
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

Utilizing spins in a nitrogen-vacancy center for tests of
quantum mechanics

verfasst von / submitted by

Denis Mijatovic, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2019 / Vienna, 2019

Studienkennzahl lt. Studienblatt / A 066 876
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt / Masterstudium Physik UG2002
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Univ.-Prof. Dipl.-Ing. Dr. Philip Walther

Mitbetreut von / Co-Supervisor: Michael Trupke, PhD



Abstract

A small set of comprehensible demonstrations for the utility of nitrogen-vacancy center
spins is provided within the framework of quantum mechanical tests covering spin en-
tanglement, reversal of decoherence, the invasiveness of measurements and the reality
of the quantum state. Considering the nature of the presented experiments, they of-
fer a coherent description of the relevant phenomena by virtue of connecting them to
the underlying mechanisms like energy level splittings, populations, coherences, phases,
Rabi oscillations, off-resonant driving, transition efficiencies of pulses, decoherence etc.
Besides the actual results of the experiments, a method for the preparation and projec-
tion of potentially arbitrary spin states for the nitrogen nucleus is suggested as a tool.
Its performance is tested for a set of orthogonal and nearly orthogonal states as well as
the ability of inverting the procedure for these states. Using this scheme, a prominent
test for the reality of the quantum state is translated to the nuclear spin and the result
is found to be highly promising in the sense that it is highly likely to yield a statistically
relevant outcome by slight improvement of the experimental conditions.

Zusammenfassung

Diese Arbeit umfasst eine Reihe an Demonstrationen der Nützlichkeit von Spins im
Stickstoff-Fehlstellen-Zentrum im Zusammenhang quantenmechanischer Tests, die die
Konzepte Verschränkung, Umkehr von Dekohärenz, eingreifende Messungen und Re-
alität des Quantenzustandes abdecken. Die Experimente sind so konzipiert, dass sie
die relevanten Phänomene in kohärenter Weise auf die zugrundeliegenden Mechanis-
men wie Aufspaltungen von Energieniveaus, Populationen, Kohärenzen, Phasen, Rabi-
Oszillationen, nicht-resonantes Treiben, Übergangswirksamkeiten von Pulsen, Dekohä-
renz etc. zurückführen. Neben den eigentlichen Resultaten der Experimente wird
eine Methode zur Vorbereitung und Projektion potentiell beliebiger Spin-Zustände des
Stickstoff-Kerns vorgestellt. Der Erfolg wird für einen Satz an orthogonalen und na-
hezu orthogonalen Zustände gezeigt und auch, dass die Prozedur für diese invertiert
werden kann. Damit wird ein prominenter Test der Realität des Quantenzustandes auf
den Kernspin übersetzt und das Resultat ist vielversprechend in dem Sinne, dass es
andeutet, dass das Experiment höchstwahrscheinlich unter leicht verbesserten experi-
mentellen Bedingungen einen statistisch relevanten Wert hervorbringen würde.
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1. INTRODUCTION

1 Introduction

The development of techniques for handling elementary quantum information systems
like spins is of great technological as well as scientific merit. The efforts of building a
functional quantum computer depend not least on the precise control of the quantum
states, once sufficient coherence times are established. Besides the feasibility for prag-
matic applications, these endeavours have a value in and of themselves, especially in
the science of quantum theory itself. Understanding the nature of quantum mechanics
after all is among the most important, if not the most important, goals of modern
physics. Transcribing the language of the theory to actual quantum systems, in this
case solid state spins that have highly convenient features, is an important process that
links our current understanding to the potential knowledge of the future by inquiring
the empirical machinery. The courteous interplay between these two worlds facilitates
any fundamental progress and its importance cannot possibly be overemphasized. One
common theme of the overall project introduced here, or rather of quantum physics
in general, is the lack of clear distinction between purely mathematical descriptions
and actual physical entities. It connects to the persistent question about what the
quantum state, being a vector in a complex vector space, actually is. This question
is partially addressed, not least in the last experiment involving a related test. The
nitrogen-vacancy center is a fascinating quantum system that finds application in a
variety of fields. The long coherence times of the defect spins at room temperature
allow for involved manipulations of their states which also constitutes the bedrock for
the experiments in this work. The first topic regards the entanglement of electron and
nuclear spin. By measuring the degree of coherence between the entangled compo-
nents and witnessing the loss of it through decoherence, the theoretical expectation
is married with the empirically known facts about the electron’s interaction with the
environment. Experimentally transitioning through all accessible degrees of entangle-
ment, the symmetry of the problem is shown also to be as expected and thereby the
maximum entanglement is found and calculated. The electron spin decoheres by the
interaction with the environment. It is found that this process can be partially reversed
by virtue of inverting the spin state through the application of spin flips. A limiting
factor is identified and the decoherence process is then used to simulate a measurement
by a fundamentally independent party. The effect of this invasive interaction is demon-
strated and put in contrast to the case of no intervention. The last chapter deals with
the coherent preparation of nearly pure nuclear spin states. A technique for preparing
potentially arbitrary spin states is suggested, combined with a way of projecting any
state onto an eigenstate. It is shown that these transformations can be inverted and
that orthogonal states can be achieved. Utilizing this discovery, the ambitious goal of
proving the reality of the quantum state is undertaken. The outcome implies that this
test is possible with the nitrogen-vacancy center by performing a minor optimization.
The ontological parameter is computed in a statistically non-rigorous (incomplete) way.
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2. THE NITROGEN-VACANCY CENTER

Figure 1: Lattice structure and fluorescence spectrum of the nitrogen-vacancy (NV)
center. a) The NV center consists of one nitrogen atom replacing a carbon atom in
the diamond lattice accompanied by a vacancy at a neighbouring site. b) Fluorescence
spectrum of a single NV− center at room temperature excited by a laser of wavelength
514 nm. The sharp zero phonon line (ZPL) at 637 nm corresponds to a resonant tran-
sition between ground state and excited state. The longer wavelength characteristics
are attributed to vibronic bands of phonons [1, 2]. Reproduced from References [3, 4].

2 The Nitrogen-Vacancy Center

2.1 General Remarks

The nitrogen-vacancy (NV) center in diamond is a point defect prominent for its long
coherence times of the electron spins and the nitrogen nuclear spin, even at room
temperature. While the electron spins couple more strongly to the environment, for
isotopically pure diamonds a coherence time of 1.8 ms has been observed [5]. The
NV center comes in two different charge states, the neutral NV0 and the negatively
charged NV−. The photoconversion process from NV− to NV0, however, is weak
for low powers of the exciting laser [1] and no spin manipulations in the NV0 state
have been achieved so far. This work, also, exclusively concentrates on the NV−

charge state. In addition to areas of application like magnetometry and metrology in
general, the NV center, by now, has been utilized in many projects for photonics and
quantum mechanics purposes. Some examples include milestone room temperature
demonstrations of quantum registers built upon the NV electronic spin and proximal N
and 13C nuclear spins [6, 7], spin-photon entanglement between the ground state spin
of a single NV center and the polarisation of an emitted photon at low temperature
(<10 K) [8], demonstrations of NV–NV spin coupling [9], important steps towards
photonic coupling [10], Bell inequality violation [11], magnetic resonance beyond the

2



2. THE NITROGEN-VACANCY CENTER
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Figure 2: NV− energy levels and fluorescence time trace. a) The ground state (3A2)
and the excited state (3E) are split up by zero field splittings onto spin states 0 and
±1 of the electron spin me and the 14N nuclear spin mn. The non-radiative transitions
to and from the intermediate state are indicated by dashed lines (lifetimes taken from
Reference [17]). b) The fluorescence time trace of the NV center involves a spin-
dependent part that allows readout of the electron spin in this time (cf. Section 6.1).

rotating frame approximation [12], detection of the Meissner effect [13], quantum
process tomography [14] and quantum cryptography [15, 16]. Like some of the above,
the demonstrations in this thesis lie within the scope of quantum information processing
and the foundations of quantum mechanics.

2.2 Level Scheme and Fluorescence

Figure 2 shows the electronic level structure of NV− with the ground state 3A2, the
excited state 3E and one intermediate state. Off-resonant excitation of the NV with a
laser frequency higher than the transition frequency between ground state and excited
state is possible due to a phonon band that lies above the excited state (not shown
in the diagram). The NV− comprises two unpaired electrons occupying degenerate
molecular orbits in the vacancy that are formed by dangling bonds between the carbon
atoms and the nitrogen atom surrounding it. One electron, it is believed, is accepted
from a nearby donor [3], thus giving a net negative charge and triplet states for the
electron spin. The states are split by zero field splittings and a similar pattern translates
to the nuclear spin of the, in this case, 14N nucleus but there the splitting is flipped
upside down due to the opposite sign of the gyromagnetic ratio. In the non-zero
electron spin states, there is also hyperfine coupling between electron spin and nuclear
spin which makes the energy levels shift accordingly. A more detailed picture of the
energy levels is given in Section 6.3. When the system is optically driven by a laser,

3



2. THE NITROGEN-VACANCY CENTER

the decay channels in Figure 2 leading to the intermediate state result in a polarization
of the electron spin. As they favour the transition to electron spin 0, this spin state
can be polarized to a significant degree by applying a laser pulse. This allows for the
preparation of detectable electron spin states. The readout is accomplished by the spin
dependent property of the fluorescence time trace seen in Figure 2. By collecting the
counts in this special time window, one can assess the electron spin state in a relative
manner. As it turns out, this is sufficient to do a lot of experiments as this offers
a linear handle on the populations in the electron spin states. The electron spin is
the readout channel onto which every information that is to be read out is projected,
e.g. if a nuclear spin manipulation is being performed, simply shining a laser onto the
system doesn’t change a thing in the fluorescence signal. Applying a NOT gate on
the electron spin, however, controlled by the nuclear spin gives a linear handle on the
population in the control state of the nucleus. With knowledge about the nuclear spin
polarization, this relative measure can be concretized. For all spin manipulations, the
usual selection rules for magnetic dipole transitions (here, basically ∆J = ±1) apply.

2.3 Application of a Static Magnetic Field

When a static magnetic field, e.g. by virtue of a small bar magnet, is applied to the
NV center, the non-zero electron spin states split apart which makes them selectively
addressable. Obviously, the nuclear spin states also split slightly and the selectivity
of manipulations is also somewhat improved. At a magnetic field strength of approx-
imately 500 G, an excited state level anticrossing occurs between the electron spin
states 0 and -1 [18]. Via a mixing process in the excited state governed by the hy-
perfine interaction that couples states with equal sum of electron and nuclear spins
and a difference in each of ±1, the nuclear spin is polarized [19]. The fact that the
me = −1 state (me is the electron spin) couples more strongly to the decay channel
over the intermediate states described above introduces an asymmetry between mixing
processes that increase the nuclear spin mn and those that decrease it. The increasing
processes win because the radiative decay rate is the same for me = 0 and me = −1
but the non-radiative decay rate is higher in the me = −1 state. The alignment of
the magnetic field with the defect symmetry axis is important for this mechanism to
proceed and the degree of polarization is expected to decrease monotonically with the
field strength in this direction which is held well below 500 G in these experiments.
So by aligning a static magnetic field along the NV axis, the electron as well as the
nuclear spin of the 14N atom can be polarized to a remarkable degree (cf. Figure 9).
The resulting concentration of most of the population in one spin state |me,mn〉 is of
great importance for quantum information processing experiments. The preparation
of a pure or nearly pure state is often a desirable goal. When the spin state is already
highly polarized to begin with, less work has to be invested in achieving that goal.
Although there are other methods, this polarization procedure is very easy and useful.

4



3. EXPERIMENTAL SETUP

Figure 3: Photographs of the experimental setup. The diamond sample is placed on
the wires on a thin glass window attached to a printed circuit board (lower left corner
photos), mounted onto a translation stage seen on top of the table in the upper right
corner. The diamond is located at the brightly glowing spot illuminated by the laser. A
photo of the focusing lens that is etched onto the diamond’s surface is also displayed.

3 Experimental Setup

3.1 Mechanics

The thin diamond sits on a wired glass window attached to a printed circuit board
(PCB) which, in turn, is mounted on a translation stage. A vibration-isolated table
holds this translation stage on top of it, another one for a bar magnet, and a third one
moves an optical objective on the lower side of the tabletop. The breadboard to which
the table and the rest of the optical setup is affixed is located inside of a wooden box
with acoustic foam on the inside. The box can be closed completely, isolating the setup
also from air flows in the room. The breadboard and the box reside on a larger table
that is pneumatically vibration-isolated. It is used to kill off longer vibration modes. A
construct of aluminium bars and plastic boards framed above the table holds most of
the electronic devices as well as the computer that collects and monitors the data.

5



3. EXPERIMENTAL SETUP
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Figure 4: Schematics of the optical setup. A 520 nm laser is sent through two half-
wave plates (HWP) and a polarizing beam splitter (PBS) where the polarization of the
beam is determined. The second output of the PBS is directed towards a photodiode
(PD) that monitors laser power. The beam is then directed through a polarization-
maintaining fiber (PMF) impinging on a notch filter (NF) after it. Then the beam
is focussed onto a spot inside the diamond lying on a wired glass window. The red
fluorescence of the NV center then passes through the NF, a dichroic mirror (DM) and
a longpass filter (LPF). A beamsplitter divides the signal up onto two single photon
counting modules (SPCM) connected by telecom-wavelength, single-mode fibers.

3.2 Optics

The goal of the optical setup is to uniformly excite the NV center with a green laser and
collect red fluorescence photons as a signal. To this end, the laser beam polarization
is adjusted before it is sent onto the diamond through an optical fiber and a focussing
objective as seen in Figure 4. On the way back, all the photons meet a notch filter, a
dichroic mirror and a longpass filter. These select out the right photon wavelengths.
A beamsplitter then splits the signal onto the two avalanche photo diodes (APD) inte-
grated in single photon counting modules (SPCM). The diamond rests on an optically
transparent window and the objective can be moved as to focus on the right depth
and transversal position. The whole optical setup resembles the concept of a confocal
microscope. A software-controlled piezo stage is used to position the objective on the
submicrometer scale to keep the focus on the NV center over a longer period of time.

6



3. EXPERIMENTAL SETUP

3.3 Electronics

3.3.1 Applying an Oscillating Field

An oscillating magnetic field is applied to the NV center by sending an oscillating
current over the wires on the glass window and beneath the diamond. This field
couples to the spins in the NV center and can induce Rabi oscillations, the theoretical
underpinning of which is covered in the next section. Thereby controlled manipulations
of the electron and nuclear spins can be achieved by simply sending electronic pulses.

3.3.2 Microwave and Radio-Frequency Sources

Several voltage controlled oscillator boards are used as microwave sources to generate
signals for steering electron spin state manipulations at different frequencies in a short
period of time. They generate a continuous signal. The frequency is set by microcon-
trollers connected to each board and the PC. Pulses are created by sending pulses to
the switches that open the signal line in the desired time window. The nuclear spin
states of the 14N nucleus are addressed with radio-frequency signals produced by a
frequency generator with arbitrary waveform function. The waveform itself is triggered
by a pulse sent to the frequency generator. Both signal types have to be amplified in
order to obtain the necessary powers to produce observable effects on the spin states.

3.3.3 Pulsing, Counting and Temperature Stabilization

The pulses are generated by a single-board computer (SBC) programmed to play pulse
sequences in a continuous loop after they are handed over from the computer. The
pulses coming from these channels steer the laser to generate laser pulses, open the
gates for the signals coming from the APDs and going to the counting device, open
switches to generate microwave pulses, trigger radio-frequency waveforms and act as
synchronization markers for data processing purposes. The switches are known to have
a rise time of up to 10 ns while the raw pulses are slightly faster. A time tagger unit
is utilized for the purpose of assigning time-stamps to single photons as the signal
arrives. Its signal is fed directly into the computer of the experimental setup. The
magnet on top of the diamond is equipped with a thermoelectric cooler (TEC) as well
as a temperature sensor that stabilizes the magnet’s temperature for a constant field.

3.3.4 Software

The control of the instruments and the data acquisition and saving is done by LabVIEW.
In addition, an interface to Python codes is implemented that writes pulse sequences
onto the SBC every time a new kind of measurement is done. As mentioned above, an
important tracking routine is implemented that keeps the laser focussed on the NV.

7



4. THEORETICAL ASPECTS

4 Theoretical Aspects

4.1 Two-Level Systems and Rabi Oscillations

For a general system with two energy levels described by the states |0〉 and |1〉 separated
by an energy E = ~ω0 to which an oscillating field with angular frequency ω is applied,
the Hamiltonian can be written as

Ĥ =
~ω0

2
σ̂z + ~g cos(ωt+ φ)~n · ~̂σ, (1)

where ~̂σ = (σ̂x, σ̂y, σ̂z) are Pauli matrices, ~n = (nx, ny, nz) is a normalized vector
pointing in the direction of the positive field and g can be seen as the coupling constant.
By transforming to a rotating frame, one can achieve a simplification that allows an
approximate analytical treatment of the problem. To do this, a unitary operator

Û = ei
ωt
2
σ̂z (2)

is applied to the state |ψ〉 of the system which results in a new state |Ψ〉 = Û |ψ〉.
The Hamiltonian is transformed by looking at the Schrödinger equation.

i~
∂

∂t
|Ψ〉 = i~

∂

∂t
(Û |ψ〉) = i~(

˙̂
U |ψ〉+ Û

∂

∂t
|ψ〉)

= i~ ˙̂
UÛ † |Ψ〉+ ÛĤ |ψ〉 = i~ ˙̂

UÛ † |Ψ〉+ ÛĤÛ † |Ψ〉

= (i~ ˙̂
UÛ † + ÛĤÛ †) |Ψ〉 = ĤRF |Ψ〉

This means that the Hamiltonian in the rotating frame comprises a term with a time
derivative of the unitary operator.

