

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

„Learning Low Dimensional Representations for K-Means
with K-Competitive Autoencoders“

verfasst von / submitted by

Lukas Miklautz, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Diplom-Ingenieur (Dipl.-Ing.)

Wien, 2018 / Vienna 2018

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

A 066 926

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

Masterstudium Wirtschaftsinformatik UG2002

Betreut von / Supervisor:

Univ.-Prof. Dipl.-Inform.Univ. Dr. Claudia Plant

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Thesis Focus and Key Contributions . 2
1.4 Thesis Outline . 3

2 Data Mining 5
2.1 Overview . 5
2.2 Clustering . 5

2.2.1 K-Means . 6
2.3 Dimensionality Reduction . 7

2.3.1 Principal Component Analysis . 7

3 Neural Networks 9
3.1 Overview . 9
3.2 Feed Forward Network . 9
3.3 Autoencoder . 11

4 Representation Learning 13
4.1 Overview . 13
4.2 Challenges . 13
4.3 Literature Review . 14

4.3.1 Denoising Autoencoder . 14
4.3.2 Stacked Autoencoder . 14
4.3.3 Contractive Autoencoder . 15
4.3.4 Variational Autoencoder . 15
4.3.5 K-Sparse Autoencoder . 15
4.3.6 Winner-Take-All Autoencoder . 16
4.3.7 K-Competitive Autoencoder for Text 16
4.3.8 Deep Embedded Clustering . 17
4.3.9 Deep Clustering Network . 19

5 Validation 21
5.1 Motivation . 21
5.2 Strategy . 21

5.2.1 Compared Methods . 22
5.2.2 Evaluation . 22

Normalized Mutual Information 23
Cluster Accuracy . 23
ROC-AUC . 23

iv

5.2.3 Implementation . 24
5.3 Data Generation . 24

5.3.1 Noise Data Generation . 25
5.4 Experiments . 26

5.4.1 Linear k-Competitive Autoencoder 26
Conclusion . 31

5.4.2 Nonlinear k-Competitive Autoencoder 31
Conclusion . 37

5.4.3 Noise Experiments . 40
Conclusion . 41

5.4.4 Real World Data Sets . 43
Annthyroid (AnnthX {δ}) . 44
Cardiotocography (Cardio22) . 44
HeartDisease (HD44) . 44
Hepatitis (Hepa16) . 44
WPBC (WPBC24) . 45
Model Setting . 45
Results . 45

6 Conclusion 49
6.1 Achievements . 50
6.2 Future Works . 50

6.2.1 Short Term Goals . 50
6.2.2 Long Term Goals . 50

A Abstract 51
A.1 English . 51
A.2 Deutsch . 51

Bibliography 53

v

List of Figures

3.1 Directed acyclic graph of a fully connected feed forward neural network.
Figure adapted from [8]. 10

4.1 The figure shows one feed forward step of KATE during training for
k = 2. Figure adapted from [12]. 17

5.1 This figure shows the generated data hi before transformation. There
are four clusters in two dimension and each cluster consists of 2500 data
points. This initial setting is taken from [63]. 25

5.2 This figure shows the generated data hi with additional noise points be-
fore transformation. There are four clusters in two dimensions and each
cluster consists of 2500 data points. This initial setting is taken from [63].
Additionally, there are 100 randomly generated noise points added, de-
noted with label −1. 26

5.3 This figure shows the generated data hi with two additional uniform

noise dimensions, denoted as ĥi. There are four clusters in two dimen-
sion and each cluster consists of 2500 data points. This initial setting is
taken from [63]. 27

5.4 The above figure shows the learned 2-dimensional representations from
the generated data in figure 5.1 before any non-linear transformations.
(A) shows the 2-dimensional encoding found by a linear autoencoder.
(B) shows the 2-dimensional encoding found by a linear autoencoder
with k-competitive layer. 28

5.5 The above figure shows two synthetically generated clusters in two dif-
ferent configurations. (A) shows two clusters with higher standard devi-
ation, which slightly overlap in both dimensions. (B) shows two clusters
which are separable in dimension x0, but overlap in x1. 29

5.6 The above figure contains the learned representations from the 2-dimensional
data set with two overlapping clusters in figure 5.5a. (A) shows the rep-
resentation learned by a linear autoencoder. (B) shows the representa-
tion learned by a linear autoencoder with k-competitive layer. 29

5.7 The above figure contains the learned representations from the 2-dimensional
data set with two stacked clusters in figure 5.5a. which are separable in
one dimension, but overlap in the other. (A) shows the representation
learned by a linear autoencoder. (B) shows the representation learned
by a linear autoencoder with k-competitive layer. 30

5.8 This figure shows the steep increase in validation loss for each epoch,
while training the linear k-competitive autoencoder on data set 5.5b. . . 31

vi

5.9 The above figure shows the clustering performance for k-means on the
learned representation of all linear models listed in 5.1 measured in nor-
malized mutual information and cluster accuracy. 32

5.10 The above figure shows three common non-linear activation functions.
The top figure shows the relu activation function, which outputs only
numbers greater or equal to zero. The middle one is the leaky relu func-
tion with a negative slope of 0.1. The bottom figure is the tanh function,
which is defined on the interval [-1,1]. 33

5.11 The above figure shows the clustering performance for k-means on the
learned representation of all models listed in 5.2 measured in normal-
ized mutual information and cluster accuracy. 34

5.12 This figure shows a comparison between the tanh, relu and leaky relu ac-
tivation function for different values of α, evaluated on the "transformed
sig" data set from equation 5.3. The other settings where kept the same
as in table 5.2. 35

5.13 This figure shows a comparison between the tanh and leaky relu activa-
tion function in both neurons for different values of α on the transformed
sig" data set from equation 5.3. 36

5.14 The figure above shows the encoding for the tanh activation function
and α = 1.0 corresponding to figure 5.13. 37

5.15 The above figures show the best NMI performer from table 5.3 on the
tanh (equation 5.5) and exponentially (equation 5.4) transformed data
sets. 38

5.16 The above figures show the two principal components for each encoding
found in figure 5.15. 39

5.17 The above figures show the best NMI performer from table 5.3 on the
sigmoid (equation 5.3) transformed data set. 39

5.18 The above figures depict the performance of the k-competitive layer
against other techniques on the synthetic data set from figure 5.3. The
number of noise dimensions has been increased by multiples of five.
Figure (A) shows normalized mutual information and figure (B) the
cluster accuracy. 42

5.19 The above figures depict the performance of the k-competitive layer
against other techniques on the synthetic data set from figure 5.2. The
x-axis indicates the number of noise points added to the original data
from 5.1. Figure (A) shows normalized mutual information and figure
(B) the cluster accuracy. 42

5.20 The above figures depict the performance of the k-competitive layer
against other techniques on an adapted version of the noise experiments,
where the noise is distributed farther away from the clusters. Figure (A)
shows normalized mutual information and figure (B) shows the cluster
accuracy. 43

vii

List of Tables

5.1 The experimental setting of models for the linearity experiments in sec-
tion 5.4.1. 27

5.2 The experimental setting of models for the nonlinearity experiments in
section 5.4.2. Each model has one layer, two hidden neurons, is trained
for ten epochs and has a batch size of 64. 34

5.3 The results for the different data sets and activation functions for the k-
competitive layer with four hidden neurons and k = 2. The parameter
α has been tuned for each data set and activation function separately. . . 38

5.4 The experimental setting of models for the noise experiments in section
5.4.3. Each model has one hidden layer, eight neurons, is trained for
three epochs and has a batch size of 64. 41

5.5 The experimental setting of all models for the real world outlier data in
section 5.4.4. 46

5.6 In the above table are the ROC-AUC values for each model. A δ next to a
data set denotes that duplicate instances were not removed. (ML) refers
to the usage of multiple layers and (OC) to overcomplete hidden layers,
for details see 5.4.4. The highest values of the models are highlighted.
The last row shows the best performing outlier detection methods from
the Campos, Zimek, Sander, et al. [9] survey. 47

ix

List of Abbreviations

ACC Clustering ACCuracy
AE AutoEncoder
FFN Feed Forward Network
DCN Deep Clustering Network
DEC Deep Embedded Clustering
IDEC Improved Deep Embedded Clustering
KATE K-competitive Autoencoder for TExt
NMI Normalized Mutual Information
PCA Principal Component Analysis
relu rectified linear unit
ROC-AUC Receiver Operating Characteristic - Area Under the Curve
sig sigmoid function
tanh tangens hyperbolicus function
WTA Winner Takes All

1

1 Introduction

1.1 Motivation

Over the last decade Data Mining and Machine Learning have been the center of atten-
tion. Especially, the hype around Deep Learning has started a new Spring in artificial
intelligence research. This was due to impressive results for supervised learning over
a range of tasks for image [7], [38], text [59] and speech data [22], but interesting appli-
cations in unsupervised learning as well [17], [28], [60].

The success of deep neural networks depends on their ability to learn a distributed
hierarchy of features, often called representation. To illustrate this, assume the follow-
ing example of a neural network with three layers and a data set containing pictures
of faces. A learned hierarchy from the first to the last layer would go from simple to
more abstract ones. E.g. the first layer could contain features of edges, the second layer
combines those to construct higher level features like mouths, ears, noses and the third
layer could then consist of different faces. In this sense, the job of a neural network
could be summarized as automated feature engineering. Thats, why deep learning is
particularly useful for image, text and speech data, where it is difficult for humans to
engineer suitable features.

In contrast to the hype surrounding deep learning, clustering is one of the most
fundamental challenges in data mining and machine learning and has been studied for
several decades. Intuitively, clustering is the task of grouping similar objects together.
An example are recommender systems at online shops, in which customers with sim-
ilar buying behavior get similar recommendations. In times of big data, traditional
clustering algorithms like k-means [34] or DBSCAN [14], face new challenges. These
challenges called for innovation, which has lead to several improvements and new
algorithms, see [30] for an overview. All these improvements have stayed mostly se-
cluded from the deep learning framework and only recently there is research trying to
combine them. The idea is that unsupervised neural networks, so called autoencoders
[64], can learn a low dimensional and meaningful representation of the input data,
which in turn can help to improve clustering results. In the last years there have been
several approaches to combine k-means with deep learning, which showed promising
results, see [18], [62], [63] for some of the most prominent ones.

1.2 Problem Statement

All the methods mentioned in [18], [62], [63] are based on the autoencoder architecture
which serves as a non-linear dimensionality reduction technique for the input data.
The basic autoencoder is quite prone to overfitting which is why [18], [62], [63] all use
variants of it. There are several architectures which are used in the literature and all
implement some kind of regularization scheme, e.g. the denoising autoencoder [60],

2 Chapter 1. Introduction

contractive autoencoder [53] or k-sparse autoencoder [40]. None of them works best in
all cases and each of them has benefits and disadvantages. That is why they should be
chosen according to the data and the desired application.

Many of the existing autoencoder techniques have only been evaluated for image
data sets [28], [40], [41], [53], [60]. Especially, text data has been a difficult scenario
for existing autoencoders, due to its high dimensionality and sparsity [12]. This orig-
inates from the intuitive relationship between potentially large language vocabularies
and sparse document vectors, which may contain only a few words of the available
language. A recent autoencoder variant, called KATE, k-competitive autoencoder for
text [12], has achieved promising results on text data. Similar to k-sparse and wta au-
toencoders [40], [41] it uses a competition layer, but includes an energy redistribution
among winners 1.

There are many data sets which share characteristics with text data sets. Some of
these include sparsity of relevant information, many noise points, redundant features
or outliers. For a selection of relevant real world data sets with outliers, see e.g. [9].
For all of these a basic autoencoder would probably not be able to learn a meaningful
representation. That is why this thesis adapts the KATE algorithm to other data besides
text. The key idea is that its benefits will transfer to the above mentioned settings and
potentially improve the clustering results.

1.3 Thesis Focus and Key Contributions

The existing techniques which combine deep learning and clustering follow a two step
approach [18], [62], [63]. In the first step an autoencoder variant is trained on the
input data. The learned low dimensional representation is then clustered via k-means.
The second step differs for each method, but in general it can be thought of as a step
wise refinement of the initial clustering. That’s expressed in the fact that points in a
cluster are slowly drawn closer to their center. Without going into the details, it can
already be seen that the first step is crucial for the final results. In particular, if the
used autoencoder architecture fails to learn a good representation of the input data,
the clustering could become meaningless.

Thats the reason, why in this master thesis the focus is to improve this first step
of learning a meaningful low dimensional representation. This is a huge topic in ma-
chine learning and is summarized under the terms "representation learning" or "feature
learning" [6]. To further limit the scope, the emphasis will be on cross sectional data
sets with outliers, noise and redundant information. Additionally, in representation
learning a found representation is considered as good if it is beneficial for some other
downstream task like classification or clustering. Here, this task will be clustering with
a partitional algorithm like k-means.

The key contributions of this master thesis are the following. First, the specific
effects of the competition scheme used in KATE will be studied via various synthetic
and real world data experiments. Second, from these empirical insights the KATE algo-
rithm which has by now only been successfully used on text data [12], will be adapted
and evaluated for other data types. Third, the adapted algorithm will be benchmarked

1A detailed description of this mechanism can be found in the literature review section.

1.4. Thesis Outline 3

on multiple challenging real world data sets, against state of the art autoencoder archi-
tectures.

1.4 Thesis Outline

Chapter 2 provides a brief review of standard data mining and machine learning tech-
niques. The focus will be on unsupervised machine learning and some of the main
algorithms are introduced. At first the fundamental notion of cluster analysis will be
explained, together with the popular k-means algorithm. After that, the idea of dimen-
sionality reduction is presented using the example of principal component analysis.

Chapter 3 gives an overview of the history of neural networks and talks about the
recent progress in deep learning. The concept of a feed forward neural network and
its key components will be discussed. This will serve as the basis to understand the
autoencoder algorithm, which is the focus in this thesis.

Chapter 4 reviews the topic of representation learning. It includes an overview of the
field and its challenges. After that a literature review of the most popular and latest
techniques in the field of representation learning is conducted. The literature review
contains different autoencoder variants like denoising, stacked or variational autoen-
coders. Additionally, autoencoders which include clustering are discussed, namely
deep embedded clustering and deep clustering network.

