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1 Introduction

During the last decade, e-commerce experienced a steady increase in either users

and usage volume and became an indispensable part of today’s commercial land-

scape. With rising e-commerce acceptance, simulatenously the amount of parcels

to be shipped is increasing. In Austria six companies are competing in the small

package delivery market, the biggest player, the Post AG reported an increase

in parcel deliveries from 59 million pieces in 2011 to an all time high of 97 mil-

lion in 2017 [15] [16]. This yearly increasing delivery volume leads to increased

complexity in the underlying vehicle routing problems (VRPs). In sight of rising

customer demands such as an increasing amount of return shipments and new

offers in absence deliveries, the complexity rises even further. One promising

way to tackle those difficulties is shaping the problem to include consistency.

Kovacs et al. [8] provided a comprehensive survey where they classified the

literature according to three consistency features such as arrival time consistency,

person-oriented consistency and delivery consistency. Consistency in VRPs adds

several positives effects like extended drivers knowledge of the territory, the

customers and the last meters from a drivers parking spot to the customers

door.

Kovacs et al. identified three different approaches how consistency can be

achieved. With a priori routing, through historical data, routes covering the

possible customers are calculated and then adapted when the actual demand is

known. Groër et al. [4] referred to a priori routes as template routes, these tem-

plate routes where created following a simple principle: each pair of customers,

served by the same vehicle, has to be served in the same order each day they both

require service. They implemented those template routes to increase customer

satisfaction through route consistency.

Consistency can also be achieved through demand stabilization. Haughton

[5] presented a model in the freight delivery context where route consistency

is achieved through delivering not the actual demand each time it is required

but delivering the expected demand each day and therefore eliminating demand

fluctuations completely.

This masters thesis concentrates on the third possibility of bringing consis-

tency to VRPs, namely districting. Districting, in a vehicle routing context,

is dividing a service territory into several contiguous, compact and balanced

sub territories that are each served by one unchanging driver, where the routes

within the sub territories are calculated daily. Therefore the daily optimization

problem is broken down from one big complex VRP to K simple TSPs.
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The methods described above typically lead to an increase in tour lengths.

However, the positive effects can offset parts of the higher routing cost [6]. Other

positive effects are low day-to-day computational effort, no costly daily commu-

nication of new routing plans to drivers, temporal flexibility in the planning

section, higher customer and employee satisfaction through familiarity between

customer and driver [28].

This masters thesis examines the applicability of logistics districting using

real life data from the city of Vienna. A simple construction heuristic, two local

search improvement heuristics, and a more advanced metaheuristic are presented

for generating districting plans of increasingly higher quality. In contrast to much

of the literature on districting for VRPs, our approach is based on optimizing over

a large set of representative demand scenarios, rather than averages. In addition,

the districting plans are validated also on a further set of evaluation scenarios.

This fills a notable gap in the literature, because numerous districting approaches

exist but most of them are not checked against future periods, although they are

produced to be used in the future. Not only the results of the objective function

are compared, but also compactness and balance in terms of differences in tour

lengths. The practical applicability of the districting plans is checked by the

time needed to complete the tours, which shall lie under legal work time limits.

For each instance a detailed evaluation chart is given, including two diagrams

depicting the balance indicators and additionally for each districting plan a figure

with the districting plan drawn on the map of the city of Vienna is presented.

Based on this analysis, relevant observations are pointed out and a number

of preliminary conclusions about the performance of the heuristics, application

possibilities and possible improvements are drawn.

2 Literature Review

A large variety of districting problem owing to many different applications exist.

They have some high-level aspects in common namely a territory is partitioned

into contiguous, compact and balanced sub-territories. Due to the subjective na-

ture of some of these common aspects and the variety of applications, numerous

models have been proposed. In the following a short overview of the different

categories of districting models are presented.

As with all the vehicle routing problems, districting problems can be mod-

elled exact or heuristically but the majority of the literature is using heuristic

approaches. M. Salazar-Aguilar et al. [17] developed an exact solution frame-

work based on branch and bound and a cut generation strategy. Their objective

3



was to create a districting plan with a given number of districts out of a set

of city blocks where the districts are required to be compact, contiguous and

balanced. They recommended their model only for medium-sized instances as

the computational time rises exponentially with the size of the input. The same

authors later extended their model to fit a bi-objective problem [18]. They pro-

posed a method generating the optimal Pareto front for instances with up to 150

units and 6 territories. It shall be noted that exact models are only exact when

applied to their input data and not when their districts are applied on future pe-

riods not yet known during the districting process. This stands in contradiction

to the main idea of districting, where a districting plan is produced using past

data to gain positive effects in the future such as lowered computational effort

and positive consistency effects. So the classification exact methods can be seen

misleading.

Many authors use some element of stochasticity in their input parameters to

tackle assumed uncertainties. The used element of stochasticity varies. Haugh-

land et al. [7] worked with independend stochastic customer demands and given

customer locations. The approach of Novaes et al. [11] uses stochastic service

times and customer demands with a given demand probability. Zhong et al. [29]

worked with random customer locations and random customer demand on strate-

gic level. Carlsson [1] described a method with unknown customer locations but

a given probability density of customers over the area.

Typically a districting problem is formulated as a single-depot problem with

one depot serving all the districts such as in the early work of Wong and Beasly

[27]. They proposed a model where customers are clustered to districts based on

the number of times they lied on the same route in historical periods. Districting

problems can also be formulated as multi-depot problems. Carlsson [1] consid-

ered an uncapacitated problem where multiple depot locations are known and

customer locations are unknown but a probability density is given. The model

partitions the area in n contiguous sub-regions where n equals the number of

depots.

The districting problem can also be varied by introducing various constraints.

Schneider et al. [19] developed a districting approach using service territories

and exclusion zones around the depot where the customers are not assigned to a

service territory but assigned to drivers on a daily basis. They investigated the

requirements for handling time window constraints and the influence of those

on the performance of the algorithm. Zhong et al. [29] developed a comparable

approach with cells, representing a number of customers serving as the mini-

mum unit of separation, core areas and flex zones with vehicle utilization as a
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constraint. Salazar et al. [18] created a bi-objective programming model where

dispersion and balancing the number of customers are objectives and connec-

tivity and balancing to sales volume are constraints. The model of Novaes et

al. [11] takes into account time and capacity constraints at the vehicle level.

Their districting approach is an extension of their previous work by the use of a

continuous approximation [12].

