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Abstract

In this thesis mass effects of primary heavy quarks, i.e. heavy quarks that originate directly from the
hard process, in global 2-jet event shape observables for e+e− annihilation are investigated. Since
the original definition of such event-shapes like angularities, thrust, jet masses or C-parameter is not
uniform with respect to the treatment of massive particles, definitions which correspond to different
schemes regarding the treatment of heavy quark masses (P , E andM -scheme) are considered and their
differences analyzed. For the singular dijet-like configuration it is possible to use effective field theory
methods, in particular boosted Heavy Quark Effective Theory (bHQET) and Soft-Collinear Effective
Theory (SCET), in order to show that the leading cross section contribution for the observables of
interest can be factorized in more general building blocks and thereby systematically resum large
logarithms present in this limit by utilizing renromalization group methods. At next-to-next-to-
leading logarithmic accuracy (NNLL) the effects of heavy quark masses only enter via the so called
jet function and it is shown that for the investigated observables different event shapes form classes
for which the jet function is universal. Using this, the previously unknown primary massive jet
function for the investigated P - and E-scheme event shapes is calculated. Together with the other
cross section factors known from the massless case this allows to calculate the singular differential
cross section for the discussed event shapes in the context of stable primary heavy quarks at NNLL.
For the case of unstable heavy quarks, relevant for top quarks, most of the investigated event shapes
are very sensitive to the exact kinematics of the heavy quark decay products which leads to a formally
power suppressed but not negligibly small change in the differential cross section. Investigating the
underlying mechanisms then leads to an additional factorization of the leading contribution to the
differential cross section for unstable heavy quarks into the singular stable cross section and a so
called decay function which parametrizes the exact decay kinematics in terms of the event shape of
interest. In a next step this factorization is checked numerically using simulations which shows that the
theoretical predictions coming from the decay function approach work very well for the investigated
observables. Finally the full result for unstable M -scheme C-parameter, which is of interest in the
context of MC top quark mass calibrations, is qualitatively compared to pseudo-data from PYTHIA 8.2
which shows that the developed setup leads to a consistent result for such calibrations.
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Zusammenfassung

In dieser Arbeit werden Masseneffekte von primären massiven Quarks, das sind massive Quarks die in
der harten Wechselwirkung erzeugt wurden, im Rahmen von sogenannten Event-Shape-Verteilungen
in Elektron-Positron Kollisionen untersucht. Nachdem die ursprünglichen Definitionen von den meis-
ten dieser Observablen, beispielsweise Angularities, Thrust, Jet Massen oder C-Parameter, in Bezug
auf massive Teilchen nicht einheitlich sind, werden Definitionen die in verschiedene Schemen bezüglich
der Behandlung von Quarkmassen (P , E und M -Schema) fallen, untersucht. Für singuläre Konfig-
urationen die einer reinen 2-Jet Situation sehr ähnlich sind, können Werkzeuge aus der effektiven
Feldtheorie (EFT), im speziellen boosted Heavy Quark Effective Theory (bHQET) und Soft-Collinear
Effective Theory (SCET), benutzt werden um ein Faktorisierungstheorem für die führenden Beiträge
des Wirkungsquerschnitts herzuleiten. Die EFT Methode erlaubt es, den Wirkungsquerschnitt als
Produkt von allgemeineren Bausteinen zu schreiben und durch das Benutzen von Renormierungs-
gruppenmethoden sogenannte große Logarithmen zu resummieren, welche in solchen kinematischen
Situationen auftreten. Bei der sogenannten “next-to-next-to-leading logarithm”-Genauigkeit (NNLL)
gehen die erwähnten Masseneffekte nur über die Jetfunktion in das Faktorisierungstheorem ein, und
es stellt sich heraus, dass verschiedene Event-Shape-Observablen Klassen bilden, für welche die Jet-
funktion universell ist. Dies wird dann in weiterer Folge benutzt um die bisher nicht bekannte Jet-
funktion mit primären massiven Quarks für alle untersuchten Event-Shape-Observablen im P - und
E-Schema herzuleiten. Zusammen mit den anderen Bausteinen, die vom masselosen Fall übernommen
werden können, lassen sich diese Ergebnisse zur Berechnung des singulären differentiellen Wirkungs-
querschnitts mit stabilen primären massiven Quarks verwenden. Im Falle von instabilen schweren
Quarks, d.h. für Top-Quarks, zeigen die meisten der untersuchten Event-Shape-Verteilungen eine
sehr hohe Sensibilität bezüglich der exakten Kinematik der Zerfallsprodukte was zu einer, formell
zwar unterdrückten aber nicht vernachlässigbar kleinen, Modifikationen des differenziellen Wirkungs-
querschnitts führt. Im Zuge der Untersuchung der genauen Mechanismen hinter dieser Veränderung
kann dann in weiterer Folge gezeigt werden, dass sich für die führenden Beiträge im instabilen Fall
eine weitere Faktorisierung in die singulären Beiträge für den stabilen Fall und eine sogenannte
Zerfalls-Funktion (“decay function”) ergibt. Diese Zerfalls-Funktion parametrisiert die Kinematik
der Zerfallsprodukte für die jeweilige Event-Shape-Verteilung. Nachfolgend wird diese Faktorisierung
dann anhand von Simulationen überprüft und auch gezeigt dass die resultierende Beschreibung für
die untersuchten Fälle gut funktioniert. Abschließend wird dann das Resultat für den sogenannten
M -scheme C-Parameter, welcher im Kontext von MC Top Quark Massenkalibrationen von Interesse
ist, qualitativ mit pseudo-Daten von PYTHIA 8.2 verglichen. Dieser Vergleich zeigt dass die entwickelte
Beschreibung zu einem mit vorherigen Untersuchungen konsistenten Resultat führt.
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Chapter 1

Introduction

In the modern era of high energy physics the focus of the particle physics community lies on three
main objectives which are known as the precision, the energy and the luminosity frontier. While
the energy and luminosity frontier usually are understood as being mainly of experimental nature,
understanding the origin and decreasing uncertainties is a fundamental aspect of quantitative science.
One main interest in the particle physics context is a precise measurement of fundamental theoretical
parameters such as coupling strengths of interactions, mixing angles or particle masses. In the context
of QCD and confinement fundamental parameters are not directly observable. Instead, fundamental
parameters are determined through observable quantities which are highly sensitive to them. The
actual determination is then carried out by comparing theoretical predictions and the experimentally
measured data. It is well known and in this context intuitive that for such determinations uncertainties
are introduced on the experimental side as statistical and systematic uncertainties. Additional theory
uncertainties enter because of approximations used in the theoretical descriptions and via uncertainty
propagation from parameters which are used as input for the theoretical predictions. One particular
example for precision determinations of a theoretical parameter are determinations of the top quark
mass which in the following will constitute the main application of the work carried out in this thesis.

Since the discovery of the top quark in 1995 at Tevatron [1, 2] its mass has been determined with
continuously increasing precision. The most precise determinations reach uncertainties of around
0.5% and a subset of those measurements is given by

mt = 174.34± 0.64 GeV Tevatron Final [3] ,

mt = 172.44± 0.49 GeV CMS Run 1 [4] , (1.1)

mt = 172.84± 0.70 GeV ATLAS Run 1 [5] .

In comparison to other less precise methods (e.g. measurements of the total cross section at hadron
colliders) these measurements are obtained in studies using so-called kinematic reconstruction. These
measurements are based on the idea of a propagating top quark particle, for which highly mass
sensitive kinematic distributions, such as the invariant mass distribution can be reconstructed from
the momenta of final state objects. This refers to e.g. jets and leptons, which are experimentally
identified as decay products of the top quark. On the theory side Monte Carlo (MC) event generators
are used since such an identification is theoretically not fully unique due to confinement and also
since the used cuts on the final state demand final state information on a highly exclusive level.
The measured mass value is then given by the numerical value of the top quark mass parameter
which enters the MC simulation for the best fitting reconstructed invariant mass distribution, which
is therefore often also referred to as the Monte Carlo top quark mass parameter. From the field
theoretic side this mass parameter is not yet understood in terms of perturbation theory and it is
not yet clear how this quantity can be used for precision calculations without adding an additional
uncertainty.
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Since direct theoretical calculations for the experimentally measured observables are not yet available
one ansatz which was chosen by our collaboration in Ref. [6] is to extrapolate the prediction of the MC
event generator to a process and mass sensitive observable for which precise theoretical calculations at
hadron level are possible and extract a numerical relation between the MC top quark mass parameter
and a well defined theory mass on the observable level. This approach has been called Monte Carlo top
quark mass calibration. There are not many mass sensitive observables for which precise hadron level
predictions are feasible but it turns out that some of the so called event shapes for e+e− annihilation
can accommodate such investigations which is why the peak region of the 2-jettiness distribution for
boosted top quark production was used in the study of Ref. [6]. Apart from a general discussion, the
analysis of Ref. [6] will not be discussed in this thesis in detail since most of the conceptual contri-
butions are already described extensively in Refs. [7–9]. My personal contribution to this work was
mainly focused on the provision of precise MC data sets and validation checks for the involved exten-
sive numerical implementation. As a next step it would be interesting to investigate the universality of
the result obtained in Ref. [6]. One possible approach to this is to investigate alternative observables
(in this thesis we will focus on C-parameter). The main objective of this thesis is to investigate such
alternative event shape definitions, identify observables useful for MC top quark mass calibrations and
to provide the needed ingredients and if necessary new tools to carry out a calibrations in analogy to
the 2-jettiness case of Ref. [6].

It is well known that for event shapes like 2-jettiness τ the peak region (where τ ≡ τ − τmin � 1)
is populated by events with dijet-like kinematics, for which multiple well separated scales are char-
acteristic. These scales which appear in perturbative fixed order calculations as ratios in potentially
large logarithms are given by the hard interaction scale µ2

h ∼ Q2 (with Q the center of mass energy),
the jet scale which is the typical off-shellness of the collinear particles making up the jet µ2

c ∼ Q2τ
and the soft scale µ2

s ∼ Q2τ2 which is characteristic for global soft radiation. Using effective field
theory tools it is possible to derive a factorization theorem which together with renormalization group
evolution techniques can be used to systematically resum the mentioned large logarithms to all orders
in perturbation theory. For boosted top quark production where Γt > ΛQCD and where in the peak
region τ ∼ mt Γt

Q2 � mt
Q the suitable framework for carrying out those theoretical calculations is given

by boosted Heavy Quark Effective Theory (bHQET) [7,10,11] matched onto Soft-Collinear Effective
Theory (SCET) [12–15] with massive quarks (compared to only SCET in the collinear sector for
τ ∼ mt

Q ). For this setup the top quark is integrated out and the remaining degrees of freedom are
so-called ultracollinear gluons with momentum kµ interacting with each other and with color sources
representing the top quarks which carry the momentum mtv

µ + kµ (with v2 = 1). The ultracollinear
gluons are soft in the rest frame of the top quark with a typical off-shellness µ2

uc ∼ mt Γt
Q2 . These

ultracollinear gluons are typically much softer than the collinear gluons in SCET µ2
c ∼ m2

Q2 .

The origin of the mass sensitivity of the 2-jettiness peak region is already contained in the tree level
threshold position which is given by

τmin = 1−
√

1− 4
m2

Q2
= 2

m2

Q2
+O

(m4

Q4

)
. (1.2)

In this context the leading power description from SCET or bHQET for stable top quarks only
recovers the leading stable tree level threshold position of 2 m2

Q2 . The corrections of order O(m
4

Q4 ) are
formally power suppressed but numerically not at all small. In order to achieve precise predictions
for the peak region one nevertheless needs to include these terms in the theoretical description. Since
no full description at subleading power is available, usually these subleading contributions are put in
“by hand” by shifting the partonic threshold from 2m

2

Q2 to τmin in order to maintain the full threshold
information. Numerical checks with simulation show that for stable heavy quarks this procedure
works quite well and thus accounts for the most important effects of these formally power suppressed
contributions.
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Next, turning to the unstable case and working at leading power, leads to effective field theory
predictions which for some event shapes significantly deviate from the distributions obtained from
simulations. Looking into this, one can identify the following three effects which possibly lead to
major changes for the unstable distribution when compared to the stable case beyond shifting to the
full stable threshold position. For illustrative purposes consider the comparison between the case of
stable top quark pair production at tree level and the unstable case where these on-shell top quarks
decay into massless particles via the weak interaction.

1. Non-Clustering Event Shapes
Some event shapes, e.g. 2-jettiness or jet masses, have a so called clustering property which
means that only the total jet momentum enters the calculation of the event shape value. Since
energy and momentum are conserved the event shape values for the stable and unstable situation
are the same for event shapes with the clustering property. When a massive on-shell particle
decays into two massless particles the angle between the two trajectories will be nonzero. Non-
clustering event shapes are sensitive to the exact kinematic configuration within the jet, for
example to the mentioned nonzero angle between the momentum of the decay products. For
such an event shape the measurement will give different results for the stable and the unstable
situation.

2. Non-Collinear Decays
For boosted top quark production the decay products are usually collinear with respect to the
original top quark which is why we call those collinear decay events. Non-collinear decay events
are characterized by a final state configuration where one of the decay products is not collinear
with respect to the original top quark. Such a situation is power suppressed but still is possible
at finite boost. For those events the jet definition (e.g. thrust axis) and the obtained event
shape value will be different with respect to the stable top quark case.

3. Subleading Breit-Wigner effects

Since the prescription of simply shifting the threshold position, which was used for the stable situation,
is not sufficient for the unstable situation, the mentioned numerically important contributions need to
be treated more systematically. Working strictly at leading power, terms which are suppressed by m2

Q2

with respect to the leading terms will be omitted. In order to develop a framework where the above
effects can be included, we will adopt the following strategy: Purely kinematic information about the
produced on-shell top quarks (which will also determine the full stable threshold position) will not be

expanded in powers of m2

Q2 but kept to all orders. At the same time dynamical contributions, which
are connected to ultracollinear gluon radiation off the top quark, are still treated at leading power in
the effective field theory framework. Using this and a partial narrow width approximation for the top
quark it is possible to derive a factorized formula for the unstable singular cross section which is then
given by (for some generic event shape e)

dσunstable

de
=

∫
dê

dσstable

de
(e− ê)Fdecay(ê) , (1.3)

This formula expresses the unstable singular cross section as a convolution of the stable singular cross
section with a so called decay function. The decay function parametrizes the kinematics of the decay
in terms of the measured event shape and is determined purely by the tree level decay kinematics1.
As it is shown later, the decay function framework can be used to include contributions related to the
three mentioned effects and the subsequent comparison with simulation shows that this framework
indeed works very well.

1Note that a similar setup was used in Ref. [16].
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Following the structure of this thesis the studies and strategies which were outlined in this chapter
will be developed and discussed in detail. In conclusion a first qualitative comparison between the
theoretical prediction and pseudo data from PYTHIA 8.2 for the unstable C-parameter distribution is
presented. It will be shown that the results of this comparison are fully compatible with the results
from the MC top quark mass calibration which was using 2-jettiness. Since the distinct peak of the
stable C-parameter distribution gets smeared out significantly when looking at the unstable case, the
estimated calibration precision for this observable turns out the be significantly less than in the case
of 2-jettiness and is estimated to be around 1− 2 GeV (compared to 200 MeV for 2-jettiness).

The outline of this thesis is as follows: In Chapter 2 the concept of heavy quark masses in perturbative
quantum field theory is discussed in general. Apart from reviewing different mass schemes (i.e. pole,
MS and MSR mass), also the pole mass renormalon problem and the concept of a MC top quark
mass parameter is discussed. The connected publications of Refs [17, 18], which I co-authored, are
also summarized in this chapter. Since these works are self-contained and do not widely overlap
with the overall objective of this thesis, they will not be discussed in more detail. In the first part
of Chapter 3 different event shapes and variants which differ in the way they treat massive quarks
are discussed and analyzed with respect to the expected mass sensitivity. In the second part of the
same chapter we will then focus on the dijet situation with stable massive quarks, where EFT tools
can be used to resum large logarithms. The respective unstable case will be discussed in Chapter 4
and furthermore the mentioned decay function formalism will be developed. In conclusion all of
the gathered insights and tools are then combined in different numerical investigations including the
mentioned comparison between theory prediction and MC pseudo-data for C-parameter, which is
presented in Chapter 5.
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Chapter 2

Quark Masses

2.1 Historical Context

When talking about the mass of a particle one usually assumes this to be an unambiguous concept
which is distinctly defined throughout physics. Starting with classical newtonian dynamics where the
mass of some object (or for this purpose a particle) is simply a proportionality factor of how much
the object gets accelerated when a force is acting on it. This can also be interpreted as a measure for
the inertia of the object, hence we call it the inertial mass, which appears in the famous Newton’s
second law:

~F = m~a , (2.1)

where ~F is the net force acting on the object, m its inertial mass and ~a the resulting acceleration.
Another facet is added to the concept of mass when studying classical newtonian gravity where masses
attract each other via the gravitational force. There the mass enters in such a way that the resulting
gravitational force on mass m1 (at position ~x1) is proportional to the two involved masses m1 and
m2 (at position ~x2):

~FG = GN
m1m2

r3
(~x2 − ~x1) , (2.2)

where GN is Newtons constant and r = |~x2 − ~x1|. Since it is the general experience that heavier
objects feel a stronger gravitational pull this mass concept is also referred to as the heavy mass of an
object. In principal these two concepts of mass are a priori two separate ones but from experimental
investigations it is known that these two mass concepts coincide which is also referred to as the weak
equivalence principle.

One important feature of these historical mass definitions is that it was referring to a conserved
quantity. This means that if several objects are combined into a bigger one the resulting object has a
mass which equals the sum of the mass of the constituents. Starting with the development of special
relativity this concept was discarded and instead it was realized that in order to consistently unify
space and time into a 4-dimensional space-time and also incorporate the concept of relativity and
a universal highest speed (the speed of light), mass and energy cannot be treated as independent
concepts anymore. The total energy E of an object, which really is a conserved quantity, is now not
only related to the momentum ~p but also to the mass of the object via the relation:

E2 = |~p|2c2 +m2c4 , (2.3)

which means that the energy of a particle in its rest-frame is given by the invariant rest mass (or
invariant mass) which results in the famous equation E = mc2. This has far reaching consequences

5



when considering bound states where the budget of total energy also includes negative binding energy
which reduces the mass of the bound state below the sum of the masses of the constituents also known
as mass defect.

When considering quantum field theory in the context of high energy physics the mass of a particle,
for now let us take the electron as an example, is naturally defined as the position of the pole in
the propagator of an asymptotically free electron. This definition is therefore also known as pole
mass and is simply encoding the relation of Eq. (2.3). When interacting theories are considered e.g.
Quantumelectrodynamics (QED) we usually have to use perturbation theory and therefore also need
to consider radiative corrections to the propagator pole position, hence the mass.

Figure 2.1: Examples for one particle irreducible (1PI) diagrams contributing to radiative corrections
of the particle propagator pole position (self energy diagrams).

At tree level the classical (or non-interacting) case is valid. Starting at one loop the corrections
which are also known as self energy corrections (shown in Fig. 2.1) lead to divergent contributions
which one can deal with via renormalization. The idea is to replace the (infinite) mass parameter
in the Lagrangian known as bare mass with a finite mass parameter, which needs to be measured,
and some infinite part known as counter term, which then cancels the divergence (with the necessary
regularization1) from the self energy diagram. This procedure has a certain freedom to choose how
much of the finite contributions will be canceled in the process which usually leads to what is called
mass scheme dependence and we therefore call the finite mass parameter in a certain renormalization
scheme mscheme. The self energy contributions which cannot be separated by cutting only one line in
the corresponding Feynman diagram are known as one particle irreducible (1PI) contributions which
we will denote as

iΣ(p,m) = i/pΣV (p2,m2) + imΣS(p2,m2) . (2.4)

Through reorganizing in a sum of propagators with a different number of 1PI insertions it is possible
to formally sum up all corrections to the all order fermion propagator ∆a.o.

F via a geometric sum.
Without wave function renormalization and only focusing on the part which carries the pole position
information we get

∆a.o.
F (p,m) = ∆F (p,m)

∞∑
i=0

[
Σ(p,m) ∆F (p,m)

]i ∼ 1

p2 −m2
0 − Σ(p,m) + i0

, (2.5)

where ∆F (p,m) is the usual fermion propagator. Next the counterterm δzm which enters through
the replacement of m0 = (1 + δzscheme

m )mscheme cancels the divergence in Σ(p,m) order by order. As
defined before in the pole mass (also called on-shell) scheme the counterterm is chosen in such a way
that it cancels the full 1PI contribution in the denominator of the all order propagator recovering the
tree level form of the propagator and with this the kinematical interpretation as the physical mass of
an asymptotically free particle as in Eq. 2.3. The on-shell counterterm is then given by

δzpole
m = ΣV (m2,m2) + ΣS(m2,m2) . (2.6)

Another very popular mass scheme called the MS scheme is defined in such a way that it absorbs
only the divergent parts of some amplitude into the counter term and for convenience also the finite

1From now on we will use dimensional regularization in d = 4− 2ε dimensions to regularize divergent expressions of
this type.
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terms involving γE and ln 4π which occur in all loop calculations (realized in dim-reg by using µ̃2 =
µ2 exp(γE − ln 4π) as the renormalization scale). The pole and MS counter terms are given to 4-loop
order in Ref. [19].

For the MS mass the interpretation as the physical mass is not possible anymore and one should think
about this mass more like a coupling constant which has no kinematic meaning and its numerical value
needs to be fixed from comparing an experimental measurement with the corresponding theoretical
calculation. The fact that there is no close relation with the physical mass can also be seen from
the fact that there are significant (finite) differences between the pole mass and the MS mass. For
example in the case of the top quark (with MS mass of mt ≡ mt(mt) = 163 GeV) the perturbative
conversion formula in QCD looks as follows:

mpole
t = 163 + 7.5040 + 1.6005 + 0.4941 + (0.1944± 0.0004) GeV , (2.7)

where the terms show the series in powers of the strong coupling2 α
(6)
s (mt) and in the fourth order

coefficient the numerical uncertainties from Ref. [19] are quoted.

2.2 The Pole Mass Renormalon

Since all mass schemes must contain the exact same divergences it is also possible to define a mass
scheme not by its renormalization procedure but through its finite differences with some other mass
scheme, e.g. the pole mass scheme. In the case of the MS mass mQ ≡ mQ(mQ) of some heavy quark

Q this defines the coefficients aMS
n as follows:

mpole
Q −mQ = mQ

∞∑
n=1

aMS
n (nQ, nh = 1)

(
α

(nQ+1)
s (mQ)

4π

)n
, (2.8)

where all flavors lighter than the heavy quark (nh = 1) are considered massless and the number of
such massless flavors is referred to as nQ. These coefficients have been calculated up to order O(α4

s)
in Refs. [19, 23–29] and are given by

aMS
1 (nQ, nh) = 16

3 , (2.9)

aMS
2 (nQ, nh) = 213.437 + 1.65707nh − 16.6619nQ ,

aMS
3 (nQ, nh) = 12075.+ 118.986nh + 4.10115n2

h − 1707.35nQ + 1.42358nh nQ + 41.7722n2
Q ,

aMS
4 (nQ, nh) = (911588.± 417.) + (1781.61± 30.72)nh − (60.1637± 0.6912)n2

h

− (231.201± 0.102)nh nQ − (190683.± 10.)nQ + 9.25995n2
h nQ

+ 6.35819n3
h + 4.40363nh n

2
Q + 11105. n2

Q − 173.604n3
Q .

Although the pole mass renormalization scheme is gauge-invariant and infrared-safe [23,30] it receives
large corrections in the QCD perturbation series. These large corrections arise because the pole mass
scheme leads to subtractions which do not only involve the UV divergent part of the self energy (as
for the MS scheme) but also unphysical on-shell self energy corrections from very small momentum
fluctuations leading to a factorial growth for high orders. This behavior is also known as the pole
mass renormalon (consult Ref. [31] for a review on renormalons).

To see how this factorial growth arises it is instructive to look at so called bubble chain diagrams as
depicted in Fig. 2.2 which essentially are one loop quark self energy diagrams with n massless quark

2The superscript (6) indicates the scheme of the strong coupling constant which includes the top quark as a dynamical

flavor in the renormalization group evolution. Following Ref. [20] we use α
(5)
s (mZ) = 0.11800 for mZ = 91.187 GeV

which by accounting for 5-loop evolution [21] and flavor matching at mt [22] gives α
(6)
s (mt) = 0.10847.
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. . .

Figure 2.2: Self energy diagram with bubble chain insertion. Here bubble chain refers to a gluon
propagator with n insertions of a massless fermion bubble.

bubble insertions and which are the leading contribution in the large β0/Leading Logarithmic (LL)
approximation. Starting with the bubble chain gluon propagator given in Eq. (B.2) (see App. B for
more details) one first looks at the ε→ 0 expression for the bubble chain part of the pole mass counter

term Zpole
m = 1 + δpole

m (with the euclidean momentum kE = (−ik0,~k)):

δpole
m,bubble = (2.10)

− αsCF
4π

∞∑
n=0

[
αs
(

4
3TFnf

)
4π

]n ∫ ∞
0

dk2
E

m2
Q

{
k2
E

2m2
Q

+

(
1− k2

E

2m2
Q

)√
1 + 4

m2
Q

k2
E

}
lnn
(k2

Ee−
5
3

m2
Q

m2
Q

µ2

)
.

Looking at the integrand we can identify two main integral regions which contribute: first the region
where z ≡ (kE/mQ)2 is large which is where the UV divergences are situated and second the region
where z is small and which should give a finite contribution. In the following we are going to focus on
the latter and therefore split3 the integral at z = e

5
3 and expand the integrand for small z. Using the

replacement 4
3TFnf → −β0 by which also gluon bubble effects are included, hence often also referred

to as naive nonabelianization [32], we get (for µ = mQ)

δpole
m,bubble,IR = −αsCF

4π

∞∑
n=0

[
αs(−β0)

4π

]n ∫ e5/3

0
dz

{
2√
z

}
lnn
(
z e−

5
3

)
= −4 e

5
6
αsCF

4π

∞∑
n=0

[
αs2β0

4π

]n
n! , (2.11)

which is finite as expected but explicitly shows the factorial growth in n. This factorial growth is
also present in the full δpole

m expression and does not get canceled by the finite terms in the UV
part of the integral. This is clear since for z > e

5
3 the argument of the logarithm becomes smaller

than one leading to an additional alternating sign for the UV part which therefore cannot cancel the
non-alternating n! behavior from Eq. (2.11).

Looking at the difference between the pole and the MS mass, the UV divergences which originate
from high momenta get canceled and one should be left with a finite difference. Employing the large
β0/LL approximation for which the bubble chain diagrams including naive nonabelianization are the
only contribution, the difference is asymptotically given by [20][

mpole −m(µ)
]
β0/LL

∼ µ
∞∑
n=0

16

3

(
2β

(n`)
0

)n
n!

[
α

(n`)
s (µ)

4π

]n
, (2.12)

which involves (n`) active flavors for the coefficients of the β function (see App. A) and the strong
coupling constant αs and shows that the pole mass renormalon is both independent of the heavy
quark mass and the number of heavy quarks (i.e. only depends on the number of massless quarks n`).

3The used choice is arbitrary but is a good separation value, especially for large n, because the argument of the
involved logarithm is then one.
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In a next step let us look at the Borel transform of Eq. (2.10). For a given function f(αs) with the asso-
ciated power series Rf (αs) =

∑∞
n=0 bnα

n
s the Borel transform is defined as B[Rf ](t) =

∑∞
n=0 bnt

n/n!
with t being the Borel variable. If the Borel integral (or inverse Borel transform), which is given
by f̃(αs) =

∫∞
0 dt e−t/αsB[Rf ](t) exists, the series Rf (αs) is called Borel summable. Furthermore if

Rf (αs) is summable then f̃(αs) = Rf (αs) holds. For the case that there are singularities along the
integration path (postive real axis) in the Borel variable plane the function f̃(αs) is defined ambigu-
ously. In this case the Borel integral must be defined by deforming the integration contour around
these singularities and its result in general depends on the deformation.

It is also interesting to look at the Borel transform of the sum of counter term diagrams with insertions
of all orders of bubble chain gluon propagators (also see Eq. (B.3)). The pole mass counter term
originating from bubble chain diagrams (in analogy to Eq. (2.10)) is then given by

B
[
δpole
m,bubble

]
(u) = −CF

β0

∫ ∞
0

dz

{
z

2
+

(
1− z

2

)√
1 +

4

z

}(
z e−

5
3

m2
Q

µ2

)−u
=
CF
β0

6√
π (u− 2)

(
4
m2
Q

µ2
e−

5
3

)−u
Γ
(

1
2 − u

)
Γ
(
u
)
, (2.13)

where we used the modified Borel variable u = tβ0

4π . When examining the above expression in more
detail one finds poles at u = 2m+1

2 with m ∈ N0 which originate from the IR region of the integral
(this can be seen by splitting the integral in the same way as before), poles at u = −m with m ∈ N
which originate from the UV region of the original integral as well as a single IR pole at u = 2. The
additional pole at u = 0 corresponds to the usual UV divergences which would also be regularized in
dimensional regularization and vanish after renormalization. Since the bare mass should be free of
any ambiguity (which is associated with a pole in the Borel plane) the above expression contains the
same singularities as the pole mass itself in the large β0/LL approximation (also see Ref. [33]).

Due to the exponential suppression in the Borel integral the pole associated with u = 1
2 does contribute

the biggest part to the pathological behavior of the perturbative series and it is therefore called the
leading IR renormalon. The fact that this pole contains the leading IR sensitivity can also be seen
when investigating the IR region of the integral (e.g. using a hard cutoff as before) with the bubble
chain and expanding the u independent part of the integrand. The leading contribution then gives
rise to the pole at u = 1

2 represented by a linear dependence on |kE |/mQ while the higher orders give
rise to the subleading poles e.g. the pole at u = 3

2 is connected to a cubic momentum dependence and
so on.

Furthermore at least the scaling of the ambiguity coming from the leading IR renormalon can be
estimated by the difference of the integral when deforming the path above or below the pole which
therefore is given by the residuum of the pole at u = 1

2 :

Resu= 1
2

[
B
[
mQ δ

pole
m

]
(u)
]
∼ lim

u→ 1
2

µ e
− 4π u
αs(µ)β0 = µ e

− 2π
αs(µ)β0 = ΛLL

QCD . (2.14)

Taking this scaling argument4 into account several estimates for the actual numerical size of the
ambiguity have been proposed. In Ref. [34] the ambiguity is estimated via the normalization fac-
tor of the u = 1

2 renormalon pole when doing the full calculation (for further information also
see Ref. [17]) which is usually referred to as N1/2. The normalization factor is formally given by

N1/2 = limn→∞ a
MS
n (nQ, 0)/dasy

n (nQ) with the coefficients of a pure ΛQCD renormalon series dasy
n (nQ),

i.e. aMS,asy
n (nQ, nh) = aMS,asy

n (nQ, 0) = N1/2 d
asy
n (nQ). The asymptotic coefficients are given in terms

4Using the same procedure it is easy to see that the pole at u = 3
2

gives rise to an ambiguity scaling like (ΛLL
QCD)3

and analogously for the other subleading poles.

9



of beta function coefficients and defined by [17,35]

dasy
n (nQ) = 4π(2β0)n−1

∞∑
k=0

gk
Γ
(
n+ b̂1 − k

)
Γ
(
1 + b̂1

) , (2.15)

with (nQ) active massless flavors and (b̂0 = g0 = 1)

b̂n+1 = 2
n∑
i=0

b̂n−i βi+1

(−2β0)i+2
, gn+1 =

1

1 + n

n∑
i=0

(−1)i b̂i+2 gn−i . (2.16)

Using all the available information for the coefficients of the MS mass and beta function coefficients,
the normalization factor is determined to be N1/2(nQ = 5) = 0.4616 +0.027

−0.070 ± 0.002. This result
is compatible with the determination from the so called renormalon sum rule which is defined in
Ref. [17] giving N1/2(nQ = 5) = 0.446 ± 0.026. Using the result for the normalization factor and
estimating the ambiguity introduced by the ill-definedness of the top quark pole mass by taking the
imaginary part of the Borel integral divided by π the ambiguity estimate of Ref. [34] is 110 MeV. In
the context of other analysis, like the one of Ref. [20] which estimates the ambiguity to be 250 MeV,
the obtained value from [34] is very optimistic.

The effects of lighter massive quark flavors cause the reduction of active flavors in Eq. (2.12). This is
the case since the mass of a virtual quark in on-shell self energy diagrams acts as an effective infrared
cutoff which causes the light quark to decouple at higher orders which means that those terms will
not grow factorially anymore and the asymptotic high order region is governed by contributions from
scales . ΛQCD. The fact that the renormalon pattern of the pole mass is changed by the mass effects
of light quarks means that the light quark mass corrections show renormalon behavior themselves. In
Ref. [20] a systematic study on how to include massive lighter quark flavors q (still mq > ΛQCD) into
the pole-MS relation from Eq. (2.8) was developed. This was realized by introducing a renormalization
group framework based on the MSR mass (see Sec. 2.3) which allows to systematically implement the
subsequent decoupling of the light massive quark mass effects and resum large logarithms of quark
mass ratios which arise for this multi-scale problem. With this the top quark pole-MS relation can be
evaluated at arbitrary scales. For example at very low scales R < mc it is given by the expression of
Eq. (2.8) with reduced number of active flavors at R and a couple of renormalization group evolution
contributions and matching coefficients as follows:

mpole
t = mt + ∆m

(6→5)
t (mt) + ∆m(5)(mt,mb) + δ

(t→b)
b,c (mb,mc)

+ ∆m
(5→4)
b (mb) + ∆m(4)(mb,mc) + δ(b→c)

c (mc) (2.17)

+ ∆m(4→3)
c (mc) + ∆m(3)(mc, R) +R

∞∑
n=1

aMS
n (n` = 3, 0)

(
α

(3)
s (R)

4π

)n
,

where ∆m(n)(R,R′) = mMSR
Q (R′) − mMSR

Q (R) are the resummed contributions from R-evolution

with (n) active flavors, ∆m
(nQ+1→nQ)
Q (mQ) denotes contributions from the heavy quark Q MSR-MS

matching coefficient and δ
(Q′→Q)
Q (mQ) encodes Q′-Q matching contributions encoding heavy quark

symmetry breaking effects. For more details see Ref. [20].