Chapter 5 is discusses all experiments conducted in this thesis. First, the motivation
for the specific experiment settings is discussed. After that, the strategy for finding
an optimal use of the k-competitive layer in autoencoder architectures is explained,
together with the generation of the synthetic data sets. The experiments are then con-
ducted in the following order. First, the k-competitive layer is evaluated without any
non-linear activation functions, to better understand its particular effects. After that
different experiments are conducted to find a suitable non-linear activation function.
The robustness to noise is afterwards evaluated with different synthetic noise data sets.
The last section includes experiments with different real world data sets with outliers.

Chapter 6 concludes the master thesis. It summarizes all found results and discusses
the findings in a broader picture. Possible future works will be discussed as well as
short and long term goals.

5

2 Data Mining

2.1 Overview

Data Mining, in a general definition by Leskovec et al refers to the "discovery of models
for data" [33]. According to this interpretation there are several topics which can be
summarized under the term of "model". From the statistical modeling perspective it
can be seen as the construction of a "statistical model", which is the underlying data
generating distribution [33]. Data mining as "summarization" [33] refers to the task of
finding similar groups in data and represent this group with e.g the cluster centroids.

The machine learning view is another perspective, which is often used synony-
mously with data mining [33]. Murphy [45] defines "machine learning as a set of
methods that can automatically detect patterns in data, and then use the uncovered
patterns to predict future data,[...]". In general, the lines between machine learning
and data mining are blurry, but often machine learning is seen as a subset of data min-
ing. All these perspectives serve as an attempt to describe the term data mining.

One broad categorization which is often done in data mining and machine learning
is to distinguish between supervised and unsupervised learning problems [25]. Su-
pervised learning refers to the situation in which for each observation xi there exists
a corresponding label yi where i = 1, ..., n. The task is then to find a model which
relates the observations to the label with the goal of predicting the label for new and
unseen data. Unsupervised learning on the other hand only uses unlabeled data xi.
Here, the focus is to find out more about the underlying structure of the data. Some
questions that could be answered with unsupervised learning are e.g. what groups
of similar objects can be found in the data, how was the data generated or what are
the most important features of the data?1 In the following, two fundamental research
directions from the unsupervised learning branch will be discussed, namely clustering
and dimensionality reduction.

2.2 Clustering

Intuitively, clustering can be understood as a method that finds groups with similar
characteristics in data. A more technical definition is given by Jain [24], who describes
cluster analysis as "the formal study of methods and algorithms for grouping, or clus-
tering, objects according to measured or perceived intrinsic characteristics or similar-
ity". In this definition there are a few terms which need to be further explained. A
cluster is a group of objects which share a high degree of similarity within that group.
The "size, shape and density" [24] of clusters can be different for each of them, e.g. see
figure 5.1 for an example of four Gaussian clusters in two dimensions. Here all four

1For an introduction to the topics of supervised and unsupervised learning, see [25]

6 Chapter 2. Data Mining

clusters have the same size, shape and density and only differ in their location. Ac-
cording to [24], "an ideal cluster can be defined as a set of points that is compact and
isolated". Here compactness refers to a high degree of within cluster similarity and
"isolation" to a high degree of dissimilarity between objects of different clusters. It is
often hard to find an ideal clustering, especially because it is possible that there are
multiple truths. For example assume a data set with apples and pears. If one is only
looking at color, there might be red, green and yellow apples, but green and yellow
pears as well. In contrast, when considering the shape only, there might be distinct
groups for apples and pears.2 In practice it is common to consider the opinion of a
domain expert, to find out the "significance and interpretation" [24] of a cluster. This
already highlights the challenges of finding the measures of "similarity" for objects,
which highly depends on the chosen features. Another consideration is how to mea-
sure this similarity, while this highly depends on the used algorithms it is often some
distance metric, e.g. for k-means the default choice is the euclidean distance [24].

The three main purposes of clustering identified by Jain [24] are first, to gain in-
sight in the data by finding its "underlying structure". Second, "to identify the degree
of similarity among" objects. Third, as a technique of compression, by "organizing the
data and summarizing it through cluster prototypes". These three points highlight the
usefulness of clustering for the scientific community and illustrate why the develop-
ment of clustering methodology was an "interdisciplinary endeavor" [24]. In the next
section, the k-means clustering algorithm is introduced.

2.2.1 K-Means

The k-means algorithm is one of the most popular and simplest clustering techniques.
Despite its simplicity it performs quite well in many different scenarios. K-means has
been "independently discovered in different scientific fields" [24], among which two
publications are [34], [37]. It belongs to the group of partitional methods, which means
that it finds all "clusters simultaneously as a partition of the data" and does not "impose
a hierarchical structure" [24].

Given a data set X, which consists of n data points xi, the k-means algorithm will
find K clusters Ck, where k = 1, ..., K. The objective of k-means "is to minimize the sum
of the squared error over all K clusters", where the squared error is calculated with the
empirical mean, also called centroid of a cluster µk and all the points in that cluster
[24]. This is put together in equation 2.1:

L(C) = ΣK
k=1ΣxiǫCk

‖xi − µk‖ (2.1)

The k-means algorithm works in three steps [24]. First, K clusters are selected,
which serve as an initial partition. Second, a new partition is generated by assigning
each point to its closest centroid. Third, new cluster centers are calculated via the
empirical mean of the cluster members. The second and third step are repeated until
convergence. Note, that this is a greedy procedure. This means that k-means is only
able to find local minima and should be run several times with different initializations.

2For a detailed discussion of how to handle multiple truths in clustering, see [67].

2.3. Dimensionality Reduction 7

The basic k-means algorithm requires three parameters, the number of clusters K,
the distance metric and the initial partitioning. Its default distance metric is the eu-
clidean metric, which causes k-means to "find spherical or ball-shaped clusters in data"
[24]. Other metrics are the Mahalanobis distance [42] or Manhattan distance. To choose
the optimal value of K, a number of heuristics exist, from which the simplest is to just
run k-means with different values of K and choose the one with the lowest error [24].
There are several extensions of k-means, e.g. k-means++[2] or X-Means [51]. X-Means
chooses the number of K automatically via a model complexity criterion like Akaike
Information or Bayesian Information. K-means++ uses a random seeding strategy for
the initialization step and can achieve higher speedup and accuracy.

2.3 Dimensionality Reduction

Dimensionality reduction, as the name indicates, refers to a group of techniques which
aim to find a lower dimensional projection from a higher dimensional data space [45].
Intuitively, dimensionality reduction aims to "capture the essence of the data" [45].
The notion behind this set of techniques is that, despite the high dimensionality of the
input, there may be only a few "degrees of variability, corresponding to latent factors"
[45] in the data. E.g. for natural images some latent factors might be lighting, pose
or identity. This means that most of the "interesting" information is only in a small
subspace.

Dimensionality reduction techniques can be used as preprocessing step, before
other downstream tasks like clustering or classification are applied3. Another appli-
cation is visualization, in which a high dimensional space is projected down to two
or three dimensions. Below, one of the most popular dimensionality reduction tech-
niques, called principal component analysis, will be discussed.

2.3.1 Principal Component Analysis

Principal Component Analysis [49], PCA, is one of the most common dimensionality
reduction techniques [45]. Put simply, PCA "looks" for the directions of most variance,
in that it only concentrates on the most "interesting" features. A typical setting for
PCA is a data set with many correlated variables, in which it summarizes the data
in a lower dimensional space. By definition of PCA this lower dimensional subspace
captures most of the variability of the original data set [25].

Given a data set X, which consists of n d-dimensional data points xi, the steps to
perform PCA are first, to compute the covariance matrix of X, called Σ. Second, com-
pute the eigenvalues and and eigenvectors of Σ. Third, select the k biggest eigenvalues
and their eigenvectors. The choice of k is left to the user and is often made on the basis
of the percentage of explained variance4. Last, the original data set X is transformed
via the matrix of selected eigenvectors V, which results in X̂ = X ∗ V. Each feature in
this new space X̂ is a linear combination of the d original features.

3For a discussion why a global dimensionality reduction technique, like PCA, for high dimensional
data might not always be a good solution, see [30]

4The percentage of explained variance is just the ratio of the sum of the k selected eigenvalues and
the sum of all eigenvalues.

8 Chapter 2. Data Mining

Due to this, PCA is a linear dimensionality reduction technique and faces some lim-
itations, e.g. when it comes to linearly inseparable data. There are several extensions
of PCA, e.g. Kernel-PCA [56], which projects the data into a higher dimensional space
where it is linearly separable and then applies PCA. The downside for this is that the
type of kernel has to be chosen by the user. Another approach are autoencoders [16],
which can learn a kernel function from the data, but are more complicated to train.
Under some restrictions it can be shown that a linear autoencoder basically performs
PCA, for a prove see [5].

9

3 Neural Networks

3.1 Overview

Deep learning is one of todays hot topics and is already widely known beyond the
research community. This was due to impressive results for supervised and unsu-
pervised learning algorithms for image [7], [17], [28], [38], [60], text [59] and speech
data [22]. Despite everything one would think with the current hype, deep learning is
not a new topic. Actually, it has been researched under the name "cybernetics" in the
1940s-1960s, "connectionism" in the 1980s-1990 and only since 2006 it is known as "deep
learning" [16]. These first two resurgences have both ended in a research winter. The
cybernetics era ended with the now famous XOR problem and critique by Minsky [43]
and the connectionism hype came to a halt due to computational limitations and the
lack of available data [16]. Today, most of these issues are gone, the XOR problem has
been solved by multilayer perceptrons [16], the computational limitations have been
alleviated by moore’s law [44] and Big Data took care of the rest. To understand the
inner workings of deep learning algorithms, the next section introduces the simplest
form of an artificial neural network, the feed forward neural network.

3.2 Feed Forward Network

The feed forward1 neural network, FFN, often called deep feed forward network or
multilayer perceptron, is the basic model for all other advanced deep learning tech-
niques [16] . Intuitively, FFN’s are nothing more than "function approximation ma-
chines" [16], which try to learn a mapping y = f (x, W). Here, x is the input data,
W are the learnable parameters and y is the target output, which could be a label in
classification or some number in regression tasks. For unsupervised networks, like the
autoencoder, y would be a reconstruction of the input x, denoted as x̂.

A FFN can be thought of as a non-linear version of a generalized linear model [8]
similar to equation 3.1.

y(x, w) = f (Σiwig(x)) (3.1)

where w is the weight parameter vector and g is a possibly non-linear composition
of functions. The layers and neurons of a FFN can be described by such a composition.

Let f (1), f (2) and f (3) be three functions, than a typical composition for a FFN looks like

f (x) = f (3)(f (2)(f (1)(x))) [16]. Here, f (1) is the first layer connecting the input x to the

second layer f (2), which then connects to the third layer f (3). The last layer, in this case

f (3), is also called output layer. All layers between the input and output layer are called

1The models are called "feed forward" due to the way the information flows form the input x to the
output y, without any feedback connections [16].

10 Chapter 3. Neural Networks

hidden layers, in this case there is only on hidden layer f (2). The number of functions
in the composition is called the depth, from which the term "deep learning" arises [16].
Figure 3.1 depicts the directed acyclic graph of a FFN, where x is the D-dimensional
input vector, z is a hidden layer with M neurons and x̂ is the output vector with K

neurons. The weight matrix W(1) connects the input layer to the hidden layer and

W(2) connects the hidden layer to the output layer. x0 and z0 are bias variables. The
term neuron refers to one value in the hidden layer vector. The number of neurons in
one hidden layer refers therefor to its dimensionality and "the width of the model" [16].
The layers can be seen as vector to vector functions or as vector to scalar functions. The
latter is called a unit, which takes in all the previous units and calculates an activation
value for one of the neurons in the next layer.

FIGURE 3.1: Directed acyclic graph of a fully connected feed forward neu-
ral network. Figure adapted from [8].

The activation value is a measure of how "excited" the neuron is for seeing a spe-
cific input. There are many different activation functions used today, e.g. the (leaky)
rectified linear unit, the tangens hyperbolicus function or the sigmoid function, see fig-
ure 5.10 for a plot. Activation functions are motivated through biological neurons [16],
which can either fire or not, given some input. In some sense, activation functions try
to approximate this behavior with a differentiable function2. Equation 3.2 shows the
computation of one hidden unit’s activation zj.

zj = g(ΣD
i=1w

(1)
ji xi + x0w

(1)
j0) (3.2)

where w
(1)
ji is the weight parameter that connects the input vector x with hidden

unit zj and x0w
(1)
j0 is a bias term with its weight, which allows the whole function to

shift. Now putting all things together, the equation for the FFN with one hidden layer
in figure 3.1 is shown in 3.3.3

2To be specific the function only needs to have defined left and right derivatives, e.g. the rectified
linear function’s derivative at point 0 is undefined [16].

3This equation has been adapted from [8].

3.3. Autoencoder 11

x̂K(X, W) = o(ΣM
j=1w

(2)
kj g(ΣD

i=1w
(1)
ji xi + x0w

(0)
j0) + z0w

(2)
k0) (3.3)

where g is the activation function of the hidden layer, o is the output function of the
output layer, x0 and z0 are bias terms. After introducing the basics, the next question
is how should the weight parameters be set?

Learning in FFN’s works via gradient based optimization of a loss function. Intu-
itively, the loss function measures how far off the FFN was with its prediction. One of
the most common ones is the mean squared error, see equation 3.4.

J(W) = ΣN
i=1(yi − f (xi))

2 (3.4)

The value of the loss serves as a signal for the FFN to update its weights and to
improve its performance. The goal is then to minimize the loss, between the prediction
ŷ = f (x) of a FFN and the ground truth y. The update of the weight parameters
is done via gradient descent [10]. The error gradients are efficiently computed via
the backpropagation algorithm [55]4. Equation 3.5 shows an update step for a batch
gradient descent method [8].

Wt+1 = Wt − η · ∆J(Wt) (3.5)

∆J(Wt), refers here to the gradient of the loss function at time t and η is the step
size, often also called the learning rate. Equation 3.5 shows a batch gradient update,
this means it uses the whole training data to compute the gradient. This is often not
feasible due to speed and memory limitations. Thats why it is more common to use
stochastic gradient descent [16], which performs a parameter update for each training
example xi, see equation 3.6.

Wt+1 = Wt − η · ∆J(Wt, xi) (3.6)

Unfortunately, this approach has some downsides as well as it often results in noisy
and unstable training. To counteract this, the learning rate η has to be set very small,
which in turn increases the runtime [16]. That’s why minibatch training is a compro-
mise between those two extremes. It is a common method to make training more effi-
cient and less noisy. It uses only a small subset of training examples, a minibatch, for
each step to compute the gradient. For a discussion of possible trade offs, see chapter
8.1.3 of [16]. These are the basics for gradient descent methods, but almost all others
build upon those. There exists a huge plethora of literature on nonlinear optimization
procedures and it would be out of scope to discuss them all here, but some popular
ones are Adam [27], Adagrad [13] or Adadelta [66]. After introducing the basics of
FFN’s an unsupervised neural network, called autoencoder will be explained.

