
 
 

 

MASTERARBEIT / MASTER’S THESIS 

Titel der Masterarbeit / Title of the Master‘s Thesis 

„PICA-to-go: A fast microbial phenotype investigation 

pipeline“ 

 

verfasst von / submitted by 

Florian Piewald BSc 

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of 

Master of Science (MSc) 

Wien, 2018 / Vienna 2018  

Studienkennzahl lt. Studienblatt / 
degree programme code as it appears on 
the student record sheet: 

A 066 875 

Studienrichtung  lt. Studienblatt / 
degree programme as it appears on 
the student record sheet: 

   Masterstudium Bioinformatik 
  
    

Betreut von / Supervisor: 

 

 

Prof. Dr. Thomas Rattei  

 

  

 
 



This work is licensed under the Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License. To view a copy of this license, visit http:

//creativecommons.org/licenses/by-nc-nd/4.0/.

2

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Inhaltsverzeichnis

1 Introduction 8

1.1 Related Projects and PICA-to-go . . . . . . . . . . . . . . . . . . . . 8

Effective DB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

PhenDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

PICA training pipeline for PhenDB . . . . . . . . . . . . . . . 8

1.2 The idea behind PICA-to-go . . . . . . . . . . . . . . . . . . . . . . . 8

Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Relevance of phenotype prediction . . . . . . . . . . . . . . . . . . . . 12

1.3.1 The age of metagenomics . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 Phenotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.1 Definition and Comparison to other fields . . . . . . . . . . . . 14

1.4.2 Supervised Machine learning: Training of a model . . . . . . . 14

1.4.3 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.4 Machine learning tools for phenotype prediction . . . . . . . . 16

1.4.5 Support vector machines . . . . . . . . . . . . . . . . . . . . . 17

1.5 Functional equivalent clusters . . . . . . . . . . . . . . . . . . . . . . 21

Clusters of orthologous groups . . . . . . . . . . . . . . . . . . 21

Clustering genes without any special regard to orthologous

groups . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Suitable clustering approach for PICA-to-go . . . . . . . . . . 24

Comparison of different clusterings . . . . . . . . . . . . . . . 24

2 Results 26

2.1 Selection of a clustering tool . . . . . . . . . . . . . . . . . . . . . . . 26

OrthoFinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

MMSeqs2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Computational requirements . . . . . . . . . . . . . . . . . . . . . . 29

3



2.3 MMSeqs2/linclust vs. MMSeqs2/linclust-msi0 . . . . . . . . . . . . . 30

2.4 MMSeqs2/cluster vs. MMSeqs2/linclust-msi0 . . . . . . . . . . . . . 34

2.5 Comparison of PICA-to-go to the existing pipeline . . . . . . . . . . . 37

2.6 The effect of feature reduction based on cluster size . . . . . . . . . . 40

2.7 Detailed analysis of selected models . . . . . . . . . . . . . . . . . . . 44

2.7.1 Comparison of clusterings . . . . . . . . . . . . . . . . . . . . 44

2.7.2 Relevant features . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.8 The workflow of PICA-to-go explained on a newly trained model . . . 48

3 Discussion 48

3.1 PICA-to-go to link genes to a certain phenotype . . . . . . . . . . . . 48

3.2 Relevance for the field of bioinformatics . . . . . . . . . . . . . . . . . 49

3.3 Interpretation of the results . . . . . . . . . . . . . . . . . . . . . . . 49

Orthologous groups vs. gene clusters . . . . . . . . . . . . . . 49

Cascaded clustering . . . . . . . . . . . . . . . . . . . . . . . . 50

Used cutoffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Further improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Methods 51

4.1 Definition of the task . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Workflow to find a replacement for HMMER/eggNOG . . . . . . . . 52

4.3 The existing pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 The PICA-to-go pipeline . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Implementation of PICA-to-go . . . . . . . . . . . . . . . . . . 54

4.4.2 Version/changes of used programs . . . . . . . . . . . . . . . . 55

PICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

MMSeqs2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Prodigal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.4 Provided functionality and inputs/outputs . . . . . . . . . . . 56

4



PICA-to-go train: required parameters . . . . . . . . . . . . . 56

PICA-to-go train: additional parameters . . . . . . . . . . . . 57

PICA-to-go train: output . . . . . . . . . . . . . . . . . . . . 58

PICA-to-go predict: required parameters . . . . . . . . . . . . 59

PICA-to-go predict: additional parameters . . . . . . . . . . . 59

PICA-to-go predict output . . . . . . . . . . . . . . . . . . . . 59

4.4.5 Internal gene names . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Feature reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Annotation of features in the feature ranking . . . . . . . . . . . . . . 60

4.7 The PICA models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.8 Cluster-Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.9 Statistical evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.10 Raw data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5



Zusammenfassung

Nachdem die Anzahl an komplett sequenzierten bakteriellen Spezies steigt,

wird die Analyse der Phänotypen dieser Spezies zu einem Bottleneck inner-

halb der Wissenschaft. In der Vergangenheit wurden Machine Learning-Tools

verwendet, um diesem Problem Herr zu werden. Das PICA Framework, das

mit Support Vector Maschinen arbeitet, ist ein Beispiel für solch ein Tool.

Allerdings benötigt PICA Informationen bezüglich der ’cluster of orthologous

groups’ (COGs) in jeder Spezies (auch Bin genannt), welche für das Training

bzw. für die Vorhersage verwendet wird. In unserer Arbeitsgruppe wurde für

diesen Zweck in vergangenen Projekten HMMER verwendet, um die eggNOG

Datenbank zu durchsuchen. Diese Herangehensweise ist allerdings limitiert

für Wissenschaftler, welche Zugriff zu einem Hochleistungs-Computer-Cluster

haben und benötigt zudem einen beträchtlichen Zeitaufwand. Ich stelle eine

neue Herangehensweise vor (PICA-to-go), welche das Clustering-Toolset von

MMSeqs2 in Verbindung mit dem PICA Framework nutzt. Ein Modell für

Ciprofloxacin-Resistenz in Acinetobacter baumannii kann so mit einer Genauigkeit

von 0.93 in weniger als zehn Minuten auf einem gewöhnlichen PC trainiert

werden.
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Abstract

As the number of completely sequenced bacterial species grows, analyzing

the phenotypes of these species becomes a bottleneck in science. Machine

learning tools have been used in the past to cope with this problem. The PICA

framework is an example of such a tool, using support vector machines. PICA,

however, needs information about the clusters of orthologous groups (COGs)

in each species (also known as bin) to be trained/predicted. In previous work

of our group, HMMER searching in the eggNOG database, was used for this

purpose. The usage of this approach is limited to researchers with access to a

high performance computing cluster and takes a considerably amount of time.

I present a new approach (PICA-to-go) using the clustering suite of MMSeqs2

together with the PICA framework. A model for ciprofloxacin resistance in

Acinetobacter baumannii with a balanced accuracy of 0.93 can be trained in

less than 10 minutes on an ordinary desktop machine.
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1 Introduction

1.1 Related Projects and PICA-to-go

Effective DB EffectiveDB is an application and database, with a user friendly

web interface, for the prediction of protein secretion systems in bacteria. It is based

on the PICA framework using support vector machines (SVMs). As features for

machine learning, orthologous groups are used (from eggNOG 4.0). (Eichinger et

al., 2016)

PhenDB PhenDB is a currently ongoing (and yet unpublished) project of a phe-

notype prediction application. In contrast to EffectiveDB, the predictions are not

limited to secretion systems, but cover a wide range of different phenotypes. It is

built as a user friendly web interface, where researchers can upload their bins and

obtain a wide range of different phenotype predictions together with informations

about completeness/contamination and taxonomic predictions. The application as

well as information about the tool and current news are available at phendb.org/.

The author of this master thesis has also been involved in building the PhenDB

application.

PICA training pipeline for PhenDB The existing pipeline used to train PICA

models for PhenDB uses Prodigal (Hyatt et al., 2010) for gene finding and HM-

MER (Wheeler and Eddy, 2013) to annotate all genes to the eggNOG 4.5 database

(Huerta-Cepas et al., 2016). The eggNOG id, which refers to a cluster of orthologous

groups (COG), is then used as feature to train a PICA model.

1.2 The idea behind PICA-to-go

Unlike the related projects mentioned above PICA-to-go is a desktop software that

provides the user with the possibility to train his own machine learning models as

well as to perform predictions using these models. The tool is usable on a normal

8
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desktop machine without the access to a computer cluster. The internal pipeline

used for PhenDB is able to train as well as to predict PICA models, however it is

not suitable to be used on a desktop computer as it requires to map a sequence to

the eggNOG database using HMMER. This is not only a speed limiting step, but

also requires a mirror of the eggNOG database on the hard drive. Other steps in

the pipeline, however, such as Prodigal for gene prediction or PICA itself are quite

fast and can be performed on a desktop machine. Therefore, alternatives for the

HMMER/eggNOG step have to be found with the aim to replace this step using

different tools. Moreover, conversion steps may be required between this steps as the

output of a certain tool may differ from the input format required by the succeeding

tool in the pipeline.

Evaluation To test if PICA-to-go performs as well as the existing pipeline, all

PICA models used in PhenDB are trained using PICA-to-go and the mean balanced

accuracy is then compared to the existing pipeline. As a runtime requirement, it

should be possible to run most models on a regular laptop on a single workday (8h).

9
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1.3 Relevance of phenotype prediction

1.3.1 The age of metagenomics

For more than a century, microbial research was mainly done by cultivating microbes

as pure cultures on agar plates. Such a setup easily allows the testing of growth

requirements or the sensitivity towards environmental conditions (e.g. temperature,

presence of a certain antibiotic) of a certain bacterium. However, it is estimated

that more than 99 percent of all prokaryotic species cannot be cultured, which has

been a major problem in microbial research (Schloss and Handelsman, 2005). As the

cost of sequencing is decreasing, the metagenomic approach is used to deal with this

problem. DNA is directly obtained from environmental samples and sequenced. To

reconstruct the original sequence, all reads are assembled using an existing backbone

(mapping) or by de-novo assembly. Before that, to avoid wrongly assembled reads,

each read is separated on a taxonomical level into different groups using binning

algorithms. Each species gained by this process is called bin. (Kunin et al., 2008)

While certain tools exist for predicting the taxonomical classification of a certain

bin (e.g. Kraken (Wood and Salzberg, 2014)), it is still not trivial to assign bins to

a phenotype.

1.3.2 Phenotypes

A phenotype is defined as observable physical properties of an organism. For bacte-

rial organisms, this could be the growth requirements such as the usage of methane

as energy source (Bochner, 2008). Different phenotypes can be a result of a sin-

gle nucleotide polymorphism (Read and Massey, 2014), the presence or absence of a

gene or even by changes in the non-coding region of the genome (e.g. a mutation in a

promotor region or in a region of a non coding regulatory RNA (Gottesman, 2005)).

