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Abstract

In this work we consider cosmological models which are modeled by PDEs (Par-
tial Differential Equations) based on the dynamics of scalar fields. Using the
FLRW ansatz for the metric g of the spacetime, the Einstein equations reduce
to the Friedmann equations. In the first section we give a introduction into the
cosmic inflation theory. Here a scalar field is postulated which is responsible for
a period of rapid expansion in the early universe to which avoid the so called
horizon problem. This scalar field is called inflaton and is unobserved until now.
In the end of the first section we will discuss the future stability of scalar field
configurations and present a very powerful result in [1]. In the second part we
are investigating the cosmological model of a Bose-Einstein condensate (BEC).
The authors in [2] showed that BEC can expand very rapidly and therefore
can explain the isotropic cosmic microwave background (CMB) in the horizon
problem too without postulating the existence of the inflaton. BEC attend a
additional hydrodynamical description which can be used to obtain the nonrel-
ativistic and semiclassical limit in a analytic rigorous way, as we will do in the
end of the second part, following [3].



Zusammenfassung

In der vorliegenden Arbeit betrachten wir kosmologische Modelle die auf skalaren
Feldern basieren. Wir verwenden einen FLRW Ansatz für die Metrik g der
Raumzeit. Dadurch reduzieren sich die Einstein’schen Feldgleichungen auf die
Friedmann Gleichungen. Im ersten Abschnitt beschäftigen wir und mit der
Theorie der Inflation, die ein skalares Teilchen, genannt das Inflaton, postuliert
das im frühen Universum eine Periode der starken Ausdehnung induziert hat,
welche das sogenannte Horizontproblem vermeidet. Weiteres widmen wir uns
der Zukunftsstabilität von Lösungen für Kosmologien mit skalaren Feldern und
präsentieren ein sehr weitreichendes Theorem aus [1]. Im zweiten Abschnitt
der Arbeit nähern wir uns den kosmologischen Modellen von einer anderen
Seite indem wir sogenannte Bose-Einstein-Kondensate (BEC) betrachten. Die
Autoren in [2] zeigten unter anderem nämlich das sich BEC äußerst rapide
räumlich ausdehnen können. Das würde die Isotropie im komischen Strahlen-
hintergrund (CMB) ebenfalls erklären ohne ein Inflaton zu postulieren. Diese
führt schlussendlich nämlich zum Horizont Problem. Bemerkenswerter Weise
ermöglichen BEC auch eine hydrodynamische Beschreibung die es erleichtert
einen formalen Beweis für den nicht relativistischen und semiklassichen Limes
anzugeben. Dabei folgen wir den Ausführungen in [3].
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Chapter 1

Introduction

In the year 1915 Albert Einstein revolutionized physics by recognizing that grav-
itation, in contrast to the other fundamental forces, has a different explanation
with a deep link to geometry. His principle of relativity and the equivalence
of acceleration and a gravitational field was a great jump beyond of Newton’s
theory. He described the universe as a four dimensional Lorentzian manifold,
the spacetime. The important thing about spacetime is that it does not have to
be a flat metric on it. In his work about the anomalous perihelion advance of
Mercury [4], Einstein formulated the famous Einstein equations whose solutions
determine the geometry on spacetime. They are sixteen coupled nonlinear in-
homogeneous PDEs of second order. The source terms of the Einstein equation
models the matter distribution in the considered spacetime and the solution
describes the corresponding metric on this manifold. Even today only very few
solutions for very simple matter distributions to this field equations are known.

At the same time in the beginning of the 20th century strange observa-
tions in experiments were made. A famous experiment was done by Otto Stern
and Walther Gerlach. The heated up silver atoms in an oven and send them
through a inhomogeneous magnetic field towards a screen. What they observed
was that only two dots were formed on the screen and not as classical expected
continuous distribution. This leads to the fundamental awareness that nature
is discretized on small scales. What Stern and Gerlach exactly measured is that
spin is quantized. Spin is sometimes treated as something mysterious but it
simply describes the angular momentum of a subatomic object, this angular
moment is quantized in units of ~.
Many famous physicists at this time started to put things into order in this odd
quantum world. One of them was Erwin Schrödinger. He was searching for
the equation of motion of an electron which moves in the electric field of the
nuclei and he found one, the Schrödinger equation. But this equation does not
take into account relativistic effects and the equation needs to be modified to
be compatible with the theory of relativity.
Historically Schrödinger found a relativistic equation of motion before he de-
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rived the his famous Schrödinger equation but dropped it because there were
negative energy solutions, too. The equation he discovered was the Klein Gor-
don equation, a fully relativistic equation, which describes the dynamic of spin-0
particles, also called scalar fields. Here "relativistic" means that the equation is
invariant under Lorentz transformation with a finite speed of light c. A exam-
ple for a scalar field particle is the Higgs Boson which is interacting with every
known particle and "gives them mass".

At this point we should remark that spin divides the known matter in the
universe in two parts. On the one hand side we have particles which carry
an half integer spin, these are called fermions and on the other hand we have
particles which carry an integer spin an they are called bosons. This can be
traced back to the fact that the N -body wavefunctions of bosons are symmetric
with respect to an exchange of the position arguments. For fermions a pairwise
exchange of the position arguments lead an additional minus sign. Following
the discourse in [5] the relation to the spin numbers can be verified. These two
particle sorts have fundamental different properties. The most important for
our context is that bosons are not effected from the Pauli exclusion principle.
Which means that several bosons can occupy the same quantum state which is
not true for fermions. Here only one fermion can occupy one specific quantum
state, i.e. fermions in principle are always distinguishable. On the other hand
if many bosons occupy the same quantum state they become indistinguishable.

It is a priori surprising that the Schrödinger equation can be obtained as the
non relativistic limit of the Klein Gordon equation since we already noted that
one equation describes fermions and the other one describes bosons. This "para-
dox" can be explained in a setting where the nonrelativistic limit, i.e. c→ ∞ is
combined the semiclassical limit ~ → 0. In the semiclassical limit the angular
momentum is no longer discretized and therefore bosons and fermions become
the same.

If the discretization of nature is only present at small scales one should think
that they can be neglected at astronomical scales. Einsteins theory of general
relativity does not take into account quantum effects. A theory which combines
general relativity with the quantum theory is not known yet and it is among the
biggest aim for physics nowadays to find such a Grand Unified Theory (GUT).

In cosmology one assumes that the corresponding metric g, which is the
solution to the Einstein equations, has the form

g = −dt2 + gijdx
idxj = −dt2 + a2(t)

(
1

1− kr2
dr2 + r2dΩ2

)

. (1.1)

Here Ω stands for the solid angle, t for time and r for the radius. The parameter
k determines if the curvature is positive, null or negative. In our case we set
k = 0 since one can assume in a good approximation that the universe is flat
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on astronomical scales. Solutions of this kind are known as Friedman-Lemaître-
Robertson-Walker (FLRW) spacetimes. The factor a is called the scale factor
and responsible for the character of propagation of the spacetime. We also
observe from the Cosmic Microwave Background CMB that the temperature in
the universe is very uniformly distributed. This justifies the assumption that
the universe can be considered as isotropic.
Since a couple of years it has become very popular to model the accelerating
character of our universe by the dynamics of a scalar fields and so therefore the
source term in the Einstein field equations is modeled by a stress energy tensor
for a scalar field, see [6],

Tµν = ∂µφ∂νφ− gµν

(
1

2
gαβ∂αφ∂βφ− V (φ)

)

. (1.2)

If we in addition assume that the universe is homogeneous in space the Einstein
equations reduce to a coupled ODE system which determine the scale factor a
and the scalar field φ. This ODE system is called the Friedmann equations

ȧ

a
− k

a2
=

8πG

3
ρ, (1.3)

ä

a
= −4πG

3
(ρ+ 3P ), (1.4)

Here ρ = 1
2 φ̇

2+V (φ) = T00 stands for the energy density P = 1
2 φ̇

2−V (φ) = Tij
for i, j ∈ {1, 2, 3} for the momentum density.

We already mentioned that the CMB is very isotropic. The isotropy of the
CMB implies that the most spots of the CMB should have overlapping past
light cones. But that is not possible in general. More precisely this applies
to every two points p and q which are separated by more than one degree, see
for example [6]. So each two points which are causally disconnected could not
know anything about the temperature of the other point. Therefore no thermo-
dynamic process could happen which achieves the equal temperature of p and
q. But the question remains, if there was not enough time for the points p and q
to communicate why the CMB is so isotropic? This is called the Horizon Prob-
lem. An answer to solve this problem is cosmic inflation. Here one postulates a
certain period in the early universe of rapid expansion. Such that we "gain" a
period in time where the past light cones of the spots in the CMB could overlap
and therefore are causal connected.
To model inflation one postulates a scalar field φ whose equations of motion
are coupled to the Friedmann equations and causes this inflation period in the
early universe. A very important aspect which has become a milestone paper
in general relativity and related subjects is the proof of Hans Ringström [1] on
the stability of scalar field inflation models.

As we already noted before, many bosons can occupy the same state and
therefore can be described by one single wave function. A so called Bose Einstein
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Condensate (BEC) consists of bosons occupying the same quantum state. The
idea is now to consider a BEC and drop the assumption of homogeneity of space
in φ. The equation of motion for a scalar field is the Klein-Gordon equation

~
2

2m
�fφ =

(
1

2
mc2 + V ′(~x, t)

)

φ+ U ′φ. (1.5)

Here�f stand for d’Alembert operator in a flat space, V (~x, t) stands for some
external potential, where U(ρ̂, λi) is a self-interaction term of the form

U(ρ̂, λi) =
λ2
2
ρ̂2 +

λ3
6
ρ̂3 + ... , (1.6)

with ρ̂ = φ†φ the density operator of the boson field and the λi are the cou-
pling constants of the different interaction types. The prime in (1.5) denotes a
derivative with respect to ρ̂. The field φ is a complex valued scalar field defined
on a certain spatial domain Ω ⊂ R

n.

To mimic the accelerating character of our universe its enough to require
ρ + 3P < 0. Physicists would say that the scalar field breaks the so called
strong energy condition. In fact there are many classical matter configurations
violating the strong energy condition, so the explanation of the universe with a
BEC does not need to postulate some kind of exotic matter (Dark Matter) like
other models do. This is the reason why this approach became so popular.