3.3 Autoencoder

The autoencoder is an unsupervised neural network, which has been researched since
the 80ies [64]. Autoencoders are a special case of feed forward neural networks, that
are "trained to attempt to copy its input to its output" [16]. The aim of it is not to

4See Chapter 5.2 of [8] for a detailed introduction to backpropagation.

12 Chapter 3. Neural Networks

simply copy its input, but to learn an encoding in the hidden layer z, which captures
the most important parts of the data. Among other things, it is used for dimensionality
reduction, visualization or representation learning.

The autoencoder consists of two parts, the encoder and the decoder. The encoder

projects the input x to the hidden layer, which generates the encoding z = g(ΣD
i=1w

(1)
ji xi +

x0w
(0)
j0). The decoder then takes z and tries to reconstruct the original input x from it,

which produces the decoding x̂ = o(ΣM
j=1w

(2)
kj z + z0w

(2)
k0). The reconstruction x̂ is then

compared to the original with a loss function. For K = D figure 3.1 is an autoencoder,
the encoder part is the left side from input to hidden layer and the decoder part is the
right side from hidden layer to output.

There are different categorizations for this "vanilla" autoencoder. It is called over-
complete if the hidden layer has a higher dimension than the input vector. An un-
dercomplete autoencoder refers to the situation in which the hidden layer has a lower
dimension than x, which creates a bottleneck during training. This setting constraints
the autoencoder to capture only the most important features of the training data [16].
It is symmetric if the depth and width of the encoder network is the same as for the
decoder network, otherwise it is called asymmetric.

The training is similar to the FFN, except that the loss function is adapted. Instead
of comparing some label to the predicted output, the input is compared to its recon-
struction. The mean squared error now looks like equation 3.7.

J(W) = ΣN
i=1(xi − x̂)2 (3.7)

For autoencoders, but for FFN’s as well the mean squared error is used for real
valued outputs. For binary outputs the cross entropy loss is used, see equation 3.8 for
the autoencoder version.

J(W) = −∑
i

(xi log (x̂i) + (1 − xi) log (1 − x̂i)) (3.8)

The binary cross entropy loss is minimized if x̂i is close to xi and it reaches perfect
reconstruction with xi = x̂i.

Compared to principal component analysis or kernel PCA, the autoencoder is able
to learn non-linear projections in the hidden layer from the data, without explicit as-
sumptions for the kernels. Unfortunately, the vanilla autoencoder is prone to overfit-
ting, this is particularly true in the overcomplete setting. Much of autoencoder research
has therefor concentrated on creating architectures which implement regularization
schemes. One simple countermeasure, that is used in almost all autoencoder architec-
tures, is called weight tying. It refers to the practice of reusing the transposed encoder
weights for the decoder network. This reduces the number of parameter and increases
its training speed. More sophisticated approaches are using new architectures or cre-
ated loss functions which enforce specific properties, but the basic idea is the same for
most of them. They try to complicate the training process for the autoencoder so that
it is forced to learn a meaningful representation of the data. Some of these approaches
are discussed in chapter 4.

13

4 Representation Learning

4.1 Overview

The success or failure of a machine learning model depends heavily on the represen-
tation of the input data. In practice this manifests in the fact that most effort in de-
ploying a data mining algorithm goes into data gathering, preprocessing and feature
engineering, while the importance of the used learning algorithm is often negligible.
Representation learning, also called feature learning, is about "learning representations
of the data that make it easier to extract useful information when building classifiers or
other predictors" [6]. The goal of representation learning is to automate or augment the
feature engineering process, especially in cases were human engineered feature may
be insufficient or need expert knowledge. In this literature review the focus lies on un-
supervised deep learning based methods to automatically extract "good" features from
the input data.

4.2 Challenges

In contrast to supervised learning, representation learning does not have a clear objec-
tive, except for the elusive criteria of improving classification or clustering results later
on. In a recent survey Bengio, Courville, and Vincent [6] propose several criteria for
good representations that might be beneficial for a variety of machine learning tasks.
Some of them are discussed below.

"Expressiveness" [6], refers to the capability of a low dimensional representation,
at least lower than the input dimension, to capture a huge number of possible input
configurations. "Depth and abstraction", these two concepts summarize the idea that
deep learning facilitates the learning of an abstraction hierarchy, which represents low
level features on one end and high level ones on the other. The general assumption is
thus, that deeper networks can capture more abstract concepts, which are "generally
invariant to most local changes of the input" [6]. Bengio, Courville, and Vincent [6]
argue that despite the beneficial nature of the above criteria, they have some unwanted
effects, e.g. invariant features are defined as being invariant to local changes that are
not useful for a specific task, which leads to a loss of information. Thats why [6] argue
that the most robust procedure for representation learning is the disentanglement of
factors of variation. The advantage of disentanglement is that information is preserved
and the underlying factors of the input data are found. This leads to the question of
how to achieve disentanglement?

One solution might be to enforce "general-purpose priors" [6], that are beneficial
for a wide range of tasks. A subset of such general-purpose priors are smoothness of
the learned function, hierarchical organization of explanatory factors, shared factors

14 Chapter 4. Representation Learning

across tasks e.g. transfer learning, natural clustering of "named categories", sparsity of
learned representation [47] and simplicity of factor dependencies.

All this research has to be taken with a grain of salt, because it is still an open ques-
tion if downstream tasks profit from unsupervised representation learning in general.
The competing field of transfer learning has a similar goal, but different approach.
Instead of purely unsupervised learning, it uses neural networks which have been
trained on a similar supervised learning problem and transfers its weight to the new
neural network. This is based on the observation that transfered weights improve other
neural networks, for some recent successes see [29], [39].

4.3 Literature Review

The following is a literature review of recent techniques used in representation learning
with autoencoders. The goal here is to show on one hand a summary for different
proposed autoencoder architectures and on the other to look at their usage in clustering
frameworks. Remember from chapter 3, that most of the innovations in autoencoder
architectures can be seen as clever regularization schemes to avoid overfitting. This is
needed to prevent the normal autoencoder from learning the trivial identity function,
which just copies the input data to the output layer1.

4.3.1 Denoising Autoencoder

Denoising autencoders [60] extend the simple autoencoder by adding corruption noise
to the input data and then try to reconstruct the original input. The corruption process
used by the authors randomly sets k values of the input vector xi to zero, resulting in
x̃i. The corrupted input is then fed to the autoencoder which tries to reconstruct the
original vector xi, by optimizing loss function 4.1, where f (x) is the learned embedding
and g(f (x̃i)) is the reconstruction of the corrupted input x̃i.

L(×) = L(x, g(f (x̃))) (4.1)

The goal of the corruption process is not to learn a denoising function, but to regu-
larize the autoencoder to learn a useful representation of the input function.

4.3.2 Stacked Autoencoder

A stacked autoencoder is very similar to a multilayer autoencoder. The only difference
is the training procedure. Stacked autoencoders use a greedy layer-wise pre-training
scheme [7], while normal autoencoders are trained with the complete architecture from
the start. This scheme works in the following way, first train a one-layer-autoencoder
which maps the input xi to an encoding z0 and then drop the decoder afterwards. The
encoding z0 is then used as input for a second one-layer-autoencoder, which is trained
to produce a new encoding z1 and again the decoder part is dropped. This step can be
repeated until the desired architecture is created. After the stack has been trained, the
last encoding zn can be used for clustering or classification with a separate algorithm

1Additionally, these regularization techniques allow the training of an overcomplete autoencoder, in
which the encoding has a higher dimension than the input data.

4.3. Literature Review 15

like k-means or Support Vector Machines [58]. The type of autoencoders used in each
pre-training step can be chosen from the large pool of available architectures, e.g. de-
noising autoencoders [61]. It should be noted that in supervised learning the use of
unsupervised pre-training has recently declined [16], but is still successfully used in
deep clustering methods [18], [62], [63].

4.3.3 Contractive Autoencoder

Contractive autencoders [53] extend the vanilla autoencoder by using a penalty term
on the second derivative of the reconstruction cost function. The introduced penalty
term penalizes the sensitivity to a specific input xi. The sensitivity is measured by the

Frobenius norm of the Jacobian Matrix of the encoding ‖J f (x)‖2
F. Intuitively this makes

sense, as the first derivative specifies the slope of a function. In addition to the penalty
term, the authors add the autoencoder reconstruction loss L(x, g(f (x))) to avoid the
trivial solution of a constant value. From this motivation the authors propose loss
function 4.2, where f (x) is the learned embedding, g(f (x)) the reconstruction of input
x from the training data Dn and λ controls the regularization effect.

J (×) = ΣxǫDn(L(x, g(f (x))) + λ‖J f (x)‖2
F) (4.2)

4.3.4 Variational Autoencoder

The variational autoencoder [28] is a probabilistic variant of the autoencoder architec-
ture. Instead of learning an encoding of an input xi it learns a probability distribution
from which latent variables z can be sampled. The latent variables are then used in the
decoder network to generate (reconstruct) the input xi. Besides of learning a hidden
representation of the data, variational autoencoders enable the generation of new un-
seen samples after training. This works in the following way, the encoder parameter-
ized as e.g. a fully connected neural network qφ(z|x) learns the mean and the diagonal
of the covariance matrix for sampling latent variables z from a Gaussian distribution
z|x ∼ N (µz|x, Σz|x). The decoder network pθ(x|z) takes the sampled z and learns the
mean and diagonal of the covariance matrix for generating (reconstructing) the input
xi by sampling from a Gaussian distribution x|z ∼ N (µx|z, Σx|z). There are many tech-
niques which have been build upon this framework e.g. [21], [52], [57]. While this is an
interesting research direction for generative modeling, recent papers provide evidence,
that variational autoencoders might not be the best choice for clustering [3], [11].

4.3.5 K-Sparse Autoencoder

The k-sparse autoencoder [40] is similar to a linear autoencoder and the only difference
is the learning procedure. During training, the k-sparse autoencoder enforces popu-
lation sparsity by only selecting the k largest activations in the hidden layer for each
input feature and sets all other neurons to zero. The selection of the top k activations is
the only non-linearity in the network. One issue that arises when training the k-sparse
autoencoder is that it greedily assigns individual hidden units to training cases and

16 Chapter 4. Representation Learning

prevents other units from adjusting. This problem can be solved by a scheduling tech-
nique proposed in section 4.2.1 of [40]. After training, the α largest activation values
are used, where α is a hyperparamater.

4.3.6 Winner-Take-All Autoencoder

A variant of the above mentioned k-sparse ([40]) technique is the winner-take-all (WTA)
autoencoder [41] which introduces a lifetime sparsity across a minibatch of input fea-
tures, by only keeping α percent of the highest activated neurons. Another difference
to the k-sparse autoencoder is that the WTA autoencoder uses a non-symmetric archi-
tecture with relu [46] non-linearities and a linear decoder. This architecture removes
the need of k-sparse for alpha scheduling during training and test time.

4.3.7 K-Competitive Autoencoder for Text

The k-competitive autoencoder for text (KATE) [12] is a recently proposed technique to
learn a meaningful representation of text data. This has been a notoriously hard task
for existing autoencoder architectures, due to the high dimensionality and sparsity
of text data. Intuitively, this arises from the fact that language vocabularies are very
large while a document vector may only contain a small percentage of the available
words. [12] propose a shallow autoencoder architecture with one hidden layer, which
performs competition between neurons. The competition is a form of regularization
which keeps KATE from overfitting and allows it to learn a meaningful representation
of the input data. The key idea behind this, is that similar to economic competition
the neurons are specializing on specific patterns of the training data, which makes
them distinct from each other and avoids trivial solutions, e.g. learning the identity
function or overfitting to noise. During training only the k hidden neurons with the
highest positive and negative activations zi are selected and the other "loser" neurons
are set to zero. The absolute activations of the positive and negative loser neurons are
summed up and redistributed to their respective winners, [12] call this step "energy
redistribution". Figure 4.1 shows how the competition during training for one feed
forward step works, when k = 2. First, the activations of the input features x1...xd are

calculated via hi = tanh(Wxi + b). The k
2 = 2

2 = 1 largest positive and negative values
are kept and all other "losers" are set to zero. Next, the energy of the positive and
negative losers is calculated and assigned to their winner neurons. The amplification
parameter α controls how strong the effect of winning is and according to [12] should
be set to α > k/2. It is important to note, that during error backpropagation winner and
loser neuron parameters are updated, due to the α connection. This helps to alleviate
the problem of dead neurons, which can be an issue for related techniques like k-sparse
autoencoders [40].

During test time KATE works like a normal autoencoder, because the parameters
are already trained to be distinctive. This means, that the input data is simply projected
to the embedding space. KATE is related to techniques like k-sparse [40] and Winner-
Take-All autoencoders [41]. The main difference between those two is that KATE does
not simply set all loser neurons to zero, but redistributes their energy. This has two
important effects. First, an increase of the amplification parameter α can be thought of

4.3. Literature Review 17

FIGURE 4.1: The figure shows one feed forward step of KATE during
training for k = 2. Figure adapted from [12].

as an increase in the reward for winning in the feed forward phase. Second, during
backpropagation the gradients are still flowing through the loser neurons.

On a side note, it is interesting to see that the winner-takes-all learning rule comes
from the field of computational neuroscience and it is inspired by biological neural
networks, see [35], [65].

4.3.8 Deep Embedded Clustering

Deep Embedded Clustering (DEC) developed by Xie, Girshick, and Farhadi [62] is one
of the first techniques that simultaneously learns a feature representation and cluster
assignments with a deep neural network. The general outline of this technique has in-
spired further research due to its impressive results, like [18]. The main contribution of
[62] is the formulation of a loss function that quantifies a desirable clustering represen-
tation. For this they use the Student’s t-distribution, with α = 1 degrees of freedom, to
measure the distance between embedded points zi and centroids µj, see equation 4.3.
The rationale behind this is, that equation 4.3 is heavier tailed than e.g. a gaussian or
delta distribution, which allows for similar features to be mapped close together (lo-
cal structure preservation) and can be evaluated fast, this idea has been adapted from
t-sne, for a detailed explanation see section 2 and 3 of [36].

qi,j =
(1 + ‖zi − µj‖

2
α)−

α+1
2

Σ′
j(1 + ‖zi − µ′

j‖
2
α)−

α+1
2

(4.3)

From qi,j in equation 4.3 they measure the KL Divergence from a desired target
distribution P, see equation 4.4.

