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Abstract 

 

 

A penalty-based edge-assembly memetic algorithm for the vehicle routing problem with synchroniza-

tion constraints in city logistics 

In this thesis, a metaheuristic approach to solve a vehicle routing problem with synchroniza-

tion constraints (VRPSC) in city logistics is presented. The algorithm generates solutions that 

represent decisions for goods deliveries in city centers and shopping streets whereas traffic 

conditions and infrastructure put time and place limits for delivery processes. The data set 

includes a pool of customers that receive deliveries from several carriers. The attempt to syn-

chronize these deliveries shall decrease waiting times of customers between deliveries pre-

serving better timing. First, literature review is presented on the VRP in city logistics with 

focus on synchronization. Second, we describe our algorithm with solutions to the VRPSC 

formulated by (Sarasola & Doerner, 2018). Most of the components of the algorithm stem 

from a penalty-based edge assembly memetic algorithm for the VRP with time windows pro-

posed by (Nagata, Bräysy, & Dullaert, 2010). Experiments for parameters setting and solu-

tions for two groups of instances generated on real-life data in the city of Linz, Austria, are 

presented in the last chapter. 
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1. Introduction 

“Continuous effort – not strength or intelligence – is the key to unlocking our potential.” 

– Winston Churchill 

Transportation solutions in city logistics are subject to the interests of many actors such as 

carriers, local enterprises, public administrators and citizens. In recent years, the routing 

problems in city logistics have gained much interest in literature as a vivid , real-life problem. 

On the one hand, fast growing cities and urbanization processes contribute much into eco-

nomic growth and community wealth; on the other hand, they introduce new issues to con-

cern under conditions of limited resources. A frequently used literature definition of “city 

logistic” was given by (Taniguchi & Thompson, 2002) and is: “the process of totally optimiz-

ing urban logistics activities by considering the social, economic, and environmental impact 

of urban freight movement and it provides an opportunity for the development of innovative 

solutions that allow to improve the quality of life in urban areas.” 

According to (Kauf, 2016; Rad & Gülmez, 2017; Taniguchi & Van Der Heijden, 2000) logis-

tics systems are crucial elements in sustainable development of a city. There is continuous 

need for choosing improvement strategies, therefore, we would like to describe main trends 

that come from literature and real-life examples concerning city logistics conceptual devel-

opment and the role of vehicle routing solutions in this framework. 

Due to increasing number of population in urban areas and the rapid growth of big cities 

nowadays, city logistics systems are gaining more and more influence on business processes 

(Cattaruzza, Absi, Feillet, & González-Feliu, 2017; Doerner, Huisman, & Suhl, 2014). It is 

emphasized by Cattaruzza et al. that transportation systems contribute to the gross domestic 

product not only by services they provide, but also by employment networks. (Macharis & 

Melo, 2011) specifies three dimensions of city sustainability: environmental, social and eco-

nomic. Also, changes in these dimensions have considerable impact on urban prosperity, 

quality of life and competitiveness of regional industries. All three dimensions have found 

their reflections in operations research. (Rad & Gülmez, 2017) investigated how logistics 
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influences these dimensions and concluded that logistic systems have a huge impact on de-

velopment of local enterprises and quality of life in the city. In addition, a “Logistic Perfor-

mance Index” was proposed by World Bank (Rad & Gülmez, 2017). Moreover, each of these 

three dimensions represents a fundament for many problem formulations to be solved by me-

taheuristics (Doerner et al. , 2014). Thereafter, a broad class of problems called Vehicle Rout-

ing Problems (VRPs) considers finding smart solutions for sustainable development of logis-

tics in urban area. Also Green Vehicle Routing Problems deal with air pollution and other 

environmental problems; the class of Vehicle Scheduling Problems serves for optimizations 

in public transport systems and numerous other VRP formulations confirm the need for opti-

mization in urban goods transportation processes (Laporte, Ropke, & Vidal, 2014; Mancini, 

2013). 

There are numerous examples that are described in the literature showing that many city lo-

gistics actors put their efforts into finding smart solutions for their city logistics systems. 

Thus, (Taniguchi & Van Der Heijden, 2000) name several city logistics initiatives in this 

field and cooperative freight transport systems are among them. Moreover, they mentioned a 

real-life example of outstanding results achieved by cooperation of concurrent carriers in 

Kassel, Germany. This cooperation results in remarkable reduction of the quantity of trucks 

in the downtown and reduces transportation costs. The prerequisite for the successful out-

come is a neutral carrier which collects the goods from all depots of concurrent companies 

and delivers them to the stores in the city center. Therefore, high level of trust between all 

actors in this system is mandatory.  

Unfortunately, lack of trust and many other circumstances may provoke problems in estab-

lishment of such cooperative systems. The most common reason is that supplier companies 

affirm that they lose their privacy in terms of commercial data sharing with others or they 

simply struggle to keep a direct connection with their customers (stores). Therefore, the 

above-mentioned example of cooperative systems cannot be adapted under these circum-

stances. If no smart solution is sought after (no consolidation or synchronization achieved), 

all delivery processes result in suboptimal distribution of deliveries at each customer point 

during the day. Lack of optimality is explained such that: a) several concurrent supplier vehi-

cles shall compete for the limited parking space to deliver their goods; b) customer shops 

must wait between deliveries. If there are longer waiting times between deliveries at one dock 

(customer node), it is complicated to handle the unloading of goods efficiently; especially if 

delivery arrives in un-predefined time, as the person who is responsible for the unloading of 
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goods may be preoccupied with other tasks. Consequently, carrier companies have higher 

drivers’ costs which stem from longer time on a route; and customer shops have to deal with 

irregular and undefined times of deliveries which may affect efficiency of sales. To find a 

good solution for this problem, a number of attempts to synchronize deliveries of concurrent 

companies can be found in the literature (Sarasola & Doerner, 2018). 

In this thesis we present solutions that accord with synchronization framework particularly. 

In Section 2 a literature review on the problem and the algorithm are presented. After prob-

lem description in Section 33. We present our algorithm in detail in Section 44. Our computa-

tional results are presented in Section 55. Finally, conclusions are discussed in Section 6. 

  



4 
 

2. Literature Review 

2.1. The Vehicle Routing Problem in City Logistics 

The VRP is one of the most studied logistics problems. The VRP is usually described as an 

extension of the Traveling Salesman Problem (TSP). The TSP minimize the Hamiltonian to 

serve deliveries from one depot to several customers where each customer must be visited 

only once. The VRP is similar to the TSP with the difference that the number of vehicles, 

which start and arrive to the same depot, is more than one. The broad class of the VRP and its 

variants is proved to be NP-hard problems; therefore, the exact algorithms cannot be imple-

mented for the bigger instances which are usually suited to real life. Hence, sophisticated 

heuristics and metaheuristics are commonly used for trying to find solutions to such problems 

with good quality and reasonable time (Polacek, Hartl, Doerner, & Reimann, 2004). 

The most extensively examined variant of these two problems is when restrictions are set on 

vehicles’ capacities. The fleet of vehicles can be either homogenous (equal capacities for all 

vehicles) or heterogenous. Since we mentioned that the VRP may include several depots, 

some variations of the routing problem stem from this condition. For example, a multi-depot 

VRP problem assumes that each vehicle can start from any depot and can return to any other 

depot at the end of the route (Polacek et al., 2004). In the VRPs distances can be symmetric 

and asymmetric (Laporte et al., 2014). Euclidean TSP and VRP problem assumes that the 

distance between each pair of nodes is the same with no re lation to direction. Non-Euclidean 

distances are often addressed as asymmetric, meaning that the associated costs for distances 

between two nodes differ in relation to such conditions as direction, time of the day, truck 

load, etc. It was emphasized by (Glover, Gutin, Yeo, & Zverovich, 2001) that greedy con-

struction heuristics perform worse on asymmetric graph than on symmetric. They developed 

a heuristic which performs better for non-Euclidean problem in comparison to commonly 

used insertion heuristics. In regard to the fact that definition of the objective costs is not 

eventless and the routing problems address a wide range of environments to work in, travel 

costs between pair of nodes may also change in response to congestion times or fuel con-

sumption due to geographic landscape or car engine (Laporte et al. , 2014). An example of an 

asymmetric graph conditions is the class of time-dependent VRPs where congestion times 

shall be respected. Real-life conditions also set another range of constraints referred to time. 

A broad class of VRP is adopted for solving routing problems with time windows. A time 
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window is a period of time when the service shall be provided. Time window constraints may 

differ depending on type of the problem (Laporte et al., 2014). 

In context of city logistics, according to (Cattaruzza et al. , 2017) the VRP modeling frame-

work is applicable for a big number of urban transportation processes such as: market and 

shopping centers distribution, parcel and post deliveries, construction works and public 

transport, waste collection (Buhrkal, Larsen, & Ropke, 2012; V. Hemmelmayr, Doerner, 

Hartl, & Rath, 2013), street services and many others. Therefore, city environment and logis-

tics systems form a complex system of processes where the city has an impact on logistics 

actors and logistics actors influence the city environment in return. 

Influence can be both positive and negative. Since the positive way of how logistics systems 

in urban areas contribute to development of a city has are already been mentioned, next we 

would like to now pay attention to the negative outcomes which arise when logistics system 

function within a city. (V. C. Hemmelmayr, Cordeau, & Crainic, 2012) indicate such nega-

tive influence factors of poor planning of logistics systems on the city environment as: con-

gestions, air and noise pollution and unmet customer demands due to late deliveries. 

The city environment has also its art how it may hinder urban logistics systems to some ex-

tension: streets infrastructure poorly adapted for augmenting traffic flows, improperly 

planned urban area infrastructures, traffic restriction due to construction works and uncon-

trolled relinking of traffic flows in these areas. Limitations in space and parking possibilities 

are especially prevalent in the downtown areas. Sometimes strict measures are implemented 

in order to reduce the negative impacts of excessive presence of vehicles in the cities 

(Cattaruzza et al., 2017). 

The current situation can be described as follows : whilst carriers, on the one hand, are look-

ing for solutions which lead to reduction of costs, distances, drivers’ travel times , how to 

avoid congestions; city community, one the other hand, is struggling to solve problems with 

air and noise pollution in the urban area, late deliveries etc. These disparities of interests are 

the breeding ground for academic research. Finding solutions to these problems improves 

quality of life in cities (Cattaruzza et al., 2017) 

It has become a common story for many countries that the local authorities of the cities have 

to react to the growing number of vehicles in the cities. By trying to minimize the harmful 

impact of logistics sector on social, economic and environmental needs of a city, a range of 

measures has become popular. Sometimes, authorities set up restrictions in access for specific 
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type or size of vehicles to particular zones of the cities either within pre-defined time periods 

or even on permanent basis (Mancini, 2013). Under these conditions, carrier companies are 

forced to switch to smaller vehicles and this leads to augmenting number of vehicles in the 

cities. Therefore, a ‘carrier-friendly’ decision was found to solve these restrictions in the way 

that city distribution centers (CDCs) are established (Rad & Gülmez, 2017). Since transporta-

tion in larger bulks between the cities minimizes harm to the environment but is unwished 

within the city centers, this framework implies that the goods are transported by full-load 

trucks to the CDCs that are situated on site of the cities. Then, more ‘environmentally friend-

ly’ vehicles of usually smaller size shall perform deliveries in the urban area. This routing 

problem is usually addressed as a two-level (two-echelon) VRP, where goods flow shall be 

synchronized (Cattaruzza et al. , 2017). For  this problem formulated as Two-Echelon VRP in 

city logistics, (V. C. Hemmelmayr et al., 2012) proposed ALNS. 

The classical TSP and VRP problem solution is often aimed at minimizing total travel costs. 

In the problem we solved here it is referred only to total travel time of all vehicles as a con-

tributor to the total costs of the solution. In the literature one can find other formulations of 

the total costs for a VRP. Each problem formulation may differ in the way how objective 

costs are calculated: distance in kilometers, in time units, fuel consumption in liters, the vehi-

cle CO2 emission, the wage of the driver according to the total time spend on the tour etc.  

A broad class of green VRP represents problems with focus on control of fuel consumption 

and minimizations of CO2 emission. Due to the variety of real life conditions, the family of 

green logistics problems is numerous. Among others, a novel bi-objective extension to the 

well-known TSP problem was proposed by (Grabenschweiger, Tricoire, & Doerner, 2018)  

for minimization of both CO2 emissions and disturbance levels in urban area. For more inter-

est of classifications one may refer to (Laporte et al., 2014). 
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2.2. Synchronization Constraints 

Routing problems with synchronization constraints are widely addressed for solving real life 

problems and the city logistics problem in particular (Drexl, 2012). (Kauf, 2016) asserts that 

establishment of common networks where transportation flows within the city are consolidat-

ed will decrease transportation flows. It also mentions that the task to synchronize the trans-

portation flows coming from concurrent carriers is also challenging. It was explained by 

(Drexl, 2012) that the interdependence of vehicles is the main reason for complexity of the 

VRPSC. The synchronization is needed when a decision shall be made for which of the con-

current vehicles consumes / delivers resources in which order. In common VRP a customer 

shall be visited only once, in other words, only one vehicle is needed to fulfill a customer’s 

order (Drexl, 2012). If any changes are made in a route of one vehicle, this shall not affect 

other vehicles’ routes. For example, if the order of customers was reversed in one route, this 

will bring no changes in the orders of customer visits on other routes. In classical VRP for-

mulation no interdependence between the routes is presumed, as it is displayed in Figure 

2.2.1. From this point of view the routes are independent from each other (Drexl, 2012).  

 

Figure 2.2.1: Independence of routes in the VRP 

On the contrary, the VRP constrained with synchronization implies that routes are interde-

pendent (Drexl, 2012). If changes are made in one route, this might cause a chain reaction of 

alterations in some other routes, or in worst case in all routes of the solution. 
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Figure 2.2.2: Interdependence of routes in the VRP 

Figure 2.2.2 depicts that vehicle 1 visits 6 customers where one has placed orders by different 

suppliers. If it happens that vehicle 1 shall visit customers in reverse order (other than in the 

figure above), the time when deliveries start will differ. This will cause changes in delivery 

times on the route of vehicle 2 and, consequently, the same will occur on the route of vehicle 

3. This chain reaction justifies that the routes are interdependent in this solution. 

The synchronization constraints were classified in the literature depending on the origin or 

shared resources and other circumstances. Thus (Drexl, 2012; Laporte et al. , 2014) define 

five groups of synchronization constraints that are commonly used in combinatorial optimiza-

tion problems: task , operation, movement, load and resource. 