In some cases, marker genes can be used to predict a certain phenotype based on

whole genome data. An example for this approach is the ammonia monooxygenase

structural gene amoA (Rotthauwe, Witzel, and Liesack, 1997). However, this ap-

proach is limited to species that have been well investigated. Furthermore, this idea

12



follows the hypothesis that a trait is controlled by a single locus, which is true for

some genetic traits, while a high amount of phenotypes is controlled by a complex

circuit involving multiple genes (Plomin, Haworth, and Davis, 2009). To address

this problem, genome wide association studies (GWAS) are used in human genetics.

GWAS associate a single nucleotide polymorphisms to a characteristic with a cer-

tain probability (e.g. enhanced probability of a particular disease). This is a purely

statistical approach that differs from machine learning techniques (see 1.4). For

prokaryotic organisms, however, GWAS is not as common yet (Lees and Bentley,

2016) (Brynildsrud et al., 2016).

To predict phenotypes, some approaches use curated databases containing genes

and/or SNPs, which cause a specific phenotype, collected from scientific literature.

This approach is commonly used by tools predicting antibiotic resistance. An exam-

ple of such a database is ResFinder (Zankari et al., 2012) or CARD (Comprehensive

Antibiotic Resistance Database) (McArthur et al., 2013). Some of these tools are

able to work with pre-assembled reads. SRST2 uses Bowtie2 to map a read to po-

tential resistance genes of a reference database (Inouye et al., 2014). Other tools,

such as Mykrobe predictor, rely on the comparison of De Bruijn graphs and do not

only provide information about antibiotic resistance, but also on virulence (Bradley

et al., 2015). In conclusion, most of these tools are intended to be used in the field

of medical microbiology and rely on curated databases. This clearly distinguishes

these tools from our PICA-based tools such as PhenDB or PICA-to-go, which are

intended as general purpose tool for phenotype prediction. As PICA relies on ma-

chine learning, a curated database of genes relevant for a certain phenotype is not

needed. Instead, it finds relevant genes automatically in the process of the train-

ing of the model. This information is then not only used to generate a model to

perform predictions, but can also be used to identify relevant genes for a certain

phenotype, which have not been associated with this phenotype before. Traitar is

a similar tool, which also relies on machine learning (support vector machines). It

supports 67 models that have been trained using training data from the proprietary
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GIDEON database. The intention behind Traitar is not to allow the user to train its

own models, but just to provide him with trained models. As features for machine

learning, functional annotations from the Pfam database are used. (Weimann et al.,

2016) On the other hand, PICA-to-go is not shipped with trained models, but is

intended to provide the user with the option of building his own models.

1.4 Machine learning

1.4.1 Definition and Comparison to other fields

Machine learning is a term in computer science used for algorithms that learn and

improve from experience (Jordan and Mitchell, 2015). It is closely related to the field

of statistics (Breiman, 2001). The latter, however, mainly focuses on describing data

(descriptive statistics) or drawing a conclusion (inferential statistics). An example

for descriptive statistics would be information about the average income in a country

(median, arithmetic average, variance etc.). On the other hand, an example of

inferential statistics would be a classical hypothesis test ("Is cancer drug X more

effective than cancer drug Y?"). (Pagano, 2012) Machine learning, however, tries

to make a prediction using a set of data ("Is this bacteria AEROBE?"). There

are two different approaches in machine learning: Supervised machine learning and

unsupervised machine learning. Supervised machine learning uses data from the

past, that is assigned to certain labels (e.g. AEROBE YES/NO). General rules are

then extracted from the dataset and a model is build upon these rules (training).

After the training, the extracted rules (= the model) can be used to predict the label

of a new sample. By contrast, unsupervised machine learning tries to find structures

in unlabelled data. An example for unsupervised machine learning is the clustering

of data. (Bastanlar and Ozuysal, 2014)

1.4.2 Supervised Machine learning: Training of a model

The training data used in supervised machine learning typically consists of a list of

samples that are assigned to a certain class (YES/NO or multiple classes). Each sam-
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ple consists of a vector of features. A feature is an individual measurable property

(Bastanlar and Ozuysal, 2014). For phenotype prediction a sample would be a bac-

terial strain and a feature a certain property associated with this strain. This could

be the presence/absence of genes or SNPs, the GC count or the amino acid com-

position. The accuracy of a model highly depends on a useful selection of features

(Bastanlar and Ozuysal, 2014). As the GC count or the amino acid composition

may not provide much information about the phenotype compared to SNPs or the

presence/absence of genes, it may not be very useful to use these as features.

1.4.3 Bias

One major problem in machine learning is overfitting, which means that the model

fits too close to a limited number of data points. This is especially a problem for

datasets with a high amount of noise (high variance). Overfitted models may lead to

an accurate prediction, when a sample from the trainingdata is used for prediction,

but may have a low accuracy when a prediction is performed on an unknown sample.

This means that the model does not generalize well. (Bastanlar and Ozuysal, 2014)

The chance of overfitting also depends on the used machine learning approach,

certain approaches (e.g. tree learners) tend to overfit and additional techniques

have to be applied to reduce the amount of overfitting(e.g. pruning or boosting)

(Mueller and Guido, 2016). Furthermore an increase of the number of samples as

well as a reduction of features may be used as strategies against overfitting. To get

an unbiased estimate of the models accuracy, a crossvalidation can be performed.

The trainingdata is randomly splitted into k equal sized folds. While last fold is used

to perform predictions after the model is build (predict-set), the first ones (0...k-

1) are used for training (train-set). The splitting in train and predict set should

avoid being assigned too optimistic values (due to overfitting). The number of false

positives, false negatives, true positives and true negatives (confusion matrix) is

counted. The training of the model using 0...k-1 sets is done k times using all

combinations of train- and predict-sets. As the initial split into k-folds may be

15



Figure 3: An example of overfitting. (2) matches all data points exactly, but may
be a inaccurate model, as potential noise is incorporated in the model (overfitting);
(1) may be a closer model to reality, even it does not match all data points exactly

biased, the whole procedure is repeated r times using a random split. Eventually

(the desired) statistical values such as sensitivity, specificity, the raw accuracy or

the balanced accuracy are calculated for each model (number of models = r*k). The

balanced accuracy has the advantage that true positives and true negatives equally

contribute regardless how the data is structured (e.g. if a label is predominant, the

raw accuracy will be biased). The mean and the variance is then calculated for each

statistical measure. (Marsland, 2014)

Besides overfitting, another bias can be introduced in the selection of the sam-

ples used to train the model. Supervised machine learning algorithms try to find

rules to separate datasets based on differences in the features to achieve an optimal

separation between the used labels. For example, if in a model on amoxicillin re-

sistance, the samples labelled as YES are all of the species Staphylococcus aureus,

while the samples labelled as NO are of various bacterial species (but mainly not of

Staphylococcus aureus), the model will be trained to detect whether a bacterium be-

longs to Staphylococcus aureus, but won’t be a useable model to detect amoxicillin

resistance.

1.4.4 Machine learning tools for phenotype prediction

For the process of machine learning itself, different techniques are available, each

of which with several advantages or disadvantages. PICA was originally built using
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the CPAR (Predictive Association Rules) algorithm (MacDonald and Beiko, 2010).

Furthermore, PICA also offered a plugin that relied on support vector machines

(SVM), which has been extended by Feldbauer and colleagues. This approach led

to a similar balanced accuracy and has the advantage of a lower runtime. (Feldbauer

et al., 2015) Besides PICA, another similar tool for phenotype prediction is Traitar,

which also relies on support vector machines. (Weimann et al., 2016)

The PICA framework basically consists of three different tools (train.py, test.py

and crossvalidate.py). The PICA train mode requires a class label file and a sam-

ples/features file, which consists of a tab separated list of all features for each bin.

As output, the program delivers a machine readable model file that is required to

predict phenotypes. Furthermore, the tool is able to provide a feature ranking that

states the relevance of each feature (in this case each feature is a gene cluster) for

the model. To gain relevant information about the accuracy of the model, there is

the PICA crossvalidate mode that provides the user with informations about accu-

racy. The required input files are the same as for the PICA train program. PICA

test is able to predict phenotypes using a model file (output of PICA-train) and

a samples/features file. For the samples/features file, the idea is to use functional

equivalent clusters of genes as features. Typically, clusters of orthologous groups

were used for this before.

1.4.5 Support vector machines

Support vector machines (SVMs) are a supervised machine learning technique that

is mainly used for two-class classification problems (e.g. Is my bacterium AEROBE

YES/NO) and are quite robust (do not tend to overfit easily). SVMs try to find

an optimal split (hyperplane) in a multidimensional feature space. In the case of

phenotype prediction the feature space is a binary vector (e.g. presence/absence of

COGs). Finding an optimal split means that the distance from the hyperplane to

the nearest data point representing the first class (e.g. AEROBE YES) equals the

distance of nearest data point representing the second class (e.g. AEROBE NO) to
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the hyperplane. In this regard, the SVM differs from the perceptron machine learn-

ing technique, which finds a split between data point, but without the requirement

of an optimal split. Another problem regarding SVMs is that the data points are,

not always linearly separable. This is solved by an optimization problem that tries

to minimize the number of wrongly split data points as much as possible. (Mars-

land, 2014) (Mueller and Guido, 2016) The optimal hyperplane can be linear or

multidimensional. For the latter, the kernel trick is used to avoid computationally

expensive calculations. With multidimensional kernels more complex relationships

between the features can be modelled; however, the results may not be comprehensi-

ble by humans any more and the SVM basically becomes a black box. On the other

hand, the usage of linear kernels allows to extract the individual weight for each

feature (Chang and Lin, 2008). This makes it possible to detect which COGs are

the most relevant for the prediction (feature ranking). Furthermore, not only the

overall accuracy of a model can be evaluated (using crossvalidation), but also the

reliability of a single prediction can be evaluated using Platt scaling (Platt, 2000),

which considers the distance between the individual data point (e.g. a certain bin in

a multidimensional feature space) and the hyperplane. (Marsland, 2014) (Mueller

and Guido, 2016)
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Figure 4: The process of machine learning
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Figure 5: (1) Optimal split, (2) Splits all data points correctly, but split is not
optimal, (3) Optimal split, but data points not separable
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1.5 Functional equivalent clusters

To train a machine learning model using PICA, a list of functional equivalent clusters

for each bin has to be provided. In this section, different possibilities for clustering

genes to gain functional equivalent clusters are reviewed.

Clusters of orthologous groups The term homologous is used for genes of the

same evolutionary origin. Homology is not a gradual feature, but a binary decision,

e.g. two genes cannot be 50 percent homologous. There are two subtypes of homol-

ogy: Orthologs and paralogs. Besides these two subtypes, there are xenologs, which

result from horizontal gene transfer. While orthologous groups originate from spe-

ciation events, paralogs arise from duplication. (Gerlt and Babbitt, 2000) Clusters

of orthologous groups (COGs) are often suggested to be used as features in machine

learning for phenotype prediction, such as in the PICA framework (MacDonald and

Beiko, 2010). The underlying idea behind this, is the orthology-function conjecture.

