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1 Abstract

When producing electricity by wind power stations for a daily spot market, one has to
submit a production schedule every day for the following day. Due to different prices
for scheduled energy and energy deviating in either way from this announced amount,
it may be beneficial to modify the production schedule differing from the initial wind
power forecast. This gives rise to “strategic adjustment” of the production schedule
depending on the price situation. The prices are published two to three months later,
so one has to make predictions of the price situation to develop effective strategic ad-
justment.
In this thesis we analyse the policies of a company which were used in the past and cer-
tain other aspects as limitation of production or adjustment on holidays. We establish
a framework for evaluation and compare different policies relative to a “best case”. Fur-
thermore we treat two concepts for the forecast of prices - “historic averages” and linear
regression models. Subsequently we cover two approaches of strategic adjustment; the
first one inspired by the company’s heuristic, the second one by solving a stochastic
program. For the latter we use a “Sample Average Approximation” approach.
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2 Introduction

This Master’s Thesis came into being due to a cooperation of the University of Vienna,
Faculty of Mathematics with an Austrian energy provider. This company uses wind
power stations to produce electrical energy to participate in a daily spot-market. Due
to regulations of the market, every participant has to submit a production schedule for
the following day. This is done to coordinate the supply of and demand for electricity
to avoid shortage or surplus which would lead to black-outs in (at least) major parts of
the transmission system and therefore cause personal and property damages. Produc-
tion deviating from this schedule will be penalised, by lower prices for exceeding energy
and higher penalties for deficit energy. These “balancing energy” prices as well as the
“day-ahead” price for the scheduled energy are subject to certain fluctuation during
a day and have different relative position to each other. For example it can happen
that the day-ahead price and the exceeding price are pretty close while the penalty
for deficit energy is exorbitantly high, then in practice there is little difference in the
revenue whether production exceeds the schedule or not. However deficit energy leads
to severe loss in the revenue in this situation. This yields that it may be beneficial to
modify the figures of forecast production before submitting them, depending on the
price situation. In the above example we would rather decrease the schedule compared
to the estimated production forecast to avoid underproduction, as the opportunity cost
for exceeding energy is small but the negative impact of deficit energy is immense. This
concept will be called “Strategic Adjustment”.
So if we knew the prices beforehand, we could adjust the schedule in a way to receive
the best possible outcome. However we do not know the prices in the moment we would
need them, in particular they are published two to three months later. Therefore one
has to predict the incorporated uncertain entities to be able to develop effective strate-
gic adjustment. Another task is to decide how to process the forecast prices to receive
“optimal” adjustment.

In the following we will start by explaining two of the mathematical constructs we
will be using later on. The first one is “Linear Regression”, where we start with simple
linear regression and some of its useful statistical properties. We continue with general-
ising to multiple linear regression and its respective analogies. Moreover, we introduce
a measure to judge the quality of linear models - the coefficient of determination R2.
After that we proceed with “Sample Average Approximation”, which is part of the
domain of stochastic programming. This approach makes it possible to easily include
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uncertainty in an optimisation problem, for instance when numerous historical samples
are at hand.

Subsequently we will describe the specific setting we are working in. There are sev-
eral special features that simplify the problem, e.g., the prices are always positive,
leading to maximal production free from voluntary reduction. We will proceed with
a descriptive/analytical part, where we cover various questions that the company pro-
posed, e.g., investigating specific adjustment policies on public holidays. Furthermore
we will establish a framework for evaluation and introduce a rating to compare differ-
ent policies. For this we take a reasonable best case as objective reference.
After that we will develop own adjustment policies, where we will start with the sim-
plest approaches and then continue with more complex ones. For this we need to
develop certain ways to forecast the prices, as they determine how we should adjust
the submitted schedule. In a first attempt we use “historic averages”, where we take
the average of historical data from reasonable periods of time. Secondly, we employ
univariate linear models to predict each of the prices.
Then we continue with establishing two different approaches of strategic adjustment,
both using the several types of forecasts developed before. The first one is to derive
so-called “adjustment coefficients” by a heuristic, to adjust the schedule relative to the
initial production forecast. The second one is to solve a stochastic optimisation prob-
lem, to obtain already absolute figures for the schedule.

We conclude this thesis by a short discussion of the obtained results and address
several topics that may be subject of future works to develop further improvements.
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3 Preliminaries

Some of the ideas and concepts we will use in the following work arise straight forward.
Others, on the other hand, are well established mathematics and to some extent part
of the specific domain knowledge, but might need some explanation beforehand. This
will be done in the following section.

3.1 Linear Regression

The first non-trivial topic we encounter is “Linear Regression”. Describing (and pre-
dicting) data mathematically is one of today’s biggest issues - employing linear models
is one of the easiest and (therefore) most popular means to do so.
In the following we will start by introducing the one-dimensional case of “Simple Linear
Regression” to motivate and arrive at “Multiple Linear Regression”. We will formulate
certain assumptions we suppose that we are able to work properly and receive useful
mathematical properties.
Since linear regression is such a well established topic there are many references such as
for example [2] or [3], but we will base our essay mainly on [1], in particular chapters 3
and 7.

3.1.1 Simple Linear Regression

In the following we will go by [1], Chapter 3.

Introduction
In the simplest form we study the linear correspondence between two one-dimensional
variables Xi, Yi ∈ R, namely

Yi = β0 + β1Xi + Ui, i = 1, . . . , n. (3.1)

Here Yi stands for the i-th observation of the dependent variable Y , the regressand,
while Xi denotes the i-th observation of the independent variable X, the regressor.
The number of observations is denoted by n. The two real numbers β0 and β1 are
called the intercept and the slope of the linear model (3.1), respectively. We assume
that β0 and β1 are unknown parameters that we want to estimate. Furthermore Yi is
not fully determined by the linear expression (β0 + β1Xi), it is subject to a random
error Ui. We expect this disturbance to fulfil certain conditions, that we will state
later.
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In applications β0 and β1 are unknown and need to be estimated from the observations
{(Xi, Yi) |i = 1, . . . , n}. This means that the true values β0 and β1, as well as the true
error Ui cannot be determined exactly. However, the aim of linear regression is to find
the “best” slope (β̂0 + β̂1X) explaining the observations (Xi, Yi). To judge which line
is the best one, we need to introduce a measurement of the misfit from the observed
Yi to the estimation Ŷi = β̂0 + β̂1Xi.
Here and in the rest of this work, a circumflex denotes an estimator for the original
entity, e.g., â is an estimator for a.
So each observation (Xi, Yi) leads to an observable error

εi := Yi − Ŷi = Yi − (β̂0 + β̂1Xi).

One possibility to derive one single number to judge all errors at once, is to compute
the sum of squares of residuals

SSR(β0, β1) :=

n∑
i=1

ε2i =

n∑
i=1

(Yi − β̂0 − β̂1Xi)
2
. (3.2)

Instead of taking the sum of squares of the errors, one could also take the sum of
absolute values of the errors. This would lead to other interesting results, which is not
subject of this work, though. Now that we chose the measure for the misfit, we can
find the “best” slope by minimising the residual sum of squares, which leads to least
squares estimation.

Least Squares Estimation

The minimum of the sum of squares of residuals SSR(β0, β1) =
n∑
i=1

ε2i is characterised

by the following so-called “normal equations”:

∂

(
n∑
i=1

ε2i

)
∂β̂0

= −2
n∑
i=1

εi
!

= 0

∂

(
n∑
i=1

ε2i

)
∂β̂1

= −2

n∑
i=1

εiXi
!

= 0
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or equivalently

n∑
i=1

εi =
n∑
i=1

Yi − nβ̂0 − β̂1
n∑
i=1

Xi
!

= 0 (3.3)

n∑
i=1

εiXi =
n∑
i=1

XiYi − β̂0
n∑
i=1

Xi − β̂1
n∑
i=1

X2
i

!
= 0 (3.4)

Solving the normal equations (3.3) and (3.4) gives the “ordinary least squares” (OLS)
estimators, which we denote by β̂∗0 and β̂∗1 . We derive

β̂∗0 = Y − β̂∗1X (3.5)

and

β̂∗1 =

n∑
i=1

(
Xi −X

) (
Yi − Y

)
n∑
i=1

(
Xi −X

)2 =

n∑
i=1

XiYi − nXY
n∑
i=1

X2
i − nX

2
(3.6)

where

X :=
1

n

n∑
i=1

Xi and Y :=
1

n

n∑
i=1

Yi

and we assume that all operations here are justified, especially
n∑
i=1

(
Xi −X

)2 6= 0.

Classical Assumptions
In order to derive some interesting properties of the OLS estimators of β0 and β1 we
have to impose some further conditions on the linear model (3.1).

Assumption 1. The random noise has zero mean, i.e., E [Ui] = 0 for all i = 1, ..., n.

This assumption is to make sure, that on the average our estimation is correct.
Otherwise we would systematically overestimate or underestimate the true values.

Assumption 2. The random noise has constant variance, i.e., V ar [Ui] = σ2 for all
i = 1, ..., n.

Assumption 2 ensures that each observation is equally reliable. This property is
called homoscedasticity.

Assumption 3. The random noise is not correlated between different observations,
i.e., E [UiUj ] = 0 for i 6= j, i, j = 1, ..., n.
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This assumption means, that the noise from any observation does not affect the
disturbance of any other one.

Assumption 4. The regressor variable X is deterministic, i.e., X is not a random

variable and fixed in repeated samples. Furthermore, 1
n

n∑
i=1

(
Xi −X

)2 6= 0 and has a

finite limit as n→∞.

Assumption 4 implies, that the independent variable X is not correlated with the
noise U . Moreover the above assumption ensures that we have at least two distinct
values for the explanatory variable X.

In what way these four assumptions hold needs to be investigated in reality. For
example Assumption 3 regarding the noise to be uncorrelated, is less likely to be
satisfied when the underlying data is a time-series. Consecutive points in time may
affect each other and thus could have correlated noise over time.
However we will see whether real properties deviating from the theoretical assumptions
leads to considerably worse results.

Properties of Least Squares
Next we see which useful properties we can deduce from the above Assumptions 1-4.

First of all, we want to know whether our estimators are correct on average or if
they are biased in a certain way. This motivates the following definition.

Definition 3.1. An estimator α̂ for α is said to be unbiased for α, if E [α̂] = α.

This leads us to the first useful property of OLS estimators, which we summarise in
the following proposition.

Proposition 3.1. Unbiasedness
The ordinary least squares estimators β̂∗0 and β̂∗1 are unbiased for β0 and β1, respec-
tively.
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Proof. We already know by (3.6), that

β̂∗1 =

n∑
i=1

(
Xi −X

) (
Yi − Y

)
n∑
i=1

(
Xi −X

)2

=

n∑
i=1

(
Xi −X

)
Yi − Y

n∑
i=1

(
Xi −X

)
n∑
i=1

(
Xi −X

)2

= β1 +

n∑
i=1

(
Xi −X

)
Ui

n∑
i=1

(
Xi −X

)2 ,

(3.7)

using that
n∑
i=1

(
Xi −X

)
= 0 and substituting Yi = β0 + β1Xi + Ui from (3.1). Taking

the expected value on both sides of the equation, using Assumption 1 and Assumption 4
we conclude that β̂∗1 indeed is unbiased for β1.
Similarly one can derive that β̂∗0 is unbiased for β0.

The next property concerns asymptotic behaviour and ensures that the estimator
converges in an appropriate sense to the true value. We need to clarify what is meant
exactly, which is done by the following definition.

Definition 3.2. The estimator α̂n of α is said to be consistent for α, if plim α̂n = α,
i.e., for all ε > 0 we have lim

n→∞
P (|α̂n − α| > ε) = 0.

Consistency means that the estimator converges in probability to the true value of
the parameter, see [4] for more detailed explanations.

Proposition 3.2. Consistency
The ordinary least squares estimators β̂∗0 and β̂∗1 are consistent for β0 and β1.

Proof. A sufficient condition for an estimator to be consistent is that it is asymptoti-
cally unbiased and that its variance vanishes asymptotically (see [4]). We already know
that β̂∗0 and β̂∗1 are unbiased for β0 and β1 by Proposition 3.1. We show that β̂∗1 is
consistent for β1:
First we need to derive the variance of β̂∗1 . Substituting (3.7) in the definition of
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variance we deduce that

Var
(
β̂∗1

)
= E

[(
β̂∗1 − E

[
β̂∗1

])2] Prop. 3.1
= E

[(
β̂∗1 − β1

)2]

(3.7)
= Var


n∑
i=1

(
Xi −X

)
Ui

n∑
i=1

(
Xi −X

)2


A3
=

n∑
i=1

Var (Ui)

(
Xi −X

)2(
n∑
j=1

(
Xj −X

)2)2

A2
=

σ2

n∑
i=1

(
Xi −X

)2 ,
where we additionally used Assumption 3, i.e., that the Ui are uncorrelated with each
other and Assumption 2 about constant variance. Employing Assumption 4, finally we
deduce

lim
n→∞

Var
(
β̂∗1

)
= lim

n→∞

σ2

n

1
n

n∑
i=1

(
Xi −X

)2 = 0,

as the numerator σ2

n → 0 and the denominator 1
n

n∑
j=1

(
Xj −X

)2 6= 0 and has a finite

limit by assumption as n → ∞. That concludes the proof of β̂∗1 being consistent for
β1. Similarly one can show that β̂∗0 is consistent for β0.

