

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

A penalty-based edge-assembly memetic

algorithm for the vehicle routing problem with

synchronization constraints in city logistics

verfasst von / submitted by

Kseniya Titova

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2018 / Vienna 2018

Studienkennzahl lt. Studienblatt /

degree programme code as it appears on

the student record sheet:

A 066 914

Studienrichtung lt. Studienblatt /
degree programme as it appears on

the student record sheet:

Masterstudium Internationale Betriebswirtschaft

Betreut von / Supervisor:

Univ.-Prof. Mag. Dr. Karl Franz Dörner, Privat.doz.

ii

iii

Abstract

A penalty-based edge-assembly memetic algorithm for the vehicle routing problem with synchroniza-

tion constraints in city logistics

In this thesis, a metaheuristic approach to solve a vehicle routing problem with synchroniza-

tion constraints (VRPSC) in city logistics is presented. The algorithm generates solutions that

represent decisions for goods deliveries in city centers and shopping streets whereas traffic

conditions and infrastructure put time and place limits for delivery processes. The data set

includes a pool of customers that receive deliveries from several carriers. The attempt to syn-

chronize these deliveries shall decrease waiting times of customers between deliveries pre-

serving better timing. First, literature review is presented on the VRP in city logistics with

focus on synchronization. Second, we describe our algorithm with solutions to the VRPSC

formulated by (Sarasola & Doerner, 2018). Most of the components of the algorithm stem

from a penalty-based edge assembly memetic algorithm for the VRP with time windows pro-

posed by (Nagata, Bräysy, & Dullaert, 2010). Experiments for parameters setting and solu-

tions for two groups of instances generated on real-life data in the city of Linz, Austria, are

presented in the last chapter.

iv

v

Acknowledgements

I would not have been able to get to the point I am now and to write this thesis without the

support of several individuals who I would like to explicitly thank.

First, I would like to thank the department of Production and Operations Management with

International Focus and especially Prof. Karl Dörner for giving me the opportunity to write

my thesis at his chair. Moreover, I would like to thank him for his valuable input and support

throughout my writing of the thesis.

Secondly, I would like to express my gratitude to Briseida Sarasola for her support. Without

her valuable contributions, guidance and encouragements I would not have been able to write

my thesis to this extent. I would like to thank her for her support and patience. Whenever I

encountered a problem, she always had an open ear and mind for me.

Additionally, I would like to thank Prof. Karl Dörner, Prof. Richart Hartl, Briseida Sarasola

and Thibaut Barthélemy for introducing me to the topic. Their motivating lectures have light-

ed my interest and inspiration to write my thesis in this field.

Finally, I want to thank my parents, family and friends for their continuous support not only

during the writing of my thesis but throughout my ent ire studies. They were always at my

side and had an open ear and mind whenever I required their assistance or guidance.

vi

vii

Contents

ABSTRACT... III

ACKNOWLEDGEMENTS ... V

CONTENTS.. VII

LIST OF FIGURES .. IX

LIST OF TABLES ... XI

LIST OF ABBREVIATIONS ... XIII

1. INTRODUCTION.. 1

2. LITERATURE REVIEW ... 4

2.1. THE VEHICLE ROUTING PROBLEM IN CITY LOGISTICS 4

2.2. SYNCHRONIZATION CONSTRAINTS ... 7

2.3. GENETIC ALGORITHMS .. 9

3. PROBLEM DESCRIPTION ..10

4. SOLUTION METHOD ...12

4.1. SELF-IMPOSED TIME WINDOWS ...14

4.2. CONSTRUCTION HEURISTIC ...15

4.3. MEMETIC ALGORITHM ..20

4.3.1. CROSS-OVER OPERATOR ...20

viii

4.3.2. REPAIR PROCEDURE ..21

4.3.3. LOCAL SEARCH PROCEDURE ...23

5. COMPUTATIONAL RESULTS ...25

5.1. PARAMETERS SETTING..26

5.2. RESULTS OF THE EAMA...32

6. CONCLUSION...36

A. APPENDIX ..38

B. APPENDIX ..41

C. APPENDIX ..47

D. APPENDIX ..55

E. APPENDIX ..57

BIBLIOGRAPHY ...60

DEUTSCHE ZUSAMMENFASSUNG ..63

ix

List of Figures

Figure 2.2.1: Independence of routes in the VRP ... 7

Figure 2.2.2: Interdependence of routes in the VRP ... 8

Figure 4.1: EAMA components..12

Figure 4.2.1: Merging two tours based on savings ...16

Figure 4.3.3.1: LS algorithm ..23

Figure 5.1.1: Comparison of the SA and approx. minimum of routes 27

Figure 5.1.2: Comparison of quantity of routes of GRASP and SA solutions 28

Figure 5.1.3: Best GRASP solutions in respect to RCL size ..29

Figure 5.2.1: Improvement in the memetic phase ..35

Figure 4.2.2: Solution representation ..38

Figure 4.2.3: Initial routes ..39

Figure 4.2.4: Deliveries records..39

Figure 4.2.5: Self-imposed time windows ...40

x

xi

List of Tables

Table 4.2.1: Algorithm type in respect to 𝛼 value..17

Table 5.1.1: Solution costs by different RCL ratio values for an instance with 150 orders28

Table 5.1.2: Quantity of routes and CPU times for solutions with different ɑ values.............30

Table 5.1.3: Parameters for the EAMA...31

Table 5.2.1: EAMA results for instances 0 to 19 - time limit 10 minutes - Iterative LS32

Table 5.2.2: EAMA results for instances 0 to 19 - time limit 10 minutes - Random LS.........33

Table A.1: Code representation and implementation details...40

Table E.1: GRASP results for small instances 5 to 15 orders ...57

Table E.2: Values of a in the best GRASP solutions for small instances 5 to 15 orders57

Table E.3: Comparison of GRASP with Solomon I1, ALNS and CPLEX for small instances 5

to 15 orders ...58

Table E.4: Comparison of the EAMA with ALNS and CPLEX for small instances 5 to 15

orders ..59

xii

xiii

List of Abbreviations

EAMA Edge-Assembly Memetic Algorithm

EAX Edge-Assembly Crossover

GA Genetic Algorithm

GRASP Greedy Randomized Adaptive Search Procedure

LS Local Search

MA Memetic Algorithm

RCL Restricted Candidate List

SA Savings Algorithm

TSP Traveling Salesman Problem

VRP Vehicle Routing Problem

VRPSC Vehicle Routing Problem with Synchronization Constraints

xiv

1. Introduction

“Continuous effort – not strength or intelligence – is the key to unlocking our potential.”

– Winston Churchill

Transportation solutions in city logistics are subject to the interests of many actors such as

carriers, local enterprises, public administrators and citizens. In recent years, the routing

problems in city logistics have gained much interest in literature as a vivid , real-life problem.

On the one hand, fast growing cities and urbanization processes contribute much into eco-

nomic growth and community wealth; on the other hand, they introduce new issues to con-

cern under conditions of limited resources. A frequently used literature definition of “city

logistic” was given by (Taniguchi & Thompson, 2002) and is: “the process of totally optimiz-

ing urban logistics activities by considering the social, economic, and environmental impact

of urban freight movement and it provides an opportunity for the development of innovative

solutions that allow to improve the quality of life in urban areas.”

According to (Kauf, 2016; Rad & Gülmez, 2017; Taniguchi & Van Der Heijden, 2000) logis-

tics systems are crucial elements in sustainable development of a city. There is continuous

need for choosing improvement strategies, therefore, we would like to describe main trends

that come from literature and real-life examples concerning city logistics conceptual devel-

opment and the role of vehicle routing solutions in this framework.

Due to increasing number of population in urban areas and the rapid growth of big cities

nowadays, city logistics systems are gaining more and more influence on business processes

(Cattaruzza, Absi, Feillet, & González-Feliu, 2017; Doerner, Huisman, & Suhl, 2014). It is

emphasized by Cattaruzza et al. that transportation systems contribute to the gross domestic

product not only by services they provide, but also by employment networks. (Macharis &

Melo, 2011) specifies three dimensions of city sustainability: environmental, social and eco-

nomic. Also, changes in these dimensions have considerable impact on urban prosperity,

quality of life and competitiveness of regional industries. All three dimensions have found

their reflections in operations research. (Rad & Gülmez, 2017) investigated how logistics

2

influences these dimensions and concluded that logistic systems have a huge impact on de-

velopment of local enterprises and quality of life in the city. In addition, a “Logistic Perfor-

mance Index” was proposed by World Bank (Rad & Gülmez, 2017). Moreover, each of these

three dimensions represents a fundament for many problem formulations to be solved by me-

taheuristics (Doerner et al. , 2014). Thereafter, a broad class of problems called Vehicle Rout-

ing Problems (VRPs) considers finding smart solutions for sustainable development of logis-

tics in urban area. Also Green Vehicle Routing Problems deal with air pollution and other

environmental problems; the class of Vehicle Scheduling Problems serves for optimizations

in public transport systems and numerous other VRP formulations confirm the need for opti-

mization in urban goods transportation processes (Laporte, Ropke, & Vidal, 2014; Mancini,

2013).

There are numerous examples that are described in the literature showing that many city lo-

gistics actors put their efforts into finding smart solutions for their city logistics systems.

Thus, (Taniguchi & Van Der Heijden, 2000) name several city logistics initiatives in this

field and cooperative freight transport systems are among them. Moreover, they mentioned a

real-life example of outstanding results achieved by cooperation of concurrent carriers in

Kassel, Germany. This cooperation results in remarkable reduction of the quantity of trucks

in the downtown and reduces transportation costs. The prerequisite for the successful out-

come is a neutral carrier which collects the goods from all depots of concurrent companies

and delivers them to the stores in the city center. Therefore, high level of trust between all

actors in this system is mandatory.

Unfortunately, lack of trust and many other circumstances may provoke problems in estab-

lishment of such cooperative systems. The most common reason is that supplier companies

affirm that they lose their privacy in terms of commercial data sharing with others or they

simply struggle to keep a direct connection with their customers (stores). Therefore, the

above-mentioned example of cooperative systems cannot be adapted under these circum-

stances. If no smart solution is sought after (no consolidation or synchronization achieved),

all delivery processes result in suboptimal distribution of deliveries at each customer point

during the day. Lack of optimality is explained such that: a) several concurrent supplier vehi-

cles shall compete for the limited parking space to deliver their goods; b) customer shops

must wait between deliveries. If there are longer waiting times between deliveries at one dock

(customer node), it is complicated to handle the unloading of goods efficiently; especially if

delivery arrives in un-predefined time, as the person who is responsible for the unloading of

3

goods may be preoccupied with other tasks. Consequently, carrier companies have higher

drivers’ costs which stem from longer time on a route; and customer shops have to deal with

irregular and undefined times of deliveries which may affect efficiency of sales. To find a

good solution for this problem, a number of attempts to synchronize deliveries of concurrent

companies can be found in the literature (Sarasola & Doerner, 2018).

In this thesis we present solutions that accord with synchronization framework particularly.

In Section 2 a literature review on the problem and the algorithm are presented. After prob-

lem description in Section 33. We present our algorithm in detail in Section 44. Our computa-

tional results are presented in Section 55. Finally, conclusions are discussed in Section 6.

4

2. Literature Review

2.1. The Vehicle Routing Problem in City Logistics

The VRP is one of the most studied logistics problems. The VRP is usually described as an

extension of the Traveling Salesman Problem (TSP). The TSP minimize the Hamiltonian to

serve deliveries from one depot to several customers where each customer must be visited

only once. The VRP is similar to the TSP with the difference that the number of vehicles,

which start and arrive to the same depot, is more than one. The broad class of the VRP and its

variants is proved to be NP-hard problems; therefore, the exact algorithms cannot be imple-

mented for the bigger instances which are usually suited to real life. Hence, sophisticated

heuristics and metaheuristics are commonly used for trying to find solutions to such problems

with good quality and reasonable time (Polacek, Hartl, Doerner, & Reimann, 2004).

The most extensively examined variant of these two problems is when restrictions are set on

vehicles’ capacities. The fleet of vehicles can be either homogenous (equal capacities for all

vehicles) or heterogenous. Since we mentioned that the VRP may include several depots,

some variations of the routing problem stem from this condition. For example, a multi-depot

VRP problem assumes that each vehicle can start from any depot and can return to any other

depot at the end of the route (Polacek et al., 2004). In the VRPs distances can be symmetric

and asymmetric (Laporte et al., 2014). Euclidean TSP and VRP problem assumes that the

distance between each pair of nodes is the same with no re lation to direction. Non-Euclidean

distances are often addressed as asymmetric, meaning that the associated costs for distances

between two nodes differ in relation to such conditions as direction, time of the day, truck

load, etc. It was emphasized by (Glover, Gutin, Yeo, & Zverovich, 2001) that greedy con-

struction heuristics perform worse on asymmetric graph than on symmetric. They developed

a heuristic which performs better for non-Euclidean problem in comparison to commonly

used insertion heuristics. In regard to the fact that definition of the objective costs is not

eventless and the routing problems address a wide range of environments to work in, travel

costs between pair of nodes may also change in response to congestion times or fuel con-

sumption due to geographic landscape or car engine (Laporte et al. , 2014). An example of an

asymmetric graph conditions is the class of time-dependent VRPs where congestion times

shall be respected. Real-life conditions also set another range of constraints referred to time.

A broad class of VRP is adopted for solving routing problems with time windows. A time

5

window is a period of time when the service shall be provided. Time window constraints may

differ depending on type of the problem (Laporte et al., 2014).

In context of city logistics, according to (Cattaruzza et al. , 2017) the VRP modeling frame-

work is applicable for a big number of urban transportation processes such as: market and

shopping centers distribution, parcel and post deliveries, construction works and public

transport, waste collection (Buhrkal, Larsen, & Ropke, 2012; V. Hemmelmayr, Doerner,

Hartl, & Rath, 2013), street services and many others. Therefore, city environment and logis-

tics systems form a complex system of processes where the city has an impact on logistics

actors and logistics actors influence the city environment in return.

Influence can be both positive and negative. Since the positive way of how logistics systems

in urban areas contribute to development of a city has are already been mentioned, next we

would like to now pay attention to the negative outcomes which arise when logistics system

function within a city. (V. C. Hemmelmayr, Cordeau, & Crainic, 2012) indicate such nega-

tive influence factors of poor planning of logistics systems on the city environment as: con-

gestions, air and noise pollution and unmet customer demands due to late deliveries.

