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Abstract

This master’s thesis is dedicated to the proof of a local version of Toponogov’s
triangle comparison theorem for semi-Riemannian manifolds. We show that
curvature bounds on semi-Riemannian manifolds imply local triangle compari-
son and that if, conversely, triangle comparison holds on normal neighborhoods
of each point, curvature bounds follow. As a byproduct, the constant curvature
model spaces in semi-Riemannian geometry are studied in detail. Moreover, a
general form of the law of cosines is derived that applies to surfaces of arbi-
trary curvature and index and is needed for showing realizability of triangles
in the model spaces. The hinge and straightening lemmas of Alexandrov are
generalized to the semi-Riemannian setting. A modified distance function and a
self adjoint-modified shape operator are introduced, which satisfies a differential
equation of Riccati type and a theory for comparison of families of self-adjoint
linear maps is developed, which allows us to show the main result. The starting
point and inspiration for this thesis is a recent paper by Stephanie B. Alexan-
der and Richard L. Bishop titled "Lorentz and Semi-Riemannian Spaces with
Alexandrov Curvature Bounds" [1].






Abstract

Diese Masterarbeit beschéftigt sich mit einer verallgemeinerten lokalen Version
von Toponogov’s Satz fiir Dreiecksvergleiche auf semi-Riemannsche Mannig-
faltigkeiten. Es wird gezeigt, dass Kriitmmungsschranken die Dreiecksvergleichs-
eigenschaft implizieren, und umgekehrt, wenn die Dreiecksvergleichseigenschaft
fiir alle Punkte in einer Umgebung fiir Riemannsche Normalkoordinaten erfiillt
ist, folgen die entsprechenden Kriimmungsschranken. Diese Arbeit beinhaltet
eine detaillierte Untersuchung der semi-Riemannschen Modellrdume konstan-
ter Kriimmung. Auflerdem wird eine allgemeine Version des Kosinussatzes be-
wiesen, die fiir Flachen mit beliebiger konstanter Kriimmung und Index gilt.
Dieser Satz ist essentiell fiir den Beweis der Realisierbarkeit von Dreiecken in den
Modellrdumen. Klassische Sétze aus der Alexandrov-Geometrie werden auf den
semi-Riemannschen Fall verallgemeinert. Weiters wird eine modifizierte Dis-
tanzfunktion eingefiihrt und der dadurch induzierte modifizierte Formoperator,
eine selbstadjungierte lineare Abbildung, welche eine Riccati-Differentialgleichung
erfiillt. Die notwendige Theorie zum Vergleich von Familien selbstadjungierter
linearer Abbildungen wird entwickelt, was uns erlaubt, das Hauptresultat zu
beweisen. Ausgangspunkt und Inspiration flir diese Arbeit ist ein Artikel von
Stephanie B. Alexander und Richard L. Bishop mit dem Titel "Lorentz and
Semi-Riemannian Spaces with Alexandrov Curvature Bounds" [1].
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Chapter 1

Introduction and
Preliminaries

1.1 Introduction

In the field of triangle comparison, one studies same sized triangles in two differ-
ent Riemannian manifolds and relates the information so obtained to properties
of the Riemannian manifolds. This approach is particularly fruitful if one of the
two spaces is some kind of model space, where much is known. In flat Euclidean
space, triangles are given by three points connected by straight lines, which
are the unique geodesics connecting the vertices. So to generalize triangles to
Riemannian manifolds, one needs uniqueness for the geodesics connecting the
vertices. This is guaranteed in normal (convex) neighborhoods. The property
that we will be interested in is sectional curvature. In terms of curvature the
simplest spaces, our model spaces, are spaces of constant curvature. One ob-
tains a model space for any real number K, and qualitatively it is sufficient
to study the cases K < 0, K = 0 and K > 0. The model spaces for these
three cases are given by the hyperbolic space (K < 0), the Euclidean space
(K = 0), and the sphere (K > 0), respectively. So if we consider a triangle A in
the plane and compare it to a triangle on the sphere, which has the same side
lengths as A, a so called comparison triangle, then one makes the observation

K <0 K=0 K>0

Figure 1.1: Triangles with the same side lengths realized spaces of different
curvature K.
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that the comparison triangle is "fatter" than the original triangle in the plane,
and that the angles at the vertices increase. On the other hand, in hyperbolic
space, the comparison triangle is "slimmer" and angles decrease. The statement
of Toponogov’s (triangle comparison) theorem, in a non rigorous form, is as
follows:

Theorem 1.1.1 (Toponogov). Let M be a Riemannian manifold with sectional
curvature IC bounded below by some 6 € R, § < K, then every triangle A in M
has a comparison triangle As in a space of constant curvature d and the angles
at the vertices of A are bigger than the corresponding angles in Ags. If M has
sectional curvature bounded above by some k € R, then every sufficiently small
triangle has a comparison triangle A, in a space of constant curvature k and
the angles at the vertices of A are smaller than the corresponding angles in Ag.

A proof of Toponogov’s theorem can be found in (2, 4.1,4.2]. Equivalently
one sees that distances between points on the sides of A are bigger than dis-
tances between the corresponding points on Ay, respectively in case of upper
curvature bounds we get that distances between points on the sides of A are
less then the distances between the corresponding points on A,. This master’s
thesis is inspired by a recent paper by Stephanie B. Alexander and Richard
L. Bishop titled "Lorentz and Semi-Riemannian Spaces with Alexandrov Cur-
vature Bounds" [1], which generalizes Toponogov’s theorem in two substantial
ways. First, triangles in semi-Riemannian manifolds are considered, where the
length is given by a signed distance, which accounts for the causal character of
a geodesic segment connecting two points. Secondly, also a local converse of To-
ponogov’s theorem is show, which is as follows: suppose in a normal coordinate
neighborhood U all triangles A together with comparison triangles A exhibit
the same behavior as one might expect from triangles in a space with curvature
bounded above by some K, then the sectional curvature of M is bounded above
by K on U. So if this holds for all points with corresponding normal coordinate
neighborhoods, then the curvature of M is bounded above by K and the same
hold for bounds from below. For this one needs an extended family of model
spaces of constant curvature, in particular model spaces with non zero index,
which will be introduced in and studied in depth in In
particular, we will prove a general form of the law of cosines for our model
surfaces and show realizability for comparison triangles. Our main tool, which
helps us to compare triangles in M with triangles in model spaces will be a
so called modified distance function and the modified shape operator induced
by it, which is the main topic of These modified shape operators
are self-adjoint linear maps on the tangent space and along geodesics one gets
families of these maps. The comparison theory of families of self-adjoint linear
maps which we need is developed in This chapter can be read inde-
pendently of the rest of the text. Then the main result is shown in
This thesis is written such that no previous knowledge in comparison geometry
is needed. It is assumed that the reader knows the basics of Riemannian geom-
etry as is presented in 3] or [4], and has some familiarity with semi-Riemannian
geometry, see 5], which will be our main reference.
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1.2 Riemannian Curvature Tensor and Curva-
ture Bounds

A semi-Riemannian manifold is a smooth manifold M together with a scalar
product denoted by { , ). A scalar product or semi-Riemannian metric is
defined as a non-degenerate symmetric bilinear form T, M x T,M — R which
is smoothly defined on M and is a (g) tensor. If { , ) is positive definite we
call ( , ) an inner product or Riemannian metric. Then M together with
an inner product ( , ) is called a Riemannian manifold. A subspace of the
tangent space is called non-degenerate if the restriction of the metric to this
subspace is again a non-degenerate bilinear form. For Riemannian manifolds this
is always the case, while in the indefinite case there are always sections on which
the metric is degenerate. On any semi-Riemannian manifold there is a unique
connection compatible with the metric, called the Levi-Civita connection. Let
V be the Levi-Civita connection for M, then the Riemannian-curvature
tensor R: X(M)3 — X(M) is defined by

RxyZ:=Vixyv1Z - |Vx,Vy]Z, (1.1)

where [X, Y] denotes the Lie-bracket and [Vx,Vy]Z := VxVyZ —VyVxZ.
Further we set R(X,Y,Z, W) := (Rxy Z,W) and we call Rxy the curvature
operator. Asusual, one has to be aware that there are different sign conventions
for the Riemannian-curvature tensor. So objects that are derived from the
Riemannian curvature tensor may have different signs in the literature. Here
we use the same convention as in O’Neil’s book [5], which will be our main
reference for facts concerning semi-Riemannian geometry.

Definition 1.2.1. Let M be a semi-Riemannian manifold and IT a non-degenerate
plane in T, M with basis given by v,w € T, M. The sectional curvature K of
IT is defined as

K (v, w) = R(v,w,v,w) i
(v, v ){w, wy — (v, w)
One can easily show that this definition is independent of the choice of basis

for II. For details see [5, p. 77]. We call a non-degenerate plane II in T, M

spacelike, if the restriction of the metric to II is positive or negative definite.

If the restriction is indefinite we call it timelike. In Riemannian geometry

curvature bounds from below or above are defined by one sided bounds on the

sectional curvature by some number K € R. For semi-Riemannian manifolds
with indefinite metric, it turns out that one sided bounds force the curvature
to be constant, which is shown by the following theorem. Sectional curvature
is not defined for degenerate planes, but we can still compute (R,,v,w). By
the proof of [5, Lemma 3.39 p. 77] we know that (R,,v,w) is independent of

the choice of basis up to a positive factor. So we get a well defined function A

which maps degenerate planes of T, M to {—1,0,1}, corresponding to the sign

of (Rywv,w) and to 0 if this expression vanishes.

(1.2)

Theorem 1.2.2 (Kulkarni et al.). [5, Proposition 8.28] Let M be a semi-
Riemannian manifold with indefinite metric, then for T,M the following are
equivalent

e The sectional curvature KC is constant
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e N=0

e

<K orK<b fora,beR
e a < K <b on timelike planes
<K

e a < b on spacelike planes

Proof. See [5]. O

Thus in the indefinite case, manifolds which satisfy one sided bounds on
sectional curvature turn out to be basically just the model spaces of constant
curvature, which will be discussed soon. The following definition as used in |1} p.
252] turned out to be better suited for the indefinite case.

Definition 1.2.3 (Semi-Riemannian Curvature Bounds). Let K be a real num-
ber. The sectional curvature K of a semi-Riemannian manifold M is said to
be bounded above by K if K < K for all spacelike planes and K = K for
timelike planes. For short, we write R < K. The sectional curvature K is
said to be bounded below by K if K > K for all spacelike planes and K < K
for timelike planes. In short we write R > K.

Remark

1. For Riemannian manifolds this is just the usual definition for one sided
curvature bounds.

2. Note that in general R < K < K’ respectively R > K > K’ does not
imply R < K’/ or R > K’. This implication is only true for Riemannian
manifolds.

Lemma 1.2.4. Having an upper bound on the sectional curvature R < K as

in|[Definitron 1.2.5 is equivalent to
R(v,w,v,w) < K((v,0)(w,w) — (v, w)?) (1.3)

for all p in M, and all v,w € T,M spanning a non-degenerate plane. In the
case of a lower bound R = K the above inequality reverses.

Proof. First suppose M has curvature bounded above by K then

R(v,w,v,w)

(v, v ){w, wy — (v, w)
where < holds if v and w span a spacelike plane II, and > if the span is timelike.
In the spacelike case, both v and w are spacelike or both are timelike. Since
the sectional curvature I does not depend on the choice of basis for II, we
can suppose that v and w are orthogonal. Then the denominator on the left
hand side is positiveﬂ so by bringing it to the other side we do not change
the inequality. In the indefinite case, w.l.o.g. suppose that v is timelike and
orthogonal to w, which is spacelike. So (v, v){w,w) < 0, which shows that the
denominator is < 0 thus multiplication changes the direction of the inequality.
O

Mf v and w are spacelike and span a spacelike plane this also follows by the Cauchy-Schwarz

inequality. This does not hold if the metric restricted to the plane spanned by v and w is not
positive definite. For example in ]R% the spacelike vectors v = (1, %) and w = (1,0) are a basis

of R? and o, wd?2 = 1> % = (v, v)w, w).

K(v,w) s<Kor 2K
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1.3 Gradient and Hessian

In this section we will take a look at the gradient and Hessian of smooth func-
tions on a semi-Riemannian manifold M and prove some properties which will
be used frequently later on. First, recall that a geodesic is a smooth curve
c¢: I — M, where I is some interval, which satisfies the geodesic equation

Ved = 0. (1.4)

If I is of the form I = [a, b] with a,b € R, ¢(a) := ¢ and ¢(b) := p, then we call ¢
geodesic segment connecting ¢ with p. If b = oo, then c is called a geodesic
ray starting at g, if further b = oo, ¢ is called a geodesic line. By the causal
character of a geodesic we mean the causal character of ¢/(¢), which is the
same for all times ¢ € I since

%<c’,c’> =2Vud,d) 0. (1.5)

So (¢, ¢y is constant and {¢/, ¢’ = 0 if and only if ¢ is a null geodesic. Thus the
sign of a geodesic o is well defined by setting

+1 iflo’,0")>0
sgn(o) = 0 ifdld’,0’y=0 (1.6)
-1 if{o’,0") <.

Definition 1.3.1. Let f € C* (M), then the gradient grad f € X(M) is defined
as the metrically equivalent vector field to the differential df € Q(M). So the
gradient is characterized by

(grad f, X) = df (X) = X f

for all X € X(M). Forpe M, denote by grad, f the value of the gradient vector
field at p.

Lemma 1.3.2. Given f e C®(M) and a smooth function g : R — R, then
grad (g o f) = g'grad f.

Proof. Note that g o f is a smooth function on M. So given X € X(M), by
definition of the gradient together with the chain rule for the differential we get

(grad(g o f), X) = d(go f)(X) = dg(df (X)) = g'{grad f, X).
Since X was arbitrary we are done. O

Definition 1.3.3. The Hessian H/ of a function f € C*(M) is the second
covariant derivative of f, Hf := VVf. As shown in [5, Lemma 3.49, p. 86],
the Hessian is a symmetric (g) tensor field, and for all vector fields X, Y € X(M)
it holds that

HI(X,)Y) = XY [~ (VxY)f =(Vxgrad f,Y). (1.7)
Lemma 1.3.4. Let ¢ be a geodesic and f € C*(M), then along c

HI(d )= (foe). (1.8)
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Proof. This follows from

(foo)" =Veu(foc) =Vedf(d)

= Velgrad f, ¢y = (Vo grad f,c'y + (grad ¢, V¢ > HI (¢, ).
=0

O

One may ask if some vector field V is of the form V' = grad f, for some
smooth function f. The next lemma shows that we can find such a f locally, if
V' satisfies some additional condition.

Lemma 1.3.5. Let V e X(M) satisfy

(VxVY) =(X,VyV)
for all X, Y € X(M). Then locally V = grad f for some f e C*(M).
Proof. First, for X, Y € X(M) we know that

XV, Y = (VxV, Y+ (V,VxY)
Y<)(7 V> = <VyX, V> + <X, VYV>.

Subtracting the second equation from the first one, then since by assumption
(VxV,Y)—{(X,VyV) =0, we obtain

XVY) =YX, V) =(V,VxY = VyX).
[N
—[X.Y]

Let ¢ be a chart defined on some neighborhood U in M, where we may assume
U to be smoothly contractible to some point py € M. Let 0y,...,0, be the
coordinate vector fields for this chart. Since [0;,0;] =0 for all 4, j € {1,... ,n},
inserting the coordinate vector fields into the above equation shows

0V, 05y — 0;0;, V) = 0.
So for V =Y, V'0;, by expanding the above we get

%X VFgrs) — 0,3, V¥ g) = 0.
k k

— ——
=wj =lWj
where wq, ... ,w, are the coefficients of the metrically equivalent one-form to

V. Then, since d;w; = djw; we get by [6, Corollary 7.18 p. 306] that w; = 0; f
for some f € C*(U) and thus

V= g"w = ) g"aif = (grad f),
=1 =1

so we are done. O
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1.4 Semi-Riemannian Hypersurfaces

In this section we will collect some results about semi-Riemannian Hypersur-
faces, which are semi-Riemannian submanifolds of codimension one. The next
pages are based on [5, p. 97-108]. In the following, V' and M will be manifolds
with V < M and inclusion map j : V. — M. Further, M is assumed to have
dimension n and to be equipped with a semi-Riemannian metric denoted by ga;.
We call V' a submanifold of M if it is a topological subspace and the inclusion
map j is smooth with injective differential 7},j for all points p of V. If the
pullback metric j*gpr =: gy induces a semi-Riemannian metric on V', we call V'
a semi-Riemannian submanifold of M. If the dimension of V is n — 1 it is
called a semi-Riemannian hypersurface. We can write T, M = TpV(JBTle.
The sign of a semi-Riemannian hypersurface V in M is defined by

e 1if{v,v)>0forallvinT,V*t
o —1if (w,v) <0 for all v in TpVJ-El

The next proposition shows that semi-Riemannian hypersurfaces can be con-
structed as preimages of smooth maps with non-vanishing gradient.

Proposition 1.4.1. [5, Proposition 4.17 , p. 106] Let f € C*(M) be a smooth
function on M, and ¢ a value of f. Then V := f~1(c) is a semi-Riemannian
hypersurface of M, if and only if {(grad f,grad f) is > 0 or <0 on V. Then the
sign of V' is equal to the sign of grad f. A unit normal vector field to V' is given
by % and f=1(c) is called a level set of f.

Proof. See |5 p. 106] O

Let V be the Levi-Civita connection on M, then for X and Y in X(V) the
Levi-Civita connection V on V is given by orthogonal projection onto TV, so

VxY :=tan(VxY)

and we call V the induced connection on V. The second fundamental
form I1: X(V) x X(V) — X(V)* is defined by by II(X,Y) := nor((VxY)). So
the induced connection V : X(V) x X(V) — X(V) can be written as

VxY =VxY +1I(X,Y).
For more details see [5, p. 97-102].

Definition 1.4.2. The shape operator or Weingarten-map W of a semi-
Riemannian hypersurface V' in M with unit normal vector field U is defined
by

W(X),Y):=—T(X,Y),U) for all X, Y € X(V).

A unit normal U exists at least locally and the shape operator is then
uniquely determined up to the sign. Here we use the opposite sign convention
as in [9].

2If the sign is 1 the co-index is 0, so the index of V is the same as the index of M. For
sign —1, the co-index of V is 1, so the index of V is —1 the index of M.



8 CHAPTER 1. PRELIMINARIES

Lemma 1.4.3. Let M be a semi-Riemannian manifold and V' a semi-Riemannian
hypersurface of M. If U is a unit normal vector field to V' (locally), then the
shape operator of V is given by

W(X) = VxU, (1.9)

where V is the Levi-Civita connection of M. At each point p in V where W is
defined it gives a self adjoint linear map on T,V .

Proof. Since (U,U) = +1 we compute 0 = Vx(U,U) = AVxU,U) so VxU is
in the tangent space of V for all X in X(V'). Now for Y € X(V) first note that
since (Y, U) = 0 we get
0= VX<K U> = <VXY, U> + <Yr7 VxU>
Thus (VxY,U) = —(Y,VxU). So
W(X),Y) = <I(X,Y),U) = (VxY,U) = (VxU,Y),
which shows (1.9)). Since I is symmetric it follows that W is self adjoint. O

1.5 Exponential Map, Normal Neighborhoods
and Gauss-Lemma

Let g be a point in a semi-Riemannian manifold M and v € T, M, then there ex-
ists an unique geodesic v, : I — M with 7, (0) = ¢ and +, (0) = v, and such that
the interval I is maximal. Set D, := {v € T,M |y, is at least defined on [0, 1]},
then D, is an open subset of T, M. The exponential map at g, exp, : Dy, — M,
is defined by exp,(v) := 7, (1).

Proposition 1.5.1. The set D, is an open star-shaped subset of TyM and exp,,
is smooth on D,. Further,

Yo (1) = Yo(t) (1.10)
for all't such that both sides are defined. There exists a star-shaped neighborhood
U of 0 in T, M such that the exponential map exp, : U — U is a diffeomorphism.

Proof. See |5 Proposition 3.30. p. 71]. O

Let U and U be star-shaped sets as in [Proposition 1.5.1] such that the ex-
ponential map is a diffeomorphism. Then U is called a normal coordinate
neighborhood of p in U. If U is a normal coordinate neighborhood of all of its
points we call U normal neighborhoooﬂ The existence of normal neighbor-
hoods is guaranteed by [5 Proposition 5.7, p. 130]. Given an coordinate basis
O1,...,0, for TyM and U a normal coordinate neighborhood of ¢ € M, then by
[Proposition 1.5.1] every point p in U has a unique representation as

exp, (p) = 20" (1)

and (z!,...,2") are called Riemannian normal coordinates. The next
lemma, collects some important properties of the exponential map.