At finite order the best estimate for the full expression which is represented by an asymptotic series
is obtained when the sum is truncated after the minimal correction term. In Ref. [20] the uncertainty
associated with the determination of this minimal term was taken as an estimate for the pole mass
renormalon ambiguity. In general there is not only one distinct minimal term but rather a region of
terms of similar size which is usually referred to as the “flat region”. Using the previously discussed
framework to determine the MS-pole mass difference to very high accuracy (including light massive
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quarks) and the overall scale variations of the terms contributing to the flat region as an uncertainty
estimate of the minimal term, the ambiguity associated with the pole mass renormalon was estimated
to be around 250 MeV in Ref. [20]. Since this method uses heavy quark symmetry as a guiding
principle and extensions of methods well established for convergent series we expect this method to
give a conservative and reliable ambiguity estimate.

2.3 The MSR mass

Although the MS mass does not suffer from the same renormalon ambiguities as the pole mass it
still is not always convenient to use since for observables sensitive to low scales it usually leads to
rather large perturbative corrections which can impair the convergence of the perturbative series (see
for example [7]). To overcome this disadvantage different short distance mass schemes (no linear
low momentum sensitivity i.e. only sensitive to short distances) such as the kinetic mass [36], the
potential-subtracted (PS) mass [37], the 1S mass [38–40], the renormalon-subtracted (RS) mass [41],
the jet mass [7, 42] or the MSR mass [17,43] have been developed.

The MSR mass which depends on some scale R is obtained by taking Eq. (2.8) and literally replacing

aMS
n (nQ, 1) → aMS

n (nQ, 0), mQ → R and α
(nQ+1)
s → α

(nQ)
s . The pole-MSR mass difference is then

given by5

mpole
Q −mMSR

Q (R) = R
∞∑
n=1

aMS
n (nQ, 0)

(
α

(nQ)
s (R)

4π

)n
, (2.18)

with the coefficients aMS
n which were already encountered for the pole-MS mass relation and are

given in Eq. (2.9). The MSR mass is the proper extension of the MS mass concept to scales below
the heavy quark mass which is achieved by two main points. First, virtual heavy quark loops are
explicitly removed. Second, the above definition of the MSR mass is designed in a way so that the
MSR mass is free of the linear scale dependence of the pole mass at any loop order. It can therefore
be interpreted (concerning the leading IR behavior) as the pole mass minus all self-energy corrections
related to scales below R. Also, the above expression explicitly implements the asymptotic behavior
of the analog expression for the case of the MS mass in the large β0/LL approximation which was
given in Eq. (2.12).

Furthermore the MSR mass has a non-trivial renormalization group flow in R which can be expressed
by the following R-RGE equation:

R
d

dR
mMSR
Q (R) = −RγR

[
αs(R)

]
= −R

∞∑
n=0

γRn

(
αs(R)

4π

)n+1

, (2.19)

with the R anomalous dimension γR
[
αs(R)

]
. The coefficients of the perturbative series, here called

γRn , are given by [17]

γR0 = aMS
1 ,

γR1 = aMS
2 − 2β0 a

MS
1 ,

γR2 = aMS
3 − 4β0 a

MS
2 − 2β1 a1 , (2.20)

γRn = aMS
n+1 − 2

n−1∑
j=0

(n− j)βj aMS
n−j .

5In Ref. [17] the so called natural and practical versions of the MSR mass are defined. Here only the natural definition
is employed. It turns out that for most numerical analysis the difference is negligible in comparison to other involved
uncertainties (e.g. higher order corrections).
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Solving the R-evolution equation (which can be done numerically or was done analytically in Ref. [43,
44]) it is possible to sum potentially large logarithms in mMSR

Q (R0)−mMSR
Q (R1) in a renormalon free

way as long as R0, R1 > ΛQCD [17, 43]. This can explicitly and easily be seen in the large β0/LL
approximation by comparing the pole-MSR mass difference and the difference of the MSR mass at
two different scales R0 and R1. The first difference is given to all orders by [43]

[
mpole
Q −mMSR

Q (R)
]
β0/LL

=
aMS

1

2β0

∞∑
n=0

(
β0 αs(R)

2π

)n+1

n!R . (2.21)

By definition this expression shows the leading renormalon behavior (at least asymptotically we have
seen this in Eq. (2.12) which is the analog expression involving the MS mass) and which certainly
does not converge. Looking at the second difference one finds:

[
mMSR
Q (R0)−mMSR

Q (R1)
]
β0/LL

=
aMS

1

2β0

∞∑
n=0

(
β0 αs(R1)

2π

)n+1

n!

[
R1 −R0

n∑
k=0

1

k!
lnk

R1

R0

]
, (2.22)

which can be seen to be convergent illustrating the original statement.

2.4 The Monte Carlo Top Quark Mass and its Calibration

It is well known that top quark mass determinations which employ reconstruction of the top kinematics
from lepton and jet momenta currently allow for the most precise top mass extractions from hadron
collider data. Although the underlying procedure is well defined on parton level it is not well defined
on the level of jets due to confinement which makes it impossible to uniquely identify a subset of
final state particles/momenta which originate only from the initially produced top quark and its
decay products. Nevertheless the idea of reconstructing the top quark kinematics is used as a guiding
principle to construct highly mass sensitive observables. A drawback of such observables is that
traditional analytical calculations are not feasible for these observables and the mass is then extracted
by employing so called parton shower Monte Carlo (MC) event generators. In such determinations
the extracted top quark mass is simply the numerical input value which leads to the best fit of the
experimental distribution. Clearly this procedure gives rise to different systematical uncertainties
as expected from traditional theoretical calculations which need to be addressed separately. One
particular example which is less straightforward to estimate is an inherent uncertainty with respect
to the exact definition of the extracted mass value as a meaningful parameter in QFT which is usually
avoided to address by the notion of the Monte Carlo top quark mass. In the following we aim to give a
consistent presentation of the involved complications and how this relates to what is known as Monte
Carlo Top Quark Mass Calibrations [6].

Traditional theoretical calculations for observables used in top quark mass determinations from kine-
matic reconstruction are currently not feasible6. This is the case since the experimental selection cuts
used in the observable definition require highly exclusive event information on particle level, which is
theoretically not accessible due to the lack of understanding of non-perturbative QCD effects. The
theoretical description for these observables is therefore based on simulations from parton shower MC
event generators (subsequently referred to as MCs - see Ref. [45]) which circumvent this problem by
modelling the relevant non-perturbative physics. What is then determined as the top quark mass is
the numerical value of the input top quark mass parameter in the MC program which leads to the
best fit of the experimental and simulated distribution. The state of the art MC programs for top

6A promising approach to circumvent some of the problem which are discussed here is to use light soft drop jet
grooming - see Ref. [16].
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production at a pp collider first produce parton level predictions7 for top quark production and sub-
sequent decay. Afterwards, collinear and soft gluon radiation off the top quark and its color charged
decay products is taken into account via a parton shower and finally nonperturbative QCD effects are
modelled by a hadronization model leading to exclusive particle level predictions for the observables
of interest. For more details on the used mass determination strategies see Ref. [47] and references
therein.

In recent years this method (and similar procedures) of determining the top quark mass led to
increasingly high precision for the obtained top mass value with uncertainties of well below 1 GeV [3–
5, 48]. At such high precision a detailed discussion of the involved sources of uncertainties needs to
be carried out and it is important to make sure that all relevant uncertainties are considered. The
uncertainty budget can be roughly categorized as follows:

1. Statistical and systematical experimental uncertainties e.g. jet energy scale (JES), b-tagging
efficiency, etc.

2. Scale uncertainties: Uncertainties from not included subleading higher order contributions
(NNLO) to the hard scattering cross section are usually estimated by scale variations8. The sub-
sequent parton shower (PS) is then matched to the NLO matrix elements (ME). The introduced
uncertainties can also be estimated by varying the scale at which the matching happens.

3. Parton shower: To estimate the uncertainty in the perturbative description of parton showers
automated estimation procedures similar to scale variations have been introduced recently in
the most common parton shower MC programs (see e.g. [49, 50]).

4. Nonperturbative effects: Uncertainties from mismodeling underlying event/multi parton inter-
actions (UE/MPI), color reconnection and hadronization can not be estimated just from the
model itself. As it will be explained below, an estimate which is tied together with estimates
for other sources of uncertainties can still be reached by using different MC setups/tunes.

5. “Mass scheme uncertainty”: For achieving high precision it is crucial to investigate if the mea-
sured quantity is theoretically well defined (at least at a level subleading to other systematics).
A priori it is unclear how the interplay between the ME-PS matching, the PS, the shower cutoff
and the employed models for non-perturbative QCD effects affect the extracted numerical value
of the top quark mass parameter since all of these steps are tied together in a non-trivial way.
For estimating the uncertainties introduced in previous points it is assumed that none of those
steps has any influence on the numerical value of the extracted mass parameter which at this
point is not justified. It was argued that if one interprets the extracted quantity in terms of
some perturbatively defined mass parameter (e.g. the pole mass) without further investigation
one should assign an uncertainty which is regularly considered to be around 1 GeV [51].

Usually Points 1-4 are addressed by the experimental collaborations carrying out the top quark mass
determination. It was already mentioned and it is clear to see that it is not possible to estimate the
theoretical uncertainties from Point 4 without a deeper understanding of the involved nonperturbative
physics. Nevertheless if one uses several MC programs which are sufficiently different for the choice of
PS and nonperturbative QCD implementation (equivalent for everything which is not tied to tuning,
e.g. the description of the hard scattering process) together with appropriate tunes, the difference
is considered to be a good estimate of the uncertainty associated with Points 3 and 4 together.
Investigating and understanding Point 5 is still work in progress and it is clear that such investigations
are necessary for each of the used MC setups separately.

7Numerical fixed order calculations are available at NLO [46] which are used in NLO matched MC programs.
8In principle also uncertainties on the finite statistics for the MC phase space integration need to be considered

although these will usually be small compared to the ones from higher orders and can be easily decreased by investing
more computing power.
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Recently a different approach to reduce uncertainties from Points 2-4 employing jet grooming tech-
niques was explored in [52], where the estimate for the sum of these uncertainties was called “inherent
ambiguity of the MC top quark mass” reflecting that these uncertainties are inherent to the mass
extraction using a MC event generator. Since it is in principle possible to systematically improve on
these uncertainties by improving the perturbative description and the employed models, this termi-
nology might be misleading and it is important not to confuse this with what was described in Point 5
and connected remarks which ultimately tries to quantify the missing theoretical understanding in
terms of an uncertainty of the measured quantity which here is the top quark mass parameter of the
used MC.

In the context of top quark mass determinations it is interesting to note that usually Point 5 is not
addressed properly, in the sense that it is circumvented by the caveat that the theoretical meaning of
the determined quantity is unclear and an additional uncertainty should be considered. Although this
is a valid approach, in practice this additional uncertainty is often not estimated and the determined
quantity is then interpreted as the pole mass of the top quark, which is claimed to be natural since
the pole mass was implemented in the ME stage of the event simulation. Apart from the fact that
this direct identification with the pole mass is unjustified, using the pole mass also introduces an
additional significant source of uncertainty due to the O(ΛQCD) pole mass renormalon ambiguity (see
Sec. 2.2) which could be avoided by relating the measured quantity to a short distance mass scheme
instead of the pole mass. Furthermore in Ref. [53] it was shown that for angular ordered parton
showers the employed mass scheme effectively corresponds to a short distance mass scheme (free of
the leading renormalon) dependent on the shower cutoff. This is quite remarkable since for the first
time it was shown that the mass scheme which effectively is used within the MC program at parton
level is not equal to the pole mass and thereby the previously mentioned identification is indeed not
only unjustified but incorrect. The effect of the hadronization model in this context still remains to
be understood.

Extending the usual strategy of avoiding the complication of the used mass scheme is to call the
numerical quantity which is obtained from such mass determinations the MC top quark mass although
at this point it is not clear in which sense this notion is well defined. To illustrate this in more detail,
let us now consider a mass determination where only one process (p), one observable (o) and one
MC event generator setup (MCs) is used. Next we would like to write down a numerical relation
between a well defined field theory mass and the obtained MC top quark mass (mMC

t )p,o
MCs which

is a priori process, observable and MC setup dependent. Due to the unclear separation between
perturbative and non-perturbative effects on the extracted top mass value it cannot be assumed that
such a relation can be established on the level of perturbation theory. Nevertheless one can establish
such a relation on the particle level i.e. relate the numerical values of the input parameter of the
MC with the numerical value for a well defined perturbative mass scheme which enters a proper
theoretical calculation. This can be achieved by comparing the predicted values or distributions for
mass dependent observables and identify the input mass values for which the distributions fit best.
If one understands the following relation like that it is possible to write

mpole
t =

(
mMC
t

)p,o
MCs

+
(
∆pole
t

)p,o
MCs

, (2.23)

for the case of the pole mass and where the shift in the fitted mass with respect to the pole mass is
denoted as (∆pole

t )p,o
MC. Of course an analogous expression for other mass schemes e.g. for the MSR

mass (see Sec. 2.3) can also be written down:

mMSR
t =

(
mMC
t

)p,o
MCs

+
(
∆MSR
t

)p,o
MCs

. (2.24)

It should be emphasized that it is not clear if (∆scheme
t )p,o

MCs is, in any way, universal9 and how

9Heuristic arguments given in Ref. [51] and the already discussed result from Ref. [53] would suggest process univer-
sality as well as a partial observable universality at parton level but in general and at hadron level claiming universality
is at this point not justified.
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relevant possible universality breaking contributions are compared to other involved uncertainties,
hence it would only be sensible to speak of a MC top quark mass mMC

t (which is still specific for one
MC setup) if process and observable universality can be established.

In general the described approach of course is not feasible because of the missing theoretical calculation
for arbitrary observables which otherwise would render the usage of MC event generators for top
mass determinations unnecessary in the first place. Following the presented strategy but using an
extrapolation of the MC predictions to observables where theoretical calculations are possible is called
MC top quark mass calibration in the literature. In Ref. [6] such a calibration was carried out for the
case of the peak region of the 2-jettiness10 distribution in e+e− annihilation with PYTHIA 8.2 [54]. For
many event shapes and for this observable in particular it is possible to obtain precise hadron level
predictions by using a factorized approach together with the corresponding renormalization group
evolution to resum large logarithms to all orders in perturbation theory, as well as an appropriate
nonperturbative model function (for details concerning this setup see Chap. 3).

The precise predictions obtained with the described setup as well as pseudo-data generated by the
mentioned MC setup can then be used to fit for the value of some well defined theory mass (here
pole or MSR mass) in a relation which is analogous to Eq. (2.23). Using high statistics (107 events)
and several different values for the energy it is then possible to achieve a precise calibration. The
described overall calibration uncertainty is split in two parts: (1) The perturbative uncertainty which
is estimated by scanning over the different possible choices for the involved free renormalization scales
(implemented by a scan over the profile function parameters, see Sec. 3.8). (2) The so called MC
incompatibility uncertainty which originates from actual differences in what is implemented in the
theory code and the MC simulation. This source of uncertainty is estimated by the changes induced for
using different combinations of definitions of the peak region and different sets of energies considered
simultaneously in the fit.

The result of the calibration is then a relation of the MC top quark mass
(
mMC
t

)e+e−,τ2
PYTHIA8.2

(subsequently

only called mMC
t ) and the considered mass scheme as well as the corresponding overall calibration

uncertainty [55] and reads

mMC
t = mMSR

t (R = 1GeV) + (0.18± 0.22) GeV , (2.25)

mMC
t = mpole

t + (0.29± 0.40) GeV , (2.26)

which was checked to be valid for MC top quark mass values between 172 and 174 GeV. From this
results it is easy to see that for both investigated mass schemes an identification of the MC top quark
mass and the respective mass scheme is possible, however for the MSR mass within a significantly
smaller uncertainty.

In the future it is important to investigate observable universality of such relations and to do that it
is necessary to consider (sufficiently) different observables. One aim of this work is to identify such
observables and deliver all needed ingredients to carry out a similar calibration. Due to its relatively
high mass sensitivity, the different behavior concerning soft particles (with respect to 2-jettiness)
and the additional sensitivity to the exact decay kinematics of the top quark (see Chap. 4), a mass
sensitive version of C-parameter (more precisely M -scheme C-parameter, see Chap. 3) is a promising
observable and will therefore be of special interest throughout this thesis. Furthermore a qualitative
comparison for the respective theory result with MC data is shown as a preliminary result in Sec. 5.3.

10Later discussed as M -scheme thrust, see Sec. 3.2 for more details.
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Chapter 3

Event Shapes for Massive Quarks in
e+e−-Annihilation

3.1 General Remarks and Definitions

Since the late 1970s a class of observables called event shapes was used to test and determine funda-
mental properties of QCD (for a review see [56, 57]), most notably αs-measurements. As the name
suggests these observables contain information about the geometric momentum distribution of the
final state particle momenta. The (historic) main field of application is e+e−-annihilation and deep
inelastic scattering (DIS) but today there also exist adaptations developed specifically for hadronic
collision experiments (e.g. pp) [58,59].

In the historical context of e+e−-annihilation a variety of such observables was studied both the-
oretically and also experimentally in great detail. An incomplete list involves thrust1 τ [60, 61],
C-parameter C [62], invariant hemisphere jet masses ρ [63–65] and angularities τa [66, 67] (with
0 ≤ a ≤ 1). Using the center-of-mass energy Q and the sum of the modulus of final state particle
3-momenta Qp, explicitely given by

Q =
∑
j

p0
j , Qp =

∑
j

|~pj | , (3.1)

the mentioned observables were defined in the literature in terms of final state particle momenta as
follows:

τ = 1− T = 1−max
t̂

∑
i |~pi · t̂|
Qp

=
1

Qp
min
t̂

∑
i

(
|~pi| − |t̂ · ~pi|

)
, (3.2)

τa =
1

Q

∑
i

p0
i

|~pi|
p⊥i e−|ηi|(1−a) =

1

Q

∑
i

p0
i

|~pi|
(
|~pi| − |t̂ · ~pi|

) 2−a
2
(
|~pi|+ |t̂ · ~pi|

)a
2 , (3.3)

ρ± =

(∑
i pi θ(±t̂ · ~pi)

)2

Q2
, ρh = max(ρ+, ρ−) , ρl = min(ρ+, ρ−) , (3.4)

C =
3

2

∑
i,j |~pi||~pj | sin2(θij)

Q2
p

=
3

2

[
1− 1

Q2
p

∑
i,j

(~pi · ~pj)2

|~pi||~pj |

]
. (3.5)

1Originally the variable T was defined as thrust but for consistency with the general properties of (2-jet) event shape
distributions it is convenient to change that definition to τ = 1− T .
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The so-called thrust axis t̂ is determined as the axis which maximizes the projection of final state
particle 3-momenta on that axis. Angularities are originally expressed in terms of the transverse
momentum p⊥ and pseudorapidity η of the final state particles with respect to the thrust axis but
for ease of comparison we rewrote the above expression in analogy with the other event shapes.
Note that for massless particles thrust is recovered from angularities for a → 0. Furthermore, the
orthogonal plane to the thrust axis defines two hemispheres (a particle with momentum p belongs
to hemisphere + if t̂ · ~p > 0 and otherwise to −) which defines the two hemisphere jet masses ρ±.
Light jet mass ρl (LHM) and heavy jet mass ρh (HJM) are then given by the lighter and heavier
one, respectively. C-parameter is originally derived from the linearized momentum tensor [68, 69]
θkl = (1/Qp)

∑
i(p

k
i p
l
i)/|~pi| which is a symmetric 3 × 3 matrix made up of products of final state

particle 3-momentum components. Together with energy-momentum conservation this leaves two
degrees of freedom which are known as the C- and D-parameter [62] (for a more detailed review see
also [70]).

Due to its relevance in the literature we also want to mention total jet broadening [71] which can be
recovered for massless particles from angularities for a→ 1 and is given by

BT =
1

2Qp

∑
i

|t̂× ~pi| =
1

2Qp

∑
i

p⊥i =
1

2Qp

∑
i

(|~pi| − |t̂ · ~pi|)
1
2 (|~pi|+ |t̂ · ~pi|)

1
2 =

τPa→1

2
. (3.6)

In general the discussed event shapes (also called 2-jet event shapes2) measure how closely the geo-
metric 3-momentum distribution resembles an event with two very narrow back-to-back jets in the
center of mass frame. Usually small event shape values (for the massless case, for the massive case
event shape values close to the minimal value) correspond to a very dijet-like event while larger values
correspond to events which are more isotropic in their momentum distribution. The asymmetrically
peaked differential cross section distribution is then roughly split into three parts, i.e. the peak region
which contains events which are very dijet like, the tail region with events with three well separated
jets and the far tail region which corresponds to a multijet event.

3.2 Schemes for Treating Quark Masses

In high energy experiments most of the time it is sufficient to use the approximation that all final
state particles are massless. If one is interested in high precision calculations or more obvious in non-
zero mass effects this approximation is (a priori) no longer valid. Most of the earlier investigations
where massive particles were considered in event shape distributions were concerned with the effects
of finite hadron masses on nonperturbative power corrections [72,73]. Since the generalization of the
used event shape variables to the massive case is not unique we use different definitions of an event
shape with the same massless limit and categorize similarly constructed observables into schemes for
treating quark masses. In this context the following schemes are defined (in analogy with [72]):

1. P -scheme: All particle energies which occur are replaced by the modulus of the corresponding
3-momentum i.e. (p0

i , ~pi) → |~pi| (1, ~pi/|~pi|). From the above examples thrust, C-parameter and
jet broadening are originally defined in this scheme which means that only 3-momenta and their
absolute values appear.

2. E-scheme: All particle momenta which occur are replaced by momenta which point in the
same direction but with modulus of the energy of the corresponding particle i.e. (p0

i , ~pi) →
p0
i (1, ~pi/|~pi|). From the list of observables which we have considered so far angularities in their

original definition belong to this scheme.

2In analogy one can also define N -jet event shapes which measure how closely an event resembles a N -jet event, e.g.
D-parameter is an example for a 3-jet event shape.
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3. M -scheme: The jet masses do not fall in either of these classes and similarly constructed ob-
servables should therefore be categorized as defined in the massive scheme (for simplicity we
call this the M -scheme), which will usually retain full momentum information.

In the following we will try to extend this line of thought and work out how different scheme choices
change the situation in the context of massive partonic final state particles. For different schemes
different simplifications are possible, e.g. in the center-of-mass (c.o.m.) frame

∑
i p

0
i ~pi/|~pi| 6=

∑
i ~pi =

0, which is why changing scheme might be ambiguous. It turns out that in order to correctly recover
the expressions used in the literature one should start by defining event shapes in the M -scheme,
then rewrite everything in particle energies and 3-momenta and lastly carry out all simplifications
possible involving

∑
i ~pi = 0. After that, the usual replacement rules are used to derive the P -

and E-scheme expressions. A consistent setup can be found by defining the following expressions as
the M -scheme version of the discussed event shapes (using transverse mass m⊥ =

√
|~p⊥|2 +m2 and

rapidity y measured with respect to the thrust axis t̂):

τM =
1

Q
min
t̂

∑
i

(
p0
i − |t̂ · ~pi|

)
, (3.7)

τMa =
1

Q

∑
i

m⊥i e−|yi|(1−a) =
1

Q

∑
i

(
p0
i − |t̂ · ~pi|

) 2−a
2
(
p0
i + |t̂ · ~pi|

)a
2 , (3.8)

ρM± = ρ± , (3.9)

CM =
3

2

[
2−

∑
i 6=j

(pi · pj)2

(pi · q)(pj · q)

]
(c.o.m.)

=
3

2

[
2− 1

Q2

∑
i 6=j

(pi · pj)2

p0
i p

0
j

]

=
3

2

[
1− 1

Q2

∑
i,j

(~pi · ~pj)2

p0
i p

0
j

]
+

3

2Q2

[
Q2 +

∑
i

|~pi|2
|~pi|2 − 2(p0

i )
2

(p0
i )

2
−
∑
i 6=j

p0
i p

0
j

]
. (3.10)

Note that τM is also known as 2-jettiness τ2 [74]. For the M -scheme angularities the relation
τM = τMa→0 still holds. For C-parameter we used an expression given in terms of Lorentz invari-
ants [62] with q =

∑
i pi the sum of all particle momenta. This form was shown to be convenient in

the context of massive final state particles [70, 75] and as expected reduces to the original definition
for massless particles in the center-of-mass frame. Thrust and C-parameter are originally given in the
P -scheme which we recover via the replacement (p0

i , ~pi)→ |~pi| (1, ~pi/|~pi|) (note that this also changes
Q→ Qp):

τP = τ , (3.11)

τPa =
1

Qp

∑
i

p⊥i e−|ηi|(1−a) =
1

Qp

∑
i

(
|~pi| − |t̂ · ~pi|

) 2−a
2
(
|~pi|+ |t̂ · ~pi|

)a
2 , (3.12)

ρP± =
1

Q2
p

∑
i,j∈±

(
|~pi||~pj | − ~pi · ~pj

)
, (3.13)

CP = C . (3.14)

Using the analogous replacement of (p0
i , ~pi)→ p0

i (1, ~pi/|~pi|) we get the E-scheme expressions, which

19



allows us to recover the original definition for angularities. The E-scheme expressions read

τE =
1

Q
min
t̂

∑
i

p0
i

|~pi|
(
|~pi| − |t̂ · ~pi|

)
, (3.15)

τEa = τa , (3.16)

ρE± =
1

Q2

∑
i,j∈±

p0
i p

0
j

|~pi||~pj |
(
|~pi||~pj | − ~pi · ~pj

)
, (3.17)

CE =
3

2

[
1− 1

Q2

∑
i,j

p0
i p

0
j (~pi · ~pj)2

|~pi|2|~pj |2
]
. (3.18)

Note that the form of the M -scheme C-parameter in Eq. (3.10) is convenient for this presentation
since for both, the P - and E-scheme C-parameter the second part of this expression vanishes and
only the first part contributes to the familiar form.

Mass sensitivity

When studying the mass sensitivity of the discussed observables at parton level3 already the leading
order contribution for e+e− annihilation where a heavy quark-antiquark pair is produced without
additional radiation, i.e. e+e− → γ∗, Z0 → QQ, can contribute. For this case it is straightforward to
see that the thrust axis will be (anti-)parallel with the momentum of the (anti-)quark which makes
it quite easy to calculate the two-particle threshold for 2-final state particles with the mass m.

τ τa C ρ±

M -scheme 1− β (1− β)
2−a

2 (1 + β)
a
2 12m̂2(1− m̂2) m̂2

P - & E-scheme 0 0 0 0

Table 3.1: Threshold position emin for primary production of a stable quark-antiquark pair for different
event shape definitions, using β =

√
1− 4m̂2 and m̂ = m/Q.

The results in Tab. 3.1 show that for events in which a massive stable quark-antiquark pair is produced
(primary production) only the M -scheme observables are sensitive to the quark mass at leading order
while P - and E-scheme observable definitions are not. The expressions for the threshold position
represent minimal values which get modified when considering radiation off the primary heavy quarks.
This will also add subleading mass sensitivity (suppressed by a factor of αs) even in the P - and E-
scheme but does not change the leading sensitivity of the M -scheme definitions realized by the mass
dependence of the tree-level peak position.

From this we can already conclude that for the production of primary stable heavy quarks the
M -scheme definitions are generally favorable if the aim is a mass-sensitive observable (e.g. for quark
mass determinations) which is also why such event shapes were already used in several investigations
with that aim [6, 16]. In case that a mass insensitive observable is favored the P - and E-scheme
observable definitions should be the better choice.

If the massive partons enter the final state not at leading order but rather via gluon splitting in a
massive quark-antiquark pair (secondary production) the sensitivity to the quark mass will be further
suppressed (at least by a total factor of α2

s). Apart from this observation it is not possible to make
any general statement without a thorough investigation which is beyond the scope of this work.

3In the following we will consider pure QCD final states, except top quark decay products in Chap. 4.
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3.3 Dijet Kinematics and Large Logarithms

In the following section we want to pay closer attention to the singular limit which for the considered
(global 2-jet) event shapes is reached for events with dijet kinematics (two very narrow/light pencil-
like back-to-back jets), i.e. e → emin. For non-global versions of the considered event shapes the
singular limit is reached for the analog kinematics which is a very narrow/light jet.

When looking at this kinematic situation and the observables of interest it is clear that several well
separated scales will appear µh � µj � µs � ΛQCD: (1) The hard scale µh which is the scale
at which the initial parton was produced µh ∼ Q. (2) The jet scale µj which is the scale of the
typical transverse momentum of collinear particles. It can be written as µj ∼ QΛ by using some
power counting parameter Λ (e.g. for jet masses we have Λ2 = [(

∑
i∈jet pi)

2 − m2]/Q2). (3) The

soft4 scale µs denoting the scale at which additional softer radiation happens. For this it is sensible
to write µs ∼ QΛ2 which encodes the fact that this radiation will not disturb the structure of the
collinear radiation making up the jet. (4) ΛQCD ∼ 1 GeV which is the scale of non-perturbative QCD
contributions at which for example hadronization happens.

It is well known that in fixed-order (FO) perturbation theory ratios of the involved characteristic
scales5 will enter in logarithms which in the case of event shapes in the singular limit gives rise to
so-called large logarithmic corrections. For a generic 2-jet event shape e one typically finds Λ2 ∼ e
and a generic form for the cumulative fixed order cross section (integrated differential cross section)
for the massless case is then given by

1

σ0
Σ(e) =

∫ e

0
de′

1

σ0

dσ

de′
= 1 +

αsCF
4π

[
ae2 ln2 e+ ae1 ln e+ ae0

]
+O(α2

s) , (3.19)

where aei are some event shape specific O(1) coefficients which are independent of the value of e. It can
now be seen that if the logarithms from Eq. (3.19) scale like log ∼ α−1

s , the associated contributions
will spoil the convergence of the perturbative series. This effect renders traditional FO perturbative
results less useful for jet-like kinematics in the context of event shape observables, even without
considering contributions from non-perturbative physics (i.e. αs � 1).

The exact structue of large logarithms appearing in cross sections which are not fully inclusive over
final state hadrons and how they can be organized was investigated in Refs. [78, 79]. These studies
were carried out in the context of event-shapes for e+e− → hadrons with massless quarks6 and it turns
out that the perturbative part7 of the cumulative cross section for a generic event shape e including
all orders of perturbation theory (also called the radiator) can be organized as follows:

1

σ0
Σ(e) =

∫ e

0
de′

1

σ0

dσ

de′
= C [αs]R [e, αs] +D [e, αs] ,

lnR [e, αs] =

[
L
∞∑
i=1

g0i(asL)i
]

LL

+

[ ∞∑
i=1

g1i (asL)i
]

NLL

+

[
as

∞∑
i=1

g2i(asL)i
]

NNLL

+ . . . ,

C [αs] =
∞∑
i=0

cias (3.20)

4Note that this scale is also called the ultrasoft scale which distinguishes this from the situation of a recoil sensitive
event shape e.g. jet broadening where “soft” interjet radiation scales like µs ∼ µj ∼ QΛ.

5This discussion is valid for the situation of the event shapes which were discussed before. Which of the mentioned
scales appear in the ratios is in general observable dependent since different observables involve modes with different
typical off-shellness. As mentioned before an example which behaves differently than what we have seen so far is given
by total jet broadening which was investigated in Refs. [76, 77].

6Nevertheless this still applies qualitatively to the massive case.
7A discussion on nonperturbative effects and how they can be treated is given in Sec. 3.7.
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with as = αs
4π . The appearing function R contains all the potentially large logarithms L ≡ ln e and can

be written as an exponential, C is a function containing non-log terms and D is a remainder function
vanishing for e→ 0. The fact that the final expression and therefore the function R is finite (which we
know from experiment and the fact that the nonperturbative contribution should be small) is known
as Sudakov suppression. Employing the log counting log ∼ α−1

s one can reorganize ln R which appears
in the all order radiator function into towers (already suggested in Eq. (3.20)) of the most leading
logarithms (LL), next-to-leading logarithms (NLL) and so on which are separated by one power of
αs. During the last decades different techniques have been developed to deal with large logarithmic
corrections in event shape distributions [7, 78, 80, 81] which make it possible to systematically resum
these towers of logarithms into the final result which is then called a resummed cross section (at a
certain order in the employed log counting).

Resummation of Large Logarithms

In the following large logarithms will be treated within the framework of Effective Field Theories [82]
(EFTs), which are constructed for the specific kinematical situation at hand. Soft-Collinear Effective
Theory [12–15] (short version SCET, for a review / pedagogical introduction also see [9, 70, 83, 84])
is used to describe general dijet like configurations where one finds well separated scales, i.e. a hard
interaction scale (µh ∼ Q), a jet scale or typical jet off-shellness, µj ∼ Qλ with the SCET power
counting parameter (e.g. for jet masses) λ2 ∼ s/Q2 ≡

[
(
∑

i∈jet pi)
2 − m2

]
/Q2 � 1 and a soft

scale (soft global radiation, µs ∼ Qλ2). SCET is used for massless jets (m = 0) and also for jets
originating from heavy quarks if the mass of the initially produced quark fulfills m . Qλ [85].
For the observables of interest the involved soft, n-collinear and n-collinear modes then scale like8

pµs = (p+, p−, p⊥) ∼ Q(λ2, λ2, λ2), pµn ∼ Q(λ2, 1, λ) and pµn ∼ Q(1, λ2, λ), respectively.

In case the heavy quark mass is large enough or if the jet is narrow enough one enters the regime
of boosted Heavy Quark Effective Theory [7] (a boosted version of HQET [10, 11], for a pedagogical
introduction also see [9]) where s/(mQ)� m/Q. Here the heavy quark which carries the momentum
mv + kµ (with v2 = 1) gets integrated out as a dynamical degree of freedom and the remaining
degrees of freedom are so-called ultracollinear gluons which carry the residual momentum kµ. The
ultracollinear gluons, which are soft in the top quark rest frame kµ ∼ ∆(1, 1, 1) (with some low scale
∆ < m), interact with each other and with color sources representing the integrated out heavy quarks.
The typical off-shellness of such ultracollinear gluons is softer than for collinear gluons which are part
of SCET jets. For boosted top quark pair production two versions which are boosted into back-to-
back directions are then used and subsequently matched onto SCET in order to account for global
soft radiation. For the observables of interest the involved soft, n-ultracollinear and n-ultracollinear
modes then scale like pµs = (p+, p−, p⊥) ∼ Q(λ2, λ2, λ2), pµn ∼ ∆

m(m
2

Q2 , 1,
m
Q ) and pµn ∼ ∆

m(1, m
2

Q2 ,
m
Q ),

respectively and where λ2 = m∆
Q2 .

Using this framework it is possible to derive factorization theorems [7, 81] which effectively separate
physics at the different involved scales which works because the involved cross section factors account
for physics from the different kinematical regions. This means generically they will consist of a
hard, jet and a soft function accounting for physics coming from the corresponding scales discussed
before. Utilizing the renormalization group evolution (RGE) behavior of each of these factors it is
then possible to resum the encountered large logarithms in a systematic way.

