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Abstract

This master’s thesis is dedicated to the proof of a local version of Toponogov’s
triangle comparison theorem for semi-Riemannian manifolds. We show that
curvature bounds on semi-Riemannian manifolds imply local triangle compari-
son and that if, conversely, triangle comparison holds on normal neighborhoods
of each point, curvature bounds follow. As a byproduct, the constant curvature
model spaces in semi-Riemannian geometry are studied in detail. Moreover, a
general form of the law of cosines is derived that applies to surfaces of arbi-
trary curvature and index and is needed for showing realizability of triangles
in the model spaces. The hinge and straightening lemmas of Alexandrov are
generalized to the semi-Riemannian setting. A modified distance function and a
self adjoint-modified shape operator are introduced, which satisfies a differential
equation of Riccati type and a theory for comparison of families of self-adjoint
linear maps is developed, which allows us to show the main result. The starting
point and inspiration for this thesis is a recent paper by Stephanie B. Alexan-
der and Richard L. Bishop titled "Lorentz and Semi-Riemannian Spaces with
Alexandrov Curvature Bounds" [1].





Abstract

Diese Masterarbeit beschäftigt sich mit einer verallgemeinerten lokalen Version
von Toponogov’s Satz für Dreiecksvergleiche auf semi-Riemannsche Mannig-
faltigkeiten. Es wird gezeigt, dass Krümmungsschranken die Dreiecksvergleichs-
eigenschaft implizieren, und umgekehrt, wenn die Dreiecksvergleichseigenschaft
für alle Punkte in einer Umgebung für Riemannsche Normalkoordinaten erfüllt
ist, folgen die entsprechenden Krümmungsschranken. Diese Arbeit beinhaltet
eine detaillierte Untersuchung der semi-Riemannschen Modellräume konstan-
ter Krümmung. Außerdem wird eine allgemeine Version des Kosinussatzes be-
wiesen, die für Flächen mit beliebiger konstanter Krümmung und Index gilt.
Dieser Satz ist essentiell für den Beweis der Realisierbarkeit von Dreiecken in den
Modellräumen. Klassische Sätze aus der Alexandrov-Geometrie werden auf den
semi-Riemannschen Fall verallgemeinert. Weiters wird eine modifizierte Dis-
tanzfunktion eingeführt und der dadurch induzierte modifizierte Formoperator,
eine selbstadjungierte lineare Abbildung, welche eine Riccati-Differentialgleichung
erfüllt. Die notwendige Theorie zum Vergleich von Familien selbstadjungierter
linearer Abbildungen wird entwickelt, was uns erlaubt, das Hauptresultat zu
beweisen. Ausgangspunkt und Inspiration für diese Arbeit ist ein Artikel von
Stephanie B. Alexander und Richard L. Bishop mit dem Titel "Lorentz and
Semi-Riemannian Spaces with Alexandrov Curvature Bounds" [1].
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Chapter 1

Introduction and
Preliminaries

1.1 Introduction
In the field of triangle comparison, one studies same sized triangles in two differ-
ent Riemannian manifolds and relates the information so obtained to properties
of the Riemannian manifolds. This approach is particularly fruitful if one of the
two spaces is some kind of model space, where much is known. In flat Euclidean
space, triangles are given by three points connected by straight lines, which
are the unique geodesics connecting the vertices. So to generalize triangles to
Riemannian manifolds, one needs uniqueness for the geodesics connecting the
vertices. This is guaranteed in normal (convex) neighborhoods. The property
that we will be interested in is sectional curvature. In terms of curvature the
simplest spaces, our model spaces, are spaces of constant curvature. One ob-
tains a model space for any real number K, and qualitatively it is sufficient
to study the cases K ă 0, K “ 0 and K ą 0. The model spaces for these
three cases are given by the hyperbolic space (K ă 0), the Euclidean space
(K “ 0), and the sphere (K ą 0), respectively. So if we consider a triangle ∆ in
the plane and compare it to a triangle on the sphere, which has the same side
lengths as ∆, a so called comparison triangle, then one makes the observation

Figure 1.1: Triangles with the same side lengths realized spaces of different
curvature K.
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that the comparison triangle is "fatter" than the original triangle in the plane,
and that the angles at the vertices increase. On the other hand, in hyperbolic
space, the comparison triangle is "slimmer" and angles decrease. The statement
of Toponogov’s (triangle comparison) theorem, in a non rigorous form, is as
follows:

Theorem 1.1.1 (Toponogov). Let M be a Riemannian manifold with sectional
curvature K bounded below by some δ P R, δ ď K, then every triangle ∆ in M
has a comparison triangle ∆δ in a space of constant curvature δ and the angles
at the vertices of ∆ are bigger than the corresponding angles in ∆δ. If M has
sectional curvature bounded above by some κ P R, then every sufficiently small
triangle has a comparison triangle ∆κ in a space of constant curvature κ and
the angles at the vertices of ∆ are smaller than the corresponding angles in ∆κ.

A proof of Toponogov’s theorem can be found in [2, 4.1,4.2]. Equivalently
one sees that distances between points on the sides of ∆ are bigger than dis-
tances between the corresponding points on ∆δ, respectively in case of upper
curvature bounds we get that distances between points on the sides of ∆ are
less then the distances between the corresponding points on ∆κ. This master’s
thesis is inspired by a recent paper by Stephanie B. Alexander and Richard
L. Bishop titled "Lorentz and Semi-Riemannian Spaces with Alexandrov Cur-
vature Bounds" [1], which generalizes Toponogov’s theorem in two substantial
ways. First, triangles in semi-Riemannian manifolds are considered, where the
length is given by a signed distance, which accounts for the causal character of
a geodesic segment connecting two points. Secondly, also a local converse of To-
ponogov’s theorem is show, which is as follows: suppose in a normal coordinate
neighborhood U all triangles ∆ together with comparison triangles ∆̃ exhibit
the same behavior as one might expect from triangles in a space with curvature
bounded above by some K, then the sectional curvature of M is bounded above
by K on U . So if this holds for all points with corresponding normal coordinate
neighborhoods, then the curvature of M is bounded above by K and the same
hold for bounds from below. For this one needs an extended family of model
spaces of constant curvature, in particular model spaces with non zero index,
which will be introduced in Chapter 1 and studied in depth in Chapter 3. In
particular, we will prove a general form of the law of cosines for our model
surfaces and show realizability for comparison triangles. Our main tool, which
helps us to compare triangles in M with triangles in model spaces will be a
so called modified distance function and the modified shape operator induced
by it, which is the main topic of Chapter 4. These modified shape operators
are self-adjoint linear maps on the tangent space and along geodesics one gets
families of these maps. The comparison theory of families of self-adjoint linear
maps which we need is developed in Chapter 2. This chapter can be read inde-
pendently of the rest of the text. Then the main result is shown in Chapter 5.
This thesis is written such that no previous knowledge in comparison geometry
is needed. It is assumed that the reader knows the basics of Riemannian geom-
etry as is presented in [3] or [4], and has some familiarity with semi-Riemannian
geometry, see [5], which will be our main reference.
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1.2 Riemannian Curvature Tensor and Curva-
ture Bounds

A semi-Riemannian manifold is a smooth manifoldM together with a scalar
product denoted by x , y. A scalar product or semi-Riemannian metric is
defined as a non-degenerate symmetric bilinear form TpM ˆ TpM Ñ R which
is smoothly defined on M and is a

`0
2
˘

tensor. If x , y is positive definite we
call x , y an inner product or Riemannian metric. Then M together with
an inner product x , y is called a Riemannian manifold. A subspace of the
tangent space is called non-degenerate if the restriction of the metric to this
subspace is again a non-degenerate bilinear form. For Riemannian manifolds this
is always the case, while in the indefinite case there are always sections on which
the metric is degenerate. On any semi-Riemannian manifold there is a unique
connection compatible with the metric, called the Levi-Civita connection. Let
∇ be the Levi-Civita connection for M , then the Riemannian-curvature
tensor R : XpMq3 Ñ XpMq is defined by

RXY Z :“ ∇rX,Y sZ ´ r∇X ,∇Y sZ, (1.1)

where rX,Y s denotes the Lie-bracket and r∇X ,∇Y sZ :“ ∇X∇Y Z ´∇Y ∇XZ.
Further we set RpX,Y, Z,W q :“ xRXY Z,W y and we call RXY the curvature
operator. As usual, one has to be aware that there are different sign conventions
for the Riemannian-curvature tensor. So objects that are derived from the
Riemannian curvature tensor may have different signs in the literature. Here
we use the same convention as in O’Neil’s book [5], which will be our main
reference for facts concerning semi-Riemannian geometry.

Definition 1.2.1. LetM be a semi-Riemannian manifold and Π a non-degenerate
plane in TpM with basis given by v, w P TpM . The sectional curvature K of
Π is defined as

Kpv, wq :“ Rpv, w, v, wq

xv, vyxw,wy ´ xv, wy
2 (1.2)

One can easily show that this definition is independent of the choice of basis
for Π. For details see [5, p. 77]. We call a non-degenerate plane Π in TpM
spacelike, if the restriction of the metric to Π is positive or negative definite.
If the restriction is indefinite we call it timelike. In Riemannian geometry
curvature bounds from below or above are defined by one sided bounds on the
sectional curvature by some number K P R. For semi-Riemannian manifolds
with indefinite metric, it turns out that one sided bounds force the curvature
to be constant, which is shown by the following theorem. Sectional curvature
is not defined for degenerate planes, but we can still compute xRvwv, wy. By
the proof of [5, Lemma 3.39 p. 77] we know that xRvwv, wy is independent of
the choice of basis up to a positive factor. So we get a well defined function N
which maps degenerate planes of TpM to t´1, 0, 1u, corresponding to the sign
of xRvwv, wy and to 0 if this expression vanishes.

Theorem 1.2.2 (Kulkarni et al.). [5, Proposition 8.28] Let M be a semi-
Riemannian manifold with indefinite metric, then for TpM the following are
equivalent

• The sectional curvature K is constant
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• N “ 0

• a ď K or K ď b for a, b P R

• a ď K ď b on timelike planes

• a ď K ď b on spacelike planes
Proof. See [5].

Thus in the indefinite case, manifolds which satisfy one sided bounds on
sectional curvature turn out to be basically just the model spaces of constant
curvature, which will be discussed soon. The following definition as used in [1, p.
252] turned out to be better suited for the indefinite case.
Definition 1.2.3 (Semi-Riemannian Curvature Bounds). Let K be a real num-
ber. The sectional curvature K of a semi-Riemannian manifold M is said to
be bounded above by K if K ď K for all spacelike planes and K ě K for
timelike planes. For short, we write R ď K. The sectional curvature K is
said to be bounded below by K if K ě K for all spacelike planes and K ď K
for timelike planes. In short we write R ě K.

Remark

1. For Riemannian manifolds this is just the usual definition for one sided
curvature bounds.

2. Note that in general R ď K ď K 1 respectively R ě K ě K 1 does not
imply R ď K 1 or R ě K 1. This implication is only true for Riemannian
manifolds.

Lemma 1.2.4. Having an upper bound on the sectional curvature R ď K as
in Definition 1.2.3 is equivalent to

Rpv, w, v, wq ď Kpxv, vyxw,wy ´ xv, wy
2
q (1.3)

for all p in M , and all v, w P TpM spanning a non-degenerate plane. In the
case of a lower bound R ě K the above inequality reverses.
Proof. First suppose M has curvature bounded above by K then

Kpv, wq “ Rpv, w, v, wq

xv, vyxw,wy ´ xv, wy
2 ď K or ě K

where ď holds if v and w span a spacelike plane Π, and ě if the span is timelike.
In the spacelike case, both v and w are spacelike or both are timelike. Since
the sectional curvature K does not depend on the choice of basis for Π, we
can suppose that v and w are orthogonal. Then the denominator on the left
hand side is positive1, so by bringing it to the other side we do not change
the inequality. In the indefinite case, w.l.o.g. suppose that v is timelike and
orthogonal to w, which is spacelike. So xv, vyxw,wy ă 0, which shows that the
denominator is ă 0 thus multiplication changes the direction of the inequality.

1If v and w are spacelike and span a spacelike plane this also follows by the Cauchy-Schwarz
inequality. This does not hold if the metric restricted to the plane spanned by v and w is not
positive definite. For example in R2

1 the spacelike vectors v “ p1, 1
2 q and w “ p1, 0q are a basis

of R2
1 and xv, wy2 “ 1 ą 3

4 “ xv, vyxw,wy.
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1.3 Gradient and Hessian
In this section we will take a look at the gradient and Hessian of smooth func-
tions on a semi-Riemannian manifold M and prove some properties which will
be used frequently later on. First, recall that a geodesic is a smooth curve
c : I ÑM , where I is some interval, which satisfies the geodesic equation

∇c1c
1 “ 0. (1.4)

If I is of the form I “ ra, bs with a, b P R, cpaq :“ q and cpbq :“ p, then we call c
geodesic segment connecting q with p. If b “ 8, then c is called a geodesic
ray starting at q, if further b “ 8, c is called a geodesic line. By the causal
character of a geodesic we mean the causal character of c1ptq, which is the
same for all times t P I since

d

dt
xc1, c1y “ 2x∇c1c

1, c1y
(1.4)
“ 0. (1.5)

So xc1, c1y is constant and xc1, c1y “ 0 if and only if c is a null geodesic. Thus the
sign of a geodesic σ is well defined by setting

sgnpσq :“

$

’

&

’

%

`1 if xσ1, σ1y ą 0
0 if xσ1, σ1y “ 0

´1 if xσ1, σ1y ă 0.
(1.6)

Definition 1.3.1. Let f P C8pMq, then the gradient grad f P XpMq is defined
as the metrically equivalent vector field to the differential df P Ω1pMq. So the
gradient is characterized by

xgrad f,Xy “ dfpXq “ Xf

for all X P XpMq. For p PM , denote by gradp f the value of the gradient vector
field at p.

Lemma 1.3.2. Given f P C8pMq and a smooth function g : RÑ R, then

grad pg ˝ fq “ g1 grad f.

Proof. Note that g ˝ f is a smooth function on M . So given X P XpMq, by
definition of the gradient together with the chain rule for the differential we get

xgradpg ˝ fq, Xy “ dpg ˝ fqpXq “ dgp dfpXqq “ g1xgrad f,Xy.

Since X was arbitrary we are done.

Definition 1.3.3. The Hessian Hf of a function f P C8pMq is the second
covariant derivative of f , Hf :“ ∇∇f . As shown in [5, Lemma 3.49, p. 86],
the Hessian is a symmetric

`0
2
˘

tensor field, and for all vector fields X,Y P XpMq
it holds that

Hf pX,Y q “ XY f ´ p∇XY qf “ x∇X grad f, Y y. (1.7)

Lemma 1.3.4. Let c be a geodesic and f P C8pMq, then along c

Hf pc1, c1q “ pf ˝ cq2. (1.8)
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Proof. This follows from

pf ˝ cq2 “ ∇c1pf ˝ cq
1 “ ∇c1 dfpc

1q

“ ∇c1xgrad f, c1y “ x∇c1 grad f, c1y ` xgrad c1, ∇c1c
1

loomoon

“0

y
(1.7)
“ Hf pc1, c1q.

One may ask if some vector field V is of the form V “ grad f, for some
smooth function f . The next lemma shows that we can find such a f locally, if
V satisfies some additional condition.

Lemma 1.3.5. Let V P XpMq satisfy

x∇XV, Y y “ xX,∇Y V y

for all X,Y P XpMq. Then locally V “ grad f for some f P C8pMq.

Proof. First, for X,Y P XpMq we know that

XxV, Y y “ x∇XV, Y y ` xV,∇XY y

Y xX,V y “ x∇YX,V y ` xX,∇Y V y.

Subtracting the second equation from the first one, then since by assumption
x∇XV, Y y ´ xX,∇Y V y “ 0, we obtain

XxV, Y y ´ Y xX,V y “ xV,∇XY ´∇YX
looooooomooooooon

“rX,Y s

y.

Let ϕ be a chart defined on some neighborhood U in M , where we may assume
U to be smoothly contractible to some point p0 P M . Let B1, . . . , Bn be the
coordinate vector fields for this chart. Since rBi, Bjs “ 0 for all i, j P t1, . . . , nu,
inserting the coordinate vector fields into the above equation shows

BixV, Bjy ´ BjxBi, V y “ 0.

So for V “
ř

i V
iBi, by expanding the above we get

Bip
ÿ

k

V kgkj
loooomoooon

“:ωj

q ´ Bjp
ÿ

k

V kgki
looomooon

“:ωi

q “ 0.

where ω1, . . . , ωn are the coefficients of the metrically equivalent one-form to
V . Then, since Biωj “ Bjωi we get by [6, Corollary 7.18 p. 306] that ωi “ Bif
for some f P C8pUq and thus

V l “
n
ÿ

i“1
gliωi “

n
ÿ

i“1
gliBif “ pgrad fql,

so we are done.
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1.4 Semi-Riemannian Hypersurfaces
In this section we will collect some results about semi-Riemannian Hypersur-
faces, which are semi-Riemannian submanifolds of codimension one. The next
pages are based on [5, p. 97-108]. In the following, V and M will be manifolds
with V Ă M and inclusion map j : V Ñ M . Further, M is assumed to have
dimension n and to be equipped with a semi-Riemannian metric denoted by gM .
We call V a submanifold of M if it is a topological subspace and the inclusion
map j is smooth with injective differential Tpj for all points p of V . If the
pullback metric j˚gM “: gV induces a semi-Riemannian metric on V , we call V
a semi-Riemannian submanifold of M . If the dimension of V is n´ 1 it is
called a semi-Riemannian hypersurface. We can write TpM “ TpV ‘TpV

K.
The sign of a semi-Riemannian hypersurface V in M is defined by

• 1 if xv, vy ą 0 for all v in TpV K

• ´1 if xv, vy ă 0 for all v in TpV K.2.

The next proposition shows that semi-Riemannian hypersurfaces can be con-
structed as preimages of smooth maps with non-vanishing gradient.

Proposition 1.4.1. [5, Proposition 4.17 , p. 106] Let f P C8pMq be a smooth
function on M , and c a value of f . Then V :“ f´1pcq is a semi-Riemannian
hypersurface of M , if and only if xgrad f, grad fy is ą 0 or ă 0 on V . Then the
sign of V is equal to the sign of grad f . A unit normal vector field to V is given
by grad f

‖grad f‖ and f´1pcq is called a level set of f .

Proof. See [5, p. 106]

Let ∇ be the Levi-Civita connection on M , then for X and Y in XpV q the
Levi-Civita connection ∇̃ on V is given by orthogonal projection onto TV , so

∇̃XY :“ tanp∇XYq

and we call ∇̃ the induced connection on V . The second fundamental
form II : XpV q ˆXpV q Ñ XpV qK is defined by by IIpX,Yq :“ norpp∇XYqq. So
the induced connection ∇ : XpV q ˆ XpV q Ñ sXpV q can be written as

∇XY “ ∇̃XY ` IIpX,Yq .

For more details see [5, p. 97-102].

Definition 1.4.2. The shape operator or Weingarten-map W of a semi-
Riemannian hypersurface V in M with unit normal vector field U is defined
by

xW pXq, Y y :“ ´xIIpX,Yq, Uy for all X,Y P XpV q.

A unit normal U exists at least locally and the shape operator is then
uniquely determined up to the sign. Here we use the opposite sign convention
as in [5].

2If the sign is 1 the co-index is 0, so the index of V is the same as the index of M . For
sign ´1, the co-index of V is 1, so the index of V is ´1 the index of M .
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Lemma 1.4.3. LetM be a semi-Riemannian manifold and V a semi-Riemannian
hypersurface of M . If U is a unit normal vector field to V (locally), then the
shape operator of V is given by

W pXq “ ∇XU, (1.9)

where ∇ is the Levi-Civita connection of M . At each point p in V where W is
defined it gives a self adjoint linear map on TpV .

Proof. Since xU,Uy “ ˘1 we compute 0 “ ∇XxU,Uy “ 2x∇XU,Uy so ∇XU is
in the tangent space of V for all X in XpV q. Now for Y P XpV q first note that
since xY,Uy “ 0 we get

0 “ ∇XxY,Uy “ x∇XY, Uy ` xY,∇XUy.

Thus x∇XY,Uy “ ´xY,∇XUy. So

xW pXq, Y y “ ´xIIpX,Yq, Uy “ ´x∇XY,Uy “ x∇XU, Y y,

which shows (1.9). Since II is symmetric it follows that W is self adjoint.

1.5 Exponential Map, Normal Neighborhoods
and Gauss-Lemma

Let q be a point in a semi-Riemannian manifoldM and v P TqM , then there ex-
ists an unique geodesic γv : I ÑM with γvp0q “ q and γ1vp0q “ v, and such that
the interval I is maximal. Set Dq :“ tv P TqM | γv is at least defined on r0, 1su,
then Dq is an open subset of TqM . The exponential map at q, expq : Dq ÑM ,
is defined by expqpvq :“ γvp1q.

Proposition 1.5.1. The set Dq is an open star-shaped subset of TqM and expq
is smooth on Dp. Further,

γtvp1q “ γvptq (1.10)
for all t such that both sides are defined. There exists a star-shaped neighborhood
Ũ of 0 in TqM such that the exponential map expq : Ũ Ñ U is a diffeomorphism.

Proof. See [5, Proposition 3.30. p. 71].

Let U and Ũ be star-shaped sets as in Proposition 1.5.1 such that the ex-
ponential map is a diffeomorphism. Then U is called a normal coordinate
neighborhood of p in U . If U is a normal coordinate neighborhood of all of its
points we call U normal neighborhood3. The existence of normal neighbor-
hoods is guaranteed by [5, Proposition 5.7, p. 130]. Given an coordinate basis
B1, . . . , Bn for TqM and U a normal coordinate neighborhood of q PM , then by
Proposition 1.5.1 every point p in U has a unique representation as

exp´1
q ppq “

ÿ

i

xippqBi

and px1, . . . , xnq are called Riemannian normal coordinates. The next
lemma collects some important properties of the exponential map.

3In literature different names are used for normal neighborhoods, like totally normal, con-
vex, geodesically convex or uniformly normal [3]. To be consistent with [1] we will use the
name normal neighborhood.
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Lemma 1.5.2. Let U be normal coordinate neighborhood of q P M , then for
p P U the following holds

(i) There exists a unique geodesic γqp : r0, 1s Ñ M connecting q with p and
γ1qpp0q “ exp´1

q ppq.

(ii) Let v “
ř

i v
iBi P TqM for an basis B1, . . . , Bn then in normal coordinates

the geodesic γv has the form

t ÞÑ ptv1, . . . , tvnq

for all t such that γvptq is in U .

Proof. To show (i) set v :“ exp´1
q ppq and let γv be the unique geodesic such

that γvp0q “ q and γ1vp0q “ v. Then γvp1q “ expqpexp´1
q ppqq “ p. Now (ii)

holds since exp´1
q pγvptqq “ exp´1

q pexpqptvqq “ tv “
řn
i“1 tv

iBi.

Definition 1.5.3. The image of a line through 0 in Dq under the exponential
map expq is called a radial geodesic or geodesic line through q.

Along radial directions the exponential map behaves especially nice, as the
following important and well known result shows.

Theorem 1.5.4 (Gauss-Lemma). Let M a semi-Riemannian manifold, p PM ,
and 0 ‰ x P Dp Ă TpM . Then given vx, wx P TxpTpMq with vx radial, where
radial means vx “ λx for 0 ‰ λ P R, it holds that

xvx, wxy “ xp dexppqxpvxq, p dexppqxpwxqy.

Thus the exponential map is an isometry along radial geodesics.

Proof. See [5, Lemma 5.1, p. 127] or [4, Theorem 2.1.21, p. 43].

1.6 Pregeodesics and Affine Parametrizations
Recall that a smooth curve c : I Ñ M is called a pregeodesic if it has a
reparametrization θ : J Ñ I such that c ˝ θ is a geodesic. Here, θ is assumed
to be a strictly-monotonic smooth map between intervals J and I. We will show
a lemma which will help us to detect if some curve is a pregeodesic. To show
this, we need the following result.

