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Abstract

In this thesis we prove that developing low-scaling algorithms for many-body exchange-
like contributions to the total energy is both possible and practical. Predicting materials
properties from first principles requires efficient computer codes. Still, ab-initio materials
physics is one of the most computationally demanding fields of all science. The key chal-
lenge is to calculate sufficiently accurate approximations to the many-electron Schrödinger
equation, also known as the electronic structure problem. In particular correlations of the
electrons play an important role in the determination of properties like the crystal struc-
ture, surface energies, or thermodynamic phase boundaries. In this work, we present
new algorithms that substantially increase the efficiency of correlation energy calculations
of large many-electron systems, beyond mean field approaches like density functional or
Hartree-Fock theory, employing orbital-based many-body perturbation theory. Orbitals
are simple and illustrative mathematical ingredients to construct approximations to the
ground state energy of many-electron systems. But associating an orbital with an elec-
tron is wrong, since orbitals are distinguishable though electrons are not. Therefore in
all proper theories so called exchange-like terms must appear, which correct exactly this
error. Those exchange-like terms are taken into account by methods like second-order
Møller-Plesset theory (MP2) or approximate by second-order screened exchange (SO-
SEX). However, the implementation of algorithms that calculate these exchange terms
possess a very high computational complexity, leading to a very steep scaling of the com-
putation time with respect to the system size. The main goal of this thesis is to show,
that low-scaling implementations for exchange-like contributions to the correlation en-
ergy are indeed possible. We present three algorithms which reduce the scaling of MP2
and SOSEX calculations from the canonical quintic to a quartic or even cubic scaling,
by pure analytical rearrangements, i.e. without sacrificing the accuracy. The reduced
scaling allows for accurate correlation energy calculations that including exchange-like
terms on systems which involve several hundreds of valence electrons. We also present
three mutually different stochastic algorithms, which reduce the computational cost at the
price of a statistical error. Those implementations make even larger systems accessible if
only the error per electron is of interest. Furthermore, all implemented codes are highly
parallelized and can be considered as high-performance codes. All considerations are
based on the plane-wave basis, which is a suitable basis for periodic systems.
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Zusammenfassung

Mit dieser Arbeit wird bewiesen, dass die Entwicklung von niedrig skalierenden Algo-
rithmen zur Berechnung von austauschartigen Vielteilchen-Termen sowohl möglich als
auch praktisch ist. Die Vorhersage von Materialeigenschaften mittels ab initio Metho-
den erfordert effiziente Computerprogramme. Nach wie vor ist die computergestützte
Materialphysik eine der rechenintensivsten Wissenschaftszweige. Das zentrale Problem,
auch bekannt als Problem der elektronischen Struktur, besteht in der Berechnung hinre-
ichend genauer Näherungen zur Vielteilchen-Schrödingergleichung. Die Korrelation von
Elektronen ist dabei von besonderer Bedeutung, bestimmt sie doch maßgeblich Eigen-
schaften wie die Kristallstruktur, Oberflächenenergien oder thermodynamische Phasen-
grenzen. In dieser Arbeit stellen wir neue Algorithmen vor, welche die Effizienz von
Berechnungen der Korrelationsenergie großer Systeme erheblich verbessern. Wir setzen
dabei auf Orbital-basierte Vielteilchen-Störungstheorie und gehen damit über Hartree-
Fock oder Dichtefunktionaltheorie hinaus. Orbitale sind einfache und anschauliche
mathematische Zutaten um Näherungen zur Grundzustandsenergie von Vielteilchensys-
temen zu konstruieren. Allerdings ist die Assoziation eines Orbitals mit einem Elektron
falsch, da Elektronen ununterscheidbar sind, Orbitale dagegen unterscheidbar. Alle ord-
nungsgemäßen Theorien berücksichtigen daher sogenannte austauschartige Terme, die
genau diesen Fehler korrigieren. Diese austauschartigen Terme werden von Methoden
wie zweiter-Ordnung-Møller-Plesset-Störungstheorie (engl. second-order Møller-Plesset
perturbation theory, MP2) oder näherungsweise durch zweiter-Ordnung-abgeschirmter-
Austausch (engl. second-order screened exchange, SOSEX) berücksichtigt. Allerdings
weisen diese austauschartigen Terme eine hohe algorithmische Komplexität auf, was
sich wiederum oft in einem steilem Skalierungsverhalten der Rechenzeit gegenüber der
Systemgröße äußert. Das Hauptziel dieser Arbeit besteht in dem Beweis, dass niedrig-
skalierende Algorithmen zur Berechnung der Austauschterme jedoch sehr wohl möglich
sind. Wir präsentieren drei Algorithmen, welche die Skalierung von MP2- und SOSEX-
Rechnungen von einer quintischen auf eine quartische oder gar kubische Skalierung re-
duzieren. Dabei werden ausschließlich analytische Umformungen vorgenommen, sodass
keinerlei Genauigkeit geopfert wird. Durch diese niedrigere Skalierung ist es möglich,
die Korrelationsenergie mitsamt Austauschtermen für Systeme einiger hundert Valen-
zelektronen mit hoher Genauigkeit zu berechnen. Wir stellen ebenfalls drei grundlegend
verschiedene stochastische Algorithmen vor, welche die Rechenkosten zum Preis von
statistischen Ungenauigkeiten reduzieren. Diese Implementierungen erlauben es, Berech-
nungen an noch größeren Systemen vorzunehmen, wenn nur der relative Fehler pro Elek-

5



tron entscheident ist. Des weiteren sind alle implementierten Algorithmen hochgradig
parallelisiert und damit Hochleistungssoftware. Jegliche Betrachtungen verwenden ebe-
nen Wellen, welche eine probate Basis für periodische Systeme darstelle.
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CHAPTER 1
Introduction

For this PhD thesis, the world consists only of electrons and atomic nuclei as well as
their interactions. This drastically reduced world is sufficient to predict physical and
chemical properties of known or unknown materials, hence, being a common approach
in computational materials physics. How do the involved atoms arrange? Do they form
a stable regular lattice? What is the impact of pressure and temperature? The answer to
such questions are often sufficiently determined by the non-relativistic quantum theory. No
additional empirical information is necessary. Therefore, we call this approach ab initio,
meaning from the beginning. Whether the above questions can be answered in practice,
depends on whether we can solve the many-body Schrödinger equation, the fundamental
equation of quantum mechanics.

The practical experience of the last century, however, shows that exact solutions are
available only for a very limited number of cases. Speaking of materials, molecules
and atoms, only the hydrogen atom is an analytical solvable system. For all real ma-
terials, the known mathematical tools are insufficient to solve the Schrödinger equation
exactly. Fortunately, this problem has been eased with the development of computers.
However, even with modern supercomputers it is still not possible to numerically solve
the Schrödinger equation directly. Alone the necessary memory to store the solution of a
system that involves only few atoms, would quickly exceed the globally available storage.
Thus, one of the main goals in ab initio computational materials physics is to develop
efficient algorithms that can calculate sufficiently accurate approximations to the solution
of the Schrödinger equation.

In this work, we are mainly interested in the development of algorithms to calculate the
free energy of three dimensional periodic many-body systems like, for instance, crystalline
solids or atoms on surfaces (illustrations can be found in Fig. 2.1 on p. 25). In contrast
to molecules, these systems are in principle infinitely extended and we are interested in
the free energy per unit cell, the periodically repeated building block of the system. Free
energies are especially important to compute bond lengths, crystal structures, surface
energies, or thermodynamic phase diagrams. In the following, we provide a brief and
therefore incomplete description of the state of the art, which allows to describe one
computational difficulty, being the main subject of this work: the computation of exchange-
like terms in many-body perturbation theory.
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1 Introduction

Today, we can choose out of a large spectrum of techniques to approximate or simplify
the Schrödinger equation. Many of those ab initio techniques were developed already
between the late 1920s and the early 1970s, and the first software implementations (mostly
restricted to finite systems like molecules) arose in the 1980s. A key anchor point is
the Born-Oppenheimer approximation [1]. It states that a separate treatment of the
electrons and atomic nuclei is possible due the small ratio of their masses. Although
they have the lower mass, the electrons are mainly responsible for the determination of
the physical and chemical properties of materials. Therefore, research strongly focuses
on approximations to the solution of the electronic part of the Schrödinger equation
(also known as the electronic structure problem). Corner stones are, e.g., the Hartree-
Fock approximation (HF), Møller-Plesset perturbation theory (MP), density functional
theory (DFT), the random phase approximation (RPA), second-order screened exchange
(SOSEX) or coupled cluster theory (CC). Some of them will be introduced in detail later
in this work.

Since these methods are approximations, they can be classified by their accuracy and
by their computational cost in memory and time. Today, the so called orbital-based
or wavefunction-based methods as MP, RPA, or CC are becoming increasingly popular,
since they allow for a systematic improvement of the approximation of the electronic
Schrödinger equation. However, their computational cost is fairly high. A measure for the
computational complexity is given by the scaling of the computation time and the scaling
of the required memory with respect to the system size (e.g. the number of involved
electrons). A steep scaling restricts the application of an algorithm to small systems with
only a few electrons, if a result is required in a reasonably short time of a few hours or
days. Hence, the development of low-complexity algorithms is a highly important task in
ab initio computational materials physics.

At present, the RPA is among the most promising candidates to calculate reasonably
accurate approximations of the electronic Schrödinger equation due to its low scaling
compared to MP or CC. However, the RPA introduces a systematic error by neglecting the
Pauli exclusion principle for electrons. This principles follows from the fact that electrons
are indistinguishable particles, implying a certain mathematical property of the solution
of the Schrödinger equation. This property is systematically violated by the RPA.

On the other hand, MP, SOSEX1, and CC do not violate the Pauli exclusion principle.
These corrections are particularly relevant when short-range interactions between electrons
play an important role in the considered material. The corrections terms are called
exchange terms since they subtract all contributions that correspond to the situation if
two arbitrary electrons were exchanged. Those parts are not allowed to contribute to the
solution, since the electrons are indistinguishable, which implies that the exchange of two
electrons is a meaningless notion.

Unfortunately, those exchange terms introduce additional computational complexity,
making MP, SOSEX, and CC steep scaling and computationally very expensive meth-
ods. In this work we present new algorithms that significantly reduce the computational
complexity of the exchange terms, such that larger systems are tractable. In particular

1SOSEX does not fully account for the Pauli exclusion principle but approximately corrects the RPA.
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we focus on MP2 and SOSEX, since the exchange terms are formally simple and directly
accessible in these methods. In summary, the developed algorithms represent an important
step towards the calculation of accurate correlation energies for large systems, involving
several hundreds of valence electron. All algorithms are implemented in the Vienna ab
initio simulation package (VASP). As our benchmark theory we employ second-order
Møller-Plesset perturbation theory (MP2) since it is the simplest candidate that includes
exchange terms. We also discuss how the new methods could be adapted for SOSEX.

The thesis is structured as follows. The first part provides an introduction to the
theoretical basis on which ab initio computational materials physics is founded today. It is
written in a pedagogical manner, aimed to everyone who has basic knowledge in quantum
mechanics. The skilled reader can skip this part without hesitation, and may start directly
from Chap. 7 or even from Part II. The main research work of this thesis follows in
Part II. There, we introduce and discuss six newly developed algorithms to reduce the
computational complexity of correlation energy calculations, with a particular attention
to exchange-like contributions. We distinguish three deterministic and three stochastic
algorithms. While the deterministic approaches maintain the numerical accuracy and
achieve the lower scaling only by rearrangements of mathematical terms, the stochastic
algorithms come at the price of a statistical error. We conclude Part II in Chap. 12.
Separated from this, we present a research work on lead selenide (PbSe) in Part III.
The RPA method was used to calculate the temperature-pressure phase diagram of three
different crystal structures of PbSe. In this part, we resolved the inconsistency of previous
DFT-based ab initio studies, and provide accurate data for the construction of force fields.

13
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CHAPTER 2

The many-body Hamiltonian and how we treat it

2.1 The Many-body Hamiltonian and the free energy

In computational materials physics we aim to calculate materials properties under realistic
conditions. In this thesis, we focus on systems in the thermodynamic equilibrium. For
this purpose the canonical ensemble serves as a convenient starting point, since it allows
to control the particle number, the volume, and the temperature of the considered system.
The state of the considered system is then determined by the minimum of the free energy,
defined by

F(T ,V) = −kBT ln Z(T ,V) , (2.1)

in which

Z(T ,V) =
∞∑

k=0

e−βEk , (2.2)

is the canonical partition sum. Here, kB is the Boltzmann constant1, T is the temperature,
β = (kBT)−1, andV is the volume of the considered system. The partition sum is calculated
by the sum over all possible energetic states, where the energies Ek implicitly depend on
the volume V . Accurate calculations of F(T ,V) allow, e.g., for structure predictions,
calculation of bond lengths, surface energies, or phase diagrams of real materials. The
energies Ek are determined by the eigenvalues of the many-body Hamilton operator H
(see below) of the considered system,

HΨk = EkΨk . (2.3)

This eigenvalue equation is also known as the time-independent Schrödinger equation, be-
ing a fundamental postulate of quantum mechanics. Its eigenvectors are square integrable
functions, Ψk(R1, ...,RM , r1, ..., rN), where RI and ri are understood as the eigenvalues
of the position operators of the nuclei and electrons, respectively. If the quantum mechan-
ical system is a real material, consisting of M atomic nuclei and N electrons, the Hamilton

1kB ≈ 8.6173 · 10−5 eV/K or 1.3806 · 10−23 J/K, K ≡Kelvin, eV ≡electronvolt, J ≡Joule

17



2 The many-body Hamiltonian and how we treat it

operator takes the form,
H = Tn + Te + Vnn + Vne + Vee (2.4)

with

Tn = −
M∑

I=1

~2

2MI
∇2

RI
, Te = −

~2

2m

N∑
i=1

∇2
ri , (2.5)

Vnn = κC

M∑
I<J

ZI ZJe2

|RI −RJ |
, Vne = −κC

M∑
I

N∑
i

ZI e2

|RI − ri |
, Vee = κC

N∑
i< j

e2

|ri − r j |
. (2.6)

Here, Tn and Te are the kinetic energy operators of the atomic nuclei (n) with mass MI
and of the electrons (e) with mass m ≈ 9.1094 · 10−31 kg, respectively. The Coulomb
interaction is decomposed into the interaction between the nuclei, Vnn, the interaction
between the nuclei and the electrons, Vne, and the electron-electron interaction, Vee. The
position operators of the nuclei and electrons are termed as RI and ri, respectively. Each
electron carries the negative elementary charge2 −e, whereas the nuclei are oppositely
charged by ZI e. The expression κC = (4πε0)

−1 is the Coulomb constant3. We will make
use of the Hartree atomic units. Hence, we set e = m = ~ = κC = 1 in order to keep the
equations simple and clear.

As mentioned in the Introduction, exact analytical solutions of the time-independent
many-body Schrödinger equation (2.3) are unattainable (except for M = N = 1, being the
hydrogen atom). Therefore, all many-body considerations have to rely on approximation
techniques. In the following, we introduce some of the important corner stones.

2.2 Comments on the mathematical notation

In this thesis we will make use of the bra-ket notation by Dirac [2]. This in particularly
useful to distinguish between the abstract mathematical object, e.g. a vector in Hilbert
space, |Φ〉, and its representation in a certain basis, e.g. a wave function in real space,
Φ(r). The relation of both objects, for this example, is given by the inner product,

〈r |Φ〉 = Φ(r) . (2.7)

This clear distinction avoids the ”awkward jump in the flow of one’s thoughts when one
changes from one to the other.” [2] If a clear distinction is not necessary, we also sometimes
write Φ instead of |Φ〉 for the general vector (as in Eq. 2.3). The same holds for operators.
As used in the previous section, the momentum operator can be written in an abstract and
in a real space notation. In the abstract notation the action of the momentum operator
P on a state vector |Φ〉 is simply P |Φ〉. The relation to the real space representation is,
again, given by an inner product,

〈r |P |r′〉 = −i~∇rδ(r − r
′) = i~∇r′δ(r − r

′) , (2.8)
2e ≈ 1.6022 · 10−19 C, C ≡ Coulomb
3ε0 ≈ 8.8542 · 10−12 F/m, F ≡ Farad, m≡ meter

18



2.3 Born-Oppenheimer approximation for the free energy

where ∇rδ(r − r
′) is understood as a distribution. One can conclude that

〈r |P |Φ〉 = −i~∇rΦ(r) . (2.9)

Since this work is about many-electron systems, we introduce the following notation
for many-electron states,

... ⊗ |ϕi〉 ⊗ ... ⊗ |ϕ j〉 ⊗ ... = ...|ϕi〉...|ϕ j〉... = |...ϕi ...ϕ j ...〉 , (2.10)

i.e. the tensor product of state vectors of a sub Hilbert space (left) is simply written as a
single state vector of the entire Hilbert space (right), or, alternatively, as a sequence of state
vectors (middle), neglecting the tensor product symbol. An N electron wave function,
|Φ〉, can thus be written in real space as

〈r1...rN |Φ〉 = Φ(r1, ..., rN) . (2.11)

2.3 Born-Oppenheimer approximation for the free energy

Although the many-particle Hamiltonian (2.4) looks quite symmetric for interchanging n
(nuclei) and e (electrons), they play a completely different role in molecules or solids at
ambient conditions. The electrons act as a glue and bind the nuclei, giving the molecule
or crystal its characteristic spatial structure, as the vibrating nuclei are mainly responsible
for thermodynamic properties like the specific heat.

Born-Oppenheimer approximation

The different roles are a consequence of the small ratio of the masses m/M, whereM
is an average mass of the considered nuclei. Born and Oppenheimer [1] showed, that
an expansion of the eigenenergies Ek of the many-body Hamiltonian (2.3) in terms of
x = (m/M)1/4 reveals, as they write, the ”natural ordering of the energy contributions”.
The lowest order, O(x0), corresponds to ”nailed” or frozen nuclei, where only the electron
dynamics contribute. The lowest order corrections are the O(x2) terms and include
vibrations of the nuclei. Rotations are covered by the O(x4) terms. All three types of
energy contribution are independent of each other. Only at higher orders, the three types
are coupled, including, e.g., interactions between the electrons and the vibrations of the
nuclei. This is especially important for effects like the temperature dependence of electric
conductivity, which, however, will not play a role in this thesis. Here, we restrict ourselves
to the first two orders, the electron energy with frozen nuclei and the nucleus vibrations.

Employing this approximation, the independence of the two energy contributions can
be incorporated into to the Schrödinger equation (2.3) in the following way,

Ek ≈ Ξl + Em , k = (l,m) , (2.12)
Ψk(R1, ...,RM , r1, ..., rN) ≈ Λl(R1, ...,RM) · Φm(r1, ..., rN) . (2.13)
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2 The many-body Hamiltonian and how we treat it

Here, the eigenvalues Ek are splitted into the vibrational energiesΞl and into the electronic
energies Em. The index k is also splitted into the independent indices l and m. Furthermore,
the eigenfunctions decompose into a product of a function describing only the nuclei, Λl ,
and into the electronic wave function, Φm. If we, furthermore, split the Hamiltonian into
a part, Hn, which only acts on the nuclei, Λl , and another one, He, which only acts on the
electrons, Φm, we can rewrite the Schrödinger equation (2.3) as,

HnΛl

Λl
+

HeΦm

Φm
≈ Ξl + Em . (2.14)

This splitting can be achieved, if we define

H{RI }
e = Te + V {RI }

nn + V {RI }
ne + Vee , (2.15)

where the positions of the nuclei {RI} only appear as parameters instead of operators.
The electronic energies Em are found by minimizing over a landscape of all possible
configurations of frozen nuclei at {RI},

Em = min
{RI }

E {RI }
m = E

{R0
I }

m , (2.16)

where we denote the minimizing configuration as {R0
I }. The same holds for the wave-

function of the electrons

Φm(r1, ..., rN) = Φ
{R0

I }

m (r1, ..., rN) , (2.17)

which are related by the

electronic Schrödinger equation,

H{RI }
e Φ{RI }

m (r1, ..., rN) = E {RI }
m Φ{RI }

m (r1, ..., rN) . (2.18)

The energy landscape, E {RI }
m , then acts as an effective potential for the nuclei. However,

to avoid any dependence of l from m we pick the electronic ground state, m = 0, for the
effective potential, and find an expression for Hamiltonian of the nuclei,

Hn = Tn + E {RI }

m=0 , (2.19)

wherein the RI now regain their previous purpose as operators. We thus arrive at the

Schrödinger equation for the nuclei,

HnΛl(R1, ...,RM) = ΞlΛl(R1, ...,RM) . (2.20)

The choice of m = 0 for the effective energy landscape can be justified in the following
way. In the case of metals, it is known, that the electrons have a vanishing contribution to
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2.3 Born-Oppenheimer approximation for the free energy

the heat capacity at ambient conditions. This can be derived from the free electron model.
Thus, the electronic ground state is a reasonable assumption for metals. For insulators
with a finite band gap Eg = E1−E0, the free electron model is no longer valid. But we can
still expected the material to be in the ground state for temperatures kBT � Eg. At room
temperature this corresponds to Eg � 0.026 eV, which includes even semiconductors.

Free energy in the Born-Oppenheimer approximation

If we apply the results of the Born-Oppenheimer approximation to the canonical partition
function (2.2), we obtain

Z(T ,V) =
∞∑

k=0

e−βEk ≈
∞∑

l,m=0

e−β(Em+Ξl)

= e−βE0e−βΞ0

∞∑
m=0

e−β(Em−E0)
∞∑

l=0

e−β(Ξl−Ξ0) . (2.21)

As above, we assume that energy from the heat bath is not absorbed by the electrons if
kBT � Em − E0, such that e−β(Em−E0) ≈ 0 for m ≥ 1. We conclude,

Z(T ,V) ≈ e−βE0e−βΞ0

∞∑
l=0

e−β(Ξl−Ξ0) . (2.22)

The last assumption (kBT � Em − E0) clearly excludes metals (systems with a vanishing
band gap), which would require a special treatment. Since metals also pose many other
numerical difficulties in the development of algorithms, which are not dealt with in this
thesis, we will limit ourselves to materials with finite band gaps. For the free energy this
results in

F(T ,V) = −kBT ln Z(T ,V) ≈ E0 + Ξ0 − kBT ln
∞∑

l=0

e−β(Ξl−Ξ0) . (2.23)

If we define the

free energy of the vibrations (phonons) by

Fn(T ,V) = Ξ0 − kBT ln
∞∑

l=0

e−β(Ξl−Ξ0) , (2.24)

with the zero point vibration energy Ξ0, we can write

the free energy as
F(T ,V) ≈ E0 + Fn(T ,V) , (2.25)

where E0 is simply the electronic ground state energy.
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2 The many-body Hamiltonian and how we treat it

Again, this approximation only holds as long as the temperature has no effect on the
electrons, leaving thermal properties solely to the vibrations of the nuclei.

Summary

In short, we found that it is sufficient to solve the electronic Schrödinger equation (2.18)
only for the ground state E {RI }

0 on a sufficiently large set of configurations {RI} of the
positions of the nuclei. The minimum of E {RI }

0 then provides the desired electronic
ground state E0. In order to include the vibrational energy, also the Schrödinger equation
for the nuclei (2.20) has to be solved, but there, the full spectrum is required. The latter is
usually achieved by the harmonic approximation, assuming that the nuclei, located at the
equilibrium positions {R0

I }, are all connected by springs (this will be discussed in Sec.
2.7). The greatest difficulty in materials physics, however, remains to find the ground state
energy of the electronic Schrödinger equation (2.18).

2.4 Mean field approach and Bloch’s theorem

We are left with a many-electron Schrödinger equation (2.18), and it is still not possible
to treat this equation for N ≥ 2 electrons directly. The major difficulty arises from the
combination of Vne and Vee, not only from the fact that N is large. For instance, the case
Vee = 0 leads to the independent electron model, and the case Vne = 0 is called homoge-
neous electron gas. For both models, numerical and also special analytical solutions are
available, even for large N . For many real materials, however, both interactions, Vne and
Vee are crucial.

Mean field Hamiltonians

Nevertheless, one generally accepted approach is to replace the electronic Hamiltonian
(2.15) by a mean field (MF) Hamiltonian HMF

e , where the nucleus-electron and electron-
electron interactions are replaced by a sum of effective one-electron potentials, Vne+Vee →

Veff,

He → HMF
e = Te + Vnn + Veff , Veff =

N∑
i=1

1 ⊗ ... ⊗ veff︸︷︷︸
i’th position

⊗... ⊗ 1 . (2.26)

From the mathematical perspective, this appears as a rather desperate attempt. However,
in physics, we do not aim to solve mathematical equation exactly, but we often desire
reasonable approximations that cover the considered physical phenomena sufficiently
accurate. From the Drude model [3] or the Drude-Sommerfeld [4] model, for instance,
we know already since the year 1900 that materials properties can, indeed, be predicted
by models that replace the nucleus-electron and electron-electron interactions. Since the
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2.4 Mean field approach and Bloch’s theorem

mean field Hamiltonian is now a sum of one-electron operators,

HMF
e =

N∑
i=1

1 ⊗ ... ⊗ hMF︸︷︷︸
i’th position

⊗... ⊗ 1 , hMF =
P 2

2
+ Vnn + veff , (2.27)

where Vnn is just a number (the interaction energy of the nuclei), its eigenstates decay into
products of one-electron states. Those one-electron states are solutions of an effective
one-electron Schrödinger equation,

hMF |ϕ〉 = ε |ϕ〉 . (2.28)

Usually, such mean field equations are derived from energy functionals of one-electron
states, E [{ϕ}], or energy functionals of the electron density, E [ρ]. The variation principle,
δE/δϕ = εϕ or δE/δρ = 0 then defines the mean field Hamiltonian. Clearly, the choice
of the energy functionals determines if the resulting orbitals or densities are meaningful
at all. As an illustration, one can consider the Hartree functional4,

EHartree[{ϕ}] =
N∑
i

∫
d3r ϕ∗i (r)∇

2ϕi(r) −
M∑
I

N∑
i

∫
d3r

ZI |ϕi(r)|
2

|RI − r |
(2.29)

+
1

2

N∑
i j

∫
d3r

∫
d3r′

|ϕi(r)|
2 |ϕ j(r

′)|2

|r − r′|
+ V {RI }

nn ,

which, after applying the variational principle, results in the following mean field equation
in order to determine the one-electron states ϕi(r),[

−
1

2
∇2 −

M∑
I

ZI

|RI − r |
+

N∑
j

∫
d3r′
|ϕ j(r)|

2

|r − r′|

]
︸                                                          ︷︷                                                          ︸

hMF
Hartree

ϕi(r) = εiϕi(r) . (2.30)

Thus, the effective potential of the Hartree functional reads,

veff(r) = −
M∑
I

ZI

|RI − r |
+

N∑
j

∫
d3r′
|ϕ j(r

′)|2

|r − r′|
. (2.31)

Although this approach appears reasonable, it disregards two crucial contributions to
the ground state, namely exchange and correlation, two terms which will be clarified in
Chap. 5. In Chap. 4 and 6 we will introduce two established mean field approaches, the
Hartree-Fock method and density functional theory, that can predict physical properties
of materials quite accurately.

4Note, that Hartree excluded the case i = j in the i j sum. For simplicity we neglect this subtlety.
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2 The many-body Hamiltonian and how we treat it

With mean field approaches, we eventually arrived at equations, that are tractable with
modern computers. It is a one-particle differential equation and its solutions are functions
of only one coordinate. If such a model can satisfactorily predict materials properties,
depends on the construction of the effective potential veff. The resulting eigenstates of
(2.28) are considered as the electron orbitals that are called atomic orbitals in the case
of atoms which are described by the well-known quantum numbers (n, l,m, s). They
are called molecular orbitals in the case of molecules, and Bloch orbitals in the case of
a periodic crystal. It is, however, important to keep in mind, that the exact solution of
the electronic Schrödinger equation (2.18) is one single high dimensional wave function
that covers all electrons whereas the concept of electron orbitals is only a mean field
approximation. This approximation is also referred to as the independent particle picture.

Such mean field calculations are the foundation of toady’s ab initio computational
physics. The resulting orbitals and eigenvalues serve as a basis to construct many-electron
wave functions or to perform perturbation theory calculations in order to correct the error,
introduced by the mean field approach.

Bloch’s theorem

In the case of a crystal that has a periodic lattice structure, a mathematical part of the
eigenstates of the mean field Hamiltonian (2.28) inherit the periodicity of the crystal
lattice. This is known as Bloch’s theorem [5] and can be derived as follows.

Let us assume that the crystal lattice of our material is a Bravais lattice which can be
characterized by three primitive lattice vectors, a1, a2, a3. This implies that the nuclei
are arranged in a regular lattice, such that any periodic repetition of each nucleus can be
reached by linear combinations of the Bravais lattice vectors, R = n1a1 + n2a2 + n3a3.
The cell spanned by these primitive lattice vectors and the nuclei it contains is summarized
as primitive unit cell. An illustration of crystal structures is given in Fig. 2.1.
For each lattice vector R, we can define a translation operator by tR = e−iRP , acting as
〈r |tR | f 〉 = f (r + R) on any function f . The crystal lattice also defines a reciprocal
lattice via bia j = 2πδi j , where the last equation defines the reciprocal lattice vectors, bi,
i = 1, 2, 3. If we assume infinitely many repetitions in all three directions of the lattice (to
avoid surface effects), one can show that the mean field Hamiltonian commutes with the
translation operator, [hMF, tR] = 0, for all lattice vectors R. This implies that hMF and tR
have a common set of eigenstates,

hMF |ϕ〉 = ε |ϕ〉 , (2.32)
tR |ϕ〉 = cR |ϕ〉 . (2.33)

Since tR is a unitary operator, its eigenvalues are of magnitude one, |cR | = 1. Furthermore,
from tRtR′ = tR+R′, we can conclude, cRcR′ = cR+R′. This restricts the eigenvalues
to exponential functions of the form cR = eig(R), where g : R3 → R is a linear function.
If we define a vector k in reciprocal space by k = k1b1 + k2b2 + k3b3 with the choice
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2.4 Mean field approach and Bloch’s theorem

Figure 2.1: This figure shows examples of arrangements of the nuclei, as they are consid-
ered in materials physics, forming crystal structures or surfaces. Top: three
layers of hexagonal boron nitride and the corresponding primitive cell. Mid-
dle: a water molecule on the surface of TiO2. Bottom: The crystal structure
of lithium hydride and the corresponding primitive unit cell.
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2 The many-body Hamiltonian and how we treat it

ki = g(ai)/2π, then we can write for an eigenstate |ϕ〉,

tR |ϕ〉 = cR |ϕ〉 = eig(R) |ϕ〉 = ei[n1g(a1)+n2g(a2)+n3g(a3)] |ϕ〉 = eikR |ϕ〉 . (2.34)

Thus, each eigenstate |ϕ〉 determines the linear function g, and therefore, determines k
such that Eq. (2.34) holds. Accordingly we can assign to each eigenstate |ϕ〉 and each
eigenvalue ε, its Bloch vector k, |ϕ〉 → |ϕk〉, ε → εk. The Bloch vector k is also
called crystal momentum or simply wave vector. Note that replacing k → k +G, where
G = m1b1+m2b2+m3b3, mi ∈ Z, is a reciprocal lattice vector, leads to exactly the same
equation, since eiGR = 1. Thus we can restrict k to the first Brillouine zone which is
defined by the assumption that any k′ can be reached by k′ = k + G. Calculating the
inner product of Eq. (2.34) with 〈r | yields the common formulation of Bloch’s theorem,
which states, that each eigenstate of the mean field Hamiltonian, hMF, obeys the relation,

ϕk(r +R) = eikRϕk(r) . (2.35)

A mathematically equivalent formulation is

ϕk(r) = γ · eikruk(r) , (2.36)

where γ is a normalization factor and uk(r) is a periodic function: uk(r +R) =
uk(r).

Since hMF commutes with tR, the wave vectors k are good quantum numbers, but the
energies εk can be degenerate. To fix this, another quantum number, the band index
n, is introduced, |ϕk〉 → |ϕnk〉, εk → εnk, such that εnk ≤ εn+1k. The eigenvalues
εnk therefore form the so called band structure of the corresponding material. In this
independent particle picture, the lowest N states are called occupied states whereas all
remaining ones are called unoccupied states or virtual states. The upper bound for the
eigenvalues εnk of the occupied orbitals is usually denoted as Fermi energy εF ≥ εnk.
The energy difference between the highest occupied state and the lowest unoccupied state
is called band gap of the material. In the case of a vanishing band gap, the system is a
metal for the considered mean field approach. Note that these properties strongly depend
on the choice of the mean field Hamiltonian, e.g. a finite band gap does not necessarily
predict that the material is not a metal in reality.

Born-von Karman boundary conditions

For all practical considerations, the first Brillouine zone can be discretized according to
the Born-von Karman boundary conditions which read,

ϕnk(r +Niai) = ϕnk(r) , Ni large , i = 1, 2, 3 . (2.37)

This can be understood as decomposing an infinitely extended crystal intoN = N1N2N3

blocks with side lengthsNiai. The volume of the block is denoted as Ω = NΩ0, where Ω0
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2.5 What about the spin?

is the volume of the unit cell. The larger Ni, the more harmless is this artificial requirement.
Together with (2.35) this leads to the following discretization for the components of the
k-points, k = k1b1 + k2b2 + k3b3,

ki =
2πl
Ni

, l ∈ Z . (2.38)

Hence, the Born-von Karman boundary conditions provide a useful scheme to discretize
the continuous k-space for computational algorithms. Furthermore, we introduce the
following normalization convention for the Bloch orbitals.

ϕnk(r) =
1
√
Ω

eikrunk(r) , 〈ϕmk |ϕnq〉 =

∫
Ω

d3r ϕ∗mk(r)ϕnq(r) = δmnδkq , (2.39)

which leads to ∫
Ω0

d3r u∗mk(r)unk(r) = Ω0δmn . (2.40)

2.5 What about the spin?

The electron spin has not yet been introduced. This is due to the fact that we restrict to
a non-relativistic view of quantum mechanics. The spin, however, naturally emerges in
a relativistic picture, based on the Dirac equation [6]. In the non-relativistic picture, it
is a common practice to add the spin degree of freedom ad-hoc, even if the considered
Hamiltonian acts only in the spatial Hilbert space. This is indispensable for many-particle
calculations, since a missing spin degree of freedom leads to wrong consequences of the
symmetrization postulate that will be introduced in Chap. 3. Introducing the spin in an
ad-hoc manner also corresponds to the historical development of quantum theory. Pauli
postulated the spin [7] as an additional quantum number in 1924. In combination with his
exclusion principle (which will be introduced in Sec. 3.4), he was able to put the electron
configuration of atoms on a sound theoretical footing. In order to describe this additional
degree of freedom mathematically, we supplement the spatial electron orbitals by a spin
state,

|ϕ〉 → |χ〉 = |ϕ〉 ⊗ |σ〉 , (2.41)

where we call |χ〉 a spin orbital. For the spin state |σ〉 we usually use the eigenvectors
of the z component of the spin operator as basis vectors, i.e. |↑〉 and |↓〉. We will also
use the symbol s =↑, ↓ to denote spin up or spin down states. To label spin orbitals we
will use compound indices, which represent the Bloch wave vector, band index and spin,
|χi〉 = |ϕnk〉 ⊗ |s〉, i.e i ≡ (n,k, s). In case of integrations, we will often make use of the
notation x = (r, s), such that∫

dx 〈x|χ〉 ... =
∫

dx χ(x) ... =
∑

s=↑,↓

∫
d3r ϕ(r)〈s |σ〉 ... . (2.42)
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2 The many-body Hamiltonian and how we treat it

Having introduced the spin, it is possible to consider effective Hamiltonians which include
spin-orbit coupling or magnetic fields in a non-relativistic fashion.

2.6 Pseudopotentials and the projector augmented wave
method

Pseudopotentials

Albeit the many-electron Schrödinger equation can be tackled with mean field Hamilto-
nians, it is still a computationally ambitious task to solve those one-electron Schrödinger
equations. This can be realized in the following way. All calculations have to be performed
in a certain basis of the Hilbert space. In the plane wave basis, which is the underlying
basis of all calculations in this thesis, the orbitals are stored by plane wave coefficients,
cnk(G),

ϕnk(r) =
Ec∑
G

cnk(G) eiGr . (2.43)

This sum (which is essentially a Fourier transform) runs over all reciprocal lattice vectors
G truncated by the condition G2/2 ≤ Ec, where Ec is a given cutoff parameter. To chose a
sufficiently accurate grid is a crucial decision in plane-wave based methods. In particular,
to cover the strong oscillations of the valence orbitals near the nuclei, requires very fine
real space grids or, equivalently, very large Fourier cutoffs Ec. These oscillations originate
from the Coulomb potential of the nuclei and are in principle equivalent to the oscillations
which occur for bound states in the ”particle in a box” toy model. The higher the orbital
energy, the stronger its oscillations. Hence, near the nuclei the valence orbitals exhibit the
strongest oscillations. However, since many important effects in materials physics (like
bonding) can be explained by the behavior of the valence electrons only, one can argue that
the sole contribution of the core orbitals is to shield the Coulomb potential of the nuclei.
Therefore, it is a common approach to simplify the mean field approach by removing the
core electrons from the calculations, i.e. we assume not only the nuclei to be frozen (Born-
Oppenheimer approximation) but also the core electrons (frozen core approximation). Due
to the opposite charge of the frozen nuclei and the frozen core electrons, the net potential
for the valence electrons, which is often referred to as pseudopotential (PP), is softer and
weaker. Formally, this means that we replace the effective potential, veff, of Eq. (2.26)
by an effective pseudopotential, vPP

eff , that mimics the valence electron-valence electron
interaction, as well as the interaction of the valence electrons with the compound of the
nuclei and the core electrons. The only degrees of freedom that are left and variable
are those of the valence electrons. Thus, the mean field Schrödinger equation (2.28) is
reduced to an eigenequation for the valence electrons only. The eigenstates of such a
pseudopotential mean field approach are called pseudo wavefunctions or pseudo reference
states and do not exhibit oscillations near the nuclei. Accordingly, the real space grid can
be more coarse and the plane wave cutoff can be smaller in order to achieve a comparable
accuracy. For instance, consider the silicon atom (14 electrons) with the configuration
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2.6 Pseudopotentials and the projector augmented wave method

1s2 2s2 2p6 3s2 3p2. In many consideration only the electrons in the M shell are active and
it is a good approximation to consider the electrons of the K and L shell as frozen core
electrons. We are thus left with only 4 valence electrons.

Examples of well known implementations of pseudopotential techniques are the orthog-
onalized plane wave (OPW) [8] method or ultrasoft pseudopotentials [9].

The PAW method

All calculations in this thesis are based on the projector augmented wave (PAW) [10, 11]
method, which is a generalized pseudopotential approach. The PAW allows to work with
even smoother valence orbitals which are related to the real valence orbitals by a simple
linear transformation. In the following the PAW is introduced.