ĤRF = ÛĤÛ † + i~ ˙̂
UÛ † (3)

Without loss of generality, the y-component ny of the field can be set to zero for
simplification. The commutation rules of the Pauli matrices and the algebraic identity

eX̂ Ŷ e−X̂ = Ŷ + [X̂, Ŷ ] +
1

2!

[
X̂, [X̂, Ŷ ]

]
+

1

3!

[
X̂,
[
X̂, [X̂, Ŷ ]

]]
+ ... (4)

for operators can be used to get an expression for the Hamiltonian. The result is

ĤRF =
~(ω0 − ω)

2
σ̂z + ~gnz cos(ωt+ φ)σ̂z

+ ~gnx cos(ωt+ φ)
(

cos(ωt)σ̂x − sin(ωt)σ̂y
)
.

(5)

8



4. THEORETICAL ASPECTS

Simplifying the trigonometric functions in the last term through exponentials yields

~gnx
2

[(
cos(2ωt+ φ) + cos(φ)

)
σ̂x +

(
sin(2ωt)− sin(φ)

)
σ̂y

]
(6)

The counterrotating components of the field produce terms in the Hamiltonian that
oscillate with twice the frequency of the field. These are discarded in what is canonically
known as the rotating wave approximation (RWA). It applies well for weak coupling,
i.e. g � ω0, and a signal near resonance, i.e. ω ≈ ω0 [20]. The second term in the
Hamiltonian in Equation 5 produces a rapid oscillation of the eigenvalues of ĤRF and
is also neglected. Thus we gain a Hamiltonian that, conveniently, can be written as

ĤRF =
~
2
~m · ~̂σ, (7)

where ~m = (δ,Ω cos(φ),Ω sin(φ)), δ = ω0 − ω and Ω = gnx. The time evolution
operator emerging from this Hamiltonian is a rotation about ~m on the Bloch sphere.

ÛRF = ei
~m·~̂σt
2 (8)

The rotation frequency can be determined by normalizing ~m.

‖~m‖ =
√

Ω2 + δ2 (9)

So it is the phase and the detuning of the applied field, rather than its orientation,
that determine the rotation axis. Ω′ ≡ ‖~m‖ is sometimes called the generalized Rabi
frequency, Ω just Rabi frequency and δ is the detuning. Another important insight
from this deduction is the population transfer that occurs when starting with a state
|0〉 and applying a detuned field for a time t. It can be obtained by using the identity

ÛRF = cos

(
Ω′t

2

)
1̂− i sin

(
Ω′t

2

)
~m · ~̂σ
Ω′

(10)

and squaring the amplitude.

P10(t) =|〈1| ÛRF |0〉|2 = |〈1|

[
cos

(
Ω′t

2

)
1̂− i sin

(
Ω′t

2

)
~m · ~̂σ
Ω′

]
|0〉|2

=
Ω

Ω′2
sin

(
Ω′t

2

)2

=
1

1 + (2dT )2
sin

(√(π
T

)2

+ (2πd)2
t

2

)2

,

(11)

where d = δ
2π

is the detuning as ordinary frequency and T = π
Ω

is the duration of
a π-pulse at d = 0. In this work, the relevant ratios are typically Ω

ω0
� 0.005 and

δ
ω0
� 0.001, thus justifying the above approximations for these purposes. The concept

of considering only two isolated energy levels as an approximation for a clearly more
complex problem is very important and is used throughout this entire thesis. For a
discussion of the relevance of Equation 11 for resonance shapes refer to Section 5.2.

9



4. THEORETICAL ASPECTS

4.2 Multiple Energy Levels

When the off-resonant driving between additional levels is strong or when crossing
effects between levels have to be considered, it becomes necessary to extend the Hilbert
space dimensionality of the employed model. A few examples of the used models are
given below. The method of obtaining the dynamics of the system is, in each case, a
numerical solution of the Schrödinger equation. The following models find application.

4.2.1 Single Qutrit

The Hamiltonian for a single qutrit in an oscillating field can be written as

Ĥ =
3∑
i=1

Ei |i〉 〈i|+ Ω cos(ωt+ φ)Ŝx, (12)

where

Ŝx =

0 1 0
1 0 1
0 1 0

 (13)

is a spin matrix. This model is used in Section 10 where pulse sequences are calculated
for the preparation and projection of certain spin states of the Nitrogen nucleus.

4.2.2 Two Qubits

For a model involving only two electron and two nuclear spin states, respectively, the
following Hamiltonian is put to use:

Ĥ =
4∑
i=1

Ei |i〉 〈i|+ Ω cos(ωt+ φ)(σ̂x ⊗ 1̂ + 1̂⊗ σ̂x). (14)

In Section 7, partly, one nuclear and one electron spin state play a negligible role. For
comparison with the data and the two-level model, this Hamiltonian is used.

4.2.3 Two Qutrits

This is the Hamiltonian describing all the relevant spin states. It is computation-
ally expensive but takes care of all the relevant processes that can occur during the
application of fields. It has the following form

Ĥ =
9∑
i=1

Ei |i〉 〈i|+ Ω cos(ωt+ φ)(Ŝx ⊗ 1̂ + 1̂⊗ Ŝx), (15)

where Sx is the spin matrix described above. While for complicated or long pulse se-
quences it can cost a lot of calculation time, it is a very powerful model that effortlessly
keeps track of all the phases that are encoded in a nine-dimensional quantum system.

10
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4.3 Decoherence

A system in a coherent quantum state |ψ〉S that lives in Hilbert space HS can lose its
coherence over time by virtue of interactions with its environment. If the interacting
environment can be modelled in terms of a Hamiltonian ĤE that acts on states in
Hilbert space HE, then the interaction Hamiltonian ĤI lives in a Hilbert space HI =
HS ⊗HE and the decoherence process can be described as a unitary evolution of the
combined state of system and environment |ψ〉 = |ψ〉S⊗|ψ〉E. Similar to the process of
entangling quantum systems, the isolated system under consideration loses its property
of being a quantum system or having a quantum state all by itself. In stark contrast
to deliberately entangling systems in a controlled manner where information that was
encoded in the phase relationships between basis states is relocated to describing the
phase relations of the larger system, when decoherence occurs, we usually talk about
an uncontrolled process that just disperses the phases into the surrounding. The topic
of decoherence is a fascinating and deep one. It connects directly to the measurement
problem, the question of whether macroscopic objects can in principle be in a quantum
superposition and the encompassing question of how the manifest image that we see
of the world emerges from the quantum world of coherent states. It is also one of
the best tools that we have when targeting the question about what probabilities, in
fact, describe and what the quantum state actually is. After all, either everything we
see comes into form by the mere process of interaction, or, there isn’t even anything
else than interaction. No one knows, yet. Describing decoherence in a mathematically
rigorous way is something of a paradox. If the surrounding was to be described with an
exact Hamiltonian, then, probably, it would be already controllable experimentally and
should be considered part of the system, not the environment. What is a measurement?

4.3.1 Measurements and Born’s Rule

Now, when we perform a measurement on a quantum system, we can get any orthog-
onal basis state of the observable Ô corresponding to the quantity that is measured as
an outcome, but nothing else. Why is that so? Assume that we have two states |ψ1〉
and |ψ2〉 which are measured by an apparatus that is in an initial state |A〉0. Under
the assumptions that measurements on the same state give the same result and that
|ψ1〉 and |ψ2〉 were already measured, the following equalities must hold:

|ψ1〉 ⊗ |A0〉 = |ψ1〉 ⊗ |Aψ1〉
|ψ2〉 ⊗ |A0〉 = |ψ2〉 ⊗ |Aψ2〉 .

(16)

When we take the scalar product of the two states, we get

〈ψ1|ψ2〉 ⊗ 〈A0|A0〉 = 〈ψ1|ψ2〉 ⊗ 〈Aψ1|Aψ2〉 . (17)

11
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This equation tells us that if we want to have different outcomes, i.e. |〈Aψ1|Aψ2〉| 6= 1,
the measured states have to be orthogonal as 〈A0|A0〉 = 1. Thus it follows that states
that ought to give definite measurement results have to be orthogonal [21]. The same
is true for general decoherence processes. Distinguishable events, i.e. distinguishable
states of the environment, can only be caused by orthogonal states of the system if its
state is to remain the same. By similar considerations one can go on to prove Born’s
rule describing the probabilities of measurement outcomes, as was done by Zurek [22].
The explanation of why measurements have to be described in terms of probabilities
reduces to the statement that the system doesn’t have a definitive state as only the
composite system including the interacting environment or apparatus has a pure state.

4.3.2 The Lindblad Equation

Independently found in 1976 by Lindblad [23] and Gorini, Kossakowski and Sudarshan
[24], the Lindblad or GKSL equation describes the interaction of a quantum system
with its environment. It is derived from a unitary evolution of the bigger system
including the interacting environment, as described above, and it takes the form

˙̂ρ = − i
~

[Ĥ, ρ̂] +
N2−1∑
m,n=1

hmn

(
Âmρ̂Â

†
n −

1

2

{
ÂmÂ

†
n, ρ̂
})

, (18)

where ρ̂ and Ĥ and are the density matrix and Hamiltonian of the system, Âm is an
operator basis and N is the Hilbert space dimension of the system. The matrix h
is a positive semidefinite matrix modelling the interaction. The most general linear
evolution that preserves the unit trace and Hermiticity of the density matrix and sat-
isfies the condition of complete positivity is the Lindblad equation. Strictly speaking,
however, it does not apply in cases where the initial state involves correlations between
system and environment as the complete positivity constraint is no longer valid [25].
This equation can be seen as an explanation of the mechanism by which orthogonal
states are discriminated during the measurement process as argued by Weinberg [26].
Conversely, any process that transforms the initial quantum state of the system to a
completely mixed state can be seen as a measurement. While the information about
the system’s state may not end up being effectively readable for an observer, again,
the mere entanglement with the environment produces Born’s rule for the probabilities
of it being in a certain one. This analogy is utilized in Section 9.1. There is one
distinction because in a real measurement the phase information is expected to be
diffused irreversibly across a wider region of spacetime. However, it seems that this is
more of a practical difference than a fundamental one. The spin decoherence phenom-
ena observed will be treated rather superficially because an exact description of it is
simply not necessary. But the connection to the Lindblad equation is an indisputable
mathematical fact that should be mentioned in light of the overall project’s theme.

12
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4.4 Entanglement

4.4.1 Peres-Horodecki Criterion

The density matrix of a bipartite system of qubits A and B

ρ̂ =
2∑

i,j,k,l=1

pijkl |i〉 〈j| ⊗ |k〉 〈l| (19)

is separable if and only if the partially transposed matrix ρ̂TB is positive, i.e. has
non-negative eigenvalues [27, 28]. The partially transposed matrix can be obtained by
changing the coefficients in Equation 19 from pijkl to pijlk. It can be easily seen that

ρ̂TA =
(
ρ̂TB
)T

. Therefore it doesn’t matter onto which subsystem the transposition is
applied. For higher dimensions it is only a necessary but not a sufficient condition and
a density matrix satisfying it can still describe what is known as bound entanglement.

4.4.2 Negativity

If the partially transposed matrix of the composite system is negative, however, we know
that there is entanglement for any dimension d of the subsystems. The negativity

N =
d∑
i=1

|λi| − λi
2

, (20)

defined as the absolute sum of the negative eigenvalues λi of ρ̂TA is a possible measure
for entanglement [29]. A noteworthy property is convexity N (

∑
i piρ̂

)
≤
∑

i piN (ρ̂i).
The two cases of bipartite qubit and bipartite qutrit entanglement are particularly
relevant for the conducted experiments described in Section 7 where the goal is to
produce maximally entangled spin states with negativities of 1

2
and 1, respectively.

4.4.3 Entanglement Entropy

While for mixed states the above may be more adequate, the von Neumann entropy

S(ρ̂) = −Tr[ρ̂ ln(ρ̂)] (21)

of a density matrix ρ̂ introduced by von Neumann [30] can also be used to quantify
entanglement of pure states. Written in the eigendecomposition, Equation 21 gives

S(ρ̂) = −
d∑
i=1

λiln(λi). (22)

13
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The entanglement entropy is calculated by taking the von Neumann entropy of the
reduced density matrix of any one of the two subsystems by tracing over the other

ρ̂A = TrB[ρ̂] =
∑
i

〈iB| ρ̂ |iB〉 (23)

for subsystem A, where |iB〉 are a set of basis vectors for Hilbert space B, and likewise
for subsystem B. Indeed, it can be shown that the eigenvalues of the two reduced
density matrices are the same and thus the entanglement entropy is (see section A.1
of the Appendix for a proof). The idea is to measure the randomness in the reduced
state to reveal that (some of) the information is distributed on the composite state of
the system and thereby quantify mutual entanglement. The von Neumann entropy is

• concave, i.e.

S
(∑

i

piρ̂i

)
≥
∑
i

piS(ρ̂i) (24)

for any set of weights pi with
∑

i pi = 1 and density matrices ρ̂i.

• bounded above by ln(d), where d is the Hilbert space dimension.

• invariant under unitary transformations of the density matrix because∣∣ Û ρ̂ Û † − λ1̂∣∣ =
∣∣ Û ρ̂ Û † − λ ÛÛ †∣∣ =

∣∣ Û(ρ̂− λ1̂)Û †
∣∣ =

∣∣ρ̂− λ1̂∣∣ . (25)

Thus the eigenvalues and the von Neumann entropy are the same for ρ̂ and
Û ρ̂ Û †. This can be used to justify ignoring phases when they are unknown.
Two phase shift unitaries can be combined to transform the state by applying

ÛA ⊗ ÛB =
∑
mn

ei(φm+φn) |m〉 〈m| ⊗ |n〉 〈n| (26)

whereby all (two qubits) or six of eight (two qutrits) phases can be eliminated.

These properties are used for estimating the degree of entanglement in Section 7.4.

4.5 Leggett-Garg Inequality

In 1985, Leggett and Garg tried to develop a small set of assumptions that summarize
how we usually think of the macroscopic world [31]. They derived an inequality that
is similar to, for instance, a Bell inequality but instead of measuring the state of an
entangled system in different bases of the correlated parts, the state of a single system
is measured at different times ti to show not an incompatibility of quantum mechanics
with local realism but with what they termed macroscopic realism. For the derivation of
the inequality one imagines a quantum system with two possible states corresponding
to the two measurement outcomes Q = ±1. Three measurements are made at times

t1, t2 and t3, and the correlations Cij =
∑N

r=1

QriQ
r
j

N
between the outcomes Qi and Qj

after Nmeasurements can be shown to satisfy the inequality K = C12 +C23−C13 ≤ 1.

14
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This, however, is only true for theories satisfying the following two conditions:

• Macroscopic realism per se: A macroscopic system with two or more macroscop-
ically distinct states available will at all times be in one or the other state.

• Noninvasive measurability: It is possible, in principle, to determine the state of
the system with arbitrarily small perturbation on its subsequent dynamics.

A direct extrapolation of quantum mechanics to the macroscopic level denies this,
as written by the authors. While the goal of the experiments here is not a numeric
violation of this Leggett-Garg inequality, a line of argument is provided by which the
mere measurement by an independent apparatus necessarily influences the state of the
system and after that, the effect of such an intervention is demonstrated in Section 9.

4.6 PBR Theorem

Named after Matthew F. Pusey, Jonathan Barrett and Terry Rudolph [32], the PBR
theorem states that models in which the quantum state is interpreted as mere infor-
mation about an objective physical state of a system cannot reproduce the predictions
of quantum theory. The argument by which the authors arrive at this conclusion is
as follows. In general, the whole discussion about the quantum state either represent-
ing knowledge (epistemic models) or real physical states (ontic models) starts at the
assumption that there is a physical state, either the quantum state or some underly-
ing and more fundamental concept [33]. A probability distribution over the parameters
characterizing this physical state is ascribed to every quantum state. Thereby a mathe-
matical correspondence is established that allows for further investigations of the topic.
An ontic model for the quantum state is typically defined as one where the probability
distributions of different quantum states do not overlap at all whereas in an epistemic
model they can. If the distributions overlap, it cannot be said that the quantum state
is ontic as two different quantum states are then compatible with all the physical states
in the overlap region. To see how the PBR theorem emerges, one is to imagine the
independent preparation of two systems, each in either of two states, namely |0〉 or
|+〉 = 1√

2
(|0〉 + |1〉). The two systems are then brought together and are jointly

measured in the following entangled basis involving a third state |−〉 = 1√
2

(|0〉− |1〉):

|ξ1〉 =
1√
2

(|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉),

|ξ2〉 =
1√
2

(|0〉 ⊗ |−〉+ |1〉 ⊗ |+〉),

|ξ3〉 =
1√
2

(|+〉 ⊗ |1〉+ |−〉 ⊗ |0〉),

|ξ4〉 =
1√
2

(|+〉 ⊗ |−〉+ |−〉 ⊗ |+〉).