The city environment has also its art how it may hinder urban logistics systems to some ex-

tension: streets infrastructure poorly adapted for augmenting traffic flows, improperly

planned urban area infrastructures, traffic restriction due to construction works and uncon-

trolled relinking of traffic flows in these areas. Limitations in space and parking possibilities

are especially prevalent in the downtown areas. Sometimes strict measures are implemented

in order to reduce the negative impacts of excessive presence of vehicles in the cities

(Cattaruzza et al., 2017).

The current situation can be described as follows : whilst carriers, on the one hand, are look-

ing for solutions which lead to reduction of costs, distances, drivers’ travel times , how to

avoid congestions; city community, one the other hand, is struggling to solve problems with

air and noise pollution in the urban area, late deliveries etc. These disparities of interests are

the breeding ground for academic research. Finding solutions to these problems improves

quality of life in cities (Cattaruzza et al., 2017)

It has become a common story for many countries that the local authorities of the cities have

to react to the growing number of vehicles in the cities. By trying to minimize the harmful

impact of logistics sector on social, economic and environmental needs of a city, a range of

measures has become popular. Sometimes, authorities set up restrictions in access for specific

6

type or size of vehicles to particular zones of the cities either within pre-defined time periods

or even on permanent basis (Mancini, 2013). Under these conditions, carrier companies are

forced to switch to smaller vehicles and this leads to augmenting number of vehicles in the

cities. Therefore, a ‘carrier-friendly’ decision was found to solve these restrictions in the way

that city distribution centers (CDCs) are established (Rad & Gülmez, 2017). Since transporta-

tion in larger bulks between the cities minimizes harm to the environment but is unwished

within the city centers, this framework implies that the goods are transported by full-load

trucks to the CDCs that are situated on site of the cities. Then, more ‘environmentally friend-

ly’ vehicles of usually smaller size shall perform deliveries in the urban area. This routing

problem is usually addressed as a two-level (two-echelon) VRP, where goods flow shall be

synchronized (Cattaruzza et al. , 2017). For this problem formulated as Two-Echelon VRP in

city logistics, (V. C. Hemmelmayr et al., 2012) proposed ALNS.

The classical TSP and VRP problem solution is often aimed at minimizing total travel costs.

In the problem we solved here it is referred only to total travel time of all vehicles as a con-

tributor to the total costs of the solution. In the literature one can find other formulations of

the total costs for a VRP. Each problem formulation may differ in the way how objective

costs are calculated: distance in kilometers, in time units, fuel consumption in liters, the vehi-

cle CO2 emission, the wage of the driver according to the total time spend on the tour etc.

A broad class of green VRP represents problems with focus on control of fuel consumption

and minimizations of CO2 emission. Due to the variety of real life conditions, the family of

green logistics problems is numerous. Among others, a novel bi-objective extension to the

well-known TSP problem was proposed by (Grabenschweiger, Tricoire, & Doerner, 2018)

for minimization of both CO2 emissions and disturbance levels in urban area. For more inter-

est of classifications one may refer to (Laporte et al., 2014).

7

2.2. Synchronization Constraints

Routing problems with synchronization constraints are widely addressed for solving real life

problems and the city logistics problem in particular (Drexl, 2012). (Kauf, 2016) asserts that

establishment of common networks where transportation flows within the city are consolidat-

ed will decrease transportation flows. It also mentions that the task to synchronize the trans-

portation flows coming from concurrent carriers is also challenging. It was explained by

(Drexl, 2012) that the interdependence of vehicles is the main reason for complexity of the

VRPSC. The synchronization is needed when a decision shall be made for which of the con-

current vehicles consumes / delivers resources in which order. In common VRP a customer

shall be visited only once, in other words, only one vehicle is needed to fulfill a customer’s

order (Drexl, 2012). If any changes are made in a route of one vehicle, this shall not affect

other vehicles’ routes. For example, if the order of customers was reversed in one route, this

will bring no changes in the orders of customer visits on other routes. In classical VRP for-

mulation no interdependence between the routes is presumed, as it is displayed in Figure

2.2.1. From this point of view the routes are independent from each other (Drexl, 2012).

Figure 2.2.1: Independence of routes in the VRP

On the contrary, the VRP constrained with synchronization implies that routes are interde-

pendent (Drexl, 2012). If changes are made in one route, this might cause a chain reaction of

alterations in some other routes, or in worst case in all routes of the solution.

8

Figure 2.2.2: Interdependence of routes in the VRP

Figure 2.2.2 depicts that vehicle 1 visits 6 customers where one has placed orders by different

suppliers. If it happens that vehicle 1 shall visit customers in reverse order (other than in the

figure above), the time when deliveries start will differ. This will cause changes in delivery

times on the route of vehicle 2 and, consequently, the same will occur on the route of vehicle

3. This chain reaction justifies that the routes are interdependent in this solution.

The synchronization constraints were classified in the literature depending on the origin or

shared resources and other circumstances. Thus (Drexl, 2012; Laporte et al. , 2014) define

five groups of synchronization constraints that are commonly used in combinatorial optimiza-

tion problems: task , operation, movement, load and resource.

In the problem we address in this work the operation and resource synchronization con-

straints are present. We induce self-imposed time windows and the delivery schedule of one

vehicle depends on time of deliveries of others. Also, parking space is a resource that shall be

shared among concurrent vehicles. Due to city logistics traffic and infrastructure conditions,

vehicles are concurrent to each other in terms of place at the delivery dock. This implies that

resource synchronization takes place: when one vehicle is performing delivery, the dock is

busy and cannot accommodate any further deliveries. If concurrent supplier vehicle has ar-

rived when other delivery is taking place, it shall wait until the ongoing delivery is finished.

Only after that it may start its delivery service.

9

2.3. Genetic Algorithms

“It is not always the magnitude of the differences observed between species that must deter-

mine specific distinctions, but the constant preservation of those differences in reproduction.”

― Jean-Baptiste Lamarck

Genetic algorithms (GAs) represent a vast classification of nature inspired algorithms in

computational optimization. The focal idea is that, first, an initial population (chromosomes)

of solutions shall be generated. Solutions are then chosen as parent chromosomes which pro-

duce offspring solutions by means of crossover techniques. Mutation operator and fitness

function are referred to as instruments to keep diversity and quality of population through

generations. Genetic algorithms have gained an image of powerful tool showing outstanding

results in different problem solutions. In (Gendreau & Tarantilis, 2010) literature review on

optimization technique provide us with numerous examples of genetic algorithm. Four crite-

ria were chosen to define rating of algorithms: flexibility, efficiency, effectiveness and speed.

Depending on variety of problem formulations, different optimization algorithms may show

high competitiveness in one whereas lower in solving differently designed problem.

Memetic algorithms have the same nature as genetic ones. The difference is that in memetic

algorithms a local search (LS) phase in embed. Some authors suggest adding LS at the begin-

ning when initial population is generated to refine parent solutions before the crossover part.

Others assume adding LS mechanism for improvement of the offspring results. According to

(Byron & Iba, 2016; Diaz-Gomez & Hougen, 2007; Gupta & Ghafir, 2012; Morrison &

Oppacher, 1998) diversity of population is a must for genetic algorithm’s efficiency. Also,

better quality of initial solutions might be an advantage (Diaz-Gomez & Hougen, 2007).

10

3. Problem Description

The VRPSC is defined on a complete graph 𝐺 = {𝑁, 𝐴} where 𝑁 is the set of nodes, 𝐸 is the

set of depots and, 𝑁0 = 𝑁\{𝐸} is the set of customer nodes , and 𝐴 is the set of arcs between

every pair of nodes. Each value 𝑑𝑖𝑗 represents the distance between two nodes 𝑖 and 𝑗, 𝑖, 𝑗 ∈

𝑁. The fleet of vehicles, 𝐾, is homogeneous, each with a capacity of 𝑄 units to serve all cus-

tomers, where each customer 𝑖 ∈ 𝑁0 has a non-negative order of demand 𝑞𝑖. The capacity of

the vehicle cannot be violated:

∑ 𝑞𝑖 ∗ 𝑥𝑖𝑗𝑘

𝑁

𝑗=0

≤ 𝑄 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾

Each vehicle is assigned to one depot location 𝑘𝑒, where 𝑒 ∈ 𝐸 . Every customer has a service

time ℎ𝑖 and a self-imposed time window [𝑒𝑖 , 𝑙 𝑖], in which all services must start and end. If a

vehicle arrives at customer node 𝑖 before its current 𝑒𝑖 , the 𝑒𝑖 and 𝑙 𝑖 will be updated such that

𝑒𝑖 shall equal to arrival time of the first vehicle arrived at customer 𝑖 and 𝑙𝑖 will be calculated

in response to time-window length constraint (more in Section 4.1). If a vehicle would arrive

after 𝑙 𝑖 at the customer node 𝑖 , then the schedule would be infeasible. Each customer can

handle only one delivery at a time. If more than one vehicle arrives at customer node, deliver-

ies shall be started sequentially. The service start shall be conducted on first come first serve

basis and the vehicle which arrived later shall wait until the dock becomes idle. In0 we give

more information on the calculation of the self-imposed time-windows which was previously

developed and adapted for test instances by (Sarasola & Doerner, 2018). More precisely, the

waiting time of the dock as referred by them to as time between deliveries when the dock

(customer) remains idle, also called as idle dock time. The idle dock time is the only con-

tributor to the “bad” synchronization of current solution.

The time on route 𝑇𝑚𝑎𝑥
𝑑𝑎𝑦

 is limited to 12 hours (work day length) and presumes that each vehi-

cle shall return to the depot before or exactly at this point of time. No split-deliveries are al-

lowed; hence each order shall be supplied in one visit of the corresponding vehicle. The syn-

chronization of deliveries is meant to be met when the self-imposed time windows are not

violated by any of the order deliveries. The route length time is met when all vehicles return

to their depot location before or at the end of the work day.

11

The objective of the problem is to minimize the total travel costs:

∑ ∑ ∑ 𝑥𝑖𝑗𝑘 ∗ 𝑑𝑖𝑗

𝑚

𝑘∈𝐾

𝑛

𝑗∈𝑁

𝑛

𝑖∈𝑁

→ 𝑚𝑖𝑛

where:

𝑥𝑖𝑗𝑘 = {0,1} ∀𝑖 ≠ 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾. If 𝑥𝑖𝑗𝑘 ≡ 1, the corresponding vehicle 𝑘 visits customer

node 𝑖 before 𝑗 on a route, else 𝑥𝑖𝑗𝑘 ≡ 0.

12

4. Solution Method

In this section we provide a more detailed description of the algorithm and insights about

decisions made for implementation. Most of the components of the (Nagata et al., 2010) algo-

rithm were used to solve the problem presented here. The algorithm components are depicted

in the Figure 4.1: EAMA :

Figure 4.1: EAMA components

First, initial solutions are generated. Similar to (Nagata et al., 2010) we use a randomized

construction heuristic which generates solutions which may differ in the number of routes.

The crossover operator requires a pair of parent solutions that have the same number of

routes. Therefore, during the construction heuristic, those solutions that fit the requirements

(feasible and containing a particular number of routes) are kept for the initial population of

the memetic algorithm (MA). Thus, we performed pre-run tests for a group of instances to

define the number of routes as criteria for solutions to be kept for the MA or deleted from the

population (Appendix B & C). Next, a crossover operator is initiated in order to produce in-

termediate solutions. The number of intermediate solutions to be processed for each pair of

parents is also subject to adjustments since the runtime of the algorithm must be kept in rea-

13

sonable time scales. When an intermediate solution is generated, a feasibility check shall be

performed. If the solution is feasible it goes directly to the LS phase; if not, it undergoes a

repair procedure. A selection criterion for both repair and local search operators is set to be

random. Repair and LS procedures are stopped when the maximum time is reached. Depend-

ing on the size of instances, the time planned for the LS and the repair procedure was adjust-

ed. The stopping criteria for the whole run of the EAMA was set to either the number of

generations or a time limit of 10 minutes for the instances.

14

4.1. Self-Imposed Time Windows

We handle synchronization constraints by keeping records of both time windows and delivery

schedule for each customer node. In this master thesis we use self-imposed time windows,

hence the beginning and the end of time intervals when the services should take place are not

predefined but calculated during the run of the algorithm. The way how self-imposed time

windows are calculated was adjusted to the needs of our problem. All delivery records are

directly linked with schedule records. In our case, the schedule contains the following data

for each customer: arrival time of a vehicle at the customer node, service start time, time of

the service end (Figure A.3: Deliveries records).

The time windows are assigned when the initial routes (containing only one order each) are

built. It is explained by the fact that the arrival time of the vehicle at its initial tours represents

the earliest possible arrival time to a customer. The time-window start of a customer 𝑖, denot-

ed as 𝑒𝑖 , is assigned with the arrival of the first vehicle. When initial tours are built, 𝑒𝑖 is cal-

culated as start of the working day time plus distance from the depot to the customer, and

time-window end 𝑙 𝑖 refers to as:

𝑙 𝑖 = 𝑒𝑖 + (𝑤 + 1) ∗ ℎ𝑖 ∗ 𝑛𝑖𝑘

where 𝑛𝑖𝑘 is the number of vehicles k currently assigned to this customer 𝑖, w is a user de-

fined maximum time allowed, and ℎ𝑖 is service length time at customer node 𝑖.

Calculation of the allowed waiting time is controlled by the number of deliveries assigned to

the customer, such that the more orders customer 𝑖 has, the longer the allowed time-window

is. When the algorithm merges two routes (ex. route 𝐴 and route 𝐵), each merge reduces the

number of routes by one (orders of route 𝐵 will be appended at the end of route 𝐴, then route

𝐵 will be deleted). This move will bring the following updates in the schedule: the vehicle

which serves orders on route 𝐵 will be deleted from customers schedules of this route and

will be replaced by the vehicle of route 𝐴. Proving whether this merge is feasible or not, we

need to recalculate schedules and, consequently, time windows of all customers that were

assigned to the route 𝐵 . Synchronization constraint violation consists of two elements:

whether violation of the time window is at the customer 𝑖 or at any of the subsequent custom-

er nodes of this route. As a result, the time windows feasibility check shall be executed not

only at customer 𝑖, but at all subsequent customer nodes of the route 𝐵. Time window viola-

tion is true at customer 𝑖 if the end of the last service assigned to customer 𝑖 exceeds the time

15

window end of this customer. As soon as this statement is true for at least one customer of the

route, merging of the routes will not be accepted.

