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INTRODUCTION 

 

Application of Graph Theory to Resting-State Functional Connectivity 

Fascinatingly, the human brain is composed as a genuinely complex network (Sporns, 

Chialvo, Kaiser & Hilgetag, 2004), comprising a staggering number of approximately 86 

billion neurons (Azevedo et al., 2009). These basic neuronal entities form structural and 

functional networks on spatially and temporally varying scales, allowing for rapid and 

dynamic, yet resilient information flow (Sporns et al., 2004). To empirically encompass this 

intrinsically complex network system and derive meaningful conclusions about it, a 

framework is required which can reliably capture large-scale network properties.  

A suchlike framework is provided by graph theory, a mathematical account allowing 

for the study of the topological organization of networks of various kinds (Braun et al., 

2018). Graph theory has been successfully deployed in a considerable bredth of fields 

which are confronted with complex systems, ranging from, among others, cancer detection 

in precision oncology (Zhang, Chien, Yong, & Kuang, 2017) to modelling molecule 

structure in chemistry (Janezic, Milicevic, Nikolic, & Trinajstic, 2015) and, finally, to a wide 

array of problems within the realms of the neurosciences (Bullmore & Sporns, 2009).  

In graph theory, a graph consists of nodes and edges connecting nodes (Bullmore 

& Sporns, 2009). Depending on the nature of the respective network, nodes can be 

represented by, for example, interactions between proteins on a cellular level or by 

individuals in social systems (Bullmore & Sporns, 2012). Graph measures reveal aspects 

of how a network or graph is connected: these properties allow for inferences about the 

resilience of a network against disruption, its overall connectedness or its randomness.  

Despite obvious differences of various networks on a microscopic level, networks of 

different kinds share distinct topological properties (Bullmore & Sporns, 2009). In the 

neurosciences, these properties can be used to infer connectivity markers in clinical and 

healthy populations alike. Advances in the neurosciences have allowed to deploy graph 

theory as a powerful method to gain a deeper understanding of functional connectivity 

(Drakesmith et al., 2015). In this framework, a graph is comprised of anatomically or 

functionally defined nodes in the brain. Anatomical connectivity relates to structural 

synaptic edges from varying spatial scale, connecting neuronal units at a given time 

(Sporns et al., 2004). Functional connectivity explores statistical time-series dependencies 

between often spatially remote regions of interest by measuring their correlation, 

covariance or other measures of statistical interrelation (Sporns et al., 2004). 
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A commonly applied method in studying graph theoretical properties of brain 

connectivity is resting state functional connectivity (rs-fcMRI), which measures 

spontaneous blood oxygen level dependent (BOLD) signal fluctuations in participants at 

rest (Power et al., 2011). For its ability to obtain measures of neural activity of remote brain 

loci (Power et al., 2011), rs-fcMRI has gained substantial momentum and has since 

contributed to the discovery of a range of functional networks engaged in a variety of tasks 

such as the dorsal attention network (DAN) or the default mode network (DMN) (Fox et al., 

2005). The DMN is a network which is particularly active at rest (Raichle, 2015), thereby 

associated with mind wandering and internally directed self-related processing (Davey, 

Pujol, & Harrison, 2016). The DMN has yielded substantial evidence of functional markers 

of clinical disorders, among them schizophrenia, opioid addiction (Ma et al., 2015; Razi, 

Kahan, Keen, & Friston, 2015) and chronic pain (Becker, Vogt, & Ibinson, 2018).  

This has been of great interest for the clinical neurosciences, as psychiatric and 

neurological conditions are reflected in aberrations in functional connectivity, which can be 

analyzed on a topological level in deflecting graph theoretical properties: to this day, graph 

theoretical rs-fcMRI has yielded substantial insights in neuronal network organization in 

psychiatric or neurologically affected individuals and has provided biomarkers for various 

clinical conditions (Alexander-Bloch, Bassett, & Ross, 2018; DelEtoile & Adeli, 2017; 

Fornito, Zalesky, & Breakspear, 2015; Makovac et al., 2018). Thereby, research on graph 

theoretical functional connectivity made apparent that this framework holds high potential 

in modeling brain network organization and quantifying pathological aberrations 

(Caeyenberghs et al., 2017).  

Graph theoretical parameters can be divided into two categories: functional 

segregation and functional integration. Functional segregation describes the brain’s ability 

to dynamically access functionally specialized clusters in the network (Rubinov & Sporns, 

2010) and describes the brain’s capability to dynamically process information by engaging 

functionally distinct brain loci (Lord, Stevner, Deco, & Kringelbach, 2017). Functional 

integration refers to the ability to dynamically and rapidly combine and integrate chunks of 

information from distributed regions of the brain. Measures of functional integration 

represent the facility of brain regions to share information by integrating neuronal clusters. 

Together, functional segregation and integration dynamically form interrelating modes 

involved in cognitive functioning pertaining to cognitive demands (Cohen & D’Esposito, 

2016). For example, Cohen and D’Esposito (2016) were able to demonstrate that, during a 

working memory task, network integration increased. 
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Yet, previous literature has only scarcely drawn upon graph theoretical measures in 

the framework of functional segregation or integration, as well as their connection to 

behavior (Cohen & D’Esposito, 2016). Thus, especially with resting state being deprived of 

behavioral markers, it remains considerably difficult to draw specific conclusions 

concerning graph theoretical measures and their link to behavior. 

 

Machine Learning of Graph Theoretical and Functional Connectivity Measures 

With applications in various industrial and scientific fields (Durstewitz et al., 2019), ranging 

from object or pattern recognition to precision oncology (Ding, Chen, Cooper, Young, & Lu, 

2018), Machine Learning (ML), up until today, has risen to form an indispensable part of 

our lives. ML models, including deep neural nets (DNN), have also grown increasingly 

popular in the neurosciences, partly due to their ability to perform well in high dimensional 

data (LeCun, Bengio, & Hinton, 2015). In retrospect, ML and classification techniques such 

as Support Vector Machine (SVM), Naïve Bayes (NB) or k-nearest neighbor (kNN) 

classification have a long tradition in the neurosciences (Durstewitz et al, 2019). Yet, DNN 

outperform these rather simple algorithms, partly due to their ability of operating in high 

dimensional space.  

This growing interest in ML has contributed to a novel and broadened 

understanding of neuroimaging data (Pereira, Mitchell, & Botvinick, 2009) and, among 

others, since has been employed for the automated classification of clinical populations, or 

the prediction of the course of neurodegenerative diseases (Hojjati, Ebrahimzadeh, 

Khazaee, & Babajani-Feremi, 2017). Thus, DNN can ultimately be used for predictions on 

the single subject level (Vieira, Pinaya, & Mechelli, 2017, for review). 

 Tying to that, ML entails great potential for diagnosis and prognosis in the face of 

neurological and psychiatric diseases (Fornito & Zalesky, 2018; Janssen et al., 2018), 

contributing to the development of individualized, tailored therapeutic interventions for 

patients (Cocchi & Zalesky, 2018). Yet, the neurosciences’ application of this method for 

translational purposes such as in precision psychiatry is still in its beginnings, and open 

questions concerning, for example, the diagnostic sensitivity or overfitting of models are 

still a matter of current investigation (Walter et al., 2018). Altogether, although ML in the 

neurosciences is still ‘in its infancy’, this approach holds great promises for the future 

(Walter et al., 2018). 

 Apart from functional imaging data, ML also has been combined with Graph Theory 

to characterize functional connectivity parameters and to classify neuropsychiatric patients 

(Sato et al., 2018; Sacchet, Prasad, Foland-Ross, Thompson, & Gotlib, 2015).  
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Generally, DNN are biologically inspired ML models which, among others, can be 

employed for classification tasks, coined under the term of supervised learning. In 

supervised learning, the task of a system is to classify input data. This, for example, can 

be achieved by a feedforward DNN consisting of input, middle, and output layers. 

Information enters the input layer and is directed to the hidden layers, where the signal is 

weighted and allocated to a generally nonlinear transformation function, usually the 

rectified linear unit (ReLU) (LeCun et al., 2015). Subsequently, the output layer processes 

the weighted sum of the signals of the former hidden layer, transformed by the activation 

function (Trenn, 2008). A Multi-Layer Perceptron (MLP), an instance of a DNN, is an 

example for a supervised feed-forward DNN, which we employ in the current investigation.  

In general, DNN learning is applied to a training and, afterwards, a test data set: 

first, training data is extracted from the dataset, which is then allocated to the system for 

classification purposes. An objective function thereafter computes the emerging error 

between predicted and actual result, which results in an adjustment of modifiable 

parameters, called weights (LeCun et al., 2015). Subsequently, a gradient vector is used 

to infer to the proper modification of the weights, such that the error is minimized. A 

commonly used gradient vector is the stochastic gradient descent (SGD), which, for a 

fraction of training data points, computes the average gradient of these training data points 

and accordingly adjusts the weights. This procedure is repeated until the mean of the 

objective function stagnates (i.e., does not decrease anymore) (LeCun et al., 2015). 

ML for rs-fMRI can be especially useful to obtain evidence pertaining to prediction 

accuracy, investigating the precision of group prediction in light of data, which allows to 

draw conclusions pertaining to the ease - or accuracy - of how an algorithm manages to 

represent data points (or, in other words, how well data points can be discriminated from 

each other according to their group label). 

 

Naltrexone and its Modulating Effects on the Opioidergic System 

Advanced insights into the neuronal and neurochemical underpinnings of brain regions 

and their functional interrelation have encouraged attempts to draw inferences on the 

neuronal mode of action of pharmaceutical agents in rs-fcMRI. This scientific approach, 

which was introduced as pharmacological fMRI (phfMRI) by Leslie and James (2000), 

mostly combines drug administration with a cognitive task, thereby manipulating the 

neurochemical system so as to derive information on cognitive or affective functioning 

(Leppä et al., 2006). Yet, despite task-based phfMRI has yielded considerable 

informational value, advances in research on the influences of neuropharmacological 
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agents on behavior of neuronal connectivity at rest can be seen as the foundation of 

understanding the most basic impact of a given thereapeutic compound at the neural level.  

A pharmaceutical agent which frequently has been employed in the neurosciences, 

most prominently in phfMRI, is Naltrexone (NTX), a powerful, non-selective opioid receptor 

antagonist. NTX typically binds to µ, δ, and κ opioid receptors (Weerts et al., 2008), but is 

thought to most strongly favor µ-receptors (Ko et al., 1998). This compound displays a 

half-life of 4-9 hours, a peak plasma level of 1 hour (Verebey, Volavka, Mule, & Resnick, 

1976), and blocks up to 80% of all µ-receptors, if a dose of 50 mg is administered (Lee et 

al., 1998). The opioid system plays a vital role in a variety of neuropsychological functions, 

and aberrations in it are thought to underly several psychiatric diseases, comprising major 

depression, substance-use disorders, or borderline-personality disorder (Polunina & 

Bryun, 2013; for a review on the role of the µ-receptor and the opioid system in emotions 

see Nummenmaa & Tuominen, 2018). 

Underlining a probable role of NTX in affect regulation, in a PET-imaging study, 

Zubieta et al. (2003) demonstrated µ-receptor activation and deactivation to be strongly 

involved in the experience of positive and negative affect. These observations link to 

findings suggesting that NTX impact upon brain regions involved in integrative processing 

of, among others, reward, emotion, and cognition (Lukas et al., 2013). By means of 

demonstration, NTX tended to decrease the salience of rewarding cues (Lukas et al., 

2013), possibly due to proliferated engagement of frontal regions over salience attribution, 

and weakened functional connectivity between precuneus and sensorimotor areas 

(Courtney, Ghahremani, & Ray, 2016). Moreover, NTX was shown to reduce a cue-

related, reward-like neuronal response to drug or food (Langleben et al., 2011; Murray et 

al., 2014). On an inter-individual level, NTX has been found to largely modulate the reward 

value of social and non-social cues (Mallik, Chanda, & Levitin, 2017; Wardle, Bershad, & 

de Wit, 2016) and to decrease the feeling of social connectedness (Inagaki et al., 2016). 

Interestingly, NTX has also been shown to reverse or normalize opioid induced reduced 

empathy for another’s pain (Rütgen et al., 2015).   

 

Regions of Interest for Naltrexone-Induced Neuronal Modulation 

Opioid receptors are distributed across the whole brain, but some areas display a higher 

opioid receptor density than others, including the cingulate cortex (CC), the insula (INS), 

the precuneus, and the frontoparietal operculum (Baumgärtner et al., 2006; Leppä et al., 

2006). Apart from that, the medial prefrontal cortex (mPFC) is considered as a major 

opioid binding area (Jones et al., 1991). In subjects affected by substance-use disorder, 
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NTX has been found to modulate the mPFC, a region strongly involved in self-related 

processing such as inhibition and emotional inference to another person’s state of mind 

(Wang et al., 2015), as well as in working memory of emotional content (Smith et al., 2018) 

and empathy for pain (Lamm, Decety, & Singer, 2011). Furthermore, research suggests 

that the mPFC plays a vital role in withdrawal of opioids, whereby a hypo-functionality of 

this area may link to reward deficiency and a diminished inhibition of striatal areas. An 

upregulation of the mPFC might reduce craving and negative affect (Wang et al., 2015).  

The anterior CC (aCC) is engaged in social cognition (Apps, Rushworth, & Chang, 

2016), self-awareness and inhibitory control (Lou, Changeux, & Rosenstand, 2017), and 

plays a major role in empathy for another’s pain (Bernhardt & Singer, 2012; Lamm et al., 

2011). The posterior cingulate cortex (pCC), being among the most prominent binding 

sites for opioids (Leppä et al., 2006), is a densely connected central hub of the DMN 

(Leech & Sharp, 2014) and is involved in arousal (Boly et al., 2008, for review), as well as 

the processing of pain, reward and emotional stimuli (Maddock, Garett & Buonocore, 

2003). For example, Wang et al. (2015) found the pCC to be an active reward-related 

region in response to drug-cues, and, together with the mPFC, to hold predictive value of 

therapy adherence in opioid addiction.  

The INS is a key region for empathy and pain processing, whereby the anterior INS 

(aINS) is thought to play a major role in the affective processing of pain and vicariously 

sharing emotions (Bernhardt & Singer, 2012; Rütgen et al., 2015), whereas the posterior 

part of the INS (pINS) is thought to be majorly involved in pain processing (Vogt et al., 

2018) and engaged in the sensory-discriminative domain of pain (Bernhardt & Singer, 

2012). For example, no other brain region receives as much spinothalamic input as the 

pINS (Dum, Levinthal, & Strick, 2009), corroborated by evidence from lesion studies 

(Birklein, Rolke, & Müller-Forell, 2005) and fMRI findings showing an aberrated and pain 

intensity dependent connectivity from the pINS to the pCC in acute pain (Vogt et al., 2016; 

2018). Also, the pINS is majorly engaged in reward (Wittmann, Leland, & Paulus, 2007).  

The precuneus is suggested to play a major role in representation of the self 

(Cavanna & Trimble, 2006, for review), and is highly involved in empathy judgements 

(Chakrabarti, Bullmore, & Baron-Cohen, 2006). Crucially, the mPFC, INS, and CC form 

part of the DMN. Especially the mPFC, the precuneus, and the pCC have emerged as 

core regions of this network, as corroborated by PET and fMRI studies (Fransson & 

Marrelec, 2008).  

Thus, for our present investigation, from the Dosenbach atlas (Dosenbach et al., 

2010), we selected the mPFC, the INS, and the CC as core Regions of Interest (ROI). 
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Crucially, all these ROI are known to be actively engaged in pain and empathy processing 

while concurrently displaying a high opioid receptor density. As extended ROI, we 

additionally included the precuneus and the inferior frontal gyrus (IFG). Besides its 

mentioned involvement in empathy judgements, the precuneus anatomically exhibits 

mutual projections to areas relevant for pain processing, including the aCC, pCC, frontal 

cortex, and the putamen (Cavanna & Trimble, 2006, for review). Activation of the IFG was 

demonstrated during the processing of visual stimuli depicting faces in pain (Benuzzi et al., 

2018), as well as in individuals experiencing painful stimuli (Brooks, Nurmikko, Bimson, 

Singh, & Roberts 2002). Nonetheless, in light of the whole-brain mechanism of action of 

NTX, most strongly favoring µ-receptors, we consider it as essential to also include whole-

brain results from our graph theoretical, univariate and network-based analyses.  

