
(Dynamic Stochastic General Equilibrium) models18, were amended to be
able to show behaviour observed in real life (i.e. the ability to crash). How-
ever, these amendments to the model proved to be unsatisfactory (as they
still cannot fully reproduce the economic dynamics of the financial crisis and
have to rely on exogenous shocks to bring an economy out of equilibrium).

Looking for other ways to model an economy, some proposed using agent-
based simulations19. Agent-based models in economies are not new, Leigh
Tesfatsion and Robert Axtell are two longstanding proponents of this ap-
proach20. Just recently, the Oxford Review of Economic Policy published
a whole issue on “rebuilding macroeconomic theory”. Several authors, e.g.
Haldane & Turrell (2018), highlighted the benefits of ABMs and urge to draw
more attention and research to the development of these kind of models.

A very basic ACE model is given in Lengnick (2013). It serves mainly
as an introduction to agent-based modelling, featuring only consumer and
firm agents. However, even in this simplistic setting, business cycles can be
observed.

Gerst et al. (2013) use an ABM to model climate policy and the multi-
ple feedback loops that are present in an ecological system made up of an
economy, energy technology and ongoing climate change.

Gualdi et al. (2015) explore “tipping points” in an ACE model: A tip-
ping point is when an economy which is in a “good” steady state with low
unemployment suddenly transitions to a “bad” steady state where the un-
employment rate is high. Gualdi et al. (2015) build a minimal model that
exhibits these properties and give policy recommendations based on their
findings.

A special type of ACE models has recently received growing attention: stock-
flow consistent (SFC) models. SFC models are models that follow national
accounting principles, meaning that, for instance, national output (GDP)
is the sum of consumption, investment and government expenses or that

18See e.g. Smets & Wouters (2003)
19See Nature (2009), Farmer & Foley (2009) and Economist (2010)
20See their books Tesfatsion & Judd (2006) and Epstein & Axtell (1996)

21

consumption plus taxes plus saving of the households must be equal to the
income of the households. Godley & Lavoie (2007) is the main reference for
this type of model. A disadvantage of these models is that they are aggregate
macroeconomic models and they only contain the (aggregated) institutional
sectors (private sector, i.e. households and firms, public sector, financial
intermediation). As a response to this shortcoming, economists developed
agent-based models that followed the stock-flow consistent accounting princi-
ples, adequately named agent-based stock-flow consistent (AB-SFC) models.

The first models to adopt these AB-SFC principles is the EURACE model by
Deissenberg et al. (2008). It includes nine types of agents (households, con-
sumption good firms, investment good firms, banks, malls, a clearinghouse,
a government, a central bank and a central statistical agency) and “many
hyper-realistic features”21. These features, however, severely increase the
complexity of the model and make it hard and time-intensive to be re-used,
modified or extended by other economists.

To circumvent this problem, Caiani et al. (2016) developed a simpler “bench-
mark” AB-SFC model. It is a compromise between a simple, very abstracted
(and thus unrealistic) model and a very elaborate, complex (but realistic)
model. This benchmark model features six types of agents: households, cap-
ital and consumption firms, banks, a central bank and a government. The
behaviour of those agents is simplified but the model is still able to repro-
duce important stylized facts about aggregate economic variables22. There
are already several papers that build on the benchmark model, such as Ca-
iani, Russo, et al. (2017), Caiani, Catullo, et al. (2017) and Schasfoort et al.
(2017). Thus this model is a good starting point for my planned inquiry into
the performance characteristics of an agent-based macroeconomic model.

21See Caiani et al. (2016), p. 380
22I will describe the model in more detail in the next chapter.

22

Chapter 3

Investigated model

3.1 Description of the benchmark model

The so-called “benchmark” model of Caiani et al. (2016) is, as has already
been mentioned, an agent-based stock-flow consistent model.
It consists of six types of agents: households, consumption good and capital
good firms, banks, a cenral bank and a government.

• Households buy goods from consumption good firms and deposit their
savings at banks. They sell their labor to firms and receive wages as
income. From the income, one part goes to the government as income
tax. If the household is unemployed, it looks for work but receives
unemployment benefits from the government. Every household owns
firms proportional to its wealth and receives dividends accordingly.

• Consumption firms use labor and capital goods (which they buy from
capital good firms) to produce goods which they then sell to the con-
sumers/households. They plan their production and hire/fire workers
and take out loans as needed. Taxes are paid from profits. A part of
the remaining profits are paid out as dividends and a part is kept for fi-
nancing future production. Capital firms only use labor for production
and only sell to consumption good firms.

• Banks hold deposits of the households and firms and give loans to
firms. They pay interest on the deposit and receive interest on loans.
Taxes are paid from profits, remaining profits are fully distributed to
the households. If needed, banks can ask for cash advances from the
central bank.

• The central bank is the issuer of the legal currency. It holds the banks’
reserves and hands out cash advances to banks. Furthermore, the
central bank buys any government bonds that are not bought by the
banks themselves.

23

• The government collects taxes from households, firms and banks. It
pays unemployment benefits to unemployed households and employs a
certain share of the households itself. Deficits are financed by issuing
government bonds.

Households make up the biggest part of the agent population. Therefore, I
will indicate the problem size of a simulation with the number of households.

Every iteration in the simulation represents one quarter of a year.

The benchmark model is concerned with correctly modelling

• the creation of money by the central bank (by purchasing government
bonds and by providing cash advances)

• the creation of money by banks when new loans are granted to firms
and the destruction of money when loans are repaid.

For a more detailed description of the model, its behaviour and results I
refer the interested reader to the original paper of Caiani et al. (2016).

3.2 Implementation of the model

I implemented the model of Caiani et al. (2016) as described in the paper.
Some agent behaviour, however, would have been very difficult to implement
in FLAME:

• Household agents have a certain budget to be consumed. Additionally,
households have a fixed number of consumption firms that they do
business with (this list of firms changes from iteration to iteration). In
the paper, households choose a random firm from their list and buy
as much goods as possible (either the household runs out of money or
the firm out of inventories). If the household still has money left, it
again randomly selects a firm from its list and tries to satisfy as much
of its consumption demand as possible.
This behaviour is not implementable in an easy way in FLAME.
Households and firms are separate agents, they can only communicate
through messages. Agents are allowed to receive and send messages
only once per transition function1. It is thus not possible – as would
be needed here – to send an order for goods, receive a message
containing the amount of delivery and then send again a message to
another firm.

1They can however send/receive multiple messages from multiple message boards.

24

In my implementation, households send inquiries to all firms on their
business partners list (in one transition function), receive information
about the inventories of the firm and respond with an order (in the
next transition function) and finally receive a delivery of goods by
the firms. This behaviour is close to the described behaviour in the
paper, but it can lead to unsatisfied consumption: As all consumers
send their orders at the same time, firms can – unexpectedly – run
out of inventories and consumers have then no way of compensating
this unsatisfied demand with other firms, since all orders have already
been sent. This difference in behaviour, of course, also influences the
macroeconomic outcomes of the model, but this difference is insignifi-
cant for our performance experiments.

• The behaviour of households, firms and banks is influenced by some
macroeconomic trends: Households adjust their reservation wage de-
pending on the “global” unemployment rate; firms’ wage offer to new
workers depends on the average wage in the economy and banks’ inter-
est rate for loans and deposits moves towards the average of the last
quarter. To be able to model this behaviour, I had to introduce an
additional agent to my implementation: a statistical office. The sole
task of this agent is to aggregate the data that is sent to it (e.g. house-
holds send their employment status, i.e. 0 if they are employed and 1
if they are unemployed) and send the aggregate again out to the agent
that need it.