8Using light-cone momentum components pµ = (p+, p−, p⊥).
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Amending Boosted Heavy Quark Effective Theory (bHQET)

As already mentioned in bHQET the heavy quark gets integrated out and the remaining collinear
degrees of freedom are given by gluons which are soft in the rest frame of the top quark, also called
ultracollinear gluons. The momentum of the heavy quark pQ can therefore be written in terms of a
non-dynamical part and the residual momentum coming from interactions with ultracollinear gluons:

pQ = (p+
Q, p

−
Q, ~p

⊥
Q) = mvQ + kQ , (3.21)

where kQ is the residual heavy quark momentum in the center-of-mass frame. The scaling of the

residual momenta in the top rest frame is k̂ = (k̂+, k̂−, ~̂k⊥) ∼ ∆(1, 1, 1) with some power counting
parameter ∆2/m2 � 1. When boosting from the heavy quark rest frame to the c.o.m. frame (let
us assume the heavy quark moving along the z-axis) one gets9 the following in terms of light cone
momentum components:

p̂Q = m(1, 1,~0) +
(
k̂+
Q, k̂

−
Q,
~̂k⊥Q
)

−→ pQ =
(
γ(1− β)p̂+

Q, γ(1 + β)p̂−Q, ~̂p
⊥
Q

)
, (3.22)

where the boost factors are given by

γ(1− β) = v+ =
Q

2m

(
1−

√
1− 4

m2

Q2

)
=
Q

m

(
m2

Q2
+
m4

Q4
+ . . .

)
, (3.23)

γ(1 + β) = v− =
Q

2m

(
1 +

√
1− 4

m2

Q2

)
=
Q

m

(
1− m2

Q2
+ . . .

)
. (3.24)

Next we use this to write down the heavy quark momentum in analogy to Eq. (3.21) and adopt the
following prescription: Terms which only contain kinematical information about the initially produced
on-shell heavy quark are not expanded in powers of m

2

Q2 but kept to all orders. Dynamical contribtuions,
which are connected to interactions with ultracollinear gluons, are treated at leading power. With this
the heavy quark momentum in the c.o.m. frame is then given by

pQ = mvQ + kQ (3.25)

= Q

(
1

2

[
1−

√
1− 4

m2

Q2

]
,
1

2

[
1 +

√
1− 4

m2

Q2

]
,~0

)
+Q

(
mk̂+

Q

Q2
,
k̂−Q
m
−
mk̂−Q
Q2

,
~̂k⊥Q
Q

)
+O

(m3∆

Q4

)
.

In the literature (see Refs. [7, 8]) also terms which are non-dynamical but suppressed by a factor of
m2

Q2 over the leading term are neglected due to them being formally suppressed. In this situation

Eq. (3.25) gets reduced to:

pQ = Q

(
m

Q
, 1, 0

)
+Q

(
mk̂+

Q

Q2
,
k̂−Q
m
−
mk̂−Q
Q2

,
~̂k⊥Q
Q

)
+O

(m4

Q4
,
m3∆

Q4

)
. (3.26)

Considering top quark pair production at a c.o.m. energy of Q = 700 GeV as a realistic numerical
example one can see that the terms of order O

(
m4

Q4

)
which are omitted when going from Eq. (3.25)

to Eq. (3.26), although they are formally suppressed, are not small and should be kept if possible.
Using a top quark mass of m = 173 GeV and its width as a typical off-shellness of Γ = ∆ = 1.4 GeV
the size of the different involved terms is given by

m2

Q2
= 0.06108 ,

m4

Q4
= 0.00373 ,

m6

Q6
= 0.00023 , (3.27)

mΓ

Q2
= 0.00049 ,

m3Γ

Q4
= 0.00003 ,

Γ2

Q2
∼ 4 · 10−6 . (3.28)

9In the following momenta with hat e.g. p̂ denote the corresponding momentum in the rest frame of the particle.
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Interpreting these numbers as shifts in the 2-jettiness threshold which is given by τmin
2 = 1−

√
1− 4m

2

Q2

leads to the following shifts in the corresponding extracted mass:

m2

Q2
: 33.108 GeV ,

m4

Q4
: 2.277 GeV ,

m6

Q6
: 140 MeV , (3.29)

mΓ

Q2
: 304 MeV ,

m3Γ

Q4
: 19 MeV ,

Γ2

Q2
: 2 MeV . (3.30)

This makes it clear that the subleading purely non-dynamical terms are numerically not small and
should therefore not be neglected. In the following we will keep the full pure m

Q dependence in a

consistent manner, hence use m(v+, v−, 0) and not Q(m
2

Q2 , 1, 0) as usually done in the literature. This
makes it also possible to naturally recover the full threshold position as given in Tab. 3.1 which up
to now was set to the full expression by hand.

3.4 Factorization and Resummation

Factorization formula for dijet kinematics such as the one used in the context of SCET (see Sec. 3.4.2)
rely on the fact that at leading order in the appropriate powercounting it is possible to write the event
shape formula in the dijet limit as a sum of contributions of n(n)-collinear, soft perturbative and soft
nonperturbative particles [73,81] (e denotes the event shape e in the dijet limit at leading order):

e = en + en + es + eΛ . (3.31)

If the event shape is given by a single sum of final state particle momenta (as it is the case for thrust
or angularities) this statement is trivial. In the case that the definition of the event shape correlates
momenta of a pair of final state particles (i.e. the definition will involve a double sum) the situation
is more complicated. In this case one has to show explicitly that in this kinematic limit the leading
contribution to the event shape can be written in the form of Eq. (3.31), which for example was done
in Ref. [86] for CP and in Ref. [70] for CM .

3.4.1 Measurement Factorization in the Dijet Limit

Measurement Factorization in SCET

In the following we want to study different mass scheme definitions of the considered event shapes in
the dijet limit while considering the power counting of SCET (for details see Sec. 3.3 and references
therein). In this situation it is possible to characterize each event shape by a function10 fe(ri, yi) in
the following way:

e =
1

Q

∑
i

m⊥i fe(ri, yi) , (3.32)

where m⊥i =
√

(p⊥i )2 +m2
i is the transverse mass using p⊥i = |~p⊥i |, ri = p⊥i /m

⊥
i is the transverse

velocity and yi is the rapidity of the i-th final state particle again with respect to the thrust axis.
Obviously if one can show that an event shape observable takes this form in the dijet limit, Eq. (3.31)
trivially follows. As an example for how this calculation works let us now consider the M -scheme
jet mass ρM+ for the SCET case with a primarily produced stable massive quark-antiquark pair.

10This form was also employed in [73] where the used J-scheme coincides with the M -scheme in the dijet limit for the
case that soft particles are massless.
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When considering the fact that particles can be either soft, n-collinear or n-collinear which scale like
pµs = (p+, p−, p⊥) ∼ Q(λ2, λ2, λ2), pµn ∼ Q(λ2, 1, λ) and pµn ∼ Q(1, λ2, λ) respectively, we can write:

ρM+ =
∑

a∈{s,n,n}
b∈{s,n,n}

ρM+,ab =
1

Q2

∑
a∈{s,n,n}
b∈{s,n,n}

∑
i∈a
j∈b

(pi · pj) θ(t̂ · ~pi) θ(t̂ · ~pj) , (3.33)

where a and b correspond to either the soft, n-collinear or n-collinear sector. Calculating all the
ingredients gives

ρM+,ss = 0 +O(λ4) , (3.34)

ρM+,sn = ρM+,ns =
1

Q2

∑
i∈n
j∈s

[
(p+
i p
−
j + p−i p

+
j )/2− ~p⊥i ~p⊥j

]
θ(t̂ · ~pj) =

1

2Q2

∑
i∈n
j∈s

p−i p
+
j θ(t̂ · ~pj) +O(λ4)

=
1

2Q

∑
j∈s

p+
j θ(t̂ · ~pj) +O(λ4) , (3.35)

ρM+,nn =
1

Q2

∑
i∈n
j∈n

[
(p+
i p
−
j + p−i p

+
j )/2− ~p⊥i ~p⊥j

]
=

1

Q

∑
i∈n

p+
i , (3.36)

ρM+,sn = ρM+,ns = ρM+,nn = ρM+,nn = ρM+,nn = 0 , (3.37)

where we used that
∑

i∈n/n ~p
⊥
i = 0 +O(Qλ2) and that each collinear sector carries half of the center

of mass energy (up to soft corrections) i.e.
∑

i∈n p
−
i =

∑
i∈n p

+
i = Q + O(Qλ2). Starting with the

definition of rapidity (measured with respect to the thrust axis) we find

yi =
1

2
ln

(
p0
i + t̂ · ~pi
p0
i − t̂ · ~pi

)
=⇒ |yi| =

1

2
ln

(
p0
i + |t̂ · ~pi|
p0
i − |t̂ · ~pi|

)
=⇒ e−|yi| =

√
p0
i − |t̂ · ~pi|
p0
i + |t̂ · ~pi|

. (3.38)

With θ(yi) = θ(t̂ · ~pi) and m⊥i =
√

(p⊥i )2 +m2 =
√

(p0
i )

2 − |t̂ · ~pi|2 it is now straightforward to

conclude that Eq. (3.32) is fulfilled for the case of ρM+ :

ρM+ =
1

Q

∑
i

m⊥i θ(yi)e
−yi =

1

Q

∑
i

(p0
i − |t̂ · ~pi|) =

1

Q

∑
i

p+
i θ(t̂ · ~pi) =⇒ fMρ+

(r, y) = θ(y)e−y .

(3.39)

To arrive at similar and also simple expressions for P - and E-scheme event shape definitions it is
convenient to introduce pseudorapidity η and the velocity v of a particle which are defined in terms
of the transverse velocity r = p⊥/m⊥ and rapidity y by

η = η(r, y) = ln

(√
r2 + sinh2 y + sinh y

r

)
, v = v(r, y) =

√
r2 + sinh2 y

cosh y
. (3.40)

Using this it is easy to extract the expressions for f
P/E
e (r, y). The derivation for the other discussed

event shapes is now straightforward and completely analogous to the example case and therefore
not discussed in more detail. The obtained results are summarized in Tab. 3.2 from which we can
observe the following relation of the M -scheme with the corresponding P - and E-scheme expressions

for f
P/E
e (r, y):

fPe (r, y) = r fMe (r, η(r, y)) , fEe (r, y) =
r

v(r, y)
fMe (r, η(r, y)) . (3.41)
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fe(r, y) τ τa C ρ±

M -scheme e−|y| e−|y|(1−a) 3
cosh y θ(±y)e∓y

P -scheme re−|η| re−|η|(1−a) 3r
cosh η rθ(±η)e∓η

E-scheme r
v e−|η| r

v e−|η|(1−a) r
v

3
cosh η

r
vθ(±η)e∓η

Table 3.2: Coefficient function fe(r, y) for the used event shape definitions in the singular limit
according to Eq. (3.32).

Measurement Factorization in bHQET

When considering the power counting of bHQET (see Sec. 3.3 and references therein), which is
characteristic for the peak/resonance region in boosted top quark production, it turns out that in
the dijet limit the expression of Eq. (3.32) takes an even simpler form (at least for the event shapes
which are considered here):

e = emin +
1

Q

∑
i

k⊥i fB,e(yi) , (3.42)

where the expressions for the first part are given in Tab. 3.1 and which originates equally from the
two ultracollinear sectors. The second part does now not depend on the mass of the heavy quark,
hence it is independent of the used event shape scheme, and takes the same functional form than its
SCET counterpart i.e. fB,e(y) = fMe (1, y) when given in terms of residual particle momenta only.

To see this explicitly let us again consider the example of ρM+ , now with the bHQET power counting.
Starting with Eq. (3.33) and considering that the heavy (anti-)quark is part of the (n)n-ultracollinear
sector, it is easy to see that all the expressions except the one for ρM+,nn are the same as in the
SCET case. In the top quark rest frame ultracollinear gluons are soft i.e. their momentum scales
like k̂µ = (k̂+, k̂−, k̂⊥) ∼ ∆(1, 1, 1) with some low scale ∆ < m. Using this the involved soft,

n-ultracollinear and n-ultracollinear modes then scale like kµs ∼ Q(λ2, λ2, λ2), kµn ∼ ∆
m(m

2

Q2 , 1,
m
Q ) and

kµn ∼ ∆
m(1, m

2

Q2 ,
m
Q ), respectively and where λ2 = m∆

Q2 . The missing contribution is then given by

ρM+,nn =
1

Q2

{
pQ · pQ + 2 pQ ·

∑
i∈x

pi +
∑
i,j∈x

pi · pj
}

=
m2

Q2
+

1

Q

[∑
i∈n

k+
i +

m

Q

∑
i∈n

k−i

]
+O(m3∆/Q4)

=
m2

Q2
+

1

Q

∑
i∈n

k+
i +O(m3∆/Q4) , (3.43)

which confirms the general form of Eq. (3.42) and where x is the set of ultracollinear gluons (set of
ultracollinear particles excluding the heavy quark). Furthermore we used the following argument:
each ultracollinear region carries energy Q/2 up to soft radiation. From that one can then follow that

2
∑
i∈n

p0
i =

∑
i∈n

(
p+
i + p−i

)
= Q (1 +O(λ2))

=
Q

m

[
k−Q
Q

+
∑
i∈x

k−i
Q

]
+Q (1 +O(m∆/Q2)) , (3.44)

Q

m

∑
i∈n

k−i
Q

= 0 +O(m∆/Q2) −→ m

Q

∑
i∈n

k−i
Q

= 0 +O(m3∆/Q4) . (3.45)
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Verifying the form of Eq. (3.42). The discussion for the other event shapes of interest is again
straightforward and completely analogous, hence not discussed here.

3.4.2 Factorization Formula and Mass Scenarios

Using the same argumentation as in Refs. [7, 8, 73, 81] we can write down the factorization formula
for the most singular part of the differential cross section with respect to a recoil free massive e+e−

event shape. It was discussed extensively in Refs. [9, 84, 87–89] how to setup a consistent variable
flavor number scheme to account for effects of the mass of primarily and secondarily produced heavy
quarks. As explained before we want to work out the expressions for different mass scheme definitions
for primary heavy quark production in e+e− annihilation (here in the singular limit). For this case
three scenarios distinguished by their hierarchy of scales with respect to the heavy quark mass m
are relevant, where each of them has a different factorization theorem and renormalization group
evolution setup. In the following discussion we adopt the established nomenclature from the relevant
literature where the not mentioned Scenario I refers to a scale hierarchy with m > µh which implies
that no primary heavy quark production is possible. In the following we will only discuss factoriza-
tion theorems valid for global observables11. As an example we will use the case of thrust but the
factorization theorem will take an analogous form for many other event shapes like angularities (for
small a) or C-parameter (often it is more convenient to use the rescaled C-parameter which is given
by C̃ = C/6).

Scenario IV: µh > µj > µs > m

For this scenario the mass is below any of the kinematical scales. Because of that the effects of the
mass enter all of the ingredients of the factorization theorem and the renormalization group evolution
of all involved factors will involve (n` + 1) active flavors. As our default we will set the global
renormalization scale to µ = µj which leads to the factorization theorem given by:

dσsing
IV

dτ
=
∑
i=v,a

Qσi0H
(n`+1)(Q,µh)U

(n`+1)
H (Q,µh, µ)

∫
dsd` J (n`+1)

τ (s,m, µ)

× U (n`+1)
S,τ (`, µ, µs)S

(n`+1)
τ (Qτ − s

Q
− `,m, µs) . (3.46)

The appearing factors contain SCET matrix elements and can be calculated individually. This allows
us to separate the involved kinematical scales and subsequently use renormalization group running
(via the also appearing evolution kernels denoted by U , see Sec. 3.4.3) from a natural scale (which min-
imizes the involved logarithms) to a common global scale, here µ = µj , which leads to a resummation
of the mentioned large logarithms. The cross-section factors are12:

• The hard function H(Q,µ) = |C(Q,µ)|2 which is given by the squared renormalized matching
coefficient C(Q,µ) of the SCET current onto the QCD current, thus universal for all e+e−

annihilation observables. The unrenormalized matching coefficient is given by〈
QQ̄
∣∣J µQCD,i |0〉m2�Q2 = C0(Q,µ)

〈
QQ̄
∣∣ JµSCET,i |0〉 , (3.47)

11For non-global observables which only consider part of the event (e.g. hemisphere jet masses) the factorization
theorem needs to be modified (partly discussed in [90]) and will in general also involve so-called non-global logarithms [91].

12From now on we will keep the explicit flavor number dependence on the cross section factors only when stating the
factorization theorem and take them otherwise as implicit. The flavor number states how many active flavors need to
be considered during renormalization group evolution and the flavor number scheme of the involved αs.
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where the vector/axial-vector QQ̄ current in QCD J µQCD,i and SCET JµSCET,i are given by

J µQCD,i = ψ Γµi ψ , with Γµv = γµ , Γµa = γµ γ5 , (3.48)

JµSCET,i = χn Y
†
nS
†
n Γµi SnYn χn , (3.49)

with the quark field ψ, the jet field χn and the ultrasoft and mass mode Wilson lines Yn and
Sn (for further information see Sec. 3.3 and references therein).

• The (global) jet function which is a convolution of the n- and the n-collinear jet functions
Je = Jn,e ⊗ Jn,e. The n- and n-collinear jet function is then given in terms of a collinear
event shape measurement on matrix elements of collinear fields. This can be interpreted as the
probablility of forming a jet (up to soft corrections and power corrections) which contributes the
n-collinear part en to the total event shape value e of the event. The jet function accounts for
the dynamics of the collinear particles within the jet and for some generic event shape e (such
as thrust, angularities or C-parameter) is given by [7,8,81] (with implicit color- and spin-trace)

Jn,e(s,m, µ) =
1

8π

∫
dk+ dk− d2(~k⊥) δ(k− −Q) δ(2)(~k⊥)Jn,e(s, k,m, µ) , (3.50)

Jn,e(s, k,m, µ) =
1

Nc

∫
d4x ei k x Tr

[
〈0| /nχn(x) δ(s−Q2ên)χn(0) |0〉

]
, (3.51)

with the n-collinear event shape operator acting on some final state like

ên |X〉 = en(X) |X〉 . (3.52)

• The soft function which accounts for soft radiation and soft cross-talk between the jets. Due
to their large separation in momentum the soft gluons only see highly boosted color charges
along the n- and n-direction with which they interact via eikonal interactions (see for example
Ref. [83]), hence the soft function has no information on the mass of the primary produced
collinear quarks and only involves soft Wilson lines Yn, Y n. The perturbative part of the soft
function for some generic event shape e (such as thrust, angularities or C-parameter) is given
by [81] (with implicit color- and spin-trace)

Spert,e(`,m, µ) =
1

Nc
〈0| (Y

†
n Y
†
n )(0) δ(`−Qês) (Yn Y n)(0) |0〉 . (3.53)

with the soft event shape operator acting on some final state like

ês |X〉 = es(X) |X〉 . (3.54)

Since the soft function accounts for all soft radiation it also has non-perturbative contributions.
Due to a lack of understanding of this non-perturbative part it has to be modelled and the full
soft function is then given by a convolution of the perturbative part and a non-perturbative
shape-function as shown in Eq. (3.163). More details on the used shape-function (sometimes
also called soft model function) and connected issues are given in Sec. 3.7.

From their definition it is clear that the hard function does not depend on the quark mass while the
same is true for the soft function up to NLO. In the following we are only interested in NLO for
which the mass independent results are well known. The expressions for H(Q,µ) is known at 3-loop
accuracy [92, 93] and at NLO the QCD-SCET matching coefficient, the corresponding counter term
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and the hard function are given by

ZC(Q,µ) = 1− αsCF
π

{
1

2 ε2
+

3

4 ε
+

1

2 ε
ln

µ2

−Q2 − i0

}
+O(α2

s) , (3.55)

C(Q,µ) = 1− αsCF
π

{
3

4
ln

µ2

−Q2 − i0 +
1

4
ln2 µ2

−Q2 − i0 + 2− π2

24

}
+O(α2

s) , (3.56)

H(Q,µ) = |C(Q,µ|2 = 1 +
αsCF
π

{
− 3

2
ln
µ2

Q2
− 1

2
ln2 µ

2

Q2
− 4 +

7π2

12

}
+O(α2

s) . (3.57)

The corresponding expressions for Sτa (with Sτ = Sτa→0) and SC̃ (with C̃ = C/6) and the associated
counter terms (details on renormalization and renormalization group evolution of the cross section
factors are discussed in Sec. 3.4.3) are given in Refs. [8, 86, 94–96] and Ref. [86] respectively, and at
NLO read (using ˜̀= l/µ)

µZS,τa(l, µ) = δ(l̃) +
αsCF
π

{
− δ(l̃) 1

(1− a) ε2
+

2

(1− a)ε

[
θ(l̃)

l̃

]
+

}
+O(α2

s) , (3.58)

ZS,C̃(`, µ) = ZS,τ (`, µ) = ZS,τa→0(`, µ) , (3.59)

µSpert,τa(`,m, µ) = δ(l̃) +
αsCF
π

{
δ(l̃)

1

1− a
π2

12
− 4

1− a

[
θ(l̃) ln l̃

l̃

]
+

}
+O(α2

s) , (3.60)

µSpert,C̃(`,m, µ) = δ(l̃) +
αsCF
π

{
δ(l̃)

π2

4
− 4

[
θ(l̃) ln l̃

l̃

]
+

}
+O(α2

s) . (3.61)

The massless jet function for ρ± (which is the same as the n-collinear jet function for τ and C̃ = C/6)
is known to two loop order [87, 97] while the massless one loop τa jet function is given in Ref. [95].
For the primary massive situation the n-collinear jet function is known at one loop for M -scheme jet
masses, thrust and the modified C-parameter (C̃ = C/6) [7, 8]. In Sec. 3.5 we are going to discuss
the analog jet function calculation for the corresponding P - and E-scheme event shape definitions.

In contrast to earlier work concerning the primary massive jet function (see Refs. [98] and [7, 8]) the
general calculation (and in particular the one of Sec. 3.5) cannot be based on taking the imaginary
part of an inclusive jet function which would require the collinear measurement to only depend on
the total jet momentum and not on momenta of the individual particles. One possible approach,
which we will follow, is to use an explicit collinear final state13. This approach was also used in the
case of the massless broadening jet function in Ref. [76] and in a modified version for the massless
angularities jet function14 in Ref. [95].

Now let us take a closer look at the n-collinear jet function15 for an event shape e. We start from
Eq. (3.51) and use a n-collinear version of the final state completeness relation. Next an additional
translation χn(x)→ χn(0) is performed and after some manipulations we finally get:

Jn,e(s, k,m, µ) =
1

Nc

∑
Xn

∫
dΠXn (2π)d δ(d)(k − Pn) δ(s−Q2en(X))

× Tr

[
〈0| /nχn(0) |Xn〉 〈Xn| χn(0) |0〉

]
, (3.62)

13Using explicitly factorized final states |X〉 = |Xn〉 |Xn〉 |Xs〉 and performing the measurement on them is one
possibility to calculate the jet function for an aribtrary event shape (i.e. one for which more differential information
than just jet momentum information is needed).

14An analogous approach to an explicitly factorized final state is to define modified Cutkosky rules as it was done
in [95] where this approach was called “Cutting rules for weighted matrix elements“.

15By replacing n↔ n and k+ ↔ k− one gets the jet function in n direction which is defined analogously.
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where Pn is the overall final state jet momentum. For the jet function calculation done in Sec. 3.5.1
it seems more instructive to write the matrixelement part of the above jet function definition with
explicit dirac indices in the form of 1-jet amplitudes (the color trace is still implicit):

Tr

[
〈0| /nχn(0) |Xn〉 〈Xn| χn(0) |0〉

]
= (/nγ0)αβ 〈0| (χ†n)β(0) |Xn〉 〈Xn| (χn)α(0) |0〉

= (/nγ0)αβ (M†n,1−jet)
β(Mn,1−jet)

α . (3.63)

Scenario III: µh > µj > m > µs

For this scenario the mass is between the jet and soft scale, hence the hard and jet function evolution
happens again above the mass threshold µm ∼ m and the corresponding sectors involve (n`+1) active
flavors. The soft function evolution on the other hand, which starts with (n`) active flavors, crosses
the mass threshold which means that virtual quark mass effects need to be included in the running
of the soft function above µm and also threshold corrections enter at the mass scale via a matching
coefficient. Putting everything together one then recovers the (n` + 1) flavor soft function running
from scenario IV above the mass scale (see also Sec. 3.4.4). The factorization theorem for µ = µj
then reads

dσsing
III

dτ
=
∑
i=v,a

Qσi0H
(n`+1)(Q,µh)U

(n`+1)
H (Q,µh, µ)

∫
dsd`d`′ d`′′ J (n`+1)

τ (s,m, µ)

× U (n`+1)
S,τ (`′′, µ, µm)M(n`+1)

S (`′ − `′′,m, µm)

× U (n`)
S,τ (`− `′, µm, µs)S(n`)

τ (Qτ − s

Q
− `, µs) , (3.64)

where the involved hard and jet functions are identical to the ones in scenario IV. At one loop the
soft function does not depend on the heavy flavor which was integrated out and therefore the related

matching coefficientM(n`+1)
S starts to be non-trivial at two-loop level. It involves large rapidity loga-

rithms which can be resummed via simple exponentiation [99]. The soft function matching coefficient
was determined in Ref. [88] and reads

µsMS(`,m, µm) = δ(˜̀) (3.65)

+

[
δ(˜̀)CFTF

(
αs(µm)

4π

)2

ln

(
µ2
s

µ2
m

){
8

3
L2
m +

80

9
Lm +

224

27

}]
O(αs)

+O(α2
s) ,

with ˜̀ = `/µs, Lm = ln(m2/µ2
m) and where the subscript O(αs) indicates that the involved rapidity

logarithm is counted as α2
s log ∼ αs which means that we need to include it at N2LL for consistency

(the same size as O(αs) matrix element corrections, see also Sec. 3.4.3). Furthermore µs indicates
some scale which scales like µs ∼ Qe so that all large logarithms are explicit [88]. The remaining α2

s

terms only involve Lm and constants which are omitted while at higher order only terms contributing
at N3LL appear.

bHQET Scenario: µh > m > µjB > µs

For the case that the mass scale is bigger than the jet scale16 µjB, which typically only (if at all)
happens in the peak/resonance region of (2-jet) event shape distributions, one needs to employ a
different effective field theory setup involving a boosted version of HQET (bHQET, see Sec. 3.3 and
references therein) which allows for a typical jet off-shellness of P 2

n − m2 ∼ µ2
jB � m2, while for

16Since µj and µjB have different canonical scaling we differentiate these two ”jet scales“ - see Sec. 3.8.
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SCET P 2
n − m2 ∼ m2 holds. In this kinematical regime the heavy quark needs to be integrated

out as a dynamical degree of freedom and gluons which are soft in the heavy quark rest frame are
the remaining degrees of freedom. Using two versions of bHQET (one for each collinear direction)
and matching them onto SCET leads to the bHQET factorization theorem [7,8] which in analogy to
Eq. (3.46) and Eq. (3.64) then reads (with µ = µjB)

dσsing
bHQET

de
=
∑
i=v,a

Qσi0H
(n`+1)(Q,µh)U

(n`+1)
H (Q,µh, µm)H

(n`+1)
M (m,µm)U

(n`)
M (Qm , µm, µ)

×
∫

ds d` J
(n`)
B,e (s,m, µ)U

(n`)
S,e (`, µ, µs)S

(n`)
e (Qe− s

Q
− `, µs) . (3.66)

Here the hard function gets evolved with (n` + 1) flavors down to the mass scale µm at which the
heavy quark gets integrated out (matching the bHQET current onto the SCET current, see Ref. [99]).
The remaining evolution down to the global scale µ is then continued with the reduced (n`) flavor
running of the hard function together with the (n`) flavor running of the squared bHQET to SCET

current matching coefficient, denoted by U
(n`)
M = U

(n`)
H U

(n`)
HM

. The involved squared current matching
coefficient HM is given by [8, 99]

HM (m,µm) = 1 +
αs(µm)CF

4π

{
2L2

m − 2Lm + 8 +
π2

3

}
(3.67)

+

[
CFTF

(
αs(µm)

4π

)2

ln

(
Q2

µ2
m

){
−8

3
L2
m −

80

9
Lm −

224

27

}]
O(αs)

+O(α2
s) ,

with Lm = ln(m2/µ2
m) and where the subscript O(αs) indicates that the involved rapidity logarithm

is again counted as α2
s log ∼ αs, hence included at N2LL. The soft function and the corresponding

(n`) flavor evolution in Eq. (3.66) is identical with scenario III. The jet function does now involve
matrix elements of bHQET fields (see Sec. 3.3 and references therein) and is given by

JB,n,e(s,m, µ) =
1

8π

∫
dk+ dk− d(~k2

⊥) δ(k−) δ(2)(~k2
⊥)JB,n,e(s, k,m, µ) , (3.68)

JB,n,e(s, k,m, µ) =
1

Nc

∑
Xn

∫
dΠXn (2π)d δ(d)(mv + k − Pn) δ(s−Q2en(X)) (3.69)

× Tr

[
〈0| /nW †n hv+(0) |Xn〉 〈Xn| hv+ Wn(0) |0〉

]
,

with JB,e = JB,n,e ⊗ JB,n,e. Later it will be useful to employ a simplification like in Eq. (3.63) to
express everything in 1-jet amplitudes:

Tr

[
〈0| /nW †nhv+(0) |Xn〉 〈Xn| hv+Wn(0) |0〉

]
= (/nγ0)αβ 〈0| (hv+Wn)†β(0) |Xn〉 〈Xn| (hv+Wn)α(0) |0〉

= (/nγ0)αβ (M†B,n,1−jet)
β(MB,n,1−jet)

α , (3.70)

which is the form that will be used in Sec. 3.5.2 to calculate the bHQET jet function for the mentioned
event shape variables. Note that in the literature the bHQET jet function is usually written in terms
of the natural jet function variable ŝ = s

m which renders the jet function free of explicit logarithms of
the form ln m

µ . To have a more uniform presentation of all the scenarios and a more natural transition
between scenarios we choose to use s for the most part of this work.

3.4.3 Anomalous Dimension, Resummation and Evolution Kernels

As already mentioned in Sec. 3.3 the previously discussed factorization theorems allow us to resum
large logarithms appearing in fixed order cross section calculations. This can be achieved by utilizing
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the renormalization group evolution of the different involved factors [7, 8] which is encoded into
their respective anomalous dimensions. In momentum space the renormalization for the jet and
soft function works via a convolution due to their distributional nature while the hard function
renormalization is multiplicative:

H0(Q,µ) = ZH(Q,µ)H(Q,µ) , (3.71)

J0
n,e(s,m, µ) =

∫
ds′ ZJ,n,e(s− s′, µ) Jn,e(s

′,m, µ) , (3.72)

S0
e (`,m, µ) =

∫
d`′ ZS,e(s− s′, µ)Se(s

′,m, µ) . (3.73)

By using the Fourier-transform of the jet function J̃(y) = F(J(s)) =
∫

ds exp(−iys) J(s) and soft
function S̃(y) = F(S(`)) =

∫
d` exp(−iy`)S(`) we can write17

F 0(y, µ) = ZF (y, µ)F (y, µ) , (3.74)

with F = H, J̃, S̃. The renormalization group evolution (RGE) equation then reads

µ
d

dµ
F (y, µ) = γF (y, µ)F (y, µ) . (3.75)

This equation depends on the anomalous dimension γF which in general can be written as

γF (y, µ) =
2 ΓF

[
αs(µ)

]
j

LF (y, µ) + γF
[
αs(µ)

]
, (3.76)

with j ∈ {1, 2} which keeps track of the powers of µ for the different cross section factors (for hard
and jet function j = 2, for the soft function j = 1) as well as the so-called cusp anomalous dimension
ΓF [αs] and non-cusp anomalous dimension γF [αs]. These are defined in terms of a perturbative
expansion as follows:

ΓF
[
αs(µ)

]
=
∑
n=0

ΓF,n

(
αs(µ)

4π

)n+1

, γF
[
αs(µ)

]
=
∑
n=0

γF,n

(
αs(µ)

4π

)n+1

. (3.77)

Explicit expressions for the anomalous dimension coefficients for the different cross section factors
can be found in App. A. Additionally Eq. (3.76) involves the logarithm function LF (t, µ) which for
the different functions is given by

LH(y, µ) = ln
µ2

Q2
, LJ̃/S̃(y, µ) = ln

(
iyµjeγE

)
, (3.78)

with y ≡ y + i0. Solving the generic RGE equation from Eq. (3.75) one gets

F (y, µ) = UF (y, µ, µ0)F (y, µ0) , (3.79)

UF (y, µ, µ0) = exp
[
ωF (µ, µ0,ΓF , j)LF (y, µ0) +KF (µ, µ0,ΓF , γF )

]
. (3.80)

The introduced functions ωF and KF play a central role in the evolution kernels and are defined as
follows:

ωF (µ, µ0,ΓF , j) =
2

j

∫ αs(µ)

αs(µ0)
dα

ΓF [α]

β[α]
, (3.81)

K(µ, µ0,ΓF , γF ) = 2

∫ αs(µ)

αs(µ0)
dα

ΓF [α]

β[α]

∫ α

αs(µ0)

dα′

β[α′]
+

∫ αs(µ)

αs(µ0)
dα

γF [α]

β[α]
, (3.82)

17In the following we will consider dependence on m or Q as implicit and therefore omit them from the list of variables
the functions depend on.
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which involve the QCD beta function given by

β[αs(µ)] =
dα(µ)

d lnµ
= −2εαs(µ)− αs(µ)2

2π

∑
n=0

βn

(
αs(µ)

4π

)n
. (3.83)

Explicit expressions for ωF , KF and the beta function coefficients are also given in App. A. Using
the inverse Fourier transform F (y) = F−1(F̃ (t)) =

∫
dt
2π exp(ity)F̃ (t) one gets the momentum space

jet and soft function evolution kernel [7] which is given by

UJ/S(t, µ, µ0) =
eKF

(
eγE
)ωF

µj0 Γ(−ωF )

[
θ(t̃)

t̃1+ωF

]
+

, (3.84)

with ωF and KF as in Eq. (3.80), t̃ = t

µj0
and again j the mass dimension of the variable18 t.

Due to the fact that only a finite number of terms in the perturbative expansion of the anomalous
dimension for the different cross section factors is known, only the resummation of large logarithms
to a corresponding finite order (in the log counting) is possible. How the resummation of logarithms
according to a specified counting can be achieved consistently was clarified and reviewed in Ref. [79].
Adopting the convention of Ref. [100] the perturbative order at which the different ingredients have
to be entered to achieve a certain logarithmic accuracy are given in Tab. 3.3.