 

Rationale and Hypotheses of the Present Study 

Research involving NTX as an opioid antagonist has mostly been conducted with clinical 

subgroups, and, if any, rather small sample sizes of healthy controls. To the best of our 

knowledge, no study to date has investigated the effects of NTX on functional connectivity 

in exclusively healthy participants entailing a sample of comparable size as recruited for 

the present investigation. With the current study, we aim to bridge this gap by means of a 

neuropharmacological rs-fcMRI investigation including a non-clinical sample receiving NTX 

or a placebo compound in a double-blind and randomized within-subject design. We 

thereby intend to converge information gained through different methodological angles to 

elucidate how NTX modulates neuronal connectivity on the level of functional or effective 

connectivity, as well as graph theoretical topological organization.  

By that, we hope to contribute to an amplified understanding of the 

neurophysiological basis of NTX-induced neuronal modulations not only in ROI known to 

be actively engaged in empathy, social processing (i.e., processing pertaining to the 

inference of an other’s mental state) and pain perception, but also on a whole-brain level. 

We strongly believe that our investigation will deepen our insights into the neural substrate 

of modes of action of this therapeutic compound, and particularly expect that our novel, 

multi-level approach will be of considerable interest for researchers in the clinical, social, 

cognitive and affective neurosciences, as well as for clinical practitioners alike.  

On the basis of the aforemetioned empirical findings of the mode of action of NTX, 

as well as the neuronal and functional implications of ROI commonly identified as sensitive 

to this compound, we expect to find the following observations as a result of our current 

exploratory investigation:  
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a. Firstly, we expect that NTX will induce modulations in the functional connectivity 

and topological (graph theoretical) organization in INS and CC, which will differ 

between NTX and control condition (CON). 

b. Secondly, we predict that NTX will induce modulations in neuronal connectivity 

between striatal areas and the mPFC, which will differ between NTX and CON 

(Wang et al., 2015). 

c. Thirdly, we hypothesize that NTX will induce heightened neuronal activity in 

frontal regions, which will differ between NTX and CON.  

d. Finally, we expect that the group label (NTX or CON) can be predicted by means 

of graph and functional measures as well as timeseries. 

 

 

 

METHODS 

 

Participants. In total, 42 participants (male: n=25, female: n=17) participated in the 

present investigation. At average, participants were 24 years old (mean=24.1 ± 3.24 years; 

male: mean=24.12 ± 3.38 years; female: mean=24.07 ± 3.32 years). Overall, 10 

participants had to be excluded from further data analysis due to erroneous data, 

excessive movement during scanning, technical problems during the scanning procedure, 

or since they did not meet inclusion criteria.  

Inclusion criteria. Inclusion criteria consisted of right handedness, normal or 

corrected to normal vision, common MRI safety criteria, as well as the absence of 

neurological or psychiatric disorders, or any physical condition or known intolerance to 

NTX and opioids (please see Appendix for a full summary of inclusion and MRI safety 

criteria). All participants underwent a clinical assessment by a trained physician and a 

urine drug test to ensure all inclusion criteria were sufficiently met.  

Recruitment. Participants were recruited via online advertisement and received 45 

Euro per session (90 Euro in total) as a monetary compensation in exchange for their 

study participation.   

 

Experimental procedure. The study protocol was reviewed and approved by the 

Ethics Committee of the Medical University of Vienna and carried out in conformity with the 

Declaration of Helsinki (1964). Recruited prospective participants were invited for a 

medical clinical screening conducted by a physician to ensure no exclusion criteria, such 
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as psychiatric or neurological diseases, were met. Participants were informed about the 

rationale of the experiment, however, were told a cover story to ensure double-blind 

administration of NTX (see below). All participants gave written informed consent prior to 

taking part in the experiment.  

Following a counterbalanced within-subjects design for the two fMRI scanning 

sessions, subjects were randomly assigned to either a CON or NTX condition. With an 

interval of at least one day after clinical screening, subjects were picked up at the entry of 

the University Clinic of Dentistry, Medical University of Vienna, and guided to the scanning 

facility. Subjects were asked to remove all metallic objects from their body and to fill out an 

MRI safety questionnaire. Subsequently, all subjects underwent a urine drug screening 

test, with female participants additionally undergoing a urine pregnancy test. If all inclusion 

criteria were met, subjects proceeded to undergo preparations for the task-based part of 

the experiment.   

Administration of 50 mg NTX or placebo was conceiled by the aid of a cover-story, 

whereby the respective compound was presented as an fMRI signal enhancer entailing, if 

anything, very few side effects. Oral ingestion took place under visual inspection by the 

investigators, and participants were instructed to swallow the pill together with a sip of 

water. After pharmacological administration of 50 mg of NTX, participants waited for 45 

minutes to ensure complete NTX absorption.  

 

Resting State fMRI Data Acquisition and Processing 

Resting State fMRI Scanning Protocol. FMRI Images were acquired with a 3T 

Siemens Magnetom Skyra MRI System (TR = 704 ms, TE = 34 ms, flip angle 50°, FOV 

210 mm, voxel size 2.2 x 2.2 x 3.5 mm) with a multiband accelerated echoplanar imaging 

(EPI) sequence with a 32-channel head coil. Structural MRI data were collected using a 

magnetization-prepared rapid gradient-echo sequence (TR = 2300.0 ms, TE = 2.29 ms, 

176 sagittal slices, voxel size 0.9 x 0.9 x 0.9 mm, FOV = 240 mm). Subjects underwent 

approximately 50 minutes of scanning. Resting state scanning was preceded by an 

empathy for pain task as described in Rütgen et al. (2015) and a novel emotion 

identification task. After resting state fMRI, a T1 measurement was conducted. 

Preprocessing. Preprocessing was conducted via SPM12 (Wellcome Trust Centre 

for Neuroimaging, www.fil.ion.ucl.ac.uk/spm) with standard algorithms and parameters 

unless explicitly specified otherwise. Functional images were realigned to the first image of 

the first session and normalized to MNI stereotactic standard space using Diffeomorphic 

Anatomical Registration Through Exponentiated Lie Algebra (DARTEL; Ashburner, 2007) 
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using spatial smoothing (6-mm Gaussian kernel). Nuisance regression included 

cerebrospinal fluid (CSF), white matter (WM) and head movement parameters (HMP).  

CSF and WM were regressed out (Fox et al., 2005) and HMP were modeled with the 

Friston-24 model, an autoregressive moving average model which considers two 

timepoints (Friston et al.,1996; Power et al., 2015). To account for excessive head 

movement, volume censoring with framewise displacement (FD) threshold of 0.5 mm 

(Power et al., 2014) was applied. Volumes exceeding the FD threshold were removed. 

Volume censoring reduces motion induced noise and has been demonstrated to perform 

well (Parkes et al., 2015; Satterthwaite, 2013). Data were temporally band-pass filtered 

(0.01–0.1Hz) to account for low frequency drift and high frequency physiological noise 

signal. Z-standardization at subject level was applied which showed to reduce motion 

artefacts and noise induced by scrubbing (Van Dijk, Sabuncu, & Buckner, 2009). 

Exploratory Whole Brain fMRI Analysis. To also consider differences between 

conditions on the voxel level, we conducted a whole brain fMRI analysis as implemented in 

SPM12 on an exploratory basis. First level analysis entailed motion parameters of 

subjects. A paired t-test as implemented in SPM12 was conducted. Thereby, we 

contrasted NTX against CON (NTX>CON) with results corrected for FWE (p <.05). 

Subsequently, we created a brain mask with the SPM Anatomy Toolbox (version 2.2.c) 

(http://www.fzjuelich.de/inm/inm1/DE/Forschung/_docs/SPMAnatomyToolbox/SPMAnatom

yToolbox_node.html) for improved display of results. Because of distortions in the 

DARTEL masks, possibly due to failed registration processes, five subjects had to be 

excluded (n=37 subjects were included in our analysis). 

 

Network Construction 

Atlas-Based ROI Definition. Functional connectivity network construction was 

executed by means of the functionally defined Dosenbach Atlas (Dosenbach et al., 2010), 

as functionally defined atlases have shown to yield greater test-retest reliability than 

anatomically defined ROI, as well as greater reliability of graph theoretical parameters 

(Cao et al., 2014). The Dosenbach Atlas comprises 160 distinct cortical, subcortical and 

cerebellar ROIs (radius of spheres=5mm) around the peak activation MNI coordinates 

engaged in multiple brain functions previously identified based on comprehensive meta-

analyses (Dosenbach et al., 2006; 2010). These regions are associated to six networks, 

including the default-mode, sensorimotor, fronto-parietal, cingulo-opercular, occipital and 

cerebellar networks.  
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Adjacency Matrices. The construction of adjacency matrices followed standard 

procedures as previously described (Braun et al., 2012; Power et al., 2011; Rubinov & 

Sporns, 2010; Wang et al., 2011). Mean time-series of 160 whole brain nodes were 

extracted by obtaining mean time-series of all voxels inside the ROI sphere (Wang et al., 

2011). Edge construction was conducted via ROI to ROI pearson correlation, yielding one 

adjacency matrix per subject and session. Adjacency matrices were normalized by 

applying Fisher’s r to z transformation for improved scalability. For group statistics, 

adjacency matrices per group were averaged, yielding one adjacency matrix per group. 

 

Node Based Statistics 

Node based statistics of the unweighted and directed adjacency matrices were derived by 

deploying the Network Based Statistics (NBS) (Zalesky, Fornito, & Bullmore, 2010). NBS 

aims at identifying connectivity differences in neuroimaging data of functional or structural 

networks (Zalesky et al., 2010). Similar as in mass univariate testing in, for example, SPM, 

NBS uses thresholding of statistical parametric maps at cluster level (Zalesky et al., 2010). 

This increases power of detecting networks, as conservative bonferroni correction has 

proven to be too conservative. Briefly, all edges are thresholded to construct a 

suprathreshold set of links. Next, topological clusters among the suprathreshold set of 

links are identified by comparing sizes of components to an empirical null distribution of 

maximal component size acquired by a permutation of group affiliation (Parkes et al., 

2018). Resulting components structures are, at the level of the null hypothesis, completely 

rejected, not at the level of single connections. Finally, family wise error (FWE)-corrected 

p-values are assigned to each component using permutation testing (Zalesky et al., 2010).  

 

Graph Theory Analysis 

The mean time series for each subject were extracted with 160x160 regions according to 

the functionally defined Dosenbach atlas (Dosenbach et al., 2010). Then, a whole brain 

ROI-to-ROI correlation matrix using Pearson’s r correlation was constructed and 

subsequently transformed to Fisher’s Z matrices for improved scalability. Graph theoretical 

measures were conducted with the Brain Connectivity Toolbox (BCT) (Rubinov & Sporns, 

2010; www.brain-connectivity-toolbox.net), as well as the Graph Theoretical Network 

Analysis Toolbox (GRETNA; https://www.nitrc.org/projects/gretna/; Wang et al., 2015) via 

MATLAB v17b. Measures derived via BCT and GRETNA were further processed with 

custom-made scripts via MATLAB v17b. Graph theoretical measures of NTX and CON 

sessions were tested for significance with a paired t-test with FDR-correction to account 
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for false-positives. Graph theoretical parameters were scaled as area under the curve 

(AUC; Wang et al., 2009; Zhang et al., 2011), which is a measure independent from 

thresholds or imaging modality and provides sensitivity to topological differences in brain 

networks (Achard & Bullmore, 2007; Wang et al., 2009).  

 

Mean and Concatenated Group Analysis 

Mean group analysis. A threshold of 0.15 was selected. As there is no consensus about 

the appropriate cutoff density to be chosen for a graph, it is suggested to consider a 

tradeoff between density and yet fully connected graphs. Referring to Braun et al. (2012), 

who restricted analysis to densities ranging from 0.1 to 0.4 and taking into account the 

presumably rather small effects of NTX in healthy populations (Morris et al., 2018), a 

density of 0.15 was selected as a reasonable tradeoff between sparse and connected 

graphs. A graph theoretical analysis entailing the averaged adjacency matrix per group 

(binarized with a 15% threshold and averaged) was used for a paired t-test (FDR-

corrected).  

Concatenated group analysis. For concatenated graph measures, single nodes of 

the Dosenbach Atlas (Dosenbach et al., 2010) were integrated (summarized) per region 

(i.e., all nodes of the posterior cingulate). Nodes entailed mPFC, INS and CC. On a coarse 

level, this allows for better generalization (and visualization) of measures of functional 

integration and segregation on ROI. 

 

 

Figure 1. Display of three exemplary 

graph theoretical measures used in 

the present investigation. A. Display 

of the Clustering Coefficient 

measured as the ratio of number of 

connections between direct 

neighbors of node i and the 

maximum number of possible 

connections between the neighbors 

of i. B. Betweenness Centrality refers 

to the number of shortest paths of a 

network that cross through i. C. 

Nodal local efficiency is defined as 

the inverse of the harmonic mean of 

the minimum path length between a 

node i and all other nodes of the 

network. D. Depiction of the graph 

theoretical measure connected 

components. E. display of a graph 

with n=2 connected components. F. 

Display of the graph theoretical 

measure of modularity. 
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Figure 3. A. Subject-wise connectivity matrices are 

displayed. B. Connectivity matrices are averaged. C. 

This results in an average matrix per session 

(NTX/CON). D. Graph theoretical measures are 

drawn from the resulting averaged connectivity 

matrix. E. For probability density plots and graph 

theoretical node-wise analysis, subsets of nodes are 

combined to a region (e.g., all nodes of insula are 

combined to the node of anterior insula). F. These 

are subsequently tested with a paired t-test (FDR-

corrected). Note. Displayed formula, clustering, is 

only depicted for means of demonstration. 

Figure 2. Display of the workflow of resting state functional connectivity and graph theoretical analysis. A. – D. MRI 

data is preprocessed, and regions of interest are defined. Subsequently, timeseries of the ROIs are extracted, 

followed by the construction of the adjacency matrices. E.-G. For Graph analysis, adjacency matrices are obtained as 

area under the curve. For Network Based Statistics, adjacency matrices are thresholded with a t-value. For graph 

theoretical parameter testing, values are tested with a paired t-test, FDR-corrected p < .05. For Network Based 

Statistics, adjacency matrices are permutation tested. Figure inspired by Pedersen, Omidvarnia, Walz, & Jackson 

(2015). 
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Graph Theoretical Measures 

Global Efficiency (AUC). Global efficiency is a measure of functional integration and 

measures the global efficiency of information flow within a network. Mathematically, global 

efficiency is the average inverse of the shortest path length, which infers to the minimum 

covered distance from one node to another (Bullmore & Sporns, 2010; Latori & Marchiori, 

2001). Global efficiency is considered a very reliable measure of functional integration 

because it is not influenced by short paths (Archard & Bullmore, 2007). 

Nodal Efficiency (AUC). Nodal efficiency is a measure of functional integration. It 

measures a nodes’ capability of efficient information flow. Nodal efficiency is calculated as 

the average inverse of the shortest path length, whereby it captures the minimum covered 

distance from one node to another, as well as from all other nodes in the network (Bullmore 

& Sporns, 2010; Drakesmith et al., 2015; Latori & Marchiori, 2001). 

Nodal Local Efficiency (AUC). Nodal Local Efficiency is a measure of functional 

segregation. It refers to the shortest path between a pair of nodes i and j, that only 

contains neighbors of node i (Rubinov and Sporns, 2010). 