Figure 3.1: Extract of the stategraph generated by FLAME for the model
of Caiani et al. (2016)

25

Figure 3.1 presents a part of the state graph that is generated by FLAME
to organize the transition functions of the agents. States are ellipses with
white background, the transition function are the orange rectangles and the
green arrows between them depict messages.

The transition function and their dependencies among each other are given
in the model XMML file. The state graph is generated from this information
and used by FLAME to schedule the transition function is such a way to
achieve the biggest possible parallelization.

3.2.1 Calibration of the initial state

Stock-flow consistency begins with the initial state. Caiani et al. (2016)
present their proposed solution in their appendix: Ensuring that the initial
state is, indeed, stock-flow consistent means solving a system of non-linear
equations.

The number of households should be the main indicator of the size of the
initial state. Thus, I define the number of consumption firms in dependency
of the number of households: ΦC as ΦC = max(1, ⌈ΦH ∗ ϕC⌉), where ΦC

is the number of consumption firms, ΦH is the number of households and
ϕC = 0.05 a scaling factor for the consumption firms. The number of capital
firms2 and the number of banks3 is defined accordingly. Thus, the number
of households in a simulation is the most relevant indicator of the problem
size and I will use the number of households to represent the problem size.

With the numbers of households, firms and banks determined as described
above and given the exogenous parameters from Caiani et al. (2016), I
can generate stock-flow consistent initial states for all problem sizes needed.
These are then the initial states that are used for conducting my performance
experiments. The initial state for a certain problem size is always fixed.
What differs in each run are the random choices the agents make (the random
seed is not fixed).

3.3 Parallelization4

FLAME achieves parallelization of the generated simulation code through
the usage of message boards. These message boards have the task of col-
lecting, synchronizing and providing the messages that agents send to one

2Defined as ΦK = max(1, ⌈ΦC ∗ ϕK⌉) with ϕK = 0.2.
3Defined as ΦB = max(1, ⌈ΦC ∗ ϕC⌉) with ϕB = 0.1.
4This section is based on the description of FLAME/libmboard given in Kiran et al.

(2008), Coakley et al. (2012) and Chin et al. (2012)

26

another. More technically, the message boards are distributed data struc-
tures that ensure that the messages are replicated on all processes (that need
them). Messages are structs that can contain any information.

Figure 3.2: Messageboard parallelization5

Every process starts its own communication thread. These threads manage
the message boards (one message board for every type of message) of the sim-
ulation. Agents can post messages to these boards using a MB_AddMessage()
routine. Once a message is posted, the agents can continue with their work.
After the last message is posted to the message board, synchronization of
that message board is started. Agents can read the messages of the boards
after the synchronization is finished. If the synchronization is still ongoing,
the agents are put on hold.

Thus, the best parallelization efficiency is achieved if messages are sent as
early as possible, so that a) the communication threads have enough time to
synchronize and b) the agents can do as much as possible useful work while
the message boards are being synchronized.

By default, the message boards and their messages are fully replicated on
all processes. This can of course lead to a lot of unnecessary duplication
of messages. To circumvent this, FLAME provides filters. If the user adds
a filter tag to the model description in the XMML file, libmboard will
only synchronize the messages that a certain process needs. E.g., a filter
tag requests that the ReceiverID variable of the message be equal to the ID
variable of the receiving household. Every communication thread informs
the other threads – prior to the synchronization – which messages it needs: in

5This figure is based on a similar presentation in Chin et al. (2012)

27

this case, which agent IDs. Each process then “tags” every written message
with the processe(s) that need this message. This allows the message boards
to be only “partially” synchronized and to avoid a full replication of the
message board on all processes.

28

Chapter 4

Numerical simulations

4.1 Hardware setup and configuration

4.1.1 Laptop

The first machine to run the experiments is my personal laptop. As most re-
searchers in economics have “normal” commodity hardware at their disposal,
this is a very interesting benchmark.
The processing unit of the laptop is an Intel Haswell i5 4200U DualCore
with 1.6 GHz and enabled hyperthreading. Thus it only makes sense for the
experiments to use at most four concurent processes. 8 GB of memory are
built in.

Figure 4.1: Topology on the laptop

Figure 4.1 shows the topology of the system as generated by the utility
lstopo. The laptop has one 3MB level 3 cache, and two cores with each a
256 KB level 2 cache and a 32 KB level 1 cache.

29

The operating system is an up-to-date Arch Linux. Specifically, the gcc
8.2.0 and OpenMPI 3.1 will be used. Furthermore, the compiler flags
-O3 -march=native -ffast-math -funroll-loops are activated through-
out all experiments1.

4.1.2 Lewis

The second machine is a multicore called “Lewis” and is a server at the
University of Vienna. With four processors and twelve cores each as well as
256 GB of memory it is considerably more powerful than the laptop. Lewis
can thus host up to 48 cores. Every of the 48 AMD Opteron cores is able
to run at 2.2 GHz. Figure 4.2 gives an overview about the topology.

Figure 4.2: Topology on Lewis (shown are two of four sockets)

The operating system is again a Linux variant: Ubuntu 16.04.01 LTS runs
on Lewis. The FLAME application code is compiled with gcc 5.4.0 and
MPICH 3.1.

AMD also recommends using -march=native when compiling locally (and
using gcc)2. Thus the same compiler flags are the same as on the laptop:
-O3 -march=native -ffast-math -funroll-loops.

The theoretical peak performance for one AMD Opteron processor is at
1See the appendix section A.3 for detailed information which flags are set by

-march=native.
2See https://developer.amd.com/wordpress/media/2012/10/CompilerOptQuickRef-

61004100.pdf (accessed 4.7.2018)

30

110 GFLOPS/s3. As there are four processors built into Lewis, its peak
performance is 440 GFLOPS/s. Similarly, dividing by twelve gives a figure
of 9 GFLOPS/s per core. Or calculated from another side: each core has a
frequency of 2.2 GHz and could complete four floating point operations per
instructions, which would amount to 8.8 GFLOPS/s.

4.1.3 Vienna Scientific Cluster (VSC)

Finally, I am given the opportunity to run my experiments on the Vienna
Scientific Cluster, an Austrian supercomputer.

The current system is called VSC-34 and is a Linux-cluster with 2020 nodes.
Each node contains two Intel Xeon E5 processors with 2.6 GHz and eight
cores. Thus, it can accomodate up to 16 processes (or even 32 processes
when hyperthreading is enabled). The architecture of a compute node at
the VSC-3 is given in figure 4.3.

The theoretical peak performance of the VSC-3 is 681 TFLOPS/s5, which
means one compute node could achieve 337 GFLOPS/s. Calculating from
the bottom up, we multiply the frequency of a core (2.7 GHz) with the
number of floating point operations it can do per cycle (eight) and multiply
the result with the number of cores on a compute node (16) we arrive at 346
GFLOPS/s which is close enough to the figure above.

A VSC node features 32 GB of memory for both sockets. The level 3 cache
is with 20MB considerably bigger, compared to the 5 MB at Lewis above.
Every socket has its own interface to a dual-link Infiniband fabric, which
internally connects all compute nodes.