3In literature different names are used for normal neighborhoods, like totally normal, con-
vex, geodesically convex or uniformly normal [3|. To be consistent with |1] we will use the
name normal neighborhood.
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Lemma 1.5.2. Let U be normal coordinate neighborhood of q € M, then for
p € U the following holds

(i) There exists a unique geodesic Yqp : [0,1] — M connecting ¢ with p and
Yap(0) = expy (p)-

(i) Let v =Y, v'0; € T,M for an basis 01, ... ,0n then in normal coordinates
the geodesic =y, has the form

for all t such that v, (t) is in U.

Proof. To show (i) set v := exp,'(p) and let 7, be the unique geodesic such
that 7,(0) = ¢ and ~,(0) = v. Then 7,(1) = exp,(exp,'(p)) = p. Now (ii)
holds since exp, ' (7,(t)) = exp, ! (exp,(tv)) = tv = 3" | tv'd;.

O

Definition 1.5.3. The image of a line through 0 in D, under the exponential
map exp, is called a radial geodesic or geodesic line through q.

Along radial directions the exponential map behaves especially nice, as the
following important and well known result shows.

Theorem 1.5.4 (Gauss-Lemma). Let M a semi-Riemannian manifold, pe M,
and 0 # x € D, < T,M. Then given vy, w, € Tp(T,M) with v, radial, where
radial means v, = Ax for 0 # A € R, it holds that

gy wee) = {( deXPp)Z(vr)v (deXPp)z(wr)>~

Thus the exponential map is an isometry along radial geodesics.

Proof. See |5, Lemma 5.1, p. 127] or [4, Theorem 2.1.21, p. 43]. O

1.6 Pregeodesics and Affine Parametrizations

Recall that a smooth curve ¢ : I — M is called a pregeodesic if it has a
reparametrization 0 : J — I such that co 0 is a geodesic. Here, 6 is assumed
to be a strictly-monotonic smooth map between intervals J and I. We will show
a lemma which will help us to detect if some curve is a pregeodesic. To show
this, we need the following result.

Lemma 1.6.1. /5, exercise 3, p. 93] Let ¢ : I — M be a smooth curve and
0 : J — I be a reparametrization of c. Let Z € X(c) be a vector field along c,
then

(Zo0) = %Z' 00 (1.11)
and
2
(Zoh) = 200 + (d—a)zz" 0f. (1.12)

dt? dt
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Proof. W.lo.g. assume that c is contained in a chart domain U, then Z(t) =

X 25 (1) 5w leqy- So Z(0() = Xy, ZM(0(1)) 55 |eonry and Z 0 6 € X(c o). The
local formula for the induced covariant derivative [5, p. 66] then yields

v P VARY) " i d(¢d 0 0)
E(ZO@ —T+Z}F 2 ())T
do de " i ch
- ( o +Zr Z( dt (9(t))>
do v
“wa loco

which shows ([1.11)). Applying the product rule for the induced covariant deriva-
tive further differentiation yields

s do d*0 g, _, ., d?o e ., .,
(Z06) -(dtzf o) = 5700+ (7 00) -ﬁzf 0+(5)22" 00
and we are done. O

Lemma 1.6.2. [5, exercise 19, p. 95] Given a smooth curve ¢ : I — M which
is regularﬂ if

Ve d (t) = At)c (t) (1.13)
for some smooth function A : I — R then c is a pregeodesic and the reparametrized
curve ¢ = co 0 is a geodesic if and only if

0"+ X(0)(0)? = 0f] (1.14)

Further it holds that (¢, ¢y = 0 everywhere or {c’, ¢y # 0 for all times. If ¢ is a
nonnull pregeodesic with {/(t),c (t)) # 0 for allt € I, then every constant speed
reparametrization of ¢ is a geodesic.

Proof. Let ¢ be a smooth curve such that (1.13)) holds. Let ¢ = co 6 be an
arbitrary reparametrization of ¢, then

B g0+ @700 B @ 0@, )

so if 8” + X\(0)(0)? = 0 it follows that ¢ is a geodesic since then V#& = &’ = 0.
Since ¢ is regular, if ¢ can be reparametrized as a geodesic then @ shows
that 6” + \(0)(6')? has to vanish. We can always find such a @ since is
a second order nonlinear ODE which can be solved at least locally. Further,
{d, ) satisfies following ODE

d
E@/’ Yy =2c",cy=2X, Y,

which shows that (¢/,¢) = ae?§2 9 for some a € R. Thus, since the exponential
is always greater than zero the claim follows. It remains to show that for a
nonnull pregeodesic ¢, every constant speed reparametrization is a geodesic. So

4c/(t) #0forall t e I.
5If 0 satisfies this equation clearly also af + b is a solution for all a,b € R.
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let O be such that ¢ := c o 0 has constant speed (&, &) := k # 0. Then we get
d(t)=0'(t)c(0(t)) and

d
0=— d,dy=«Vald,d).

This together with @ yields
0={(Vad,&)=0(0"+X0)0)) 00,c cb).

But since by assumption c¢ is nonnull {¢/, ¢’) # 0. Also 8" # 0, since 0 is assumed
to be strictly monotonic. Thus §” + A(0)(¢')? = 0, which shows that ¢ = co 8 is

a geodesic.
O

Remarks

(i) In particular if ¢ is already a geodesic, that is A = 0, then any reparametriza-
tion ¢ o # such that §” = 0 is again a geodesic, which is solved by 6(¢t) =
at + B with a, 8 € R. If « = 0 we just get a curve which assigns the same
point to any parameter value ¢t. The choice of a affine reparametrization is
called affine parameter for c. If a > 0 then the reparametrized curve is
traversed in the same direction and in case a < 0 the direction is switched.

(ii) We already know that the causal character of geodesics is always the same,
above lemma shows that this also holds for pregeodesics.

Definition 1.6.3. Let ¢ be a pregeodesic in a semi-Riemannian manifold M
then a reparametrization ¢ of ¢ such that ¢ is a geodesic is called an affine
reparametrization of c.

If ¢ : [a,b] — M a geodesic then we get a parametrization by [0, 1] by setting
é(t) := c((b—a)t+a). We will mostly deal with geodesics parametrized by [0, 1].
Let ¢; : [0,1] = M and ¢; : [0,1] — M be smooth curves into semi-Riemannian
manifolds M and M. Two points on p; € ¢1([0,1]) and py € c»([0,1]) are
called corresponding points if there exists to € [0,1] such that ¢1(to) = p1
and co(tg) = pa, and we say that p; and ps have the same affine parameter.
If ¢; and ¢y are not parametrized by [0, 1] we can still speak of corresponding
points if we take affine reparametrizations of both curves which don’t change
the direction, such that they are defined on [0,1]. This also explains the name
affine parameter.

1.7 Length and Distance in Semi-Riemannian
Manifolds

By a semi-FEuclidean vector space we mean a vector space equipped with a
non-degenerate symmetric bilinear form. Every semi-Euclidean space is isomet-
ric to some R}. Since the scalar product can also take negative values, we can’t
just define the length of a tangential vector as the square root of the scalar
product with itself. Since we are interested in the causal character we will use
the following definition.
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Definition 1.7.1 (Signed Length). Let V' be a semi-Euclidean vector space.
Then the signed length of a vector v e V is defined as

[vl+ := sgn(v) /[(v, )| (1.15)

where the sign, sgn(.) : V — {—1,1} is given by

1 4 =0
san(v) = 4 T4 oW (1.16)
-1 if (v,vy <.
By unsigned length or norm we mean ||v|| := +/|{v,v)|, which corresponds

to the usual 2-norm in the case of inner product spaces.

In the positive-definite case we have |v|+ = ||v||. In particular since the real
line has index v = 0 signed length there just gives the usual modulus.

Definition 1.7.2. Let M be a semi-Riemannian manifold, q,p € M such that p
is contained in a normal coordinate neighborhood of q. Then let v, : [0,1] — M
be the unique geodesic connecting g with p, that is v4,(0) = g and v (1) = p.
Then by

lapl+ = Yapl+ = |75, (0)]+
we denote the signed distance between q and p. The energy of vqp s defined
as

E(Yap) := Eq(p) := (145(0);7(0))-
Then the energy E,(p) is related to the signed length |gp|+ by

2 2
Ey(p) = sgn(vap) [Vgpl+~ = sen(vqp)lapl+~, (1.17)

so they have the same sign. Also if we vary the point p, if the signed distance

increases then also the energy increases. By [Lemma 1.5.2|(i) we see that
Eqy(p) = (expg " (p). expy ' (p)), (1.18)

which is well defined for all p in a normal coordinate neighborhood of ¢q. By

we know that

E(Yap) = rgp(t), 745 (1)) (1.19)
for any ¢t € [0,1]. Let o be a radial geodesic through ¢ defined on a normal
coordinate neighborhood of ¢g. Then there exists a v € T, M such that o(t) =
exp, (tv) and so

Ey(a(t)) = {expy (o (1)), expy (0 (1)) = t3(v, v). (1.20)
Lemma 1.7.3. Let U be a normal coordinate neighborhood of a point q, then
Eqy(p) = Ep(q). (1.21)

forallpeU.

Proof. Set 7pq(t) := 7gp(1 — t), then ~pq : [0,1] — M is a smooth curve
connecting p with g, further v,, is geodesic since it is obtained by an affine
reparametrization of a geodesic, given by 6(t) := 1—t. Finally, v,, = (74p00) =
—(7gp © 0) and so

Ey(p) = (1 (00,74 (0> = (7 (1), 7y (1) B2 57 (0), 7, (0)) = ().
O
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This shows that if we deal with quantities which only depend on the energy
of a curve, it does not matter in which direction the curve is parametrized.

Lemma 1.7.4. Let 0 : I — M be a geodesic parametrized in such a way that
0elcR ando(0) =g, then for all A € I it holds that

Eq(a(N) = ¢’ (0),0"(0)). (1.22)

Proof. Let 6(t) := o(At), then 6 : [0,1] — M is again a geodesic since it is given
by an affine reparametrization of a geodesic and further 6(0) = ¢, 6(1) = o(\).
Then 6'(t) = (c(At))" = Ao’ (At) and so

Eq(o(XN) = (6'(0),6'(0)) = A*(0’(0), 0"(0))-

O

1.8 Semi-Riemannian Manifolds of Constant Cur-
vature

In this section we will define our model spaces and study their properties. These
model spaces are simply-connected semi-Riemannian manifolds with constant
sectional curvature. For triangle comparison, the two dimensional model spaces
(surfaces) will be of particular importance. Up to isometry these spaces are
uniquely determined by their curvature K € R, dimension n and index 0 < v <
n. The constant curvature model spaces can be realized as hypersurfaces of R,
the so called hyperquadrics.

Constant Curvature Spaces and Space Forms

Definition 1.8.1. A semi-Riemannian manifold M has constant curvature

if the sectional curvature IC as defined in|[Definition 1.2.1 is constant.

In more detail there is a number K € R such that, for every p € M and all
v, w € T, M for which K is defined, K(v,w) = K. If M has constant curvature
K, then the action of the curvature operator R,,, is given by

Rywx = K((v,x)w — {w, z)v) (1.23)

for all p e M and all v, w € T, M spanning a nondegenerate 2-plane. For a proof
see |5, Corollary 3.43 p. 80].

Definition 1.8.2 (Space Form). A space form is a geodesically complete and
connected semi-Riemannian manifold of constant sectional curvature. If we
don’t want to be specific about the inder and dimension we will denote space
forms of curvature K by Q.

Proposition 1.8.3. /5, Proposition 8.23 , p. 227] Simply connected space
forms are isometric if and only if their dimension, index and curvature agree.

So to study properties of space forms, it suffices to work with one realization
of constant curvature spaces.
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Hyperquadrics

Hyperquadrics can be thought of as generalizations of spheres to R}}, with the
usual spheres S™ in Euclidean space R™ as a special cases. The unit sphere
in R™ is given by the equation {(z,z) = 1, and is a Riemannian submanifold of
dimension n — 1, index ¥ = 0 and constant sectional curvature 1. By scaling
the unit sphere S™ by some factor > 0 (the radius) we get spaces of constant
curvature r% defined by the equation (x,z) = r2. A space of constant negative

curvature K < 0 is obtained by the equation (z,z), = —r? in R} , which
yields the hyperbolic space of dimension n — 1, index v = 0 (the index of the
surrounding space minus 1) and constant negative curvature K = —%2. In fact

we can construct "spheres' of any dimension, index and curvature. First we will
collect several facts, which we will need for defining our model spaces. More
details can be found in [5, p. 108-114]. Recall that in a vector space V, the
tangent space is just a copy of V' at each point. Thus the following definition
makes sense.

Definition 1.8.4. Let ey,...e, be a basis for R}, then x € R} can be written
as ¥ = Y, x';. The position vector field P € X(R?) is defined by x —
D x'0; € T,R} = R}. Further we define the quadratic form q : R} — R by
q:w > (P(x), P(2)).

So the position vector field just takes the position vector of a point p € V
and "moves" it to the tangent space T,V of p, which is again V.

Lemma 1.8.5. Let V be a semi-Euclidean vector space. For ¢ and P as in

[Definition 1.8.4f we have 3
grad g = 2P. (1.24)

Proof. Given v € V', then by definition of the gradient we get
(grad q,v) = dq(v) = v§q = v(P, Py = 2(V,P, P) = 2(v, P).

To see V, P = v, note that the Christoffel symbols Ffj vanish in flat space. Then
by the coordinate formula for the induced covariant derivative [5, Proposition

3.13(1), p. 62]
VUP = vaiﬁi = Zvié’i = .
Since v was arbitrary the claim follows. O
Now we are able to define hyperquadrics as preimages of the quadratic form.

Definition 1.8.6 (Hyperquadrics). Fiz r > 0 and ¢ = 1, and let q be the
quadratic form on Ry. Then the set G '(er?) is called a hyperquadric. Fur-
ther set ¢ 1(0) := A, where A is the null contﬁ of RZ.

Lemma 1.8.7. Forn>2,0<v <n,r >0 andc = +1 the subsets g~ '(sr?)
of R**1 are semi-Riemannian hypersurfaces of dimension n, unit normal given
by %]5 and sign €. Further, @~1(0) = A is not a semi-Riemannian hypersurface
since the induced metric is degenerate.

?The nullcone A is defined as the set of all v € V such that v # 0 and (v, v) = 0. Vectors
in A are called null vectors. For index v = 0 we get A = J since by definition 0 is not a null
vector.
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Proof. See [5, p. 108,109] O

Definition 1.8.8. Letn > 2 and 0 < v < n and r > 0. Then the pseudo-
sphere of radius r and dimension n is defined as the semi-Riemannian hyper-
surface of R given by

Sp(r) == {pe Ry [{p,p) =1} = q7'(r?).

The pseudohyperbolic space of radius r, index v and dimension n is the

semi-Riemannian hypersurface Rﬁﬁ s given by

Hy(r) = {peRyTq [{p,p) = —1*} = @' (=1?).

Note that H"(r) is a subset of R7{, while S7(r) lies in R, For v = 0 we
recover the usual sphere, respectively the hyperbolic space of dimension n. By
[Proposition 1.4.1]it is easy to see that ST (r) and H)'(r) are semi-Riemannian
manifolds. Pseudospheres have constant positive sectional curvature given by
K = %2, whereas the sectional curvature of pseudohyperbolic spaces is negative
and given by K = —T% < 0, see [5, Proposition 4.29, p. 113]. There exists
an anti isometry between S7'(r) and H]_,(r). A map o between two semi-
Riemannian manifolds is called anti-isometry if (do(v), do(w)) = —(v,w)
for all v and w. So if a result holds for S} (r), we get the analogous result
for H?_,(r) simply by exchanging the words timelike and spacelike. We also
know how the geodesics look, and we have criteria for when two points can be

connected by a geodesic.

Lemma 1.8.9. (3, Proposition 4.28, p. 112] Let v be a nonconstant geodesic
in SI'(r), then v coincides with one connected component of the intersection of
ST (r) with a plane through 0. On the other hand, every connected component
of such an intersection is a geodesic if it is parametrized with constant speed. In
particular:

1. If v is timelike, it is given by a parametrization of one branch of a hyper-
bola in RT1L,

2. If v is null, it is given by a straight line in R2TT.

3. If v is spacelike, it is given by a periodic parametrization of an ellipse in
RFL

The analogous result holds for pseudohyperbolic spaces H]'(r) with the words
timelike and spacelike exchanged.

Proof. |5, p. 112] O

Now that we know what the geodesics look like, it is easy to explicitly write
down the exponential map for hyperquadrics.

Lemma 1.8.10. Let S”(r) be a pseudosphere, q¢ a point on SI(r) and v €
T,50(r) a tangent vector such that {v,v) € {1,0,—1}. Then the exponential
map exp, : T3S (r) — Sy (r) is given by

expy(tv) = 7 (1)
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O wey

Figure 1.2: Geodesics on the sphere, hyperbolic plane and the de Sitter space,
where spacelike geodesics are green, null geodesics are white and timelike
geodesics are red.

where vy, is defined by

cos (L)g +rsin (L)ov if {0y = 1
Yo(t) := { cosh (L)g + rsinh (L)v  if (v,0) = —1 (1.25)
q+tv if {v,vy = 0.

If v is spacelike or timelike, the radial geodesics -y, are of unit speed, so the
parametrization is by arc length. We get the result for H]}(r) by exchanging the
the cases for timelike and spacelike v in ((1.25]).

Proof. By [Lemma 1.8.9| and the corresponding proof in p. 112], we know

that the geodesics are of the form as in ((1.25)), only the factor r is missing for
the cos and cosh terms, since we have to multiply ¢ by % to scale it to unit
length. By definition ~,(0) = ¢g. The derivative of v, is given by

y ~Lsin (£)q + cos (£)0
E’yv(t) = % sinh (%)q + cosh (%)U
U’

and so v,(0) = v. If (v, v) = 1 we get

Gty = g snd (1) G reost (1) CEE

—r2 =

and for {v,v) = —1

bty = s (£) oy + oo ()

2

{(v,vy = —1.
-1

=T

So timelike or spacelike geodesics 7, are indeed parametrized by unit speed. [J
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Corollary 1.8.11. Let Qg be a hyperquadric and q,p € Qi distinct points.
Suppose q and p are connected by a unique nonnull geodesic gy : [0,1] — Ok,

and set v := %. Then the point p can be written as
Yap
1.
p=cos|A/E(vp)K |q+ TR sin | A/ E(vgp)K v, (1.26)

where we use the convention y/a := i+/|a| for a < 0.
Proof. Note that v satisfies

=E(Vqp)

——f
(7p(0), 74, (0))
E(Yap)vV E(Vap)

which is clear for E(vyq,) > 0. For E(v,,) < 0 this follows by

E(vgp) _ l E(7vgp) |E(7Vgp)|

@ = BB - =1

21E(ap) 1B ()]
In case E(vqp) < 0, v is of the form v = ¥ with ¢ =

<'Ua 'U> =

=1,

Vg (0)
[E(vgp)l
unit length and has the same causal character as 74, since it is a rescaling of

Yop(0). By definition 7, ,(0) = /| E(v4p)|, so we see that

p = expy(72p(0)) = 71 @)(1) = % (/I E(rgp)]).

Now we insert ¢ = 4/|E(74p)| and ¢ into and show that follows. We
have to check four cases depending on the sign of K and E(vg,). The curvature
K and radius r are related by K = %2 for pseudospheres and K = 7%2 for
pseudohyperbolic spaces. Then for example for K < 0 and E(v4,) < 0, we have

L_ then since in this case

NI

. Then ¥ is of

r =

M = \/|E('qu)||K| = \/E('qu)\/Ea

we conclude that

p =2 (y/1ECw) )

_ ( 'Eﬁqﬁ')qwsm( Esﬂwqpm)@

=cos< E(*yqp)K)>q+ \/lﬁsin< E(yqp)K)iv

= cos < E(vqp)K)>q + \/%Sin < E('qu)K)v

The other cases are show similarly by utilizing the identities cosix = cosh x and
sinix = isinh z.
O
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Lemma 1.8.12. @ Proposition 5.8 p. 149,150] Let p and q be points in
ST (r) with p # —q (which are not antipodal), then:

(i) If {p,q) > 12, then p and q lie on a unique geodesic, which is timelike and
one-to-one.

(ii) If {p,q) = 12, then p and q lie on a unique geodesic, which is also a null
geodesic in the ambient space R?+1

(iii) If —r? < {p,q) < r?, the p and q lie on a unique geodesic, which is spacelike
and periodic.

(iv) If {p,q) < r?, then there is no geodesic connecting p with q.

The corresponding results for the pseudohyperbolic spaces H (1) are obtained by
exchanging the words spacelike and timelike.

Proof. See |5 p. 150]. O

Lemma 1.8.13. Let Qk be a hyperquadric with radiusr > 0. For R € [—o0, 1)
and q € Qg, denote by Sr(q) the distance sphere of radius R in Qx around q.
Then Sgr(q) is obtained by translating the tangent plane T,Qk along the vector
q and intersecting it with Qk, where we think of T,Qk as a linear subspace
through 0 in the ambient space of Qk, so

Sr(p) = (149K + pq) N Qk.

