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Abstract

The Pauli equation was introduced by the Viennese physicist Wolfgang
Pauli in 1927. It describes spin-1/2-particles like electrons at velocities
which are much slower than the speed of light c, i.e. in the nonrelativistic
or Post-Newtonian regime. In this thesis we consider the Pauli equation
i~@tu = HPu where HP is the Pauli operator, its modeling and analytic
aspects. The Pauli equation can be obtained by either adding a spin term
to the one-particle magnetic Schrödinger equation and thereby turning
it into a two-component spinor equation or as the nonrelativistic limit
of the Dirac equation which is a four-component spinor equation. Here
we will focus on the first approach. For the Pauli operator some results
on self-adjointness exist and we will present important aspects in this
thesis. Concerning spectral properties we collect results on so called Lieb-
Thirring estimates. Moreover we will briefly present further topics in
the theory of the Pauli equation. First we will give a formulation of the
Pauli equation in terms of density matrices. Last we will introduce the
Pauli-Poiswell system which couples the first order in 1/c Pauli equation
self-consistently to the first order approximation of the Maxwell system.
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Zusammenfassung

Von Wolfgang Pauli im Jahr 1927 entdeckt beschreibt die Pauliglei-
chung Teilchen mit halbzahligem Spin (wie beispielsweise das Elektron)
die sich mit Geschwindigkeiten weit langsamer als die Lichtgeschwindig-
keit c bewegen. In der vorliegenden Arbeit betrachten wir sowohl verschie-
dene Herleitungen als auch analytische Aspekte dieser Gleichung. Einer-
seits kann die Pauligleichung von der magnetischen Schrödingergleichung
her konstruiert werden, indem man einen Spinterm � · B addiert. Da-
durch erhält man aus der Schrödingergleichung ein gekoppeltes System
aus zwei magnetischen Schrödingergleichungen. Andererseits resultiert die
Pauligleichung aus dem nichtrelativistischen Limes der Diracgleichung. In
der Literatur existieren einige Arbeiten über die Selbstadjungiertheit und
Spektrum des Paulioperators, von denen wir eine Auswahl vorstellen. Des
Weiteren befassen wir uns mit weiterführenden Themen, darunter eine
mögliche Dichtematrixformulierung der Pauligleichung. Zusätzlich wird
das Pauli-Poiswell-System vorgestellt, dass die Pauligleichung in konsi-
stenter Weise an die Nährung der Maxwellgleichungen in erster Ordnung
in 1/c koppelt.
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of support for this endeavor.

3





Contents

1 Introduction 5

2 Background from Physics 7

2.1 Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 The Principles of Quantum Mechanics . . . . . . . . . . . 7
2.1.2 The Schrödinger Equation . . . . . . . . . . . . . . . . . . 7
2.1.3 Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Bra-Ket notation . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Electromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Dirac and Klein-Gordon . . . . . . . . . . . . . . . . . . . . . . . 11

3 The Pauli equation: Derivation 14

3.1 Bottom-up: From Schrödinger to Pauli . . . . . . . . . . . . . . . 14
3.2 Top-down: From Dirac to Pauli . . . . . . . . . . . . . . . . . . . 15

4 The Pauli equation: Analysis 17

4.1 Self-adjointness and spectral properties of the magnetic Schrödinger
operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.1 Gauge freedom . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 Self-adjointness . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.3 Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Self-adjointness of the Pauli operator . . . . . . . . . . . . . . . . 22
4.3 Spectrum of the Pauli operator: Lieb-Thirring estimates . . . . . 27

4.3.1 Lieb-Thirring estimates for the (magnetic) Schrödinger
operator with external potential . . . . . . . . . . . . . . 27

4.3.2 Lieb-Thirring estimates for the Pauli operator . . . . . . . 32

5 Further topics 36

5.1 Quantum Statistical Mechanics: Density matrix formulation . . . 36
5.2 The Pauli-Poiswell system . . . . . . . . . . . . . . . . . . . . . . 40

A Functional Analysis 43

A.1 Self-adjoint operators . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.2 Lebesgue and Sobolev spaces . . . . . . . . . . . . . . . . . . . . 46

A.2.1 Lebesgue spaces . . . . . . . . . . . . . . . . . . . . . . . 46
A.2.2 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . 47

B Technical lemmata 48

B.1 Hardy’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 48
B.2 Diamagnetic inequality . . . . . . . . . . . . . . . . . . . . . . . . 48
B.3 Traces of Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

C Asymptotic analysis 49

4





1 Introduction

Since its discovery Quantum Mechanics has been a greatly successful theory
with many applications and a rich mathematical structure as its framework.
At the heart of nonrelativistic Quantum Mechanics lies the Schrödinger equa-
tion, named after Erwin Schrödinger (1887-1961) who discovered the equation
in 1925. Later, one was able to incorporate the theory of Special Relativity into
Quantum Mechanics which led to Relativistic Quantum Mechanics and Quan-
tum Field Theory. A central equation of QFT is the Dirac equation, named after
Paul Dirac (1902-1984) who discovered this equation only three years later than
the Schrödinger equation in 1928 and which describes spin-1/2-particles and
predicts antiparticles. For example see his seminal book on Quantum Mechan-
ics [4]. Today one views QFT as the fundamental theory describing three of
the four fundamental forces: Electromagnetism, strong force and weak force. A
unified description of all four fundamental forces including gravity has not been
found to this day.

Albeit not being fundamental in the strict sense Quantum Mechanics in
its nonrelativistic form still enjoys much interest since it is applicable in many
regimes, most notably at low velocities (for higher velocities corrections are nec-
essary as we shall see). Furthermore the mathematical formulation of Quantum
Mechanics and particularly the Schrödinger equation as a second order PDE
have been ’hot topics’ within mathematical research over the last decades. In
the hierarchy between the Schrödinger equation as a fully nonrelativistic and
the Dirac equation as a fully relativistic equation the natural question is to ask
whether we can make good approximations between the two equations. For
example a feature that the Schrödinger equation lacks is the description of spin.
The reason for this is that spin is coupled to the magnetic field which is a fun-
damentally relativistic notion. On the other hand the Dirac equation is rather
complicated in structure and is not very suitable for applications in the non-
relativistic regime. It would hence be very useful to find an equation which
describes spin but is not fully relativistic and simpler than the Dirac equation.
The equation that does the job is the famous Pauli equation which was discov-
ered by Wolfgang Pauli (1900-1958) in 1927. It is a system of two magnetic
Schrödinger equations which are coupled via a spin term which involves the
magnetic field. The two equations correspond to the two possible spin states of
a spin-1/2-particle which are fermions.

In recent years one has proposed a further generalization of the Pauli equa-
tion in order to make its coupling to the electromagnetic field more accurate.
As said the magnetic field is relativistic in nature resulting from the fact that
the speed of propagation of the field is finite. Consider also Einsteins paper [5].
When coupling the Dirac equation to Maxwell’s equations (governing the elec-
tromagnetic fields) we have two relativistic equations. If we want to switch to
a first order in 1/c approximation we have to take the electromagnetic coupling
into account and approximate it up to first order. This leads to the Pauli-
Poiswell system where the name Poiswell stems from the Poisson system (at the
level of the Schrödinger equation) and the Maxwell system (at the level of the
Dirac equation).

Goal of this thesis is to give an overview on the mathematical aspects of
the Pauli equation respectively the Pauli operator. We will introduce the mag-
netic Schrödinger operator first as it provides the origin of the Pauli equation
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in the bottom up approach. Hence we will give some results on self-adjointness
here as a warm up. For the full Pauli operator the main focus lies on collect-
ing some crucial theorems on self-adjointness where very di↵erent mathematical
tools have been applied. For example self-adjointness in [42] is proven via the
quadratic form of the Pauli operator and showing its relative form boundedness.
On the other hand the proof of self-adjointness in [8] is done by considering the
Birman-Schwinger kernel of the Pauli operator and thereby showing bounded-
ness from below, implying the existence of a self-adjoint extension. The other
major focus lies on the estimates on the negative eigenvalues which are com-
monly known as Lieb-Thirring estimates. Here we also consider multiple cases
with di↵erent conditions on the magnetic field. The theory on spectral theories
of Pauli operators is rather well developed with some open questions left. Here
we refer to the overview by Erdős in [6].

The structure of the thesis is as follows. In the beginning we will present the
most basic facts about the physical background where the principles of Quantum
Mechanics, Electromagnetism and the Dirac equation are motivated. Readers
who are not familiar with physics will be directed to the suitable literature. The
second part will motivate the Pauli equation where we give two approaches to
the Pauli equation, one starting with the magnetic Schrödinger equation and
adding a spin term, the other starting with the Dirac equation and performing
some nonrelativistic limit. The third part is devoted to analytical results of the
Pauli equation. We deal with questions of self-adjointness, spectrum and well-
posedness as well as certain estimates on the eigenvalues, called Lieb-Thirring
estimates. A final part will give an outlook on the already mentioned Pauli-
Poiswell system and a possible density matrix formulation. Technical definitions
and lemmata can be found in the appendix. A glossary of frequently used
symbols can be found at the very end of the thesis.
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2 Background from Physics

2.1 Quantum Mechanics

2.1.1 The Principles of Quantum Mechanics

Being a fundamentally di↵erent theory than Classical Mechanics, Quantum Me-
chanics is based on di↵erent ’axioms’ which set the stage for the mathematical
theory behind. Most important is the setting of functional analysis and there
most notably the theory of unbounded (self-adjoint) operators. In Quantum
Mechanics the framework is no longer R ⇥ R3 where physical quantities are
described by real- or vector-valued functions but rather a possibly infinite di-
mensional (complex) Hilbert space H on which observables are represented by
operators acting on vectors which correspond to physical states. The eigenvalues
of these operators are considered to be the possible outcomes of a measurement.
For example the outcomes of a measurement of spin in z-direction correspond
to the eigenvalues +~/2 and �~/2 of the spin operator Ŝz. Hence one demands
observables to be self-adjoint operators which is reasonable to assume since the
spectrum of self-adjoint operators is contained in the real line. Therefore the
question that pops up frequently in Quantum Mechanics and its mathematical
formulation is whether a given operator is self-adjoint. For a more in-depth
introduction to the physical aspects of Quantum Mechanics see for example [39]
or [38]. For mathematical aspects of Quantum Theory there are excellent books
by Teschl [44] and Hall [14] which we will refer to frequently throughout the
text.

Besides the axiom of (essentially) self-adjoint operators representing observ-
ables on a suitable Hilbert space the other principles of Quantum Mechanics
are that a) physical states are represented by normed vectors | i 2 H on which
the observables act, b) the expectation value E| i(A) of an observable A 2 H if
the system is in a state | i is real and given by h , A i = hA , i where h·, ·i
is the inner product on H and c) the time evolution of a state | (t)i is given
by a strongly continuous one-parameter unitary group U(t) where the gener-
ator of the group corresponds to the energy of the system. In the following
section we will discuss the origins of the equation governing the time evolution,
the Schrödinger equation. Subsequently we will discuss the principles of
spin in Quantum Mechanics and define a common notation in physic, the Dirac
notation.

2.1.2 The Schrödinger Equation

The Schrödinger equation is the central equation of nonrelativistic Quantum
Mechanics. Central in the sense that it is the equation of motion for any quan-
tum system at velocities far slower than the speed of light. However, unlike in
Classical Mechanics, the Schrödinger equation does not describe trajectories of
particles in the sense that its solutions are real-valued functions of t giving the
position of a particle at time t. Instead it deals with wave functions which
are associated to quantum particles. The wave function  is a complex-valued
function on R ⇥ R3 and it merely gives the probability of finding a quantum
particle at a given time t at a given spatial point x by Born’s rule:

P(particle is at(x, t)) = | (x, t)|2 =  (x, t) ·  (x, t). (2.1)
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We can see that the expression | (x, t)|2 should interpreted as a probability
density. Therefore we have to ask for some kind of normalization given by

Z

R3

| (x, t)|2dx = 1. (2.2)

Hence it is reasonable to assume the wave functions to be normalized vectors1

in L2(R3). This is in fact the most basic example of an explicit realization of
the Hilbert space where the physical system is built upon.

Let us now turn to the equation governing wave functions. In Classical
Mechanics the energy of a particle is described by

E =
p2

2m
+ V. (2.3)

Here p is the momentum, m is the mass and V is some potential. This expres-
sion is also the Hamiltonian function H(p, x) from which we can deduce the
equations of motion. As observable quantities are represented by operators on
the Hilbert space H of the wave functions momentum and energy are found to
be represented by the di↵erential operators

p̂ := �i~r (2.4)

Ê := i~@t. (2.5)

The replacement above is commonly known as canonical quantization and
for details we refer to standard books, e.g. [38]. From this however it is not hard
to get the Schrödinger equation. The idea is to use the energy from equation
(2.3), plug in the operators from (2.5) and let them act on a wave function  :

i@t = �i
~
2m
� + V  . (2.6)

It should be noted that we made use of the identity r ·r = �. Here V is the
multiplication operator MV on H. This equation is the famous Schrödinger

equation.

2.1.3 Spin

Spin is one of the phenomena in Quantum Mechanics that has no analogue in
Classical Mechanics. It is a fundamental property of particles: There are parti-
cles with integer spin (Higgs boson, photon, etc.) which are called bosons and
particles with half-integer spin like the electron and which are called fermions.
It is to be thought of as some kind of intrinsic angular momentum. However
thinking in classical terms does not help understanding spin physically so this
expression can only be some help in the sense that spin is some kind of angular
momentum in a mathematical sense as it obeys the angular momentum alge-
bra. Historically spin was discovered by Otto Stern and Walther Gerlach in
their famous Stern-Gerlach experiment. They set up a strongly inhomoge-
nous magnetic field and sent a collimated beam of neutral silver atoms through.