Similarly to the Schrödinger equation a BEC admits an additional descrip-
tion in terms of fluid dynamic equations, see [7] and [3], [8]. To this we introduce
the so-called Madelung transformation,

φ = A exp

(
iS

~

)

. (1.7)

Here A stands for the magnitude and iS/~ is the phase function. Note that
the physical dimension of both S and ~ is an action. Therefore the exponent is
indeed dimensionless. Now we are plugging this ansatz into the KGE (1.5) with
U = 0 (for simplicity) and split it into a real and imaginary part. This gives us

∂tS +
1

2m
|∇S|2 − 1

2m

(
∂tS

c

)

+ V ′(A2) =
~
2

2m

�fA

A
, (1.8)

for the real part, and the imaginary part becomes

∂tA+
A

2m
�fS +

1

m
∇A · ∇S − 1

mc2
∂tA∂tS = 0. (1.9)

From the hydrodynamical description the non relativistic and semi-classical lim-
its can be obtained , see [3] and [8]. Such relations can indeed be useful for
setting up a suitable numerical method. On the other hand this limits are very
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interesting from a physical point of view too and can help to interpret our re-
sults correctly.

In this thesis we additionally treat the before mentioned relation of the non-
linear Klein-Gordon equation and the nonlinear Schrödinger equation. Espe-
cially we will consider the nonrelativistic semiclassical limit and give a rigorous
proof of convergence to a system of compressible Euler equations in the hydro-
dynamical description (At least for small times, until the underlying classical
fluid dynamics develop "shocks").
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Chapter 2

Scalar cosmology

2.1 Cosmic Inflation

This and the following two sections originates from [9]. For further details
of the physical background of general relativity we refer to [10]. The energy
momentum tensor Tµν determines the geometry of spacetime via the Einstein
equations

Rµν − 1

2
gµνR

︸ ︷︷ ︸

=:Gµν

+Λgµν = κTµν =
8πG

c4
Tµν . (2.1)

Here Rµν is the Ricci tensor and R the corresponding curvature scalar, which is
simply the trace of the Ricci tensor and Tµν can be understood as a source term
of curvature. Λ is called the cosmological constant and for our considerations
we set Λ = 0.

2.1.1 Cosmological Principle and FLRW metric

In this section we follow the discourse in [10]. We consider the Friedman-
Lemaître-Robertson-Walker (FLRW) metric, using polar coordinates it reads

g = −dt2 + gijdx
idxj = −dt2 + a2(t)

(
1

1− kr2
dr2 + r2dΩ2

)

. (2.2)

Here k ∈ {0,±1} such that it satisfies the requirements of the cosmological
principle. Which satisfy the following assumptions

On spacetime there exists a time-function t, such that on each of its level
sets

Sτ = {t = τ}, (2.3)

the universe looks the same every point in each direction.

We consider a spacetime (M , g) such that
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1. M = R×N , for some three-dimensional manifold N .

2. For each t ∈ R, (N, g|{t}×N ) is maximally symmetric Riemannian mani-
fold.

To proceed we first need to define the Hubble constant

H(t) =
ȧ(t)

a(t)
, (2.4)

by assuming the differentiability of a with respect to t. Our aim is to derive
the Friedmann equations, which are the Einstein field equations of the FRLW
metric in terms of a. But before we can continue with calculating the Einstein
tensor Gµν we need to discuss which forms the energy momentum tensor Tµν
can takehave and why.

2.1.2 The Energy Momentum Tensor

We follow the presentation in [6]. For models of the universe physicist try to keep
things simple, therefore in general relativity it is a usual approach to assume
isotropy and homogeneity of the universe. Due to highly developed telescopes
it was able to create a temperature map of the whole universe. This famous
map is called the cosmic microwave background (CMB), see figure 2.1.

Figure 2.1: The cosmic background radiation. The temperature scale reach
from approximately 3K (red) to 0K (blue).

Source by:http:
//www.esa.int/Our_Activities/Space_Science/Highlights/Planck_s_Universe

The cosmic background radiation suggest that our assumption of isotropy is
justified, since the temperature is almost equally distributed. Note that the
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remarkable phenomenon of this temperature map is that, temperature is also
equally distributed in causal disconnected areas of the universe. From this point
of view the mean values of the 3-vectors has to vanish i.e. Ti0 = T0j = 0 by
isotropy. Moreover, isotropy around a point x = 0 requires the mean value of
any 3-tensor, such as Tij at that point to be proportional to δij and hence to
gij , which is equal to −a2(t)δij at x = 0, such that we have

Tij(x = 0) ∝ δij ∝ gij(x = 0). (2.5)

The homogeneity condition requires the proportionality coefficient to be only a
function of time. Since all frames of reference are equal, we have that the energy
momentum tensor has to form

T00 = ρ(t) , T0i = Tj0 = 0 , Tij = −P (t)gij(t,x). (2.6)

The function ρ is called the energy density and P stands for the pressure of the
system. The conservation laws of physics translate in general relativity to the
covariant equation

∇µT
µ
ν = 0. (2.7)

The derivative ∇µ denotes the covariant derivative. By performing straight
forward calculations one obtains

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0. (2.8)

Different sources of the energy momentum tensor

It turns out to be useful to classify different sources of the energy momentum
tensor. There are three different types we will briefly discuss now. This different
types belong to different ratios of ρ and P .

Matter

We use the term matter for all situation where |P | ≪ ρ. For example this is the
case for a non-relativistic gas. Setting P = 0 in (2.8) leads to

ρ ∝ a−3. (2.9)

Further one distinguishes between two types

1. Baryons. The kind of particles 1 we can observe in experiments.

2. Dark matter. A until now unknown species of particles which only
interact via gravitation.

1The term Baryons is technically incorrect, but since Baryons have much more mass then

Leptons cosmologist neglect the other particle species.
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Radiation

The term radiation covers every case where the absolute value of the pressure is
about a third of the energy density, i.e. |P | ≈ 1

3ρ. In this case the conservation
law (2.8) reduces to

ρ ∝ a−4. (2.10)

The radiations split in three essential terms. Without going into details we
distinguish between photons, neutrinos and gravitational waves.

Dark energy

The last source is called dark energy. Due to our obersations of the universe we
know that it is dominated by a negative pressure since it still expands. So we
classify this case by P = −ρ which is unlike everything we have encountered in
the lab so far. By considering (2.8) we find that the energy density ρ has to be
constant, i.e.

ρ ∝ a0. (2.11)

One possible explanation comes from quantum field theory (QFT), which pre-
dicts a vacuum energy. Unfortunately the predicted size of this effects is approx-
imately 10−120 times smaller then the observed effect. This suggests that our
model of nature is maybe incomplete and we missed a fundamental mechanism
in our descriptions.

2.1.3 Friedmann equations

Again we follow the discourse in [6]. We now calculate the Einstein tensor for
the FRLW metric, it is given by

Gµν = Rµν − 1

2
Rgµν . (2.12)

Here Rµν is the Ricci tensor and R the corresponding curvature scalar, which
is simply the trace of the Ricci tensor. One calculates that

R00 = −3
ä

a
, (2.13)

Rij = −
[
ä

a
+ 2

(
ȧ

a

)

+ 2
k

a2

]

gij , (2.14)

and for the Ricci scalar one obtains

R = −6

[
ä

a
+

(
ȧ

a

)

+
k

a2

]

. (2.15)

Therefor the Einstein tensor reads

G0
0 = 3

[(
ȧ

a

)

+
k

a2

]

, (2.16)
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Gi
j =

[

2
ä

a
+

(
ȧ

a

)

+
k

a2

]

δij . (2.17)

From combining the equations (2.16) and (2.17) we obtain the Friedmann equa-
tions

(
ȧ

a

)2

=
8πG

3
ρ+

k

a2
, (2.18)

ä

a
= −4πG

3
(ρ+ 3P ) . (2.19)

2.1.4 Scalar Field Energy Momentum Tensor with homo-

geneity and isotropy

In this chapter we will trade Newtons’s constant for the reduced Planck mass

Mpl =

√

~c

8πG
= 2.4× 1018GeV, (2.20)

so the first Friedmann equation takes the form

H2 = ρφ/(3M
2
pl). (2.21)

As a simple model to describe inflation one considers a scalar field φ = φ(x, t).
The energy momentum tensor Tµν of this model has the form

Tµν = ∂µφ∂νφ− gµν

(
1

2
gαβ∂αφ∂βφ− V (φ)

)

. (2.22)

Here V stand for a potential whose gradient is proportional to the force acting
on φ. Note that when V is not constant the force acting on φ is nonzero. Further
we have to assume that the scalar field φ depends only on the time t such that
φ = φ(t) to be consistent with the symmetries in the FRLW metric. If this
energy momentum tensor dominates the universe it sources the evolution of the
FRLW background.
Analyzing the components of the energy momentum tensor we obtain

T 0
0 = ρφ =

1

2
φ̇2 + V (φ). (2.23)

Here ρφ represents the total energy of the system, where the first part stands for
the kinetic energy of the field φ. The space components of the energy momentum
tensor above give the pressure of the system, which is the difference of the kinetic
energy and the potential term,

T i
j = −Pφδ

i
j , (2.24)

with

Pφ =
1

2
φ̇2 − V (φ). (2.25)
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Substituting our relation for the total energy which we found above into the
first Friedmann equation H2 = ρφ/(3M

2
pl), we get

H2 =
1

3M2
pl

[
1

2
φ̇2 + V (φ)

]

. (2.26)

By taking the time derivative, we obtain

2HḢ =
1

3M2
pl

[

φ̇φ̈+ V ′φ̇
]

. (2.27)

Here the derivative V ′ is understood as derivative with respect to φ. Using
the second Friedmann equation Ḣ +H2 = − 1

6M2
pl

(ρφ + 3Pφ) together with the

continuity equation ρφ = 3H(ρφ +3Pφ) and our relations for ρφ and Pφ we find

that the Ḣ can be interpreted as the kinetic energy density of field with mass
Mpl,

Ḣ = −1

2

φ̇

M2
pl

. (2.28)

Combining (2.26), (2.27) and (2.28) we get a Klein Gordon equation for the
scalar field φ,

φ̈+ 3Ḣφ+ V ′ = 0. (2.29)

Here Ḣφ can be understood as a friction term, where V ′ enters the equation
like a force. Note that due to the assumption of homogeneity and isotropy in
the energy momentum tensor the equation above even reduce to an ODE.