(27)
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Each outcome gives definite proof that the composite system was not in the state
|0〉 ⊗ |0〉, |0〉 ⊗ |+〉, |+〉 ⊗ |0〉 or |+〉 ⊗ |+〉, respectively. Under the assumption that
the two states |0〉 and |+〉 share an overlap region in their corresponding probability
distributions over the physical state, one arrives at a contradiction. The non-zero
probability of actually having the same physical state when the quantum states |0〉
or |+〉 are prepared is incompatible with what quantum theory dictates the outcomes
should be. This thought experiment is generalizable to all states and Hilbert space
dimensions as it can be repeated with two states |ψ1〉 = cos( θ

2
) |0〉 + sin( θ

2
) |1〉 and

|ψ2〉 = cos( θ
2
) |0〉 − sin( θ

2
) |1〉 and every pair of states can be written in this form

with orthogonal states |0〉 and |1〉 by simply rearranging the equations. The parameter
θ ∈ [0, π

2
] covers all values for the overlap between |ψ1〉 and |ψ2〉. The contradiction

arises when n systems are prepared in either |ψ1〉 or |ψ2〉, where n is the Hilbert space
dimension, and measured in an entangled basis that is constructed in analogy to the
two-dimensional case to rule out one product state per outcome. Thus the theorem.

4.7 Distinguishability of States

Strictly speaking, the PBR theorem assumes what is known as preparation indepen-
dence. While from the quantum mechanics side this is unproblematic because every
possible pair of states is considered, there is a possibility of the underlying physical
states being correlated in some way. Hence one could argue that it only applies for a
subspace of physical states of the composite system. A more general approach [34]
simply states that the probability of distinguishing two states as described by quantum
mechanics PQ strictly has to be less or equal than the probability of distinguishing the
two corresponding probability distributions PC . Introducing the absolute value of an
operator defined as |ρ̂| =

√
ρ̂†ρ̂ , the trace distance between density matrices ρ̂ and σ̂

D(ρ̂, σ̂) =
1

2
Tr|ρ̂− σ̂| (28)

can be used to get an expression for the quantum probability. The probability of being
able to distinguish two states by measuring the best choice of state corresponding to a
projector P̂ is closely related to the trace distance between the states, as it holds that

D(ρ̂, σ̂) = maxP̂Tr
[
P̂ (ρ̂− σ̂)

]
. (29)

This is proved by decomposing ρ̂− σ̂ into positive operators with orthogonal supports

ρ̂− σ̂ = ÛD̂Û † = Û(D̂+ + D̂−)Û † = Û(D̂+ − ˆ̃D−)Û † = Q̂− Ŝ, (30)

where D̂ is a diagonal matrix with the eigenvalues of ρ̂ − σ̂, D̂+ (D̂−) contains all

positive (negative) eigenvalues of D̂, ˆ̃D− = −D̂− and Q̂ and Ŝ, by construction, are
positive operators with orthogonal supports, i.e. they have positive eigenvalues and
eigenvectors corresponding to the non-zero eigenvalues that are mutually orthogonal.
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To compute the square root of a positive semidefinite and Hermitian matrix ρ̂, one
can, in general, work in the eigenbasis in which the square root of the matrix is given

by Û
√
D̂ Û †, where D̂ =

∑
i λi |λi〉 〈λi|, again, is the diagonal matrix of ρ̂ containing

its eigenvalues λi. This can be seen by squaring it Û
√
D̂ Û †Û

√
D̂ Û † = ρ̂. The

square root of the diagonal matrix can be obtained by taking the square root of the
eigenvalues (

∑
i

√
λi |λi〉 〈λi|)2 =

∑
i λi |λi〉 〈λi| = D̂. Hence by applying this lemma

to (ρ̂− σ̂)2 instead of ρ̂ and taking the positive root, we arrive at the following identity:

D(ρ̂, σ̂) =
1

2

∑
i

|λρ̂−σ̂i |, (31)

where λρ̂−σ̂i are the eigenvalues of ρ̂− σ̂. It also follows from the above decomposition
that |ρ̂ − σ̂| = Q̂ + Ŝ and because Tr(ρ̂ − σ̂) = Tr(Q̂ − Ŝ) = 0, we can write
D(ρ̂, σ̂) = Tr(Q̂). With P̂ projecting onto the support of Q̂ such that Tr

[
P̂ (ρ̂− σ̂)

]
=

Tr
[
P̂ (Q̂− Ŝ)

]
= Tr(P̂ Q̂) = Tr(Q̂), which can always be done, and then relaxing this

constraint, we get the following chain of inequalities which leads back to Equation 29:

Tr
[
P̂ (ρ̂− σ̂)

]
= Tr

[
P̂ (Q̂− Ŝ)

]
≤ Tr(P̂ Q̂) ≤ Tr(Q̂) = D(ρ̂, σ̂). (32)

It can then be deduced that the probability of being able to distinguish the states is
just 1

2

(
1 +D(ρ̂, σ̂)

)
. For pure states, the trace distance reduces to the simple form

δ(|ψ〉 , |φ〉) = D
(
ρ̂ = |ψ〉 〈ψ| , σ̂ = |φ〉 〈φ|

)
=
√

1− |〈ψ|φ〉|2 . (33)

This derives from the fact that, similar to Section 4.6, the two states can be written
as |ψ〉 = cos(θ) |0〉+ sin(θ) |1〉 and |φ〉 = cos(θ) |0〉− sin(θ) |1〉 with θ ∈ [0, π

4
]. Their

overlap is then s = 〈ψ|φ〉 = sin(2θ) and ρ̂− σ̂ = cos(2θ)(|0〉 〈0|− |1〉 〈1|) which yields
a trace distance of D(ρ̂, σ̂) = cos(2θ) =

√
1− |〈ψ|φ〉|2 . So the probability PQ is

quantified. Now, the classical trace distance between two distributions p(x) and q(x)

δC(p, q) =
1

2

∫
|p(x)− q(x)|dx (34)

is used to calculate the probability PC = 1
2
(1 + δC(p, q)) of being able to distinguish

the two probability distributions. From the concept of distinguishability one goes on
to introduce overlaps ωQ = 1− PQ

2
and

ωC = 1− PC
2

=

∫
min

[
p(x), q(x)

]
dx. (35)

The previous inequality for the probabilities of distinguishing states translates to ωC ≤
ωQ which states that the probability distributions describing the knowledge about the
real physical states cannot possibly overlap more than the quantum states. Intuitively,
this is just to say that one cannot have a disadvantage in discriminating states by
knowing about the actual distributions of the physical variables instead of the quantum
states. These concepts are important in discussing the ontology of the quantum state.
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4.8 Quantification of ”Epistemicness”

As it is highly interesting and worthwhile, a short summary of the principles for quan-
tifying what can be called epistemicness of the quantum state is given. First it was
shown that no maximally epistemic model where ωQ = ωC can reproduce all the pre-
dictions of quantum mechanics for Hilbert space dimension d ≥ 3 and that the lowest
value for the ratio ωC

ωQ
over all possible states tends to zero for growing Hilbert space

dimensions by using simple facts about mutually unbiased bases (for d ≥ 4) [34]. In
addition, Barrett, Cavalcanti, Lal and Maroney (BCLM) derived, using the Bonferroni
inequality, a noise tolerant way of measuring an upper bound for the following quantity:

k(ψ, φ) =
ωC(µψ(λ), µφ(λ))

ωQ(|ψ〉 , |φ〉)
, 〈ψ|φ〉 6= 0, (36)

where µψ(λ) and µφ(λ) are probability distributions over physical states λ correspond-
ing to the states |ψ〉 and |φ〉. The upper bound they found is best expressed as [35]

k0 ≤
1 +

∑
i<j Aij∑

i ωC(|c〉 , |ψi〉)
, (37)

where k0 = minjk(c, ψj). Aij = |〈ij1|ψi〉|2 + |〈ij2|ψj〉|2 + |〈ij3|c〉|2 is called antidis-
tinguishability, |ψi〉 are a set of n states, |c〉 is a reference state and |ijk〉 〈ijk| with
i = 1...n, j = 1...i− 1, k = 1, 2, 3 are three projectors defining a positive-operator val-
ued measure (POVM). Equation 37 can be easily generalized to mixed states [35]. So
the upper bound for k0 refers to the lowest overlap ratio between the reference |c〉 and
one state in |ψi〉. In general, k(ψ, φ) can be seen as a measure of the epistemicness of
the quantum state. Coming back to the distinguishability of states, the impossibility to
discriminate two quantum states can be explained by the overlap of the corresponding
probability distributions. But what happens if the quantum overlap and the classical
overlap of these distributions are not equal like in the maximally epistemic model? In
this case, the classical overlap, as argued above, has to be smaller and therefore the
impossibility of discriminating non-orthogonal quantum states cannot be fully explained
by the fact that the two quantum states are compatible with the same physical states.
Some additional explanation would be needed. The maximally epistemic model, which
is defined as k(ψ, φ) = 1 ∀ψ, φ, is the only one that does not have this problem. But it
does have the disadvantage of having been disproved mathematically [34]. The other
extreme case, which is the ontic model for the quantum state, has k(ψ, φ) = 0 ∀ψ, φ
and all the troubles of discriminating non-orthogonal quantum states are explained by
quantum mechanics itself. It means that the quantum state seems to truly have an
ontological quality in the sense that anything we describe with it can be seen as a
unique state of affairs. Another implication is that the probabilistic nature of quantum
mechanics is not reducible to talk about a lack of knowledge of a real physical state.
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Figure 5: Pulse sequence for creating an entangled spin state. The first laser pulse
intitializes the spins. The first radio-frequency (RF) pulse creates a superposition
between two nuclear spin states. A subsequent microwave (MW) pulse plays the role
of a CNOT gate on the electron spin. Then the state is recombined with a second,
phase-shifted RF source and a second MW to read to another electron spin state. The
switch for the APD signal is pulsed open for a brief time window right after the second
laser pulse begins to collect spin-dependent fluorescence as described in Section 2.2.
The energy levels in the term diagram on the right are explained further in Section 6.3.

5 Working with Spin States

5.1 Pulse Sequences

As an example for the measurement procedure, Figure 5 shows the pulse sequence for
creating an entangled state between electron spin and the spin of the 14N nucleus.
While the time scale is by no means in proportion, nor are any of the signal phases
accurately represented, the diagram serves as an illustration for the order of operations
that are applied. A first, 1 µs long laser pulse initializes the spins as described in
Section 2.1. An initialization pulse as well as a second laser pulse for reading the state
is employed in every pulse sequence. This is also true for the APD window created
by a pulse to the proper switch that allows the spin-dependent fluorescence to pass to
the counting device. To discriminate different nuclear spin states in the electron spin
0 state, often a microwave pulse is involved in the readout procedure that projects the
population from a state with electron spin me = 0 and nuclear spin mn, written as
|0,mn〉 = |0〉 |mn〉 = |0〉 ⊗ |mn〉 to a state |−1,mn〉 or |1,mn〉. The electron spin
state that best suits the rest of the pulse sequence is chosen, as the fluorescence only
depends on the absolute value of the electron spin. This MW pulse is seen on the
line termed MW2. To complete the example, between initialization and readout, an
entangled state is produced by creating a superposition between two nuclear spin states
by applying a π/2 pulse between two states. The term π/2-pulse refers to one quarter
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of the period of a Rabi oscillation. A subsequent π-pulse transfers the population in
only one of the two states two another state with different electron but the same nuclear
spin. Thereby an entangled state of the sort |ψ〉 = 1√

2
(|me,1,mn,1〉+ |me,2,mn,2〉), in

the ideal case, is created. The details as well as the recombination process are described
in Section 7 where the entanglement measurements are presented. In addition to the
general scheme of measuring spins, two special types of measurements are of great
importance to be able to work with spin states. These two methods are explored next.

5.2 Optically Detected Magnetic Resonance (ODMR)

Equation 11 gives a hint about what to expect when searching for resonances with
spectroscopic techniques like the Optically Detected Magnetic Resonance (ODMR).
ODMR is a technique that involves the application of a π-pulse of either a microwave
or a radio-frequency signal. The frequency of the pulse is scanned through a certain in-
terval of values to reveal resonances corresponding to energy levels or, rather, transition
frequencies in the sense of energy differences divided by ~. The expected resonance
shape, at least for high signal powers, involves a cardinal sine or sinc function, defined
as sinc(x) = sin(x)

x
. By setting t = T in Equation 11, one arrives at this conclusion:

P10(T ) =
1

1 + (2dT )2
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1 + (2dT )2

π

2

)2
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(
sin
(√

1 + (2dT )2 π
2

)√
1 + (2dT )2

)2

=
(π

2

)2

sinc
(√

1 + (2dT )2
π

2

)2
.

(38)

Indeed, this is the function describing the resonances seen in ODMR measurements.
For small signal powers however, the overall broadening 2

√
Γ2 + Ω2 (full width at half

maximum) is dominated by the natural lifetime Γ−1 of the state, thus resulting in an
approximately Lorentzian line shape [36]. The ODMR technique is used to measure the
transition frequencies between spin states to be able to make any spin manipulations.
The same principle applies for the electron spin as well as the nuclear spin. To be able
to see the nuclear resonances, however, it is necessary to apply a microwave pulse that
transfers the population from either the initial or the target nuclear spin state to another
electron spin state with the same nuclear spin. As indicated in the last subsection, this
is an often-applied method, e.g. for measurements involving only manipulations of the
nuclear spin. Once the transition frequency is known, usually one wants to know the
Rabi frequency for a certain signal power to be able to start manipulating the spin in
a controlled manner. The next measurement that is introduced does exactly this job.
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Figure 6: Nuclear Rabi measurement over several periods. The displayed oscilla-
tion has a Rabi frequency of Ω=(34.10±0.44) kHz, corresponding to a π-time of
T=(92.14±0.12) µs, which lies in the typical range of values used in the experiments.
Notice the apparent coherence time of arguably well over four periods for this Rabi
frequency. This is a major characteristic when a signal of this coupling strength, or a
slightly bigger one for that matter, is used to manipulate the nuclear spin over a time
interval that is within these bounds, e.g. the experiments outlined in Section 10.

5.3 Rabi Measurement

Instead of varying the frequency of a signal pulse with a fixed duration, a Rabi mea-
surement serves as a means by which the Rabi frequency of an interaction between the
oscillating signal and the quantum spin is to be worked out. After the spin initializa-
tion, a pulse is applied to initiate a Rabi oscillation starting from a certain spin state
and transferring its population to another. To measure the complete oscillation, a set
of measurements is done in which the length of the relevant pulse is varied over the
expected time for one or several periods of the Rabi oscillation. The resulting sinusoidal
signal can then be used to extract the Rabi frequency. For nuclear spin states, again,
a microwave pulse in the readout, cf. MW2 in Figure 5, has to be employed to get a
handle on the actual population in the initial or target spin state. For an illustration
of what an experimental result of such a procedure might look like, see Figure 6 which
shows a nuclear Rabi oscillation with Rabi frequency Ω ≈34 kHz or f = Ω

2π
≈5.4 kHz.

The sinusoidal character predicted by Equation 11 is typically found to agree extremely
well in all cases where the assumptions for the two-level model are expected to apply.
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6. THE DIAMOND

Figure 7: Photon antibunching indicating a single emitter, the nitrogen-vacancy center.
The diagram shows the number of occurrences, or counts, of two photons arriving in
the counting device with a delay time of τ (up to the width of the time bin). The gap
in the middle stems from the finite lifetime of the excited spin states. While the NV is
in its excited state, it will only emit a photon after a certain, characteristic time. For
small delays, this process rarely occurs twice. A model function with two exponential
decays [37] is used to show that g(2) < 0.5 for the typically measured singal-to-noise
ratios. This inference is used to provide proof that there is only one single NV center.

6 The Diamond

The diamond sample is equipped with a small lens etched onto its surface. To find out
whether there really is only one NV center under it, the photons in the fluorescence
signal emerging can be counted with a highly time-resolved counting device to calculate
the second order intensity correlation function g(2)(τ) which is defined by the function

g(2)(τ) =

〈
â†(0)â†(τ)â(τ)â(0)

〉
〈â†â〉2

, (39)

where â† and â are creation and annihilation operators of the field and 〈...〉 indicates
time averaging. This, however, has to be translated into quantities that can be com-
puted from the data. As the counting device has a finite time resolution, the number
of photons in this time window can only be either 0 or 1 and the same applies for the
product of the number of photons at 0 and the number of photons at time τ . Hence
g(2)(τ), up to normalization, equates to the number of photon pairs with a delay τ .
Figure 7 shows the result of such a statistic where photon antibunching can be seen.