Lemma 1.6.1. [5, exercise 3, p. 93] Let c : I Ñ M be a smooth curve and
θ : J Ñ I be a reparametrization of c. Let Z P Xpcq be a vector field along c,
then

pZ ˝ θq1 “
dθ

dt
Z 1 ˝ θ (1.11)

and

pZ ˝ θq2 “
d2θ

dt2
Z 1 ˝ θ ` p

dθ

dt
q2Z2 ˝ θ. (1.12)
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Proof. W.l.o.g. assume that c is contained in a chart domain U , then Zptq “
ř

k Z
kptq B

Bxk
|cptq. So Zpθptqq “

ř

k Z
kpθptqq B

Bxk
|c˝θptq and Z ˝ θ P Xpc ˝ θq. The

local formula for the induced covariant derivative [5, p. 66] then yields

∇
dt
pZ ˝ θqk “

dpZk ˝ θq

dt
`
ÿ

i,j

ΓkijZipθptqq
dpcj ˝ θq

dt

“
dθ

dt

˜

dZk

dt
pθptqq `

ÿ

i,j

ΓkijZipθptqq
dcj

dt
pθptqq

¸

“
dθ

dt

∇
dt
Zi|θptq

which shows (1.11). Applying the product rule for the induced covariant deriva-
tive further differentiation yields

pZ ˝θq2
(1.11)
“ p

dθ

dt
Z 1 ˝θq1 “

d2θ

dt2
Z 1 ˝θ`

dθ

dt
pZ 1 ˝θq1

(1.11)
“

d2θ

dt2
Z 1 ˝θ`p

dθ

dt
q2Z2 ˝θ

and we are done.

Lemma 1.6.2. [5, exercise 19, p. 95] Given a smooth curve c : I ÑM which
is regular 4, if

∇c1ptqc
1ptq “ λptqc1ptq (1.13)

for some smooth function λ : I Ñ R then c is a pregeodesic and the reparametrized
curve c̃ “ c ˝ θ is a geodesic if and only if

θ2 ` λpθqpθ1q2 “ 0.5 (1.14)

Further it holds that xc1, c1y “ 0 everywhere or xc1, c1y ‰ 0 for all times. If c is a
nonnull pregeodesic with xc1ptq, c1ptqy ‰ 0 for all t P I, then every constant speed
reparametrization of c is a geodesic.

Proof. Let c be a smooth curve such that (1.13) holds. Let c̃ “ c ˝ θ be an
arbitrary reparametrization of c, then

c̃2
(1.11)
“ θ2pc1 ˝ θq ` pθ1q2pc2 ˝ θq

(1.13)
“ pθ2 ` λpθqpθ1q2qpc1 ˝ θq, (*)

so if θ2 ` λpθqpθ1q2 “ 0 it follows that c̃ is a geodesic since then ∇c̃1 c̃
1 “ c̃2 “ 0.

Since c is regular, if c can be reparametrized as a geodesic then (*) shows
that θ2 ` λpθqpθ1q2 has to vanish. We can always find such a θ since (1.14) is
a second order nonlinear ODE which can be solved at least locally. Further,
xc1, c1y satisfies following ODE

d

dt
xc1, c1y “ 2xc2, c1y “ 2λxc1, c1y,

which shows that xc1, c1y “ ae2
ş

λ dt for some a P R. Thus, since the exponential
is always greater than zero the claim follows. It remains to show that for a
nonnull pregeodesic c, every constant speed reparametrization is a geodesic. So

4c1ptq ‰ 0 for all t P I.
5If θ satisfies this equation clearly also aθ ` b is a solution for all a, b P R.
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let θ be such that c̃ :“ c ˝ θ has constant speed xc̃1, c̃1y :“ k ‰ 0. Then we get
c̃1ptq “ θ1ptqc1pθptqq and

0 “ d

dt
xc̃1, c̃1y “ 2x∇c̃1 c̃

1, c̃1y.

This together with (*) yields

0 “ x∇c̃1 c̃
1, c̃1y “ θ1pθ2 ` λpθqpθ1q2qxc1 ˝ θ, c1 ˝ θy.

But since by assumption c is nonnull xc1, c1y ‰ 0. Also θ1 ‰ 0, since θ is assumed
to be strictly monotonic. Thus θ2` λpθqpθ1q2 “ 0, which shows that c̃ “ c ˝ θ is
a geodesic.

Remarks

(i) In particular if c is already a geodesic, that is λ “ 0, then any reparametriza-
tion c ˝ θ such that θ2 “ 0 is again a geodesic, which is solved by θptq “
αt` β with α, β P R. If α “ 0 we just get a curve which assigns the same
point to any parameter value t. The choice of a affine reparametrization is
called affine parameter for c. If α ą 0 then the reparametrized curve is
traversed in the same direction and in case α ă 0 the direction is switched.

(ii) We already know that the causal character of geodesics is always the same,
above lemma shows that this also holds for pregeodesics.

Definition 1.6.3. Let c be a pregeodesic in a semi-Riemannian manifold M
then a reparametrization c̃ of c such that c̃ is a geodesic is called an affine
reparametrization of c.

If c : ra, bs ÑM a geodesic then we get a parametrization by r0, 1s by setting
c̃ptq :“ cppb´aqt`aq. We will mostly deal with geodesics parametrized by r0, 1s.
Let c1 : r0, 1s ÑM and c1 : r0, 1s Ñ M̃ be smooth curves into semi-Riemannian
manifolds M and M̃ . Two points on p1 P c1pr0, 1sq and p2 P c2pr0, 1sq are
called corresponding points if there exists t0 P r0, 1s such that c1pt0q “ p1
and c2pt0q “ p2, and we say that p1 and p2 have the same affine parameter.
If c1 and c2 are not parametrized by r0, 1s we can still speak of corresponding
points if we take affine reparametrizations of both curves which don’t change
the direction, such that they are defined on r0, 1s. This also explains the name
affine parameter.

1.7 Length and Distance in Semi-Riemannian
Manifolds

By a semi-Euclidean vector space we mean a vector space equipped with a
non-degenerate symmetric bilinear form. Every semi-Euclidean space is isomet-
ric to some Rnν . Since the scalar product can also take negative values, we can’t
just define the length of a tangential vector as the square root of the scalar
product with itself. Since we are interested in the causal character we will use
the following definition.
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Definition 1.7.1 (Signed Length). Let V be a semi-Euclidean vector space.
Then the signed length of a vector v P V is defined as

|v|˘ :“ sgnpvq
a

|xv, vy| (1.15)

where the sign, sgnp.q : V Ñ t´1, 1u is given by

sgnpvq :“
#

`1 if xv, vy ě 0
´1 if xv, vy ă 0.

(1.16)

By unsigned length or norm we mean ‖v‖ :“
a

|xv, vy|, which corresponds
to the usual 2-norm in the case of inner product spaces.

In the positive-definite case we have |v|˘ “ ‖v‖. In particular since the real
line has index ν “ 0 signed length there just gives the usual modulus.
Definition 1.7.2. Let M be a semi-Riemannian manifold, q, p PM such that p
is contained in a normal coordinate neighborhood of q. Then let γqp : r0, 1s ÑM
be the unique geodesic connecting q with p, that is γqpp0q “ q and γqpp1q “ p.
Then by

|qp|˘ :“ |γqp|˘ :“ |γ1qpp0q|˘
we denote the signed distance between q and p. The energy of γqp is defined
as

Epγqpq :“ Eqppq :“ xγ1qpp0q, γ1qpp0qy.
Then the energy Eqppq is related to the signed length |qp|˘ by

Eqppq “ sgnpγqpq|γqp|˘2
“ sgnpγqpq|qp|˘2

, (1.17)

so they have the same sign. Also if we vary the point p, if the signed distance
increases then also the energy increases. By Lemma 1.5.2(i) we see that

Eqppq “ xexp´1
q ppq, exp´1

q ppqy, (1.18)

which is well defined for all p in a normal coordinate neighborhood of q. By
(1.5) we know that

Epγqpq “ xγ
1
qpptq, γ

1
qpptqy (1.19)

for any t P r0, 1s. Let σ be a radial geodesic through q defined on a normal
coordinate neighborhood of q. Then there exists a v P TqM such that σptq “
expq ptvq and so

Eqpσptqq “ xexp´1
q pσptqq, exp´1

q pσptqqy “ t2xv, vy. (1.20)

Lemma 1.7.3. Let U be a normal coordinate neighborhood of a point q, then

Eqppq “ Eppqq. (1.21)

for all p P U .
Proof. Set γpqptq :“ γqpp1 ´ tq, then γpq : r0, 1s Ñ M is a smooth curve
connecting p with q, further γpq is geodesic since it is obtained by an affine
reparametrization of a geodesic, given by θptq :“ 1´t. Finally, γ1pq “ pγqp˝θq1 “
´pγ1qp ˝ θq and so

Eqppq “ xγ
1
qpp0q, γ1qpp0qy “ xγ1pqp1q, γ1pqp1qy

(1.5)
“ xγ1pqp0q, γ1pqp0qy “ Eppqq.



1.8. CONSTANT CURVATURE SPACES 13

This shows that if we deal with quantities which only depend on the energy
of a curve, it does not matter in which direction the curve is parametrized.

Lemma 1.7.4. Let σ : I Ñ M be a geodesic parametrized in such a way that
0 P I Ă R and σp0q “ q, then for all λ P I it holds that

Eqpσpλqq “ λ2xσ1p0q, σ1p0qy. (1.22)

Proof. Let σ̂ptq :“ σpλtq, then σ̂ : r0, 1s ÑM is again a geodesic since it is given
by an affine reparametrization of a geodesic and further σ̂p0q “ q, σ̂p1q “ σpλq.
Then σ̂1ptq “ pσpλtqq1 “ λσ1pλtq and so

Eqpσpλqq “ xσ̂
1p0q, σ̂1p0qy “ λ2xσ1p0q, σ1p0qy.

1.8 Semi-Riemannian Manifolds of Constant Cur-
vature

In this section we will define our model spaces and study their properties. These
model spaces are simply-connected semi-Riemannian manifolds with constant
sectional curvature. For triangle comparison, the two dimensional model spaces
(surfaces) will be of particular importance. Up to isometry these spaces are
uniquely determined by their curvature K P R, dimension n and index 0 ď ν ď
n. The constant curvature model spaces can be realized as hypersurfaces of Rnν ,
the so called hyperquadrics.

Constant Curvature Spaces and Space Forms
Definition 1.8.1. A semi-Riemannian manifold M has constant curvature
if the sectional curvature K as defined in Definition 1.2.1 is constant.

In more detail there is a number K P R such that, for every p P M and all
v, w P TpM for which K is defined, Kpv, wq “ K. If M has constant curvature
K, then the action of the curvature operator Rvw is given by

Rvwx “ Kpxv, xyw ´ xw, xyvq (1.23)

for all p PM and all v, w P TpM spanning a nondegenerate 2-plane. For a proof
see [5, Corollary 3.43 p. 80].

Definition 1.8.2 (Space Form). A space form is a geodesically complete and
connected semi-Riemannian manifold of constant sectional curvature. If we
don’t want to be specific about the index and dimension we will denote space
forms of curvature K by QK .

Proposition 1.8.3. [5, Proposition 8.23 , p. 227] Simply connected space
forms are isometric if and only if their dimension, index and curvature agree.

So to study properties of space forms, it suffices to work with one realization
of constant curvature spaces.
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Hyperquadrics
Hyperquadrics can be thought of as generalizations of spheres to Rnν , with the
usual spheres Sn in Euclidean space Rn as a special cases. The unit sphere
in Rn is given by the equation xx, xy “ 1, and is a Riemannian submanifold of
dimension n ´ 1, index ν “ 0 and constant sectional curvature 1. By scaling
the unit sphere Sn by some factor r ą 0 (the radius) we get spaces of constant
curvature 1

r2 defined by the equation xx, xy “ r2. A space of constant negative
curvature K ă 0 is obtained by the equation xx, xy1 “ ´r2 in Rn1 , which
yields the hyperbolic space of dimension n´ 1, index ν “ 0 (the index of the
surrounding space minus 1) and constant negative curvature K “ ´ 1

r2 . In fact
we can construct "spheres" of any dimension, index and curvature. First we will
collect several facts, which we will need for defining our model spaces. More
details can be found in [5, p. 108-114]. Recall that in a vector space V , the
tangent space is just a copy of V at each point. Thus the following definition
makes sense.

Definition 1.8.4. Let e1, . . . en be a basis for Rnν , then x P Rnν can be written
as x “

ř

i x
iei. The position vector field P̃ P XpRnν q is defined by x ÞÑ

ř

i x
iBi P TxRnν – Rnν . Further we define the quadratic form q̃ : Rnν Ñ R by

q̃ : x ÞÑ xP̃ pxq, P̃ pxqy.

So the position vector field just takes the position vector of a point p P V
and "moves" it to the tangent space TpV of p, which is again V .

Lemma 1.8.5. Let V be a semi-Euclidean vector space. For q̃ and P̃ as in
Definition 1.8.4 we have

grad q̃ “ 2P̃ . (1.24)

Proof. Given v P V , then by definition of the gradient we get

xgrad q̃, vy “ dq̃pvq “ vq̃ “ vxP̃ , P̃ y “ 2x∇vP̃ , P̃ y “ 2xv, P̃ y.

To see ∇vP̃ “ v, note that the Christoffel symbols Γkij vanish in flat space. Then
by the coordinate formula for the induced covariant derivative [5, Proposition
3.13(1), p. 62]

∇vP̃ “
ÿ

i

vxiBi “
ÿ

i

viBi “ v.

Since v was arbitrary the claim follows.

Now we are able to define hyperquadrics as preimages of the quadratic form.

Definition 1.8.6 (Hyperquadrics). Fix r ą 0 and ε “ ˘1, and let q̃ be the
quadratic form on Rnν . Then the set q̃´1pεr2q is called a hyperquadric. Fur-
ther set q̃´1p0q :“ Λ̃, where Λ̃ is the null cone6 of Rnν .

Lemma 1.8.7. For n ě 2, 0 ď ν ď n, r ą 0 and ε “ ˘1 the subsets q̃´1pεr2q
of Rn`1

ν are semi-Riemannian hypersurfaces of dimension n, unit normal given
by 1

r P̃ and sign ε. Further, q̃´1p0q “ Λ̃ is not a semi-Riemannian hypersurface
since the induced metric is degenerate.

6The nullcone Λ̃ is defined as the set of all v P V such that v ‰ 0 and xv, vy “ 0. Vectors
in Λ̃ are called null vectors. For index ν “ 0 we get Λ̃ “ H since by definition 0 is not a null
vector.
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Proof. See [5, p. 108,109]

Definition 1.8.8. Let n ě 2 and 0 ď ν ď n and r ą 0. Then the pseudo-
sphere of radius r and dimension n is defined as the semi-Riemannian hyper-
surface of Rn`1

ν given by

Snν prq :“
 

p P Rn`1
ν | xp, py “ r2( “ q̃´1pr2q.

The pseudohyperbolic space of radius r, index ν and dimension n is the
semi-Riemannian hypersurface Rn`1

ν`1 is given by

Hn
ν prq :“

 

p P Rn`1
ν`1 | xp, py “ ´r

2( “ q̃´1p´r2q.

Note that Hn
ν prq is a subset of Rn`1

ν`1 , while Snν prq lies in Rn`1
ν . For ν “ 0 we

recover the usual sphere, respectively the hyperbolic space of dimension n. By
Proposition 1.4.1 it is easy to see that Snν prq and Hn

ν prq are semi-Riemannian
manifolds. Pseudospheres have constant positive sectional curvature given by
K “ 1

r2 , whereas the sectional curvature of pseudohyperbolic spaces is negative
and given by K “ ´ 1

r2 ă 0, see [5, Proposition 4.29, p. 113]. There exists
an anti isometry between Snν prq and Hn

n´νprq. A map σ between two semi-
Riemannian manifolds is called anti-isometry if x dσpvq, dσpwqy “ ´xv, wy
for all v and w. So if a result holds for Snν prq, we get the analogous result
for Hn

n´νprq simply by exchanging the words timelike and spacelike. We also
know how the geodesics look, and we have criteria for when two points can be
connected by a geodesic.

Lemma 1.8.9. [5, Proposition 4.28, p. 112] Let γ be a nonconstant geodesic
in Snν prq, then γ coincides with one connected component of the intersection of
Snν prq with a plane through 0. On the other hand, every connected component
of such an intersection is a geodesic if it is parametrized with constant speed. In
particular:

1. If γ is timelike, it is given by a parametrization of one branch of a hyper-
bola in Rn`1

ν .

2. If γ is null, it is given by a straight line in Rn`1
ν .

3. If γ is spacelike, it is given by a periodic parametrization of an ellipse in
Rn`1
ν .

The analogous result holds for pseudohyperbolic spaces Hn
ν prq with the words

timelike and spacelike exchanged.

Proof. [5, p. 112]

Now that we know what the geodesics look like, it is easy to explicitly write
down the exponential map for hyperquadrics.

Lemma 1.8.10. Let Snν prq be a pseudosphere, q a point on Snν prq and v P
TqS

n
ν prq a tangent vector such that xv, vy P t1, 0,´1u. Then the exponential

map expq : TqSnν prq Ñ Snν prq is given by

expqptvq “ γvptq
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Figure 1.2: Geodesics on the sphere, hyperbolic plane and the de Sitter space,
where spacelike geodesics are green, null geodesics are white and timelike
geodesics are red.

where γv is defined by

γvptq :“

$

’

&

’

%

cos
`

t
r

˘

q ` r sin
`

t
r

˘

v if xv, vy “ 1
cosh

`

t
r

˘

q ` r sinh
`

t
r

˘

v if xv, vy “ ´1
q ` tv if xv, vy “ 0.

(1.25)

If v is spacelike or timelike, the radial geodesics γv are of unit speed, so the
parametrization is by arc length. We get the result for Hn

ν prq by exchanging the
the cases for timelike and spacelike v in (1.25).

Proof. By Lemma 1.8.9 and the corresponding proof in [5, p. 112], we know
that the geodesics are of the form as in (1.25), only the factor r is missing for
the cos and cosh terms, since we have to multiply q by 1

r to scale it to unit
length. By definition γvp0q “ q. The derivative of γv is given by

d

dt
γvptq “

$

’

&

’

%

´ 1
r sin

`

t
r

˘

q ` cos
`

t
r

˘

v
1
r sinh

`

t
r

˘

q ` cosh
`

t
r

˘

v

v,

and so γ1vp0q “ v. If xv, vy “ 1 we get

xγ1vptq, γ
1
vptqy “

1
r2 sin2

ˆ

t

r

˙

xq, qy
loomoon

“r2

` cos2
ˆ

t

r

˙

xv, vy
loomoon

“1

“ 1,

and for xv, vy “ ´1

xγ1vptq, γ
1
vptqy “

1
r2 sinh2

ˆ

t

r

˙

xq, qy
loomoon

“r2

` cosh2
ˆ

t

r

˙

xv, vy
loomoon

“´1

“ ´1.

So timelike or spacelike geodesics γv are indeed parametrized by unit speed.
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Corollary 1.8.11. Let QK be a hyperquadric and q, p P QK distinct points.
Suppose q and p are connected by a unique nonnull geodesic γqp : r0, 1s Ñ QK ,
and set v :“ γ1qpp0q?

Epγqpq
. Then the point p can be written as

p “ cos
ˆ

b

EpγqpqK

˙

q `
1
?
K

sin
ˆ

b

EpγqpqK

˙

v, (1.26)

where we use the convention
?
a :“ i

a

|a| for a ă 0.

Proof. Note that v satisfies

xv, vy “

“Epγqpq
hkkkkkkkkikkkkkkkkj

xγ1qpp0q, γ1qpp0qy
a

Epγqpq
a

Epγqpq
“ 1,

which is clear for Epγqpq ą 0. For Epγqpq ă 0 this follows by

xv, vy “
Epγqpq

a

Epγqpq
a

Epγqpq
“

1
i2

Epγqpq

|Epγqpq|
“

|Epγqpq|
|Epγqpq|

“ 1.

In case Epγqpq ă 0, v is of the form v “ iṽ with ṽ “
γ1qpp0q?
|Epγqpq|

. Then ṽ is of
unit length and has the same causal character as γqp, since it is a rescaling of
γ1qpp0q. By definition γ1qpp0q “

a

|Epγqpq|ṽ, so we see that

p “ expqpγ1qpp0qq “ γγ1qpp0qp1q
(1.10)
“ γṽp

b

|Epγqpq|q.

Now we insert t “
a

|Epγqpq| and ṽ into (1.25) and show that (1.26) follows. We
have to check four cases depending on the sign of K and Epγqpq. The curvature
K and radius r are related by K “ 1

r2 for pseudospheres and K “ ´ 1
r2 for

pseudohyperbolic spaces. Then for example for K ă 0 and Epγqpq ă 0, we have
r “ 1?

|K|
, then since in this case

a

|Epγqpq|
r

“

b

|Epγqpq||K| “
b

Epγqpq
?
K,

we conclude that

p “ γṽ

ˆ

b

|Epγqpq|
˙

“ cos
˜

a

|Epγqpq|
r

¸

q ` r sin
˜

a

|Epγqpq|q
r

¸

ṽ

“ cos
ˆ

b

EpγqpqKq

˙

q `
1

a

|K|
sin

ˆ

b

EpγqpqK

˙

iv

“ cos
ˆ

b

EpγqpqKq

˙

q `
1
?
K

sin
ˆ

b

EpγqpqK

˙

v

The other cases are show similarly by utilizing the identities cos ix “ cosh x and
sin ix “ i sinh x.
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Lemma 1.8.12. [5, Proposition 5.38 p. 149,150] Let p and q be points in
Snν prq with p ‰ ´q (which are not antipodal), then:

(i) If xp, qy ą r2, then p and q lie on a unique geodesic, which is timelike and
one-to-one.

(ii) If xp, qy “ r2, then p and q lie on a unique geodesic, which is also a null
geodesic in the ambient space Rn`1

ν

(iii) If ´r2 ă xp, qy ă r2, the p and q lie on a unique geodesic, which is spacelike
and periodic.

(iv) If xp, qy ď r2, then there is no geodesic connecting p with q.

The corresponding results for the pseudohyperbolic spaces Hn
ν prq are obtained by

exchanging the words spacelike and timelike.

Proof. See [5, p. 150].

Lemma 1.8.13. Let QK be a hyperquadric with radius r ą 0. For R P r´8, πrq
and q P QK , denote by SRpqq the distance sphere of radius R in QK around q.
Then SRpqq is obtained by translating the tangent plane TqQK along the vector
q and intersecting it with QK , where we think of TqQK as a linear subspace
through 0 in the ambient space of QK , so

SRppq “ pTqQK ` µqq XQK .

For pseudospheres Snν prq the factor µ is given by

µ “

#

cos
`

R
r

˘

for R ě 0
cosh

`

R
r

˘

for R ă 0

and for pseudohyperbolic spaces cos and cosh are interchanged.

Figure 1.3: Distance spheres around a point in the de Sitter space S2
1

obtained by intersection with a translate of the tangent plane. From left to
right: R ą 0, R “ 0 and R ă 0.
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Proof. For v P TqQK define γv as in Lemma 1.8.10. By (1.22) we see that the the
signed length of γv : r0, Rs Ñ QK is given by |qγvpRq|˘ “ sgnpvq|R|

a

|xv, vy| “
sgnpvq|R|, as long as γvpRq is contained in a normal coordinate neighborhood of
q. We have to find all vectors v P TqQK such that their signed length is R. First
consider R ‰ 0, then sgnpvq

a

|xv, vy| “ R has to be satisfied. Since by (1.10)
γvptq “ γtvp1q and sgnpvq

a

|xtv, tvy| “ |t| sgnpvq
a

|xv, vy|, we can by scaling
choose v to be of unit length, thus by Lemma 1.8.10 γv is parametrized by arc
length. For R ą 0 and QK “ Snν prq, the corresponding sphere of radius R is
thus given by the image under the exponential map of tRv P TqQK | xv, vy “ 1u
which by Lemma 1.8.10 is of the form

"

cos
ˆ

R

r

˙

q ` r sin
ˆ

R

r

˙

v | v P TqQK s.t. xv, vy “ 1
*

. (1.27)

To see when this geodesic is unique we compute

xq, γvpRqy “ cos
ˆ

R

r

˙

xq, qy
loomoon

“r2

`r sin
ˆ

R

r

˙

xq, vy
loomoon

“0

“ r2 cos
ˆ

R

r

˙

.