For a possible numerical implementation of the Friedmann equation with a
φ4-potential one can use the below scaling, see section 3.3

2.1.5 The Horizon problem

We follow the discourse in [6]. In this section it turns out to be very useful to set
c = 1. The size of a causal connected area is determined by the distance photons
can travel in a certain amount of time. Due to the isotropy of the universe we
can define a coordinate system such that photons travel purely along the radial
direction, i.e. θ = φ = const. . Here θ denotes the azimuth angle and φ the
polar angle. This coordinate system is often called conformal coordinate system.
Thus the line element in this coordinate system is given by

ds2 = a2(τ)
[
dτ2 − dχ2

]
. (2.30)

Since photons travel along null-geodesics, i.e. ds2 = 0, the traveled length easily
becomes

∆χ(τ) = ±∆τ. (2.31)

In this coordinate system light rays correspond to straight lines at 45◦. Note
that τ does not represent the physical time. The reason why we are using the
proper time τ is that the cone for the physical time would be curved in a curved
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spacetime. In the following we are going to define several concepts which we
need to proceed. First,

Particle Horizon is the maximal distance light can travel between two times
τ1 and τ2 > τ1 which is simply ∆τ = τ2 − τ1. In terms of the physical times the
particle horizon becomes

χph = τ − τi =

∫ t

ti

ds

a(s)
. (2.32)

In other word the particle horizon is the maximal distance from were we can
receive signals. Everything which is within the past light cone in the age of
the universe could have reached us until now. The Particle Horizon can may
be visualized as the intersection of the past light cone of an observer with the
spacelike hypersurface τ = 0. Or in a more general setup one defines the particle
horizon for any spacelike hypersurface τ = τi which conicides with the expres-
sion (2.32). Next we consider the

Event Horizon. Note that there are events in the universe which we can
not observe now or at any future time. The event horizon is the maximal dis-
tance how far an object can be away from us at time t such that we could it
observe at a future time tf . This distance is given by

χehτ = τf − τ =

∫ tf

t

ds

a(s)
. (2.33)

This concepts is similar to event horizons of black holes. The

Hubble Sphere is the distance where objects beyond this distance recede
faster than the speed of light from the observer due to the expansion of the
universe.

We measure that the Hubble parameter H is shrinking since the beginning of
the measurements. This implies that the Hubble sphere is growing. In literature
the Hubble sphere is often treated to be equal to the particle horizon, which is
a good approximation. But we will see that this approximation does not hold
for a universe with a period of inflation. To see that the Particle Horizon and
the Hubble Sphere yield the same values for a growing Hubble sphere rewrite

χph(τ) =

∫ t

ti

dt

a
=

∫ a

ai

da

aȧ
=

∫ ln a

ln ai

(aH)
−1

d ln a. (2.34)

Here ai := is defined to be zero at the Big Bang. The expression (aH)
−1

has the
dimension of a length and is called the Hubble radius. For a universe dominated
by a fluid with constant equation of state ω := Pρ we have

(aH)−1 = H−1
0 a

1
2
(1+3ω). (2.35)
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Where H0 is the Hubble constant measured at the present time. All familiar
sources of matter satisfy the condition 1+3ω > 0 so it is a justified assumption
that the Hubble radius is increasing nowadays. With the above expression we
obtain that

χph(τ) =
2H−1

0

1 + 3ω

[

a
1
2
(1+3ω) − a

1
2
(1+3ω)

i

]

= τ − τi. (2.36)

Letting τi → 0 is equal to a
1
2
(1+3ω)

i → 0, now we obtain for the particle horizon

χph(τ) =
2H−1

0

1 + 3ω
a(t)

1
2
(1+3ω) =

2

1 + 3ω
(aH)−1. (2.37)

We see that in standard cosmology one has χph ≈ (aH)−1. This has lead to the
confusing practice of calling both the Particle Horizon and the Hubble Sphere
the "Horizon".

Above we noted that Cosmic Microwave Background (CMB) is isotropic. About
380 000 years after the Big Bang photons decoupled from the primordial plasma
and hydrogen was formed. We observe this event nowadays in form of the CMB.
The isotropy of the CMB implies that the most spots of the CMB should have
overlapping past light cones. But that is not possible in general. More precic-
sely this applies to every two points p and q which are separated by more than
one degree in sky. So each two points which are causal disconnected could not
know anything about the temperature of the other point. Therefore no thermo-
dynamic process could happen which achieves the equal temperature of p and q.
But the question remains, if there was not enough time for the points p and q to
communicate why the CMB is so isotropic? This is called the Horizon Problem.
The Horizon Problem is illustrated by the following figure 2.2.

2.1.5.1 The Shrinking Hubble Sphere

Remark that the main difficulty of our considerations of the Horizon Problem
was that in standard cosmology we observe a growing Hubble Sphere. The
Hubble Sphere in the early universe was "to small" such that a thermodynamic
process could have been established. Therefore a simple solution to the Horizon
Problem suggests itself. Let us conjecture a phase of a decreasing Hubble Sphere
in the early universe, i.e.

d

dt
(aH)−1 < 0. (2.38)

If this lasts long enough the Horizon Problem can be avoided. Physically the
shrinking Hubble Sphere corresponds to the condition 1 + 3ω < 0.
For a shrinking Hubble Sphere the integral in (2.34) is dominated by the lower
bound. We now push the Big Bang singularity to the negative conformal time

τi =
2H−1

0

1 + 3ω
a

1
2
(1+3ω)

i → −∞ (2.39)
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Figure 2.2: The Horizon Problem, the conformal time is measured in
[Gyr]=[Gigayears]=tim, the scale factor stands for the value of a, the comoving
distance is measured in [Glyr]=[Gigalightyears] = [Gyr] × velocity

Source: This figure is taken over from [6].

This means that there was "much more conformal time between the Big Bang
and the decoupling of the photons then we tought". This epoch is called infla-
tion. Now the past light cones of widely separated points p and q had enough
time to intersect before the decoupling take place. This can be illustrated as
shown in figure 2.3.

We see the key idea of inflation is that χph ≫ (aH)−1 and therefore it is no
longer justified to view the Particle Horizon χph as the same as the Hubble
Sphere.

The condition for inflation to occur was

d

dt
(aH)−1 < 0. (2.40)

When we write this as

d

dt
(aH)−1 = − ȧH + aḢ

(aH)2
= −1

a
(1− ǫ), where ǫ := − Ḣ

H2
, (2.41)

then the shrinking Hubble Sphere corresponds to the condition

ǫ = − Ḣ

H2
< 1. (2.42)

We already noticed that the Horizon Problem could be solved when the infla-
tionary period lasts long enough. One defines the quantity dN := d ln a = H dt.
Note that

a(t) ∼ eN(t) (2.43)
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Figure 2.3: The Horizon Problem, the conformal time is measured in
[Gyr]=[Gigayears]=time, scale factor stands for the value of a, the comoving
distance is measured in [Glyr]=[Gigalightyears] = [Gyr] × velocity

Source: This figure is taken over from [6].

such that N measures the number of e-folds of inflationary expansion. Equation
(2.42) now reads

ǫ = −d lnH

dN
< 1. (2.44)

This means that the change of the Hubble parameter H per e-fold is small. We
also introduce a parameter η which measures the change of ǫ per Hubble time,

η =
d ln ǫ

dN
=

ǫ̇

Hǫ
. (2.45)

Note that for |η| < 1 inflation persists. When we plugging in (2.42) into (2.28)
we obtain

ǫ =
1
2 φ̇

2

M2
plH

2
. (2.46)

This implies that inflation (ǫ < 1) can only occur if the kinetic energy 1
2 φ̇

2 only
makes small contributions to the total energy ρφ = 3M2

plH
2. This situation is

called slow roll inflation.
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The slow roll approximation ǫ ≪ 1 in turn implies that 1
2 φ̇

2 ≪ V . With this
approximation the Friedmann equation (2.26) becomes

H2 ≈ V

3M2
pl

. (2.47)

Next we define the dimensionless acceleration per Hubble time

δ = − φ̈

Hφ̇
, (2.48)

and take the time derivative of ǫ. This yields

ǫ̇ =
φ̇φ̈

M2
plH

2
− φ̇2H

M2
plH

3
. (2.49)

A quick comparison with (2.44) gives us

η =
ǫ̇

Hǫ
= 2

φ̈

Hφ̇
− 2

Ḣ

H2
= 2(ǫ− δ). (2.50)

The condition |δ| ≪ 1 reduces the Klein-Gordon equation (2.29) to

3Hφ̇ ≈ V ′. (2.51)

When we plug (2.50) and (2.51) into (2.46), we obtain a new expression for ǫ

ǫ =
1
2 φ̇

2

M2
plH

2
≈
M2

pl

2

(
V ′

V

)2

. (2.52)

Taking the time derivative of the reduced Klein-Gordon equation

3Ḣφ̇+ 3Hφ̈ = −V ′′φ̇, (2.53)

leads to

δ + ǫ = − φ̈

Hφ̇
− Ḣ

H2
≈M2

pl

V ′′

V
. (2.54)

Note that successful slow-roll inflation occurs only when the parameters ǫV , |ηV | ≪
1. Here

ǫV =
M2

pl

2

(
V ′

V

)2

, |ηV | =M2
pl

|V ′′|
V

. (2.55)

Further we are interested in the total number of e-folds of accelerated expansion
which are given by

Ntot =

∫ aE

aI

d ln a =

∫ tE

tI

H(t) dt, (2.56)
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where ti and tE are defined as the times when ǫ(tI) = ǫ(tE) = 1. In the slow
roll regime we find

H dt =
H

φ̇
dφ =

1√
2ǫ

| dφ|
Mpl

. (2.57)

Therefore the total number of e-folds is given by

Ntot =

∫ φE

φI

1√
2ǫ

| dφ|
Mpl

, (2.58)

where φE and φI are defined as the boundaries where ǫV < 1. The largest scales
observed in the CMB are produced about NCMB ≈ 60 e-folds before the end
of inflation and therefore a successful solution to the Horizon Problem requires
Ntot > NCMB .

2.2 Scalar field cosmology without the assump-

tion of homogeneity

When we drop the assumption of homogeneity, i.e. the scalar field φ is not only
a function of time, we end up with another Klein Gordon type equation for the
motion of the scalar field φ.
To see this it is more convenient to derive the equation from the Hamilton prin-
ciple (c.l. A.2) and us some formulas for simplification instead of manipulating
the system of Einstein equations. Note that the Einstein field equations are
exactly the Euler-Lagrange equation in the metric g. So the two approaches are
equivalent.