The operating system on VSC-3 is CentOS. There are a lot of different
compilers and MPI libraries available on the VSC. I wanted to compare the
open source compiler gcc with the Intel compiler as well as the recent release
of OpenMPI 3.0 with its previous version 2.0.

Thus I chose to build the FLAME application with

• gcc 7.2.0 and OpenMPI 2.0.2 (abbreviated as “OpenMPI 2”),
• gcc 7.2.0 and OpenMPI 3.0.0 (abbreviated as “OpenMPI 3”) and
• Intel compiler 18 and Intel-MPI 2018.3 (abbreviated as “Intel-MPI”).

Additionally, for every configuration a message board library with the
same settings was compiled. The compiler flags -O3 -march=native

3See https://www.amd.com/Documents/AMD_Opteron_ideal_for_HPC.pdf (ac-
cessed 15.8.2018)

4I will use “VSC” and “VSC-3” synonymously.
5See https://www.top500.org/system/178471 (acessed 18.8.2018)

31

Figure 4.3: Topology of a VSC node

-ffast-math -funroll-loop are activated when compiling with gcc.
With Intel, the flags -O3 -AVX are set6.

4.1.4 Event measurement

To measure the execution time, I use the timing that is readily supplied by
the generated code. This timing is taken by using the function MPI_Wtime()
on the root node (node 0). In addition to the elapsed time, the PAPI
framework, described in Terpstra et al. (2010), measures several events
during the simulation. PAPI has the advantages that it has a relatively low
overhead and that it is available on all three machines.

Table 4.1 shows the events that are measured on each machine. As the
number of available counters for these hardware events is different on every
machine – e.g. there are only two counters available on Lewis – it was nec-
essary to run the experiments twice: once to get the measurements for total
instructions and floating point operation and once to get the measurements
of the cache misses. This, in turn, means that the elapsed time was mea-

6This settings are proposed by NASA High-End Computing Capability. See
https://www.nas.nasa.gov/hecc/support/kb/recommended-compiler-options_99.html
(accessed 21.7.2018). Additionally, for the application to take advantage of the processors’
vector processing features it is necessary to include the -lirc-flag during linking with
mpiicc.

32

sured twice as much (as it is measured in every run) as the other events and
can thus be considered to be a more stable and reliable result.

Table 4.1: PAPI Events that are possible to be measured on each machine

Event Description Laptop Lewis VSC
PAPI_TOT_INS Total instructions X X X
PAPI_FP_OPS Floating point operations X X
PAPI_L1_TCM Level 1 cache misses X X X
PAPI_L2_TCM Level 2 cache misses X X X
PAPI_L3_TCM Level 3 cache misses X X

Table 4.1 also shows that two events are not available: there are no exposed
hardware counters for floating point operations on the laptop, which has a
Intel Haswell architecture (see also next section). Furthermore, level 3 cache
misses cannot be measured on Lewis.

4.1.5 Performance tests setup

To investigate the performance properties of FLAME for the benchmark
model, I will carry out a series of tests. Each test corresponds to a simulation
run with a certain number of processes and a certain problem size (i.e., with
a given number of households). The execution time as well as some of the
events above, e.g. cache misses, are recorded and stored for later analysis.
Every test will be carried out at least five times, so that we can average the
time and event observations and arrive at robust measurements.
FLAME is able to generate serial and parallel code. In both cases there is
one separate thread (per process) that carries out the computations of the
message board library. I will use the serial code for simulations with one
process7, and the parallel version for two or more processes.
The number of simulation iterations is set to 10 so that even bigger problem
sizes terminate within reasonable time. In practice, researchers will want
to execute a lot more iterations8. However, since iteration n and n + 1 are
similar to each other, in the type and amount of work they do, we could –
with reasonable accuracy – simply extrapolate the time needed for 400 from
the result for 10 iterations.
I controlled the generated simulation data exemplarily. They all generate
sensible data which could be, e.g., used in an economic research project.

7It would also be possible to use the parallel version with just one process. However,
the serial version would then have no advantage over the parallel version, as it would also
have to cope with the MPI overhead.

8In Caiani et al. (2016), the authors simulate 400 iterations, i.e., 100 years

33

4.2 Metrics

The following metrics of the experiments will be examined. Elapsed time,
which is simply the time from start to end of a simulation, is the most
interesting figure. For analysing the work done during the simulation, we
will look at the number of floating point operations that was carried out.
For the Intel Haswell architecture of the laptop, we will use total retired
instructions instead.
From these two measurement (elapsed time and work done), we can calculate
several performance metrics. Speedup S(p) is calculated as

S(p) = T (1)
T (p)

where T (p) is the elapsed time with p processes. Similarly, efficiency E(p)
is defined as

E(p) = S(p)
p

= T (1)
T (p)× p

Redundancy R(p) and utilization U(p) are then calculated as

R(p) = O(p)
O(1)

and

U(p) = R(p)× E(p)

where O(p) is the number of (floating point) operations performed. Finally,
we will also have a look at the level 1, 2 and 3 cache misses as this will help
us understand certain performance issues of the application. Specifically, we
will use the cache miss rate calculated as the number of cache misses per
instruction.

4.3 Results

The upcoming section presents the results of the performance tests. As I
carried out these tests in three different hardwares, the results are presented
in turn, beginning with the hardware with the “smallest” computing power,
my laptop.
On the laptop and on Lewis, the “smaller” problem sizes are tested while
the “bigger” problem sizes are tested on VSC.

34

4.3.1 Laptop

4.3.1.1 Elapsed time

As there are up to four slots available for processes, the simulation is tested
with one, two and four processes. We immediately see from figure 4.4 that,
as the agent population increases and, as a result, the problem gets more
difficult, more processes finish the simulation in less time. Since the elapsed
time on the y-axis is on a log scale, the reductions in elapsed time are
considerably higher than they appear: The simulation, carried out with
only one process, terminates after 1300 seconds (more than 20 minutes),
while the average elapsed time for two and four processes is 800 seconds
(13 minutes) and 550 seconds (9 minutes), respectively. Only for very small
problem sizes we see that a single process can match the time achieved by
two processes. Starting from around 600 households, two processes begin to
achieve faster times and from 2000 households onwards, four processes are
always the fastest.

Figure 4.4: Elapsed time comparison on laptop

4.3.1.2 Instruction count

As has already been mentioned in section 4.1, the Intel Haswell architecture
of the laptop does, unfortunately, not expose any counters for floating point

35

operations. As a replacement, only the number of “retired instructions”9 can
be used. Using instructions instead of floating point operations has, however,
a serious drawback: retired instructions are proportional to execution time.
Retired instructions only measure the instructions that are executed, not
counting speculative instructions. In fact, there are less retired instructions
with four processes10 than with one process. Thus, it does not make sense
to go further into detail here and look, at the instructions per second11.

4.3.1.3 Cache misses

Figure 4.5 displays the cache miss rates of the three levels of caches. Again,
the number of processes are colour-coded, while the cache levels are repre-
sented by the various linetypes.

Figure 4.5: Cache miss rate on laptop

We see that the level 1 cache misses are the “most common”, occuring in
between 2.5 and 3% of all instructions (considering the largest problem sizes).

