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Abstract

Adaptation to new environmental challenges is ubiquitous in natural populations, such
that organisms have come to live in almost every possible niche. While such phenotypic
adaptations have been observed and documented for a long time, the underlying genetic
and genomic mechanisms have long been elusive. For many processes, evolutionary biol-
ogy relied entirely on theoretical inferences. Only the recent advent of high trough put,
genome-wide sequencing techniques has opened up the possibility of cross-validation of
some of the long standing theoretical paradigms by empirical observations, as well as the
influence of empiricism back towards the development of new analytical frameworks. In
this new era the genome is more and more understood as an entity, responding jointly
to new selective challenges. In the current thesis different genomic architectures, includ-
ing aspects of genomic position (autosomes, sex-chromosomes, cytoplasmic genome),
number of contributing loci, or strength of selection and epistatic interactions are vetted
for their individual and cumulative impact on adaptation and parapatric speciation. The
theoretical and numerical predictions presented all rely on models in the tradition of
population genetics, following dynamics of individual alleles. The first project deals with
the process of incipient, parapatric speciation, based on a two locus Dobzhansky-Muller
hybrid incompatibility in a continent island model. It turns out that the genomic po-
sitioning of the involved loci, e.g. X-linkage or sex-biased selection and epistasis can
strongly increase the sustainability of incipient divergence against swamping due to im-
migrating alleles, showing the importance of the genomic architecture of the DMI for
its evolution and maintenance. The second and third project focus on evolutionary dy-
namics of polygenic adaptation of a complex trait within a single, panmictic population,
based on a binary trait and a quantitative trait model. In both cases the strength of
genetic redundancy within the trait basis proves to be the main, composite predictor for

the resulting adaptive architecture of a polygenic trait.



Zusammenfassung

Anpassung an verschiedenste Lebensraume und Umweltbedingungen hat dazu gefiihrt,
dass natiirliche Organismen so gut wie jede okologische Nische unseres Planeten be-
siedeln konnten. Wahrend dabei die phanotypischen Veranderungen offensichtlich sind,
waren und sind die genetischen Mechanismen die zu diesen Anpassungen fiihrten oft
unbekannt und boten ein weites Feld fiir Spekulationen. Dadurch spielten theoretische
Vorhersagen eine groBe Rolle, sodass liber lange Zeit weite Felder der Evolutionsbiolo-
gie ganzlich auf diesen beruhten. Inzwischen hat die Entwicklung moderner, genom-
weiter Sequenzierungsmethoden eine neue wissenschaftliche Ara eingeliutet. Es ist nun
moglich langfristig etablierte Paradigmen der theoretischen Evolutionsbiologie eingehen-
der, empirischer Verifikation zu unterziehen. Umgekehrt fithren die neuen Methoden
auch zur Inspiration und Entwicklung neuer evolutionsbiologischer Theorien und Ansatze.
Heutzutage wird das Genom zunehmend als Einheit verstanden, die in ihrer Gesamtheit
auf neue, selektive Einfliisse reagiert. In der vorliegenden Arbeit untersuche ich den
Einfluss verschiedener genetische Architekturen, das heiBt Genomposition, Anzahl der
involvierten Loci oder der Starke Selektion und epistatischer Interaktionen, auf den da-
raus resultierenden adaptiven Prozess und auf die beginnende Artbildung. Der Fokus
liegt hierbei auf populationsgenetischen Modellen, die Allelefrequenztrajektorien und -
dynamiken beschreiben. Das erste Kapitel widmet sich dem Prozess beginnender Art-
bildung durch eine zwei-lokus Dobzhansky-Muller Hybridinkompatibilitat. Es zeigt sich
sich, dass genomische Architekturen die Sexchromosomen enthalten stéarkere Resistenz
gegen Genfluss zeigen, als rein autosomale oder mitochondriale Inkompatibilitdten. Das
zweite und dritte Kapitel beschreiben verschiedene Modelle zur Dynamik der Anpassung
eines komplexen, phanotypischen Merkmals mit einer polygenen Basis in einer panmik-
tischen Population. Dabei stellt sich heraus, dass die Starke der genetischen Redundanz
der polygenen Basis immer der Schliisselfaktor fiir die resultierende adaptive Architektur

ist.
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1 Introduction

In this thesis | present, on the influence of genetic architectures of a trait on its response
to selection within and between diverging populations. Thereby | cover scenarios of
polygenic adaptation to a new optimum, as well as incipient speciation with gene flow.
In summary, | find that different genetic architectures, in particular epistatic interactions
(all Chapters), genomic position, such as e.g. autosomal, X-linked or cytoplasmic genes
in incipient speciation (Chapter 2) and genetic redundancy of the trait (Chapter 3-4)

substantially impact how genomes react to selective pressure.

1.1 Defining genetic and adaptive architecture of a trait

The genetic architecture of a phenotypic trait is constituted by the entity of its genetic
basis and thus it fully defines the genotype-phenotype map (Hansen, 2006). In detail,
it comprises the number of loci involved in governing a trait, their linkage pattern and
more general their genomic position, i.e. being situated on an autosome, linkage to sex-
chromosomes or genes in extra nuclear genomes such as organelle e.g. mitochondria.
For each of these loci, the genetic architecture also covers the number of different alleles.
Furthermore, it contains functional information, such as the effect size of each allele,
which includes the individual, allelic effect together with its dominance and epistatic
interactions with other alleles within the trait basis, i.e. intra- and inter-locus inter-
actions. Next, pleiotropy, that is the influence of individual alleles or loci on several
unrelated phenotypic traits (reviewed in Paaby and Rockman, 2013), can also be sum-
marized within the functional properties. Finally, effects of new mutations can also be
included and affect function and variation, especially concerning the response of the trait
to a selective pressure (defined in Wagner, 2000; Hansen, 2006). Hence the "genetic
architecture" of a trait is independent of allele frequencies (following Wagner, 2000). It
describes the potential for change (due to single- and multiple locus substitutions) and

is defined for a given reference genotype (could be the ancestral genotype). It includes
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the entire genetic basis of a trait, but does not refer to fitness in any way.

The concept of the "genetic architecture" needs to be carefully distinguished from
the concept of the "adaptive architecture" of the trait. While, as described above,
the former comprises all genomic loci that affect a trait, the latter only refers to a
subset. In particular, | describe the adaptive architecture by the effective changes in
allele frequencies in the context of phenotypic adaptation (again relative to a reference
genotype). This includes the impact of all evolutionary forces such as selection, genetic
drift, mutation and migration. Across many replicate runs of evolution, this is given by
a joint distribution of allele frequencies. The realized change for a single run is obtained
by sampling from this distribution.

Information about the genetic architecture of a trait is of special interest for pre-
dictions concerning its evolutionary dynamics. Following the Neodarwinian paradigm,
evolution is usually defined as the change in allele frequencies (reviewed in Kutschera
and Niklas, 2004), so the genetic architecture coupled with the composite allele frequency
distribution of a trait basis provides the substrate for the possible adaptive response of
a trait to selection. While here | follow the definition of genetic architecture excluding
allele frequency informations (Wagner, 2000; Hansen, 2006), there exist alternative con-
cepts (e.g. Visscher et al., 2017), which additionally include allele frequency distributions
into their definition. Yet, | abide by the former definition for the following reasons: The
genetic architecture (e.g. in the two fly populations, one big population living in the wild
and one much smaller population maintained in the lab, constituted of sampled descen-
dants from the wild population) can be the same, while the adaptive architecture (that |
assess through replicate runs) is still different. In each single replicate | obtain a realized
architecture, strongly depending on factors such as the available genetic variation, the
effective population size or the effect on trait wide population mutation rates etc.

In conclusion this means that under selection with a given genetic architecture, dif-
ferent adaptive architectures should be expected. (Alternatively, one could call the single

realized architecture the "adaptive architecture" and the joint distribution a "distribution
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1.1.1 The search for genome wide footprints of speciation and adaptation

In the current post-genomic era of evolutionary biology (Perbal, 2015) (since the decod-
ing of the human genome), newly developed high-throughput sequencing methods allow
scientists to study entire genomes and large numbers of individuals at once. Together
with functional information evolution is now understood more and more as a process af-
fecting the genome as an entity and reaching the statistically necessary sample sizes now
allow us to unravel complex genetic architectures and detect weak adaptive footprints.
This development also has a huge impact on theoretical evolutionary biology. While
theoretical predictions of evolutionary processes often have lacked empirical confirma-
tion, this new era enables comprehensive validations and corrections of long-standing
theoretical paradigms. Additionally, empirical observations also start to have a strong
impact on evolutionary modeling.

One example for the application of such scans to look for genome-wide patterns in
speciation research is the concept of islands of genomic divergence or sometimes also
called islands of speciation (Wu, 2001; Turner et al., 2005; Butlin et al., 2012; Nosil,
2012; Nosil and Feder, 2012; Via, 2012). The idea being that some loci, putatively due to
local adaptation, might reduce effective gene flow in their immediate genomic proximity.
This leads to increased divergence levels within these linkage groups, i.e. the islands of
divergence. These islands could in turn serve as nuclei of incipient barriers to gene flow,
which upon expansion might lead to a severe reduction or even to the complete block of
gene flow over the entire genome and thus result in speciation. There are genome scans
for such islands in e.g. plants (Strasburg et al., 2012) or in host races of pea aphids
(Via and West, 2008), yet in general the empirical results on the abundance and size of
such island are mixed (Nosil, 2012; Cruickshank and Hahn, 2014; Pennisi, 2014). The
ongoing debate about whether these islands are real, has also inspired theoreticians to

provide some predictions on if and how such barrier could build up and how that would
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depend on the respective genetic architecture of the causal loci within the island (see
Feder et al., 2012; Yeaman, 2013; Aeschbacher and Biirger, 2014; Yeaman et al., 2016;
Blanckaert and Hermisson, 2018).

Another instance of genome wide scans are genome-wide-association-studies (GWAS)
searching for candidate loci potentially contributing to differentiation in various (model-)
organisms, such as humans (Visscher et al., 2012, 2017), Arabidopsis thaliana (see Togn-
inalli et al., 2017, for an overview) or Drosophila (Wangler et al., 2017). Instead of
clear genomic footprints of adaptation, empirical data however often yield footprints
of selection, which do not agree with complete sweep patterns, in the tradition of (e.g.
Maynard-Smith and Haigh, 1974). Instead adaptive haplotypes might be found to segre-
gate at intermediate frequencies in natural or experimental populations, a pattern usually
called partial sweeps. For example, in evolution experiments in Drosophila, putatively
beneficial variants rise but do not sweep to fixation, but eventually segregate as sta-
ble polymorphisms in the population (Burke et al., 2010; Tobler et al., 2014; Franssen
et al., 2015). Alternatively, the detected loci might only explain a tiny fraction of the
trait heritability (Manolio et al., 2008, 2009), such that the majority of causal factors
remains unknown. Among others polygenic adaptation has been put forward as putative
underlying cause of these phenomena (Pritchard et al., 2010; Pritchard and Di Rienzo,
2010). These studies suggest, that the genomic adaptive architecture of the traits itself
might obscure the signal. The idea being that for a complex trait under selection many
loci could potentially react in parallel via subtle, concerted allele frequency shifts, an
expectation in the tradition of quantitative genetics. While such a genomic signal would
be feeble, such that the detection of significant signals would be strongly limited, yielding
probably only a few loci, phenotypic adaptation could still be substantial. This pattern
of polygenic adaptation stands in stark contrast to the pattern of selective sweeps, where
single loci experience a significant frequency increase and are the main contributors re-
sponsible for adaptation — a signal that is much easier to detect (reviewed in Hermisson

and Pennings, 2017). Following the influential work of Pritchard et al. (2010), the em-
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phasize of molecular geneticists shifted from searching for sweep patterns to trying to
identify weak patterns of polygenic adaptation in data (e.g. Hancock et al., 2010; Daub
et al., 2013; Berg and Coop, 2014). To do so, new methodology to identify concerted
frequency shifts despite their small, individual size were developed, usually relying on the
common trends of frequency changes of allele cohorts (Field et al., 2016) or on linkage
disequilibria (LD) (Berg and Coop, 2014), leaving the study of single significant SNPs
behind. Human height quickly emerged as the standard example of a quantitative trait
(QT), but signals of polygenic adaptation were also found for many other traits, showing
pervasive selection shaping the human genome (e.g. Daub et al., 2013; Berg and Coop,
2014; Field et al., 2016; Boyle et al., 2017). These results even lead to the postulate of
the omnigenic model (Boyle et al., 2017), where basically every gene could potentially
contribute to adaptation of many traits. The shock to the field followed a few years
later, when it was discovered that the original strongest signal of polygenic scores on
height was heavily inflated by remaining population stratification in the data (Berg et al.,
2018; Sohail et al., 2018). To this date, the abundance of polygenic adaption via subtle

frequency shifts remains unclear.

1.1.2 The role of epistasis in genetic architectures

One common key aspect of all investigated genetic architectures in this thesis is epistasis,
that is the differential effect of an allele on the phenotype or fitness conditional on its
respective genetic background. There is ongoing discussion about the importance of
epistasis for evolution, yet this predominantly stems from inexact differentiation between
functional /physiological and statistical epistasis (Hansen, 2013, and detailed below) .
First, in the (Bateson-)Dobzhansky-Muller hybrid incompatibility (DMI) model (Bate-
son, 1909; Dobzhansky, 1936; Muller, 1942) (presented in Chapter 2) for incipient para-
patric speciation, epistasis is of course essential and its role remains fairly undoubted.
Thereby a 2-locus DMI is constituted by two, usually biallelic loci (A and B). While

3 pairs of alleles are compatible, one pair of variants at the two loci, that emerged on
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different backgrounds, is incompatible. One classic and illustrating evolutionary trajec-
tory for such a scenario is secondary contact: A population splits into two, allopatric
sister populations, and a new, derived variants arise and fix at each of the two loci in
the two populations (e.g. @ — A in population 1 and b — B in population 2). While
these new alleles work well in their native, separate backgrounds, they cause hybrids,
carrying both derived alleles A and B, to be less fit (instances are reduced hybrid fitness
or even hybrid sterility or lethality), once these variants interact statistically within the
same individual. As there is abundant empirical evidence for the occurrence of DMIs
in natural population (Barnard-Kubow et al., 2016; Fishman and Sweigart, 2018, to
cite but a few) (extensively reviewed in Coyne and Orr, 2004; Maheshwari and Barbash,
2011), epistasis in this context is probably least contested. In Chapter 2 | show that
genomic position and effect sizes, especially the strength of epistatic interactions in the
DMI strongly influence its evolution and stability in the face of gene flow.

However, despite the polygenic nature of quantitative genetics, epistasis there is often
neglected in favor of pure additive effects on the trait and fitness or it is modeled as a non-
directional variance component e.g. in the infinitesimal model (see Fisher (1918) and its
extensions by Barton et al. (2017)). This results in part from the fact, that with QT the
phenotypic variation that can be attributed to epistatic variance in data is low, despite
abundant empirical evidence for physiological epistatic interactions of QT-loci (QTL)
(Malmberg and Mauricio, 2005; Hill et al., 2008; Crow, 2010). Nevertheless, this does
not mean that generally epistasis is irrelevant, as the non-directional implementation of
epistasis does not capture the nature of functional or physiological epistasis. Furthermore
physiological epistasis can largely contribute to additive genetic variance (Hansen, 2013).
Indeed, in the current work | show that the directionality of epistatic interactions, in this
case diminishing-returns epistasis (often found in data e.g. Kryazhimskiy et al., 2014),
can have a decisive impact, strongly shaping the adaptive footprint selection leaves within
genomes. In detail, | show that the strength of negative epistasis is directly related to

the expected adaptive architecture of a complex trait, as it is the key determinant for
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the functional redundancy of the involved loci. For this | compare different models of
complex traits, such as a binary trait with a (completely) redundant polygenic basis
(Chapter 3) and a QT-model with additive phenotypic effects and stabilizing selection,

yielding negative epistasis on fitness (Chapter 4).

1.2 Parapatric speciation with a DMI model (Chapter 2)

1.2.1 Background and motivation

For a long time speciation research has primarily focused on the two endpoints of the
continuum of different migration rates, constituted by either allopatric (i.e. complete
isolation of incipient sister species) or sympatric (i.e. common habitat of the diverging
subpopulations) speciation scenarios (Coyne and Orr, 2004; Orr and Turelli, 2001; Via
and West, 2008). In allopatry the classical approach for postzygotic isolation barriers
is the (Bateson-)Dobzhansky-Muller model (DMM) (Bateson, 1909; Dobzhansky, 1936;
Muller, 1942).

Here, however | aim for a comprehensive treatment of the entire spectrum of variable
gene flow rates, known as parapatric speciation, because it is still unclear how the
homogenizing effect of gene flow and recombination can be counteracted (Felsenstein,
1981; Slatkin, 1987). Yet, recent estimates of non-negligible hybridization rates between
“good species” with still viable and not completely sterile offspring (potential back-
crossing) in nature provide legitimate ground to assume ongoing gene flow in many
naturally diverging populations (see Coyne and Orr, 2004; Mallet, 2008, for a review).
Also there is widespread empirical evidence for the occurrence of DMIs (Coyne and Orr,
2004; Presgraves, 2010; Maheshwari and Barbash, 2011) even within species boundaries
(Corbett-Detig et al., 2013). Together with these empirical findings, a several theoretical
studies (Agrawal et al., 2011; Feder and Nosil, 2009; Gavrilets, 1997; Bank et al., 2012)
also support the hypothesis that the DMM might be a potential evolutionary route to

parapatric speciation. In detail, Bank et al. (2012) showed that autosome-autosome 2-
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locus DMIs allow for the evolution of postzygotic isolation in early phases of parapatric
speciation, given that migration rates do not exceed a critical value.

Concerning speciation, two other prominent mechanisms come to mind, i.e. Hal-
dane's rule and the large X-effect. The former states that within species with sex
specific reduced hybrid fitness usually the heterogametic sex is affected (first described
by Haldane, 1922), (and reviewed in Coyne and Orr, 2004). The latter describes the
finding that a disproportional number of genes involved in postzygotic isolation maps to
the X-chromosome (reviewed in Presgraves, 2008). Both phenomena point to a major
role of sex-chromosomes in speciation. Furthermore, various cases of cytoplasmic in-
compatibilities between nuclear and mitochondrial genomes (Burton and Barreto, 2012;
Ellison and Burton, 2008), as well as plastids in plants (for biological examples e.g. see
Snijder et al., 2007) and incompatibilities due to infection with the cytoplasmic bac-
terium Wolbachia (reviewed e.g. in Coyne and Orr, 2004; O'Neill et al., 1992; Werren,
1997) have been documented.

Given the large body of empirical and theoretical evidence concerning the variable
genetic architecture of a DMIs, the necessity to extend investigations in this direction
is apparent. | investigate the effects of including non-autosomal loci, such as X-linked
alleles, e.g. like the mammalian Xy-system. Nevertheless, the model readily extend to
heterogametic females (WZ-system in birds). Additionally | include extra-nuclear alleles,
e.g. mitochondrial genes into the analysis. As sex-chromosomes and mitochondria both
experience sex-biased inheritance, | analyses the influence of sex-biased migration rates
on parapatric DMI evolution and sex-biased allelic and epistatic effects, especially due

to dosage compensation of the hemizygous X in males.

1.2.2 Model

Based on (Bank et al., 2012), | focus on the initial phase of the speciation process and
setup a deterministic, minimal model of a two locus DMI in a continent-island frame-

work (a monomorphic continent with unidirectional gene flow to the island). | assume
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linkage equilibrium (LE) among both loci and Hardy-Weinberg-proportions, due to weak
evolutionary forces. Using a pair of differential equations in continuous time (see Box
1 in Section 2.2) | follow the allele frequencies of the incompatible alleles on the island
and study the maximum tolerated migration rates, where a two locus polymorphism,
a DMI, can persist stably against swamping or even invade. Mathematically a DMI
hence corresponds to a stable, internal equilibrium in the frequency space. In detail |
look at eight different genomic architecture (combinations of autosomal, X-linked and
mitochondrial genes, see Table 2.1 and Fig.2.1, B.1 for illustrations), where | refer to
the incompatible allele immigrating from the continent as the continental allele and the
incompatible allele residing on the island as the island allele. | investigate codominant
DMls (additive by additive epistasis), where the strength of the hybrid incompatibility
is directly proportional to the number of incompatible pairs of alleles, recessive DMIs
(respecting Haldane's rule, such that F1-females are not affected) and a general model
comprising these two fitness schemes, where | study the effect of sex-biased migration
rates and sex-biased X-linked locus effects (dosage compensation), respectively. Only
the codominant model lends itself to comprehensive analytical treatment, while | have

to resort to numerical investigations for most of the other fitness schemes.

1.2.3 Results

Like Bank et al. (2012), | find three potential boundary equilibria for the general model.
A monomorphic fixed point, where the continental genotype fixes on the island. This
is always permissible and will be reached for strong migration rates. Additionally, there
can be up to two single locus polymorphisms (SLP), at each of the DMI loci, where
either only one allele is polymorphic and the other locus has been swamped. Only co-
dominance allows for complete analytical description, where | find further find at most
one, locally or globally stable internal fixed point, a DMI.

Depending on local or global stability of the DMI, | distinguish two different mi-

gration limits, as in (Bank et al., 2012). First, for migration rates 0 < m < m,_ ..
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(Section 2.3.1), the internal equilibrium is globally stable and will be reached from all
starting conditions. These can be mapped to different evolutionary histories of the DMI,
i.e. where which incompatible alleles arose together with the migration history of the
two populations (see Fig.B.4). Second, for migration rate m,,,. < m < m} | ob-
tain a locally stable equilibrium, which can only be reached from favorable evolutionary
histories. Finally for strong migration rates exceeding m > m; | do not find any
permissible DMI.

In accordance with results for autosomal DMIs in (Bank et al., 2012), | find that also
non-exclusively autosomal DMls require local adaptation due to ecological differentiation,
i.e. the island allele needs to be adaptive, such that its sex-averaged advantage exceeds
the immigration. In general the dynamics are governed by two evolutionary forces, namely
by selection against immigrants, due to maladapted continental alleles or by selection
against hybrids, or by a combination of both. With maladapted gene flow, and weak to
moderate selection against hybrids, the DMI is most often globally stable, if it exists.
However, if selection against hybrids is dominant or the immigrating allele is beneficial
on the island, it will act against immigrating alleles, only when they are rare, such that
the DMI is predominantly locally stable, if it exists.

If | start to disentangle the effects of different genetic architectures | find that X-
linked architectures are by trend among the most stable architectures. For example
in nuclear DMls, where the X is dosage compensated and male migration is non-zero,
models with X-linked alleles are always more stable than autosomal DMIs, see Fig.2.2.
Only in the case of female biased migration and without dosage compensation all mod-
els with autosomal island alleles result in more migration-resistant DMls, as shown in
Fig.2.3. Similarly in cyto-X, DMIs with X-dosage compensation are more stable than
cyto-autosome-DMIs (Fig.2.4). In general sex-biased migration rates have a strong
impact on DMI stability. X-linked DMIs with immigrating X alleles are noticeably weak-

ened/strengthened with female/male migration bias. As mitochondria are only mater-

nally inherited the impact of male male-biased migration is especially pronounced in that

10



273

274

275

276

277

279

280

281

282

284

285

286

287

289

290

291

292

294

295

296

297

299

case and almost always enhances the stability of all X-linked architectures.

| round up the investigations by challenging the assumption of LE using numerical
simulations, where | observe no differences for weak to moderate levels of epistasis
and LD. However, strong epistasis (hybrid inviability or infertility), causes qualitatively
different behavior for some of the investigated architectures (autosome-autosome and X-
X-DMls, see Fig. A.2). Second, | find that the deterministic migration bounds provide a
strict upper bound to the results with drift (obtained by simulations), see subsection A.3.
Finally, | find that X-linked alleles experience stronger barriers against introgression, when

com pared to autosomes.

1.2.4 Discussion

In conclusion, | find that parapatric differentiation might act as a potential contributor
towards the large X-effect, as | find that X-linked parapatric DMlIs together with dosage
compensation or male-biased migration are amongst the most stable DMIs to migration.
Additionally, in the codominant model with dosage compensation and unbiased or male
biased migration | find that X-linked substitution rates exceed the rates on autosomes.
(Charlesworth et al., 1987) observed this effect only for recessive alleles in a model
without migration, where it was termed the faster X-effect. As a faster evolution of
X-linked substitutions also favors a larger X contribution to isolation, this could be
an additional factor of how parapatric speciation could add to the large X-effect. On
the contrary, concerning Haldane's rule, | do not obtain any predictions, as | find that
recessive DMIs, following Haldane's rule do not show qualitative differences compared
to codominant DMIs, see Fig. A.1.

As such the model provides a mechanistic route towards an initial step to speciation
in parapatry. Of course the results only capture the evolution of a first DMI, corre-
sponding to a stable polymorphic state of the population, but this does not yet lead to
complete reproductive isolation. Nevertheless, such an incompatibility might serve as a

seed for further accumulation of barrier genes, following the idea of islands of divergence
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discussed above. In this context however it is necessary to note that while in allopatric
speciation scenarios DMIs are expected to accumulate increasingly rapidly (Coyne and
Orr, 2004), this "snow ball effect" of DMI accumulation can be effectively disrupted
in parapatric scenarios with unfavorable DMI architectures (Blanckaert and Hermisson,
2018). This further highlights the impact of the genetic architecture for DMI stability
during speciation. In detail, the authors show that linkage patterns of DMI loci are
essential for more complex DMI evolution and growth of the isolation barrier from an
initial seed additional to the prerequisite that gene flow is sufficiently weak. The impact
of linkage is also underlined by related results in hybrid speciation, where linkage patterns
of DMI loci make or break the potential for the formation of a hybrid species, that is
separate of both of its parental populations (Blanckaert and Bank, 2018).

Finally, concerning the results of easier autosomal introgression compared to X-
introgression, | find that the observation agrees with empirical data, where often auto-
somal introgression is pervasive, while X-linked divergence is much more pronounced,
with examples from the complex of Anopheles gambia sister clade (Fontaine et al.,
2015), hybrid zones in mice (Macholén et al., 2007; Liu et al., 2015) and different bird

species (Satre et al., 2003; Hooper and Price, 2015)

1.3 Polygenic adaptation (Chapter 3 and 4)

Below | introduce my work on polygenic adaptation of a complex trait, which consists of
two projects. However, as they are conceptually tightly linked, | have chosen to present

the results and conclusions together.

1.3.1 Background and motivation

While Darwin originally thought, that phenotypic adaptation was a rather slow process
(Darwin, 1859), recent empirical examples show that adaptation can be so rapid, that
it can easily be observed within a human life time (Hairston Jr et al., 2005; Hendry

et al., 2008; Gingerich, 2009; Losos, 2014). There are many well documented examples
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from natural populations, ranging from pigmentation changes in the peppered moth
(Cook et al., 2012), apple maggot flies adapting to specific food sources (apple races)
(reviewed in Reznick, 2011) or beak size alterations in Darwin's finches (Grant and Grant,
2008, 2011), as well as results from evolutionary experiments (Burke et al., 2010; Kolbe
et al., 2012; Franssen et al., 2017; Zan et al., 2017; Barghi et al., 2018, to cite but
a few examples in Drosophila, lizards or chickens). These high rates of adaptation are
of particular interest, as they nourish hope, that the recent accelerated climate change
still might leave limited possibilities for some organisms to adapt and evade extinction
(Gingerich, 2009; Kopp and Matuszewski, 2014; Losos, 2014).

In Chapter 3 and 4, | investigate the initial phase of rapid phenotypic adaptation of
a complex trait to a new phenotypic optimum. Interestingly, it is still unclear, how rapid
adaptation generally proceeds on the genomic level and different models have focused
on variable aspects of the process. However, the sparsity of comprehensive treatments
including all possible evolutionary trajectories is surprising. On the one side quantitative
genetics rests on the infinitesimal model by Fisher (1918) (see also Barton et al., 2017)
or on one dimensional summary statistics, e.g. means and variance, yet it does not
disentangle individual allele frequency dynamics (e.g. Turelli and Barton, 1990, 1994;
Birger and Lynch, 1995; Biirger, 2000; Rice, 2004)) In contrast, models covering se-
lective sweeps (in the tradition of Maynard-Smith and Haigh, 1974), or adaptive walks
(consecutive fixations) (Geritz et al., 1998; Orr, 2005; Matuszewski et al., 2015) concen-
trate on adaptive substitutions. In this context, (Chevin and Hospital, 2008) constituted
a novel starting point. Based on (Lande, 1983), these authors studied adaptation at
a single QTL on an "infinitesimal background". Subsequently, (Pavlidis et al., 2012;
Wollstein and Stephan, 2014) also focused on allele frequency changes at 2-8 QTL.
Nevertheless, patterns of comprehensive polygenic adaptation are largely neglected as
these studies do not consider the collective adaptive dynamics at many individual loci
within the trait basis without a background. In the current study, | base my models on

recent work by (de Vladar and Barton, 2014; Jain and Stephan, 2015, 2017), who have
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studied rapid adaptation of a QT under stabilizing selection in a deterministic framework.

Here | study two models of adaptation of a trait with a polygenic basis consisting
of a discrete number of loci, following individual allele frequency dynamics under the
influence of selection, mutation and genetic drift. | resolve the adaptive architecture,
upon phenotypical adaptation for a binary trait with a polygenic, functionally redundant
basis (Chapter 3) and | extend the investigations to a QT under stabilizing selection
(Chapter 4). Our model choice allows for a comprehensive analysis of all adaptive archi-
tectures, from selective sweeps to subtle frequency shifts, or any intermediate patterns.
| emphasize that to obtain concerted, small frequency shifts as adaptive pattern, when
following a trait governed by a finite number of loci, | require negative epistasis within
the polygenic basis. Alternatively, strict additivity for fitness results in parallel and/or
consecutive sweeps, while individual alleles cannot dampen the rise of alleles at other loci.
Adaptation via concerted frequency shifts therefore constitutes a collective adaptation
pattern of the entire genetic trait basis.

For the binary trait model in Chapter 3, strong negative epistasis between all loci is a
natural consequence of complete redundancy (fixation of a single derived allele results in
complete phenotypic adaptation of the population). Later | relax this stringent condition
to include diminishing returns epistasis. Alternatively, in Chapter 4 individual genotypic
effects are additive, yet the curvature of the fitness function (genotype-phenotype map)
results again in diminishing returns epistasis, enabling all adaptive architectures from
sweeps to shifts. Yet the distance to the new optimum determines the strength of the
redundancy and thereby also influences the strength of negative epistasis in the QT-
model.

| find a striking uniformity of mainly three different adaptive patterns for different
trait basis sizes, that are determined by a single compound parameter, the background
population mutation rate ©;,. This parameter effectively measures the degree of func-
tional redundancy within the trait basis and delimits whether | mostly obtain completed,

single sweeps, a combination of completed and partial sweeps, or small, concerted fre-
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quency shifts at many loci. Additionally, | find that selection strength and standing
genetic variation (SGV) do not affect the adaptive architecture (Chapter 3 and 4) and
that my results readily extend to linked loci and diploids (Chapter 3). Finally, | also in-
clude alternative starting conditions deviating from mutation-selection-drift equilibrium
(Chapter 3). | complement the extensive numerical investigations with the introduc-
tion of a comprehensive, analytical framework and derive well fitting, complex analytical

predictions for the adaptive architectures of a complex trait.

1.3.2 Models

To study the adaptive architectures of a complex trait governed by a polygenic basis, |
study two different models: First | study adaptation of binary trait with a strongly redun-
dant, genetic basis ("redundant" or "binary trait model") and second | follow adaptation
of a QT ("QT-model") under stabilizing selection to a new optimum. Each time | focus
on a haploid, panmictic population of size N, and track individual allele frequencies.
The polygenic basis consists of L biallelic loci (ancestral/derived: a;, A;), with allelic
mutation rate ;.

From the single locus equations at time ¢

pa, = (w3, (6) — @(1))pa, (1)

with marginal and mean fitness w’. and w, | obtain very similar frequency dynamics for

the two models. In the case of the redundant trait model, | derive

.= s(00.( Zo - Z<t>), ©)

with the optimum and the mean phenotype Z,,(t) and Z(t) and selection strength s(t).
In the QT-model | obtain two "sub-models", one emphasizing directional selection,

i.e. the "directional selection model"

15



403

404

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

pAi - O-'YAszl(l - pAz) (Zopt — Z) (3)

and a more complex QT-model also capturing the decrease of genetic variance by

allele sorting, i.e. the "full model"

= = a0 Zow 2= 50 20 (@)

with selection strength in the QT-model , corresponding to selection in the binary trait
model, 0 - y4, = s

The dynamical equations obtained for the QT-model also coincide with models stud-
ied in previous papers (de Vladar and Barton, 2014; Jain and Stephan, 2015, 2017).

In both cases, the redundant model and the QT-model, | study rapid adaptation
either from the ancestral state via de novo mutations or evolving from standing genetic
variation (SGV) built up under mutation, selection and drift. This entails that my results
capture the adaptive architecture, once the population has reached the new phenotypic
optimum, while they neglect long-term dynamics after selection has ceased.

For both approaches, | derive a comprehensive analytical framework to predict the
expected adaptive architecture. This is based on partitioning the rapid adaptive phase
into an early stochastic phase, governed by mutation, drift and selection, and a sub-
sequent deterministic phase, governed mainly by epistasis and selection. | describe the
early phase via the stochastic Yule process and prove that the results transmit through
to the end of the deterministic phase. Upon some transformations, accounting for dif-
ferent stopping conditions (when | sample the population, usually conditioned on mean
fitness reaching a certain threshold) and assuming linkage equilibrium, | finally obtain
a joint distribution of derived allele frequencies, a family of inverted Dirichlet distribu-
tions describing the adaptive architecture of the polygenic trait. From that, | obtain
the marginal distribution of the loci contributing most significantly to adaptation. Inter-

estingly all these predictions are independent of selection strength, before or after the
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change in the environment, conditioned on equal effects of each locus. | contrast the

analytical results with extensive Wright-Fisher simulations.

1.3.3 Results

In my investigations | discern the "major" locus as the locus with the highest frequency
change and hence the locus which contributed most to adaptation, from all other L — 1
loci. | refer to the latter as "minor" loci, called first, second, third, etc. minor, according
to their (smaller) contributions. This is in good agreement with empirical practice, as in
a case control GWAS study a major locus with the strongest frequency change compared
to an out-group, would also give the highest signal (e.g. Visscher et al., 2012, 2017).
Keep in mind, that as the effect size of all major and minor loci are all equivalent. With
adaptation from de novo mutations (in Chapter 3 & 4) or SGV built up under negative
selection (only valid in Chapter 3), the major locus is equal to the locus with highest
frequency at the end of the adaptive phase. However, the definition based on effective
frequency change is more general, as it always described the locus that contributed the
most to adaptation as the "major" locus.

Using a small trait basis of . = 2 in the redundant trait model the ratio of the first
minor allele over the major allele, serves as as a initial, one-dimensional estimator, E[z],
Eq.(3.9) in dependence of the population mutation rate. It yields a crude distinction
of "homogeneous"(E[z] ~ 1) and "heterogeneous" adaptive architectures (E[z] ~ 0),
where the major and the first minor locus show qualitatively similar/different behavior
(different = it acts as a sole main contributor to adaptation). | show that this ratio
stays constant over the entire adaptive phase (Section 3.3.4 and D.1), and is hence
independent of the time of sampling. E[z] is also independent of selection strength and
SGV (Fig.3.3), as predicted, as well as unaltered by linkage (Fig. C.1).

Similarly, with the QT-directional selection model, as predicted, selection strength
and time of sampling do not impact the resulting adaptive architecture (Fig.4.1), irre-

spective of the L. In contrast, for the full model | only obtain independence of selection,
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as long | sample the population far away from the optimum, while at complete adapta-
tion, weaker selection results in more polygenic architectures with 2 loci.

As | cannot obtain predictions for marginal distributions for basis L = 5, | aim to
extend the two or few loci (kK << L) formalisms to larger basis. To do so | need to
account for the aberrant waiting times between the arrival of a successive mutation and
its predecessor, (assuming that with low enough mutation rates the order of appearance
of mutations reflects the their contribution to final adaptation). From the waiting time
between the first minor and the major | recuperate the cumulative background mutation
rate

@bg = Q(L — 1)Ne/~Ll = @l(L - 1) (5)

as the parameter of interest (effective population size V., locus mutation rate per indi-
vidual and generation mu;, trait basis size L). It turns out, that Oy, acts as the single,
decisive compound parameter for the resulting adaptive architecture (see Section 3.4.1).
Effectively, it is a measure of redundancy within the trait basis, as it describes the mu-
tational pressure a single, rising focal locus has to compete against in a completely
redundant trait basis. With reduced redundancy this generalizes to the rescaled rate

' = @l(L/ - 1), (6)

bg

with L/ < L, the number of effectively equivalent/redundant loci in the basis. Using
the appropriate @gg k—locus based approximations easily extend to larger trait basis and
arbitrary redundancy, as long as mutation rates are not too high.

Based on the principal factor, ©y, | differentiate three main adaptive patterns (Fig. 3.4,
4.2 and 4.3) which are strikingly uniform for the different models and increasing L : For
very small ©,, single sweeps predominate. For large O, | find small concerted allele
frequency shifts, the common expectation for polygenic adaptation. Finally, for interme-
diate ©, | observe an intermediate pattern, characterized by a combination of complete

and partial sweeps at several loci. While these three main adaptive architectures occur
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in both model, the exact bounds of transition between them vary. Tendentiously, the
QT-model (especially the directional selection model) yields more polygenic architec-
tures, such that | transition from single sweeps to several sweeps at ©,, > 0.1 and
obtain shifts at ©;, > 10. In the redundant trait model, these bounds based on O,
are approximately one magnitude larger, such that | obtain the intermediate, multiple
(complete and partial) sweep pattern for 1 < ©, < 10, and single sweeps and frequency
shifts below and above, respectively.

These qualitative patterns are conserved with relaxed redundancy (two mutational
steps to the new optimum: Fig.3.5, 4.4 and 4.5). Especially, the abundance of small
frequency shifts is completely unchanged.

It is remarkable that by the single, required rescaling of ©},, | am able predict the
observed patterns perfectly. | cannot only predict the behavior of major and minor loci
with reduced redundancy in the redundant trait model (Fig.3.5), but also the adaptive
dynamics of successive contribution of several major loci during the course of adaptation
in the QT-model (see Fig.4.12 and 4.13). For the QT-model | also include adaptation
from SGV at a phenotypic optimum in the phenotypic range, to a new optimum, and
recuperate the same qualitative, adaptive patterns, which | can also predict with a good
fit based on Oy,

Next, in the redundant trait model, | investigate the impact of linkage (Fig.C.2)
and diploids (Fig.C.4) in LE. The qualitative pattern and the threefold classification
remains unchanged in both cases. | also provide analytical predictions for diploids and
for completely linked loci. Finally, studying alternative starting conditions | find that the
adaptive architecture is crucially depending on them at selection onset. While starting
from mutation-selection-drift equilibrium, shift patterns require a relatively high ©,,,
deviations can result in frequency shifts at much lower mutation rates. This is also
one of the main explanations for the diverging results in preceding studies of polygenic
adaptation (de Vladar and Barton, 2014; Jain and Stephan, 2015, 2017) which all ignore

genetic drift.
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1.3.4 Discussion

It is quite striking that despite the complexity of the different models of rapid adaptation
of complex traits, | am able to provide a uniform, threefold classification of different
adaptive architectures, all based on a single, compound parameter, ©,, = 2N (L —
1) (in haploids, = 4N.u(L — 1) in diploids), a measure of within trait redundancy.
Namely, single sweeps dominate the adaptive pattern for low ©,,, while for large O,
small, concerted frequency shifts prevail. | point out, that while the implemented strong
negative epistasis, together with the equal locus effects (supporting redundancy) should
be most favorable to shifts, | require relatively large ©;, to obtain them. For intermediate
Oy, the adaptive architecture is best characterized by a combination of completed and
partial sweeps. Concerning the exact bounds of ©,, between the different architectures,
| find that the QT-directional selection model yields the a more polygenic response,
than the redundant trait model. With the full QT-model results are variable, where
earlier sampling and larger basis by trend result in more polygenic response similar to the
directional QT-model. Below | want to disentangle the different parameter influencing

O.

Trait basis size

The span of how many loci actually contribute to rapid adaptation of a complex trait is
huge, ranging from a single or a few to a myriad of loci (e.g. Mackay, 2009; Lamichhaney
et al., 2015; van't Hof et al., 2016; Barghi et al., 2018). However, the general parameter

by = 2Nep(L' —1), describes only the subset of truly redundant loci L'. Therefore, the
resulting adaptive architecture for a given complex trait could very well be a composition

of my results for redundant submodules of the trait.

Population size N, and genetic drift

Also effective population sizes are an elusive measure and are a hotly debated concept

(Hermisson and Pennings, 2017). In the case of adaptation, N, relying on neutral
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diversity constitute a massive underestimate. E.g in humans N, = 10000 is often
reported, driven by the out of Africa bottle neck, yet strong selective pressures might
operate on a much small time scales, which requires taking the more recent population
expansion into account.

The effective population size is also the decisive factor for the strength of genetic
drift. Previous analytical work in deterministic models predicted a prevalence of more
polygenic, shift-like architectures (de Vladar and Barton, 2014; Jain and Stephan, 2015,
2017). | mainly attribute the deviating outcomes to the effect of genetic drift, affecting
the standing genetic variation: First, drift strongly affects the early phase of adaptation.
While deterministic frameworks start from homogeneous intermediate allele frequencies,
mutation-selection-drift equilibrium results in a strongly skewed SGV distribution. My
result thus reflects the effects of genetic drift during the early phase of adaptation.

Second, genetic drift also plays another role, after phenotypic adaptation has been
accomplished, which is not captured by my results. Hence they do not represent a
stationary distribution, but are transient by nature. Yeaman (2015) showed that if a
quantitative trait under selection is governed by large number of redundant alleles of
small effects size, which by themselves are prone to swamping, there is still considerable,
rapid phenotypic adaptation possible. Yet, the underlying adaptive architecture, and
with that the particular alleles, is transient due to constant allelic turnover. Yeaman
and Whitlock (2011) further demonstrate that with stabilizing selection, migration and
drift, genetic architectures will evolve towards fewer large effect loci. So a given adaptive
architecture for a phenotypically adapted trait still might change substantially, such that
small effect alleles will eventually be out-competed by few newly evolved, large effect
alleles, probably under less pleiotropic constraints. Thus it is possible that the original
adaptive architecture underlying the rapid phenotypic change might be hard to detect
due to its ephemeral nature, while the long lasting genomic footprint of adaptation is
clearer. As a consequence, time scales partition into the initial rapid adaptation and

a long-term stabilization phase marked by larger effect substitution. This decoupling
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is also observed in evolution experiments, such as Franssen et al. (2017), who show
that rapid adaptation precedes the phase of allele sorting and final manifestation of the

long-lasting adaptive architecture.

Mutation rate

The allelic mutation rate i highly depends on the genomic architecture of a given allele.
While for single nucleotide polymorphisms (SNP) the mutation rates are mostly fixed,
adaptive loss of function mutations might be much easier to attain due to a larger target

size for functional disruption of a trait.

Population structure

Finally, population structure or gene flow before the start of the selective phase can have
a strong effect on the available genetic variation in a population. In particular, if for
example the population is admixed, mutant alleles might segregate far from selection-
mutation-drift equilibrium at intermediate frequencies, which would results in small,
concerted frequency shifts. This might be on causal factor for the lack of sweep patterns
underlying adaptation in modern human populations (Pritchard et al., 2010), as modern
European human populations have experienced major admixture events in their history

(Lazaridis et al., 2016; Pickrell and Reich, 2014).

Conclusion and outlook

To answer which adaptive architecture to expect for a given trait, | hence need to predict
the appropriate ©,. Two current examples of estimates of ©; are < 0.1 for Drosophila,
and < 0.01 for humans (Hermisson and Pennings, 2017). From these estimates, | still
would need a rough idea about the number of redundant loci within a trait basis and
the starting allele frequency distribution of segregating alleles, to predict the prevalence
of shifts over sweeps. For example (Barghi et al., 2018) find approximately 100 putative

targets of artificial selection for temperature adaptation in Drosophila in separate repli-
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cates. With humans, currents estimates for the number of loci involved in human height
go into the hundreds or thousands (Field et al., 2016; Berg et al., 2018; Sohail et al.,
2018), so subtle frequency shifts are very well within or close to the scope of potential
adaptive responses for both organisms.