In the problem we address in this work the operation and resource synchronization con-

straints are present. We induce self-imposed time windows and the delivery schedule of one 

vehicle depends on time of deliveries of others. Also, parking space is a resource that shall be 

shared among concurrent vehicles. Due to city logistics traffic and infrastructure conditions, 

vehicles are concurrent to each other in terms of place at the delivery dock. This implies that 

resource synchronization takes place: when one vehicle is performing delivery, the dock is 

busy and cannot accommodate any further deliveries. If concurrent supplier vehicle has ar-

rived when other delivery is taking place, it shall wait until the ongoing delivery is finished. 

Only after that it may start its delivery service.  
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2.3. Genetic Algorithms 

“It is not always the magnitude of the differences observed between species that must deter-

mine specific distinctions, but the constant preservation of those differences in reproduction.”  

― Jean-Baptiste Lamarck 

Genetic algorithms (GAs) represent a vast classification of nature inspired algorithms in 

computational optimization. The focal idea is that, first, an initial population (chromosomes) 

of solutions shall be generated. Solutions are then chosen as parent chromosomes which pro-

duce offspring solutions by means of crossover techniques. Mutation operator and fitness 

function are referred to as instruments to keep diversity and quality of population through 

generations. Genetic algorithms have gained an image of powerful tool showing outstanding 

results in different problem solutions. In (Gendreau & Tarantilis, 2010) literature review on 

optimization technique provide us with numerous examples of genetic algorithm. Four crite-

ria were chosen to define rating of algorithms: flexibility, efficiency, effectiveness and speed. 

Depending on variety of problem formulations, different optimization algorithms may show 

high competitiveness in one whereas lower in solving differently designed problem. 

Memetic algorithms have the same nature as genetic ones. The difference is that in memetic 

algorithms a local search (LS) phase in embed. Some authors suggest adding LS at the begin-

ning when initial population is generated to refine parent solutions before the crossover part. 

Others assume adding LS mechanism for improvement of the offspring results. According to 

(Byron & Iba, 2016; Diaz-Gomez & Hougen, 2007; Gupta & Ghafir, 2012; Morrison & 

Oppacher, 1998) diversity of population is a must for genetic algorithm’s efficiency. Also, 

better quality of initial solutions might be an advantage (Diaz-Gomez & Hougen, 2007).  
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3. Problem Description 

The VRPSC is defined on a complete graph 𝐺 =  {𝑁, 𝐴} where 𝑁 is the set of nodes, 𝐸 is the 

set of depots and, 𝑁0 = 𝑁\{𝐸} is the set of customer nodes , and 𝐴 is the set of arcs between 

every pair of nodes. Each value 𝑑𝑖𝑗 represents the distance between two nodes 𝑖 and 𝑗, 𝑖, 𝑗 ∈

𝑁. The fleet of vehicles, 𝐾, is homogeneous, each with a capacity of 𝑄 units to serve all cus-

tomers, where each customer 𝑖 ∈  𝑁0 has a non-negative order of demand 𝑞𝑖. The capacity of 

the vehicle cannot be violated:  

∑ 𝑞𝑖 ∗ 𝑥𝑖𝑗𝑘

𝑁

𝑗=0

≤ 𝑄     ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾  

Each vehicle is assigned to one depot location 𝑘𝑒, where 𝑒 ∈ 𝐸 . Every customer has a service 

time ℎ𝑖 and a self-imposed time window [𝑒𝑖 , 𝑙 𝑖], in which all services must start and end. If a 

vehicle arrives at customer node 𝑖 before its current 𝑒𝑖 , the 𝑒𝑖  and 𝑙 𝑖 will be updated such that 

𝑒𝑖  shall equal to arrival time of the first vehicle arrived at customer 𝑖 and 𝑙𝑖 will be calculated 

in response to time-window length constraint (more in Section 4.1). If a vehicle would arrive 

after 𝑙 𝑖 at the customer node 𝑖 , then the schedule would be infeasible. Each customer can 

handle only one delivery at a time. If more than one vehicle arrives at customer node, deliver-

ies shall be started sequentially. The service start shall be conducted on first come first serve 

basis and the vehicle which arrived later shall wait until the dock becomes idle. In0 we give 

more information on the calculation of the self-imposed time-windows which was previously 

developed and adapted for test instances by (Sarasola & Doerner, 2018). More precisely, the 

waiting time of the dock as referred by them to as time between deliveries when the dock 

(customer) remains idle, also called as idle dock time. The idle dock time is the only con-

tributor to the “bad” synchronization of current solution. 

The time on route 𝑇𝑚𝑎𝑥
𝑑𝑎𝑦

 is limited to 12 hours (work day length) and presumes that each vehi-

cle shall return to the depot before or exactly at this point of time. No split-deliveries are al-

lowed; hence each order shall be supplied in one visit of the corresponding vehicle. The syn-

chronization of deliveries is meant to be met when the self-imposed time windows are not 

violated by any of the order deliveries. The route length time is met when all vehicles return 

to their depot location before or at the end of the work day. 
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The objective of the problem is to minimize the total travel costs: 

∑ ∑ ∑ 𝑥𝑖𝑗𝑘 ∗ 𝑑𝑖𝑗

𝑚

𝑘∈𝐾

𝑛

𝑗∈𝑁

𝑛

𝑖∈𝑁

→ 𝑚𝑖𝑛 

where: 

𝑥𝑖𝑗𝑘 = {0,1} ∀𝑖 ≠ 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾. If 𝑥𝑖𝑗𝑘 ≡ 1, the corresponding vehicle 𝑘 visits customer 

node 𝑖 before 𝑗 on a route, else 𝑥𝑖𝑗𝑘 ≡ 0.  
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4. Solution Method 

In this section we provide a more detailed description of the algorithm and insights about 

decisions made for implementation. Most of the components of the (Nagata et al., 2010) algo-

rithm were used to solve the problem presented here.  The algorithm components are depicted 

in the Figure 4.1: EAMA : 

 

 

Figure 4.1: EAMA components 

First, initial solutions are generated. Similar to (Nagata et al., 2010) we use a randomized 

construction heuristic which generates solutions which may differ in the number of routes. 

The crossover operator requires a pair of parent solutions that have the same number of 

routes. Therefore, during the construction heuristic, those solutions that fit the requirements 

(feasible and containing a particular number of routes) are kept for the initial population of 

the memetic algorithm (MA). Thus, we performed pre-run tests for a group of instances to 

define the number of routes as criteria for solutions to be kept for the MA or deleted from the 

population (Appendix B & C). Next, a crossover operator is initiated in order to produce in-

termediate solutions. The number of intermediate solutions to be processed for each pair of 

parents is also subject to adjustments since the runtime of the algorithm must be kept in rea-
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sonable time scales. When an intermediate solution is generated, a feasibility check shall be 

performed. If the solution is feasible it goes directly to the LS phase; if not, it undergoes a 

repair procedure. A selection criterion for both repair and local search operators is set to be 

random. Repair and LS procedures are stopped when the maximum time is reached. Depend-

ing on the size of instances, the time planned for the LS and the repair procedure was adjust-

ed.  The stopping criteria for the whole run of the EAMA was set to either the number of 

generations or a time limit of 10 minutes for the instances. 
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4.1. Self-Imposed Time Windows 

We handle synchronization constraints by keeping records of both time windows and delivery 

schedule for each customer node. In this master thesis we use self-imposed time windows, 

hence the beginning and the end of time intervals when the services should take place are not 

predefined but calculated during the run of the algorithm. The way how self-imposed time 

windows are calculated was adjusted to the needs of our problem. All delivery records are 

directly linked with schedule records. In our case, the schedule contains the following data 

for each customer: arrival time of a vehicle at the customer node, service start time, time of 

the service end (Figure A.3: Deliveries records). 

The time windows are assigned when the initial routes (containing only one order each) are 

built. It is explained by the fact that the arrival time of the vehicle at its initial tours represents 

the earliest possible arrival time to a customer. The time-window start of a customer 𝑖, denot-

ed as 𝑒𝑖 , is assigned with the arrival of the first vehicle. When initial tours are built, 𝑒𝑖  is cal-

culated as start of the working day time plus distance from the depot to the customer, and  

time-window end 𝑙 𝑖 refers to as:  

𝑙 𝑖 =  𝑒𝑖 + (𝑤 + 1) ∗ ℎ𝑖 ∗  𝑛𝑖𝑘 

where 𝑛𝑖𝑘 is the number of vehicles k currently assigned to this customer 𝑖, w is a user de-

fined maximum time allowed, and ℎ𝑖 is service length time at customer node 𝑖.  

Calculation of the allowed waiting time is controlled by the number of deliveries assigned to 

the customer, such that the more orders customer 𝑖 has, the longer the allowed time-window 

is. When the algorithm merges two routes (ex. route 𝐴 and route 𝐵), each merge reduces the 

number of routes by one (orders of route 𝐵 will be appended at the end of route 𝐴, then route 

𝐵 will be deleted). This move will bring the following updates in the schedule: the vehicle 

which serves orders on route 𝐵 will be deleted from customers schedules of this route and 

will be replaced by the vehicle of route 𝐴. Proving whether this merge is feasible or not, we 

need to recalculate schedules and, consequently, time windows of all customers that were 

assigned to the route 𝐵 . Synchronization constraint violation consists of two elements: 

whether violation of the time window is at the customer 𝑖 or at any of the subsequent custom-

er nodes of this route. As a result, the time windows feasibility check shall be executed not 

only at customer 𝑖, but at all subsequent customer nodes of the route 𝐵. Time window viola-

tion is true at customer 𝑖 if the end of the last service assigned to customer 𝑖 exceeds the time 
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window end of this customer. As soon as this statement is true for at least one customer of the 

route, merging of the routes will not be accepted. 

 

4.2. Construction Heuristic 

Construction heuristics for the VRP vary in different characteristics; they can be greedy or 

randomized. The preferences for using different construction heuristics mostly depend on the 

type of problem, compliance with further steps of the metaheuristics, computational time 

consumption and input data.  A range of issues were addressed in the literature to define what 

makes a construction heuristic a good one for a specific problem and why. In our case, the 

test instances are built on the asymmetric graph, and this issue was considered when imple-

menting the construction technique. 

Another point to mention is that solutions resulting from the construction phase shall meet the 

needs of further steps in the algorithm. In terms of GAs, construction heuristics shall provide 

a well-diversified initial population of solutions. Sometimes, the feasibility of initial so lutions 

is not a prerequisite for acceptance to participate in the genetic part of the algorithm, but in 

our case the initial solutions are always feasible.  

The construction heuristics in this work is a GRASP metaheuristic based on the Savings Al-

gorithm (SA). The SA was first described in 1964 by (Clarke & Wright, 1964). It is a com-

monly used construction heuristic for a set of the VRP problems (V. C. Hemmelmayr et al., 

2012). The calculation of savings is the central part of the algorithm. 

This is a heuristic method and it justifies that this algorithm is able to provide good quality 

solution for small size problems. In respect to the medium and big size problems (more than 

15 orders) this algorithm can serve as a construction heuristic, as a pre-step for the metaheu-

ristic phase in optimization processes. The SA has become the one that is widely used for 

constructing initial solutions as it is fast and easy to implement. 

The saving means the reduction of costs of a solution if two tours are merged. The Figure 

4.2.1, depicts how two tours are connected in a way that the saving in costs is present. Node 0 

is the depot, nodes 𝑖 and 𝑗 are the customer nodes. 
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Figure 4.2.1: Merging two tours based on savings 

In Figure 4.2.1 (a) there are two tours that contain one customer each: 𝑖 and 𝑗. The vehicles 

start at the depot 0, visit the customers and return to the depot. In this case a) the customers 

are visited separately and it results in transportation costs (in our case distance) 𝐷𝑎: 

𝐷𝑎 = 𝑑0𝑖 + 𝑑𝑖0 + 𝑑0𝑗 + 𝑑𝑗0 

Where 𝑑𝑖𝑗 is the distance costs between nodes 𝑖 and 𝑗. On the figure the b) and c) illustrate 

that two tours are merged in different ways with respect to direction. Therefore, for the b) 

illustration the distance costs are calculated as:  

𝐷𝑏 = 𝑑0𝑖 + 𝑑𝑖𝑗 + 𝑑𝑗0 

Next, for the c) illustration the distance costs are calculated as:  

𝐷𝑐 = 𝑑0𝑗 + 𝑑𝑗𝑖 + 𝑑𝑖0 

To calculate the saving, we now use the a) and b) illustrations, and it amounts to the differ-

ence in costs between the total distance of two solutions:  
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𝑆𝑖𝑗 = 𝐷𝑎 − 𝐷𝑏 = 𝑐𝑖0 + 𝑐0𝑗 − 𝑐𝑖𝑗 

The saving in merging the routes as in the c) illustration is calculated equivalently to the for-

mula above.   