By Lemma 1.8.12(iii), if ´r2 ă xq, γvpRqy ă r2, then q and γvpRq lie on a unique
geodesic, which is spacelike, periodic and is even one-to-one in case R ă πr.
To see that (1.27) is given by the intersection of the tangent plane with the
hyperquadric, just note that the first summand is fixed while the second one
consists of rescaled tangent vectors. For R ă 0 the image of t|R|v P TpM |

xv, vy “ ´1u under the exponential map is given by

tcosh
ˆ

|R|
r

˙

q ` r sinh
ˆ

|R|
r

˙

v | xv, vy “ ´1u

and since cosh is an even function, µ “ cosh R
r . Also

xq, γvp|R|qy “ cosh
ˆ

|R|
r

˙

xq, qy
loomoon

“r2

`r sinh
ˆ

|R|
r

˙

xq, vy
loomoon

“0

“ r2 cosh
ˆ

|R|
r

˙

and so xq, γvp|R|qy ą r2 for all R ă 0 and by Lemma 1.8.12(i), q and γvp|R|q lie
on a unique geodesic which is timelike and one-to-one. Also for pseudohyperbolic
spaces Hn

ν prq the result is easily seen.

Corollary 1.8.14. For K ą 0 let SK :“ Sn0 p
1?
K
q be the sphere of radius

r “ 1?
K

Then for q P SK the closed distance ball BRpqq of radius R ą 0 around
q is a normal neighborhood (convex) if R ă π

2
?
K
. For R ě π

2
?
K

the closed ball
BRpqq is not convex.

Proof. Two points p, r P SK can be joined by a unique geodesic if |pr|˘ “

dpp, rq ă π?
K

by (1.25). This geodesic is part of a great arc on the sphere and
is obtained by intersection of the positive cone tλp ` µr | λ ` µ ě 1u with
SK . Consider p, r P SK contained in the closed ball BRpqq, where q P SK and
R ă π

2
?
K
. Then for m P SK , the number xq,my is the length of the projection

of m onto q, so by Lemma 1.8.13 we know that a point m belongs to BRpqq if
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and only if xq,my ě cos
`
?
KR

˘

, which in particular holds for p and r. Then
for λ` µ ě 1 we get

xλp` µr, qy “ λxp, qy ` µxr, qy ě pλ` µq cos
´?

KR
¯

ě cos
´?

KR
¯

where the last inequality holds since cos
`
?
KR

˘

ą 0 for R ă π
2
?
K
. So the

unique geodesic connecting p with r is contained in BRpqq. If R “ π
2
?
K
, then by

Lemma 1.8.13 we know that the sphere of radius R is obtained by intersection of
the tangent space of q with SK , where we think of the tangent space as a linear
subspace of the ambient space of SK through 0. But then by Lemma 1.8.9
we obtain a great circle on the sphere on which antipodal points cannot be
connected by unique geodesics.

Surfaces of Constant Curvature
We will call two-dimensional space forms surfaces of constant curvature.
Such spaces can be realized as hyperquadrics in the case K ‰ 0, respectively
their universal coverings in case the corresponding hyperquadric is not simply
connected, or the choice of one connected component if the hyperquadric is not
connected. By Proposition 1.8.3 we know that simply connected space forms
are determined up to isometry by their dimension, index and curvature. We
distinguish the cases K ă 0, K “ 0 and K ą 0 and the three possible values
for the index ν “ 0, 1, 2.

curvature ν “ 0 ν “ 1 ν “ 2

K ą 0 S2
0

´

1?
K

¯

S̃2
1

´

1?
K

¯

H2
2

´

1?
K

¯

K “ 0 R2 R2
1 R2

2

K ă 0 cpH2
0

´

1?
´K

¯

q H̃2
1

´

1?
´K

¯

cpS2
2

´

1?
´K

¯

q

name of spaces in column SK MK ´SK

Since there exists an anti-isometry between Snν prq and Hn
n´νprq, the spaces in

the rows for the columns SK and ´SK are essentially the same, that is up to
the sign of the metric. The spaces S̃2

1

´

1?
K

¯

and H̃2
1

´

1?
´K

¯

are even isomor-

phic, as one can easily check. By cpH2
0

´

1?
´K

¯

q and cpS2
2

´

1?
´K

¯

q we denote

the choice of the connected component that contains
´

1?
´K

, 0, 0
¯

respectively
´

´ 1?
´K

, 0, 0
¯

. cpH2
0 p1qq is known as the upper embedding of the hyper-

bolic plane in R3
1. Further, by S̃2

1 and H̃2
1 we denote the universal covering

manifolds of these hyperquadrics, which exist by [5, Theorem A.12 p. 444],
since both spaces are diffeomorphic to R ˆ S1 and hence are connected. The
space S̃2

1 is often called two dimensional de Sitter space, while H̃2
1 is known

as the two dimensional anti de Sitter space. Note that the metric on both
de Sitter spaces is indefinite. Further, S2

0

´

1?
K

¯

is a sphere of radius 1?
K

with
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the induced metric of R3. Finally, R2 is the usual Euclidean plane and R2
1 is

called semi-Euclidean plane or 2-dimensional Minkowski space.

1.9 Local Hyperquadrics
For every semi-Riemannian manifold, the tangent space is a semi-Euclidean
vector space. Thus we can define the position vector field and the quadratic
form as in Definition 1.8.4, which then allows us to define hyperquadrics on the
tangent space. Locally we can transport these objects on the tangent space to
the manifold by the exponential map.

Definition 1.9.1. Given a semi-Riemannian manifoldM of dimension n, index
ν and q PM , then denote by P̃ and q̃ the position vector field and the quadratic
form on TqM – Rnν . Let U be a normal coordinate neighborhood of q, Ũ such
that expq : Ũ Ñ U is diffeomorphism. Then we set P :“ d expq ˝P̃ ˝ exp´1

q , the
local position vector field at q and q :“ q̃ ˝ exp´1

q is the local quadratic
form at q. For c ‰ 0 we call q´1pcq local hyperquadric in U and Λ :“ q´1p0q
is called the local null cone at q.

Lemma 1.9.2. Let q be the local quadratic form, then

grad q “ 2P (1.28)

and since qppq “ xexp´1
q ppq, exp´1

q ppqy, the above equation is equivalent to

gradEq “ 2P.

Proof. This is a consequence of the Gauss-lemma together with grad q̃ “ 2P ,
which is shown in Lemma 1.8.5. So let ṽ P Ũ and v P U such that d expqpṽq “ v,
then

xgrad q, vy “ dqpvq “ dqp d expqpṽqq “ dpq ˝ expqqpṽq

“ ṽpq ˝ expqq “ ṽq̃ “ xgrad q̃, ṽy
(1.24)
“ 2xP̃ , ṽy “ 2xP, vy,

where we used Theorem 1.5.4 in the last step.

Lemma 1.9.3. For r ‰ 0 the sets q´1prq. are semi-Riemannian hypersurfaces
of U and are obtained as

expqpQ˘ 1
r2
X Ũq,

the images of the corresponding hyperquadrics in the tangent space under the
exponential map. Further the local position vector field P at q is orthogonal to
every local hyperquadric at q and P is both tangential and orthogonal to the local
null cone Λ at q. Finally it holds that

xP, P y “ xP̃ , P̃ y. (1.29)

Proof. On U , by definition

q´1prq “ pq̃ ˝ exp´1
q q

´1prq “ expqpq̃´1prqq “ expq pQ˘ 1
r2
q.

Orthogonality then holds since P̃ is orthogonal to hyperquadrics, thus the claim
follows by the Gauss-lemma since the exponential map is a radial isometry.
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Equation (1.29) also follows by the Gauss-lemma. Given v P Ũ non null and
p “ expqpvq, we use (1.28) and (1.29) to conclude

xgradp q, gradp qy “ 4xp d expqqvpP̃ pvqq, p d expqqvpP̃ pvqqy
“ 4xP̃ pvq, P̃ pvqy “ 4xv, vy ‰ 0

since xv, vy ‰ 0, so by Proposition 1.4.1 we get that q´1prq is a semi-Riemannian
hypersurface for r ‰ 0.

Lemma 1.9.4. Let q be a point in a semi-Riemannian manifold M and let P
be the local position vector field at q. Then for every radial geodesic σ starting
at q we have

pP ˝ σq1ptq “ σ1ptq (1.30)

and
P pσptqq “ tσ1ptq, (1.31)

where 1 denotes the induced covariant derivative along σ.

Proof. First note that since σ is a radial geodesic, it is of the form

t ÞÑ expq tv

for some v in TqM with v “ σ1p0q, since pexp´1
q ˝σqptq “ tv. The local position

vector field P is defined by P “ d expq ˝P̃ ˝ exp´1
q . Now Lemma 1.5.2(ii) shows

that in normal coordinates, σ is of the form t ÞÑ tv. So we see that

σkptq “ tvk

and pP ˝ σqiptq “ σiptq. Now by differentiating the above twice with respect to
t we get

0 “ d2

dt2
ptvkq “

d2σi

dt2
“ ´

ÿ

ij

Γkijpσptqq
dσi

dt

dσj

dt
,

where the last equality is due to the geodesic equation for σ. So by the above
and the coordinate formula for the induced covariant derivative [5, p. 66] we
get

pP ˝σq1ptq “
ÿ

k

#

dσk

dt
`
ÿ

ij

Γkijpσptqq
dσi

dt

dσj

dt

+

Bk “
ÿ

k

dσk

dt
Bk “ σ1ptq, (1.32)

which shows (1.30). To show (1.31), set σ̃ptq :“ pexp´1
q ˝σqptq “ pt ÞÑ tvq,

then P̃ pσ̃ptqq “ ptvqtv “ tσ̃1ptq and applying d expqptvq to both sides of the last
equation yields

d expq ˝P̃ ˝ exp´1
q pσptqq “ t d expq ˝ d exp´1

q pσ
1ptqq “ tσ1ptq.

Since by definition, the right hand side is P , we get P pσptqq “ tσ1ptq, which
shows (1.31).
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Remark This does not hold along curves which are not geodesics. Take for
example the curve c : r0, 1s Ñ R2 into flat space given by cptq “ pt, t2q then
c1ptq “ p1, 2tq and pP ˝ cqptq “ pt, t2q. Thus pP ˝ cq1ptq “ c1ptq but since tc1ptq “
pt, 2t2q we see that P pcptqq ‰ tc1ptq. In fact equation (1.30) always holds in
flat space since there the Christoffel symbols vanish and thus (1.32) shows the
result without any previous considerations. So if one wants to construct a
counterexample to (1.30) it has to be a non geodesic curve in non flat space.
On the other hand the proof of (1.31) uses the form of geodesics in flat space
(respectively their image under the exponential map) and therefore only shows
the equation for geodesics.

1.10 Distance Functions
Definition 1.10.1. Let M be a semi-Riemannian manifold and let U Ă M be
open. A smooth function f : U Ñ R is called distance function if ‖grad f‖ “
1.

Examples

1. Let x0 P Rn with the usual inner product, then rx0pxq :“ dpx0, xq “
a

xx´ x0, x´ x0y is smooth on U :“ Rnztx0u and a simple calculation
shows that ‖grad rx0‖ “ 1 on U , thus rx0 is a distance function on U .

2. Let Sn be the unit sphere in Rn, then rSnpxq :“ inf trx0pxq|x0 P S
nu is

smooth on U :“ RnzpSn Y 0q and ‖grad rSn‖ “ 1, which shows that rSn
is a distance function on U .

3. More generally, letM be any submanifold of Rn, and as before set rM pxq :“
inf trx0pxq | x PMu. Then one can show that there exists a neighborhood
U of M such that rM is a distance function. See [7, Example 22 p. 42].

Lemma 1.10.2. Let f : U Ñ R be a distance function, then

∇grad f grad f “ 0. (1.33)

Every integral curve of grad f is a unit speed geodesic. For every t in the image
of f , the level sets Vt :“ f´1ptq are semi-Riemannian hypersurfaces, with unit
normal given by grad f and shape operator

WtpXq “ ∇X grad f, (1.34)

where X P XpVtq.

Proof. For X P XpMq arbitrary,

x∇grad f grad f,Xy “ Hf pgrad f,Xq “ Hf pX, grad fq

“ x∇X grad f, grad fy “ 1
2X xgrad f, grad fy

loooooooomoooooooon

“˘1

“ 0,

where the first equality is the definition of the Hessian (1.7). The second
equality follows by symmetry of the Hessian. To see that that any integral
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curve c of grad f is a geodesic, note that integral curves are defined by the
equation c1ptq “ gradcptq f and so ∇c1ptqc

1ptq “ 0 follows by (1.33). Since
xc1, c1y “ xgrad cptqf, grad cptqfy “ ˘1, we see that c has unit speed. By Proposi-
tion 1.4.1 all level sets Vt :“ f´1ptq of a distance function are semi-Riemannian
hypersurfaces, where the unit normal given by restriction of grad f , finally by
Lemma 1.4.3 the shape operator for Vt is of the form (1.34).

Definition 1.10.3. Let q PM be a point with normal coordinate neighborhood
U . Then the radius function rq : U Ñ R is defined as

rqppq :“ |qp|˘.

Remark For Riemannian manifolds rqppq “ dpq, pq, where dp , q is the Rie-
mannian distance function.

Lemma 1.10.4. Let U be a normal coordinate neighborhood of q, P the local
position vector field at q and Λ the local null cone. Then the function rq is
smooth on Û and the gradient of rq is given by

gradp rq “
sgnpEqppqq
a

|Eqppq|
P ppq, (1.35)

where gradp rq is smoothly defined on the open set Û “ UzpΛ Y t0uq. Also
‖grad rq‖ “ 1, on Û , so rq is a distance function on Û . The level sets of
prqq

´1ptq are orthogonal to P and the integral curves of grad rq are unit speed
radial geodesics through q.

Proof. By Lemma 1.9.2 we know that gradEq “ 2P and Lemma 1.3.2 yields

gradp rq “
sgnpEqppqq
a

|Eqppq|
P ppq.

For P the local position vector field at q we see that

‖P ppq‖2
“ |xP ppq, P ppqy| (1.29)

“
∣∣xP̃ ppq, P̃ ppqy∣∣ “ |Eqppq|,

and so for p such that Eqppq ‰ 0

‖grad rqppq‖ “
1

a

|Eqppq|
‖P ppq‖ “ 1.

Clearly grad rq is smooth away from ΛY t0u. For c ‰ 0 we know that r´1
q pcq P

UzpΛ Y t0uq, so by Lemma 1.10.2 we see that r´1
q pcq is a semi-Riemannian

hypersurface with unit normal vector field given by grad rq, which is a multiple
of the position vector field, thus P is orthogonal to r´1

q pcq. Also by Lemma 1.10.2
we know that integral curves of grad rq are of unit speed.



Chapter 2

Comparison of Self Adjoint
Linear Maps

2.1 Self Adjoint Linear Maps
In this section we will study families Aptq of self-adjoint linear maps in a semi-
Euclidean space V , where A depends smoothly on a parameter t in R and
by semi-Euclidean we mean spaces isometric to Rnν . So in particular the fol-
lowing results can be applied to operators defined on the tangent spaces of
semi-Riemannian manifolds.

Definition 2.1.1. Let A be a linear map on a semi-Euclidean space V . The
adjoint A˚ of A is defined by xAv,wy “ xv,A˚wy for all v and w in V. If
A “ A˚ we call A self-adjoint. A positive semi definite linear map is
characterized by the property xAv, vy ě 0 for all v ‰ 0 and positive definite
if ą holds for v ‰ 0. For B another self adjoint linear operator we say A ě B
or A ą B if A´B is positive semi-definite or positive definite, respectively.

Remarks

(i) Adjoints always exist and are unique for isomorphisms and it holds that

pABq˚ “ B˚A˚ and pA´1q˚ “ pA˚q´1. (2.1)

(ii) Note that in case ν ą 0 the identity map I is not positive definite.

(iii) In case ν “ 0 all the eigenvalues of a positive (semi-)definite linear map
are real and nonnegative. This does not hold in the indefinite case.

(iv) Let V a semi-Euclidean space and W a nondegenerate subspace of V .
Then by [5, Lemma 2.23 p. 49] nondegeneracy of W is equivalent to
V “W ‘WK. Let A and B self adjoint linear maps on V . If A|W “ B|W
and A ď B on WK, then A ď B on V . To see this write v P V as

25
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v “ v1 ` v2 with v1 PW and v2 PW
K, then

xpB ´Aqv, vy “ x pB ´Aqv1
looooomooooon

“pA´Aqv1“0

, v1y ` xpB ´Aqv1
looooomooooon

“0

, v2y

` xpB ´Aqv2, v1y
loooooooomoooooooon

“xv2,pB´Aqv1y“0

`xpB ´Aqv2, v2y
loooooooomoooooooon

ě0

ě 0.

From now on self-adjointness will be assumed if we compare linear operators by
inequalities. The next basic result is well known for inner product spaces and
also holds in the semi-Euclidean setting.

Lemma 2.1.2. [8, Lemma 3.1 p. 18] If A ě 0 and xAx, xy “ 0 for some fixed
x then Ax “ 0.

Proof. Since A is positive semi-definite we have for any h P V that

0 ď xApx` hq, x` hy “ 2xAx, hy ` xAh, hy

where we used that A is self adjoint and xAx, xy “ 0. Suppose Ax ‰ 0. Since
x, y is non-degenerate we find some h0 such that xAx, h0y ‰ 0 and we can choose
h0 such that xAx, h0y ă 0. Scaling h0 by λ P R and inserting into the above
inequality we get

0 ď 2λxAx, h0y ` λ
2xAh0, h0y.

Now xAh0, h0y ě 0 since A is positive definite. This gives a contradiction since
the right hand side gets negative for λ small enough. So it holds that Ax “ 0.

2.2 Comparison Theorems for Self-Adjoint Lin-
ear Maps

By MnpRq we denote the set of nˆ n matrices with real entries.

Lemma 2.2.1. [9, Lemma 1.2.14 p. 32] Let F : r0, bs Ñ MnpRq be smooth
with F p0q “ 0 and F 1p0q invertible. Then there exists a smooth map sF such
that F ptq “ t sF ptq on r0, bs such that sF p0q “ F 1p0q is invertible.

Remark F is a real valued function for n “ 1 and invertibility just means
that F is nonzero.

Proof. Using that F is smooth and that F p0q “ 0 we write

F ptq “ F ptq ´ F p0q “
ż 1

0

d

ds
F pstq ds “ t

ż 1

0
F 1pstqds “: t sF ptq

where sF is smooth since F is smooth. Moreover, sF p0q “
ş1
0 F

1p0qds “ F 1p0q
which is invertible by assumption.
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Lemma 2.2.2. [1, Lemma 4.2 p. 265] Let Rptq and F ptq be linear maps on a
semi-Euclidean space V with R,F P C2r0, bs where b ą 0 and Rptq self-adjoint
for all t P r0, bs. Further suppose that F satisfies F p0q “ 0, F 1p0q is invertible
and F ptq is invertible for t P p0, bs and the following equation holds for all
t P r0, bs:

F 2ptq `RptqF ptq “ 0. (2.2)
Given a smooth function g : r0, bs Ñ R which is constant 1 or with gp0q “ 0,
g1p0q “ 1 and g ą 0 on p0, bs, define S by

gptqF 1ptq “ SptqF ptq for t P p0, bs (2.3)

and
Sp0q “ I. (2.4)

Then S is a smooth self-adjoint map defined on r0, bs, and satisfies

gS1 ` S2 ´ g1S ` g2R “ 0. (2.5)

Proof. First we show that (2.5) holds on p0, bs. Since F is invertible on this
interval, (2.3) can be written as

S “ gF 1F´1 (2.6)

and since also g ą 0 we have, using our equations and the product rule

S1F `
S2F

g

(2.6)
“ S1F ` SF 1 “ pSF q1

(2.3)
“ pgF 1q1

“ g1F 1 ` gF 2
(2.2)
“ g1F 1 ´ gRF

(2.3)
“

g1

g
SF ´ gRF.

Now (2.5) is obtained by multiplying the left and right hand side of the above
equation by gF´1 from the right.

To show that S is smooth note that by Lemma 2.2.1 we can write gptq “ tsgptq
and F ptq “ t sF ptq for smooth maps sg and sF with sF p0q “ F 1p0q invertible and
sgp0q “ g1p0q “ 1. Inserting this into (2.3) we get tsgptqF 1ptq “ tSptq sF on p0, bs.
Dividing by t and then setting t “ 0 one gets g1p0qF 1p0q “ Sp0qF 1p0q, which
shows by (2.4) that S is smooth everywhere.

We now show that S is self-adjoint. This is clear for t “ 0 since by definition
Sp0q “ I. For t P p0, bs, F ptq is invertible, so we have Sptq “ gptqF 1ptqF´1ptq.
Showing that S is self-adjoint on p0, ts is equivalent to showing that

d

dt
ppF 1q˚F ´ F˚F 1q “ 0 for t P p0, bs and Sp0q ´ S˚p0q “ 0

since S “ S˚ on p0, bs is equivalent to

gpF 1F´1q˚ “ gF 1F´1.

Since g ą 0 on p0, bs it can be canceled, then using (2.1) yields

pF 1q˚F ´ F˚F 1 “ 0.

Now Sp0q´S˚p0q “ I´ I “ 0 by definition, so if we show that the derivative of
the above equation on p0, bs is zero we show that Sptq´S˚ptq “ 0 on r0, bs since
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we have shown before that S is smooth. This can be done using the product
rule and (2.2):

d

dt
ppF 1q˚F ´ F˚F 1q “ pF˚q1F 1 ´ F˚F 2 ` pF 2q˚F ´ pF 1q˚F 1

(2.2)
“ ´F˚p´RF q ` p´RF q˚F “ 0.

One easily checks that the proof also works in case of g “ 1.