Several methods to create more or less sophisticated initial solutions from

scratch exist. A main distinctive feature is if they build the districts either ag-

glomerative, so the districts grow after each iteration or divisive, where the main

area is split recursively into the districts. Haughland et al. [7] developed an ag-

glomerative districting model where a set of arcs, consisting of all the possible

arcs connecting nodes without intersecting each other, is computed. Iteratively

nodes are chosen as seeds of new districts using an exclusion list based on the set

of arcs and then these districts are filled with neighbours as long as adding does

not violate any constraints. Most divisive approaches use a geometric partition-

ing method of the underlying service area. Novaes and Graciolli [12] presented

a divisive approach where the service region is first divided into sectors with a

polar coordinate system, centered at the depot then partitioned into rings and fi-

nally each ring is partitioned into districts. The model of Galvao et al. [2] begins

with a previously determined ring-radial districting pattern and creates district

contours with the use of a Voronoi diagrams. They approximated the expected

travel distance by the density of points within the underlying area, multiplied

with a route factor and incorporated vehicle time utilization and vehicle capacity

utilization as constraints.

More recently hybrid methods have been proposed which are combining two

or more well known metaheuristics. Gonzales et. al [3] presented a hybrid

method which makes use of elements of the greedy randomised adaptive search

procedure and tabu search and is able to solve large-scale instances. They are

tackling a real life single depot pick up and delivery problem of a Mexican parcel

company with the goal of dividing the service area in single driver delivery and

collection zones that are balanced in terms of workload between districts and

compact in geographic shape.

3 Problem Description

Various approaches for efficient districting have been developed in the past.

Many of them have in common that in order to construct a districting plan,

some kind of historical data is used. The districting plans are then built to
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perform best on the given historical data. Literature containing comparisons on

the performance of districting plans in future periods e.g. periods that are not

used in the construction process of the algorithm are very sparse. This work fills

in the gap, it provides a comparison of the performance of districting plans in

periods not used in the construction phase with those used to create them.

The research focus in this work lies on ride intensive services with low service

time at the customers location such as small package delivery or meter reading.

Routes begin and end at one fixed depot. The problem is modelled around a

set of Census tracts (CTs), representing the minimum unit of separation. CTs

contain a set of geographic units, each representing the location of a customer.

Per period X customers, chosen randomly request service, the others do not have

to be approached during that Period. The service time of customers requesting

service differs from period to period.

The whole workload within a district has to be assigned to a single driver.

Districts consist of several census tracts. The districts should be contiguous and

compact. In this context, contiguity means that all CTs in a district can be

served in a continuous tour without exiting the district. Compactness refers to

the geographic shape of the district, which should not be ”too spread out” or

”too thin”. In a given period, the travel time within a CT is approximated with

the TSP tour visiting all the customers requesting service in that CT during

that period. This data can be preprocessed prior to any further optimization.

In order to calculate the travel distance between CTs, artificial geographic center

points of the census tracts are used. Figure 1 shows Vienna separated by the

CTs with their geographic center points.

To take into account the fact that a driver will not go to this artificial center

point when entering the census tract from a neighbouring one, but rather going

to the nearest customers location, the distances between neighbouring census

tracts are halved. The routes within the census tracts are preprocessed for each

period. Therefore the calculation of the total travel distance within a district is

a two stage process:

1. Calculate the TSP tour over the artificial centers of all the census tracts

within the districts, starting and ending at the depot.

2. Calculate one TSP tour through all the customer locations where service

is requested within each census tract in the district and summarize them.

Summarizing the two components leads to the approximation of the total travel

distance within the district at the given period. In order to calculate the total
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Figure 1: Vienna with CTs and CT centers

time needed to serve the district in the given period one last piece has to be

added to the total travel distance:

3. Summarize the service time needed at all customers requesting service at

the given period appearing within each census tract of the district.

With the data described above, the districting plans where generated. These

districting plans where then assessed by their practical and legal applicability.

Within the European Union, the working time is regulated by the Working Time

Directive (2003/88/EC) [14] in general and for persons performing mobile road

transport activities in directive (2002/15/EG) [13]. These directives limit the

weekly average working time to 48 hours and the weekly maximum working

time to 60 hours. In Austria, the working hours are generally capped more

strictly. The working conditions in the shipping trade business are regulated by

the collective agreement for employees in forwarding and logistics [25]. Within

this collective agreement, the normal working hours are set to 8 hours per day

and 40 hours per week but can be extended to a maximum working time per

week of 48 hours and 10 hours per day when within the calculation period of 6

months the weekly normal working hours of 40 are met. Therefore the maximum
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overtime for a districting plan to be legally feasibly in Austria is 120 minutes.

The cap of 40 working hours per week within the calculation period leads to

average working minutes of 480 when a five workdays work week is supposed.

Therefore a districting plan with an average worktime above 480 minutes is not

practicably feasible in Austria. It shall be noted that the collective agreement

for employees in forwarding and logistics also permits work weeks with 4 and 6

workdays in full time jobs [25].

Liu, Chang and Huang [9] stated that balanced workload between districts

improve workers morale and the customer satisfaction. They proposed a model

that achieved lower overtime and travel distance through better balancing. In

this masters thesis, the contrariwise way was used, through lower overtime a

better balanced districting plan is achieved. Balance was measured by the range

between working times. The level of acceptable imbalances between the dis-

tricts can not be stated in general but differs between companies. But generally

speaking the more balanced the districting plan is, the better.

4 Model

The model used in this study is largely the same as the standard 3-index formu-

lation of the VRP [24]. With some extra constraints for:

• objective function

• penalty function on route duration

• compactness

• contiguity

The same decision variables as in the standard 3-index formulation of the

VRP are used, with customers being re-interpreted as CTs, so in this study

routing is performed over CTs instead of customers.

Input Parameters are:

T ← set of Periods

V ← set of CTs

K ← number of Vehicles = number of Tours = number of Districts

St
i ← the TSP tour over the customers in CT i plus the sum service times at

customers in CT i during period t

cij ← travel time between the centers of CT i and j
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D ← maximum tour duration

Decision Variables are:

xktij ← 1 if tour k travels between customer i and j during period t

ykti ← 1 if CT i is served by vehicle k during period k

Objective Function

Minimize f(x) = fa(x) + fb(x) + fc(x) (1)

The objective function measures the cost associated with a districting plan. It

consists of three parts:

1. fa =
∑T

t=1

∑

k∈K

∑

i∈V ykti St
i : Sum of travel and service times within CTs

summarized over all Periods T

2. fb =
∑T

t=1

∑

k∈K

∑

i∈V

∑

j∈V xktij cij : Sum of travel times between CTs

summarized over all Periods T

3. fc =
∑T

t=1

∑

k∈K 2okt : The sum of the Overtime penalty over all Periods

T

Four standard constraints are used to ensure that each tour begins and ends at

the depot and each CT is visited exactly once:

K
∑

k=1

ykti = 1 ∀ i ∈ V \ {0} ; t ∈ T (2)

K
∑

k=1

I
∑

i=1

xkt0i = K ∀ t ∈ T (3)