9Measured by PAPI with PAPI_TOT_INS. The PAPI Wiki has a longer
discussion about the difficulty (or in case of Intel Haswell, impossibility)
of measuring floating point operations on a series of Intel processors, see
http://icl.cs.utk.edu/projects/papi/wiki/PAPITopics:SandyFlops (accessed 22.7.2018)

10This value is the sum of the retired instructions of the four processes.
11The results for the measured instructions can be found in Appendix A.1 for complete-

ness

36

Level 2 cache miss rate is with above 1% slightly larger than usual. Level 3
cache range at 0.25%.
We can also observe that the cache miss rate is always lower for simulation
runs with more processes (except for very small problem sizes). This obser-
vation indicates that there is an issue with data locality: If we distribute
the data of the agents to several processes, we can decrease the amount of
cache misses that the application runs into. This means further that the
serial code generated by FLAME does probably not use the most efficient
algorithm for traversing the agent population and their data.

4.3.1.4 Performance metrics

Figure 4.6 shows the calculated performance metrics for the laptop. We see
that the FLAME framework can achieve impressing speedups for two and
four processes, especially for the bigger problem sizes. Using two processes,
we end up with a speedup of around 1.6 while the speedup for four processes
approaches approximately 2.45.

Figure 4.6: Performance metrics on laptop

Efficiency is slightly increasing with the problem size, but converges to ap-
proximately 0.8 for two processes and 0.6 for four processes.
Since we lack a good method for measuring the work done during the ex-
ecution of the simulation, we are unable to calculate sensible results for

37

redundancy and utilization12.

4.3.2 Lewis

The following section will present the results of the machine tested next,
Lewis.

4.3.2.1 Elapsed time

As in the previous section, we start by inspecting the runtime behaviour
of the simulation when run with various numbers of processes as shown in
figure 4.7

Figure 4.7: Runtime comparison on Lewis

We can see that – similar to when using the laptop – more processes tend
to reduce the time needed for the simulation to terminate, especially as
problem sizes increase. So even for very small problem sizes, it is advisable
to use a parallel version of the simulation.

Another interesting observation to be made is that the results for 24, 32 and
48 processes start with very high values: 0.4, 1.8 and 2.7 seconds, respec-
tively, are needed to carry out the simulation with 200 households. However,
the execution times rise much less markedly with increasing problem size

12The results for redundancy and utilization are given in the appendix A.1 for complete-
ness.

38

than simulations with less processes do – thus, they scale better. Between
600 households and 2000 households, 16 processes is the fastest configura-
tion. At 3000 households, then, 24 processes operate quickest but are in
turn outperformed by 32 processes at around 6000 households. 48 processes
are fastest for problem sizes of 9000 households and more.

4.3.2.2 Achieved MFLOPS per second

On Lewis, we can measure the number of MFLOPS per second carried out
during the execution of the simulation; figure 4.8 shows the results. Looking
at the plot, we immediately detect a very surprising behaviour: the number
of MFLOPS/s decreases in accordance with problem size when the number
of processes is smaller than 16. For simulations using more processes, the
MFLOPS/s increases or stays roughly the same. This means that, that as
there the work load increases (the problem size grows) less work is actually
carried out per second.
This circumstance might imply that this program is, in fact, I/O bound.
As the problem size increases, more data is moved around and more cache
misses occur (see figure 4.9). The CPU is, then, in turn slowed down by the
waiting for the data retrievals to finish.

Figure 4.8: MFLOPS/s comparison on Lewis

The results further show that the level of MFLOPS/s achieved is very low.
The scale on the y-axis ranges from 0.3 to 20 MFLOPS/s. The experiment
with 48 processes achieves the highest performance with 18.2 MFLOPS/s.

39

Given that Lewis would – in theory – be able to accomplish 8.8 GFLOPS/s
per core and 440 GFLOPS/s in total13, the results shown in figure 4.8 are
very disappointing.

4.3.2.3 Cache misses

Finally, we will have a look at the cache miss rates. AMD has no counters
for the level 3 cache misses (or accesses), thus we have to make due with
level 1 and level 2 cache miss rates. As indicated in the previous section,
the cache miss rate is calculated as the number of cache misses divided by
the number of instructions.

We observe that, similar to the results on the laptop, the cache miss rate
tends to be lower for experiments with a higher number of processes. Except
for the difference between 32 and 48 processes, differences are quite small.

Figure 4.9: Cache miss rates for Lewis

Level 1 cache miss rates are stable for one and two processes, rise and level
off for four and eight processes and increase throughout the problem size
space for 16 processes and more. Level 2 cache miss rates start low for
smaller problem sizes, increase constantly and are almost equal to level 1
cache miss rates in the end.

13See section 4.1

40

4.3.2.4 Performance metrics

Now, we turn to the performance characteristics of the experiments on Lewis.
All processes achieve large speedups, e.g. with 48 processes and 10000 house-
holds, the speedup amounts to 82.1. Speedups for two to 16 processes con-
verge to a certain point, e.g. for eight processes this value is about 23.4.
Speedups for larger process counts (24, 32 and 48 processes) increase with
problem size but seem to level off eventually. This indicates that there is a
certain maximal speedup to be achieved with a given number of processors.
For two to 16 processors this value is already reached within the tested range
of problem sizes and lies at 2.1, 7.9, 23.4 and 52.6, respectively. For 24, 32
and 48 processes, however, it is not clear if this maximal value is already
attained.

In the panel for efficiency metrics, we see that super-linear speedups are
achieved for most problem sizes and number of processors. Already with
a problem size of 2000, super-linear speedups are possible. The bigger the
problems, the more processes achieve a super-linear speedup.

There are a number of reasons which can explain this rather surprising
result: First, single process performance is bad. If the serial version of the
generated FLAME code has some inefficiencies, it is relatively easy for the
parallel version to reach high speedups.

Figure 4.10: Achieved speedups on Lewis

41

Second, since many processes fare so much better than a single serial process,
another reason can probably be found in the locality of the processes. In
figure 4.9, we see that cache misses are lower for more processes, which
means that cache locality is better when using more processes. However,
this could also imply that the algorithm for traversing the list of agents and
carrying out their transition functions is inefficient, so the parallel version
can distribute this inefficient algorithm onto more processes.

Redundancy fluctuates around one, but only very little: Most values are
within +/- 2%. This means that the amount of FLOPS done by the appli-
cation is essentially constant and not affected by the number of processes
that execute the simulation.

Utilization, the product of redundancy and efficiency, measures how well
available computational capacity is being used. Since redundancy is practi-
cally equal to one, utilization shows the same patterns as efficiency.

4.3.3 Vienna Scientific Cluster

The third machine tested is the Vienna Scientific Cluster (VSC).

Every compute node at the VSC consists of 16 cores. Since we have seen from
the experiments at Lewis that serial performance of the FLAME generated
code is rather low, I chose to only use “full” compute nodes. This means
that we will look at at least 16 processes or multiples of 16.

As the number of processors that can be utilized is much higher on the
VSC compared to those on Lewis, considerably bigger problem sizes were
tested here. The smallest problem size involves 5000 and the biggest 45000
households14.

4.3.3.1 Elapsed time

Figure 4.11 depicts the elapsed runtimes of the experiments using three
different compiler/MPI library configurations. Each panel in the plot refers
to a different number of utilized cores, beginning from 16 cores (one compute
node) and ranging up to 512 cores (32 compute nodes)15.

There are several observations to be made here. First, runtimes tend to
decrease up until the point where 256 cores/16 compute nodes are used.
From 256 to 512 cores, execution time stays roughly the same.