It is suggested that orthologs tend to fulfil a similar function in different species,

while paralogs tend to fulfil different functions. This view is widespread and some

authors even define orthologs as "homologs in different species that catalyze the

same reaction" (Gerlt and Babbitt, 2000). However, the idea of conserved functions

across orthologs has been questioned and there are examples of orthologs, that fal-

sify this claim (Studer and Robinson-Rechavi, 2009). Even the corresponding claim

that paralogs functional diverge is not always true, as there are cases, where paral-

ogy contribute to protein dosage modulation. Nevertheless, the orthology-function

conjecture seems to hold true as a statistical trend and COG databases such as

eggNOG were built on the idea to determine function from orthology. (Gabaldón

and Koonin, 2013)

To use orthologous groups as features in machine learning, it is necessary to

cluster all genes on a orthologous level. This task is not trivial, as orthology is defined

evolutionarily and concepts such as sequence similarity/identity are not always useful

for determining whether two gene belongs to the same orthogroup as orthologs may
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evolve at different rates in different lineages. Furthermore, the classification in

paralog and ortholog genes is not always straightforward as paralogy does not only

apply to genes within a species, but also occurs between species in complex scenarios

(e.g. differential gene loss). (Gabaldón and Koonin, 2013)

Identification of orthologous groups Hypothetically, orthologs and par-

alogs could be identified by using a perfect phylogenetic tree. However, the construc-

tion of phylogenetic trees is not trivial and furthermore computationally expensive.

Therefore, most approaches for the identification of orthologous groups rely on com-

paring all genes with all genes using tools like Blast followed by the identification of

best bidirectional hits between each species. (Zallot et al., 2016) OrthoMCL, which

is a popular tool to identify orthologous groups, assigns the similarity of each best

bidirectional hit to the edges of a graph and performs a clustering using graph based

clustering (MCL algorithm). (L. Li, Stoeckert, and Roos, 2003)

The COG database by Eugene Koonin uses a similar approach, but clusters the

genes by detecting and merging triangles of mutual best bidirectional hits in a manu-

ally curated procedure to a cluster (Tatusov et al., 2000). Another popular database

is the eggNOG database, which is an approach similar to the COG database, but

does not need any manual curation. Furthermore it introduces the idea of taxonomic

levels regarding orthologous groups. For example two genes may be considered as

orthologs on the family level, but not on the level of the last universal common

ancestor (Jensen et al., 2008).

OrthoFinder, on the other hand, extends the approach used by OrthoMCL, as it

uses length normalized hits (as the score of an alignment is dependent on the length,

which might introduce a bias) (Emms and Kelly, 2015).

The approaches mentioned above can be distinguished in two classes: Stand-

alone tools that cluster sequences based on orthology (e.g. OrthoFinder) and ap-

proaches that rely on the construction of a central database and a potential query

is mapped to the database using tools like HMMER (e.g. eggNOG database). This

distinction, is, however, not always possible as OrthoMCL is available as stand-
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alone tool, but there is also a central database that is constructed using OrthoMCL

(OrthoMCL DB (Chen et al., 2006)).

Clustering genes without any special regard to orthologous groups Be-

sides methods for finding orthologous groups, there are tools that cluster genes based

on similarity and/or the e-value as a cut off. These tools do not claim to identify

orthologous groups as gene similarity alone may only be a weak classifier for orthol-

ogous groups compared to best bidirectional hits. This leads to the case that (more

similar) paralogs may be present in the same cluster, while distant orthologs are in

different clusters. However, some authors suggest that gene function correlates well

with gene similarity (Joshi and Xu, 2007). For clustering, several tools have been

developed such as CD-HIT (W. Li and Godzik, 2006), USEARCH (Edgar, 2010) or

MMSeqs (Hauser, Steinegger, and Söding, 2016).

MMSeqs / MMSeqs2 The MMSeqs clustering suite seems especially promis-

ing as the alignment mode is 1000 times faster than BLAST and provides a similar

sensitivity. Per default, the tool performs a three-step cascaded clustering. It im-

plements an all vs. all sequence comparison, which performs an alignment on all

sequence pairs that pass a prefilter module. In the first step, it uses a low sensitivity

setting. After the all vs. all sequence comparison, the sequence with the largest

number of neighbours (sequences that are above a certain threshold e.g. sequence

identity) is merged with its neighbours to a cluster. Now the sequence with the sec-

ond largest number of neighbours is merged and so on until all sequences belong to

a cluster(greedy clustering). In the second and in the third step, the representative

sequences of each cluster are clustered with each other using a higher sensitivity

each time. Using this so called cascaded clustering workflow, a higher sensitivity

can be achieved by an acceptable speed. (Hauser, Steinegger, and Söding, 2016)

MMSeqs2, an advanced version of the original MMSeqs tool (Steinegger and Söd-

ing, 2017), offers a tool for clustering in linear time (linclust) that allows to cluster

1.6 billion sequences in 10h on a single server and is thereby more than 1000 times
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faster than similar tools. Linclust avoids an all vs. all sequence prefilter/alignment

step. For each sequence a defined number of k-mers (per default 20) is selected

based on the lowest hash function value (to achieve that similar k-mers are selected

per sequence). For each k-mer it finds a set of sequences that share this k-mer. The

longest sequence of each set is then selected as "center sequence". All sequences

in the set are then aligned to the center sequence and are connected by edges in

a graph if certain requirements have been met (e-value, sequence identity and cov-

erage). Eventually greedy incremental clustering is performed. All sequences are

sorted based on their length and the longest sequence is merged with all sequences

connected by an edge to a cluster and with the longest sequence as representative se-

quence. The MMSeqs2 package provides linclust as a standalone tool (here referred

to as MMSeqs2/linclust). However, it also included linclust in their ’conventional’

cluster algorithm as first step in a cascaded clustering workflow (referred to as MM-

Seqs2/cluster). Additionally, it should be noted that all clusters were analysed for

consistency by comparing the functional annotation of all sequences in each cluster.

This was done using Gene Ontology- and Pfam annotations. For Gene Ontology

annotations a subset of experimentally inferred annotations was additionally used.

Both MMSeqs2/cluster and MMSeqs2/linclust were found to generate more consis-

tent clusters than UCLUST and CD-Hit. (Steinegger and Söding, 2018)

Suitable clustering approach for PICA-to-go As said before, for Pica-to-go

it is essential to avoid the necessity of mirroring a large database and of mapping

sequences to this database. MMseqs2/linclust and MMSeqs2/cluster have the ad-

vantage of being incredibly fast. Therefore MMSeqs2/cluster and MMSeqs2/linclust

were evaluated to be used in Pica-to-go. OrthoFinder was also initially used, but was

then dropped, as it did not satisfy the runtime requirements (see Result section).

Comparison of different clusterings To investigate how the clusterings gained

by eggNOG/HMMER and by alternative tools used in Pica-to-go differ from each

other, several clustering evaluation techniques can be used. A distinction has to be
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made between internal and external evaluation. While internal evaluation means

that the evaluation is based on information that is retrieved from a single clustering

itself, external evaluation means to compare the outcome of a clustering to a "gold

standard" clustering (Rezaei et al., 2016). Besides that, another option would be

to manually evaluate the cluster to investigate if these clusterings are useful, which

however is only feasible when the dataset is not too large. When using different

clustering algorithms that produce different results when the clusterings are used

as feature for machine learning, algorithms for external evaluation could be used

to compare these clusterings. Most of these algorithms return a value between 0

and 1, with a value of 1 meaning that the clusterings are identical. The used al-

gorithms compares the clusters in every set with each other. Some of these indices

are not symmetric (e.g. Meila-Heckerman index) as they would return a different

result when comparing clusterset1 with clusterset2 and comparing clusterset2 with

clusterset1 (S. Wagner and D. Wagner, 2007). These indices are therefore difficult

to interpret and to apply to certain problems. The Meila Heckermann index (MH)

compares every cluster of a clustering to the cluster in the second clustering hav-

ing the maximal intersection. The intersection is summed up and divided by the

number of items (n). (Meila, 2007) While this approach seems pretty straightfor-

ward, problems can arise from certain clusterings. Let’s imagine a radical case of

a clustering consisting of 5 items for which every item forms its own cluster. If we

compare this clustering with a clustering that consists of a single cluster with all 5

items in them and compare them with each other, a value of 1 or a value of 0 will be

returned depending on whether clustering1 is compared to clustering2 or the other

way around. The Van Dongen measure tries to overcome the problem of asymmetry

by considering both cases. Each cluster is matched to another cluster with whom

it has a maximal intersection. (S. Wagner and D. Wagner, 2007) (Rezaei et al.,

2016) The Van Dongen measure was used in a modified version together with the

Meila-Heckerman index for the comparison of clusters (see 4.8).
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2 Results

All computations were performed on an ordinary desktop machine (4 cores, 8GB

RAM; see Methods section for hardware specifications) if not stated otherwise.

First of all, the selection of a suitable clustering tool to be used in PICA-to-go

is discussed, as HMMER/eggNOG is not suitable to be run on a common desktop

machine in a reasonable amount of time (see Introduction section). In the following

sections, the accuracy of various models trained with the PICA-to-go pipeline is

evaluated and also compared to the existing pipeline (which uses HMMER/eggNOG

for the clustering step). PICA crossvalidate.py performs a 5 fold crossvalidation with

10 replicates (n=5*10). A two-sided t-test for unequal variances (Welch’s test) is

performed to test if there are any significant differences regarding the accuracy of the

models when different methods (e.g. clustering tools) are used. For all significant

differences, the effect size (Cohen’s d) is calculated as well as the raw difference

between the means (RMD) to not only evaluate if there is a significant difference,

but also provide some information about the magnitude.

2.1 Selection of a clustering tool

OrthoFinder OrthoFinder has to perform an all vs. all pairwise sequence align-

ment in its workflow. This is usually done by BLAST (in the following named

OrthoFinder/blast), however OrthoFinder also offers the possibility of using DIA-

MOND for this purpose (OrthoFinder/diamond). To evaluate the runtime of Or-

thoFinder/blast, a set of predicted and translated genes gained from 3, 6 or 9 bins,

is clustered using OrthoFinder/blast. All genes were predicted and translated us-

ing Prodigal (Hyatt et al., 2010). The used bins were randomly taken from the

PEN_180 model. As the BLAST all vs. all step is speed limiting, a runtime of

O(n2) is assumed.

By comparing the runtime of OrthoFinder, which uses the predicted genes of the

previously randomly bins as input, the runtime seems to follow roughly the formula

(0.6x)2 = runtime(minutes), where x is the number of bins. This means that
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n (number of bins) runtime (minutes)
3 3.41
6 13.52
9 28.43

Table 1: The runtime of OrthoFinder/blast using random bins from the PEN_180
model

clustering all protein files of the trainingdata of the PEN_180 model (180 bins)

would take >190 hours. On the Life Science Compute Cluster (see Methods for

specifications on the hardware), OrthoFinder/blast was run with the trainingdata

of the PEN_180 model on four cores to test if this rough estimate is valid. The

job was cancelled after four days as the runtime requirement (clustering in less

than 8 hours on a desktop machine) was clearly exceeded. Therefore, the usage of

OrthoFinder/blast is not an alternative to replace HMMER/eggNOG in the pipeline.