Writing down the action integral of the scalar field

S =

∫

d4x
√−gL =

∫

d4x
√−g

[

−1

2
gαβ∂αφ∂βφ− V (φ)

]

. (2.59)

Requiring that the action S is invariant under the variation δφ, i.e. δφS = 0,
gives

0 = δφS =

∫

d4x
√−g

[

−1

2
gαβ∂αφδφ∂βφ− ∂V (φ)

∂φ
δφφ

]

. (2.60)

The expression above equals

0 =

∫

d4x

[

∂µ(
√−ggαβ∂αφ)−

√−g ∂V (φ)

∂φ

]

δφφ. (2.61)

So the equation of motion reads

∂µ(
√−ggαβ∂αφ) =

√−g ∂V (φ)

∂φ
. (2.62)
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Hence that the covariant d’Alembert operator is given by

�φ =
1√−g ∂µ

(√−ggαβ∂αφ
)
. (2.63)

Thus the equation of motion reduces to

�φ =
∂V (φ)

∂φ
. (2.64)

We are setting k = 0 in the FRLW metric, since the flat universe is a good
approximation when we look at the experimental data of cosmic background
radiation. The determinant of g in this flat FRLW metric becomes det g =
−a6 det(γij), where det (γij) = r4sin2θ. With this we can express the d’Alembert
operator as

�φ = −φ̈− 3Hφ̇+
1

a2
∇2φ. (2.65)

Here we defined the Laplacian, ∇2φ := ∂i
(√
γ∂iφ

)
/
√
γ. So that we obtain the

following system of equations

(
ȧ

a

)2

=
8πG

3

(
1

2
φ̇2 + V (φ)

)

, (2.66)

ä

a
=

8πG

3

(

φ̇2 − V (φ)
)

, (2.67)

φ̈+ 3Hφ̇− 1

a2
∇2φ+

∂V (φ)

∂φ
= 0. (2.68)

Called the Einstein-Klein-Gordon system.

2.3 Stability results for the Einstein-Klein-Gordon

system

In this section we are going to present a extremely powerful result proven by
Hans Ringström in [1] concerning the stability of the Einstein-Klein-Gordon
system (2.66), (2.67) and (2.68). It is remarkable that there are no restrictions
due to symmetry assumptions of the metric and that this results hold for a very
general class of potentials V .

But before we have a closer look on this theorem we need to clarify some
preliminaries. First we need the concept of geodesics.

Geodesics are defined as the shortest connection of to points p1 and p2 on a
manifold M . Therefore let g(x) be the metric at x ∈M . The geodesic between
this two points is then precisely a curve γ whose length ‖γ‖g satisfies

‖γ‖g = infγ̃ ‖γ̃‖g (2.69)
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For all parametrized curves γ̃ : [0, 1] →M which satisfy γ̃(0) = p1 and γ̃(1) = p2.
The Lagrange formalism reformulates the minimization problem into solving a
PDE instead. The equation is called the geodesic equation and is just the Euler
Lagrange Formalism on the manifold M . Let {xµ}n=1,...,n be the coordinates
on the manifold M and t the parametrization parameter. The geodesic equation
reads

d2xλ

dt2
+ Γλ

µν

dxµ

dt

dxν

dt
= 0. (2.70)

In a coordinate free representation the geodesic equation simply becomes

∇γ̇ γ̇ = 0. (2.71)

Where γ is the geodesic one searches for. To understand the meaning of the
theorem below we need the following definition.

Definition 2.3.1. Let M be a Riemannian manifold, the metric g on M is
said to be geodesically complete if and only if for every point p ∈ M and every
tangent vector v ∈ TpM at p the solution to

∇γ̇ γ̇ = 0, (2.72)

with the initial conditions γ(0) = p and γ′(0) = v is defined for all t ∈ R. Here
t again stands for the curve parameter.

The important point about geodesics is that all physical observers travel
along geodesics through the spacetime. So geodesically completeness of course
is a necessary condition for a spacetime’s metric g to be a physical relevant
solution. Otherwise metric singularities can occur in finite time. Therefore
when we are interested in solutions to the Einstein-Klein-Gordon system then
we should only take into account those which are geodesically complete in an
"adequate neighbourhood" around the "true solution". This is exactly what the
theorem below guarantees for a suitable class of potentials V .

First we should specify the expression of stability. What is meant here is
that a solution of the Einstein-Klein-Gordon system which is future causally
geodesically complete and has the property that if we make small perturbations
of the initial data to this solution, then the resulting spacetime solution is future
causally geodesically complete too. This theorem applies to the Einstein-Klein-
Gordon system (2.66), (2.67) and (2.68) for a large class of potentials V . These
are characterized by the conditions V (0) > 0, V ′(0) = 0 and V ′′(0) > 0 where
V is smooth.

Without going too much into the details of the very detailed work [1] we
give a simplified version of the theorem of Hans Ringström.

Theorem 2.3.1. Let V be a smooth function such that V (0) > 0, V ′(0) = 0
and V ′′(0) > 0. Let n ≥ 3 be the dimension of the Riemannian manifold Σ with
metric h such that (Σ, h, φ0, φ1) are the corresponding initial conditions for the
Einstein-Klein-Gordon system (2.66), (2.67) and (2.68). Where φ0 and φ1 stand
for φ(0) and φ′(0) respectively. Then the solution to the Einstein-Klein-Gordon
system is stable in the above sense.
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Proof. The proof can be found in [1].

An important remark is that this theorem does not only apply to the Einstein-
Klein-Gordon system (2.66), (2.67) and (2.68). It even applies to solutions of
the Einstein equations (2.1) with a positive cosmological constant Λ. A posi-
tive cosmological constant has the same effect on the spacetime as our scalar
field which causes inflation. A positive cosmological constant Λ yields solutions
which are accelerating. Therefore we define the quantities H and χ as solutions
of

nH2 =
2

n− 1
V (0), (2.73)

and

χ =
V ′′(0)

H2
. (2.74)

These quantities appear for example in two solutions to the Einstein equations
(2.1) with a positive cosmological constant. The first one is given by

g1 = − dt2 + cosh2(Ht)gh, (2.75)

and the second one by
g2 = − dt2 + e2Htgh. (2.76)

Next we consider the Einstein equations of the form

Gµν + Λgµν = Tµν , (2.77)

where

Gµν = Rµν − 1

2
Rgµν . (2.78)

For the energy-momentum tensor we assume it has the form

Tµν = ∂µφ∂νφ− gµν

(
1

2
gαβ∂αφ∂βφ− V (φ)

)

, (2.79)

where φ ∈ C∞(M) and V ∈ C∞(R) which satisfies the condition of the above
theorem.

By assumption we have that H,χ > 0. With this choice of H and χ, (2.75)
and (2.76) are solutions to (2.77) with φ = 0 and a positive cosmological constant

given by Λ = n(n− 1)H
2

2 .
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Chapter 3

The universe as

Bose-Einstein-Condensate

3.1 Cosmological model of a Bose-Einstein con-

densate

When we observe the universe around us we see planets circling around stars,
this stellar systems form galaxies and a huge amount of galaxies form galaxy
clusters and these are separated by billions of light years. This shows us that
the matter in the universe is not uniformly distributed. This phenomenon is
addressed to tiny energy density fluctuations in the early universe.
A very challenging task is to formulate a model of our cosmos which is compat-
ible with the structure formation of the universe at all length scales. One of the
most delicate problems is, that such a model has to explain the phenomenon of
dark matter. Dark matter is a, until now, unobserved object which interacts via
gravitation with the "ordinary" matter. One of the clearest hints for dark mat-
ter comes from observation of rotating galaxies. According to Kepler’s third law
the rotation speed of the stars around the center of the galaxy should decrease,
but one obverses the exact opposite. This suggests that the distribution of mass
around the galaxy center is different from the light emitting matter which can
be seen by a telescope. Especially there has to be more matter in the outer
regions. This is the reason why we call it dark matter.

The aim is to find a model which explains dark matter on all scales. The
first approach in that direction was a "cold" dark matter model but without
going into details it does not reflect the observations on very large scales. A
different type of dark matter model is the "warm" dark matter model, but again
this model can also only partly explain the observations. The main issue oc-
curs during the change of different scales. Nowadays scientists prefer models
which have an implemented scale dependence. Over the last few years the Bose
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Einstein Condensate (BEC) model has become very popular. The phenomenon
of boson condensation was invented by Satyendra Bose 1 approximatly ninety
years ago, the experimental proof was delivered by Eric A. Cornell and Carl E.
Wieman 2 in 1995. A BEC is a large number of bosons occupying the same
state such that they are macroscopic observable when the system is below some
critical temperature. In this matter phase the BEC can be described by just
one single wave function. Due to quantum fluctuation effects the wave function
of the BEC is perturbed and so there are a few higher energy states which are
occupied too. A remarkable fact is that during the condensation phase the BEC
admits an additional hydrodynamic description in terms of the particle density
and the velocity potential resembling the Euler equations of fluid dynamics.
The first works of BEC in cosmology include a non-relativistic, time dependent
Gross-Pitaevskii equation characterized by an external potential, which should
model the gravitational potential, where the link to such a gravitational po-
tential is in general determined by a coupling to the Poisson equation. Such a
non-relativistic BEC model of the universe solves some problems which occurred
in the traditional dark matter model but fails in other things, see [11] and [12].
We will consider a full relativistic model of a BEC coupled to gravity, including
a so called non-minimal coupling. This kind of model pretty much fits the ob-
servations.

In this section we will derive the Klein-Gordon equation from a physics point
of view. A key question of this section is how this equation behaves under the
limits c → ∞ and ~ → 0. The methods we are going to use are closely related
to methods known from other equations in the relativistic quantum mechanic
regime. For further details on this topic we refer the reader to [8], [13], [14] and
[15].