22



6. THE DIAMOND

t (ns)
0 100 200 300 400 500 600 700 800 900 1000 1100

N
or

m
al

iz
ed

 c
ou

nt
s 

(a
.u

.)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

m
e
= -1

m
e
= 0

0 100 200 300 400 500 600 700 800 900 1000 1100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 8: Fluorescence curve of the NV center. Depending on the electron spin me,
the fluorescence over time differs in the first few hundred nanoseconds before an equal
population state is established by the interaction with the laser. The difference in
fluorescence indicated by the red box is the ultimate tool for reading out any spin
state, including the result in Figure 6. The horizontal interval of the red box shows the
time window chosen by maximizing the visibility or contrast, as explained in the text.

6.1 Fluorescence

To be able to distinguish any two spin states, it is necessary to filter out only a small
piece of the fluorescence, as shown in Figure 8. The time window is chosen to maximize

V =
r0 − r−1

r0 + r−1

,

the visibility, with rme being the counts or the count rate of the state with electron
spin me. A similar quantity, the contrast, is mainly used in the description of the data:

C =
r−1

r0

. (40)

Alternatively, r−1 and r0 can be substituted with the lowest and highest value of any
function, respectively. While the window for the fluorescence signal, depicted as the
box in Figure 8, should, actually, be determined by the relative error of the difference in
counts assuming for example Poissonian distribution, it turns out to give no significantly
different answer than simply maximizing the visibility or the contrast for that matter.
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6. THE DIAMOND

Figure 9: Energy level splitting due to a nearby 13C atom in the diamond lattice. The
diagram shows a low-power ODMR of an electron spin transition from me = 0 to
me = −1 with a microwave pulse duration of 12.5 µs revealing a hyperfine splitting of
400.0±4.0 kHz. While it is not evident, it seems plausible to assume that this splitting
stems from the hyperfine coupling of the electron spin to a nearby 13C nucleus with
spin 1

2
and, apparently, no forbidden electron spin transitions at this lattice site and

magnetic field magnitude [38]. The inset indicates the dips’ positions in Figure 12.

6.2 Neighbouring 13C Spin

An important feature of this particular NV center in this diamond sample is its hyperfine
splitting due to the coupling to a neighbouring spin, presumably the spin of a 13C
nucleus. Figure 9 shows an ODMR revealing the splitting that results from a hyperfine
coupling between electron spin and the spin of the 13C nucleus. The splitting is close
to 400 kHz which is at least consistent with the assumption of a 13C atom being the
cause of it [38]. The polarization seems to be very close to zero as the depths of the
two dips agree to 97 % assuming a Gaussian distribution of the depths and using the
overlap in Equation 35. The forbidden electron spin transitions described in previous
works [38, 39] seem to be suppressed by the lattice site of the nucleus and the relatively
weak magnetic field of approximately 300 Gauss. While no manipulation of its spin
has been achieved and for electron spin manipulations with high microwave powers
it is negligible, the 13C nuclear spin plays a role in discussing the dephasing process
of the electron spin. It also gives a lower bound for microwave powers in addressing
the electron spin in an isolated manner. The utilization of this further qubit system
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Figure 10: Oscillations between states of the 13C nuclear spin in the electron spin state
me = −1. It is unclear what the origin of these oscillations is. They are obtained
by preparing a single state corresponding to one of the dips in Figure 9 with a slow
microwave pulse. The other possible nuclear spin state is driven to the electron spin
state 1. After a certain evolution time, the first pulse is applied again which results in
the displayed and apparently anharmonic oscillation with frequency 117.02±0.89 kHz.
This value is extracted from the spectrum of the data, as seen in the inset of the data
plot, by fitting two Lorentzians to the double peak. The pulse sequence is also shown
and the energy levels in the term diagram are explained in the following section (6.3).

would have to involve a polarization procedure for the spin [39, 40]. In addition to the
hyperfine splitting, the carbon nucleus exhibits anharmonic oscillations between spin
states in the electron spin state -1, as can be seen in Figure 10. The hyperfine coupling
between electron spin and the 13C spin is anisotropic in the me = −1 state which,
using a hyperfine tensor coupling and the secular approximation, yields the eigenstates

|−1,+〉 = cos

(
θ

2

)
|−1, ↓〉+ sin

(
θ

2

)
eiφ |−1, ↑〉 ,

|−1,−〉 = − sin

(
θ

2

)
e−iφ |−1, ↓〉+ cos

(
θ

2

)
|−1, ↑〉

(41)

with θ depending on the tensor components and |↓〉 and |↑〉 being spin states of the 13C
nuclear spin [38]. In general, this procedure predicts four transition frequencies. The
forbidden transitions decrease in amplitude for lower θ and vanish with it which seems
to be the case. By using that the difference of the transition frequencies to electron
spin 1 is nearly equal to the ones to electron spin -1, one would infer that the two
states are near degeneracy and that the splitting is less than the natural linewidths. A
mixing process between the carbon spin states thus at least does not seem impossible.
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Figure 11: Structure and labelling of the relevant energy levels. The first number
indicates the electron spin me and the second number gives the 14N nuclear spin mn.
The two 13C spin states for each level, degenerate at zero magnetic field for me = 0 due
to the lack of a quadrupolar term in the S = 1/2 hyperfine interaction, are omitted.

6.3 Energy Levels

Spin states are written as |memn〉 (cf. Figure 11) and when the 13C nuclear spin plays a
role as |memnmc〉. While for some experiments it is of no importance, the populations
in the me = ±1 states being non-zero due to imperfect polarization of the electron spin
affects the procedure of the experiment, the analysis or both. According to previous
investigations, the electron spin is typically polarized to 70-90 % into the me = 0 state
by the optical polarization process [41]. Consequently, every counter-oscillation etc.
has to be considered for an accurate description of the systems dynamics. In general,
this nine-level subsystem alone allows for a lot of interesting quantum information
processing applications. In Section 7, entangled states involving |0, 0〉 and |−1, 1〉
and |0, 0〉, |−1, 1〉 and |1,−1〉, respectively, will be generated. After that, a similarly
entangled state will be prepared and its decoherence process is reversed by flipping the
non-zero electron spin in Section 8. Then the decoherence is used to demonstrate the
effect of a measurement in Section 9 and finally, the nuclear spin of the 14N atom is
prepared in and projected onto certain states to demonstrate the possibility of creating
orthogonal states and testing the ontology of the quantum state with it in Section 10.
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Figure 12: Polarization of the nuclear spin. This ODMR shows the degree to which the
14N nuclear spin is polarized. The deepest dip corresponds to the transition |0, 1〉 →
|−1, 1〉. The second dip near 1995 MHz is |0, 0〉 → |−1, 0〉 and |0,−1〉 → |−1,−1〉
near 1993 MHz is barely noticeable. Using the fact that the populations in the initial
spin states are proportional to the depths of the dips, one gets that 88.6±1.6 % of the
population is in the mn = 1 state. The details of the fitting are described in the text.

One important insight comes through the fact that the depths of the dips in the
ODMR in Figure 12 should be proportional to the relative populations of the spin
states which can easily be derived from the linearity of the fluorescence in the electron
spin 0 population. Two functions of the type in Equation 38 are fitted per dip for every
14N spin state to give a proper fitting function. The ratios between the depths of the
dips is held constant. The polarization process of the nucleus involves processes that
increase the spin by one and ones that decrease it by one. The rates should not depend
on the initial spin as the transition frequencies in the excited state are virtually the
same but they depend on the direction. If r is the rate by which the spin is increased
by one and s the rate by which it is decreased by one, a simple steady state solution of
the rate equations gives the population ratios p1

p0
= p0

p−1
= s

r
. Therefore the ratio of the

populations between nuclear spin states is the same and the distribution is the same for
different electron spin states. This also explains the polarization of the mn = 1 state
because s > r. The result of the fit is a polarization of 89 % of the nuclear spin state
1 when restricting the analysis to the electron spin 0. A high degree of polarization is
obviously desirable, for it is of great interest to have a state that is as pure as possible.
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Figure 13: Free induction decay (FID) of the electron spin. By applying a π/2-pulse, an
equal superposition between the two electron spin states |0, 1〉 and |−1, 1〉 is prepared.
After a certain evolution time, another π/2-pulse is applied to potentially complete
the transition to the state |−1, 1〉. This way the coherence time of the electron spin is
measured. The microwave frequency is detuned on purpose by approximately 500 kHz
to create the oscillatory behaviour seen at the beginning while there is still coherence.

6.4 Lifetimes

Figure 13 shows the free induction decay (FID) measurement of the electron spin
which involves the preparation of an equal superposition and the attempt to finalize
the transition after a certain time. It shows a coherence time, usually called T ∗2 , of
approximately 4 µs. The coherence time of the nuclear spin has been determined to
be 8.3±1.1 ms by observing oscillations in the FID signal up to 5 ms. The spin-lattice
relaxation time, or T1, of the electron spin state 0 is measured as 3.48±0.99 ms by
observing the decay up to 10 ms. The transversal, or spin-spin relaxation, time, or T2,
of the electron spin which is measured by applying a π-pulse between the two pulses in
the FID gives the degree to which the coherence information is stored in the proximal
environment such that it can reappear in revivals of the electron spin coherence. For
diamonds with impurities, typical values range up to few hundred microseconds [3,
42], depending on the diamond sample and the magnetic field strength. There is some
indication that the 13C nuclear spin decays with a time constant of approximately 200
µs. This estimate was established by preparing a certain carbon spin state, waiting and
then reading the spin state. The next sections are dedicated to the main experiments.
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7. SPIN ENTANGLEMENT

7 Spin Entanglement

7.1 General Scheme

The idea of showing entanglement relies on the decoherence behaviour of an entangled
state. As it involves a superposition of two electron spin states, these two components
are expected to lose their phase relationship because the electron rapidly decoheres
by interacting with its environment. By measuring the degree of coherence, it should
be possible to track the loss of coherence when transitioning through entanglement
and with increasing evolution time for entangled states. The coherence is measured
by scanning the phase of the radio-frequency signal coming from RF2 in Figure 5
where the pulse sequence for generating an entangled qubit-qubit state, ideally of the
form |ψ〉 = 1√

2
(|0, 0〉 + |−1, 1〉), is depicted. When recombining the state, the Rabi

oscillation between |0, 1〉 and |0, 0〉 that was initiated by the π-pulse from RF1 is
continued. By introducing a phase shift, here it is done using a second source, one can
influence the direction of the oscillation up to the point of reversing it halfway. The
scan gives a sinusoidal oscillation (cf. for example Figure 14) and the contrast can be
used as a measure of coherence. This is done for different degrees of entanglement
and different evolution times of the state. By observing a minimum of coherence
after an evolution time of 5 µs for a maximally entangled qubit-qubit state and by
showing the complete loss of coherence after an evolution time of 10 µs, the conclusion
is drawn that the electron spin and the spin of the 14N nucleus are entangled and
that the degree of entanglement stands in a certain relationship to the degree of
coherence that is destroyed by this time evolution. In the case where the coherence is
lost completely, two incoherent spin populations counter-oscillate in the recombination
process regardless of the phase shift and, effectively, no oscillation can be observed.
This is the general scheme by which entanglement is demonstrated and even quantified.
Generally speaking (this holds for all, not only the entanglement experiments), the
electron spin and the nuclear spin initially are not in a pure state but an incoherent
mixture of all the spin sates with |0, 1〉 being the most highly populated one, as
explained before. But this state is still treated as a pure state while keeping track of
the observable influences of the other populations on the readout fluorescence, wherever
they are present. This section on entanglement is divided in the following way. First,
in Section 7.2 the way of measuring coherence is described and the decoherence profile
of an entangled qubit state is shown. It becomes evident that coherence is completely
lost after a long enough evolution time. Then the transition through entanglement
is discussed with a demonstration of the degree of coherence after 5 µs for states of
different degrees of entanglement. An apparent minimum is observed for the state that
ought to be maximally entangled. After that the degree of entanglement is quantified
by means of estimating errors and using facts about the observed Rabi oscillations
before the observed symmetry is looked at in detail and a generalization is attempted.
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Figure 14: Phase scan of the radio-frequency pulse that constitutes the last step in
recombining the entangled qubit-qubit state. One RF source is used in preparing the
entangled state while the second is used to recombine it. The second source is phase
shifted by the angle that is plotted on the x-axis. The Rabi oscillation is completed
with a phase shift of 235◦, reversed with 55◦ and by scanning the phase, the complete
oscillation is recovered. Its contrast is used as a measure for the degree of coherence.

7.2 Coherence Measure

The proof of entanglement by witnessing the decoherence of the state works by getting
a handle on the quantity called coherence. The phase scan of the combining RF source
in Figure 14 is an example for the method that is employed. For any entangled state
and after any time duration of letting it evolve freely, this tool can be used as the
benchmark for the question about the degree to which a phase relationship still exists
between the spin components of which the state is composed. The phase shift of 235◦,
probably stemming from the hyperfine splitting due to the 13C nucleus, is used for
measuring the decoherence profile of the state (cf. Figure 15). It reveals an oscillation
that is attributed to the interaction with the carbon nucleus. The decoherence profile
of the entangled qubit state resembles the FID measurement in Figure 13 up to a
horizontal reflection due to the fact that the state in which the entangled state is
recombined does not coincide with the readout state in this case. One can see that
there is still coherence after 5 µs which is used in the next section to demonstrate a
minimal coherence for the maximally entangled state that is diminished but finite. In
addition, Figure 16 shows the lack of coherence after 10 µs via a direct Rabi oscillation.
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Figure 15: Decoherence profile of a fully entangled qubit-qubit state. The entangled
state is prepared and after a certain evolution time, it is recombined (see Figure 5 for
the pulse sequence). After 5 µs, there still seems to be coherence (cf. Figure 18).
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Figure 16: Lack of coherence after an evolution time of 10 µs. The application of RF
pulses with different durations that cover two full oscillation periods is illustrated here.
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7.3 Transitioning through Entanglement

To get a full picture of the entanglement process, an additional variable is introduced
which is the population transfer η. To understand how it is defined, the procedure has
to be explained first. The microwave that is providing the entangling pulse produces a
Rabi oscillation for the relevant transition with the duration of a π-pulse being T . To
create any partially entangled state, a pulse of length kT is applied with k ∈ [0, 2]. For
the recombination of the state, a pulse of length (1− k)T is needed to get a 2π-pulse
in total. The stipulation of this exact procedure ideally generates a state of the form

|ψ〉 =
1

N

[
|0, 0〉+ cos

(
kπ

2

)
eiφ1 |0, 1〉+ sin

(
kπ

2

)
|−1, 1〉 eiφ2

]
, (42)

with the approximations described in Section 4.1 (cf. Equation 11). N is the normal-
ization of the state and φ1 and φ2 are arbitrary phases. The effect of a slight detuning
and off-resonant driving of populations in other spin states is discussed in Section 7.4
where a number is put on the degree of entanglement that is achieved by this experi-

ment. The population transfer is defined as sin
(
kπ
2

)2
with the right half folded up. It

is the total population transfer in the Rabi oscillation and can be written as follows.