K
∑

k=1

I
∑

i=1

xkti0 = K ∀ t ∈ T (4)

∑

j∈V

xktij =
∑

j∈V

xktji = ykti ∀ i ∈ V, t ∈ T, k = 1, ...,K, (5)

Additionally a sub tour elimination constraint and two non negativity constraints

are needed:
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∑

i∈S

∑

j∈S

xktij ≤ |S| − 1 ∀ S ⊆ V \ {0} , |S| ≥ 2, t ∈ T, k = 1, ...,K, (6)

ykti ∈ {0, 1} ∀ i ∈ V, t ∈ T k = 1, ...,K, (7)

xktij ∈ {0, 1} ∀ i, j ∈ V, t ∈ T k = 1, ...,K, (8)

To take into account the overtime penalty, a non standard VRP variable has to

be added to the model:

okt → overtime of route through district k during period t

Two additional overtime constraints are needed:

okt ≥

⎛

⎝

∑

i∈V

yktj Si +
∑

i∈V

∑

j∈V

xktij cij

⎞

⎠−D ∀ t ∈ T k = 1, ...,K, (9)

okt ≥ 0 ∀ t ∈ T k = 1, ...,K, (10)

Overtime is defined as the difference between total tour duration and maximum

tour duration in (9). Additionally the model contains two non standard con-

straints that are changing during the runtime every time a CT is added to a

district. Therefore it is not possible to solve the problem to optimality with a

MILP Solver.

1. Compactness constraint: The compactness of the districts may not fall be-

low a certain lower bound. To measure compactness the formula

√
area

0.282 ∗ perimeter
was used, where area stands for the summarized area of the CTs within the

district and perimeter for the districts outside border lenght. It returns a

Value between 0 and 1, where 1 stands for the most compact geographic

shape, a circle [10].

2. Contiguity constraint: There must be a path that lies completely within

the district connecting all the CTs.

The following table states the classic notation and the differences to the

model used in this work.
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VRP model of this thesis
customer i census tract (CT) i

x, y xcenter, ycenter (center of census tract)
xkij → tour k xktij → decision to travel between

travels between customer i and j CTs instead of customers
in period t

cij → travel time between travel time between
customer i and j centers of CT i and j
si → service time St

i → TSP tour over customers in CT i
+ sum of sti over those customers

in period t
D → max tour duration unchanged

yik → customer i is served by vehicle k ytik → CT i is served by vehicle k
in period t

K → number of Tours K → number of Tours =
number of vehicles

= number of districts

Table 1: VRP vs this works model: Notation

Balanced workload between drivers is also desirable in principle, but it is

not considered explicitly in the model because it was expected that through the

overtime penalty on route duration, balanced districts are achieved and no fur-

ther implementation of balancing in the model is needed. Because K represents

the number of tours and both the number of trucks and the number of districts,

a well balanced districting plan is characterised by roughly the same duration

between the tours.

5 Methodology

In this work a districting method consisting of multiple phases is used:

1. Construction of an initial solution

2. Improvement through simple local search

3. Further improvement through a meta heuristic, namely large neighbour-

hood search (LNS)

For comparability reasons, all the three phases follow a deterministic paradigm.

5.1 Construction heuristic

As construction heuristic, a two stage agglomerative heuristic with the goal of

assigning each census tract to a district was used.
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• The first phase, the sequential districting phase begins with finding a

CT for the first district and iteratively adding neighbouring CTs until

either no CT can be added without violating the compactness or contiguity

constraint or the stopping criteria is reached. Then the next district is

opened with a new seed and filled the same way. This procedure continues

until the number of districts equals the number of available trucks. Note

that after the first phase is finished a feasible assignment is not guaranteed.

Output is a districting plan with size equal to the fleet size and possibly a

set of unassigned CTs.

• The second phase, the parallel districting phase finds in each iteration

the combination of one district and one unassigned CT that increases the

objective the least and merges them. This is repeated until all the CTs

are assigned to a district.

With this two stage agglomerative heuristic it is possible to start with an sequen-

tial algorithm that iteratively searches for new suitable seed CTs. Therefore the

seeds do not have to be preassigned before the districting starts and no random

generator is needed. With the second stage it can be avoided that in the last

iteration of the sequential districting all the unassigned CTs are assigned to the

last district where compactness and contiguity would not be guaranteed.

Finding seed CTs: In order to find a seed census tract for a new district,

several methods where used. These methods followed a strict ranking, only if

the top ranking method was impossible, the next lower ranked method was used:

1. From the pool of all census tracts that lie on the border of the overall

territory, the census tract with the highest compactness value is chosen as

seed. Only possible once at the beginning when all the districts are empty.

2. From the pool of all CTs that lie on the border of the overall territory and

are neighbours of at least one CT assigned to any district, the CT with the

highest compactness value is chosen as seed. Only possible when there are

unassigned census tracts left that share borders with the overall territory.

3. From the pool of all census tracts that share borders with any district, the

one with the highest compactness value is chosen as seed.

The figures 2 (a) to (f) visualize the main steps of the construction procedure

on a sample instance
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• Figure 2(a): All the CTs marked by a black cross are possible seed

customers for the first disrict, because they lie on the border of the overall

territory. The blue CT is chosen because it is the most compact out of

those. Now the district is ready to be filled with more CTs.

• Figure 2(b): The first CT to be added to the new district is chosen out

of the marked neighbours of the seed customers. The CT that when added

does not violate any constraints and increases the districts objective sum

over all periods the least is added to the blue district. The possible new

objective sums are calculated by adding the service time of the candidate

CT to the district and inserting it via a cheapest insertion heuristic into

the current districts route.

• Figure 2(c): At this stage, the first district, the blue one is closed because

the stopping criterion is met. In this example, the stopping criterion is

linked with the amount of workdays with overtime and is described in

more detail in section 6. Before choosing a new seed customer, the optimal

TSP route through the district is calculated and checked if the termination

criterion is still met. Here it is still met, so a new seed customer is chosen

out of the neighbouring CTs of the first district lying on the border of the

overall territory. The most compact out of those two is chosen as seed of

the red district.

• Figure 2(d): This figure shows the situation after the sixth districts

termination criteria is met. All the border CTs are assigned, therefore the

next seed is chosen out of all the seeds having neighbours that are assigned

to a district. The turquoise CT is chosen as seed because it is the most

compact.

• Figure 2(e): Here the last districts termination criteria is met. Now

the parallel districting phase begins, where all the not yet assigned CTs,

marked black are assigned to neighbouring districts by iteratively finding

the combination of one district and one unassigned CT that increases the

sum of the objectives over all periods the least and merging them.