3.1.1 Relativistic BEC in flat space

Let us begin the discussion about the BEC with an introduction to the formalism
we met in [12]. The BEC consists of a boson field which condensates under a

critical temperature, call this field φ̂ = φ̂(~x, t). The Lagrangian of the system
reads

L =
1

c2
∂φ̂†

∂t

∂φ̂

∂t
−∇φ̂†∇φ̂−

(
m2c2

~2
+ V (~x, t)

)

ρ̂− U(ρ̂, λi). (3.1)

Here V (~x, t) stands for some external potential, where U(ρ̂, λi) is a self-interaction
term of the form

U(ρ̂, λi) =
λ2
2
ρ̂2 +

λ3
6
ρ̂3 + ... , (3.2)

with ρ̂ = φ̂†φ̂ the density operator of the boson field and the λi are the coupling
constants of the different interaction types. The first term of U is the usual two

1Satyendra Nath Bose was an Indian physicist at the University of Calcutta
2Eric Allin Cornell and Carl Edwin Wieman are both US-American physicists. 2001 they

earned the Nobel prize in physics for the experimental evidence of a BEC.
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body-interaction, the following terms describe possible many body-interactions.
What can easily be seen is that the above Lagrangian L is invariant under
the global action of U(1) transformations, since the ordinary field and complex
conjugated one occurs together with the same power in each term. By Noether’s
theorem this leads to a conserved current, which is given by

jµ =
i

2

(

φ̂†∂µφ̂− φ̂∂µφ̂†
)

. (3.3)

The corresponding conserved quantity is the ensemble charge N − N̄ , where N
(N̄) stands for the boson (anti-boson) number. When one sets the interaction
term U to zero, the ensemble charge can be written as

N − N̄ =
∑

k

nk − n̄k, (3.4)

where

nk(µ, β) =
1

eβ(|Ek|−µ) − 1
, n̄k(µ, β) =

1

eβ(|Ek|+µ) − 1
. (3.5)

Here µ stands for the chemical potential, the energy level Ek is defined by
E2

k = ~
2c2k2 + m2c4 with k ∈ N, β can be expressed as β = kBT where T

stands for the temperature and kB is the Boltzmann constant3. We can use
this fact to find a relation of the critcal temperature of the BEC and the charge
density n := N−N̄

V , where V is the volume of the considered system. For the
charge density one obtains

n = C

∫

k2
sinh(βcmc

2)

cosh(βc|Ek|)− cosh(βcmc2)
dk, (3.6)

where βc = TckB and Tc is the critical temperature. We have used the fact that
the chemical potential is µ = mc2 at the critical temperature. The normalization
constant in front of the integral becomes

C =
1

4π3/2Γ(3/2)
. (3.7)

A straight forward calculation leads to a relation of the critical temperature in
the relativistic case

kBTc =

[
~
3cΓ(3/2)(2π)3

4mπ3/2Γ(3)ζ(2)

] 1
2

n
1
2 . (3.8)

Here ζ stands for the Riemann zeta function, Γ for the gamma function and
m is the mass of the boson. When we are instead using the classical energy
momentum relation instead of the relativistic one above one ends up with the
relation for the critical temperature in the non-relativistic case

kBT
NR
c =

2π~2

m

[
n

ζ(3/2)

] 2
3

. (3.9)

3kB = 1, 38064852(79) · 10−23 J

K
in SI units
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The above condition sets an upper limit for the boson mass m. By plugging
in our experimental data we obtain m < 2eV . This suggests that the main
part of our universe should be dominated by very light particles which are non-
relativistic. This matter component is also called cold dark matter. In both
cases when the temperature T ≫ Tc the scalar field behaves as any other self-
interacting quantum field. But when T ≪ TC the scalar field condenses and
almost all particles end up occupying the ground state. In this phase state the
condensate can be described as

φ̂ = φ(1 + φ̂), (3.10)

where φ stands for the wave function of the condensate which describes the
collective dynamics of the ground state. The mixed term represents the above
mentioned fluctuations which came from quantum effects, i.e. these represent
the excited states. When one neglects the excitation, the equation of motion
becomes a non-linear Klein-Gordon equation (KGE)

~
2

2m
�fφ =

(
1

2
mc2 + V ′(~x, t)

)

φ+ U ′φ, (3.11)

where the prime denotes a derivative with respect to ρ := φ̄φ. The field φ
is a complex valued scalar field defined on a certain spatial domain Ω ⊂ R

n.
We assume that the potential V is a twice differentiable nonlinear real-valued
function over R+. If V = const. then the equation above reduces to the equation
of motion of a free particle. The subscript f denotes that we are considering a
flat metric, i.e. nµν = diag[−1, 1, 1, 1] such that the d’Alembert operator does
not need to be adapted

�fφ = nµν∂µ∂nuφ = − 1

c2
∂2φ

∂t2
+∇2φ. (3.12)

For the sake of completeness one can find a heuristically derivation of the Klein
Gordon equation in the appendix A.1, which differs from the derivation above.
The model of a cosmic BEC in flat spacetime became very popular in the last
several years. This is mainly due to its simplicity as compared to the full
relativistic case in non flat spacetimes. In the further analysis of the non-
linear Klein Gordon equation (3.11) we set U = 0. A further physical plausible
assumption is that the potential V only depends on the magnitude of ρ. i.e.
V = V (|ρ|) = V (|φ|2). We make the following ansatz for the wave function φ,

φ(~x, t) = Φ(~x, t) exp

(
imc2t

~

)

, (3.13)

where the factor exp
(

imc2t
~

)

is the phase factor of the wave function and Φ

stands for the magnitude of the wave function. With this ansatz we obtain the
modulated version of the Klein Gordon equation

i~∂tΦ+
~
2

2m
�fΦ− V ′(|Φ|2)Φ = 0. (3.14)
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Non relativistic limit: To obtain the nonrelativistic limit let c → ∞ the
the d’Alembert operator �f reduces to the Laplacian operator ∇2 = ∆ and
the modulated version of the Klein Gordon equation becomes the nonlinear
Schrödinger equation

i~∂tΦ+
~
2

2m
∆Φ− V ′(|Φ|2)Φ = 0. (3.15)

For more detailed discussion on the nonrelativistic limit we refer the reader
to [8]. Here the authors proofed that solutions of the Klein-Gordon-Maxwell
system on R

1+3 converge in the energy space C([0, T ];H1) to solutions of a
Schrödinger-Poisson. The Klein-Gordon-Maxwell system can be obtained by
choosing V as the electromagnetic potential. Some other related works are [13],
[14] and [15]. system

3.1.2 Conservation laws for the Klein Gordon equation

Here we follow the ideas of [3]. For the analysis of the KGE it is important
to formulate the following conservation laws of some conserved quantities. The
action of the modulated non linear KGE is given by

S(Φ) =

∫ ∫

− ~
2

2m2c2
|∂tΦ|2−

i~

2m

(
Φ̄∂tΦ− Φ∂tΦ̄

)
+

~
2

2m2
|∆Φ|2+ 1

m
V (|Φ|2) d~x dt

(3.16)
One can easily see that the action above is invariant under the following transfor-
mations for Φ. Let ǫ be a real parameter, where we do not distinguish between
a scalar and a vector in our notation.

Φ(~x, t) → eiǫΦ(~x, t) with generator δΦ = iΦ,

Φ(~x, t) → eiǫΦ(~x+ ǫ, t) with generator δΦ = ∇Φ,

Φ(~x, t) → eiǫΦ(~x, t+ ǫ) with generator δΦ = ∂tΦ.

(3.17)

Due to Noether’s theorem there are charge quantities corresponding to each
symmetry. We summarize this fact in the following theorem.

Theorem 3.1.1. The modulated nonlinear KGE (3.14) admits the following
conserved charges:

∫ [

|Φ|2 + i~

2mc2
(Φ̄∂tΦ− Φ∂tΦ̄)

]

d~x = C1 (3.18)

∫ [
i~

2mc2
(Φ∇Φ̄− Φ̄∇Φ)− ~

2

2m2c2
(∂tΦ∇Φ̄ + ∂tΦ̄∇Φ)

]

d~x = C2 (3.19)

∫ [
~
2

2m2
(
1

c2
|Φ|2 + |∇Φ|2) + 1

m
V (|Φ|2)

]

d~x = C3 (3.20)
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Proof. (i): Start with the modulated nonlinear KGE (3.14) and multiply it by
Φ̄ and then subtract the conjugated version of (3.14) multiplied with Φ. After
a few equivalence transformations we obtain the following expression

∂

∂t

[

|Φ|2 + i~

2mc2
(Φ̄∂tΦ− Φ∂tΦ̄)

]

+∇ ·
[
i~

2m
(Φ∇Φ̄− Φ̄∇Φ)

]

= 0. (3.21)

An integration over the whole space and using the divergence theorem of Gauss
yields the expression in (3.18), since we make the standard assumption that the
field Φ vanishes at infinity.
(ii): The next step is very similar to the first one. Multiply the (3.14) with ∇Φ̄
and the complex conjugated version by ∇Φ and then subtract both equations.
This leads to

∂

∂t

[
i~

2m
(Φ∇Φ̄− Φ̄∇Φ)− ~

2

2m2c2
(∂tΦ∇Φ̄ + ∂tΦ̄∇Φ)

]

+
~
2

4m2
∇ ·

[
2(∇Φ⊗∇Φ̄ +∇Φ̄⊗∇Φ)−∆(|Φ|2)

]

+
~
2

4mc2
∇∂t

[
Φ∂tΦ̄ + Φ̄∂tΦ

]
+

1

m
∇ ·

[
|Φ|2V ′(|Φ|2)− V (|Φ|2)

]
= 0.

(3.22)

Again a integration over the whole space and the usage of the Gauss theorem
finally gives us (3.19).
(iii): Finally we multiply the modulated KGE (3.14) with ∂tΦ̄ and the complex
conjugated version by ∂tΦ. We obtain

∂

∂t

[
~
2

2m

( 1

c2
|∂tΦ|2 + |∇Φ|2

)
+
V (|Φ|2)
m

]

= ∇ ·
[

~
2

2m2
(∇Φ∂tΦ̄ +∇Φ̄∂tΦ)

]

.

(3.23)
The Gauss theorem and a integration over the whole space imply (3.20).

Next we want to consider the non-relativistic limit of the conserved quanti-
ties.

3.1.2.1 The non-relativistic limit

One obtains the conservation laws in the non-relativistic limit when we let c→
∞ in (3.21), (3.25) and (3.26). This leads to following expressions

∂

∂t

[
|Φ|2

]
+∇ ·

[
i~

2m
(Φ∇Φ̄− Φ̄∇Φ)

]

= 0, (3.24)

∂

∂t

[
i~

2m
(Φ∇Φ̄− Φ̄∇Φ)

]

+
~
2

4m2
∇ ·

[
2(∇Φ⊗∇Φ̄ +∇Φ̄⊗∇Φ)−∆(|Φ|2)

]

+
1

m
∇ ·

[
|Φ|2V ′(|Φ|2)− V (|Φ|2)

]
= 0,

(3.25)
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and

∂

∂t

[
~
2

2m

(
|∇Φ|2

)
+
V (|Φ|2)
m

]

= ∇ ·
[

~
2

2m2
(∇Φ∂tΦ̄ +∇Φ̄∂tΦ)

]

. (3.26)

Before we turn over to the hydrodynamical formulation of the KGE, we want
to compare the local conservation laws of the non-linear KGE

~
2

2m
�fφ− 1

2
mc2φ− V ′(|φ|2)φ = 0. (3.27)

with those of the modulated version of the nonlinear KGE. The main difference
lies in the fact that the charge |φ|2 and the current i~

2m (φ∇φ̄− φ̄∇φ) vanish in
(3.21) and (3.25) respectively for the nonlinear KGE. In this section we want to
analyze the transition of the modulated KGE in the hydrodynamical description
from the relativistic regime to the nonrelativistic and semirelativistic domain.
For our further purposes we are defining the following quantities. First we
state the conserved charge density and the conserved current of the nonlinear
Schrödinger equation