4.2. Construction Heuristic

Construction heuristics for the VRP vary in different characteristics; they can be greedy or

randomized. The preferences for using different construction heuristics mostly depend on the

type of problem, compliance with further steps of the metaheuristics, computational time

consumption and input data. A range of issues were addressed in the literature to define what

makes a construction heuristic a good one for a specific problem and why. In our case, the

test instances are built on the asymmetric graph, and this issue was considered when imple-

menting the construction technique.

Another point to mention is that solutions resulting from the construction phase shall meet the

needs of further steps in the algorithm. In terms of GAs, construction heuristics shall provide

a well-diversified initial population of solutions. Sometimes, the feasibility of initial so lutions

is not a prerequisite for acceptance to participate in the genetic part of the algorithm, but in

our case the initial solutions are always feasible.

The construction heuristics in this work is a GRASP metaheuristic based on the Savings Al-

gorithm (SA). The SA was first described in 1964 by (Clarke & Wright, 1964). It is a com-

monly used construction heuristic for a set of the VRP problems (V. C. Hemmelmayr et al.,

2012). The calculation of savings is the central part of the algorithm.

This is a heuristic method and it justifies that this algorithm is able to provide good quality

solution for small size problems. In respect to the medium and big size problems (more than

15 orders) this algorithm can serve as a construction heuristic, as a pre-step for the metaheu-

ristic phase in optimization processes. The SA has become the one that is widely used for

constructing initial solutions as it is fast and easy to implement.

The saving means the reduction of costs of a solution if two tours are merged. The Figure

4.2.1, depicts how two tours are connected in a way that the saving in costs is present. Node 0

is the depot, nodes 𝑖 and 𝑗 are the customer nodes.

16

Figure 4.2.1: Merging two tours based on savings

In Figure 4.2.1 (a) there are two tours that contain one customer each: 𝑖 and 𝑗. The vehicles

start at the depot 0, visit the customers and return to the depot. In this case a) the customers

are visited separately and it results in transportation costs (in our case distance) 𝐷𝑎:

𝐷𝑎 = 𝑑0𝑖 + 𝑑𝑖0 + 𝑑0𝑗 + 𝑑𝑗0

Where 𝑑𝑖𝑗 is the distance costs between nodes 𝑖 and 𝑗. On the figure the b) and c) illustrate

that two tours are merged in different ways with respect to direction. Therefore, for the b)

illustration the distance costs are calculated as:

𝐷𝑏 = 𝑑0𝑖 + 𝑑𝑖𝑗 + 𝑑𝑗0

Next, for the c) illustration the distance costs are calculated as:

𝐷𝑐 = 𝑑0𝑗 + 𝑑𝑗𝑖 + 𝑑𝑖0

To calculate the saving, we now use the a) and b) illustrations, and it amounts to the differ-

ence in costs between the total distance of two solutions:

17

𝑆𝑖𝑗 = 𝐷𝑎 − 𝐷𝑏 = 𝑐𝑖0 + 𝑐0𝑗 − 𝑐𝑖𝑗

The saving in merging the routes as in the c) illustration is calculated equivalently to the for-

mula above.

The larger the saving is the more reasonable it is to merge the routes. In the savings in the b)

and c) illustrated solutions will differ on the asymmetric graph.

In this thesis we apply the parallel version the SA that means more than one route is being

built at a time.

It is also important to mention that since we are dealing with asymmetric distances, all sav-

ings are calculated for both variants, as if to merge 0 − 𝑖 − 0 with 0 − 𝑗 − 0 routes into either

0 − 𝑖 − 𝑗 − 0 or the saving will be more attractive for 0 − 𝑗 − 𝑖 − 0 route. It results into 2

savings units to be calculated and added to the savings list for the same pair of customers 𝑖, 𝑗,

∈ 𝑁.

The role of Restricted Candidate List (RCL) for GRASP is fulfilled by list of savings from

Clark & Wright’s Algorithm. Thus, the range of diversification can be controlled through

candidate ratio, α.

𝛼 ≡ 0 Savings algorithm

0 < 𝛼 < 1 GRASP

𝛼 ≡ 1 Random heuristic

Table 4.2.1: Algorithm type in respect to 𝜶 value

Thus, some randomness has been added into the greedy SA that provides diversification of

the initial solutions. First, we choose the number of instance to be read, and customer ratio 𝛼,

that is to provide a random choice from savings list. Next, there is waiting time allowed to be

indicated which is a crucial component for building up and updating self-imposed time win-

dows each time an order gets assigned to a route.

The larger the idle time indicator is the longer is the time window constraint. Large waiting

time indicator value results in solutions with longer dock idle times. In order to meet better

synchronization, we want to minimize the total idle dock times, that means we allow relative-

ly low level of waiting time between the deliveries (Sarasola & Doerner, 2018). Additionally,

if the allowed waiting time is suspended meaning all deliveries shall take place immediately

18

after each of the previous one, the algorithm will result in solutions with large number of

routes which will harm our attempt to minimize the tota l transportation costs. That’s why the

allowed waiting time is the instrument in order to find the tradeoff between minimizing total

idle dock times and total transportation costs.

Stepwise the algorithm goes as follows:

1. Distances for all elements (customer locations, depot locations) are read from the file

and saved to a distance matrix. The distances are represented as travel times and are

given in minutes, with three decimal positions and the time units are multiplied by

1000 for ease in calculations with integer numbers as was also done by (Sarasola &

Doerner, 2018).

2. The user is asked to indicate RCL ratio value 𝛼 = [0.0, 1.0] and the waiting time al-

lowed indicator 𝑤 = [0, 𝑚𝑎𝑥].

3. Savings values are calculated and recorded in a list. Since each customer node is not

linked to all depot locations, there is no need to calculate savings for arcs which will

never be built. There are several depots that share same customer locations and it

should be considered by building the savings list. Thus, the depot id is attached to

each saving in the list.

4. Initial routes are built with only one customer order included into each route. The cost

is the sum of time consumed by each vehicle to go from the depot to the correspond-

ing customer node and back to the depot. The self-imposed time window of each cus-

tomer node shall be calculated whereas the start is the time of the earliest arriving ve-

hicle, and the time window end is set. The schedule of services is established for the

vehicles according to the first come first serve rule. A vehicle can start the delivery

service as soon as it arrives at the customer node and if the customer is idle, otherwise

the vehicle has to wait.

5. Until the savings list is not empty pairs of routes which belong to the same depot are

tried to be merged:

i. A saving value for a pair of customer nodes 𝑢𝑖 and 𝑢𝑗 is picked out from the RCL;

ii. The chosen customers must be on positions such that: a) 𝑢𝑖 is the last customer

visited on a route 𝐴; b) 𝑢𝑗 is the first visited customer on a route 𝐵; c) 𝐴 ≠ 𝐵;

19

iii. If such tours are found, constraints violation is examined, else step v. is executed.

Constraints are proved to be held if: a) tour loads do not exceed vehicles’ capaci-

ty; b) time window constraints and maximum route time restrictions at each cus-

tomer node of all routes are not violated;

iv. If merge is feasible, routes are merged;

v. The current saving record is deleted from the RCL.

20

4.3. Memetic Algorithm

4.3.1. Cross-over Operator

The edge-assembly crossover operator (EAX) was chosen because it provides good results in

the literature when dealing with the TSP and the VRP. In (Nagata et al., 2010) the EAX oper-

ator was implemented to find solutions for the VRP with time windows. Because of this and

since we are using self-imposed time windows, we implement the EAX for our problem.

(Nagata et al., 2010) have proposed the EAX for directed graph which takes into account

edge direction when building intermediate solutions. This has made the EAX applicable for

time constrained problems.

The crossover procedure goes as follows. Two parent solutions are randomly chosen. A 𝐺 set

is the set of edges that is built in such a way that it contains only unique edges from parent 𝐴

and parent 𝐵, and no similar edges from these two solutions. In our case we change the vector

solution representation of the parent solutions into the edge representation1, and add all edges

of parent 𝐴 into the 𝐺 set. Next, we choose each edge of parent 𝐵 and add them to the 𝐺 set if

such an edge is not present yet in the 𝐺 set. If it happens that the edge already exists in the 𝐺

set, we don’t add it and we delete the similar one found from the 𝐺 set. As a result, the 𝐺 set

will contain only unique edges from both parents. Important to mention that during this step

the two edges are defined as similar ones if and only if both the nodes and the direction are

the same (Nagata, 2006a, 2006b).

The 𝐺 set is then used in order to build the 𝐴𝐵 cycles which will form an 𝐸 set, as described

in (Nagata et al., 2010). The 𝐴𝐵 cycles are formed by iteratively adding edges from different

parent solutions which share either an arrival or a departure node.

As soon as the 𝐴𝐵 cycles are built, the 𝐸 set can be formed. Based on the 𝐸 set an intermedi-

ate solution will be generated. The 𝐸 set is a set of 𝐴𝐵 cycles that are chosen to build an in-

termediate solution. During the single EAX strategy, only one 𝐴𝐵 cycle is chosen randomly

to represent the 𝐸 set, whereas in block strategy more than one 𝐴𝐵 cycles form the 𝐸 set

(Nagata, 2006a, 2006b). (Nagata et al., 2010) use the single strategy at the beginning of the

genetic part. After a predefined number of iterations the algorithm switches to the block strat-

egy. The authors explain it by the fact that after a certain number of iterations the population

1 It was decided to use the edge-like solution representation for the EAX phase for ease of implementation.

21

achieves uniformity. If the single strategy is applied, offspring solutions have much in com-

mon with parent 𝐴 (Nagata et al., 2010). Because of this , diversity of population can be

harmed after a while, resulting in solutions similar to each other. To prevent this, the block

strategy is accepted (Nagata et al., 2010). Thus, the block strategy works as a more robust

diversifier to generate intermediate solutions and consequently guard diversity in the popula-

tion. As soon as the intermediate solution is built, we translate the edge solution representa-

tion into the vector in order to start the repair procedure and the LS thereafter.

4.3.2. Repair Procedure

As proposed by (Nagata et al., 2010), the repair procedure consists of three neighborhood

operators: 2-Opt, Out Relocate and Exchange (see Section 4.5). These operators restore fea-

sibility of the intermediate solutions by minimizing the penalty costs. Before the start of the

repair procedure, penalties are assigned onto capacity and time constraint violations in ac-

cordance to the generalized cost function. The sensitivity tests performed by (Nagata et al.,

2010) showed that penalty costs ratios work best when both are set at 1.0. The demand excess

of a solution is calculated as the sum of total demand excess on each route. The time win-

dows violation is calculated as the sum of all late arrivals of the vehicles to customers togeth-

er with late arrivals of the vehicles at their corresponding depots (Nagata et al. , 2010). The

repair operators work in accordance to the best acceptance strategy. This was explained by

(Nagata et al., 2010) as the reason not to conduct too many changes to the offspring solution

during the repair procedure. The minimum of difference between the offspring solution be-

fore and after the repair procedure is highly desired. Also, here only those changes that min-

imize penalty costs are made and the changes in the distance costs values are not considered.

As soon as penalties have been assigned to the intermediate solution, the procedure continues

with choosing an infeasible route. Then three neighborhood operators try to restore the route

feasibility. The order in which neighborhood operators are chosen is random. In one iteration

three repair operators are activated only once in random order. Once one operator is chosen,

it looks for the best possible improvement on infeasible routes. The routes for repair are cho-

sen only among the infeasible ones and in random order. If the current repair operator is una-

ble to find any improvement, another operator is randomly chosen. If feasibility of the off-

spring solution has been reached, the algorithm will proceed with the LS phase, if not, the

child solution will be deleted from the population. If all three randomly chosen operators

22

weren’t able to find improvement , a last attempt is made, i.e. new round of random repair

procedure is set. It is justified by the fact that the following situations are often observed: first

round of three randomly chosen operators result in poor capacity penalties. Such ‘leftovers’

would throw this solution out of the population. Therefore, it was decided to try a new strate-

gy: to add a second round for repair phase to eliminate the ‘leftover’ penalties. When the sec-

ond round is started, a randomly chosen operator fixes the remaining small penalties, hence,

the solution is repaired and kept in the population. By processing bigger instances, the repair

procedure sometimes becomes very exhausting in terms of time spend on repairing it. During

experiments, adding the second round for repair procedure produced better results.

23

4.3.3. Local Search Procedure

Local search implies that there is a space, i.e. neighborhood, which shall be exploited by a

search technique. The definition of a neighborhood of a solution is presented by (Neri, Cotta,

& Moscato, 2012) and is a set of solutions which result from applying one transaction on all

corresponding elements of a solution. Typically, a LS mechanism starts with one solution and

applies a single pre-defined move triggered by a neighborhood operator to generate new solu-

tions. The aim is to find one that shows a better objective value. These solutions are com-

pared to the initial solution and if the new neighbor is better it is accepted by replacing the

initial solution. Otherwise the initial solution is kept. The LS procedure is executed while the

stopping criteria are not met. Usually, such criteria are the predefined number of iterations

when no improvements were found or the time limit. A general description of LS procedure

was demonstrated by (Gendreau & Potvin, 2010) and is presented below:

Figure 4.3.3.1: LS algorithm2

There are two widely used techniques to implement neighborhood operators: the first ac-

ceptance and the best acceptance strategy (Bräysy & Gendreau, 2005). The common feature

for both strategies is that the better solution replaces the worse one. What differs is which

solutions shall be compared. The first acceptance implies that at each iteration the current

neighbor solution is compared to the initial solution which gets immediately replaced if the

current neighbor proves to be better. If replacement takes place, the next iteration’s transac-

tion will involve the newly accepted better solution. In contrast, the best acceptance strategy

works under the condition that the LS procedure runs over all possible neighbors of the initial

solution, picks out the best one which shall be subsequently compared with the initial solu-

2 (Gendreau & Potvin, 2010)

24

tion and replaces it if the above-mentioned condition is met. In practice, the choice of ac-

ceptance strategy relies on the computational time limitations, ease of coding or the complex-

ity of iteration transaction (Gendreau & Potvin, 2010; Neri et al. , 2012). For example, one

step may be a swap of two variables or a change of a value that will lead to a chain of further

calculations based on this one step. Also, justification for using one or another technique can

be related to the nature of the algorithm behavior (Nagata et al., 2010).