1
More correctly, they are considered as rays in a projective Hilbert space due to the fact

that wavefunctions di↵ering by a constant phase ei✓ are physically equivalent.
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Now neutral particles can only couple to the magnetic field if they have some
magnetic moment µ. Classically the force acting on such a particle is given by

~F = r(µ · ~B). (2.7)

where ~B is the magnetic field. If the z-direction is the dominant direction we
can approximate this by

~F = µz

@Bz

@z
~ez (2.8)

where the subscript z denotes the z-component of the vector and ~ez is the unit
vector in z-direction. Classically we would expect from a sample of neutral
silver atoms that the value of µz is randomly distributed and hence we would
observe a line in z-direction on a screen. However the outcome observed were
two distinct dots. This led to the discovery that the magnetic moment is in fact
not continuously distributed but quantized and the physical observable which
is responsible for that behavior is spin.

The mathematical description of spin is based on the Lie algebra su(2) and
its representations. The operators corresponding to the spin in each spatial
directions are

Ŝi :=
~
2
�i (2.9)

where �i is the ith Pauli matrix and i ranges from 1 to 3. Explicitly they are
given as

�1 =

✓
0 1
1 0

◆
�2 =

✓
0 �i
i 0

◆
�3 =

✓
1 0
0 �1

◆
. (2.10)

Later we will use an elegant shorthand notation defined as follows:

� :=

0

@
�1
�2
�3.

1

A (2.11)

This expression is to be interpreted as a vector of matrices.

2.1.4 Bra-Ket notation

In physics one often uses a di↵erent notation than in mathematics which is
known as Braket notation or Bra-Ket notation or Dirac notation. If H is
the Hilbert space of the quantum system then a vector, i.e. an element of H is
called a ket and denoted by |ui. On H we can define continuous (i.e. bounded)
linear functionals which form another Hilbert space, the dual H⇤. The elements
of H⇤ are called bras and denoted by hv|. By the Riesz representation theorem
we can find a unique uv 2 H for any functional v 2 H

⇤ such that v(w) = hw, uvi

for all w 2 H. This justifies the notation

v(u) = hv, ui =: hv|ui (2.12)

if we denote the functional v and the element uv by the same letter. There is a
little subtlety in this notation since the inner product is not linear in both slots
but sesquilinear. It depends on the convention which of both is chosen to be
the linear part. In physics one often chooses linearity in the second rather than
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the first slot in order to make sense out of the notation above. Furthermore if
A is an operator on H and u 2 H then we have the functional hv| which sends
Au to hv|Aui. In Dirac notation we would have

hv|Aui = hv|A |ui . (2.13)

It is then equivalent to think of hv| acting on A |ui or to think as hv|A acting
on |ui. Note that this interpretation is only well-defined if A is self-adjoint. We
can also form the expression |uihv| which sends an element |wi to |ui hv|wi. i.e.
a map uhv, ·i from H to H such that

w 7! hv, wiu. (2.14)

2.2 Electromagnetism

Classical electromagnetism is a classical field theory, the fields being the electric
field E and the magnetic field B. They are governed by Maxwell’s equations

which we will present in the following section. Discovered by Maxwell in 1864
the four equations governing the (time dependent) electric and the magnetic
field read

r · E =
1

✏0
⇢ r⇥ E +

@B

@t
= 0 (2.15)

r ·B = 0 r⇥B � µ0✏0
@E

@t
= µ0J (2.16)

where ⇢ is the charge density, J is the current density, ✏0 is the electric field
constant (or vacuum permittivity) and µ0 is the magnetic field constant (or
vacuum permeatbility). The speed of light c is related to ✏0 and µ0 by the
formula

c =
1

p
µ0✏0

. (2.17)

Rearranging and using properties of the di↵erential operators rotation, gradient
and divergence leads to wave equations for the electromagnetic fields:

�
1

c2
@2E

@t2
+r

2E = 0 (2.18)

and

�
1

c2
@2B

@t2
+r

2B = 0. (2.19)

It is possible to move to a potential formalism in the sense that one introduces
potential fields and defines the electric and the magnetic field as some deriva-
tive of them. From the divergence freedom of B we obtain the existence of the
vector potential A such that B is the curl of A:

r⇥A = B. (2.20)

Rewriting the second equation in (2.15) with the help of (2.20) we obtain

r⇥

✓
E +

@A

@t

◆
= 0. (2.21)
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This means that E + @A/@t is the gradient of a scalar potential field � and we
have

E = r��
@A

@t
. (2.22)

We will make use of those potentials frequently and in section 5.2 we will formu-
late Maxwell’s equations as wave equations for the potentials (choosing Lorentz
gauge). In fact the magnetic Schrödinger equation and the Pauli equation are
based on the magnetic Schrödinger operator which is given by

(�i~r�
q

c
A)2. (2.23)

2.3 Dirac and Klein-Gordon

For this section we heuristically present the Dirac equation. For an extensive
mathematical treatment of the Dirac equation see [45]. For a physical intro-
duction and derivation see [12]. In Special Relativity (SR) the relation between
energy and momentum is di↵erent than in Classical Physics. It is given by

E2 = p2c2 +m2c4. (2.24)

Expanding the square root of the RHS in powers of c2 gives the famous expres-
sion for the rest mass as the leading term:

E = mc2 + T + · · · (2.25)

where T is the relativistic kinetic energy. We will take (2.24) as starting point
for the Dirac equation similarly to the Schrödinger equation above.

In SR space and time are considered to be part of one mathematical object
called spacetime which is a four dimensional Minkowski space M4, i.e. a flat
Lorentzian manifold of dimension four. Hence the central objects are four-

vectors whose components will be denoted by a greek superscript ranging from
0 to 3:

xµ, µ = 0, 1, 2, 3. (2.26)

The four-momentum pµ is given by

p = (p0,p) (2.27)

where p0 = E is the relativistic energy and p denotes the usual three-momentum.
When transitioning to Quantum Mechanics we replace pµ by the derivative
i~⌘µ⌫@⌫ . Similarly to how we obtained the Schrödinger equation we will use the
energy-momentum relation (2.24) and the operator for pµ. We then get

pµpµ �m2c2 = 0 (2.28)

where the Einstein summation convention is understood, i.e. pµpµ =
P3

µ=0 p
µpµ

and by replacing pµ we obtain

(�~2@µ@µ �m2c2) = 0. (2.29)

This equation is called Klein-Gordon equation. It his however not the right
equation for spin-1/2-particles for the simple reason that it fails to properly
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describe experiments, e.g. it does not predict the energy levels of the hydrogen
atom correctly. This is because electrons are spin- 12 -particles and the Klein-
Gordon equation in fact only describes particles with spin 0 or otherwise put
does not include spin at all. Therefore we have to stretch out a little bit in
order to find the right equation. The trick is to factorize the energy-momentum
relation (2.28):

pµp
µ
�m2 = (��p� +m)(��p� �m) = 0. (2.30)

Multiplying out the RHS gives

pµp
µ
�m2 = ����p�p� �m(�� � ��)p� �m2. (2.31)

Comparison of the coe�cients yields the following conditions:

�� = �� (2.32)

pµp
µ = ����p�p�. (2.33)

These requirements can however not be fulfilled by numbers. It was Dirac’s
idea to postulate the objects �µ to be 4 ⇥ 4 matrices. In fact the conditions
define a Cli↵ord algebra for which the minimal dimension is four. There are
higher dimensions for which the Dirac equation would be realizable. Then we
can express the conditions above in the anticommutation relation

{�µ, �⌫} = 2⌘µ⌫1. (2.34)

In standard notation the Dirac matrices are given by

�0 =

✓
1 0
0 �1

◆
�i =

✓
0 �i

��i 0

◆
. (2.35)

where �i, i = 1, 2, 3 denote the Pauli matrices. From (2.30) we deduce the
equation

�µpµ �mc = 0 (2.36)

and by substituting pµ by i~@µ we obtain

(i~�µ@µ �mc) = 0. (2.37)

This equation is called Dirac equation. Here,  does not denote a complex-
valued wave function as above but an object called Dirac spinor. It is a four
dimensional vector consisting of four individual wave functions:

 :=

0

BB@

 1

 2

 3

 4.

1

CCA (2.38)

In fact it can be considered as an element of C4
⌦ L2(R3) or simply (L2(R3)4.

Let us explain how the Dirac equation is to be interpreted physically. The
first two components of the Dirac spinor  can easily seen to represent the wave
functions for an electron with spin up (+ 1

2 ) and for an electron with spin down
(� 1

2 ). The latter two components however pose a problem as it is not a priori
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clear what kind of physical situation they should represent since the energy of
those states is negative. Dirac’s original idea was to postulate an infinite ’sea’ of
electrons which fill up all the states of negative energy represented by the latter
two components. Due to various metaphysical reasons this interpretation is far
from satisfactory. Feynman and Stückelberg (their original papers on the subject
are [10] and [43]) proposed a fundamentally di↵erent interpretation which is
accepted today saying that the two lower components represent a di↵erent kind
of particle, the antiparticle of the electron, called positron.
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3 The Pauli equation: Derivation

The Schrödinger equation is not a relativistic equation as we have seen above and
it fails to include spin. Moreover, magnetic fields have not been incorporated
to the Schrödinger equation either. In other words the regime within which
the non-relativistic Schrödinger equation works is that of velocities far below c
whereas the Dirac equation is a ’fully’ relativistic equation and includes spin.
This points at a certain hierarchy between the equations and the Pauli equation
is somewhat in the middle between Dirac and Schrödinger. In fact it is a O(1/c)-
correction to the Schrödinger equation. Higher order corrections, e.g O(1/c2)
include the Darwin term and the Zitterbewegung. For details consider the paper
by Mauser [32]. More precisely we search for an equation of Schrödinger type
which includes the description of spin but works in the nonrelativistic regime.
There are many ways to model the Pauli equation and we will present two rather
heuristic approaches before delving deeper into the mathematical questions.

3.1 Bottom-up: From Schrödinger to Pauli

If one wants to incorporate the interaction of quantum particles with an elec-
tromagnetic field it seems reasonable to take the Schrödinger equation for a free
particle and add some suitable interaction term with the electromagnetic field in
question. The resulting equation is called magnetic Schrödinger equation.
Let us state again the Schrödinger equation with general Hamiltonian H:

i~@tu = Hu. (3.1)

The classical Hamiltonian for a point particle with charge q is given by

H(x, p, t) =
1

2m

⇣
p�

q

c
A(x, t)

⌘2
+ q�(x, t). (3.2)

As before, switching to quantum theory is done by replacing p ! �i~r, A ! Â
and � ! �̂. We make the assumption that Â and �̂ are just multiplication
operators. This gives

H =
1

2m

⇣
�i~r�

q

c
A(x, t)

⌘2
+ q�(x, t) (3.3)

and hence the magnetic Schrödinger equation reads

i~@tu =
1

2m

⇣
�i~r�

q

c
A(x, t)

⌘2
u+ q�(x, t)u. (3.4)

It is important to emphasize at this point that this is a scalar equation in the
sense that its solutions are scalar wave functions. The addition of spin will
naturally lead to a redefinition of the wave function u which will be done below.
Of course if we turn o↵ any electric or magnetic fields (i.e. setting A = 0 and
� = 0) we obtain the ordinary Schrödinger equation for a free particle. In the
literature one often refers to the term

⇣
�i~r�

q

c
A(x, t)

⌘2
(3.5)

as the magnetic Schrödinger operator. Now as pointed out before spin is
not incorporated in this description. Extending the Schrödinger equation to a
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system sensible to spin comes down to adding some sort of coupling term of the
magnetic field B with the spin operators �i. As spin- 12 yields two states (up
and down) we expect to obtain to equations coupled by �i. In fact we will add
the famous Stern-Gerlach term which is defined as

�
q~
2mc

� ·B. (3.6)

where � is the vector of Pauli matrices from above. The term � · B explicitly
reads:

� ·B = B1�1 +B2�2 +B3�3. (3.7)

Adding (3.6) to (3.4) is only possibly if u is a 2-spinor

u(x, t) =

✓
u1(x, t)
u2(x, t)

◆
(3.8)

we obtain

i~@tu =
1

2m

⇣
�i~r�

q

c
A(x, t)

⌘2
u+ q�(x, t)u�

✓
q~
2mc

� ·B

◆
u. (3.9)

which is the Pauli equation. Again, we make clear that the equation is no
longer a scalar equation but a vector equation, i.e. a coupled system. As we
can see this equation is closely related to the magnetic Schrödinger equation
for two reasons: If there was no magnetic field involved we would have two
decoupled magnetic Schrödinger equations. In the case where B 6= 0 we have
additional terms involving the components of B, i.e. Bi which can be viewed
as a perturbation of the system. Furthermore the two equations for u1 and u2

are coupled if B1, B2 6= 0. In the case B1 = B2 = 0 and B3 6= 0 the system is
however decoupled since �3 is diagonal. If we write equation (3.9) explicitly we
have

i~@tu1 =
1

2m

⇣
�i~r�

q

c
A
⌘2

u1 + q�u1 �
q~
2mc

(B3u1 + (B1 � iB2)u2) (3.10)

i~@tu2 =
1

2m

⇣
�i~r�

q

c
A
⌘2

u2 + q�u2 �
q~
2mc

(�B3u2 + (B1 + iB2)u1) .