One clear limitation of the presented models, is the assumption of uniformity of
effects, concerning equal selection coefficients. These extensions are currently work in
progress. Yet, | predict that different locus effects, cause more heterogeneous starting
conditions, which in turn have proven to be most favorable of sweeps, while they do
not boost the abundance of polygenic frequency shifts. Yet, | am uncertain if | will
be able to include strong deviations from uniform selection coefficients in the analytical
approximations.

A second limitation concerns population structure, as | only treat panmictic popu-
lations with constant size. Changes in these parameters will most certainly influence
the resulting adaptive architectures. These interesting investigations are left for future

explorations.
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606

607 Abstract

608 We investigate the conditions for the origin and maintenance of postzygotic
609 isolation barriers, so called (Bateson-)Dobzhansky-Muller incompatibilities or DMls,
610 among populations that are connected by gene flow. Specifically, we compare the
611 relative stability of pairwise DMIs among autosomes, X chromosomes, and mi-
612 tochondrial genes. In an analytical approach based on a continent-island frame-
613 work, we determine how the maximum permissible migration rates depend on
614 the genomic architecture of the DMI, on sex bias in migration rates, and on sex-
615 dependence of allelic and epistatic effects, such as dosage compensation. Our
616 results show that X-linkage of DMIs can enlarge the migration bounds relative to
617 autosomal DMIs or autosome-mitochondrial DMls, in particular in the presence
618 of dosage compensation. The effect is further strengthened with male-biased mi-
619 gration. This mechanism might contribute to a higher density of DMIs on the
620 X chromosome (large X-effect) that has been observed in several species clades.
621 Furthermore, our results agree with empirical findings of higher introgression rates
622 of autosomal compared to X-linked loci.

24



6!

R

3

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

2.1 Introduction

Historically, speciation research has mostly focused on two idealized scenarios: allopatric
speciation (complete geographic isolation of incipient species) and sympatric speciation
(divergence of subpopulations in a common habitat) (Orr and Turelli, 2001; Coyne and
Orr, 2004; Via and West, 2008). Both scenarios are simplifications of biological reality.
While strict sympatry of incipient species seems to be an exception, there is abundant
evidence for hybridization even among “good species” with viable and not completely
sterile hybrid offspring (reviewed e.g. in Coyne and Orr, 2004; Mallet, 2008). Popula-
tion genetic theory shows that even low levels of gene flow can strongly interfere with
population differentiation (Felsenstein, 1981; Slatkin, 1987). This makes it inevitable
to assess the impact of limited gene flow at various stages of the speciation process, a
scenario commonly referred to as parapatric speciation.

The classical model for the evolution of postzygotic isolation barriers in allopatry is
the (Bateson-)Dobzhansky-Muller model (DMM) (Bateson, 1909; Dobzhansky, 1936;
Muller, 1942). The DMM assumes that new substitutions occur on different genetic
backgrounds. When brought into secondary contact, these previously untested alleles
might be mutually incompatible and form Dobzhansky-Muller incompatibilities (DMIs),
thus reducing hybrid fitness and decreasing gene flow at linked sites. The emergence of
species boundaries due to accumulation of DMlIs in allopatry is well understood (Coyne
and Orr, 1989; Orr and Turelli, 2001; Coyne and Orr, 2004). More recently, several
studies have considered this process in parapatry (Gavrilets, 1997; Feder and Nosil,
2009; Agrawal et al., 2011; Bank et al., 2012; Wang, 2013; Lindtke and Buerkle, 2015).
All support that the DMM provides a viable mechanism for the evolution of postzygotic
isolation even in the presence of gene flow, although the bounds for maximum permissible
migration rates can be quite stringent.

Empirically, there is widespread evidence for DMIs not only among recently diverged

sister species (Maheshwari and Barbash, 2011; Presgraves, 2010; Sweigart and Flagel,
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2014), but also segregating within species (Corbett-Detig et al., 2013). Hence, these au-
thors argue that the genetic basis of reproductive isolation is continuously present within
natural populations, rendering the independent allopatric evolution of newly incompatible
substitutions obsolete.

While most theoretical studies focus on autosomal DMls, empirical evidence points
to a major role of sex chromosomes in speciation. Haldane's rule (Haldane, 1922, re-
viewed in Coyne and Orr, 2004), states that in species with sex specific reduced hybrid
fitness the affected sex is generally heterogametic. The large X-effect (Coyne and Orr,
1989, reviewed in Presgraves, 2008) expresses the disproportional density of X-linked
incompatibility genes in postzygotic isolation. For example Masly and Presgraves (2007)
report a higher density of incompatibilities causing hybrid male sterility on the X chro-
mosome relative to autosomes in Drosophila. Equivalent findings exist of a large Z-effect
in WZ-systems, such as birds, where WZ-females are heterogametic (Ellegren, 2009).
Also cytoplasmic incompatibilities have been described (Ellison and Burton, 2008; Lee
et al., 2008; Burton and Barreto, 2012; Barnard-Kubow et al., 2016).

A recent study by Bank et al. (2012) determined stability conditions and maximum
permissible migration rates of autosomal two-locus DMIs in a continent-island frame-
work. They distinguished two main mechanisms shaping the evolution of DMIs: selection
against (maladapted) immigrants and selection against (unfit) hybrids, which lead to dif-
ferent dependence of maximum migration rates on the model parameters.

Prompted by the empirical observations described above, we extend the model by
Bank et al. (2012) to general two-locus DMIs in diploids involving X chromosomes,
autosomes, or mitochondria. We include sex-specific fitness effects, in particular, to
account for the effect of dosage compensation of hemizygous X-linked genes in males.
We also allow for sex-specific migration, as many species display differences in migration
patterns for males and females Greenwood (1980).

Following Bank et al. (2012) we derive maximum migration bounds where DMlIs can

still originate in parapatry, or resist continental gene flow. In contrast to the autosomal
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case, we find that sex specific fitness- and sex-biased migration cause substantial differ-
ences in the maximum permissible rates and hence influence the prevalence of autosomal
DMiIs relative to X-linked and mitochondrial DMIs. Especially, we find that X-linkage of
(nuclear or cytonuclear) DMlIs together with dosage compensation and/or male-biased
migration boosts migration bounds and thus enhances the evolution of X-linked DMIs,
possibly contributing to a large X-effect and to reduced introgression probabilities of

X-linked DMI loci.

2.2 Model and Methods

We consider a diploid, dioecious population with separate sexes (at 1:1 ratio) that is
divided into two panmictic subpopulations, continent and island. (See Fig.2.1 and
Fig. B.1 in the Supporting Information (SI)). Both demes are sufficiently large that drift
can be ignored (drift effects are discussed in S| SectionA.3). They are connected by

unidirectional sex-dependent migration at rate m% and mS from the continent to the

island. We fix the average migration rate per individual, m = mg% and define
e _ ,,J
m¥ —m
R=——" _€[-1,1 2.1
g €LY (1)

as a measure of sex-bias in migration. Sex-specific migration gives rise to distinct
migration rates per allele for autosomes, X chromosomes, and mitochondria, m 4, mx,
and me (Egs. (B.5)-(B.7)). For —1 < R < 0 migration is male-biased and we obtain
my > mxy > Me. In contrast, for 0 < R < 1 migration is female-biased, resulting in

myqg <my < mo.

The DMI

The incompatibility is formed by two unlinked biallelic loci, situated on autosomes A,
X chromosomes X', or in the mitochondrial genome (cytoplasmic organelle) O, (cf.

Table 2.1). Both sexes are diploid for autosomes and haploid for the mitochondrial
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Figure 2.1: Schematic model. The population inhabits a continent (left) and an island
(right), which are connected by unidirectional migration at rate m. The figure shows
two out of eight genomic architectures investigated: an X-autosome DMI (upper line)
and a cytoplasmic DMI between X and mitochondrion (lower line). Genotypes of female
residents are depicted by yellow circles and males by blue circles, respectively. The capital
letters denote incompatible alleles, which reduce hybrid fitness.

locus. Males are hemizygous for the X chromosomes, whereas females are diploid. The
continent is monomorphic for the continental (geno-)type and only acts as source of
migrants for the island. Our analysis focuses on the evolutionary dynamics on the island.
A stable DMI corresponds to a stable equilibrium on the island where all four alleles
are maintained (a two-locus polymorphism), including the pair of incompatible alleles
(indicated by capital letters in Table 2.1).

We model genotypic fitness as the sum of direct allelic fitness and epistasis. Hence
any given allele contributes directly to genotype fitness, where it can be locally or globally
adapted. Additionally it can contribute via epistasis if it is incompatible with other
alleles in the same genotype. We set the (Malthusian) fitness of genotypes containing
no incompatible alleles (only lower case letters) in both sexes to 0. For simplicity,
we assume no dominance of the single-locus effects, but we allow for dominance or
recessitivity of the incompatibility.

We define the fitness of an arbitrary female genotype as

W(G®) =nc-of +m-of —T.(G?) (2.2)
allelic fitness epistasis
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Different genomic architectures of DMiIs.

Model | DMI | continental type (9,5") | island type (9,5")
A—A | A-A aaBB AAbb
X—A | A-X aaXX, aaXy AAxx, AAxy
A—X | A-X AAxx, AAxy aaXX, aaXy
X=X | X-X X1 X1X9Xg, X1Xay x1x1 XoXg, x1 X2y
A—O | A-O AAo aa0

O—A | A-O aa0 AAo

X—0 | X-0 XXo,Xyo xxQO,xyO
0—=X | X-0 xxO,xyO XXo,Xyo

Table 2.1: Each genomic architecture is defined by a continental (geno-)type (third
column) and an island (geno-)type (fourth column). Mutually incompatible pairs of
DMl-alleles are denoted by capital letters. We call the immigrating DMI-allele continental
allele and its resident incompatible partner island allele. The name of each model in the
first column is constituted by “the continental allele — the island allele”. The A—A-
model corresponds to the model by Bank et al. (2012).

or for a male genotype as
w(G9)=nc-0S +m-07 —T.(GY). (2.3)

The allelic fitness is captured by the selection coefficient 0%, (for females and males)
and weighted with the respective number of incompatible alleles, nc, € {0,1,2} in a
given genotype. To match the locus effects of haploid mitochondrial genes to autosomes,
we set nc € {0,2} for the absence or presence of the single incompatible allele in this
case.

' — 52 for autosomes and organelles, but for X-linked alleles the fitness

We assume o
effect may be enhanced in males, 0% = (14 D)o? , where D € {0, 1} measures dosage
compensation (see below). The contribution of epistasis to hybrid genotype fitness can

be summarized by an epistasis vector I',, for each model (), detailed in Table 2.2
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Strength of the incompatibility: The epistasis vector

DMI | hybrids: 9,5 epistasis vector I,
A-A | @ AaBb, AaBB, AABb, AABB | T'aa = (71,7727, 71,77, 27)
? Jd

d AaBb, AaBB, AABb, AABB
A-X | @1 AaXx, AaXX, AAXx, AAXX, | Tux = (71,7,7,27,(1+ D)3, (1 + D))
d: AaXy, AAXy
X-X Q: Xix1XaXa, Xix1 XXy vy = (’)/1,7,’7, 2’)/, (1 + BD)%)
X1X1X2X2, X1X1X2X2, J: X1X2y
A-O | ¢: AaO, AAO, & AaO, AAO a0 = (7,27,7,27)

X-0 | ¢: XxO, XXO, o' XyO Cyvo = (7,27, (1+ D)y)

Table 2.2: The table shows all possible hybrid genotypes with DMIs (second column)
and corresponding fitness cost, parametrized by the entries of the epistasis vector (third
column). The strength of the incompatibility depends on the number of incompatible
alleles in the genotype. Plausibly, the strength increases with the number of incompatible
pairs, which can be 1, 2, or 4 (Turelli and Orr, 2000). We focus on two particular epistasis
schemes, one with a codominant DMI (y; = 7) with fitness cost proportional to the
number of incompatible pairs and one with a recessive DMI (7, = 0) where the fitness
cost is zero if there is still a pair of compatible alleles in the genotype. The strength

of X-linked incompatibilities in males depends on dosage compensation, captured by
D € {0,1}.

Dosage compensation

Dosage compensation can be related to different mechanisms. For example, in the model
organism Drosophila melanogaster the expression of the X chromosome is doubled in
males. An alternative mechanism has evolved in mammals, where one X chromosome
is randomly inactivated in females (Payer and Lee, 2008). Finally, in birds dosage com-
pensation seems to be incomplete, as some genes show elevated expression levels in
homogametic ZZ-males compared to heterogametic females, whereas other genes are
dosage compensated (Ellegren et al., 2007; Graves et al., 2007).

Our model allows for arbitrary sex-dependence of allelic and epistatic effects, but
we focus on dosage compensation of the hemizygous X chromosome in males as a key
biological mechanism. We model fitness for any X-linked allele in hemizygous males in

two ways (Charlesworth et al., 1987):

e No dosage compensation, D = 0: A single copy of an X-linked allele has the same
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allelic (JOz = ¢%) and epistatic effects in hemizygous males as in females.

e Full dosage compensation, D = 1. Hemizygosity of the X chromosome is compen-
sated in males, and a single X-linked allele has the same effect as a homozygous

pair of X chromosomes in females (allelic selection coefficient: o9 = 20%).

With random deactivation of X in females we naturally obtain a codominant DMI in
our model since (average) heterozygous fitness is equal to the mean of the homozygous

fitnesses in this case.

Dynamics of the general model

For our analytical treatment, we assume weak evolutionary forces, such that linkage
equilibrium among both loci and Hardy-Weinberg-proportions can be assumed. It is then
sufficient to track the frequencies of the continental allele pc and the island allele p, on
the island. We test this approximation for stronger selection by numerical simulations in
SI Section A.2.

For each genomic architecture (Table 2.1) we derive a pair of differential equations in
continuous time (see Box 1). For the case of an X—A DMI, in particular, pc measures
the frequency of the incompatible X allele that immigrates from the continent and p,

the frequency of the incompatible autosomal allele on the island. We obtain:

pe = pe(l—pc) (32[’03 + §pl<(2pc(1 —p) )20 =)~ 2n - 3L+ D)))
+(1 = po) (1 +F)m
po= p(l—p)|oF + 3Pc ((2p|(1 —pc) +pc)(2n —7) —2m — L(1+ D)))

—pim
(2.4)
We see that with dosage compensation (D = 1), the X-linked allelic fitness is increased

(%O’?), because a single X-allele in males now acts as strongly as two X-alleles in females.

Similarly, dosage compensation increases the term due to epistasis in males (3(1 +
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s D)) affecting both the X-linked allele and the autosomal allele. Sex-biased migration,
750 quantified by R (see Eq.2.1), affects only the X-linked allele, as males are hemizygous

70 X carriers. Parameterizations for all other cases are provided in the S| Section B.1.

Box 1:

Dynamics of the continental allele frequencies pc:

e Y
for A: pc(“’c +wC _ wQeroz) +(1 _pc)m

. *9 « _ _
Pc =14 for X : pc(zwc ;wc - QwQJWOZ) +(1—pc)1+%)-m

for O : pc(wég - @9) +(1—pc)(1+R)-m

Dynamics of the island allele p;:

SR d o &
for A : p|(' J;' —“’QE“ ) —pim

. *9 Mot _ _
D=9 for X : p|(2w' ;Lw' - 2“’9?"02) —p(1+ %) -m

for O : p|(w|*9—d}9> -n(l+R)-m

and mean fitness W%/ for each sex are functions of

Marginal fitness wé/l/oz

genotype fitness (consult SI Egs. (B.1), (B.2) for explicit expressions). Sex-bias in

migration m is measured by R (Eq.(2.1)).

761

2 T he codominant model

w3 |f the effect of the incompatibility is additive, such that it is proportional to the number

74 of incompatible pairs in a genotype (7, = 2 in Table 2.2), the model simplifies greatly.
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For the X—A model, in particular,

pe = (1=po)(BELpc(0g — ) + (1 + E)m)

po= p((1=p)(oF — ELypc) —m)

(2.5)

see Sl Egs. (B.26) for the other models.

Evolutionary histories

A parapatric DMI can evolve via different routes, depending on the timing and geographic
location of the origin of the two mutations. Following Bank et al. (2012), we distinguish
five histories: For secondary contact, both substitutions occur during an allopatric phase
and can originate in any order. In contrast, if the substitutions originate in the presence of
gene flow, the timing matters and we obtain four further scenarios: for a continent-island
DMI we have the first substitution originating on the continent and the second on the
island. Analogously, there are island-continent, island-island, and continent-continent
scenarios. Note that the first two scenarios lead to derived-derived DMIs, with one
substitution in each deme, whereas the last two lead to derived-ancestral DMIs, where
both substitutions occur in the same deme. In all cases we refer to the immigrating
incompatible allele as the continental allele and to the resident, incompatible allele as
the island allele. All five evolutionary histories lead to the same dynamics (as given in
Box 1) upon appropriate relabeling of genotypes, where different histories correspond
to different initial conditions (see S| Section B.2 and "Mapping of evolutionary histories"

below).

2.3 Results

Our analytical analysis of the dynamical system in Box 1 is presented in comprehensive
form in SI B.. It comprises the following steps. For the general model (0 < ~; < 7),

we determine all boundary equilibria and conditions for their stability. Instability of all
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boundary equilibria implies a protected polymorphism at both loci. Excluding cycling
behavior, this is a sufficient condition for a globally stable DMI that will be reached
from all starting conditions (all evolutionary histories). An internal stable equilibrium
(DMI) can also coexist with a stable boundary equilibrium. In this case, the DMI is
only locally stable and will only be reached from favorable starting conditions. Necessary
and sufficient conditions for the existence of (locally or globally) stable DMIs can be
derived for weak migration by means of perturbation analysis: A stable DMI results
if the monomorphic boundary equilibrium (p; = 1, pc = 0) is stable for m = 0 and
is dragged inside the state space for small m > 0. For codominant DMIs, also the
internal equilibria can be assessed analytically and conditions for stable DMIs follow
from a bifurcation analysis. For the recessive DMIs, we complement our analytical
results by numerical work to derive stability conditions for locally stable DMIs under
stronger migration.

Below, we summarize the key results for the general model. This is followed by a
detailed analysis of the codominant model. In the supplement we added continuative
results, first for the recessive model in S| Section A.1. Second, Sl Section A.2 contains
simulation results to assess the effects of linkage disequilibrium (LD), which is relevant
for very strong incompatibilities. Third, we present simulations for finite populations and
analyze how migration limits are affected by genetic drift in SI Section A.3. Finally, in SI
Section A.4 we calculate adaptive substitution rates for autosomes and X chromosomes
with gene flow and derive conditions on dominance favoring the faster X-effect, described

by Charlesworth et al. (1987).

2.3.1 Evolution and maintenance of DMIs

Stable equilibria: global and local stability of DMls

The model has three boundary equilibria: A monomorphic state, where the continental
genotype swamps the island, which is always reached for strong migration. Furthermore,

two single locus polymorphisms (SLPs) where one locus is swamped, but the other is
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maintained polymorphic. There is at most one stable internal equilibrium, corresponding
to a DMI. It can either be globally or locally stable. In the latter case, one of the
boundary equilibria is also locally stable and it depends on the evolutionary history which

equilibrium is reached. We therefore obtain two migration thresholds 0 < m,,. < m}

max-*

e For migration rates 0 < m < m__., a globally stable DMI, that is reached for all

max!’

evolutionary histories.

e For migration rates 0 < m,.,. < m < m.., the dynamics are bistable and yield a

locally stable DMI. Hence, only certain evolutionary histories permit its evolution,

but any existing DMI will be maintained.

e For migration rate m;_ < m no stable DMI exists.

Mapping of evolutionary histories

Every evolutionary history maps to a distinct initial condition (S| Section B.2 for results
and proofs). Asin Bank et al. (2012), we find three permissive histories that always result
in the evolution of a stable DMI for m < m_ : secondary contact, island-continent,
and continent-continent. In all these cases, the second substitution occurs in a deme
where the incompatible first substitution is not (yet) present. In contrast, the evolution
of a stable DMI in parapatry is more difficult for an island-island or continent-island
substitution history. Here, the second substitution needs to invade on the island despite

competition of the incompatible allele. We need m < m,,,, for a DMI to originate under

these circumstances.

Necessary conditions for the existence of a stable DMI

Based on previous results for the model without migration (Rutschman, 1994) or with-
out epistasis (Biirger and Akerman, 2011), and in accordance to Bank et al. (2012),
we find that with epistasis and increasing migration a stable DMI can only exist if the

island allele is beneficial and its sex-averaged selection coefficient exceeds migration.
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Furthermore, any averaged selective advantage of the continental allele must be out-
weighed by averaged epistasis. For example for X—A, we obtain m < crlSP and (%C < 3.
Consult Egs. B.21, B.23 and Table B.3 for different terms for each model and the SI

Sections B.1, B.1 for proofs.

2.3.2 Nuclear codominant DMIs

We obtain full analytical solutions for the maximum migration bounds my, (B.2).

Below, we discuss how these rates depend on the various genetic architectures, sex de-

pendence of fitness and migration, and on dosage compensation. Figures 2.2 and 2.3

+

compare the m,,,

for the different types incompatibilities among nuclear genes: DMIs
among autosomal genes (A—A), DMIs among X and autosomes, with either the incom-
patible X allele immigrating from the continent (X—A) or the autosomal locus (A—X),
and DMIs among two X-linked loci (X—X). Fig.2.2 assumes full dosage compensation

of X-linked alleles in males, Fig. 2.3 treats the case without dosage compensation.

Selection against hybrids and against immigrants

Following Bank et al. (2012), we can distinguish two main selective forces maintaining
a DMI in the face of gene flow. If the continental allele is beneficial on the island
(first column of Fig.2.2 and 2.3), a polymorphism at the respective locus can only be
maintained by hybrid formation and selection against the immigrating allele is due to
hybrid inferiority (“selection against hybrids”). This type of selection will only be effective
as long as the immigrating allele is rare. Once the migration pressure is so high that
the immigrating continental allele is in a majority, incompatibility selection rather works
against the resident allele on the island. Consequently, we expect a large bistable regime
with m}_ >> m__ and a small region with global stability, as can indeed be seen for

all types of DMIs with a beneficial continental allele. Note also that m_ increases

max

with =, as should be expected if hybrid incompatibility, i.e. epistasis, is the sole cause

of (local) stability.
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In contrast, with a deleterious immigrating allele (third column of Fig.2.2 and 2.3),
a DMI can also be maintained by “selection against immigrants” for small values of
epistasis, or via a combination of the two selective forces (selection against hybrids
and immigrants) with stronger epistasis. If selection against immigrants predominates,
maintenance of the DMI is driven by local adaptation. The fitness advantage of the
resident allele depends on its direct effect and the dynamics will usually be frequency

independent. Therefore we obtain no or only a small bistable regime, with m!_ ~m. ..

For stronger epistasis, selection against hybrids becomes more important, leading to a
relative increase of the bistable regime. The main effect of epistasis now is that it

promotes swamping of the island allele: m /- decreases with epistasis. In the case

of a neutral immigrating allele, the observed migration bounds exhibit an intermediate

pattern.

Sex-biased migration

To understand the differences among the DMI architectures, we take the case of full

dosage compensation and strict female-biased migration (R = 1) as a starting point

+

-+« for the different models collapse onto

(Fig.2.2(a)-(c)). In this case, all curves for m
a single one. Indeed, if only females migrate, the number of migrating X chromosomes
and autosomes is equal. Full dosage compensation balances any direct and epistatic
effects of loci with different ploidy levels. Consequently, the corresponding Egs. (B.26)
differ only by a constant factor.

If also males migrate (Fig.2.2(d)-(i)) genomic architectures involving an X chromo-

+

max-*

somes experience effectively lower migration rates of the X and hence increasing m

+

Male-biased migration boosts m,,_.

most effectively for X—X, as both loci experience
reduced migration pressure. For unbiased migration, m;_ of X—X relative to A—A
DMIs increases by 3 (the autosome-X ratio), and doubles for pure male migration (cor-

responding to the 1:2 X-autosome ratio among migrants in this case).

The migration bounds m:_ for the A—X and X—A DMIs are intermediate between

max
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Codominant nuclear DMIs with dosage compensation (D = 1)

Only females migrate (R = 1):
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Figure 2.2: Codominant nuclear DMIs with dosage compensation, D = 1. The
columns show m=_ as a function of the strength of epistasis -y for beneficial (a? = 0.5),

max

neutral (ag = 0), and deleterious (aé2 = —0.5) effect of the immigrating allele. All
quantities in the figure (08,7, mZ_ ) are measured relative to the fitness effect of the

max
island allele, which is normalized to al9 = 1. Note the different scaling of the y-axis in the
third column. Strong differences between m=_ in the various models occur if migration
rates are sex-biased. For female-biased migration m=_ coincide for all four models.
With increasing proportion of male migrants (top to bottom), migration pressure on the

X chromosome is reduced and differences among the models appear. All bounds m,,

are derived analytically, see Eqs. (B.32),(B.34).

the A—A and X—X DMIs. Our analytical results (see B.2) show that the upper limit

of the bistable regime (i.e., the value of m_ ) is identical for the A—X and the X—A

max
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max?’

models with dosage compensation. However, the limits for global stability, m can
differ, which can be understood as follows:

For pure selection against migrants (no epistasis v — 0, and o¢ < 0, right column
in Fig.2.2), increased male migration reduces the effective migration pressure on the
X chromosome. This leads to a corresponding increase in the migration bound m__,

(= Mimax

+

max

in this case) for all DMIs that are lost for m > m... because of swamping
at an X-locus. This is clearly always the case for X—X DMls, but also for the X—A
model, as long as |oc| < |oy| (as in our example: X fixes before A is lost). In contrast,

for the A—A and the A—X model (if |o¢c| < |oy|) the DMI is lost due to swamping at

the autosomal locus (continental locus in these cases). Increased male bias in migration

+

max

therefore does not change the migration bound m__ in these cases.

For strong epistasis (with a deleterious immigrating allele), where the direct locus
effects are less important, it is always the incompatible island allele that cannot invade
on the island for migration rates m > m_ . . Here, any incompatible island allele that
interacts with an X allele has an advantage from male-biased migration since it feels less
gene flow from the competing X. This can be seen for the m,. .. lines in Fig.2.2(f),(i):
While the migration bound is increased for the X—A model (and the X—X model) over

the whole range of epistasis, it converges to the value of the autosomal DMI for the

A—X model.

No dosage compensation

In Fig.2.3 we investigate migration bounds without dosage compensation, such that
the differences in ploidy between autosomes and X chromosomes are no longer masked.
Relative to the model with dosage compensation, we have weaker allelic and epistatic
effects of the X chromosome. Hence, incompatible island X alleles are easier go get
swamped and also have a more difficult time to keep incompatible continental (A or X)
alleles from swamping.

The consequences can most easily be seen in the first row of Fig.2.3(a)-(c) with
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Codominant nuclear DMIs without dosage compensation (D = 0)

Only females migrate (R = 1):
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Figure 2.3: Codominant nuclear DMIs without dosage compensation, D = 0.
Without dosage compensation the ploidy differences between the autosomes and the
X chromosome are unmasked, inducing strong asymmetry between the A-X-models.
this leads to a larger effect per allele. All bounds mE, are derived analytically, see

Egs. (B.32),(B.34). See also Fig. 2.2 for further explanations. Note the different scaling
of the y-axis in the third column.

pure female migration, where, in contrast to dosage compensation, differences between
the various genomic architectures are not compensated anymore. We observe a strong
asymmetry between mE_ of X—A and A—X-models for all levels of male migration

max

relative to the corresponding results with dosage compensation. Here migration bounds
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for X— A always exceed those obtained for A—X-models. Intuitively, one can understand
this as follows: In the X—A model, three immigrating X chromosomes “fight” against
four resident autosomes, whereas in A—X the odds are in favor of the immigrating
autosomes. Thus the island is swamped more easily in the latter case.

As seen for dosage compensation before, for weak epistasis (7 ~ 0, pure “selection
against immigrants”), it is always the locus with weaker direct effect that is swamped
first. In our example this is always the “continental” locus, because we have stronger
selection on the island locus. For unbiased migration (Fig.2.3(f)) all models converge
to the same bound. However, introducing sex-biased migration leads to relative higher
gene flow on the X for a female bias (and therefore lower bounds for models with
immigrating X), as can be seen in Fig.2.3(c). Similarly, male-biased migration leads to
weaker X-linked gene flow and a higher bounds in these models, i.e. X—A and X—X,
(Fig.2.3(i)).

If we compare migration bounds of Fig.2.2 and 2.3, we can see that dosage compen-

+

max

sation outbalances most of the differences in m between A—X and X—A, especially
for local stability. While dosage compensation strengthens the fitness effect of the is-
land allele in A—X, the increased epistatic pressure on the continental allele in X—A is

outbalanced by its increased fitness effect.

2.3.3 Cytonuclear (mitochondrial) codominant DMis

Finally, we investigate cytonuclear DMIs in Fig.2.4, where a gene in the haploid mi-
tochondrial genome (termed o/O for organelle) is incompatible with a nuclear locus.
Dosage compensation of the X chromosome again means that the male XyO-hybrids
suffer as much as the female XXO-hybrids while they suffer only as much as XxO hy-

brids without dosage compensation. Relative to nuclear DMls, three main effects lead

+ .

max”*

to changes in m
First, the cytoplasmic locus experiences effectively stronger direct and epistatic se-

lection (factor two in Eqs. (B.26c)), because we maintain the per locus effect identical
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to nuclear loci. Since a single allele already accounts for the full mitochondrial locus

+

ax Without sex-bias

effect this leads to a larger effect per allele. As a consequence, m
in migration is elevated relative to A—A model (gray lines in Fig.2.4(a)-(c)).

Second, sex-biased migration has an even stronger effect in cytonuclear DMlIs than
in the X-linked nuclear DMIs: Since mitochondria are maternally inherited, the effective
gene flow for mitochondrial loci is reduced to zero with pure male migration. Conse-
quently, all migration bounds with immigrating incompatible mitochondrial genes diverge

to infinity. In Fig. 2.4 (last two rows), we study the case of strong, but not complete

male bias (R = —0.9). Since the migration pressure on the mitochondrial locus and the

+

X chromosome is reduced, migration bounds m,,,

increase for all cytonuclear DMls,

+

max 1S even further

especially for those also involving X chromosomes. This increase in m

promoted by dosage compensation, strengthening the effect of X.
Finally, because of strict maternal inheritance, the dynamics of the mitochondrial

locus is not influenced by any fitness effects in males. In X'-O models this also entails that

dosage compensation only affects the dynamics of the X-locus - in contrast to nuclear

DMIs, where also autosomal loci are affected if they interact with a hemizygous X locus.

+

max

As a consequence, the boosting effect of dosage compensation on m=_ is symmetric for
O—X and X—0, in stark contrast to nuclear DMIs, where dosage compensation does

not change much for X—A while it strongly increases A—X.
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Codominant cytonuclear (mitochondrial) DMIs
Unbiased migration (R = 0) without dosage compensation (D = 0):
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Figure 2.4: Codominant cytonuclear DMls. Maximum permissible migration rates
for local stability either coincide for all models (a)-(c), or just for X—0O and O—X as
well as for O—A and A—O in all other cases. Migration bounds for global stability
only coincide without dosage compensation or sex-biased migration between O—X and
O—A, as well as for X—0 and A—0O. The A—A model is given in panel (a)-(c) in gray
as a reference. All bounds mi,, are derived analytically, see Egs. (B.32),(B.34). See

max

Fig. 2.2 for further explanations. Note the igferent scaling of the y-axis in third column.
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2.4 Discussion

If barriers to gene flow build up among populations in primary or secondary contact, this
can have important consequences for their genetic architecture. A lot of recent interest
has focused on islands of speciation (or divergence) (Wu, 2001; Turner et al., 2005;
Butlin et al., 2012; Nosil, 2012; Nosil and Feder, 2012; Via, 2012), yet corresponding
empirical findings are equivocal on that matter (Cruickshank and Hahn, 2014; Pennisi,
2014). There are, however, several clear and undisputed genomic patterns of specia-
tion, on which we concentrate here. The most widely known ones are Haldane's rule,
(Haldane, 1922), which has motivated much previous speciation research (see reviews
and examples in Coyne and Orr (2004); Presgraves (2008); Lachance and True (2010);
Presgraves (2010); Oka and Shiroishi (2013) and the large X-effect (reviewed in Pres-
graves, 2008), which both highlight an important role of the X chromosome (or the Z
chromosome in birds) in speciation. In addition, hybrid incompatibilities are frequently
observed also between nuclear and cytoplasmic markers. Plants show incompatibilities
with plastid genomes (Greiner et al., 2011; Snijder et al., 2007) and mitochondria have
been reported to be incompatible with nuclear genes across a wide range of species
(Ellison and Burton, 2008; Lee et al., 2008; Burton and Barreto, 2012). In insects, cyto-
plasmic incompatibilities can also be caused by infections with the intracellular bacterium
Wolbachia (O'Neill et al., 1992; Werren, 1997; Coyne and Orr, 2004).

In the current study we investigate how the genetic architecture of an inital hybrid
incompatibility between incipient sister species can maintain divergence in the presence
of ongoing gene flow. Can (primary or secondary) gene flow favor X-linked or cytonuclear
DMIls over autosomal ones, and if so under which conditions? We studied this question
about a possible first step towards speciation using a minimal model of a two-locus DMI
in a continent-island population that allows for analytical treatment. We derive maxium
permissible migration bounds which still permit maintenance of a DMI in the face of

gene flow. Conditions that yield increased migration limits facilitate speciation, as they
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are lost less easily and can subsequently provide more persistent seeds for further ongoing

differentiation.

2.4.1 Conditions for parapatric DMls

Like in the autosomal case (Bank et al., 2012), the origin and maintenance of a two-locus
X-linked or cytonuclear DMI requires that at least one of the DMI substitutions (namely:
the incompatible variant on the island) is adaptive. If multi-locus barriers to gene flow
build up gradually from initial two-locus incompatibilities, this confirms that postzygotic
parapatric speciation requires at least some degree of ecological differentiation and local
adaptation. Empirically, there is widespread evidence for positive selection on genes
involved in DMIs (Macnair and Christie, 1983; Ting et al., 1998; Presgraves et al., 2003;
Barbash et al., 2004; Dettman et al., 2007).

For all types of DMls, we observe two basic selective forces driving their evolution.
Selection against immigrants implies that the new migrants have a fitness deficit relative
to island residents, resulting in ecological speciation scenarios (Schluter and Conte,
2009; Nosil, 2012). A characteristic of this regime is that evolution of a stable DMI is
independent of its evolutionary history.

Alternatively, a stable DMI is caused by selection against hybrids, where migrants
can even have a positive fitness. If hybrids are unfit, immigrants still suffer an indirect
disadvantage as long as they are rare and their genotypes are readily broken down by
sex and recombination. This scenario typically leads to a bistable dynamics, where a
stable DMI will only evolve from favorable starting conditions or permissive evolutionary
histories (such as secondary contact). The scenario has also been referred to as mutation-
order-speciation (Mani and Clarke, 1990).

We measure the strength of a parapatric DMI by means of two migration bounds.

The higher one, m7

max?

is the limit beyond which a DMI can neither evolve nor an

max?’

existing one can be maintained. The lower bound, m is the limit up to which a

DMI will always evolve in the face of gene flow, irrespective of the evolutionary history
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(globally stable DMI). For migration rates between both bounds, a DMI is maintained,
but will evolve only under favorable histories, such as secondary contact, or if the second

incompatible substitution occurs on the continent.

2.4.2 Contrasting different DMI architectures

We find that the genetic architecture of a DMI (with incompatible genes on autosomes,
X chromosomes, or in the mitochondrial genome) can have a strong effect on its stability.
However, this effect also crucially depends on other factors, such as, in particular, the
level of dosage compensation and the sex-bias in the migration rates.

First, without dosage compensation and without sex-biased gene flow, the hemizy-

+

gosity of the X chromosome in males leads to shifts of m,...

in the presence of epistasis
compared to autosome-autosome DMIs. This is due to ploidy differences: “3 X chro-
mosomes fight 4 autosomes”. Therefore, the A—X scenario (where a resident X-linked
allele competes with an immigrating incompatible autosomal gene) constitutes a weaker
barrier to gene flow than the X—A model. Note that this effect depends crucially on the
(negative) epistasis of the DMI and is not observed in a single-locus model of local adap-
tation. Second, dosage compensation strengthens the X alleles, which leads to higher
migration bounds in all X-linked DMIs. In particular, it increases stability of DMIs with
an incompatible X locus on the island, compensating the A—X versus X—A asymmetry.
Third, sex-biased migration leads to lower/higher limits for DMIs with immigrating X for
female/male bias. Fourth, our results in the SI Section A.1 show no large difference be-
tween codominant and recessive nuclear DMIs (which lead to Haldane's rule) concerning
the migration bounds. In fact, the difference for X-linked DMlIs are even smaller than
for autosome-autosome DMIs. Fifth, for cytonuclear DMIs we often observe stronger
barriers to gene flow since the haploid cytoplasmic alleles experience the full locus effect.
Furthermore, sex-bias in migration yields an especially strong effect, as for pure male
migration effective gene flow at the mitochondrial locus ceases completely.

Our numerical simulations for the effect of LD in the SI Section A.2 agree with
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the approximate analytical results for weak and moderately strong DMlIs. For very
strong DMIs, stronger deviations occur for codominant A—A and X—X DMIs, which
maintain very strong LD once all (male and female) hybrids with incompatible alleles are
almost inviable/infertile. As a consequence, gene flow among the continent and island
haplotypes is blocked and we obtain higher migration bounds relative to X—A and A—X
DMls. For the latter two, F1 hybrid males carrying the compatible x allele (genotype
Aaxy) are viable and can produce ax gametes for the F2 generation. This effect of
extreme LD and blocked gene flow does not exist for recessive DMIs (see S| Section A.1
for details). Our numerical simulations also show that the effect of drift is usually small

and does not lead to qualitative changes (SI Section A.3). Since DMI alleles can be lost

N
max

by drift, stochastic migration bounds m.}_ are generally smaller than their deterministic
counterparts. In Sl Section A.3, we present an analytical approximation to estimate this

reduction due to drift.

2.4.3 The large X-effect

Summarizing all different cases described above, we find that the most stable DMIs
are almost always X-linked, where migration bounds are typically enhanced by a factor
of 4/3 to 2 relative to autosomal DMIs (unless migration is strongly female biased).
Although this is not a very strong effect, it is very general and applies whenever gene
flow plays a role at any stage of the speciation process. This includes, in particular,
scenarios of secondary contact and also later stages of the speciation process where
additional barriers to gene flow exist in the genomic background. In this latter case, the
gene flow at the focal DMI loci needs to be replaced by appropriate effective migration
rates (Barton and Bengtsson, 1986). The pattern that follows from a more stable X
barrier is consistent with a higher density of X-linked hybrid incompatibilities, the /arge
X-effect.

Our results show a clear boost of X migration bounds, in particular, if there is dosage

compensation and if migration is male biased. Empirical studies show that sex-biased
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migration is common in nature and report a prevalence for migration of the heterogametic
sex in both mammals, where dispersal is on average male biased, (Lawson Handley and
Perrin, 2007) and in birds, where female dispersal dominates (Greenwood, 1980). In the
context of our results, these trends strengthen the predicted pattern of a large X-effect
or large Z-effect, respectively.

One example stems from the house mouse, Mus musculus. There is strong empirical
evidence for a large X-effect in this species (Tucker et al., 1992; Good et al., 2008; White
et al., 2012), such as the major involvement of the X chromosome in hybrid sterility (Oka
et al., 2004; Storchova et al., 2004). Mice exhibit rather complete dosage compensation
due to X-inactivation in females (Payer and Lee, 2008). Furthermore, the house mouse
displays male-biased dispersal at breeding age (Greenwood, 1980; Gerlach, 1990).

Several alternative mechanisms as potential underlying causes for a large X-effect
have been discussed in the literature, such as sex ratio meiotic drive, regulation of the X
chromosome in the male germ line (Coyne and Orr, 2004; Presgraves, 2008), or faster
evolution of the X chromosome (termed faster-X-effect Charlesworth et al., 1987). In
the panmictic population model by Charlesworth et al. (1987), faster evolution on the
X chromosome results if adaptations are, on average, recessive and are thus exposed to
stronger selection on the hemizygous X. We note that our model with gene flow predicts
an advantage of X-linked genes for island adaptations even if they are not recessive,
but codominant (or even slightly dominant, see S| Section A.4 for details and proofs).
Since the faster X-effect (more adaptations on the X) also favors a larger X-effect (more
incompatibilities involving the X), this is another way how speciation with gene-flow can
contribute to this pattern. In summary a mono-causal explanation for the large X-effect
seems unlikely, and it remains an open question, to which extent each factor contributes.
Our study adds differentiation under gene flow as another element to this mix.

Our results relate to Haldane's rule only in so far as this pattern partially overlaps
with the /arge X-effect. Beyond that, we do not obtain a prediction. In particular, the

migration bounds for codominant and recessive DMIs are similar (while only the latter
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lead to Haldane's rule).

2.4.4 Introgression patterns

A second conclusion from our results that can be related to data is that X-linked alle-
les in an incompatibility face stronger barriers to introgression than the corresponding
autosomal alleles. This effect rests on two basic observations: the tendency for higher
migration bounds of all X-linked DMIs with dosage compensation (which also contributes
to a large X-effect), and the asymmetry promoting A—X over X—A introgression that
we observe for the incompatible allele if dosage compensation is incomplete or absent
(the 3 versus 4 chromosomes effect). Our findings agree with the result of a recent sim-
ulation study for DMIs on a cline by Wang (2013), who showed that, for an X-autosome
DMiIls, the incompatible X allele flows less easily across a cline than the autosomal allele.

A pattern of reduced X-introgression relative to autosomal introgression has been
recognized in many sister-species in nature. In the complex of Anopheles gambiae sister
clades Fontaine et al. (2015) found “pervasive autosomal introgression” between different
species, in contrast to the X chromosome, which contains disproportionately more factors
in reproductive isolation.

Liu et al. (2015) report three interspecies hybridization events in mice (Mus mus-
culus domesticus and M. spretus), leading to exclusively autosomal, partially adaptive
introgression. Similarly, Macholan et al. (2007) showed weaker introgression patterns
and lower selection pressure on the X chromosomes compared to the autosomes in the
central European mouse hybrid zone of Mus musculus musculus and M. m. domesticus.
The authors suppose that the X is shielded more effectively from introgression due to
the large X-effect.

Further examples exist for birds. Saetre et al. (2003) report “rather extensive hy-
bridization and backcrossing in sympatry” between two populations of flycatchers hy-
bridizing in secondary contact. Nevertheless, gene flow was again predominantly found

on the autosome. Hooper and Price (2015) report that derived cross-species inversions
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among sister species of Estrilid finches are strongly enriched on the Z chromosome. The
pattern is strongest in continental clades with high level of sympatry and (plausibly)
higher levels of gene-flow during the speciation process. If inversions harbor DMIs, this
is consistent with our finding that derived incompatibilities on the Z chromosome are
more stable to gene flow than autosomal incompatibilities.

Also other factors, such as recombination, can influence differential introgression on X
chromosomes and autosomes. Indeed, there is empirical evidence that recombination can
structure autocorrelation patterns among introgressed loci. However, available data also
show that recombination cannot be the the sole explanation for differential introgression
among genomic regions, e.g. in mice (Payseur et al., 2004) or finches (Hooper and

Price, 2015). As for the large X-effect our mechanism is one of several possible ones.

2.4.5 Biological assumptions and limitations of the model

Our study has been intended as a minimal model approach that allows for analytical
treatment. As such, it rests on several simplifying assumptions concerning the genetics of
the DMI and the ecological setting. These limitations suggest possible model extensions
for future work.

All our results assume a simple DMI between just two loci. This is in line with most
previous theoretical work and known empirical cases (Coyne and Orr, 2004; Maheshwari
and Barbash, 2011). Nevertheless, complex DMIs involving multiple loci are clearly
relevant at later stages of a speciation process and could lead to new effects that are
not captured here (e.g. Lindtke and Buerkle, 2015).

Our fitness scheme for two-locus DMIs comprises codominant and recessive cases.
Empirically, the functional form depends on the underlying mechanisms causing hybrid
fitness loss, which is still debated. Hybrid incompatibilities can be due to loss-of-function
or gain-of-function mutations (reviewed by Maheshwari and Barbash, 2011)). While the
former tend to act recessively, the latter will likely affect heterozygotes, and may be

better captured by a partially dominant DMI.
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Recessive DMIs, in turn, occur in a number of different types, (e.g. Presgraves,
2010; Cattani and Presgraves, 2012; Matsubara et al., 2015), which lead to slightly dif-
ferent models. We have briefly studied some of these alternatives analytically, such as a
recessive-A codominant-X-DMI or a codominant-A recessive-X-DMI (data not shown).
We did not detect any noteworthy difference in their evolutionary dynamics or for the
migration bounds relative to the results reported here. Still, more relevant changes are
clearly possible, for example if the single locus effects can lead to over- or underdomi-
nance.