The last property we present here is a famous one.

Proposition 3.3. Best Linear Unbiased Estimator
Both β̂∗0 and β̂∗1 are “Best Linear Unbiased Estimators” (BLUE) for β0 and β1, respec-
tively.

The above is better known as Gauss-Markov theorem.

Theorem 3.1. Gauss-Markov
We consider the simple linear model (3.1). Suppose that Assumptions 1-4 hold. A linear
estimator of βj, j = 0, 1, is a linear combination of the form β̂j = c1jY1 + . . .+ cnjYn,
in which the coefficients c1j , ..., cnj are not allowed to depend on the true values βj, but
on the observable variables Xj.
Then the ordinary least squares (OLS) estimators β̂∗j are best linear unbiased estimators
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(BLUE), i.e., linear unbiased estimators with Var
(
β̂∗j

)
≤ Var

(
β̂j

)
for any other linear

unbiased estimator β̂j.

Proof. We show that β̂∗1 is BLUE, the proof for β̂∗0 is similar. First we see that β̂∗1 is
linear, as

β̂∗1 =
n∑
i=1

(
Xi −X

)
n∑
j=1

(
Xj −X

)2Yi =
n∑
i=1

viYi, with vi :=

(
Xi −X

)
n∑
j=1

(
Xj −X

)2 .

Now let β̂1 be any arbitrary linear unbiased estimator β̂1 =
n∑
i=1

wiYi for β1. Then we

plug in the definition (3.1) of Yi in β̂1, which gives

β̂1 = β0

n∑
i=1

wi + β1

n∑
i=1

wiXi +
n∑
i=1

wiUi.

For β̂1 to be unbiased for β1 we need

E
[
β̂1

]
= β0

n∑
i=1

wi + β1

n∑
i=1

wiXi +
n∑
i=1

wi E [Ui] = β0

n∑
i=1

wi + β1

n∑
i=1

wiXi
!

= β1

That implies the following,

n∑
i=1

wi = 0 and
n∑
i=1

wiXi = 1,

assuming that we have a non-zero intercept β0. Thus

β̂1 = β1 +

n∑
i=1

wiUi.

Analogously we get
n∑
i=1

vi = 0 and
n∑
i=1

viXi = 1. Let di := wi − vi, then
n∑
i=1

di = 0 and
n∑
i=1

diXi = 0. Hence we have by definition of vi that

n∑
i=1

vidi =

n∑
i=1

(
Xi −X

)
di

n∑
j=1

(
Xj −X

)2 =

n∑
i=1

Xidi −X
n∑
i=1

di

n∑
j=1

(
Xj −X

)2 = 0.
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Thus we obtain

Var
(
β̂1

)
= Var

(
n∑
i=1

wiUi

)
= σ2

n∑
i=1

w2
i = σ2

(
n∑
i=1

v2i + 2
n∑
i=1

vidi +
n∑
i=1

d2i

)

= Var
(
β̂∗1

)
+ σ2

n∑
i=1

d2i ≥ Var
(
β̂∗1

)
,

and we see that β̂∗1 has minimal variance amongst all linear unbiased estimators. This
finishes the proof that β̂∗1 is a BLUE.

3.1.2 Multiple Linear Regression

Next we look at the multiple linear model to generalise the insights we made above
to more than just one explanatory variables. The model is still univariate, i.e., we
only consider one dependent response variable. In this section we mainly follow [1],
Chapter 7.

The multiple univariate linear model is

y = Xβ + U (3.8)

where

y =


Y1

Y2
...
Yn

 , X =


X11 X12 . . . X1k

X21 X22 . . . X2k

...
...

. . .
...

Xn1 Xn2 . . . Xnk

 , β =


β1

β2
...
βk

 , U =


U1

U2

...
Un

 .

The number of observations is still denoted by n, with k being the number of inde-
pendent regressor variables and n ≥ k. This means that each row of X stands for an
observation of all the independent variables, while a column denotes all observations
for a specific one.
“Multiple” here means that we now have multiple regressor variables, contrary to the
simple linear model which only employs one explanatory variable. “Univariate” implies
that we still estimate only one regressand for each observation. On the other hand we
would have a “multivariate” model, if we estimated a vector of dependent variables for
each observation. However we will not consider this type of models in this work.
Again we ask ourselves how to find estimators that minimise the least squares prob-
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lem of the resulting residuals.

SSR(β) = ‖y −Xβ‖22 = (y −Xβ)T (y −Xβ) = yT y − 2βTXT y + βTXTXβ (3.9)

We see that (3.9) is a convex problem.

This is as every norm f(t) = ‖t‖ is convex, g(t) =

{
0 for t < 0

t2 for t ≥ 0
is convex and

non-decreasing, thus g ◦ f is convex. Furthermore the composition h ◦ T of a convex
function h and an affine function T is convex as well. Here we have T (β) = y −Xβ,
which is affine apparently. So we conclude, that SSR(β) = (g ◦ f ◦ T ) (β) is convex.
Differentiating (3.9) with respect to β and setting the equation to zero gives the first
order conditions for a minimiser,

∂SSR(β)

∂β
= −2XT y + 2XTXβ

!
= 0,

which is clearly equivalent to the ordinary least squares (OLS) normal equations

XTXβ = XT y. (3.10)

As long as X has full column rank k, then XTX is non-singular and the OLS solution
β̂∗ is

β̂∗ =
(
XTX

)−1
XT y. (3.11)

Under the Assumptions 1-4 we encountered in the previous section, we again can
derive the same useful properties for multiple linear regression.

1. β̂ is an unbiased estimator for β.

2. β̂ is a consistent estimator for β.

3. β̂ is a best linear unbiased estimator (BLUE) for β.

Proofs for the above statements can be found for example in [1].

3.1.3 Coefficient of Determination - R2

The above is motivated by the goal of estimating the dependent variable and then pre-
dicting unknown outcomes. To assess the quality of predictions made by the model,
we would like to judge how good a certain linear model describes the data. We accom-
plish this by introducing the “coefficient of determination”, denoted by R2, which we
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define as the proportion of the squared sum explained by the regression compared to
the entire squared sum to be explained. The coefficient of determination indicates how
much of the variance in the regressand can be predicted from the regressors. Thus this
entity should be able to measure how well the given data is described. In the following
we will go by [5], Chapter 3.6 and [1], Chapter 4.5.

Definition 3.3. The coefficient of determination is formally defined as

R2 =

n∑
i=1

(
Ŷi − Y

)2
n∑
i=1

(
Yi − Y

)2 ,
where Ŷi = Xβ̂ and Y = 1

n

n∑
i=1

Yi.

We assume
n∑
i=1

(
Yi − Y

)2 6= 0, which is satisfied as long as there exist i, j ∈ {1, ..., n}

such that Yi 6= Yj . Equivalently, we get

R2 = 1−

n∑
i=1

(
Yi − Ŷi

)2
n∑
i=1

(
Yi − Y

)2 (3.12)

as

n∑
i=1

(
Yi − Y

)2
=

n∑
i=1

((
Ŷi − Yi

)
−
(
Y − Yi

))2
=

n∑
i=1

(
Ŷi − Yi

)2
+

n∑
i=1

(
Y − Yi

)2
.

Let SST , SSE and SSR denote the sum of squared total deviations, the sum of
squared explained deviations and the sum of squared residuals, respectively. We have

SST =

n∑
i=1

(
Yi − Y

)2
, SSE =

n∑
i=1

(
Ŷi − Y

)2
, SSR =

n∑
i=1

(
Yi − Ŷi

)2
.

Then the definition is equivalent to R2 = SSE
SST , exactly what was our motivation. The

second formulation is equivalent to R2 = 1− SSR
SST .

Thus, 0 ≤ R2 ≤ 1. On the one hand if we have vanishing residuals, then SSR = 0

and R2 = 1. This means that the data is described perfectly by the regression. On
the other hand if the explained variance is vanishing, i.e., the explanatory variables do
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not contribute to explaining the total variance. This implies SSE = 0 and thus R2 = 0.

Therefore, R2 measures the proportion of explained deviations relative to the total
deviations. As the ordinary least squares problem minimises the sum of squares of
residuals (SSR), adding additional explanatory variables to the linear model will lead to
SSR less or equal compared to before. That means that incorporating more regressors
potentially increases the coefficient of determination. This becomes relevant when we
want to compare several models with different amounts of regressors, since this would
potentially favour models with more independent variables. To take this into account
we introduce a modified version, the adjusted coefficient of determination R̄2,

R̄2 = 1−

n∑
i=1

(
Yi − Ŷi

)2
n∑
i=1

(
Yi − Y

)2 n− 1

n− k
(3.13)

The more explanatory variables we have in our model, the more it will be punished
in the derivation of R̄2. This way, we try to balance the gain in the coefficient of
determination by adding variables with the loss of degrees freedom. Hence an added
variable will increase R̄2 only if the reduction in the residuals outweighs this loss. Using
the definition we deduce the following relation between R̄2 and R2,

1− R̄2 =
(
1−R2

) n− 1

n− k
(3.14)

The above considerations assumed that the linear model includes an intercept. The
statements are no longer true, when there is none. For example all of a sudden there
are possible situations with R2 < 0.

Definition 3.4. To deal with this, we define the un-centred coefficient of determina-
tion,

R2
u =

n∑
i=1

(
Ŷi − Y

)2
n∑
i=1

Y 2
i

. (3.15)

3.2 Sample Average Approximation

The second and final topic we are going to cover in this section is the so-called “Sample
Average Approximation”. It is part of the domain of stochastic programming, which
is a framework to treat optimisation problems that involve uncertainty. Stochastic

16



programming in general is an immensely current subject and there is a lot of literature
that evolved over the last decades. In this work we will mainly follow [6], in particular
Chapter 5, where all mentioned theorems and proofs can be found. We start with the
formulation of the type of problem which will be relevant for this work and conclude
this chapter with establishing some interesting statistical properties.

3.2.1 Formulation of SAA

Consider the general two-stage stochastic program, which can be written as follows

min
x∈X

{f(x) := E [F (x, ξ)]} , (3.16)

where F (x, ξ) is the optimal value of the second-stage problem

min
y∈G(x,ξ)

g(x, y, ξ). (3.17)

Let X 6= ∅, X ⊆ Rn be a non-empty closed subset of Rn, g : Rn × Rm × Ξ → R
the objective function of the second-stage problem and G : Rn × Ξ ⇒ Rm denote the
set-valued function describing the constraints of the second-stage problem. Addition-
ally, ξ is a random vector with probability distribution p, which has support on the
set Ξ ⊆ Rd, and F : X × Ξ→ R. In the following we assume that the expected value
f(x) is well defined and finite valued for all x ∈ X. This means that F (x, ξ) is finite
for almost every ξ ∈ Ξ and for all x ∈ X.

In the above formulation (3.16)-(3.17) we call x ∈ Rn the first-stage decision variable
and y ∈ Rm the second-stage decision variable. At the first stage we have to make a
"here-and-now" decision x before the particular realisation of the random vector ξ is
available. After we get to know the realisation of ξ, i.e., at the second stage, we solve
the regarding optimisation problem to derive an optimum.
The underlying idea of such a two-stage stochastic program is, that we should base
optimal decisions solely on data which is available at the time we have to make the
decision and cannot depend on future observations. This type of problem is widely
used in stochastic optimisation, as it already incorporates many essential aspects of
dealing with uncertainty while still maintaining a rather simple structure (compared
to more complex multi-stage problems).
One of the most looked at problems in the history of two-stage programs is the two-
stage stochastic linear program which was originally investigated by Dantzig and Beale
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(see [7] and [8], respectively),

min
x∈Rn

cTx+ E [Q(x, ξ)]

s.t. Ax = b, x ≥ 0,
(3.18)

where Q(x, ξ) is the optimal value of

min
y∈Rm

q(ξ)T y

s.t. T (ξ)x+W (ξ)y = h(ξ), y ≥ 0.
(3.19)

We see that we obtain the linear problem (3.18)-(3.19) from the general prob-
lem (3.16)-(3.17) by setting

X := {x ∈ Rn : Ax = b, x ≥ 0},

g(x, y, ξ) := cTx+ q(ξ)T y,

G(x, ξ) := {y ∈ Rm : T (ξ)x+W (ξ)y = h(ξ), y ≥ 0}.

Already in its simplest form (3.18)-(3.19) we ask ourselves, how to derive a solution
in the easiest way.
Suppose that the distribution of ξ has finite support, i.e., ξ has a finite number of pos-
sible realisations ξ1, . . . , ξJ with respective probabilities p1, . . . , pJ . Then the expected
value in the first stage problem (3.18) simplifies to a finite sum

E [Q(x, ξ)] =
J∑
j=1

pjQ(x, ξj). (3.20)

This means, that for given x the expected value E [Q(x, ξ)] is equal to the optimal
value of the linear program

min
y1,...,yJ∈Rm

J∑
j=1

pjq(ξ
j)
T
yj

s.t. T (ξj)x+W (ξj)yj = h(ξj),

yj ≥ 0, j = 1, . . . , J.

