
Dissertation / Doctoral Thesis

Titel der Dissertation / Title of the Doctoral Thesis

Dynamic Graph Algorithms and Graph
Sparsification: New Techniques and

Connections

verfasst von / submitted by

Gramoz Goranci M. Sc.

angestrebter akademischer Grad / in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften (Dr. techn.)

Wien, 2019 / Vienna, 2019

Studienkennzahl lt. Studienblatt / A 786 880
degree programme code as it appears on the student
record sheet:
Dissertationsgebiet lt. Studienblatt / Informatik
field of study as it appears on the student record sheet:
Betreuerin / Supervisor: Univ.-Prof. Dr. Monika Henzinger

iii

Abstract

Graphs naturally appear in several real-world contexts including social networks,
the web network, and telecommunication networks. While the analysis and the un-
derstanding of graph structures have been a central area of study in algorithm de-
sign, the rapid increase of data sets over the last decades has posed new challenges
for designing efficient algorithms that process large-scale graphs. These challenges
arise from two usual assumptions in classical algorithm design, namely that graphs
are static and that they fit into a single machine. However, in many application
domains, graphs are subject to frequent changes over time, and their massive size
makes them infeasible to be stored in the memory of a single machine.

Driven by the need to devise new tools for overcoming such challenges, this
thesis focuses in two areas of modern algorithm design that directly deal with pro-
cessing massive graphs, namely dynamic graph algorithms and graph sparsification.
We develop new algorithmic techniques from both dynamic and sparsification per-
spective for a multitude of graph-based optimization problems which lie at the core
of Spectral Graph Theory, Graph Partitioning and Metric Embeddings. Our algo-
rithms are faster than any previous one and design smaller sparsifiers with better
(approximation) quality. More importantly, this work introduces novel reduction
techniques that show unexpected connections between seemingly different areas
such as dynamic graph algorithms and graph sparsification. In particular we obtain
the following results:

• The first dynamic algorithm for maintaining approximate solutions to Lapla-
cian systems in sub-linear update and query time and an extension of the tech-
nique to dynamically maintaining variants of Vertex Spectral Sparsifiers and
All-Pair Effective Resistances in undirected, weighted graphs. We also prove
conditional lower bounds that certify that there are no efficient dynamic algo-
rithms for maintaining Effective Resistances exactly.

• The first dynamic algorithm for maintaining low-stretch spanning trees with
sub-polynomial stretch and sub-linear update time in undirected, unweighted
graphs and an extension of the technique to dynamically maintaining low-
diameter clustering.

• The current best-known algorithms for incrementally maintaining global Min-
imum Cut, approximate All-Pair Maximum Flow and Sparsest Cut in undi-
rected, unweighted graphs. A key primitive behind our algorithms is a new
notion of Local Sparsifiers, a stronger variant of the well-studied notion of
Vertex Sparsifiers.

• The current best-known algorithm for constructing vertex sparsifiers that are
minors of the input graph and preserve shortest path distances approximately
and reachability information exactly. We derive upper-bounds on the quality
and size of such sparsifiers and also prove lower-bounds that better explain
the trade-off between these two quantities.

v

Zusammenfassung

Graphen sind passende Modelle in mehreren realen Kontexten, unter anderem
in sozialen Netzwerken, dem Web-Netzwerk und in Telekommunikationsnetzen.
Die Analyse und das Verständnis von Graphstrukturen sind ein zentraler Gesichts-
punkt im Design von Algorithmen. Jedoch stellt das rasante Wachstum an Daten-
mengen neue Herausforderungen an das Design von effizienten Algorithmen für
riesige Graphen. Diese Herausforderungen entspringen aus zwei Annahmen des
klassischen Algorithmendesigns, und zwar dass Graphen statisch sind und in den
Speicher einer einzelnenMachine passen. Jedoch sindGraphen in vielenAnwendun-
gen in konstanter Veränderung und oftmals zu groß, um im Speicher einer einzelnen
Maschine gespeichert werden zu können.

Getrieben durch den Bedarf, neue Lösungen für diese Herausforderungen zu
finden, fokussiert sich diese Dissertation auf zwei Bereiche des modernen Algorith-
mendesigns, um Lösungen für diese Probleme zu finden; nämlich dynamische Gra-
phalgorithmen und Graphsparsifikation. Wir entwickeln neue algorithmische Tech-
niken für beide Bereiche, um graphbasierte Optimierungsprobleme unter anderem
in Spectral Graph Theory, Graph Partitioning und Metric Embeddings effizienter
lösen zu können. Unsere Algorithmen sind schneller als jegliche vorherige und wir
entwickeln kleinere Sparsifier mit besserer Approximationsqualität. Außerdem ent-
wickelt diese Arbeit neuartige Reduktionstechniken, welche unerwartete Zusam-
menhänge zwischen scheinbar verschiedenen Bereichen, wie zum Beispiel dynami-
sche Graphalgorithmen und Graphsparsifikation aufzeigen, insbesondere erreichen
wir die folgende Resultate:

• Den ersten dynamischen Algorithmus für die Aufrechterhaltung von approxi-
mativen Lösungen für Laplacian Systeme mit sub-linearer Update und Query
Time und eine Erweiterung der Technik, um dynamisch Vertex Spectral Spar-
sifiers und All-Pair Effective Resistances in ungerichteten, gewichteten Gra-
phen aufrechtzuerhalten. Wir beweisen außerdem Conditional Lower Bounds,
welche beweisen, dass es keinen effizienten dynamischen Algorithmus geben
kann, der Effective Resistances exakt berechnet.

• Den ersten dynamischen Algorithmus, der Low-stretch aufspannende Bäume
mit sub-polynomialem Stretch und sub-lineare Update Time in ungerichte-
ten, ungewichteten Graphen aufrecht erhält. Außerdem eine Erweiterung der
Technik, um dynamische Cluster mit niedrigem Diameter aufrechtzuerhalten.

• Den besten bekannten Algorithmus für inkrementellen global Minimum Cut,
approximativen All-Pair Maximum Flow und Sparsest Cut in ungerichteten,
ungewichteten Graphen. Ein wichtiger Baustein für diese Algorithmen ist ein
neuentwickeltes Konzept namens Local Sparsifier, eine stärkere Variante der
bekannten Vertex Sparsifier.

• Den besten bekannten Algorithmus für die Konstruktion von Vertex Sparsi-
fiers, die Minors des Inputgraphen sind und eine Approximation der kürzesten
Wege und die exakte Erreichbarkeit aufrecht erhalten. Wir entwickeln obere

vi

Schranken für die Qualität und Größe solcher Sparsifier und beweisen untere
Schranken, welche den Kompromiss der beiden Zielfunktionen besser erklä-
ren.

vii

Acknowledgments

First and foremost, I would like to express my sincerest gratitude to my advisor
Monika Henzinger, for her guidance and patience over these last four years of my
Ph.D. She has always been there to listen to my ideas, generously shared her research
insights with me and encouraged me to work on topics that I was most excited about.
She gave never-ending support, especially when things did not go smoothly. She
has been, and continues to be, a great source of inspiration for me, both in terms of
academic and personal development.

I am deeply thankful to Harald Räcke, for being a great mentor and collabora-
tor, and for hosting me several times at TU Munich. His approach and intuition to
problem solving continue to amaze me, and I feel fortunate to have learned from his
insights.

I am particularly grateful to Richard Peng, who hosted me during my research
stay at Georgia Tech in Atlanta. I have benefited immensely from his generosity,
research insights in numerical and graph algorithms, his academic advice, guidance
and our joint collaborations.

Special thanks to Robert Krauthgamer andDanuponNanongkai who have agreed
to review this thesis and be part of my thesis committee. I have enjoyed and gained a
lot from research conversations with both of them. I would also like to thankThatch-
aphol Saranurak and Mikkel Thorup for the remarkable research collaborations.

It has been a great experience to spend these years as part of the TAA group. I
want to thank Sebastian for being a great office mate, for the collaboration and the
academic advise; Pan for all the collaboration and exceptional support; Darek for
working with me, being an inspiring friend and for playing music together; Marco
for being the co-author of my first paper; Veronika for being a caring colleague and
convincingme to come to Vienna for my Ph.D.; Stefan for being there throughout our
joint path and for all the conversations on life; Wolfgang for his support, and for orga-
nizing several entertaining non-academic events; Alex for being a kind and cheerful
office mate; Valon and Labinot for the numerous conservations about life and poli-
tics during lunches at Mensa; Ulli, Birgit and Christina for keeping the administrative
workload low and allowingme to practice myGermanwith them, former and current
colleagues, and visitors for the pleasant atmosphere they have created. I have had
a very rewarding experience during my visit in Atlanta, and for this I thank David,
Saurabh, Yu, Matthew and Di for being great friends and colleagues.

I am indebted to the endless support and love my family has given me during
these years of graduate school. I thankmy parents, Suzana and Kamuran, my siblings
Gladiola and Shkamb and their spouses Labi and Ida, and my in-laws Shpresa, Nail
and Pellumb, thank you all for being there for me! A special thank you goes to
my grandparents, especially to my late grandfather Rifat, who was a great source of
inspiration for me and infused within me the passion for science.

Finally, I would like to wholeheartedly thank my fiancè Edona for her love, sup-
port and for cheeringme up (especially after conference notifications), and reminding
me often that life is a strict superset of research. Thank you for also proof-reading
many of my manuscripts, grant proposals and parts of this thesis.

ix

Bibliographic Note

Most of the results of this thesis were already published in conference proceed-
ings and journal articles. Therefore, the chapters of this thesis are based on the
following publications and manuscripts:

• Chapter 2: Gramoz Goranci, Monika Henzinger, and Pan Peng. “Dynamic Ef-
fective Resistances andApproximate Schur Complement on Separable Graphs”.
In: European Symposium on Algorithms (ESA). 2018, 40:1–40:15.

• Chapter 3: David Durfee, Yu Gao, Gramoz Goranci, and Richard Peng. “Fully
Dynamic Spectral Vertex Sparsifiers and Applications”. In: Symposium onThe-
ory of Computing (STOC). (forthcoming). 2019.

• Chapter 4: Sebastian Forster and Gramoz Goranci. “Dynamic Low-Stretch
Trees via Dynamic Low-Diameter Decompositions”. In: Symposium on Theory
of Computing (STOC). (forthcoming). 2019.

• Chapter 5: Gramoz Goranci, Monika Henzinger, and Mikkel Thorup. “Incre-
mental Exact Min-Cut in Polylogarithmic Amortized Update Time”. In: ACM
Trans. Algorithms 14.2 (2018). Announced at ESA’16, 17:1–17:21.

• Chapter 6: Gramoz Goranci, Monika Henzinger, and Thatchaphol Saranurak.
“Fast Incremental Algorithms via Local Sparsifiers”. manuscript. 2019.

• Chapter 7: YunKuenCheung, GramozGoranci, andMonikaHenzinger. “Graph
Minors for Preserving Terminal Distances Approximately - Lower and Upper
Bounds”. In: International Colloquium on Automata Languages and Program-
ming (ICALP). 2016, 131:1–131:14.

• Chapter 8: Gramoz Goranci, Monika Henzinger, and Pan Peng. “Improved
Guarantees for Vertex Sparsification in Planar Graphs”. In: European Sympo-
sium on Algorithms (ESA). 2017, 44:1–44:14.

Contents

1 Introduction 1
1.1 Dynamic Graph Algorithms . 3

1.1.1 Dynamic Algorithms for Spectral Primitives 4
1.1.2 Dynamic Low-Stretch Trees 6
1.1.3 Dynamic Graph Partitioning 8

1.2 Graph Sparsification . 10
1.2.1 Distance Approximating Minors 11
1.2.2 Reachability Preserving Minors 13
1.2.3 Structure of Thesis . 13

2 Dynamic Effective Resistances and Approximate Schur Comple-
ment on Separable Graphs 15
2.1 Introduction . 16

2.1.1 Our Results . 18
2.1.2 Our Techniques . 20

2.2 Preliminaries . 22
2.3 Useful Properties of Approximate Schur Complement 27
2.4 Dynamic Effective Resistances on Separable Graphs 31

2.4.1 Dynamic Approximate Schur Complement 31
2.4.2 Extension to Dynamic All-Pairs Effective Resistance 37

2.5 Lower Bounds for Dynamic Effective Resistances 39
2.5.1 A Lower Bound for O(

√
n)-Separable Graphs 39

2.5.2 A Lower Bound for General Graphs 43
2.6 Conclusion . 45

3 Fully Dynamic Spectral Vertex Sparsifiers and Applications 47
3.1 Introduction . 48

3.1.1 Related Works . 51
3.2 Preliminaries . 53

3.2.1 Projection matrix and its properties 55
3.3 Overview . 57
3.4 Dynamic Schur Complement . 59

3.4.1 Dynamic Schur Complement on Unweighted Graphs 60

xi

xii CONTENTS

3.4.2 Dynamic All-Pair Effective Resistance on Unweighted Graphs 66
3.4.3 Dynamic Schur Complement on Weighted Graphs 67
3.4.4 Dynamic All-Pair Effective Resistance on Weighted Graphs 78

3.5 Dynamic Laplacian Solver in Sub-linear Time 79
3.5.1 Dynamic Projection . 84
3.5.2 Initialization of Approximate Projection Vector 87
3.5.3 Stability of Projected Vectors 88

3.6 Sampling Weights of a Random Walk 92
3.7 Schur Complement Sparsifier from Sum of Random Walks 99
3.8 Conclusion . 102

4 Dynamic Low-Stretch Trees via Dynamic Low-Diameter Decompo-
sitions 105
4.1 Introduction . 106
4.2 Preliminaries . 111
4.3 Technical Overview . 112
4.4 Dynamic Low Average Stretch Forest 116

4.4.1 Generic Dynamic LDD Hierarchy 116
4.4.2 Dynamic Low-Stretch Tree Algorithms 121
4.4.3 Input Graph Sparsification 124

4.5 Dynamic Low-Diameter Decomposition 126
4.5.1 Static Low-Diameter Decomposition 127
4.5.2 Decremental Low-Diameter Decomposition 130
4.5.3 Fully Dynamic Low-Diameter Decomposition 136

4.6 Dynamic Spanner Algorithm . 139
4.6.1 Static Spanner Construction 139
4.6.2 Dynamic Spanner Algorithm 141

4.7 Conclusion . 142

5 Incremental ExactMin-Cut in Poly-logarithmicAmortizedUpdate
Time 145
5.1 Introduction . 145
5.2 Preliminaries . 148
5.3 Sparse certificates . 149
5.4 Incremental Exact Minimum Cut . 150
5.5 Incremental (1 + ϵ) Minimum Cut with Õ(n) space 159

5.5.1 An O(n log2 n/ϵ2) space algorithm 159
5.5.2 Improving the space to O(n log n/ϵ2) 162

5.6 Conclusion . 168

6 Fast Incremental Algorithms via Local Sparsifiers 171
6.1 Introduction . 171
6.2 Local Sparsifiers . 176
6.3 From Local Sparsifiers to Incremental Algorithms 179

CONTENTS xiii

6.4 Incremental All Pair Shortest Paths 188
6.5 Incremental All Pair Max-Flow . 195
6.6 Incremental Tree Flow Sparsifier (Räcke Tree) 199

6.6.1 Applications of tree flow sparsifiers 200
6.7 From Vertex Sparsifiers to Offline Dynamic Algorithms 202

6.7.1 Applications to Offline Shortest Paths and Max Flow 208
6.8 Implications on Hardness of Approximate Dynamic Problems . . . 209

6.8.1 Approximate max flow and cut sparsifiers 209
6.8.2 Approximate distance oracles on general graphs 210
6.8.3 Approximate distance oracles on planar graphs 211

6.9 Conclusion . 213

7 GraphMinors for Preserving Terminal Distances Approximately –
Lower and Upper Bounds 215
7.1 Introduction . 216
7.2 Preliminaries . 218
7.3 Deterministic Lower Bounds . 219

7.3.1 Distortion 2 Lower Bound 221
7.3.2 Higher Distortion Lower Bounds 222
7.3.3 Generalizing the Lower Bound and its Implication 225

7.4 Minor Construction for General Graphs 226
7.5 Minor Construction for Fixed Minor-Free Graphs 229
7.6 Minor Construction for Planar Graphs 231

7.6.1 Distortion-3 Guarantee . 231
7.6.2 Distortion-(1 + ϵ) Guarantee 234

7.7 Conclusion . 236

8 Reachability Preserving Minors and Sparsifiers for Cuts and Dis-
tances 237
8.1 Introduction . 238
8.2 Preliminaries . 242
8.3 Reachability-Preserving Minors for General Digraphs 243

8.3.1 A Warm-up: An Upper Bound of O(k4) 243
8.3.2 An Improved Bound of O(k3) 247

8.4 Reachability-Preserving Minors for Planar Digraphs 249
8.4.1 Lower-bound for Planar DAGs 252

8.5 An Exact Cut Sparsifier of Size O(k2) 253
8.5.1 Basic Tools . 254
8.5.2 Our Construction . 257

8.6 Extensions to Planar Flow and Distance Sparsifiers 263
8.6.1 An Upper Bound for Flow Sparsifiers 263
8.6.2 An Upper Bound for Distance Sparsifiers 265
8.6.3 Incompressibility of Distances in k-Terminal Graphs 267

8.7 Conclusion . 269

xiv CONTENTS

Bibliography 271

CHAPTER 1
Introduction

Recent technological developments, in particular the increased popularity of the
Internet, have lead to an enormous increase in data volumes. While the access to
this large amount of data has allowed us to gain complex insights and identify vari-
ous patterns about data, performing basic computational tasks and storing the data
have posed major challenges that require new treatments beyond the usage of tradi-
tional applications and tools. This leaves computer scientists themandate to address
such challenges by developing models that better suit the modern technological ad-
vances.

A considerable fraction of the generated data can be modeled using Graphs. A
graph is a collection of nodes and a collection of edges, where each edge connects
a pair of nodes. Graphs are ubiquitous structures in mathematics and computer sci-
ence, and naturally appear in several real-world contexts including social networks
(e.g., the Facebook graph), the web network, and telecommunication networks. In
comparison to other data representations, graphs are particularly desirable since
(suitably) visualizing them often offers ways to identify interesting patterns in the
data, e.g., detecting communities in social networks. Another reasonwhy graph rep-
resentations are found appealing is because algorithms formanipulating and storing
them have been thoroughly studied since the early days of algorithm design. Nev-
ertheless, a large number of these graph algorithms work under the assumptions
that graphs are static, i.e., that they do not undergo changes and that they can be
stored into the memory of a single machine. Unfortunately, these assumptions fail
to capture graphs that appear in many important real-world scenarios.

As a motivating example consider a map graph, where each node corresponds
to a city and an edge between any two nodes represents the route connecting them.
This map graph also includes the length of each route by labeling the edges with the
corresponding distance. A fundamental question in algorithm design is to under-
stand the metric structure of the map graph; more concretely, we want to compute
the shortest path distance between any two given nodes in the map graph. This task

1

2 CHAPTER 1. INTRODUCTION

has been addressed by many classical algorithms and the running time complexity
of this problem is shown to be cubic on the number of nodes in the graph. How-
ever, it does not take too much effort to realize that real-world map graphs undergo
changes. For example, due to construction work, it may occur that some road con-
necting two cities is blocked, which in turn implies that the edge connecting these
cities is deleted from the map graph. The deletion of such an edge might affect the
shortest path between cities, thus implying that the old solution is incorrect for the
new map graph. One obvious way to correct the solution is to recompute shortest
paths from scratch in the new graph. However, this trivial solution comes at the
expense of high computational burden, which is not feasible for small devices with
limited resources, e.g., navigation systems. A set of natural questions that arise are
the following: Can we design methods that perform better than re-computation
from scratch? If yes, what is the best possible speed-up that we can achieve? Do
we have to pay in the quality of the solution to get better performance?

Another common challenge that we face when dealing with huge graphs are
computational and storage resources. This is due to the fact that the size of a graph
can be as large as quadratic in the number of nodes. A traditional approach to ad-
dress this issue has been to compress large graphs into smaller ones while preserving
properties or features of interest. These compressed versions of graphs are partic-
ularly desirable since any computational task on the original graph can be now
performed on the compressed graph, thus leading to significant savings in compu-
tational and storage resources. Graph compression is commonly studied from two
perspectives: (1) reducing the number of edges of a graph, (2) and reducing the
number of nodes. While the first approach has been successfully employed for im-
proving the running time of many basic graph problems, its practical applicability is
somewhat limited due to the fact that most large networks are already sparse. As a
result, compression tools that reduce the number of nodes have received increasing
attention over the last decade. To illustrate, let us go back to the graph map exam-
ple. Suppose that among all cities in the graph, we are interested only in a subset of
nodes that are “important” to us. This is relevant in many practical scenarios, e.g.,
one desires to preserve distance information only among big cities while ignoring
the small ones. The following questions naturally arise: Can we compress the map
graph into a graph only on the big cities while preserving distances? What is the
incurred loss when transferring from the large map graph to the smaller one? What
is the trade-off between the loss and the size of the compressed graph?

All of the above questions and their variants will be addressed in this thesis.
In particular, we will provide provable algorithmic tools from both dynamic and
compression perspective for a multitude of graph-based optimization problems that
arise in Spectral Graph Theory, Graph Partitioning and Metric Embeddings. More
importantly, this thesis establishes novel reduction techniques that reveal unex-
pected connections between time-evolving graphs and graph compression. In what
follows, we will first review results in dynamic graph algorithms and then discuss
our contributions in the area of graph sparsification.

1.1. DYNAMIC GRAPH ALGORITHMS 3

1.1 Dynamic Graph Algorithms

Suppose we are given a graph G = (V,E) and a property P with respect to G.
Furthermore, assume that the structure of G is slightly perturbed, that is, an edge
is either inserted or deleted from G. Can we efficiently update the property P in
the perturbed graph rather than recomputing it from scratch? This basic question
has been asked for many important graph properties for decades and the area that
exclusively studies these questions is called Dynamic Graph Algorithms.

More concretely, a dynamic graph algorithm is a data structure that supports the
following operations on a given input graph G:

• Preprocess(G): preprocess the graph G
• Insert(u, v): insert the edge (u, v) to G
• Delete(u, v): delete the edge (u, v) from G

• Query(P): query the property P

In some variants of dynamic graph algorithms, the query operation might not
be supported and the goal there is simply to maintain a correct property P with
respect to the current graph at any point in time. A dynamic algorithm is charac-
terized with three different time measures: (1) processing time, which denotes the
time to support operation Preprocess(G); (2) update time, which denotes the time
to support operations Insert(u, v) and Delete(u, v), and (3) query time, which de-
notes the time to support operation Query(P). Update and query times can either
be worst-case, that is, the time spent to process each update or query individually,
or amortized, that is, the running time amortized over a sequence of operations.

Depending on the types of update operations we support, dynamic algorithms
are classified into three main categories: (i) fully dynamic, if update operations con-
sist of both edge insertions and deletions; (ii) incremental, if update operations con-
sist of edge insertions only; and (iii) decremental, if update operations consist of edge
deletions only. When studying the update times in algorithms of type (ii) and (iii),
it is common to consider total update time, which is the time spent over a sequence
of Θ(m) insertions or deletions, where m denotes the number of final or initial
edges in the graph, respectively. Dynamic algorithms can either be deterministic or
randomized, and usually algorithms with better running times are obtained if ran-
domization is allowed. A common assumption in randomized dynamic algorithm is
that the adversary is oblivious, that is, the sequence of updates and queries is fixed
in advance by the adversary, and the choices are are revealed to the algorithm one
by one.

There has been outstanding progress on devising efficient dynamic graph algo-
rithms, especially during the last two decades, and the graph properties that have
been considered include connectivity [129, 130, 135, 147, 249], reachability [62, 80,
131, 164, 217, 219, 221, 223], shortest paths [41, 46, 79, 132–134, 247], matching [31,
47, 48, 123, 204, 206], (global) minimum cut [127, 152, 246, 248], minimum span-
ning tree [106, 128, 138], spanner [27, 33, 45, 54, 90], cut and spectral sparsifier [12],

4 CHAPTER 1. INTRODUCTION

etc. However, despite this volume of work, there is a large number of questions
that remain poorly understood. The situation is even worse if we consider several
“non-basic” graph problems e.g., variants of graph partitioning, where no non-trivial
solutions are known. Driven by this, in this thesis we study dynamic algorithms for
new graph properties that appear to be important in different application domains
but have not been considered so far. We also make progress on fundamental basic
graph problems by improving their long-standing running time guarantees.

1.1.1 Dynamic Algorithms for Spectral Primitives

In this thesis we study algorithms for dynamically maintaining solutions to Lapla-
cian systems and Effective Reistances (see Chapters 2 and 3). Laplacian systems are
an important subclass of linear systems which arise in many natural contexts and
have found applications in machine learning, computer graphics and image process-
ing. Solving Laplacian systems has received considerable attention after the seminal
work of Spielman and Teng [237] who devised the first near-linear time solver. A
formal definition of such systems is given below.

Given a graph G = (V,E) with n nodes andm edges, let L := D−A denote
the Laplacian matrix ofG, whereD andA are the associated degree and adjacency
matrix of G, respectively. Matrix L together with a vector b ∈ Rn form a system
of linear equations Lx = b, which is referred to as Laplacian system. Let L† denote
the pseudo-inverse of L. The solution vector x ∈ Rn satisfies x = L†b, and it
exists if and only if b⊤1 = 0, where 1 is the all-ones n-dimensional vector. Let
1u ∈ Rn denote the indicator vector of a vertex u such that 1u(v) = 1 if v = u and
0 otherwise.

We introduce a dynamic model for solving Laplacian systems that supports in-
sertions and deletions of edges in the underlying graph (which correspond to mod-
ifying entries in L), modifications to vector b, and query access to one or few co-
ordinates of an approximate solution vector, all in sublinear time. Concretely, we
obtain the following result.

Theorem 1.1.1. Given any error parameter ϵ ∈ (1/m, 1), there is a fully-dynamic
algorithm for solving Laplacian systems on undirected, unweighted bounded-degree
graphs while supporting insertions and deletions of edges, modifications to vector b,
as well as query access to one or few entries of a vector x̃ such that

∥∥x̃− L†b
∥∥
L
≤

ϵ
∥∥L†b

∥∥
L
, all in Õ(n11/12ϵ−5)1 expected amortized time. These guarantees hold against

an oblivious adversary.

A spectral primitive closely related to Laplacian systems is effective resistance, a
graph property that has received increasing attention recently due to its application
in speeding up algorithms for several cornerstone graph problems [70, 187, 189, 227].

1Throughout this thesis, we use Õ(·) to hide polylogarithmic factors, i.e., Õ(f(n)) = O(f(n) ·
poly(log f(n))).

1.1. DYNAMIC GRAPH ALGORITHMS 5

Given a graph G = (V,E,w) with w assigning non-negative weights to edges in
E, and any pair of vertices u, v ∈ V , we let

RG
eff(u, v) := (1u − 1v)

⊤L†(1u − 1v)

denote the effective resistance between u and v inG. WhenG is viewed as a resistor
network, where resistances are the inverse of the edge weights, effective resistance
between u and v can be thought of as the energy of the flow when routing one unit
of current from u to v.

We study fully-dynamic graph algorithms for maintaining All-Pair Effective Re-
sistances. Surprisingly enough, we show that this graph property admits sub-linear
update and query times while achieving very high approximation accuracy to ef-
fective resistance. This is in stark contrast to related graph measures like shortest
path, for which (conditional) hardness results are known in the fully-dynamic set-
ting [135], and maximum flow, which remains poorly understand from the dynamic
perspective.

Theorem 1.1.2. For any given error parameter ϵ ∈ (0, 1), there is a fully-dynamic
algorithm for maintaining (1±ϵ)-approximation to effective resistances in undirected,
unweighted graphs while supporting insertions and deletions of edges as well as pair-
wise effective resistance queries, all in Õ

(
min{m3/4, n5/6}ϵ−4

)
expected amortized

time. Our guarantees hold against an oblivious adversary.

We extend the above result in two directions. First, the above algorithm can
be extended to also handle weighted graphs, albeit with a bound of Õ(n5/6ϵ−4) on
the expected amortized update and query time. Second, if we restrict to weighted
graphs that admit small separators, e.g., planar graphs, our worst-case running time
guarantees improve to Õ(

√
nϵ−2). The key idea behindTheorem 1.1.2 and its corre-

sponding extensions is dynamically maintaining an approximation to Schur comple-
ments (also known as vertex spectral sparsifiers). Roughly speaking, given a graph
G and a subset of verticesK , a Schur complement is a graph with vertex setK that
preserves effective resistances among any pair of vertices fromK in G.

Despite the fact that our results share the same idea at a high level, there are
subtle differences between their implementations. For general graphs, our tech-
niques crucially rely on the fact that Schur complements can be viewed as a sum
of random walks. This allows us to subsample vertices from the original graph
and then construct a Schur complement with respect to this subsampled vertex set.
The subsampling makes sure that the random walks are short and thus they can be
maintained dynamically using elementary data-structures. On the other hand, for
planar graphs we exploit the fact that they admit sub-linear separators (hence the√
n dependency on the running time), as well as the fact that approximate Schur

complements can be computed in nearly-linear time [88]. Inspired by the seminal
work of Lipton, Rose and Tarjan [185] on nested dissection, these two ingredients are
then brought together to dynamically maintain Schur complements for this family
of graphs.

6 CHAPTER 1. INTRODUCTION

All results we presented above guarantee only approximate answers to effective
resistance queries. An obvious question is whether there are dynamic algorithms
that can exactly report effective resistances while still achieving sub-linear update
and query time. We show that this is likely not the case. In particular, assuming a
certain believable conjecture, we prove that there are no algorithms that simultane-
ously achieve sub-linear update and query time.

Theorem 1.1.3. No incremental or decremental algorithm can maintain the (exact)
(s, t) effective resistance in general graphs on n vertices with both O(n1−δ) worst-
case update time and Õ(n2−δ) worst-case query time for any δ > 0, unless the OMv
conjecture [135] is false.

The preceding result can be extended to graphs that admit small separators, al-
beit with guarantees of O(n1/2−δ) and O(n1−δ) on the update and query time, re-
spectively. At the heart of our reductions, that prove these results, is a relation
between effective resistance and the problem of detecting cycles of certain length
in a graph. We defer the reader to Chapter 2 for more details.

1.1.2 Dynamic Low-Stretch Trees

In this thesis we study algorithms for dynamically maintaining Low-Stretch Span-
ning Trees and Spanners (see Chapter 4). Trees are the simplest class of graphs.
From the algorithmic point of view, they are very appealing since many graph-
based problems admit somewhat easier solutions when restricted to tree instances.
In order to be able to exploit such a desirable behavior of trees, the problem of ap-
proximating general graphs by trees while preserving relevant graph properties, has
been extensively studied in algorithm design. One notable example is Low-Stretch
Spanning Tree, which at a high level is a spanning tree of a given input graph that
preserves distances on average with a small stretch. Such trees are a central con-
cept in Metric Embeddings and have found numerous applications in fast solvers for
symmetric diagonally dominant (SDD) linear systems [161], in the construction of
competitive oblivious routing schemes [214] and in approximation algorithms [207].
A formal definition of low-stretch trees is given below.

Given a graphG = (V,E,w) and anyu, v ∈ V , let distG(u, v) denote the length
of a shortest path between u and v in G. Let T be a spanning tree of G. We define
the stretch of an edge (u, v) ∈ E with respect to T to be stretchT (u, v) := distT (u,v)

w(u,v) .
The average stretch over all edges of G with respect to T is given by

avg-stretchT (G) :=
1

|E|
∑

(u,v)∈E

stretchT (u, v).

We say that T is a low-stretch spanning tree whenever the average stretch is sub-
polynomial or poly-logarithmic in the number of nodes n = |V |.

Motivated by the fundamental importance of low-stretch spanning trees as well
as their powerful applications, we considered the maintenance of this object from

1.1. DYNAMIC GRAPH ALGORITHMS 7

a dynamic point of view. Indeed, designing dynamic algorithm for such trees was
posed as an open problem by Baswana et al. [33]. However, despite the extensive
research in dynamic algorithms in recent years, no progress was made in this direc-
tion. In this thesis, we show the first non-trivial guarantees for this problem.

Theorem 1.1.4. Given any unweighted, undirected graph with n nodes undergoing
edge insertions and deletions, there is a fully dynamic algorithm for maintaining a
spanning tree of expected average stretch no(1) that has expected amortized update
time n1/2+o(1). These guarantees hold against an oblivious adversary.

The above algorithm can be slightly modified to give average stretch O(t) and
update time n1+o(1)/t for t ≥

√
n. This shows that the

√
n barrier in the running

time is not inherent, at least if a very large stretch is tolerable. One of the major
building blocks of our algorithm is to dynamically maintain a clustering of a graph
into small-diameter clusters (also known as low-diameter decomposition). This is
implemented using the random-shift clustering due to Miller, Peng and Xu [195]
together with many adaptations to make it work in the dynamic setting. We then
employ a dynamic version of the hierarchy of low-diameter clusters due to Alon,
Karp, Peleg, and West [17], which in turn requires a sophisticated amortization ap-
proach to control propagation of updates within the hierarchy. Additionally our al-
gorithm uses dynamic cut sparsifiers to reduce the problem to sparse graphs. While
it is known that cuts and distances are dual to each other in similar settings [23],
our argument requires a slight deviation from common approaches.

The dynamic random-shift clustering could be of independent interest. Indeed,
a direct consequence of this technique improves the previously best-known guar-
antees for dynamically maintaining graph spanners. Roughly speaking, a graph
spanner is a (sparse) subgraph of a given graph G that preserves all pair shortest
path distances of G up to a multiplicative error.

Theorem 1.1.5. Let t ≥ 1 be a parameter. Given any unweighted, undirected graph
with n nodes undergoing edge insertions and deletions, there is a fully dynamic algo-
rithm for maintaining a spanner of stretch (2t− 1) and expected sizeO(n1+1/t log n)
that has expected amortized update time O(t log2 n). These guarantees hold against
an oblivious adversary.

Compared to the state-of-the art result of Baswana et al. [33], the above the-
orem improves upon the size of the spanner and the update time by a factor of t.
Independently of our work, Saranurak and Wang [225] obtained similar guarantees
for dynamically maintaining low-diameter clusters using different techniques. Con-
cretely, they employ expander decomposition as a subroutine and use pruning to
maintain a valid decomposition under edge deletions. We believe that our solution
is arguably simpler than their expander pruning approach.

8 CHAPTER 1. INTRODUCTION

1.1.3 Dynamic Graph Partitioning

In this thesis we study incremental algorithms for maintaining Global Minimum
Cut and Sparsest Cut, both being core concepts in Graph Partitioning (see Chap-
ters 5 and 6). Graph partitioning problems typically involve partitioning the in-
put graph into smaller components while minimizing the number of connections
between these components. These problems have historically occupied a central
place in understanding network flows [104], packet routing [209] and VLSI layout.
They have also been employed in many divide-and-conquer approaches for solving
clustering problems. In what follows we start by defining the global minimum cut
problem and then later discuss the results related to the sparsest cut problem.

Given an unweighted, undirected graph G = (V,E), and a subset of vertices
S ⊆ V , the edge cut E(S, V \ S) is a set of edges that have one endpoint in S
and the other in V \ S. Let λ(S) = |E(S, V \ S)| denote the size of the edge cut.
A global minimum cut is a subset S whose edge cut size is the smallest among all
subsets of vertices in G. Let λ(G) denote the edge cut size of the global minimum
cut in G. There has been extensive work on designing algorithms for computing
global minimum cuts in the static setting and it is known that the problem can be
solved in nearly linear-time [136, 150, 157].

The first work on dynamic Global Minimum Cut is due to Karger [152], who
gave the first non-trivial running time guarantees for the problem. When both in-
sertions and deletions of edges are supported, Thorup [248] achieves a (1 + o(1))
approximation to the value of global minimum cut in Õ(

√
n) update and query time,

and these bounds are the best-known to date. However, none of these works applies
to maintain the exact value of global minimum cut andThorup [248] even poses this
question as an open problem. One exception here is the work by Henzinger [127],
who obtains an exact incremental algorithm with Õ(λ(G)) amortized update time,
where λ(G) is the value of the global minimum cut in the graph after all insertions
are processed. Note that λ(G) can be as large as O(n) and the main question is
whether a truly sub-linear running time can be achieved. In the following result,
we show that this is indeed the case by providing an exponential speed up on the
update time of Henzinger [127].

Theorem 1.1.6. Given any unweighted, undirected graph with n nodes undergoing
edge insertions, there is a deterministic incremental algorithm for exactly maintaining
the value of a global minimum cut λ(G) in O(log3 n log log n) amortized time and
O(1) query time.

Theabove result stays in sharp contrast to a polynomial conditional lower-bound
for the fully dynamic weighted global minimum cut problem due to Nanongkai and
Saranurak [201]. The high-level idea behind our result is to combine a sparsification
routine of Kawarabayshi andThorup [157] or its recent improvement by Henzinger,
Rao and Wang [136], and an exact incremental algorithm of Henzinger [127]. We
remark that the combination itself is not immediate and it entails opening the black-

1.1. DYNAMIC GRAPH ALGORITHMS 9

boxes used in these works and skillfully extending them to obtain our desirable
guarantees.

Motivated by the recent work on space-efficient dynamic algorithms [49], we
also consider efficient maintenance of global minimum cut using only Õ(n) space.
The results we obtain achieve O(n log n) space while still being able to support
insertions and (approximate) queries in poly-logarithmic and constant time, respec-
tively. Note that this setting differs from the standard graph stream model, which
typically allows Õ(n) space while ignoring relevant measures like update and query
time.

We next discuss our contribution related to the Sparsest Cut problem, which
is a well-studied NP-hard problem, that often serves as a prime example when dis-
cussing applications of metric embeddings in combinatorial optimization. Given an
unweighted, undirected graph G = (V,E), and a subset of vertices S ⊆ V , we
define the uniform sparsity of the cut (S, V \ S) as ΦG(S) :=

EG(S,V \S)
|S|·|V \S| . The uni-

form sparsest cut of G is the cut (S, V \S)with smallest possible sparsity. LetΦ(G)
denote the value of the sparsest cut inG. In the literature, there are several efficient
algorithms for approximatingΦ(G)with amultiplicative factor ofO(logc n), where
c ∈ [1/2, 1] [26, 163, 230]. However, prior to our work, nothing was known about
the complexity of this problem in the dynamic setting.

We make the first positive progress towards understanding the Uniform Spars-
est Cut problem from the dynamic point of view. In the insertions-only model, we
show that we can maintain a poly-logarithmic approximation to the sparsest cut in
sub-linear update time. As a by-product of our techniques, our algorithm provides
a trade-off between the approximation error and the update time.

Theorem 1.1.7. Let t ≥ 1 be a parameter. Given any unweighted, undirected graph
with n nodes undergoing edge insertions, there is a randomized incremental algorithm
for maintaining an O(log8t n) approximation to the value of uniform sparsest cut
Φ(G) in Õ(n2/(t+1))worst-case update time time andO(1) query time. Our algorithm
extends to weighted graphs with polynomially bounded weights.

The key idea behind the proof of Theorem 1.1.7 is a new notion of sparsifiers,
called local sparsifiers. These sparsifiers are a stronger version of the well-studied
notion of vertex sparsifiers. Concretely, in Vertex Sparsification, given a graph G =
(V,E) and a subset of vertices K , referred to as terminals, the goal is to construct
a graph H = (V ′, E′) with V ′ ⊇ K and |V (H)| is “small” such that H preservers
some graph property P that involves the terminalsK inG (see the next section for
an in-depth treatment on vertex sparsifiers). A local sparsifier is a data-structure
generalization of vertex sparsifiers; formally, given a graph G = (V,E), the goal is
to build a data-structure that supports the following operations:

1. Preprocess(G): preprocess the graph G
2. QuerySparsifier(G,K): compute and output a vertex sparsifierH ofG that

preserves some property P among vertices inK .

10 CHAPTER 1. INTRODUCTION

In other words, this definition suggests that local sparsifiers allow us to extract
vertex sparsifiers for any set of terminals in K . Note that operation (2) is a very
strong requirement, as there are Θ(2n) different terminal sets.

We show that a variant of tree cut sparsifiers due to Peng, Räcke, Shah and Täu-
big [210, 216] can be used to construct local sparsifier that preserve cut-structure of
the graph up to poly-logarithmic factors while achieving Õ(m) preprocessing time
and Õ(|K|) query time. In particular, this implies that the uniform sparsest cuts are
also preserved within the same approximation. We then design a reduction that con-
verts such an efficient local sparsifier into an incremental algorithm that maintains
a poly-logarithmic approximation to the uniform sparsest cut. The same technique
allows us to obtain very fast incremental algorithms for the approximate All-Pair
Maximum Flow problem with similar guarantees to those in Theorem 1.1.7. This is
quite intriguing since nothing was known about the dynamic Max-Flow problem in
general graphs, even when allowing poly-logarithmic approximation.

In fact, our reduction relating local sparsifiers and incremental graph algorithms
applies to a larger family of graph properties. For example, using variants of the
distance oracle due toThorup and Zwick [251] we construct efficient local sparsifiers,
which in turn imply a deterministic incremental algorithm that approximates All-
Pair Shortest Paths up to a constant factor in sub-linear update and query time.

Another important problem in dynamic algorithms is to understand the com-
plexity of (1 + ϵ)-approximate maximum flow problem in the dynamic setting.
Even when restricted to the weaker offline dynamic model, where edge updates
and queries are given in advance, the problem remains poorly understood. On the
other hand, over the last years there has been increasing interest in proving con-
ditional polynomial lower-bounds for dynamic problems. A property that most of
these lower-bounds share is that they apply to the offline dynamic model. Driven
by this, we develop a framework that connects offline dynamic problems and vertex
sparsification. Specifically, we show that if there are efficient (1 + ϵ) vertex spar-
sifiers of size Õ(poly(|K|, 1/ϵ)) that preserve cuts, then the approximate offline
maximum flow problem admits sub-linear update and query times. This would im-
ply that no Ω(n1−o(1)) lower bound can be shown for the approximate offline max
flow problem. For other connections we refer the reader to Chapter 6.

1.2 Graph Sparsification

A graph sparsifier is a “compressed” version of a large input graph that preserves
properties like distance or reachability information, cut value or graph spectrum.
Traditionally, graph sparsifiers have been studied from two perspectives: (1) those
that reduce the number of edges of a graph, referred to as edge sparsifiers, and (2)
those that reduce the number of nodes, referred to as vertex sparsifier. Edge sparsi-
fiers have been successfully applied for improving the running time of many basic
graph-based optimization problems, and the most notable examples include transi-
tive reductions [15], spanners [20], cut sparsifiers [35] and spectral sparsifier [238].

1.2. GRAPH SPARSIFICATION 11

In this thesis, we focus on vertex sparsifiers. Concretely, given a graph G = (V,E)
and a subset of verticesK , referred to as terminals, the goal is to construct a graph
H = (V ′, E′) satisfying the following properties:

• V ′ ⊇ K and |V ′| is “small”, ideally |V ′| = O(poly(|K|)),
• H (approximately) preserves properties like reachability, distance, cuts or
multi-commodity flows defined among terminals in K ; often it is desirable
that H is structurally similar to G, e.g., when G is planar, so is H

WhenH preserves some property approximately, the approximation ratio is re-
ferred to as the quality of the sparsifier. The usefulness of such a sparsification tool
is apparent from an algorithm point of view; once H is computed, we can perform
algorithmic tasks only in H instead of G, which in turn leads to savings in compu-
tational and storage resources. Besides their practical relevance, vertex sparsifiers
have also found applications within other sub-areas of Theoretical Computer Sci-
ence, namely approximation algorithms [94, 197], dynamic graph algorithms [113,
115], and network routing [73].

In what follows, which constitutes Chapters 7 and 8 of this thesis, we will dis-
cuss our contributions on vertex sparisifers that are structurally similar to the input
graph and at the same time preserve distances in undirected graphs or reachability
information in directed graphs.

1.2.1 Distance Approximating Minors

We study vertex sparsifiers that are obtained using minor operations while preserv-
ing distances among terminal pairs approximately. Minors are particularly desirable
since they preserve structural properties of the input graph, e.g., a minor of a planar
graph is another planar graph. Formally, given a weighted graph G = (V,E,w)
and a designated subset of terminalsK , an α-distance approximating minor of G is
a weighted graph H = (V ′, E′,w′) such that

• V ′ ⊆ K and V ′ is small, ideally |V ′| = O(poly(|K|)),
• H is a minor of G, i.e., H is obtained from G by deleting edges and vertices
any by contracting edges. No terminal can be deleted, and no two terminals
can be contracted together.

• Terminal distances are preserved up to an α factor, i.e., for any pair of vertices
u, v ∈ K , we have

distG(u, v) ≤ distH(u, v) ≤ α · distG(u, v).

Vertices in V ′ \ K are usually referred to as non-terminals or Steiner vertices.
Gupta [119] introduced the strongest version of the problem which requires that
V ′ = K , also known as the Steiner Removal Problem. In this setting, he showed
that trees admit sparsifiers with quality 8. Kamma, Krauthgamer and Nguyen [146]

12 CHAPTER 1. INTRODUCTION

showed that general graphs admit sparsifierswith qualityO(log5(|K|)). This bound
has been subsequently improved to O(log2(|K|)) by Cheung [68] and finally to
O(log(|K|)) by Filtser [102].

At the other extreme, Krauthgamer, Nguyen and Zondiner [170] considered the
setting where distances are preserved exactly, i.e., α = 1 and Steiner vertices are al-
lowed, also known as distance preserving minors. They showed that general graphs
admit distance preserving minors with O(|K|4) extra non-terminals. A natural
question to ask is what is the trade-off between the quality and the number of non-
terminals? We make progress on this question from both lower and upper bound
perspectives. Specifically, we start by presenting the following lower bound result.

Theorem 1.2.1. Let c > 0 be a constant. For infinitely many k ∈ N, there exists
a graph with k terminals which does not admit an (α − ϵ)-distance approximating
minor with kγ non-terminals, for all ϵ > 0, where α, γ are given in the table below.

α 2 2.5 3 10/3 11/3 4 4.2

γ 2 5/4 6/5 10/9 11/10 12/11 21/20

To obtain the above result we introduce a novel black-box reduction technique
that converts lower bounds for the SPR problem [58] into super-linear lower-bounds
on the number of non-terminals for distance approximating minors with the same
quality. At the heart of our graph constructions are variants of Steiner Systems [258],
which are useful concepts studied in combinatorial design. We believe that this
connection might be of independent interest.

From the upper bound perspective, we ask the question of whether one can con-
struct (1+ϵ)-distance approximating minors with less thanO(|K|4) non-terminals.
For planar graphs, we show this can be actually achieved.

Theorem1.2.2. Given aweighted planar graphG = (V,E,w), and a set of terminals
K , there exists an algorithm that computes an (1 + ϵ)-distance approximating minor
H = (V ′, E′,w′) of G with |V ′| = O(|K|2ϵ−2 log2 |K|) non-terminals.

Key to the above result is the notion of terminal path cover. At a high level such
a cover is a set of shortest paths in the graph whose union (1) contains the terminal
set and (2) approximately preserves shortest path distances among terminals. We
show that distance oracles for planar graphs due to Thorup [245] can be extended to
construct terminal path covers for planar graphs. This, combined with the counting
argument for branching events in shortest paths of Coppersmith and Elkin [75]
proves the claimed guarantees. We remark that our result has been subsequently
extended to minor-free graphs by Gupta and DiRenzo [120].

It is an important question whether one can improve the bound on the number
of non-terminals in Theorem 1.2.2 while keeping the same quality. In fact, any sub-
quadratic bound on the number of non-terminals would imply non-trivial bounds
for dynamic planar all-pairs shortest path problem in the offline setting. We refer
the reader to Chapter 6 for a detailed treatment on this connection.

1.2. GRAPH SPARSIFICATION 13

1.2.2 Reachability Preserving Minors

Sparsification in directed graphs is usually a much harder task when compared to
the undirected counterpart, with many basic graph properties admitting no non-
trivial results. In this thesis, we focus on one of most basic graph properties, namely
reachability, and study it from the vertex sparsification point of view.

Formally, given a directed graphG = (V,E) and a designed subset of terminals
K , a reachability preserving minor of G is a directed graph H = (V ′, E′) such that
(1) V ′ ⊇ K and V ′ is small, ideally |V ′| = O(poly(|K|)), (2)H is a minor ofG and
(3) for any pair of vertices u, v ∈ K , there is a directed path from u to v inH if and
only if there is a directed path from u to v in G.

We initiate the study of constructing such sparsifiers and provide the first non-
trivial guarantees on the problem. Our lower bound shows that, in general, it is not
possible to construct reachability preserving minors with a sub-quadratic number
of non-terminals.

Theorem 1.2.3. For infinitely many k ∈ N there exists a directed planar graph G
with k terminals such that any reachability preserving minor of G must use Ω(k2)
non-terminals.

In fact, the graph instance for proving the above lower bound is a directed acylic
grid with terminals distributed on the boundary of the grid. Our argument essen-
tially proves that all internal, non-boundary vertices of the grid must be retained,
if we want to preserve reachability information among terminals. Similar ideas for
proving lower-bounds on distance preserving minors for undirected graphs were
employed by Krauthgamer, Nguyen, and Zondiner [170].

We complement the lower bound by showing that planar graphs admit reach-
ability sparsifiers with at most O(|K|2 log |K|) terminals. For general graphs our
bounds are worse only by another |K| factor. Surprisingly, the gaps between the
best upper and lower bounds are tighter when compared to distance preserving
minors in the undirected setting.

Theorem 1.2.4. Given a directed graph G = (V,E), and a set of terminalsK , there
exists an algorithm that computes a rechability preserving minor H = (V ′, E′) of G
with |V ′| = O(|K|3) non-terminals. When G is a planar directed graph, the number
of non-terminals improves to |V ′| = O(|K|2 log |K|).

1.2.3 Structure of Thesis

We start with the fully-dynamic all-pairs effective resistances problem in Chapter 2.
We obtain a (1+ϵ)-approximationwith Õ(

√
nϵ−2) update and query time on graphs

that admit small separators. In the setting where exact effective resistances are re-
quired, we show two conditional lower-bounds, one applying to general graphs and
the other to graphs that admit small separators, which justify our upper bound that
only supports approximate queries. In Chapter 3, we study dynamic algorithms
for maintaining vertex spectral sparsifiers with respect to a carefully chosen set

14 CHAPTER 1. INTRODUCTION

of terminals. We show the applicability of this technique to (1) dynamic Lapla-
cian solvers with Õ(n11/12ϵ−5) update and query time on unweighted, bounded
degree graphs and (2) dynamic (1 + ϵ)-approximate all-pairs effective resistances
with Õ(min(m3/4, n5/6ϵ−2)ϵ−4) update and query time on undirected, unweighted
graphs, and Õ(n5/6ϵ−6) on undirected, weighted graphs.

We then shift our focus to studying tree-based graph approximations in the
dynamic setting. In Chapter 4, we develop an algorithm that dynamically main-
tains a spanning tree with no(1) average stretch and O(n1/2+o(1)) update time on
undirected, unweighted graphs. As a by-product of our techniques, we give the
best-known running time and size guarantees for the dynamic spanner problem.

In Chapters 5 and 6 we study incremental algorithms for graph partitioning
problems. Concretely, in Chapter 5, we show an incremental algorithm for exactly
maintaining the value of a global minimum cut in O(log3 n log log n) update time
and O(1) query time. We also design incremental algorithms with small approxi-
mation errors that are both time and space efficient. In Chapter 6, we introduce the
notion of local sparsifiers and design efficient variants of such sparsifiers for graph
properties like distances and cuts. We then show a technique that converts these
sparsifiers into incremental algorithms for efficiently maintaining approximate so-
lutions to a range of graph problems including all-pairs minimum cuts and uniform
sparsest cut.

The last part of this thesis is devoted to graph sparsification. In Chapter 7, we
study distance approximating minors from both a lower and upper bound perspec-
tive. For example, we show that for distortion 3 − ϵ there are k-terminal graphs
for which any distance approximating minor needs to retain at least Ω(k6/5) non-
terminals. For planar graphs, we show that there are (1+ϵ)-distance approximating
minors with Õ(k2ϵ−2) non-terminals. In Chapter 8, we consider reachability pre-
serving minors. We prove that, in general, it is not possible to construct such spar-
sifiers with a sub-quadratic number of non-terminals and show a matching upper
bound on planar graphs, up to a logarithmic factor. We also prove new guarantees
for vertex sparsifiers that preserve distance and cuts on planar graphs with termi-
nals lying on the same face.

CHAPTER 2
Dynamic Effective Resistances

and Approximate Schur
Complement on Separable

Graphs

We consider the problem of dynamically maintaining (approximate) all-pairs effec-
tive resistances in separable graphs, which are those that admit an nc-separator
theorem for some c < 1. We give a fully dynamic algorithm that maintains (1+ ε)-
approximations of the all-pairs effective resistances of an n-vertex graph G under-
going edge insertions and deletions with Õ(

√
n/ε2) worst-case update time and

Õ(
√
n/ε2) worst-case query time, if G is guaranteed to be

√
n-separable (i.e., it

is taken from a class satisfying a
√
n-separator theorem) and its separator can be

computed in Õ(n) time. Our algorithm is built upon a dynamic algorithm for main-
taining approximate Schur complement that approximately preserves pairwise effec-
tive resistances among a set of terminals for separable graphs, which might be of
independent interest.

We complement our result by proving that for any two fixed vertices s and t,
no incremental or decremental algorithm can maintain the s− t effective resistance
for
√
n-separable graphs with worst-case update time O(n1/2−δ) and query time

O(n1−δ) for any δ > 0, unless the Online Matrix Vector Multiplication (OMv) con-
jecture is false.

We further show that for general graphs, no incremental or decremental algo-
rithm can maintain the s − t effective resistance problem with worst-case update
time O(n1−δ) and query-time O(n2−δ) for any δ > 0, unless the OMv conjecture
is false.

15

16 CHAPTER 2. DYNAMIC SCHUR COMPLEMENT ON SEPERABLE GRAPHS

2.1 Introduction

Effective resistances and the closely related electrical flows are basic concepts for
resistor networks [86] and were found to be very useful in the design of graph
algorithms, e.g., for computing and approximating maximum flow [70, 187, 189],
random spanning tree generation [190, 227], multicommodity flow [160], oblivious
routing [126], and graph sparsification [83, 235]. They also have found applications
in social network analysis, e.g., for measuring the similarity of vertices in social
networks [182], in machine learning, e.g., for Gaussian sampling [66] and in chem-
istry, e.g., for measuring chemical distances [165]. Previous research has studied the
problem of how to quickly compute and approximate the effective resistances (or
equivalently, energies of electrical flows), as such algorithms can be used as a crucial
subroutine for other graph algorithms. For example, one can (1 + ε)-approximate
the s− t effective resistance in Õ(m+nε−2) [88] and Õ(m log(1/ε)) [74] time, re-
spectively, in any n-vertexm-edge weighted graph, for any two vertices s, t. There
are also algorithms that find (1 + ε)-approximations to the effective resistance be-
tween every pair of vertices in Õ(n2/ε) time [144]. In order to exactly compute
the s − t (or single-pair) and all-pairs effective resistance(s), the current fastest al-
gorithms run in times O(nω) (by using the fastest matrix inversion algorithm [57,
141]) and O(n2+ω), respectively, where ω < 2.373 is the matrix multiplication ex-
ponent [257]. In planar graphs, the algorithms for exactly computing s− t and all-
pairs effective resistance(s) run in times O(nω/2) (by the nested dissection method
for solving linear system in planar graphs [185]) and O(n2+ω/2), respectively.