For the results presented, we assume that dosage compensation enhances not only
the single-locus effect, but also the incompatibility. Empirically, hybrid incompatibilities
are frequently dosage-sensitive, e.g. in a Arabidopsis thaliana/ A. arenosa cross, where a
DMI results due to failure in gene silencing (Josefsson et al., 2006), or in a Mus musculus
musculus/ M. m. domesticus cross, where X-linked hybrid male sterility results from
over-expression of X-linked genes in spermatogenesis (Good et al., 2010). Furthermore,
in haplo-diploid Nasonian wasps genetically engineered diploid males were less affected
by hybrid sterility than haploid male hybrids, pointing to a strong effect of ploidy on
hybrid fertility (Beukeboom et al., 2015).

Nevertheless, we also investigated the effect of dosage compensation only on the
single locus effect or only on the incompatibility (results not shown). As expected, we
obtain intermediate patterns between no and full dosage compensation.

Concerning the ecological assumptions, our model assumes unidirectional gene flow
between two panmictic demes. While our results readily extend to weak back migration
(which leads only to slight shifts of the equilibria), strong bidirectional migration can
lead to qualitatively new effects that are not captured by our framework. For example,
polymorphisms at single loci can be maintained for arbitrarily strong gene flow if het-
erogeneous soft selection leads to a rare-type advantage (Levene, 1953). Furthermore,
generalist genotypes that are inferior in both demes, but do well on average, can be

maintained if (and only if) bidirectional migration is sufficiently strong (see Akerman
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and Birger, 2014, for results in a two-locus model without epistasis).

Alternative models for the population structure can also lead to substantial differ-
ences. In particular, our two-deme model ignores isolation by distance, which can be
captured either in a discrete cline model with a chain of demes, or in a continuous-space
framework. It is expected that polymorphisms (and DMIs) can be maintained with much
larger gene flow (or weaker selection) in these settings (Barton, 2013). Still, several of
our key results, such as reduced introgression of X-linked incompatibility alleles, should

still hold under these conditions (see Wang, 2013, for a discrete cline model).
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A. Supporting Information: Results

A.1 Recessive model for nuclear DMIs

One of the most widely observed patterns in speciation genomics is Haldane's rule (Hal-
dane, 1922). It predicts that sex-biased hybrid break down in the F1 generation is more
likely to affect the heterogametic sex- in our case the hemizygous F1 hybrid male. Since
recessive DMIs involving sex chromosomes is the most widely accepted explanation for
this effect (reviewed in Coyne and Orr (2004)), we extend our investigations to this case.

We set up our recessive fitness scheme such that in all X-linked DMI the F1-female
hybrids are not affected by the incompatibility, see Table A.1. The fitness of F1 hybrid
males depends on the genetic architecture of the DMI. For X-A DMlIs, male F1 hybrids
with genotype AaXy, are affected by the DMI, in accordance with Haldane's rule. In
contrast, neither recessive A-A nor X-X DMIs exhibit a fitness deficit of F1 males.
Neither scheme therefore agrees with Haldane's rule.

Due to the departure from strict additivity of the DMI, the recessive dynamics are

much more complicated. Therefore, only a part of the results can be obtained analytically

max

(the limits for global stability m,.. ). We therefore complement our investigations with

numerical results for local stability, m ..

DMI | hybrids:d', ¢ epistasis vector [’

A-A | ¢: AaBb, AaBB, AABb, AABB | T'44 = (0,7,7,27,0,7,7,27)
o': AaBb, AaBB, AABb, AABB
A-X | @ AaXx, AaXX, AAXx, AAXX, | Tax = (0,7,7,27, (1 + D)3, (1 + D)v)
o' AaXy, AAXy
X-X Q: X1X1X2X2, X1X1X2X2, Tyy = (0, Y, Y, 2’)/, (1 + 3D)%)
X1 X1 Xoxg, X1 X1 XoXs, o1 X1 Xoy

Table A.1: Epistasis vectors I' for the recessive model. Epistasis terms in female
and male hybrids are given without (D = 0) and with dosage compensation (D = 1).
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Figure A.1: Recessive DMIs and the effect of dosage compensation and sex-
biased migration. The dynamics of the recessive models for m/ . are determined
by numerical calculations and given by dots. The solid lines denote analytical results
for m,,,., see also Eqs. (B.19),(B.20). In (a)-(c) m=,, overlaps for all X-linked DMIs.
The gray lines show the migration bounds of the codominant model (where all four
architectures coincide). The results for A—A are unchanged in the three columns, as
this model is neither affected by dosage compensation nor by sex-biased migration. For
all autosomal alleles we obtain 09 = ¢, whereas we obtain o =1+ D)m%2 with
D = 0 without dosage compensation and D = 1 with dosage compensation for all

X-linked alleles. Also refer to Fig. 2.2 for further explanations.

Migration bounds for recessive DMls

The results for recessive DMIs are shown in Fig. A.1. The largest difference relative to

the codominant model occurs for A—A incompatibilities. (This can also be seen from
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the first row in Fig. A.1, comparing the red and gray lines. The recessive model shows a
significantly larger region for global stability and a relatively smaller bistable regime. This
can be seen in Bank et al. (2012), Figure 3B, C. They also obtained strong differences
for tightly linked loci, which is not studied here. The differences for m,. . result since
epistatic selection on the incompatible island locus is strongly reduced for a recessive
DMI. It is therefore maintained even for higher gene flow rates.

If we compare these results with X-linked DMIs, we see that this difference in size of
the regions for global and local stability to the codominant models becomes smaller. The
reason is that the DMI is no longer fully recessive in the sense that it is not expressed
in F1 hybrids. Indeed, epistasis is now effective in hemizygous F1 males in A-X DMIs.
Similarly, selection against the incompatible alleles is also stronger in the recessive X—X
model, relative to the autosomal case, since all male hybrids with X;Xyy genotype are
affected (see the migration bound for X-linked DMIs in Fig. A.1(a)-(c)).

The effects of dosage compensation and sex-biased migration are all similar related
to the codominant model (Fig. A.1(d)-(i)). Qualitatively, the results show that the

migration bounds do not change significantly relative to the codominant DMls. As we

show in the next section, this holds as long as epistasis is not very strong.

A.2 Effects of linkage disequilibrium and strong epistasis

For our analytical derivations and all previous results, we have assumed weak evolutionary
forces and linkage equilibrium (LE) between the two DMI loci (on the island). However,
DMIs found in natural populations can also cause strong effects, such as hybrid inviability
or hybrid sterility, which in turn can create strong linkage disequilibrium (LD). Therefore
we now investigate how robust our model is against a violation of the assumptions of
LE between the DMI loci.

We consider a deterministic model with non-overlapping generations in discrete time
and follow the dynamics of all genotypes in males and females by numerical iteration.

The model allows for the build-up of LD, deviations from Hardy-Weinberg proportions,
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and also differences in the allele frequencies among the sexes, which can occur as a result
of strong sex-specific selection.

The results are shown in Fig. A.2. For weak and moderate epistasis the numerical
results fully coincide with the analytical approximation. However, for strong epistasis
(v > 10, corresponding to a homozygote selection coefficient of the incompatibility
of > 18%), the numerical results start to deviate. This is due to the build-up of
elevated levels of LD, which results in a reduction of effective gene flow at the DMI
loci. Consequently, the migration bounds increase beyond the values predicted for LE.
Qualitatively, this agrees with the results of Bank et al. (2012), who find higher migration
bounds for reduced recombination rates (and thus increased LD) among the DMI loci
(Figure U3 in their SI).

The magnitude of the deviation due to LD depends strongly on the genetic architec-
ture of the DMI. For codominant DMIs, we get particularly strong increases for A—A
and X—X architectures. For v > 150 (corresponding to a selection coefficient of > 77%
for the incompatibility) we even obtain a change in the qualitative result since now A—A
and X—X DMI lead to the highest migration bounds. We can understand this effect
as follows. For codominant A—A DMIs and very large v all F1 hybrids are practically
inviable or infertile. Thus, (almost) all gene flow among the continental and island popu-
lation is blocked and speciation is completed with a single DMI. For X—X DMIs, all male
F1 hybrids are viable. However, since there is no recombination among X loci in males,
no new haplotypes are produced, LD remains high, and gene flow among continental and
island types is once again blocked. This is different for A—X DMIs where Aaxy males
are viable and can produce ax gametes, which are compatible with both incompatibility
alleles.

The results are different for recessive DMIs, where gene flow via F1 females (and half
of the males) is always possible. As a consequence, the deviations from the LE estimates
are much smaller and we do not obtain any re-ordering of the migration bounds among

the four architectures. In fact, the only scenario with a sizable LD effect is the X—A
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type, which increases the precited asymmetry between the X—A and A—X cases. (The

+

reason for the increase of m__

for X—A is that the incompatible A allele occurs in two
haplotypes Ax and Ay on the island with strongly diverging fitness in hybrids: while all
Ay haplotypes, which are found in male hybrids with genotype AaXy in the F1 generation
are affected by the incompatibility, all Ax haplotypes in the F1 are unaffected. We thus
obtain a sex-dependence in the frequency of the A allele on the island that is ignored in
the analytical model. This is decisive since swamping at the A locus defines the m;_,
bound in this case.)

Empirical studies mostly observe that strong DMIs (conferring complete sterility or
inviability) are recessive (Presgraves, 2010; Cattani and Presgraves, 2012; Matsubara
et al., 2015) with effects in F1 hybrids mostly for the heterogametic sex, as predicted
by Haldane's rule. We note that codominant DMIs exhibit something like a inverse
Haldane's rule in this case, since part of the males remain viable, while all F1 females

are affected by the incompatibility. This points to recessive DMIs as the prevalent type

for an incompatibility if epistasis is strong.
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Figure A.2: Effects of LD and strong epistasis. Results are shown for unbiased
migration (R = 0) without dosage compensation (D = 0). Lines give the results for
the continuous codominant model (see Fig.(2.3)), dots show numerical results for the
recessive model and open circles show migration bounds for the discrete codominant and
recessive models. Thin, dashed lines give the analytical limits of convergence for m}

max
in the continuous time model. The x-axis expresses epistasis of the discrete model s., as
a growth rate for better comparison with the continuous time model, v = —log[1 — s, ].

Figures (c)-(f) are given in log-scale. Also refer to Fig.2.2 for further explanations.
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A.3 Finite populations and the effect of genetic drift

Our analytical model is based on the assumption of infinite population size, neglecting
any effect of genetic drift. However, in nature not every population is big enough, such

that drift can be ignored. In this section, we analyze how our results on maximum

+

s Change due to drift a finite island population. We use

permissible migration rates m
simulations of the two-locus Wright-Fisher model with discrete generations.
Simulations are implemented as described for the analysis of LD in the previous section,
but with an additional sampling step every generation to account for genetic drift. The
life cycle is as follows: Viability selection acts on zygotes, followed by male and female
migration from the continent to the island. From an infinite zygote pool, we then sample
& females and & males to form a finite adult population on the island. Adults reproduce
and contribute to an infinite gamete pool. These gametes are subsequently subject to
random mating, forming a new generation of zygotes and completing the cycle.
Representative for the different models, we show results for the X—A model without
dosage compensation (D = 0) and without sex-biased migration (R = 0) below. We
use a population size of 10000 (5000 males and females). We start simulations in
secondary contact and let them run for 100 000 generations (10N). For each parameter
combination, we record the percentage of replicate runs that maintain both alleles at
both loci (i.e. which maintain the DMI).

Fig. A.3 shows DMI survival rates for scenarios with selection against hybrids only (a),
selection against immigrants (b), and combined selection against hybrids and immigrants
(c,d). We use 200 replicate runs per parameter combination. Dashed lines represent the
analytical values for m_ in an infinite population.

As expected, we find that values for m;_ in an infinite population provide strict upper

max
bounds for the maximum migration rates under which a DMI can be maintained in the
presence of drift.

We can estimate the effective reduction in m:

max

as follows: A beneficial allele A with
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selection coefficient s is protected against stochastic loss (drift) in a population for an

exponential time, if the number of copies N of this allele exceeds

1
SA

For a single allele in a panmictic population, this follows from the establishment proba-
o 1—exp(—4Npas :
bility, pes: = % (Kimura, 1957).

We can use this condition to estimate a maximum migration rate m’_ for the mainte-
nance of a DMI in our model. First we estimate the effective selection coefficient s5 by
the leading eigenvalue .. of the Jacobian Matrix at the DMI, following previous work
by Yeaman and Otto (2011).

Second, we need a measure for the distance of the DMI equilibrium to the margin where
the DMI will be lost from the population. In our case, this is not necessarily the copy
number Np of an allele, but more precisely the distance between the deterministic DMI
and the basin of attraction of any other stable equilibrium (since any starting condition
in this basin is doomed for deterministic extinction). If the DMI is globally stable, this
distance is captured by the closest distance to the boundary (which corresponds to the
copy number Np), where we either loose the island variant or fix the continental allele.
In case of a locally stable DMI, however, we estimate this distance by the distance of
the DMI equilibrium to the other internal equilibrium, which is an unstable saddle point.
Consult S| Section B.2 for more details on the unstable internal equilibrium and Fig. B.3

for illustrations of bifurcation patterns.

We obtain mY

max?’

by solving the following equation for m for the different cases.

2N -p= 1 (A.2a)
<Arnax
Case 1: locally stable DMI
= \/NQ(pDMI _p|0>2 N2 (pDMI _plo)2 _ 1 (A.2b)
c\pc C VA | h\ :

max
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Case 2: globally stable DMI, lost by fixation of continental allele

1
= Nc(1—pM) = 3 (A.2¢)
Case 3: globally stable DMI, lost by swamping of island allele
= N, -pP™! = (A.2d)

/\max

Here, p2M' and pPM! are the frequencies of the continental and the island allele at the

stable DMI, and p'c0 and p:O are the allele frequencies at the unstable equilibrium (ly),
respectively. N¢ and N, correspond to the number of chromosomes for both alleles. It
differs for autosomes (N4 = 2N) and X-chromosomes (Ny = 2 -2N = 3N). We
note that our criterion deviates from the one by Yeaman and Otto (2011), who use
the condition 2N = ﬁ which is independent of the location of the deterministic
equilibrium. We find that this choice is much less precise for our model.

N
max

As can be seen in Fig. A.3, m. _ and the simulation results match well. Especially for the
case of v = 0, where simulations suggest that finite populations with 10 000 individuals
have a harder time to resist swamping, effective migration rates are also lower, when

compared to the deterministic case.
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Figure A.3: Effects of finite population size and drift. Results are shown for unbiased
migration (R = 0) without dosage compensation (D = 0) for the X—A model. Each
point represents 200 replicates, run for 100 000 generations each. Finite population

size is fixed to 5000 female and 5000 male individuals. The dashed, gray line gives the

N

analytical m;},,. and the dashed blue line gives m,,.

A.4 Substitution rates and faster X-effect

In order to compare rates of adaptive substitution on autosomes and X chromosomes
in our model, it is sufficient to consider a single locus on either chromosome. For an
island population of size NV, new mutations occur on an autosome at rate 2Nwu and at
an X chromosome at rate %Nu, respectively (where u is the mutation rate per haploid
locus and generation). Assume that a new, locally beneficial mutation with selection
coefficient 2s and dominance coefficient i occurs. This mutation needs to establish in

the face of gene flow at rate m from the continent. On the autosome, the marginal

62



1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

fitness (see definition in SI Eq. (B.1)) of a mutant relative to the wild type is
2hs(1 —p) 4+ 2sp —2hsp —m = 2s(h+p(1 —2h)) —m. (A.3a)
As long as the mutant is rare, (p ~ 0) this expression reduces to
2hs —m. (A.3b)

We obtain the establishment probability as twice this value 2(2hs — m). On the X
chromosome, establishment depends on dosage compensation D and sex-bias in mi-
gration R. We have fitnesses (xx,xX,XX)= (0,2hs,2s) in females and (xy,Xy) =
(0,2hs + D(2s — 2hs)) in males. Averaging the marginal rate of increase over both

sexes we obtain

;(23<3h—|— D(1 — h) + p(2 — 4h)) —3(1+§)m>. (A.4)

The establishment probability of a rare X mutant follows as

2 R
3(23(3h+D(1 —h) -3(1+ 3)m). (A5)
We thus obtain the substitution rates

Ka=4Nu(2hs —m) ; Kx=Nu (25(3h +D(1—h)) —3(1+ ?)m) (A.6)

for autosomes and X chromosomes, respectively. For unbiased migration (R = 0), and

full dosage compensation (D = 1), we obtain

Ky = Nu(2s(2h 4+ 1) — 3m). (A7)
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In this case, we obtain a faster X-effect, Ky > K 4, for

1 m
h< = ] A.8
<2+4s ( )

The effect is increased by male-biased migration (R < 0). In a panmictic model (m =
0), we have K4 = Ky for a codominant adaptation and D = 1. As observed by
Charlesworth et al. (1987), faster X substitution requires recessive adaptations in this
case. With gene flow (m > 0), the effect is enhanced and occurs also for codominant

(or slightly dominant) adaptations.

B. Supporting Information: Mathematical Model

In the Supporting Information Section on the Mathematical Model we give a comprehen-
sive analytical investigation of the dynamical system in Box 1 of the main text for the
general fitness scheme (see Section B.1) and the special case of the codominant fitness

scheme (see Section B.2). The 8 different genomic architectures we study are shown in

Fig.B.1.

B.1 The general model

We investigate a two-locus DMI model, with two alleles each. The ploidy depends on the
locus position: Autosomes are diploid, X-chromosomes haploid in males and organelles
(mitochondria) are haploid everywhere.

We start our analysis with the general model, where we assign an arbitrary epistasis
term 0 < 71 < 7 to the double heterozygote female F1-hybrid, while all other hybrids
are affected additively by epistasis. The resulting epistasis vectors are given in Table 2.2
and the detailed general fitness scheme for the different genotypes is given in Table B.1,
B.2.

Later we derive comprehensive analytical and numerical results for the codominant

model. Both, the codominant and the recessive model, are special cases of the general
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Figure B.1: Different genomic architectures of two-locus DMIs. The four upper
cases are nuclear DMIs between autosomes (A) and X chromosomes (X), the four lower
cases also include mitochondrial loci (O, organelle). Upper case letters denote incom-
patible alleles. The models uses a continent-island framework with unidirectional gene
flow from the continent to an island.

model and we obtain them by setting ; to two specific values:

e In the codominant model with 7; = 3 the strength of epistasis is directly

proportional to the number of incompatibilities in male and female hybrids.

o In the recessive model with v; = 0 the double heterozygote female is not affected
by the DMI since it still carries a compatible allele at each locus. All other hybrids
suffer according to the number of incompatibilities they are carrying.

Genotype, marginal and mean fitness of the general model

In the following Tables B.1, B.2 we give the fitness values for all different genotypes of

the different genomic architectures.
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Fitness of the general model: nuclear DMIs

A—A-model by Bank et al. (2012):

aa aA AA In the A—A-model we average
bb 0 0 20 over male and female effects for
bB | oc |oy+oc—7 | 2004+0c—7 oc, 01,71, 7
BB | 20¢ | o1+ 20c — v | 201+ 20¢ — 2v
X—A-model:
Females: Males:
aa aA AA aa aA AA
XX 0 0,9 2<7|SB x| 0 O'|O7| 20|Oz
xX a(? a?—l—a?—% 20,9—1—0'(?—7 08” J|Oz+08z—e 20'|O7I—|-O'87I—26
XX 203’> O'|9 + 2(7(62 - 20? + 20? — 2y
A—X-model:
Females: Males:
XX xX XX X X
aa 0 0,9 2<7|9 aa 0 a,oz
aA a(? a? + U(? - 20,9 + O'(? —v || aA 08” a|oz + ng -
AA 202‘22 0,9 + 2(7(%2 — 20’? + 20'(? — 27y || AA 208Z <7|Oz + 208Z — 2y
X—X-model:
Females: Males
T1T1 r1X4 XX, T X,
Tolo J? 20|9 Ta 0 cr,oz
T9X2 0? 0|9+JC9 -m 20,9 —i—a? — 7 X agz Olo” +c78z —€
X5 X5 20? J|Q + 20? -7 20? + 20? — 2y

Table B.1: Fitness of the general model: Nuclear DMIs. The genotypic fitness
of hybrids for all different genomic architectures are composed of an allelic (oc, o)
and an epistatic term (71,7, €). Epistatic interactions are quantified by ~;,~ in female
and € in male hybrids. Only double heterozygous female F1-hybrids are assigned an

independent epistasis term 1, which is set to 71 = 0 for recessive models and to y; = 1
for codominant models.

2

Dosage compensation can be modeled as a special case of

sex-specific allelic and epistatic fitness. With dosage compensation a single X-linked
alleles in males has the same strengthend impact as two homozygous X-linked alleles
in females concerning allelic and epistatic fitness. Therefore we can implement dosage
compensation D as follows:
e without or with dosage compensation D =0 or 1

eod =

(1 —i—D)a?

and 0'|O7|

=(1+ D)cr|82

o c=(1+ D)3, except for X — X where ¢ = (14 3D)7.
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Fitness of the general model: Cyto-nuclear DMIs.

O—A-model:
aa aA AA
0] 0 [ 20'|
O | 20¢ | o+ 20¢c — v | 201+ 20¢ — 2y
O—X-model:
Females:
XX xX XX
ol O 0? 20|Q
O QUé2 0|Q+20§ —y 2(7,Q —1—20? — 2y
X—0-model:
Females:
o O
X 0 20'9
xX 0? 20|SB + 0? -y
XX | 208 | 207 + 208 — 2y

Table B.2: Fitness of the general model: Cyto-nuclear DMIs. Allelic and epistatic
fitness are quantified as in the Table B.1. For cyto-nuclear DMlIs no recessive DMlIs are
investigated as the haploid cytoplasmic locus cannot be heterozygous, i.e. there is never
a compatible wild type allele that could rescue the phenotype of a mutant- no double
heterozygotes with epistatic term +; exist. As in the nuclear DMI case dosage com-
pensation of a single X-linked alleles in males leads to strengthened allelic and epistatic
effects, as two homozygous X-linked alleles in females. Dosage compensation D of X-

linked alleles is modeled as follows:
e without or with dosage compensation D =0 or 1

. o9

ec=(1+D)y.

— (14 D)o¢

and O'|O7I

— (14 D)oy
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A—0O-model:
0 0]
aa 0 oc
aA | oc 200+ o0c+ 7y
AA | 20¢ | 201+ oc + 2y
Males:
X X
0 0 0|Oz
O 2(78z a,oz —1—208z —€
Males:
0 o)
x| 0 <7|oz
X 082 2(7|oz +a§ —€




1401 For the dynamics we use the explicit expressions for the marginal fitness

WS = L S w(@Pes), (B.1)
pj jEGS
1402 the mean fitness &°
= Y w(@P(GY) (B.2)
all GS

1403 where G° denotes the genotype of sex S € (9,d"), p; denotes the allele frequency
e of allele j, and P(G®) denotes the genotype frequency, and finally w(G*®) denotes the

s genotype fitness as given in Table B.1, B.2.

uws Dynamics of the general model

1oz We use the equations in Box 1 in the main text and insert the fitness terms above for

s the time derivative of the continental allele frequency (pc) and island allele frequency

1409 (p|)
pc = ccm~+pc| (1 —pc)sc
N————
selection
+kpi(1 — pc) (tfpc(—l +t5p) — tSM) (y=2n)—  t5m — kge ) - Ccm]
————
dominance epistasis average epistasis in Q and O
D= D [(1 —P1)s)
+kspc(1 —pi) ((t'm(—l + thpc) — t'2PC> (v —2m) —tym — kéﬁ) - qm]
(B.3)
1410 Below we will analyse the three components of these equations:
1411 e Selection (Sc, S|)

1412 e Epistasis (71,7, €, ki, t))
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1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

General Model: Parameter combinations for the different genomic architec-
tures.

Model (;Cl (%2 Sc S| Cc Cc
o2 +65 o216
A—A3 aaBB AAbb <5< - 1 1
209—1-007' 09+Uo7l R
X—A | aaXX, aaXy | AAxx, AAxy < - I+ 3 1
UQJro'O?I 209+Ud| R
A—X | AAxx, AAxy | aaXX, aaXy “— S SR 1 1+ 3
. J .
X=X | XXxx®, Xx | XX, xX | 22edoc | 20ren g R B
09-1—007' Q
A—O AAo aa0 -5 20, 1 1+R
Q 09+oo7l
0—A aa0 AAo 20 4= |1+R 1
. J
X—0 | XXoXo xOx0 | et | o9p® |14 B 14 R
.
0—X xx0,x0 XXo,Xo 20é2 20'% 1+R |1+ %

Table B.3: The equation terms sc, s; and cc, ¢; are functions of allelic fitness Uc?/w ng/,
and of R € [—1,1] for male to female biased migration, respectively. They differ for
each architecture.

e Migration (m, cc, ¢)

1. Selection: Allelic fitness

The sex-averaged allelic fitness effect sc, s, are functions of allelic fitness in females
and males, UQ’OZ,UQ’OZ, and their respective value can be found in the Table B.3 for
each genomic architecture. As discussed before in this study the relation of allelic fitness
in females and males is determined by dosage compensation.

2. Epistasis
Epistasis is described by v, and ~ in females and € in males. Details for their parametriza-
tion in each model by parameters k;,?; are given in Table B.4.

The epistatic term in the dynamics of the general model (B.3) can be decomposed

into two parts:

e A sex-averaged part: This part reflects the average epistasis over all female and

!Immigrating genotypes from the continent
2Resident genotypes on the island

3model by Bank et al. (2012)

4Short for X1 X 299
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1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

Parameters in Eq. (B.3)

Model | ky | ks"" | kg | 15/ | 6577 | 457"
A=A |1 0 | 1] 2 | 1 ]2
A-X |3 1 |20 2] 1|2
X=A |2 1 [+] 2| 1|2
X=X |2 2 [2] 2| 1|2
A-O | 1| 0 |1]1/0|0/1]1/2
O—=A | 1| 0 |1]0/1|1/0]2/1
X—=0 |5 |1/0|1]2/0[0/1| 2
O—=X | 1]0/1]4|0/2]1/0] 2

Table B.4: Values for the parameters in Eq. (B.3) for the different genomic architectures
of the DMI.

male F1 hybrids.

e A dominance-epistasis part: For models with non-vanishing dominance / recessi-

tivity of the DMI (v, # 7) a second, frequency dependent part of epistasis exists.

If we consider the general model for nuclear DMls, we notice a twofold departure of
symmetry from the original symmetrical A—A-model by Bank et al. (2012). First, we
distinguish between the two sexes, males and females, which is realized by kg/l # 0.
Second, while we still maintain codominant epistasis in males, higher order epistasis
in females is asymmetrical between the autosome and the X chromosome, such that
ky # ks.

3. Migration

Finally for migration, we have defined a parameter R for sex-biased migration in the
main text (see “Population structure and migration”). We can link R to the coefficients
for sex-biased migration cc and ¢, given in Table B.3. We fix the individual migration

rate m for all models and write female and male migration rate m?, m in terms of m.
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m® =m(1+ R) and m® =m(l — R) (B.4)

1439 The different effective migration rates, ccm and ¢m respectively, are given for

s the continental and island incompatible allele as follows:

1401 e if the incompatible allele is situated on an autosome:
d
m% +m
mA:#:m:cc,q:1 (B.5)
1442 e if the incompatible allele is situated on an X chromosome:
2m? +m R
my=———"—=m(l+=)=cc,a=(1+ =) (B.6)
3 3 3
1443 e if the incompatible allele is situated in the mitochondrial genome:
mo =m® =m(1+R) = cc,c; = (1+ R) (B.7)
1444 This implies that for
1445 e R = 0 : equal individual migration rates for males and females = m = m 4 =
1446 My = Mo
1447 e —1 < R < 0: excess of males migrating = m4 > mxy > mo
1448 e 0 < R < 1: excess of females migrating = m 4 < mxy < mo
1449 We thus get a uniform system of differential equations for all different architectures.

uso  Unfortunately, it is not possible to fully solve the system analytically to obtain any
us1  internal equilibria, such that we have to resort to numerical analysis eventually for the
us2  analysis of the internal dynamics. However, we can investigate the dynamics on the
us3  boundaries of the frequency space and give necessary conditions of the existence of a

uss  stable DMI.
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1455 Below, we investigate the cases of nuclear DMlIs in more detail. They all share the
uss  values for the parameters tlc’I to tgc’l, which we will set to their values for nuclear DMls

us7 in the following.

uss  Equilibria without migration

uso  We calculate the nullclines to investigate the dynamics without migration. All equilibria
ueo lie at the intersection of two nullclines, pc = 0 and p; = 0.

1461 The three nullcline for pc = 0 are given by:

—sc + kip(p(y — 20) + 271 + kSe)
{{Pc — 0}, {pc — 1}, {pc — 2 (—1 4 iy —27) }} (B.8)

us2  Second, we find three nullclines for p, = 0:

—s1 + kspc(pc(y — 271) + 271 + kie)
{{pl — 0}, {m — 1}7{p| — a1+ plpe(y = 201) }} (B.9)

1463 With these nullclines, we find all four monomorphic equilibria to be admissible. They

uss have the following eigenvalues.

equilibrium:(pc, pi) | eigenvalue to (’;f) = (é) eigenvalue to (7;?) = (?)
(0,1) sc — k(v + kge) —s)
(1,1) —sc + ki(v + kge) —51+ ks(y + KLe) (B.10)
(1,0) —Sc s1 — k(v + khe)
(0,0) sc 5
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The third nullcline in Eq. (B.8) is never internal for

sc < kipl(pi(y — 271) + 271 + kge) especially sc < 0.

1465 Biologically this condition can be translated, such that the immigrating allele cannot
uss to take over the population unless its advantage outweighs the effect of epistasis for
usr - m = 0. This is never the case if the continental allele is deleterious.

1468 For positive sc, with sc > kipi(pi(7—271)+271+kS€) we find that the third nullclines
ueo in Eq.(B.8) and (B.9) are both monotonically decreasing for 7, < 2. Furthermore,
uo  extensive numerical investigations show, that for 7, < ~ these nullclines only cross once
un  inside the state space, to give rise to an unstable internal equilibrium, a saddle point.
1472 In summary, we find that there is at most one unstable internal equilibrium at m = 0

w3 for nuclear DMlIs. Any stable DMI for small positive migration rates has to correspond

wua  to a perturbed boundary equilibrium.

urs  Equilibria with migration

e As for the codominant case discussed below, we find three boundary equilibria

SLPc = (pc — —=%% p — 0)
SLP, = (pc — 1, n — 1+—8|$’E:/L+k|26)) (Bll)
FIX = (pc = 1, m»m — 0)

1477 We note, that the single locus polymorphism on the island locus, SLP,, is independent

us  of 1, i.e. epistasis in the double heterozygous hybrid. This is of course understandable,
o as with the fixed continental allele these hybrids are missing in the population.

1480 We find the following eigenvalues for these equilibria:

73



equil. along boundary into state space

—cZkym?(y—2 k 271 +k!
SLPc ccm + sc —cym + s + —ckem’ 0 Vl);rzcc smsc (2 thao)
C

SLPy | cim — 51+ kg (y + kbe) | —ccm — s — Brlam=stho Gl emban) Lo (1 kOt

FIX & —ccm — Sc T2 —am + 51 — k3 (7 + kbe)

(B.12)
1481 For the equilibrium FIX, where the continental genotype has swamped the island
ue2 "< denotes the eigenvalue along the continental boundary (p; = 0) and ']’ denotes the
g3 eigenvalue along the island boundary (pc = 1) in the frequency phase space.
1484 From these eigenvalues, we can deduce stability conditions and link them to condi-
uss tions found in Bank et al. (2012):
1486 Whenever SLP, or SLP¢ are admissible, the eigenvalues along the boundary are
usr  negative, hence we always evolve towards the equilibrium along the boundary.

1488 If SLP¢ is admissible, it is stable whenever:

—18% + cckssc (21 + kae) + \/s% (4c%k35|(’y —271) + (asc — ccks(2v1 + k'Qe))Q)

2c¢ks(y — 2m)

Sc
<m< ——

Cc

(B.13)

1489 If SLP, is admissible, it is stable whenever:
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1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

(—s1 + ks(y + kie))
2¢¢k1 (v — 2m)

— {20(:C|/{31 (2’}/1 + kQCE)(& — k3(’7 + kIQE))

+ ce(s1— ks(v + kbe))? + ki (—4sc (v — 2m) + k1 (2y — 27 + kse)?)}

[(C|/{Z1 (2’}/1 + k?gE) + Cc(S| — k)g(’y + k'|26>>

s1 — ka(y — kye)

<m <

C

(B.14)

We also observe that the two boundary equilibria cannot be stable simultaneously.

If both are admissible, ccm + sc < 0 hence SLP, can never be stable, as its eigenvalue

into the state space is positive.

The monomorphism FIX is stable iff

m > max |——,

8£ S| — kg(’}/ + /fIQE)

Cc q

(B.15)

The conditions (B.13),(B.14),(B.15) correspond to the condition (T.31c), (T.31b)

and (T.31a) in the Appendix of Bank et al. (2012).

For strong enough migration the island is always swamped by the immigrating geno-

type and FIX is becomes stable.

Although we cannot solve the dynamics in the interior of the state space, some

information can be gained from the nullclines. We find 3 nullclines for pc = 0 for the

general model:

L4 N1,2 D=

k1pc(2pc(y=271)+21+k5e)+ \/klpc (—4(=1+2pc) (ccm+pesc) (v—271)+k1pc (2pc (v—271)+2m1 +kS€)?)

e Nsipc=1

2k1pc(—142pc) (v—271)
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1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

With Wolfram Mathematica we can show that for 0 < v < % m >0, s > 0,
arbitrary sc and ki, kS, ks > 0 and cc, ¢; > 0 the nullcline A (with plus sign) is never
internal. Furthermore, under the conditions above, we find that % < 0for0 < pc <1,
hence the nullcline N5 is monotonically decreasing.

Furthermore, we find 3 nullclines for p, = 0:

L N4,5 P =

—s1+k3pc((—243pc)y—6(—1+pc)y1+khe)
4ks(—1+pc)pc(v—21)
+ \/ (s1—=kapc ((—2+3pc)v+671—6pcy1+hbe))2—8ks (—1+pc)pc(v—271) (crm—si+kspc (pcy+271 —2pcy1 +hbe))
4ks(—1+pc)pc(v—271)

e Ng:p=0
(B.17)
Again we can show that for 0 < v < % m >0, s; > 0, arbitrary sc and kq, k'Q, ks >
0 and cc, ¢ > 0 the nullcline N5 (with minus sign) is never internal. Furthermore, we
can show that under these conditions N, is monotonically decreasing in pc.

In summary:

o N, N5 are not internal for v < 1

e N5, N, decrease monotonically

Additionally, extensive numerical investigations indicate that the nullclines for the
parameter space in question (0 < v; < 7y) cross at most twice to form a stable DMI and
an unstable internal equilibrium (saddle point). However, we did not succeed to show
this analytically. With large v; > v the dynamics become increasingly complicated and
more than two internal equilibria are admissible.

From our analysis without migration, we deduce that for small migration rates a two-
locus polymorphism, a stable DMI, will only evolve as a perturbed boundary equilibrium.
Thus it seems that the internal dynamics of the general model for 0 < v; <  are quite

similar to the codominant model 7, = 7. Compare Fig. B.3 for bifurcation patterns.
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1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

Migration bounds for global stability

For the case of 0 < 71 < I we obtain a protected two-locus polymorphism if all boundary
equilibria are unstable. In analogy to the codominant model, we derive the migration
bounds for the general model, where a transcritical bifurcation of the unstable boundary

equilibria occurs, as follows:

0 no globally stable DMI admissible

Mmax € { MG, bifurcation at SLPc (B.18)

max

m! bifurcation at SLP,

max

C
max’

The migration bound m where the SLP¢ changes stability is given by:

c —cls%+cck3sc(2’yl+kl2€)+\/8(2:(46(2:k38|(’7—2’}/1)+(Clsc_cck3(271+kl26))2) (B 19)
max — 2c2k3(v—2m1)

m

|
max’

The migration bound m where the SLP, changes stability is given by:

m = (=si+k3(y+kh6))- (cik1 (2v1+kS ©)+ec (si—kz (y+khe)
max 2¢ k1 (v—271)

(—s1+ks (’7+k‘|26)) \/2cc0| k1 (271 +kgs) (s1—ks (v—i-k'Qe))—l—c% (s1—ks ('y+k'26))2 +c|2k:1 (—4sc (v—2v1)+k1(2v—271 +kge)2>
B 2¢2k1(y—271)

(B.20)

Necessary and sufficient conditions for the existence of a DMI

With perturbation analysis we finally prove that if (pc,p;) = (0,1) is stable at m = 0, it
will move into the state space with positive migration rates (A ~ 0 = Am), and hence

form a stable DMI. We show this for nuclear and cytonuclear DMls. All other vertex
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1537 equilibria lie on invariant boundaries, and cannot enter the state space. We write the

1533 dynamics of of the continental allele of the general model in the following way:

pc = 0 = pc(Am)(wc(Am) —w(Am)) + (1 — pc(Am))Am

1539 We convert the equation to get an approximation of the continental allele frequency

1540 of the stable DMI

(1 —pc(Am))m = >
oc(Bm) —oam) ~ "Bas TOAY)

expand around A =0

pc(Am) = —A-

1501 From wc(A =0) — (A =0) = sc — k1 (tS(y — 271) + t571 + kS€) we deduce that
sz pc(Am) > 0, i.e. that with increasing migration the frequency of the continental allele
1513 Of the equilibrium will increase and be permissible for the general model including the

1544 cytonuclear DMls, iff

sc < ki(ts(y = 2m) +t5m +kze) and  m < |sc — ki (t5(y = 271) + t5 + kge))|

(B.21)
1545 This simplifies to
sc <ki(y+kSe) and  m < |sc — ki(y + kse)| (B.22)
1546 for nuclear DMIs and is independent of ~;.
1547 For p we cannot apply the same technique as w;(A = 0) — ©(A = 0) = 0, so we
1548 Write
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1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

p = 0 = pi(Am)(w(Am) —w(Am)) — p(Am)Am
= (w(Am) —w(Am)) — Am
= (1 —m(Am)) S —pc(Am)(1—p(Am))  I"  —Am

selection epistasis term

= (1 —=p(Am))(si — pc(Am)I™*) — Am

= ])|(ZX771) = 1- Z&:;j:;g%%%;ﬁjirg, VVP]ere ])(:(13771) =0

p(Am) ~ 1-AZ

Hence for small migration rates and iff

0<m<s (B.23)

the frequency of the island allele of the equilibrium will decrease with increasing
migration.
Taken together, the calculations yield the perturbed, approximated coordinates of a

stable DMI:

m m
I m=|—A 11— A— B.24
pmi|a ( sc — ki (tS(y — 2v1) + t§71 + kSe) SI) ( )

If (B.21),(B.23) hold, the perturbed equilibrium (B.24) will be internal. These con-
ditions coincide with the conditions of stability of the boundary equilibrium (pc,p) =
(0,1). Hence the island allele has to be beneficial and the continental allele has to be
weak enough compared to epistasis in order to obtain a stable internal equilibrium.

Finally, these conditions are also sufficient for the existence of a single stable DMI,
because any other stable equilibrium with small migration rates would already have to
be present at m = 0. However, as we have shown in the Section B.1 'Equilibria without

migration’, there exists no other stable internal equilibrium at m = 0.
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1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

B.2 Codominant model

As discussed above the general model cannot be fully solved analytically. However,
solvable models can be obtained for special parameter combinations. The model we
discuss here is the codominant model, where the epistatic effect of each genotype is
directly proportional to the number of incompatible pairs. The full fitness scheme can be
found in Tables B.1, B.2, where we simply set ; = 1 and obtain our unified codominant

model (see Eq. (B.25)).

Dynamics of the unified codominant model

As for the general model, we follow the frequency changes in time of the continental

allele pc and the island allele p,.

pc = (1—pc)(pc(sc — gepr) + ccm
( ) ) ) (8.25)
po = pi((1=p)(si —gpc) — am)
Parameters: as in the general model
sc/s1 ... allelic fitness function of the continental/island allele

depending on the model, a§/,,ag”/l and dosage compensation (D)
m ... migration rate
cc/a ... function for effective migration of the continental/island allele

see Egs. (B.5),(B.6),(B.7)
unified parameters in the codominant model

gc/qr ... epistasis function of continental/island allele

depending on the model and v, € or v and D, respectively
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1575

1576

1577

1578

1579

1580
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1582

1583

1584

1585

1586

1587
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1589

1590

1591

1592

1593
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1595

1596

1597

1598

1599

1600

1601

Individual dynamics for the different models

As before each genomic architecture is given by a different parametrization of selection,
epistasis and migration. In Table B.6 we dissect all these terms. Furthermore, we give the
individual dynamical systems for each genomic architecture in Eqs. (B.26) to illustrate
how the different DMI-models deviate from the reference model by Bank et al. (2012).

Since the A—A-model is symmetric, i.e. a DMI between two autosomes, we obtain
symmetric epistasis and migration is not affected by sex-bias. For X—X, the symmetry
between the island and the continental allele is maintained. However, the evolutionary
forces are rescaled compared to A—A. For all further DMIs including one X chromosome
and/or one mitochondrial locus, the original symmetry of epistasis, allelic selection and
migration of the A—A-model is broken. Also, dosage compensation of the X chromo-
some results in a rescaling of selection and epistasis via the dosage compensation factor
D (D € {0,1}). For D = 0 there is no dosage compensation in males and for D = 1 one
X-linked allele in males has the same effect as two X-linked alleles in females. Sex-biased
migration rates is scaled by R € [—1, 1], where with R = 1 all migrants are female and
for R = —1 migration is purely male biased.

Any constant factors for all terms of a differential equation only modulate the velocity
of the dynamics, whereas the equilibria (at pc = p, = 0) remain unchanged. For models
including mitochondrial loci, only the selection coefficient of females o2 is relevant for
the dynamics on the mitochondrial locus. To keep the intra locus effect constant for
the haploid mitochondrial locus, we obtain a factor of two for the selective forces of all
cytoplasmic alleles.

The dynamics directly show the effect of the inclusion of X chromosomes and mito-
chondria. If we compare the A—A-model to all other nuclear DMI models, we see that
for dosage compensation D = 1 in combination with female biased migration rate R = 1
all other models correspond simply to a rescaled A—A-model. As any constant factors
are canceled out, all equilibria are the same. If we increase the ratio of male migrants

R < 1, the models start to behave differently. While the A—A-model is unaffected by

82



102 the change, any X-linked model experiences an effectively lowered migration rate on the
1603 X chromosome. Furthermore, omitting dosage compensation changes selection pressure

160« and epistasis on the X chromosome, and only epistasis on the incompatible partner.
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1605

1606

A—A:

X—=X:

A—X:

X—A:

Dc

P

Dc

P

Dc

P

Pc

D

Dc

General model

= (1 —pc)(pc(sc — gecpr) + ccm) (B.26a)
= (L =p)(si—gipc) — am)

Nuclear DMIs

(1 - pc)(pe(od — m) +m)

pi((1 = p)(0F —vpc) —m)

(1 - p)(pe(3520g — 232yp) + (1 + £)m)

m((1 —p.)(%aﬁg — 2BDapc) — (1+ E)m) (B.26b)

(1= pc)(pe(o — EELoyp) + m)

P2 (1 = p)(of —pc) — (1 + E)m)

(1= pc) (B2pc(0g —p) + (1 + Bym)

p((1 = p) (o — EPApe) —m)
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1607

1608

1609

1610

1611

1612

1613

1614

A—O:
Pc
D
O—A:
Pc
D
X—=0:
Pc
D
0—-X:
Pc
D

Cytonuclear DMIs

(1-— pc)(pc(ffé2 —yp) +m)

pi((1 = p) (207 — 29pc) — (1 + R)m)

(1 = pc)(pc(208 — 2ym) + (1 + R)m)

p((1 = p) (07 —pc) —m) (B.26¢)

(1= pc)(pe(BERog — BLyp) + (1 + Z)m)

pi((1 = p) (207 — 23ypc) — (1 + R)m)

(1 pc)(pc(20¢ — 2ym) + (1 + R)ym)

pi((1 = p) (B2 — HLoypc) — (14 E)m)

Equilibria of the unified codominant model

For the unified codominant model in Eq. (B.25) we find three boundary equilibria, two

single locus polymorphisms (SLP), and a monomorphic equilibrium (FIX). We also cal-

culate the eigenvalues for the different boundary equilibria, to determine their stability.