For pseudospheres SI'(r) the factor p is given by

and for pseudohyperbolic spaces cos and cosh are interchanged.

Figure 1.3: Distance spheres around a point in the de Sitter space S?
obtained by intersection with a translate of the tangent plane. From left to
right: R >0, R=0and R <0.
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Proof. Forv e T,Qk define v, as in[Lemma 1.8.10} By (1.22]) we see that the the

signed length of 7, : [0, R] — Q is given by |g7,(R)|+ = sgn(v)|R|+y/[ v, v)| =
sgn(v)|R|, as long as 7, (R) is contained in a normal coordinate neighborhood of
g. We have to find all vectors v € T, Qi such that their signed length is R. First
consider R # 0, then sgn(v)+/[{v,v)| = R has to be satisfied. Since by
Yo(t) = Y(1) and sgn(v) 4/[{tv, tv)] = |t|sgn(v)4/|{v,v)|, we can by scaling
choose v to be of unit length, thus by v is parametrized by arc
length. For R > 0 and Q = S7(r), the corresponding sphere of radius R is
thus given by the image under the exponential map of {Rv € T,Qk | {v,v) = 1}

which by is of the form

{Cos (Jf)q 4 rsin <f>v |veT,Qx st (v,v) = 1} Lo

To see when this geodesic is unique we compute

(¢, 7(R)) = cos (f) &Kq_z +7sin (f) &/y_}/ = r? cos (f)

=r2 =

By [Lemma 1.8.12(iii), if —r? < (g, v,(R)) < r?, then q and 7, (R) lie on a unique

geodesic, which is spacelike, periodic and is even one-to-one in case R < 7.
To see that is given by the intersection of the tangent plane with the
hyperquadric, just note that the first summand is fixed while the second one
consists of rescaled tangent vectors. For R < 0 the image of {|R|v € T,M |

(v,v) = —1} under the exponential map is given by
R R
{cosh <||)q + rsinh <|)v | (v, v) = —1}
T T
and since cosh is an even function, p = cosh %. Also
R R R
{q,v(|R])) = cosh <|) {g,q) +rsinh (||> {q,v) = r?cosh <|)
r )L r )L r

=r =

and so {(g,7,(|R|)) > 72 for all R < 0 and by [Lemma 1.8.12(i), ¢ and ~,(|R|) lie

on a unique geodesic which is timelike and one-to-one. Also for pseudohyperbolic
spaces H"(r) the result is easily seen. O

Corollary 1.8.14. For K > 0 let Sk := Sg(\/%) be the sphere of radius
= \/% Then for g € Sk the closed distance ball Br(q) of radius R > 0 around

q is a normal neighborhood (convex) if R < 2\/”?, For R > ﬁ the closed ball
Br(q) is not convex.

Proof. Two points p,r € Sk can be joined by a unique geodesic if |pr|4+ =

d(p,r) < \/”7 by (1.25). This geodesic is part of a great arc on the sphere and

is obtained by intersection of the positive cone {Ap + pr | A + p > 1} with
Sk. Consider p,r € Sk contained in the closed ball Br(q), where ¢ € Sk and

R < 2\/”?. Then for m € Sk, the number (g, m) is the length of the projection

of m onto ¢, so by [Lemma 1.8.13| we know that a point m belongs to Bg(q) if
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and only if (¢, m) > cos (\/f R), which in particular holds for p and r. Then
for A+ p =1 we get

Op + pr, gy = Xp,q) + plr, @) = (A + p) cos (\/ER) > cos (\/ER)

where the last inequality holds since cos (\/E R) > 0 for R < 2\/”?. So the

unique geodesic connecting p with r is contained in Bgr(q). If R = ﬁ, then by
[Cemma 1.8:T3 we know that the sphere of radius R is obtained by intersection of
the tangent space of ¢ with Sk, where we think of the tangent space as a linear
subspace of the ambient space of Sk through 0. But then by
we obtain a great circle on the sphere on which antipodal points cannot be
connected by unique geodesics. O

Surfaces of Constant Curvature

We will call two-dimensional space forms surfaces of constant curvature.
Such spaces can be realized as hyperquadrics in the case K # 0, respectively
their universal coverings in case the corresponding hyperquadric is not simply
connected, or the choice of one connected component if the hyperquadric is not
connected. By [Proposition 1.8.3| we know that simply connected space forms
are determined up to isometry by their dimension, index and curvature. We
distinguish the cases K < 0, K = 0 and K > 0 and the three possible values
for the index v = 0,1, 2.

curvature V=0 V=1 v =19
q(w) | ) | )
K=0 R2 R2 R2
K <0 o1 (Fx)) | 7 (Fx) | % ()
[mame of spaces m column | S [ Mx 5k |

Since there exists an anti-isometry between S7(r) and H]'_,(r), the spaces in
the rows for the columns Sk and —Sk are essentially the same, that is up to

the sign of the metric. The spaces S7 (#) and H? (\/%7) are even isomor-

phic, as one can easily check. By c(Hg (ﬁ)) and (532 (ﬁ)) we denote

the choice of the connected component that contains (ﬁ, 0, 0) respectively

(—ﬁ,0,0). c(HZ(1)) is known as the upper embedding of the hyper-
bolic plane in R3. Further, by S? and H? we denote the universal covering
manifolds of these hyperquadrics, which exist by [5, Theorem A.12 p. 444],
since both spaces are diffeomorphic to R x S! and hence are connected. The
space S7 is often called two dimensional de Sitter space, while H? is known

as the two dimensional anti de Sitter space. Note that the metric on both

de Sitter spaces is indefinite. Further, S2 (\/%) is a sphere of radius \/% with
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the induced metric of R3. Finally, R? is the usual Euclidean plane and R? is
called semi-FEuclidean plane or 2-dimensional Minkowski space.

1.9 Local Hyperquadrics

For every semi-Riemannian manifold, the tangent space is a semi-Euclidean
vector space. Thus we can define the position vector field and the quadratic

form as in [Definition 1.8.4] which then allows us to define hyperquadrics on the

tangent space. Locally we can transport these objects on the tangent space to
the manifold by the exponential map.

Definition 1.9.1. Given a semi-Riemannian manifold M of dimensionn, index
v and g € M, then denote by P and q the position vector field and the quadratic
form on T,M = R}. Let U be a normal coordinate neighborhood of q, U such
that exp,, : U — U is diffeomorphism. Then we set P := dexp, oPo exp;l, the
local position vector field at ¢ and q := g o exp;1 is the local quadratic
form at q. For c # 0 we call g~ (c) local hyperquadric in U and A := q—*(0)
is called the local null cone at q.

Lemma 1.9.2. Let q be the local quadratic form, then
gradq = 2P (1.28)
and since q(p) = <exp;1(p)7exp;1(p)>, the above equation is equivalent to
grad B, = 2P.

Proof. This is a consequence of the Gauss-lemma together with gradgq = 2P,
which is shown in|Lemma 1.8.5, Solet ¥ € U and v € U such that dexp,(9) = v,
then

(gradq,v) = dq(v) = dq(dexp,(v)) = d(q o exp,)(D)

=d(qgo exp,) = 1q = (grad g, ) B2 2<P,ﬁ> = 2P, v),

where we used in the last step. O

Lemma 1.9.3. Forr # 0 the sets g~ 1(r). are semi-Riemannian hypersurfaces
of U and are obtained as

equ (Qir% N 0))

the images of the corresponding hyperquadrics in the tangent space under the
exponential map. Further the local position vector field P at q is orthogonal to
every local hyperquadric at q and P is both tangential and orthogonal to the local
null cone A at q. Finally it holds that

(P,P) = (P, P). (1.29)

Proof. On U, by definition

a7() = @0 exp, ) H0) = expy(@7H) = expy (@)

Orthogonality then holds since P is orthogonal to hyperquadrics, thus the claim
follows by the Gauss-lemma since the exponential map is a radial isometry.
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Equation (T.29) also follows by the Gauss-lemma. Given v € U non null and
p = exp,(v), we use (1.28) and (L.29)) to conclude

(arad, g, grad, g) = 4((dexp,)y (P(v). (dexp,)o(P))
= 4(P(v), P(v)) = &v,v) # 0

since (v, v) # 0, so by |Proposition 1.4.1|we get that g~!(r) is a semi-Riemannian
hypersurface for r # 0. O

Lemma 1.9.4. Let q be a point in a semi-Riemannian manifold M and let P
be the local position vector field at q. Then for every radial geodesic o starting
at q we have

(Poa)(t)=0d'(t) (1.30)

and
P(o(t)) = ta'(t), (1.31)

where ! denotes the induced covariant derivative along o.

Proof. First note that since o is a radial geodesic, it is of the form
t— expy tv

for some v in T, M with v = ¢/(0), since (exp, ' oo)(t) = tv. The local position
vector field P is defined by P = dexp, oPo exp;l. Now |[Lemma 1.5.2(ii) shows
that in normal coordinates, o is of the form ¢ — tv. So we see that

o (t) =tk

and (Poo)i(t) = o'(t). Now by differentiating the above twice with respect to
t we get
d? d*o? do® do’?
0=—(tF) = =Y Th(o(t —
22 ) = — PRACIO) pra

ij
where the last equality is due to the geodesic equation for o. So by the above

and the coordinate formula for the induced covariant derivative [5, p. 66] we
get

O'k O'i O'j O'k
(PooY (1) =Y {‘f‘dt - rifj(a(t))fﬁ‘;t} b= 39 0 o), (132)
k ij k

which shows (L.30). To show (L31), set 6(t) := (exp,'oo)(t) = (t — tv),
then P(5(t)) = (tv)s, = té’(t) and applying dexp,(tv) to both sides of the last
equation yields

dexp, oPo exp, (o(t)) = tdexp, odexp, ' (d'(t)) = to'(t).

Since by definition, the right hand side is P, we get P(o(t)) = ¢o’(t), which
shows (|1.31)). O]
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Remark This does not hold along curves which are not geodesics. Take for
example the curve ¢ : [0,1] — R? into flat space given by c(t) = (¢,t?) then
d(t) = (1,2t) and (P oc)(t) = (t,t?). Thus (P oc)'(t) = ¢(t) but since tc/(t) =
(t,2t?) we see that P(c(t)) # tc'(t). In fact equation always holds in
flat space since there the Christoffel symbols vanish and thus (1.32)) shows the
result without any previous considerations. So if one wants to construct a
counterexample to it has to be a non geodesic curve in non flat space.
On the other hand the proof of uses the form of geodesics in flat space
(respectively their image under the exponential map) and therefore only shows
the equation for geodesics.

1.10 Distance Functions

Definition 1.10.1. Let M be a semi-Riemannian manifold and let U < M be
open. A smooth function f:U — R is called distance function if ||grad f|| =
1.

Examples

1. Let o € R™ with the usual inner product, then ry (z) = d(zo,z) =
V<& — xg,x — xo)y is smooth on U := R™"\{zp} and a simple calculation
shows that ||gradr,,|| = 1 on U, thus r,, is a distance function on U.

2. Let S™ be the unit sphere in R™, then rgn(z) := inf {r;,(z)|zg € S} is
smooth on U := R™\(S™ u 0) and ||grad rg=| = 1, which shows that rgn
is a distance function on U.

3. More generally, let M be any submanifold of R™, and as before set rps () :=
inf {ry,(z) | z € M}. Then one can show that there exists a neighborhood
U of M such that rjs is a distance function. See |7, Example 22 p. 42].

Lemma 1.10.2. Let f: U — R be a distance function, then
Vgrad f grad f = 0. (1.33)

Every integral curve of grad f is a unit speed geodesic. For every t in the image
of f, the level sets V; := f~1(t) are semi-Riemannian hypersurfaces, with unit
normal given by grad f and shape operator

Wi(X) = Vxgrad f, (1.34)
where X € X(V4).
Proof. For X € X(M) arbitrary,

<Vgradfgradf7X> = Hf(grad.f7X) = Hf(ngradf)

1
=(Vxgrad f,grad f) = §X<grad fograd f) =0,
—_—
—+1

where the first equality is the definition of the Hessian (1.7). The second
equality follows by symmetry of the Hessian. To see that that any integral
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curve ¢ of grad f is a geodesic, note that integral curves are defined by the
equation c'(t) = grad,) f and so Vy()c'(t) = 0 follows by (L.33). Since

(c,c') = {grad . f,grad o) f) = £1, we see that ¢ has unit speed. By
tion 1.4.1|all level sets V; := f~1(t) of a distance function are semi-Riemannian
hypersurfaces, where the unit normal given by restriction of grad f, finally by

Lemma 1.4.3| the shape operator for V; is of the form ([1.34]). O

Definition 1.10.3. Let g € M be a point with normal coordinate neighborhood
U. Then the radius function r, : U — R is defined as

74(p) = lqp|+-

Remark For Riemannian manifolds r,(p) = d(g,p), where d( , ) is the Rie-
mannian distance function.

Lemma 1.10.4. Let U be a normal coordinate neighborhood of q, P the local
position vector field at ¢ and A the local null cone. Then the function rq is
smooth on U and the gradient of rq is given by

sgn(Eq(p))

grad, r, =
r | Eq(p)]

P(p), (1.35)
where grad, r, is smoothly defined on the open set U = U\(Au {0}). Also

llgradrq| = 1, on 0, s0 T4 is a distance function on U. The level sets of
re) " H(t) are orthogonal to P and the integral curves of gradr, are unit speed

q g g g q P
radial geodesics through q.

Proof. By we know that grad E; = 2P and yields

o sen(E)
g P4 |Eq(p)| P(p)

For P the local position vector field at ¢ we see that

1P = [KP®), o) B2 [(Pm), Po))| = |E,®),

and so for p such that E,(p) # 0

llgrad rq(p)|| = WHP(P)” =1

Clearly gradr, is smooth away from A U {0}. For ¢ # 0 we know that r,*(c) €
U\(A U {0}), so by [Lemma 1.10.2| we see that r,'(c) is a semi-Riemannian
hypersurface with unit normal vector field given by grad r,, which is a multiple

of the position vector field, thus P is orthogonal to r; ' (¢). Also by |[Lemma 1.10.2

we know that integral curves of gradr, are of unit speed.
O



Chapter 2

Comparison of Self Adjoint
Linear Maps

2.1 Self Adjoint Linear Maps

In this section we will study families A(t) of self-adjoint linear maps in a semi-
Euclidean space V, where A depends smoothly on a parameter ¢ in R and
by semi-Euclidean we mean spaces isometric to R?'. So in particular the fol-
lowing results can be applied to operators defined on the tangent spaces of
semi-Riemannian manifolds.

Definition 2.1.1. Let A be a linear map on a semi-Euclidean space V.. The
adjoint A* of A is defined by (Av,w) = (v, A*w) for all v and w in V. If
A = A* we call A self-adjoint. A positive semi definite linear map is
characterized by the property (Av,v) = 0 for all v # 0 and positive definite
if > holds for v # 0. For B another self adjoint linear operator we say A = B
or A > B if A— B is positive semi-definite or positive definite, respectively.

Remarks
(i) Adjoints always exist and are unique for isomorphisms and it holds that

(AB)* = B* A* and (A~1)* = (4%)~1. (2.1)

(ii) Note that in case v > 0 the identity map I is not positive definite.

(iii) In case v = 0 all the eigenvalues of a positive (semi-)definite linear map
are real and nonnegative. This does not hold in the indefinite case.

(iv) Let V a semi-Euclidean space and W a nondegenerate subspace of V.
Then by [5, Lemma 2.23 p. 49] nondegeneracy of W is equivalent to
V =W@®WH. Let A and B self adjoint linear maps on V. If Ay = Blw
and A < B on W', then A < B on V. To see this write v € V as

25
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v =v1 + vy with vy € W and vy € WJ-, then

(B =A)v,v) = (B = Avi,v1) +{(B = Avi,v2)
S ——

=(A—A)v;=0 =0
+ <(B - A)U27 'U1> + <(B - A)’UQ’ ’U2> > 0.
=(va,(B—A)v1)=0 =0

From now on self-adjointness will be assumed if we compare linear operators by
inequalities. The next basic result is well known for inner product spaces and
also holds in the semi-Euclidean setting.

Lemma 2.1.2. [8, Lemma 3.1 p. 18] If A = 0 and (Az,x) = 0 for some fixed
x then Az = 0.

Proof. Since A is positive semi-definite we have for any h € V' that
0<{A(z+ h),z+ h)y =2(Ax,h) + (Ah, h)

where we used that A is self adjoint and (Azx,z) = 0. Suppose Az # 0. Since
{,» is non-degenerate we find some hg such that (Ax, hg) # 0 and we can choose
ho such that {(Az, hoy < 0. Scaling hg by A € R and inserting into the above
inequality we get

0 < 20\ Az, ho) + N2(Ahg, ho).

Now (Ahg, ho) = 0 since A is positive definite. This gives a contradiction since
the right hand side gets negative for A small enough. So it holds that Az = 0. O

2.2 Comparison Theorems for Self-Adjoint Lin-
ear Maps

By M, (R) we denote the set of n x n matrices with real entries.

Lemma 2.2.1. |9, Lemma 1.2.14 p. 32] Let F : [0,b] — M, (R) be smooth
with F(0) = 0 and F'(0) invertible. Then there exists a smooth map F' such
that F(t) = tF(t) on [0,b] such that F(0) = F’'(0) is invertible.

Remark F is a real valued function for n = 1 and invertibility just means
that F' is nonzero.

Proof. Using that F is smooth and that F(0) = 0 we write

Ft) = F(t) — F(0) = L %F(st) ds — tfo F/(st)ds —: tF (1)

where F is smooth since F is smooth. Moreover, F(0) = Sé F'(0)ds = F'(0)
which is invertible by assumption.
O
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Lemma 2.2.2. (1, Lemma 4.2 p. 265] Let R(t) and F(t) be linear maps on a
semi-Euclidean space V with R, F € C?[0,b] where b > 0 and R(t) self-adjoint
for all t € [0,b]. Further suppose that F satisfies F(0) = 0, F'(0) 4s invertible
and F(t) is invertible for t € (0,b] and the following equation holds for all
te0,b]:

F"(t) + R(t)F(t) = 0. (2.2)
Given a smooth function g : [0,b] — R which is constant 1 or with g(0) = 0,
g (0) =1 and g > 0 on (0,b], define S by

g)F'(t) = S(t)F(t) forte (0,b] (2.3)

and
S(0) = 1. (2.4)

Then S is a smooth self-adjoint map defined on [0,b], and satisfies
gS'+ 5% —¢'S+¢g*R=0. (2.5)

Proof. First we show that (2.5 holds on (0,b]. Since F is invertible on this
interval, (2.3) can be written as

S=gF'F! (2.6)
and since also g > 0 we have, using our equations and the product rule

2
FE .
sr+ 2 L8 gpy s = (sFy B gry
g
/
—gF + 9" 2 g g & Lgp _grE
g

Now ([2.5)) is obtained by multiplying the left and right hand side of the above
equation by gF~! from the right.

To show that S is smooth note that by Lemma 2.2.1|we can write g(t) = tg(t)
and F(t) = tF(t) for smooth maps g and F with F(0) = F'(0) invertible and
g(0) = ¢’(0) = 1. Inserting this into we get tg(t)F'(t) = tS(t)F on (0,b].
Dividing by ¢ and then setting ¢t = 0 one gets ¢’(0)F’(0) = S(0)F’(0), which
shows by that S is smooth everywhere.

We now show that S is self-adjoint. This is clear for ¢ = 0 since by definition
S(0) = I. For t € (0,b], F(t) is invertible, so we have S(t) = g(t)F'(t)F~1(t).
Showing that S is self-adjoint on (0, ¢] is equivalent to showing that

%((F’)*F — F*F') = 0 for t € (0,b] and S(0) — S*(0) = 0

since S = S* on (0, b] is equivalent to
g(F'F~Y* = gF'F~ L.
Since g > 0 on (0, b] it can be canceled, then using (2.1 yields
(F'Y*F — F*F' = 0.

Now S(0) —S*(0) = I — I = 0 by definition, so if we show that the derivative of
the above equation on (0, b] is zero we show that S(¢) — S*(¢) = 0 on [0, b] since
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we have shown before that S is smooth. This can be done using the product
rule and (2.2)):

%((F/)*F _ F*F/) — (F*)/F/ _ F*Fl/ + (F//)*F _ (F/)*F/
_F*(~RF) + (—RF)*F = 0,

One easily checks that the proof also works in case of g = 1.
O

Theorem 2.2.3. Theorem 4.3 p. 266] For i = 1,2 let g, R;, F; be as in

[Lemma 2.2.7 Then corresponding to R; and F;, let S; be the smooth self-adjoint
map defined by (2.3) and (2.4) in|Lemma 2.2.2 Further assume that

g"(0) = 0. (2.7)

If the self-adjoint linear maps R; satisfy Ri(t) < Ra(t) for allt € [0,b], then for
S; the inequality reverses. That is S1(t) = Sa(t) for t € [0,b]. If S1(b) = Sa(b)
it follows that S1(t) = Sa(t) and Ry(t) = Ra(t) for t € [0,b]. Further fori =1
ori=2setS=35; and R = R;, then we have

S'(0) = 0 (2.8)

and

5(0) = 5(9" ()] — 2R(0)). (2.9)

Before proving above theorem we show the following result which is similar
to [8, Theorem 3.2].