Moreover, the two-stage stochastic linear program (3.18)-(3.19) collapses to one (po-
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tentially very) large deterministic linear program

min
x,y1,...,yJ

cTx+
J∑
j=1

pjq
T
j yj

s.t. Tjx+Wjyj = hj , j = 1, . . . , J,

Ax = b,

x ≥ 0, yj ≥ 0, j = 1, . . . , J,

(3.21)

where qj := q(ξj), Tj := T (ξj), Wj := W (ξj) and hj := h(ξj).
The same idea can be used for the general two-stage problem (3.16)-(3.17) as well.
This means, by discretising the expected value we arrive at a deterministic problem
which can be solved (at least numerically). However even crude discretisation of some
continuously distributed random vector ξ ⊆ Rd leads to an exponential growth of
the amount of scenarios with increase of its dimension d. One possible approach of
dealing with this issue is to produce a manageable number of “representative” scenarios.

For instance, we can randomly generate a sample of N realisations ξ1, . . . , ξN of
the random vector ξ. This sample could either be produced in the computer, e.g., by
Monte Carlo sampling techniques, or interpreted as historical data of observations of
the random vector ξ.
For any x ∈ X we can estimate the expectation f(x) by taking the average of F (x, ξj),
j = 1, . . . , N . This motivates the so-called “sample average approximation” (SAA),

min
x∈X

f̂N (x) :=
1

N

N∑
j=1

F (x, ξj)

 , (3.22)

of the original first-stage problem (3.16). Furthermore, the sample average function
f̂N can be viewed as the expectation with respect to the empirical distribution PN =

1
N

N∑
j=1

δ(ξj), where δ(z) denotes measure of mass one at the point z, as

f̂N (x) = EPN
[F (x, ξ)] .

Thus, for a given sample we can interpret the SAA problem (3.22) as a stochastic
program with scenarios ξ1, . . . , ξN and respective probabilities p1 = · · · = pN = 1

N

(compare (3.20)).
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3.2.2 Statistical Properties of SAA

In the following the sample ξ1, . . . , ξN can denote either a sequence of random vectors,
or a particular realisation of that sequence. Which of the two meanings is used in an
individual situation will be clear from the context.
We assume that each of the random vectors ξj has the same distribution as the original
vector ξ, i.e., they are identically distributed. We say that the sample is “independently
identically distributed” (iid), if in addition each sample ξj is distributed independently
of the others.

As the sample average function f̂N (x) was motivated by discretising the true ex-
pected value function f(x), we are interested in whether the sample average approxi-
mation gives the true values in the long run.
By the “Law of Large Numbers” (LLN) we obtain the following properties.

Proposition 3.4. Supposed the samples ξ1, . . . , ξN are iid, then for every fixed x ∈ X
the following statements hold.

(a) lim
N→∞

f̂N (x) = f(x) almost surely (a.s.), i.e., we have pointwise convergence a.s..

(b) E
[
f̂N (x)

]
= f(x) for all N ≥ 1, i.e., f̂N (x) is an unbiased estimator of f(x).

Under some additional conditions we even get uniform convergence. The following
theorem is taken from [6], Chapter 7, where a proof can be found, too.

Theorem 3.2. Let X be a non-empty compact subset of Rn and suppose that:

(a) For any x ∈ X the function F (·, ξ) is continuous at x for almost every ξ ∈ Ξ.

(b) F (x, ξ), for x ∈ X, is dominated by an integrable function.

(c) The samples are iid.

Then the expected value function f(x) is finite valued and continuous on X, and
lim
N→∞

sup
x∈X
|f̂N (x)− f(x)| = 0 a.s., i.e., we have uniform convergence a.s..

As we saw above, we have pointwise as well as uniform convergence of f̂N (x) to f(x)

a.s. for N → ∞. Furthermore, the sample average function is an unbiased estimator
for the true expected value function. Therefore, it is natural to hope for the optimal
value and the set of optimal solutions of the SAA problem (3.22) to converge to their
respective counterparts of the original problem (3.16). We denote by ϑ∗ and S the
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optimal value and the set of solutions of the true problem (3.16), respectively. By ϑ̂N
and ŜN we denote the optimal value and the set of solutions of the sample average
problem (3.22), respectively.
In the following we will discuss statistical properties of the SAA estimators ϑ̂N and
ŜN .

Consistency of Solution Value
First, let us consider the question of consistency of the SAA estimator of the optimal
value ϑ∗. Recall, that an estimator α̂N of a parameter α is consistent if α̂N converges
to α in an appropriate sense (compare Definition 3.2). For any fixed x ∈ X we have
ϑ̂N ≤ f̂N (x). Thus, if we have pointwise convergence due to the Law of Large Numbers
then

lim sup
N→∞

ϑ̂N ≤ lim
N→∞

f̂N (x) = f(x) a.s..

Therefore, under the assumption of pointwise convergence we obtain

lim sup
N→∞

ϑ̂N ≤ ϑ∗ a.s.. (3.23)

Without additional conditions on F (x, ξ), the above inequality can be strict. The
following theorem and its proof can be found in [6], Chapter 5.

Theorem 3.3. Suppose that f̂N (x) converges to f(x) uniformly on X almost surely
(a.s.).
Then ϑ̂N converges to ϑ∗ a.s. as N →∞.

Proof. Uniform convergence a.s. of f̂N (x) = f̂N (x, ω) to f(x) (here we make the
dependence an the element ω of the probability space Ω explicit) means that for any
ε > 0 and almost every ω ∈ Ω there is some index N∗ = N∗(ε, ω) such that the
following inequality holds for all N ≥ N∗:

sup
x∈X
|f̂N (x, ω)− f(x)| ≤ ε.

Then it follows for almost every ω that |ϑ̂N (ω) − ϑ∗| ≤ ε for all N ≥ N∗, which
completes the proof.

Consistency of Solution Set
Next we are going to show that the SAA estimators for the optimal solutions, i.e., the
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set of solutions S, are consistent as well. To measure the deviation between two sets
A and B, we introduce the following entities.

Definition 3.5. Let A,B ⊆ Rn be sets.

1. For x ∈ Rn we denote the distance between x and A by

dist(x,A) := inf
y∈A
‖x− y‖.

2. We denote the deviation of the set A from the set B by

D(A,B) := sup
x∈A

dist(x,B).

To establish consistency of ŜN we need stronger conditions than for ϑ̂N . The fol-
lowing theorem as well as its proof can also be found in [6], Chapter 5.

Theorem 3.4. Suppose that there exists a compact set C ⊆ Rn such that the following
conditions hold.

(a) The set S of optimal solutions of the true problem is non-empty and is contained
in C.

(b) The function f(x) is finite valued and continuous on C.

(c) f̂N (x) converges to f(x) uniformly in x ∈ C a.s., as N →∞.

(d) With probability 1 for N large enough the set ŜN is non-empty and ŜN ⊆ C.

Then ϑ̂N → ϑ∗ and D(ŜN , S)→ 0 a.s. as N →∞.

Proof. Assumptions (a) and (d) yield that the true problem as well as the SAA problem
can be restricted to the set X ∩ C. Thus, without loss of generality we can assume
that already the set X is compact
By Theorem 3.3 we conclude that ϑ̂N → ϑ∗ a.s., for N →∞.
It suffices to show that D(ŜN (ω), S)→ 0 for almost every ω ∈ Ω, such that ϑ̂N (ω)→ ϑ∗

and the assumptions hold, as N →∞. For simplicity of notation we omit the attribute
of “almost surely” in the following. We now prove the statement by contradiction.
Let us suppose that D(ŜN , S) 9 0 as N → ∞. Then there exists a subsequence
(x̂Nk

)k∈N, where x̂N ∈ ŜN for N ≥ 1, such that dist(x̂Nk
, S) ≥ ε for all k ≥ 1 and

some ε > 0. As X is compact we can assume that x̂Nk
→ x∗ as k →∞ for some point
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x∗ ∈ X, if necessary by passing to another subsequence. Obviously we have x∗ /∈ S
and thus f(x∗) > ϑ∗. Additionally we have ϑ̂Nk

= f̂Nk
(x̂Nk

) for all k ≥ 1. This yields
for all k ≥ 1,

f̂Nk
(x̂Nk

)− f(x∗) = (f̂Nk
(x̂Nk

)− f(x̂Nk
)) + (f(x̂Nk

)− f(x∗)).

The first term of the right-hand side goes to zero by Assumption (c), while the second
term vanishes due to continuity of f(x) (Assumption (b)). This implies that ϑ̂Nk

tends
to f(x∗) > ϑ∗ as k →∞, which is a contradiction.

These results close the section about necessary preliminaries. Next we are going to
explain and analyse the problem we are going to work on. Subsequently we are going
to use the mathematical concepts established above to obtain satisfactory outcomes.
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4 Problem and Results

4.1 Problem description

4.1.1 Setting

Before we go into further details we need to fully understand the problem and what
exactly is the task.

The electricity producing company we worked with runs three wind parks, which
all participate in the daily spot market. This means the electricity sold concerns the
production of the next day only - opposing to a futures market in which goods are
delivered at a (much) later date. As a third type there is the intra-day market, dealing
with sales within the day the energy is produced.
To ensure the stability of the electrical grid, every participant of the spot market has
to announce the next day’s scheduled hourly production values to the transmission
system operator (TSO). The TSO is an entity responsible to transmit the electrical
power from the power generating plants to regional electricity distribution operators
who then distribute the power locally. The TSO’s task is to coordinate the supply of
and demand for electricity to avoid shortage or surplus which would lead to black-outs
in (at least) major parts of the transmission system and therefore cause personal and
property damages.

After every participant submitted their estimated production for the next 24 hours,
a day-ahead price per MWh separately for each hour of the following day is determined.
Each participant receives money according to the scheduled amount of energy at this
day-ahead price. If one produces more energy than announced, one gets a (usually)
lower price for the amount of exceeding energy and thus faces opportunity costs. If
one produces less, then a (usually) higher penalty for each MWh of deficit energy is
inflicted.
Due to netting effects with other participants in the same balancing zone, one gets a
crucially higher price for exceeding energy and lower penalty for deficit energy com-
pared to the price/penalty one would get in the control area alone. A balancing zone
is a union of several electricity producing participants within one control area. These
zones are the basis for determination of the actually necessary balancing energy for
each zone, which is usually less than the total amount of all participants separately.
The company’s wind parks operate all in the same balancing zone, thus the prices and
penalties are the same for each park. In the following we will only consider the prices
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and penalties for the balancing zone.
Because of the modalities of the spot market and the billing inside the balancing zone
we get to know the day-ahead price on the same day already, but the price for exceed-
ing energy and the penalty for deficit energy only about two months later. We get to
know the day-ahead price after submission of the production schedule, though. Thus
the most recent price data available before submitting a schedule is from the previous
day regarding the day-ahead price and from 2-3 months ago regarding balancing energy
prices.

In general there is an intra-day market in which exceeding and deficit energy is
bought and sold within one day in real-time. However in our specific setting, this is
not relevant for us and it would be out of scope to take into account. This simplifies
the situation considerably - we submit 24 values of estimated electricity production
once a day and then we cannot intervene any more during the same day.
Furthermore we could have either positive or negative prices for day-ahead and ex-
ceeding energy, as well as either positive or negative penalties for deficit energy in
general. In our situation we only have positive prices and penalties, though. Moreover
the balancing energy prices are not symmetric. More precisely the opportunity cost
for exceeding energy is not the same as the loss due to deficit energy.
This again implies a simplification - the wind power stations produce the entire amount
of energy that is possible at any time. Due to both the day-ahead price and the price
for exceeding energy always being positive, one never decreases the production of the
wind power stations voluntarily. This is because every MWh produced gains more
revenue - no matter whether it is exceeding our schedule or not.
As a consequence, we do not have to think about sticking to a certain schedule and
how to control production. Only due to external influences a decrease of production is
carried out. These can be for example technical failure (like a broken generator or icing
of the wind turbines’ rotor blades) on the one hand, as well as limitation by the TSO
on the other hand. The TSO has the authority to decrease one’s production to the
submitted value in case of an imminent collapse of the transmission system to regain
balance of the electrical grid.

In addition to the revenue generated by selling electrical energy on the spot-market,
one earns a so-called Green Certificate (GC) for each MWh of submitted and actually
produced energy. The number of GCs earned is determined as follows.
For each month the total amount of scheduled and produced energy is aggregated and
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then rounded down to the nearest integer less or equal this number. This then is the
quantity of GCs for that month. To simplify our considerations we ignore the rounding
at the end of the month and calculate with fractions of GCs for each hour. This is not
too far off, since the difference is less than one GC for a whole month at most.
For the following, we assume one GC is worth a fixed price g approximately equal to
one MWh at an average day-ahead price. This means that Green Certificates are quite
valuable and influence the total revenue significantly.