14Testing even bigger problem sizes would have been possible, however this would have
required the generated source code to be patched manually and the batch jobs to be
submitted to compute nodes with bigger memory.

15The number in parenthesis above the panels indicate the number of compute nodes.

42

Figure 4.11: Elapsed time comparison on the VSC

Secondly, OpenMPI 3 does seem to perform better than OpenMPI 2. No-
tice that, again, the y-axis is on a log scale, thus the differences between
the runtimes of the two OpenMPI versions are bigger than it might look
like. The performance of Intel-MPI lies somewhere between the OpenMPI
versions.

Third, we see the same pattern as on Lewis: The more processes we utilize,
the smaller the reaction of the application to increasing problem size (i.e.,
the curves tend to flatten out the more processes we use).

Figure 4.12 shows the same results as figure 4.11 but in a different format.
We group the results by problem size and plot the number of utilized cores
on the x-axis. This way we can better see the strong scaling behaviour of
the simulation. In every panel, we notice a linear decline in the execution
time with a small upward bend at the end.

4.3.3.2 Achieved MFLOPS/second

Results for the achieved MFLOPS/s are low – similar to the results on Lewis
– and tend to decrease with problem size but increase with the number of
processes. The downward sloping curves are especially pronounced with
OpenMPI 2. The MFLOPS/s for OpenMPI 3 and Intel-MPI are downward

43

Figure 4.12: Elapsed time comparison on the VSC

sloping for 16 and 32 processes, stable for 64 processes and slightly upward
sloping for 128 and more processes.

Furthermore, it is interesting to note that OpenMPI 2 seems to carry out
a lot more work with 128 and more cores, while only achieving roughly the
same execution times as OpenMPI 3 and Intel-MPI. This indicates that
OpenMPI 2 does more – though useless – work while OpenMPI 3 and Intel-
MPI just run idle.

In terms of computational efficiency, again, the results are disappointing.
We saw in section 4.1 that the upper bound of one compute node lies at 337
GFLOPS/s. Only OpenMPI 2 achieves more than 1 GFLOPS/s (though
with 16 and 32 compute node, where the theoretical peak performance is
already in the range of TFLOPS/s).

As OpenMPI 3 shows the best performance with respect to execution times,
I will report only the results for OpenMPI 3 in the remainder of this chapter.
Appendix A.2 contains the results for all compiler/MPI libraries.

4.3.3.3 Cache misses

Cache miss rates on the VSC are presented in figure 4.14. The pattern we
see here is by and large similar to that of Lewis and the laptop. Rates rise
with increasing problem size but the level of the cache miss rate is lower the
more processes are used in the simulation experiment.

44

Figure 4.13: MFLOPS comparison on the VSC

Figure 4.14: Cache miss rates on VSC

45

Contrary to the previous results, we see here a big gap between the cache
misses of the serial code and the cache misses of the parallel code with two
processes.

We should also take note of the absolute level of cache misses: It is with 2%
rather high (considering we are using number of retired instructions in the
denominator).

4.3.3.4 Performance metrics

Performance metrics were calculated with the results for one compute node,
i.e. 16 cores, as reference. Using a “true serial” process, i.e., one process
on one compute node, as reference for the performance metrics would have
unrealistically exaggerated the results.

Figure 4.15: Performance metrics on VSC

Figure 4.15 shows the performance metrics for OpenMPI 3. We see that
speedups rise almost linearly with problem size and the slope for each line
seems to be steeper the more processes are employed. Efficiency similarly
rises with problem size. 32 cores (two compute nodes) and 64 cores (four
compute nodes) achieve an efficiency greater than one already at problem
sizes smaller than 20000. 128 cores (eight compute nodes) also reach an
efficiency larger than one at 40000 households.

46

Results for redundancy show a very different picture. Though all values are
greater than one – as would be expected – they are not much bigger than one.
At 45000 households, the biggest problem size, the values for redundancy
range from 1.04 for 32 cores to 1.15 for 512 cores.

The values for utilization are very close to the values for efficiency since
redundancy is close to one in most cases.

4.3.3.5 Hyperthreading

On VSC, there is the possibility of using hyperthreading. Hyperthreading
enables a second, virtual, core for every physical core. It is thus possible to
assign two processes to only one physical core.

Since we saw above that more processes tend to achieve lower execution
times, it might be worthwile to investigate if hyperthreading can be used to
accelerate the execution a bit further. Figure 4.16 displays these results.

Figure 4.16: Hyperthreading on VSC

The results in figure 4.16 are grouped by the number of utilized compute
nodes. Keep in mind that the results with activated hyperthreading use
double as many processes as the results without hyperthreading.

We see that the results with hyperthreading are hardly distinguishable from
the results without hyperthreading when using up to four compute nodes.

47

With eight and more compute nodes, hyperthreading seems to impact the
performance negatively. Especially with 32 compute nodes (i.e. 1024 pro-
cesses), the results are very volatile.

These results seem surprising, since we saw that the execution time always
sank when using more processes, especially when starting from a low number
of processes. The results favour, however, the interpretation that the pro-
gram is I/O bound and the cores simply cannot get enough data to compute,
no matter how many processes we use.

4.3.3.6 Load imbalance

Load imbalance is an important factor in assessing the performance of a
parallel application. Since there is no automatic load balancing done by the
FLAME code, we have to hope that the “round-robin” partition of the agents
is good enough and does not lead to big imbalances and wasted computa-
tional ressources. The number of FLOPS per process are used to calculate
average and maximum FLOPS. The load imbalance factor is calculated as

LIF = maxp(FLOPSp)
meanp(FLOPSp)

where p indexes the processes. Figure 4.17 depicts the average load imbal-
ance factor during the experiments.

Figure 4.17: Load imbalance

48

We can see that the load imbalance factor tends to decrease with increasing
problem size and that simulations with a smaller number of processes also
has a lower load imbalance factor.

4.3.3.7 Weak scaling

Up until now, we only considered strong scaling. Strong scaling keeps the
problem size fixed, while increasing the number of processes that work on
solving it. Weak scaling holds the problem size per process fixed level, thus
the overall problem size increases with the number of processes.

In general, Strong scaling is more useful but also more difficult to achieve.
From the performance metrics above we can see that FLAME does quite
well with strong scaling, weak scaling is only of small importance here.

Nevertheless, figure 4.18 shows the results of a weak scaling exercise. The
number of households (and thus the problem size) are set at 80 per process.
The number of processes is shown on the x-axis with the corresponding
problem size in parentheses.

Figure 4.18: Weak scaling on VSC

It is of little surprise that the application exhibits linear weak scaling. Open-
MPI 2 deviates from linearity with 16 cores but otherwise there is no doubt
that there is linear weak scaling.

49

4.4 Interpretation of the results

There are two issues that need explaining:

1. the, in absolute perspective, bad performance
2. the super-linear speedups

The two issues are interrelated. In part, we see the super-linear speedups
simply because the performance of the FLAME generated code is below our
expectations.
Figure 4.19 and 4.20 show memory and floating point intensity of the simula-
tions, based on results obtained from Lewis. Memory intensity is defined as
as the number of load and store instructions16 per instruction and floating
point intensity is similarly defined as the number of floating point instruc-
tions per instruction.

Figure 4.19: Memory intensity

The memory intensity shows us the percentage of memory operation that
are done during the execution of the simulation. We see that the results
fluctuate quite a bit, but tend to converge to roughly 0.72 when the problem
size grows. So about 72% of all operations are inputting or outputting data
from/to the memory, while less than 1% are floating operations.