18 Chapter 4. Representation Learning

L = KL(P||Q) = Σi Σj pi,j log
pi,j

qi,j
(4.4)

The authors define the following desirable properties for a target distribution P:

• strengthen predictions

• put more emphasis on data points assigned with high confidence

• normalize loss contribution for each centroid to prevent large clusters from dis-
torting the hidden feature space

pi,j =

q2
i,j

f j

Σj′
q2

i,j′

f j′

(4.5)

Equation 4.5 fulfills the above properties. The term q2
i,j strengthens high confidence

predictions which leads to improved cluster purity. The term fi = Σiqi,j renormalizes
by frequency per cluster while summing up the soft cluster frequencies.

During training DEC uses a two step approach. First, it learns a low dimensional
representation, also called encoding, of the input data by using a stacked denoising
autoencoder architecture [61]. The learning is done via greedy layer wise pretraining
[7]. This procedure builds an autoencoder layer by layer, where the first is trained
from the input features, the second takes the encoding of the first autoencoder as input
and builds a new encoding. This is iteratively repeated until the desired network size
is reached. Second, DEC takes the pretrained autoencoder, discards the decoder part
and performs an initial k-means clustering on the received encoding. In the following
steps the initial clustering is fine tuned to improve the results via backpropagating
the gradients from the loss function 4.4. This jointly optimizes cluster centers µj and
network parameters θ until less than a threshold value of T percent of points change
their cluster assignment.

One problem of DEC is that during fine tuning the local structure of the embedding
can be lost, which weakens its representational power and can decrease clustering per-
formance. This is due to discarding the decoder part of the autoencoder. The algorithm
IDEC [18] suggest a new approach which keeps the decoder part during fine tuning.
The new loss function 4.6 combines the reconstruction loss Lr and clustering loss Lc,
where γ > 0 controls the degree of space distortion [18].

L = Lr + γLc (4.6)

A comparison of the two methods on the MNIST data set [31] can be seen in figure
3 of [18]. The two plots on the right end show that DEC mixes the red and blue points,
while IDEC keeps them separated. This shows that the reconstruction loss Lr from
equation 4.6 can preserve local structure, while DEC just pulls nearby points closer to
their respective cluster centroids.

4.3. Literature Review 19

4.3.9 Deep Clustering Network

Yang, Fu, Sidiropoulos, et al. [63] improve clustering results by combining a deep au-
toencoder with k-means clustering, they call their method DCN, Deep Clustering Net-
work. Their goal is to receive a "k-means friendly" space, which is defined as a low
dimensional embedding were the data instances are evenly spread around their re-
spective centroids. Similar to [18] they keep the decoder module during clustering to
avoid distortion of the latent space. In contrast to [62] and [18], they do not use soft
label assignments or the Student’s t-distribution from [36] to compare initial cluster
centroids to the points in embedded space. Instead, they use hard cluster assignments
directly obtained from k-means performed on the embedded space. The latter decision
forces them to use an alternating optimization scheme, were network and clustering
parameters are updated separately. During training they optimize the cost function
4.7, which balances the reconstruction error with the "k-means friendliness".

min
W ,Z

Li = l(g(f (xi)), xi) +
λ

2
|| f (xi)− Msi||

2
2 (4.7)

Here W ,Z refer to the parameters of the encoder and decoder respectively, g(f (xi))
refers to the reconstruction of the input xi from the encoding f (xi), matrix M holds
each cluster centroid vector and si is a one hot encoded vector for the cluster label. The
left hand side of the addition is quantifying the reconstruction loss l, [63] are using
mean squared error, and the right hand side enforces the notion that encoded points

should be near their cluster centroids, by using the squared euclidean distance ‖·‖2
2.

The hyperparameter λ is used to balance those two terms.
The optimization step is split in two steps. First, they perform layer wise pre-

training as described in [7]. Similar to [62] and [18] they use a stacked denoising
autoencoder architecture [61], with tied weights and ReLu activation functions [46].
After pre-training they perform k-means on the encoding to get initial values for the
centroids M and cluster assignments si. Second, they alternate between optimizing the
cluster centroids and assignments together and the network parameters W ,Z . While
one pair is optimized the other stays fixed, for details of the optimization procedure,
see section 4.2 of [63].

The authors evaluate their method on synthetic and real world datasets. The syn-
thetic data experiments will be explained in detail and repeated in section 5.

21

5 Validation

5.1 Motivation

Deep Learning research is mostly driven by empiricism and theory is still behind the
current fast paced publication cycle in the field. Due to this lack of theory many in-
sights into deep learning architectures rely on experiments with synthetic and real
world data. This is why this thesis focuses on empirical insights as well. The objectives
of these experiments consist of two parts.

The first is to use synthetic experiments to gain understanding of various competition-
driven autoencoders, like WTA, k-sparse and k-competitive, while the focus is on the
latter. This is motivated by the results of KATE, where Chen and Zaki [12] confirmed
experimentally that it can learn meaningful representations from text data, which re-
mained challenging for existing architectures due to its high dimensionality and spar-
sity. It is through this characteristic that the idea was born to use the k-competitive
layer in other challenging settings, which include noise, outliers or redundant infor-
mation.

This leads right to the second goal, which is learning a meaningful representation
from such data. The hypothesis is the following. Competition-driven autoencoders are
robust to settings with noise, outliers or redundancy. This allows them to learn better
representations than other autoencoder architectures. The performance of the learned
representation is measured in their capability to improve clustering results. The im-
provement is not exclusive to clustering and other downstream task could benefit as
well, but the focus here is in purely unsupervised techniques. To further restrict the
scope, the only clustering algorithm which is considered is k-means. This choice is due
to the widespread use of k-means and its simple design.

To summarize the above, the main motivation behind these experiments is to find
a suitable autoencoder architecture which improves clustering results for a partitional
clustering algorithm like k-means. The next section gives an overview of how the
experiments are approached and evaluated.

5.2 Strategy

The strategy behind conducting the experiments consists of two approaches. First,
use synthetic experiments to test for specific capabilities of the different architectures
and gain insights. Second, use real world data sets which include outliers to compare
the performance among learned representations for k-means clustering. The detailed
approach is as follows.

First, find an optimal use for the k-competitive layer in an autoencoder architecture,
which transfers its strengths to other data types than text. This is done by synthetic
experiments to properly understand the inner workings and effects of competition.

22 Chapter 5. Validation

This includes an evaluation of the k-competitive layer isolated from other nonlinear
effects, by using it in a linear autoencoder.

After that, the k-competitive layer will be tested with different activation functions.
In these experiments the goal is to find out if the tanh activation, which is used in [12],
is still a reasonable choice for non-text data.

Next, the k-competitive layer’s robustness to noise and redundant data is evalu-
ated. For this different data sets are synthetically generated. The insights from the
above experiments will be combined to make reasonable choices on the use of the
k-competitive layer in an autoencoder, its training and the setting of its hyper parame-
ters. This adapted algorithm will then be tested against several outlier benchmark data
sets taken from [9] and different methods.

5.2.1 Compared Methods

The choice of comparison methods is determined by the following factors. First, the
method should be based on autoencoders to allow for a side by side evaluation. Sec-
ond, only unsupervised methods are considered. This means that no label information
is used during training at all. Third, relation between methods should be considered.
To be precise the ideas behind the k-competitive layer are connected to the k-sparse
autoencoder [40] and the winner-takes-all autoencoder [41] (WTA).

These considerations led to the decision that the experiments always include a com-
parison between a vanilla autoencoder, a k-sparse autoencoder, a WTA autoencoder
and an autoencoder with k-competitive layer. PCA is included as a baseline for a lin-
ear dimensionality reduction method and due to the fact that an autoencoder can be
seen as a non-linear extension of PCA [5]. For the real world experiments the differ-
ent autoencoder architectures will be used in different configurations. These include
multiple layers, an overcomplete hidden layer and different activation functions. All
methods are compared to the state of the art autoencoder clustering network IDEC
[18], which was introduced in chapter 4.3.8. Additionally, the benchmark results of the
best methods from the outlier detection survey of [9] are stated. Next, the evaluation
between these algorithms is explained.

5.2.2 Evaluation

The evaluation of clustering performance is done by running k-means++[2] on the
learned representations of the comparison methods. K-means++ is used due to its
improved initialization scheme, which allows for a fair comparison. The found cluster
labels are then compared to the ground truth.

The used performance metrics for the synthetic data sets are normalized mutual
information score (NMI) and clustering accuracy (ACC) as is done in [18], [62], [63] and
test error on a hold out test set to measure the reconstruction performance. The found
representations are compared visually and judged on their ability to reconstruct the
original low dimensional structure of the synthetic data sets. For higher dimensional
encodings, PCA is used to plot it in two dimensions.

The real world data sets from [9] are heavily unbalanced, with outliers in the minor-
ity. That’s why the evaluation metric is the Receiver Operating Characteristic - Area

5.2. Strategy 23

Under the Curve (ROC-AUC). The ROC-AUC is recommended in [9], because it "in-
herently adjusts for the imbalance of class sizes typical of outlier detection tasks". To
further understand what each evaluation criterion measures, they are explained briefly.

Normalized Mutual Information

The mutual information score measures the similarity between different clusterings
for the same data [50]. It is based on mutual information, a general approach to de-
termine the dependency between two random variables [45]. Contrary to the pearson
correlation coefficient it is not limited to linear dependency.

The mutual information score is calculated in the following way, based on [50], see
equation 5.1.

MI(U, V) = Σ
|U|
i Σ

|V|
j

|Ui ∩ Vj|

N
log

N|Ui ∩ Vj|

|Ui||Vj|
(5.1)

Here Ui and Vj are two clusterings of the same data set, which has N instances. |Ui|
are the number of samples in cluster Ui and same for |Vj|, which is the number of sam-
ples in cluster Vj. If the ground truth is known, the found clustering can be compared
to it. To make the comparison easier the score can be normalized between [0, 1], which
is then called Normalized Mutual Information score. An NMI of 0 indicates no mutual
information and perfect correlation is met when it reaches 1, [50].

Cluster Accuracy

The unsupervised clustering accuracy (ACC) is widely used in deep clustering re-
search, [18], [62], [63], which is why it is included here as well. Xie, Girshick, and
Farhadi [62] suggests, that for comparison between methods, the number of ground
truth labels should be set equal to the number of clusters, the score in equation 5.2
allows then for a comparison.

ACC = maxm

ΣN
i=1 I(li=m(ci))

N
(5.2)

where li is the true label, ci is the found cluster label and the function m() ranges
over all possible one to one mappings. This works in the following way. The metric
takes a cluster label ci and a ground truth label li and finds the best matching between
them.

ROC-AUC

The ROC-AUC is computed from the area under the receiver operating characteristic
curve. The ROC curve is computed by plotting the true positive rate against the false
positive rate for different threshold values, [45]. By integrating the area under the
curve the ROC-AUC value is calculated. The two rates refer to a confusion matrix,
which is often used in classification settings. In the binary case of two classes 0 and
1 the rates can be explained in the following way. The true positive rate, often called
sensitivity, is the ratio between the labels which have been correctly predicted as 1 and
the total number of elements in class 1. The false positive rate, also known as false

24 Chapter 5. Validation

alarm, is the ratio between the number of elements which have been predicted wrong
as 1, but belong to class 0 and the total number of elements in class 0. Due to this
normalization of the rates, the ROC-AUC adjusts automatically for class imbalances,
which makes it a good choice for outlier detection evaluation.

5.2.3 Implementation

All experiments have been implemented in Python 3 [54].1 To do this the k-competitive,
k-sparse, WTA and vanilla autoencoder have all been implemented in Python by using
the PyTorch framework2 [48]. The implementation of the k-competitive autoencoder
is based on the original Tensorflow[1] implementation by Chen and Zaki [12], but was
reimplemented in PyTorch for more flexible experimentation. For IDEC the official
Python implementation by [18] was used.3 Additionally, the experiment settings, the
preprocessing, data generation and evaluation have been implemented in Python. The
NMI, ROC-AUC and k-means++ is used from the scikit-learn package[50] and the im-
plementation of cluster accuracy is taken from [18]. To reproduce the experiments all
settings have been managed via JSON files. This will be explained in the next section,
where the process of generating the synthetic data is introduced.

5.3 Data Generation

The generation of synthetic data is performed via a Python script which allows for
several configurations. These include the number, position, spread and dimensional-
ity of Gaussian distributed clusters, the amount of noise points and noise dimension
which should be added, a random seed for reproducibility and the non-linear transfor-
mations which should be performed. The non-linear transformations have been taken
from the code provided by [63]. To make each data generating step reproducible a
JSON file is used to pass all the necessary parameters to the generator. The settings for
the synthetic data hi before transformation consists of four clusters with 10 000 data
points in two dimensions with zero noise, see figure 5.1.

After the data from figure 5.1 is generated, three new data sets are constructed
from it. This is done by applying three different non-linear transformations to project
the four 2-dimensional clusters into a 100-dimensional space, see equations 5.3, 5.4 and
5.5, which have been taken from [63].

xi = σ(Uσ(Whi)) (5.3)

where WǫR
10x2, UǫR

100x10 and σ() is the nonlinear sigmoid function.

yi = σ(Whi)
2 (5.4)

and

zi = tanh(σ(Whi)) (5.5)

1The code is available at the Gitlab server of the Data Mining Research Group at the University of
Vienna.

2The PyTorch documentation can be found at https://pytorch.org/docs/stable/index.html
3www.github.com/XifengGuo/IDEC

5.3. Data Generation 25

FIGURE 5.1: This figure shows the generated data hi before transforma-
tion. There are four clusters in two dimension and each cluster consists of

2500 data points. This initial setting is taken from [63].

where WǫR
100x2, σ() is the nonlinear sigmoid function and tanh() is the nonlinear

hyperbolic tangent function.
For each of these transformations the original data hi is difficult to reconstruct

and standard clustering algorithms or linear dimensionality reduction techniques are
hardly effective to find the four real clusters, see figure 1 of [63]. During training the
original data hi is treated as unobservable and the algorithms learn only from the trans-
formed data. The goal is then to reconstruct the original data hi as best as possible.