4.1.2 Strategic Adjustment - Conceptualisation

To recap the situation, we submit an estimated production forecast for the next day
and deviation from it will be penalised. We sell the amount of scheduled energy at the
day-ahead price da one day in advance. The surplus compared to the schedule is sold
at the price exc and for deficit energy - energy we predicted to produce but actually
did not - we have to pay the penalty def .

Definition 4.1. We summarise,
da := day-ahead price per MWh,
exc := price for exceeding energy per MWh,
def := penalty for deficit energy per MWh.

As mentioned above, the TSO is responsible to maintain stability of the grid. To
motivate the participants to approximately stick to their schedules and thus make it
easier for the TSO, deviation from the submitted schedule is disadvantageous. That
means that exceeding energy is worth less than scheduled one and the penalty for
deficit energy is higher than the day-ahead price.
Therefore we usually have that exc < da < def .

Definition 4.2. Now we can define the two spreads
a := da - exc,
b := def - da.

The entity a corresponds to revenue which was not realised, i.e., the opportunity
cost, for each MWh of produced energy exceeding the amount that was estimated the
day before. Spread b is the penalty, i.e., the loss, for each MWh of predicted but
not produced energy. To clarify, we sell the entire scheduled energy at the day-ahead
price da and only the deviating amount of energy gets penalised in one of the two ways.
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Figure 4.1: Average market prices in 2016

We see in Figure 4.1 that throughout a day the three entities da, def and exc behave
differently and have different relative position to each other. We also recognise that
usually we have a > 0 and b > 0. This is to ensure that all participants submit realistic
schedules and are not tempted to speculate against the market. For example one could
hope that def < da and thus submit maximal possible schedules without any practical
foundation. However if we have a look at Figure 4.2, we see that a < 0 or b < 0 can
occur as well - even on average over a whole year.

Nevertheless we distinguish two different cases:

1. a > b: The opportunity cost is greater than the loss for deficit energy which
means that we rather try to avoid overproduction.

2. a < b: The loss for deficit energy is greater than the opportunity cost which
implies that we rather want to avoid underproduction.

As a matter of fact, production of electrical energy by wind power stations is subject
to uncertainty. We receive a wind power forecast for the next day computed by a
specialised company. Naturally, the actual production deviates from the forecast. The
more exact we know the next day’s production the less loss we have due to opportunity
costs or deficit penalties. Thus it is highly beneficial to have the best possible forecast
and this could be an issue to pursue. However developing a better wind power forecast
is out of scope.
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Figure 4.2: Average market prices in 2014

As participants of the market we are interested in maximising revenue and thus
minimising penalisation. Unfortunately we cannot improve the wind power forecast by
ourselves, but we know about the price development throughout different weekdays.
We already figured out in which times it is better to avoid underproduction or over-
production. Therefore the idea is to make a “strategic adjustment” of the wind power
forecast before submitting the production schedule to the TSO - solely depending on
the current price situation of the market.

We obtain the following strategies for the two cases mentioned above

1. a > b: We rather avoid overproduction, so we increase the scheduled production
compared to the forecast before submission.

2. a < b: We rather avoid underproduction, so we decrease the scheduled production
compared to the forecast before submission.

Moreover, we already saw that GCs are highly relevant for the revenue. Thus we intend
not to miss any possible GC due to produced, but not scheduled energy. We obtain a
third strategy for strategic adjustment.

3. GC: We try to avoid missing possible Green Certificates, so we increase the
scheduled production compared to the forecast before submission.

These considerations give rise to establish an “optimal” strategic adjustment policy.
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4.1.3 Company’s Status Quo

Before we think of own ideas about how to construct sensible adjustment policies, it
may be advantageous to analyse how the company’s strategic adjustment was carried
out in the past.
Energy economics is an immensely fast-moving domain, so the more recent the data we
use the better we can estimate the current behaviour. Here lies the main problem - the
moment we have to announce the production schedule for the next day we know the
previous day’s da, but exc and def only from two to three months before. Therefore
we need to forecast the prices in a certain way.

This was done so far by calculating an average historic week of the current quarter,
separately for each of the entities da, exc and def . That means that same weekdays
have the same forecast, so we display the prices’ behaviour on different weekdays.
However we cannot take into account changing conditions during a quarter of a year.
From these hourly values a set of 168 (= 7 · 24) adjustment coefficients, from Monday
00:00(-01:00) until Sunday 23:00(-24:00), was computed to increase/decrease the esti-
mated production relative to the forecast before submission. These coefficients are the
same for all three parks, since they all participate in the same balancing zone which
means they are subject to the same prices.
Besides that the company utilises a domain-dependent weighting for their adjustment
coefficients, too. The idea is to decrease the absolute change in the high-end domain
of production where relative adjustment coefficients have more (absolute) impact.
The wind power forecast we receive from the specialised company is for turbine level

only. That means that the “raw” forecast needs a pre-adjustment itself to incorporate
the losses due to physical reasons, e.g., losses during transmission from the turbine to
the entry point into the grid. These losses are subject to the specific energy level at
that time and are integrated by a heuristic that proved itself plausible over the years.
The raw forecast less all losses is then the actual estimation what we may produce the
next day.

Definition 4.3. We call this entity
meta := The raw production forecast less all potential losses.

For our investigations this is the essential value, since we have to accept the physical
losses. Thus we exclusively consider meta for strategic adjustment.

Definition 4.4. In addition we call
final := The strategically adjusted meta, i.e., the value that is submitted to the TSO.
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Strategic adjustment has two natural bounds, though. On the one hand final must
always be non-negative, on the other hand we must not submit final greater than the
physical upper production limit of each park. This is the amount of energy one park
can generate at full-load during one hour.

Definition 4.5. Moreover we call
prod := The actual production, i.e., the amount of energy that was measured at the
entry point of the grid.

4.1.4 Delivered Data

At the beginning of the cooperation we received several types of necessary data from
the company:

1. Production data:

a) hourly final values from 2014-01-01 (and 2014-06-01) until 2018-03-12

b) hourly meta values from 2016-03-17 until 2018-03-12

c) hourly prod values from 2014-01-01 (and 2014-06-01) until 2017-12-31

2. Price data:

a) hourly da, exc and def values from 2012-01-01 until 2017-12-31

3. Adjustment data:

a) adjustment coefficients for each hour of each weekday for all quarters of the
year from 2014-01-01 until 2018-03-12

b) adjustment algorithm to compute final with meta and an adjustment co-
efficient as input

One of the three wind parks went on line later than the others, so we have reliable
data for final and the actual production starting at two different dates.
The data was partitioned in several hundred different files, with time-stamps in a cou-
ple of time zones and various file structures even within the same type of data due to
style changes throughout the years. The first main task was to read in, tidy up and
standardise all the data before doing further actions.

Towards the end of the work on this subject we additionally got time series of po-
tential production at turbine level that indicate at which time actual limitation by the
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TSO occurred. They also carry the information when there was potential limitation,
i.e., there was no limitation in reality, but if the actual production would have exceeded
the scheduled production then there would have been limitation. However this data is
not prod at the entry point of the grid, but the raw production data.

Future Recommendations 1. Utilisation of this data would have needed quite a
lot more consideration. For example one would need to find a domain-dependent loss
function to propagate the potential values from turbine level to the entry point for
each park separately. We came across this pretty late, so it was not taken into account
in the following. However this could be covered in another work in the future.

4.1.5 Goals

The company wanted several topics to be analysed and investigated regarding potential
improvements.

• Strategic adjustment on holidays

• Limitation by the TSO

• Optimal strategic adjustment

4.2 Analysis

4.2.1 Framework for Evaluation

Before we start analysing the concept of “strategic adjustment” and investigating the
different topics we are confronted with, we need to establish a framework for evalu-
ation. Of course we can compare the relative differences in the revenue due to two
different adjustment policies, but we would like to have an objective reference to judge
the merit of policies independently. A possible “best case” would lend itself to this
task, so we need to figure out what a best case scenario can be. The idea is to rate
every policy according to the percentage of revenue it gains, e.g. the best case itself
has a rating of 100 while zero revenue has a rating of 0.

That means we need to clarify of which parts the revenue consists. Since billing
takes place on an hourly basis, we assume meta, final and prod as well as da, exc
and def to be regarding one certain hour. Actually, the above entities are different
for every hour so they should have a subscript indicating a time stamp. Since all the
problems are independent of each other, though, we omit the index for simplicity.
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Definition 4.6. Let final be the scheduled production, prod the actual production
and da, exc and def the prices. The price for one GC is denoted by g.

1. The revenue for the produced energy is

revNRG := final · da+ [prod− final]+ · exc− [final − prod]+ · def, (4.1)

where [a]+ = max (a, 0) denotes the positive part of a.

2. The revenue for the earned Green Certificates is

revGC := min (final, prod) · g. (4.2)

3. Then the total revenue is

rev := revNRG + revGC (4.3)

We see that

rev = revNRG + revGC

= final · da+ [prod− final]+ · exc− [final − prod]+ · def + . . .

. . . + min (final, prod) · g

= final · (da+ g) + [prod− final]+ · exc− [final − prod]+ · (def + g),

(4.4)

since

min (a, b) = a+ min (b− a, 0)

= a−max (a− b, 0)

= a− [a− b]+.

We can formulate the problem including GCs in the same way as the original one, but
with shifted day-ahead price da = da+g and deficit penalty def = def+g. Thus we do
not have to include GCs with a separate expression, which is pretty convenient for the
formulation of the problem. Also excluding GCs from our considerations would lead to
potentially different results, since the value of one Green Certificate is approximately
as much as one MWh at an average day-ahead price.
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4.2.2 Best Case

Now we can think about a best possible case.
If we have a normal market situation (see Figure 4.1) then we have da > exc as well
as da < def . This implies that we get the best result if we schedule the exact amount
that is actually produced on the next day, which requires perfect foresight of the next
day’s production.

Definition 4.7. We obtain the above described best case by
finalb := prod.

However this is not the absolutely best possible revenue we can get. If you look at
Figure 4.2, you can see that there are hours when da ≤ exc or da ≥ def . This implies,
that it may be beneficial to announce less than produced (because of a higher price for
exceeding energy) or as much as we are allowed - the physical upper production limit
(because of a lower penalty than the day-ahead price). Although this would require not
only perfect foresight about production but also about the prices we get to know up to
three months later. Assuming perfect foresight of nature is already quite unrealistic.
Additional perfect foresight regarding all other participants, which would be necessary
to determine exc and def , is just overcharged - even for theoretical considerations.

This best case now serves as objective reference for our policies. We do this by aggre-
gating one policy’s revenue over a fixed period of time and then taking the percentage
compared to the best-case’s revenue over the same period as a rating.

4.2.3 Strategic Adjustment in the Past

First we want to know whether strategic adjustment was beneficial at all and if so, how
big the difference is to no adjustment before submission. For this, we need to know the
originalmeta for all hours and take them as (not-)adjusted scheduled production final.

Hence for all those hours in which we do not have meta available, we need to invert
the adjustment algorithm that takes meta, the adjustment coefficient and a domain-
dependent factor as input. Unfortunately this algorithm contains a step that is not
injective, thus there are potential cases with ambiguous inversion. By convention we
take the lowest possible value and this shows to produce meta close enough to the
original ones - at least in the periods in which we can compare. “Close enough” in this
case means that the revenue gained after using the calculated meta is approximately
the same compared to the original ones. To be consistent we take the recalculated
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meta values for the whole time span we investigate.

The introduction of strategic adjustment was due to several reasons combined. First
of all it should capture the behaviour of the market and reduce the risk of inflicting
greater loss than necessary. Moreover it was set to be non-negative throughout many
periods in the past to on the one hand do not risk the gain of Green Certificates (we
cannot get more than the number of MWh we scheduled) and on the other hand to
avoid limitation of production by the TSO (they can only limit us to the submitted
value).

Adjustment Policy 2014 2015 2016 2017

Status Quo 93 92.13 90.17 91.45
No Adjustment 91.02 90.98 89.82 90.45

Table 4.1: Ratings in percentage of the best case (including GCs)

To judge the results displayed in Table 4.1 correctly, we need to consider that for the
absolute figures even tenths of percentage points of the best case lead to significantly
more revenue. So we see that strategic adjustment over the last four years was highly
beneficial, since the improvement in percentage points of the best case was 1.98 %,
1.15 %, 0.35 % and 1.00 % in 2014, 2015, 2016 and 2017, respectively.

Adjustment Policy 2014 2015 2016 2017

Status Quo 86.49 84.47 83.19 88.37
No Adjustment 84.24 83.42 82.73 87.12

Table 4.2: Ratings in percentage of the best case (excluding GCs)

Also if we compare these ratings with those excluding the Green Certificates (see
Table 4.2), we see that the value of the earned Green Certificates is immense. In the
past there were periods where GCs had a valuation of around zero in practice, so it is
pleasant to see that strategic adjustment also works in this setting. Furthermore we
see that including them into computation of the revenue shrinks the difference between
the two policies in general. The improvement in 2014, 2015, 2016 and 2017 was 2.25,
1.05, 0.46 and 1.25 percentage points of the best case, respectively.
To avoid confusion we will look at policies including Green Certificates only in the
following.
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4.2.4 Strategic Adjustment on Holidays

One of the company’s main issues is strategic adjustment on public holidays. The ex-
perience shows, that some of the days with the worst revenue are on holidays and these
days may need special treatment. The reason for this is that holidays simply do not
behave like normal weekdays. Therefore we investigate whether different adjustment
on holidays may be beneficial.