In the PAW method, we aim to find a linear transformation,

|ψm〉 = T |ψ̃m〉 , (2.44)

that relates the mean field eigenstates |ψm〉 to PAW orbitals |ψ̃m〉 that are smooth functions
inside augmentation spheres ΩI around the nuclei {I}. The former are often called all-
electron (AE) orbitals or true orbitals, whereas the latter are mostly denoted as pseudo
(PS) orbitals or PAW orbitals. The index m is a compound index for the band, the crystal
wave vector and the spin. Outside the augmentation spheres, both orbitals are equal, i.e.
we can decompose the linear transformation into local linear transformations, TI , that act
only inside the augmentation spheres ΩI ,

T = 1+
∑

I

TI . (2.45)

In order to distinguish between the inner and outer part of the augmentation spheres, we
introduce the projector

PI =

∫
r∈ΩI

d3r |r〉〈r | , (2.46)

which projects states into the augmentation sphere ΩI . Furthermore, we use round brack-
ets to denote states projected into the augmentation sphere, |...) = PI |...〉. The linear
transformations TI are defined by

|φIn) = [1+ TI ]|φ̃In) , (2.47)

where |φIn〉 are usually atomic orbitals of the free atom I with atomic quantum numbers
n, and |φ̃In〉 are smooth functions, which form a basis inside the augmentation spheres,
i.e.

PI1PI =
∑

n

|φ̃In)(φ̃In | ∀I . (2.48)
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2 The many-body Hamiltonian and how we treat it

Thus, inside the spheres we can decompose the PAW orbitals as

|ψ̃m) =
∑

I

∑
n

cm
In |φ̃In) , (2.49)

where cm
In are expansion coefficients. From (2.44), (2.45), and (2.47) we can conclude that,

although the atomic orbitals {|φIn〉} do not necessarily form a basis inside the augmentation
spheres, the true orbitals can also be written as

|ψm) = T |ψ̃m) =
∑

I

∑
n

cm
In T |φ̃In) =

∑
I

∑
n

cm
In |φIn) , (2.50)

using the same coefficients cm
In. Moreover, we introduce projector states 〈p̃In | which are

dual to {|φ̃In〉} inside the spheres

(p̃In |φ̃I ′n′) = δI I ′δnn′ , (2.51)

and meet the completeness relation,∑
n

|φ̃In)(p̃In | = PI1PI . (2.52)

Hence, we find
(p̃In |ψ̃m) = cm

In . (2.53)

Note the following relations: The choice of the set {|φ̃In〉} defines the linear transformation
T via (2.47) and (2.45), and also the coefficients cm

In via (2.49). Hence the projector states
〈p̃In | are associated with T due to the relation (2.51). According to Blöchl [10], given
a set of linearly independent functions {〈 fIm |}, the dual vectors 〈p̃In | can be calculated
(Gram-Schmidt procedure) using the relation,

〈p̃In | =
∑

m

M−1nm(I) 〈 fIm | . (2.54)

where M−1(I) is the inverse of a matrix M(I), defined by Mnm(I) = 〈 fIn |φ̃Im〉 for each
atom I. Having these ingredients, it is possible to construct a useful representation of the
linear transformation T . After subtracting (2.31) from (2.32) we obtain,

|ψm) − |ψ̃m) =
∑

I

∑
n

cm
In [|φIn) − |φ̃In)] =

(∑
I

∑
n

[|φIn) − |φ̃In)](p̃In |

)
|ψ̃m) . (2.55)

However, since we assumed |ψm〉 = |ψ̃m〉 and |φIn〉 = |φ̃In〉 outside the augmentation
spheres , the left hand side and the right hand side are zero. Thus, Eq. (2.55) holds in the
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entire space and we can replace |...) by |...〉,

|ψm〉 = |ψ̃m〉 +

(∑
I

∑
n

[|φIn〉 − |φ̃In〉]〈p̃In |

)
|ψ̃m〉 = T |ψ̃m〉 . (2.56)

We can now identify the linear transformation by

T = 1+
∑

I

∑
n

[|φIn〉 − |φ̃In〉]〈p̃In | . (2.57)

Instead of solving the mean field Hamiltonian for the real orbitals, we can construct a
PAW Hamiltonian by varying the underlying energy functional (as described in Chap. 2.4)
with respect to |ψ̃m〉 instead of |ψm〉, δE [T ψ̃]/δψ̃ = εT †T ψ̃, where E is the mean field
energy functional for the real orbitals. The PAW orbitals can thus be calculated directly,
whereas the real orbitals are available via T . Moreover, the frozen core approximation
can simply be incorporated by starting with a frozen core energy functional.

Also expectation values or matrix elements of operators can simply be calculated via
the PAW orbitals only,

〈ψm |A|ψn〉 = 〈ψ̃m | Ã|ψ̃n〉 , Ã = T †AT , (2.58)

where A is some operator. For later use, we derive the transformed version of |r〉〈r |,

T † |r〉〈r |T =

(
1+

∑
Jm

| p̃Jm〉[〈φJm | − 〈φ̃Jm |]

)
|r〉〈r |

(
1+

∑
In

[|φIn〉 − |φ̃In〉]〈p̃In |

)
= |r〉〈r |

+
∑

I

∑
n

[
|r〉〈r |φIn〉 − |r〉〈r |φ̃In〉

]
〈p̃In | (2.59)

+
∑

J

∑
n

| p̃Jm〉
[
〈φJm |r〉〈r | − 〈φ̃Jm |r〉〈r |

]
+

∑
I J

∑
nm

| p̃Jm〉
[
〈φJm | − 〈φ̃Jm |

] [
|r〉〈r |φIn〉 − |r〉〈r |φ̃In〉

]
〈p̃In | δI J .

For r outside the augmentation spheres we find T † |r〉〈r |T = |r〉〈r |, which simply
follows from the fact that T is 1. For r inside the augmentation spheres we can exploit
Eq. (2.52) and find

T † |r〉〈r |T =
∑
I J

∑
nm

| p̃Jm〉〈φJm |r〉〈r |φIn〉〈p̃In | δI J , ∀r ∈
⋂

I

ΩI . (2.60)

Both cases are covered by
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2 The many-body Hamiltonian and how we treat it

T † |r〉〈r |T = |r〉〈r | +
∑

I

∑
nm

| p̃Im〉
[
〈φIm |r〉〈r |φIn〉 − 〈φ̃Im |r〉〈r |φ̃In〉

]
〈p̃In | .

(2.61)

To summarize, we can construct a linear transformation T that relates smooth PAW
orbitals to the true orbitals. T is defined by choosing an appropriate set of smooth PAW
basis functions {|φ̃In〉} and projector states {〈p̃In |} that obey (2.51). This allows for even
lower energy cutoffs and coarser real space grids than standard normconserving pseu-
dopotential methods. All information of the solution of the real mean field Hamiltonian
is encoded in the PAW orbitals and in the linear transformation. Note that all orbitals in
this thesis have to be understood as PAW orbitals, however, we usually neglect the tilde to
simplify the notation.

2.7 Lattice vibrations: relaxing the frozen nuclei
So far, we discussed the mean field treatment of the electronic Schrödinger equation
(2.18). Although we aim almost exclusively to approximate the electronic part in this
work, contributions due to the lattice vibrations (vibration of the nuclei) become important
if temperature effects should be incorporated. Thus, we briefly present the important steps
in order to calculate the free energy Fn(T ,V) of the lattice vibrations (see Eq. 2.24), i.e.
approximately solve for the eigenvalues of (2.20).

As mentioned in Sec. 2.3 the lattice vibrations can often be calculated in the harmonic
approximation. There, we assume, that all nuclei are connected by springs, such that
the lattice vibrations can be considered as a superposition of harmonic oscillations of the
nuclei around their equilibrium positions {R0}. It will turn out, that the Hamiltonian of
the nuclei (2.19) can be written as an ensemble of independent harmonic oscillators,

Hn = Tn + E {RI }

m=0 ≈
∑

s

∫
d3k ω

{R0
I }

ks

(
nks +

1

2

)
. (2.62)

Here the summation and integration variables k and s are similar to the crystal wave
vector and band index of the electron mean field orbitals from Chap. 2.4 and will be
explained below. The phonon number operator nks is equivalent to the standard bosonic
operator for the quantum harmonic oscillator which is introduced in almost any quantum
mechanics textbook. The crucial quantities are the frequencies, ω{R

0
I }

ks , that characterize
the Hamiltonian and depend only on the equilibrium positions of nuclei {R0

I }. A brief
derivation of the approximation (2.62) and the frequencies is in order.

Let us assume that the effective potential for the atoms can be written as a sum over all
possible differences of the atom positions,

E {RI }

m=0 ≈
1

2

∑
I J

V(RI −RJ) , (2.63)
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2.7 Lattice vibrations: relaxing the frozen nuclei

where V will most likely have the form of a Lennard Jones-like potential for many
materials. Furthermore, the following derivation only holds for Bravais lattices with only
one atom in the basis. For materials with more than one atom in the basis the equations
involve additional indices and clarity would be lost (see e.g. Ref. [12]). We now assume
that each atom position can be decomposed into a fixed equilibrium position and an
additional variable part, RI = R0

I + uI . Since we assume the variable parts to be small,
we expand the potential up to second order,

1

2

∑
I J

V(RI −RJ) =
1

2

∑
I J

V(R0
I −R

0
J + uI − uJ)

≈
1

2

∑
I J

V(R0
I −R

0
J) +

1

2

∑
I J

(uI − uJ)∇V(R0
I −R

0
J)

+
1

4

∑
I J

[
(uI − uJ)∇

] 2
V(R0

I −R
0
J) . (2.64)

The equilibrium positions, R0
I , are intuitively defined as the minimum of the potential and

thus the second term vanishes,∑
J

∇V(R0
I −R

0
J) =

∑
I

∇V(R0
I −R

0
J) = 0 . (2.65)

What remains is the term that contains a quadratic dependence of the deviations from the
equilibrium, (uI − uJ)

2. This corresponds to Hooke’s law. For the second derivative, we
introduce the following notation,[

(uI − uJ)∇
] 2
V(R0

I −R
0
J) = (uµI − uµJ ) ∂µ∂νV(R0

I −R
0
J) (u

ν
I − uνJ) , (2.66)

where µ, ν = x, y, z are the components of the the vectors u and ∂µ are partial derivatives
with respect to that coordinate. A summation over µ, ν is understood. Using the definition,

Vµν(R
0
I −R

0
J) := δI J

∑
K

∂µ∂νV(R0
I −R

0
K) − ∂µ∂νV(R0

I −R
0
J) , (2.67)

we can write

Hn ≈
∑

I

p2
I

2MI
+

1

2

∑
I J

V(R0
I −R

0
J) +

1

2

∑
I J

uµIVµν(R
0
I −R

0
J)u

ν
J , (2.68)

where pI are the conjugate variables to uI , being the momentum operators of the nuclei,
pI = −i∇uI , such that the canonical commutator relations,

[uµI , pνJ ] = iδµνδI J , (2.69)
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2 The many-body Hamiltonian and how we treat it

hold. We can now define the dynamical matrix as

Dµν(k) =
∑

I

Vµν(R
0
I ) e−ikR0

I . (2.70)

For each k this is a 3 × 3 matrix that will be denoted by D(k). In order to arrive at an
expression like (2.62) it is constructive to define the eigenvalues and eigenvectors of the
dynamical matrix for every k,

D(k)εks = ω2
ksεks . (2.71)

The choice of the symbols shows where we are heading. The eigenvalues of the dynamical
matrix will turn out to be squared frequencies, ωks, of independent harmonic oscillators,
whereas εks are the polarization vectors of these oscillations. The additional index
s = 1, 2, 3 distinguishes the eigenvectors for each k. For materials with more than one
atom in the basis of the Bravais lattice one finds s = 1, ..., 3p, where p is the number of
atoms in the Bravais basis. Accordingly to the procedure to solve the quantum harmonic
oscillator problem, we can define creation and annihilation operators by

aks =
∑

I

e−ikR0
I εks

[√
MIωks

2
uI + i

1
√
2MIωks

pI

]
. (2.72)

The creation operator a†
ks is simply the complex conjugate of aks. These operators are

bosonic creation and annihilation operator which obey the relations

[aks, a
†

k′s′] = δkk′δss′ , (2.73)

[aks, ak′s′] = [a†
ks, a

†

k′s′] = 0 . (2.74)

Vice versa, we can express uI and pI by aks and a†
ks,

uI =
∑

s

∫
d3k eikR0

I

√
1

2MIωks

(
aks + a†

−ks

)
εks , (2.75)

pI = −i
∑

s

∫
d3k eikR0

I

√
MIωks

2

(
aks − a†

−ks

)
εks . (2.76)

Plugging this into Eq. (2.68) we arrive at

Hn ≈
∑

s

∫
d3k ωks

(
a†
ksaks +

1

2

)
+

1

2

∑
I J

V(R0
I −R

0
J) , (2.77)

where we could introduce nks = a†
ksaks. The only difference between (2.62) and (2.77)

is a constant. Hence, we approximated the Hamiltonian of the nuclei by infinitely many
independent harmonic oscillators where the equilibrium positions {R0

I } are the only
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2.7 Lattice vibrations: relaxing the frozen nuclei

necessary parameters.
In this form, we can immediately read off the eigenvalues Ξl of Hn. For the zero point

vibration energy we find

Ξ0 =
1

2

∑
s

∫
d3k ωks , (2.78)

and the canonical partition function (only for the nuclei) results in

Zn(T ,V) =
∑

l

e−βΞl =
∏
ks

e−ωks/(2kBT)

1 − e−ωks/(kBT)
. (2.79)

Hence, we found the harmonic approximation of

the free energy of lattice vibrations

Fn(T ,V) =
∑

s

∫
d3k

[ωks

2
+ kBT ln

(
1 − e−ωks/(kBT)

) ]
, (2.80)

where the the frequencies ωks implicitly depend on the volume V .
Summarized, the free energy of the lattice vibrations can be calculated by constructing

the dynamical matrix (2.70), solving the eigenvalue equation (2.71) and computing the
free energy via (2.80).
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CHAPTER 3

The symmetry of the wave function for electrons

3.1 The symmetrization postulate for identical particles

Along with the postulate of the many-body Schrödinger equation (2.3), the symmetrization
postulate is indispensable to correctly describe many-body systems. It states that any wave
function that describes an observable system of identical particles is either symmetric
or antisymmetric. To understand this postulate, we have to clarify the terms identical
particles, symmetric, and antisymmetric.

Particles are identical if and only if they are indistinguishable. Particles are indis-
tinguishable if there is no way, even in principle, to distinguish them from one another.
As a consequence, the exchange of two identical particles (i.e. of their position) is a
meaningless notion, since the exchange results in no change, and is therefore equivalent
to no exchange. Consider, for example, the exchange of any two natural numbers in the
expression 1+1+1. This is clearly meaningless, since the natural number 1 is an abstract
concept. In a comparable manner, electrons might be understood as an abstract concept
to analyze matter.

To explain the terms symmetric and antisymmetric, we have to introduce the permutation
operator. The permutation operator Pi j permutes two one-particle basis vectors, |αi〉 and
|α j〉, in a N-particle basis vector, |α1〉 ⊗ ... ⊗ |αN〉,

Pi j |α1〉 ⊗ ... ⊗ |αi〉 ⊗ ... ⊗ |α j〉 ⊗ ... ⊗ |αN〉

=|α1〉 ⊗ ... ⊗ |α j〉 ⊗ ... ⊗ |αi〉 ⊗ ... ⊗ |αN〉 . (3.1)

Since P2
i j = 1, the eigenvalues of Pi j are either +1 or −1. An N-particle state is called

symmetric, if it is an eigenstate of Pi j with eigenvalue +1,

Pi j |ψsym〉 = +|ψsym〉 (3.2)

or antisymmetric if it is an eigenstate with eigenvalue −1,

Pi j |ψasym〉 = −|ψasym〉 , (3.3)
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3 The symmetry of the wave function for electrons

for all i, j. We can then precisely formulate the

symmetrization postulate for identical particles:

• States that describe identical particles whose spin is an integer multiple of ~
are symmetric. The particles are called bosons.

• States that describe identical particles whose spin is a half-odd integer mul-
tiple of ~ are antisymmetric. The particles are called fermions.

• States that do not obey one of these two cases are absolutely forbidden.

Electrons are fermions with spin ~/2, therefore the electronic wave function (2.18) has
to obey

Pi j |Φe〉 = −|Φe〉 , ∀i, j . (3.4)

From the symmetrization postulate, we can deduce, that any operator which represents
a physical observable (including the Hamiltonian) has to be invariant under permuta-
tions of two quantum numbers. Let |ψ〉 be a quantum state that is either symmetric or
antisymmetric, Pi j |ψ〉 = ±|ψ〉. For any observable A we find,

〈ψ |A|ψ〉 = (±)2〈ψ |P†i j APi j |ψ〉 , (3.5)

and thus
A = P†i j APi j . (3.6)

or equivalently
[Pi j , A] = 0 , (3.7)

since P†i j = Pji = Pi j = P−1i j . This is nothing but the mathematical formulation of the
assumption, that there is no physical observable which can distinguish identical particles.

3.2 Construction of N-electron states in mean field
methods

As we introduced the mean field approach in Chap. 2.4, we deliberately omitted the
construction of the full N-electron wave function using the one-electron eigenstates of
the mean field Hamiltonian. This is due to the fact that the construction of N-electron
states apparently requires the knowledge of the symmetrization postulate, which was not
introduced at that stage.

The most simple construction of an N-electron mean field wave function |ψMF
asym〉 using

one-electron spin orbitals {|χi〉} from a mean field calculation, is given by an antisym-
metrization of an N-electron product state |χ1... χN〉. The antisymmetrization is achieved
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3.2 Construction of N-electron states in mean field methods

by the antisymmetrization operator A that acts as follows,

|ψMF
asym〉 = A|χ1... χN〉 =

1
√

N!

∑
σ∈SN

sgn(σ)|χσ1 ... χσN 〉 , (3.8)

where we sum over all permutations σ of the set {1, ..., N}. In a certain basis (e.g. the
real space basis), this corresponds to the definition of a determinant,

〈r1...rN |A|χ1... χN〉 =
1
√

N!
det

©«
〈r1 |χ1〉 · · · 〈r1 |χN〉

...
. . .

...
〈rN |χ1〉 · · · 〈rN |χN〉

ª®®¬ . (3.9)

This formulation is also known as constructing a Slater determinant from one-electron
spin orbitals. Exchanging any two spin orbitals obviously gives a minus sign, since it
corresponds to a permutation of two columns in the matrix. For three spin orbitals the
Slater determinant can be written out and reads

A|χ1χ2χ3〉 =
1
√
6

∑
σ∈S3

sgn(σ)|χσ1 χσ2 χσ3〉 (3.10)

=
1
√
6

(
|χ1χ2χ3〉 + |χ3χ1χ2〉 + |χ2χ3χ1〉 − |χ3χ2χ1〉 − |χ1χ3χ2〉 − |χ2χ1χ3〉

)
.

The state operator of this system is simply given by ρ = A|χ1χ2χ3〉〈χ1χ2χ3 |A. How-
ever, the one-electron reduced state operator is obtained by tracing out 3 − 1 = 2 degrees
of freedom and we obtain

ρ(1) = tr2tr3ρ =
1

3

(
|χ1〉〈χ1 | + |χ2〉〈χ2 | + |χ3〉〈χ3 |

)
, (3.11)

which is a maximally mixed state. Hence, associating an orbital with an electron is
a misleading concept1. In an antisymmetrized product state, each electron similarly
occupies each spin orbital. Orbitals are rather mathematical ingredients to construct
many-body states and every physical interpretation has to be treated with caution.

Clearly, the set of antisymmetrized product states, is only a small subset of all possible
antisymmetric states. Consider, for example, the two-electron state

|ψtriplet〉 =
1

2

(
|ϕ1ϕ2〉 − |ϕ2ϕ1〉

)
⊗

(
|↑↓〉 + |↓↑〉

)
. (3.12)

The spin part forms a symmetric triplet state, whereas the spatial degree of freedom is
antisymmetric, making the overall state antisymmetric. It is not possible to construct
this state by antisymmetrizing two spin orbitals, |ψtriplet〉 , A|χ1χ2〉. At least two

1This does not imply that mean-field approaches cannot lead to revealing results.
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3 The symmetry of the wave function for electrons

antisymmetrized product states (or equivalently, four spin orbitals) are necessary,

|ψtriplet〉 =
1
√
2

(
A|χ1χ2〉 +A|χ3χ4〉

)
, (3.13)

with |χ1〉 = |ϕ1〉 ⊗ |↑〉 and |χ2〉 = |ϕ2〉 ⊗ |↓〉 as well as |χ3〉 = |ϕ1〉 ⊗ |↓〉 and |χ4〉 =
|ϕ2〉 ⊗ |↑〉.

3.3 Slater-Condon rules

If two antisymmetrized product states differ only by one spin-orbital, we write that as

|ψ〉 = A|χ1... χi ... χN〉 → |ψa
i 〉 = A|χ1... χa... χN〉 , (3.14)

i.e. the spin orbital χi was replaced by χa. The same notation can be applied if more than
one-spin orbital is replaced,

|ψ〉 = A|χ1... χi ... χj ... χN〉 → |ψab
i j 〉 = A|χ1... χa... χb... χN〉 , (3.15)

or

|ψ〉 = A|χ1... χi ... χj ... χk ... χN〉 → |ψabc
i jk 〉 = A|χ1... χa... χb... χc... χN〉 , (3.16)

and so on. If the spin-orbitals form an orthonormal basis in the one-electron Hilbert
space, 〈χi |χa〉 = δia, ∀i, a, then all possible antisymmetric Slater determinants form a
orthonormal basis in the N-electron Hilbert space

〈ψ |ψabc...
i j k ... 〉 = 0 , (3.17)

〈ψabc...
i j k ... |ψ

a′b′c′...
i′ j ′k ′... 〉 = δii′δ j j ′δkk ′ ...δaa′δbb′δcc′ ... . (3.18)

With this notation established, we formulate the Slater-Condon rules [13, 14], which
drastically simplify the handling of one-electron and two-electron operators.

Slater-Condon rules I
If f (m) is a one-electron operator, acting in the mth one-electron Hilbert space, and

F =
N∑

m=1

f (m) , (3.19)

then

〈ψ |F |ψ〉 =
N∑

i=1

〈χi | f |χi〉 , 〈ψ |F |ψa
i 〉 = 〈χi | f |χa〉 , 〈ψ |F |ψab

i j 〉 = 0 . (3.20)
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3.4 Pauli exclusion

Slater-Condon rules II
If g(mn) is a two-electron operator, acting in the mth and nth one-electron Hilbert
space, and

G =
N∑

m,n

g(mn) , (3.21)

then

〈ψ |G |ψ〉 =
N∑

i, j=1

〈χi χj |g |χi χj〉 − 〈χi χj |g |χj χi〉 , (3.22)

〈ψ |G |ψa
i 〉 =

N∑
i=1

〈χi χj |g |χa χj〉 − 〈χi χj |g |χj χa〉 , (3.23)

〈ψ |G |ψab
i j 〉 = 〈χi χj |g |χa χb〉 − 〈χi χj |g |χbχa〉 . (3.24)

All states with more than two replaced spin orbitals vanish for both F and G,

〈ψ |F |ψabc...
i j k ... 〉 = 〈ψ |G |ψ

abc...
i j k ... 〉 = 0 . (3.25)

To prove these rules, only careful bookkeeping of the indices is necessary, after applying
the definition of the antisymmetrization operator (3.8).

3.4 Pauli exclusion
When constructing an antisymmetrized product state, the antisymmetrization postulate
tells us, that any two spin-orbitals must never be equal. If two spin-orbitals |χi〉 and |χj〉

are equal, then the permutation operator Pi j would leave an antisymmetrized product state
invariant. We would obtain

Pi j |ψ
MF
asym〉 = |ψ

MF
asym〉 and Pi j |ψ

MF
asym〉 = −|ψ

MF
asym〉 , (3.26)

which is only possible if |ψMF
asym〉 = 0. This is the famous Pauli exclusion principle [15],

which states that it is not possible to construct an antisymmetrized product state where
two or more spin-orbitals are equal. In other words, each set of one-electron quantum
numbers, that characterizes a spin-orbital, can only occur once in an antisymmetrized
product state.

Note, that common formulations of the Pauli exclusion principle, like ”two electrons
cannot be in the same state”, are sloppy and misleading. In fact, if we consider two
electrons, they are indeed described by one single state vector, namely the solution of
the Schrödinger equation. It is therefore very important to distinguish between the exact
quantum mechanical formalism, where all constituents are described by one single state
vector, and the independent particle picture or mean field approach, where we construct
approximations to the exact state vector using one-electron spin orbitals. Only for the
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3 The symmetry of the wave function for electrons

latter case, the Pauli exclusion principle can be formulated.
In general, the Pauli exclusion principle is not a fundamental principle but just a

consequence of the more general antisymmetrization postulate for the special case of
an antisymmetrized product state. If we pretend that the independent particle picture
is sufficiently accurate (which is often a reasonable quantitative assumption for atoms),
then we can understand why the Pauli exclusion principle was a cornerstone to explain
the structure of the periodic table of the elements. For an atom, the mean field orbitals
are described by the four well-known atomic quantum numbers (n, l,m, s). According to
the Pauli principle, we need exactly those N orbitals, which correspond to the N lowest
eigenvalues, since no orbital can be used twice to construct the antisymmetric N electron
wavefunction. Whenever an orbital of a new shell (increasing the principal quantum
number n by 1) has to be added, the considered element starts a new period in the periodic
table. According to this rule, we find the ”magic numbers” 2, 8, 18, 36, 54, ..., which
correspond to the lengths of the periods.
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CHAPTER 4

The Hartree-Fock mean field approach

4.1 General idea

The Hartree-Fock (HF) method is a mean field approach to solve the electronic Schrö-
dinger equation. In HF the ground state of the electronic Hamiltonian is approximated by
restricting the Hilbert space to the class of antisymmetrized product states of spin orbitals.
The method was introduced by Fock [16] in 1930. This restriction drastically reduces the
complexity of the time-independent Schrödinger equation such that an exact numerical
solution becomes accessible. Mathematically, the restriction of the N electron ground state
|Φ〉 to antisymmetrized product states can be formulated using the antisymmetrization
operator A, as introduced in Sec. 3.2.

|Φ〉 → |ΦHF〉 = A|χ1... χN〉 . (4.1)

In a crystal, the quantum numbers i in |χi〉 are understood as compound indices, including
the band index, the crystal wave vector and the spin. In one sentence, the HF method aims
to find an optimal set of one-electron spin orbitals {|χi〉} which minimizes the energy
expectation value of the electronic Hamilton operator (2.15),

EHF = min
χ1... χN

〈ΦHF |He |ΦHF〉 . (4.2)

We dropped the superscript {RI}, since, from now on, we assume the positions of the
nuclei as given parameters, see Sec. 2.3.

In a spin-restricted approach, only N/2 orbitals |ϕi〉 are necessary to construct N spin
orbitals |χi〉, since each |ϕi〉 can be dressed with |↑〉 and |↓〉. This is particularly useful
for closed shell systems, with the same number of spin up and spin down electrons.
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4 The Hartree-Fock mean field approach

4.2 The Hartree-Fock equation

In this section, we will derive the Hartree-Fock equation for the general spin-unrestricted
case. In order to perform the minimization in Eq. (4.2), we split the expectation value,

〈ΦHF |Hel |ΦHF〉 = 〈ΦHF |Te |ΦHF〉 + Vnn + 〈ΦHF |Vne |ΦHF〉 + 〈ΦHF |Vee |ΦHF〉 , (4.3)

such that we can exploit the Slater-Condon rules (see Sec. 3.3),

〈ΦHF |Te |ΦHF〉 =
1

2

N∑
i

〈χi |P
2 |χi〉 , (4.4)

〈ΦHF |Vne |ΦHF〉 = −
M∑
I

N∑
i

〈χi |
ZI

|RI − r |
|χi〉 , (4.5)

〈ΦHF |Vee |ΦHF〉 =
1

2

N∑
i j

〈χi χj |r−112 |χi χj〉 −
1

2

N∑
i j

〈χi χj |r−112 |χj χi〉 , (4.6)

where we have introduced the shorthand for the electron repulsion integrals,

〈χi χj |r−112 |χk χl〉 =

∫
dx

∫
dx′

χ∗i (x)χ
∗
j (x
′)χk(x)χl(x

′)

|r − r′|
(4.7)

= 〈si |sk〉〈s j |sl〉

∫
d3r

∫
d3r′

ϕ∗i (r)ϕ
∗
j(r
′)ϕk(r)ϕl(r

′)

|r − r′|
. (4.8)

Note that we also made use of the combined real space-spin integral notation, as introduced
in Eq. (2.42), and the spin-orbitals |χi〉 = |ϕi〉 ⊗ |si〉. It is worthwhile mentioning that Eq.
(4.6) includes not only the Coulomb repulsion between charge densities of the two orbitals
|χi〉 and |χj〉 (often referred to as direct term), but also the Pauli repulsion where the
indices i and j are exchanged due to the antisymmetrization (exchange term). Also note,
that these exchange terms only contribute, when |χi〉 and |χj〉 have the same spin, since
the electron repulsion integral is zero otherwise. We find the minimizing spin orbitals by
a variation of the Lagrangian,

LHF = 〈ΦHF |Hel |ΦHF〉 +
N∑
i j

λi j(〈χi |χj〉 − δi j) , (4.9)

with respect to the spin orbitals, where the Lagrange multiplier λi j take care of the
orthonormality of the orbitals. The variation,

δLHF

δ〈χi |
= 0 , (4.10)
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yields (
P 2

2
−

M∑
I

ZI

|RI − r |
+ J −K

)
|χi〉 =

N∑
j

λi j |χj〉 , (4.11)

where we introduced the Coulomb operator J ,

〈x|J |χi〉 =
N∑
j

〈xχj |r−112 |χi χj〉 =
N∑
j

∫
dx′
|χj(x

′)|2

|r − r′|
χi(x) , (4.12)

and the exchange operator K,

〈x|K |χi〉 =
N∑
j

〈xχj |r−112 |χj χi〉 =
N∑
j

∫
dx′

χ∗j (x
′)χi(x

′)

|r − r′|
χj(x) . (4.13)

Note that both J and K depend on the spin orbitals such that (4.11) is a self-consistent
equation. Spin orbitals that solve Eq. (4.11) would, indeed, minimize the energy expec-
tation value (4.2). However, for practical consideration, it is beneficial to reformulate Eq.
(4.11) into a self-consistent eigenvalue equation. This is possible by constructing a unitary
matrix that diagonalizes the Lagrange multipliers,

λi j =
N∑
k

u∗kiεkuk j , (4.14)

where εk represent the eigenvalues of λi j . Furthermore, we can define unitary transformed
spin orbitals by

|χ′i 〉 =
N∑
j

ui j |χj〉 . (4.15)

If we multiply both sides of Eq. (4.11) by
∑

i uki, we obtain(
P 2

2
−

M∑
I

ZI

|RI − r |
+ J −K

)
|χ′k〉 = εk |χ

′
k〉 , (4.16)

which is a self-consistent eigenvalue equation. Note that both J andK are invariant under
this unitary transformation. Moreover, the construction of the antisymmetrized HF state
(4.1) is also invariant under this unitary transformation,

|ΦHF〉 = A|χ1... χN〉 = A|χ
′
1... χ

′
N〉 , (4.17)

which is a consequence of the fact that the determinant of a unitary matrix is always 1.
Hence, the primed spin orbitals are perfectly valid to minimize the energy expectation
value as well as to construct the antisymmetrized HF state and no back transformation is
necessary. We can thus skip the prime and find the
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4 The Hartree-Fock mean field approach

canonical Hartree-Fock equation,

f |χi〉 = εi |χi〉 , (4.18)

with the Fock operator

f =

(
P 2

2
−

M∑
I

ZI

|RI − r |
+ J −K

)
. (4.19)

Note again that (4.18) is a self-consistent eigenvalue equation, i.e. J and K and
therefore the Fock operator f are constructed by the eigenvectors of f . The solution of
self-consistent eigenvalue problems must be solved by iterative schemes.

The physical interpretation of the Coulomb operator J is straightforward. If we
introduce the electron density

n(r) =
N∑
i

|ϕi(r)|
2 , (4.20)

where ϕi(r) is just the spatial degree of freedom of 〈x|χi〉 = 〈rs |χi〉 = 〈r |ϕi〉〈s |si〉, then
we can interpret J as the interaction of the one-electron orbital ϕi(r) with the charge
density created by all one-electron spin-orbitals,

〈rs |J |χi〉 = 〈s |si〉

∫
d3r′

n(r′)
|r − r′|

ϕi(r) . (4.21)

Note that this includes self-interaction of orbitals, since the charge density created by ϕi(r)
is already included in n(r). The form of the exchange operatorK, on the other hand, does
not allow for such a simple physical interpretation. However, if we introduce the exchange
hole density,

n(irs)
X (r′) =

N∑
j

〈s |s j〉〈s j |si〉
ϕ∗j(r

′)ϕi(r
′)ϕ∗i (r)ϕ j(r)

|ϕi(r)|2
, (4.22)

we can also write the exchange operator as an interaction between the spin orbital χi(r)
and a density,

〈rs |K |χi〉 =

∫
d3r′

n(irs)
X (r′)

|r − r′|
ϕi(r) . (4.23)

In opposite to the Coulomb operator, the exchange hole density has to be constructed
for each i, r, s individually. This interpretation was introduced by Slater [17]. The
exchange hole density n(irs)

X (r′) does not only correct the unphysical self-interaction of
the orbitals, but also takes into account, that each spin orbital creates an ”electron hole”
in its surrounding, which cares for the fact that other spin orbitals with equal spin have to
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4.3 Excited determinants: singles, doubles, triples, ...

pay a price, if they want to occupy this area (Pauli exclusion). The net charge that the spin
orbital χi(r, s) with spin s at position r can feel, is thus given by the density

n(r′) − n(irs)
X (r′) , (4.24)

at all points r′. Due to this subtraction, n(irs)
X is called exchange hole density.

Once the HF spin orbitals |χi〉 and the HF spin orbital energies εi are found, the HF
energy (4.2) can be calculated by

EHF =
N∑
i

εi + Vnn −
1

2

N∑
i j

〈χi χj |r−112 |χi χj〉 +
1

2

N∑
i j

〈χi χj |r−112 |χj χi〉 , (4.25)

which follows from

εi = 〈χi | f |χi〉 (4.26)

=
1

2
〈χi |P

2 |χi〉 −

M∑
I

〈χi |
ZI

|RI − r |
|χi〉 +

N∑
j

〈χi χj |r−112 |χi χj〉 −

N∑
j

〈χi χj |r−112 |χj χi〉 .

4.3 Excited determinants: singles, doubles, triples, ...

The number of spin orbitals |χi〉 we used to construct the Hartree-Fock state (4.1) and
to derive the Hartree-Fock equation (4.18) was assumed to be equal to the number of
electrons, N . Therefore these spin orbitals are the occupied spin orbitals. However, it is
also possible to calculate higher energy eigenstates of the Fock operator f , which are then
called virtual or unoccupied spin orbitals. Since the Fock operator is a continuous operator,
there are in principle infinitely many eigenstates above the highest occupied eigenstate.
Throughout this work, unoccupied orbitals will be labeled by a, b, ... in contrast to the
indices for the occupied orbitals i, j , ... . Note that also in this case the operators J andK
are still constructed by the occupied spin orbitals only, since the mean field is generated
by the N electrons. With unoccupied spin orbitals we can construct excited determinants
by replacing an occupied orbital |χi〉 with an unoccupied orbital |χa〉, which leads to a
singles state |Φa

i 〉,

|ΦHF〉 = A|χ1... χi ... χN〉 → |Φa
i 〉 = A|χ1... χa... χN〉 . (4.27)

In the same manner, doubles and triples states can be constructed,

|ΦHF〉 = A|χ1... χi ... χj ... χN〉 → |Φ
ab
i j 〉 = A|χ1... χa... χb... χN〉 , (4.28)

|ΦHF〉 = A|χ1... χi ... χj ... χk ... χN〉 → |Φ
abc
i jk 〉 = A|χ1... χa... χb... χc... χN〉 . (4.29)
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Figure 4.1: Dissociation of the diatomic molecules H2 and H+
2 into 2H and H+H+ respec-

tively. As an ”exact” reference for the H2 molecule, we chose full configu-
ration interaction (FCI) calculations from [18]. We performed spin-polarized
calculations for the molecules and the isolated atoms, except for H2, where
spin-restriction was assumed. We used a cell size of 10 × 8 × 8Å3 for H2

and 15 × 12 × 12Å3 for H+
2 . The plane-wave cutoff was set to 300 eV and

the PAW potential was chosen with an outmost cutoff radius of 1.1Å. In the
one-electron system H+

2 , the HF approach is exact, apart from small errors due
to the periodic images and the limited basis set size.

The singles, doubles, triples, ... form an orthonormal basis of the entire Hilbert space,

〈ΦHF |Φ
abc...
i j k ... 〉 = 0 , (4.30)

〈Φabc...
i j k ... |Φ

a′b′c′...
i′ j ′k ′... 〉 = δii′δ j j ′δkk ′ ...δaa′δbb′δcc′ . (4.31)

The exact solution of the electronic Hamiltonian (2.18) can therefore be formally written
as a superposition of all possible N electron determinants,

|Φe〉 = t0 |ΦHF〉+
N∑
i

∞∑
a

ta
i |Φ

a
i 〉+

1

2

N∑
i j

∞∑
ab

tab
i j |Φ

ab
i j 〉+

1

6

N∑
i j k

∞∑
abc

tabc
i jk |Φ

abc
i jk 〉+. . . , (4.32)

where the coefficients t0 , ta
i , tab

i j , tabc
i jk , ... are inaccessible in an exact manner and can

only be approximated by post-Hartree-Fock methods.

4.4 Illustrative HF calculations for molecules and solids

It is well known that the Hartree-Fock method provides good ground state energies for
molecules, however, energy differences can suffer from significant errors. Consider, e.g,
the dissociation of a diatomic molecules like H2, H+

2 or Be2, Be+2 . In Fig. 4.1 and 4.2 a
comparison of HF and exact ground state energies are shown.