Theorem 2.2.3. [1, Theorem 4.3 p. 266] For i “ 1, 2 let g,Ri, Fi be as in
Lemma 2.2.2. Then corresponding to Ri and Fi, let Si be the smooth self-adjoint
map defined by (2.3) and (2.4) in Lemma 2.2.2. Further assume that

g2p0q “ 0. (2.7)

If the self-adjoint linear maps Ri satisfy R1ptq ď R2ptq for all t P r0, bs, then for
Si the inequality reverses. That is S1ptq ě S2ptq for t P r0, bs. If S1pbq “ S2pbq
it follows that S1ptq “ S2ptq and R1ptq “ R2ptq for t P r0, bs. Further for i “ 1
or i “ 2 set S “ Si and R “ Ri, then we have

S1p0q “ 0 (2.8)

and
S2p0q “ 1

3 pg
3p0qI ´ 2Rp0qq. (2.9)

Before proving above theorem we show the following result which is similar
to [8, Theorem 3.2].
Lemma 2.2.4. Let S1, S2 be as in Theorem 2.2.3 corresponding to R1 respec-
tively R2. Suppose that S1 and S2 are defined on rt0, bs for 0 ă t0 ă b and set
A1 “ S1pt0q and A2 “ S2pt0q. If R1ptq ď R2ptq on rt0, bs and A1 ě A2 then
S1 ě S2 on rt0, bs.
Proof. At first consider the case A1 ą A2 and R1ptq ă R2ptq for t P rt0, bs. We
show that then S1ptq ą S2ptq for all t P rt0, bs. Suppose the claim were false.
Then there exists t̄ P pt0, bs such that S1ptq ą S2ptq for t ă t̄ and S1pt̄q ě S2pt̄q
but S1pt̄q ´ S2pt̄q is not positive definite. So there exists x̄ ‰ 0 such that

xpS1pt̄q ´ S2pt̄qqx̄, x̄y “ 0. (2.10)

So by Lemma 2.1.2 it follows that

S1pt̄qx̄ “ S2pt̄qx̄. (2.11)

Setting fptq :“ xpS1ptq ´ S2ptqqx̄, x̄y and g as in Theorem 2.2.3 we compute

gpt̄qf 1pt̄q “ xpS1pt̄q ´ S2pt̄qqx̄, x̄y

(2.5)
“ gpt̄q xS12pt̄qx̄, S

1
2pt̄qx̄y ´ xS1pt̄qx̄, S1pt̄qx̄y

loooooooooooooooooooooomoooooooooooooooooooooon

“0 by (2.11)

`xg1pt̄qpS1pt̄q ´ S2pt̄qqx̄, x̄y
loooooooooooooooomoooooooooooooooon

“0 by (2.10)

`gpt̄q2xpR2pt̄q ´R1pt̄qqx̄, x̄y

“ gpt̄q2xpR2pt̄q ´R1pt̄qqx̄, x̄y ą 0
looooooooooooooooooomooooooooooooooooooon

since R1ăR2

.
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Since fptq ą 0 on pt0, t̄q and fpt̄q “ 0 it follows that f 1pt̄q ď 0 but since
gpt̄q ą 0 by definition we conclude gpt̄qf 1pt̄q ď 0, which gives a contradiction.
Now for the general case let δ ą 0 and Sδ be a solution to (2.3) on rt0, bs
with respect to Rδ “ R2 ` δB, where B is a fixed positive definite linear map
and set Aδ “ Sδpt0q “ A2 ´ δB. Then Sδ exists on rt0, bs for δ small enough
by [10, 10.5.6 p.285] and Sδ depends smoothly on δ. Then we have R1 ă Rδ
and A1 ą Aδ since for any x ‰ 0

xpRδptq ´R1ptqqx, xy “ xpR2ptq ´R1ptqqx, xy
loooooooooooomoooooooooooon

ě0

` δxBx, xy
looomooon

ą0

ą 0

for t in rt0, bs and

xpAδ ´A1qx, xy “ xpA1 ´A2qx, xy
loooooooomoooooooon

ě0

` δxBx, xy
looomooon

ą0

ą 0

so by our first result S1ptq ě Sδptq on rt0, bs so δ Ñ 0 gives S1ptq ě S2ptq on
rt0, bs.

Proof of Theorem 2.2.3. To see (2.8) differentiating (2.5) results in

g1S1 ` gS2 ` S1S ` SS1 ´ g2S ´ g1S1 ` pg2Rq1 “ 0.

Then (2.8) follows by setting t “ 0 and applying (2.7) and the initial data for
S and g from Lemma 2.2.2. Now cancel the g1S1 term in the last equation and
differentiate again to obtain

g1S2 ` gS3 ` 2S1S1 ` S2S ` SS2 ´ g3S ´ g2S1 ` pg2Rq2 “ 0

where
pg2Rq2 “ 2g2gR` 2pg1q2R` 4g1gR1 ` g2R2

so again by setting t “ 0 and using the properties of g and the initial condition
Sp0q “ I we obtain (2.9).

Now to apply Lemma 2.2.4 we need to show that for perturbed R2 we find a
neighborhood of 0 such that the solutions disagree. For δ ą 0 and some positive
definite linear map B define Rδ “ R` δB and let Sδ be the solution to (2.5) on
r0, bs with Sδp0q “ I. This solution Sδ on r0, bs exists by [10, 10.5.6 p.285] for δ
small enough. Now inserting into (2.9) gives

S21 p0q “
1
3 pg

3p0qI ´ 2R1p0qq and S2δ p0q “
1
3 pg

3p0qI ´ 2Rδp0qq

so we have
S21 p0q ´ S2δ p0q “

2
3 pR2p0q ´R1p0q ` δBq.

But then since R1ptq ď R2ptq and B is positive definite it follows that S21 p0q ą
S2δ p0q. Note that since S is self adjoint also all derivatives are. Further we have
that S1p0q “ I “ Sδp0q by definition and by (2.8) S11p0q “ 0 “ S1δp0q. So their
Taylor series at 0 agree for the constant and linear term. So we can find some
a ą 0 such that S1 ą S2 on p0, aq. To obtain S1ptq ě S2ptq for t P r0, bs pick
some t0 in p0, aq and set A1 “ S1pt0q, A2 “ S2pt0q so by Lemma 2.2.4 we have
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S1ptq ě S2ptq on rt0, bs which together with S1ptq ą S2ptq on r0, t0s gives the
result.

Now consider the case S1pbq “ S2pbq. Then for t :“ inftt P r0, bs | S1ptq “
S2ptqu it remains to show that t “ 0. So suppose that t ‰ 0 then there is
0 ď t0 ă t such that S1pt0q ‰ S2pt0q and |S1pt0q ´ S2pt0q| is small enough such
that the solution S of (2.5) with respect to R2 and with Spt0q “ S2pt0q exists
on rt0, bs [10, 10.5.6 p.285]. But then by Lemma 2.2.4 we have

S2ptq ď Sptq ď S1ptq for all t P rt0, bs.

Then since S1pbq “ S2pbq it follows by above inequality that S1pbq “ Spbq.
Hence S1 and S satisfy the same ODE on rt0, bs with the same initial value at b,
so they agree on rt0, bs. In particular, S1pt0q “ Spt0q which gives a contradiction
since Spt0q “ S2pt0q ‰ S1pt0q. So we have t “ 0 and by (2.5) also R1 “ R2 on
r0, bs.



Chapter 3

Triangle Comparison in
Semi-Riemannian Manifolds
and Triangle Lemmas

3.1 Triangles in Semi-Riemannian Manifolds
In Euclidean-space, geodesic triangles are given by three distinct points con-
nected by straight lines, which are the unique minimizing geodesics connecting
these points. On the other hand on the sphere it is not immediately clear how to
define geodesic triangles since antipodal points can be connected by infinitely
many geodesics, all of the same length. So we need to require uniqueness of
geodesics connecting the vertices, to get a good definition for geodesic triangles.

Definition 3.1.1. Let M be a semi-Riemannian manifold and p, q, r PM such
that γqp, γqr : r0, 1s ÑM are the unique geodesic segments connecting the point
q with p, respectively q with r. We call p, q, r together with γqp and γqr a hinge.
The non-normalized angle of this hinge at q is defined as

=pqr :“ xγ1qpp0q, γ1qrp0qy.

If there exists a unique geodesic γpr : r0, 1s Ñ M connecting p with r, then
the vertices p, r, q together with the sides given by γqp, γqr, γpr are called a
triangle1, in short ∆pqr. We also suppose for triangles that the triple of signed
lengths p|γqr|˘, |γqp|˘, |γpr|˘q “ p|qr|˘, |qp|˘, |pr|˘q P R3 is not 0. The numbers
|qr|˘, |qp|˘, |pr|˘ are called the side lengths of ∆pqr. From the perspective of
the vertex q we call γpr the opposite side, and γqp,γqr adjacent sides, and
analogously for the other vertices.

Remarks

1. In a normal neighborhood, a hinge is uniquely determined by three point
with one of them "marked", so that we know where the angle sits. A
triangle is uniquely determined by three points such that at least one side
length is non zero.

1This is also called geodesic triangle in the literature.

31
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2. In semi-Riemannian manifolds of non-zero index, the sides of ∆pqr can
have any causal character, thus also sides with negative signed lengths and
sides of length 0 are possible.

3. Unless explicitly noted otherwise, angles are always assumed to be non-
normalized.

Lemma 3.1.2. Let ∆pqr be a triangle contained in a normal neighborhood U ,
then

pEq ˝ γprq
1p0q “ ´2=qpr, (3.1)

where γpr is the unique geodesic parametrized by r0, 1s connecting p with r and
=qpr denotes the non-normalized angle.

Proof. Set xpt, sq :“ expq pt exp´1
q pγprpsqqq, which is defined for s and t in r0, 1s.

This holds since U is a normal neighborhood of ∆pqr and thus any two points
on the sides of ∆pqr can be connected by a unique geodesic. We have

xtp0, sq “ exp´1
q pγprpsqq “ γ1qγprpsqp0q

by Lemma 1.5.2[(i)], and Eqpγprpsqq “ xγ1qγprpsqp0q, γ
1
qγprpsq

p0qy by definition.
Combining these results and differentiating with respect to s we obtain

pEq ˝ γprq
1p0q “ Bs|0xxtp0, sq, xtp0, sqy “ 2xxtsp0, 0q, xtp0, 0qy. (3.2)

So it suffices to compute xtp0, 0q and xtsp0, 0q to get the result. To do so, choose
Riemannian normal coordinates around q. Then the corresponding chart is
given by ϕ :“ exp´1

q and we set xϕ :“ ϕ ˝ x. Then xϕpt, sq “ t exp´1
q pγprpsqq

and so we see that xϕt pt, sq “ exp´1
q pγprpsqq and xϕt p0, 0q “ exp´1

q ppq. But in
our chart ϕ, radial geodesics are straight lines by Lemma 1.5.2[(ii)], and we
know that exp´1

q ppq is the vector that defines a geodesic from q to p which is
parametrized by r0, 1s. So the negative of this vector defines via the exponential
map a geodesic connecting p with q. So

xϕt “ ´
`

γϕpq
˘1
p0q. (3.3)

By the coordinate formula for the covariant derivative [5, p. 66], and since at q
the Christoffel symbols vanish in Riemannian normal coordinates, we get

pxϕtsq
kp0, 0q “ Bs|0pexp´1

q pγprpsqq
kq`

ÿ

i,j

Γkijp
“q

hkkikkj

xp0, 0qq
looooomooooon

“0

exp´1
q pγprpsqq

i exp´1
q pγprpsqq

j

and so
xϕtsp0, 0q “ Bs|0 exp´1

q pγprpsqq
looooooomooooooon

“γϕprpsq

“ pγϕprq
1p0q. (3.4)

Then the result follows by inserting

pEq˝γprq
1p0q (3.2)

“ 2xxtsp0, 0q, xtp0, 0qy
(3.3)`(3.4)

“ ´2x
`

γϕpq
˘1
p0q,

`

γϕpr
˘1
p0qy “ ´2=qpr.
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Remark: To see the geometric meaning of this result, first note that the
function Eq ˝ γpr : r0, 1s Ñ R measures the signed distance from q to points on
the opposite side of the triangle, going from p to q. This can be seen since by
(1.17) the energy is a strictly increasing function of the signed length. Then
the right hand side of (3.1) tells us if this function is increasing or decreasing
locally at p, depending on the non-normalized angle at p.

Theorem 3.1.3. For K ‰ 0, let QK be a hyperquadric, U a normal neighbor-
hood in QK and ∆pqr a triangle in U with nonnull side lengths. Then the law
of cosines is

cos
b

KEpγprq “ cos
b

KEpγqpq cos
b

KEpγqrq

`
=pqr

a

Epγqpq
a

Epγqrq
sin

b

KEpγqpq sin
b

KEpγqrq.
(3.5)

Here γpr, γqp, γqr : r0, 1s Ñ QK are the nonnull geodesics connecting the vertices
of ∆pqr. Further, =pqr denotes the nonnormalized angle at the vertex q.

Proof. Here we combine the proofs of the spherical law of cosines and the hy-
perbolic law of cosines found in [11, 2.2,2.7, p.17, p. 20] and also give a general-
ization which applies to semi-Riemannian surfaces with curvature K ‰ 0. The
unified law of cosines (3.5) is from [1, Remark 2.3, p. 260], where it is presented
without a proof. We set v :“ γ1qpp0q?

Epγqpq
and u :“ γ1qrp0q?

Epγqrq
. Then by equation

(1.26) in Corollary 1.8.11 we see that

p “ cos
ˆ

b

KEpγqpq

˙

q `
1
?
K

sin
ˆ

b

KEpγqpq

˙

v

and
r “ cos

ˆ

b

KEpγqrq

˙

q `
1
?
K

sin
ˆ

b

KEpγqrq

˙

u.

Since xq, uy “ 0 and xq, vy “ 02 the above equations yield

xp, ry “ cos
ˆ

b

KEpγqpq

˙

cos
ˆ

b

KEpγqrq

˙

xq, qy

`
1
K

sin
ˆ

b

KEpγqpq

˙

sin
ˆ

b

KEpγqrq

˙

xv, uy.

(3.6)

Using the definition of the nonnormalized angle we see that

=pqr “ xγ1qpp0q, γ1qrp0qy “
b

Epγqpq
b

Epγqrqxv, uy. (*)

Now we set w :“ γ1prp0q?
Epγprq

, then by (1.26) it follows that the point r can be
written as

r “ cos
ˆ

b

KEpγprq

˙

p`
1
?
K

sin
ˆ

b

KEpγprq

˙

w.

2By x , y we mean the scalar product of the ambient space of the hyperquadric, which
restricted to the hyperquadric is the metric of QK .



34 CHAPTER 3. TRIANGLE COMPARISON

First we suppose that QK is a pseudosphere of curvature K ą 0, then all points
in QK have inner product 1

K with themselves and in case of pseudohyperbolic
spaces the inner product is also 1

K , but here K ă 0. Then since xp, wy “ 0 and
xp, py “ 1

K , by the above equation we get

xp, ry “
1
K

cos
ˆ

b

KEpγprq

˙

. (**)

So we can insert (**) as the left hand side of (3.6) and use (*) to substitute for
xv, uy. Also xq, qy “ 1

K in (3.6). Then the law of cosines follows by multiplication
with K.

As an immediate consequence of the law of cosines we are able to prove a
version of the hinge lemma for hyperquadrics with curvature K ‰ 0.
Corollary 3.1.4. Let ∆pqr be a triangle contained in a normal coordinate U
with nonnull side lengths. Then the non normalized angle =pqr is a decreasing
function of the signed length of |pr|˘.
Proof. This is a consequence of the law of cosines (3.5) if we vary Epγprq, while
keeping Epγqpq and Epγqrq fixed. First, for K ą 0 it is easy to see that the func-
tion t ÞÑ cos p

?
Ktq is a strictly monotonically decreasing function on r´8, π2

?
K
q.

Then the factor belonging to =pqr is always positive if Epγqpq, Epγqrq ă π2
?
K
,

which is obvious if both are ą 0, and if for example Epγqpq ă 0, then

sin
a

KEpγqpq
a

Epγqpq
“
i sinh

a

K|Epγqpq|
i
a

|Epγqpq|
“

sinh
a

K|Epγqpq|
a

|Epγqpq|
ą 0.

So if Epγprq increases, =pqr decreases. For K ă 0, the function t ÞÑ cosh
a

|K|t
is a strictly monotonically increasing function on r´8, π2

?
K
q. Also,

sin
a

KEpγqpq
a

Epγqpq

sin
a

KEpγqrq
a

Epγqrq
“ ´

sinh
a

|K|Epγqpq
a

Epγqpq

sinh
a

|K|Epγqrq
a

Epγqrq
ă 0,

which holds independent of the causal character of γqp and γqr. By this we see
that =pqr has to decrease for increasing Epγprq.

3.2 Realizability Lemma
Given a triangle in a semi-Riemannian manifold, then under certain assumptions
we can find a triangle in a model spaces of curvature K which has the same
side lengths. This so-called comparison triangle in a model space of constant
curvature is then unique up to isometry.
Definition 3.2.1. Given three numbers a, b, c ě 0 such that a ą 0, we say that
a, b, c satisfy the strict triangle inequality if b ` c ą a. Denote the subset
of R3 consisting of all such triples by T` and set T´ :“ ´T`. Positive triples
which satisfy b` c “ a are called degenerate triples. The corresponding subset
is denoted by D` and we set D´ :“ ´D`. Further, denote the complement of
T` Y T´ YD` YD´ Y 0 by CT,D.
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Remarks Let V be a vector space, then a subset C of V is called cone if for
all x, y P C also x` y P C and for all λ ą 0 also λx P C. It is easy to see that
the sets T`, T´, D`, D´ are cones.

Lemma 3.2.2. Given a positive triple in pa, b, cq P R3z0, then up to isometry
there is a unique realizing triangle ∆pqr in the Euclidean plane R2 “ S0 if
pa, b, cq P T` YD`. If the triple pa, b, cq is negative, then up to isometry there
is a unique realizing triangle in ´S0 if pa, b, cq P T´ YD´.

Remark It follows that, given three positive side lengths, they constitute a
triangle in R2 if the triangle inequality is satisfied. Then the side lengths can
be arbitrarily big.

Proof. Since in Euclidean space distances between points are always positive,
a, b, c are ě 0. W.l.o.g. suppose that a ě b and a ě c, then since the triple is
non null, a ą 0. A sphere of radius b around 0 is given by the equation

xx, xy “ b2. (1)

A sphere at â :“ pa, 0q with radius c is defined by

xx´ â, x´ ãy “ c2. (2)

For x :“ px1, x2q P R2, the last equation is equivalent to xx, xy´2x1a`a
2 “ c2.

Thus using (1) yields

x1 “
b2 ` a2 ´ c2

2a .

Also, equation (1) is equivalent to

x2
2 “ b2 ´ x2

1, (*)

where the right hand side is ě 0 exactly if b` c ě a. To see this, note that by
a simple calculation,

b2 ´ x2
1 “

ˆ

pa` bq2 ´ c2

2a

˙ˆ

c2 ´ pa´ bq2

2a

˙

.

The first factor is always ą 0 since a ě c, b, and the second factor is ě 0 if
c` b ě a. Also b2´ x2

1 “ 0 exactly if a “ b` c and the unique solution to (*) is
given by x2 “ 0. In this case we thus get a degenerate triangle where all three
vertices lie on one line. Otherwise there are two solutions x2 “ ˘

a

b2 ´ x2
1.

But the triangles obtained by the different solutions are isometric by reflection
at the x1-axis. Clearly triangles in R2 which have the same side lengths are
isometric.

Lemma 3.2.3. Given a positive triple in pa, b, cq P R3z0, then up to isometry
there is a unique realizing triangle ∆pqr in the Minkowski plane R2

1 “ M0 if
pa, b, cq P R3zpT` Y T´ Y 0q.

Proof. Again w.l.o.g. assume that a ě b, c and first suppose a ą 0. Then we
construct circles of radius b and c around the points 0 respectively â :“ p0, aq.
These circles are given by

xx, xy1 “ sgnpbq b2 (*)
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and
xx´ â, x´ ây1 “ sgnpcq c2, (**)

where x :“ px1, x2q P R2 and xx, xy1 “ ´x2
1 ` x

1
2. Then

x2
1 “ x2

2 ´ sgnpbq b2 (3.7)

and

x2 “
sgnpbq b2 ` a2 ´ sgnpcq c2

2a . (3.8)

So we have to check when x2
2´sgnpbq b2 is ě 0. First consider the case sgnpbq “

´1, then x2
2 ` b

2 ě 0 independent of sgnpcq. In the case that sgnpbq “ 1 we get

b2 ´ x2
1 “ ´

ˆ

pa` bq2 ´ sgnpcq c2
2a

˙ˆ

sgnpcq c2 ´ pa´ bq2
2a

˙

.

For sgnpcq “ ´1 this expression is always positive. If sgnpcq “ ´1 the first factor
is always positive, so the second factor is required to be ď 0. This condition
holds exactly for b` c ď a. If a ă 0 the calculations are similar, one just has to
set â :“ p|a|, 0q. Finally if a “ 0 we have to solve

xx, xy1 “ sgnpbq b2

xx, xy1 “ sgnpcq c2.

These two hyperbolas only intersect if they agree, so sgnpbq “ sgnpcq and b “ c.
In this case there are infinitely many solutions. These degenerate triangles are
all isometric by Lorentz transformations in Lp2q, even if they don’t lie on the
same connected component of the hyperbola. For more details see [5, Examples
9.4 p. 236]. That two triangles which have the same side lengths are isometric
will be shown in the proof of the next lemma.

Lemma 3.2.4 (Realizability). [1, Lemma 2.1 p. 257] A point in R3z0 can be
realized by a triangle in the model spaces of constant curvature K as follows

(i) A point in T` can be realized by a triangle in SK if the sum of the side
lengths is ă 2π?

K
. A point in T´ can be realized in ´SK if the sum of

its side lengths is ą ´ 2π?
K
. In particular the largest side length has to be

ă π?
K
, respectively the smallest side length ą ´ π?

K
.

(ii) A point in D` can be realized by a triangle in SK and MK if the largest
side length is ă π?

K
. A point in D´ can be realized by a triangle in ´SK

and MK if the smallest coordinate is ą ´ π?
K
.

(iii) Every point in CT,D is realized by a unique triangle in M0 “ R2
1. For

K ą 0 a realizing triangle exists if the largest coordinate is ă π?
K
. For

K ă 0 a realizing triangle exists if the smallest coordinate is ą ´ π?
´K

.

These realizations are unique up to isometry of the model spaces and for K ď 0
we set π?

K
:“ 8, so no size bounds apply.
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Proof. For K “ 0 we have seen in Lemma 3.2.2 that for any non null triple
there is a unique realizing triangle in S0 up to isometry. The same holds for
non null negative triples which are realized in ´S0. The result for M0 is shown
in Lemma 3.2.3. Let ∆pqr be a triangle in QK , and set a :“ |pr|˘, b :“ |pq|˘,
c :“ |qr|˘ with sides parametrized by geodesics γpr, γpq and γqr. We now
show which side lengths pa, b, cq can be realized in a given surface of constant
curvature K and which conditions have to hold. For K ‰ 0, we first consider
the Riemannian case, so all the side lengths are ě 0. Then w.l.o.g. we may
suppose that a ě b ě c ě 0 and in particular a ą 0, since by definition at least
one side length has to be non zero. But then also b ą 0, since otherwise the
triple of side lengths would be 0. The side lengths are in D` if our triangle is
given by three points on a geodesic segment of length a ă π?

K
, which implies

that a “ b ` c. The other kind of degenerate triangle on the sphere is given
by a great circle. In this case, one has to assume a ă π?

K
to exclude antipodal

points, which then implies c ą 0. We then have a “ b` c and a` b` c “ 2π?
K
.

Now assume that all sides have non zero length, then by the law of cosines (3.5)
we get

cos
´?

Ka
¯

“ cos
´?

Kb
¯

cos
´?

Kc
¯

`
=pqr

bc
sin

´?
Kb

¯

sin
´?

Kc
¯

. (3.9)

Since γ1qpp0q and γ1qrp0q are contained in a spacelike plane and bc ‰ 0, we see
that

cos pαq “ =pqr

bc
for a unique α P r0, πs. Now we keep b and c constant. Then in case K ą 0, if
we increase α from 0 to π, the right hand side of (3.9) monotonically decreases
from cos p

?
Kpb´ cqq to cos p

?
Kpb` cqq 3. So the law of cosines shows that

cos p
?
Kaq ě cos p

?
Kpb` cqq and so a ď b ` c. We have to assume a ă π?

K
,

since otherwise there is no unique geodesic connecting p with r. To see the bound
on the sum of the side lengths, let m be the center of the circumscribing circle
of ∆pqr. The point m is obtained as follows: First, let I be the intersection
of the sets tx P SK | dpp, xq “ dpq, xqu, tx P SK | dpr, xq “ dpq, xqu and
tx P SK | dpp, xq “ dpr, xqu, then define m :“ minxPI dpp, xq. The definition
of m implies that dpp,mq “ dpq,mq “ dpr,mq “: R. In case R “ π

2
?
K

it
follows that p, q, r lie on one great circle, thus pa, b, cq P D`. First we show
that R ď π

2
?
K
, since suppose R ą π

2
?
K
, then the points p, q, r are contained in

a closed ball of radius ă π
2
?
K

around the antipodal point ´m to m, which is
convex by Corollary 1.8.14. But ´m P I, which contradicts the minimality of
m. Now consider three radial geodesics starting at m going through the points
p, q, r and let p1, q1, r1 be the intersections of these geodesics with the distance
sphere S π

2
?
K
pmq aroundm, which is a great circle on the sphere. Then the law of

cosines shows that a “ dpp, rq ă dpp1, r1q, b “ dpp, qq ă dpp1, q1q and c “ dpq, rq ă
dpq1, r1q. This shows a ` b ` c ă 2π?

K
since dpp1, q1q ` dpp1, r1q ` dpq1, r1q “ 2π?

K
.