Nodal Cluster Coefficient (AUC). The nodal cluster coefficient is a measure of 

functional segregation. Brain regions with a high cluster coefficient are in an environment 

of other nodes that are highly connected to each other. The cluster coefficient of a node is 

the proportion of links between the node’s neighbors and all possible links (Sporns, 

Chialvo, Kaiser, Hilgetag, 2004). In other words, the Cluster Coefficient describes the ratio 

of a node’s neighbors that are themselves neighbors (Rubinov and Sporns, 2010), and 

thus describes the regional efficiency of information flow in the local neighborhood of a 

node (Watts & Strogatz, 1998).  

Modularity. Modularity is a measure of functional segregation (Rubinov & Sporns, 

2009) and reflects the community structure of a network. It refers to the degree to which a 

node forms a community with another node. A node with high modularity has dense 

connections to the node he resides in a community structure with, but more sparse 

connections with the other nodes (Newman, 2006). 

Betweenness Centrality (AUC). Betweenness Centrality (BC) is a global measure 

of functional integration. Brain regions which serve as hubs, highly interconnected regions, 

facilitate functional network integration and resilience to attacks, and therefore display a 

high extent of centrality (Rubinov & Sporns, 2010). Brain nodes with BC participate in 

many short path links (Freeman, 1977; 1978). BC is formalized as the proportion of all 

shortest paths passing through a network node (Rubinov & Sporns, 2010). 
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Connected Components. Connected Components is a measure of clustering, 

which yields subnetworks of a node, in which all pairs of nodes are interconnected.  

 

Spectral Dynamic Causal Modelling 

Functional connectivity analysis entails inherent limitations, as correlations between 

regional time series of neurophysiologically remote regions do not allow for any kind of 

causal statement, thereby precluding inference on the directionality of neuronal activity. A 

recent development in the neurosciences to overcome the limitations of functional 

connectivity by allowing causal inference on neuronal connectivity is spectral Dynamic 

Causal Modelling (spDCM), which operates on the spectral density domain (Razi et al., 

2015). Thereby, spDCM describes the causal influence one neural system exerts over the 

other, or, in other words, enables inference on the causality of functional connectivity. 

Briefly, spDCM allows for the investigation of effective connectivity between neural 

regions, including endogenous activity (Razi et al., 2015), rendering it especially useful for 

studying neuronal activity at rest. To complement the graph theoretical, node based and 

group-wise statistics used in the present investigation, a follow-up analysis employing a 

spDCM analysis of average effective connectivity measures was conducted (A-Matrix). 

ROI were selected in the light of graph theoretical and node-based measures, which is in 

line with the hypothesis-driven nature of DCM analyses (Stephan et al., 2010). Besides the 

core ROI, we included sensorimotor regions, as studies employing NTX often found 

induced modulations in sensorimotor regions, such as the inferior parietal lobule or the 

supplementary motor area (SMA) (Mann et al., 2014). This resulted in seven regions, 

which were subsequently allocated to the spDCM analysis. ROI were comprised of the 

medial PFC, right ACC, right pCC and bilateral INS, right precuneus and SMA.  

Implementation. For spDCM analysis, the identical fMRI data was used that has 

been employed for graph theoretical and ML analyses (n=42 subjects).   

 

 

 

 

 

 

 

 

ROI        Side              MNI   

  x y z 

mPFC  0 51 32 
aCC R 9 39 20 
pCC R 1 -26 31 
pINS L -30 -29 9 
 R 42 -24 17 
Precun R 11 -68 42 
SMA  0 -1 52 

Note. Regions of Interest (Dosenbach, 

2010) used for spDCM analysis (A-Matrix).  

Table 1 Regions of Interest for spectral DCM 

 



17 
 

Machine Learning of Functional Connectivity and Graph Theoretical Parameters 

Machine Learning of Connectivity Matrices and Timeseries.  

We investigated the classification success of NTX vs CON session by employing a 

feedforward DNN with the functional connectivity matrices and timeseries. 

Implementation of Deep Neural Network. DNN implementation was conducted 

with an Anaconda environment and Spyder 4 (Python 3.6). Further, the Python packages 

Scikit-learn (Pedregosa et al., 2011) and NumPy (Van der Walt, Colbert, & Varoqaux, 

2011) were used for data preprocessing and analysis. Scikit-learn is a commonly used 

package in the neuroscientific machine learning field (Walter et al., 2018). In a first step, 

functional connectivity and timeseries were concatenated per group, resulting in 84x25600 

(functional connectivity matrices) and 160x47866 (time series) matrices. Subsequently, 

data was randomly split into a training and a test set, which were used for training and 

testing of the DNN model, respectively. A Grid Search (optimizing free parameters) was 

conducted with GridSearchCV (as implemented in scikit learn). According to 

GridSearchCV output and inspection of the classification scores, hyperparameters were 

tuned, resulting in following specifications: size of hidden and output layers: 120,2; 

learning rate initiation: 0.0001; learning rate: constant; maximum iterations: 400; 

momentum: 0.3; solver: L-BFGS; tolerance: 0.000001; validation fraction: 0.1. Other 

parameters remained at standard specification as implemented in scikit-learn.

 

 

Machine Learning Classification of Graph Theoretical Components.                

To investigate the discriminative power of graph theoretical measures for group 

categorization, two ML classification algorithms were employed for classification of NTX or 

CON. The NB and k-nearest neighbor kNN algorithms have been employed regularly for 

classification tasks in the framework of rs-fMRI analysis (Khazaee et al., 2017). The NB 

classifier is a probabilistic approach to classification problems estimating conditional 

probabilities from features and labels (class allocation). This approach has been shown to 

perform very well in a variety of problems, including high dimensional space, which makes 

Figure 4. A. Simplified display of a 

neural network. Per layer, every node 

is interconnected to all other nodes. 

The input layers allocate the fed 

information to one or several hidden 

layers, where the information is 

weighted and subsequently fed to the 

output layers, where an activation 

function is applied. 
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it especially useful for analysis of rs-fMRI (Khazaee et al., 2017). The kNN algorithm 

classifies a test pattern according to majority class label of the k-nearest training patterns 

(Bishop, 2006). Generally, classifiers use a set of features to predict the associated class. 

Unsurprisingly, a function trained on a dataset which is identical with the test set would 

have a perfect accuracy score but, at the same time, fail to predict new data points. 

Therefore, the feature space is usually split into a training and a test set. Cross-validation 

is a ML technique used to evaluate model performance: A training data set is partitioned in 

k subsamples, which are subsequently used to predict the remaining data, therefore 

preventing overfitting. Subsequently, model performance can be measured by employing 

various model performance parameters. Misclassification rate is a commonly used 

measure of performance often employed in ML. The Misclassification rate refers to the 

classifier performance to predict new values in the test set: A Misclassification rate of 0 

thus indicates an accuracy of 100%. 

Implementation. NB and kNN classification were conducted with Anaconda 

environment, Spyder 4 (Python 3.6) and the Python packages Scikit-learn (Pedregosa et 

al., 2011) and NumPy (Van der Walt, Colbert, & Varoqaux, 2011). For classification, graph 

theoretical components were concatenated per group, resulting in 84x160 matrices per 

measure. After group label allocation, Naïve Bayes (with hyperparameter optimization) and 

k-nearest neighbor classification was implemented. 

 

Follow-Up Correlational Analysis of Behavioral and Graph Theoretical Measures 

To complement our previous analyses with behavioral markers, we conducted a 

correlation analysis (Pearson correlation) between graph theoretical measures which 

revealed significant alterations due to NTX administration and behavioral measures of 

experienced self-pain of a previous to the resting-state scanned empathy for pain task 

(described in detail in Rütgen et al., 2015). Briefly, this task consisted of either self- or 

other-directed pain stimulations, applied via an electrode on the right hand and rated on a 

Visual Analog Scale. Eighteen participants could not be included in our follow-up analysis, 

either because they failed to show up for the second session (n=4), interruption of the 

session (n=4), illogical pain ratings (for example, pain administration was rated as not 

painful), flawed fMRI data (n=2) or both (n=4). The final sample consisted of N=34 

participants (female: n=19, age: M=23.5, S.E.M.=0.46).  
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RESULTS 

 

Network Based Statistics 

To identify regions at cluster level, a whole brain network based statistical analysis (NBS) 

paired t-test permutation test (contrast: NTX > CON, n=10000 rounds, threshold: t=3.5, 

p<.05 FWE corrected at cluster level) was conducted (please see Table 8 in the 

supplement for detailed information). NBS analysis yielded 4 networks. The first network (p 

<.01) entailed nodes such as the precuneus, pCC, medial insula (mINS), and ventromedial 

prefrontal cortex (vmPFC) projecting to thalamus, angular gyrus (AG) and pINS. Network 2 

(p<.01) yielded nodes such as the dorsolateral prefrontal cortex (dlPFC), mPFC and 

extrastriate (occipital cortex) projecting to med cerebellum. In network 3 (p<.02) we found, 

among others, nodes of the superior frontal (sFC) and dorsolateral prefrontal cortex 

(dlPFC), projecting to medial frontal cortex (mFC). Network 4 (p<.003) yielded nodes such 

as the pCC, aINS, mINS, precuneus, projecting to mINS, pINS and temporal cortex. 

 

 

 

 

 

Figure 5.  Display of the NBS analysis (n=10000 permutations, threshold t=3.5). NBS analysis yielded 4 subnetworks. 
Note. pINS= posterior insula; mINS=medial insula; aINS=anterior insula; vmPFC= ventromedial prefrontal cortex; 
medCereb=medial cerebellum; dlPFC= dorsalateral prefrontal cortex; pCC=posterior cingulate cortex.  
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Figure 6. A. Display of NBS analysis (entailing 4 networks as displayed by the colorbars). Size of the nodes relate to 
t-values yielded by the NBS analysis. Display of A. left cerebral hemisphere; B. right cerebral hemisphere;                 
C. top/dorsal view; D. bottom/ventral view; E. frontal/rostral view; F. back/caudal view. Visualized with BrainNetViewer 

(http://www.nitrc.org/projects/bnv/) (Xia, Wang & He, 2013). 
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Graph Theoretical Measures 

Global Efficiency (AUC). Global Efficiency displayed no significant results (p>.95). 

Nodal Efficiency (AUC). An FDR-corrected paired t-test revealed significant 

differences across sessions for a range of nodes. Besides sensory and motor areas, the 

mPFC ( t= -3.39, p<.01) as well as the IFG (t= -5.34, p<.0001) significantly differed in 

nodal efficiency across condition (see Table 2). Further, INS (most prominently the left 

INS, t= 3.22, p<.001) and CC (left CC: t=-5.30, p<.0001) displayed significant aberrations 

between NTX and CON.  

Nodal Local Efficiency (AUC). Nodal Local Efficiency was modulated between 

conditions in a variety of ROI, such as prefrontal, occipital, motor and sensory regions as 

well as the precuneus (t= -5.44, p<.001). Further, NTX showed a modulatory effect on the 

posterior insula (t= -3.04, p<.05) (see Table 2). 

Nodal Cluster Coefficient (AUC). Of all calculated measures, the nodal cluster 

coefficient showed the widest range of significantly altered ROI entailing nodes in the 

frontal, temporal, parietal and occipital cortex. The frontal cortex contained significantly 

altered nodes comprising the mPFC (t=5.12, p<.0001), and, most prominently, the right 

IFG (t=8.39, p<.0001). Further, medial and posterior nodes of the INS revealed aberrations 

in nodal clustering across sessions, most prominently in the posterior right INS (t=-5.80, 

p<.0001). Nodes of the aCC  and pCC also were significantly altered across sessions, 

most pronounced in the left pCC (t=5.76, p<.0001) (see Table 2). 

Betweenness Centrality (AUC). Betweenness Centrality yielded no significant 

differences between sessions (p>.08). 

Modularity. Modularity (weighted Adjacency Matrices) yielded no significant 

differences between sessions (p>.90).  

Connected Components. Connected Components yielded no significant 

differences between sessions (p>.20). 

Averaged Graph Theoretical Analysis. Group level graph measures were 

concatenated and fitted to a probability density function. Group parameter (AUC) of Nodal 

Cluster Coefficient revealed to be significantly different between two sessions (NAL: M= 

0.24 ±  0.035 SD; CON: M=0.23 ± 0.03 SD, t=6.32, p<.0001, FDR-corrected). Nodal local 

efficiency (AUC) also showed significant modulations between sessions (NAL: M= 0.3 ± 

0.02 SD; CON: M=0.33 ± 0.02 SD, t=6.32, p<.0001, FDR-corrected). Betweenness 

Centrality as well as Nodal Efficiency (AUC) displayed no significant alterations between 

conditions. 
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Figure 8. Display of the log-scaled probability density function (PDF) of the concatenated nodal cluster coefficient 

and nodal  efficiency for posterior cingulate cortex (pCC) and posterior insula (pINS). Note. See Supplement for 

statistical information. 

Figure 7. A. Display of the averaged group wise log-scaled probability density function (PDF) of the nodal cluster 

coefficient.  

B. Display of the nodal local efficiency. 
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Nodal Efficiency  (AUC) 

ROI MNI NAL CON t p 

 x y z M SD M SD   

mPFC 0 51 32 0.24 0.05 0.27 0.02 -3.39 <.01 
vlPFC 46 39 -15 0.28 0.02 0.26 0.04 -5.34 <.0001 
pINS 42 -24 17 0.27 0.01 0.26 0.03 3.07 <.05 
mINS -36 -12 15 0.26 0.03 0.22 0.06 3.68 <.01 
pCC -6 -56 29 0.25 0.02 0.27 0.02 -3.58 <.01 
 5 -50 33 0.28 0.01 0.27 0.03 2.70 <.05 
 -3 -38 45 0.27 0.02 0.26 0.03 3.65 <.01 
 1 -26 31 0.24 0.04 0.27 0.02 -4.00 <.05 
 10 -55 17 0.25 0.03 0.27 0.02 -4.13 <.01 
 -11 -58 17 0.25 0.02 0.27 0.02 -5.30 <.0001 
Precun 8 -40 50 0.26 0.02 0.25 0.03 2.86 <.05 
          

Nodal Local Efficiency (AUC) 

vlPFC 46 39 -15 0.36 0.06 0.32 0.03 5.17 <.001 
pINS 42 -24 17 0.33 0.02 0.35 0.03 -3.04 <.05 
Precun 9 -43 25 0.30 0.02 0.31 0.03 -2.83 <.05 
 11 -68 42 0.31 0.04 0.36 0.05 -5.44 <.001 
          

Nodal Cluster Coefficient (AUC) 

mPFC 0 51 32 0.29 0.07 0.23 0.03 5.12 <.0001 
vlPFC 46 39 -15 0.30 0.06 0.21 0.03 8.39 <.0001 
mINS 37 -2 -3 0.23 0.04 0.27 0.07 -2.89 <.05 
 -36 -12 15 0.27 0.04 0.34 0.09 -4.27 <.002 
 32 -12 2 0.24 0.04 0.29 0.06 -4.82 <.001 
pINS 42 -24 17 0.23 0.02 0.27 0.04 -5.80 <.0001 
aCC -1 28 40 0.25 0.03 0.28 0.06 -3.29 <.01 
pCC 10 -55 17 0.28 0.07 0.24 0.03 3.90 <.01 
 -11 -58 17 0.30 0.06 0.25 0.04 4.30 <.001 
 -4 -31 -4 0.27 0.05 0.30 0.05 -3.46 <.01 
 1 -26 31 0.28 0.06 0.25 0.04 3.75 <.01 
 -5 -43 25 0.19 0.03 0.20 0.03 -3.01 <.05 
Precun 8 -40 50 0.28 0.04 0.31 0.04 -4.30 <.001 
 -6 -56 29 0.30 0.05 0.25 0.04 5.76 <.0001 
 9 -43 25 0.18 0.02 0.20 0.03 -3.57 <.01 
 11 -68 42 0.19 0.04 0.30 0.05 -8.28 <.0001 

Table 2 Graph theoretical analysis  

 

Table 2. Display of graph theoretical analysis. Statistical testing was conducted with a 

paired t-test (FDR-corrected). Note. Please see the supplement for the full list of 

significant ROI and abbreviations. 
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Figure 9. Display of the Nodal Cluster Coefficient (AUC). Node size indicate differences in nodal clustering t-values 

between conditions. Nodes represent significant modulations between condition in clustering with colour indicating 

the corresponding network. Edges between nodes relate to statistical differences in network-based statistics 

analysis (binarized). Note. Visualized with BrainNetViewer (http://www.nitrc.org/projects/bnv/) (Xia, et al., 2013). 