16Or, equivalently, the number of L1 cache accesses.

50

This means that the program is mostly occupied with loading and storing
data and is not able – by far – to utilize the computing capacity of the CPU.
Thus this program is clearly I/O bound.

One reason for this extraordinary high percentage of memory operations
can be attributed to the design decisions of the generated FLAME code. As
each agent is considered to be its own self-contained X-machine and each
transition function can, in theory, access all memory variables of the agent,
the program will always load the “full” agent into memory when it has to
carry out a transition function on this agent.

Figure 4.20: Floating point intensity

A household agent for example, the type of agent with the highest occur-
rence, consists of 21 variables (mostly doubles) and three arrays, each again
five doubles. So, in sum, the struct of household agent contains 46 variables.
But only a fraction of these variables are really needed for the execution
of the transition function. E.g., when the household looks for work, it ac-
cesses three agent memory variables (ID, Employment status and current
employer (if any)) and two environment variables (total number of firms
in the simulation and the number of allowed firm interactions); when the
household calculates its taxes, it accesses eight variables such as current in-
come, received dividends and so forth. Most transition functions use only a
very small subset of the agents’ variables.

So, by constantly requiring to load the whole agent structure into memory,

51

the program moves an enormous amount of data through the caches and is
not able to keep the CPU busy17.

Now, this might also explain why we see such a high occurrence of super-
linear speedups. Since the application is bound the amount of data it can
move through the caches, more processes can split the burden if they have
access to their own hardware ressources. On Lewis, this is – at least partly
– the case18: Each core has its own L1 and L2 cache and shares the L3 cache
with six other cores. These six cores have their own non-uniform memory
access (NUMA). The parallelized application is able to utilize this additional
bandwidth and can, therefore, achieve the very high speedups we saw in the
previous chapter.

This would also explain the patterns we observed at the cache misses (figures
4.5, 4.9 and 4.14): when the number of processes is low, the number of agents
and thus also the amount of necessary data movement per process is high.
This leads subsequently to a higher rate of cache misses when using a low
number of processes.

Furthermore, when we studied the results of activated hyperthreading in fig-
ure 4.16, we saw that additional processes did not accelerate the simulation.
Since these additional processes do not have access to any additional hard-
ware ressources, we see that more processes do not yield further decreases in
computation time. So the results for hyperthreading can also be explained
by the inefficient memory design.

17This would also explain why we see the falling MFLOPS/s in figure 4.8. As the
problem size increases, the amount of data that needs to be moved through the caches
grows and less work gets done.

18It is obviously true for the VSC, where each compute node has its own memory, caches
and processors.

52

Chapter 5

Conclusion

We wanted to test the performance of an agent-based macroeconomic model,
implemented with the FLAME framework, on three different machines: a
commodity hardware laptop, a multicore machine and the Vienna Scientific
Cluster. The sobering result of this research is that the performance of the
model (e.g. measured in MFLOPS/s) is rather disappointing.

On the multicore machine called Lewis, 48 processes achieve 18.2 MFLOPS/s
where 400 GFLOPS/s would be possible. The results on the VSC in a similar
range. On the other hand, we also see very high speedups, even super-linear
speedups are quite common.

The reason for both results – the bad performance and the high speedups
– could lie in the fact that the whole agent instance is loaded to execute a
transition function. In the tested economic simulation, an agent tends to be
rather big in terms of the number of variables in its memory. This leads to
an excessive amount of data being loaded and stored as a transition function
rarely needs accesss to all variables. During the execution of the simulation,
the machine is almost solely occupied with transferring data in and out of
the caches. This leads to the observed poor performance.

When using additional process running on their own hardware, we see super-
linear speedups as the data transfer is split on different processes and hard-
ware.

What does this mean for FLAME? Even though the L in FLAME stands for
Large-scale, FLAME seems ill-prepared for handling large-scale simulation
when the agents themselves hold a large memory. The design idea of FLAME
is very appealing and implementing an ABM-SFC model is relatively easy
but unfortunately it fails to deliver in practice. There is currently a redesign
of FLAME, FLAME II, under way. The issue of excessive data transfer will

53

also be alleviated1: To ensure a more efficient (in terms of concurrency)
scheduling of the transition functions, FLAME II will require the modeller
to indicate the memory variables a transition function needs. This would
allow a scheduler to create a graph of memory dependencies and execute the
transition functions as dependencies are met. Additionally, this should allow
for less data transfer, as the framework then exactly knows which transition
functions will need which memory addresses.

1See Chin et al. (2012) for a discussion of the planned improvements.

54

Appendix A

Detailed results

A.1 Additional results on laptop

A.1.1 Performance comparison with optimized compiler
flags

A comparison of the results with and without hardware specific compiler
flags on the laptop is presented below.

We can see that there are differences between the two compilation configura-
tions (-O3 and -O3 -march=native -ffast-math -funroll-loops). The
compilation with the hardware-specific flags fares slightly better. The dif-
ferences look small, but this is also due to the fact that the y-axis is on a
log scale.

A.1.2 Measured instructions

Figure A.1.2 gives the measured “retired instructions” on the laptop. We
can see that the results are proportional to the measured execution times
that were given in figure 4.4.

A.1.3 Performance metrics based on measured instruc-
tions

As already mentioned in section 4.3.1.2, the results for redundancy and uti-
lization are highly dubious, as the underlying measure for the completed
work, retired instructions, is an imperfect replacement for floating point op-
erations. Thus we see values for redundancy smaller than one for problem

55

Figure A.1.1: Elapsed time comparison on laptop, different compiler opti-
mizations

Figure A.1.2: Retired instructions on the laptop

56

Figure A.1.3: Performance metrics on laptop

sizes bigger than 2000 households, while we would expect the opposite: val-
ues larger than one indicating the additional work that has to be done for
the parallelization of the simulation.

A.2 Additional results on VSC

A.2.1 Performance metrics, all compilers

Figure A.2.4 compares the performance metrics for all three compiler/MPI
library combinations.

We see that all configurations achieve positive speedup compared to the
reference of one compute node. The speedups with OpenMPI 3 and Intel-
MPI tend to be higher than the achieved speedups from OpenMPI 2. This
is of course due to the relatively worse performance of OpenMPI 3 and Intel-
MPI with one compute node and the relatively better performance with two
and more compute nodes.

With OpenMPI 2 we do not see any super-linear speedups (i.e., efficiencies
larger than one), while OpenMPI 3 and Intel-MPI show super-linear speedup
when using 32 or 64 cores. The achieved efficiencies at 45000 households are
1.25 for OpenMPI 3 and 1.25 for Intel-MPI.

57

Figure A.2.4: Performance metrics on VSC

A.2.2 Load imbalance, all compilers

The FLAME code that was compiled with gcc 7.2.0 and OpenMPI 3 shows
the highest levels of imbalance. It is interesting to note that OpenMPI 2
showed relatively high values of MFLOPS/s (compared to the other two
versions, shown in figure 4.13), but exhibits here smaller values of load
imbalance.