• Figure 2(f): The final districting plan of the construction heuristic.
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(a) First district seed (b) First CT added

(c) Second district seed (d) Borders full

(e) Sequential finished (f) Districting finished

Figure 2: Example construction heuristic with candidates marked X
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5.1.1 Pseudocode construction heuristic

Definition of variables and parameters:

U ← the set of all CTs not yet assigned to any district.

D ← Districting plan that partitions set U in K districts

K ← the number of trucks and therefore the target number of districts.

border(C) ← set of CTs in C sharing a border with any CT outside the set C

or sharing a border with the overall territory.

neighbor(C) ← all the CTs outside the set C sharing borders with any CT

within the set C.

maxCompact(C) ← the CT from the set C having the highest compactness

value.

F(D) ← objective function value of districting plan D

feasible ← when u is added to d neither the stopping criterion is met nor any

constraint is violated.
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Algorithm 1: Construction Phase 1

Input: D ← ∅, U, K
Output: Incomplete Districting Plan D with K districts

1 Begin

2 while |D| < K do

3 if D is ∅ then
4 N ← border(U)

5 else

6 N ← border(U) ∩ neighbor(border(D))

7 if N is empty then

8 N ← neighbor(border(D))

9 ubest ← maxCompact(N) d← ∅
10 repeat

11 d← d ∪ ubest

12 U ← U \ ubest
13 δmin ←∞
14 foreach u in border(d) do

15 d← d ∪ u

16 D∗ ← D ∪ (d)

17 δ ← F (D∗)− F (D)

18 if feasible & δ < δmin then

19 δmin ← δ

20 ubest ← u

21 until δmin <∞
22 D ← d

23 return D

16



Algorithm 2: Construction Phase 2

Input: D ← Phase 1 solution, U ← residual after Phase 1, K

Output: Districting Plan D with K districts

1 Begin

2 while |U | is not empty do

3 δmin ← inf

4 ubest ←0

5 ibest ←0

6 foreach u ∈ U do

7 δu ←∞
8 foreach di ∈ D do

9 d∗i ← di ∪ u

10 D∗ ← (D \ di) ∪ d∗i

11 δui ← F (D∗)− F (D) (compactness check, cost = ∞
otherwise)

12 iubest ←0

13 if δui < δu then

14 δu ← δui

15 iubest ← i

16 if δu < δmin then

17 δmin ← δu

18 ubest ← u

19 ibest ← iubest

20 if ubest = 0 then

21 relax compactness target

22 else

23 dibest ← dibest ∪ ubest

24 U ← U \ ubest

25 return D

5.2 Local Search Heuristics

As local search operators, Move and Swap have been chosen. Those where ap-

plied consecutively, Move on the initial solution provided by the construction

heuristic and Swap on the Move improved solution. Both algorithms are per-

forming Moves/Swaps following a first fit paradigm as long as there are permis-
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sible ones that reduce the objective function. Therefore the local search ends

when a local optima is reached meaning no more improvement of the objective

function is possible by LS.

5.2.1 Move operator

The move improvement algorithm tries to improve the objective function of a

districting solution by consecutively moving one census tract from one district

to a neighbouring one. This is repeated until no permissible moves can be found.

Prerequisites for a move to be permissible: Moving one census tract

from a district to a neighbouring district is only allowed when following prereq-

uisites are guaranteed:

1. The compactness of both the decreased and the increased district must not

fall under the minimum compactness of all districts of the input districting

solution.

2. The contiguity of both districts must be granted at all times. This implies

that the CT to be moved has to lie on the border between the decreased

and the increased district.

5.2.2 Swap operator

The swap algorithm tries to improve the objective function of a districting solu-

tion by exchanging one CT from one district with another CT in another district.

Prerequisites for a swap to be permissible:

1. The compactness of both districts must not fall under the minimum com-

pactness of all districts of the input districting solution.

2. The contiguity of both districts must be granted at al times. Again this

implies that the CT to be swapped has to lie on the border between the

two modified districts.

5.3 LNS Metaheuristic

The LNS metaheuristic was first introduced by Shaw in 1997 [20]. He defined it

as a metaheuristic that overcomes local optima by consecutively relaxing visits

e.g. removing them from the initial tour until a given number of visits is relaxed.

Finding the visits to relax is done by a certain remove operator, also called destroy

operator. Afterwards the relaxed visits are put back into the tour at optimal cost
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or heuristically by a certain repair operator. If the so generated new tour is better

than the initial tour, it gets accepted as the new initial tour. This procedure is

repeated until a certain stopping criterion, like a predefined number of iterations

is reached.

Because this work concentrates on the CT level, not customer visits are

removed but CTs are removed from districts, this is done by 2 alternating destroy

operators:

1. Destroy Border: All the border CTs of a chosen district are set unas-

signed. If all the CTs within the district lie on the border, a seed CT has

to be chosen. In that case the CT with the least neighbourouring CTs

from other districts is chosen as seed and remains in the district.

2. Destroy Districts: Two districts are destroyed by consecutively execut-

ing Destroy Border until the next execution of Destroy Border would

result in empty districts. Therefore it is made sure that both districts still

inhabit seed census tracts.

For comparability reasons, a deterministic approach in finding the districts to

be destroyed was used. Each district is given a number from 1 to K that stays

the same throughout the process. Both destroy border and destroy districts al-

ternate through the list of districts. Algorithm 3 states the steps in choosing the

destroy operator and the districts to be destroyed.
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Algorithm 3: LNS choosing destroy operator

1 Begin

2 iter ← 1

3 i ← 0

4 while iter ≤ itermax do

5 i← mod K

6 if iter mod 2 = 1 then

7 destroy border(i)

8 else

9 destroy district(i)

10 i← i+1

11 i← i mod K

12 destroy district(i)

13 iter ← iter + 1

14 i← i+ 1

With this alternating destroy operators it is ensured that enough differing

iterations are possible while determinability is ensured.

As repair operator, the second phase of the construction heuristic, the parallel

agglomerative districting phase with consecutively Move and Swap improvement

was used.

5.3.1 Pseudocode LNS Metaheuristic

Definition of variables and parameters:

U ← the set of all CTs not yet assigned to any district

D ← the set of Districts.

K ← the number of trucks and therefore the target number of districts.

stoppingcriterion ← some criterion like a predefined number of iterations.

repair(D∗) ← perform Algorithm 2 with input D ← D∗ and U ← D \D∗
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Algorithm 4: LNS improvement

Input: D ← districting solution, U ← ∅, K , iterMax

Output: Improved Districting Plan D with K districts

1 Begin

2 i← 1

3 iter ← 1

4 while iter < iterMax do

5 i← i mod K

6 if iter mod 2 = 1 then

7 D∗ ← destroy border (D, di)

8 else

9 D∗ ← destroy district (D, di)

10 i ← i+1

11 i← i mod K

12 D∗ ← destroy district (D, di)

13 iter ← iter + 1

14 i← i+ 1

15 D∗ ← repair(D∗)

16 if F(D∗) < F(D) then

17 D ← D∗

18 return D

6 Numerical Study

In this study the interest lies in determining how ex ante districting plans per-

form over time. For this purpose instances with varying numbers of customers,

vehicles, and city region have been generated.