Lemma 2.2.4. Let Sy, Sy be as in corresponding to Ry respec-
tively Ro. Suppose that Sy and Sy are defined on [to,b] for 0 < tg < b and set

Al = Sl(t0> and Ay = SQ(t()). If Rl(t) < Rg(t) on [to,b] and A1 = Ay then
S1 =855 on [to,b].

Proof. At first consider the case A1 > Ay and R;(t) < Ra(t) for ¢ € [to,b]. We
show that then Sy(t) > Sa(¢) for all t € [tg,b]. Suppose the claim were false.
Then there exists t € (tg, b] such that S;(t) > Sa(t) for t < t and S1(t) = Sa(t)

but S1(t) — So(t) is not positive definite. So there exists Z # 0 such that

((S1(t) = S2(t)z,z) = 0. (2.10)
So by it follows that
S1(t)x = Sa(t)7. (2.11)

Setting f(t) := ((S1(t) — S2(t))Z,Z) and g as in we compute
g@®)f'(t) = {(S1(t) = S2(8)2, )
= 4() (S50, 55D) — $1(D7. 1 (D)

=0 by
+g' (D)(S1(F) = S2(0)7, ) +9 (DX (Ra(F) — Ra(F))7, 7)
=0 by

— g()%((Ra(F) — Ry (£))Z, %) > 0.

~
since R1<Rs
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Since f(t) > 0 on (to,t) and f(f) = 0 it follows that f’(f) < 0 but since
g(t) > 0 by definition we conclude g(t)f’(t) < 0, which gives a contradiction.
Now for the general case let 6 > 0 and Ss be a solution to on [tg,b]
with respect to Rs = Ry + B, where B is a fixed positive definite linear map
and set As = Ss(tg) = A2 —0B. Then S5 exists on [tg,b] for ¢ small enough
by [10, 10.5.6 p.285] and S5 depends smoothly on §. Then we have Ry < Rs

and Ay > A since for any z # 0

((Rs(t) — Ri(t))z,2) = ((Ra(t) — Ry (t))z, 2>+ 6(Bz,z) > 0
—

=0 >0
for ¢ in [to, b] and

{(As — Az, 2y = {(A; — Ag)x,x) + 6{Bx,x) > 0
— T —

=0 >0

so by our first result Sy (t) = S5(t) on [tg,b] so & — 0 gives Si(t) = Sa(t) on
[t07b]'
O

Proof of [Theorem 2.2.3 To see (2.8) differentiating ([2.5) results in
g8 +98" +8S+85 —g¢'S—gS + (¢*R) = 0.

Then (2.8) follows by setting ¢ = 0 and applying (2.7) and the initial data for
S and ¢ from [Lemma 2.2.2] Now cancel the ¢’S’ term in the last equation and

differentiate again to obtain
glsl/ + gsl// _|_ 25#5/ + S”S + SS” _ g///S _ gllsl + (gQR)/I — O

where
(¢°R)" = 2¢"gR + 2(¢')*R + 4¢'gR' + ¢°R"

so again by setting ¢t = 0 and using the properties of g and the initial condition
S(0) = I we obtain (2.9).

Now to apply [Cemma 2.2.4 we need to show that for perturbed Ry we find a
neighborhood of 0 such that the solutions disagree. For § > 0 and some positive
definite linear map B define Rs = R+ §B and let S5 be the solution to on
[0,b] with S5(0) = I. This solution Sy on [0, b] exists by |10, 10.5.6 p.285] for &
small enough. Now inserting into gives

51(0) = (6 ()T ~ 2R (0)) and SY(0) = 3 (4" (0)1 ~ 2R5(0)

so we have 5
51(0) = 55(0) = 3(R2(0) — £1(0) + 3B).

But then since R;(t) < Ra(t) and B is positive definite it follows that S7(0) >
S%(0). Note that since S is self adjoint also all derivatives are. Further we have
that S;(0) = I = S5(0) by definition and by 51(0) = 0 = S5(0). So their
Taylor series at 0 agree for the constant and linear term. So we can find some
a > 0 such that S; > S5 on (0,a). To obtain Si(t) = S2(t) for t € [0,b] pick
some to in (0,a) and set A1 = Sy(tg), Az = Sa(tg) so bywe have
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S1(t) = Sa(t) on [to,b] which together with Sy(t) > Sa(t) on [0, to] gives the
result.

Now consider the case S7(b) = S3(b). Then for t := inf{t € [0,b] | S1(¢) =
Sa(t)} it remains to show that ¢ = 0. So suppose that ¢ # 0 then there is
0 <tp <t such that Sy(to) # S2(to) and |S1(to) — S2(to)| is small enough such
that the solution S of with respect to Rp and with S(tg) = Sa(to) exists
on [tg,b] [10] 10.5.6 p.285]. But then by [Lemma 2.2.4] we have

Sa(t) < S(t) < Sy (#) for all t € [to, b].

Then since S1(b) = S3(b) it follows by above inequality that S1(b) = S(b).
Hence S; and S satisfy the same ODE on [¢g, b] with the same initial value at b,
so they agree on [tg, b]. In particular, S1(tg) = S(to) which gives a contradiction
since S(to) = Sa(tg) # S1(to). So we have ¢ = 0 and by also R1 = Ry on
[0,0].

O



Chapter 3

Triangle Comparison in
Semi-Riemannian Manifolds
and Triangle Lemmas

3.1 Triangles in Semi-Riemannian Manifolds

In Euclidean-space, geodesic triangles are given by three distinct points con-
nected by straight lines, which are the unique minimizing geodesics connecting
these points. On the other hand on the sphere it is not immediately clear how to
define geodesic triangles since antipodal points can be connected by infinitely
many geodesics, all of the same length. So we need to require uniqueness of
geodesics connecting the vertices, to get a good definition for geodesic triangles.

Definition 3.1.1. Let M be a semi-Riemannian manifold and p,q, € M such
that Ygp, Ygr : [0,1] = M are the unique geodesic segments connecting the point
q with p, respectively q with r. We call p, q,r together with 4, and v4- a hinge.
The non-normalized angle of this hinge at q is defined as

Zpgr = {Yg,(0),74,-(0)).

If there exists a unique geodesic Yy, : [0,1] — M connecting p with r, then
the vertices p,r,q together with the sides given by vqp, Ygr, Vpr are called a
triangleﬂ in short Apgr. We also suppose for triangles that the triple of signed
lengths (r|+ apl e |+) = (1gr]s, lapl, prl+) € B? is not 0. The numbers
lgr|+, |lap|+, |pr|+ are called the side lengths of Apgr. From the perspective of
the vertexr g we call 7y, the opposite side, and 74,74 adjacent sides, and
analogously for the other vertices.

Remarks

1. In a normal neighborhood, a hinge is uniquely determined by three point
with one of them "marked", so that we know where the angle sits. A
triangle is uniquely determined by three points such that at least one side
length is non zero.

1This is also called geodesic triangle in the literature.

31
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2. In semi-Riemannian manifolds of non-zero index, the sides of Apqr can
have any causal character, thus also sides with negative signed lengths and
sides of length O are possible.

3. Unless explicitly noted otherwise, angles are always assumed to be non-
normalized.

Lemma 3.1.2. Let Apqr be a triangle contained in a normal neighborhood U,
then

(Eq o pr)' (0) = —2Zgpr, (3.1)

where Yy, is the unique geodesic parametrized by [0,1] connecting p with r and
Zqpr denotes the non-normalized angle.

Proof. Set x(t, s) := exp, (texp, ! (Ypr(s))), which is defined for s and ¢ in [0,1].
This holds since U is a normal neighborhood of Apgr and thus any two points
on the sides of Apgr can be connected by a unique geodesic. We have

Tt (Oa S) = eXp;I(FYPT(S)) = f)/(,l')’pr(s) (O)

by [Cemma T53(0)): and By(3r(5)) = (3, (0 (07, (o (0)) by definition.

Combining these results and differentiating with respect to s we obtain

(Eq 0 7pr)(0) = slolae(0, ), 24(0, 5)) = 2(45(0,0), 2¢(0, 0)). (3-2)

So it suffices to compute (0, 0) and z¢(0,0) to get the result. To do so, choose
Riemannian normal coordinates around g. Then the corresponding chart is
given by ¢ := exp, ' and we set z¥ := @ o x. Then z?(t,s) = tequ Lypr(s))
and so we see that 7 (t,s) = exp, ' (v,r(s)) and 27 (0,0) = exp,'(p). But in
our chart ¢, radial geodesics are straight lines by [(11)]7 and we
know that equ_l(p) is the vector that defines a geodesic from q to p which is
parametrized by [0, 1]. So the negative of this vector defines via the exponential
map a geodesic connecting p with g. So

zf = = (4,) (0). (3:3)

By the coordinate formula for the covariant derivative [5, p. 66], and since at ¢
the Christoffel symbols vanish in Riemannian normal coordinates, we get

(x£,)"(0,0) = dsfo(exp, " (vpr(s ZF equ Y(pr(5))" expy  (pr(s))?
=0
and so
2£,(0,0) = dslo expy ' (vpr () = (45.)(0). (3.4)
=vpr(s)

Then the result follows by inserting

(Egormn) (0) & 202,,(0,0), 2,(0,0)y EIEED _ot(52) (0), (12,) (0)) = —22qpr-
O
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Remark: To see the geometric meaning of this result, first note that the
function E, o7,y : [0,1] — R measures the signed distance from ¢ to points on
the opposite side of the triangle, going from p to ¢. This can be seen since by
the energy is a strictly increasing function of the signed length. Then
the right hand side of tells us if this function is increasing or decreasing
locally at p, depending on the non-normalized angle at p.

Theorem 3.1.3. For K # 0, let Qi be a hyperquadric, U a normal neighbor-
hood in Q and Apqr a triangle in U with nonnull side lengths. Then the law
of cosines is

cos \/m = cos \/KE('yqp) cos \/KE(vq,«)

/
+ par sin /K E () sin | KB (7).

AV E(qu)\/ E(’qu)

Here Ypr, Yaps Yor : [0, 1] = Qk are the nonnull geodesics connecting the vertices
of Apqr. Further, Zpqr denotes the nonnormalized angle at the vertex q.

(3.5)

Proof. Here we combine the proofs of the spherical law of cosines and the hy-
perbolic law of cosines found in |11, 2.2,2.7, p.17, p. 20] and also give a general-
ization which applies to semi-Riemannian surfaces with curvature K # 0. The
unified law of cosines is from [1, Remark 2.3, p. 260], where it is presented
Ygp(0) and u — Ygr(0) .
E(vqp) E(vqr)
(1.26) in|Corollary 1.8.11| we see that

without a proof. We set v := Then by equation

p = cos (/KB Ja+ = sin (KB ) o

and

r = cos < KE(yqr)>q + \/% sin < KE(W)> u.

Since {q,uy = 0 and {g,v) = qﬂ the above equations yield

o1y = os (KB ) cos (KEOu) )

1 (3.6)
+ % sin ( KE('yqp)) sin ( KE(fyq,.)> (v, u).
Using the definition of the nonnormalized angle we see that
2pqr = (Ygp(0),%4r(0)) = A/ E(Yap) A/ E(Yqr) v, ). *)

Now we set w := \}%7 then by (1.26]) it follows that the point r can be
71)7‘

written as

T = cos ( KE(%J)]) + \/%Sin ( KE(VW)) w.

2By ( , ) we mean the scalar product of the ambient space of the hyperquadric, which
restricted to the hyperquadric is the metric of Q.
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First we suppose that Qp is a pseudosphere of curvature K > 0, then all points

in Qk have inner product % with themselves and in case of pseudohyperbolic

spaces the inner product is also %, but here K < 0. Then since {p,w) = 0 and

{p,p) = %, by the above equation we get

o1y = e oos (VKB ). ()

So we can insert @ as the left hand side of and use (ED to substitute for
(v,uy. Also{q,q) = % in (3.6). Then the law of cosines follows by multiplication
with K.

O

As an immediate consequence of the law of cosines we are able to prove a
version of the hinge lemma for hyperquadrics with curvature K # 0.

Corollary 3.1.4. Let Apqr be a triangle contained in a normal coordinate U
with nonnull side lengths. Then the non normalized angle Zpqr is a decreasing
function of the signed length of |pr|+.

Proof. This is a consequence of the law of cosines (3.5) if we vary E(v,,), while
keeping E(7,p) and E(v,,) fixed. First, for K > 0 it is easy to see that the func-
tion ¢ — cos (v Kt) is a strictly monotonically decreasing function on [—oo, \/ﬂ—%)
Then the factor belonging to Zpgr is always positive if E(vqp), E(vgr) < \/ﬂ—i,

K
which is obvious if both are > 0, and if for example E(v,,) < 0, then

sin /K E(7ygp) _ isinh /K| E(gp)| _ sinh /K |E(7ygp)] -0,
VE(gp) i/ |[E(Yap) VIE(Ygp)]

So if E(v,,) increases, Zpgr decreases. For K < 0, the function ¢ — cosh /| K|t
is a strictly monotonically increasing function on [—oo, J—%) Also,

sin \/KE(qu) sin \/KE('qu) _ sinh /| K'|E(ygp) sinh /| K|E(vgr) <0
\/qu) LY E('qu) \ E(’qu) A\ E('qu) ’

which holds independent of the causal character of 74, and 7,,. By this we see
that Zpgr has to decrease for increasing E(vpr).

O

3.2 Realizability Lemma

Given a triangle in a semi-Riemannian manifold, then under certain assumptions
we can find a triangle in a model spaces of curvature K which has the same
side lengths. This so-called comparison triangle in a model space of constant
curvature is then unique up to isometry.

Definition 3.2.1. Given three numbers a,b,c = 0 such that a > 0, we say that
a, b, c satisfy the strict triangle inequality if b + ¢ > a. Denote the subset

of R3 consisting of all such triples by T+ and set T~ := —T*. Positive triples
which satisfy b+ c = a are called degenerate triples. The corresponding subset
is denoted by DY and we set D™ := —D™. Further, denote the complement of

TtuT-uD"uD U0 by Crp.
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Remarks Let V be a vector space, then a subset C' of V is called cone if for
all z,y € C also z + y € C and for all A > 0 also Az € C. It is easy to see that
the sets TT,T~, D%, D~ are cones.

Lemma 3.2.2. Given a positive triple in (a,b,c) € R3\0, then up to isometry
there is a unique realizing triangle Apqr in the Euclidean plane R? = Sy if
(a,b,c) € Tt v D*. If the triple (a,b,c) is negative, then up to isometry there
is a unique realizing triangle in —Sy if (a,b,c) e T~ v D™.

Remark It follows that, given three positive side lengths, they constitute a
triangle in R? if the triangle inequality is satisfied. Then the side lengths can
be arbitrarily big.

Proof. Since in Euclidean space distances between points are always positive,
a,b,c are = 0. W.l.o.g. suppose that ¢ > b and a > ¢, then since the triple is
non null, @ > 0. A sphere of radius b around 0 is given by the equation

(x,z) = b, (1)
A sphere at G := (a,0) with radius ¢ is defined by

(x —a,z—ay=c (2)

For z := (z1,72) € R?, the last equation is equivalent to (z, z) — 2x1a +a? = c2.

Thus using yields
b2 +a?—c?
= —".
! 2a

Also, equation is equivalent to
2 2 2
zy = b" — i, )

where the right hand side is > 0 exactly if b + ¢ > a. To see this, note that by
a simple calculation,

Bl = <(@+1;);—c2) (cz_g;_b)z)

The first factor is always > 0 since a > ¢, b, and the second factor is > 0 if
c+b=a. Also b*> — 2} = 0 exactly if @ = b+ c and the unique solution to () is
given by xo = 0. In this case we thus get a degenerate triangle where all three
vertices lie on one line. Otherwise there are two solutions zy = +4/b% — 23,
But the triangles obtained by the different solutions are isometric by reflection
at the xi-axis. Clearly triangles in R? which have the same side lengths are
isometric. O

Lemma 3.2.3. Given a positive triple in (a,b,c) € R3\0, then up to isometry
there is a unique realizing triangle Apqr in the Minkowski plane R? = M, if
(a,b,c) e R3N\(TT* uT~ LO).

Proof. Again w.l.o.g. assume that a > b, ¢ and first suppose a > 0. Then we
construct circles of radius b and ¢ around the points 0 respectively a := (0, a).
These circles are given by

(w,z), = sgn(b) b? )
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and
(x —a,v —ay, =sgn(c) c, (**)
where x := (z1,22) € R? and {x,z), = —z} + 23. Then
z? = 23 —sgn(b) b? (3.7)
and

sen(b) b? + a? — sgn(c) ¢2
:CQZ g ( ) 2a g () . (3.8)

So we have to check when z3 —sgn(b) b? is > 0. First consider the case sgn(b) =
—1, then 22 + b? > 0 independent of sgn(c). In the case that sgn(b) = 1 we get

R ((a +b)? ;asgn(C) 62) <Sgn(c) 022; (a— 5)2) |

For sgn(c) = —1 this expression is always positive. If sgn(c) = —1 the first factor
is always positive, so the second factor is required to be < 0. This condition
holds exactly for b+ ¢ < a. If a < 0 the calculations are similar, one just has to
set @ := (]al,0). Finally if a = 0 we have to solve

{a,x); = sgu(b) b’
(z,x)y, = sgn(c) .

These two hyperbolas only intersect if they agree, so sgn(b) = sgn(c) and b = c.
In this case there are infinitely many solutions. These degenerate triangles are
all isometric by Lorentz transformations in £(2), even if they don’t lie on the
same connected component of the hyperbola. For more details see [5, Examples
9.4 p. 236]. That two triangles which have the same side lengths are isometric
will be shown in the proof of the next lemma. O

Lemma 3.2.4 (Realizability). [1, Lemma 2.1 p. 257] A point in R3\0 can be
realized by a triangle in the model spaces of constant curvature K as follows

(i) A point in T can be realized by a triangle in Sk if the sum of the side

lengths is < 5—% A point in T~ can be realized in —Sk if the sum of

its side lengths is > —%. In particular the largest side length has to be

s us

< Jg’ respectively the smallest side length > ~ 7R

(ii) A point in DT can be realized by a triangle in Sk and My if the largest

side length is < LK A point in D™ can be realized by a triangle in —Sk

and My if the smallest coordinate is > _T%'

(i4i) Every point in Cr p is realized by a unique triangle in My = R3. For
K > 0 a realizing triangle exists if the largest coordinate is < \/% For
s

K < 0 a realizing triangle exists if the smallest coordinate is > T

These realizations are unique up to isometry of the model spaces and for K <0

we set \/”7 1= 00, S0 no size bounds apply.
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Proof. For K = 0 we have seen in that for any non null triple
there is a unique realizing triangle in Sy up to isometry. The same holds for
non null negative triples which are realized in —Sy. The result for M is shown
in [Lemma 3.2.3] Let Apgr be a triangle in Q, and set a := [pr|+, b := |pq|+,
¢ := |gr|+ with sides parametrized by geodesics Ypr, Vpg and vq-. We now
show which side lengths (a, b, ¢) can be realized in a given surface of constant
curvature K and which conditions have to hold. For K # 0, we first consider
the Riemannian case, so all the side lengths are > 0. Then w.l.o.g. we may
suppose that a = b > ¢ > 0 and in particular a > 0, since by definition at least
one side length has to be non zero. But then also b > 0, since otherwise the
triple of side lengths would be 0. The side lengths are in D" if our triangle is
given by three points on a geodesic segment of length a < \/LR’ which implies
that @ = b + ¢. The other kind of degenerate triangle on the sphere is given
by a great circle. In this case, one has to assume a < \/L? to exclude antipodal

points, which then implies ¢ > 0. We then have a =b+cand a+ b+ c = 2—7;(

Now assume that all sides have non zero length, then by the law of cosines ({3.5)
we get

Cos (\/?a) = cos (\/Eb) cos <\/?c) + Lé)é]r sin (\/?b) sin (\/Rc) (3.9)

Since 7;,,(0) and +,,.(0) are contained in a spacelike plane and bc # 0, we see
that

Zpqr

- be

for a unique « € [0,7]. Now we keep b and ¢ constant. Then in case K > 0, if
we increase a from 0 to 7, the right hand side of monotonically decreases
from cos (VK (b— c)) to cos (WK (b+¢)) P} So the law of cosines shows that
cos (VKa) = cos (VK (b+c)) and so a < b+ c. We have to assume a < \/%,
since otherwise there is no unique geodesic connecting p with r. To see the bound
on the sum of the side lengths, let m be the center of the circumscribing circle
of Apqr. The point m is obtained as follows: First, let I be the intersection
of the sets {x € Sk | d(p,x) = d(q,2)}, {z € Sk | d(r,z) = d(¢,z)} and
{x € Sk | d(p,x) = d(r,z)}, then define m := minges d(p,z). The definition
of m implies that d(p,m) = d(q,m) = d(r,m) =: R. In case R = s it

cos (@)

follows that p,q,r lie on one great circle, thus (a,b,c) € Dt. First we show
that R < ﬁ, since suppose R > ﬁ, then the points p, ¢, r are contained in
a closed ball of radius < —%= around the antipodal point —m to m, which is
convex by But —m € I, which contradicts the minimality of
m. Now consider three radial geodesics starting at m going through the points
p,q,7 and let p’, ¢/, 7" be the intersections of these geodesics with the distance
sphere Sﬁ (m) around m, which is a great circle on the sphere. Then the law of

cosines shows that a = d(p,r) < d(p’,7"), b = d(p,q) < d(p’,q') and ¢ = d(q,7) <

d(q’,r"). This shows a + b+ ¢ < 3% since d(p',q') + d®',r") + d(¢', ') = 5—%

For K < 0 equation transforms to
cosh (\/Ea) = cosh (Mb) cosh (MC>
— cos (a) sinh (Mb) sinh (\/@c),

3This follows by the sum rule cos (x & y) = cosx cosy F sin x sin y.