For K ă 0 equation (3.9) transforms to

cosh
´?

Ka
¯

“ cosh
´

a

|K|b
¯

cosh
´

a

|K|c
¯

´ cos pαq sinh
´

a

|K|b
¯

sinh
´

a

|K|c
¯

,
(3.10)

3This follows by the sum rule cos px˘ yq “ cosx cos y ¯ sinx sin y.
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so if we increase α from 0 to π, we see that the right hand side of the above
equation strictly increases from cosh p

?
Kpb´ cqq to cosh p

?
Kpb` cqq 4. But

then by (3.10), cosh p
?
Kaq ď cosh p

?
Kpb` cqq and so a ď b` c. In hyperbolic

spaces triangles of arbitrary side length can be realized. This is seen by the
form of the exponential map (1.25), which allows geodesic segments of arbitrary
length, which then are the unique geodesics between their endpoints. So we can
construct hinges of arbitrary size and by varying the angle of the hinge, we get
a triangle of the required third side length by the law of cosines (3.5). Triples in
D` are realized in the hyperbolic space by three points on a common geodesic.
The analogous statements for ´SK then follow since it is anti-isometric to SK .
Now for the indefinite constant curvature surfaceMK , first suppose that all side
lengths of ∆pqr are non null. If tangent vectors v and w are both timelike, the
hyperbolic angle α between them is defined by

xv, wy “

#

´‖v‖‖w‖ cosh pαq if v, w are in the same timecone
‖v‖‖w‖ cosh pαq if v, w are in opposite timecones

for a unique α ě 0. If both vectors are spacelike and nonnull, the hyperbolic
angle is given by

xv, wy “

#

‖v‖‖w‖ cosh pαq if xv, wy ą 0
´‖v‖‖w‖ cosh pαq if xv, wy ă 0

for a unique α ě 0. First we consider the case that all side lengths are posi-
tive, then γ1pqp0q and γ1qrp0q are in opposite timecones since γpq is parametrized
towards q, while γqr is parametrized starting at q. So in this case we have

=pqr “ ´bc cosh pαq

for α ě 0. Then inserting this into (3.9) yields

cos
´?

Ka
¯

“ cos
´?

Kb
¯

cos
´?

Kc
¯

´ cosh pαq sin
´?

Kb
¯

sin
´?

Kc
¯

.

Now again fix the side lengths b and c. First, for K ą 0, the largest side length
has to satisfy a ă π?

K
. For α “ 0 the right hand side of the above equation is

cos p
?
Kpb` cqq and decreases for growing α, since sin p

?
Kbq sin p

?
Kcq ě 0 for

b, c P r0, π?
K
q. This shows that cos p

?
Kaq ď cos p

?
Kpb` cqq and so b` c ď a,

thus pa, b, cq P CT,D. Also it holds that pa, b, cq P D` if the triangle lies on
the equator of the hyperquadric, which is a spacelike periodic geodesic and has
circumference 2π?

K
. Thus we conclude that triangles on the equator of MK

have the same properties as triangles on a great arc of SK . For K ă 0 we
get that cosh p

a

|K|pb` cqq ď cosh p
a

|K|aq, so the inverse triangle inequality
a ě b ` c has to hold, and there are no size bounds to a. Recall that for
K ă 0 the spacelike geodesics are branches of hyperbolas, see Lemma 1.8.9. The
degenerate triangles are thus given by three points on a common hyperbola, so
they are the same as in the hyperbolic plane. In the case that two sides have
positive length and one side has negative length, then w.l.o.g. we can assume
that a ě b ą 0 ą c. Then inserting into the law of cosines yields

cosh
ˆ

?
K
b

|Epγqrq|
˙

“ cos
´?

Ka
¯

cos
´?

Kb
¯

`cosh pγq sin
´?

Ka
¯

sin
´?

Kb
¯

.

4Since cosh px˘ yq “ coshx cosh y ˘ sinhx sinh y.
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Then the right hand side for fixed a, b and K ą 0 is cos p
?
Kpa´ bqq for

γ “ 0, and increases for growing γ. This shows that cosh p
?
K
a

|Epγqrq|q ě
cos p

?
Kpa´ bqq, which is always satisfied. So in this case one only has to assume

that a ă π?
K
. For K ă 0 we get

cos
ˆ

a

|K|
b

|Epγqrq|
˙

“ cosh
´

a

|K|a
¯

cosh
´

a

|K|b
¯

´ cosh pγq sinh
´

a

|K|a
¯

sinh
´

a

|K|b
¯

.

Then for γ “ 0 the right hand side is cosh p
?
Kpa´ bqq and is decreasing for

growing γ. This shows cos p
a

|K|
a

|Epγqrq|q ď cosh p
?
Kpa´ bqq, which again

is always satisfied and a can be arbitrary big since K ă 0. One only has to
assume that c ą ´π?

´K
since in pseudohyperbolic space timelike geodesics are

periodic, see Lemma 1.8.9. Now in case that two side lengths are negative we
may w.l.o.g. assume that a ą 0 ą b ą c. then for K ą 0 we get

cos
´?

Ka
¯

“ cosh
ˆ

?
K
b

|Epγpqq|
˙

cosh
ˆ

?
K
b

|Epγqrq|
˙

´ cosh pαq sinh
ˆ

?
K
b

|Epγpqq|
˙

sinh
ˆ

?
K
b

|Epγqrq|
˙

.

Then since Epγpqq “ ´|pq|˘ “ ´b and Epγqrq “ ´|qr|˘ “ ´c, we see that for
K ą 0 the right hand side for α “ 0 is coshp´

?
Kpb ´ cqq and decreases for

growing α. We get cos p
?
Kaq ď coshp´

?
Kpb ´ cqq, which is always satisfied,

so only a ă π?
K

has to hold. The case K ă 0 is shown analogously and similar
calculations also show the case, where all the side lengths are negative. Now
the only case remaining is the null case, so given a ą 0 suppose c “ 0. Then we
draw the side a on the equator of the hyperquadric. The null geodesics starting
at q are given by a pair of straight lines in the hyperquadric, which are also
straight lines in the ambient space. Then the distance sphere of radius b around
p is given by a translate of the tangent plane at p. These lines and the plane
intersect in three-dimensional space if they are not parallel, so a ă π?

K
has to

hold in the case K ă 0. Note that these two points of intersection then are in
the hyperquadric since the null lines are. Since by assumption b ď a, the inverse
triangle inequality holds. That the two realizing triangles are isometric will be
shown next. Also for a ă 0 there is nothing to show since then by assumtion
the other sides cannot be null and the case a “ 0 is as in Lemma 3.2.3.

Now it only remains to show that that triangles with the same side lengths
are isometric. Here we will also prove the case forK “ 0. To do so, let ∆pqr and
∆p̃q̃r̃ be triangles in QK such that all three side lengths agree. Set v1 :“ γ1pqp0q,
and v2 :“ γ1prp0q, w1 :“ γ1p̃q̃p0q, and w2 :“ γ1p̃r̃p0q. Now using the Gram-Schmidt
process, first set e1 :“ v1, f1 :“ w2 and then

e2 “ v2 ´
xv1, v2y

xv1, v1y
v1

f2 “ w2 ´
xw1, w2y

xw1, w1y
w1.

(3.11)

By definition xv1, v2y “ xγ
1
pqp0q, γ1prp0qy “ =qpr and xw1, w2y “ xγ

1
p̃q̃p0q, γ1p̃r̃p0qy “
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=q̃p̃r̃. Then the law of cosines5 shows that =qpr “ =q̃p̃r̃, respectively xv1, v2y “
xw1, w2y, and so the factors on the right hand side of (3.11) in front of v1 respec-
tively w2 agree. We set ω :“ xv1,v2y

xv1,v1y
. Since the side lengths of the two triangles

agree, also xv1, v1y “ xw1, w1y and xv2, v2y “ xw2, w2y, so one concludes that
also xe1, e1y “ xf1, f1y. Using this we see that

xe2, e2y “ ω2 xv1, v1y
loomoon

“xw1,w1y

´2ω xv1, v2y
2

looomooon

“xw1,w2y
2

` xv2, v2y
loomoon

“xw2,w2y

“ xf2, f2y.

Then by Gram-Schmid we get orthogonal bases e1, . . . , en for TpQK and f1, . . . , fn
for Tp̃QK , where n “ dim QK , and such that xei, eiy “ xfi, fiy for i “ 1, . . . , n.
By [5, Proposition 4.30 p. 113] there exists an unique isometry φ : TpQK Ñ

Tp̃QK of QK such that dφpeiq “ fi for i “ 1, . . . , n. Hence

dφpv1q “ w1

dφpv2q “ dφpe1q ` ω dφpe2q “ f1 ` ωf2 “ w2,

so φ gives an isometry between the two hinges and hence also between ∆pqr
and ∆p̃q̃r̃.

Remark One interesting way to visualize the degenerate triangles is as follows:
Consider a sphere, the de Sitter space and the hyperbolic plane, all of the same
radius, embedded in the same three dimensional space. The sphere and the de
Sitter space intersect in a great arc on the sphere. Then consider a triangle on
the sphere where one side, which we keep fixed, lies on this great arc. Then we
decrease the other two side lengths until the triangle gets degenerate, so it lies
on this great arc. Now if we want to decrease the two side lengths even further
we cannot continue on the sphere since the triangle inequality will be violated.
Thus we have to continue in the de Sitter space where the reverse triangle
inequality holds and also negative side lengths are possible. The de Sitter space
and the hyperbolic plane intersect in one hyperbola, where degenerate triangles
are realized in both spaces.

Figure 3.1: The Hyperbolic plane (yellow), the sphere (blue) and de Sitter space
(green), where intersections are marked by red lines.

5For K “ 0 law of cosines will be a byproduct of the proof of Lemma 3.3.1 and is given by
(3.12).
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As a Corollary to Lemma 3.2.4 we get the law of cosines for the Riemannian
surfaces of constant curvature.

Corollary 3.2.5. Given a triangle on a sphere of radius r with side lengths
a, b, c, let γ denote the angle at the vertex opposite to the side with length c.
Then the curvature is given by K “ 1

r2 and the law of cosines takes of the form

cos
?
Kc “ cos

?
Ka cos

?
Kb` cos γ sin

?
Ka sin

?
Kb.

For the hyperbolic plane of radius r, the curvature is given by K “ ´ 1
r2 . Then

the law of cosines is

cosh
?
´Kc “ cosh

?
´Ka cosh

?
´Kb´ cos γ sinh

?
´Ka sinh

?
´Kb.

The Euclidean plane R2 is of constant curvature K “ 0 and the law of cosines
is of the form

c2 “ a2 ` b2 ´ 2ab cos γ.

Proof. This follows from the proof of Lemma 3.2.4. For K “ 0 the result
follows from equation (3.12) in the proof Lemma 3.3.1, which we will prove in
the following section and which is independent of this corollary.

Definition 3.2.6. Let M be a semi-Riemannian manifold and U a normal
neighborhood inM . Then U is called normal for K if every triangle ∆pqr in U ,
with side lengths p|qp|˘, |qr|˘, |pr|˘q P R3z0, can be realized in a corresponding
model space QK of curvature K. Suppose ∆pqr satisfies size bounds for K. Let
∆p̃q̃r̃ in QK be a triangle such that

p|q̃p̃|˘, |q̃r̃|˘, |p̃r̃|˘q “ p|qp|˘, |qr|˘, |pr|˘q,

then ∆p̃q̃r̃ is called comparison triangle or Alexandrov triangle to ∆pqr.

Remark: So U is normal forK if all possible triples of side lengths for triangles
in U satisfy the corresponding bounds in Lemma 3.2.4.

3.3 Hinge Lemma and Straightening Lemma For
Shoulder Angles

Lemma 3.3.1 (Hinge lemma). [1, Lemma 2.2 p. 259] Let p|pq|˘, |qr|˘, |pr|˘q P
R3z0 be a non-negative triple, which can be realized by a triangle ∆pqr in a model
space QK of constant curvature K. If we vary the size of the third coordinate
|pr|˘ while keeping |pq|˘ and |qr|˘ fixed, then

(i) The angle =pqr is a decreasing function of |pr|˘.

(ii) The angles =qpr and =qrp are increasing functions of |pr|˘.
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Remarks

1. Let σ1, σ2 be geodesics parametrized by r0, 1s. Recall that points on both
geodesics are called corresponding if they have the same affine parameter.

2. By varying one side length, the model space which realizes the triangle can
change.

3. This result may seem counterintuitive at first, since in statement (i), one
might expect =pqr to be an increasing function of |pr|˘, and similar for
(ii). This is because angles are by definition nonnormalized. For example
in flat Euclidean space, if we consider the usual definition of angle,

cos pαq “ =pqr

‖pq‖‖qr‖
,

then if α is increasing on r0, πs, =pqr is decreasing since cos is decreasing
on r0, πs.

4. The angle =pqr is called the included angle, while =qpr and =qrp are
called shoulder angles.

Proof. First we will show the claim for K “ 0. Then the model surfaces are
R2, either equipped with the usual Euclidean metric, the Euclidean metric with
sign switched, or with indefinite scalar product, which yields the 2-dimensional
Minkowski space. In all three spaces geodesics are given by straight lines and
thus the sides of ∆pqr can be represented by vectors. Let P P R2 be the side
from q to p, and R P R2 the side connecting q with r. Then the side connecting
p with r is described by R ´ P . The unique geodesics connecting the vertices
γqp, γqr, γpr : r0, 1s Ñ R2 are given by γqpptq :“ q ` tP , γqrptq :“ q ` tR and
γprptq “ p ` tpR ´ P q. The nonnormalized angle =pqr then can be computed
by =pqr “ xγ1qpp0q, γ1qrp0qy “ xP,Ry. The other two angles are given by =qpr “
x´P,R ´ P y “ xP, P ´ Ry and =qrp “ x´R,P ´ Ry “ xR,R ´ P y. Further,
by definition Eqppq “ xP, P y, Eqprq “ xR,Ry and Epprq “ xR ´ P,R ´ P y. By
(1.17) we know that the energy and the signed length are related by Eqppq “
sgnpγqpq|qp|˘2 and so

|pr|˘2
“ sgnpR-PqxR´ P,R´ P y
“ sgnpR-Pq pxP, P y ` xR,Ry ´ 2xR,P yq

“ sgnpR-Pq
´

sgnpPq|qp|˘2
` sgnpRq|qr|˘2

´ 2=pqr
¯

.

(3.12)

Note that the above equation is the law of cosines for flat space. Since |qp|˘ and
|qr|˘ are assumed to be fixed, we set k :“ sgnpPq|qp|˘2

` sgnpRq|qr|˘2. First
suppose that sgnpR-Pq “ 1, then |pr|˘ ě 0 and so if |pr|˘ increases also |pr|˘2

increases and (3.12) becomes

|pr|˘2
“ k ´ 2=pqr.

So since k is a constant, it follows that for increasing |pr|˘, =pqr has to decrease.
On the other hand, if sgnpR-Pq “ ´1, then |pr|˘ ă 0, and so for |pr|˘ increasing,
|pr|˘2 is decreasing. But then

|pr|˘2
“ 2=pqr ´ k.
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shows that =pqr also has to decrease, so we have shown (i). To see (ii) for
K “ 0, note that

=qrp “ x´R,P ´Ry “ ´xP,Ry ` xR,Ry “ ´=pqr ` sgnpRq|qr|˘2
.

So since by (i), if |pr|˘ increases then =pqr decreases, thus =qrp increases since
|qr|˘ is assumed to be constant. And similarly one sees that =qpr is an increas-
ing function of |pr|˘. Next we consider the case K ą 0, w.l.o.g. assuming that
K “ 1. So let ∆pqr be a comparison triangle in a model space of constant cur-
vature K, with geodesics γqr, γqp and γpr connecting the corresponding vertices.
Then we set R :“ γ1qrp0q, P :“ γ1qpp0q and L :“ γ1prp0q. The three points p, q, r
also span a plane Π in the ambient space of the hyperquadric, and if the sides
of the triangle are nonnull the metric is nondegenerate on Π. So Π is isometric
to one of the model surfaces of constant curvature 0. Denote by R1 the vector
in this plane connecting q with r, and let P 1 be defined analogously. Further,
let L1 be the vector connecting p with r. By Lemma 1.8.13 we know that the
distance spheres around q are given by parallel translation of the tangent plane
TqQK , which is then intersected with QK . Thus R1 can be written as a linear
combination of R P TqQK and q which is orthogonal to TqQK by Lemma 1.8.7.
So R1 “ αR ´ µ1q, P 1 “ βP ´ µ2q and L1 “ λL ´ µ3p for µ1, µ2, µ3 ě 0 and
α, β, λ ą 0. To show that xL1, L1y is an increasing function of |pr|˘, first suppose
that 0 ď |pr|˘ ď π, then by Lemma 1.8.13 we see that µ1 “ 1 ´ cos |pr|˘ and
so

xL1, L1y “ λ2xL,Ly ` p1´ cos |pr|˘q2
“1

hkkikkj

xp, py

“ λ2|pr|˘2
` p1´ cos |pr|˘q2.

Then the claim follows since p1´cosptqq2 is an increasing function on r0, πs, and
so xL1, L1y is an increasing function of |pr|˘ independent of λ. For |pr|˘ ă 0, µ1
is given by µ1 “ cosh |pr|˘´1 and λ “ sinh ‖pr‖, which is seen by Lemma 1.8.10.
Then

xL1, L1y “ psinh p‖pr‖qq2xL,Ly ` pcosh |pr|˘ ´ 1q2
“1

hkkikkj

xp, py

“ ´psinh p‖pr‖qq2|pr|˘2
` pcosh |pr|˘ ´ 1q2

(3.13)

and the claim follows since the right hand side is an increasing function of |pr|˘
for |pr|˘ ă 0. But this then also shows that xR1, R1y and xP 1, P 1y are increasing
functions of |qr|˘ respectively |qp|˘. In Π the angle between P 1 and R1 is given
by

xP 1, R1y “ αβxP,Ry ` µ1µ2.

Then since =pqr “ xP,Ry,

=pqr “
1
αβ
pxP 1, R1y ´ µ1µ2q.

If |pr|˘ increases, also xL1, L1y increases and so xP 1, R1y decreases by (i) for the
case K “ 0. But then by the above equation also =pqr has to decrease. Now
for the shoulder angles,

xP 1, L1y “ αλxP,Ly ` µ2µ3xq, py, (3.14)
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so since x´P,Ly “ =qpr we have

=qpr “
1
αλ
px´P 1, L1y ´ µ2µ3xq, pyq. (3.15)

Again, if |pr|˘ increases also xL1, L1y increases and so x´P 1, L1y increases by
(ii) for K “ 0. Then the above equation shows that =qpr increases. The case
K ă 0 is shown in a similar fashion. Just note that the pseudohyperbolic spaces
H2

0 and H2
1 are semi-Riemannian hypersurfaces of sign ´1, so every normal

vector is timelike. In particular any point q in either space satisfies xq, qy ă 0.
The realizing space for ∆pqr changes when the line t ÞÑ p|pq|˘, |qr|˘, tq passes
through D`. In D` angles agree in both realizing model spaces as we have
seen in the proof of Lemma 3.2.4. Then since (i) and (ii) hold on every closed
segment in one model space, the claim is true along the whole line.

Lemma 3.3.2 (Straightening Lemma for Shoulder Angles - Alexandrov Lemma).
[1, Lemma 2.4 p. 261] Let ∆pqr be a triangle in a semi-Riemannian manifold
M such that the triple p|pq|˘, |qr|˘, |rp|˘q ‰ 0 satisfies size bounds for some
K P R. Let γpr : r0, 1s Ñ M be the unique geodesic connecting p with r, and
for λ P r0, 1s set m :“ γprpλq. Let ∆q1p1m1 and ∆q2m2r2 be triangles in a cor-
responding model space of curvature K such that |q1m1|˘ “ |q2m2|˘ “ |qm|˘,
|q1p1|˘ “ |qp|˘, |q2r2|˘ “ |qr|˘, |p1m1|˘ “ |pm|˘ and |m2r2|˘ “ |mr|˘. If
∆q1p1m1 and ∆q2m2r2 satisfy size bounds for K and

p1´ λq=p1m1q1 ` λ=r2m2q2 ě 0, (3.16)

then
=qpm ě =q1p1m1 and =qrm ě =q2r2m2. (3.17)

The above statement with inequalities in (3.16) and (3.17) reversed is also true.

Proof. First we show that

p1´ λq=pmq ` λ=rmq “ 0. (3.18)

To see this, note that in the definition of the nonnormalized angle geodesics
are assumed to be parametrized by r0, 1s. Now γmrptq :“ γprpλ ` p1 ´ λqtq is
a geodesic connecting m with r if parametrized by r0, 1s. And γmp : r0, 1s Ñ
M , γmpptq :“ γprpλ ´ λtq connects m with p. Then γ1mrp0q “ p1 ´ λqγ1prpλq,
γ1mpp0q “ ´λγ1prpλq, and so

p1´ λq=pmq ` λ=rmq “ p1´ λqxγ1mpp0q, γ1mqp0qy ` λxγ1mrp0q, γ1mqp0qy
“ p1´ λqp´λqxγ1prpλq, γ1mqp0qy ` λp1´ λqxγ1prpλq, γ1mqp0qy
“ 0

shows (3.18). Subtracting (3.18) from (3.16) yields

p1´ λqp=p1m1q1 ´=pmqq ` λp=r2m2q2 ´=rmqq ě 0.

From this we get =p1m1q1 ě =pmq or =r2m2q2 ě =rmq. To see this, suppose
=p1m1q1 ă =pmq and =r2m2q2 ă =rmq, then since λ, 1´ λ ą 0 we see

p1´ λqp=p1m1q1 ´=pmqq ` λp=r2m2q2 ´=rmqq ă 0,
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which gives a contradiction. By Lemma 3.3.1 we know that the shoulder non-
normalized angle in a triangle is an increasing function of the signed lengths
of the sides enclosing this angle. So suppose that =p1m1q1 ě =pmq, then we
get |q1m1|˘ ě |qm|˘. Since by assumption |q1m1|˘ “ |q2m2|˘, also |q2m2|˘ ě
|qm|˘ is true. By statement (i) in Lemma 3.3.1, in a triangle the nonnormalized
angles are a decreasing function of the signed length of the side opposite to it.
Thus we get (3.17).

3.4 Equivalent Definitions for Triangle Compar-
ison

Lemma 3.4.1. Suppose ∆pqr satisfies size bounds for K. Then let ∆p̃q̃r̃ be a
comparison triangle in the corresponding model space QK . Given a point m on
the side γpq with affine parameter λ, and the corresponding point m̃ on γp̃q̃, then
if =rpq ď =r̃p̃q̃ also =rpm ď =r̃p̃m̃. The result with all inequalities reversed
also holds.

Proof. The unique geodesic γpm : r0, 1s Ñ U connecting p with m is given by
γpmptq :“ γpqpλtq, and γ1pmp0q “ λγ1pqp0q And for γp̃m̃ptq :“ γp̃q̃pλtq we get
γ1p̃m̃p0q “ λγ1p̃m̃p0q, so

=rpm “ xγ1prp0q, γ1pmp0qy
“ λxγ1prp0q, γ1pqp0qy “ λ=rpq ď λ=r̃p̃q̃ “ . . . “ =r̃p̃q̃

which shows the claim.

Proposition 3.4.2. [1, Proposition 5.1 p. 270] Let M be a semi-Riemannian
manifold and U be a normal neighborhood in M which is normal for K. If
we choose QK with the same dimension and index as M , then the following
conditions on all triangles ∆pqr in U with comparison triangle in ∆p̃q̃r̃ in QK

are equivalent:

(i) The signed distance between points on the sides of ∆pqr is ě(ď) the signed
distance of the corresponding points in ∆p̃q̃r̃.

(ii) The signed distance from a vertex of ∆pqr to a point on the opposite side
is ě(ď) the signed distance of the corresponding points in ∆p̃q̃r̃.

(iii) The nonnormalized angles in ∆pqr are ď(ě) the corresponding nonnor-
malized angles in ∆p̃q̃r̃.

Remark It is essential that the conditions hold for all triangles in U .