For the purposes of this study, an instance consists of 100 ”training” sce-

narios representing historical demand realizations, and 100 evaluation scenarios

representing future periods not yet known during the districting process. For

each instance, a single districting plan is generated minimizing the total cost

over all 100 training scenarios of the respective instance. Three plans of increas-

ing quality are considered → construction solution, local search improved plan

and LNS improved plan. The quality of these plans is then validated by applying

them to the 100 associated evaluation scenarios.

The performance of the districting plans is further benchmarked against a
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policy of daily re-optimization, i.e. solving each scenario as an independent VRP

with no geographic constraints regarding CTs or districts. These benchmark

solutions were obtained using the hybrid genetic algorithm proposed by Vidal et

al. [26].

One defining input variable having strong impacts on the districting solution

and quality for any districting procedure is fleet size. The fleet size is typically

given by the company requesting the districting service. Because in this work

no physically existing firm is considered, the fleet size and therefore the amount

of districts was derived from the VRP solutions of the underlying scenario. The

maximum amount of tours the VRP solution needed to serve all the customers

from the 100 training scenarios was used as fleet size. This conservative approach

was needed because otherwise the construction heuristic would have to make use

of very high amounts of overtime and the room for improvements would be very

much limited.

6.1 Input Data

Because of the availability of accurate street point and citizen data, the city of

Vienna has been chosen as subject of the study. Three .csv documents have been

downloaded from www.data.gv.at, the open data site of the city government of

Vienna:

• ZAELBEZIRKOGD.csv : This file contains various information regarding

the 250 census tracts, most importantly: Longitude and Latitude param-

eters representing the geographic borders of each census tract, its circum-

ference and its area [23].

• vie 303.csv : Here the population of each census tract is stated [22].

• STRASSENGRAPHOGD.csv : A street graph file that contains for every

street within Vienna a number of Latitude and Longitude points [21].

For every citizen of Vienna a location has been produced by randomly choos-

ing a street point within the census tracts. Each tract got as much locations as

its population number indicates. With this distribution method, it was ensured

that the distribution of customer locations over the city was comparable with

the population density within the various parts of Vienna.

In the next step 10 000 citizens were chosen randomly from all the citizens

of Vienna with their previously assigned location. These 10 000 citizens where

representing the possible customers with their possible customer locations. With

22



this pool of possible locations, the instances in the versions training and evalu-

ation where produced, each containing 100 scenarios. Training and evaluation

instances do not differ in their structure or the way they where constructed, their

only difference lies in their application later on. Training instances are used by

the districting algorithm to create the districting plan. Evaluation instances are

used to ex post evaluate the districting plan. Another variation was introduced

by varying the number of customers chosen as active per period. And finally

the customers of each period where divided up by their location relatively to the

Danube, resulting in two versions of each instance: Danube North and Danube

South. This division was introduced because the Danube represents a broad ob-

stacle within Vienna. Crossing by car is only possible on five bridges, therefore

in most of the cases it does not make sense to create districts covering CTs on

both sides. It also prevents problems arising from closed bridges due to acci-

dents or renovation work. The total structure of the produced periods is shown

in table 2.

1000 Customers
North

Training
Evaluation

South
Training

Evaluation

2000 Customers
North

Training
Evaluation

South
Training

Evaluation

3000 Customers
North

Training
Evaluation

South
Training

Evaluation

Table 2: Input instance Tree

For each of the 6 instances with its two temporal manifestations shown in

table 2, 100 scenarios where produced and each scenario is structured and con-

structed almost the same, the only difference lies in the number of customers

set active per instance. Exemplary, in the following, the creation of an 1000

Customers instance is stated.

Out of the pool of 10 000 possible customer locations, randomly 1000 cus-

tomers are picked to be equipped with a service time bigger than 0. The actual

service time for each chosen customer is determined randomly between 5 and

15 minutes. The customers are split by their location relatively to the Danube,

producing two instance files. North of the Danube lie 62 census tracts and south
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188. A distance matrix from every chosen customer to every chosen customer

and the depot is created by calculating the on street distance in meters, using

the bing.com/maps algorithm. Because cost is throughout the study defined as

minutes, the distance is divided by a supposed mean speed of 25 kilometres per

hour and rounded to whole digits. Training and Evaluation are scenario sets,

each scenario set can be considered an instance. So 6 instances are used, each

consisting of 100 training and 100 evaluation scenarios.

The hereby generated scenario sets are then directly used for the VRP algo-

rithm used to create the comparative data.

For the input data used by the districting algorithm, further processing took

place. As in table 1 described, the districting algorithm uses an adapted version

of service time si. There are two versions of service time used in this work:

• Customer service time: The time needed at each customer location.

• Census tract service time: The sum of all customer service times within

the CT + the TSP tour between them which has been preprocessed for each

of the 100 scenarios within each instance using the GUROBI optimization

solver.

The districting algorithm works exclusively on census tract level. For the

distance matrix, the geographic center point of each census tract was used. The

distance between neighbouring census tracts was divided by two to accommodate

for the fact that when driving from one district to the neighbouring one, typically

not the center point, but the nearest customer is piloted to.

6.2 Results structure

The evaluation of results was split in two phases. First, the training phase where

simulated input data from past periods was used to create the districting plans.

Secondly these districting plans then where used in the evaluation phase on sim-

ulated future periods. Hereby the performance of the districting plans on periods

that where not used when creating them was evaluated. As in subsection 6.1

described, three different input instances with 1000, 2000 and 3000 customers,

each split at the Danube came to use. A daily optimized VRP solution was

compared with the initial districting solution and the results of the improve-

ment algorithms LS and LNS. Objectives, Penalties, Overtimes, Balance and

Compactness changes where evaluated. Because in Evaluation instances, the

same districting plan as in the training instances was used, the compactness

parameters stay the same in both instances.
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Displayed key figures

• Objective: Result of the objective function, so sum of travel times plus

sum of service times plus sum of overtimes over all tours.

• Total Penalty: The total penalty that is included in the objective. Be-

cause penalty is a 100% surcharge on objectives, at each district within

each period over 480, the total penalty also stands for the total amount of

used minutes overtime.

• Avrg. worktime: Average working minutes per workday\tour.

• # Tours with overtime: Total amount of tours with tour duration over

480 minutes.

• # Tours with overtime more than 120: Total amount of tours with

tour duration over 600 minutes.