A rough runtime estimation of OrthoFinder/diamond was done in the same way

as for OrthoFinder/blast, however a set of 6 and 12 bins was used. Assuming that

the runtime follows roughly the formula (0.3x)2 = runtime(minutes), the runtime

of OrthoFinder with 180 bins (number of bins in the PEN_180 model) would be

nearly 60 hours.

Per default OrthoFinder uses DIAMOND with the –more-sensitive option, which

offers a better sensitivity at cost of a higher runtime. This can be changed in

a configuration file. OrthoFinder was run with DIAMOND without the –more-

sensitive attribute (noted as OrthoFinder/diamond(default) ) on predicted genes of

12 bins. Assuming a quadratic big O (DIAMOND all vs. all) and comparing the

runtime of OrthoFinder using the randomly selected bins, the runtime would be

(0.19x)2 = runtime(minutes) and 180 bins should be finished in about 20 hours.

Though the runtime requirement of clustering the predicted genes in less than 8

hours was not fulfilled, OrthoFinder/diamond(default) was run on the Life Science

Compute Cluster with four cores (simulation of the ordinary desktop machine used

before) to see if the rough estimation about the runtime is valid and to use the

clusterings as input for PICA-crossvalidate.py (to get a mean balanced accuracy of
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n (number of bins) runtime (minutes)
6 4.27
12 15.63

Table 2: The runtime of OrthoFinder/diamond(–more-sensitive) using random bins
from the PEN_180 model

n (number of bins) runtime (minutes)
12 4.64

Table 3: The runtime of OrthoFinder/diamond(default) using random bins from the
PEN_180 model

the resulting model). The job took about one day and the mean balanced accuracy

of PICA-crossvalidate.py was 0.87.

MMSeqs2 As OrthoFinder does not fulfil the requirements regarding the runtime,

the usage of MMSeqs2/cluster and MMSeqs2/linclust was evaluated. While both

tools have the same default cut-off regarding coverage and e-value, the cut-off for the

minimum sequence identity is considerably different (0.9 for MMSeqs2/linclust and

0.0 for MMSeqs2/cluster). Therefore, MMSeqs2/linclust is tested with the default

cut-off as well as with a minimal sequence identity cut-off of 0.0 as both tools may

be more comparable with identical cut-offs. When the tool is used with the default

cutoffs, it is named MMSeqs2/linclust here, while it is called MMSeqs2/linclust-msi0

if it is used with a minimum sequence identity cutoff of 0.0.

MMSeqs2/linclust and MMSeqs2/linclust-msi0 managed to cluster all genes of

the 180 bins of the PEN_180 model in less than one minute (0.75 minutes for MM-

Seqs2/linclust and 0.53 minutes for MMSeqs2/linclust-msi0), while MMSeqs2/cluster

needed less than two minutes (1.72 minutes) for the same dataset.

To test if the clusterings gained by MMSeqs2/cluster and MMSeqs2/linclust

are meaningful for our purpose, PICA-crossvalidate.py was run on the clustering

output. With a mean balanced accuracy of 0.87 for MMSeqs2/linclust, 0.91 for

MMSeqs2/linclust-msi0, 0.89 for OrthoFinder/diamond(default) and 0.90 for MM-

Seqs2/cluster, OrthoFinder does not seem to have any advantage over the usage of

MMSeqs2 regarding the mean balanced accuracy. Considering the improvements
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Figure 6: Comparison of the mean balanced accuracy of PICA-crossvalidate.py using
the clustering output of different tools as input

concerning the runtime, the choice of the clustering tool was therefore in favour of

MMSeqs2. As MMSeqs2/cluster and MMSeqs2/linclust share the same interface,

both tools were incorporated in PICA-to-go. The MMSeqs2 software consists fur-

thermore of a program (MMSeqs2/clusterupdate) that easily allows updating an

existing clustering database with new genes. This is essential for the predict mode

of PICA-to-go (see Methods section).

2.2 Computational requirements

The PICA-to-go pipeline was run with all models specified in the Methods section

using MMSeqs2/cluster as well as MMSeqs2/linclust. It was possible to run all mod-

els (except the ARCHAEA model) on an ordinary laptop (4 cores, 8GB RAM; see

Methods section). The runtime of the whole PICA-to-go pipeline ranged from a few

minutes to a few hours. In none of the cases did the runtime exceed the requirement

of eight hours. For some models with a higher amount of trainingdata, a temporary

folder on the hard-disk had to be specified (instead of having all temporary files in

RAM). The ARCHAEA model had to be run on the Life Science Compute Cluster

as amount of trainingdata ( 1,800 bins) is higher than for most other models (which
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consist of maximal 450 bins).

2.3 MMSeqs2/linclust vs. MMSeqs2/linclust-msi0

In the previous section, it was shown that the usage of a cutoff of 0.0 for the minimal

sequence identity lead to a slightly higher balanced accuracy than the default cutoff

of 0.9 in MMSeqs2/linclust for the PEN_180 model. In the following, the PICA-to-

go pipeline is run on all 45 PICA models that we currently use (including a re-run

for the PEN_180 model 1). For the clustering step, MMSeqs2/linclust was used

and different cut-offs (0.0 and 0.9) for the minimal sequence identity were specified.

In 23 cases (out of 45 models in total), there was a significant difference (p<0.05)

between the usage of MMSeqs2/linclust and MMSeqs2/linclust-msi0. In all of these

cases, the latter performed better. In five cases (AUTO, SYMBIONT, ARCHAEA,

cnta, coos), this was especially pronounced with a mean balanced accuracy that

differed by > 0.10. In conclusion, it therefore seems that a cut-off of 0.0 for the

minimal sequence identity leads to better results than the default value of 0.9.

1Note that the mean balanced accuracy is not deterministic and is subject to variations as the
samples for the test set are chosen randomly by PICA
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MMSeqs2/linclust MMSeqs2/linclust-msi0 significance
METHANOTROPH 0.94 0.98 **
GRAMNEGATIVE 0.91 0.99 ***
PSYCHRO 0.74 0.68
PEN_180 0.89 0.91
THERM_OR_TOLERANT 0.70 0.71
THERM 0.70 0.73
SYMBIONT 0.81 0.98 ***
AOB 0.94 0.96
FACULTATIVE 0.78 0.81 **
T3SS 0.90 0.90
PHOTO 0.89 0.91
HALO 0.63 0.68 *
ANAEROBE 0.76 0.82 ***
T6SS 0.84 0.85
T4SS 0.87 0.93 ***
AUTO 0.63 0.78 ***
SPORE 0.87 0.92 **
ARCHAEA 0.81 0.99 ***
MOTILE 0.82 0.85 **
AEROBE 0.79 0.86 ***

Figure 7: Comparison of the mean balanced accuracy of different models using
MMSeqs2/linclust with different cut-offs (0.9 or 0.0 for minimal sequence identity).
(1)
* = significant (α < 0.05, α > 0.01)
** = highly significant (α < 0.01, α > 0.001)
*** = very highly significant (α < 0.001)
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MMSeqs2/linclust MMSeqs2/linclust-msi0 significance
avre 0.88 0.86
txta 0.56 0.54
nif 0.80 0.86 ***
cutc 0.72 0.79 **
urea 0.85 0.88 *
buk2 0.78 0.84 ***
bena 0.75 0.79 *
chb 0.81 0.82
naph2 0.56 0.61
xen 0.83 0.85
bpp 0.48 0.51
ars 0.69 0.69
p450 0.71 0.72
alkb 0.78 0.83 **
soxb 0.76 0.78
dbfa4 0.68 0.69
bsh 0.82 0.84
phnx 0.78 0.83 ***
cnta 0.71 0.82 ***
phod 0.77 0.82 ***
baicd 0.57 0.61
coos 0.68 0.81 ***
hsdh 0.83 0.83
hyda 0.72 0.77 ***
psa 0.59 0.63

Figure 8: Comparison of the mean balanced accuracy of different models using
MMSeqs2/linclust with different cut-offs (0.9 or 0.0 for minimal sequence identity).
(2)
* = significant (α < 0.05, α > 0.01)
** = highly significant (α < 0.01, α > 0.001)
*** = very highly significant (α < 0.001)
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MMSeqs2/linclust MMSeqs2/linclust-msi0 significance Cohen’s d RMD
METHANOTROPH 0.94 0.98 ** **
ANAEROBE 0.76 0.82 *** *** *
GRAMNEGATIVE 0.91 0.99 *** *** *
T4SS 0.87 0.93 *** *** *
nif 0.80 0.86 *** *** *
alkb 0.78 0.83 ** ** *
cutc 0.72 0.79 ** ** *
urea 0.85 0.88 * *
AUTO 0.63 0.78 *** *** **
SYMBIONT 0.81 0.98 *** *** **
SPORE 0.87 0.92 ** ** *
ARCHAEA 0.81 0.99 *** *** **
buk2 0.78 0.84 *** *** *
MOTILE 0.82 0.85 ** **
phnx 0.78 0.83 *** *** *
cnta 0.71 0.82 *** ** **
FACULTATIVE 0.78 0.81 ** **
bena 0.75 0.79 * **
phod 0.77 0.82 *** ** *
AEROBE 0.79 0.86 *** *** *
HALO 0.63 0.68 * * *
coos 0.68 0.81 *** *** **
hyda 0.72 0.77 *** ** *

Table 4: Comparison of the mean balanced accuracy of different models using MM-
Seqs2/linclust with different cut-offs (0.9 or 0.0 for minimal sequence identity): De-
tailed inspection of all models with significant differences using the effect size (Co-
hen’s d) and the raw mean difference (RMD).
for Cohens d:
* = small effect (d > 0.2, d < 0.5)
** = medium effect (d > 0.5, d < 0.8)
*** = large effect (d > 0.8)
for RMD:
* = considerable difference (∆ > 0.04,∆ < 0.10)
** = large difference (∆ > 0.10,∆ < 0.20)
*** = very large difference (∆ > 0.20)
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2.4 MMSeqs2/cluster vs. MMSeqs2/linclust-msi0

As MMSeqs2/cluster uses cascaded clustering, it is expected to be significantly

slower, but should lead to a more accurate clustering than MMSeqs2/linclust (Steineg-

ger and Söding, 2018). To investigate if the accuracies of the PICA models are af-

fected by this, the usage of MMSeqs2/linclust-mci0 in PICA-to-go is compared with

the usage of MMSeqs2/cluster. In 12 cases out of 45 models in total, there was a

significant (α < 0.05) difference regarding the mean balanced accuracy between the

usage of MMSeqs2/cluster and MMSeqs2/linclust-mci0. Of these 12 models with

significant differences, three were considered as "very highly significant" (α < 0.001)

and three as "highly significant". Ten cases with significant differences were in favour

of MMSeqs2/cluster, while in two cases (T4SS, cutc) MMSeqs2/linclust-mci0 lead

to a better balanced accuracy. This effect was, however, very small for T4SS (0.91

vs. 0.93), but more considerable regarding cutc (0.74 vs. 0.79). All in all, in

only four cases, the raw mean difference is larger than 0.04. So in conclusion,

MMSeqs2/linclust-mci0 lead to a worse performance than MMSeqs2/cluster. Nev-

ertheless, the effect itself was not very pronounced.
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MMSeqs2/cluster MMSeqs2/linclust-mci0 significance
METHANOTROPH 0.98 0.98
GRAMNEGATIVE 0.99 0.99