A natural algorithmic question is how to efficiently maintain the effective resis-
tances dynamically, i.e., if the graph undergoes edge insertions and/or deletions, and
the goal is to support the update operations and query for the effective resistances
as quickly as possible, rather than having to recompute it from scratch each time.
Besides the potential applications in the design of other (dynamic) algorithms, it is
also of practical interest, e.g., to quickly report the (dis)similarity between any two
nodes in a social network in which its members and their relationship are constantly
changing. So far our understanding towards this question is very limited: for exact
maintenance, the only approach (for single-pair effective resistance) we are aware
of is to invoke the dynamic matrix inversion algorithm which gives O(n1.575) up-
date time and O(n0.575) query time or O(n1.495) update time and O(n1.495) query
time [223]; for (1 + ε)-approximate maintenance, we can maintain the spectral
sparsifier of size n poly(log n, ε−1) with poly(log n, ε−1) update time [12], while
answering each query will cost Θ(n poly(log n, ε−1)) time.

In this chapter, we study the problem of dynamically maintaining the (approxi-
mate) effective resistances in separable graphs, which are those that satisfies an nc-
separator theorem for some c < 1. Interesting classes of separable graphs include
planar graphs, minor free graphs, bounded-genus graphs, almost planar graphs (e.g.,
road networks) [184], most 3-dimensional meshes [196] and many real-world net-
works (e.g., phone-call graphs, Web graphs, Internet router graphs) [50]. In the
static setting, effective resistances (or electrical flows) in planar/separable graphs

2.1. INTRODUCTION 17

have been utilized by Miller and Peng [194] to obtain the first Õ(m
6/5

εΘ(1)) time algo-
rithm for approximate maximum flow in such graphs, and have also been studied
by Anari and Oveis Gharan [21] in the analysis of an approximation algorithm for
Asymmetric TSP. We now give the necessary definitions to state our results.

Effective Resistances. Let G = (V,E,w) be a undirected weighted graph with
w(e) > 0 for any e ∈ E. LetA denote its weighted adjacency matrix andD denote
the weighted degree diagonal matrix. Let L = D−A denote the Laplacian matrix
of G. Let L† denote the Moore-Penrose pseudo-inverse of the Laplacian of G. Let
1u ∈ RV denote the indicator vector of vertex u such that 1u(v) = 1 if v = u and 0
otherwise. Let χs,t = 1s − 1t. Given any two vertices u, v ∈ V , the s− t effective
resistance is defined as RG

eff(s, t) := χ⊤
s,tL

†χs,t.

Separable graphs. Let C be a class of graphs that is closed under taking sub-
graphs. We say that C satisfies a f(n)-separator theorem if there are constants α < 1
and β > 0 such that every graph in S with n vertices has a cut set with at most
βf(n) vertices that separates the graph into components with at most αn vertices
each [184]. In this chapter we are particularly interested in the class of graphs that
satisfies an n1/2-separator theorem, which include the class of planar graphs, Kt-
minor free graphs and bounded-genus graphs, etc., though our approach can also be
generalized to other class of graphs that satisfies a nc-separator theorem, for some
c < 1. In the following, we call a graph f(n)-separable if it is a member of a class
that satisfies an f(n)-separator theorem.

We would like to quickly maintain the exact or a good approximation of the
s − t effective resistances in a

√
n-separable graph that undergoes edge insertions

and deletions, for all pairs s, t ∈ V . We call this the dynamic all-pairs effective
resistances problem. Our goal is to solve this problem with both small update and
query times. More precisely, our data structure supports the following operations.

• Insert(u, v, w): Insert the edge (u, v) of weight w to G, provided that the
updated graph remains

√
n-separable.

• Delete(u, v): Delete the edge (u, v) from G.
• EffectiveResistance(s, t): Return the exact or approximate value of the ef-
fective resistance between s and t in the current graph G.

We remark that our algorithm can be extended to handle operations In-
crease(u, v,∆) and Decrease(u, v,∆) that increases and decreases the weight of
any existing edge (u, v) by ∆, respectively, as one can simply delete the edge first
and then insert it again with the corresponding new weight. For our lower bound,
we will consider the incremental (or decremental) s− t effective resistance problem,
that is, s, t are two vertices fixed at the beginning, and only operations Insert &
Decrease (or Delete & Increase) and EffectiveResistance are allowed. The ba-
sic idea is that in the incremental (or decremental) setting, the effective resistances

18 CHAPTER 2. DYNAMIC SCHUR COMPLEMENT ON SEPERABLE GRAPHS

are monotonically decreasing (or increasing) (see e.g., [70]). For any ε ∈ (0, 1),
we say that an algorithm is a (1 + ε)-approximation to RG

eff(s, t) if EffectiveRe-
sistance(s, t) returns a positive number k such that (1 − ε) · RG

eff(s, t) ≤ k ≤
(1 + ε)RG

eff(s, t).

2.1.1 Our Results

We give a fully dynamic algorithm for maintaining (1 + ε)-approximations of all-
pairs and single-pair effective resistance(s) with small update and query times for
any
√
n-separable graph, if its separator can be computed fast. Throughout, all the

running times of our algorithms are measured in worst-case performance. All our
algorithms are randomized, and the performance guarantees hold with probability
at least 1− n−c for some c ≥ 1. Specifically, we show the following theorem.

Theorem 2.1.1. Let G denote a dynamic n-vertex graph under edge insertions and
deletions. Assume that G is

√
n-separable and its separator can be computed in s(n)

time, throughout the updates. There exist fully dynamic algorithms that maintain
(1 + ε)-approximations of

• the all-pairs effective resistances with Õ(
√
n

ε2
+ s(n)√

n
) update time and Õ(

√
n

ε2
)

query time;

• the s − t effective resistance with Õ(
√
n

ε2
+ s(n)√

n
) update time and O(1) query

time.

In particular, if s(n) = Õ(n), then our update times are Õ(
√
n

ε2
).

By using the well known facts that a balanced separator of size O(
√
n) for pla-

nar graphs (and bounded-genus graphs) can be computed in O(n) time [184], and
for Kt-minor-free graphs (for any fixed integer t > 0) in O(n1+δ) time, for any
constant δ > 0 [156], we obtain dynamic algorithms for the effective resistances
for planar and minor-free graphs with Õ(

√
n/ε2) and Õ(

√
n/ε2 + n1/2+δ) update

time, respectively.
The performance of our dynamic algorithm in planar graphs almost matches

the best-known dynamic algorithm for (1 + ε)-approximate all-pairs shortest path
in planar graphs with Õ(

√
n) update and query time [9], though our approaches

are different. This is interesting as the shortest path corresponds to flows with
controlled ℓ1 norm while the energy of electrical flows (i.e., effective resistance)
corresponds to those with minimum ℓ2 norm.

In order to design a dynamic algorithm for effective resistances of separable
graphs (i.e., to prove Theorem 2.1.1), we give a fully dynamic algorithm that effi-
ciently maintains an approximate Schur complement [88, 174, 176] of such graphs
(see Section 2.4.1), which might be of independent interest. Approximate Schur
complement can be treated as a vertex sparsifier that preserves pairwise effective
resistances among a set of terminals (see Section 2.3). Therefore, our algorithm is
a dynamic algorithm for vertex effective resistance sparsifiers with sublinear (in n)

2.1. INTRODUCTION 19

update time for separable graphs. The problem of dynamically maintaining graph
edge sparsifiers has received attention very recently. For example, Abraham et al.
presented fully dynamic algorithms that maintain cut and spectral sparsifiers with
poly-logarithmic update times [12]. Formally, we prove the following theorem.

Theorem 2.1.2. For an n-vertex
√
n-separable graph G whose separator can be com-

puted in s(n) time, and a terminal set K ⊆ V with |K| ≤ O(
√
n), there ex-

ists a fully dynamic algorithm that maintains a (1 + δ)-approximate Schur comple-
ment with respect to K ′ such that K ⊆ K ′ and |K ′| = O(

√
n), while achieving

Õ(
√
n/δ2 + s(n)√

n
) update time. Furthermore, our algorithm supports terminal addi-

tions as long as |K| ≤ O(
√
n).

We complement our algorithm by giving a conditional lower bound for any in-
cremental or decremental algorithm that maintains single-pair effective resistance
of a
√
n-separable graph. Our lower bound is established from the Online Matrix

Vector Multiplication (OMv) conjecture (see Section 2.2).

Theorem 2.1.3. No incremental or decremental algorithm can maintain the (exact)
s − t effective resistance in

√
n-separable graphs on n vertices with both O(n

1
2
−δ)

worst-case update time and O(n1−δ) worst-case query time for any δ > 0, unless the
OMv conjecture is false.

We note that there are very few conditional lower bounds for dynamic pla-
nar/separable graphs, as most known reductions are highly non-planar. The only
recent result that we are aware of is by Abboud and Dahlgaard [4], who showed
that under some popular conjecture, no algorithm for dynamic shortest paths or
maximum weight bipartite matching in planar graphs has both updates and queries
in amortized O(n1/2−δ) time, for any δ > 0.

We also give a stronger conditional lower bound for the same problem in gen-
eral graphs, which shows that it is hard to maintain effective resistances with both
sublinear (in n) update and query times for general graphs, even for the incremental
or decremental setting.

Theorem 2.1.4. No incremental or decremental algorithm can maintain the (exact)
s − t effective resistance in general graphs on n vertices with both O(n1−δ) worst-
case update time and O(n2−δ) worst-case query time for any δ > 0, unless the OMv
conjecture is false.

We remark that both lower bounds for separable and general graphs hold for
any algorithm with sufficiently high accurate approximation ratio, and both lower
bounds for incremental algorithms hold even if only edge insertions are allowed
(see Section 2.5).

20 CHAPTER 2. DYNAMIC SCHUR COMPLEMENT ON SEPERABLE GRAPHS

Comparison to [115] In our previous work [115], we gave a fully dynamic al-
gorithm for (1 + ε)-approximating all-pairs effective resistances for planar graphs
with Õ(r/ε2) update time and Õ((r+n/

√
r)/ε2) query time, for any r larger than

some constant. The algorithm can also be generalized to
√
n-separable graphs, and

we also provided a conditioned lower bound for any approximation algorithm of the
s− t effective resistance in general graphs in the vertex-update model. However, be-
sides the apparent improvement of the performance of the dynamic algorithm (i.e.,
we reduce the best trade off between update time and query time from Õ(n2/3) and
Õ(n2/3) to Õ(n1/2) and Õ(n1/2)), our current work also improves over and differs
from [115] in the following perspectives.

• Our algorithm dynamically maintains the approximate Schur complement of
a separable graphs by maintaining a separator tree of such graphs, rather
than their r-divisions as used in [115]. In fact, we do not believe purely r-
divisions based algorithms will achieve the performance as guaranteed by
our new algorithm. This is evidenced by previous dynamic algorithms for
maintaining reachability in directed planar graphs by Subramanian [240], (1+
ε)-approximating to all-pairs shortest paths by Klein and Subramanian [166],
exactly maintaining s − t max-flow in planar graphs by Italiano et al. [143],
all of which are based on r-divisions and have running times of order n2/3
(and some of which have been improved by using other approaches).

• Our current lower bound is much stronger than the previous one: the previ-
ous lower bound only holds for general graphs and the vertex-update model,
where nodes, not edges, are turned on or off, and its proof was based on
a simple relation between s − t connectivity and s − t effective resistance
RG

eff(s, t) (i.e., if s, t is connected iff RG
eff(s, t) is not infinity). In contrast, our

new lower bounds hold for separable graphs (and also general graphs) and the
edge-update model. The corresponding proofs exploit new reductions from
the OMv problem to the 5-length cycle detection and triangle detection prob-
lems in separable graphs and general graphs, respectively, which might be
of independent interest, and the latter problems are related to the effective
resistances (see Section 2.5.1).

2.1.2 Our Techniques

Our dynamic algorithm for maintaining an Approximate Schur complement (ASC)
w.r.t. a set of terminals for separable graphs is built upon maintaining a separa-
tor tree of such graphs and two properties (called transitivity and composability) of
ASCs. Such a tree can be constructed very efficiently by recursively partitioning
the subgraphs using separators. Slightly more formally, each node in the tree cor-
responds to a subgraph of the original graph and contains a subset of vertices as its
boundary vertices which in turn are treated as terminals. For each nodeH , we will
maintain an ASC H ′ of H w.r.t its terminals. We will guarantee throughout all the
updates that the ASC of any node can be computed efficiently in a bottom-up fash-

2.1. INTRODUCTION 21

ion, by the above two properties of ASCs. This stems from the fact that we only need
to recompute the ASCs of nodes that lie on a path from a constant number leaves
to the node of interest. Since each such path has length O(log n) and the recompu-
tation of ASC of one node takes time Õ(

√
n), the update time will be guaranteed

to be Õ(
√
n). For the detailed implementation, we need to overcome the difficulty

that the error in the approximation ratio might accumulate through this recursive
computation and an update might require to change the set of boundary vertices of
many nodes, thus resulting in a prohibitive running time. We remark that though
the idea of using separator tree of planar/separable graphs is standard (e.g., [97]), the
main novelty of our algorithm is to use such a tree as the backbone to dynamically
maintain the approximate Schur complement.

To obtain our dynamic algorithms for all-pairs effective resistance, we appropri-
ately declare and add new terminals whenever we get a new query, and then run
the above dynamic algorithm for ASC with respect to the corresponding terminal
set.

To obtain our lower bound, we provide new reductions from the Online Boolean
Matrix-Vector Multiplication (OMv) problem to the incremental or decremental
single-source effective resistance problem. More specifically, given an OMv in-
stance with vectors u,v and a matrix M, we construct a

√
n-separable graph G

such that uMv = 1 if and only if there exists a cycle of length 5 incident to some
vertex t inG. This 5-length cycle detection problem in turn can be solved by inspect-
ing the diagonal entry corresponding to t of the inverse of a matrix that is defined
from G. Furthermore, the diagonal entry of this matrix is inherently related to the
effective resistance [198]. By appropriately dynamizing the graph G and using the
time bounds for the OMv problem from the conjecture, we get the conditional lower
bound for separable graphs.

For general graphs, the lower bound is proved in a similar way, except that
the constructed graph is different and we instead use a relation between effective
resistance and triangle detection problem. That is, we first reduce the OMv problem
to the t-triangle detection problem such that the OMv instance satisfies uMv = 1 if
and only if there exists a triangle incident to some vertex t in the constructedG. The
latter problem can again be solved by checking the diagonal entry corresponding to
t of some matrix, which in turn encodes the effective resistance of between t and a
properly specified vertex s.

Other Related Work. Previous work on dynamic algorithms for planar or plane
graphs include: shortest paths [9, 143, 166], s− t min-cuts/max-flows [143], reach-
ability in directed graphs [81, 142, 240], (k-edge) connected components [97, 137],
the best swap and the minimum spanning forest [97]. There also exist work on
dynamic algorithms for

√
n-separable graphs, e.g., on transitive closure and (1+ε)-

approximation of all-pairs shortest paths [148].
It is interesting to note that for the (simpler) offline dynamic effective resis-

tance problems, i.e., the sequence of updates and queries are given as an input, Li et

22 CHAPTER 2. DYNAMIC SCHUR COMPLEMENT ON SEPERABLE GRAPHS

al. [181] recently gave an incremental algorithmwithO(poly logn
ε2

) amortized update
and query time for general graphs.

2.2 Preliminaries

Let G = (V,E,w) be an undirected weighted graph such that w(e) > 0 for any
e ∈ E. We fix an arbitrary orientation of edges and treatG as a resistor network such
that each edge e ∈ E represents a resistor with resistance r(e) := 1/w(e). For any
vertex pair s, t, the s− t flow is a function f : E → R+ satisfying the conservation
condition, i.e., for any vertex v ∈ V \{s, t},

∑
u:(u,v)∈E f(u, v) =

∑
u:(v,u)∈E f(v, u).

The energy of an s − t flow is defined as EG(f , s, t) :=
∑

e∈E r(e)f(e)2. The s − t
electrical flow f∗ is defined as the s − t flow that minimizes the energy EG(f , s, t)
among all s − t flows f with unit flow value, i.e.,

∑
v∈V f(s, v) = 1. Let EG(s, t)

denote the energy of the s − t electrical flow, that is, EG(s, t) := EG(f∗, s, t). An
electrical flow f naturally corresponds to a potential ϕ in the sense thatwe can assign
each vertex u a potential ϕ(u) such that for any e = (u, v), f(e) = ϕ(u)−ϕ(v)

r(e) .
It is well known that the s − t effective resistance RG

eff(s, t) as defined in Sec-
tion 2.1 satisfies that RG

eff(s, t) = ϕ(s) − ϕ(t), which is the potential difference
between s, t when we send one unit of the (unique) s − t electrical flow from s to
t. Furthermore, it holds that for any s, t, the energy of the s − t electrical flow is
equivalent to the s − t effective resistance, that is, EG(s, t) = RG

eff(s, t) (see e.g.,
[86]). In the following, we will mainly focus on how to dynamically maintain (ap-
proximation of) effective resistance RG

eff(s, t).

Properties of Separable Graphs. LetG = (V,E) be a sparse,O(
√
n)-separable

graph. For an edge-induced subgraphH ofG, any vertex that is incident to vertices
not inH is called a boundary vertex. We let ∂(H) denote the set of boundary vertices
belonging to H . All other vertices incident to edges from only H will be called
interior vertices of H .

A hierarchical decomposition of G is obtained by recursively partitioning the
graph using separators into edge-disjoint subgraphs (called regions), where the re-
moval of each separator partitions the subgraph into two two edge-disjoint sub-
graph. This decomposition is represented by a binary (decomposition) tree T (G),
which we refer to as a separator tree of G. For any subgraph H of G, we use
H ∈ T (G) to denote thatH is a node of T (G) (to avoid confusion with the vertices
of G, we refer to the vertices of T (G) as nodes). The height η(H) of a node is the
number of edges in the longest path between that node and a leaf. In addition, let
S(H) denote a balanced separator of the subgraphH . Formally, T (G) satisfies the
following properties:

1. The root node of T (G) is the graph G.

2.2. PRELIMINARIES 23

2. A non-leaf node H ∈ T (G) has exactly two children c1(H), c2(H) and
a balanced separator S(H) such that c1(H) ∪ c2(H) = H , V (c1(H)) ∩
V (c2(H)) = S(H) and E(c1(H)) ∩ E(c2(H)) = ∅.

3. For a nodeH ∈ T (G), the set of boundary vertices ∂(H) ⊆ V (H) is defined
recursively as follows:

• If H is the root of T (G), i.e., H = G, then ∂(G) = S(G).
• Otherwise, ∂(H) = S(H) ∪ (∂(P) ∩ V (H)), where P is the parent of
H in T (G).

4. For each nodeH ∈ T (G) and its children c1(H), c2(H), we have ∂(c1(H))∪
∂(c2(H)) ⊇ ∂(H).

5. The number of boundary vertices per nodeH ∈ T (G), i.e., |∂(H)|, is bounded
by O(

√
n).

6. There areO(
√
n) leaf subgraphs in T (G), each having at mostO(

√
n) edges.

7. The height of the tree T (G) is O(log n), i.e., η(G) = O(log n).
8. Each edge e ∈ E is contained in a unique leaf subgraph of T (G).

The lemma below shows that a separator tree can be constructed with an ad-
ditional log n factor overhead in the running time for computing a separator. We
include its proof here for the sake of completeness.

Lemma 2.2.1. Let G = (V,E) be a O(
√
n)-separable graph whose balanced sepa-

rator can be computed in s(n) time. There is an algorithm that computes a separator
tree T (G) in O(s(n) log n) time.

Proof. For some constant c ≥ 1, let S(G) be a α-balanced separator of size c
√
n,

where α = 2/3. First, we let G be the root node of T (G). Let G1 and G2 be
the two disjoint components of G obtained after the removal of the vertices in S.
We define the children c1(G), c2(G) of G as follows: V (ci(G)) = V (Gi) ∪ S(G),
E(ci(G)) = E(Gi), for i = 1, 2, and whenever an edge connects two vertices in
S(G), we arbitrarily append it to either E(c1(G)) or E(c2(G)). By construction,
property (2) in the definition of T (G) holds. We continue by repeatedly splitting
each child ci(G) in the sameway aswe did forG, until there areO(

√
n) components,

each of sizeO(
√
n). The components at this level form the leaf nodes of T (G). Note

that the height of T (G) is bounded by O(log n) as the size of any child of a node
H is at most 2/3 fraction of the size of H .

We define the boundary vertices for each node in T (G) according to property
(3) in the definition of separator trees. To get the bound on the number of boundary
vertices per node H ∈ T (G), note that the size of ∂(H) is bounded byc · O(logn)∑

i=0

√
(2/3)i

√n = O(
√
n).

24 CHAPTER 2. DYNAMIC SCHUR COMPLEMENT ON SEPERABLE GRAPHS

Finally, let t(n) be the maximum time required to construct the separator tree
of a O(

√
n)-separable graph with n vertices. Then, for some suitably chosen n0,

t(n) ≤

{
s(n) + max{t(n1) + t(n2)} if n > n0,

0 if n ≤ n0,

where the maximum is over n1, n2 such that

n ≤ n1 + n2 ≤ n+ 2c
√
n, and 1

3
n ≤ ni ≤

2

3
n+ c

√
n for i = 1, 2.

By a similar analysis as the proof of Theorem 1 of [97], we can guarantee that
t(n) ≤ O(s(n) log n).

The OMv Conjecture. Our lower bound will be built upon the following OMv
problem and conjecture.

Definition 2.2.2. In the Online Boolean Matrix-Vector Multiplication (OMv) problem,
we are given an integer n and an n × n Boolean matrix M. Then at each step i for
1 ≤ i ≤ n, we are given an n-dimensional column vector vi, and we should compute
Mvi and output the resulting vector before we proceed to the next round.

Conjecture 2.2.3 (OMv conjecture [135]). For any constant ε > 0, there is no
O(n3−ε)-time algorithm that solves OMv with error probability at most 1/3.

We will work on a related problem which is called the uMv problem.

Definition 2.2.4. In theuMv problemwith parameters n1, n2, we are given amatrix
M of size n1 × n2 which can be preprocessed. After preprocessing, a vector pair u,v
is presented, and our goal is to compute u⊤Mv.

Theorem 2.2.5 ([135]). Unless the OMv conjecture 2.2.3 is false, there is no algorithm
for the uMv problem with parameters n1, n2 using polynomial preprocessing time
and computation time O(n1−δ

1 n2 + n1n
1−δ
2) that has an error probability at most

1/3, for some constant δ.

Spectral and Resistance Sparsifiers. Belowwe present two notion of edge spar-
sifiers. The first requires that the quadratic form of the original and sparsified graph
are close. The second requires that all-pairs effective resistances of the correspond-
ing graphs are close.

Definition 2.2.6 (Spectral Sparsifier). Given a graphG = (V,E,w) and ε ∈ (0, 1),
we say that a subgraph H = (V,EH ,wH) is an (1± ε)-spectral sparsifier of G if

∀x ∈ Rn, (1− ε)x⊤LGx ≤ x⊤LHx ≤ (1 + ε)x⊤LGx.

2.2. PRELIMINARIES 25

Definition 2.2.7 (Resistance Sparsifier). Given a graph G = (V,E,w) and ε ∈
(0, 1), we say that a subgraphH = (V,EH ,wH) is an (1± ε)-resistance sparsifier of
G if

∀u, v ∈ V, (1− ε)RG
eff(u, v) ≤ RH

eff(u, v) ≤ (1 + ε)RG
eff(u, v).

The following lemma shows that Definition 2.2.6 is equivalent to approximating
the pseudoinverse Laplacians. We include its proof here for the sake of complete-
ness.

Lemma 2.2.8. Assume G is connected. Then the following statements are equivalent:

1. ∀x ∈ Rn, (1− ε)x⊤LGx ≤ x⊤LHx ≤ (1 + ε)x⊤LGx.

2. ∀x ∈ Rn,
1

(1 + ε)
x⊤L†

Gx ≤ x⊤L†
Hx ≤ 1

(1− ε)
x⊤L†

Gx.

Proof of Lemma 2.2.8. Since LG is symmetric we can diagonalize it and write

LG =
n−1∑
i=1

λGi uiu
⊤
i ,

where λG1 ≥ . . . ≥ λGn−1 are the non-zero sorted eigenvalues of LG and
u1, . . . ,un−1 are a corresponding set of orthonormal eigenvectors. The Moore-
Penrose Pseudoinverse of LG is then defined as

L†
G =

n−1∑
i=1

1

λGi
uiu

⊤
i .

We next show that for every x ∈ Rn, (1−ε)x⊤LGx ≤ x⊤LHx is equivalent to
x⊤L†

Hx ≤ 1
(1−ε)x

⊤L†
Gx. The other equivalence can be shown in a symmetric way.

For every x ∈ Rn, by definition of LG and LH we have

(1− ε)x⊤LGx ≤ x⊤LHx⇐⇒ (1− ε)
n−1∑
i=1

λGi (u
⊤
i x)

2 ≤
n−1∑
i=1

λHi (u⊤
i x)

2.

We next show that

∀x ∈ Rn, (1− ε)
n−1∑
i=1

λGi (u
⊤
i x)

2 ≤
n−1∑
i=1

λHi (u⊤
i x)

2

⇐⇒ (1− ε)λGi ≤ λHi , ∀i = 1, . . . , n− 1.

(2.1)

Since for every x ∈ Rn, (u⊤
i x)

2 ≥ 0, i = 1, . . . , n − 1, the if-direction of the
equivalence in (2.1) follows immediately. For the only-if direction, we proceed by
contraposition. To this end, assume that there exists some i ∈ {1, . . . , n− 1} such
that (1− ε)λGi > λHi . Then there exists a vector x = ui ∈ Rn such that

(1− ε)
n−1∑
i=1

λGi (u
⊤
i x)

2 = (1− ε)λGi > λHi =
n−1∑
i=1

λHi (u⊤
i x)

2,

26 CHAPTER 2. DYNAMIC SCHUR COMPLEMENT ON SEPERABLE GRAPHS

where the first and last inequality follow from the fact that ui’s are orthonormal
eigenvectors, i.e., u⊤

i ui = 1 and u⊤
i uj = 0, ∀i ̸= j. This gives a contradiction and

thus proves the only-if direction. Now, for every x ∈ Rn we have

(1− ε)x⊤LGx ≤ x⊤LHx⇐⇒ (1− ε)λGi ≤ λHi , ∀i = 1, . . . , n− 1

⇐⇒ 1

λHi
≤ 1

(1− ε)
· 1

λGi
, ∀i = 1, . . . , n− 1

⇐⇒
n−1∑
i=1

1

λHi
(u⊤

i x)
2 ≤ 1

(1− ε)

n−1∑
i=1

1

λGi
(u⊤

i x)
2

⇐⇒ x⊤L†
Hx ≤ 1

(1− ε)
x⊤L†

Gx,

where the penultimate equivalence can be proven in a similar way to equivalence
in (2.1).

In our algorithm we use the following observations: (1) Since, by definition, the
effective resistance between any two nodes u and v is the quadratic form defined by
the pseudo-inverse of the Laplacian computed at the vector 1s−1t, i.e.,RG

eff(u, v) =
(1s−1t)⊤L†(1s−1t), it follows that the effective resistances between any two nodes
in G andH are the same up to a 1/(1± ε) factor. By definitions for resistance and
spectral sparsifiers, and Lemma 2.2.8 we have the following fact.

Fact 2.2.9. Let ε ∈ (0, 1) and letG be a graph. Then every (1± ε)-spectral sparsifier
of G is an 1/(1± ε)-resistance sparsifier of G.

(2) The lemma below suggests that given a graph, by decomposing the graph
into several pieces and computing a good sparsifier for each piece, one can obtain
a good sparsifier for the original graph which is the union of the sparsifiers for all
pieces.

Lemma 2.2.10 ([12], Lemma 4.18). Let G = (V,E,w) be a weighted graph whose
set of edges is partitioned into E1, . . . , Eℓ. Let Hi be a (1 ± ε)-spectral sparsifier of
Gi = (V,Ei), where i = 1, . . . , ℓ. Then H =

∪ℓ
i=1Hi is a (1± ε)-spectral sparsifier

of G.

Schur Complement and Approximate Schur Complement. For a given con-
nected graph G = (V,E) and a set K ⊂ V of terminals with 1 ≤ |K| ≤ |V | − 1,
let F = V \K be the set of non-terminal vertices in G. The partition of V into F
andK naturally induces the following partition of the Laplacian LG into blocks:

LG =

[
L[F,F] L[F,K]

L[K,F] L[K,K]

]
We remark that since G is connected and F and K are non-empty, one can show
that L[F,F] is invertible. We have the following definition of Schur complement.

2.3. USEFUL PROPERTIES OF APPROXIMATE SCHUR COMPLEMENT 27

Definition 2.2.11 (Schur Complement). The (unique) Schur complement of a graph
Laplacian LG with respect to a terminal setK is

SC(G,K) := L[K,K] − L[K,F]L
−1
[F,F]L[F,K].

It is well known that the matrix SC(G,K) is a Laplacian matrix for some graph
G′.

Definition 2.2.12 (Approximate Schur Complement (ASC)). Given a graph G =
(V,E,w), K ⊂ V and its Schur complement SC(G,K), we say that a graph H =
(K,EH ,wH) is a (1 ± ε)-approximate Schur complement (abbr. (1 ± ε)-ASC) of G
with respect toK if

∀x ∈ Rk, (1− ε)x⊤SC(G,K)x ≤ x⊤LHx ≤ (1 + ε)x⊤SC(G,K)x.

Moreover, we say that H is an 1-ASC of G with respect toK if LH = SC(G,K).

Note that (1±ε)-ASC is a spectral sparsifier of Schur complement. Furthermore,
approximate Schur complement can be computed efficiently as guaranteed in the
following lemma [88].

Lemma 2.2.13. Fix ε ∈ (0, 1/2) and γ ∈ (0, 1), and let G = (V,E,w) be a graph
with K ⊂ V and |K| = k. There is an algorithm ApproxSchur(G,K, ε, δ) that
computes a (1± ε)-ASCH of G with respect toK such that the following statements
hold probability at least 1− γ:

1. The graph H has O(kε−2 log(n/γ)) edges.

2. The total running time for computingH is Õ(m log3(n/γ)+nε−2 log4(n/γ)).

2.3 Useful Properties of Approximate Schur
Complement

In this section we show that Approximate Schur complement can be treated as a
vertex effective resistance sparsifier, which is a small graph that (approximately)
preserves the pairwise effective resistances among terminal vertices of the original
graph. Thenwe show two important properties called transitivity and composability
properties of ASCs, which will be exploited in our dynamic algorithms for ASCs and
effective resistances.

ASC as Vertex Resistance Sparsifier. To maintain all-pairs effective resistances
efficiently, it will be useful to consider the following notion of vertex sparsifier that
preserves pairwise effective resistances among a set of terminals.

Definition 2.3.1 (Vertex Resistance Sparsifier (VRS)). Given a graphG = (V,E,w)
withK ⊂ V , we say that a graph H = (K,EH ,wH) is an (1± ε)-vertex resistance
sparsifier (abbr. (1± ε)-VRS) of G with respect toK if

∀s, t ∈ K, (1− ε)RG
eff(s, t) ≤ RH

eff(s, t) ≤ (1 + ε)RG
eff(s, t).

28 CHAPTER 2. DYNAMIC SCHUR COMPLEMENT ON SEPERABLE GRAPHS

We show that ASC can be treated as a vertex resitance sparsifier. For this, we re-
call the following lemmawhich shows that the quadratic form of the pseudo-inverse
of the Laplacian L is preserved by taking the quadratic form of the pseudo-inverse
of its Schur complement, for demand vectors supported on the terminals.

Lemma 2.3.2 ([194], Lemma 5.1). Let b be a demand vector of a graph G whose
vertices are partitioned into terminalsK , and non-terminalsF such that only terminals
have non-zero entries in b. Let bK be the restriction of b on the terminals and let
SC(G,K) be the Schur complement of LG with respect toK . Then

b⊤L†
Gb = b⊤

KSC(G,K)†bK .

Using interchangeability between graphs and their Laplacians, we can interpret
the above result in terms of graphs as well. The lemma below relates ASCs and
vertex resistance sparsifiers. We include its proof here for the sake of completeness.

Lemma 2.3.3. Let G = (V,E,w) be a graph withK ⊂ V . If H is an (1± ε)-ASC
of G with respect toK , then H is an 1/(1± ε)-VRS of G with respect toK .

Proof. Let k = |K|. First, note that by Definition 2.2.12 and Lemma 2.2.8 we have

∀x ∈ Rk,
1

(1 + ε)
x⊤SC(G,K)†x ≤ x⊤LH

†x ≤ 1

(1− ε)
x⊤SC(G,K)†x.

Next, let (s, t) ∈ K be any terminal pair. Consider the demand vector χs,t ∈
Rk and extend this vector to χ′

s,t =
[
0 χs,t

]⊤ ∈ Rn. By definition of effective
resistance and Lemma 2.3.2 we get that

RH
eff(s, t) = χ⊤

s,tLH
†χs,t ≤

1

(1− ε)
χ⊤
s,tSC(G,K)†χs,t

=
1

(1− ε)
χ′⊤
s,tL

†
Gχ

′
s,t =

1

(1− ε)
RG

eff(s, t).

For the lower-bound on RH
eff(s, t), using the same reasoning, we get that

RH
eff(s, t) = χ⊤

s,tLH
†χs,t ≥

1

(1 + ε)
χ⊤
s,tSC(G,K)†χs,t

=
1

(1 + ε)
χ′⊤
s,tL

†
Gχ

′
s,t =

1

(1 + ε)
RG

eff(s, t).

Transitivity and Composability of ASCs. In the following, we show a transi-
tivity property of ASCs and then show how the ASCs of two neighboring nodes of
the separator tree T (G) can be combined to give the ASC of their parent (called
composability), which will enable us to compute the ASCs of all nodes of T (G) in a
bottom-up fashion.

2.3. USEFUL PROPERTIES OF APPROXIMATE SCHUR COMPLEMENT 29

Transitivity of ASCs. To show the transitivity property the ASCs, we will use
the following lemma which establishes the connection between the Schur comple-
ment and the Laplacian of the original graph.

Lemma 2.3.4 ([194], Lemma B.2). Let LG be the Laplacian of G and let SC(G,K)
be its Schur complement. For any x ∈ Rk the following holds

x⊤SC(G,K)x = min
y

[
y
x

]⊤
LG

[
y
x

]
.

We are now ready to show the following transitive property of ASCs.

Lemma 2.3.5 (Transitivity of ASCs). If H ′ is an (1 ± ε)-ASC of G with respect to
K ′, and H is an (1 ± ε)-ASC of H ′ with respect to K , where K ′ ⊇ K , then H is an
(1± ε)2-ASC of G with respect toK .

Proof. Let k = |K| and k′ = |K ′|. By the assumption of the lemma, the following
inequalities hold:

∀x ∈ Rk′ , (1− ε)x⊤SC(G,K ′)x ≤ x⊤LH′x ≤ (1 + ε)x⊤SC(G,K ′)x,

and

∀x ∈ Rk, (1− ε)x⊤SC(H ′,K)x ≤ x⊤LHx ≤ (1 + ε)x⊤SC(H ′,K)x.

We need to show that

∀x ∈ Rk, (1− ε)2x⊤SC(G,K)x ≤ x⊤LHx ≤ (1 + ε)2x⊤SC(G,K)x.

We first show the upper bound on x⊤LHx. Note that since K ′ ⊇ K , us-
ing Gaussian elimination, SC(G,K) can be constructed by first constructing
SC(G,K ′) fromG and then constructing SC(G,K) from SC(G,K ′) using Gauss-
ian elimination. Thus SC(G,K) is the Schur complement of SC(G,K ′) with re-
spect to K . For any x ∈ Rk, let y be the vector that attains the minimum value in
Lemma 2.3.4 for SC(G,K ′). If we define x′ =

[
y x

]⊤ ∈ Rk′ , then we get

x⊤LHx ≤ (1 + ε)x⊤SC(H ′,K)x ≤ (1 + ε)x′⊤LH′x′

≤ (1 + ε)2x′⊤SC(G,K ′)x′ = (1 + ε)2x⊤SC(G,K)x.

We now give the lower bound on x⊤LHx. Recall that SC(H ′,K) is the Schur
complement of LH′ with respect to K . For any vertex x ∈ Rk, let y be the vector
given by Lemma 2.3.4 for LH′ . If we define x′′ =

[
y x

]⊤ ∈ Rk′ , then we get

x⊤LHx ≥ (1− ε)x⊤SC(H ′,K)x = (1− ε)x′′⊤LH′x′′

≥ (1− ε)2x′′⊤SC(G,K ′)x′′ ≥ (1− ε)2x⊤SC(G,K)x.

30 CHAPTER 2. DYNAMIC SCHUR COMPLEMENT ON SEPERABLE GRAPHS

Composability of ASCs. To show the composability of ASCs, we first review an
equivalent way of defining Schur complements. Themain idea is to view SC(G,K)
as a multi-graph where each multi-edge corresponds to a walk in G that starts and
ends atK , but has all intermediate vertices in V \K . We call such a walk a terminal-
free walk that starts and ends inK . Formally, a terminal-free walk

u0, . . . , uℓ

of length ℓ, with u0, uℓ ∈ K and ui ∈ V \ K , for i = 1, . . . , ℓ corresponds to a
multi-edge between u0 and uℓ in SC(G,K) with weight given by

wSC(G,K)
u0,...,uℓ

=

∏
0≤i≤ℓw(ui, ui + 1)∏

0<i<ℓ d(ui)
, (2.2)

where d(u) =
∑

v:(u,v)∈E w(u, v) denotes the weighted degree of a vertex u.
This connection is formally proven in the lemma below.

Lemma 2.3.6 ([89], Lemma 5.4). Given a graph G and a partition of its vertices
into K and V \K , the graph GK obtained by forming an union over all multi-edges
corresponding to terminal-free walks that start and end in K , with weights given by
Equation (2.2) is exactly SC(G,K).

Wenext show that if a graph can be viewed as a combination of two graphs along
some subset of shared terminals, combining the respective sparsifiers of these two
graphs in the same way gives a sparsifer for the original graph.

Formally, Let G1 = (V1, E1) and G2 = (V2, E2) be edge-disjoint graphs with
terminals K1 and K2, respectively. Furthermore, assume that all vertices in the
intersection of V1 and V2, if exist, are terminals in both graphs. That is, (V1∩V2) ⊂
Ki, for i = {1, 2}. The merge of G1 and G2 is the graph G = (V1 ∪ V2, E1 ∪ E2)
with terminals K1 ∪K2 formed by identifying the terminals in S. We denote this
operation by G := G1 ⊕G2.

Lemma 2.3.7 (Composability of Schur complement). Let G := G1 ⊕ G2. If H1 is
an 1-ASC ofG1 with respect toK1, andH2 is an 1-ASC ofG2 with respect toK2, then
H := H1 ⊕H2 is an 1-ASC of G with respect toK .

Proof. Note that Hi = SC(Gi,Ki), for i = {1, 2}, and recall that the G1 and G2

share the terminals in some non-empty subset S, i.e., S ⊂ Ki, for i = {1, 2}. To
prove the lemma, we need to show that

SC(G1,K1)⊕ SC(G2,K2) = SC(G,K).

We do so by making use of Lemma 2.3.6. More specifically, we argue that every
multi-edge (along with its corresponding weight) in SC(G,K) is contained either
in SC(G1,K1) or SC(G2,K2). We distinguish the following cases.

(1) For any two terminals t and t′ inK1 \S, we have that SC(G1,K1) contains
all the multi-edges between t and t′ in SC(G,K). This is because G1 and G2 are

2.4. DYNAMIC EFFECTIVE RESISTANCES ON SEPARABLE GRAPHS 31

edge-disjoint, and there is no terminal-free walk between t and t′ inG that does not
use a terminal in S. The same reasoning can be applied to terminal pairs inK2 \ S.

(2) For any two terminals s and t in S × K , we have that the corresponding
multi-edges in SC(G,K), are either contained in SC(G1,K1) or SC(G2,K2). If
t ∈ K1 \ S or t ∈ K2 \ S, then the same reasoning as in case (1) applies. However,
if t ∈ S, then S(G1,K1) contains all the multi-edges that correspond to terminal-
free walks between s and t that use the edges in G1, and S(G2,K2) contains all
the multi-edges that correspond to terminal-free walks between s and t that use the
edges in G2.

(3) For any two terminals t and t′ in (K1\S)×(K2\S), there is no terminal-free
walk between t and t′ in G that does not use a terminal in S, since S is a separator
of G. Thus there are no multi-edges between t and t′ in SC(G,K), so the merge
SC(G1,K1)⊕ SC(G2,K2) correctly does not add such edges.

Lemma 2.3.8 (Composition of ASCs). Let G := G1 ⊕G2. If H ′
1 is an (1± ε)-ASC

of G1 with respect to K1, and H ′
2 is an (1 ± ε)-ASC of G2 with respect to K2, then

H ′ := H ′
1 ⊕H ′

2 is an (1± ε)-ASC of G with respect toK .

Proof. First, let H1 be an 1-ASC of G1 with respect to K1, and H2 be an 1-ASC of
G2 with respect to K2. By Lemma 2.3.7, H := H1 ⊕ H2 is an 1-ASC of G with
respect to K , i.e., LH = SC(G,K). Now note that we can treat Hi and H ′

i , for
i = {1, 2} as graphs defined on the same vertex set V (H), by adding appropriate
isolated vertices. By assumption, eachH ′

i is an (1± ε)-spectral sparsifier ofHi and
thus, applying the Decomposition Lemma 2.2.10 gives that H ′ := H ′

1 ⊕ H ′
2 is an

(1± ε)-spectral sparsifier of H , or equivalently,H ′ is an (1± ε)-ASC of G.

2.4 Dynamic Effective Resistances on Separable Graphs

In this section, we first present our fully dynamic algorithm formaintaining a (1±δ)-
approximate Schur complement (i.e., prove Theorem 2.1.2) and then use it give a
dynamic algorithm for (1+ ε)-approximating all-pairs effective resistances in sepa-
rable graphs and prove Theorem 2.1.1. For simplicity, we assume that the separator
of G can be computed in Õ(n) time.

2.4.1 Dynamic Approximate Schur Complement

Let δ ∈ (0, 1). Let K ⊂ V be a set of terminals with |K| ≤ O(
√
n). We give a

data-structure for maintaining a (1 ± δ)-ASC of a O(
√
n)-separable graph G with

respect to a set K ′ of O(
√
n) vertices (which contains the terminal set K) that

supports Insert and Delete operations as defined before. In addition, it supports
the following operation:

• AddTerminal(u): Add the vertex u to the terminal set K , as long as |K| ≤
O(
√
n).

32 CHAPTER 2. DYNAMIC SCHUR COMPLEMENT ON SEPERABLE GRAPHS

Algorithm 2.1: ApproxSchurNode(H, ∂(H), δ′)

1 Set γ ← 1/n3

2 if H is a leaf then
3 Set H ′ ← ApproxSchur(H, ∂(H), δ′, γ)

4 if H is a non-leaf then
5 Let c1(H), c2(H) be the children of H
6 Let ci(H)′ be the ASC of ci(H), for i = 1, 2
7 Set R← c1(H)′ ⊕ϕ c2(H)′ and E(R)← E(R) ∪ X(H)
8 Set H ′ ← ApproxSchur(R, ∂(H), δ′, γ)

9 returnH ′

Data Structure. Throughout we compute and maintain a balanced separator
S(G) of G that contains K and satisfies that |S(G)| ≤ O(

√
n). We let K ′ = S(G)

and we will maintain a (1 ± δ)-ASC of G w.r.t. K ′. By definition of boundary
vertices, K ′ = ∂(G). Let δ′ = δ

c logn+1 for some constant c. In our dynamic algo-
rithm, we will maintain a separator tree T (G) (see Section 2.2) such that for each
node H ∈ T (G), we maintain its separator S(H) and a set X(H) of edges of H ,
which is initially empty, and an ASCH ′ ofH w.r.t. ∂(H). Throughout the updates,
the set X(H) will denote the subset of edges which are only contained in H while
contained in neither of its children. Let D(G, δ) denote such a data-structure. We
recompute D(G, δ) every Θ(

√
n) operations using the initialization below.

Initialization. We show how to efficiently compute the ASCH ′ for each nodeH
from T (G). We do this in a bottom-up fashion by first calling Algorithm 1 on each
leaf node and then on the non-leaf nodes, where ApproxSchur is the procedure
from Lemma 2.2.13.

In what follows, whenever we compute an approximate Schur complement, we
assume that procedure ApproxSchur from Lemma 2.2.13 is invoked on the corre-
sponding subgraph and its boundary vertices, with error δ′ and error probability
γ = 1/n3. In the following, we will assume that all the calls to the ApproxSchur
are correct.

The following lemma shows that after invoking Algorithm 1 in a bottom-up
fashion, we have computed the ASC for every node in T (G).

Lemma 2.4.1. Let H ∈ T (G) be a node of height η(H) ≥ 0 and X(H) = ∅. Then
H ′ = ApproxSchur Node(H, ∂(H), ε) is an (1 ± δ′)η(H)+1-ASC of H with respect
to ∂(H).

Proof. We proceed by induction on η(H). For the base case, i.e., η(H) = 0, H is a
leaf node. By Lemma 2.2.13 and Algorithm 1,H ′ is indeed a (1±δ′)-ASC ofH with
respect to ∂(H).

Let H be a non-leaf node, i.e. η(H) > 0. Let c1(H), c2(H) and c′1(H), c′2(H)
be defined as in Algorithm 1. By properties (2), (3) and (4) of T (G) and the fact that

2.4. DYNAMIC EFFECTIVE RESISTANCES ON SEPARABLE GRAPHS 33

X(H) = ∅, we haveH = c1(H)⊕ c2(H). By induction hypothesis, it follows that
ci(H)′ is an (1 ± δ′)η(ci(H))+1-ASC of ci(H), for i = 1, 2. Using Lemma 2.3.8 and
since η(ci(H)) + 1 = η(H), for i = 1, 2, we get that R := c1(H)′ ⊕ c2(H)′ is an
(1± δ′)η(H)-ASC ofH with respect to V (R) := ∂(c1(H)) ∪ ∂(c2(H)). Now, since
V (R) ⊇ ∂(H) by property (4) of T (G) and by Lemma 2.2.13, it follows that H ′ is
an (1±δ′)-ASC ofRwith respect to ∂(H). Finally, applying Lemma 2.3.5 onR and
H ′ we get that H ′ is an (1± δ′)η(H)+1-ASC of H .

Next we analyze the running time of the initialization and recomputation proce-
dure. The lemma below shows that the ASC of any node in T (G) can be computed
in Õ(

√
n/δ2).

Lemma 2.4.2. Let H ∈ T (G) and assume that |X(H)| ≤ O(
√
n). Then we can

compute an ASC H ′ = ApproxSchurNode(H, ∂(H), ε) of H in Õ(
√
n/δ2) time.

Proof. We distinguish two cases. First, if H is a leaf node, then by property (5) of
T (G), we have that |E(H)| ≤ O(

√
n). The latter along with Lemma 2.2.13 (2)

imply the time to compute H ′ is Õ(
√
n/δ′2). Second, if H is a non-leaf node, then

by Lemma 2.2.13 (1) we know that |E(ci(H)′)| ≤ Õ(
√
n/δ′2), for i = 1, 2. Since

by assumption |X(H)| ≤ O(
√
n), we get that |R ∪ X(H)| ≤ Õ(

√
n/δ′2). Thus, the

time to compute H ′ on top of R ∪ X(H) is bounded by Õ(
√
n/δ′2) = Õ(

√
n/δ2)

(again by Lemma 2.2.13 (2) and the choice of δ′).

We now analyze the running time for initializing our data-structure. Let TD(G)

denote the time required to compute D(G).

Lemma 2.4.3. The time TD(G) required to compute D(G) is Õ(n/δ2).

Proof. By Lemma 2.2.1 recall that we can construct T (G) in Õ(n) time. Note that by
construction of the separator tree, the number of non-leaf nodes is bounded by the
number of leaf nodes. Since there there are O(

√
n) leaf nodes, the total number of

nodes in T (G) is O(
√
n). By Lemma 2.4.2 we get that the time needed to compute

an ASC H ′ for every node H ∈ T (G) is Õ(
√
n/δ2). Combining the above bounds

gives that TD(G) is Õ(n/δ2).

Since δ′ = δ
c logn+1 and η(G) = O(log n), the graph G′ is a (1 ± δ)-ASC of G

w.r.t. ∂(G).

Handling Edge Insertions. We now describe the Insert operation. Let us con-
sider the insertion of an edge e = (u, v) of weightw. We maintain a stackQ, which
is initially set to empty. We then update the root node by adding (u, v)with weight
w toG, and pushG ontoQ. During the traversal of T (G), our procedure maintains
two pointers that point to the current node H (initially set to G) and a node N (if
any exists) that represents the node for which u and v belong to different children
of N , respectively. As long as we have not found such a node N , and the current
node H is not a leaf, we proceed as follows.

34 CHAPTER 2. DYNAMIC SCHUR COMPLEMENT ON SEPERABLE GRAPHS

Algorithm 2.2: UpdateApproxSchur(StackQ)

1 while Q ̸= ∅ do
2 Set H ← Q.Pull()
3 Set H ′ ← ApproxSchurNode(H, ∂(H), ε)

Algorithm 2.3: Insert(u, v, w)
1 Let Q be an initially empty stack.
2 Set E(G)← E(G) ∪ {(u, v)}, Q.Push(G), H ← G and N ← nil
3 while N = nil and H is a non-leaf do
4 if there exists a child of H that contains both u and v then
5 Let c(H) denote any such a child
6 Set E (c(H))← E (c(H)) ∪ {(u, v)}
7 Set H ← c(H)
8 Q.Push(H)

9 else
10 Set N ← H
11 Set X(N)← X(N) ∪ {(u, v)}
12 AddBoundary(u,N), AddBoundary(v,N)

// Update the ASCs of the nodes in Q
13 UpdateApproxSchur(Q)

We examine the child of H that contains both u and v (if there is more than
one, then we just pick one of them). If u and v belong to the same child, say c(H),
then we add this edge to c(H) and update the current node H to c(H). We then
push H onto Q. If, however, u and v belong to different children, then we set N
to be the current node H and add the edge (u, v) to X(N), since u and v cannot
appear together in the nodes of the lower levels. At this point, this forces u and v to
become boundary vertices inN and all other nodes descending fromN that contain
either u or v. We handle this by making use of the AddBoundary() procedure,
depicted in Algorithm 2.4. Finally, we recompute the ASCs of the affected nodes in
a bottom-up fashion using the stackQ (as shown in Algorithm 2.2). This procedure
is summarized in Algorithm 2.3. We remark that for simplicity, we let Q.Push(H)
denote the event of pushing the pointer to H to the stack Q, for any node H .

After the pre-processing step and after each insertion/deletion of an edge, our
augmented separator tree T (G) satisfies the following invariant.

Invariant 2.4.4. For every edge e in the current graphG, exactly one of the following
two holds:

• there is a leaf node H ∈ T (G) such that e ∈ E(H),

• there is an internal node H ∈ T (G) such that e ∈ X(H).

2.4. DYNAMIC EFFECTIVE RESISTANCES ON SEPARABLE GRAPHS 35

The following lemma guarantees that the updated graphG′ (i.e., the sparsifier of
the root nodeG) is good approximation to the Schur complement ofGwith respect
to the boundary, after the execution of Insert(u, v) in Algorithm 2.3.

Lemma 2.4.5. Let G′ be the updated sparsifier of the root node G, after the insertion
of edge (u, v). Then G′ is an (1± δ)-ASC of G with respected to ∂(G).

Proof. We proceed inductively as in the proof of Lemma 2.4.1 and show that for any
nodeH , the corresponding sparsifierH ′ is an (1±δ′)η(H)+1-ASC ofH with respect
to ∂(H). Since the base case remains the same, let us consider a non-leaf node H .
If X(H) = ∅, then the correctness follows from the inductive step of Lemma 2.4.1.
However, X(H) ̸= ∅ implies thatH ̸= c1(H)⊕ c2(H). This is becauseH is the last
node for the edges of X(H) whose endpoints were contained in the same node in
T (G). Recall that the endpoints of all the edges in X(H) were declared boundary
vertices for H and all descendants containing them. Thus we have that

H = (c1(H)⊕ c2(H)) ∪ X(H).

By induction hypothesis, it follows that ci(H)′ is an (1±δ′)η(ci(H))+1-ASC of ci(H),
for i = 1, 2. Using Lemma 2.3.8 and since η(ci(H)) + 1 = η(H), for i = 1, 2, we
get that R := c1(H)′ ⊕ϕ c2(H)′ is an (1± δ′)η(H)-ASC of H \ X(H) with respect
to V (R) := ∂(c1(H)) ∪ ∂(c2(H)). First, since V (R) ⊇ V (X(H)) by construction,
Lemma 2.3.8 implies that R′ := R∪X(H) is an (1± δ′)η(H)-ASC of (H \X(H))∪
X(H) = H with respect to V (R). Second, since V (R) ⊇ ∂(H) by property (4)
of T (G) and by Lemma 2.2.13, it follows that H ′ is an (1 ± δ′)-ASC of R′ with
respect to ∂(H). Finally, applying Lemma 2.3.5 on R′ and H ′ we get that H ′ is an
(1 ± δ′)η(H)+1-ASC of H . The statement of the lemma then follows from the facts
that δ′ = δ

c logn+1 and η(G) = O(log n).

For the running time of Insert(u, v, w), we distinguished two cases.
First, suppose that the insertion of the edge (u, v) does not trigger a re-

computation of the data-structure. Note that the stackQ (in Algorithm 2.3) contains
all nodes in the path starting from the root node G, and then repeatedly choosing
exactly one child of the current node that contains both u and v, until the nodeN is
reached. Since the height of T (G) is O(log n), it follows that |Q| ≤ O(log n). Ad-
ditionally, by Lemma 2.4.2, the time to re-compute an ASC of any node is bounded
by Õ(

√
n/δ2). Thus we get that the time needed to update the ASCs of the nodes

in Q is Õ(
√
n/δ2). As we will shortly argue, the running time of AddBoundary()

is also bounded by Õ(
√
n/δ2). Combining the above, we get that the running time

of Insert(u, v) is Õ(
√
n/δ2).

Second, suppose that the edge (u, v) triggers a re-computation of the data-
structure. Then by Lemma 2.4.3, we recompute D(G, δ) in Õ(n/δ2) time. Since
we recompute that data-structure every Θ(

√
n) insertions, the amortized update

time per insertion is Õ(
√
n/δ2). The above bounds combined give that the amor-

tized time per edge insertion is bounded by Õ(
√
n/δ2). This bound can be made

36 CHAPTER 2. DYNAMIC SCHUR COMPLEMENT ON SEPERABLE GRAPHS

Algorithm 2.4: AddBoundary(u, v, w)
1 Let Q be an initially empty stack. while N = nil do
2 if u ̸∈ ∂(H) then
3 Set ∂(H)← ∂(H) ∪ {u}
4 Q.Push(H)
5 if H is a non-leaf then
6 Let c(H) be the unique child that contains u
7 Set H ← c(H)

8 if H is a leaf then
9 Set H ← nil

// Update the ASCs of the nodes in Q
10 UpdateApproxSchur(Q).

worst-case by keeping two copies of the data structure and performing periodical
rebuilds.

Handling Terminal Additions to the Boundary. We now describe the Ad-
dTerminal(u) operation. It is implemented by simply invoking AddBound-
ary(u,G), where G is the root of T (G). For the procedure AddBoundary(u,H),
we maintain a stackQ, which is initially set to empty. As long as the currentH is a
node in T (G), we first check whether u ∈ ∂(H). If this is the case, then we simply
do nothing as the ASC H ′ of H with respect to ∂(H) contains u. Otherwise, we
add u to ∂(H), and push the nodeH toQ. Next, ifH is not a leaf-node, let c(H) be
the unique child that contains u. We then set c(H) to be our current node H and
perform the same steps as above, until we reach some leaf-node, in which case we
set H to nil. Finally, we recompute the ASCs of the affected nodes in a bottom-up
fashion using the stack Q. This procedure is summarized in Algorithm 2.4.