SLP|: (p(;% 1,p| — 1+

am
g|[fS|)
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1630

1631

1632

1633

We find the following eigenvalues corresponding to eigenvectors pointing into the

state space and along the boundary:

gc — ccm — Sc + , g1+ mec — s (B.27)
| —
I <0 if SLP| admissible

This equilibrium corresponds to a SLP on the island allele, after fixation of the
continental allele. The first eigenvalue governs the dynamics into the state space and
can be rewritten as

—ccm — sc + gc - SLPY . (B.28)

b ofSLP
We see that increasing migration pressure on the continental allele and increasing ad-
vantage of the continental allele stabilize the SLP. Moreover, increasing epistasis on the
continental allele, destabilizes the SLP. The second eigenvalue governs dynamics along
the boundary. It is always negative, if the equilibrium is admissible, such that the dy-

namics evolve towards the equilibrium along the boundary.

SLPc = (pc = =, p1 = 0)
We find the following eigenvalues corresponding to eigenvectors pointing into the
state space and along the boundary:

ccm
g|c— —am-+ s, ccm+ Ssc (B.29)
Sc SN———

<0 if SLP¢ admissible

This equilibrium corresponds to a SLP on the continental allele, after loss of the
island allele. The first eigenvalue governs the dynamics into the state space and can be

rewritten in the continental allele frequency of the single locus polymorphism:
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1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

g1 - SLPc(pc) —am + s

This equilibrium is stabilized by increasing migration pressure on the incompatible
island allele and decreasing advantage of the island allele. Furthermore increasing epis-
tasis on the island allele, destabilizes the SLP¢. Again the second eigenvalue governs
dynamics along the boundary. It is always negative, if the equilibrium is admissible, such

that the dynamics evolve towards the equilibrium along the boundary.

FIX = (pc — 1,p| — O)

We find the following eigenvalues along the continental boundary (p; = 0) and along

the island boundary (pc = 1).

{—ccm — sc,—gr —am + s1}

This equilibrium corresponds to fixation of the continental genotype, such that the
island genotype is completely lost from the population. This equilibrium lies at the cross-
ing of two invariant boundaries and is always admissible. For large enough migration it
always becomes stable. Moreover, increasing advantage of the immigrating variant and
decreasing positive effect of the residential allele further strengthen the stability at this

equilibrium.

Furthermore, we find two potentially internal equilibria, which are conjugates:

IDMI =

(pc — —aigem+ccgimgesi—scsi—y/ 4ecgm(—ge+sc)si+(agem—ccgm+(—ge+sc)s)? (B.30)
2g1(gc—sc)
P = —agemecgimgesi+scsity/ decgm(—ge+sc)sit+(agem—ccgm+(—getsc)si)? )
' 2
gcsi
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1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

lo =

—agem-tecgm-tgesi—scsi+y/ decgm(—ge+sc)sit+(cigem—ccgm+(—getsc)si)?

(B.31)

(pc —

2g1(gc—sc)

—cigemtecgmgesi+scsi—y/ 4ecgm(—ge+sc)si+(cgem—ccgm+(—ge+sc)s)? )

D —

2gcsi

With the nullclines for pc = 0 and p; = 0 we can investigate the stability of the two

internal equilibria. If possible, the nullclines of the unified codominant model are given

as functions of the allele frequency of the continental variant pc on the frequency simplex:

[ ]ﬁc = O .
— A _ ccmApesc dp _ _ ccm
Ny =pi(pc) = P dpc gcpZ < 0 = monot. |
2 A
o = 2eem ) = convex U
dpg gcpe
No = pc =1
e p=0:
N _ am dp _ _ _ agm
Ny = pl(pc) =1+ gipc—si dpc  — (si—gipc)? <0 = monot. |
.. _ 2y 2C|g|2m
admissible = gpc— <0 BE = ope—s)® <0 = concave N
Ny =P =0

The nullclines are illustrated in Fig. B.2. At the intersection of the nullclines inside the

state space, we find the admissible internal equilibria. From the monotony and curvature

of the nullclines, we can deduce that we either obtain only the stable equilibrium, i.e.
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1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

Iomi or both internal equilibria, the stable and the unstable equilibrium, Ipp and o,
respectively. We note, that the Ipy; is always stable, whenever it is admissible, and
hence we refer to it as “stable DMI".

The necessary and sufficient conditions for the existence of a stable DMI are covered
by our investigations for the general model and simplify to —gc + sc < 0 and s; > 0
for the codominant model. They also follow directly from the eigenvalue of the vertex

equilibrium (pc = 0,p; = 1) at m = 0 (not shown).

Figure B.2: Nulliclines inside the frequency phase space for a bistable scenario.
The internal equilibria lie at the crossing of the schematic nullclines N; and N3. The
upper left cross corresponds to the stable DMI, Ipy and the lower right intersection
corresponds to the unstable DMI, ly. The yellow area covers the minimal basin of at-
traction of the locally stable equilibrium. See Lemma 1 for proof and link to evolutionary
histories. Arrows indicate dynamics inside the phase space and show that no limits cycles
can exists.

Maximum permissible migration rates

We determine the full internal dynamics of the system analytically. For illustration of
the possible bifurcation patterns see Fig. B.3. We differentiate into global stability and

local stability of the stable DMI or Ipp;.
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1684

1685

Pe

Figure B.3: Bifurcation patterns on the phase space. If the vertex-equilibrium
(pc = 0,p = 1) is stable without migration, Ipy will move into the state space for
m > 0, see Section B.1. Furthermore, internal equilibria leave and enter the phase
space under exchange of stability with boundary equilibria with increasing migration.
The upper bounds for the migration rate permitting a globally stable DMI, m,_, = mc
and m,,,, = my, denote the SLP through which the internal equilibrium leaves the state
space or through which a new, unstable internal equilibrium enters the phase space.
At mf_ the two internal equilibria annihilate each other via a saddle node bifurcation.

Legend: frequency of the island allele (p,), continental derived (pc), stable equilibria (e),
unstable equilibria (o), arrows denote movement of equilibria with increasing migration.

max!

e For migration rates 0 < m < m the internal equilibrium Ipy is globally stable.
In this case the DMI will always evolve, irrespective of the evolutionary scenario,
which in mathematical terms translates to all possible starting conditions in the

frequency phase space.

e For migration rates 0 < m,.,. < m <m,_ the dynamics yield a bistable scenario
and Ipw is only locally stable. In this case, we always obtain a second stable equi-
librium at the boundary and the second internal, unstable equilibrium 1. Hence,

only certain evolutionary scenarios will allow the evolution of a DMI. However, it

is always possible to maintain a locally stable DMI.

e For m > m7_ there is no stable DMI, as Ipm cannot exist.

max

In the codominant model we obtain the following analytical expressions for the mi-

gration bounds for global stability:
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- c _ scs . .
Minax € | Mo = = bifurcation at SLPc (B.32)
m = % bifurcation at SLPigang

1ss If we have only selection against immigrants, but no epistasis and thus no selection

1e7 against hybrids, the migration bounds for global stability of the stable DMI reduce to

s s
me,, = 2 and ml .. = _— (B.33)
C cc
1688 We also get full analytical expressions for the migration bounds of local stability:
0
(Vagc—v/eca)®(gc—sc)si
+ (c1igc—ccg)? iff ccai # cge
mmax 6 (B.34)
OR
7(“;;;)5' iff ccqi = agc
1689 The last, easier expression for m; . holds for the symmetric model A—A and the

100 X— X, whereas skewed migration rates or unequal effective epistasis for the two incom-
o1 patible alleles, yields the former, more complicated expression.

1602 We now investigate bounds for the maximum permissible migration rates in the differ-
1603 ent investigated scenarios. Compare Figures 2.2, 2.3 and 2.4 for graphical representations

16« Of the migration bounds for the codominant model.

1695 e First, in the case of an beneficial migrant sc > 0, where a stable DMI is maintained
1696 solely by unfit hybrids, the lower bound on epistasis, beyond which no DMI can be
1607 maintained is given by the necessary and sufficient conditions for the existence of
1698 a DMI. We hence need gc > sc. Therefore, we can only obtain an internal stable
1699 DMI, if epistasis is sufficiently strong to outweigh the selective advantage of the
1700 migrant.
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1720

1721

1722

1723

1724

e Second, for a neutral migrant (sc = 0) m/

max

is independent of epistasis. This
is due to the symmetry in the expression of m/ _ . which emerges with a neutral
migrant and codominant fitness; all epistasis terms simply cancel each other. This
independence is fitness-scheme specific, as recessive DMIs are not independent of

epistasis, even if the immigrating allele behaves neutrally. See Fig. A.1, middle

column.

e Third, depending on the fitness loss of the maladaptive immigrating allele we either
get the maximum of m[_  with only selection against immigrants (without any
epistasis 7 = € = 0) or with a combination of selection against epistasis and

immigrants (intermediate levels of epistasis). By comparison of the eigenvalues

without epistasis of the two SLP we obtain the following bound: For

c£8| > —Sc (835)

&
intermediate levels of epistasis yield the maximum of m/ . If sc exceeds that

bound, i.e. the migrant becomes too strongly maladaptive, no epistasis (= 0)

permits the highest m’

max”*

Evolutionary histories

As briefly discussed before and in agreement with Bank et al. (2012), we distinguish
the two categories in the substitution history of a DMI. On the one hand we categorize
into derived-derived (one substitution in each deme) and derived-ancestral DMIs (two
substitution in the same deme) and on the other hand we differentiate into evolutionary
histories, such as secondary contact or mutation-order-scenarios such as continent-island
or island-island scenario, etc. See Fig. B.4 for illustration.

Mathematically, we can map the latter different scenarios to starting points in the
phase space. Therefore we investigate the minimal bounds of the basin of attraction

of Ipmi and thus we will be able to decide which evolutionary histories, i.e. starting
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1726
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1729

1730

1731

1732

1733

1734

1735

1736

1737

conditions are permissible for the evolution of a stable DMI. These minimal bounds
are illustrated as dashed dotted lines in Fig. B.2. In case of a locally stable DMI, i.e.

- +
mmax < m < mmax

any starting point within these bounds will always permit the
evolution of a stable DMI, if it is admissible. However, starting conditions outside the
minimal bounds of the basin of attraction might only permit a stable DMI to evolve if
it is globally stable.

Lemma 1: The basin of attraction of the locally stable the internal equilibrium Ippy,
the stable DMI, includes at least all points P = (pg, py) in the phase space, which fulfill

the following criterion (yellow area in Fig. B.2):

0<pc<lcandlf <p <1 (B.36)
Proof:

1. The frequency of the island allele of any admissible point S, p(S), smaller than

the frequency of the island allele of the nullcline N3, pi(N3), given by

cm

Ny)=0<p(S) <1+ ——
ni{Ns) <a(8) gipc — $i

= pi(Ns)

is increasing.
Proof: The leading term of p, in Eq. (B.25), a quadratic polynomial in p; yields:
—P|2 (51— gipc)
—_————
>0 if N3 admissible

Its two roots are the Nullclines N3 and Ny. As the leading term of the polynomial

is negative, p(S) > 0 for all S : pi(Ng) < pi(S) < pi(IV3).

2. The frequency of the continental allele of any point T" above pc(N;), given by

ccm + pcs
pc(No) =1 2> p(T) > Ccl T Pefe = pc(N1)
gcpc
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1745
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1747

1748

1749

Island-Continent

is decreasing.

. H . N __ ccm+pesc _ ccm
Proof: We rewrite the nullcline Ny = pi(pc) = L into pe = ST
As before the nullcline N; is only admissible for sufficiently low migration rate
gepr — sc > m > 0. The first expression is also the leading term of the quadratic

polynomial pc in pc in Eq. (B.25). Hence the values between the two roots, i.e.

the nullclines are negative. Therefore we obtain pc(7) < 0

If we combine these two statements, we see that trajectories that enter the set

M = {(p&, )| 0 < pe < 15 and 1B < p; < 1}

will never leave M forward in time. We can also exclude the existence of limit cycles, as
the direction of the trajectories in M in the four areas depicted by Fig. B.2 are clear as

shown above. Hence we will always converge to the locally stable DMI.

Secondary contact

P,
Secondary contact: (0,1)

(selection-migration i am
equilibrium) | .V_KSeparatnx (0,1 - ILT)
e Continent-Island &
— @ Island-island: (—<,0) or (1,0)
Continent-island P. sc
(selection-migration
equilibrium)

Figure B.4: Evolutionary history: Starting conditions in the phase space are mapped to
the evolutionary history of the DMI. The starting condition in turquoise holds whenever
the second substitution occurs on the continent, whereas the starting condition denoted
by a blue dot is valid, whenever the second substitution evolves on the island. The
schematic representation of the Separatrix divides the basin of attraction of a locally
stable DMI above it and another locally stable equilibrium below.

With Lemma 1, we can decide which evolutionary histories are most permissive to

the evolution of a stable DMI:
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1. Secondary contact: Both mutations arise and fix during an allopatric phase. Af-

terwards migration to the island resumes. It hence maps to — (pc = 0,p = 1)
which always lies within the basin of attraction of the stable DMI, as shown by

Lemma 1.

. Continent-island: First a continental substitution establishes at migration-selection

balance on the island. This is followed by the second mutation at the other locus

on the island.

(pc=—%2,p=0) ifsc <0

It hence maps to —
(pc =1,p=0) if sc >0

The second substitution on the island can only invade, if the stable DMI is globally

stable:

__ccm
sc

Case 1: (pc = p = 0) for sc < 0 : This scenario never allows evolution of

the DMI for local stability of Ipp;.

Proof: If Ipwm is locally stable, the saddle point |y needs to be inside the state

space at the lower intersection of the two nullclines N7 and N3. The SLP¢ (pc =

ccm
sC

,p = 0) is situated at the intersection of N; and the boundary p; = 0. As
Ny is convex and N3 is concave, the continental allele frequency of SLPc is higher
than p;(N3) and therefore, the frequency of the island allele in its neighborhood

will decrease and a DMI cannot evolve (similar argument as in proof of Lemma 1).

Case 2: If the first substitution evolves on the continent, migrates to the island
and is beneficial there (sc > 0), it will sweep to fixation. It hence maps to
pc = 1,p§ = 0 : This scenario never allows evolution of the DMI for a locally

stable IDI\/II-

Proof: If Ipwm is locally stable, there exists at least another locally stable equilib-
rium. This can only be situated at one of the boundaries in our case. If sc > 0,
then SLPc is not admissible, hence SLP, or FIX itself is the second stable equilib-

rium and we can never evolve a DMI.
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3. Island-continent: The first mutation arises on the island and sweeps to migration-
selection equilibrium against constant influx of the ancestral genotype. This is
followed by the substitution of the continental allele on the continent, which sub-
sequently migrates to the island.

)

Statement: It maps to — (pc = 0,p = 1 — and will always evolve towards

the stable DMI.

aqm
S|

Proof: The starting point (pc = 0,p; = 1 — 4™) lies on the intersection of the
nullcline N3 with the boundary pc = 0. As the nullcline N3 is monotone decreasing,
the starting point lies within the minimal bounds of the basin of attraction of a

stable DMI and therefore a DMI will always evolve.

4. Island-island: Both substitutions occur subsequently on the island. The second
substitution is incompatible with the ancestral variant at the other locus. Both
ancestral alleles are still introduced to the island by migration as the continent
remains monomorphic for the ancestral genotype. This evolutionary history maps

_cem

to — (pc = p = 0) and permits evolution only of a globally stable DMI,

sc

see continent-island substitution scenario for proof.

5. Continent-continent: Both substitutions occur subsequently on the continent. The
first substitution is maladaptive on the island and establishes there at selection-
migration balance. This is followed by the invasion of the second substitution.
This evolutionary history maps to — (pc = 0,p = 1 — %) and always permits

evolution of stable DMI, see island-continent substitution scenario for proof.

Special cases of the codominant cytonuclear DMls

Male-biased fitness effects in cytonuclear DMIs without epistasis in females: |f we omit
any epistasis effects in females, we loose the epistasis terms in the dynamics for the
mitochondrial allele completely. We thus obtain dynamical systems which have only four

fixed points. This entails that the bifurcation patterns we see here are different to what
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182 we observe in the full codominant model. They are easier, as we never obtain a locally

. e . Jr _ —
1803 stable internal equilibrium and hence m,. . =m. ..
1804 First, we investigate the case, where the continental allele is linked to the mitochon-
1805 drium.

pc = pc(sc(l —pc) —ccm) +ccm

(B.37)
poo= psi(l=p)—al—p)pc — am)
1806 We obtain the three boundary equilibria and only one stable internal equilibrium:
—Cccm cmsc
lomi = (pc,m) = ( ,1— ) B.38
pmi = (pc, p1) sc ccqim + scs) ( )
1807 The frequency of the continental allele is equal to the expression of the frequency of

1803 the continental allele in the SLPc. Hence we only obtain a stable DMI with selection
100 against immigrants sc < 0 and if migration permits. The maximum migration bounds

| = —5€ and m&, = —=c

max cc max = “ocgtasc as for the full codomi-

1810 are a shorter expression for m
1s1 nant model. The stable DMI is globally stable, whenever it exists.

1812

1813 Second, we study the case, where the island allele is linked to the mitochondria.

pc = pc(sc(l —pc) — gc(1 —pc)pr — ccm)) + cem

(B.39)
po= p((L—p)si —am)
1814 We also obtain the three boundary equilibria and one stable internal equilibrium:
—Ccms) cm
| = (pc,p :< , 1 — > B.40
own = { ! gc(am — s1) + scs S| ( )
1815 Here the frequency of the island allele is equal to the expression of the frequency

116 Of the island allele in the SLP,. Hence a stable DMI can only be admissible if the se-
1817 lective advantage of the island allele outweighs the effective migration pressure at the

e island locus, i.e. s; > ¢m. The maximum migration bounds are for mS, = o and
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mh o= o eca- The stable DML is globally stable, whenever it exists.

Cytonuclear DMIs without any fitness effect (direct or epistatic) in females: The
dynamical systems which describe this special case are simpler, as the dynamics of the
mitochondrial locus are governed only by the effects in females. This translates to two
types of dynamical systems, depending on whether the continental or the island locus is

cytoplasmic. In both cases we never obtain a stable DMI.

Data Archiving

Hollinger I, Hermisson J (2017) Data from: Bounds to parapatric speciation: A Dobzhansky-
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= 3 Polygenic adaptation:
1940 From sweeps to subtle frequency shifts

1821 Reference:
182 Hoellinger, I., Pennings, P., & Hermisson, J. (2018). Polygenic Adaptation: From sweeps

1843 to subtle frequency shifts. bioRxiv, 450759.

1844 Abstract

1845 Evolutionary theory has produced two conflicting paradigms for the adaptation
1846 of a polygenic trait. While population genetics views adaptation as a sequence
1847 of selective sweeps at single loci underlying the trait, quantitative genetics posits
1848 a collective response, where phenotypic adaptation results from subtle allele fre-
1849 quency shifts at many loci. Yet, a synthesis of these views is largely missing and
1850 the population genetic factors that favor each scenario are not well understood.
1851 Here, we study the architecture of adaptation of a binary polygenic trait (such as
1852 resistance) with negative epistasis among the loci of its basis. The genetic struc-
1853 ture of this trait allows for a full range of potential architectures of adaptation,
1854 ranging from sweeps to small frequency shifts. By combining computer simula-
1855 tions and a newly devised analytical framework based on Yule branching processes,
1856 we gain a detailed understanding of the adaptation dynamics for this trait. Our
1857 key analytical result is an expression for the joint distribution of mutant alleles
1858 at the end of the adaptive phase. This distribution characterizes the polygenic
1859 pattern of adaptation at the underlying genotype when phenotypic adaptation has
1860 been accomplished. We find that a single compound parameter, the population-
1861 scaled background mutation rate Oy, explains the main differences among these
1862 patterns. For a focal locus, ©, measures the mutation rate at all redundant loci
1863 in its genetic background that offer alternative ways for adaptation. For adapta-
1864 tion starting from mutation-selection-drift balance, we observe different patterns
1865 in three parameter regions. Adaptation proceeds by sweeps for small ©,, < 0.1,
1866 while small polygenic allele frequency shifts require large ©, 2 100. In the large
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intermediate regime, we observe a heterogeneous pattern of partial sweeps at

several interacting loci.

3.1 Author summary

It is still an open question how complex traits adapt to new selection pressures. While
population genetics champions the search for selective sweeps, quantitative genetics
proclaims adaptation via small concerted frequency shifts. To date the empirical evidence
of clear sweep signals is more scarce than expected, while subtle shifts remain notoriously
hard to detect. In the current study we develop a theoretical framework to predict the
expected adaptive architecture of a trait, depending on parameters such as mutation
rate, effective population size, size of the trait basis, and the available genetic variability
at the onset of selection. For a population in mutation-selection-drift balance we find
that adaptation proceeds via complete or partial sweeps for a large set of parameter
values. We predict adaptation by small frequency shifts for two main cases. First, for
traits with a large mutational target size and high levels of genetic redundancy among
loci, and second if the starting frequencies of mutant alleles are more homogeneous
than expected in mutation-selection-drift equilibrium, e.g. due to population structure

or balancing selection.

3.2 Introduction

Rapid phenotypic adaptation of organisms to all kinds of novel environments is ubiquitous
and has been described and studied for decades (Barton and Keightley, 2002; Messer
et al., 2016). However, while the macroscopic changes of phenotypic traits are frequently
evident, their genetic and genomic underpinnings are much more difficult to resolve. Two
independent research traditions, molecular population genetics and quantitative genetics,
have coined two opposite views of the adaptive process on the molecular level: adaptation
either by selective sweeps or by subtle allele frequency shifts (sweeps or shifts from here

on).
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On the one hand, population genetics works bottom-up from the dynamics at single
loci, without much focus on the phenotype. The implicit assumption of the sweep
scenario is that selection on the trait results in sustained directional selection also on the
level of single underlying loci. Consequently, we can observe phenotypic adaptation at
the genotypic level, where selection drives allele frequencies at one or several loci from
low values to high values. Large allele frequency changes are the hallmark of the sweep
scenario. If these frequency changes occur in a short time interval, conspicuous diversity
patterns in linked genomic regions emerge: the footprints of hard or soft selective sweeps
(Maynard-Smith and Haigh, 1974; Kaplan et al., 1989; Barton, 1998; Hermisson and
Pennings, 2017).

On the other hand, quantitative genetics envisions phenotypic adaptation top-down,
from the vantage point of the trait. At the genetic level, it is perceived as a collec-
tive phenomenon that cannot easily be broken down to the contribution of single loci.
Indeed, adaptation of a highly polygenic trait can result in a myriad of ways through
“infinitesimally” small, correlated changes at the interacting loci of its basis (e.g. Boyle
et al., 2017). Conceptually, this view rests on the infinitesimal model by Fisher (1918)
and its extensions (e.g. Barton et al., 2017). Until a decade ago, the available moderate
sample sizes for polymorphism data had strongly limited the statistical detectability of
small frequency shifts. Therefore, the detection of sweeps with clear footprints was the
major objective for many years. Since recently, however, huge sample sizes (primarily of
human data) enable powerful genome-wide association studies (GWAS) to resolve the
genomic basis of polygenic traits. Consequently, following conceptual work by Pritchard
and Di Rienzo (2010); Pritchard et al. (2010), there has been a shift in focus to the de-
tection of polygenic adaptation from subtle genomic signals (e.g. Hancock et al., 2010;
Berg and Coop, 2014; Field et al., 2016) (reviewed in Csilléry et al., 2018). Very re-
cently, however, some of the most prominent findings of polygenic adaptation in human
height have been challenged (Berg et al., 2018; Sohail et al., 2018). As it turned out,

the methods are highly sensitive to confounding effects in GWAS data due to population
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stratification.

While discussion of the empirical evidence is ongoing, the key objective for theoret-
ical population genetics is to clarify the conditions (mutation rates, selection pressures,
genetic architecture) under which each adaptive scenario, sweeps, shifts — or any inter-
mediate type — should be expected in the first place. Yet, the number of models in the
literature that allow for a comparison of alternative adaptive scenarios at all is surpris-
ingly limited (see also Stephan, 2016). Indeed, quantitative genetic studies based on
the infinitesimal model or on summaries (moments, cumulants) of the breeding values
do not resolve allele frequency changes at individual loci (e.g. Turelli and Barton, 1990,
1994; Biirger and Lynch, 1995; Biirger, 2000). In contrast, sweep models with a single
locus under selection in the tradition of Maynard-Smith and Haigh (1974), or models
based on adaptive walks or the adaptive dynamics framework (e.g. Geritz et al., 1998;
Orr, 2005; Matuszewski et al., 2015) only allow for adaptive substitutions or sweeps.
A notable exception is the pioneering study by Chevin and Hospital (2008). Following
Lande (1983), these authors model adaptation at a single major quantitative trait locus
(QTL) that interacts with an "infinitesimal background" of minor loci, which evolves
with fixed genetic variance. Subsequent models by Pavlidis et al. (2012); Wollstein and
Stephan (2014) trace the allele frequency change at a single QTL in models with 2-8
loci. Still, these articles do not discuss polygenic adaptation patterns. Most recently,
Jain and Stephan (2015, 2017) studied the adaptive process for a quantitative trait un-
der stabilizing selection with explicit genetic basis. Their analytical approach allows for
a detailed view of allele frequency changes at all loci without constraining the genetic
variance. However, the model is deterministic and thus ignores the effects of genetic
drift. Below, we study a polygenic trait that can adapt via sweeps or shifts under the ac-
tion of the evolutionary forces, mutation, selection, recombination and drift. Our model
allows for comprehensive analytical treatment, leading to a multi-locus, non-equilibrium
extension of Wright's formula (Wright, 1931) for the joint distribution of allele frequen-

cies at the end of the adaptive phase. This way, we obtain predictions concerning the
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adaptive architecture of polygenic traits and the population genetic variables that delimit
the corresponding modes of adaptation.

The article is organized as follows. The Model section motivates our modeling de-
cisions and describes the simulation method. We also give a brief intuitive account
of our analytical approach. In the Results part, we describe our findings for a haploid
trait with linkage equilibrium among loci. All our main conclusions in the Discussion
part are based on the results displayed here. Further model extensions and complica-
tions (diploids, linkage, and alternative starting conditions) are relegated to appendices.
Finally, we describe our analytical approach and derive all results in a comprehensive
Mathematical Appendix. For the ease of reading, we have tried to keep both the main

text and the Mathematical Appendix independent and largely self-contained.

3.3 Model

In the current study, we aim for a “minimal model” of a trait that allows us to clarify which
evolutionary forces favor sweeps over shifts and vice versa (as well as any intermediate
patterns). For shifts, alleles need to be able to hamper the rise of alleles at other loci
via negative epistasis for fitness, e.g. diminishing returns epistasis. Indeed, otherwise
one would only observe parallel sweeps. Negative fitness epistasis is frequently found in
empirical studies (e.g. Kryazhimskiy et al., 2014) and implicit to the Gaussian selection
scheme used by (e.g. Chevin and Hospital, 2008; Jain and Stephan, 2015, 2017). More
fundamentally, diminishing returns are a consequence of partial or complete redundancy
of genetic effects across loci or gene pathways. Adaptive phenotypes (such as pathogen
resistance or a beneficial body coloration) can often be produced in many alternative
ways, such that redundancy is a common characteristic of beneficial mutations.

As our basic model, we focus on a haploid population and study adaptation for a
polygenic, binary trait with full redundancy of effects at all loci. Any single mutation
switches the phenotype from its ancestral state (e.g. “non-resistant”) to the adaptive

state (“resistant”), further mutations have no additional effect. On the population level,
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adaptation can be produced by a single locus where the beneficial allele sweeps to fixation,
or by small frequency shifts of alleles at many different loci in different individuals — or any
combination. The symmetry among loci (no build-in advantage of any particular locus)
and complete redundancy of locus effects provides us with a trait architecture that is
most favorable for collective adaptation via small shifts — and with a modeling framework
that allows for analytical treatment. The same model has been used in a preliminary
simulation study (Hermisson and Pennings, 2017). In the context of parallel adaptation
in a spatially structured population, analogous model assumptions with redundant loci
have been used (Ralph and Coop, 2010, 2015; Paulose et al., 2018). In a second step,

we extend our basic model to relax the redundancy condition, as described below.

3.3.1 Basic model

Consider a panmictic population of N, haploids, with a binary trait Z (with phenotypic
states Z, "non-resistant” and Z; “resistant”, see Fig.3.1). The trait is governed by a
polygenic basis of L bi-allelic loci with arbitrary linkage (we treat the case of linkage
equilibrium in the main text and analyze the effects of linkage in Appendix C.1). Only the
genotype with the ancestral alleles at all loci produces phenotype 7, all other genotypes
produce 7, irrespective of the number of mutations they carry. Loci mutate at rate p;,
1 <i < L, per generation (population mutation rate at the ith locus: 2N, p; = ©;) from
the ancestral to the derived allele. We ignore back mutation. The mutant phenotype
7 is deleterious before time ¢ = 0, when the population experiences a sudden change
in the environment (e.g. arrival of a pathogen). Z; is beneficial for time ¢t > 0. The

Malthusian (logarithmic) fitness function of an individual with phenotype Z reads

sqs fort <O
W(Z) = (3.1)

SbZ for ¢ > 0.
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Without restriction, we can assume Z; = 0 and Z; = 1. Then W(Z,) = 0 and
W(Z,) = sq < 0, respectively W(Z;) = s, > 0, measure the strength of directional
selection on Z (e.g. cost and benefit of resistance) before and after the environmental
change. For the basic model, we assume that the population is in mutation-selection-drift

equilibrium at time £ = 0.

3.3.2 Model extensions

We extend the basic model in several directions. This includes linkage (Appendix C.1),
alternative starting conditions at time ¢ = 0 (Appendix C.2), diploids (Appendix C.3),
and arbitrary time-dependent selection s(t) (Mathematical Appendix D.1). Here, we
describe how we relax the assumption of complete redundancy of all loci. Diminishing
returns epistasis, e.g. due to Michaelis-Menten enzyme kinetics, will frequently not lead
to complete adaptation in a single step, but may require multiple steps before the trait
optimum is approached. In a model of incomplete redundancy, we thus assume that a
first beneficial mutation only leads to partial adaptation. We thus have three states of
the trait, the ancestral state for the genotype without mutations, Zy; = 0 (non-resistant),
a phenotype Z5; = 0 (partially resistant) for genotypes with a single mutation, and the
mutant state Z; = 1 (fully resistant) for all genotypes with at least two mutations, see
Fig.3.1(b). For diminishing returns epistasis, we require % < ¢ < 1. The fitness function

is as in Eq. (3.1).

3.3.3 Simulation model

For the models described above, we use Wright-Fisher simulations for a haploid, pan-
mictic population of size V., assuming linkage equilibrium between all L loci in discrete
time. Selection and drift are implemented by independent weighted sampling based on
the marginal fitnesses of the ancestral and mutant alleles at each locus. Due to linkage
equilibrium, the marginal fitnesses only depend on the allele frequencies. Ancestral alle-

les mutate with probability j; per generation at locus 7. We start our simulations with
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Figure 3.1: Fitness schemes. The fitness for individuals carrying 0,1, 2,3 ... mutations
(y-axis) are given for the complete redundancy (a) and relaxed redundancy (b) model of
fitness effects, respectively. Grey balls show the fitness of ancestral wild-type individuals
(without mutations). Colored balls represent individuals carrying at least one mutation,
for time points ¢t < 0 before the environmental change in blue and for ¢ > 0 in red.

a population that is monomorphic for the ancestral allele at all loci. The population
evolves for 8N, generations under mutation and deleterious selection to reach (approx-
imate) mutation-selection-drift equilibrium. Following Hermisson and Pennings (2005,
2017), we condition on adaptation from the ancestral state and discard all runs where
the deleterious mutant allele (at any locus) reaches fixation during this time. (We do
not show results for cases with very high mutation rates and weak deleterious selection
when most runs are discarded). At the time of environmental change, selection switches
from negative to positive and simulation runs are continued until a prescribed stopping
condition is reached.

We are interested in the genetic architecture of adaptation — the joint distribution
of mutant frequencies across all loci — at the end of the rapid adaptive phase. Following
Jain and Stephan (2017), we define this phase as “the time until the phenotypic mean
reaches a value close to the new optimum”. Specifically, we stop simulations when the
mean fitness W in the population has increased up to a proportion f,, of the maximal

attainable increase from the ancestral to the derived state,

= fu. (3.2)
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For the basic model with complete redundancy, this simply corresponds to a residual
proportion f,, of individuals with ancestral phenotype in the population. Extensions of
the simulation scheme to include linkage or diploid individuals are described in Appendices
C.1 and C.3.

Parameter choices: Unless explicitly stated otherwise, we simulate N, = 10000
individuals, with beneficial selection coefficients s, = 0.1 and 0.01, combined with
deleterious selection coefficients s; = —0.1 and s; = —0.001 for low and high levels of
SGV, respectively. (The corresponding Wrightian fitness values used as sampling weights
in discrete time are 1 + s, and 1 + s4.) We investigate L = 2 to 100 loci. We usually
assume equal mutation rates at all loci, p; = p and define ©; = 2N, as the locus
mutation parameter. Mutation rates are chosen such that the background mutation
rates Oy, := 2N (L — 1) (detailed below in Eq. (3.10)) takes values from 0.01 to 100.
We typically simulate 10 000 replicates per mutation rate and stop simulations when the
population has reached the new fitness optimum up to f,, = 0.05. In the model with
complete redundancy, we thus stop simulations when the frequency of individuals with

mutant phenotype Z; has increased to 95%.

3.3.4 Analytical analysis

We partition the adaptive process into two phases (see Fig. 3.2 for illustration). An initial
stochastic phase, governed by selection, drift, and mutation describes the establishment
of mutant alleles at all loci. The subsequent deterministic phase governs the further
evolution of established alleles until the end of the rapid adaptive phase as defined above.
While mutation and drift can be ignored during the deterministic phase, interaction
effects due to epistasis and linkage become important (in our model, they enter, in
particular, through the stopping condition). We give a brief overview of our analytical
approach below. A detailed account with the derivation of all results is provided in the
Mathematical Appendix.

During the stochastic phase, we model the origin and spread of mutant copies as a
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so-called Yule pure birth process following Etheridge et al. (2006) and Hermisson and
Pfaffelhuber (2008). The idea of this approach is that we only need to keep track of
mutations that found “immortal lineages”, i.e. derived alleles that still have surviving
offspring at the time of observation (see Fig.3.2 for the case of L = 2 loci). Forward
in time, new immortal lineages can be created by two types of events: new mutations
at all loci start new lineages, while birth events lead to splits of existing lineages into
two immortal lineages. For ¢ > 0 (after the environmental change), in particular, new
mutations at the ¢th locus arise at rate N.u; per generation and are destined to become
established in the population with probability ~ 2s;. Simultaneously, existing beneficial
mutant alleles at all loci spread at rate s, (due to positive selection, via birth events
exceeding death events). For the origin of new immortal lineages in the Yule process

and their subsequent splitting we thus obtain the rates

Pmuti & Nofti 255 = 0,8, 5 Deplit = Sp- (3.3)

Extended results including standing genetic variation and time-dependent fitness are
given in the Appendix. Assume now that there are currently {k;,...k.}, 0 < k; < N,
mutant lineages at the L loci. Then the probability that the next event in the Yule

process is either a birth (split) or a new mutation at locus i is
E; - Deplit + Pmut,i ki + ©;

= : (3.4)
jl/:l(k‘zj * Psplit +pmut,j) jl';l(k’j + (")])

Importantly, all these transition probabilities among states of the Yule process are con-
stant in time and independent of the mutant fitness s;, which cancels in the ratio of
the rates. As the number of lineages at all loci increases, their joint distribution (across
replicate realizations of the Yule process) approaches a limit. In particular, as shown in

the Appendix, the joint distribution of frequency ratios x; := k;/k; in the limit k; — oo
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is given by an inverted Dirichlet distribution

1 L 0.1 L _Zle i
Pinpir X|O] = 5= ;7 <1 z) 3.5
D [X’ ] B{@] '_2'%.] +§I’ ( )
j= i=
where x = (z9,...,27) and ® = (O4,...,0,) are vectors of frequency ratios and
L

- T(O;
locus mutation rates, respectively, and where B[®] = w is the generalized Beta

j=1"177

function and I'(2) is the Gamma function. Note that Eq. (3.5) depends only on the locus
mutation rates, but not on selection strength.

After the initial stochastic phase, when mutant lineages have established and evaded
stochastic loss, the dynamics can be adequately described by deterministic selection
equations. For allele frequencies p; at locus 7, assuming linkage equilibrium, we obtain

(consult the Mathematical Appendix D.1 for detailed derivations)

pi =pi(W(Z1) = W) = sppi(Z1 — 2), (3.6)

where W and Z are population mean fitness and mean trait value. For the mutant

frequency ratios x; = p;/p1, we obtain

b1

—0. (3.7)

Ty = —/ 3

d (pz) _ DiP1 — PiP1
dt J&

We thus conclude that the frequency ratios x; do not change during the deterministic
phase. In particular, this means that Eq.(3.5) still holds at our time of observation
at the end of the rapid adaptive phase. As shown in the Appendix, this is even true
with linked loci. Finally, derivation of the joint distribution of mutant frequencies p;
(instead of frequency ratios x;) at the time of observation requires a transformation of
the density. In general, this transformation depends on the stopping condition f,, and

on other factors such as linkage. Assuming linkage equilibrium among all selected loci,
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we obtain (see the Mathematical Appendix, Theorem 2, Eq. (D.20))

(5 L L L _ L ) L
H':l(l_pj)_fw O0.—1 Zi:l 9; pr
Pr.[pl®] = oo TS (om) ( ) @9
B[©] 31;[1 ’ ; ]2231 1 —p,
for p = (p1,...,pr) in the L-dimensional hypercube of allele frequencies. The delta

function dx restricts the distribution to the L — 1 dimensional manifold defined via
the stopping condition f,, = Hle(l — p;). Further expressions, also including linkage,
are given in the Mathematical Appendix and in Appendix C.1. In general, the joint
distribution corresponds to a family of generalized Dirichlet distributions depending on
the stopping condition. In the special case f,, — 0 (i.e. complete adaptation, enforcing
fixation at at least one locus), the distribution Eq. (3.8) is restricted to a boundary face
of the allele frequency hypercube and reduces to the inverted Dirichlet distribution given
above in Eq. (3.5). In the results section below, we assess our analytical approximations
for the joint distributions of adaptive alleles, Eq.(3.5) and Eq.(3.8), and discuss their

implications in the context of scenarios of polygenic adaptation, ranging from sweeps to

small frequency shifts.

L ... size of polygenic basis (no. of loci)
Sd, Sp ... selection coefficient before/after the environment changes
Di = % ... mutant allele frequency at locus i
XTi = k—l = %- ... mutant allele frequency ratio: locus i / locus 1
fuw ... frequency of ancestral phenotype
Lbi ... allelic mutation rate at locus i
O; = 2N u; ... haploid population mutation rate at locus ¢
©={06,...,0,} ... vector of all locus population mutation rates
O, ... locus pop. mut. rate, for model with equal mutation rates
Opg ... background mutation rate, Eq. (3.10)
B[®] = Zizli((gi_)) Beta function, where I'(©;) is the Gamma function
i>1 °

Table 3.1: Glossary
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Figure 3.2: Phases of polygenic adaptation. The adaptive process is partitioned into
two phases. The initial, stochastic phase describes the establishment of mutant alleles.
Ignoring epistasis during this phase, it can be described by a Yule process (panel a), with
two types of events (yellow box). Either a new mutation occurs and establishes with
rate ©; - s, or an existing mutant line splits into two daughter lines at rate s;,. Mutations
and splits can occur in parallel at all loci of the polygenic basis, (here 2 loci, shown
in green and blue). Yellow and red stars at the blue locus indicate establishment of
two recurrent mutations at this locus. When mutants have grown to larger frequencies,
the adaptive process enters its second, deterministic phase, where drift can be ignored
(panel b). During the deterministic phase, the trajectories of mutations at different loci
constrain each other due to epistasis. We refer to the locus ending up at the highest
frequency as the major locus (here in blue) and to all others as minor loci (here one in
green).
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3.4 Results

While the joint distribution of allele frequencies provides comprehensive information of
the adaptive architecture, low-dimensional summary statistics of this distribution are
needed to describe and classify distinct types of polygenic adaptation. To this end, we
order loci according to their contribution to the adaptive response. In particular, we call
the locus with the largest allele frequency at the stopping condition the major locus and
all other loci minor loci. Minor loci are further ordered according to their frequency (first
minor, second minor, etc.). The marginal distributions of the major locus or kth minor
locus are 1-dim summaries of the joint distribution. Importantly, these summaries are
still collective because the role of any specific locus (its order) is defined through the
allele frequency changes at all loci. This is different for the marginal distribution at a
fixed focal locus, which is chosen irrespective of its role in the adaptive process, (e.g.
Chevin and Hospital, 2008; Pavlidis et al., 2012; Wollstein and Stephan, 2014).

Concerning our nomenclature, note, that the major and minor loci do not differ in
their effect size, as they are completely redundant. Still, the major locus is the one
with the largest contribution to the adaptive response and would yield the strongest
association in a GWAS case-control study.

In the following, we analyze adaptive trait architectures in three steps. In Sec-
tion 3.4.1 we use the expected allele frequency ratio of minor and major loci as a one-
dimensional summary statistic. Subsequently, in Section 3.4.2, we analyze the marginal
distributions of major and minor loci for a fully redundant trait with 2 to 100 loci. Fi-
nally, in Section 3.4.3 we investigate the robustness of our results under conditions of
relaxed redundancy. Further results devoted to diploids, linkage, and alternative starting

conditions are provided in the Appendices.
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3.4.1 Expected allele frequency ratio

For our biological question concerning the type of polygenic adaptation, the ratio of
allele frequency changes of minor over major loci is particularly useful. With “sweeps at
few loci”, we expect large differences among loci, resulting in ratios that deviate strongly
from 1. In contrast, with “subtle shifts at many loci”, allele frequency shifts across loci
should be similar, and ratios should range close to 1. Our theory (explained above)
predicts that these ratios are the outcome of the stochastic phase, yet their distribution
is preserved during the deterministic phase. They are thus independent of the precise
time of observation. For our results in this section, we assume that the mutation rate
at all L loci is equal, ©; = 0, for all 1 < ¢ < L. This corresponds to the symmetric
case that is most favorable for a “small shift” scenario.

Consider first the case of L = 2 loci. There is then a single allele frequency ratio
“minor over major locus”, which we denote by x. For two loci, the joint distribution of
frequency ratios from Eq. (3.5) reduces to a beta-prime distribution. Conditioning on
the case that the first locus is the major locus (probability 1/2 for the symmetric model),

we obtain for 0 < z < 1,

Pylrl0)] = (QFF((;?)) (1 1 7)), (3.9)

Fig. 3.3 compares the expectation of this analytical prediction with simulation results
for a range of parameters for the strength of beneficial selection s, and for the level
of standing genetic variation (implicitly given by the strength of deleterious selection
sq before the environmental change). There are two main observations. First, the
simulation results demonstrate the importance of the scaled mutation rate ©,, = O, (for
two loci). Low O, leads to sweep-like adaptation (heterogeneous adaptation response
among loci, E[z] << 1), whereas high ©,, leads to shift-like adaptation (homogeneous
response, E[x] near 1). Second, the panels show that the selection intensity given

by sq; and s; has virtually no effect. Both results are predicted by the analytical theory
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(Eq. (3.9)). In Appendix C.1, we further show that these results hold for arbitrary degrees
of linkage (including complete linkage), see Fig. C.1.