ΓF γF Matching Non-Singular

LL 1 0 0 0

NLL 2 1 0 0

NLL′ 2 1 1 1

N2LL 3 2 1 1

N2LL′ 3 2 2 2

Table 3.3: Needed perturbative order of different ingredients to achieve a certain order of resum-
mation of large logarithms (in αs). Apart from the cusp and non-cusp anomalous dimensions which
enter into the evolution kernels also the different cross section factors (”Matching“) and non-singular
contributions have to be included to a certain perturbative order to achieve a consistent resummation
of large logarithms (conventions adopted from Ref. [100]).

3.4.4 Choice of General Renormalization Scale µ and Consistency Relations

The global renormalization scale µ has no predefined value and in principle can be freely chosen. In
order to allow any value, the discussed factorization theorems of Sec. 3.4.2 need to be generalized to
the case µ 6= µj and µ 6= µjB for the different scenarios.

Starting with the bHQET scenario (see Sec. 3.4.2), the correct factorization theorem for the more
general case µm > µ 6= µjB is constructed by using the evolution of the bHQET jet function
JB,n,e(µ) = UB(µ, µj) ⊗ JB,n,e(µj) while everything else stays the same. For the alternative fac-
torization theorem which is valid for µ > µm > µj the soft function evolution then crosses the mass
threshold and is therefore given by the setup used for scenario III which introduces the matching

coefficient M(n`+1)
S from Eq. (3.65). The jet function will then also cross the mass threshold, thus

one starts with the bHQET jet function which first gets evolved with (n`) flavors up to the mass

18To make this more clear, the variable t corresponds to s for the jet function with j = 2 and to ` for the soft function
with j = 1.
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threshold. After matching onto the SCET jet function the evolution continues with (n` + 1) flavors.
The mentioned matching is usually implemented in the following way [8]:

Jn,e(s,m, µm)(n`+1) =

∫
ds′M(n`+1)

J,n (s− s′,m, µm)J
(n`)
B,n,e(s

′,m, µm) +O
(
P 2
n −m2

m2

)
, (3.85)

where the omitted terms correspond to the non-distributional terms in the SCET jet function and

the matching coefficient M(n`+1)
J,n is given by [8, 88]

µ2
jM(n`+1)

J,n (s,m, µm) = δ(s̃)

[
1 +

α
(n`+1)
s (µm)CF

4π

{
L2
m − Lm + 4 +

π2

6

}]
(3.86)

+ δ(s̃)

[
CFTF

(
α

(n`+1)
s (µm)

4π

)2

ln

(
µ2
j

µ2
m

){
−8

3
L2
m −

80

9
Lm −

224

27

}]
O(αs)

+O(α2
s) ,

with s̃ = s
µ2
j
, Lm = ln m2

µ2
m

and (as in the case ofMS) with the additional scale µj scaling like µj ∼ Q
√
e

again to make all large logarithms explicit.

For scenario III the more general factorization theorem for µj 6= µ > µm is then found in analogy
to the bHQET scenario by using the SCET jet function evolution Jn,e(µ) = UJ(µ, µj) ⊗ Jn,e(µj)
while everything else again stays the same. For the different scale hierarchy of µj > µm > µ the soft
function now evolves completely with (n`) flavors while the hard and jet function start with (n` + 1)
flavor evolution and subsequently have to cross the mass threshold. The hard function evolution is
implemented as in the bHQET case for the default hierarchy µm > µ while the jet function evolution
is basically given by the inverse evolution of the jet function in the case of bHQET with hierarchy
µ > µm > µj (ignoring bHQET power corrections - see Sec. 3.6 for a discussion)

In case of scenario IV again the SCET jet function evolution is used to find the appropriate factoriza-
tion theorem for the hierarchy µj 6= µ, µs > µm. For µj > µm > µ not only the hard and jet functions
but now also the soft function start their respective evolution with (n` + 1) flavors, cross the mass
threshold and finally continue their evolution with (n`) active flavors. For the hard and jet function
the detailed implementation for this particular scale hierarchy is the same as for scenario III. The
soft function evolution is now given by the inverse evolution of the soft function in scenario III with
µ > µm > µs.

Consistency Relations for Matching Coefficient

Next let us consider the factorization theorems for the two different hierarchies between µm and
the jet scale µj(B) which were discussed for each scenario. For the case where µ = µj(B) the two
results should give the same. This allows us to extract a consistency relation which holds for the used
matching coefficients. It is given by

HM (m,µm) δ(s) =

∫
d`MJ(s−Q`,m, µm)MS(`,m, µm) , (3.87)

where we used the definition MJ = MJ,n ⊗ MJ,n. This relation can be checked to be true at
O(αs) by considering the corresponding expressions from Eqs. (3.65), (3.67) and (3.86) and that

ln
( µ4

j

µ2
sµ

2
m

)
= ln

(Q2

µ2
m

)
up to higher order corrections.

Consistency Relations for Anomalous Dimensions

Checking the µ independence of the factorization theorem entails other consistency relations which
should hold for the anomalous dimensions. Starting with scenario IV and µ > µm let us next look
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at the Fourier transform (as before F̃ denotes the Fourier transform of the function F ) of the cross
section formula and take the derivative with respect to µ. One then gets the following:

d

d lnµ
H J̃n J̃n S̃ =

(
γH + 2 γJ̃ + γS̃

)
H J̃n J̃n S̃ = 0 ⇒

(
γH + 2 γJ̃ + γS̃

)
= 0 , (3.88)

where all the anomalous dimensions are evaluated with (n`+1) flavors and the jet function now refers
to the hemisphere jet function. Using Eq. (3.76) the above expression can be split into three (by
comparing the coefficients of the different involved logarithms) relations:(

ΓH [αs]− ΓS [αs]
)

ln(µ/Q) = 0 , (3.89)(
ΓJ [αs] + ΓS [αs]

)
ln
(
iyµ2eγE

)
= 0 , (3.90)

γH [αs] + 2 γJ [αs] + γS [αs] = 0 , (3.91)

which tells us ΓH = −ΓJ = ΓS as well as γH + 2 γJ + γS = 0. Analog relations can be derived for
the other scale hierarchies as well and all of them can explicitly be checked by using the expressions
from App. A.

3.5 Jet Function at NLO

As discussed in Sec. 3.4.1 it is possible to find a function fe(r, y) which is characteristic for each event
shape discussed earlier. Since fe ∼ λ2 it is straightforward to show that the collinear measurement
which is the relevant one for the jet function calculation is the same for P - and E-scheme at leading
order:

v =
|~pi|
p0
i

=
|~pi|√
|~pi|2 +m2

i

= 1− 1

2

m2
i

|~pi|2
+O(λ4) for i ∈ n-collinear ,

fPe,n(r, η(r, y)) = v fEe,n(r, η(r, y)) = fEe,n(r, η(r, y)) +O(λ4) , (3.92)

which is why we only distinguish M - and P -scheme jet function from now on. Futhermore it is easy

to see that C
M/P
n = 6 τ

M/P
n = 6 ρ

M/P
+,n , hence all of them can be calculated from the corresponding

angularities via the limit a→ 0.

3.5.1 SCET Jet Function for P -scheme Angularities

To calculate the jet function for the P -scheme definition of angularities we need to evaluate the ex-
pressions given in Eqs. (3.50),(3.62) and (3.63) with the appropriate measurement delta function from
Tab. 3.2. The leading contribution to the n-collinear part of the P -scheme definition of angularities
can be written as

τPa,n =
1

Q

∑
i∈n

(m⊥i )re−|η|(1−a) =
1

Q

∑
i

(
p−i

)a−1(
p+
i p
−
i −m2

i

) 2−a
2
. (3.93)

At NLO there are two possible final states for 1-jet production: a single massive quark |Q〉 or a
massive quark together with a radiated gluon |Qg〉. The diagrams involved in the NLO jet function
calculation where the pole mass scheme19 is used are shown in Fig. 3.1. In the following we are going
to discuss the corresponding contributions to the SCET jet function calculation.

19Alternative mass schemes can be implemented by using the finite difference to the pole mass and expanding for
small αs up to the appropriate order.
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Figure 3.1: Relevant diagrams for calculating 1-jet amplitudes needed for the jet function calculation.
The upper two diagrams contribute to the |Q〉 final state while the lower two diagrams contribute to
the |Qg〉 final state.

Single Quark Contribution

The definition of the jet function, see Eq. (3.62), involves unrenormalized (bare) fields. To be efficient
we rewrite everything in terms of renormalized fields and then simply calculate the usual amputated
diagrams which do not include self energy corrections of external fields:

(MQ
n,1−jet)

α = 〈qn| (χ0
n)α |0〉 =

[
1 +

1

2
δzOS
ψ +O(α2

s)

]
〈qn| (χn)α |0〉 , (3.94)

where δzOS
ψ = αsCF

4π

[
−3
ε + 3 ln m2

µ2 − 4
]

is the one loop field renormalization counter term in the

on-shell scheme in d = 4− 2ε dimensions.

For the single quark contributions we have to evaluate the upper two diagrams of Fig. 3.1 which give
(involving un(p, s) = 1

4(/n/n)u(p, s) the n-collinear SCET analog of the dirac spinor u(p, s))

(MQ
n,1−jet)

α = uαn(p, s)

[
1 +

1

2
δzOS
ψ + 8 iπ αsCF

/n

2

/n

2
Ivirt(p,m) +O(α2

s)

]
, (3.95)

where we used the strong coupling constant αs = g2
s/(4π) and defined the integral (details on the

calculation are given in App. C.1)

Ivirt(p,m) = µ̃4−d
∫

dd q

(2π)d
p− − q−

[(p− q)2 −m2 + i0][q− + i0][q2 + i0]
. (3.96)

Next we evaluate the square of the matrix element, carry out the spin sum and all involved traces
(color trace is implicit) and get

(/nγ0)αβ
∑
spins

(MQ †
n,1−jet)

β(MQ
n,1−jet)

α

= 4Nc p
−
[
1 + δzOS

ψ + 16π αsCF Re

(
i Ivirt(p,m)

)
+O(α2

s)

]
, (3.97)
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where we used the appropriate powercounting to obtain the leading contribution to the spin sum20∑
s u

α
n,a(p, s)u

β
n,b(p, s) = 1

2p
−δab/n

αβ. With this it is then easy to carry out the trivial phase space
integral (only involving one massive on-shell final state particle) and evaluate all involved delta func-
tions:

JQn,τa(s,m, µ) =
1

8πNc

∫
dk+ dk− d2(~k⊥) δ(k− −Q) δ(2)(~k⊥)

∫
d4p

(2π)d
(2π)dδ(d)(k − p)

× (2π)θ(p0)δ(p2 −m2) δ

[
s−Q(p−)a−1(p+p− −m2)

2−a
2

]
(3.98)

× 4Nc p
−
[
1 + δzOS

ψ + 16π αsCF Re

(
i I1

virt(p,m)

)
+O(α2

s)

]
,

which directly leads to the final result for the single quark part of the jet function as defined in
Eq. (3.50). The result is split in three parts:

JQn,τa(s,m, µ) = J0
n,τa + Jan,τa + Jbn,τa +O(α2

s) , (3.99)

µ2J0
n,τa = δ(s̃) , (3.100)

µ2Jan,τa = δ(s̃)
αsCF
π

[
− 3

4ε
+

3

4
ln
m2

µ2
− 1

]
, (3.101)

µ2Jbn,τa = δ(s̃)
αsCF
π

[
1

2ε2
+

1

ε

(
1− 1

2
ln
m2

µ2

)
+ 2 +

π2

24
− ln

m2

µ2
+

1

4
ln2 m

2

µ2

]
, (3.102)

with s̃ = s/µ2 and where the first term corresponds to the tree level contribution, the second term
originates from the field renormalization counter term and the third term represents the virtual
contributions to the NLO jet function.

Real Radiation Contribution

At one loop order one also needs to take care of real radiation contributions which correspond to a
|Qg〉 final state. The diagrams we need to address are shown in the lower line of Fig. 3.1 and give
rise to the amplitude21

(MQg
n,1−jet)

α = uαn(p− q, s)ενA(q, λ)gsT
Aµ̃ε

[
R1,ν(p, q) +R2,ν(p, q)

/n/n

4

]
+O(g2

s) , (3.103)

R1,ν(p, q) =
nν

q− + i0
, (3.104)

R2,ν(p, q) = − p−

p2 −m2 + i0

(
nν +

γ⊥ν (/p⊥ +m)

p−
+

(/p⊥ − /q⊥ −m)γ⊥ν
p− − q−

− (/p⊥ +m)(/p⊥ − /q⊥ −m)

p−(p− − q−)
nν

)
, (3.105)

where R1,ν(p, q) is related to the contribution from the diagram involving a collinear Wilson line and
R2,ν(p, q) to the contribution from the diagram with a collinear gluon vertex.

Following the strategy used for the single quark contributions we next square the amplitude, carry

20In the following a, b indicate color indices (fundamental representation) while α, β correspond to Dirac indices.
21From now on we also use µ, ν for Lorentz indices and A as a color index (adjoint representation).
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out spin and polarization sums and also take the color trace (implicit):

(/nγ0)αβ
∑
spins
pol

(MQg †
n,1−jet)

β(MQg
n,1−jet)

α

= −g2
s NcCF (p− − q−) µ̃2ε Tr

{
/nγ0

[
(Rµ1 )† +

/n/n

4
(Rµ2 )†

]
γ0
/n

2

[
R1,µ +R2,µ

/n/n

4

]}
(3.106)

= −4π αsNcCF (p− − q−)
µ̃2ε

2
Tr

{
/n/n
[
(Rµ1 )† + (Rµ2 )†

] [
R1,µ +R2,µ

]}
, (3.107)

where we used
∑

σ(εµA(q, σ))∗ενB(q, σ) = −gµνδAB and also the following easy to check identities
[γ⊥µ , /n/n] = 0, [γµ⊥, γ0] = 0, γ0/n = /nγ0 and (/n/n)/n = 4/n. Next we can already use that the total

jet momentum will be set to pµ = (p+, p−, ~p⊥) = (k+, Q, 0) which happens due to a delta function
integration and can be seen in Eq. (3.50). With this and simplifying the involved expressions we then
find

(Rµ1 )†R1,µ ∼ n · n = 0 , (3.108)

(Rµ1 )†R2,µ + (Rµ2 )†R1,µ = −2 Re

[
Qn · n

(q− + i0)(Qk+ −m2 − i0)

]
= − 4Q

q−(Qk+ −m2)
, (3.109)

(Rµ2 )†R2,µ =
Q2

(Qk+ −m2)2

[(
nµ − γ⊥,µ(/q⊥ −m)

Q− q− − mγ⊥,µ

Q
− m(/q⊥ −m)

Q(Q− q−)
nµ

)

×
(
nµ +

γ⊥µm

Q
−

(/q⊥ +m)γ⊥µ
Q− q− +

m(/q⊥ +m)

Q(Q− q−)
nµ

)]
=

Q2(d− 2)

(Qk+ −m2)2 (Q− q−)

[
m2

(
2 d

(d− 2)Q
− Q− q−

Q2
− 1

Q− q−
)
− (~q⊥)2

Q− q−
]

(3.110)

+ terms with odd # of γ’s .

In the next step we put everything together, simplify the involved expressions and arrive at the phase
space integrals which we have to calculate in order to get the final result (if not stated dependence
on m, Q and µ is implicit):

JQgn,τa(s,m, µ) = Jcn,τa + Jdn,τa +O(α2
s) , (3.111)

Jcn,τa =
αsCF
π

∫
dt

8π µ̃4−d

t−m2

∫
ddq

(2π)d
(2π)2θ(p0 − q0)θ(q0)δ((p− q)2 −m2)δ(q2)

Q− q−
q−

× δ
{
Q(Q− q−)a−1

[
(Q− q−)(

t

Q
− q+)−m2

] 2−a
2

+Q(q−)a−1
[
q+q−

] 2−a
2 − s

}
, (3.112)

Jdn,τa = −αsCF
π

∫
dt

2πQ2 µ̃4−d

(t−m2)2

∫
ddq

(2π)d
(2π)2θ(p0 − q0)θ(q0)δ((p− q)2 −m2)δ(q2)

× (d− 2)

[
m2

Q2

(
2d

d− 2
− Q− q−

Q
− Q

Q− q−
)
− Q

Q− q−
q2
⊥
Q2

]
(3.113)

× δ
{
Q(Q− q−)a−1

[
(Q− q−)(

t

Q
− q+)−m2

] 2−a
2

+Q(q−)a−1
[
q+q−

] 2−a
2 − s

}
,

with t = Qk+. Evaluating these integrals is a rather long process which is why we present details on
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the calculation in App. C.2. The result of this calculation is as follows:

µ2Jcn,τa =
αsCF
π

{
δ(s̃)

[
1

2(1− a)ε2
+

1

2(1− a)ε

(
(1− a) ln

m2

Q2
+ a ln

Q2

µ2

)
+

1− 4a+ 2a2

24(1− a)
π2 +

1

4(1− a)

(
(1− a) ln

m2

µ2
+ a ln

Q2

µ2

)2 ]
− 1

(1− a)

[
θ(s̃)

s̃

]
+

[
1

ε
+ (1− a) ln

m2

µ2
+ a ln

Q2

µ2

]
+

2

(1− a)

[
θ(s̃) ln s̃

s̃

]
+

(3.114)

− θ(s̃)

s̃

[
ln

(
1 +

(s̃ µ2/Q2)
2

2−a

m2/Q2

)

+
2

2− a 2F 1

(
1, 1− a

2
; 2− a

2
;−m

2

µ2

(
Q2

µ2

) a
2−a

s̃
2
a−2

)
+

2

2− a I1(s; a)

]}
,

µ2Jdn,τa =
αsCF
π

{
δ(s̃)

[
1

2ε
+

1

2

(
(1− a) ln

m2

µ2
+ a ln

Q2

µ2

)]
−
[
θ(s̃

s̃

]
+

+ θ(s̃)

[
2− a

2

µ2

m2

(
m2

Q2

)a
2

Γ
(

1− a

2

)
Γ
(a

2

)
− 2− a

a

µ2

m2

(
Q2

µ2

) −a
2−a

s̃
a

2−a
2F 1

(
1,
a

2
;
2 + a

2
;− µ

2

m2

(
Q2

µ2

) −a
a−2

s̃
2

2−a

)
(3.115)

− 2

2− a
1

s̃
I1(s; a) +

1

2− a
1

s̃
I2(s; a) +

2

2− a
1

s̃
I3(s; a)

]}
,

with s̃ = s/µ2. In order to extract analytic expressions it was necessary to employ subtractions which

are contained in the integral expressions denoted as Ii(s; a). All terms of the form θ(s)
s f(s) which

appear in Eqs. (3.115) and (3.114) are finite and integrable in s. The appearing integral expressions
read:

I1(s; a) =
m2

Q2

∫ 1

0
dx x (1− x)

{[(
s

Q2

) 2
2−a
(

x1−a(1− x)1−a

x1−a + (1− x)1−a

) 2
2−a

+m2 x2

]−1

(3.116)

−
[(

s

Q2

) 2
2−a

x
2(1−a)

2−a +m2 x2

]−1}
,

I2(s; a) =

(
s

Q2

) 2
2−a
∫ 1

0
dx x

[(
s

Q2

) 2
2−a

+
m2

Q2
x

2
2−a

(
1 +

x1−a

(1− x)1−a

) 2
2−a
]−1

, (3.117)

I3(s; a) =
m4

Q4

∫ 1

0
dx x3 (1− x)

{[(
s

Q2

) 2
2−a
(

x1−a(1− x)1−a

x1−a + (1− x)1−a

) 2
2−a

+
m2

Q2
x2

]−2

(3.118)

−
[(

s

Q2

) 2
2−a

x
2(1−a)

2−a +
m2

Q2
x2

]−2}
.

NLO Result

When putting the expressions from the two final state contributions together there are some simplifi-
cations and we arrive at the result for the renormalized NLO primary massive P -scheme angularities
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jet function and the corresponding counter term:

µ2 ZJ,n,τa(s, µ) = δ(s̃) +
αsCF
π

{
δ(s̃)

[
1− a/2

(1− a)ε2
+

3

4ε
+

a

2(1− a)ε
LQ

]
(3.119)

+

[
θ(s̃)

s̃

]
+

1

(1− a)ε

}
+O(α2

s) ,

µ2 Jn,τa(s,m, µ) = δ(s̃)

+
αsCF
π

{
δ(s̃)

[
π2

24

(2− 5a+ 2a2)

1− a + 1 +
2− a

4
L2
m +

[
1− 2a

4
+
a

2
LQ

]
Lm

+
a

2

[
a/2

1− aLQ + 1

]
LQ

]
−
[
θ(s̃)

s̃

]
+

[
Lm +

a

1− aLQ + 1

]
+

2

1− a

[
θ(s̃) ln(s̃)

s̃

]
+

(3.120)

+ θ(s̃)

[
− 1

s̃
ln

(
1 +

Q2

m2

(
µ2

Q2
s̃

) 2
2−a
)
− 2

2− a
1

s̃ 2F 1

(
1, 1− a

2
; 2− a

2
;−m

2

Q2

(
µ2

Q2
s̃

) −2
2−a
)

+
2− a

2

µ2

m2

(
m2

Q2

)a
2

Γ

(
1− a

2

)
Γ

(
a

2

)
− 2− a

a

µ2

m2

(
µ2

Q2
s̃

) a
2−a

2F 1

(
1,
a

2
; 1 +

a

2
;−Q

2

m2

(
µ2

Q2
s̃

) 2
2−a
)

− 4

2− a
1

s̃
I1(s; a) +

1

2− a
1

s̃
I2(s; a) +

2

2− a
1

s̃
I3(s; a)

]}
+O(α2

s) ,

with s̃ = s
µ2 , Lm = ln m2

µ2 and LQ = ln Q2

µ2 . Again all terms of the form θ(s)
s f(s) are finite and

integrable in s.

3.5.2 bHQET Jet Function for P -scheme Angularities

Calculating the P -scheme angularities jet function in bHQET is very similar to the SCET case. It
is straightforward to calculate that the one loop single quark contributions (virtual contributions) to
the bHQET jet function are scaleless22 and we therefore get:

µ2J0
B,n,τa = δ(s̃) , (3.121)

JaB,n,τa = Jbn,τa = 0 . (3.122)

Real Radiation Contribution

In the case of the real radiation contributions one first needs to look into the measurement delta
function. With a residual heavy quark momentum kµ the delta functions from Eqs. (3.68) and (3.69)
set the total heavy quark momentum to pµ = (p+, p−, ~p⊥) = (mv+,mv−, 0) + (k+, 0, 0). With this we
then get for the (leading) measurement of the P -scheme angularities in bHQET23:

τPa,n =
1

Q
(mv− − q−)a−1

(
(mv+ + k+ − q+)(mv− − q−)−m2

) 2−a
2

+
1

Q
(q−)a−1

(
q+q−

) 2−a
2

=

(
mv−

Q

)a−1 [
mv−

Q

k+

Q
−
(
mv−

Q

q+

Q
+
mv+

Q

q−

Q

)] 2−a
2

+

(
q−

Q

)a
2
(
q+

Q

) 2−a
2

+O(∆2/Q2) .

(3.123)

22As a consequence of the heavy quark being on-shell the residual heavy quark momentum is set to zero i.e. k = 0
which leads to scaleless integrals.

23Same momentum assignment than in SCET, see Fig. 3.1.
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Following the procedure lined out for the SCET jet function we find the following for the bHQET
case (again with an implicit color trace on the left hand side):

(/nγ0)αβ
∑
spins
pol

(MQg †
n,1−jet)

β(MQg
n,1−jet)

α =
αsCF
π

16π2Nc µ̃
2ε

{
2m(v−)2

q−(v · k)
− mv−

(v · k)2

}
. (3.124)

Putting everything together we arrive at the final phase space integrals (dependence on m, Q and µ
is implicit) which by using Eq. (3.123) and t = mv−k+ are given by

JQgB,n,τa(s,m, µ) = JcB,n,τa + JdB,n,τa +O(α2
s) , (3.125)

JcB,n,τa =
αsCF
π

∫
dt

8πµ̃2ε

t

∫
ddq

(2π)d

× (2π)2θ(p0 − q0)θ(q0)δ((p− q)2 −m2)δ(q2)
mv−

n · q δ
{
s−Q2 τPa,n

}
, (3.126)

JdB,n,τa = −αsCF
π

m2

∫
dt

8πµ̃2ε

t2

∫
ddq

(2π)d

× (2π)2θ(p0 − q0)θ(q0)δ((p− q)2 −m2)δ(q2) δ

{
s−Q2 τPa,n

}
. (3.127)

NLO Result

The result for the bHQET P -scheme angularities jet function and the corresponding counter term at
NLO can then be obtained by evaluating the real radiation integrals (details in App. C.4) and adding
them to the tree level contributions from Eq. (3.121). The final result is then given by

µ2 ZB,n,τa(s, µ) = δ(s̃) +
αsCF
π

{
δ(s̃)

[
1

2(1− a)ε2
+

1

2(1− a)ε
((1− a)Lm + aLQ) +

1

2ε

]
− 1

(1− a) ε

[
θ(s̃)

s̃

]
+

}
+O(α2

s) , (3.128)

µ2 JB,n,τa(s,m, µ) = δ(s̃) +
αsCF
π

{
δ(s̃)

[
1

4(1− a)
((1− a)Lm + aLQ)2

+
1

2
((1− a)Lm + aLQ) +

1− 4a+ 2a2

24(1− a)
π2

]
−
[
θ(s̃)

s̃

]
+

[
Lm +

a

1− aLQ + 1

]
+

2

1− a

[
θ(s̃) ln s̃

s̃

]
+

}
+O(α2

s) , (3.129)

with s̃ = s
µ2 , Lm = ln Q2

µ2
v+

v− and LQ = ln Q2

µ2 .

Using the natural bHQET jet function variable ŝ = s/(Q
√
v+/v−) = s

m

[
1 +O(m2/Q2)

]
the above

result can be written without explicit logarithms of the form ln m
µ . It is changed with respect to

Ref. [8] where it was defined as ŝ = s
m . This is the case because here the full kinematical information

about the initial heavy quark is included to all orders while in the case of Ref. [8] only the leading

order in m2

Q2 is used.

Since this will only have a very small effect on the overall event shape distribution and in order to be
consistent with other contributions for which those subleading corrections are not known (e.g. SCET
non-singular - see Sec. 3.6.2) only the leading terms will be used for numerical implementations, hence

ln Q2

µ2
v+

v− → ln m2

µ2 .
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3.5.3 Jet Function for other Event-Shapes

It turns out that using the same procedure as before it is not feasible to calculate the massive
M -scheme angularities jet function (for the SCET and the bHQET case). When following the same
steps as in Sec. 3.5.1 one first needs to consider the leading contribution to the n-collinear part of the
M -scheme angularities which can be written as

τMa,n =
1

Q

∑
i∈n

(m⊥i ) exp−|yi|(1−a) =
1

Q

∑
i

(
p−i

)a
2
(
p+
i

) 2−a
2
. (3.130)

Using this and proceeding as before one will encounter the following delta function in analogy to
Eq. (C.7) for the first real radiation diagram:

δ

{(
z +

m2

Q2

) 2−a
2

(1− x)a−1 + z
2−a

2 xa−1 − s

Q2

}
. (3.131)

For the P -scheme case this delta function can be used to carry out the z integration. For the M -
scheme case this is not a fruitful approach because it is not possible to find a root of the delta
function argument which can be written in terms of simple functions. Furthermore changing the
order of integration using it to carry out some other integration does also not lead to a successful
calculation of the massive jet function for M -scheme angularities which is therefore considered beyond
the scope of this work.

Still it is possible to check that the a→ 0 limit, which usually is referred to as the hemisphere mass
jet function, can be calculated with the procedure outlined for the P -scheme angularities calculation
which works well. The result which first was calculated in Ref. [8] is given in Sec. 3.5.4 and as explained
before (up to different threshold positions emin) is closely related to the single hemisphere parts of
the M -scheme thrust and C-parameter jet function by the relation J(B),n,τM (s) = J(B),n,C̃M (s) =

J(B),n,CM (s/6)/6 = J(B),n,ρM+
(s).

3.5.4 The a→ 0 Limit

SCET a→ 0 Limit: P -scheme Jet Mass

As already pointed out the calculation of the P -scheme angularities jet function allows us to extract
the P -scheme jet (hemisphere) mass (and with this trivially the thrust and C-parameter) jet function
via the limit a → 0 which can be achieved in a straightforward calculation. The expressions which
have to be integrated numerically given in Eqs. (3.116),(3.117) and (3.118) can be solved analytically
for this case and with z = m2/s give

I1(s; 0) =
1− z + z2 ln z

(1− z)2
− (1 + z) ln(1 + z)

z
, (3.132)

I2(s; 0) =
z (1− z2 + 2 z ln z)

2(1− z)3
, (3.133)

I3(s; 0) =
2− 4z

(1− z)2
− z2(1 + z) ln z

(1− z)3
− (2 + z) ln(1 + z)

z
. (3.134)

Furthermore the a→ 0 limit of the remaining non-distributional parts is also easy to achieve and by
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considering

lim
a→0

2F 1

(
1, 1− a

2
; 2− a

2
;−m

2

Q2
(
Q2

s
)

2
2−a

)
=

s

m2
ln

(
1 +

m2

s

)
, (3.135)

lim
a→0

[
2− a

2

(
m2

Q2

)a
2

Γ
(

1− a

2

)
Γ
(a

2

)
− 2− a

a

(
s

Q2

) a
2−a

2F 1

(
1,
a

2
; 1 +

a

2
;
Q2

m2

(
s

Q2

) 2
2−a
)]

= ln

(
1 +

m2

s

)
, (3.136)

together with the trivial limit of the distributional contributions we get the primary massive P -scheme
jet mass jet function which reads:

µ2ZJ,n,ρP+
(s, µ) = δ(s̃) +

αsCF
π

{
δ(s̃)

[
1

ε2
+

3

4 ε

]
−
[
θ(s̃)

s̃

]
+

1

ε

}
+O(α2

s) , (3.137)

µ2Jn,ρP+
(s,m, µ) = δ(s̃) +

αsCF
π

{
δ(s̃)

[
π2

12
+ 1 +

1

4
Lm +

1

2
L2
m

]
−
[
θ(s̃)

s̃

]
+

[
Lm + 1

]
(3.138)

+ 2

[
θ(s̃) ln s̃

s̃

]
+

+ θ(s̃)
µ2

4(s−m2)3

[
s (s− 8m2) + 7m4 − 2s (2s− 5m2) ln

s

m2

]}
+O(α2

s) ,

with s̃ = s
µ2 and Lm = ln m2

µ2 .

SCET a→ 0 Limit: M-scheme Jet Mass

The a → 0 limit for the M -scheme angularities SCET jet function leads to the so-called hemisphere
mass SCET jet function which was first calculated in Ref. [8] and is given by

µ2ZJ,n,ρM+
(s, µ) = δ(s̃) +

αsCF
π

{
δ(s̃)

[
1

ε2
+

3

4 ε

]
−
[
θ(s̃)

s̃

]
+

1

ε

}
+O(α2

s) , (3.139)

µ2Jn,ρM+
(s,m, µ) = δ(s̃) +

αsCF
π

{
δ(s̃)

[
−π

2

12
+ 2 +

1

4
Lm +

1

2
L2
m

]
−
[
θ(s̃)

s̃

]
+

[
Lm + 1

]
(3.140)

+ 2

[
θ(s̃) ln s̃

s̃

]
+

+ θ(s̃)
µ2

4

[
s−m2

s2
− 4

ln s
m2

s−m2

]}
+O(α2

s) ,

with s̃ = s−m2

µ2 and Lm = ln m2

µ2 . When used in the context of the appropriate factorization theorem
the full threshold of the considered observable might not coincide with the squared jet mass threshold
of m2/Q2. To account for that s usually is modified to s → s + m2 − Q2enmin where enmin is the n
collinear contribution to the full threshold (for jet masses ρnmin = ρmin and for thrust, angularities
and C-parameter enmin = emin/2).

bHQET a→ 0 Limit: P -scheme Jet Mass

The a → 0 limit for the P -scheme angularities bHQET jet function is trivially obtained from
Eqs. (3.128) and (3.129) and we get

µ2 ZB,n,ρP+
(s, µ) = δ(s̃) +

αsCF
π

{
δ(s̃)

[
1

2 ε2
+

1

2 ε
(1 + Lm)

]
− 1

ε

[
θ(s̃)

s̃

]
+

}
+O(α2

s) , (3.141)
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µ2 JB,n,ρP+
(s,m, µ) = δ(s̃) +

αsCF
π

{
δ(s̃)

[
π2

24
+

1

2
Lm +

1

4
L2
m

]
−
[
θ(s̃)

s̃

]
+

[
Lm + 1

]
+ 2

[
θ(s̃) ln s̃

s̃

]
+

}
+O(α2

s) , (3.142)

with s̃ = s
µ2 and Lm = ln Q2

µ2
v+

v− .

bHQET a→ 0 Limit: M-scheme Jet Mass

The a→ 0 limit for the M -scheme angularities bHQET jet function leads to the so-called hemisphere
mass bHQET jet function which was first calculated in Ref. [8] and is given by

µ2 ZB,n,ρM+
(s, µ) = δ(s̃) +

αsCF
π

{
δ(s̃)

[
1

2 ε2
+

1

2 ε
(1 + Lm)

]
− 1

ε

[
θ(s̃)

s̃

]
+

}
+O(α2

s) , (3.143)

µ2 JB,n,ρM+
(s,m, µ) = δ(s̃) +

αsCF
π

{
δ(s̃)

[
− π2

8
+ 1 +

1

2
Lm +

1

4
L2
m

]
−
[
θ(s̃)

s̃

]
+

[
Lm + 1

]
+ 2

[
θ(s̃) ln s̃

s̃

]
+

}
+O(α2

s) , (3.144)

with s̃ =
s−Q2enmin

µ2 and Lm = ln Q2

µ2
v+

v− .

3.5.5 Massless Limit

In this subsection the cross check of taking the massless limit of Eq. (3.120) will be carried out and
we expect to arrive at the massless angularities jet function which first was calculated in Ref. [95].
Taking the massless limit directly from Eq. (3.120) is not straightforward since the numerical integrals
given in Eq. (3.116), (3.117) and (3.118) are only valid for m 6= 0. Since the original integrals were
expanded for small ε (dim-reg with d = 4 − 2ε was used) while assuming a non-zero quarkmass,
the mentioned numerical integrals are not regulated properly in the limit m → 0, which is why the
calculation has to be done again for the massless case.