Proof. (i)ñ(ii): since the inequality holds for all points, it also holds if we fix one
point to be a vertex of ∆pqr. To see the reverse implication (ii)ñ(i), let ∆pqr be
a triangle in U with comparison triangle ∆p̃q̃r̃. Then letm be a point on the side
γpr with affine parameter value λm, and n a point on the side γpq with parameter
λn. Further, let m̃ and ñ be points on γp̃r̃ and γp̃q̃ with affine parameter values
λm and λn. On γp̌q̌ let ň be the point with affine parameter value λn. Then
consider the triangles ∆pqm,∆pnm with corresponding comparison triangles
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Figure 3.2: A triangle ∆pqr in M and three model triangles in corresponding
constant curvature model spaces.

∆p̌q̌m̌ and ∆p̄m̄m̄. All comparison triangles may lie in different model spaces
of curvature K. Now |m̄n̄|˘ “ |mn|˘ ě |m̌ň|˘. The equality holds since
∆p̄m̄n̄ is a comparison triangle for ∆pmn, so the side lengths agree, and the
inequality follows by (ii) since ∆p̌m̌q̌ is a comparison triangle for ∆pmq thus the
signed distances to corresponding points opposite to a vertex decrease. Then
Lemma 3.3.1(Hinge) applied to ∆p̌m̌ň and ∆p̄m̄n̄6 implies

=m̄p̄n̄ ď =m̌p̌ň. (3.19)

Then apply (ii) to ∆pqr and ∆p̃q̃r̃, which yields |m̌q̌|˘ “ |mq|˘ ě |m̃q̃|˘. So
applying hinge to ∆p̌m̌q̌ and ∆p̃m̃q̃ yields

=m̌p̌q̌ ď =m̃p̃q̃

so by Lemma 3.4.1 also =m̌p̌ň ď =m̃p̃ñ. Combining this with (3.19) we get

=m̄p̄n̄ ď =m̌p̌ň ď =m̃p̃ñ.

Hence, applying hinge once more to the above, we get |mn|˘ “ |m̄n̄|˘ ě |m̃ñ|˘,
and since m and n were arbitrary, the implication follows.
(ii) ñ (iii): By Lemma 3.1.2 we know that

pEq ˝ γprq
1p0q “ ´2=qpr, (*)

where γpr is the side connecting p with r parametrized by r0, 1s. Let γp̃r̃ be the
corresponding side in ∆p̃q̃r̃, then by (ii) and since sgnpγqpq|qp|˘2

“ Eqppq we
get

pEq ˝ γprqptq ě pEq̃ ˝ γp̃r̃qptq (**)
6This can be done since by definition |p̌m̌|˘ “ |p̄m̄|˘ and |p̌ň|˘ “ |p̄n̄|˘.
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for all t P r0, 1s. By definition of our comparison triangle we get

pEq ˝ γprqp0q “ Eqppq “ Eq̃pp̃q “ pEq̃ ˝ γp̃r̃qp0q.

Consequently,

´2=qpr
(*)
“ pEq ˝ γprq

1p0q “ lim
tÑ0

1
t
pEq ˝ γprptq ´ Eq ˝ γprp0qq

(**)
ě lim

tÑ0

1
t
pEq̃ ˝ γp̃r̃ptq ´ Eq̃ ˝ γp̃r̃p0qq “ pEq̃ ˝ γp̃r̃q1p0q

(*)
“ ´2=q̃p̃r̃,

which shows =qpr ď =q̃p̃r̃. For the remaining implication (iii)ñ(i), subdivide
∆pqr into two triangles ∆pmq and ∆mqr withm as in (ii)ñ(i), with comparison
triangles ∆p̌m̌q̌ and ∆p1q1n1. Further, let ∆p̃q̃r̃ be a comparison triangle for
∆pqr. Then by (iii) =pmq ď =p̌m̌q̌ and =qmr ď =q1m1r1. As in the proof
of Lemma 3.3.2 we see that p1 ´ λmq=pmq ` λm=qmr “ 0. So the above
inequalities imply that p1´λmq=p̌m̌q̌`λm=q1m1r1 ě 0. Therefore we can apply
Lemma 3.3.2(Straightening Lemma for Shoulder Angles) to get =q̃p̃m̃ ě =q̌p̌m̌.
But then by hinge applied to ∆p̃q̃m̃ and ∆p̌q̌m̌ we get |qm|˘ “ |q̌m̌|˘ ě |q̃m̃|˘.

Let U be a neighborhood which is normal for K, then if one of the equivalent
conditions on all triangles in U is satisfied, we say that triangle comparison
holds on U . Our goal will be to show that the triangle comparison property is
equivalent to curvature bounds R ě K respectively R ď K.
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Chapter 4

Modified Distance Function
and Modified Shape
Operator

4.1 Modified Distance Function
In this section we define a so called modified distance function for semi-Riemannian
manifolds. This modified distance function is not a distance function in the
sense of Definition 1.10.1, but still shares some similar features and will be an
important tool in proving our main results. First we will study properties of
the modified distance function on general semi-Riemannian manifolds and then
its properties on model spaces of constant curvature.

Definition 4.1.1. Let M be a semi-Riemannian manifold and q P M with
normal coordinate neighborhood U . Then the modified distance function
hK,q : U Ñ R at q as in [1] is defined by

hK,qppq :“
#

p1´ cos
a

KEqppqq{K “
ř8

n“1
p´Kqn´1

pEqppqq
n

p2nq! K ‰ 0
Eqppq{2 K “ 0

(4.1)

and further for K ‰ 0 we define `K,q : U Ñ R as

`K,qppq “
1
K

cos
b

KEqppq. (4.2)

Remarks

(i) In particular if K ‰ 0 then by definition

hK,q “ ´`K,q `
1
K
. (4.3)

(ii) Note that the term KEqppq can be ă 0 in case K is negative and q and p
are connected by a spacelike geodesic or if K is ą 0 and Eqppq is negative,

49
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that is q and p are connected by a timelike geodesic. Still cos
a

KEqppq is
always real valued since cos transforms to cosh by the identity

cos ix “ cosh x

which can be easily seen by looking at the corresponding power series.

Lemma 4.1.2. The gradient G :“ gradhK,q of the modified distance function
hK,q is given by

G “ gradhK,q “

$

’

’

&

’

’

%

P, for K “ 0
sinp
?
KEqq?
KEq

P, for K ‰ 0 and Eq ‰ 0

P, for K ‰ 0 and Eq “ 0

(4.4)

which holds on a normal coordinate neighborhood U of q where hK,q is defined
and G is smooth on U .

Remark Note that for some geodesic σ starting at q we see that

φptq :“
sinp

a

KEqpσptqqq
a

KEqpσptqq

is a real-valued function even in case KEqppq ă 0 since sinpitq “ i sinhptq for all
t P R and thus i cancels. Further, φ is positive in case KEqpσptqq ą 0 as long as
|Eqpσptqq| ă π2|K|´1 and if either K ă 0 or Eqpσptqq ă 0 then φ ě 0 along σ
for all t since sinhptq ě 0 for t ě 0 and φp0q “ 1 as seen in the following proof.

Proof. Let P be the image of the position vector field P̃ in TqM – Rnν under the
differential of the exponential map at q on some normal coordinate neighborhood
U of q (see Definition 1.9.1). Then we know by Lemma 1.9.2 that gradEq “ 2P
thus equation (4.1.2) for K “ 0 follows immediately. Now in case K ‰ 0,
we know by Lemma 1.3.2 that grad pg ˝ fq “ g1 grad f . Now set f :“ Eq and
gptq :“ p1´ cos

?
Ktq{K with g1ptq “ 1

2
sin
?
Kt?

Kt
then we obtain

gradhK,q “ grad p1´ cos
a

KEqq{K “ grad pg ˝ Eqq

“ g1 gradEq “ g12P “
sinp

a

KEqq
a

KEq
P.

Since P is a smooth vector field and Eqppq depends smoothly on p, to show
that gradhK,q is smooth it suffices to show that sin

?
KEq?

KEq
is smooth in case

Eqppq “ 0. Thus we expand sin as a series and get

sin
?
t

?
t
“ t´

1
2

8
ÿ

n“0
p´1qn pt

1
2 q2n`1

p2n` 1q! “ 1´ t

3! `
t2

5! ´
t3

7! ` . . .

which is smooth at 0 and shows that along null geodesics φptq “ 1.



4.1. MODIFIED DISTANCE FUNCTION 51

Remark The gradient of the modified distance function hK,q is defined on a
whole normal coordinate neighborhood U of q and is smooth there. This is not
the case for the radius function rq, which cannot be smoothly defined on the
whole of U , with the exception of the Riemannian case, see Lemma 1.10.4.

Lemma 4.1.3. Let q P M and U a normal coordinate neighborhood of q such
that

|Eqppq| ă
π2
?
K

(4.5)

in case EqppqK ą 0. Let σ be a unit speed geodesic starting at q and set

φptq :“

$

&

%

sin
?
KEqpσptqq?

KEqpσptqq
for K ‰ 0

1 for K “ 0.
(4.6)

Then φptq ě 0 on U . For G :“ gradhK,q as above set

gptq :“ ‖Gpσptqq‖ “
a

|xGpσptqq, Gpσptqqy| (4.7)

then along σ it holds that

(i) Gpσptqq “ tφptqσ1ptq

(ii) gptq “ tφptq and g1ptq “ cos
a

KEqpσptqq “ 1´KhK,qpσptqq

(iii) gp0q “ 0, g1p0q “ 1 and g2p0q “ 0.

In particular the modified distance function hK,q is not a distance function in
the sense of Definition 1.10.1.

Remark Note that (4.5) is always satisfied in normal coordinate neighbor-
hoods in our model spaces QK which can be seen by the form of the exponential
map as in Lemma 1.8.10. Thus for our local comparison results this condition
will always be satisfied.

Proof. Let σ be a nonnull radial geodesic starting at q. Then by Lemma 4.1.2
we know that in a normal coordinate neighborhood of q we have Gpσptqq “
gradσptq hK,q “ φptqP pσptqq where φ is the smooth function given by (4.6) and
P is the local position vector field at q. Since σ is a radial geodesic we can apply
Lemma 1.9.4 and by (1.31) we know that P pσptqq “ tσ1ptq, which yields

Gptq “ tφptqσ1ptq. (*)

Thus we have shown (i). Since by the above remark φptq ě 0 we get

gptq
(*)
“

a

|xtφptqσ1ptq, tφptqσ1ptqy| “ tφptq
a

|xσ1ptq, σ1ptqy|
loooooooomoooooooon

“1

“ tφptq (**)

which is ą 0 for t ą 0 and “ 0 for t “ 0. Further,

g1ptq “ φptq ` tφ1ptq.
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In the case K “ 0 and along null geodesics for arbitrary K we have φ “ 1 and
thus g1p0q “ 1. If K ‰ 0

φptq “
sin

a

KEq
a

KEq
,

so choose v P TqM such that σptq “ expq ptvq and note that by (1.22)

Eqpσptqq “ xexp´1
q σptq, exp´1

q σptqy “ t2xv, vy.

Set B :“
a

Kxv, vy P Czt0u. Then

φ1ptq “ p
sin pBtq
Bt

q1 “
Bt cos pBtq ´ sin pBtq

Bt2
,

so we get

g1ptq “ φptq ` tφ1ptq “
sin pBtq
Bt

` t
Bt cos pBtq ´ sin pBtq

Bt2
“ cosBt,

which shows that g1p0q “ 1 even if B is of the form B “ i|B| since then
cos pBtq “ cosh p|B|tq and cosh 0 “ 1 as well. Now g2p0q is 0 since g2ptq is just a
scalar multiple of sinBt respectively sinh |B|t and both terms vanish for t “ 0.
Now since

∥∥∥gradσptq hK,q
∥∥∥ “ ‖Gpσptqq‖ (**)

“ tφptq one sees that the norm can’t
be constant 1, which shows that hK,q is not a distance function.

Remark If σ̃ :“ σpat ` bq is a affine reparametrization of σ, a, b P R and
a ‰ 0, then

(i) Gptq “ tφptqσ̃1ptq “ tφptq|a|σ1pat` bq

(ii) gptq “ t|a|φptq and g1ptq “ |a| cos
a

KEqpσptqq

(iii) gp0q “ 0 and g1p0q “ |a|.

thus above lemma also holds for parametrizations which are not of unit speed.

Lemma 4.1.4. Let q P M and U a normal neighborhood of q which is normal
for K. Then along any radial geodesic σ starting at q, hK,q˝σ is a monotonically
increasing function of the signed length |qσ|˘ as long as |qσ|˘ ď π?

K
. Along

null geodesics, hK,q and |qσ|˘ are both constant with value 0.

Proof. Let σ : r0, 1s Ñ U be a nonnull radial geodesic starting at q. Then for
t1, t2 P r0, 1s with t1 ă t2, set p1 :“ σpt1q and p2 :“ σpt2q. We need to show that
if |qp1|˘ ă |qp2|˘ it follows that hK,qpp1q ă hK,qpp2q. Note that p1 and p2 lie
on the same geodesic which has constant causal character, so Eqpp1q and Eqpp2q
have the same sign. Also in case p1, p2 are situated on a timelike geodesic, then
from Eqpp1q ă Eqpp2q ă 0 it follows that 0 ă |Eqpp2q| ă |Eqpp1q|, thus while
the energy is increasing the modulus is decreasing. In case K “ 0 we have
hK,q “

1
2Eq and |qp|˘ “ sgnpEqppqq

a

|Eqppq|. Thus if |qp1|˘ ă |qp2|˘ we get

sgnpEqpp1qq
b

|Eqpp1q| ă sgnpEqpp2qq
b

|Eqpp2q|,
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so for sgnpEqpp1qq “ 1 the claim follows. Now if sgnpEqpp1qq “ ´1 we get
a

|hK,qpp1q| ą
a

|hK,qpp2q| thus the claim follows by the above considerations.
For K ‰ 0 we have

hK,q “
1
K
p1´ cos

a

KEqq

with cos transforming to cosh for negative values under the square root. We
have to distinguish four cases depending on all possible signs for Eqpp1q respec-
tively Eqpp2q and K.

(i) K ą 0 and Eq ą 0: cos is monotonically decreasing on r0, πs then together
with the result for K “ 0 we see that

a

Eqpp1q ă
a

Eqpp2q ă
π?
K
.

(ii) K ă 0 and Eq ą 0: We get

hK,q “
1
K
p1´ cosh

b

|K|Eqq

and since cosh is monotonically increasing on r0,8q, 1´cosh is decreasing
but hK,q is increasing since the factor 1

K is negative.

(iii) K ą 0 and Eq ă 0: We have

hK,q “
1
K
p1´ cosh

b

K|Eq|q

so for Eq increasing |Eq| is decreasing and thus 1 ´ cosh
a

K|Eq| is in-
creasing

(iv) K ă 0 and Eq ă 0: here the signs under the square root cancel, thus

hK,q “
1
K
p1´ cos

b

|K||Eq|q

and analogous reasoning again shows that hK,q is increasing with respect
to signed length.

4.2 Modified Distance Function In The Model
Spaces

As shown in Section 1.8 spaces QK of constant curvature K ‰ 0 of fixed di-
mension n and index ν can be realized as the universal covers of hyperquadrics
which are semi-Riemannian submanifolds of Rn`1

ν . Every point q in Rn`1
ν can

be identified with a linear functional

˜̀
K,q :“ xq, py. (4.8)

We will show that ˜̀
K,q agrees with (4.2) if restricted to our model spaces of

constant curvature and is K-affine, which is defined as follows:
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Definition 4.2.1. [1, Definition 3.1 p. 262] A smooth real-valued function
f on a semi-Riemannian manifold is called K-affine if the restriction to any
geodesic γ satisfies

pf ˝ γq2 `Kxγ1, γ1ypf ˝ γq “ 0, (4.9)

further f is called K-concave if

pf ˝ γq2 `Kxγ1, γ1ypf ˝ γq ď 0 (4.10)

and K-convex if the reversed inequality holds.

Proposition 4.2.2. [1, Proposition 3.2 3.1 p. 262] For K ‰ 0, let

`K,q :“ ˜̀
K,q

ˇ

ˇ

QK

be the restriction of ˜̀
K,q “ xq, py, as in (4.8) to QK . Then `K,q is K-affine

along every geodesic γ in QK :

p`K,q ˝ γq
2ptq “ ´Kxγ1, γ1y`K,qpγptqq (4.11)

and for two points q, p P QK joined by a geodesic in QK we have

`K,qppq “
1
K

cos
b

KEqppq, (4.12)

where imaginary arguments of cos are possible.

Proof. The tangent space at a point in Rn`1
ν is just a copy of Rn`1

ν at this
point and the tangent space to a point in QK Ď Rn`1

ν is an n-dimensional
linear subspace of Rn`1

ν . In Rn`1
ν the gradient of the function x ÞÑ xq, xy is

given by q 1 , where we think of q as a vector field on Rn`1
ν which assigns the

vector q at every point of Rn`1
ν . For p in QK we first show that the projection

πp : TpRn`1
ν Ñ TpQK is given by

πppvq “ v ´Kxp, vyp. (4.13)

Note that p is normal to TpQK since QK is orthogonal to the position vector
field P and P ppq “ p. Now

xp, πppvqy “ xp, v ´Kxv, pypy “ xp, vy ´Kxp, vyxp, py
xp,py“ 1

K
“ 0

which shows that πppvq indeed maps to TpQK and if w P TpQK then

πppwq “ w ´K xp, wy
loomoon

“0

p “ w

thus πp|TpQK
“ IdQK

. One easily checks that πpppq “ 0 and πp ˝ πp “ πp. Now
we will show that

gradp `K,q “ πpq. (4.14)

1Since for fpxq “ xq, xy we have Bf
Bxi

“ qi and thus by [5, Definition 3.47 p. 85] since
gij “ δij in Rn`1

ν we get grad f “
ř

i,j g
ij Bf
Bxi
Bj “

ř

i q
iBi “ q.
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Let v P TpQK then p d`K,qqp is the restriction of p d˜̀
K,qqp to TpQK and p d˜̀

K,qqppvq “
xq, vy since it is just the usual derivative of a real valued function on Rn`1

ν . Thus
we compute

xgradp `K,q, vy “ p d`K,qqppvq “ p d˜̀
K,qqppvq “ xq, vy “ xπppqq, vy,

where the last equality holds since v is in TpQK . Since this holds for any
v P TpQK we get (4.14). Let D be the Levi-Civita connection on Rn`1

ν and
∇ the Levi-Civita connection on QK . Then by [5, Lemma 4.3 p. 99] they are
related by projection onto the tangent space of QK . So ∇vX “ πppDvXq for
v in TpQK and X P XpQKq. Now given a geodesic γ : I Ñ QK , for t P I set
p “ γptq and v “ γ1ptq. Then to show that `K,q is K-affine we compute

p`K,q ˝ γq
2ptq

(1.8)
“ x∇v grad `K,q, vy

(4.14)
“ xπppDvπppqqq, vy

(4.13)
“ xπppDvpq ´Kxp, qypqq, vy

“ xπppDvq ´KpDvpxp, qyqp´Kxq, pyDvpq, vy

“ x´Kxq, vyπpppq ´Kxq, pyv, vy
πpppq“0
“ ´Kxv, vy`K,qpγptqq

(4.15)
which shows (4.11). Here, the second to last equation holds since Dvq “
Dγ1ptqq “ 0 since q is a constant vector field on Rn`1

ν . Also

p d`K,qqqpvq “ xgrad `K,qpqq, vy
(4.14)
“ x πqpqq

loomoon

“0

, vy “ 0,

which shows that d`K,q vanishes at q. Thus for any geodesic γ in QK with
γp0q “ q and v :“ γ1p0q we get p`K,q ˝ γq1p0q “ p d`K,qqqpγ1p0qq “ 0. Further,
p`K,q ˝ γqp0q “ `K,qpqq “ xq, qy “

1
K and

p`K,q ˝ γq
2p0q (4.11)

“ ´Kxv, vy`K,qpqq
xq,qy“ 1

K
“ ´xv, vy.

With these initial conditions the solution to the linear differential equation (4.11)
which is of the form x2 `Kxv, vyx “ 0 is given by

p`K,q ˝ γqptq “
cos

a

Kxv, vyt

K

which shows (4.12).

Proposition 4.2.3. For q in QK let hK,q be the modified distance function
defined by (4.1). Then hK,qsatisfies along every geodesic γ in QK which is
parametrized by r0, 1s with γp0q “ q and γp1q “ p that

phK,q ˝ γq
2 `Kxγ1, γ1yphK,q ˝ γq “ xγ

1, γ1y (4.16)

and in particular

phK,q ˝ γq
2 `KEqppqphK,q ˝ γq “ Eqppq (4.17)

where Eqppq is defined by (1.18).
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Proof. For K ‰ 0 recall that hK,q “ ´`K,q ` 1
K . Thus by Proposition 4.2.2 we

get

phK,q ˝ γq
2 (4.3)
“ p´`K,q ˝ γ `

1
K
q2 “ ´p`K,q ˝ γq

2

(4.11)
“ Kxγ1, γ1yp`K,q ˝ γq

(4.3)
“ xγ1, γ1y ´Kxγ1, γ1yphK,q ˝ γq.

Now in the remaining case K “ 0 by definition hK,q “ 1
2Eq and (4.16) reduces

to phK,q ˝ γq2 “ xγ1, γ1y. Note that for γ parametrized by r0, 1s by (1.20) we
have that

Eqpγptqq “ t2xγ1p0q, γ1p0qy “ t2Epγq

and Epγq does not depend on t. Thus

phK,q ˝ γ
2ptq “

ˆ

Eqpγptqq

2

˙2

“

ˆ

t2Epγq

2

˙2

“ Epγq.

Since γ is a geodesic, xγ1ptq, γ1ptqy is constant so our claim follows by

Epγq “ xγ1p0q, γ1p0qy “ xγ1ptq, γ1ptqy.

4.3 Modified Shape Operator
Definition 4.3.1. Let M be a semi-Riemannian manifold, q in M , and hK,q
the modified distance function as given by Definition 4.1.1. Let U be a normal
coordinate neighborhood of q, then the modified shape operator SK,q is the
self-adjoint operator SK,q : TU Ñ TU defined as

SK,qpvq :“ ∇v gradhK,q. (4.18)

To see that SK,q is self adjoint note that the Hessian of any smooth function
is a symmetric tensor (see Definition 1.3.3) and so for p P U and v, w P TpM we
get

xSK,qpvq, wy “ x∇v gradhK,q, wy “ HhK,q pv, wq

“ HhK,q pw, vq “ x∇w gradhK,q, vy “ xv, SK,qpwqy.

Next we show that in our model spaces of constant curvature K the modified
shape operator is given as a multiple of the identity Id on each tangent space.

Lemma 4.3.2. On any hyperquadric Q̃K the modified shape operator SK,q is
given by

SK,q “

#

Id if K “ 0
K`K,qId if K ‰ 0

(4.19)

Proof. The case K ‰ 0 can be seen by using (4.11). Let γ be a geodesic with
γp0q “ p and γ1p0q “ v, then

x´K`K,qppqv, vy “ p`K,q ˝ γq
2p0q (1.8)

“ x∇v grad `K,q, vy
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and so since hK,q “ ´`K,q `
1
K we see that gradhK,q “ ´ grad `K,q, which

results in
∇v gradhK,q “ ´∇v grad `K,q “ K`K,qId.

In the case K “ 0 we have h0,q “
1
2Eq, so

S0,qpvq “ ∇v gradh0,q
(1.24)
“ ∇vP “ v

and thus S0,q “ Id.

Proposition 4.3.3. Let q be a point in a semi-Riemannian manifold, K P R
and σ a radial geodesic with σp0q “ q. Then along σ the modified shape operator
SK,q satisfies

`

∇σ1ptq gradhK,q
˘

σptq
“ p1´KhK,qpσptqqqσ1ptq “ K`K,qpσptqqσ

1ptq, (4.20)

where the last equation is only defined in case K ‰ 0.

Remarks

(i) To simplify notation, as in [1] set G :“ gradhK,q, N :“ σ1ptq, h :“ hK,q,
` :“ `K,q and S :“ SK,q if there is no ambiguity regarding K and q. So in
particular (4.20) then reads as

∇NG “ p1´KhqN “ K`N.