The correctness of this procedure can be shown similarly to the correctness of
Insert(). For the running time, the crucial observation is that if u ̸∈ ∂(H), for some
non-leaf node H , then by property (2) of T (G), it follows that u is assigned to an
unique child ofH . Thus, in the worst-case, the stackQ contains all the nodes in the
path betweenH and some leaf-node. Note that |Q| = O(log n) and by Lemma 2.4.2,
time to re-compute an ASC of any node is Õ(

√
n/δ2). Combining the above, we

get that the running time of AddBoundary(u,H) is Õ(
√
n/δ2).

Handling Edge Deletions. We now describe the Delete operation. Let us con-
sider the deletion of an edge e = (x, y). Our procedure is symmetric to the Insert()
operation. We maintain a stack Q, which is initially set to empty. We then update
the root node by deleting (u, v) from G, and pushing G onto Q. During the traver-
sal of T (G), our procedure maintains the current node H (initially set to G) and
determines the node N that represent the lowest-level node in T (G) that contains

2.4. DYNAMIC EFFECTIVE RESISTANCES ON SEPARABLE GRAPHS 37

Algorithm 2.5: Delete(u, v)
1 Let Q be an initially empty stack.
2 Set E(G)← E(G) \ {(u, v)}, Q.Push(G), H ← G and N ← nil.
3 while N = nil do
4 if If there exists a (unique) child c(H) of H that contains (u, v) then
5 E (c(H))← E (c(H)) \ {(u, v)}.
6 Set H ← c(H).
7 Q.Push(H).
8 else
9 Set N ← H .

10 if N is a non-leaf then
11 X(N)← X(N) \ {(u, v)}.

// Update the ASCs of the nodes in Q
12 UpdateApproxSchur(Q).

the edge (u, v). Note that N is not necessarily a leaf-node. As long as we have not
found such a node we proceed as follows.

We examine the unique child ofH that contains the edge (u, v) (by property (2)
of T (G)). If there exists such a child c(H), then we delete (u, v) from c(H) and
update the current node H to c(H). We then push H to Q. If, however, such a
child does not exist, then we set N to be the current node H . Next, if N is a non-
leaf node, we remove the edge (u, v) from X(N). Finally, we recompute the ASCs
of the affected nodes in a bottom-up fashion using the stack Q. This procedure is
summarized in Algorithm 2.5.

Similarly to the Insert() operation, we can show that the worst-case running
time of Delete(u, v) operation is Õ(

√
n/δ2).

Finally, recall that we set γ = 1/n3 as the error probability of ApproxSchur
from Lemma 2.2.13. This will guarantee that throughout all updates, our algorithm
succeeds with probability at least 1 − O(n) · 1

n3 ≥ 1 − O(1
n2) as the total num-

ber of nodes in T (G) is O(
√
n), each update involves recomputation of the ASCs

of O(log n) nodes and our algorithm recomputes the data structure every Θ(
√
n)

operations.

Remark 2.4.6. We can easily generalize the above framework to O(
√
n)-separable

graphs for which the separator can be computed in s(n) time, since the only place
we need such computation is to initialize or re-compute the data structure D(G, δ)
(after every Θ(

√
n) operations). This implies that the update time will become

Õ((s(n) + n/δ2)/
√
n) and the query time remains the same as before.

2.4.2 Extension to Dynamic All-Pairs Effective Resistance

Wenext explain how to use a dynamic ASC algorithm to obtain a fully-dynamic algo-
rithm for maintaining an (1+ε)-approximation to all-pairs (resp., single-pair) effec-

38 CHAPTER 2. DYNAMIC SCHUR COMPLEMENT ON SEPERABLE GRAPHS

Algorithm 2.6: EffectiveResistance(s, t)
1 AddTerminal(s), AddTerminal(t)
2 Let G′ be the ASC of the root node G with respect to ∂(G)
3 Set ψ ← EstimateEffRes(G′, s, t)
4 Return ψ

tive resistance(s) in aO(
√
n)-separable graphG and proveTheorem 2.1.1. The data-

structure support the operations Insert(u, v, r), Delete(u, v), and EffectiveRe-
sistance(s, t) as defined in the beginning of this chapter.

Our dynamic effective resistance algorithm uses the above dynamic algorithm
for maintaining a (1 ± δ)-ASC as a subroutine. Formally, to maintain (1 + ε)-
approximations of effective resistances, we will invoke the dynamic ASC algorithm
with parameters δ = ε/4. To answer the queries of the effective resistance of any
two given vertices, we use the following result due to Durfee et al. [88].

Theorem 2.4.7. Fix δ ∈ (0, 1/2) and let G = (V,E,w) be a weighted graph with
two distinguished vertices s, t ∈ V . There is an algorithm EstimateEffRes(G, s, t)
that computes a value ψ such that

(1− δ)RG
eff(s, t) ≤ ψ ≤ (1 + δ)RG

eff(s, t),

in time Õ(m+ n/δ2) with probability at least 1− nc for some constant c ≥ 1.

For simplicity, we focus on the case that the separator of the separable graph can
be computed in Õ(n) time. The algorithm and analysis can be easily generalized to
handle the case when the computation time for separator is s(n,m), by the same
argument as before.

We now describe the query operation. We first consider how to maintain all-
pairs effective resistances. Given s and t, we start by calling AddTerminal(s) and
AddTerminal(t) from the dynamic ASC data-structure. This ensures that both s
and t are boundary nodes at the root nodeG (if they were not previously). Thus we
obtain a (1 ± δ)-ASC, denoted as G′, of the root node G with respect to ∂(G) and
run onG′ a nearly linear time algorithm for estimating the s− t effective resistance
(see Theorem 2.4.7). Let ψ denote such an estimate. This procedure is summarized
in Algorithm 2.6.

For the correctness, by Lemma 2.3.3, we have thatG′ preserves all-pairs effective
resistances among vertices in ∂(G) of G up to an 1/(1 ± δ) ≈ (1 ± 2δ) factor.
Since we ensured that s and t are included in ∂(G), the s− t effective resistance is
approximated within the same factor. By Theorem 2.4.7, it follows that the estimate
ψ approximates the effective resistance between s and t inG′, up to a (1± δ) factor.
Combining the above guarantees, we get ψ gives an (1 ± 2δ)(1 ± δ) ≤ (1 ± ε)-
approximation to RG

eff(s, t), by the choice of δ.
Once the query is answered, we then undo all the changes that we have per-

formed in T (G) i.e., we bring the data-structure to its state before the query op-

2.5. LOWER BOUNDS FOR DYNAMIC EFFECTIVE RESISTANCES 39

eration. This ensures that the number of terminals at the root node G does not
accumulate over a large sequence of query operations.

For the running time, first recall that each AddTerminal() operation can be
implemented in Õ(

√
n/δ2). Now, as |V (G′)| ≤ O(

√
n) and |E(G′)| ≤ Õ(

√
n/δ2),

by Theorem 2.4.7 it follows that estimate ψ can be computed in Õ(
√
n/δ2) time.

Combining the time bounds we get that that the worst-case time to answer an
EffectiveResistance(s, t) query is Õ(

√
n/δ2). Finally, note that in the same time

bound, we can also undo all the changes we have made.
For the single-pair s − t effective resistance, the two vertices s, t are fixed

throughout all the operations. For each edge insertion or deletion, we first update
the data structure in the same way as for the all-pairs version, and then we com-
pute the s− t effective resistance RG

eff(s, t) and store the answer. For the query for
RG

eff(s, t), we simply report the stored answer. The update time is still Õ(
√
n/δ2),

while the query time is only O(1).

2.5 Lower Bounds for Dynamic Effective Resistances

2.5.1 A Lower Bound for O(
√
n)-Separable Graphs

In this section, we prove a conditional lower bound for incrementally or decremen-
tally maintaining the s− t effective resistance inO(

√
n)-separable graphs and give

the proof of Theorem 2.1.3. Our proof actually holds for any algorithm that main-
tains a (1 +O(1

n36))-approximation of s− t effective resistance.
We first consider the incremental case, in which only edge insertions are al-

lowed.

The reduction. We reduce the uMv problem (see Definition 2.2.4) with parame-
ters n1 = n2 := n0 to the s − t effective resistance problem as follows. Let M
be the n0 × n0 Boolean matrix of the uMv problem. Let n = n20 + 2n0 + 2. Let
κ = 3(n− 1)6.

Given the matrix M, we construct a graph GM = (VM, E) as follows.

• For each pair 1 ≤ i, j ≤ n0, we create two vertices aij and bij , and add an
edge (aij , bij) if and only ifMij = 1.

• For each row i, we create a vertex ui and add edge (ui, aik) for each 1 ≤ k ≤
n0. For each column j, we create a vertex vj and add edge (vj , bkj) for each
1 ≤ k ≤ n0.

This finishes the definition of GM. Note that VM = {aij , bij , 1 ≤ i, j ≤ n0} ∪
{ui, 1 ≤ i ≤ n0}∪{vj , 1 ≤ j ≤ n0}. For any vertex x ∈ VM, let degGM

(x) denote
the degree of x in GM.

Now we add two new vertices t and s to GM. For any x ∈ {aij , bij , 1 ≤ i, j ≤
n0}, add an edge (s, x) with weight κ− degGM

(x). Denote the resulting graph by
G and note that G contains |VM ∪ {s, t}| = n20 + 2n0 + 2 = n vertices.

40 CHAPTER 2. DYNAMIC SCHUR COMPLEMENT ON SEPERABLE GRAPHS

Assume that G is started in a dynamic effective resistance data structure. We
also maintain a number of counters in the data structure. More specifically, we
initialize a global counter Y := 0. For each vertex x ∈ {ui, 1 ≤ i ≤ n0} ∪ {vj , 1 ≤
j ≤ n0}, we maintain a counter c(x) which is initialized to be 0. We now explain
how we use this data structure to determine uMv.

• Once u arrives, for any i such that ui = 1, we insert an edge (t, ui) with
weight 1, increase Y and c(ui) by 1.

• Once v arrives, for any j such that vj = 1, we insert an edge (t, vj) with
weight 1, increase Y and c(vj) by 1.

• Insert an edge (s, t) with weight κ − Y . For each vertex x ∈ {ui, 1 ≤ i ≤
n0}∪{vj , 1 ≤ j ≤ n0}, insert an edge (s, x)withweight κ−c(x)−degGM

(x).

• We perform one effective resistance query EffectiveResistance(s, t) to ob-
tain the (approximate) s − t effective resistance in the final graph. Let
λ = EffectiveResistance(s, t). If λ ≤ 1

κ + Y
κ3 + Y (n0+1)

κ5 − 1
κ6 , then re-

turn 1; otherwise, return 0.

Analysis. Note that throughout the whole sequence of updates (which are only
edge insertions) and queries, the dynamic graph G is always O(

√
n)-separable,

since the set S := {u1, · · · , un0} ∪ {v1, · · · , vn0} ∪ {s, t} is a balanced separator
of size O(

√
n).

We have the following lemma that shows an important property of our reduc-
tion. The proof of the lemma is deferred to the end of this section.

Lemma 2.5.1. For κ = 3(n − 1)6, assume that EffectiveResistance(s, t) returns
an (1 + 1

κ6)-approximation of the s− t effective resistance in the final graph G. Then
the following holds:

• If uMv = 1, then λ ≤ 1
κ + Y

κ3 + Y (n0+1)
κ5 − 1

κ6 ;

• If uMv = 0, then λ > 1
κ + Y

κ3 + Y (n0+1)
κ5 − 1

κ6 .

Note that by the above lemma, the uMv problem can be solved according to
our estimator λ. Thus, the lower bound for the incremental setting inTheorem 2.1.3
follows byTheorem 2.2.5 and by noting that the total number of updates isO(n0) =
O(
√
n) and the total number of queries is 1.

In the following we prove Lemma 2.5.1. The proof is based on a connection
between the 5-length cycle detection problem and the effective resistance problem.

Proof of Lemma 2.5.1. Let G denote the final graph of our reduction. Let H :=
G[VM ∪ {t}] denote the subgraph induced by vertex set VM ∪ {t}. We observe
that in the graph H , there is a cycle of length 5 containing vertex t if and only if
uMv = 1.

2.5. LOWER BOUNDS FOR DYNAMIC EFFECTIVE RESISTANCES 41

On the other hand, we can use our estimator λ to distinguish if H contains a
5-length cycle incident to t or not. We let A ∈ R(n−1)×(n−1) denote the adjacency
matrix of the graph H . Note that all entries in A are either 1 or 0.

The first claim relates the 5-length cycle detection to the trace of a matrix re-
lated to A. Recall that we let Xuv denote the entry of matrix X with row index
corresponding to vertex u and column index corresponding to vertex v.

Claim 2.5.2. Let B = κ · I −A. If H contains a 5-length cycle incident to t, then
(B−1)tt ≤ 1

κ + Y
κ3 + Y (n0+1)

κ5 − 1.1
κ6 . If H does not contain a 5-length cycle incident

to t, then (B−1)tt ≥ 1
κ + Y

κ3 + Y (n0+1)
κ5 − 0.9

κ6 .

Proof. First we note that B is invertible, as it is strictly symmetric diagonally domi-
nant. Furthermore, it holds that κ ·B−1 = (I− 1

κ ·A)−1 and thus by the Neumann
series expansion, we have

κ ·B−1 = (I − 1

κ
·A)−1 =

∞∑
i=0

(−1

κ
)i ·Ai.

This further implies that

(κ ·B−1)tt = 1⊤t (
∞∑
i=0

(−1

κ
)i ·Ai)1t =

∞∑
i=0

(−1

κ
)i · 1⊤t (Ai)1t

=
∞∑
i=0

(−1

κ
)i · (Ai)tt.

(2.3)

Now observe that since κ = 3(n − 1)6, the first six terms of the above power
series dominate. More precisely, note that (Ai)tt is the number of i-length paths
from t to t, which is at most (n− 1)i. Thus

∞∑
i=6

|(−1

κ
)i · (Ai)tt| ≤

∞∑
i=6

1

κi
(Ai)tt ≤

∞∑
i=6

1

κi
(n− 1)i ≤ 0.9

κ5
.

Now observe that (A0)tt = Itt = 1; that Att = 0 since H is a simple graph;
that (A2)tt = degH(t) = Y , where the last equation follows from the definition
of Y ; that (A3)tt = 0 since there is no triangle containing t; and that (A4)tt =∑

w:(w,t)∈E
∑

x:(x,w)∈E 1 =
∑

w:(w,t)∈E degGM
(w) = detH(t) · (n0+1) = Y (n0+

1). Therefore,

• If H contains a 5-length cycle incident to t, then (A5)tt ≥ 2, and thus

(κ ·B−1)tt ≤ 1 +
Y

κ2
+
Y (n0 + 1)

κ4
− 2

κ5
+

0.9

κ5

= 1 +
Y

κ2
+
Y (n0 + 1)

κ4
− 1.1

κ5

42 CHAPTER 2. DYNAMIC SCHUR COMPLEMENT ON SEPERABLE GRAPHS

• If H has no 5-length cycle incident to t, then (A5)tt = 0, and thus

(κ ·B−1)tt ≥ 1 +
Y

κ2
+
Y (n0 + 1)

κ4
− 0.9

κ5

This completes the proof of the claim.

The following claim relates s− t effective resistance to B−1. The proof almost
follows from Lemma 23 in [198], while we include a proof here for the sake of
completeness.

Claim 2.5.3. Let Λ = EG(s, t) and B = κ · I−A. Then it holds that Λ = (B−1)tt.

Proof. Let L denote the Laplacian matrix of G and let v ∈ RVM∪{t} denote the
vector with entries corresponding toweights between s and u for each u ∈ VM∪{t},
i.e., vu = κ− degH(u).

Now the key observation is that

L =

(
B −v
−v⊤ degG(s)

)
For any x ∈ RVM∪{t}∪{s}, let x̂ ∈ RVM∪{t} be the vector containing the first

entries corresponding to vertices in VM ∪ {t} of x. Let y be the solution of the
Laplacian system Ly = 1s − 1t. Thus, y = L†(1s − 1t). It also holds that

B · ŷ − v · ys = −1̂t
In addition, we know that L1 = 0, and thus B · 1̂ = v. This further implies that,
ŷ = B−1 · v · ys −B−11̂t = ys · 1̂−B−11̂t. Thus,

(1s − 1t)⊤L†(1s − 1t) = (1s − 1t)⊤y = ys − 1̂⊤t · ŷ

= ys − 1̂⊤t · (ys · 1̂−B−11̂t) = 1̂⊤t B−11̂t
Therefore,

Λ = EG(s, t) = (1s − 1t)⊤L†(1s − 1t) = 1̂⊤t B−11̂t = (B−1)tt

Finally, by the above two claims, if uMv = 1, thenH contains a 5-length cycle
incident to t, and thus Λ = (B−1)tt ≤ 1

κ + Y
κ3 + Y (n0+1)

κ5 − 1.1
κ6 ; if uMv = 0,

then H does not contain any 5-length cycle incident to t, and thus Λ = (B−1)tt ≥
1
κ +

Y
κ3 +

Y (n0+1)
κ5 − 0.9

κ6 . The statement of the lemma then follows by the fact that λ
is a (1 + 1

κ6)-approximation of Λ, and that 1
κ6 (

1
κ + Y

κ3 + Y (n0+1)
κ5 − 0.9

κ6) <
0.1
κ6 .

For the lower bound for the decremental setting, we start with a graph where t
is initially connected to s with weight κ− 2n0 and to all vertices x ∈ {ui, 1 ≤ i ≤
n0} ∪ {vj , 1 ≤ j ≤ n0} with weights κ − 1 − degGM

(x). When the vectors u,v
arrive, we need to increase the weights of some edges (s, x) and (s, t) depending
if the corresponding entry of u,v is 1 or 0, so that every vertex in G has the same
weighted degree κ. We omit further details here.

2.5. LOWER BOUNDS FOR DYNAMIC EFFECTIVE RESISTANCES 43

2.5.2 A Lower Bound for General Graphs

In this section, we prove Theorem 2.1.4, which gives a lower bound for incremental
and decremental s− t effective resistance problem in general graphs.

Proof of Theorem 2.1.4. We only consider here the incremental setting, where only
edge insertions are allowed. For the decremental setting, the correctness follows
from a similar construction and similar arguments for decremental lower bound in
the proof of Theorem 2.1.3.

We reduce the uMv problem with parameters n1 = n2 := n0 to the s − t
effective resistance problem as follows. LetM be the n0×n0 Boolean matrix of the
uMv problem. Let n = 2n0 + 2 and let κ = 3(n− 1)5.

We first create a bipartite graph GM = ((R,C), E) where R = (r1, · · · , rn0)
and C = (c1, · · · , cn0) corresponding to the rows and columns of M, respectively.
We add an edge (ri, cj) in E iff Mij = 1. This finishes the definition of GM. For
each vertex x ∈ R ∪ C , let degGM

(x) denote the degree of vertex x in GM.
Now we add tow new vertices s, t toGM. Denote the resulting graph byG and

note that G contains |R ∪ C ∪ {s, t}| = 2n0 + 2 vertices.
Assume that G is started in a dynamic effective resistance data structure. We

also initialize a global counter Y to be 0 and for each vertex x ∈ R∪C , we initialize
a counter c(x) to be 0. We now explain how we use this data structure to determine
uMv.

• Once u arrives, for any i such that ui = 1, we insert an edge (t, ri) with
weight 1, and increase Y and c(ri) by 1.

• Once v arrives, for any j such that vj = 1, we insert an edge (t, cj) with
weight 1, and increase Y and c(cj) by 1.

• Insert an edge (s, t) with weight κ − Y . For each x ∈ VM, insert an edge
(s, x) with weight κ− c(x)− degGM

(x).

• We perform one effective resistance query EffectiveResistance(s, t) to ob-
tain the (approximate) s − t effective resistance in the final graph. Let
λ = EffectiveResistance(s, t). If λ ≤ 1

κ + Y
κ3 − 1

κ4 , then return 1; oth-
erwise, return 0.

We have the following lemma similar to Lemma 2.5.1.

Lemma 2.5.4. For κ = 3(n− 1)5, assume that EffectiveResistance(s, t) returns a
(1+ 1

κ4)-approximation of the s− t effective resistance in the final graphG. Then the
following holds:

• If uMv = 1, then λ ≤ 1
κ + Y

κ3 − 1
κ4 ;

• If uMv = 0, then λ > 1
κ + Y

κ3 − 1
κ4 .

44 CHAPTER 2. DYNAMIC SCHUR COMPLEMENT ON SEPERABLE GRAPHS

Given the above Lemma, we can then solve the uMv problem according to the
value of our estimator λ. Thus, the statement of the theorem follows by noting that
the total number of updates is O(n0) = O(n) and the total number of queries is 1,
and by Theorem 2.2.5. Now we give a sketch of the proof of the above lemma.

Proof Sketch of Lemma 2.5.4. The proof is almost the same as the proof of
Lemma 2.5.1. Here we point out the main difference. Let G denote the final graph
of our reduction. LetH := G[R ∪C ∪ {t}] denote the subgraph induced by vertex
set R ∪ C ∪ {t}. We observe that in the graph H , there is a triangle incident to
vertex t iff uMv = 1. Now we use our estimator λ to distinguish if H contains a
triangle incident to t or not.

We let A ∈ R(n−1)×(n−1) denote the adjacency matrix of the graph H . Note
that all entries in A are either 1 or 0. Let B = κ · I −A. Again, by the Neumann
series expansion of B−1, we could derive the same expression of (κ · B−1)tt as
Equation 2.3, that is

(κ ·B−1)tt =

∞∑
i=0

(−1

κ
)i · (Ai)tt.

Now observe that since κ = 3(n− 1)5, the first four terms of the above power
series dominate. More precisely, by the fact that (Ai)tt ≤ (n − 1)i for any i ≥ 4,
we have that

∞∑
i=4

|(−1

κ
)i · (Ai)tt| ≤

∞∑
i=4

1

κi
(Ai)tt ≤

∞∑
i=4

1

κi
(n− 1)i ≤ 0.9

κ3
.

Furthermore, it holds that (A0)tt = Itt = 1; that Att = 0 since H is a simple
graph; and that (A2)tt = degH(t) = Y , where the last equation follows from the
definition of Y . Therefore,

• If H contains a triangle incident to t, then (A3)tt ≥ 2, and thus

(κ ·B−1)tt ≤ 1 +
Y

κ2
− 2

κ3
+

0.9

κ3
= 1 +

Y

κ2
− 1.1

κ3

• If H has no triangle incident to t, then (A3)tt = 0, and thus

(κ ·B−1)tt ≥ 1 +
Y

κ2
− 0.9

κ3

That is, if H contains a triangle incident to t, then (B−1)tt ≤ 1
κ + Y

κ3 − 1.1
κ4 . If

H does not contain a triangle incident to t, then (B−1)tt ≥ 1
κ + Y

κ3 − 0.9
κ4 .

Now let Λ = EG(s, t). Then by the same argument for proving Claim 2.5.3, we
have that Λ = (B−1)tt.

Finally, by the above two claims, if uMv = 1, then H contains a triangle inci-
dent to t, and thus Λ = (B−1)tt ≤ 1

κ + Y
κ3 − 1.1

κ4 ; if uMv = 0, then H does not

2.6. CONCLUSION 45

contain any triangle incident to t, and thus Λ = (B−1)tt ≥ 1
κ + Y

κ3 − 0.9
κ4 . The

statement of the lemma then follows by the fact that λ is a (1+ 1
κ4)-approximation

of Λ and that 1
κ4 (

1
κ + Y

κ3 − 0.9
κ4) ≤ 0.1

κ4 .

2.6 Conclusion

In this chapter, we studied the problem of dynamically maintaining All-Pairs Effec-
tive Resistances in graphs that admit small separators, e.g., planar graphs. We show
a fully-dynamic algorithm that reports a (1 + ϵ) approximation to any effective re-
sistance query on a graph undergoing edge insertions and deletions with Õ(

√
nϵ−2)

update and query time. We also prove two conditional lower bounds, one applying
to graphs with small separators and the other to general graphs, which show the
hardness of the problem in the exact setting and justify our upper bounds that only
support approximate queries.

Our work leaves several interesting open problems for future work. For exam-
ple, it is interesting to improve upon the update query and time of our dynamic
All-Pair Effective Resistances problem in planar graphs while keeping the same ap-
proximation guarantee. While we do believe that poly-logarithmic running times
should be achievable for this problem, this may require developing some new ideas
and techniques that go beyond the standard

√
n barrier, which also appears for the

dynamic planar APSP problem [9]. Another interesting direction is to extend our
lower-bound for separable graphs to the more restricted family of planar graphs. Fi-
nally, the most important problem is whether there is a non-trivial fully-dynamic al-
gorithm for maintaining All-Pairs Effective Resistances in general graphs. In Chap-
ter 3 we make substantial progress on this question and present the first algorithm
that achieves sub-linear update and query time.

CHAPTER 3
Fully Dynamic Spectral Vertex

Sparsifiers and Applications

We study dynamic algorithms for maintaining spectral vertex sparsifiers of graphs
with respect to a set of terminals K of our choice. Such objects preserve pairwise
resistances, solutions to systems of linear equations, and energy of electrical flows
between the terminals in K . We give a data structure that supports insertions and
deletions of edges, and terminal additions, all in sublinear time. We then show the
applicability of our result to the following problems.

(1) A data structure for dynamically maintaining the solutions to Laplacian sys-
tems Lx = b, where L is the graph Laplacian matrix and b is a demand vector.
For a bounded degree, unweighted graph, we support modifications to both L and
b while providing access to ϵ-approximations to the energy of routing an electri-
cal flow with demand b, as well as query access to entries of a vector x̃ such that∥∥x̃− L†b

∥∥
L
≤ ϵ

∥∥L†b
∥∥
L

in Õ(n11/12ϵ−5) expected amortized update and query
time.

(2) A data structure for maintaining fully dynamic All-Pairs Effective Resistance.
For an intermixed sequence of edge insertions, deletions, and resistance queries, our
data structures returns (1±ϵ)-approximation to all the resistance queries against an
oblivious adversary with high probability. Its expected amortized update and query
times are Õ(min(m3/4, n5/6ϵ−2)ϵ−4) on an unweighted graph, and Õ(n5/6ϵ−6) on
weighted graphs.

The key ingredients in these results are (1) the intepretation of Schur comple-
ment as a sum of random walks, and (2) a suitable choice of terminals based on the
behavior of these random walks to make sure that the majority of walks are local,
even when the graph itself is highly connected and (3) maintenance of these local
walks and numerical solutions using data structures.

These results together represent the first data structures for maintain key prim-
itives from the Laplacian paradigm for graph algorithms in sublinear time without

47

48 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

assumptions on the underlying graph topologies. The importance of routines such
as effective resistance, electrical flows, and Laplacian solvers in the static setting
make us optimistic that some of our components can provide new building blocks
for dynamic graph algorithms.

3.1 Introduction

Problems arising from analyzing and understanding graph structures have moti-
vated the development of many powerful tools for storing and compressing graphs
and networks. One such tool that has received a considerable amount of attention
over the past two decades is graph sparsification [34, 35]. Roughly speaking, a graph
sparsifier is a “compressed” version of a large input graph that preserves important
properties like distance information [208], cut value [35] or graph spectrum [238].
Graph Sparsifiers fall into two main categories: edge sparsifiers, which are graphs
that reduce the number of edges, and vertex sparsifiers, which are graphs that reduce
the number of vertices. Both categories have many applications in approximation
algorithms [100, 214], machine learning [186, 255], andmost recently efficient graph
algorithms [158, 188, 231, 237]. While edge sparsifiers have played an instrumental
role in obtaining nearly linear time algorithms [34], their practical applicability is
somewhat limited due to the fact most of the large networks are already sparse. On
the other hand, vertex sparsifiers address the “real” compression of large networks
by reducing the number of vertices.

While vertex sparisifers in general are significantly more difficult to gener-
ate [60, 191, 197], a notable exception is vertex sparsifiers for quadratic minimiza-
tion problems, otherwise known as Schur complements. Concretely, given an undi-
rected, weighted graph G, a subset of terminal vertices K and its corresponding
Laplacian matrix, a graph H with V (H) = K is a vertex resistance sparsifier of
G with respect to K if the Laplacian matrix of H is obtained by the Schur com-
plement of the Laplacian of G with respect to K . Schur complement is a central
concept in physics and linear algebra with a wide range of applications including
multi-grid solvers, Markov chains and finite-element analysis [85], and have also re-
cently found extensive applications in graph algorithms [88, 89, 174, 176, 227, 228].

Most of the massive graphs in the real world, such as social networks, the web
graph, are subject to frequent changes over time. This dynamic behavior of graph
has been studied for several important graph problems, where the basic idea is to
maintain problem solutions as graphs undergo edge insertions and deletions in time
faster than recomputing the solution from scratch. Dynamic graph algorithms have
also been formulated for many problems that involve edge sparsifiers [117, 138, 147,
248], as well important variants of edge sparsifiers themselves, including minimum
spanning trees [139, 202, 203, 260], spanners [33], spectral sparsifiers [12], and low-
stretch spanning trees [105]. However, despite the increasing importance of high
quality vertex sparsifiers in graph algorithms, to the best of our knowledge very
little is known about their maintenance in the dynamic setting.

3.1. INTRODUCTION 49

In this chapter we give the first non-trival dynamic algorithms for maintaining
Schur complements of general graphs with respect to a set of terminal of our choice.
Our data-structure maintains at any point of time a (1 ± ϵ) approximation to the
Schur complement while supporting insertions and deletions of edges, and arbitrary
vertex additions to the terminal set. To the best of our knowledge, prior dynamic
Schur complement algorithms were only known for minor-free graphs [113, 115].

Lemma 3.1.1. Given an error threshold ϵ > 0, an unweighted undirected multi-graph
G = (V,E) with n vertices,m edges, a subset of terminal verticesK ′ and a parameter
β ∈ (0, 1) such that |K ′| = O(βm), there is a data-structure DynamicSC(G,K ′, β)
for maintaining a graph H̃ with LH̃ ≈ϵ SC(G,K) for someK withK ′ ⊆ K , |K| =
O(βm), while supporting O(βm) operations in the following running times:

• Initialize(G,K ′, β): Initialize the data-structure, in Õ(mβ−2ϵ−4) expected
amortized time.

• Insert(u, v): Insert the edge (u, v) to G in Õ(1) amortized time.

• Delete(u, v): Delete the existing edge (u, v) from G in Õ(1) amortized time.

• AddTerminal(u): Add u toK ′ in Õ(1) amortized time.

Our algorithm extends to weighted graphs, albeit with slightly larger running
time guarantees. Concretely we give an algorithm that maintains an approximate
Schur Complement with Õ(mβ−4ϵ−4) expected amortized time for initializing the
data-structure, and O(1) amortized time for the remaining operations. We discuss
such extensions in Section 3.4.3.

The key algorithmic components behind the result in unweighted graphs are
(1) the interpretation of Schur complement as a sum of random walks and (2) ran-
domly picking a terminal vertex subset onto which the vertex resistance sparsifiers
is constructed. Specifically, in a novel way we combine random walk based meth-
ods for generating resistance vertex sparsifiers [89] with results in combinatorics
that bound the speed at which such walks spread among vertices [29]. Our result in
the weighted case essentially follows the same idea except that the speed at which
random walks visit different vertices in weighted networks could be very slow. To
control this, we instead exploit an event driven simulation of random walks that in-
teracts well with other parts of our data structure and leads to comparable running
time guarantees.

We show the applicability of our dynamic Schur complement to two cornerstone
problems in graph Laplacian literature, namely dynamic Laplacian solver [237] and
dynamic All-Pair Effective Resistances [235].

Solving linear systems lies at the heart of many problems arising in scientific
computing, numerical linear algebra, optimization and computer science. An im-
portant subclass of linear systems are Laplacian systems, which arise in many nat-
ural contexts, including computation of voltages and currents in electrical network.
Solving Laplacian system has received increasing attention over the past years after
the breakthrough work of Spielman and Teng [237] who gave the first near-linear

50 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

time algorithm. Motivated by fast Laplacian solvers in different model of computa-
tions [25, 212], we initiate the study of algorithms for dynamically solving Laplacian
systems. Concretely, given a graph Laplacian L ∈ Rn×n and a vector b ∈ Rn in
the range of L, the goal is to maintain an x such that Lx = b, while off-diagonals
of L and the entries of b change over time. To allow for sub-linear query times,
here we focus on querying one (or a few) coordinates of x. Formally, given any
index u ∈ {1, . . . , n}, the goal is to output x̃u for some approximation x̃ of L†b.
Our contribution is the first sub-linear dynamic Laplacian solver in bounded degree
graphs.

Theorem 3.1.2. For any given error threshold m−1 < ϵ < 1, there is a data-
structure for maintaining an unweighted, undirected bounded degreeG = (V,E)with
n vertices, m edges and a vector b ∈ Rn that supports the following operations in
Õ(n11/12ϵ−5) expected amortized time:

• Insert(u, v): Insert the edge (u, v) with resistance 1 in G.

• Delete(u, v): Delete the edge (u, v) from G.

• Change(u,b′
u, v,b

′
v): Change bu to b′

u and bv to b′
v while keeping b in the

range of L.

• Solve(u): Return x̃u with x̃ such that
∥∥x̃− L†b

∥∥
L
≤ ϵ

∥∥L†b
∥∥
L
.

Note that the x̃ in the theorem above is not guaranteed to be inside the range
of L and it only preserves the differences between vertices in the same connected
component.

We observe that conditioning on the vector b having small support, i.e., a small
number of non-zero elements, leads to a dynamic solver by just including the cor-
responding vertices into the Schur complement, and maintaining a dynamic Schur
complement onto these vertices augmented with some carefully chosen additional
terminals. Upon receipt of a query index, we add the corresponding vertex to the
current Schur complement and simply solve a linear system there. However, note
that the demand vector may have a large number of non-zero entries, thus prevent-
ing us from obtaining a sub-linear time algorithm with this approach. We alleviate
this by projecting this vector onto the set of current terminals and showing that such
projection can be maintained dynamically while introducing controllable error in
the approximation guarantee.

Another application of our technique is dynamic maintainance of effective resis-
tance, awell studied quantity that has direct applications in randomwalks, spanning
trees [190] and graph sparsification [235]. We maintain (approximate) All-Pair Ef-
fective Resistances of a graphG among any pair of query vertices while supporting
an intermixed sequence of edge insertions and deletions in G. Our study is also
motivated in part by the wide usage of commute distances, a random walk-based
similarity measure that has been successfully employed in important practical ap-
plications such as link predictions [183]. Since commute distance is a scaled version

3.1. INTRODUCTION 51

of effective resistance, our dynamic algorithm readily extends to this graph measure
while achieving the same approximation and running time guarantees.

Theorem 3.1.3. For any given error threshold ϵ > 0, there is a data-structure for
maintaining an unweighted, undirected multi-graph G = (V,E) with up tom edges
that supports the following operations in Õ(m3/4ϵ−4) expected amortized time:

• Insert(u, v): Insert the edge (u, v) with resistance 1 in G.

• Delete(u, v): Delete the edge (u, v) from G.

• EffectiveResistance(s, t): Return a (1± ϵ)-approximation to the effective re-
sistance between s andK in the current graph G.

Our algorithm can also handle weighted graphs, albeit with a bound of
Õ(m5/6ϵ−4) on the expected amortized update and query time. By running this
algorithm on the output of a dynamic spectral sparsifier [12], we obtain a bound of
Õ(n5/6ϵ−6) per operation, which is truly sub-linear irrespective of graph density.

We are optimistic that our algorithmic ideas could be useful for dynamically
maintaining a wider range of graph properties. Both the results that we give dy-
namic algorithms for, vertex sparsifiers and Schur complements, have wide ranges
of applications in static settings, with the latter being at the core of the ‘Laplacian
paradigm’ of graph algorithms [234, 243]. While it’s less clear that solutions across
multiple Laplacian solves can be propagated to each other as the input dynamically
changes, repeated sparsification on the other hand represents a routine that com-
poses and interacts well with a much wider range of primitives. As a result, we
are optimistic that it can be used as a building block in dynamic versions of many
existing applications of Laplacian solvers.

3.1.1 Related Works

The recent data structures for maintaining effective resistances in planar
graphs [113, 115] drew direct connections between Schur complements and data
structures for maintaining them in dynamic graphs. This connection is due to the
preservation of effective resistances under vertex eliminations (Fact 3.2.2). From
this perspective, the Schur complement can be viewed as a vertex sparsifier for pre-
serving resistances among a set of terminal vertices.

The power of vertex or edge graph sparsifiers, which preserve certain proper-
ties while reducing problem sizes, has long been studied in data structures [95, 96].
Ideas from these results are central to recent works on offline maintenance for 3-
connectivity [211], generating random spanning trees [88], and new notions of cen-
trality for networks [182]. Our result is the first to maintain such vertex sparsifiers,
specifically Schur complements, for general graphs in online settings.

While the ultimate goal is to dynamicallymaintain (approximate) minimum cuts
and maximum flows, effective resistances represent a natural ‘first candidate’ for
this direction of work due to them having perfect vertex sparsifiers. That is, for any

52 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

subset of terminals, there is a sparse graph on them that approximately preserves
the effective resistances among all pairs of terminals. This is in contrast to distances,
where it’s not known whether such a graph can be made sparse, or in contrast to
cuts, where the existence of such a dense graph is not known (assuming that we are
not content with large constant or poly-logarithmic approximations).

Dynamic Graph Algorithms. The maintenance of graph properties in dynamic
algorithms has been a major area of ongoing research in data structures. The
problems being maintained include 2− or 3−connectivity [96, 138, 139], shortest
paths [10, 42, 133, 134], global minimum cut [117, 127, 177, 248], maximum match-
ing [48, 123, 206], andmaximalmatching [31, 204, 233]. Perhapsmost closely related
to our work are dynamic algorithms that maintain properties related to paths [96,
106, 138, 147, 202, 203, 260]. In particular, the work of Wulff-Nilsen [260] also
utilizes the behavior of random walks under edge deletions to keep track of low-
conductance cuts.

Dynamic algorithms for evaluating algebraic functions such as matrix determi-
nant and matrix inverse has also been considered [223]. One application of such
algorithms is that they can be used to dynamically maintain single-pair effective
resistance. Specifically, using the dynamic matrix inversion algorithm, one can dy-
namically maintain exact (s, t)-effective resistance in O(n1.575) update time and
O(n0.575) query time.

Vertex Sparsifiers. Vertex sparsifiers have been studied in more general settings
for preserving cuts and flows among terminal vertices [60, 171, 197]. Efficient ver-
sions of such routines have direct applications in data structures, even when they
only work in restricted settings: terminal sparsifiers on quasi-bipartite graphs [24]
were core routines in the data structure formaintaining flows in bipartite undirected
graphs [12].

Our data structure utilizes vertex sparsifiers, but in even more limited settings
as we get to control the set of vertices to sparsify onto. Specifically, the local main-
tenance of this sparsifier under insertions and deletions hinges upon the choice
of a random subset of terminals, while vertex sparsifiers usually need to work for
any subset of terminals. Evidence from numerical algorithms [89, 174] suggest this
choice can significantly simplify interactions between algorithmic components. We
hope this flexibility can motivate further studies of vertex sparsifiers in more restric-
tive, but still algorithmically useful settings.

Organization. The chapter is organized as follows. We discuss preliminaries in
Section 3.2 and give an overview of the key techniques in Section 3.3. After that we
give a data-structure for dynamic Schur complement on unweighted graphs in Sec-
tion 3.4, which can be applied to the dynamic All-Pairs Effective Resistance problem.
In Section 3.4.3, we extend our data-structure to weighted graphs. In Section 3.5, we
give a data-structure for dynamic projection of a vector onto a subset of vertices of

3.2. PRELIMINARIES 53

an unweighted bounded degree graph, which we combine with dynamic Schur com-
plement to give a dynamic Laplacian solver. In Section 3.7, we provide details on
the graph approximation guarantees and properties of projections that our random
walk sampling and other routines rely on. Finally, in Section 3.6, we provide an
algorithm for approximately sampling the sum of reciprocals of the edge weights
of a random walk which allows us to generate long random walks without going
through each step.

3.2 Preliminaries

In our dynamic setting, an undirected, weighted multi-graph undergoes both inser-
tions and deletions of edges. We let G = (V,E,w) always refer to the current
version of the graph. We will use n and m to denote bounds on the number of
vertices and edges at any point, respectively.

For an unweighted, undirected multi-graph G, let AG denote its adjacency ma-
trix and let DG its degree diagonal matrix (counting edge multiplicities for both
matrices). The graph Laplacian LG of G is then defined as LG = DG − AG. Let
L†
G denote the Moore-Penrose pseudo-inverse of LG. We often omit the subscript

when the underlying graph is clear from the context. We also need to define the
indicator vector 1u ∈ RV of a vertex u such that 1u(v) = 1 if v = u, and 1u(v) = 0
otherwise. Let d(u) =

∑
v:(u,v)∈E w(u, v) be the weighted degree of a vertex u.

We refer the reader to Chapter 2 for definitions concerning electrical flows.
A walk in G is a sequence of vertices such that consecutive vertices are con-

nected by edges. A random walk in G is a walk that starts at a starting vertex w0,
and at step i ≥ 1, the vertex wi is chosen randomly among the neighbors of wi−1.
If graph G is unweighted, then each of its neighbors becomes wi with equal proba-
bility. If G is weighted, the probability Pw [wi = u | w0, . . . , wi−1] is proportional
to the edge weight w(wi−1, u).

Effective Resistance. For our algorithm, it will be useful to define effective resis-
tance using linear algebraic structures. Specifically, given any two vertices u and v
in G, if χ(u, v) := 1u − 1v , then the effective resistance between u and v is given
by

RG
eff (u, v) := χ⊤

u,vL
†
Gχu,v.

Linear systems in graph Laplacian matrices can be solved in nearly-linear
time [168]. One prominent application of these solvers is the approximation of
effective resistances.

Lemma 3.2.1. Fix ϵ ∈ (0, 1) and let G = (V,E) be any graph with two arbitrary
distinguished vertices u and v. There is an algorithm that computes a value ϕ such
that

(1− ϵ)RG
eff(u, v) ≤ ϕ ≤ (1 + ϵ)RG

eff(u, v),

in Õ(m+ n/ϵ2) time with high probability.

54 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

Schur complement. Given a graph G = (V,E), we can think of the Schur com-
plement as the partially eliminated state of G. This relies on some partitioning of
V into two disjoint subset of vertices K , called terminals and F := V \K , called
non-terminals, which in turn partition the Laplacian L into 4 blocks:

L :=

[
L[F,F] L[F,K]

L[K,F] L[K,K]

]
. (3.1)

The Schur complement onto K , denoted by SC(G,K) is the matrix after elimi-
nating the variables in F . Its closed form is given by

SC (G,K) = L[K,K] − L[K,F]L
−1
[F,F]L[F,K].

It is well known that SC(G,K) is a Laplacian matrix of a graph on vertices
in K . To simplify our exposition, we let SC(G,K) denote both the Laplacian and
its corresponding graph. An important property of Schur complement which we
exploit in this work is to view the Schur complement as a collection of random
walks. This particular feature will be discussed in more detail in Section 3.3. The
key role of Schur complements in our algorithms stems from the fact that they can
be viewed as vertex sparsifiers that preserve pairwise effective resistances.

Fact 3.2.2 (Vertex Resistance Sparsifier). For any graph G = (V,E), any subset of
verticesK , and any pair of vertices u, v ∈ K ,

RG
eff (u, v) = R

SC(G,K)
eff (u, v) .

Spectral Approximation

Definition 3.2.3 (Spectral Sparsifier). Given a graph G = (V,E,w) and ϵ ∈ (0, 1),
we say that a graphH = (V,E′,w′) is a (1± ϵ)-spectral sparsifier ofG (abbr. H ≈ϵ

G) if E′ ⊆ E, and for all x ∈ Rn

(1− ε)x⊤LGx ≤ x⊤LHx ≤ (1 + ε)x⊤LGx.

In the dynamic setting, Abraham et al. [12] recently showed that (1±ϵ)-spectral
sparsifiers of a dynamic graph G can be maintained efficiently. This algorithm will
be invoked in several occasions throughout this chapter.

Lemma 3.2.4 ([12], Theorem 4.1). Given a graphG with polynomially bounded edge
weights, with high probability, we can dynamically maintain a (1± ϵ)-spectral sparsi-
fier of size Õ(nϵ−2) of G in O(log9 nϵ−2) expected amortized time per edge insertion
or deletion. The running time guarantees hold against an oblivious adversary.

The above result is useful because matrix approximations also preserve approxi-
mations of their quadratic forms. As a consequence of this fact, we get the following
lemma.

Lemma 3.2.5. If H is a (1± ϵ)-spectral sparsifier of G, then for any pair of vertices
u and v

(1− ε)RG
eff(u, v) ≤ RH

eff(u, v) ≤ (1 + ε)RG
eff(u, v).

3.2. PRELIMINARIES 55

3.2.1 Projection matrix and its properties

We next define a matrix that naturally appears when performing Gaussian elimi-
nation on the non-terminal vertices. Concretely, given a graph G = (V,E) and
terminalsK ⊆ V , thematrix-projection of the non-terminals F = V \K ontoK is
given by

P(K) :=
[
−L[K,F]L

−1
[F,F] IK

]
.

We next review some useful properties about the matrix projectionP(K). Consider
the laplacian system Lx = b, where L is partitioned into block-matrices as in
Equation (3.1). This in turn partitions the solution vector into non-terminals and
terminals, i.e., x =

[
xF xK

]⊤.

Lemma 3.2.6. Let xK be a solution vector such that SC(G,K)xK = P(K)b. Then
there exists an extension x of xK such that Lx = b.

Proof. We assume without loss of generality that the underlying graph G is con-
nected. Consider the following extended linear system[

L[F,F] L[F,K]

0 SC(G,K)

] [
xF

xK

]
=

[
IF 0
P(K)

] [
bF

bK

]
Using the definitions of Schur complement and projection matrix, we can

rewrite the above equation as follows:

[
L[F,F] L[F,K]

0 L[K,K] − L[K,F]L
−1
[F,F]L[F,K]

] [
xF

xK

]
=

[
IF 0

−L[K,F]L
−1
[F,F] IK

] [
bF

bK

]
Multiplying both sides from the left with[

IF 0

L[K,F]L
−1
[F,F] IK

]
,

we get that [
L[F,F] L[F,K]

L[K,F] L[K,K]

] [
xF

xK

]
=

[
bF

bK

]
or Lx = b,

what we wanted to show.

The following lemma draws a connection between the projection matrix and
certain probabilities which will allow us to take a combinatorial view on several
cases.

56 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

Lemma 3.2.7. Consider a graph G = (V,E). For any subset of vertices K ⊆ V , a
vertex v ∈ K , and a vertex u ∈ F = V \ K , let Pu

[
tv < tK\v

]
be the probability

that the random walk that starts at u hits v before hitting any other vertex fromK \v.
Then we have that

[P(K)1u] (v) = Pu

[
tv < tK\v

]
.

In fact, {P(K)1u}v∈K is a probability distribution for any fixed vertex v ∈ F .

Proof. First, note that if there is no path from vertices inK to F = V \K , then the
lemma holds trivially. Thus assumeK and F are connected by paths. Next, let

L[F,F] = DF −AF ,

where DF is the diagonal of L[F,F] and AF is the negation of the off-diagonal en-
tries, and then expand L−1

[F,F] using the Jacobi series:

L−1
[F,F] = (DF −AF)

−1 = D−1/2
(
I−D

−1/2
F AFD

−1/2
F

)−1
D

−1/2
F

= D
−1/2
F

(∞∑
ℓ=0

(D
−1/2
F AFD

−1/2
F)ℓ

)
D

−1/2
F =

∞∑
ℓ=0

(D−1
F AF)

ℓD−1
F .

The above series converges due to the fact that L[F,F] is strictly diagonally domi-
nant. Concretely, the latter implies (AFD

−1
F)ℓ tends to zero as ℓ tends to infinity.

Substituting this in the definition of P(K) and letting 1u =
[
1Fu 1Ku

]⊤ we get
that

P(K)1u =
[
−
∑∞

ℓ=0 L[K,F](D
−1
F AF)

ℓD−1
F IK

] [1Fu
1Ku

]
=

∞∑
ℓ=0

−L[K,F](D
−1
F AF)

ℓD−1
F 1Fu .

In particular, it follows that for any v ∈ K[∞∑
ℓ=0

−L[K,F](D
−1
F AF)

ℓD−1
F 1Fu

]
(v) =

∑
u0=u,...,uℓ−1∈F,

uℓ=v

∏ℓ−1
i=0 w(ui, ui+1)∏ℓ−1

i=1 d(ui)
.

Given a demand vector b ∈ Rn, we say thatP(K) ·b is the projection of b onto
K . In general, the projection of b is shorter than the original vector b. However,
for the sake of exposition, often we considerP(K)·b to be an n-dimensional vector
by assuming that all coordinates in F = V \K are 0.

Lemma 3.2.8. Consider a graphG = (V,E). LetK ⊆ V be a subset of vertices, and
let u ∈ F = V \K . Consider the demand vector 1u −P(K)1u that requests to send
one unit of flow from u toK according to the probability distribution {P(K)1u}v∈K .
Then the minimum energy needed to route this demand is given by

∥1u −P(K)1u∥2L† = (1u −P(K)1u)
⊤L†(1u −P(K)1u).

3.3. OVERVIEW 57

Proof. Given a valid demand vector b with b⊤1 = 0, Lemma 2.1 due to Miller and
Peng [194] shows that the minimum energy for routing b is given by b⊤L†b. Since
by construction we have that [1u − P(K)1u]

⊤1 = 0, substituting this demand
vector in place of b gives the lemma.

3.3 Overview

The core building block of our algorithm is a fast routine that generates and main-
tains an approximate Schur complement onto a set of terminalsK of our choice un-
der insertion and deletions of edges as well as terminal additions, with all of these
operations being supported in sub-linear time. One of the key ideas is to view to
the Schur complement as a sum of random walks, and then observe that sampling
exactly one walk per edge in the original graph already yields the desired object.
Concretely, we build upon ideas introduced in sparsifying random walk polynomi-
als [66], and Schur complements [89, 174] to show that it suffices to keep a union
of these walks. The following result is implicit in these works, and we review it in
Section 3.7 for the sake of completeness.

Theorem 3.3.1. Let G = (V,E,w) be an undirected, weighted multi-graph with a
subset of vertices K . Furthermore, let ϵ ∈ (0, 1), and let ρ be some parameter related
to the concentration of sampling given by

ρ = O
(
log nϵ−2

)
.

LetH be an initially empty graph, and for every edge e = (u, v) of repeat ρ times the
following procedure:

1. Simulate a random walk starting from u until it first hitsK at vertex t1,

2. Simulate a random walk starting from v until it first hitsK at vertex t2,

3. Combine these two walks (including e) to get a walk u = (t1 = u0, . . . , uℓ =
t2), where ℓ is the length of the combined walk.

4. Add the edge (t1, t2) to H with weight

1/

(
ρ

ℓ−1∑
i=0

(1/w(ui, ui+1))

)

The resulting graph H satisfies LH ≈ϵ SC(G,T) with high probability.

The output approximate Schur complement of H onto K has up to Õ(mϵ−2)
edges, and thus is very dense to be leveraged as a sparsifier for our applications.
Fortunately, there already exist efficient dynamic spectral sparsifiers, and we can
always afford to keep a sparsifier H̃ of H whose size is only Õ(|K|ϵ−2).

The performance of our data structure depends on how fast we can generate the
random walks used to createH . Note that even on the length n path with terminals

58 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

K concentrated on one end, the lengths of these walks may be as long as Ω(n2).
To overcome this we shorten the walks by augmenting K with roughly O(βm)
random vertices from a carefully chosen distribution. This random augmentation
of K ensures that any vertex v in G is roughly O(β−1) apart from a vertex in K ,
and then our problem reduces to understanding the rate at which a random walk
spreads among distinct edges. Concretely, our goal is to efficiently generate the first
k distinct edges visited by a walk in G. We distinguish the following cases.

1. For unweighted graphs, we utilize a result by Barnes and Feige [29] that shows
that with high probability a walk reaches k distinct edges in about k2 steps.

2. For weighted graphs, we employ an event driven simulation of walks. Specif-
ically, by computing the exit probability on the current set of edges visited
so far, we sample the first k new edges reached by the walk in poly(k) time.
Then, because we know the order that each edges is first reached, the first
among them that belongs toK gives the intersection of the walk withK .

Following Point (1), our dynamic Schur complement data-structure H with re-
spect to a randomly augmentedK is initialized by generating for each edge e ∈ E,
ρ random walk of length roughly β−2. This operation costs roughly O(mβ−2). We
then make the observation that the ability to add terminals into K means we only
need to consider insertions/deletions between vertices in K . Specifically, for each
affected edge we append its endpoints to K . A further advantage of this approach
is that additions toK only shorten random walks in H , and the cost of shortening
or truncating these random walks in H can be charged to the cost of construct-
ing them during the initialization. Thus, it follows that we can support terminal
additions, and thus insert or delete edges in O(1) amortized time. Maintaining a
sparsifier H̃ ofH introduces only polylogarithmic overheads, so this step does not
affect much our running times. We next discuss the applicability of this result.

The data-structure we presented readily gives a sub-linear dynamic Laplacian
solver for the case where b has small support, namely fewer than βm vertices of b
are non-zero. This can be accomplished by simply appending the entries of b (more
precisely, their corresponding vertices) to the Schur complementH , and solving the
system onH upon receipt of an index query. The resulting solution vector can then
be lifted back to the original Laplacian using Lemma 3.2.6. However, note that our
data-structure can only support up to O(|K|) = O(βm) operations if we want to
keep the the size ofH small. Thus, to limit the growth in |K|we periodically rebuild
the entire data structure (i.e., we resample the set of new terminals completely) after
βm operations, which in turn gives an amortized update time ofO(mβ−2/(βm)) =
O(β−3). Combining this with the bound of O(βm) on the query time we obtain
the following trade-off

Õ(β−3 + βm),

which is minimized when β = m−1/4, thus giving an update and query time of
O(m3/4).

3.4. DYNAMIC SCHUR COMPLEMENT 59

So it remains to address the case where b has a large number of non-zero en-
tries. We overcome this difficulty by projecting this vector onto the current set
of terminals K using the matrix P(K) and analyzing the error incurred by this
projection. Our main observation is that the standard notion of error in Laplacian
solvers, namely the L-norm, corresponds to energies of electrical flows. This al-
lows us to incur error in some of the b(u) values and then bound the energy of
fixing them. To find such flows, we once again consider our problem from a ran-
domwalk perspective, namely we view the projection of b ontoK being equivalent
to moving b around via random walks (Lemma 3.2.7). As such walks are short on
unweighted graphs, we can relate their energies to the length of the walks times
b(u)2 (Lemma 3.2.8).

One final obstacle is that if we move some vertex u from outside of K into K ,
the walks affected may be frommultiple b(u)s. To address this, we bound the ‘load’
of a vertex, defined as the number of walks that go through it, by the total length of
the walks. The latter follows from the uniform distribution of random walks being
stationary. Thus, as long as we pickedK so that all the entries in V \K have small
magnitudes, each move of some u into K incurs some small error. Bounding the
accumulation of such errors, and rebuilding appropriately gives the overall dynamic
solver result.

One application of the dynamic Laplacian solver is that we can maintain the
energy of electrical flow for routingb. This can also be viewed as an extension of our
dynamic effective resistances data-structure, which can only maintain the energy of
electrical flows for b with two non-zeros. Some further extensions in this direction
that we believe would be useful are providing implicit access to the dual electrical
flows, as well as finding the k largest entries either in the flow edges or the solution
vector x. However, such extensions will likely require a better understanding of the
graph sparsifier component [12], which is treated as a black box in this work.