In our case, four neighborhood operators are used: 2-Opt, In Relocate, Out Relocate and Ex-

change, as it was done by (Nagata et al. , 2010), whereas only three of these excluding In Re-

locate are used in repair procedure. It was explained in (Nagata et al., 2010) by the fact that,

for repair procedure , In Relocate cannot lead to any improvement in terms of penalties as the

operators work only on the infeasible routes. During repair procedure only, infeasible routes

of intermediate solutions are chosen for conduction of transactions. Therefore, In Relocate

operator would not be able to bring any improvements in terms of feasibility. In Relocate

increases number of customers in a route which is not wanted when the capacity or time win-

dow violation is present.

In the Section 0, two scenarios are shown: an iterative and random LS. On the one hand, an

iterative LS implies that the LS operators try to perform improving moves on all routes of the

current solution until no improvement can be found or the time limit for LS is hit. On the

other hand, in the random LS scenario, a route of the current solution is chosen randomly and

LS operators try to find any improvements. As soon as the random LS does not discover any

improvement moves, the LS procedure is restarted. For all experiments and solutions present-

ed, the number of restarts for the random LS was set to 5. If the number of restarts is more

than 5 or the time limit is hit, the random LS is stopped.

25

5. Computational Results

The algorithm was implemented in C++ on Intel® Core™ i7-4600M 2.9 GHz 16MB process

memory, x64 precision floating point number representation. In this section, test files are pre-

sented along with the parameters setting and decisions based on iterative trials of different

parameters values and the results in comparison to ALNS and CPLEX.

All results presented here refer to the test instances of (Sarasola & Doerner, 2018) down-

loaded from http://homepage.univie.ac.at/briseida.sarasola. The instances are based on real

life data; they include distances, orders and carrier depot locations in the city of Linz, Austria.

Two groups of instances were used. First group contains from 5 to 15 orders each. Second

have 50, 100, 150, 200, 250 and 300 orders.

Experiments have been conducted in parameter settings for GRASP and MA, solutions are

collected for two groups of instance files and the results are presented as average and the best

of 5 runs of MA for the second group in comparison to ALNS. First group of instances con-

sist of small files (5 to 15 orders) and are added in 0E . Parameters which were subject to

adjustments are: ɑ restricted candidate list ratio, 𝑔𝑚𝑎𝑥 number of generations, size of 𝑃𝑖𝑛𝑖𝑡

initial population, 𝑟𝑖𝑛𝑖𝑡 number of routes in initial solutions, 𝑡𝑖𝑛𝑖𝑡 maximum time allowed to

generate initial population, size of 𝑃𝑐ℎ offspring population for each pair of parents, 𝑡𝑟𝑒𝑝𝑎𝑖𝑟

maximum time allowed for repair procedure and 𝑡𝑙𝑠 maximum time allowed for the LS phase

(both for each offspring solution respectively). Parameters which were constant: w waiting

time allowed, χ and ψ penalties for constraint violation. Travel distances are presented in time

units (minutes). The vehicle capacity Q is set to 18.0 demand units and service time s is 15

minutes for each order delivery. Total costs are calculated as the sum of total travel time, time

spend for services is excluded.

On graphs with representation of geographical location of the customer and depot nodes, pre-

sented in Appendix DD, it is shown that the customer nodes are spread randomly across the

area, forming several locations with high density of nodes. These areas represent the city cen-

ter or shopping streets. The depot nodes are placed around the area in suburban, far from the

city center located regions.

http://homepage.univie.ac.at/briseida.sarasola

26

5.1. Parameters setting

Solution quality of genetic phase depends on numerous factors. We would like to address

each of them. First, we had to think of the characteristics which are wanted and/or needed for

initial population. (Nagata et al 2009) implemented a route minimization heuristic and in sec-

tion where they describe results they mentioned that route minimization heuristic has a big

influence on efficiency of the whole memetic algorithm as it provides solutions with possible

minimum number of routes, hence relatively low total transportation costs. If good and di-

verse solutions are constructed, GA shall perform better. Chasing solutions with less quantity

of routes is a common strategy for total costs minimization. Therefore, (Nagata et al., 2010)

performed pre-run tests to define what the quantity of routes shall be in a solution so that the

latter shall be used as initial population entity for the memetic part.

For these reasons we conducted the same experiment with our GRASP construction heuristics

to define the number of routes needed for a solution to fulfill the ‘parenting’ criteria.

Determination of the minimum number of routes. The possible minimum number of

routes 𝑟𝑚𝑖𝑛for problems with homogenous fleet is usually calculated as total sum of demands

divided by vehicle capacity:

𝑟𝑚𝑖𝑛 =
∑ 𝑞𝑖

𝑛
𝑖=0

𝑄

 It is commonly suggested that optimal solution shall contain number of routes equal or very

close to 𝑟𝑚𝑖𝑛. Thus, minimization of quantity of routes in a solution shall usually lead to total

costs reduction. On Figure 5.1.1 we investigate how much the quantity of routes generated by

the SA is far from 𝑟𝑚𝑖𝑛 for the second group of test files (from 50 to 300 orders).

It is clear from Figure 5.1.1: Comparison of the SA and approx. minimum of routes that

SA is not efficient enough for big and complex instances to meet the 𝑟𝑚𝑖𝑛 level for all except

the first file with 50 orders, where the gap is 0%. On average for this set of instances the SA

generates solutions with at 108% bigger quantity of routes than the assumed 𝑟𝑚𝑖𝑛. Addition-

ally, it shall be mentioned that 𝑟𝑚𝑖𝑛 is only assumed and cannot be considered as the exact

one for our problem because of asymmetric distances and time window conditions. But we

can clearly see that there exists enough space for optimization in terms of distance total costs

and the number of routes in genetic phase shall be minimized.

27

Figure 5.1.1: Comparison of the SA and approx. minimum of routes

Since in our case the GRASP was chosen as the construction heuristic, we would first like to

be sure that construction phase generates better solutions than the pure SA. Second, we define

a new minimum number of routes 𝑟𝑖𝑛𝑖𝑡 as acceptance criterion for a GRASP solution to be

added to the initial population. Third, we had to make a decision how we should collect solu-

tions from GRASP is such a way that the obtained solutions: a) remain as much as possible in

terms of objective function value better than the SA; b) contain the same number of routes

equal to 𝑟𝑖𝑛𝑖𝑡; c) computational time to generate initial solutions remain reasonable. Normally,

the 𝑟𝑖𝑛𝑖𝑡 is set less than 𝑟𝑚𝑖𝑛. It is explained by the fact that the GRASP solutions are still far

from the optimal ones in terms of both transportation costs and quantity of routes for medium

and big instances. This is justified on the Figure 5.1.2: Comparison of quantity of routes of

GRASP and SA solutions which depicts that best 10% of GRASP solutions may frequently

contain less quantity of routes than the greedy SA but if we combine this with findings from

the figure above it is clear that GRASP is still far from the 𝑟𝑚𝑖𝑛. Better results of GRASP in

terms of 𝑟 values are ensured by randomization which is allowed to a particular extension –

𝑎 value. Solution costs on average are also dependent on RCL ratio ɑ.

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Comparison of the SA and approx. minimum of routes

minR SA SA gap %

28

Figure 5.1.2: Comparison of quantity of routes of GRASP and SA solutions

Determination of the RCL ratio. Based on these conclusions, we decide to investigate the

relationship between RCL ratio and solution quality and choose a constant new 𝑟𝑚𝑖𝑛 to ac-

cumulate solutions with less routes and lower costs possible. These solutions will be the best

fit to form the initial population for further MA phase. This decision process consists of sev-

eral steps. For the GRASP we conduct tests with different RCL ratio (ɑ). By choosing itera-

tively values of ɑ the aim was to disclose which ɑ gives better costs. The tests go as follows.

The GRASP algorithm ran 100 times to form a group of 100 feasible solutions whereas each

run was started with different value of ɑ. Then, the best cost from each group were kept in

respect to its ɑ value. An example of the results for a file with 150 orders is as follows3:

RCL
(ɑ)

Number
of routes Total costs

Total idle dock
time

Total idle vehicle
time

RCL
size

0.0002 28 940 439 0 178 185 1

0.0003 24 877 152 0 150 335 2

0.0005 25 891 796 0 141 603 3

1 31 1 533 452 0 167 894 7428

Table 5.1.1: Solution costs by different RCL ratio values for an instance with 150 orders

This test was conducted for each instance to see which RCL ration shows better results in

comparison to other ɑ values. Table 5.1.1 shows that the lowest total costs were reached

when only to best savings positions are included into the RCL. For all test instances the fol-

lowing was found: a) by choosing a particular RCL ratio, GRASP outperforms the greedy SA

3 Results of all tests for medium and big instances are in (A)

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Comparison of quantity of routes of GRASP and SA solutions

SA GRASP

29

in each test instance; b) solution costs become more sensitive to RCL ratio with larger in-

stances; c) there is no fixed border on continuous horizon of ɑ values which generate better

solutions; what can be detected is an approximate ɑ value when GRASP tends to generate

better solutions more often.

Figure 5.1.3: Best GRASP solutions in respect to RCL size

As in the Figure 5.1.3: Best GRASP solutions in respect to RCL size we can see the results

of best GRASP solutions for instance # 2 with 100 orders. It is shown that better solutions are

frequently met when relatively small randomness is allowed. For example, best GRASP solu-

tions for 18 of 20 files were achieved with such ɑ values that RCL size was between 2 and 7

positions which is less than 0.002% of total number of savings positions. Two smallest in-

stances 50 orders each showed to be an exception with 46 positions in RCL for best GRASP

solutions.

Determination of the 𝒓𝒊𝒏𝒊𝒕 for the initial population. Thereafter, the ɑ was chosen and it

was possible to proceed to the next step. First, we set GRASP to generate 100 solutions with

recently found best ɑ value. Second, we investigate the results upon four characteristics: min-

imum and maximum quantity of routes met, routes number most frequently met in 100 solu-

tions and in 10% best solutions respectively.

The tests described above helped us to explore to which extend GRASP can improve the SA

solutions on 20 files of different size. We were able to access which RCL ratio tends to give

better results and at what level 𝑟𝑖𝑛𝑖𝑡 shall be set for the step when initial population shall be

generated. The parameters we chose also gave the possibility to generate initial population in

the next steps in time less or equal constant 𝑡𝑖𝑛𝑖𝑡 for files of 50 to 300 orders.

0

10

20

30

40

50

0 5 10 15 20 25

R
C

L
 s

iz
e

instance number

best cost GRASP solutions

30

Summary of both tests. We investigated number of routes in the solutions and we used the

best RCL ration obtained in the test above. The results in Table 5.1.2: Quantity of routes

and CPU times for solutions with different ɑ values generalize our findings from both tests

together. The time to generate one solution is less than 1 second for each of the instances.

 RCL (ɑ)

Minimum
number
of routes

Maximum
number of
routes

Frequent
number
of routes

Frequent

number of
routes among
best 10 %
solutions

vrpsc-300-6-19.csv 0.00024 42 49 46 44

vrpsc-300-6-18.csv 0.00024 46 54 49 46

vrpsc-300-6-17.csv 0.00024 45 53 49 46

vrpsc-300-6-16.csv 0.00020 45 52 48 45

vrpsc-250-5-15.csv 0.00040 41 47 43 42

vrpsc-250-5-14.csv 0.00030 38 46 42 40

vrpsc-250-5-13.csv 0.00030 38 47 43 40

vrpsc-250-5-12.csv 0.00050 37 45 42 39

vrpsc-200-4-11.csv 0.00050 36 44 41 39

vrpsc-200-4-10.csv 0.00040 31 42 37 33

vrpsc-200-4-9.csv 0.00030 31 38 36 33

vrpsc-200-4-8.csv 0.00040 32 38 36 34

vrpsc-150-3-7.csv 0.00050 27 35 32 29

vrpsc-150-3-6.csv 0.00030 30 35 32 26

vrpsc-150-3-5.csv 0.00096 30 35 32 30

vrpsc-100-2-4.csv 0.00090 18 25 22 20

vrpsc-100-2-3.csv 0.00050 13 20 16 14

vrpsc-100-2-2.csv 0.00070 15 21 19 16

vrpsc-50-1-1.csv 0.01900 6 7 6 6

vrpsc-50-1-0.csv 0.01900 5 6 5 5

Table 5.1.2: Quantity of routes and CPU times for solutions with different ɑ values

Based on these conclusions, we decided to use the frequent number of routes in best 10%

solutions as the new rinit and the 𝑎 as constant parameters for each file in further computa-

tional experiments. Since time consumption as depicted above stayed in reasonable scales,

these parameters ensured ability to generate initial population for the MA in less than 3 sec-

onds also for files with 300 orders.

Concerning further steps, 1 minute tests were conducted for all files in order to meet a deci-

sion about the remaining parameters for the MA such as: 𝑔𝑚𝑎𝑥 number of generations, size of

𝑃𝑖𝑛𝑖𝑡 initial population, size of 𝑃𝑐ℎ offspring population for each pair of parents, 𝑡𝑟𝑒𝑝𝑎𝑖𝑟 max-

31

imum time allowed for repair procedure and 𝑡𝑙𝑠 maximum time allowed for the LS phase,

whereas 𝑡𝑖𝑛𝑖𝑡 was set to 3 seconds, 𝑎 and 𝑟𝑖𝑛𝑖𝑡 as in Table 5.1.2: Quantity of routes and

CPU times for solutions with different ɑ values . The decisions were made by iterative trials.

Generally, time for calculation of scheduling conditions and self-imposed constraints were

most challenging in terms of time consumption. This resulted in the following parameters

setting for the EAMA phase:

Instances

groups by # of

orders 50 100 150 200 250 300

𝑔𝑚𝑎𝑥 50 25 25 25 25 25

𝑃𝑖𝑛𝑖𝑡 25 6 6 6 6 6

𝑃𝑐ℎ 5 4 4 3 3 3

𝑡𝑟𝑒𝑝𝑎𝑖𝑟 2s 4s 5s 6s 6s 7s

𝑡𝑙𝑠 3s 6s 10s 10s 10s 10s

Table 5.1.3: Parameters for the EAMA

32

5.2. Results of the EAMA

In this section we present results of our EAMA compared to ALNS for instances with 50 to

300 orders. Comparison on small instances 5 to 14 orders are provided in comparison to

ALNS and CPLEX solutions and are attached in Appendix E (Sarasola & Doerner, 2018).

The EAMA algorithm was executed 5 times and the results are presented in the Tables 5.2.1

and 5.2.2. The total costs of each run of the EAMA represent only feasible solutions. For

each of the instances the total average and the best costs are recorded. For each run, the best

known feasible solution was recorded after 10 minutes (including the construction phase) and

then the algorithm stopped.