(3.10)




38 CHAPTER 3. TRIANGLE COMPARISON

so if we increase a from 0 to m, we see that the right hand side of the above
equation strictly increases from cosh (vK (b — ¢)) to cosh (VK (b +¢)) ['| But
then by (3.10)), cosh (vVKa) < cosh (VK (b + ¢)) and so a < b+ c. In hyperbolic
spaces triangles of arbitrary side length can be realized. This is seen by the
form of the exponential map , which allows geodesic segments of arbitrary
length, which then are the unique geodesics between their endpoints. So we can
construct hinges of arbitrary size and by varying the angle of the hinge, we get
a triangle of the required third side length by the law of cosines (3.5)). Triples in
DT are realized in the hyperbolic space by three points on a common geodesic.
The analogous statements for —Sg then follow since it is anti-isometric to Sk
Now for the indefinite constant curvature surface M, first suppose that all side
lengths of Apgr are non null. If tangent vectors v and w are both timelike, the
hyperbolic angle o between them is defined by

(v, ) {—v||||w|| cosh () if v,w are in the same timecone
v, Wy =

|lv]|[|w]| cosh ()  if v, w are in opposite timecones

for a unique a > 0. If both vectors are spacelike and nonnull, the hyperbolic
angle is given by

(o) = { Jollwl] cosh (@) if (v, w) > 0
’ ~Jlolwl] cosh () if v, w) <0

for a unique o > 0. First we consider the case that all side lengths are posi-
tive, then +,,(0) and 7;,.(0) are in opposite timecones since 7,4 is parametrized
towards ¢, while v, is parametrized starting at ¢. So in this case we have

Zpqr = —bccosh (a)
for @ = 0. Then inserting this into (3.9) yields

cos (\/?Q) = CcOs (\/?b) cos (\/EC) — cosh (@) sin (\/Eb) sin (\/?c)

Now again fix the side lengths b and c. First, for K > 0, the largest side length
has to satisfy a < \/% For a = 0 the right hand side of the above equation is

cos (VK (b+ ¢)) and decreases for growing o, since sin (v Kb)sin (vVKc) = 0 for

b,ce [0, \/”7) This shows that cos (vVKa) < cos (VE(b+¢)) and so b + ¢ < a,

thus (a,b,c¢) € Crp. Also it holds that (a,b,c) € DT if the triangle lies on
the equator of the hyperquadric, which is a spacelike periodic geodesic and has
circumference j—% Thus we conclude that triangles on the equator of Mg
have the same properties as triangles on a great arc of Sx. For K < 0 we
get that cosh (4/|K|(b+ ¢)) < cosh (4/|K]a), so the inverse triangle inequality
a = b+ c has to hold, and there are no size bounds to a. Recall that for
K < 0 the spacelike geodesics are branches of hyperbolas, see[Lemma 1.8.9} The
degenerate triangles are thus given by three points on a common hyperbola, so
they are the same as in the hyperbolic plane. In the case that two sides have
positive length and one side has negative length, then w.l.o.g. we can assume
that a = b > 0 > ¢. Then inserting into the law of cosines yields

cosh (\/? E(fyqr)|> = cos (\/?a) cos (ﬁb) +cosh () sin (\/?a) sin (\/Rb)

4Since cosh (z + y) = coshx coshy + sinh x sinh y.
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Then the right hand side for fixed a,b and K > 0 is cos (v K(a — b)) for

v = 0, and increases for growing . This shows that cosh (VK~/|E(74)]) =
cos (VK (a — b)), which is always satisfied. So in this case one only has to assume

that a < \/”7 For K < 0 we get

cos («/|K|4/|E(’yqr)|) = cosh («/|K|a) cosh («/|K|b)
— cosh () sinh (q/ |K|a) sinh (\/ |K|b).
Then for v = 0 the right hand side is cosh (VK (a — b)) and is decreasing for

growing 7. This shows cos (\/|K[\/|E(v4-)]) < cosh (VK (a — b)), which again

is always satisfied and a can be arbitrary big since K < 0. One only has to

assume that ¢ > ’fK since in pseudohyperbolic space timelike geodesics are
periodic, see Now in case that two side lengths are negative we

may w.l.o.g. assume that a > 0 > b > c. then for K > 0 we get

cos (\/Ea) — cosh (\/E E(ypq)|> cosh (ﬁ |E(7qr)|)
— cosh (a) sinh <\/E |E(qu)|) sinh <\/R |E(’yqr)|).

Then since E(vpq) = —|pg|+ = —b and E(v4r) = —|gr|+ = —c, we see that for
K > 0 the right hand side for o = 0 is cosh(—+/K (b — ¢)) and decreases for
growing a. We get cos (v Ka) < cosh(—+vK (b — ¢)), which is always satisfied,
so only a < LK has to hold. The case K < 0 is shown analogously and similar
calculations also show the case, where all the side lengths are negative. Now
the only case remaining is the null case, so given a > 0 suppose ¢ = 0. Then we
draw the side a on the equator of the hyperquadric. The null geodesics starting
at ¢ are given by a pair of straight lines in the hyperquadric, which are also
straight lines in the ambient space. Then the distance sphere of radius b around
p is given by a translate of the tangent plane at p. These lines and the plane
intersect in three-dimensional space if they are not parallel, so a < \/”7 has to
hold in the case K < 0. Note that these two points of intersection then are in
the hyperquadric since the null lines are. Since by assumption b < a, the inverse
triangle inequality holds. That the two realizing triangles are isometric will be
shown next. Also for a < 0 there is nothing to show since then by assumtion
the other sides cannot be null and the case a = 0 is as in [Lemma 3.2.3

Now it only remains to show that that triangles with the same side lengths
are isometric. Here we will also prove the case for K = 0. To do so, let Apgr and
Apqr be triangles in Qf such that all three side lengths agree. Set v; := 7,,(0),
and vy := 7,,.(0), w1 := 75;(0), and wa := v;:(0). Now using the Gram-Schmidt
process, first set ey := vy, f1 := wy and then

B (vy,v2)
2= <Ulvvl>
<wla ’lU2>

{wy,wyy

By definition (v, v9y = <71’7q(0)7 ’y;W(O)> = Zgpr and (wy,wq) = <'71/71i(0)’ 7%;(0)} =

U1
(3.11)

fo=ws —
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/. qpr. Then the law of cosinesEl shows that Zqpr = ZGpr, respectively (vy,ve) =
(w1, wa), and so the factors on the right hand side of (3.11)) in front of v; respec-

tively wy agree. We set w := 2215?5
agree, also {v1,v1) = (w1, w1) and (va,v2) = (w2, w2), so one concludes that

also {e1,e1) = {f1, f1). Using this we see that

Since the side lengths of the two triangles

leg,e2) = w? (v, v1) —2w <v1,v2>2 + {vg, vy = {fa, f2).
— —— ——

=(w1,w1) =(wy,wa)?  =(w2,w2)

Then by Gram-Schmid we get orthogonal bases e1, ... , e, for 1,9k and f1,... , f
for T;Qk, where n = dim Qg, and such that {e;,e;) = (f;, fiy fori =1,... ,n.
By Proposition 4.30 p. 113] there exists an unique isometry ¢ : T,Qx —
T;Qk of Qk such that d¢(e;) = f; for i = 1,... ,n. Hence

do(vi) = wq
dp(v2) = dp(er) + wdd(ez) = f1 +wfo = wy,

S0 ¢ gives an isometry between the two hinges and hence also between Apgr
and Apgr. O

Remark One interesting way to visualize the degenerate triangles is as follows:
Consider a sphere, the de Sitter space and the hyperbolic plane, all of the same
radius, embedded in the same three dimensional space. The sphere and the de
Sitter space intersect in a great arc on the sphere. Then consider a triangle on
the sphere where one side, which we keep fixed, lies on this great arc. Then we
decrease the other two side lengths until the triangle gets degenerate, so it lies
on this great arc. Now if we want to decrease the two side lengths even further
we cannot continue on the sphere since the triangle inequality will be violated.
Thus we have to continue in the de Sitter space where the reverse triangle
inequality holds and also negative side lengths are possible. The de Sitter space
and the hyperbolic plane intersect in one hyperbola, where degenerate triangles
are realized in both spaces.

Figure 3.1: The Hyperbolic plane (yellow), the sphere (blue) and de Sitter space
(green), where intersections are marked by red lines.

5For K = 0 law of cosines will be a byproduct of the proof of [Lemma 3.3.1| and is given by
(13.12)).
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As a Corollary to[Cemma 3.2.4) we get the law of cosines for the Riemannian

surfaces of constant curvature.

Corollary 3.2.5. Given a triangle on a sphere of radius r with side lengths

a,b,c, let v denote the angle at the vertexr opposite to the side with length c.

Then the curvature is given by K = T% and the law of cosines takes of the form

cosVEKe = cosx/Eacosx/Eb+cos*ysin\/?asin\/?b.

For the hyperbolic plane of radius r, the curvature is given by K = —7,%. Then
the law of cosines is

cosh v/ —Kc = coshv—Kacoshv—Kb— cosysinhv—Kasinh v —Kb.

The Euclidean plane R? is of constant curvature K = 0 and the law of cosines
is of the form

= a® + b* — 2abcos .
Proof. This follows from the proof of For K = 0 the result
follows from equation ([3.12) in the proof [Lemma 3.3.1], which we will prove in

the following section and which is independent of this corollary. O

Definition 3.2.6. Let M be a semi-Riemannian manifold and U a normal
neighborhood in M. Then U is called normal for K if every triangle Apgr in U,
with side lengths (|qp|+, |qr|+, |pr]+) € R3\0, can be realized in a corresponding
model space Qg of curvature K. Suppose Apqr satisfies size bounds for K. Let
ApGr in Qg be a triangle such that

(1GD|+,1G7 |+, [p7|+) = (lgpl+, [qr]+, [pr]+),

then ApGr is called comparison triangle or Alexandrov triangle to Apgr.

Remark: SoU isnormal for K if all possible triples of side lengths for triangles

in U satisfy the corresponding bounds in

3.3 Hinge Lemma and Straightening Lemma For
Shoulder Angles

Lemma 3.3.1 (Hinge lemma). (1, Lemma 2.2 p. 259] Let (|pq|+, lgr|+, |pr|+) €
R3\0 be a non-negative triple, which can be realized by a triangle Apqr in a model
space Q of constant curvature K. If we vary the size of the third coordinate
|pr|+ while keeping |pq|+ and |qr|s+ fized, then

(i) The angle Zpqr is a decreasing function of |pr|4+.

(ii) The angles Zqpr and Zqrp are increasing functions of |pr|+.
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Remarks

1. Let 01,09 be geodesics parametrized by [0,1]. Recall that points on both
geodesics are called corresponding if they have the same affine parameter.

2. By varying one side length, the model space which realizes the triangle can
change.

3. This result may seem counterintuitive at first, since in statement (i), one
might expect Zpqr to be an increasing function of |pr|s+, and similar for
(ii). This is because angles are by definition nonnormalized. For example
in flat Fuclidean space, if we consider the usual definition of angle,

Zpqr

cos () = ———
@) = Tpallar

then if a is increasing on [0, 7], Lpqr is decreasing since cos is decreasing
on [0, ].

4. The angle Zpqr is called the included angle, while Zqpr and Zqrp are
called shoulder angles.

Proof. First we will show the claim for K = 0. Then the model surfaces are
R?, either equipped with the usual Euclidean metric, the Euclidean metric with
sign switched, or with indefinite scalar product, which yields the 2-dimensional
Minkowski space. In all three spaces geodesics are given by straight lines and
thus the sides of Apgr can be represented by vectors. Let P € R? be the side
from ¢ to p, and R € R? the side connecting ¢ with . Then the side connecting
p with r is described by R — P. The unique geodesics connecting the vertices
Yaps Yars Vpr ¢ [0, 1] — R? are given by 4 (t) := q + tP, v4r-(t) := ¢ + tR and
Ypr(t) = p + t(R — P). The nonnormalized angle Zpgr then can be computed
by Zpqr = {7;,(0),7,-(0)) = (P, R). The other two angles are given by Zqpr =
(=P,R—P) =(P,P— Ry and ZLqrp = {(—R,P — R) = (R, R — P). Further,
by definition Ey(p) = (P, P), E4(r) = (R, R) and E,(r) = (R— P,R— P). By
we know that the energy and the signed length are related by E,(p) =
sgn(’yqp)|qp|4_r2 and so

lpr|+® = sgn(R-P)(R — P,R — P)
= sgn(R-P) (P, P) + (R, R) — 2R, P)) (3.12)
— sgn(R-P) (sen(P)lapl+” + segn(R)larl* — 2Zpar) .

Note that the above equation is the law of cosines for flat space. Since |gp|4+ and
lgr|+ are assumed to be fixed, we set k := sgn(P)|qp|+” + sgn(R)|qr|+>. First
suppose that sgn(R-P) = 1, then |pr|+ > 0 and so if [pr|+ increases also |pr|+>

increases and ([3.12)) becomes
|p7'|i2 =k —2/pqr.

So since k is a constant, it follows that for increasing |pr|+, Zpgr has to decrease.
On the other hand, if sgn(R-P) = —1, then |pr|+ < 0, and so for |pr|+ increasing,
lpr|+? is decreasing. But then

prls” = 2Zpgr — k.
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shows that Zpgr also has to decrease, so we have shown (i). To see (ii) for
K = 0, note that

Zqrp =(—R,P — Ry = —(P,Ry + (R, Ry = —Zpqr + sgn(R)|qr|+".

So since by (i), if [pr|+ increases then Zpgr decreases, thus Zgrp increases since
|gr|+ is assumed to be constant. And similarly one sees that Zgpr is an increas-
ing function of |pr|s+. Next we consider the case K > 0, w.l.o.g. assuming that
K = 1. So let Apgr be a comparison triangle in a model space of constant cur-
vature K, with geodesics g, 74p and v, connecting the corresponding vertices.
Then we set R :=7;,.(0), P :=v,,(0) and L := v,,(0). The three points p, q,r
also span a plane II in the ambient space of the hyperquadric, and if the sides
of the triangle are nonnull the metric is nondegenerate on II. So II is isometric
to one of the model surfaces of constant curvature 0. Denote by R’ the vector
in this plane connecting ¢ with 7, and let P’ be defined analogously. Further,
let L' be the vector connecting p with r. By we know that the
distance spheres around ¢ are given by parallel translation of the tangent plane
T,Qk, which is then intersected with Qg . Thus R’ can be written as a linear
combination of R € T,Qk and ¢ which is orthogonal to T, Qx by
So R = aR — p1q, P’ = BP — poq and L' = AL — pugp for uy, po, pz = 0 and
a, B, X > 0. To show that (L', L’} is an increasing function of |pr|, first suppose

that 0 < |pr|+ < m, then by [Lemma 1.8.13| we see that u1 = 1 — cos |pr|+ and

SO
=1

Iyt 2 2 -
(L', L'y = ML, L) + (1 = cos [pr|+)” {p, p)
= N[pr|+® + (1 — cos |pr|+)*.
Then the claim follows since (1 —cos(t))? is an increasing function on [0, 7], and
so (L', L") is an increasing function of |pr|+ independent of A. For |pr|+ <0, 1

is given by p1 = cosh |pr|+—1and A = sinh ||pr||, which is seen by [Lemma 1.8.10
Then

=1
/o : 2 2
(L', L") = (sinh (||pr||))*(L, L) + (cosh pr|+ — 1)* {p,p) (3.13)
= —(sinh ([|pr|))[pr|+* + (cosh [pr|: — 1)
and the claim follows since the right hand side is an increasing function of |pr|4
for |pr|y < 0. But this then also shows that (R, R’) and (P’, P") are increasing
functions of |qr|+ respectively |gp|+. In II the angle between P’ and R’ is given
by
<P,7 R/> = O‘6<P7 R> + pip2.

Then since Zpgr = (P, R),
1
V4 = —(P,R)— .
par aﬂ(< , RY) — papuz)

If |pr|+ increases, also (L', L’) increases and so {(P’, R") decreases by (i) for the
case K = 0. But then by the above equation also Zpgr has to decrease. Now
for the shoulder angles,

(P', L") = aX(P, L) + papis{q, p), (3.14)
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so since (—P, L) = Zgpr we have

Lapr = $(<—P'a L") — pops{q, p))- (3.15)

Again, if |pr|s+ increases also (L', L") increases and so (—P’, L") increases by
(ii) for K = 0. Then the above equation shows that Zgpr increases. The case
K < 0is shown in a similar fashion. Just note that the pseudohyperbolic spaces
HZ and H? are semi-Riemannian hypersurfaces of sign —1, so every normal
vector is timelike. In particular any point ¢ in either space satisfies (¢, ¢) < 0.
The realizing space for Apgr changes when the line ¢t — (|pq|+, |gr|+,t) passes
through D*. In DT angles agree in both realizing model spaces as we have
seen in the proof of Then since (i) and (ii) hold on every closed
segment in one model space, the claim is true along the whole line.

O

Lemma 3.3.2 (Straightening Lemma for Shoulder Angles - Alexandrov Lemma).
11, Lemma 2.4 p. 261] Let Apgr be a triangle in a semi-Riemannian manifold
M such that the triple (|pg|+,|qr|+,|rpl+) # O satisfies size bounds for some
K e R. Let 7 : [0,1] — M be the unique geodesic connecting p with r, and
for X e [0,1] set m := v, (X). Let Agipimy and Agamars be triangles in a cor-
responding model space of curvature K such that |gimi|+ = |gameal|+ = |gm]|+,

lapils = lapl+, l@erels = lqr|s, [prmals = Ipmls and [mara|y = |mr|y. If
Aqipimy and Agamors satisfy size bounds for K and

(1 — /\)Lplmlql + ALremaqs = 0, (316)

then
Zgpm = Zgipimy and Zqrm = Zqarems. (3.17)

The above statement with inequalities in (3.16) and (3.17)) reversed is also true.

Proof. First we show that
(1 =X Zpmq+ Xrmgq = 0. (3.18)

To see this, note that in the definition of the nonnormalized angle geodesics
are assumed to be parametrized by [0,1]. Now Y, (t) 1= Ypr(A 4+ (1 — A)t) is
a geodesic connecting m with r if parametrized by [0,1]. And 7, : [0,1] —
M, Ymp(t) 1= Ypr (A — At) connects m with p. Then ;,,.(0) = (1 — X)7,,.(A),
V;np(o) = _Ar)/]/)’r()‘% and so
(1= X)Zpmg + XZrmg = (1 = X){77,(0), Vg (0)) + A7 (0), 77ng (0))
= (1 = N (=N pr(A); Yng (0)) + AL = A7 (A), g (0))
—0

shows (3.18]). Subtracting (3.18)) from (3.16)) yields
(1 =N (£pimiqy — Lpmq) + A(Lramage — Zrmg) = 0.

From this we get Zpimiq1 = Lpmq or Lramags = Zrmgq. To see this, suppose
pimiqr < Zpmgq and Zromeqe < Zrmg, then since A\, 1 — X > 0 we see

(1 =N (Lpimigr — Lpmq) + M ZLramagqe — Zrmq) < 0,
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which gives a contradiction. By we know that the shoulder non-
normalized angle in a triangle is an increasing function of the signed lengths
of the sides enclosing this angle. So suppose that Zpimiq1 = Zpmgq, then we
get [gumi|+ > |gm|+. Since by assumption |gimi|+ = |gama|+, also |gama|+ >
l|gm|y is true. By statement (i) in[Lemma 3.3.1} in a triangle the nonnormalized

angles are a decreasing function of the signed length of the side opposite to it.