PSYCHRO 0.70 0.68
PEN_180 0.91 0.91

THERM_OR_TOLERANT 0.78 0.71 **
THERM 0.78 0.73 *

SYMBIONT 0.99 0.98
AOB 0.95 0.96

FACULTATIVE 0.81 0.81
T3SS 0.92 0.90 **

PHOTO 0.91 0.91
HALO 0.72 0.68

ANAEROBE 0.84 0.82
T6SS 0.88 0.85 ***
T4SS 0.91 0.93 *
AUTO 0.81 0.78
SPORE 0.91 0.92

ARCHAEA 1.00 0.99
MOTILE 0.86 0.85
AEROBE 0.88 0.86 *

Figure 9: Comparison of the mean balanced accuracy of each model using MM-
Seqs2/cluster or MMSeqs2/linclust, as clustering step. (1)
* = significant (α < 0.05, α > 0.01)
** = highly significant (α < 0.01, α > 0.001)
*** = very highly significant (α < 0.001)
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MMSeqs2/cluster MMSeqs2/linclust significance
avre 0.88 0.86
txta 0.55 0.54
nif 0.90 0.86 ***

cutc 0.74 0.79 **
urea 0.87 0.88
buk2 0.86 0.84 *
bena 0.79 0.79
chb 0.83 0.82

naph2 0.59 0.61
xen 0.86 0.85
bpp 0.55 0.51
ars 0.69 0.69

p450 0.74 0.72
alkb 0.84 0.83
soxb 0.81 0.78
dbfa4 0.72 0.69 *
bsh 0.85 0.84

phnx 0.84 0.83
cnta 0.77 0.82
phod 0.81 0.82
baicd 0.58 0.61
coos 0.84 0.81 *
hsdh 0.85 0.83
hyda 0.81 0.77 ***
psa 0.68 0.63

Figure 10: Comparison of the mean balanced accuracy of each model using MM-
Seqs2/cluster or MMSeqs2/linclust, as clustering step. (2)
* = significant (α < 0.05, α > 0.01)
** = highly significant (α < 0.01, α > 0.001)
*** = very highly significant (α < 0.001)
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MMSeqs2/cluster MMSeqs2/linclust-msi0 significance Cohen’s d RMD
dbfa4 0.72 0.69 * *
buk2 0.86 0.84 * *
THERM_OR_TOLERANT 0.78 0.71 ** ** *
T6SS 0.88 0.85 *** ***
T4SS 0.91 0.93 * *
T3SS 0.92 0.90 ** **
AEROBE 0.88 0.86 * *
nif 0.90 0.86 *** **
THERM 0.78 0.73 * ** *
coos 0.84 0.81 * *
cutc 0.74 0.79 ** ** *
hyda 0.81 0.77 *** *** *

Table 5: Pica-to-go (using MMSeqs2/cluster) vs. PICA-to-go (using MM-
Seqs2/linclust): Detailed inspection of all models with significant differences using
the effect size (Cohen’s d) and the raw mean difference (RMD).
for Cohens d:
* = small effect (d > 0.2, d < 0.5)
** = medium effect (d > 0.5, d < 0.8)
*** = large effect (d > 0.8)
for RMD:
* = considerable difference (∆ > 0.04,∆ < 0.10)
** = large difference (∆ > 0.10,∆ < 0.20)
*** = very large difference (∆ > 0.20)

2.5 Comparison of PICA-to-go to the existing pipeline

The mean balanced accuracy of the models resulting from applying MMSeqs2/cluster

was compared to the performance of the existing pipeline. MMseqs2/linclust is not

listed in the table as it does not perform as well as MMSeqs2/cluster for most

models(see previous section).

In six cases, the usage of PICA-to-go (using MMSeqs2/cluster) lead to a bet-

ter mean balanced accuracy than the existing pipeline (using HMMER/eggNOG).

These cases were the METHANOTROPH, ARCHAEA, dbfa4, T6SS, T4SS and

the T3SS model. For two cases (ANAEROBE, PEN_180), the existing pipeline

performed better. The differences regarding the mean balanced accuracy were espe-

cially pronounced in the METHANOTROPH model (0.84 vs. 0.98 mean balanced

accuracy).

All in all, PICA-to-go seems to perform as well (or slightly better) as the existing

pipeline with only two cases were PICA-to-go performed marginally worse.
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MMSeqs2/cluster HMMER/eggNOG significance
METHANOTROPH 0.98 0.84 ***
GRAMNEGATIVE 0.99 0.99

PSYCHRO 0.70 0.70
PEN_180 0.91 0.96 ***

THERM_OR_TOLERANT 0.78 0.79
THERM 0.78 0.78

SYMBIONT 0.99 0.99
AOB 0.95 0.96

FACULTATIVE 0.81 0.80
T3SS 0.92 0.83 ***

PHOTO 0.91 0.93
HALO 0.72 0.73

ANAEROBE 0.84 0.87 *
T6SS 0.88 0.82 ***
T4SS 0.91 0.88 *
AUTO 0.81 0.79
SPORE 0.91 0.92

ARCHAEA 1.00 1.00 **
MOTILE 0.86 0.85
AEROBE 0.88 0.88

Figure 11: Comparison of the mean balanced accuracy of the existing pipeline (using
HMMER/eggNOG) and PICA-to-go using MMSeqs2/cluster (1).
* = significant (α < 0.05, α > 0.01)
** = highly significant (α < 0.01, α > 0.001)
*** = very highly significant (α < 0.001)
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MMSeqs/cluster HMMER/eggNOG significance
avre 0.88 0.89
txta 0.55 0.55
nif 0.90 0.91

cutc 0.74 0.78
urea 0.87 0.86
buk2 0.86 0.86
bena 0.79 0.80
chb 0.83 0.83

naph2 0.59 0.59
xen 0.86 0.85
bpp 0.55 0.53
ars 0.69 0.68

p450 0.74 0.73
alkb 0.84 0.82
soxb 0.81 0.80
dbfa4 0.72 0.69 *
bsh 0.85 0.83

phnx 0.84 0.85
cnta 0.77 0.74
phod 0.83 0.82
baicd 0.58 0.54
coos 0.84 0.83
hsdh 0.85 0.84
hyda 0.81 0.80
psa 0.68 0.65

Figure 12: Comparison of the mean balanced accuracy of the existing pipeline (using
HMMER/eggNOG) and PICA-to-go using MMSeqs2/cluster (2).
* = significant (α < 0.05, α > 0.01)
** = highly significant (α < 0.01, α > 0.001)
*** = very highly significant (α < 0.001)
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MMSeqs2/cluster HMMER/eggNOG significance Cohen’s d RMD
METHANOTROPH 0.98 0.84 *** *** **
ANAEROBE 0.84 0.87 * *
ARCHAEA 1.00 1.00 ** **
dbfa4 0.72 0.69 * **
PEN_180 0.91 0.96 *** *** *
T6SS 0.88 0.82 *** *** *
T4SS 0.91 0.88 * *
T3SS 0.92 0.83 *** *** *

Table 6: Pica-to-go (using MMSeqs2/cluster) vs. HMMER/eggNOG: Detailed in-
spection of all models with significant differences using the effect size (Cohen’s d)
and the raw mean difference (RMD).
for Cohens d:
* = small effect (d > 0.2, d < 0.5)
** = medium effect (d > 0.5, d < 0.8)
*** = large effect (d > 0.8)
for RMD:
* = considerable difference (∆ > 0.04,∆ < 0.10)
** = large difference (∆ > 0.10,∆ < 0.20)
*** = very large difference (∆ > 0.20)

2.6 The effect of feature reduction based on cluster size

As specified in the Methods section, the -filter option in PICA-to-go performs a

feature reduction step based on cluster size ("filtering"). All models were trained

with this mode and the mean balanced accuracy was compared with and without the

feature reduction step. All calculations were completed using the MMSeqs2/cluster

mode of PICA-to-go. In about half of the models (20/45), the filtering step led to an

significantly increased mean balanced accuracy (α < 0.05). In 16 cases, the increase

was even highly significant or very highly significant (α < 0.01). The difference was

especially pronounced in the bpp model (0.55 to 0.76), in the txta model (0.55 to

0.68) as well as in the soxb model (0.81 to 0.92).
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MMSeqs2/cluster MMSeqs2/cluster + filtering significance
METHANOTROPH 0.98 0.98
GRAMNEGATIVE 0.99 0.99
PSYCHRO 0.70 0.73
PEN_180 0.91 0.98 ***
THERM_OR_TOLERANT 0.78 0.86 **
THERM 0.78 0.85 **
SYMBIONT 0.99 1.00 ***
AOB 0.95 0.97
FACULTATIVE 0.81 0.81
T3SS 0.92 0.93 *
PHOTO 0.91 0.92
HALO 0.72 0.77
ANAEROBE 0.84 0.85
T6SS 0.88 0.92 ***
T4SS 0.91 0.92
AUTO 0.81 0.86 **
SPORE 0.91 0.92
ARCHAEA 1.00 1.00
MOTILE 0.86 0.87
AEROBE 0.88 0.88

Figure 13: Comparison of the mean balanced accuracy of PICA-to-go using MM-
Seqs2/cluster with and without feature reduction based on cluster size ("filtering")
* = significant (α < 0.05, α > 0.01)
** = highly significant (α < 0.01, α > 0.001)
*** = very highly significant (α < 0.001)
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MMSeqs2/cluster MMSeqs2/cluster + filtering significance
avre 0.88 0.93
txta 0.55 0.68 ***
nif 0.90 0.94 ***
cutc 0.74 0.79 *
urea 0.87 0.91 **
buk2 0.86 0.89 ***
bena 0.79 0.83 ***
chb 0.83 0.84
naph2 0.59 0.64
xen 0.86 0.86
bpp 0.55 0.76 ***
ars 0.69 0.69
p450 0.74 0.79 *
alkb 0.84 0.84
soxb 0.81 0.92 ***
dbfa4 0.72 0.73
bsh 0.85 0.87
phnx 0.84 0.92 ***
cnta 0.77 0.81
phod 0.83 0.84
baicd 0.58 0.66 *
coos 0.84 0.89 ***
hsdh 0.85 0.85
hyda 0.81 0.88 ***
psa 0.68 0.71

Figure 14: Comparison of the mean balanced accuracy of PICA-to-go using MM-
Seqs2/cluster with and without feature reduction based on cluster size ("filtering")
* = significant (α < 0.05, α > 0.01)
** = highly significant (α < 0.01, α > 0.001)
*** = very highly significant (α < 0.001)
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2.7 Detailed analysis of selected models

2.7.1 Comparison of clusterings

Some models were chosen to be examined in more detail as specified in the Methods

section. The selection was in favour of the AEROBE model, as the mean bal-

anced accuracy from the existing pipeline corresponds well with the results from

PICA-to-go. Furthermore, the METHANOTROPH model was chosen, as it clearly

outperforms the existing pipeline regarding the mean balanced accuracy. The main

hypothesis is that an analysis of the difference of these clusterings should reveal

that clusterings of a certain model that performed equally good as features for

PICA, should be more similar to each other, than clusterings with a more signifi-

cant difference in the mean balanced accuracy. So, I expect that the clusterings of

HMMER/eggNOG and MMSeqs2/cluster using the AEROBE dataset are more sim-

ilar than when this comparison is done using the METHANOTROPH dataset. For

all comparisons the "unfiltered clustering set" (clustering set without any feature

reduction based on cluster size) is taken, as these clustering comparison algorithms

are only described comparing clusterings with the same size of items.