In the previous sections we described two LS scenarios we used. The results in Error! Refe-

rence source not found. were generated by means of the iterative LS procedure along with

the corresponding RCL ratio and the minimum number of routes for the construction phase.

Instance Orders ALNS EAMA Average EAMA Best 𝑎 𝑟𝑖𝑛𝑖𝑡

0 50 198 770 200822.80 1.03% 200035.00 0.64% 0.019 5

1 50 145 840 147891.20 1.41% 147294.00 1.00% 0.019 6

2 100 408 130 451564.00 10.64% 446114.00 9.31% 0.0007 16

3 100 350 090 385355.40 10.07% 382176.00 9.17% 0.0005 14

4 100 408 590 461089.20 12.85% 449393.00 9.99% 0.0009 20

5 150 564020 649223.40 15.11% 633844.00 12.38% 0.00096 30

6 150 570730 608570.80 6.63% 594825.00 4.22% 0.0003 26

7 150 501060 609517.00 21.65% 596683.00 19.08% 0.0005 29

8 200 673430 811134.80 20.45% 787674.00 16.96% 0.0004 34

9 200 698160 844387.40 20.94% 823575.00 17.96% 0.0003 33

10 200 647190 723978.20 11.86% 714737.00 10.44% 0.0004 32

11 200 650640 757230.00 16.38% 733981.00 12.81% 0.0005 39

12 250 767190 921409.00 20.10% 892473.00 16.33% 0.0005 39

13 250 861680 1033166.00 19.90% 1025850.00 19.05% 0.0004 40

14 250 778000 951851.40 22.35% 919154.00 18.14% 0.0003 40

15 250 945940 1121290.00 18.54% 1107490.00 17.08% 0.0004 42

16 300 1103970 1338148.00 21.21% 1323070.00 19.85% 0.0002 45

17 300 1115430 1310964.00 17.53% 1250050.00 12.07% 0.00024 46

18 300 965370 1178646.00 22.09% 1139910.00 18.08% 0.00024 46

19 300 1048080 1224656.00 16.85% 1185430.00 13.10% 0.00024 44

 Average: 670115.50 786544.73 15.38% 767687.90 12.88%

Table 5.2.1: EAMA results for instances 0 to 19 - time limit 10 minutes - Iterative LS

33

The size of initial population was set to 25 and 6 for 50 orders and more respectively. In all

instances except 0 and 1 which consist of 50 orders the time limit was hit before the 25th gen-

eration was processed.

The results from Table 5.2.1 depict that the algorithm produces solutions that lay in smaller

gap from ALNS for instance #3, in comparison to instances #2 and #4 even if quantity of

orders remains the same. It may depend on distances between the nodes and how they are

spread over the area. In Appendix D it can be clearly seen that the nodes in the instances #2

and #4 are located more dense and closer to each other than in the instance #3 where some

customer locations are spread more evenly over the bigger area.

The best solutions generated by the EAMA with the iterative LS strategy are at 12.88% from

the ALNS. The average results of the EAMA are at 2.5% worse than the best ones.

Instance Orders ALNS EAMA Average EAMA Best 𝑎 𝑟𝑖𝑛𝑖𝑡

0 50 198 770 199897.00 0.57% 198940.00 0.09% 0.019 5

1 50 145 840 148371.80 1.74% 147853.00 1.38% 0.019 6

2 100 408 130 460319.60 12.79% 452895.00 10.97% 0.0007 16

3 100 350 090 386102.80 10.29% 379840.00 8.50% 0.0005 14

4 100 408 590 473955.60 16.00% 469293.00 14.86% 0.0009 20

5 150 564020 652040.20 15.61% 614774.00 9.00% 0.00096 30

6 150 570730 648091.20 13.55% 636647.00 11.55% 0.0003 26

7 150 501060 638005.00 27.33% 628550.00 25.44% 0.0005 29

8 200 673430 837635.20 24.38% 806948.00 19.83% 0.0004 34

9 200 698160 902006.40 29.20% 886976.00 27.04% 0.0003 33

10 200 647190 740423.60 14.41% 724309.00 11.92% 0.0004 32

11 200 650640 769611.60 18.29% 742020.00 14.04% 0.0005 39

12 250 767190 962685.00 25.48% 928773.00 21.06% 0.0005 39

13 250 861680 1080086.00 25.35% 1056980.00 22.67% 0.0004 40

14 250 778000 990607.00 27.33% 973816.00 25.17% 0.0003 40

15 250 945940 1170380.00 23.73% 1156150.00 22.22% 0.0004 42

16 300 1103970 1416150.00 28.28% 1405390.00 27.30% 0.0002 45

17 300 1115430 1386426.00 24.30% 1362950.00 22.19% 0.00024 46

18 300 965370 1241098.00 28.56% 1211560.00 25.50% 0.00024 46

19 300 1048080 1232350.00 17.58% 1221650.00 16.56% 0.00024 44

 Average: 670115.50 794977.17 18.81% 779542.20 16.62%

Table 5.2.2: EAMA results for instances 0 to 19 - time limit 10 minutes - Random LS

The above results show that our EAMA could find results for instances with 50 to 300 orders

with around 16.62% gap in comparison to ALNS considering the best solution out of 5 runs

per each instance. The random LS used here showed solutions at 3.74% higher costs than the

34

iterative LS scenario. The results show that the instance #3 is easier to solve than the #2 and

#4 in both LS scenarios.

The reason to choose two different LS procedures was to try to reach more generations within

the same time of 10 minutes. With the random LS scenario one generation is processed faster

than with the iterative LS.

The above results showed that even if the iterative scenario lies much lower in speed, approx-

imately 3.5 times slower to go through one generation than the random LS scenario, the ex-

haustive search techniques almost always deliver better solutions on average over all instanc-

es. Speaking about the best solutions reported, the random LS outperformed the iterative pro-

cedure only in three positions for instances #0, #3 and #5 containing 50, 100 and 150 orders

respectively. It can be explained by the fact that the random LS scenario has processed more

generations in 10 minutes and the algorithm has gained its gravity. But for the rest of the test

instances the iterative LS scenario generated better solutions than the random LS. Therefore,

we observed that even if the iterative LS scenario processes fewer generations during the

same amount of time it finds better solutions and improves the quality of solution in each

generation better than the random LS. This results in better algorithm performance.

It is also important to mention that most of the computational effort was incorporated in cal-

culating the synchronization. Because of the interdependence of the routes, each transaction

of the LS or repair operators triggered longer processing times for recalculation of delivery

schedules and self-imposed time windows for the corresponding customer nodes. This has

put a challenge in choosing such size of the population and the number of generation that can

be processed with this size in 10 minutes. It was a tradeoff decision and it explains the fact

that for instances containing 50 orders the initial population size was 25, when for the 100

orders instances and more the size was decreased up to 6 solutions.

Next, we would like to show how the memetic part of the algorithm was incorporated in or-

der to improve the solutions generated by GRASP. The figure below depicts how the MA

contributes to improvement of a solution (this graph is built on the part of one of the EAMA

solutions for instance #0 with 50 orders).

35

Figure 5.2.1: Improvement in the memetic phase

Figure 5.2.1 contains the records of the best-known solution during one run of the algorithm

(the longest sequence starting from 214949 to 204996) and the “parent 𝐴 – offspring” solu-

tions pairs. As we mentioned before, the EAX crossover operator produces offspring solu-

tions that tend to be very similar to parent 𝐴 that is why we illustrate only these pairs here.

Interestingly, it may not always be the rule that the parent solutions with lower costs will

produce offspring solutions better than those produced by the parent solutions with higher

costs. It is demonstrated in Figure 5.2.1. For example, the parent 𝐴 solution, from the pair

“Parent-Offspring 4”, with costs 214949 brought an offspring solution which after the repair

and LS procedures showed costs at 213638 leve l. However, the next attempt (“Parent-

Offspring 5”) was made and a child solution was built on base of the parent solution with

216836 costs. This parent solution 5 has obviously higher costs than the previous one. But

nevertheless, the new offspring solution from parent 5, tuned by LS improvement, could

reach the 209875 costs, thus hitting the best-known costs level at that step of the algorithm.

214.949

210.758

209.875

208.979

208.642
208.529

207.358

206.821
205.562

204.996
204

206

208

210

212

214

216

218

220

0 2 4 6 8 10 12 14 16 18 20

Improvement in the memetic phase

Best known Parent-Offspring 1 Parent-Offspring 3 Parent-Offspring 4

Parent-Offspring 2 Parent-Offspring 5 Parent-Offspring 6 Parent-Offspring 7

Parent-Offspring 8 Parent-Offspring 9 Parent-Offspring 10 Parent-Offspring 11

Parent-Offspring 12 Parent-Offspring 13 Parent-Offspring 14 Parent-Offspring 15

Parent-Offspring 16 Parent-Offspring 17

36

6. Conclusion

Finding smart solutions for city logistics problems contribute to the benefits of all local eco-

nomic actors. These solutions have also a considerable impact on the quality of life in the city

and all city development processes. In this thesis we have provided a literature review on

what the city logistics components are, how they interact with each other and which termi-

nology can be used in measuring the effectiveness and efficiency of the city logistics systems.

First, we give a brief description of the VRP problems and their implications in real-life situa-

tions in the context of the city logistics. The provided examples stem from the latest research

results and show that the routing solutions in urban areas serve for optimization in a broad

range of industries, service environments and interactions between all economic , environ-

mental and social units in the city. Neglecting the need for optimization shall drastically harm

the development processes and functionality of the city logistics system in general. Several

examples of single and multi-objective optimization techniques have been mentioned to

strengthen the idea of adapting each problem formulation closest possible to the real-life

needs.

Second, the VRP is usually presented as one of the most famous classes of routing problems

in the literature and we have presented several examples to support this idea, whereas we

included the results from the literature review specifically on city logistics problems. Hence,

the VRPSC is here shown to be part of the city development concept. In the problem we ad-

dress in this thesis the operation and resource synchronization constraints are embodied and

several examples have been illustrated to depict the nature of interdependency of the routes in

the VRP and how these constraints may increase complexity of the problem. Inclusion of

time-dependency in the VRP poses a challenge for optimization techniques, as it was also

assumed by (Cattaruzza et al., 2017). It was also shown in this thesis that the interdependence

of the routes brings considerable difficulties in the process of optimization in terms of im-

plementation of the metaheuristic part and the computational time to generate good-quality

solutions. Starting with general description of synchronization constraints we further provide

implementation details and comments on challenging parts we faced in dealing with synchro-

nization constraints in the VRP.

We have implemented the EAMA, proposed by (Nagata et al., 2010) for the VRP with time

windows, to solve the VRPSC. The construction heuristics is GRASP based on the savings

37

algorithm. We present decision making aspects of parameters setting for both construction

and memetic part of the algorithm. The computational results are shown in comparison to

ALNS within 10 minutes processing time of the algorithm. Two different LS scenarios are

implemented and compared: the iterative and random LS procedures.

From the perspective of the results of this thesis the follow-up research is needed to develop

more straightforward way to calculate the violation of the synchronization constraints under

conditions of route interdependence. This shall decrease the computational efforts for pro-

cessing one generation of the memetic part, giving more possibilities for the algorithm to gain

its gravity and to deliver better results. Also, the experiments with the different LS techniques

support this position.

38

A. Appendix

Solution, synchronization of deliveries and self-imposed time windows representation:

Code lines Comments and illustrations

class Solution {
public:
 typedef struct {
 int depot;
 int vehicle_num;
 double duration;
 double
idle_time_veh;
 double
idle_time_cus;
 double load;
 std::vector <int>
customers;
 } Route;

 double total_duration;
 double to-
tal_idle_time_docks;
 double to-
tal_idle_time_veh;
 std::vector<Route>
routes;
};

Figure A.1: Solution representation

Vehicle idle time refers to a situation if the vehicle has

already arrived at customer point but waits idle and

cannot start service because the dock is busy.

Dock idle time occurs each time when service end

time of one vehicle is earlier than arrival time of the

next vehicle at each customer point.

39

void build_initial_routes(const
vector<vector<int>>
&depots_their_customers, const
vector <depotInfo>
&depotsInfoRead,
 Solution &solution,
 const int
&num_of_orders, const vector
<vector<double>> &distMatrix,
const vector <order>
&customerOrders,
 vector <vector <Pair>>

&visitors_schedule, vector

<vector<double>> &time_windows,

const float &w, const int

&work_day_start);

Figure A.2: Initial routes

The green lines visualize routes where vehicles form

different depots deliver orders that belong to the same

customer locations.

struct Pair
{
 int a;
 double b;
};

vector<vector<Pair>> &schedule;

Figure A.3: Deliveries records

This way to keep records gives us possibility to do

calculations so that synchronization constraints will

not be violated.

40

vector<vector<double>> &tw;

Figure A.4: Self-imposed time windows

Recalculation of time windows and schedules take

place each time an order is assigned to another vehi-

cle. From code lines on the left we may see how the

mechanism of self-imposed time windows work. In

different papers self-imposed time windows appear to

be designed differently.

Table A.1: Code representation and implementation details

41

B. Appendix

The records in the table set below are best solutions, each of 100 generated in 1 run of

GRASP. Each run was with fixed ɑ value indicated in the corresponding column below. The

random seed was set to 5.