A.3 Flags activated by gcc and -march=native

A.3.1 On the laptop

/usr/lib/gcc/x86_64-pc-linux-gnu/8.2.0/cc1 -v help-dummy -march=haswell
-mmmx -mno-3dnow -msse -msse2 -msse3 -mssse3 -mno-sse4a -mcx16 -msahf
-mmovbe -maes -mno-sha -mpclmul -mpopcnt -mabm -mno-lwp -mfma -mno-fma4
-mno-xop -mbmi -mno-sgx -mbmi2 -mno-pconfig -mno-wbnoinvd -mno-tbm -mavx
-mavx2 -msse4.2 -msse4.1 -mlzcnt -mno-rtm -mno-hle -mrdrnd -mf16c
-mfsgsbase -mno-rdseed -mno-prfchw -mno-adx -mfxsr -mxsave -mxsaveopt
-mno-avx512f -mno-avx512er -mno-avx512cd -mno-avx512pf -mno-prefetchwt1
-mno-clflushopt -mno-xsavec -mno-xsaves -mno-avx512dq -mno-avx512bw
-mno-avx512vl -mno-avx512ifma -mno-avx512vbmi -mno-avx5124fmaps

58

Figure A.2.5: Load imbalance

-mno-avx5124vnniw -mno-clwb -mno-mwaitx -mno-clzero -mno-pku -mno-rdpid
-mno-gfni -mno-shstk -mno-avx512vbmi2 -mno-avx512vnni -mno-vaes
-mno-vpclmulqdq -mno-avx512bitalg -mno-movdiri -mno-movdir64b
--param l1-cache-size=32 --param l1-cache-line-size=64
--param l2-cache-size=3072 -mtune=haswell -dumpbase help-dummy
-auxbase help-dummy -version --help=target

A.3.2 On Lewis

/usr/lib/gcc/x86_64-linux-gnu/5/cc1 -v -imultiarch x86_64-linux-gnu
help-dummy -march=amdfam10 -mmmx -m3dnow -msse -msse2 -msse3
-mno-ssse3 -msse4a -mcx16 -msahf -mno-movbe -mno-aes -mno-sha
-mno-pclmul -mpopcnt -mabm -mno-lwp -mno-fma -mno-fma4 -mno-xop
-mno-bmi -mno-bmi2 -mno-tbm -mno-avx -mno-avx2 -mno-sse4.2
-mno-sse4.1 -mlzcnt -mno-rtm -mno-hle -mno-rdrnd -mno-f16c
-mno-fsgsbase -mno-rdseed -mprfchw -mno-adx -mfxsr -mno-xsave
-mno-xsaveopt -mno-avx512f -mno-avx512er -mno-avx512cd -mno-avx512pf
-mno-prefetchwt1 -mno-clflushopt -mno-xsavec -mno-xsaves
-mno-avx512dq -mno-avx512bw -mno-avx512vl -mno-avx512ifma
-mno-avx512vbmi -mno-clwb -mno-pcommit -mno-mwaitx
--param l1-cache-size=64 --param l1-cache-line-size=64
--param l2-cache-size=512 -mtune=amdfam10 -dumpbase help-dummy
-auxbase help-dummy -version --help=target -fstack-protector-strong
-Wformat -Wformat-security

59

A.3.3 On the VSC

cc1 -v help-dummy -march=ivybridge -mmmx -mno-3dnow -msse -msse2
-msse3 -mssse3 -mno-sse4a -mcx16 -msahf -mno-movbe -maes -mno-sha
-mpclmul -mpopcnt -mno-abm -mno-lwp -mno-fma -mno-fma4 -mno-xop
-mno-bmi -mno-sgx -mno-bmi2 -mno-tbm -mavx -mno-avx2 -msse4.2
-msse4.1 -mno-lzcnt -mno-rtm -mno-hle -mrdrnd -mf16c -mfsgsbase
-mno-rdseed -mno-prfchw -mno-adx -mfxsr -mxsave -mxsaveopt
-mno-avx512f -mno-avx512er -mno-avx512cd -mno-avx512pf
-mno-prefetchwt1 -mno-clflushopt -mno-xsavec -mno-xsaves
-mno-avx512dq -mno-avx512bw -mno-avx512vl -mno-avx512ifma
-mno-avx512vbmi -mno-avx5124fmaps -mno-avx5124vnniw -mno-clwb
-mno-mwaitx -mno-clzero -mno-pku -mno-rdpid --param l1-cache-size=32
--param l1-cache-line-size=64 --param l2-cache-size=20480
-mtune=ivybridge -dumpbase help-dummy -auxbase help-dummy
-version --help=target

60

References

Abar, S. et al., 2017. Agent based modelling and simulation tools: A review of the
state-of-art software. Computer Science Review, 24, pp.13–33. Available at: http://www.
sciencedirect.com/science/article/pii/S1574013716301198.

Antelmi, A. et al., 2015. On evaluating graph partitioning algorithms for distributed
agent based models on networks. In Euro-par 2015: Parallel processing workshops. Cham:
Springer International Publishing, pp. 367–378.

Bandini, S., Manzoni, S. & Vizzari, G., 2009. Agent based modeling and simulation: An
informatics perspective. Journal of Artificial Societies and Social Simulation, 12(4), p.4.

Bersini, H., 2012. UML for ABM. Journal of Artificial Societies and Social Simulation,
15(1), p.9.

Caiani, A., Catullo, E. & Gallegati, M., 2017. The effects of fiscal targets in a monetary
union: A multi-country agent-based stock flow consistent model. Industrial and Corporate
Change.

Caiani, A. et al., 2016. Agent based-stock flow consistent macroeconomics: Towards a
benchmark model. Journal of Economic Dynamics and Control, 69, pp.375–408.

Caiani, A., Russo, A. & Gallegati, M., 2017. Does inequality hamper innovation and
growth? An AB-SFC analysis. Journal of Evolutionary Economics, pp.1–52.

Carothers, C. et al., 2017. Computational challenges in modeling and simulation. In
Research challenges in modeling and simulation for engineering complex systems. Springer,
pp. 45–74.

Chin, L. et al., 2012. FLAME-II: A redesign of the flexible large-scale agent-based
modelling environment. STFC Research publications. Available at: http://purl.org/net/
epubs/work/64112.

Coakley, S. et al., 2012. Exploitation of high performance computing in the flame agent-
based simulation framework. In High Performance Computing and Communication & 2012
IEEE 9th International Conference on Embedded Software and Systems (HPCC-ICESS),
2012 IEEE 14th International Conference. IEEE, pp. 538–545.

Coakley, S., Smallwood, R. & Holcombe, M., 2006. Using X-machines as a formal basis
for describing agents in agent-based modelling. Simulation Series, 38(2), p.33.

Colander, D. et al., 2009. The financial crisis and the systemic failure of the economics
profession. Critical Review, 21(2-3), pp.249–267.

Collier, N. & North, M., 2013. Parallel agent-based simulation with Repast for High
Performance Computing. Simulation, 89(10), pp.1215–1235.

61

http://www.sciencedirect.com/science/article/pii/S1574013716301198
http://www.sciencedirect.com/science/article/pii/S1574013716301198
http://purl.org/net/epubs/work/64112
http://purl.org/net/epubs/work/64112

Collier, N., Ozik, J. & Macal, C.M., 2015. Large-scale agent-based modeling with repast
HPC: A case study in parallelizing an agent-based model. In European conference on
parallel processing. Springer, pp. 454–465.

Deissenberg, C., Van Der Hoog, S. & Dawid, H., 2008. EURACE: A massively parallel
agent-based model of the European economy. Applied Mathematics and Computation,
204(2), pp.541–552.