η(k) =


sin

(
kπ
2

)2

if k ∈ [0, 1]

1 + sin

(
(k−1)π

2

)2

if k ∈ (1, 2]

(43)

This quantity is chosen as the descriptive parameter for the entangled states in what
follows as the degree of entanglement is expected to depend on the probabilities for
the respective states and not the amplitudes. It also allows the transition through
entanglement to be illustrated in a convenient way. The next page shows contrast
measurements as described above after 5 µs of evolution time (cf. Figure 15) for
states of different degree of entanglement parametrized by the population transfer η.
In Figure 17, the measured oscillations for four entangled states are juxtaposed as
a comparison of the degree of coherence. Figure 18 shows the extracted contrasts
defined as two times the oscillation’s amplitude divided by its maximum value. Both
indicate a near perfect symmetry in η as is expected theoretically. So the maximally
entangled state with η = 1 indeed has the lowest degree of coherence. The conjecture
of the fact that this state seems to have vanishing coherence after 10 µs and the
observed minimum in degree of entanglement leads us to the conclusion that it actu-
ally is a maximally entangled state up to experimental error. Considering that there
are disregarded variables in this superficial analysis and that measured quantities bear
uncertainties, the next destination is the determination of the real degree of entangle-
ment of this exact state. To this end, it will be necessary to discuss phases, involve an
additional spin state and the concepts from Section 4.4 for measures of entanglement.
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Figure 17: Coherent oscillations in recombining states with different degrees of entan-
glement. The population transfer η, defined in the main text above, parametrizes the
state space which is doubly covered to test the symmetry and agreement with theory.
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Figure 18: Contrasts quantifying the degree of coherence for the four states in Figure
17 above. The symmetry in the data indicates a maximum in entanglement at η = 1.
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7.4 Degree of Entanglement

The first thing to notice is that the description of the state in Equation 42 completely
neglects the off-resonant but coherent driving of the population in the state |0, 0〉 to
the state |−1, 0〉. The estimation of this process has to involve the uncertainties in
frequencies as does the discussion about the degree of entanglement in general. The
electron spin transition frequencies are known to drift slowly over hours and days due
to extremely fine changes in the magnetic field. To compensate for any such influence
on the measurement, the data acquisition for the point describing the state with η = 1
in Figures 17 and 18 was, just as all the other ones, interrupted for intermediate
measurements of the transition frequencies approximately every one and a half hours.
While the uncertainty of these measurements is completely negligible, the values do
show a dispersion of 8 kHz. To cover any frequency jitter during the measurement,
an uncertainty of 50 kHz is assigned to the transition frequency. Using the two qubit
model described in section 4.2.2, the amplitudes are calculated. The new state is now

|ψ〉 = α |0, 0〉+ ε |0, 1〉+ β |−1, 1〉+ ζ |−1, 0〉 , (44)

with α, β, ε and ζ determined by taking an equal statistical mixture of the two 13C spin
states. This procedure is justified by the assumption that there is no phase relationship
between the states and so no interference phenomena are expected. An error in radio-
frequency for the 14N nucleus is not considered as these transition were not observed to
drift and the measurement uncertainty is negligible. For the measurement in Figure 14
with a π-pulse duration of 375 ns and a hyperfine splitting of 2.199 MHz, the relative
entanglement entropy, defined as S(ρ̂)

maxρ̂[S(ρ̂)]
, calculated with the above assumptions is

S[ρ̂A]

ln(2)
= 93.9± 1.3 %, (45)

where an additional contribution to the error stems from an uncertainty of 6 ns in
the Rabi period. It is determined by a comparison of the observed oscillation with
prediction. During this particular measurement no intermediate ODMRs were made
and a microwave detuning of 60 kHz revealed by an ODMR conducted shortly after
the measurement is also included in the above value for the entanglement entropy.
The deviation from maximal entanglement is a consequence of a total population of
2.64±0.46 % in the states |0, 1〉 and |−1, 0〉. The error is dominated by the uncertainty
stipulated for the transition frequency. The values broadly agree with a six level model
while a two level model predicts a slightly higher degree of entanglement. The relative
negativity, defined as −2N (ρ̂), is a second estimator for the degree of entanglement:

− 2N = 94.85± 0.91 %. (46)

In summary, the construction of the estimators for the degree of entanglement are
based on simple observations about Rabi oscillations and the associated uncertainties.
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Figure 19: Recombination of partially entangled states described by the population
transfer η using two different π-pulse durations. The apparent offset at the symmetry
point derives from a phase shift that was optimized for short π-pulses and a normaliza-
tion using the maximum value which is reduced by this inadequate phase. The dashed
line shows a simplified model ignoring the effects of microwave phase rotations, off-
resonant driving, remnant coherence and the presence of populations in the electron
spin state me = −1, all depending on η. These effects are expected to produce the
shape of the data curves. The value at the symmetry point should be (nearly) a shared
point between model and data because it is near to the decoherence limit of the counts.

7.5 Symmetry

A further analysis of the observed symmetry when transitioning through entanglement
is given below, connected to the data shown in Figure 19. It shows the recombination
of different entangled states after 5 µs. To quantify the symmetry, the asymmetry is
defined as the absolute value of the difference between symmetric measurement points

s̄ =
<1∑
η=0

|r∗η − r∗2−η|, (47)

where r∗η is the normalized count rate for the state with entanglement parameter η.
For the three depicted data sets, the respective mean values and standard errors are

s̄1 = 2.78± 0.76 h,

s̄2 = 2.03± 0.96 h,

s̄3 = 4.48± 0.91 h.

The lowest value corresponds to 1 % of the contrast. This seems fairly low and it is
another indicator that the highest entanglement should be found very close to η = 1.
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Figure 20: Free induction decay measurement of a superposition of all three electron
spin states. As a reference for the investigation of entangled qutrit states, the FID of
an equal superposition of the states |0, 1〉, |−1, 1〉 and |1, 1〉 up to 10 µs is provided.

7.6 Generalization to Qutrit Entanglement

The procedure of the last sections could be generalized to qutrit states involving all
three spin states for both the electron and the nitrogen nucleus. This endeavour is
only suggested in this last section on entanglement. The idea is, again, a dense sam-
pling of partially entangled states combined with an observation of their decoherence
behaviour. Figure 20 shows a FID measurement of a state that is an equal superposi-
tion of all electron spin sates. It serves as a comparison for the decoherence profile of
the entangled qutrit state in Figure 21 which involves the recombination of the state.
Figure 22 is the analogous measurement to Figure 19. Note that for the decoherence
profile a slightly different sequence is used than for the entanglement transition mea-
surement. In the former, the population in the state |0, 0〉 is transferred to |−1, 0〉.
Then the main population in |0, 1〉 is placed in |0, 0〉 and two subsequent RF split the
population on the three nuclear spins in electron spin state 0. Lastly, two microwave
pulses create a partially entangled state. Neglecting off-resonant driving, the state is

|ψ〉 =
1

N

[
|0, 0〉+

√
1− η

[
|0, 1〉+ |0,−1〉

]
+
√
η
[
|−1,−1〉+ |1, 1〉

]]
(48)

for η ∈ [0, 1] and with the phases neglected. The measurement in Figure 22 does not
use the first pulse. But the asymmetry is mainly attributed to measurement uncertainty.
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Figure 21: Decoherence profile of an entangled qutrit-qutrit state. The state is prepared
and after a certain evolution time it is recombined in |0, 0〉 from where it is read out.
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Figure 22: Transition through qutrit entanglement. The data exhibits an asymmetry of
1.10±0.39 % as defined in Equation 47 that is attributed to measurement uncertainty.
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8 Reversing Decoherence

8.1 Concept

This chapter deals with the problem of reversing decoherence in the most direct manner,
so far as it is possible. To this end, the only quantum mechanical entity that is
attributed to the decoherence process is used to induce a rewinding process: the
spin, more precisely the electron spin in this case. Insofar as the decoherence of the
electron spin is governed only by the spin state and a time-independent Hamiltonian,
the loss of phase coherence due to perturbations caused by the surrounding system
should be perfectly reversible for any decoherence time. As these conditions are not
expected to actually apply to the given system, limitations on the evolution time are
anticipated by the time-dependence of the Hamiltonian alone. The degree to which
these limitations can be exhausted and what limitations are set by the procedure itself
is the subject matter of a set of experiments conducted for the purpose of developing
a direct method of preserving coherence via an actual reversal of the decoherence
mechanism. An entangled state, similar to the qubit state described before, is prepared
and after a fixed evolution time, the non-zero electron spin component is flipped to
induce a reverse gear evolution of the system. After exactly the same evolution time,
up to accuracy of the electronic devices, the spin is flipped back to its original state.
This way the complete time evolution of the electron spin should be compensated,
at least in the ideal case. The coherence is measured in the same way as for the
entanglement demonstration, described in Section 7.2. After applying the rephasing
sequence, the population in |−1, 1〉 is brought back to |0, 1〉 where an oscillation in
the recombination of the state is measured by applying a last readout MW pulse to
|1, 1〉. Every spin flip involves two short (≈ 200 ns) MW pulses. An entangled state

|ψ〉 =
1√
2

[
|0,−1〉+ |−1, 1〉

]
,

of course idealizing the procedure and also ignoring phases, is used to reduce off-
resonant driving of the population in the electron spin 0 state. A single spin flip gives

|ψ〉 =
1√
2

[
|0,−1〉+ |1, 1〉

]
.

It is realized by applying the transitions |−1, 1〉 → |0, 1〉 → |1, 1〉 in this order. One pair
of spin flips with an evolution time of τ preceding each of them is called a correction.
Section 8.2 presents a direct measurement of the coherence during a free evolution
of the state. Then, in Section 8.3, the limits of using a single correction are being
explored. The last section (8.4) discusses the results obtained from using multiple
corrections. An analysis of the observed data in terms of the underlying mechanisms
and the conclusions for the efficacy of the procedure is given for both the case with the
single correction (2 spin flips) and the case with multiple corrections (2N spin flips).
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Figure 23: Contrast as measure of the degree of coherence for free evolution of an
entangled qubit-qubit state. As before, the contrast is extracted from the phase scan
in the RF source recombining the entangled state. The error bars are standard errors
calculated from a sinusoidal fit. The oscillations are attributed to the interaction of
the electron with the 13C nucleus. This curve will act as a reference in Section 8.4.

8.2 Free Evolution

To be able to observe an improvement in coherence time, a reference is needed. The
coherence measurements for a free evolution of the entangled state are shown in Figure
23. It is taken out of a set of measurements using multiple spin flips for rephasing the
electron, discussed in Section 8.4, with MW π-pulse durations of 206 ns and 204 ns for
the two pulses making up one spin flip. For the measurements in the next section, a
separate curve is acquired with the parameters used there. So Figure 23 serves only as
an example. The two data sets, however, agree on the most important characteristic
which is coherence time. As discussed before, after an evolution of 6 µs, every rea-
sonable degree of coherence is lost. That is the point where the degree of coherence
has dropped to less than a fifth and slowly decays without any observed revivals. It
will be argued that this coherence time can already be extended by performing a single
spin flip. The quantity that will be used as a comparison to the free evolution time is
the total evolution time T = 2Nτ , where N is the number of corrections and τ is the
evolution time preceding every spin flip in the sequence. The idea is to show that even
though the system is in two entangled states that should decohere at a similar or even
the same rate, the addition of the evolution times in each does not naively compare
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Figure 24: Coherence after correcting with one pair of spin flips. The time axis gives
the sum of evolution times preceding the spin flips. Notice the slow decay of coherence
as measured by the contrast of the oscillations at equal time (cf. Figure 25). This
seems to be in strong opposition to the free evolution of the system as depicted in
Figure 23. The small number of spin flips suggests an explanation beyond fidelities.

to an equivalent evolution time in one of them because the evolution is (partially)
reversed. So for the total time in just one of the states, the time axis termed T in
the relevant diagrams has to be halved. But the actual definition of T seems to be
justified well because it emphasizes the difference between free evolution and evolution
interrupted by spin flips. Both durations will be called T , distinguished by the context.

8.3 Single Correction

As will be discussed later, the application of multiple spin flips is slightly problematic
due to the somewhat hard problem of comprehending the full process in a theoretically
successful manner. But a single correction involves only two spin flips, or four MW
pulses, and is thus within a realm that can be modelled easily. Figure 24 shows
a juxtaposition of the frequently mentioned oscillations in combining the entangled
state for different times T which are total evolution times, as described above. It is
apparent that the coherence does not decay quickly on a short time scale as 6 µs. The
quantified version of it is seen in Figure 25, where the contrasts for each evolution time
are plotted combined with their standard errors and also a reference curve measured
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Figure 25: Contrast as coherence in rephasing the electron spin with one pair of spin
flips. The contrasts of the oscillations in Figure 24 are extracted by fitting a sinusoidal
function (orange curve). The coherence during a free evolution of the state using the
same parameters is shown as a reference (green). It is not the curve in Figure 23. Here,
the π-pulse duration of the two spin flip MW pulses is 216 ns and 252 ns, respectively.

for the free evolution of the system with the same parameters for the MW pulses. The
durations of the MW pulses are 216 ns and 252 ns for the transitions |0, 1〉 ↔ |−1, 1〉
and |0, 1〉 ↔ |1, 1〉, respectively. An important thing to consider is the entirety of
effects that can lead to an increase in observed contrast, at least for the case with
the correction applied. Consider the initial state before applying MW pulses, which
is something like 1√

2
[|0, 1〉 + |0,−1〉]. An imperfect MW pulse transfers most but

not all of the populations in the transition |0, 1〉 ↔ |−1, 1〉 and some but not a zero
amount of the populations in the transition |0,−1〉 ↔ |−1,−1〉. The same applies
for a MW pulse to the electron spin state 1. Coherence between the two nuclear
spin states in the non-zero electron spin state is created. But the important feature
for the coherence measurement is the similarity of the amplitudes and this feature is
suppressed by the high ratio deriving from the goodness of the pulses. Letting the
electron spin contributions decohere from each other and applying the pulse again
gives a negligible ratio. Applying a RF π/2-pulse and scanning the phase of the signal
does not give any contrast in the extreme case of only one state being populated.
This is also the reason why incoherent populations do not give any contribution at
all. These considerations lead to the conclusion that there should be no significant
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contribution to the observed contrast once the electron spin components have dephased
and therefore the above data cannot be explained by any fidelity arguments about the
spin flips connected to off-resonant or imperfect driving. On the contrary, the extra
MW pulses are even expected to lower the contrast. Some genuine coherence has to
be present for the contrast to be of any appreciable value. The initial population in
|0, 0〉 counter-oscillates with respect to the main population in |0, 1〉. This can be
seen by imagining the states |0, 1〉 and |0, 0〉 forming a qubit with states on the north
and south pole on the Bloch sphere. The first π/2-pulse brings them to the equator.
The transition |0, 0〉 ↔ |0,−1〉 plays no important role because the relative phase is
conserved. When a portion of the population in |0,−1〉 is lost through off-resonant
driving, the two states are kinked down equally on the Bloch sphere. Any relative phase
that is picked up during the pulse sequence is the same for both of these incoherent
contributions. The recombining RF pulse rotates the states by an axis on the equator
which always results in opposite z-components. The contrast decays at the latest after
T = 40 µs to approximately 5 % and does not rise again. The coherence time is
improved by a factor of five through this correction consisting of one pair of spin flips.

8.4 Multiple Corrections

As can already be seen in the previous data (cf. Figure 25), the best strategy to rephase
a superposition of the electron spin seems to be with a single evolution time τ � 1 µs.
The reason why this is evident is the fact that after this time a significant portion
of the coherence seems to be already lost even after a single correction. Adding
a few corrections after that is not expected to increase the coherence at any point
which agrees with observations. A similar reasoning as before could be applied for
the observed data using the π-pulse durations of the two MW pulses, namely 202
ns and 206 ns, respectively. The important distinction, however, is the short single
decoherence time τ that does not allow for the assumption of complete decoherence.
While this puts a constraint on the convenience of the analysis, a few simple facts
can be established as a starting point and then the rest of the argument is developed.
According to a nine level model, the spin flip in the direction |−1, 1〉 → |1, 1〉 coherently
guides 98.68 % of the populations in the initial states |−1, 1〉 and |0,−1〉 to the target
states |1, 1〉 and |0,−1〉 and 98.69 % in the other direction. The off-resonant driving
of the population in the state |0,−1〉 is very low (<0.5 % population transfer) for
both pulses. So the argumentation from the last section certainly applies to some
number of corrections in the sense that if there were no coherence after one single
decoherence time τ , there would be no contrast either. The other extreme case is
τ = 0 where, in the ideal case, no loss of coherence is expected due to the fast Rabi
oscillations of the spin flips. The finite fidelity of the spin flips, however, can lead to a
reduction in the observed contrast. Even though the off-resonant driving is extremely
low for π-pulses, the sequential application of pulses can lead to a coherent build-up
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Figure 26: Reversing decoherence without decoherence. The total effect of the co-
herent manipulations involved in the rephasing procedure are studied by applying spin
flips without letting the state decohere freely and measuring the contrast. The yellow
band is the standard error. Note that each correction involves one pair of spin flips,
where a spin flip is a transition between electron spin 1 and -1. A decay function of the
form ae−(c/c∗)p is fitted from which the exponent p=1.45±0.30 and the decay constant
c∗=193±23 are extracted. The same procedure is applied for the curves in Figure 28.

of populations due to the amplitude of the off-resonant Rabi oscillation that is not
low. For example, an application of ten corrections within the nine-level model gives a
distribution of populations of 48.3 %, 21.2 %, 14.8 %, 14.1 % and 1.3 % among the
states |−1, 1〉, |1,−1〉, |0,−1〉, |−1,−1〉 and |0, 1〉, respectively, when starting with

1√
2

[|−1, 1〉 + |0,−1〉]. Considering that 10 corrections correspond to 40 MW pulses,
this should not be too surprising. Looking at the two states that are supposed to be
recombined, this would mean a reduction in contrast to 64 % of the initial value when
the overall reduction in fluorescence counts is ignored (cf. Figure 26 for a comparison).
But in the relevant case there is a non-zero decoherence time between spin flips and
thus the remnant populations of one pulse, which are expected to be very small as
described above, decohere not only once but also during the application of the two
pulses connecting to the second electron spin state and the evolution time in said
until the correction cycle is completed. So the total dephasing time of the remnant
populations is 800 ns up to 2400 ns, depending on the method as discussed later.
Comparing with Figure 23, one notices that this should be enough to destroy most of
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Figure 27: Coherent oscillations after rephasing with multiple spin flips. The diagram
shows phase scans after different numbers of corrections and a single decoherence time
τ of 400 ns. Most noticeable is the slow fading away of the contrast (coherence) that
lasts up to the 50th correction which corresponds to a total procedural time of 81 µs.