GRASP_bestof100pop_vrpsc-300-6-19.csv

Savings map
size

RCL
(ɑ)

Number
of routes Total costs

Total idle dock
time

Total idle vehicle
time

RCL
size

14 880 0.0001 43 1 458 885 0 516 986 1

14 880 0.0002 43 1 458 885 0 516 986 2

14 880 0.00024 41 1 415 244 0 436 951 3

14 880 0.0003 43 1 434 589 0 369 100 4

14 880 0.0004 42 1 457 161 17 544 375 650 5

14 880 1 59 2 697 463 6072 485 770 14880

GRASP_bestof100pop_vrpsc-300-6-18.csv

Savings map
size

RCL
(ɑ)

Number
of routes Total costs

Total idle dock
time

Total idle vehicle
time

RCL
size

14 760 0.0001 47 1 467 110 0 358 986 1

14 760 0.0002 46 1 442 337 0 300 245 2

14 760 0.00024 46 1 428 748 0 300 605 3

14 760 0.0003 46 1 429 589 0 355 899 4

14 760 0.0004 46 1 420 588 12 312 377 211 5

14 760 1 56 2 668 543 3 861 465 246 14760

GRASP_bestof100pop_vrpsc-300-6-17.csv

Savings map
size

RCL
(ɑ)

Number
of routes Total costs

Total idle dock
time

Total idle vehicle
time

RCL
size

14 766 0.0001 50 1 689 635 12 021 504 670 1

14 766 0.0002 46 1 592 224 13 928 395 661 2

14 766 0.00024 45 1 585 595 13 928 437 507 3

14 766 0.0003 45 1 589 421 12 021 470 846 4

14 766 0.0004 46 1 597 458 1 907 382 850 5

14 766 1 56 2 836 658 13 563 410 240 14766

GRASP_bestof100pop_vrpsc-300-6-16.csv

Savings map
size

RCL
(ɑ)

Number
of routes Total costs

Total idle dock
time

Total idle vehicle
time

RCL
size

14 780 0.0001 46 1 643 508 20 932 503 089 1

14 780 0.0002 45 1 582 350 0 565 637 2

14 780 0.00024 45 1 599 869 58 570 401 368 3

42

14 780 0.0003 46 1 598 711 5 932 528 971 4

14 780 0.0004 45 1 589 290 0 314 657 5

14 780 1 57 2 998 321 0 579 480 14780

GRASP_bestof100pop_vrpsc-250-5-15.csv

Savings map

size

RCL

(ɑ)

Number

of routes Total costs

Total idle dock

time

Total idle vehicle

time

RCL

size

12 304 0.0001 42 1 517 388 26 415 388 358 1

12 304 0.0002 43 1 505 264 26 415 379 217 2

12 304 0.0003 41 1 479 293 0 360 428 3

12 304 0.0004 41 1 465 207 29 040 421 124 4

12 304 0.00046 42 1 475 878 3 984 299 498 5

12 304 1 50 2 474 312 0 347 189 12304

GRASP_bestof100pop_vrpsc-250-5-14.csv

Savings map
size

RCL
(ɑ)

Number
of routes Total costs

Total idle dock
time

Total idle vehicle
time

RCL
size

12 324 0.0001 42 1 10 324 0 485 017 1

12 324 0.0002 40 1 232 661 0 513 554 2

12 324 0.0003 38 1 224 367 0 438 197 3

12 324 0.0004 40 1 243 798 0 477 824 4

12 324 1 49 2 272 858 0 430 534 12324

GRASP_bestof100pop_vrpsc-250-5-13.csv

Savings map
size

RCL
(ɑ)

Number
of routes Total costs

Total idle dock
time

Total idle vehicle
time

RCL
size

12 312 0.0001 43 1 333 302 0 457 398 1

12 312 0.0002 39 1 266 248 0 409 232 2

12 312 0.0003 40 1 272 247 0 320 831 3

12 312 0.0004 38 1 258 540 0 374 238 4

12 312 0.00046 40 1 272 169 0 352 094 5

12 312 1 46 2 386 368 0 386 197 12312

GRASP_bestof100pop_vrpsc-250-5-12.csv

Savings map

size

RCL

(ɑ)

Number

of routes Total costs

Total idle dock

time

Total idle vehicle

time

RCL

size

12 324 0.0001 43 1 218 375 0 464 371 1

12 324 0.0002 38 1 119 017 0 297 369 2

12 324 0.0003 38 1 120 185 0 428 841 3

12 324 0.0004 39 1 122 962 0 311 150 4

12 324 0.00046 38 1 109 437 14 328 284 214 5

12 324 0.0005 37 1 094 475 0 352 217 6

43

12 324 0.0006 38 1 118 804 0 349 280 7

12 324 0.0007 38 1 122 860 0 338 279 8

12 324 1 45 2 162 239 11 285 507 940 12324

GRASP_bestof100pop_vrpsc-200-4-11.csv

Savings map

size

RCL

(ɑ)

Number

of routes Total costs

Total idle dock

time

Total idle vehicle

time

RCL

size

9 982 0.0002 43 1 208 110 0 527 812 1

9 982 0.0003 37 1 117 511 0 421 833 2

9 982 0.0004 37 1 129 891 0 374 464 3

9 982 0.0005 37 1 117 225 0 403 463 4

9 982 0.0006 38 1 123 776 0 333 366 5

9 982 0.0007 38 1 121 782 0 374 341 6

9 982 1 44 1 823 305 0 280 056 9982

GRASP_bestof100pop_vrpsc-200-4-10.csv

Savings map

size

RCL

(ɑ)

Number

of routes Total costs

Total idle dock

time

Total idle vehicle

time

RCL

size

9 874 0.0002 36 1 009 447 13 799 274 395 1

9 874 0.0003 32 953 240 0 26 115 2

9 874 0.0004 31 931 512 0 261 906 3

9 874 0.0005 31 945 566 0 272 508 4

9 874 0.0006 32 948 720 0 243 025 5

9 874 1 44 1 729 349 0 346 373 9874

GRASP_bestof100pop_vrpsc-200-4-9.csv

Savings map
size

RCL
(ɑ)

Number
of routes Total costs

Total idle dock
time

Total idle vehicle
time

RCL
size

9 808 0.0002 38 1 255 653 0 285 292 1

9 808 0.0003 31 1 138 934 0 249 463 2

9 808 0.0004 33 1 157 588 0 264 900 3

9 808 0.0005 32 1 150 880 0 256 426 4

9 808 1 45 2 080 769 0 280701 9808

GRASP_bestof100pop_vrpsc-200-4-8.csv

Savings map
size

RCL
(ɑ)

Number
of routes Total costs

Total idle dock
time

Total idle vehicle
time

RCL
size

9 918 0.0002 37 1 163 531 0 243 843 1

9 918 0.0003 33 1 113 684 0 259 580 2

9 918 0.0004 32 1 085 006 0 265 442 3

9 918 0.0005 34 1 115 340 0 218 356 4

44

9 918 1 45 1 938 099 0 462 852 9918

GRASP_bestof100pop_vrpsc-150-3-7.csv

Savings map
size

RCL
(ɑ)

Number
of routes Total costs

Total idle dock
time

Total idle vehicle
time

RCL
size

7 464 0.0002 31 981 172 0 234 619 1

7 464 0.0003 29 952 774 0 205 248 2

7 464 0.0005 27 894 503 0 120 094 3

7 464 0.0006 27 895 611 0 1 874 465 4

7 464 1 32 1 428 137 0 157 787 7464

GRASP_bestof100pop_vrpsc-150-3-6.csv

Savings map
size

RCL
(ɑ)

Number
of routes Total costs

Total idle dock
time

Total idle vehicle
time

RCL
size

7 428 0.0002 28 940 439 0 178 185 1

7 428 0.0003 24 877 152 0 150 335 2

7 428 0.0005 25 891 796 0 141603 3

7 428 1 31 1 533 452 0 167 894 7428

GRASP_bestof100pop_vrpsc-150-3-5.csv

Savings map

size

RCL

(ɑ)

Number

of routes Total costs

Total idle dock

time

Total idle vehicle

time

RCL

size

7406 0.0002 33 1 103 738 0 127 422 1

7406 0.0004 30 1 035 286 0 138 934 2

7406 0.0005 29 1 020 776 0 139 334 3

7406 0.0006 30 1 037 043 0 127 540 4

7406 0.0007 28 1 002 216 0 105 695 5

7406 0.0008 29 1 024 932 0 147 671 5

7406 0.0009 29 1 016 178 0 133651 6

7406 0.00096 28 995 100 0 129 452 7

7406 0.0011 29 1 018 288 0 122 289 8

7406 0.0012 29 1 006 226 0 139 489 9

7406 1 33 1 520 200 0 218 956 7406

GRASP_bestof100pop_vrpsc-100-2-4.csv

Savings map
size

RCL
(ɑ)

Number
of routes Total costs

Total idle dock
time

Total idle vehicle
time

RCL
size

4902 0.0003 24 849 214 0 78 095 1

4902 0.0005 19 741 236 0 49 123 2

4902 0.0007 19 737 891 0 37 495 3

4902 0.0009 18 731 742 0 27 715 4

45

4902 0.0012 19 739 677 0 51 931 5

4902 0.004 19 756 848 0 63 437 19

4902 1 21 1 073 765 0 38 021 4902

GRASP_bestof100pop_vrpsc-100-2-3.csv

Savings map
size

RCL
(ɑ)

Number
of routes Total costs

Total idle dock
time

Total idle vehicle
time

RCL
size

5028 0.0004 15 512 219 0 37 410 1

5028 0.0005 13 470 958 0 37 539 2

5028 0.0007 14 479 734 0 51 685 3

5028 0.001 13 463 398 0 37 946 5

5028 1 18 882 907 0 87 689 4950

GRASP_bestof100pop_vrpsc-100-2-2.csv

Savings map

size

RCL

(ɑ)

Number

of routes Total costs

Total idle dock

time

Total idle vehicle

time

RCL

size

4950 0.0004 17 664 574 0 29 244 1

4950 0.0005 16 640 364 0 25 723 2

4950 0.0006 16 640 205 0 24 217 2

4950 0.00068 15 628 650 0 24 217 3

4950 0.0007 15 627 623 0 24 716 3

4950 0.00071 15 631 963 0 42 199 3

4950 0.00072 16 640 205 0 24 217 3

4950 0.0008 16 645 244 0 13 350 3

4950 0.001 16 641 424 0 30 750 4

4950 0.0012 16 641 280 0 26 482 5

4950 0.005 16 668 537 0 29 055 24

4950 1 19 1 005 203 0 27 212 4950

GRASP_bestof100pop_vrpsc-50-1-1.csv

Savings
map size

RCL
(ɑ)

Number
of routes Total costs

Total idle dock
time

Total idle vehi-
cle time

RCL
size

2450 0.0008 6 161 125 0 0 1

2450 0.0012 6 160 783 0 0 2

2450 0.002 6 160 569 0 0 4

2450 0.004 6 159 981 0 0 9

2450 0.005 5 152 622 0 0 12

2450 0.006 6 158 455 0 0 14

2450 0.007 5 152 106 0 0 17

2450 0.008 5 155 611 0 0 19

2450 0.009 5 154 395 0 0 22

2450 0.01 5 153 416 0 0 24

2450 0.012 5 153 184 0 0 29

2450 0.014 5 151 343 0 0 34

46

2450 0.016 5 152 756 0 0 39

2450 0.018 5 152 023 0 0 44

2450 0.019 5 151 234 0 0 46

2450 0.02 5 151 442 0 0 49

2450 0.021 5 152 028 0 0 51

2450 0.022 5 154 268 0 0 53

2450 0.024 5 153 494 0 0 58

2450 0.026 5 153 672 0 0 63

2450 0.028 5 155 683 0 0 68

2450 0.03 5 157 148 0 0 73

2450 0.04 5 159 161 0 0 98

2450 0.05 6 165 930 0 0 122

2450 0.06 5 159 927 0 0 147

2450 0.07 5 163 329 0 0 171

2450 0.08 5 168 780 0 0 196

2450 0.1 5 175 183 0 0 245

2450 0.2 5 190 239 0 0 490

2450 0.4 6 214 271 0 0 980

2450 1 6 303 187 0 0 2450

GRASP_bestof100pop_vrpsc-50-1-0.csv

Savings
map size

RCL
(ɑ)

Number
of routes Total costs

Total idle dock
time

Total idle vehi-
cle time

RCL
size

2450 0.0008 5 206 241 0 0 1

2450 0.0012 5 203 974 0 0 2

2450 0.002 5 203 469 0 0 4

2450 0.004 5 205 403 0 0 9

2450 0.005 5 205 305 0 0 12

2450 0.006 5 203 612 0 0 14

2450 0.007 5 203 803 0 0 17

2450 0.008 5 206 160 0 0 19

2450 0.009 5 205 394 0 0 22

2450 0.01 5 205 930 0 0 24

2450 0.012 5 205 293 0 0 29

2450 0.014 5 205 773 0 0 34

2450 0.016 5 207 341 0 0 39

2450 0.018 5 206 676 0 0 44

2450 0.019 5 203 294 0 0 46

2450 0.02 5 203 855 0 0 49

2450 0.021 5 204 833 0 0 51

2450 1 6 385 507 0 0 2450

47

C. Appendix

The records in the table set below are the values of 1 algorithm run with random seeds.