(ii) By Lemma 1.3.4, along a geodesic σ the Hessian of some function f is
given by pf ˝σq2 “ Hf pσ1, σ1q, so by the definition of the Hessian together
with (4.20) we compute

phK,q ˝ σq
2 “ HhK,q pσ1, σ1q “ x∇σ1 gradhK,qpσ1q, σ1y

“ xσ1, σ1y ´Kxσ1, σ1yphK,q ˝ σq,

which is equivalent to

phK,q ˝ σq
2 `Kxσ1, σ1yphK,q ˝ σq “ xσ

1, σ1y. (4.21)

Since for geodesics the causal-character doesn’t change we have for σ radial
starting at q:

-) xσ1, σ1y ą 0: hK,q is K-convex along spacelike geodesics
-) xσ1, σ1y “ 0: hK,q is K-affine along null geodesics
-) xσ1, σ1y ă 0: hK,q is K-concave along timelike geodesics

Proof. First consider the case K “ 0. Then G “ gradh (4.4)
“ P . Let 1 denote the

induced covariant derivative along curves, then by [5, 3.18(3), p. 65] we know
that ∇σ1ptqP “ pP ˝ σq

1ptq, so

∇NG “ ∇σ1ptqP “ pP ˝ σq
1ptq

(1.30)
“ σ1ptq “ N

K“0
“ p1´KhqN

which proves the caseK “ 0. ForK ‰ 0 again by [5, p. 65] ∇σ1ptqG “ pG˝σq
1ptq

and we know by Lemma 4.1.2 that along radial geodesics G “ φptqP with
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φptq “
sinp
?
KEqq?
KEq

for Eq ‰ 0 and φ “ 1 along null geodesics. Thus along any
radial geodesic

pG ˝ σqptq “ φptqP pσptqq.

By the product rule for the induced covariant derivative [5, 3.18(2) p. 65 ] we
get

pG ˝ σq1ptq “ pφptqP pσptqqq1 “ φ1ptqP pσptqq ` φptqpP ˝ σq1ptq.

Then inserting (1.31) and (1.30) yields

pG ˝ σq1ptq “ φ1ptqtσ1ptq ` φptqσ1ptq.

If σ is null we are done since then φ “ 1 and φ1 “ 0. Otherwise pG ˝ σq1ptq “
αptqσ1ptq for some real valued function α and it remains to show that αptq “
1 ´ Khpσptqq. Since we know by the above that pG ˝ σq1ptq is a multiple of
σ1ptq “ N it suffices to show that

x∇NG,Ny “ xp1´KhqN,Ny. (4.22)

Now we have

x∇NG,Ny “ x∇σ1ptq gradhK,q, σ1ptqy
(1.8)
“ phK,q ˝ σq

2ptq.

By setting λ :“ xσ1p0q, σ1p0qy and since Eqpσptqq “ t2xσ1p0q, σ1p0qy “ λt2 by
(1.20) we see that

phK,q ˝ σqptq “
1
K
p1´ cos

b

KEqpσptqqq “
1
K
p1´ cos p

?
Kλtqq.

Differentiating this expression yields

phK,q ˝ σq
1ptq “

c

λ

K
sin p

?
Kλtq

and
phK,q ˝ σq

2ptq “ λ cos p
?
Kλtq. (4.23)

Since geodesics are always parametrized with constant speed xσ1ptq, σ1ptqy “
xσ1p0q, σ1p0qy “ λ the right hand side of (4.22) can be rewritten as

p1´KhK,qqxN,Ny “ cos p
?
Kλtqxσ1ptq, σ1ptqy

(4.23)
“ phK,q ˝ σq

2ptq

and this shows (4.22) and hence the claim for K ‰ 0.

As a corollary we see will see that the integral curves of G are pregeodesics.

Corollary 4.3.4. The integral curves of G “ gradhK,q are pregeodesics.

Proof. To show that an integral curve c of G is a pregeodesic by Lemma 1.6.2
it suffices to show that c1ptq and c2ptq are colinear for all t. Recall that integral
curves of G are characterized by the equation

c1ptq “ Gpcptqq “ gradhK,qpcptqq. (4.24)
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Set g :“
a

|xG,Gy| then c1 “ gN where N is a unit vector field along c. Also
N is orthogonal to the level sets of hK,q and therefore also to the level sets of
rq and thus since xN,Ny “ ˘1 depending on the causal character of c we see
by Lemma 1.10.4 that N “ grad rq and the integral curves of N are unit speed
radial geodesics. Thus we compute

c2ptq “ ∇c1ptqc
1ptq

(4.24)
“ ∇c1ptq gradhK,qpcptqq

(4.18)
“ Spc1ptqq

“ gSpNq
(4.20)
“ gp1´KhqN “ p1´Khqc1ptq

and by Lemma 1.6.2 c is a pregeodesic.

Remark: Thus for integral curves c of gradhK,q the function λ as in Lemma 1.6.2
is given by λptq “ 1 ´KhK,qpσptqq “ K`K,qpσptqq. So if K “ 0 we can find a
reparametrization θ such that c ˝ θ is a geodesic by solving

θ2 ` pθ1q2 “ 0

which for t ě 0 is solved by lnptq. In case K ‰ 0 we have to distinguish if our
integral curve is timelike or spacelike. In the spacelike case we have to solve

θ2ptq ` cos p
?
Ktqpθ1q2 “ 0

whereas in the timelike case

θ2ptq ` cosh p
?
Ktqpθ1q2 “ 0.

4.4 Ricci Operator and Jacobi Fields
Definition 4.4.1. The Ricci operator, also called tidal force operator,
RX : TpM Ñ TpM is defined as RXpvq :“ RpX, vqX with X P XpMq, v P TpM
and R the Riemannian curvature operator.

Note that RXpvq is not R-linear in the X component and thus the Ricci
operator is not a p1, 2q-tensor.

Lemma 4.4.2. The Ricci operator is self-adjoint and Rvpvq “ 0 for v P TpM .
The orthogonal complement vK is invariant under Rv.

Proof. That RX is self adjoint follows by pair-symmetry of the Riemannian
curvature tensor, see [5, Proposition 3.36 p. 75]:

xRXv, wy “ xRpX, vqX,wy “ xRpX,wqX, vy “ xv,RXpwqy.

Next, Rvpvq “ Rvvv “ 0 by skew-symmetry of the Riemannian curvature oper-
ator. Let w P vK and z P TpM , which we can write as z “ z̃ ` λv with z̃ P vK
and λ P R. Then

xRvpwq, zy “ xRvpwq, z̃ ` λvy “ xw,Rvpz̃q ` λRvpvqy

“ xw,Rvpz̃qy “ xRvpwq, z̃y

Since this holds for any z we have shown that Rvpwq lies in vK.
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Remarks

(i) If M has constant curvature K, then by (1.23) the Ricci operator is given
by

Rvpwq “

$

’

&

’

%

0 if v “ w or v null
Kxv, vyw for v K w

Kpxv, vyw ´ xv, wyvq otherwise.
(4.25)

(ii) If M is a Riemannian manifold the eigenvalues RXpY q “ λY of the Ricci
operator RX give bounds for the sectional curvature K. Let λ´ be the
smallest eigenvalue of RX and λ` the largest eigenvalue. Both of them are
real since RX is self adjoint. Note that this only holds in the Riemannian
case and does not apply if the scalar product is indefinite. So choose X
such that xX,Xy “ 1 and some non null eigenvector Y corresponding to
some eigenvalue λ with xY,Xy “ 0. Then we see that

KpY,Xq “ xRXpY q, Y y

xY, Y y
“ λ

and thus conclude
λ´ ď KpY,Xq ď λ`.

In particular, for our constant curvature spaces of index ν “ 0, all eigen-
values are equal to K, so λ´pRN q “ λ`pRN q “ K and so KpX,Nq “ K,
as expected.

Let σ be a geodesic, then a vector field J along σ is called a Jacobi field if it
satisfies the Jacobi equation

J2 `Rpσ1, Jqσ1 “ 0. (4.26)

Using the Ricci operator, the Jacobi equation can be written as

J2 `Rσ1pJq “ 0.

In particular, if our space has constant sectional curvature K and J K σ1 span
a nondegenerate 2-plane, then by (4.25) the Jacobi equation is given by

J2 ` xσ1, σ1yKJ “ 0.

The Jacobi equation is a linear second order differential equation. Let σp0q “ p
and given v, w P TpM , then by ODE-theory there exist a unique Jacobi field
such that Jp0q “ v and J 1p0q “ w. Jacobi fields along some geodesic σ are
exactly the variational vector fields of geodesic variations σs of σ. Let σp0q “ p,
then variations which fix p correspond to Jacobi fields J along σ with Jp0q “ 0.

Lemma 4.4.3. Let σ be a geodesic with σp0q “ q and σ1p0q “ w. Given
w P TqM then

Jptq “ p d expqtwptvq. (4.27)

is the unique Jacobi field along σ with Jp0q “ 0 and J 1p0q “ v.

Proof. See [12, Lemma 5.3, p. 18].
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Lemma 4.4.4. Let σ be a geodesic in a semi Riemannian manifold M with
σp0q “ q and J a Jacobi field along σ with Jp0q “ 0 and J 1p0q “ v. Then J is
given by

Jptq “ Pt
0pvt´

1
6Rσ1p0qvpσ

1p0qqt3 `Opt4qq

“ Pt
0pvt´

1
6Rσ1p0qpvqt

3 `Opt4qq

(4.28)

where Pt
0 denotes the parallel transport along σ from σp0q “ q to σptq, in par-

ticular P0
0 “ IdTqM .

Proof. Let E1, . . . En be an orthonormal basis for TqM , then by parallel trans-
port we get an orthonormal frame Eiptq along σ given by Eiptq :“ Pt

0pEiq, with
Eip0q “ Ei for i “ 1, . . . n. Thus for Jptq “

řn
i“1 J

iptqEiptq we see that

pPt
0q
´1Jptq “

n
ÿ

i“1
J iptqEip0q.

Now we compute the Taylor expansion of J at t “ 0. By assumption Jp0q “ 0,
J 1p0q “ v and by the Jacobi equation

J2p0q “ ´Rσ1p0qJp0qσ1p0q
Jp0q“0
“ 0.

Then since ∇σ1σ
1 “ 0 we see that

J3 “
∇
dt
J2 “ ´∇σ1Rσ1Jpσ

1q

“ ´p∇σ1Rqσ1Jpσ
1q ´R∇σ1σ

1Jpσ
1q ´Rσ1∇σ1Jpσ

1q ´Rσ1Jp∇σ1σ
1q

“ ´p∇σ1Rqσ1Jpσ
1q ´Rσ1∇σ1Jpσ

1q.

Now since ∇σ1R is tensorial and Jp0q “ 0 we get p∇σ1Rqσ1p0qJp0qσ
1p0q “ 0 and

thus
J3p0q “ ´Rσ1p0qJ 1p0qσ1p0q “ ´Rσ1p0qvσ1p0q.

So the result follows by Taylor’s theorem.

4.5 Riccati Equation
This section follows [12, p.6-11]. Let M be a semi-Riemannian manifold. The
geodesic equation ∇σ1σ

1 “ 0 is a nonlinear differential equation. One can view
the Jacobi equation as a linearization of the geodesic equation as follows: let
σs be a geodesic variation of σ, so σ0 “ σ and σs is a geodesic for every s in
some open interval containing 0. Let N :“ Bσs

Bt and F :“ Bσs
Bs be the tangent

respectively variational vector fields of a geodesic variation of σ. Then F is a
Jacobi field along σ by [5, Lemma 8.3, p. 216], so

F 2 `RN pF q “ 0.

As a next step, we will split this second order linear equation into a system of
first order differential equations. To do so, we will look at all variations of σ,
which are orthogonal to some semi-Riemannian hypersurface V of M . Let

σ : V ˆ I ÑM
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be a smooth map such that σpp, tq :“ σpptq is a geodesic for fixed p starting
at p and σ1pp0q K TpV . By [5, Proposition 7.26 p. 200] there exists a normal
coordinate neighborhood U of V . So every point in U lies on exactly one geodesic
starting at V . On U we can look at the vector field dσp B

Bt q “ N |V . Then N
satisfies ∇NN “ 0. Let F be a Jacobi field along σ such that F p0q P Tσp0qV ,
which can be obtained as the variational vector field of a geodesic variation in
V , that is s ÞÑ σspt0q is a smooth curve in V and σpt0q P V . Let px2, . . . , xnq be
chart for V , where we can suppose that B

Bx2 |0 “ F p0q. Then we define a chart on
U by pt, x2, . . . , xnq ÞÑ expKptNpφ´1px2, . . . , xnqq. So since coordinate vector
fields commute, rF,N s “ 0 follows. By this we see ∇NF “ ∇FN and since
the right hand side is linear in F , we get a linear map S :“ ∇N given by
SX “ ∇XN . So our first equation is given by

∇NF “ SF. (4.29)

Hence given S we can compute F by solving a first order system. Next we will
derive a differential equation for S. By the product rule for tensor fields we
obtain

p∇NSqX “ ∇N pSXq ´ S∇NX,

so inserting the definition of S we compute

p∇NSqX “ ∇N∇XN ´ Sp∇XN ` rN,Xsq

“ ∇X∇NN `RpX,NqN ´∇rX,NsN ´ SpSXq ´ SprN,Xsq
“ ∇X∇NN ´RN pXq `∇rN,XsN ´ S2X ´∇rN,XsN
“ ∇X∇NN ´RN pXq ´ S

2X.

Since ∇NN “ 0, we obtain a Riccati equation for S

∇NS `RN ` S
2 “ 0. (4.30)

We know form Lemma 1.4.3 that S “ ∇N is self adjoint, so

x∇XN,Y y “ xX,∇YNy

for all vector fields X,Y P XpUq. Then by lemma 1.3.5 N is locally a gradient
of some smooth map f P C8pUq and further

XxN,Ny “ 2x∇XN,Ny “ 2xX, ∇NN
loomoon

“0

y “ 0,

so xN,Ny is constant. We may assume that 1 “ ‖N‖ “ ‖grad f‖ and thus f is
a distance function on U . In particular the level sets Vt “ tx P M | fpxq “ tu
are semi-Riemannian hypersurfaces by Proposition 1.4.1, where the unit normal
vector field is given by N . If V “ Vt0 then σ : V ˆ I ÑM is given by σpp, tq “
expp ppt´ t0qNppqq. Then we set φtppq :“ σpp, tq and see that Vt “ φtpV q, so
Vt is a family of equidistant hypersurfaces. If we restrict ∇N to the tangent
bundle TVt of our level sets, then since N is a unit normal we see by lemma 1.4.3
that

Wt “ ∇N |Vt , (4.31)
where Wt is the Weingarten-map or shape operator of the semi-Riemannian
hypersurface Vt.
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Remark In Lemma 2.2.2, note that for g “ 1 equation (2.5) is the Riccati
equation (4.30) and (2.2) is the Jacobi equation if we choose R to be the Ricci
operator along some geodesic.

4.6 Riccati Equation for the Modified Shape Op-
erator

Now we are ready to show one of the main results presented in the paper by
Alexander and Bishop [1], which shows that the modified shape operator SK,q
satisfies a certain matrix Riccati equation. Riccati equations are first order
non-linear differential equations of the form

y1ptq “ g0ptq ` g1ptqyptq ` g2ptqyptq
2, (4.32)

hence are second order ODEs with a quadratic term.

Proposition 4.6.1. [1, Proposition 4.1] Let M be a semi-Riemannian man-
ifold and in a normal coordinate neighborhood U of a point q in M let σ be a
radial unit speed geodesic at q. Then the modified shape operator S “ SK,q “

∇v gradhK,q and Ŝ as obtained by Lemma 2.2.2 are the same if there we choose
R “ Rσ1 and g “ xG,Gy. Further, S satisfies the following first order partial
differential equation of Riccati type

∇GS ` S
2 ´ p1´KhqS `RG `K dhbG “ 0, (4.33)

where we use the notation as in the remark after Proposition 4.3.3 and RG is
the Ricci operator, see Definition 4.4.1.

Remark

• Since h “ hK,q is a smooth real valued function we see that dh is a one-
form and G “ gradhK,q is a vector field. Thus dh b G is a

`1
1
˘

-tensor.
Application of dh b G to some vector field V is given by dh b GpV q “
dhpV qG “ V phqG and so the result is again a vector field.

• Comparing (4.33) with (4.32) we observe

∇GS
loomoon

y1

“ ´RG ´K dhbG
loooooooooomoooooooooon

g0

`p1´KhqS
looooomooooon

g1y

`p´1qS2
loomoon

g2y2

.

Proof. We show that (4.33) holds along nonnull radial unit speed geodesics
radiating from a point q in M . The general case for null geodesics then follows
by continuity. So let σ be a nonnull radial unit speed geodesic starting at q and
set N :“ σ1ptq, which is a parallel unit vector field along σ since σ is a geodesic.
First we show that (4.33) holds in directions tangent to σ. By Proposition 4.3.3
we know that along σ the modified shape operator S is of the form

SN “ ∇NG “ p1´KhqN “ K`N. (4.34)

By Lemma 4.1.3(i), on a normal coordinate neighborhood of q every radial unit
speed geodesic starting at q satisfies

Gptq “ tφptqσ1ptq (4.35)
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for some smooth function φ and thus

∇GN “ ∇tφσ1σ
1 “ tφ

“0
hkkikkj

∇σ1σ
1 “ 0.

By C8pMq-linearity and skew-symmetry of the Riemannian curvature tensor we
get

RGpNq “ RptφN,NqptφNq “ t2φ2

“0
hkkkikkkj

RpN,NqN “ 0.

Next we show that
p∇GSqpNq “ ´KpGhqN

which can be seen since S is a
`1

1
˘

-tensor 2 and applying the product rule for
tensor derivations [5, Proposition 2.13, p. 44] yields together with ∇GN “ 0 as
shown above that

p∇GSqpNq “ ∇GpSpNqq ´ Sp

“0
hkkikkj

∇GN q
(4.34)
“ ∇Gpp1´KhqNq

“ p∇Gp1´KhqqN ` p1´Khq
“0

hkkikkj

∇GN “ ´KpGhqN.

By combing the above results we get

p∇GS`S
2 ´ p1´KhqS `RG `K dhbGqN

“ ´KpGhqN ` p1´Khq2N ´ p1´Khq2N ` 0`KpNhqG
“ ´KpφNhqN `KpNhqφN “ 0,

where we used G “ φN . Now we will show that Ŝ and S agree and use this to
show that the Riccati equation (4.33) holds on V :“ Vσptq :“ σ1ptqK “ GpσptqqK,
the normal space to σ at time t. Since σ is nonnull, Vσptq is a non-degenerate
subspace of TσptqM and hence of dimension pn´ 1q. First we choose a parallel
frame along σ by parallel transport of some orthonormal basis of TqM along
σ and identify TqM with Rnk . In this way we can identify a linear operator on
TσptqM with a smooth family of linear operators on Rnk and linear operators on
Vσ1ptq are identified with linear operators on an pn´ 1q-dimensional subspace of
Rnk . We now use Lemma 2.2.2 and then (4.31) to show that Ŝ “ SK,q. Since RN
is self adjoint and smooth by Lemma 4.4.2 we can set R :“ RN in Lemma 2.2.2
and so (2.2) is

F 2 `RN pF q “ 0,

which is the Jacobi-equation (4.26) for a Jacobi-field F orthogonal to σ since
by Lemma 4.4.2, RN leaves NK “ V invariant . Since we assume F 1p0q ‰ 0
it follows that F is a nontrivial Jacobi field along σ, so in particular F ptq is
invertible for all t since σ is contained in a normal coordinate neighborhood of
q, so no conjugate points can occur along σ. Now if we set g :“ 1 in Lemma 2.2.2
then since g1 “ 0 we see that (2.5) is the Riccati equation (4.30), that is

S1 `RN ` S
2 “ 0.

2Since the modified shape operator S : XpUq Ñ XpUq is a C8pMq-linear map.
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Let SW be the solution to this equation, then by Lemma 2.2.2 we have

SW ptq “ F 1ptqF ptq´1,

which is a self adjoint and linear map with SW p0q “ I. Also the Weingarten-
or shape operator Wtpvq :“ Wσptqpvq “ p∇v grad fqpσptqq of Vσptq, where f is
a distance function as in Section 4.5, solves the above Riccati equation with
W0 “ I. Thus W and SW agree and

SW ptq “Wt “ F 1ptqF ptq´1 (4.36)

are the Weingarten maps of equidistant hypersurfaces from q. On the other
hand, set g :“

a

|xG,Gy|, then by Lemma 4.1.3 (ii)+(iii) it follows that g
satisfies the perquisites of Lemma 2.2.2 and further

g1ptq “ cos
b

KEqpσptqq “ p1´KhK,qpσptqqq.3 (4.37)

Comparing (4.35) and Lemma 4.1.3(ii) shows G “ gN . Also for any v P Vσptq
we have vpgq “ 0 since g is constant on level sets Vσptq. To see this just note
that G only depends on Eqpσptqq and P pσptqq, which are constant on the level
sets Vσptq. For R “ RN as above, F in (2.2) remains unchanged and (2.3) yields
for t ą 0

Ŝptq :“ gptq

“Wt by (4.36)
hkkkkkkikkkkkkj

F 1ptqF ptq´1 “ gptqWt

and
Ŝpvq “ gW pvq “ g∇vN

vpgq“0
“ ∇vpgNq “ ∇vG “ SK,qpvq.

Now for t “ 0 we have hK,qpσp0qq “ 0 and thus (4.34) reduces to SK,qpσ1p0qq “
σ1p0q. Using the exponential map we can realize any unit vector v P TqM as a
geodesic cptq :“ expptvq with c1p0q “ v. By this it follows that SK,qp0q “ I has
to be the identity, so SK,q also satisfies (2.4), which implies that the modified
shape operator SK,q “ ∇ gradhK,q and Ŝ are the same if we choose R “ RN and
g “ xG,Gy. So now it only remains to show that the Riccati equation (4.33)
holds for S “ SK,q restricted to V “ σ1K. We will do so by utilizing (2.5), which
tells us that S satisfies

gS1 ` S2 ´ g1S ` g2R “ 0. (4.38)

Thus if we show that on V the left hand side of (4.33) is equal to the left hand
side of the above equation we are done. Thus for v P V we compute

p∇GSqpvq “ p∇gNSqpvq “ g

“S1
hkkikkj

p∇σ1Sqpvq “ gS1pvq

and
RGpvq “ RpG, vqG

G“gN
“ g2RpN, vqN “ g2Rpvq.

3Another way to prove this is by seeing that g “
a

˘xG,Gy where the sign depends on the

causal character of σ and thus g1 “ 1
2g 2˘x∇NG,Gy

(4.34)
“ ˘p1´Khqg´1g xN,Ny

loomoon

“˘1

“ p1´Khq.
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We have vphq “ 0 since hpσptqq “ hK,qpσptqq is constant on the level set and
since v P Vσptq, which is the tangent space of the level set in σptq. It follows that

K dhbGpvq “ KvphqG “ 0.

At last
p1´KhqSpvq (4.37)

“ g1ptqSpvq

and so all the terms of the Riccati equation (4.33) are dealt with and we are
done by (4.38).



Chapter 5

Local Triangle Comparison
Theorems

5.1 Prerequisites
Here we will study the differential inequality ψ2 ` κψ ď 0. Under certain
assumptions the solutions are positive functions.

Lemma 5.1.1. For κ P R, let ψ : r0, Ls Ñ R be a smooth function such that

ψ2 ` κψ ď 0, (5.1)

ψp0q “ 0 and ψpLq “ 0. For κ ą 0, assume that L ă π?
κ
. Then ψptq ě 0 for

all t P r0, Ls.

Proof. First we prove the result for κ ą 0. The proof for this case is due
to [12, p. 23,24]. So suppose to the contrary that there is a point t̄ P p0, Lq
such that ψpt̄q ă 0, and pick t̄min such that ψpt̄minq “ mintPr0,Ls ψptq. Since by
assumption L ă π?