Figure 10. Display of the Nodal Efficiency  (AUC). Display of the Nodal Efficiency (AUC). Node size indicate 

differences in nodal efficiency t-values between conditions. Nodes represent significant modulations between 

condition in clustering with colour indicating the corresponding network. Edges between nodes relate to statistical 

differences in network-based statistics analysis (binarized). Note. Visualized with BrainNetViewer 

(http://www.nitrc.org/projects/bnv/) (Xia, et al.,2013). 
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Exploratory whole-brain fMRI analysis.  

Univariate whole-brain fMRI analysis with contrast NTX>CON (FWE corrected, p <.05) 

revealed several activation clusters in  frontal, parietal, occipital and cerebellar cortices 

(please see Table 9 in the supplement for detailed information). We found NTX induced 

upregulated functional connectivity in all core ROI. In general, especially the medial and 

dorsolateral PFC exhibited extended upregulation (mPFC, MNI: [-30,24,48]; dlPFC, MNI: 

[35,32,23]). Moreover, we found increased connectivity in temporal (planum 

temporale/auditory cortex, MNI: [48,-14,5]), subcortical (pINS, MNI: [-44,-14,51]; pCC, 

MNI: [12,14,21]; Thal, MNI: [-5,-8,17]), parietal (inferior parietal lobule (IPL), MNI:                

[ -48,-30,35]; precuneus, (MNI: [-15,-41,44] ) and cerebellar regions. In terms of peak 

activation, we observed the most pronounced effects in the periaqueductal grey (PAG) 

(MNI: [-6,-41,-15]). 

 

 

Figure 11. Display of the Nodal Local Efficiency  (AUC). Node size indicate differences in nodal local efficiency             

t-values between conditions. Nodes represent significant modulations between condition in clustering with colour 

indicating the corresponding network. Edges between nodes relate to statistical differences in network-based statistics 

analysis (binarized). Note. Visualized with BrainNetViewer (http://www.nitrc.org/projects/bnv/) (Xia, et al., 2013). 
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Figure 12. Display of whole-brain univariate fMRI group analysis NAL>CON (paired t-test, FWE-corrected p<.05) 

between conditions. Results were masked for ameliorated visualization with a mask created with the SPM 

anatomy toolbox. A. Rostral and caudal view displaying the IFG and mPFC. B. lateral view of the IPL, STG and 

aINS. C. Ventral and dorsal view displaying the Precuneus. D. transverse display of the aINS. E. Saggital view of 

the aCC and pCC. Note. Please see the supplement for detailed information. 
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Machine Learning of Functional Connectivity and Graph Theoretical Components 

Machine Learning of functional connectivity. A DNN (MLP), an instance of a 

feedforward NN, was used for supervised classification of session (NTX or CON) for 

connectivity matrices and timeseries.                            

Connectivity Matrices and Timeseries. Connectivity matrices yielded a maximum 

accuracy score of 82.4%, however, accuracy scores displayed a high fluctuation and 

dependency from the random selection of training samples, thereby resulting in 

unsatisfactory reliability of prediction scores. DNN classification of neural timeseries 

resulted in a near to perfect accuracy score of 99.9%, remaining stable with the random 

selection of different training scores.  

Machine Learning Classification of Graph Theoretical Components. Graph theoretical 

components revealed unsatisfactory classification performance of kNN and NB classification 

patterns (Accuracy scores for the nodal cluster coefficient: NB=0.15, kNN=0.46; Accuracy 

scores for Nodal Efficiency: NB=0.12, kNN=0.38; Accuracy scores for Nodal Local 

Efficiency: NB=0.11, kNN=0.54). 

 

Spectral Dynamic Causal Modelling 

Following graph theoretical analysis, a spDCM analysis was conducted. SpDCM analysis 

revealed average effective connectivity measures (A-Matrix) which displayed significant 

differences between sessions.  

The connection of the left pINS to the right pCC as well as right pCC to mPFC revealed 

significant differences in effective connectivity between conditions (see Table 3 and Figure 

13).  
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t-Tests of Anatomical Effective Connectivity Matrices (A-Matrix) 

                                                                                                                                           (df=41)                               

 MNI MNI M SD t p 

 x y z X y y     

pINS > mPFC 42 -24 17 0 51 32     

NAL       0.0576 0.1456 2.33 <.05 
CON       -0.027 0.21   

pINS > pCC -30 -29 9 1 -26 31     

NAL       0.0119 0.0825 -2.813 <.01 
CON       0.0671 0.107   

Figure 13. Display of A-Matrix effective connectivity connections between regions differing between conditions 

(p <.05) and graph measures. Graph measures marked with an asterisk differ significantly. Red lines indicate that 

the mean effective connectivity between sessions is lower in NTX as in CON. Asterisks indicate significant 

differences in Nodal Clustering or Efficiency between conditions. Nodal efficiency in the left pINS was equal 

between conditions.  

Table 3. Display of statistics of the effective connectivity values per condition. A paired t-test 

was conducted (p<.05, uncorrected). 

 

Table 3 spDCM analyses 
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Correlational Analysis of Behavioral and Graph Theoretical Measures 

To investigate the relation between graph theoretical and behavioral markers, we 

performed Pearsons correlations between behavioral measures of experienced self-pain 

for NTX (please see the supplement for further information). A paired t-test revealed that 

self-pain significantly differed between NTX and CON (NTX: M=1.65, Std=1.41; CON:    

M= -2.89, Std=0.73, t=19.94, p<.0001). On a descriptive level, pain ratings were higher in 

CON than in NTX. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nodal Cluster Coefficient (AUC)  

 Region MNI Mean Std   R    p 

 BG -20 6 7 0.27 0.04 0.35 <.05 
 mINS 32 -12 2 0.19 0.02 0.33 <.05 
 PrecGyr -54 -22 22 0.25 0.09 0.39 <.05 
 pINS 42 -24 17 0.23 0.10 0.42 <.01 

         

Nodal Efficiency (AUC)  

 BG -20 6 7 0.35 0.035 0.50 <.001 
 PrecGyr -54 -22 22 0.32 0.083 0.44 <.01 
 pINS 42 -24 17 0.29 0.11 0.43 <.01 
 postOccipital -5 -80 9 0.31 0.029 0.32 <.05 

         

Nodal Local Efficiency (AUC)  

 vmPFC -6 50 1 0.26 0.031 0.37 <.05 
 Occipital -42 -76 26 0.26 0.027 0.46 <.01 
 BG -20 6 7 0.26 0.021 0.38 <.01 
 vFC -48 6 1 0.025 0.020 0.36 <.05 
 PrecGyr -54 -22 22 0.024 0.057 0.51 <.001 
 pINS 42 -24 17 0.023 0.080 0.47 <.0.01 
 postOccipital -5 -80 9 0.28 0.016 0.31 <.01 

Table 4 Behavioral and graph theoretical correlation analysis 

Table 4. Display of Pearsons correlation between graph theoretical  measures and self 

pain for NTX. Note. Please see the supplement for abbreviations and detailed information. 
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DISCUSSION 

 

Summary of Results 

In this multi-methodological investigation, we conducted graph theoretical, functional and 

effective connectivity analyses conjoined with a ML approach to explore the neuronal 

effects of NTX. We found modulating effects of NTX in all analyses. On the most coarse 

(and least specific) level, we found that, on a global scale, NTX reduced functional 

integration as well as segregation. On the next, more specific level of concatenated ROI 

analysis, we discovered diverging effects of NTX, which reduced functional segregation 

(nodal clustering) and integration (nodal efficiency) in the mPFC, increased functional 

segregation and integration in the pINS, and reduced functional segregation in the pCC. 

Graph theoretically, we found extensive modulations in frontal, temporal, parietal, and to a 

lesser extent, occipital and cerebellar nodes besides our core ROI. These findings were 

solidified by our network-based analysis, which yielded increased functional connectivity in 

four distinct networks, entailing all core ROI and, additionally, the medial cerebellum, 

AG/IPL and extrastriate visual (occipital) cortex. Our univariate fMRI analysis corroborated 

these results by demonstrating increased functional connectivity entailing frontal cortex, 

INS, CC, precuneus. Furthermore, our findings demonstrated an increased functional 

connectivity in BG, Thal, transverse temporal gyrus, IPL and cerebellum.  

Hypotheses. Hypothesis a. could be confirmed, whereby NTX, as compared to 

CON, induced modulations in graph theoretical, functional and effective connectivity 

measures in mPFC, IFG, INS, CC and precuneus. However, network-based analysis and 

univariate fMRI analysis indicated minor or insignificant NTX induced engagement of the 

IFG. Our results, however, were not in line with our Hypothesis b., as we found no clear 

indications for modulations between striatal areas and mPFC. Nonetheless, our analyses 

showed increased functional connectivity in NTX in projections of basal ganglia/putamen 

to the right pINS. Confirming our expectations in Hypothesis c., we found increased 

neuronal activity in frontal regions. Finally, our findings only partially supported Hypothesis 

d., since functional connectivity and graph measures displayed unsatisfactory 

classification rates, whereas timeseries revealed a high classification rate according to a 

feedforward DNN approach. 

Pertaining to concatenated and averaged group level, nodal local efficiency 

demonstrated few significant NTX induced alterations in regions on the concatenated 

level, but revealed several significant alterations on the averaged group level. This may be 

due to small effects, which indeed prevailed on a group level, but not at the level of 
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concatenated regions. However, on the level of single node graph theoretical analysis, 

nodal clustering and nodal efficiency showed the most extensive aberrations between 

conditions. 

ML classification (by means of NB and kNN) of graph theoretical components 

yielded only unsatisfactory classification accuracies. This may be due to the subtle 

differences in graph theoretical measures between conditions. This argumentation is 

corroborated by visual inspection of data, revealing small differences between conditions. 

Both, NB and kNN, may thereby have met difficulty to discriminate between groups, as 

data points revealed to be rather narrow in size between conditions. Moreover, only 

specific nodes displayed significant differences between conditions. Employing all nodes 

of the Dosenbach Atlas (Dosenbach et al., 2010) for ML analyses may have introduced too 

much noise, resulting in an undermining effect on classification scores.     

However, for timeseries classification, a feedforward DNN classification approach 

revealed an extremely high prediction accuracy of 99.9% classification performance, 

remaining stable with random selection of training data.This may be related to the ability of 

the DNN to represent data also in high dimensional space, thereby displaying boosted 

performance in representing even narrow differences between data points. Besides, the 

larger volume of training data may also have led to a higher classification accuracy, as 

subtle differences between conditions may be better represented by a higher volume of 

training data.  

 Relating to our network-based statistics analysis, we found four distinct 

subnetworks.The first network entailed several projections from the mINS, basal ganglia 

BG/Putamen and Thal to pINS. The second network displayed extensive projections from 

frontal and visual cortices to the medial cerebellum. The third network comprised several 

projections from the frontal cortex (superior frontal cortex (sFC) and dorsal frontal cortex 

(dFC) ) to somatosensory network nodes, such as preSMA, SMA an Precentral Gyrus. 

Lastly, the fourth network consisted of multiple projections of the pCC, INS and AG/IPL. 

Among others, the pCC connected to AG/IPL and visual cortex, whereas the AG/IPL 

connected to pINS. 

Concomittantly, univariate fMRI analysis largely confirmed findings of graph 

theoretical and network-based analysis. Our results revealed increased functional 

connectivity in frontal (mPFC, dlPFC), temporal (planum temporale/auditory cortex), 

parietal (IPL, precuneus), subcortical (pINS, pCC, Thal), and cerebellar regions. Especially 

the medial and dorsolateral PFC exhibited extended upregulation. Moreover, we observed 

significant neuronal upregulation in the left PAG.  
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  With regard to our spDCM analysis, paired t-tests revealed aberrations in 

projections of the right pINS to mPFC and left pINS to right pCC. However, results did not 

achieve significance when FDR-corrected. This may be due to rather small modulations in 

effective connectivity between conditions, which indeed could be elicitied with functional 

and graph theoretical analyses, but did not prevail on the level of effective connectivity. For 

this reason, we presented uncorrected results in this part of our analysis, which, in an 

exploratory manner, remain only descriptive in nature. Follow-up investigations are 

warranted to validate and expand upon these findings. Yet, our uncorrected results are 

corroborated by graph theoretical, univariate and cluster based functional permutation 

testing (NBS). Thus, we argument that they allow, at least in an exploratory, descriptive 

manner and as combined with univariate, graph theoretical and network-based analysis, 

for a variety of interesting conclusions. 

In addition to our previous task-free analyses, we also calculated Pearsons 

correlations between graph theoretical and behavioral measures of self-pain for NTX. For 

the nodal cluster coefficient (AUC), BG/Putamen, mINS and pINS were correlated with 

self-pain. For nodal efficiency (AUC), the same nodes as observed for nodal clustering, 

and additionally the visual cortex were associated with self-pain. For nodal local efficiency 

(AUC), we found small to medium Pearsons correlations entailing vFC, vmPFC, visual 

cortex, BG/Putamen and pINS.  

 

General Discussion 

Relating to previous research, our current findings are in line with previous findings 

pertaining to NTX inducing modulations in key regions eligible for reward, emotion 

processing and awareness (Lukas et al., 2013), linking to the multifaceted involvement of 

the opioidergic system in those areas. Although NTX is a non-selective opioid receptor 

(OR) antagonist, binding also to δ and κ receptors, it most prominently favors the µ-

receptor (Wang et al., 2001). In general, the µ-receptor shows high densities in the Thal, 

prefrontal and CC, BG and midbrain structures, whereby the medial pain system displays 

higher µ-receptor densities than the lateral pain system (Sprenger, Berthele, Platzer, 

Boecker, & Tölle, 2005). Low µ-receptor densities are found in the occipital cortex and 

cerebellum (Frost et al., 1985). A study employing a µ-specific ligand by Leppä et al. 

(2006) found the strongest µ-binding capabilities in, among others, the aCC, pINS, mFG, 

IFG,precuneus, posterior parietal cortex (IPL), transverse temporal gyrus and Thal. Also, 

visual and auditory cortices display µ-OR capabilities (Quirion & Pipapil, 1991). For 
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example, Leppä et al. (2006) found that participants rated the scanner noise less irritating 

after remifentanil administration, pointing to µ-OR modulation in the auditory cortex. 

Peak sites for δ-OR binding capabilities include the frontal cortex and putamen, 

whereas the Thal exhibited lower and the cerebellum absent δ-OR binding capabilities 

(Smith et al., 1999). The κ-OR exhibits the highest binding capabilities in the CC, striatum, 

frontal, temporal and parietal cortex, intermediate κ-OR binding capabilities in the Thal and 

medial temporal lobe and lowest binding capabilities in the brainstem and occipital cortex 

(Hiller & Fan, 1996). 

Taking into account the pharmacological mode of action of NTX, we therefore had 

expected to find the most extensive neuronal modulation at µ-binding sites. Confirming the 

results of Leppä et al. (2006), who administrated a µ-specific opioid ligand, we found 

extensive NTX induced engagement of frontal (mPFC, dlPFC), temporal (transverse 

temporal cortex), parietal (precuneus, IPL), subcortical (INS, CC) and to a lower extent, 

occipital (visual cortex) and cerebellar nodes.  

Pertaining to the OR specific peak sites, NTX induced engagement of the frontal 

cortical area related to µ, δ, and κ-OR. Further, the temporal and parietal cortex, 

specifically the transverse temporal gyrus/planum temporale and IPL, showed NTX 

induced upregulated neuronal activation. In line with Leppä et al. (2006), this points to 

mostly µ- and κ-OR bindings. NTX induced modulations in the occipital cortex, specifically 

in the visual cortex, relates to µ-specific binding, as δ and κ opioid OR show only 

insignificant binding in the occipital area. Concerning the cerebellum, we found few, but 

pronounced effects of NTX, which relate to mostly µ- and to a lower extent to κ-, but not to 

δ-opioid binding capabilities (Schadrack et al., 1999). Furthermore, we observed strong 

upregulated neuronal activity in the left PAG, which displays a high density of δ-OR 

(Ravert, Bencherif, Madar, & Frost, 2004). 