the coherence. The consequence is that the coherent build-up of remnant populations
in unwanted states is not only suppressed but also partially compensated for by the
incoherent components arising from the decoherence process. Even if this were only
the case for one of the electron spin states, e.g. because the rephasing is successful,
this would then mean that the reversal of the decoherence was successful and thus
a deviation from this description would even be a positive feature. Secondly, the
distribution of the populations among states would not lead to an increase in observed
contrast but rather a decrease up to the denominator in the definition of the contrast
that compensates mathematically to, actually, also decrease it. This is more or less
a consequence of the unitarity of the applied transformations or the conservation of
probabilities. Let p0 and p1 be the populations in the zero and non-zero electron spin
state, their sum is ps and r0 and r1 are the fluorescence rates of these states. Then
the contrast is c = p0(r0−r1)

p0r0+p1r1
= r0−r1

r0−r1+ ps
p0
r1

. So it decreases overall with decreasing

p0. The argument also works when it is assumed that the coherent population is
only a part of p0. In Figure 27 the coherent oscillations after up to 50 corrections
and a single decoherence time of 400 ns are visualized as an example. Again, there
is an evident regularity and monotonicity suggesting a slow decay of coherence with
increasing number of corrections. The connection to Figure 26 is given not only through

44



8. REVERSING DECOHERENCE

T (µs)
0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40 42.5 45 47.5 50

C
on

tr
as

t (
%

)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20 Free Evolution

==200 ns, 0-50 C

==400 ns, 0-50 C

==300-1000 ns, 25 C

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40 42.5 45 47.5 50

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Figure 28: Rephasing with multiple spin flips. Three data sets with different methods
of maintaining the coherence of the state are compared to each other and the free
evolution of the state. The time axis refers to the (total) evolution time. Functions of
the form ae−(T/τ)p are fitted. The extracted exponents p are 4.2±1.6, 2.09±0.49 and
3.0±1.3 and the decay constants τ are 24.2±2.4 µs, 37.9±2.4 µs and 34.8±3.3 µs,
respectively. The error bars on the free evolution curve are suppressed for clarity.

this similitude in envelope but also by the fact that it is the same procedure only with
evolution times inserted between the spin flips. Figure 28 shows a comparison between
different methods of rephasing the electron spin, each involving multiple corrections.
An interesting agreement in the course of the decay in coherence as a function of
total evolution time is observed. The best coherence time lies at 40 µs which, again,
differs from the free evolution by at least a factor of five. The drop at the end of the
data of the third method in Figure 28 is potentially explained by the occurrence of a
small revival after around 2.4 µs. This could lead to a greater build-up of remnant
populations as discussed above. Generally speaking, the method of rephasing with
multiple corrections seems rather limited by the fidelity of the spin flips. These are in
turn limited by the splitting of the energy levels of the 13C nuclear spin because a very
fast pulse is needed to drive both of the spin states, which also increases off-resonant
driving in other spin states of the 14N nucleus. These effects result in a trade-off with
an upper bound for the fidelity. On the other hand, there seems to be no evidence
that the observed increase in coherence time could be explained by these imperfections.
The data suggests that the decoherence of the electron spin can be genuinely reversed.
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9 A Leggett-Garg-Type Test of Macrorealism

9.1 Simulating A Measurement

This chapter deals with a somewhat simplehearted demonstration which, nevertheless,
has its value in the realization of an important thought experiment. The thought
experiment is outlined as follows. A system is prepared in a superposition of, say,
two states and two different apparatuses that fundamentally do not interact can be
used in measuring the system to determine in which state it actually is. After one
apparatus measures the state, the strict interpretation of quantum mechanics implies
that the coherence of the state should be lost while the state of the system is still
unknown to an outside observer, or apparatus (cf. Section 4.3). For this outside
observer, the state of the system is truly in a mixed state while for the apparatus,
or observer, that did the measurement the measurement must have had a definite
outcome. The discussion of this relational nature of quantum mechanics is probably
best captured by Rovelli [43], for a no-go theorem for facts about the world see Brukner
[44]. While it would be interesting to realize a pair of fundamentally non-interacting
apparatuses experimentally, the logic in the following demonstration is in some sense
reversed. Instead of providing a pair of non-interacting apparatuses and testing whether
this relational aspect can be observed, the fact that such a measurement gives an
incoherent mixture for the system’s state as a result is used as the starting point. The
goal is to perform the second measurement of the second observer and see whether the
first measurement has affected the outcome of the second measurement and if yes, in
what way. The demonstration connects to the discussion by Leggett and Garg because
one premise for macrorealism to hold is the non-invasiveness of the measurement (cf.
Section 4.5). It is equivalent to the statement that the difference between a coherent
(pure) and an incoherent (mixed) state has no reality in this world view because phases
are a purely quantum mechanical entity mathematically connected to the complex
representation of the system’s state in a Hilbert space. The actual experiment is built
up in the following way. The initial spin state is either |0,−1〉 or |0, 1〉 meaning that
the main population which is in |0, 1〉 is either left there or transferred to |0,−1〉 with
RF π-pulses. The use of two different starting states is for pragmatic reasons that will
become evident soon. To simulate a measurement in an entangled basis, the identity
|〈ψ|φ〉|2 = |〈φ|ψ〉|2 is exploited by transforming the initial states to the entangled basis
using the same procedure as before that involves something like a Hadamard gate on
the nuclear spin followed by a controlled NOT gate on the electron spin. The entangled
state is then measured in the eigenbasis of the Hamiltonian through the interaction
with the environment. Of course it is not really measured by anybody but the crucial
point is that this does not matter. After this first measurement the entanglement
sequence is applied in an inverse manner and the population in |0, 1〉 is read out which
constitutes the second measurement. The effect of the first measurement is studied.
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Figure 29: The effect of fundamentally independent measurements. The two outer
peaks correspond to the usual measurement of two different initial spin states while
the two peaks in the middle involve an intervening measurement by a fundamentally
independent apparatus. It is a simulated measurement physically realised by the deco-
herence of the electron spin after a free evolution time of 16.16 µs. The fifth peak is
an attempt to retrieve the left state by rephasing with 10 corrections (cf. Section 8).

9.2 Macrorealism and Retrieving the State

Using two reference counts from simply reading out the two above mentioned initial
states, the discrepancies between the absence and presence of an intervening measure-
ment can be illustrated. The decoherence time for simulating the measurement is 16
µs. The durations of the two MW pulses are again 202 ns and 206 ns. In Figure 29,
the measured outcomes are represented by Gaussians of the observed count rates with
widths corresponding to the standard errors. The simulated measurement introduces
a discrepancy of at least 188 standard errors. The splitting of the two ”perturbed”
outcomes is attributed to imperfect pulse quality and a slight detuning due to MW
frequencies that are not strictly updated. This results in a small remnant coherence.
Also it is not known whether there is some non-zero coherence after 16 µs. The small
lowering from the mean of the references is also tied to half of the initial population
in |0, 0〉 being transferred to a dark state during the readout. A fifth peak gives the
outcome after rephasing with 10 corrections and τ = 400 ns. The slightest frequency
drift can render the adjusted phase inadequate after 40 MW pulses. Given that this is
probably the case, based on observations, the result seems relatively satisfactory.

47



10. NUCLEAR SPIN STATES

ω1 ω2
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Figure 30: Preparation of an arbitrary spin state |ψ〉 = a |1〉 + beiφ1 |0〉 + ceiφ2 |−1〉
of the 14N nucleus. Starting from a nearly pure state |1〉, the targeted populations a2,
b2 and c2 can be achieved with sinusoidal pulses of appropriate duration. The relative
phases φ1 and φ2 can be acquired by letting the state evolve freely. The large difference
in energies makes it possible to find a waiting time T3 that approximates the wanted
phases to high accuracy. The scales are by no means meant to be in right proportion.

10 Nuclear Spin States

10.1 Preparation and Projection

The preparation and projection of potentially arbitrary spin states is a worthwhile goal
when working with any quantum system because it is equivalent with the possibility of
fully controlling the system. A possible scheme is provided and tested for orthogonal
and nearly orthogonal states that can be used for tests of quantum mechanics. In
Figure 30 the concept of preparing any spin state is illustrated. In principle, any state

|ψ〉 = a |1〉+ beiφ1 |0〉+ ceiφ2 |−1〉 (49)

can be prepared from a pure state |1〉 by applying a RF pulse of appropriate duration
T1 to |0〉 and a subsequent pulse with duration T2 to |−1〉. The initialization of a
(nearly) pure state is discussed further below. By finding the proper pulse durations,
the populations a2, b2 and c2 can be achieved to high accuracy. But the phases φ1 and
φ2 are still left to be determined by the process. By simply waiting, the phases rotate
by themselves due to the energy difference of the states. For nuclear spin transition
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frequencies ω1

2π
= 5056.333±0.015 kHz and ω2

2π
= 4830.171±0.026 kHz, φ1 cycles ap-

proximately 5 times while φ2 crosses it 113 times in a single microsecond. Given that
the accuracy of the pulsing device is one nanosecond and the π-pulse durations are
105.06±0.39 µs and 105.24±0.43 µs, this is an intermediate time scale. Most impor-
tantly, it is short compared to the long coherence time of the nuclear spin. Practically
speaking, the three level model suggested in Section 8.4 is utilized in combination with
a numerical differential equation solver for optimizing the pulse lengths to get as near
as possible to the wanted populations and then the waiting time is calculated that is
not too long and that gives similar enough phases as to have a state that resembles
the target state in terms of squared scalar product. The solutions often exceed 99.9 %.

To measure an arbitrary nuclear spin state, a similar method as the preparation proce-
dure is developed. Let’s call the state that is to be measured |φ〉. Imagine that |φ〉 is
prepared even though the spin can be in an arbitrary state for this to work, as will be
argued. For the reversal of the transformation from |1〉 to |φ〉 to work, the RF signals
must have the continued phases from the preparation after the total preparation time
of Tp = T1 + T2 + T3. In addition, a phase shift of π is needed in both segments (two
frequencies) of the RF signal for the Rabi oscillations to be reversed by flipping the
rotation axis in the Bloch sphere picture. The RF signal for preparing a state |ψ〉 is

Uψ(t) = U0

[
cos(ω1t)Θ(t)Θ(Tψ1 − t) + cos(ω2t)Θ(t− Tψ1 )Θ(Tψ1 + Tψ2 − t)

]
,

where U0 is the voltage amplitude and Θ(t) is the Heaviside step function. After the
application of this signal and a waiting time Tψ3 , the state |ψ〉 is prepared. The signal

Uφ(t) =U0

{
cos
[
ω1(t+ T φp ) + π

]
Θ(t− Tψp )Θ(Tψp + T 1

φ − t)

+ cos
[
ω2(t+ T φp ) + π

]
Θ(t− Tψp − T 1

φ)Θ(Tψp + T 1
φ + T 2

φ − t)
}
,

can then be used to measure the state |φ〉 on |ψ〉. The pulse durations T 1 and T 2

for reading a state are notationally distinguished because they can differ from T1 and
T2. They are optimized separately. The complete RF signal Uψ

φ (t) = Uψ(t) +Uφ(t) is
written onto the frequency generator as an arbitrary waveform and then sent through
the wires under the diamond after the spin initialization procedure. Mathematically
speaking, the measurement of φ is a transformation that brings |φ〉 back to the state
|1〉. It is described by a unitary Ûφ. Without loss of generality, it can be expressed as

Ûφ =
∑
mn

umn |m̃〉 〈ñ| =
∑
mn

[∑
i

|i〉 〈i|
]
umn |m̃〉 〈ñ|

=
∑
i

|i〉
[∑
mn

〈ñ| 〈i|m̃〉umn
]

= |1〉 〈α|+ |0〉 〈β|+ |−1〉 〈γ| ,
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where |m̃〉, |ñ〉 etc. are arbitrary states and |i〉 are the spin eigenstates with i =
−1, 0, 1. From the fact that Ûφ projects |φ〉 onto |1〉, it follows that |α〉 = |φ〉 and
〈β|φ〉 = 〈γ|φ〉 = 0. Secondly, |β〉 and |γ〉 are also orthogonal because unitarity implies

Û †φ Ûφ = |φ〉 〈φ|+ |β〉 〈β|+ |γ〉 〈γ| !
= 1̂

and an application of |β〉 or |γ〉 on both sides leads to this conclusion. The main insight
then emerges as the identity |〈1| Ûφ |ψ〉|2 = |〈φ|ψ〉|2 which ultimately says that reading

out the state |1〉 after applying Ûφ to |ψ〉 is just as good as directly measuring |φ〉 on

|ψ〉 as long as Ûφ transforms |φ〉 to |1〉. The above description gives a complete guide
on working with arbitrary spin states when given a pure state |1〉. The next paragraph
deals with the realization of such a state or, actually, a satisfactory approximation to it.

After the optical cycle induced by a laser pulse, the electron spin and the nuclear spin are
polarized through the mechanisms described in Section 2.3. This laser pulse initiates
every pulse sequence and every pulse sequence is continuously applied in a long chain
of steady repetitions. Usually, millions of repetitions of the same sequence are read out
as to collect a sufficient amount of data for an analysis. Before manipulating the spin
and reading it out, the polarized spin populations can be redistributed in an extended
initialization procedure that produces a nearly pure state. In the below experiments
involving the nuclear spin, the following three initialization steps are added:

1. |0,−1〉 ↔ |1,−1〉
A MW π-pulse swaps the population in |0,−1〉 (≈ 1 %) with the population in
|1,−1〉 (≈ 0.1 %) to bring the populations in me = 0 closer to a pure state.

2. |0,−1〉 ↔ |0, 0〉
A RF π-pulse swaps the population in |0,−1〉 (≈ 0.1 %) with the population in
|0, 0〉 (≈ 8 %) to facilitate the next operation.

3. |0,−1〉 ↔ |−1,−1〉
A MW π-pulse swaps the population in |0,−1〉 (≈ 8 %) with the population in
|−1,−1〉 (≈ 0.1 %) to bring the populations in me = 0 closer to a pure state.

The result is a nearly pure state |0, 1〉, or just |1〉, with a purity of 99.3 % (Tr[ρ̂2]) and
99.7 % of the population in |1〉 when assuming an electron spin polarization of 80 %,
ideal pulses and when restricting to the electron spin 0 states. For 70 % polarization
it is still 98.9 % and 99.4 % and for 90 % polarization it’s 99.7 % and 99.9 %. A
more detailed discussion of the populations is given in the next paragraph where all
underlying processes during one measurement sequence are sifted through one after
another using the observed transition frequencies and Rabi frequencies. It will serve
as the foundation for a more robust analysis of the collected data. In addition, the
method for extracting probabilities from the observed fluorescence counts is explained.
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Main transition Purp Tπ (ns) f (MHz) Main (%) Side 1 (%) Side 2 (%)

|0,−1〉 ↔ |1,−1〉 Init 424 3912.60 97.2±3.6 3.5±1.9 0.04±0.24

|0,−1〉 ↔ |−1,−1〉 Init 419 1828.63 97.2±3.5 3.1±1.8 0.00±0.13

|0, 1〉 ↔ |1, 1〉 Read 410 1833.06 97.3±3.4 2.3±1.7 0.09±0.31

Table 1: Transition efficiencies for the initialization and readout MW pulses. The
purposes of the pulses along with the π-pulse durations and frequencies are tabulated
next to the transition efficiencies of the pulses (percentage of transferred population
when starting with 100 %). The side transitions with a difference in nuclear spin of
±1 and ±2 are termed Side 1 and Side 2. The values are computed using a two level
approach and a statistical mixing of both 13C states and allowing for an error of 5 ns
in the actual π-pulse duration (Rabi frequency) and up to 100 kHz detuning from the
transition. Probabilities out of range are notationally tolerated for visual simplicity.

The MW π-pulse durations for the two initialization pulses described above are 424 ns
and 419 ns, respectively. The MW frequencies are 3912.60 MHz and 1828.63 MHz.
The readout pulse of 410 ns π-pulse duration and 1833.06 MHz frequency is applied
to the transition |0, 1〉 ↔ |−1, 1〉. As it turns out to be in good agreement with
other models and the following purposes only demand a rough estimation, a two level
approximation is used for the upcoming calculations. The effects of the MW pulses
in terms of transition efficiencies in the main and in side transitions are tabulated in
Table 1. In addition to these numbers, the following qualitative statements are crucial:

1. Any erosion of the population in |0, 1〉 during the initialization only reduces the
purity in electron spin 0. The reverse process is indistinguishable from an increase
in purity. In fact, it is exactly that. Also this effect is extremely small because
the pulses are chosen with this aim.

2. The imperfections of the initialization pulses are small and the adjustments to
the purity of the state is also small (cf. Table 2).

3. The readout fluorescence is still linear in |〈φ|ψ〉|2 but it involves small extra terms
that can vanish completely in certain cases. (This is justified later.)