However, using the reverse Normalized Van Dongen (rNVD) measure, which re-

turns a value between 0 and 1 (the latter for an identical clustering) we observe

a value of 0.76 when comparing the clustering of HMMER/eggNOG and MM-

Seqs2/cluster using the dataset of the AEROBE model. As the rNVD index is

symmetric and closely related to the asymmetric Meila-Heckerman measure (MH),

the values of this index is shown too. Contrary to the hypothesis stated before, these

values did not really differ from the values obtained using the METHANOTROPH

dataset when comparing the clustering of HMMER/eggNOG to MMSeqs2/cluster.
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AEROBE
rNVD 0.76
MH (first vs. second) 0.77
MH (second vs. first) 0.75

METHANOTROPH
rNVD 0.77
MH (first vs. second) 0.79
MH (second vs. first) 0.76

Table 8: Comparing the clustering of HMMER/eggNOG to MMSeqs2/cluster using
rNVD and MH

AEROBE METHANOTROPH
HMMER/eggNOG 102197 63636
MMSeqs2/cluster 199268 104850

Table 9: Comparing the cluster size of the clusterings gained by HMMER/eggNOG
and MMSeqs2/cluster
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2.7.2 Relevant features

As PICA-to-go is not intended to serve as a "black box" for phenotype prediction,

but to provide comprehensible predictions, the output of the feature ranking for

the PEN_180 model (penicillin resistance) is examined. The output depicted here

is not identical to the output of PICA-to-go as the column with the name of the

representative sequence is not shown (for information about raw data, see 4.10). The

annotations for the features of the PEN_180 model were gained from the remote

blast option in PICA-to-go. For the PEN_180 model, the most relevant features

are a beta-lactamase and the methicillin resistance proteins MecI and mecR1.
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2.8 The workflow of PICA-to-go explained on a newly trained

model

To show the application field of PICA-to-go a machine learning, a model for ciprofloxacin

resistance in Acinetobacter baumannii was trained. The training data was gained

from the Pathogen Browser (https://www.ncbi.nlm.nih.gov/pathogens/). All

entries that are known to be classified as sensitive or resistant (intermediate was

not considered) using antimicrobial susceptibility testing methods (AST), and for

which a genome assembly is available, were considered. To get a balanced train

set (same number of YES/NO labels), all instances of the less abundant class are

considered, while a random sample of the same size was taken for the class with the

higher abundance. Using this process, a training set of 224 samples (112 YES, 112

NO) was obtained for the ciprofloxacin model. PICA-to-go was able to train this

model (using MMSeqs2/cluster, without the feature-reduction option) in less than

ten minutes on a normal desktop machine. 4GB of RAM was needed. The mean

balanced accuracy was 0.93. All raw data is available in the corresponding Github

repository of PICA-to-go.

3 Discussion

3.1 PICA-to-go to link genes to a certain phenotype

PICA-to-go provides the user with a list of features (gene clusters) stating the rel-

evance for each feature for the prediction with a value between 0 and 1 (see 4.4.4).

This not only makes predictions more comprehensible, as PICA-to-go does not act

as a black box, but also allows for linking genes to a certain phenotype. This could

provide new insights if this gene has not been linked to this phenotype before. As

shown in 2.7.2, three genes known to cause antibiotic resistance, are the most rele-

vant features for the PEN_180 model. Some other relevant proteins, however, were

not clearly linked to antibiotic resistance before. PICA-to-go may provide a clue
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to further investigate these genes. However, a correlation of a gene with a certain

phenotype does not always have to be the cause of a certain phenotype. For the

PEN_180 model, an example would be the cadmium resistance gene that is linked

with penicillin resistance. The correlation between heavy metal tolerance and antibi-

otic resistance is well known and seems to be caused by co-selection (Baker-Austin

et al., 2006). Moreover, PICA-to-go cannot replace classical statistical techniques

for correlating genes to a certain phenotype as the aim of support vector machines

is to find a perfect split between data to train a model to make certain predictions

and not to test for statistical significance.

3.2 Relevance for the field of bioinformatics

PICA-to-go is the first tool for the training of machine learning models for phenotype

prediction that is intended to be used on a normal desktop machine and is able to

to run most of our machine learning models (except ARCHAEA) in an appropriate

amount of time (ranging from a few minutes to a few hours). Furthermore, it

outperforms previous approaches using HMMER/eggNOG not only regarding the

ultra fast speed, but in some cases also regarding the accuracy. Moreover, it comes

with a user friendly interface and can be easily deployed as it is offered as Singularity

container. However, PICA-to-go is not limited to desktop users, but may also be

beneficial to use on a computer cluster due to its advantages over other approaches.

3.3 Interpretation of the results

Orthologous groups vs. gene clusters The accuracy of PICA-to-go is closely

linked to the identification of clusters of functional units in the genome, which are

used as features for machine learning. Previous studies using PICA relied on the

usage of clusters of orthologous groups, which is based on the idea that orthologous

groups are functionally conserved. My results show, that a simple gene clustering,

without the ambition to identify orthologous groups, lead to comparable results

regarding the accuracy of the machine learning models as the usage of orthologous
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groups (eggNOGs).

Cascaded clustering Moreover, the difference between the usage of MMSeqs2/linclust

vs. MMSeqs2/cluster seems to be comparably low. The difference between both

tools is the usage of cascaded clustering in the latter tool, which seems to lead to

slightly better results for some models at the cost of a longer runtime.

Used cutoffs MMSeqs2 uses three cutoffs based on sequence identity (0.0), cov-

erage (0.8) and e-value (0.001). For MMSeqs2/linclust two different cut-offs for

sequence identity were tested (0.9 and 0.0). The results showed that the cut-off of

0.9 lead to worse predictions. It seems likely that a cut-off of 0.9 leads to the case

that functional similar genes are separated into different clusters. A cut-off of 0.0

for sequence identity on the other hand could be still able to lead to a necessary

separation of clusters due to the fact that there is still a cut-off for the e-value and

for the coverage. As further different cut-off settings were not tested, however, it is

still difficult to make an assumption about optimal settings. In machine learning,

the automatic, exhaustive, variation of various cut-offs in other to gain a better

prediction for a single model is called grid-search. However, this term is commonly

applied to different default settings of the machine learning algorithm itself (e.g.

for SVM: used kernel, C value) rather than for the process of the selection of fea-

tures (Mueller and Guido, 2016). Such a method may lead to better prediction and

is similar to the optional feature reduction step (called LinearFiltering), however,

it applying such an approach would drastically decrease the performance and is

therefore counter-intuitive to the original purpose of PICA-to-go

3.4 Further improvements

In the PICA-to-go pipeline, PICA itself is in general not a performance bottleneck,

except for large models (such as ARCHAEA). Besides libSVM, which is used in

PICA, other libraries for support vector machines are available. However, libSVM

is one of the most used libraries for that purpose. In the past, several scientific
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tools have been developed that use GPU computing, which is, nevertheless, not a

trivial task. In addition, GPU acceleration may only be useful for certain computa-

tions (e.g. matrix operations). Moreover, the portability may be limited to certain

hardware types, if hardware-specific tools such as CUDA are used instead of cross-

platform tools (such as OpenCL). Furthermore GPU computing is not always useful

as not every computer cluster is equipped with graphic cards. For a program that

is primarily designed to be used on a normal desktop machine, this approach may

be quite useful (as personal computers normally consist of a GPU). ThunderSVM

is an GPU accelerated SVM implementation which is over 100 times faster than

libSVM according to the authors with Python bindings available. (Wen et al., 2018)

To further improve the performance of the PICA-to-go pipeline, exchanging PICA

with a modified PICA version that uses ThunderSVM could be considered.

4 Methods

4.1 Definition of the task

The following business rules have been extracted as requirements for PICA-to-go:

• PICA-to-go should be able to train machine learning models (training mode)

• Besides the training mode, there should be a phenotype prediction mode using

models that have been trained before

• It should be able to perform all calculations on a modern desktop machine (no

computer cluster needed)

• The program should work on most major Linux distributions

• The program should accept protein files as well as nucleotide files

• Clusters of sequences used as machine learning feature should be comprehen-

sible by the user
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• The program should be able to deliver as good predictions as the existing

pipeline when used with the same training data

4.2 Workflow to find a replacement for HMMER/eggNOG

Overcoming the bottleneck of using HMMER/eggNOG would require clustering

all sequences in the training-data with each other and thereby generating a small

database of clusters, instead of mapping them to an existing, universal database.

Certain tools exist for clustering sequences by identifying homologous relationships

(see Introduction/Orthologous groups). Furthermore, for the predict mode of PICA-

to-go, it is necessary to find a method to cluster new sequences to an existing clus-

tering database (that has been generated in the PICA-to-go train mode).

To select a suitable tool to use for PICA-to-go, three requirements have to be

met: (1) The tool has to run on a desktop machine with a suitable runtime (it should

be possible to train most of our models in less than 8 hours). (2) Furthermore, the

clusterings should be comprehensible. (3) A method has to be found for clustering

new sequences to an existing clustering database.

To test if these requirements are met by any existing tool, the following procedure

was considered: (1) My personal computer (Acer Aspire E15 E5-571G-50K9) will be

used as a reference for all speed testing, as its hardware performance (8GB RAM, 4

Cores) may be a good representation of an ordinary personal computer. (2) At first a

small set of translated genomes will be used to determine the runtime of the program.

(3) A suitable regression model will be applied to get a runtime estimation when used

with a larger set of translated genomes. This may only be a rough estimation with

limited meaningfulness. (4) If the runtime estimation is roughly within the limit

for 200 bins, the translated genomes of the PEN_180 model, which were also used

for PhenDB, will be clustered. (5) To test if these clusterings are comprehensible,

they are used as input for PICA crossvalidate. The mean balanced accuracy of

the output is then compared to the mean balanced accuracy in the existing pipeline

(HMMER/eggNOG) that was used for PhenDB. (6) It is necessary to find a method
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to map new sequences to an existing database (if the tool itself does not provide

such a method) (7) The steps 4 and 5 are repeated with all other models used in

PhenDB. (8) For selected models, the clusters of the used clustering tool are directly

compared with the clusters of eggNOG/HMMER (genomes with the same eggNOG

id form a cluster).