(3.11)

3.2 Top-down: From Dirac to Pauli

Alternatively one obtains the Pauli equation as the first order in 1/c approxi-
mation to the Dirac equation which we already discussed. The rigorous nonrela-
tivistic limits of the Dirac equation has been extensively studied in the literature.
A first rather heuristic approach was done by Foldy and Wouthuysen in [11].
Subsequent works include the papers by Hunziker [16], White [47], Mauser [31]
and [32], Bechouche et al. [1], Masmoudi and Mauser [30] and Mauser and
Selberg [33]. The idea is to regard the inverse of the speed of light c�1 as a
parameter which one can send to zero and do asymptotic analysis of the Dirac
equation with, hence the name nonrelativistic. However we are not interested
in the rigorous justification of the limit wherefore we will follow the heuristic
explanation in [17] and [20]. The method employed in order to couple the Dirac
equation to an electromagnetic field is commonly called minimal coupling in
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the physics literature. It boils down to replacing the momentum operator i@µ
by i@µ � qAµ. The advantage of this coupling is that it leaves the modified
Dirac equation gauge invariant under the common gauge transformations of  
and Aµ. The electromagnetic Dirac equation reads

(i�µ@µ � q�µAµ �m) = 0. (3.12)

For the moment we will rewrite equation (3.12) in a more explicit way:

i@t = (↵ · (�ir� qA) + �m+ q�) (3.13)

where � = �0 and

↵k =

✓
0 �k
�k 0

◆
. (3.14)

Now we split the four spinor  into two two spinors ' and � such that

 =

✓
'
�

◆
. (3.15)

Together with this definition we obtain two equations:

i@t' = � · (�ir� qA)�+ q�'+m' (3.16)

i@t� = � · (�ir� qA)'+ q���m�. (3.17)

Introducing the new spinors '̃ exp(�imt) := ' and �̃ exp(�imt) := � we arrive
at

i@t'̃ = � · (�ir� qA) �̃+ q�'̃ (3.18)

i@t�̃ = � · (�ir� qA) '̃+ q��̃� 2m�̃. (3.19)

Now the terms q��̃ and i@t�̃ are of second order in the parameter ✏ = c�1 and
we can neglect them in a first order approximation. Whence

�̃ ⇡
1

2m
� · (�ir� qA) '̃⌧ '̃ (3.20)

That is in the nonrelativistic limit the lower antiparticle spinor components
become very small with respect to the upper particle components. We see that
the particle-antiparticle pair is a relativistic e↵ect. If we use this approximation
in the equation for the upper component we obtain

i@t'̃ =

✓
(� · (�ir� qA))2

2m
+ q�

◆
'̃. (3.21)

This can be rewritten in an elegant way using the identity

(� · (�ir� qA))2 = (�ir� qA)2 � q� ·B (3.22)

which can be verified directly and uses the so called Pauli vector identity. We
then have

i@t'̃ =
1

2m
(�ir� qA)2'̃+ q�'̃�

q

2m
� ·B'̃ (3.23)

which we recognize as the Pauli equation.
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4 The Pauli equation: Analysis

We have seen in the previous chapter that the Pauli equation arises from the
magnetic Schrödinger equation by adding some spin coupling term. This also
means that the Pauli equation is closely related to the magnetic Schrödinger
equation. In fact they have a very similar structure. The Hamiltonian for the
magnetic Schrödinger equation Hms is of the form

Hms = (�ir�A)2 + � (4.1)

for the vector potential A and the scalar potential �. The Pauli Hamiltonian
HP is defined by

HP := Hms1+ � ·B. (4.2)

Here we see that the main di↵erence is the additional coupling term to the mag-
netic field B where B is defined as the curl of A, i.e. B = curlA = r⇥ A and
without the magnetic field we would have two decoupled magnetic Schrödinger
equations. Therefore we will first try to understand self-adjointness of the mag-
netic Schrödinger operator before turning to the Pauli equation.

4.1 Self-adjointness and spectral properties of the mag-

netic Schrödinger operator

4.1.1 Gauge freedom

Suppose that A is a smooth potential, i.e. A 2 (C1(Rd))d. We will discuss how
the gauge freedom of A a↵ects the magnetic Schrödinger equation. To this end
take two vector potentials A1, A2 2 (C1(Rd)d which have the same curl, i.e.

r⇥A1 = r⇥A2 = B. (4.3)

Then of course the curl of their di↵erence vanishes:

r⇥ (A1 �A2) = 0 (4.4)

which means that the function A1 � A2 is proportional to the gradient of a
smooth function � 2 C1(Rd):

A1 �A2 = r�. (4.5)

Then the expressions (�ir�Aj), j = 1, 2 are unitarily equivalent to each other
with the unitary operator being exp{i�} such that

ei�(�ir�A1)e
�i� = (�ir�A2). (4.6)

To see this apply (�ir�A2) to e�i�u and use (4.5). Moreover,

ei�Hms(A1)e
�i� = Hms(A2). (4.7)

This gives us the important insight that the equation only depends on the
magnetic field (which is the actual physical observable) and not on the particular
choice of the vector potential as long as it satisfies (4.3). As long as this holds the
magnetic Schrödinger operators are unitary equivalent under a multiplication
operator (and hence have the same spectral properties). We will return to the
question of the spectrum later.
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4.1.2 Self-adjointness

We will look at expressions of the form

Hmsu =
�
(�ir�A)2 + �

�
u (4.8)

where � is considered as a multiplication operator M�. Let us rewrite this
equation:

Hmsu =
�
��+ ir ·A+ 2iA ·r+A2 + �

�
u (4.9)

where of course the expression A ·r stands for
P

d

j=0 Aj(x)@j . The factor 2 in
front of A ·r shows up because the product rule has to be applied to the term
Au. Thus we can view the term

W := ir ·A+ 2iA ·r+A2 + � (4.10)

as some sort of perturbation of the Laplacian �� and try to apply the standard
tools like Kato-Rellich. For instance let us suppose that V , A2 and (r ·A) are
bounded operators which can be ensured by demanding them to be bounded
functions in L2. We then have

kWuk2  C
�
kuk2 + kruk2

�
= C

�
kuk2 + hu,��ui

�
(4.11)

 C
�
kuk2 + kukk�uk

�
 ✏k�uk2 + C✏kfk

2. (4.12)

for any ✏ with suitable C✏ � 0 and for all u 2 D(��) = H2(Rd). The last
step is due to the fact that 2ab  ✏a2 + 1

✏
b2 for a, b � 0.. Then W is relatively

bounded with respect to �� and by Kato-Rellich Hms = �� + W is self-
adjoint on D(��). Of course those conditions are rather strict as they exclude
e.g. Coulomb-like potentials for �. In order to include Coulomb-like potentials
we make the following assumption for d � 3:

�(x)  C

✓
1

|x|+ 1

◆
, C 2 R. (4.13)

Then we have the following theorem, see [46]:

Theorem 4.1. Let A : Rd
! Rd be measurable, A2 and r · A bounded and

� : Rd
! R be measurable such that (4.13) holds. Then the operator W , defined

in (4.10) is relatively bounded with respect to �� on H2(Rd) with relative bound
0. In particular Hms = ��+W is self adjoint on H2(Rd) (and essentially self-
adjoint on C1

0 (Rd)).

Proof. The proof is similar to the considerations above. The only problem is
the potential term. Let u 2 D(��) = H2(Rd). If we have

Z
|u(x)�(x)|2dx = C

Z ����
u(x)

|x|
+ u(x)

���� dx  C

✓Z
|u(x)|2

|x|2
+

Z
|u(x)|2dx

◆

(4.14)
the term we have to worry about is the term involving |x|�2. By Hardy’s
inequality for u 2 C1

0 (Rd) it holds that for d � 3

Z
|u(x)|2

|x|2
dx 

4

(d� 2)2

Z dX

j=1

|@ju(x)|
2dx. (4.15)
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Hence we may estimate the |x|�2-term by the first derivative of u which enters
the kruk term. Note that albeit holding only for functions in C1

0 (Rd) the
reasoning works fine since C1

0 (Rd) is a dense subset of H2(R). By the same
arguments as above we have

kWuk2  ✏k ��uk2 + C✏kuk
2 (4.16)

and hence have established the right ��-bound for W and can conclude by
Kato-Rellich.

We can improve this result further by just demanding decay at infinity for
the terms in W . The crucial point of the theorem is that decay at infinity
implies relative compactness of W with respect to ��.

Theorem 4.2. [46]. Let d  3. Let A be bounded and r ·A,� 2 L2
loc(Rd). If

|A(x)|+ |(r ·A)(x)|+ |�(x)| ! 0 as |x| ! 1 (4.17)

then W is relatively compact with respect to ��.
In particular Hms = ��+W is essentially self-adjoint on C1

0 (Rd) and self
adjoint on H2(Rd). Moreover �ess(Hms) = [0,1) and there are at most count-
ably many eigenvalues of finite multiplicity below zero which can only accumulate
at zero.

Proof. Let �r be the characteristic function of the ball of radius r centered at
zero, i.e. B0(r). Recall that the operators I : H2(Rd) ! L2(Rd), If = f and
@j : H2(Rd) ! L2(Rd) are bounded. Whence

k(I � �r)WkL(H2(Rd),L2(Rd) ! 0 as r ! 1. (4.18)

Hence �rW converges to W in the operator norm topology and we can prove
our claim by showing that �rW is ��-compact. In �rW there are two types
of terms: The first type are those of a multiplication by a function q 2 L2(Rd).
Recall that the operator q is relatively compact with respect to�� if qR��(z) =
q(��+ zI)�1 is compact for some z 2 ⇢(��). This is the case since for d  3
the operator q(��+ I)�1 is Hilbert-Schmidt and hence compact.

The second type of operator is of the form u 7! qru where q is bounded
(recall that we are assuming that A is bounded). Here we have

kqruk  Ckruk  ✏k�uk+ C✏kuk (4.19)

whence this operator has ��-bound zero and thus already ��-compact. This
finishes the proof.

4.1.3 Spectrum

In section 4.1.1 we have already mentioned spectral properties. The following
theorem [3] gives conditions on when the magnetic Schrödinger operator and
the Pauli operator have the same essential spectrum.

Theorem 4.3. Let A 2 (C1(R3)3 and let |B(x)| ! 0 as |x| ! 1. Suppose �
is H0 := ��-compact where �� is self-adjoint in L2(R3). Then

�ess(Hms) = �ess(HP ) = [0,1). (4.20)
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Proof. The proof, as presented in [3] consists of five steps. First one reduces the
case to � = 0 by the use of the diamagnetic inequality B.1. Then one shows that
the spectrum is contained in [0,1). In steps 3 to 5 one uses Weyl’s criterion
to determine the essential spectrum. The idea is to use the gauge freedom of
A to choose a suitable Weyl sequence. This will also make use of the fact that
B ! 0 at infinity. In the proof we will use the notation H(A,�) to denote the
dependence of on A and � of the Hamiltonian.

Step 1: � and � ·B are H(A, 0)-compact perturbations. To see this use the
diamagnetic inequality

���e�tH(A,0)u
���  e�tH0 |u|, t 2 R, u 2 H (4.21)

to show
|� (H(A, 0) + I)�1 u|  |�| (H0 + I)�1

|u| (4.22)

which ensures that � must also be H(A, 0)-compact (since it is H0-compact
by assumption). This follows from the definition of relative compactness A.5
and A.11. By Weyl’s theorem A.6 if � is a H(A, 0)-compact operator the per-
turbed operator H(A, 0) + � = H(A,�) has the same essential spectrum as the
unperturbed operator H(A, 0). Hence

�ess(H(A, 0)) = �ess(H(A,�)). (4.23)

The case for the Pauli operator follows easily since |� ·B| ! 0 as |x| ! 1 and
hence is also a H(A, 0)-compact perturbation.

Step 2: Evidently H(A, 0) is the square of �ir � A and hence a positive
operator from which we deduce that the spectrum must be contained in the
nonnegative reals, i.e.

�(H(A, 0)) ✓ [0,1). (4.24)

In the next three steps we will show the other inclusion, i.e. that [0,1) ✓

�(H(A, 0)) by using Weyl’s theorem.
Step 3: (Weyl’s theorem) The proof uses a slight variant of Weyl’s theorem

A.6. Let A be self-adjoint and nonnegative, i.e. A � 0. Then z 2 �ess if there is
an orthonormal sequence un converging weakly to zero such that k(A+I)�1(A�

zI)unk ! 0.
Step 4: In fact this step is a lemma in its own right:

Lemma 4.4. There is a sequence {xn} 2 R3 with |xn| ! 1 as n ! 1 and a
sequence {An} of vector potentials such that

r⇥An = B 8n 2 N (4.25)

and there is a C > 0 such that

sup
|x�xn|n

|An(x)| 
C

n
. (4.26)

Proof. Since B decays at infinity by assumption we have the following estimate
for suitable C:

sup
|x�xn|n

|B(x)| 
C

n2
. (4.27)
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Now define a sequence of vector potentials as follows: Let An(x) = (tn, sn, 0)
with

tn(x) := �

yZ

yn

B3(x, t, 0)dt+

zZ

zn

B2(x, y, s)ds (4.28)

and

sn(x) := �

zZ

zn

B1(x, y, t)dt. (4.29)

Then it is easily checked that r ⇥ An = B using r · B = 0 (by Maxwell’s
equations). This proves the claim by the estimate on B in equation (4.27).