For the H2 molecule, the HF method provides a very accurate bond length but under-
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Figure 4.2: Dissociation of the diatomic molecules Be2 and Be+2 into 2Be and Be+Be+
respectively. As an ”exact” reference for the H2 molecule, we chose full
configuration interaction (FCI) calculations from [18]. We performed spin-
polarized calculations for the molecules and the isolated atoms, except for Be2,
where spin-restriction was assumed. We used a cell size of 18 × 14 × 14Å3

for Be2 and 16 × 12 × 12Å3 for Be+2 . The plane-wave cutoff was set to 300
eV and the PAW potential was chosen with an outmost cutoff radius of 1.9Å.
Only the 2s2 orbitals of Be were treated as valence.

estimates the binding energy by about 25%. Also, for increasing core distances, the HF
method overestimates the attractive force between the two hydrogen atoms, which should
approach zero at a distance of 2Å. The HF ground state will always take the form of a
singlet state, |ΦHF〉 = A|χ1χ2〉 with |χ1〉 = |ϕσ〉|↑〉 and |χ2〉 = |ϕσ〉|↓〉, such that

|ΦHF〉 =
1
√
2
|ϕσϕσ〉 ⊗

(
|↑↓〉 − |↓↑〉

)
. (4.33)

Here, |ϕσ〉 refers to the bonding σ molecular orbital. Since it is known, that the bound
H2 molecule is a spin singlet state, this is a reasonable approximation. Nevertheless, the
single spatial orbital |ϕσ〉 has no other option but to create a nonvanishing probability of
observing both electrons on one nucleus, thus predicting a covalent bonding for arbitrary
distances. But for far-distant nuclei, this is unphysical, since the large separation leads to
the following simple correlation between the electrons: if an electron is observed at one
of the nuclei, then the probability of observing an electron at the other nucleus will be 1.
This is simply the case of two non-interacting, separated hydrogen atoms and cannot be
covered by the HF state (4.33). Instead, the superposition of two antisymmetrized product
states (superposition of two Slater determinants), like

|Φ〉 =
1
√
2
(A|χ1χ2〉 +A|χ3χ4〉) , (4.34)

allow for an improved description of the H2 molecule with a correct dissociation limit. An
accurate realization of this approach is given by the Heitler-London wavefunction [19, 20].
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Figure 4.3: HF energy against the distance of the hexagonal layers of boron nitride (left)
and the lattice constant of bulk LiH (right). For both systems spin-restricted
calculations were performed and the plane-wave cutoff was set to 550 eV. The
k-point mesh was set to 8 × 8 × 2 for the hBN system and to 6 × 6 × 6 for LiH.
The HF energies of LiH were fitted with a Birch-Murnaghan equation of state
(dotted line) and resulted in a equilibrium lattice constant of 4.11Å.

Hence, the HF method provides a qualitatively reasonable description of the covalent
bonding of H2 but fails to predict the breaking of the bond. The dissociation of H+

2 , in
contrast, is exactly described by the HF method. Only one electron is involved and the
mean field approach corresponds to the exact Schrödinger equation.

The Be2 molecule is not bound in the HF approximation. Here, the prediction of HF
corresponds to the prediction of molecular orbital theory, using the bond order of Be2.
Since we have 4 bonding and 4 antibonding electrons, the bond order is 0. However, an
exact solution of the Schrödinger equation yields a very weak binding energy of about
0.12 eV at 2.47Å. Again, electron correlation causes the difference between the exact and
the HF solution. The electron correlation leads to a mixed bonding type of covalent and
van der Waals character, which HF fails to predict. On the other hand, the dimer ion Be+2
has a bond order of 1 and therefore also the HF method predicts a qualitatively reasonable
binding energy and bond length.

Considering periodic systems, Fig. 4.3 shows results for hexagonal boron nitride (hBN)
and lithium hydride (LiH). The hexagonal layers of boron nitride (see top of Fig. 2.1) are
van der Waals bonded. Clearly, HF fails to predict the correct layer distance, which is
about 3.33Å, see Ref. [21]. In contrast, the covalent like bonding in bulk LiH is captured
correctly by HF. The Birch-Murnaghan fit [22] yields a lattice constant of 4.11Å, which
is very close to the experimental value of 4.08Å.
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CHAPTER 5

Exchange and correlation

The terms exchange and correlation are widely used but rarely explained in the field of
condensed matter physics. Compositions as exchange correlation, exchange-correlation,
exact exchange, dynamic correlation, static correlation or correlation energy complete
the confusion. This chapter is attempting to shed light on these terms in order to clarify
their meaning.

In general, these terms refer to correlations in the N-electron spatial probability dis-
tribution, which is simply given by the magnitude square of the exact N-electron wave
function. The correlations originate from the interaction between the electrons and the nu-
clei, the interactions between the electrons themselves, as well as from the symmetrization
postulate, i.e. from the indistinguishability of the electrons. Since correlated probability
distributions lead to different expectation values of observables than uncorrelated ones,
the term correlation is analogously translated to those expectation values, like in the term
correlation energy.

5.1 Exchange correlation of two non-interacting particles

Correlation of the position of two particles does not require interaction. Consider, for
instance, two non-interacting fermions, whose Hamiltonian is simply given by

H = h ⊗ 1+ 1 ⊗ h , h = P 2/2 . (5.1)

In the non-interacting case the single particle picture is exact. The eigenstates of the
one-particle Hamiltonian,

h|k〉 = εk |k〉 , (5.2)

are plane-waves 〈r |k〉 = exp(ikr) and εk = k2/2. Any product state |k1〉⊗ |k2〉 is clearly
an eigenstate of the full Hamiltonian H with energy (εk1 + εk2). But the symmetrization
postulate strictly prohibits such a simple product state, since it is neither symmetric nor
antisymmetric. For fermions (e.g. electrons) the valid eigenstate with energy (εk1 + εk2)
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is given by
|Φ〉 =

1
√
2

(
|k1〉 ⊗ |k2〉 − |k2〉 ⊗ |k1〉

)
. (5.3)

The spatial probability density of the two fermions,

ρ(2)(r1, r2) = |〈r1r2 |Φ〉|
2 = 1 − cos

[
(k2 − k1)(r1 − r2)

]
, (5.4)

can not be written as a product of one-particle probability densities, i.e. the positions
of the two fermions are correlated. Because there is no interaction, the correlation is a
consequence of the symmetrization postulate alone. This correlation is sometimes called
exchange correlation, since it originates from the exchange of |k1〉 and |k2〉 which was
necessary to antisymmetrize the state (5.3).

In general, the term exchange refers to all effects that originate from the antisym-
metrization of one-electron product states, i.e. from the exchange of two one-electron
states.

5.2 Correlation energy and the cusp conditions

The plain mathematical definition of the correlation energy Ec reads

Ec = Ee − EHF , (5.5)

where Ee is the exact solution of the electronic Schrödinger equation (2.18) and EHF is
the Hartree-Fock energy of the considered system. Indeed, the antisymmetrized product
states of the Hartree-Fock method already ensure exchange correlation (as described in
the last section), but cannot cover correlation due to the Coulomb interaction. Those
additional correlations lead to ground state wave functions that have a lower energy than
the Hartree-Fock energy, i.e. Ec ≤ 0. This is a simple consequence of the variational
principle, which states, that any trial wave function (in this case a single antisymmetrized
product state) results in a higher ground state energy than the exact ground state. In short,
the term correlation energy simply refers to all those contributions to the ground state
energy, that cannot be covered by the Hartree-Fock approach. Note, that the correlation
energy is sometimes alternatively defined as the difference between the exact energy and
the energy obtained by a mean field set of orbitals (not necessarily Hartree Fock orbitals).
Such a definition subsumes all those effects, which can not be covered by the independent
particle picture. A very simple Coulomb correlation effect was described for the H2

molecule in Chap. 4.4.
An illustration of a correlation effect is the electronic Coulomb cusp in the exact wave

function. Consider, e.g., the Hamilton operator of the Helium atom

H = −
1

2
∇2

1 −
1

2
∇2

2 −
Z
|r1 |
−

Z
|r2 |

+
1

|r1 − r2 |
, Z = 2 . (5.6)
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If Φ(r1, s1, r2, s2) is an eigenstate of H with eigenvalue E , then

HΦ(r1, s1, r2, s2)
Φ(r1, s1, r2, s2)

= E (5.7)

is constant for all r1, s1, r2, s2. But for the case r1 = r2 the electron-electron interaction
diverges, thus only the kinetic part can cure this divergence in order to restore the constant
E . To see how this is achieved, we rewrite the Hamiltonian in the (r1, r2, r12) form, where
we introduce the difference vector r12 = r1 − r2 and spherical coordinates [23],

H = −
1

2

∑
µ=1,2

(
∂2µ +

2

rµ
∂µ +

2Z
rµ

)
− (r̂1r̂12∂1 − r̂2r̂12∂2) ∂12 −

(
∂212 +

2

r12
∂12 −

1

r12

)
.

(5.8)

Here, we used the unit vectors r̂ = r/r and introduced the shorthand ∂µ = ∂/∂rµ.
For r12 = |r1 − r2 | = 0, the interesting part is the last term, where r12 appears in the
denominator. Divergence can only be avoided, if(

2

r12
∂12 −

1

r12

)
Φ(r1, s1, r2, s2)

����
r12=0

= const. , (5.9)

which is equivalent to

2
∂Φ

∂r12
(r1, s1, r1, s2) = Φ(r1, s1, r1, s2) or

[
1

Φ

∂Φ

∂r12

] s1,s2

r12=0

=
1

2
. (5.10)

Also, for r1 = 0 or r2 = 0 a divergence can only be cured if(
2

rµ
∂µ +

2Z
rµ

)
Φ(r1, s1, r2, s2)

����
rµ=0

= const. , (5.11)

leading to Kato’s cusp condition [24][
1

Φ

∂Φ

∂rµ

]
rµ=0

= −Z . (5.12)

Both conditions can be generalized to N-electron eigenstates and are called
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cusp conditions for the exact eigenstates,[
1

Φ

∂Φ

∂ri j

] si,sj

ri j=0

= const. , (5.13)

and [
1

Φ

∂Φ

∂ri

]
ri=RI

∼ −ZI , (5.14)

where RI is a position of a nucleus with charge ZI .

Clearly, a Hartree-Fock wave function can never meet such conditions in this general
form, since an antisymmetrized product state does not provide enough variational freedom.
Therefore the cusp shows that there is more correlation than just the exchange correlation
in the wave function, thus also the ground state energy will, in general, be lower than the
Hartree-Fock energy, even for a seemingly simple system such as Helium.

5.3 Dynamic and static correlation

What if only one Slater determinant is simply not enough? In the Hartree-Fock method,
the ground state is approximated by one Slater determinant, consisting of orbitals that
minimize the expectation value (4.2). What if a large portion of the correlation energy
can be covered if we, instead, consider a superposition of two or few Slater determinants?
In such a case, the correlation is called static correlation since the mean field approach
(i.e. each electron interacts with an average field of all other electrons) is not an obstacle
to improve the energy, but simply more than one Slater determinant is necessary. An
example for static correlation is the dissociation limit of the H2 molecule (see Sec. 4.4).

On the other hand, if the mean field approach is conceptually and qualitatively reason-
able, but the electron-electron interactions cannot be quantitatively covered by interactions
of electrons with effective mean fields, then the correlation is called dynamic correlation.
Examples are dispersion forces like van-der Waals interactions (see Sec. 4.4, 6.3, and
8.5).

It is not possible to strictly distinguish both types of correlation. Similar to chemical
bonds, where there is no strict distinction between ionic and covalent bonds, there is no
strict distinction between static and dynamic correlation. These notions are merely a prod-
uct of the historical development of different approaches to approximate the correlation
energy.
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5.4 Exchange-correlation holes in the density

In principle, it is possible to express the exact energy of the electron-electron interaction,
〈Φe |Vee |Φe〉, using the pair density P(r, r′),

〈Φe |Vee |Φe〉 =
1

2

∫
d3r

∫
d3r′

P(r, r′)
|r − r′|

, (5.15)

where the pair density is rigorously defined by the exact wavefunction via

P(r, r′) = N(N − 1)
∑

s,s′=↑,↓

∫
dx3...

∫
dxN |Φe(r, s, r′, s′,x3, ...,xN)|

2 . (5.16)

Due to correlations, the pair density does not decay into a product of the electron density,

P(r, r′) , n(r)n(r′) , n(r) =
∑

s=↑,↓

∫
dx2...

∫
dxN |Φe(r, s,x2, ...,xN)|

2 . (5.17)

The most simple way to prove this, is to realize that P(r, r) = 0, which follows from the
antisymmetry of Φe(x1, ...,xN). However, the form P(r, r′) = n(r)n(r′) can only obey
this relation, if n(r) = 0 ∀r, which is unphysical. We can separate all the correlation
effects into a so called exchange-correlation hole density nXC(r, r

′), which is implicitly
defined by

P(r, r′) = n(r)n(r′) + n(r)nXC(r, r
′) . (5.18)

Since it covers both, exchange and correlation, it is called exchange-correlation hole
density, where the hyphen ”-” is understood as ”and” (not to be confused with ”exchange
correlation”, where exchange is only the descriptor for a certain kind of correlation).
With this definition, the electron-electron interaction energy decays into an interaction
between the electron density with itself, and and interaction of the electron density with
the exchange-correlation hole density,

〈Φe |Vee |Φe〉 =
1

2

∫
d3r

∫
d3r′

n(r)n(r′)
|r − r′|

+
1

2

∫
d3r

∫
d3r′

n(r)nXC(r, r
′)

|r − r′|
. (5.19)

Moreover, if we integrate over Eq. (5.18), we find∫
d3r′ nXC(r, r

′) = −1 , (5.20)

which follows from
n(r) =

1

N − 1

∫
d3r′ P(r, r′) (5.21)

and the fact that P(r, r′) = P(r′, r), being a consequence of the symmetry of the
wavefunction. Physically, Eq. (5.20) suggests, that the exchange-correlation hole density
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nXC corresponds to a deficit of one electron, i.e. to an electron hole. One can interpret this
abstract hole as a spatial correlation effect, originating from the Coulomb interactions and
the symmetrization of the wave function. A naive but descriptive interpretation is given
by the picture, that each electron is unwilling to tolerate other electrons in its vicinity, in
particular, if they have equal spin. Hence, each electron tries to establish an electron hole
in its surroundings.

Note that the exchange hole density from the Hartree-Fock chapter 4 is based on the
same idea as the exchange-correlation density from this chapter. At the Hartree-Fock
level, the relation is given by

nHF
XC(r, r

′) = −
1

nHF(r)

N∑
i

∑
s=↑,↓

〈si |s〉|ϕi(r)|
2 n(irs)

X (r′) , (5.22)

such that

nHF(r) nHF
XC(r, r

′) =
N∑
i j

〈si |s j〉 ϕ
∗
j(r
′)ϕi(r

′)ϕ∗i (r)ϕ j(r) . (5.23)

This, however, only accounts for exchange correlation effects as defined in Sec. 5.1.

5.5 Exact exchange
In particular in the density functional theory community (we will discuss this theory in
Chap. 6) the term exact exchange (EXX) is widely used. This technical term refers to a
certain kind of energy functional EEXX[{χ}] which takes exactly the form of the exchange
energy in the Hartree-Fock method (compare to the second term in Eq. 4.6),

EEXX[{χ}] = −
1

2

∑
i j

∫
dx

∫
dx′

χ∗i (x)χj(x)χ
∗
j (x
′)χi(x

′)

|r − r′|
. (5.24)

From the derivation of Eq. (4.6), we know that such an expression arises from the
expectation value of the Coulomb interaction energy for antisymmetrized product states.
It is therefore the exact form of the exchange energy, if antisymmetrized product states are
assumed. However, since antisymmetrized product states are no exact wave functions, the
term exact should not be confused with an exact energy whatsoever.
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CHAPTER 6
Density functional theory

Density functional theory (DFT) is often praised as the ”working horse” for ground
state calculations in ab initio computational materials physics and quantum chemistry.
This is justified, because modern DFT implementations provide a very beneficial cost-
performance ratio, where with cost we mean computational cost. Moreover, DFT is
prominent, because it is exact in principle. Nevertheless, we will only briefly discuss DFT
here, as the focus of this work is on post-DFT and post-HF methods.

The main idea of DFT is based on the fact that ground state properties like the ground
state energy, are determined by a much simpler object than the N-electron ground state
wavefunction, namely the electron density. It is therefore, in principle, not necessary,
to solve the time-independent Schrödinger equation (2.18). The very heart of DFT are
the Hohenberg-Kohn theorems [25]. They state that the ground state density can be
found variationally by minimizing an energy functional. In the following sections, the
Hohenberg-Kohn theorem and DFT will be introduced mathematically, leading us to a
practical mean field like approach, the Kohn-Sham equations [26]. For brevity, we will
ignore the spin.

6.1 The Hohenberg-Kohn theorems

Hohenberg and Kohn showed, that the electronic Schrödinger equation (2.18) is not the
only route to calculate ground state properties of matter. Their seminal work [25] can be
divided into two theorems.

The first Hohenberg-Kohn theorem states, that the potential created by the nuclei,
which is the only characterizing quantity in the Hamiltonian, is uniquely determined
by the electron density.

The proof is rather simple. Let us write the electronic Hamiltonian from Eq. (2.15)
as H = T + Vext + Vee where Vext = Vnn + Vne. Assume that the first theorem is wrong,
i.e. there are two different external potentials V (1)

ext and V (2)
ext (which differ not only by a

constant) that give rise to the same ground state electron density n0(r). If Ei is the ground
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6 Density functional theory

state energy to the nondegenerate ground state |Φi〉 of the system Hi = T + V (i)
ext + Vee,

we can conclude that |Φ1〉 , |Φ2〉. This follows from the fact that |Φ1〉 = |Φ2〉 leads to a
contradiction, because

(E1 − E2)|Φ1〉 = (H1 − H2)|Φ1〉 =
[
V (1)

ext − V (2)
ext

]
|Φ1〉 , (6.1)

which is equivalent to

V (1)
ext (r) − V (2)

ext (r) = E1 − E2 , ∀r , (6.2)

since the external potentials are diagonal in real space. That both external potentials differ
only by a constant was, however, excluded. We can thus safely write,

E1 < 〈Φ2 |H1 |Φ2〉 and E2 < 〈Φ1 |H2 |Φ1〉 . (6.3)

Clearly also the addition of both inequalities must then be true,

E1 + E2 < 〈Φ2 |H1 |Φ2〉 + 〈Φ1 |H2 |Φ1〉 . (6.4)

But if we rewrite the right hand side as

〈Φ2 |H1 |Φ2〉 + 〈Φ1 |H2 |Φ1〉 = 〈Φ2 |H1 − H2 |Φ2〉 + E2 + 〈Φ1 |H2 − H1 |Φ1〉 + E1

= tr
[
n0

(
V (1)

ext − V (2)
ext

) ]
+ E2 + tr

[
n0

(
V (2)

ext − V (1)
ext

) ]
+ E1

= E2 + E1 , (6.5)

we arrive at a contradiction
E1 + E2 < E1 + E2 . (6.6)

Hence, the first Hohenberg-Kohn theorem is correct and we can write Vext = Vext[n0], i.e.
the external potential is a unique functional of the ground state density.

According to the second Hohenberg-Kohn theorem, the ground state density is
a function that minimizes a universal energy functional. This minimum can be
calculated variationally.

Again, the proof is straightforward. From the first theorem we know that the ground
state density n0(r) determines the external potential Vext. Consequently, the Hamiltonian
is also uniquely defined, which again, determines the ground state |Φ0〉 and the ground
state energy E0. We can thus write the ground state energy as a functional of the density,

E0 = 〈Φ[n0]|H[n0]|Φ[n0]〉 = F[n0] + tr
[
n0Vext[n0]

]
, (6.7)

where |Φ0〉 = |Φ[n0]〉 and the functional F covers only the kinetic and electron-electron
interaction energy, F[n] = 〈Φ[n]|T |Φ[n]〉 + 〈Φ[n]|Vee |Φ[n]〉. The functional F is therefore
equivalent for any material and does not depend on the positions of the nuclei. It is
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6.1 The Hohenberg-Kohn theorems

universal. Analogously to the variation of the wave function, we now vary the density in
order to find the ground state energy,

E0 = min
Φ
〈Φ|H |Φ〉 = min

n
E [n] , (6.8)

with
E [n] = F[n] + tr

[
nVext[n]

]
. (6.9)

Similar to the condition 〈Φ|Φ〉 = 1, we require tr[n] = N for the minimization.

Both theorems are fundamental for DFT and promise to simplify ground state calcu-
lations in a remarkable way. The intractable 3N dimensional Schrödinger equation is
replaced by the minimization of a functional of the 3 dimensional electron density only.
But still, the solution of the N-electron problem remains very complicated, since neither
the exact form nor a universal approximation of the universal functional F[n] could be
found.

A very early example for an energy functional, even before DFT was developed, is the
Thomas-Fermi functional [27, 28],

ETF[n] = FTF[n] + tr
[
nVext[n]

]
, (6.10)

where
FTF[n] = CF

∫
d3r n(r)5/3 +

1

2

∫
d3r

∫
d3r′

n(r)n(r′)
|r − r′|

, (6.11)

and CF ≈ 2.871. The special form of the kinetic energy, the first integral, is obtained from
the homogeneous electron gas model. A variation yields the Thomas-Fermi equation, an
integral equation, that determines the density, which minimizes the Thomas-Fermi energy
functional,

n(r) =

{( 5
3CF

) − 3
2 [µ − V(r)]

3
2 , µ ≥ V(r)

0 , µ < V(r)
(6.12)

with the Lagrange multiplicator µ being the chemical potential and

V(r) = Vext(r) +

∫
d3r′

n(r′)
|r − r′|

. (6.13)

Although this energy functional was frequently used as a starting point for quantum me-
chanical investigations (see e.g. [29]), it is a rather crude approximation to an exact energy
functional, since it only covers electrostatic interactions, neglecting electron correlations,
and introduces significant errors in the kinetic energy term, which is only valid for the
homogeneous electron gas.
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6 Density functional theory

6.2 The Kohn-Sham equations

For practical calculations, the energy functional (6.9) is not very useful, since F[n] is
unknown and the Thomas-Fermi approach is not accurate enough. In order to apply DFT
in practice, the Kohn-Sham equations [26] provide an established route. In a first step, the
functional (6.9) is splitted into

E [n] = G[n] +
1

2

∫
d3r

∫
d3r′

n(r)n(r′)
|r − r′|

+ tr
[
nVext[n]

]
, (6.14)

such that G[n] is also a universal functional excluding the electrostatic contributions. This
universal functional,

G[n] = Ts[n] + Exc[n] , (6.15)

is then splitted into a part which contains the kinetic energy, Ts[n], of a system of non-
interacting electrons of density n(r), and a so called exchange-correlation functional
Exc[n], which covers all remaining energy contributions. The first approximative step
enters, when an explicit form of Exc[n] is adopted. Kohn and Sham argued, that for a
reasonably slow varying density, the exchange-correlation functional can be approximated,
as

Exc[n] ≈
∫

d3r n(r) εHEG
xc

(
n(r)

)
, (6.16)

where εHEG
xc is the exchange-correlation energy per electron of the homogeneous electron

gas (HEG) model, which is a known function. But in contrast to the homogeneous electron
gas, the density can vary with r here. This is called the local density approximation (LDA).
The minimum of E [n] can then be calculated by solving the

Kohn-Sham equations(
−
1

2
∇2 + Vext(r) +

∫
d3r′

n(r′)
|r − r′|

+ vxc(r)

)
ϕi(r) = εiϕi(r) , (6.17)

with the density

n(r) =
N∑
i

|ϕi(r)|
2 , (6.18)

and the exchange-correlation potential

vxc(r) =
δExc

δn(r)
. (6.19)

These self-consistent equations follow from a variation δE [n]/δn and yield the exact
ground state energy, if the exact exchange-correlation functional Exc is used. But since
an exact form of Exc is not known, the exact exchange-correlation potential vxc is also not
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6.3 Illustrative DFT calculations for molecules and solids
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Figure 6.1: Dissociation of the diatomic molecules H2 and H+
2 into 2H and H+H+ respec-

tively. As an ”exact” reference for the H2 molecule, we chose full configuration
interaction (FCI) calculations from [18]. The computational settings are iden-
tical as in described in Fig. 4.1. In the one-electron system H+

2 , the HF
approach is exact, apart from small errors due to the periodic images and the
limited basis set size.

available. Besides the LDA, which leads to

vxc(r)→ vLDA
xc (r) =

δ

δn(r)

∫
d3r′ n(r′) εHEG

xc
(
n(r′)

)
= εHEG

xc
(
n(r)

)
+ n(r)

dεHEG
xc

dn
(r) , (6.20)

also the generalized gradient approximation (GGA) is a class of widely used exchange-
correlation potentials of the form

vxc(r)→ vGGA
xc

(
r, n(r),∇n(r)

)
. (6.21)

In the recent decades, a countless number of approximate exchange-correlation functionals
have been developed [30]. However, a detailed discussion would go beyond the scope of
this work.

The large variety of functionals introduces a severe issue. The results of DFT calcula-
tions strongly depend on the choice of the approximate exchange-correlation functional.
Hence, DFT depends on reference methods or reference values to chose the right functional
for the considered material.

6.3 Illustrative DFT calculations for molecules and solids

For the dissociation of the H2 dimer, the DFT approach indeed improves the binding
energy (compared to Hartree-Fock), but also fails to predict the correct dissociation limit.
A calculation for larger distances can be found in Ref. [18]. Considering a one-electron
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Figure 6.2: Calculation of the binding energy of the hexagonal layers of boron nitride using
different DFT exchange-correlation functionals. The computational settings
are given by a plane-wave cutoff of 550 eV and a k-point mesh of 8 × 8 × 4
points to sample the Brillouine zone. The energy scale was shifted such that
0meV/atom correspond to a single layer (or infinitely separated layers) of hBN.
The experimental values can can be found in [21] and references therein.

system like H+
2 , the exchange-correlation potential falsely includes correlation contribu-

tions. This is known as the self-correlation problem and leads to a wrong dissociation
curve. Both systems are illustrated in Fig. 6.1.

In the case of hexagonal boron nitride (hBN) the difficulty to choose the ”right” approx-
imative exchange-correlation functional becomes evident. Similar to the Hartree-Fock
method, the standard DFT functional, PBE [31], fails to predict the bonding between the
layers. Employing other well-known and often used functionals like PBEsol [32], LDA,
SCAN [33], or even a van der Waals corrected functional like optPBE-vDW [34], leads
to a variety of different results. As can be seen in Fig. 6.2, none of the curves meets the
experimentally reported interval, even though some functional predict acceptable bond
lengths.
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CHAPTER 7
Excursion: Green’s functions and the quantum field

theoretical view

In this chapter, we leave the pedagogical path for an excursion to a quantum field theoretical
formulation. The reader without basic knowledge in second-quantization and Feynman
diagrams can skip this chapter since its main purpose is to introduce the Green’s function
and to provide a more modern view on the many-electron problem. Whenever we will
use Green’s functions after this chapter, we will also introduce them in an ad-hoc manner,
mostly composed by Hartree-Fock orbitals, so that this chapter is not mandatory but
advisable.

7.1 Green’s function and self-energy

In the quantum field theoretical perspective, one-electron orbitals become dispensable.

Instead, Green’s functions are the main quantity,

〈x|G(t − t′)|x′〉 = G(x,x′, t − t′) = −i
〈
T ψ̂(x, t) ψ̂†(x′, t′)

〉
. (7.1)

=

{
−i

〈
ψ̂(x, t) ψ̂†(x′, t′)

〉
, t > t′

i
〈
ψ̂†(x′, t′) ψ̂(x, t)

〉
, t < t′

(7.2)

Here, T is the Wick time-ordering operator and 〈...〉 denotes an expectation value with
respect to the exact ground state. The Heisenberg equation of motion,

i
∂

∂t
ψ̂(x, t) = [ψ̂(x, t),He] (7.3)

⇔

ψ̂(x, t) = eiHetψ̂(x)e−iHet , (7.4)

determines the time evolution of the creation and annihilation operators, ψ̂†(x) and ψ̂(x),
respectively, which create or annihilate an electron at x. The full electronic Hamiltonian
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7 Excursion: Green’s functions and the quantum field theoretical view

He (see Eq. 2.15) has to be considered in the form of second-quantization, i.e. decomposed
into electron creation and annihilation operators,

He =

∫
dx ψ̂†(x)h(x)ψ̂(x) + Vnn (7.5)

+
1

2

∫
dx

∫
dx′ ψ̂†(x)ψ̂†(x′) 〈xx′|r−112 |xx

′〉 ψ̂(x′)ψ̂(x) , (7.6)

where h(x) covers only the kinetic energy and the nucleus-electron interaction, being both
one-electron operators.

The Green’s function can be interpreted as a correlation function. For t > t′ it represents
the probability of finding an electron at (x, t), when an electron was added at (x′, t′). Note,
that due to the indistinguishability of electrons, we cannot speak of adding and later finding
the same electron. It is the entire system that propagates in time, not just one electron.
All kinds of possible interactions and correlations of the considered quantum system are
therefore covered. Furthermore, the Green’s function intrinsically takes into account, that
electrons are indistinguishable via the anti-commutator relations,[

ψ̂(x), ψ̂†(x′)
]
+
= ψ̂(x)ψ̂†(x′) + ψ̂†(x′)ψ̂(x) = δ(x − x′) , (7.7)[

ψ̂†(x), ψ̂†(x′)
]
+
=

[
ψ̂(x), ψ̂(x′)

]
+
= 0 . (7.8)

By working out the commutator in Eq. (7.3), one can show, that the creation/annihilation
operators obey the following equation,

i
∂

∂t
ψ̂(x, t) = h(x)ψ̂(x, t) +

∫
dx′ ψ̂†(x′, t) 〈xx′|r−112 |xx

′〉 ψ̂(x′, t)ψ̂(x, t) , (7.9)

from which a differential equation for the Green’s function can be deduced,[
i
∂

∂t
− ĥ(x)

]
G(x,x′, t − t′) = δ(x − x′)δ(t − t′)

− i
∫

dx′′ 〈xx′′|r−112 |xx
′′〉

〈
T ψ̂†(x′′, t) ψ̂(x′′, t′) ψ̂(x, t) ψ̂†(x′, t′)

〉
. (7.10)

This equation explains the name ”Green’s function” from the mathematical perspective.
For a vanishing electron-electron interaction (i.e. setting 〈xx′′|r−112 |xx

′′〉 = 0), Eq. (7.10)
corresponds to the genuine mathematical definition of a Green’s function. However, the
complicated second term on the right hand side disturbs this picture. It is therefore
common to define

the self-energy 〈x|Σ(ω)|x′′〉 = Σ(x,x′′, ω) by[
ω − h(x)

]
G(x,x′, ω) −

∫
dx′′ Σ(x,x′′, ω)G(x′′,x′, ω) = δ(x − x′) , (7.11)
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7.1 Green’s function and self-energy

where we also introduced the Fourier transformed Green’s function in frequency space,

G(x,x′, ω) =

∫
dt G(x,x′, t) eiωt . (7.12)

Note that the Green’s function is already uniquely defined by (7.1), thus Eq. (7.11) readily
defines the self-energy. It is beneficial to reformulate Eq. (7.11) as an operator equation,
which holds in any basis,

[ω − h]G(ω) − Σ(ω)G(ω) = 1 . (7.13)

If we, furthermore, define a non-interacting Green’s function, G0(ω), which obeys (7.13)
for the case Σ(ω) = 0,

[ω − h]G0(ω) = 1 , (7.14)

we can formulate the

Dyson equation

G(ω) = G0(ω) + G0(ω)Σ(ω)G(ω) (7.15)
= + Σ

which relates the interacting and non-interacting Green’s function, G(ω) and G0(ω).

Once the Green’s function and the self-energy are known, the total electronic energy of
the quantum mechanical system can be calculated [35] by

Ee = Vnn + lim
η→0+

∫
dω
2πi

eiωη
[ ∫

dx
∫

dx′ δ(x − x′)

×

(
h(x′) +

1

2
Σ(x,x′, ω)

)
G(x′,x, ω)

]
(7.16)

= Vnn + h + Σ (7.17)

It is possible to create a bridge between the Green’s function formulation and the mean
field orbital formulation of the many-body problem. This is known as the Lehmann
representation [35],

G(x,x′, ω) =
∞∑
i

fi(x) f ∗i (x
′)

ω − εi
. (7.18)
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7 Excursion: Green’s functions and the quantum field theoretical view

Here, the Green’s function is decomposed into amplitude functions, defined by

fi(x) =

{
〈ΦN

0 |ψ̂(x)|Φ
N+1
i 〉 , εi ≥ µ

〈ΦN−1
i |ψ̂(x)|ΦN

0 〉 , εi < µ ,
(7.19)

where |ΦN
0 〉 = |Φe〉 is the exact ground state of the N electron system, and |ΦN+1

i 〉 is the
exact ith excited state of the N + 1 electron system with energy E N+1

i . The excitation
energies are defined as

εi =

{
E N+1

i − E N
0 − iη , εi ≥ µ

E N
0 − E N−1

i + iη , εi < µ ,
(7.20)

where η is an infinitesimal small but positive energy and µ is the chemical potential (or
negative electron affinity),

µ = E N+1
0 − E N

0 . (7.21)

Starting from Eq. (7.11), we find an eigenvalue-like equation [36] for the functions fi(x),

h(x) fi(x) +
∫

dx′ Σ(x,x′, εi) fi(x′) = εi fi(x) , (7.22)

which takes the form of an effective one-electron Schrödinger equation. The solutions are
sometimes called Dyson orbitals, leading to the exact Green’s function and therefore to
the exact ground state energy of the system. Like in the case of Hartree-Fock or density
functional theory, the ground state density turns out to be the sum of the magnitude squares
of those orbitals,

n(x) =
〈
ψ̂†(x)ψ̂(x)

〉
= −iG(x,x, t → 0−) =

εi<µ∑
i

| fi(x)|2 , (7.23)

where the last equality is not obvious and will be proven in Eq. (7.26). However, since
the self-energy is unknown in general, also the exact fi(x) remain inaccessible.

7.2 Hartree-Fock from the QFT perspective

In Chap. 4 we introduced the Hartree-Fock approximation by minimizing the energy
functional (4.2) while restricting to antisymmetrized product states of one-electron or-
bitals. Similarly, we can derive the Hartree-Fock approximation from the Green’s function
perspective, by postulating a certain form of the self-energy.
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7.2 Hartree-Fock from the QFT perspective

In the first step, we postulate the following form of the self-energy,

Σ(x,x′, ω) =
x
x′ + x′ x (7.24)

= −δ(x − x′)

∫
dx′′

iG(x′′,x′′, t → 0−)

|r − r′′|
+

iG(x,x′, t → 0−)

|r − r′|
. (7.25)

We can bring this into a more convenient form by considering

G(x,x′, t → 0−) = lim
t→0−

∫
dω
2π

G(x,x′, ω) e−iωt

= lim
t→0−

∫
dω
2π

∞∑
i

fi(x) f ∗i (x
′)

ω − εi
e−iωt

= i
εi<µ∑

i

fi(x) f ∗i (x
′) . (7.26)

To obtain this result, we applied the residual theorem and closed the integration contour
in the upper half plane. The self-energy can thus be written as

Σ(x,x′) = δ(x − x′)

∫
dx′′

εi<µ∑
i

fi(x′′) f ∗i (x
′′)

|r − r′′|
−

εi<µ∑
i

fi(x) f ∗i (x
′)

|r − r′|
. (7.27)

In this approximation, the self-energy is independent of ω. Furthermore, if we plug (7.27)
into (7.22), we arrive at the well-known Hartree-Fock equations (4.18) for the amplitude
functions,

h(x) fi(x)+
∫

dx′
εj<µ∑

j

f j(x
′) f ∗j (x

′)

|r − r′|
fi(x)−

∫
dx′

εj<µ∑
j

fi(x′) f ∗j (x
′)

|r − r′|
f j(x) = εi fi(x) .

(7.28)
In this picture, the amplitudes fi(x) and energies εi are equivalent to the Hartree-Fock
spin-orbitals χi(x) and energies εi which solve Eq. (4.18). The only difference between
the eigenenergies is the infinitesimal imaginary part,

εi = εi − iη (7.29)
εa = εa + iη , (7.30)

where we again used the convention, that occupied states (below µ) are denoted with i and
unoccupied states (above µ) with a. Thus, we can write the
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7 Excursion: Green’s functions and the quantum field theoretical view

Green’s function at the Hartree-Fock level as

G(x,x′, ω) =
N∑

i=1

χi(x)χ
∗
i (x
′)

ω − εi − iη
+

∞∑
a=N+1

χa(x)χ
∗
a(x
′)

ω − εa + iη
. (7.31)

Diagrammatic formulation of the Hartree-Fock energy

We can reproduce the Hartree-Fock energy (4.2) in a purely diagrammatic way. The reader
unfamiliar with the Feynman diagrammatic technique is referred to [37]. We start with an
expansion of the Dyson equation (7.15),

= + Σ (7.32)

= + Σ + Σ Σ + ... , (7.33)

where is simply the non-interacting Green’s function, which can easily be cal-
culated by solving (7.14). Again, the following approximation of the self-energy is
postulated,

Σ = + (7.34)

Accordingly, the self-consistent solution of the Dyson equation, produces a set of infinitely
many diagrams, of which only a few are shown here,

= + + + (7.35)

+ + + + ...
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7.2 Hartree-Fock from the QFT perspective

Therefore, the Hartree-Fock energy EHF is made up of an infinite subclass of all possible
closed Feynman diagrams, including

Σ = + (7.36)

= + + (7.37)

+ + + + ... (7.38)

Indeed, the Hartree-Fock approach is a method, that includes the electron-electron in-
teraction to infinity order. However, we already know, that Hartree-Fock does not cover
electron correlation effects. This reveals, that infinite partial sums do not necessarily lead
to a highly accurate method, as the calculations in Fig. 4.2 and 4.3 prove. This is due to the
fact that the particular choice of the self-energy restricts the energy to a certain subclass of
diagrams. The likewise infinitely large set of diagrams, which cover electron correlation,
is neglected completely. For instance, a correlation energy diagram could look like

(7.39)

which is included in

(7.40)

The latter is called the direct MP2 diagram and will be introduced in Chap. 8.1. There we
will supplement correlation effects by adding the MP2 correlation energy,

+ + + (7.41)

where the Green’s function is still at the Hartree-Fock level.
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7 Excursion: Green’s functions and the quantum field theoretical view

7.3 Exchange from the QFT picture
The diagrammatic formulation of energy contributions allows for a simple an illustrative
understanding of exchange. The symmetrization postulate, translated to diagrams, states
that a diagram is only allowed to contribute to the energy if replacing any vertex

1 2

3 4

(7.42)

by
1 2

3 4

(7.43)

leads to another diagram that also contributes to the energy. If, instead, this replacement
leads to a new diagram, which is not part of the energy method, then this method does not
meet the symmetrization postulate. An example is given by forming

(7.44)

from
(7.45)

A method that violates the symmetrization postulate does not necessarily produce useless
results. Such a method is given by the random phase approximation which will be
introduced in Sec. 8.3. However, the missing diagrams can be seen as a possible starting
point to construct systematic corrections. This will be shown in Sec. 8.4.
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CHAPTER 8
Correlation energy methods

In this chapter we derive methods to systematically approximate the correlation energy for
real materials. We start with an introduction to Møller-Plesset perturbation theory. We also
present a derivation of the random phase approximation using the adiabatic-connection
fluctuation-dissipation theorem. Illustrative calculations of dissociation energies of dimers
and lattice parameters of solids are shown. We supplement this chapter with a short
introduction to second-order screened exchange, being an exchange-like correction to the
random phase approximation.