• Balance: Balance is measured by how much the tours differ in their ob-

jective, the indicators are the maximum, average and minimum objective

sums of the districts within the districting plan.

• Compactness: Maximum, average and minimum compactness of a single

district within the districting plan.

Besides to the data categories described above, showing results on districting

level, two charts displaying results on the tour level are presented:

Diagram 1: Number of tours per working minutes

In this diagram, the distribution of working minutes is plotted. Data values

are rounded up to the nearest multiple of 10 minutes. The line represents the

floating mean between neighbouring dots. Three colours where used to differen-

tiate between the three districting solutions:

• Blue: Construction heuristic solution.

• Red: Local search solution

• Green: Large neighbourhood search solution.

For better a understanding, the diagram is explained by the example 1000 cus-

tomers north, where 9 districts where created, thus 900 tours per instance:
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Figure 3: Example Diagram Distributions of Tour Lengths

• The red dot within the yellow circle gives us the following information: For

the given instance, the districting plan found with the local search heuristic

lead to 40 tours of length 490-500 minutes over the planning horizon.

• The blue dot within the black circle: For the given instance, the districting

plan found with the construction heuristics solution lead to 20 tours of

length 630-640 minutes over the planning horizon.

The green line divides the diagram between under 480 minutes and therefore

tours finished within normal working time and over 480 minutes, tours finished

in overtime. The dots between the green and the red line symbolize tours fin-

ished in over 8 hours and under 10 hours. Everything on the right of the red

line is finished after more than 10 hours and therefore illegal by the Austrian

collective agreement for employees in forwarding and logistics.

Diagram 2: Percent of workdays under certain amount of working

minutes

This diagram shows how much percent of the total tours are finished under

a certain work time. The same colour code as in diagram 1, described above is

used. Again the example from the 1000 customers north instance:
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Figure 4: Example Diagram Cumulative Distributions of Tour Lengths

• The blue dot within the black circle: In the underlying instance with the

construction heuristics solution, 53.3% of the tours are finished in less than

480 minutes.

• The blue dot within the yellow circle: In the underlying instance with the

construction heuristics solution, 79.88% of the tours are finished in less

than 560 minutes.

Again the diagram is divided at 480 minutes by a green line and at 600 minutes

by a red line.

6.3 General trends

The construction heuristics performances was in most cases not practically ap-

plicable neither in the objective function performance, overtime measures or

balance. But through LS and LNS it was possible in every instance to derive

a districting plan with performance in useful ranges. Overall it was possible to

decrease the objective of the construction heuristics solution by 2 to 12 percent

through LS and LNS. Figure 5 shows the gap between VRP objective and the

12 instances with the three different types of districting plans compared to their

ex ante counterpart using the formula: (districting objective)−(V RP objective)
(V RP objective) .

In bigger instances in terms of customers, the construction heuristic performs

better. Generally the districting plans were able to hold their quality quite well

when applied to the evaluation instances. The objective maximally increased

by a low digit percentage and in one instance even decreased when comparing

training with evaluation instances.

Although the stability of the districting plans from training to evaluation

scenarios was quite smooth, the gap to the VRP solution was not. The range of
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the gap from the worst initial solution with 30.8% to the best LNS solution with

11.8% although is a quite significant improvement and shows the performance of

these simple improvement algorithms. But they still are significantly much worse

than the VRP solutions objective, which is ultimately no surprise since the VRP

problem is very complex and as pointed out earlier districting plans are generally

accepting some deterioration to gain other benefits. But with more sophisticated

methods and models, there is still considerable room for improvements.

Figure 5: Gap to the VRP solutions objective

The critical average worktime of 480 minutes was exceeded slightly in four

of the twelve instances, LS and LNS did not change the average tour length

significantly, also virtually no difference between training and evaluation sce-

narios could be observed. But the total amount of overtime was reduced in all

the instances by LS and consecutively LNS, therefore the many extremely low

and high tour lengths approached the average. So throughout the instances, the

construction heuristics solution could be increased drastically with LS in terms

of balance with respect to variations in tour lengths. The balance difference

between the LS and LNS solutions was also significant in most of the instances.

The most problematic boundary for the districting plans to be practically

applicable in Austria turned out to be the number of days with overtime more

than 120, so over 10 working hours. Figure 6 shows the percentage of tours

with overtime bigger than 120. Although big improvements with LS and LNS

could be observed, the percentages still lie in 50% of the instances above 10%

of the total amount of tours. But extreme tour lengths have been eradicated

by LNS, the tours with length above 600 minutes mostly lie slightly above the

limit. Between training and evaluation again no significant difference could be

28



observed.

The biggest differences between training and evaluation scenarios have been

observed in terms of the variation of tour durations within an instance. In

evaluation scenarios more spikes with extreme low or high amounts appear and

they are generally less uniformly distributed around the target value of 480. This

observation is discussed in more detail using a representative example instance

in section 6.5.

Figure 6: Overtime more than 120 minutes in % of total tours

6.4 Effects of customer numbers

As described in section 6.1 three different amounts of customers where used in

the instances. Because customers are clustered into a predefined unchanging

number of census tracts representing the minimum unit of separation, more

customers mean higher operating expenses per CT. So the more customers, the

more vehicles = districts are needed to serve the underlying area. Likewise,

because the number of CTs remains constant, also the number of CTs per tour

becomes lower. Since the relative changes from moving or swapping one CT are

much larger when tours consist of only a small number of CTs, it becomes less

likely that improving moves exist. Hence local optima are reached quickly, and

are more difficult to escape from.

Nonetheless, because the number of customers is scaled linearly, the rela-

tive differences between the CTs remain approximately the same and significant

improvements in the objective could be observed in all the instances.
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6.5 Specific observations on an example instance

The data gained from the instances described in table 2 is provided in six train-

ing/evaluation comparison pages. In this subsection a representative instance is

discussed in detail, the remaining are to be found in the appendix.

The instance to be discussed in detail has in total 2000 customers and lies north

of the Danube. These customers are distributed among the 250 CTs, North of

the Danube 62 CTs, and 496 customers are located. The VRP solution produced

a maximum of 15 routes out of the 100 instances. Therefore 15 districts where

created, leading to 1500 tours = workdays. All the gaps in the following are gaps

between the summarized objective between all tours, so sum of travel times plus

sum of service times plus sum of overtimes over the 1500 tours and the VRP

solutions objective, using the formula: (districting objective)−(V RP objective)
(V RP objective) .

The gap of the construction solution to the reference solution amounted to

26.8% this gap could be reduced by LS to 22.1% and further through LNS to

14.97%. Overall, the improvement heuristics were thus able to reduce the gap

to the reference solution by over 11 percentage points.