OrthoFinder, MMSeqs2/linclust and MMSeqs2/cluster were evaluated with this

procedure and finally MMSeqs2/cluster and MMSeqs2/linclust were chosen to be

used in the pipeline.

4.3 The existing pipeline

The PICA pipeline uses HMMER to map certain genes to the eggNOG database.

The pipeline returns the best hit (best e-value) if the e-value is below a threshold

of 0.05. Eventually, a crossvalidation is performed using PICA crossvalidate.py and

the model is trained using PICA train.py.

4.4 The PICA-to-go pipeline

PICA-to-go offers two different modes: train and predict depending if a model is

trained or an existing model is used to perform predictions on bins. The PICA-to-go

pipeline consists of three major components: Gene finding, gene clustering and the

training/prediction module. All these functions are covered by external components

(Prodigal, MMSeqs2/cluster or MMSeqs2/linclust and PICA). These components

are called from the PICA-to-go pipeline written in Java 8 providing a user friendly

interface and some additional minor components. Moreover, it acts as a compatibil-

ity layer between these components as the required output and input format differs

between these components and may require extensive parsing. Additional minor

components include (1) file sanity checking (including detection if a file is a pro-

tein or a nucleotide file), (2) generating a json file (gene_clusters.json) containing

the id of the reference genome as key and all gene clusters as value (seperated by

whitespace). Furthermore, (3) a filtering module named LinearFiltering is provided
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that performs feature reduction based on cluster size. The feature ranking module

(4) provides the option to give certain features (=clusters) a meaningful annotation.

Besides this minor features mentioned, basic functionality such as the management

of temporary files, logging, useful error messages, a debug option and similar features

are provided through the PICA-to-go pipeline.

4.4.1 Implementation of PICA-to-go

Java 8 (openjdk) was used for implementing the PICA-to-go pipeline. Further-

more the following external Java libraries were used Apache Commons Lang3 3.0,

Apache Commons IO 2.5, Apache Commons CLI 1.4, Apache Commons Math3 3.6,

Google Guava 25, Google Gson 2.8.2, Biojava-ws 4.2.11 and MapDB 3.0.7. As build

management tool, Maven 3.5.1 is used. All necessary stand-alone tools (Prodigal,

MMSeqs2, PICA) are distributed with PICA-to-go. The integration of these tools

is done using the internal ProcessBuilder class in Java. Calling external stand-alone

programs is generally avoided when there is another solution (e.g. library) available

as this might be a possible source of errors. In a few cases, however, awk and similar

standard UNIX tools were called directly in Java as some of these programs provided

simple solutions for problems that required a complex instructions in Java instead.

The program is started with a run script written in bash that checks if all dependen-

cies that are not directly shipped with the program are available at the system (e.g.

Java version 8 or higher, Python 2, basic UNIX tools). Furthermore, it chooses a

suitable MMSeqs2 binary as there are two different binaries available depending on

the hardware architecture. The user can either chose to download distribution con-

sisting of the bash script, a jar file containing PICA-to-go and all used Java libraries

and all needed stand-alone tools (Prodigal, MMSeqs2, PICA) or the user can decide

to use a provided Singularity container. As PICA-to-go is free software (GPL 3), the

user can also download the source code and build the jar file himself using Maven.

The program is available under: https://github.com/FloFlo93/PICA-to-go
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4.4.2 Version/changes of used programs

PICA The develop branch of the PICA repository of CUBE was cloned (commit

8a9c8c9). PICA crossvalidate.py was extended with an additional command line

option that allows to write the summary statistic to a file. In the class Classifica-

tionResults, the "Probability" was changed to "Prediction Confidence". This name

is used as a column name in the results of PICA test.py, describing the confidence

of a classification (using Platt scaling). As this is not a probability in a statistical

sense, the name was changed. This is consistent with the PhenDB project, which

also uses the term "Prediction Confidence" for the result of Platt scaling instead of

"Probability". All changes were submitted to the PICA repository owned by CUBE

as pull requests and have been accepted.

MMSeqs2 PICA-to-go is shipped with version 2-23394 of MMSeqs2 (released on

5th of March 2018).

Prodigal The version 2.6.3 of Prodigal was used. A static flag was added to the

make-file in order to gain a portable binary that is shipped with PICA-to-go. The

binary was compiled on Fedora 27 using GCC version 7.3.1.

4.4.3 Parameters

Prodigal is called with the default parameters, except if a different translation ta-

ble (default: 11) is specified in the command-line options of PICA-to-go. PICA

train.py and crossvalidate.py are used with the default options. This means that

support vector machines are used as a machine learning algorithm using a linear

kernel (with a C parameter of 5). All parameters can be changed in the config file,

which allows to add parameters to PICA train.py, PICA test.py and PICA cross-

validate.py. This should, however, be used with caution. For MMSeqs2/linclust

and MMSeqs2/cluster, the default values for the e-value cutoff (0.001) and the min-

imal coverage (0.8) are used. For the minimal sequence id, a value of 0.0 is used

for both tools (which is the default value for MMSeqs2/cluster, but not for MM-
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Seqs2/linclust). Every single cut-off can be changed individually in the config file.

As for the PICA tools test, train and crossvalidate, adding additional parameters

is also possible for MMSeqs2/cluster and MMSeqs2/linclust. Currently, it is not

possible for svmFeatureFanking.py and Prodigal to add additional command-line

options. Moreover, the config file allows to set a maximal heap size for Java and

allows to add additional arguments to the Java virtual machine. Per default, this is

set to 6GB, which was sufficient to train all models (except ARCHAEA). As the real

size for the Java process was considerably smaller in the training of the majority of

the models, it might be possible to set a lower value.

4.4.4 Provided functionality and inputs/outputs

PICA-to-go train: required parameters For each training, a directory has to

be provided containing all bins to be used for the training. All bins must be provided

as flat files and in the fasta format. Furthermore, gzipped files (but not compressed

directories) are supported. The files can be provided as nucleotides or proteins.

PICA-to-go can automatically distinguish between these two file types based on the

used alphabet in the file. Mixing both types is also allowed (e.g. provide some

protein files and some nucleotide files in the directory). A gene prediction is then

performed on all files that are considered to be nucleotide files. Any suffix can

be chosen for the files as the processing is independent of the suffix. Unknown

characters in each fasta file are automatically converted to ’X’ or ’N’. A phenotype

file has to be provided for the training. This is a tab separated file. The first line

contains the names of the phenotypes to be examined. All the other lines contain

an identifier for each bin in the first column and a YES/NO classification in the

following columns depending if this bin has a certain phenotype or not.
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Figure 15: Example of a phenotype file

Furthermore, the name of the phenotype to be trained has to be specified (as a

phenotype file might contain information about more than a single phenotype) and

an output folder for all results has to be stated.

PICA-to-go train: additional parameters Moreover, the number of threads

can be specified (per default number of threads = number of cores) as well as a

temporary directory (per default temporary files are written to /tmp/ and deleted

after the program terminates). The latter option may be useful for large models and

limited RAM, as the /tmp/ folder is often situated in RAM per default and a high

amount of files written to /tmp/ may therefore lead to a high RAM usage.

The program furthermore provides a debugging option that prints the stacktrace

to stderr in case an exception occurs and it prevents the deletion of the tempo-

rary folder as useful information such as log files for each external tool is stored

in the temporary folder together with needed flat files itself that are required dur-

ing different stages of the program and may be corrupted in case of an exception.

Per default PICA-to-go uses MMSeqs2/cluster with default settings (cut-offs for

clustering: e-value 0.001, coverage:0.8, minimal sequence identity 0.0). Addition-

ally, MMSeqs2/linclust is supported, which does not use cascaded clustering and is

therefore faster but less accurate (see Introduction section).

MMSeqs2/linclust is called with the same cut-offs as MMSeqs2/cluster. These

options are not identical to the default options of MMSeqs2/linclust (which uses an

minimal sequence identity cut-off of 0.9 instead of 0.0; see Introduction section). All
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these options can be changed in a config file, which also allows to add additional

options to each program.

PICA-to-go also allows to specify a translation table for gene prediction (per

default 11 is used).

The program offers an additional feature reduction step that is able to provide

more accurate models at the cost of a longer runtime (see 4.5).

Moreover, the program allows specifying a list of annotated genomes (default:

all genomes are considered to be annotated) for the feature ranking step (see 4.6)

or allows performing a remote blast on the NCBI server for a few top features.

PICA-to-go train: output The program outputs a zipped folder named "MOD-

ELNAME.picamodel". This zipped folder is not intended to be read by humans, but

is needed when a prediction is performed using this model. The same is true for an-

other zipped folder named "database.mmseqs". In the prediction mode the database

files are needed to perform a clusterupdate with new sequences (the bins that are

to be predicted). Information about the model’s accuracy are provided in a json file

(pica-crossvalidation-no-filtering.json). If a feature reduction has been performed,

an additional file is present stating the "new accuracy" (pica-crossvalidation.json).

In this case all output files only refer to the "feature reduced" model, except for the

pica-crossvalidation-no-filtering.json file that is included stating the original accu-

racy without any feature reduction. This is intended to give the user an idea how

much the accuracy is improved by the feature reduction step. Furthermore, a json file

(gene_clusters.json) is provided that contains information about all gene clusters.

The representative sequence of each cluster is used as key, while the value contains

all genes of this cluster (using the internal gene names, see 4.4.5). Furthermore two

tab separated files are provided containing a feature ranking that corresponds to the

model. This provides valuable information which gene clusters are most relevant for

the prediction. While "MODELNAME.rank.raw.tsv" is the raw output of the corre-

sponding PICA tool (svmFeatureRanking.py), "MODELNAME.rank.annotated.tsv

introduces an additional column that contains an annotation for a sequence in the
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cluster (see section 4.6).

PICA-to-go predict: required parameters PICA-to-go predict requires the

PICA-model as well as the clustering database. Both files are provided as out-

put of the PICA-to-go training ("MODELNAME.picamodel", "database.mmseqs").

Furthermore, the name of the phenotype to predict has to be added. Moreover, a

directory containing the bins to predict has to be provided. As for the train mode,

the directory can contain nucleotide files as well as protein files.

PICA-to-go predict: additional parameters Similar to PICA-to-go train, it

is possible to specify a directory for temporary files, the number of threads or a

translation table. The program also consists of a debug option.

PICA-to-go predict output The output consists of a gene_clusters.json file like

PICA-to-go train, but includes the genes from the bins to be predicted. Furthermore,

the prediction itself is delivered in a tab separated file named outputPica.txt. It

states a YES/NO prediction on each bin and includes a confidence value (Platt

scaling, see Introduction section) between 0 and 1 for each prediction.

4.4.5 Internal gene names

In the PICA-to-go pipeline each gene has to be uniquely identifiable. Furthermore,

it should be possible to track each gene name to a certain bin and to a fasta header

easily. The internal naming therefore relies on a combination of the bin name (name

of the fasta file in the input directory without the suffices fasta, faa, fna and fa)

and of the fasta header. For the fasta header only the identifier is considered (the

first part of the header before any whitespace). The bin name and the identifier are

combined by ^_.
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4.5 Feature reduction

It is well known that a high number of irrelevant features is able to decrease the

accuracy of a model, especially if the number of samples is low (Hua et al., 2005).