Confirming our expectations, our analyses revealed NTX induced opioidergic 

modulations in regions engaged in the proprioceptive and affective coding of pain, self-

other processing, empathy judgement and reward, wich differed between conditions. In our 

graph theoretical analyses, we found whole-brain NTX induced aberrations. Pertaining to 

our core ROI, our findings demonstrated graph theoretical modulations in the prefrontal 

cortex (PFC), anterior and posterior INS and CC as well as precuneus. In particular, we 

observed a pronounced alteration of the nodal cluster coefficient for between session 

effects of NTX. 

These aberrations are corroborated by our univariate fMRI analysis (contrasting 

NTX>CON), revealing expected activation clusters in all core ROI. However, although the 
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IFG displayed upregulated neuronal activity induced by NTX, peak values indicated no 

strong NTX induced effects. Furthermore, we also found distinct areas of upregulated 

neuronal activity in temporal, parietal and occipital cortices. These entailed the AG/IPL, the 

auditory cortex/planum temporale, visual cortex and medial cerebellum.  

These findings are further corroborated by our network-based analysis (NBS), 

which solidified previous analyses. Thereby, we found four distinct networks, which 

entailed our core ROI of medial frontal cortices (however, not the IFG), anterior and 

posterior nodes of the INS and CC as well as precuneus. Additionally, we found the Thal, 

transverse temporal gyrus/planum temporale, AG/IPL as well as the cerebellum in all our 

analyses to differ between conditions.  

An observation of alterations in these additional nodes is plausible considering their 

functional specialization. For example, the right AG has been found to be engaged in the 

processing of rewarding cues (Guterstam et al., 2018), and the left AG as well as superior 

frontal cortices, such as the mFG/sFC, have been reportedly involved in pain related 

theory of mind (Jacoby, Bruneau, Koster-Hale, & Saxe, 2016). The IPL, being one of the 

least understood regions in the brain (Igelström & Graziano, 2017), is a major network hub 

of the DMN and engaged in higher-order cognitive capabilities as well as bottom-up 

perception and multimodal integration. Further, the IPL is involved in social cognition, self-

awareness, introspection, and memory (Igelström & Graziano, 2017). For example, Decety 

and Lamm (2007) suggested that the IPL may contribute to social cognition by contributing 

to lower order processes pertaining to social cognition, such as attention and agency. 

Moreover, the right Thal is part of the pain matrix (Jacobi et al., 2016), a major hub 

for afferent pain fibers (Wager et al., 2004), and counts among the peak regions of opioid 

induced neuronal activation (Nummenmaa et al., 2018). With regard to the temporal 

cortex, the transverse temporal gyrus/planum temporale exhibits strong opioidergic 

activation as found in PET investigation (Leppä et al., 2006). Apart from that, the right 

inferior temporal gyrus (IT) is a major opioid binding site (Leppä et al., 2006) and has also 

been reported to be altered in opioid addiction (Martin‐Soelch et al., 2011). Together with 

motor and visual cortices, the IT is part of a set of regions apart from the mesolimbic 

pathway that mediates opioid activity (Martin-Soelch et al., 2001), forming an occipito-

temporal visual attention network (Guterstam et al., 2018).  

Pertaining to the cerebellum, the medial cerebellum displayed NTX induced 

aberrations in network-based analysis, graph theoretical and univariate fMRI analyses. 

This region has been found to be engaged in the processing of rewarding cues in 
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participants treated with NTX (Courtney et al., 2016), as well as in pain processing 

(Pomares, Faillenot, Barral, & Peyron, 2013). 

In the first subnetwork (p<.01), the network-based analysis (NBS) revealed 

projections of the precuneus to right thalamus (Thal) and left AG/IPL as well as from 

BG/Putamen to pINS. Also, pCC and mINS projected to left AG (IPL). Graph theoretically, 

the left AG (IPL) displayed reduced functional segregation, but increased functional 

integration, and thereby exhibits increased connectedness to other nodes. This might 

indicate that this region may serve as a neuronal hub on a network level, also considering 

extensive projections of the left medial cerebellum and bilateral AG/IPL in several 

subnetworks. Moreover, the BG/Putamen to pINS projection functionally might represent a 

projection processing the affective coding of somatosensory integration, such as pain. 

The second subnetwork (p<.01) most prominently revealed frontal (left mPFC, right 

dlPFC), extrastriate occipital and BG/Putamen projections to the left medial cerebellum. 

The third subnetwork (p<.02) yielded several projections between frontal nodes, such as 

the right mFG/sFC, and frontal nodes to supplementary motor area (SMA) and preSMA. In 

the fourth subnetwork (p<.003), we found projections of the pCC to the right AG (IPL), right 

mINS, extrastriate (occipital) and temporal cortices. Furthermore, the pINS displayed 

projections to temporal cortices. Again, left and right AG (IPL) displayed multiple 

projections to the left pINS and right superior temporal gyrus.   

In our effective connectivity analysis, we observed an upregulated effective 

connectivity of the right pINS to mPFC and downregulated effective connectivity of left 

pINS to right pCC. Bilateral pINS displayed reduced functional segregation, whereas the 

mPFC displayed increased functional segregation. NTX induced upregulation of the right 

pINS to mPFC projection connection might link to the opioid antagonistic effects of NTX, 

leading to reduced reward (presumably resulting in reduced craving) and negative affect 

(Wang et al., 2015). Thereby, our analyses may suggest an opioidergic modulation of the 

pINS-pCC axis, which has been used to infer pain intensity and the existence of painful 

states (Becker, Vogt, & Ibinson, 2018). In line with this, it could be argued that an 

opioidergic downregulation of this pathway may result in a reduced integration of 

somatosensory pain signaling in self/other processing and awareness of not only one’s 

own, but also another’s pain.  

With regard to the processing of one’s own pain, we found small to medium 

Pearsons correlations between graph theoretical and behavioral measures of self pain. 

Thereby, nodal clustering (AUC) of mINS, pINS and BG/Putamen correlated with 

measures of self-pain. Our analysis of nodal efficiency (AUC) yielded the identical regions, 
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and additionally the visual cortex. Nodal local efficiency (AUC) revealed correlations 

between vFC, vmPFC, visual cortex, Putamen and pINS with measures of self-pain. In the 

context of experiencing (and anticipating) pain, it seems consistent that the neuronal 

engagement of pain (mINS, pINS) and emotion (BG/Putamen) processing areas leads to a 

shift in the allocation of neuronal resources to areas involved in anticipating and 

processing pain, leading to an ameliorated information processing capability of these 

areas. Graph theoretically, mINS and pINS displayed reduced clustering and nodal local 

efficiency (i.e, reduced informations segregation), but heightened nodal efficiency (i.e., 

increased information integration). This finding points to a heightened ability of information 

integration of the pain processing medial and posterior parts of the INS.  

Presumably, lowered clustering (information segregation) but heightened efficiency 

(information integration) might be markers of the NTX induced hypoalgesia. In this 

perspective, a lowered capability of information segregation might lead to a lower 

likelihood of reciprocal projections and closed reciprocal loops, inducing enhanced 

distribution of information across networks (Morris et al., 2017; Sporns et al., 2004). 

Thereby, a heightened ability of information flow and dispersion might lead to a modulated 

processing of pain in the medial pain system, creating more neuronal flexibility. This could 

lead to a heightened influence of other networks (i.e., somatosensory network), inducing 

modulated -in our case, reduced- levels of pain. 

 This paradoxical effect of NTX on pain ratings in healthy individuals is a known 

characteristic (France et al., 2007). NTX displays high variability and low reliability in its 

OR-antagonistic effects. For example, NTX displays variable effects in studies employing 

pain ratings as a primary measurement; there may be no significant effect on pain ratings 

or, as in our study, paradoxically reduced pain ratings (for review see Werner, Pereira, 

Anderson & Dahl, 2015). 

Within the scope of research on NTX, the visual system is thought to play a major 

role in reward mediation (Mann et al., 2014). Based on our findings, we can confirm NTX 

induced increased engagement of the extrastriate occipital cortex, which exhibited several 

projections to the medial cerebellum. Also, we found projections of the left pCC to the right 

extrastriate occipital cortex. In their study, Mann et al. (2014) investigated reward in a cued 

fMRI paradigm entailing detoxified participants affected by alcohol use disorder. Among 

others, they found a higher neuronal activation compared to controls in the temporal gyrus, 

AG/IPL, mFG, aCC, IT, INS and thalamus. Based on our analyses, NTX showed a 

modulation of neuronal activity in the abovementioned regions, engaged in rewarding cue 

reactivity. Contrary to previous research (Boettiger et al., 2009; Mann et al., 2014; Murray 
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et al., 2014), however, we found no strong evidence for the involvement of the orbitofrontal 

area. Although we found graph theoretical modulations in this area, NBS and fMRI 

analyses did not yield conclusive evidence for an NTX induced involvement of the 

orbitofrontal cortex. This may be due to the fact that most prior research on NTX involved 

clinical populations as participants. In these populations, NTX may have accentuated 

effects on some regions such as the orbitofrontal cortex. 

Considering the effect of NTX on reward, it has been proposed that NTX may 

strengthen frontal regulation over salience attribution and the connectivity between 

precuneus and frontal regions, thereby affecting subjective craving (Courtney et al., 2016, 

for review). Indeed, our results indicate NTX induced connectivity modulations in the 

precuneus and frontal regions. However, network-based analysis yielded no evidence for a 

strengthened connectivity between precuneus and frontal regions, but to the right 

thalamus and left AG/IPL, and, with a more liberal t-threshold (t=3.0), increasingly to 

temporal regions. However, univariate fMRI yielded extensive NTX induced upregulated 

neuronal connectivity in the frontal cortex (mPFC, dlPFC), which might point to NTX 

induced increased frontal regulation. 

Courtney et al. (2016) further proposed that NTX may reduce the salience of 

rewarding cues by decreasing the engagement of sensorimotor regions. Graph theoretical 

and network-based analysis (NBS) yielded no evidence to support this notion. Concerning 

sensorimotor engagement, we found increased connectivity of the SMA and the preSMA, 

receiving input from frontal regions. 

Relating to Lukas et al. (2013), our findings confirm that NTX modulates areas key 

in reward, self-other processing, awareness and somatosensory proprioceptive integration. 

Besides our core ROI (mPFC, precuneus, CC, INS), the transverse temporal gyrus/planum 

temporale, bilateral AG/IPL, thalamus, putamen, PAG and medial cerebellum displayed 

significant NTX induced modulations. Thereby, we can confirm that NTX affects not only 

core regions of the pain matrix, such as the pCC, pINS and thalamus, but also distinct 

regions in parietal, temporal and occipital cortex (AG/IPL, transverse temporal 

gyrus/planum temporale, and extrastriate (occipital) regions) which can be allocated to the 

DMN. These findings point out that NTX seems to exert significant influence on DMN 

areas. Besides core regions of the pain matrix, which we reported to be engaged in NTX in 

line with our expectations, we found extensive activation of the occipito-temporal visual 

attention network (Guterstam et al., 2018), entailing temporal (IT, transverse temporal 

gyrus), extrastriate (occipital) and parietal (AG/IPL) regions. 
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In line with Rütgen et al. (2015 & 2018), who found NTX to reverse opioid induced 

reduced empathy for pain, NTX might annulate an opioid induced hampered awareness of 

experiencing pain by downregulation of, for example, the pINS-pCC pathway. Moreover, 

connections between the IPL and pINS might point to modulations between areas eligible 

for somatosensory integration, reward and empathy judgement. 

 

Limitations. Despite our novel and integrative methodical approach, our study is 

not free of limitations, which we want to briefly mention in the following section. Firstly, 

because the resting state scan was part of a task-based fMRI study on empathy for pain, 

the scan was conducted approximately 2.5 hours after NTX administration. Considering 

the half-life of NTX of 4-9 hours and the peak plasma level of NTX at 1 hour (Verebey et 

al., 1976), stronger neuronal effects may have been observed, if the resting state scan 

would have taken place at the plasma peak of NTX (1-2 hours after administration).  

Another implication of our study concerns the possible confounding influence of the 

task-based fMRI part of each scanning session, which were implemented prior to the 

resting-state. The previous scanned empathy for pain task, including the administration of 

pain stimuli, might have exerted longer lasting effects on neuronal activity. Thereby, a prior 

sensitizing of the pain matrix might have led to confounding neuronal activity in regions 

eligible for the processing of pain, but also empathy for pain. Pertaining to that, our novel 

emotion identification task, scanned prior to the resting-state, might similiarly have led to 

confounding neuronal activity in emotion processing areas.  

In view of the pharmacological mode of action of NTX, effects are presumably not 

as pronounced in healthy subjects as in clinical populations, as evidenced by Morris et al. 

(2018). These authors found the most distinct effects in subjects affected by alcoholism 

relative to healthy individuals. Also, considering the bioavailability of NTX in oral 

administration of about 5-60% (Gonzalez & Brogden, 1988) very probably contributes to 

the ambiguous and unreliable effects of NTX on pain measures (Werner et al., 2015). 

Another important factor concerns rs-fcMRI data sampling itself, as past research 

has found that the reliability of data significantly improves with scanning durations 

exceeding 10 minutes (Anderson, Ferguson, Lopez-Larson & Yurgelun-Todd, 2011). 

Moreover, even more scanning time may be necessary if one targets to discern an 

individual from the group, ranging from 25 minutes to 4 hours (Hacker et al., 2013).  

 Finally, it has to be accounted for the fact that our study, due to the limited prior 

knowledge base as to the effects of NTX in healthy individuals, was exploratory in nature 

and interpretations therefore need to be considered with caution. Yet, the present 
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investigation can be seen as a comprehensive foundation for future hypothesis-driven 

analyses, building up on the presented evidence gained through our seminal approach. 

 

 Future research. Taken together, our study revealed extensive findings allowing for 

multi-level insights into the effects of NTX on the whole brain. Based on our results, future 

research should consider larger sample sizes of healthy individuals, allowing for 

ameliorated reliability, which may be especially useful to account for baseline variability of 

metabolism and mode of action in pharmacological manipulations in experimental fMRI 

studies. Additionally, future research may consider the precise estimation of 

pharmacological modes of action, such as half-time or plasma peaks. Assing to that, 

research combining task-based with task-free paradigms was shown to considerably 

improve reliability and mapping of individual cognitive and behavioral markers (Elliott et al., 

2019). Finally, the use of ML could deepen both reliability and validity of findings.  

Taken together, the combination of topological with functional connectivity markers, 

as well as a biologically informed effective connectivity analysis entails great potential for 

an ameliorated understanding of neuronal connectivity. In this perspective, future research 

may further investigate the causal relationship between core areas of the pain matrix and 

extrastriate cortex, AG/IPL and medial cerebellum, which we found to be subject of 

significant NTX induced modulations.  

 

Conclusion. Our presented investigation employed a powerful multimethodological 

framework, allowing for a multi-facetted perspective on the effects of NTX on neuronal 

connectivity of a sample of healthy individuals at rest, enabling a comprehensive 

description of both functional and topological levels of observation. We found aberrations 

in functional, effective and graph theoretical analyses in key regions eligible for 

somatosensory integration, reward, affective coding, pain and empathy for pain 

processing. Moreover, we showed that these regions can be allocated depending to their 

specific OR binding profile. Moreover, we observed that changes in the topological 

organization of brain areas, such as the striatum, medial and posterior INS, are linked to 

measures of experienced pain. By means of employing a ML approach, we demonstrated 

that graph theoretical parameters were insufficient when used for the classification of 

condition. In contrast to that, by means of a feedforward DNN approach, timeseries yielded 

very high accuracy when used for classification of condition. Taken together, our 

multimethodological framework provides important findings and explanatory power 

concerning the complex effects of NTX on neuronal activity of healthy participants at rest. 
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In that, we are confident that evidence gained by our seminal approach will immensely 

contribute to future research involving NTX. 
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Appendix 

 

A. Abstract 

Resting state functional magnetic resonance imaging (rs-fMRI) has gained substantial 

momentum within the field of the neurosciences for its ability to elucidate spontaneous 

neuronal fluctuations in the brain during rest. Amongst others, this methods has largely 

contributed to a proliferated understanding of aberrations in neuronal connectivity in 

healthy and clinical populations alike. Conjoined with the power of machine learning (ML) 

approaches, it has by these means become increasingly popular to employ rs-fMRI data 

for investigating the influence of neuropharmacological compounds, such as Naltrexone 

(NTX), on neuronal connectivity.  