For more than two loci, L > 2, one-dimensional marginal distributions of the joint
distribution, Eq.(3.5), generally require (L — 1)-fold integration, which can be com-
plicated. However, it turns out that the key phenomena to characterize the adaptive
architecture can still be captured by the 2-locus formalism, with appropriate rescaling
of the mutation rate. For the general L-locus model, we broaden our definition of the
summary statistic = above to describe the allele frequency ratio of the first minor locus
and the major locus. To relate the distribution of x in the L-locus model to the one in
the 2-locus model, we reason as follows: For small locus mutation rates ©;, the order of
the loci is largely determined by the order at which mutations establish at these loci. I.e.,
the locus where the first mutation establishes ends up as the major locus and the first
minor locus is usually the second locus where a mutation establishes. The distribution of
the allele frequency ratio x is primarily determined by the distribution of the waiting time
for this second mutation after establishment of the first mutation at the major locus. In
the 2-locus model, this time will be exponentially distributed, with parameter 1/0;. In
the L-locus model, however, where L — 1 loci with total mutation rate ©;(L — 1) com-
pete for being the “first minor”, the parameter for the waiting-time distribution reduces
to 1/(6;(L —1)). We thus see from this argument that the decisive parameter is the

cumulative background mutation rate

Oy, = (L — 1)@, (3.10)

at all minor loci in the background of the major locus. In Fig. 3.3 (orange dots) we show
simulations of a L = 10 locus model with an appropriately rescaled locus mutation rate
©; — ©,/9, such that the background rate Oy, is the same as for the 2-locus model.
We see that the analytical prediction based on the 2-locus model provides a good fit for

the 10-locus model. A more detailed discussion of this type of approximation is given in
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Figure 3.3: Effect of selection strength and SGV on the frequency ratio E[z]. We
contrast the expected allele frequency ratios of the first minor locus (with the second
largest frequency) over the major locus (with the largest frequency) for 2 loci (blue
dots) and for 10 loci (orange dots) with analytical predictions (Appendix, Eq.D.16,
black curve). E[z] is shown as a function of Oy, (= ©; for the 2-locus case). Panels
correspond to different strengths of positive selection (s;, rows) and levels of SGV (no
SGV, strongly deleterious s; = 0.1, weakly deleterious s; = 0.001, columns). We find
that neither factor alters the expected ratio. We do not obtain results for all parameters,
as we condition on adaptation from ancestral alleles, such that simulation runs are
discarded if sampling conditions are met before the environmental change. Results for
10000 replicates, standard errors < 0.005 (smaller than symbols).

3.4.2 Genomic architecture of polygenic adaptation

While the distribution of allele frequency ratios, Egs. (3.5) and (3.9), offers a coarse (but
robust) descriptor of the adaptive scenario, the joint distribution of allele frequencies at
the end of the adaptive phase, Eq.(3.8), allows for a more refined view. In contrast to
the distribution of ratios, the results now depend explicitly on the stopping condition

(the time of observation) and on linkage among loci. We assume linkage equilibrium in
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this section and assess the mutant allele frequencies when the frequency of the remaining
wild-type individuals in the population is f,, (= 0.05 in our figures).

Fig. 3.4 displays the main result of this section. It shows the marginal distributions
of all loci, ordered according to their allele frequency at the time of observation (major
locus, 1st, 2nd, 3rd minor locus, etc.) for traits with L = 2, 10, 50, and 100 loci. Panels
in the same row correspond to equal background mutation rates ©, = (L — 1)©;, but
note that the locus mutation rates ©; are not equal. The figure reveals a striking level
of uniformity of adaptive architectures with the same ©,,, but vastly different number
of loci. For ©,, < 1 (the first three rows), the marginal distributions for loci of the same
order (same color in the Figure) across traits with different L is almost invariant. For
large Oy, they converge for sufficiently large L (e.g. for ©,, = 10, going from L = 10
to L = 50 and to L = 100). In particular, the background mutation rate ©,, determines
the shape of the major-locus distribution (red in the Figure) for large p — 1— f,, = 0.95
(the maximum possible frequency, given the stopping condition). For ©,, < 1, this
distribution is sharply peaked with a singularity at p = 1 — f,,, whereas it drops to zero
for large p if ©,, > 1 (see also the analytical results below).

As predicted by the theory, Eq.(3.8) and below, simulations (not shown) confirm
that selection parameters do not affect the adaptive architecture. As discussed in Ap-
pendix C.1, sufficiently tight linkage does change the shape of the distributions. Impor-
tantly, however, it does not affect the role of ©;, in determining the singularity of the
major-locus distribution. This confirms the key role of the background mutation rate
as a single parameter to determine the adaptive scenario in our model. While ©;, =1
separates architectures that are dominated by a single major locus (0, < 1) from col-
lective scenarios (with Opg > 1), the classical sweep or shift scenarios are only obtained

if ©y, deviates strongly from 1. We therefore distinguish three adaptive scenarios.

e Oy, < 0.1, single completed sweeps.  For ©,, < 1 (first two rows of Fig.3.4),
the distribution of the major locus is concentrated at the maximum of its range,

while all other distributions are concentrated around 0. Adaptation thus occurs at
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a single locus, via a selective sweep from low to high mutant frequency. Contribu-
tions by further loci are rare. If they occur at all they are usually due to a single

runner-up locus (the largest minor locus).

e 0.1 < Oy, < 100, heterogeneous partial sweeps. ~ With intermediate background
mutation rates (third and forth row of Fig. 3.4), we still observe a strong asymmetry
in the frequency spectrum. Even for values of Oy, slightly larger than 1, there is
a clear major locus discernible, with most of its distribution for p > 0.5. However,
there is also a significant contribution of several minor loci that rise to intermediate
frequencies. We thus obtain a heterogeneous pattern of partial sweeps at a limited

number of loci.

e O, 2 100, homogeneous frequency shifts. ~ Only for high background mutations
rates Oy, > 1 (last row of Fig. 3.4 with ©,, = 100), the heterogeneity in the locus
contributions to the adaptive response vanishes. There is then no dominating major
locus. For only 2 loci, these shifts are necessarily still quite large, but for traits
with a large genetic basis (large L; the only realistic case for high values of ©,),

adaptation occurs via subtle frequency shifts at many loci.

Analytical predictions

To gain deeper understanding of the polygenic architecture — and for quantitative pre-
dictions — we dissect our analytical result for the joint frequency spectrum in Eq. (3.8).
We start with the case of L = 2 loci, allowing for different locus mutation rates ©; and

©3. The marginal distribution at the first locus reads (from Eq. (3.8), after integration

over ps),

PN = )% (L) ( _ Jull=2p)

D1
P, [p1]©1,0,] = B[©1,0;] (1 — pi — f,,)®17®2 (=)’ ) ., (3.11)

for 0 < p; < 1— f, (see also Appendix C.4.1). The distribution has a singularity at

p1 = 0 if the corresponding locus mutation rate is smaller than one, ©; < 1. It has a
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singularity at p; = 1 — f,, if the corresponding background mutation rate (which is just
the mutation rate at the other locus for L = 2) is smaller than one, ©5 < 1. The marginal
distributions at the major locus, P;; [p|©1, O], and the minor locus, P [p|©;, 4], follow

from Eq. (3.11) as
P/ [p|©1, ©2] = Py, [p|O1, ©2] + Py, [p|O2, ©1], (3.12)

where P [p|©1, ©,] is defined for 1 — \/f, <p <1 — f, and P}, [p|©1, O] is defined
for 0 < p < 1—+/f,. The sum in Eq.(3.12) accounts for the alternative events
that either the first locus or the second may end up as the major (or minor) locus.
Consequently, P, [p|O1, ©,] has a singularity at p = 0 if the minimal locus mutation
rate ©; = min[©1, O3] < 1. Analogously, P;; [p|©1, O3] has a singularity at p = 1 — f,,
if the minimal background mutation rate ©,, = min[©, 0] < 1. The left column of
Fig. 3.4 shows the distributions at the major and minor locus for L = 2 in the symmetric
case ©; = Oy = O; = Oy, and f,, = 0.05. Simulations for a population of size
N, = 10000 and analytical predictions match well.

How do these results generalize for L > 2?7 We again allow for unequal locus
mutation rates O;. It is easy to see from Eq. (3.8) that the marginal distribution at the
i1th locus has a singularity at p; = 0 for ©; < 1. In the Mathematical Appendix D.3,
we further show that it has a second singularity at p; = 1 — f,, if the corresponding
background mutation rate Z?# ©; is smaller than 1. As a first step, we split the
joint distribution, Eq.(3.8), into the marginal distribution at the major locus P} [p|©)]
(defined for 1 — {/f, < p <1— f,) and a cumulative distribution at all other (minor)
loci, P [p|©®] (defined for 0 <p <1 - V/fw)- Since any locus can end up as the major

locus (with probability > 0), P} [p|©] has a singularity at p = 1 — f,, for

L

O, = min {Z@j —@i] <1 (3.13)

1<i<L

IN

J=1

This equation generalizes the definition of the background mutation rate, Eq. (3.10), to
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the case of unequal locus mutation rates. Similarly, P, [p|®] has a singularity at p =0
if
= min [0,] < 1. (3.14)

1<i<L

As long as ©,, < 1, we can approximate both the major-locus distribution P} [p|@©]
and the cumulative minor locus distribution P, [p|®] for arbitrary L by formulas for a
2-locus model with locus mutation rates matching ©; and ©;, of the multi-locus model,
Eq.(3.12). Similarly, we can use results from a k-locus model to match the marginal
distributions of the largest k loci (i.e., up to the (k — 1)th minor) in models with L > k
loci, upon rescaling of the mutation rates. As explained for the ratio of the first minor
and major locus in the previous section, rescaling rules match the expected waiting time
for establishment of a mutation at the kth locus after establishment of a first mutation.
Details are given in the Appendix C.4. In Fig.3.4, we use formulas derived from a k-
locus model (k < 4) to approximate the (k — 1)st minor locus distribution of models
with L = 10;50;100 loci and ©,, < 1. These approximations work well as long as
these leading loci dominate the adaptive architecture of the trait, which is the case for

Oy, < 1.

3.4.3 Relaxing complete redundancy

To complete our picture of adaptive architectures, we investigate the robustness of our
model assumption against relaxation of redundancy. As explained above (Model exten-
sions and Fig.3.1), we implement diminishing returns epistasis, such that an individual
with a single mutation has fitness ds;/4, while individuals carrying more than one muta-
tion have fitness s,/4. With small deviations from complete redundancy (e.g. J = 0.9,
stopping at 5% ancestral phenotypes, data not shown) we obtain basically no differences
in the genomic patterns of adaptation. With larger deviations (e.g. ¢ = 0.5) quantitative
differences appear. However, the qualitative picture concerning the scenario of polygenic
adaptation remains the same.

Fig. 3.5 shows the marginal frequency distributions of major and minor loci for a

119



2300

2301

2302

2 loci 10 loci 50 loci 100 loci

Complete selective sw

0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 06 0.8 10 00 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 06 0.8 1.0

Several partial and complete selective sweeps: :

Frequency shifts:

25 25 25 I 25

20 @bg = 100 20 ._'::”. 20| -:' 20

st St % Al e e,
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0

x-axis: allele frequency

Figure 3.4: Genomic architecture of polygenic adaptation. We distinguish three
patterns of architectures with increasing genomic background mutation rate ©;,: com-
plete sweeps, for ©,, < 0.1, heterogeneous partial sweeps at several loci for 0.1 <
Oy < 100, and polygenic frequency shifts for ©,, 2 100. The plots show the marginal
distributions of all loci, ordered according to their allele frequency, i.e. the major locus
in red and all following (first, second, third, etc. minors) in blue to yellow. Lines in
respective colors show analytical predictions, Appendix C.4. Simulations were stopped
once the populations have adapted to 95% of the maximum mean fitness in each of
10000 replicates, resulting in an the upper bound for the major locus distribution at,
p1 = 0.95. Simulations for s, = —s; = 0.1. Note the different scaling of the y-axis for
different mutation rates.

trait with relaxed redundancy with § = 0.5 that is sampled when the population has
accomplished 95% of the fitness increase on its way to the new optimum, Eg. (3.2).

Given the fitness function, this is not possible with adaptation at only a single locus.
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At least two loci are needed. The Figure compares the simulation data for the relaxed
redundancy model (colored dots) and the full redundancy model (dots in back and
gray). As in Fig.3.4, traits in the same row have the same background mutation rate
©yy. However, the background rate for the model with relaxed redundancy is redefined
as

O = (L — 2)0, (3.15)

bg

where O, is the locus mutation rate (equal at all loci). We thus define the background
rate, more precisely, as the combined population-scaled mutation rate of all loci that are
not essential to accomplish adaptation of the phenotype and, thus, are truly redundant.
With this choice, the adaptive architecture of the relaxed redundancy model reproduces
the one of the model with full redundancy — up to a shift in the number of the loci due
to an extra locus that is needed for adaptation with relaxed redundancy. The Figure
captures this by comparing traits with relaxed redundancy with L = 3,4, 11, and 101
loci to fully redundant traits with one fewer locus. The inset figures in the column for
L = 4 loci show the same scenario, but with an averaged marginal distribution for the

two largest loci with relaxed redundancy (in green).

e For mutation rates, ©,, < 1, we still find adaptation by sweeps. Relative to the full
redundancy model, we now observe two “major” sweep loci instead of only a single
sweep. The inset (for L = 4) shows that their averaged distributions matches the
major locus distribution of the full redundancy model. The distribution at the
third largest locus (the “first minor” locus with relaxed redundancy) resembles the

corresponding distribution of the first minor locus of the trait with full redundancy.

e For intermediate mutation rates, 0.1 < ©,, < 100, the pattern is dominated by
partial sweeps. We clearly see the similarity in the marginal distributions of the
kth largest locus with full redundancy and the k + 1st largest locus of the relaxed
redundancy trait. For the two major loci with relaxed redundancy, we again see

(inset) that the averaged distribution matches the major-locus distribution of the
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full redundancy model.

e Finally, for strong mutation, ©,, 2 100, adaptation again occurs by small fre-

Y

quency shifts at many loci.

In summary, our results show that relaxing redundancy leads to qualitatively similar
results, but with a reduced “effective” background mutation rate that only accounts for

“truly redundant" loci.

3.5 Discussion

Traits with a polygenic basis can adapt in different ways. Few or many loci can contribute
to the adaptive response. The changes in the allele frequencies at these loci can be large
or small. They can be homogeneous or heterogeneous. While molecular population
genetics posits large frequency changes — selective sweeps — at few loci, quantitative
genetics views polygenic adaptation as a collective response, with small, homogeneous
allele frequency shifts at many loci. Here, we have explored the conditions under which
each adaptive scenario should be expected, analyzing a polygenic trait with redundancy
among loci that allows for a full range of adaptive architectures: from sweeps to subtle

frequency shifts.

3.5.1 Polygenic architectures of adaptation

For any polygenic trait, the multitude of possible adaptive architectures is fully captured
by the joint distribution of mutant alleles across the loci in its basis. Different adaptive
scenarios (such as sweeps or shifts) correspond to characteristic differences in the shape
of this distribution, at the end of the adaptive phase. For a single locus, the stationary
distribution under mutation, selection and drift can be derived from diffusion theory
and has been known since the early days of population genetics (Wright, 1931). For
multiple interacting loci, however, this is usually not possible. To address this problem

for our model, we dissect the adaptive process into two phases. The early stochastic
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Figure 3.5: Relaxed redundancy. Relaxing redundancy such that a single mutant
has fitness 1 + 0.5s,/4 and only two mutations or more confer the full fitness effect
(1 + sp/4) demonstrates the robustness of our model. As in Fig.3.4, allele frequency
distributions of derived alleles are displayed once the population has reached 95% of
maximum attainable mean population fitness. Genomic patterns of adaptation show
similar characteristics as with complete redundancy. Due to relaxed redundancy, an
additional "major locus" is required to reach the adaptive optimum. As explained in the
main text, the distribution of the kth largest locus with complete redundancy therefore
corresponds to the distribution of the & + 1st largest locus with relaxed redundancy.
Insets in the second column show the same data with the distributions of the two major
loci for relaxed redundancy combined (in green).
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phase describes the establishment of all mutants that contribute to the adaptive response
under the influence of mutation and drift. We use that loci can be treated as independent
during this phase to derive a joint distribution for ratios of allele frequencies at different
loci, Eq.(3.5). During the second, deterministic phase, epistasis and linkage become
noticeable, but mutation and drift can be ignored. Allele frequency changes during this
phase can be described as a density transformation of the joint distribution. For the
simple model with fully redundant loci, and assuming either LE or complete linkage,
this transformation can be worked out explicitly. Our main result Eq.(3.8) can thus
be understood as a multi-locus extension of Wright's stationary distribution. For a
neutral locus with multiple alleles, Wright's distribution is a Dirichlet distribution, which
is reproduced in our model for the case of complete linkage, see Appendix C.1. For the
opposite case of linkage equilibrium, we obtain a family of inverted Dirichlet distributions,
depending on the stopping condition — our time of observation.

Note that the distribution of adaptive architectures is not a stationary distribution,
but necessarily transient. It describes the pattern of mutant alleles at the end of the
“rapid adaptive phase” (Jain and Stephan, 2015, 2017), because this is the time scale
that the opposite narratives of population genetics and quantitative genetics refer to. In
particular, the quantitative genetic “small shifts” view of adaptation does not talk about
a stationary distribution: it does not imply that alleles will never fix over much longer
time scales, due to drift and weak selection. On a technical level, the transient nature
of our result means that it reflects the effects of genetic drift only during the early phase
of adaptation. These early effects are crucial because they are magnified by the action
of positive selection. In contrast, our result ignores drift after phenotypic adaptation has
been accomplished — which is also a reason why it can be derived at all.

To capture the key characteristics of the adaptive architecture, we dissect the joint
distribution in Eq.(3.8) into marginal distributions of single loci. As explained at the
start of the results section, these loci do not refer to a fixed genome position, but

are defined a posteriori via their role in the adaptive process. For example, the major

124



2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

locus is defined as the locus with the largest mutant allele frequency at the end of
the adaptive phase. (Since all loci have equal effects in our model, this is also the
locus with the largest contribution to the adaptive response.) This is a different way
to summarize the joint distribution than used in some of the previous literature (Chevin
and Hospital, 2008; Pavlidis et al., 2012; Wollstein and Stephan, 2014), which rely on a
gene-centered view to study the pattern at a focal locus, irrespective of its role in trait
adaptation. In contrast, we use a trait-centered view, which is better suited to describe
and distinguish adaptive scenarios. For example, “adaptation by sweeps” refers to a
scenario where sweeps happen at some loci, rather than at a specific locus. This point
is further discussed in Appendix C.4.1, where we also display marginal distributions of

Eq. (3.8) for fixed loci.

The role of the background mutation rate

Our results show that the qualitative pattern of polygenic adaptation is predicted by a
single compound parameter: the background mutation rate ©y, (see Egs. (3.10), (3.13),
(3.15)), i.e. the population mutation rate for the background of a focal locus within the
trait basis. For a large basis, Oy, is closely related to the trait mutation rate. We can
understand the key role of this parameter as follows. As detailed in the Section 3.3.4,
the early stochastic phase of adaptation is governed by two processes: New successful
mutations (destined for establishment) enter the population at rate ©,s; per locus (where
©; is the locus mutation rate and s, the selection coefficient), while existing mutants
spread with an exponential rate s,. Consider the locus that carries the first successful
mutant. For ©,, < 1, the expected spread from this first mutant exceeds the creation
of new mutant lineages at all other loci. Therefore, the locus will likely maintain its
lead, with an exponentially growing gap to the second largest locus. Vice versa, for
©pg > 1, most likely one of the competing loci will catch up. We can thus think of
©Opy as a measure of competition experienced by the major locus due to adaptation

at redundant loci in its genetic background. The argument does not depend on the
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strength of selection, which affects both rates in the same way. The same can be shown
for adaptation from standing genetic variation at mutation-selection-drift balance. As
a consequence of low mutant frequencies during the stochastic phase, the result is also
independent of interaction effects due to epistasis or linkage.

Since the order of loci is not affected by the deterministic phase of the adaptive
process, O, maintains its key role for the adaptive architecture. In the joint frequency
distribution, Eq.(3.5) and Eq.(3.8), it governs the singular behavior of the marginal
distribution at the major locus. For ©,, < 1, this distribution has a singularity at the
maximum of its range. Adaptation is therefore dominated by the major locus, leading
to heterogeneous architectures. For ©,, < 0.1, adaptation occurs almost always due
to a completed sweep at this locus. For ©,, > 1, in contrast, no single dominating
locus exists: adaptation is collective and supported by multiple loci. For a polygenic
trait with ©;, 2 100, we obtain homogeneous small shifts at many loci, as predicted by
quantitative genetics.

The result also shows that the adaptive scenario does not depend directly on the
number of loci in the genetic basis of the trait, but rather on their combined mutation rate
(the mutational target size, sensu Pritchard et al., 2010). For redundant loci and fixed
Oy, the predicted architecture at the loci with the largest contribution to the adaptive
response is almost independent of the number of loci, see Fig.3.4. Qualitatively, the
same still holds true when the assumption of complete redundancy is dropped (Fig. 3.5).
In this case, only loci in the genetic background that are not required to reach the new
trait optimum, but offer redundant routes for adaptation, are included in ©;,. Note that
the same reasoning holds for a quantitative trait that is composed of several modules
of mutually redundant genes, but where interactions among genes in different modules
can be ignored. In this case, the adaptive architecture for each module depends only on
the module-specific ©,,, but not on the mutation rates at genes in the basis of the trait

outside of the module.
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Polygenic adaptation and soft sweeps

In our analysis of polygenic adaptation, we have not studied the probability that adapta-
tion at single loci could involve more than a single mutational origin and thus produces
a so-called soft selective sweep from recurrent mutation. As explained in Pennings and
Hermisson (2006); Hermisson and Pennings (2017), however, the answer is simple and
only depends on the locus mutation rate — independently of adaptation at other loci.
Soft sweeps become relevant for ©; = 0.1. For much larger values ©; > 1, they become
“super-soft” in the sense that single sweep haplotypes do not reach high frequencies be-
cause there are so many independent origins of the mutant allele. The role of O, for
polygenic adaptation is essentially parallel to the one of O; for soft sweeps. In both cases,
the population mutation rate is the only relevant parameter, with a lower threshold of
© ~ 0.1 for a signal involving multiple alleles and much higher values for a “super-soft”
scenario with only subtle frequency shifts. Nevertheless, the mathematical methods to
analyze both cases are different, essentially because the polygenic scenario does not lend

itself to a coalescent approach.

3.5.2 Alternative approaches to polygenic adaptation

The theme of “competition of a single locus with its background” relates to previous
findings by Chevin and Hospital (2008) in one of the first studies to address polygenic
footprints. These authors rely on a deterministic model to describe the adaptive trajec-
tory at a single target QTL in the presence of background variation. The background is
modeled as a normal distribution with a mean that can respond to selection, but with
constant variance. Obviously, a drift-related parameter, such as ©,4, has no place in
such a framework. Still, there are several correspondences to our result on a qualitative
level. Specifically, a sweep at the focal locus is prohibited under two conditions. First,
the background variation (generated by recurrent mutation in our model, constant in
Chevin and Hospital, 2008) is large. Second, the fitness function must exhibit strong

negative epistasis that allows for alternative ways to reach the trait optimum — and thus
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produces redundancy (Gaussian stabilizing selection in Chevin and Hospital, 2008). Fi-
nally, while the adaptive trajectory depends on the shape of the fitness function, Chevin
and Hospital note that it does not depend on the strength of selection on the trait, as
also found for our model.

A major difference of the approach used in Chevin and Hospital (2008) is the gene-
centered view that is applied there. Consider a scenario where the genetic background
“wins” against the focal QTL and precludes it from sweeping. For a generic poly-
genic trait (and for our model) this still leaves the possibility of a sweep at one of the
background loci. However, this is not possible in Chevin and Hospital (2008), where
all background loci are summarized as a sea of small-effect loci with constant genetic
variance.

This constraint is avoided in the approach by de Vladar and Barton (2014) and Jain
and Stephan (2017), who study an additive quantitative trait under stabilizing selection
with binary loci (see also Jain and Devi, 2018, for an extension to adaptation to a
moving optimum). These models allow for different locus effects, but ignore genetic
drift. Before the environmental change, all allele frequencies are assumed to be in
mutation-selection balance, with equilibrium values derived in de Vladar and Barton
(2014). At the environmental change, the trait optimum jumps to a new value and
alleles at all loci respond by large or small changes in the allele frequencies. Overall,
de Vladar and Barton (2014) and Jain and Stephan (2017) predict adaptation by small
frequency shifts in large parts of the biological parameter space. In particular, sweeps are
prevented in these models if most loci have a small effect and are therefore under weak
selection prior to to the environmental change. This contrasts to our model, where the
predicted architecture of adaptation is independent of the selection strength. The reason
for this difference is that effects of drift on the starting allele frequencies are neglected
in the deterministic models. Indeed, loci under weak selection start out from frequency
xo = 0.5 (de Vladar and Barton, 2014). In finite populations, however, almost all of these

alleles start from very low (or very high) frequencies — unless the population mutation
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parameter is large (many alleles at intermediate frequencies at competing background
loci are expected only if ©,, > 1, in accordance with our criterion for shifts). To
test this further, we have analyzed our model for the case of starting allele frequencies
set to the deterministic values of mutation-selection balance, 1i/s4. Indeed, we observe
adaptation due to small frequency shifts in a much larger parameter range (Appendix
C.2).

Generally, adaptation by sweeps in a polygenic model requires a mechanism to cre-
ate heterogeneity among loci. This mechanism is entirely different in both modeling
frameworks. While heterogeneity is (only) produced by unequal locus effects for the
deterministic quantitative trait, it is (solely) due to genetic drift for the redundant trait
model. Since both approaches ignore one of these factors, both results should rather
underestimate the prevalence of sweeps.

Both drift and unequal locus effects are included in the simulation studies by Pavlidis
et al. (2012) and Wollstein and Stephan (2014). These authors assess patterns of
adaptation for a quantitative trait under stabilizing selection with up to eight diploid
loci. However, due to differences in concepts and definitions there are few comparable
results. In contrast to Jain and Stephan (2017) and to our approach, they study long-
term adaptation (they simulate N, generations). In Pavlidis et al. (2012); Wollstein
and Stephan (2014), sweeps are defined as fixation of the mutant allele at a focal
locus, whereas frequency shifts correspond to long-term stable polymorphic equilibria
(Wollstein and Stephan, 2014). With this definition, a shift scenario is no longer a
transient pattern, but depends entirely on the existence (and range of attraction) of
polymorphic equilibria. A polymorphic outcome is likely for a two-locus model with full
symmetry, where the double heterozygote has the highest fitness. For more than two
loci, the probability of shifts decreases (because polymorphic equilibria become less likely,
see Birger and Gimelfarb, 1999). However, also the probability of a sweep decreases.
This is largely due to the gene-centered view in Pavlidis et al. (2012), where potential

sweeps at background loci are not recorded (see also Appendix C.4.1).
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3.5.3 Scope of the model and the analytical approach

We have described scenarios of adaptation for a simple model of a polygenic trait. This
model allows for an arbitrary number of loci with variable mutation rates, haploids and
diploids, linkage, time-dependent selection, new mutations and standing genetic varia-
tion, and alternative starting conditions for the mutant alleles. Its genetic architecture,
however, is strongly restricted by our assumption of (full or relaxed) redundancy among
loci. In the haploid, fully redundant version, the phenotype is binary and only allows for
two states, ancestral wild-type and mutant. Biologically, this may be thought of as a
simple model for traits like pathogen or antibiotic resistance, body color, or the ability
to use a certain substrate (Coffman et al., 2005; Novembre and Han, 2012).

Our main motivation, however, has been to construct a minimal model with a poly-
genic architecture that allows for both sweep and shifts scenarios — and for comprehensive
analytical treatment. One may wonder how our methods and results generalize if we
move beyond our model assumptions.

Key to our analytical method is the dissection of the adaptive process into a stochastic
phase that explains the origin and establishment of beneficial variants and a deterministic
phase that describes the allele frequency changes of the established mutant copies. This
framework can be applied to a much broader class of models. Indeed, in many cases,
the fate of beneficial alleles, establishment or loss, is decided while these alleles are
rare. Excluding complex scenarios such as passage through a fitness valley, the initial
stochastic phase is relatively insensitive to interactions via epistasis or linkage. We
can therefore describe the dynamics of traits with a different architecture (e.g. an
additive quantitative trait with equal-effect loci under stabilizing selection) within the
same framework by coupling the same stochastic dynamics to a different set of differential
equations describing the dynamics during the deterministic phase.

This is important because, as described above, the key qualitative results to distin-
guish broad categories of adaptive scenarios are due to the initial stochastic phase. This

holds true, in particular, for the role of the background mutation rate ©,,. We therefore
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expect that these results generalize beyond our basic model. Indeed, we have already
seen this for our model extensions to include diploids, linkage, and relaxed redundancy.
Vice-versa, we have seen that other factors, such as alternative starting conditions for
the mutant alleles, directly affect the early stochastic phase and lead to larger changes in
the results. As shown in Appendix C.2, however, they can be captured by an appropriate
extension of the stochastic Yule process framework.

Several factors of biological importance are not covered by our current approach.
Most importantly, this includes loci with different effect sizes and spatial population
structure. Both require a further extension of our framework for the early stochastic
phase of adaptation. While variable locus effects (both directly on the trait or on fitness
due to pleiotropy) are expected to enhance the heterogeneity in the adaptive response

among loci, the opposite is true for spatial structure, as further discussed below.

3.5.4 When to expect sweeps or shifts

Although our assumptions on the genetic architecture of the trait (complete redundancy
and equal loci) are favorable for a collective, shift-type adaptation scenario, we observe
large changes in mutant allele frequencies (completed or partial sweeps) for major parts
of the parameter range. A homogeneous pattern of subtle frequency shifts at many loci
is only observed for large mutation rates. This contrasts with experience gained from
breeding and modern findings from genome-wide association studies, which are strongly
suggestive of an important role for small shifts with contributions from very many loci
(reviewed in Falconer et al., 1996; Barton and Keightley, 2002; Hill, 2014; Visscher
et al., 2017; Csilléry et al., 2018) (see Hancock et al., 2010; Laporte et al., 2016; Zan
and Carlborg, 2018, for recent empirical examples). For traits such as human height,
there has even been a case made for omnigenic adaptation (Boyle et al., 2017), setting
up a “mechanistic narrative” for Fisher's (conceptual) infinitesimal model. Clearly, body
height may be an extreme case and the adaptive scenario will strongly depend on the

type of trait under consideration. Still, the question arises whether and how wide-spread
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shift-type adaptation can be reconciled with our predictions. We will first discuss this
question within the scope of our model and then turn to factors beyond our model

assumptions.

The size of the background mutation rate

The decisive parameter to predict the adaptive scenario in our model, the background
mutation rate, is not easily amenable to measurement. ©,, = (L — 1)©; compounds
two factors, the locus mutation parameter ©; and the number of loci L, which are both
complex themselves and require interpretation. To assess the plausibility of values of the
order of ©, 2 100, required for homogeneous polygenic shifts in our model, we consider
both factors separately.

Large locus mutation rates ©; = 4N, (for diploids, 2N, u for haploids) are possible
if either the allelic mutation rate p or the effective population size NN, is large. Both
cases are discussed in detail (for the case of soft sweeps) in Hermisson and Pennings
(2017). Basically, i can be large if the mutational target at the locus is large. Examples
are loss-of-function mutations or cis-regulatory mutations. NN, is the short-term effective
population size (Pennings and Hermisson, 2006; Karasov et al., 2010; Barton, 2010)
during the stochastic phase of adaptation. This short-term size is unaffected by demo-
graphic events, such as bottlenecks, prior to adaptation and is therefore often larger than
the long-term effective size that is estimated from nucleotide diversity. (Strong changes
in population size during the adaptive period can have more subtle effects (Wilson et al.,
2014).) For recent adaptations due to gain-of-function mutations, plausible values are
©; < 0.1 for Drosophila and ©; < 0.01 for humans (Hermisson and Pennings, 2017).

If 10000 loci or more contribute to the basis of a polygenic trait (Boyle et al., 2017),
large values of Oy, could, in principle, easily be obtained. However, the parameter L in
our model counts only loci that actually can respond to the selection pressure: mutant
alleles must change the trait in the right direction and should not be constrained by

pleiotropic effects. Omnigenic genetics, in particular, also implies ubiquitous pleiotropy
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and so the size of the basis that is potentially available for adaptation is probably strongly
restricted. For a given trait, the number of available loci L. may well differ, depending on
the selection pressure and pleiotropic constraints. Furthermore, our results for the model
with relaxed redundancy show that O, only accounts for loci that are truly redundant
and offer alternative routes to the optimal phenotype. With this in mind, values of L in
the hundreds or thousands (required for ©,, > 100) seem to be quite large. While some
highly polygenic traits such as body size could still fulfill this condition, this appears

questionable for the generic case.

Balancing selection and spatial structure

In our model, characteristic patterns in the adaptive architecture result from hetero-
geneities among loci that are created by mutation and drift during the initial stochastic
phase of adaptation. As initial condition, we have mostly assumed that mutant alleles
segregate in the population in the balance of mutation, purifying selection and genetic
drift. Since this typically results in a broad allele frequency distribution (unless muta-
tion is very strong), it favors heterogeneity among loci and thus adaptation by (partial)
sweeps. However, even after decades of research, the mechanisms to maintain genetic
variation in natural populations remain elusive (Barton and Keightley, 2002). As dis-
cussed in Appendix C.2, more homogeneous starting conditions for the mutant alleles
can be strongly favorable of a shift scenario. Such conditions can be created either by
balancing selection or by neutral population structure.

Balancing selection (due to overdominance or negative frequency dependence) typ-
ically maintains genetic variation at intermediate frequencies. If a major part of the
genetic variance for the trait is due to balancing selection, adaptation could naturally
occur by small shifts. However, the flexibility of alleles at single loci, and thus the poten-
tial for smaller or larger shifts, will depend on the strength of the fitness trade-off (e.g.
due to pleiotropy) at each locus. If these trade-offs are heterogeneous, the adaptive

architecture will reflect this. Also, adaptation against a trade-off necessarily involves a

133



2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

fitness cost. Therefore, if the trait can also adapt at loci that are free of a trade-off,
these will be preferred, possibly leading to sweeps.

As discussed in a series of papers by Ralph and Coop (2010, 2015), spatial population
structure is a potent force to increase the number of alternative alleles that contribute
to the adaptive response. If adaptation proceeds independently, but in parallel, in spa-
tially separated subpopulations, different alleles may be picked up in different regions.
Depending on details of the migration pattern (Paulose et al., 2018), we then expect
architectures that are globally polygenic with small shifts, but locally still show sweeps
or dominating variants.

Furthermore, population structure and gene flow before the start of the selective
phase can have a strong effect on the starting frequencies. In particular, if the base
population is admixed, mutant alleles could often start from intermediate frequencies
and naturally produce small shifts. This applies, in particular, to adaptation in modern
human populations, which have experienced major admixture events in their history
(Pickrell and Reich, 2014; Lazaridis et al., 2016) and only show few clear signals of
selective sweeps (Pritchard et al., 2010).

Finally, gene flow and drift will continue to change the architecture of adaptation after
the rapid adaptive phase that has been our focus here. This can work in both directions.
On the one hand, subsequent gene flow can erase any local sweep signals by mixing
variants that have been picked up in different regions (Ralph and Coop, 2010, 2015).
On the other hand, local adaptation, in particular, may favor adaptation by large-effect
alleles at few loci, favoring sweeps over longer time-scales. Indeed, as argued by Yeaman
(2015), initial rapid adaptation due to small shifts at many alleles of mostly small effect
may be followed by a phase of allelic turnover, during which alleles with small effect are
swamped and few large-effect alleles eventually take over. This type of allele sorting
over longer time-scales is also observed in simulations studies for a quantitative trait
under stabilizing selection that adapt to a new optimum after an environmental change

(Franssen et al., 2017; Jain and Stephan, 2017).
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Between sweeps and shifts: adaptation by partial sweeps

Previous research has almost entirely focused on either of the two extreme scenarios for
adaptation: sweeps in a single-locus setting or (infinitesimal) shifts in the tradition of
Fisher's infinitesimal model. This leaves considerable room for intermediate patterns.
Our results for the redundant trait model show that such transitional patterns should be
expected in a large and biologically relevant parameter range (values of ©,, between 0.1
and 100). Patterns between sweeps and shifts are polygenic in the sense that they result
from the concerted change in the allele frequency at multiple loci. They can only be
understood in the context of interactions among these loci. However, they usually do not
show subtle shifts, but much larger changes (partial sweeps) at several loci. If adaptation
occurs from mutation-selection-drift balance, the polygenic patterns are typically strongly
heterogeneous, even across loci with identical effects on the trait. Such patterns may
be difficult to detect with classical sweep scans, in particular if partial sweeps are "soft"
because they originate from standing genetic variation or involve multiple mutational
origins. However, they should be visible in time-series data and may also leave detectable
signals in local haplotype blocks.

Indeed there is empirical evidence for partial sweeps from time series data in exper-
imental evolve and resequence experiments on recombining species such as fruit flies.
For example, Burke et al. (2010) observe predominantly partial sweeps (from SGV) in
their long-term selection experiments with Drosophila melanogaster for accelerated de-
velopment — a rather unspecific trait with a presumably large genomic basis. A similar
pattern of “plateauing”, where allele frequencies at several loci increase quickly over sev-
eral generations, but then stop at intermediate levels, was recently observed by Barghi
et al. (2018) for adaptation of 10 Drosophila simulans replicates to a hot temperature
environment. Complementing the genotypic time-series data with measurements of sev-
eral phenotypes, these authors found convergent evolution for several high-level traits
(such as fecundity and metabolic rate), indicating that rapid phenotypic adaptation had

reached a new optimum. This high-level convergence contrasts a strong heterogeneity
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in the adaptation response among loci and also between replicates (Barghi et al., 2018).
Based on their data, the authors reject both a selective sweep model and adaptation by
subtle shifts. Instead, the observed patterns are most consistent with the intermediate
adaptive scenario in our framework, featuring heterogeneous partial sweeps at interacting

loci with a high level of genetic redundancy.
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C. Supporting Information: Results

C.1 Linked loci

Negative epistasis for fitness causes negative linkage disequilibrium (LD) among the
selected loci. While LD can usually be ignored as long as loci are unlinked, this changes
once recombination rates drop below the selection coefficient r < s;, (data not shown).
For tight linkage » — 0, in particular, individuals carrying multiple mutations can no
longer be formed by recombination, but require multiple mutational hits on the same
haplotype. This is unlikely while mutant allele frequencies are low, which is when the
relevant mutations of the adaptive process arise. By the end of the adaptive phase,
the excess of single-mutant haplotypes produces strong negative LD. Nevertheless, our
theory predicts that the distribution of allele frequency ratios that emerges from the
early stochastic phase of the adaptive process is unaffected Eq.(3.9). This prediction
is confirmed by simulations, see Fig.C.1. If anything, the match even improves for
strong linkage. (Deviations for high ©; values result since the rate of recurrent mutation
~ ©;(1 — p) is smaller than assumed in the Yule process approximation, ~ ©;, when
the mutant frequency p gets large. This affects the major locus stronger than any other
locus and leads to overshooting of the minor/major ratio seen in the Figure. The bias
is reduced for strong linkage since 95% phenotypic adaptation corresponds to smaller
allele frequencies in this case.)

Fig. C.2 shows the joint distribution of the major and the minor locus of a trait
with L = 2 loci for different degrees of linkage. In all cases, the process is stopped
when the proportion of remaining non-mutant individuals drops below f,, = 0.05. The
results show that the linkage equilibrium assumption (red and blue lines) provides a
good approximation as long as r > ;. For < sy, the distributions are shifted to lower
values and clear deviations become visible. The constraint on the allele frequencies at

the stopping condition changes from (1 — p;)(1 — p2) = fu for linkage equilibrium to
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p1+po = 1— f,, for complete linkage. As a consequence, the boundary between the major
and minor locus distributions (red and blue) drops from 1—+/f,, to (1— f,,)/2. As shown
in the Mathematical Appendix, Eq.(D.29), we can derive an analytical approximation
for the distributions for complete linkage » = 0. For L = 2, we obtain a modified

Beta-distribution (black lines in the Figure)

P7. alpl0] = 2(1;[({;1]”)1 (1 _pfw>@_1 <1 - 1_pfw>®_1 (C.1)

with p > (1= f,)/2 (resp. p < (1 — f,)/2) for the major (minor) locus. The simulation
results show that this prediction is accurate for r < s;, (deviations for ©,, = 100 are
due to overshooting of the stopping condition in the last generation of our Wright-Fisher
simulations).

While linkage affects the shape of the joint distribution, it does not alter its key
qualitative characteristics that distinguish adaptive scenarios. In particular, the same
conditions on O, and ©; apply for singularities at the boundaries of marginal distribu-
tions. We still observe sweep-like adaptation for ©,, < 1, adaptation by small shifts
for ©,, > 1, and a heterogeneous pattern of partial sweeps in a transition range of O,

around 1.

C.2 Alternative starting allele frequencies

So far we have assumed that adaptation starts from mutation-selection-drift balance.
This includes variable amounts of standing genetic variation (weak or strong s,) and
even cases where this balance is not represented by a stable equilibrium distribution
(time-dependent selection, see the Mathematical Appendix). There are, however, other
scenarios of biological relevance. Given the right (possibly complex) selection scheme,
balancing selection can maintain mutant alleles, prior to the environmental change, at
arbitrary frequencies. The same holds true if the base population is admixed, either due

to natural processes or due to human activity (e.g. breeding from hybrids). For these
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Figure C.1: E[z] for redundant fitness effects with two linked loci. Simulation
results (colored dots) for the mean allele frequency ratio are plotted in dependence of
the locus population mutation rate ©; and compared with the analytical prediction (black
line). Simulations are stopped when fitness has reached 95% of its maximum. Linkage
does not change the results for the ratio of allele frequencies, despite significant build
up of linkage disequilibrium with low recombination rates (data not shown). Results for
10000 replicates standard errors < 0.005 (smaller than symbols).

scenarios, our theoretical formalism to describe the establishment of mutants during the
stochastic phase (Fig. 3.2) does not apply. In this section, we describe how the formalism
can be extended to cover arbitrary starting frequencies of mutants at the onset of positive

selection at time ¢ = 0.
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Figure C.2: Genetic architecture of adaptation with linkage. Marginal distributions
for the major locus (red) and the minor locus (blue) of a model with L. = 2 loci depending
on Oy, (rows) and linkage among the loci (columns). Black lines show the analytical
approximations for LE (dashed) and complete linkage (solid). For strong recombination
r > s, = 0.1, the deviations from the LE approximation are small. For r < s, = 0.1,
the approximation for complete linkage works well. Further parameters: —s; = s, = 0.1,
N, = 10000, 10000 replicates.

C.2.1 Extended Yule framework

The Yule process that describes the stochastic phase of the adaptive process accounts
for the mutant copies at all loci that are destined for establishment. In our framework

so far (see the Mathematical Appendix D.2), we have started this process with zero
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copies. SGV due to mutation-selection-drift balance can still be produced by such a
process if it is started at some time in the past (¢ < 0). For general starting frequencies,
we can alternatively start this process at time ¢ = 0, but with mutant copies (immortal
lineages) already present. Suppose that the mutant frequency at locus i at time ¢ = 0
is p;, corresponding to N.p; mutant copies. Of these, only the n; < N.p; "immortal"
mutants (destined for establishment) are included in the Yule process. Assuming an
independent establishment probability pes: per copy, n; is binomially distributed with
parameters N.p; and pes;. For the limit distribution of a multi-type Yule process that
is started with a non-zero number of lines, consider that each of these initial lines can
be understood as an extra source of new immortal lines (due to birth) that is entirely
equivalent to the generation of new lineages by mutation. It is therefore appropriate to

include these lines as extra locus mutation rate

@i = @z +n; = QNeMZ' +n;. (C2)

In the absence of recurrent mutation, ©; = 0, this procedure reproduces the well-
know Polya urn scheme (e.g. Griffiths and Tavaré, 1998); Hoppe urn: Hoppe (1984)).
Replacing ©; by ©, within our original Yule process formalism, and averaging over the

binomial distribution, leads to the desired extension to arbitrary starting frequencies.

C.2.2 Application

Theory papers (e.g. Orr and Betancourt, 2001; de Vladar and Barton, 2014; Jain and
Stephan, 2015, 2017) often use a deterministic framework to describe the frequency
of alleles that segregate in a population in mutation-selection balance. To simplify the
analysis, they do not model SGV as a distribution (due to mutation, selection, and drift),
but replace this distribution by its expected value (ignoring drift). We can apply our
scheme with fixed starting frequencies to this case and thus assess the effect of genetic

drift in the starting allele frequency distribution. We assume equal loci and a starting
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frequency |u/sq4| for an (initially deleterious) mutant allele with selection coefficient s4
in the mutation-selection balance. Fig. C.3 shows the simulated marginal distributions of
the loci with the largest contribution to the adaptive response (compare Fig.3.4). We
see that the type of the adaptive architecture is again constant across rows with equal
background mutation rate. However, due to the more homogeneous starting conditions,
adaptation involves more loci and is much more shift-like. Analytical predictions following
the above scheme are shown for L = 2 loci. With establishment probability pest = 25,
the counts n; and nsy of "immortal" mutants at both loci are independent random
draws from a Binomial distribution with parameters Ne|u;/sq| = |©1/2s4| and 2s,. For
Oy > 0.1, we find (heuristically) that the marginal distribution for alleles starting from
mutation-selection balance closely matches the one of the fully stochastic model with
effective OFf = Oy (1 + |s5/254|) = 516y, for the parameters in the figure (lines added
in green). (Note that, from the average number of established lines, one would assume
5 = Oy (1 + |sp/54]) = 10104,. However, this does not account for the variance in

bg

the number of immortal lines among the two loci.)
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Figure C.3: Polygenic adaptation from alternative allele starting frequencies.
The panels show the adaptive architecture when mutant alleles start from their expected
value in mutation-selection balance, without drift. We distribute L - |©;/2s,4| mutant
copies as evenly as possible across all loci. We set —s; = 5,/100 = 0.001. Black lines for
L = 2 loci show analytical predictions described in the main text (only computationally

possible for ©,, < 1), green lines for ©,, > 1 show the heuristic prediction for @Z;F =

510y,. Finally, gray lines show the marginal distributions when adaptation occurs from
mutation-selection-drift balance, compare Fig. 3.4.