For dynamically maintaining effective resistance in unweighted graphs, we es-
sentially follow the same approach as with the dynamic solver for small support
demand vectors, and thus obtain a running time of O(m3/4) on both update and
query time. For weighted graphs, we employ the weighted dynamic Schur comple-
ment algorithm (following Point(2)) which gives slightlyweaker guarantees, namely
a bound of Õ(m5/6) on the update and query time. Interestingly, this weighted ver-
sion has another immediate advantage; by running the data-structure on the output
of a dynamic spectral sparsifier (Lemma 3.2.4), we obtained a bound of Õ(n5/6) per
operation, which is truly sub-linear irrespective of graph density.

3.4 Dynamic Schur Complement

In this section we show how to dynamically maintain approximate Schur comple-
ments. We first restrict our attention to unweighted graphs (i.e., prove Lemma 3.1.1),
and then show how these result extend to the weighted case. We also present two
applications of our data structures, namely dynamic maintenance of effective resis-

60 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

tance on both unweighted (Theorem 3.1.3) and weighted graphs (Theorem 3.4.15).

3.4.1 Dynamic Schur Complement on Unweighted Graphs

In this section we design a data-structure for maintaining approximte Schur comple-
ments under the assumption that the dynamic graph remains unweighted through-
out the updates. Specifically, we have the following lemma.

Lemma 3.4.1 (Restatement of Lemma 3.1.1). Given an error threshold ϵ > 0, an
unweighted undirected multi-graph G = (V,E) with n vertices, m edges, a subset
of terminal vertices K ′ and a parameter β ∈ (0, 1) such that |K ′| = O(βm), there
is a data-structure DynamicSC(G,K ′, β) for maintaining a graph H̃ with LH̃ ≈ϵ

SC(G,K) for some K with K ′ ⊆ K , |K| = O(βm), while supporting O(βm)
operations in the following running times:

• Initialize(G,K ′, β): Initialize the data-structure, in Õ(mβ−2ϵ−4) expected
amortized time.

• Insert(u, v): Insert the edge (u, v) to G in Õ(1) amortized time.

• Delete(u, v): Delete the existing edge (u, v) from G in Õ(1) amortized time.

• AddTerminal(u): Add u toK ′ in Õ(1) amortized time.

To prove the lemma above, we first review the interpretation of Schur Comple-
ments using random walks, and then discuss how to generate and maintain these
walks under edge updates and addition of terminal vertices.

Given a graph G = (V,E) and a subset of terminals K recall that SC(G,K)
was defined using an algebraic expression that involved the Laplcian ofG. However,
since it is still unclear how to exploit this expression in the dynamic setting we
instead take a different, more ‘combinatorial’, view on SC(G,K). Concretely, we
will interpret SC(G,K) as a collection of random walks, each starting at an edge
of G and terminating inK , as described in Theorem 3.3.1.

Let H be the output graph from the construction in Theorem 3.3.1. Recall that
H is an approximate Schur Complement onto K that has up to ρm = Õ(mϵ−2)
edges (that is, ρ for each edge in G, where ρ = O(log nϵ−2) is the sampling para-
meter). As we will next show, H does not change too much (in amortized sense)
upon inserting or deleting an edge in G. We will be able to maintain H such that
the distribution ofH is the same asH(G) of the current graphG. Therefore, we can
maintain these changes using a dynamic spectral sparsifier H̃ of H (Lemma 3.2.4),
and whenever a query comes, we answer it on H̃ in Õ(|K|ϵ−2) = Õ(βmϵ−2) time.

While it is widely known how to generate random walks efficiently, we note
that the length of the walks generated in Theorem 3.3.1 could be prohibitively large
ifK is being picked arbitrarily. To see this, recall our example where we considered
a path of length n with terminals K being places in one end. The length of such
random walks may be as long as Ω(n2). To shorten these random walks, we aug-
mentK ′ with a random subset of vertices, which results in a larger setK . Coming

3.4. DYNAMIC SCHUR COMPLEMENT 61

Algorithm 3.1: InitializeUnweighted(G,K ′, β)

Input :Unweighted graph G, set of verticesK ′ ⊆ V such that |K ′| ≤ O(mβ),
and β ∈ (0, 1)

Output :Approximate Schur Complement H and union of β-shorted walksW
1 SetK ← K ′, H ← (V, ∅) andW ← ∅
2 For each edge e = (u, v) in G, letK ← K ∪ {u, v} with probability β
3 Let ρ← O(log nϵ−2) be the sampling overhead according to Theorem 3.3.1
4 for each edge e = (u, v) ∈ E and each i = 1, . . . , ρ do
5 Generate a random walk w1(e, i) from u until Θ(β−1 log n) different edges

have been hit, it reachesK , or it has hit every edge in its component
6 Generate a random walk w2(e, i) from v until Θ(β−1 log n) different edges

have been hit, it reachesK , or it has hit every edge in its component
7 if both walks reachK at t1 and t2 respectively then
8 Connect w1(e, i), e and w2(e, i) to form a walk w(e, i) between t1 and t2
9 Let ℓ← ℓ(w1(e, i)) + ℓ(w2(e, i)) + 1 be the length of w(e, i)

10 Add an edge (t1, t2) with weight 1/(ρℓ) to H
11 Add w(e, i) toW

12 returnH andW

back to the path example, βn uniformly random vertices will be roughly β−1 apart,
and random walks will reach one of these βn vertices in about β−2 steps. Because
G could be a multi-graph, and we want to support queries involving any vertex, we
pick K as the end points of a uniform subset of edges. A case that illustrates the
necessity of this choice is a path except one edge has n parallel edges. In this case
it takes Θ(n) steps in expectation for a random walk to move away from the end
points of that edge. This choice ofK completes the definition of our data structure,
which we summarize in Algorithm 3.1, and will discuss throughout the rest of this
section.

The performance of our data structures hinge upon the properties of the ran-
dom walks generated. We start by formalizing such a structure involving the set of
augmented terminals described above while parameterizing it with a more general
probability β for including the endpoints of the edges.

Definition 3.4.2 (β-shorted walks). Let G be an weighted, undirected multi-graph
and β ∈ (0, 1) a parameter. A collection of β-shorted walksW onG is a set of random
walks created as follows:

1. Choose a subset of terminal vertices K , obtained by including the endpoints of
each edge independently with probability at β.

2. For each edge e ∈ E, generate ρ walks from its endpoints either until
Ω(β−1 log n) different edges have been hit, or they reach K , or they visited
each edge that is in the same connected component as e.

62 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

As we will shortly seee, the main property of the collectionW is that its random
walks are short. Moreover, we will also prove that all walks inW will reachK with
high probability. These guarantees are summarized in the following theorem.

Theorem 3.4.3. Let G = (V,E) be any undirected multi-graph, and β ∈ (0, 1) a
parameter. Any set of β-shorted walksW , as described in Definition 3.4.2, satisfies the
following:

• With high probability, any random walk in W starting in a connected compo-
nent containing a vertex fromK terminates at a vertex inK .

Note that Theorem 3.4.3 is conditioned upon the connected component having
a vertex in K : this is necessary because walks stay inside a connected component.
However, this does not affect our queries: our data-structure has an operation for
making any vertex u a terminal, which we call during each query to ensure both s
and K are terminal vertices. Such an operation interacts well with Theorem 3.4.3
because it can only increase the probability of an edge’s endpoints being chosen.

Proving the theorem requires to determine the rate at which a random walk
visits at least β−1 log n edges. It turns out that a random walk of length Õ(β−2)
is highly likely to achieve this. For formally showing this, we need the following
result by Barnes and Feige [29].

Theorem 3.4.4 ([29], Theorem 1.2). There is an absolute constant cBF such that for
any undirected, unweighted, multi-graph G with n vertices and m edges, any vertex
u and any value m̂ ≤ m, the expected time for a random walk starting from u to visit
at least m̂ distinct edges is at most cBF m̂

2.

The above theorem can be amplified into a with high probability bound by re-
peating the walk O(log n) times.

Corollary 3.4.5. In any undirected unweighted multi-graphG withm edges, for any
starting vertex u, any length ℓ, and a parameter δ ≥ 1, a walk of length cBF ·δ ·ℓ log n
from u visits at least ℓ1/2 distinct edges with probability at least 1− n−δ .

Proof. We can view each such walk as a concatenation of δ log n sub-walks, each of
length cBF · ℓ.

We call a sub-walk good if the number of distinct edges that it visits is at least
ℓ1/2. ApplyingMarkov’s inequality to the result ofTheorem 3.4.4, a walk takesmore
than O(ℓ) steps to visit ℓ1/2 distinct edges with probability at most 1/2.

This means that each subwalk fails to be good with probability at most 1/2.
Thus, the probability that all subwalks fail to be good is at most 2−δ logn = n−δ .
The result then follows from an union bound over all starting vertices u ∈ V .

We now have all the tools to prove Theorem 3.4.3.

3.4. DYNAMIC SCHUR COMPLEMENT 63

Proof of Theorem 3.4.3. For any walk w, we define V (w) (respectively, E(w)) to be
the set of distinct vertices (respectively, edges) that a walk w visits. Consider a
random walk w that starts at u of length

ℓ = cBF · δ3 · β−2 log3 n

where δ is a constant related to the success probability.
If the connected component containing the walk has fewer than

δ · β−1 · log n

edges, then Corollary 3.4.5 gives that we have covered this entire component with
high probability, and the guarantee follows from the assumption that this compo-
nent contains a vertex ofK .

Otherwise, wewill show thatw reached enough edges for one of their endpoints
to be picked to be picked intoK with high probability. The key observation is that
becausew is generated independently fromK , we can bound the probability of this
walk not hitting K by first generating w, and then K . Specifically, for any size
threshold z, we have

PK,w [V (w) ∩K = ∅] = Pw,K [V (w) ∩K = ∅] (3.2)
≤ Pw [|E (w)| ≤ z] + Pw:|E(w)|≥z,K [V (w) ∩K = ∅] .

By Corollary 3.4.5 and the choice of ℓ, if we set

z = δ · β−1 · log n,

then the first term in Equation (3.2) is bounded by n−δ . For bounding the second
term, we can now focus on a particular walk ŵ that visits at least δ · β−1 · log n
distinct edges, i.e.,

|E (ŵ)| ≥ δ · β−1 log n.

Recall that we independently added the end points of each of these edges intoK
with probability β. If any of them is selected, we have a vertex that is both in V (ŵ)
andK . Thus the probability thatK contains no vertices from V (ŵ) is at most

(1− β)|E(ŵ)| ≤ (1− β)δ·β
−1 logn ≤ e−δ logn ≤ n−δ,

which completes the proof.

Corollary 3.4.5 together with Theorem 3.4.3 yield the following lemma.

Lemma 3.4.6. Algorithm 3.1 runs in Õ(mβ−2ϵ−2) time and outputs a graphH with
LH ≈ϵ SC(G,K), with high probability.

64 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

Proof. By Corollary 3.4.5, the length of each walk generated in Algorithm 3.1 is
bounded by O(β−2 log3 n). In addition, note that each step in a random walk can
be simulated in O(1) time. This is due to the fact that we can sample an integer
in [0, n − 1] by drawing x ∈ [0, 1] uniformly and taking ⌊xn⌋. Combining these
with the fact that the algorithm generates ρm = Õ(mϵ−2)walks, it follows that the
running time of the algorithm is dominated by Õ(mβ−2ϵ−2).

Note that the collection of generated walks form the setW of β-shorted walks.
ByTheorem 3.4.3, with high probability, each of thewalks that starts at a component
containing a vertex inK hitsK . Conditioning on the latter,Theorem 3.3.1 gives that
with high probability, LH ≈ϵ SC(G,K).

Handling edge updates and terminal additions. We start by observing that
there is always a one-to-one correspondence between the collection of β-shorted
walks W and our approximate Schur complement H . Accordingly, our primary
concern will be supporting the Insert, Delete, and AddTerminal operations in
the collectionW . However, asW undergoes changes, we need to efficiently update
the sparsifierH . To handle these updates, we would ideally have efficient access to
which walks inW are affected by the corresponding updates.

To achieve this, we index into walks that utilize a vertex or an edge, and thus
set up a reverse data structure pointing from vertices and edges to the walks that
contain them. The following lemma says that we can modify this representation
with minimal cost.

Lemma 3.4.7. For the collection of β-shorted walksW , letWv andWe be the specific
walks of W that contain vertex v and edge e, respectively. We can maintain a data
structure forW such that for any vertex v or edge e it reports either

• All walks inWv orWe in O(|Wv|) or O(|We|) time, respectively, or

with an additional O(log n) overhead for any changes made toW .

Proof. For every vertex (respectively, edge), we can maintain a balanced binary
search tree consisting of all the walks that use it in time proportional to the number
of vertices (respectively, edges) in the walks. Supporting rank and select operations
on such trees then gives the claimed bound.

As a result, any update made to the collection of walks can be updated in the
approximate Schur complement H generated from these walks in O(log n) time.
We now have all the necessary ingredients to prove Lemma 3.1.1.

Proof of Lemma 3.1.1. We give a two-level data-structure for dynamically maintain-
ing Schur complements. Specifically, we keep the terminal set K of size Θ(mβ).
This entails maintaining

1. an approximate Schur complementH ofGwith respect toK (Theorem 3.3.1),

2. a dynamic spectral sparsifier H̃ of H (Lemma 3.2.4).

3.4. DYNAMIC SCHUR COMPLEMENT 65

Algorithm 3.2: AddTerminal(u)
Input :Vertex u such that u ̸∈ K

1 SetK ← K ∪ {u}
2 Shorten all random walks inW to the first location they meet u
3 Update the corresponding edges in H and H̃

We implement the procedure Initialize by running Algorithm 3.1, which produces
a graph H and then computing a spectral sparsifier H̃ of H using Lemma 3.2.4.
Note that by construction of our data-structure, every update inH will be handled
by the black-box dynamic sparsifier H̃ .

As we will shortly see, operations Insert and Delete will be reduced to adding
terminals to the set K . Thus, the bulk of our effort is devoted to implementing the
procedure AddTerminal. Let u be a non-terminal vertex that we want to append
toK . We setK ← K∪{u}, and then shorten all the walks at the first location they
meet u. This shortening of walks induces in turn edge insertions and deletions toH ,
which are then processed by H̃ . The pseudocode for this operation is summarized
in Algorithm 3.2. To quickly locate the first appearances of u in the random walks
fromW , we make use of the data-structure from Lemma 3.4.7. Let us first describe
the construction of such data-structure during the preprocessing phase. LetWu be
the balanced binary search tree consisting of all the walks that use the vertex u in
W . Fix w ∈ Wu. For any t ≥ 0, if w visits u after K steps, we check whetherWu

contains w or not. If the latter holds, we know that u has appeared before in w and
we do not need to add w toWu. Otherwise, we add w toWu as this is the first time
the walk w visits u. After locating the first appearances of u, we cut the walks in
these locations, delete the corresponding affected walks (together with their weight
fromH), and insert the new shorter walks toH . Note that we can simply use arrays
to represent each random walk inW .

We next discuss the implementation of operations Insert and Delete. Specifi-
cally, upon insertion or deletion of an edge e = (u, v) in G, we append both u and
v to the terminal set K . Now, all the walks that pass through u or v in W must
be shorten at the first location they meet u or v. For inserting an edge (u, v) with
weight w(u, v) in G, we simply add ρ trivial random walks (i.e., the edge (u, v)) of
weight w(u,v)

ρ to H (which sum up to the edge (u, v) itself). For deleting the edge
(u, v) with weight w(u, v) from G, simply delete these ρ random walks between u
and v inH (which exist since we guaranteed that u and v are added as terminals to
H).

We next analyze the performance of our data-structure. Let us start with the
pre-processing time. First, by Lemma 3.4.6 we get that the cost for constructing H
on a graph withm edges is bounded by Õ(mβ−2ϵ−2). Next, sinceH has Õ(mϵ−2)
edges, constructing H̃ takes Õ(mϵ−4) time. Thus, the amortized time of Initialize
operation is bounded by Õ(mβ−2ϵ−4).

We now analyze the update operations. By the above discussion, note that it

66 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

suffices to bound the time for adding a vertex to K , which in turn (asymptotically)
bounds the update time for edge insertions and deletions. The main observation we
make is that adding a vertex toK only shortens the existing walks, and Lemma 3.4.7
allows us to find such walks in time proportional to the amount of edges deleted
from the walk. Since the walk needed to be generated in the Initialize operation,
the deletion of these edges take equivalent time to generating them. Moreover,
we note that (1) handling the updates in H̃ induced by H introduces additional
O(poly(log n)ϵ−2) overheads, and (2) adding or deleting ρ edges until the next re-
build costs Õ(βmϵ−2), since we process only up to βm operations. These together
imply that the amortized cost for adding a terminal can be charged against the pre-
processing time, which is bounded by Õ(mβ−2ϵ−4), up to poly-logarithmic factors.
Thus it follows that the operations AddTerminal, Insert and Delete can be im-
plemented in Õ(1) amortized update time.

3.4.2 Dynamic All-Pair Effective Resistance on Unweighted
Graphs

In this section we present the first application of our dynamic Schur complement
data structure for unweighted graphs. Concretely, we design a dynamic algorithm
that supports an intermixed sequence of edge insertions, deletions and pair-wise
resistance queries, and returns a (1± ϵ)-approximation to all the resistance queries.

We start by reviewing two natural attempts for solving this problem.

• First, since spectral sparsifiers preserve effective resistances (Lemma 3.2.5),
we could dynamically maintain a spectral sparsifier (Lemma 3.2.4), and then
compute the (s, t) effective resistance on this sparsifier. This leads to a data
structure with poly(log n, ϵ−1) update time and Õ(nϵ−2) query time.

• Second, by the preservation of effective resistances under Schur complements
(Fact 3.2.2), we could also utilize Schur complements to obtain a faster query
time among a set of βm terminals, K , for some reduction factor β ∈ (0, 1),
at the expense of a slower update time. Specifically, after each edge update,
we recompute an approximate Schur complement of the sparsifier ontoK in
time Õ(mϵ−2) [88], after which each query takes Õ(βmϵ−2) time.

The first approach obtains sublinear update time, while the second approach
gives sublinear query time. Our algorithm stems from combining these two meth-
ods, with the key additional observation being that addingmore vertices toK makes
the Schur complement algorithm more local. Specifically, using Lemma 3.1.1 leads
to a data-structure for dynamically maintaining all-pair effective resistances.

Proof of Theorem 3.1.3. Let D(H̃) denote the data structure that maintains a dy-
namic (sparse) Schur complement H̃ ofG (Lemma 3.1.1). SinceD(H̃) supports only
up to βm operations, we rebuildD(H̃) on the current graphG after such many op-
erations. Note that the operations Insert and Delete on G are simply passed to
D(H̃). For processing the query operation EffectiveResistance(s, t), we declare

3.4. DYNAMIC SCHUR COMPLEMENT 67

s and t terminals (using the operation AddTerminal ofD(H̃)), which ensures that
they are both now contained in H̃ . Finally, we compute the (approximate) effective
resistance between s and t in H̃ using Lemma 3.2.1.

We now analyze the performance of our data-structure. Recall that the inser-
tion or deletion of an edge in G can be supported in Õ(1) expected amortized time
by D(H̃). Since our data-structure is rebuilt every βm operations, and rebuilding
D(H̃) can be implemented in Õ(mβ−2ϵ−4), it follows that the amortized cost per
edge insertion or deletion is

Õ(mβ−2ϵ−4)

βm
= Õ(β−3ϵ−4).

The cost of any (s, t) query is dominated by (1) the cost of declaring s and t
terminals and (2) the cost of computing the (s, t) effective resistance to ϵ accuracy
on the graph H̃ . Since (1) can be performed in Õ(1) time, we only need to analyze
(2). We do so by first giving a bound on the size of K . To this end, note that
each of them edges in the current graph adds two vertices toK with probability β
independently. By a Chernoff bound, the number of random augmentations added
toK is at most 2βm with high probability. In addition, since D(H̃) is rebuilt every
βm operations, the size of K never exceeds 4βm with high probability. The latter
also bounds the size of H̃ by Õ(βmϵ−2) and gives that the query cost is Õ(βmϵ−4).

Combining the above bounds on the update and query time, we obtain the fol-
lowing trade-off

Õ
(
(βm+ β−3)ϵ−4

)
,

which is minimized when β = m−1/4, thus giving an expected amortized update
and query time of

Õ(m3/4ϵ−4).

3.4.3 Dynamic Schur Complement on Weighted Graphs

In this section we present an extension of Lemma 3.1.1 to weighted graphs while
slightly increasing the running time guarantees. Concretely, we prove the following
lemma.

Lemma 3.4.8. Given an error threshold ϵ > 0, a weighted, undirected multi-
graph G = (V,E,w) with n vertices, m edges, a subset of terminal vertices K ′

and a parameter β ∈ (0, 1) such that |K ′| = O(βm), there is a data-structure
WeightedDynamicSC(G,K ′, β) for maintaining a graph H̃ with LH̃ ≈ϵ SC(G,K)
for someK withK ′ ⊆ K , |K| = O(βm), while supporting O(βm) operations in the
following running times:

1. Initialize(G,K ′, β): Initialize the data-structure in Õ(mβ−4ϵ−4) expected
amortized time.

2. Insert(u, v, w): Insert the edge (u, v) with weight w to G in Õ(1) amortized
time.

68 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

3. Delete(u, v): Delete the existing edge (u, v) from G in Õ(1) amortized time.

4. AddTerminal(u): Add u toK ′ in Õ(1) amortized time.

While the extension of our data-structure to weighted graphs builds upon the
ideas we used in the unweighted case, there are a few obstacles that force us to
introduce new components in our algorithm in order to make such an extension
feasible. To illustrate, consider path of constant length with edge weights alternat-
ing between 1 and n10. Recall that the running time our data-structure depends on
the speed at which randomwalks visit distinct edges in a graph. Due to the structure
of the edge weights, a random walk in this graph is expected to take Θ(n10) steps
before hitting a constant number of different edges. This shows that the naive gen-
eration of random walks in weighted graphs may be computationally prohibitive
for our purposes.

To rectify the above issue, we make the important observation that it is not
necessary to keep information for every single step of a random walk. Instead, it
would suffice if we could efficiently determine the step at which the walk meets a
new vertex along with the corresponding weight associated with the walk, which
defines the edge weight that is added to the sparsifier. This high-level idea allows
us to generate random walks much faster, and we next make this more precise.

Following the notation we used in the unweighted case, for an arbitrary vertex
v ∈ V , a set of terminals K ⊆ V and a parameter β ∈ (0, 1), a β-shorted walk
with respect to v and K is a random walk that starts at a given vertex v ∈ V and
halts whenever Ω(β−1 log n) different vertices have been hit, it reaches a vertex in
K , or it has hit every edge in the connected component containing v. The main
contribution of this section is summarized in the following lemma.

Lemma 3.4.9. Let G = (V,E,w) be an undirected, weighted graph with polynomi-
ally bounded weights. Let K ⊆ V be a set of terminals and v ∈ V be an arbitrary
vertex. Then there is an algorithm that generates a β-shorted randomwalk with respect
to v and K and approximates its corresponding weight up to a (1 + ϵ) multiplicative
error in Õ(β−4ϵ−2) time.

We first give an intuition behind the algorithm in the above lemma and
briefly describe how this algorithm interacts with other parts of our dynamic data-
structure. Let w = (w0, . . . , wt) be a random walk that starts at an endpoint of an
edge, and define

s(w) :=

t∑
i=1

1

w(wi−1, wi)
, (3.3)

to be its corresponding weight. Recall that before adding the walk w to H , we
must scale it proportionally to 1/s(w) (Theorem 3.3.1). Observe that throughout
our dynamic algorithm, the only modification we might do to w is to truncate it at
the first location it meets a new vertex u that is being declared a terminal. Moreover,
after this modification, note that the old value of s(w) is no longer valid andwe need
to extract s(w) that corresponds to the new walk. To allow efficient access to such

3.4. DYNAMIC SCHUR COMPLEMENT 69

information, we can view the walk w as being split into sub-walk segments by the
first locations w meets new vertices and store the weights of each such sub-walks.
As we will next see, this bookkeeping alone allows us to proceed with the same
algorithm as in the unweighted case.

We next give the three main components for implementing the algorithm stated
in Lemma 3.4.9.

(A) Sample the number of steps needed for a randomwalkw to visit a new vertex.

(B) Sample a new distinct vertex that w hits, and its corresponding edge.

(C) Sample the (approximate) weight of a random walk between two given ver-
tices.

After describing each of them, we will see that their combination naturally leads to
our desired result.

Let us first discuss (A). For any t ≥ 0, consider a t-step random walk w and
let U = {w0, . . . , wt} be the set of distinct vertices that w has visited up to step t.
Define u := wt ∈ U to be the current vertex of the walk w. Our goal is to efficiently
sample the number of steps the walk w needs to visit a vertex not in U . To this
end, we start by introducing some useful notation. For any i ≥ 0, let pnew(i) be
the probability that w meets a new vertex that is not in U in wt+1, . . . , wt+i. For
v ∈ U , let pi(v) be the probability that wt+i = v, conditioned on w not having met
any new vertex inwt+1, . . . , wt+i−1. Then it can be easily verified that both pnew(i)
and pi(v) are just linear combinations of pnew(i) and pi−1(v)

pi(v) =
∑
u∈U

(
pi−1(u) ·

w(u, v)

d(u)

)
, ∀v ∈ U. (3.4)

pnew(i) = pnew(i− 1) +
∑

u∈V \U

∑
v∈U

(
pi−1(v) ·

w(v, u)

d(v)

)
. (3.5)

Next, using the linearity of the recurrences in (3.5) and (3.4) we can find a matrix
W of dimension (k+1)× (k+1), where k = |U |, satisfying the following equality[

pi

pnew(i)

]
= W ·

[
pi−1

pnew(i− 1)

]
, ∀i ≥ 1. (3.6)

The main advantage introducing such a matrix is that it allows us to efficiently
compute pnew(i) and pi using fast exponentiation via repeated squaring. Specifi-
cally, let p0 be a unit vector of dimension k, where for the current vertex u of the
walk w we have that p0(u) = 1, and 0 otherwise. Let p̂0 = [p0 pnew(0)]⊤ be the
extended k + 1 dimension vector, where pnew(0) = 0. For any i ≥ 1, repeatedly
applying Equation (3.6) and letting p̂i := Wip̂0 yields

p̂i(v) = pi(v), ∀v ∈ U and p̂i(k + 1) = pnew(i). (3.7)

70 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

Algorithm 3.3: BinarySearch(W, p̂0,M)

Input :A (k + 1)× (k + 1) matrix W, a (k + 1) dimensional vector p̂0, and an
integerM

Output :An integer
1 Set ℓ← 0, r ←M , ℓp← 0 and rp← 1
2 while (ℓ ̸= r) do
3 Set η ← ⌊(ℓ+ r)/2⌋
4 Compute p̂η = Wηp̂0 using Lemma 3.4.10
5 Set pnew(η) = p̂η(k + 1)
6 With probability (pnew(η)− ℓp)/(rp− ℓp), set r ← η, and rp = pnew(η),

otherwise, with probability (rp− pnew(η))/(rp− ℓp), set ℓ← η + 1,
ℓp = pnew(η)

7 return ℓ

Using the above relation, we can use fast exponentiation via repeated squaring
to compute pnew(i) in O(k3 log(i)) time. This follows directly from the following
well-known lemma, which we will exploit in a few other places throughout this
work.

Lemma 3.4.10. LetB be a matrix of dimension n× n, andBi denote the i-th power
of B, for any i ≥ 1. Then there is an algorithm that computes Bi in O(n3 log(i))
time.

We now have all the tools to describe the sampling procedure for computing the
number of steps that the walk needs to visit a vertex that is distinct from the vertices
in U . We accomplish this using a “binary search”-inspired subroutine, which works
as follows. As an input, our algorithm is given a (k + 1) × (k + 1) matrix W (as
defined in Equation (3.6)), the vector p̂0, and an integerM , which is an upper-bound
on the cover time of G. The algorithm also maintains variables ℓ, r, ℓp, rp with the
following initialization ℓ ← 0, r ← M , ℓp ← 0 and rp ← 1. As long as (ℓ ̸= r),
it defines the average η = ⌊(ℓ+ r)/2⌋ and then proceeds to compute p̂η = Wηp̂0

using Lemma 3.4.10. Note that pnew(η) = p̂η(k + 1) by Equation (3.7). Finally, the
algorithm uses pnew(η) to randomly decide whether w meets a new vertex in the
next η steps or not. In other words, it updates the maintained variables using the
rule below:

1. with probability (pnew(η)− ℓp)/(rp− ℓp), set r ← η, and rp = pnew(η),
2. otherwise, with probability (rp − pnew(η))/(rp − ℓp), set ℓ ← η + 1, ℓp =

pnew(η).

If (ℓ = r), then the algorithm returns ℓ. This procedure is summarized in Algo-
rithm 3.3.

We next show the correctness of the above procedure. To do so, we first need the
following notation. For a t-step random walk w and a current vertex u = wt ∈ U ,
let X(u,U) be the smallest number of steps of steps needed for w to visit a vertex

3.4. DYNAMIC SCHUR COMPLEMENT 71

not inU , i.e.,X(u,U) = min{i | i ≥ 1, wt+i ̸∈ U}. Note thatX(u,U) is a random
variable, and X(u,U) ≤M by definition ofM .

Lemma 3.4.11. Let w be a t-step random walk, U the set of distinct vertices w vis-
ited, u = wt ∈ U the current vertex and k = |U | the number of distinct vertices w
has visited so far. For W, p̂0, and M defined as above, BinarySearch(W, p̂0,M)
correctly samplesX(u,U), i.e., the number of steps w needs to visit a vertex not in U ,
in O(k3 log2M) time.

Proof. By Equation (3.7) and Line 4 in Algorithm 3.3, note that pnew(η) is the proba-
bility thatwmeets a new vertex in the fist η steps. The correctness of BinarySearch
can be proven using an inductive argument on the number of iterations of the while
loop. Here, we just show the crucial parts for being able to apply such an argument.
First, observe that right after Line 2 in the while loop, we have that

(rp− ℓp) = PX(u,U) [ℓ ≤ X(u,U) ≤ r] .

The latter holds because ℓp = PX(u,U) [X(u,U) ≤ ℓ] and rp =
PX(u,U) [X(u,U) ≤ r], which in turn can be verified for each assignment of
ℓ and r. Next, we prove that conditioning on ℓ ≤ X(u,U) ≤ r right after Line 2
in the while loop, Algorithm 3.3 samples X(u,U) from the correct distribution.
This is true when (ℓ = r), since the condition of the while loop is no longer
satisfied and the algorithm returns ℓ. If, however (ℓ ̸= r), then we need to compute
the following probabilities: (1) PX(u,U) [X(u,U) ≤ η | ℓ ≤ X(u,U) ≤ r] and (2)
PX(u,U) [X(u,U) > η | ℓ ≤ X(u,U) ≤ r]. To determine (1), we get that

PX(u,U) [X(u,U) ≤ η | ℓ ≤ X(u,U) ≤ r]

=
PX(u,U) [(X(u,U) ≤ η) ∧ (ℓ ≤ X(u,U) ≤ r)]

PX(u,U) [ℓ ≤ X(u,U) ≤ r]

=
PX(u,U) [ℓ ≤ X(u,U) ≤ η]
PX(u,U) [ℓ ≤ X(u,U) ≤ r]

=
(pnew(η)− ℓp)

(rp− ℓp)
.

The probability from case (2) can be shown similarly. Since Line 5 in Algorithm 3.3
updates the search boundaries ℓ and r and their corresponding values ℓp and rp
using probabilities (1) and (2), the correctness of the algorithm follows.

For the running time, observe that the number of iterations until the condition
of the while loop is no longer satisfied is bounded by O(logM). Moreover, the
running time of one iteration is dominated by the time needed to compute Wηp̂0.
Since W is a (k + 1) × (k + 1) dimensional matrix and η ≤ M , Lemma 3.4.10
implies that the matrix powering step can be computed in O(k3 logM). Thus, it
follows that Algorithm 3.3 can be implemented in O(k3 log2M) time.

72 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

Wenext explain how to sample a new distinct vertex, and its corresponding edge
of a t-step random walkw, i.e., we discuss component (B). LetX(u,U) be the index
computed by BinarySearch routine. We first compute the probability dsitribution
q over vertices in U after performing the next (X(u,U) − 1) steps of the random
walk w, conditioning on w not leaving U . Afterwards we proceed to computing the
probability distribution r over the edges leaving U , i.e., edges in the cut (U, V \U),
conditioning onw0, . . . , wt andwt+X(u,U) being the first vertex not in U . Formally,
for v ∈ U , z ∈ V \ U , we have

r(v, z) =
q(v)w(v, z)

R
, where R :=

∑
v∈U,z∈V \U

q(v)w(v, z). (3.8)

Finally, we sample (wt+X(u,U)−1, wt+X(u,U)) according to r, where wt+X(u,U) is
the first vertex not in U . The lemma below shows that we can efficiently sample
from r.

Lemma 3.4.12. Let w be a t-step random walk and let U with k = |U | be the set of
distinct vertices w has visited so far. Given the number of steps X(u,U) needed for
w to visit a vertex not in U , there exists an algorithm that samples an edge leaving U ,
and the first vertex not in U in O(k3 logM) time.

Proof. We start by showing how to compute the distribution q. To this end, recall
that pi(v) is the probability that wt+i = v, conditioned on w not having met any
vertex different from U in wt+1, . . . , wt+i−1. Thus, by Equation (3.6), we can use
the fast exponentiation routine (Lemma 3.4.10) to compute the vector p̂X(u,U)−1 =

WX(u,U)−1p̂0. Since by Equation (3.7) we have that p̂X(u,U)−1(v) = pX(u,U)−1(v)
for each v ∈ U , it follows that q(v) is exactly pX(u,U)−1(v). Note that the running
time for implementing this step is O(k3 logM) as X(u,U) ≤M .

We next describe how to efficiently sample from the distribution r. First, it will
be helpful to to sample a vertex v ∈ U conditioning on the wt+X(u,U) being the
first vertex not in U . Specifically, we are interested in sampling a vertex v ∈ U with
probability

q(v) ·w(v, V \ U)

R
, where w(v, V \ U) :=

∑
z∈V \U

w(v, z). (3.9)

For being able to efficiently sample from this distribution, we need to compute
w(v, V \ U), which in turn may require examining up to Ω(n) edges incident to
v. However, this is not sufficient for our purposes as our ultimate goal is to sample
from r in time only proportional to k. To alleviate this, observe thatw(v, V \U) =
(d(v) −

∑
z∈U w(v, z)). Thus, maintaining weighted degree dv for each v ∈ V ,

allows us to compute w(v, V \U) in O(k) time. Similarly, rearranging the sums in
the definition of R we get

R =
∑

v∈U, z∈V \U

q(v)w(v, z) =
∑
v∈U

(q(v) ·w(v, V \ U)) ,

3.4. DYNAMIC SCHUR COMPLEMENT 73

which in turn implies that R can be computed in O(k2) time. The latter gives that
the distribution defined in Euqation (3.9) can be computed in O(k2) time. For sam-
pling a vertex v ∈ U from this distribution we simply generate a uniformly-random
value x ∈ [0, 1], and then perform binary search on the prefix sum array of the prob-
ability distribution. Since computing the prefix sum array and performing binary
search can be done in O(k) and O(log n) time, respectively, we get that sampling
v ∈ U according to distribution defined in Equation (3.9) can be performed inO(k2)
time.

We next explain how to sample an edge (v, z), where z ∈ V \ U and v ∈ U is
the vertex we sampled from above. The probability distribution from which (v, z)
is sampled is as follows

w(v, z)

w(v, V \ U)
. (3.10)

To see the idea behind this choice, note that Equation (3.10) combinedwith Equa-
tion (3.9) yields the distribution r as defined in Equation (3.8), which ensures that
the edge is sampled correctly. However, one complication we face with is that v
may be incident to Ω(n) edges. Remember that for sampling an edge one needs ac-
cess to the prefix sum array, which is expensive for our purposes. A natural attempt
is to compute such an array during preprocessing. Nevertheless, this alone does not
suffice as the set U will change over the course of our algorithm. Instead, for every
vertex v ∈ V , we maintain an augmented Balanced Binary Tree (BBT) on the edge
weights incident to v. Augmented BBT is a data-structure that supports operations
such as (1) computing prefix sums and (2) updating the edge weights incident to v,
both in O(log n) time.

We employ the augmented BBT data-structure as follows. First, for each vertex
U and the sampled vertex v ∈ U , we update the weights of the edges from v to
U to 0 in the augmented BBT of v. We then sample a uniformly-random value
x ∈ [0,W], and use the prefix sums computation in the tree to determine the range
in which x lies together with the corresponding edge (wt+X(u,U)−1, wt+X(u,U)),
wherewt+X(u,U) is the first vertex not inU . After having sampled the edge, we undo
all the changes we performed in the augmented BBT of v. It follows that sampling
an edge according to Equation (3.10) can be implemented in O(k log n). Putting
together the above running times, we conclude that sampling an edge leaving U as
well as the first vertex not in U can be implemented in O(k3 logM) time.

The last ingredient we need is an efficient way to sample the sum of weights
in the random walk starting at wt and ending at wt+X(u,U), where X(u,U) is the
number of steps needed for the walk to leave the vertex set U (Component (C)). In
other words, we need to sample the following sum

t+X(u,U)∑
i=t+1

1

w(wi−1, wi)
.

74 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

We accomplish this task by employing a doubling technique. To illustrate, for any
pair of vertices u, v ∈ V and s(w) as defined in Equation (3.3), let

fu,vs(w),ℓ (3.11)

be the probability mass function of s(w) conditioning on (1)w being a randomwalk
that starts at u and ends at v, i.e., w ∼ wu,v and (2) length of the walk ℓ(w) is ℓ in
G. Then it can be shown that

fu,vs(w),ℓ =
∑
y∈V

(
fu,ys(w),ℓ/2 ∗ f

y,v
s(w),ℓ/2

)
,

where ∗ denotes the convolution between two probability mass functions. Equiva-
lently, the convolution is the probability mass function of the sum of the two corre-
sponding random variables. The above relation suggests that if (1) we have some ap-
proximate representation of the probability mass functions fu,vs(w),ℓ/2 for all u, v ∈ V ,
and (2) we are able to compute the convolution of the twomass functions under such
representation, we can produce approximations for fu,vs(w),ℓ, where u, v ∈ V . This
idea is formalized in the following lemma.

Lemma 3.4.13. Let G = (V,E,w) be a undirected, weighted graph with w(e) =
[1, nc] for each e ∈ E, where c is a positive constant. For any finite random walk w of
length ℓ with ℓ ≤ nd, where d is a positive constant, let s(w) be the sum of the inverse
of its edge weights, i.e.,

s(w) =

ℓ∑
i=1

1

w(wi−1, wi)
.

Moreover, for any u, v ∈ V , let
fu,vs(w),ℓ

be the probability mass function of s(w) conditioning on (1) w being a random walk
that starts at u and ends at v, and (2) length of the walk ℓ(w) is ℓ in G. Then, for any
pair u, v ∈ V , there exists an algorithm that that samples from fu,vs(w),ℓ and outputs a

sampled s(w) up to a (1 + ϵ) multiplicative error in Õ(n3ϵ−2) time.

We finally describe a procedure that generates a β-shorted walk with respect
to some vertex v and set of terminals K . Concretely, the algorithm maintains (1) a
set U , initialized to {v}, of the distinct vertices visited so far by a random walk w
starting at v, (2) the number of steps t the walk w has performed so far and (3) two
lists Lw and Ls, initially set to empty, containing the first occurrences of distinct
vertices of w and the weightes of the sub-walks induced by the distinct vertices,
respectively. Next, as long as w does not hit a vertex in K or there are vertices in
the component containing v that are still not visited byw, for the nextΘ(β−1 log n)
steps, the algorithm repeatedly generates a new vertex not in the current U by
using components (A), (B) and (C). In each iteration, the maintained quantities U ,
t, Lw and Ls are updated accordingly. Note that this procedure indeed outputs all

3.4. DYNAMIC SCHUR COMPLEMENT 75

Algorithm 3.4: GenerateSingleWalk(G,K, v)
Input :Weighted graph G = (V,E,w) with w(e) = [1, nc] for each e ∈ E and

c > 0, a set of verticesK ⊆ V , a vertex v ∈ V such that the component
containing v contains at least one vertex inK

Output :Two lists Lw and Ls containing the first occurrences of distinct vertices of
a random walk w starting at v and the weights of the sub-walks induced
by the distinct vertices, respectively

1 Set U ← {v}, k ← |U |, and let u← v be the current vertex
2 Let t← 0 be the index of current step of random walk w, i.e., wt = u
3 Let Lw and Ls be two lists, initially set to empty
4 for each i = 1, . . . ,Θ(β−1 log n) do
5 Let W be a matrix of dimension (k + 1)× (k + 1) as defined in Equation (3.6)
6 Set p̂0 = [p0 0]

⊤, where p0(u)← 1, and p0(û)← 0 for every û ∈ U \ u
7 Set X(u,U)← BinarySearch(W, p̂0, O(m3))
8 Compute the probability distribution q over vertices in U after (X(u,U)− 1)

steps of the random walk w, conditioning on w not leaving U
9 Compute the probability distribution R over the the edges in (U, V \ U)

conditioning on w0, . . . , wt and wt+X(u,U) being the first vertex not in U .
Concretely, for v ∈ U , z ∈ V \ U ,

r(v, z) =
q(v)w(v, z)

R
, where R←

 ∑
v∈U, z∈V \U

q(v)w(v, z)

 .

10 Sample (wt+X(u,U)−1, wt+X(u,U)) according to r(wt+X(u,U)−1, wt+X(u,U))
11 Set enew ← (wt+X(u,U)−1, wt+X(u,U))
12 Invoke Lemma 3.4.13 in the inducted graph G[U] to sample
13

s =

t+X(u,U)−1∑
j=t+1

1

w(wj−1, wj)
.

14 Append wt+X(u,U) to Lw and (s+ 1/w(enew)) to Ls

15 if wt+X(u,U) ∈ K then
16 Go to Line 20
17 else
18 Set t← (t+X(u,U)), u← wt+X(u,U), U ← U ∪ {u}, and k ← (k + 1)
19 If U covers the entire component, go to Line 20. Otherwise, i← (i+ 1)

20 return lists Lw and Ls.

necessary information we need from a β-shorted walk. A detailed implementation
of the algorithm is summarized in Figure 3.4.

We now have all the necessary tools to prove Lemma 3.4.9.

Proof of Lemma 3.4.9. We first show correctness. By Lemma 3.4.11 it follows
that BinarySearch correctly samples the number of steeps before a walk meets
a new vertex. Next, Lemma 3.4.12 implies that the we can sample the new dis-

76 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

tinct vertex and its corresponding edge. Finally, by Lemma 3.4.13 we know that
the weight of each sub-walk of a β-shorted walk is approximated within a (1 + ϵ)
multiplicative error. Bringing these approximation together we get that the weight
of the β-shorted walk itself is approximated within the same multiplicative error.

We now analyse the running time of procedure GenerateSingleWalk. We
start by bounding the cover time of G, which in turn bounds the number of steps
for a random walk to meet a new vertex. To this end, note that it takes expected
O(m2) time to meet a vertex in the same component ([16]). Thus, if we perform a
random walk of length O(m3) we are guaranteed that it covers ever vertex in the
component containing the starting vertex, with high probability.

Next, we analyze the running time for the steps executed within one itera-
tion of the for loop. Observe that k = |U | = O(β−1 log n) at any point of
time throughout our algorithm. The latter together with Lemma 3.4.11 give that
it takes O(k3 log2M) = Õ(β−3) time to sample the minimum number of steps
for a random walk to visit a vertex not in U , where M = O(m3) by the discus-
sion above. Furthermore, by Lemma 3.4.12 we can sample the new vertex not
in U , and its corresponding edge in Õ(β−3) time. Finally, Lemma 3.4.13 implies
that the weight s(w) of the random sub-walk between the current vertex and the
new generated vertex can be approximately sampled in Õ(β−3ϵ−2) time. The lat-
ter holds because Lemma 3.4.13 is invoked on top of the graph G[U] for which
|V (G[U])| = O(β−1 log n). Combining the above running times, we get that one it-
eration can be implemented in Õ(β−3ϵ−2) time. Since there areO(β−1 log n) itera-
tions, we conclude that the overall running time of our procedure is Õ(β−4ϵ−2).

We now present the procedure for generating a Schur complement on weighted
graphs. The idea behind this algorithm is the same as in the unweighted setting,
except that now we use GenerateSingleWalk to extract the information needed
to simulate β-shorted walks. For the sake of completeness we summarize the details
of this modified procedure in Algorithm 11.

Lemma 3.4.14. Algorithm 11 runs in Õ(mβ−4ϵ−4) time and outputs a graph H
satisfying LH ≈ϵ SC(G,K), with high probability.

Proof. We first bound the running time of Algorithm 11. By Lemma 3.4.9, the time
needed to generate a β-shorted walk is Õ(β−4ϵ−2). Combining this with the fact
that the algorithm generates ρm = Õ(mϵ−2) walks, it follows that the running
time of the algorithms is dominated by Õ(mβ−4ϵ−4).

We next show the correctness of our procedure. First, note that procedure Gen-
erateSingleWalk generates a valid β-shorted walk with its weight being approxi-
mated up to a (1+ϵ)multiplicative error (Lemma 3.4.9). Assume for now that there
is an oracle that fixes this approximate weight of a walk back to its original exact
weight. Then the collection of generated walks from Algorithm 11 forms the setW
of β-shorted walks, and let Ĥ be the corresponding output graph. ByTheorem 3.4.3,
with high probability, each of the walks that starts at a component containing a ver-

3.4. DYNAMIC SCHUR COMPLEMENT 77

Algorithm 3.5: InitializeWeighted(G,K ′, β)

Input :Weighted graph G = (V,E,w) with w(e) = [1, nc] for each e ∈ E and
c > 0, set of verticesK ′ ⊆ V such that |K ′| ≤ O(βm), and β ∈ (0, 1)

Output :Approximate Schur Complement H and union of β-shorted walksW
1 SetK ← K ′, H ← (V, ∅) andW ← ∅
2 For each edge e = (u, v) in G, letK ← K ∪ {u, v} with probability β
3 Let ρ← O(log nϵ−2) be the sampling overhead according to Theorem 3.3.1
4 for each edge e = (u, v) ∈ E and each i = 1, . . . , ρ do
5 Using Algorithm 3.4, generate a random walk w1(e, i) from u until

Θ(β−1 log n) different vertices have been hit, it reachesK , or it has hit every
edge in its component

6 Using Algorithm 3.4, generate a random walk w2(e, i) from v until
Θ(β−1 log n) different vertices have been hit, it reachesK , or it hast hit every
edge in its component

7 if both walks reachK at t1 and t2 respectively then
8 Connect w1(e, i), e and w2(e, i) to form a walk w(e, i) between t1 and t2
9 Let s← s(w1(e, i)) + s(w2(ei)) + 1/w(e)

10 Add an edge (t1, t2) with weight 1/(ρs) to H
11 Add w(e, i) toW

12 returnH andW

tex in K hits K . Conditioning on the latter, Theorem 3.3.1 gives that with high
probability, LĤ ≈ϵ SC(G,K).

Finally, let H be the graph where the edge weights are correct up to a (1 + ϵ)
multiplicative error. In other words, the weight of each edge e in H differs from
the corresponding weight wĤ(e) in Ĥ by ϵwĤ(e). Summing over all the edges we
get that LH ≈ϵ LĤ . Since LĤ ≈ε SC(G,K) by the discussion above, we get that
LH ≈O(ϵ) SC(G,K). Scaling ϵ appropriately completes the correctness.

We now have all the necessary tools to present our dynamic algorithm for main-
taining the collection of walksW (equivalently, the approximate Schur complement
H), on weighted graphs.

Proof of Lemma 3.4.8. Similarly to the unweighted case, we give a two-level data-
structure for dynamically maintaining Schur complements on weighted graphs.
Specifically, we keep the terminal setK of size Θ(mβ). This entails maintaining

1. an approximate Schur complementH ofGwith respect toK (Theorem 3.3.1),

2. a dynamic spectral sparsifier H̃ of H (Lemma 3.2.4).

We implement the procedure Initialize by running Algorithm 11, which produces
a graphH and then compute a spectral sparsifier H̃ ofH using Lemma 3.2.4. Note
that by construction of our data-structure, every update inH will be handled by the
black-box dynamic sparsifier H̃ .

78 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

Similarly to the unweighted case, operations Insert and Delete are reduced to
adding terminals to the set K and we refer the reader to the previous section for
details on this reduction. Thus, the bulk of our effort is devoted to implementing the
procedure AddTerminal. Let u be a non-terminal vertex that we want to append
toK . We setK ← K∪{u}, and then shorten all the walks at the first location they
meet u. This shortening of walks induces in turn edge insertions and deletions toH ,
which are then processed by H̃ . To quickly locate the first appearances of u in the
randomwalks fromW , we maintain a linked listWu for each u ∈ V . This linked list
contains the first appearances ofw in the collections of randomwalksW . Note that
constructing such lists can be performed at no additional cost during preprocessing
phase, since Algorithm 3.4 directly gives the first appearances of vertices in every
walk belonging toW . After locating the first appearances of u, we cut the walks in
these locations, delete the corresponding affected walks (together with their weight
fromH), and insert the new shorter walks toH . Note that we can simply use arrays
to represent each random walk inW .

We next analyze the performance of our data-structure. Let us start with the
preprocessing time. First, by Lemma 3.4.14 we get that the cost for constructing H
on a graph withm edges is bounded by Õ(mβ−4ϵ−4). Next, sinceH has Õ(mϵ−2)
edges, constructing H̃ takes Õ(mϵ−4) time. Thus, the amortized time of Initialize
operation is bounded by Õ(mβ−4ϵ−4).

We now analyze the update operations. By the above discussion, note that it
suffices to bound the time for adding a vertex to K , which in turn (asymptotically)
bounds the update time for edge insertions and deletions. The main observation
we make is that adding a vertex to K only shortens the existing walks, and by the
above discussion we can find such walks in time proportional to the amount of
edges deleted from the walk. Since the walk needed to be generated in the Initial-
ize operation, the deletion of these edges take equivalent time to generating them.
Moreover, we note that (1) handling the updates in H̃ induced byH introduces ad-
ditional O(poly(log n)ϵ−2) overheads, and (2) adding or deleting ρ edges until the
next rebuild costs Õ(βmϵ−2), since we process only up to βm operations. These
together imply that the amortized cost for adding a terminal can be charged against
the preprocessing time, which is bounded by Õ(mβ−4ϵ−4), up to poly-logarithmic
factors. Thus it follows that the operations AddTerminal, Insert and Delete can
be implemented in Õ(1) amortized update time.

3.4.4 Dynamic All-Pair Effective Resistance on Weighted Graphs

Following exactly the same arguments as in the proof of Theorem 3.1.3, we can use
the above data-structure to efficiently maintain effective resistances on weighted,
undirected dynamic graphs.

Theorem 3.4.15. For any given error threshold ϵ > 0, there is a data-structure for
maintaining a weighted, undirected multi-graph G = (V,E,w) with up to m edges
that supports the following operations in Õ(m5/6ϵ−4) expected amortized time:

3.5. DYNAMIC LAPLACIAN SOLVER IN SUB-LINEAR TIME 79

• Insert(u, v, w): Insert the edge (u, v) with resistance 1/w in G.

• Delete(u, v): Delete the edge (u, v) from G.

• EffectiveResistance(s, t): Return a (1± ϵ)-approximation to the effective re-
sistance between s andK in the current graph G.

Proof. LetD(H̃) denote the data structure that maintains a dynamic (sparse) Schur
complement H̃ ofG (Lemma 3.4.8). SinceD(H̃) supports only up to βm operations,
we rebuildD(H̃) on the current graphG after such many operations. Note that the
operations Insert and Delete onG are simply passed toD(H̃). For processing the
query operation EffectiveResistance(s, t), we declare s and t terminals (using the
operation AddTerminal ofD(H̃)), which ensures that they are both now contained
in H̃ . Finally, we compute the (approximate) effective resistance between s and t in
H̃ using Lemma 3.2.1.

We now analyze the performance of our data-structure. Recall that the inser-
tion or deletion of an edge in G can be supported in Õ(1) expected amortized time
by D(H̃). Since our data-structure is rebuilt every βm operations, and rebuilding
D(H̃) can be implemented in Õ(mβ−4ϵ−4) time, it follows that the amortized cost
per edge insertion or deletion is

Õ(mβ−4ϵ−4)

βm
= Õ(β−5ϵ−4).

The cost of any (s, t) query is dominated by (1) the cost of declaring s and t
terminals and (2) the cost of computing the (s, t) effective resistance to ϵ accuracy
on the graph H̃ . Since (1) can be performed in Õ(1) time, we only need to analyze
(2). We do so by first giving a bound on the size of K . To this end, note that
each of them edges in the current graph adds two vertices toK with probability β
independently. By a Chernoff bound, the number of random augmentations added
toK is at most 2βm with high probability. In addition, since D(H̃) is rebuilt every
βm operations, the size of K never exceeds 4βm with high probability. The latter
also bounds the size of H̃ by Õ(βmϵ−2) and gives that the query cost is Õ(βmϵ−2).

Combining the above bounds on the update and query time, we obtain the fol-
lowing trade-off

Õ
(
(βm+ β−5)ϵ−4

)
,

which is minimized when β = m−1/6, thus giving an expected amortized update
and query time of

Õ(m5/6ϵ−4).

3.5 Dynamic Laplacian Solver in Sub-linear Time

In this section we extend our dynamic approximate Schur complement algorithm to
obtain a dynamic Laplacian solver for unweighted, bounded degree graphs. Specif-
ically, as described in Theorem 3.1.2, our goal is to design a data-structure that

80 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

maintains a solution to the Laplacian system Lx = b under updates to both the
underlying graph and the demand vector vector b while being able to query a few
entries of the solution vector. For the sake of exposition, in what follows we assume
that the underlying graph is always connected.

Consider the dynamic Schur complement data-structure provided by
Lemma 3.1.1. If the demand vector b has up to O(βm) non-zero entries, for
some parameter β ∈ (0, 1), we can simply incorporate the vertices corresponding
to these entries in the terminal setK using operation AddTerminal of the dynamic
Schur complement data-structure (Lemma 3.1.1). Upon receipt of a query index, we
add the corresponding vertex to the Schur complement and (approximately) solve
a Laplacian system on the maintained Schur complement. The obtained solution
vector can then be lifted back to the Laplacian matrix using the following lemma,
which we introduced in the preliminaries.

Lemma 3.5.1 (Restatement of Lemma 3.2.6). Let xK be a solution vector such that
SC(G,K)xK = P(K)b. Then there exists an extension x of xK such that Lx = b.

As we argued in Section 3.3, this approach leads to a dynamic Laplacian solver
with O(m3/4) amortized update time per operation. Moreover, note that the algo-
rithm applies to any undirected, unweighted graph. However, the prime difficulty
for constructing a dynamic solver is in handling the case where b has a large num-
ber of non-zero entries, i.e., ∥b∥0 = Ω(n), thus preventing us from obtaining a
sub-linear algorithm using the reduction above. We alleviate this by projection this
demand vector onto the current set of terminals and showing that such a projection
can be maintained dynamically while introducing controllable error in the approxi-
mation guarantee. At a high level, our solver can be viewed as an one layer version
of sparsified block-Cholesky algorithms [174].

We next discuss specific implementation details. Recall thatP(K) is the matrix
projection of non-terminal vertices F onto K . By Lemma 3.2.6, it is sufficient to
maintain a solution xT = SC(G,T)†P(T)b dynamically. Since Lemma 3.1.1 al-
ready allows us to maintain SCG,K , we need to devise a routine that maintains
the projection P(T)b of b under vertex additions to the terminal set.