Unfortunately the total number of public holidays is not large enough to specifically
forecast prices on these days, so we need to help ourselves with a rather sensible alter-
native solution. In many areas of everyday life holidays and Sundays are treated in a
similar way. Hence we conjecture that also the market behaves similarly on holidays
and Sundays. Thus we frankly use the Sunday’s adjustment coefficients of the current
period in which the holiday lies.
Moreover we want to know the best possible case on holidays to be able to correctly
judge the merit of specific holiday adjustment. If we look at Table 4.3, we see that
compared to the Status Quo there is indeed some additional potential for improvement.
Contrary to this, the suggested type of strategic adjustment on holidays does not work
out as we assumed.

Adjustment Policy 2014 2015 2016 2017

Status Quo - Best Case on Holidays 93.25 92.44 90.43 91.84
Status Quo 93 92.13 90.17 91.45
Status Quo - Holiday Adjustment 93.01 92.13 90.15 91.41

Table 4.3: Ratings regarding Holiday Adjustment

Perfect foresight on holidays compared to the recent “normal-weekday-adjustment”
in 2014, 2015, 2016 and 2017 is 0.25, 0.31, 0.26 and 0.39 percentage points of the best
case better, respectively. On the other hand, the Sunday-like adjustment on holidays
leads to an improvement in percentage points of the best case of only 0.01 in 2014, in
2015 there is no difference at all, and in 2016 and 2017 it leads to a worsening of -0.02
and -0.04 percentage points, respectively. We see that there is room for significant
improvement on holidays. However if we take the amount of holidays each year and
compute the proportional improvement by the best case scenario on the same number
of average days, we basically get the same results as for “Best Case on Holidays”. The
latter is only hundredths of percentage points better in 2014 and 2015, it is even worse
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a few hundredths of a percentage point in 2016 and only in 2017 it is better in the order
of tenths of a percentage point. This means it appears to be that strategic adjustment
on holidays is not significantly worse than on any other day.
However we did not investigate this any further, since other approaches were more
promising.

Future Recommendations 2. Our attempt of using Sunday’s adjustment coefficients
on holidays did not show significant benefit. Hence analysis of the market’s behaviour
on holidays and development of specific adjustment from that knowledge could be the
subject of future work.

To settle this topic conclusively, we will test our approach of “Holiday Adjustment”
on our own, new heuristic later on. If this shows no improvement as well, we need to
reject this idea of strategic adjustment on holidays.

4.2.5 Limitation by the TSO

Another big topic for the company is limitation by the TSO. We recall that limitation
can occur in case of imminent collapse of the transition system. This means, that they
are authorised to reduce the actual production to the schedule. Hence we produce less
than we could and thus get less revenue (remember that exc > 0).
The data we got at the beginning does not have a mark or flag to indicate actual (or
potential) limitation. However measuring actual production prod pretty close to the
scheduled production final is a rather strong sign for limitation. If we filter all these
hours with |prod− final| < M for some reasonable M > 0 big enough, we get at least
all limited hours. In the worst case we also get hours with accidental close values, but
since this is a worst-case-analysis that would lead to a worse result at most.

In the Figures 4.3-4.6 we have aggregated all those hours of one year during which
limitation might have occurred. This is done for all parks together. Note that, theo-
retically, the number of hours on each day can be up to 72 = (24 · 3) because we look
at three parks.
The different colours mark different weekdays, to figure out whether there are specific
days on which limitation happens more often than on others. Furthermore we only
look at data with non-zero final values submitted because “final = 0” is a strong sign
of non-availability implying no produced energy as well.
We see in Figure 4.3 that limitation hardly occurred in the first half of 2014, increased
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Figure 4.3: Possibly limited hours aggregated for all parks in 2014

Figure 4.4: Possibly limited hours aggregated for all parks in 2015
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Figure 4.5: Possibly limited hours aggregated for all parks in 2016

Figure 4.6: Possibly limited hours aggregated for all parks in 2017
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in the second half of the same year, remained at the same level until the first quarter
of 2016 (see Figure 4.4 and Figure 4.5) and then decreased again to a very low level of
limitations. This trend continues even further in 2017, if we look at Figure 4.6. How-
ever we do not recognise a specific pattern for limitation on certain weekdays or seasons.

Next we look at the capacity utilisation rates whenever limitation occurs. This rate
denotes the proportion of the actual production prod relative to the physical upper
production limit of the park. E.g., if the physical upper production limit was 100MWh
and we had an actual production of 25MWh then the corresponding capacity utilisation
rate is 0.25. This entity is of interest for us since limitation at high rates is not as
harmful as when the parks could possibly produce much more energy before reaching
the natural bound. On the other hand, limitation at low rates does not immediately
yield a bad result as the theoretically producible energy could be only slightly higher.

Figure 4.7: Capacity utilisation rates at possible limitation

If we look at Figure 4.7 we notice something rather astounding. In each year for all
parks the most limited hours occur in the lower sector. Moreover, there is only a small
peak at the high end. This behaviour may be due to successful strategic adjustment to
avoid limitation in the upper sector, opposing to too cautious adjustment in the lower
one.
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4.3 Mathematical Modelling

By now we have finished the purely descriptive part of this work and we proceed with
finding some strategic adjustment by ourselves. We can partition our endeavours into
two main tasks:

1. How do we get a reasonable forecast of the prices?

2. How do we get reasonable strategic adjustment?

In the following we start with the easiest approaches to answer both of the questions
and then continue with more sophisticated ones.

4.3.1 Forecast of Prices

Firstly we need to think about how to forecast the three entities da, exc and def ,
which is a major difficulty in our task of finding good strategic adjustment policies.
Even though def denotes the penalty for deficit energy, both exc and def are the prices
for positive and negative balancing energy. Thus if we speak of “prices” we generally
mean all three entities, including def in specific.

Historic Average
After gaining insight into the company’s status quo, we opted for a very simple his-
toric average as our first means of finding predictors d̂a, êxc and d̂ef , i.e., forecasts
of the prices da, exc and def . We decided to do this on a monthly basis, hoping we
can capture current events better using more recent data as the energy market is a
fast-moving domain.
We compute the historic averages in two versions, the second one being a slight varia-
tion of the first one.

1. For each hour of the week we compute an average of the current month over the
last three years. For example if we want to forecast exc on a Tuesday in March
2016 at 17:00, we compute the average of all values for exc on Tuesdays in March
in 2015, 2014 and 2013 at 17:00.
Strategic adjustment policies using this version of historic averages get the
label HA.

Taking the average over three years was a purely ad-hoc decision at the beginning of
the work on this topic. Due to rather acceptable results and our intentions to develop
more complex ideas, we did not try to find an “optimal” configuration for the historic
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average. For example we did not try out another number of averaged years.
Averaging over one month of the last three years means that we take into account
only about 12 values, as for each hour of a week we have approximately four weeks
per month times three years only. This is not a very broad foundation for a profound
forecast. Moreover single values fluctuate extraordinarily from time to time, leading
to completely different averages. So our attempt is on the one hand to smoothen the
hourly values and on the other hand to gather more samples from which we calculate
the average. The choice so far to compute a set of adjustment coefficients once a
quarter of a year was arbitrary, and so is the choice of doing so once a month. The
prices do not think in months or years, the behaviour is a continuous development over
time. Therefore we considered a second version of historic average.

2. For each hour of the data we compute the average of this hour, the previous hour
and the one afterwards, e.g., if we again want to forecast exc on a Tuesday in
March 2016 at 17:00, we compute the average of the values from 16:00, 17:00 and
18:00.
Then we take the average of the “rolling quarter” surrounding the looked at month
of the last three years for each hour of the week. That means for our example
about forecasting exc on a Tuesday in March 2016 at 17:00 that we compute
the average of the averaged value for 17:00 on Tuesdays in February, March and
April each in 2015, 2014 and 2013.
Strategic adjustment policies using this more stable version of historic averages
get the label HAs.

The historic averages compute an average week for one month, so each weekday has
the same forecast of da, exc and def throughout a month. The earliest prices available
for us are from 2012, so the first year we can forecast by these historic averages is 2015.

Linear Regression
Our second approach of forecasting da, exc and def is by linear regression. The idea
is to fit the prices of the current year with the data from the year before by a linear
model. This way we obtain coefficients for each year to predict the consecutive year in
the same way.
In the following we will only consider univariate, multiple linear regression. That
means we use multiple independent variables (regressors) to fit one dependent variable
(regressand). This is done for each of the prices separately.
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Future Recommendations 3. However one could consider one multiple multivariate
model, i.e., several regressors and more than one regressand, to fit all prices at the
same time. This could lead to overall improvement, as the behaviour of one particular
price could contain information about the other prices. We recommend that these
considerations should be treated in a future work.

We again have two slightly different versions.

1. We do this by using the prices of 53, 52 and 51 weeks (i.e., one year) ago, 27, 26
and 25 weeks (i.e., half a year) ago and 14, 13 and 12 weeks (i.e., one quarter)
ago as explanatory variables to describe the current price. This is done for each
of the three entities - da, exc and def - separately. The resulting predictors are
d̂a, êxc and d̂ef for da, exc and def , respectively.
Strategic adjustment policies using this version of linear regression, i.e., a linear
model, get the label LM.

We look at one of the prices p ∈ {da, exc, def}, denote its value at hour t by pt. To
simplify notation we introduce w := 24 · 7 = 168, the number of hours in one week.
Then we have the following linear model,

pt = β1pt−53w + β2pt−52w + β3pt−51w + β4pt−27w + β5pt−26w + . . .

. . .+ β6pt−25w + β7pt−14w + β8pt−13w + β9pt−12w + Upt ,
(4.5)

where pt−mw denotes the price with a lag of m weeks and Upt is random noise at hour
t. Because of the random noise, the price is a random variable as well. Therefore we
need to distinguish between the random variable Pt, describing the price at hour t, and
its realisation pt. We use upper case for the first and lower case for the latter.
Some trials at the beginning of consideration of linear models have shown, that better
results are achieved with no intercept in our case. Therefore we do not consider an
intercept in the following. A possible reason is that there is no secured minimal price
greater zero that we would sell the energy at.

We already know that energy economics is a fast-moving domain, so we always try
to use the most recent data possible. Using the values of exc and def from a quarter
ago is the best we can do, but we have more recent data of da. This motivates the
second version.

2. The linear model for exc and def is the same as in LM. However for da we
additionally use the value of one week and one day ago as explanatory variables.
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Strategic adjustment policies using this version of linear regression incorporating
the most recent data get the label LMr.

Therefore, the linear models for exc and def are the same as in “LM” (see (4.5)).
Only da has a different model, which is as follows,

dat = β1dat−53w + β2dat−52w + β3dat−51w + β4dat−27w + . . .

. . .+ β5dat−26w + β6dat−25w + β7dat−14w + β8dat−13w + . . .

. . .+ β9dat−12w + β10dat−w + β11dat−24 + Udart ,

(4.6)

We see that “LMr” has two additional regressors compared to “LM”. However over-
fitting should not be a serious concern. Eleven explanatory variables compared to more
than 8000 observations we fit during a year are still considerably few.
We employ the well-established assumptions we encountered in Section 3.1.

1. E [Upt ] = 0 for all hours t.

2. Var [Upt ] = σ2 for all hours t.

3. E [Upt U
p
s ] = 0 for all hours t 6= s.

This implies that by solving the ordinary least squares problem we obtain unbiased
estimators β̂j for βj .

Even though the observed prices are stochastic themselves, we assume for simplicity
they are fixed for the regression. Corresponding statements are also true, if you con-
dition on the certain realisation so this would not lead to drastic modifications.
Furthermore we assume that we are able to “catch” the entire deterministic contribu-
tion by the prediction of our linear model, only perturbed by random noise εpt with
E [εpt ] = 0. That means we have

Pt = p̂t + εpt and thus E [Pt] = p̂t. (4.7)

The linear models compute forecasts d̂a, êxc and d̂ef for da, exc and def , respec-
tively, separately for each hour. Thus same weekdays throughout a month do not have
the same values - contrary to the historic averages above. Since price data is available
to us as far back as the beginning of 2012, the first year we can fit is 2013 which means
the first year we can forecast prices by these linear models is 2014.
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In the following we look at the results of fitting the prices from 2016 to obtain
coefficients to predict the prices for 2017, which is the most current year we consider.
Therefore we look at the results of fitting the prices in 2016. The tables are generated
by the R command “summary”, which provides the most important key figures to judge
the quality of a regression.
First we look at the linear model for da.