Step 5: Now we have all the ingredients to construe the Weyl sequence
which by step 3 proves the claim. Recall that we want a sequence {un} ⇢ H

such that
k(H(A) + I)�1(H(A)� k2)unk !

n!1
0. (4.30)

Since r⇥An = B we have

r⇥ (A�An) = 0 (4.31)

and hence there is a gauge function �n for each n such thatH(A, 0) andH(An, 0)
are unitarily equivalent:

H(A, 0) = ei�nH(An, 0)e
�i�n . (4.32)

The sequence {un} is now construed as follows. Extract a subsequence {xn}

with |xn � xn�1| > 2n. Furthermore we will use some bump function g which
is zero outside the unit ball and one inside B 1

2
(0). Then we have a sequence

of bump functions {gn} defined as gn = ↵ng(n�1(x � xn)) where ↵n is just a
normalization factor such that kgnk2 = 1 for all n. Then define

un := ei�n(x)eik·xgn(x). (4.33)

Then {un} is orthonormal in L2(R3) and un * 0. The only thing that remains
to show is the convergence in equation (4.30). By unitary equivalence we may
substitute the vector potentials to obtain

k(H(An) + I))�1(H(An)� k2)�nk (4.34)

where �n(x) := eik·xgn(x). Explicitly H(An) can be written as H(An) = H0 +
(ir+An)An + iAn ·r. Thus,

k(H(An) + I))�1(H(An)� k2)�nk = (4.35)

=k(H(An) + I))�1(H0 � k2 + (ir+An) + iAn ·r)�nk = (4.36)

=k(H(An) + I))�1(eik·xH0gn + 2ieik·xk ·rgn (4.37)

+ (ir+An)An + iAn ·r)�nk (4.38)

kH0gnk+ 2|k|krgnk+ k(H(An) + I))�1(ir+An)kkAngnk (4.39)

+ kAn ·rgnk ! 0 (4.40)

as n goes to infinity. Hence for any k2 we have k2 2 �ess(H(A, 0)) and hence

[0,1) ✓ �ess(H(A, 0)) (4.41)

which proves the theorem.
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4.2 Self-adjointness of the Pauli operator

It is easily seen that the conditions for which the Pauli operator HP is self-
adjoint are strongly dependent on the magnetic field. However there are some
special results and we will present excerpts of them here. The first result which
we will discuss now is the 1997 paper by Sobolev [42] where the author con-
siders the three dimensional case. The two dimensional case is covered in the
preceding paper [41] which we will leave out. Note that in the same paper
Lieb-Thirring estimates are covered and will be mentioned later in this section.
Sobolev distinguishes two cases: Arbitrary fields and fields with constant di-
rection. The result on fields with constant direction is stronger in the sense
that the regularity assumptions for the magnetic field are weaker. However we
will only consider the case for arbitrary directions here. The conditions on the
magnetic field go as follows: Suppose there is a function ` 2 C(R3) such that
`(x) � `(y)|  %|x � y| for % 2 [0, 1) for all x, y 2 R3. Moreover define the set
K(x) by

K(x) = {y 2 R3
||x� y| < `(x)}. (4.42)

Assume there is a positive real-valued function b 2 L1
loc(R3) and constants C1,C2

and c such that

|B(x)|  b(x) (4.43)

C1b(x)  b(y)  C2b(x), y 2 K(x) (4.44)

b(x)`(x)2 � c (4.45)

for almost all x 2 R3. Then we have the following theorem:

Theorem 4.5. Let B fulfill the conditions above for given b(x) and `(x). Let
� be a real valued potential and let p > 3/2 such that

sup
x2R3

Z

K(x)

|�(y)|p(b(y)
3
2+1dy < 1. (4.46)

Furthermore let HP be the Pauli operator and H0
P
the Pauli operator with � = 0.

Then the form HP [·, ·] = H0
P
[·, ·]+�[·, ·] is closed on the form domain Q[HP ] =

Q[H0
P
].

The form domain of H0
P
is defined via the symmetric operator T defined as

T :=
X

k

�k⇧k =

✓
⇧3 ⇧1 � i⇧2

⇧1 + i⇧2 �⇧3

◆
(4.47)

where ⇧k := �i@k � Ak. Then Q[H0
P
] = D(T ). The quadratic form H0

P
is

defined by H0
P
[u, u] := kTuk2. The Pauli operator corresponds to this quadratic

form by H0
P

= T ⇤T . Note that the form H0
P

is semi-bounded since the Pauli
operator H0

P
is nonnegative. Hence showing that the corresponding form is

closed shows that H0
P

is self-adjoint. The operator T is however easily seen to
be closed since the operators ⇧i are symmetric and hence closable and we only
consider their closures. The form defined by the closed operator T above is
hence also closed. Moreover if the magnetic field B is bounded then so is b and
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the condition on � reduces to

sup
x2R3

Z

|x�y|1

|�(y)|pdy < 1. (4.48)

Let us give two examples for the magnetic field.

Examples 4.6. (i) Let B 2 C1(R3) and B > 0 such that

|rB(x)|  CB(x)
3
2 (4.49)

for all x 2 R3. Moreover choose `(x) := ✏B(x)�1/2 and b(x) = B(x). Then
(4.43) is immediately fulfilled. Furthermore b(x)`(x) = B(x)✏2B(x)�1 =
✏2 which implies (4.45). The condition on `(x) follows from (4.49) since

|r`(x)| 
✏

2
B(x)�

3
2 |rB(x)| 

C✏

2
(4.50)

from which we deduce that ` is Lipschitz continuous. Condition (4.44) is
ensured by the bound

1

(1 + %)2
B(x)  B(y) 

1

(1� %)2
B(x) (4.51)

for all y 2 K(x). As a remark note that B(x) can be chosen to be
exp(�|x|m) which diverges at infinity. On the other hand if B = |x|�↵

with |↵| > 2 then the (4.49) is not fulfilled.

(ii) (Compactly supported magnetic field). Let B be defined as follows:

B(x) :=

(
B� |x|  R

0 |x| > R
. (4.52)

Moreover let `(x) := %
p
1 + |x|2 for % 2 (0, 1) and

b(x) :=

8
<

:
B� |x|  R
2B�

1+ |x|2
R2

|x| > R. (4.53)

Then clearly B(x)  b(x) for all x. We have

b(x)`(x)2 = %2B�(1 + |x|2) � %2B� (4.54)

for |x|2  R. On the other hand for |x| > R

b(x)`(x)2 = 2%2B�
1 + |x|2

1 + |x|2
R2

�
2%2B�

2
= ⇢2B�. (4.55)

since (1 + R2)/2 � 1/2 and limx!1(1 + x2)(1 + x2/R2)�1 = 1. Hence
b(x)`(x)2 � 2%2B�. To see that `(x) has a bounded derivative consider

|r`(x)|  %
r

p
1 + r2

= %

r
r2

1 + r2
 % (4.56)

where r � 0.
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Let us look at the proof in [42]. We will merely present the idea and leave
out the details and refer to the paper where they are worked out. The goal of
course is to show closedness of the form

HP [·, ·] = H0
P
[·, ·] + �[·, ·] (4.57)

defined above on the form domain Q[H0
P
] = Q[HP ]. This is done by showing

relative form boundedness of �[·, ·] with respect to H0
P
[·, ·], i.e. show that the

inequality
k|�|

1
2uk2  ✏H0

P
[u, u] + Ckuk2 (4.58)

holds for all u in Q[H0
P
]. The first step is to show the following inequality

Lemma 4.7. Let p � 3/2, W 2 Lp(R3) and u 2 (C1
0 (R3)2. Then

k|W |
1
2uk22  CH!(u,W ) (4.59)

for all ! > 0 where

H!(u,W ) := !kWk

2p
3
p H(A)[u, u] + !

��1
� kuk22 (4.60)

where � = 1� 3
2p .

Proof. First of all note that due to the condition p > 3/2 we have � > 0. Now
by Hölder’s inequality and the fact that for the conjugate exponent q we have
q = 2p(p� 1)�1 it holds that for all u 2 C1

0 (R3)

k|W |
1
2uk22  kWkpkuk

2
q
 CkWkpk@uk

2(1��)
2 kuk2�2 . (4.61)

The last inequality is due to the inequality

kukq  Cqkruk1��2 kuk�2 (4.62)

for � = 3
q
�

1
2 . For a more precise statement of this inequality and references see

A.14. By Young’s inequality for numbers with the choice a = kWkpk@uk
2(1��)
2

and b = kuk2� as well as the exponents p = (1 � �)�1 and q = ��1 we obtain
the bound

k|W |
1
2uk22  !kWk

1
1��
p k@u|22 + !

��1
� kuk2 (4.63)

for all ! > 0. The last step is to use Corollary 3.1 in [42] which tells that
whenever a multiplication operator Mf by a measurable function f has a bound
of the form

kMfuk
2
2 

3X

k=1

�2
k
k@kuk

2
2 +Mkuk22 (4.64)

for all u 2 C1
0 (R3) for positive constants �k and M then the bound holds with

the partial derivative @k replaced by the magnetic derivative ⇧k := @k � iAk.
This is a consequence of the diamagnetic inequality. Together with this bound
the proof is completed.
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With this lemma at hand we are able to prove the main argument. Let Kj

be open balls covering Rn with no ball intersecting more than N = N(%) < 1

many other balls (this is also known as the finite intersection property) and let
'j be the corresponding partition of unity {'j}j2N with 'j 2 C1

0 (Kj) such
that

P
j
'2
j
= 1 and |@m'j |  Cm`�|m| for all m. This covering and partition

exist due to Lemma 3.5 in [42] which it itself a consequence of Theorem 1.4.10
in [15]. Denote by �j := �Kj the characteristic function of Kj . Then

k|�|
1
2uk2 =

Z X

j

�j |�|'
2
j
|u|2dx =

X

j

h�j |�|uj , uji (4.65)

where in the last step we have set uj := 'ju. Now define

Ij := Ij(V ) :=

 Z

Kj

|�(x)|pdx

! 2
3

. (4.66)

By Lemma 4.7 we have with W = �jV and u = uj

k|�|
1
2ujk

2
 CH!(uj ,�jV ) (4.67)

for all !. Now we rewrite the RHS of the above inequality:

H!(uj ,�j�) = !k�j�k
2p
3
p H(A)[uj , uj ] + !

��1
� kujk

2
2 (4.68)

= !

 Z

Kj

|�|pdx

! 2
3

H(A)[uj , uj ] + !
��1
� kujk

2
2 (4.69)

= !IjH(A)[uj , uj ] + !Ijh�Buj , uji � !Ijh�Buj , uji+ !
��1
� kujk

2
2

(4.70)

= !IjH
0
P
[uj , uj ] + !Ijh�Buj , uji+ !

��1
� kujk

2
2. (4.71)

Let us estimate the term H0
P
[uj , uj ]. By setting bj := b(xj) and `j := `(xj) with

xj 2 Kj we have

H0
P
[uj , uj ] = kTujk

2 = kT'ju+ [T,'j ]uk (4.72)

 2kT'juk
2 + 2k[T,'j ]uk

2 (4.73)

= 2kT'juk
2 + C`�2

j
k�juk

2 (4.74)

where in the last step we used the property of the partition of unity and
since the term [T,'j ] contains derivatives only up to order 1. Now by not-
ing that h�Buj , uji  hBuj , uji, that |B| is bounded from above by b and that
b(x)`(x)2 � c we deduce the following inequality for H!(uj ,��j):

H!(uj ,��j)  2!Ijk'jTuk
2 + C1!Ijbjk�juk

2 + C2!
��1
� kujk

2. (4.75)

Condition (4.46) from the theorem tells us that the expression

I(�j)bj = bj

 Z

Kj

|�|pdx

! 2
3

 C

 Z

Kj

|�|pb(x)
3
2 dx

! 2
3

(4.76)
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is uniformly bounded in j. Putting all ingredients together we obtain

k|�|
1
2ujk

2
 C1!k�jTuk

2 + C2

⇣
! + !

��1
�

⌘
k�juk

2. (4.77)

Note that the constants Ci are independent of j. By summing up the balls Kj

we arrive at

k|�|
1
2uk2  C1!H

0
P
[u, u] + C2(!)

X

j

k�juk
2. (4.78)

The last thing to be noted is that due to the finite intersection property the
last term is smaller than C 0

2(!)kuk
2. Picking any suitable ! will lead to the

desired inequality and hence prove relative form boundedness and ultimately
self-adjointness of the Pauli operator. Note that the conditions on B and the
potential � were crucial throughout the proof, guaranteeing the uniform bound-
edness of the integrals Ij in j.

The next theorem relies on the Birman-Schwinger kernel for the Pauli op-
erator. For details on the Birman-Schwinger kernel we refer to the following
section. The details are somewhat left out but they can be found in [8]. The-
orem 2.4 in this paper gives Lieb-Thirring type estimates for a magnetic field
with arbitrary direction such that B is of the form B = B< + B> such that
B<

2 L1(R3) and B>
2 L2(R3). As a result of those estimates one also ob-

tains self-adjointness or rather existence of a self-adjoint extension. The idea is
to show that HP is bounded from below by showing compactness of the corre-
sponding Birman-Schwinger kernel. Then one can use theorem A.8 (Friedrich
extension).

Theorem 4.8. Let B = B<+B> be such that B<
2 L1(R3) and B>

2 L2(R3).
Moreover let � be an external potential such that |�|� 2 L�(R3) \ L�+3/2(R3).
Then HP is bounded from below.

Proof. First we need to define the Birman-Schwinger kernel Ke of the full Pauli
operator HP = (�ir � A)2 + � � � · B. Let H0

P
be the Pauli operator with

� = 0. Then Ke is defined as

Ke :=
����+

e

2

���
1
2

�

⇣
H0

P
+

e

2

⌘�1 ����+
e

2

���
1
2

�
. (4.79)

Let PL be the spectral projection of H0
P
on [0, L] where L � 0 acting on L2(R3).

Then Ke = K<

e
+K>

e
with

K<

e
=
����+

e

2

���
1
2

�
PL

⇣
H0

P
+

e

2

⌘�1
PL

����+
e

2

���
1
2

�
(4.80)

K>

e
:=

����+
e

2

���
1
2

�
(I � PL)

⇣
H0

P
+

e

2

⌘�1
(I � PL)

����+
e

2

���
1
2

�
. (4.81)

In [8] the corresponding Lieb-Thirring estimates are proven. In the proof one
shows that tr

�
(K>

e
)2
�
is finite, hence K>

e
is Hilbert-Schmidt and therefore com-

pact. The claim that K<

e
is compact can be established as follows. It is proven

in equation (49) in [8] that for all ⇢ > 0 the number of eigenvalues above ⇢
is finite. From this we deduce that we can split K<

e
into a part which can be
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estimated by ⇢ (for the eigenvalues smaller than ⇢) and into a compact part
depending on ⇢ (for the eigenvalues above ⇢ of which there are only finitely
many). Then by letting ⇢ ! 0 the first part converges to zero whereas the
second part converges to a compact operator (the limit of compact operators
is compact). This proves the claim. Hence Ke must also be compact since the
sum of compact operators is compact.