Economist, 2010. Agents of change. The Economist. Available at: https:
//www.economist.com/node/16636121.

Epstein, J.M., 2009. Modelling to contain pandemics. Nature, 460(7256), p.687.

Epstein, J.M. & Axtell, R., 1996. Growing artificial societies: Social science from the
bottom up, Brookings Institution Press.

Farmer, J.D. & Foley, D., 2009. The economy needs agent-based modelling. Nature,
460(7256), p.685.

Flynn, M.J., 1972. Some computer organizations and their effectiveness. IEEE transac-
tions on computers, 100(9), pp.948–960.

Fujimoto, R.M., 2016. Research challenges in parallel and distributed simulation. ACM
Transactions on Modeling and Computer Simulation (TOMACS), 26(4), p.22.

Gerst, M.D. et al., 2013. Agent-based modeling of climate policy: An introduction to the
engage multi-level model framework. Environmental modelling & software, 44, pp.62–75.

Godley, W. & Lavoie, M., 2007. Monetary economics: An integrated approach to credit,
money, income, production and wealth, Springer.

Gualdi, S. et al., 2015. Tipping points in macroeconomic agent-based models. Journal of
Economic Dynamics and Control, 50, pp.29–61.

Haldane, A.G. & Turrell, A.E., 2018. An interdisciplinary model for macroeconomics.
Oxford Review of Economic Policy, 34(1-2), pp.219–251. Available at: http://dx.doi.org/
10.1093/oxrep/grx051.

Heywood, P., Richmond, P. & Maddock, S., 2015. Road network simulation using FLAME
GPU. In European conference on parallel processing. Springer, pp. 430–441.

Kiran, M. et al., 2008. Porting of the software platform to parallel computer. Project
EURACE Deliverable D8.4. Available at: http://www.wiwi.uni-bielefeld.de/lehrbereiche/
vwl/etace/Eurace_Unibi/Eurace_Deliverables.

Kiran, M. et al., 2010. FLAME: Simulating large populations of agents on parallel hard-
ware architectures. In Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: Volume 1. International Foundation for Autonomous
Agents; Multiagent Systems, pp. 1633–1636.

Konur, S. et al., 2015. Agent-based high-performance simulation of biological systems
on the GPU. In High performance computing and communications (HPCC), 2015 IEEE
7th international symposium on cyberspace safety and security (CSS), 2015 IEEE 12th
international conference on embedded software and systems (ICESS), 2015 IEEE 17th
international conference. IEEE, pp. 84–89.

Korinek, A., 2015. Thoughts on DSGE macroeconomics. A Just Society: Festschrift in
Honor of Joseph Stiglitz.

Lengnick, M., 2013. Agent-based macroeconomics: A baseline model. Journal of Eco-
nomic Behavior & Organization, 86, pp.102–120.

62

https://www.economist.com/node/16636121
https://www.economist.com/node/16636121
http://dx.doi.org/10.1093/oxrep/grx051
http://dx.doi.org/10.1093/oxrep/grx051
http://www.wiwi.uni-bielefeld.de/lehrbereiche/vwl/etace/Eurace_Unibi/Eurace_Deliverables
http://www.wiwi.uni-bielefeld.de/lehrbereiche/vwl/etace/Eurace_Unibi/Eurace_Deliverables

Lysenko, M. & D’Souza, R.M., 2008. A framework for megascale agent based model simu-
lations on graphics processing units. Journal of Artificial Societies and Social Simulation,
11(4), p.10.

Makarov, V.L., Bakhtizin, A.R. & Bakhtizina, N.V., 2014. Application of supercomputer
technologies in agent-based models. In 5th. World congress on social simulation. p. 96.

Massaioli, F., Castiglione, F. & Bernaschi, M., 2005. OpenMP parallelization of agent-
based models. Parallel Computing, 31(10-12), pp.1066–1081.

Márquez, C., César, E. & Sorribes, J., 2013. A load balancing schema for agent-based
spmd applications. In Proceedings of the International Conference on Parallel and Dis-
tributed Processing Techniques and Applications (PDPTA). The Steering Committee of
The World Congress in Computer Science, Computer Engineering; Applied Computing
(WorldComp), p. 12.

Márquez, C., César, E. & Sorribes, J., 2015. Graph-based automatic dynamic load balanc-
ing for HPC agent-based simulations. In Euro-par 2015: Parallel processing workshops.
Cham: Springer International Publishing, pp. 405–416.

Nature, 2009. A model approach. Nature, 460, p.667 EP. Available at: http://dx.doi.org/
10.1038/460667a.

Parker, J. & Epstein, J.M., 2011. A distributed platform for global-scale agent-based
models of disease transmission. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 22(1), p.2.

Parry, H.R. & Bithell, M., 2012. Large scale agent-based modelling: A review and guide-
lines for model scaling. In Agent-based models of geographical systems. Springer, pp.
271–308.

Reed, D.A. et al., 2005. Computational science: Ensuring America’s competitiveness,
President’s Information Technology Advisory Committee Arlington.

Richmond, P., Coakley, S. & Romano, D., 2009. Cellular level agent based modelling on
the graphics processing unit. In High Performance Computational Systems Biology, 2009.
HIBI’09. International Workshop. IEEE, pp. 43–50.

Richmond, P. et al., 2010. High performance cellular level agent-based simulation with
FLAME for the GPU. Briefings in bioinformatics, 11(3), pp.334–347.

Rousset, A. et al., 2014. A survey on parallel and distributed multi-agent systems. In
European Conference on Parallel Processing. Springer, pp. 371–382.

Schasfoort, J. et al., 2017. Monetary policy transmission in a macroeconomic agent-based
model. SOM Research Reports, 17010.

Smets, F. & Wouters, R., 2003. An estimated dynamic stochastic general equilibrium
model of the Euro area. Journal of the European Economic Association, 1(5), pp.1123–
1175.

Tang, W. & Bennett, D.A., 2011. Parallel agent-based modeling of spatial opinion diffu-
sion accelerated using graphics processing units. Ecological modelling, 222(19), pp.3605–
3615.

Terpstra, D. et al., 2010. Collecting performance data with PAPI-C. In M. S. Müller et
al., eds. Tools for High Performance Computing 2009. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 157–173.

Tesfatsion, L. & Judd, K., 2006. Handbook of Computational Economics, Vol. 2: Agent-
Based Computational Economics, Iowa State University, Department of Economics.

63

http://dx.doi.org/10.1038/460667a
http://dx.doi.org/10.1038/460667a

Tisue, S. & Wilensky, U., 2004. Netlogo: A simple environment for modeling complexity.
In International conference on complex systems. Boston, MA, pp. 16–21.

Wang, F.X., Liu, S.Z. & Deng, T.S., 2014. Agent-based mood spread diffusion model for
GPU. In 2014 IEEE 5th International Conference on Software Engineering and Service
Science. pp. 1056–1059.

64

	Abstract
	Zusammenfassung
	Acknowledgements
	Introduction
	Problem setting
	Motivation
	Synopsis

	Related work
	Agent-based modelling
	Computer Science
	Economics

	Investigated model
	Description of the benchmark model
	Implementation of the model
	Parallelization

	Numerical simulations
	Hardware setup and configuration
	Metrics
	Results
	Interpretation of the results

	Conclusion
	Detailed results
	Additional results on laptop
	Additional results on VSC
	Flags activated by gcc and -march=native

	References