The larger the saving is the more reasonable it is to merge the routes. In the savings in the b) 

and c) illustrated solutions will differ on the asymmetric graph. 

In this thesis we apply the parallel version the SA that means more than one route is being 

built at a time. 

It is also important to mention that since we are dealing with asymmetric distances, all sav-

ings are calculated for both variants, as if to merge 0 − 𝑖 − 0 with 0 − 𝑗 − 0 routes into either 

0 − 𝑖 − 𝑗 − 0 or the saving will be more attractive for  0 − 𝑗 − 𝑖 − 0 route. It results into 2 

savings units to be calculated and added to the savings list for the same pair of customers 𝑖, 𝑗, 

∈ 𝑁. 

The role of Restricted Candidate List (RCL) for GRASP is fulfilled by list of savings from 

Clark & Wright’s Algorithm. Thus, the range of diversification can be controlled through 

candidate ratio, α. 

𝛼 ≡  0 Savings algorithm 

0 <  𝛼 <  1 GRASP 

𝛼 ≡  1 Random heuristic 

Table 4.2.1: Algorithm type in respect to 𝜶 value 

Thus, some randomness has been added into the greedy SA that provides diversification of 

the initial solutions. First, we choose the number of instance to be read, and customer ratio 𝛼, 

that is to provide a random choice from savings list. Next, there is waiting time allowed to be 

indicated which is a crucial component for building up and updating self-imposed time win-

dows each time an order gets assigned to a route.  

The larger the idle time indicator is the longer is the time window constraint. Large waiting 

time indicator value results in solutions with longer dock idle times. In order to meet better 

synchronization, we want to minimize the total idle dock times, that means we allow relative-

ly low level of waiting time between the deliveries (Sarasola & Doerner, 2018). Additionally, 

if the allowed waiting time is suspended meaning all deliveries shall take place immediately 
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after each of the previous one, the algorithm will result in solutions with large number of 

routes which will harm our attempt to minimize the tota l transportation costs. That’s why the 

allowed waiting time is the instrument in order to find the tradeoff between minimizing total 

idle dock times and total transportation costs. 

Stepwise the algorithm goes as follows: 

1. Distances for all elements (customer locations, depot locations) are read from the file 

and saved to a distance matrix. The distances are represented as travel times and are  

given in minutes, with three decimal positions and the time units are multiplied by 

1000 for ease in calculations with integer numbers as was also done by (Sarasola & 

Doerner, 2018). 

2. The user is asked to indicate RCL ratio value 𝛼 =  [0.0, 1.0] and the waiting time al-

lowed indicator 𝑤 =  [0, 𝑚𝑎𝑥].  

3. Savings values are calculated and recorded in a list. Since each customer node is not 

linked to all depot locations, there is no need to calculate savings for arcs which will 

never be built. There are several depots that share same customer locations and it 

should be considered by building the savings list. Thus, the depot id is attached to 

each saving in the list. 

4. Initial routes are built with only one customer order included into each route. The cost 

is the sum of time consumed by each vehicle to go from the depot to the correspond-

ing customer node and back to the depot. The self-imposed time window of each cus-

tomer node shall be calculated whereas the start is the time of the earliest arriving ve-

hicle, and the time window end is set. The schedule of services is established for the 

vehicles according to the first come first serve rule. A vehicle can start the delivery 

service as soon as it arrives at the customer node and if the customer is idle, otherwise 

the vehicle has to wait. 

5. Until the savings list is not empty pairs of routes which belong to the same depot are 

tried to be merged:  

i.  A saving value for a pair of customer nodes 𝑢𝑖 and 𝑢𝑗 is picked out from the RCL; 

ii.  The chosen customers must be on positions such that: a) 𝑢𝑖 is the last customer 

visited on a route 𝐴; b) 𝑢𝑗 is the first visited customer on a route 𝐵; c) 𝐴 ≠  𝐵; 
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iii.  If such tours are found, constraints violation is examined, else step v. is executed. 

Constraints are proved to be held if: a) tour loads do not exceed vehicles’ capaci-

ty; b) time window constraints and maximum route time restrictions at each cus-

tomer node of all routes are not violated; 

iv. If merge is feasible, routes are merged; 

v. The current saving record is deleted from the RCL. 
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4.3. Memetic Algorithm 

4.3.1. Cross-over Operator 

The edge-assembly crossover operator (EAX) was chosen because it provides good results in 

the literature when dealing with the TSP and the VRP. In (Nagata et al., 2010) the EAX oper-

ator was implemented to find solutions for the VRP with time windows. Because of this and 

since we are using self-imposed time windows, we implement the EAX for our problem. 

(Nagata et al., 2010) have proposed the EAX for directed graph which takes into account 

edge direction when building intermediate solutions. This has made the EAX applicable for 

time constrained problems. 

The crossover procedure goes as follows. Two parent solutions are randomly chosen. A 𝐺 set 

is the set of edges that is built in such a way that it contains only unique edges from parent 𝐴 

and parent 𝐵, and no similar edges from these two solutions. In our case we change the vector 

solution representation of the parent solutions into the edge representation1, and add all edges 

of parent 𝐴 into the 𝐺 set. Next, we choose each edge of parent 𝐵 and add them to the 𝐺 set if 

such an edge is not present yet in the 𝐺 set. If it happens that the edge already exists in the 𝐺 

set, we don’t add it and we delete the similar one found from the 𝐺 set. As a result, the 𝐺 set 

will contain only unique edges from both parents. Important to mention that during this step 

the two edges are defined as similar ones if and only if both the nodes and the direction are 

the same (Nagata, 2006a, 2006b). 

The 𝐺 set is then used in order to build the 𝐴𝐵 cycles which will form an 𝐸 set, as described 

in (Nagata et al., 2010). The 𝐴𝐵 cycles are formed by iteratively adding edges from different 

parent solutions which share either an arrival or a departure node. 

As soon as the 𝐴𝐵 cycles are built, the 𝐸 set can be formed. Based on the 𝐸 set an intermedi-

ate solution will be generated.  The 𝐸 set is a set of 𝐴𝐵 cycles that are chosen to build an in-

termediate solution. During the single EAX strategy, only one 𝐴𝐵 cycle is chosen randomly 

to represent the 𝐸 set, whereas in block strategy more than one 𝐴𝐵  cycles form the 𝐸  set 

(Nagata, 2006a, 2006b). (Nagata et al., 2010) use the single strategy at the beginning of the 

genetic part. After a predefined number of iterations the algorithm switches to the block strat-

egy. The authors explain it by the fact that after a certain number of iterations the population 

                                                             
1 It was decided to use the edge-like solution representation for the EAX phase for ease of implementation. 
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achieves uniformity. If the single strategy is applied, offspring solutions have much in com-

mon with parent 𝐴  (Nagata et al., 2010). Because of this , diversity of population can be 

harmed after a while, resulting in solutions similar to each other. To prevent this, the block 

strategy is accepted (Nagata et al., 2010). Thus, the block strategy works as a more robust 

diversifier to generate intermediate solutions and consequently guard diversity in the popula-

tion. As soon as the intermediate solution is built, we translate the edge solution representa-

tion into the vector in order to start the repair procedure and the LS thereafter.   

 

4.3.2. Repair Procedure 

As proposed by (Nagata et al., 2010), the repair procedure consists of three neighborhood 

operators: 2-Opt, Out Relocate and Exchange (see Section 4.5). These operators restore fea-

sibility of the intermediate solutions by minimizing the penalty costs. Before the start of the 

repair procedure, penalties are assigned onto capacity and time constraint violations in ac-

cordance to the generalized cost function. The sensitivity tests performed by (Nagata et al., 

2010) showed that penalty costs ratios work best when both are set at 1.0. The demand excess 

of a solution is calculated as the sum of total demand excess on each route. The time win-

dows violation is calculated as the sum of all late arrivals of the vehicles to customers togeth-

er with late arrivals of the vehicles at their corresponding depots (Nagata et al. , 2010). The 

repair operators work in accordance to the best acceptance strategy. This was explained by 

(Nagata et al., 2010) as the reason not to conduct too many changes to the offspring solution 

during the repair procedure. The minimum of difference between the offspring solution be-

fore and after the repair procedure is highly desired. Also, here only those changes that min-

imize penalty costs are made and the changes in the distance costs values are not considered. 

As soon as penalties have been assigned to the intermediate solution, the procedure continues 

with choosing an infeasible route. Then three neighborhood operators try to restore the route 

feasibility. The order in which neighborhood operators are chosen is random. In one iteration 

three repair operators are activated only once in random order.  Once one operator is chosen, 

it looks for the best possible improvement on infeasible routes. The routes for repair are cho-

sen only among the infeasible ones and in random order. If the current repair operator is una-

ble to find any improvement, another operator is randomly chosen. If feasibility of the off-

spring solution has been reached, the algorithm will proceed with the LS phase, if not, the 

child solution will be deleted from the population. If all three randomly chosen operators 



22 
 

weren’t able to find improvement , a last attempt is made, i.e. new round of random repair 

procedure is set. It is justified by the fact that the following situations are often observed: first 

round of three randomly chosen operators result in poor capacity penalties. Such ‘leftovers’ 

would throw this solution out of the population. Therefore, it was decided to try a new strate-

gy: to add a second round for repair phase to eliminate the ‘leftover’ penalties. When the sec-

ond round is started, a randomly chosen operator fixes the remaining small penalties, hence, 

the solution is repaired and kept in the population. By processing bigger instances, the repair 

procedure sometimes becomes very exhausting in terms of time spend on repairing it. During 

experiments, adding the second round for repair procedure produced better results. 
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4.3.3. Local Search Procedure 

Local search implies that there is a space, i.e. neighborhood, which shall be exploited by a 

search technique. The definition of a neighborhood of a solution is presented by (Neri, Cotta, 

& Moscato, 2012) and is a set of solutions which result from applying one transaction on all 

corresponding elements of a solution. Typically, a LS mechanism starts with one solution and 

applies a single pre-defined move triggered by a neighborhood operator to generate new solu-

tions. The aim is to find one that shows a better objective value.  These solutions are com-

pared to the initial solution and if the new neighbor is better it is accepted by replacing the 

initial solution. Otherwise the initial solution is kept. The LS procedure is executed while the 

stopping criteria are not met. Usually, such criteria are the predefined number of iterations 

when no improvements were found or the time limit. A general description of LS procedure 

was demonstrated by (Gendreau & Potvin, 2010) and is presented below: 

 

Figure 4.3.3.1: LS algorithm2 

There are two widely used techniques to implement neighborhood operators: the first ac-

ceptance and the best acceptance strategy (Bräysy & Gendreau, 2005). The common feature 

for both strategies is that the better solution replaces the worse one. What differs is which 

solutions shall be compared. The first acceptance implies that at each iteration the current 

neighbor solution is compared to the initial solution which gets immediately replaced if the 

current neighbor proves to be better. If replacement takes place, the next iteration’s transac-

tion will involve the newly accepted better solution. In contrast, the best acceptance strategy 

works under the condition that the LS procedure runs over all possible neighbors of the initial 

solution, picks out the best one which shall be subsequently compared with the initial solu-

                                                             
2 (Gendreau & Potvin, 2010) 
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tion and replaces it if the above-mentioned condition is met. In practice, the choice of ac-

ceptance strategy relies on the computational time limitations, ease of coding or the complex-

ity of iteration transaction (Gendreau & Potvin, 2010; Neri et al. , 2012). For example, one 

step may be a swap of two variables or a change of a value that will lead to a chain of further 

calculations based on this one step. Also, justification for using one or another technique can 

be related to the nature of the algorithm behavior (Nagata et al., 2010). 

In our case, four neighborhood operators are used: 2-Opt, In Relocate, Out Relocate and Ex-

change, as it was done by (Nagata et al. , 2010), whereas only three of these excluding In Re-

locate are used in repair procedure. It was explained in (Nagata et al., 2010) by the fact that, 

for repair procedure , In Relocate cannot lead to any improvement in terms of penalties as the 

operators work only on the infeasible routes. During repair procedure only, infeasible routes 

of intermediate solutions are chosen for conduction of transactions. Therefore, In Relocate 

operator would not be able to bring any improvements in terms of feasibility. In Relocate 

increases number of customers in a route which is not wanted when the capacity or time win-

dow violation is present. 

In the Section 0, two scenarios are shown: an iterative and random LS. On the one hand, an 

iterative LS implies that the LS operators try to perform improving moves on all routes of the 

current solution until no improvement can be found or the time limit for LS is hit. On the 

other hand, in the random LS scenario, a route of the current solution is chosen randomly and 

LS operators try to find any improvements. As soon as the random LS does not discover any 

improvement moves, the LS procedure is restarted. For all experiments and solutions present-

ed, the number of restarts for the random LS was set to 5. If the number of restarts is more 

than 5 or the time limit is hit, the random LS is stopped.  
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5. Computational Results 

The algorithm was implemented in C++ on Intel® Core™ i7-4600M 2.9 GHz 16MB process 

memory, x64 precision floating point number representation. In this section, test files are pre-

sented along with the parameters setting and decisions based on iterative trials of different 

parameters values and the results in comparison to ALNS and CPLEX. 