4. Any remnant coherence between the electron spin 0 states and the readout
electron spin states is expected to be completely lost between initialization and
readout because they are separated by well over 100 µs. Thus the readout
fluorescence only depends on the populations in the electron spin 0 states that,
in turn, only depend on the nuclear spin manipulations as the rest is held equal.
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Electron spin 0 polarization |0, 1〉 |0, 0〉 |0,−1〉 Tr[ρ̂2]

70 % 99.0 % 0.4 % 0.6 % 98.1 %

80 % 99.3 % 0.2 % 0.5 % 98.6 %

90 % 99.5 % 0.1 % 0.4 % 99.0 %

Table 2: Distribution of populations in electron spin 0 after the initialization. The
obtained values for the transition efficiencies of the MW pulses from Table 1 are used
to calculate the distribution of populations in electron spin state 0 as well as the purity.

The conjecture of these insights facilitates the conversion of the measurement observ-
ables (fluorescence counts) to probabilities corresponding to qutrit state projections.

The probabilities |〈φ|ψ〉|2 are extracted as follows. Three fluorescence markers are
measured in every set of measurements, two high ones and a low one. Simply reading
the initialized state is used as the low fluorescence marker (LFM). The result of mea-
suring a state on itself is expected to give this value. The two high fluorescence markers
(HFM) consist of a π-pulse with ω1, a π-pulse with ω2 only for the second HFM and
subsequent readout. The reason for not simply omitting the readout MW pulse is the
non-zero population in |−1, 1〉 that is transferred to |0, 1〉 during the readout in every
other sequence. So this HFM would be too low. The reason for the second HFM is
the imperfect readout pulse that also drives the states |0, 0〉 and |0,−1〉 off-resonantly
but not equally. The least population that can end up in |0, 1〉 through nuclear spin
manipulations is p0, the initial population in |0, 0〉 which is the lowest of the three
(cf. Table 2). In this regard it also seems to be the perfect fluorescence marker.
Within this constraint, the population p1 can end up either in |0, 0〉 or in |0,−1〉. The
off-resonant driving of the readout pulse slightly differentiates these two cases. Thus
the second fluorescence marker. The discrepancy can be seen in Figure 31. Like the
imperfections of the initialization pulses, it is a result of the 13C nuclear spin. Only one
MW frequency is applied and the splitting defies perfect optimization for both states.

From unitarity, the translation of error in purity to the error in fluorescence can be
derived. The population pφψ1 in the state |1〉 after preparing |ψ〉 and measuring |φ〉 is

pφψ1 =
∑
i

pi|〈1| ÛφÛψ |i〉|2 = p1P
ψ
φ + p0P

ψ⊥1

φ + p−1P
ψ⊥2

φ

= p0 + (p1 − p0)Pψ
φ + (p−1 − p0)Pψ⊥2

φ .

(50)

So the population is still linear in the probability Pψ
φ but it contains an extra term that

is proportional to the difference p−1 − p0 which, according to the above calculations,
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Figure 31: High fluorescence markers (HFMs) for measuring probabilities. To convert
fluorescence counts into probabilities, adequate low and high fluorescence markers that
indicate 0 % and 100 % have to be found. The illustrated data shows two different
HFMs that cover the full interval of an unknown parameter. The reason for this obscu-
rity is an imperfect readout pulse that differentiates otherwise equivalent measurement
outcomes through off-resonant driving (see main text for the full explanation of this).

is positive. |ψ⊥2〉 is an orthogonal state that is generated from |−1〉 by Ûψ. A similar
treatment can be applied for the populations pφψo and pφψ−1 after the measurement, i.e.

pφψ0 =
∑
i

pi|〈0| ÛφÛψ |i〉|2 = p0 + (p1 − p0)Pψ
φ⊥1

+ (p−1 − p0)Pψ⊥2

φ⊥1

= p1 + p−1 − p0 − (p1 − p0)(Pψ
φ + Pψ

φ⊥2
)− (p−1 − p0)(Pψ⊥2

φ + Pψ⊥2

φ⊥2
),

pφψ−1 =
∑
i

pi|〈−1| ÛφÛψ |i〉|2 = p0 + (p1 − p0)Pψ
φ⊥2

+ (p−1 − p0)Pψ⊥2

φ⊥2
.

(51)

In the limit of Pψ
φ → 1, these equations always give the proposed LFM where the

populations are in their initial positions. This follows from the previously hinted identity

〈1| Ûφ |ψ〉 = 〈1|
{
|1〉 〈φ|+ |0〉 〈φ⊥1|+ |−1〉 〈φ⊥2|

}
|ψ〉 = 〈φ|ψ〉 (52)

because it implies that Û †φ |1〉 = |φ〉 for any |φ〉 and thus Û †φ = Ûφ. It follows that

|φ⊥1〉 =
[
〈φ⊥1|

]†
and |φ⊥2〉 =

[
〈φ⊥2|

]†
. The orthogonal states generated by Ûφ
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are exactly the same states that map back to the initial states through Ûφ. Thus the
above conclusion for the case |φ〉 = |ψ〉. In general, the probabilities are bounded by

Pψ
φ⊥2
≤1− Pψ

φ ,

Pψ⊥2

φ ≤1− Pψ
φ ,

Pψ⊥2

φ⊥2
≤1− Pψ

φ⊥2
,

Pψ⊥2

φ⊥2
≤1− Pψ⊥2

φ .

(53)

The last terms in the Equations 51 are neglected because they are extremely small.
Their maximum absolute values are approximately 0.6 % and 0.3 % assuming an
electron spin polarization of 80 % (cf. Table 2) and the off-resonant readout efficiency
are 2.3 % and 0.09 % (cf. Table 1) which gives a maximum population error of < 1.5×
10−2 % in total. Within this approximation, the LFM is an ideal reference. Also the last
term in Equation 50 is dropped. Its maximum population error lies at approximately
0.3 %. The error has a positive sign in the sense that it can result in a slightly
higher probability. As stated before, this term vanishes for the LFM. The observed
fluorescence rates of the actual measurements include it but the measurements HFMs
do not because they are not constructed as such. While the first term in Equation 51
is rigorously used to find the extreme values that correspond to the two HFMs, the
same is not done for the last term in Equation 50 which would include a HFM that
transfers p−1 to |1〉. Instead, the lowest value is adopted in the choice of the HFMs.
The consequence is that nearly orthogonal states can appear slightly less orthogonal
while very similar states are unaffected. Including this term would give darker HFMs
because it would result in a slightly greater population that is transferred to the dark
state (because p−1 − p0 > 0). The probabilities are calculated with the formula

P =
r − rHFM

rLFM − rHFM
, (54)

where r is the fluorescence count rate of the measurement, rHFM = 1
2
(rHFM1+rHFM2)

the rate of the HFM and rLFM the rate of the LFM. This is easily justified through
the linearity of the fluorescence in the populations pφψ1 , pφψ0 and pφψ−1, and the linearity

of the populations in Pψ
φ . The mean value for the HFMs is explained as follows. The

value of the probability Pψ
φ⊥2

is 0 for HFM1 and 1 for HFM2. The correct HFM would

have a value that results from an interpolation from the LFM with Pψ
φ⊥2

= 0 through

the value corresponding to the states of the measurement. That is the point where
linearity in Pψ

φ applies. This point is unknown. For any Pψ
φ ∈ [0, 1] it can have any

value Pψ
φ⊥2
∈ [0, 1]. A large measurement set of state pairs with the same overlap

would give a symmetric distribution about the mean value Pψ
φ⊥2

= 1
2

because of the
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Raw Normalized

R O R O

|ψc1〉 99.00±1.27 % 2.77±2.25 % 102.29±1.47 % 1.70±2.90 %

|ψc2〉 98.58±1.21 % -2.83±1.75 % 101.03±1.78 % -0.03±2.19 %

|ψ1
1〉 98.93±1.90 % -0.69±1.81 % 101.28±2.06 % -2.24±2.60 %

|ψ1
2〉 97.82±1.43 % -1.11±2.15 % 98.59±2.03 % -0.24±2.49 %

|ψ2
1〉 100.06±1.22 % 0.66±1.95 % 101.01±1.62 % 2.35±2.41 %

|ψ2
2〉 95.86±1.36 % 3.15±1.76 % 98.32±1.68 % 3.24±2.09 %

|ψ3
1〉 98.26±1.54 % -0.12±1.63 % 98.44±1.53 % 1.93±2.32 %

|ψ3
2〉 97.50±1.33 % -1.91±2.05 % 99.50±2.00 % 1.08±2.24 %

Table 3: Reversibilities and orthogonalities of eight states. For odd row numbers the
orthogonalities (O) give measurements of the state with the state in the next row and
for even row measurement with the above state. Reversibilities (R) are states mea-
sured on themselves. Raw and normalized refer to whether the fluorescence counts are
normalized with the technique described in the main text before computing the proba-
bilities. The targeted states have perfect orthogonality and can be found in Appendix
Section A.3. Probabilities out of range are notationally tolerated for simplicity.

linearity. In the following data, for each data set the probability is computed individually
with the mean HFM and the variance is taken as the squared maximal distance to the
marginal values. The variance of the mean value of the data points is added to the
combined variances of the individual data points. Each data point is measured for 1
minute and 37 identical measurement sets are collected in total.

10.2 Reversibility and Orthogonality

The ability to reverse a state, i.e. measure it on itself, is an important feature where
having the same state in the preparation and in projection is required. Table 3 as well
as Figures 32 and 33 show the outcomes of measuring the reversibilities and orthogo-
nalities of eight states. The results are split into probabilities computed from the raw
fluorescence counts and those where a novel normalization technique is applied prior
to this calculation. The technique involves the threefold repetition of the sequence. In
the second copy no MW readout pulse is used and in the third one two strong pulses
(34 ns and 61 ns) to different electron spin states are applied for two reference counts.
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Figure 32: Reversibilities and orthogonalities of eight states (cf. Section A.3 of the
Appendix). The Gaussian peaks show the probabilities of eight self-measurements and
four pairwise orthogonal measurements including the reversed equivalents. The widths
are determined by the variances described in the main text at the end of Section 10.1.
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Figure 33: Reversibilities and orthogonalities using normalized counts (see main text).
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10. NUCLEAR SPIN STATES

10.3 Towards Testing the Quantum State’s Ontology

The focus on orthogonal states originates from the idea of testing how accurately the
procedure discriminates states. Another application is for testing quantum mechanics
itself. It has been shown that testing the reality of the quantum state is more fault-
tolerant than previously assumed [35], at least for the qutrit case but possibly also for
higher dimensions. Knee’s algorithm for calculating optimal states for such a test is
utilized and the resulting density matrices are decomposed into pure states for separate
measurements. As it turns out, the density matrices are all mixtures of two pure states
with nearly equal weights (cf. Appendix Section A.3). As shown in Section A.2 of
the Appendix, the trace distance of two density matrices involving a nuclear norm of
their difference can be approximated by probability measurements of the decomposed
states. This derivation is needed to calculate the denominator in the bound for k0:

k0 ≤
1 +

∑
i<j Aij∑

i ωC(ρ̂c, ρ̂i)
, (55)

(cf. Section 4.8) which involves the trace distance of two density matrices in the overlap
terms ωC(ρ̂c, ρ̂i) = 1 − 1

2
‖ρ̂c − ρ̂i‖∗. In Section A.2 an upper bound, actually, rather

than an approximation for the trace distance is found where it is expressed through
measurable probabilities. An upper bound gives the biggest value for the fraction in the
above inequality. The solution is the lowest upper bound and for the small imbalance
in weights of the density matrices it is dominated by the maximum scalar product of
the states max

{
|〈ψc1|ψc2〉|, |〈ψi1|ψi2〉|

}
and the dependence is very well described by a

linear approximation. The consequence is that even for actually perfectly orthogonal
states the greatest error due to the averaging of the HFM described above is picked out
and it is highly amplified through the square root from probability to amplitude. Every
term ωC(ρ̂c, ρ̂i) involves a sample of only two measurements and then the maximum
value is taken. Call X1 the first scalar product and X2 the second. The probability
distributions f1(x1) and f2(x2) describing the ignorance of the unknown parameter
described in the last section are uniform in their corresponding intervals I1 = [a1, b1]
and I2 = [a2, b2] as indicated there. So the expectation value of the maximum is

M = E
[
max{X1, X2}

]
=

∫ b1

a1

∫ b2

a2

f1(x1)f2(x2)max{x1, x2}dx1dx2. (56)

The intervals I1 and I2 are symmetric about the mean values µ(X1) and µ(X2).
Perfectly orthogonal states have identical intervals and distributions which leads to

M =
1

4a2

∫ a

−a

∫ a

−a
max{x1, x2}dx1dx2 =

1

4a2

∫ a

−a

[ ∫ x2

−a
x2dx1 +

∫ a

x2

x1dx1

]
dx2

=
1

4a2

∫ a

−a

(
x2

2

2
+ ax2 +

a2

2

)
dx2 =

1

4a2

(
a3

3
+ a3

)
=
a

3
.
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Theory Raw Normalized Theory Raw Normalized

3.84 % -2.96±1.86 % -0.04±2.18 % 2.89 % 5.48±1.57 % 6.89±2.19 %

2.52 % 3.14±1.65 % 3.17±2.02 % 4.01 % 1.64±1.48 % 4.83±1.80 %

0.22 % 6.06±1.90 % 3.53±2.40 % 0.33 % -2.57±1.89 % 0.45±2.04 %

3.13 % -0.46±1.55 % 2.99±2.14 % 3.50 % 9.04±1.83 % 7.87±2.12 %

3.04 % 1.36±1.72 % -0.27±2.12 % 3.58 % 3.99±1.46 % 2.68±2.54 %

0.68 % 4.90±1.54 % 3.67±1.75 % 0.06 % -2.52±1.66 % -0.49±2.15 %

3.30 % 4.04±1.47 % 2.44±1.89 % 3.26 % -0.76±1.73 % 3.75±2.03 %

3.88 % 7.75±1.66 % 10.35±2.31 % 2.84 % 7.79±1.73 % 3.57±2.33 %

0.16 % 3.93±1.62 % 3.74±2.01 % 0.36 % 0.08±1.37 % 3.14±2.24 %

Table 4: Probabilities for the antidistinguishability. The first three rows are the three
outcomes of the first POVM measurement, the second set of three outcomes the second
POVM measurement etc. The two states separated horizontally are the two states of
which the density matrix is composed. See Appendix Section A.3 for the states.
Negative probabilities are tolerated for ease of notation and to highlight discrepancies.

For the two HFMs, the nominal probability values are computed which correspond to
the marginal probability values in the described interval. A third of the square root of
their equal distance to zero, which is 3.96 % for the probabilities calculated from the
raw counts and 2.60 % for the probabilities calculated from the normalized counts, is
subtracted from the scalar products in calculating the overlaps to correct for the above
shift. Note that this is not an argument about epistemic states of quantum systems but
simply an experimental inadequacy described with probability theory. For computing
the epistemicness from the measurements, matching orthogonalities are averaged and
in non-linear functions the variances are taken as the squared distances to the marginal
values. The values used to calculate the antidistinguishability are given in Table 4.
Negative probabilities are taken to be zero. The values obtained for the bound in
Equation 37 are 88.76+9.55

−8.76 % for the raw counts and 92.40+8.55
−7.33 % for the normalized

counts. Note that the lower error margin of the first value might be slightly lower
than theoretically possible. One very important recapitulation is the method by which
these values are arrived at. The pulse sequences calculated with the qutrit model are
instructions fed into the machine. The assumptions for the measurement process rely
on properties of the readout pulse and the purity of the initial state. This chapter is
more of a proof for the theory than an experiment that relies on theoretical justification.