Since Ke is compact it follows that |� + e/2|� is a relatively compact per-
turbation of H0

P
+ e/2.2 Thus, if we set Ue := H0

P
+ e/2 � |� � e/2|� we have

that Ue is bounded from below since it is the relatively compact perturbation
of a positive operator. On the other hand H0

P
can be rewritten as

H0
P
= Ue +

����+
e

2

���
+
� e (4.82)

which is bigger that Ue�e which is bounded from below. Hence H0
P
is bounded

from below. Consequently HP is bounded from below.

4.3 Spectrum of the Pauli operator: Lieb-Thirring esti-

mates

Roughly speaking Lieb-Thirring estimates are estimates on the moments
of the negative eigenvalues of a Schrödinger operator. Originally they were
introduced by Lieb and Thirring in [29] where they considered an operator of the
form H = ��+V (x). The results have been extended to magnetic Schrödinger
operators by use of the diamagnetic inequality and in recent developments to
the Pauli operator. We give a short overview on the results.

4.3.1 Lieb-Thirring estimates for the (magnetic) Schrödinger oper-

ator with external potential

Let H = �� + V (x) on L2(Rd) and denote by �1  �2  · · · < 0 the negative
eigenvalues of H if they exist. Then denote by M�(V ) the sum

M�(V ) :=
X

j

|�j |
� (4.83)

for � � 0. Lieb and Thirring derived the following bound for M� in [29]. If
� > max (0, 1� d

2 ) then

M�(V ) =
X

j

|�j |
�
 Ld,�

Z

Rd

V�(x)
�+ d

2 dx (4.84)

where V� denotes the negative part of V , i.e. V�(x) := max (�V (x), 0). The
case where � = 0 and d � 3 which corresponds to estimating the number of
eigenvalues has been covered by Cwikel, Lieb and Rosenbljum independently. As
a side remark note that the sum in (4.84) makes sense since we can assume that
the Schrödinger operator is semibounded from below and that the eigenvalues
do not accumulate at negative infinity. In order to prove this inequality we
will follow the lecture notes by Erdős [7] who follows the book by Lieb [25].

2
Recall that for an operator K to be relatively compact with respect to A it has to hold

that KRA(z) is compact for some z in the resolvent of A.
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Another presentation of the proof can be found in chapter 12 in [23]. First we
need a preparatory result by Birman and Schwinger, the Birman-Schwinger

principle. It reduces the problem of negative eigenvalues of the Schrödinger
operator to the eigenvalue of a compact operator, the Birman-Schwinger

operator Ke.

Theorem 4.9. (Birman-Schwinger) Let V 2 Ld/2 +L1. Let e > 0 and define

Ke :=
p
V� (��+ e)�1

p
V� (4.85)

where V� denotes the negative part of V . Denote by Ne the number of eigenval-
ues of H = ��+V less than or equal to �e and by Be the number of eigenvalues
of Ke bigger than or equal to 1. Then

Ne = Be. (4.86)

The operator Ke is motivated as follows. If �e is a negative eigenvalue of
H = �� � V�, i.e. e > 0 and (�� + e)ũ = V�ũ where ũ is a normalized
eigenfunction then define

u(x) :=
p
V�(x)ũ(x) (4.87)

such that
(��+ e)ũ =

p
V�u. (4.88)

If (��+ e) has an inverse which is true if e 2 ⇢(��) then we have

ũ = (��+ e)�1
p

V�u (4.89)

such that
u = Keu (4.90)

with Ke as defined in 4.9. Hence we are let to believe that whenever �e is a
negative eigenvalue of H then 1 is an eigenvalue of Ke. Let us look at this more
thoroughly. First let us show that u 2 L2 if ũ is an eigenfunction of H. Then
ũ 2 H1 and we have the following chain of inequalities where we use Hölder’s
inequality with p = d

2 and p⇤ = d

d�2 , Sobolev’s inequality and the fact that by

assumption V� = V1 + V2 with V1 2 L
d
2 and V2 2 L1:

kuk22 =

Z ���
p
V�ũ

���
2
=

Z
V�|ũ|

2 =

Z
(V1 + V2)|ũ|

2 (4.91)

 kV1k d
2
kũk22d

d�2
+ kV2k1kũk22 (4.92)

 CkV�k d
2
krũk22 + kV2k1 < 1. (4.93)

Also it immediately follows that Mp
V�

: H1
! L2 is bounded since

Z ���
p

V�ũ
���
2
 CV kũk

2
H1 . (4.94)

Next we show that Ke is a bounded operator on L2.
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Lemma 4.10. The operator Ke defined in equation (4.85) is bounded on L2.

Proof. In order to see this define

B :=
p

V�(��+ e)�1/2. (4.95)

The part (��+ e)�1/2 maps L2 to H1 which we can see by the estimate

k(��+ e)
1
2 fk2

H1 =

Z
(1 + (2⇡k)2)

���((2⇡k)2 + e)�
1
2 f̂(k)

���
2
dk (4.96)

 max (1, e�1)kfk22 (4.97)

since (1 + (2⇡k)2(e + 2⇡k)�2
 max (1, e�1). Now

p
V� is a multiplication

operator from H1 to L2 so indeed B is bounded on L2. The adjoint of B is
given by

B⇤ = (��+ e)�
1
2 (
p
V�·) (4.98)

so Ke = BB⇤ and hence bounded on L2.

Conversely let u 2 L2 be an eigenfunction of Ke with eigenvalue 1 and define
ũ := (��+ e)�1

p
V�u. Then it is easy to see that ũ is an eigenfunction of H

with eigenvalue �e. It only remains to show that ũ 2 L2. Hence consider

kũk22 = h

p
V�u, (��+ e)�2

p
V�ui (4.99)

 e�1
h

p
V�u, (��+ e)�1

p
V�ui (4.100)

= e�1
hu,Keui (4.101)

= e�1
kuk22. (4.102)

The remaining ingredient for the proof of 4.9 is the fact that Ke is compact. In
fact we will show that Ke is Hilbert-Schmidt which implies compactness.

Lemma 4.11. Ke is a Hilbert-Schmidt operator if V� 2 L2.

Proof. We show the claim for d = 3 which is the interesting case. Recall that an
operator is Hilbert-Schmidt if its Hilbert-Schmidt norm is finite, i.e. tr(A⇤A) <
1. In this case A = Ke and hence self-adjoint so we compute

tr(K2
e
) = tr(

p
V�(�+ e)�1V�(�+ e)�1

p
V�) = (4.103)

=

ZZ
V�(x)|(�+ e)�1(x, y)|2V�(y)dxdy. (4.104)

The operator kernel of the integral operator (�+ e)�1 is known and given by

1

4⇡

e�
p
e|x�y|

|x� y|
. (4.105)

We then have

tr(K2
e
) =

1

16⇡2

ZZ
V�(x)

e�2
p
e|x�y|

|x� y|2
V�(y)dxdy. (4.106)

and eventually

tr(K2
e
) 

1

16⇡2

ZZ
V�(x)

2 e
�2

p
e|x�y|

|x� y|2
dxdy =

C

e2

Z
V 2
�. (4.107)

By assumption V� 2 L2 and hence tr(K2
e
) < 1.
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Proof. (of Theorem 4.9). As Ke is a positive compact self-adjoint operator its
eigenvalues (depending on e) can be written in decreasing order

µ1(e) � µ2(e) � · · · � 0. (4.108)

The functions µj(e) are continuous functions of e. To see this observe that for
0 < e  e0 we have that 0  Ke�Ke0  ((e0�e)/e)Ke (which can be calculated
directly). Then by the min-max-principle (see [23]) one has that

|µj(e)� µj(e
0)| 

e0 � e

e0
kKek (4.109)

This proves the claim that µj(e) is continuous in e. Hence if we fix some e
and let e0 increase monotonically from e to infinity all µj(e) decrease (since Ke

is monotonically decreasing in e) and by reaching one the number �e0 is an
eigenvalue of H. Since Ke ! 0 as e ! 1 for su�ciently large e0 all eigenvalues
of Ke are below one and hence the number of eigenvalues of Ke which are above
or equal to one must equal the number of eigenvalues of H below or equal to
�e.

Now we are ready to prove the Lieb-Thirring estimates. We leave out the case
d = 3, � = 0 which counts the eigenvalues. The proof uses di↵erent machinery
and the reader is referred to the papers by Cwickel [2], Lieb [22] and Rosenbljum
[37].

Theorem 4.12. (Lieb-Thirring) Let � � 0 and let V� 2 L�+d/2(Rd). Then
there is a constant L�,d < 1 such that the sum of the �-th moments of the
eigenvalues of the Schrödinger operator H = ��+ V can be estimated by

M(V ) =
X

j

|�j |
�
 L�,d

Z
V
�+ d

2
� . (4.110)

Here � can have the following ranges:

� �
1

2
if d = 1 (4.111)

� > 0 if d = 2 (4.112)

� � 0 if d = 3. (4.113)

Proof. As said we will not prove the case � = 0. Suppose � > 0. If we interpret
Ne as a sum of characteristic functions for the set where e is smaller than �j we
have

Ne =
X

j

�{e2R:e<|�j |} (4.114)

and we can write the sum of the eigenvalues |�j | as

X

j

|�j | =

1Z

0

X

j

�{e2R:e<|�j |}de =

1Z

0

Nede. (4.115)

Here we may interchange integration and summation since the integrand is
positive. By a change of variables (de ! �e��1de) and by the formula

|�j |
� =

1Z

0

�{e2R:e<|�j |�}de (4.116)
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we can write
X

j

|�j |
� = �

1Z

0

e��1Nede. (4.117)

For Be we have the estimate

Be 

X

µj�1

µm

j
 tr(Km

e
) (4.118)

and hence

M(V )  �

1Z

0

e��1tr(Km

e
)de (4.119)

by the Birman-Schwinger principle. By theorem B.2 we have then

tr(Km

e
)  tr(V

m
2

� (�+ e)�mV
m
2

� ) (4.120)

=

Z
V m

� (x1)(�+ e)�1(x1, x2) · · · (�+ e)�1(xm, x1)dx1 · · · dxm

(4.121)

=

Z
V�(x)

m
2 (�+ e)�m(0, 0)dx (4.122)

=

Z
1

((2⇡k)2 + e)m
dk

Z
V(x)

mdx. (4.123)

The expression
R
((2⇡k)2 + e)�m is finite i↵ 2m > d and given by

Cm,de
�m+ d

2 (4.124)

where
Cm,d = (4⇡)(�d/2)�(m� d/2)/�(m). (4.125)

It is now necessary to use a little trick to circumvent the divergence of the
integral (4.119) when inserting the expression e�m+ d

2 . Note that this would
yield an integrand of the from e��1�m+d/2 which diverges regardless of the
choice of exponents. Therefore we introduce a ”shifted” potential Ṽe depending
on e given by

Ṽe := |V (x) +
e

2
|� = max{�V (x)�

e

2
, 0}. (4.126)

Clearly the number of eigenvalues of the unshifted Hamiltonian ���V� below
�e is equal to the number of eigenvalues of the shifted Hamiltonian ���V�+
e/2 which lie below �e/2 and hence

Ne(�V�) = Ne/2(�V� +
e

2
)  Ne/2(�Ṽe). (4.127)

This is because �Ṽe  �V�+e/2 which relies on the fact that V�  a+ |V +a|�
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for any a > 0. Repeating the argument above with Ṽe and e/2 we obtain

M(V )  Cd,m,�

1Z

0

e��1
⇣e
2

⌘�m+d/2
Z

Rn

Ṽe(x)
mdxde (4.128)

. Cd,m,�

Z

Rn

1Z

0

e��1�m+d/2
���V (x) +

e

2

���
m

�
dedx (4.129)

= Cd,m,�

Z

Rn

2V�(x)Z

0

e��1�m+d/2
⇣
V�(x) +

e

2

⌘m

dedx (4.130)

. Cd,m,�

Z

Rn

V �+d/2
� dx

1Z

0

u��1�m+d/2(1� u)mdu. (4.131)

The last step is due to the change of variables e = 2V�(x)u and the second
to last step to the fact that for e � 2V�(x) the expression |V (x) + e/2|� is
zero. Now note that for m � � + d/2 the integral diverges whence we choose
m < � + d/2. As we have seen before 2m > d has to be valid, too. Combining
these conditions yields the Lieb-Thirring bound (4.84) for � > 0 and d � 2 and
for � > 1/2 and d = 1.

4.3.2 Lieb-Thirring estimates for the Pauli operator

In this section we will briefly mention and discuss results on Lieb-Thirring es-
timates for the Pauli operator without going to much into details. Main works
include the series of papers by Lieb, Solovej and Yngvason: [26], [27] and [28],
the works by Erdős [9], [8] and by Sobolev [41] (covering the two-dimensional
case), [42] (covering the three-dimensional case). Lieb, Solovej and Yngva-
son established Lieb-Thirring bounds for the three dimensional Pauli opera-
tor HP = (�ir � A)2 + � � � · B where the magnetic field is constant. For
the bound of the sum of the negative eigenvalues of HP they established the
following result:

X

j

|�j |  C 0
Z
�

5
2
� + C 00

Z
|B|�

3
2
�, � >

1

2
. (4.132)

Clearly the first term is the Lieb-Thirring estimate for a Schrödinger operator
without magnetic field. Sobolev in [42] calls (4.132) the strong version. The
weak version is given by

X

j

|�j |  C 0
Z
�

5
2
� + C 00

Z
|B|

3
2��, � � 1. (4.133)

The result for arbitrary fields in [42] depends on the conditions already
mentioned above in the statement about self-adjointness of the Pauli operator.
Under those conditions we have the following theorem.