C.3 Diploids

To extend our model to diploids, we assume that a single locus that is homozygous for
the mutant allele is sufficient to produce the fully functional mutant phenotype, while
a heterozygous locus produces a mutant that is functional with probability 1 — A. We
assume that mutants contribute independently. Thus, if k£ heterozygous loci exist, but
no homozygous mutant locus, the resulting mutant phenotype will be functional with

probability 1 — (1 — (1 — h))* =1 — h*. For L = 2 loci, in particular, the (logarithmic)
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fitness of genotype G becomes

0 no mutations: G = (aabb)
(1—"h)s 1 heterozygous locus: G = (Aabb, aaBb)
(1 — h?)s 2 heterozygous loci: G = (AaBb)

s > 1 homozygous mutation: G = (AA..,..BB)

where s = s, > 0 fort > 0 and s = s4 < 0 for t < 0. Note that h € [0, 1] measures
the dominance of the ancestral allele. We assume Hardy-Weinberg-linkage-equilibrium

(HWLE). In this case, the marginal fitnesses of the mutant alleles are (for 2 loci),

why=s—(1—pa)(l—pp) {1 —pp(1— 2h)}h3, (C.4a)

wp=s—(1—pa)(1—ps) [1 —pa(l— Qh)}hs. (C.4b)

In contrast to the haploid case, the marginal fitnesses are in general not equal. There
are, however, two important special cases, where our fitness scheme (with redundancy
on the level of loci) implies equal marginal fitnesses (and thus redundancy on the level
of alleles): either if the ancestral allele is fully recessive (b = 0) or if the alleles are
co-dominant (h = 0.5). As shown in the Mathematical Appendix, this holds true more

generally for an arbitrary number of loci.

Simulation results

We simulated a diploid model with two loci in HWLE according to the above scheme
with three different levels of dominance of the ancestral allele, h = 0.1;0.5; and 0.9.
The diploid, effective population size is N., corresponding to 2N, chromosomes. The
mutation rate is p at both loci and we define the population-scaled mutation rate for
diploids as ©¢ = @gg = 4N,.u. Simulations are stopped when the percentage of remain-

ing ancestral haplotypes drops below f,, = 0.05. (This condition directly corresponds
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to the stopping condition for haploids. Alternative stopping conditions, such as 95% in-
crease in mean diploid fitness are also covered by our theoretical framework, but require
a different transformation.)

The results are shown in Fig. C.4. We see that the haploid results fully carry over to
diploids for co-dominance (h = 0.5, middle column), where the diploid fitness scheme
implies redundancy on the level of alleles. As explained above, the same holds true if
the ancestral allele is fully recessive. Our simulations show that the haploid result is still
a good approximation for h = 0.1 (left column). In contrast, much larger deviations are
obtained for recessive mutants (dominant ancestral allele, ~ = 0.9, right column). In
this case, the locus with the larger mutant frequency experiences stronger selection. For
©; > 0.1, when polymorphism at both loci is likely, this favors the major locus relative

to the minor locus, increasing the heterogeneity in the adaptive architecture.
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Figure C.4: Adaptive architecture for diploids in linkage equilibrium. Adaptation
in a 2-locus model according to scheme (C.3), with recessive (h = 0.1), codomiant
(h = 0.5) or dominant (h = 0.9) ancestral alleles. We assume Hardy-Weinberg and
linkage equilibrium. Simulations are stopped when the wild type haplotypes drops below
5%. Standing genetic variation builds up for 16N, generations before the change in
the environment. Selection coefficients are set to s, = —s; = 0.1. Solid lines show
analytical predictions using the framework developed for haploids.
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C.4 Approximations for multi-locus architectures

For tight linkage, where the joint distribution of mutant alleles is given by a Dirichlet dis-
tribution, Mathematical Appendix Eq.(D.29), lower dimensional marginal distributions
for single loci or groups of loci can easily be derived. For linkage equilibrium, Mathemat-
ical Appendix Eq. (D.20), however, the required integrals can only be solved numerically.
For L loci, an (L — 2)-dim integral needs to be evaluated, which becomes computation-
ally unfeasible (with programs packages like Mathematica) for L > 5. Nevertheless, we
can derive approximations for the marginal distributions of polygenic models with large
L in many cases. To do so, we make use of a key property of the adaptive architecture,
shown in our results: The (joint) architecture of adaptation at loci with the largest
contribution to the adaptive response is primarily a function of combined mutation rates
at competing loci, such as the background mutation rate ©;,. Given these values, it
is largely independent of the number of loci in the genetic basis of the trait itself. We
can therefore describe the adaptive architecture of a polygenic trait with L loci by a
model with k£ < L loci given that the total adaptive response is well captured by the
contribution of the top k loci. It turns out that this is typically the case for ©,, < 1,
when the contributions from different loci are very heterogeneous. In the following, we
describe this procedure for an L-locus model with equal mutation rates ©; = ©; for

1<i< L.

Approximations using the 2-locus model

Several key properties of the L-locus architecture can already be described by the 2-locus
framework. This includes the marginal distributions at the major locus and at the first
minor locus. This requires that the mutation rate at the minor locus of the 2-locus
model matches the background mutation rate of the L-locus model. As described in
the main text, this choice matches the time lag between the first origin of a mutation

destined for establishment at a locus (usually the major locus) and at a second locus
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(usually the first minor locus). It also guarantees that the approximation captures the
correct asymptotic shape of the major-locus distribution at p = 1 — f,,, and of the
first-minor-locus distribution at p = 0. The choice of the mutation rate at the major
locus itself is far less important. For the approximation of the major locus distribution,
we find that setting it to the locus-mutation rate yields the best fit. We thus use a
2-locus model with unequal mutation rates, P}f[ﬁﬂ@l,@bg], Eq.(D.28a), in Fig.3.4.
For the marginal distribution at the first minor locus, the approximation with equal
mutation rates, P;<[p1|©,, Oy, Eq.(D.28b), works slightly better. Finally, we can
also approximate the distribution at an average minor locus (rather than the first minor

locus) by P;=[p1|6y, Oyy).

Approximations using models with £ > 2 loci

The approximation of higher-order minor loci requires models with a sufficiently large ge-
netic basis that such a locus exists at all. l.e. a k-locus model can approximate marginal
distributions up to the (k — 1)st minor locus. Assume that we want to approximate the
marginal distribution of the jth minor locus of an L-locus model using a k-locus model,
j < k < L. As for the case k£ = 2 discussed above, the approximation requires that
the expected lag time between the establishment of a mutation at a first locus and the
establishment of a mutation at a jth locus be matched. For the L-locus model, this
waiting time is
1 L1

@ZL—Z“

=1

For a k-locus model with equal mutation rate @l(k) at all loci, we thus obtain the matching

rule

for the approximation of the jth minor locus. For 7 = 1, this reproduces the matching
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rule for the background mutation rate Oy,. In general, the value for ©F depends on j,
but converges once L,k > j. Approximations by models with unequal locus mutation
rates are also possible, but usually do not lead to a relevant improvement. In Fig. 3.4,
we use formulas from 3- and 4-locus models to approximate the marginal distributions of
the 2nd and 3rd minor locus, respectively. In general, the approximations for all loci can
be improved by using approximation models with more loci than required, i.e. kK > j+ 1.
In Fig. C.5, we show this for approximations of the major locus and the first three minor

loci, all derived from a 4-locus model.

10

Figure C.5: Approximating higher dimensional adaptive architectures for 10 loci,
Oy = 1. We approximate a 10 locus model with the theoretical predictions based on
the four locus model for the major and the first, second and third minor locus. Compare
Fig. 3.4, where we use approximations based on the minimal number of loci needed.

C.4.1 Marginal distribution of a single locus

Figure C.6 shows the marginal distribution at a single focal locus for a trait with L = 2
to L = 100 loci in its basis. Since all loci are equal, the probability that the focal
locus ends up as the major locus is 1/L. The red dots in the figure indicate the part of
the marginal distribution that corresponds to this case. With an increasing number of

redundant loci, the probability for each single locus to play a major role in the adaptive
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process decreases. The marginal distribution of a fixed locus therefore changes strongly
with an increasing number of loci L. For large L, in particular, it does not represents
the key components of the adaptive architecture on the level of the trait any more.
This is in contrast to Fig. 3.4, where marginal distributions of the loci with the largest
contributions to the adaptive response are shown. For 2 loci, Fig. C.6 also shows the
analytical approximation for the marginal distribution Eq. (3.11). As long as the adaptive
architecture is dominated by only a few loci, the same 2-locus result can be used as an
approximation for the marginal distribution in models with more than two loci. This is
shown in the figure for ©,, < 1. The figure also shows that the approximation fails for

Oy > 10 when adaptation is truly collective.
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Figure C.6: Marginal distribution at a single focal locus. Simulation results for the
marginal distribution at a single locus at the end of the adaptive phase are shown in blue.
Red dots show the contribution of the major locus to this distribution (all cases, where
the focal locus ends up as the major locus). Dashed lines show the analytical prediction
for the 2-locus model, Eq. (3.11). Parameters and further details as in Fig. 3.4.
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D. Supporting Information: Mathematical Appendix

This Appendix describes the details of the mathematical model and methods used to
derive the analytical results of the article. Section D.1 gives an outline of the model;
section D.2 introduces the branching process method used for the early stochastic phase
of polygenic adaptation; section D.3 describes the derivation of the joint frequency

distribution at the end of the deterministic phase.

D.1 Redundant trait model

Consider a panmictic population of N, haploids. Selection acts on a binary trait Z (e.g.
resistance) with just two states, a wild-type state Z (not resistant) and a mutant state
Zy (resistant). Without restriction, we can choose Z; = 0 and Z; = 1. Malthusian

(logarithmic) fitness is defined by the function
W(Z,t)=s(t)Z (D.1)

where the time dependent coefficient s(¢) defines the strength of directional selection.
We assume that s(t) < 0 for ¢t < 0, but s(t) > 0 for ¢ > 0, such that the optimal trait
value shifts from the wild-type state Z = 0 to the mutant state Z = 1 due to some
change in the environment at time ¢ = 0. We also assume that selection is stronger
than drift, |[N's(t)| > 1 for almost all ¢, but is arbitrary otherwise.

We assume that Z is polygenic, with L biallelic loci (wild-type a; and mutant allele
A;, i =1,..., L) constituting its genetic basis. While genotype a = (ay, as, ..., ar) pro-
duces the ancestral wild-type Zj, all mutant genotypes are fully redundant and produce
the mutant phenotype 77, independently of the number of mutations. New mutations
from a; to A; occur at a rate y; per generation, with p; < |s(t)| for almost all t. For the
purpose of our model, back mutation from A; to a; can be ignored. The linkage map

among loci is arbitrary — unless explicitly specified otherwise. Let p; be the frequency
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of allele A;, and let f, be the frequency of the wild-type genotype a. Then the mean

fitness in the population is
W(t) = s(t)Z(t) = s(t) (faZo + (1 = fu) Z1) (D.2a)

where Z is the trait mean. Since W(Z,,t) = s(t)Z, is the marginal fitness of any

mutant allele, the selection dynamics at the ith locus can be expressed as
pi=pi(W(Z1,t) = W(t) = s(t)pi(Z1 — Z(1)) . (D.2b)

Our redundancy assumption implies strong diminishing returns epistasis on the level of
fitness: the fitness of genotypes with multiple mutations is the same as the one of single
mutants. Eq.D.2b shows that the epistatic effect of the genetic background on the
dynamics at a particular locus is mediated by the trait mean Z(t) as single compound
parameter. Allele frequencies at all loci change with the same (time and frequency-
dependent) rate. We readily establish that

d (2%) _ b —PiPi _ (D.3)

dt \ pj P

Thus, the ratio of allele frequencies among loci does not change under selection. Note
that this holds for an arbitrary linkage map. We can conclude that any differences in
(relative) allele frequencies are due to mutation and drift.

We are interested in the pattern of allele frequency changes across loci during the
phase of rapid phenotypic adaptation. This phase starts with the onset of positive
selection on derived alleles at time ¢ = 0. It ends when mean fitness W (t) approaches
its maximum s(t)Z; and further selective change in the allele frequencies is strongly
decelerated. Since (W (Zy,t) —W(t))/s(t) = (Z1 — Zy) f., we can parametrize this end
point by a condition f,(t) = f,, on the frequency of the wild-type Z; in the population.

In our figures, we usually use f,, = 0.05. As initial state at time ¢ = 0, we assume that
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the population adapts from a balance of mutation, selection, and drift. We thus allow for
standing genetic variation (SGV) at all loci. If selection prior to ¢ = 0 is constant (which
is what we generally assume in our computer simulations, see main text), SGV is given
by the standard equilibrium distribution under mutation, selection, and drift, where we
require that a; is the ancestral state at each locus. l.e., each allele frequency trajectory
pi(t), back in time, originates from the boundary p; = 0 rather than p; = 1 (see also
Hermisson and Pennings, 2005, for this concept). However, our analytical results do not
require a static equilibrium and, for a general s(t) < 0 for t < 0, the SGV reflects this
non-equilibrium dynamics.

As described in the main text, we dissect the adaptive process into two phases.
During an initial stochastic phase mutation, selection, and drift lead to the build-up of
genetic variation, either from SGV or due to new mutation after time ¢t = 0, as long as
allele frequencies p; at all loci are still low. We will describe our approach to this phase
in detail in the section on Yule processes below. Once allele frequencies are sufficiently
large, genetic drift and recurrent new mutation play only a minor role relative to selection
until we reach the end of the rapid adaptive phase. We thus enter a deterministic phase

where the dynamics is then well approximated by Eq. (D.2b).

D.1.1 Relaxed redundancy

To relax the stringent redundancy condition of our model, it is natural to assume that a
single mutation is not sufficient to produce the full mutant phenotype Z; = 1, but only
a partial phenotype Z, = ¢ with 0 < ¢ < 1. This makes the marginal fitness of mutant
alleles dependent on the genetic background. If genotypes with two or more mutations

produce Z;, we have
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where f; is the frequency of the haplotype with a single mutation at locus i. Since f;/p;
depends on i (even in linkage equilibrium), the ratio of allele frequencies at different loci
is no longer invariant and the key symmetry assumption Eq. (D.3) of the fully redundant
model is violated. Note that redundancy is recovered for very low mutant frequencies,
such that double mutants are rare (f; =~ p;) and also late in the adaptation process,

when most haplotypes carry at least one mutation and f; — 0.

D.1.2 Diploids

We can generalize the redundant trait model to diploids as follows. For a general model,

the dynamical equations in continuous time read

pi = (Wi(t) = W(t))p (D.5)

where W;(t) is the marginal fitness of allele A; and W (t) the mean fitness. All fitnesses
may depend on the allele frequencies and on time. Using Eq.(D.3), we see that all
mutant alleles A; are redundant in the sense that they all feel the same selection pressure
if and only if their marginal fitnesses are equal at all times, W;(t) = W;(t), V 4,j. (The
same condition can also be derived from a discrete time dynamics.) For haploids, equal
marginal fitnesses, independently of the genetic composition of the population, enforces
the fully redundant trait model described above. For diploids with dominance, the
marginal fitness also depends on the allele frequency at the focal locus itself. An obvious
solution to the condition of equal marginal fitnesses across loci is the case of complete
dominance of the mutant allele. We can gain some more flexibility for the fitness scheme,
if we assume that genotype frequencies are at Hardy-Weinberg equilibrium at all times.
We can then distinguish three genotype classes: the wild-type without any mutations
(normalized fitness 0), mutant individuals with one or more mutations on only a single

haplotype (fitness s;(¢)) and individuals with mutations on both haplotypes (fitness
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So(t)). The marginal fitness of any mutant allele then is

M/l(t) :$1<t)fa+32(t)(1_fa)7 (D6)

where f, is the frequency of the ancestral haplotype without mutations. We thus require
redundancy of mutations (only) within haplotypes. Note, however, that this fitness
scheme implies a position effect, i.e., the fitness of the genotype does not only depend
on the number of mutations at each locus, but also on the association of mutations
to one or the other haplotype. If we assume linkage equilibrium in addition to Hardy-
Weinberg proportions, a position effect can be avoided if we use the following fitness

scheme
1. The ancestral genotype without any mutants has normalized fitness W (t) = 0,
2. any genotype with at least one homozygous mutant has fitness W (t) = sa(t),

3. a genotype without a locus that is homozygous for the mutant, but with % loci

that are heterozygous has fitness
W(t) = s52(t) + 27 (51(6) = 52(0)).

Since 2! is the probability for any focal mutant allele to be on the same haplotype
with all k—1 other mutant alleles, assuming linkage equilibrium, this fitness scheme

leads to the same marginal fitness as Eq (D.6) above.

D.2 Yule approximation

We describe the dynamics of mutant types at the different loci during the stochastic
phase by a multi-type Yule pure birth process with immigration. Our framework builds
on established mathematical theory by Joyce and Tavaré (1987); Durrett (2010) and

a previous approach to describe the genealogy of a beneficial allele during a selective
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sweep in terms of a Yule process (Etheridge et al., 2006; Hermisson and Pfaffelhuber,
2008). Here, we extend this approach to the polygenic scenario.

Consider a mutation A; that appears at some locus either prior to the environmental
change (standing genetic variation) or after the change. This mutation is relevant for
the joint distribution of mutant allele frequencies at the time of observation after the
rapid adaptive phase if and only if descendants of this mutation still segregate in the
population at this time. The idea of the Yule approach is to construct the genealogies of
these mutant descendants at all loci forward in time. We start the process at some time
to < 0 in the past before the first mutation with surviving descendants has originated.
We assume that the frequency p; of mutant alleles is low during the entire stochastic
phase. Then, new mutations at locus ¢ appear at rate =~ Nyu; =: ©;/2 per generation,
but only a fraction of those will survive deleterious selection prior to ¢ = 0 and genetic
drift to establish in the population and to contribute to the adaptation of the trait. We
denote this establishment probability as pes:(t). If selection is constant and positive (as
assumed in the main text), s(t) = s, > 0, we can approximate pes; =~ 25,. For general
time-dependent selection, pes:(t) will depend on s(#) with £ > ¢ Uecker and Hermisson
(2011), and also on the mutations that were previously established at the same or at
other loci. Crucially, however, since the marginal fitness of mutant copies at all loci is the
same at any given time, pes:(t) does not depend on the locus. We only include mutants
into our Yule process that successfully establish in the population, which are represented
as “immortal lineages” in the Yule tree. We follow these lineages in continuous time.

There are then two types of events:

1. First, new mutation creates new immortal lineages at rate

pmum'(t) = ?pest(t) (D?)

independently at each locus. This event is called “immigration” in the mathe-

matical literature Joyce and Tavaré (1987), but it corresponds to mutation in our
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model. (In a model with gene flow, where adaptation in a local deme occurs
from immigration, new lines would be truly immigrants, see also Pennings and

Hermisson (2006) for this analogy).

2. Second, existing immortal mutant alleles A; can give birth to further immortal
mutant copies, corresponding to a split of the immortal line in the Yule process.
To derive the split rate pgyi¢, imagine that we implement the evolutionary dynamics
as a continuous-time Moran model, where individuals give birth (due to a binary
split) at constant rate one per generation. In the corresponding Yule process, we
only include this birth event if it leads to two immortal lineages. Obviously, the
probability to “be immortal” for a newborn individual is the same as for a new
mutation and given by pe:(t). Conditioning on the fact that we only consider
splits of immortal lineages and thus at least one of the offspring lineages must be

immortal, we arrive at a split rate per immortal lineage of

pgst<t) _ pest<t) s peSt(t>
DL (1) + 2Dest (1) (1 — pest (1)) 2 — Pest () 2

psplit(t) = (D8)

where the approximation in the last term assumes that pes:(f) < 1, which is usually

the case unless selection is very strong.

The Yule process defines a continuous-time Markov process of a random variable k =
(k1,...,kr), where k; € Ny is the number of immortal mutant lineages at the ith locus.
We are interested in the relative proportions in the number of lineages k; across loci after
a sufficiently long time — assuming that the distribution of these proportions reaches a
limit by the end of the stochastic phase. We can generate this distribution from the
transition probabilities among Yule states (the embedded jump-chain of the continuous-
time process). If there are currently (kq,..., k) lineages at the L loci, the probability

that the next event is either a birth event (split) or a new mutation (immigration) at
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locus 7 is

Pr[(k’l,...,kL) — (kl,---7ki+17~--,kL)]
kipsplit + Pmut,i k'z + 91 (D9)

B Zjl‘/zl(kjpsplit +pmut,j) N Z]l‘/:l (kj + @J) .

Crucially, these transition probabilities are constant in time and independent of the
establishment probability pest(t). As a consequence, they are also independent of the
mutant fitness, which only affects the speed of the Yule process (via pes), but not its
sequence of events.

We start the process with no mutants and stop it whenever the number of mutants
at one of the loci (e.g. locus 1) reaches some number k; = n. We are interested in the
distribution of the number of mutants k; at the other loci at this time, respectively their
ratios k;/n (remember that we already know that these ratios stay invariant during the

deterministic phase of the adaptation process). We can prove the following

Theorem 1

In the limit of n — oo, the joint distribution of ratios x; = k;/n of immortal mutant

lineages across loci converges to the inverted Dirichlet distribution,

1 L 0.-1 L _'252;2:1 9;
Pinbir[{7i }i>2|©] = Ble] U z;’ (1 + 22x1> (D.10)
J= J=
where the vector ® = (Oy,...,0) summarizes the mutation rates and B[O)] is the

multivariate Beta function, which can be expressed in terms of Gamma functions as

B[O®] = FE;(Z; (D.11)

Proof

We proceed in three steps.
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Step 1 Assume that we stop the process when the first locus reaches n > 0
lineages. We derive the probability that the process at this time is in state (n, ko, ..., kr)
as follows. We need n + ko + - - - + ki, events (new mutations or splits) to generate all
mutant individuals. The last event must occur at the first locus. All other events can
occur in arbitrary order at the L loci. The probability of each realization (each order of
events at the loci) is given by the corresponding product of transition probabilities (D.9).
The key insight is that all realizations have the same probability. Indeed, the denominator
of (D.9) does not depend on the locus where the next event occurs. Different realizations
then only correspond to permutations in the factors k; + ©; in the numerator of the
product of transition probabilities. We can directly write down the probability for the

state as

n—1+4ky+--+ kL> (O1) e IT2(05) ey (D.12)

n—1ky, ....kp ) (O14 4+ OL)nikytthy)

Pri{ki}izsln, ©] = (

where

@(k) Z:@(@+1)...(@+/{5—1)

is the Pochhammer function. The leading multinomial coefficient counts the number
of all permutations and the ratio of Pochhammer functions is the probability of each

realization.

Step 2 We can rewrite (D.12) as a Dirichlet-negative-multinomial compound dis-

tribution, defined as

1 Lin—14ky+- 4k & k( < )”
/0 /()( w1k )l;lzy Z;y f{yiti=2|©) dys ... dyr
(D.13)

where
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|- - Ot
fHyi}i=2[©) = @ 1;[2% ' (1 - 2;%)

is the (L —1)-dimensional Dirichlet distribution for a L-dimensional probability vector
(41, - .., yr) with constraint y; = 1—3",55y;. This is best shown in the reverse direction,

i.e., by deriving (D.12) from (D.13). To see this, note that

1 1 L L L O1+n—1 O, +n HZL— (O, + k;
/ / Hyieﬁkl 1(1—Zyz~> dys . ..dyr = (1 ) _L2 ( )
0 0 ;22 i—2 F<91+n+zi:2(@i+k’i))

because the integrand in this expression is just a Dirichlet density with shifted values of
O, — ©; + k; and the right hand side is the corresponding normalization factor. Then

using

(X, 0;) T(01 +n) [T, T(0; + k;) _ (©1) () [17-2(0;)x,)
iL:I F(Gz) F(@l —|— n + 2522(91 —|— kl)) (61 + tee + @L)(n+k2+~~+kL)

reduces (D.13) to (D.12).

The compound distribution Eq (D.13) can be interpreted as follows: If a random
experiment can have a finite number of outcomes (here: mutant lineages at one of
L loci), the negative multinomial distribution describes the probability to observe each
of these events k; times if we repeat the experiment until a focal event (here: new
mutant lineage at the first locus) has occurred n times. While the negative multinomial
distribution assumes that all outcomes occur with a fixed probability y;, this probability is
itself drawn from a Dirichlet distribution in the Dirichlet-negative-multinomial compound
distribution. In the present context, the main advantage of (D.13) over (D.12) is that

we can easily perform the limit n — oo in this form.

Step 3 For large n — oo, the values of k;/n, i > 2, of the negative multinomial

distribution can be replaced by their expectations,
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k; Yi Li
€T; = EE — | = PR = Y; = Py
n 1 =200y 142

We can then transform the density Eq. (D.10) from variables y; to the x; (representing
the relative mutant frequencies). The entries of the Jacobian matrix (for 2 <i,j < L)
are

Ay Oiy(1+ 25 g ms) —

‘]-i' = =
J 8xj (1 + 2522 ZL’k)2

Since this is the sum of an identity matrix (times a factor) and a matrix with identical

columns we can easily derive the eigenvalues and thus the determinant,

1
(1+ Shpaw)t

Det[J] =

Applying this transformation to (D.13), we obtain Eq. (D.10).

Remarks

1. For two loci, the Dirichlet-negative-multinomial distribution (D.13) reduces to a

Beta-negative-binomial distribution

1 TL-'-k—l F(@1+@2) _ _
F) }C — J/P k 1— n O5—1 1— 0:—1 (1
ottt = [ (" 1) g e s -
and the inverted Dirichlet distribution Eq. (D.10) simplifies to a so-called [-prime

distribution,
F(@l + @2) Oy—1 —01-02
Po(r) = ———5 2% (142 . D.14
"= Tepen (1) (19
If we measure the ratio = always relative to the locus with the higher frequency,

we obtain a conditioned distribution that is truncated at z = 1. For equal locus

mutation rates ©; = Oy = Oy, in particular,

2L(261) 0,1

Pgl [l’|@l] = (F(@l))2

(14 z)72%, (D.15)
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with expectation

2(20)) 2 F1[20,,1 + 6,2 + O, —1]
(1+6,)(I'(e1)) ’

Elz] — /01 Py [2]0))dz (D.16)

where 5 F} is the hypergeometric function.

. The process described here is a variant of the Polya urn and Hoppe urn processes

that are well-known in the mathematical literature and have been used to describe

coalescent processes forward in time (Joyce and Tavaré, 1987; Durrett, 2010).

. Our result Eq. (D.10) can also be seen as multi-locus version of Wright's formula

for the stationary distribution of the Wright-Fisher diffusion (Wright, 1931). For
L neutral alleles at a singe locus, and if the mutation rates ©; depend only on
the target allele (house-of-cards condition), this is a Dirichlet distribution. Here,
we see that an analogous result holds for a distribution of equivalent (mutually
redundant) alleles across L loci. Although alleles at different loci cannot mutate
into each other and are never identical by descent, it turns out that the genealogy
in both models can be described by a Yule process with immigration. In contrast to
the single-locus case, we obtain an inverted Dirichlet distribution for multiple loci.
This difference results from a different stopping condition for the Yule process.
For a single locus, the population size sets an upper bound for the total number
of copies across all alleles. If we stop the process for a given total number 7
of lines, we obtain the classical Dirichlet distribution in the limit ny: — 0o. In
contrast, the population size defines a bound for mutants of a only single type in
the multi-locus case, which is reflected by our choice of the stopping condition.

This choice is appropriate unless all loci are tightly linked, as we will see below.

. In our model, we did not distinguish different mutational origins of mutant alleles

at the same locus. It is, in principle, possible to do so. For any single locus,

the process conditioned on reaching some number of mutants k; at this locus ¢
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is entirely independent of the process at the other loci. The joint distribution
of different mutational origins at this locus is therefore given by the Ewens sam-
pling formula, as described in the theory of soft selective sweeps (Pennings and

Hermisson, 2006; Hermisson and Pennings, 2017).

D.3 Allele frequency distributions

Eq. (D.10) predicts the distribution of allele frequency ratios z; at the end of the stochas-
tic phase of the adaptive process. Typically, the Yule process will approach convergence
for n 2 100. In a large population, this still corresponds to a small allele frequency.
However, since the allele frequency ratios remain constant also during the deterministic
phase, we can use the Yule process result to derive the distribution of mutant allele
frequencies also at a later stage, when (partial or complete) phenotypic adaptation has
been achieved. As above, we characterize the time of observation via the frequency of
the ancestral phenotypes f,, that is still found in the population. We treat the case of

full adaptation, f,, = 0, before we turn to the case of a general f,.

Complete phenotypic adaptation, f, =0

If selection is very strong, complete fixation of the mutant phenotype may be rapidly
achieved. For any non-zero level of recombination among loci, f,, = 0 requires, in
our model, that there is (at least) a single locus where the mutant allele has reached
fixation. In the following, we will call the locus with the largest mutant frequency the
major locus and all other loci minor loci. We are interested in the joint distribution of
allele frequencies when the major locus has reached fixation. From Eq.(D.10), we can

derive the probability that the first locus ends up being the major locus as

pe _ [1 ['p Ol dz,...d D.17
1> _,0 '“,0 inDir[{xi}i22| ] To...QXyp, . ( . )
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Since allele frequencies p; equal allele frequency ratios x; relative to the major locus in
this case, the joint distribution at all minor loci, {p;}i>2, 0 < p; < 1, conditioned on
fixation of the mutant allele at the first locus, follows as Pinpi[{p; }i>2|®]/P1=[®]. The
joint allele frequency distribution for all loci at f, = 0 results as product of a Dirac
point measure at the major locus and truncated inverted Dirichlet densities at the minor

loci. Summing over all possible loci as major locus we obtain

L

Pol{pi}i>11©] = z:j ( Di— 1] Hpj@j_1<1 + Zp])_Zjl@j), (D.18)

i#k %k

where the Dirac § constrains the distribution to the boundary faces pr, = 1 of the L-
dimensional hypercube [0, 1] of allele frequencies. Note that this formula is independent
of linkage patterns as long as loci can recombine at all and are not completely linked

(see below for this case).

Incomplete phenotypic adaptation, f,, > 0, linkage equilibrium

While the distribution of allele frequency ratios x;, Eq.(D.10), holds for any time of
observation during the adaptive process (once the Yule process has reached convergence),
the corresponding distribution Eq. (D.18) for the absolute allele frequencies p; holds only
for complete phenotypic adaptation, f,, = 0. To derive this distribution for arbitrary
fw = 0, we need to translate the stopping condition for the ancestral phenotype to
a condition on the p;,. For f, = 0, this just leads to the condition p, = 1 for the
major locus, constraining the distribution Eq. (D.18) to the boundary faces of the allele
frequency hypercube. Importantly, this constraint is independent of linkage. For f,, > 0,
in contrast, any constraint on the distribution of the p; due to the stopping condition
will necessarily also depend on the linkage disequilibria. For further analytical progress
we now assume that recombination is sufficiently strong that linkage disequilibria can be

ignored. We then obtain
L

[T =p)) = fu (D.19)

J=1
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and the joint allele frequency distribution is given by the following Theorem, which is

our main analytical result.

Theorem 2

If the adaptive process is stopped at a frequency f,, of the ancestral phenotype in the
population, and assuming linkage equilibrium among loci, the joint distribution of mutant

frequencies on the L-dimensional hypercube is

OrT™ L L —2;2163- L
v__l( - j)—— w L J w .
Pr, [{pi}i>11©] = wnp?’ 1<ij> (Z S P; ), (D.20)
=1 =1

j=1+" Pj

where the é-function restricts the support of Py, [{p;}i>1]0] to the (L — 1)-dimensional

submanifold [T/, (1 — p;) = fu.

Proof

We can rewrite (D.19) as condition on the frequency p; at the first locus,

p1:1_ 7 fw

[T (1 = py) (b-21)

to obtain the transformation from frequency ratios x; to absolute allele frequencies p;,

1> 2,

_pi_ w1 —py)
b1 HJL:Z(l - pj) — fuw

i

(D.22)

The corresponding Jacobian matrix reads (2 <i,j < L)

R Ju Ti—o(1 = pi) ey T (1 — pi)
Yoo0p 1= (Mo =) — fu)? 7 Thiea(1 = pr) — fu
pi 1—p 5ij
p— + 2 .
1—p; pit 2

167



3205

3206

3207

3208

3209

3210

3211

3212

3213

Thus

S 1- 1
J=-—Paq+-1,
Dby b1

where I is the identity matrix and Q,; = p;/(1 — p;). Since Q has the eigenvalue
>;p;/(1—p;) and a (L — 2)-fold eigenvalue 0, we obtain the spectrum of J and thus

the determinant
L

3 - pi(1—p1)
DdJ':p1L<§:‘7>. D.23

[ } ! =1 (1 - pj)pl ( )
From Eq. (D.10), we then obtain the joint distribution of locus frequencies po, ..., p., at

the stopping condition Eq. (D.21) as

P [{pi}i2]0©] = [E[tg]] ﬁ <p> ot (1 ¥ ii.)Zf:l 0,

j=1 —Dj

where the dependence on f,, is implicit in p; = p1(fw), as given in Eq. (D.21). The joint

distribution over all L loci follows as

Prolipitiz=il®] =0, 1/ 11t 0y Prolipitiz2|©]. (D.25)

Note that we do not assume that the first locus is the major locus in Eq.(D.25).

Finally, the symmetrical form Eq. (D.20) results from the relation

o 533*3%
9/ ()

Tc

59(:1:)70 ) g(xc) =cC

for the Dirac d-function.

Remarks

1. To obtain marginal distributions for single loci we generally need to perform a (L —

2)-dimensional integral (after resolving the J-function). Details for specific cases
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used in the main part of the article are provided in the Mathematica notebook.
For two loci, simple explicit formulas for marginal distributions can be derived.

E.g., the marginal distribution at the first locus reads

T (A =y — )9 = py) Ot fu(l = 2py)
Prlnion e = B e e (1- 5
(D.26)

for 0 < p; < f. The distribution has singularities at p; = 0 for ©; < 1 and at
p1 = 1— f, for ©; < 1. The distributions P} [p|©1,©,] at the major locus and

P:. [p|©1, ©2] at the minor locus (which can either be locus 1 or locus 2) follow as

P 19161, 03] = (P, [p]©1, 0] + Py, [p©,01]) H, N (D.27)

where H(z) is the Heaviside function with H, = 1 for x > 0 and H, = 0 else.
Finally, the conditioned distributions P}f [p1|©1, ©4] at the first locus if this locus

is the major/minor locus are

Py, [p1]©1, O5]
P; [p1101, 0] = f|agl<29l>2 H . (D.28a)

Py, [p1©1, 05

1
wa<[p1|®17 @2] - 1_ Pg@1'®2) *(p1*1+\/f_w) s (D28b)
>

where P@l’@”, defined in Eq. (D.17), evaluates to a Hypergeometric function for

general ©; # ©,, but reduces to 1/2 for ©; = O,.

. The marginal distribution for p; has a singularity at p, = 0 for ©; < 1 and a

singularity at p, = 1 — f,, for %, ©; < 1. To see this, consider the marginal dis-
tribution of py, which is obtained from Eq. D.25 after integration over py, ..., pr_1.

Dropping non-singular terms (such as the sums in Eq. D.24), and defining

JL=]€+1(]‘ —Dj) = fu
HyL:k—H(l - 1))

qrx =
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the singular part can be written as

1,1 1 L
Pt [pL|®] ~ /0 /0 .. ./0 Op1—an Hpi@i_ldpl ..dpp_1
qr—1 [qL-2 1 .
= o O1- d .dpr_
/0 /0 0 sz D2 - PrL-1,

after performing the p; integral. The upper integral limits ¢x account for the

constraint ¢; > 0. Substituting

. p -
D2 1= qﬁ = dpy = qadps
2

and using that ¢; = ¢2(1 — p2)/(1 — pga2) we obtain

qr—1 q3
Pt [p2|©] N/ / / ¢ Py IHPZ “dpadps . . . dpr,

qr—1 L=y \ O L
_ / _ @1+@2 1/ 7]92 ]5627161252 | I pei_ldpg - dpL_l.
0 0 Z ? 1

11— DP2g2 i=3

Since the p, integral is bounded by 1/0©, from below and by 1/05 + 1/0; from
above for all 0 < ¢, < 1, it does not contribute to a singularity in Py, [p.|®]. For

the singular part, we thus have

qr—1
Pt [pr|©] ~ / / gy o IHPZ “dps ... dpp_;.

=3

Iterating the substitution procedure for variables p3 to pr_1, we arrive at

Llg,—1 1— fu— 2o O
P [pL|©] ~ gt e = (pr> A

demonstrating the singular behavior for p;, — 0 and for p;, — 1 — f,,. Since the

labeling of loci is arbitrary, the assertion follows for all loci.
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Incomplete phenotypic adaptation, f, > 0, tight linkage

Even if all loci are completely linked, the joint distribution of allele frequency ratios is
still given by Eq.(D.10). However, the transformation to absolute allele frequencies at
the stopping condition f,, # 0 depends on linkage. Because all mutant alleles are rare
during the stochastic phase, we can ignore haplotypes with more than a single mutant
during this time. Since we ignore new mutations during the deterministic phase, mutant
alleles stay in maximal linkage disequilibrium in the absence of recombination. We thus

have

L
Pi Pi
pi=1—fu = x,=—=
jzl ’ P L= fu—Yip;
with corresponding Jacobian
Ox;  pi+0i;p1 1 — fu
Jij = - = 72] ) Det[J] = 7 .
p] p1 P1

Using this transformation on Eq.(D.10), the joint distribution of mutant frequencies

reads

Ol . L ' 0;-1
Proal{piti=1|0©] = B[éi(_lllz ;:;2_1 1;[1 (1 flfw> : (D.29)

Evidently, this is just the Dirichlet distribution on the cube [0, 1— f,,]*. This is expected
since the problem reduces to a single-locus, L-alleles problem for tight linkage. The
marginal distributions can be derived for an arbitrary number of loci and are given by

transformed [-distributions,

wa,u[pk\@]:(l_fw)_l< Dk >@k1 (1 Dk ><Zj¢k®j)l, (D.30)
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with singularities at the boundaries p,, = 0 for ©y < land atp, = 1—f, for 32,,,0; <
1 as in the linkage equilibrium case. For two tightly linked loci, the major locus must

have frequency p > (1 — f,,)/2. The distribution at the major/minor locus therefore

reads

Pfi,u [p|©1,09] = <wa,t|[p|@1, O3] + Py, ulp|O2, @1]) Hyip—(1-10)/2) (D.31)

and conditioned distributions follow as in Eq. (D.28).
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4 Polygenic adaptation:

A quantitative trait under stabilizing selection

4.1 Introduction

In the previous Chapter, we explored the prevalence of different adaptive architectures,
from single sweeps to concerted frequency shifts, resulting from phenotypic adaptation
of a binary trait with a polygenic basis. We implemented strong redundancy within the
trait basis, which yields very strong negative epistasis, a necessary requirement for the
occurrence of small, frequency shifts. Due to this model choice, combined with com-
plete uniformity of fitness effects, this model is most favorable of such a homogeneous,
concerted adaptive response of the entire trait basis (i.e. frequency shifts) which is the
expected adaptive architecture in quantitative genetics. However, it turned out that
under the effect of genetic drift, the polygenic, adaptive shift pattern requires relatively
large mutation rates.

In contrast to our model of a binary trait, classic models from quantitative genetics
have long been used to study adaptation of complex, quantitative traits (QT) with an
infinitesimal genetic basis (infinitesimal model proposed by Fisher, 1918), (reviewed and
extended in e.g. Rice, 2004; Barton et al., 2017). Their evolution is usually described
by phenotypic means and variances, however these models do not resolve individual
locus dynamics. Such models normally rely on additive genotype-phenotype maps and
include epistasis (if they do) by stabilizing selection, such that curvature of Gaussian
fitness landscape causes negative epistasis. Yet, in contrast to the redundant trait
model, epistasis depends on the distance to the trait optimum. With adaptation from
a phenotypic state far away from a new optimum selection is mainly directional and
epistasis is negligible, while negative epistasis is most effective close to the new optimum
(including sign epistasis, when the mean overshoots the optimum).

Due the discrepancies in the modeling approach between our binary trait and previous
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QT-models, as well as different, less polygenic outcomes compared to e.g. de Vladar
and Barton (2014); Jain and Stephan (2015, 2017), it is interesting to investigate how
our findings hold up. In the following section we show that our framework leads to
general conclusions, in particular also covering the quantitative trait. We demonstrate
that our previous results not only constitute a rich, new theoretical approach but serve
as an excellent stepping stone for the extension of our investigations towards studying
adaptation of a classic QT.

Still we do not abide to all traditions of quantitative genetics modeling, but we
adhere to concepts of population genetics. We do this for a good reason. For example
we refrain from using infinitely many loci of infinitesimal effect: clearly, these models
do not allow for sweeps (or even shifts ...) in the first place, as individual contributions
are by definition infinitesimal. Only trait-level quantities make sense in this framework.
In contrast, we follow the dynamics of allele frequencies within a finite genetic basis
and do so rather in dependence of the level of phenotypic adaptation (as customary
in quantitative genetics) than in time. Moreover, we dissect the adaptive architecture
according to the contribution of loci to the adaptive response of the trait. However, our
model choice represent a classic QT-model, comprising an additive phenotype-genotype
map of a polygenic basis and stabilizing selection. So in conclusion, although we use
a population genetics model and describe (changes in) allele frequencies, we assess the
adaptive process from a phenotypic perspective.

We embed this into a non-deterministic framework including the effect of genetic
drift, mutation and selection and extend previous results on a deterministic QT-model
investigated by de Vladar and Barton (2014); Jain and Stephan (2015, 2017). Im-
portantly the current QT-model allows all possible adaptive architectures, from classic
expectations in quantitative genetics to population genetic, i.e. frequency shifts to
sweeps, as well as any intermediate patterns. We show that the newly developed ana-
lytical framework for the binary trait, as well as the qualitative classification of adaptive

patterns, easily extends far beyond complete redundancy.
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4.2 Model

We assume a haploid, panmictic population and model adaptation of a QT with a
polygenic, genetic basis of L loci to a new phenotypic optimum Z,,. Each locus i is
biallelic, with an ancestral variant a; and a derived variant A;. Without loss of generality
the ancestral allelic effect is set to 0 and each derived allele A; obtains a locus effect
~;. All loci contribute additively to the phenotype Z of an individual, which we hence

obtain as

1<i<L
such that 04, = 1 if the individual carries the A; allele and 0 otherwise. With this
parametrization we obtain the ancestral phenotype (constitutes of only ancestral alleles
at all loci) as Zy = 0.