8.1 Second-order Møller-Plesset perturbation theory

Møller-Plesset perturbation theory [38] is a particular application of the well-known Ray-
leigh-Schrödinger perturbation theory [39, 40]. It relies on the idea, that all energy
contributions, which are not covered by the Hartree-Fock method, can be treated as a
perturbation. In other words, the effect of electron correlation is treated as a perturbation
of uncorrelated electrons. It turns out, that the lowest order correction to the Hartree-Fock
energy is quadratic in this perturbation. Dropping higher order corrections is denoted as
second-order Møller-Plesset perturbation theory (MP2).

In this section we will derive the MP2 correlation energy and discuss some formal
and physical features. This includes van der Waals interactions, the size consistency for
periodic systems, as well as formal topics like different mathematical formulations of
the MP2 correlation energy. The latter is especially useful for the development of new
algorithms and will be taken up in Part II.

8.1.1 Canonical formulation

An expression for the MP2 correlation energy can easily be derived by recalling the lowest
order correction terms of Rayleigh-Schrödinger perturbation theory,

E0 = E(0)
0 + λE(1)

0 + λ2E(2)
0 + O(λ3) , (8.1)
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8 Correlation energy methods

with

E(0)
0 = 〈Φ

(0)
0 |H

(0) |Φ
(0)
0 〉 , E(1)

0 = 〈Φ
(0)
0 |V|Φ

(0)
0 〉 , E(2)

0 =
∞∑

n,0

|〈Φ
(0)
0 |V|Φ

(0)
n 〉|

2

E(0)
0 − E(0)

n

.

(8.2)
Here, E0 is the desired ground state energy of the fully perturbed Hamiltonian H(0)+ λV

and E(i)
0 are its expansion terms of ith order. The unitless λ is commonly used to clarify

the order of expansion in the perturbationV and can safely be set to 1. For the unperturbed
Hamiltonian, we assume the full spectrum as known, H(0) |Φ

(0)
n 〉 = E(0)

n |Φ
(0)
n 〉.

In order to find the connection to the Hartree-Fock method, we need to construct
an unperturbed Hamiltonian H(0) whose lowest eigenvalue is equal to the Hartree-Fock
energy (4.25). This is achieved by the Hamiltonian,

H(0) =
N∑
i

f i + Vnn −
1

2

N∑
i j

〈χi χj |r−112 |χi χj〉 +
1

2

N∑
i j

〈χi χj |r−112 |χj χi〉 . (8.3)

Note that f i is the Fock operator (4.19), acting only in the ith one-orbital Hilbert space.
Furthermore, we assume the Hartree-Fock problem to be solved, i.e. the orbitals |χi〉 are
known and the electron repulsion integrals 〈χi χj |V |χi χj〉 (see Eq. 4.8) as well as Vnn are
simply numbers. We can then conclude, that the following equation must hold,

H(0) |ΦHF〉 = EHF |ΦHF〉 , (8.4)

where |ΦHF〉 = A|χ1... χN〉 is the antisymmetrized Hartree-Fock state that can be identi-
fied with |Φ(0)

0 〉, and EHF is the Hartree-Fock energy. Accordingly, we find

E(0)
0 = 〈Φ

(0)
0 |H

(0) |Φ
(0)
0 〉 = EHF (8.5)

for the unperturbed ground state energy, as desired. The perturbationV is simply obtained
by the difference between the full electronic Hamiltonian (2.15) and H(0),

V = He − H(0) = Vee −
1

2

N∑
i j

〈χi χj |r−112 |χi χj〉 +
1

2

N∑
i j

〈χi χj |r−112 |χj χi〉 . (8.6)

Again, the last two terms, the electron-repulsion integrals, are just numbers, such that the
perturbation is simply given by a shifted electron-electron interaction operator Vee, see Eq.
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8.1 Second-order Møller-Plesset perturbation theory

(2.6). This shift leads to a vanishing first order correction,

E(1)
0 = 〈ΦHF |V|ΦHF〉 (8.7)

= 〈ΦHF |Vee |ΦHF〉 −
1

2

N∑
i j

〈χi χj |r−112 |χi χj〉 +
1

2

N∑
i j

〈χi χj |r−112 |χj χi〉 (8.8)

= 0 , (8.9)

which directly follows from the Slater-Condon rules (Sec. 3.3) applied to 〈ΦHF |Vee |ΦHF〉.
The first non-vanishing energy correction is the second-order term E(2)

0 . To calculate it,
we need to clarify, that the excited determinants, introduced in Sec. 4.3 (singles, doubles,
triples, etc.), are indeed eigenstates of H(0). First, applying

∑N
j f j on a singles state |Φa

i 〉

(see Eq. 4.27), leads to

N∑
j

f j |Φa
i 〉 =

N∑
j

f jA|χ1... χi−1χa χi+1... χN〉

=
1
√

N!

∑
σ∈SN

sgn(σ)
N∑
j

f j |χσ1 ... χσN 〉

=
1
√

N!

∑
σ∈SN

sgn(σ)
N∑
j

εσj |χσ1 ... χσN 〉

= (ε1 + ... + εi−1 + εa + εi+1 + ... + εN)|Φ
a
i 〉 . (8.10)

Combining Eq. (4.25), (8.3), and (8.10), then yields

H(0) |Φa
i 〉 = [EHF − εi + εa]|Φ

a
i 〉 , (8.11)

hence, we found eigenstates and the corresponding eigenvalues. The same holds for
doubles, triples, etc.,

H(0) |Φabc...
i j k ... 〉 = [EHF − εi − ε j − εk − ... + εa + εb + εc + ...]|Φabc...

i j k ... 〉 , (8.12)

The second order contribution can thus be written as

E(2)
0 =

∞∑
n,0

|〈Φ
(0)
0 |V|Φ

(0)
n 〉|

2

E(0)
0 − E(0)

n

(8.13)

=
N∑

i=1

∞∑
a=N+1

|〈ΦHF |V|Φ
a
i 〉|

2

εi − εa
+

1

2

N∑
i, j=1

∞∑
a,b=N+1

|〈ΦHF |V|Φ
ab
i j 〉|

2

εi + ε j − εa − εb
. (8.14)

Triples or higher excited states do not contribute due to the Slater-Condon rules, since
V is a two-electron operator. The factor 1/2 in front of the doubles term avoids double
counting for the cases i ↔ j and a↔ b. It is not necessary to explicitly exclude i = j and
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8 Correlation energy methods

a = b, since the definition of excited Slater determinants |Φab
i j 〉 automatically eliminated

those cases via |Φab
ii 〉 = |Φ

aa
i j 〉 = 0. Furthermore, one can show, that also the singles

contributions vanish. This is known as

Brillouin’s theorem
If He is the full electronic Hamiltonian and |ΦHF〉 and |Φa

i 〉 are the Hartree-Fock
ground state and singles excited state, respectively, then

〈ΦHF |He |Φ
a
i 〉 = 0 . (8.15)

This theorem can easily be proven by applying the Slater-Condon rules. We can immedi-
ately conclude

〈ΦHF |V|Φ
a
i 〉 = 〈ΦHF |He − H(0) |Φa

i 〉 = 〈ΦHF |H(0) |Φa
i 〉 = 〈χi | f |χa〉 = εaδia = 0 ,

(8.16)
since i ∈ {1, ..., N} and a ∈ {N + 1, ...,∞}. Thus, only the doubles excited states
contribute to the second-order correction.

E(2)
0 =

1

2

N∑
i, j=1

∞∑
a,b=N+1

|〈ΦHF |V|Φ
ab
i j 〉|

2

εi + ε j − εa − εb
. (8.17)

Employing the Slater-Condon rules once again, the numerator can be written as,

〈ΦHF |V|Φ
ab
i j 〉 = 〈χi χj |r−112 |χa χb〉 − 〈χi χj |r−112 |χbχa〉 . (8.18)

We eventually find the final canonical form of the

MP2 energy

EMP2 = E(2)
0 =

1

2

N∑
i, j=1

∞∑
a,b=N+1

〈χi χj |r−112 |χa χb〉〈χa χb |r−112 |χi χj〉

εi + ε j − εa − εb
(8.19)

−
1

2

N∑
i, j=1

∞∑
a,b=N+1

〈χi χj |r−112 |χa χb〉〈χa χb |r−112 |χj χi〉

εi + ε j − εa − εb
. (8.20)

The first term is commonly called direct MP2 and the second term exchange MP2.

According to the definition of the correlation energy (5.5), the MP2 energy is the lowest
order contribution to the correlation energy, since the unperturbed Hamiltonian already
covers the full Hartree-Fock energy. In terms of charge densities, we can interpret the
MP2 energy as an interaction of occupied-unoccupied overlap densities (also sometimes
called particle-hole pairs),

ρia(r) = 〈si |sa〉 ϕ
∗
i (r)ϕa(r) , (8.21)
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8.1 Second-order Møller-Plesset perturbation theory

such that we can write (here only for the direct term),

1

2

N∑
i, j=1

∞∑
a,b=N+1

〈χi χj |r−112 |χa χb〉〈χa χb |r−112 |χi χj〉

εi + ε j − εa − εb
(8.22)

=
1

2

N∑
i, j=1

∞∑
a,b=N+1

1

εi + ε j − εa − εb

∫
d3r1...

∫
d3r4

ρia(r1)ρ jb(r2)ρ
∗
ia(r3)ρ

∗
jb(r4)

|r1 − r2 | |r3 − r4 |
.

Since ∫
d3rρia(r) = 〈χi |χa〉 = δia = 0 , (8.23)

these charge densities contain no net charge but can be considered as neutral multipole
charge densities.

8.1.2 MP2 for 3D periodic systems in the thermodynamic limit
The main goal is to implement algorithms for three dimensional periodic systems. Hence,
we need to formulate all mathematical expressions in terms of Bloch orbitals and k-point
integrals. This subsection largely follows the author’s publication [41]. For a periodic
system the MP2 energy per unit cell is simply given by Eq. (8.19) and (8.20) divided by
the number of unit cellsN = Ω/Ω0, where Ω is the total volume of the considered system,
and Ω0 the volume of one single unit cell (as introduced on p. 26). The indices i, j , a, b
have to understood as compound indices including a band index, a crystal wave vector and
a spin state: i = (i,k1, s1), j = ( j ,k2, s2), etc. The spin-unrestricted MP2 energy per
unit cell of a three dimensional periodic system can thus be written as,

EMP2 =
1

2

1

N

BZ∑
k1...k4

occ.∑
i j

virt.∑
ab

↑↓∑
ss′

|〈ik1s, jk2s′|ak3s, bk4s′〉|2

εik1s + ε jk2s′ − εak3s − εbk4s′
,

−
1

2

1

N

BZ∑
k1...k4

occ.∑
i j

virt.∑
ab

↑↓∑
s

〈ik1s, jk2s |r−112 |ak3s, bk4s〉〈ak3s, bk4s |r−112 | jk2s, ik1s〉
εik1s + ε jk2s − εak3s − εbk4s

,

(8.24)

where BZ stands for the first Brillouin zone. For brevity, most of the following calculations
are performed for the exchange part, termed EMP2

x , only. Furthermore the spin-restricted
case is assumed, i.e.

∑↑↓
s → 2, in order to attain a more compact notation,

EMP2
x = −

1

N

BZ∑
k1...k4

occ.∑
i j

virt.∑
ab

〈ik1, jk2 |r−112 |ak3, bk4〉〈ak3, bk4 |r−112 | jk2, ik1〉

εik1 + ε jk2 − εak3 − εbk4

. (8.25)

Note that the two-electron integrals 〈ik1, jk2 |ak3, bk4〉 are non-vanishing only if k1 +
k2 = k3 + k4 + G, where G is some arbitrary reciprocal lattice vector. This can be
interpreted as crystal momentum conservation. Hence, the two-electron integrals depend
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8 Correlation energy methods

only on three k-points. This can be seen by explicitly integrating out an electron repulsion
integral 〈ik1, jk2 |r−112 |ak3, bk4〉, using Bloch’s theorem (2.4) and the Born-von Karman
boundary conditions (2.39), leading to

〈ik1, jk2 |r−112 |ak3, bk4〉 =

∫
Ω

d3r
∫
Ω

d3r′
ϕ∗ik1

(r)ϕ∗jk2
(r′)ϕak3(r)ϕbk4(r

′)

|r − r′|

=
1

Ω

∑
RR′

∫
Ω0

dr
∫
Ω0

dr′
∑
G

BZ∑
k

4π

(G+ k)2
ei(G+k)(r+R−r′−R′)

× e−i(k1−k3)Re−i(k2−k4)R
′

ϕ∗ik1
(r)ϕ∗jk2

(r′)ϕak3(r)ϕbk4(r
′)

=
N2

Ω

∫
Ω0

dr
∫
Ω0

dr′
∑
G

BZ∑
k

4π

(G+ k)2
ei(G+k)(r−r′)

× δk,T(k1−k3)δk,T(k4−k2)ϕ
∗
ik1

(r)ϕ∗jk2
(r′)ϕak3(r)ϕbk4(r

′)

∼ δT(k1−k3),T(k4−k2) . (8.26)

An explanation is in order. First, we splitted the integration over the entire system Ω
into integrals over one unit cell Ω0 only, where the sum over the real space lattice vectors
R,R′ cares for all possible displacements of this unit cell. Additionally, we employed the
Fourier transform of the Coulomb potential,

1

|r − r′|
=

1

Ω

∑
G

BZ∑
k

4π

(G+ k)2
ei(G+k)(r−r′) . (8.27)

Note that this is only an approximation, since the sum overk should actually be a continuous
integral. However, in the thermodynamic limit it becomes exact. Second, we performed
the sum over R and R′ while exploiting the relation [42],∑

R

e±i(k−k′)R = NδT(k),T(k′) . (8.28)

The function T simply maps a general reciprocal vector back to the first Brillouine zone,

T(k) = k +G , (8.29)

where G is an appropriate reciprocal lattice vector such that k +G ∈ BZ.

If we define the overlap densities,

〈ik1 |e−iGr̂ |ak3〉Ω0 := N

∫
Ω0

d3r ϕ∗ik1
(r)ϕak3(r) e−iGr . (8.30)
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8.1 Second-order Møller-Plesset perturbation theory

we can finally write,

〈ik1, jk2 |ak3, bk4〉 =
1

Ω
δT(k1−k3),T(k4−k2)

∑
G

4π

[G+ T(k1 − k3)]2

× 〈ik1 |e+i[G+T(k1−k3)]r̂ |ak3〉Ω0

× 〈 jk2 |e−i[G+T(k4−k2)]r̂ |bk4〉Ω0 . (8.31)

Note that the unitless quantity (8.30) does not explicitly depend onN , sinceN is balanced
by the normalization factors of the orbitals (2.39),N/Ω = 1/Ω0. However, there is an im-
plicit dependence since differentN lead to different Born-von Karman boundaries, hence
a different mesh of crystal wave vectors (k-point mesh). Inserting (8.31) into (8.25), one
sum over the BZ, here k4 → T(k1+k2 −k3), can be eliminated. Note that the Kronecker
deltas for the k-vectors which occur in 〈ik1, jk2 |ak3, bk4〉 and 〈ak3, bk4 | jk2, ik1〉 are
equivalent. A substitution q = T(k2 − k3) then leads to

EMP2
x = −

1

Ω2
0

1

N3

BZ∑
k1k2q

occ.∑
i j

virt.∑
ab

∑
G

4π

[G+ T(k1 − k2 + q)]2

∑
G′

4π

(G′ − q)2

× 〈ik1 |e+i[G+T(k1−k2+q)]r̂ |aT(k2 − q)〉Ω0 〈aT(k2 − q)|e+i(G′−q)r̂ | jk2〉Ω0

× 〈 jk2 |e−i[G+T(k1−k2+q)]r̂ |bT(k1 + q)〉Ω0 〈bT(k1 + q)|e−i(G′−q)r̂ |ik1〉Ω0

×
1

εik1 + ε jk2 − εaT(k2−q) − εbT(k1+q)
. (8.32)

The MP2 energy per unit cell does not explicitly depend onN , although 1/N3 appears in
the above formula. Again the N dependence is only implicit since N defines the density
of the allowed k-points. This becomes evident when we perform the thermodynamic
limit, N → ∞, Ω/N = Ω0 = const. . The density of the crystal wave vectors k becomes
infinite and sums turn into integrals:

1

N

BZ∑
k

... −→ Ω0

∫
BZ

d3k
(2π)3

... , (8.33)

which implies:

1

Ω2
0

1

N3

BZ∑
k1k2q

... −→ Ω0

∫
(BZ)3

d3k1
(2π)3

d3k2
(2π)3

d3q
(2π)3

... . (8.34)

SinceΩ→∞ the normalization factor has to be dropped in (2.39) and we write ϕik(r) −→
eikruik(r) such that the overlap densities (8.30) now read:

〈ik1 |e−iGr̂ |ak3〉Ω0 −→
1

Ω0

∫
Ω0

d3r ϕ∗ik1
(r)ϕak3(r) e−iGr . (8.35)
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We eventually arrive at the

MP2 correlation energy per unit cell (here only the exchange term) for three dimen-
sional periodic systems in the thermodynamic limit,

EMP2
x = − Ω0

∫
(BZ)3

d3k1
(2π)3

d3k2
(2π)3

d3q
(2π)3

occ.∑
i j

virt.∑
ab

∑
GG′

4π

[G+ T(k1 − k2 + q)]2
4π

(G′ − q)2

× 〈ik1 |e+i[G+T(k1−k2+q)]r̂ |aT(k2 − q)〉Ω0 〈aT(k2 − q)|e+i(G′−q)r̂ | jk2〉Ω0

× 〈 jk2 |e−i[G+T(k1−k2+q)]r̂ |bT(k1 + q)〉Ω0 〈bT(k1 + q)|e−i(G′−q)r̂ |ik1〉Ω0

×
1

εik1 + ε jk2 − εaT(k2−q) − εbT(k1+q)
. (8.36)

The calculation of the thermodynamic limit also proves the size consistency of the MP2
energy. The main reason for the size consistency is the collapse of one of the four k-point
summations, such that the remaining 1/N3 term in Eq. (8.32) exactly fuses to three
k-point integrals.

8.1.3 Periodic MP2 in the PAW and the long-wavelength limit

In this section, we discuss the application of the PAW method and the long-wavelength
limit for MP2, which both become crucial when the MP2 formulas shall be translated into
a computer code.

PAW charge densities

When using the PAW method for an implementation of a periodic MP2 algorithm (similar
derivations hold for non-periodic approaches), the electron-repulsion integrals, Eq. (8.26),
need some special treatment. As already mentioned, the electron-repulsion integrals, can
be considered as interactions of neutral charge densities (for brevity, we neglect the spin
here),

〈aT(k2 − q), bT(k1 + q)|r−112 | jk2, ik1〉

=

∫
Ω

d3r
∫
Ω

d3r′
ϕ∗aT(k2−q)

(r)ϕ∗bT(k1+q)
(r′)ϕ jk2(r)ϕik1(r

′)

|r − r′|

=

∫
Ω

d3r
∫
Ω

d3r′
ρ
k2q
a j (r)ρk1q

bi (r′)

|r − r′|
, (8.37)

with the overlap densities,

ρ
k2q
a j (r) = 〈aT(k2 − q)|r〉〈r | jk2〉 . (8.38)
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However, if the Hartree-Fock orbitals are calculated using the PAW method, we only have
the pseudo orbitals available, hence we need to calculate

ρ
k2q
a j (r) = 〈 �aT(k2 − q)|T

† |r〉〈r |T | j̃k2〉 , (8.39)

which follows from Eq. (2.58). Fortunately, we already evaluated T † |r〉〈r |T in Eq.
(2.61) and find,

ρ
k2q
a j (r) = ρ̃

k2q
a j (r) + 1ρ

k2q
a j (r) − 1 ρ̃

k2q
a j (r) , (8.40)

with

ρ̃
k2q
a j (r) = 〈 �aT(k2 − q)|r〉〈r | j̃k2〉 , (8.41)

1ρ
k2q
a j (r) =

∑
I

∑
nm

〈φIm |r〉〈r |φIn〉 〈
�aT(k2 − q)| p̃Im〉〈p̃In | j̃k2〉 , (8.42)

1 ρ̃
k2q
a j (r) =

∑
I

∑
nm

〈φ̃Im |r〉〈r |φ̃In〉 〈
�aT(k2 − q)| p̃Im〉〈p̃In | j̃k2〉 . (8.43)

Note that 1ρk2q
a j (r) − 1 ρ̃

k2q
a j (r) vanishes outside the augmentation spheres, hence, for this

charge contributions, the electron-repulsion integrals reduce to interactions between the
augmentation spheres, and are evaluated in the partial wave bases {|φIn〉} and {|φ̃In〉}.
Additionally, compensation charges are added to ρ̃

k2q
a j (r) and 1 ρ̃

k2q
a j (r), such that the

two-electron integrals can simply be splitted into three parts

〈aT(k2 − q), bT(k1 + q)|r−112 | jk2, ik1〉 =

∫
Ω

d3r
∫
Ω

d3r′
ρ̃
k2q
a j (r) ρ̃k1q

bi (r′)

|r − r′|

+

∫
Ω

d3r
∫
Ω

d3r′
1ρ

k2q
a j (r) 1ρ

k1q
bi (r′)

|r − r′|

−

∫
Ω

d3r
∫
Ω

d3r′
1 ρ̃

k2q
a j (r) 1 ρ̃

k1q
bi (r′)

|r − r′|
(8.44)

For brevity, we pass a deeper investigation of the compensations charges, that allow for
such a decomposition, and refer to [43, 44].

It is only the first part, involving ρ̃k2q
a j (r) ρ̃k1q

bi (r′), for which the derivations from the
previous section 8.1.2 were performed. Hence, all Hartree-Fock orbitals were understood
there as PAW pseudo orbitals.

The long-wavelength limit

The long-wavelength limit refers to the case, when (G′ − q) and/or [G+T(k1 − k2 + q)]
approaches zero in Eq. (8.36), leading to a divergence of the Fourier transformed Coulomb
kernel. Conventionally, this is called head if both limits are considered at once, or wing
if only one of the limits is considered. This divergence is compensated by the overlap
densities, that also decay to zero, such that a finite limit is approached. This limit is here
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calculated for the case of (G′ − q)→ 0, being equivalent to G′ = 0 and q → 0,

Fk1k2
i jab = lim

q→0

4π

q2
〈aT(k2 − q)|e−iqr̂ | jk2〉Ω0 〈bT(k1 + q)|eiqr̂ |ik1〉Ω0 . (8.45)

The orbitals are here understood as PAW pseudo orbitals, but we suppress the tilde for
notational clarity. In a first step, we expand the overlap densities in powers of q,

〈aT(k2 − q)|e−iqr̂ | jk2〉Ω0 =

〈ak2 | jk2〉Ω0 +
[
∇q 〈aT(k2 − q)|e−iqr̂ | jk2〉Ω0

]
q=0
· q + O(q2) . (8.46)

The first contribution vanishes due to the orthogonality of the orbitals, see Eq. (2.40).
The derivative can be simplified to[

∇q 〈aT(k2 − q)|e−iqr̂ | jk2〉Ω0

]
q=0

= −〈∇k2(ak2)| jk2〉Ω0 − i〈ak2 |r̂ | jk2〉Ω0

= −

∫
Ω0

d3r (∇k2u∗ak2
)(r) u jk2(r) , (8.47)

such that we find for overlap densities,

〈aT(k2 − q)|e−iqr̂ | jk2〉Ω0 = −|q |

∫
Ω0

d3r (q̂∇k2u∗ak2
)(r) u jk2(r) + O(q

2) , (8.48)

where q̂ = q/|q | stands for the unit vector and u refers to the cell periodic part of the
orbitals. This reveals, that the limit q → 0 depends on the direction of q. We find

Fk1k2
i jab = −4π

[∫
Ω0

d3r (q̂∇k2u∗ak2
)(r) u jk2(r)

] [∫
Ω0

d3r (q̂∇k1u∗bk1
)(r) uik1(r)

]
.

(8.49)
For discretized implementations of Eq. (8.36) in a computer code, the cases (G′ − q) and
[G + T(k1 − k2 + q)] have to be excluded from the summation and be replaced by the
long-wavelength limit Fk1k2

i jab .

8.1.4 Van der Waals interactions in HF and MP2
In this section, we will turn back to the canonical MP2 formulation, ignoring explicit
k-point sampling. Figure 4.3 suggests, that the weak van der Waals interactions can not be
covered by the Hartree-Fock method. That is no surprise, since van der Waals interactions
are based on correlations in the electron polarization of the considered subsystems. Since
Hartree-Fock, by definition, does not cover electron correlation, also the van der Waals
interactions are invisible. This is corrected by the MP2 energy.

From the mathematical point of view, this can be rationalized in the following way.
Imagine two separated neutral regions (A and B) of a quantum system, e.g. two separated
molecules (Fig. 8.1) or the far separated layers of boron nitride (Fig. 2.1). The center of
both regions be separated by the distance R along the z axes. If R is large enough, one
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A B

R

z

Figure 8.1: Schematic illustration of two separated molecules with a non overlapping
electron density (green area).

can show, that the Hartree-Fock exchange contribution (second term in Eq. 4.6) vanishes.
For this, remember that the spin-orbitals can be unitarily transformed, without changing
the Hartree-Fock energy, as discussed in Chap. 4. We can transform the orbitals in such a
way, that they are localized either in region A or B. If they are localized, then the overlap
density

ρi j(r) = 〈si |s j〉 ϕ
∗
i (r)ϕ j(r) ≈ 0 , (8.50)

vanishes, if i and j are from different regions. Hence the Hartree-Fock exchange contri-
bution,

−
1

2

N∑
i j

〈χi χj |r−112 |χj χi〉 = −
1

2

N∑
i j

∫
d3r

∫
d3r′

ρi j(r)ρ
∗
i j(r

′)

|r − r′|
≈ 0 , (8.51)

will also vanish and the interaction between both regions reduces to the classical elec-
trostatic interactions between the nuclei and the electron charge densities. The attraction
between the nuclei in A and the electron density of B can easily be compensated by the
repulsion between the nuclei in A and the nuclei in B. The remaining repulsion between
the electron density A and B can quickly dominate the interaction in the Hartree-Fock
picture.

The MP2 correction, providing an attractive force, can be derived as follows. Note that
we now use the canonical Hartree-Fock orbitals again, instead of unitarily transformed
ones. We expand the Coulomb potential in powers of 1/R,

1

|r1 − r2 |
=
1

R
+

z1 − z2
R2

+
2z21 − x21 − y21 + 2z22 − x22 − y22

2R3
(8.52)

+
2x1x2 + 2y1y2 − z1z2

2R3
+ O

(
R−4

)
. (8.53)
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The electron-repulsion integrals then reduce to

〈χi χj |r−112 |χa χb〉 =

=
2〈χi |x |χa〉〈χj |x |χb〉 + 2〈χi |y |χa〉〈χj |y |χb〉 − 〈χi |z |χa〉〈χj |z |χb〉

2R3
+ O

(
R−4

)
,

(8.54)

where only the R−3 term survives, due to the orthogonality of the occupied {|χi〉} and
unoccupied orbitals {|χa〉}, which implies〈

χi χj
�� z1 − z2

R2

��χa χb
〉
=

1

R

2

〈χi |z |χa〉〈χj |χb〉 −
1

R

2

〈χi |χa〉〈χj |z |χb〉 = 0 . (8.55)

The vanishing spatial overlap between separated occupied orbitals, ρi j(r) ≈ 0, is irrelevant,
since only the occupied-unoccupied overlap densities, ρia(r) from Eq. (8.21), contribute
in the electron-repulsion integrals of the MP2 energy. The sum over all unoccupied
orbitals a, b assures, that the numerator of the right hand side of (8.54) can indeed provide
a significant contribution. For the direct MP2 energy (8.19), this results in a van der
Waals-like potential,

〈χi χj |r−112 |χa χb〉〈χa χb |r−112 |χi χj〉 ∼ −
1

R6
+ O

(
R−7

)
. (8.56)

This 1/R6 potential is attractive, since the direct MP2 term is strictly negative, as follows
from the positive definite numerator and negative denominator of Eq. (8.19). For the
MP2 exchange term (8.20), a similar derivation holds, however, its contribution will be
smaller. The exchange of i and j in the second electron-repulsion integral requires that all
overlap densities ρia and ρ jb as well as ρ ja and ρib must be sizable at the same time. The
likelihood of such a combination is decreasing with increasing R. Since the exchange
MP2 energy is strictly positive, it slightly weakens the attractive interaction of the direct
MP2 term.

8.1.5 Laplace transformed formulation

It is possible to bring the MP2 energy (8.19)+(8.20) in a form, that is invariant under
unitary transformations of time-dependent Hartree-Fock spin-orbitals. This formulation
is both very simple and very useful for the development of efficient implementations in a
computer code. It is based on a work by Almlöf [45] and uses a simple Laplace transform,

1

εi + ε j − εa − εb
= −

∫ ∞

0
dτ e(εi+εj−εa−εb)τ . (8.57)

Note, that εi + ε j − εa − εb is always negative, since i and j denote occupied orbitals and a
and b unoccupied ones, i.e. the former are always smaller than the latter, εi +ε j < εa+εb.
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We introduce time-dependent Hartree-Fock spin-orbitals by,

|χτi 〉 = eεiτ/2 |χi〉 , |χτa 〉 = e−εaτ/2 |χa〉 , (8.58)

The term ”time-dependent” refers to the fact that τ can be interpreted as an imaginary
time parameter. We will clarify the notion of imaginary time in Sec. 8.1.6. Using the
time-dependent spin-orbitals, we can immediately formulate the

Laplace transformed MP2 expression (LTMP2)

EMP2 = −
1

2

∫ ∞

0
dτ

N∑
i, j=1

∞∑
a,b=N+1

〈χτi χ
τ
j |r
−1
12 |χ

τ
a χ

τ
b 〉〈χ

τ
a χ

τ
b |r
−1
12 |χ

τ
i χ

τ
j 〉 (8.59)

+
1

2

∫ ∞

0
dτ

N∑
i, j=1

∞∑
a,b=N+1

〈χτi χ
τ
j |r
−1
12 |χ

τ
a χ

τ
b 〉〈χ

τ
a χ

τ
b |r
−1
12 |χ

τ
j χ

τ
i 〉 . (8.60)

Any unitary transformations

|χτi 〉 → | χ̃τi 〉 =
N∑

j=1

ui j |χ
τ
i 〉 , (8.61)

|χτa 〉 → | χ̃τa 〉 =
∞∑

b=N+1

vab |χ
τ
b 〉 , (8.62)

where ui j and vab are unitary matrices, leave the LTMP2 expression invariant. The proof
is straight forward and can be found in Sec. 11.2.1 or in the publication [46] of the author
of this thesis.

8.1.6 Green’s function formulation

Yet another useful formulation of the MP2 energy can be found by using a Green’s function
approach. We start with an ad-hoc introduction of the Green’s function in imaginary time,

G(x,x′, τ) = θ(−τ)G<(x,x′, τ) + θ(τ)G>(x,x′, τ) , (8.63)

splitted into a retarded part,

G<(x,x′, τ) =
N∑

i=1

χi(x)χ
∗
i (x
′) e−εiτ =

N∑
i=1

χ−τi (x)χ−τi (x′)∗ , (8.64)
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and into an advanced part,

G>(x,x′, τ) = −
∞∑

a=N+1

χa(x)χ
∗
a(x
′) e−εaτ = −

∞∑
a=N+1

χτa (x)χ
τ
a (x

′)∗ , (8.65)

We also made use of the imaginary time evolved Hartree-Fock spin orbitals from Eq.
(8.58). Careful bookkeeping of all indices and coordinates leads directly to the

Green’s function formulation of the MP2 energy

EMP2 = −
1

2

∫ ∞

0
dτ

∫
dx1...

∫
dx4

δs1s3δs2s4

|r1 − r2 | |r3 − r4 |
(8.66)

× G>(x1,x3, τ)G<(x3,x1,−τ)G>(x2,x4, τ)G<(x4,x2,−τ)

+
1

2

∫ ∞

0
dτ

∫
dx1...

∫
dx4

δs1s2δs2s3δs3s4

|r1 − r2 | |r3 − r4 |
(8.67)

× G>(x1,x3, τ)G<(x4,x1,−τ)G>(x2,x4, τ)G<(x3,x2,−τ) .

This simple transition to the Green’s function notation, which usually requires the back-
ground of second-quantization, is possible due to the introduction of the Laplace trans-
formed formulation of MP2 from Sec. 8.1.5. The Laplace transform serves as a bridge
between the sum over states representation and the Green’s function representation. Trans-
lating the Green’s functions into Feynman diagrams (as used in Chap. 7), the MP2
correlation energy can be written as

EMP2 = + (8.68)

The Wick rotation and the connection to the QFT picture

For the sake of completeness, we briefly justify that (8.63) is indeed a Green’s function.
In Sec. 7.2 we derived a Green’s function expression (see Eq. 7.31) at the Hartree-Fock
level in frequency space, reading

G(x,x′, ω) =
N∑

i=1

χi(x)χ
∗
i (x
′)

ω − εi − iη
+

∞∑
a=N+1

χa(x)χ
∗
a(x
′)

ω − εa + iη
. (8.69)

One can show that this corresponds to the Green’s function (8.63) after transforming from
the real frequency to the imaginary time space. In Chap. 7.2 we introduced the pair (t, ω)
by Eq. (7.12). For instance, the Fourier transform of the first part of the Green’s function,
involving the occupied Hartree-Fock energies εi, can be calculated by a contour integral
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Im z

Re z

εi + iη

εa − iη

C1

C2

Figure 8.2: Two contours in the complex plane, which enclose the occupied orbitals εi.
The contour C2 is obtained by a rotation of C1.

along the path C1 (Fig. 8.2),∫ ∞

−∞

dω
2π

1

ω − εi − iη
e−iωt = θ(−t)

∮
C1

dz
2π

1

z − εi − iη
e−izt

= i θ(−t) e−iεit . (8.70)

Here, θ(−t) arises from the fact that the integral vanishes if the contour is closed in the
lower half-plane. In addition, we find that the path C2 also encloses all occupied energies
εi, hence, a transformation using C2 would cover exactly the same information as C1. Note
that C2 is simply a rotation of C1, called Wick rotation. Both paths, C1 and C2 require
the analytic continuation of the integrand (ω − εi − iη)−1 → (z − εi − iη)−1. However,
the C2 contour exists only if e−izt is finite along C2, i.e. if t has a positive imaginary part
(−it > 0). Hence, the analytic continuation has to be performed also for t, i.e. we have
to consider t as a complex number. Since nothing prevents us from doing so, we can
calculate,

θ(−it)
∮
C2

dz
2π

1

z − εi − iη
e−izt = i θ(−it) e−iεit . (8.71)
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Moreover, the integrand is nonvanishing only along z ∈ (−i∞,+i∞), hence we can also
write

i θ(−it) e−iεit = θ(−it)
∫ i∞

−i∞

dω
2π

1

ω − εi − iη
e−iωt

= θ(−it)
∫ ∞

−∞

dν
2π

i
iν − εi − iη

eνt , (8.72)

where we substituted ν = −iω in the last step. If we, furthermore, introduce the substitution
τ = it, we arrive at

θ(−τ) e−εiτ = θ(−τ)

∫ ∞

−∞

dν
2π

1

iν − εi − iη
e−iντ . (8.73)

Note, that the assumption of an imaginary time t leads to purely real valued τ and ν. This
procedure is called Wick rotation and we can complement the Fourier pair

(t, ω):
1

ω − εi − iη
↔ i θ(−t) e−iεit (8.74)

with
(τ, ν):

1

iν − εi − iη
↔ θ(−τ) e−εiτ (8.75)

A similar derivation holds for the terms with the unoccupied energies εa, leading to the
pairs

(t, ω):
1

ω − εa + iη
↔ −i θ(t) e−iεat (8.76)

and
(τ, ν):

1

iν − εa + iη
↔ −θ(τ) e−εaτ (8.77)

Altogether, the Green’s function in imaginary time results in

G(x,x′, τ) =

∫ ∞

−∞

dν
2π

G(x,x′, iν) e−iντ

= θ(−τ)
∑

i

χi(x)χ
∗
i (x
′) e−εiτ − θ(τ)

∑
a

χa(x)χ
∗
a(x
′) e−εaτ , (8.78)

which is equivalent to (8.63).

In summary, the Laplace transform (8.57) provides a simple and convenient bridge
between the orbital based formulation and the Green’s function based formulation of the
MP2 energy. More general, it provides a bridge between Feynman diagrams and Goldstone
diagrams.
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8.2 Adiabatic connection and fluctuation-dissipation

In this section we provide an alternative approach to approximate the correlation energy.
First, we derive an exact expression of the correlation energy in terms of the so called
response function, employing the adiabatic-connection fluctuation-dissipation theorem
(ACFDT). Second, we present schemes to approximate the response function, leading
to the random phase approximation. We will use the random phase approximation to
calculate the pressure-temperature phase diagram of lead selenide in Chap. 13.