NTX, a powerful non-selective opioid receptor antagonist, is a commonly 

administered treatment in substance use disorders, but has also been drawn on to 

manipulate neuronal activity related to reward or empathy for pain in healthy study 

populations in experimental paradigms of the social, cognitive and affective 

neurosciences. However, partially due to rather small sample sizes and a limitation of fMRI 

analysis to mostly univariate approaches, past research has failed to yield converging 

evidence on the neuronal effects of NTX. Thus, to date, neuronal connectivity aberrations 

induced by NTX, especially in healthy subgroups, remain largely unclear.  

With the aim to bridge limitations of previous research and to do justice to the 

substantial importance of a proliferated understanding of NTX-induced neuronal 

connectivity aberrations for both neuroscientific or clinical research, as well as for clinical 

application, the present study intends to elucidate NTX-related neuronal connectivity 

modulations in healthy individuals at rest by exploiting joined graph theoretical, functional 

and effective connectivity analyses as well as ML. This exploratory multi-methodological 

account thereby aims to investigate key areas eligible for empathy and reward-related 

processes, encompassing the insula, cingulate, medial and ventrolateral prefrontal cortex. 

By these means, we are able demonstrate that the intake of NTX entails neuronal 

aberrations in functional and effective connectivity, as well as changes on a graph 

theoretical level in regions involved in affective coding, empathy judgement, proprioceptive 

integration and reward. Taken together, our study lays grounds for an advanced 

understanding of the mechanism of action of NTX in healthy individuals and, in this vein, 

will largely benefit future neuroscientific research as well as clinical practice. 

 

 



49 
 

B. Zusammenfassung 

Die Methode der funktionellen Magnetresonanztomographie im Ruhezustand (rs-fMRI), 

die es ermöglicht, spontane neuronale Fluktuationen im Gehirn im Ruhezustand zu 

messen, hat in den letzten Jahren in den Neurowissenschaften an Bedeutung gewonnen. 

Unter anderem hat rs-fMRI zu einem vertieften Verständnis neuronaler Modulationen 

funktioneller Konnektivität, sowohl in gesunden als auch klinischen Populationen 

beigetragen. Zusammen mit dem Potential von maschinellem Lernen (ML) wurde es 

immer populärer, mithilfe von rs-fMRI den Einfluss neuropharmakologisch aktiver 

Substanzen, wie beispielsweise Naltrexon (NTX), auf neuronale Konnektivität zu messen.  

NTX, ein hochwirksamer non-selektiver Opioid Rezeptor Antagonist, der häufig 

Verwendung in der Behandlung von Abhängigkeitserkrankungen findet, wurde in den 

sozialen, kognitiven und affektiven, Neurowissenschaften auch immer wieder für die 

Manipulation neuronaler Aktivität im Zusammenhang mit Belohnung oder Empathie für 

Schmerz in gesunden als auch klinischen Populationen herangezogen. Jedoch war es 

vergangenen Studien, teilweise aufgrund von zu geringer Stichprobengrößen und der 

methodischen Beschränkung auf univariate fMRI Analyseverfahren, noch nicht möglich 

konvergierende Ergebnisse hinsichtlich der NTX-induzierten neuronalen 

Konnektivitätsveränderungen hervorzubringen. Daher sind die Mechanismen NTX-

induzierter neuronaler Konnektivitätsveränderungen bisherig noch großteils unverstanden.  

Unter Verwendung graph-theoretischer, funktioneller und effektiver 

Konnektivitätsanalysen und aktueller Methoden des ML (tiefe neuronale Netze) zielen wir 

darauf ab, mit unserem kombinierten methodischen Ansatz Limitationen vorheriger 

Studien zu überwinden und zu einem vertieften Verständnis von neuronalen Effekten von 

NTX in gesunden Personen beizutragen.  

Mit diesem explorativen, multi-methdologischen Ansatz streben wir neue 

Erkenntnisse bezüglich der neuronalen modulatorischen Effekte von NTX auf Areale wie 

die insula, den cingulären cortex, sowie präfrontale Areale, die in Empathie und 

Belohnungsprozesse involviert sind, an. Auf Grundlage unserer Untersuchung können wir 

zeigen, dass die Administration von NTX in gesunden ProbandInnen zu neuronalen 

Modulationen in Arealen, die in affektiven Prozessen, Empathie, propriozeptiver 

Integration und Belohnung involviert sind, führt. Zusammengefasst leistet unsere Studie 

einen wichtigen Beitrag zum fortgeschrittenen Verständnis der neuronalen 

Wirkmechanismen von NTX in gesunden ProbandInnen, was sowohl zukünftiger 

neurowissenschaftlicher als auch klinischer Forschung zugute kommen wird. 
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E. Supplementary Information  

 

 

Abbreviations 

 
TR= Time of repition 

TE= Echo Time 

FOV= Field of View 

 

 

 

Abbreviations of brain regions  
 

Abbreviation Region 
CC Cingulate Cortex 
aCC Anterior Cingulate Cortex 
pCC Posterior Cingulate Cortex 
INS Insula 
aINS Anterior Insula 
mINS Medial Insula 
pINS Posterior Insula 
AG Angular Gyrus 
FG Fusiform Gyrus 
BG Basal Ganglia 
mPFC Medial Prefrontal Cortex 
SupPFC Superior Prefrontal Cortex 
TPJ Temporo Parietal Junction 
PFC Prefrontal Cortex 
vaPFC Ventral anterior Prefrontal Cortex 
dlPFC Dorsolateral Prefrontal Cortex 
dFC Dorsal Frontal Cortex 
vFC Ventral Frontal Cortex 
vlFC Ventro lateral Prefrontal Cortex 
PrecGyr Precentral Gyrus  
VAC Visual Association Cortex 
SecVC Secondary Visual Cortex 
SecSMC Secondary Motor Cortex 
STC Superior Temporal Cortex 
TC Temporal Cortex 
MTG Medial Temporal Gyrus 
PrimSC Primary Sensory Cortex 
IPL Inferior Parietal Lobule 
IPS Inferior Parietal Sulcus 
SMA Supplemantary Motor Area 
Precun Precuneus 
IT Inferior Temporal Cortex 
Sensory Cort Sensory Cortex 
Post Occipit Post Occipital Cortex 
Post Pariet Post Parietal Cortex 
FusGyr Fusiform Gyrus 
InfCereb Inferior Cerebellum 
MedCereb Medial Cerebellum 
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Exclusion criteria. Criteria from the clinical screening prior to the testing sessions: 

 

• Intolerance against naltrexone, naloxone and opiates 

• Disease of the central nervous system, brain trauma (current or in the personal anamnesis) 

• Psychological disorder (current or in the personal anamnesis)  

• Internal diseases (current, the former were further assessed)  

• Body mass index (BMI) beyond the standard limits (< 18.5 or > 30) 

• Other exclusion criteria referring to fMRI guidelines (metal items etc.) 

 

 

fMRI safety criteria. The following criteria were assessed (if the answer was yes, more information was 

requested). 

• previous MRI examination 

• prior head, heart or vascular system surgery 

• presence of a pacemaker 

• presence of any other electronic, magnetic or mechanic implants 

• presence of surgical implants 

• presence of metallic prostheses 

• presence other metallic parts or splinters in the body 

• previous work with metal without wearing eye protection  

• presence of medical patches 

• need for some kind of hearing aid 

• presence of braces/a retainer/dental prostheses 

• need for glasses or contact lenses 

• usage of colored contact lenses 

• presence of one or more tattoos 

• presence of permanent make-up 

• presence of one or more piercings 

• fear of closed or narrowed spaces/presence of claustrophobia 

• sensibility to noise/hardness of hearing 

• recent/current intake of any medication 

• presence of any illness 

• for women: possible pregnancy 

• for women: presence of an intrauterine device 

 

 

 

 



53 
 

 

ROI    MNI      NTX       CON t     p 

 x y z M SEM M SEM   

aCC 9 39 20 0.04 0.10 0.03 0.09 2.92 0.03 
pCC 1 -26 31 0.03 0.06 0.04 0.08 -4-14 < .0001 
 10 -55 17 0.04 0.14 0.05 0.15 -2.70 0.05 
 -4 -31 -4 0.08 0.10 0.06 0.10 2.70 0.05 
FusGyr 28 -37 -15 0.06 0.11 0.06 0.08 -3.38 0.001 
Occipital 28 -42 -11 0.06 0.09 0.03 0.06 2.72 0.05 
 -42 -76 26 0.06 0.10 0.07 0.11 -4.25 <.0001 
IPS -36 -69 40 0.06 0.07 0.05 0.09 -3.56 0.01 
 -32 -58 46 0.06 0.11 0.03 0.07 3.68 0.01 
vaPFC 42 48 -3 0.08 0.10 0.02 0.09 4.79 <.0001 
dlPFC 46 28 31 0.04 0.08 0.05 0.09 -3.63 0.01 
dFC -42 7 36 0.06 0.09 0.01 0.09 2.91 0.03 
vFC 43 1 12 0.07 0.13 0.03 0.10 4.63 <.0001 
vlPFC 36 39 -15 0.07 0.10 0.04 0.07 3.52 0.01 
aINS 38 21 -1 0.07 0.11 0.03 0.08 4.09 <.0001 
BG -6 17 34 0.06 0.10 0.02 0.09 3.63 0.01 
 14 6 7 0.03 0.07 0.02 0.08 -2.70 0.05 
Thalamus -12 -12 6 0.04 0.15 0.05 0.15 -2.89 0.03 
 11 -12 6 0.09 0.04 0.5 0.10 -3.41 0.01 
Temporal 46 -62 5 0.06 0.07 0.06 0.09 -3.22 0.01 
Occipital -29 -75 28 0.07 0.06 0.07 0.08 -3.48 0.01 
 -16 -76 33 0.05 0.07 0.05 0.09 -4.51 <.0001 
 33 -81 -2 0.07 0.10 0.04 0.08 2.77 0.04 
Cerebellum -37 -54 -37 0.03 0.06 0.06 0.08 -3.87 <.0001 
 -25 -60 -34 0.08 0.12 0.05 0.09 3.52 0.01 
 -16 -64 -21 0.02 0.07 0.04 0.08 -3.38 0.01 
 -34 -67 -29 0.09 0.09 0.06 0.10 3.10 0.02 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Note. Display of group wise functional connectivity analysis. Averaged connectivity 

matrices were thresholded with 0.15% and binarized. Subsequently, a paired t-test (FDR-

corrected) was conducted. 

Table 5 Functional Connectivity Analysis of Mean Group  

Adjacency Matrices 
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ROI                  Side              MNI                    t           p 

  x y z   

SMA L -42 7 36 2.71 <.05 

vlPFC R 58 11 14 3.30 <.05 

 R 46 39 -15 5.17 <.001 

Thalamus R 11 -12 6 -4.77 <.001 

Post Occipit R 33 -81 -2 4.21 <.01 

 L -5 -80 9 -4.49 <.001 

TC R 46 -62 5 6.04 <.0001 

 R 39 -71 13 -4.83 <.001 

 R 19 -66 -1 3.10 <.05 

STG L -59 -47 11 3.80 <.05 

 R 51 -30 5 -4.65 <.001 

SupTemporal R 42 -46 21 -4.37 <.01 

SMA R 23 33 47 5.30 <.001 

Precun R 8 -40 50 -3.15 <.05 

 R 11 -68 42 -5.44 <.001 

 L -6 -56 29 3.40 <.01 

 R 9 -43 25 -2.83 <.05 

PrecGyr R 44 -11 38 4.57 <.001 

 L -44 -6 49 4.21 <.01 

pINS R 42 -24 17 -3.04 <.05 

PrimSC L -47 -18 50 4.05 <.01 

PMA L -26 -8 54 4.61 <.001 

Occipital L -44 -63 -7 3.04 <.05 

 L -28 -42 -11 -3.67 <.01 

 R 36 -60 -8 2.73 <.05 

SPL L -9 -72 41 -3.43 <.05 

AG R 29 -73 29 -3.03 <.05 

STG R 52 -15 -13 6.34 <.0001 

InfCereb R 18 -81 -33 -2.75 <.05 

 L -21 -79 -33 -2.96 <.05 

BG R 11 -24 2 -3.23 <.05 

AG L -48 -63 35 -3.29 <.05 

IPS L -32 -58 46 2.86 <.05 

 L -36 -69 40 -3.36 <.05 

 L -53 -50 39 -2.76 <.05 

Table 6 Paired t-test of Nodal Local Efficiency            

(FDR-corrected) 

Note. Display of statistical ROI wise analysis of the Nodal Local 

Efficiency (AUC). 
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ROI Side MNI       t p 

  x y z   

CC L -1 28 40 -3.29 <.001 

 L -2 30 27 2.58 <.05 

pCC R 1 -26 31 3.75 <.01 

 L -5 -43 25 -3.01 <.01 

 R 10 -55 17 3.90 <.01 

 L -11 -58 17 4.30 <.001 

aINS R 38 21 -1 3.76 <.0015 

mINS R 32 -12 2 -3.76 <.0015 

pINS L -30 -28 9 -8.64 <.0001 

 R 42 -24 17 -5.80 <.0001 

Precun R 9 -43 25 -3.57 <.01 

 L -6 -56 29 5.76 <.0001 

 R 11 -68 42 -8.28 <.0001 

 R 8 -40 50 -2.89 <.05 

AG L -41 -40 42 30.40 <.05 

 R 54 -44 43 28.25 <.05 

 L -48 -47 49 -26.40 <.01 

 L -53 -50 39 -21.13 <.01 

 R 44 -52 47 -19.34 <.01 

IPS L -36 -69 40 -5.54 <.01 

 L -32 -58 45 -5.08 < .0001 

SMA  0 -1 52 -4.99 < .0001 

Pre SMA R 10 5 51 -2.81 <.05 

TPJ L -52 -63 15 2.79 <.0.05 

PFC L -25 51 27 5.24 < .0001 

 R 27 49 26 -3.78 <.001 

 R 44 8 34 5.10 <.0001 

 L -42 7 36 24.29 <.0001 

 L -44 27 33 2.41 <.05 

 R 46 28 31 -3.60 <.05 

 R 58 11 14 4.47 <.001 

 R 53 -3 32 -4.41 <.001 

 R 43 1 12 -3.19 <.01 

 L -43 47 2 2.48 <.05 

 R 46 39 -15 8.39 <.0001 

 R 6 64 3 4.80 <.0001 

 L -11 45 17 -2.81 <.05 

Mid PFC  0 51 32 5.12 <.0001 

Sup PFC R 23 33 47 9.68 <.0001 

 L -16 28 54 5.37 <.0001 

IT R 52 -15 -13 9.05 <.0001 

PrecGyrus R 58 -3 17 -3.11 <.01 

Table 7 Statistical  Analysis of Nodal Cluster 

Coefficient (FDR-corrected) 
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 L -44 -6 49 4.56 <.001 