5.3.1 Noise Data Generation

To evaluate the performance of the k-competitive layer in situations with noisy or non-
relevant information two additional synthetic data sets are generated. The first data
set uses additional noise points from which some can be considered as outliers from
the original four clusters, see figure 5.2. The level of noise ranges from 0.01 to 1.0, this
means for 10 000 data points there are additional 100 to 10 000 randomly generated
noise points. Additionally, another version of this data set is constructed, which dis-
tributes the noise points even farther away from the four clusters. The generated data
with noise h̃i is transformed by equations 5.3, 5.4 and 5.5 as well. These experiments
evaluate how robust the autoencoder architectures are to outliers and how the learned
representations differ from the same data without noise.

The second data set ĥi uses additional noise dimensions to evaluate how well the
autoencoders perform in settings with many redundant dimensions. The setting is
similar as above, at first the generated four clusters with 10 000 data points in total are

26 Chapter 5. Validation

FIGURE 5.2: This figure shows the generated data hi with additional noise
points before transformation. There are four clusters in two dimensions
and each cluster consists of 2500 data points. This initial setting is taken
from [63]. Additionally, there are 100 randomly generated noise points

added, denoted with label −1.

used and then additional uniform noise dimensions are added, see figure 5.3. The gen-
erated data is then transformed in the same way as the other data sets, with equations
5.3, 5.4 and 5.5.

5.4 Experiments

The motivation, strategy and data generation for the different experiments have been
discussed above. In this section the details and results of each experiment will be
presented. To summarize the above, the main goal of the experiments is to improve
the understanding of using competition in an autoencoder as well as evaluating the
clustering performance against similar architectures.

5.4.1 Linear k-Competitive Autoencoder

The following experiments illustrate how well a k-competitive layer [12] performs in a
linear autoencoder with only one hidden layer4. This means that the only non-linearity
in the autoencoder is the competition between neurons in the hidden layer. Chen and

4Due to an implementation detail in [12] the original k-competitive layer does not work as expected
in settings with two hidden neurons and k = 1. In the Python implementation of [12] positive values are
preferred for this particular edge case, thats why for the following experiments an alternative competi-
tion scheme has been used. First the winner in absolute values is determined and after that the loser is
set to zero. Energy is only distributed if both values are negative or positive otherwise the winner does
not gain anything from winning (the loser value is still set to zero).

5.4. Experiments 27

FIGURE 5.3: This figure shows the generated data hi with two additional
uniform noise dimensions, denoted as ĥi. There are four clusters in two
dimension and each cluster consists of 2500 data points. This initial setting

is taken from [63].

Model Activation
k-competitive [12] linear
k-sparse [40] linear
WTA [41] ReLu
autoencoder linear

TABLE 5.1: The experimental setting of models for the linearity experi-
ments in section 5.4.1.

Zaki [12] used the binary cross entropy as a loss function for KATE, when working
with text data. In contrast, here the considered loss function is the mean squared error,
which is a reasonable choice for real valued data. Table 5.1 summarizes the compared
models, where each uses one hidden layer with two hidden neurons, is trained for ten
epochs and has a batch5 size of 64. The value of the amplification parameter α has been
held constant at 1.05 over all experiments in this section, because its performance was
fairly robust to the setting of α.

First the different models were run against the data from figure 5.1, before any non-
linear transformations have been applied. Two example results can be seen in figure
5.4. The figure on the left shows that the vanilla autoencoder learned the identity map-
ping and the original data distribution has been preserved. The figure on the right is
the learned representation by a linear autoencoder with a k-competitive layer, where
k = 1. As can be seen each horizontal pair of clusters is pushed together, namely
clusters 0-2 and 1-3. There are two interesting observations in this simple example.
First, the k-competitive layer has a strong regularization effect, in this case it hinders

5Batch will be used synonymous to minibatch, which is common in the literature [16].

28 Chapter 5. Validation

(A) (B)

FIGURE 5.4: The above figure shows the learned 2-dimensional represen-
tations from the generated data in figure 5.1 before any non-linear trans-
formations. (A) shows the 2-dimensional encoding found by a linear au-
toencoder. (B) shows the 2-dimensional encoding found by a linear au-

toencoder with k-competitive layer.

the autoencoder to learn the identity mapping. Second, the competition layer pushes
2 clusters together and tries to map them to a linear function. One hypothesis for this
behavior is that competition between neurons makes them specialists for distinct pat-
terns. As there are only two hidden neurons the four clusters are split evenly between
them. This might be due to an effect that the amount of discernible patterns is limited
by the number of neurons.

To investigate this behavior additional experiments are conducted, in which only
two clusters in different configurations are used, see figure 5.5. The overlapping clus-
ters from figure 5.5a are separable in one dimension and overlap in the other. This
data set is used to validate against the hypothesis that neurons in the k-competitive
layer learn more distinct patterns. The learned representations from the linear au-
toencoder and the linear k-competitive autoencoder can be seen in figure 5.6. While
the original data in figure 5.5a overlaps only slightly in both dimensions, the linear
autoencoder in figure 5.6a learned an identity mapping which mostly preserves the
distributions in both dimensions. Figure 5.6b shows that the regularization effect of
the competition prevents the linear k-competitive autoencoder from learning the iden-
tity mapping, thus the original space is not perfectly recovered. Interestingly, the two
horizontal clusters are not pushed together like in figure 5.4b, but have been kept sep-
arately. In fact the histograms show that the distinction between the two clusters has
increased slightly compared to figure 5.5a. These insights provide further evidence for
the above hypotheses.

The data set from figure 5.5b contains two clusters which are easily separable in one
dimension, but overlap in the other. This experiment should provide further insight
in the capability of the neurons to separate the clusters and learn distinct features. In
figure 5.7 the learned representations of the two linear autoencoder variants can be
seen. The linear autoencoder learned a transformation which slightly rotated the two
clusters, this results in an overlap in both dimensions, see histograms in figure 5.7a.
The separation of the two clusters in both dimensions by the k-competitive layer can

5.4. Experiments 29

(A) (B)

FIGURE 5.5: The above figure shows two synthetically generated clusters
in two different configurations. (A) shows two clusters with higher stan-
dard deviation, which slightly overlap in both dimensions. (B) shows two

clusters which are separable in dimension x0, but overlap in x1.

(A) (B)

FIGURE 5.6: The above figure contains the learned representations from
the 2-dimensional data set with two overlapping clusters in figure 5.5a.
(A) shows the representation learned by a linear autoencoder. (B) shows
the representation learned by a linear autoencoder with k-competitive

layer.

30 Chapter 5. Validation

(A) (B)

FIGURE 5.7: The above figure contains the learned representations from
the 2-dimensional data set with two stacked clusters in figure 5.5a. which
are separable in one dimension, but overlap in the other. (A) shows the
representation learned by a linear autoencoder. (B) shows the representa-

tion learned by a linear autoencoder with k-competitive layer.

be seen in figure 5.7b. The histograms show a clear separation in both dimensions,
compared to the original data in 5.5b. When comparing the learned representation in
the full 2-dimensional space it is clear that the learned representation is different to the
original data. While this further strengthens the aforementioned hypothesis, another
trade-off is highlighted, namely the one between the separation of distinct patterns and
the preservation of the original space.

To further explore this the learned representation of the linear k-competitive au-
toencoder has been observed for each training epoch, which is not plotted here due to
space constraints. It can be seen that during training the distinctiveness in each neuron
increases, but in the same time the reconstruction error on the validation set increases,
which can be seen in figure 5.8.

Additionally, to the visual inspection of the learned representations, a clustering via
k-means++ has been performed. The results in figure 5.9 show the performance of k-
means on the learned representation of all models listed in table 5.1 over the synthetic
data sets. The x-axis indicates which data set was used, "original" denominates the
2-dimensional data set hi from 5.1, "transformed sig" denotes the data set which was
constructed by transforming hi via the sigmoid function from equation 5.3, the same is
true for "transformed exp" (5.4) and "transformed tanh" (5.5). The last figure shows the
test loss of the models measured as the mean squared reconstruction error on a hold
out test set, PCA (violet line) and kmeans on the unmodified data (brown line) have no
reconstruction error due to the nature of their algorithm. The overall performance is
quite bad and k-means on the original data or in combination with PCA works better
than on the representations learned by the neural networks. This highlights the lim-
ited capabilities of networks without non-linear activation functions. Only WTA [41],
which uses the non-linear relu activation function performs quite well over the data
set.

5.4. Experiments 31

FIGURE 5.8: This figure shows the steep increase in validation loss for
each epoch, while training the linear k-competitive autoencoder on data

set 5.5b.

Conclusion

The conducted experiments shed some light on the behavior of the k-competitive layer
when isolated from the influence of any non-linear activation function. A few interest-
ing observations have been made. First, the k-competitive layer increases the distinc-
tiveness of each neuron during training. This can result in nicely separated clusters
like in figure 5.7b or in merged clusters, see figure 5.4b. The latter could be caused by
the restriction of using only two neurons in the hidden layer or by the lack of a non-
linear activation function. Second, there is a clear trade-off between validation error
and separability. The reason for this is that the original space of the data sets used in
the experiments has clusters which are close together or do overlap in some dimen-
sions. The k-competitive layer tries to increase the distance between these clusters,
which distorts the learned representation and increases the reconstruction error dur-
ing validation. That is why for real data sets it is important to try different values for k
and number of hidden neurons. Additional validation on the non-linearly transformed
synthetic data sets have shown that the performance of linear autoencoders is below
that of PCA, highlighting the need for non-linear activation functions, which will be
discussed next.

5.4.2 Nonlinear k-Competitive Autoencoder

In this section the same experiments as in chapter 5.4.1 will be conducted, but the main
goal here is to study the behavior of the k-competitive layer with different non-linear
activation functions and evaluate its performance for clustering tasks. The following
activation functions will be examined. The hyperbolic tangent (tanh) function, the
rectified linear unit (relu) function and its variant leaky relu, see figure 5.10 for a 2-
dimensional plot of the activation functions. The tanh function is used in the original
paper by [12] and serves therefor as benchmark against the other two. The reason for
choosing the relu function is twofold. First, it has been successfully used in several

32 Chapter 5. Validation

FIGURE 5.9: The above figure shows the clustering performance for k-
means on the learned representation of all linear models listed in 5.1 mea-

sured in normalized mutual information and cluster accuracy.

neural network architectures [16], [20]. Second, the relu function makes the compe-
tition algorithm simpler and faster by only allowing positive values. The leaky relu
function tries to avoid a weakness of the "normal" relu function, which is called dead
neurons. The latter means, that all activations are set to zero, which stops the gradi-
ent from propagating. Thats why it has a negative slope, which can be handled like a
hyperparameter, but is often set to 0.1. Deciding which activation function to use in
hidden units is an active area of research and there are not "many definitive guiding
theoretical principles" [16]. That said, it is usually a process of trial and error and it’s
not possible to predict the outcome beforehand [16]. Therefor, the different activation
functions will be evaluated on several synthetic data sets. Look at table 5.2 for the ex-
periment setting. Note, that each activation function is used together with the weight
initialization scheme proposed in the literature.

In the first experiment the non-linear k-competitive autoencoders are trained on
the data set with four clusters and its non-linear transformations, see figure 5.11. The
overall performance measured in normalized mutual information is quite poor, but
still an improvement over the performance in the linear setting, for comparison refer
to figure 5.9. Two reasons why this could be happening will be discussed.

First, according to the experiments conducted in section 5.4.1, competition has a
high regularization effect in the linear setting. This effect might very well transfer to the

5.4. Experiments 33

FIGURE 5.10: The above figure shows three common non-linear activation
functions. The top figure shows the relu activation function, which out-
puts only numbers greater or equal to zero. The middle one is the leaky
relu function with a negative slope of 0.1. The bottom figure is the tanh

function, which is defined on the interval [-1,1].

non-linear setting and could hinder the neurons from learning anything useful in the
2-dimensional case. Second, in addition to the regularization effect, the amplification
of energy to winner neurons regulated through α could push the non-linear activations
to extreme values, by making winner neuron values very large6. The next experiments
will shed some light on these suspicions.

The approach is to break down the questions in smaller parts. First, it will be ex-
amined whether α has any effect on clustering performance at all. Due to this several
configurations of the α parameter are evaluated according to their NMI for all three
activation functions on the transformed sigmoid data set. The plot in figure 5.12 indi-
cates that the tanh and leaky relu activation function are quite sensitive to the setting of
the alpha value. Note, that the recommended value for the tanh function, from [12] of

α = k
2 = 1

2 , does not hold for this data set. The relu function which only uses positive
winners is very robust to the choice of α, which provides some evidence of its small
competitive effect in the 2-dimensional case. Overall, it can be said that for the tanh
and leaky relu function which both allow positive and negative winners the value of α
matters. Additionally, competition has always an effect, regardless of the alpha setting.
Whereas, for the relu function the effect of α is minor.

Next, the specific effect of α on the tanh and leaky relu function is explored. Figure

6Extreme values here means that e.g. for the tanh function all values are either 1 or -1 and for the relu
function all values would be zero. This is sometimes referred to as the saturated regime of an activation
function [16].

34 Chapter 5. Validation

Model Activation Initialization
k-competitive [12] tanh xavier [15]
k-competitive (leaky) relu he [20]
autoencoder tanh xavier
autoencoder (leaky) relu he
k-sparse [40] linear xavier
WTA [41] relu he

TABLE 5.2: The experimental setting of models for the nonlinearity exper-
iments in section 5.4.2. Each model has one layer, two hidden neurons, is

trained for ten epochs and has a batch size of 64.

(A) The results for the k-competitive layer with
relu nonlinearity

(B) The results for the k-competitive layer with
tanh nonlinearity

FIGURE 5.11: The above figure shows the clustering performance for k-
means on the learned representation of all models listed in 5.2 measured

in normalized mutual information and cluster accuracy.

5.4. Experiments 35

FIGURE 5.12: This figure shows a comparison between the tanh, relu and
leaky relu activation function for different values of α, evaluated on the
"transformed sig" data set from equation 5.3. The other settings where

kept the same as in table 5.2.

5.13, depicts the ratio of positive to negative activations of both neurons. This means
that a value larger than one, indicates a higher number of positive than negative val-
ues. The first observation is that for most values of alpha e.g. α = 0.4 the leaky relu
activation causes one neuron to focus on positive and the other on negative values.
A slightly weaker, but similar effect can be observed for the tanh function. There are
some values of α which seem to enforce a specific value distribution in both values,
e.g. α = 0.2 or α = 0.4. Overall, the pattern for the tanh function is not as convincing
as for the leaky relu one.