Theorem 4.13. (Theorem 2.2 in [42]) Let the hypotheses of Theorem 4.5 hold.
Moreover suppose that �� 2 L�+3/2(R3) and ���b

3/2
2 L1(R3) for � � 1. Then
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the Lieb-Thirring bound for HP is given by

M�(�)  C 0
�

Z
��(x)

�+3/2dx+ C 00
�

Z
��(x)

�b(x)3/2dx (4.134)

where the constants depend only on � and the constants in the estimates on b(x)
and `(x).

Remark 4.14. One can easily rescale the magnetic field without touching the
validity of 4.13. In fact let µ > 0 and define Ã := µA. Then B̃ = r⇥ (µA) =
µ(r ⇥ A) = µB. The estimates for B hold for b̃ = µb and ˜̀ = ` if µ � c. An
interesting example of µ involves the reduced Planck constant ~. Denote by

H0
P,~ :=

✓
(�i~r�A)2 0

0 (�i~r�A)2

◆
� ~(� ·B) (4.135)

the Pauli operator with ~. We can also write

H0
P,~ := ~2

✓✓
(�ir�

A

~ )
2 0

0 (�ir�
A

~ )
2

◆
� (� ·

B

~ )

◆
= ~2H0

P
(A/~) (4.136)

By introducing the potential V we have

HP,~ = ~2H0
P
(A/~) + V = ~2

✓
H0

P
(A/~) + V

~2

◆
= ~2HP (A/~, V/~2). (4.137)

Now let us look at M� :

M�(HP,~(A, V )) = M�(~2HP,~(A/~, V/~2)) (4.138)

=
X

j

|~�2�j |
� (4.139)

= ~�2�
X

j

|�j |
� (4.140)

On the other hand

M�(HP,~(A, V ))  C 0
�

Z
(
V�
~2 )(x)

�+3/2dx+ C 00
�

Z
(
V�
~2 )(x)

�(
b(x)

~ )3/2dx

(4.141)

=
1

~2�

✓
C 0
�

1

~3

Z
V�(x)

�+3/2dx+ C 00
�

1

~3/2

Z
V�(x)

�b(x)3/2dx

◆

(4.142)

The factor ~�2� is eliminated by the same factor in M�(HP,~(A, V )) so finally

X

j

|�j |
�
 C 0

�

1

~3

Z
V�(x)

�+3/2dx+ C 00
�

1

~3/2

Z
V�(x)

�b(x)3/2dx (4.143)

An improvement of the foregoing results for the case � = 1, i.e. the case
of summing up the eigenvalues is Theorem 3.1 in [9]. The conditions on B are
much more gentle and require only some degree of di↵erentiability. In order to
phrase this theorem we need to collect some definitions first.
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Definition 4.15. (Lengthscales of the magnetic field) Let B 2 C4(R3). Let
L � 0 and x 2 R3 and define

BL(x) := sup
y2R3

{|B(y) : |x� y|  L} (4.144)

bL(x) := inf
y2R3

{|B(y) : |x� y|  L}. (4.145)

In other words BL and bL are the supremum and infimum of the magnetic field
strength on the ball of radius L about the point x. The magnetic lengthscale

of B, Lm(x), is defined as

Lm(x) := sup{L > 0: BL(x)  L�2
}. (4.146)

The variation lengthscale of B Lv(x) is given by

Lv(x) := sup{L � 0: L� · sup
�=1,2,3,4

{|r
�B(y)| : |x� y|  L}  bL(x)}. (4.147)

Moreover the combined lengthscale Lc(x) is defined as

Lc(x) := max{Lm(x), Lv(x)}. (4.148)

The definition of the lengthscales can be motivated as follows. The magnetic
lengthscale Lm is the upper bound on the radius of the ball for which the
supremum of the magnetic field strength on the ball is bounded by the inverse
square of said radius. The variational lengthscale somehow determines the scale
on which B varies.

Theorem 4.16. (Uniform Lieb-Thirring estimates) Let A,B 2 C4(R3) such
that r ⇥ A = B, i.e. A is the vector potential and B is the magnetic field.
Denote by HP the full Pauli operator with electric potential V . Then the sum
of the negative eigenvalues M1(V ) =

P
j
|�j | has the following Lieb-Thirring

bound

M(V )  C1

Z
|V |

5/2
� +C2

Z
|B||V |

3/2
� +C3

Z ✓
1

Lc

|B||V |� +
1

L3
c

|V |�

◆
(4.149)

whenever the integrals exist.

The proof of 4.16 again relies on the Birman-Schwinger principle. Let us
sketch the proof. Define the tempered lengthscale L(x) as

L(x) :=
1

2
Lc(x). (4.150)

Furthermore define the function `(x):

`(x) := ✏L(x) (4.151)

and let
P (x) := ✏�5`(x)�2. (4.152)

In order to stick to the notation of [9] denote by Rf the resolvent of HP (f) =

(� · (�ir�A))2 + f where f > 0 is a positive function (note that the operator
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HP (f) is positive). Now by the Birman-Schwinger principle the sum of the
eigenvalues of the negative part of HP can be written as

| tr(HP,�)| =

1Z

0

N1(V
1/2ReV

1/2)de (4.153)

where Nµ(A) denotes the number of eigenvalues of the operator A greater than
or equal to µ. By the second resolvent identity Re �RP+e = RP+ePRP+e and
hence

Re = RP+e +RP+ePRP+e +RP+ePRePRP+e. (4.154)

Moreover P  (� · (�ir�A))2 + e + P and Re  e�1 by positivity of HP .
From this and from the resolvent identity above we immediately deduce

Re  2RP+e + e�1RP+eP
2RP+e. (4.155)

It is easy to see that for positive operators A1 and A2 we have the following
identity:

Nµ1+µ2(A1 +A2)  N(µ1)(A1) +Nµ2(A2). (4.156)

This allows to split the integral (4.153) into two parts. By the two last equation
we then obtain

| tr(HP,�)| 

Z 1

0
N 1

4
(V 1/2RP+eV

1/2)de+

Z 1

0
Ne(2V

1/2RP+eP
2RP+eV

1/2)de.

(4.157)

Theorem 4.3 in [9] gives the needed estimates for the two integrals but we will not
try to retrace the proof here. Let us simply give a short physical interpretation
of the terms occurring. The first term corresponds to the number of eigenvalues
of the shifted operator | (� · (�ir�A))2 + P � 4V |�. That is it contains the
contribution from eigenfunctions with energy at least O(P ). It is also called
positive energy regime, cf. [9]. The second term contains the contribution of
eigenfunctions with energy near zero and hence is called zero mode regime.

Moreover let us quote another result due to Lieb-Loss and Solovej in [24]
where the only condition on B is that it is in L2.

Theorem 4.17. [Theorem 2 in [24]]. Let B 2 L2(R3). If V 2 L4(R3)\L5/2(R3)
then the sum of the negative eigenvalues M1(V ) =

P
j
|�j | has the following

Lieb-Thirring bound

M(V )  C1

Z
|V |

5/2
� + C2

✓Z
|B|

2

◆ 3
4

+

✓Z
|V |

4
�

◆ 1
4

(4.158)

= C1

Z
|V |

5/2
� + C2

kBk
3/2
2 kV k4. (4.159)
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5 Further topics

5.1 Quantum Statistical Mechanics: Density matrix for-

mulation

Quantum Mechanics is commonly interpreted as a probabilistic theory. Out-
comes of measurements are described by the spectrum of self-adjoint operators
and occur with certain probability as for example in a spin measurement in z-
direction. However, the somewhat intrinsic probabilistic nature aside, Quantum
Mechanics can be viewed in a statistical way very similar to Classical Mechan-
ics. In a setting where a great number of particles is observed (e.g. a quantum
gas) it is neither e�cient nor realistic to be able to describe every particle by
its wave function and corresponding Schrödinger equation since the number of
equations to solve grows with the size of the system. Hence one has to resort
to a statistical theory which is known as Statistical Quantum Mechanics. The
density matrix formulation is central to Statistical Quantum Mechanics. Here,
not L2-wave functions are viewed as the fundamental objects but a bounded op-
erator, called density operator which describes all the states and whose time
evolution is given by the von Neumann-Heisenberg equation. We will give
a mathematical foundation of the density operator based on chapter 19 in [14]
and try to apply it to the Pauli Hamiltonian.

What one observes in experiment are of course not the observables or the
states themselves but rather the expectation values of them. Hence we wish to
obtain an understanding of those expectation values. We can for the moment
restrict ourselves to bounded operators since for an unbounded self-adjoint op-
erator A we can look at the expectation value of the operator �E(A) where
E ⇢ R is a Borel set �E(A) is defined by functional calculus. If E(1E(A)) is
known for every E then we can reconstruct the expectation value for A. In
the end we want to express the system by its density operator and express ex-
pectation values via the density operator. Therefore we need some theoretical
considerations.

Definition 5.1. Let ⇢̂ 2 B(H) be a bounded operator. Then ⇢̂ is called a
density operator if ⇢̂ is self-adjoint, nonnegative and trace class with tr(⇢̂) =
1.

Definition 5.2. A map � : B(H) ! C is called a family of expectation

values if the following hold

(i) �(I) = 1.

(ii) If A is self-adjoint then �(A) 2 R. If A is also nonnegative then �(A) � 0.

(iii) (Continuity) Let {An} be a sequence in B(H). If kAnu�Auk ! 0 for all
u 2 H then �(An) ! �(A) in C.

Theorem 5.3. Let ⇢̂ be a density operator. Then the map �⇢̂ : B(H) ! C
defined by

�⇢̂(A) := tr(⇢̂A) = tr(A⇢̂) (5.1)

is a family of expectation values.
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Proof. Item (i) is clear since tr(⇢̂) = 1 by definition. For item (ii) consider a self-
adjoint operator A. Then tr(⇢̂A⇤) = tr(A⇤⇢̂) = tr((⇢̂A)⇤) = tr(⇢̂A) from which
the first part of (ii) follows. For the second part consider the self-adjoint square
root ⇢̂1/2 which exists since by assumption ⇢ is nonnegative. The operator ⇢̂1/2

is clearly Hilbert-Schmidt and so is A⇢̂1/2 since the product of a trace class
operator with a bounded operator is trace class. Since tr(AB) = tr(BA) < 1

for two bounded Hilbert-Schmidt operators we have

tr(⇢̂A) = tr
⇣
⇢̂1/2⇢̂1/2A

⌘
= tr

⇣
⇢̂1/2A⇢̂1/2

⌘
� 0 (5.2)

since ⇢̂1/2A⇢̂1/2 is non-negative3. To see (iii) consider a sequence Anu converging
to Au. By the uniform boundedness principle there is a constant C such that
kAnk  C for all n. Now choose an orthonormal basis {ej} in H such that

|hej , ⇢̂
1/2An⇢̂

1/2eji| = |h⇢̂1/2ej , An⇢̂
1/2eji|  Ck⇢̂1/2ejk

2 < 1. (5.3)

Whence by dominated convergence

tr
⇣
⇢̂1/2A⇢̂1/2

⌘
= lim

n!1
tr
⇣
⇢̂1/2An⇢̂

1/2
⌘

(5.4)

thereby proving the claim.

The next result ensures that given a family of expectation values and given
a bounded operator A 2 B(H) we can always find a unique density matrix such
that �(A) = tr(⇢A).

Theorem 5.4. Let � be a family of expectation values. Then there is a unique
density operator ⇢̂ such that

�(A) = tr(⇢̂A) (5.5)

for all A 2 B(H).

Proof. See Theorem 19.9 in [14].

To see how the notion of a state in the usual sense is included in the den-
sity matrix formulation consider a ket |ui and denote by |uihu| the orthogonal
projection on the span of the vector u 2 H. An orthogonal projection is by
definition bounded, self-adjoint and nonnegative so let us compute its trace.
In a suitable orthonormal basis such that u = e1 we immediately see that
tr(|uihu|) = 1. Whence |uihu| is a density matrix. The expression tr(|uihu|A) is
easily calculated:

tr(|uihu|A) =
X

j

hej , uihu,Aeji = hu,Aui (5.6)

which we recognize as the usual expectation value of A. Furthermore we will
call a density operator pure or a pure state if ⇢̂ is the orthogonal projection on
the span of a unit vector u 2 H. If this is not the case then ⇢̂ is called mixed or
a mixed state. Clearly a density operator is pure if and only if tr

�
⇢̂2
�
= 1. A

generic density operator for a mixed state can be described as follows. Let {ej}

3
This is because hu, ⇢̂1/2A⇢̂1/2ui = h⇢̂1/2u,A⇢̂1/2ui � 0 by nonnegativity of A.
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be an orthonormal basis for H corresponding to an observable A. Let wj 2 [0, 1]
such that

P
j
wj = 1. Then

⇢ =
X

j

wj |ejihej | =
X

j

wjhej , ·iej (5.7)

is clearly a density operator. It can be interpreted as the weighted projections
on the eigenspaces. For example take the Sz eigenstate |"i. If we take ⇢̂ = |"ih"|

then ⇢̂ is pure and the expectation value of the spin observable Sz in z-direction
is tr(Sz |"ih"|) = ~/2. If ⇢ = 1

2 |"ih"|+
1
2 |#ih#| then ⇢ is mixed and

tr

✓
Sz(

1

2
|"ih"|+

1

2
|#ih#|)

◆
=

~
4
tr(|"ih"|� |#ih#|) = 0 (5.8)

as expected. Hence we see that the density operator fully describes the state
of a quantum system. If A is a bounded operator on H then the expectation
value of A in the state ⇢̂ is given by tr(⇢̂A) = tr(A⇢̂). In the case where A
is unbounded (but self-adjoint) the expression tr(⇢̂A) and tr(A⇢̂) need not be
equal. It is however possible to construct a measure µA

⇢̂
(E) := tr(⇢̂�E(A)) and

define the expectation value of A to be

E(A) :=

Z

R

�dµA

⇢̂
(�) (5.9)

This can be made formal in some sense. The following discussion can be re-
tracted in chapter 4.1 in [21]. A C⇤

-algebra X is an associative algebra over C
equipped with an involution, i.e a real linear map A 7! A⇤ for A,A⇤

2 X such
that A⇤⇤ = A, (AB)⇤ = B⇤A⇤ and (�A)⇤ = �A⇤ for � 2 C and with a norm
k · kX such that kABk  kAkkBk and kA⇤Ak = kAk

2. In this setting a state

! on A C⇤-algebra X is a complex linear map on X mapping to C such that
!(A⇤A) � 0 (positivity) and k!k = 1 (normalization).