Thus we get (3.17]).
O

3.4 Equivalent Definitions for Triangle Compar-
ison

Lemma 3.4.1. Suppose Apqr satisfies size bounds for K. Then let ApGr be a
comparison triangle in the corresponding model space Q. Given a point m on
the side ypq with affine parameter A, and the corresponding point m on vz, then
if Lrpg < 47pG also Lrpm < ZFpm. The result with all inequalities reversed
also holds.

Proof. The unique geodesic Ypm, : [0,1] — U connecting p with m is given by
Ypm (t) 1= Ypg(AL), and v,,,(0) = Ay, (0) And for vzm(t) := 7vpg(At) we get
’Yglsm(o) = A’Y;’sm(o)» S0

Zrpm = <71/7r (O)a Vglgm(o)>
= M7 (0),754(0)) = Mrpg S NLipG = ... = L7pq

which shows the claim. O

Proposition 3.4.2. [1, Proposition 5.1 p. 270] Let M be a semi-Riemannian
manifold and U be a normal neighborhood in M which is normal for K. If
we choose Qg with the same dimension and index as M, then the following
conditions on all triangles Apqr in U with comparison triangle in ApGr in Qk
are equivalent:

(i) The signed distance between points on the sides of Apqr is = (<) the signed
distance of the corresponding points in ApGr.

(i) The signed distance from a vertez of Apgr to a point on the opposite side
is = (<) the signed distance of the corresponding points in Apqr.

(iti) The nonnormalized angles in Apqr are <(=) the corresponding nonnor-
malized angles in ApGr.

Remark It is essential that the conditions hold for all triangles in U.

Proof. (i)=>(ii): since the inequality holds for all points, it also holds if we fix one
point to be a vertex of Apgr. To see the reverse implication (ii)=>(i), let Apgr be
a triangle in U with comparison triangle Apgr. Then let m be a point on the side
Ypr With affine parameter value \,,, and n a point on the side 7,4 with parameter
An. Further, let 7 and 7 be points on 47 and 53 with affine parameter values
Am and A,. On vz4 let 72 be the point with affine parameter value A,. Then
consider the triangles Apgm, Apnm with corresponding comparison triangles
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Figure 3.2: A triangle Apgr in M and three model triangles in corresponding
constant curvature model spaces.

Apgri and Apmm. All comparison triangles may lie in different model spaces
of curvature K. Now |mn|y = |mn|y > |hn|+. The equality holds since
Apmn is a comparison triangle for Apmn, so the side lengths agree, and the
inequality follows by (ii) since Aprig is a comparison triangle for Apmgq thus the
signed distances to corresponding points opposite to a vertex decrease. Then

Hinge) applied to Apmn and Aﬁﬁzfﬂ implies
Linpi < L1, (3.19)
Then apply (ii) to Apgr and ApGr, which yields ||+ = |mql+ = |G|+ So
applying hinge to Apmg and Apmg yields
Zmpq < Zmpq
so by also Zmpn < Zmpn. Combining this with we get
Zmpn < Lrpn < Zmpn.

Hence, applying hinge once more to the above, we get |mn|y = |mn|y > |ma|+,
and since m and n were arbitrary, the implication follows.

(ii) = (iii): By |[Lemma 3.1.2| we know that

(Eq o 9pr) (0) = —2Zqpr, *)
where 7y, is the side connecting p with r parametrized by [0, 1]. Let 4 be the
corresponding side in Apgr, then by (ii) and since sgn(’yqp)|qp\i2 = E4(p) we

get
(Eq 0 %pr)(t) = (Eg 0 v (¢) (**)

6This can be done since by definition |pr|+ = |pm|+ and [ph|+ = [pn|4 .
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for all ¢ € [0,1]. By definition of our comparison triangle we get

(Eq ©7r)(0) = Eq(p) = Eq(p) = (Eg ©7r)(0).

Consequently,
® / .
—2Zqpr = (Eq0v:)'(0) = }LO ;(Eq 0 Ypr(t) = Eq 0 7pr(0))
@, 1 ) VB
> lim — (g 0 v5r(t) — Bq 0 15r(0)) = (B 03r)'(0) = —224p,

which shows Zgpr < Z¢pr. For the remaining implication (iii)=>(i), subdivide
Apqr into two triangles Apmgq and Amgr with m as in (ii)=(i), with comparison
triangles Aprhg and Ap’q'n’. Further, let Apgi be a comparison triangle for
Apgr. Then by (iii) Zpmqg < Zpmg and Zgmr < Z¢'m/r’. As in the proof
of we see that (1 — A\p,)Zpmg + AmZgmr = 0. So the above
inequalities imply that (1— A, ) Zpmd+ A Z¢'m'r’ = 0. Therefore we can apply
[Lemma 3.3.2| Straightening Lemma for Shoulder Angles) to get Zgpm > Z{prn.
But then by hinge applied to Apgm and Apgm we get |gm|+ = |¢m|+ = |§m|+.

O

Let U be a neighborhood which is normal for K, then if one of the equivalent
conditions on all triangles in U is satisfied, we say that triangle comparison
holds on U. Our goal will be to show that the triangle comparison property is
equivalent to curvature bounds R > K respectively R < K.
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Chapter 4

Modified Distance Function
and Modified Shape

Operator

4.1 Modified Distance Function

In this section we define a so called modified distance function for semi-Riemannian
manifolds. This modified distance function is not a distance function in the
sense of [Definition 1.10.1} but still shares some similar features and will be an
important tool in proving our main results. First we will study properties of
the modified distance function on general semi-Riemannian manifolds and then
its properties on model spaces of constant curvature.

Definition 4.1.1. Let M be a semi-Riemannian manifold and q € M with
normal coordinate neighborhood U. Then the modified distance function
hig:U — R at q as in [1] is defined by

() o= | (0 cos VEE@)/K = X7, IR0 ke0
K E,(p)/2 K =0

and further for K # 0 we define i q: U — R as

liq(p) = %cos«/KEq(p). (4.2)

Remarks

(i) In particular if K # 0 then by definition

1

hica = ~trq+ - (4.3)

(ii) Note that the term K E,(p) can be < 0 in case K is negative and ¢ and p
are connected by a spacelike geodesic or if K is > 0 and E,(p) is negative,

49
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that is ¢ and p are connected by a timelike geodesic. Still cos /K E,4(p) is
always real valued since cos transforms to cosh by the identity

cosix = coshx

which can be easily seen by looking at the corresponding power series.

Lemma 4.1.2. The gradient G := grad hg , of the modified distance function
hi q s given by

P, for K =0
G =gradhg 4 = % ”KII(EEQ)P, for K #0 and E, # 0 (4.4)
P, for K # 0 and E; =0

which holds on a normal coordinate neighborhood U of q¢ where hy 4 is defined
and G is smooth on U.

Remark Note that for some geodesic o starting at ¢ we see that

sin(+/KEq(o(t)))

M= R )

is a real-valued function even in case K E,(p) < 0 since sin(it) = isinh(¢) for all
t € R and thus i cancels. Further, ¢ is positive in case K E,(o(t)) > 0 as long as
|Eq(a(t)] < 72| K|~ and if either K < 0 or E,(o(t)) < 0 then ¢ > 0 along o
for all ¢ since sinh(¢) = 0 for ¢t > 0 and ¢(0) = 1 as seen in the following proof.

Proof. Let P be the image of the position vector field P in Ty, M = R} under the
differential of the exponential map at ¢ on some normal coordinate neighborhood

U of q (see|Definition 1.9.1)). Then we know by [Lemma 1.9.2|that grad E, = 2P

thus equation (4.1.2) for K = 0 follows immediately. Now in case K # 0,
we know by [Lemma 1.3.2| that grad (go f) = ¢’ grad f. Now set f := E, and

g(t) := (1 — cos VKt)/K with ¢'(t) = éh“\“/[ then we obtain

grad hg , = grad (1 — cos/KE,)/K = grad (g o E,)
in(«/KE
— g grad E, = ¢'2P = sin(yKE,) p,

JVEKE,

Since P is a smooth vector field and E,(p) depends smoothly on p, to show

sin /K E,

that grad hg , is smooth it suffices to show that VKB, is smooth in case

E,(p) = 0. Thus we expand sin as a series and get

sin \f

0 %)2n+1 t 2 43
=1 -4+ - -
E 2n @nt 1) TR T

m\»a

which is smooth at 0 and shows that along null geodesics ¢(t) = 1.
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Remark The gradient of the modified distance function hg 4 is defined on a
whole normal coordinate neighborhood U of ¢ and is smooth there. This is not
the case for the radius function 74, which cannot be smoothly defined on the

whole of U, with the exception of the Riemannian case, see

Lemma 4.1.3. Let ¢ € M and U a normal coordinate neighborhood of q such
that

2

|Eq(p)| < TR (4.5)

in case E4(p)K > 0. Let o be a unit speed geodesic starting at g and set
sin /K Eq(co(t)) fO’I‘K £0

o(t) := KEq(o(t))
1 for K = 0.

(4.6)

Then ¢(t) > 0 on U. For G := grad hi., as above set
9(t) == |G(a ()] = VKG(a(1), G(a(1))))] (4.7)
then along o it holds that
(i) G(o(t)) = to(t)o'(t)
(i) g(t) = to(t) and g'(t) = cos /K Eq(0 () = 1 — Khgq(c(t))
(iii) g(0) =0, g'(0) = 1 and g"(0) = 0.

In particular the modified distance function hg 4 is not a distance function in
the sense of|Definition 1.10.1]

Remark Note that (4.5) is always satisfied in normal coordinate neighbor-
hoods in our model spaces Q which can be seen by the form of the exponential

map as in [Lemma 1.8.10] Thus for our local comparison results this condition
will always be satisfied.

Proof. Let o be a nonnull radial geodesic starting at g. Then by
we know that in a normal coordinate neighborhood of ¢ we have G(o(t)) =

grad, ) hic,q = ¢(t)P(o(t)) where ¢ is the smooth function given by (4.6) and
P is the local position vector field at g. Since o is a radial geodesic we can apply

and by (1.31) we know that P(c(t)) = to’(t), which yields
G(t) = to(t)o’ (¢). *)

Thus we have shown (i). Since by the above remark ¢(t) = 0 we get

a(t) @ Va0 (1), 100" (0] = t(t) VI 0.0/ ()] = t9t) (%)

_———
=1

which is > 0 for ¢ > 0 and = 0 for ¢ = 0. Further,

g'(t) = o(t) +14'(2).
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In the case K = 0 and along null geodesics for arbitrary K we have ¢ = 1 and
thus ¢'(0) =1. If K # 0

so choose v € Ty M such that o(t) = exp, (tv) and note that by (1.22))
Bq(o(t)) = {expy " o(t), expy ' o(t)) = t*(v,v).

Set B := /K(v,v) € C\{0}. Then

s Sin(Bt),,  Btcos(Bt)—sin (Bt)
o) = (2L - D),
so we get
J(8) = 6t) + /(1) = sin (Bt) N tBt cos (Bt) — sin (Bt) — cos Bt

Bt Bt?

which shows that ¢’(0) = 1 even if B is of the form B = i|B| since then
cos (Bt) = cosh (|BJt) and cosh 0 = 1 as well. Now ¢”(0) is 0 since ¢g”(¢) is just a
scalar multiple of sin B¢ respectively sinh |B|t and both terms vanish for ¢ = 0.
grad, ;) hK’qH = |G(a(t))]| © to(t) one sees that the norm can’t
be constant 1, which shows that hx 4 is not a distance function. O

Now since

Remark If 6 := o(at + b) is a affine reparametrization of o, a,b € R and
a # 0, then

(i) G(t) = to(t)a’(t) = té(t)]alo’ (at + b)
(i) () = tlalo(t) and ¢'(t) = |al cos /K Ey (o (?))
(iii) ¢(0) = 0 and ¢’(0) = |al.
thus above lemma also holds for parametrizations which are not of unit speed.

Lemma 4.1.4. Let g€ M and U a normal neighborhood of q which is normal
for K. Then along any radial geodesic o starting at q, hi 400 is a monotonically
increasing function of the signed length |qo|s+ as long as |qgo|+ < \/% Along

null geodesics, hi 4 and |go|+ are both constant with value 0.

Proof. Let o : [0,1] — U be a nonnull radial geodesic starting at gq. Then for
t1,t2 € [0,1] with ¢; < to, set p; := o(t1) and ps := o(t2). We need to show that
if |gp1|+ < |gpz2|+ it follows that hi 4(p1) < hiq(p2). Note that p; and pg lie
on the same geodesic which has constant causal character, so E,(p1) and E4(p2)
have the same sign. Also in case p1, ps are situated on a timelike geodesic, then
from Eq(p1) < E4(p2) < 0 it follows that 0 < |Ey4(p2)| < |Eq(p1)|, thus while
the energy is increasing the modulus is decreasing. In case K = 0 we have
hiq = 5Eq and |gpls = sgn(Eq(p)) v/|Eq(p)|. Thus if |gp:|s < [gpa|s we get

sgn(Eq(p1)) A/ [Eq(p1)] < sgn(Eq(p2)) A/ [Eq(p2)];
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so for sgn(Eq(p1)) = 1 the claim follows. Now if sgn(Eq(p1)) = —1 we get
V1P .q(1)] > A/|hik,q(p2)] thus the claim follows by the above considerations.

For K # 0 we have
1
h[{’q = E(l — COSw/KEq)

with cos transforming to cosh for negative values under the square root. We
have to distinguish four cases depending on all possible signs for Eq(p1) respec-
tively E,(p2) and K.

(i) K > 0and E; > 0: cos is monotonically decreasing on [0, 7] then together

with the result for K = 0 we see that /E,(p1) < v/Eq(p2) < i

(i) K <0 and E; > 0: We get

1
hiq = E(l —cosh/|K|Ey)

and since cosh is monotonically increasing on [0, 00), 1 —cosh is decreasing

but hg 4 is increasing since the factor % is negative.

(i) K > 0 and E, < 0: We have

1
hi,q = E(l —cosh/K|E,])

so for E, increasing |E,| is decreasing and thus 1 — cosh+/K|E,| is in-

creasing

(iv) K <0 and E; < 0: here the signs under the square root cancel, thus

1
hicq = 77 (1 = cosy /K[| Eq])

and analogous reasoning again shows that hg 4 is increasing with respect
to signed length.

O

4.2 Modified Distance Function In The Model

Spaces
As shown in spaces Qk of constant curvature K # 0 of fixed di-
mension n and index v can be realized as the universal covers of hyperquadrics

which are semi-Riemannian submanifolds of R?*!. Every point ¢ in R**! can
be identified with a linear functional

gK,q = <Q»p>' (48)

We will show that 7 K,q agrees with (4.2) if restricted to our model spaces of
constant curvature and is K-affine, which is defined as follows:
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Definition 4.2.1. [1, Definition 3.1 p. 262] A smooth real-valued function
f on a semi-Riemannian manifold is called K-affine if the restriction to any
geodesic vy satisfies

(fon)" + K& A )(fov) =0, (4.9)
further f is called K-concave if
(fon)"+ K& A )(fory) <0 (4.10)

and K -convex if the reversed inequality holds.

Proposition 4.2.2. [1|, Proposition 3.2 3.1 p. 262] For K # 0, let
€K7q = £K74|QK

be the restriction of ZK,q ={q,p), as in (4.8) to Qr. Then lk, is K-affine
along every geodesic v in Qg :

(Cr.q07)"(t) = =K', 9 kg (7(1)) (4.11)

and for two points q,p € Qg joined by a geodesic in Qi we have

Lk q(p) = %COSQ | KEq(p), (4.12)

where imaginary arguments of cos are possible.

Proof. The tangent space at a point in R?*! is just a copy of R?*! at this
point and the tangent space to a point in Qx < R’*! is an n-dimensional
linear subspace of R?™1. In R?*! the gradient of the function z — {q,z) is
given by ¢ E| , where we think of q as a vector field on R?*! which assigns the
vector ¢ at every point of R?*1. For p in Qx we first show that the projection
7yt T,RITY — T,Q is given by

mp(v) = v — K{p,v)p. (4.13)

Note that p is normal to T,,Qk since O is orthogonal to the position vector
field P and P(p) = p. Now

< s >=L
(P, mp(v)) = (p,v = Kv,pyp) = {p,v) — K{p,v)p,py = 0
which shows that m,(v) indeed maps to T,Qx and if w € T,,Qx then
mp(w) =w— K (pw)p=w
=0

thus mp|7,0, = Idg,. One easily checks that 7,(p) = 0 and 7, o 7, = m,. Now
we will show that
grad, x4 = Tpq. (4.14)

ISince for f(z) = {(g,z) we have ;Tfl = ¢’ and thus by |5, Definition 3.47 p. 85| since
g9 =6;5 in R+ we get grad f = i g aazfl 0; =>,4'; =q.
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Let v € T,Q then (dlk ), is the restriction of (dlf ,), to T, Qx and (dlx 4),(v) =

{q,v) since it is just the usual derivative of a real valued function on R?*!. Thus
we compute

<gra‘dp Ui, v) = (dlk g)p(v) = (dgK,q)p(U) ={(q,v) = (mp(q),v),

where the last equality holds since v is in T,Qk. Since this holds for any
ve T,0k we get . Let D be the Levi-Civita connection on Rﬁ“ and
V the Levi-Civita connection on Q. Then by [5, Lemma 4.3 p. 99] they are
related by projection onto the tangent space of Q. So V,X = m,(D,X) for
vin T,Qk and X € X(Qk). Now given a geodesic v : I — Qg, for t € I set
p =(t) and v = 7/(t). Then to show that ¢k , is K-affine we compute

(treq o) (t) B (v, grad tic o, 0)
(o Domy(@)), vy B2 (i ( Dy(a — Ko, ), v)
= (mp( Dyg — K(Dy({p,q))p — K{q,p) Dyp),v)
— (—K{g,0)my(p) — K{g,pyv,v) "L K v, 0}l o(1(t))
(4.15)

which shows (4.11). Here, the second to last equation holds since D,q =
D.1yq = 0 since q is a constant vector field on R+ Also

(dlrcq)g(v) = Cgrad £xc 4(), v B (my(q) 0y = 0,
~——

=0
which shows that dfg , vanishes at q. Thus for any geodesic v in Qg with
~v(0) = g and v := +/(0) we get ({x,q07)'(0) = (dlK,q)g(7'(0)) = 0. Further,
(g ©7)(0) = lrq(a) = {a,4) = % and
-1
(g 07" ©0) B Ko, 03t 4(0) “ET ~Co,0.

With these initial conditions the solution to the linear differential equation (4.11))
which is of the form 2” + K{(v,v)xz = 0 is given by

cos A/ K{v, vt

(ZK;Q © 7)(t) = K
which shows (4.12)). O
Proposition 4.2.3. For q in Qg let hx , be the modified distance function
defined by (4.1). Then hg gsatisfies along every geodesic v in Qx which is
parametrized by [0,1] with v(0) = q and v(1) = p that
(hicq o) + Ky ) (hiqg o) = &) (4.16)
and in particular

(h,q07)" + KEy(p)(hi,q07) = Eq(p) (4.17)

where E,(p) is defined by (1.18]).
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Proof. For K # 0 recall that hg ¢ = —lx 4 + % Thus by |Pr0position 4.2.2| we
get

(4.3) 1
(th © ’Y)” (_ZK,q oY+ E)” = _<£K,q © 'Y)”

(4.11) ’ (14.3) ’
EDD gy 5(tkq o) & (v vy — KO AR 07).

Now in the remaining case K = 0 by definition h = £ E, and (£.16) reduces
to (hxq o) = {,7). Note that for v parametrized by [0, 1] by (1.20) we

have that
Eg(v(t)) = ' (0),7'(0)) = £*E(v)
and E(y) does not depend on ¢t. Thus

(o0 = (OO - (EDY i)

Since v is a geodesic, ('(t),~'(t)) is constant so our claim follows by

E(7) = /(0),7(0)) = &Y'(8),7'(1))-

4.3 Modified Shape Operator

Definition 4.3.1. Let M be a semi-Riemannian manifold, ¢ in M, and hk 4

the modified distance function as given by|Definttion 4.1.1. Let U be a normal

coordinate neighborhood of q, then the modified shape operator Sk, is the
self-adjoint operator Sk q: TU — TU defined as

Sk,q(v) :== V, grad hi g (4.18)

To see that Sk 4 is self adjoint note that the Hessian of any smooth function

is a symmetric tensor (see [Definition 1.3.3)) and so for p € U and v, w € T, M we

get
Sk q(v),w) =<V, grad hg 4, wy = HhK~q(v,w)

= Hhkﬂq(w, v) ={(Vygrad hg 4,v) = (v, Sk q(w)).

Next we show that in our model spaces of constant curvature K the modified
shape operator is given as a multiple of the identity Id on each tangent space.