Additionally, when looking at the encoding found by the autoencoder with tanh
activation and α = 1.0 in figure 5.14, it can be seen that most values are on the saturated
regimes. This highlights the aforementioned problem, that the competition can push
the activations to extreme values. The competition makes each dimension as distinct as
possible, which in fact can be seen in the histograms of both neurons. Interestingly this
effect does not change much in the 2-dimensional case, when observing the encodings
for different α values.

According to the results of the experiments above, it can be concluded that, at least
for the 2-dimensional case competition has a regularizing effect which is too strong
and overtakes the ability to reconstruct the data properly. To further explore this, set-
tings with higher dimensional encodings are investigated. Here, the number of four
hidden units has been chosen to make competition balanced between two positive and
two negative winners. Additionally, the number of winner neurons is set to k = 2.
Due to the experiment before, it is clear that the tuning of the α parameter is quite
important. Thats why hyperparameter tuning of α for each data set was conducted,
this results in the values seen in table 5.3. It shows that the NMI score has been con-
siderably improved compared to the performance in figure 5.11. For the transformed
sigmoid data set the NMI for tanh increased for about 0.03 points. The NMI for relu
increased by 0.74 points, but this has to be taken with a grain of salt, as the previous
NMI of zero was due to the dead neuron problem. For the other two data sets the in-
crease is considerably higher. About 0.25 for the transformed exp and 0.2-0.3 points for

36 Chapter 5. Validation

FIGURE 5.13: This figure shows a comparison between the tanh and leaky
relu activation function in both neurons for different values of α on the

transformed sig" data set from equation 5.3.

the transformed tanh data set. This improvement is impressive, but as mentioned be-
fore the correlation between NMI performance and reconstruction of the original data
space is not perfect. Additionally, the found encodings are now in the 4-dimensional
space, while the true underlying data has only 2 dimensions (figure 5.1), which makes
a direct visual comparison difficult. Still, what can be evaluated is how well each clus-
ter is separated in each dimension. In figure 5.15 the encodings of the best performing
models on the transformed tanh and exp data set can be seen. One obvious obser-
vation is that the reconstructed space does not resemble the original data in any of
the 2-dimensional sub-dimensions. The encoding with the relu function (figure 5.15a)
shows at least some separation between clusters, especially on the x2 vs x3 plot and x0

vs x2. The learned 4-dimensional representation from the exponentially transformed
data set (figure 5.15b) is despite its high NMI not well separated. Interestingly, it has
the same problem as in the 2-dimensional space. Namely, most points lie on the satu-
rated regimes of the tanh function close to -1 or 1, see figure 5.14 for a comparison. To
better visualize the found encodings in 2-dimensions, a principal component analysis
has been performed. The results can be seen in figure 5.16. These plots are quite simi-
lar to the original data space and indicate that there might be some redundancy in the

5.4. Experiments 37

FIGURE 5.14: The figure above shows the encoding for the tanh activation
function and α = 1.0 corresponding to figure 5.13.

4-dimensional encodings, which can be reduced via PCA. While these results are quite
promising, it has to be noted that the more complicated sigmoid transformed data set
(equation 5.3) has despite its high NMI a quite bad reconstruction, as can be seen in
figure 5.17.

Conclusion

The conducted experiments brought several insights for choosing the value of k, α, the
number of hidden neurons and a suitable activation function. First, when using the
k-competitive layer in an autoencoder it is important to see α as an additional hyper-
parameter which has to be tuned extensively. This is in contrast to the findings of [12],

who suggest to set it to α = k
2 when using the tanh activation function and text data.

At least, the conducted experiments show that this suggestion does not hold for the
used data sets. The strong regularizing effect of competition which was observed in
the linear experiments in section 5.4.1, does transfer to the non-linear activation func-
tions as well. In fact, the non-linearities introduce further complexity when training
the neural network. This results in the problem of reaching saturated regimes, which
hinders the learning process. The relu function was less sensitive to the competition
and the setting of α, when using only two neurons, but in this case its NMI was quite
bad overall. The overall conclusion of using competition with only two neurons is
that the regularization effect is too strong and obstructs a proper reconstruction of the
original data space. The effect of the competition is more balanced when using at least
four neurons, this setting balances the amount of positive and negative winners when
k = 2. This resulted in a major improvement over the two dimensional case for all non-
linear activation functions used, see table 5.3. To allow a comparison with the original
data set 5.1, PCA was used to project the 4-dimensional encodings to 2-dimensions.
This resulted in a nicely separated representation for the tanh and exponentially trans-
formed data, see figure 5.16. For the more challenging sigmoid transformed data set

38 Chapter 5. Validation

data set activation α NMI NMI(previous)
transformed sigmoid (5.3) tanh 1.6 0.7881 0.7553

leaky relu 1.0 0.7639 0.6615
relu 0.2 0.7427 0.0

transformed exponential (5.4) tanh 0.5 0.9214 0.6360
leaky relu 1.0 0.8844 0.7188

relu 0.2 0.8524 0.6889
transformed tanh (5.5) relu 0.1 0.9431 0.5829

tanh 0.4 0.9053 0.7001
leaky relu 1.0 0.8914 0.7714

TABLE 5.3: The results for the different data sets and activation functions
for the k-competitive layer with four hidden neurons and k = 2. The
parameter α has been tuned for each data set and activation function sep-

arately.

(A) Encoding of tanh data set with relu non-
linearity. (NMI = 0.9431)

(B) Encoding of exp data set with tanh non-
linearity. (NMI = 0.9214)

FIGURE 5.15: The above figures show the best NMI performer from ta-
ble 5.3 on the tanh (equation 5.5) and exponentially (equation 5.4) trans-

formed data sets.

5.4. Experiments 39

(A) PCA on figure 5.15a (B) PCA on figure 5.15b

FIGURE 5.16: The above figures show the two principal components for
each encoding found in figure 5.15.

(A) Encoding of sigmoid data set with tanh
non-linearity. (NMI = 0.7881)

(B) PCA on figure 5.17a

FIGURE 5.17: The above figures show the best NMI performer from table
5.3 on the sigmoid (equation 5.3) transformed data set.

40 Chapter 5. Validation

the reconstruction is not that similar to the original data space, despite its high NMI,
see figure 5.17.

Overall it can be said, when only considering the NMI performance the tanh activa-
tion function worked best. An inspection of the learned low dimensional representa-
tion shows that the original data space is often not well reconstructed. This downside
of the tanh function is tightly connected to the issue of saturated regimes. Most activa-
tion values for the k-competitive layer are either -1 or 1, which forces the representa-
tions to be degenerated, e.g. one cluster is mapped to one very dense point. Whether
this is desired, depends on the application, e.g. multiview clustering [67] might want
to avoid a situation in which clusters are merged together in multiple subspaces. The
relu function has overall a slightly lower NMI than the other two , but the low dimen-
sional representations from the transformed data sets, are looking quite similar to the
original data space. The leaky relu function is performing quite well over all three
transformed data sets. It seems, that it can combine the best of both worlds. It has
no saturation points and allows for positive and negative competition. The problem is
that competition is unfair. A positive winner receives always a higher activation value
than the negative winner, simply due to the smaller negative slope.

Additionally, after choosing an activation function the following should be consid-
ered. When using an activation function which allows for both positive and negative
winner, the number of neurons and the value of k should be an even number, to make
competition balanced. For the relu the choice of α and k does not matter that much in
settings with less than 3 hidden neurons. If the dimensionality is larger, k should be
set to the desired level of competition.

5.4.3 Noise Experiments

One of the main reasons to explore the k-competitive layer was due to its superior
performance in settings with very sparse data, see [12], which was a challenge for
previous autoencoder architectures. The main idea is that this characteristic transfers
to similar settings with sparse information, e.g. noisy data or data with redundant
dimensions. To test this behavior the k-competitive layer is evaluated against two data
sets, which have been discussed in detail in chapter 5.3.1. The first has a different
number of noise dimensions (figure 5.3) and the second has additional noise points
(figure 5.2). Both data sets are non-linearly transformed by equation 5.3, here referred
to as sig transformation. The results of the previous experiments indicated that the
tanh activation function worked quite well over a variety of settings and will therefore
be used here. Additionally, the α parameter has been tuned for each noise setting and
the number of hidden units has been set to eight, to compensate for a more difficult
setting. The setting of all compared models can be seen in table 5.4.

The experiments are conducted to check whether the k-competitive autoencoder
is robust to redundant dimensions7. The rationale behind this is the previously seen
effect of the k-competitive layer to squeeze together one cluster from multiple dimen-
sions onto one point, this effect might be enforced by very similar dimensions. The
results can be seen in figure 5.18. Interestingly, the non-linearly transformed data does
not seem to be a great challenge for all compared techniques, but the k-competitive

7Redundant dimensions are here defined as dimensions without information, namely uniformly dis-
tributed noise dimensions.

5.4. Experiments 41

Model Activation Initialization
k-competitive [12] tanh xavier [15]
autoencoder tanh xavier
k-sparse [40] linear xavier
WTA [41] relu he [20]

TABLE 5.4: The experimental setting of models for the noise experiments
in section 5.4.3. Each model has one hidden layer, eight neurons, is trained

for three epochs and has a batch size of 64.

autoencoder is performing quite well in regards of NMI score. For the cluster accuracy
the results are less distinct. This might be more an effect of the experiment setting, than
of the algorithms tested. The more noise dimensions are added, the less strong is the
effect of the non-linear sig transformation and therefor the less difficult is the data set.
This might explain, why the performance goes up again, after 20 noise dimensions.
The conclusion for this experiment is therefor, that the results have to be taken with a
grain of salt and in total not much can be said, except that all algorithms performed
quite well.

In figure 5.19 the results for the experiment with different amount of added noise
points can be seen. The x-axis indicates the number of noise points added to the origi-
nal data from 5.1, e.g. there are 10 000 points in the original data, then for a noise level
of 0.1 there are 1 000 noise points added. Here the performance makes more sense in-
tuitively, as the NMI and cluster accuracy are deteriorating when the amount of noise
is increased. The k-competitive layer performance in regard of NMI is superior across
different noise levels. Again, the picture looks different for cluster accuracy, here the
performance is less distinct. In fact at an noise level of 1.0 the cluster accuracy of the
k-competitive autoencoder is even lower than for the normal autoencoder. This last
result has to be considered carefully, due to the fact that a noise level of 1.0 means that
there are 10 000 noise points added. These noise points are quite close to the real clus-
ters, which causes the clustering to include them in one of the four clusters and in a
real world setting this might make sense. In order to isolate this effect another data
set is generated, in which all the noise points are farther away from the original four
clusters. The results of this experiment are depicted in figure 5.20. 8 Again, a similar
behavior as before can be observed, but the performance at a noise level of 0.1 is about
0.2 points lower for both NMI and cluster accuracy than before. These results, indicate
that even for noise points which are farther away the k-competitive layer performs
quite robust.

Conclusion

The above experiments show that the k-competitive layer can increase the the perfor-
mance of k-means in the presence of noise points and outliers. The results for uniform
noise dimensions are less distinct, but still in favor for the k-competitive layer. Ad-
ditionally, as before the synthetic data sets have been non-linearly transformed via
equation 5.3 to a 100 dimensional space. In these difficult settings the performance
of simple k-means and pca dropped. The non-linear dimensionality reduction via

8Note, that the range of noise is now [0.01, 0.1], which was necessary as this is a more difficult setting.

42 Chapter 5. Validation

(A) (B)

FIGURE 5.18: The above figures depict the performance of the k-
competitive layer against other techniques on the synthetic data set from
figure 5.3. The number of noise dimensions has been increased by multi-
ples of five. Figure (A) shows normalized mutual information and figure

(B) the cluster accuracy.

(A) (B)

FIGURE 5.19: The above figures depict the performance of the k-
competitive layer against other techniques on the synthetic data set from
figure 5.2. The x-axis indicates the number of noise points added to the
original data from 5.1. Figure (A) shows normalized mutual information

and figure (B) the cluster accuracy.

5.4. Experiments 43

(A) (B)

FIGURE 5.20: The above figures depict the performance of the k-
competitive layer against other techniques on an adapted version of the
noise experiments, where the noise is distributed farther away from the
clusters. Figure (A) shows normalized mutual information and figure (B)

shows the cluster accuracy.

both the vanilla autoencoder and the k-competitive autoencoder improved the NMI
scores. Overall, it can be stated that the features of KATE, which have been observed
in [12], do transfer to these difficult settings. Now that an appropriate setting for the
k-competitive layer has been found, it will be evaluated against real world data sets.

5.4.4 Real World Data Sets

Experiments with synthetic data sets are an important tool for understanding and they
serve as a proof of concept. However, their relevance to practical problems is limited.
To complement the previous experiments, this section includes an evaluation on real
world data sets. The data sets were chosen so that they have similar properties to the
synthetic data sets. This was not straight forward, because the synthetic data sets each
focused on a specific problem. In practice, all tested situations can occur at once and
with varying degrees. A good compromise could be reached with the data sets from
Campos, Zimek, Sander, et al. [9].

In their survey paper they wanted to find appropriate benchmark data sets to eval-
uate different outlier detection methods. These data sets have some properties which
make them interesting for representation learning. They include natural9 outliers10,
mixed type data and duplicate values. Campos, Zimek, Sander, et al. [9] chose 23
data sets from the UCI Machine Learning Repository [4], which they considered good
benchmarks. For each of these they generated various versions, where each version
had different preprocessing steps, e.g. normalization, removal of duplicate values,
downsampling of the outlier class and different handling of categorical attributes.

9Natural outliers refer here to outliers that arise from the semantics of the data set, e.g. sick vs healthy
patients in medicine. Natural is used here in contrast to artificially downsampling one class to be the
minority, which is often done for outlier detection evaluation[9].

10An outlier refers here to "an observation which deviates so much from other observations as to
arouse suspicions that it was generated by a different mechanism" [19].

44 Chapter 5. Validation

To be clear the goal of this thesis is not to build an outlier detection algorithm.
The outlier data sets serve as a test on how robust the different autoencoders are, in
consideration of performance and learned low dimensional representation. These ex-
periments will help to gather evidence for the following hypothesis.