To this end, we describe an algorithm that maintains such a projection which in
turn allows us to again achieve sub-linear running times. The algorithm itself can
be viewed as a numerically minded generalization of the approach for the small-
support case. Let S denote the current set of terminals that the algorithm main-
tains (S and K will always be equal, and we differentiate between them only for
the sake of presentation). We initialize S withO(βm) vertices from the correspond-
ing entries in b that have the largest value. Our key structural observation is that
if the entries of b are small, adding vertices to S does not change the projection
significantly. To measure the error incurred by declaring some vertex a terminal,
we exploit the fact that the projection P(S)b itself is tightly connected to specific
random walks in the underlying graph. We then argue that it is possible to reuse
earlier projections, even when new terminals are added to S, while paying an error

3.5. DYNAMIC LAPLACIAN SOLVER IN SUB-LINEAR TIME 81

corresponding to the lengths of these random walks and the magnitude of entries
in b. Finally, we analyze how to control the accumulation of these errors over a
sequence of terminal additions, and also describe an initialization procedure that
involves solving a Laplacian system for computing the starting (approximate) pro-
jection vector. These together lead to the main lemma of this section, whose imple-
mentation details and analysis are deferred to Subsection 3.5.1.

Lemma 3.5.2. Given an error parameter ϵ > 0, an unweighted unweighted bounded-
degree G = (V,E) with n vertices, a vector b ∈ Rn in the image of L, a sub-
set of terminal vertices S′ and a parameter β ∈ (0, 1) such that |S′| = O(βm),
there is a data-structure DynamicProj(G,S′, β) for maintaining a vector b̃ with∥∥∥b̃−P(S)b

∥∥∥
L†
≤ ϵ ∥b∥L† for some S with S′ ⊆ S, |S| = O(βm), while sup-

porting at most β3m1/2ϵ(poly log n)−1 operations in the following running times:

• Initialize(G,S′, β): Initialize the data-structure in Õ(m) time.

• Insert(u, v): Insert the edge (u, v) toG inO(1) time while keepingG bounded-
degree.

• Delete(u, v): Delete the edge (u, v) from G in O(1) time.

• Change(u,b′(u), v,b′(v)): Change b(u) to b′(u) and changes b(v) to b′(v)
while keeping b in the range of L in O(1) time.

• AddTerminal(u): Add u to S in O(1) time.

• Query(): Output the maintained b̃ in O(βm) time.

The following lemma, whose proof will be shortly provided, allows us to com-
bine the approximation guarantees of the data-structures (1) dynamic Schur com-
plement and (2) dynamic Projection.

Lemma 3.5.3. Let 0 < ϵ ≤ 1
2 . Let k be a positive number such that ∥b∥L† ≤ k. Sup-

pose L̃ ≈ϵ L,
∥∥∥b̃− b

∥∥∥
L†
≤ ϵk and

∥∥∥x̃− L̃†b̃
∥∥∥
L̃
≤ ϵ

∥∥∥L̃†b̃
∥∥∥
L̃
. Then

∥∥x̃− L†b
∥∥
L
≤

10ϵk.

We now have all the necessary tools to present the data-structure for solving
Laplacian systems in bounded-degree graphs, which essentially entails combining
Lemma 3.1.1 and Lemma 3.5.2.

Proof of Theorem 3.1.2. Let D(H̃) and D(b̃) denote the data-structure that main-
tains a dynamic (sparse) Schur complement H̃ of G (Lemma 3.1.1) and an approxi-
mate dynamic Projection b̃ of P(S)b (Lemma 3.5.2), respectively. Set ϵ ← (ϵ/10)
for both data-structures. Our dynamic solver simultaneously maintains D(H̃) and
D(b̃). Since D(b̃) supports only up to β3m1/2ϵ(poly log n)−1, we rebuild both
data-structures after such many operations.

We now describe the implementation of the operations. First, we find the first
βm entries with maximum value in b. We then take the corresponding vertices

82 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

and initialize S′ andK ′ to be these βm vertices. The implementation of these data-
structures involves including the endpoints of each edge with probability β to S and
K , respectively. We couple these algorithms such that S = K , and this property
will be maintained throughout the algorithm. The operations Insert and Delete on
G are simply passed to D(H̃) and D(b̃). The operation Change(u,b′(u), v,b′(v))
is passed to D(b̃). Upon receipt of a query x(u), for some vertex u ∈ V , i.e., oper-
ation Solve(u), we declare u a terminal (using the operation AddTerminal(u) of
both D(H̃) and D(b̃)). We then proceed by extracting an approximate Schur com-
plement H̃ of G from D(H̃) and an approximate projection vector b̃ from D(b̃).
Finally, using a black-box Laplacian solver [168], we compute a solution vector x̃K

to the system LH̃ x̃K = b̃ and output x̃K(u) (this is possible since u was added to
K).

We next show the correctness of the operation Solve(u). The Laplacian solver
guarantees that the vector x̃K satisfies∥∥∥x̃K − L†

H̃
b̃
∥∥∥
LH̃

≤ (ϵ/10)
∥∥∥L†

H̃
b̃
∥∥∥
LH̃

. (3.12)

Data-structure D(b̃) guarantees that∥∥∥b̃−P(K)b
∥∥∥
SC(G,T)†

≤ (ϵ/10) ∥b∥L† . (3.13)

Note that ∥P(K)b∥SC(G,K)† ≤ ∥b∥L† . Bringing together Equations (3.12)
and (3.13) and applying Lemma 3.5.3 with k = ∥b∥L† , L := SC(G,K), b :=
P(K)b, LH̃ and b̃ yield∥∥∥x̃K − SC(G,K)†P(K)b

∥∥∥
SC(G,K)

≤ ϵk.

Using Lemma 3.2.6 we can lift the vector x̃K to a solution x̃ such that∥∥∥x̃− L†b
∥∥∥
L
≤ ϵk = ϵ ∥b∥L† = ϵ

∥∥∥L†b
∥∥∥
L
.

Finally, we bound the running time of our dynamic solver. Changes in the de-
mand vector b can be performed in O(1) times, thus having negligible affect in our
running times. The insertion or deletion of an edge inG can be supported in Õ(1) ex-
pected amortized time by bothD(H̃) andD(b̃). Since we build our data-structures
every β3m1/2ϵ(poly log n)−1 operations, and the total rebuild cost is dominated by
Õ(mβ−2ϵ−4), it follows that the amortized cost per edge insertion or deletion is

Õ(mβ−2ϵ−4)

β3m1/2ϵ(poly log n)−1
= Õ(m1/2β−5ϵ−5).

The cost of any query is dominated by (1) the cost of declaring the queried vertex
u a terminal and (2) the cost of extracting H̃ and b̃. Since (1) can be performed in
Õ(1) amortized time, we only need to analyze (2). Size of the terminal set S = K ,

3.5. DYNAMIC LAPLACIAN SOLVER IN SUB-LINEAR TIME 83

which can be easily shown to beO(βm)with high probability, immediately implies
that the running time for (2) is dominated by Õ(βmϵ−2) = Õ(βmϵ−5), which in
turn bounds the query cost.

Combining the above bounds on the query and update time, we obtain the fol-
lowing trade-off

Õ
(
(m1/2β−5 + βm)ϵ−5

)
which is minimized when β = m−1/12, thus giving an expected amortized update
and query time of

Õ(m11/12ϵ−5).

We can replace m by n in the above running time guarantee since by our as-
sumption, G has bounded-degree throughout the algorithm.

We next prove Lemma 3.5.3.

Proof of Lemma 3.5.3. We will use triangle inequality to decompose the error as:∥∥∥x̃− L†b
∥∥∥
L
=
∥∥∥x̃− L̃†b̃+ L̃†b̃− L̃†b+ L̃†b− L†b

∥∥∥
L

≤
∥∥∥x̃− L̃†b̃

∥∥∥
L
+
∥∥∥L̃†b̃− L̃†b

∥∥∥
L
+
∥∥∥L̃†b− L†b

∥∥∥
L
, (3.14)

and bound each of them separately.

1. The first term can be bounded by first invoking the similarity of L and L̃ to
change the norm to L̃, and applying the guarantees of the solve involving L̃:∥∥∥x̃− L̃†b̃

∥∥∥
L
≤
√

(1 + 2ϵ)
∥∥∥x̃− L̃†b̃

∥∥∥
L̃
≤ 2

∥∥∥x̃− L̃†b̃
∥∥∥
L̃
≤ 2ϵ

∥∥∥b̃∥∥∥
L̃†
.

This norm can in turn be transferred back to L, and the discrepancy between
b and b̃ absorbed using triangle inequality:

≤ 3ϵ
∥∥∥b̃∥∥∥

L†
≤ 3ϵ

(
∥b∥L† +

∥∥∥b̃− b
∥∥∥
L†

)
≤ 3ϵ(1 + ϵ)k ≤ 5ϵk.

2. The second term follows from combining the norms in L̃ and L using the
approximations between these matrices:∥∥∥L̃†b̃− L̃†b

∥∥∥
L
=
∥∥∥b̃− b

∥∥∥
L̃†LL̃†

≤ 2
∥∥∥b̃− b

∥∥∥
L̃†L̃L̃†

= 2
∥∥∥b̃− b

∥∥∥
L̃†
,

and once again converting the norm back from L̃ to L:

≤ 4
∥∥∥b̃− b

∥∥∥
L†
≤ 4ϵk.

84 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

3. The third term can first be written in terms of the norm of b against a matrix
involving the difference between L and L̃:∥∥∥L̃†b− L†b

∥∥∥
L
=
∥∥∥(L̃† − L†

)
b
∥∥∥
L
=
∥∥∥L†/2b

∥∥∥
(L1/2(L̃†−L†)L1/2)

2

where because L1/2
(
L̃† − L†

)
L1/2 is a symmetric matrix, we have by the

definition of operator norm:

≤
∥∥∥L1/2

(
L̃† − L†

)
L1/2

∥∥∥2
2

∥∥∥L†/2b
∥∥∥
2
=
∥∥∥L1/2

(
L̃† − L†

)
L1/2

∥∥∥2
2
∥b∥L† .

(3.15)
Composing both sides of L̃ ≈ϵ L by L1/2 gives L1/2L̃L1/2 ≈ϵ L

1/2LL1/2, or
upon rearranging:

−ϵI ≼ L1/2(L̃† − L†)L1/2 ≼ ϵI,

or
∥∥∥L1/2(L̃† − L†)L1/2

∥∥∥2
2
≤ ϵ. Substituting this bound into Equation 3.15

above then gives the result.

Summing up these three cases as in Equation 3.14 then gives the overall result∥∥∥x̃− L†b
∥∥∥
L
≤ 10ϵk.

3.5.1 Dynamic Projection

We next discuss the main ideas behind the dynamic algorithm that maintains an
approximate projection in Lemma 3.5.2 and then formally describe the implemen-
tation of this data-structure together with its running time guarantees. To this end,
suppose we are given an approximate projection b̃ of P(S)b satisfying the follow-
ing inequality ∥∥∥b̃−P(S)b

∥∥∥
L†
≤ ϵ ∥b∥L† (3.16)

The crucial idea is to exploit the fact that the right hand side of the above inequality
∥b∥L† corresponds to the square root of the energy needed by the electrical flow
to route the demand vector b (see Lemma 2.1 in [194]). Since we assume that our
dynamic graph G has bounded-degree, this energy is lower-bounded by

∥b∥L† ≥
√∑

u∈V

(
|b(u)|
d(u)

)
= Ω

√∑
u∈V
|b(u)|

 .

Let S′ be the set of βm vertices such that their corresponding coordinates in b
have the largest values. Without loss of generality, scale all the entries in the vector
b such that

|b(u)| ≥ 1, ∀u ∈ S′ and |b(u)| ≤ 1, ∀u ∈ V \ S′ (3.17)

3.5. DYNAMIC LAPLACIAN SOLVER IN SUB-LINEAR TIME 85

By definition of S′, after up to (βm)/2 operations in our data-structure, we
know that at least half of the vertices in S′ will keep their corresponding b values.
Thus the allowable error from right hand side of Equation (3.16), ∥b∥L† , is lower
bounded by Ω(

√
βm). Our goal is to control the error between the maintained

approximate projection b̃ and the true projection P(S)b. Our algorithm has two
main components. First, it shows how to use a Laplacian solver that computes an
approximate projection b̃ ofP(S)b satisfying Equation (3.16) in nearly-linear time.
Second, it gives a way to control the error of the projection P(S)b under terminal
additions to S with respect to the ∥·∥L† norm.

We now state the initialization lemma, whose is proof is deferred to Subsec-
tion 3.5.2.

Lemma 3.5.4. Given an unweighted graph G = (V,E) with n vertices andm edges,
a demand vector b ∈ Rn, set of vertices S ⊆ V and an error parameter ϵ > 0, there is
an Õ(m) time algorithm that computes a vector b̃ such that∥∥∥b̃−P(S)b

∥∥∥
L†
≤ ϵ ∥b∥L† .

To elaborate on the second component of the algorithm, consider the error in-
duced on P(S)b when we add a vertex u to some terminal set S∥∥∥P(S)b−P(S̃)b

∥∥∥
L†
, where S̃ = S ∪ {u}.

In other words, the above expression gives the error when we simply keep the
same vector b under a terminal addition to the set S. We will show that over a
certain number of such additions we can bound the compounded error byO(

√
βm).

Since the latter is a lower bound on ∥b∥L† , it follows that the maintained projection
still provide good approximation guarantee. The following lemma, whose proof is
deferred to Subsection 3.5.3, bounds the error after one terminal addition.

Lemma 3.5.5. Consider an unweighted undirected bounded-degree graph G =
(V,E), a demand vector b ∈ Rn and a parameter β ∈ (0, 1). Let S ⊆ V with
|S| = O(βm) and assume that |b(u)| ≥ 1 for all u ∈ S, and |b(u)| for all u ∈ V \S.
For each edge in G, include its endpoints to S independently, with probability at least
β. Then, for any vertex u ∈ V \ S, with high probability∥∥∥P(S)b−P(S̃)b

∥∥∥
L†

= Õ(β−5/2), where S̃ = S ∪ {u}.

We now have all the necessary tools to give a dynamic data-structure that main-
tains an approximate projection, i.e., prove Lemma 3.5.2.

Proof of Lemma 3.5.2. Given the input demand vector b, let S′ be the set of βm ver-
tices such that their corresponding coordinates in b have the largest values. With-
out loss of generality, scale b according to Equation (3.17). For each edge in G
include its endpoints to S′ independently, with probability at least β.

86 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

We next describe the implementation of the operations. For implementing pro-
cedure Initialize(G,S′, β), we invoke Lemma 3.5.4 with ϵ/2. Let b̃ be the output
approximate projection satisfying Equation (3.16) with error parameter ϵ/2 and set
S = S′. As we will shortly see, operations Insert and Delete will be reduced
to adding terminals to the set S. Thus we first discuss the implementation of the
operation AddTerminal. To this end, let u be a non-terminal vertex that we want
to append to S. We set S = S ∪ {u} and simply add an entry b̃(u) = 0 to b̃
while keeping the rest of the entries unaffected. To insert or delete an edge from
the current graph, we simply run AddTerminal procedure for the edge endpoints.

Consider the operation Change(u,b(u)′, v,b(v)′). We first invoke
AddTerminal on both u and v and then add b(u)′−b(u) to b̃(u) and b(v)′−b(v)
to b̃(v). Finally, to implement Query we simply return the approximate projection
b̃.

We next analyze the correctness of our data-structure which solely depends on
the correctness of AddTerminal and Change operations. We will show that after
k many such operations, our maintained approximate projection b̃ satisfies∥∥∥b̃−P(S)b

∥∥∥
L†
≤ Õ(kβ−5/2) + (ϵ/2) ∥b∥L† , (3.18)

where S denotes the set of terminals after k operations. Note that when (k = 0),
the above inequality holds by Lemma 3.5.4 that implements the initialization. Let
us analyze the error when a single terminal is added to S, i.e., (k = 1). Then
Lemma 3.5.5 implies that∥∥∥P(S)b−P(S̃)b

∥∥∥
L†

= Õ(β−5/2), where S̃ = S ∪ {u}.

Combining these two guarantees and applying triangle inequality, we get that
the error after one terminal addition is∥∥∥b̃−P(S̃)b

∥∥∥
L†

=
∥∥∥b̃−P(S̃)b+P(S)b−P(S)b

∥∥∥
L†

≤
∥∥∥b̃−P(S)b

∥∥∥
L†

+
∥∥∥P(S)b−P(S̃)b

∥∥∥
L†

≤ Õ(β−5/2) + (ϵ/2) ∥b∥L† .

Next, to analyze the changes in the values ofb, let the updatedb′ be the updated
vector b. Let b̃′ be the updated b̃ and let P(S)b′ be the updated P(S)b. Using the
fact that u and v are added to S, we get that

(b̃− b̃′) = (b− b′) = (P(S)b−P(S)b′),

which in turn implies that

(b̃−P(S)b) = (b̃′ −P(S)b′),

and thus the error vector does not change.

3.5. DYNAMIC LAPLACIAN SOLVER IN SUB-LINEAR TIME 87

We showed that after each operation, either the correct vector moves by at most
Õ(β−5/2) with respect to its ∥·∥L† norm, or (b̃ − P(S)b) does not change. Thus
repeating the above argument k times yields Equation (3.18). Setting k = cEN ·
m1/2β3ϵ(poly log n)−1) such that ∥b∥L† = cEN ·

√
βm, we get that∥∥∥b̃−P(S)b

∥∥∥
L†
≤ (ϵ/2)cEN

√
βm+ (ϵ/2) ∥b∥L† ≤ ϵ ∥b∥L† .

For the running time, Lemma 3.5.4 implies that the initialization cost is bounded
by Õ(m). Since the size of the maintained vector b̃ is bounded by |S|, it follows
that the query cost is O(βm). All the remaining operations can be implemented in
O(1) time.

3.5.2 Initialization of Approximate Projection Vector

In this subsection we show how to compute an initial approximate projection vector
of P(S)b, i.e., we prove Lemma 3.5.4.

Proof of Lemma 3.5.4. Define F = V \ S and let G′ be an n′-vertex graph obtained
from G by contracting all vertices in S within G into a single vertex s and keeping
parallel edges. LetL′ denote the corresponding Laplacian matrix ofG′ and consider
the induced vertex mapping γ : V → V (G′)with γ(u) = u for u ∈ F and γ(u) = s
for u ∈ S. Let b′ ∈ Rn′ be the corresponding demand vector in G′ such that for
u ∈ V , b′(γ(u)) = b(u) if γ(u) = u and b′(γ(u)) =

∑
v∈S b(v) otherwise. For

the given error parameter ϵ > 0, we can invoke a black-box Laplacian solver to
compute an approximate solution vector ṽ′ to v′ = L′†b′ such that∥∥ṽ′ − v′∥∥

L′ ≤ ϵ
∥∥v′∥∥

L′ . (3.19)

Now, to lift back the vector ṽ′ toG we define new vectors ṽ and v such that for
all u ∈ V

ṽ(u) := ṽ′(γ(u)) and v(u) := v′(γ(u)).

Observe that for any edge e = (u, v) in G, we have that

(ṽ(u)− ṽ(v)) = (ṽ′(u)− ṽ(v)) and (v(u)− v(v)) = (v′(u)− v′(v)).

The above relations imply that the approximation guarantee from Equa-
tion (3.19) can be written as follows

∥ṽ − v∥L ≤ ϵ ∥v∥L . (3.20)

It is well known that if we interpret G as a resistor network, v represents the
voltage vector on the vertices induced by the electrical flow that routes a certain
demand in the network (see e.g., [86]). Thus, by linearity of electrical flows and our
construction, we can view v as being the sum of the voltage vectors corresponding
to the electrical flows that route b(u) amount of flow to S, where the sum is over all

88 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

u ∈ F . By Lemma 3.2.8, for each u ∈ F , the demand corresponding to the electrical
flow that send b(u) units of flow to S is given by

b(u)(1u −P(S)1u).

Summing over all u ∈ F we get the demand vector corresponding to v∑
u∈F

b(u)(1u −P(S)1u) = (b|F −P(S)b|F) = (b|F −P(S)(b− b|S))

= (b|F −P(S)b− b|S) ,

where b|U is the restriction of b on the subset U with b|U (u) = b(u) if u ∈ U , and
b|U (u) = 0 otherwise. Since we determined the demand vector corresponding to
v, we get that

Lv = (b|F −P(S)b− b|S) . (3.21)

Define the approximate project vector b̃ that our algorithm outputs using the
following relation

b̃ := (b|F − Lṽ − b|S) , (3.22)

where ṽ is the extended voltage vector we defined above. To complete the proof
of the lemma, it remains to bound the difference between b̃ andP(S)bwith respect
to the L† norm. To this end, using Equations (3.21) and (3.22) we have∥∥∥b̃−P(S)b

∥∥∥
L†

= ∥b|F − Lṽ − b|S − (b|F − Lv − b|S)∥L†

= ∥Lṽ − Lv∥L† = ∥ṽ − v∥L .

Using the approximate guarantee in Equation (3.20) we have that

∥ṽ − v∥L ≤ ϵ ∥v∥L = ϵ
∥∥v′∥∥

L′ = ϵ
∥∥b′∥∥

L′† ≤ ϵ ∥b∥L† ,

where the last inequality follows from the fact that the minimum energy needed to
route b becomes smaller when contracting vertices.

3.5.3 Stability of Projected Vectors

In this subsection we prove our core structural observation, namely that the the
projection vectors remain stable under the addition of a new terminal vertex, as
stated in Lemma 3.5.5.

We start by considering the projection vector P(S)1u, where u ∈ F = V \ S.
Recall that for s ∈ S, Lemma 3.2.7 gives that [P(S)1u](s) is the probability that
the random walk that starts at u hits the set S at the vertex s. Equivalently, we
can view the probability of this walk as routing a fraction of 1u from u to s. Now,
consider the operation of adding a non-terminal u ∈ F to S, i.e., S̃ = S ∪ {u}. We
observe that the fraction of 1u that we routed to some vertex v in S might have used
the vertex u ∈ F . This indicates that this this fraction should have stopped at u,

3.5. DYNAMIC LAPLACIAN SOLVER IN SUB-LINEAR TIME 89

instead of going to other vertices in S, which in turn implies that the old projection
vector P(S)1u is not valid anymore. We will later show that this change is tightly
related to the load that random walks from other vertices in F put on the new
terminal vertex u. In the following we focus on showing a provable bound on this
load, which in turn will allow us to control the error for the maintained projection
vector.

Concretely, for each vertex u ∈ F , we want to bound the load incurred by the
random walks of the other vertices v ∈ F \ u to the set S. For the purposes of our
proof, it will be useful to introduce some random variable. For v ∈ F , let Zv(S) be
the set of vertices visited in a random walk starting at v and ending at some vertex
in S. For t ≥ 0, let Xv(t) be the set of vertices visited in a random walk starting
at v ∈ F after K steps. For a demand vector b and any two vertices u, v ∈ F , the
contribution of v to the load of u, denoted by Yv(u), is defined as follows

Yv(u) = b(v) · 1(u∈Zv(S)).

The load of a vertex u ∈ F , denoted by Nu, is obtained by summing the contri-
butions over all vertices in F , i.e.,

Nu =
∑
v∈F

Yv(u).

The following lemma gives a bound on the expected load of every non-terminal
vertex.

Lemma 3.5.6. For a parameter β ∈ (0, 1) and every vertex u ∈ F we have that
E [Nu] = Õ(β−2).

For proving the above lemma it will be useful to rewrite the load quantity. To
this end, recall that in the proof of Theorem 3.4.3 we have shown that any random
walk that start at a vertex v of length ℓ = Õ(β−2) hits a vertex in the terminal
set K with probability at least 1 − 1/nc, for some large constant c. Note that by
construction of S in Lemma 3.5.5, the exact same argument applies to the set S.
Thus, instead of terminating the random walks once they hit S, we can run all the
walks from the vertices in F up to ℓ steps. The latter together with the assumption
b(v) ≤ 1 for all v ∈ F (provided by Lemma 3.5.5) give that

E [Nu] =
∑
v∈F

b(v) · Pv [v ∈ Zv(S)]

≤
∑
v∈F

(Pv [walk w from v uses u in its first ℓ steps] + Pv [|w| > ℓ])

≤
∑
v∈F

 ∑
0≤t≤ℓ

Pv [u ∈ Xv(t)] + 1/nc

≤
∑

0≤t≤ℓ

(∑
v∈V

deg(v) · Pv [u ∈ Xv(t)]

)
+ o(1). (3.23)

90 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

It turns out that that the term contained in the brackets of Equation (3.23) equals
deg(u). Formally, we have the following lemma.

Lemma 3.5.7. Let G be an undirected unweighted graph. For any vertex u ∈ V and
any length t ≥ 0, we have∑

v∈V
deg (v) · P [u ∈ Xv(t)] = deg (u) .

To prove this, we use the reversibility of random walks, along with the fact that
the total probability over all edges of a walk starting at e is 1 at any time. Below we
verify this fact in a more principled manner.

Proof of Lemma 3.5.7. Theproof is by induction on the length of the walksK . When
t = 0, we have

P [u ∈ Xv(0)] =

{
1 if u = v,

0 otherwise,

which gives a total of deg(u).
For the inductive case, assume the result is true for t − 1. The probability of a

walk reaching u after K steps can then be written in terms of its location at time
t− 1, the neighbor x of u, as well as the probability of reaching there:

P [u ∈ Xv(t)] =
∑

x:(u,x)∈E

1

deg (x)
P [x ∈ Xv(t− 1)] .

Substituting this into the summation to get∑
v∈V

deg (v) · P [u ∈ Xv(t)] =
∑
v∈V

deg (v)
∑

x:(u,x)∈E

1

deg (x)
P [x ∈ Xv(t− 1)] ,

which upon rearranging of the two summations gives:

∑
x:(u,x)∈E

1

deg (x)

(∑
v∈V

deg (v) · P [x ∈ Xv(t− 1)]

)
.

By the inductive hypothesis, the term contained in the bracket is precisely deg(x),
which cancels with the division, and leaves us with deg(u). Thus the inductive
hypothesis holds forK as well.

Plugging Lemma 3.5.7 in Equation (3.23), along with the fact that by assumption
G has bounded degree we get that

E [Nu] ≤ deg(u) · ℓ = Õ(β−2),

thus proving Lemma 3.5.6.
We now have all the tools to prove Lemma 3.5.5.

3.5. DYNAMIC LAPLACIAN SOLVER IN SUB-LINEAR TIME 91

Proof of Lemma 3.5.5. Recall that S̃ = S ∪ {u}, where u is vertex in F = V \ S.
We want to obtain a bound on the difference (P(S)b−P(S̃)b) with respect to the
L† norm. We distinguish the following types of entries of the difference vector: (1)
newly added terminal u, (2) the old terminals S and (3) the remaining non-terminal
vertices F \ {u}. Note that P(S)b and P(S̃)b are not n-dimensional vectors, so
we assume that all missing entries are appended with zeros. This also allows us to
compute the L† norm.

In what follows, we will repeatedly make of the following relation by
Lemma 3.2.7 for vertices u ∈ F and v ∈ S

P(S)1u(v) =
∑

u0=u,...,uk−1∈F,
uk=v

∏k−1
i=0 w(ui, ui+1)∏k−1

i=1 d(ui)
.

For the type (1) entry, i.e., newly added terminal u, using the definition of the
load Nu, we get:

[P(S)b−P(S̃)b](u) = −
∑

u0=u,...,uk−1∈F\{u},
uk=u

b(u0) ·
∏k−1

i=0 w(ui, ui+1)∏k−1
i=1 d(ui)

= −
∑
u0∈F

E [Yu0(u)] = −E [Nu] . (3.24)

Note that for type (3) entries, i.e., the remaining non-terminals v ∈ F \ {u}, we
have that

[P(S)b−P(S̃)b](v) = 0. (3.25)

Finally, for type (2) entries, i.e., old terminals v ∈ S, similarly to the type (1)
entries we get

[P(S)b−P(S̃)b](v) =
∑

u0=u,...,uk−1∈F,
uk=v

b(u0) ·
∏k−1

i=0 w(ui, ui+1)∏k−1
i=1 d(ui)

−
∑

u0=u,...,uk−1∈F\{u},
uk=v

b(u0) ·
∏k−1

i=0 w(ui, ui+1)∏k−1
i=1 d(ui)

=
∑

u0=u,...,uk=u,
uk+1,...,ur−1∈F,ur=v

b(u0) ·
∏r−1

i=0 w(ui, ui+1)∏r−1
i=1 d(ui)

=
∑

u0=u,...,uk−1∈F\{u},
uk=v

b(u0) ·
∏k−1

i=0 w(ui, ui+1)∏k−1
i=1 d(ui)

∑
u0=u,...,uk−1∈F,

uk=v

∏k−1
i=0 w(ui, ui+1)∏k−1

i=1 d(ui)

92 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

= E [Nu] · [P(S)1u](v). (3.26)

Bringing together Equations (3.24), (3.25) and (3.26) we get that

[P(S)b−P(S̃)b] = −(E [Nu] (1u −P(S)1u)).

The right-hand side of the equation can be interpreted as routing E [Nu] unit of
flows from u to S. Thus, to measure the error, we simply need to upper-bound
the square root of the energy need to route E [Nu] amount of flow from u to
S (Lemma 3.2.8),i.e.,

∥E [Nu] (1u −P(S)1u)∥L† .

By the simplifying assumption that G is connected and the fact that each end-
point of an edge in E is added to S independently, with probability at least β, it is
easy to show that with high probability, there exists a path p(v, S) from u to S that
uses at most O(β−1 log n) edges. Hence, if we route E [Nu] units of flow from u to
S along the path p(v, S), the energy of such a flow is upper-bounded by

(E [Nu])
2 · Õ(β−1) = Õ((E [Nu])

2β−1).

Using the latter we get that∥∥∥P(S)b−P(S̃)b
∥∥∥
L†

= ∥E [Nu] (1u −P(S)1u)∥L†

≤ Õ
(√

(E [Nu])2β−1
)

= Õ(E [Nu]β
−1/2)

= Õ(β−5/2),

where the last inequality uses the fact that E [Nu] = Õ(β−2) by Lemma 3.5.6. This
completes the proof the lemma.

3.6 Sampling Weights of a RandomWalk

In this section, we show that given a random walk w of length ℓ in a weighted G
with polynomially bounded weights, we can efficiently sample an approximation
to s(w) =

∑ℓ
i=1(1/w(wi−1, wi)). Concretely, we prove the following lemma from

Section 3.4.3.

Lemma 3.6.1 (Restatement of Lemma 3.4.13). Let G = (V,E,w) be a undirected,
weighted graph with w(e) = [1, nc] for each e ∈ E, where c is a positive constant.
For any finite random walk w of length ℓ with ℓ ≤ nd, where d is a positive constant,
let s(w) be the sum of the inverse of its edge weights, i.e.,

s(w) =
ℓ∑

i=1

1

w(wi−1, wi)
.

3.6. SAMPLING WEIGHTS OF A RANDOM WALK 93

Moreover, for any u, v ∈ V , let
fu,vs(w),ℓ

be the probability mass function of s(w) conditioning on (1) w being a random walk
that starts at u and ends at v, and (2) length of the walk ℓ(w) is ℓ in G. Then, for any
pair u, v ∈ V , there exists an algorithm that that samples from fu,vs(w),ℓ and outputs a

sampled s(w) up to a (1 + ϵ) multiplicative error in Õ(n3ϵ−2) time.

To prove the above lemma, we employ a doubling technique. Specifically, for
any pair of vertices u, v ∈ V , and a random walk w of length ℓ that starts at u and
ends at v, it is easy to see that

fu,vs(w),ℓ =
∑
y∈V

(
fu,ys(w),ℓ/2 ∗ f

y,v
s(w),ℓ/2

)
,

where ∗ denotes the convolution between two probability mass functions. How-
ever, one challenge here is that we cannot afford dealing with exact representations
of probability mass functions as this would be computationally expensive. Instead,
we introduce an approximate representation of such functions, and then give an
algorithm that allows computing the convolution between such approximate repre-
sentations. Before proceeding further, note that we can scale down the edgeweights
so that w(e) ≤ 1, and thus 1/w(e) ≥ 1 for every e ∈ E. In addition, we remark
that w does not need to be integral.

Let us introduce a compactway to represent any given probabilitymass function
approximately f . The main idea is to ‘move’ each number in the support of f by
(1 + ϵ), which in turn results in a (1 + ϵ) approximation of the sampled value for
f . Formally, let f be a probability mass function such that f(x) = 0, for each
x ̸∈ {0, . . . , nc}, where c is a positive constant. For j ≥ 1, let Ijk be the interval
[(1 + ϵ)k, (1 + ϵ)k+j) for k ∈ {0, . . . , L} where L = O

(
(c+ d)ϵ−1 log n

)
. Note

that the upper boundL is chosen in such a way that∪kI1k covers the range of fu,ℓs(w),ℓ

for every possible triplet (u, v, ℓ). For j ≥ 1 and ϵ > 0, we say that g is an (ϵ, j)-
approximation of a probability mass function f iff there exists a matrixH satisfying
the following properties:

(a)
L∑

k=0

Hx,k = f(x), ∀x ∈ {0, . . . , nc},

(b)
nc∑
x=0

Hx,k = g(k), ∀k ∈ {0, . . . , L},

(c) Hx,k = 0, ∀x ̸∈ Ijk .

Note that an (ϵ, j)-approximation of f is also an (ϵ, (j + 1))-approximation of
f . Moreover, observe that the intervals {I1k}k∈{0}∪L are disjoint for different k but
Ijk overlaps with Ijk′ whenever j ≥ 2 and |k − k′| < j.

94 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

Algorithm 3.6: Convolute(g(1), g(2), ϵ, j)
Input :Two (ϵ, j)-approximations g(1) and g(2) of two probability mass functions

f (1) and f (2)
Output :An (ϵ, (j + 1))-approximation g := g(1) ∗ g(2) of f := f (1) ∗ f (2)

1 Set g ← 0
2 for (k1, k2) ∈ {0, . . . , L}2 do
3 Find k3 such that (1 + ϵ)k1 + (1 + ϵ)k2 ∈ I1k3

4 Set g(k3)← g(k3) + g(1)(k1) · g(2)(k2)
5 return g

Next we show how to compute the convolution of two probability mass func-
tions under their approximate representations. Let and g(1) and g(2) be (ϵ, j)-
approximations of probability mass functions f (1) and f (2), respectively. Now con-
sider two intervals Ijk1 and Ijk2 . Without loss of generality, assume that k1 ≤ k2. If
x ∈ Ijk1 and y ∈ Ijk2 , then

x+ y ∈ I ′ := [le, ri), where

le :=
(
(1 + ϵ)k1 + (1 + ϵ)k2

)
, ri :=

(
(1 + ϵ)k1+j + (1 + ϵ)k2+j

)
.

Furthermore, let I1k3 be an interval such that le ∈ I1k3 . The latter implies that
(1+ϵ)k3 ≤ le < (1+ϵ)k3+1. Since ri = le·(1+ϵ)j , it follows that ri < (1+ϵ)k3+j+1.
Bringing together the above bounds we get that (1 + ϵ)k3 ≤ le < (1 + ϵ)k3+j+1,
i.e., I ′ ⊆ Ij+1

k3
. Since k3 depends on k1, k2, and j we sometimes write k3(k1, k2, j)

instead of k3.
Since the above approach gives us a way to combine two different intervals, it

is now straightforward to compute the convolution between two probability mass
functions. This task is performed in the standard way and we review its implemen-
tation details in Algorithm 3.6 for the sake of completeness.

Lemma 3.6.2. Let j ≥ 1 and ϵ > 0 by two parameters. Given any two
(ϵ, j)-approximations g(1) and g(2) of probability mass functions f (1) and f (2),
Convolute(g(1), g(2), ϵ, j) (Algorithm 3.6) computes in Õ(ϵ2) time an (ϵ, (j + 1))-
approximation g := g(1) ∗ g(2) of the convolution f := f (1) ∗ f (2).

Proof. We first show the correctness. Since g(1) and g(2) are (ϵ, j)-approximations
to f (1) and f (2) by assumption of the lemma, we know that there exists matrices
H(1) and H(2) satisfying properties (a), (b) and (c). To show that the output g is
correct we need to construct a matrix H that satisfies each of these properties. By
construction of the algorithm, the new matrix H is defined as follows:

Hz,k3 :=
∑

x∈Ijk1 ,x∈I
j
k2

x+y=z,k3=k3(k1,k2,j)

H
(1)
x,k1
·H(2)

y,k2
, z ∈ {0, . . . , nc}, k3 ∈ {0, . . . , L}.

3.6. SAMPLING WEIGHTS OF A RANDOM WALK 95

We start by showing property (a) forH. Concretely, for any z ∈ {0, . . . , nc}we get
that

L∑
k3=0

Hz,k3 =

L∑
k3=0

∑
x∈Ijk1 ,x∈I

j
k2

x+y=z,k3=k3(k1,k2,j)

H
(1)
x,k1
·H(2)

y,k2

=
∑

x∈Ijk1 ,y∈I
j
k2

,x+y=z

H
(1)
x,k1
·H(2)

y,k2

=
∑

x+y=z

∑
x∈Ijk1

H
(1)
x,k1

∑

y∈Ijk2

H
(2)
y,k2

=
∑

x+y=z

f (1)(x) · f (2)(y)

=
(
f (1) ∗ f (2)

)
(z) = f(z).

Next, H satisfies property (b) since for any k3 ∈ {0, . . . , L} we get that

nc∑
z=0

Hz,k3 =
nc∑
z=0

∑
x∈Ijk1 ,x∈I

j
k2

x+y=z,k3=k3(k1,k2,j)

H
(1)
x,k1
·H(2)

y,k2

=
∑

x∈Ijk1 ,y∈d
j
k2

,k3=k3(k1,k2,j)

H
(1)
x,k1
·H(2)

y,k2

=
∑

k3=k3(k1,k2,j)

∑
x∈Ijk1

H
(1)
x,k1

∑

y∈Ijk2

H
(2)
y,k2

=

∑
k3=k3(k1,k2,j)

g
(1)
k1
· g(2)k2

=
(
g(1) ∗ g(2)

)
(k3) = g(k3).

where the penultimate equality follows by Algorithm 3.6.
Finally, for every x ̸∈ Ijk , we have that Hx,k = 0, i.e., property (c) holds for H.

The latter holds since x ∈ Ijk1 and y ∈ Ijk2 gives that x + y ∈ Ij+1
k3(k1,k2,j)

. Thus, by
definition of approximate probability mass function, it follows that g = g(1) ∗ g(2)
is an (ϵ, (j + 1))-approximation of f = f (1) ∗ f (2).

For the running time first recall thatL = O
(
(c+ d)ϵ−1 log n

)
= Õ(ϵ−1). Since

the cost for implementing Convolute is bounded by Õ(L2), it follows that we can
implement this procedure in Õ(ϵ−2) time.

96 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

The last ingredient we need is to show that given a family of probability mass
functions, and their corresponding approximations, choosing one of these functions
according to some probability distribution yields a random approximation in the
natural way. Specifically, for an index set Q, let {f (q)}q∈Q be a set of probability
mass functions. Let q̂ be be a random variable (independent from {f (q)}q∈Q) such
that for every q ∈ Q, Pr[q̂ = q] = p(q), and

∑
q∈Q p(q) = 1. Furthermore, define

f := f (q̂) =
∑
q∈Q

p(q)f (q)

.

Lemma 3.6.3. Suppose g(q) is an (ϵ, j)-approximation of the probability mass func-
tion f q , for all q ∈ Q. Let f be the probability mass function as defined above. Then

g :=
∑
q∈Q

p(q)g(q)

is an (ϵ, j)-approximation of f .

Proof. By definition of an (ϵ, j)-approximation, we know that there exist matrices
{H(q)}q∈Q for {g(q)}q∈Q satisfying properties (a), (b) and (c). We need to show
that for g as defined in the lemma, there exist a suitable matrixH that satisifes each
of these properties. To this end, define H as follows

Hx,k :=
∑
q∈Q

p(q)H
(q)
x,k, x ∈ {0, . . . , nc}, k ∈ {0, . . . , L}.

We start by showing property (a). Concretely, for any z ∈ {0, . . . , nc} we get that

L∑
k=0

Hx,k =

L∑
k=0

∑
q∈Q

p(q)H
(q)
x,k =

∑
q∈Q

p(q)

L∑
k=0

H
(q)
x,k =

∑
q∈Q

p(q)f (q)(x) = f(x).

Next, H satisfies property (b) since for any k ∈ {0, . . . , L} we get that

nc∑
x=0

Hx,k =

nc∑
x=0

∑
q∈Q

p(q)H
(q)
x,k =

∑
q∈Q

p(q)

nc∑
x=0

H
(q)
x,k =

∑
q∈Q

p(q)g(q)(k) =g(k).

Finally, for every x ̸∈ Ijk , we have that Hx,k = 0, i.e., property (c) is satisfied
for H. The latter holds since for all x ̸∈ Ijk we have that H(q)

x,k = 0 and thus Hx,k =∑
q∈Q p(q)H

(q)
x,k = 0. As a result we conclude that g is an (ϵ, j)-approximation of

f with matrix H satisfying all the required properties.

3.6. SAMPLING WEIGHTS OF A RANDOM WALK 97

Algorithm 3.7: ComputeDistrib(G, u, v, ℓ, ϵ)
Input :Weighted graph G = (V,E,w), with w(e) = [1, nc] for each e ∈ E and

c > 0, two vertices u, v ∈ V , a length parameter ℓ ∈ [1, nd] and an error
parameter ϵ > 0

Output :A vector (ju,v, gu,vℓ , pu,vℓ), where ju,v ≥ 1 is a precision parameter, gu,vℓ is
an (ϵ, ju,v)-approximation of fu,vs(w),ℓ, and p

u,v
ℓ is the probability that the

random walk w that starts at u hits v after ℓ steps
1 if (ℓ = 1) then
2 If (u, v) ̸∈ E, return (1,0, 0)

3 If (u, v) ∈ E, return (1, gu,vℓ , pu,vℓ), where gu,v1 (1
w(u,v))← 1 and pu,vℓ ← w(u,v)

d(v)

4 if (ℓ ≥ 2) then
5 Set ℓ′ ← ⌊ℓ/2⌋ and ℓ′′ ← ⌈ℓ/2⌉
6 for every y ∈ V do
7 Invoke ComputeDistrib(G, u, y, ℓ′, ϵ) and ComputeDistrib(G, y, v, ℓ′′, ϵ)
8 Let (ju,y, gu,yℓ′ , pu,yℓ′) and (jy,v, g

y,v
ℓ′′ , p

y,v
ℓ′′) be the corresponding outputs

9 Set gu,vℓ ←
∑

y∈V p
u,y
ℓ′ p

y,v
ℓ′′ · (g

u,y
ℓ′ ∗ g

y,v
ℓ′′)

10 Return
(
(maxy∈V max(ju,y, jy,v)) + 1, gu,vℓ ,

∑
y∈V p

u,y
ℓ′ · p

y,v
ℓ′′

)

We now describe how to compute a probability distribution that will in turn
allow us to sample approximately from fu,vs(w),ℓ. At a high level we accomplish this
task by employing the “doubling technique” together with the approximate repre-
sentations of the probability mass functions and their convolution. As an input,
the algorithm receives a weighted graph G with polynomially bounded weights, a
length parameter ℓ ≥ 1, an error parameter ϵ > 0 and two vertices u, v ∈ V . The
procedure computes and outputs a vector

(
ju,v, g

u,v
ℓ , pu,vℓ

)
, where ju,v ≥ 1 is a preci-

sion parameter, gu,vℓ is an (ϵ, ju,v)-approximation of fu,vs(w),ℓ, and p
u,v
ℓ = Pu [wℓ = v]

is the probability that the random walk w that originates at u hits v after ℓ steps.
If (ℓ = 1), then there are two possibilities depending on whether (u, v) ∈ E

or not. If the former holds, then the algorithms simply returns (1,0, 0) as it is not
possible to reach v after performing one step of the randomwalk from v. Otherwise,
we simply return (1, gu,v1 , pu,vℓ), where gu,v1 (1

w(u,v)) = 1 and pu,vℓ = w(u,v)
d(v) .

However, if (ℓ > 1), then it first halves ℓ into two parts ℓ′ = ⌊ℓ/2⌋ and
ℓ′′ = ⌈ℓ/2⌉. Next, for each y ∈ V it recursively calls itself with input parame-
ters (G, u, y, ℓ′, ϵ) and (G, y, v, ℓ′′, ϵ). The outputs from these two calls are then
combined using the convolution manipulations described above to produce the fi-
nal output. Exact details for implementing this procedure are summarized in Algo-
rithm 3.7. The following lemma proves the correctness and the running time of the
algorithm.

Lemma 3.6.4. Given a weighted graph G = (V,E,w) with w(e) ∈ [1, nc] for each
e ∈ E and c > 0, two vertices u, v ∈ V , a length parameter ℓ ∈ [1, nd] and an error
parameter ϵ > 0, ComputeDistrib(G, u, v, ℓ, ϵ) (Algorithm 3.7) correctly computes a

98 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

vector (ju,v, g
u,v
ℓ , pu,vℓ) in Õ(n3ϵ−2) time, where gu,vℓ is an (ϵ, ju,v)-approximation to

fu,vs(w),ℓ and p
u,v
ℓ is the probability that the random walk w the starts at u hits v after

ℓ steps. Moreover, the output ju,v cannot exceed O(log n).

Proof. We first prove that the third coordinate of the output vector equals
Pu [wℓ = v]. We proceed by induction on the length of the walk ℓ. If (ℓ = 1), it
is easy to check that the condition holds by construction of the algorithm. Next
assume (ℓ ≥ 2) and note that (ℓ′ < ℓ) and (ℓ′′ < ℓ). Applying induction hypothesis
on each recursion call, we know pu,yℓ′ is Pu [wℓ = y] and py,vℓ′′ is Py [wℓ′′ = u]. The
latter along with the fact that (ℓ′ + ℓ′′ = ℓ) imply

∑
y∈V

(
pu,yℓ′ · p

y,v
ℓ′′
)
=
∑
y∈V

(Pu [wℓ = y] · Py [wℓ′′ = u]) = Pu [wℓ = v] .

We next prove that the second coordinate gu,vℓ is an (ϵ, j)-approximation of
fu,vs(w),ℓ. First, since ju,v = (maxy max(jv,y, jy,u)) + 1, Lemma 3.6.2 implies that(
gu,yℓ′ ∗ g

y,v
ℓ′′
)
is an (ϵ, ju,v)-approximation of fu,y,vs(w),ℓ′,ℓ′ where we define fu,y,vs(w),ℓ′,ℓ′ to

be the probability mass function of s(w), conditioning on w ∼ wv,u, ℓ(w) = ℓ′+ ℓ′′

and wℓ′ = y. Second, consider the triplets {(u, y, v)}y∈V , and let gy = gu,yℓ′ ∗ g
y,v
ℓ′′

and py = pu,yℓ′ · p
y,v
ℓ′ . Then by Lemma 3.6.3 we get that gu,vℓ =

∑
y∈V py · gy is the

desired (ϵ, ju,v)-approximation.
Finally, we prove that ju,v = O(log n). We will inductively show that the first

coordinate ju,v of the output vector from ComputeDistrib(G, u, v, ℓ, ϵ) is at most
k + 1, for ℓ ≤ 2k. For the base case k = 0, which implies that ℓ = 1 and and the
claim trivially holds. Now assume that k ≥ 1. Since ℓ ≤ 2k, by construction we
get that ℓ′ ≤ 2k−1 and ℓ′′ ≤ 2k−1. By induction hypothesis, the first coordinates
returned by all of the recursion calls are no more than (k − 1) + 1 = k. Thus, the
returned ju,v at most k + 1 = O(log n).

For the running time, note that in all recursion calls of the procedure Com-
puteDistrib there are at most n2 possible pairs (u, v) andO(log n) possible values
of ℓ. In each of these calls, we invoke the procedure Convolute exactly n times,
where each invocation costs Õ(ϵ−2) by Lemma 3.6.2. Thus the total running time
is bounded by Õ(n3ϵ−2).

We now have all the tools to prove Lemma 3.4.13.

Proof of Lemma 3.4.13. Our algorithm for sampling s(w) is implemented as follows.
First, it invokes the procedure computeDistrib(G, u, v, ℓ, ϵ) and obtains the result-
ing vector (ju,v, gu,vℓ , pu,vℓ). Then it samples from the distribution by choosing the
interval Iju,vk = [le, ri] with probability gu,vℓ (k), where le := (1 + O(ϵ

logn))
k and

ri := (1 +O(ϵ
logn))

k+ju,v . Finally the algorithm outputs ri. This procedure is sum-
marized in Algorithm 3.8.

3.7. SCHUR COMPLEMENT SPARSIFIER FROM SUM OF RANDOM WALKS 99

Algorithm 3.8: Sample(G, u, v, ℓ, ϵ)
Input :Weighted graph G = (V,E,w), with w(e) = [1, nc] for each e ∈ E and

some c > 0, two vertices u, v ∈ V , a length parameter ℓ ∈ [1, nd] and an
error parameter ϵ > 0

Output :A sampled s(w) up to a (1 + ϵ) relative error, where w is a random walk
of length ℓ that starts at u and ends at v

1 Set (ju,v, gu,vℓ , pu,vℓ)← ComputeDistrib(G, u, v, ℓ, O(ϵ
logn))

2 Let k0 be the index of the interval Iju,v

k0
that is sampled according to distribution

gu,vℓ

3 Return
(
1 +O(ϵ

logn)
)k0+ju,v

We next argue about the correctness. Note that by property (b) in the definition
of approximation gu,vℓ of fu,vs(w),ℓ, this sampling process can be viewed as sampling
the pair (x, i) from the distribution Hx,i, without knowing x. Furthermore, by
property (a), each x is sampled with the correct probability fu,vs(w),ℓ(x). Since we can
restrict to ϵ ≤ 1/2 it follows by Lemma 3.6.4 that ri/le = (1+O(ϵ

logn))
ju,v ≤ (1+ϵ).

Thus by property (c) we get that ri is within [x, (1+ϵ)x] for the (unknown) sampled
x.

The running time of our sampling procedure is asymptotically dominated by
the running time of ComputeDistrib, which is in turn bounded by O(n3ϵ−2), as
desired.

3.7 Schur Complement Sparsifier from Sum of Random
Walks

In this section we prove Theorem 3.3.1, which states that sampling random walks
generates sparsifiers of Schur complements:

Lemma 3.7.1 (Restatement of Theorem 3.3.1). Let G = (V,E,w) be an undirected,
weighted multi-graph with a subset of vertices K . Furthermore, let ϵ ∈ (0, 1), and let
ρ be some parameter related to the concentration of sampling given by

ρ = O
(
log nϵ−2

)
.

LetH be an initially empty graph, and for every edge e = (u, v) of repeat ρ times the
following procedure:

1. Simulate a random walk starting from u until it first hitsK at vertex t1,

2. Simulate a random walk starting from v until it first hitsK at vertex t2,

3. Combine these two walks (including e) to get a walk u = (t1 = u0, . . . , uℓ =
t2), where ℓ is the length of the combined walk.

100 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

4. Add the edge (t1, t2) to H with weight

1/

(
ρ

ℓ−1∑
i=0

(1/w(ui, ui+1))

)

The resulting graph H satisfies LH ≈ϵ SC(G,K) with high probability.

Note that this rescaling by 1/
(
ρ
∑ℓ−1

i=0 (1/w(ui, ui+1))
)
is quite natural: Con-

sider the degenerate case where K = V . This routine generates ρ copies of each
edge weight, which then need to be rescaled by 1/ρ to ensure approximation to the
original graph.

Similar to other randomized graph sparsification algorithms [12, 89, 145, 167,
235], our sampling scheme directly interacts with Chernoff bounds. Our random
matrices are ‘groups’ of edges related to random walks starting from the edge e.
We will utilize Theorem 1.1 due to [252], which we paraphrase in our notion of
approximations.

Theorem 3.7.2. LetX1,X2 . . .Xk be a set of random matrices satisfying the follow-
ing properties:

1. Their expected sum is a projection operator onto some subspace, i.e.,
∑

i E [Xi] =
Π.

2. For each Xi, its entire support satisfies: 0 ≼ Xi ≼ ϵ2

O(logn)I.

Then, with high probability, we have∑
i

Xi ≈ϵ Π.

Re-normalizations of these bounds similar to the work of [235] give the follow-
ing graph theoretic interpretation of the theorem above.

Corollary 3.7.3. Let E1 . . . Ek be distributions over random edges satisfying the fol-
lowing properties:

1. Their expectation sums to the graph G, i.e.,
∑

i E [Ei] = G.

2. For each Ei, any edge in its support has low leverage score in G, i.e.,
w(e)RG

eff (e) ≤
ϵ2

O(logn) .

Then, with high probability, we have∑
i

LEi ≈ϵ LG.

3.7. SCHUR COMPLEMENT SPARSIFIER FROM SUM OF RANDOM WALKS 101

To fit the sampling scheme outlined in Theorem 3.3.1 into the requirements of
Corollary 3.7.3, we need (1) a specific interpretation of Schur complements in terms
of walks, and (2) a bound on the effective resistances between two vertices at a given
distance.

Given a walk w = u0, . . . , uℓ of length ℓ in G with a subset a vertices K , we
say that w is a terminal-free walk iff u0, uℓ ∈ K and u1, . . . , uℓ−1 ∈ V \K .

Fact 3.7.4 ([89], Lemma 5.4). For any undirected, unweighted graphG and any subset
of vertices K ⊆ V , the Schur complement SC(G,K) is given as an union over all
multi-edges corresponding to terminal-free walks u0, . . . , uℓ with weight∏ℓ−1

i=0 w(ui, ui+1)∏ℓ−1
i=1 d (ui)

.

The fact below follows by repeatedly applying the triangle inequality of the
effective resistances between two vertices.

Fact 3.7.5. In an weighted undirected graph G, the effective resistance between two
vertices that are connected by a path p = (p0, . . . , pℓ) is at most

∑ℓ−1
i=0 1/w(pi, pi+1).

Combining the above results gives the guarantees of our sparsification routine.

Proof of Theorem 3.3.1. For every edge e ∈ E, let We be the random graph cor-
responding the the terminal-free random walk that started at edge e. Define
H = ρ ·

∑
eWe to be the output graph by our sparsification routine, where

ρ = O(log nϵ−2) is the sampling overhead. To prove that LH ≈ϵ SC(G,K) with
high probability, we need to show that (1) E [H] = SC(G,K) and (2) for any edge
f in We, its leverage score w(f)RWe

eff (f) is at most ϵ2/ log n (by Corollary 3.7.3).
Note that (2) immediately follows from the effective resistance bound of Fact 3.7.5
and the choice of ρ = O(log n/ϵ2). We next show (1).

To this end, we start by describing the decomposition ofSC(G,K) into random
multi-edges, which correspond to random terminal-free walks in Fact 3.7.4. The
main idea is to sub-divide each walk u0 . . . uℓ of length ℓ in G into ℓ walks of the
same length, each starting at one of the ℓ edges on the walk, and each having weight∏ℓ−1

i=0 w(ui, ui+1)∏ℓ−1
i=1 d (ui)

By construction of our sparsification routine, note that every random graph We is
a distribution over walks u0 . . . uℓ, each picked with probability

1

w(e)

∏ℓ−1
i=0 w(ui, ui+1)∏ℓ−1

i=1 d (ui)
.

Thus, to retain expectation, when such a walk is picked, our routine correctly adds
it to H with weight 1/(ρ

∑ℓ−1
i=0 1/w(ui, ui+1)).

102 CHAPTER 3. DYNAMIC SPECTRAL VERTEX SPARSIFIERS

Formally, we get the following chain of equalities

E [H] = ρ ·
∑
e

E [We]

= ρ ·
∑
e

∑
w=u0,u1...uℓ(w):w∋e

1

ρ
(∑ℓ−1

i=0 1/w(ui, ui+1)
) · 1

w(e)
·
∏ℓ−1

i=0 w(ui, ui+1)∏ℓ−1
i=1 d (ui)

=
∑

w=u0,u1...uℓ(w)

∑
e:e∈w

1(∑ℓ−1
i=0 1/w(ui, ui+1)

) · 1

w(e)
·
∏ℓ−1

i=0 w(ui, ui+1)∏ℓ−1
i=1 d (ui)

=
∑

w=u0,u1...uℓ(w)

∏ℓ−1
i=0 w(ui, ui+1)∏ℓ−1

i=1 d (ui)

= SC(G,K).