The adiabatic connection

The adiabatic connection links a mean field Hamiltonian with the exact many-electron
Hamiltonian. This is achieved by a set of Hamiltonians {Hλ | λ ∈ [0, 1]} such that
Hλ=1 = He is the full electronic Hamiltonian from Eq. (2.15),

Hλ=1 = Te + Vext + Vee , (8.79)

where Vext = Vnn+Vne, and Hλ=0 represents a mean field Hamiltonian, i.e. the one-electron
DFT Hamiltonian of Eq. (6.17), summed over all electrons,

Hλ=0 =
N∑

i=1

(
−
1

2
∇2i + Vext(ri) +

∫
d3r′

n(r′)
|ri − r′|

+ vxc(ri)

)
= Te + Vext + VKS , (8.80)

where KS stands for Kohn-Sham. It is convenient to connect the Hamiltonians in the
following way,

Hλ = Te + Vext + λVee + Vλ , (8.81)

where Vλ is a purely local potential, such that Vλ=0 = VKS and Vλ=1 = 0. For each λ we
formally define the ground state |Φλ〉 and the ground state energy Eλ by

Hλ |Φλ〉 = Eλ |Φλ〉 . (8.82)

Since the Kohn-Sham equations (6.17) are solvable, we can construct the ground state
|Φλ=0〉 as the Slater-determinant of the Kohn-Sham orbitals ϕi,

|Φ0〉 = A|ϕ1...ϕN〉 , (8.83)

where A is the antisymmetrization operator, as defined in Eq. (3.8). In analogy to Eq.
(5.5) we now define the desired quantity, the correlation energy by

Ec = 〈Φ1 |H1 |Φ1〉 − 〈Φ0 |H1 |Φ0〉 = E1 − 〈Φ0 |H1 |Φ0〉 , (8.84)

i.e. as the difference between the exact many-electron ground state energy E1 and the expec-
tation value of the exact many-electron Hamiltonian in the DFT ground state, 〈Φ0 |H1 |Φ0〉.
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Note, that the latter is accessible and is sometimes incorrectly called Hartree-Fock energy,
due to its formal equivalence to the Hartree-Fock energy of Eq. (4.3),

〈Φ0 |H1 |Φ0〉 =
N∑

i=1

(
−
1

2
〈ϕi |∇

2
i |ϕi〉 + 〈ϕi |Vext |ϕi〉

)
(8.85)

+
1

2

N∑
i, j=1

(
〈ϕiϕ j |r−112 |ϕiϕ j〉 − 〈ϕiϕ j |r−112 |ϕ jϕi〉

)
, (8.86)

however, here, the orbitals are solutions of the Kohn-Sham equations. We can derive
a useful equation for the correlation energy Ec, by employing the Hellmann-Feynman
theorem [47],

dEλ
dλ

=
〈
Φλ

���dHλ

dλ

���Φλ

〉
, (8.87)

allowing for the following formulation,

Ec = E1 − 〈Φ0 |H1 |Φ0〉 = E1 − 〈Φ0 |H0 |Φ0〉 − 〈Φ0 |H1 − H0 |Φ0〉

= E1 − E0 − 〈Φ0 |Vee − VKS |Φ0〉 =

∫ 1

0
dλ

dEλ
dλ
− 〈Φ0 |Vee − VKS |Φ0〉

=

∫ 1

0
dλ

〈
Φλ

���dHλ

dλ

���Φλ

〉
− 〈Φ0 |Vee − VKS |Φ0〉

=

∫ 1

0
dλ

〈
Φλ

���Vee +
dVλ
dλ

���Φλ

〉
− 〈Φ0 |Vee − VKS |Φ0〉 . (8.88)

In accordance with the original work [48], we require, that the one-electron density is
constant along the connection λ ∈ [0, 1]. For λ = 0, this strong assumption is met by the
exact DFT Hamiltonian using the exact exchange-correlation potential vxc. In practice,
however, exact agreement is never fully reached. A constant density implies∫ 1

0
dλ

〈
Φλ

���dVλ
dλ

���Φλ

〉
=

∫ 1

0
dλ

∫
d3r n(r)

dVλ(r)
dλ

=

∫
d3r n(r)[V1(r) − V0(r)] (8.89)

= −〈Φ0 |VKS |Φ0〉 ,

since V1 = 0. Finally, we find for the correlation energy

Ec =

∫ 1

0
dλ 〈Φλ |Vee |Φλ〉 − 〈Φ0 |Vee |Φ0〉

=
1

2

∫ 1

0
dλ

∫
d3r

∫
d3r′

Pλ(r, r′) − P0(r, r
′)

|r − r′|
, (8.90)
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where we have used the pair density

Pλ(r, r′) = N(N − 1)
∫

d3r3...
∫

d3rN |Φλ(r, r
′, r3, ..., rN)|

2 , (8.91)

which is clearly unknown for the fully interacting Hamiltonian, λ = 1. Although Eq.
(8.90) may seem to have no advantage, it is a convenient starting point for the fluctuation-
dissipation theorem.

The fluctuation-dissipation theorem

The fluctuation-dissipation theorem provides a link between the pair density and the
response function, which will be introduced. The theorem states, that internal density
fluctuations have the same effect as small external perturbations [49]. Small perturbations,
however, are treated with the response function, for which approximations schemes are
available.

First, we introduce the density fluctuation operator,

δn̂(r) = n̂(r) − n(r) , (8.92)

which is the difference between the density operator,

n̂(r) =
N∑

i=1

δ(r − r̂i) , (8.93)

and the electron density, n(r), being the expectation value of n̂(r),

n(r) = 〈Φλ |n̂(r)|Φλ〉 = N
∫

d3r2...
∫

d3rN |Φλ(r, r2, ...rN)| ∀λ . (8.94)

Note, that the electron density is kept constant along the connection λ. Using these
definitions, we can rewrite the pair density as

Pλ(r, r′) = 〈Φλ |n̂(r)n̂(r′)|Φλ〉 − δ(r − r
′)n(r) , (8.95)

or, equivalently, as

Pλ(r, r′) = 〈Φλ |δn̂(r)δn̂(r′)|Φλ〉 + n(r)n(r′) − δ(r − r′)n(r) . (8.96)

Plugging Eq. (8.96) into (8.90) leads to a formulation of the correlation energy in terms
of density fluctuations (note again that the density is assumed to be constant along λ),

Ec =
1

2

∫ 1

0
dλ

∫
d3r

∫
d3r′

〈Φλ |δn̂(r)δn̂(r′)|Φλ〉 − 〈Φ0 |δn̂(r)δn̂(r′)|Φ0〉

|r − r′|
. (8.97)

At this point, we can link the fluctuations (the term 〈Φλ |δn̂(r)δn̂(r′)|Φλ〉) with the so
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called response function (describing the response of the system to an external potential, i.e.
dissipation). Even if the connection between response and correlation energy is not clear
at first, we will soon arrive at an expression for the correlation energy using the response
function. The response function is commonly defined as the variation of the density with
respect to the external potential, which we now generalize to a time-dependent potential,
vext(r, t), allowing for time-dependent perturbations like varying electric or magnetic
fields,

χλ(r, r
′, t − t′) :=

δnλ(r, t)
δvext(r′, t′)

. (8.98)

Clearly, the density inherits the time-dependency from the external potential. An explicit
form of χλ(r, r′, t−t′) is known from linear response theory (see e.g. the Fourier transform
of Eq. (2.24) and its derivation in Ref. [50]),

χλ(r, r
′, t) = −i〈Φλ | T δn̂λ(r, t) δn̂λ(r′, 0) |Φλ〉 . (8.99)

Here T is the time ordering operator (later times right) and the time dependent density
operator is simply given by the density operator in the Heisenberg picture,

n̂λ(r, t) = eiHλt n̂(r)e−iHλt . (8.100)

By comparing (8.99) with (8.97) we find,

Ec = −
1

2

∫ 1

0
dλ

∫
d3r

∫
d3r′

iχλ(r, r′, 0−) − iχ0(r, r′, 0−)
|r − r′|

. (8.101)

Conventionally, the correlation energy is expressed in terms of the response function in
imaginary frequency, χλ(r, r′, ν), which can be obtained using the Wick rotation, as
introduced previously. We find the

correlation energy in the ACFDT framework,

Ec = −
1

2

∫ 1

0
dλ

∫ ∞

−∞

dν
2π

∫
d3r

∫
d3r′

χλ(r, r
′, ν) − χ0(r, r

′, ν)

|r − r′|
. (8.102)

In the next chapter, we will derive a practical approximation for the response function
χλ, in order to calculate the correlation energy in the ACFDT formulation.

8.3 The random phase approximation

What is still missing to calculate the correlation energy, is a practical scheme to treat the
λ dependent response function χλ. Such a scheme is given by the time-dependent density
functional theory (TDDFT). An introduction to TDDFT is far beyond the scope of this
thesis, hence, we restrict to one of the main results. The mean field response function χ0
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and the full interacting one, χλ, are connected by a Dyson like equation [51],

χλ(r1, r2, ν) = χ0(r1, r2, ν)+∫
d3r3

∫
d3r4 χ0(r1, r3, ν)

[
λ

|r3 − r4 |
+ f xc

λ (r3, r4, ν)

]
χλ(r4, r2, ν) , (8.103)

where the so called exchange-correlation kernel f xc
λ accounts for the exact connection. In

terms of operators, we can rewrite this equation as

χ(ν) = χ0(ν) + χ0(ν)
[
λr̂−112 + f xc

λ (ν)
]
χλ(ν) . (8.104)

In passing, we mention that for λ = 0 (here, the DFT case) the exchange correlation kernel
is given by the change of the exchange correlation potential with respect to the density,

f xc
0 (r, r′, τ − τ′) =

δvxc(r, τ)

δn(r′, τ′)
. (8.105)

Since TDDFT considers time-dependent Hamiltonians, also the exchange-correlation
potential inherits the time-dependency (i.e. frequency dependency in Fourier space).
The random phase approximation (RPA) is obtained by simply neglecting the exchange-
correlation kernel,

χλ(ν) ≈ χ0(ν) + χ0(ν) λr̂−112 χλ(ν) , (8.106)

which, after infinite iterations, leads to

[χλ(ν) − χ0(ν)]r̂−112 ≈
∞∑

k=2

λk−1[χ0(ν) r̂−112 ]
k . (8.107)

We can, thus, rewrite Eq. (8.102) as

Ec ≈ ERPA
c = −

1

2

∫ 1

0
dλ

∫ ∞

−∞

dν
2π

tr

[
∞∑

k=2

λk−1[χ0(ν) r̂−112 ]
k

]
, (8.108)

where tr stands for the trace. The λ integration can now be performed explicitly and results
in

ERPA
c = −

1

2

∫ ∞

−∞

dν
2π

tr

[
∞∑

k=2

1

k
[
χ0(ν) r̂−112

] k
]
. (8.109)

Furthermore, the sum can be rewritten in terms of the natural logarithm,

∞∑
k=2

1

k
[χ0(ν) r̂−112 ]

k =
∞∑

k=1

1

k
[χ0(ν) r̂−112 ]

k − χ0(ν) r̂−112 = −ln
(
1 − χ0(ν) r̂−112

)
− χ0(ν) r̂−112 ,

(8.110)
leading to the formula of the
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correlation energy in the random phase approximation

ERPA
c =

1

2

∫ ∞

−∞

dν
2π

tr
[
ln

(
1 − χ0(ν) r̂−112

)
+ χ0(ν) r̂−112

]
. (8.111)

The explicit form of χ0 in the real space basis can be calculated straightforward using
(8.99) and reads

χ0(r, r
′, ν) =

occ.∑
i

unocc.∑
a

[
ϕ∗i (r)ϕi(r

′)ϕ∗a(r
′)ϕa(r)

εa − εi − iν
+ c.c.

]
(8.112)

where the ϕ’s and ε’s are the DFT orbitals and orbital energies, respectively. A detailed
derivation can be found in Ref. [50].

Another convenient formulation of the RPA correlation energy makes use of the screened
interaction W(ν). At the RPA level we can define W(ν) by

W(ν) = r̂−112

∞∑
k=2

1

k
[
χ0(ν) r̂−112

] k−2

=
1

2
r̂−112 +

1

3
r̂−112 χ0(ν) r̂−112 +

1

4
r̂−112 χ0(ν) r̂−112 χ0(ν) r̂−112 + ... (8.113)

= −r̂−112
(
χ0(ν) r̂−112

) −2 [
χ0(ν) r̂−112 + ln

(
1 − χ0(ν) r̂−112

) ]
.

Mathematically, the screened interaction W(ν) can easily be found in Eq. (8.109), allowing
for the formulation

ERPA
c = −

1

2

∫ ∞

−∞

dν
2π

tr
[
χ0(ν) r̂−112 χ0(ν)W(ν)

]
. (8.114)

Indeed, the RPA approach covers electron screening effects in materials. The series in
Eq. (8.113) can be interpreted as an effective interaction, which takes internal correlations
of the electrons into account. Interactions of far distant regions are, thus, not described
by the bare Coulomb interaction, but by the effective screened interaction, including the
intermediate reordering of the electrons (described by the response function).

8.4 RPA with exchange: second-order screened
exchange

Using formulation (8.114) of the RPA correlation energy, an analogy with the direct MP2
correlation energy can be established, which can then be extended to an exchange-like
expression. For brevity, this section only provides a schematic view. First, we realize that
the response function (8.112) can also be written as a product of two Green’s functions
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(8.63) at the mean field level,

χ0(r, r
′, τ) = G(r, r′, τ)G(r′, r,−τ) . (8.115)

A proof can be found in Ref. [35]. In terms of diagrams, one could sketch the RPA
correlation energy (8.114) as

ERPA
c = , (8.116)

where the thick wiggly line represents the screened interaction W(ν). According to Eq.
(8.113), the screened interactions can be written as

=
1

2
+

1

3
+

1

4
+ ... . (8.117)

If we apply the simple rule of Sec. 7.3, to check whether the random phase approximation
meets the symmetrization postulate, we find that all exchange diagrams are missing.
Replacing any vertex by its exchange counterpart leads to a new diagram which is not
part of the RPA. In analogy to the MP2 diagrams, some of the missing exchange could be
introduced by considering a diagram like

. (8.118)

This leads to the so called second-order screened exchange (SOSEX) correction of the
RPA as introduced by Grüneis et al. [52]. We will skip a detailed derivation and refer to
Ref. [18, 52, 53, 54]. The final result has a similar form as the exchange part of the MP2
energy (see Eq. 8.20) and reads,

ESOSEX =
1

2

∫ ∞

−∞

dν
2π

occ.∑
i j

unocc.∑
ab

2(εa − εi)

(εa − εi)2 + ν2
2(εb − ε j)

(εb − ε j)2 + ν2

× 〈ϕ jϕi |r−112 |ϕaϕb〉〈ϕaϕb |W(ν)|ϕiϕ j〉 . (8.119)

This expression becomes the exchange MP2 energy (8.20), when replacing W(ν) by its
lowest order term, 1

2r−112 , and integrating over ν, since∫ ∞

−∞

dν
2π

2(εa − εi)

(εa − εi)2 + ν2
2(εb − ε j)

(εb − ε j)2 + ν2
= −

2

εi + ε j − εa − εb
. (8.120)

In this thesis, the SOSEX correction to the RPA is not used in practice. However, SOSEX
is introduced to demonstrate the development of low-complexity algorithms. This can be
found in Sec. 10.2.
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Figure 8.3: Dissociation of the diatomic molecules H2 and Be+2 into 2H and Be+Be+,
respectively. As an ”exact” reference we chose full configuration interaction
(FCI) calculations from [18, 55]. We performed spin-polarized calculations
for the molecules and the isolated atoms, except for H2, where spin-restriction
was assumed. We used a cell size of 10 × 8 × 8Å3 and a cutoff of 350 eV for
H2 and 16× 12× 12Å3, and 300 eV for Be+2 . The PAW potentials were chosen
with an outmost cutoff radius of 1.1Å (H) and 1.9Å (Be).

8.5 Illustrative MP2 and RPA calculations for molecules
and solids

Even for the correlation energy methods like MP2 and RPA, the calculation of dissociation
curves of simple dimers remains a great difficulty. In particular the dissociation limit
requires to cover static correlations. Again, as HF and DFT, both MP2 and RPA fail
to predict the correct dissociation of the H2 molecule (left graph in Fig. 8.3). Both
energy curves first push through the zero binding energy line at intermediate distances
(at about 2Å) and then turn around again (this can be seen in Ref. [18]). Interestingly,
the RPA method predicts the correct dissociation limit, i.e. approaches zero again1. For
the dissociation of Be+2 both MP2 and RPA improve upon the bond length compared
to the HF method (right graph in Fig. 8.3). Here, MP2 is almost identical to the
reference method (FCI) except for an almost constant energy shift. This can be seen
in in Fig. 8.4. Interestingly, the RPA fails badly in the dissociation limit, predicting a
binding energy which is off by about 50%. A similar but weaker behavior can be read
from the direct MP2 energy (dMP2). One tends to conclude that this error is originated
by the missing exchange, since the MP2 curve (including the second order exchange
contribution) perfectly resembles the slope of the reference curve. This, however, would
imply that exchange is not only important for very local, i.e. short-range effects. A similar
deviation between MP2 and dMP2 can be recognized for the H2 dimer at intermediate
distances. For a deeper investigation, a molecular code is preferable since dissociation

1But only if spin-unrestricted calculations are performed, corresponding to an unphysical Slater determinant
with an up orbital on one site and a down orbital on the other site.
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Figure 8.4: Negative derivative of the Be+2 energy dissociation curves from Fig. 8.3. The
MP2 curve perfectly matches the reference curve from 2 to 4Å. Both RPA
and dMP2 possess a less consistency with the reference curve and deviate
significantly from a distance of 2.6Å onward, indicating a wrong prediction
of the dissociation limit.
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Figure 8.5: Calculation of the binding energy of the hexagonal layers of boron nitride
using RPA and MP2 (dMP2 refers to the direct MP2 contribution, neglecting
the exchange part). The computational settings are given by a plane-wave
cutoff of 500 eV and a k-point mesh of 6×6×2 points to sample the Brillouine
zone. The energy scale was shifted such that 0meV/atom corresponds to a
single layer (or infinitely separated layers) of hBN. The experimental values
can can be found in [21] and references therein.
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Figure 8.6: Free energy of the SiO2 stishovite structure. The free energies are shifted
such that the minima of all methods coincide. We performed spin-unpolarized
calculations with a 3 × 3 × 5 k-points mesh and a cutoff of 500 eV. The c/a

ration was fixed to the experimental value [56] of 0.638. The solid lines are
Birch-Murnaghan fits [22].

calculations with VASP require large supercells to avoid interactions with the periodic
images of the atoms, making the calculations fairly expensive.

A reverse picture is obtained for the binding energy of the layers of hexagonal boron
nitride (Fig. 8.5). Here the RPA perfectly matches the experimental values. But also MP2
can be considered as a reliable method, that predicts a reasonable layer distance, although
the binding energy is clearly overestimated.

Another example to show the difference between MP2 and direct MP2 is depicted in Fig
8.6. Here, the RPA and MP2 almost perfectly coincide (except for a constant shift which
is not visible in Fig. 8.6). However, going from dMP2 to MP2 (i.e. adding the exchange
term) changes the equilibrium volume from 23.90 to 23.38Å, where the experimental
value [56] is given by 23.26A. This also holds for the atomization energy of stishovite
SiO2, given by a experimental value of 18.71 eV/SiO2. In the calculations we find 17.89,
20.44, 21.08 eV/SiO2 with RPA, MP2, dMP2, respectively. The Hartree-Fock method
results in an equilibrium volume of 22.70Å3 and a atomization energy of 12.82 eV/SiO2,
indicating significant correlation effects.

Note that all presented MP2 and RPA results ignore the head and wing contribution
as described in Sec. 8.1.3. This is due to the fact that this contribution was not yet
implemented in the low-scaling LTMP2 code from Chap. 10.1. However, simple cross-
checking with the RPA (where those contributions were available) revealed that they
can safely be neglected. Regarding the molecules, this can be understood by the large
supercells, leading to fine reciprocal grids, which sampled head and wing sufficiently
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accurate. For the periodic systems, neglecting head and wing required finer k-point grids
and lead to the somewhat unsmooth but acceptable energy curves.
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Low-complexity algorithms for the

correlation energy
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CHAPTER 9

Overview of the developed algorithms

In this part of the thesis, the core of the research work is presented. We will introduce six
newly developed algorithms which reduce the computational complexity of correlation
energy calculations, with a special attention to the exchange contributions. Three of them
are deterministic (Chap. 10) and are distinguished from another three algorithms which
are based on stochastic techniques (Chap. 11). As benchmark methods, we employed
MP2 and SOSEX. For a better overview, we will briefly describe the techniques below.

Quartic scaling MP2 for periodic systems

Sec. 10.1 on page 103

This implementation is the first proof, that MP2 calculations can be performed with a
quartic scaling, without introducing approximations. The complexity is reduced by pure
analytic reformulations based on the Laplace transformed version of the MP2 correlation
energy, Eq. (8.59) and (8.60). The corresponding publication [41] was awarded the
Editors’ Choice Collection 2017 of the Journal of Chemical Physics.

Quartic scaling SOSEX for periodic systems

Sec. 10.2 on page 118

In this section we formally demonstrate that also the SOSEX correction to the RPA can
be evaluated with a quartic scaling computer code. Similar steps as for the quartic scaling
MP2 algorithm are applied. The presented scheme was not yet implemented and serves
as a technical instruction for future implementations.
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Cubic scaling MP2

Sec. 10.3 on page 122

The possibility of a cubic scaling MP2 algorithm is demonstrated. This section can
be considered as an illustration that very careful analytical considerations can lead to
surprising improvements of the scaling behavior of algorithms. The presented MP2
scheme possesses the same scaling as DFT calculations. We also stress the limitations of
the presented approach.

Real space Monte Carlo sampling of Feynman diagrams

Sec. 11.1 on page 126

Translating Feynman diagrams of the correlation energy into the real space basis, allows
for Monte Carlo integrations. For the MP2 correlation energy, this was derived in Eq.
(8.66) and (8.67). In this work we present new and fundamentally enhanced importance
sampling functions, which reduce the sampling variance, such that fast and accurate MP2
calculations of large systems become possible.

Periodic MP2 with stochastic orbitals

Sec. 11.2 on page 139

One bottleneck of MP2 energy calculations is the tremendous amount of possible occupied-
unoccupied pairs. In this implementation, we stochastically average the occupied and
unoccupied manifold, leading to a code that can sample the MP2 energy with significantly
fewer stochastic occupied-unoccupied pairs. The highly parallelized algorithm is espe-
cially useful for large systems, where only the relative statistical error per electron is of
interest.

Electron-repulsion integrals in a random basis

Sec. 11.3 on page 156

Correlation energy methods like MP2 or RPA often suffer from a slow convergence with
respect to the basis set size. In particular, this is true for the plane-wave basis. However, it
is known, that this problem can be eased by choosing a proper basis, like natural orbitals.
In this code we present the effect of a random basis, which replaces the plane-wave basis
for the evaluation of electron-repulsion integrals.
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CHAPTER 10

Deterministic algorithms

10.1 Quartic scaling MP2 for periodic systems

We present a low-complexity algorithm to calculate the correlation energy of periodic
systems in second-order Møller-Plesset perturbation theory (MP2). In contrast to previous
approximation-free MP2 codes, our implementation possesses a quartic scaling, O(N4),
with respect to the system size N and offers an almost ideal parallelization efficiency.
The general issue that the correlation energy converges slowly with the number of basis
functions is eased by an internal basis set extrapolation. The key concept to reduce the
scaling is to eliminate all summations over virtual orbitals which can be elegantly achieved
in the Laplace transformed MP2 (LTMP2) formulation using plane wave basis sets and
Fast Fourier transforms. The method is implemented in the Vienna ab-initio simulation
package (vasp) [57, 11]. This section largely follows the author’s peer reviewed publication
[41].

10.1.1 Reducing the computational cost

The strategy

The summation over the unoccupied states is a major obstacle in MP2 calculations. As
can be seen from Eq. (8.60), the MP2 energy involves the following summation,

unocc.∑
ab

〈χτi χ
τ
j |r
−1
12 |χ

τ
a χ

τ
b 〉〈χ

τ
a χ

τ
b |r
−1
12 |χ

τ
j χ

τ
i 〉 . (10.1)

If we formally define a bipartite state

|Ψτ
ji〉 =

unocc.∑
ab

〈χτa χ
τ
b |r
−1
12 |χ

τ
j χ

τ
i 〉 |χ

τ
a χ

τ
b 〉 , (10.2)
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we can hide the expensive summation and write

unocc.∑
ab

〈χτi χ
τ
j |r
−1
12 |χ

τ
a χ

τ
b 〉〈χ

τ
a χ

τ
b |r
−1
12 |χ

τ
j χ

τ
i 〉 = 〈χ

τ
i χ

τ
j |r
−1
12 |Ψ

τ
ji〉 . (10.3)

The main idea is now to find a Schmidt decomposition of the bipartite state |Ψτ
ji〉 such that

the expensive summation over all combinations of a and b is avoided. In the plane-wave
basis this turns out to be surprisingly simple. One can easily construct auxiliary states
|wGτ

i 〉 such that
|Ψτ

ji〉 =
∑
G

��wGτ
j wGτ

i

〉
, (10.4)

where G is a reciprocal lattice vector (plane-wave). We thus reduced the expensive
summation by one order of magnitude,

unocc.∑
ab

〈χτi χ
τ
j |r
−1
12 |χ

τ
a χ

τ
b 〉〈χ

τ
a χ

τ
b |r
−1
12 |χ

τ
j χ

τ
i 〉 =

∑
G

〈
χτi χ

τ
j

��r−112 ��wGτ
j wGτ

i

〉
(10.5)

The key concept, the Schmidt decomposition, will be elaborated in the following. Note,
that no approximation will be used and all derivations are purely analytical.

Application to 3D periodic materials

We now turn to the case of periodic systems and restrict ourselves to the computationally
most expensive part, the exchange term of the MP2 energy, given by

EMP2
x =Ω0

∫ ∞

0
dτ

∫
(BZ)3

d3k1
(2π)3

d3k2
(2π)3

d3q
(2π)3

occ.∑
i j

virt.∑
ab

∑
GG′

4π

[G+ T(k1 − k2 + q)]2
4π

(G′ − q)2

× 〈ik1 |e+i[G+T(k1−k2+q)]r̂ |aT(k2 − q)〉Ω0 〈aT(k2 − q)|e+i(G′−q)r̂ | jk2〉Ω0

× 〈 jk2 |e−i[G+T(k1−k2+q)]r̂ |bT(k1 + q)〉Ω0 〈bT(k1 + q)|e−i(G′−q)r̂ |ik1〉Ω0

× e(εik1+εjk2−εaT(k2−q)−εbT(k1+q))τ . (10.6)

where Eq. (10.6) is LTMP2 formulation of Eq. (8.36) in the thermodynamic limit. The
orbitals,

|ik〉 =
∑
G

ϕ̃ik(G) |G+ k〉 , (10.7)

are represented in terms of the plane wave coefficients ϕ̃ik(G), where 〈r |G + k〉 =
ei(G+k)r is a plane wave. In practice, the basis for the orbitals is truncated at a plane wave
cutoff Ecut (ENCUT in vasp) and only plane waves observing

G2

2
≤ Ecut (10.8)
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are taken into account. Switching between the real space basis and the plane-waves basis
is achieved by a Fourier transform,

ϕik(r) = 〈r |ik〉 =
∑
G

ϕ̃ik(G) ei(G+k)r , (10.9)

which is replaced by a Fast Fourier transform (FFT) in a computer code. For the overlap
densities,

〈aT(k2 −q)|e+i(G′−q)r̂ | jk2〉Ω0 =
1

Ω0

∫
Ω0

d3r ϕ∗aT(k2−q)
(r)ϕ jk2(r) e+i(G′−q)r , (10.10)

a different cutoff Eaux
cut (ENCUTGW in vasp) is used in the Fourier transform, which is

commonly chosen as 2/3Ecut. This second basis set is analogous to the auxiliary basis
sets used in Gaussian type orbital codes. As will be discussed later, the internal basis set
extrapolation is performed with respect to the auxiliary basis set size. This approach has
been successfully used in the random phase approximation (RPA) in the past [58].

Our strategy to reduce the computational cost, consists of the idea to exploit the decou-
pling of the indices i, j , a, b in the expression (10.6). Note that this is only possible in a
Laplace transformed formulation of the MP2 energy. We can then perform the summations
over a and b in advance, for given G′, q, and τ, and define auxiliary states,���w(G′qτ)

ik

〉
=

virt.∑
b

C(G′qτ)
ib,k |bk〉 . (10.11)

where the coefficients are defined as,

C(G′qτ)
ib,k = e(εiT(k−q)−εbk)τ 〈bk|e−i(G′−q)r̂ |iT(k − q)〉Ω0 . (10.12)

The MP2 energy per unit cell can be written in a form which involves summations only
over the occupied indices i, j,

EMP2
x =Ω0

∫ ∞

0
dτ

∫
(BZ)3

d3q
(2π)3

d3k1
(2π)3

d3k2
(2π)3

∑
GG′

4π

[G+ T(k1 − k2 + q)]2
4π

(G′ − q)2

×

occ.∑
i j

〈
ik1

���e+i[G+T(k1−k2+q)]r̂
���w(−G′,−q,τ)

jT(k2−q)

〉
Ω0

×

〈
jk2

���e−i[G+T(k1−k2+q)]r̂
���w(+G′,+q,τ)

iT(k1+q)

〉
Ω0

. (10.13)

The expressions, 〈
ik1

���e+i[G+T(k1−k2+q)]r̂
���w(−G′,−q,τ)

jT(k2−q)

〉
Ω0

(10.14)

can be evaluated for all G in linear scaling, using a Fast Fourier transform, if i, j, as well
as G′,k1,k2, q and τ are given. The system size scaling is thus reduced to N2

i N2
G × N3

k
.
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Here, Ni and NG are the number of unoccupied states and plane-waves respectively,
and Nk is the number of k-points. This is to be compared with the previous scaling,
N2

i N2
a NG × N3

k
, where Na is the number of unoccupied orbitals. The number of τ-points

is largely independent of the system size and will be discussed in a more comprehensive
analysis of the system size scaling.

10.1.2 Exploiting the time reversal symmetry

For a more convenient implementation in a computer code, it is advantageous to exploit
the time reversal symmetry. With its aid we can turn both overlap densities in Eq. (10.13)
into the same form, i.e. to avoid mixtures of +G and −G as well as mixtures of +G′ and
−G′. This can be done in the following way. If no external magnetic field is applied and
spin-orbit coupling is ignored the orbitals obey time reversal symmetry: ϕ∗ik = ϕi−k and
εik = εi−k. If we apply this time reversal symmetry to the coefficients (10.12) we obtain:(

C(+G′,+q,τ)
ib,+k

) ∗
= C(−G′,−q,τ)

ib,−k . (10.15)

Hence for (10.11) we find: ���(w(+G′,+q,τ)
i,+k

) ∗〉
=

���w(−G′,−q,τ)
i,−k

〉
. (10.16)

This relation can be applied to the overlap densities in (10.13). Consider, e.g.,〈
ik1

���e+i[G+T(k1−k2+q)]r̂
���w(−G′,−q,τ)

jT(k2−q)

〉
Ω0

=
〈
w
(−G′,−q,τ)

jT(k2−q)

���e−i[G+T(k1−k2+q)]r̂
���ik1

〉∗
Ω0

(10.17)

=
〈
(ik1)

∗
���e−i[G+T(k1−k2+q)]r̂

���w(G′qτ)

jT(−k2+q)

〉∗
Ω0

In a last step we substituted k2 → −k2 in (10.13), such that we find a convenient and more
”symmetric” formula for the

MP2 exchange energy per unit cell:

EMP2
x =Ω0

∫ ∞

0
dτ

∫
(BZ)3

d3q
(2π)3

d3k1
(2π)3

d3k2
(2π)3

∑
GG′

4π

[G+ T(k1 + k2 + q)]2
4π

(G′ − q)2

×

occ.∑
i j

〈
(ik1)

∗
���e−i[G+T(k1+k2+q)]r̂

���w(G′q,τ)

jT(k2+q)

〉∗
Ω0

×

〈
( jk2)

∗
���e−i[G+T(k1+k2+q)]r̂

���w(G′qτ)

iT(k1+q)

〉
Ω0

. (10.18)

As for the exchange term the same procedure can be applied to
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the direct MP2 term,

EMP2
d = −2Ω0

∫ ∞

0
dτ

∫
BZ

d3q
(2π)3

∑
GG′

4π

(G+ q)2
4π

(G′ − q)2

×

������
∫
BZ

d3k
(2π)3

occ.∑
i

〈
ik

���e−i(G+q)r̂
���w(G′qτ)

iT(k+q)

〉
Ω0

������
2

. (10.19)

10.1.3 Implementation
The presented LTMP2 method is implemented in vasp [57, 11] based on the projector
augmented wave (PAW) [10] method (see Sec. 8.1.3).

General strategy

The four major steps of the algorithm can be summarized as follows:

(i) Compute and store all overlap densities (10.10).

(ii) Loop over all τ-points, q-points, and reciprocal vectors G′ as outer loops in Eq.
(10.18) and (10.19).

(iii) Calculate the transformation matrix (10.12) for this τ, q, and G′ using the stored
overlap densities of step (i) and construct the transformed states (10.11).

(iv) Perform the inner loops and evaluate the overlap densities between the Hartree-Fock
states and the transformed state (10.11) and contract them over all G.

(a) for the direct term (10.19 ) the inner loops involve only i and k.

(b) for the exchange term (10.18) the inner loops run over i, j and k1,k2.

The loops over plane waves G,G′ are limited by an adjustable plane wave cutoff Eaux
cut .

The outer loop over the τ-points is performed by a quadrature [59]. The Figures 10.1 and
10.2 show pseudocode for the serial and parallel Γ-only implementation of the algorithm.

Parallelization

The outer G′-loop provides a powerful approach to parallelize the algorithm. The entire
set of reciprocal lattice vectors G can be divided into NG independent subsets. This
leads to a very high parallelization efficiency as long as the total number of reciprocal
lattice vectors NG is larger than NG. Furthermore, on a second level, a parallelization is
implemented for the evaluation of the sum over occupied bands: the set of occupied bands
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# overlap densities (i)

for all i, a do
ρai(r)← ϕ∗a(r)ϕi(r)
ρ̃ai ← FFT[ρai]
store ρ̃ai

end for

for all τ do
for all G do

# transformed states (iii)

for all i do
for all a do

Cia ← e(εi−εa)τ ρ̃ai(G)
end for
w̃i ←

∑
a Cia ϕ̃a

store w̃i
end for

# direct term (iv.a)

wi ← FFT−1[w̃i] for all i
%(r)←

∑
i ϕ
∗
i (r)wi(r)

%̃← FFT[%]

e
(2)
d ← e

(2)
d +

∑
G′

4π
G′2 |ρ̃(G′)|2

# exchange term (iv.b)

wi ← FFT−1[w̃i] for all i
for all i, j (i ≤ j) do

%1(r)← ϕ∗i (r)wj(r)
%2(r)← ϕ∗j (r)wi(r)
%̃1 ← FFT[%1]
%̃2 ← FFT[%2]

e
(2)
x ← e

(2)
x +

∑
G′

4π
G′2 ρ̃

∗
1(G

′)ρ̃2(G
′)

end for

E
(2)
d ← E

(2)
d + 4π

G2 e
(2)
d

E
(2)
x ← E

(2)
x + 4π

G2 e
(2)
x

end for
end for

Figure 10.1: Pseudocode of the serialΓ-only implementation. Hartree-Fock orbitals ϕi , ϕa
and energies εi , εa for all occupied and virtual states are assumed.
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step system size k-points
(i) NiNaNFFT ln NFFT N2

k
(iii) NiNaN2

G
N2
k

(iv.a) NiNGNFFT ln NFFT N2
k

(iv.b) N2
i NGNFFT ln NFFT N3

k

Table 10.1: Formal scaling of the computation time for the different steps of the algorithm.
The steps are described in Sec. 10.1.3. Ni and Na are the number of occupied
and virtual orbitals respectively. NG is the number of reciprocal lattice vectors,
NFFT the number of FFT grid points, and Nk is the number of k-points.

I is divided intoNB subsets such that one band summation (say over j) can be calculated
in parallel. Pseudocode for this strategy can be found in Fig. 10.2.

We also provide pseudocode of the parallel Γ-only implementation in Fig. 10.2. The
number N of CPUs is divided into NB groups parallelizing over bands and NG groups
parallelizing over plane waves such that N = NBNG. The set G of all plane waves is
evenly divided into NG disjoint subsets: G =

⋃
n Gn, n ∈ [1,NG]. Likewise the set of

all occupied indices I and virtual indices A is evenly divided into NB disjoint subsets:
I =

⋃
n In, A =

⋃
nAn, n ∈ [1,NB]. Moreover, each subset of virtual band indices An

is further divided into NG disjoint subsets: An =
⋃

mA
(m)
n , m ∈ [1,NG], since for the

calculation of the overlap densities the plane wave parallelization is inapplicable. See Fig.
10.3 for an illustration.

Formal system size scaling: computation time and memory

Calculating the exchange term (which has the steepest scaling) results in a computation
time that scales with the fourth power of the system size. This stems from the fact that
for every combination of G, i, j, fast Fourier transforms (FFT) have to be performed.
In a spin-unrestricted calculation, the computation time will be twice as large as for a
spin-restricted case. The number of τ-points for the quadrature, to numerically evaluate
the τ-integration, is largely independent of the system size. Table 10.1 shows the formal
scaling for each step.

Regarding the memory consumption only the orbitals and the overlap densities (10.10)
are of relevance. The latter has the steepest scaling: NiNaNG. The memory requirement
of the orbitals scales only quadratically. Regarding k-point sampling of the Brillouin
zone, a linear dependence of Nk has to be multiplied in both cases. For a spin-unrestricted
calculation the memory requirement doubles.

Internal cutoff extrapolation

Similar to other MP2 implementations or RPA codes the LTMP2 algorithm converges
slowly with respect to the number of basis functions (plane wave cutoff). However, within
the presented algorithm an internal extrapolation of the auxiliary plane wave cutoff, Eaux

cut ,
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Distribute occ. orbitals over I among NB groups
Distribute virt. orbitals over A among NB groups

# overlap densities (i)

for all i ∈ I do
fetch ϕi from other band groups
for all a ∈ A(this)

this do
ρai(r)← ϕ∗a(r)ϕi(r)
ρ̃ai ← FFT[ρai]
gather ρ̃ai of this band group
store ρ̃ai(G) for G ∈ Gthis

end for
end for

Distribute virt. orbitals over G among NG groups

for all τ do
for all G ∈ Gthis do

# transformed states (iii)

for all i ∈ I do
fetch ϕi from other band groups
for all a ∈ Athis do

Cia ← e(εi−εa)τ ρ̃ai(G)
end for
gather Cia of this plane-wave group
w̃i(G

′)←
∑
a Cia ϕ̃a(G

′) for G′ ∈ Gthis

redistribute w̃i over I among NB groups
store w̃i

end for

# direct term (iv.a)

wi ← FFT−1[w̃i] for i ∈ Ithis
%(r)←

∑
i∈Ithis

ϕ∗i (r)wi(r)
%̃← FFT[%]
add %̃ of this plane-wave group together
e
(2)
d ← e

(2)
d +

∑
G′∈G

4π
G′2 |%̃(G′)|2

# exchange term (iv.b)

wi ← FFT−1[w̃i] for i ∈ I
for all i ∈ I do

fetch ϕi from other band groups
for all j ∈ Ithis , j ≤ i do

%1(r)← ϕ∗i (r)wj(r)
%2(r)← ϕ∗j (r)wi(r)
%̃1 ← FFT[%1]
%̃2 ← FFT[%2]
add %̃1, %̃2 of this plane-wave group together
e
(2)
x ← e

(2)
x +

∑
G′

4π
G′2 %̃

∗
1(G

′)%̃2(G
′)

end for
end for

E
(2)
d ← E

(2)
d + 4π

G2 e
(2)
d

E
(2)
x ← E

(2)
x + 4π

G2 e
(2)
x

end for
add E

(2)
d of this band group together

add E
(2)
x of this band group together

end for

Figure 10.2: Pseudocode of the parallel Γ-only implementation. Hartree-Fock energies
and orbitals for all occupied and virtual states are assumed.
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group 1

group 2

group 3

group 4

group 1 group 2

bands

p
la

n
e
-w

a
v
e
s

G1 I1 A1 A
(1)
1

G2 I1 A1 A
(2)
1

G3 I1 A1 A
(3)
1

G4 I1 A1 A
(4)
1

G1 I2 A2 A
(1)
2

G2 I2 A2 A
(2)
2

G3 I2 A2 A
(3)
2

G4 I2 A2 A
(4)
2

Figure 10.3: Illustration of the parallelization for the case of N = 8 CPUs with NB = 2
band groups and NG = 4 plane wave groups.

can be implemented comfortably with negligible influence on the computation time. The
cutoff extrapolation makes use of the known asymptotic behavior of the MP2 energy EMP2

for large cutoffs Eaux
cut [58, 60]:

EMP2(Eaux
cut ) − EMP2(Eaux

cut = ∞) ∼ Eaux
cut
−3/2 . (10.20)

The idea is to calculate the MP2 energy for a sufficient number of different cutoffs Eaux
cut in

order to extrapolate these energies according to Eq. (11.66). Since the plane wave cutoff,
Eaux

cut , truncates only the G-loops, the MP2 energy can be calculated for different cutoffs
on the fly. This is achieved in the following way. First an array of different cutoffs is
defined by

Eaux
cut [n] =

Eaux
cut

αn−1
, (10.21)

where Eaux
cut is the user-given cutoff, α > 1, n = 1, ..., nc, and nc is the number of cutoffs

for the extrapolation. In this work we chose α = 1.05 and nc = 8. Each cutoff, Eaux
cut [n],

defines the maximum length of the plane wave vectors,

Gmax[n] =
√
2Eaux

cut [n] . (10.22)

Also for the MP2 energy an array, EMP2[n], is created. Whenever a loop over plane waves
in the auxiliary basis,

∑
G ... , is performed, only |G| ≤ Gmax[n] contributes to EMP2[n].