All results presented here refer to the test instances of (Sarasola & Doerner, 2018)  down-

loaded from http://homepage.univie.ac.at/briseida.sarasola. The instances are based on real 

life data; they include distances, orders and carrier depot locations in the city of Linz, Austria. 

Two groups of instances were used. First group contains from 5 to 15 orders each. Second 

have 50, 100, 150, 200, 250 and 300 orders.  

Experiments have been conducted in parameter settings for GRASP and MA, solutions are 

collected for two groups of instance files and the results are presented as average and the best 

of 5 runs of MA for the second group in comparison to ALNS. First group of instances con-

sist of small files (5 to 15 orders) and are added in 0E . Parameters which were subject to 

adjustments are: ɑ restricted candidate list ratio, 𝑔𝑚𝑎𝑥 number of generations, size of 𝑃𝑖𝑛𝑖𝑡  

initial population, 𝑟𝑖𝑛𝑖𝑡 number of routes in initial solutions, 𝑡𝑖𝑛𝑖𝑡 maximum time allowed to 

generate initial population, size of 𝑃𝑐ℎ offspring population for each pair of parents, 𝑡𝑟𝑒𝑝𝑎𝑖𝑟 

maximum time allowed for repair procedure and 𝑡𝑙𝑠 maximum time allowed for the LS phase 

(both for each offspring solution respectively). Parameters which were constant: w waiting 

time allowed, χ and ψ penalties for constraint violation. Travel distances are presented in time 

units (minutes). The vehicle capacity Q is set to 18.0 demand units and service time s is 15 

minutes for each order delivery. Total costs are calculated as the sum of total travel time, time 

spend for services is excluded. 

On graphs with representation of geographical location of the customer and depot nodes, pre-

sented in Appendix DD, it is shown that the customer nodes are spread randomly across the 

area, forming several locations with high density of nodes. These areas represent the city cen-

ter or shopping streets. The depot nodes are placed around the area in suburban, far from the 

city center located regions.  

http://homepage.univie.ac.at/briseida.sarasola
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5.1. Parameters setting 

Solution quality of genetic phase depends on numerous factors. We would like to address 

each of them. First, we had to think of the characteristics which are wanted and/or needed for 

initial population. (Nagata et al 2009) implemented a route minimization heuristic and in sec-

tion where they describe results they mentioned that route minimization heuristic has a big 

influence on efficiency of the whole memetic algorithm as it provides solutions with possible 

minimum number of routes, hence relatively low total transportation costs. If good and di-

verse solutions are constructed, GA shall perform better. Chasing solutions with less quantity 

of routes is a common strategy for total costs minimization. Therefore, (Nagata et al., 2010) 

performed pre-run tests to define what the quantity of routes shall be in a solution so that the 

latter shall be used as initial population entity for the memetic part. 

For these reasons we conducted the same experiment with our GRASP construction heuristics 

to define the number of routes needed for a solution to fulfill the ‘parenting’ criteria.  

Determination of the minimum number of routes. The possible minimum number of 

routes 𝑟𝑚𝑖𝑛for problems with homogenous fleet is usually calculated as total sum of demands 

divided by vehicle capacity: 

𝑟𝑚𝑖𝑛 =
∑ 𝑞𝑖

𝑛
𝑖=0

𝑄
 

 It is commonly suggested that optimal solution shall contain number of routes equal or very 

close to 𝑟𝑚𝑖𝑛. Thus, minimization of quantity of routes in a solution shall usually lead to total 

costs reduction. On Figure 5.1.1 we investigate how much the quantity of routes generated by 

the SA is far from 𝑟𝑚𝑖𝑛 for the second group of test files (from 50 to 300 orders). 

It is clear from Figure 5.1.1: Comparison of the SA and approx. minimum of routes  that 

SA is not efficient enough for big and complex instances to meet the  𝑟𝑚𝑖𝑛 level for all except 

the first file with 50 orders, where the gap is 0%. On average for this set of instances the SA 

generates solutions with at 108% bigger quantity of routes than the assumed 𝑟𝑚𝑖𝑛. Addition-

ally, it shall be mentioned that 𝑟𝑚𝑖𝑛 is only assumed and cannot be considered as the exact 

one for our problem because of asymmetric distances and time window conditions. But we 

can clearly see that there exists enough space for optimization in terms of distance total costs 

and the number of routes in genetic phase shall be minimized. 
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Figure 5.1.1: Comparison of the SA and approx. minimum of routes 

Since in our case the GRASP was chosen as the construction heuristic, we would first like to 

be sure that construction phase generates better solutions than the pure SA. Second, we define 

a new minimum number of routes 𝑟𝑖𝑛𝑖𝑡  as acceptance criterion for a GRASP solution to be 

added to the initial population. Third, we had to make a decision how we should collect solu-

tions from GRASP is such a way that the obtained solutions: a) remain as much as possible in 

terms of objective function value better than the SA; b) contain the same number of routes 

equal to 𝑟𝑖𝑛𝑖𝑡; c) computational time to generate initial solutions remain reasonable. Normally, 

the 𝑟𝑖𝑛𝑖𝑡 is set less than 𝑟𝑚𝑖𝑛. It is explained by the fact that the GRASP solutions are still far 

from the optimal ones in terms of both transportation costs and quantity of routes for medium 

and big instances. This is justified on the Figure 5.1.2: Comparison of quantity of routes of 

GRASP and SA solutions which depicts that best 10% of GRASP solutions may frequently 

contain less quantity of routes than the greedy SA but if we combine this with findings from 

the figure above it is clear that GRASP is still far from the 𝑟𝑚𝑖𝑛. Better results of GRASP in 

terms of  𝑟 values are ensured by randomization which is allowed to a particular extension – 

𝑎 value. Solution costs on average are also dependent on RCL ratio ɑ. 
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Figure 5.1.2: Comparison of quantity of routes of GRASP and SA solutions 

Determination of the RCL ratio. Based on these conclusions, we decide to investigate the 

relationship between RCL ratio and solution quality and choose a constant new 𝑟𝑚𝑖𝑛 to ac-

cumulate solutions with less routes and lower costs possible. These solutions will be the best 

fit to form the initial population for further MA phase. This decision process consists of sev-

eral steps. For the GRASP we conduct tests with different RCL ratio (ɑ). By choosing itera-

tively values of ɑ the aim was to disclose which ɑ gives better costs. The tests go as follows. 

The GRASP algorithm ran 100 times to form a group of 100 feasible solutions whereas each 

run was started with different value of ɑ. Then, the best cost from each group were kept in 

respect to its ɑ value. An example of the results for a file with 150 orders is as follows3: 

RCL 
(ɑ) 

Number 
of routes Total costs 

Total idle dock 
time 

Total idle vehicle 
time 

RCL 
size 

0.0002 28 940 439 0 178 185 1 

0.0003 24 877 152 0 150 335 2 

0.0005 25 891 796 0 141 603 3 

1  31 1 533 452 0 167 894 7428 

Table 5.1.1: Solution costs by different RCL ratio values for an instance with 150 orders 

This test was conducted for each instance to see which RCL ration shows better results in 

comparison to other ɑ  values. Table 5.1.1 shows that the lowest total costs were reached 

when only to best savings positions are included into the RCL. For all test instances the fol-

lowing was found: a) by choosing a particular RCL ratio, GRASP outperforms the greedy SA 

                                                             
3 Results of all tests for medium and big instances are in (A) 
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in each test instance; b) solution costs become more sensitive to RCL ratio with larger in-

stances; c) there is no fixed border on continuous horizon of ɑ values which generate better 

solutions; what can be detected is an approximate ɑ value when GRASP tends to generate 

better solutions more often.  

 

Figure 5.1.3: Best GRASP solutions in respect to RCL size 

As in the Figure 5.1.3: Best GRASP solutions in respect to RCL size  we can see the results 

of best GRASP solutions for instance # 2 with 100 orders. It is shown that better solutions are 

frequently met when relatively small randomness is allowed. For example, best GRASP solu-

tions for 18 of 20 files were achieved with such ɑ values that RCL size was between 2 and 7 

positions which is less than 0.002% of total number of savings positions. Two smallest in-

stances 50 orders each showed to be an exception with 46 positions in RCL for best GRASP 

solutions. 

Determination of the 𝒓𝒊𝒏𝒊𝒕 for the initial population. Thereafter, the ɑ was chosen and it 

was possible to proceed to the next step. First, we set GRASP to generate 100 solutions with 

recently found best ɑ value. Second, we investigate the results upon four characteristics: min-

imum and maximum quantity of routes met, routes number most frequently met in 100 solu-

tions and in 10% best solutions respectively. 

The tests described above helped us to explore to which extend GRASP can improve the SA 

solutions on 20 files of different size. We were able to access which RCL ratio tends to give 

better results and at what level 𝑟𝑖𝑛𝑖𝑡  shall be set for the step when initial population shall be 

generated. The parameters we chose also gave the possibility to generate initial population in 

the next steps in time less or equal constant 𝑡𝑖𝑛𝑖𝑡 for files of 50 to 300 orders.  
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Summary of both tests. We investigated number of routes in the solutions and we used the 

best RCL ration obtained in the test above. The results in Table 5.1.2: Quantity of routes 

and CPU times for solutions with different ɑ values  generalize our findings from both tests 

together. The time to generate one solution is less than 1 second for each of the instances. 

  RCL (ɑ) 

Minimum 
number 
of routes 

Maximum 
number of 
routes 

Frequent 
number 
of routes 

Frequent 

number of 
routes among 
best 10 % 
solutions 

vrpsc-300-6-19.csv 0.00024 42 49 46 44 

vrpsc-300-6-18.csv 0.00024 46 54 49 46 

vrpsc-300-6-17.csv 0.00024 45 53 49 46 

vrpsc-300-6-16.csv 0.00020 45 52 48 45 

vrpsc-250-5-15.csv 0.00040 41 47 43 42 

vrpsc-250-5-14.csv 0.00030 38 46 42 40 

vrpsc-250-5-13.csv 0.00030 38 47 43 40 

vrpsc-250-5-12.csv 0.00050 37 45 42 39 

vrpsc-200-4-11.csv 0.00050 36 44 41 39 

vrpsc-200-4-10.csv 0.00040 31 42 37 33 

vrpsc-200-4-9.csv 0.00030 31 38 36 33 

vrpsc-200-4-8.csv 0.00040 32 38 36 34 

vrpsc-150-3-7.csv 0.00050 27 35 32 29 

vrpsc-150-3-6.csv 0.00030 30 35 32 26 

vrpsc-150-3-5.csv 0.00096 30 35 32 30 

vrpsc-100-2-4.csv 0.00090 18 25 22 20 

vrpsc-100-2-3.csv 0.00050 13 20 16 14 

vrpsc-100-2-2.csv 0.00070 15 21 19 16 

vrpsc-50-1-1.csv 0.01900 6 7 6 6 

vrpsc-50-1-0.csv 0.01900 5 6 5 5 

Table 5.1.2: Quantity of routes and CPU times for solutions with different ɑ values 

Based on these conclusions, we decided to use the frequent number of routes in best 10% 

solutions as the new rinit and the 𝑎 as constant parameters for each file in further computa-

tional experiments. Since time consumption as depicted above stayed in reasonable scales, 

these parameters ensured ability to generate initial population for the MA in less than 3 sec-

onds also for files with 300 orders. 

Concerning further steps, 1 minute tests were conducted for all files in order to meet a deci-

sion about the remaining parameters for the MA such as: 𝑔𝑚𝑎𝑥 number of generations, size of 

𝑃𝑖𝑛𝑖𝑡  initial population, size of 𝑃𝑐ℎ offspring population for each pair of parents, 𝑡𝑟𝑒𝑝𝑎𝑖𝑟 max-
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imum time allowed for repair procedure and 𝑡𝑙𝑠 maximum time allowed for the LS phase, 

whereas 𝑡𝑖𝑛𝑖𝑡 was set to 3 seconds, 𝑎 and 𝑟𝑖𝑛𝑖𝑡  as in Table 5.1.2: Quantity of routes and 

CPU times for solutions with different ɑ values . The decisions were made by iterative trials. 

Generally, time for calculation of scheduling conditions and self-imposed constraints were 

most challenging in terms of time consumption. This resulted in the following parameters 

setting for the EAMA phase: 

Instances 

groups by # of 

orders 50 100 150 200 250 300 

𝑔𝑚𝑎𝑥 50 25 25 25 25 25 

𝑃𝑖𝑛𝑖𝑡 25 6 6 6 6 6 

𝑃𝑐ℎ 5 4 4 3 3 3 

𝑡𝑟𝑒𝑝𝑎𝑖𝑟 2s 4s 5s 6s 6s 7s 

𝑡𝑙𝑠 3s 6s 10s 10s 10s 10s 

Table 5.1.3: Parameters for the EAMA 

 

  



32 
 

5.2. Results of the EAMA 

In this section we present results of our EAMA compared to ALNS for instances with 50 to 

300 orders. Comparison on small instances 5 to 14 orders are provided in comparison to 

ALNS and CPLEX solutions and are attached in Appendix E (Sarasola & Doerner, 2018). 