We implement stabilizing selection on the phenotype Z proportional to a Gaussian
fitness function, such that the fitness of a phenotype is given by

g

w(Z) ~ exp| 5 (Z = Zopt)?]. (4.2)

We obtain the marginal fitness values of a given allele by averaging over all possible
backgrounds. For that we use the fact that the marginal phenotypic effect of a given
allele a; and A; at locus i, < Z,, > and < Z,, > (a phenotype containing a; or A;),

are additive and, assuming LE, can be expressed as

< Ly > Ay =< Za, > . (4.3)

such that the mean phenotype Z can be simply be given by the average over the ancestral

allele at the given locus shifted by the individual effect of the derived allele at locus 7,

Z =< Zg; > +pa, - Vi- (4.4)
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If we assume weak selection dynamics and linkage equilibrium between the loci,
we can approximate the multi-locus dynamics with the continuous, single locus allele

frequency dynamics at locus ¢

pAi - (W:’:}Z - (’D)pAi (45)

where w; and @ are the Malthusian marginal fitness of an allele and the mean

population fitness, respectively. Using & = w pa, +w; (1 — pa,), we obtain

15144 = ]914i (]' - ]?14i) (ij;i - ujzi ) (Zl.(i)

for the dynamics of the derived allele A;.
We obtain the marginal fitnesses for a single allele by averaging over all possible

phenotypic backgrounds (< . >, averaging over all background of a;)

o
wh =< exp[—E(Zai — Zopt)?] > 7.,

i o
wh, =< exp[—g(Zai + Y — Zopt)?] > Za, - (4.7)

Given our evolutionary dynamics given in Eq. (4.6), we are interested in

o o
i~ i, =< D[ 2 (Zay 4 %t~ Zoge)) 520, — < XD 22, — Zoge)) >,
(explz|=1+x) g o
~ — < 5(2a¢ + i — ZOPt>2 > 7., T < §<Za¢ - ZOPt)Q] > Za,
o
= —5%(2(< Zg; > —Zopt) + %‘)
Eq(44) O _
q: _571, (2<Z — i PA; — Zopt) + 7@)
> i
= —07((Z = Zope) + S1- 2p4)). (4.8)

Using this result in Eq. (4.6), we obtain the dynamics of a derived allele A; as
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pa = pa(L=pa) - 0%((Zope — Z) = (1= 2pa,)) - (4.9)

=A

This model corresponds exactly to the model described by de Vladar and Barton
(2014); Jain and Stephan (2015, 2017). As detailed in these studies, the first term
of A captures the dynamics caused by directional selection towards the optimum, i.e.
selection up the fitness slope. The second part of A covers the sorting of alleles, i.e.
disruptive selection, resulting in depletion of genetic variation. The first term dominates
the dynamics as long as the trait mean is far from the optimum. As also done in Jain
and Stephan (2017), we investigate and contrast results for two models for the adaptive
dynamics of a QT. Namely, we either approximate A by only the first term, which we

call the "directional selection model",

Pa; = pa(l = pa)oyi(Zopt — Z) (4.10)

or we study the full dynamics, including allelic sorting, which we refer to as "full

model" or "full selection model", given in (4.9).

4.2.1 Simulations

With these result, we set up Wright Fisher simulations to study the adaptation of poly-
genic trait under stabilizing selection and mutation, including the effect of drift (finite
population size within our simulations). We simulate 10 000 haploid individuals in a pan-
mictic population under the assumption of linkage equilibrium, such that we can treat
every locus separately. The allele frequencies at all other loci influence the dynamics
at a particular locus only via the mean trait value Z, included in the marginal fitness
term. Backward and forward mutation at allelic rate u; per individual and generation is
followed by binomial sampling for selection coupled to reproduction. For the "directional

selection model", we use the selective weights corresponding to the marginal fitness,
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given as

explo - Vi - (Zopt — Z)]. (4.11)

Analogously, for the "full model", we simulate using

> i
explo - Vi - (Zopt — Z — 5 (1 —2pa,)] (4.12)
as selective weight of the derived allele. In both cases the weight of the ancestral allele
is normalized to 1. We study adaption from de novo mutation, as well as from standing
genetic variation (SGV) at mutation-selection-drift equilibrium. In the current model we

focus on equal locus effects, 7, = + and ¢ = s - L, such that we obtain v; - 0 = s for

L

each locus.

Starting conditions

Adaptation from de novo mutations: We start from a monomorphic population with only
ancestral alleles Z = 0, and subsequently let the population evolve to a new optimum
Zopt > 0. We stop the simulations, once the mean trait value has reached the stopping
condition 0 < Z = &% < Zop or the new optimum.

Adaptation from SGV: We choose a first optimum trait value, 0 < Z5%" < 1. In this

case the distinction into "ancestral" and "derived" allele is no longer valid. Nevertheless

we still assume two alleles (a; and A;) per locus i. We select the first £ < L loci and

ZSGV

set the frequency pa, = 1, to match this first optimum. The optimum ZZ ¢

is always
chosen such that it can be realized with a purely monomorphic population (every locus
is monomorphic for either the a; or the A;). We let the population equilibrate under
selection, mutation and drift for a burn-in period of 8N, generations. In Fig.4.14, we

show that after 8 N, generations, the populations have equilibrated to a stable state,

where the variance of allele frequencies

d ( ZlgigL pi(l - pl))
dt

= const.
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stays constant. After equilibration the optimum jumps to a new value (usually ZJ¢" <
Z,pt) and the population evolves under mutation, selection, and drift. We stop the
simulations, once the mean trait value has reached the stopping condition Z5¢" < Z =

c
TZ S Zopt-

4.2.2 Analytical approximations

Using our theoretical framework developed in Chapter 3, we can obtain analytical pre-
dictions also for stabilizing selection. Again we separate the adaptation into two phases
(Fig.3.2). An initial stochastic phase, and a subsequent deterministic phase, covering
evolution until the end of the rapid adaptive phase (until the phenotypic optimum is
reached). While we ignore mutation and drift during the deterministic phase, epistasis
and linkage become important during the latter phase. Dynamics in the stochastic phase
are modeled with the stochastic Yule pure birth process, such that we only track the
origin and establishment of immortal mutation lines. For details see Section 3.3.4. New
mutations occur at rate N.u; per generation and establish with probability p.s; ~ 2s.
Simultaneously, existing derived alleles at all loci propagate at rate s,. We relegate the
detailed derivations to the Appendix F. and only state the main steps and the final result
here.

We start out with the directional selection model (4.10), as in Jain and Stephan
(2017),

Di = 5%‘]91'(1 - pi)(Zopt - Z)

where Z = ¥, pivi (equivalent to Eq.(4.4)) is the mean of a QT under stabilizing

selection. Defining new variables u; = p;/(1 — p;), the dynamics can be written as
U; = S%‘Uz‘(Zopt - Z)

and
(9 U; U;

Ol Ui N (L — 2
Sru = ) o = 2)
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ssrr - Assume equal locus effects, we set 7; = ~. Like for the model with complete redundancy,
1 we then obtain a constant ratio of 9/0t(u;/u;) = 0. To include genetic drift, we set
;379 UP a Yule process model for parameters u;. Note that the u; are unbounded variables,
a0 in contrast to the complete redundancy case, and run from 0 to oo. According to the
11 Yule process, the joint distribution of the ratios u;/ Y, u; converges to the Dirichlet
12 distribution and the distribution of the ratios w;/u; converges to the inverted Dirichlet
ase3  distribution. In general, we are rather interested in the allele frequencies p; than in the

1384 ratios u; and in a stopping condition based on the trait mean, or of

:Zpizz =iy (4.13)

with ¢z € [0, L]. We relegate the detailed derivations to the Mathematical Appendix F.
Defining © = O, and the inverse of the Beta-function

_re+x,6)

S re)mre,)

1 we finally obtain the joint distribution of the p;, i = 2,..., L (due to the stopping

s  condition, we can eliminate one locus) at the stopping condition as

L ©i—1 L
i’ Z':sz‘(l - pi)
Plpiler) = O [T~ (1 n :
z-:Hz (1 —p;)®it! (cz — Thea i) (1 + oo Pk — C2)
-0 - L, O;
.<1+1+Z£:2pk—czi Di ) ( Cz— Spo Dk n Lo ) 2
Cz — Zﬁzg P i 1 —p; I+ Z£=2 Px —Cz o L —pi
(4.14)

)

which is the analog of the joint distribution function in the redundancy case, see
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Eq. (D.20). For two loci, in particular, we obtain (ps = p)

_ F'O+063) p1—p)+ (cz—p)(1+p—-cz)
['(©)['(6,) (cz —2p(cz — p))o+©2

((ez =p) (1 =p))" (L +p—ez)p)” . (4.15)

4.3 Results

As for the redundant trait model and if not stated otherwise, we contrast results for
constant ©p;, = 2N (L — 1). With complete redundancy in the binary trait model,
Oy, captures the level of redundancy within the trait basis. However with the QT-
model effective redundancy depends on the distance between the mean phenotype of the
population to the new optimum. As detailed in the introduction in Eq. (6), @gg = @bg%
captured the rescaled background mutation rates, where L' gives the number of truly
redundant loci. Thereby L' = L — d, where d is the number of loci required to flip
from a; — A; in order to reach the stopping condition (the point of observation of
the architecture). Thus follows that the more loci are needed, the lower the degree of
redundancy within the trait basis, as well as that the effective ©;, declines as adaptation

proceeds.

4.3.1 Adaptive architectures for adaptation from de novo mutations

At first we investigate the adaptive architecture from a monomorphically ancestral popu-
lation (Z = 0 at t = 0). As in the complete redundancy model, we look at the marginal
distributions of loci ordered according to their contribution to adaptation (major and mi-
nor loci). For adaptation from the ancestral state, we refer to the locus with the highest
frequency increase as the "major locus" and all others as "minor loci". Additionally, we
investigate the marginal allele frequency distributions of an arbitrary trait locus.

These two distributions capture different aspects of the collective, adaptive behavior

of the entire trait basis: The ordered distributions show how many loci actually contribute

to adaptation, and thus make comparisons between different trait basis sizes easier.
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The marginal distribution of an arbitrary locus (also detailed in Section C.4.1 and the
Discussion of Chapter 3) gives an overview of the potential destiny of a particular locus,
corresponding to a more "gene centered point of view" used previously in Chevin and
Hospital (2008); Pavlidis et al. (2012); Wollstein and Stephan (2014).

We start our analysis with two loci, where we try to disentangle the impact of
mutation rates, selection strength, time point of sampling and model choice. We proceed
by including larger trait basis and analyze the effect various degrees of redundancy. As
before, we distinguish more or less polygenic responses based on how similar or different
the allele frequency distribution of major and minor loci are. Alternatively, for the
marginal distribution for an arbitrary locus a strongly u-shaped distribution is considered
as characteristic of sweep patterns and most loci are found at the bounds with very
low (no contribution to adaptation) or very high (completed sweeps) frequencies. In
contrast a homogeneous response, what we consider a more polygenic adaptive pattern,

is characterized by stronger weight on intermediate frequencies.

Adaptive architectures for two loci

In Fig.4.1 (L = 2, where Z = 1(p; + p»)) we contrast adaptive patterns for strong and
weak selection, s, = 0.1 and s, = 0.01, respectively under the directional as well as
under the full model. We look at three "snapshots" during the course of adaptation to a
new optimum Z,,, = 0.5, namely once the population has adapted to £ and % - Z,,;, as
well as at complete phenotypic adaption. Note that complete adaption is accomplished
if the sum of the derived allele frequencies p; + py = 2 - Z,,s = 1 for two loci, resulting
in a symmetric marginal distribution. Any adaptive pattern lies between either one locus
having completely fixed or both loci having increased their derived allele frequency by
50%. (For figures illustrating adaptation to Z,,; = 0.3,0.8 consult Figs. E.1, E.2.)
Overall, we see a shift from u-shape for ©,, < 1, to unimodal frequency distributions
for ©, > 1 with the directional selection model, irrespective of the stopping condition.

Especially at complete adaptation (distributions in blue) we see that the directional
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selection model yields more polygenic adaptive signatures, than the full model. There,
sweeps (u-shape) still dominate the adaptive response for ©,, < 1 and weak selection
and O, < 10 with strong selection. In contrast, if we sample the population further
away from the optimum, Z << Zopt, the directional and the full model yield much more
similar results.

The different outcomes of the two models result, in dependence of the point of
sampling can be understood, when looking at the dynamics, see Eq.(4.9). There we
see that if the mean phenotype of the population is still quite far of the optimum the
first directional selection term of the dynamics dominates. Yet, if the mean phenotype
approaches the new optimum, selection in the directional model is almost zero (Z,,: —
Z) ~ 0 while the second term, sorting out allele frequencies in the full model, is still
influencing selective dynamics. Hence results of the directional selection model and the
full model for the early part of the rapid adaptive phase coincide, while deviations start
to accumulate close to adaptation.

Furthermore, we observe an effect of selection strength only for the full model. In the
full model, we obtain more polygenic responses with weak selection compared to strong
selection. Again this effect is most pronounced at points closer to the optimum. For
example, if we consider O, = 10 we still observe a u-shaped distribution with strong
selection, yet with weak selection the marginal distribution has become unimodal. Given
that the effect is strongest for sampling close to the optimum, this hints towards an
effect of allele sorting in the full model. With Malthusian fitness values increasing o in
the dynamics entails increasing the difference between the directional and the disruptive
term.

Finally, including or neglecting back-mutations in this scenario does not lead to any
differences in the adaptive response in any case as can be seen when comparing (Fig. 4.1,

E.3 with and without back-mutations).
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Figure 4.1: Marginal frequency distribution at three stages of adaptation. The
marginal allele frequency distribution of a single locus (L = 2) upon adaptation to

Zopt = 0.5 from a completely ancestrally monomorphic population. The "snapshots"

(yellow, red and blue) show the population at three stages of adaptation: When the

population has adapted to % - Zopt in yellow

1,
'3

Zopt in red and at complete adaptation

to the new optimum Z,,; in blue. We contrast the results for the directional selection
model and the full model for weak and strong selection, s, = 0.01 and 0.1 and for 10 000
replicates. There are no simulation results for populations evolving under the directional
selection model for ©,, = 100, as they never reach Z,,, because mutation pressure
exceeds selection close to adaptation.
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Adaptive architectures for larger trait basis, L > 2

We proceed by investigating adaptive architectures for larger trait basis. To compare
traits with a different size of the basis, we measure the distance to the new optimum

in units of +

+, requiring always the same amount of loci for phenotypic adaptation irre-

spective of L. In Figs.4.2 and 4.3 we set Z,,; = % such that all are redundant (similar
to binary trait model in Fig.3.4). As a second step and in analogy to the relaxed redun-
dancy model (Fig.3.5), we investigate the adaptive architecture for Z,,, = 2 - % This
means that for an arbitrary trait basis a single, respectively two fixations are already
sufficient to reach the new optimum. In the latter case, we refer to both fixed loci as
"major loci", if we find that they contributed comparably to adaptation, and the cohort
of major loci is clearly distinguishable from all other loci. In both cases we sample the
population upon complete phenotypic adaptation to the new optimum, where we expect
the largest differences between the full and the directional selection model.

In general we see a strong uniformity within the adaptive architectures across different
trait basis sizes with constant Oy, (as in the redundant trait model). This is especially
true for the directional selection model. For this model it is also possible to describe
multi-locus models with L > 2 with the two locus or three locus formalism (To obtain
the desired approximations we need to integrate over Eq. (4.15) for 2 loci and Eq. (4.14)

for 3 loci, respectively.) as long as mutation rates are not too high. We find the following

threefold classification for adaptive patterns across different L (see Fig.4.2 and 4.4):

1. For ©;, < 0.01 we see mainly completed sweeps. For Z,,; = % almost the
entire phenotypic adaptation is attributable to one major locus, and similarly for
Zopt = 2+ + we obtain two major loci, which sweep to fixation. All other minor

L

loci do not contribute.

2. For 0.1 < Oy, < 1 we obtain a hand full of complete and partial sweeps. In detail
for ©,, = 0.1 there is usually only one additional minor locus (0 << p < 0.5)

contributing besides the one (Z,,x = 1) or two (Zy, = 2 - 1) major loci. For
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1 and < 7 for

Oy, = 1 adaptation is achieved few loci, usually < 6 for Z,,; = ¢

Lopt = 2+ % Thereby the distributions of majors to minors show a clear order over
the entire range 0.01 < ©,, < 1, and still show a clear structural heterogeneity in

the adaptive response across different L.

3. Finally, for 10 < ©y, we find very similar patterns of subtle, concerted frequency
shifts for both optima, Z,,, = % and Z,, = 2+ % For L > 2 major and minor

distributions blur and form a homogeneous, unimodal joint distribution.

This classification of adaptive architectures in is good agreement with the redundant
trait model. However, the results are more polygenic with the directional selection model.
For the full model, the classification is a bit more elaborate, as it also depends
on L. Because of the analytical complexity of the full model, we cannot obtain any
approximations, when the population mean phenotype has come close to the optimum.
In Fig.4.3 and 4.5 we find the following adaptive patterns for complete phenotypic

adaptation, which are closely related to what we observe with the binary trait model:

1. For ©, < 0.01 adaptation is entirely achieved by sweeps at one major (Z,,; = %)

or at two major loci (Zgy =2+ 7).

2. For ©y, = 0.1 and L < 10 this adaptive pattern is preserved, in contrast to the
directional model, where we locate already few partial sweeps. For L = 100 we
also find that one minor locus performs a partial sweep in addition the major sweep

(or 2 major sweeps with two required mutation steps).

3. For ©,, = 1, we still find a very heterogeneous pattern, i.e. a major sweep and one
or two minor partial sweeps with L < 10 while the major distributions is already

much more flat (shifted to intermediate frequencies) in the case of L = 100.

4. This trend is continued for ©,, = 10. For L < 10 there is still a clear distinction

between one or two majors, for Z,,; = % and Z,,s = 2 - 7, respectively, while for

1
L

L = 100 we can already characterize the adaptive architecture as shift like.
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5. Only for ©;, = 100 we obtain homogeneous, polygenic responses for all L. These
frequency shifts are still necessarily quite large in the case of L = 2, while the

become rather small for larger basis.

In conclusion, for small L, the disruptive term is quite important and leads to stronger
sweep-like architectures. For large L the full model gets closer to the directional selection
model because the directional selection term dominates for a longer time during the

adaptation (the disruptive term has an extra factor 1).
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Figure 4.2: Major and minor distributions at adaptation, 7., = % with the

directional selection model. We show the distribution of the leading locus (red) and
the runner ups (from blue to green) for 2 to 100 loci at complete phenotypic adaptation
for evolution under the directional selection model. Adaptation occurs from de novo
mutations only to a new optimum Z,,, = % such that for each trait basis phenotypic
adaptation is completed with only a single fixation event. We simulate 10 000 replicates
for each mutation rate at a selection strength of s, = 0.1. The approximations for L = 2
correspond to Eq.(4.15). The approximations in the L > 2 cases correspond to the 2
locus approximations with ©; = ©, = O, and the stopping condition c; = Z,,; - L.
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Figure 4.3: Major and minor distributions, Z,,; = % with the full model. Rest as
in Fig. 4.2
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Figure 4.4: Major and minor distributions, Z,,; = 2 with the directional selec-
tion model. We show the marginal distributions of the ordered major and minor loci
at complete phenotypic adaptation for evolution under the directional selection model.
Adaptation occurs from de novo mutations to a new optimum Z,,; = 2 - % for L > 2
such that for each trait basis phenotypic adaptation is completed with two fixation event.
The first column for L = 2 shows adaptation to Z,,; = % as a reference for the two
locus approximations, Eq.(4.15), given in the rest of the panels, which fit well to the
second major and the first minor (3rd order locus). We simulate 10000 replicates for
each mutation rate at a selection strength of s, = 0.1.
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Figure 4.5: Major and minor distributions at adaptation requiring two mutational

steps with the full model. Rest as in Fig. 4.4
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4.3.2 The course of adaptation during the rapid adaptive phase

When studying the course of adaptation, we refrain from sampling points conditional
on time, but rather prefer a measure of the level of phenotypic adaptation as a point of
reference. This entails, that different temporal dynamics, caused by stochastic processes
such as waiting times for new mutations, are negligible in favor of studying the qualitative
adaptive dynamics.

As already seen in detail with the 2 locus model, the stopping condition is decisive
for the differences between the directional selection model and the full model. In the
Section above we sampled the population at complete adaptation for L > 2 to capture
the initial dynamics of the rapid adaptive phase, as well as the dynamics closer to the
optimum. In Fig. 4.6 and 4.7 the impact of deviating stopping conditions far away from
the optimum becomes apparent, as the directional model and the full model coincide well
there. Differences accumulate only closer to the optimum. As discussed for two loci, this
is due to the second term in the evolutionary dynamics of the full model, the sorting of
alleles, which plays an increasingly important role, if the population mean moves closer
to the optimum. For the same reason the analytical approximations work well for the full
model at stopping conditions far away from the optimum, while they do not reflect the
later dynamics of variance depletion and hence are off once the population has (almost)

adapted.
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Figure 4.6: Stopping close or far away of the optimum, L = 10. The marginal
distribution of the major (red) and the successive minors (first, second, third, etc.,
from dark blue, light blue to green) show that the resulting adaptive architectures of
the directional and the full model are much more similar if the population is sampled
further away from the optimum, e.g. 7 = éZopt (left two columns), than close to
complete adaptation at Z = %Zopt (right two columns). Simulations results are based
on 10000 replicates per mutation rate with selection strength s, = 0.1. Approximations
for ©y, = 0.01 are based on the 2 locus formalism, while they are based on the 3 locus
approximations (large dashes) for 0.1 < ©,, < 1. For 7 = %Zopt we contrast the 2 and
more accurate 3 locus approximations for 0.1 < ©;, < 1.

193



100 loci, Z,p, = 0.01

dirsel. @ Z =1Z,, full@Z=12,, dirse. @ Z=3Z,, fll@Z=23Z7,,

s { Oy, =0.01 s s s
6 : 6] 6 6
a 4 i 4 4
2 2 2 2
i H
. — e e o
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
8 | Oy =0.1 8 8 8 i
! !
J J
6 i 6 6 1 € |
! !
ot 1 affi 4 J 4 ;
% b \ H
Nt R’ r K
2} 2 2 [ 7 2%, s
i ‘1 oo A
L A T Ay S . ,,,,;_w_;’
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0
20 20
K
i
15 15
10 10ff1
.
- 0
0.8 1.0 0.4 0.6 0.8 1.0 1.0
6ol Opg =10 60f| 60| 60
aof, 0} PR a0
200, 20{, 20] [+ K
A i I
]‘v 24 i ;.'k':\,
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 08 1.0 0.0 0.2 04 0.6 0.8 1.0 0.6 0.8 1.0

allele frequencies of major and minor loci

Figure 4.7: Stopping close or far away of the optimum, L = 10. The marginal
distribution of the major (red) and the successive minors (first, second, third, etc., from
dark blue, light blue to green, 11th to 100th locus are given as cumulative distribution
in light green) show that the resulting adaptive architectures of the directional and the
full model are much more similar if the population is sampled further away from the
optimum, eg. Z = 1Z, (left two columns), than close to complete adaptation at
Z = %ZOpt (right two columns). Approximations are based on the 2 locus formalism for
Oy, = 0.01 and on the 3 locus formalism (large dashes) for 0.1 < ©,, < 1. Rest as in

Fig. 4.6.
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4.3.3 Moving the optimum further away: Relaxing redundancy

Complete or almost complete redundancy of the trait basis is a limiting assumption.
Hence in the following section, we extend our considerations to strongly relaxed redun-

dancy for 10 or 100 loci. Before we measured the distance to the optimum in units of

1
L

while now we study the course of adaptation to the phenotypic optimum at 50% of
its phenotypic range (evolutionary accessible range), e.g. Z,; = 0.5. This results in
relaxation of redundancy in two ways. First in general we need at least 50% of all loci
to contribute to adaptation, to reach this optimum, when we start from a completely
ancestral population. Second, the bigger the basis, the more loci we need to reach this
optimum. In Fig.4.8 and 4.9 we first show the marginal distribution of a focal locus
and confirm the previously observed trend that the directional model tends to be more
polygenic. Nevertheless, the differences between the models attenuate with larger basis,
as well as with sampling further away from the optimum. For 100 loci they already
become relatively small. All of this can be understood, when considering the selective
weights. As depicted in Fig.4.10, they become much more alike for increasing number
of loci between the two the selection models for sampling before complete adaptation
(at Z = £ Zyy or = 2Z,,). While the difference for 2 loci is apparent, it is already
much smaller for 10 loci and almost negligible for 100 loci.

Of course, with a larger trait basis and a far optimum, we require the contribution
of more loci (in absolute numbers) to reach phenotypic adaptation at Z,,; = 0.5. As
a result we find stronger sweep patterns also for high mutation rates, with larger trait
basis. In detail, we observe that for ©,, < 1 and L > 10 and L = 100 and 0, < 10
the adaptive architecture among the contributing loci is very heterogeneous, leading to
a strongly u-shaped distribution due to several sweeps.

In Fig.4.11 we further disentangle the adaptive architecture for 10 and 100 loci
given in red in Fig.4.8 and 4.9 at Z = %Zopt. To do so, we bin loci according to their
contribution as before and depict their marginal frequencies. For 10 loci we follow our

established concept and plot the distribution for the major, first minor, second minor
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Figure 4.8: L = 2, 10 and 100: Marginal allele frequency distribution with
the directional model. The marginal allele frequency distribution of a single locus
for various trait basis sizes resulting from simulations using the directional selection
model to study adaptation to a new trait optimum, Z,, = 0.5. Adaptation occurs
solely by de novo mutations from a monomorphically ancestral population with strong
selection, s, = 0.1. As before, we show the allele frequency distribution at three different
stages towards complete phenotypic adaptation, namely when the mean phenotype of
the population has reached 1/3- Z,,; in yellow, 2/3- Z,,; in red and evolved to complete
phenotypic adaptation in blue. For the two first rows, the single intermediate peaks for
10 and 100 loci are single loci on their way to fixation, therefore the yellow peak appears
right to the red peak. As above we use 10000 replicates per mutation rate and trait
basis size.
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from simulations using the full selection model. Parameters as in Fig. 4.8.
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Figure 4.10: Marginal fitness of a focal locus. The marginal fitness of an arbitrary
locus is calculated as the exponential of the selective weights as in the simulations and is
depicted for 2 (in orange), 10 (in turquoise) and 100 (in black) loci in dependence of the
allele frequency 0 < p; < 1. We show results for the full selection model (short dashes)
and the directional selection model (long dashes), respectively. While the slope of the
full model is almost constant with increasing p;, the weights in directional selection
decrease. Generally, the selective weights for the two models become more and more
alike for larger basis. Selection is set to s, = 0.1.

etc.. For adaptation of L = 100 we need such a large number of non-redundant loci
to fix to reach the new optimum, that the previous way of illustration is not applicable.
Therefore, we bin the major and its 9 consecutive minors, followed by the 10th to the 19th
minor, 20th to 29th etc., and display each of their joint, marginal frequency distributions.
First, we see that the full and the directional selection model are still pretty similar at
this stopping condition. Secondly, we recover the analogous classification of adaptive
architectures as before. To see that, we need to keep in mind, that with the chosen
optimum of Z,,; = 0.5 we need a large number of loci to contribute to adaptation in a

non-redundant way.

e For Oy, = 0.01 we see most of the loci concentrated at the bounds, so either they

have swept to fixation or they have remained in the ancestral state.

e For Oy, = 0.1 we still find a clear heterogeneous pattern, between loci distributed
at the two bounds (ancestral and derived state), yet for 10 loci we have about
1-3 loci at intermediate frequencies, yielding on average 1-3 partial sweeps, on top

of at least 2-3 completed sweeps. For 100 loci, we see an intermediate peak also
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only for one cohort (4th cohort). This cohort of 10 loci corresponds to the 30th
to 39th locus, similar to the 10 locus case, where the intermediate peak belongs
to 3rd minor. This analogy is also indicated by the same color of the respective

intermediate peak.

e For O, = 1 we observe many partial sweeps in the 10 locus case. In the 100
locus case the cohort of the 30-39th locus is almost uniformly distributed across
the entire range of frequencies, also indicating many partial sweeps within that

bin.

e For Oy, = 10 and 10 loci, the distributions start to blur into each other. While
given the Z,,, these frequency changes are still relatively large, probably best classi-
fied as partial sweeps, their homogeneous nature is already indicative of polygenic,
shift-like behavior. Analogously in the 100 locus case, we find 3 cohorts of a total

of 30 loci "smeared" across the frequency space.

e Finally, for ©,, = 100 we obtain a clear shifts pattern for 10 loci. Similarly, for

100 loci almost the entire basis starts to contribute to adaptation.

Following the dynamics of adaptation to a far optimum

Finally, we can also adapt our approximations to reduced redundancy and manage to
comprehensively predict the dynamics of the entire adaptive process. For illustrative
purposes we set the phenotypic optimum to the maximum of the phenotypic range
Zopt = 1, and follow the course of adaptation for 10 loci, see Fig.4.12 and 4.13. This
choice of Z,, finally means that all 10 loci will eventually have to fix to the derived
state to reach complete phenotypic adaptation (of course, we can never really reach
it, because of back-mutations). The closer 7 moves to the optimum, the smaller the
number of loci becomes that can redundantly contribute to further adaptation: Assume
that the mutation rate is sufficiently small, that fixations occur one after the other.

At the beginning, where the population mean is Z = 0, each of the 10 loci is equally
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Figure 4.11: Adaptive architectures with low redundancy. We show the marginal,
ordered allele frequencies for 10 and 100 loci. For 10 loci each color represents one locus,
e.g. major, first minor, second minor etc.. In contrast for 100 loci we summarize 10 loci
each, such that one color always depicts the marginal allele frequency distribution of 10

loci, e.g. the major, first minor,

... 9th minor, followed by 10th to 19th minor etc..

Populations adapt to a new optimum Z,,; = 0.5 and simulations are stopped, when
populations have adapted to Z = %Zopt. 10000 replicates per mutation rate, s, = 0.1.
We do not obtain any simulation results for the directional selection model at ©;,, = 100.
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likely to take the first step. In this case a focal locus that rises, has to out-compete
9 redundant competitors. Yet, if the population has already traveled ¢ > 1 mutational
steps, a focal locus that establishes has to battle a smaller number of potential rivals,
namely L' = L — (i + 1). We succeed to provide well fitting approximations for the
focal locus that is about to rise and its successor for sufficiently low mutation rates,
by appropriately rescaling the background mutation rate ©,, = L' - ©;, to account for
reduced redundancy. As before, we see that the directional selection model and the full
model coincide pretty well for earlier sampling, while differences accumulate during the

later course of evolution closer to the optimum.
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10 loci, directional selection model, Z,,; =1
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Figure 4.12: Major and minor loci over course of adaptation. Using the directional
selection model, we always plot the two highest ranking, redundant loci. At Z = %OZopt
these correspond to the major and first minor. Once we stop at 7 - % with i >1,7—1
loci are not redundant anymore, as at least ¢ loci are required to reach this optimum
(¢ — 1 non redundant steps and L — (i 4+ 1) remaining, redundant loci required for the

last mutational step). Hence at Z = T Zopt, redundancy is reduced and we need to
appropriately rescale ©;, = @Zg within our two locus approximations. We use the focal
mutation rate ©; = O, for the larger locus in the 2 locus approximations for the major
locus and the rescaled ©}, = (L — i)©y, for all other mutation rates. 10000 replicates,

Sp = 0.1.
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10 loci, full model, Z,,; =1
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Figure 4.13: Major and minor loci over course of adaptation. Adaptive architecture
resulting from the full selection model. All other parameters are chosen as in Fig. 4.12.
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4.3.4 Adaptation from standing genetic variance
Build-up of standing genetic variance

We let populations evolve under both selection models and test when they have suc-
cessfully equilibrated to an optimum 0 < Z5C¢V < 1. At time t = 0, we fix L - Z55V

loci to 1 (A; allele) and the rest to 0 (a; allele). We choose Z5%" in a way, such that
this is always possible. Then we follow the mean of the normalized variance within the
population %ZigL pi(1 — p;) over the course of time (see Fig.4.14). We find that after
8N, generations the mean population variance has reached a stable value. This is much

lower for the full model, compared to the directional selection model, as the former

purges genetic variance much more efficiently.

Adaptation from SGV

In Fig.4.15 and 4.16 we present our results for adaptive patterns for adaptation from
SGV (i.e. mutation-selection-drift balance) to a new, shifted optimum. As we let
the population equilibrate for 8N, generations at an equilibrium 0 < Zospfv < Zopt,

we implement evolution under the full selection model during the equilibration phase,

because the directional model is not well suited to capture this phase. Again we initiate

ZSGV

the simulations with L-Z75

loci fixed to p4, = 1 and the rest fixed to ps, =0 att = 0.
With low mutation rates, and ZJ5" = 0.5 this entails that 50% of the loci will be fixed
or close to fixation for the A;-allele also at the change of the environment. Subsequently,
the new optimum is shifted to Z,,, which we here set to Z,,, = Z55" + 1 in Fig.4.15
and 4.16. This corresponds to a distance of one mutational step and hence complete
redundancy within the remaining loci in state a;. We compare allele frequencies py4,
before and after adaptation, that is after the equilibration phase (gray squares) and at
complete phenotypic adaptation to the new optimum for L = 4, 10 and 100 loci (colored

circles).

Given that we do not start from an ancestral monomorphic a; state, the locus with
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Figure 4.14: Available SGV with directional selection and full model. We show
that the normed variance of allele frequencies, ;37 pi(1 — p;), with Z5GY = 0.5 has
equilibrated after the burn-in-period of ¢ = 8N, (grid line). The obtained mean in the
full model is about a magnitude lower compared to the directional selection model. We
simulate 1000 replicates per mutation rate, for 10 000 haploid individuals, and a selection

coefficient of s = 0.1.
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the highest allele frequency at the end is not necessarily the locus that contributed
the most to adaptation. Hence we need to adequately redefine the terms "major" and
"minor" loci in this context. If used, these will refer to the locus/loci that contributed
the most (second most) to adaptation given their respective frequency increase during
adaptation to the new optimum. In general, for low to intermediate mutation rates, we
expect the largest changes for the éth locus and its runner-up(s). These start out at
pa, ~ 0 for low mutation rates. For 4 and 10 loci the representation is rather straight
forward, and we simply look at the marginal allele frequency of all L loci within the
basis before and after phenotypic adaptation. Yet, for 100 loci, we need to find a good
representation. Hence, as before, we bin 10 loci together, such that we present the locus
with the highest frequency up to the 10th locus together, followed by the 11th to the
20th and so on. We do so for the distributions at the change of the environment (gray
squares), as well as at complete phenotypic adaptation (colored circle). Additionally, we
represent 10 individual loci, with order 46 to 55 individually (in colored stars), as these
are among the most likely to change and contribute to adaptation.

As before, we find that adaptive architectures with the directional selection model are
more polygenic, than they are with the full model and that these differences attenuate
with sampling further away form the optimum, yet they do not vanish (data not shown).
Overall, we can come to a similar classification of unified adaptive patterns. For the
directional selection model, we find mostly one locus sweeping through the population
for low ©,, < 0.01. On the other hand, we observe concerted frequency shift like
patterns for ©,, > 10. For intermediate mutation rates, the adaptive patterns are best
characterized by a handful of partial sweeps.

The bounds of this classification patterns are shifted upwards, that is less polygenic in
the full model, such that we have mostly single sweeps for ©,, < 0.1 and subtle frequency
shifts for ©,, > 100. For example for L = 100 and ©, > 100, we find that the 46th
to 55th allele frequency distributions are all situated at intermediate frequencies, and as

such all homogeneously contribute to adaptation. Intermediate patterns of completed
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and partial sweeps are found for mutation rates between these bounds.

As discussed before, to obtain well fitting predictions we need to rescale ©, in order

ZSGV

to capture effective redundancy. With adaptation from Z

= (0.5 to a new optimum

Zop = Z5GY + 1, redundancy within the trait basis is reduced, as it takes already £ loci

to reach Z(;qp(t;v. This leaves only % redundant loci to respond to selection. In Fig.4.15

eb!]
5 -

we hence show approximations based on ©;, = With this rescaling, we can again
perfectly predict the allele frequency distribution of the mainly contributing loci (major)
and its pursuer (minor). Therefore, in the four locus case there are usually only two loci
at low frequency p4,, that might respond to the new selection pressure, hence described
well by two locus formalism. In the ten locus case, for ©,, > 0.1 we use the 3 locus case

o . o
and the appropriately rescaled ©,, = —*. For ©;, < 10, the fit of these approximations

is very satisfactory.

4.4 Discussion

In this Chapter, we show that the adaptive patterns of a QT-model under stabilizing
selection, can be conceived as an extension to the model of a binary, complex trait
presented in Chapter 3. However, as complete or strong genetic redundancy is often
perceived as a limitation, we have set up this model in the tradition of quantitative
genetics. This enables us to study a complex trait of arbitrary redundancy governed by
a basis of biallelic loci with additive, genotypic effects under stabilizing selection.

As before, we include the whole range of possible adaptive patterns, from sweeps to
concerted frequency shifts. In the QT-model the required negative epistasis for small
concerted frequency shifts is accomplished by the stabilizing selection scheme, a com-
mon feature of QT-models. Second, the clear distinction of sweep versus shift patterns
requires explicit tracking of allele frequencies, instead of the summaries of phenotypic
means or variances. To achieve this, we start from deterministic, single locus dynamics
in Eq. (4.5) and assuming linkage equilibrium, we are able to derive individual, differ-

ential equations for each of the allele frequency dynamics at each locus, Eq. (4.9) with
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Figure 4.15: Adaptation from SGV with the directional selection model. Derived
allele frequency distributions are given at complete phenotypic adaptation from SGV
(prfv = 0.5) to a new optimum Z,,; = 0.5 + 1 under the directional selection model.
In simulations SGV builds up under the full model. For 4 and 10 loci we plot the
marginal allele frequency distribution for loci in descending frequencies at t = 8N, in
gray squares (dark to light) and at complete adaptation in colored, full circles (red to
yellow to green to blue). For 100 loci, we display marginal frequency distributions of
summaries of 10 binned loci (first to tenth locus, eleventh to 20th locus, etc.) in gray
squares at t = 8 N, and at complete adaptation in colored circles. Additionally, we show
the marginal frequency of 10 individual loci, i.e. the 46th to the 55th locus, in colored
asterisks. In the 4 locus case we show 2 locus approximations for the major (red) and
minor (blue) locus, obtained for rescaled ©;,, = Oy, - % In the 10 and 100 locus case,
we use the 2 locus approximations due to numerical reasons for ©;, = 0.01 and rescale

by accordingly. We switch to the 3 locus formalism with ©,, > 0.1. 10000 replicates,
Sp — 0.1.

208



4 loci, Zyy = 0.75 10 loci, Zop = 0.6 100 loci, Z,y = 0.51

5 5 5
4 Oy, = 0.01 i ¢
3 3 3
2 2 2
1 1 1
0 7 — oLz il
0.0 02 0.4 0.6 0.8 1.0 00 02 0.4 06 0.8 1.0 0.0 0.2 0.4 06 0.8 1.0
5 5 5
4 Oy =01 | +
3 H 3 3f
2 2 2f|
1 1 1’ .
RS e et ] FIEE e e o ettt L0
0.0 02 0.4 0.6 0.8 1.0 00 02 0.4 06 0.8 1.0 0.0 0.2 0.4 06 0.8 1.0
10 10 10

8F. @b g = ]_ 8 8.

6 6 6

4 4 4

2 2f|: = ]

-~ o
0 o, o IIti N i i 0
0 e
0.0 02 0.4 06 0.8 10 00 02 0.4 06 0.8 1.0
40 40 40
30 6)bg =10 30 30}
20 20} 1] 20}
10 10
i, ‘ #
olile S Satuutessyens l 11120, e i, !
0.0 0.2 0.4 06 0.8 10 00 02 0.4 0.6 0.8 1.0 00 0.2 0.4 0.6 0.8 1.0
60 60 60
50 50 50
Ohy = 100
40 40 a0F
30 30 30}
20 R
o e A
10 Al o
L . il )

0 i e T L. obit A oty I
0.0 02 0.4 06 1.0 00 02 0.4 0.6 0.8 1.0 00 0.2 0.4 0.6 0.8 1.0

allele frequency

Figure 4.16: Adaptation from SGV with the full model. Derived allele frequency
distributions are given at complete phenotypic adaptation to a new optimum Z,,; =
0.5 + % under the full model before and after the environmental change. All other
parameter settings are as given in the previous Fig. 4.15.
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stabilizing fitness. The obtained dynamics coincide with the model studied by de Vladar
and Barton (2014); Jain and Stephan (2015, 2017) and describe the initial phase of
rapid phenotypic adaptation. As done in these previous papers, we focus either only
on directional selection, or we additionally include a term capturing the depletion of
genetic variance. The previous results show that the former, directional selection model
is a satisfactory approximation to the latter, full model, for the initial phase of rapid
adaptation.

Yet, the aforementioned studies all restrict their investigations to infinite population
size, hence neglecting the effect of genetic drift. We combine their approach, and ex-
tend it to include genetic drift. Given the striking similarity between the deterministic
dynamics of the redundant trait model and the QT-model, we can adapt the devel-
oped framework to capture the dynamics in the QT-model. In detail, we use the same
partitioning of the adaptive process into an initial stochastic and a subsequent deter-
ministic phase. Then, we study the outcome of the initial phase, which transmits to the
final adaptive architecture upon phenotypic adaptation. We again obtain comprehen-
sive analytical results, predicting joint and marginal allele frequency distributions upon
adaptation with selection, mutation and drift. This is achieved by a simple, additional
transformation of variables, such that the analytical predictions based on the Yule pro-
cess derived in Chapter 3 expand to the QT-model. (However, this is only possible for
the directional selection model, while it does not work for the full model, due to the
mathematical complexity of the dynamical equations there.) Indeed, these new predic-
tions yield an extremely good fit to the performed Wright-Fisher simulations. We also
present a solution how to deal with a discrete, polygenic trait basis under stabilizing

selection in a stochastic framework by using single locus dynamics and assuming LE.

4.4.1 Adaptive architectures

Similarly to the redundant trait model, we investigate trait bases of different sizes L

and recover O, as the most decisive, single compound parameter. As with the binary
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trait and predicted by our analytical framework, selection strength does not influence the
resulting architecture, at least for the directional selection model. This also holds true
for the full model, as long as the population is samples far enough from the optimum.

We study adaptation from de novo mutations, as well as from SGV to close optima
(one or two mutation steps away) and recuperate a similar threefold classification of
adaptive architectures as with the binary trait. Thereby, several mechanisms work against
each other to shape the adaptive reponse in the QT-model. On the one hand, when
looking at the dynamical equations, due to the extra term 1 —p a focal allele hampers its
own rise more effectively than in the binary trait model. On the other hand, we need to
consider that for adaptation across long distances an effectively reduced ©;, enters the
predictions (see next paragraph). Also, the full QT-model predicts a stronger sweep-like
architecture once we are close to the optimum. So, all in all, there is at most a slight
shift towards "more shifts" and the broad classification remains the same. This also
holds up for reduced redundancy.

As before, we obtain well fitting predictions, if we rescale @;,g according to the
effective redundancy, such that ©;, = 2N (L' — 1), where L’ gives the number of truly
redundant loci within the basis (usually ©;, < ©y,). This number might also change
over the course or adaptation, depending on the distance of the population with respect
to the optimum it adapts to. In detail this means, that a trait basis of a trait adapting
to an optimum, that can be reached with a single mutation, is completely redundant
over the entire course of adaptation. However, a genetic basis of a trait adapting to
an optimum, that requires several mutations, shows decreasing redundancy over the
course of evolution. Accounting for this continuous change of redundancy, we cannot
only predict the final adaptive architectures, but we develop comprehensive predictions
for the entire adaptive process. This holds, for the directional and the full selection
model, as long as Z,, is far enough away, such that directional selection dominates the

dynamics, as well as if mutation rates are sufficiently low, ©,, < 1.
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The course of adaptation

Conceptually, we choose not to analyze the dynamics in dependence of time, but we
rather consider them in dependence of phenotypic adaptation. As such, we describe the
stopping condition in terms of allele frequencies or analogously of the mean population
phenotype. This could also be applied to evolution experiments, where often adaptation
is studied across replicates at the same time (Franssen et al., 2017; Barghi et al., 2018).
If the adaptive process abides to deterministic mechanisms, such that new mutations
are negligible and genetic variance is homogeneous over different replicates, time might
serve as an appropriate point of reference. Yet, if adaptation is more stochastic, as with
small sample sizes under strong genetic drift, different replicates at the same time point,
might not be well suited for comparisons. Instead, our predictions are based on the
course of phenotypic adaptation, such that replicates should be compared, if they have

reached similar levels of adaptation.

Gene-centered versus trait centered view of adaptation

As also discussed in the previous Chapter, there are different ways how to interpret
adaptive architectures. In contrast to the trait or genome based view, that we mostly
follow here, we can also look at the marginal distribution of a focal locus. This dis-
tribution conceptualizes a more gene-centered view, presented in the previous literature
(e.g. Chevin and Hospital, 2008; Pavlidis et al., 2012; Wollstein and Stephan, 2014). In
Fig.4.8 and 4.9 we show that increasing the number of loci within the basis of a trait
that adapts to the same trait optimum, e.g. Z,, = 0.5, diminishes the likelihood of
a polygenic response for a focal locus, such that sweeps become more and more abun-
dant. Yet, this is of course not due to the increased size of the trait basis, but due to

the relaxed level of redundancy, and hence in good agreement with our previous results.
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4.4.2 Adaptation from SGV

When studying adaptation from SGV, we need to make several, conceptual adjustments.
First, to assess the adaptive architecture we need to consider the differences in the
allele frequency distributions after the built-up of SGV in comparison to the state at
adaptation to the new optimum. This also entails that the major locus, now refers to
the locus with the largest frequency change (rather than the largest absolute value at
the end), which is again the locus with the largest contribution to adaptation. Similarly,
the minor loci are ordered according to their contributions. Second, for adaptation from
an intermediate optimum we obtain an effective reduction of redundancy. Yet, keeping
our previous results for evolution over several mutational steps in mind, we simply use
the rescaled ©;, (proportional to the true number of redundant loci). It is quite striking
that we obtain such a good fit using the two and three locus formalisms, especially
considering the non-trivial shape of these distributions. Remaining deviations, especially
for a larger trait basis, can be attributed to the higher degree of flexibility of which
loci yield phenotypic adaptation, when adaptation occurs from SGV. At ©,, > 0.1,
when mutation rates are not too low, we start adaptation from a population containing
variation at both ends of the frequency spectrum (high, p < 1 and low p 2 0 frequency
polymorphisms). The high frequency polymorphisms of derived variants can quickly react
to the new selection pressure, such that the strength of the sweeps at the major and
minor loci are slightly dampened compared to the predictions.