There is not one optimal autoencoder architecture for every situation, instead they
should be selected for different situations. Similar to the use of Convolutional Neural
Networks [32] for image data or LSTMs [23] for sequential text data. According to
the synthetic experiments, the k-competitive autoencoder is more effective with cross
sectional data that include outliers, noise and redundancy. To evaluate this hypothesis
experiments on real world data sets are necessary. From the selection by [9], five data
sets were chosen for evaluating the algorithms. All five data sets have more than ten
dimensions and at least five percent of outliers, the details of the data sets are briefly
discussed.

Annthyroid (AnnthX {δ})

The Annthyroid data set contains medical data on hypothyroidism, which is a disor-
der of the endocrine system. It consists of three classes "normal", "hyperfunction" and
"subnormal functioning", from which classes other than normal were labeled as out-
liers by [9]. The data set includes 7200 observations and 21 features, from which 15
are categorical and six are numerical. The experiments include four different versions
of this data set. Two have X = 5 percent of outliers, which was achieved by artificial
downsampling of the data. The other two versions have X = 7 percent of outliers,
which corresponds to the real amount of outliers. Each of these two is then split in a
version which includes duplicate values or not, indicated by the "δ" symbol.

Cardiotocography (Cardio22)

The Cardiotocography data set contains data of heart diseases and consists of three
classes referring to different diagnoses, "normal", "suspect" and "pathological". Again,
classes other than normal were labeled as outliers by [9]. The data set has 2126 obser-
vations, 471 outliers (22 percent) in total and is 21-dimensionsal. The version used in
the experiment is normalized and contains no duplicate values.

HeartDisease (HD44)

The HeartDisease data set contains data about heart conditions, were again healthy
patients are labeled as inliers and the rest as outliers. It consists of 270 observations,
from which 120 are outliers (44 percent) and has 13 numerical features.

Hepatitis (Hepa16)

The Hepatitis data set contains predictions of whether a patient infected with hepatitis
will die or survive. Fatal cases are labeled as outliers. The data set consists of 80
observations, 13 outliers and 19 numerical features.

5.4. Experiments 45

WPBC (WPBC24)

The Wisconsin Prognostic Breast Cancer (WPBC) has been used in the literature before
[26] and is therefor included in the survey of [9]. Keller, Muller, and Bohm [26] labeled
the class "R" as outlier and class "N" as inlier. The data contains 198 instances, 47
outliers (about 24 percent) and 33 numerical features.

Model Setting

All models listed in table 5.5 were trained and evaluated on the above data sets. Each
of them was split into training (70 percent), evaluation (10 percent) and test (20 percent)
data sets. Each model was trained for 5 epochs, except IDEC which was pretrained for
200 epochs. After training, the encoding was constructed for the whole data set on
which k-means++ was executed.

As the data sets vary in size and number of samples, the parameters had to be
adapted. The details are as follows. For the small data sets with less than 1000 in-
stances the batch size was set to four, with a learning rate of 1 and for the large Annth
and Cardio22 data sets it was set to 64, with a learning rate of 1.8. Note, that for all
architectures except IDEC, the AdaDelta [66] optimizer was used, which adjusts its
learning rate automatically. IDEC uses the ADAM [27] algorithm, and the learning
rate was left at the default value of 0.001.

The abbreviation (ML) in table 5.5 refers to the use of multiple layers. In case of the
k-competitive layer this means that competition is done in every layer with k set equal
to 40 percent of hidden layer units. For k-sparse and WTA the original papers only did
the competition in the hidden layer, which was applied here as well. For the Annth
and Cardio22 data set three hidden layers were used with 20x10x6 dimensions and for
the remaining data sets the dimensionality was 10x6x6. (OC) refers to an overcom-
plete hidden layer, were the hidden layer’s dimensionality is larger than the input’s.
Again, different sizes were chosen. This was done to compensate for the difficulty and
dimensionality of each data set. The size of the overcomplete layer is constrained by
the number of samples a data set consists of. For each data set different sizes where
evaluated, which resulted in the following choices. For the WPBC 38 hidden units
were chosen, because despite its high dimensionality (33) there is only a small amount
of samples (198). The Annthyroid and Cardiotocography have over 2000 samples and
both 21 dimensions, which is why the layer size was selected to be almost twice as
large, with 40 hidden neurons. The Hepatitis and HeartDisease data set are both lower
dimensional and have few instances, which is why the hidden layer size was set to 20.

Results

The ROC-AUC values for all data sets are reported in table 5.6. The first four columns
show the different variants of the Annthyroid data set, where δ denotes that duplicate
values were not removed.

As mentioned before the goal of this thesis is not to build an outlier detection al-
gorithm, but the outlier benchmark data sets serve as an interesting setting for the
autoencoders. That is why the best outlier detection algorithms from [9] are out of
competition, but their ROC-AUC values are still reported. It is interesting to see that
with a learned representation and k-means++ the ROC-AUC values get quite close to

46 Chapter 5. Validation

Model Activation Initialization Hidden Layers
AE tanh xavier 1
AE (ML) tanh xavier 3
AE (OC) tanh xavier 1
k-comp (ML) tanh xavier 3
k-comp (OC) tanh xavier 1
k-comp (relu) relu he 1
k-comp (tanh) tanh xavier 1
k-sparse linear xavier 1
k-sparse (ML) linear xavier 3
k-sparse (OC) linear xavier 1
WTA relu he 1
WTA (ML) relu he 3
WTA (OC) relu he 1
IDEC relu xavier 1

TABLE 5.5: The experimental setting of all models for the real world out-
lier data in section 5.4.4.

the best performers. Except for the WPBC24 data set, none of the models can beat the
outlier detection methods. For the k-competitive layer it can be seen once again, that
the tanh activation works best across the different data sets. Among the autoencoder
based techniques it can be seen that the highest values are at the competitive architec-
tures, k-comp, k-sparse and WTA. The vanilla autoencoder (AE) is performing quite
consistently, but cannot outperform the competition driven architectures. This is even
the case for IDEC, which uses a denoising autoencoder[60] during pretraining. This
might be due to the two step approach of IDEC. In which the denoising autoencoder
failed to learn a good representation during pretraining, which resulted in a bad initial
clustering. This in turn forced points to be attracted to the wrong clusters during fine
tuning.

5.4. Experiments 47

Annth5 δ Annth5 Annth7 δ Annth7 Cardio22 HD44 Hepa16 WPBC24
AE 0.58 0.63 0.36 0.39 0.60 0.25 0.77 0.55

AE (ML) 0.48 0.48 0.49 0.49 0.46 0.67 0.41 0.49
AE (OC) 0.58 0.50 0.62 0.54 0.37 0.66 0.26 0.40

k-comp (ML) 0.34 0.64 0.67 0.31 0.60 0.30 0.80 0.47
k-comp (OC) 0.39 0.56 0.62 0.38 0.64 0.73 0.66 0.38

k-comp (relu) 0.37 0.38 0.42 0.65 0.68 0.69 0.83 0.40
k-comp (tanh) 0.62 0.68 0.39 0.63 0.64 0.75 0.83 0.39

k-sparse 0.41 0.39 0.41 0.39 0.58 0.40 0.23 0.59
k-sparse (ML) 0.38 0.60 0.62 0.46 0.59 0.70 0.13 0.38
k-sparse (OC) 0.57 0.38 0.39 0.60 0.58 0.27 0.77 0.41

wta 0.55 0.51 0.42 0.43 0.47 0.52 0.42 0.37
wta (ML) 0.51 0.54 0.50 0.52 0.57 0.67 0.37 0.57
wta (OC) 0.53 0.51 0.52 0.50 0.52 0.26 0.23 0.51

PCA 0.39 0.38 0.38 0.38 0.42 0.23 0.80 0.40
k-means 0.39 0.39 0.40 0.39 0.42 0.24 0.23 0.40

IDEC[18] 0.50 0.49 0.52 0.50 0.31 0.25 0.28 0.48

Best from [9] 0.71 0.73 0.69 0.69 0.68 0.79 0.83 0.58

TABLE 5.6: In the above table are the ROC-AUC values for each model.
A δ next to a data set denotes that duplicate instances were not removed.
(ML) refers to the usage of multiple layers and (OC) to overcomplete hid-
den layers, for details see 5.4.4. The highest values of the models are high-
lighted. The last row shows the best performing outlier detection methods

from the Campos, Zimek, Sander, et al. [9] survey.

49

6 Conclusion

Deep learning research has mostly focused on image, text and speech data. This ap-
plies to competition driven architectures [12], [40], [41] as well. Their performance on
cross sectional data sets with a high amount of noise, outliers or redundancy is not as
well studied. In this thesis one of these architectures, the k-competitive autoencoder
for text (KATE) [12] was extensively studied and its robustness to the above settings
has been evaluated. KATE has shown promising results for text data, which is high
dimensional and sparse. The idea was that this characteristic would transfer to similar
settings, if KATE is adapted to non-text data.

The approach to adapt KATE was first, to better understand the effect of the k-
competitive layer by conducting several synthetic experiments. To isolate it from any
other effects it was evaluated without an activation functions. The results showed that
the competition among neurons increases the distinctiveness in and between neurons.
For simple settings with two clusters, this resulted in nicely separated distributions in
both neurons, like figure 5.6. When the same is used for a setting with four different
clusters, the regularization effect of competition merges cluster together, see figure 5.4.
This demonstrates the limited capacity when using only two neurons and the strong ef-
fect of regularization. This was also observed in the higher test error, when comparing
the reconstruction with the original data.

After that, different activation functions were evaluated, to test the non-linear ef-
fects on competition. Extensive experiments showed that the tanh activation is the
best choice over a range of different tasks, this is in accordance to [12]. After that, the
k-competitive layer was evaluated on synthetic data with noise points, noise dimen-
sions and outliers. The results showed that the k-competitive layer performed best.

The above experiments resulted in the following choices for the k-competitive au-
toencoder. The loss function is changed from cross entropy to mean squared error. The
tanh activation function and the Adadelta optimizer are retained. While the experi-
ments showed that the architecture can stay mostly the same, several practical guide-
lines for tuning have been found. Contrary to Chen and Zaki [12], who argue that the

hyperparameter α should be set to k
2 , the experiments showed that the choice of α is

very important. A hyperparameter search should be conducted around the value of k
2 .

The number of winner neurons k has to be chosen, in consideration with the number of
hidden neurons. The problem is that it frequently happens that competition overtakes
the reconstruction ability, which results in distorted encodings.

To complement the synthetic experiments, suitable real world data sets where cho-
sen from [9]. These data sets include many outliers and redundant values, which serve
as a nice setup to test the robustness of the architectures. To be clear the goal of this
thesis is not to build an outlier detection algorithm, but use the data sets as a bench-
mark. The results show that, among the autoencoders the highest performance was
achieved with the competition based architectures, k-comp, k-sparse and WTA. They
outperformed IDEC as well, which might indicate that the denoising autoencoder used

50 Chapter 6. Conclusion

in the pretraining phase is not a suitable choice for data with outliers. The rational here
is that the representation it learned results in a bad initial clustering. This gets worse
in the fine tuning step, where points are attracted to the wrong clusters.

6.1 Achievements

An in depth empirical evaluation of the k-competitive autoencoder was conducted in
comparison to other competition based architectures. The key characteristics of the
k-competitive layer have been identified, which are robustness to sparsity[12], noise,
redundant dimensions and outliers. This robustness has been evaluated with synthetic
and real world data sets. The k-competitive autoencoder has performed better than re-
lated architectures and even outperformed IDEC in this situations. Additionally, a
weakness in the IDEC[18] architecture to data sets with outliers has been observed
during experimenting, while not tested, this is very likely to transfer to related archi-
tectures like [62], [63], because they all share the same architecture in the pretraining
step.

6.2 Future Works

6.2.1 Short Term Goals

Current state of the art deep clustering algorithms, like DEC, IDEC or DCN all learn
a representation and then fine tune the representation for a specific clustering result.
A short term goal is to use the k-competitive autoencoder in the IDEC architecture’s
pretraining phase, when cross sectional data sets with outliers are encountered.

6.2.2 Long Term Goals

The long term goal is to find architectures which can learn representations which are
suitable to a specific clustering algorithm, e.g. for k-means the autoencoder should
learn a representation which enforces the clusters to be Gaussian distributed.

51

A Abstract

A.1 English

Recent research that combines deep learning and clustering, often called deep cluster-
ing, shows promising results [18], [62], [63]. Most of these techniques share the same
approach. First, they train an autoencoder to project the input data to a lower dimen-
sion. The lower dimensional representation is then clustered by k-means to get initial
cluster labels. From this, the learned representation is refined in a step wise fashion,
by attracting the points in a cluster closer to its center. This approach has some issues,
e.g. if the autoencoder does not learn a good representation, all subsequent steps are
doomed to failure.

Most of deep learning research is concerned with image, text or speech data, thus
it is not surprising to see that there are weaknesses for other data types. In this master
thesis one such weakness is identified for cross sectional data sets which include out-
liers. In this setting many autoencoders fail to learn a meaningful representation and
therefor distort the initial clustering.

One solution is to use an adapted version of the KATE[12] (k-competitive autoen-
coder for text) architecture. It can learn a meaningful representation of cross sectional
data in settings with noise, redundancy and outliers. This is shown in an empirical
study of the competition scheme used in KATE. In this study the k-competitive layer is
evaluated and adapted for other data types. The adapted algorithm was then bench-
marked on multiple challenging real world data sets, against state of the art autoen-
coder architectures.

A.2 Deutsch

Die Kombination von Deep Learning und Clustering, oft auch unter dem Namen
Deep Clustering vereint, ist relativ neu, zeigt aber bereits vielversprechende Ergeb-
nisse [18], [62], [63]. Die meisten der aktuellen Deep Clustering Techniken teilen den
gleichen Ansatz. Zuerst wird ein Autoencoder trainiert, um die Eingangsdaten auf
eine niedrigere Dimension zu projizieren. Diese niedrigdimensionale Darstellung wird
dann mit dem k-means Algorithmus geclustert, um erste Cluster-Labels zu erhalten.
Aus diesem Clustering wird die erlernte Darstellung schrittweise verfeinert, indem die
Punkte in einem Cluster näher an sein Zentrum gezogen werden. Dieser Ansatz hat
einige Probleme, z.B. wenn der Autoencoder im ersten Schritt keine gute Darstellung
lernt, sind alle nachfolgenden Schritte zum Scheitern verurteilt.