Theorem 5.5. Let A be an observable and let ⇢ 2 B(H) be a density operator.
Then ⇢ induces a unique probability measure µ⇢̂ on the spectrum �(A) such that

tr(⇢̂f(A)) =

Z

�(A)

fdµA

⇢̂
(5.10)

for f 2 C(�(A)) and
µA

⇢̂
(E) := tr(⇢̂�E(A)). (5.11)

The expression �E(A) is defined by functional calculus. The measure µA

⇢̂
is also

called Born measure.

The time evolution of a density operator depending on a real parameter t is
given by the von Neumann-Heisenberg equation

i@t⇢̂(t) = �[⇢̂, H] (5.12)

where H is the Hamiltonian of the system. The commutator [·, ·] is defined
for two operators A,B : H ! H where A is assumed to be bounded as

[A,B] := AB �BA (5.13)
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such that whenever u 2 D(B) then Au 2 D(B) (otherwise the commutator
would not be well-defined). This definition is necessary since the Hamiltonian
might be unbounded. The von Neumann-Heisenberg equation can be easily
derived from the Schrödinger equation. Let ⇢̂(u) =

P
j
wjh j , ui j . Then

i(@t⇢̂) =
X

j

wj@t (h j , ·i j) (5.14)

= i
X

j

wj

⇣
h ̇j , ·i j + h j , ·i ̇j

⌘
(5.15)

=
X

j

wj (hH j , ·i j + h j , ·iH j) (5.16)

=
X

k

wj (hH j , ·i j + h j , H·i j � h j , H·i j + h j , ·iH j) (5.17)

=
X

j

wj (�h j , H·i j +H(h j , ·i j)) (5.18)

= �[⇢̂, H]. (5.19)

The formal solution of the von Neumann-Heisenberg equation is given by

⇢̂(t) = e�itH ⇢̂0e
itH (5.20)

where ⇢̂0 := ⇢̂(0). Alternatively one can view the density operator as an integral
operator acting on L2. The action of ⇢̂ on a function u 2 L2 can then be defined
as

⇢̂(u) =

Z
⇢(x, y, t)u(y, t)dy. (5.21)

The operator kernel ⇢(x, y, t) is often called density matrix (as opposed to the
density operator ⇢̂). In the pure case the density matrix is simply given by

⇢(x, y, t) :=  (x, t) ̄(y, t) (5.22)

whereas in the mixed case we have

⇢(x, y, t) :=
X

j

wj j(x, t) ̄j(y, t). (5.23)

Let us calculate the time derivative of ⇢(x, y, t). For simplicity we will consider
the pure case.

@t⇢(x, y, t) = @t( (x, t) ̄(y, t)) (5.24)

=  ̇(x, t) ̄(y, t) +  (x, t) ˙̄ (y, t). (5.25)

Now  has to satisfy the Pauli equation whereas  ̄ has to satisfy the equation

�i@t ̄ = HP  ̄. (5.26)

This yields

@t⇢(x, y, t) = (�iHP,x) (x, t) ̄(y, t) +  (x, t)(iHP,y) ̄(y, t) (5.27)
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The subscript emphasizes that the Hamiltonian is acting on the respective vari-
able (x or y) only. If we multiply the left hand side with i we obtain

i@t⇢(x, y, t) = HP,x⇢(x, y, t)�HP,y⇢(x, y, t). (5.28)

This is consistent with the von Neumann-Heisenberg equation since the term
with the positive sign corresponds to HP ⇢̂ for the reason that we integrate
with respect to y and so the Hamiltonian with respect to x acts on the density
operator. By a similar argument the term with the negative sign corresponds
to ⇢̂HP . Now recall the Pauli Hamiltonian in its explicit form and subjected to
the Coulomb gauge r ·A = 0:

HP,i = ��i + 2iAri +A2
� � ·B (5.29)

where i = x, y. This equation can be considered as the density matrix ana-
logue of the von Neumann-Heisenberg equation. Then we have explicitly for
the density matrix:

i@t⇢(x, y, t) =
�
��x + 2iArx +A2

� � ·B
�
⇢(x, y, t) (5.30)

+
�
�y � 2iAry �A2 + � ·B

�
⇢(x, y, t). (5.31)

5.2 The Pauli-Poiswell system

When coupling the magnetic Schrödinger equation to spin to obtain the Pauli
equation one is left with an important inconsistency. Namely the Pauli equation
is a O(✏) approximation of the Dirac equation where ✏ := 1/c. The magnetic
field however is actually a relativistic notion and hence when coupling Pauli to
an electromagnetic field one has to take into account that it is only consistent
if all terms in the system are approximations of the same order. More precisely,
the electromagnetic fields are described by Maxwell’s equations as introduced
above. In the case where no magnetic field is present, i.e. in the Newtonian
limit, the electric field is described by a Poisson equation. Therefore we need to
find the correct first order in 1/c approximation of Maxwell’s equations which is
where the expression Poiswell comes from. It has been proposed by Masmoudi
and Mauser in [30]. We will present the results in this section. For convenience
and readability we will switch to index notation where we agree on the Einstein
summation convention that repeating indices are summed over from 1 to 3.
Consider the Dirac equation in a rescaled form as being presented in [1]:

i~@ = �
i~
✏
�0�k@k +

1

✏2
�0 � Ak�

0�k � � (5.32)

 (t = 0, x) =  I(x). (5.33)

Furthermore we have the position density n(t, x) := J0(t, x) =  (t, x) (t, x)
and the current density Jk(t, x) = ✏�1�0�k (t, x) (t, x). The Dirac-Maxwell

system is then obtained by coupling to the Maxwell equations in the same
scaling:

✏@tEk � ekij@iBj = �✏Jk @kEk = n (5.34)

✏@tBk + ekij@iEj = 0 @kBk = 0. (5.35)
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Together with the Lorentz gauge �✏@t� = @kAk we can rewrite Maxwell’s equa-
tions in the potential formalism

� ✏2@2
tt
�+�� = �n (5.36)

� ✏2@2
tt
Ak +�Ak = �✏Jk. (5.37)

We will now perform a somewhat heuristic argument for the modeling of the
Pauli equation coupled to the electromagnetic field. Denote by a superscript
the explicit ✏-dependence of the fields. Then we formally have

E✏

k
= E0

k
+ ✏E1

k
+O(✏2) B✏

k
= B0

k
+ ✏B1

k
+O(✏2) (5.38)

�✏ = �0 + ✏�1 +O(✏2) A✏
k
= A0

k
+ ✏A1

k
+O(✏2). (5.39)

Plugging these equations into the Dirac-Maxwell system and comparing powers
we obtain the following conditions for the leading terms of order O(1):

ekij@iE
0
j
= 0 @kE

0
k
= nk (5.40)

ekij@iB
0
j
= 0 @kB

0
k
= nk (5.41)

E0
k
= �@k�

0 (5.42)

from which we deduce B0
k
= 0 which is consistent since the magnetic field is a

relativistic e↵ect and hence the O(1)-term should vanish. Moreover ��0 = �n.
For terms of order O(✏) we obtain

@tE
0
k
� ekij@iB

1
j
= �Jk @kB

1
k
= 0 (5.43)

ekij@iE
1
j
= 0 @kE

1
k
= 0 (5.44)

�@t�
0 = @kA

1
k

(5.45)

from which we immediately deduce E1
k
= 0. Moreover by the formula B1

k
=

ekij@iAj and ekijejlm@i@lA1
m

= @k@iA1
i
�@2

jj
A1

k
one deduces that @2

jj
A1

k
= �Jk.

Finally we obtain the Poiswell system as the O(✏) approximation of Maxwell’s
equation in the scaling above:

��✏ = �n (5.46)

�A✏ = �✏J. (5.47)

Hence we eventually arrive at the Pauli-Poiswell system if we couple the
scaled Pauli equation to the scaled Poiswell system:

i~@tu✏,~ =
1

2
(i~r� ✏A✏,~)u✏,~ � �✏u✏,~ �

✏~
2
�kekij@iA

✏,~
j

u✏,~ (5.48)

u✏,~(t = 0, x) = u✏,~
I

(x) (5.49)

n✏,~(t, x) = |u✏,~(t, x)|2 (5.50)

J✏,~
k

= Im
⇣
u✏,~ · (~@k + i✏Ak)u

✏,~
⌘
+ ekij@i

⇣⇣
u✏,~ · �

⌘
u✏,~

⌘

j

(5.51)

��✏,~(t, x) = �n✏,~(t, x) (5.52)

�A✏,~(t, x) = �✏J✏,~(t, x). (5.53)

41



Of course we can rewrite this a little. Using the definition of n we can rewrite
��✏,~ = �n✏,~ as

��✏,~(t, x) = �|u✏,~|2. (5.54)

Moreover the equation for A can be rewritten as

�A✏,~
k

= �✏2Ak|u
✏,~

|
2
� ✏~Im

⇣
u✏~@ku

✏~
⌘
+ ekij@i

⇣⇣
u✏,~ · �

⌘
u✏,~

⌘

j

(5.55)

and therefore removing the equations for J and n. The Pauli-Poiswell system
has the interesting property to have a much simpler structure than the Dirac-
Maxwell system by avoiding the notion of antiparticles which is not very useful
for the range of applications one usually considers. On the contrary it is a first
order correction to the Schrödinger-Poisson system and hence one hopes that
one can improve experimental accuracy by using Pauli-Poiswell. One could ask
whether higher order corrections would be helpful but this is unfortunately not
the case since Maxwell’s equations depend singularly on ✏ in the transition from
the hyperbolic wave equations (5.37) to the elliptic Poisson-like equations above.

The Pauli-Poiswell system is not well-understood until now. Questions like
well-posedness, dependence on the data and other analytical questions are al-
most all open. On can hope to use results from the Pauli operator but obviously
the system is much more delicate than the Pauli operator alone. Numerically
we can make some suggestions on how to proceed with the Pauli-Poiswell sys-
tem. As mentioned earlier the Pauli equation alone can be solved by a four
term operator splitting approach. This has been done for example by Gutleb
in [13]. Since the Pauli-Poiswell system is coupled we need a more sophisticated
approach for solving it. The usual way is to solve the potential equation for
the electric potential �, i.e 5.52 for initial density n0 which can be immediately
calculated from the inital condition uI . Additionally the initial current density
J0 is needed which can only partly be derived from the initial condition uI as
it also depends on the vector potential A. Hence we have to provide an initial
vector potential A0 as well. With the initial current density J0 and the initial
particle density n0 at hand we can solve the original Pauli equation (e.g. by the
established splitting approach) and reiterate this procedure. The solvers for the
potentials shouldn’t be too di�cult since they are described a linear Poisson
equation. This question will be adressed in future works.
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A Functional Analysis

A.1 Self-adjoint operators

LetH be a Hilbert space and A be a densely defined linear operator with domain
D(A). Then A is called symmetric if

h', A i = hA', i,  ,� 2 D(A). (A.1)

The adjoint operator A⇤ of a densely defined linear operator A is then defined
by the domain

D(A⇤) := { 2 H|9 0
2 H : h , A'i = h 0,'i, 8' 2 D(A)} (A.2)

and the action
A⇤ =  0. (A.3)

The notion of self-adjointness for unbounded operators is cleary much more
subtle than in the bounded case since the question of the domain is omnipresent.
It might happen that D(A⇤) isn’t dense or that even D(A⇤) = 0. We will call
A self-adjoint if A = A⇤ and D(A) = D(A⇤).

Examples A.1. • As an important example take the multiplication op-

erator MA on L2(Rd, dµ). It is defined by

(
(MAu)(x) := A(x)u(x)

D(A) :=
�
u 2 L2(Rd, dµ) : MAu 2 L2(Rd, dµ)

 (A.4)

where A : Rd
! C is a measurable function. Then A is self-adjoint. For a

proof see [44].

• Define A as

Au := �i@xu, D(A) := H2(a, b) \ {u|u(a) = u(b)} (A.5)

Then A is self-adjoint.

We say that an operator is essentially self-adjoint if A is symmetric and its
closure is self-adjoint (Symmetric operators are always closable). Moreover, if A
is essentially self-adjoint then the closure A is the unique self-adjoint extension
of A.

Theorem A.2. Let A be a self adjoint operator on a Hilbert space H. Then its
spectrum �(A) is contained in the real line R. The converse also holds (if A is
not self-adjoint then �(A)\R 6= ;).

Proof.

The next theorem is due to Kato and Rellich. It ensures self-adjointness of
an operator of the form A + B where A is known to be self-adjoint and B is
somewhat controlled by A. Before we need to define relative boundedness of
an operator B:
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Definition A.3. Let A,B be operators. B is called A-bounded or relatively

bounded with respect to A if D(A) ⇢ D(B) and there exist constants ↵,� such
that

kBuk  ↵kAuk+ � kuk, u 2 D(A). (A.6)

Now the Kato-Rellich theorem goes as follows.

Theorem A.4. (Kato-Rellich) Let A be (essentially) self-adjoint. Let B be
symmetric and relatively bounded with respect to A and with relative bound < 1.
Then A+B with D(A+B) = D(A) is (essentially) self-adjoint.

Proof.