3.8 Conclusion

In this chapter, we study algorithms for dynamically maintaining all-pairs effec-
tive resistances in undirected weighted graphs and Laplacian solvers in undirected,
unweighted, bounded degree graphs. In particular, we obtain an algorithm with
O(m3/4ϵ−4) update and query time for (1+ ϵ)-approximating effective resistances
in unweighted graphs, and an algorithm with O(n11/12ϵ−5) update and query time
for solving Laplacian systems approximately while allowing implicit access to few
entries of the solution vector. Our key component is the dynamic maintenance of
spectral vertex sparsifiers (also known as approximate Schur complements) with
respect to a set of terminals of our choice.

A natural attempt to improve the running times of our effective resistance data-
structure is to employ a hierarchy of dynamic spectral vertex sparsifiers. However,
this is not an easy task as there are many dependencies which one needs to deal
with when employing a hierarchical approach. We believe that a careful analysis
combined with a way to control the propagation of updates among levels might
indeed lead to further improvements.

Our dynamic Schur complement data-structure works only against an oblivious
adversary. While this is a standard assumption in dynamic algorithms, especially
when designing the first non-trivial algorithm for a particular problem, it is highly
desirable to remove this assumption as this might lead to other algorithmic applica-
tions. A good starting step would be to design a randomized algorithm that works
against an adaptive adversary.

Perhaps one of the most important problems is to remove our bounded-degree
assumption for dynamic Laplacian solvers with demand vectors that have large non-
zero support. Our current algorithm exploits this assumption in several places, the
most critical one being the bound on the load on any vertex induced by the random

3.8. CONCLUSION 103

walks that our algorithm maintains. This suggests that new approaches might be
required to be able to remove this assumption.

CHAPTER 4
Dynamic Low-Stretch Trees via

Dynamic Low-Diameter
Decompositions

Spanning trees of low average stretch on the non-tree edges, as introduced by Alon
et al. [17], are a natural graph-theoretic object. In recent years, they have found
significant applications in solvers for symmetric diagonally dominant (SDD) linear
systems. In this work, we provide the first dynamic algorithm for maintaining such
trees under edge insertions and deletions to the input graph. Our algorithm has
update time n1/2+o(1) and the average stretch of the maintained tree is no(1), which
matches the stretch in the seminal result of Alon et al.

Similar to Alon et al., our dynamic low-stretch tree algorithm employs a dy-
namic hierarchy of low-diameter decompositions (LDDs). As a major building block
we use a dynamic LDD that we obtain by adapting the random-shift clustering of
Miller et al. [195] to the dynamic setting. The major technical challenge in our ap-
proach is to control the propagation of updates within our hierarchy of LDDs: each
update to one level of the hierarchy could potentially induce several insertions and
deletions to the next level of the hierarchy. We achieve this goal by a sophisticated
amortization approach. In particular, we give a bound on the number of changes
made to the LDD per update to the input graph that is significantly better than the
trivial bound implied by the update time.

We believe that the dynamic random-shift clustering might be useful for inde-
pendent applications. One of these applications is the dynamic spanner problem.
By combining the random-shift clustering with the recent spanner construction of
Elkin and Neiman [92]. We obtain a fully dynamic algorithm for maintaining a
spanner of stretch 2k − 1 and size O(n1+1/k log n) with amortized update time
O(k log2 n) for any integer 2 ≤ k ≤ log n. Compared to the state-of-the art in this

105

106 CHAPTER 4. DYNAMIC LOW-STRETCH TREES

regime Baswana et al. [33], we improve upon the size of the spanner and the update
time by a factor of k.

4.1 Introduction

Graph compression is an important paradigm in modern algorithm design. Given a
graph G with n nodes, can we find a substantially smaller (read: sparser) subgraph
H such that H preserves central properties of G? Very often, this compression is
“lossy” in the sense that the properties of interest are only preserved approximately.
A ubiquitous example of graph compression schemes are spanners: every graph G
admits a spanner H with O(n1+1/k) edges that has stretch 2k − 1 (for any integer
k ≥ 2), meaning that for every edge e = (u, v) ofG not present inH there is a path
from u to v in H of length at most 2k − 1. Thus, when k = log n, very succinct
compression with O(n) edges can be achieved at the price of stretch O(log n).

The most succinct form of subgraph compression is achieved when H is a tree.
Spanning trees, for example, are a well-known tool for preserving the connectivity
of a graph. It is thus natural to ask whether, similar to spanners, one could also have
spanning trees with low stretch for each edge. This unfortunately is known to be
false: in a ring of n nodes every tree will result in a stretch of n − 1 for the single
edge not contained in the tree. However, it turns out that a quite similar goal can be
achieved by relaxing the concept of stretch: every graph G admits a spanning tree
T of average stretch O(log n log log n) [13], where the average stretch is the sum of
the stretches of all edges divided by the total number of edges. Such subgraphs are
called low (average) stretch trees and have found numerous applications in recent
years, most notably in the design of fast solvers for symmetric diagonally dominant
(SDD) linear systems [51, 74, 161, 168, 169, 237]. We believe that their fundamental
graph-theoretic motivation and their powerful applications make low-stretch trees
a very natural object to study as well in a dynamic setting, similar to spanners [27,
33, 54, 90] and minimum spanning trees [96, 106, 128, 138, 203, 260]. Indeed, the
design of a dynamic algorithm for maintaining a low-stretch tree was posed as an
open problem by Baswana et al. [33], but despite extensive research on dynamic
algorithms in recent years, no such algorithm has yet been found.

In this chapter, we give the first non-trivial algorithm for this problem in the dy-
namic setting. Specifically, we maintain a low-stretch tree T of a dynamic graph G
undergoing updates in the form of edge insertions and deletions in the sense that
after each update to G we compute the set of necessary changes to T . The goal in
this problem is to keep the time spent after each update small while still keeping
the average stretch of T tolerable. Our main result is a fully dynamic algorithm for
maintaining a spanning tree of expected average stretch no(1) with expected amor-
tized update time n1/2+o(1). At a high level, we obtain this result by combining the
classic low-stretch tree construction of Alon et al. [17] with a dynamic algorithm
for maintaining low diameter decompositions (LDD) based on random-shift cluster-
ing [195]. Our LDD algorithm might be of independent interest, and we provide

4.1. INTRODUCTION 107

another application by using it to obtain a dynamic version of the recent spanner
construction of Elkin and Neiman [92]. The resulting dynamic spanner algorithm
improves upon one of the state-of-the-art algorithms by Baswana et al. [33].

Our overall approach towards the low-stretch tree algorithm – to use low-
diameter decompositions based on random-shift clustering in the construction of
Alon et al. [17] – has been used before in parallel and distributed algorithms [51,
111, 124]. However, to make this approach work in the dynamic setting we need
to circumvent some non-trivial challenges. In particular, we cannot employ the fol-
lowing paradigm that often is very helpful in designing dynamic algorithms: design
an algorithm that can only handle edge deletions and then extend it to the fully dy-
namic setting using a general reduction. While we do follow this paradigm for our
dynamic LDD algorithm, there are two obstacles that prevent us from doing so for
the dynamic low-stretch tree: First, many fully-dynamic-to-decremental reductions
exploit some form of “decomposability”, which does not hold for low-stretch trees,
i.e., low-stretch trees of subgraphs of the input graph cannot be simply be combined
to a single low-stretch tree of the full graph. Second, in our dynamic low-diameter
decomposition edges might start and stop being inter-cluster edges, even if the in-
put graph is only undergoing deletions. In the hierarchy of Alon et al. this leads
to both insertions and deletions at the next level of the hierarchy. As opposed to
other dynamic problems [12, 134], one algorithm cannot simply enforce some type
of “monotonicity” by not passing on insertions to the next level of the hierarchy (to
stay within a deletions-only setting) as there might be too many such edges to ig-
nore them. Thus, it seems that we really have to deal with the fully dynamic setting
in the first place. We show that this can be done by a sophisticated amortization
approach that explicitly analyzes the number of updates passed on to the next level.

RelatedWork. Low average stretch trees have been introduced byAlon et al. [17]
who obtained an average stretch of 2O(

√
logn log logn) and also gave a lower bound

of Ω(log n) on the average stretch. The first construction with polylogarithmic av-
erage stretch was given by Elkin et al. [91]. Further improvements [8, 168] culmi-
nated in the state-of-the-art construction of Abraham andNeiman [13] with average
stretch O(log n log log n). All these trees with polylogarithmic average stretch can
be computed in time Õ(m). To the best of our knowledge, all known algorithms
in parallel and distributed models of computation [51, 111, 124] are based on the
scheme of Alon et al. and thus do not provide polylogarithmic stretch guarantees.

The main application of low-stretch trees has been in solving symmetric, di-
agonally dominant (SDD) systems of linear equations. It has been observed that
iterative methods for solving these systems can be made faster by preconditioning
with a low-stretch tree [55, 239, 253]. Consequently, they have been an impor-
tant ingredient in the breakthrough result of Spielman and Teng [237] for solving
SDD systems in nearly linear time. In this solver, low-stretch trees are utilized
for constructing ultra-sparsifiers, which in turn are used as preconditioners. Be-
yond this initial breakthrough, low-stretch trees have also been used in subsequent,

108 CHAPTER 4. DYNAMIC LOW-STRETCH TREES

faster solvers [51, 74, 161, 168, 169]. Another prominent application of low-stretch
trees (concretely, the variant of random spanning trees with low expected stretch)
is the remarkable cut-based graph decomposition of Räcke [23, 214], which embeds
any general undirected graph into convex combination of spanning trees, while pay-
ing only a Õ(log n) congestion for the embedding. This decomposition tool, initially
aimed at giving the best competitive ratio for oblivious routing, has found several ap-
plications ranging from approximation algorithms for cut-based problems (e.g., min-
imum bisection [214]) to graph compression (e.g., vertex sparsifiers [197]). Other
classic problems in the realm of approximation algorithms that utilize the properties
of low-stretch trees include the k-server problem [17] and the minimum communi-
cation cost spanning tree problem [140, 207].

In terms of dynamic algorithms, we are not aware of any prior work for main-
taining low-stretch trees. The closest related works are arguably dynamic algo-
rithms for maintaining distance oracles and spanners, as they also aim preserving
pairwise distances, and dynamic algorithms for maintaining minimum spanning
trees, as they also are spanning trees with an additional property.

A distance oracle is a data structure that can answer queries for the (approxi-
mate) distance between a pair of nodes. The fully dynamic distance oracle of Abra-
ham, Chechik, and Talwar [11] for unweighted, undirected graphs has expected
amortized update time Õ(

√
mn1/k), query timeO(k2ρ2), and stretch 2O(kρ), where

the parameter k ≥ 2 is integer and ρ = 1+⌈ logn1−1/k

log(m/n1−1/k)
⌉. To the best of our knowl-

edge, the recent decremental distance oracle of Chechik [61] can be used to extend
this result to weighted graphs and to improve the stretch and the query time, while
leaving the update time essentially unchanged.

For dynamic spanner algorithms, the main goal is to maintain, for any given
integer k ≥ 2, a spanner of stretch 2k − 1 with Õ(n1+1/k) edges. Spanners of
stretch 2k − 1 and size O(n1+1/k) exist for every undirected graph [28], and this
trade-off is presumably tight under Erdős’s girth conjecture. The dynamic spanner
problem has been introduced by Ausiello et al. [27]. They showed how to main-
tain a 3- or 5-spanner with amortized update time proportional to the maximum
degree of the graph. Using techniques from the streaming literature, Elkin [90] pro-
vided an algorithm for maintaining a (2k − 1)-spanner with Õ(mn−1/k) expected
update time. Faster update times were achieved by Baswana et al. [33]: their al-
gorithms maintain (2k − 1)-spanners either with expected amortized update time
O(1)k or with expected amortized update time O(k2 log2 n). Later, Bodwin and
Krinninger [54] initiated the study of dynamic spanners with worst-case update
times, and recently, Bernstein, Forster, and Henzinger [45] presented a deamorti-
zation approach to maintain (2k − 1)-spanners with high-probability worst-case
update time O(1)k log3 n. All of these algorithms exhibit the stretch/space trade-
off mentioned above in unweighted graphs, up to polylogarithmic factors in the
size of the spanner.

The first non-trivial algorithm for dynamically maintaining a minimum span-
ning tree was developed by Frederickson [106] and had a worst-case update time

4.1. INTRODUCTION 109

of O(
√
m). Using a general sparsification technique, this bound was improved to

O(
√
n) by Eppstein et al. [96]. In terms of amortized bounds, Holm et al. [138] were

the first to improve this bound and obtained polylogarithmic amortized update time.
A recent breakthrough of Nanongkai, Saranurak, and Wulff-Nilsen [202, 203, 260],
who finally achieved a worst-case update time of no(1).

Our Results. Our main result is a dynamic algorithm for maintaining a low aver-
age stretch tree of an unweighted, undirected graph.

Theorem 4.1.1. Given any unweighted, undirected graph undergoing edge insertions
and deletions, there is a fully dynamic algorithm for maintaining a spanning forest
of expected average stretch no(1) that has expected amortized update time m1/2+o(1).
These guarantees hold against an oblivious adversary.

This is the first non-trivial algorithm for this fundamental problem. Our stretch
matches the seminal construction of Alon et al. [17], which is still the state of the
art in parallel and distributed settings [51, 111, 124].

Similar to the approach of [167] in the static setting, we can applyTheorem 4.1.1
to a cut sparsifier of the input graph, which has only Õ(n) edges, to improve the
running time for dense graphs. Such a cut sparsifier can be maintained with the
dynamic algorithm of Abraham et al. [12] that has polylogarithmic update time.

Corollary 4.1.2. Given any unweighted, undirected graph undergoing edge insertions
and deletions, there is a fully dynamic algorithm for maintaining a spanning forest
of expected average stretch no(1) that has expected amortized update time n1/2+o(1).
These guarantees hold against an oblivious adversary.

Obtaining this improvement is non-trivial because cut sparsifiers are weighted
graphs, even when the input graph is unweighted, and the algorithm of Theo-
rem 4.1.1 only accepts unweighted graphs. To deal with this issue, we deviate from
the approach of [167] by interpreting the edge weights of the sparsifier as edge mul-
tiplicities in an unweighted graph. A fine-grained analysis of the amount of change
to edge the multiplicities per update to the input graph then allows us to get the
desired benefits of combining both algorithms.

We additionally show that
√
n is not an inherent barrier to the update time, at

least if very large stretch is tolerated. A modification of our algorithm gives average
stretch O(t) and update time n1+o(1)

t for t ≥
√
n.

One of the main building blocks of our dynamic low-stretch tree algorithm is a
dynamic algorithm for maintaining a low-diameter decomposition (LDD). Roughly
speaking, for β ∈ (0, 1) and∆ > 0, a (β,∆)-decomposition of a graph is a partition-
ing of its nodes into node-disjoint clusters such that (1) any pair of nodes belonging
to the same cluster are at distance at most ∆, and (2) the number of edges whose
endpoints belong to different clusters is bounded by βm. The following theorem
gives a dynamic variant of such decompositions.

110 CHAPTER 4. DYNAMIC LOW-STRETCH TREES

Theorem4.1.3. Given any unweighted, undirectedmultigraph undergoing edge inser-
tions and deletions, there is a fully dynamic algorithm for maintaining a (β,O(lognβ))-

decomposition (with clusters of strong diameterO(lognβ) and at most βm inter-cluster
edges in expectation) that has expected amortized update time O(log2 n/β2). A span-
ning tree of diameter O(lognβ) for each cluster can be maintained in the same time
bound. The expected amortized number of edges to become inter-cluster edges after
each update is O(log2 n/β). These guarantees hold against an oblivious adversary.

Our algorithm is based on the random-shift clustering of Miller at al. [195], with
many tweaks to make it work in a dynamic setting. In our analysis of the algorithm,
we bound the amortized number of changes to the clustering per update by Õ(1/β),
which is significantly smaller than the naive bound of Õ(1/β2) implied by the up-
date time. This is particularly important for hierarchical approaches, such as in our
dynamic low-stretch tree algorithm, because a small bound on the number of amor-
tized changes helps in controlling the number of induced updates to be processed
within the hierarchy. Independently, Saranurak and Wang [225] obtained a fully
dynamic LLD algorithmwith nearly the same guarantees (up to polylogarithmic fac-
tors).1 We believe that our solution is arguably simpler than their expander pruning
approach.

The dynamic random-shift clustering underlying our dynamic LDD is of inde-
pendent interest. A direct consequence demonstrating the usefulness of our dy-
namic random-shift clustering algorithm is the following new result for the dynamic
spanner problem.

Theorem 4.1.4. Given any unweighted, undirected graph undergoing edge insertions
and deletions, there is a fully dynamic algorithm for maintaining a spanner of stretch
2k − 1 and expected size O(n1+1/k log n) that has expected amortized update time
O(k log2 n). These guarantees hold against an oblivious adversary.

Recall that the fully dynamic algorithm of Baswana et al. [33] maintains a span-
ner of stretch 2k − 1 and expected size O(kn1+1/k log n) with expected amortized
update time O(k2 log2 n). Our new algorithm thus improves both the size and the
update time by a factor of k. This is particularly relevant because the stretch/size
trade-off of 2k − 1 vs. O(n1+1/k) is tight under the girth conjecture. We thus ex-
ceed the conjectured optimal size by a factor of only log n compared to the prior
k log n, where k might be as large as log n. When we restrict ourselves to the decre-
mental setting, we do achieve sizeO(n1+1/k) with expected amortized update time
O(k log n). Again, this saves a factor of k compared to Baswana et al. [33]. To ob-
tain Theorem 4.1.4, we employ our dynamic random-shift clustering algorithm in
the spanner construction of Elkin and Neiman [92] and combine it with the dynamic
spanner framework of Baswana et al. [33].

1The low-diameter decomposition of Saranurak andWang can be maintained against an adaptive
online adversary. However, the low-diameter spanning trees of their clustering can only be main-
tained against an oblivious adversary. Therefore, plugging in their dynamic LDD algorithm into our
dynamic low-stretch tree construction does not yield any improvement over our guarantees.

4.2. PRELIMINARIES 111

Structure of this Chapter. The remainder of this chapter is structured as fol-
lows. We first settle the notation and terminology in Section 4.2. We then give
a high-level overview of our results and techniques in Section 4.3. Finally, we pro-
vide all necessary details for our dynamic low-stretch tree (Section 4.4), our dynamic
low-diameter decomposition (Section 4.5), and our dynamic spanner algorithm (Sec-
tion 4.6).

4.2 Preliminaries

Graphs. Let G = (V,E,wG) be an undirected weighted graph, where n = |V |,
m = |E| and wG : E → R+. If wG(e) = 1 for all e ∈ E, then we say G is an
undirected unweighted graph. If E is a multiset, i.e., every element of E may have
integer multiplicity greater than 1, then we callG a multigraph. For a subsetC ⊆ V
let G[C] denote the subgraph of G induced by C . Throughout the chapter we call
C ⊂ V a cluster. For any positive integer k, a clustering of G is a partition of V
into disjoint subsets C1, C2, . . . , Ck. We say that an edge is an intra-cluster edges if
both its endpoints belong to the same cluster Ci for some i; otherwise, we say that
an edge is an inter-cluster edge.

For any u, v ∈ V let distG(u, v) denote the length of a shortest path be-
tween u and v induced by the edge weights wG of the graph G. When G is
clear from the context, we will omit the subscript. The strong diameter of a clus-
ter C ⊂ V is the maximum length of the shortest path between two nodes inG[C],
i.e., max{distG[C](u, v) |u, v ∈ C}. In the following we define a low-diameter clus-
tering of G.

Definition 4.2.1. Let k be any positive integer, β ∈ (0, 1) and ∆ > 0. Given an
undirected, unweighted graphG = (V,E), a (β,∆)-decomposition ofG is a partition
of V into disjoint subsets C1, C2, . . . , Ck such that:

1. The strong diameter of each Ci is at most ∆.

2. The number of edges with endpoints belonging to different subsets is at most βm.

In the (β,∆)-decompositions of the randomized dynamic algorithms in this
chapter, the bound in Condition 2 is in expectation.

Let H = (V, F) be a subgraph of G = (V,E,wG). For any pair of nodes
u, v ∈ V , we let distH(u, v) denote the length of a shortest path between u and v
in H . We define the stretch of an edge (u, v) ∈ E with respect to H to be

stretchH(u, v) :=
distH(u, v)

wG(u, v)
.

The stretch of H is defined as the maximum stretch of any of edge (u, v) ∈ E. The
average stretch over all edges of G with respect to H is given by

avg-stretchH(G) :=
1

|E|
∑

(u,v)∈E

stretchH(u, v).

112 CHAPTER 4. DYNAMIC LOW-STRETCH TREES

Exponential Distribution. For a parameter λ, the probability density function
of the exponential distribution Exp(λ) is given by

f(x, λ) :=

{
λe−λx if x ≥ 0

0 otherwise.

The mean of the exponential distribution is 1/λ.

Dynamic Algorithms. Consider a graph with n nodes undergoing updates in
the form of edge insertions and edge deletions. An incremental algorithm is a dy-
namic algorithm that can only handle insertions, a decremental algorithm can only
handle deletions, and a fully dynamic algorithm can handle both. We follow the con-
vention that a fully dynamic algorithm starts from an empty graph with n nodes.
The (maximum) running time spent by a dynamic algorithm for processing each
update (before the next update arrives) is called update time. We say that a dynamic
algorithm has (expected) amortized update time u(n) if its total running time spent
for processing a sequence of q updates is bounded by q · u(n) (in expectation). In
this chapter, we assume that the updates to the graph are performed by an oblivious
adversary who fixes the sequences of updates in advance, i.e., the adversary is not
allowed to adapt its sequence of updates as the algorithm proceeds. This is a stan-
dard assumption in dynamic graph algorithms2 and in particular, it implies that for
randomized dynamic algorithms the sequence of updates is independent from the
random choices of the algorithm.

4.3 Technical Overview

In the following, we provide some intuition for our approach and highlight the main
ideas of this chapter.

Low Average Stretch Tree. A first idea is to employ the dynamic low-diameter
decomposition of Theorem 4.1.3. This algorithm can maintain a (β,O(lognβ))-
decomposition, i.e., a partitioning of the graph into clusters such that there are at
most βm inter-cluster edges and the (strong) diameter of each cluster is at most
O(lognβ). In particular, each cluster has a designated center and the algorithm main-
tains a spanning tree of each cluster in which every node is at distance at most
O(lognβ) from the center. Now consider the following simple dynamic algorithm:

1. Maintain a (β,O(lognβ))-decomposition of the input graph G.

2. Contract the clusters in the decomposition to single nodes and maintain a
multigraphG′ containing one node for each cluster and all inter-cluster edges.

2For example, all known randomized dynamic spanner algorithms [33, 45, 54, 90] work under this
assumption.

4.3. TECHNICAL OVERVIEW 113

3. Compute a low-stretch tree T ′ of G′ after each update to G using a static
algorithm providing polylogarithmic average stretch.

4. Maintain T as the “expansion” of T ′ in which every node in T ′ is replaced by
the spanning tree of diameter O(lognβ) of the cluster representing the node.

As the clusters are non-overlapping it is immediate that T is indeed a tree. To
analyze the average stretch of T , we distinguish between inter-cluster edges (with
endpoints in different clusters) and intra-cluster edges (with endpoints in the same
cluster). Each intra-cluster edge has stretch at most O(lognβ) as the spanning tree
of the cluster containing both endpoints of such an edge is a subtree of T . Each
inter-cluster edge has polylogarithmic average stretch in T ′ with respect to G′. By
expanding the clusters, the length of each path in T ′ increases by a factor of at most
O(lognβ). Thus, inter-cluster edges have an average stretch of O(lognβ polylog n) in
T . As there are atmostm intra-cluster edges and atmostβm inter-cluster edges, the
total stretch over all edges is at mostO(m · lognβ +βm · lognβ polylog n) = Õ(m · 1β),
which gives an average stretch of Õ(1β).

To bound the update time, first observe that the number of inter-cluster edges
is at most βm. Thus,G′ has at most βm edges and therefore the static algorithm for
computing T ′ takes time Õ(βm) per update. Together with the update time of the
dynamic LDD, we obtain an update time of Õ(1

β2 + βm). By setting β = m1/3, we
would already obtain an algorithm formaintaining a tree of average stretch Õ(m1/3)
with update time Õ(m2/3).

We can improve the stretch and still keep the update time sublinear by a hier-
archical approach in which the scheme of clustering and contracting is repeated
k times. Observe that the i-th contracted graph will contain at most βim many
edges and, in the final tree T , the stretch of each edge disappearing with the
(i + 1)-th contraction is O(lognβ)i+1, which can be obtained by expanding the
contracted low-diameter clusters. After k contractions, there are at most βkm
edges remaining and they have polylogarithmic average stretch in T ′ with re-
spect to G′, which, again by expanding clusters, implies an average stretch of at
most O(lognβ)k · polylog n in T with respect to G. This leads to a total stretch of
O(
∑

0≤i≤k−1 β
im · O(lognβ)i+1 + βkm · O(lognβ)k polylog n) = Õ(m · O(logn)k

β),
which gives an average stretch of Õ(O(logn)k

β). To bound the update time, observe
that updates propagate within the hierarchy as each change to inter-cluster edges of
one layer will appear as an update in the next layer. Each operation in the dynamic
LDD algorithmwill perform at most one change to the clustering, i.e., the number of
changes propagated to the next layer of the hierarchy is at most Õ(1

β2) per update
to the current layer. This will result in an update time of Õ((polylognβ)2(i−1) · 1

β2)
in the i-th contracted graph per update to the input graph. The update time for
maintaining the tree T will then be Õ(1

β2k + βkm), which is m2/3 at best, i.e., no
better than the simpler approach above. A tighter analysis can improve this update
time significantly: The second part of Theorem 4.1.3 bounds the amortized number

114 CHAPTER 4. DYNAMIC LOW-STRETCH TREES

of edges to become inter-cluster edges by Õ(1β). This results in an update time of
Õ((polylognβ)k+1+βkm). By setting k =

√
log n and β = 1

m1/(2k+1) we can roughly
balance these two terms in the update time and thus arrive at an update time of
m1/2+o(1) while the average stretch is no(1). The crux of our approach is thus an
“early stopping” of the Alon et al. LDD hierarchy such that it does not “exhaust”
the graph. We crucially exploit that, for an unweighted input graph, the size of the
contracted graph decreases geometrically, which allows us to partially compensate
for the blow-up of propagated updates in the hierarchy.

We can use the following sparsification approach to further reduce the update
time to n1/2+o(1): The main idea is to maintain a cut sparsifier with Õ(n) edges and
then run the algorithm on the cut sparsifier instead of the input graph to reduce the
update time from m1/2+o(1) to n1/2+o(1). The dynamic algorithm of Abraham et
al. [12] can maintain such a cut sparsifier with polylogarithmic update time. Using
a different cut sparsifier construction, Koutis, Levin, and Peng [167] showed in the
static setting that a low-stretch tree of their cut sparsifier is also a low-stretch tree
of the input graph (where the average stretch only increases multiplicatively by the
approximation guarantee of the cut sparsifier). However, we cannot use exactly the
same approach because the cut sparsifier of Abraham et al. has edge weights, even
though the input graph is unweighted. We show that the main argument in [167]
still goes through if we interpret the edge weights of the sparsifier as edge multi-
plicities in an unweighted graph. We then show that the algorithm ofTheorem 4.1.1
can also handle such graphs for updates that increment or decrement the multiplic-
ity of some edge by 1. A fine-grained analysis of the total multiplicity of edges of
the sparsifier and its expected amount of change per update to the input graph then
gives the desired result.

In Section 4.4, where we present the details of our approach, we consider two
slight generalizations: First, we implicitly handle the case that the input graph could
become disconnected by maintaining a low-stretch forest. Second, we give a para-
meterized analysis that also allows for a trade-off between stretch and update time.

Low Diameter Decomposition. To obtain a suitable algorithm for dynamically
maintaining a low-diameter decomposition, we follow the widespread paradigm of
first designing a decremental – i.e., deletions-only – algorithm and then extending
it to a fully dynamic one. We can show that, for any sequence of at most m edge
deletions (where m is the initial number of edges in the graph), a (β,O(lognβ))-
decomposition can be maintained with expected total update time Õ(m/β). Here,
we build upon the work of Miller et al. [195] who showed that exponential random-
shift clustering produces clusters of radius O(log n/β) such that each edge has a
probability of at most β to go between clusters. This clustering is obtained by first
having each node sample a random shift value from the exponential distribution and
then determining the cluster center of each node as the node to which it minimizes
the difference between distance and (other node’s) shift value.

In the parallel algorithm of [195], the clustering is obtained by essentially com-

4.3. TECHNICAL OVERVIEW 115

puting one single-source shortest path tree of maximum depth O(log n/β). To
make this computation efficient3, the shift values are rounded to integer values and
the fractional values are only considered for tie-breaking. We observe that one can
maintain this bounded-depth shortest path tree with a simple modification of the
well-known Even-Shiloach algorithm that spends timeO(deg(v)) every time a node
v increases its level (distance from the source) in the tree. By rounding to integer
edge weights, similar to [195], we can make sure that the number of level increases
to consider is at most O(log n/β) for each node. Note however that this standard
argument charging each node only when it increases its level is not enough for our
purpose: the assignment of nodes to clusters follows the fractional values for tie-
breaking, which might result in some node v changing its cluster – and in this way
also spend time O(deg(v)) – without increasing its level (note that here the diffi-
culty is not on maintaining the cluster that v belongs to, but rather on bounding
the number of cluster changes for v). As has been observed in [195], the fractional
values of the shift values effectively induce a random permutation on the nodes.
Using a similar argument as in the analysis of the dynamic spanner algorithm of
Baswana et al. [33], we can thus show that in expectation each node changes its
cluster at most O(log n) times while staying at a particular level. This results in a
total update time of Õ(m/β). Trivially, this also bounds the total number of times
that edges become inter-cluster edges during the whole decremental algorithm by
Õ(m/β). Using a more sophisticated analysis we can obtain the stronger bound of
Õ(m) on the latter quantity: Intuitively, each endpoint of an edge changes its clus-
ter at most Õ(1β) times and after each cluster change the edge is an inter-cluster
edge with probability at most β, yielding a total of Õ(m · 1β · β) times that edges
become inter-cluster edges. The rigorous argument is however more complicated
because we cannot guarantee that the event of being an inter-cluster edge might
not be independent of the event of the endpoint changing its cluster.

To obtain a fully dynamic algorithm, we observe that any LDD can tolerate a
certain number of insertions to the graph. A (β,O(lognβ))-decomposition allows at
most βm inter-cluster edges and thus, if we insert O(βm) edges to the graph with-
out changing the decomposition, we still have an (O(β), O(lognβ))-decomposition.
We can exploit this observation by simply running a decremental algorithm, that is
restarted from scratch after each phase of Θ(βm) updates to the graph. We then
deal with edge deletions by delegating them to the decremental algorithm and we
deal with edge insertions in a lazy way by doing nothing. This results in a total
time of Õ(m/β) that is amortized overΘ(βm) updates to the graph, i.e., amortized
update time Õ(1/β2). Similarly, the amortized number of edges to become inter-
cluster edges after an update is Õ(1/β).

In our detailed description and analysis in Section 4.5, we first review the con-
struction of Miller et al., and then present our decremental and fully dynamic algo-
rithms.

3For their parallel algorithm, efficiency in particular means low depth of the computation tree.

116 CHAPTER 4. DYNAMIC LOW-STRETCH TREES

Dynamic Spanner via Exponential Random Shift Clustering At a high level,
the key idea behind our improved result on dynamic spanners is that a slight exten-
sion of the techniques we developed already leads to a deletions-only algorithm.
Concretely, we show that it is possible to combine our decremental random-shift
clustering with the recent spanner construction of Elkin and Neiman [92] to design
such an algorithm. Observe that this is sufficient for our purposes due to the decom-
posability property of spanners, which allows to extend decremental algorithms to
fully dynamic ones while paying only a logarithmic factor in the size of the spanner
and the update time of the data-structure (see e.g., [33]).

Inspired by the low diameter clustering algorithm of Miller et al. [195], Elkin
and Neiman devised the following simple routine for constructing a spanner: (1)
each node samples a random shift value (which depends on some stretch parame-
ter) from the exponential distribution and then it defines its cluster center to be
the node which minimizes the difference between the distance of these two nodes
and the other node’s shift value, also known as the shifted distance; (2) for each
node all the neighbours that lie on a shortest path between the node and the set
of nodes whose shifted distance is within 1 of the minimum one are added to the
spanner. In comparison to the low-diameter clustering, where each node needs to
determine the cluster it belongs to, keeping track of the spanner edges for each node
might seem more challenging at first. Fortunately, we observe that determining
these edges in the static setting still reduces to computing one single-source short-
est path tree of bounded depth. Moreover, similar to the random-shift clustering
for low-diameter decompositions, we exploit the structural properties of this tree to
maintain the spanner edges under deletions using the well-known Even-Shiloach
algorithm together with the rounding tricks that were tightly linked to defining a
random permutation on the nodes. Details on the implementation of this algorithm
are provided in Section 4.6.

4.4 Dynamic Low Average Stretch Forest

Our dynamic algorithms for maintaining a low average stretch forest will use a hier-
archy of low-diameter decompositions. We first analyze very generally the update
time for maintaining such a decomposition and explain how to obtain a spanning
forest from this hierarchy in a natural way, similar to the construction of Alon et
al. [17]. We then analyze two different approaches for maintaining the tree, which
will give us two complementary points in the design space of dynamic low-stretch
tree algorithms. Finally, we explain how to exploit input graph sparsification to
improve the update time of our first algorithm.

4.4.1 Generic Dynamic LDD Hierarchy

Consider some integer parameter k ≥ 1 and parameters β0, . . . , βk−1 ∈ (0, 1).
For each 0 ≤ i ≤ k − 1, let Di be the fully dynamic algorithm for maintaining

4.4. DYNAMIC LOW AVERAGE STRETCH FOREST 117

a (βi, O(lognβi
))-decomposition as given by Theorem 4.1.3. Our LDD-hierarchy con-

sists of k + 1 multigraphs G0 = (V,E0), . . . , Gk = (V,Ek) where G0 is the input
graph G and, for each 0 ≤ i ≤ k − 1, the graph Gi+1 is obtained from contracting
Gi according to a (βi, O(lognβi

))-decomposition of Gi as follows: For every node
v ∈ V , let ci(v) denote the center of the cluster to which v is assigned in the
(βi, O(lognβi

))-decomposition of Gi. Now define Ei+1 as the multiset of edges con-
taining for every edge (u, v) ∈ Ei such that ci(u) ̸= ci(v) one edge (ci(u), ci(v)),
i.e., Ei+1 = {(ci(u), ci(v)) : (u, v) ∈ Ei and ci(u) ̸= ci(v)}, where the multiplicity
of each edge is equal to the number of edges between the corresponding clusters
in Gi. Remember that all graphs Gi have the same set of nodes, but nodes that do
not serve as cluster centers in Gi−1 will be isolated in Gi. It might seem counter-
intuitive at first that these isolated nodes are not removed from the graph, but ob-
serve that in our dynamic algorithm nodes might start or stop being cluster centers
over time. By keeping all nodes in all subgraphs, we avoid having to explicitly deal
with insertions or deletions of nodes.4

Note that the (βi, O(lognβi
))-decomposition of Gi guarantees that |Ei+1| ≤ βi ·

|Ei| in expectation, which implies the following bound.

Observation 4.4.1. For every 0 ≤ i ≤ k, |Ei| ≤ m ·
∏

0≤j≤i−1 βj in expectation.5

We now analyze the update time for maintaining this LDD-hierarchy under in-
sertions and deletions to the input graphG. Note that for each level i ≤ k−1 of the
hierarchy, changes made to the graphGi might result in the dynamic algorithm Di

making changes to the (βi, O(lognβi
))-decomposition of Gi. In particular, edges of

Gi could start or stop being inter-cluster edges in the decomposition, which in turn
leads to edges being added to or removed from Gi+1. Thus, a single update to the
input graph G might result in a blow-up of induced updates to be processed by the
algorithms D1, . . . ,Dk−1. To limit this blow-up, we use an additional property of
our LDD-decomposition given in Theorem 4.1.3, namely the non-trivial bound on
the number of edges to become inter-cluster edges after each update.

Lemma 4.4.2. The LDD-hierarchy can be maintained with an expected amortized
update time of

Õ

 ∑
0≤j≤k−1

O(log n)2(k−1)

βj
∏

0≤j′≤j βj′

 .

Proof. For every 0 ≤ i ≤ k − 1 and every q ≥ 1 define the following random
variables:

• Xi(q): The total time spent by algorithm Di for processing any sequence of
q updates to Gi.

4Note that it is easy to explicitly maintain the sets of isolated and non-isolated nodes by observing
the degrees.

5Note that for i = 0 the product
∏

0≤j≤i−1 βj is empty and thus equal to 1.

118 CHAPTER 4. DYNAMIC LOW-STRETCH TREES

• Yi(q): The total number of changes performed toGi+1 byDi while processing
any sequence of q updates to Gi.

• Zi(q): The total time spent by algorithms Di, . . . ,Dk−1 for processing any
sequence of q updates to Gi.

Note that the expected values ofXi(q) and Yi(q) are bounded byTheorem 4.1.3 (the
latter holds since only changes involving inter-cluster edges are propagated as
updates to the next level). We will show by induction on i that E[Zi(q)] =

Õ(q ·
∑

i≤j≤k−1
O(logn)2(k−i−1)

βj
∏

i≤j′≤j βj′
), which with i = 0 implies the claim we want to

prove.
Before showing the proof, observe that our LDD-hierarchy uses multiple in-

stances of the dynamic low-diameter decomposition. We can order these instances
in a hierarchical manner such that changes in the instance i only affect instances
i + 1 and above (this is possible because all changes propagate one way through
the hierarchy). Since the random bits among levels are independent, we can think
of the random bits in the previous level being fixed in advance, and hence the up-
dates to the instance i are fixed as well. The latter implies that each instance i in the
LDD-hierarchy is running in the oblivious adversary setting, as required by Theo-
rem 4.1.3.

We next prove the claimed bound on E[Zi(q)]. In the base case i = k − 1,
we know by Theorem 4.1.3 that algorithm Dk−1 maintaining the (βk−1, O(lognβk−1

))-
decomposition of Gk−1 spends expected amortized time Õ(1

β2
k−1

) per update to

Gk−1, i.e., E[Zk−1(q)] = E[Xk−1(q)] = Õ(q · 1
β2
k−1

) for any q ≥ 1. For the inductive
step, consider some 0 ≤ i < k− 1 and any q ≥ 1. Any sequence of q updates toGi

induces at most Yi(q) updates to Gi+1. Each of those updates has to be processed
by the algorithms Di+1, . . . ,Dk−1. We thus have Zi(q) = Xi(q) + Zi+1(Yi(q)).

To boundE[Zi(q)], recall first the expectations of the involved random variables.
As byTheorem 4.1.3 the algorithmDi maintaining the (βi, O(lognβi

))-decomposition
of Gi has expected amortized update time Õ(1

β2
i
), it spends an expected total time

of E[Xi(q)] = Õ(q · 1
β2
i
) for any sequence of q updates to Gi. Furthermore, over

the whole sequence of q updates, the expected number of edges to ever become
inter-cluster edges in the (βi, O(lognβi

))-decomposition of Gi is O(q · log
2 n

βi
). This

induces at most O(q · log
2 n

βi
) updates (insertions or deletions) to the graph Gi+1,

i.e., E[Yi(q)] = O(q · log
2 n

βi
). By the induction hypothesis, the expected amortized

update time spent by Di+1, . . . ,Dk−1 for any sequence of q′ updates to Gi+1 is
E[Zi+1(q

′)] = Õ(q′ ·
∑

i+1≤j≤k−1
O(logn)2(k−i−2)

βj
∏

i+1≤j′≤j βj′
).

Now by linearity of expectation we get

E[Zi(q)] = E [Xi(q) + Zi+1(Yi(q))] = E [Xi(q)] + E [Zi+1(Yi(q))]

4.4. DYNAMIC LOW AVERAGE STRETCH FOREST 119

and by the law of total expectation we can bound E [Zi+1(Yi(q))] as follows:

E [Zi+1(Yi(q))] =
∑
y

E [Zi+1(Yi(q)) | Yi(q) = y] · P[Yi(q) = y]

=
∑
y

E [Zi+1(y)] · P[Yi(q) = y]

=
∑
y

Õ

y · ∑
i+1≤j≤k−1

O(log n)2(k−i−2)

βj
∏

i+1≤j′≤j βj′

 · P[Yi(q) = y]

= Õ

 ∑
i+1≤j≤k−1

O(log n)2(k−i−2)

βj
∏

i+1≤j′≤j βj′

 ·∑
y

y · P[Yi(q) = y]

= Õ

 ∑
i+1≤j≤k−1

O(log n)2(k−i−2)

βj
∏

i+1≤j′≤j βj′

 · E[Yi(q)]
= Õ

 ∑
i+1≤j≤k−1

O(log n)2(k−i−2)

βj
∏

i+1≤j′≤j βj′

 ·O(q · log2 n
βi

)

= Õ

q · ∑
i+1≤j≤k−1

O(log n)2(k−i−1)

βj
∏

i≤j′≤j βj′

We thus get

E[Zi(q)] = Õ(q · 1
β2
i
) + Õ

q · ∑
i+1≤j≤k−1

O(log n)2(k−i−1)

βj
∏

i≤j′≤j βj′

= Õ

q · ∑
i≤j≤k−1

O(log n)2(k−i−1)

βj
∏

i≤j′≤j βj′

as desired.

Given any spanning forestT ′ ofGk, there is a natural way of defining a spanning
forest T of G from the LDD-hierarchy. To this end, we first formally define the
contraction of a node v of G to a cluster center v′ of Gi (for 0 ≤ i ≤ k) as follows:
Every node v of G is contracted to itself in G0, and, for every 1 ≤ i ≤ k, a node
v of G is contracted to v′ in Gi if v is contracted to u′ in Gi−1 and ci−1(u

′) = v′.
Similarly, for every 0 ≤ i ≤ k, an edge e = (u, v) of G is contracted to an edge
e′ = (u′, v′) of Gi if u is contracted to u′ and v is contracted to v′. Now define T
inductively as follows: We let T0 be the forest consisting of the spanning trees of
diamteter O(lognβ0

) of the clusters in the (β0, O(lognβ0
))-decomposition of G0. For

every 1 ≤ i ≤ k, we obtain Ti from Ti−1 and a (βi, O(lognβi
))-decomposition of Gi

as follows: for every edge e′ in a shortest path tree in one of the clusters, we include

120 CHAPTER 4. DYNAMIC LOW-STRETCH TREES

in Ti exactly one edge e ofG among the edges that are contracted to e′ inGi. Finally,
T is obtained from Tk as follows: for every edge e′ in the spanning forest T ′ of Gk,
we include in T the edge e of G contracted to e′ in Gk. As the clusters in each
decomposition are non-overlapping, we are guaranteed that T is indeed a forest.
Note that, apart from the time needed to maintain T ′, we can maintain T in the
same asymptotic update time as the LDD-hierarchy (up to logarithmic factors).

We now partially analyze the stretch of T with respect to G.

Lemma 4.4.3. For every 1 ≤ i ≤ k, and for every pair of nodes u and v that are
contracted to the same cluster center in Gi, there is a path from u to v in T of length
at most O(logn)i∏

0≤j≤i−1 βj
.

Proof. The proof is by induction on i. The induction base i = 1 is straightforward:
For u and v to be contracted to the same cluster center inG1, theymust be contained
in the same cluster C of the (β0, O(lognβ0

))-decomposition of G0 maintained by D0.
Remember that C has strong diameter at most O(lognβ0

). Thus, in the shortest path
tree ofC there is a path of length atmostO(lognβ0

) fromu to v using edges ofG0 = G.
By the definition of T , this path is also present in T .

For the inductive step, let 2 ≤ i ≤ k and let u′ and v′ denote the cluster centers
to which u and v are contracted in Gi−1, respectively. For u and v to be contracted
to the same cluster center inGi, u′ and v′ must be contained in the same clusterC of
the (βi−1, O(lognβi−1

))-decomposition of Gi−1 maintained by Di−1. As C has strong
diameter at most O(lognβi−1

), there is a path π from u′ to v′ of length at most O(lognβi−1
)

in the shortest path tree of C . Let x1, . . . , xt denote the nodes on π, where x1 = u′

and xt = v′. By the definition of our tree T with respect to G, there must exist
edges (a1, b1), . . . , (at, bt) of G such that

• (aℓ, bℓ) is contained in T for all 1 ≤ ℓ ≤ t,
• u and a1 are contracted to the same cluster center in Gi−1,
• bt and v are contracted to the same cluster center in Gi−1, and
• bℓ and aℓ+1 are contracted to the same cluster center in Gi−1 for all 1 ≤ ℓ ≤
t− 1.

By the induction hypothesis we know that for every 1 ≤ ℓ ≤ t − 1 there is a path
of length at most O(logn)i−1∏

0≤j≤i−2 βj
from bℓ to aℓ+1 in T . Paths of the same maximum

length also exist from u to a1 and from bt to v. It follows that there is a path from
u to v in T of length at most

(t+ 1) · O(log n)i−1∏
0≤j≤i−2 βj

+ t ≤ 3t · O(log n)i−1∏
0≤j≤i−2 βj

= O

(
log n

βi

)
· O(log n)i−1∏

0≤j≤i−2 βj
=

O(log n)i∏
0≤j≤i−1 βj

as desired.

4.4. DYNAMIC LOW AVERAGE STRETCH FOREST 121

To analyze the stretch of T , we will use the following terminology: we let the
level of an edge e ofG be the largest i such that edge e is contracted to some edge e′
inGi. Remember that Ei is a multiset of edges containing as many edges (u′, v′) as
there are edges (u, v) ∈ E with u and v being contracted to different cluster centers
u′ and v′ inGi, respectively. Thus, the expected number of edges at level i is at most
|Ei|. Note that for an edge e = (u, v) to be at level i, u and v must be contracted
to the same cluster center in Gi+1. Therefore, by Lemma 4.4.3, the stretch of edges
at level i in T with respect to G is at most O(logn)i+1∏

0≤j≤i βj
. The expected contribution to

the total stretch of T by edges at level i ≤ k − 1 is thus at most

|Ei| ·
O(log n)i+1∏

0≤j≤i βj
≤ m

βi
·O(log n)i+1 . (4.1)

4.4.2 Dynamic Low-Stretch Tree Algorithms

To now obtain a fully dynamic algorithm for maintaining a low-stretch forest, it
remains to plug in a concrete algorithm for maintaining T ′ together with suitable
choices of the parameters. We analyze two choices for dynamically maintaining T ′.
The first is the “lazy” approach of recomputing a low-stretch forest from scratch
after each update to the input graph. The second is a fully dynamic spanning forest
algorithm with only trivial stretch guarantees.

Theorem 4.4.4 (Restatement of Theorem 4.1.1). Given any unweighted, undirected
graph undergoing edge insertions and deletions, there is a fully dynamic algorithm
for maintaining a spanning forest of expected average stretch no(1) that has expected
amortized update time m1/2+o(1). These guarantees hold against an oblivious adver-
sary.

Proof. We set k = ⌈
√
log n⌉ and βi = β = 1

m1/(2k+1) for all 0 ≤ i ≤ k − 1 and
maintain an LDD-hierarchy with these parameters. Additionally, we maintain the
graph G′ induced by all non-isolated nodes of Gk, which can easily be done by
maintaining the degrees of nodes in Gk. After each update to G, we compute a
low-average stretch forest of T ′ of G′. Note that this recomputation is performed
after having updated all graphs in the hierarchy; we use the state-of-the-art static
algorithm for computing a spanning forest of the multigraph G′ with total stretch
Õ(|Ek|) in time Õ(|Ek|).

By Equation (4.1), the contribution to the total stretch of T by edges at level
i ≤ k − 1 is at most m · O(logn)i+1

βi
. To bound the contribution of edges at level k,

consider some edge e = (u, v) at level k and let u′ and v′ denote the cluster centers
to which u′ and v′ are contracted inGk, respectively. Let π denote the path from u′

to v′ in T ′. Using similar arguments as in the proof of Lemma 4.4.3, the contracted
nodes and edges of π can be expanded to a path from u to v in T of length at most

O(logn)k∏
0≤i≤k−1 βi

· |π|. Thus, the contribution of edges at level k is at most Õ(|Ek|) ·

122 CHAPTER 4. DYNAMIC LOW-STRETCH TREES

O(logn)k∏
0≤i≤k−1 βi

= Õ(m ·O(log n)k) and the total stretch of T with respect to G is

∑
0≤i≤k−1

m · O(log n)i+1

β
+ Õ(m ·O(log n)k)

= Õ

m ·
 1

β
·
∑

0≤i≤k−1

O(log n)i+1 +O(log n)k

= Õ

(
m · O(log n)k

β

)
= Õ

(
mm1/(2k+1) ·O(log n)k

)
= m1+o(1) ,

which gives an average stretch ofmo(1) = no(1).
By Observation 4.4.1,Gk has at mostmβk edges in expectation and thusG′ has

at most mβk nodes and edges in expectation. Using the bound of Lemma 4.4.2 for
the update time of the LDD-hierarchy and the bound of Õ(mβk) for recomputing
the low-stretch tree T ′ on G′ from scratch, the expected amortized update time for
maintaining T is

Õ

 ∑
0≤j≤k−1

O(log n)2k

βj
∏

0≤j′≤j βj′
+ |Ek|

 = Õ

 ∑
0≤j≤k−1

O(log n)2k

βj+2
+mβk

= Õ

(
O(log n)2k

βk+1
+mβk

)
= Õ(m(k+1)/(2k+1) ·O(log n)2k)

= Õ(m1/2+1/(4k+2) ·O(log n)2k)

= m1/2+o(1) .

Theorem 4.4.5. Given any unweighted, undirected graph undergoing edge insertions
and deletions, there is a fully dynamic algorithm for maintaining a spanning forest of
expected average stretch O(t + n1/3+o(1)) that has expected amortized update time
n1+o(1)

t for every 1 ≤ t ≤ n. These guarantees hold against an oblivious adversary.

Proof. We set k = ⌈log log n⌉, β0 =
√
t/n and βi =

√
βi−1 for all 1 ≤ i ≤ k − 1

and maintain an LDD-hierarchy with these parameters. The spanning forest T ′

is obtained by fully dynamically maintaining a spanning forest of Gk using any
algorithm with polylogarithmic update time.

By Equation (4.1), the contribution to the total stretch of T by edges at level
i ≤ k − 1 is at most m

βi
· O(log n)i+1. For every edge e = (u, v) at level k with

u contracted to u′ and v contracted to v′ in Gk, there is a path from u′ to v′ in T ′

that by undoing the contractions can be expanded to a path from u to v in T , which

4.4. DYNAMIC LOW AVERAGE STRETCH FOREST 123

trivially has length at most n− 1. Thus, the contribution by each edge at level k is
at most n − 1. As for every 0 ≤ i ≤ k there are at most |Ei| = m ·

∏
0≤j≤i−1 βj

edges at level i in expectation, we can bound the expected total stretch of T with
respect to G as follows:∑

0≤i≤k−1

|Ei| ·
O(log n)i+1∏

0≤j≤i βj
+ |Ek| · n

=
∑

0≤i≤k−1

m ·O(log n)i+1

βi
+m ·

∏
0≤i≤k−1

βi · n

= m ·

 ∑
0≤i≤k−1

O(log n)i+1

βi
+

∏
0≤i≤k−1

βi · n

This gives an average stretch of

∑
0≤i≤k−1

O(logn)i+1

βi
+
∏

0≤i≤k−1 βi · n. We now
simplify these two terms. Exploiting that βi ≥ β0 for all 1 ≤ i ≤ k − 1, we get∑

0≤i≤k−1

O(log n)i+1

βi
≤

∑
0≤i≤k−1

O(log n)i+1

β0
=
O(log n)k

β0

=
O(log n)k√

t/n
=

√
n1+o(1)

t
.

Furthermore, the geometric progression of the βi’s gives∏
0≤i≤k−1

βi · n =
∏

0≤i≤k−1

β
1/2i

0 · n = β
∑

0≤i≤k−1 1/2
i

0 · n = β
2−1/2k−1

0 · n

=
t1−1/2k

n1−1/2k
· n ≤ t · n1/2k = O(t) .

The average stretch of the forest maintained by our algorithm is thus at most
O(t +

√
n1+o(1)

t), which, after balancing the two terms, can be rewritten as O(t +

n1/3+o(1)).
It remains to bound the update time of the algorithm. By Lemma 4.4.2, the

hierarchy can be maintained with an amortized update time of

Õ

 ∑
0≤j≤k−1

O(log n)2k

βj ·
∏

0≤j′≤j βj′

 = Õ

 ∑
0≤j≤k−1

O(log n)2k

β
1/2j

0 · β2−1/2j

0

= Õ

 ∑
0≤j≤k−1

O(log n)2k

β20

=
n ·O(log n)2k

t
=
n1+o(1)

t
.

124 CHAPTER 4. DYNAMIC LOW-STRETCH TREES

Since the amortized number of changes to Gk per update to G is trivially bounded
by n1+o(1)

t as well and since T ′ can be maintained with polylogarithmic amortized
time per update to Gk, we can maintain T with amortized update time n1+o(1)

t .

Note that the algorithm of Theorem 4.1.1 is superior to the algorithm of The-
orem 4.4.5 as long as t ≤

√
n. If t ≥

√
n, then the algorithm of Theorem 4.4.5

provides stretch O(t) and update time n1+o(1)

t .

4.4.3 Input Graph Sparsification

In the following, we explain how input graph sparsification can be performed to the
algorithm of Theorem 4.1.1 by running the algorithm on a cut sparsifier, similar to
the approach of Koutis et al. [167] in the static setting.

Corollary 4.4.6 (Restatement of Corollary 4.1.2). Given any unweighted, undirected
graph undergoing edge insertions and deletions, there is a fully dynamic algorithm for
maintaining a spanning forest of expected average stretchno(1) that has expected amor-
tized update time n1/2+o(1). These guarantees hold against an oblivious adversary.

To make the analysis rigorous, we introduce some additional notation for multi-
graphs.

Succinct Representation of Multigraphs. A multigraph G = (V,E) consists
of a set of nodes V and a multiset of edges E. We denote by Ē = {(u, v) ∈

(
V
2

)
|

(u, v) ∈ E} the support of the multiset E. This allows a multigraph G = (V,E) to
be succinctly represented as its skeleton Ḡ = (V, Ē, µG) where µG is a multiplicity
function µG : Ē → Z+ that assigns to each edge e its (positive integer) multiplicity
µG(e). We denote by m := |E| the number of multi-edges (considering multiplici-
ties), and by m̄ := |Ē| the size of the support of E (disregarding multiplicities). For
simplicity, we assume that m is polynomial in n. The total stretch of a spanning
forest T is defined with respect to E, i.e.,

stretchT (G) =
∑

e=(u,v)∈E(G)

distT (u, v) =
∑

e=(u,v)∈Ē(G)

µG(e) · distT (u, v) . (4.2)

Our dynamic algorithm will exploit that, given the skeleton of a multigraph,
a low-stretch forest of can be computed without (significant) dependence on the
multiplicities.

Lemma 4.4.7. Given the skeleton Ḡ of a multigraphG, a spanning forest ofG of total
stretchm1+o(1) can be computed in time Õ(m̄).