58
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11 Discussion

The results once again highlight the value of the nitrogen-vacancy center as a tool for
conducting quantum information experiments. With this particular diamond sample,
a central, limiting role is attributed to the extra spin, speculated to be a 13C nucleus,
that is coupling to the electron spins. It makes the construction of fast pulses for
achieving electron spin gates with near perfect fidelity impossible because the energy
level splitting defies an optimization for both transition frequencies. This is certainly
the case for the rectangular pulses used here. The consequence is an optimized pulse
that has small but non-zero off-resonant driving of secondary electron spin transitions
and high but imperfect driving of the main transition, thereby restricting the range
of possibilities for certain experiments. The reversal of the electron spin decoherence
through inverting the spin state in particular is contingent upon a high fidelity of the
spin flips. But also the imperfect readout in the ontology experiment traces back
to this problem and introduces an additional uncertainty in the data. From a more
general perspective, however, this extra system could serve as a means of extending
the Hilbert space of the composite spin system. By designing a signal chain that
facilitates the coherent manipulation of this additional qubit, the variety of potential
research directions could be widened even further. A controllable spin system with a
total Hilbert space dimensionality of 18 is a desirable goal for a number of applications.
The entangled two-qubit state consisting of two pairs of electron and nitrogen nucleus
spin states is found to have a degree of entanglement of 94 % in Section 7. The
degree of entanglement is defined as the ratio between entanglement measure and
its maximally attainable value. The entanglement entropy and the negativity seem
to agree on this value. While the proof of entanglement is indirect in the sense
that the degree of entanglement is not directly calculated from observed quantities,
it relies on highly credible data and the surrounding qualitative demonstrations of the
entanglement build an empirically sound environment for it. The complete loss of
coherence after 10 µs and the dependence of the degree of coherence after 5 µs on
the degree of entanglement indicate the destruction of the entangled states by the
environment. The astonishing degree of symmetry in the entanglement parameter
also supports the demonstration’s premise by confirming the expectations from correct
pulse durations but non-vanishing off-resonant driving. The generalization to qutrit
entanglement would be an interesting endeavour as the procedure is an attractive one.
The idea of distributing coherent populations and directly measuring their mutual
degrees of coherence at a later time is a highly convenient tool and can also be
generalized to the point of projecting potentially arbitrary states onto on another, as
was exemplified in the very last chapter. Reversal of the electron spin decoherence
is partially achieved through the application of spin flips. As mentioned above, the
limiting factor of the extra spin dominates the time scale over which this procedure
is successful. Firstly, it contributes to the dephasing of the electron spin itself and
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secondly the spin flip fidelities are impaired by the energy level splitting. While the
sequential application of spin flips shown in Figure 28 suggests a smaller impact of this
deficiency on the loss of coherence than the rephasing data, this need not necessarily
be the case. The remnant populations caused by off-resonant driving decohere only
with approximately half the splin flip time. The reason is that the spin flip consists
of two steps. While this shortness causes a significant build-up of coherent remnant
populations, it also allows for revivals. The single decoherence time in the actual
rephasing data is longer and so the coherent part of the populations is smaller and the
revivals are suppressed. This is to say that the inadequacy of the pulses probably has
a greater effect in these measurements. That being sad, it is fascinating to be able to
observe the attenuation of the effect of decoherence by means of partially reversing it
without assuming anything particular about the nature of its origin. The macrorealism
test bares deep insights that are common sense not even for most quantum physicists.
It is the premise that yields these conclusions. The idea is to, mostly qualitatively
but also quantitatively, show the invasiveness of a measurement by simulating the
measurement of a second, fundamentally independent party which, arguably, is the
most general case. Eventually, this demonstration shows the results the main party
would obtain after such an intervention. They differ by at least 188 standard errors
from the measurements without an intervention. The ontology experiment serves as a
paragon for the idea of conducting tests of quantum mechanics with solid state spins.
It also provides the operational means for preparing and projecting potentially arbitrary
nuclear spin states. Two values for the epistemicness bound have been calculated
from the data. The value deriving from the raw counts is preferred here. On the
one hand, it is the lower value. But also the normalized counts do not seem to
express any clear sign of improvement. The probability data even suggests the opposite
conclusion which is why this value is discussed here. While a statistically conclusive
test would require a taking into account of imperfections in reversibilities and POVM
orthogonalities, the obtained value 88.76+9.55

−8.76 % for the epistemicness bound serves
more as a proof that this test is possible with the NV center as most of the uncertainty
is due to short overall measuring time. Taken seriously, it prohibits the maximally
epistemic interpretation of the quantum state within one standard deviation. The
lowest experimentally obtained bound known so far, using photons, is 69 % [35, 45].
An extension of the Hilbert space dimensionality could be used for reaching beneath 50
% and thereby reaching a milestone in testing the ontology of the quantum state. Most
strikingly, the calculation of pulse sequences for generating and projecting qutrit states
of the 14N nuclear spin produces highly orthogonal states and builds a foundation
for an arbitrary state formalism which could be utilized in a more involved way or
generalized to other spins, keeping their coherence times in mind. For example, there
is no connection between the analysis of the ontology data and the computation of
the pulse sequences. The calculations are no more than instructions for reaching the
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targeted goals. As was already mentioned, the uncertainty in the data is mostly due to
short measurement time. While the overall time could be increased, the measurement
efficiency could be decreased as well. Also the component deriving from the 13C nucleus
could be eliminated by initializing its spin state. As long as this is not a polarization
mechanism, i.e. the localization of population in one spin state, this would increase the
measuring time due to the lowered contrast and the resulting need for collecting more
photons. The initialization of the nucleus’ spin is also highly relevant for more advanced
experimental schemes utilizing the carbon spin in the experimental protocols. Future
experiments could empirically justify the preparation and projection of arbitrary spin
states of the individual particles and, most importantly, ideally the composite spin state,
e.g. of one 14N and one 13C nucleus. This would facilitate all kinds of experiments like
the ontology test mentioned above and, not least, be highly advantageous in quantum
computation. The generation of arbitrary spin states requires a detailed investigation
of spin coherence and relaxation times, selection rules, symmetries in level splittings,
the possibility of differentially applying phases to single states or phase differences
between states, and, obviously, the required signal chains needed for producing these
spin gates. An incremental development of these clusters of experimental intricacies
therefore seems an adequate strategy and this thesis defines a small piece in this project.
But the directions are diverse, the goals clear and the possibilities rich. In conclusion,
the nitrogen-vacancy center can act as a very general playground for implementing spin
gates and for experimenting with the relationship between the mathematical structures
of quantum theory and observable physical phenomena up to the point of testing the
reality of the quantum state itself, as shown here and hopefully continued.
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Appendix

A.1 Eigenvalues of Reduced Density Matrices

Starting with a generic bipartite pure state |ψ〉 =
∑

mn cmn |m〉 |n〉 =
∑

m |m〉 |m̃〉,
the states |m〉 can be taken to be the eigenstates of the reduced density matrix ρ̂A

ρ̂A =
∑
m

λm |m〉 〈m| = TrB
[
|ψ〉 〈ψ|

]
=
∑
imn

|m〉 〈n| 〈i|m̃〉 〈ñ|i〉 . (57)

The two scalar products can be swapped and summing over i gives an identity (com-
pleteness). A comparison of both sides of the equation then gives 〈ñ|m̃〉 = δmnλm. So
this basis is orthogonal, too. For zero eigenvalues, the states |m̃〉 vanish. Otherwise
they can be normalized with |m′〉 = 1√

λm
|m̃〉. Going back to the state |ψ〉, it is now

|ψ〉 =
∑
m

√
λm |m〉 |m′〉 . (58)

This is actually the proof for the Schmidt decomposition of any state. The aimed at
proof is a simple corollary because the reduced density matrix of the second system is

ρ̂B = TrA
[
|ψ〉 〈ψ|

]
=
∑
imn

√
λmλn 〈i|m〉 〈n|i〉 |m′〉 〈n′| =

∑
m

λm |m′〉 〈m′| . (59)
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A.2 Overlap Calculations

To get an expression for the nuclear norm ‖ρ̂c − ρ̂i‖∗, the matrix ˆ̃ρi = ρ̂c − ρ̂i in
question is investigated and decomposed in minute detail until a clue is obtained.

ˆ̃ρi = pc1 |ψc1〉 〈ψc1|+ pc2 |ψc2〉 〈ψc2| − pi1 |ψi1〉 〈ψi1| − pi2 |ψi2〉 〈ψ2
i | =

4∑
k=1

pk |ψk〉 〈ψk| (60)

The weights p
{c,i}
{1,2} are given in Section A.3 and the states |ψc{1,2}〉 as well as |ψi{1,2}〉

are orthogonal to each other and in the experiment nearly orthogonal. The nuclear
norm of a Hermitian matrix is the sum of its absolute eigenvalues. The epistemicness
is maximal when this sum is maximal as well. So the function to be maximized is

f =
3∑
j=1

|λj| (61)

as to receive the most pessimistic solution in terms of a maximum upper bound on k0.
To do this, the states |ψik〉 in Eq. (60) are expressed in the eigenbasis {|λj〉}j of ˆ̃ρi.

|ψk〉 =

ck1

ck2

ck3

 = ck1 |λ1〉+ ck2 |λ2〉+ ck3 |λ3〉

ρ̂k = |ψk〉 〈ψk| =

ck1

ck2

ck3

⊗ (c∗k1 c
∗
k2 c

∗
k3

)
=

 |ck1|2 ck1c
∗
k2 ck1c

∗
k3

ck2c
∗
k1 |ck2|2 ck2c

∗
k3

ck3c
∗
k1 ck3c

∗
k2 |ck3|2



Equating the spectral decomposition of ˆ̃ρi to the weighted sum in Eq. (60) gives

ˆ̃ρi =
3∑
j=1

λj |λj〉 〈λj| =

λ1 0 0
0 λ2 0
0 0 λi3

 =
4∑

k=1

pk

 |ck1|2 ck1c
∗
k2 ck1c

∗
k3

ck2c
∗
k1 |ck2|2 ck2c

∗
k3

ck3c
∗
k1 ck3c

∗
k2 |ck3|2

 . (62)

So the three equations for the eigenvalues of ˆ̃ρi read

λ1 = pc1|c11|2 + pc2|c21|2 − pi1|c31|2 − pi2|c41|2 (63)

λ2 = pc1|c12|2 + pc2|c22|2 − pi1|c32|2 − pi2|c42|2 (64)

λ3 = pc1|c13|2 + pc2|c23|2 − pi1|c33|2 − pi2|c43|2. (65)

As the trace of a density matrix is one and the trace of ˆ̃ρi being the difference of two
density matrices is thus zero, the sum of the eigenvalues has to be zero. Therefore
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two eigenvalues always have to be of the same sign. These two eigenvalues are called
λj1 and λj2 . Using the trace, the third eigenvalue λij3 can be identified as −λij1 − λ

i
j2

.
Thus the function that has to be maximized is

f = |λj1|+ |λj2|+ |λj1 + λj2|.

Depending on the signs of λj1 and λj2 , one gets f = ±2(λj1 + λj2) and thus

f = ±2
[
pc1(x2

11 + x2
12) + pc2(x2

21 + x2
22)− pi1(x2

31 + x2
32)− pi2(x2

41 + x2
42)
]
, (66)

where xk1 = |ckj1 | and xk2 = |ckj2|. To maximize f in Eq. (66), one can apply the
following considerations. By only using the fact that the pure states making up ρc and
ρi individually satisfy some scalar products, the terms with superscript c and i can be
separated and maximized independently. For the positive terms - whatever they are
after deciding the sign of f - one can take the round brackets to be one as the states
can be chosen such that their third component is not populated at all. Such states can
still satisfy |〈ψ{c,i}1 |ψ{c,i}2 〉| = C for any C ∈ [0, 1] for either c or i, depending on the
sign of f . For the negative terms, a notational generalization of the two possible cases
is undertaken by substituting the negative terms in the square brackets of Equation 66
- whatever they are - through f = 2(1 + g) with the function

g = −q1(y2
11 + y2

12)− q2(y2
21 + y2

22) (67)

that now still has to be maximized. It is obviously a concave function in all the ykj
with a maximum at ykj = 0. But the measured scalar product ε = |〈ψ{c,i}1 |ψ{c,i}2 〉| of
the two states sets a constraint for the maximization. This parameter is expected to be
close to zero, but this assumption is not necessary for the derivation. The quantities
Fj = y1jy2j with j = 1, 2, 3 can be used to formulate this constraint. If any ykj is
zero, then Fj = 0 and the same component of the second vector yk′l is also compatible
with zero because it does not contribute to the scalar product. Otherwise, F1 and F2

can be substituted into Eq. (67) by using y21 = F1

y11
and y22 = F2

y12
with y11, y12 6= 0

g = −q1(y2
11 + y2

12)− q2(
F 2

1

y2
11

+
F2

y2
12

). (68)

The gradient of g is

∇g =

(
∂g
∂y11
∂g
∂y12

)
=

(
−2q1y11 + 2q2

F 2
1

y311

−2q1y12 + 2q2
F 2
2

y312

)
(69)

and the Hessian matrix is

H =

(
∂2g
∂y211

∂2g
∂y11∂y12

∂2g
∂y12∂y11

∂2g
∂y212

)
=

(
−2q1 − 6q2

F 2
1

y411
0

0 −2q1 − 6q2
F 2
2

y412

)
(70)
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with a strictly negative determinant. Setting the gradient of g to zero, the maximum
y11

y12

y21

y22

 =


√
s1F1√
s1F2√
s2F1√
s2F2

 ,

with s1 =
√

q2
q1

and s2 = 1
s1

=
√

q1
q2

emerges and g can be written as g = −2F
√
q1q2

with F = F1 + F2. Now F remains to be minimized for the maximum value of g and
therefore f . The equation of the scalar product is c∗k1ck′1 + c∗k1ck′3 + c∗k3ck′3 = εeiα.
The sum of any set of complex numbers can only be zero if the modulus of any one
number is less than or equal to the sum of the moduli of the other numbers. Bringing
the term εeiα to the left-hand side and applying this principle gives the inequalities

ε ≤ F1 + F2 + F3 (71)

together with every permutation of the term on the left-hand side with any term on
the right-hand side. Using the norm of the states

∑3
j=1 y

2
kj = 1, the third components

of the two vectors can be expressed through the first two components

y13 =
√

1− y2
11 − y2

12 =
√

1− s1F , y23 =
√

1− s2F (72)

which gives an upper bound F ≤ min(s1, s2) and also it follows that F3 = y13y23 =√
1− s1F

√
1− s2F ≤ 1 − F which is just true. The norm of the states and their

scalar product are the only constraints on the states and they are encoded in the above
inequalities. Rearranging and squaring the first inequality ε ≤ F1 + F2 + F3 gives

ε ≤F + F3

ε− F ≤F3

ε2 − 2εF + F 2 ≤1− F (s1 + s2) + F 2

F (s1 + s2)− 2εF ≤1− ε2

F ≤ 1− ε2

s1 + s2 − 2ε

(73)

and in a similar way the second inequality F3 ≤ F1 + F2 + ε for orthogonality gives

F ≥ 1− ε2

s1 + s2 + 2ε
. (74)

It is easy to see that this lower bound is actually lower than the upper bound in Equation
73. It decreases monotonically in ε and its highest value at ε = 0 is 1

s1+s2
≤ 1

s1
= s2

and 1
s1+s2

≤ 1
s2

= s1 and thus 1
s1+s2

≤ min(s1, s2). So the lower bound in Equation
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74 is compatible with norm 1 and also the first inequality for orthogonality. The two
remaining inequalities are F1 ≤ ε+F2 +F3 and F2 ≤ ε+F1 +F3. One of the variables
F1 or F2 is still free to choose and for F1 = F2 both of the last inequalities reduce
to the true inequality ε + F3 ≥ 0. So taking the lower bound in Equation 74 and
maximizing g over the two possible signs of f , the solution to the problem is

f ≤ 2

{
1− 2 min

[
1− ε2

s1 + s2 + 2ε

√
q1q2

]}

≤ 2

{
1− 2 min a∈{c,i}

[
1− |〈ψa1 |ψa2〉|2√

pa2
pa1

+
√

pa1
pa2

+ 2|〈ψa1 |ψa2〉|

√
pa1p

a
2

]}
.

(75)
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A.3 States and POVMs

In the following representations, both of the given matrices contain quantum states as
their rows. The columns express their components, e.g. in the basis {|−1〉 , |0〉 , |1〉}
of the 14N nuclear spin. The eight states used in Sections 10.2 and 10.3 are

|ψc1〉
|ψc2〉
|ψ1

1〉
|ψ1

2〉
|ψ2

1〉
|ψ2

2〉
|ψ3

1〉
|ψ3

2〉


=



0.836109 + 0.139712i −0.371852− 0.230203i 0.300225 + 0i
−0.219434 + 0.254338i −0.148108 + 0.562636i 0.74072 + 0i
0.0162826 + 0.296575i 0.0634338− 0.502966i 0.809184 + 0i
−0.719003 + 0.405708i −0.401471− 0.282469i −0.278331 + 0i

0.544688 + 0.321391i 0.620716 + 0.371706i −0.276711 + 0i
−0.225326 + 0.116085i 0.473569 + 0.0650543i 0.840983 + 0i
0.0718171− 0.428786i −0.467282− 0.453615i 0.621986 + 0i
−0.128229− 0.563556i 0.612743 + 0.390543i 0.371463 + 0i


.

They originate pairwise from the decomposition of four density matrices with weights

pc1
pc2
p1

1

p1
2

p2
1

p2
2

p3
1

p3
2


=



0.499539
0.500461
0.486433
0.513567
0.496885
0.503115
0.488482
0.511518


.

The three sets m = 1, 2, 3 of three-dimensional POVM measurements with three
outcomes n = 1, 2, 3 for the ontology test in Section 10.3 are |mn〉 with

|11〉
|12〉
|13〉
|21〉
|22〉
|23〉
|31〉
|32〉
|33〉


=



−0.511836 + 0.0697423i −0.121209 + 0.631373i 0.565541 + 0i
0.701998 + 0.33998i −0.353362 + 0.00107471i 0.516475 + 0i

−0.113691− 0.334435i 0.390452− 0.5562i 0.642975 + 0i
−0.145979− 0.465692i −0.475486 + 0.547928i 0.485294 + 0i

0.261818 + 0.694026i −0.0121499 + 0.0573532i 0.668089 + 0i
−0.184515− 0.421373i 0.423489− 0.539359i 0.564046 + 0i

0.547434− 0.352178i 0.550079 + 0.267121i 0.449829 + 0i
−0.240746 + 0.584332i 0.114899 + 0.371594i 0.670309 + 0i
−0.143811− 0.395225i 0.288754− 0.625618 0.590203 + 0i


.
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