κ
there exist k ą 0 and ε ą 0 with k ą κ, such that

L ă
π
?
k
´ ε ă

π
?
k
ă

π
?
κ

(5.2)

is satisfied. For c0 ą 0 set s0ptq :“ ´c0 sin p
?
kpt` εqq, then s0 satisfies the

differential equation s20` ks0 “ 0 together with s0p´εq “ 0 and s0p
π?
k
´ εq “ 0.

Further, s0ptq ă 0 for all t P p´ε, π?
k
´ εq, thus by (5.2) also on r0, Ls. Note

that this holds for any c0 ą 0. By choosing c0 big enough, we can have s0ptq ă
ψpt̄minq ď ψptq for all t P r0, Ls. Now we scale s0 by some c P R with 0 ă c ď 1
in such a way that the graphs of cs0 and ψ touch for the first time, where c is
decreased starting at 1. The graphs intersect since we can choose c in such a
way that cs0 is arbitrarily small at any point and ψ is assumed to have negative
values. So choose c ą 0 such that sptq :“ cs0ptq satisfies sptq ď ψptq for t P r0, Ls
and spt0q “ ψpt0q for some t0 P r0, Ls. Now by the above s again satisfies

s2 “ ´ks. (5.3)

The difference ψ ´ s then has a minimum at t0, and since spt0q “ ψpt0q ă 0

67
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Figure 5.1: Setup in the proof for the case κ ą 0.

pψ ´ sq2pt0q
(5.1)`(5.3)

ď pk ´ κq
loomoon

ą0

ψpt0q ă 0.

But this contradicts ψ ´ s having a minimum at t0. For κ ď 0, again suppose
there is a point t̄ P p0, Lq such that ψpt̄q ă 0. Since the values of ψ at the
endpoints are 0 and by continuity, there exists a whole interval such that ψptq ď
0 for t P rtmin, tmaxs, where 0 ď tmin ă t̄ ă tmax ď L, and such that ψptminq “
ψptmaxq “ 0. So (5.1) shows for t P rtmin, tmaxs that

ψ2ptq ď ´ κψptq
loomoon

ě0

ď 0.

This implies that ψ restricted to rtmin, tmaxs is a concave function. Therefore,
for all α P r0, 1s by definition of concavity

ψpp1´ αqtmin ` αtmaxq ě p1´ αqψptminq ` αψptmaxq “ 0

holds, which is a contradiction to ψpt̄q ă 0.

5.2 Curvature Bounds Imply Local Triangle Com-
parison

Definition 5.2.1. Let M and M̃ be semi-Riemannian manifolds, σ and σ̃
geodesics in M respectively M̃ . Let σ and σ̃ be defined on the same interval
I, then σ and σ̃ are called corresponding geodesics (corresponding geodesic
segments/lines/rays) if

xσ1ptq, σ1ptqy “ xσ̃1ptq, σ̃1ptqy

for all t P I. If two points on σ and σ̃ have the same affine parameter value
they are called corresponding points.
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This definition allows us to to compare linear operators along geodesics in
certain situations. Namely suppose that M and M̃ have the same dimension n
and index ν, and let σ and σ̃ be corresponding geodesics defined on some interval
I. Now for some fixed t0 P I let q :“ σpt0q and q̃ :“ σ̃pt0q be corresponding
points. Then we can identify the tangent spaces TqM and Tq̃M̃ with each other
by an isometry I : Tq̃M̃ Ñ TqM which identifies the tangent vectors c̃1pt0q and
c1pt0q. Further let J : TqM Ñ Rnν be an isometry. By choosing parallel frames
along both curves we can identify linear operators along σ and σ̃ with families
of linear operators on TqM and Tq̃M̃ , which depend smoothly on t P I. This is
done in the same way as in the proof of Lemma 4.4.4. So let Aptq and Ãptq be
families of linear maps on TqM and Tq̃M̃ . Then A and Ã can be compared by
looking at J ˝A ˝ J ´1 and J ˝ I ˝ Ã ˝ I´1 ˝ J ´1, which are booth families of
self-adjoint linear maps on Rnν . We will use this construction in the following
proofs without mentioning J and I, to keep notation simple.

Lemma 5.2.2. [1, Corollary 4.5 p. 268,269 ] LetM and M̃ be semi-Riemannian
manifolds which have the same index and dimension. Given corresponding non-
null geodesic rays σ : r0, bs Ñ M and σ̃ : r0, bs Ñ M̃ radiating from points
q :“ σp0q P M and q̃ :“ σ̃p0q P M̃ , assume that no conjugate points exist along
σ and σ̃ (e.g. that they are contained in a normal coordinate neighborhood of q
respectively q̃). If the Ricci operators satisfy

Rσ1 ě R̃σ̃1

for corresponding points, then the modified shape operators satisfy

SK,q ď S̃K,q̃

at corresponding points, where comparison of self-adjoint linear operators along
geodesics is done as explained above. If we reverse all inequalities, the result is
also true.

Proof. Let σ and σ̃ be corresponding geodesic rays, then by Lemma 1.7.4 we
see that

Eqpσptqq “ t2xσ1p0q, σ1p0qy “ t2xσ̃1p0q, σ̃1p0qy “ Eq̃pσ̃ptqq. (5.4)

But then, by definition of the modified distance function also hK,qpσptqq “
hK,q̃pσ̃ptqq. Set hptq :“ hK,qpσptqqq and h̃ptq :“ hK,q̃pσ̃ptqq. As shown in Propo-
sition 4.3.3, along radial directions the modified shape operator S :“ SK,q is of
the form

Spσ1q “ ∇σ1 gradhK,q “ p1´Khqσ1

for any semi-Riemannian manifold. The analogous result also holds for S̃ :“
S̃K,q̃ along σ̃. By again using the assumption that σ and σ̃ are corresponding
geodesics, we get by the above

xSpσ1q, σ1y “ p1´Khqxσ1, σ1y “ p1´Kh̃qxσ̃1, σ̃1y “ xS̃pσ̃1q, σ̃1y

which shows that
S|σ1 “ S̃|σ̃1 . (*)

By Proposition 4.6.1 the action of S on V :“ σ1K, respectively that of S̃ on
Ṽ :“ σ̃1K, is described by Lemma 2.2.2. Denote by P the local position vector
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field at q, and by P̃ the local position vector field at q̃. Then for G :“ gradhK,q
and G̃ :“ gradhK,q̃, we will show that xG,Gy “ xG̃, G̃y. Since

xP pσptqq, P pσptqqy
(1.31)
“ t2xσ1ptq, σ1ptqy “ t2xσ̃1ptq, σ̃1ptqy

(1.31)
“ xP̃ pσ̃ptqq, P̃ pσ̃ptqqy,

by Lemma 4.1.2 the result for K “ 0 follows immediately. For K ‰ 0 note that
φptq, as in Lemma 4.1.2 such that pG ˝ σqptq “ φptqpP ˝ σqptq, only depends on
Eqpσptqq, and Eqpσptqq “ Eq̃pσ̃ptqq by (5.4). In Theorem 2.2.3, set R1 :“ Rσ̃1 ,
R2 :“ Rσ1 and

g :“
a

|xG,Gy| “
b

|xG̃, G̃y|.

Then by Lemma 4.1.3(iii), g satisfies the prerequisites of Theorem 2.2.3, which
yields

S|V ď S̃|Ṽ . (**)

Since σ and σ̃ are nonull we get TσptqM “ σ1ptq ‘ V and Tσ̃ptqM̃ “ σ̃1ptq ‘ Ṽ .
So we can apply Remark(iv) after Definition 2.1.1 to (*) and (**) to obtain
S ď S̃.

Lemma 5.2.3. [1, Corollary 4.6 p. 269] Let M be a semi-Riemannian man-
ifold such that R ě K and QK be a constant curvature space of the same
dimension and index as M . For q, p P M connected by a geodesic segment σ
which has no conjugate points, if a corresponding geodesic segment in QK has
no conjugate points then at p, the modified shape operator SK,q satisfies

pSK,qqp ď p1´KhK,qppqqpIdqTpM . (5.5)

Here pIdqTpM denotes the identity on TpM . For R ď K the same statement
holds with the inequality in (5.5) reversed.

Proof. By Lemma 1.2.4 we know that R ě K is equivalent to

xRvwv, wy ě Kpxv, vyxw,wy ´ xv, wy
2
q (*)

for all v, w P TpM which span a non-degenerate plane. Since TpM and Tp̃QK

are identified by an isometry, we will denote the images of v and w under
this isometry with v and w as well. In the constant curvature space QK with
curvature tensor R̃,

K “
xR̃vwv, wy

xv, vyxw,wy ´ xv, wy
2 .

So by (*) we obtain
xRvwv, wy ě xR̃vwv, wy.

But then
xpRvw ´ R̃vwqv, wy ě 0,

which shows that at corresponding points of σ and σ1, the self adjoint Ricci
operators satisfy Rσ1 ě R̃σ̃1 . Denote the modified shape operator on QK by
S̃K,q̃ and the identity on Tp̃QK by pĨdqTp̃Q. Then by Lemma 5.2.2, since by
assumption there are no conjugate points along both geodesics,
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pSK,qqp ď pS̃K,q̃qp̃ “

#

pĨdqTp̃QK
if K “ 0

K`K,q̃pp̃qpĨdqTp̃QK
if K ‰ 0.

This shows (5.5) for K “ 0. If K ‰ 0 the result follows by (4.19).

Theorem 5.2.4. [1, Proposition 5.2 p. 271] Let U be a neighborhood normal
for K1. If R ě K on U , then triangle comparison holds on U : For all triangles
∆pqr in U with comparison triangle ∆p̃q̃r̃, the signed distance between points
in ∆pqr are ě the signed distance between corresponding points in ∆p̃q̃r̃. The
result with switched inequalities is also true.

Remark: We can use any of the equivalent conditions for triangle comparison
in Proposition 3.4.2.

Proof. Let ∆pqr be a triangle in U with comparison triangle ∆p̃q̃r̃ in a model
space QK of constant curvature K with the same dimension and index as M .
We will show that R ě K (R ď K) implies that the signed distance from q to
any point m on the geodesic connecting p with r is ě (ď) than the distance
between the corresponding points q̃ and m̃ in the model triangle ∆p̃q̃r̃. Let
σ : r0, 1s Ñ U be the unique geodesic connecting p with r and σ̃ : r0, 1s Ñ QK

the corresponding geodesic in our model space connecting p̃ with r̃. The function
hK,q ˝σ : r0, 1s Ñ R gives the modified distance from q to σptq. By Lemma 4.1.4
the modified distance function is a monotonically increasing function of the
signed distance, so it suffices to show that R ě K (R ď K) implies hK,q ˝ σ ě
h̃K,q̃ ˝ σ̃ (hK,q ˝ σ ď h̃K,q̃ ˝ σ̃). First suppose that R ě K. Set m :“ σpsq for
some s P r0, 1s, then by Lemma 5.2.3 we know that the modified shape operator
SK,q satisfies

pSK,qqm ď p1´KhK,qpσpsqqqpIdqTmM , (*)

since q and m can be joined by unique geodesic without conjugate points. This
holds since U is assumed to be a normal neighborhood for K, so in particular
U is a normal neighborhood by definition. Using the above we compute

phK,q ˝ σq
2psq

(1.8)
“ HhK,q pσ1psq, σ1psqq

(1.7)
“ x∇σ1psq gradhK,q, σ1psqy

(4.18)
“ xpSK,qqσpsqpσ

1psqq, σ1psqy
(*)
ď p1´KhK,qpσpsqqqxσ1psq, σ1psqy.

Since σ is parametrized by r0, 1s we know by (1.19) that Epσq “ xσ1ptq, σ1ptqy
for all t P r0, 1s. So set hptq :“ phK,q ˝ σqptq, then by the above h satisfies the
differential inequality

h2 `KEpσqh ď Epσq. (5.6)

Denote by h̃K,q̃ the modified distance function in the model space QK , and set
h̃ptq :“ ph̃K,q̃ ˝ σ̃qptq, then by (4.17) even equality holds

h̃2 `KEpσ̃qh̃ “ Epσ̃q. (5.7)
1Remember that this means that U is a normal neighborhood and every triangle in U

satisfies size bounds for K, which gives a unique realization in some model space of curvature
K as shown in Lemma 3.2.4.
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Since σ and σ̃ are corresponding geodesics,

Epσq “ xσ1p0q, σ1p0qy “ xσ̃1p0q, σ̃1p0qy “ Epσ̃q.

Set
ψ :“ h´ h̃ (5.8)

and then subtract (5.7) from (5.6) to get

ψ2 `KEpσqψ ď 0. (5.9)

At the endpoints, ψ has the values

ψp0q “ h̃K,q̃pσ̃p0qq ´ hK,qpσp0qq “ h̃K,q̃pp̃q ´ hK,qppq “ 0

since Eqppq “ Eq̃pp̃q, which follows from |pq|˘ “ |q̃p̃|˘. Also,

ψp1q “ h̃K,q̃pσ̃p1qq ´ hK,qpσp1qq “ h̃K,q̃pr̃q ´ hK,qprq “ 0.

So for κ :“ KEpσq, to apply Lemma 5.1.1 to (5.9) it only remains to show that
in case κ ą 0 the bounds for L hold. In our case L “ 1 since our geodesics are
assumed to be parametrized by r0, 1s and the size bounds are then of the form

1 ă π
a

KEpσq
.

If K ą 0 and Epσq ą 0, then
a

Epσq “ |pr|˘ “ dpp, rq is the Riemannian
distance between p and r, so

|pr|˘ ă
π
?
K

(1)

has to be satisfied. Now in case K ă 0 and Epσq ă 0 the signed distance is
given by |pr|˘ “ ´

a

´Epσq, and so the requirement then is

|pr|˘ ą
´π
?
´K

. (2)

Since U is normal for K, the signed side lengths of triangles in U have to satisfy
the bounds in Lemma 3.2.4. So in particular (1) and (2) are satisfied. Then
Lemma 5.1.1 shows that ψptq ě 0 on t P r0, 1s, which by (5.8) is equivalent to

phK,q ˝ σqptq ě ph̃K,q̃ ˝ σ̃qptq

for all t P r0, 1s and we are done since Lemma 4.1.4 implies

|qσptq|˘ ě |q̃σ̃ptq|˘

Finally, the case R ď K is shown the same way. To apply Lemma 5.1.1 in this
case one has to set ψ :“ h̃´ h to get ď in the differential inequality for ψ.

5.3 From Triangle Comparison to Curvature Bounds
Theorem 5.3.1. [1, Proposition 5.3.] Let U be a neighborhood which is normal
for K. If for every triangle ∆pqr in U , the signed distance between any two
points is ě (ď) the signed distance of the corresponding points in a realizing
triangle ∆p̃q̃r̃ in a model space of curvature K, then R ě K (R ď K).
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Remark Instead of comparison of distances between any two points on cor-
responding triangles, any of the equivalent conditions of Proposition 3.4.2 can
be used.

Proof. Let σ be a nonnull geodesic segment σ : r0, 1s Ñ U . Then choose some
v P Tσp0qM which is orthogonal to σ1p0q. The subspace V spanned by σ1p0q
and v is two-dimensional since both vectors are nonnull. Let QK be the two-
dimensional model space of curvature K with the same index as V . Choose a
geodesic σ̃ : r0, 1s Ñ QK such that xσ1ptq, σ1ptqy “ xσ̃1ptq, σ̃1ptqy for all t P r0, 1s,
and ṽ P Tσ̃p0qQK with xσ̃1p0q, ṽy “ 0 and xv, vy “ xṽ, ṽy. By Lemma 4.4.3 there
is a unique Jacobi field along σ such that Jp0q “ 0 and J 1p0q “ v. Also along σ̃
there is a unique Jacobi field J̃ such that J̃p0q “ 0 and J̃ 1p0q “ ṽ. Let τ be the
geodesic variation of σ given by

τpt, sq :“ σsptq :“ expσp0qptpσ1p0q ` svqq

and let τ̃ be the corresponding geodesic variation of σ̃

τ̃pt, sq :“ σ̃sptq :“ expσ̃p0qptpσ̃1p0q ` sṽqq.

The Jacobi fields J and J̃ are obtained as variational vector fields of these
geodesic variations, Jptq “ B

Bs |s“0σsptq and J̃ptq “ B
Bs |s“0σ̃sptq. Further BτBt p0, sq “

σ1p0q ` sv and Bτ̃
Bt p0, sq “ σ̃1p0q ` sṽ. So since v K σ1p0q and ṽ K σ̃1p0q,

x
Bτ

Bt
p0, sq, Bτ

Bt
p0, 0qy “ xσ1p0q ` sv, σ1p0qy “ xσ1p0q, σ1p0qy

“ xσ̃1p0q, σ̃1p0qy “ xσ̃1p0q ` sṽ, σ̃1p0qy

“ x
Bτ̃

Bt
p0, sq, Bτ̃

Bt
p0, 0qy.

This shows that
xσ1p0q, σ1sp0qy “ xσ̃1p0q, σ̃1sp0qy. (5.10)

So the nonnormalized angle of the hinge given by σ and σs is the same as the
nonnormalized angle of the corresponding hinge in QK . Set α :“ xσ1p0q, σ1sp0qy.
Now we show that

Jptq “
1
s

exp´1
σ0ptq

pσsptqq `Opsq. (5.11)

This can be seen by looking at the Taylor expansion of exp´1
σ0ptq

pσsptqq with
respect to s, which is given by

exp´1
σ0ptq

pσsptqq “ exp´1
σ0ptq

pσ0ptqq ` s
B

Bs

ˇ

ˇ

ˇ

ˇ

s“0
pexp´1

σ0ptq
pσsptqqq `Ops

2q.

Now since exp´1
σ0ptq

pσ0ptqq “ 0 and

B

Bs

ˇ

ˇ

ˇ

ˇ

s“0
pexp´1

σ0ptq
pσsptqqq “ p dexp´1

σ0ptq
qσ0ptq

loooooooomoooooooon

Id

p
B

Bs

ˇ

ˇ

ˇ

ˇ

s“0
σsptqq “ Jptq
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which shows (5.11). So we get

|Jptq|˘ “ sgnpJptqq
a

|xJptq, Jptqy|

“ sgnpJptqq lim
sÑ0

1
s

c∣∣∣xexp´1
σ0ptq

pσsptqq, exp´1
σ0ptq

pσsptqqy
∣∣∣

“ lim
sÑ0

1
s

|σ0ptqσsptq|˘

(5.12)

since sgnpJptqq “ sgnpexp-1
σ0ptqpσsptqqq. Suppose that triangle comparison as in

Proposition 3.4.2(3) holds, that is nonnormalized angles in triangles in U are ě
the corresponding angles in a comparison triangle. Then this implies

|σ0ptqσsptq|˘ ď |σ̃0ptqσ̃sptq|˘. (5.13)
Since, suppose to the contrary that |σ0ptqσsptq|˘ ą |σ̃0ptqσ̃sptq|˘ “: d̃new. Con-
sider the triangle ∆new in QK with side lengths p|σ0|˘, |σs|˘, d̃newq and let
αnew be the nonnormalized angle between the sides with lengths |σ0|˘ and
|σs|˘. Then by the Hinge Lemma Lemma 3.3.1 the nonnormalized angle αnew
is a decreasing function of the opposite side length. Since |σ0ptqσsptq|˘ ą d̃new
this implies α ă αnew, which contradicts Proposition 3.4.2(3). By combining
(5.12) and (5.13) we get

xJptq, Jptqy “ lim
sÑ0

1
s2 xexp´1

σ0ptq
pσsptqq, exp´1

σ0ptq
pσsptqqy

“ |σ0ptqσsptq|˘ ď |σ̃0ptqσ̃sptq|˘

“ lim
sÑ0

1
s2 xexp´1

σ̃0ptq
pσ̃sptqq, exp´1

σ̃0ptq
pσ̃sptqqy “ xJ̃ptq, J̃ptqy.

(5.14)

By Lemma 4.4.4 we can write J and J̃ as

Jptq “ Pt
0pvt´

1
6Rσ1p0qvpσ

1p0qqt3 `Opt4qq

J̃ptq “ P̃t
0pṽt´

1
6 R̃σ̃1p0qṽpσ̃

1p0qqt3 `Opt4qq.

where Pt
0 and P̃t

0 denote the parallel transport along σ and σ̃, respectively. In
the constant curvature model space

R̃σ1p0qṽpσ̃
1p0qq (1.23)

“ Kpxσ̃1p0q, σ̃1p0qy
loooooomoooooon

“xσ1p0q,σ1p0qy

ṽ ´ xṽ, σ̃1p0qy
loooomoooon

“0

σ̃1p0qq “ Kxσ1p0q, σ1p0qyṽ.

Parallel transport is an isometry, so we get

xJptq, Jptqy “ xv, vyt2 ´
1
3xRσ1p0qvσ

1p0q, vyt4 `Opt5q

xJ̃ptq, J̃ptqy “ xṽ, ṽyt2 ´
1
3Kxσ

1p0q, σ1p0qyxṽ, ṽyt4 `Opt5q.

Since xv, vy “ xṽ, ṽy by definition, the coefficients for the t2-terms agree, we
obtain from (5.14) via tÑ 0 that

xRσ1p0qvσ
1p0q, vy ě Kxσ1p0q, σ1p0qyxv, vy.

Any non-degenerate plane Π can be obtained by a suitable choice of σ and v2.
So we get R ě K by Lemma 1.2.4.

2Let e1, e2 be an orthonormal basis for Π Ă TqM for q P U . Set σptq :“ expq pte1q and
v :“ e2, then σ1p0q “ e1.
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5.4 Main Theorem
Now can collect our results in the main theorem:

Theorem 5.4.1. [1, Theorem 1.1, p. 253] Let M be a semi-Riemannian
manifold and U a neighborhood which is normal for K. Then R ě K (R ď K)
if the signed distance between any two points on a triangle in U is ě (ď) the
signed distance of corresponding points on a realizing triangle in QK

3. If, on
the other hand, triangle comparison holds on a normal coordinate neighborhood
U , then the corresponding size bounds R ě K or R ď K on U follow. So, in
particular, if this holds for all points then curvature bounds for M follow.

Proof. By Theorem 5.2.4 and Theorem 5.3.1.

We end this thesis with a short recapitulation of the steps which have led us
to the proof of Theorem 5.4.1. The main tool was the modified distance func-
tion hK,q, which isK-convex along spacelike geodesics,K-concave along timelike
geodesics and K-affine for null geodesics, as shown in Proposition 4.3.3. The
modified distance function then induces a modified shape operator SK,q, which
is smoothly defined on all radial geodesics even if they are null. On hyper-
quadrics QK the shape operator is just a scalar multiple of the identity on each
tangent space. In Proposition 4.6.1 we show that the modified shape operator
can also be obtained from the Ricci operator using Lemma 2.2.2 and satisfies a
Riccati equation. Further, in the proof of Proposition 4.6.1 have seen that the
modified shape operator is a rescaling of the Weingarten map of an equidistant
hypersurface of q. Along radial geodesics, inequalities for the Ricci operators
then imply inequalities for the modified shape operators in Lemma 5.2.2, where
we use Theorem 2.2.3 for the comparison of self adjoint linear maps. If the
sectional curvature of M is bounded above (below) by K, then by Lemma 5.2.2
we get a bound on the modified shape operator, given by a rescaling of the
identity on the tangent space by p1 ´ KhK,qq. By this we see in the proof of
Theorem 5.2.4 that h “ hK,q satisfies h2 `KEpσq ď Epσq. Furthermore in the
model spaces of constant curvature K even equality holds for the correspond-
ing modified distance function h̃. Using Lemma 5.1.1 we then conclude that
triangle comparison holds. The equivalent definitions for triangle comparison
on neighborhoods which are normal for K are shown in Proposition 3.4.2, us-
ing Lemma 3.3.1(hinge) and Lemma 3.3.2(straightening). The reverse direction,
where we suppose that triangle comparison holds, is shown by comparing Jacobi
fields along radial geodesics and utilizing the Taylor expansion for Jacobi fields.

3So triangle comparison holds on U , which means all of the equivalent conditions in Propo-
sition 3.4.2 hold.
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