GRASP_bestof100pop_vrpsc-300-6-19.csv

RCL (ɑ) 0.00024

Time to build 1 solution <0.001s Total sols 100

Min Number of routes 42 Frequent Number of routes 46

Max Number of routes 49
Frequent Number of routes in
best 10% solutions 44

Number of tours solution 82 42 Duration 1446.27

Number of tours solution 4 44 Duration 1447.75

Number of tours solution 97 43 Duration 1454.11

Number of tours solution 18 43 Duration 1455.24

Number of tours solution 1 43 Duration 1459.35

Number of tours solution 69 42 Duration 1460.67

Number of tours solution 85 44 Duration 1465.99

Number of tours solution 45 44 Duration 1467.02

Number of tours solution 15 44 Duration 1467.77

Number of tours solution 64 44 Duration 1468.36

GRASP_bestof100pop_vrpsc-300-6-18.csv

RCL (ɑ) 0.00024

Time to build 1 solution <0.001s Total sols 100

Min Number of routes 46 Frequent Number of routes 49

Max Number of routes 54
Frequent Number of routes in
best 10% solutions 46

Number of tours solution 55 46 Duration 1428.75

Number of tours solution 77 46 Duration 1430.44

Number of tours solution 64 46 Duration 1432.49

Number of tours solution 52 46 Duration 1442.84

Number of tours solution 90 47 Duration 1442.97

Number of tours solution 20 46 Duration 1443.89

Number of tours solution 51 46 Duration 1444.84

Number of tours solution 84 47 Duration 1446.57

Number of tours solution 0 47 Duration 1450.13

Number of tours solution 36 48 Duration 1457.15

GRASP_bestof100pop_vrpsc-300-6-17.csv

RCL (ɑ) 0.00024

Time to build 1 solution <0.001s Total sols 100

Min Number of routes 45 Frequent Number of routes 49

Max Number of routes 53
Frequent Number of routes in
best 10% solutions 46

48

Number of tours solution 72 45 Duration 1585.6

Number of tours solution 26 45 Duration 1602.34

Number of tours solution 45 46 Duration 1602.34

Number of tours solution 64 46 Duration 1616.02

Number of tours solution 93 46 Duration 1620.93

Number of tours solution 58 46 Duration 1622.02

Number of tours solution 0 47 Duration 1623.53

Number of tours solution 17 47 Duration 1624.27

Number of tours solution 23 47 Duration 1626.67

Number of tours solution 27 46 Duration 1632.05

GRASP_bestof100pop_vrpsc-300-6-16.csv

RCL (ɑ) 0.0002

Time to build 1 solution <0.001s Total sols 100

Min Number of routes 45 Frequent Number of routes 48

Max Number of routes 52
Frequent Number of routes in
best 10% solutions 45

Number of tours solution 66 45 Duration 1582.35

Number of tours solution 28 45 Duration 1584.74

Number of tours solution 54 45 Duration 1608.67

Number of tours solution 33 45 Duration 1613.86

Number of tours solution 93 46 Duration 1618.54

Number of tours solution 59 45 Duration 1619.46

Number of tours solution 84 46 Duration 1622.61

Number of tours solution 31 47 Duration 1624.05

Number of tours solution 45 46 Duration 1628.17

Number of tours solution 58 47 Duration 1628.36

GRASP_bestof100pop_vrpsc-250-5-15.csv

RCL (ɑ) 0.0004

Time to build 1 solution <0.001s Total sols 100

Min Number of routes 41 Frequent Number of routes 43

Max Number of routes 47
Frequent Number of routes in
best 10% solutions 42

Number of tours solution 37 41 Duration 1465.21

Number of tours solution 95 41 Duration 1467.51

Number of tours solution 12 41 Duration 1482.69

Number of tours solution 71 42 Duration 1489.69

Number of tours solution 81 42 Duration 1494.73

Number of tours solution 85 42 Duration 1494.91

Number of tours solution 70 42 Duration 1496.42

Number of tours solution 78 42 Duration 1496.48

Number of tours solution 58 42 Duration 1499.83

Number of tours solution 92 42 Duration 1502.54

49

GRASP_bestof100pop_vrpsc-250-5-14.csv

RCL (ɑ) 0.0003

Time to build 1 solution <0.001s Total sols 100

Min Number of routes 38 Frequent Number of routes 42

Max Number of routes 46
Frequent Number of routes in
best 10% solutions 40

Number of tours solution 49 38 Duration 1224.37

Number of tours solution 94 39 Duration 1233.79

Number of tours solution 84 40 Duration 1235.61

Number of tours solution 67 39 Duration 1240.51

Number of tours solution 19 40 Duration 1244.17

Number of tours solution 7 40 Duration 1250.09

Number of tours solution 45 41 Duration 1251.39

Number of tours solution 30 41 Duration 1258.16

Number of tours solution 24 40 Duration 1262.1

Number of tours solution 77 41 Duration 1262.12

GRASP_bestof100pop_vrpsc-250-5-13.csv

RCL (ɑ) 0.0004

Time to build 1 solution <0.001s Total sols 100

Min Number of routes 38 Frequent Number of routes 43

Max Number of routes 47

Frequent Number of routes in

best 10% solutions 40

Number of tours solution 77 38 Duration 1258.54

Number of tours solution 22 38 Duration 1272.3

Number of tours solution 16 40 Duration 1293.48

Number of tours solution 91 40 Duration 1295.38

Number of tours solution 47 42 Duration 1302.66

Number of tours solution 29 40 Duration 1305.89

Number of tours solution 19 40 Duration 1306.76

Number of tours solution 51 41 Duration 1306.88

Number of tours solution 1 42 Duration 1308.25

Number of tours solution 31 42 Duration 1308.76

GRASP_bestof100pop_vrpsc-250-5-12.csv

RCL (ɑ) 0.0005

Time to build 1 solution <0.001s Total sols 100

Min Number of routes 37 Frequent Number of routes 42

Max Number of routes 45

Frequent Number of routes in

best 10% solutions 39

Number of tours solution 93 37 Duration 1094.47

Number of tours solution 64 38 Duration 1116.56

Number of tours solution 44 39 Duration 1125.47

50

Number of tours solution 78 39 Duration 1139.53

Number of tours solution 99 39 Duration 1140.41

Number of tours solution 54 40 Duration 1142.42

Number of tours solution 96 39 Duration 1144.46

Number of tours solution 8 40 Duration 1151.35

Number of tours solution 73 40 Duration 1152.84

Number of tours solution 80 41 Duration 1153.08

GRASP_bestof100pop_vrpsc-200-4-11.csv

RCL (ɑ) 0.0005

Time to build 1 solution <0.001s Total sols 100

Min Number of routes 36 Frequent Number of routes 41

Max Number of routes 44
Frequent Number of routes in
best 10% solutions 39

Number of tours solution 90 37 Duration 1117.22

Number of tours solution 39 36 Duration 1126.06

Number of tours solution 91 37 Duration 1130.49

Number of tours solution 89 37 Duration 1134.87

Number of tours solution 35 38 Duration 1139.28

Number of tours solution 54 39 Duration 1141.99

Number of tours solution 12 39 Duration 1145.7

Number of tours solution 60 38 Duration 1146.53

Number of tours solution 62 39 Duration 1148.33

Number of tours solution 11 39 Duration 1151.61

GRASP_bestof100pop_vrpsc-200-4-10.csv

RCL (ɑ)

Time to build 1 solution <0.001s Total sols 100

Min Number of routes 31 Frequent Number of routes 37

Max Number of routes 42
Frequent Number of routes in
best 10% solutions 33

Number of tours solution 30 31 Duration 931.512

Number of tours solution 4 32 Duration 948.853

Number of tours solution 94 32 Duration 954.959

Number of tours solution 11 33 Duration 960.512

Number of tours solution 27 32 Duration 968.113

Number of tours solution 24 32 Duration 968.772

Number of tours solution 79 32 Duration 971.98

Number of tours solution 72 34 Duration 973.546

Number of tours solution 57 34 Duration 973.934

Number of tours solution 89 33 Duration 977.345

51

GRASP_bestof100pop_vrpsc-200-4-9.csv

RCL (ɑ)

Time to build 1 solution <0.001s Total sols 100

Min Number of routes 31 Frequent Number of routes 36

Max Number of routes 38
Frequent Number of routes in
best 10% solutions 33

Number of tours solution 94 31 Duration 1138.93

Number of tours solution 68 33 Duration 1156.4

Number of tours solution 51 33 Duration 1162.03

Number of tours solution 46 33 Duration 1163.16

Number of tours solution 27 33 Duration 1165.03

Number of tours solution 87 33 Duration 1165.71

Number of tours solution 41 34 Duration 1170.3

Number of tours solution 13 34 Duration 1170.43

Number of tours solution 62 34 Duration 1170.46

Number of tours solution 45 34 Duration 1173.93

GRASP_bestof100pop_vrpsc-200-4-8.csv

RCL (ɑ) 0.0004

Time to build 1 solution <0.001s Total sols 100

Min Number of routes 32 Frequent Number of routes 36

Max Number of routes 38
Frequent Number of routes in
best 10% solutions 34

Number of tours solution 39 32 Duration 1085.01

Number of tours solution 79 34 Duration 1102.7

Number of tours solution 9 34 Duration 1111.19

Number of tours solution 19 35 Duration 1120.75

Number of tours solution 15 34 Duration 1124.15

Number of tours solution 22 34 Duration 1126.2

Number of tours solution 49 35 Duration 1127.96

Number of tours solution 69 35 Duration 1135.38

Number of tours solution 26 36 Duration 1137.34

Number of tours solution 12 34 Duration 1137.58

GRASP_bestof100pop_vrpsc-150-3-7.csv

RCL (ɑ) 0.0005

Time to build 1 solution <0.001s Total sols 100

Min Number of routes 27 Frequent Number of routes 32

Max Number of routes 35

Frequent Number of routes in

best 10% solutions 29

Number of tours solution 44 27 Duration 894.503

Number of tours solution 39 28 Duration 920.833

52

Number of tours solution 13 29 Duration 939.834

Number of tours solution 63 29 Duration 943.1

Number of tours solution 61 29 Duration 943.849

Number of tours solution 85 29 Duration 947.161

Number of tours solution 60 30 Duration 951.967

Number of tours solution 31 30 Duration 954.035

Number of tours solution 66 30 Duration 955.128

Number of tours solution 45 30 Duration 957.845

GRASP_bestof100pop_vrpsc-150-3-6.csv

RCL (ɑ) 0.0003

Time to build 1 solution <0.001s Total sols 100

Min Number of routes 30 Frequent Number of routes 32

Max Number of routes 35
Frequent Number of routes in
best 10% solutions 26

Number of tours solution 60 30 Duration 1025.16

Number of tours solution 80 30 Duration 1029.15

Number of tours solution 61 30 Duration 1037.1

Number of tours solution 86 31 Duration 1040.39

Number of tours solution 90 30 Duration 1041.18

Number of tours solution 43 31 Duration 1042.17

Number of tours solution 85 31 Duration 1042.38

Number of tours solution 9 30 Duration 1044.39

Number of tours solution 72 30 Duration 1044.5

Number of tours solution 38 31 Duration 1046.14

GRASP_bestof100pop_vrpsc-150-3-5.csv

RCL (ɑ) 0.00096

Time to build 1 solution <0.001s Total sols 100

Min Number of routes 30 Frequent Number of routes 32

Max Number of routes 35
Frequent Number of routes in
best 10% solutions 30

Number of tours solution 60 30 Duration 1025.16

Number of tours solution 80 30 Duration 1029.15

Number of tours solution 61 30 Duration 1037.1

Number of tours solution 86 31 Duration 1040.39

Number of tours solution 90 30 Duration 1041.18

Number of tours solution 43 31 Duration 1042.17

Number of tours solution 85 31 Duration 1042.38

Number of tours solution 9 30 Duration 1044.39

Number of tours solution 72 30 Duration 1044.5

Number of tours solution 38 31 Duration 1046.14

53

GRASP_bestof100pop_vrpsc-100-2-4.csv

RCL (ɑ) 0.0009

Time to build 1 solution <0.001s Total sols 100

Min Number of routes 18 Frequent Number of routes 22

Max Number of routes 25

Frequent Number of routes in

best 10% solutions 20

Number of tours solution 5 18 Duration 731.742

Number of tours solution 85 19 Duration 735.162

Number of tours solution 27 19 Duration 762.936

Number of tours solution 26 20 Duration 764.888

Number of tours solution 66 20 Duration 766.691

Number of tours solution 77 20 Duration 770.953

Number of tours solution 9 20 Duration 776.867

Number of tours solution 72 20 Duration 777.213

Number of tours solution 40 20 Duration 778.517

Number of tours solution 29 20 Duration 780.278

GRASP_bestof100pop_vrpsc-100-2-3.csv

RCL (ɑ) 0.0005

Time to build 1 solution <0.001s Total sols 100

Min Number of routes 13 Frequent Number of routes 16

Max Number of routes 20
Frequent Number of routes in
best 10% solutions 14

Number of tours solution 37 13 Duration 470.958

Number of tours solution 24 14 Duration 471.742

Number of tours solution 82 14 Duration 480.474

Number of tours solution 71 14 Duration 486.276

Number of tours solution 16 14 Duration 486.927

Number of tours solution 28 14 Duration 487.158

Number of tours solution 77 14 Duration 487.348

Number of tours solution 41 14 Duration 487.905

Number of tours solution 6 14 Duration 488.008

Number of tours solution 73 14 Duration 488.008

GRASP_bestof100pop_vrpsc-100-2-2.csv

RCL (ɑ) 0.0007

Time to build 1 solution <0.001s Total sols 100

Min Number of routes 15 Frequent Number of routes 19

Max Number of routes 21
Frequent Number of routes in
best 10% solutions 16

Number of tours solution 36 15 Duration 620413

Number of tours solution 75 16 Duration 640422

54

Number of tours solution 98 16 Duration 640422

Number of tours solution 30 16 Duration 644354

Number of tours solution 32 16 Duration 648013

Number of tours solution 97 17 Duration 663618

Number of tours solution 90 16 Duration 663761

Number of tours solution 91 17 Duration 667401

Number of tours solution 37 17 Duration 667687

Number of tours solution 76 17 Duration 667706

GRASP_bestof100pop_vrpsc-50-1-1.csv

RCL (ɑ) 0.019

Time to build 1 solution <0.001s Total sols 100

Min Number of routes 6 Frequent Number of routes 6

Max Number of routes 7
Frequent Number of routes in
best 10% solutions 6

Number of tours solution 72 6 Duration 158.685

Number of tours solution 20 6 Duration 158.751

Number of tours solution 18 6 Duration 159.082

Number of tours solution 86 6 Duration 159.488

Number of tours solution 16 6 Duration 159.521

Number of tours solution 57 6 Duration 159.659

Number of tours solution 7 6 Duration 159.902

Number of tours solution 69 6 Duration 160.172

Number of tours solution 66 6 Duration 160.382

Number of tours solution 89 6 Duration 160.384

GRASP_bestof100pop_vrpsc-50-1-0.csv

RCL (ɑ) 0.019

Time to build 1 solution <0.001s Total sols 100

Min Number of routes 5 Frequent Number of routes 5

Max Number of routes 6

Frequent Number of routes in

best 10% solutions 5

Number of tours solution 82 5 Duration 206.313

Number of tours solution 16 5 Duration 207.296

Number of tours solution 62 5 Duration 207.608

Number of tours solution 71 5 Duration 207.666

Number of tours solution 17 5 Duration 208.411

Number of tours solution 88 5 Duration 208.841

Number of tours solution 64 5 Duration 208.956

Number of tours solution 99 5 Duration 210.001

Number of tours solution 80 5 Duration 210.147

Number of tours solution 98 5 Duration 210.381

55

D. Appendix

The figures represent geographical locations of customer nodes (blue) and carrier depots (red).