This is implemented by simple if...then...else... statements in plane wave loops
in the auxiliary basis.The different MP2 energies, EMP2[n], can then be extrapolated to
Eaux

cut → ∞ by solving the linear regression y = a + bx with the samples y = EMP2[n]

and x = Eaux
cut [n]

−3/2, according to Eq. (11.66). The solution for a is the extrapolated
energy EMP2(Eaux

cut = ∞). The reliability of this extrapolation depends on the user-given
Eaux

cut since the asymptotic behavior (11.66) is strictly true only for Eaux
cut →∞.

10.1.4 Benchmark calculations
In order to show the potential of the new LTMP2 method, we performed several benchmark
calculations. Computations on supercells of solid lithium hydride (LiH) served as a
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Figure 10.4: Parallelization efficiency of the LTMP2 calculation of a 4× 4× 4 supercell of
solid LiH. The efficiency was calculated with reference to the computation
time t128 of a run using 128 cores: t128/t#cores/(#cores/128). Note that the
abscissa has a logarithmic scale.

benchmark to demonstrate the parallelization efficiency and system size scaling. The
advantage of an internal auxiliary plane wave cutoff extrapolation is shown by means of
binding energy calculations of methane (CH4) in a chabazite crystal (AlHO24Si11). The
calculations were performed with vasp in which the new LTMP2 code was implemented.
For each benchmark calculation shown in this chapter we used aΓ-only and spin-restricted
setting. Furthermore, we used the previous MP2 implementation as a reference for the
LTMP2 implementation of this work whenever possible. For the τ-integration, 6 τ-points
turned out to be accurate enough (� 1meV agreement between MP2 and LTMP2) for all
considered systems in this section.

Measured parallelization efficiency

To demonstrate the parallelization efficiency we computed the MP2 energy of solid LiH
using a supercell containing 4 × 4 × 4 primitive cells and 128 atoms. The computation
time was measured against the number of cores. An auxiliary plane wave cutoff of 289 eV
lead to 5600 reciprocal lattice vectors for the outer G-loop. The total number of orbitals
was set to 20480 whereas the number of occupied orbitals amounted to 128. In each run
the number of plane wave groups was set to NG = #cores/4 which implies NB = 4 for
the band parallelization. Figures 10.4 and 10.5 show the parallelization efficiency and
the strong scaling. The strong scaling shows that with increasing number of cores the
computation time approaches zero as long as the number of reciprocal lattice vectors, NG,
is divisible by the number of plane wave groups, NG.
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Figure 10.5: Strong scaling of the LTMP2 calculation of a 4x4x4 supercell of solid LiH.
Here t128 is the computation time of a calculation with 128 cores. In the case
of 2048 cores the computation time is reduced to 6.9% of t128 which is close
to the ideal case of 128/2048 = 6.25%.

Measured system size scaling: computation time and memory

To evaluate the time and memory scaling of the LTMP2 algorithm with respect to the
system size, the computation time and the memory consumption was measured against
the number of atoms for various supercells of solid LiH. The smallest system containing
8 atoms corresponds to the conventional unit cell of LiH. This cell was replicated in
numerous ways to form supercells containing up to 128 atoms. The plane wave cutoff was
set to 289 eV leading to about 44 plane waves of the auxiliary basis set per LiH formula.
The calculations were performed on 64 Intel Xeon E5-2650 v2 2.8 GHz processors with 8
GB memory per core, although 6 GB per core would suffice for up to 128 atoms. For the
parallelization we used NG = 32 and NB = 2. Figure 10.6 and 10.7 show the measured
scaling of the computation time and memory for this (LTMP2) and the previous (MP2)
implementation. The measured scaling exponents match the predicted values.

Internal cutoff extrapolation

The internal cutoff extrapolation described in Sec. 10.1.3 is illustrated by an adsorption
energy calculation of CH4 in a chabazite crystal (Chab):

EMP2
ad = EMP2

CH4
+ EMP2

Chab − EMP2
CH4+Chab . (10.23)

The MP2 correlation contribution, EMP2
ad , of the adsorption energy was computed against

the auxiliary plane wave cutoff Eaux
cut . Figure 10.9 shows the result of the previous code

(MP2) and this work (LTMP2). The lattice parameters and the orientation of the CH4

113



10 Deterministic algorithms

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120

co
m
pu

ta
ti
on

ti
m
e
/
h

N (number of atoms)

MP2
LTMP2

fit ∼ N 4.47

fit ∼ N 3.93

Figure 10.6: System size scaling of the computation time for various supercells of solid
LiH on a system with 64 cores and 8 GB memory per core. MP2 refers to
the previous implementation, whereas LTMP2 is the algorithm of this work.
With the previous implementation it was not possible to exceed 96 atoms due
to larger memory requirements.
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Figure 10.7: Scaling of the used memory per core with respect to the system size. The two
most relevant quantities are the orbitals and the overlap densities (10.10). The
calculations were performed on a system with 64 cores and 8 GB memory
per core.
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Figure 10.8: Four unit cells of the chabazite crystal with adsorbed methane molecules.
The color code reads: Al (light gray), C (dark gray), H (white), O (red), Si
(yellow).

molecule in the chabazite cage were taken from [61] and then reoptimized using the
optB88-vdW functional [34]. The largest system (CH4+Chab) consists of 42 atoms (100
valence electrons) in a unit cell of about 810 Å3. A visualization can be found in Fig. 10.8.
In the Hartree-Fock steps to calculate the orbitals, plane wave cutoffs (Ecut or ENCUT flag
in vasp) of 450, 550, 650, 750, and 850 eV were used. In the subsequent MP2 calculation
auxiliary plane wave cutoffs (Eaux

cut or ENCUTGW flag in vasp) of 300, 366, 433, 500, and 566
eV were used for the two-electron integrals. In the case of Eaux

cut = 566 eV the computation
of EMP2

CH4+Chab included about 46 000 bands (100 occupied bands) and about NG = 12 500

plane wave vectors. The previous MP2 code clearly shows the mentioned Eaux
cut
−3/2

behavior (11.66) as can be seen in Fig. 10.9. With the previous MP2 code, the procedure
was to perform the extrapolation manually leading to EMP2

ad = 295.51 ± 0.07meV, where
the error stems from the fitting. This is at the cost of about 65 000 cpu hours, as can be
seen in Fig. 10.10 (adding up the timings of all five MP2 calculations, which are necessary
for a manual extrapolation). Without an extrapolation this adsorption energy could not be
achieved below a cutoff of Eaux

cut = 1100 eV, if a tolerance of 1meV is assumed. However,
with the new implementation this accuracy is achieved already at Eaux

cut = 500 eV leading
to EMP2

ad = 294.8 ± 0.2meV. This is at the cost of about 3 770 cpu hours which is only a
small fraction of about 6% compared to the cost of the previous code.

115



10 Deterministic algorithms

290

292

294

296

298

300

302

304

306

300 433 566 1000 2000 3000

E
(2
)

ad
/

m
eV

Eaux
cut / eV

asymptote ±1 meV
MP2

extrapolation of MP2
LTMP2

Figure 10.9: Adsorption energy of methane in a chabazite cage as a function of the auxiliary
plane wave cutoff Eaux

cut . MP2 refers to the previous implementation without
basis set extrapolation, whereas LTMP2 is the algorithm of this work. The
manual extrapolation (dashed blue line) was calculated using (11.66). Note
the logarithmic scaling of the abscissa.
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Figure 10.10: CPU hours spend to calculate the adsorption energy of methane in a
chabazite cage against the auxiliary plane wave cutoff Eaux

cut . The calcu-
lations were performed on 256 (lowest cutoff) to 1280 (highest cutoff) Intel
Xeon E5-2650 v2 2.8 GHz processors with 4 GB memory per core.
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10.1.5 Conclusion and Outlook
We have presented an algorithm to calculate the exact MP2 energy for periodic systems,
scaling only with the fourth power of the system size, O(N4). The lower scaling is
a consequence of a Laplace transformed energy denominator of the traditional MP2
formulation and of the use of Fast Fourier transforms. In doing so the summations over
the virtual bands can be carried out first, leading to transformed states in dependence
of a plane wave index and a τ-point. The loop over these plane waves is an outer loop
that can be distributed over the CPUs without communication, leading to a very high
parallelization efficiency. We showed that the parallelization is extremely close to ideal as
long as the number of plane waves, NG, of the auxiliary basis set can be divided by the
number, NG, of parallelized plane wave groups.

The slow convergence of the MP2 energy with respect to the number of basis functions
is dealt with an extrapolation to an infinite basis set using the exact asymptotic cutoff
behavior. In a comparison with the previous MP2 code in vasp, we demonstrated that this
internal extrapolation leads to faster converging MP2 energies, reducing the computational
effort significantly.

In future the presented approach could be adapted to more involved electronic correlation
energy methods, like second-order screened exchange (SOSEX) [62, 52] or particle-hole
ladder diagrams, in order to obtain a similar low complexity. Hence, the presented method
can be considered as a step towards systematically improved correlation energies.

Also, calculating interatomic forces should be possible using the presented low-complexity
concept, as the self-energy at MP2 level can be obtained along the same lines presented
here for the MP2 energy. With the respective self-energy at hand, the recently published
Green’s function approach allows to efficiently calculate interatomic forces for perturbative
methods, in this case MP2 [63].
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10.2 Quartic scaling SOSEX for periodic systems

In this section we provide a scheme to evaluate the periodic SOSEX correction (8.119) to
the RPA with a quartic scaling instead of a quintic scaling as in Ref. [52]. Again, as for the
quartic scaling MP2 code, the presented algorithm purely relies on analytic rearrangements
of the SOSEX expression. Hence, this low-scaling approach yields equivalent results as
the original work in [52]. Note that this scheme was not yet implemented but serves as a
technical instruction for future implementations.

For brevity we restrict to a spin-restricted and Γ-only description. We start with the
expression (8.119), derived in Sec. 8.4,

ESOSEX =
1

2

∫ ∞

−∞

dν
2π

occ.∑
i j

unocc.∑
ab

cia(ν) c jb(ν) 〈ϕ jϕi |r−112 |ϕaϕb〉 〈ϕaϕb |W(ν)|ϕiϕ j〉 ,

(10.24)
where the following shorthand was used,

cia(ν) =
2(εa − εi)

(εa − εi)2 + ν2
. (10.25)

For convenience, the screened interaction W(ν) (see Eq. 8.113) is assumed to be available
in the reciprocal space (plane-wave basis), where the relation to the real space reads,

〈ϕaϕb |W(ν)|ϕiϕ j〉 =

∫
d3r

∫
d3r′ W(r, r′, ν) ϕ∗a(r)ϕi(r)ϕ

∗
b(r
′)ϕ j(r

′)

=
∑
GG′

W(G,G′, ν) 〈ϕa |eiGr̂ |ϕi〉Ω0 〈ϕb |eiG′r̂ |ϕ j〉Ω0 . (10.26)

Note, that 〈ϕa |eiGr̂ |ϕi〉Ω0 was already defined in Eq. (8.30). Since here and in the
following k-point sampling is restricted to the Γ-point, we can also assume real valued
spatial orbitals and exploit the relations,

〈ϕa |eiGr̂ |ϕi〉Ω0 = 〈ϕi |eiGr̂ |ϕa〉Ω0 = 〈ϕa |e−iGr̂ |ϕi〉
∗
Ω0

. (10.27)

Our strategy consists of the idea to write the SOSEX correction as a trace over an effective
polarizability P(ν) and the screened interaction W(ν),

ESOSEX =
1

2

∫ ∞

−∞

dν
2π

∑
GG′

P(G,G′, ν)W(G,G′, ν) . (10.28)
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Starting with (10.24), it is not difficult to identify P(ν) by

P(G,G′, ν) =
occ.∑
i j

unocc.∑
ab

cia(ν) c jb(ν) 〈ϕa |e−iGr̂ |ϕi〉
∗
Ω0
〈ϕb |e−iG′r̂ |ϕ j〉

∗
Ω0
〈ϕ jϕi |r−112 |ϕaϕb〉

=
occ.∑
i j

unocc.∑
ab

cia(ν) c jb(ν) 〈ϕa |e−iGr̂ |ϕi〉
∗
Ω0
〈ϕb |e−iG′r̂ |ϕ j〉

∗
Ω0

(10.29)

×
∑
G′′

4π

G′′2
〈ϕ j |e−iG′′r̂ |ϕa〉Ω0 〈ϕi |eiG′′r̂ |ϕb〉Ω0

As will be shown in the following, this quantity can be evaluated in an only quartic scaling
algorithm. To achieve this, we first introduce auxiliary states, similar to the definition
(10.11),

|ψGν
i 〉 =

unocc.∑
a

cia(ν) 〈ϕa |e−iGr̂ |ϕi〉
∗
Ω0
|ϕa〉 . (10.30)

The summation over the unoccupied states a can be performed with BLAS level 3 routines,
such that the auxiliary state |ψGν

i 〉 can be calculated with quartic scaling: NiNaN2
G
× Nν.

Similar to the τ-points of the LTMP2 algorithm, the number of frequency points Nν is
assumed to be largely independent of the system size. Thus, we can write,

P(G,G′, ν) =
occ.∑
i j

unocc.∑
b

c jb(ν) 〈ϕb |e−iG′r̂ |ϕ j〉
∗
Ω0

(10.31)

×
∑
G′′

4π

G′′2
〈ϕ j |e−iG′′r̂ |ψGν

i 〉Ω0 〈ϕi |eiG′′r̂ |ϕb〉Ω0 .

In this expression, we find the quantity

AGν
j (r) :=

occ.∑
i

ϕ∗i (r) ·
∑
G′′

4π

G′′2
〈ϕ j |e−iG′′r̂ |ψGν

i 〉Ω0 eiG′′r , (10.32)

being essentially a Fourier transform, which is similar to the evaluation of the action of
the Fock operator (4.19) on the orbital |ψGν

i 〉. Here, AGν
j (r) can easily be calculated

with a quartic scaling, since a Fast Fourier transform only scales with NGlnNG, which is
essentially a linear scaling. Hence, we finally obtain,

P(G,G′, ν) =
occ.∑

j

unocc.∑
b

c jb(ν) 〈ϕb |e−iG′r̂ |ϕ j〉
∗
Ω0

∫
Ω0

d3r AGν
j (r) ϕb(r) , (10.33)

and after defining

BGν
jb := c jb(ν)

∫
Ω0

d3r AGν
j (r) ϕb(r) , (10.34)
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10 Deterministic algorithms

for all i, a do
ρai(r)← ϕ∗a(r)ϕi(r)
ρ̃ai(G)← FFTG[ρai]
store ρ̃ai(G)

end for
for all ν do

for all G1 do
cai ← (εa − εi)/[(εa − εi)

2 + ν2] ∀i, a��wi
〉
←

∑
a cai ρ̃

∗
ai(G1)|ϕa〉 ∀i # BLAS

for all j do
for all i do

%(r)← ϕ∗j(r)wi(r)

%̃(G)← FFTG[%]
%̃(G)← 4π

G2 %̃(G)

%(r)← FFT−1r [ %̃]
A j(r)← A j(r) + ϕ∗i (r)%(r)

end for
for all b do

B jb ← cbj
∫
Ω0

d3r A j(r) ϕb(r)

end for
store B jb

end for
for all G2 do

P(G1,G2, ν)←
∑

jb ρ̃bj(G2)B jb # BLAS
end for

end for
end for

Figure 10.11: Pseudocode for the calculation of the quantity P(G,G′, ν) for the SOSEX
algorithm. DFT orbitals ϕ and orbital energies ε are assumed.

we arrive at

P(G,G′, ν) =
occ.∑

j

unocc.∑
b

〈ϕb |e−iG′r̂ |ϕ j〉
∗
Ω0

BGν
jb . (10.35)

The remaining summation over j and b can, again, be evaluated with BLAS level 3
routines, if the overlap densities are considered as matrices with components b and G′ (for
each j). This completes the calculation of the effective polarizability P(ν), which can be
used to evaluate the SOSEX correction via Eq. (10.28). Since all intermediate quantities
like |ψGν

i 〉, AGν
j (r), and BGν

jb can be evaluated with a quartic scaling complexity, the
entire algorithm will follow a largely quartic scaling. Pseudocode for this algorithm can
be found in Fig. 10.11.
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10.2 Quartic scaling SOSEX for periodic systems

The presented scheme was not yet implemented. Due to similarities to the quartic scaling
MP2 algorithm, some routines can be recycled (e.g. the calculation of the auxiliary states).
The measurement of the prefactor and the break point compared to the quintic scaling
code are open questions for future work. Nevertheless, we formally showed that also
the SOSEX correction to the RPA can be evaluated with an improved scaling without
introducing any additional approximation.

Furthermore, the quantity P(G,G′, ν) can serve as an important building block for
other many-body diagrams (which are present in the BSE equation),

P(G,G′, ν) =

Gν

G′ν
=

Gν

G′ν

. (10.36)

We note that except for MP2, a formulation in the frequency domain is preferable. In the
imaginary time, foldings over two times would occur.
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10 Deterministic algorithms

10.3 Cubic scaling MP2: prospects and limitations

It is possible to rearrange the terms of the MP2 correlation energy, such that an evaluation
would scale only with the third power of the system size. We present this technique
here, however, we stress right away that a large prefactor most likely prohibits its use
except for very large systems. Nevertheless, this section illustrates once again that scaling
improvements are possible without sacrificing the accuracy.

In Sec. 8.1.6 we presented an expression of the MP2 correlation energy based on Green’s
functions (8.63). As a reminder, we repeat the exchange part (8.67) for the spin-restricted
case here,

EMP2
x =

∫ ∞

0
dτ

∫
d3r1...

∫
d3r4

1

|r1 − r2 | |r3 − r4 |
(10.37)

× G>(r1, r3, τ)G<(r4, r1,−τ)G>(r2, r4, τ)G<(r3, r2,−τ) .

Note that this expression is not suitable for periodic systems (since the integrals range over
the entire space instead of only over one unit cell) and we refer to Sec. 11.1 for a correct
periodic formulation which restricts the integrals to the unit cells. Here, the focus is on
the concept to achieve a cubic scaling.

The Green’s function formulation of the MP2 correlation energy naturally provides a
quartic scaling method (only four real space integrals), however, it requires fine real space
grids, and therefore, leads to a very large prefactor. For details to the prefactor and real
space grids, see Sec. 11.1. The main idea of the cubic scaling approach is to rewrite one
of the Coulomb kernels in reciprocal space and then to shift the Fourier transform to the
product of two Green’s functions. In a first step, we write

EMP2
x =

1

Ω

∫ ∞

0
dτ

∫
d3r1...

∫
d3r4

1

|r1 − r2 |

∑
G

4π

G2
eiG(r3−r4) (10.38)

× G>(r1, r3, τ)G<(r4, r1,−τ)G>(r2, r4, τ)G<(r3, r2,−τ) .

Secondly, we now consider the real space integrals over r3 and r4 as Fourier transforms
from real space to reciprocal space, and define

AG(r1, r2, τ) =

∫
d3r4 G<(r4, r1,−τ) G>(r2, r4, τ) e−iGr4 . (10.39)

This quantity can be evaluated in a cubic scaling computation time, since a fast Fourier
transform scales essentially linear for each pair r1, r2. This allows us to write,

EMP2
x =

1

Ω

∫ ∞

0
dτ

∫
d3r1

∫
d3r2

1

|r1 − r2 |

∑
G

4π

G2
AG(r1, r2, τ)A−G(r2, r1, τ) ,

(10.40)

which already completes the algorithm. This simple procedure proofs that a correlation
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10.3 Cubic scaling MP2: prospects and limitations

method, commonly denoted as quintic scaling, can quickly be converted into a cubic
scaling procedure.

The bottleneck, however, is clearly the calculation of the innocent looking quantity
AG(r1, r2, τ). Although formally cubic scaling, the calculations require N2

r calls of fast
Fourier transformation routines, where Nr is the number of real space grid points. This
can lead to a tremendous prefactor, shifting the break point of the entire algorithm to huge
systems.

We performed quick test calculations with supercells of LiH, containing 8 and 16 atoms
using standard cutoff parameters. The presented cubic scaling code took 17.2 minutes
and 4 hours for the small and large system, respectively. The quintic scaling code [43],
on the other hand, yield the same numerical results after 16.7 seconds and 6.5 minutes,
respectively. The break point is estimated to be at about 100 atoms, including about 250
correlated electrons. Compared to the quartic scaling code of Sec. 10.1, the break point
will clearly shift to even larger systems.

Nevertheless, in not too distant future, the presented algorithm could become useful,
in particular, if the computer power continuous to improve. Clearly, the strategy can also
be adapted to the SOSEX method, if the screened interaction is available in real space.
The author of this thesis notes, that the presented scheme was developed independently of
Ref. [64, 65], where also cubic scaling methods for the correlation energy are presented,
however, without numerical performance comparisons to other algorithms.
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CHAPTER 11
Stochastic algorithms

Stochastic algorithms are considered as a promising avenue to overcome the high compu-
tational effort in wave function based methods in order to calculate the correlation energy
of molecules or solids. The computation time can be reduced by allowing for a statistical
error. The balance between computation time and statistical error is determined by the
sample variance. Hence, the sample variance is the crucial quantity to probe whether a
stochastic algorithm can outperform deterministic approaches. Four algorithms, based on
stochastic techniques, will be introduced in the following sections. Each section can be
considered and read independently.
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11 Stochastic algorithms

11.1 Real space Monte Carlo sampling of Feynman
diagrams

The canonical formulation of the MP2 energy (8.19) and (8.20) is also called sum-over-
state representation or Slater determinant formulation since it is written as a sum over
Hartree-Fock states, which build the Hartree-Fock or also excited Slater determinants. A
fundamentally different representation of the MP2 energy is given by the Green’s function
formulation (8.66) and (8.67),

EMP2 = − 2

∫ ∞

0
dτ

∫
d3r1...

∫
d3r4

1

|r1 − r2 | |r3 − r4 |
(11.1)

× G>(r1, r3, τ)G<(r3, r1,−τ)G>(r2, r4, τ)G<(r4, r2,−τ)

+

∫ ∞

0
dτ

∫
d3r1...

∫
d3r4

1

|r1 − r2 | |r3 − r4 |
(11.2)

× G>(r1, r3, τ)G<(r4, r1,−τ)G>(r2, r4, τ)G<(r3, r2,−τ) .

Here, the MP2 energy is the result of a 12 dimensional real space integration (four 3D
integrals) over a product of Green’s functions and Coulomb potentials (which corresponds
to the real space translations of the MP2 Feynman diagrams). Once the Green’s function
(8.63) is available, the implementation of the real space integration is an embarrassingly
simple task, in particular for grid based codes like VASP. Moreover, its system size scaling
is inherently quartic (due to the four real space integrals over the entire unit cell), compared
to the quintic scaling of the canonical sum-over-states MP2 formulation. Though, fine
grids are required to obtain accurate results, leading to extremely large prefactors, which
prohibit a direct evaluation of the real space integrals. Note that already a relatively coarse
grid of the primitive cell of diamond consists of 103 grid points. Hence, in this case, the
full integration would cover a volume containing (103)4 = 1012 points. Therefore, it is an
attractive route to probe whether a stochastic Monte Carlo sampling of the 12 dimensional
real space yields fast and accurate MP2 energies. This idea was first suggested by Willow,
Kim, and Hirata for molecules [66] and periodic systems [67]. As they write, the ”core
intellectual contribution” [68] is to find a proper importance sampling function in order
to reduce the sample variance. Here, we present new importance sampling techniques,
which reduce the variance significantly and provide a possible route for fast and accurate
MP2 calculations of large systems.

11.1.1 Monte Carlo integration and importance sampling

In grid based codes like vasp, real space integrations are evaluated using discretized real
space grids, i.e. real space integrals are evaluated as a sum over all grid points. A general
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11.1 Real space Monte Carlo sampling of Feynman diagrams

real space integral can thus be written as

I =
∫
Ω

d3r1...
∫
Ω

d3rd f (r1, ..., rd) →

(
Ω

Nr

) d grid∑
r1...rd

f (r1, ..., rd) , (11.3)

where Ω is the volume of integration. In the sum, each ri runs over all points of the
discretized real space grid. If the grid consists of Nr points, the evaluation of the above
sum involves Nd

r summands. We can consider the value I/Ωd as the population mean of
the population { f (r1, ..., rd) | r1, ..., rd ∈ grid }.

Uniform sampling

The Monte Carlo integration technique estimates this population mean by a random sample
mean. We write a sample as { Xi = f (r[i]1 , ..., r

[i]
d ) | i = 1, ...NMC }, where (r

[i]
1 , ..., r

[i]
d )

are NMC tuples of uniformly distributed random grid points. We can now introduce the
sample mean,

f̄ =
1

NMC

NMC∑
j=1

Xi , (11.4)

and the expectation value of the sample mean,

E[ f̄ ] = I/Ωd , (11.5)

being a consequence of the law of large numbers. Note, that a sample mean f̄ is itself a
random number, since the sample is a random subset of the full population. We can use f̄
to approximate the desired integral I by

IMC = Ωd f̄ ≈ I . (11.6)

In order to estimate the reliability of f̄ , we use Bienaymés formula to estimate the variance
of f̄ ,

Var[ f̄ ] =
Var[Xi]

NMC
, (11.7)

where the sample variance Var[Xi] is estimated by the corrected sample variance,

Var[Xi] ≈
1

NMC − 1

NMC∑
i=1

(Xi − f̄ )2 . (11.8)

Commonly, the standard deviation is used to estimate the error of an estimated mean (here,
the sample mean), hence, we write the error of the sample mean as

σ[ f̄ ] =
√

Var[ f̄ ] =

√
Var[Xi]

NMC
, (11.9)
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11 Stochastic algorithms

which directly yields the error of the approximation of the integral σ[IMC] = Ωdσ[ f̄ ].
Thus, we can improve the approximation simply by increasing NMC, i.e. by increasing the
sample size. However, if the sample variance Var[Xi] is large, the Monte Carlo integration
can become unpractical or rather very expensive. Hence, the sample variance Var[Xi] is
the key quantity which determines whether a Monte Carlo approach is competitive to a
full evaluation of the integral. If, for instance, 10−2 eV is an acceptable error, the Monte
Carlo approach is competitive only if√

Var[Xi]

Nd
r

� 10−2 eV ⇔ Var[Xi] � Nd
r · 10

−4 eV2 . (11.10)

Employing the mentioned example of the diamond primitive cell, consisting of Nr = 103

grid points, the Monte Carlo integration of a MP2 calculation (d = 4) is competitive
if Var[Xi] � 108 eV2. Surprisingly, we find a sample variance of roughly 108 eV2 for a
uniformly sampled Monte Carlo evaluation. Hence, uniform sampling is far from efficient.

Importance sampling

The importance sampling technique allows to focus the sampling points to those areas
of the integral volume where the contributions are large. It is defined by a probability
function p(r1, ..., rd) > 0 which can be easily integrated and normalized to∑

r1...rd

p(r1, ..., rd) = 1 . (11.11)

The random samples are then defined by Yi =
f
(
r
[i]
1 , ..., r

[i]
d

)
p
(
r
[i]
1 , ..., r

[i]
d

) ���� i = 1, ...NMC

 , (11.12)

where the tuples { (r[i]1 , ..., r
[i]
d ) | i = 1, ...NMC } are not drawn uniformly but obey the

probability distribution (sampling function) p(r1, ..., rd). The sample mean similarly
reads

f̄ =
1

NMC

NMC∑
j=1

Yi , (11.13)

and the error of the integral approximation is given by

σ[IMC] = Ωd

√
Var[Yi]

NMC
. (11.14)

The main challenge is therefore to find a suitable sampling function p(r1, ..., rd) which
reduces the variance significantly Var[Yi] � Var[Xi], allowing for a faster convergence of
the integral estimator IMC. In general, a good sampling function resembles the integrand
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11.1 Real space Monte Carlo sampling of Feynman diagrams

up to a constant, p(r1, ..., rd) ≈ C f (r1, ..., rd). In practice, however, the requirement to
quickly normalize the sampling function, restricts us to product functions of the form

p(r1, ..., rd) = p12(r1, r2)p34(r3, r4)... , (11.15)

such that the calculation of the necessary normalization factors also reduces to products∑
r1...rd

p(r1, ..., rd) =

(∑
r1r2

p12(r1, r2)

) (∑
r3r4

p34(r3, r4)

)
... . (11.16)

Here, we picked products of probability functions which depend only on two coordinates,
(r1, r2), (r3, r4), etc., but also different choices like three or only one coordinate are
possible.

11.1.2 Monte Carlo integration of the MP2 energy for periodic
systems

With Eq. (8.67) we derived an expression for the MP2 energy (here only the exchange
part). For spin-restricted systems, this equation reads,

EMP2
x =

∫ ∞

0
dτ

∫
Ω

d3r1...
∫
Ω

d3r4
1

|r1 − r2 | |r3 − r4 |

× G>(r1, r3, τ)G<(r4, r1,−τ)G>(r2, r4, τ)G<(r3, r2,−τ) .

Here, Ω is the volume of the entire system (not just one unit cell), and G<, G> are the
retarded and advanced Green’s functions, see Eq. (8.64) and (8.65). However, for periodic
systems, we can restrict the integration volume to the unit cell by a simple reformulation
of the Green’s function and the Coulomb potential. If we start with the periodic MP2
expression of Eq. (8.36), we find that the Green’s functions possess a k-point dependency,

G>
k(r, r

′, τ) = i
virt.∑

a

〈r |ak〉〈ak|r′〉 e−εakτ . (11.17)

The same holds for the retarded counterpart. Furthermore, the Coulomb potential has to
be rewritten as a periodic function,

vk(r, r
′) = vk(r − r

′) =
∑
G

4π

(G+ k)2
ei(G+k)(r−r′) , (11.18)

in order to restrict the integrals to the unit cell. Note, that the sum over all reciprocal
lattice vectors G ensures that vk(r+R) = eikR vk(r). An equivalent formulation, which
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recalls the original Coulomb potential, reads

vk(r, r
′) = Ω0

∑
R

1

|r − r′ −R|
eikR . (11.19)

The original Coulomb potential would be restored, if we also integratek over the Brillouine
zone, ∫

BZ

d3k
(2π)3

vk(r, r
′) =

1

|r − r′|
. (11.20)

Using this definitions, we can write for a periodic system with unit cell volume Ω0

EMP2
x =

1

Ω3
0

∫ ∞

0
dτ

∫
BZ

d3k1
(2π)3

∫
BZ

d3k2
(2π)3

∫
BZ

d3q
(2π)3

∫
Ω0

d3r1...
∫
Ω0

d3r4

× G>
T(k2−q)

(r1, r3, τ) G<
k1
(r4, r1,−τ) G>

T(k1+q)(r2, r4, τ) G<
k1
(r3, r2,−τ)

× vT(k1−k2+q)(r1, r2) v−q(r3, r4) . (11.21)

11.1.3 Implementation of efficient importance sampling techniques
For simplicity, our implementation is constrained to the Γ-only sampling of the Brillouine
zone. Hence, discretizing Eq. (11.21) results in,

EMP2
x =

1

Ω2
0

1

N4
r

∑
τ

wτ

Ω0∑
r1...r4

v(r1, r2) v(r3, r4)

× G>(r1, r3, τ) G<(r4, r1,−τ) G>(r2, r4, τ) G<(r3, r2,−τ) , (11.22)

where we suppress the subscript for the k-points. Here, wτ and Nr denote the weights of
the quadrature of the τ integration [59] and the number of real space grid points, respec-
tively. Note, that we also restrict our implementation to norm conserving pseudopotentials
(neglecting the PAW method) during this chapter. We do this for a simpler evaluation of
the real space Green’s functions.

We can write the exchange MP2 energy as a Feynman diagram1,

r1 r2

r3 r4 (11.23)

which we will also use to illustrate the importance sampling techniques. The symbol
1Feynman diagrams were not introduced in this thesis. The interested reader is referred to Ref. [37].
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11.1 Real space Monte Carlo sampling of Feynman diagrams

method variance [keV2] time [min] EMP2
x [eV] break cond. [eV]

0 40500 (∼ 1 year) - 0.01
1 232 (38 · 60) - 0.01
2 54 (9 · 60) - 0.01
3 5.0 49.0 16.899 0.01
4 1.9 18.2 16.900 0.01
5 6.5 63.8 16.880 0.01
6 1.2 11.9 16.920 0.01
7 0.8 7.6 16.921 0.01
8 0.7 6.3 16.901 0.01

exact - 2.3 16.907 -

Table 11.1: Comparison of the variance of the different importance sampling methods for
the described benchmark system. The calculations were performed on 8 Intel
Xeon E5-2620 v4 @ 2.10GHz processors. We also provide the exact result of
the exchange MP2 energy, calculated with the quintic scaling MP2 algorithm
[43]. The Monte Carlo sampling is stopped when the statistical error (11.14)
is less or equal to the break condition. The choice of 0.01 eV corresponds to
0.31meV per valence electron. Values in brackets are only estimates.

corresponds to the Green’s functions at the Hartree-Fock level.
We implemented eight different importance sampling procedures. We distinguish these

eight methods by the index i = 0, 1, ..., 8 in the sampling probability distribution p(i),
where 0 stands for a uniform sampling. A comparison of the sample variance can be
found in Tab. 11.1. The benchmark system is a diamond supercell containing 8 C atoms.
Since we use a norm conserving pseudopotential (no PAW) the plane-wave cutoffs were
set to quite large values, Ecut = 800 eV and Eaux

cut = 533 eV. Each C atom provides 4
valence electrons, hence one supercell includes 32 electrons. This results in a total of
2328 Hartree-Fock orbitals and a three dimensional real space grid with 183 = 5832
points. The τ-integration is evaluated on 8 quadrature points.

Importance sampling probability distributions

The first and most simple approach samples the real space grid points according to the
periodic electron-electron potential, i.e. we draw the random grid points according to

p(1)(r1, r2) = v(r1, r2) =
r1 r2 , (11.24)

where the full distribution reads,

p(1)(r1, r2, r3, r4) = γ(1)p(1)(r1, r2)p(1)(r3, r4) , (11.25)
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with the normalization factor

γ(1) =

(∑
r1r2

p(1)(r1, r2)

) −2
. (11.26)

This approach seems promising, since the the electron-electron potential is singular for
r1 = r2, suggesting large contributions. However, numerically, the periodic potential
v(r1, r2) is not singular at r1 = r2 since the sum,

v(r, r) =

Eaux
cut∑
G

4π

G2
ei(G+k)(r−r) =

Eaux
cut∑
G

4π

G2
< ∞ (11.27)

is limited by the auxiliary cutoff Eaux
cut . Still, the energy contribution for r1 = r2 will

be large. As evident from Tab. 11.1, the variance is reduced by 2 orders of magnitude
compared to a uniform sampling (method 0).

Alternatively, we can include a density-like quantity into the importance sampling by

p(2)(r1, r2) = | v(r1, r2)G<(r1, r1,−τmin)G<(r2, r2,−τmin)|

= ABS
[

r1
r2

]
. (11.28)

Here, ABS stands for the absolute value. A similar approach was suggested in Ref.
[68]. Note that for small/vanishing τ the diagonal of the real space Green’s function is
similar/equal to the electron density. In our implementation, we picked the smallest τ
value of the quadrature [59], denoted as τmin. We observe a clear improvement compared
to method 1.

Instead of the electron-electron interaction, method 3 tries to mimic the advanced and
retarded Green’s function in the exchange MP2 diagram. But since one advanced and one
retarded Green’s function cover three real space points in the exchange MP2 diagram, we
have to trace out one of them, in order to arrive at a reduced probability distribution, that
only depends on two points,

p(3)(r1, r3, τ) =
Ω0∑
r4

| G>(r1, r3, τ) G<(r4, r1,−τ) | =

Ω0∑
r4

ABS

[ r1

r3 r4

]
.

(11.29)

Here, we decided to keep the full advanced Green’s function and to trace over the retarded
Green’s function. This is because the ratio of the diagonal to the off-diagonal elements
is much larger for the advanced than for the retarded Green’s function. Hence, the case
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11.1 Real space Monte Carlo sampling of Feynman diagrams

r1 = r3 is more important than r1 = r4. The variance is reduced by 4 orders of magnitude
compared to uniform sampling and by 1 order of magnitude compared to method 2. We
conclude that r1 = r3 seems to be more important than r1 = r2. Method 3 has to be
calculated for each τ point individually and the full probability distribution reads,

p(3)(r1, r2, r3, r4, τ) = γ(3)p(3)(r1, r3, τ)p(3)(r2, r4, τ) , (11.30)

with the normalization factor

γ(3) =

(∑
r1r3

p(3)(r1, r3)

) −2
. (11.31)

Method 4 is a variation of method 3, including also the electron-electron interaction,

p(4)(r1, r3, τ) =
Ω0∑
r2

| G>(r1, r3, τ) G<(r3, r2,−τ) v(r1, r2) |

=

Ω0∑
r2

ABS

[ r1 r2

r3

]
. (11.32)

There is, however, a major differences to method 3. The calculation of p(4) involves a
cubic scaling matrix-matrix multiplication. Nevertheless, in our benchmark calculations,
method 4 shows a smaller variance than to method 3.

A more symmetric approach is given by method 5, where we start with both advanced
Green’s functions and both electron-electron interactions, however, tracing out the points
r2 and r4,

p(5)(r1, r3, τ) =
Ω0∑
r2r4

��v(r1, r2) v(r3, r4)G>(r1, r3, τ)G>(r2, r4, τ)
��

=

Ω0∑
r2,r4

ABS

[ r1 r2

r3 r4

]
. (11.33)

The performance of the variance is of the same order as method 3. We can improve
method 5 by including one retarded Green’s function, which leads to method 6,
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p(6)(r1, r3, τ) =
Ω0∑
r2r4

��v(r1, r2) v(r3, r4)G>(r1, r3, τ)G>(r2, r4, τ)G<(r4, r1,−τ)
��

=

Ω0∑
r2,r4

ABS

[ r1 r2

r3 r4

]
. (11.34)

Including also the second retarded Green’s function, which would complete the exchange
MP2 diagram, is not possible, since we want to limit the computational complexity of the
calculation of the importance sampling to cubic scaling.