Zusätzlich, beschäftigt sich der größte Teil der Deep Learning Forschung mit Bild-
, Text- oder Sprachdaten, daher ist es nicht verwunderlich, dass es Schwächen bei
anderen Datentypen gibt. In dieser Masterarbeit wird eine solche Schwachstelle für

52 Appendix A. Abstract

Querschnittsdatensätzen mit Ausreißern identifiziert. In dieser Situation lernt der Au-
toencoder keine sinnvolle Darstellung, wodurch das Clustering verzerrt wird.

Eine mögliche Lösung dafür wurde durch die Verwendung einer angepassten Ver-
sion des KATE[12] Algorithmus (k-competitive autoencoder for text) gefunden. KATE
kann eine sinnvolle niedrigdimensionale Darstellung von Querschnittsdaten mit Rauschen,
Redundanz und Ausreißern lernen. Das wird durch eine empirische Untersuchung
des in KATE verwendeten Wettbewerbsverfahren gezeigt. In dieser Studie wurde der
k-competitive layer ausgewertet und für andere Datentypen angepasst. Der angepasste
Algorithmus wurde dann mittels mehreren anspruchsvollen Datensätzen gegenüber
anderen Autoencoder-Architekturen verglichen.

53

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A.
Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.
Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, TensorFlow: Large-scale machine
learning on heterogeneous systems, Software available from tensorflow.org, 2015.
[Online]. Available: https://www.tensorflow.org/.

[2] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seed-
ing”, in Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete al-
gorithms, Society for Industrial and Applied Mathematics, 2007, pp. 1027–1035.

[3] G. Arvanitidis, L. K. Hansen, and S. Hauberg, “Latent space oddity: On the cur-
vature of deep generative models”, ArXiv preprint arXiv:1710.11379, 2017.

[4] K. Bache and M. Lichman, “Uci machine learning repository (http://archive.
ics. uci. edu/ml), university of california, school of information and computer
science”, Irvine, CA, 2013.

[5] P. Baldi and K. Hornik, “Neural networks and principal component analysis:
Learning from examples without local minima”, Neural networks, vol. 2, no. 1,
pp. 53–58, 1989.

[6] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and
new perspectives”, IEEE transactions on pattern analysis and machine intelligence,
vol. 35, no. 8, pp. 1798–1828, 2013.

[7] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise train-
ing of deep networks”, in Advances in neural information processing systems, 2007,
pp. 153–160.

[8] C. Bishop, Pattern recognition and machine learning. Springer, 2006. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/pattern-
recognition-machine-learning/.

[9] G. O. Campos, A. Zimek, J. Sander, R. J. Campello, B. Micenková, E. Schubert,
I. Assent, and M. E. Houle, “On the evaluation of unsupervised outlier detec-
tion: Measures, datasets, and an empirical study”, Data Mining and Knowledge
Discovery, vol. 30, no. 4, pp. 891–927, 2016.

[10] A. Cauchy, “Méthode générale pour la résolution des systemes d’équations si-
multanées”, Comp. Rend. Sci. Paris, vol. 25, no. 1847, pp. 536–538, 1847.

https://www.tensorflow.org/
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/

54 BIBLIOGRAPHY

[11] N. Chen, A. Klushyn, R. Kurle, X. Jiang, J. Bayer, and P. van der Smagt, “Metrics
for deep generative models”, in International Conference on Artificial Intelligence
and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Is-
lands, Spain, 2018, pp. 1540–1550. [Online]. Available: http://proceedings.mlr.
press/v84/chen18e.html.

[12] Y. Chen and M. J. Zaki, “Kate: K-competitive autoencoder for text”, in Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, ACM, 2017, pp. 85–94.

[13] J. C. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization”, Journal of Machine Learning Research, vol.
12, pp. 2121–2159, 2011. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2021068.

[14] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm for
discovering clusters in large spatial databases with noise.”, in Kdd, vol. 96, 1996,
pp. 226–231.

[15] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-
ward neural networks”, in Proceedings of the thirteenth international conference on
artificial intelligence and statistics, 2010, pp. 249–256.

[16] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, “Generative adversarial nets”, in Advances in neural
information processing systems, 2014, pp. 2672–2680.

[18] X. Guo, L. Gao, X. Liu, and J. Yin, “Improved deep embedded clustering with lo-
cal structure preservation”, in International Joint Conference on Artificial Intelligence
(IJCAI-17), 2017, pp. 1753–1759.

[19] D. M. Hawkins, Identification of outliers. Springer, 1980, vol. 11.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification”, in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 1026–1034.

[21] I. Higgins, L. Matthey, X. Glorot, A. Pal, B. Uria, C. Blundell, S. Mohamed, and
A. Lerchner, “Early visual concept learning with unsupervised deep learning”,
ArXiv preprint arXiv:1606.05579, 2016.

[22] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V.
Vanhoucke, P. Nguyen, T. N. Sainath, et al., “Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups”, IEEE
Signal processing magazine, vol. 29, no. 6, pp. 82–97, 2012.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural computa-
tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[24] A. K. Jain, “Data clustering: 50 years beyond k-means”, Pattern recognition letters,
vol. 31, no. 8, pp. 651–666, 2010.

[25] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical learn-
ing. Springer, 2013, vol. 112.

http://proceedings.mlr.press/v84/chen18e.html
http://proceedings.mlr.press/v84/chen18e.html
http://dl.acm.org/citation.cfm?id=2021068
http://dl.acm.org/citation.cfm?id=2021068
http://www.deeplearningbook.org
http://www.deeplearningbook.org

BIBLIOGRAPHY 55

[26] F. Keller, E. Muller, and K. Bohm, “Hics: High contrast subspaces for density-
based outlier ranking”, in Data Engineering (ICDE), 2012 IEEE 28th International
Conference on, IEEE, 2012, pp. 1037–1048.

[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”, CoRR,
vol. abs/1412.6980, 2014. arXiv: 1412.6980. [Online]. Available: http://arxiv.
org/abs/1412.6980.

[28] D. P. Kingma and M. Welling, “Auto-encoding variational bayes”, ArXiv preprint
arXiv:1312.6114, 2013.

[29] S. Kornblith, J. Shlens, and Q. V. Le, “Do better imagenet models transfer bet-
ter?”, ArXiv preprint arXiv:1805.08974, 2018.

[30] H.-P. Kriegel, P. Kröger, and A. Zimek, “Clustering high-dimensional data: A
survey on subspace clustering, pattern-based clustering, and correlation cluster-
ing”, ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 3, no. 1,
p. 1, 2009.

[31] Y. LeCun, “The mnist database of handwritten digits”, Http://yann. lecun.
com/exdb/mnist/, 1998.

[32] Y. LeCun, Y. Bengio, et al., “Convolutional networks for images, speech, and time
series”, The handbook of brain theory and neural networks, vol. 3361, no. 10, p. 1995,
1995.

[33] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of massive datasets. Cam-
bridge university press, 2014.

[34] S. Lloyd, “Least squares quantization in pcm”, IEEE transactions on information
theory, vol. 28, no. 2, pp. 129–137, 1982.

[35] W. Maass, “On the computational power of winner-take-all”, Neural Computation,
vol. 12, no. 11, pp. 2519–2535, 2000.

[36] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne”, Journal of machine
learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[37] J. MacQueen et al., “Some methods for classification and analysis of multivariate
observations”, in Proceedings of the fifth Berkeley symposium on mathematical statis-
tics and probability, Oakland, CA, USA, vol. 1, 1967, pp. 281–297.

[38] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe,
and L. van der Maaten, “Exploring the limits of weakly supervised pretraining”,
ArXiv preprint arXiv:1805.00932, 2018.

[39] ——, “Exploring the limits of weakly supervised pretraining”, ArXiv preprint
arXiv:1805.00932, 2018.

[40] A. Makhzani and B. J. Frey, “K-sparse autoencoders”, CoRR, 2013. arXiv: 1312.
5663. [Online]. Available: http://arxiv.org/abs/1312.5663.

[41] ——, “Winner-take-all autoencoders”, in Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec, Canada, 2015, pp. 2791–2799. [On-
line]. Available: http://papers.nips.cc/paper/5783- winner- take- all-
autoencoders.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.5663
http://arxiv.org/abs/1312.5663
http://arxiv.org/abs/1312.5663
http://papers.nips.cc/paper/5783-winner-take-all-autoencoders
http://papers.nips.cc/paper/5783-winner-take-all-autoencoders

56 BIBLIOGRAPHY

[42] J. Mao and A. K. Jain, “A self-organizing network for hyperellipsoidal clustering
(hec)”, Ieee transactions on neural networks, vol. 7, no. 1, pp. 16–29, 1996.

[43] A. P. Minsky Marvin, Perceptrons. MIT Press, 1969.

[44] G. E. Moore, “Cramming more components onto integrated circuits”, Proceedings
of the IEEE, vol. 86, no. 1, pp. 82–85, 1998.

[45] K. Murphy, Machine learning, a probabilistic perspective. MIT Press, 2012.

[46] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines”, in Proceedings of the 27th international conference on machine learning
(ICML-10), 2010, pp. 807–814.

[47] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field prop-
erties by learning a sparse code for natural images”, Nature, vol. 381, no. 6583,
p. 607, 1996.

[48] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch”, 2017.

[49] K. Pearson, “On lines and planes of closest fit to systems of points in space”, The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 2,
no. 11, pp. 559–572, 1901. DOI: 10.1080/14786440109462720.

[50] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learn-
ing in Python”, Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[51] D. Pelleg, A. W. Moore, et al., “X-means: Extending k-means with efficient esti-
mation of the number of clusters.”, in Icml, vol. 1, 2000, pp. 727–734.

[52] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropaga-
tion and approximate inference in deep generative models”, ArXiv preprint
arXiv:1401.4082, 2014.

[53] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive auto-
encoders: Explicit invariance during feature extraction”, in Proceedings of the 28th
International Conference on International Conference on Machine Learning, Omni-
press, 2011, pp. 833–840.

[54] G van Rossum, “Python tutorial, technical report cs-r9526, centrum voor
wiskunde en informatica (cwi), amsterdam."”, 1995.

[55] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors”, Nature, vol. 323, no. 6088, p. 533, 1986.

[56] B. Schölkopf, A. Smola, and K.-R. Müller, “Kernel principal component anal-
ysis”, in International Conference on Artificial Neural Networks, Springer, 1997,
pp. 583–588.

[57] C. K. Sø nderby, T. Raiko, L. Maalø e, S. r. K. Sø nderby, and O. Winther, “Ladder
variational autoencoders”, in Advances in Neural Information Processing Systems
29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds., Curran
Associates, Inc., 2016, pp. 3738–3746. [Online]. Available: http://papers.nips.
cc/paper/6275-ladder-variational-autoencoders.pdf .

http://dx.doi.org/10.1080/14786440109462720
http://papers.nips.cc/paper/6275-ladder-variational-autoencoders.pdf
http://papers.nips.cc/paper/6275-ladder-variational-autoencoders.pdf

BIBLIOGRAPHY 57

[58] V. N. Vapnik, “The nature of statistical learning theory”, 1995.

[59] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need”, in Advances in Neural Information
Processing Systems, 2017, pp. 5998–6008.

[60] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and com-
posing robust features with denoising autoencoders”, in Proceedings of the 25th
international conference on Machine learning, ACM, 2008, pp. 1096–1103.

[61] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked de-
noising autoencoders: Learning useful representations in a deep network with a
local denoising criterion”, Journal of Machine Learning Research, vol. 11, no. Dec,
pp. 3371–3408, 2010.

[62] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for clustering
analysis”, in International conference on machine learning, 2016, pp. 478–487.

[63] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards k-means-friendly
spaces: Simultaneous deep learning and clustering”, in Proceedings of the 34th
International Conference on Machine Learning, D. Precup and Y. W. Teh, Eds., ser.
Proceedings of Machine Learning Research, vol. 70, International Convention
Centre, Sydney, Australia: PMLR, 2017, pp. 3861–3870. [Online]. Available: http:
//proceedings.mlr.press/v70/yang17b.html.

[64] L. Yann, “Modeles connexionnistes de lapprentissage”, PhD thesis, PhD thesis,
These de Doctorat, Universite Paris 6, 1987.

[65] A. L. Yuille and D. Geiger, “Winner-take-all mechanisms”, 1995.

[66] M. D. Zeiler, “ADADELTA: an adaptive learning rate method”, CoRR, vol.
abs/1212.5701, 2012. arXiv: 1212.5701. [Online]. Available: http://arxiv.org/
abs/1212.5701.

[67] A. Zimek and J. Vreeken, “The blind men and the elephant: On meeting the prob-
lem of multiple truths in data from clustering and pattern mining perspectives”,
Machine Learning, vol. 98, no. 1, pp. 121–155, 2015, ISSN: 1573-0565. DOI: 10.1007/
s10994-013-5334-y. [Online]. Available: https://doi.org/10.1007/s10994-
013-5334-y.

http://proceedings.mlr.press/v70/yang17b.html
http://proceedings.mlr.press/v70/yang17b.html
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://dx.doi.org/10.1007/s10994-013-5334-y
http://dx.doi.org/10.1007/s10994-013-5334-y
https://doi.org/10.1007/s10994-013-5334-y
https://doi.org/10.1007/s10994-013-5334-y

	Introduction
	Motivation
	Problem Statement
	Thesis Focus and Key Contributions
	Thesis Outline

	Data Mining
	Overview
	Clustering
	K-Means

	Dimensionality Reduction
	Principal Component Analysis

	Neural Networks
	Overview
	Feed Forward Network
	Autoencoder

	Representation Learning
	Overview
	Challenges
	Literature Review
	Denoising Autoencoder
	Stacked Autoencoder
	Contractive Autoencoder
	Variational Autoencoder
	K-Sparse Autoencoder
	Winner-Take-All Autoencoder
	K-Competitive Autoencoder for Text
	Deep Embedded Clustering
	Deep Clustering Network

	Validation
	Motivation
	Strategy
	Compared Methods
	Evaluation
	Normalized Mutual Information
	Cluster Accuracy
	ROC-AUC

	Implementation

	Data Generation
	Noise Data Generation

	Experiments
	Linear k-Competitive Autoencoder
	Conclusion

	Nonlinear k-Competitive Autoencoder
	Conclusion

	Noise Experiments
	Conclusion

	Real World Data Sets
	Annthyroid (AnnthX {})
	Cardiotocography (Cardio22)
	HeartDisease (HD44)
	Hepatitis (Hepa16)
	WPBC (WPBC24)
	Model Setting
	Results

	Conclusion
	Achievements
	Future Works
	Short Term Goals
	Long Term Goals

	Abstract
	English
	Deutsch

	Bibliography