Another important theorem is Weyl’s theorem. It states that the essential
spectrum is stable under compact perturbations.

Definition A.5. [44], p.128. Let A be an operator with resolvent RA(z),
z 2 ⇢(A). The operator K is called relatively compact with respect to A or
A-compact if

KRA(z) 2 C(H) (A.7)

where C(H) denotes the set of compact operators on H. This only needs to be
true for one z 2 ⇢(A) since it follows for all z 2 ⇢(A) by the first resolvent
identity.

Theorem A.6. (Weyl) Let A be self-adjoint and K be symmetric. If K is
A� compact then A+K is self-adjoint with domain D(A). Moreover, �ess(A+
K) = �ess(A).

Proof. The first part follows from the fact that an operator which is relatively
compact with respect to a self-adjoint operator A is already relatively bounded
with respect to with relative bound zero. The detailed reason can be found in
Lemma 6.22 in [44]. The second part is actually more general since the claim
holds for any two self adjoint operators A and B for which compactness of
RA(z) � Rb(z) 2 C for some z 2 ⇢(A) \ ⇢(B) holds. In particular this is the
case for A and B := A + K where K is relatively compact. This is proven in
Theorem 6.19 in [44].

An important criterion for a point � 2 C to be in the essential spectrum is
Weyl’s criterion.

Theorem A.7. (Weyl’s criterion) Let � 2 C and A be self-adjoint. Then
� 2 �ess(A) i↵ there is a normalized sequence {un} converging weakly to zero
such that k(A� �)unk ! 0. The sequence can be chosen orthonormal.

Proof. See Lemma 6.17 in [44].

Next we look at quadratic forms and how they can be used to show self-
adjointness. Recall that an operator is called nonnegative if hu,Aui � 0 for
all u 6= 0 in D(A). On D(A) define the scalar product

hu, viA := hu, (A+ 1)vi. (A.8)
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Define HA to be the completion of D(A) with respect to h·, ·iA. Then D(A) ⇢
HA ⇢ H. Define the quadratic form on HA to be

qA(u) := hu, uiA � kuk2 (A.9)

where Q(A) := HA is called the form domain of A. A symmetric operator A
is called bounded from below or semi-bounded if

qA(u) = hu,Aui � �kuk2 (A.10)

for � 2 R. The following theorem gives the remarkable result that a symmetric
operator which is bounded from below has a unique self-adjoint extension which
is sometimes called Friedrich extension.

Theorem A.8. (Friedrich extension). Let A be a symmetric operator. If A is
bounded from below by � then A has a unique self-adjoint extension Ã which
is bounded from below by � and for which D(Ã) ⇢ HA�� . It is also the only
self-adjoint extension for which this holds.

Proof. See Theorem 2.12 in [44].

Now let s : Q ⇥ Q ! C be a sesquilinear form and let q be the associated
quadratic form, i.e. q(u) := s(u, u). q is called hermitian if it is real-valued. A
hermitian form is called, as before, semi-bounded if q(u) � �kuk2. The norm
associated with (semi-bounded) q is defined by kukq := q(u)+ (1��)kuk2. The
completion of Q with respect to this norm is denoted by Hq. q is called closable

if every for every Cauchy sequence which converges to zero in the k · k-norm it
follows that it also converges to zero in the k · kq-norm. Then Hq ⇢ H and the
extension of q to Hq is called the closure of q. Moreover if Q = Hq then q
is closed. We then have the important theorem that ensures that for a given
quadratic form we obtain a self-adjoint operator:

Theorem A.9. Let q be a closed semi-bounded quadratic form. Then there is
a unique self-adjoint operator A such that Q is the form domain QA of A and
q = qA. Explicitly A is given by

D(A) := {u 2 Hq|9ũ 2 H : s(w, u) = hw, ũi8w 2 Hq} (A.11)

Au := ũ� (1� �)u (A.12)

where s is the sesquilinear form corresponding to q.

Proof. Theorem 2.13 in [44].

After having seen that every closed semi-bounded form corresponds to a self-
adjoint operator let us look at perturbations of forms. First we need relative
form boundedness. Let A � � be a self-adjoint operator which is bounded from
below. Let q : Q ! R be a hermitian form such that the form domain of A is
contained in Q, i.e. Q(A) ✓ Q. Then q is called relatively form bounded

with respect to qA if there are constants a, b � 0 such that

|q(u)|  aqA��(u) + bkuk2 (A.13)

for all u 2 Q(A). The infimum over all a then called the form bound of q with
respect to qA. The most important application of relative form boundedness is
the form analogue of the Kato-Rellich theorem and is due to Kato, Lions, Lax,
Milgram and Nelson whence it is called KLMN theorem
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Theorem A.10. [KLMN]. Let qA : Q(A) ! R be a closed semi-bounded hermi-
tian form and q relatively bounded with respect to qA with a < 1. Then qA + q
is closed with Q = Q(A). In particular there exists a semi-bounded self-adjoint
operator corresponding to q + qA.

Proof. See Theorem 6.24 in [44].

The next result on compactness is needed the proof of Theorem 4.3. For its
proof we refer to [35].

Theorem A.11. Let X,Y be Banach function spaces and A 2 C(X,Y ) such
that A is positivity preserving (see [36]). Then B : X ! Y is compact if

|Bx(t)|  A|x|(t). (A.14)

A.2 Lebesgue and Sobolev spaces

A.2.1 Lebesgue spaces

This section is based on section 0.6. in [44]. Let (X,E, µ) be some �-finite
measure space and let Lp(X, dµ) where 1  p be the set of all complex-valued
measurable functions such that

kfkp :=

0

@
Z

X

|f |pdµ

1

A

1
p

< 1. (A.15)

This space is linear. In order to turn it into a Banach space denote by

N (X, dµ) := {f |f(x) = 0 µ� almost everywhere}. (A.16)

the set of functions vanishing almost everywhere. N (X, dµ) is a linear subspace
of Lp(X, dµ). The Lebesgue Lp

space is then defined as

Lp(X, dµ) := L
p(X, dµ)/N (X, dµ). (A.17)

with norm k · kp defined as above. Hence the elements of Lp are in fact equiva-
lence classes of functions. Let

kfk1 := inf{C|µ({c||f(x)| > C}) = 0} (A.18)

be the infimum over the constants for which the measure of the set of points x
for which f(x) is greater than C is zero, i.e. the essential supremum. Then
the space L1(X, dµ) of all measurable functions having an essential supremum
is a Banach space. The next theorem is frequently used. Note that two indices
p, q are called dual if 1/p+ 1/q = 1.

Theorem A.12. (Hölder’s inequality) Let p, q 2 [1,1] be dual indices. If
f 2 Lp(X, dµ) and g 2 Lq(X, dµ) then fg is in L1(X, dµ) with the estimate

kfgk1  kfkpkgkq. (A.19)

46



Proof. Without loss of generality assume that f and g are normalized, i.e.
kfkp = kgkq = 1. Recall that for arbitrary numberts a, b � 0 we have

a
1
p b

1
q 

a

p
+

b

q
. (A.20)

Now set |f |p := a and |g|q := b. Then integrate over X to obtain
Z

|fg| 
1

p

Z
|f |p +

1

q

Z
|g|q = 1. (A.21)

Alternatively Lp can be viewed as the completion of the smooth functions
with compact support on X with respect to the Lp-norm if X is a subset of Rn.

Theorem A.13. Let X ⇢ Rn and let µ be a regular Borel measure. Then the
set C1

c
(X) of all smooth functions with compact support is dense in Lp(X, dµ)

for p 2 [1,1).

Proof. See Theorem 0.36. in [44].

Note that this fails in the case p = 1 since the uniform limit of continuous
functions is again continuous whereas a function in L1(X, dµ) need not be
continuous.

A.2.2 Sobolev spaces

The Sobolev space W k,p(U) where U is some nonempty open set in Rn is
the set of all functions in Lp(U) which have weak derivatives up to order k in
Lp(U). The norm on W k,p(U) is defined as

kfkk,p :=

8
>>><

>>>:

 
P

|↵|k

k@↵fkpp

! 1
p

, 1  p < 1

max
|↵|k

k@fk1 p = 1.

(A.22)

In the case where p = 2, W k,2(U) is a Hilbert space and denoted by Hk(U).
Moreover, denote by W 1,p

0 (U) the closure of C1
c
(U) (i.e. the C1-functions with

compact support in U) in the norm of W 1,p(U).
In the proof of 4.5 we need the following theorem which can be found in [19]

as Theorem 2.2. It is also known as Gagliardo-Nirenberg interpolation

inequality.

Theorem A.14. Let u 2 W 1,m
0 (U). For any r � 1 the inequality

kukq  Ckruk1��
m

kuk�
r

(A.23)

holds with

1� � =

✓
1

r
�

1

q

◆✓
1

n
�

1

m
+

1

r

◆�1

. (A.24)

The range of q is [r, nm(n�m)] in the case n > 1, n > m and r  nm/(n�m).
For the other cases see Theorem 2.2 in [19].

For 4.5 we have the situation n = 3, m = r = 2, and thus � = 3/q � 1/2.
Moreover q 2 [2, 6].
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B Technical lemmata

B.1 Hardy’s inequality

Let u 2 C1
0 (Rd) and d � 3. Then

Z
|u(x)|2

|x|2


4

(d� 2)2

Z dX

j=1

|@ju(x)|
2dx. (B.1)

Proof. See Theorem 17.1 in [46].

B.2 Diamagnetic inequality

The diamagnetic inequality is associated with Kato’s inequality. In fact it can be
considered as the semigroup version of Kato’s inequailty. Consider the operator
H = (�ir�A)2 + � with domain D(H). Denote �� by H0.

Theorem B.1. (Diamagnetic inequality) Let f 2 L2(Rd) and H as above.
Then ��e�tHf

��  e�tH0 |f |, t 2 R. (B.2)

Proof. By Trotter’s product formula (see [18]) we have

e�tH = lim
N!1

h
e

t
N D

2
1 · · · e

t
N D

2
de�

t
N �

iN
(B.3)

where Dj := @j � iAj . Define

�j(x) :=

xjZ

0

A(x1, ..., xj�1, y, xj+1, ..., xd)dy (B.4)

for A 2 L2
loc(Rd). Then by Lemma 2.5 in [40] we have unitary equivalence of

�iDj and �i@j by multiplication with exp{i�j}:

�iDj = ei�j (�i@j)e
�i�j . (B.5)

Whence
e

t
N D

2
j = ei�je

t
N @je�i�j . (B.6)

Together with the resulting estimate | exp
�
tD2

j

�
f |  exp(t@j)|f | for f 2 L2(Rd)

the claim follows from the Trotter formula (B.3) and from the fact that | exp(�tV/N)| 
1.

B.3 Traces of Powers

This theorem is needed in the proof of the Lieb-Thirring bound. Its proof can
be found in Theorem 4.5 in [25].

Theorem B.2. (Traces of Powers) Let A,B be positive self-adjoint operators.
Then for all m � 1

tr(B
1
2AB

1
2 )  tr(B

m
2 AmB

m
2 ). (B.7)
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C Asymptotic analysis

For an overview on asymptotic analysis see [34].

Definition C.1. Let f and g be some complex-valued functions defined on some
set U in Rn. Then one writes

f(x) = O(g(x)), x 2 U (C.1)

if there is a constant C such that

|f(x)|  C|g(x)| (C.2)

for all x 2 U .

A stronger version of the above is the following

Definition C.2. Let f and g be as above and let x0 2 D. Then one writes

f(x) = o(g(x)) (C.3)

as x ! x0 for x 2 D if for any ✏ > 0 there is a � > 0 such that

|f(x)|  ✏|g(x)| (C.4)

whenever |x� x0| < �. In other words, f(x) = o(g(x)) if

lim
✏!0

|f(✏)|

|g(✏)|
= 0. (C.5)

The next thing we are going to need are asymptotic expansions.

Definition C.3. Let X be a normed space and let u✏, v✏ 2 X be elements
depending on ✏. Then u✏ and v✏ are called asymptotically equivalent if

ku✏ � v✏kX = o(ku✏k) (C.6)

as ✏ !0. Note that this definition is symmetric with respect to u✏ and v✏. One
also calls v✏ an asymptotic approximation for u✏. Now let {uk} for k 2 N0

be a sequence. Then the formal sum

1X

k=0

uk✏
k (C.7)

is called asymptotic expansion (of order N) if

ku✏ �
nX

k=0

uk✏
k
k = o(✏n) (C.8)

for all n (up to N).

There is a more or less informal classification of perturbed problems. Namely
we call problems regularly perturbed if the perturbed problem for ✏ 6= 0 is
of the same type, i.e if for example a second order homogeneous ODE remains
a second order homogeneous ODE after perturbation. All other problems are
called singularly perturbed.
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Nomenclature

�U characteristic function of the set U

�µ µth Dirac matrix

H Hilbert space

C set of compact operators

D(A) domain of the operator A

M� sum of the moments of the eigenvalues of H

Q form domain of a quadratic form

r Nabla operator

� scalar potential

 Dirac spinor

⇢(A) resolvent set of A

�(A) spectrum of A

� ·B stands for
P3

j=1 �jBj

�i ith Pauli matrix

�ess essential spectrum of A

A vector potential

B magnetic field

C1(U) class of infinitely di↵erentiable functions on the set U

C1
0 (U) class of C1-functions vanishing at the boundary

C1
c
(U) C1-functions having compact support in U

E electric field

ekij Levi-Civita symbol

H2(U) the Sobolev space W 2,2(U) on the set U

H0 free Schrödinger Hamiltonian

HP Pauli operator

H0
P

Pauli operator with � = 0

Hms magnetic Schrödinger operator

Jk components of the current density

Lp(U) space of Lebesgue p integrable functions on U
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Mf multiplication operator with respect to f(x).

RA(z) resolvent of A

W 1,p
0 (U) closure of C1

c
(U) in W 1,p(U)
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