The analysis of adaptation from SGV with drift is of particular interest, as previous
studies have effectively neglected drift effects. This leads to a dominance of interme-
diate starting frequencies at the onset the environmental change. On the contrary, in
our approach, we do not see this, but we rather obtain a bimodal distribution of start-
ing frequencies, centered around ancestral and derived variants for low to intermediate
background mutation rates. This also entails that the adaptive architectures we recu-
perate with our approach are much less polygenic that previously obtained results using

the same dynamics in a deterministic framework (de Vladar and Barton, 2014; Jain and
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3809

3810

3811

3812

3813

3814

3815

3816

3817

3818

3819

3820

3821

3822

3823

3824

3825

3826

3827

3828

3829

3830

3831

e Different locus effects: \We have so far only treated the case of equal locus effects,

which has made analytical predictions possible. Nevertheless, it is a necessary to
extend our approach to variable locus effects to capture the full complexity of
biological reality. In general, we predict that different locus effects +; will result in
heterogeneous, less polygenic response, because larger effect loci will dominate the
dynamics, especially, for adaptation from SGV, as they sweep quicker — but they
could start from lower frequencies. Indeed, the independence of selection strength

in our predictions relies on the assumption of uniform locus effects.

Linkage: With increasing trait basis our assumption of LE between the different
loci becomes less likely. Especially with complex traits governed by hundreds or
thousands of loci, some of them will necessarily fall onto the same linkage group.
The implementation of linkage, however, requires substantial alterations to our
simulation approach, including a switch to individual based simulations. This

poses heavy constraints on the computability of such simulations.

Diploids and dominance: Another possible extension concerns the treatment of

diploid populations, including deviations from co-dominance.

Population structure and its evolution: Finally, so far we have only considered
panmictic populations. There are of course interesting questions, when thinking
about structured populations. How might isolation by distance affect the obtained
adaptive patterns? How will changing N, impact the results? This is of particular
interest in the case of human evolution, where signals of polygenic adaptation
have been vividly discussed over the last decade (e.g. Pritchard et al., 2010; Berg

et al., 2018; Sohail et al., 2018; Csilléry et al., 2018). The various bouts of strong
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population extension since the movement "out of Africa", as well as admixture
events (Pickrell and Reich, 2014; Lazaridis et al., 2016), might also have a strong

impact on adaptive architectures.

E. Supporting Information: Results

De novo adaptation to different optima

In analogy to Fig.4.1, we present snapshots of the course of adaptation of a 2 locus
trait to Z,,; = 0.3 and 0.8. Qualitatively, the same classification patterns holds true,
with single sweeps for low background mutation rates and shift like patterns for high
background mutation rates. Again the directional selection model yields more polygenic
responses, than the full model at complete adaptation. We also see that we can ap-
propriately predict the outcome for the directional selection model at arbitrary stopping

conditions.

Back mutation

In our simulations, we focus on the initial adaptive phase. Directional selection quickly
brings the phenotypic mean of the population to the new optimum. As this phase is
short, we do not expect many mutation events if mutation rates are reasonably low.
Hence, we can understand that neglecting back-mutations during the rapid adaptive
phase does not alter the results significantly, as can be seen in Fig. E.3 in comparison to

analogous results with back-mutation presented before in Fig.4.1.
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Figure E.1: Allele frequency distribution, 2L, Z77" = 0.3 We capture the allele

frequency distribution at three states of adaptation: When the population has adapted
to 5 - Z75" in yellow, 3 - Z2%" in red and at complete adaptation to the new optimum
in blue.
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Figure E.3: Allele frequency distribution, 2L, without backmutation, Z77 = 0.5.

We capture the allele frequency distribution at three states of adaptation, similarly to

Figure 4.1, however now we ignore backmutation from the derived to the acestral allele.

We show data for when the population has adapted to % - Zost” in yellow, % Ly in

red and at complete adaptation to the new optimum in blue and find no differences to
results with backmutation.
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F. Supporting Information: Mathematical Appendix

Here, we start out with the directional selection model of Jain and Stephan (2017),
pi = s%ipi(L — pi)(Zopt — Z)

where Z = ¥, p;7y; is the mean of a quantitative trait governed by L loci under stabilizing

selection. Defining new variables u; = p;/(1 — p;), the dynamics can be written as
U = YU Zope — Z)

and
0 U; U;

=—(v— %‘)(ZOPt - Z> ‘

3tu7j u;
Assume now that all loci are equal, 7; = . Like for the model with complete redundancy,
we then have 0/0t(u;/u;) = 0. To include genetic drift, we can try and set up a Yule
process model for parameters u;. Note that the u; are unbounded variables and run
from 0 to co. According to the Yule process, the joint distribution of the ratios u;/ Y, u;
converges to the Dirichlet distribution and the distribution of the ratios u;/u; converges
to the inverted Dirichlet distribution. In general, we are rather interested in the p; than

in the u; and in a stopping condition based on the trait mean, or of

:Zpizz =:cy. (F.1)

with ¢z € [0, L]. It is easier to work with the inverted Dirichlet distribution, where the

transformation of variables reads

Cuy pi(l=p1)  pi(1+ ko Pk — Cz)
XT; = — = = T
ur (L=pi)pr (1 —pi)(ez — Xp_o k)

(F.2)
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The Jacobian follows as

o Ox; B Di 1+ ZﬁZQ DL — Cz
ij = = T 5 T 0 5 T
Ip;j (1 —pi)(cz — Xi—a k) (1 = pi)*(cz — Xk—a k)
pi(1 —pi) + 045 pr(1 — p1)
= F.3
(1= po)?} (F-3)

with determinant

Cz — Zé:Q Pk (1+ Z£:2 P — cz)(cz — Z£=2 plc))

L1 1-p\" Sl pi(1—pi)
ng(l—pi)Q< P ) (1+ pi(1—p1) )

ljl—pl (1_p1> (szl—pz)

The joint distribution of the p; at the stopping condition follows as

L
SO <1+z£:2pk—cz> <1+ S pi(l = pi)
pi)

P[{p:}|cz] = CrDet[J ﬁ( p1)> ot <1+Z 1 p1> o;

=2 1 - pz p1

pi(1—p)\7 ( L opi(1— p1>>
=1 ((1 —pi)p1> ; (1 —=pi)p;

|

)
O

o
=
=

defining © = ©, and

0. - LO+%:6)
ERICNAYCN
Because the stopping condition is symmetric in the p;, © = 1,..., L, also the joint

distribution is symmetric in the locus frequencies (i.e., under the exchange of p; and
corresponding mutation rates ©;). Due to the constraint (F.1), the distribution is L — 1-

dimensional and for a given frequency at any L — 1 loci, the frequency at the last Lth
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locus follows. Eliminating (for example) p;, the distribution reads

_ L p(+Shp—ez) \ O (14 Choopr — €2) Sy g2\ ~0- 2 &
Pl{pi}les] — CrDet] T ((1 e I (Fenx = iee

=2

¢ ﬁ p ! (1 N Sicapi(l = pi) )
i=2 (1 - pi)GiH (CZ — Zé:z pk)<1 + E£=2 Pr — CZ)

-0 _ {_@i
) (1_+ 1%_§:£:2pk_—cz L D ) ( CZ__E:ézgpk N L Di > ZL71
¢z = Yiepe Z 1 1+ Yiope—cz s 1—pi

For two loci, in particular, we obtain (ps = p)

Plplcs] — [©+6, po! (1 o _p(l —p) )

[(O)[(Oy) (1 — p)©2t! p)(1+p—cz)

—_0e —0Og
14+p—cy p Cz —D p
14 +
cz;—p 1—p 14+p—cy; 1-—p
_T(©+6) p(1—p)+(cz —p)(L+p—cz)

INCHIN(CY (cz —2p(cz —p))O+e2

((ez =p) (1 =p))° (L +p—czp)” " (F-4)

221



3861

3862

3863

3864

3865

3866

3867

3868

3869

3870

3871

3872

3873

3874

3875

3876

3877

3878

3879

3880

3881

3882

3883

3884

References

Aeschbacher, S. and Biirger, R. (2014). The effect of linkage on establishment and survival of

locally beneficial mutations. Genetics, 197(1):317-336.

Agrawal, A., Feder, J., and Nosil, P. (2011). Ecological divergence and the origins of intrinsic

postmating isolation with gene flow. International Journal of Ecology, 2011.

Akerman, A. and Biirger, R. (2014). The consequences of gene flow for local adaptation and
differentiation: a two-locus two-deme model. Journal of mathematical biology, 68(5):1135—

1198.

Bank, C., Birger, R., and Hermisson, J. (2012). The limits to parapatric speciation:
Dobzhansky—Muller incompatibilities in a continent—island model. Genetics, 191(3):845—

863.

Barbash, D., Awadalla, P., and Tarone, A. (2004). Functional divergence caused by ancient

positive selection of a Drosophila hybrid incompatibility locus. PLoS biology, 2:839-848.

Barghi, N., Tobler, R., Nolte, V., Jaksic, A. M., Mallard, F., Otte, K., Dolezal, M., Taus, T.,
Kofler, R., and Schloetterer, C. (2018). Polygenic adaptation fuels genetic redundancy in

drosophila. bioRxiv, page 332122.

Barnard-Kubow, K., So, N., and Galloway, L. (2016). Cytonuclear incompatibility contributes

to the early stages of speciation. Evolution, 70(12):2752-2766.

Barton, N. (1998). The effect of hitch-hiking on neutral genealogies. Genetics Research,

72(2):123-133.

Barton, N. (2010). Understanding adaptation in large populations. PLoS genetics,

6(6):e1000987.

Barton, N. (2013). Does hybridization influence speciation? Journal of evolutionary biology,

26(2):267-269.

222



3885

3886

3887

3888

3889

3890

3891

3892

3893

3894

3895

3896

3897

3898

3899

3900

3901

3902

3903

3904

3905

3906

3907

3908

3909

Barton, N. and Bengtsson, B. (1986). The barrier to genetic exchange between hybridising

populations. Heredity, 57(3):357-376.

Barton, N., Etheridge, A., and Véber, A. (2017). The infinitesimal model: Definition, deriva-

tion, and implications. Theoretical population biology, 118:50-73.

Barton, N. and Keightley, P. D. (2002). Multifactorial genetics: understanding quantitative

genetic variation. Nature Reviews Genetics, 3(1):11.

Bateson, W. (1909). Heredity and variation in modern lights. Darwin and modern science,

85:101.

Berg, J. J. and Coop, G. (2014). A population genetic signal of polygenic adaptation. PLoS

genetics, 10(8):e1004412.

Berg, J. J., Harpak, A., Sinnott-Armstrong, N., Joergensen, A. M., Mostafavi, H., Field, Y.,
Boyle, E. A., Zhang, X., Racimo, F., Pritchard, J. K., and Coop, G. (2018). Reduced signal

for polygenic adaptation of height in uk biobank. bioRxiv.

Beukeboom, L., Koevoets, T., Morales, H. E., Ferber, S., and van de Zande, L. (2015). Hybrid
incompatibilities are affected by dominance and dosage in the haplodiploid wasp Nasonia.

Frontiers in Genetics, 6:14.

Blanckaert, A. and Bank, C. (2018). In search of the goldilocks zone for hybrid speciation.

bioRxiv, page 266254.

Blanckaert, A. and Hermisson, J. (2018). The limits to parapatric speciation ii: Strengthening

a preexisting genetic barrier to gene flow in parapatry. Genetics, pages genetics—300652.

Boyle, E. A, Li, Y. I., and Pritchard, J. K. (2017). An expanded view of complex traits: from

polygenic to omnigenic. Cell, 169(7):1177-1186.
Biirger, R. (2000). The mathematical theory of selection, recombination, and mutation. Wiley.

Biirger, R. and Akerman, A. (2011). The effects of linkage and gene flow on local adaptation:

A two-locus continent—island model. Theoretical population biology, 80(4):272-288.

223



3910

3911

3912

3913

3914

3915

3916

3917

3918

3919

3920

3921

3922

3923

3924

3925

3926

3927

3928

3929

3930

3931

3932

3933

3934

Birger, R. and Gimelfarb, A. (1999). Genetic variation maintained in multilocus models of

additive quantitative traits under stabilizing selection. Genetics, 152(2):807-820.

Biirger, R. and Lynch, M. (1995). Evolution and extinction in a changing environment: a

quantitative-genetic analysis. Evolution, 49(1):151-163.

Burke, M., Dunham, J., Shahrestani, P., Thornton, K., Rose, M., and Long, A. (2010).
Genome-wide analysis of a long-term evolution experiment with drosophila.  Nature,

467(7315):587-590.

Burton, R. and Barreto, F. (2012). A disproportionate role for mtDNA in Dobzhansky—Muller

incompatibilities? Molecular Ecology, 21(20):4942—-4957.

Butlin, R., Debelle, A., Kerth, C., Snook, R., Beukeboom, L., Castillo, C., Diao, W., Maan,
M., Paolucci, S., Weissing, F., et al. (2012). What do we need to know about speciation?

Trends in Ecology & Evolution, 27(1):27-39.

Cattani, M. and Presgraves, D. (2012). Incompatibility Between X Chromosome Factor
and Pericentric Heterochromatic Region Causes Lethality in Hybrids Between Drosophila

melanogaster and Its Sibling Species. Genetics, 191(2):549-5509.

Charlesworth, B., Coyne, J., and Barton, N. (1987). The relative rates of evolution of sex

chromosomes and autosomes. American Naturalist, pages 113-146.

Chevin, L.-M. and Hospital, F. (2008). Selective sweep at a quantitative trait locus in the

presence of background genetic variation. Genetics.

Coffman, C. J., Doerge, R. W., Simonsen, K. L., Nichols, K. M., Duarte, C., Wolfinger, R. D.,

and Mclntyre, L. (2005). Model selection in binary trait locus mapping. Genetics.

Cook, L., Grant, B., Saccheri, I., and Mallet, J. (2012). Selective bird predation on the

peppered moth: the last experiment of michael majerus. Biology Letters, 8(4):609-612.

Corbett-Detig, R., Zhou, J., Clark, A., Hartl, D., and Ayroles, J. (2013). Genetic incompati-

bilities are widespread within species. Nature, 504(7478):135-137.

224



3935

3936

3937

3938

3939

3940

3941

3942

3943

3944

3945

3946

3947

3948

3949

3950

3951

3952

3953

3954

3955

3956

3957

3958

Coyne, J. and Orr, H. (1989). Two rules of speciation. Speciation and its Consequences, pages

180-207.
Coyne, J. and Orr, H. (2004). Speciation. Sinauer Associates Sunderland, MA.

Crow, J. F. (2010). On epistasis: why it is unimportant in polygenic directional selec-
tion. Philosophical Transactions of the Royal Society of London B: Biological Sciences,

365(1544):1241-1244.

Cruickshank, T. and Hahn, M. (2014). Reanalysis suggests that genomic islands of speciation

are due to reduced diversity, not reduced gene flow. Molecular Ecology, 23(13):3133-3157.

Csilléry, K., Rodriguez-Verdugo, A., Rellstab, C., and Guillaume, F. (2018). Detecting the
genomic signal of polygenic adaptation and the role of epistasis in evolution. Molecular

ecology.
Darwin, C. (1859). The origin of species. London: Murray.

Daub, J. T., Hofer, T., Cutivet, E., Dupanloup, I., Quintana-Murci, L., Robinson-Rechavi,
M., and Excoffier, L. (2013). Evidence for polygenic adaptation to pathogens in the human

genome. Molecular biology and evolution, 30(7):1544-1558.

de Vladar, H. P. and Barton, N. (2014). Stability and response of polygenic traits to stabilizing

selection and mutation. Genetics, 197(2):749-767.

Dettman, J., Sirjusingh, C., Kohn, L., and Anderson, J. (2007). Incipient speciation by

divergent adaptation and antagonistic epistasis in yeast. Nature, 447(7144):585-588.

Dobzhansky, T. (1936). Studies on hybrid sterility. Il. Localization of sterility factors in

Drosophila pseudoobscura hybrids. Genetics, 21(2):113.
Durrett, R. (2010). Probability: theory and examples. Cambridge university press.

Ellegren, H. (2009). Genomic evidence for a large-Z effect. Proceedings of the Royal Society
B: Biological Sciences, 276(1655):361-366.

225



3959

3960

3961

3962

3963

3964

3965

3966

3967

3968

3969

3970

3971

3972

3973

3974

3975

3976

3977

3978

3979

3980

3981

3982

Ellegren, H., Hultin-Rosenberg, L., Brunstrom, B., Dencker, L., Kultima, K., and Scholz, B.
(2007). Faced with inequality: chicken do not have a general dosage compensation of

sex-linked genes. BMC biology, 5(1):40.

Ellison, C. and Burton, R. (2008). Interpopulation hybrid breakdown maps to the mitochondrial

genome. Evolution, 62(3):631-638.

Etheridge, A., Pfaffelhuber, P., Wakolbinger, A., et al. (2006). An approximate sampling

formula under genetic hitchhiking. The Annals of Applied Probability, 16(2):685-729.

Falconer, D., Mackay, T., and Bulmer, M. (1996). Introduction to quantitative genetics.

Genetical Research, 63(2):183.

Feder, J., Gejji, R. Y. S., and Nosil, P. (2012). Establishment of new mutations under diver-
gence and genome hitchhiking. Philosophical Transactions of the Royal Society B: Biological

Sciences, 367(1587):461-474.

Feder, J. and Nosil, P. (2009). Chromosomal inversions and species differences: when are
genes affecting adaptive divergence and reproductive isolation expected to reside within

inversions? Evolution, 63(12):3061-3075.

Felsenstein, J. (1981). Skepticism towards Santa Rosalia, or why are there so few kinds of

animals? Evolution, pages 124-138.

Field, Y., Boyle, E. A., Telis, N., Gao, Z., Gaulton, K. J., Golan, D., Yengo, L., Rocheleau,
G., Froguel, P., McCarthy, M. I., et al. (2016). Detection of human adaptation during the

past 2000 years. Science, page aagQ776.

Fisher, R. A. (1918). The correlation between relatives on the supposition of mendelian

inheritance.

Fishman, L. and Sweigart, A. L. (2018). When two rights make a wrong: the evolutionary

genetics of plant hybrid incompatibilities. Annual review of plant biology, 69.

226



3983

3984

3985

3986

3987

3988

3989

3990

3991

3992

3993

3994

3995

3996

3997

3998

3999

4000

4001

4002

4003

4004

4005

4006

4007

Fontaine, M., Pease, J., Steele, A., Waterhouse, R. M., Neafsey, D., Sharakhov, I., Jiang, X.,
Hall, A., Catteruccia, F., Kakani, E., et al. (2015). Extensive introgression in a malaria

vector species complex revealed by phylogenomics. Science, 347(6217):1258524.

Franssen, S., Kofler, R., and Schlétterer, C. (2017). Uncovering the genetic signature of

quantitative trait evolution with replicated time series data. Heredity, 118(1):42.

Franssen, S., Nolte, V., Tobler, R., and Schlétterer, C. (2015). Patterns of linkage dis-
equilibrium and long range hitchhiking in evolving experimental drosophila melanogaster

populations. Molecular biology and evolution, 32(2):495-509.

Gavrilets, S. (1997). Hybrid zones with Dobzhansky-type epistatic selection. Evolution, pages

1027-1035.

Geritz, S. A., Mesze, G., Metz, J. A, et al. (1998). Evolutionarily singular strategies and the

adaptive growth and branching of the evolutionary tree. Evolutionary ecology, 12(1):35-57.

Gerlach, G. (1990). Dispersal mechanisms in a captive wild house mouse population (Mus

domesticus Rutty). Biological Journal of the Linnean Society, 41(1-3):271-277.

Gingerich, P. D. (2009). Rates of evolution. Annual Review of Ecology, Evolution, and

Systematics, 40:657—675.

Good, J., Dean, M., and Nachman, M. (2008). A complex genetic basis to X-linked hybrid

male sterility between two species of house mice. Genetics, 179(4):2213-2228.

Good, J., Giger, T., Dean, M., and Nachman, M. (2010). Widespread over-expression of the

X chromosome in sterile F1 hybrid mice. PLoS genetics, 6(9):e1001148.

Grant, P. R. and Grant, B. R. (2008). How and why species multiply. The Radiation of

Darwin’s Finches. Princeton Series in Evolutionary Biology.

Grant, P. R. and Grant, B. R. (2011). How and why species multiply: the radiation of Darwin’s

finches. Princeton University Press.

Graves, J., Disteche, C., et al. (2007). Does gene dosage really matter. J Biol, 6(1):1.

227



4008

4009

4010

4011

4012

4013

4014

4015

4016

4017

4018

4019

4020

4021

4022

4023

4024

4025

4026

4027

4028

4029

4030

4031

4032

4033

Greenwood, P. (1980). Mating systems, philopatry and dispersal in birds and mammals. Animal

behaviour, 28(4):1140-1162.

Greiner, S., Rauwolf, U., Meurer, J., and Herrmann, R. (2011). The role of plastids in plant

speciation. Molecular ecology, 20(4):671-691.

Griffiths, R. and Tavaré, S. (1998). The age of a mutation in a general coalescent tree.

Stochastic Models, 14(1-2):273-295.

Hairston Jr, N. G., Ellner, S. P., Geber, M. A., Yoshida, T., and Fox, J. A. (2005). Rapid evolu-
tion and the convergence of ecological and evolutionary time. Ecology Letters, 8(10):1114—

1127.

Haldane, J. (1922). Sex ratio and unisexual sterility in hybrid animals. Journal of genetics,

12(2):101-109.

Hancock, A. M., Alkorta-Aranburu, G., Witonsky, D. B., and Di Rienzo, A. (2010). Adaptations
to new environments in humans: the role of subtle allele frequency shifts. Philosophical

Transactions of the Royal Society of London B: Biological Sciences, 365(1552):2459-2468.

Hansen, T. F. (2006). The evolution of genetic architecture. Annu. Rev. Ecol. Evol. Syst.,

37:123-157.

Hansen, T. F. (2013). Why epistasis is important for selection and adaptation. Evolution,

67(12):3501-3511.

Hendry, A. P., Farrugia, T. J., and Kinnison, M. T. (2008). Human influences on rates of

phenotypic change in wild animal populations. Molecular Ecology, 17(1):20-29.

Hermisson, J. and Pennings, P. (2017). Soft sweeps and beyond: Understanding the patterns

and probabilities of selection footprints under rapid adaptation. bioRxiv, page 114587.

Hermisson, J. and Pennings, P. S. (2005). Soft sweeps: molecular population genetics of

adaptation from standing genetic variation. Genetics, 169(4):2335-2352.

Hermisson, J. and Pfaffelhuber, P. (2008). The pattern of genetic hitchhiking under recurrent

mutation. Electronic Journal of Probability, 13:2069-2106.

228



4034

4035

4036

4037

4038

4039

4040

4041

4042

4043

4044

4045

4046

4047

4048

4049

4050

4051

4052

4053

4054

4055

4056

4057

4058

Hill, W. G. (2014). Applications of population genetics to animal breeding, from wright, fisher

and lush to genomic prediction. Genetics, 196(1):1-16.

Hill, W. G., Goddard, M. E., and Visscher, P. M. (2008). Data and theory point to mainly

additive genetic variance for complex traits. PLoS genetics, 4(2):e1000008.

Hooper, D. and Price, T. (2015). Rates of karyotypic evolution in Estrildid finches differ

between island and continental clades. bioRxiv, page 013987.

Hoppe, F. M. (1984). Pdlya-like urns and the ewens’ sampling formula. Journal of Mathemat-

ical Biology, 20(1):91-94.
Inc., W. R. Mathematica, Version 11.3. Champaign, IL, 2018.

Jain, K. and Devi, A. (2018). Polygenic adaptation in changing environments. arXiv preprint

arXiv:1806.03454.

Jain, K. and Stephan, W. (2015). Response of polygenic traits under stabilizing selection and

mutation when loci have unequal effects. G3: Genes, Genomes, Genetics, 5(6):1065-1074.

Jain, K. and Stephan, W. (2017). Rapid adaptation of a polygenic trait after a sudden

environmental shift. Genetics, 206(1):389-406.

Josefsson, C., Dilkes, B., and Comai, L. (2006). Parent-dependent loss of gene silencing during

interspecies hybridization. Current Biology, 16(13):1322-1328.

Joyce, P. and Tavaré, S. (1987). Cycles, permutations and the structure of the yule process

with immigration. Stochastic processes and their applications, 25:309-314.

Kaplan, N. L., Hudson, R., and Langley, C. (1989). The" hitchhiking effect" revisited. Genetics,

123(4):887-899.

Karasov, T., Messer, P. W., and Petrov, D. A. (2010). Evidence that adaptation in drosophila

is not limited by mutation at single sites. PLoS genetics, 6(6):€1000924.

Khera, A. V., Chaffin, M., Aragam, K. G., Haas, M. E., Roselli, C., Choi, S. H., Natarajan, P.,

Lander, E. S., Lubitz, S. A., Ellinor, P. T., et al. (2018). Genome-wide polygenic scores for

229



4059

4060

4061

4062

4063

4064

4065

4066

4067

4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

4080

4081

4082

4083

4084

common diseases identify individuals with risk equivalent to monogenic mutations. Nature

genetics, 50(9):1219.

Kimura, M. (1957). Some problems of stochastic processes in genetics. The Annals of Math-

ematical Statistics, pages 882-901.

Kolbe, J. J., Leal, M., Schoener, T. W., Spiller, D. A., and Losos, J. B. (2012). Founder
effects persist despite adaptive differentiation: a field experiment with lizards. Science,

335(6072):1086-1089.

Kopp, M. and Matuszewski, S. (2014). Rapid evolution of quantitative traits: theoretical

perspectives. Evolutionary Applications, 7(1):169-191.

Kryazhimskiy, S., Rice, D. P., Jerison, E. R., and Desai, M. M. (2014). Global epistasis makes

adaptation predictable despite sequence-level stochasticity. Science, 344(6191):1519-1522.

Kutschera, U. and Niklas, K. J. (2004). The modern theory of biological evolution: an expanded

synthesis. Naturwissenschaften, 91(6):255-276.

Lachance, J. and True, J. (2010). X-autosome incompatibilities in Drosophila melanogaster:

tests of Haldane's rule and geographic patterns within species. Evolution, 64(10):3035-3046.

Lamichhaney, S., Berglund, J., Almén, M. S., Maqgbool, K., Grabherr, M., Martinez-Barrio, A.,
Promerova, M., Rubin, C.-J., Wang, C., Zamani, N., et al. (2015). Evolution of darwin’s

finches and their beaks revealed by genome sequencing. Nature, 518(7539):371.

Lande, R. (1983). The response to selection on major and minor mutations affecting a metrical

trait. Heredity, 50(1):47.

Laporte, M., Pavey, S. A., Rougeux, C., Pierron, F., Lauzent, M., Budzinski, H., Labadie, P.,
Geneste, E., Couture, P., Baudrimont, M., et al. (2016). Rad sequencing reveals within-
generation polygenic selection in response to anthropogenic organic and metal contamination

in north atlantic eels. Molecular ecology, 25(1):219-237.

Lawson Handley, L. and Perrin, N. (2007). Advances in our understanding of mammalian

sex-biased dispersal. Molecular Ecology, 16(8):1559-1578.

230



4085

4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

4101

4102

4103

4104

4105

4106

4107

4108

4109

4110

Lazaridis, |., Nadel, D., Rollefson, G., Merrett, D. C., Rohland, N., Mallick, S., Fernandes,
D., Novak, M., Gamarra, B., Sirak, K., et al. (2016). Genomic insights into the origin of

farming in the ancient near east. Nature, 536(7617):419.

Lee, H., Chou, J., Cheong, L., Chang, N., Yang, S., and Leu, J. (2008). Incompatibility of
nuclear and mitochondrial genomes causes hybrid sterility between two yeast species. Cell,

135(6):1065-1073.

Levene, H. (1953). Genetic equilibrium when more than one ecological niche is available.

American Naturalist, pages 331-333.

Lindtke, D. and Buerkle, C. (2015). The genetic architecture of hybrid incompatibilities and

their effect on barriers to introgression in secondary contact. Evolution.

Liu, K., Steinberg, E., Yozzo, A., Song, Y., Kohn, M., and Nakhleh, L. (2015). Interspecific
introgressive origin of genomic diversity in the house mouse. Proceedings of the National

Academy of Sciences, 112(1):196-201.
Losos, J. B. (2014). What darwin got wrong. Chronicle of Higher Education, 20.

Macholan, M., Munclinger, P., sugerkové, M., Dufkova, P., Bimova, B., Bozikova, E., Zima,
J., and Pialek, J. (2007). Genetic analysis of autosomal and X-linked markers across a

mouse hybrid zone. Evolution, 61(4):746-771.

Mackay, T. F. (2009). The genetic architecture of complex behaviors: lessons from drosophila.

Genetica, 136(2):295-302.

Macnair, M. and Christie, P. (1983). Reproductive isolation as a pleiotropic effect of copper

tolerance in Mimulus guttatus. Heredity, 50(3):295-302.

Maheshwari, S. and Barbash, D. (2011). The genetics of hybrid incompatibilities. Annual

review of genetics, 45:331-355.

Mallet, J. (2008). Hybridization, ecological races and the nature of species: empirical evidence
for the ease of speciation. Philosophical Transactions of the Royal Society B: Biological

Sciences, 363(1506):2971-2986.

231



4111

4112

4113

4114

4115

4116

4117

4118

4119

4120

4121

4122

4123

4124

4125

4126

4127

4128

4129

4130

4131

4132

4133

4134

4135

4136

Malmberg, R. L. and Mauricio, R. (2005). Qtl-based evidence for the role of epistasis in

evolution. Genetics Research, 86(2):89-95.

Mani, G. and Clarke, B. (1990). Mutational order: a major stochastic process in evolution.

Proceedings of the Royal Society of London B: Biological Sciences, 240(1297):29-37.

Manolio, T. A., Brooks, L. D., and Collins, F. S. (2008). A hapmap harvest of insights into

the genetics of common disease. The Journal of clinical investigation, 118(5):1590-1605.

Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J.,
McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., et al. (2009). Finding the

missing heritability of complex diseases. Nature, 461(7265):747.

Masly, J. and Presgraves, D. (2007). High-resolution genome-wide dissection of the two rules

of speciation in Drosophila. PLoS Biol, 5(9):e243.

Matsubara, K., Yamamoto, E., Mizobuchi, R., Yonemaru, J., Yamamoto, T., Kato, H., and
Yano, M. (2015). Hybrid Breakdown Caused by Epistasis-Based Recessive Incompatibility

in a Cross of Rice (Oryza sativa L.). Journal of Heredity, 106(1):113-122.

Matuszewski, S., Hermisson, J., and Kopp, M. (2015). Catch me if you can: adaptation from

standing genetic variation to a moving phenotypic optimum. Genetics, pages genetics—115.

Maynard-Smith, J. and Haigh, J. (1974). The hitch-hiking effect of a favourable gene. Genetics
Research, 23(1):23-35.

Messer, P. W., Ellner, S. P., and Hairston Jr, N. G. (2016). Can population genetics adapt to

rapid evolution? Trends in Genetics, 32(7):408-418.

Muller, H. (1942). Isolating mechanisms, evolution and temperature. In Biological Symposia,

volume 6, pages 71-125.
Nosil, P. (2012). Ecological speciation. Oxford University Press.

Nosil, P. and Feder, J. (2012). Genomic divergence during speciation: causes and con-
sequences.  Philosophical Transactions of the Royal Society B: Biological Sciences,

367(1587):332-342.

232



4137

4138

4139

4140

4141

4142

4143

4144

4145

4146

4147

4148

4149

4150

4151

4152

4153

4154

4155

4156

4157

4158

4159

4160

4161

4162

Novembre, J. and Barton, N. H. (2018). Tread lightly interpreting polygenic tests of selection.

Genetics, 208(4):1351-1355.

Novembre, J. and Han, E. (2012). Human population structure and the adaptive response to

pathogen-induced selection pressures. Phil. Trans. R. Soc. B, 367(1590):878-886.

Oka, A., Mita, A., Sakurai-Yamatani, N., Yamamoto, H., Takagi, N., Takano-Shimizu, T.,
Toshimori, K., Moriwaki, K., and Shiroishi, T. (2004). Hybrid breakdown caused by substi-

tution of the X chromosome between two mouse subspecies. Genetics, 166(2):913-924.

Oka, A. and Shiroishi, T. (2013). Regulatory divergence of X-linked genes and hybrid male

sterility in mice. Genes & genetic systems, 89(3):99-108.

O'Neill, S., Giordano, R., Colbert, A., Karr, T., and Robertson, H. (1992). 16S rRNA phylo-
genetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility

in insects. Proceedings of the National Academy of Sciences, 89(7):2699-2702.

Orr, H. (2005). The genetic theory of adaptation: a brief history. Nature Reviews Genetics,

6(2):119-127.

Orr, H. and Turelli, M. (2001). The evolution of postzygotic isolation: accumulating

Dobzhansky-Muller incompatibilities. Evolution, 55(6):1085-1094.

Orr, H. A. and Betancourt, A. J. (2001). Haldane's sieve and adaptation from the standing

genetic variation. Genetics, 157(2):875-884.

Paaby, A. B. and Rockman, M. V. (2013). The many faces of pleiotropy. Trends in Genetics,
29(2):66-73.

Paulose, J., Hermisson, J., and Hallatschek, O. (2018). Spatial soft sweeps: patterns of

adaptation in populations with long-range dispersal. bioRxiv, page 299453.

Pavlidis, P., Metzler, D., and Stephan, W. (2012). Selective sweeps in multilocus models of

quantitative traits. Genetics, 192(1):225-239.

Payer, B. and Lee, J. (2008). X chromosome dosage compensation: how mammals keep the

balance. Annual review of genetics, 42:733-772.

233



4163

4164

4165

4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

4177

4178

4179

4180

4181

4182

4183

4184

4185

4186

4187

4188

Payseur, B., Krenz, J., and Nachman, M. (2004). Differential patterns of introgression
across the x chromosome in a hybrid zone between two species of house mice. Evolution,

58(9):2064-2078.

Pennings, P. and Hermisson, J. (2006). Soft sweeps ii—molecular population genetics of adap-
tation from recurrent mutation or migration. Molecular biology and evolution, 23(5):1076—

1084.
Pennisi, E. (2014). Disputed islands. Science, 345(6197):611-613.

Perbal, L. (2015). The case of the gene: Postgenomics between modernity and postmodernity.

EMBO reports, 16(7):777-781.

Pickrell, J. K. and Reich, D. (2014). Toward a new history and geography of human genes

informed by ancient dna. Trends in Genetics, 30(9):377-389.

Presgraves, D. (2008). Sex chromosomes and speciation in Drosophila. Trends in Genetics,

24(7):336-343.

Presgraves, D. (2010). The molecular evolutionary basis of species formation. Nature Reviews

Genetics, 11(3):175-180.

Presgraves, D., Balagopalan, L., Abmayr, S., and Orr, H. (2003). Adaptive evolution
drives divergence of a hybrid inviability gene between two species of Drosophila. Nature,

423(6941):715-719.

Pritchard, J., Pickrell, J., and Coop, G. (2010). The genetics of human adaptation: hard

sweeps, soft sweeps, and polygenic adaptation. Current biology, 20(4):R208-R215.

Pritchard, J. K. and Di Rienzo, A. (2010). Adaptation—not by sweeps alone. Nature Reviews

Genetics, 11(10):665.

Ralph, P. L. and Coop, G. (2010). Parallel adaptation: one or many waves of advance of an

advantageous allele? Genetics.

Ralph, P. L. and Coop, G. (2015). The role of standing variation in geographic convergent
adaptation. The American Naturalist, 186(51):55-S23.

234



4189

4190

4191

4192

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

4204

4205

4206

4207

4208

4209

4210

4211

4212

4213

Reznick, D. N. (2011). The origin then and now: an interpretive guide to the origin of species.

Princeton University Press.

Rice, S. H. (2004). Evolutionary theory: mathematical and conceptual foundations. Sinauer

Associates.

Rutschman, D. (1994). Dynamics of the two-locus haploid model. Theoretical population

biology, 45(2):167-176.

Satre, G., Borge, T., Lindroos, K., Haavie, J., Sheldon, B., Primmer, C., and Syvéanen, A.-C.
(2003). Sex chromosome evolution and speciation in Ficedula flycatchers. Proceedings of

the Royal Society of London B: Biological Sciences, 270(1510):53-59.

Schluter, D. and Conte, G. (2009). Genetics and ecological speciation. Proceedings of the

National Academy of Sciences, 106(Supplement 1):9955-9962.

Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science,

236:787-792.

Snijder, R., Brown, F., and van Tuyl, J. (2007). The role of plastome-genome incompatibility
and biparental plastid inheritance in interspecific hybridization in the genus Zantedeschia

(Araceae). Floriculture and Ornamental Biotechnology, 1(2):150-157.

Sohail, M., Maier, R. M., Ganna, A., Bloemendal, A., Martin, A. R., Turchin, M. C., Chiang, C.
W. K., Hirschhorn, J. N., Daly, M., Patterson, N., Neale, B., Mathieson, |., Reich, D., and
Sunyaev, S. R. (2018). Signals of polygenic adaptation on height have been overestimated

due to uncorrected population structure in genome-wide association studies. bioRxiv.

Stephan, W. (2016). Signatures of positive selection: from selective sweeps at individual loci

to subtle allele frequency changes in polygenic adaptation. Molecular ecology, 25(1):79-88.

Storchova, R., Gregorova, S., Buckiova, D., Kyselova, V., Divina, P., and Forejt, J. (2004).
Genetic analysis of X-linked hybrid sterility in the house mouse. Mammalian Genome,

15(7):515-524.

235



4214

4215

4216

4217

4218

4219

4220

4221

4222

4223

4224

4225

4226

4227

4228

4229

4230

4231

4232

4233

4234

4235

4236

4237

4238

Strasburg, J. L., Sherman, N. A., Wright, K. M., Moyle, L. C., Willis, J. H., and Rieseberg,
L. H. (2012). What can patterns of differentiation across plant genomes tell us about
adaptation and speciation? Philosophical Transactions of the Royal Society of London B:

Biological Sciences, 367(1587):364-373.

Sweigart, A. and Flagel, L. (2014). Evidence of Natural Selection Acting on a Polymorphic

Hybrid Incompatibility Locus in Mimulus. Genetics, pages genetics—114.

Ting, C., Tsaur, S., Wu, M., and Wu, C. (1998). A rapidly evolving homeobox at the site of

a hybrid sterility gene. Science, 282(5393):1501-1504.

Tobler, R., Franssen, S., Kofler, R., Orozco-terWengel, P., Nolte, V., Hermisson, J., and
Schldtterer, C. (2014). Massive habitat-specific genomic response in d. melanogaster popu-
lations during experimental evolution in hot and cold environments. Molecular Biology and

Evolution, 31(2):364.

Togninalli, M., Seren, U., Meng, D, Fitz, J., Nordborg, M., Weigel, D., Borgwardt, K., Korte,
A., and Grimm, D. G. (2017). The aragwas catalog: a curated and standardized arabidopsis

thaliana gwas catalog. Nucleic acids research, 46(D1):D1150-D1156.

Tucker, P., Sage, R., Warner, J., Wilson, A., and Eicher, E. (1992). Abrupt cline for sex

chromosomes in a hybrid zone between two species of mice. Evolution, pages 1146-1163.

Turelli, M. and Barton, N. (1990). Dynamics of polygenic characters under selection. Theo-

retical Population Biology, 38(1):1-57.

Turelli, M. and Barton, N. (1994). Genetic and statistical analyses of strong selection on

polygenic traits: what, me normal? Genetics, 138(3):913-941.

Turelli, M. and Orr, H. (2000). Dominance, epistasis and the genetics of postzygotic isolation.

Genetics, 154(4):1663-1679.

Turner, T., Hahn, M., and S., N. (2005). Genomic islands of speciation in Anopheles gambiae.
PLoS biology, 3(9):e285.

236



4239

4240

4241

4242

4243

4244

4245

4246

4247

4248

4249

4250

4251

4252

4253

4254

4255

4256

4257

4258

4259

4260

4261

4262

4263

Uecker, H. and Hermisson, J. (2011). On the fixation process of a beneficial mutation in a

variable environment. Genetics, pages genetics—110.

van't Hof, A. E., Campagne, P., Rigden, D. J., Yung, C. J., Lingley, J., Quail, M. A., Hall,
N., Darby, A. C., and Saccheri, I. J. (2016). The industrial melanism mutation in british

peppered moths is a transposable element. Nature, 534(7605):102.

Via, S. (2012). Divergence hitchhiking and the spread of genomic isolation during ecological
speciation-with-gene-flow. Philosophical Transactions of the Royal Society B: Biological

Sciences, 367(1587):451-460.

Via, S. and West, J. (2008). The genetic mosaic suggests a new role for hitchhiking in

ecological speciation. Molecular Ecology, 17(19):4334-4345.

Visscher, P., Brown, M., McCarthy, M., and Yang, J. (2012). Five years of gwas discovery.

The American Journal of Human Genetics, 90(1):7-24.

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. ., Brown, M. A., and Yang,
J. (2017). 10 years of gwas discovery: biology, function, and translation. The American

Journal of Human Genetics, 101(1):5-22.
Wagner, G. P. (2000). The character concept in evolutionary biology. Elsevier.

Wang, R. (2013). Gene flow across a hybrid zone maintained by a weak heterogametic in-
compatibility and positive selection of incompatible alleles. Journal of Evolutionary Biology,

pages 386—396.

Wangler, M. F., Hu, Y., and Shulman, J. M. (2017). Drosophila and genome-wide association
studies: a review and resource for the functional dissection of human complex traits. Disease

Models & Mechanisms, 10(2):77-88.
Werren, J. (1997). Biology of wolbachia. Annual review of entomology, 42(1):587-609.

White, M., Stubbings, M., Dumont, B. L., and Payseur, B. (2012). Genetics and evolution of

hybrid male sterility in house mice. Genetics, 191(3):917-934.

237



4264

4265

4266

4267

4268

4269

4270

4271

4272

4273

4274

4275

4276

4277

4278

4279

4280

4281

4282

4283

4284

4285

4286

Wilson, B. A., Petrov, D. A., and Messer, P. W. (2014). Soft selective sweeps in complex

demographic scenarios. Genetics, pages genetics—114.

Wollstein, A. and Stephan, W. (2014). Adaptive fixation in two-locus models of stabilizing

selection and genetic drift. Genetics, pages genetics—114.
Wright, S. (1931). Evolution in mendelian populations. Genetics, 16(2):97.

Wau, C. (2001). The genic view of the process of speciation. Journal of Evolutionary Biology,

14(6):851-865.

Yeaman, S. (2013). Genomic rearrangements and the evolution of clusters of locally adaptive

loci. Proceedings of the National Academy of Sciences, page 201219381.

Yeaman, S. (2015). Local adaptation by alleles of small effect. The American Naturalist,

186(51):574-589.

Yeaman, S., Aeschbacher, S., and Biirger, R. (2016). The evolution of genomic islands by

increased establishment probability of linked alleles. Molecular ecology, 25(11):2542-2558.

Yeaman, S. and Otto, S. (2011). Establishment and maintenance of adaptive genetic diver-

gence under migration, selection, and drift. Evolution, 65(7):2123-2129.

Yeaman, S. and Whitlock, M. (2011). The genetic architecture of adaptation under migration—

selection balance. Evolution, 65(7):1897-1911.

Zan, Y. and Carlborg, O. (2018). A multilocus association analysis method integrating phe-
notype and expression data reveals multiple novel associations to flowering time variation in

wild-collected arabidopsis thaliana. Molecular ecology resources.

Zan, Y., Sheng, Z., Lillie, M., Rénnegard, L., Honaker, C. F., Siegel, P. B., and Carlborg,

O. (2017). Artificial selection response due to polygenic adaptation from a multilocus,

multiallelic genetic architecture. Molecular biology and evolution, 34(10):2678-2689.

238