Surprisingly, the smallest variance was achieved by weighting functions, that are not
building blocks of the exchange diagram at all. The absolute value of the polarizability
χ(r1, r3, τ), being part of the direct MP2 diagram, turns out to be a cheap and efficient
probability for importance sampling of the exchange diagram,

p(7)(r1, r3, τ) = | G>(r1, r3, τ) G<(r3, r1,−τ)︸                                ︷︷                                ︸
χ(r1,r3,τ)

| = ABS

[ r1

r3

]
, (11.35)

and is denoted as method 7. We also generalized this to the absolute value of the full
direct MP2 diagram, reduced by the points r2 and r4. The corresponding weight function
is termed as method 8 and reads,

p(8)(r1, r3, τ) =
Ω0∑
r2r4

��v(r1, r2) v(r3, r4)G>(r1, r3, τ)G>(r2, r4, τ)G<(r3, r1,−τ)G<(r4, r2,−τ)
��

=

Ω0∑
r2,r4

ABS

[ r1 r2

r3 r4

]
. (11.36)

As evident from Tab. 11.1, method 8 shows the best performance for our benchmark
system. The variance is reduced by a factor of 6000 compared to a uniform sampling and
by roughly two orders of magnitude compared to method 2. Until now, method 2 was
the state of the art, introduced by Hirata and co workers in Ref. [68, 66, 67]. We thus
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11.1 Real space Monte Carlo sampling of Feynman diagrams

improved the efficiency of the Monte Carlo MP2 approach significantly. With method 8,
the algorithm becomes competitive with existing and efficient periodic MP2 codes. Due
to the low system size scaling (see Sec. 11.1.4) the Monte Carlo MP2 method can be
considered as a promising candidate to outperform exact MP2 algorithms.

Details of implementation, illustrated for method 8

For our implementation we resort on existing routines which provide the Green’s func-
tions in reciprocal space (see Ref. [69]). A simple Fourier transform yields the real
space Green’s functions G<(r, r′, τ) and G>(r, r′, τ). This requires a cubic scaling step,
however, negligible for our benchmark calculations. Storing the Green’s functions leads
to a favorable quadratic scaling of the memory requirement with respect to the system
size.

The code is parallelized via the τ points. Each core calculates the Green’s function and
the MP2 energy for one τ point. This strategy is sufficient for the considered benchmark
system. For larger systems, however, it is not applicable, and would have to be recoded,
since it restricts the number of cores to the number of τ points (usually not larger than 8)
and can not exploit the fact, that the variance of the Monte Carlo sampling is different for
each τ point.

To calculate the probability distribution p(8)(r1, r3, τ), we introduce and store the
matrix χ̃ for each τ point, corresponding to the absolute value of the polarizability,

χ̃(r1, r3, τ) = |G>(r1, r3, τ)G<(r3, r1,−τ) | . (11.37)

The probability distribution p(8)(r1, r3, τ) can then be written as

p(8)(r1, r3, τ) =
Ω0∑
r2r4

v(r1, r2) v(r3, r4) χ̃(r1, r3, τ) χ̃(r2, r4, τ)

= χ̃(r1, r3, τ) · (v χ̃v)(r1, r3, τ) (11.38)

where v χ̃v is understood as matrix-matrix multiplications. The distribution p(8)(r1, r3, τ)
can simply be interpreted as the importance of the tuple (r1, r3) to the direct MP2 energy
for this τ point. The full probability distribution for all points (r1, r2, r3, r4) reads

p(8)(r1, r2, r3, r4, τ) = γ(8)p(8)(r1, r3, τ)p(8)(r2, r4, τ) , (11.39)

with the normalization factor

γ(8) =

(∑
r1r3

χ̃(r1, r3, τ) · (v χ̃v)(r1, r3, τ)

) −2
. (11.40)

The tuples (r1, r3) and (r2, r4) are drawn independently using the inversion sampling
method based on the cumulative distribution of p(8). Furthermore, we use the redundant
pairs technique as described in Ref. [68] to accelerate the generation of random real space
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Figure 11.1: Comparison of the system size scaling of the Monte Carlo MP2 code based
on method 8 with different MP2 implementations. The curves were fitted and
extrapolated to 128 C atoms. The exponents of the MP2 / LTMP2 / SMP2 /
MCMP2 fits read 4.3 / 3.8 / 2.7 / 2.8.

pairs (r1, r3) and (r2, r4).

11.1.4 Measured system size scaling

In this section, we present the system size scaling of the variance and the computation
time. We considered supercells of cubic diamond containing 2, 4, 8 and 16 carbon atoms.
We set the plane-wave cutoff to Ecut = 500 eV and Eaux

cut = 333 eV. The number of real
space grid points amounts to 1000, 2000, 4000, and 8000 for the cells containing 2, 4, 8,
and 16 C atoms, respectively.

The calculations are performed on 8 Intel Xeon E5-2620 v4 @ 2.10GHz processors
and include the Monte Carlo MP2 algorithm (MCMP2) based on method 8, the stochastic
MP2 algorithm (SMP2) from Sec. 11.2 (see also Ref. [46]), the quartic scaling LTMP2
algorithm from Sec. 10.1 (see also Ref. [41]), and the quintic scaling MP2 code (MP2)
from Ref. [43]. Since method 8 makes use of cubic scaling BLAS level 3 routines, we
included the exact calculation of the direct MP2 term in the MCMP2 code without no-
ticeably increasing the computation time. Thus all algorithms in the comparison evaluate
the full MP2 correlation energy. The break condition for the stochastic codes was set to
an absolute error of 0.016 eV. The result for the computation times in dependence of the
cell size can be seen in Fig. 11.1. According to the extrapolation of the curves, the break
point for the MCMP2 code can be expected around 32 C atoms (128 correlated electrons).
Although the calculation of the importance sampling probability p(8) scales cubically with
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Figure 11.2: Scaling of the sample variance with respect to the system size. Supercells
of diamond containing 2 to 16 C atoms were used. The fit yields a scaling
exponent of 2.36.

the system size, the Monte Carlo sampling by itself possesses only a roughly quadratic
scaling, as evident from Fig. 11.2. Note, that the computation time is directly propor-
tional to the variance, if a fixed absolute statistical error is assumed. Thus, if necessary, a
quadratic scaling of the MCMP2 code can be achieved, if both, the direct and the exchange
contribution, are calculated stochastically using method 7 instead of 8.

We also measured the scaling of the sample variance with respect to the basis set size,
using the 8 C supercell of diamond. The plane-wave cutoff, that controls the number
of plane-waves, was varied from 50 to 1100 eV, being the basis to store to Hartree-Fock
orbitals. For large bases the sample variance is surprisingly insensitive to the basis set size
and possesses a sublinear scaling, as can be seen in Fig. 11.3. We explain this by the fact,
that the importance sampling probability itself depends on the basis set size and therefore
compensates a possible increasing roughness of the integrand. This is favorable, since the
MP2 energy converges slowly with respect to the basis set size.

11.1.5 Conclusion

We presented importance sampling techniques for the real space Monte Carlo MP2 algo-
rithm, which allow for competitive MP2 calculations of large systems. Compared to the
current state of the art, given by the sampling based on the electron-electron interaction
and the density (method 2), we reduced the variance by roughly two orders of magnitude
(method 8). We also showed, that the Monte Carlo sampling outperforms the stochas-
tic MP2 algorithm based on random orbitals from Sec. 11.2. We believe that further
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Figure 11.3: Sublinear scaling of the sample variance with respect to the basis set size.
The strong scattering of the points is caused by the slow convergence of the
sample variance with respect to the sample size.

investigations of the Monte Carlo samples will lead to even better importance sampling
techniques. Statistical outliners could be sampled systematically by rejection based tech-
niques, allowing for sampling distributions which depend on more than just two real space
points. Highly efficient parallelization schemes are accessible, since the generation and
evaluation of random real space points can be distributed among the the cores without
difficulty. Exploiting the fact that the correlation energy converges faster for large τ, could
lead to a significant speed up, that was missed in our simple implementation. Moreover,
the presented importance sampling techniques can easily be adopted to any Feynman dia-
gram in the real space basis like the second-order screened exchange (SOSEX) diagram.
The only drawback for routine calculations is that we can presently only use norm con-
serving pseudo potentials. An implementation for the PAW technique would require a
substantial coding effort.

Summarized, the new developed importance sampling techniques make the real space
Monte Carlo sampling of Feynman diagrams a promising route for fast and accurate
correlation energy calculations for periodic systems with large unit cells.
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11.2 Periodic MP2 with stochastic orbitals

In this section we present a stochastic MP2 approach, based on the unitary invariant
Laplace transformed MP2 formulation (LTMP2). The time-dependent HF orbitals are
rotated stochastically in the Hilbert space. The LTMP2 expression is then evaluated
with these stochastic orbitals in the plane wave basis, giving a stochastic energy whose
expectation value is the MP2 energy. The algorithm is inspired by the work of Neuhauser
et. al. [70]. As an extension we implemented correlated sampling which drastically speeds
up the calculation. The algorithm is highly parallelized with MPI and OpenMP. One of our
main objectives is to study the scaling of the variance with the system size and whether
this method is competitive on systems with about 100 valence orbitals when absolute
accuracies below 1 meV per valence orbital are required, like for adsorption energies,
binding energies, or surface energies. If a fixed absolute statistical error, independent of
the system size, is desired, the algorithm scales cubically with system size, whereas linear
scaling can be observed in the case of a fixed relative statistical error (per valence orbital).
The algorithm is implemented in the Vienna ab initio simulation package (VASP) [57, 11].
This section largely follows the author’s peer reviewed publication [46].

11.2.1 Stochastic orbitals in the plane wave basis

Since the LTMP2 formulation was already derived in Sec. 8.1.5, we directly start with the
spin-restricted version of Eq. (8.60),

EMP2
x =

∫ ∞

0
dτ

occ.∑
i j

virt.∑
ab

〈ϕτi ϕ
τ
j |r
−1
12 |ϕ

τ
aϕ

τ
b〉〈ϕ

τ
aϕ

τ
b |r
−1
12 |ϕ

τ
j ϕ

τ
i 〉 . (11.41)

For brevity all derivations are performed for the exchange part only and also k-point
sampling is omitted. As in Eq. (8.58), the imaginary time-dependent Hartree-Fock
orbitals are defined by

|ϕτi 〉 = eεiτ/2 |ϕi〉 , |ϕτa〉 = e−εaτ/2 |ϕa〉 . (11.42)

The LTMP2 formulation is invariant under unitary transformations of the time-dependent
Hartree-Fock orbitals. This invariance can be recognized by defining a new set of unitary
transformed time-dependent orbitals via

|ψτi 〉 =
occ.∑

k

uik |ϕ
τ
k〉 , |ψτa〉 =

virt.∑
c

vac |ϕ
τ
c〉 , (11.43)

where u and v are two arbitrary unitary matrices in the occupied and unoccupied manifold,
respectively. After replacing all ϕ’s by ψ’s, the unitary matrices lead to Kronecker deltas
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that take care of the invariance,

occ.∑
i j

virt.∑
ab

〈ψτi ψ
τ
j |ψ

τ
aψ

τ
b〉〈ψ

τ
aψ

τ
b |ψ

τ
j ψ

τ
i 〉

=
occ.∑
i j

k1 ...k4

virt.∑
ab

c1 ...c4

〈ϕτk1ϕ
τ
k2 |ϕ

τ
c1ϕ

τ
c2〉〈ϕ

τ
c3ϕ

τ
c4 |ϕ

τ
k3ϕ

τ
k4〉 u∗ik1uik4︸  ︷︷  ︸

δk1k4

u∗j k2u j k3︸   ︷︷   ︸
δk2k3

vac1v
∗
ac3︸   ︷︷   ︸

δc1c3

vbc2v
∗
bc4︸  ︷︷  ︸

δc2c4

=
occ.∑
i j

virt.∑
ab

〈ϕτi ϕ
τ
j |ϕ

τ
aϕ

τ
b〉〈ϕ

τ
aϕ

τ
b |ϕ

τ
j ϕ

τ
i 〉 (11.44)

When random coefficients and expectation values are used, the Kronecker deltas in Eq.
(11.44) can be generated by yet another transformation, which, for MP2, was first published
by Neuhauser et al. [70]. Consider a set of independent complex random coefficients
{pi} where both the real and imaginary parts are uniformly distributed over the range
[−

√
3/2,+

√
3/2], such that we find for the expectation values E[pi] = 0 and E[p∗i pi] = 1.

We can then write the Kronecker delta as an expectation value: δi j = E[p∗i p j ]. Note that
the upright letter E[...] stands for an expectation value, whereas energies are written by
the italic letter E . If we plug this definition of Kronecker deltas into the third line of Eq.
(11.44), we find that the MP2 energy can be written as an expectation value of stochastic
energies Xτ,

EMP2
x =

1

2

∫ ∞

0
E[Xτ] dτ , (11.45)

where
Xτ = 〈κτλτ |r−112 |α

τβτ〉〈ατβτ |r−112 |λ
τκτ〉 , (11.46)

with the stochastic orbitals

|κτ〉 =
occ.∑

i

pi |ϕ
τ
i 〉 , |λτ〉 =

occ.∑
i

qi |ϕ
τ
i 〉 ,

|ατ〉 =
virt.∑

a

ra |ϕ
τ
a〉 , |βτ〉 =

virt.∑
a

sa |ϕ
τ
a〉 . (11.47)

Here {pi}, {qi}, {ra}, and {sa} are independent sets of uniformly distributed complex
random coefficients as described above. The main idea is to generate a sufficiently large
sample of the stochastic energies Xτ in order to obtain a reliable estimation for the
expectation value E[Xτ] and therefore an estimation for the MP2 energy.

In this work, we assume that the occupied and virtual HF orbitals and energies are
available through a preceding HF calculation. The HF orbitals are stored in the plane wave
basis, {〈G|i〉, 〈G|a〉}, whereG is a reciprocal lattice vector. In VASP the number of lattice
vectors G is truncated by a cutoff, Ecut (ENCUT flag in VASP), such that G2/2 < Ecut.
Also the number of orbitals (sum of occupied plus unoccupied) is limited to the same
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number as the number of reciprocal lattice vectors.

In order to calculate a single stochastic energy Xτ, Eq. (11.46), the stochastic orbitals
are set up in the plane wave basis using (11.47), e.g.

〈G|κτ〉 =
occ.∑

i

pi eεiτ/2〈G|i〉 . (11.48)

The electron-repulsion integrals in (11.46) are evaluated in reciprocal space as

〈κτλτ |r−112 |α
τβτ〉 =

1

Ω

Eaux
cut∑
G

4π

G2
〈κτ |e−iGr̂ |ατ〉〈λτ |e+iGr̂ |βτ〉 . (11.49)

Note that here the reciprocal lattice vectors are limited by an auxiliary cutoff, Eaux
cut

(ENCUTGW flag in VASP), which is usually equal to 2
3Ecut. Also, Ω is the volume of

the system and 〈κτ |e−iGr̂ |ατ〉 are the overlap densities, defined by

〈κτ |e−iGr̂ |ατ〉 =

∫
Ω

d3r 〈κτ |r〉〈r |ατ〉 e−iGr

= FG[{〈κτ |r〉〈r |ατ〉}] , (11.50)

where the stochastic orbitals in real space can easily be obtained by a Fourier transform,

{〈r |κτ〉} = F −1r [{〈G|κτ〉}] . (11.51)

In this way, a stochastic energy Xτ can be calculated for a given τ-point.

Variance and error

To estimate the expectation value of the sample for a given τ-point, E[Xτ], the mean, µτn,
is calculated by

µτn =
1

n

n∑
l=1

Xτ
l , (11.52)

where n is the number of all generated stochastic energies of this sample, since µτn → E[Xτ]
as n→ ∞. To measure the reliability of this estimation for finite n, the error of the mean
is estimated via

δµτn =
στ

n
√

n
. (11.53)

Here στ
n is an estimate for the standard deviation of the samples, obeying στ

n →
√

Var[Xτ]
as n → ∞, and Var[Xτ] = E

[
(Xτ − E[Xτ])2

]
. In practice the standard deviation, στ

n ,
is calculated using Welford’s algorithm [71]. Since the MP2 energy is the sum over the
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independent expectation values of all τ-points,

EMP2
x =

1

2

∫ ∞

0
E[Xτ] dτ ≈

1

2

∑
τ

wτ E[Xτ] , (11.54)

the statistical error of the MP2 energy is simply estimated by the formula for the propagation
of error,

δEMP2
x =

1

2

√∑
τ

(wτ δµ
τ
n)2 . (11.55)

In general, the system size scaling of the sample variance, (στ
n )

2, plays an important role
for the prefactor and the system size scaling of the computation time. If the variance obeys
a polynomial system size scaling with the power cvar, we can conclude that the number, n,
of necessary stochastic energies follows exactly the same scaling behavior if the statistical
error should be kept constant (see Eq. 11.53). Moreover, let the calculation time of a
single stochastic energy, Xτ, have a polynomial system size scaling to the power of crnd.
The total scaling of the computation time is then polynomial with the power cvar + crnd.
Thus, due to Eq. (11.53), the sample variance has a strong impact on both the scaling
and the prefactor of the algorithm, making the variance the key quantity that determines
whether the stochastic approach is competitive.

Correlated sampling

For correlated sampling we calculate a set of stochastic orbitals |κτθ 〉, |λ
τ
θ 〉, |α

τ
θ 〉, |β

τ
θ 〉,

as indicated by the new index θ = 1, ..., Nθ . Clearly, the vectors of random coeffi-
cients, pi , qi , ra, sa, in Eq. (11.47) have to be replaced by matrices of random coefficients
piθ , qiθ , raθ , saθ . To calculate a sample we can now write

Xτ = 〈κτθλ
τ
θ ′ |r
−1
12 |α

τ
θ β

τ
θ ′〉〈α

τ
θ β

τ
θ ′ |r
−1
12 |λ

τ
θ ′κ

τ
θ 〉 , (11.56)

which is equal to uncorrelated sampling of Eq. (11.46) as long as θ = θ′, but activates
correlated sampling when combinations of θ , θ′ are allowed. Hence, a larger sample
can be calculated with the same amount of stochastic orbitals. Comparable sampling
techniques for MP2 were applied in the real space Monte Carlo algorithm in Sec. 11.1 as
well as in Ref. [68, 72]. Since the generation of stochastic orbitals has a steeper system
size scaling than the evaluation of the two-electron integrals, correlated sampling leads to
a significant speed up. This will be discussed in detail in the next section.

11.2.2 Implementation
The algorithm presented in this paper is implemented in the Vienna ab initio simulation
package (VASP). Since VASP is designed for periodic systems, it naturally rests upon the
plane wave basis. The basis set size can thus easily be controlled by the plane wave cutoff
Ecut. Hence, we can focus on the statistical fluctuations and no additional error has to
be considered, as it appears in local correlation methods. On the other hand, we forgo
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the benefits of localized basis sets, which reportedly allow to sample energy differences
accurately even using a small number of stochastic orbitals [73]. Furthermore, as every
method in VASP, the implementation is based on the projector augmented wave (PAW)
method. However, for brevity, the PAW is ignored in all formulas of this work.

Algorithm and scaling

The algorithm can be divided into three simple parts: for each τ-point (i) calculate
the stochastic orbitals (11.48) from the HF orbitals, (ii) calculate the overlap densities
(11.50), (iii) calculate the two-electron integrals (11.49) using the overlap densities, and
the stochastic energy (11.46) and update the statistics. Repeat this procedure until the error
of the mean for this τ-point is below the desired threshold. In the following, correlated
sampling is considered, i.e. the additional index θ comes into play, as introduced in Sec.
11.2.1. Pseudocode of the algorithm can be found in Fig. 11.4.

In step (i), Nθ stochastic orbitals are calculated using BLAS level 3 routines and stored
in memory, where Nθ is user given. The scaling with computation time and memory reads

|κτθ 〉, |λ
τ
θ 〉 ∼

{
O(NθNGNi) in time
O(NθNr) in memory,

(11.57)

|ατθ 〉, |β
τ
θ 〉 ∼

{
O(NθNGNa) in time
O(NθNr) in memory.

(11.58)

Here, NG is the number of reciprocal lattice vectors limited by the cutoff Ecut, and Ni and
Na are the number of occupied and virtual HF orbitals, respectively. The number of real
space grid points, Nr, determines the memory scaling when the stochastic orbitals are
Fourier transformed to real space to calculate the overlap densities. Since the number of
τ-points is largely independent of the system size, we ignore this factor in the analysis.

For step (ii), the following overlap densities have to be calculated for the stochastic
energies (11.56):

〈κτθ |e
−iGr̂ |ατθ 〉

〈βτθ |e−iGr̂ |λτθ 〉
∼ O(NθNaux

G ln Naux
G ) in time, (11.59)

〈ατθ |e
−iGr̂ |λτθ ′〉

〈κτθ |e−iGr̂ |βτθ ′〉
∼ O(N2

θ Naux
G ln Naux

G ) in time, (11.60)

where Naux
G

is the number of reciprocal lattice vectors limited by the auxiliary cutoff Eaux
cut .

Note that the first two overlap densities involve only one θ index, whereas the last two
overlap densities have to be calculated for combinations of θ and θ′. It is also worth
mentioning, that for the direct MP2 energy, only the first two overlap densities (11.59) are
necessary. Thus, in each loop cycle the algorithm checks, whether the accuracy of the
exchange energy was already reached, in order to decide whether the computation of the
more expensive overlap densities (11.60) is necessary. Since the variance of the direct
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for all τ do
while δµ > stop criterion do

# (i) stochastic orbitals

piθ, qiθ, raθ, saθ = random ∀i, a, θ
piθ = piθ · e+εiτ/2 ∀i, θ
qiθ = qiθ · e+εiτ/2 ∀i, θ
raθ = raθ · e−εaτ/2 ∀a, θ
saθ = saθ · e−εaτ/2 ∀a, θ
〈G|κθ〉 =

∑occ
i 〈G|i〉piθ

〈G|λθ〉 =
∑occ
i 〈G|i〉qiθ

〈G|αθ〉 =
∑virt
a 〈G|a〉raθ

〈G|βθ〉 =
∑virt
a 〈G|a〉saθ

{〈r|κθ〉} = FFT−1r [{〈G|κθ〉}]
{〈r|λθ〉} = FFT−1r [{〈G|λθ〉}]
{〈r|αθ〉} = FFT−1r [{〈G|αθ〉}]
{〈r|βθ〉} = FFT−1r [{〈G|βθ〉}]
for all θ do

# (ii) overlap densities

ρ(1)

θ (G) = FFTG[〈κθ|r〉〈r|αθ〉]
ρ(2)

θ (G) = FFTG[〈βθ|r〉〈r|λθ〉]
for all θ′ do

ρ(3)

θθ′(G) = FFTG[〈αθ|r〉〈r|λθ′〉]
ρ(4)

θθ′(G) = FFTG[〈κθ|r〉〈r|βθ′〉]
# (iii) stochastic energies

d =
∑Eaux

cut

G
4π
G2 ρ

(1)

θ (G)ρ(2)

θ′ (G)∗

x =
∑Eaux

cut

G
4π
G2 ρ

(3)

θθ′(G)ρ(4)

θθ′(G)∗

X = x · d
D = −2|d|2

end for
end for
Update mean µ
Update error δµ

end while
E

(2)
d = E

(2)
d + wτµ(D)

E
(2)
x = E

(2)
x + wτµ(X)

end for

Figure 11.4: Pseudocode of the MP2 algorithm with stochastic orbitals. Note that the HF
orbitals, |i〉, |a〉, and energies, εi , εa, stem from a preceding HF calculation.
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MP2 energy turns out to be larger than the variance of the exchange energy, this approach
leads to a significant speed up of the algorithm.

Having the overlap densities we can calculate the stochastic energies (iii) that scale as

〈κτθλ
τ
θ ′ |r
−1
12 |α

τ
θ β

τ
θ ′〉〈α

τ
θ β

τ
θ ′ |r
−1
12 |λ

τ
θ ′κ

τ
θ 〉 ∼ O(N

2
θ Naux

G ) (11.61)

in time. The prefactor of this step (iii) is small compared to that of (ii), since step (ii)
involves FFTs, whereas here only summations over reciprocal lattice vectors are performed.

With this at hand one can calculate the actual scaling of the algorithm with the system
size (independent of Nθ) and demonstrate the benefit of the correlated sampling. For a
given system and fixed absolute statistical error, the sample size reads n = nLN2

θ , where
nL is the number of loop cycles of the steps (i)-(iii), since the variance is independent of Nθ

(as will be shown in Sec. 11.2.3). With (11.57)-(11.61) we can then write the computation
time as a function of Nθ:

T(Nθ) = 2γBLAS
n

Nθ
NG(Na + Ni) (i)

+ 2γFFTn
(
1 +

1

N θ

)
Naux
G ln Naux

G (ii) (11.62)

+ γnNaux
G (iii) .

Here γBLAS, γFFT, and γ are the prefactors of the BLAS routines, fast Fourier transforms,
and simple multiplications, respectively. Equation (11.62) shows clearly that correlated
sampling (increasing Nθ) asymptotically reduces the computation time. In this approach
the largest possible Nθ is given by nL = 1 ⇒ n = N2

θ such that the entire sample is
generated in one single loop cycle and only Nθ stochastic orbitals have to be generated for
the MP2 calculation. In this optimal case the computation time reduces to

T(Nθ =
√

n) ≈ 2γBLAS
√

nNGNa (i)
+ 2γFFTnNaux

G ln Naux
G (ii) (11.63)

+ γnNaux
G (iii) ,

where we have assumed Ni/Na � 1 and 1/
√

n � 1. Later, in Sec. 11.2.3, we will show
that the sample variance and therefore also the sample size, n, scales quadratically with
the system size, if a fixed absolute statistical error is required. Thus, Eq. (11.63) shows,
that each step of the algorithm possesses a cubic scaling with the system size.
If only a fixed relative error is required, then the sample size can be chosen independently
of the system size and the scaling reduces to a largely quadratic scaling of step (i). In
practice, however, the computation time is dominated by the linear scaling of step (ii), as
long as

γFFT
γBLAS

> 1.84 ·
Na
√

n
(11.64)

where NG/Naux
G
≈ 1.84was assumed, following from the mentioned ratio Eaux

cut = 2Ecut/3.
It is only this scenario of a fixed relative error in combination with a moderate system size
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where approximate "linear scaling" can be expected.
Furthermore, we want to stress how the correlated sampling is responsible for the reduction
to a cubical scaling in the case of a fixed absolute statistical error. For this, we look at the
speed up which can be obtained by the correlated sampling,

T(Nθ = 1)

T(Nθ =
√

n)
∼ Na . (11.65)

We conclude, that the possible speed up due to correlated sampling increases linearly with
the system size. This, and the fact that the variance and, therefore, the sample size scale
quadratically, is the reason why a cubic scaling of the stochastic MP2 algorithm can be
achieved. Without correlated sampling the generation of stochastic orbitals (i) would be
the dominant step, yielding for the entire algorithm a quartic scaling behavior.

Also, the key differences between this approach and the method by Neuhauser [70] can
now be summarized as follows. We use the exact HF orbitals in the plane wave basis as
the starting point, instead of generating completely random orbitals that are purified to the
occupied or unoccupied space. Our HF orbitals stem from a full HF calculation where
the Fock-matrix is not to be assumed as sparse. The stochastic orbitals are propagated in
imaginary time instead of real time by a simple multiplication and no application of the
Fock matrix is necessary. Additionally, we introduced correlated sampling, which reduces
the seemingly most expensive step of generating stochastic orbitals from HF orbitals to a
less relevant contribution to the computation time (see Eq. (11.62) or Fig. (11.6)).

Complex vs. real random coefficients

The stochastic orbitals were introduced as linear combinations of time-dependent Hartree-
Fock orbitals with uniformly distributed random complex numbers as coefficients. Instead
of complex random coefficients, also real random coefficients can be used. In the case
of Γ-only sampling of the Brillouine zone, the spatial HF orbitals are real, hence, the
stochastic orbitals would inherit this property, if only real random coefficients are used.
For calculations in the plane wave basis, real spatial orbitals are beneficial, since the
overlap densities have to be calculated only for half of the number of plane wave vectors.
This is a consequence of the identity 〈ψ |e−iGr̂ |ϕ〉 = 〈ψ |e+iGr̂ |ϕ〉∗, for real spatial orbitals
ψ, ϕ. Also, the orbitals are stored only for half of the plane wave coefficients, since
〈G|ϕ〉 = 〈−G|ϕ〉∗ for any real spatial orbital ϕ. Hence, the computational effort to
calculate a stochastic energy, Xτ, is halved in time and memory for all three steps, (i)-(iii),
of the algorithm.

However, this comes at the price of a larger variance. This can be estimated by
calculating the variance of the stochastic approximation of the Kronecker deltas, where the
random coefficients were introduced initially. As described in Sec. 11.2.1, the Kronecker
deltas are approximated as expectation values δii = 1 = E[z∗z], where z = a + ib is a
random complex number whose real and imaginary part are uniformly distributed over the
range [−

√
3/2,+

√
3/2]. The variance can be calculated as Var[z∗z] = E[(z∗z−1)2] = 0.4.

If instead only real random coefficients are used, the Kronecker deltas are approximated
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11.2 Periodic MP2 with stochastic orbitals

as δii = 1 = E[r2], where r is a uniformly distributed real random number over the range
[−
√
3,+
√
3]. But in this case the variance is twice as large as in the case of complex

numbers, Var[r2] = E[(r2 − 1)2] = 0.8.
Analytically, it is not possible to conclude whether the variance of the stochastic MP2

algorithm also doubles, when real instead of complex random coefficients are employed.
However, in Sec. 11.2.3 we present a comparison of stochastic MP2 runs using real
and complex random coefficients, confirming that the variance roughly doubles for real
random coefficients.

Internal cutoff extrapolation

It is known, that the correlation energy for wave-function based methods like MP2 or RPA
(random phase approximation) converges slowly with respect to the basis set size (plane
wave cutoff). However, the exact asymptotic behavior for large plane wave cutoffs is also
know and can be exploited for an internal cutoff extrapolation. In this work, the cutoff that
controls the basis set size of the calculations of the two-electron integrals (11.49) is Eaux

cut
and according to Ref. [58, 60] the asymptotic behavior reads,

EMP2(Eaux
cut ) − EMP2(Eaux

cut = ∞) ∼ (Eaux
cut )

−3/2 . (11.66)

The internal cutoff extrapolation calculates the two-electron integrals for the user given
cutoff Eaux

cut and also for a certain number (8 in this work) of smaller cutoffs on the fly. This
set of MP2 energies can be extrapolated to infinity according to Eq. (11.66). A detailed
description of this extrapolation scheme can be found in Sec. III.D in Ref. [41], where it
was implemented for our deterministic quartic scaling MP2 algorithm.

Parallelization

For the parallelization, we use a combination of MPI and OpenMP. Since stochastic orbitals
and overlap densities can be generated independently on all MPI ranks, the parallelization
of the algorithm is rather simple and efficient. However, the access to the shared memory
of the CPU sockets via OpenMP is favorable. Having the entire set of HF orbitals
(occupied+unoccupied) available at each MPI rank, allows to calculate the stochastic
orbitals (11.48) without MPI communication. For large cells and large basis sets this
requirement can quickly exceed the memory per single CPU, making shared memory the
obvious solution. Hence, each MPI rank runs through the algorithm depicted in Fig.
11.4 and calculates correlated stochastic energies independently, whereas the OpenMP
parallelization works differently in each of the steps (i)-(iii): In step (i) the BLAS routines
are parallelized over the OpenMP threads (OpenMP aware BLAS). In step (ii) the FFTs
are parallelized over the OpenMP threads (OpenMP aware FFT). And in step (iii) the sums
over plane waves G are parallelized over the OpenMP threads.
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Figure 11.5: Sample variance of the direct MP2 term at the second τ-point for various
supercells of LiH as a function of the number of atoms squared. This graph
shows that the variance scales quadratically with the system size.

11.2.3 Benchmark calculations

To compare the results with those of our recent publication of an exact quartic scaling MP2
algorithm [41] we, again, chose lithium hydride (LiH) and methane in a chabazite crystal
as benchmark systems to test the parallelization efficiency, the system size scaling, the
scaling of the variance, and the competitivity of the stochastic approach. All computations
were performed on Intel Xeon E5-2650 v2 2.8 GHz processors. The timings are measured
in CPU hours which is the CPU time in hours multiplied by the number of employed CPUs.
We use VASP for all calculations, where we restrict on Γ-only sampling of the Brillouine
zone, a spin-restricted setting, and 6 τ-points for the quadrature of the Laplace transform.
If not explicitly stated, real random coefficients are used for the stochastic orbitals.

Measured scaling of the sample variance

The variance is estimated by the sample variance, (στ
n )

2, as described on p. 141. In Fig.
11.5 the sample variance at the second τ-point of the τ quadrature (which gives the largest
contribution to the MP2 energy) is plotted against the number of atoms squared. Since this
results in a straight line, we can conclude that the variance possesses a quadratic scaling
with the system size for each τ point. If the stopping criterion for the algorithm is given by
a fixed absolute error, the sample size n also needs to scale quadratically with the system
size for each τ point, since the error behaves as

√
(στ

n )2/n.
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Figure 11.6: Reducing the computation time using correlated sampling. The MP2 energy
of a LiH supercell containing 32 atoms was calculated for different Nθ ,
controlling the correlated sampling. The measured timings are in agreement
with the prediction in Eq. (11.62).

Correlated sampling

In a previous section we derived that correlated sampling reduces the computation time
to a plateau, see Eq. (11.62). We put this equation to test with a supercell of solid LiH
containing 32 atoms. The computation time of each step of the algorithm, (i)-(iii) (see
Sec. 11.2.2), was measured against Nθ , which controls the correlated sampling such that
N2
θ stochastic energies are calculated in each loop cycle. In Fig. 11.6 the computation

time is plotted against 1/Nθ , providing an apparent verification of the 1/Nθ law of Eq.
(11.62).

Furthermore, a priori it is not clear if the correlated sampling affects the variance.
To probe this, we plot the sample variance of the second τ-point for both the direct and
exchange MP2 energy against Nθ , using the same benchmark system. The result can be
seen in Fig. 11.7. Apparently, there is no visible effect of the correlated sampling, aside
from stochastic fluctuations which are smaller than 0.7% . Thus, we assume the variance
to be independent of Nθ .

Measured system size scaling and memory consumption

In order to measure the scaling of the stochastic MP2 algorithm with the system size,
calculations on various supercells of LiH were performed. Figure 11.8 shows the result.
As predicted in section 11.2.2, the stochastic MP2 approach possesses a roughly cubic
scaling, if a fixed absolute error is imposed. For a fixed relative error (per valence orbital)
the scaling is roughly linear in the measured range of atoms. Detailed computational
settings are provided in Tab. 11.2. We also checked the sensitivity of the variance if the
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Figure 11.7: Sample variance at the second τ-point for different Nθ . For both, the direct
and exchange part, the variance is independent of Nθ .

symmetry of a cell is broken. Therefore, we performed the calculation with 32 LiH atoms
also with a supercell containing slightly displaced atoms, corresponding to a snapshot of
a supercell at 1000K. For each τ point we found no measurable effect on the variance,
besides fluctuations around 1%.

If the statistical error should be decreased by a factor c, then the computation time
increases by a factor of c2, since the statistical error decreases as 1/

√
n, as was mentioned

in the last section. Thus the break point of the stochastic approach compared to the
deterministic codes depends mostly on the desired accuracy. Increasing, e.g., the accuracy
of the stochastic calculations in Fig. 11.8 by a factor of 10 would shift the stochastic lines
upwards by a factor of 100 in the computation time.

Regarding memory consumption the major contribution stems from the HF orbitals
and the stochastic orbitals. In Tab. 11.2 the computational settings and the memory
consumption is presented for three systems, including methane in a chabazite crystal and
two different supercells of LiH. Of course, the memory requirements could be lowered
considerably if the HF orbitals are distributed over all MPI ranks instead of only over the
OpenMP threads, however, then the calculation of the stochastic orbitals (i) would require
MPI communication, which would lower the parallelization efficiency.

Measured parallelization efficiency

We measured the strong scaling of the stochastic MP2 algorithm for both MPI and OpenMP
separately. As benchmark systems we used supercells of solid LiH with 128 atoms for the
MPI scaling and with 32 atoms for the OpenMP scaling. Figure 11.9 shows the result. As
expected, the parallelization with MPI is almost ideal, since communication is necessary
only when the statistics are updated and all stochastic energies have to be gathered from
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black squares are calculations using the deterministic quintic scaling algo-
rithm [43, 74] and the black diamond symbols refer to the recently published
deterministic quartic scaling MP2 algorithm (LTMP2) [41].
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CH4 in Chab. LiH LiH
#atoms 42 32 128
Ecut 750 eV 434 eV 434 eV
Eaux

cut 500 eV 289 eV 289 eV
NG 18 873 2 563 10 263
Naux
G

10 231 1 418 5 559
Nr 74 088 10 976 43 904
Ni 100 32 128
Na 37 660 5 104 20 400
Nθ 150 120 240

n for E(2)
d 5.3 · 109 5.9 · 107 7.4 · 108

n for E(2)
x 0.9 · 109 1.5 · 107 1.7 · 108

standard deviation 9.2 meV 13.8 meV 15.0 meV
CPU hours 7 121 8 398
HF orbitals 11.5 GB 238.2 MB 3.8 GB
stoch. orbitals 1.1 GB 130.3 MB 1.1 GB
total memory 13.4 GB 692.0 MB 6.1 GB

Table 11.2: Computational settings and costs for different benchmark systems. The mem-
ory consumption is listed per MPI rank. The difference between the total
memory and the orbital memory consumption is also due to the module for
the statistics that temporarily stores the stochastic energies until the next MPI
communication. The standard deviation refers to the statistical standard devi-
ation of the MP2 energy, hence, all calculations are converged well below 1
meV per valence orbital, where Ni is the number of occupied/valence orbitals.
The sample size is denoted by n.
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11.2 Periodic MP2 with stochastic orbitals

Variance at τ2 [eV2]
System real complex ratio
CH4 in Chab. 3664.36 1736.57 2.1
CH4 9.38 3.03 3.1
LiH (32 atoms) 133.01 56.21 2.4
LiH (128 atoms) 1748.56 829.18 2.1

Table 11.3: Ratio of the sample variance at the second τ point of the exchange MP2 part
for calculations with real and complex coefficients for the stochastic orbitals.

all MPI ranks. The OpenMP parallelization, which is useful only if shared memory is
required, shows also a tolerable strong scaling. The lower efficiency is a consequence of
the simultaneous memory access of the OpenMP threads as well as the OpenMP overhead
in e.g. OpenMP aware BLAS and FFT routines.