The EAMA algorithm was executed 5 times and the results are presented in the Tables 5.2.1 

and 5.2.2. The total costs of each run of the EAMA represent only feasible solutions. For 

each of the instances the total average and the best costs are recorded. For each run, the best 

known feasible solution was recorded after 10 minutes (including the construction phase) and 

then the algorithm stopped. 

In the previous sections we described two LS scenarios we used. The results in Error! Refe-

rence source not found. were generated by means of the iterative LS procedure along with 

the corresponding RCL ratio and the minimum number of routes for the construction phase. 

Instance Orders ALNS EAMA Average EAMA Best 𝑎 𝑟𝑖𝑛𝑖𝑡 

0 50 198 770 200822.80 1.03% 200035.00 0.64% 0.019 5 

1 50 145 840 147891.20 1.41% 147294.00 1.00% 0.019 6 

2 100 408 130 451564.00 10.64% 446114.00 9.31% 0.0007 16 

3 100 350 090 385355.40 10.07% 382176.00 9.17% 0.0005 14 

4 100 408 590 461089.20 12.85% 449393.00 9.99% 0.0009 20 

5 150 564020 649223.40 15.11% 633844.00 12.38% 0.00096 30 

6 150 570730 608570.80 6.63% 594825.00 4.22% 0.0003 26 

7 150 501060 609517.00 21.65% 596683.00 19.08% 0.0005 29 

8 200 673430 811134.80 20.45% 787674.00 16.96% 0.0004 34 

9 200 698160 844387.40 20.94% 823575.00 17.96% 0.0003 33 

10 200 647190 723978.20 11.86% 714737.00 10.44% 0.0004 32 

11 200 650640 757230.00 16.38% 733981.00 12.81% 0.0005 39 

12 250 767190 921409.00 20.10% 892473.00 16.33% 0.0005 39 

13 250 861680 1033166.00 19.90% 1025850.00 19.05% 0.0004 40 

14 250 778000 951851.40 22.35% 919154.00 18.14% 0.0003 40 

15 250 945940 1121290.00 18.54% 1107490.00 17.08% 0.0004 42 

16 300 1103970 1338148.00 21.21% 1323070.00 19.85% 0.0002 45 

17 300 1115430 1310964.00 17.53% 1250050.00 12.07% 0.00024 46 

18 300 965370 1178646.00 22.09% 1139910.00 18.08% 0.00024 46 

19 300 1048080 1224656.00 16.85% 1185430.00 13.10% 0.00024 44 

 Average: 670115.50 786544.73 15.38% 767687.90 12.88%     

Table 5.2.1: EAMA results for instances 0 to 19 - time limit 10 minutes - Iterative LS 
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The size of initial population was set to 25 and 6 for 50 orders and more respectively. In all 

instances except 0 and 1 which consist of 50 orders the time limit was hit before the 25th gen-

eration was processed. 

The results from Table 5.2.1 depict that the algorithm produces solutions that lay in smaller 

gap from ALNS for instance #3, in comparison to instances #2 and #4 even if quantity of 

orders remains the same. It may depend on distances between the nodes and how they are 

spread over the area. In Appendix D it can be clearly seen that the nodes in the instances #2 

and #4 are located more dense and closer to each other than in the instance #3 where some 

customer locations are spread more evenly over the bigger area. 

The best solutions generated by the EAMA with the iterative LS strategy are at 12.88% from 

the ALNS. The average results of the EAMA are at 2.5% worse than the best ones. 

Instance Orders ALNS EAMA Average EAMA Best 𝑎 𝑟𝑖𝑛𝑖𝑡 

0 50 198 770 199897.00 0.57% 198940.00 0.09% 0.019 5 

1 50 145 840 148371.80 1.74% 147853.00 1.38% 0.019 6 

2 100 408 130 460319.60 12.79% 452895.00 10.97% 0.0007 16 

3 100 350 090 386102.80 10.29% 379840.00 8.50% 0.0005 14 

4 100 408 590 473955.60 16.00% 469293.00 14.86% 0.0009 20 

5 150 564020 652040.20 15.61% 614774.00 9.00% 0.00096 30 

6 150 570730 648091.20 13.55% 636647.00 11.55% 0.0003 26 

7 150 501060 638005.00 27.33% 628550.00 25.44% 0.0005 29 

8 200 673430 837635.20 24.38% 806948.00 19.83% 0.0004 34 

9 200 698160 902006.40 29.20% 886976.00 27.04% 0.0003 33 

10 200 647190 740423.60 14.41% 724309.00 11.92% 0.0004 32 

11 200 650640 769611.60 18.29% 742020.00 14.04% 0.0005 39 

12 250 767190 962685.00 25.48% 928773.00 21.06% 0.0005 39 

13 250 861680 1080086.00 25.35% 1056980.00 22.67% 0.0004 40 

14 250 778000 990607.00 27.33% 973816.00 25.17% 0.0003 40 

15 250 945940 1170380.00 23.73% 1156150.00 22.22% 0.0004 42 

16 300 1103970 1416150.00 28.28% 1405390.00 27.30% 0.0002 45 

17 300 1115430 1386426.00 24.30% 1362950.00 22.19% 0.00024 46 

18 300 965370 1241098.00 28.56% 1211560.00 25.50% 0.00024 46 

19 300 1048080 1232350.00 17.58% 1221650.00 16.56% 0.00024 44 

 Average: 670115.50 794977.17 18.81% 779542.20 16.62% 
  

Table 5.2.2: EAMA results for instances 0 to 19 - time limit 10 minutes - Random LS 

The above results show that our EAMA could find results for instances with 50 to 300 orders 

with around 16.62% gap in comparison to ALNS considering the best solution out of 5 runs 

per each instance. The random LS used here showed solutions at 3.74% higher costs than the 
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iterative LS scenario. The results show that the instance #3 is easier to solve than the #2 and 

#4 in both LS scenarios.  

The reason to choose two different LS procedures was to try to reach more generations within 

the same time of 10 minutes. With the random LS scenario one generation is processed faster 

than with the iterative LS.  

The above results showed that even if the iterative scenario lies much lower in speed, approx-

imately 3.5 times slower to go through one generation than the random LS scenario, the ex-

haustive search techniques almost always deliver better solutions on average over all instanc-

es. Speaking about the best solutions reported, the random LS outperformed the iterative pro-

cedure only in three positions for instances #0, #3 and #5 containing 50, 100 and 150 orders 

respectively.  It can be explained by the fact that the random LS scenario has processed more 

generations in 10 minutes and the algorithm has gained its gravity. But for the rest of the test 

instances the iterative LS scenario generated better solutions than the random LS. Therefore, 

we observed that even if the iterative LS scenario processes fewer generations during the 

same amount of time it finds better solutions and improves the quality of solution in each 

generation better than the random LS. This results in better algorithm performance. 

It is also important to mention that most of the computational effort was incorporated in cal-

culating the synchronization. Because of the interdependence of the routes, each transaction 

of the LS or repair operators triggered longer processing times for recalculation of delivery 

schedules and self-imposed time windows for the corresponding customer nodes. This has 

put a challenge in choosing such size of the population and the number of generation that can 

be processed with this size in 10 minutes. It was a tradeoff decision and it explains the fact 

that for instances containing 50 orders the initial population size was 25, when for the 100 

orders instances and more the size was decreased up to 6 solutions.  

Next, we would like to show how the memetic part of the algorithm was incorporated in or-

der to improve the solutions generated by GRASP. The figure below depicts how the MA 

contributes to improvement of a solution (this graph is built on the part of one of the EAMA 

solutions for instance #0 with 50 orders).  
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Figure 5.2.1: Improvement in the memetic phase 

Figure 5.2.1 contains the records of the best-known solution during one run of the algorithm 

(the longest sequence starting from 214949 to 204996) and the “parent 𝐴 – offspring” solu-

tions pairs. As we mentioned before, the EAX crossover operator produces offspring solu-

tions that tend to be very similar to parent 𝐴 that is why we illustrate only these pairs here. 

Interestingly, it may not always be the rule that the parent solutions with lower costs will 

produce offspring solutions better than those produced by the parent solutions with higher 

costs. It is demonstrated in Figure 5.2.1. For example, the parent 𝐴  solution, from the pair 

“Parent-Offspring 4”, with costs 214949 brought an offspring solution which after the repair 

and LS procedures showed costs at 213638 leve l. However, the next attempt (“Parent-

Offspring 5”) was made and a child solution was built on base of the parent solution with 

216836 costs. This parent solution 5 has obviously higher costs than the previous one. But 

nevertheless, the new offspring solution from parent 5, tuned by LS improvement, could 

reach the 209875 costs, thus hitting the best-known costs level at that step of the algorithm. 
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6. Conclusion 

Finding smart solutions for city logistics problems contribute to the benefits of all local eco-

nomic actors. These solutions have also a considerable impact on the quality of life in the city 

and all city development processes. In this thesis we have provided a literature review on 

what the city logistics components are, how they interact with each other and which termi-

nology can be used in measuring the effectiveness and efficiency of the city logistics systems.  

First, we give a brief description of the VRP problems and their implications in real-life situa-

tions in the context of the city logistics. The provided examples stem from the latest research 

results and show that the routing solutions in urban areas serve for optimization in a broad 

range of industries, service environments and interactions between all economic , environ-

mental and social units in the city. Neglecting the need for optimization shall drastically harm 

the development processes and functionality of the city logistics system in general. Several 

examples of single and multi-objective optimization techniques have been mentioned to 

strengthen the idea of adapting each problem formulation closest possible to the real-life 

needs.  

Second, the VRP is usually presented as one of the most famous classes of routing problems 

in the literature and we have presented several examples to support this idea, whereas we 

included the results from the literature review specifically on city logistics problems. Hence, 

the VRPSC is here shown to be part of the city development concept. In the problem we ad-

dress in this thesis the operation and resource synchronization constraints are embodied and 

several examples have been illustrated to depict the nature of interdependency of the routes in 

the VRP and how these constraints may increase complexity of the problem. Inclusion of 

time-dependency in the VRP poses a challenge for optimization techniques, as it was also 

assumed by (Cattaruzza et al., 2017). It was also shown in this thesis that the interdependence 

of the routes brings considerable difficulties in the process of optimization in terms of im-

plementation of the metaheuristic part and the computational time to generate good-quality 

solutions. Starting with general description of synchronization constraints we further provide 

implementation details and comments on challenging parts we faced in dealing with synchro-

nization constraints in the VRP. 

We have implemented the EAMA, proposed by (Nagata et al., 2010) for the VRP with time 

windows, to solve the VRPSC. The construction heuristics is GRASP based on the savings 
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algorithm. We present decision making aspects of parameters setting for both construction 

and memetic part of the algorithm. The computational results are shown in comparison to 

ALNS within 10 minutes processing time of the algorithm. Two different LS scenarios are 

implemented and compared: the iterative and random LS procedures. 

From the perspective of the results of this thesis the follow-up research is needed to develop 

more straightforward way to calculate the violation of the synchronization constraints under 

conditions of route interdependence. This shall decrease the computational efforts for pro-

cessing one generation of the memetic part, giving more possibilities for the algorithm to gain 

its gravity and to deliver better results. Also, the experiments with the different LS techniques 

support this position.  
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A. Appendix 

Solution, synchronization of deliveries and self-imposed time windows representation: 

Code lines Comments and illustrations 

 
 
 
class Solution { 
public: 
 typedef struct { 
  int depot; 
  int vehicle_num; 
  double duration; 
  double 
idle_time_veh; 
  double 
idle_time_cus; 
  double load; 
  std::vector <int> 
customers; 
 } Route; 
 
 double total_duration; 
 double to-
tal_idle_time_docks; 
 double to-
tal_idle_time_veh; 
 std::vector<Route> 
routes; 
}; 

 

 

Figure A.1: Solution representation 

Vehicle idle time refers to a situation if the vehicle has 

already arrived at customer point but waits idle and 

cannot start service because the dock is busy.  

Dock idle time occurs each time when service end 

time of one vehicle is earlier than arrival time of the 

next vehicle at each customer point. 
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void build_initial_routes(const 
vector<vector<int>> 
&depots_their_customers, const 
vector <depotInfo> 
&depotsInfoRead,  
 Solution &solution,
 const int 
&num_of_orders, const vector 
<vector<double>> &distMatrix, 
const vector <order> 
&customerOrders, 
 vector <vector <Pair>> 

&visitors_schedule, vector 

<vector<double>> &time_windows, 

const float &w, const int 

&work_day_start);  

 

 

 

Figure A.2: Initial routes 

The green lines visualize routes where vehicles form 

different depots deliver orders that belong to the same 

customer locations.  

 
 
struct Pair 
{ 
 int a; 
 double b; 
}; 

vector<vector<Pair>> &schedule; 

 

 

Figure A.3: Deliveries records 

This way to keep records gives us possibility to do 

calculations so that synchronization constraints will 

not be violated. 
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vector<vector<double>> &tw; 

 

 

Figure A.4: Self-imposed time windows 

Recalculation of time windows and schedules take 

place each time an order is assigned to another vehi-

cle. From code lines on the left we may see how the 

mechanism of self-imposed time windows work. In 

different papers self-imposed time windows appear to 

be designed differently. 

Table A.1: Code representation and implementation details 
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B. Appendix 

The records in the table set below are best solutions, each of 100 generated in 1 run of 

GRASP. Each run was with fixed ɑ value indicated in the corresponding column below. The 

random seed was set to 5. 