 R 44 -11 38 5.01 <.0001 

 L -54 -22 22 3.63 <.01 

FG R 54 -31 -18 -4.35 <.001 

Inf Cereb L -21 -79 -33 -5.10 <.001 

 L -6 -79 -33 -3.55 <.001 

 R 18 -81 -33 -3.75            <.01 

Med Cereb L -6 -60 -15 -2.75 <.05 

 L -16 -64 -21 2.70 <.05 

AG L -48 -63 35 -6.50 <.0001 

 L -30 -14 1 -5.09 <.0001 

 L -36 -12 15 -4.27 <.001 

Occipital R 19 -66 -1 4.99 <.0001 

 R 17 -68 20 -3.09 <.01 

 R 39 -71 13 -5.86 <.0001 

 R 29 -71 13 -4.19 <.001 

 R 9 -76 14 2.52 <.05 

 R 36 -60 -8 7.41 <.0001 

 L -28 -42 -11 -6.26 <.0001 

 L -9 -72 41 -4.44 <.01 

Post Occip L -5 -80 9 -7.11 <.0001 

 R 29 -81 14 -4.38 <.001 

 R 33 -81 -2 -5.22 <.0001 

 L -44 -63 -7 7.18 <.0001 

Parietal R 58 -41 20 -5.53 <.0001 

 R 41 -23 55 -4.10 <.001 

 R 18 -27 62 -4.73 <.001 

 L -38 -27 60 -3.14 <.01 

 L -26 -8 54 4.96 <.0001 

 L -47 -18 50 3.24 <.01 

 L -55 -22 38 3.76 <.01 

Post Pariet  -41 -31 48 -2.56 <.05 

STC R 42 -46 21 -3.37 <.01 

TC R 51 -30 5 -3.19 <.01 

 R 43 -43 8 -2.85 <.05 

 L -59 -47 11 5.77 <.0001 

 R 59 -13 8 -5.42 <.0001 

 L -41 -37 16 -3.75 <.01 

 R 46 -62 5 9.66 <.0001 

BG R 14 6 7 -3.46 <.01 

 R 11 -24 2 -5.26 <.0001 

Note. Display of statistical ROI wise analysis of the Nodal Cluster 

Coefficient (AUC).  
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ROI                   Side             MNI                     p                t        t                       

                                        x         y        z 

MFG R 6 64 3 -4.41 <.001 

 R 39 42 16 3.80 <.05 

 L -52 28 17 -3.35 <.01 

 R 40 36 29 2.83 <.05 

vlPFC R 46 39 -15 -5.34 <.0001 

 L -25 51 27 -3.81 <.01 

vmPFC R 1 -26 31 -4.00 <.01 

 L -6 50 -1 2.64 <.05 

PMC R 43 1 12 4.04 <.01 

 R 53 -3 32 5.35 <.0001 

 R 46 -20 45 -2.53 <.05 

 R 41 -23 55 3.01 <.05 

SMA L -16 29 54 -6.73 <.0001 

 R 23 33 47 -5.18 <.001 

mPFC  0 51 32 -3.39 <.01 

FusGyr R 28 -37 -15 -3.64 <.01 

AG L -41 -47 29 -3.47 <.05 

 L -48 -63 35 4.29 <.01 

 L -38 -15 59 3.96 <.01 

TPJ L -52 -63 15 -3.12 <.05 

IPS R 32 -59 41 -3.26 <.01 

 L -36 -69 40 2.85 <.05 

IPL L -41 -40 42 -2.66 <.05 

 L -59 -47 11 -3.52 <.01 

 L -55 -22 38 -5.11 <.001 

 L -55 -44 30 5.28 <.0001 

PreGyr R 58 -3 17 3.00 <.05 

SecSMC L -35 -46 48 -4.14 <.01 

Post Occipital L -4 -94 12 3.62 <.01 

Occipital L -44 -63 -7 -7.12 <.0001 

SupTemporal R 59 -13 8 4.72 <.001 

 R 42 -46 21 -6.52 <.0001 

InfTemporal R 52 -15 13 -2.76 <.05 

TC R 43 -43 8 -3.85 <.01 

 L -59 -47 11 5.76 <.0001 

 R 59 -13 8 -5.42 <.0001 

 L -41 -37 16 -3.75 <.01 

 R 46 -62 5 -4.33 <.001 

Thalamus L -12 -3 13 4.16 <.01 

MTG R 43 -43 8 4.82 <.001 

Precun R 8 -40 50 2.86 <.05 

 R 11 -68 42 3.53 <.05 

Table 8 Statistical analysis of Nodal Efficiency 

(FDR-corrected) 
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 L -6 -56 29 3.58 <.01 

 R 5 -50 33 2.70 <.05 

 L -3 -38 45 3.37 <.01 

pINS R 42 -94 12 3.06 <.05 

mINS L -36 -12 15 3.68 <.01 

aCC L -1 28 40 4.12 <.01 

pCC L -11 -58 17 -5.30 <.0001 

 R 10 -55 17 -4.13 <.01 

 R 1 -26 31 -3.40 <.01 

Sensory Cort L -47 -18 50 5.60 <.0001 

 R 48 -41 20 3.29 <.01 

Occipital R 36 -60 -8 -7.68 <.0001 

 R 19 -66 -1 -2.76 <.05 

LatCerebellum L -24 -54 -21 3.32 <.01 

 L -28 -44 -25 5.46 <.0001 

InfCerebellum L -37 -54 -37 3.44 <.01 

Note. Display of statistical ROI wise analysis of Nodal Efficiency 

(AUC). 



59 
 

 

NBS Results   

     

Network 1                                              p < .01 

 MNI MNI t  

 x y z x y y   

Prcn > Thal 11 -68 42 11 -12 6 3.64  
Prcn>AG 11 -68 42 -41 -47 29 3.78  
pCC > AG -8 -41 3 -41 -47 29 3.80  
mINS>AG -30 -14 1 -41 -47 29 4.00  
mINS>PrecGyr -30 -14 1 58 -3 17 3.62  
mINS>pINS -30 -14 1 42 -24 17 3.91  
Thal>PrecGyr -12 -12 6 -54 -9 23 3.61  
Thal>pINS -12 -12 6 42 -24 17 4.31  
Thal > PrecGyr -12 -12 6 58 -3 17 4.76  
Thal>Occipital 11 -12 6 -29 -75 28 3.58  
IPS > AG 32 -59 41 -41 -47 29 3.69  
vmPFC>pINS 9 51 16 42 -24 17 3.52  
BG > PrecGyr -20 6 7 58 -3 17 5.50  
BG>pINS -20 6 7 42 -24 17 3.76  
PrecGyr>pINS 58 -3 17 42 -24 17 3.86  
         

Network 2                       p < .01 

vmPFC>dlPFC -11 45 17 46 28 31 3.82  
dlPFC>dlPFC 40 36 29 46 28 31 3.65  
FG>pOccipit 28 -37 -15 -29 -88 8 3.58  
Occipit>Occipit 29 -81 14 -29 -88 8 3.59  
Occipit>medCereb 29 -81 14 -6 -60 -15 4.76  
Occpit>medCereb 29 -81 14 -6 -60 -15 3.65  
Occipit>medCereb -29 -88 8 -11 -72 -14 3.71  
vmPFC>medCereb -11 45 17 -11 -72 -14 3.61  
dlPFC>medCereb 40 36 29 -11 -72 -14 4.34  
dlPFC>medCereb 46 28 31 -11 -72 -14 3.85  
BG>medCereb -6 17 34 -11 -72 -14 3.60  
Occipit > Inf Cereb 29 -81 14 32 -61 -31 3.58  
         

Network 3                        p < .02 

supFrontal>dlPFC 23 33 47 -44 27 33 4.04  
supFrontal>mFC 23 33 47 0 15 45 3.81  
supFrontal>preSMA 23 33 47 10 5 51 3.72  
dlPFC > mFC -44 27 33 0 15 45 3.53  
dFC>preSMA -42 7 36 10 5 51 3.63  
dFC>PrecGyr -42 7 36 46 -8 24 4.10  
dFC>Parietal -42 7 36 -47 -12 36 3.94  
preSMA>SMA 10 5 51 0 -1 52 4.54  
Parietal> Parietal -47 -12 36 -55 -22 38 3.85  
         

Network 4                p < .003 

pCC>AG -5 -43 25 51 -59 34 4.31  
pCC>mINS -5 -43 25 32 -12 2 3.76  
pCC>Temp -5 -43 25 59 -13 8 3.84  
pCC>Occipital -5 -43 25 15 -77 32 3.60  
pCC>Occipital -4 -31 -4 15 -77 32 3.59  
aINS>pINS -36 18 2 -30 -28 9 3.52  
aINS>vFC -36 18 2 43 1 12 4.46  
mINS>pINS 37 -2 -3 42 -24 17  3.54  
pINS>Parietal -30 -28 9 58 -41 20 4.85  
pINS>supTemp -30 -28 9 42 -46 21 4.22  
pINS>Temp -30 -28 9 59 -13 8 3.60  

Table 9 Network Based Statistics Results 
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vFC>Parietal -48 6 1 58 -41 20 3.72  
AG>AG 51 -59 34 -48 -63 35 3.66  
AG>vFC -48 -63 35 -48 6 1 4.17  
AG>mINS 51 -59 34 -30 -28 9 4.04  
AG>pINS -48 -63 35 -30 -28 9 4.06  
AG>Parietal -48 -63 35 58 -41 20 4.86  
AG>supTemp 51 -59 34 42 -46 21 4.37  
AG>supTemp -48 -63 35 42 -46 21 4.52  
Parietal>supTemp 58 -41 20 42 -46 21 4.07  
Precun>Temp 5 -50 33 59 -13 8 5.26  
Precun>PrecGyr 5 -50 33 -54 -22 22 4.59  
Temp>PrecGyr 59 -13 8 -54 -22 22 3.58  

 

Table 9. Display of NBS statistics. The sign “>” indicates the projection from one node to another 

node. 
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Cluster Level Peak Level    

FWE FDR  u.c. FWE FDR u.c.   MNI 

p q k p p q p T Z x y z 
0.000 0.000 93 0.000 0.000 0.000 0.000 11.89 7.53 2 53 35 
0.000 0.000 72 0.000 0.000 0.000 0.000 10.86 7.19 0 -36 45 

    0.001 0.077 0.000 7.46 5.77 -3 -44 48 
0.000 0.000 10 0.000 0.000 0.013 0.000 8.42 6.22 0 -65 -21 
0.000 0.000 11 0.000 0.000 0.013 0.000 8.39 6.21 -47 2 -5 
0.000 0.000 50 0.000 0.000 0.014 0.000 8.36 6.19 12 -39 53 
0.000 0.000 80 0.000 0.000 0.015 0.000 8.32 6.18 23 36 48 

    0.001 0.059 0.000 7.60 5.84 29 29 47 
0.000 0.000 37 0.000 0.000 0.017 0.000 8.25 6.14 -5 -63 -18 
0.000 0.000 33 0.000 0.000 0.022 0.000 8.11 6.08 0 0 54 
0.000 0.000 5 0.01 0.000 0.028 0.000 8 6.03 3 -53 35 
0.000 0.000 35 0.00 0.000 0.029 0.000 7.98 6.02 21 -26 62 
0.000 0.000 21 0.00 0.000 0.032 0.000 7.93 5.99 -26 -27 63 
0.000 0.000 22 0.00 0.000 0.033 0.000 7.91 5.98 -26 -35 62 
0.000 0.000 55 0.00 0.001 0.051 0.000 7.68 5.87 -54 -23 9 
0.000 0.000 19 0.00 0.001 0.051 0.000 7.68 5.87 2 -26 32 
0.000 0.000 17 0.00 0.001 0.055 0.000 7.65 5.86 -33 -57 41 
0.012 0.099 1 0.00 0.002 0.104 0.000 7.30 5.68 27 57 14 
0.000 0.000 15 0.00 0.002 0.109 0.000 7.28 5.67 57 -17 8 
0.000 0.000 17 0.00 0.002 0.111 0.000 7.27 5.67 2 12 48 
0.001 0.032 3 0.008 0.002 0.114 0.000 7.25 5.66 -39 -45 44 
0.001 0.002 7 0.000 0.002 0.118 0.000 7.23 5.65 27 48 29 
0.003 0.063 2 0.025 0.025 0.127 0.000 7.20 5.63 -33 -29 6 
0.001 0.032 3 0.008 0.002 0.128 0.000 7.19 5.63 -56 -23 35 
0.012 0.099 1 0.099 0.002 0.129 0.000 7.19 5.62 -12 33 53 
0.000 0.000 9 0.000 0.003 0.142 0.000 7.13 5.59 41 21 36 
0.003 0.063 2 0.025 0.003 0.158 0.000 7.07 5.56 41 -24 14 
0.000 0.015 4 0.003 0.003 0.158 0.000 7.07 5.56 -38 -24 57 
0.001 0.032 3 0.008 0.003 0.165 0.000 7.05 5.55 -8 -8 12 
0.001 0.032 3 0.008 0.003 0.166 0.000 7.05 5.55 -53 -33 15 
0.001 0.032 3 0.008 0.003 0.166 0.000 7.05 5.55 -56 -38 15 
0.000 0.000 15 0.000 0.004 0.171 0.000 7.04 5.55 8 -54 30 
0.000 0.003 6 0.000 0.004 0.179 0.000 7.01 5.53 -53 -24 39 
0.003 0.063 2 0.025 0.004 0.186 0.000 7.00 5.52 2 30 42 
0.012 0.099 1 0.099 0.006 0.235 0.000 6.88 5.46 -38 -20 59 
0.000 0.000 10 0.000 0.006 0.241 0.000 6.86 5.45 -33 -24 8 
0.001 0.032 3 0.008 0.006 0.244 0.000 6.86 5.45 -57 -14 5 
0.012 0.099 1 0.099 0.008 0.281 0.000 6.79 5.41 -39 -12 57 
0.000 0.002 7 0.000 0.008 0.284 0.000 6.78 5.41 42 -29 15 
0.003 0.063 2 0.025 0.008 0.301 0.000 6.75 5.39 -44 -11 50 
0.012 0.099 1 0.099 0.09 0.319 0.000 6.72 5.38 3 -56 33 
0.000 0.002 7 0.000 0.09 0.319 0.000 6.72 5.38 41 36 26 
0.012 0.099 1 0.099 0.011 0.366 0.000 6.65 5.34 -39 -29 57 
0.012 0.099 1 0.099 0.012 0.380 0.000 6.63 5.33 44 -21 14 
0.001 0.032 3 0.008 0.013 0.410 0.000 6.59 5.31 -39 -18 57 
0.003 0.063 2 0.025 0.014 0.411 0.000 6.59 5.30 38 36 30 
0.001 0.032 3 0.008 0.014 0.425 0.000 6.58 5.29 -39 -15 59 
0.012 0.099 1 0.099 0.016 0.457 0.000 6.54 5.28 -5 -75 -30 
0.012 0.099 1 0.099 0.016 0.458 0.000 6.54 5.27 -15 30 53 
0.012 0.099 1 0.099 0.017 0.483 0.000 6.51 5.26 -12 -3 14 
0.003 0.063 2 0.025 0.019 0.523 0.000 6.48 5.24 -36 -57 41 
0.003 0.063 2 0.025 0.021 0.558 0.000 6.45 5.22 -53 -45 26 
0.012 0.099 1 0.099 0.021 0.558 0.000 6.44 5.22 3 -48 33 
0.012 0.099 1 0.099 0.022 0.568 0.000 6.43 5.22 47 -29 53 
0.003 0.063 2 0.025 0.023 0.588 0.000 6.42 5.21 -27 -6 57 
0.012 0.099 1 0.099 0.024 0.604 0.000 6.40 5.20 -54 -63 12 
0.012 0.099 1 0.099 0.025 0.611 0.000 6.40 5.19 0 -69 -21 

Table 10 Exploratory whole-brain fMRI analysis  
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0.000 0.015 4 0.003 0.026 0.636 0.000 6.38 5.18 12 -29 3 
0.012 0.099 1 0.099 0.026 0.645 0.000 6.37 5.18 -12 0 14 
0.012 0.099 1 0.099 0.028 0.676 0.000 6.35 5.17 44 -21 53 
0.012 0.099 1 0.099 0.029 0.686 0.000 6.35 5.17 -15 26 56 
0.012 0.099 1 0.099 0.029 0.690 0.000 6.34 5.16 -41 -33 -12 
0.012 0.099 1 0.099 0.031 0.717 0.000 6.32 5.15 -32 -30 9 
0.012 0.099 1 0.099 0.035 0.790 0.000 6.28 5.13 2 27 42 
0.012 0.099 1 0.099 0.037 0.812 0.000 6.26 5.12 -53 -68 15 
0.012 0.099 1 0.099 0.038 0.840 0.000 6.24 5.11 42 36 29 
0.012 0.099 1 0.099 0.041 0.870 0.000 6.23 5.10 2 -63 -24 
0.012 0.099 1 0.099 0.042 0.885 0.000 6.22 5.10 27 56 18 
0.012 0.099 1 0.099 0.043 0.892 0.000 6.22 5.09 -57 -45 26 
0.012 0.099 1 0.099 0.046 0.940 0.000 6.19 5.08 -15 33 53 
0.012 0.099 1 0.099 0.047 0.956 0.000 6.19 5.07 -36 -32 59 
0.012 0.099 1 0.099 0.048 0.976 0.000 6.18 5.07 42 -29 54 

 

 

 

 

 

 

 

 

 

 

ROI NAL CON t p 

 M SD M SD   

Nodal Cluster Coefficient  

INS 0.25 0.038 0.28 0.07 -5.9 <.0001 
CC 0.26 0.06 0.25 0.05     2.42 <.05 
pINS 0.24 0.03 0.27 0.04 -5.26 <.0001 
pCC 0.26 0.07 0.25 0.05 3.36 <.0001 
mPFC 0.29 0.07 0.23 0.03 5.12 <.0001 

       
Nodal Local Efficiency 

pINS 0.34 0.02 0.35 0.03 -2.92 <.01 

       
Nodal Efficiency 

pINS 0.034 0.03 0.35 0.03 -2.91 <.001 

 

  Table 10. Display of region wise statistical analyses (also employed for visualization of probability 

density plots) for the Nodal cluster coefficient, Nodal Local Efficiency and Nodal Efficiency. A paired 

t-test (FDR-corrected) was conducted. For the statistical analysis, all subregions corresponding to a 

region were summarized and subsequently allocated for statistical testing. Only significant regions 

are displayed. Note. INS=insula; MINS=medial insula; PINS=posterior insula; CC=cingulate cortex; 

PCC=posterior cingulate cortex; MPFC=medial prefrontal cortex. 