1 > summary( fit_DA_2016 )

3 Cal l :
lm( formula = DA ~ 0 + DA_12 + DA_13 + DA_14 + DA_25 + DA_26 +

5 DA_27 + DA_51 + DA_52 + DA_53,
data = lm_DA %>% f i l t e r ( year (UTC) == 2016) )

7

Co e f f i c i e n t s :
9 Estimate Std . Error t va lue Pr(>| t | )

DA_12 0.106122 0.012380 8 .572 < 2e−16 ∗∗∗
11 DA_13 0.094242 0.012802 7 .362 1 .98 e−13 ∗∗∗

DA_14 0.101004 0.012267 8 .234 < 2e−16 ∗∗∗
13 DA_25 0.010606 0.011562 0 .917 0 .35899

DA_26 0.031942 0.011758 2 .717 0 .00661 ∗∗
15 DA_27 −0.078776 0.011522 −6.837 8 .64 e−12 ∗∗∗

DA_51 0.211231 0.009941 21 .248 < 2e−16 ∗∗∗
17 DA_52 0.192522 0.010271 18 .744 < 2e−16 ∗∗∗

DA_53 0.269370 0.010039 26 .833 < 2e−16 ∗∗∗
19 −−−

S i g n i f . codes : 0 ‘∗∗∗ ’ 0 .001 ‘∗∗ ’ 0 .01 ‘∗ ’ 0 .05 ‘ . ’ 0 . 1 ‘ ’ 1
21

Res idua l standard e r r o r : 10 .05 on 8775 degree s o f freedom
23 Mult ip l e R−squared : 0 .9226 , Adjusted R−squared : 0 .9225

F−s t a t i s t i c : 1 .162 e+04 on 9 and 8775 DF, p−value : < 2 .2 e−16

Listing 1: Summary of linear model fitting da in 2016

We mainly look at two things - statistical significance on the one hand and the (ad-
justed) coefficient of determination R2 (and R̄2, respectively) on the other hand. We
see in Listing 1 that all regressors (except the lag of 25 weeks) are highly significant,
only dat−26w slightly less. High significance levels are indicated by a maximum of three
asterisks in the rightmost column of the section “Coefficients”.
Furthermore, we have R2 = 0.9226 and R̄2 = 0.9225 which are amazingly high values
for a regression. This suggests that employing a linear model is justified.

Next we want to investigate the impact of adding two new regressors in the linear
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model for da - we look at “LMr”.

> summary( fit_DA_recent_2016 )
2

Cal l :
4 lm( formula = DA_recent ~ 0 + DA_1D + DA_1 + DA_12 + DA_13 + DA_14 +

DA_25 + DA_26 + DA_27 + DA_51 + DA_52 + DA_53,
6 data = lm_DA_recent %>% f i l t e r ( year (UTC) == 2016) )

8 Co e f f i c i e n t s :
Estimate Std . Error t va lue Pr(>| t | )

10 DA_1D 0.373205 0.008480 44 .010 < 2e−16 ∗∗∗
DA_1 0.230095 0.009569 24 .046 < 2e−16 ∗∗∗

12 DA_12 0.043751 0.010439 4 .191 2 .81 e−05 ∗∗∗
DA_13 0.027892 0.010796 2 .584 0 .00979 ∗∗

14 DA_14 0.034050 0.010352 3 .289 0 .00101 ∗∗
DA_25 0.010982 0.009697 1 .133 0 .25745

16 DA_26 0.031045 0.009867 3 .146 0 .00166 ∗∗
DA_27 −0.059026 0.009680 −6.098 1 .12 e−09 ∗∗∗

18 DA_51 0.084743 0.008639 9 .809 < 2e−16 ∗∗∗
DA_52 0.088833 0.008794 10 .102 < 2e−16 ∗∗∗

20 DA_53 0.113951 0.008810 12 .935 < 2e−16 ∗∗∗
−−−

22 S i g n i f . codes : 0 ‘∗∗∗ ’ 0 .001 ‘∗∗ ’ 0 .01 ‘∗ ’ 0 .05 ‘ . ’ 0 . 1 ‘ ’ 1

24 Res idua l standard e r r o r : 8 .429 on 8773 degree s o f freedom
Mult ip l e R−squared : 0 .9456 , Adjusted R−squared : 0 .9455

26 F−s t a t i s t i c : 1 .385 e+04 on 11 and 8773 DF, p−value : < 2 .2 e−16

Listing 2: Summary of linear model fitting da with more recent data in 2016

In Listing 2 we see, that the price data from the previous day and one week ago are
highly significant. However including the lag of one week and one day also yields that
dat−13w and dat−14w are in a lower significance level as before. The situation for the
rest of the explanatory variables is the same, though.
As mentioned in Section 3.1, more regressors cannot lead to a lower coefficient of de-
termination, which is R2 = 0.9456 in this case. But a resulting R̄2 = 0.9455, which
takes into account the number of independent variables, is pleasing nonetheless.

Next we examine the results for exc.

> summary( fit_EXC_2016 )
2

Cal l :

45



4 lm( formula = EXC ~ 0 + EXC_12 + EXC_13 + EXC_14 + EXC_25 + EXC_26 +
EXC_27 + EXC_51 + EXC_52 + EXC_53,

6 data = lm_EXC %>% f i l t e r ( year (UTC) == 2016) )

8 Co e f f i c i e n t s :
Estimate Std . Error t va lue Pr(>| t | )

10 EXC_12 0.16828 0.01122 14 .996 < 2e−16 ∗∗∗
EXC_13 0.10217 0.01142 8 .947 < 2e−16 ∗∗∗

12 EXC_14 0.13495 0.01140 11 .841 < 2e−16 ∗∗∗
EXC_25 0.08323 0.01120 7 .433 1 .16 e−13 ∗∗∗

14 EXC_26 0.04949 0.01126 4 .397 1 .11 e−05 ∗∗∗
EXC_27 0.07440 0.01113 6 .685 2 .45 e−11 ∗∗∗

16 EXC_51 0.18431 0.01201 15 .350 < 2e−16 ∗∗∗
EXC_52 0.16481 0.01216 13 .558 < 2e−16 ∗∗∗

18 EXC_53 0.13163 0.01215 10 .833 < 2e−16 ∗∗∗
−−−

20 S i g n i f . codes : 0 ‘∗∗∗ ’ 0 .001 ‘∗∗ ’ 0 .01 ‘∗ ’ 0 .05 ‘ . ’ 0 . 1 ‘ ’ 1

22 Res idua l standard e r r o r : 11 .34 on 8775 degree s o f freedom
Mult ip l e R−squared : 0 .7679 , Adjusted R−squared : 0 .7677

24 F−s t a t i s t i c : 3226 on 9 and 8775 DF, p−value : < 2 .2 e−16

Listing 3: Summary of linear model fitting exc in 2016

We see the results are a bit different compared to da. For example, all of the re-
gressors are highly significant. On the other hand, the coefficients of determination are
substantially lower than for both versions of da.
We have R2 = 0.7679 and R̄2 = 0.7677, which are still reasonably good after all.

Finally, we look at the performance of the linear model fitting def in 2016.

> summary( fit_DEF_2016 )
2

Cal l :
4 lm( formula = DEF ~ 0 + DEF_12 + DEF_13 + DEF_14 + DEF_25 + DEF_26 +

DEF_27 + DEF_51 + DEF_52 + DEF_53,
6 data = lm_DEF %>% f i l t e r ( year (UTC) == 2016) )

8 Co e f f i c i e n t s :
Estimate Std . Error t va lue Pr(>| t | )

10 DEF_12 0.16791 0.01221 13 .748 < 2e−16 ∗∗∗
DEF_13 0.10372 0.01260 8 .231 < 2e−16 ∗∗∗

12 DEF_14 0.03127 0.01251 2 .499 0 .0125 ∗
DEF_25 0.02940 0.01207 2 .436 0 .0149 ∗

14 DEF_26 0.09404 0.01224 7 .684 1 .7 e−14 ∗∗∗

46



DEF_27 −0.01627 0.01207 −1.348 0 .1778
16 DEF_51 0.17611 0.01266 13 .908 < 2e−16 ∗∗∗

DEF_52 0.19908 0.01281 15 .540 < 2e−16 ∗∗∗
18 DEF_53 0.24012 0.01282 18 .725 < 2e−16 ∗∗∗

−−−
20 S i g n i f . codes : 0 ‘∗∗∗ ’ 0 .001 ‘∗∗ ’ 0 .01 ‘∗ ’ 0 .05 ‘ . ’ 0 . 1 ‘ ’ 1

22 Res idua l standard e r r o r : 14 .09 on 8775 degree s o f freedom
Mult ip l e R−squared : 0 . 913 , Adjusted R−squared : 0 .913

24 F−s t a t i s t i c : 1 .024 e+04 on 9 and 8775 DF, p−value : < 2 .2 e−16

Listing 4: Summary of linear model fitting def in 2016

The results for def are overall pretty similar to those for da. Again, we have that
one of the regressors from half a year ago is not significant at all - in this case it is
pt−27w. Additionally, the lags of 14 and 25 weeks have rather low significance levels.
Furthermore we have R2 = 0.913 and R̄2 = 0.913, which have the same immensely
high level as for da.

To summarise the results of Listing 1-4, we may conclude that utilising linear models
are justified. Furthermore, the regressors seem to be well-chosen in general. Only when
taking the prices from half a year ago, we maybe should leave out at least one of the
lags of 25, 26 or 27 weeks as for all prices except exc there is one of them with the
lowest significance level.

As mentioned above, after fitting the linear model we obtain a vector β̂ of coefficients.
Then we use these weights to predict the following year’s prices with the historic data.
We assumed that the prediction by our linear model determines the entire deterministic
part of the prices. The next step is to investigate whether this assumption is consistent
with the results or not. Therefore we analyse the resulting residuals εpt := pt − p̂t of
the predictions in 2017.
We see in Figure 4.8 that the residuals are approximately centred at 0. For this den-

sity plot all residuals from 2014 to 2017 were aggregated. Even though there is a small
shift to the right, i.e., our prediction more often underestimates the real occurrences,
our assumption does not seem to be far-fetched. Hence, we stick to it and assume
E [Pt] = p̂t.
The next step is to look at the residuals over time, to see whether there are seasonal
dependencies, possibly contradicting the assumption about independence of the errors.
Furthermore, we need to check whether the variance of the random noise term is indeed
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Figure 4.8: Errors made when using LM to find predictors for DA, EXC and DEF

constant throughout all observations.
In Figures 4.9-4.12 we have plotted the residuals for the different models over time.

We can clearly see, that our assumption of constant variation is likely to be not entirely
correct. For each of the models we have seasonal dependencies, with a bigger/smaller
spread or systematically over-/underestimating reality. However, for da using the most
recent data (Figure 4.10) and for exc (Figure 4.11) these unpleasant characteristics are
not as strong as for the other models.

A general problem with estimating time-series is, that consecutive points in time
have similar characteristics and influence each other most likely. The correct model
to use would be an “autoregressive model” (AR model). This type of model describes
situations, where the dependent variable depends on its own previous values and an
additional stochastic term.

Future Recommendations 4. Future work could focus more on the aspect of time-
series and how to cope with the special aspects one has to take into account to treat
this properly. For example one could utilise models over shorter periods than a whole
year or introduction of dummy variables (variables to incorporate categorical regressors
in a model) for distinct seasons could provide remedy. On the other hand, using an
AR model as mentioned above seems to be promising, as this type of models is widely
used to describe time-series.
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Figure 4.9: Errors made when using LM to predict DA in 2017

Figure 4.10: Errors made when using LMr to predict DA in 2017
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Figure 4.11: Errors made when using LM to predict EXC in 2017

Figure 4.12: Errors made when using LM to predict DEF in 2017
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Actual Prices
We have seen already that one of the major problems is that the balancing energy
prices exc and def become available only after two to three months. Contrarily, we
know the day-ahead price da shortly after. So a naive approach is to use the actual
values for da and only forecast exc and def in the ways described above.
It makes sense to use the most recent data available to capture the current behaviour of
the market. At first it was not clear whether we can employ the very same day’s values,
which unfortunately is not possible since the prices are published after submission of
the production values. Other sensible attempts are using the actual prices of the exact
day before or one week before.
Strategic adjustment policies using actual day-ahead prices from the very same day
(which is impossible in practice), i.e., from 0 days before, from the previous day, i.e.,
from 1 day before, and from the week before, i.e., 7 days before, get the additional
label DA0, DA1 and DA7, respectively.

4.3.2 Strategic Adjustment by Heuristics

In this part we develop a heuristic that mimics strategic adjustment like we considered
in Section 4.1.2. Let us recall,

1. If a > b, we try to avoid overproduction and therefore increase the final value
before submission.

2. If a < b, we try to avoid underproduction and therefore decrease the final value
before submission.

Under the assumption that the market is in balance, we have a ≥ 0 and b ≥ 0.
Consider the following expression,

λ =
a− b
a+ b

, with a 6= −b. (4.8)

We see that (4.8) produces adjustment coefficients exactly the way we want. We
check the most extreme cases:

1. If a > b = 0, then λ = a
a = 1 and we increase final with an adjustment coefficient

of 1.