The strong performance of LNS can be observed more obvious when looking

at the amount of used overtime. While LS reduced the overtime to 88 918.5

/ 118 371.5 = 75.12% of the construction solutions objective, LNS reduced it

further to 36.08%. So a reduction of 63.92% in overtime from construction to

LNS was achieved.

This observation continues when looking at the number of days with overtime

above the critical limit of 120 minutes. While the construction heuristic makes

use of 692 of the 2000 tours with tour length above 600 minutes, LS reduces

them to 232 tours. With LNS this amount could be drastically reduced to 96

tours above the limit which amounts for 4.8% of the total amount of tours within

the instance. When looking at figure 7(a) it can be observed that the green LNS

line flattens out much earlier than the other two, therefore the amount of tours

with overtime above the limit of 600 minutes is reduced drastically by LNS. This

is in sight of the total days with overtime interesting because the LS solution

used 130 days less than LNS. Therefore when overtime appears, with the LNS

solution the working time typically does not rise much above the normal working

time. This stands in contrast to the LS solution and more to the construction

heuristics solution which can be observed beautifully in figure 7(a) and in the

amount of workdays with overtime more than 120.

In terms of balance, a steady decrease in range of tour durations between
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the tours throughout the three solutions was achieved. This can be observed in

both diagrams. In figure 7(a) the blue construction heuristics line stretches from

150 minutes to an extreme of 1200 minutes e.g. 20 hours with a peak between

200 and 300 working minutes e.g. only half of the normal working time. The

orange LS solutions line flattens the peak between 200 and 300 minutes and

rises strongly between 400 and 500 minutes where the normal working time is

located. Problematic is that the LS solution too needs too long to flatten out

completely. It still makes use of unrealistic working times over 1000 minutes.

As seen at the green line, LNS completely removes the peak between 200 and

300 minutes, it peaks around the normal working time and flattens out rapidly

as overtime increases. In figure 7(b) an interesting behaviour can be observed.

Regarding the 480 minutes line LS performs best with 63.5% of workdays under

480 minutes then LNS follows with a slight lead to construction of 54,6% to

53.7%. This ranking gets turned upside down. At the 600 minutes line LNS had

93% of workdays completed, LS 84.5% and construction 75.3%. Later on at 800

minutes working time the LS solution gets passed even by the construction line

but because over 800 minutes working time is unacceptable either way it is not

given much importance.

Figure 8 (a) is a good example why it is necessary to be able to relax the

compactness constraint. The least compact district with a compactness value of

0.5272 is district 15 which consists of a single CT in the construction solution.

As in subsection 5.1 described, the CT with the highest compactness value shall

be chosen as seed, therefore all the other candidates had at this stage lower

compactness than 0.5272. Because the compactness constraint is set to 0.55 the

set of feasible seed candidates is empty, so without relaxing the constraint no

CT could have been chosen as seed for the last district. In terms objective and

balance the improvements can easily be seen from figure 8 (a) to (c). The three

districts with the lowest objective at (a) are unsurprisingly the districts that

inhabit only one CT (districts 7, 11 and 15). At (b) only one single CT district

is left, at (c) every district inhabits at least two CTs.

From figures 8 (a) to (c) the limits of LS and the usefulness of LNS can be

observed. The LS can only make small changes in the solution, and requires each

change to be positive. It quickly becomes trapped in a local optimum that could

be easily improved by allowing some intermediate changes that deteriorate the

objective, but which then later lead to a better local optimum. On the other

hand, the LNS is able to make larger changes in the solution which cannot

be achieved through a chain of exclusively improving changes but which become

positive overall. These general observations are true for every processed instance,

31



for the particular example the steps leading to a local optimum are presented in

detail in the following.

At figure 8(a) district 7 has the second lowest objective but moving and

swapping with either the neighbouring CT from district 8 or 6 is impossible due

to the contiguity constraint. District 8 has the highest objective of all the 15

districts, due to the compactness constraint it is not possible to move a CT to

the single CT district 15 or to district 4. Moving a CT from 8 to 9 is impossible

due to the contiguity constraint. Moving a CT from 8 to 14 would violate

the compactness constraint of district 8, Swapping is not possible due to the

contiguity constraint. The other two neighbouring districts of district 8 namely

5 and 6 both have quite high objectives in figure 8(a), only one move from 8 to

6 and a swap between 5 and 6 made sense. Because the CT moved from 8 to

6 has an exceptionally high service time, district 6 is in figure 8(b) the district

with the highest objective, even more than district 8 in figure 8(a). With LNS

the situation could be resolved, the objective of district 6 shrunk because the

exceptionally big CT is now accompanied by only one other CT. District 7 took

over the rest of district 6 and thus growing to a meaningful size. District 14

could incorporate two CTs from district 8 after the latter had been destroyed by

the destroy district operator.

Between training and evaluation instances, the objectives gap only increased

insignificantly by a maximum of 0.3%. The biggest differences between training

and evaluation can be observed by comparing the figures 7(a) and 7(c). All the

three lines are showing much more spikes, especially the blue construction line

but also the LS line. All three lines are shifted slightly to the right, meaning

more days with overtime bigger than 120 and in the cases of LS and LNS more

days with working time bigger than 480 occurred. Nevertheless the differences

between training and evaluation instances are quite small so the ex ante plan

was indeed a good prediction of the future.
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(a) Initial Districting

(b) Local Search Improved

(c) LNS Improved

Figure 8: Districting 2000 North
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7 Conclusion

Districting in a logistics context has been proven to be a strong approach to

reduce the daily routing effort and gain positive effects of consistency like cus-

tomer to drivers acquaintance, increased drivers knowledge of his territory and

the last-meters. On the other hand, through decreased flexibility, routing cost

typically increases in comparison to daily optimization but it has been proven

in the literature that the positive effects can offset parts of the higher routing

cost. A districting process typically is based on some kind of historical data with

its output to be used in future periods. Keeping this characteristic in mind it

was surprising to see that most approaches in the literature where not checked

against future periods. This work filled in the gap, by using training instances

to create the districting plans and checking them by evaluation instances, rep-

resenting future periods.

This masters thesis evaluated the performances of a simple construction

heuristic, a local search improvement heuristic and a meta heuristic both between

them and in comparison with daily optimization. These comparisons where then

expanded on evaluation instances representing periods not yet known during the

districting process. Not only the objectives function outcome was compared but

also the legal applicability in Austria regarding working time restrictions was

evaluated.

The power of even simple local search improvement methods such as Move

and Swap and the ability to escape local optima by LNS was demonstrated.