GRASP_bestof100pop_vrpsc-300-6-19.csv 

Savings map 
size 

RCL 
(ɑ) 

Number 
of routes Total costs 

Total idle dock 
time 

Total idle vehicle 
time 

RCL 
size 

14 880 0.0001 43 1 458 885 0 516 986 1 

14 880 0.0002 43 1 458 885 0 516 986 2 

14 880 0.00024 41 1 415 244 0 436 951 3 

14 880 0.0003 43 1 434 589 0 369 100 4 

14 880 0.0004 42 1 457 161 17 544 375 650 5 

14 880 1  59 2 697 463 6072 485 770 14880 
 

GRASP_bestof100pop_vrpsc-300-6-18.csv 

Savings map 
size 

RCL 
(ɑ) 

Number 
of routes Total costs 

Total idle dock 
time 

Total idle vehicle 
time 

RCL 
size 

14 760 0.0001 47 1 467 110 0 358 986 1 

14 760 0.0002 46 1 442 337 0 300 245 2 

14 760 0.00024 46 1 428 748 0 300 605 3 

14 760 0.0003 46 1 429 589 0 355 899 4 

14 760 0.0004 46 1 420 588 12 312 377 211 5 

14 760 1  56 2 668 543 3 861 465 246 14760 
 

GRASP_bestof100pop_vrpsc-300-6-17.csv 

Savings map 
size 

RCL 
(ɑ) 

Number 
of routes Total costs 

Total idle dock 
time 

Total idle vehicle 
time 

RCL 
size 

14 766 0.0001 50 1 689 635 12 021 504 670 1 

14 766 0.0002 46 1 592 224 13 928 395 661 2 

14 766 0.00024 45 1 585 595 13 928 437 507 3 

14 766 0.0003 45 1 589 421 12 021 470 846 4 

14 766 0.0004  46 1 597 458 1 907 382 850 5 

14 766 1  56 2 836 658 13 563 410 240 14766 
 

GRASP_bestof100pop_vrpsc-300-6-16.csv 

Savings map 
size 

RCL 
(ɑ) 

Number 
of routes Total costs 

Total idle dock 
time 

Total idle vehicle 
time 

RCL 
size 

14 780 0.0001 46 1 643 508 20 932 503 089 1 

14 780 0.0002 45 1 582 350 0 565 637 2 

14 780 0.00024 45 1 599 869 58 570 401 368 3 
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14 780 0.0003  46 1 598 711 5 932 528 971 4 

14 780 0.0004 45 1 589 290 0 314 657 5 

14 780 1 57 2 998 321 0 579 480 14780 
 

 

GRASP_bestof100pop_vrpsc-250-5-15.csv 

Savings map 

size 

RCL 

(ɑ) 

Number 

of routes Total costs 

Total idle dock 

time 

Total idle vehicle 

time 

RCL 

size 

12 304 0.0001 42 1 517 388 26 415 388 358 1 

12 304 0.0002 43 1 505 264 26 415 379 217 2 

12 304 0.0003 41 1 479 293 0 360 428 3 

12 304 0.0004 41 1 465 207 29 040 421 124 4 

12 304 0.00046 42 1 475 878 3 984 299 498 5 

12 304 1  50 2 474 312 0 347 189 12304 
 

GRASP_bestof100pop_vrpsc-250-5-14.csv 

Savings map 
size 

RCL 
(ɑ) 

Number 
of routes Total costs 

Total idle dock 
time 

Total idle vehicle 
time 

RCL 
size 

12 324 0.0001 42 1 10 324 0 485 017 1 

12 324 0.0002 40 1 232 661 0 513 554 2 

12 324 0.0003 38 1 224 367 0 438 197 3 

12 324 0.0004 40 1 243 798 0 477 824 4 

12 324 1  49  2 272 858 0 430 534 12324 
 

GRASP_bestof100pop_vrpsc-250-5-13.csv 

Savings map 
size 

RCL 
(ɑ) 

Number 
of routes Total costs 

Total idle dock 
time 

Total idle vehicle 
time 

RCL 
size 

12 312 0.0001 43 1 333 302 0 457 398 1 

12 312 0.0002 39 1 266 248 0 409 232 2 

12 312 0.0003 40 1 272 247 0 320 831 3 

12 312 0.0004 38 1 258 540 0 374 238 4 

12 312 0.00046 40 1 272 169 0 352 094 5 

12 312 1  46 2 386 368 0 386 197 12312 
 

GRASP_bestof100pop_vrpsc-250-5-12.csv 

Savings map 

size 

RCL 

(ɑ) 

Number 

of routes Total costs 

Total idle dock 

time 

Total idle vehicle 

time 

RCL 

size 

12 324 0.0001 43 1 218 375 0 464 371 1 

12 324 0.0002 38 1 119 017 0 297 369 2 

12 324 0.0003 38 1 120 185 0 428 841 3 

12 324 0.0004 39 1 122 962 0 311 150 4 

12 324 0.00046 38 1 109 437 14 328 284 214 5 

12 324 0.0005 37 1 094 475 0 352 217 6 
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12 324 0.0006 38 1 118 804 0 349 280 7 

12 324 0.0007 38 1 122 860 0 338 279 8 

12 324 1  45 2 162 239 11 285 507 940 12324 
 

 

GRASP_bestof100pop_vrpsc-200-4-11.csv 

Savings map 

size 

RCL 

(ɑ) 

Number 

of routes Total costs 

Total idle dock 

time 

Total idle vehicle 

time 

RCL 

size 

9 982 0.0002 43 1 208 110 0 527 812 1 

9 982 0.0003 37 1 117 511 0 421 833 2 

9 982 0.0004 37 1 129 891 0 374 464 3 

9 982 0.0005 37 1 117 225 0 403 463 4 

9 982 0.0006 38 1 123 776 0 333 366 5 

9 982 0.0007 38 1 121 782 0 374 341 6 

9 982 1 44 1 823 305 0 280 056 9982 

 

GRASP_bestof100pop_vrpsc-200-4-10.csv 

Savings map 

size 

RCL 

(ɑ) 

Number 

of routes Total costs 

Total idle dock 

time 

Total idle vehicle 

time 

RCL 

size 

9 874 0.0002 36 1 009 447 13 799 274 395 1 

9 874 0.0003 32 953 240 0 26 115 2 

9 874 0.0004 31 931 512 0 261 906 3 

9 874 0.0005 31 945 566 0 272 508 4 

9 874 0.0006 32 948 720 0 243 025 5 

9 874 1 44 1 729 349 0 346 373 9874 

 

GRASP_bestof100pop_vrpsc-200-4-9.csv 

Savings map 
size 

RCL 
(ɑ) 

Number 
of routes Total costs 

Total idle dock 
time 

Total idle vehicle 
time 

RCL 
size 

9 808 0.0002 38 1 255 653 0 285 292 1 

9 808 0.0003 31 1 138 934 0 249 463 2 

9 808 0.0004 33 1 157 588 0 264 900 3 

9 808 0.0005 32 1 150 880 0 256 426 4 

9 808 1 45 2 080 769 0 280701 9808 

 

GRASP_bestof100pop_vrpsc-200-4-8.csv 

Savings map 
size 

RCL 
(ɑ) 

Number 
of routes Total costs 

Total idle dock 
time 

Total idle vehicle 
time 

RCL 
size 

9 918 0.0002 37 1 163 531 0 243 843 1 

9 918 0.0003 33 1 113 684 0 259 580 2 

9 918 0.0004 32 1 085 006 0 265 442 3 

9 918 0.0005 34 1 115 340 0 218 356 4 
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9 918 1 45 1 938 099 0 462 852 9918 
 

 

GRASP_bestof100pop_vrpsc-150-3-7.csv 

Savings map 
size 

RCL 
(ɑ) 

Number 
of routes Total costs 

Total idle dock 
time 

Total idle vehicle 
time 

RCL 
size 

7 464 0.0002 31 981 172 0 234 619 1 

7 464 0.0003 29 952 774 0 205 248 2 

7 464 0.0005 27 894 503 0 120 094 3 

7 464 0.0006 27 895 611 0 1 874 465 4 

7 464 1  32 1 428 137 0 157 787 7464 

 

GRASP_bestof100pop_vrpsc-150-3-6.csv 

Savings map 
size 

RCL 
(ɑ) 

Number 
of routes Total costs 

Total idle dock 
time 

Total idle vehicle 
time 

RCL 
size 

7 428 0.0002 28 940 439 0 178 185 1 

7 428 0.0003 24 877 152 0 150 335 2 

7 428 0.0005 25 891 796 0 141603 3 

7 428 1  31 1 533 452 0 167 894 7428 

 

GRASP_bestof100pop_vrpsc-150-3-5.csv 

Savings map 

size 

RCL 

(ɑ) 

Number 

of routes Total costs 

Total idle dock 

time 

Total idle vehicle 

time 

RCL 

size 

7406 0.0002 33 1 103 738 0 127 422 1 

7406 0.0004 30 1 035 286 0 138 934 2 

7406 0.0005 29 1 020 776 0 139 334 3 

7406 0.0006 30 1 037 043 0 127 540 4 

7406 0.0007 28 1 002 216 0 105 695 5 

7406 0.0008 29 1 024 932 0 147 671 5 

7406 0.0009 29 1 016 178 0 133651 6 

7406 0.00096 28 995 100 0 129 452 7 

7406 0.0011 29 1 018 288 0 122 289 8 

7406 0.0012 29  1 006 226 0 139 489 9 

7406 1 33 1 520 200 0 218 956 7406 

 

GRASP_bestof100pop_vrpsc-100-2-4.csv 

Savings map 
size 

RCL 
(ɑ) 

Number 
of routes Total costs 

Total idle dock 
time 

Total idle vehicle 
time 

RCL 
size 

4902 0.0003 24 849 214 0 78 095 1 

4902 0.0005 19 741 236 0 49 123 2 

4902 0.0007 19 737 891 0 37 495 3 

4902 0.0009 18 731 742 0 27 715 4 
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4902 0.0012 19 739 677 0 51 931 5 

4902 0.004  19 756 848 0 63 437 19 

4902 1  21 1 073 765 0 38 021 4902 
 

GRASP_bestof100pop_vrpsc-100-2-3.csv 

Savings map 
size 

RCL 
(ɑ) 

Number 
of routes Total costs 

Total idle dock 
time 

Total idle vehicle 
time 

RCL 
size 

5028 0.0004 15 512 219 0 37 410 1 

5028 0.0005 13 470 958 0 37 539 2 

5028 0.0007 14 479 734 0 51 685 3 

5028 0.001 13 463 398 0 37 946 5 

5028 1 18 882 907 0 87 689 4950 
 

GRASP_bestof100pop_vrpsc-100-2-2.csv 

Savings map 

size 

RCL 

(ɑ) 

Number 

of routes Total costs 

Total idle dock 

time 

Total idle vehicle 

time 

RCL 

size 

4950 0.0004 17 664 574 0 29 244 1 

4950 0.0005 16 640 364 0 25 723 2 

4950 0.0006 16 640 205 0 24 217 2 

4950 0.00068 15 628 650 0 24 217 3 

4950 0.0007 15 627 623 0 24 716 3 

4950 0.00071 15 631 963 0 42 199 3 

4950 0.00072 16 640 205 0 24 217 3 

4950 0.0008 16 645 244 0 13 350 3 

4950 0.001 16 641 424 0 30 750 4 

4950 0.0012 16 641 280 0 26 482 5 

4950 0.005 16 668 537 0 29 055 24 

4950 1  19 1 005 203 0 27 212 4950 
 

GRASP_bestof100pop_vrpsc-50-1-1.csv 

Savings 
map size 

RCL 
(ɑ) 

Number 
of routes Total costs 

Total idle dock 
time 

Total idle vehi-
cle time 

RCL 
size 

2450 0.0008 6 161 125 0 0 1 

2450  0.0012 6 160 783 0 0 2 

2450  0.002 6 160 569 0 0 4 

2450  0.004 6 159 981 0 0 9 

2450  0.005 5 152 622 0 0 12 

2450  0.006 6 158 455 0 0 14 

2450  0.007 5 152 106 0 0 17 

2450  0.008 5 155 611 0 0 19 

2450  0.009 5 154 395 0 0 22 

2450  0.01 5 153 416 0 0 24 

2450  0.012 5 153 184 0 0 29 

2450  0.014 5 151 343 0 0 34 
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2450  0.016 5 152 756 0 0 39 

2450  0.018 5 152 023 0 0 44 

2450  0.019 5 151 234 0 0 46 

2450  0.02 5 151 442 0 0 49 

2450  0.021 5 152 028 0 0 51 

2450  0.022 5 154 268 0 0 53 

2450  0.024 5 153 494 0 0 58 

2450 0.026 5 153 672 0 0 63 

2450 0.028 5 155 683 0 0 68 

2450  0.03 5 157 148 0 0 73 

2450  0.04 5 159 161 0 0 98 

2450  0.05 6 165 930 0 0 122 

2450  0.06 5 159 927 0 0 147 

2450  0.07 5 163 329 0 0 171 

2450  0.08 5 168 780 0 0 196 

2450  0.1 5 175 183 0 0 245 

2450  0.2 5 190 239 0 0 490 

2450  0.4 6 214 271 0 0 980 

2450  1 6  303 187 0 0 2450 

 

GRASP_bestof100pop_vrpsc-50-1-0.csv 

Savings 
map size 

RCL 
(ɑ) 

Number 
of routes Total costs 

Total idle dock 
time 

Total idle vehi-
cle time 

RCL 
size 

2450 0.0008 5 206 241 0 0 1 

2450  0.0012 5 203 974 0 0 2 

2450  0.002 5 203 469 0 0 4 

2450  0.004 5 205 403 0 0 9 

2450  0.005 5 205 305 0 0 12 

2450  0.006 5 203 612 0 0 14 

2450  0.007 5 203 803 0 0 17 

2450  0.008 5 206 160 0 0 19 

2450  0.009 5 205 394 0 0 22 

2450  0.01 5 205 930 0 0 24 

2450  0.012 5 205 293 0 0 29 

2450  0.014 5 205 773 0 0 34 

2450  0.016 5 207 341 0 0 39 

2450  0.018 5 206 676 0 0 44 

2450  0.019 5 203 294 0 0 46 

2450  0.02 5 203 855 0 0 49 

2450  0.021 5 204 833 0 0 51 

2450  1 6 385 507 0 0 2450 

 

  



47 
 

C. Appendix 

The records in the table set below are the values of 1 algorithm run with random seeds. 