2. If 0 = a < b, then λ = − b
b = −1 and we decrease final with an adjustment

coefficient of −1.
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This means that under the expected condition that exc < da < def the above
heuristic produces adjustment coefficients in the range of −1 ≤ λ ≤ 1. This however
does not imply that we adjust by ±100% because of the company’s adjustment heuristic
involving some domain-dependent weighting coefficient.
In reality it also happens quite often that either a < 0 or b < 0, though, which leads
to adjustment coefficients with absolute value significantly larger than 1. However we
force the resulting λ to be of absolute value less or equal to one, by simply capping at
±1. This means that we calculate the final adjustment coefficient λ as

λ =

{
min (λ, 1) , if λ ≥ 0

max (λ,−1) , if λ < 0

Since submission of awkwardly large or small final values will be prevented by the
TSO, extreme adjustment with |λ| ∼= 1 may not be eligible. Thus another capping
value of ±0.3 is considered as well.
Strategic adjustment policies using the above heuristic to derive adjustment coeffi-
cients capped at ±1.0 and ±0.3 get the labelHEU(1.0) andHEU(0.3), respectively.

Adjustment Policy 2014 2015 2016 2017

Status Quo 93 92.13 90.17 91.45
HEU(1.0) HA NA 93.33 91.33 92.07
HEU(1.0) HA DA0 NA 92.95 88.91 94.81
HEU(1.0) HA DA1 NA 90.82 87.81 91.63
HEU(1.0) HA DA7 NA 90.95 88.99 92.16
HEU(1.0) HAs NA 93.31 91.52 92.71
HEU(1.0) HAs DA0 NA 93.1 88.93 94.53
HEU(1.0) HAs DA1 NA 90.94 87.9 91.67
HEU(1.0) HAs DA7 NA 91.19 89.31 92.25

Table 4.4: Ratings of HEU(1.0) with Historic Average

In Table 4.4 we have the resulting ratings for the heuristic capped at values of ±1

using historic averages to forecast the three entities da, exc and def . Recall that the
ratings are the percentage of the policy’s revenue compared to the best case’s revenue.
We see that the two policies “HEU(1.0) HA” and “HEU(1.0) HAs” already deliver bet-
ter results than the status quo, however they may not be applicable in reality due to
rather extreme adjustments.
Moreover we see that if we are using actual day-ahead prices instead of forecast ones,
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the actual prices of the current day (“DA0”) would lead to the best results. For both
“HA” and “HAs” using “DA0” is at least one percentage point better than “DA1” or
“DA7”, which is pretty much. Furthermore we notice that “DA7” leads to better results
than “DA1”, so apparently the current weekday is more important than the recent be-
haviour of the last day. If we compare the ratings for “HA” and “HAs” we see that
the latter generally seems to be more stable as we intended, since we are taking into
account much more data. Concluding, our idea which motivated the second version of
the historic average appears to be sensible.

Adjustment Policy 2014 2015 2016 2017

Status Quo 93 92.13 90.17 91.45
HEU(1.0) LM 87.33 92.32 91.28 81.42
HEU(1.0) LM DA0 95.79 95.59 87.54 90.56
HEU(1.0) LM DA1 92.49 91.45 86.83 89.33
HEU(1.0) LM DA7 92.7 91.09 88.46 89.67
HEU(1.0) LMr 94.56 92.89 90.42 89.54

Table 4.5: Ratings of HEU(1.0) with Linear Model

In Table 4.5 we have the resulting ratings for the heuristic capped at values of ±1

using linear models to forecast the prices. First of all we notice that in 2017 all poli-
cies using linear models are worse than the status quo. However in 2014 and 2015
“HEU(1.0) LM DA0” is astoundingly superior compared to the currently used adjust-
ment policy. Also “HEU(1.0) LMr” is better in 2014, 2015 and 2016 - so a forecast
using linear models seems to be justifiable, even though we might need to change the
specific application a bit. In contrary to the heuristic using historic averages, both
“DA1” and “DA7” are worse than the status quo throughout all the years.
Note that “LMr DA0”, “LMr DA1” and “LMr DA7” are not missing, as “LMr” only
differs from “LM” in the way we forecast da which is exchanged if we use the actual
day-ahead prices (“DA”).

If we look at Table 4.6 we have the resulting ratings for the heuristic capped at values
of ±0.3 using historic averages. Surprisingly the results for “HEU(0.3)” are notably
similar to those for “HEU(1.0)”. The policies “HEU(0.3) HA” and “HEU(0.3) HAs”
produce better ratings than the status quo and should be applicable in reality, too.
We also notice that the impact of using the actual da values decreases when capping at
±0.3 - in both positive and negative direction. Moreover, the difference between using
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Adjustment Policy 2014 2015 2016 2017

Status Quo 93 92.13 90.17 91.45
HEU(0.3) HA NA 93.07 91.87 92.37
HEU(0.3) HA DA0 NA 92.85 90.91 93.48
HEU(0.3) HA DA1 NA 91.87 90.6 92.64
HEU(0.3) HA DA7 NA 91.88 91.05 92.77
HEU(0.3) HAs NA 93.08 91.83 92.72
HEU(0.3) HAs DA0 NA 92.92 90.9 93.4
HEU(0.3) HAs DA1 NA 91.92 90.61 92.63
HEU(0.3) HAs DA7 NA 91.97 91.13 92.75

Table 4.6: Ratings of HEU(0.3) with Historic Average

“HA” and “HAs” gets smaller as well.
However “HEU(0.3) HA” and “HEU(0.3) HAs” appear to be viable alternatives to the
currently used adjustment policy, leading to more revenue in the investigated years.

Adjustment Policy 2014 2015 2016 2017

Status Quo 93 92.13 90.17 91.45
HEU(0.3) LM 91.29 92.63 91.65 87.69
HEU(0.3) LM DA0 93.7 93.47 90.49 91.7
HEU(0.3) LM DA1 92.75 92.07 90.4 91.47
HEU(0.3) LM DA7 93.02 91.94 90.86 91.57
HEU(0.3) LMr 93.48 92.53 91.63 91.29

Table 4.7: Ratings of HEU(0.3) with Linear Model

In Table 4.7 we have the resulting ratings for the heuristic capped at values of ±0.3

using linear models. As we saw for the historic averages, capping at ±0.3 leads to less
extreme effects. Apparently it manages to improve the worse results on the one hand,
but on the other hand it also makes the outstanding good results from before to be
not as good anymore. However we do not obtain a strictly better adjustment policy
which would be possible in reality.

Strategic Adjustment on Holidays
When we were analysing our attempt for special strategic adjustment on public hol-
idays, we were not able to get consistent significantly better results than normal ad-
justment ignoring holidays. Recall, our approach of “Holiday Adjustment” is to use
the adjustment coefficients for Sundays on holidays. We now want to quickly check
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whether the results are different for our heuristic.

Adjustment Policy 2014 2015 2016 2017

Status Quo 93 92.13 90.17 91.45
Status Quo - Holiday Adjustment 93.01 92.13 90.15 91.41
HEU(1.0) HA NA 93.33 91.33 92.07
HEU(1.0) HA - Holiday Adjustment NA 93.38 91.2 91.89
HEU(0.3) HA NA 93.07 91.87 92.37
HEU(0.3) HA - Holiday Adjustment NA 93.07 91.83 92.3

Table 4.8: Ratings regarding Holiday Adjustment for Heuristic

If we look at Table 4.8 we see that the results are basically the same. Even though our
attempt of holiday adjustment in 2015 is slightly better for “HEU(1.0) HA” and at least
not worse for “HEU(0.3) HA”, the rest of the years the results are significantly worse.
This strengthens our presumption that (at least this kind of) special holiday adjustment
does not lead to reasonable improvements. Thus we will not treat holidays differently
from any other days and continue with our search for generally better adjustment
policies instead.

4.3.3 Strategic Adjustment by Stochastic Programming

In the following we want to turn away from heuristics and focus on purely mathemat-
ically justifiable approaches. So far we tried to find adjustment coefficients to obtain
higher revenue. This already yields considerably good results, however the underlying
plan is to maximise the revenue. Actually, we do not need adjustment coefficients for
this. Instead we want to find the optimal final, which maximises the revenue, in a
more analytic approach.
In the following DA, EXC and DEF denote the stochastic entities describing the
prices with their actual realisations da, exc and def , respectively, while PROD de-
notes the actual production with realisation prod. To distinguish between the random
variable and its realisation we use upper case for the first and lower case for the latter.
We assume the price g ≥ 0 for one GC to be fixed.
Due to the stochastic nature of prices and production, in a risk-neutral environment
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we seek to maximise the expected revenue. We get

max
final

E [rev(final)] = final · (E [DA] + g) + E
[
[PROD − final]+ · EXC

]
. . .

. . .− E
[
[final − PROD]+ · (DEF + g)

]
,

(4.9)

subject to the constraint that final must be non-negative and less or equal the physical
upper production limit for the certain wind park.

In the following we assume that all the stochastic entities can be estimated deter-
ministically except some additive random noise with zero mean. That means we have

DA = d̂a+ εda, EXC = êxc+ εexc, DEF = d̂ef + εdef

and
PROD = meta+ εmeta,

with d̂a, êxc, d̂ef and meta being the (deterministic) predictions for DA, EXC, DEF
and PROD, respectively. Furthermore,

E[εda] = E[εexc] = E[εdef ] = E[εmeta] = 0,

and thus

E [DA] = d̂a, E [EXC] = êxc, E [DEF ] = d̂ef and E [PROD] = meta.

Expected Value Solution
A first and simple way to handle the stochastic program (4.9) is to substitute each
random variable by its expected value. This widely used approach gives the so-called
“expected value solution”, as established in [9].
Assume that we have

E [DA] = d̂a, E [EXC] = êxc, E [DEF ] = d̂ef and E [PROD] = meta.
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Then we get the following optimisation problem

max
final

final · (E [DA] + g) + [E [PROD]− final]+ · E [EXC] . . .

. . .− [final − E [PROD]]+ · (E [DEF ] + g)

= max
final

final · (d̂a+ g) + [meta− final]+ · êxc− [final −meta]+ · (d̂ef + g),

(4.10)
still subject to the constraint that final must be non-negative and less or equal the
physical upper production limit for the certain wind park. The revenue is determined
for each hour and each wind park separately, so the above is just a one-dimensional
bound-constrained optimisation problem of the following form

max
x∈R

αx+ β[τ − x]+ − γ[x− τ ]+,

subject to 0 ≤ x ≤ L
(4.11)

for some fixed α, β, γ, L > 0 and τ ≥ 0. We see that the objective function is contin-
uous, but not differentiable in x due to the positive parts. Moreover, the objective is
not concave in general either, since β[τ − x]+ is convex for β > 0.
However the optimisation problem is one-dimensional and of simple form, so we can
solve it numerically with any solver for continuous one-dimensional functions.

Now that we know the kind of optimisation problem we have to solve, we only need
to find good estimators for the uncertain entities DA, EXC, DEF and PROD. For
this we forecast the prices by the linear models “LM” and “LMr” as above and suppose
the resulting predictions d̂a, êxc and d̂ef are the expected values of the random vari-
ables DA, EXC and DEF , respectively. Developing an individual production forecast
would require a lot of technical knowledge, e.g., about the turbines and their power
curves, weather data (which we do not have) and much more. Hence generating our
own one is completely out of scope. Moreover, the company already has a reliable
production forecast, so we simply consider this black-box given meta as an estimator
for PROD. Furthermore we assume that meta is the expected value for PROD. We
already saw in Section 4.3.1 that the price forecast by a linear model is reasonable.

Additionally, we see in Figure 4.13 that meta is approximately unbiased and the
error εmeta := prod−meta, where prod is the actually happened production, has rea-
sonable small standard deviation. This justifies our above plan to use it as an estimator.

57



Figure 4.13: Deviation between actual production and meta forecast

Strategic adjustment policies solving the above optimisation problem (4.10), i.e.,
computing the expected value solution, to derive optimal final get the label
OPT(EVS).

If we use the actual prices and production instead of the forecasts, we receive the ab-
solute best possible case when solving the optimisation problem. However this would
mean we have perfect knowledge of the future - both regarding production and the
(balancing) energy prices. This would imply we know the production of all other par-
ticipants and how the energy prices are determined with this information, which is
completely impossible.
Nevertheless the “Absolute Best Case” is the upper bound of what we can earn maxi-
mally in theory.

For solving (4.10), we used the standard solver for continuous functions by R, which
is a combination of “Golden Section Search” and “Successive Parabolic Interpolation”.
Golden Section Search is an algorithm that gradually reduces the interval locating the
extremum. This is done by generating a sequence of triplets of points which keep the
same proportion of spacing relative to each other. The proportion is taken to be the
“Golden Ratio” ϕ = 1+

√
5

2 , which gives the name of the algorithm. We need three
points (xi1 ≤ xi2 ≤ xi3) to determine the interval [xi1 , xi3 ] and in which of the two
subintervals [xi1 , xi2 ] and [xi2 , xi3 ] the extremum must be located. For this we compare
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the function values at these points. By maintaining the same proportion of spacing
throughout the algorithm, we avoid a situation in which xi2 is very close to xi1 or xi3
and guarantee that the interval width shrinks by the same constant proportion in each
step.
Successive Parabolic Interpolation is a technique for finding the extremum by fitting
parabolas to a function of one variable at three unique points. The algorithm has
super-linear convergence, but convergence is not guaranteed if this method is used
alone.
However if we alternate parabolic iterations with Golden Section Search to choose iter-
ation points, we have a much better chance to obtain convergence without hampering
the rate of convergence significantly.