Table 11 Concatenated statistical analysis of ROI  

Table 10. Display of whole-brain univariate fMRI analysis (paired t-test). Note. u.c.=uncorrected. 
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Labels       Region         Side        Network                  MNI 

                                                                                         x        y        z 

1 vmPFC R default 6 64 3 

2 mPFC  default 0 51 32 

3 aPFC L default -25 51 27 

4 vmPFC R default 9 51 16 

5 vmPFC L default -6 50 -1 

6 vmPFC L default -11 45 17 

7 vmPFC R default 8 42 -5 

8 ACC R default 9 39 20 

9 vlPFC R default 46 39 -15 

10 sup frontal R default 23 33 47 

11 sup frontal L default -16 29 54 

12 inf temporal R default 52 -15 -13 

13 inf temporal L default -59 -25 -15 

14 post cingulate R default 1 -26 31 

15 fusiform R default 28 -37 -15 

16 precuneus L default -3 -38 45 

17 post cingulate L default -8 -41 3 

18 inf temporal L default -61 -41 -2 

19 occipital L default -28 -42 -11 

20 post cingulate L default -5 -43 25 

21 precuneus R default 9 -43 25 

22 precuneus R default 5 -50 33 

23 post cingulate L default -5 -52 17 

24 post cingulate R default 10 -55 17 

25 precuneus L default -6 -56 29 

26 post cingulate L default -11 -58 17 

27 angular gyrus R default 51 -59 34 

28 angular gyrus L default -48 -63 35 

29 precuneus R default 11 -68 42 

30 IPS L default -36 -69 40 

31 occipital L default -9 -72 41 

32 occipital R default 45 -72 29 

33 occipital L default -2 -75 32 

34 occipital L default -42 -76 26 

35 aPFC R fronto-parietal 29 57 18 

36 aPFC L fronto-parietal -29 57 10 

37 vent aPFC R fronto-parietal 42 48 -3 

38 vent aPFC L fronto-parietal -43 47 2 

39 vlPFC R fronto-parietal 39 42 16 

40 dlPFC R fronto-parietal 40 36 29 

41 ACC L fronto-parietal -1 28 40 

42 dlPFC R fronto-parietal 46 28 31 

43 vPFC L fronto-parietal -52 28 17 

44 dlPFC L fronto-parietal -44 27 33 

45 dFC R fronto-parietal 40 17 40 

46 dFC R fronto-parietal 44 8 34 

47 dFC L fronto-parietal -42 7 36 

48 IPL L fronto-parietal -41 -40 42 

49 IPL R fronto-parietal 54 -44 43 

50 post parietal L fronto-parietal -35 -46 48 

Table 12 Dosenbach Atlas (Dosenbach, 2010) 
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51 IPL L fronto-parietal -48 -47 49 

52 IPL L fronto-parietal -53 -50 39 

53 IPL R fronto-parietal 44 -52 47 

54 IPS L fronto-parietal -32 -58 46 

55 IPS R fronto-parietal 32 -59 41 

56 aPFC R cingulo-opercular 27 49 26 

57 vPFC R cingulo-opercular 34 32 7 

58 ACC L cingulo-opercular -2 30 27 

59 vFC R cingulo-opercular 51 23 8 

60 ant insula R cingulo-opercular 38 21 -1 

61 dACC R cingulo-opercular 9 20 34 

62 ant insula L cingulo-opercular -36 18 2 

63 basal ganglia L cingulo-opercular -6 17 34 

64 mFC  cingulo-opercular 0 15 45 

65 vFC L cingulo-opercular -46 10 14 

66 basal ganglia L cingulo-opercular -20 6 7 

67 basal ganglia R cingulo-opercular 14 6 7 

68 vFC L cingulo-opercular -48 6 1 

69 mid insula R cingulo-opercular 37 -2 -3 

70 thalamus L cingulo-opercular -12 -3 13 

71 thalamus L cingulo-opercular -12 -12 6 

72 thalamus R cingulo-opercular 11 -12 6 

73 mid insula R cingulo-opercular 32 -12 2 

74 mid insula L cingulo-opercular -30 -14 1 

75 basal ganglia R cingulo-opercular 11 -24 2 

76 post insula L cingulo-opercular -30 -28 9 

77 temporal R cingulo-opercular 51 -30 5 

78 post cingulate L cingulo-opercular -4 -31 -4 

79 fusiform R cingulo-opercular 54 -31 -18 

80 precuneus R cingulo-opercular 8 -40 50 

81 parietal R cingulo-opercular 58 -41 20 

82 temporal R cingulo-opercular 43 -43 8 

83 parietal L cingulo-opercular -55 -44 30 

84 sup temporal R cingulo-opercular 42 -46 21 

85 angular gyrus L cingulo-opercular -41 -47 29 

86 temporal L cingulo-opercular -59 -47 11 

87 TPJ L cingulo-opercular -52 -63 15 

88 frontal R sensorimotor 58 11 14 

89 dFC R sensorimotor 60 8 34 

90 vFC L sensorimotor -55 7 23 

91 pre-SMA R sensorimotor 10 5 51 

92 vFC R sensorimotor 43 1 12 

93 SMA  sensorimotor 0 -1 52 

94 frontal R sensorimotor 53 -3 32 

95 precentral gyrus R sensorimotor 58 -3 17 

96 mid insula L sensorimotor -42 -3 11 

97 precentral gyrus L sensorimotor -44 -6 49 

98 parietal L sensorimotor -26 -8 54 

99 precentral gyrus R sensorimotor 46 -8 24 

100 precentral gyrus L sensorimotor -54 -9 23 

101 precentral gyrus R sensorimotor 44 -11 38 

102 parietal L sensorimotor -47 -12 36 

103 mid insula R sensorimotor 33 -12 16 

104 mid insula L sensorimotor -36 -12 15 
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105 temporal R sensorimotor 59 -13 8 

106 parietal L sensorimotor -38 -15 59 

107 parietal L sensorimotor -47 -18 50 

108 parietal R sensorimotor 46 -20 45 

109 parietal L sensorimotor -55 -22 38 

110 precentral gyrus L sensorimotor -54 -22 22 

111 temporal L sensorimotor -54 -22 9 

112 parietal R sensorimotor 41 -23 55 

113 post insula R sensorimotor 42 -24 17 

114 parietal R sensorimotor 18 -27 62 

115 parietal L sensorimotor -38 -27 60 

116 parietal L sensorimotor -24 -30 64 

117 post parietal L sensorimotor -41 -31 48 

118 temporal L sensorimotor -41 -37 16 

119 temporal L sensorimotor -53 -37 13 

120 sup parietal R sensorimotor 34 -39 65 

121 occipital L occipital -18 -50 1 

122 occipital L occipital -34 -60 -5 

123 occipital R occipital 36 -60 -8 

124 temporal R occipital 46 -62 5 

125 occipital L occipital -44 -63 -7 

126 occipital R occipital 19 -66 -1 

127 occipital R occipital 17 -68 20 

128 occipital R occipital 39 -71 13 

129 occipital R occipital 29 -73 29 

130 occipital L occipital -29 -75 28 

131 occipital L occipital -16 -76 33 

132 occipital R occipital 9 -76 14 

133 occipital R occipital 15 -77 32 

134 occipital R occipital 20 -78 -2 

135 post occipital L occipital -5 -80 9 

136 post occipital R occipital 29 -81 14 

137 post occipital R occipital 33 -81 -2 

138 post occipital L occipital -37 -83 -2 

139 post occipital L occipital -29 -88 8 

140 post occipital R occipital 13 -91 2 

141 post occipital R occipital 27 -91 2 

142 post occipital L occipital -4 -94 12 

143 lat cerebellum L cerebellum -28 -44 -25 

144 lat cerebellum L cerebellum -24 -54 -21 

145 inf cerebellum L cerebellum -37 -54 -37 

146 lat cerebellum L cerebellum -34 -57 -24 

147 med cerebellum L cerebellum -6 -60 -15 

148 inf cerebellum L cerebellum -25 -60 -34 

149 inf cerebellum R cerebellum 32 -61 -31 

150 med cerebellum L cerebellum -16 -64 -21 

151 lat cerebellum R cerebellum 21 -64 -22 

152 med cerebellum R cerebellum 1 -66 -24 

153 inf cerebellum L cerebellum -34 -67 -29 

154 med cerebellum L cerebellum -11 -72 -14 

155 inf cerebellum R cerebellum 33 -73 -30 

156 med cerebellum R cerebellum 5 -75 -11 

157 med cerebellum R cerebellum 14 -75 -21 

158 inf cerebellum L cerebellum -21 -79 -33 
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Nodal Cluster Coefficient (AUC)  

SP Region MNI Mean Std R    p 

 BG -20 6 7 0.27 0.04 0.35 <.05 
 mINS 32 -12 2 0.19 0.02 0.33 <.05 
 PrecGyr -54 -22 22 0.25 0.09 0.39 <.05 
 pINS 42 -24 17 0.23 0.10 0.42 <.01 
         

SNP dFC -42 7 36 0.26 0.34 0.36 <.05 
 Precuneus 8 -40 50 0.25 0.33 0.42 <.01 
 Parietal -24 -30 64 0.31 0.07 0.40 <.01 
 Cerebellum 14 -75 -21 0.19 0.02 0.32 <.05 
         

OP mPFC 0 51 32 0.26 0.05 0.44 <.01 
 vlPFC 39 42 16 0.28 0.07 0.37 <.05 
 IPL 54 -44 43 0.23 0.03 0.40 <.01 
 Thalamus 11 -12 6 0.20 0.025 0.31 <.05 
 Temporal -54 -22 9 0.26 0.080 0.35 <.05 
 Post Occipital 27 -91 2 0.28 0.043 0.31 <.05 
         

ONP BG -20 6 7 0.28 0.039 0.42 <.01 
 dFC 60 8 34 0.27 0.050 0.33 <.05 
 Parietal -24 -30 64 0.31 0.07 0.32 <.05 
 InfCerebellum -37 -54 -37 0.22 0.027 0.37 <.05 
         

Nodal Efficiency (AUC)  

  

SP BG -20 6 7 0.35 0.035 0.50 <.001 
 PrecGyr -54 -22 22 0.32 0.083 0.44 <.01 
 pINS 42 -24 17 0.29 0.11 0.43 <.01 
 postOccipital -5 -80 9 0.31 0.029 0.32 <.05 
         

SNP Occipital -9 -72 41 0.26 0.029 0.35 <.05 
 dFC -42 7 36 0.26 0.34 0.37 <.05 
 Precuneus 8 -40 50 0.25 0.033 0.40 <.01 
 Parietal -24 -30 64 0.31 0.07 0.35 <.05 
 medCerebellum 14 -75 -21 0.19 0.02 0.31 <.05 
         

OP mPFC 0 51 32 0.34 0.04 0.44 <.01 
 vlPFC 39 42 16 0.34 0.06 0.41 <.01 
 IPL 54 -44 43 0.33 0.027 0.37 <.05 
 Temporal -54 -22 9 0.33 0.069 0.33 <.05 
 Occipital 29 -73 29 0.30 0.027 0.37 <.05 
         

ONP Occipital -9 -72 41 0.35 0.020 0.35 <.05 
 dFC -42 7 36 0.35 0.026 0.37 <.05 
 Precuneus 8 -40 50 0.34 0.030 0.40 <.01 

159 inf cerebellum L cerebellum -6 -79 -33 

160 inf cerebellum R cerebellum 18 -81 0 
 

Table 12. Display of all regions entailed in the Dosenbach Atlas (Dosenbach et 

al., 2010) 

Table 13 Pearsons correlation between behavioral and graph 

measures 
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 Parietal -24 -30 64 0.37 0.057 0.35 <.05 
 MedCerebellum 14 -75 -21 0.31 0.02 0.31 <.05 
         

Nodal Local Efficiency (AUC)  

  

SP vmPFC -6 50 1 0.26 0.031 0.37 <.05 
 Occipital -42 -76 26 0.26 0.027 0.46 <.01 
 BG -20 6 7 0.26 0.021 0.38 <.05 
 vFC -48 6 1 0.025 0.020 0.36 <.05 
 PrecGyr -54 -22 22 0.024 0.057 0.51 <.001 
 pINS 42 -24 17 0.023 0.080 0.47 <.01 
 postOccipital -5 -80 9 0.28 0.016 0.31 <.05 
         

SNP Occipital 45 -72 29 0.27 0.020 0.35 <.05 
 Occipital -42 -76 26 0.26 0.027 0.33 <.05 
 aINS -36 18 2 0.25 0.031 0.31 <.05 
 mINS -42 -3 11 0.26 0.031 0.32 <.05 
 Occipital 39 -71 13 0.27 0.011 0.40 <.01 
         

OP mPFC 0 51 32 0.26 0.022 0.38 <.05 
 Occipital -42 -76 26 0.26 0.027 0.31 <.05 
 vFC -48 6 1 0.25 0.020 0.43 <.01 
 Temporal -54 -22 9 0.25 0.041 0.42 <.01 
 Parietal 18 -27 62 0.24 0.029 0.34 <.05 
         

ONP AG 51 -59 34 0.27 0.016 0.33 <.05 
 Occipital 45 -72 29 0.27 0.020 0.37 <.05 
 aINS 38 21 -1 0.26 0.026 0.31 <.05 
 mINS -42 -3 11 0.26 0.031 0.36 <.05 
 Parietal -55 -22 38 0.25 0.037 0.32 <.05 
 Occipital 17 -68 20 0.27 0.031 0.32 <.05 
 Occipital 39 -71 13 0.27 0.011 0.39 <.05 
 MedCerebellum -6 -60 -15 0.27 0.018 0.32 <.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 13. Display of Pearsons correlation between behavioral measures and graph theoretical 

measures. Note. SP=Self Pain; SNP=Self No Pain; OP=Other pain; ONP=Other no pain. 
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