It is easy to see that in case of a massless quark the integrals which appear in the calculation of the
single quark contribution are scaleless in dim-reg which then leads to

µ2J0
n,τa,ml = δ(s̃) , (3.145)

Jan,τa,ml = Jbn,τa,ml = 0 . (3.146)

Including the real radiation contributions Jcn,τa,ml and Jdn,τa,ml as calculated in App. C.3 and given
in Eq. (C.27) and Eq. (C.28) we find the following result for the massless limit of the NLO primary
massive P -scheme angularities jet function and the corresponding counter term:

µ2 ZJ,n,τa,ml(s, µ) = δ(s̃) (3.147)

+
αsCF
π

{
δ(s̃)

[
(1− a/2)

(1− a)

(
1

ε2
− a/2

(1− a/2) ε
LQ

)
+

3

4 ε

]
−
[
θ(s̃)

s̃

]
+

1

(1− a) ε

}
+O(α2

s) ,

µ2Jn,τa,ml(s, µ) = δ(s̃)+

+
αsCF
π

{
δ(s̃)

[
a2

8(1− a/2)(1− a)
L2
Q +

3a

8(1− a/2)
LQ + f(a)

]
(3.148)

−
[
θ(s̃)

s̃

]
+

[
1

2(1− a/2)

(
3

2
+

a

1− aLQ
)]

+

[
θ(s̃) ln s̃

s̃

]
+

1

(1− a)(1− a/2)

}
+O(α2

s) ,
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with s̃ = s/µ2, LQ = ln Q2

µ2 and the function f(a) which is given by

f(a) =
1

1− a/2

[
7− 13a/2

4
− π2

12

3− 5a+ 9a2/4

1− a −
∫ 1

0
dx

1− x+ x2/2

x
ln
(
x1−a + (1− x)1−a) ] .

This result agrees with the one given in Ref. [95].

3.6 General Setup, Continuity and Non-Singular Contributions

After discussing singular contributions and how factorization theorems can be utilized to resum large
logarithms (see Sec. 3.4), as well as the calculation of the NLO jet function needed for most of the
discussed event shapes (in Sec. 3.5), let us now focus on how to achieve precise prediction for event
shape distributions involving primary massive quarks across the whole range of possible values for the
investigated event shapes. For most part the strategy on how to put the different scenarios together
and how to include subleading corrections (power corrections in the EFT) was already laid out in
Ref. [9] for which µ = µj was considered. Furthermore in Sec. 3.4.4 different hierarchies of µ and µm
for different scenarios were discussed. In the following the usual implementation of power corrections
via so-called non-singular contributions will be reviewed and finally a general factorization formula
which covers all event shape values with arbitrary scale hierarchies will be provided.

3.6.1 bHQET Non-Singular

In general the natural choice for the involved scales will be depending on the value of the event
shape variable (see Sec. 3.8) itself while the mass scale µm will not. For a consistent description of
the whole event shape distribution the different scenarios need to be patched together at the point
where the hierarchies with respect to µm change. For the special case of transitioning from the SCET
scenario III to the bHQET scenario, contributions which are power suppressed in the bHQET jet

function are commonly omitted, as can be seen from the O
(P 2

n−m2

m

)
terms in Eq. (3.85). Due to

the resulting difference this would then lead to a discontinuous transition at the matching point of
the two scenarios. This can be reconciled by defining an adapted bHQET jet function which will
automatically account for a smooth matching to the SCET jet function24 and which is given by

J
(n`),sub
B,n,e (s,m, µ) = J

(n`)
B,n,e(s,m, µ) +

∫
ds′ J

(n`)
n,e,nd(s− s′,m, µ)

(
M(n`+1)

J,n

)−1
(s′,m, µm, µ) , (3.149)

where M(n`+1)
J,n is defined in Eq. (3.86) and where J

(n`)
n,e,nd is the non-distributional part of the SCET

jet function with (n`) active flavors. The non-distributional part of the SCET jet function is defined
by

J
(n`)
n,e,nd = J (n`+1)

n,e −M(n`+1)
J,n ⊗ J (n`)

B,n,e . (3.150)

The second term of Eq. (3.149) now gives the proper power corrections at order αs including the dis-
cussed rapidity logarithms and will remove the mentioned discontinuity. The matching from Eq. (3.85)
can now be written as

J (n`+1)
n,e (s,m, µ) =

∫
ds′M(n`+1)

J,n (s− s′,m, µm, µ)J
(n`),sub
B,n,e (s′,m, µ) +O(α2

s) , (3.151)

which is not valid beyond order αs.

24Note that this is a slightly different approach than in Ref. [9].
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3.6.2 SCET Non-Singular

Very similar to the previous case, terms which are subleading in the SCET power counting will in
general be omitted in the EFT although in the tail region they become more and more important
as the powercounting parameter λ ∼ µj/Q becomes larger (and eventually λ ∼ O(1)). The usual
strategy employed in the literature [6, 86, 100] is to calculate the full QCD NLO distribution and
subtract the singular contributions evaluated with all scales set to a common scale µns:

dσnonsing

de
=

dσQCD

de
− dσsing

de

∣∣∣∣
µ=µs=µj=µh=µns

. (3.152)

In the context of massive heavy quark production in e+e− annihilation this was worked out explicitly
at one loop for some of the event-shapes of interest, for example 2-jettiness [9, 84, 87] and M -scheme
C-parameter [70]. For massless jets also numerical extractions from numerical fixed-order calculations
were used at one-loop [101] and also at higher loop order [86,100].

Especially if one is interested in a general treatment or only an estimate of the non-singular contribu-
tions the latter approach is favorable also for the massive case. The analytic calculation for a specific
event shape can be quite demanding and in most cases the needed accuracy does not justify the
effort. Using a numerical FO calculation, here we use WHIZARD [102], it is straightforward to extract
the non-singular contributions via Eq. (3.152).
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Figure 3.2: The
(
αsCF /π

)
coefficient of the non-singular cross section times e = (e− emin) extracted

from WHIZARD with 108 e+e− → tt̄g events (blue crosses) and for comparison the full analytic (orange)
and the plus distribution part of the analytic result (green dashed). The kinematical endpoints (for
tt̄g) emin and emax are also shown (black dashed).

To see that this also works quite well for heavy quark production, let us consider the full result for the
non-singular cross section of the M -scheme thrust and C-parameter which is known analytically and
compare with the extraction based on a data sample with 108 e+e− → tt̄g events from WHIZARD. For
the singular part of the 2-jettiness differential cross section and for τM 6= τMmin it is straightforward to
obtain the following expression:

1

σ0

dσsing

dτM
(τM ,m, µ = Q) =

αsCF
π

[
− 2

τM

(
1 + ln

m2

Q2

)
− 2

τM
ln
(

1 +
Q2

m2
τM
)

+
τM

2
(
m2

Q2 + τM
)2] ,
(3.153)

which is the same for the case of M -scheme C-parameter CM and which uses e = (e − emin). The
obtained result is illustrated in Fig. 3.2 where we show e · 1/σ0 · dσnonsing/de as extracted from the
numerical calculation (blue crosses) and for comparison the analytic result (orange) as well as the
part of the analytic result which only involves a plus distribution (1

e )+ (green dashed).
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As expected the numerical FO calculation which is based on a MC integration does not put enough
events into the singular phase space region, hence does not sample the distribution in the singular
region correctly. Because of that the nonsingular distribution gets more negative than the analytic
result. Apart from that (expected) deviation the numerical non-singular cross section is very similar
to the full result and the same method could be used for other event-shapes where no analytic result
is known or its calculation feasible with reasonable effort.

Note that in the massive case the coefficient of the plus distribution (1
e )+ in the non-singular cross

section is nonzero, i.e. the value of e · dσnonsing/de at emin is not zero but a constant (see Fig. 3.2).
In the massless case one expects no distributions in the non-singular cross section but in the massive
case it is possible to have distributions which are formally power suppressed by factors of λ ∼ m

Q .
Sometimes it is profitable (with respect to convergence studies) to absorb these distributions into the
singular part before resummation which is shown in more detail in Ref. [9].
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Figure 3.3: The
(
αsCF /π

)
coefficient of the non-singular cross section times e = (e− emin) extracted

from WHIZARD with 108 e+e− → tt̄g events (blue crosses). The kinematical endpoints (for tt̄g) emin

and emax (obtained via the last nonzero bin in the numerical FO calculation) are also shown (black
dashed)

Using the insights from the case of M -scheme thrust and C-parameter let us next consider the example
of P - and E-scheme thrust which will be used in Sec. 5.1. By using the new P/E-scheme thrust jet
function of Eq. (3.138) it is easily possible to calculate the singular part of the P -scheme thrust
differential cross section to be

1

σ0

dσsing

dτP
(τP ,m, µ = Q) =

αsCF
π

[
− 2

τP

(
1 + ln

m2

Q2

)
+

1

2
(
τP − m2

Q2

)3(τP (τP − 8
m2

Q2

)
+ 7

m4

Q4
− 2 τP

(
2 τP − 5

m2

Q2

)
ln
Q2

m2
τP
)]

, (3.154)

which is the same for the case of E-scheme thrust τE , simply because the two jet functions are the
same.

Using this result it is now straightforward to again extract the non-singular cross section for the
mentioned P/E-scheme versions of thrust by comparison with the already mentioned numerical FO
calculation. The obtained results are illustrated in Fig. 3.3.

It was already mentioned that for event shapes in the massive case the non singular terms include
formally power suppressed distributions, in particular a plus distribution (1

e )+ and delta function.
The plus distribution can be fitted from the numerical FO results by using enough events and the
1/e behavior for e 6= emin. There are different possibilities to extract the delta function coefficient:
(1) Integrating the non-distributional and plus distribution part and subtracting this from the known
integrated cross section gives the coefficient of the delta function (although involving only analytic
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expressions a similar approach was employed in [70]). (2) It is possible to use the so-called two cutoff
phase space slicing method [103] to extract the analytic nonsingular delta function coefficient which
was used for 2-jettiness in [9]. Since the focus of this work lies on the peak region and because the
P -scheme thrust seems to behave similar to the well studied M -scheme case, for which the singular
contributions already give a very good approximation, the SCET non-singular contributions will not
be used for any numerical analysis. Because of that, no explicit calculation of the non-singular delta
function coefficient is needed at this point.

3.6.3 General Setup

At this point all necessary ingredients to provide a general factorization theorem which covers the
whole event shape range and all possible scale hierarchies for the production of primary massive
quarks at N2LL+NLO have been collected and discussed. The general factorization theorem which
is formulated in analogy to the ones stated in Sec. 3.4.2 reads

1

σ0

dσ

de
= QH(Q,µh)UH(Q,m, µh, µ) (3.155)

×
[
UJ(s,m, µ, µj)⊗ Je(s,m, µj)⊗ Us(`,m, µ, µs)⊗ Se(`,m, µs)

]
+

1

σ0

dσnonsing

de
.

It is clear that this factorization theorem again involves all the factors which appeared before. The
generalized hard, jet and soft function as well as the non-singular cross section is given by:

• Hard function: always above the mass scale, thus defined with (n` + 1) active flavors and reads

H(Q,µh) ≡ H(n`+1)(Q,µh) (3.156)

• Generalized jet function: again defined via Je = Jn,e ⊗ Jn,e and given by

Je(s,m, µj) =

J
(n`+1)
e (s,m, µj) (µj > µm)

J
(n`),sub
B,e (s,m, µj) (µm > µj)

(3.157)

where J
(n`),sub
B,e (s,m, µj) now includes the bHQET non-singular contributions (see Sec. 3.6.1).

• Generalized soft function:

Se(`, µs) =

S
(n`+1)
e (`, µs) (µs > µm)

S
(n`)
e (`, µs) (µm > µs)

(3.158)

• SCET non-singular cross section: incorporates formally power suppressed contributions and was
discussed in detail in Sec. 3.6.2.

Additionally the factorization theorem also involves evolution kernels which take care of resumming
large logarithms. These might involve an additional matching coefficient when crossing the mass scale
and are given by:

• Hard function evolution kernel:

UH(Q,m, µh, µ) =

U
(n`+1)
H (Q,µh, µ) (µ > µm)

U
(n`+1)
H (Q,µh, µm)H

(n`+1)
M (m,µm)U

(n`)
M (Qm , µm, µ) (µm > µ)

(3.159)
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• Jet function evolution kernel:

UJ(s,m, µ, µj) =



U
(n`+1)
J (µ, µj) (µ, µj > µm)

U
(n`+1)
J (µj , µm)⊗

[
M(n`+1)

J (m,µm)
]−1
⊗ U (n`)

J (µm, µ) (µj > µm > µ)

U
(n`+1)
J (µ, µm)⊗M(n`+1)

J (m,µm)⊗ U (n`)
J (µm, µj) (µ > µm > µj)

U
(n`)
J (µ, µj) (µm > µ, µj)

(3.160)

• Soft function evolution kernel:

US(`,m, µ, µs) =



U
(n`+1)
S (µ, µs) (µ, µs > µm)

U
(n`+1)
S (µs, µm)⊗

[
M(n`+1)

S (m,µm)
]−1
⊗ U (n`)

S (µm, µ) (µs > µm > µ)

U
(n`+1)
S (µ, µm)⊗M(n`+1)

S (m,µm)⊗ U (n`)
S (µm, µs) (µ > µm > µs)

U
(n`)
S (µ, µs) (µm > µ, µs)

(3.161)

Note that, to save space, for the jet and soft function evolution kernel we have omitted the arguments
s and `, that appear in each factor on the right hand side.

3.7 Non-perturbative Corrections and Gap Formalism

Up to this point only partonic final states were discussed, while in experiments hadronic final states
are detected. To describe such realistic final states one has to account for non-perturbative effects of
QCD. Since it is not known how to calculate them from first principles, we adopt the approach to
employ models to account for such hadronization effects.

In the context of event shape distributions a versatile and widely used approach is based on using
a so-called shape function [104] Fmod

e (e) (also model function) which depends on the observable of
interest and at leading order should not depend on any hard scale, e.g. the mass of a heavy quark,
due to the wide separation of relevant scales i.e. m � ΛQCD. For event shapes the shape function
typically is implemented in terms of a convolution with the partonic cross section. The hadron level
cross section is then given by

dσ

de
=

∫
de′

dσpart

de
(e− e′)Fmod

e (e′) , (3.162)

but it is more common to use a dimensionful model Smod
e (`) = Fmod

e (`/Q)/Q. Using this soft model
function the shape function is then absorbed into the soft function as follows [8, 105]:

Se(`) =

∫
d`′ Spart,e(`, µ)Smod

e (`) . (3.163)

Furthermore it is possible to perform an operator product expansion (OPE) for the tail region of the
soft function which is given by [100]

Se(`, µ) = Spart
e (`, µ)− dSpart

e (`, µ)

d`
Ω
e
1 + ... , (3.164)
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with Ω
e
1 the first moment of the soft model function given by Ω

e
1 =

∫
d` ` Smod

e (`). In absence of
hadron mass effects this first moment is proportional to a universal non-perturbative matrix element
common to all event shapes [106] and related to it by a calculable coefficient. Using this it is possible
to relate the first moment of the soft model for different event shape observables to the one of thrust25

in the following way:

Ω
C̃
1 = Ω

C
1 /6 =

π

4
Ω
τ
1 , Ω

τa
1 =

1

1− a Ω
τ
1 . (3.165)

As a parametrization for the soft model function several different versions were used in the past. Orig-
inally a physically reasonable function with a few free parameters was setup and subsequently fitted
to data. Alternatively one can for example use the ansatz of Ref. [107] where a linear combination of
N (in principle infinitely many) basis functions26 is used. The general ansatz is given by

Ŝmod
e

(
`, ξ, p, {cei}

)
=

1

ξ

[ N∑
n=0

cen fn
(
p, `ξ
)]2

, (3.166)

where the involved basis functions are given in terms of Legendre polynomials Pn by

fn(p, x) =

√
(2n+ 1)xp (1 + p)1+p

Γ(1 + p)
exp

(
− 1 + p

2
x

)
Pn
(
y(p, x)

)
, (3.167)

y(p, x) = 1− 2 exp
(
− (1 + p)x

) p∑
i=0

[
(1 + p)i

Γ(i+ 1)
xi
]
. (3.168)

With
∑

i(c
e
i )

2 = 1 this model function is normalized to 1, positive definite, has support for (0,∞)

and fulfills Ŝmod
e (0) = 0. This type of shape function was used in the version where p = 3 in a variety

of investigations among others also in Refs. [6, 86, 100]. Often also the most simple example which
is further specified by {c0 = 1, ci 6=0 = 0} is useful as a test-model and as such it will be used in
Sec. 5.3.2. For this case the parameter ξ can be interpreted as the first moment which means

Ωc0=1
1 = ξ . (3.169)

Historically the shape function has support for (0,∞) but it turns out that implementing a so-called
gap ∆ which simply is a shift of the model function i.e. Smod

e (`)→ Smod
e (`−∆) has several advantages.

In terms of the observable this gap can be interpreted as the minimal hadronic energy deposit (e.g.
at least two pions for e+e− annihilation) and since it needs to be fitted to experimental data anyways
it can be used to absorb the leading IR renormalon of the soft function.

3.7.1 Soft Function Renormalon

The already discussedO(ΛQCD) pole mass renormalon (see Sec. 2.2) enters in the result for the massive
quark jet function. It is easy to avoid the pathological asymptotic factorial growth, which also at
low orders can spoil the perturbative convergence, by using a so-called short distance mass scheme
such as the MS or MSR mass27. Apart from the pole mass renormalon one also finds an O(ΛQCD) IR

25For now hadron mass effects (see Ref. [73]) are neglected, thus distinguishing different mass schemes is not necessary.
26In the end one of course still only wants to fit for a small number of free parameters. This is why the basis functions

are chosen (from experience) so that for the used observables the leading basis function covers already most of the
relevant shape. This is then systematically improvable by including more and more of the basis functions.

27Which short distance mass scheme is producing the best perturbative convergence depends on the observable. When
using effective field theory it is additionally important to make sure that the induced subtractions are compatible with
the power counting of the theory.
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renormalon in the soft function usually referred to as the soft renormalon. To see this let us use the
rescaled M -scheme C-parameter (given by C̃M = CM/6) as an example and have a closer look at the
perturbative soft function calculation. Considering the two non-zero diagrams (which correspond to
the two diagrams given in Fig. 3.4 without the bubble insertions) one finds [70,86]

µSC̃M (`, µ) = δ(˜̀) + 32π2(eγE )ε
αsCF
π

∫
ddk̃

(2π)d
Im

[
1

−k̃2 − i0

]
θ
(
k̃0
)

k̃+k̃−
δ

(
`− k̃+k̃−

k̃+ + k̃−

)
+O(α2

s)

(3.170)

with ˜̀ = `/µ as well as k̃ = k/µ and where the imaginary part of the gluon propagator enforces the
on-shellness of the gluon. Calculating the result leads to the expressions already given in Eqs (3.59)
and (3.61).

. . .

. . .

Figure 3.4: Diagrams contributing to the soft function with bubble chain insertion which are non-
zero. Furthermore the same diagrams without the inserted fermionic bubbles are the only non-zero
one-loop integrals contributing to the soft function (for more details see for example [70]).

Next we look at the Borel transform of the sum of soft function diagrams with insertions of all
orders of bubble chain gluon propagators (also see Eq. (B.3)). For this situation the relevant types
of diagrams are shown in Fig. 3.4. As we have seen in Sec. 2.2 it is useful to use the Borel transform
of the gluon propagator to obtain the Borel transform of the whole quantity of interest. Following
Ref. [105] and as long as the measurement is inclusive with respect to the massless quark bubbles it
is sufficient to take the calculation from Eq. (3.170) and replace the intermediate gluon propagator
with the Borel transformed gluon bubble chain propagator from Eq. (B.3). The Borel transform of
the rescaled M -scheme C-parameter soft function with bubble chain insertion (therefore the tree level
is not contained - superscript (1)) is then given by

B
[
µS

(1)

C̃M
(`, µ)

]
(u) =

4CF
β0

(eγE )ε

Γ(1− ε) (3.171)

×
∫

dk̃+ dk̃− Im

[ ∫ ∞
0

d(k̃2
⊥)

(k̃2
⊥)−ε[

k̃2
⊥ − (k̃+k̃− + i0)

]1+u

]
e

5u
3

π

θ(k̃+ + k̃−)

k̃+k̃−
δ

(
`− k̃+k̃−

k̃+ + k̃−

)
,

where ddk = 1
4dΩd−2

tot dk− dk+ d(k2
⊥)(k2

⊥)−εθ(k2
⊥) with k⊥ = |~k⊥| was used and again with ˜̀= `/µ and

k̃ = k/µ. Taking the involved imaginary part which is given by

Im

[ ∫ ∞
0

d(k̃2
⊥)

(k̃2
⊥)−ε[

k̃2
⊥ − (k̃+k̃− + i0)

]1+u

]
=

(k̃+k̃−)−ε−u Γ(1− ε)π
Γ(1 + u)Γ(1− ε− u)

, (3.172)

the remaining integrations are trivial and the final result reads

B
[
µS

(1)

C̃M
(`, µ)

]
(u) =

4CF
β0

(eγE )ε e
5u
3 B(ε+ u, ε+ u)

Γ(1 + u)Γ(1− ε− u)
˜̀−1−2u−2ε , (3.173)
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with the Beta function B(a, b) = Γ(a)Γ(b)
Γ(a+b) . As expected this result gives the one loop result for u = 0

where ε 6= 0 regularizes the contained UV divergences (also the additional factor αsβ0

4π needs to be
included to recover the correct gluon propagator). Investigating the result for u 6= 0 and ε = 0
one finds that the renormalon poles are now contained in the distributive structure. The leading
renormalon pole is again situated at u = 1

2 and in terms of distributions given by

˜̀−1−2u
∣∣∣
u=

1
2

=
1

2
(
u− 1

2

)δ′(˜̀) +O
(
(u− 1

2)0
)
. (3.174)

Furthermore the subleading renormalon poles28 are situated at u = (2k + 1)/2 with k ∈ N and in
general are connected to derivatives of the delta function by

˜̀−1−2u
∣∣∣
u=

2k+1
2

= − (−1)2k+1

2 (2k + 1)!
(
u− 2k+1

2

)δ(2k+1)(˜̀) +O
(
(u− 2k+1

2 )0
)
. (3.175)

It is even more illustrative to look at the logarithm of the Fourier transform of the partonic soft
function with bubble chain insertions (including tree level) S̃(y) = F(S(`)) =

∫
d` exp(−iy`)S(`)

and subsequently take the Borel transform of the leading term of ln S̃CM . From this we get

B
[

ln S̃CM (y, µ)
]
(u) =

4CF
β0

e
5u
3 Γ(u)2 Γ(−2u)

Γ(1 + u)Γ(1− u)Γ(2u)
(iyµ)2u . (3.176)

In this expression the poles and also the distributive structure is now explicit for different values of u
when taking into account that the Fourier transform of the derivatives of the delta function is given
by F(δ(n)(`))(y) = (iyµ)n.

Note for the interested reader: the result of the analog calculation for the collinear-soft function where
the soft drop groomed jet mass is measured, shows that the corresponding leading soft renormalon is
situated between (1

2 , 1) depending on how strong the grooming is performed. Details as well as the
mentioned calculation are given in App. D

3.7.2 Gap Formalism

The already mentioned gap parameter ∆ of the soft model function can now be used (following
Refs. [100,105]) to absorb the pathological renormalon behavior and thereby render the soft function
free of the leading renormalon. After introducing a gap the full soft function is given by

Se(`, µs) =

∫
d`′ Spart

e (`− `′, µs)Smod
e (`′ −∆) =

∫
d`′ Spart

e (`′ −∆, µs)S
mod
e (`− `′) (3.177)

Next the gap parameter is split in a non-perturbative part ∆ (which still has to be determined from
data) and a subtraction which can be written as a perturbative series δe which is designed to cancel
the pathological renormalon behavior. The exact form of δe is scheme dependent and not unique.
The resulting form of ∆ then reads

∆ = ∆(R∆, µs) + δe(R∆, µs) , (3.178)

where µs is the scale of the partonic soft function and R∆ is the subtraction scale at which this
relation is defined.

28Naively one would also find poles in the distributive structure at integer values for u but this gets canceled by the
1/Γ(1− u) in the prefactor giving a finite result.
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A convenient definition for δe, called gap subtraction has been proposed in Refs. [42,105] and reads:

δe(R∆, µs) = R∆ eγE
[

d

d ln(iy)
ln S̃part

e (y, µs)

]
y=(iR∆ eγE )−1

, (3.179)

which is suggested by the form of the inverse Fourier transform of the partonic soft function given by

Spart
e (`′ −∆, µs) =

∫
dy exp

[
iy
(
`′ −∆(R∆, µs)

)
+ ln S̃part

e (y, µs)− iy δe(R∆, µs)
]
. (3.180)

Using this together with Eq. (3.176) it is clear that for the example of M -scheme C-parameter the
renormalon pole at u = 1

2 cancels:

B
[

ln S̃part
CM

(y, µs)− iy δCM (R∆, µs)
]
u=

1
2

=
4CF
β0

e
5u
3 Γ(u)2 Γ(−2u)

Γ(1 + u)Γ(1− u)Γ(2u)
µ2u

[(
iy
)2u − 2u iy

(
R∆ eγE

)1−2u
]
u=

1
2

= 0 . (3.181)

Additionally we note that for other event shapes the same type of subtraction will successfully cancel
the renormalon associated with the δ′(`) which in this case lies at u = 1

2 (an example with u 6= 1
2 can

be found in App. D). We note that any occurring (subleading) renormalons associated with higher
derivatives of δ(`) will not be sufficiently treated by a simple subtraction implemented in the gap of
the soft model function.

The gap subtraction can be written as a perturbative series as follows:

δe(R∆, µs) = R∆eγE
∑
n=1

δe,n(R∆, µs)

(
αsCF

4π

)n
, (3.182)

where for event shapes like thrust, the rescaled C-parameter C̃ = C/6 or angularities the first two
orders are given by [70]

δe,1 = 2Γs,0 LµR , (3.183)

δe,2 = 2 se1 β0 + γs,1 + 2 Γs,1LµR + 2β0 Γs,0 L
2
µR , (3.184)

with LµR = log(µs/R∆) and Γs,i denoting the cusp and γs,i the non-cusp anomalous dimension of the
soft function which was defined in Eq. (3.77). Furthermore se1 corresponds to the one loop constant
term of the Fourier transform of the partonic soft function divided by αsCF /(4π). For the different
event shapes of interest this coefficient is given by

sτa1 = − π2

(1− a)
, sτ1 = −π2 , sC̃1 = −π

2

3
. (3.185)

In the literature [86, 100] a reference value for the gap parameter ∆(R∆, µs) is often defined at low
perturbative scales e.g. R∆,0 = µs,0 = 2 GeV. Since this parameter enters the factorization theorem
at different scales (see Sec. 3.8), one needs to evolve the gap in µs and R∆. Similar to the MSR mass
(see Sec. 2.3) the gap parameter ∆(R∆, µs) has non trivial renormalization group flow in R∆. The
evolution in µs and R∆ can be expressed in terms of the following RGE equations:

d∆(R,µ)

d lnµ
= −Rγµ

∆

[
αs(µ)

]
, γµ

∆

[
αs(µ)

]
=
∑
i=0

γµ
∆,n

(
αs(µ)CF

4π

)n+1

, (3.186)

d∆(R,R)

d lnR
= −RγR

∆

[
αs(R)

]
, γR

∆

[
αs(R)

]
=
∑
i=0

γR
∆,n

(
αs(R)CF

4π

)n+1

. (3.187)

53



For the gap parameter the µ evolution is completely governed by the µ evolution of the partonic soft
function and for the R∆ evolution the first two anomalous dimension coefficients are given by

γR
∆,0

= 0 , γR
∆,1

= eγE
(
2 se1 β0 + γs,1

)
. (3.188)

These evolution equations can be solved numerically or analytically as shown in Refs. [43, 44]. The
solution of the µs and R∆ evolution equations of ∆(R∆, µs) at NNLL from (R∆,0, µs,0) to (R∆, µs) is
then given by

∆(R∆, µs) = ∆(R∆,0, µs,0)− 2R∆,0 eγE ωNLL(R∆,0, µs,0,Γs, 2)− 2R∆ eγE ωNLL(µs, R∆,Γs, 2)

− ΛNNLL
QCD S1 eiπb̂1

[
Γ
(
− b̂1 − 1,− 2π

β0 αs(R∆)

)
− Γ

(
− b̂1 − 1,− 2π

β0 αs(R∆,0)

)]
,

(3.189)

with b̂i already given in Eq. (2.16), S1 = γR
∆,1
/(2β0)2 and ΛNNLL

QCD which is given by [43]

ΛNNLL
QCD = RΛ exp

(
− 2π

β0 αs(RΛ)

)(
2π

β0 αs(RΛ)

)b̂1
exp

(
b̂2 β0 αs(RΛ)

2π

)
. (3.190)

where the choice RΛ = 100 GeV is typical for numerical implementations. Furthermore note that
since the evolution function ω does not appear in the exponential as it does for the µ evolution of
cross section factors as given in Eq. (3.80), ωNLL is sufficient at NNLL.

3.8 Profile Functions

In fixed order perturbation theory it is well known that one needs to choose a scale and appropriate
variations to obtain a result with reliable theoretical uncertainties. A good scale choice is usually
characterized by minimizing the logarithms which appear in perturbative results. This of course only
works well for problems involving a single scale but not if several well separated characteristic scales
appear which will then lead to large logarithms. Already when discussing the resummation of large
logarithms by using factorization theorems and connected renormalization group evolution it became
clear that for the individual cross section factors a suitable scale choice is necessary to achieve properly
convergent cross section predictions. Furthermore we note that the logarithms which appear in the
factors of the factorization theorem depend on the value of corresponding typical kinematical scales
which in general will depend on the event kinematics, hence depend on the event shape value itself.
This means that for resummed cross section calculations the problem of choosing an appropriate scale
now is generalized to finding an appropriate function for all µi’s appearing in functions of factorization
theorems which are usually called profile function.

For event shapes involving massless particles appropriate profile functions have been constructed for
example in Refs. [86, 100]. From those investigations one can see that the natural scaling for the
involved hard, jet and soft scale in the different regions is given by

peak: µh ∼ Q , µj ∼
√

ΛQCDQ , µs ∼ ΛQCD ,

tail: µh ∼ Q , µj ∼ Q
√
e , µs ∼ Qe , (3.191)

far-tail: µh = µj = µs ∼ Q ,

which is determined by the typical scale appearing in the corresponding cross section factors. The
scaling in the peak region represents the fact that this region is dominated by nonperturbative physics
which is why usually the perturbative scales will be frozen at a perturbative value (i.e. & 1 GeV) when
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entering the peak region. Furthermore in the far tail one needs to make sure to recover the full fixed
order result where all scales are joined together at the hard scale.

In between those regions an ”interpolation“ function is used which ensures that the resulting profile
function is continuous and has a continuously differentiable transition between the different regions.
For this purpose we will subsequently use a double quadratic function. As the name suggests, it is
made of two quadratic functions which are joined in the middle (also continuous and continuously
differentiable). This transition function which is denoted by ζ(a1, a2; b1, b2) is completely defined by
the two linear functions f1(x) = a2 x+a1 and f2(x) = b2 x+b1, giving the value and first derivative at
the start and end point of the transition, respectively (more details on this can be found in Ref. [9]).