Lemma 4.3.2. On any hyperquadric Q the modified shape operator Sk,q s

given by
1d if K =0
Sk.q = if (4.19)
’ Klgqd if K#0

Proof. The case K # 0 can be seen by using (4.11]). Let v be a geodesic with
~(0) = p and 4/(0) = v, then

(~ Kb o (p)v,0) = (€14 07)"(0) B (7, grad £ 4,0
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and so since hi, = —(g 4 + & we see that gradhg, = —grad g, which
results in
Vegradhg g = =V, grad g ¢ = Klg 41d.

In the case K = 0 we have hg 4 = 3 Eq, so

So,q(v) = Vy grad hg 4 V,P=v
and thus Sp , = Id. O

Proposition 4.3.3. Let g be a point in a semi-Riemannian manifold, K € R
and o a radial geodesic with o(0) = q. Then along o the modified shape operator
Sk,q satisfies

(Vori gradhicy) Ly = (1~ Khie y(o(1)’ (1) = Kl y(o(1))a’ (1), (4.20)

where the last equation is only defined in case K # 0.

Remarks

(i) To simplify notation, as in [1] set G := gradhg 4, N := o'(t), h := hi g,
l:=Ulkq4and S := Sk 4 if there is no ambiguity regarding K and ¢. So in
particular (4.20) then reads as

VNG = (1 - Kh)N = K(N.

(ii) By [Lemma 1.3.4] along a geodesic o the Hessian of some function f is
given by (foo)” = Hf(0',0'), so by the definition of the Hessian together

with (4.20)) we compute
(hgqo00) = H'a(q' o') = (Vy grad hg 4(0"),0")
= <0/, 0/> - K<U/a U/>(hK,q o U),
which is equivalent to
(hxqo00)" + K{o',0")hk400)={c",d"). (4.21)
Since for geodesics the causal-character doesn’t change we have for ¢ radial
starting at g:

-) {¢’,0") > 0: hg, is K-convex along spacelike geodesics
-) {¢’,0") = 0: hg 4 is K-affine along null geodesics

-) {¢’,6") < 0: hg 4 is K-concave along timelike geodesics

Proof. First consider the case K = 0. Then G = grad h P. Let’ denote the
induced covariant derivative along curves, then by [5, 3.18(3), p. 65] we know
that V)P = (Poo)'(t), so

VNG = VP = (Poo)(t) o't)=N"E"(1 - Kh)N

which proves the case K = 0. For K # 0 again by [5, p. 65] V()G = (Goo)'(t)
and we know by [Lemma 4.1.2] that along radial geodesics G = ¢(t)P with
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o(t) = % ”Klgjﬂ for E; # 0 and ¢ = 1 along null geodesics. Thus along any

radial geodesic
(Goo)(t) = o(t)P(a(t)).

By the product rule for the induced covariant derivative [5 3.18(2) p. 65 ] we
get

(Goo)(t) = (e(t)P(a(1)) = ¢'(t)P(a(t)) + d(t)(P o o) ().
Then inserting and yields
(Goo)(t) = ¢ (t)ta'(t) + ¢(t)o’ (2).

If o is null we are done since then ¢ = 1 and ¢ = 0. Otherwise (G o g)'(t) =
a(t)o’'(t) for some real valued function a and it remains to show that a(t) =
1 — Kh(o(t)). Since we know by the above that (G o ¢)’(t) is a multiple of
o'(t) = N it suffices to show that

(VNG,N) = {(1— Kh)N,N). (4.22)
Now we have
(ING, N = (Vo grad hic g, 0" (1)) & (he 4 0 0" (8).

By setting A := (0/(0),0’(0)) and since E,(c(t)) = t2(o’(0),0’(0)) = At* by
(1.20) we see that

(higo0)(t) = %(1 —cos/KEq(a(t))) = %(1 — cos (VEKA)).

Differentiating this expression yields

(hiq00)(t) = \/g sin (VK )

and

(hi.q00)"(t) = Acos (VEAL). (4.23)

Since geodesics are always parametrized with constant speed (¢’(t),o’'(t)) =
{(c'(0),0’(0)) = A the right hand side of (4.22)) can be rewritten as

(1 Khi (N, Ny = cos (VEM)' (), o (£)) B2 (hge 4 0 0)"(2)
and this shows (4.22) and hence the claim for K # 0. O
As a corollary we see will see that the integral curves of G are pregeodesics.

Corollary 4.3.4. The integral curves of G = grad hi 4 are pregeodesics.
Proof. To show that an integral curve ¢ of G is a pregeodesic by

it suffices to show that ¢/(¢) and ¢”(t) are colinear for all ¢. Recall that integral
curves of G are characterized by the equation

d(t) = G(e(t)) = grad h 4(c(t)). (4.24)
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Set g := 4/|{G,G)| then ¢ = gN where N is a unit vector field along c¢. Also
N is orthogonal to the level sets of hx , and therefore also to the level sets of
rq and thus since (N, N) = +1 depending on the causal character of ¢ we see

by that N = grad r, and the integral curves of N are unit speed

radial geodesics. Thus we compute

() = Vo (1) B2 V) grad hue o (e(t) B2 s(¢/ (1))

(4.20)
=gS(N) =

and by c is a pregeodesic. O

g(1 — KRN = (1 — Kh)c/(t)

Remark: Thus for integral curves c of grad h 4 the function A as in
is given by A(t) = 1 — Khg 4(0(t)) = Klk 4(o(t)). So if K = 0 we can find a
reparametrization 6 such that co 6 is a geodesic by solving

0" +(0')* =0

which for ¢ > 0 is solved by In(¢). In case K # 0 we have to distinguish if our
integral curve is timelike or spacelike. In the spacelike case we have to solve

0" () + cos (VK)(0')? = 0
whereas in the timelike case

0" (t) + cosh (VKt)(#')? = 0.

4.4 Ricci Operator and Jacobi Fields

Definition 4.4.1. The Ricci operator, also called tidal force operator,
Rx : T,M — T, M is defined as Rx(v) := R(X,v)X with X e X(M), ve T,M
and R the Riemannian curvature operator.

Note that Rx(v) is not R-linear in the X component and thus the Ricci
operator is not a (1, 2)-tensor.

Lemma 4.4.2. The Ricci operator is self-adjoint and R,(v) = 0 for v e T,M.
The orthogonal complement v is invariant under R,,.

Proof. That Rx is self adjoint follows by pair-symmetry of the Riemannian
curvature tensor, see [5, Proposition 3.36 p. 75]:

(Rxv,w) = (R(X,0) X, w) = (R(X, w)X,v) = (v, Rx (w)).

Next, R,(v) = Ry,v = 0 by skew-symmetry of the Riemannian curvature oper-
ator. Let w € v and z € T, M, which we can write as z = Z + \v with Z € v+
and A € R. Then

(Ry(w), z) = (Ry(w), Z + A) ={w, Ry(2) + AR, (v))
= <U), Rv(2)> = <Rv(w)’ 2>

Since this holds for any z we have shown that R, (w) lies in v. O
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Remarks

(i) If M has constant curvature K, then by (1.23) the Ricci operator is given
by
0 if v = w or v null
R,(w) = { K{v,v)w forv L w (4.25)
K({v,v)w —{v,w)yv) otherwise.

(if) If M is a Riemannian manifold the eigenvalues Rx(Y) = AY of the Ricci
operator Rx give bounds for the sectional curvature IC. Let A_ be the
smallest eigenvalue of Ry and A, the largest eigenvalue. Both of them are
real since Ry is self adjoint. Note that this only holds in the Riemannian
case and does not apply if the scalar product is indefinite. So choose X
such that (X, X) = 1 and some non null eigenvector Y corresponding to
some eigenvalue A with (Y, X) = 0. Then we see that

K(Y, X) = <R2‘§YQ’>Y> = A

and thus conclude
Ao <K, X) < Ay

In particular, for our constant curvature spaces of index v = 0, all eigen-
values are equal to K, so A_(Ry) = Ay (Ry) = K and so K(X,N) = K,
as expected.

Let o be a geodesic, then a vector field J along o is called a Jacobi field if it
satisfies the Jacobi equation

J"+ R(d', J)o" = 0. (4.26)
Using the Ricci operator, the Jacobi equation can be written as
J" + Ry (J) = 0.

In particular, if our space has constant sectional curvature K and J L ¢’ span
a nondegenerate 2-plane, then by (4.25)) the Jacobi equation is given by

J"+{o',0"YKJ = 0.

The Jacobi equation is a linear second order differential equation. Let o(0) = p
and given v,w € T, M, then by ODE-theory there exist a unique Jacobi field
such that J(0) = v and J'(0) = w. Jacobi fields along some geodesic o are
exactly the variational vector fields of geodesic variations oy of 0. Let o(0) = p,
then variations which fix p correspond to Jacobi fields J along o with J(0) = 0.

Lemma 4.4.3. Let 0 be a geodesic with 0(0) = ¢q and ¢'(0) = w. Given
w e TyM then
J(t) = (dexp) i (tv). (4.27)

is the unique Jacobi field along o with J(0) =0 and J'(0) = v.

Proof. See |12, Lemma 5.3, p. 18]. O
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Lemma 4.4.4. Let o be a geodesic in a semi Riemannian manifold M with
o(0) = q and J a Jacobi field along o with J(0) = 0 and J'(0) = v. Then J is
given by
1
J(t) = Py (vt = =Ry (0)0(07(0))t% + O(t))
6
1 (4.28)
= P(vt — 510 (v)t* + O(th)

where P denotes the parallel transport along o from o(0) = q to o(t), in par-
ticular P = Idr,ar-

Proof. Let Ei,...E, be an orthonormal basis for 7,M, then by parallel trans-
port we get an orthonormal frame E;(t) along o given by E;(t) := P§(E;), with
E;(0) = E; for i = 1,...n. Thus for J(t) = >, | J'(t)E;(t) we see that

(P71 = 3, T E)

Now we compute the Taylor expansion of J at ¢ = 0. By assumption J(0) = 0,
J'(0) = v and by the Jacobi equation

7(0)=0

J”(O) = —Ra'(o)J(o)U/(O) 0.

Then since V0’ = 0 we see that

J//I — %JU — _VO-’RO-’J(O-/)
= _(VU’R)U’J(U/) - RVO_/O"J(OJ) - RU’V(,/J(O-/) - RU’J(VU’UI)

= _(VJ’R)J’.I(JI) - RJ’VU/J(O—I)~

Now since V. R is tensorial and J(0) = 0 we get (Vo R),(0ys(0y0"(0) = 0 and
thus
J"(0) = —Ro(0)(0)0" (0) = —Ror(0)»0”(0).

So the result follows by Taylor’s theorem.

4.5 Riccati Equation

This section follows |12, p.6-11]. Let M be a semi-Riemannian manifold. The
geodesic equation Vo' = 0 is a nonlinear differential equation. One can view
the Jacobi equation as a linearization of the geodesic equation as follows: let
0s be a geodesic variation of o, so 09 = ¢ and o, is a geodesic for every s in
some open interval containing 0. Let N := a(%s and F := % be the tangent
respectively variational vector fields of a geodesic variation of o. Then F' is a
Jacobi field along o by [5, Lemma 8.3, p. 216], so

F”-‘FRN(F) = 0.

As a next step, we will split this second order linear equation into a system of
first order differential equations. To do so, we will look at all variations of o,
which are orthogonal to some semi-Riemannian hypersurface V of M. Let

o VxI—-M
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be a smooth map such that o(p,t) := o,(t) is a geodesic for fixed p starting
at p and 0,(0) L T,V. By [5, Proposition 7.26 p. 200] there exists a normal
coordinate neighborhood U of V. So every point in U lies on exactly one geodesic
starting at V. On U we can look at the vector field da(%) = N|y. Then N
satisfies VyN = 0. Let F' be a Jacobi field along o such that F'(0) € T,V

which can be obtained as the variational vector field of a geodesic variation in

V, that is s — 05(tp) is a smooth curve in V and o(tg) € V. Let (2%,... ,2") be
chart for V', where we can suppose that % lo = F(0). Then we define a chart on
U by (t,2%,...,2") — expt(tN(¢~(z?,... ,2™)). So since coordinate vector

fields commute, [F, N] = 0 follows. By this we see VyF = VrN and since
the right hand side is linear in F', we get a linear map S := VN given by
SX = VxN. So our first equation is given by

VnF = SF. (4.29)

Hence given S we can compute F' by solving a first order system. Next we will
derive a differential equation for S. By the product rule for tensor fields we
obtain

(VNS)X = Vn(SX) - SVNX,

so inserting the definition of S we compute
(VNS)X =VnyVxN — S(VXN-i- [N7X])
= VxVNN + R(X,N)N — Vix n N — S(SX) — S([N, X])
= VxVNN — Ry(X) + Vi, x)N — 8°X — Vv x1V
=VxVNN — Ry(X) — S2X.
Since Vy N = 0, we obtain a Riccati equation for S

VNS + Ry + 5% =0. (4.30)

We know form that S = VN is self adjoint, so
<VXN7Y> = <X,VyN>

for all vector fields X,Y € X(U). Then by |[lemma 1.3.5| N is locally a gradient
of some smooth map f e C*®(U) and further

X{(N,N)=2VxN,N)=2X, VyN) =0,

=0

so (N, N) is constant. We may assume that 1 = | N|| = ||grad f|| and thus f is
a distance function on U. In particular the level sets V; = {z € M | f(z) = ¢}
are semi-Riemannian hypersurfaces by [Proposition 1.4.1} where the unit normal
vector field is given by N. If V.=V,  then 0 : V x I — M is given by o(p,t) =
exp,, ((t —to)N(p)). Then we set ¢:(p) := o(p,t) and see that V; = ¢(V), so
V; is a family of equidistant hypersurfaces. If we restrict VN to the tangent
bundle T'V; of our level sets, then since N is a unit normal we see by [lemma 1.4.3]
that

W, = VN|y,, (4.31)

where W; is the Weingarten-map or shape operator of the semi-Riemannian
hypersurface V;.
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Remark In[Lemma 2.2.2] note that for ¢ = 1 equation (2.5) is the Riccati
equation (4.30) and (2.2 is the Jacobi equation if we choose R to be the Ricci
operator along some geodesic.

4.6 Riccati Equation for the Modified Shape Op-
erator

Now we are ready to show one of the main results presented in the paper by
Alexander and Bishop [1], which shows that the modified shape operator Sk 4
satisfies a certain matrix Riccati equation. Riccati equations are first order
non-linear differential equations of the form

Y () = go(t) + g1(t)y(t) + g2(t)y(t)?, (4.32)
hence are second order ODEs with a quadratic term.

Proposition 4.6.1. [, Proposition 4.1] Let M be a semi-Riemannian man-
ifold and in a normal coordinate neighborhood U of a point q in M let o be a
radial unit speed geodesic at q. Then the modified shape operator S = Sk, 4 =
Vygrad hg g and S as obtained by are the same if there we choose
R = R, and g = {G,G). Further, S satisfies the following first order partial
differential equation of Riccati type

VeS+8*—~(1—-Kh)S+Rg+Kdh®G =0, (4.33)

where we use the notation as in the remark after |Proposition 4.5.5 and Rg is

the Ricci operator, see|Definition 4.4.1|

Remark

e Since h = hg 4 is a smooth real valued function we see that dh is a one-
form and G = grad hg 4 is a vector field. Thus dh ® G is a G)—tensor.
Application of dh ® G to some vector field V is given by dh ® G(V) =

dh(V)G = V(h)G and so the result is again a vector field.

o Comparing (4.33) with (4.32)) we observe

VeSS = —-Rg—Kdh® G+ (1 — Kh)S-i—(—l)SQ.
—— - —_———
y’ go g1y g2y?

Proof. We show that holds along nonnull radial unit speed geodesics
radiating from a point ¢ in M. The general case for null geodesics then follows
by continuity. So let ¢ be a nonnull radial unit speed geodesic starting at ¢ and
set N := ¢’(t), which is a parallel unit vector field along o since o is a geodesic.
First we show that holds in directions tangent to o. By [Proposition 4.3.3
we know that along ¢ the modified shape operator S is of the form

SN = VnNG = (1 — Kh)N = K(N. (4.34)

By [Lemma 4.1.3(i), on a normal coordinate neighborhood of ¢ every radial unit
speed geodesic starting at g satisfies

G(t) = tp(t)a'(t) (4.35)
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for some smooth function ¢ and thus

=0

—
VagN = Vt¢0/0'/ =to Vo =0.

By C®(M)-linearity and skew-symmetry of the Riemannian curvature tensor we
get
=0
2,2
Rg(N) = R(t¢N,N)(t¢N) = t“¢* R(N,N) N = 0.

Next we show that
(VaS)(N) = —K(Gh)N

which can be seen since S is a (})—tensor and applying the product rule for
tensor derivations |5, Proposition 2.13, p. 44] yields together with Vo N = 0 as
shown above that

=0
(VaS)(N) = Va(S(V) — S(VaN) B2 ve((1 - kn)N)
=0
= (Ve(1 = Kh)N + (1 — Kh) VgN = —K(Gh)N.

By combing the above results we get

(VgS+8% — (1 — Kh)S + Rg + Kdh® G)N
= —K(Gh)N + (1 — Kh)>N — (1 — Kh)®’N + 0+ K(Nh)G
= —K(¢Nh)N + K(Nh)¢N =0,

where we used G = ¢/N. Now we will show that S and S agree and use this to
show that the Riccati equation holds on V' := V() := o’ (t)+ = G(o(t))*,
the normal space to o at time ¢. Since o is nonnull, V) is a non-degenerate
subspace of T, ;)M and hence of dimension (n — 1). First we choose a parallel
frame along o by parallel transport of some orthonormal basis of T, M along
o and identify T, M with R}. In this way we can identify a linear operator on
Ty M with a smooth family of linear operators on R} and linear operators on
V,/(+) are identified with linear operators on an (n — 1)-dimensional subspace of

R}. We now use|Lemma 2.2.2{and then (4.31]) to show that S = Sk q- Since Ry
is self adjoint and smooth by we can set R := Ry in
and so (2.2)) is

F//-i-RN(F) =0,
which is the Jacobi-equation (4.26)) for a Jacobi-field F' orthogonal to ¢ since

by [Lemma 4.4.2 Ry leaves N— = V invariant . Since we assume F’(0) # 0

it follows that F' is a nontrivial Jacobi field along o, so in particular F(t) is
invertible for all ¢ since o is contained in a normal coordinate neighborhood of

q, S0 no conjugate points can occur along o. Now if we set g := 1 in
then since ¢’ = 0 we see that (2.5)) is the Riccati equation (4.30)), that is

S"+ Ry + 5% =0.

2Since the modified shape operator S : X(U) — X(U) is a C*®(M)-linear map.
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Let Sy be the solution to this equation, then by we have
Sw(t) = F'(t)F(t)~,

which is a self adjoint and linear map with Sy (0) = I. Also the Weingarten-
or shape operator Wi (v) := W, (v) = (V,grad f)(o(t)) of V), where f is
a distance function as in solves the above Riccati equation with
Wy = 1. Thus W and Sy agree and

Sw(t) =W, = F(t)F(t)™! (4.36)
are the Weingarten maps of equidistant _hypersurfaces from ¢g. On the other

hand, set g := +/[{(G,G)|, then by [Lemma 4.1.3| (ii)+(iii) it follows that g
satisfies the perquisites of [Lemma 2.2.2| and further

g (t) = cos A/ KE,(o(t)) = (1 — KhK,q(g(t))) (4.37)

Comparing (4.35) and |[Lemma 4.1.3(ii) shows G = gN. Also for any v € V)
we have v(g) = 0 since g is constant on level sets V). To see this just note
that G only depends on E,(o(t)) and P(c(t)), which are constant on the level
sets Vy(1). For R = Ry as above, F in remains unchanged and yields
fort >0

=W by

_ / 1

S(t) :=g(t) F'()F(t)" = g(t)Wy
and

S() = gW () = gVuN "LV, (gN) = V,G = Sk 4(v).

Now for ¢ = 0 we have hg 4(c(0)) = 0 and thus (4.34) reduces to Sk 4(c’(0)) =
0'(0). Using the exponential map we can realize any unit vector v € T,M as a
geodesic ¢(t) := exp(tv) with ¢/(0) = v. By this it follows that Sk 4(0) = I has
to be the identity, so Sk 4 also satisfies , which implies that the modified
shape operator Sk 4 = V grad,, . , and S are the same if we choose R = RN and
g = {G,G). So now it only remains to show that the Riccati equatlon
holds for S = Sk, restricted to V = o’t. We will do so by utilizing (2 , Wthh
tells us that S satisfies

g8 + 5% —¢'S+¢*R=0. (4.38)

Thus if we show that on V' the left hand side of (4.33]) is equal to the left hand
side of the above equation we are done. Thus for v € V we compute
=S’

—
(Va9)(v) = (Von ) (v) = g (VorS)(v) = g5 (v)

and
Re(v) = R(G,v)G “ZN g2R(N,v)N = ¢*R(v).