ρS = φφ̄ = |φ|2, JS =
i~

2m
(φ∇φ̄− φ̄∇φ), (3.28)

where ρS and JS are the corresponding charge and the current of the non-linear
Schrödinger equation. ρs can be interpreted as the probability density to detect
a particle of the field φ at the position x at time t. The current density JS
describes the flow of the conserved charge density ρS . For the non-linear KGE
we again define two very similar quantities

ρK =
i~

2mc2
(Φ̄∂tΦ− Φ∂tΦ̄), JK =

~
2

2m2c2
(∂tΦ∇Φ̄− ∂tΦ̄∇Φ). (3.29)

The main physical difference between the conserved charges ρS and ρK is that
ρK is no longer positive definite. The corresponding conserved quantities for
the modulated version of the non-linear KGE become

ρM = ρS + ρK = |φ|2 + i~

2mc2
(φ̄∂tφ− φ∂tφ̄), (3.30)

JM = JS + JK =
i~

2m
(φ∇φ̄− φ̄∇φ)− ~

2

2m2c2
(∂tφ∇φ̄+ ∂tφ̄∇φ). (3.31)

The remarkable thing about the conserved charge ρM is that it is positive definite
in the limits c → ∞ or ~ → 0. Since this would imply ρM → ρS . But only in
the non-relativistic limit c → ∞ we also obtain JM → JS . This suggests that
the non-relativistic limit would be easier to handle and indeed this is the case
since the modulated equation formally converges to the non-linear Schrödinger
equation in the non-relativistic limit c→ ∞.
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3.2 Hydrodynamical Description

In this section we follow the discourse in [3]. To introduce the semiclassical
limit of the modulated KGE we follow the same strategy which is known from
the non-linear Schrödinger equation. To achieve this we introduce the so called
WKB transformation or also called the Madelung transformation,

φ = A exp

(
iS

~

)

. (3.32)

Here A stands for the magnitude and iS/~ is the phase function. Note that
the physical dimension of both S and ~ is an action. Therefore the exponent
is indeed dimensionless. Now we are plugging this ansatz into the KGE (3.11)
and split it into a real and imaginary part. This gives us

∂tS +
1

2m
|∇S|2 − 1

2m

(
∂tS

c

)

+ V ′(A2) =
~
2

2m

�fA

A
, (3.33)

for the real part, and the imaginary part becomes

∂tA+
A

2m
�fS +

1

m
∇A · ∇S − 1

mc2
∂tA∂tS = 0. (3.34)

Here we assume the differentiability of A and S such that this two equations
are indeed equivalent to the KGE. To continue we need to define the following
functions

ρ = A2 = |φ|2, (3.35)

u =
1

m
∇S =

i~

2m

1

|φ|2 (φ∇φ̄− φ̄∇φ), (3.36)

ρK =
1

mc2
A2∂tS =

i~

2mc2
(φ∇∂tφ̄− φ̄∂tφ). (3.37)

When we plug this into (3.33) and (3.34) then after some intermediate compu-
tation steps one can obtain the following equivalent system

∂t(ρ− ρK) +∇ · (ρu) = 0, ∂tu = c2∇
(
ρK
ρ

)

, (3.38)

(

1− ρK
ρ

)

∂tu+ (u · ∇)u+
1

m
V ′′(ρ)∇ρ =

~
2

2m2

[

∇ ·
(∇2√ρ

√
ρ

)
− 1

c2
∇
(∂2t

√
ρ

√
ρ

)
]

.

(3.39)

By defining

(ρ) :=
1

m
(ρV ′(ρ)− V (ρ)), (3.40)
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and multiplying (3.39) by ρ and using the continuity equation (3.38) we obtain
a conservation law of the quantity P which is interpreted as pressure.

∂t(ρu− ρKu) +∇ · (ρu⊗ u) +∇P (ρ)

=
~
2

4m2
∇ ·

(
ρ∇2 log ρ

)
− ~

2

4m2c2
∂t (ρ)∇∂t log ρ) .

(3.41)

Note that the equations (3.38) and (3.41) describe a system governing ρ, ρK
and ρu which is of the form of a perturbation of a relativistic compressible
Euler equation with pressure P (ρ). To end this section we finally introduce the
functions ES , the Schrödinger part energy and EK , the relativistic part energy
for the hydrodynamical ansatz.

ES =
1

2
ρ|u|2 + ~

2

8m2

|∇ρ|2
ρ

+
1

m
V (ρ) =

~
2

2m2
|∇φ|2 + 1

m
V (|φ|2), (3.42)

EK =
c2

ρ

ρ2K
ρ

+
~
2

8m2c2
|∂tρ|2
ρ

=
~
2

2m2c2
|∂tφ|2. (3.43)

With this definition we obtain from (3.38) and (3.41) the energy equation

∂t(ES + EK) +∇ ·
(
(ES + P (ρ))u

)
=

~
2

4m2
∇ ·

[

u∆ρ−∇ · (ρu)∇ρ
ρ

]

. (3.44)

3.2.1 Singular Limits

We introduced the hydrodynamical description for the KGE since it is very
easy to discuss the various singular limits from the fluid dynamical formulation
(3.38), (3.41) and (3.44).

Non-relativistic limit: First we let c→ ∞. From the definition of ρK we
obtain ρK → 0. This finally yields the system

∂ρ+∇ · (ρu) = 0, (3.45)

∂t(ρu) +∇ · (ρu⊗ u) +∇P (ρ) = ~
2

4m2
∇ ·

[
ρ∇2 log ρ

]
, (3.46)

∂t(ES) +∇ ·
(
(ES + P (ρ))u

)
=

~
2

4m2
∇ ·

[

u∆ρ−∇ · (ρu)∇ρ
ρ

]

. (3.47)

where the limit hydrodynamic variables ρ, u and E are given in terms of the
limit wave function φ by

ρ = φφ̄ = |φ|2, (3.48)

u =
1

m
∇S =

i~

2m

1

|φ|2 (φ∇φ̄− φ̄∇φ), (3.49)

E =
1

2
ρ|u|2 + ~

2

4m2

|∇ρ|2
ρ

+
1

m
V (ρ). (3.50)
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The expressions above exactly coincident with the fluid dynamical formulation
of the non-linear Schrödinger equation.

Semiclassical limit: Next we consider the semiclassical limit where ~ → 0.
A natural conjecture is that the terms with O(~2) are negligible as ~ → 0 and
the limiting functions ρ, u and ρK statisfy the following equations

∂t(ρ− ρK) +∇ · (ρu) = 0, ∂tu = c2∇
(
ρK
ρ

)

, (3.51)

∂t(ρu− ρKu) +∇ · (ρu⊗ u) +∇P (ρ) = 0, (3.52)

∂t

(

ES +
c2

2

ρ2K
ρ

)

+∇ · ((ES + P (ρ))u) = 0. (3.53)

As mentioned before for more details on the nonrelativistic limit we refer to [8].
Non-relativistic semiclassical limit: The last singular limit we want to con-
sider is the case where c→ ∞ and simultaneously ~ → 0. The limit equations of
(3.38), (3.41) and (3.44) will be the following set of compressible Euler equations

∂tρ+∇ · (ρu) = 0, (3.54)

∂t(ρu) + ·(ρu⊗ u) +∇P (ρ) = 0, (3.55)

∂tES +∇ · ((ES + P (ρ))u) = . (3.56)

In our next section we will investigate this limit in more detail and we will follow
the authors in [3] and give a rigorous proof.

3.2.2 Non-relativistic semiclassical limit

Now we will have a closer look on the non-reltivistic semiclassical limit, i.e.
c → ∞ and ~ → 0 simultaneously. We predict a relation between c and ~ of
the form ~ = ǫ and c−1 = ǫα. In addition we assume that the potential V
behaves such that V ′(|φǫ|2) = |φǫ|2(γ−1) with γ > 2. Here the superscript ǫ
denotes that we are considering the non-relativistic semiclassical limit with the
predicted relations between c and ~ as above. The modulated KGE becomes

iǫ∂tψ
ǫ∂2t ψ

ǫ +
ǫ2

2
∆ψǫ − |ψǫ|2(γ−1)ψǫ = 0, (3.57)

and the initial conditions are given by

ψǫ(x, 0) = ψǫ
0(x), ∂tψ

ǫ(x, 0) = ψǫ
1(x) (3.58)

The equations (3.38), (3.41) and (3.44) become in the corresponding hydrody-
namical formulation

∂t(ρ
ǫ − ρǫK) +∇ · (ρǫuǫ) = 0, ǫ2α∂tu

ǫ = ∇
(
ρǫK
ρǫ

)

, (3.59)
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∂t(ρ
ǫuǫ − ρǫKu

ǫ) +∇ · (ρǫuǫ ⊗ uǫ) +
1

γ
∇(ρǫ)γ

=
ǫ2

4
∇ ·

(
ρǫ∇2 log ρǫ

)
− ǫ2+2α

4
∂t (ρ

ǫ∇ log ρǫ) .

(3.60)

The conservation of energy implies that
∫
(ES + EK) dx is constant in time.

With the definition of V ′ the Schrödinger part energy ES and the relativistic
part energy EK read

Eǫ
S =

1

2
ρǫ|uǫ|2 + ǫ2

8

|∇ρǫ|2
ρǫ

+
1

γ
(ρǫ)

γ
, (3.61)

Eǫ
K =

1

2ǫ2α
(ρǫK)2

ρǫ
+
ǫ2+2α

8

|∂tρǫ|2
ρǫ

. (3.62)

We further assume that the total energy is bounded
∫
(ES+EK) dx ≤ C . In the

rest of this section we will follow the ideas in [3] and will present a proof that the
corresponding limit equations are the following compressible Euler equations

∂tρ+∇ · (ρu) = 0, (3.63)

∂t(ρu) +∇ · (ρu⊗ u) +
1

γ
∇ργ = 0. (3.64)

with the initial conditions

ρ(x, 0) = ρ0(x), u(x, 0) = u0(x). (3.65)

We summarize this fact in the following theorem

Theorem 3.2.1. Let γ ≥ 2 and ψǫ be a solution of the modulated KGE (3.57)
with initial conditions (ψǫ

0, ψ
ǫ
1) ∈ Hs+1(Rn)⊕Hs(Rn), s > n

2 + 2, with the total
energy

∫
(ES + EK) dx ≤ C bounded from above and the energy functional Hǫ

fulfilling Hǫ(0) → 0 as ǫ→ 0. Then there exists a T∗ > 0 such that

‖(ρǫ − ρ)(·, t)‖Lγ(Rn) → 0, ‖ρǫK(·, t)‖
L

2γ
γ+1 (Rn)

→ 0, (3.66)

‖(ρǫuǫ − ρu)·, t)‖
L

2γ
γ+1 (Rn)

→ 0, (3.67)

for T ∈ [0, T∗) as ǫ → 0, where (ρ, u) is the unique local smooth solution of
(3.63) and (3.64) with the initial conditions (3.65).