GRASP_bestof100pop_vrpsc-300-6-19.csv 

RCL (ɑ) 0.00024 

Time to build 1 solution <0.001s Total sols 100 

Min Number of routes 42 Frequent Number of routes 46 

Max Number of routes 49 
Frequent Number of routes in 
best 10% solutions 44 

Number of tours solution 82 42  Duration 1446.27 

Number of tours solution 4 44  Duration 1447.75 

Number of tours solution 97 43  Duration 1454.11 

Number of tours solution 18 43  Duration 1455.24 

Number of tours solution 1 43  Duration 1459.35 

Number of tours solution 69 42  Duration 1460.67 

Number of tours solution 85 44  Duration 1465.99 

Number of tours solution 45 44  Duration 1467.02 

Number of tours solution 15 44  Duration 1467.77 

Number of tours solution 64 44  Duration 1468.36 
 

GRASP_bestof100pop_vrpsc-300-6-18.csv 

RCL (ɑ) 0.00024 

Time to build 1 solution <0.001s Total sols 100 

Min Number of routes 46 Frequent Number of routes 49 

Max Number of routes 54 
Frequent Number of routes in 
best 10% solutions 46 

Number of tours solution 55 46  Duration 1428.75 

Number of tours solution 77 46  Duration 1430.44 

Number of tours solution 64 46  Duration 1432.49 

Number of tours solution 52 46  Duration 1442.84 

Number of tours solution 90 47  Duration 1442.97 

Number of tours solution 20 46  Duration 1443.89 

Number of tours solution 51 46  Duration 1444.84 

Number of tours solution 84 47  Duration 1446.57 

Number of tours solution 0 47  Duration 1450.13 

Number of tours solution 36 48  Duration 1457.15 
 

GRASP_bestof100pop_vrpsc-300-6-17.csv 

RCL (ɑ) 0.00024 

Time to build 1 solution <0.001s Total sols 100 

Min Number of routes 45 Frequent Number of routes 49 

Max Number of routes 53 
Frequent Number of routes in 
best 10% solutions 46 
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Number of tours solution 72 45  Duration 1585.6 

Number of tours solution 26 45  Duration 1602.34 

Number of tours solution 45 46  Duration 1602.34 

Number of tours solution 64 46  Duration 1616.02 

Number of tours solution 93 46  Duration 1620.93 

Number of tours solution 58 46  Duration 1622.02 

Number of tours solution 0 47  Duration 1623.53 

Number of tours solution 17 47  Duration 1624.27 

Number of tours solution 23 47  Duration 1626.67 

Number of tours solution 27 46  Duration 1632.05 
 

GRASP_bestof100pop_vrpsc-300-6-16.csv 

RCL (ɑ) 0.0002 

Time to build 1 solution <0.001s Total sols 100 

Min Number of routes 45 Frequent Number of routes 48 

Max Number of routes 52 
Frequent Number of routes in 
best 10% solutions 45 

Number of tours solution 66 45  Duration 1582.35 

Number of tours solution 28 45  Duration 1584.74 

Number of tours solution 54 45  Duration 1608.67 

Number of tours solution 33 45  Duration 1613.86 

Number of tours solution 93 46  Duration 1618.54 

Number of tours solution 59 45  Duration 1619.46 

Number of tours solution 84 46  Duration 1622.61 

Number of tours solution 31 47  Duration 1624.05 

Number of tours solution 45 46  Duration 1628.17 

Number of tours solution 58 47  Duration 1628.36 
 

GRASP_bestof100pop_vrpsc-250-5-15.csv 

RCL (ɑ) 0.0004 

Time to build 1 solution <0.001s Total sols 100 

Min Number of routes 41 Frequent Number of routes 43 

Max Number of routes 47 
Frequent Number of routes in 
best 10% solutions 42 

Number of tours solution 37 41  Duration 1465.21 

Number of tours solution 95 41  Duration 1467.51 

Number of tours solution 12 41  Duration 1482.69 

Number of tours solution 71 42  Duration 1489.69 

Number of tours solution 81 42  Duration 1494.73 

Number of tours solution 85 42  Duration 1494.91 

Number of tours solution 70 42  Duration 1496.42 

Number of tours solution 78 42  Duration 1496.48 

Number of tours solution 58 42  Duration 1499.83 

Number of tours solution 92 42  Duration 1502.54 
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GRASP_bestof100pop_vrpsc-250-5-14.csv 

RCL (ɑ) 0.0003 

Time to build 1 solution <0.001s Total sols 100 

Min Number of routes 38 Frequent Number of routes 42 

Max Number of routes 46 
Frequent Number of routes in 
best 10% solutions 40 

Number of tours solution 49 38  Duration 1224.37 

Number of tours solution 94 39  Duration 1233.79 

Number of tours solution 84 40  Duration 1235.61 

Number of tours solution 67 39  Duration 1240.51 

Number of tours solution 19 40  Duration 1244.17 

Number of tours solution 7 40  Duration 1250.09 

Number of tours solution 45 41  Duration 1251.39 

Number of tours solution 30 41  Duration 1258.16 

Number of tours solution 24 40  Duration 1262.1 

Number of tours solution 77 41  Duration 1262.12 
 

GRASP_bestof100pop_vrpsc-250-5-13.csv 

RCL (ɑ) 0.0004 

Time to build 1 solution <0.001s Total sols 100 

Min Number of routes 38 Frequent Number of routes 43 

Max Number of routes 47 

Frequent Number of routes in 

best 10% solutions 40 

Number of tours solution 77 38  Duration 1258.54 

Number of tours solution 22 38  Duration 1272.3 

Number of tours solution 16 40  Duration 1293.48 

Number of tours solution 91 40  Duration 1295.38 

Number of tours solution 47 42  Duration 1302.66 

Number of tours solution 29 40  Duration 1305.89 

Number of tours solution 19 40  Duration 1306.76 

Number of tours solution 51 41  Duration 1306.88 

Number of tours solution 1 42  Duration 1308.25 

Number of tours solution 31 42  Duration 1308.76 
 

GRASP_bestof100pop_vrpsc-250-5-12.csv 

RCL (ɑ) 0.0005 

Time to build 1 solution <0.001s Total sols 100 

Min Number of routes 37 Frequent Number of routes 42 

Max Number of routes 45 

Frequent Number of routes in 

best 10% solutions 39 

Number of tours solution 93 37  Duration 1094.47 

Number of tours solution 64 38  Duration 1116.56 

Number of tours solution 44 39  Duration 1125.47 
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Number of tours solution 78 39  Duration 1139.53 

Number of tours solution 99 39  Duration 1140.41 

Number of tours solution 54 40  Duration 1142.42 

Number of tours solution 96 39  Duration 1144.46 

Number of tours solution 8 40  Duration 1151.35 

Number of tours solution 73 40  Duration 1152.84 

Number of tours solution 80 41  Duration 1153.08 

 

GRASP_bestof100pop_vrpsc-200-4-11.csv 

RCL (ɑ) 0.0005 

Time to build 1 solution <0.001s Total sols 100 

Min Number of routes 36 Frequent Number of routes 41 

Max Number of routes 44 
Frequent Number of routes in 
best 10% solutions 39 

Number of tours solution 90 37  Duration 1117.22 

Number of tours solution 39 36  Duration 1126.06 

Number of tours solution 91 37  Duration 1130.49 

Number of tours solution 89 37  Duration 1134.87 

Number of tours solution 35 38  Duration 1139.28 

Number of tours solution 54 39  Duration 1141.99 

Number of tours solution 12 39  Duration 1145.7 

Number of tours solution 60 38  Duration 1146.53 

Number of tours solution 62 39  Duration 1148.33 

Number of tours solution 11 39  Duration 1151.61 

 

GRASP_bestof100pop_vrpsc-200-4-10.csv 

RCL (ɑ)   

Time to build 1 solution  <0.001s Total sols 100 

Min Number of routes 31 Frequent Number of routes 37 

Max Number of routes 42 
Frequent Number of routes in 
best 10% solutions 33 

Number of tours solution 30 31  Duration 931.512 

Number of tours solution 4 32  Duration 948.853 

Number of tours solution 94 32  Duration 954.959 

Number of tours solution 11 33  Duration 960.512 

Number of tours solution 27 32  Duration 968.113 

Number of tours solution 24 32  Duration 968.772 

Number of tours solution 79 32  Duration 971.98 

Number of tours solution 72 34  Duration 973.546 

Number of tours solution 57 34  Duration 973.934 

Number of tours solution 89 33  Duration 977.345 
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GRASP_bestof100pop_vrpsc-200-4-9.csv 

RCL (ɑ)   

Time to build 1 solution  <0.001s Total sols 100 

Min Number of routes 31 Frequent Number of routes 36 

Max Number of routes 38 
Frequent Number of routes in 
best 10% solutions 33 

Number of tours solution 94 31  Duration 1138.93 

Number of tours solution 68 33  Duration 1156.4 

Number of tours solution 51 33  Duration 1162.03 

Number of tours solution 46 33  Duration 1163.16 

Number of tours solution 27 33  Duration 1165.03 

Number of tours solution 87 33  Duration 1165.71 

Number of tours solution 41 34  Duration 1170.3 

Number of tours solution 13 34  Duration 1170.43 

Number of tours solution 62 34  Duration 1170.46 

Number of tours solution 45 34  Duration 1173.93 
 

GRASP_bestof100pop_vrpsc-200-4-8.csv 

RCL (ɑ) 0.0004 

Time to build 1 solution  <0.001s Total sols 100 

Min Number of routes 32 Frequent Number of routes 36 

Max Number of routes 38 
Frequent Number of routes in 
best 10% solutions 34 

Number of tours solution 39 32  Duration 1085.01 

Number of tours solution 79 34  Duration 1102.7 

Number of tours solution 9 34  Duration 1111.19 

Number of tours solution 19 35  Duration 1120.75 

Number of tours solution 15 34  Duration 1124.15 

Number of tours solution 22 34  Duration 1126.2 

Number of tours solution 49 35  Duration 1127.96 

Number of tours solution 69 35  Duration 1135.38 

Number of tours solution 26 36  Duration 1137.34 

Number of tours solution 12 34  Duration 1137.58 
 

GRASP_bestof100pop_vrpsc-150-3-7.csv 

RCL (ɑ) 0.0005 

Time to build 1 solution  <0.001s Total sols 100 

Min Number of routes 27 Frequent Number of routes 32 

Max Number of routes 35 

Frequent Number of routes in 

best 10% solutions 29 

Number of tours solution 44 27  Duration 894.503 

Number of tours solution 39 28  Duration 920.833 
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Number of tours solution 13 29  Duration 939.834 

Number of tours solution 63 29  Duration 943.1 

Number of tours solution 61 29  Duration 943.849 

Number of tours solution 85 29  Duration 947.161 

Number of tours solution 60 30  Duration 951.967 

Number of tours solution 31 30  Duration 954.035 

Number of tours solution 66 30  Duration 955.128 

Number of tours solution 45 30  Duration 957.845 

 

GRASP_bestof100pop_vrpsc-150-3-6.csv 

RCL (ɑ) 0.0003 

Time to build 1 solution <0.001s Total sols 100 

Min Number of routes 30 Frequent Number of routes 32 

Max Number of routes 35 
Frequent Number of routes in 
best 10% solutions 26 

Number of tours solution 60 30  Duration 1025.16 

Number of tours solution 80 30  Duration 1029.15 

Number of tours solution 61 30  Duration 1037.1 

Number of tours solution 86 31  Duration 1040.39 

Number of tours solution 90 30  Duration 1041.18 

Number of tours solution 43 31  Duration 1042.17 

Number of tours solution 85 31  Duration 1042.38 

Number of tours solution 9 30  Duration 1044.39 

Number of tours solution 72 30  Duration 1044.5 

Number of tours solution 38 31  Duration 1046.14 

 

GRASP_bestof100pop_vrpsc-150-3-5.csv 

RCL (ɑ) 0.00096 

Time to build 1 solution <0.001s Total sols 100 

Min Number of routes 30 Frequent Number of routes 32 

Max Number of routes 35 
Frequent Number of routes in 
best 10% solutions 30 

Number of tours solution 60 30  Duration 1025.16 

Number of tours solution 80 30  Duration 1029.15 

Number of tours solution 61 30  Duration 1037.1 

Number of tours solution 86 31  Duration 1040.39 

Number of tours solution 90 30  Duration 1041.18 

Number of tours solution 43 31  Duration 1042.17 

Number of tours solution 85 31  Duration 1042.38 

Number of tours solution 9 30  Duration 1044.39 

Number of tours solution 72 30  Duration 1044.5 

Number of tours solution 38 31  Duration 1046.14 
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GRASP_bestof100pop_vrpsc-100-2-4.csv 