Measured variance with real and complex random coefficients

How real numbers instead of complex random coefficients affect the variance, as discussed
in Sec. 11.2.2, was measured for four different systems. Since the presented algorithm
calculates the variance for each τ-point individually, we compare the variance of the
exchange MP2 energy again at the second τ-point, τ2. Table 11.3 shows that, for large
systems, the variance roughly doubles, as supposed, when changing from complex to
real random coefficients. However, for smaller systems, as for the methane molecule, the
variance increases by a factor of 3.1 for real coefficients, making the calculation slower by
a factor of

√
3.1/2 = 1.24 at this τ-point. It seems, that complex coefficients are beneficial

for small systems, where the larger memory consumption is unproblematic and the speed
up can be exploited. For larger systems, real random coefficients outperform the approach
with complex random coefficients, since the effect on the computation time is negligible
but the memory consumption is halved.

Adsorption energy of methane in a chabazite crystal cage

In our previous publication [41], where we presented a deterministic and quartic scaling
MP2 algorithm for solids (LTMP2), we calculated the MP2 correlation part of the ad-
sorption energy of a methane molecule (CH4) in a chabazite crystal (AlHO24Si11) cage.
The geometry of the chabazite crystal and the position of the methane molecule are taken
from [61] and then reoptimized using the optB88-vdW functional [34]. We repeated the
calculation with the presented stochastic MP2 approach, using the exact same computa-
tional settings (see Tab. 11.2 for CH4 in Chab.). The calculation consists of three steps,
calculating the MP2 correlation energy of the bare methane molecule, the bare chabazite
cage, and the methane molecule inside the chabazite cage. Table 11.4 shows the result for
the adsorption energy and the computation time for the stochastic MP2 approach, and the
two other MP2 algorithms [43, 41] in VASP. Those can be used as a reference. If an error
below 5% is required, the stochastic MP2 approach outperforms the deterministic quintic
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Figure 11.9: Strong scaling of the MPI (upper graph) and the OpenMP parallelization
(lower graph) for a stochastic MP2 calculation of a supercell of solid LiH
containing 128 (upper) and 32 (lower) atoms. In all calculations a fixed
number of stochastic energies was generated for each τ-point. In the upper
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algo. E(2)
ad E(2)

ad |Eaux
cut →∞

CPU hours
MP2 [43] 298.98 - 17 448
LTMP2 [41] 299.02 294.83 3 769
stoch. MP2 254 ± 50 261 ± 50 788
stoch. MP2 318 ± 23 316 ± 23 3 518
stoch. MP2 287 ± 15 281 ± 15 10 988

Table 11.4: Correlation part of the adsorption energy in meV of a methane molecule in a
chabazite crystal cage using three different MP2 algorithms in VASP. Here,
E(2)

ad |Eaux
cut →∞

stands for the result of the internal cutoff extrapolation.

scaling algorithm [43] but is not competitive compared to the deterministic quartic scaling
MP2 code [41]. The stochastic algorithm is favorable only if an error of about 20% is
accepted.

11.2.4 Conclusion
We implemented a stochastic algorithm to calculate the MP2 correlation energy of three
dimensional periodic systems in VASP. The parallelization is highly efficient such that
thousands of CPUs can be used. In principal, the exact MP2 energy can be reached
employing sufficiently large samples for each τ-point and the internal basis set extrapo-
lation. We found a cubic scaling with the system size, if a fixed absolute statistical error
is required. Linear scaling could be reached for a fixed relative error per valence orbital.
This is a consequence of the quadratic scaling of the variance with the system size. We
also demonstrated the limitations of the stochastic approach by calculating the adsorption
energy of a methane molecule in a chabazite crystal cage. If errors of about 20% are
acceptable for this calculation, the stochastic approach is preferable, however, an error of
about 5% already leads to a higher computational effort than for the deterministic quartic
scaling algorithm.

We believe that stochastic approaches are indeed a promising way to handle the high
computational effort of MP2 calculations, however, we emphasize, that the advantage of the
lower complexity can quickly be compensated by larger prefactors when high accuracies
are required. It is indispensable to develop techniques that considerably reduce the sample
variance, if statistical errors below 1 meV per valance band are required.
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11.3 Electron repulsion integrals in a random basis

Correlation energy methods like MP2 or RPA often suffer from a slow convergence with
respect to the basis set size. This applies both to the number of unoccupied Hartree-Fock
orbitals as well as to the number of plane-waves. While the former could be eased by the
presummation over all unoccupied Hartree-Fock orbitals in the quartic scaling LTMP2
algorithm (see Sec. 10.1 or Ref. [41]), the latter remains an open problem that has only
been dealt by extrapolation techniques so far. However, it is also known, that converged
correlation energies can be obtained by significantly smaller basis set sizes, if, for instance,
the natural orbital basis instead of the Hartree-Fock orbital basis is employed [75]. In this
section, we present the idea, that the plane-wave basis can be replaced by a random basis.
Usually, stochastic approaches suffer from the loss of error cancellation effects for energy
differences. In contrast, the random basis technique, which will be presented here, can
still exploit error cancellation for energy differences, if the random basis transformation is
reused. We implemented this approach into the quartic scaling LTMP2 code by replacing
the outer plane-wave loop by an outer loop over the the random basis. We then probed, if
it is possible to use significantly smaller basis set sizes within the random basis.

11.3.1 The random basis

In the plane-wave basis, we evaluate the electron repulsion integrals by (see Eq. 8.27),

〈ϕiϕ j |r−112 |ϕaϕb〉 =
1

Ω

∑
G

4π

G2
〈ϕi |eiGr̂ |ϕa〉 〈ϕ j |e−iGr̂ |ϕb〉 (11.67)

where Ω is the volume of the system and G are reciprocal lattice vectors (plane-waves).
For brevity, we neglect k-point sampling and spin here. We introduce the Coulomb vertex,

ΓG
ia =

√
4π

G2
〈ϕi |eiGr̂ |ϕa〉 (11.68)

and inflate our expression to

〈ϕiϕ j |r−112 |ϕaϕb〉 =
1

Ω

∑
GG′

ΓG
ia

(
ΓG′

bj
) ∗
δGG′ . (11.69)

We can now use the Kronecker delta to perform basis transformations. Consider the
unitary matrix uθG which transforms from the plane-wave basis to the θ basis. Since it is
unitary, we can write

δGG′ =
∑
θ

uθG u∗θG′ , (11.70)

and thus
〈ϕiϕ j |r−112 |ϕaϕb〉 =

1

Ω

∑
θ

Γθia
(
Γθbj

) ∗
, (11.71)
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with the transformed Coulomb vertices

Γθ
ia =

∑
G

uθG ΓG
ia . (11.72)

If NG and Nθ denote the number of basis vectors in the plane-wave and θ basis respectively,
we aim to find a θ basis such that

1

Ω

Nθ∑
θ

Γθia
(
Γθbj

) ∗
≈

1

Ω

NG∑
G

ΓG
ia

(
ΓG

bj
) ∗
, (11.73)

where Nθ � NG.
In general, any unitary matrix uθG represents a valid basis transformation. Thus, nothing

prevents us from testing random unitary matrices, corresponding to random bases.

Application to MP2 calculations

We apply this technique to the quartic scaling LTMP2 algorithm presented in Sec. 10.1.
We neglect k-point sampling, hence Eq. (10.18) reduces to

EMP2
x =

1

Ω2

∫ ∞

0
dτ

∑
GG′

4π

G2

occ.∑
i j

〈
ϕi

��e−iGr̂
��wG′τ

j

〉∗ 〈
ϕ j

��e−iGr̂
��wG′τ

i

〉
, (11.74)

with

|wGτ
j 〉 =

unocc.∑
a

e(εa−εi)τ ΓG
a j |ϕa〉 . (11.75)

Applying the unitary basis transformation to the θ basis, we achieve

EMP2
x =

1

Ω2

∫ ∞

0
dτ

∑
θ

∑
G

4π

G2

occ.∑
i j

〈
ϕi

��e−iGr̂
��wθτ

j

〉∗ 〈
ϕ j

��e−iGr̂
��wθτ

i

〉
, (11.76)

with

|wθτ
j 〉 =

unocc.∑
a

e(εa−εi)τ Γθa j |ϕa〉 . (11.77)

The plane-wave sum over G remains, since we want to keep the quartic scaling of the
LTMP2 approach. In the canonical, quintic scaling, MP2 formulation both plane-wave
summations over G and G′ could be evaluated in the θ basis, however, at the price of a
higher algorithmic complexity.

11.3.2 Implementation

Since Eq. (11.76) has exactly the same form as the Gamma-only version of (10.18), we
only need to slightly adapt the algorithm presented in Sec. 10.1 or in [41]. This small
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change consists in providing the Coulomb vertex Γθa j in the θ basis instead in the plane-
wave basis, in order to calculate the auxiliary states |wθτ

j 〉. This is simply achieved by
Eq. (11.72), thus the only thing worth clarifying is the construction of the random unitary
matrix uθG.

Constructing the random basis

In order to construct random unitary transformation matrices, we pursue the following two
approaches. First, one can construct a random matrix, which exactly obeys the condition
to be unitary, and second, one can construct a matrix, which is unitary only on average.

The first approach can be performed by calculating a QR decomposition of a random
matrix. The entries of the random matrix are sampled by complex numbers with a
uniformly distributed real part and a uniformly distributed imaginary part from the interval
[−0.5,+0.5].

The second approach is even simpler in practice. There, we sample both the real part,
xθG, and the imaginary part, yθG, of each matrix element uθG with uniformly distributed
random numbers from the interval

[
−

√
3

2Nθ
,+

√
3

2Nθ

]
. As a consequence, we find a

similar result for the expectation value E[...] as for the stochastic orbitals from in Sec.
11.2,

E

[
Nθ∑
θ

uθG u∗θG

]
= E

[
Nθ∑
θ

(xθG + iyθG)(xθG − iyθG)

]
(11.78)

= E

[
Nθ∑
θ

(
x2θG + y2θG

) ]
(11.79)

= 2NθE[r2] , (11.80)

where r is a random number, sampled in the same interval as the real and imaginary parts
of the transformation matrix. We find

E[r2] =
1

2 ·
√

3
2Nθ

∫ +
√

3
2Nθ

−

√
3

2Nθ

r2 dr =
1

2Nθ
. (11.81)

Thus, our constructed matrix is unitary on average,

E

[
Nθ∑
θ

uθG u∗θG

]
= 1 . (11.82)

The same can be applied for the case of orthogonal transformation matrices, where the
matrix elements are purely real valued. But if not explicitly stated, the presented results
rely on complex unitary matrices.

The first approach (QR decomposition) has the advantage, that it is exact, if we sample
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11.3 Electron repulsion integrals in a random basis

the random basis with Nθ = NG. For decreasing Nθ we expect a growing statistical
error, i.e. a growing variance. The second approach even has a statistical error for the
case Nθ = NG, but the variance might grow slower for decreasing Nθ , such that it could
perform similar as (or even outperform) the first approach for small ratios Nθ/NG.

Recycling the random basis for error cancellations

In many cases we are interested in energy differences. Usually, energy differences converge
faster with respect to the basis set size than absolute energies, especially if systems with
similar spatial structure are compared. In contrast to many other stochastic techniques, the
random basis approach still allows to exploit this kind of error cancellation. We can store
the unitary matrix uθG and ”recycle” it for another MP2 calculation. This is especially
simple, if the number of plane-waves is equal for all considered systems. Illustrations can
be found in Sec. 11.3.3

11.3.3 Results

So far, the algorithm is only available in a serial and Gamma-only version, thus testing is
limited to small systems. For proof of principle calculations, we chose a simple system,
the dissociation of a C2 dimer. We only calculate the energy difference between the atom
distance 1.2Å (system 2) and 1.5Å (system 1). The calculations are performed in a
supercell of size 5 × 3 × 3Å3, and we use the first axes for the atom separation2. Due
to the frozen core approximation, we use 4 valence electrons for each C atom, resulting
in a total of 8 occupied bands. The plane-wave cutoff Ecut was set to 650 eV where we
used 433 eV for the auxiliary plane-wave cutoff Eaux

cut , that controls the evaluation of the
electron repulsion integrals. This results in NG = 449, where NG is limited by Eaux

cut . The
number of unoccupied Hartree-Fock bands was set to 1687. As a reference, we calculated
the energy difference of system 1 and 2 with a deterministic MP2 code,

∆E = ExMP2
1 − ExMP2

2 = 4338.749meV − 3929.988meV = 408.76meV , (11.83)

where we only look at the most expensive part, the exchange MP2 contribution (xMP2).
We then calculated a sample of 100 energy differences, using the random basis approach,
again, restricting to the exchange contribution (rbxMP2),

∆Ẽ = E rbxMP2
1 − E rbxMP2

2 . (11.84)

We are interested in the error, defined by

δE = ∆Ẽ −∆E , (11.85)

2This cell is indeed too small to produce meaningful results, since the periodic images of the atoms are too
close. However, the MP2 energy difference for this setup is 0.977 eV, which is not too far from to the
FCI result of 1.159 eV from [76]. Hence, the benchmark system does not seem to be completely without
physical significance.
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Figure 11.10: Histogram of n = 100 calculations of ∆Ẽ using recycled unitary basis
transformations and Nθ/NG = 0.8. This results in 3σ = 76meV. The
reference value is ∆E = 408.76meV.

which allows to define the mean absolute error (MAE)

MAE =
1

n

n∑
i=1

��δE(i)
�� , (11.86)

with n = 100. Furthermore, we introduce the variance that measures the spread of the
δE(i)’s,

σ2 =
1

n − 1

n∑
i=1

��δE(i)
��2 , (11.87)

such that we can use σ as the standard deviation. Note that the MP2 exchange energy
difference, that we want to reproduce with the random basis is very small. Thus our system
can be considered as a very challenging benchmark.

In Fig. 11.10 we show the histogram of results for the ratio Nθ/NG = 0.8. We
can deduce that this Nθ/NG ratio introduces an error of about 76meV in the MP2 ex-
change energy, if we chose 3σ as the measure. This corresponds to an error of about
9.5meV/electron, or to a relative error of about 19%.

Error cancellation and comparison of the methods to construct the unitary matrix

Recycling the unitary matrix clearly reduces the mean average error as well as the standard
deviation, as Fig. 11.11 shows. For this particular benchmark system, the basis recycling
roughly halved the mean average error and standard deviation.
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11 Stochastic algorithms

In Sec. 11.3.2 we introduced two methods to calculate the random unitary basis
transformation. The first one relies on a QR decomposition of a random matrix and is
denoted as exact unitary. The second one is based on a completely random matrix which
is only unitary in average, termed average unitary. The Fig. 11.12 clearly shows, that
the 3σ of the second approach (average unitary) can not outperform the first method for
small Nθ/NG, although it shows a similar performance for Nθ/NG ≤ 0.1. It is also worth
mentioning, that the first approach reveals a stronger increase in the error when varying
Nθ/NG from 1.0 to 0.5, while the error of the second approach grows only slightly from
a plateau of about 200meV.

11.3.4 Conclusion and Outlook
We presented an implementation of a random basis evaluation of electron-repulsion inte-
grals in MP2. In particular we showed, that once a random basis is generated, it can be
recycled for subsequent calculations in order to profit from the error cancellation of limited
basis set sizes. The implementation relies on the most simple random number sampling,
and the ratio Nθ/NG = 0.5 (i.e using only half as many basis vectors) introduces an error
of about 17meV/electron, if the QR decomposition strategy is used. Hence, the random
basis transformations could be used for calculations on large systems, if only a relative
error per electron is of interested. However, if a small absolute error is of interested, this
method will bring rather no advantage.

A possible route for improvements could be to use importance sampling techniques,
e.g., taking into account that the Coulomb kernel decays as 1/G2. Also, one could restrict
the random basis approach to the large |G| contributions, since they rarely contain physical
information but cause the slow convergence with respect to the basis set size.

162



CHAPTER 12
Summary, Conclusion and Outlook

The principal aim of this thesis is to prove that developing low-scaling algorithms for
many-body exchange-like contributions to the total energy is indeed possible. Exchange-
like contributions are necessary to obey the symmetrization postulate for electrons but
were also known as an obstacle for the development of efficient total energy codes. As a
consequence, larger systems, involving several hundreds of correlated valence electrons,
are now accessible. The result are two fully developed and ready-to-use algorithms to
calculate the MP2 energy of periodic systems, parallelizable on thousands of CPUs. Four
more algorithms are available either as concepts or as usable implementations with a few
limitations. We will summarize the work in the following.

The LTMP2 algorithm (Sec. 10.1 or Ref. [41]) is the first proof that accurate MP2
calculations are possible with a quartic scaling complexity, both in principle and in practice.
The main idea of the algorithm is to avoid the summation of all combinations of occupied-
unoccupied pairs by a presummation over all unoccupied states to a few auxiliary states.
This can be elegantly achieved in the Laplace transformed MP2 formulation.

The same strategy could be adapted (Sec. 10.2) to the second-order screened exchange
(SOSEX) correction to the RPA. Pseudocode is available, serving as a guideline to reduce
the scaling from N5 to N4. Moreover, the code can be used to provide a general building
block for other (higher-order) exchange-like diagrams, see (10.36).

We also presented the possibility to implement an algorithm that calculates the second-
order exchange diagram with an only cubic scaling complexity (Sec. 10.3). Although we
estimated the break point to be at unattractively large systems, the code could be useful in
the not too distant future. Note, that this cubic scaling strategy also applies to SOSEX.

With the introduction of a real space Monte Carlo sampling of Feynman diagrams
(Sec. 11.1), we switched to the stochastic strategies. Here, we presented new importance
sampling techniques that drastically reduce the computational effort compared to the state
of the art. Thus, providing a route to make the real space Monte Carlo method competitive
to existing algorithms. The cubic scaling could open a path to large systems, in particular
if only the relative error per electron is of interest.

Another stochastic strategy was pursued with stochastic orbitals (Sec. 11.2 or Ref
[46]). This work is based on a publication by Neuhauser et al. [70] and introduces
several improvements like correlated sampling. The code can be considered as an efficient
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12 Summary, Conclusion and Outlook

stochastic approach to calculate the second order exchange in cubic scaling, however, we
also highlight the limitations of stochastic approaches.

Last but not least we mention an attempt to calculate the electron-repulsion integrals
in a random basis. This was motivated by the fact that correlation energy methods often
suffer from the slow convergence with respect to the basis set size, i.e. with respect to
the number of plane-waves in VASP. Instead of the plane-wave basis we analyzed the
effect of a random basis, introduced by a random unitary matrix. Since electron-repulsion
integrals are the very ingredient for many correlation energy methods, the results could
be interesting for the quantum chemistry and materials physics community.

In general, the presented methods form a basis for low-complexity calculations of higher-
order exchange-like diagrams, allowing for applications on larger systems that could not
be treated so far. More generally speaking, the developed strategies help to efficiently
implement so called vertex corrections to total energies or quasiparticle energies, where
”vertex corrections” refers to the scheme proposed by Hedin in Ref. [35].

However, one should not lose sight of the fact that even though developing low-scaling
algorithms is important, developing economic total energy methods that correctly cover the
essential physics is even more important for the electronic structure problem. In particular,
the question arises, why the RPA, although neglecting higher-order exchange completely,
is so successful in predicting material properties? Why is the exchange contribution in
MP2 energy differences mostly very small but sometimes indispensable? Even if DFT has
already solved many problems in the electronic structure problem, one can say without
hesitation that there is still no clear perception as to how the correlation energy of materials
can be reliably captured with reasonable computational effort.
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Part III
Application of the Random Phase
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CHAPTER 13
Ab initio phase diagram of PbSe crystals calculated with

the RPA

Understanding the phase behavior of semiconductor materials is important for applications
in solid state physics and nanoscience. Accurate experimental data is often difficult to
obtain due to strong kinetic effects. In this work, we calculate the temperature-pressure
phase diagram of lead selenide (PbSe) using the random phase approximation (RPA), an
accurate wavefunction based many-body technique. We consider three crystalline phases,
the low pressure B1 phase (NaCl-type), the intermediate B33 phase (CrB-type), and the
high pressure B2 phase (CsCl-type). The electronic contributions to the free energy (at
T = 0K) are calculated in the Born-Oppenheimer approximation using the RPA, whereas
phononic contributions are computed in the quasi-harmonic approximation using DFT
and the PBEsol functional. At room temperature, we find transition pressures of 4.6± 0.3
GPa for the B1 ↔ B33 transition and 18.7 ± 0.3 GPa for the B33 ↔ B2 transition, in
good agreement with experiments. In contrast to the interpretation of recent experiments,
we observe a negative Clapeyron slope for both transitions. Gibbs free energy differences
between competing structures have small gradients close to coexistence, consistent with
pronounced hysteresis observed in experiments. The phase diagram presented in this
work can serve as a reference for future studies of PbSe and should prove useful in the
development of accurate and efficient force fields. This chapter largely follows the author’s
publication [77].

13.1 Introduction

Lead chalcogenides, PbX (X = S, Se, and Te), are widely studied semiconductor materials
with applications in opto-electronics, sensors, and thermoelectrics [78]. PbX quantum
dots are used as versatile building blocks for nanomaterials due to their narrow bandgap
and strong interparticle interactions in self-assembled superlattices [79, 80]. The bandgap
of these materials can be tuned over a wide range by applying external pressure [81,
82, 83, 84, 85]. A particularly sudden and dramatic change of the electronical and
mechanical materials properties can be induced via structural transformations [86]. By
controlling nanoscale morphology, semiconductors can even be trapped in high-pressure
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13 Ab initio phase diagram of PbSe crystals calculated with the RPA

Figure 13.1: Supercells of the three considered phases B1, B33, and B2 of PbSe, as used
for phonon calculations. Pb atoms are shown in gray, Se atoms in green color.
Primitive cells are indicated by dark red lines.

crystal structures that are unstable in the bulk [87, 88, 89]. Controlling material properties
of PbX via pressure-processing, however, requires knowledge of the structural stability
and phase behavior of these materials.

The pressure-induced structural phase transitions of lead selenide (PbSe), which are the
focus of this work, have been studied experimentally [90, 91, 92, 93] and computationally
[83, 94, 95, 96, 85, 92, 93] for several decades. At ambient conditions, PbSe crystallizes
in the semiconducting B1 phase (NaCl-type structure, Fm3m, No. 225). At pressures of
a few GPa, an intermediate orthorhombic semiconducting phase is observed; the metallic
high pressure phase is B2 (CsCl-type, Pm3m, No. 221). Several crystal structures have
been suggested for the intermediate phase, including B16 (GeS-type, Pnma, No. 62), B27
(FeB-type, Pnma, No. 62), and B33 (CrB-type, Cmcm, No. 63) [91, 95, 96, 92, 93]. In
this work, we report results for the B33 structure, since it is the structure with the highest
symmetry and the free energy-volume curves are assumed to be very similar for all three
possible intermediate structures.

One of the first accurate measurements of the transition pressures of PbSe was reported
by Chattopadhyay et al. [90] using high pressure X-ray diffraction with synchrotron radia-
tion. At room temperature, they report transition pressures for B1→B33 of approximately
4.5 GPa and for B33→ B2 of approximately 16 GPa. A more recent room temperature
X-ray diffraction study by Streltsov et al. [91] reports a measurable persistence of the
B1 structure to at least 7.28 GPa, indicating that coexistence of the B1 and B33 phases
can be observed over a broad pressure range. Strong hysteresis was also reported by Li
et al. [92] who observed the onset of the B1 → B33 transition at 4.8 GPa and 2.9 GPa
in the forward and back directions, respectively, at room temperature. The onset of the
B33→ B2 transition was observed at 19.5 GPa in that study. Wang et al. [93] recently
reported a temperature-pressure phase diagram for the B1 and B33 structures, displaying
temperature dependent hysteresis and a positive Clapeyron slope: At room temperature
the onset of the B1→ B33 transition was found at 3.48 GPa, whereas at 1000 K the B33
→ B1 back-transition commenced at 6.12 GPa.

To our knowledge, available computational ab initio studies of the transition pressures
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of PbSe are restricted to density functional theory (DFT) calculations at zero temperature,
which ignore finite temperature effects. Furthermore, the published DFT results do
not present a consistent picture. Depending on the choice of DFT functional, reported
transition pressures range from 6.2 to 10.0 GPa for the B1 ↔ B33 transition and from
16.39 to 22.6 GPa for the B33↔ B2 transition [94, 95, 85, 92]. These different results
directly reflect the problem of choosing the best DFT functional for a given material.
Moreover, as pointed out by Skelton et al. [97], temperature plays an important role in
lead chalcogenides and needs to be considered in ab initio investigations to obtain accurate
results.

In this work, we present an ab initio study of the phase diagram of PbSe by employing
the random phase approximation (RPA) [98, 99] for the electronic contributions (i.e., at
T = 0K) in order to reduce the variability associated with different DFT functionals.
Applications of the RPA to solids are becoming increasingly popular, as RPA outperforms
DFT in systematic benchmark studies [100, 101, 18]. In addition, low complexity im-
plementations [69] of the RPA lend themselves to the study of large systems, including
the B33 phase of PbSe studied here, which involves 56 valence electrons per primitive
cell at a volume of approximately 200Å3. Nevertheless, the RPA is not exact and some
shortcomings have been identified, motivating the research of systematic corrections to
the RPA [18, 52, 102, 103, 104, 105, 106]. Still, as described in [107, 108] the corrected
RPA methods provide only small quantitative changes to transition pressures, hence we
expect no significant qualitative changes.

To treat finite temperature effects, we include phonon contributions to the free energy
in the quasi-harmonic approximation using the PBEsol functional [32]. Following the
strategy proposed in Ref. [109], the choice of PBEsol was made after comparing the
pressure-volume curves calculated with the PBE [31], PBEsol [32], and SCAN [33]
functionals with those obtained by RPA.

13.2 Theory and methods

At given pressure p and temperature T , the phase with the lowest molar Gibbs free energy g
is thermodynamically stable. To obtain the relations g(p,T) for the three crystal structures,
we first calculate molar Helmholtz free energies f (v,T) at several temperatures and molar
volumes v. Interpolations were performed using the Birch-Murnaghan equation of state
[22]. Gibbs free energies are then obtained via the Legendre transform

g = f + pv , p = −

(
∂ f
∂v

)
T
. (13.1)

Helmholtz free energies are calculated as the sum of electronic and phononic contri-
butions, f = fel + fphon, neglecting electron phonon interactions. More precisely, the
Born-Oppenheimer approximation was assumed for electronic degrees of freedom and the
quasi-harmonic approximation was used for lattice vibrations. The electronic contribu-
tions to the free energy were calculated within the RPA, as implemented in the Vienna ab
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13 Ab initio phase diagram of PbSe crystals calculated with the RPA

Table 13.1: Relaxed unit cells of the B33 phase (CrB-type, Cmcm, No. 63) for different
volumes, containing 4 Pb atoms and 4 Se atoms. For the relaxation, the PBEsol
functional was used with a 12 × 4 × 12 k-point mesh and a plane wave cutoff
of 700 eV.

Volume [Å3] lattice parameters [Å] Pb Wyckoff site Se Wyckoff site

168.37
a = 3.8441
b = 10.4987
c = 4.1719

4c, (0, 0.3826, 1/4) 4c, (0, 0.1270, 1/4)

195.68
a = 4.0622
b = 11.1456
c = 4.3218

4c, (0, 0.3792, 1/4) 4c, (0, 0.1300, 1/4)

222.98
a = 4.2415
b = 11.8782
c = 4.4258

4c, (0, 0.3717, 1/4) 4c, (0, 0.1342, 1/4)

Table 13.2: List of explicitly treated valence electrons, core radii rc, and energy cutoffs
ENMAX for the PAW potentials.

Element Valence rc [Å] ENMAX [eV]
for free energy calc. of electrons

Pb 5s2 5p6 5d10 6s2 6p2 2.3 317
Se 4s2 4p4 2.1 212

for free energy calc. of phonons
Pb 5s2 5d10 6s2 6p2 2.5 238
Se 4s2 4p4 2.1 212

initio simulation package (VASP) [57, 11, 69]. For the phonon contributions, we computed
harmonic force constants using large supercells of the B1, B33, and B2 phases, as illus-
trated in Fig. 13.1, with DFT and the PBEsol functional in VASP. Phonon free energies
were then calculated with the phonopy program [110] in the quasi-harmonic approxima-
tion, which is a reasonable approach for lead chalcogenides [97]. For the intermediate
B33 phase, relaxations of the unit cell shape and atom positions were performed for each
considered cell volume. Due to its superior computational speed, the PBEsol functional
was also used for these calculations. (Note, however, that RPA force calculations are
already implemented in VASP [63]). All (free) energies and volumes are reported in units
of meV and Å3 per PbSe, respectively.

170



13.3 Computational details

Table 13.3: Computational parameters for the electronic contribution to the free energy
(at T = 0K).

Phase k1 × k2 × k3 ENCUT [eV]
PBEsol

B1 8 × 8 × 8 550
B33 12 × 4 × 12 550
B2 17 × 17 × 17 550

RPA
B1 9 × 9 × 9 450
B33 9 × 3 × 9 450
B2 9 × 9 × 9 450

13.3 Computational details

13.3.1 The crystal structures of B1, B33, and B2

The construction of primitive cells for the B1 and B2 crystal lattices is straightforward,
since the volume is the only free parameter for these structures. For the B33 phase, the
unit cell geometry and atom positions depend on the volume of the cell. Therefore, we
performed lattice relaxations using the PBEsol functional at several volumes. As a starting
point we took the experimentally measured lattice parameters given in Table 1 in Ref. [93].
Structural parameters of relaxed structures at three selected volumes can be found in Tab.
13.1.

13.3.2 Pseudopotentials, basis set and k-point meshes

All VASP calculations are based on the frozen core approximation and the projector
augmented wave [10] method (PAW), using the potentials specified in Tab. 13.2.

The size of the plane wave basis is controlled by the kinetic energy cutoff (ENCUT flag
in VASP). The k-point mesh is specified by three numbers (k1 × k2 × k3), corresponding
to a uniform sampling of the Brillouin zone in each direction of the reciprocal lattice.
We applied the following criteria to determine the energy cutoff and the density of the
k-point mesh. For all electronic free energy calculations using DFT, we required the
total free energy to be converged to within 1 meV per PbSe. For all electronic free energy
calculations based on the RPA, we only required the free energy differences to be converged
within 1 meV per PbSe. The resulting energy cutoffs and k-point meshes can be found in
Tab. 13.3. For phonon calculations, we built supercells containing 128 atoms for B1 and
B2, and 144 atoms for B33, as illustrated in Fig. 13.1. To determine energy cutoffs and
k-point meshes, we required a convergence of the zero point energy to within 1 meV per
PbSe. Parameters used in phonon calculations can be found in Tab. 13.4.
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Table 13.4: Computational parameters for the phonon contributions to the free energy.
Supercells were constructed by replicating primitive cells ni times along the
respective lattice directions.

Phase k1 × k2 × k3 ENCUT n1 × n2 × n3 #atoms
B1 2 × 2 × 2 400 4 × 4 × 4 128
B33 2 × 1 × 2 500 3 × 2 × 3 144
B2 3 × 3 × 3 400 4 × 4 × 4 128

13.3.3 Error estimates

The transition pressure pXY of a transition from phase X to phase Y (at fixed temperature)
obeys the equation

pXY = −
fX(vX) − fY(vY)

vX − vY
, (13.2)

where vX and vY are the volumes of the phases X and Y at the transition pressure,
respectively. Hence, we can estimate the error δpXY of the transition pressure as

δpXY ≤
2δ f
|vX − vY |

, (13.3)

where δ f is the error of the free energy due to unconverged basis sets and k-point grids.
According to the convergence criteria described in Sec. 13.3.2, we can safely assume that
δ f ≤ 2meV. Furthermore, we obtain a latent volume larger than 2Å3 (see Fig. 13.4 and
Tab. 13.5) for both transitions. We thus estimate a computational error of

δpXY ≤
4meV
2Å3

≈ 0.3GPa (13.4)

for both transitions.

13.4 Results

13.4.1 Comparison of DFT functionals with RPA

To select a DFT functional for phonon calculations, we first calculated electronic free
energy-volume curves fel(v) using all three functionals and the RPA, as illustrated in
Fig. 13.2. Pressure-volume relations (i.e., equations of state) calculated from these data
via p = −∂ fel/∂v are shown in Fig. 13.3. Note that the calculated pressures originate
only from the electronic contribution to the free energy (at T = 0K). As evident from
Fig. 13.3, the PBEsol functional provides the overall best performance compared to RPA
results. Accordingly, we chose the PBEsol functional for all DFT calculations.
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Figure 13.2: Electronic free energy-volume curves (at T = 0K) for each phase calculated
using three different DFT functionals and the RPA. The curves are shifted
such that the minima of the free energy coincide for the B1 phase.

13.4.2 The temperature-pressure phase diagram

Total free energies f = fel + fphon as a function of volume and temperature are shown
in Fig. 13.4. The three crystal structures display conventional thermodynamic properties,
including positive thermal expansion coefficients and increasing pressure with increasing
temperature (at fixed volume). (Note that the latter implies that the entropy of each
phase decreases with decreasing volume.) Gibbs free energies as a function of T and
p are obtained from these data via the Legendre transform Eq. (13.1). The resulting
temperature-pressure phase diagram of PbSe crystals is shown in Fig. 13.5. At room
temperature, we find transition pressures of 4.6 ± 0.3 GPa for the B1 ↔ B33 transition
and 18.7 ± 0.3 GPa for the B33 ↔ B2 transition. We provide free energy and volume
differences of the B1 and B33 structures at three points along the coexistence curve in
Tab. 13.5. As evident from Fig. 13.5, the RPA significantly stabilizes the intermediate
B33 phase compared to PBEsol. The Clapeyron slope is clearly negative for both phase
transitions. Interestingly, this result is in contrast to the experimentally measured phase
diagram reported in Ref. [93], which shows broad hysteresis but suggests a positive
Clapeyron slope.

The negative slope can be explained by softer phonon modes in the high pressure phases.
In Fig. 13.6 we show the phonon density of states for all phases at volumes close to the
phase transitions at T = 300K. For the first transition (B1→B33, top panel in Fig. 13.6)
the average phonon frequencies of both phases are equal within 0.1%, explaining why
the transition pressure is largely independent of the temperature. The slightly negative
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curves (T = 0K) shown in Fig. 13.2.
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Figure 13.4: Free energy-volume curves of the B1, B33, and B2 structures, including
electronic (RPA) and phononic (DFT/PBEsol) contributions, at three selected
temperatures. This free energy-volume data set can also be found in the
Supplemental information.

Clapeyron slope dT
dp = ∆v

∆s < 0 signifies a larger entropy s for the B33 phase at higher
temperature. This is related to a larger density of states at low frequencies in the B33
phase, caused by the presence of rather soft acoustic modes in the layered B33 structure.
The transition from the B33 to the B2 phase is accompanied by a strong reduction of
the average phonon frequencies, which implies a larger entropy s of the B2 phase at
higher temperatures (bottom panel in Fig. 13.6). For this transition, the Clapeyron slope
is clearly negative. The softer phonon modes in the B2 phase are mainly related to an
increase of the nearest neighbor distances from 2.72Å (B33 at v = 44.37Å3) to 3.02Å
(B2 at v = 42.45Å3), as the B2 phase is more densely packed than the B33 phase.

13.5 Discussion and Conclusion

We have calculated the temperature-pressure phase diagram of three crystal structures
(B1, B33, B2) of PbSe using the ab initio method RPA. The RPA yields accurate free
energy differences and thus provides a more accurate phase diagram of PbSe, compared
to DFT results. By employing the RPA for the electronic free energy calculations at
zero temperature, the computational error associated with the choice of DFT functional is
reduced. The results presented in this work can serve as an accurate benchmark for the
development of classical force fields that enable dynamic studies of transition mechanisms.

We observe pronounced temperature effects for both transitions, with transition pres-
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13.5 Discussion and Conclusion

Table 13.5: Free energy and volume data of the B1 and B33 phases at coexistence. Here
pB1↔B33 = −∆ f /∆v is the transition pressure, v is the volume, ∆v = vB33 −

vB1 is the volume difference, and∆ f = fB33− fB1 is the free energy difference,
calculated as the sum of the electronic free energy difference ∆ fel and the
phonon free energy difference ∆ fphon.

no zero point vib. T = 0K T = 300K T = 800K
pB1→B33 [GPa] 5.0 5.0 4.6 3.9

B1 B33 B1 B33 B1 B33 B1 B33
v 53.16 50.92 53.30 51.06 53.99 51.90 55.66 53.51
∆v −2.24 −2.24 −2.09 −2.16
∆ fel 70 70 66 65
∆ fphon 0 0 −6 −12
∆ f 70 70 60 53
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Figure 13.7: Gibbs free energy differences ∆g per PbSe at T = 300K for the B1↔ B33
and B33↔ B2 transitions. The small gradients of ∆g (≈ 15meV/GPa) are
consistent with the experimentally observed hysteresis and broad coexistence
ranges.

sures changing by approximately 20% when the temperature is increased from zero to 800
K. Our calculated transition pressures at room temperature (4.6 ± 0.3 GPa and 18.7 ± 0.3
GPa) lie well within the experimentally reported ranges of 2.9 to 7.28 GPa for the B1
↔ B33 transition and 16 to 19.5 GPa for the B33 ↔ B2 transition. We find that the
transition pressures decrease with increasing temperature, in apparent contradiction with
experiments by Wang et al. [93]. However, we note that the scatter in the experimental
data is substantial, with a fairly broad region of coexistence, so that a careful reassessment
of the experimental data might be required.

While we have focused on PbSe in this work, it is instructive to consider the phase
behavior of the other lead chalcogenides, PbS and PbTe. At ambient pressure, these
materials display similar physical and electronic properties [111]; all three materials
crystallize in the B1 structure, with typical trends of increasing unit cell dimension and
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decreasing bulk modulus from PbS to PbTe. [97] The phase behavior at elevated pressure,
however, depends on the chalcogen. Recent measurements of electrical resistance suggests
a positive Clapeyron slope for the B1 to B33 transition of PbS. [112] PbTe, on the
other hand, does not transform to the B33 structure but adopts the B27 structure as an
intermediate. [113]

Experimental studies of structural phase transitions are often plagued by strong hys-
teresis. If transitions are initiated by nucleation followed by growth, classical nucleation
theory (CNT) provides a means for estimating hysteresis widths. According to CNT, the
free energy barrier to nucleation ∆Gnuc depends strongly on the molar free energy differ-
ence ∆g between the two phases, ∆Gnuc ∝ |∆g |−2. Small gradients of ∆g in the vicinity
of the transition point, as observed in this work (Fig. 13.7), thus result in large nucleation
barriers and pronounced hysteresis. Furthermore, coexistence of crystal structures is often
observed experimentally over a broad range of conditions, due to the powder-crystalline
nature of experimental samples and kinetic effects associated with grain boundaries and
other crystal defects. These experimental realities can complicate an accurate determina-
tion of coexistence curves and might well explain the discrepancy between this work and
Ref. [93]. We expect that our calculations will provide useful guidance for future experi-
ments. For instance, the observation of a negative Clapeyron slope dT

dp = ∆v
∆s < 0 signifies

a negative latent heat of transformation and a larger entropy s of the high-pressure phase.
More experiments are likely needed to clarify the thermodynamic details of structural
transformations in PbSe.
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