Such a guarantee can be achieved with a static version of our algorithm, i.e.,
by combining the scheme of Alon et al. [17] with the LDD of Miller et al. [195].
Although we are not aware of any statement of such a “multiplicity-oblivious” run-
ning time in the literature, it seems plausible that the state-of-the art algorithms

4.4. DYNAMIC LOW AVERAGE STRETCH FOREST 125

(achieving a total stretch of Õ(m)) also have this property. Note however that a
stretch ofm1+o(1) is anyway good enough for our purpose.

Refined Analysis of Dynamic Low-Stretch Tree Algorithm. We now restate
the guarantees of our fully dynamic low-stretch forest algorithm when the input is
a multigraph undergoing insertions and deletions of multi-edges (i.e., each update
increases or decreases the multiplicity of some edge by 1). Our fully dynamic LDD
algorithm maintains a clustering such that every edge is an inter-cluster edge with
probability β. This implies that at most a β-fraction of the edges are inter-cluster
edges in expectation – regardless of whether we consider multiplicities. More pre-
cisely, contracting the clusters to single nodes yields a multigraph G′ = (V ′, E′)
with |E′| ≤ β|E| and |Ē′| ≤ β|Ē|. Now, in particular the LDD hierarchy in the
proof of Theorem 4.1.1 results in a multigraph G′ = (V ′, E′) with |E′| ≤ βkm
and |Ē′| ≤ βkm̄ (after k levels). For such a graph, if its skeleton is given explicitly,
one can compute a spanning forest of total stretchO(|E′|1+o(1)) in time Õ(|Ē′|) by
Lemma 4.4.7. Note that our dynamic algorithm can explicitly maintain the skeleton
of G′ with neglegible overheads in the update time. It follows that our algorithm
maintains a spanning forest of total stretch O(m1+o(1)) and has an update time of
Õ(m̄1/2+o(1)).

Cut Sparsifiers. For the definition of cut sparsifiers, we consider cuts of the form
(U, V \U) induced by a subset of nodesU ⊂ V . The capacity of such a cut (U, V \U)
in a graph G is defined as the total multiplicity of edges crossing the cut, i.e.,

capG(U, V \ U) =
∑

e=(u,v)∈Ē
u∈U,v∈V \U

µG(e)

A (1 ± ϵ)-cut sparsifier [36] (with 0 ≤ ϵ ≤ 1/2) of a multigraph G = (V,E) is a
“subgraph” H = (V, F) with F̄ ⊆ Ē such that for every U ⊂ V we have

(1− ϵ) capG(U, V \ U) ≤ capH(U, V \ U) ≤ (1 + ϵ) capG(U, V \ U) ,

i.e., H approximately preserves all cuts of G. Now let H be a (1± ϵ)-cut sparsifier
of a multigraph G = (V,E) and let T = (V,E(T)) be a (simple) spanning forest
ofH . For every edge e of the forest T , the nodes are naturally partitioned into two
connected subsets upon removal of e. Let these two subsets be denoted by Ve and
V \ Ve. Emek [93] and Koutis et al. [167], observed that by rearranging the sum
in (4.2), one obtains the following cut-based characterization of the stretch:

stretchT (G) =
∑

e∈E(T)

capG(Ve, V \ Ve) .

Observe that the cut (Ve, V \ Ve) is approximately preserved in H and thus
capG(Ve, V \ Ve) ≤ 1

1−ϵ capH(Ve, V \ Ve) ≤ (1 + 2ϵ) capH(Ve, V \ Ve). The

126 CHAPTER 4. DYNAMIC LOW-STRETCH TREES

stretch of G with respect to T can now be bounded by

stretchT (G) =
∑

e∈E(T)

capG(Ve, V \ Ve)

≤ (1 + 2ϵ)
∑

e∈E(T)

capH(Ve, V \ Ve)

= (1 + 2ϵ) stretchT (H) .

Thus, computing the low-stretch forest on the sparsifier H instead of the original
graphG only increases the total stretch by a constant factor if the number of multi-
edges in H is proportional to the number of edges in G.

Dynamic Cut Sparsifiers. The fully dynamic algorithm of Abraham et al. [12]
maintains, with high probability, a (1 ± ϵ)-cut sparsifier H = (V, F) of a simple
graph G = (V,E) such that |F̄ | = Õ(n/ϵ2) with update time poly(log n, ϵ). For
each node v, the degree inH exceeds the degree in G by at most a factor of (1± ϵ)
because the cut ({v}, V \{v}) is approximately preserved inH . We can thus bound
the number of multi-edges in H (i.e., the sum of all edge multiplicities) by |F | =
O((1 + ϵ)|E|). The algorithm maintains a hierarchy of the edges with O(log n)
layers, where edges at level i have multiplicity 4i and each edge is at level i with
probability at most 1/4i. After an update to the input graph, the dynamic algorithm
adds or removes at most poly(log n, ϵ) edges in each level. Thus, we can bound
the amount of change to H per update to G as follows: for every update to G, the
expected sum of the changes to the edge multiplicities ofH is at most poly(log n, ϵ).

Putting Everything Together (Proof of Corollary 4.4.6). We now first use the
fully dynamic algorithm of Abraham et al. to maintain a cut sparsifier H = (V, F)
of the input graph G = (V,E) (with ϵ = 1/2) and second run our fully dynamic
low-stretch tree algorithm on top of H . Here, G is a simple graph with m = |E|
edges and H is a multigraph with |F | = O(m) and |F̄ | = Õ(n). The spanning
forest T maintained in this way gives expected total stretch at most |F |1+o(1) with
respect to H . As argued above, this implies an expected total stretch of at most
O((1 + 2ϵ)|F |1+o(1)) = O(m1+o(1)) with respect to G, i.e., an average stretch
of mo(1) = no(1). Each update to the input graph results in polylog n changes
to the sparsifier in expectation, which are then processed as “induced” updates by
our dynamic low-stretch tree algorithm. Thus, we overall arrive at an expected
amortized update time of Õ(|F̄ |1/2+o(1)) = O(n1/2+o(1)).

4.5 Dynamic Low-Diameter Decomposition

In this section we develop our dynamic algorithm for maintaining a low-diameter
decomposition following three steps. First, we review the static algorithm for
constructing a low-diameter decomposition using the clustering due to Miller et

4.5. DYNAMIC LOW-DIAMETER DECOMPOSITION 127

al. [195]. Second, we design a decremental algorithm by extending the Even-
Shiloach algorithm [99] in a suitable way. Third, we lift our decremental algorithm
to a fully dynamic one by using a “lazy” approach for handling insertions.

4.5.1 Static Low-Diameter Decomposition

In the following, we review the static algorithm for constructing a low-diameter
decomposition clustering due to Miller et al. [195]. Let G = (V,E) be an un-
weighted, undirected multigraphG, and let β ∈ (0, 1) be some parameter. Our goal
is to assign each node u to exactly one node c(u) from V . Let C(u) ⊂ V denote the
set of nodes assigned to node u, i.e., C(u) := {v ∈ V | c(v) = u}. For each node
u, we initially set C(u) = ∅ and pick independently a shift value δu from Exp(β).
Next, we assign each node u to a node v, i.e., set c(u) = v and add u to C(v), if
v is the node that minimizes the shifted distance mv(u) := dist(u, v) − δv . Finally,
we output all clusters that are non-empty. The above procedure is summarized in
Algorithm 4.1.

Algorithm 4.1: Partitioning Using Exponentially Shifted Shortest Paths
Input :Multigraph G = (V,E), parameter β ∈ (0, 1)
Output :Decomposition of G

1 For each u ∈ V , set C(u)← ∅ and pick δu independently from Exp(β)
2 Assign each u ∈ V to c(u)← argminv∈V {dist(u, v)− δv}
3 For each v ∈ V , set C(u)← {v ∈ V | c(v) = u}
4 Return the clustering {C(u) |C(u) ̸= ∅}

The following theorem gives bounds on the strong diameter and the number of
inter-cluster edges output by the above partitioning.

Theorem 4.5.1 ([195], Theorem 1.2). Given an undirected, unweighted multigraph
graph G = (V,E) and a parameter β ∈ (0, 1), Algorithm 4.1 produces a (β, 2d ·
(log n/β))-decomposition such that the guarantee on the number of inter-cluster edges
holds in expectation, while the diameter bound holds with probability at least 1−1/nd,
for any d ≥ 1.

Here, the the diameter bound holds when the maximum shift value of any node
is at most d log n/β, which happens with probability 1 − 1/nd. We remark that
in the work of Miller et al., the above guarantees are stated only for undirected,
unweighted simple graphs. However, by Lemma 4.4 in [195], we get that each edge
e ∈ E (regardless of whetherE allows parallel edges) is an inter-cluster edges with
probability at most β. By linearity of expectation, it follows that the (expected)
number of inter-cluster edges in the resulting decomposition is at most βm, thus
showing that the algorithm naturally extends to multigraphs.

128 CHAPTER 4. DYNAMIC LOW-STRETCH TREES

For technical reasons, it is not sufficient in the analysis of our decremental LDD
algorithm to apply Theorem 4.5.1 in a black-box manner. We thus review the cru-
cial properties of the clustering algorithm, which we will exploit for bounding the
number of changes made to inter-cluster edges in the decremental algorithm. Fol-
lowing [195], for each edge e = (u, v) ∈ E, letw be themid-point of e, i.e., the imag-
inary node in the “middle” of edge e that is at distance 1

2 to both u and v. Lemma 4.3
in [195] states that if u and v belong to two different clusters, i.e., c(u) ̸= c(v), then
the shifted-distances mc(u)(w) and mc(v)(w) are within 1 of the minimum shifted
distance to w.

Lemma 4.5.2 ([195]). Let e = (u, v) be an edge with mid-point w such that c(u) ̸=
c(v) in Algorithm 4.1. Then mc(u)(w) and mc(v)(w) are within 1 of the minimum
shifted distance to w.

Lemma 4.4 of [195] shows that the probability that the smallest and the second
smallest shifted distances to w are within c of each other is at most c · β.

Lemma 4.5.3 ([195]). Let e = (u, v) be an edge with mid-point w. Then

P[|mc(u)(w)−mc(v)(w)| ≤ c] ≤ c · β.

Setting c = 1, this gives the desired bound of β for the probability of an edge
being an inter-cluster edge in Theorem 4.5.1.

Implementation. Naïvely, we could implement Algorithm 4.1 by computing c(u)
for each node u ∈ V in Õ(m), thus leading to a Õ(mn) time algorithm. In the fol-
lowing, using standard techniques, we show that this running time can be reduced
to Õ(m).

To this end, let δmax := maxu∈V {δu}. We begin with the following augmen-
tation of the input graph G: add a new source s to G and edges (s, u) of weight
(δmax − δu) ≥ 0, for every u ∈ V . Let Ĝ = (V ∪ {s}, Ê, ŵ) denote the resulting
graph. We claim that the sub-trees below the source s in the shortest path tree of
Ĝ rooted at s give us the clustering output by Algorithm 4.1 for the graph G. To
see this, suppose that we instead added edges of weight −δu to s, for every u ∈ V .
Then it is easy to check that for every u ∈ V , the distance between s and u is exactly
minv∈V (dist(u, v)−δv) = minv∈V mv(u). Thus the node v attaining the minimum
is exactly the root of the sub-tree below the source s that contains v. Now, adding
δmax to all edges incident to the source increases all distances to s by δmax, and thus
does not affect the shortest path tree.

Now, note that we could use Dijkstra’s algorithm to construct the shortest path
tree of Ĝ, andmodify it appropriately to output the clustering. However, for reasons
that will become clear in the next section, we need to modify Dijkstra’s algorithm
in a specific way. This modification can be viewed as mimicking a BFS computation
on a graph with special integral edge lengths.

We start by observing that due to the random shift values, the weight of the
edges incident to the source s in Ĝ are not integers. Since we only want to deal with

4.5. DYNAMIC LOW-DIAMETER DECOMPOSITION 129

integral weights, we round down all the δu values to ⌊δu⌋ and modify the weights
of these edges using the new rounded values. Let G′ = (V ∪ {s}, Ê,w′) denote
the modified graph. Note that due to the rounding, we need to introduce some tie-
breaking scheme in G′, such that every clustering of G′ matches exactly the same
clustering in Ĝ, and vice versa. Naturally, the fractional parts of the rounded val-
ues, i.e., δu − ⌊δu⌋, define an ordering on the nodes (if they are sorted in ascending
order), and this ordering can be in turn used to break ties whenever two rounded dis-
tances are equal in G′. In their PRAM implementation, Miller et al. [195] observed
that this ordering can emulated by a random permutation. This is due to the fact
that the shifts are generated independently, and that the exponential distribution is
memoryless.

The main motivation for using random permutations in previous works was to
avoid errors that might arise from the machine precision. In our work, breaking
ties according to a random permutation on the nodes is one of their algorithmic
ingredients that allows us to obtain an efficient dynamic variant of the clustering.
Below, we give specific implementation details about how our clustering interacts
with random priorities in the static setting.

Given the graphG′ and a distinguished source node s ∈ V ′, Dijkstra’s classical
algorithm maintains an upper-bound on the shortest-path distance between each
node u ∈ V and s, denoted by ℓ(u). Initially, it sets ℓ(u) = ∞, for each u ∈ V
and ℓ(s) = 0. It also marks every node unvisited. Moreover, for each node u ∈ V ,
the algorithm also maintains a pointer p(u) (initially set to nil), which denotes the
parent of u in the current tree rooted at s. Using these pointers, we can maintain
the cluster pointer c(u), for each u ∈ V . This follows from the observation that
in order to compute the cluster of u, it suffices to know the cluster of its parent.
Formally we have the following rule.

Observation 4.5.4. Let p(·) be the parent pointers. Then for each u ∈ V , we can
determine the cluster pointer c(u) using the following rule:

c(u) =

{
u if p(u) = s

c(p(u)) otherwise.

Now, at each iteration, Dijkstra’s algorithm selects an unvisited node uwith the
smallest ℓ(u), marks it as visited, and relaxes all its edges. In the standard relaxation,
for each edge (u, v) ∈ E′ the algorithm sets ℓ(v)← min{ℓ(v), ℓ(u)+w′(u, v)} and
updates p(v) accordingly. Here, we present a relaxation according to the following
tie-breaking scheme. Let π be a random permutation on V . For u, v ∈ V , we
write π(u) < π(v) if u appears before v in the permutation π. Now, when relaxing
an edge (u, v) ∈ E′, we set u to be the parent of v, i.e., p(v) = u, and ℓ(v) =
ℓ(u) + w′(u, v), if the following holds

ℓ(v) > ℓ(u) + w′(u, v), or
ℓ(v) = ℓ(u) + w′(u, v) and π(c(v)) > π(c(u)).

(4.3)

130 CHAPTER 4. DYNAMIC LOW-STRETCH TREES

After each edge relaxation, we also update the cluster pointers using Observa-
tion 4.5.4. We continue the algorithm until every node is visited. As usual, we
maintain the unvisited nodes in a heap Q, keyed by the their estimates ℓ(v). This
procedure is summarized in Algorithm 4.2.

Algorithm 4.2: Modified Dijkstra
Input :Graph G′ = (V ∪ {s}, E′,w′)
Output :Decomposition of G

1 Generate random permutation π on V
2 foreach u ∈ V do
3 Set ℓ(u)←∞
4 Set p(u)← nil
5 Set c(u)← nil
6 Set ℓ(s)← 0

7 Add every u ∈ V ∪ {s} into heap Q with key ℓ(u)
8 while heap Q is not empty do
9 Take node u with minimum key ℓ(u) from heap Q and remove it from Q

10 foreach neighbor v of u do
11 relax(u, v, w′, frac)
12 if p(v) = s then
13 Set c(v)← v
14 else
15 Set c(v)← c(p(v))

16 Procedure relax(u, v, w′, frac)
17 if ℓ(v) > ℓ(u) + w′(u, v) then
18 Set ℓ(v)← ℓ(u) + w′(u, v)
19 Set p(v)← u

20 else if ℓ(v) = ℓ(u) + w′(u, v) and π(c(v)) > π(c(u)) then
21 Set p(v)← u

Correctness of Algorithm 4.2 follows by our above discussion. Moreover, the
running time of the algorithm is asymptotically bounded by the running time of
Dijkstra’s classical algorithm and the time to generate a random permutation. It is
well known that the former runs in Õ(m) time and the latter can be generated in
O(n) time (see e.g., Knuth Shuffle [37]), thus giving us a total Õ(m) time.

4.5.2 Decremental Low-Diameter Decomposition

We now show how to maintain a lower-diameter decomposition under deletion of
edges. Recall that in the previous section we observed that computing a lower-
diameter decomposition of a undirected, unweighted graph can be reduced to the
single-source shortest path problem in some modified graph. In the same vein,
we observe that maintaining a low-diameter decomposition under edge deletions

4.5. DYNAMIC LOW-DIAMETER DECOMPOSITION 131

amounts to maintaining a bounded-depth single-source shortest path tree of some
modified graph under edge deletions.

Even and Shiloach [99] devised a data-structure for maintaining a bounded-
depth SSSP-tree under edge deletions, which we refer to as ES-tree. The ES-tree ini-
tially worked only for undirected, unweighted graphs. However, later works [131,
164] observed that it can be extended even to directed, weighted graphs with posi-
tive integer edges weights. The mere usage of the ES-tree as a sub-routine will not
suffice for our purposes, due to the constraints that our clustering imposes. In the
following we show how to augment and modify an ES-tree that maintains a valid
clustering, without degrading its running time guarantee.

Let G = (V,E) be an undirected, unweighted graph for which we want to
maintain a decremental (β, log n/β) decomposition, for any parameter β ∈ (0, 1).
Further, let G′ = (V ∪ {s}, E′,w′) be the undirected graph with integral edge
weights, as defined in Section 4.5.1. Let π be a random permutation on V . By
discussion in Section 4.5.1, in order to maintain a low-diameter decomposition ofG
it suffices to maintain a clustering of G′ with π used for tie-breaking.

We describe an ES-tree that efficiently maintains a clustering of G′ for a given
root node s and a given distance parameter ∆. Here we set ∆ = O(log n/β), as by
Theorem 4.5.1, the maximum distance that we run our algorithm to is bounded by
O(log n/β). Our data-structure handles arbitrary edge deletions, and maintains the
following information. First, for each node u ∈ V ∪ {s}, we maintain a label ℓ(u),
referred to as the level of u. This level of u represents the shortest path between
the root s and u, i.e., ℓ(u) = dist(s, u). Next, for each node u ∈ V , we maintain
pointers p(u) and c(u), which represent the parent of u in the tree and the node that
u is assigned to, respectively. Finally, we also maintain the set of potential parents
P (u), for each u ∈ V , which is the set of all neighbors of u that are in the same
level with the parent of u, and share the same clustering with u, i.e., a neighbor
v of u belongs to P (u) if v minimizes (ℓ(v) +w′(u, v), π(c(v))) lexicographically,
and c(v) = c(u). Edge deletions inG′ can possibly affect the above information for
several nodes. Our algorithm adjusts these information on the nodes so as to make
them valid for the modified graph.

Algorithm Description and Implementation. We give an overview and de-
scribe the implementation of Algorithm 4.3. The data-structures ℓ(·), p(·) and c(·)
are initialized using Algorithm 4.2 in Section 4.5.1. Note that for each u ∈ V , P (u)
can be computed by simply considering all neighbors of u in turn, and adding a
neighbor v to P (u) if v is a potential parent. The algorithm also maintains a heap
Q whose intended use is to store nodes whose levels or clustering might need to be
updated. (see procedure initialize()).

In our decremental algorithm, each node tries to maintain its level ℓ(u), which
corresponds to its current distance to the root s, together with its cluster pointer
c(u) in the current graph. Concretely, we maintain the following invariant for each

132 CHAPTER 4. DYNAMIC LOW-STRETCH TREES

node u ∈ V :

ℓ(u) = min{ℓ(v) +w′(u, v) | v is a neighbor of u} (4.4)

where ties among neighbors are broken according to (4.3). This invariant allows to
compute the cluster pointer c(u) using Observation 4.5.4. Deleting an edge incident
toumight lead to a change in the values of ℓ(u) and c(u). If this occurs, all neighbors
of u are notified by u about this change, since their levels and cluster points might
also change. It is well-known that the standard ES-tree can efficiently deal with
changes involving the levels ℓ(·). However, in our setting, it might be the case
that an edge deletion forces a node u to change its cluster while the level ℓ(u) still
remains the same under this deletion. This is the point where our algorithm differs
from the standard ES-tree, and we next show that (1) such changes can be handled
efficiently, and (2) the number of cluster changes per node, within the same level, is
small in expectation.

Let us consider the deletion of an edge (u, v) (see procedure delete()); assume
without loss of generality that ℓ(v) ≤ ℓ(u). Now note that an edge deletion might
lead to a cluster change only if v ∈ P (u). If this is the case, the algorithm first
removes v from the set P (u). If P (u) is still non-empty, the clustering remains
unaffected. However, if P (u) is empty, the clustering of u will change, and the
algorithm inserts u into the heap Q with key ℓ(u). Observe that a change in clus-
tering of u might potentially lead to cluster changes for children of u, given that u
was their only potential parent. In this way, we observe that deleting (u, v) might
force changes in the clustering for many descendants of v. The algorithm handles
such changes using procedure updateLevels(), which we describe below.

Procedure updateLevels() considers the nodes in Q in the order of their cur-
rent level. At each iteration, it takes the node y with the smallest level ℓ(y) from
Q. The node y computes the set of potential parents P (y), by examining each
neighbor of y in turn, and then adding to P (y) all neighbors z that minimize
(ℓ(z) + w′(y, z), π(c(z))) lexicographically. Next, y sets p(y) as one of nodes
in P (y), and updates its level by setting ℓ(y) = ℓ(p(y)) + w′(y, p(y)). Having
computed its parent pointer, y updates the cluster pointer using Observation 4.5.4.
Specifically, if the parent of y is the source node v, then y form a new cluster it-
self, i.e., c(y) = y. Otherwise, y shares the same cluster with its parent and sets
c(y) = c(p(y)). Finally, the algorithm determines whether the change in the clus-
tering of y affected its neighbors. Concretely, for each neighbor x of y, it checks
whether y ∈ P (x). If this is not the case, then there is no change in the clustering
of x. Otherwise, y is removed from P (x), and if P (x) becomes empty after this
removal, the algorithm inserts x into the heap Q with key ℓ(x), given that Q does
not already contain x.

Running Time Analysis. We first concern ourselves with the number of cluster
change per node in our decremental algorithm. For any node v ∈ V , we say that
the clustering changes for v due to an edge deletion if this deletion either increases

4.5. DYNAMIC LOW-DIAMETER DECOMPOSITION 133

the level ℓ(v) or forces a change in the cluster pointer c(v). It is well-known that
the ES-tree can handle a level increase for any node v in time O(deg(v)). As we
will see next, we can also handle a cluster change for a node in the same level in
O(deg(v) log n) time. However, we need to ensure that the number of such cluster
changes for any node and any fixed level is small, for our algorithm to be efficient.
Below we argue that one can have a fairly good bound on the expected number
of such changes, and this is due to the special tie-breaking scheme we use when
assigning nodes to clusters.

Fix any node v ∈ V , and consider v during the sequence of edge deletions. Note
that since only deletions are allowed, the level ℓ(v) is non-decreasing. This induces
a natural partitioning of the sequence of edge deletions into subsequences such that
the ℓ(v) remains unaffected during each subsequence. Specifically, for every node
v ∈ V and every 0 ≤ i ≤ ∆, let S(i) the be subsequence of edge deletions during
which ℓ(v) = i, where ∆ ≤ O(log n/β). The following bound on the expected
number of cluster changes of v during S(i) follows an argument by Baswana et
al. [33].

Lemma 4.5.5. For every node v ∈ V and every 0 ≤ i ≤ ∆, during the entire
subsequence S(i), the cluster c(v) of v changes at mostO(log n) times, in expectation.

Proof. Let Ni−1(v) be the neighbors of v at level (i − 1), grouped according to
the the clusters they belong to. This grouping naturally induces a family P of all
potential parents setsP of v at level (i−1), just before the beginning of subsequence
S(i). Let C be the set of the corresponding clusters centers, i.e., for each P ∈ P
add c(P) to C , and note that v can only join those centers during S(i). Since we
are considering only edge deletions, observe that when v leaves a cluster centred at
some node c ∈ C , it cannot join later the same cluster c during S(i).

We next bound the number of cluster changes. For each c ∈ C , there must exist
an edge in the subsequence S(i) whose deletion increases dist(v, c), and thus c is
no longer a valid cluster center for v at level i. The latter is also equivalent to some
P with c(P) = c becoming empty after this edge deletion. Let ⟨c1, . . . , ct⟩ be the
sequence of nodes of C ordered according to the time when v has no edge to a node
in Pj , 1 ≤ j ≤ t. We want to compute the probability that v ever joins the cluster
centred at cj during S(i). Note that this event is a consequence of v changing its
current cluster center cj′ due to all parents inP (j′) increasing their level. According
to our tie-breaking scheme in (4.3), for this to happen, cj must be the first among
all potential cluster centers {cj , . . . , ct} in the random permutation π. Since π is a
uniform random permutation, the probability that cj appears first is 1/(t− j + 1).
By linearity of expectation, the expected number of centers from C whose clusters
v joins during S(i) is

∑t
j=1

1
t−j+1 = O(log t) = O(log n). This also bounds the

number of cluster changes of v during S(i).

We next bound the total update time of our decremental algorithm, and also
give a bound on the total number of inter-cluster edges during its execution.

134 CHAPTER 4. DYNAMIC LOW-STRETCH TREES

Theorem 4.5.6. There is a decremental algorithm for maintaining a (β,O(lognβ))-
decomposition with at most O(βn) clusters (in expectation) containing non-isolated
nodes under a sequence of edge deletions in expected total update timeO(m log3 n/β)
such that, over all deletions, each edge becomes an inter-cluster edge at mostO(log2 n)
times in expectation.

Proof. In a preprocessing step, we first repeat the sampling of the shift values until
the maximum shift value is log n/β. This event happens with probability 1 − 1/n
(compare Theorem 4.5.1) and thus, by the waiting time bound, we need to repeat
the sampling only a constant number of times. Therefore, this preprocessing takes
time O(n), which is subsumed in our claimed bound on the total update time.

We first note that procedure initialize() can be implemented in O(m log n)
time. This is because (1) the data-structures ℓ(·), p(·) and c(·) are initialized using
Algorithm 4.2 whose running time is bounded by O(m log n), (2) for each u ∈ V ,
the set P (u) can by computed in O(deg(u)) time, which in turn gives that all such
sets can be determined in

∑
u∈V O(deg(u)) = O(m) time.

We next analyze the total time over the sequence of all edge deletions. Consider
procedure delete(u, v) for deletion of an edge (u, v). If edge (u, v) does not lead to
a change in the clustering of one of its endpoints, then it can be processed in O(1)
time. Otherwise, the end-point whose clustering has changed is inserted into heap
Q, which can be implemented inO(log n) time. Now, observe that the computation
time spent by procedure delete(u, v) is bounded by the number of nodes processed
by heap Q after the deletion of edge (u, v), during procedure updateLevels(). By
construction, the processed nodes are precisely those whose clustering has changed
due to the deletion of (u, v), and after the processing, their new clustering its com-
puted. A node y extracted from Q is processed in O(deg(y) log n) time, as we
will shortly argue. Therefore, we conclude that over the entire sequence of edge
deletions, a node y will perform O(deg(y) log n) amount of work, each time its
clustering changes. By Lemma 4.5.5, as long as the level of y is not increased, the
clustering of y will change O(log n) times, in expectation. Since there are at most
∆ = O(log n/β) levels, the expected number of cluster changes for y is bounded
byO((log2 n)/β). As our analysis applies to any node y ∈ V , we conclude that the
expected total update time of our decremental algorithm is∑

y∈V
O
(
(deg(y) log3 n)/β

)
= O

(
(m log3 n/β)

)
. (4.5)

To show our claim that each node y extracted from Q is processed in time
O(deg(y) log n), we need two observations. First, recall that P (y) can be com-
puted inO(deg(y)) time, and thus the data-structures ℓ(·), p(·) and c(·) can be then
updated in O(1) time. Second, in the worst-case, y affects the clustering of all its
neighbors and inserts them intoQ. This step can be implemented inO(deg(y) log n)
time.

We finally show that each edge becomes an inter-cluster edge at mostO(log2 n)
times in expectation. Fix some arbitrary edge e = (x, y) and consider the graph G

4.5. DYNAMIC LOW-DIAMETER DECOMPOSITION 135

after an arbitrary number of the adversary’s deletions. We first formulate a neces-
sary condition for e being an inter-cluster edge and give a bound on the probability
of the corresponding event. Let w denote the mid-point of e, i.e., the imaginary
node in the “middle” of edge e that is at distance 1

2 to both u and v. Let mc(x)(w)
and mc(y)(w) denote the shifted distance from w to c(x) and c(y) in G, respec-
tively. We would like to argue that both mc(x)(w) and mc(y)(w) are close to the
minimum shifted distance of the mid-point w. However, we cannot readily apply
Lemma 4.5.2 as our algorithm does not run on G; instead it runs on G′, in which
the edge weights are rounded to integers. However, we can apply Lemma 4.5.2 on
G′ and get that ⌊mc(x)(w)⌋ and ⌊mc(y)(w)⌋ are within 1 of the minimum rounded
shifted distance of the mid-point w. Thus, |⌊mc(x)(w)⌋ − ⌊mc(y)(w)⌋| ≤ 1, which
implies that |mc(x)(w)−mc(y)(w)| ≤ 2. This means that |mc(x)(w)−mc(y)(w)| ≤ 2
is a necessary condition for e = (x, y) to be an inter-cluster edge. As the adversary
is oblivious to the random choices of our algorithm, we know by Lemma 4.5.3 that
P[|mc(x)(w)−mc(y)(w)| ≤ 2] ≤ 2β in each of the graphs created by the adversary’s
sequence of deletions.

Observe that for each of the endpoints (x and y) of e the level in our decremental
algorithm is non-decreasing. Let 0 ≤ i ≤ ∆, and let S(i), say of length t, be the
(possibly empty) subsequence of edge deletions during which ℓ(x) = i. We show
below that the expected number of times that e becomes an inter-cluster edge during
deletions inS(i) isO(β log n). It then follows that the total number times e becomes
an inter-cluster edges is O(log2 n) by linearity of expectation: sum up the number
of times e becomes an inter-cluster edge in each subsequence S(i) for 0 ≤ i ≤ ∆
where ∆ ≤ O(log n/β), and repeat the argument for the other endpoint y of e as
well.

For every 1 ≤ j ≤ t define the following events:

• Aj is the event that e becomes an inter-cluster edge after the j-th deletion in
S(i), and was not an inter-cluster edge directly before this deletion.

• Bj is the event that at least one of the endpoints of e, x or y, changes its
cluster after the j-th deletion in S(i).

• Cj is the event that e is an inter-cluster edge after the j-th deletion in S(i).

• Dj is the event that |mc(x)(w)−mc(y)(w)| ≤ 2 after the j-th deletion in S(i),
where w is the mid-point of e.

Note that e can only become an inter-cluster edge if at least one of its endpoints
changes its cluster. Thus, the event Aj implies the event Bj ∧ Cj and therefore
P[Aj] ≤ P[Bj ∧ Cj]. Furthermore, by Lemma 4.5.2, the event Cj implies the event
Dj . We thus have P[Bj ∧ Cj] ≤ P[Bj ∧ Dj]. Observe that the event Dj only de-
pends on the random choice of the shift values δ and that, in the fixed subsequence
of deletions S(i), the event Bj only depends on the random choice of the permuta-
tion π. Thus, Bj andDj are independent and therefore P[Bj ∧Dj] = P[Bj] ·P[Dj].
Finally, note that the expected number of indices j such that the eventBj happens is

136 CHAPTER 4. DYNAMIC LOW-STRETCH TREES

at most the expected number of cluster changes for both endpoints of e, as bounded
by Lemma 4.5.5, and thus

∑
1≤i≤t P[Bj] = O(log n) for the random permutation π.

It follows that the expected number of times edge e becomes an inter-cluster edge
(i.e., the expected number of indices j such that event Aj happens) is∑

1≤i≤t

P[Aj] ≤
∑
1≤i≤t

P[Bj ∧ Cj] ≤
∑
1≤i≤t

P[Bj ∧Dj] =
∑
1≤i≤t

P[Bj] · P[Dj]

≤
∑
1≤i≤t

P[Bj] · 2β = 2β ·
∑
1≤i≤t

P[Bj] = O(β log n) ,

where the penultimate inequality follows from Lemma 4.5.3.

Note that in this proof, to bound the number total number of inter-cluster edges,
we exploited that our two sources of randomness, the random shifts δ and the ran-
dom permutation π have different purposes: δ influences whether an edge e is an
inter-cluster edge and π influences the number of cluster changes of the endpoints
of e. We have deliberately set up the algorithm in such a way that the independence
of the corresponding events can be exploited in the proof. This is the reason whywe
explicitly introduced a new random permutation for tie-breaking instead of using
the random shifts for this purpose as well.

Remark 4.5.7. Note that Equation (4.5) implies that the total expected update time of
Theorem 4.5.6 is O(m log3 n/β). For the sake of exposition, we have implemented
the ES-tree using a heap, which introduces a O(log n) factor in the running time.
[164] (Section 2.1.1) gives a faster implementation of the ES-tree that eliminates
this extra O(log n) factor. Thus, using her technique, we can also bring down our
running time toO(m log2 n/β). This improvement will be particularly useful when
applying our dynamic low-diameter decomposition to the construction of dynamic
spanners in Section 4.6.

4.5.3 Fully Dynamic Low-Diameter Decomposition

We finally show how to extend the decremental algorithm of Theorem 4.5.6 to a
fully dynamic algorithm, allowing also insertions of edges.

Theorem 4.5.8 (Restatement of Theorem 4.1.3). Given any unweighted, undirected
multigraph undergoing edge insertions and deletions, there is a fully dynamic algo-
rithm for maintaining a (β,O(lognβ))-decomposition (with clusters of strong diameter

O(lognβ) and at most βm inter-cluster edges in expectation) that has expected amor-

tized update timeO(log2 n/β2). A spanning tree of diameterO(lognβ) for each cluster
can be maintained in the same time bound. The expected amortized number of edges
to become inter-cluster edges after each update isO(log2 n/β). These guarantees hold
against an oblivious adversary.

4.5. DYNAMIC LOW-DIAMETER DECOMPOSITION 137

Algorithm 4.3: Modified ES-tree
// The modified ES-tree is formulated for weighted undirected graphs.
// Internal data structures:

• π: random permutation on V
• δv : random shift of v
• P (v): the set of potential parents in the tree
• p(v): for every node v a pointer to its parent in the tree
• c(v): for every node v a pointer to the cluster center
• Q: global heap whose intended use is to store nodes whose levels might need to be

updated

1 Procedure initialize()
2 Initialize using Algorithm 4.2
3 Set ℓ(v), P (v), p(v), c(v) for every node v accordingly
4 Procedure delete(u, v)
5 if v ∈ P (u) then
6 Remove v from P (u)
7 if P (u) = ∅ then
8 Insert u into heap Q with key ℓ(u)
9 updateLevels()

10 Procedure updateLevels()
11 while heap Q is not empty do
12 Take node y with minimum key ℓ(y) from heap Q and remove it from Q
13 Compute P (y) as the set of neighbors z of y minimizing

(ℓ(z) +w(y, z), π(c(z))) lexicographically
14 Set p(y) as one of the nodes in P (y)
15 Set ℓ(y)← ℓ(p(y)) +w′(y, p(y)
16 if p(y) = s then
17 Set c(y)← y
18 else
19 Set c(y) = c(p(y))

20 foreach neighbor x of y do
21 if y ∈ P (x) then
22 Remove y from P (x)
23 if P (x) = ∅ then
24 Insert x into heap Q with key ℓ(x) if Q does not already

contain x

Proof. The fully dynamic algorithm proceeds in phases, starting from an empty
graph. For every i > 1, letmi denote the number of edges in the graph at the begin-
ning of phase i. After βmi/3 updates in the graph we end phase i and start phase
i + 1. At the beginning of each phase we re-initialize the decremental algorithm

138 CHAPTER 4. DYNAMIC LOW-STRETCH TREES

of Theorem 4.5.6 for maintaining a (β/3, 3 · O(lognβ))-decomposition.6 Whenever
an edge is deleted from the graph, we pass the edge deletion on to the decremental
algorithm. Whenever an edge is inserted to the graph, we do nothing, i.e., we deal
with insertions of edges in a completely lazy manner.

We first analyze the ratio of inter-cluster edges at any time during phase i. First
observe that the number of inter-cluster edges is at most 2βmi/3 in expectation,
where at most βmi/3 edges in expectation are contributed by the (β/3, 3·O(lognβ))-
decomposition of the decremental algorithm and at most βmi/3 edges are con-
tributed from inserted edges. Second, the number of edges in the graph is at least
mi − βmi/3, as mi is the initial number of edges and at most βmi/3 edges have
been deleted. Thus, the ratio of inter-cluster edges is at most

2βmi/3

mi − βmi/3
=

2β

3− β
≤ 2β

2 + β − β
= β .

Our fully dynamic algorithm therefore correctly maintains a (β,O(lognβ))-
decomposition.

We now analyze the amortized update time of the algorithm. Start with an
empty graph and consider a sequence of q updates. Let k denote the number of
the phase after the q-th update. Then q can be written as q =

∑
1≤i<k βmi/3 + t,

where t is the number of updates in phase k. For every phase i that has been started,
we spend time O(mi log

2 n/β) by Theorem 4.5.6 and Remark 4.5.7. We know that
t ≤ βmk/3 and in particular we also have mk ≤

∑
1≤i≤k−1 βmi/3 as every edge

that is contained in the graph at the beginning of phase k has been inserted in one
of the previous phases. We can thus bound the amortized spent by the algorithm
for q updates by

∑
1≤i≤k−1O(mi log

2 n/β) +O(mk log
2 n/β)∑

1≤i≤k−1 βmi/3

≤
∑

1≤i≤k−1O(mi log
2 n/β) +O(

∑
1≤i≤k−1mi log

2 n)∑
1≤i≤k−1 βmi/3

= O

(
log2 n

β2

)
.

Finally, we analyze the amortized number of edges to become inter-cluster edges
per update. For every phase i that has been started, we have a total number of
O(mi log

2 n) edges that become inter-cluster edges in the decremental algorithm
by Theorem 4.5.6. Additionally, at most βmi/3 = O(mi) inserted edges could also
become inter-cluster edges. We can thus bound the amortized number of edges to

6Note that for the first constant number of updates this basically amounts to recomputation from
scratch at each update.

4.6. DYNAMIC SPANNER ALGORITHM 139

become inter-cluster per update by∑
1≤i≤k−1O(mi log

2 n) +O(mk log
2 n)∑

1≤i≤k−1 βmi/3

≤
∑

1≤i≤k−1O(mi log
2 n) +O(

∑
1≤i≤k−1 βmi log

2 n)∑
1≤i≤k−1 βmi/3

= O

(
log2 n

β

)
.

4.6 Dynamic Spanner Algorithm

4.6.1 Static Spanner Construction

In the following we review and adapt the static algorithm for constructing sparse
low-stretch spanners due to Elkin and Neiman [92]. Let G = (V,E) be an un-
weighted, undirected graph on n nodes, and let k ≥ 1 be an integer. For every
u ∈ V , we denote by N(u) the set of all nodes incident to u. Recall that Exp(β)
denotes the exponential distribution with parameter β. In what follows, we set
β = log(cn)/k, where c > 3 denotes the success probability. A 2k − 1-spanner
of G is a a subgraph H = (V,E′) such that for every u, v ∈ V , distH(u, v) ≤
2k− 1 · distG(u, v). We refer to 2k− 1 and |E′| as the stretch and size ofH , respec-
tively.

We next review some useful notation. Let δu be the shift value of node u ∈ V .
For each x, u ∈ V , recall that mu(x) = distG(x, u) − δu is the shifted distance of
x with respect to u, and let pu(x) denote the neighbor of x that lies on a shortest
path from x to u. Also, for every node x ∈ V , let m(x) = minu∈V {mu(x)} be
the minimum shifted distance. Using our clustering notation from Section 4.5, it
follows that c(x) = argminu∈V {mu(x)}, and thusm(x) = mc(x)(x).

We now present an algorithm that constructs spanners using exponential
random-shift clustering. Specifically, we initially setH = (V, ∅), and for each node
u ∈ V , we independently pick a shift value δu from Exp(β). Then, for every x ∈ V ,
we add to the spanner H the following set of edges

C(x) = {(x, pu(x)) |mu(x) ≤ m(x) + 1} . (4.6)

The following theorem give bounds on the stretch and the size of the spanner
output by the above algorithm.

Theorem4.6.1 ([92]). For any unweighted, undirected simple graphG = (V,E) on n
nodes, any integer k ≥ 1, c ≥ 3, there is a randomized algorithm that with probability
at least 1− 2

c computes a spanner H with stretch 2k − 1 and size at most (cn)1+1/k.

Our analysis will rely on the following useful properties of the above algorithm.

Claim 4.6.2 ([92]). The expected size of H is at most (cn)1/k · n.

140 CHAPTER 4. DYNAMIC LOW-STRETCH TREES

Claim 4.6.3 ([92]). With probability at least 1 − 1/c, it holds that δu < k for all
u ∈ V .

Claim 4.6.4 ([92]). Assume δu < k for all u ∈ V . Then for any x ∈ V , if u is the
node minimizingmu(x), i.e., u = c(x), then distG(u, x) < k.

As argued by Elkin and Neiman, Claim 4.6.4 implies that the stretch of the span-
ner is at most 2k − 1. Thus, the reason reason why the stretch guarantee is proba-
bilistic is Claim 4.6.3.

Implementation. In the description of the spanner construction, it is not clear
how to compute in nearly-linear time the set of edges C(x) in Equation (4.6), for
every node x ∈ V . To address this, we give an equivalent definition of C(x), which
better decouples the properties that the edges belonging to this set satisfy. Specifi-
cally, we define the set of edges

C ′(x) = {(x, y) | y ∈ N(x) andmc(y)(x) ≤ m(x) + 1} , (4.7)

and then show that C(x) = C ′(x).
To this end, we will show that (a) C(x) ⊆ C ′(x) and (b) C ′(x) ⊆ C(x). Let

(x, y) ∈ C(x), where y = pu(x). By definition of pu(x), we have that y ∈ N(x).
We next show thatmc(y)(x) ≤ m(x) + 1, which in turn proves (a). Indeed,

mc(y)(x) = mc(y)(y) + 1 = m(y) + 1 ≤ mu(y) + 1 = mu(x) ≤ m(x) + 1,

where the last inequality follows from Equation (4.6). For showing the other con-
tainment, i.e., proving (b), let (x, y) ∈ C ′(x). Then we need to prove that there
exists some u ∈ V such that y = pu(x) and mu(x) ≤ m(x) + 1. This follows by
simply setting u = c(y) and using Equation (4.7).

Now, similarly to the static low-diameter decomposition in Section 4.5.1, we
augment the input graph G by adding a new source s to G and edges (s, x) of
weight (δmax − δx) ≥ 0, for every x ∈ V , where δmax = maxx∈V {δx}. Recall
that in the resulting graph Ĝ = (V ∪ {s}, Ê, ŵ), for every x ∈ V , the node u
attaining the minimumm(x) is exactly the root of the sub-tree below the source s
that contains u. Thus, we could use Dijkstra’s algorithm to construct the shortest
path tree of Ĝ, and augment it appropriately to output the edge sets C ′(x), which
in turn give us the spanner H .

However, in the dynamic setting, it is crucial for our algorithm to deal only
with integral edge weights. To address this, we round down all the δu values to
⌊δu⌋ and modify the weights of the edges incident to the source s in Ĝ. Let G′ =
(V ∪{s}, E′,w′) be the resulting graph, and let ⌊mu(x)⌋ denote the rounded shifted
distances. Whenever two rounded distances are the same, we break ties using the
permutation π on the nodes induced by the fractional values of the random shift
values. Thus, the edge set C ′(x) is given by

C ′(x) = {(x, y) | y ∈ N(x), ⌊mc(y)(x)⌋ ≤ ⌊m(x)⌋+ 1 and π(c(y)) < π(c(x))}.

4.6. DYNAMIC SPANNER ALGORITHM 141

Finally, we observe that the definition of the above set can be further simplified
by using the facts thatmc(y)(x) = mc(y)(y) + 1 and ⌊mc(y)(x)⌋ ≥ ⌊m(x)⌋, that is

C ′(x) = {(x, y) | y ∈ N(x), ⌊m(y)⌋ = ⌊m(x)⌋ − 1 or
[⌊m(y)⌋ = ⌊m(x)⌋ and π(c(y)) < π(c(x))]} .

(4.8)

Interpreting the above set in terms of the shortest-path tree output by Dijkstra’s
algorithm, we get that for any x ∈ V , we add the edge (x, y) to the spanner H , if
y is a neighbor one level above the level or x, or if x and y are at the same level,
and the cluster y belongs to appears before in the permutation when compared to
the cluster x belongs to. By Claim 4.6.4 the shortest-path tree has depth at most 2k
with high probability.

Now observe that the randomized properties of this spanner construction only
depend on the integer parts of the random shift values and the permutation π on
the nodes induced by the order statistics of the fractional parts of the random shift
values. Similar to the argument of Miller et al. [195] for low-diameter decomposi-
tions, it can be argued that due to memorylessness of the exponential distribution,
one might as well use a uniformly sampled random permutation π instead to obtain
a spanner with the same probabilistic properties.

4.6.2 Dynamic Spanner Algorithm

Spanners have a useful property called decomposability: Assume we are given a
graph G = (V,E) with a partition into two subgraphs G1 = (V,E1) and G2 =
(V,E2). If H1 = (V, F1) is a spanner of G1 and H2 = (V, F2) is a spanner of G2,
both of stretch t, then H = (V, F1 ∪ F2) is a spanner of G. This property allows
for a reduction that turns decremental algorithms into fully dynamic ones at the
expense of logarithmic overhead in size and update time, as it has been observed by
Baswana et al. [33].

Lemma 4.6.5 (Implicit in [33]). If there is a decremental algorithm for maintaining
a spanner of stretch t and expected size s(n) with total update timem · u(m,n), then
there is a fully dynamic algorithm for maintaining a spanner of stretch t and expected
size s(n) ·O(log n) with amortized update time u(m,n) ·O(log n).

In the remainder of this section, we explain how the techniques we developed
in Section 4.5 allow for a decremental implementation of the spanner construction
explained above.

Theorem 4.6.6. Given any unweighted, undirected graph undergoing edge deletions,
there is a decremental algorithm for maintaining a spanner of stretch 2k − 1 and ex-
pected size O(n1+1/k) that has expected total update time O(km log n). These guar-
antees hold against an oblivious adversary.

Using the reduction of Lemma 4.6.5, these guarantees carry over to the fully
dynamic setting.

142 CHAPTER 4. DYNAMIC LOW-STRETCH TREES

Theorem 4.6.7 (Restatement of Theorem 4.1.4). Given any unweighted, undirected
graph undergoing edge insertions and deletions, there is a fully dynamic algorithm
for maintaining a spanner of stretch 2k − 1 and expected size O(n1+1/k log n) that
has expected amortized update time O(k log2 n). These guarantees hold against an
oblivious adversary.

The decremental algorithm is obtained as follows: In a preprocessing step, the
algorithm samples the random shift values for the nodes from the exponential dis-
tribution and additionally a uniformly random permutation π on the nodes. The
sampling of the random shift values is repeated until δu < k for all u ∈ V . By
Claim 4.6.3 this condition holds with probability at least 1 − 1/c. Thus, by the
waiting time bound, we need to repeat the sampling at most a constant number of
times for the condition to hold. As each round of sampling takes time O(n), this
preprocessing step requires an additional O(n) in the total update time.

We can then readily use Algorithm 4.3 from Section 4.5.2 to maintain a shortest
path tree up to depth 2k from s in the graph G′, as defined above. For maintaining
the spanner dynamically, we need to extend the algorithm to maintain the setC ′(x)
for every node x. Using the arguments introduced in Section 4.5.2, this can be
done in a straightforward way: Every time a node x changes its level in the tree
or changes its cluster c(x), it (1) recomputes the set C ′(x) in time O(deg(x)) and
stores it in a hash set and (2) informs each neighbor about the change and updates
the setC ′(y) of each neighbor y by setting the entry corresponding to the edge (x, y)
accordingly. Both (1) and (2) require (expected) time O(deg(x)). As the maximum
level in the tree is O(k) and at each node changes its clustering at a fixed level at
mostO(log n) times in expectation, the expected total update time of our algorithm
is O(km log n) as desired.

4.7 Conclusion

In this chapter, we showed a fully dynamic algorithm that maintains a no(1)-stretch
spanning tree in an unweighted, undirected graph with n1/2+o(1) amortized time
per edge insertion or deletion. The core building block behind the algorithm is a dy-
namic algorithm that maintains a low-diameter clustering a graph. We also showed
that this technique can be applied to the dynamic spanner problem, for which we
improved upon the best-known update time and the size of the spanner. Our work
leaves several open problems. One important problem is whether the running time
can be brought down to no(1). We believe that this is closely connected to how we
deal with insertions in our dynamic clustering algorithm. In fact, any subroutine
that outperforms our lazy insertion technique might lead to further improvements
in the update time. Another interesting problem is extending our techniques to
weighted, undirected graphs. A natural attempt is to extend the hierarchy due to
Alon et al. [17] on weighted graphs to a dynamic setting. We remark that a black-
box extension seems not to be feasible, so new ideas might be required to achieve
this. Finally, the question of whether there are dynamic algorithms that maintain

4.7. CONCLUSION 143

low-stretch trees with poly-logarithmic stretch and sub-linear update time remains
a major open problem.

CHAPTER 5
Incremental Exact Min-Cut in
Poly-logarithmic Amortized

Update Time

We present a deterministic incremental algorithm for exactly maintaining the size
of a minimum cut with O(log3 n log log2 n) amortized time per edge insertion and
O(1) query time. This result partially answers an open question posed by Tho-
rup [248]. It also stays in sharp contrast to a polynomial conditional lower-bound
for the fully-dynamic weighted minimum cut problem. Our algorithm is obtained
by combining a sparsification technique of Kawarabayashi and Thorup [157] or its
recent improvement by Henzinger, Rao and Wang [136], and an exact incremental
algorithm of Henzinger [127].

We also study space-efficient incremental algorithms for the minimum cut prob-
lem. Concretely, we show that there exists an O(n log n/ϵ2) space Monte-Carlo al-
gorithm that can process a stream of edge insertions starting from an empty graph,
and with high probability, the algorithm maintains a (1 + ϵ)-approximation to the
minimum cut. The algorithm has O((α(n) log3 n)/ϵ2) amortized update-time and
constant query-time, where α(n) stands for the inverse of Ackermann function.

5.1 Introduction

Computing a minimum cut of a graph is a fundamental algorithmic graph problem.
While most of the focus has been on designing static efficient algorithms for find-
ing a minimum cut, the dynamic maintenance of a minimum cut has also attracted
increasing attention over the last two decades. The motivation for studying the
dynamic setting is apparent, as real-life networks such as social or road network
undergo constant and rapid changes.

145

146 CHAPTER 5. INCREMENTAL MIN-CUT IN POLY-LOGARITHMIC TIME

Given an initial graphG, the goal of a dynamic graph algorithm is to build a data-
structure that maintains G and supports update and query operations. Depending
on the types of update operations we allow, dynamic algorithms are classified into
three main categories: (i) fully dynamic, if update operations consist of both edge
insertions and deletions, (ii) incremental, if update operations consist of edge inser-
tions only and (iii) decremental, if update operations consist of edge deletions only.
In this chapter, we study incremental algorithms for maintaining the size of a min-
imum cut of an unweighted, undirected graph (denoted by λ(G) = λ) supporting
the following operations:

• Insert(u, v): Insert the edge (u, v) to G.

• QuerySize: Return the exact (approximate) size of a minimum cut of the cur-
rent G.

For any α ≥ 1, we say that an algorithm is an α-approximation of λ if QuerySize
returns a positive number k such that λ ≤ k ≤ α · λ. Our problem is characterized
by two time measures; query time, which denotes the time needed to answer each
query and total update time, which denotes the time needed to process all edge
insertions. We say that an algorithm has an O(t(n)) amortized update time if it
takes O(m(t(n))) total update time for m edge insertions starting from an empty
graph.

Related Work. For over a decade, the best known static and deterministic al-
gorithm for computing a minimum cut was due to Gabow [107] which runs in
O(m+ λ2n log n) time. Kawarabayashi and Thorup [157] devised an O(m log12 n)
time algorithm which applies only to unweighted, undirected simple graphs. Re-
cently, Henzinger et al. [136] improved the running time to O(m log2 n log log2 n).
Randomized Monte Carlo algorithms in the context of static minimum cut were ini-
tiated by Karger [151]. The best known randomized algorithm is due to Karger [150]
and runs in O(m log3 n) time.

Karger [152] was the first to study the dynamic maintenance of a minimum cut
in its full generality. He devised a fully dynamic, albeit randomized, algorithm for
maintaining a

√
1 + 2/ϵ-approximation of the minimum cut in Õ(n1/2+ϵ) expected

amortized time per edge operation. In the incremental setting, he showed that the
update time for the same approximation ratio can be further improved to Õ(nϵ).
Thorup and Karger [246] improved upon the above guarantees by achieving an ap-
proximation factor of

√
2 + o(1) and an Õ(1) expected amortized time per edge

operation.
Henzinger [127] obtained the following guarantees for the incremental mini-

mum cut; for any ϵ ∈ (0, 1], (i) an O(1/ϵ2) amortized update-time for a (2 + ϵ)-
approximation, (ii) an O(log3 n/ϵ2) expected amortized update-time for a (1 + ϵ)-
approximation and (iii) anO(λ log n) amortized update-time for the exact minimum
cut.

5.1. INTRODUCTION 147

For minimum cut up to some poly-logarithmic size, Thorup [248] gave a fully
dynamicMonte-Carlo algorithm formaintaining exact minimum cut in Õ(

√
n) time

per edge operation. He also showed how to obtain an 1+o(1)-approximation of an
arbitrary sized minimum cut with the same time bounds. In comparison to previous
results, it is worth pointing out that his work achieves worst-case update times.

Lacki and Sankowski [177] studied the dynamic maintenance of the exact size
of the minimum cut in planar graphs with arbitrary edge weights. They obtained a
fully dynamic algorithm with Õ(n5/6) worst-case query and update time.

There has been a growing interest in proving conditional lower bounds for dy-
namic problems in the last few years [7, 135]. A recent result of Nanongkai and
Saranurak [201] shows the following conditional lower-bound for the exact weighted
minimum cut assuming the OnlineMatrix-Vector Multiplication conjecture: for any
ϵ > 0, there are no fully-dynamic algorithms with polynomial-time preprocessing
that can simultaneously achieve O(n1−ϵ) update-time and O(n2−ϵ) query-time.

Our Results and Technical Overview. We present two new incremental algo-
rithms concerning the maintenance of the size of a minimum cut. Both algorithms
apply to undirected, unweighted simple graphs.

Our first and main result, presented in Section 5.4, shows that there is a deter-
ministic incremental algorithm for exactly maintaining the size of a minimum cut
with O(log3 n log log2 n) amortized time per operation and O(1) query time. This
result allows us to partially answer in the affirmative a question regarding efficient
dynamic algorithms for exact minimum cut posed by Thorup [248]. Additionally,
it also stays in sharp contrast to the polynomial conditional lower-bound for the
fully-dynamic weighted minimum cut problem of Nanongkai and Saranurak [201].