The soft scale profile function for the massless case is then given by [86,100]

µs(e) =



µ0 (e ≤ e0)

ζ(µ0, 0; 0, µh rs) (e0 < e ≤ e1)

µ0 rs e (e1 < e ≤ e2)

ζ(0, µh rs; µh, 0) (e2 < e ≤ es)
µh (es < e)

, (3.192)

with the hard scale µh = εhQ, the transition points e0(Q) = n0/Q, e1(Q) = n1/Q
β, e2 as well as es

and the slope in the canonical region rs = rml (1 + εs). The gap scale R∆ and jet scale µj for the
massless case are based on the soft scale via the following relation:

R∆(e) =


R0 (0 < e ≤ e0)

ζ(R0, 0; 0, µh rs) (e0 < e ≤ e1)

µs(e) (e1 < e)

, (3.193)

µj(e) =


[
1 + εj

(
es − e

)2]√
µh µs(e) (e ≤ es)

µh (es < e)

, (3.194)

From Refs. [86,100] and Ref. [9] one can see that this parametrization and the corresponding parameter
choices29 shown in Tab. 3.4 lead to a well convergent perturbative result over the whole cross section
region for the case of massless thrust and C-parameter. To estimate the uncertainty from higher
orders in the nonsingular contributions the uncertainty is estimated by varying the nonsingular scale
in the following way:

µns(e) =


(
µh + µj(e)

)
/2 (nns = −1)

µh (nns = 0)(
3µh − µj(e)

)
/2 (nns = 1)

. (3.195)

The case of primary massive stable (and to some extent also unstable) quarks was investigated for
the case of 2-jettiness in Ref. [9] and it is straightforward to extend this to other event shapes. For

29Due to the fact that between Ref. [100] and [9] the parametrization changed from e1 = n1/Q to e1 = n1/Q
β with

β = 3/4 also the default value for n1 changed which in the case of thrust led to the new default value of 2.25 GeV
compared to the old one of 10 GeV. To account for this change in the case of C-parameter we changed the default value
so that we get the same ratio between the old and new value as for thrust which gives 25/10 ∗ 2.25 GeV = 5.625 GeV.
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this case the jet scale needs to be generalized for µj < µm =
√
εhm to account for the characteristic

scaling of the bHQET jet scale given by

µjB =
µh µs(e)

µm
. (3.196)

The generalized massive jet scale can then be written as

µmj (e) =

µjB(e) (µj(e) ≤ µm)

µj(e) (µm < µj(e))
(3.197)

To account for the additional freedom of the heavy quark mass the parametrization from Eqs. (3.192),
(3.193) and (3.194) needs to be changed. Involving m̂ = m/Q the resulting expressions read [9]

e0(m,Q) =
n0

Q
+

d0

Q0.5
+ emin(m̂) , e1(m,Q) =

n1

Qβ
+

d1

Q0.5
+ emin(m̂) , (3.198)

e2(m̂) = e2(0) + [emax(m̂)− emax(0)] , es(m̂) = es(0) + [emax(m̂)− emax(0)] . (3.199)

res(m̂) = rml

[
1 + εs

(
es(0)

es(m̂)− emin(m̂)

)]
, d(m̂) = − emin(m̂)rs(m̂) + dvar , (3.200)

ej(m̂) = ej,ml

[
es(0)− e0(0, Q)

es(m̂)− e0(m,Q)

]2

, (3.201)

with emin from Tab. 3.1.
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e τ C

µ0 1.1(3.00) − 1.1 −
R0 0.7(2.25) − 0.7 −

n0 2 − 12 −
n1 2.25 − 5.625 −
e2 0.25 [0.225, 0.275] 0.67 [0.64, 0.70]

es 0.40 [0.375, 0.425] 0.83 [0.80, 0.86]

rml 2 − 0.33 −
nns 0 {−1, 0, 1} 0 {−1, 0, 1}

εs 0 [−0.115, 0.13] 0 [−0.115, 0.13]

εj −1.5 [−3, 0] 0 [−0.5, 0.5]

εh 1 [0.5, 2] 1 [0.5, 2]

d0 0 [−0.05, 0.05] 0 [−0.05, 0.05]

d1 0 [−0.05, 0.05] 0 [−0.05, 0.05]

abs 1(0) − 1 −

Table 3.4: Default profile parameter choices (with β = 3/4) and their variation for thrust and
C-parameter with stable (unstable) primary quarks. Details can be found in Refs. [9, 86, 100]. All
parameter choices for C-parameter which do not originate from the massless analysis are extrapolated
from the thrust case.
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Chapter 4

Event Shapes and Unstable Heavy
Quarks in e+e−-Annihilation

4.1 Introducing Unstable Heavy Quarks

4.1.1 Inclusive Decay

When considering physical processes involving one or several (anti-)top quarks the large width
(Γ > ΛQCD) of the top quark needs to be taken into account even at parton level. Already in the
discussion of Refs. [7,8], which was in the context of the double differential hemisphere mass and the
differential 2-jettiness cross section, the fact that the top quark is unstable and has nonzero width
was discussed. In this work it was shown that the bHQET jet function with nonzero width can be
written as a convolution of a Breit-Wigner function with the stable bHQET jet function:

JΓ
B,n,e(s,m, µ) =

Q

m
ĴΓ
B,n,e(ŝ, δm, µ) =

Q

m

∫
dŝ′ ĴB,n,e(ŝ− ŝ′, δm, µ)

Γ

π
[
(ŝ′)2 + Γ2

] . (4.1)

This was shown by taking the approach of calculating the imaginary part of the inclusive jet function
JB,n,e(s,m, µ), rather than calculating the jet function with exclusive jet final states as in Sec. 3.5.
By shifting the pole of the jet function (in the variable s), which corresponds to the pole in the top
quark propagator, to an imaginary value it is possible to derive the relation of (4.1). The involved
expressions are given by [8]

JΓ
B,n,e(s,m, µ) = Im

[
JB,n,e

(
s+ iΓ + i0,m, µ

)]
, (4.2)

JB,n,e
(
Qp+,m, µ) =

−i
4πNcQ

∫
d4x eip·x 〈0|T

{
(hv+Wn)(0) (W †nhv+)(x)

}
|0〉 . (4.3)

Taking the full factorization theorem and inserting Eq. (4.1) for the jet function it is straightforward
to see that one can also implement the convolution with the Breit-Wigner function on the cross section
level:

1

σ0

dσΓ

de
=

∫
dê

1

σ0

dσΓ=0

de
(e− ê)

mαΓ
Q2

π
[
ê2 +

(
mαΓ
Q2

)2] , (4.4)

with an event shape specific factor α. This factor is α = 2 for thrust (and the rescaled C-parameter
C̃ = C/6) and originates from the exact form of the ultracollinear measurement. For example because
of the factor 6 in the ultracollinear measurement of the M -scheme C-parameter with respect to thrust
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the final convolution will involve a Breit-Wigner distribution with α = 12. On the other hand since
one of the hemisphere jet functions will not contribute to the heavy jet mass distribution the factor
will be α = 1.

We note that this treatment is derived for observables like M -scheme jet masses ρM+ for which the
convolution variable s coincides with the jet off-shellness. For other event shapes the convolution
variable s only coincides with α times the jet off-shellness at leading power. By using the decay-
function framework it is also possible to include subleading Breit-Wigner effects (corresponding to

subleading width effects of the form Γ → (1 + m2

Q2 + O(m
4

Q4 ))Γ) modifying the relation of Eq. (4.4)
which is discussed in Sec. 5.2.

4.1.2 Checking with Simulation

From the result of Eq. (4.4) one would expect that a generic event shape distribution for unstable
top quark pair production is simply given by the stable distribution convoluted with a Breit-Wigner
(BW) function. To check how well this expectation captures all effects of having an unstable heavy
quark in the final state we next compare several event shape distributions for stable and unstable top
quark pair production which are obtained from a general purpose Monte Carlo event generator. In
particular we take the distributions after the parton shower step and convolute them with a simple
analytic hadronization model. For the model we use the simple analytic test-model which was already
defined in Sec. 3.7, with {c0 = 1, ci 6=0 = 0}, ξ = Ω1. The resulting distributions are then analyzed in
comparison to the theoretical expectation.

First, let us consider M -scheme thrust (alternatively 2-jettiness) and C-parameter for e+e− → tt̄→ X
with mt = 173 GeV and a center of mass energy of Q = 700 GeV. Using PYTHIA 8.2 [54] to generate
107 simulated events we produce the results shown in Fig. 4.1 where the comparison plots are shown
for M -scheme thrust (left) and C-parameter (right). For both observables the resulting distributions
are shown for the stable (blue) and the unstable (orange) situation at parton shower level (dashed)
and at hadron level (solid). In general we used a comparably large first model moment which is just
for illustrative purposes and in case of C-parameter we used the relation of Eq. (3.165) to estimate a
reasonable first moment.
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Figure 4.1: Differential distributions (PYTHIA parton level + analytic hadronization) for M -scheme
thrust (N chosen so that the distribution is self-normalized within [0, 0.5]) and C-parameter (self-
normalized within [0.35, 0.85]) for stable top (blue) and unstable top (orange), at parton shower level
(dashed) or at hadron level (solid). For comparison also the peak position for the stable tree level
case (black dashed) e0 = emin + Ω1/Q is shown.

Analyzing the results shown in Fig. 4.1 we note the following:
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• M -scheme thrust: Comparing the unstable to the stable situation one can observe that the peak
position is stable and that the peak gets wider. This is consistent with the theoretical treatment
and can be expected from the clustering property of these observables (i.e. they only depend
on the total jet momentum, like M -scheme thrust or jet masses). Since energy and momentum
are conserved the event shape value is not changed and the inclusive treatment of the BW
convolution is sufficient to describe the unstable case. In addition, the unstable distribution
develops a small feature (in the following we will call it “decay-shoulder”) left of the peak which
at this point is not expected.

• M -scheme C-parameter: Comparing the unstable to the stable situation the peak position
changes significantly. Furthermore the overall shape and width of the distribution changes
beyond what one would expect from the convolution with a BW.

Next let us consider the P -scheme versions of the same observables as before. The corresponding
results are shown in Fig. 4.2.
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Figure 4.2: Differential distributions (PYTHIA parton level + analytic hadronization) for P -scheme
thrust (N chosen so that the distribution is self-normalized within [0, 0.5]) and C-parameter (self-
normalized within [0, 1]) for stable top (blue) and unstable top (orange), at parton shower level
(dashed) or at hadron level (solid). For comparison also the peak position for the stable tree level
case (black dashed) e0 = Ω1/Q is shown (emin = 0).

Again, comparing the unstable to the stable case it is clear that here in both cases the convolution of
the stable distribution with a Breit-Wigner function will not be sufficient to recover the full unstable
case. An argument why this could already be expected at least for thrust is related to the fact that the
fully decayed final state involves (almost) massless particles. For massless final state particles P - and
M -scheme definition of an event shape coincide and since for the M -scheme the stable and unstable
situation are very similar the difference between the stable and unstable P -scheme distributions should
be similar to the difference between the stable P - and M -scheme definitions, which is significant.

On a qualitative level we find that for event shapes with the clustering property (i.e. they only depend
on the total jet momentum and one expects those not to be decay sensitive due to energy-momentum
conservation) the unstable situation can be recovered by convolution of the stable distribution with
a Breit-Wigner function. Furthermore we also note that for other event shapes, which are sensitive
to more exclusive final state information, this prescription will in general not work well.

4.1.3 Dependence on the Heavy Quark Decay Kinematics

In order to understand the results from the previous subsection our next aim is to identify the different
relevant kinematical situations and also to understand how they contribute to the final distribution
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of the full unstable case.

For event shapes with the clustering property any effect from the decay beyond the convolution with a
Breit-Wigner is expected to be small. This is the case because for large boost (i.e. Q� m) basically
all the decay products stay in the jet, thus the jet momentum does not change, which because of the
clustering property and energy momentum conservation means that the event shape value of the event
does not change. We call such events aligned decay events. Due to the large boost the situation, where
decay products are not contained in the same jet anymore, is power suppressed. For this situation
the event shape value will change with respect to the corresponding stable situation and from now
on we will refer to them as misaligned decay events.
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Figure 4.3: Illustration of e+e− → tt̄→W+bW−b̄ with fully aligned (a), misaligned t̄ and aligned t
(b) and fully misaligned (c) decays. The fact that misaligned decays change the event-shape values
of the event can be seen by comparing the thrust axis (solid) and hemisphere division (dashed) of the
final state (red) and an event where a stable on-shell top-antitop pair (blue) is produced.

To make this notation more precise, the difference of aligned and misaligned decays is shown schemat-
ically in Fig. 4.3 for the example of tt̄ production which then subsequently decay into two particles
each (e.g. t → W+b). In the exemplary case of thrust the original heavy quark pair momentum
axis will align with the final state thrust axis if all decay products end up in the correct hemisphere
(defined by the heavy quark pair momentum axis) which will correspond to an aligned decay. If this
is not the case the final state thrust axis will not align with the thrust axis of the event which would
only contain the initially produced heavy quarks as stable particles, hence the thrust value would
change and we would speak of a misaligned decay.

For event shapes which do not have the clustering property, as an example let us look at C-parameter,
the effect of the decay, as shown for example in Fig. 4.2, can be understood quite intuitively. When the
massive on-shell top quark decays into lighter particles which also must be on-shell an angle between
the trajectories of the decay products will be introduced. Even with fully aligned decays the P -scheme
C-parameter measurement which is given in Eq. (3.5) would be nonzero while the corresponding event
with a stable top-antitop pair would give zero. This shows that for non-clustering event shapes (i.e.
event shapes without clustering property) even for aligned decays we have to expect changes with
respect to the stable case beyond the convolution with a BW.

In the following we will explore this heavy quark decay kinematics dependence of different differential
event shape distributions in more detail and explore how aligned and misaligned decays contribute.
For this we again look at a study with simulated data (PYTHIA 8.219) at e+e− → tt̄→W+bW−b̄ with
a center of mass energy of Q = 700 GeV and Γt = 0 GeV at hard process level (parton shower and
hadronization turned off), which is just a numerical version of doing the leading order calculation.

In Fig. 4.4 we show the results for M -scheme thrust and C-parameter with different cuts applied. For
that purpose we also define so-called collinear decay events which are characterized by the fact that
all of the decay products are collinear with respect to the SCET power counting. This is realized by
checking explicitly that all decay products are harder than soft particles, i.e. |~p|/Q > m2

t /Q
2 ∼ λ2.

For comparison the distributions for the full unstable situation (blue), only fully aligned events (or-
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Figure 4.4: Differential e+e− → tt̄ → W+bW−b̄ cross section from PYTHIA for M -scheme thrust
(normalized to [0, 0.5]) and C-parameter (normalized to [0.35, 0.80]) for all decays (blue), only aligned
decays (orange), only collinear decays (green) and for comparison events with a stable tt̄ final state.
For the thrust case collinear and stable results are on top of each other.

ange), only collinear decay events (green) and the stable tt̄ final state (purple) are shown.

Looking first at the full M -scheme thrust distribution we find all the situations discussed so far.
Most of the events involve collinear decays1 (for this situation ∼ 86.2% of the events) which are
represented by a delta function at the stable threshold position. Additionally there are a few aligned
but not collinear decay events (∼ 1.4%) for which the angle of the decay products is so large that
although they are aligned the thrust axis still gets modified and we find a deviation from the stable
threshold position. On top of that there are misaligned events (∼ 12.4%) left of the peak giving rise to
most of what we called “decay-shoulder” before. Taking a closer look at the M -scheme C-parameter
distribution shows a shift and distortion to a much broader distribution. Apart from that we see
a similar behavior where the central part of the peak is made up by collinear decay events, aligned
decays include a slightly larger set of events and the rest of the events are given by misaligned decays
which do only contribute farther away from the peak.

In this section we studied how different prototypical decay kinematics enter the fully unstable distri-
bution of boosted top quark pair production and found the following: (1) The so-called collinear decay
events contribute most of the peak of the distribution. (2) There are a few aligned but not collinear
decay events which contribute close to the peak. (3) The remaining events come from the power
suppressed situation of misaligned decay events which only contribute to the tail of the distribution.

4.2 Fixed Order Calculation for tt̄ Production and Decay

In the last section the qualitative behavior of event shapes for boosted unstable top quark pair
production was studied. It turns out that for event shapes with the clustering property, as expected,
the usual approach of convolution of the stable distribution with a Breit-Wigner function works very
well. For non-clustering event shapes (i.e. event shapes without clustering property) this treatment
is not sufficient. The aim of the remainder of this chapter is to improve this situation by creating a
setup which also allows us to carry out a quantitative analysis for non-clustering event shapes.

As a starting point let us again consider the situation of top quark pair production in e+e−-annihilation
which then subsequently decay (via intermediate W -bosons) into b-quarks and leptons, neutrinos or

1Note that all collinear decay events are also fully aligned.
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light quarks, i.e. e+e− → tt̄→ bW+ b̄W− → Yi with the four possible final states Yi given by

Y1 = bl+νl b̄l
′−ν̄l′ , Y2 = bl+νl b̄q

′′q̄′′′ , (4.5)

Y3 = bq̄q′ b̄l−ν̄l , Y4 = bq̄q′ b̄q′′q̄′′′ , (4.6)

As a representative example Y1 and Y4 are also shown in Fig. 4.5.

t

t̄

b

W−
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ℓ+

b̄

ℓ−

ν̄ℓ

t

t̄
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W−

W+

q′
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b̄

q′′

q̄′′′

Figure 4.5: Feynman diagram for tt̄ production with the subsequent decay into the Y1 and Y4 final
state which consists of b-quarks, leptons and the corresponding neutrinos as well as light quarks.

It is easy to show (for more details see among others [70]) that for e+e− → γ∗, Z0 → QQ̄ → X
the fixed order cross section can be factorized into a so called leptonic and hadronic2 tensor which
factorize initial and final state physics at leading order in the electroweak interaction. The total cross
section is then given by

σ =
∑
X

∫
dΠX(2π)dδ(d)(q − PX)

∑
i=v,a

Liµν H
µν
i , (4.7)

where q is the total (initial state) momentum which in the c.o.m. frame is given by q̂ = (q̂0, ~̂q) = (Q, 0)
involving the c.o.m. energy Q. The hadronic tensor involves the vector and axial-vector QQ̄ current
J µQCD,i given in Eq. (3.48) and reads (with an implicit trace over spin, polarization and color indices)

Hµν
i = 〈0| J µ†i (0) |X〉 〈X| J νi (0) |0〉 . (4.8)

The leptonic tensor for unpolarized e+e− annihilation is given by

Lvµν = µ̃4ε

(
1− ε
3− 2ε

)
8π2α2

Q4

(
qµqν
Q2
− gµν

)
×
[
Q2
e Q

2
f +

v2
f (v2

e + a2
e)(

1− (mZ/Q)2
)2

+
(
ΓZ/mZ

)2 +
2QeQf ve vf

(
1− (mZ/Q)2

)(
1− (mZ/Q)2

)2
+
(
ΓZ/mZ

)2] , (4.9)

Laµν = µ̃4ε

(
1− ε
3− 2ε

)
8π2α2

Q4

(
qµqν
Q2
− gµν

)[
a2
f (v2

e + a2
e)(

1− (mZ/Q)2
)2

+
(
ΓZ/mZ

)2] , (4.10)

with µ̃ = (µ
2eγE
4π )ε and the electromagnetic coupling constant α. Furthermore the v and a factors

from the coupling of the fermion f to the Z-boson are given by

vf =
T f3,L − 2Qf sin2 θw

sin 2θw
, af = −

T f3,L
sin 2θw

, (4.11)

2This naming convention should be taken with a grain of salt. In this case the final state can also include leptons
from the W -boson decay.
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where T f3,L stands for the weak isospin, Qf denotes the electric charge of the fermion f and θw is the
weak mixing angle which is also called Weinberg angle.

4.2.1 Six Particle Phase Space

Before looking at the hadronic tensor let us first investigate the phase space which is opened up by
the six particle final state of interest, e.g. Y1 = bl+νl b̄l

−ν̄l (for our purposes using d = 4 is sufficient):

∫
dΠY1(2π)4δ(4)(q − PY ) =

∫ 6∏
i=1

d3~pi
(2π)32p0

i

(2π)4δ(4)(q −
6∑
i=1

pi) , (4.12)

where the index i refers to the particles in the same order as the final state particle list given above
the equation (referring to the final state particles in Fig. 4.5 from top to bottom), all momenta are
considered outgoing and where q again refers to the total momentum. By introducing the W+, W−

momentum r1, r2, the t, t̄ momentum q1, q2:

r1 = p2 + p3, q1 = r1 + p1 = p1 + p2 + p3 , (4.13)

r2 = p5 + p6, q2 = r2 + p4 = p4 + p5 + p6 , (4.14)

as well as the invariant mass of the intermediate particles si = q2
i and ti = r2

i for i = 1, 2 it is possible
to write the following identity for the t quark kinematics:

1 =

∫
ds1

2π

∫
d4q1

(2π)4
(2π)δ(s1 − q2

1) θ(q0
1) (2π)4δ(4)(q1 − p1 − r1)

=

∫
ds1

2π

d3~q1

(2π)32q0
1

(2π)4δ(4)(q1 − p1 − r1) with q0
1 =

√
s1 + ~q2

1 , (4.15)

and analogously for the cases of t̄, W+ and W−. Next let us boost to the W+ rest frame and look at
the W+ decay kinematics for massless decay products3:∫

d3~̂p2

(2π)32p0
2

d3~̂p3

(2π)32p0
3

(2π)4δ(
√
t1 − p0

2 − p0
3)δ(~̂p2 + ~̂p3)

=

∫
d(cos θ̂)

2

dϕ̂

2π

d(|~̂p2|2)|~̂p2|
8π

δ
(√

t1 −
√
m2

1 + |~̂p2|2 −
√
m2

2 + |~̂p2|2
)

√
m2

1 + |~̂p2|2
√
m2

2 + |~̂p2|2
(4.16)

=
1

8π

[
1− 2(m2

2 +m2
3)

t1
+

(m2
2 −m2

3)2

t21

] 1
2
∫

d(cos θ̂)

2

dϕ̂

2π
=

1

8π

λ
1
2 (t1,m

2
2,m

2
3)

t1

∫
d(cos θ̂)

2

dϕ̂

2π
,

where we used on-shell conditions for all final state particles, introduced some polar angle ϕ̂ and
azimuthal angle θ̂ defined w.r.t. the W+ rest frame and also used the usual notation for the Källén
function λ(t1,m

2
2,m

2
3) = t21 − 2t1 (m2

2 +m2
3) + (m2

2 −m2
3)2. Using the same strategy for the W− and

subsequently for the (anti-)top quark decay products we can write the six particle phase space from
Eq. (4.12) as∫

dΠ6 =

∫
ds1

2π

ds2

2π

∫
d3~q1

(2π)3q0
1

d3~q2

(2π)3q0
2

(2π)4δ(4)(P − q1 − q2)∫
dt1
2π

λ
1
2 (s1, t1,m

2
1)

8π s1

d(cos θ̂q1)

2

dϕ̂q1
2π

∫
λ

1
2 (t1,m

2
2,m

2
3)

8π t1

d(cos θ̂r1)

2

dϕ̂r1
2π

(4.17)∫
dt2
2π

λ
1
2 (s2, t2,m

2
4)

8π s2

d(cos θ̂q2)

2

dϕ̂q2
2π

∫
λ

1
2 (t2,m

2
5,m

2
6)

8π t2

d(cos θ̂r2)

2

dϕ̂r2
2π

,

3Note that particle momenta p defined in the c.o.m. frame, will be denoted as p̂ in the rest frame of their parent
particle.
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where θ̂q1 now refers to the azimuthal angle defined w.r.t. the rest frame of the top quark where
q1 = (

√
s1,~0) is valid (analogously for the other angles).

4.2.2 Matrix Elements

After discussing the phase space let us now focus on the calculation of the hadronic tensor for the
final states Yj , which is given by (with i = v, a)

Hµν
i =

4∑
j=1

∑
spins

pol,color

Mµ
i,j

(
Mν

i,j

)†
with Mµ

i,j = 〈Yj | J µi (0) |0〉 . (4.18)

Using the chiral projector PL = 1−γ5

2 we can write down an expression for the involved amplitude
which reads (using Γµv = γµ and Γµa = γµγ5)

Mµ
i,j =

[
u(p1, s1)

{
g

i
√

2
γαPLVtb

}
i(/q1

+mt)

q2
1 −m2

t + imtΓt
Γµi

i(−/q2
+mt)

q2
2 −m2

t + imtΓt

{
g

i
√

2
γβPLVtb

}
v(p4, s4)

]

×
−i
(
gαδ −

(
rα1 r

δ
1/m

2
W

))
r2

1 −m2
W + imWΓW

[
u(p3, s3)

{
g

i
√

2
γδPL

(
Vff ′

)}
v(p2, s2)

]
(4.19)

×
−i
(
gβρ −

(
rβ2 r

ρ
2/m

2
W

))
r2

2 −m2
W + imW ΓW

[
u(p5, s5)

{
g

i
√

2
γρPL

(
Vf ′′f ′′′

)}
v(p6, s6)

]
,

with the weak coupling strength g related to Fermi’s constant GF by g2 = 8m2
WGF /

√
2, the inter-

mediate particle momenta qi for the tops and ri for the W bosons and where unitary gauge (usually
Feynman gauge is used in this work) is employed for the W boson propagators to avoid diagrams
involving goldstone bosons. Furthermore the appropriate factors of Vff ′ need to be included if the W
boson decays hadronically. It is important to note that when discussing the top quark and its mass
treating the final state lepton and the corresponding neutrino to be massless4 is sufficient and also
that due to the conservation of the massless (axial) vector current, i.e. rµ1

[
u(p3)γµ(γ5)v(p2)

]
= 0, the

second part of the W± propagator does not contribute to the final amplitude. The spin sum of the
squard matrix element is then given by

∑
spins

Mµ
i

(
Mν

i

)†
=

(
2πα

sin2 θw

)4 |Vtb|2[(
q2

1 −m2
t

)2
+m2

tΓ
2
t

] |Vtb|2[(
q2

2 −m2
t

)2
+m2

tΓ
2
t

]
× Tr

[
(/p1

+m1)γαPL(/q1
+mt)Γ

µ
i (−/q2

+mt)γβPL(/p4
−m4)γδPL(−/q2

+mt)Γ
ν
i (/q1

+mt)γσPL

]
× 1

2
Tr

[
/p5
γβ/p6

γδ
] (

|Vff ′ |2
)[(

r2
1 −m2

W

)2
+m2

WΓ2
W

] 1

2
Tr

[
/p2
γα/p3

γσ
] (

|Vf ′′f ′′′ |2
)[(

r2
2 −m2

W

)2
+m2

WΓ2
W

] . (4.20)

In the next step we proceed along the lines of the narrow width approximation (see [108] for a review)
and assume that the top quarks and W ’s are very close to on-shell (off-shellness ∼ mΓ). For the top
quark one can then write5 /q1

+mt =
∑

a u(q1, a)u(q1, a)
[
1 +O(Γt/mt)

]
and analogously for the W±

4This also means that the flavor mixing which would be implemented via PMNS matrix elements in the W± coupling
to the lepton/neutrino is omitted. For the corresponding hadronic decays also the light quarks are considered to be
massless.

5Parametrically the NWA introduces corrections of order Γ/m [109].
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one can write −gµν +
rµ1 r

ν
2

M2
W

=
∑

σ(εµ(r1, σ))∗εν(r1, σ)
[
1+O(ΓW /mW )

]
, which allows us to rewrite the

expression from Eq. (4.20) as

∑
spins

Mµ
i

(
Mν

i

)†
=

[
1 +O

(
Γt
mt

,
ΓW
mW

)]{
1

Γ2
t Γ2

W

fBW(q2
1,mt,ΓT ) fBW(q2

2,mt,ΓT )

×
∑

a1,a2,a3,a4
b1,b2,b3,b4

[
u(q1, a1)Γµi v(q2, a2)v(q2, a3)Γνi u(q1, a4)

]
|Vtb|2 |Vtb|2

(
|Vff ′ |2

) (
|Vf ′′f ′′′ |2

)
(4.21)

×
(

2π2α

sin2 θwmt

)[
u(q1, a4)γσPL(/p1

+m1)γαPLu(q1, a1)

]
(εα(r1, b1))∗εσ(r1, b4)

×
(

2π2α

sin2 θwmt

)[
v(q2, a2)γβPL(/p4

+m4)γδPLv(q2, a3)

]
(εβ(r2, b2))∗εδ(r2, b3)

×
(

π2α

sin2 θwmW

)
Tr

[
/p2
γα2/p3

γσ2

]
(εσ2(r1, b4))∗εα2(r1, b1) fBW(r2

1,mW ,ΓW )

×
(

π2α

sin2 θwmW

)
Tr

[
/p5
γβ2/p6

γδ2

]
(εδ2(r2, b3))∗εβ2(r2, b2) fBW(r2

2,mW ,ΓW )

}
,

with the well known Breit-Wigner distribution fBW given by

fBW(s,m,Γ) =
mΓ

π
[(
s−m2

)2
+m2Γ2

] . (4.22)

For the subsequent simplifications the usual strategy which is frequently used in the context of the
NWA is to average over intermediate spins and polarizations6. For the here occuring example of a
spin-1

2 particle and a massive gauge boson with momentum p this schematically looks like [108]

∑
a

∣∣∣M1 u(p, a)u(p, a)M2

∣∣∣2 =
1

2

∑
a1,a2

∣∣M1u(p, a1)
∣∣2 ∣∣u(p, a2)M2

∣∣2 , (4.23)

∑
a

∣∣∣Mµ
1 ε
∗
µ(p, a)εν(p, a)Mν

2

∣∣∣2 =
1

3

∑
a1,a2

∣∣∣Mµ
1 ε
∗
µ(p, a1)

∣∣∣2 ∣∣∣εν(p, a2)Mν
2

∣∣∣2 . (4.24)

4.2.3 Result

In the next step we put the results from Eqs. (4.17) and (4.21) together with Eq. (4.7) and factorize
the cross section using the discussed trick from the NWA as given in Eqs. (4.23) and (4.24). This
leaves us with:

σe+e−→tt̄→Yj =

{∫
ds1dt1 fBW(s1,mt,Γt)

√
s1 Γt→Wb(s1, t1,m

2
b)

mt Γt
fBW(t1,mW ,ΓW )

√
t1 ΓW→Yj (t1)

mW ΓW

×
∫

ds2 dt2 fBW(s2,mt,Γt)

√
s2 Γt→Wb(s2, t2,m

2
b)

mt Γt
fBW(t2,mW ,ΓW )

√
t2 ΓW→Yj (t2)

mW ΓW

×
∫

d(cos θ̂q1)

2

dϕ̂q1
2π

∫
d(cos θ̂r1)

2

dϕ̂r1
2π

∫
d(cos θ̂q2)

2

dϕ̂q2
2π

∫
d(cos θ̂r2)

2

dϕ̂r2
2π

(4.25)

× σe+e−→tt̄(s1, s2)

}[
1 +O

(
Γt
mt

,
ΓW
mW

)]
,

6This approximation works well because event shapes are usually not sensitive to spins and polarizations of final
state particles.
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where we defined the partial widths as

Γt→Wb(s1, t1,m
2
b) =

α |Vtb|2
16 sin2 θw

λ
1
2 (s1, t1,m

2
b)

s
3/2
1 t1

[
(s1 −m2

b)
2 + (s1 +m2

b) t1 − 2 t21

]
, (4.26)

ΓW→lep(t1) =
α
√
t1

12 sin2 θw
, ΓW→qq′(t1) =

α|Vqq′ |2
√
t1

12 sin2 θw
, (4.27)

which reduce to the known expressions for the tree level widths of the top quark Γ0
t→Wb and W boson

Γ0
W→Yj (see for example [110] and [111], respectively) in the corresponding channels if all the particles

are on-shell, i.e. s1/2 = m2
t and t1/2 = m2

W . Moreover we introduced the tree level e+e− → tt̄ cross
section given by

σe+e−→tt̄ =

∫
dΠ2(~q1, ~q2, s1, s2)S0(~q1, ~q2, s1, s2) (4.28)

=

∫
d3~q1

(2π)3 2q0
1

d3~q2

(2π)3 2q0
2

Liµν Tr

[
(/q1

+
√
s1) Γµi (/q2

−√s2) Γνi

]
,

with q0
i =

√
si + ~q 2

i and the leptonic tensor Liµν given in Eqs. (4.9) and (4.10).

To simplify the expression given in Eq. (4.25) further one can take the final step of the NWA for the
W -bosons (i.e. consider ΓW → 0) which reduces the Breit-Wigner function in the following way:

fBW(s,m,Γ)
Γ→0−→ δ(s−m2) . (4.29)

Also making the usual assumption that the dependence of the factor involving the partial width on
the invariant mass of the top quarks s1/2 is negligible for an off-shellness of order s1/2−m2

t ∼ mtΓt is
sensible in this context and reduces the complexity of the final expression further. This reduces the
factor to the tree level top quark branching fraction for the t→Wb channel which is essentially 1:

√
s1 Γt→Wb(s1, t1,m

2
b)

mt Γt
∼ B(t→Wb) =

Γ0
t→Wb

Γt
∼ 1 . (4.30)

Since we are interested in differential cross sections, in the last step a measurement delta function
for the event shape e (giving the event shape value eY for the final state Y ) is introduced. The
differential cross section for e+e− → tt̄→ X (summing over all possible final states) with the described
simplifications is then given by

dσe+e−→Y
de

=

∫
ds1 fBW (s1,mt,Γt)

∫
ds2 fBW (s2,mt,Γt)

×
∫

d(cos θ̂q1)

2

dϕ̂q1
2π

∫
d(cos θ̂r1)

2

dϕ̂r1
2π

∫
d(cos θ̂q2)

2

dϕ̂q2
2π

∫
d(cos θ̂r2)

2

dϕ̂r2
2π

(4.31)

×
∫

dΠ2(~q1, ~q2, s1, s2)S0(~q1, ~q2, s1, s2) δ
(
e− eY

(
~q1, ~q2, s1, s2, {θ̂i, ϕ̂i}

))}[
1 +O

(
Γt
mt

)]
,

where we used that the sum over all partial widths for the W boson gives the total W width.

4.3 Measurement Factorization for Unstable Heavy Quarks in the
Dijet Limit

In this section we want to follow Sec. 3.4.1 while considering the heavy quark to be unstable and
decaying into two or three final state decay products. In particular we want to answer how the
measurement outcome is changing when compared to the stable case discussed before.
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As we have seen in Sec. 4.1.2 the M -scheme C-parameter is a strongly decay sensitive observable and
also has non-trivial factorization properties which makes it an illustrative event shape to discuss in
this context. First, let us consider that in the dijet limit particles can be either soft or collinear, hence
one can write

CM =
∑

a∈{s,n,n}
b∈{s,n,n}

CMab =
3

2Q2

∑
a∈{s,n,n}
b∈{s,n,n}

∑
i∈a
j∈b

1

p0
i p

0
j

[
(pi · pj)(2p0

i p
0
j − pi · pj) + δabδijm

4

]
. (4.32)

The qualitative analysis of Sec. 4.1.3 shows that the events which give the biggest contribution to
the peak region of the event shape distribution are so-called collinear decay events where all decay
products of a collinear particle are again collinear. When considering the SCET power counting for
this situation it can be quickly realized that the unstable event shape measurement, in analogy to
what is shown in Sec. 3.4.1, will reduce to the stable situation. This happens because, at leading
power, the measurement is linear in the particle momenta of collinear particles and therefore does
not take note of a decay in any of the collinear sectors.

For the peak region of the cross section bHQET is usually more relevant. Since this region is the most
mass sensitive it is also the most interesting one in this context. Again we employ the prescription
of not expanding contributions which contain purely kinematical information about the initially pro-
duced heavy quark (and its decay) in m2

Q2 but keeping those to all orders and at the same time consider
the dynamical terms, which are related to ultracollinear gluon radiation, at leading power. Using this
one can see major changes for the unstable case with respect to the stable case. To illustrate what
happens, let us start by considering a simplified scenario and then progress in generality to the case
of arbitrary decays.

4.3.1 Four Massless Particles in the Final State

One very simple final state is the one where the (anti-)top quark decays into two massless particles, i.e.
t→ 1+2 (t̄→ 3+4),mi = 0. For this case the decay products momenta will be pairwise back to back
in the (anti-)top quark rest frame and thereby only depend on the decay axis ~n(~n′) defined in the same

frame of reference with ~n2 = (~n⊥)2 = 1. With the residual momentum k̂i = (k̂+
i , k̂

−
i ,
~̂k⊥i ) ∼ ∆(1, 1, 1)

(also defined in the heavy quark rest frame), which originates from recoil against ultracollinear gluon
radiation, the momenta for the top quark decay products in the center-of-mass frame then read

p1/2 =
m

2
v1/2 + k1/2

=
Q

2

(
1

2

(
1−

√
1− 4

m2

Q2

)
(1± n3

m

Q
),

1

2

(
1 +

√
1− 4

m2

Q2

)
(1∓ n3

m

Q
),±n1

m

Q
,±n2

m

Q

)

+Q

mk̂+
1/2

Q2
,
k̂−1/2

m
−
mk̂−1/2

Q2
,
~̂k⊥1/2

Q

+O
(m3 ∆

Q4

)
, (4.33)

where the anti-top quark decay products momenta are given in a completely analogous way.

Simple Case: θ̂q1 = θ̂q2 = π/2 (alternatively n3 = n′3 = 0)

First let us consider a decay configuration which is characteristic for collinear decay events. This
is realized for a situation where the azimuthal decay angle for the decay products of the (anti-)top
quark is π/2 in the respective (anti-)top quark rest frame and where the (anti-)top moves along the
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z-direction. This configuration makes sure that in case a large enough boost is considered, all decay
products end up to be in the same hemisphere as defined by the initially produced heavy quark and
also that the event will be a collinear decay event (none of the decay products has soft momentum
which would be |~p|/Q . m2

t /Q
2 ∼ λ2).