When modelling the problem it has been assumed that balanced districting plans

in terms of differences between tour lengths will occur without explicit consider-

ation in the model through the penalty function. It was shown that the penalty

function for overtime did lead to an increase in balance. From the initial dis-

tricting plans to the LS and the LNS plans, the balance indicators indeed did get

better but when strict limits such as maximum work times are applied, an ad-

ditional constraint could be useful. The differences between ex ante and ex post

instances turned out to be insignificant in most cases and it was shown that it is

legitimate to use plans created with historical data in future periods. This may

change when the historic data is not as extensive or the range in possible service

time is bigger. As input data, political census tracts have been chosen ensuring

an realistic distribution of customers through the underlying service area. But

because of their differences in compactness and population, those census tracts

had significant impact on the districting process, so the output could change

notably when the census tracts are created on logistic considerations instead of
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political ones.

The effects of the used amount of historical data during the districting pro-

cess could be an interesting topic of future research. The same applies to the

differences either in computational effort and performance in the objective be-

tween a classical districting problem and a clustered districting problem like the

one in this masters thesis. Also the effects of more sophisticated improvement

heuristics in contrast to the simple ones used in this work would present an

interesting field of investigation.

8 Appendix

8.1 Abstract

Districting in a logistics context refers to a simplification of the complex vehicle

routing problem where the underlying service territory is divided into several

contiguous, compact and balanced sub territories that are each served by one

unchanging driver. This masters thesis examined the applicability of logistics

districting using real life data from the city of Vienna. The performance of dis-

tricting plans with increasing quality created by a simple construction heuristic,

a local search improvement heuristic and a metaheuristic has been evaluated

both against each other and a reference daily optimized vehicle routing solution.

A literature gap has been filled by carrying out comparisons not only on past

data but also on ex post instances representing future periods not yet know dur-

ing the districting process. Based on computational experiments the power of

local search and large neighbourhood search was demonstrated and the differ-

ences between ex ante and ex post instances where observed to be insignificant.

For each instance a detailed evaluation chart is given, including the districting

plan drawn on the map of Vienna.
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8.2 Zusammenfassung

Districting in einem logistischen Kontext stellt eine Vereinfachung des kom-

plexen Vehicle Routing Problems dar bei dem das zugrunde liegende Servicege-

biet in mehrere zusammenhängende, kompakte und ausgewogene Untergebiete,

welche von einem einzigen gleichbleibenden Fahrer betreut werden, aufgeteilt

wird. Diese Masterarbeit untersucht die Anwendbarkeit von Districting unter

Zuhilfenahme von echten Daten der Stadt Wien. Die Performance von District-

ing Plänen mit steigender Qualität, erstellt mithilfe einer simplen Konstruktion-

sheuristik, einer local search Heuristik und einer Metaheuristik wurden sowohl

gegeneinander als auch mit einer täglich optimierten Vehicle Routing Lösung

verglichen. Die Vergleiche wurden nicht nur aufgrund von Vergangenheitsdaten,

sondern auch aufgrund von ex post Instanzen, welche Zukunftsdaten darstellen

die während des Districting Prozesses noch nicht bekannt waren, durchgeführt.

Dadurch konnte eine Literaturlücke geschlossen werden. Aufgrund von Com-

puterexperimenten wurde die Stärke von local search und large neighbourhood

search demonstriert und Unterschiede zwischen ex ante und ex post Instanzen

stellten sich als unwesentlich heraus. Für jede Instanz wurde eine detaillierte

Auswertungstabelle inklusive dem Districting Plan, gezeichnet auf der Karte

der Stadt Wien, angegeben.

8.3 Results

37



10
00

C
u
st
om

er
s
N
or
th
:
90

0
W
or
k
d
ay
s

T
ra

in
in
g

T
ot
al

A
v
rg
.

#
T
ou

rs
w
it
h

#
T
ou

rs
w
it
h

W
or
k
lo
ad

C
om

p
ac
tn
es
s

O
b
je
ct
iv
e

O
ve
rt
im

e
T
o
u
r
L
en

g
th

O
ve
rt
im

e
O
v
er
ti
m
e
>

12
0

M
ax

A
v
rg

M
in

M
ax

A
v
rg

M
in

V
R
P

3
50

78
5.
5

C
o
n
st
r.

4
38

34
8.
0

3
2
28

4.
5

45
1
.2
82

36
7

11
0

76
89

0.
0

48
71

5.
33

25
06

9.
0

0.
77

72
0.
61

53
0.
48

83
L
S

4
19

37
2
.5

12
19

8.
0

4
5
2.
42

29
5

10
51

56
5.
5

46
59

6.
94

39
25

8.
5

0.
58

63
0.
53

37
0.
48

94
L
N
S

4
17

67
1
.5

11
44

2.
5

4
5
1.
37

30
0

7
51

56
5.
5

46
40

7.
94

39
05

1.
0

0.
68

89
0.
56

38
0.
48

94

(a
)
1
0
0
0
N

T
ra
in
in
g
D
is
tr
ib
u
ti
o
n
s
o
f
T
o
u
r
L
en

g
th
s

(b
)
1
0
0
0
N

T
ra
in
in
g
C
u
m
u
la
ti
v
e
D
is
tr
ib
u
ti
o
n
s

E
v
a
lu
a
ti
o
n

V
R
P

35
0
5
45

.5
C
o
n
st
r.

4
37

9
39

.5
32

68
3.
5

45
0
.2
8

38
0

10
5

78
41

1.
0

48
65

9.
94

24
15

6.
0

L
S

4
18

4
18

.0
12

15
6.
0

45
1
.4
0

28
5

15
52

56
8.
0

46
49

0.
89

38
54

2.
0

L
N
S

41
7
31

3.
5

11
9
54

.0
4
50

.4
0

27
7

15
52

56
8.
0

46
36

8.
17

39
11

5.
0

(c
)
1
0
0
0
N

E
va
lu
a
ti
o
n
D
is
tr
ib
u
ti
o
n
s
o
f
T
o
u
r
L
en

g
th
s

(d
)
1
0
0
0
N

E
va
lu
a
ti
o
n
C
u
m
u
la
ti
v
e
D
is
tr
ib
u
ti
o
n
s

F
ig
u
re

9:
T
ou

r
L
en

gt
h
D
is
tr
ib
u
ti
on

s
10

00
C
u
st
om

er
s
N
or
th

38



(a) Initial Districting

(b) Local Search Improved

(c) LNS Improved

Figure 10: Districting 1000 North
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(a) Initial Districting

(b) Local Search Improved

(c) LNS Improved

Figure 12: Districting 1000 South
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(a) Initial Districting

(b) Local Search Improved

(c) LNS Improved

Figure 14: Districting 2000 South
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(a) Initial Districting

(b) Local Search Improved

Figure 16: Districting 3000 North
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(a) Initial Districting

(b) Local Search Improved

(c) LNS Improved

Figure 18: Districting 3000 South
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