3 Another way to prove this is by seeing that g = «/+<G7 G where the sign depends on the
+(1 Kh)g~'g(N,N) = (1—-Kh).
N———

=41

causal character of o and thus ¢’ = 1 52t (VnG, G>
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We have v(h) = 0 since h(o(t)) = hiq(c(t)) is constant on the level set and
since v € V;(4), which is the tangent space of the level set in o(t). It follows that

K dh® G(v) = Kv(h)G = 0.
At last
(1— kh)Sw) B g 1)sw)

and so all the terms of the Riccati equation (4.33|) are dealt with and we are

done by (4.38]).
O



Chapter 5

Local Triangle Comparison
Theorems

5.1 Prerequisites

Here we will study the differential inequality " + k1 < 0. Under certain
assumptions the solutions are positive functions.

Lemma 5.1.1. For k € R, let ¢ : [0, L] — R be a smooth function such that
"+ Ky <0, (5.1)

¥(0) = 0 and Y(L) = 0. For k > 0, assume that L < Jr Then P(t) = 0 for
allt € [0, L].

Proof. First we prove the result for k > 0. The proof for this case is due
to |12, p. 23,24]. So suppose to the contrary that there is a point ¢ € (0, L)
such that ¢(t) < 0, and pick ¢min such that ¢ (fmin) = mingefo,z] ¥ (t). Since by

assumption L < Tn there exist k > 0 and € > 0 with k > k, such that

L< (5.2)

0 _m_
B A
vk VE Ve
is satisfied. For co > 0 set so(t) := —cosin (vVE(t +€)), then sq satisfies the
differential equation s + ksp = 0 together with so(—¢) = 0 and so(% —¢g)=0.
Further, so(t) < 0 for all t € (—¢, i g), thus by (5.2) also on [0, L]. Note
that this holds for any ¢y > 0. By choosing ¢y big enough, we can have so(t) <
(tmin) < ¥(t) for all t € [0, L]. Now we scale so by some c € R with 0 < ¢ <1
in such a way that the graphs of csg and v touch for the first time, where ¢ is
decreased starting at 1. The graphs intersect since we can choose ¢ in such a
way that csg is arbitrarily small at any point and 1 is assumed to have negative
values. So choose ¢ > 0 such that s(t) := e¢so(t) satisfies s(t) < (t) for t € [0, L]
and s(tg) = ¥ (to) for some to € [0, L]. Now by the above s again satisfies

s" = —ks. (5.3)

The difference ¢ — s then has a minimum at ¢y, and since s(to) = 9 (tp) <0

67
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VK
— & 7?min /-\ to /'\L /
T T

Figure 5.1: Setup in the proof for the case x > 0.

W - (t0) L e ypieo) <.
—

>0
But this contradicts ¢ — s having a minimum at ¢y. For x < 0, again suppose
there is a point ¢ € (0, L) such that ¥(t) < 0. Since the values of ¢ at the
endpoints are 0 and by continuity, there exists a whole interval such that i (t) <

0 for t € [tmin, tmax ], Where 0 < tpin < t < tmax < L, and such that ¥ (tmin) =
Y (tmax) = 0. So (5.1]) shows for t € [tmin, tmax] that

P (t) < — kY(t) <0.
=0

This implies that ¢ restricted to [tmin, tmax] 1S & concave function. Therefore,
for all « € [0, 1] by definition of concavity

’Lﬁ((l - a)tmin + atmaac) = (1 - O‘)w(tmin) + Oﬂb(%w) =0

holds, which is a contradiction to (t) < 0.
O

5.2 Curvature Bounds Imply Local Triangle Com-
parison

Definition 5.2.1. Let M and M be semi-Riemannian manifolds, o and &

geodesics in M respectively M. Let o and & be defined on the same interval

1, then o and & are called corresponding geodesics (corresponding geodesic
segments/lines/rays) if

(o'(t), 0" (1)) = (&' (1), 5" (t))

for all t € I. If two points on o and & have the same affine parameter value
they are called corresponding points.
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This definition allows us to to compare linear operators along geodesics in
certain situations. Namely suppose that M and M have the same dimension n
and index v, and let o and & be corresponding geodesics defined on some interval
I. Now for some fixed tg € I let ¢ := o(tp) and § := &(tp) be corresponding
points. Then we can identify the tangent spaces T, M and TQM with each other
by an isometry Z : Tq]\;[ — T, M which identifies the tangent vectors & (to) and
d(to). Further let J : T,M — R} be an isometry. By choosing parallel frames
along both curves we can identify linear operators along o and & with families
of linear operators on 7, M and TqM , which depend smoothly on t € I. This is
done in the same way as in the proof of So let A(t) and A(t) be
families of linear maps on T,M and T;M. Then A and A can be compared by
looking at JoAoJ tand JoZo AoZ lo J L, which are booth families of
self-adjoint linear maps on R]\. We will use this construction in the following
proofs without mentioning J and Z, to keep notation simple.

Lemma 5.2.2. [1, Corollary 4.5 p. 268,269 ] Let M and M be semi-Riemannian
manifolds which have the same index and dimension. Given corresponding non-
null geodesic rays o : [0,b] — M and & : [0,b] — M radiating from points
q:=0(0) € M and § := 5(0) € M, assume that no conjugate points exist along
o and & (e.g. that they are contained in a normal coordinate neighborhood of q
respectively §). If the Ricci operators satisfy

R, > Ry
for corresponding points, then the modified shape operators satisfy
SK,q < gK,(j

at corresponding points, where comparison of self-adjoint linear operators along
geodesics is done as explained above. If we reverse all inequalities, the result is
also true.

Proof. Let o and & be corresponding geodesic rays, then by we
see that

Eq(o(t)) = 2(0’(0),0"(0)) = £*(5"(0),5"(0)) = Eq(&(1)). (5-4)

But then, by definition of the modified distance function also hgx 4(o(t)) =
hi,5(G(t)). Set h(t) := hi 4(c(t))) and h(t) := hi (5(t)). As shown in
along radial directions the modified shape operator S := Sk 4 is of
the form

S(o') = Ve gradhg g = (1 — Kh)o'

for any semi-Riemannian manifold. The analogous result also holds for S =
Sk, along 6. By again using the assumption that ¢ and & are corresponding
geodesics, we get by the above

(S(0"), 0"y = (1 = Kh)(o', 0"y = (1 - KR)(&, 6"y = (§(5),5")

which shows that }
Slor = Sl *)
N

By [Proposition 4.6.1] the action of S on V := o't respectively that of S on
V := 6", is described by [Lemma 2.2.2l Denote by P the local position vector
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field at g, and by P the local position vector field at . Then for G := grad hk 4
and G := grad hy 4, we will show that (G, G) = (G, G). Since

(P(a(1), P(a(t))) =" 150’ (1), 0'(t)) = (&' (1), 5" (t)) "= (P(5()), P(5(t))),

by [Lemma 4.1.2] the result for K = 0 follows immediately. For K # 0 note that
¢(t), as in|[Lemma 4.1.2)such that (G o o)(t) = ¢(t)(P o o)(t), only depends on

Ey(o(t)), and Ey(o(D)) = Eq(3(t)) by (54). In[Theorem 2.2.3) set R := Re,

Ry := R, and
= VKG, )| =[G, G-
Then by [Lemma 4.1.3(iii), g satisfies the prerequisites of [Theorem 2.2.3} which

yields

Slv < Sly. (**)
Since ¢ and & are nonull we get T,y M = o'(t) ® V and T =4'(t)®

So we can apply Remark(iv) after [De finition 2.1.1] to () an @) to obtam
S<S.

O

Lemma 5.2.3. Corollary 4.6 p. 269] Let M be a semi-Riemannian man-
ifold such that R > K and Qg be a constant curvature space of the same
dimension and index as M. For q,p € M connected by a geodesic segment o
which has no conjugate points, if a corresponding geodesic segment in Qi has
no conjugate points then at p, the modified shape operator Sk 4 satisfies

(Sk.q)y, < (1= Khi q(p))(Ad)7, 11 (5.5)

Here (Id)1,n denotes the identity on T,M. For R < K the same statement
holds with the inequality in (5.5)) reversed.

Proof. By we know that R > K is equivalent to

<vavvw> = K(<va><wvw> - <’U’w>2) (*)

for all v,w € T, M which span a non-degenerate plane. Since T,M and T;Qxk
are identified by an isometry, we will denote the images of v and w under
this isometry with v and w as well. In the constant curvature space Qp with
curvature tensor R,

(Ryyv, w)

N (v, v w, wy — v, w>2.

So by (ED we obtain
(Rypwv, W) = (R, w).

But then
{(Ryw — Ryw)v,w)y =0

which shows that at corresponding points of o and o', the self adjoint Ricci

operators satisfy R,» > Rz. Denote the modified shape operator on Qk by
Sk, and the identity on T;Qk by (Id)r,o. Then by [Lemma 5.2.2} since by

assumption there are no conjugate points along both geodesics,
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_ (Id) 7. o, if K=0
Sk.a)p < (Sk.q)p = " AT
(Sk,q)p < (Sk.0)p {KKK,Q(ﬁ) (Id)r,0, if K #0.

This shows (5.5)) for K = 0. If K # 0 the result follows by (4.19).
O

Theorem 5.2.4. [1, Proposition 5.2 p. 271] Let U be a neighborhood normal
for KE| If R = K on U, then triangle comparison holds on U: For all triangles
Apqr in U with comparison triangle ApGr, the signed distance between points
in Apqr are = the signed distance between corresponding points in Apgr. The
result with switched inequalities is also true.

Remark: We can use any of the equivalent conditions for triangle comparison
in |Proposition 3.4.2|

Proof. Let Apqgr be a triangle in U with comparison triangle Apgr in a model
space Q of constant curvature K with the same dimension and index as M.
We will show that R > K (R < K) implies that the signed distance from ¢ to
any point m on the geodesic connecting p with r is > (<) than the distance
between the corresponding points ¢ and 7 in the model triangle Apgr. Let
o :[0,1] — U be the unique geodesic connecting p with r and & : [0,1] —» QO
the corresponding geodesic in our model space connecting p with 7. The function
hi,qo0 : [0,1] — R gives the modified distance from ¢ to o(t). By [Lemma 4.1.4]
the modified distance function is a monotonically increasing function of the
signed distance, so it suffices to show that R > K (R < K) implies hx 400 >
higod (hxgoo < higgod). First suppose that R > K. Set m := o(s) for
some s € [0, 1], then by We know that the modified shape operator
Sk,q satisfies

(Sk.g)m < (1= Khi (0(s)))(Ad)z,, 0, *)

since ¢ and m can be joined by unique geodesic without conjugate points. This
holds since U is assumed to be a normal neighborhood for K, so in particular
U is a normal neighborhood by definition. Using the above we compute

(hK,q © 0)”(5) HhK'q (0/(5)3 0'/(8)) <VU’(S) grad hK,qa U/(S)>
(S1.0)o(0" ), 0" B (1= Khic (o))" (5), o (5)

Since o is parametrized by [0, 1] we know by that E(o) = {(d'(t),0'(t))
for all ¢ € [0,1]. So set h(t) := (hk,q © 0)(t), then by the above h satisfies the
differential inequality

h" + KE(o)h < E(0). (5.6)

Denote by h K,q the modified distance function in the model space Qg, and set
h(t) := (hk,g06)(t), then by (4.17) even equality holds

h' + KE(5)h = E(5). (5.7)

1Remember that this means that U is a normal neighborhood and every triangle in U
satisfies size bounds for K, which gives a unique realization in some model space of curvature

K as shown in [Lemma 3.2.4
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Since o and & are corresponding geodesics,

E(0) = (0'(0),0'(0)) = (5(0),5"(0)) = E(5).

Set R
Y:i=h—"h (5.8)
and then subtract (5.7)) from (5.6 to get
' + KE(o)y < 0. (5.9)

At the endpoints, ¥ has the values

¥(0) = hi g(5(0)) = hie,q(0(0)) = hi,q(B) — hc.q(p) = 0
since Eq(p) = E4(p), which follows from |pg|+ = |gp|+. Also,

P(1) =71Kq~(5(1))*h1<q( (1) —th( 7) = q(r) = 0.

So for k := KFE(0), to apply m Lemma 5.1.1| to it only remains to show that
in case kK > 0 the bounds for L hold. In our case L = 1 since our geodesics are

assumed to be parametrized by [0, 1] and the size bounds are then of the form

™

1l < ———.
KE(o)

If K > 0and E(o) > 0, then v/E(c) = |pr|+ = d(p,r) is the Riemannian
distance between p and r, so

Ipr|+ < ¢% (1)

has to be satisfied. Now in case K < 0 and E(c) < 0 the signed distance is
given by |pr|x = —+/—F(0), and so the requirement then is

rls > = 2)

Since U is normal for K, the signed side lengths of triangles in U have to satisfy

the bounds in [Lemma 3.2.4 So in partlcular and (2| | are satisfied. Then
Lemma 5.1.1| shows that ¢ (t) = 0 on t € [0, Wthh by (5.8)) is equivalent to

(hiq00)(t) = (hK,q °0a)(t)
for all ¢ € [0, 1] and we are done since [Lemma 4.1.4] implies
lgo ()] + = 135 ()]

Finally, the case R < K is shown the same way. To apply in this
case one has to set ¢ := h — h to get < in the differential inequality for .

O

5.3 From Triangle Comparison to Curvature Bounds

Theorem 5.3.1. [1, Proposition 5.3.] Let U be a neighborhood which is normal
for K. 1If for every triangle Apqr in U, the signed distance between any two
points is = (<) the signed distance of the corresponding points in a realizing
triangle ApGr in a model space of curvature K, then R > K (R < K).
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Remark Instead of comparison of distances between any two points on cor-
responding triangles, any of the equivalent conditions of [Proposition 3.4.2| can
be used.

Proof. Let o be a nonnull geodesic segment o : [0,1] — U. Then choose some
v € T, ()M which is orthogonal to ¢’(0). The subspace V' spanned by o’(0)
and v is two-dimensional since both vectors are nonnull. Let Qg be the two-
dimensional model space of curvature K with the same index as V. Choose a
geodesic 7 : [0,1] — Qg such that {o'(t),0’(t)) = {(5'(t),5'(t)) for all t € [0, 1],
and ¥ € T5(0)Qx with (6'(0),7) = 0 and (v, v) = (v, 7). By there
is a unique Jacobi field along ¢ such that J(0) = 0 and J'(0) = v. Also along &
there is a unique Jacobi field J such that J(0) = 0 and J’(0) = ©. Let 7 be the
geodesic variation of o given by

7(t,8) 1= 05(t) == expyg) (t(0’(0) + sv))
and let 7 be the corresponding geodesic variation of &
7(t,8) := G5(t) == exps () (t(3'(0) + 50)).

The Jacobi fields J and J are obtained as variational vector fields of these
geodesic variations, J(t) = %|Szoas(t) and J(t) = a—i\s:o&s(t). Further %(0, 8) =
o’(0) + sv and %(O, s) = &’(0) + sv. So since v L ¢'(0) and ¥ L 5'(0),

<%(0, s), %(0,0» = {o’(0) + sv,0”(0)) = ('(0), 0" (0))
= (5'(0),5"(0)) = (&"(0) + 57,5 (0))
= (0.9, T 0.0

This shows that
(0'(0),05(0)) = (&'(0), 55(0))- (5.10)

So the nonnormalized angle of the hinge given by o and o, is the same as the

nonnormalized angle of the corresponding hinge in Qk. Set a := {(c¢’(0), 0%(0)).
Now we show that

1 _

J(t) = " expaol(t) (o5(t)) + O(s). (5.11)

This can be seen by looking at the Taylor expansion of exp;ol(t) (0s(t)) with

respect to s, which is given by

exp(jol(t)(crs () = expgol(t)(oo(t)) +s % (expgol(t)(as(t))) + O(s%).

s=

Now since exp;)l(t) (o0(t)) = 0 and

0 _ _ 0
% (expo-ol(t) (Us (t))) = ( dexpgol(t))oo(t)( %
N A—

s=0

Id
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which shows (5.11)). So we get
|J(t)]+ = sgn(J(t)) VI (L), (1))

= sgn(J(t)) lim \/‘<exp oy (Ts(1),exp_ ) (05(1))) (5.12)

S—>S

1im f|00(t>0's(t)|i

since sgn(J(t)) = sgn(expo,0 (t)(0s(t))). Suppose that triangle comparison as in

[Proposition 3.4.2(3) holds, that is nonnormalized angles in triangles in U are >
the corresponding angles in a comparison triangle. Then this implies

loo(t)os(t)|+ < [60(t)Fs(t)]+- (5.13)
Since, suppose to the contrary that |oo(t)os(t)]|+ > |60(t)Fs(t)|+ =: dpew. Con-
sider the triangle A, in Q with side lengths (|og|+, |os|+, new) and let
Qpew be the nonnormalized angle between the sides with lengths |og|+ and
|os]+. Then by the Hinge Lemma [Lemma 3.3.]] M the nonnormalized angle Qnew
is a decreasing function of the opposite side length. Since |og(t)os(t)|+ > dnew
this implies @ < @pew, which contradicts [Proposition 3.4.2(3). By combining

and we get
G0, (1)) = Tim 5 expy ) (7,(0)), vy (00 (6))
= ot < f070 (514
— lim o exp3 ) (0:(0), x5 (0(0) = CT(0), T (1)
By we can write J and J as
T(#) = Pt — ¢ Ry (0" (O))F + O(1")

T#) = Ph(ot — < Rori0yo(0' O)F + O(t").

where P} and P} denote the parallel transport along o and &, respectively. In
the constant curvature model space

Ry (@(0)) B2 K((5(0),5(0)) 5 — (5,6'(0)) 5 (0)) = K{o'(0), 0" (0))a.
=(0"(0),0"(0)) -0

Parallel transport is an isometry, so we get
1
T(t), J(t)) = (v, v)t? — §<Rg/(0)va’(0),v>t4 +O(t9)
G0, (1)) = 0,08 — LK (0),0"(0)0, Dt + O(F).

Since (v,v) = (¥,7) by definition, the coefficients for the t>-terms agree, we
obtain from (5.14]) via ¢ — 0 that
<R 1(0)vT ( ) ’U> K<O'/(0),O'/(0)><’U,'U>.

Any non-degenerate plane I can be obtained by a suitable choice of o and LH.

So we get R > K by [Lemma 1.2.4] O

2Let e1, ez be an orthonormal basis for II « TyM for q € U. Set o(t) := exp, (te1) and
v := eg, then o/(0) = e;.




5.4. MAIN THEOREM 75

5.4 Main Theorem

Now can collect our results in the main theorem:

Theorem 5.4.1. Theorem 1.1, p. 253] Let M be a semi-Riemannian
manifold and U a neighborhood which is normal for K. Then R > K (R < K)
if the signed distance between any two points on a triangle in U is = (<) the
signed distance of corresponding points on a realizing triangle in QKE|. If, on
the other hand, triangle comparison holds on a normal coordinate neighborhood
U, then the corresponding size bounds R = K or R < K on U follow. So, in
particular, if this holds for all points then curvature bounds for M follow.

Proof. By [['heorem 5.2.4] and [['heorem 5.3.1} O]

We end this thesis with a short recapitulation of the steps which have led us
to the proof of The main tool was the modified distance func-
tion hg 4, which is K-convex along spacelike geodesics, K-concave along timelike
geodesics and K-affine for null geodesics, as shown in |Proposition 4.3.3] The
modified distance function then induces a modified shape operator Sk 4, which
is smoothly defined on all radial geodesics even if they are null. On hyper-
quadrics Qg the shape operator is just a scalar multiple of the identity on each
tangent space. In |[Proposition 4.6.1] we show that the modified shape operator
can also be obtained from the Ricci operator using and satisfies a
Riccati equation. Further, in the proof of [Proposition 4.6.1] have seen that the
modified shape operator is a rescaling of the Weingarten map of an equidistant
hypersurface of q. Along radial geodesics, inequalities for the Ricci operators
then imply inequalities for the modified shape operators in [Cemma 5.2.2] where
we use for the comparison of self adjoint linear maps. If the

sectional curvature of M is bounded above (below) by K, then by [Lemma 5.2.2
we get a bound on the modified shape operator, given by a rescaling of the

identity on the tangent space by (1 — Khg 4). By this we see in the proof of

that h = hg 4 satisfies b + KE(0) < E(0). Furthermore in the
model spaces of constant curvature K even equality holds for the correspond-
ing modified distance function h. Using we then conclude that
triangle comparison holds. The equivalent definitions for triangle comparison
on neighborhoods which are normal for K are shown in [Proposition 3.4.2] us-

ing|[Lemma 3.3.1[hinge) and |Lemma 3.3.2{straightening). The reverse direction,

where we suppose that triangle comparison holds, is shown by comparing Jacobi
fields along radial geodesics and utilizing the Taylor expansion for Jacobi fields.

380 triangle comparison holds on U, which means all of the equivalent conditions in
hold.
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