The strategy to prove this statement is based on an estimate of the energy
functional Hǫ which is defined as follows

Hǫ(t) =
1

2

∫

ρǫ|uǫ − u|2dx+
ǫ2

2

∫
∣
∣∇

√
ρǫ
∣
∣ dx

+
1

2ǫ2α

∫ ∣
∣
∣
∣

ρǫK√
ρǫ

∣
∣
∣
∣

2

dx+
ǫ2+2α

2

∫
∣
∣∂t

√
ρǫ
∣
∣
2
dx+

∫

Θ(ρǫ, ρ) dx,

(3.68)

where Θ is defined as

Θ(ρǫ, ρ) =
1

γ
((ρǫ)γ − ργ)− ργ(ρǫ − ρ). (3.69)
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Proof. The following proof is taken over from [3]. Using the conservation of
energy and the Hölder inequality we obtain

‖ρǫK‖
L

2γ
γ+1 (Rn)

≤
∥
∥
√
ρǫ
∥
∥
L2γ(Rn)

∥
∥
∥
∥

1√
ρǫ
ρǫK

∥
∥
∥
∥
L2(Rn)

(3.70)

this in turn implies that

‖ρǫK(·, t)‖
L

2γ
γ+1 (Rn)

→ 0 as ǫ→ 0. (3.71)

Next we want to investigate the behaviour of the energy functional Hǫ in time.
Differentiating Hǫ with respect to time yields

d

dt
Hǫ(t) = −

∫

Tn

u · (ρǫuǫ) dx+
1

2

d

dt

∫

Tn

ρǫ|u|2 dx

+
d

dt

∫

Tn

(
γ − 1

γ
ρ− ρǫ

)

ργ−1 dx =: I1 + I2 + I3.

(3.72)

For the first term I1 integration by parts and the conservation law of momentum
(3.60) give us

I1 = −
∫

Tn

∂tu · (ρǫuǫ) dx−
∫

(ρǫuǫ ⊗ uǫ)∇u dx−
∫

Tn

γ − 1

γ
(ρǫ)γ∇ · u dx

−ǫ
2

4

∫

Tn

(∇
√
ρǫ ⊗∇

√
ρǫ) : ∇u+∇ρǫ · (∇∇ · u) ddx

1

4
ǫ2+2α d

dt

∫

Tn

(∂tρ
ǫ)∇ · u dx− d

dt

∫

Tn

u ·
(
ρǫKu

ǫ + ǫ2+2α∂t
√
ρǫ∇

√
ρǫ
)
dx

+
1

4
ǫ2+2α

∫

Tn

(∂tρ
ǫ)∇ · ∂tu dx+

∫

Tn

∂tu
(
ρǫKu

ǫ + ǫ2+2α∂t
√
ρǫ∇

√
ρǫ
)
dx.

(3.73)

Next, the conservation of charge (3.59) and again integration by parts yield

I2 =

∫

ρǫu · ∂tu dx+
1

2

∫

∇|u|2 · (ρǫuǫ) dx

+
1

2

d

dt

∫

ρǫK |u|2 dx−
∫

ρǫKu · ∂tu dx.
(3.74)

For the third term we have

I3 =

∫

(γ − 1)ργ−2(ρ− ρǫ)∂tρ dx− d

dt

∫

ργ−1ρǫK dx

+

∫
(
∂tρ

γ−1ρǫK −∇ργ−1(ρǫuǫ)
)
dx.

(3.75)

Our goal is to introduce a correction function Gǫ such that

d

dt
(Hǫ(t)−Gǫ(t)) ≤ ‖∇u‖L∞(Rn)H

ǫ(t) + o(1) (3.76)
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The function Gǫ is defined as

Gǫ(t) = −1

2

∫

|u|2ρǫK dx+

∫

ργ−1ρǫK dx+
1

4
ǫ2+2α

∫

∂tρ
ǫ∇ · u dx

+

∫

u ·
(
ρǫKu

ǫ + ǫ2+2α∂t
√
ρǫ∇

√
ρǫ
)
dx.

(3.77)

With Gǫ the expression d
dt (H

ǫ(t)−Gǫ(t)) becomes

d

dt
(Hǫ(t)−Gǫ(t)) = − ǫ

4

∫
(
∇
√
ρǫ ⊗∇

√
ρǫ
)
: ∇u dx

+

∫

−(ρǫuǫ) · ∇ργ−1 − γ − 1

γ
(ρǫ)γ∇ · u dx

−
∫

(ρǫuǫ − ρǫu) · ∂tu dx+
1

2

∫

(ρǫuǫ) · ∇|u|2 dx+R1 +R2 +R3.

(3.78)

Here

R1 = −
∫

(ρǫuǫ ⊗ uǫ) : ∇u dx, (3.79)

R2 =

∫

(γ − 1)ργ−2(ρ1ǫ− ρ)∇ · (ρu) dx, (3.80)

R3 =

∫

∂tρ
γ−1ρǫK + ∂tu ·

(
ρǫKu

ǫ + ǫ2+2α∂t
√
ρǫ∇

√
ρǫ
)
− 1

2
ρǫK∂t|u|2

−ǫ
2

4
∇ρǫ · (∇∇ · u) + 1

4
ǫ2+2α∇ · ∂tu∂tρǫ dx.

(3.81)

To continue we have to rewrite the term R1 as

R1 = −
∫

(ρǫ(uǫ − u)⊗ (uǫ − u)) : ∇u dx−
∫

(ρǫu⊗ uǫ) : ∇u dx

+

∫

(ρǫu⊗ u) : ∇u dx−
∫

(ρǫuǫ ⊗ u) : ∇u dx.
(3.82)

We directly calculate

−
∫

(ρǫu⊗ uǫ) : ∇u dx =

∫
1

2
|u|2∇ · (ρǫuǫ) dx, (3.83)

and
∫

(ρǫu⊗ u) : ∇u dx−
∫

(ρǫuǫ ⊗ u) : ∇u dx

=

∫

[(u · ∇)u] · (ρǫu− ρǫuǫ) dx.

(3.84)

So the expression R1 becomes

R1 = −
∫

(ρǫ(uǫ − u)⊗ (uǫ − u)) : ∇u dx

+

∫
1

2
|u|2∇ · (ρǫuǫ) dx+

∫

[(u · ∇)u] · (ρǫu− ρǫuǫ) dx.

(3.85)
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For the second term R2 we consider the identity

(γ − 1)ργ−1∇ · (ρu) = γ − 1

γ
(∇ργ) · u+ (γ − 1)ργ∇ · u, (3.86)

This in turn implies that

−
∫

(γ − 1)ργ−1∇ · (ρu) = γ − 1

γ
(∇ργ) · u+ (γ − 1)ργ∇ · u, (3.87)

therefore
∫

(γ − 1)ργ−2ρǫ∇ · (ρu) dx

=

∫

(γ − 1)ργ−1ρǫ∇ · u dx+

∫

ρǫu · ∇ργ−1 dx.

(3.88)

For R2 we finally end up with

R2 = (γ − 1)

∫ [

ργ−1ρǫ − γ − 1

γ
ργ

]

∇ · u dx+

∫

ρǫu · ∇ργ−1 dx. (3.89)

For the third term R3 one can easily find an estimate where R3 → 0 as ǫ → 0,
so we omit the details here. Putting our results together yields

d

dt
(Hǫ(t)−Gǫ(t)) = −

∫

(ρǫ(uǫ − u)⊗ (uǫ − u)) : ∇u dx

ǫ2

4

∫
(
∇
√
ρǫ ⊗∇

√
ρǫ
)
: ∇u dx

−(γ − 1)

∫ [
1

γ
((ρǫ)γ − ργ)− ργ−1(ρǫ − ρ)

]

∇ · u dx+ o(1).

(3.90)

Combining the above estimates yield the following equation

d

dt
(Hǫ(t)−Gǫ(t)) = ‖∇u‖L∞(Rn)H

ǫ(t) + o(1) (3.91)

for t ∈ [0, T∗). From a integration with respect to t we obtain

Hǫ(t) ≤ Hǫ(0) +Gǫ(0)−Gǫ(t) + C1

∫ t

0

Hǫ(τ) dτ + o(1). (3.92)

In addition one can show that Gǫ(0)−Gǫ(t) = o(1) and this implies

Hǫ(t) ≤ Hǫ(0) + C1

∫ t

0

Hǫ(τ) dτ + o(1). (3.93)

Employing the initial condition Hǫ(0) and the Grönwall identity one can show
that Hǫ(t) → 0 as ǫ→ 0 and one deduces that

∫

ρ|ρǫ − u|2 dx→ 0,

∫

Θ(ρǫ, ρ) dx→ 0 (3.94)
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as ǫ→ 0. It can easily been shown that

1

γ
|ρǫ − ρ|γ ≤ Θ(ρǫ, ρ) if γ ≥ 2. (3.95)

Hence ‖ρǫ − ρ‖Lγ(Rn) → 0 as ǫ → 0, this proves the identity (3.66). On the
other hand the triangle inequality and the Hölder inequality imply

‖ρǫuǫ − ρu‖
L

2γ
γ−1 (Rn)

≤ ‖ρǫuǫ − ρǫu‖
L

2γ
γ−1 (Rn)

+ ‖(ρǫ − ρ)u‖
L

2γ
γ−1 (Rn)

≤
∥
∥
√
ρǫ
∥
∥
L2γ(Rn)

∥
∥
∥
∥

1√
ρǫ

(ρǫuǫ − ρǫu)

∥
∥
∥
∥
L

2γ
γ−1 (Rn)

+ ‖ρǫ − ρ‖Lγ(Rn ‖u‖
L

2γ
γ−1 (Rn)

.

(3.96)

This proves the assertion in (3.67).

3.2.3 The WKB method and the Wigner transformation

In the last sections we did not present the whole theory behind the semiclassical
and nonrelativistic limit of the KGE since that would have led us to discussions
which lie far beyond the scope of this work. A widely used method for semiclas-
sical limits is the WKB method, which is valid for short times, until the ansatz
breaks down (or multi-valued solutions are used, see [16]). Global in time semi-
classical limits can be obtained by the Wigner transform method – see eg. [15]
for the combined semiclassical and nonrelativistic limit from Dirac-Maxwell to
Vlasv-Poisson. For the sake of completeness we will give an overview. We follow
the discourse in [16] and [17].