As we see in Table 4.9 the results for solving the above optimisation problem are
not as good as the currently used adjustment policy in general. We see that if we
knew prices and production exactly, this would gain about additional 6-15 percentage
points compared to the best case (“Absolute Best Case”). Furthermore we see that us-
ing the actual day-ahead prices is disadvantageous for “OPT(EVS)”. Moreover, neither
“OPT(EVS) LM” nor “OPT(EVS) LMr” are even close to the status quo adjustment
policy in general. Thus we will ignore actual day-ahead prices in the following. Only
in 2014 “OPT(EVS) LMr” is better - in fact even 2.7 percentage points of the best case.

Adjustment Policy 2014 2015 2016 2017

Absolute Best Case 115.62 112.96 106.82 111.81
Status Quo 93 92.13 90.17 91.45
OPT(EVS) LM 92.91 90.65 89.47 91.13
OPT(EVS) LMr 95.69 90.29 86.66 89.4
OPT(EVS) LM DA1 91.46 88.12 83.09 85.63
OPT(EVS) LM DA7 90.3 87.85 85.57 88.02

Table 4.9: Ratings of OPT(EVS)

When looking more closely at the results of the optimisation problem, we saw that
in most hours of worst revenue final is equal to the physical upper production limit.
This is because our optimisation problem assumes that our forecasts actually happen in
reality exactly as we predicted. For example, whenever our forecast predicts def < da

then final will always be as big as possible. Even though this scenario happens quite
often in reality, many times we predict the wrong hours which leads to significantly less
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revenue. The difficulty of solving the optimisation problem is that we do not adjust
relative to the forecast of production, but we determine absolute figures for final. We
see that this approach is very sensitive regarding the forecast prices.
On the one hand we need to make sure that final will be in the range of the originally
forecast meta, which will be done by a regularisation term in the objective function.
On the other hand the next step will be to incorporate uncertainty of the forecasts in
the optimisation problem - to get away from “black or white” decisions, which will be
done by an “Sample Average Approximation” approach.

Regularisation
In the following we want to use regularisation to obtain final reasonable close to meta.
This is crucial to avoid the physical upper production limit as final due to mismatch
in the prices, which would lead to severe losses with respect to the revenue. This is
done by introduction of a regularisation term which inflicts penalty on the revenue
whenever |meta− final| is too big.

We get the regularised optimisation problem

max
x∈R

αx+ β[τ − x]+ − γ[x− τ ]+ − κ|τ − x|2

subject to 0 ≤ x ≤ L
(4.12)

again for some fixed α, β, γ, L > 0, τ ≥ 0 and for some additional regularisation con-
stant κ ≥ 0. To find a suitable choice for κ we simply try different orders of magnitude
and see how they influence the results.

If we look at Table 4.10 we see that the approach of regularisation is highly beneficial.
Comparing the results for different choices of κ, we recognise that κ = 0.5 and κ = 1

lead to best overall ratings. Even though they do not produce the very best results,
they manage to maintain a good level throughout all the years. Furthermore we see
that “LMr” gives better ratings than “LM” generally speaking.
Also we recognise, that the policy “OPT(EVS) LMr (Kappa = 0.5)” is basically as
good as “Status Quo”. From 2014 to 2016 it has a higher rating, only in 2017 it is
slightly worse by 0.04 percentage points of the best case’s revenue.

Sample Average Approximation
As mentioned above, the next (and final) step is to include uncertainty in the opti-
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Adjustment Policy 2014 2015 2016 2017

Status Quo 93 92.13 90.17 91.45
OPT(EVS) LM (Kappa = 0) 92.91 90.65 89.47 91.13
OPT(EVS) LMr (Kappa = 0) 95.69 90.29 86.66 89.4
OPT(EVS) LM (Kappa = 0.1) 92.05 92.26 91.1 90.56
OPT(EVS) LMr (Kappa = 0.1) 95.17 92.52 89.73 90.13
OPT(EVS) LM (Kappa = 0.5) 91.28 92.12 90.35 90.47
OPT(EVS) LMr (Kappa = 0.5) 93.01 92.35 90.71 91.41
OPT(EVS) LM (Kappa = 1) 91.16 91.75 90.11 90.46
OPT(EVS) LMr (Kappa = 1) 92.32 91.96 90.46 91.5
OPT(EVS) LM (Kappa = 5) 91.05 91.2 89.88 90.45
OPT(EVS) LMr (Kappa = 5) 91.33 91.31 89.98 90.99
OPT(EVS) LM (Kappa = 10) 91.03 91.1 89.85 90.45
OPT(EVS) LMr (Kappa = 10) 91.18 91.16 89.9 90.75
OPT(EVS) LM (Kappa = 50) 91.02 91 89.82 90.45
OPT(EVS) LMr (Kappa = 50) 91.05 91.02 89.83 90.51

Table 4.10: Ratings of OPT(EVS) regularised

misation problem. We do this by utilising a “Sample Average Approximation” (SAA)
approach. We recognise that our stochastic program (4.9) is a two-stage problem as
treated in Section 3.2. Recall, that in this type of stochastic program we need to solve

min
x∈X

{f(x) := E [F (x, ξ)]} ,

where F (x, ξ) is the optimal value of the second-stage problem. For an SAA approach
we now replace the expected value function f(x) = E [F (x, ξ)] by the sample average

function f̂N (x) = 1
N

N∑
i=1

F (x, ξt), where ξ1, . . . , ξN are N samples of the random vector

ξ and N ≥ 1.

To actually compute these sums, we employ the historical errors to draw our random
samples from. Therefore we compute the (out-of-sample) error between the actually
historically realised value and the forecast for each hour t. Now we explicitly write the
subscript for the corresponding hour t to be able to distinguish different samples.
To derive the errors of the estimators compared to the actual values we have for all
hours t:

εdat := dat − d̂at, εexct := exct − êxct, εdeft := deft − d̂ef t
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and
εmetat := prodt −metat.

In the above definitions dat, exct and deft denote the actual historic realisations of
DA, EXC and DEF , respectively, at hour t. Additionally we have d̂at, êxct and d̂ef t
standing for the estimators of DA, EXC and DEF , respectively. Recall, prodt denotes
the actual historic production, while metat stands for the estimator of the same.

We get the following optimisation problem to obtain an optimum for hour s,

max
final

final · (d̂as + g) +
1

N

N∑
i=1

[
(metas + εmetati )− final

]+ · (êxcs + εexcti ) . . .

. . .− 1

N

N∑
i=1

[
final − (metas + εmetati )

]+ · ((d̂efs + εdefti ) + g)− κ |metas − final|2,

(4.13)
for some considerably large N and randomly selected hours t1, ..., tN and a regularisa-
tion constant κ. We have to mind that these sampled hours t1, ..., tN have to be earlier
than the hour we solve the optimisation problem (4.13) for. In particular, we do not
only need ti < s for i = 1, . . . , N but the historical errors for the balancing energy
prices εexcti and εdefti must be available already. To ensure that we only use data that is
known at that time we have to take into account a lag of about three months to be on
the safe side. This yields that ti ≤ s − 13w, with w = 168(= 7 · 24), as three months
are approximately 13 weeks.
Note that the day-ahead term does not incorporate a sample average, which is not en-
tirely consistent with the SAA approach. We assume that our estimators are unbiased
and have errors of zero mean. Hence this should not change the outcome significantly,
but saves precious computation time.
Moreover, in theory we would draw N random samples for each hour we solve the op-
timisation problem (4.13) for. Although in practice we draw N random samples only
once for each year to drastically reduce the computational time needed.
Due to runtime issues we only use the candidates for κ which we obtained above for
the expected value problem (4.10).

Now we have certain fluctuation in the terms dealing with the balancing energy
prices on average. Therefore we can finally avoid “black or white” situations we men-
tioned before and obtain reasonable intermediate scenarios. The SAA problem (4.13)
takes into account the estimated relationships of the prices to each other as well as the
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possibility to deviate from the forecast.

Strategic adjustment policies solving the above optimisation problem (4.13), i.e.,
using the Sample Average Approximation, to derive optimal final get the label
OPT(SAA).

Adjustment Policy 2014 2015 2016 2017

Status Quo 93 92.13 90.17 91.45
OPT(SAA) LM (Kappa = 0) 93.56 91.75 84.68 91.37
OPT(SAA) LMr (Kappa = 0) 96.1 91.74 83.31 90.57
OPT(SAA) LM (Kappa = 0.5) 92.99 92.51 90.72 91.08
OPT(SAA) LMr (Kappa = 0.5) 93.83 92.69 90.58 92.07
OPT(SAA) LM (Kappa = 1) 92.78 92.39 91.09 90.94
OPT(SAA) LMr (Kappa = 1) 93.4 92.53 91.05 92.16
OPT(SAA) LM (Kappa = 1.5) 92.6 92.29 91.15 90.85
OPT(SAA) LMr (Kappa = 1.5) 93.18 92.37 91.21 92.11

Table 4.11: Ratings of OPT(SAA) regularised

Finally we have policies that are mathematically consistent and better than the cur-
rently used status quo at the same time. Both “OPT(SAA) LM” and “OPT(SAA) LMr”
for κ = 0.5 and κ = 1 are better throughout all investigated years. Since the reference
revenue by the best case is not the same every year, one has the check the absolute
figures of the revenue to judge which policy is the better one in total. Moreover, we see
that the more recent data for da in “LMr” pays off like in the expected value solution
setting - in general it is better than “LM”.
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5 Discussion

To conclude this work, let us recap the ideas, concepts and results we came across above.

First of all we started with describing the problem. We developed the idea of strate-
gic adjustment by looking at the behaviour of prices and their relative positions to
each other. Further we saw that the problem of finding “optimal” policies splits into
two parts - how to predict the prices and what to do with the forecast. Then we
built a framework for evaluation and introduced a rating to compare different policies,
as objective reference we took a sensible best case. When analysing the company’s
policies which were used in the past, we saw that strategic adjustment of the sched-
ule gives significantly more revenue than submission of the initial wind power forecast
alone and therefore is justified. Moreover, we attempted to find a special adjustment
policy for holidays which did not succeed. However we saw, that the potential extra
gain on holidays is not significantly more than on average days during a year. We also
investigated limitation by the TSO which yielded insight at which capacity utilisation
rates the company is limited the most.
Subsequently, we developed two approaches to predict the prices. We had two versions
of historic averages on the one hand and employed univariate linear models for each
of the prices on the other hand. When establishing own adjustment policies, we saw
that already the heuristic to obtain adjustment coefficients produces reasonable re-
sults. Finally, we turned away from adjustment coefficients and looked at optimisation
problems to generate optimal values for the production schedule.

The final approach by using SAA techniques generated two possible alternatives to
the type of strategic adjustment which is currently used by the company. However
already the heuristic gives considerably beneficial results, too.

Additionally, we came across several subjects which may be investigated in future
works. We saw that one could possibly look at potential limitation and not only
the actual limitation that happened in the past, as there is data available to do so.
This could give further insight of how to modify the schedule to avoid limitation.
Furthermore, as our attempt of holiday adjustment was not significantly beneficial,
one could study the behaviour of the prices on holidays to maybe predict them in a
better way. Moreover, we used univariate linear models when predicting the prices.
Other attempts could be multivariate models incorporating all the prices at once to
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benefit from possible interconnected information, or autoregressive models to address
the time-series aspect of the prices.
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6 Appendix

6.1 Deutsche Zusammenfassung (German Summary)

Bei der Stromproduktion für den täglichen Spotmarkt mittels Windkraftanlagen muss
man täglich einen Produktionsfahrplan für den folgenden Tag übermitteln. Aufgrund
von unterschiedlichen Preisen für vorveranschlagte Energie und davon in beide Rich-
tungen abweichende Energie, kann es vorteilhaft sein, einen Fahrplan abweichend von
der initialen Windleistungsvorhersage zu übermitteln. Das ermöglicht „strategische
Anpassung” des Fahrplans aufgrund der Preissituation. Die Preise werden erst zwei
bis drei Monate später veröffentlicht, daher muss man Vorhersagen über die Preissitu-
ation treffen um effektive strategische Anpassung zu entwickeln.
In dieser Arbeit analysieren wir die Strategien, die von einem Unternehmen in der
Vergangenheit verwendet wurden, sowie gewisse andere Aspekte wie beispielsweise
Abregelung der Produktion oder Anpassung an Feiertagen. Wir begründen zudem
einen Rahmen zur Evaluierung und vergleichen verschiedene Strategien relativ zu einem
„besten Fall”. Darüber hinaus behandeln wir zwei Konzepte für die Vorhersage der
Preise - „historische Mittelwerte” und Modelle der linearen Regression. Anschließend
bearbeiten wir zwei Herangehensweisen an strategische Anpassung; die erste inspiriert
von der Heuristik des Unternehmens, die zweite als Lösung eines stochastischen Op-
timierungsproblems. Für Letzteres verwenden wir einen Ansatz mithilfe von „Sample
Average Approximation”.
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