For this case we can now calculate the different parts contributing to Eq. (4.32). It is easy to see
that the part which involves soft particles is given by the expressions from the SCET case (see for
example Ref. [70]) and therefore the only change will occur in the purely ultracollinear contributions.
For example the Cnn contribution for the stable case is given by

Cstable
nn = Cttnn + 2Ctgnn + Cggnn , (4.34)

where the fact that the C-parameter is a sum of contributions which consider a pair of particles is
used, hence Cttnn is the contribution which originates from considering only the n-ultracollinear top
quark, Ctgnn are the contributions which arise from considering the top quark with the n-ultracollinear
gluons and Cggnn are then contributions where only n-ultracollinear gluons are involved. Using the
same notation the Cnn contribution for the unstable case can then be divided into

Cunstable
nn =

(
C11
nn + 2C12

nn + C22
nn

)
+ 2

(
C1g
nn + C2g

nn

)
+ Cggnn . (4.35)

The strategy to determine these contributions is then the same as in the stable case (see Sec. 3.4.1
and use Eq. (4.33)) which results in the following expressions for the different parts of Cnn (up to
O(m3∆/Q4) corrections):

C11
nn =

3

2

(
mk̂−1
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+
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2
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+ 2
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Q

)
,

2C12
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3

2

(
2
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− 8

m4

Q4
+
mk̂−1
Q2

+
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Q2
+
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+
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Q
− 2
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)
,

2C1g
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3

2
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(
mk̂+

i
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+
mk̂−i
Q2
− 2

m(~n · ~̂k⊥i )
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(
mk̂+
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Q2
+
mk̂−i
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+ 2
m(~n · ~̂k⊥i )

Q

)
,

Cggnn = 0 , (4.36)

where xn is now the set of n-ultracollinear gluons. Using the analogous result from the stable situation
(just the nn-contribution to the threshold) which is given by

Cstable
nn = 3

m2

Q2

(
1− m2

Q2

)
, (4.37)

the nn-contribution to the M -scheme C-parameter for the unstable situation is given by

Cunstable
nn = 3

(
m2

Q2
− 4

m4

Q4
+
∑
i∈n

m
(
k̂+
i + k̂−i

)
Q2

)
+O(m3∆/Q4)

= Cstable
nn − 9

m4

Q4
+O(m3∆/Q4) . (4.38)

The analogous calculation for Cunstable
nn and Cunstable

nn gives

Cunstable
nn = Cstable

nn − 9
m4

Q4
+O(m3∆/Q4) , (4.39)

2Cunstable
nn = 2Cstable

nn − 18
m4

Q4
+O(m3∆/Q4) . (4.40)
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All other Cunstable
ab contributions coincide with the stable results. For this very simple case the M -

scheme C-parameter measurement in the dijet limit and with bHQET power counting is therefore
given by the stable measurement plus an additional mass dependent shift. The stable measurement
is given by (up to O(m3∆/Q4) corrections)

CM,stable = 12
m2

Q2

(
1− m2

Q2

)
+
m

Q

∑
i∈n

k+
i

Q
+
m

Q

∑
i∈n

k−i
Q

+
∑
i∈s

k+
i k
−
i

k+
i + k−i

, (4.41)

and the final result for the unstable M -scheme C parameter measurement with this simple decay
configuration reads

CM,unstable
(4),ml,π/2 = CM,stable − 36

m4

Q4
+O(m3∆/Q4) . (4.42)

where the subscripts indicate the decay configuration of four massless particles with a specified decay
angle of π/2 in the (anti-)top quark rest frame. One thing which immediately stands out is the fact
that the involved shift is parametrically of order m4/Q4 which in the literature was omitted so far
(also see Sec. 3.3). Furthermore it turns out (see Sec. 5.2) that considering this configuration which
is prototypical for collinear decay events gives a good parametrization of the M -scheme C-parameter
peak position CM,peak when considering the contribution where no radiation is present (“norad”,
unstable tree level configuration) which is given by

CMpeak ≡ CM,norad
(4),ml,π/2 = 12

m2

Q2

(
1− 4

m2

Q2

)
. (4.43)

More Realistic Case: θ̂q1 , θ̂q2 ∈ [0, π] (alternatively n3, n
′
3 ∈ [0, 1])

To cover the more realistic case of the top quark decaying into massless particles but with an arbitrary
decay axis it is sensible to automatize the presented calculation7 to some extent using computer
algebra programs (in this case Mathematica [112]). Also in this case the collinear contributions
involving gluons do not receive any correction when compared to the stable case. It turns out that
the remaining ultracollinear contributions Cunstable

cc (c for collinear, i.e. either n or n) are closely
related to the contributions from the situation of an unstable heavy quark where no radiation is
present Cnorad

cc (unstable tree level configuration which means that the residual momentum is zero
k̂i = 0 for i ∈ {1, 2, 3, 4}).

Following the same procedure as before the different contributions to Cunstable
cc are then given by

(again up to O(m3∆/Q4) corrections)

Cttnn − Ctt,norad
nn = 3

m

Q

(
k−1 + k+

1 + k−2 + k−2
Q

)
, (4.44)

C t̄t̄nn − C t̄t̄,norad
nn = 3

m

Q

(
k−3 + k+

3 + k−4 + k−4
Q

)
, (4.45)

2Ctt̄nn − 2Ctt̄,norad
nn = 3

m

Q

4∑
i=1

(
k−i + k+

i

Q

)
. (4.46)

Finally putting all expressions which contribute to Eq. (4.32) together, it is straightforward to ar-
rive at the final expression for the unstable M -scheme C parameter measurement which is valid

7This was done by implementing the momenta as given before and expanding the expressions of interest for small

y = m2

Q2 and z = ∆
Q

separately. Then terms with arbitrary high orders only in y were kept while terms suppressed w.r.t.
terms which scale like

√
y z are omitted.
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for four massless particles in the final state and arbitrary decay angles. Using the result for the
stable measurement result CM,stable which is given in Eq. (4.41) and the stable threshold position

CMmin = 12m
2

Q2

(
1− m2

Q2

)
the obtained result can be written as follows:

CM,unstable
(4),ml = (CM,stable − CMmin) + CM,norad

(4),ml +O(m3∆/Q4) . (4.47)

Here the subscripts again indicate that the final state consists of four massless particles. Comparing
this result to Eq. (4.42) we find a very similar situation: The unstable measurement result is given
by the full result for the stable situation (including ultracollinear radiation) shifted to zero plus the
unstable tree level contribution (no radiation “norad”) which parametrizes the full decay kinematics.

4.3.2 Six (Massive) Particles in the Final State

Finally let us cover the case of the previously discussed six particle final states Yj . To investigate
what happens we setup a decay chain with t → W+b → ff ′b where we keep the W and b invariant
mass nonzero. Using the same notation as for Eq. (4.35) the contributions to Cunstable

cc can then be
written as follows:

Cttnn = Cffnn + Cf
′f ′

nn + Cbbnn + 2Cff
′

nn + 2Cfbnn + 2Cf
′b

nn , (4.48)

Ctt̄nn = Cff̄nn + Cf
′f̄ ′

nn + Cbb̄nn + Cff̄
′

nn + Cf
′f̄

nn + Cfb̄nn + Cbf̄nn + Cf
′b̄

nn + Cb
′f̄
nn , (4.49)

and analogous for all others. Implementing the procedure which was used in the case of four massless
final state particles can now be generalized to other event shapes like M -scheme thrust, C-parameter,
Heavy Jet Mass and P -scheme angularities and a final state consisting of six (possibly) massive
particles. Using the same automatized setup, the outcome, which holds for all the investigated cases,
is consistent with what we found in Eq. (4.47) and is given by

eunstable
(6) =

(
estable − emin

)
+ enorad

(6) +O(m3∆/Q4) , (4.50)

where estable is the result for the measurement of the stable situation, emin is the corresponding
stable threshold (explicit expressions can be found in Tab. 3.1) and enorad

(6) is the measurement for the
unstable tree level configuration. In conclusion the general situation confirms what we found for the
simpler cases before: The full unstable event shape measurement is given by the measurement for
the stable situation shifted to zero plus the contribution from the unstable tree level (no radiation
“norad”) measurement which parametrizes the full decay kinematics.

4.4 Cross Section Calculation with Unstable Heavy Quarks

Leading Order Cross Section

Using the results from Sec. 4.2 and Sec. 4.3 we can now write down a formula for the e+e− →
tt̄→W+bW−b̄→ bf̄f ′ b̄f ′′f̄ ′′′ cross section at leading order which should be valid in the peak region
where the top quarks are produced close to resonance and also where the collinear-soft power counting
used in the previous chapter is applicable. For this formula we use the fact that the leading mass
dependence of the stable cross section is contained in the on-shell threshold position emin, hence in
the NWA the stable cross section is independent of s1 and s2. Putting everything together we then
arrive at

dσ

de
=

[
1 +O

(
Γt
mt

)] ∫
dē

dσstable

de

(
e− ē

)
F decay

(
ē
)
, (4.51)
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with the stable cross section given by (shifted to a threshold of 0 if q1 and q2 are on-shell)

dσstable

de
(e) =

∫
dΠ2(~q1, ~q2)S0(~q1, ~q2) δ

(
e− estable

(
~q1, ~q2

)
+ emin

)
, (4.52)

and the so called decay function defined as

Fdecay(e) =

∫
ds1 fBW (s1,mt,Γt)

∫
ds2 fBW (s2,mt,Γt)

×
∫

d(cos θ̂q1)

2

dϕ̂q1
2π

∫
d(cos θ̂r1)

2

dϕ̂r1
2π

∫
d(cos θ̂q2)

2

dϕ̂q2
2π

(4.53)

×
∫

d(cos θ̂r2)

2

dϕ̂r2
2π

δ
(
e− enorad

(
s1, s2, {θ̂i, ϕ̂i}

))
.

This result shows that for the peak region and within the uncertainties introduced by the assumptions
made in the derivation, the cross section can be expressed as a convolution of the stable cross section
and what we called decay function which parametrizes the decay kinematics and which was already
briefly discussed in Ref. [55]. The decay function as defined in Eq. (4.53) can easily be extracted from
a very basic MC integration program or any of the available multi-purpose numerical FO codes (also
based on a MC integration). Details on the extraction of the decay function are given in Sec. 5.2.

Adding Radiation

Next we want to consider higher order QCD corrections. It is clear that with the same simplifications
as used before one can keep the factorization of top pair production and decay shown in Eq. (4.51)
intact. In the discussed partial narrow width approximation initially an off-shell t̄t quark pair is
produced which radiates until both particles are on-shell which ends the production stage. During
the subsequent decay stage the (anti-)top quark decays into a W -boson and a b-quark while additional
radiation can come both from the top or bottom quark. The interpretation of this would then be
a very long lived top quark which radiates and long after that, the decay happens where the decay
products and additional radiation is produced.

For the radiation associated with the top pair production cross section one can again use effective
field theory methods to resum large logarithms as for the usual stable case. The decay function
as it is defined in Eq. (4.53) would then need to be generalized to higher orders which should be
straightforward following the presented recipe.
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Chapter 5

Numerical Investigations

5.1 Comparing Thrust: M-Scheme vs. P/E-Scheme

One area of application for high precision event shape calculations are αs-fits using data from e+e−

annihilation experiments. One such analysis is discussed in Ref. [100] where P -scheme thrust data with
Q ≥ 35 GeV from the TASSO, AMY, JADE, SLC, L3, DELPHI, OPAL and ALEPH experiments1

was used to extract a highly precise value for αs(mZ).

To estimate mass effects of bottom quarks which become more important at low energies the calcula-
tion for M -scheme thrust from Ref. [7,8] was used. This is done because the initially produced (close
to) on-shell heavy quarks hadronize and subsequently the heavy hadrons decay into light hadrons
which are measured in the detector. It is easy to check that for the situation of massless final state
particles which originate from an intermediate heavy particle the P -scheme thrust distribution gets
a non-zero threshold location which is exactly situated at the M -scheme thrust threshold. When a
heavy on-shell particle decays into massless particles the angle between the trajectories of the decay
products will be non-zero, which gives rise to the mentioned shift of the threshold position in compar-
ison with the stable case. To account for this effect, which can also be seen experimentally in flavor
tagged analyses [113–115], the approximate treatment of using M -scheme thrust with the massless
hadronization function is used.

Another approach which is cleaner in terms of factorization between partonic and non-perturbative
contributions would be to calculate the partonic cross section using the jet function for P -scheme
thrust from Sec. 3.5.4 and include effects from the heavy hadron decay in the non-perturbative shape
function, which would now induce the shift as well as potentially other decay related non-perturbative
effects. This would of course mean that the shape function which includes the effects from the decay
of the B-hadrons would need to be fitted to data from tagged analyses which is beyond the scope of
this work.

Nevertheless it is interesting to compare the predictions for the singular partonic M - and P -scheme
thrust cross section for e+e− → b b̄. As discussed, the shift of the P -scheme cross section to the M -
scheme threshold is part of the corresponding hadronization function but to improve the comparability
we shift the P -scheme cross section to the same threshold. Using the massive M -scheme thrust
profiles, discussed in Sec. 3.8, for both cross section calculations (for P -scheme for the shifted case)
the obtained result for this comparison is shown in Fig. 5.1. Furthermore also the massless singular
thrust distribution with massless profiles shifted to the M -scheme threshold is shown for comparison.

Analyzing the shown plots one can see that for most of the event shape range the two schemes lead

1References can be found in [100].
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Figure 5.1: Comparison plots (left) for the M - and shifted P -scheme singular thrust cross section with
mb(mb) = 4.2 GeV as well as the shifted massless singular thrust distribution at a center of mass en-
ergy of Q = 91.187 GeV (upper) and 35 GeV (lower). Furthermore the relative difference (right) with
respect to the M -scheme cross section is shown for both energies. Also the approximate peak position
(black dotted) and the O(αs) partonic end point for M -sheme thrust τMmax =

(
5− 4

√
1− 3m2/Q2

)
/3

(black dashed) are plotted.

to very similar results. Ignoring the region of small cross section values left of the peak, the biggest
difference can be seen close to the peak position which still does not exceed 5% relative difference
(with respect to the M -scheme thrust).

Using the assumption that the non-singular cross-section is small in the region where the singular cross
section is sizable (this is true for the massless case - see Fig. 7 in Ref. [100]) and that hadronization
differences are small with the exception of the discussed threshold shift, we can conclude that indeed
using the M -scheme thrust distribution to approximate the P -scheme cross section is justified and
that the additional uncertainty is of order five percent.

5.2 Decay Functions

In Chap. 4 event shape distributions for boosted unstable top quark pair production were discussed.
It turns out that so-called non-clustering event shapes are sensitive to the decay of the top quark
beyond what is captured by including width effects via the convolution with a Breit-Wigner function.
After this qualitative observation the decay function framework was developed in which the unstable
cross section is given by a convolution of the stable cross section and a so-called decay function which
parametrizes the exact decay configuration. The aim of this section is to develop the notion of the
decay function further and to extract the exact form from numerical fixed-order calculations.
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5.2.1 Theoretical Discussion

As we have seen in Sec. 4.1.2 the peak position of the event shape distribution epeak(y ≡ m2/Q2)
for non-clustering event shapes does not necessarily coincides with the tree level threshold position
emin. Using the assumption that the leading heavy quark mass dependence of the unstable tree level
measurement (no radiation “norad”) in the peak region is contained in the peak position epeak it is
possible to further factorize the decay function as follows:

Fdecay(e) =

∫
d(cos θ̂q1)

2

dϕ̂q1
2π

∫
d(cos θ̂r1)

2

dϕ̂r1
2π

∫
d(cos θ̂q2)

2

dϕ̂q2
2π

×
∫

d(cos θ̂r2)

2

dϕ̂r2
2π

∫
dê δ

(
e− enorad

(
m2
t ,m

2
t , {θ̂i, ϕ̂i}

)
+ epeak(mt

Q2 )− ê
)

(5.1)

×
∫

ds1 ds2 fBW (s1,mt,Γt) fBW (s2,mt,Γt) δ
(
ê− epeak( s1

Q2 )/2− epeak( s2
Q2 )/2

)
,

where we used that the top and anti-top both contribute half of the peak position. At this point
it is easy to see that there is no real dependence on epeak. Choosing the appropriate expression
which captures the leading mass dependence of the distribution will optimize how well the above
factorization works.

In a next step we exploit the fact that in the peak region
(
s1/2 −m2

t

)
/Q2 ≡ a1/2 will be small and

therefore we can write

ê− epeak( s1
Q2 )/2− epeak( s2

Q2 )/2 = ê− epeak(
m2
t

Q2 )− e′peak(
m2
t

Q2 ) (a1 + a2)/2 +O
(
a1a2, a

2
1, a

2
2

)
(5.2)

which by using the substitutions a = a1 + a2 and ẽ = ê − epeak(m2
t /Q

2) gives a single Breit-Wigner
with width 2 Γt convoluted with δ

(
ẽ− e′peak(m2

t /Q
2) a/2

)
= 2 δ

(
a− 2ẽ/e′peak(m2

t /Q
2)
)
/e′peak(m2

t /Q
2).

Using this, the decay function factorizes further and can be written in the following way:

F̂decay(e) =

∫
d(cos θ̂q1)

2

dϕ̂q1
2π

∫
d(cos θ̂r1)

2
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∫
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∫
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)

(5.3)

=

∫
dẽ FNWA

decay (e− ẽ) fBW
(
Q2 ẽ,mt,Γt e

′
peak(

m2
t

Q2 )
)
.

where FNWA
decay denotes the original decay function in the narrow width approximation (NWA).

In comparison with Eq. (4.4) we find that even for event shapes with the clustering property Eq. (5.3)
captures subleading Breit-Wigner effects not present in Eq. (4.4). For the originally discussed case of
jet masses the two coincide. As a representative example let us consider top quark pair production
with mt = 173 GeV and Q = 700 GeV for the case of M -scheme thrust and C-parameter where we
choose

τMpeak = 1−
√

1− 4
m2

Q2
, CMpeak = 12

m2

Q2

(
1− 4

m2

Q2

)
. (5.4)

For thrust epeak is simply set to the stable threshold position due to the realized clustering property
and for C-parameter we take the result from Eq. (4.43) which is related to the prototypical collinear
decay configuration studied in Sec. 4.3.1. Using this we find a correction to the width due to the
subleading Breit-Wigner effects of 15% for thrust and −12% for C-parameter.
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Figure 5.2: Comparison plots for the NWA decay function shiftet by epeak(m
2

Q2 ) (dashed black for

mt = 173 GeV) for M -scheme thrust and C-parameter for a center of mass energy Q = 700 GeV.
The normalization factor N is chosen in such a way so that the decay function is normalized.

5.2.2 Extracting the Decay Function from Simulation

Leading Order

The decay function is given in Eq. (4.53) which involves the collinear measurement of the tree level
process including heavy quark decay denoted by enorad (alternatively no-radiation measurement) which
in general depends on the (anti-)top invariant mass s1(s2). Such a function can easily be extracted
from a MC simulation2, e.g. PYTHIA 8.2, where the parton shower and hadronization is turned off.
Using data from a high-statistics run with 107 events at a center of mass energy Q = 700 GeV and
with different top quark mass one can straightforwardly extract the decay functions of interest. As
an example the full decay function for M -scheme thrust and C-parameter are shown in Fig. 5.3.

Following the discussion from the previous subsection it is interesting to check how well the additional
factorization of Eq. (5.3) works. For that a precise extraction of the Decay function in the NWA is
needed. The result for M -scheme thrust and C-parameter which is shifted by the appropriate epeak

(again we use the choice of Eq. (5.4)) for a c.o.m. energy Q = 700 GeV and a top quark mass of
mt = {170, 173, 176} GeV is shown in Fig. 5.2.

One thing which immediately becomes clear when looking at Fig. 5.2 is that close to the peak position
for thrust indeed the dependence on the exact mass value seems to be quite small (when shifted
correctly). For C-parameter the central mass value still has some effect on the width of the distribution
but it is much smaller than the effect of the shift and it is clear that the choice for CMpeak works very
well.

Next let us consider the example of the full decay function for mt = 170 GeV and Γt = 1.4 GeV at a
c.o.m. energy Q = 700 GeV and compare it with the mt = 170 GeV NWA decay function convoluted

with the Breit-Wigner with modified width of Γ = Γt e
′
peak(

m2
t

Q2 ) (according to Eq. (5.3)). The result
of this comparison for M -scheme thrust and C-parameter is shown in Fig. 5.3 which shows that the
decay function factorization of Eq. (5.3) works very well for both investigated event shapes.

As we have seen in Fig. 5.2 the dependence on the exact mass value beyond shifting the distribution
to the appropriate value of epeak is quite small. It is now interesting to check if it is possible to

2Caveat: Due to the setup of the decay chain, in some MC generators e.g. PYTHIA, spin correlations are not fully
considered. Investigations carried out with WHIZARD show no noticable differences for the observables presented here.
Nevertheless for the case of light jet mass (LJM) the differences were severe which is why in general one should consider
this when looking at new observables.
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Figure 5.3: Comparison plot for M -scheme thrust (upper row) and C-parameter (lower row) with
mt = 170 GeV and c.o.m. energy Q = 700 GeV plotted as an overview (left) and just for the peak

region (right) including epeak(m
2

Q2 ) (dashed black for mt = 170 GeV). The plots contain the full decay

function (green), the NWA decay function (orange) and the convolution of the same NWA decay

function with the modified width Breit-Wigner with Γ = Γt e
′
peak(

m2
t

Q2 ) (blue). The normalization
factor N is chosen in such a way so that the whole distribution is normalized.

use a NWA decay function for a generic mass (here we take mt = 173 GeV) which is shifted to the
appropriate epeak as a replacement for the NWA decay functions for other mass values. In order to
investigate this we again compare the full decay function for mt = 170 GeV and Γt = 1.4 GeV at a
c.o.m. energy Q = 700 GeV with the shifted mt = 173 GeV NWA decay function convoluted with the
Breit-Wigner with modified width. The result is then shown in Fig. (5.4) and we find that the use of
a generic mass NWA decay function works very well for thrust. In the case of C-parameter the mass
dependence of the NWA decay function width which was seen in Fig. 5.2 is also visible for this case
but overall we find that this still leads to a good approximation.

Overall we conclude that the additional decay function factorization of Eq. (5.3) works very well for
both investigated event shapes. Moreover, we find that for thrust any correctly shifted NWA decay
function is suitable. For the case of C-parameter using the correct NWA decay function seems to be
the better choice.

Higher Order

To achieve a full next-to-leading order cross section calculation in principle also a NLO decay function
is needed in addition to the NLO stable event shape distribution. In principle this can be extracted
from any multi-purpose fixed order Monte Carlo generator which fully implements the factorization
between production and and decay and describes the decay at NLO-QCD. On the decay side the
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Figure 5.4: Comparison plot for M -scheme C-parameter with mt = 170 GeV and c.o.m. energy
Q = 700 GeV plotted as an overview (left) and just for the peak region (right) including epeak(m

2

Q2 )

(dashed black for mt = 170 GeV). The plots contain the full decay function (green), the shifted NWA
decay function (orange) and the convolution of the same shifted NWA decay function with modified

width Breit-Wigner with Γ = Γt e
′
peak(

m2
t

Q2 ) (blue). As the input mass for the shifted NWA decay
function mt = 173 GeV is used. The normalization factor N is chosen in such a way so that the
whole distribution is normalized.

additional gluon can be radiated off the final state (b)b quark or originate from the “initial” state on-
shell top which also involves non-trivial IR cancellations between the final and initial state radiation.
This is discussed in more detail in Ref. [116] and should be correctly treated in the “SM threshold”
mode of WHIZARD (only for the case of e+e− → tt̄ → W+bW−b̄ - with a form factor of 1). Unfor-
tunately extracting the decay function at NLO was not yet successful and with the used version of
WHIZARD (2.5.0) does lead to numerical inconsistencies. This issue was pointed out to the authors of
the software and will hopefully be resolved in the future which will then allow to extract a full NLO
decay function.

It is nevertheless interesting to investigate the difference compared to the LO result of the previous
section when running PYTHIA with parton shower turned on (still without hadronization) and im-
plementing a veto on events where radiation off the top and anti-top quark happens. We note that,
vetoing events with (anti-)top radiation is not gauge invariant and in principle also vetoes radiation
off the top which normally would contribute to the top quark decay at NLO. Analyzing this for the
appropriate event shape should nevertheless give a partial higher order decay function. For this we
generate data with mt = 173 GeV, a c.o.m. energy of Q = 700 GeV and 2 × 107 events and apply
the appropriate veto. The result and comparison to the LO decay function for M -scheme thrust and
C-parameter can be seen in Fig. 5.5.

It can clearly be seen that adding radiation off the (b)b quark which is produced in the parton shower
step of the MC event generator does only slightly modify the extracted NWA decay function. For
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Figure 5.5: Comparison plots for the NWA decay function with mt = 173 GeV and a center of mass
energy Q = 700 GeV for M -scheme thrust and C-parameter. The plots show the NWA decay function
at leading order (orange) and with additional parton shower radiation off the (b)b quark (blue) and

for comparison epeak(m
2

Q2 ) (dashed black for mt = 173 GeV). The normalization factor N is chosen in
such a way so that the decay function is normalized.

thrust less events are part of the delta function peak and the structure left of the peak gets smeared
out. For C-parameter a small shift of the peak position to the left and a slightly smaller overall width
is visible.

5.2.3 Testing Decay Factorization for PYTHIA at Parton Level

In this subsection the aim is to check how the derived factorization of the cross section into stable
cross section, decay function and Breit Wigner function with modified width works at parton shower
level. Using the same setup as before but now with parton shower turned on gives the result for
M -scheme thrust and C-parameter which can be seen in Fig. 5.6.

From the shown plots it is quite clear that the discussed factorization also works well at parton shower
level. One can observe that for the case of thrust the decay function which includes the radiation
off the (b)b quark works significantly better in describing the peak position and width. For the C-
parameter one can conclude that adding radiation off the top decay products has less influence on
the already much wider peak.

The fact that including radiation off the bottom quarks leads to a much better description for thrust
could hint to either of the following possibilities: (1) The radiation off the top quark which is part
of the top decay at NLO does not contribute much to the overall distribution. The decay function
with radiation off the bottom then leads to an improved overall result when compared with the LO
decay function. (2) For some technical reason all gluons which in the event record are labeled as
coming from the top quark (events which include any such gluon are vetoed) are in fact only the ones
which are part of the production step of the event. Gluons which originate from the top but belong
to the decay stage are marked as “coming from the b” in the event record and are therefore correctly
included in the extracted higher order decay function which then leads to an improved overall result
when compared with the LO decay function.

5.3 Unstable M-scheme C-parameter and PYTHIA Comparison

In this subsection we want to present a first qualitative comparison of M -scheme C-parameter (here
just C-parameter) in the peak region between the resummed full unstable singular cross section
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Figure 5.6: Comparison plot for the PYTHIA 8 parton level cross section with mt = 173 GeV,
Γt = 1.4 GeV and a c.o.m. energy Q = 700 GeV for M -scheme thrust and C-parameter. The plots
show the full unstable cross section result (orange), the stable cross section convoluted with the
LO decay function (green) and the same stable cross section convoluted both with the NWA decay
function including radiation off the (b)b quark and with the Breit-Wigner function with modified

width Γ = Γt e
′
peak(

m2
t

Q2 ) (blue). For comparison epeak(m
2

Q2 ) is plotted for mt = 173 GeV (dashed black)

as well as for mt = 173.0± 0.2 GeV for thrust and mt = 173± 1 GeV for C-parameter (gray dotted).
The normalization factor N for the overview plot (left) is chosen in such a way so that the distribution
is normalized and for the peak region plot (right) so that the maximum of the distribution equals 1.

(NNLL+NLO) and PYTHIA 8.2 at hadron level. The aim of this comparison is to study how well the
discussed description works when compared to the case of 2-jettiness (M -scheme thrust - here just
thrust) which was extensively studied in the context of Ref. [6,9]. Furthermore we want to get a first
qualitative impression on the general suitability and expected precision for using the full unstable
C-parameter for Monte Carlo top quark mass calibrations as explained in Sec. 2.4.

In the following we will show plots involving uncertainty bands representing perturbative uncertainties.
These bands are obtained by choosing 100 random sets of profile function parameters (flat random
distribution in the specified range) and the band then shows the envelope of all of these cross section
predictions.

5.3.1 Profile Functions and Convergence

To get meaningful predictions for the resummed singular C-parameter cross section in the peak region
the profile functions need to be checked and optimized first. In Sec. 3.8 a general discussion concerning
the profile functions and their generalization to the massive and stable case was presented. The default
profile function parameters for the unstable case of thrust were optimized in Ref. [9] and the final
parameter choices are given in Tab. 3.4. Comparing the convergence of the resummed result for the
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Figure 5.7: Convergence plots for M -scheme thrust with mt(mt) = 160 GeV (converted to the
MSR mass scheme which is used for the calculation), αs(mZ) = 0.118 and different c.o.m. energies
Q for the stable (upper row) and the unstable (lower row) case with Γt = 1.4 GeV. Furthermore the
approximate stable peak position (black dashed) is plotted for comparison between the two rows. The
normalization factor N is chosen in such a way so that the distribution is normalized. For additional
profile function information see Sec. 3.8.

e τ C

default default optimized

µ0 3.00 3.00 1.7

R0 2.25 2.25 1.275

abs 0 1 1

Table 5.1: Subset of default profile function parameter choices for the unstable case of M -scheme
thrust and C-parameter. Note that these parameters have no variation. For C-parameter the opti-
mized choice leads to an improvement in peak position stability with respect to the default choice
which is inspired by the thrust case. For a complete list of the other default profile function parameters
and their variation see Tab. 3.4
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Figure 5.8: Convergence plots for M -scheme C-parameter with mt(mt) = 160 GeV, αs(mZ) = 0.118
and different c.o.m. energies Q for the stable (upper row) and the unstable case with default profiles
(middle row) and the unstable case with optimized profiles (lower row), both with Γt = 1.4 GeV.
Furthermore the approximate stable peak position (black dashed) is plotted for comparison between
the rows. The normalization factorN is chosen in such a way so that the full distribution is normalized.
For additional profile function information see Sec. 3.8.

stable and unstable without decay function case at next-to-leading (NLL) vs. next-to-next-to-leading
order (NNLL) for the case of thrust is shown in Fig. 5.7 for different c.o.m. energies. The default
profile function parameters which are different with respect to the stable case are summarized in
Tab. 5.1.

From the shown plots a good convergence of the thrust cross section predictions can be seen when
going from NLL to NNLL. It is clearly visible that the width of the uncertainty band decreases, the
peak position is stable and also the peak width shows nice stability at all the center of mass energies
which were investigated.

In case of the unstable top C-parameter we start with the generalization of the massless profile
functions for the massive stable case (discussed in Sec. 3.8). Next we setup the unstable C-parameter
profiles in analogy to the case of thrust. The result of this first try with the default parameter choice
summarized in Tab. 5.1, is shown in Fig. 5.8. While generating those plots, it turns out that for the
unstable case of C-parameter it is necessary to keep the absorption of nonsingular distributions into
the singular cross section turned on, which will therefore be used as the default.
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From the shown plots for the default profile function parameter choices (top two rows) we see the
following: For the stable case one finds reasonably good convergence in the peak region. The width
of the band decreases while the peak position shows nice stability. The peak width is not as stable
as in the case of thrust but the changes are small and consistent for the investigated energies. On
the other hand the unstable case without decay function and with default profile parameter choice
is problematic. Although the width of the band still decreases, the peak position becomes unstable
and also a shift of the position with respect to the stable case is visible which is not present for the
thrust case.

To improve this situation we next take an optimized set of profile function parameters, also see
Tab. 5.1. The results for this choice is also shown in Fig. 5.8 (lower row) where a significant im-
provement with respect to the default case is visible. In this case the width of the uncertainty band
decreases and also the peak positions show good stability. The width of the peak behaves consistently
with the stable case and more importantly there is no shift in the peak position with respect to the
stable case. Overall we find a qualitatively similar result as for the case of thrust when using the
optimized profile parameters for C-parameter.

5.3.2 Comparison with PYTHIA

In this subsection we now take the singular unstable hadron level prediction at NNLL for the peak
region of thrust and C-parameter and compare it with pseudo data obtained from PYTHIA 8.2. The
numerical value for the top quark mass and the first shape function moment which leads to the best
fitting prediction (in a wide range of c.o.m. energies) for the thrust peak region was determined in the
MC top quark mass calibration of Ref. [6]. Using the gap input value of ∆(R = 2 GeV, µ = 2 GeV) =
0.1 GeV and the top quark mass parameter input for the simulation of mMC

t = 173 GeV the following
results were obtained for the mass and first moment of the shape function:

mMSR
t (R = 1 GeV) = (172.82± 0.22) GeV , (5.5)

Ωτ,PYTHIA
1 = (0.84± 0.16) GeV . (5.6)

This corresponds to a MS mass of mt(mt) = 162.95 GeV and for the most simple shape function i.e.
{c0 = 1, ci 6=0 = 0} the only free model parameter is given by ξ = 0.74 GeV.

Next we generate theory predictions for the unstable thrust cross section (no decay function, just
Breit-Wigner, as in Ref. [6]) with a c.o.m. energy of Q = 700 GeV and Q = 1000 GeV, the above input
parameters, a top width of Γt = 1.4 GeV and a ±1 GeV variation for the top mass. These predictions
are then compared to PYTHIA pseudo data. The obtained result is then shown in Fig. 5.9. From this
plot one can see that regarding the peak position and within the perturbative uncertainties the input
parameters indeed lead to a good fit with the PYTHIA pseudo data. Furthermore for thrust a change
of ±1 GeV in the input mass leads to very different peak positions (in particular for Q = 700 GeV)
which made it possible to carry out a MC top quark mass calibration with a calibration uncertainty
of 220 MeV [6].

After this check for thrust one can take the next step and look at the analogous plots for C-parameter
which is shown in Fig. 5.10. Due to the lower expected mass sensitivity for the full unstable
C-parameter we take a ±3 GeV variation for the input value of the top quark mass. Comparing
the unstable result without decay function (dashed) with the pseudo data obtained from PYTHIA it
becomes clear that the discussed convolution with the decay function (see Sec. 4.4) is needed.