14.24

14.26

14.28

14.3

14.32

14.34

14.36

14.38

14.4

48.22 48.24 48.26 48.28 48.3 48.32 48.34

vrpsc-250-5-15.csv

14.26

14.28

14.3

14.32

14.34

14.36

14.38

14.4

48.22 48.24 48.26 48.28 48.3 48.32 48.34 48.36

vrpsc-300-6-17.csv

56

14.26

14.28

14.3

14.32

14.34

14.36

14.38

14.4

48.22 48.24 48.26 48.28 48.3 48.32 48.34 48.36 48.38 48.4

vrpsc-100-2-2.csv

14.27

14.28

14.29

14.3

14.31

14.32

14.33

14.34

14.35

14.36

14.37

48.22 48.24 48.26 48.28 48.3 48.32 48.34

vrpsc-100-2-3.csv

14.26

14.28

14.3

14.32

14.34

14.36

14.38

14.4

48.22 48.24 48.26 48.28 48.3 48.32 48.34 48.36 48.38 48.4

vrpsc-100-2-4.csv

14.24

14.26

14.28

14.3

14.32

14.34

14.36

14.38

48.22 48.24 48.26 48.28 48.3 48.32 48.34

vrpsc-200-4-10.csv

57

E. Appendix

Instance Best results out of 5 runs of the algorithm with diff. a values

0 32.3740 32.3740 32.3740 32.3740 34.9740 35.4470 36.1240 36.1240

1 42.0920 42.0920 42.0920 42.0920 42.0920 41.7320 44.4510 44.4510

2 52.5180 52.5180 54.3760 55.4150 180.7950 60.9300 82.0520 84.6350

3 45.1350 45.1350 48.1640 48.3210 245.1600 50.4920 53.4060 63.9510

4 140.2740 140.2740 121.3640 107.0440 105.2190 109.0050 120.9920 110.4990

5 159.0810 159.0810 159.0810 160.7100 126.7630 112.9370 110.2320 128.0480
6 164.5930 164.5930 164.5930 133.2090 165.0010 176.4460 149.6010 150.2380

7 102.1640 100.9940 100.9940 102.4130 102.4130 102.3650 107.1550 109.2870

8 188.9780 167.1310 155.0000 167.5800 178.0190 155.2070 155.5780 176.2440

9 146.5100 146.5080 146.5080 84.7400 95.5120 149.6830 156.8920 165.3850

10 167.0350 167.0350 167.0350 152.9020 170.1600 185.3440 173.9250 170.2170

11 103.9020 104.8460 103.9020 104.8460 105.7950 107.3910 103.3070 122.5760

 a =0 a =0.04 a =0.08 a =0.1 a =0.2 a =0.4 a =0.8 a =1

Table E.1: GRASP results for small instances 5 to 15 orders

Instance

GRASP (best over 5 iterations)

ALNS
in

hours GRASP in hours
GRASP
in min RCL a values:

0 0.45 0.53956667 0.53956667 32.374

a =0 (pure Savings Algorithm) && a

=0.04 && a =0.08 && a =0.1
1 0.57 0.69553333 0.69553333 41.732 a =0.4

2 0.71 0.8753 0.8753 52.518

a =0 (pure Savings Algorithm) && a

=0.04

3 0.63 0.75225 0.75225 45.135

a =0 (pure Savings Algorithm) && a

=0.05

4 1.17 1.75365 1.75365 105.219 a =0.2
5 0.98 1.8372 1.8372 110.232 a =0.8

6 1.21 2.22015 2.22015 133.209 a =0.1

7 0.99 1.68323333 1.68323333 100.994 a =0.04 && a =0.08

8 1.41 2.58333333 2.58333333 155 a =0.08

9 1.04 1.41233333 1.41233333 84.74 a =0.1

10 1.75 2.54836667 2.54836667 152.902 a =0.1

11 1.19 1.72178333 1.72178333 103.307 a =0.8

Table E.2: Values of a in the best GRASP solutions for small instances 5 to 15 orders

58

Solomon I1 heuristic ALNS CPLEX GRASP (SA)

Average Best Average Best Cost time (s) Average Best Gap Avg Gap Best

Gap w.r.t.

Solomon
(Avg)

Gap w.r.t.

Solomon
(Best)

vrpsc-small-
5-1-0.csv 32374.00 32374 32374.00 32374.00 32374 20.35 34020.63 32374 5.09% 0.00% 5.09% 0.00%

vrpsc-small-

5-1-1.csv 41732.00 41732 41732.00 41732.00 41732 7.67 42636.75 41732 2.17% 0.00% 2.17% 0.00%

vrpsc-small-
10-1-2.csv 52518.00 52518 51169.00 51169.00 51169 19.62 77904.88 52518 52.25% 2.64% 48.34% 0.00%

vrpsc-small-
10-1-3.csv 45568.00 45568 45008.00 45008.00 45008 242.98 74970.50 45135 66.57% 0.28% 64.52% -0.95%

vrpsc-small-

10-2-4.csv 90505.10 87176 87176.00 87176.00 87176 5.01 119333.88 105219 36.89% 20.70% 31.85% 20.70%

vrpsc-small-
10-2-5.csv 78660.20 78621 72408.00 72408.00 72408 21.45 139491.63 110232 92.65% 52.24% 77.33% 40.21%

vrpsc-small-

12-2-6.csv 108020.00 103642 87166.00 87166.00 87166 32.08 158534.25 133209 81.88% 52.82% 46.76% 28.53%

vrpsc-small-
12-2-7.csv 76252.40 74882 70440.00 70440.00 70440 13.28 103473.13 100994 46.90% 43.38% 35.70% 34.87%

vrpsc-small-
14-2-8.csv 106087.00 104853 103720.00 103720.00 103720 445.41 167967.13 155000 61.94% 49.44% 58.33% 47.83%

vrpsc-small-

14-2-9.csv 117554.00 117554 78038.30 78038.00 78038 2287.06 136467.25 84740 74.87% 8.59% 16.09% -27.91%

vrpsc-small-
15-3-10.csv 127004.20 124576 123796.00 123796.00 123796 96.95 169206.63 152902 36.68% 23.51% 33.23% 22.74%

vrpsc-small-
15-3-11.csv 89406.90 85428 85998.00 85998.00 85998 119.22 107070.63 103307 24.50% 20.13% 19.76% 20.93%

Total 965681.80 948924 879025.30 879025 879025 3311.08 1331077.25 1117362 51.43% 27.11% 37.84% 17.75%

Average 48.53% 22.81% 36.60% 15.58%

Table E.3: Comparison of GRASP with Solomon I1, ALNS and CPLEX for small instances 5 to 15 orders

59

ALNS CPLEX EAMA4

Average Best Runtime (s) Cost time (s) Average Best Gap Avg Gap Best

vrpsc-small-5-1-

0.csv 32374 32374 0.01 32374 20.35 32374 32374 0.00% 0.00%
vrpsc-small-5-1-

1.csv 41732 41732 0.01 41732 7.67 41732 41732 0.00% 0.00%

vrpsc-small-10-1-
2.csv 51169 51169 0.08 51169 19.62 51169 51169 0.00% 0.00%

vrpsc-small-10-1-
3.csv 45008 45008 0.02 45008 242.98 45008 45008 0.00% 0.00%

vrpsc-small-10-2-
4.csv 87176 87176 0.08 87176 5.01 87176 87176 0.00% 0.00%

vrpsc-small-10-2-
5.csv 72408 72408 0.00 72408 21.45 72408 72408 0.00% 0.00%

vrpsc-small-12-2-
6.csv 87166 87166 0.03 87166 32.08 87166 87166 0.00% 0.00%

vrpsc-small-12-2-
7.csv 70440 70440 1.40 70440 13.28 70440 70440 0.00% 0.00%

vrpsc-small-14-2-

8.csv 103720 103720 1.97 103720 445.41 103720 103720 0.00% 0.00%
vrpsc-small-14-2-

9.csv 78038 78038 0.04 78038 2287.06 78038 78038 0.00% 0.00%

vrpsc-small-15-3-
10.csv 123796 123796 0.06 123796 96.95 124576 124576 0.63% 0.63%

vrpsc-small-15-3-
11.csv 85998 85998 0.04 85998 119.22 85042 85042 -1.11% -1.11%

Total 879025.30 879025 3.73 879025 3311.08 878849.00 878849 -0.02% -0.02%

Average -0.04% -0.04%

Table E.4: Comparison of the EAMA with ALNS and CPLEX for small instances 5 to 15 orders

4 The runtime of the EAMA was set as equivalent to ALNS for this comparison.

60

Bibliography

Bräysy, O., & Gendreau, M. (2005). Vehicle routing problem with time windows, Part I:

Route construction and local search algorithms. Transportation Science, 39(1), 104-

118.

Buhrkal, K., Larsen, A., & Ropke, S. (2012). The waste collection vehicle routing problem

with time windows in a city logistics context. Procedia-Social and Behavioral

Sciences, 39, 241-254.

Byron, J., & Iba, W. (2016). Population Diversity as a Selection Factor: Improving Fitness

by Increasing Diversity. Paper presented at the Proceedings of the 2016 on Genetic

and Evolutionary Computation Conference Companion.

Cattaruzza, D., Absi, N., Feillet, D., & González-Feliu, J. (2017). Vehicle routing problems

for city logistics. EURO Journal on Transportation and Logistics, 6(1), 51-79.

Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number

of delivery points. Operations research, 12(4), 568-581.

Diaz-Gomez, P. A., & Hougen, D. F. (2007). Empirical Study: Initial Population Diversity

and Genetic Algorithm Performance. Artificial Intelligence and Pattern Recognition,

2007, 334-341.

Doerner, K. F., Huisman, D., & Suhl, L. (2014). Logistics, traffic and transportation. Flexible

Services and Manufacturing Journal, 26(4), 463-465. doi:10.1007/s10696-014-9196-

9

Drexl, M. (2012). Synchronization in vehicle routing—a survey of VRPs with multiple

synchronization constraints. Transportation Science, 46(3), 297-316.

Gendreau, M., & Potvin, J.-Y. (2010). Handbook of metaheuristics (Vol. 2): Springer.

Gendreau, M., & Tarantilis, C. D. (2010). Solving large-scale vehicle routing problems with

time windows: The state-of-the-art: Cirrelt Montreal.

Glover, F., Gutin, G., Yeo, A., & Zverovich, A. (2001). Construction heuristics for the

asymmetric TSP. European Journal of Operational Research, 129(3), 555-568.

61

Grabenschweiger, J., Tricoire, F., & Doerner, K. F. (2018). Finding the trade-off between

emissions and disturbance in an urban context. Flexible Services and Manufacturing

Journal, 30(3), 554-591. doi:10.1007/s10696-017-9297-3

Gupta, D., & Ghafir, S. (2012). An overview of methods maintaining diversity in genetic

algorithms. International journal of emerging technology and advanced engineering,

2(5), 56-60.

Hemmelmayr, V., Doerner, K. F., Hartl, R. F., & Rath, S. (2013). A heuristic solution method

for node routing based solid waste collection problems. Journal of Heuristics, 19(2),

129-156. doi:10.1007/s10732-011-9188-9

Hemmelmayr, V. C., Cordeau, J.-F., & Crainic, T. G. (2012). An adaptive large

neighborhood search heuristic for two-echelon vehicle routing problems arising in

city logistics. Computers & Operations Research, 39(12), 3215-3228.

Kauf, S. (2016). City logistics–A Strategic Element of Sustainable Urban Development.

Transportation Research Procedia, 16 , 158-164.

Laporte, G., Ropke, S., & Vidal, T. (2014). Chapter 4: Heuristics for the Vehicle Routing

Problem. In Vehicle Routing: Problems, Methods, and Applications, Second Edition

(pp. 87-116): SIAM.

Macharis, C., & Melo, S. (2011). City distribution and urban freight transport: multiple

perspectives: Edward Elgar Publishing.

Mancini, S. (2013). Multi-echelon distribution systems in city logistics.

Morrison, J., & Oppacher, F. (1998). Maintaining genetic diversity in genetic algorithms

through co-evolution. Paper presented at the Conference of the Canadian Society for

Computational Studies of Intelligence.

Nagata, Y. (2006a). Fast EAX algorithm considering population diversity for traveling

salesman problems. Paper presented at the European Conference on Evolutionary

Computation in Combinatorial Optimization.

Nagata, Y. (2006b). New EAX crossover for large TSP instances. In Parallel Problem

Solving from Nature-PPSN IX (pp. 372-381): Springer.

62

Nagata, Y., Bräysy, O., & Dullaert, W. (2010). A penalty-based edge assembly memetic

algorithm for the vehicle routing problem with time windows. Computers &

Operations Research, 37(4), 724-737.

Neri, F., Cotta, C., & Moscato, P. (2012). Handbook of memetic algorithms (Vol. 379):

Springer.

Polacek, M., Hartl, R. F., Doerner, K., & Reimann, M. (2004). A Variable Neighborhood

Search for the Multi Depot Vehicle Routing Problem with Time Windows. Journal of

Heuristics, 10(6), 613-627. doi:10.1007/s10732-005-5432-5

Rad, S. T., & Gülmez, Y. S. (2017). GREEN LOGISTICS FOR SUSTAINABILITY.

International Journal of Management Economics & Business, 13(3), 603-614.

Sarasola, B., & Doerner, K. F. (2018). Adaptive Large Neighborhood Search For a Vehicle

Routing Problem with Synchronization Constraints in City Logistics.

Taniguchi, E., & Thompson, R. (2002). Modeling city logistics. Transportation Research

Record: Journal of the Transportation Research Board(1790), 45-51.

Taniguchi, E., & Van Der Heijden, R. E. (2000). An evaluation methodology for city

logistics. Transport Reviews, 20(1), 65-90.

63

Deutsche Zusammenfassung

In dieser Arbeit wird ein metaheuristischer Ansatz zur Lösung eines Vehicle Routing Prob-

lems (VRP) mit Synchronisationsbeschränkungen in der Citylogistik vorgestellt. Der Algo-

rithmus generiert Lösungen, die Entscheidungen für Warenlieferungen in Stadtzentren und

Einkaufsstraßen darstellen, während Verkehrsbedingungen und -infrastrukturen zeitliche und

räumliche Grenzen für Lieferprozesse setzen. Der Datensatz enthält einen Pool von Kunden,

die Lieferungen von mehreren Trägerunternehmen erhalten. Der Versuch, diese Lieferungen

zu synchronisieren soll die Wartezeiten der Kunden zwischen den Lieferungen verringern

und damit ein besseres Timing gewährleisten. Zunächst wird eine Literaturrecherche über das

VRP in der Stadtlogistik mit dem Schwerpunkt Synchronisierung vorgestellt. Zweitens be-

schreiben wir unseren Algorithmus mit Lösungen für das VRP mit Synchronisationsbedin-

gungen, die von (Sarasola & Doerner, 2018) formuliert wurden. Die meisten Komponenten

des Algorithmus stammen von einem Penalty-basierten Edge Assembly Memetic-

Algorithmus für das VRP mit Zeitfenstern, die von (Nagata et al., 2010) vorgeschlagen wur-

den. Im letzten Kapitel werden Experimente zur Parametereinstellung und Lösungen für zwei

Gruppen von Instanzen vorgestellt, die auf realen Daten in der Stadt Linz, Österreich, erstellt

wurden.