RCL (ɑ) 0.0009 

Time to build 1 solution <0.001s Total sols 100 

Min Number of routes  18 Frequent Number of routes  22 

Max Number of routes  25 

Frequent Number of routes in 

best 10% solutions 20 

Number of tours solution 5 18  Duration 731.742 

Number of tours solution 85 19  Duration 735.162 

Number of tours solution 27 19  Duration 762.936 

Number of tours solution 26 20  Duration 764.888 

Number of tours solution 66 20  Duration 766.691 

Number of tours solution 77 20  Duration 770.953 

Number of tours solution 9 20  Duration 776.867 

Number of tours solution 72 20  Duration 777.213 

Number of tours solution 40 20  Duration 778.517 

Number of tours solution 29 20  Duration 780.278 
 

GRASP_bestof100pop_vrpsc-100-2-3.csv 

RCL (ɑ) 0.0005 

Time to build 1 solution <0.001s Total sols 100 

Min Number of routes  13 Frequent Number of routes  16 

Max Number of routes  20 
Frequent Number of routes in 
best 10% solutions 14 

Number of tours solution 37 13  Duration 470.958 

Number of tours solution 24 14  Duration 471.742 

Number of tours solution 82 14  Duration 480.474 

Number of tours solution 71 14  Duration 486.276 

Number of tours solution 16 14  Duration 486.927 

Number of tours solution 28 14  Duration 487.158 

Number of tours solution 77 14  Duration 487.348 

Number of tours solution 41 14  Duration 487.905 

Number of tours solution 6 14  Duration 488.008 

Number of tours solution 73 14  Duration 488.008 
 

GRASP_bestof100pop_vrpsc-100-2-2.csv 

RCL (ɑ) 0.0007 

Time to build 1 solution <0.001s Total sols 100 

Min Number of routes 15 Frequent Number of routes 19 

Max Number of routes 21 
Frequent Number of routes in 
best 10% solutions 16 

Number of tours solution 36 15  Duration 620413 

Number of tours solution 75 16  Duration 640422 
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Number of tours solution 98 16  Duration 640422 

Number of tours solution 30 16  Duration 644354 

Number of tours solution 32 16  Duration 648013 

Number of tours solution 97 17  Duration 663618 

Number of tours solution 90 16  Duration 663761 

Number of tours solution 91 17  Duration 667401 

Number of tours solution 37 17  Duration 667687 

Number of tours solution 76 17  Duration 667706 
 

GRASP_bestof100pop_vrpsc-50-1-1.csv 

RCL (ɑ) 0.019 

Time to build 1 solution <0.001s Total sols 100 

Min Number of routes 6 Frequent Number of routes 6 

Max Number of routes 7 
Frequent Number of routes in 
best 10% solutions 6 

Number of tours solution 72 6  Duration 158.685 

Number of tours solution 20 6  Duration 158.751 

Number of tours solution 18 6  Duration 159.082 

Number of tours solution 86 6  Duration 159.488 

Number of tours solution 16 6  Duration 159.521 

Number of tours solution 57 6  Duration 159.659 

Number of tours solution 7 6  Duration 159.902 

Number of tours solution 69 6  Duration 160.172 

Number of tours solution 66 6  Duration 160.382 

Number of tours solution 89 6  Duration 160.384 
 

GRASP_bestof100pop_vrpsc-50-1-0.csv 

RCL (ɑ) 0.019 

Time to build 1 solution <0.001s Total sols 100 

Min Number of routes  5 Frequent Number of routes  5 

Max Number of routes  6 

Frequent Number of routes in 

best 10% solutions 5 

Number of tours solution 82 5  Duration 206.313 

Number of tours solution 16 5  Duration 207.296 

Number of tours solution 62 5  Duration 207.608 

Number of tours solution 71 5  Duration 207.666 

Number of tours solution 17 5  Duration 208.411 

Number of tours solution 88 5  Duration 208.841 

Number of tours solution 64 5  Duration 208.956 

Number of tours solution 99 5  Duration 210.001 

Number of tours solution 80 5  Duration 210.147 

Number of tours solution 98 5  Duration 210.381 
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D. Appendix 

The figures represent geographical locations of customer nodes (blue) and carrier depots (red).  
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E. Appendix 

 

Instance Best results out of 5 runs of the algorithm with diff. a values 

0 32.3740 32.3740 32.3740 32.3740 34.9740 35.4470 36.1240 36.1240 

1 42.0920 42.0920 42.0920 42.0920 42.0920 41.7320 44.4510 44.4510 

2 52.5180 52.5180 54.3760 55.4150 180.7950 60.9300 82.0520 84.6350 

3 45.1350 45.1350 48.1640 48.3210 245.1600 50.4920 53.4060 63.9510 

4 140.2740 140.2740 121.3640 107.0440 105.2190 109.0050 120.9920 110.4990 

5 159.0810 159.0810 159.0810 160.7100 126.7630 112.9370 110.2320 128.0480 
6 164.5930 164.5930 164.5930 133.2090 165.0010 176.4460 149.6010 150.2380 

7 102.1640 100.9940 100.9940 102.4130 102.4130 102.3650 107.1550 109.2870 

8 188.9780 167.1310 155.0000 167.5800 178.0190 155.2070 155.5780 176.2440 

9 146.5100 146.5080 146.5080 84.7400 95.5120 149.6830 156.8920 165.3850 

10 167.0350 167.0350 167.0350 152.9020 170.1600 185.3440 173.9250 170.2170 

11 103.9020 104.8460 103.9020 104.8460 105.7950 107.3910 103.3070 122.5760 

  a =0 a =0.04 a =0.08 a =0.1 a =0.2 a =0.4 a =0.8 a =1 

Table E.1: GRASP results for small instances 5 to 15 orders 

Instance 

GRASP (best over 5 iterations) 

ALNS 
in 

hours GRASP in hours 
GRASP 
in min RCL a values: 

0 0.45 0.53956667 0.53956667 32.374 

a =0 (pure Savings Algorithm) && a 

=0.04 && a =0.08 && a =0.1 
1 0.57 0.69553333 0.69553333 41.732 a =0.4 

2 0.71 0.8753 0.8753 52.518 

a =0 (pure Savings Algorithm) && a 

=0.04 

3 0.63 0.75225 0.75225 45.135 

a =0 (pure Savings Algorithm) && a 

=0.05 

4 1.17 1.75365 1.75365 105.219 a =0.2 
5 0.98 1.8372 1.8372 110.232 a =0.8 

6 1.21 2.22015 2.22015 133.209 a =0.1 

7 0.99 1.68323333 1.68323333 100.994 a =0.04 && a =0.08 

8 1.41 2.58333333 2.58333333 155 a =0.08 

9 1.04 1.41233333 1.41233333 84.74 a =0.1 

10 1.75 2.54836667 2.54836667 152.902 a =0.1 

11 1.19 1.72178333 1.72178333 103.307 a =0.8 

Table E.2: Values of a in the best GRASP solutions for small instances 5 to 15 orders 
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Solomon I1 heuristic ALNS CPLEX GRASP (SA)   

 
Average Best Average Best Cost time (s) Average Best Gap Avg Gap Best 

Gap w.r.t. 

Solomon 
(Avg) 

Gap w.r.t. 

Solomon 
(Best) 

vrpsc-small-
5-1-0.csv 32374.00 32374 32374.00 32374.00 32374 20.35 34020.63 32374 5.09% 0.00% 5.09% 0.00% 

vrpsc-small-

5-1-1.csv 41732.00 41732 41732.00 41732.00 41732 7.67 42636.75 41732 2.17% 0.00% 2.17% 0.00% 

vrpsc-small-
10-1-2.csv 52518.00 52518 51169.00 51169.00 51169 19.62 77904.88 52518 52.25% 2.64% 48.34% 0.00% 

vrpsc-small-
10-1-3.csv 45568.00 45568 45008.00 45008.00 45008 242.98 74970.50 45135 66.57% 0.28% 64.52% -0.95% 

vrpsc-small-

10-2-4.csv 90505.10 87176 87176.00 87176.00 87176 5.01 119333.88 105219 36.89% 20.70% 31.85% 20.70% 

vrpsc-small-
10-2-5.csv 78660.20 78621 72408.00 72408.00 72408 21.45 139491.63 110232 92.65% 52.24% 77.33% 40.21% 

vrpsc-small-

12-2-6.csv 108020.00 103642 87166.00 87166.00 87166 32.08 158534.25 133209 81.88% 52.82% 46.76% 28.53% 

vrpsc-small-
12-2-7.csv 76252.40 74882 70440.00 70440.00 70440 13.28 103473.13 100994 46.90% 43.38% 35.70% 34.87% 

vrpsc-small-
14-2-8.csv 106087.00 104853 103720.00 103720.00 103720 445.41 167967.13 155000 61.94% 49.44% 58.33% 47.83% 

vrpsc-small-

14-2-9.csv 117554.00 117554 78038.30 78038.00 78038 2287.06 136467.25 84740 74.87% 8.59% 16.09% -27.91% 

vrpsc-small-
15-3-10.csv 127004.20 124576 123796.00 123796.00 123796 96.95 169206.63 152902 36.68% 23.51% 33.23% 22.74% 

vrpsc-small-
15-3-11.csv 89406.90 85428 85998.00 85998.00 85998 119.22 107070.63 103307 24.50% 20.13% 19.76% 20.93% 

Total 965681.80 948924 879025.30 879025 879025 3311.08 1331077.25 1117362 51.43% 27.11% 37.84% 17.75% 

Average                 48.53% 22.81% 36.60% 15.58% 

Table E.3: Comparison of GRASP with Solomon I1, ALNS and CPLEX for small instances 5 to 15 orders 
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ALNS CPLEX EAMA4 

  

 

Average Best Runtime (s) Cost time (s) Average Best Gap Avg Gap Best 

vrpsc-small-5-1-

0.csv 32374 32374 0.01 32374 20.35 32374 32374 0.00% 0.00% 
vrpsc-small-5-1-

1.csv 41732 41732 0.01 41732 7.67 41732 41732 0.00% 0.00% 

vrpsc-small-10-1-
2.csv 51169 51169 0.08 51169 19.62 51169 51169 0.00% 0.00% 

vrpsc-small-10-1-
3.csv 45008 45008 0.02 45008 242.98 45008 45008 0.00% 0.00% 

vrpsc-small-10-2-
4.csv 87176 87176 0.08 87176 5.01 87176 87176 0.00% 0.00% 

vrpsc-small-10-2-
5.csv 72408 72408 0.00 72408 21.45 72408 72408 0.00% 0.00% 

vrpsc-small-12-2-
6.csv 87166 87166 0.03 87166 32.08 87166 87166 0.00% 0.00% 

vrpsc-small-12-2-
7.csv 70440 70440 1.40 70440 13.28 70440 70440 0.00% 0.00% 

vrpsc-small-14-2-

8.csv 103720 103720 1.97 103720 445.41 103720 103720 0.00% 0.00% 
vrpsc-small-14-2-

9.csv 78038 78038 0.04 78038 2287.06 78038 78038 0.00% 0.00% 

vrpsc-small-15-3-
10.csv 123796 123796 0.06 123796 96.95 124576 124576 0.63% 0.63% 

vrpsc-small-15-3-
11.csv 85998 85998 0.04 85998 119.22 85042 85042 -1.11% -1.11% 

Total 879025.30 879025 3.73 879025 3311.08 878849.00 878849 -0.02% -0.02% 

Average               -0.04% -0.04% 

Table E.4: Comparison of the EAMA with ALNS and CPLEX for small instances 5 to 15 orders

                                                             
4 The runtime of the EAMA was set as equivalent to ALNS for this comparison. 
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Deutsche Zusammenfassung 

 

In dieser Arbeit wird ein metaheuristischer Ansatz zur Lösung eines Vehicle Routing Prob-

lems (VRP) mit Synchronisationsbeschränkungen in der Citylogistik vorgestellt. Der Algo-

rithmus generiert Lösungen, die Entscheidungen für Warenlieferungen in Stadtzentren und 

Einkaufsstraßen darstellen, während Verkehrsbedingungen und -infrastrukturen zeitliche und 

räumliche Grenzen für Lieferprozesse setzen. Der Datensatz enthält einen Pool von Kunden, 

die Lieferungen von mehreren Trägerunternehmen erhalten. Der Versuch, diese Lieferungen 

zu synchronisieren soll die Wartezeiten der Kunden zwischen den Lieferungen verringern 

und damit ein besseres Timing gewährleisten. Zunächst wird eine Literaturrecherche über das 

VRP in der Stadtlogistik mit dem Schwerpunkt Synchronisierung vorgestellt. Zweitens be-

schreiben wir unseren Algorithmus mit Lösungen für das VRP mit Synchronisationsbedin-

gungen, die von (Sarasola & Doerner, 2018) formuliert wurden. Die meisten Komponenten 

des Algorithmus stammen von einem Penalty-basierten Edge Assembly Memetic-

Algorithmus für das VRP mit Zeitfenstern, die von (Nagata et al., 2010) vorgeschlagen wur-

den. Im letzten Kapitel werden Experimente zur Parametereinstellung und Lösungen für zwei 

Gruppen von Instanzen vorgestellt, die auf realen Daten in der Stadt Linz, Österreich, erstellt 

wurden. 

 