However, determining which gene clusters are relevant or irrelevant for a model is

not trivial. The general idea behind the feature reduction step is that small clusters

consisting of few genes may be not as relevant as larger cluster. To find an optimal

cut-off regarding the cluster size, an exhaustive search is performed. Based on the

maximal cluster size, 100 + 1 equal spaced cut-offs are used. For example if the

maximal cluster size is 1000, the corresponding cut-offs will be 0,10,20,...,1000. For

each cut-off a 5-fold crossvalidation (with 10 replicates) will be performed. The

cut-off with the highest mean balanced accuracy is then used. While this kind of

feature reduction (here named LinearFiltering) is available for PICA-to-go, it is not

done per default, due to the fact that it may drastically increase the runtime of large

models and it does not always lead to considerably better results (see result section).

As a single crossvalidation already needs 50 PICA trainings to be performed, 100

crossvalidation will need 5000 PICA trainings.

4.6 Annotation of features in the feature ranking

As mentioned before, a file containing the importance of each feature (gene cluster)

for the prediction is outputted by PICA-to-go train. The purpose of this file is to

make the prediction more comprehensible. Furthermore, it allows identifying genes,

associated with a phenotype, that have not been associated with this phenotype

before. Each gene cluster is, however, named by its representative sequence in

PICA-to-go (e.g. 196164^_WP_006768639.1). This is a disadvantage compared to

the existing PICA training pipeline that outputs an eggNOG id, which may be more

useful than the name of a representative sequence as the eggNOG database provides

a functional annotation for each eggNOG id. To overcome this disadvantage, the

user can specify a list of fully annotated genomes in PICA-to-go train. If a gene

of a cluster originates from a fully annotated genome that was specified before,
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the corresponding annotation is used. If no annotated genomes are specified, it is

assumed that all genomes are annotated and the fasta header of the representative

sequence is used as annotation. In case no annotation is available, there is the option

of performing a remote blast on the protein sequence of the representative sequence.

This is done by using the NCBI remote service that Bio-Java provides. Per default

this is limited to the top ten features, but it is possible to manually change this

limit.

4.7 The PICA models

All used models are part of the PhenDB-project and can be downloaded from

phendb.org (phendb.org/reports/modeloverview). The training data consists

of the original PICA publication by MacDonald and co-workers (MacDonald and

Beiko, 2010); moreover additional data and models were added in a manual process.

As the trainings data is updated constantly and all models are retrained with the

newest version of this data, the data used in my project (and provided via the link

above) may not be identical with the latest models used in PhenDB. The AEROBE,

ANAEROBE, SPORE, GRAMNEGATIVE and MOTILE models were recently su-

perseded with trainings data from text mining in PhenDB. This data was not used

in PICA-to-go, but the old models. In order make all the results reproducible, all

the raw data, including a list of training data used for each model, are available in

the official Github Repository of PICA-to-go.
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Model name Model description training date
alkb Organism is capable of degrading alkanes 2018/05/08
ars Organism is capable of arsenic detoxification 2018/05/08
avre Organism is a plant pathogen (based on AvrE virulence factor) 2018/05/08
baicd Organism is capable of producing secondary bile acids 2018/05/08
bena Organism is capable of degrading benzoate via hydroxylation 2018/05/08
bpp Organism is capable of hydrolyzing phytate 2018/05/08
bsh Organism is capable of deconjugating glycine and taurine from bile salts 2018/05/08
buk2 Organism is capable of producing butyrate 2018/05/08
chb Organism is capable of degrading chitine 2018/05/08
cnta Organism is capable of aromatic ring hydroxylation 2018/05/08
coos Organism is capable of assimilating CO 2018/05/08
cutc Organism is capable of producing trimethylamine via choline 2018/05/08
dbfa4 Organism is capable of performing dibenzofuran degradation 2018/05/08
hsdh Organism is capable of degrading bile acids 2018/05/08
hyda Organism is capable of producing H2 gas 2018/05/08
naph2 Organism is capable of degrading naphtalene 2018/05/08
nif Organism is capable of fixing N2 2018/05/08
p450 Organism is capable of degrading fatty acids 2018/05/08
phnx Organism is capable of hydrolyzing phosphonate 2018/05/08
phod Organism is capable of recycling organic phosphorus 2018/05/08
psa Organism is capable of synthesizing capsular polysaccharide 2018/05/08
soxb Organism is capable of oxidizing thiosulfate 2018/05/08
txta Organism is a plant pathogen (based on thaxtomin synthesis capability) 2018/05/08
urea Organism is capable of degrading urea 2018/05/08
xen Organism is capable of reducing various alpha,beta-unsaturated and nitro compounds 2018/05/08
AEROBE Organism requires oxygen to grow (obligant aerobe) 2018/04/05
ANAEROBE Organism requires the absence of oxygen to grow (obligant anaerobe) 2018/04/10
AOB Organism is part of the clade of ammonia-oxidizing bacteria 2018/04/10
ARCHAEA Organism is an archaeon 2018/05/14
AUTO Organism is capable of growth with CO2 as sole carbon source 2018/05/14
FACULTATIVE Organism is a facultative anaerobe 2018/04/10
GRAMNEGATIVE Organism is gram negative 2018/04/10
HALO Organism has a halophilic lifestyle 2018/04/10
METHANOTROPH Organism is capable of growth with methane as the sole carbon source 2018/04/06
MOTILE Organism is capable of self-propelled motio 2018/04/10
PEN_180 Organism is resistant to penicillin 2018/05/08
PHOTO Organism is capable of photon capture for energy acquisition 2018/04/10
PSYCHRO Organism has a psychrophilic lifestyle 2018/04/10
SPORE Organism is capable of producing endospores for persistence 2018/04/06
SYMBIONT Organism has an obligate intracellular lifestyle 2018/05/08
T3SS Organism expresses a Type III secretion system 2018/04/10
T4SS Organism expresses a Type IV secretion system 2018/04/10
T6SS Organism expresses a Type VI secretion system 2018/04/10
THERM Organism has a thermophilic lifestyle 2018/04/10
THERM_OR_TOLERANT Organism has a thermophilic lifestyle or is thermotolerant 2018/04/10

Table 11: Description of all used models

4.8 Cluster-Comparison

As specified before, it is necessary to evaluate some selected models in more detail (if

there is a major difference in the mean balanced accuracy compared to the existing

pipeline). As the main difference between the existing pipeline and PICA-to-go is the

usage of a different gene clustering tool, it may be useful to compare the outcomes of

the clusterings to the clustering outcome of the existing pipeline (see Introduction

section). As cluster comparison methods using pair counting (e.g. Rand Index)

are computationally unfeasible considering the size of points and the computational

complexity, set matching algorithms are chosen instead. In contrast to other set

matching algorithms, the Van Dongen measure (VD) is symmetric (VD(clusterset1,

clusterset2) = VD(clusterset2, clusterset1)) (S. Wagner and D. Wagner, 2007). Ev-

ery cluster of clustering A is compared to every cluster in clustering B. For every

cluster in clustering A only the maximal intersection to a cluster in clustering B

is considered and summed up. Then the procedure is repeated comparing every
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cluster of clustering B is compared to every cluster in clustering A. Both values are

then summed up and the sum is substracted from 2n with n being the number of

all items. So, the VD index returns a value between 0 and 2n (0 = identical clus-

terings). Normalization of the VD index is described in the literature (Rezaei et al.,

2016) dividing the index by 2n, which leads to a value between 0 and 1, however

a value of 0 would point to an identical clustering. As this is counterintuitive as a

value of 1 indicates an identical clustering in most other indices (e.g. Rand index),

the VD index was normalized using to return 1 for an identical clustering. To avoid

any confusion, I chose to call this index reverse Normalized Van Dongen measure

(rNVD).

V D = 2n−
∑K

i=1
maxK′

j=1Intersectionij +
∑K′

j=1
maxK

i=1Intersectionij

rNV D =

∑K

i=1
maxK′

j=1Intersectionij +
∑K′

j=1
maxK

i=1Intersectionij

2n

Furthermore the asymmetric Meila-Heckerman index (MH) (Meila, 2007) for

both cases (clusterset1 vs. clusterset2 and clusterset2 vs. clusterset1) is additionally

used for the comparison of clusterings. The MH is closely related to the rNVD, as

the arithmetic mean of the MH for both cases (clusterset1 vs. clusterset2, clusterset2

vs. clusterset1) leads to the rNVD.

MH =

∑K

i=1
maxK′

j=1Intersectionij

n

A tool using the orthogroups.json output of PICA-to-go as input was imple-

mented to calculate the rNVD index as well as the MH index. To get a maximal per-

formance, the tool was implemented in C++ using OpenMP for parallelism, which is

typically used in high performance computing. Parallelism using multiple cores was

achieved by parallelizing the outermost for loop in the algorithm. Furthermore SIMD

parallelization is used for the calculation of the maximum intersection, which allows

to perform a single instruction with multiple data in parallel on a single core. This is

explicitly requested using OpenMP. Furthermore, the whole program was compiled
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with gcc using the "-O3" flag, which optimizes the code for speed, including vector-

izing instructions and running them using SIMD. The intersection itself is calculated

by the C++ instruction std::set_intersection (which uses a sorted vector as data-

structure). The tool is licensed under LGPLv3 license and the source code as well

as an install script is available under [https://github.com/FloFlo93/rNVD].The

program has been tested on CentOS 7.5 and on Fedora 27.

4.9 Statistical evaluation

For each model, a 5-fold crossvalidation with 10 replicates is performed using cross-

validate.py. The balanced accuracy of each model is then compared instead of using

the raw accuracy. This is done due to the fact that the raw accuracy can be biased

in case the YES/NO labels are not balanced for the model. On the other hand, the

balanced accuracy considers both labels to an equal degree. PICA crossvalidate.py

further returns the standard deviation of each model. This information is then used

to perform significance tests. All significance tests were calculated in Java using the

Apache Math3 library. The tTest method of the class TTest was used, performing

a two-sample, two-tailed t-test with unequal variances (Welch test). All models

with significant differences between different methods (e.g. HMMER/eggNOG vs.

MMSeqs2/cluster) were further evaluated in order to gain information about the

magnitude of this effect. For this task, Cohen’s d was used together with the raw

differences between the means.

Cohen′s d =
µ1 − µ2

σ
, σ =

√
(σ2

1 + σ2
2)/2

4.10 Raw data

For each model, a MODELNAME.training.txt file is provided, which consists of

the taxon id, the assembly id or a similar identifier. Furthermore, for every tested

method (existing pipeline using HMMER/eggNOG, MMSeqs2/cluster, MMSeqs2/linclust,

MMSeqs2/linclust-msi0), a crossvalidation-file is provided. No database-, picamodel
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or fasta files of the training data are provided.
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