WKB method: What we have considered is the so called WKB ansatz,
which is generally written as

φǫ = Aǫ exp

(
iS

ǫ

)

. (3.97)

here Aǫ and S are real valued, ǫ ∼ ~ and the superscript ǫ of A indicates that
Aǫ = A+ a1ǫ+A2ǫ

2 + ... . For the semiclassical limit we send ǫ→ 0. However,
the WKB method is only justified for smooth initial data AI and SI in

φǫI = AI exp

(
iSI

ǫ

)

. (3.98)

The problem with this ansatz is that the obtained hydrodynamical equations
do not need to have global solutions (global solutions can only be obtained for
special initial data), i.e. the system can break down in some finite time tf ∈ R.
These singularities are called focal points or more general caustics and the en-
ergy of the wave function φǫ will become unbounded there.

Wigner method: Next we turn our attention to the Wigner method. We
begin with the following definition.
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Definition 3.2.1. For given f, g ∈ S ′(Rd) and given ǫ ∈ (0, ǫ0] we define the
Wigner transformation on the scale ǫ by

wǫ(f, g)(x, t) =
1

(2π)d

∫

Rd

f
(

x− ǫ
z

2

)

ḡ
(

x+ ǫ
z

2

)

eizξ dz. (3.99)

The Wigner transformation is a continuous, bilinear map wǫ : S ′(Rd
x) ×

S ′(Rd
x) → S ′(Rd

x × R
d
ξ). For example the nonlinear Schrödinger equation

ǫ∂tψ
ǫ − i

ǫ2

2
∆ψǫ + iV ((x)ψǫ = 0, (3.100)

becomes

∂tw
ǫ + ξ · ∇xw

ǫ − θǫ[V ]∂tw
ǫ = 0, x, ξ ∈ R

d, t ∈ R, (3.101)

where wǫ := wǫ(ψǫ, ψǫ) and θǫ[V ]∂tw
ǫ denotes a pseudo differential operator of

the form

θǫ[V ]∂tw
ǫ(x, ξ, t) :=

i

(2π)dǫ

∫

Rd

∫

Rd

[

V
(

x+ ǫ
z

2

)

−V
(

x− ǫ
z

2

)]

·wǫ(x, ξ, t)eiz(ξ−ξ′) dz dξ′.

(3.102)
In the case of a free particle, i.e. V = 0, one easily sees that the "Wignerized"
nonlinear Schrödinger equation becomes a transport type equation

∂tw
ǫ + ξ · ∇xw

ǫ = 0, x, ξ ∈ R
d, t ∈ R. (3.103)

In the last decades the use of the Wigner transformation became very popular
for the analysis of the semiclassical limit of the nonlinear Schrödinger equation.
The Wigner transform provides a phase space description which "unfolds" the
caustics and therefore leads to global solutions. Additionally one can weaken
the regularity assumptions for the initial data AI and SI . The disadvantage of
the Wigner transform lies in the fact that it describes the problem in the phase
space which means that it doubles the dimension of our problem. The authors
in [16] presented a proof which shows that Wigner transformations can be used
to obtain a semiclassical phase space description.
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Appendix A

Physical background

A.1 A Heuristic derivation of the Klein Gordon

equation

The relativistic energy-momentum relation is given by

E2 − p
2c2 = m2c4. (A.1)

Where E is the energy of the particle, p its three dimensional momentum, m
its mass and c the speed of light. Using the Einstein sum convention and the
Minkowski metric with signature (+,−,−,−) we can rewrite this formula as

pµpµ −m2c2 = gµνp
µpν −m2c2 = 0 (A.2)

Where p = (Ec ,p), x = (ct,x) are so called four-vectors and gµν is the Minkowski
metric tensor (more precisely the component of the metric tensor). Due to the
correspondence principle from classical quantum physics we make the following
replacement

pµ → i~∂µ (A.3)

where ∂µ just means the gradient ∂µ =
(

∂
∂t ,

∂
∂x ,

∂
∂y ,

∂
∂z

)

in space-time coordi-

nates and ~ the reduced Planck constant. The justification for this replacement
is that it turns out of Noether’s theorem that translations in time cause energy
shifts and translations in space change the momentum. Note that translations
in time and space are generated by their derivatives. (To be mathematically
precise we need to introduce the concepts of the so called position-space and
momentum-space and they are related by Fourier transformation. On these
spaces we define the position operator and the momentum operator respec-
tively. In fact the Fourier representation of the momentum operator is exactly
i~∂µ.) In fact we replace the four-vector pµ by the differential operator i~∂µ
and let it act on a scalar function ψ. This is also known as quantisation process
and it seems to occur very randomly. Well there is no strict proof for this.
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When we apply this to (A.2) we obtain

(
−~

2∂µ∂µ −m2c2
)
(ψ) = 0 (A.4)

which can be expressed as

− 1

c2
∂2ψ

∂t
+∇2ψ =

(mc

~

)2

ψ. (A.5)

(A.5) is called the Klein Gordon equation and further on we will use the short-
cut "KGE" and write (

�− m2c2

~2

)

(ψ) = 0 (A.6)

instead of (A.5). Where � is the so called d’Alembert operator and it is defined
by

�ψ = − 1

c2
∂2ψ

∂t
+∇2ψ (A.7)

The field ψ corresponds to a particle of spin 0. What precisely is meant by a
spin 0 particle is that its corresponding scalar field is invariant under Lorentz
transformations, i.e. they transform under the trivial (0, 0) representation of
the Lorentz group

A.2 Introduction to the Lagrange formalism

First we need to introduce the so called Hamilton principle. It states that the
dynamic of a certain physical system is determined by a variation problem for
a functional based on a function called the Lagrange function. The Lagrange
function or shorter the Lagrangian contains all physical information concerning
the system and the forces acting on it. When we are presenting the theory of
the Lagrange formalism we follow the discourse in [5].

The Lagrangian is in general a function which depends on the field φ it’s
four-gradient ∂µφ and the space-time coordinate x. Note that there is no gen-
eral analytical way to derive the Lagrangian of a certain physical system. Often
energy considerations to approximate the dynamic of the system are used. We
denote the Lagrangian by L (x, φ, ∂µφ). Further there is one basic physically
reasonable assumption concerning the field φ. We assume that the field and its
derivatives decay fast enough thus the terms occurring by performing partial
integration over an unbounded domain Ω ⊂ R

4 have to vanish.

Next we define the action of the physical system to be

S[φ] =

∫

Ω

L (x, φ, ∂µφ) d
4x. (A.8)

the Hamilton principle exactly says

δS[φ] = 0. (A.9)
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Where δ denotes the functional derivative. This is equivalent to say that the
action S[φ] is stationary under a variation in the field

φ(x) → φ(x) + δφ(x) = φ′ , (A.10)

which vanishes on the boundary ∂Ω such that

δφ(x) = 0, x ∈ ∂Ω. (A.11)

The physical field configuration in the space-time volume Ω is such that the ac-
tion S is invariant under variation of the field for fixed boundary conditions. The
calculation of the variation of the action yields the Euler-Lagrange equations of
motion for the field. Thus we obtain

δS[φ] =

∫

Ω

δLd4x

=

∫

Ω

(
∂L
∂φ

δφ+
∂L

∂ (∂µφ)
δ∂µφ

)

.

(A.12)

Hence

δ∂µφ = ∂µφ
′ − ∂φ

= ∂µ (φ
′ − φ) = ∂µδφ.

(A.13)

Finally a integration by parts yields

δS[φ] =

∫

Ω

(
∂L
∂φ

− ∂µ
∂L

∂ (∂µφ)

)

δφ+

∫

Ω

(
∂L

∂ (∂µφ)
(∂µδφ) + ∂µ

∂L
∂ (∂µφ)

δφ

)

=

∫

Ω

(
∂L
∂φ

− ∂µ
∂L

∂ (∂µφ)

)

δφ+

∫

Ω

∂

(
∂L

∂ (∂µφ)
δφ

)

.

(A.14)

Hence the boundary terms occurring due to integration by parts vanish. The
term including the total derivative is zero too, to see this we can use Gauss’s
divergence theorem to obtain

∫

Ω

∂

(
∂L

∂ (∂µφ)
δφ

)

d4x =

∫

∂Ω

∂L
∂ (∂µφ)

δφ d3x = 0, (A.15)

since δφ(x) = 0 for x ∈ ∂Ω. So

δS[φ] = 0 =

∫

Ω

(
∂L
∂φ

− ∂µ
∂L

∂ (∂µφ)

)

δφ (A.16)

by Hamilton’s principle. Since δφ is arbitrary the integrand has to be identically
zero and we obtain

∂L
∂φ

− ∂µ
∂L

∂ (∂µφ)
= 0. (A.17)

These are the Euler-Lagrange equations of motions for the field φ.
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3.3 Scaling of the Firedmann equation with as-

sumption of homogeneity

A very successful inflation model is determined by the following potential

V (φ) =
λ

4

(
φ2 − v2

)2
, (3.18)

where v is the vacuum field. One can derive that

v = ± m√
λ
, (3.19)

with m the mass of the scalar field and λ the coupling of the field. One should
take note that

[φ] = L−1, (3.20)

[m] = L−1. (3.21)

Here L stands for a unit length, where λ is a dimensionless parameter. Using
the potential V defined as above we have the following set of equations

ȧ

a
− k

a2
=

8πG

3

(
1

2
φ̇2 + V (φ)

)

, (3.22)

ä

a
= −8πG

3

(

φ̇2 − V (φ)
)

, (3.23)

φ̈+ 3
ȧ

a
φ̇+ V ′(φ) = 0. (3.24)

Together with the following set of initial data

a(0) = 0, (3.25)

ȧ(0) = H0, (3.26)

φ(0) = φ0, (3.27)

φ̇(0) = ψ0. (3.28)

For a numerical simulation we have four parameters, i.e. m,λ, φ0, ψ0. But to
solve the equations numerically we have to make scale transformations such that
the equations become dimensionless. Therefore we introduce the following new
variables

τ = H0t, (3.29)

Φ =

√

8πG

3
φ, (3.30)

m̃ =
m

H0
, (3.31)

λ̃ =
3λ

8πGH2
0

. (3.32)
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With this new variables we obtain the transformed equations

a′′

a
= −Φ2 + V (Φ), (3.33)

Φ′′ + 3
a′

a
Φ′ +

dV

Φ
= 0. (3.34)

Here the prime stands for the derivative with respect to the dimensionless vari-
able τ .
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