To achieve that, we follow Eqs. (4.51) and (5.3) and convolute each of the 100 inclusive unstable
cross section predictions (which make up the perturbative uncertainty band and which already con-
tain the convolution with the Breit-Wigner function) with the respective NWA decay function (with
mt = {170, 173, 176} GeV respectively).
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Figure 5.9: Comparison for M -scheme thrust between PYTHIA data (purple crosses) with mMC
t =

173 GeV and unstable theory output without decay function (solid) with different mass values
mt(mt) = (162.95 + ∆m) GeV at NNLL. Furthermore a c.o.m. energy of Q = 700 GeV and
Q = 1000 GeV as well as a top width of Γt = 1.4 GeV was used. The normalization factor N
for the theory curves is chosen in such a way so that the full cross section is normalized. The PYTHIA

cross section was rescaled so that the maximum has the same height as the maximum of the theory
curve with intermediate mass value.
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Figure 5.10: Comparison for M -scheme C-parameter between PYTHIA data (purple crosses)
with mMC

t = 173 GeV and unstable theory output (solid) with different mass values
mt(mt) = (162.95 + ∆m) GeV at NNLL. Furthermore a c.o.m. energy of Q = 700 GeV and
Q = 1000 GeV as well as a top width of Γt = 1.4 GeV was used. The normalization factor N
for the theory curves is chosen in such a way so that the full cross section is normalized. For the
unstable cross section without decay function (dashed) the analogous normalization is 1/4 and 1/2
for Q = 700 GeV and Q = 1000 GeV, respectively, to fit the plot range. The PYTHIA cross section
was rescaled so that the maximum has the same height as the maximum of the theory curve with
intermediate mass value.
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Carrying out the described procedure it is possible to include the previously neglected but important
decay effects into our theoretical cross section predictions and obtain an uncertainty band for the
full unstable case of C-parameter which is also shown in Fig. 5.10 (solid). Comparing this with the
PYTHIA pseudo data one can see a significant improvement with respect to the unstable case without
decay function where the central mass value leads to a good agreement for the peak position and also
the shape of the peak.

Analyzing the shown plots we find that the convolution with the decay function will decrease the mass
sensitivity with respect to the stable case because it causes the peak to get much wider. Moreover,
a very interesting effect is visible when comparing the two different energies of Q = 700 GeV and
Q = 1000 GeV. We note that at higher energies the effect of reduced mass sensitivity due to the
decay function convolution is suppressed and also that this suppression is stronger than the reduction
of mass sensitivity in the stable distribution due to the higher center-of-mass energy. Overall this
effectively causes the mass sensitivity to be higher for this special case of an intermediately high energy
of Q = 1000 GeV. At even higher values for Q we anticipate that the decreased mass sensitivity of
the stable distribution will eventually fully compensate this effect leading to an overall reduced mass
sensitivity with respect to lower energies, as in the case of thrust.

In conclusion we expect that with the discussed theory setup it is possible to use the M -scheme C-
parameter to carry out a sensible MC top quark mass calibration similar to the one in Ref. [6]. From
the presented “proof of concept” no inconsistencies were visible and a compatible calibration seems
feasible. Based on the shown plots the associated calibration uncertainty is expected to be larger than
for thrust and we estimate it to be around 1− 2 GeV (compared to 200 MeV for 2-jettiness/thrust).
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Appendix A

Evolution

A.1 General

The Beta function [117,118] is given by the following:

µ
dαs
dµ

(µ) = β[αs(µ)] = −α
2
s(µ)

2π

∑
i=0

βi

(
αs
4π

)i
, (A.1)

β0 =
11

3
CA −

4

3
TR nf , (A.2)

β1 =
34

3
C2
A − 4CF TR nf −

20

3
CA TR nf , (A.3)

β2 =
2857

54
C3
A + TR nf

(
2C2

F −
205

9
CF CA −

1415

27
C2
A

)
+ T 2

R n
2
f

(
44

9
CF +

158

27
CA

)
. (A.4)

Furthermore the 4- and 5-loop coefficient β3 [119, 120] and β4 [21] are also known but omitted here
to save space.

The QCD cusp anomalous dimension [121–124] is given by:

Γcusp[αs] =
∑
i=0

Γi

(
αs
4π

)
, (A.5)

Γ0 = 4 , (A.6)

Γ1 = 4CA

(
67

9
− π2

3

)
, (A.7)

Γ2 = 4C2
A

(
245

6
− 134π2

27
+

11π4

45
+

22

3
ζ3

)
+ 32CA TR nf

(
− 209

108
+

5π2

27
− 7

3
ζ3

)
+ 4CF TR nf

(
16ζ3 −

55

3

)
− 64

27
T 2
R n

2
f (A.8)
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A.2 Cross Section Factors

A.2.1 Evolution Kernels

ωN3LL(µ, µ0,Γ, j) =
2

j

∫ αs(µ)

αs(µ0)
dα

Γ[α]

β[α]

=
Γ0

β0 j

[
− ln(r) +

αs(µ0)

4π

(
β1

β0
− Γ1

Γ0

)
(r − 1) +

1

2

(
αs(µ0)

4π

)2(β2

β0
+
β1Γ1

β0Γ0
− β2

1

β2
0

− Γ2

Γ0

)
(r2 − 1)

+
1

3

(
αs(µ0)

4π

)3(β3
1
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0
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β2
0
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β3

β0
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1Γ1

β2
0Γ0

+
β2Γ1

β0Γ0
+
β1Γ2

β0Γ0
− Γ3

Γ0

)
(r3 − 1)

]
, (A.9)

KN2LL(µ, µ0,Γ, γ)− ωN2LL(µ, µ0, γ, 2) = 2

∫ αs(µ)

αs(µ0)
dα

Γ[α]

β[α]

∫ α

αs(µ0)

dα′

β[α′]

=
Γ0

2β2
0

[
4π

αs(µ0)

(
1

r
+ ln(r)− 1

)
+

(
Γ1

Γ0
− β1

β0

)[
r − 1− ln(r)

]
− β1

2β0
ln2(r)

+
αs(µ0)
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[(
Γ1β1

Γ0β0
− β2

1

β2
0

)[
r − 1− r ln(r)

]
−B2 ln(r) +

(
Γ2

Γ0
− Γ1β1
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)
(r2 − 1)

2

+

(
Γ2

Γ0
− Γ1β1

Γ0β0

)
(1− r)

]
. (A.10)

where the B2 = β2
1/β

2
0 − β2/β0 and r = αs(µ)/αs(µ0) which depends on the 4-loop running coupling.

A.2.2 Anomalous Dimensions

For the (n` + 1) active flavor cross section factors the cusp anomalous dimension is given by

ΓH [αs] = −ΓJ [αs] = ΓS [αs] = −2 Γcusp[αs] . (A.11)

and the non-cusp anomalous dimensions up to 2-loop read [97,125]

γH,0 = −12CF (A.12)

γJ,0 = 6CF (A.13)

γS,0 = 0 (A.14)

γH,1 = −7976

27
− 136

9
π2 +
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3
ζ3 +

(
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81
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16

9
π2

)
nf , (A.15)

γJ,1 =
7220

27
+

8

3
π2 − 704

3
ζ3 −

(
968

81
+

16

27
π2

)
nf , (A.16)

γS,1 = − γH,1 − 2γJ,1 . (A.17)
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Appendix B

Bubble Chain Insertions and
Renormalons

The contribution from a massless fermion bubble inserted into the gluon propagator is given by

Π0,µν
AB (p, µ) = −iδAB(p2gµν − pµpν)

αsTFnf
π

[
2
( µ2eγE

−p2 − i0
)εΓ(ε)Γ(2− ε)2

Γ(4− 2ε)
− 1

3ε

]
= −iδAB(p2gµν − pµpν)

αsTFnf
3π

ln
µ2e

5
3

−p2 − i0 +O(ε) . (B.1)

In the next step we look at n insertions of such renormalized massless fermion bubbles into the gluon
propagator which gives us the n’th bubble chain gluon propagator. This modified propagator is given
by

Pµν,nAB (p, µ) =
−iδAB

(
p2gµν − pµpν

)
(
p2 + i0

)2 [
αs(−4

3TFnf )

4π

]n
lnn
( µ2e

5
3

−p2 − i0
)

+O(ε) . (B.2)

For Renormalon calculations the Borel transform of the sum of diagrams with insertions of all orders
of bubble chain gluon propagators is important. After naive nonabelianization i.e. 4

3TFnf → −β0

and by using the modified Borel variable u = tβ0

4π the relevant expression therefore reads

B

[
PµνAB(p, µ)

]
(u) =

∞∑
n=0

Pµν,nAB (p, µ)

n!

(
4π

αsβ0

)n+1

=
−iδAB

(
p2gµν − pµpν

)
(p2 + i0)2

(
e

5
3µ2

−p2 − i0

)u( 4π

αsβ0

)
.

(B.3)

In the above expression the last factor enters due to the fact that the propagator will be part of
some diagram which induces one additional αs. Since only the Borel transform of the full object is
of interest this additional power of αs is included into the Borel transform already at this point.
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Appendix C

Integrals for the P -scheme Angularities
Jet Function

C.1 SCET Single Quark Contribution

When calculating the single heavy quark final state contribution in Sec. 3.5.1 we encountered the
following integral which comes from virtual radiative corrections:

Ivirt(p,m) = µ̃4−d
∫

dd q

(2π)d
p− − q−

[(p− q)2 −m2 + i0][q− + i0][q2 + i0]
. (C.1)

In the next step we use that the quark is on-shell, hence pµ = (p+, p−, ~p⊥) = (m2/Q,Q, 0), the
fact that ddq = 1

4dΩd−2
tot dq− dq+ d(q2

⊥)(q2
⊥)−εθ(q2

⊥) and also the substitution x = q−/Q, y = q+/Q,
z = q2

⊥/Q
2 with q⊥ = |~q⊥|. Since nothing depends on angles between particle momenta it is easy to

carry out the solid angle integral which gives Ωd−2
tot = (2π

d−2
2 )/Γ(d−2

2 ) = 2π1−ε/Γ(1 − ε). With this
we arrive at the following expression:

Ivirt(p,m) =
(µ2/Q2eγE )ε

32π3 Γ(1− ε)

∫
dx dy dz θ(z) z−ε (1− x)

[x+ i0][x y − z + i0]
[(

m2

Q2 − y
)

(1− x)− z − m2

Q2 + i0
] . (C.2)

To solve this we carry out the y integration as a contour integral which also imposes 0 ≤ x ≤ 1. The
z and x integration is then straightforward which leaves us with the final result:

Ivirt(p,m) = −i (µ2/m2 eγE )ε

16π2

Γ(ε)

2 ε (1− 2 ε)
. (C.3)

C.2 SCET Real Radiation Contribution

First Real Radiation Integral

In the real radiation contribution we need to look into two integrals which we encountered in Sec. 3.5.1.
The first one which was given in Eq. (3.112) reads:

Jcn,τa =
αsCF
π

∫
dt

8π µ̃4−d

t−m2

∫
ddq

(2π)d
(2π)2θ(p0 − q0)θ(q0)δ((p− q)2 −m2)δ(q2)

Q− q−
q−

× δ
{
Q(Q− q−)a−1

[
(Q− q−)(

t

Q
− q+)−m2

] 2−a
2

+Q(q−)a−1
[
q+q−

] 2−a
2 − s

}
. (C.4)
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As in the case of the single quark contribution we use the convenient substitution x = q−/Q, y =
q+/Q, z = q2

⊥/Q
2 with q⊥ = |~q⊥| and carry out the solid angle integral. Using collinear power

counting for the real momenta we are left with the following expression:

Jcn,τa =
αsCF
π

((µ/Q)2eγE )ε

Q2 Γ(1− ε)

∫
dt

1

t−m2

∫
dx dy dz

1− x
x

z−ε

× θ(z) θ(1− x) θ(x) δ

[
(1− x)(

t

Q2
− y)− z − m2

Q2

]
δ(xy − z) (C.5)

× δ
{

(1− x)a−1

[
(1− x)(

t

Q2
− y)− m2

Q2

] 2−a
2

+ xa−1 [xy]
2−a

2 − s

Q2

}
.

Now we use the gluon on-shell delta functions to carry out the y integration and in the next step
make use of the quark on-shell delta function for the t integration. For that we need:

δ

{
(1− x)

(
t

Q2
− z

x

)
− z − m2

Q2

}
=

1

1− xδ
{
t

Q2
−
z + m2

Q2 x

x(1− x)

}
. (C.6)

After the t integration we manipulate the remaining delta function as follows:

δ

{
z

2−a
2

[
(1− x)a−1 + xa−1

]
− s

Q2

}
=

2

2− a

(
Q2
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a−2

× δ
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z −

(
s

Q2

[
(1− x)a−1 + xa−1

]−1) 2
2−a
}
, (C.7)

which allows us to carry out the z integration and by defining g(x, a) = Q2

s

[
(1− x)a−1 + xa−1

]
we

arrive at the final integral (with s̃ = s/µ2)

µ2Jcn,τa =
αsCF
π

((µ/Q)2eγE )ε

s̃Γ(1− ε)
2

2− a

∫ 1

0
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1− x
x

g(x, a)
2(1−ε)
a−2

g(x, a)
2
a−2 + m2

Q2 x2
. (C.8)

As it turns out a direct integration is not feasible which is why we use the well known trick of
subtracting and adding the divergent structure leaving us with a simpler integral to solve Jc,div

n,τa and

a finite numerical integral Jc,ndiv
n,τa = Jcn,τa − J

c,div
n,τa . For 0 ≤ a ≤ 1 the integral is divergent for x → 0

where the singular part is given by

µ2Jc,div
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αsCF
π
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(
ε+ 1

2

)
;−m2

Q2

(
Q2

s

) 2
2−a
)

1− ε+ a (ε− 1
2)

(C.9)
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1, ε (a− 1); 1 + ε (a− 1);−m2
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) 2
2−a
)
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Next we carry out the small ε expansion for Jc,div
n,τa . The first term in the curly brackets of Eq. (C.9)

becomes 0 for s→ 0 at order ε0 and order ε1 which is why we can expand the prefactor and the first
term in the curly brackets separately and multiply them together afterwards. This leaves us with a
non-distributional expression for the first contribution to Jc,div

n,τa :

µ2Jc,div,1
n,τa =

αsCF
π

2

a− 2

θ(s̃)

s̃ 2F 1

(
1, 1− a

2
; 2− a

2
;−m

2
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Q2
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) 2
a−2

)
. (C.10)

The second term in Eq. (C.9) is not well behaved in the same limit which is why we look into the

cumulative distribution of this term denoted by J c,div,2
n,τ (∆) =

∫ ∆
0 ds Jc,div,2

n,τ . From this it is straight-
forward to identify distributional and non-distributional terms and we get the following expression
for the second contribution to Jc,div

n,τa :

µ2Jc,div,2
n,τa =
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π

{
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+
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+
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+

2
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]
+

− 1
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]
+

[
1

ε
+ (1− a) ln
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+ a ln
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]
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ln

(
1 +

(s̃ µ2/Q2)
2

2−a

m2/Q2

)}
. (C.11)

The remaining part is then given by the numerical integral involving the mentioned subtraction:

µ2Jc,ndiv
n,τa = −αsCF

π

2

2− a
θ(s̃)

s̃
I1(s; a) , (C.12)

where I1(s; a) was already defined in Eq. (3.116). The full expression for Jcn,τa is finally obtained by
putting all contributions together:

Jcn,τa = Jc,div,1
n,τa + Jc,div,2

n,τa + Jc,ndiv
n,τa . (C.13)

which leads to the result already given in Eq. (3.114).

Second Real Radiation Integral

The second integral one encounters in the real radiation contribution is given in Eq. (3.113) and reads:

Jdn,τa = −αsCF
π

∫
dt

2πQ2 µ̃4−d

(t−m2)2

∫
ddq

(2π)d
(2π)2θ(p0 − q0)θ(q0)δ((p− q)2 −m2)δ(q2)
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Q
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⊥
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]
(C.14)

× δ
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Q(Q− q−)a−1
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(Q− q−)(

t

Q
− q+)−m2

] 2−a
2

+Q(q−)a−1
[
q+q−

] 2−a
2 − s

}
.

Using the same substitutions, the fact that again we have no dependence on angles between different
particles, collinear power counting for the real momenta and simplifying the involved expressions we
arrive at the following integral:

Jdn,τa = −αsCF
π

((µ/Q)2eγE )ε

4 Γ(1− ε)

∫
dt

1

(t−m2)2

∫
dx dy dz z−ε

[
4
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Q2
− (2− 2ε)
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Q2 x
2
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]
× θ(z) θ(1− x) θ(x) δ

[
(1− x)(

t

Q2
− y)− z − m2

Q2

]
δ(xy − z) (C.15)

× δ
{

(1− x)a−1

[
(1− x)(

t

Q2
− y)− m2

Q2

] 2−a
2

+ xa−1 [xy]
2−a

2 − s

Q2

}
.
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Following along the lines of the first integral the y integration is carried out first by using the gluon
on-shell delta function. In the next step we employ Eq. (C.6) and (C.7) to do the t and z integral. In
analogy to Eq. (C.8) this leaves us with an integral expression which splits into two main contributions,

again involves g(x, a) = Q2

s

[
(1− x)a−1 + xa−1

]
and reads (with s̃ = s/µ2):

µ2Jdn,τa = µ2(Jd,1n,τa + Jd,2n,τa) , (C.16)

µ2Jd,1n,τa =
αsCF
π

((µ/Q)2eγE )ε

s̃Γ(1− ε)
1− ε
2− a

∫ 1

0
dx

x g(x, a)
2(1−ε)
a−2

g(x, a)
2
a−2 + m2

Q2 x2
, (C.17)

µ2Jd,2n,τa = − αsCF
π

((µ/Q)2eγE )ε

s̃Γ(1− ε)
2

2− a
m2

Q2

∫ 1

0
dx

x (1− x) g(x, a)
2(1−ε)
a−2[

g(x, a)
2
a−2 + m2

Q2 x2
]2 . (C.18)

It turns out that the expression in Eq. (C.17) is finite for s̃ ≥ 0 and 0 ≤ a ≤ 1 and can be expressed
as a numerical integral involving the expression already given in Eq. (3.117). The result then reads

µ2Jd,1n,τa =
αsCF
π

1

2− a
θ(s̃)

s̃
I2(s; a) . (C.19)

For the second part which is given in Eq. (C.18) we again have to use subtractions. The divergent
part of this integral is then given by

µ2Jd,2,div
n,τa = − αsCF

π

((µ/Q)2eγE )ε

s̃Γ(1− ε)
2

2− a
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∫ 1

0
dx

x (1− x)
(
Q2

s x
a−1
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s x
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) 2
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+ m2

Q2 x2

]2 . (C.20)

As it turns out this expression is not well behaved in the limit s → 0 when looking at small ε and
furthermore it seems not feasible to do the x integral right away. It is still possible to solve this integral
by looking at the cumulative distribution J d,2,div

n,τ (∆) =
∫ ∆

0 ds Jd,2,div
n,τ and afterwards carrying out the

x integral with the convenient substitution x̃ = x
2

2−a . Next we expand the obtained result for small
ε, subsequently it is straightforward to extract distributional and non-distributional contributions as
follows:
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+
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(
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2
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. (C.21)

The remaining part is then given by the numerical integral involving the appropriate subtraction. For
m 6= 0 it reads

µ2Jd,2,ndiv
n,τa = −αsCF

π

2

2− a
θ(s̃)

s̃

[
I1(s; a)− I3(s; a)

]
, (C.22)

where I1(s; a) and I3(s; a) was defined in Eq. (3.116) and (3.118) respectively. The full expression
for Jdn,τa is then obtained by putting all the contributions together:

Jdn,τa = Jd,1n,τa + Jd,2,div
n,τa + Jd,2,ndiv

n,τa , (C.23)

which leads to the result already given in Eq. (3.115).
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C.3 SCET Massless Limit

Since the single quark contribution to the massless jet function is trivial we start right away with the
real radiation part. To find the massless analog to Jcn,τa we have to consider the subtraction used in
Eq. (C.9) in the massless limit. For this we then find

µ2Jc,div
n,τa,ml =

αsCF
π

((µ/Q)2eγE )ε

Γ(1− ε)
2
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) 2ε
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∫ 1

0
dxx

−2ε(1−a)
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x
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+
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+
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8(1− a/2)(1− a)
ln2

(
Q2

µ2

)
+

a

(2− a)
ln

(
Q2

µ2

)]
(C.24)

−
[
θ(s̃)

s̃

]
+

[
1

(1− a) ε
+

a

2(1− a/2)(1− a)
ln

(
Q2

µ2

)
+

2

2− a

]
+

2

(1− a)(2− a)

[
θ(s̃) ln s̃

s̃

]
+

}
,

with s̃ = s/µ2. For the corresponding integral containing the subtraction we get

µ2Jc,ndiv
n,τa,ml = −αsCF

π

2

2− a δ(s̃)
{

(1− a)

(
−1 +

π2

6

)
+

∫ 1

0
dx

1− x
x

ln
(
x1−a + (1− x)1−a)} .

(C.25)

In the case of the second real radiation contribution it is clear that the contribution corresponding
to Jd,2n,τa does not exist in the massless limit. For Jd,1n,τa in the massless limit we again do not need to
employ subtractions and find

µ2Jd,1n,τa,ml =
αsCF
π

((µ/Q)2eγE )ε

Γ(1− ε)
1− ε
2− a

(
Q2

µ2

) 2ε
2−a 1

s̃1+ 2ε
2−a

∫ 1

0
dxx

(
x1−a + (1− x)1−a

x1−a(1− x)1−a

) 2ε
2−a

=
αsCF
π

{
δ(s̃)

[
− 1

4 ε
− 2− 3 a

4(2− a)
− a

4(2− a)
ln

(
Q2

µ2

)]
+

[
θ(s̃)

s̃

]
+

1

2 (2− a)
(C.26)

− δ(s̃) 1

2− a

∫ 1

0
dxx ln

(
x1−a + (1− x)1−a)} .

By putting everything together:

Jcn,τa,ml = Jc,div
n,τa,ml + Jc,ndiv

n,τa,ml , (C.27)

Jdn,τa,ml = Jd,1n,τa,ml , (C.28)

we arrive at the final result which was given in Eq. (3.148).
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C.4 bHQET Real Radiation Contribution

First Real Radiation Integral

In analogy to the SCET case we encountered two integrals in the real radiation contribution (see
Sec. 3.5.2). The first one from Eq. (3.126) is given by

JcB,n,τa =
αsCF
π

∫
dt

8πµ̃2ε

t

∫
ddq

(2π)d

× (2π)2θ(p0 − q0)θ(q0)δ((p− q)2 −m2)δ(q2)
mv−

n · q δ
{
s−Q2 τPa,n

}
. (C.29)

Using the same substitutions as in App. C.2, the fact that again we have no dependence on angles
between different particles, bHQET power counting for the real momenta and simplifying the involved
expressions we arrive at the following integral:

JcB,n,τa =
αsCF
π

mv−

Q

((µ/Q)2 expγE )ε

Γ(1− ε)

∫
dt̃

t̃

∫
dx dy dz

z−ε

x
θ(z) θ(x+ y) δ(xy − z) (C.30)

× δ
[
t̃−
(
mv+

Q
x+

mv−

Q
y

)]
δ

{
s−Q2

(
mv−

Q

)a−1 [
t̃−

(
mv+

Q
x+

mv−

Q
y

)] 2−a
2

−Q2x
a
2 y

2−a
2

}
,

with t̃ = t/Q2. After the trivial y and t̃ integration we use the measurement delta function for the z
integration by rewriting it in the following way:

δ
(
s−Q2xa−1z

2−a
2

)
=

2

2− a
1

Q2

(
s

Q2

) a
2−a

x
2(1−a)

2−a δ

(
z −

(
s

Q2

) 2
2−a

x
2(1−a)

2−a

)
. (C.31)

After carrying out the z integration we now look into the cumulative distribution denoted by J cB,n,τ (∆) =∫ ∆
0 ds JcB,n,τ . It is now possible to carry out the x integration by using the convenient substitution of

x̃ = x
2

2−a and identify the distributional structure of JcB,n,τa . The final result is then given by

µ2 JcB,n,τa =
αsCF
π

{
δ(s̃)

[
1

2(1− a)ε2
+

1

2(1− a)ε

(
(1− a)Lm + aLQ

)
+

1− 4a+ 2a2

24(1− a)
π2 +

1

4(1− a)

(
(1− a)Lm + aLQ

)2]
(C.32)

− 1

1− a

[
θ(s̃)

s̃for

]
+

[
1

ε
+

(
(1− a)Lm + aLQ

)]
+

2

1− a

[
θ(s̃) ln s̃

s̃

]
+

}
,

with s̃ = s
µ2 , Lm = ln Q2

µ2
v+

v− and LQ = ln Q2

µ2 .

Second Real Radiation Integral

The second real radiation integral was given in Eq. (3.126) and reads

JdB,n,τa = −αsCF
π

m2

∫
dt

8πµ̃2ε

t2

∫
ddq

(2π)d
(2π)2θ(p0 − q0)θ(q0)δ((p− q)2 −m2)δ(q2) δ

{
s−Q2 τPa,n

}
.

(C.33)

Following the same steps as for the first real radiation integral we first get:

JdB,n,τa = −αsCF
π

m2

Q2

((µ/Q)2 expγE )ε

Γ(1− ε)

∫
dt̃

t̃2

∫
dx dy dz z−ε θ(z) θ(x+ y) δ(xy − z) (C.34)

× δ
[
t̃−

(
mv+

Q
x+

mv−

Q
y

)]
δ

{
s−Q2

(
mv−

Q

)a−1 [
t̃−

(
mv+

Q
x+

mv−

Q
y

)] 2−a
2

−Q2x
a
2 y

2−a
2

}
,
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with t̃ = t/Q2. Still following the strategy of the previous integral we carry out t̃, y and z integration
and while looking into the cumulative distribution carry out the remaining x integration. This allows
us to identify the distributional structure which is given by

µ2 JdB,n,τa = C αsCF
π

{
δ(s̃)

[
1

2ε
+

1

2

(
(1− a)Lm + aLQ

)]
−
[
θ(s̃)

s̃

]
+

}
,

with s̃ = s
µ2 , Lm = ln Q2

µ2
v+

v− and LQ = ln Q2

µ2 . Furthermore the global constant C is given by:

C =
m2

Q2

v+

v−

(
mv+

Q

)−2

=
1

1 +O(m
2

Q2 )
. (C.35)

Considering the used power counting, we keep the leading dynamical terms scaling like s/Q2 ∼ m∆/Q2

and neglect suppressed terms which are scaling like m3∆/Q4. In the case when C is multiplied with
a δ(s̃) or [θ(s̃)/s̃]+ the used power counting effectively gives C = 1 at leading power.
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Appendix D

Soft-Drop Groomed Jet Mass and the
Soft Renormalon

In recent years so called jet grooming techniques became increasingly popular. These tools can be used
to remove soft radiation appearing in experimentally measured jets at hadron colliders which does
not directly originate from the hard interaction of interest. Origins of such soft radiation contamining
the jet is for example the underlying event or pile-up. One of the more recent grooming techniques
which turns out to be theoretically quite fruitful is the so called soft-drop grooming [126,127].

Soft-drop grooming depends on two parameters i.e. zcut and β and is defined by the following proce-
dure: (0) The particles of the jet are identified with some type of jet clustering algorithm. (1) The
jet is reclustered using the so called Cambridge/Aachen algorithm [128,129], i.e. sequentially the two
particles which are the least separated in terms of angle are combined until all particles are clustered
together, the resulting momentum is the jet momentum. (2) Next one goes step-by-step through
the branching history (momentum of the two branches given by pi and pj) and checks the so called
soft-drop criterion. For e+e− this criterion reads

min(p0
i , p

0
j )

p0
i + p0

j

≡ z > zcut

(√
2

sin(θij/2)

sin(R/2)

)β
, (D.1)

with θij being the angle between the two branches and R being the total jet radius. If this requirement
is not fulfilled the softer of the two branches is removed from the jet and one continues with the harder
one of the two branches. (3) This procedure continues through the branching history until the above
criterion is met. At this point soft-drop stops and the sum of the two remaining branches gives the
soft-drop groomed jet momentum.

For jets with radius R ∼ 1 it was shown in Ref. [101] that it is possible to write down a factorization
theorem for observables like soft-drop groomed jet mass. For the situation where the produced jet is
far away from the beam axis the factorization theorem takes the following very simple form:

dσ

dρSD
= N ×

∫
ds Jn(s, µ)SC(EJ ρSD − s/EJ , µ) , (D.2)

with the soft drop groomed jet mass ρSD =
∑

i∈SD−jet p
+
i /Ej and the total ungroomed jet energy

EJ . Furthermore N denotes a normalization factor, Jn(s, µ) is the massless hemisphere jet function
discussed also in Sec. 3.5.5 and SC(`, µ) is the so called collinear-soft function.

The perturbative part of this collinear-soft function is defined as

SC,pert,ρSD
(`, µ) =

1

Nc
〈0|
(
WnY

†
n

)
(0)δ

[
`− (1− Θ̂SD)EJ ρ̂J)

](
YnW

†
n

)
(0) |0〉 , (D.3)
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with the Wn and Yn Wilson lines being the same as in the jet and soft function respectively but which
now depend on collinear-soft fields [101]. Furthermore the above expression depends on the jet mass
measurement acting like ρ̂J |X〉 = ρJ(X) |X〉 and the soft-drop groomer Θ̂SD which gives 1 for final
state configurations where (parts of) the radiation are groomed by soft-drop.

For the singular case of e+e− annihiliation (i.e. small ρJ) and R ∼ 1 the soft-drop criterion of
Eq. D.1 reduces to z > zcutθ

β which for only a single radiated gluon and SCET power counting
(which is applicable for the singular situation) reduces to:

p− > (2EJ) 2βzcut

(
p+

p−

)β
2

. (D.4)

In order to calculate the leading soft renormalon which is contained in the collinear soft function we
proceed as in Sec. 3.7.1 as well as App. E of Ref. [101] (particularly up to Eq. E.3). Following the
calculation of the Borel-transformed soft function with gluon bubble chain propagator insertion, which
was shown in Eqs. (3.170) to (3.173), and applying the power counting for collinear-soft momenta it
is straightforward to arrive at the following expression:

B
[
µS

(1)
C,pert,ρSD

(`, µ)
]
(u) =

4CF
β0

(eγE )ε e
5u
3

Γ(1 + u) Γ(1− ε− u)
(D.5)

×
∫

dk̃+ dk̃− θ(k̃−) θ(k̃+k̃−) θ
[
k̃− − (2EJ

µ ) 2βzcut

(
k̃+

k̃−

)β
2
]{
δ(`− k̃+)− δ(`)

}(
k̃+k̃−

)−1−ε−u
,

To make the calculation a bit simpler we next look at the Fourier transform of the collinear-soft
function with bubble chain insertions (including tree level) S̃C,pert,ρSD

(y, µ) and subsequently take the
Borel transform of the leading term of ln S̃C,pert,ρSD

(y, µ) which gives

B
[

ln S̃C,pert,ρSD
(y, µ)

]
(u) =

4CF
β0

(eγE )ε e
5u
3

Γ(1 + u) Γ(1− ε− u)
(D.6)

×
∫ ∞

0
dk̃+

∫ ∞
x−

dk̃−
{

e−iyµk̃
+ − 1

}(
k̃+k̃−

)−1−ε−u
,

where x− =
(
(2EJ
µ ) 2βzcut

) 2
2+β (k̃+)

β
2+β . Evaluating the remaining integrals gives

B
[

ln S̃C,pert,ρSD
(y, µ)

]
(u) = (D.7)

4CF
β0

(eγE )ε e
5u
3

Γ(1 + u) Γ(1− ε− u)

(
21+β EJ

µ zcut

)−2(ε+u)
2+β Γ(−2(1+β)(ε+u)

2+β )

ε+ u

(
iyµ
)2(1+β)(ε+u)

2+β .

For this expression one recovers the result from Ref. [101] at one loop by using u = 0, the appropriate
change of variables and the αsβ0

4π prefactor, which is then given by

S̃C,pert,ρSD
(y, µ) = 1 +

αsCF
π

Γ
(
− 2ε(1+β)

2+β

)
εΓ(1− ε) e

−γEεβ2+β (iµỹ)
2ε(1+β)

2+β (D.8)

= 1 +
αsCF

2π

{
− 2 + β

(1 + β) ε2
− 2 + β

(1 + β) ε
ln
(
ỹ

2
1+β
2+β

)
− 2 + β

2(1 + β)
ln
(
ỹ

2
1+β
2+β

)
− 2 + β

2(1 + β)
ln2
(
ỹ

2
1+β
2+β

)
− π2 β(4 + 3β)

12(1 + β)(2 + β)

}
+O(α2

s) , (D.9)

with ỹ = y eγE (µ/EJ)
1

1+β /
(
2z

1
1+β
cut

)
.
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Now it is straightforward to investigate the renormalon structure. For that we look at Eq. D.7 for
the case of ε = 0 and u 6= 0 which gives

B
[

ln S̃C,pert,ρSD
(y, µ)

]
(u) =

4CF
β0

e
5u
3

Γ(1 + u) Γ(1− u)

(
21+β EJ

µ zcut

)−2u
2+β Γ(−2(1+β)u

2+β )

u

(
iyµ
)2(1+β)u

2+β .

(D.10)

The leading IR renormalon pole (positive and closest to u = 0) of the above function clearly is situated
at u = 2+β

2(1+β) . This value depends on how aggressive the grooming is and therefore lies between u = 1
2

for no grooming or β → ∞ and u = 1 for the groomer being an energy cut for β = 0. Up to now
only observables with IR renormalon poles at u = 2n+1

2 with n ∈ N0 were studied and the fact that
in the case of soft-drop groomed jet mass the leading renormalon pole position can be changed to a
real number which lies in the interval {1

2 , 1} is a novelty. Expanding around this leading renormalon
pole gives

B
[

ln S̃C,pert,ρSD
(y, µ)

]
(u)

∣∣∣∣
u=

2+β
2(1+β)

=
4CF
β0

e
5(2+β)
6(1+β)

Γ
(

β
2(1+β)

)
Γ
(

4+3β
2(1+β)

) (zcut
EJ
µ

) −1
1+β

2
(
u− 2+β

2(1+β)

) (iyµ)

+O
((
u− 2+β

2(1+β)

)0)
. (D.11)

As discussed in Sec. 3.7.1 this leading renormalon also corresponds to a δ′(˜̀) distribution and can
therefore be absorbed into the gap parameter of the soft model function by an appropriate subtraction.
It is furthermore interesting to note that by increasing the strength of the grooming to a large β value
the overall normalization of the pole decreases until it becomes 0 for β → ∞, hence vanishes for
the renormalon pole position of u = 1. Furthermore for this limit all higher renormalon poles in
Eq. (D.10) vanish as well. In conclusion this just confirms that soft-drop grooming removes parts of
the nonperturbative soft radiation which causes the pathological renormalon behavior. The amount
of radiation removed is connected to the strength of the grooming and the limit of implementing an
energy cutoff (for β → 0) then removes all radiation softer than EJzcut and all connected renormalon
divergences.
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