We obtain our result by heavily relying on a recent sparsification technique de-
veloped in the context of static minimum cut algorithms. Specifically, for a given
simple graph G, Kawarabayashi and Thorup [157] (and subsequently Henzinger et
al. [136]) designed an Õ(m) procedure that contracts vertex sets ofG and produces
a multigraphH with considerably fewer vertices and edges while preserving some
family of cuts of size up to (3/2)λ(G). Motivated by the properties of H , the cru-
cial observation is that it is “safe” to work entirely with graph H as long as the
sequence of newly inserted edges do not increase the size of the minimum cut inH
by more than (3/2)λ(G). If the latter occurs, we recompute a new multigraph H
for the current graph G. Since λ(G) ≤ n, the number of such re-computations is
O(log n). For maintaining the minimum-cut ofH , we appeal to the exact incremen-
tal algorithm due to Henzinger [127]. Our main technical contribution is to skilfully
combine these two algorithms and formally argue that such combination leads to
our desirable guarantees.

Motivated by the recent work on space-efficient dynamic algorithms [49], we
also study the efficient maintenance of the size of a minimum cut using only Õ(n)
space. Concretely, we present a O(n log n/ϵ2) space Monte-Carlo algorithm that
can process a stream of edge insertions starting from an empty graph, and with

148 CHAPTER 5. INCREMENTAL MIN-CUT IN POLY-LOGARITHMIC TIME

high probability, it maintains an (1 + ϵ)-approximation to the minimum cut in
O((α(n) log3 n)/ϵ2) amortized update-time and constant query-time.

Note that while the streaming model also allows only Õ(n) space, it is less
constrained than the space efficient dynamic model since streaming algorithms do
not need to maintain an explicit sparsifier at every moment, but just have enough
information to construct one at the end of the stream. There have been several
streaming algorithms [14, 159, 175] for maintaining a cut sparsifier, and thus (1+ϵ)-
approximating the minimum cut. The best bounds are due to Kyng et al. [175] who
compute a stronger spectral sparsifier with O(n log n/ϵ2) size and O(log2 n) amor-
tized update-time. In comparison to our result, while our update-time is slightly
worse, we can achieve constant query-time, whereas their algorithms requiresΩ(n)
time to answer a query.

5.2 Preliminaries

Let G = (V,E) be an undirected, unweighted multi-graph with no self-loops. Two
vertices x and y are k-edge connected if there exist k edge-disjoint paths connecting
x and y. A graphG is k-edge connected if every pair of vertices is k-edge connected.
The local edge connectivity λ(x, y,G) of vertices x and y is the largest k such that
x and y are k-edge connected in G. The edge connectivity λ(G) of G is the largest
k such that G is k-edge connected.

For a subset S ⊆ V in G, the edge cut EG(S, V \ S) is a set of edges that have
one endpoint in S and the other in V \ S. We may omit the subscript when clear
from the context. Let λ(S,G) = |EG(S, V \S)| be the size of the edge cut. If S is a
singleton, we refer to such cut as a trivial cut. Two vertices x and y are separated by
E(S, V \S) if they belong to different connected components of the graph induced
byE \E(S, V \S). Aminimum edge cut of x and y is a cut of minimum size among
all cuts separating x and y. A global minimum cut λ(G) for G (or simply λ when
G is clear from the context) is the minimum edge cut over all pairs of vertices. By
Menger’s Theorem [193], (a) the size of the minimum edge cut separating x and y
is λ(x, y,G), and (b) the size of the global minimum cut is equal to λ(G).

Let n, m0 and m1 be the number of vertices, initial edges and inserted edges,
respectively. The total number of edgesm is the sum of the initial and inserted edges.
Moreover, let λ and δ denote the size of the global minimum cut and the minimum
degree in the final graph, respectively. Note that the minimum degree is always an
upper bound on the edge connectivity, i.e., λ ≤ δ andm = m0 +m1 = Ω(δn).

A subsetU ⊆ V is contracted if all vertices inU are identifiedwith some element
of U and all edges between them are discarded. For G = (V,E) and a collection
of vertex sets, let H = (V (H), E(H)) denote the graph obtained by contracting
such vertex sets. Such contractions are associated with a mapping h : V → V (H).
For an edge subset N ⊆ E, let Nh = {(h(a), h(b)) : (a, b) ∈ N} ⊆ E(H) be its
corresponding edge subset induced by h.

5.3. SPARSE CERTIFICATES 149

Throughout, we will use the term with high probability (in short, w.h.p.) to
denote the event that holds with probability at least 1 − 1/nc, for some positive
constant c.

5.3 Sparse certificates

In this section we review a useful sparsification tool, introduced by Nagamochi and
Ibaraki [199]. We first give the following definition from Benczur and Karger [36],
which also appeared implicitly in [199].

Definition 5.3.1. A sparse k-connectivity certificate, or simply a k-certificate, for an
unweighted graph G with n vertices is a subgraph G′ of G such that

1. G′ consists of at most k(n− 1) edges, and

2. G′ contains all edges crossing cuts of size at most k.

Given an undirected graph G = (V,E), a (maximal) spanning forest decom-
position (msfd) F of order k is a decomposition of G into k edge-disjoint span-
ning forests Fi, 1 ≤ i ≤ k, such that Fi is a (maximal) spanning forest of
G \ (F1 ∪ F2 . . . ∪ Fi−1). Note that Gk = (V,

∪
i≤k Fi) is a k-certificate. An msfd

fulfills the following property.

Lemma 5.3.2 ([200]). Let F = (F1, . . . , Fm) be an msfd of order m of a graph
G = (V,E), and let k be an integer with 1 ≤ k ≤ m. Then for any nonempty and
proper subset S ⊂ V ,

λ(S,Gk)

{
≥ k, if λ(S,G) ≥ k
= λ(S,G) if λ(S,G) ≤ k − 1.

We next present a proof of the above lemma, which closely follows the work of
Nagamochi and Ibaraki [200]. We start by presenting the following helpful result.

Lemma 5.3.3. Let F = (F1, . . . , Fm) be an msfd of orderm of a graph G = (V,E).
Then for any edge (u, v) ∈ Fj and any i ≤ j, it holds that λ(u, v,

∪
l≤i Fl) ≥ i.

Proof. Fix some edge e = (u, v) ∈ Fj . We first argue that for each i = 1, . . . , j − 1,
the forest (V, Fi) contains some (u, v)-path. Indeed, by the maximality of the forest
(V, Fi), the graph (V, Fi ∪ {e}) must have some cycle C that contains e. Thus,
P = C \ e is the (u, v)-path in the forest (V, Fi). It follows that (V,

∪
l≤i Fl) has i

edge-disjoint paths. Next, observe thatGj = (V,
∪

l≤j Fl) has j edge-disjoint paths,
namely the j−1 edge disjoint paths inGj−1 (which does not contain the edge (u, v))
and the 1-edge path consisting of the edge (u, v). Hence, λ(u, v,

∪
l≤i Fl) ≥ i,

150 CHAPTER 5. INCREMENTAL MIN-CUT IN POLY-LOGARITHMIC TIME

Proof of Lemma 5.3.2. Assume that λ(S,G) ≤ k − 1. Then by definition of Gk, we
know that Gk preserves any cut S of size up to k. Thus λ(S,Gk) = λ(S,G).

For the other case, λ(S,G) ≥ k and assume that λ(S,Gk) < λ(S,G) (otherwise
the lemma follows). Then there is an edge e = (u, v) ∈ EG(S, V \S)\EGk

(S, V \S).
Since e ̸∈

∪
i≤k Fi, this means that e belongs to some forest Fj with j > k. By

Lemma 5.3.3, we have that λ(u, v,Gk) ≥ k. Since (S, V \ S) separates u and v in
Gk, it follows that λ(S,Gk) = |EGk

(S, V \ S)| ≥ λ(u, v,Gk) ≥ k.

Note that by Lemma 5.3.2 we have that λ(Gk) ≤ λ(G) since Gk is a subgraph
of G. This implies that λ(Gk) ≥ min(k, λ(G)).

Nagamochi and Ibaraki [199] presented anO(m+n) time algorithm (which we
call a decomposition algorithm (DA)) to construct a special msfd, which we refer to
as DA-msfd.

5.4 Incremental Exact Minimum Cut

In this section we present a deterministic incremental algorithm that exactly main-
tains λ(G). The algorithm has O(log3 n log log2 n) update time, O(1) query time
and it applies to any undirected, unweighted simple graph G = (V,E). The
result is obtained by carefully combining a recent static min-cut algorithm by
Kawarabayashi and Thorup [157] or its recent improvement due to Henzinger et
al. [136], and the incremental min-cut algorithm of Henzinger [127]. We start by
describing the maintenance of non-trivial cuts, that is, cuts with at least two vertices
on both sides.

Maintaining non-trivial cuts. Kawarabayashi and Thorup [157] devised a near-
linear time algorithm that contracts vertex sets of a simple input graph G and pro-
duces a sparse multi-graph H preserving all non-trivial minimum cuts of G. We
refer to such a graph H as a KT-Sparsifier. Recently, Henzinger et al. [136] im-
proved the running time for constructingH and provided better bounds on the size
of H . We next define a slightly generalized version of a KT-Sparsifier, and then
state the bounds achieved by these two algorithms.

Definition 5.4.1 (KT-Sparsifier). Let G = (V,E) be an undirected, unweighted
simple graph with n vertices, m edges and min-cut λ. A multi-graph H =
(V (H), E(H)) is a KT-Sparsifier of G if the following holds:

• H has nH = Õ(n/λ) vertices andmH = Õ(m/λ) edges.

• H preserves all non-trivial cuts of size up to (3/2)λ in G.

• H is obtained by contracting vertex sets in G.

Theorem 5.4.2 ([157]). Given an undirected, unweighted simple graph G = (V,E),
there is an O(m log12 n) time algorithm to construct a KT-Sparsifier H of G such
that H has O(n log4 n/λ) vertices and O(m log4 n/λ) edges.

5.4. INCREMENTAL EXACT MINIMUM CUT 151

In what follows, whenever we invoke the algorithm that constructs a KT-
Sparsifier, we mean to invoke the algorithm from the theorem below.

Theorem 5.4.3 ([136]). Given an undirected, unweighted simple graph G = (V,E),
there is an O(m log2 n log log2 n) time algorithm to construct a KT-Sparsifier H of
G such that H has O(n log n/λ) vertices and O(m log n/λ) edges.

As far as non-trivial cuts are concerned, Theorem 5.4.3 implies that it is safe to
work on H instead of G as long as the sequence of newly inserted edges satisfies
λH ≤ (3/2)λ. To incrementally maintain the correct λH , we apply Henzinger’s
algorithm [127] on top of H . The basic idea to verify the correctness of the solu-
tion is to compute and store all min-cuts of H . Clearly, a solution is correct as
long as an edge insertion does not increase the size of all min-cuts. If all min-cuts
have increased, a new solution is computed using information about the previous
solution. The steps above can be performed efficiently by making use of the cactus
tree representation, which we will define shortly. The crucial observation is that
whenever λH increases (and assuming that we can efficiently check this), instead
of recomputing the cactus tree from scratch, we update intermediate structures that
remained from the previous cactus tree. We next show a precise implementation of
these steps.

The minimum edge cuts are stored using the cactus tree representation intro-
duced by Dinitz, Karzanov and Lomonosov [82] (see also [103] for a concise proof).
A cactus tree of a graph G = (V,E) is a weighted graph Gc = (Vc, Ec) defined as
follows: There is a mapping ϕ : V → Vc such that:

1. Every node in V maps to exactly one node in Vc and every node in Vc corre-
sponds to a (possibly empty) subset of V .

2. ϕ(x) = ϕ(y) iff x and y are (λ(G) + 1)-edge connected.
3. Every min-cut in Gc corresponds to a min-cut in G, and every min-cut in G

corresponds to at least one min-cut in Gc.
4. If λ is odd, every edge of Ec has weight λ and Gc is a tree. If λ is even, no

two simple cycles ofGc intersect in more than one node. Furthermore, edges
that belong to a cycle have weight λ/2 while those not belonging to a cycle
have weight λ.

Dinitz and Westbrook [84] showed that given a cactus tree, we can use the data
structures from [110, 213] to efficiently maintain the cactus tree for fixed minimum
cut size λ under edge insertions. This implies that this data-structure can be used to
efficiently test whether min-cut has increased its value during edge insertions. The
result is summarized in the theorem below.

Theorem 5.4.4 ([84]). Given a cactus tree, there is an algorithm that maintains the
cactus tree for fixed minimum cut size λ under u edge insertions, reporting when the
minimum cut size increase to λ+ 1 in O(u+ n) total time.

152 CHAPTER 5. INCREMENTAL MIN-CUT IN POLY-LOGARITHMIC TIME

We now turn our attention to the efficient construction and update of the cactus
tree representation of a given multigraph G. To construct the cactus tree we use
an algorithm due to Gabow [108], which proceeds as follows. It first computes a
subgraph of G, called a complete λ-intersection or I(G,λ), with at most λn edges,
and then uses I(G,λ) to compute the cactus tree. In the theorem belowwe state the
running time for the cactus tree construction dependent on the time for computing
I(G,λ).

Theorem 5.4.5 ([108]). Let G = (V,E) be an undirected, unweighted multigraph,
and assume there is an algorithm that computes I(G,λ) in O(T (m,n)) time. Given
I(G,λ), the cactus tree representation of G can be constructed in O(m) time. Hence,
the total time for constructing the cactus tree of G is bounded by O(T (m,n) +m).

Gabow [107] devised an algorithm to compute I(G,λ) in O(m + λ2n log n)
time. Moreover, his algorithm is incremental in the sense that whenever I(G,λ)
is given as an input, the new I(G,λ + 1) can be computed more efficiently, rather
than just recomputing it from scratch. The precise statement and bounds are given
in the following theorem.

Theorem 5.4.6 ([107]). Given an undirected, unweighted multigraph G = (V,E),
there is an algorithm that computes I(G,λ) in O(m + λ2n log n) time. Moreover,
given I(G,λ) and a sequence of edge insertions that increase the minimum cut by 1,
the new I(G,λ+1) can be computed inO(m′ log n) time, wherem′ is the number of
edges in the current graph.

Note that by combining Theorems 5.4.6 and 5.4.5 we get that the cactus tree for
the initial graph can be computed in O(m0 + λ2n log n) time, and the new cactus
tree for some current graph whose minimum cut has increased can be computed in
O(m′ log n) time.

Maintaining trivial cuts. We remark that the multigraphH fromTheorem 5.4.3
preserves only non-trivial cuts ofG. If λ = δ, then we also need a way to keep track
of a trivial minimum cut. We achieve this by maintaining a minimum heap HG on
the vertices, where each vertex is stored with its degree. When an edge insertion
is performed, the values of the edge endpoints are updated accordingly in the heap.
It is well known that constructing HG takes O(n) time. The supported operations
Min(HG) and UpdateEndpoints(HG,e) can be implemented in O(1) and O(log n)
time, respectively (see [76]). This leads to Algorithm 18.

Correctness. Let G be the current graph throughout the execution of the algo-
rithm and letH be the corresponding multigraph maintained by the algorithm. Re-
call that H preserves some family of cuts from G. We say that H is useful if and
only if there exists a minimum cut from G that is contained in the union of (a) all
trivial cuts of G and (b) all cuts inH . Note that we considerH to be useful even in

5.4. INCREMENTAL EXACT MINIMUM CUT 153

Algorithm 5.1: Incremental Exact Minimum Cut
1 Compute the size λ0 of the min-cut of G and set λ∗ ← λ0

Build a heapHG on the vertices, where each vertex stores its degree as a key
Compute a KT-sparsifier H of G and a mapping h : V → VH
Compute the size λH of the min-cut of H , a DA-msfd F1, . . . , Fm of orderm of H ,
I(H,λH), and a cactus-tree of

∪
i≤λH+1 Fi

2 Set Nh ← ∅
// Use the data-structure from Theorem 5.4.4 to maintain the cactus tree
while there is at least one minimum cut of size λH do

Receive the next operation
if it is a query then

return min{λH ,Min(HG)}
else if it is the insertion of an edge (u, v) then

Update the cactus tree according to the insertion of the new edge
(h(u), h(v))

Add the edge (h(u), h(v)) to Nh and update the degrees of u and v inHG

Set λH ← λH + 1
3 if min{λH ,Min(HG) > (3/2)λ∗ then

// Full Rebuild Step
Compute λ(G) and set λ∗ ← λ(G)
Compute a KT-sparsifier H of the current graph G
Update λH to be the min-cut of H
Compute a DA-msfd F1, . . . , Fm of orderm of H
and then I(H,λH) and a cactus tree of

∪
i≤λH+1 Fi

else if λH ≤ (3/2)λ∗ then
// Partial Rebuild Step
Compute a DA-msfd F1, . . . , Fm of orderm of

∪
i≤(3/2)λ∗+1 Fi ∪Nh and

call the resulting forests F1, . . . , Fm

// Update the cactus tree using Theorems 5.4.5 and 5.4.6
Let H ′ ← (V (H), E′) be a graph with E′ ← I(H,λH − 1) ∪

∪
i≤λH+1 Fi

Compute I(H ′, λH), a cactus tree of H ′ and set H ← H ′

else
// Special Step
while Min(HG) ≤ (3/2)λ∗ do

if the next operation is a query then
return Min(HG)

else
Update the degrees of the edge endpoints inHG

Goto Step 3

Goto Step 2

154 CHAPTER 5. INCREMENTAL MIN-CUT IN POLY-LOGARITHMIC TIME

the Special Step (i.e., when λH > (3/2)λ∗), where H is not updated anymore since
we are certain that the smallest trivial cut is smaller than any cut in H .

To prove the correctness of the algorithmwewill show that (1) it correctly main-
tains a trivial min-cut at any time, (2) as long as λH ≤ (3/2)λ∗, the algorithm cor-
rectly maintains all cuts of size up to (3/2)λ∗ + 1 ofH , and (3) H is useful as long
as min{Min(HG), λH} ≤ (3/2)λ∗ (Note that when this condition fails we rebuild
H).

Lemma 5.4.7. The algorithm correctly maintains a trivial min-cut in G.

Proof. This follows directly from the min-heap property ofHG.

To simplify the notation, in the following we will refer to Step 1 as a Full Rebuild
Step (namely the initial Full Rebuild Step). LetG = (V,E) be the current graph, and
let H be the multigraph obtained by invoking KT-sparsifier on G, at the time of
a Full Rebuild Step. Now, as long as λH ≤ (3/2)λ∗, suppose that the graph G and
its corresponding multigraphH have undergone a sequence of edge insertions that
triggered k executions of Partial Rebuild Steps (including Step 2), for some k ≥ 0.
Note that no Full Rebuild Step is executed as long as λH ≤ (3/2)λ∗.

LetH(k) = (V (H), E(H(k))) be the multigraphH after the k-th partial rebuild
and letH(0) = H . LetN (k)

h ⊆ E(H(k)) be the set of inserted edges inH that the al-
gorithmmaintains during the execution of thewhile loop in Step 2, after the (k−1)-
st and before the k-th partial rebuild. Define H̃(k) = (V (H),

∪
i≤(3/2)λ∗+1 F

(k)
i) ∪

N
(k)
h) to be the sparsified graph that the algorithm maintains, where F (k)

1 , . . . , F
(k)
m

is a DA-msfd for the graph H̃(k−1), and let H̃(0) = H be the multigraph right af-
ter the last full rebuild. We next show that H̃(k) preserves all cuts of size up to
(3/2)λ∗ + 1 of H(k).

Lemma 5.4.8. For k ≥ 0, let H(k) and H̃(k) be the multigraphs defined above. Then
for any nonempty and proper subset S ⊂ V (H),

λ(S, H̃(k))

{
≥ (3/2)λ∗ + 1, if λ(S,H(k)) ≥ (3/2)λ∗ + 1

= λ(S,H(k)) if λ(S,H(k)) ≤ (3/2)λ∗.

Proof. We proceed by induction on the number k of partial rebuilds. We give the
inductive step; the base case (k = 0) follows from the fact that H̃(0) = H = H(0).

Fix any cut (S, V (H) \ S) inH(k), and note thatH(k) = (V (H), E(H(k−1)) ∪
N

(k)
h). Define A := EH(k)(S, V (H) \ S) ∩N (k)

h and B := EH(k)(S, V (H) \ S) ∩
E(H(k−1)) such thatEH(k)(S, V (H)\S) = A⊎B. LettingF ′ =

∪
i≤(3/2)λ∗+1 F

(k)
i ,

we similarly define edge sets Ã and B̃ partitioning the edges EH̃(k)(S, V (H) \ S)
that cross the cut (S, V (H) \ S) in H̃(k). Note that A = Ã since edges of N (k)

h are
always included in H̃(k) and λ(S,H(k)) = |A|+ |B|, λ(S, H̃(k)) = |Ã|+ |B̃|. We
distinguish two cases.

5.4. INCREMENTAL EXACT MINIMUM CUT 155

First, assume λ(S,H(k)) ≤ (3/2)λ∗. Then, since H(k−1) ⊆ H(k) and by con-
struction of H(k), λ(S,H(k−1)) = |B|, we get that λ(S,H(k−1)) ≤ (3/2)λ∗. By
induction hypothesis, it follows that λ(S, H̃(k−1)) = λ(S,H(k−1)) ≤ (3/2)λ∗.
The latter along with Lemma 5.3.2 implies that |B̃| = λ(S, H̃(k−1)), and thus
λ(S, H̃(k)) = |Ã|+ |B̃| = |A|+ |B| = λ(S,H(k)).

Second, assumeλ(S,H(k)) ≥ (3/2)λ∗+1. Then eitherλ(S,H(k−1)) ≤ (3/2)λ∗

or λ(S,H(k−1)) ≥ (3/2)λ∗+1. In the first case, by induction hypothesis it follows
that λ(S, H̃(k−1)) = λ(S,H(k−1)) ≤ (3/2)λ∗. This along with Lemma 5.3.2 im-
plies that |B̃| = λ(S, H̃(k−1)), and thus λ(S, H̃(k)) = |Ã| + |B̃| = |A| + |B| =
λ(S,H(k)) ≥ (3/2)λ∗ + 1. In the second case, by induction hypothesis it follows
that λ(S, H̃(k−1)) ≥ (3/2)λ∗ + 1. The latter along with Lemma 5.3.2 imply that
|B̃| ≥ (3/2)λ∗ + 1, and thus λ(S, H̃(k)) = |Ã| + |B̃| ≥ (3/2)λ∗ + 1, which com-
pletes the proof.

We now show that the multigraphs H(k) and H̃(k) share the same set of mini-
mum cuts.

Lemma 5.4.9. Assume that λ(H(k)) ≤ (3/2)λ∗. Then a cut is a min-cut in H(k) iff
it is a min cut in H̃(k).

Proof. We first show that every non-min cut in H(k) is a non-min cut in H̃(k). By
contrapositive, we get that a min-cut in H̃(k) is a min-cut in H(k).

To this end, let (S, V (H) \ S) be a cut with λ(S,H(k)) ≥ λ(H(k)) + 1 inH(k).
Note that by assumption λ(H(k)) ≤ (3/2)λ∗. By Lemma 5.4.8 we distinguish two
cases. (1) If λ(S,H(k)) ≤ (3/2)λ∗, then λ(S, H̃(k)) = λ(S,H(k)) ≥ λ(H(k)) + 1.
(2) If λ(S,H(k−1)) ≥ (3/2)λ∗ + 1, then λ(S, H̃(k)) ≥ (3/2)λ∗ + 1 ≥ λ(H(k)) + 1.
The above cases along with λ(Hk) ≥ λ(H̃(k)) give that λ(S, H̃(k)) ≥ λ(H̃(k)) + 1,
which in turn implies that (S, V (H) \ S) cannot be a min-cut in H̃(k).

For the other direction, consider a min-cut (D,V (H) \ D) of size λ(D, H̃(k))
in H̃(k). Considering the cut in H(k) we know that λ(D,H(k)) ≥ λ(H(k)).
Then, similarly as above, Lemma 5.4.8 implies that λ(D, H̃(k)) ≥ λ(H(k)). Since
(D,V (H) \D) was chosen arbitrarily, we get that λ(H̃(k)) ≥ λ(H(k)) must hold.
The latter along with λ(H̃(k)) ≤ λ(H(k)) imply that λ(H̃(k)) = λ(H(k)).

Now, let (S, V (H) \ S) be a min-cut in H(k). Since H̃(k) is a subgraph of H(k)

we know that λ(S, H̃(k)) ≤ λ(S,H(k)). The latter along with λ(H̃(k)) = λ(H(k))
imply that

λ(S, H̃(k)) ≤ λ(S,H(k)) = λ(H(k)) = λ(H̃(k)),

or, λ(S, H̃(k)) ≤ λ(H̃(k)). It follows that the inequality must hold with equality
since λ(H̃(k)) is the value of min-cut in H̃(k). Thus, (S, V (H)\S) is also a min-cut
in H̃(k).

Lemma 5.4.10. For some current graph G, let H be the current multigraph main-
tained by the algorithm and assume that λH ≤ (3/2)λ∗, where λ∗ denotes the min-
cut of G at the last Full Rebuild Step. Then the value λH maintained by the algorithm
satisfies λH = λ(H).

156 CHAPTER 5. INCREMENTAL MIN-CUT IN POLY-LOGARITHMIC TIME

Proof. Let λ(H(k)) be the value of λH after the k-th execution of partial rebuild step,
for k ≥ 0. Since, λ(H(k)) = λ(H), it suffices to show that λ(H(k)) is correct. We
proceed by induction on the number k of partial rebuilds since the last full rebuild.

We first consider the base case k = 0, i.e., the time right after the last full
rebuild. At the beginning of a full rebuild, the algorithm computes a KT-sparsifier
H of G that preserves all non-trivial min-cuts of G. The value of λH is updated to
λ(H), a DA-msfd F1, . . . , Fm is computed for H , and a cactus tree is constructed
for F ′ =

∪
i≤λH+1 Fi. Lemma 5.3.2 shows that a cut is a min-cut in H iff it is a

min-cut in F ′. The latter implies that since the cactus tree preserves the min-cuts
of F ′, it also preserves those ofH . The fact that the cactus tree algorithm correctly
tells us when to increment λH in Step 2, we conclude that the value of λH after a
full rebuild is set correctly.

We next give the inductive step. By induction hypothesis assume thatλ(H(k−1))
is correct. By Lemma 5.4.9 we get that a cut is a min-cut inH(k−1) iff it is a min-cut
in H̃(k−1). Now, let F (k)

1 , . . . , F
(k)
m be the DA-msfd computed on H̃(k−1) during the

k-th partial rebuild, and define F̃ (k) =
∪

i≤λ(H(k−1))+1 F
(k)
i . Lemma 5.3.2 shows

that a cut is min-cut in H̃(k−1) iff it is a min-cut in F̃ (k). The two equivalences
above give that every min-cut inH(k−1) is a min-cut F̃ (k), and thus the graphH ′(k)

(as defined in Algorithm 18) correctly preserves all min-cuts of H(k−1). Given the
correctness of λ(H(k−1)), the properties of the cactus trees, and the fact that the
incremental cactus tree algorithm correctly tells us when to increment λ(H(k−1)) in
Step 2, we conclude that λ(H(k)) is the correct min-cut value for the graphH(k) =

(V (H), E(H(k−1)) ∪N (k)
h) after the k-th partial rebuild.

Note that when λH > (3/2)λ∗, the above lemma is not guaranteed to hold as
the algorithm does not execute a Partial Rebuild Step in this case. However, we will
show below that this is not necessary for the correctness of the algorithm. The fact
that we do not need to execute a Partial Rebuild Step in this setting is crucial for
achieving our time bound.

Lemma 5.4.11. Ifmin{Min(HG), λH} ≤ 3/2λ∗, then H is useful.

Proof. Let (S′, V \ S′) be any non-trivial cut in G that is not in H . Such a cut
must have cardinality strictly greater than (3/2)λ∗ since otherwise it would be
contained in H . We show that (S′, V \ S′) cannot be a minimum cut as long as
min{Min(HG), λH} ≤ (3/2)λ∗ holds. We distinguish two cases.

1. If λH ≤ (3/2)λ∗, then by Lemma 5.4.10 the algorithmmaintains λH correctly.
SinceH is obtained fromG by contracting vertex sets, there is a cut (S, VH , S)
in H , and thus in G, of value λH . It follows that (S′, V \ S′) cannot be a
minimum cut of G since |E(S′, V \ S′)| > (3/2)λ∗ ≥ λH = λ(H) ≥ λ(G),
where the last inequality follows from the fact that H is a contraction of G.

2. If Min(HG) ≤ (3/2)λ∗, then by Lemma 5.4.7 there is a cut of sizeMin(HG) =
δ inG. Similarly, (S′, V \S′) cannot be a minimum cut ofG since |E(S′, V \
S′)| > (3/2)λ∗ ≥ δ ≥ λ(G).

5.4. INCREMENTAL EXACT MINIMUM CUT 157

Appealing to the above cases, we concludeH is useful since a min-cut ofG is either
contained in H or it is a trivial cut of G.

Lemma 5.4.12. LetG be some current graph. Then the algorithm correctly maintains
λ(G).

Proof. Let G be some current graph and H be the current multigraph maintained
by the algorithm. We will argue that λ(G) = min{Min(HG), λH}.

Ifmin{Min(HG), λH} ≤ (3/2)λ∗, then by Lemma 5.4.11,H is useful i.e., there
exists aminimum cut ofG that is contained in the union of all trivial cuts ofG and all
cuts inH . Lemma 5.4.7 guarantees that the algorithm correctlymaintainsMin(HG),
i.e., the trivial minimum cut ofG. If λH ≤ (3/2)λ∗, then Lemma 5.4.10 ensures that
λH = λ(H), and thus min{Min(HG), λH} = λ(G). If, however, λH > (3/2)λ∗

but min{Min(HG), λH} ≤ (3/2)λ∗, then λH > min{Min(HG), λH} which im-
plies that min{Min(HG), λH} = Min(HG) = λ(G). As we argued above, the
algorithm correctly maintains Min(HG) at any time. Thus it follows that the algo-
rithm correctly maintains λ(G) in this case as well.

The only case that remains to consider is min{Min(HG), λH} > (3/2)λ∗. But
whenever this happens the algorithm performs a full rebuild step. After this full
rebuild λ(G) = min{Min(HG), λH} trivially holds.

Running Time Analysis.

Theorem 5.4.13. LetG be a simple graph with n nodes andm0 edges. Then the total
time for insertingm1 edges and maintaining a minimum edge cut of G is

O((m0 +m1) log
3 n log log2 n).

If we start with an empty graph, the amortized time per edge insertion is
O(log3 n log log2 n). The size of a minimum cut can be answered in constant time.

Proof. We first analyse Step 1. Note that building the heap HG and computing λ0
take O(n) and O(m0 log

2 n log log2 n) time, respectively. Recall that m0 ≥ λ0n.
The total running time for constructing H , I(H,λH) and the cactus tree is domi-
nated by O((m0 + λ20 · (n/λ0)) log2 n log log2 n) = O(m0 log

2 n log log2 n). Thus,
the total time for Step 1 is (m0 log

2 n log log2 n).
Let λ0H , . . . , λ

f
H be the values that λH assumes in Step 2 during the execution

of the algorithm in increasing order. We define Phase i to be all steps executed after
Step 1 while λH = λiH , excluding Full Rebuild Steps and Special Steps. Additionally,
let λ∗0, . . . , λ∗O(logn) be the values that λ∗ assumes during the algorithm. We define
Superphase j to consist of the j-th Full Rebuild Step along with all steps executed
until the next Full Rebuild Step, i.e., while min{Min(HG), λH} ≤ (3/2)λ∗j , where
λ∗j is the value of λ(G) at the j-th Full Rebuild Step. Note that a superphase consists
of a sequence of phases and potentially a final Special Step. Moreover, the algorithm
executes a phase if λH ≤ (3/2)λ∗.

158 CHAPTER 5. INCREMENTAL MIN-CUT IN POLY-LOGARITHMIC TIME

We say that λiH belongs to superphase j, if the i-th phase is executed during
superphase j and λiH ≤ (3/2)λ∗j . We remark that the number of vertices in H
changes only at the beginning of a superphase, and remains unchanged during its
lifespan.

Let nj denote the number of vertices in some superphase j. We bound this
quantity as follows:

Proposition 5.4.14. Let j be a superphase during the execution of the algorithm.
Then, we have

nj = O((n log n)/λiH), for all λiH belonging to superphase j.

Proof. From Step 3 and Theorem 5.4.3 we know that nj = O((n log n)/λ∗j). More-
over, observe that λ∗j ≤ λiH and a phase is executed whenever λiH ≤ (3/2)λ∗j . Thus,
for all λiH ’s belonging to superphase j, we get the following relation

λ∗j ≤ λiH ≤ (3/2)λ∗j , (5.1)

which in turn implies that nj = O((n log n)/λ∗j) = O((n log n)/λiH).

For the remaining steps, we divide the running time analysis into two parts, one
part corresponding to phases, and the other to superphases.

Part 1. For some superphase j, the i-th phase consists of the i-th execution of a
Partial Rebuild Step followed by the execution of Step 2. Let ui be the number of
edge insertions in Phase i. By Theorem 5.4.4 and the fact that heap-insertions are
performed in O(log n) time, it follows that the total time for Step 2 during the i-th
phase is O(nj + ui log n) = O((n + ui) log n). Since nj = O((n log n)/λ∗j), we
observe that

∪
i≤(3/2)λ∗

j+1 Fi ∪Nh has sizeO(ui−1+λ
∗
jnj) = O((ui−1+n) log n).

Thus, the total time for computing DA-msfd in a Partial Rebuild Step is O((ui−1 +
n) log n). Using Proposition 5.4.14 note that H ′ has O(λiHnj) = O(n log n) edges
and thus it takes O(n log2 n) time to compute I(H ′, λiH) and the new cactus tree.

The total time spent in Phase i isO((ui−1+ui+n) log
2 n). Let λ and λH denote

the size of the minimum cut in the final graph and its corresponding multigraph,
respectively. Note that

∑λ
i=1 ui ≤ m1, λn ≤ m0 +m1 and recall Eqn. (5.1). This

gives that the total work over all phases is

λH∑
i=1

O((ui−1 + ui + n) log2 n)

=
λ∑

i=1

O((ui−1 + ui + n) log2 n) = O((m0 +m1) log
2 n).

5.5. INCREMENTAL (1 + ϵ) MINIMUM CUT WITH Õ(n) SPACE 159

Part 2. The j-th superphase consists of the j-th execution of a Full Re-
build Step along with a possible execution of a Special Step, depending on
whether the condition is met. In a Full Rebuild Step, computing λ(G) takes
O((m0 + m1) log

2 n log log2 n) time. The total running time for construct-
ing H , I(H,λ∗j) and the cactus tree is dominated by O((m0 + m1 + (λ∗j)

2 ·
(n/λ∗j)) log

2 n log log2 n) = O((m0 +m1) log
2 n log log2 n). The running time of

a Special Step is O(m1 log n).
Throughout its execution, the algorithm begins a new superphase whenever

λ(G) = min {Min(HG), λH} > (3/2)λ∗. This implies that λ(G) must be at
least (3/2)λ∗, where λ∗ is the value of λ(G) at the last Full Rebuild Step. Thus,
a new superphase begins whenever λ(G) has increased by a factor of 3/2, i.e., only
O(log n) times over all insertions. This gives that the total time over all superphases
is O((m0 +m1) log

3 n log log2 n). �

5.5 Incremental (1 + ϵ) Minimum Cut with Õ(n) space

In this section we present two Õ(n) space incremental Monte-Carlo algorithms
that w.h.p. maintain the size of a min-cut up to a (1 + ϵ)-factor. Both algo-
rithms have Õ(1) update-time and Õ(1), resp.O(1) query-time. The first algorithm
uses O(n log2 n/ϵ2) space, while the second one improves the space complexity to
O(n log n/ϵ2).

5.5.1 An O(n log2 n/ϵ2) space algorithm

Our first algorithm follows an approach that was used in several previous work [127,
246, 248]. The basic idea is to maintain the min-cut up to some size k using small
space. We achieve this by maintaining a sparse (k+1)-certificate and incorporating
it into the incremental exact min-cut algorithm due to Henzinger [127], as described
in Section 5.4. Finally we apply the well-known randomized sparsification result
due to Karger [151] to obtain our result.

Maintainingmin-cut up to size k usingO(kn) space. We incrementally main-
tain an msfd for an unweighted graph G using k + 1 union-find data structures
F1, . . . ,Fk+1 (see [76]). Each Fi maintains a spanning forest Fi of G. Recall that
F1, . . . , Fk+1 are edge-disjoint. When a new edge e = (u, v) is inserted into G, we
define i to be the first index such that Fi.Find(u) ̸= Fi.Find(v). If we found such
an i, we append the edge e to the forest Fi by setting Fi.Union(u, v) and return i.
If such an i cannot be found after k + 1 steps, we simply discard edge e and return
NULL. We refer to such procedure as (k + 1)-Connectivity(e).

It is easy to see that the forests maintained by (k + 1)-Connectivity(e) for
every newly inserted edge e are indeed edge-disjoint. Combining this procedure
with techniques from Henzinger [127] leads to the following Algorithm 19.

160 CHAPTER 5. INCREMENTAL MIN-CUT IN POLY-LOGARITHMIC TIME

Algorithm 5.2: Incremental Exact Min-Cut up to size k
1 Set λ← 0, initialize k + 1 union-find data structures F1, . . . ,Fk+1,
k + 1 empty forests F1, . . . , Fk+1, I(G,λ), and an empty cactus tree
while there is at least one minimum cut of size λ do

Receive the next operation
if it is a query then

return λ
else if it is the insertion of an edge e then

Set i← (k + 1)-Connectivity(e)
if i ̸= NULL then

Set Fi ← Fi ∪ {e}
Update the cactus tree according to the insertion of the edge e

2 Set λ = λ+ 1
Let G′ = (V,E′) be a graph with E′ ← I(G,λ− 1) ∪

∪
i≤λ+1 Fi

Compute I(G′, λ) and a cactus tree of G′

Goto Step 2

The correctness of the above algorithm is immediate from Lemmas 5.4.8 and
5.4.10. The running time and query bounds follow from Theorem 8 of [127]. For the
sake of completeness, we provide here a full proof.

Corollary 5.5.1. For k > 0, there is anO(kn) space algorithm that processes a stream
of edge insertions starting from any empty graph G and maintains an exact value of
min{λ(G), k}. Starting from an empty graph, the total time for insertingm edges is
O(kmα(n) log n) and queries can be answered in constant time, where α(n) stands
for the inverse of Ackermann function.

Proof. We first analyse Step 1. Initializing k + 1 union-find data structures takes
O(kn) time. The running time for constructing I(G,λ) and building an empty
cactus tree is also dominated by O(kn). Thus, the total time for Step 1 is O(kn).

Let λ0, . . . , λf , where λf ≤ k, be the values that λ assumes in Step 2 during
the execution of the algorithm in increasing order. We define Phase i to be all steps
executed while λ = λi. For i ≥ 1, we can view Phase i as the i-th execution of Step
3 followed by the execution of Step 2. Let ui denote the number of edge insertion in
Phase i. The total time for testing the (k + 1)-connectivity of the endpoints of the
newly inserted edges, and updating the cactus tree in Step 2 is dominated byO(n+
kα(n)ui). Since the graphG′ in Step 3 has always at mostO(kn) edges, the running
time to compute I(G′, λ) and the cactus tree of G′ is O(kn log n). Combining the
above bounds, the total time spent in Phase i is O(k(α(n)ui + n log n)). Thus, the
total work over all phases is O(kmα(n) log n).

The space complexity of the algorithm is onlyO(kn), since we always maintain
at most k + 1 spanning forests during its execution.

5.5. INCREMENTAL (1 + ϵ) MINIMUM CUT WITH Õ(n) SPACE 161

Dealing with min-cuts of arbitrary size. We observe that Corollary 5.5.1 gives
polylogarithmic amortized update time only for min-cuts up to some polylogarith-
mic size. For dealing with min-cuts of arbitrary size, we use the well-known sam-
pling technique due to Karger [151]. This allows us to get an (1+ ϵ)-approximation
to the value of a min-cut with high probability.

Lemma 5.5.2 ([151]). Let G be any graph with minimum cut λ and let p ≥
12(log n)/(ϵ2λ). Let G(p) be a subgraph of G obtained by including each of edge
of G to G(p) with probability p independently. Then the probability that the value of
any cut of G(p) has value more than (1 + ϵ) or less than (1 − ϵ) times its expected
value is O(1/n4).

For some integer i ≥ 1, let Gi denote a subgraph of G obtained by including
each edge of G to Gi with probability 1/2i independently. We now have all neces-
sary tools to present our incremental algorithm.

Algorithm 5.3: (1 + ϵ)-Min-Cut with O(n log2 n/ϵ2) space
1 for i = 0, . . . , ⌊log n⌋ do

let Gi be an initially empty sampled subgraph
2 Receive the next operation
if it is a query then

Find the minimum j such that λ(Gj) ≤ k and return 2jλ(Gj)/(1− ϵ)
else if it is the insertion of an edge e then

Include edge e to each Gi with probability 1/2i

Maintain the exact min cut of each Gi up to size k ← 48 log n/ϵ2

using Algorithm 19
3 Goto Step 2.

Theorem 5.5.3. There is an O(n log2 n/ϵ2) space randomized algorithm that
processes a stream of edge insertions starting from an empty graph G and maintains
a (1 + ϵ)-approximation to a min-cut of G with high probability. The amortized up-
date time per operation isO(α(n) log3 n/ϵ2) and queries can be answered inO(log n)
time.

Proof. We first prove the correctness of the algorithm. For an integer t ≥ 0, let
G(t) = (V,E(t)) be the graph after the first t edge insertions. Further, let λ(G(t))
denote the min-cut ofG(t), p(t) = 12(log n)/(ϵ2λ(t)) and λ(S,G) = |EG(S, V \S)|,
for some cut (S, V \ S). For any integer i ≤ ⌊log2 1/p(t)⌋, Lemma 5.5.2 im-
plies that for any cut (S, V \ S), ((1 − ϵ)/2i)λ(S,G(t)) ≤ λ(S,G

(t)
i) ≤ ((1 +

ϵ)/2i)λ(S,G(t)), with probability 1 − O(1/n4). Let (S∗, V \ S∗) be a min-cut of
G

(t)
i , i.e., λ(S∗, G

(t)
i) = λ(G

(t)
i). Setting i = ⌊log2 1/p(t)⌋, we get that:

E[λ(G(t)
i)] ≤ λ(G(t))/2i ≤ 2p(t)λ(G(t)) ≤ 24 log n/ϵ2.

162 CHAPTER 5. INCREMENTAL MIN-CUT IN POLY-LOGARITHMIC TIME

The latter along with the implication of Lemma 5.5.2 give that for any ϵ ∈ (0, 1), the
size of the minimum cut in G(t)

i is at most (1 + ϵ)24 log n/ϵ2 ≤ 48 log n/ϵ2 with
probability 1 − O(1/n4). Thus, j ≤ ⌊log2 1/p(t)⌋ with probability 1 − O(1/n4).
Additionally, we observe that the algorithm returns a (1 +O(ϵ))-approximation to
a min-cut of G(t) w.h.p. since by Lemma 5.5.2, 2iλ(G(t)

i)/(1 − ϵ) ≤ (1 + ϵ)/(1 −
ϵ)λ(G(t)) = (1 + O(ϵ))λ(G(t)) w.h.p. Note that for any t, ⌊log2 1/p(t)⌋ ≤ ⌊log n⌋,
and thus it is sufficient to maintain only O(log n) sampled subgraphs.

Since our algorithm applies to unweighted simple graphs, we know that t ≤
O(n2). Now applying union bound over all t ∈ {1, . . . O(n2)} gives that the prob-
ability that the algorithm does not maintain a 1 + O(ϵ)-approximation is at most
O(1/n2).

The total expected time for maintaining a sampled subgraph is
O(mα(n) log2 n/ϵ2) and the required space is O(n log n/ϵ2) (Corollary 5.5.1).
Maintaining O(log n) such subgraphs gives an O(α(n) log3 n/ϵ2) amortized time
per edge insertion and an O(n log2 n/ϵ2) space requirement. The O(log n) query
time follows as in the worst case we scan at most O(log n) subgraphs, each
answering a min-cut query in constant time.

5.5.2 Improving the space to O(n log n/ϵ2)

We next show how to bring down the space requirement of the previous algorithm
to O(n log n/ϵ2) without degrading its running time. The main idea is to keep a
single sampled subgraph instead of O(log n) of them.

Let G = (V,E) be an unweighted undirected graph and assume each edge is
given some randomweight pe chosen uniformly from [0, 1]. LetGw be the resulting
weighted graph. For any p > 0, we denote by G(p) the unweighted subgraph of G
that consists of all edges that have weight at most p. We state the following lemma
due to Karger [149]:

Lemma 5.5.4. Let k = 48 log n/ϵ2. Given a connected graphG, let p be a value such
that p ≥ k/(4λ(G)). Then with high probability, λ(G(p)) ≤ k and λ(G(p))/p is an
(1 + ϵ)-approximation to a min-cut of G.

Proof. Since the weight of every edge is uniformly distributed, the probability that
an edge has weight at most p is exactly p. Thus,G(p) is a graph that contains every
edge of G with probability p. The claim follows from Lemma 5.5.2.

For any graphG and some appropriate weight p ≥ k/(4λ(G)), the above lemma
tells us that themin-cut ofG(p) is bounded by kwith high probability. Thus, instead
of considering the graph G along with its random edge weights, we build a collec-
tion of k + 1 minimum edge-disjoint spanning forests (using those edge weights).
We note that such a collection is an msfd of order k + 1 for G with O(kn) edges
and by Lemma 5.4.8, it preserves all minimum cuts of G up to size k.

Our algorithm uses the following two data structures:

5.5. INCREMENTAL (1 + ϵ) MINIMUM CUT WITH Õ(n) SPACE 163

(1) NI-Sparsifier(k) data-structure: Given a graph G, where each edge e is as-
signed some weight pe and some parameter k, we devise an insertion-only data-
structure that maintains a collection of k + 1 minimum edge-disjoint spanning
forests F1, . . . , Fk+1 with respect to the edge weights. Let F =

∪
i≤k+1 Fi. Since

we are in the incremental setting, it is known that the problem of maintaining a
single minimum spanning forest can be solved in time O(log n) per insertion us-
ing the dynamic tree structure of Sleator and Tarjan [232]. Specifically, we use this
data-structure to determine for each pair of nodes (u, v) the maximumweight of an
edge in the cycle that the edge (u, v) induces in the minimum spanning forest Fi.
Let max-weight(Fi(u, v)) denote such a maximum weight. The update operation
works as follows: when a new edge e = (u, v) is inserted into G, we first use the
dynamic tree data structure to test whether u and v belong to the same tree. If no,
we link their two trees with the edge (u, v) and return the pair (TRUE, NULL) to
indicate that e was added to Fi and no edge was evicted from Fi. Otherwise, we
check whether pe > max-weight(Fi(e)). If the latter holds, we make no changes in
the forest and return (FALSE, e). Otherwise, we replace one of the maximum edges,
say e′, on the path between u and v in the tree by e and return (TRUE, e′). The
boolean value that is returned indicates whether e belongs to Fi or not, the second
value that is returned gives an edge that does not (or no longer) belong to Fi. Note
that each edge insertion requiresO(log n) time. We refer to this insert operation as
Insert-MSF(Fi, e, pe).

Now, the algorithm that maintains the weighted minimum spanning forests im-
plements the following operations:

• Initialize-NI(k): Initializes the data structure for k + 1 empty minimum
spanning forests.

• Insert-NI(e, pe): Set i← 1, e′ ← e, taken← FALSE.
while ((i ≤ k + 1) and e′ ̸= NULL) do

Set (t′, e′′)← Insert-MSF(Fi, e
′, pe′).

if (e′ = e) then set taken← t′ endif
Set e′ ← e′′ and i← i+ 1.

endwhile
if (e′ ̸= e) then return (taken, e′)
else return (taken, NULL).

The boolean value that is returned indicates whether e belongs to F or not, the
second value returns an edge that is removed from F , if any.

Recall that F =
∪

i≤k+1 Fi. We use the abbreviation NI-Sparsifier(k) to refer
to this data-structure. Throughout the algorithm we will associate a weight with
each edge in F and use Fw to refer to this weighted version of F .

Lemma 5.5.5. For k > 0 and any graph G, NI-Sparsifier(k) maintains a weighted
mfsd of order k + 1 of G under edge insertions. The algorithm uses O(kn) space and
the total time for insertingm edges is O(km log n).

164 CHAPTER 5. INCREMENTAL MIN-CUT IN POLY-LOGARITHMIC TIME

Proof. We first show that NI-Sparsifier(k) maintains a forest decomposition such
that (1) the forests are edge-disjoint and (2) each forest is maximal. We proceed by
induction on the numberm of edge insertions.

For m = 0, the forest decomposition is empty. Thus the edge-disjointness and
maximality of forests trivially hold. For m > 0, consider the m-th edge insertion,
which inserts an edge e. Let F ′, resp. F , denote the union of forests before, resp.
after, the insertion of edge e. By the inductive assumption, F ′ satisfies (1) and (2). If
F = F ′, i.e., the edge e was not added to any of the forests when Insert-NI(e, pe)
was called, then F also satisfies (1) and (2). Otherwise F ̸= F ′ and note that by
construction, e is appended to exactly one forest. Let F ′

j , resp. Fj , denote such
maximal forest before, resp. after, the insertion of e. We distinguish two cases. If
e links two trees of F ′

j , then Fj is also a maximal forest and forests of F are edge-
disjoint. Thus F satisfies (1) and (2). Otherwise, the addition of e results in the
deletion of another edge e′ ∈ F ′

j . It follows that Fj is maximal and the current
forests are edge-disjoint. Applying a similar argument to the addition of edge e′ in
the remaining forests, we conclude that F satisfies (1) and (2).

We next argue about time and space complexity. The dynamic tree data
structure can be implemented in O(n) space, where each query regarding
max-weight(Fi(u, v)) can be answered inO(log n) time. Since the algorithm main-
tains k + 1 such forests, the space requirement is O(kn). The total running time
follows since insertion of an edge can result in at most k + 1 executions of the
Insert-MSF(Fi, e, pe) procedures, each running in O(log n) time.

(2) Limited Exact Min-Cut(k) data-structure: We use Algorithm 19 to imple-
ment the following operations for any unweighted graph G and parameter k,

• Insert-Limited(e): Executes the insertion of edge e using Algorithm 19.
• Query-Limited(): Returns λ.
• Initialize-Limited(G, k): Builds a data structure forG with parameter k by
executing Step 1 of Algorithm 19 and then Insert-Limited(e) for each edge
e in G.

We use the abbreviation Lim(k) to refer to such data-structure. Combining the
above data-structures leads to Algorithm 21.

Correctness and Running Time Analysis. Throughout the execution of Algo-
rithm 21, F corresponds exactly to the msfd of order k + 1 of G maintained by
NI-Sparsifier(k). In the following, let H be the graph that is given as input to
Lim(k). Thus, by Corollary 5.5.1, Query-Limited() returns min{k, λ(H)}, i.e., it
returns λ(H) as long as λ(H) ≤ k. We now formally prove the correctness.

Lemma 5.5.6. Let ϵ ≤ 1, k = 48 log n/ϵ2 and assume that the algorithm is started
on an empty graph. As long as λ(G) < k, we have H = G, p = k/4, and Query-
Limited() returns λ(G). The first rebuild step is triggered after the first insertion that
increases λ(G) to k and at that time, it holds that λ(G) = λ(H) = k.

5.5. INCREMENTAL (1 + ϵ) MINIMUM CUT WITH Õ(n) SPACE 165

Algorithm 5.4: (1 + ϵ)-Min-Cut with O(n log n/ϵ2) space
1 Set k ← 48 log n/ϵ2

Set p← 12 log n/ϵ2

Let H and Fw be empty graphs
2 Initialize-Limited(H, k)
while Query-Limited() < k do

Receive the next operation
if it is a query then

return Query-Limited()/min{1, p}
else if it is the insertion of an edge e then

Sample a random weight from [0, 1] for the edge e and denote it by pe
if pe ≤ p then

Insert-Limited(e)
Set (taken, e′)← Insert-NI(e, pe)
if taken then

Insert e into Fw with weight pe
if e′ ̸= NULL then

Remove e′ from Fw

3 Set p← p/2 // Rebuild Step
LetH be the unweighted subgraph of Fw consisting of all edges of weight at most p
Goto Step 2

Proof. The algorithm starts with an empty graph G, i.e., initially λ(G) = 0.
Throughout the sequence of edge insertions λ(G) never decreases. We show by
induction on the numberm of edge insertions that H = G and p = k/4 as long as
λ(G) < k.

Note that k/4 ≥ 1 by our choice of ϵ. Form = 0, the graphs G andH are both
empty graphs and p is set to k/4. For m > 0, consider the m-th edge insertion,
which inserts an edge e. Let G and H denote the corresponding graphs after the
insertion of e. By the inductive assumption, p = k/4 and G \ {e} = H \ {e}. As
p ≥ 1, e is added to H and, thus, it follows that G = H . Hence, λ(H) = λ(G). If
λ(G) < k but λ(G \ {e}) < k, no rebuild is performed and p is not changed. If
λ(G) = k, then the last insertionwas exactly the insertion that increased λ(G) from
k − 1 to k. As H = G before the rebuild, Query-Limited() returns k, triggering
the first execution of the rebuild step.

We next analyze the case that λ(G) ≥ k. In this case, bothH and p are random
variables, as they depend on the randomly chosen weights for the edges. Let F (p)
be the unweighted subgraph of Fw that contains all edges of weight at most p.

Lemma 5.5.7. LetNh(p) be the graph consisting of all edges that were inserted after
the last rebuild and have weight at most p and let F old(p) be F (p) right after the last
rebuild. Then it holds that H = F old(p) ∪Nh(p).

166 CHAPTER 5. INCREMENTAL MIN-CUT IN POLY-LOGARITHMIC TIME

Proof. Up to the first rebuild, Nh = G and p ≥ 1. Thus Nh(p) = Nh = G. Lemma
5.5.6 shows that until the first rebuild H = G. As F old(p) = ∅, it follows that
H = G = Nh(p) ∪ F old(p) up to the first rebuild.

Immediately after each rebuild step, Nh = ∅ and H is set to be F (p), thus the
claim holds. After each subsequent edge insertion that does not trigger a rebuild, the
newly inserted edge is added toNh(p) and toH iff its weight is at most p. Thus, both
Nh(p) andH change in the sameway, which implies thatH = F old(p)∪Nh(p).

Lemma 5.5.8. At the time of a rebuild F (p) is an msfd of order k + 1 of G(p).

Proof. NI-sparsifier maintains a maximal spanning forest decomposition based on
minimum-weight spanning forestsF1, . . . Fk+1 ofG using theweights pe. Now con-
sider the hierarchical decomposition F1(p), . . . , Fk+1(p) ofG(p) induced by taking
only the edges of weight at most p of each forest Fi. Note that NI-sparsifier would
return exactly the same hierarchyF1(p), . . . , Fk+1(p) if only the edges ofG(p)were
inserted into NI-sparsifier. Thus F1(p), . . . , Fk+1(p) is an msfd of order k + 1 of
G(p).

In order to show that λ(H)/min{1, p} is an (1+ϵ)-approximation of λ(G)with
high probability, we need to show that if λ(G) ≥ k then (a) the random variable p
is at least k/(4λ(G)) w.h.p., which implies that λ(G(p)) is a (1+ ϵ)-approximation
of λ(G) w.h.p. and (b) that λ(H) = λ(G(p)) (by Lemma 5.5.4).

Lemma 5.5.9. Let ϵ ≤ 1. If λ(G) ≥ k, then (1) p ≥ k/(4λ(G)) with probability
1−O(log n/n4) and (2) λ(H) = λ(G(p)).

Proof. For any i ≥ 0, after the i-th rebuild we have p = p(i) := 12 log n/(2iϵ2). Let
ℓ = ⌊log(12 log n/ϵ2)⌋ denote the index of the last rebuild at which p(i) ≥ 1. For
any i ≥ ℓ + 1, we will show by induction on i that (1) p(i) = 12 log n/(2iϵ2) ≥
12 log n/(ϵ2λ(G)) with probability 1 − O((i − 1 − ℓ)/n4), which is equivalent to
showing that λ(G) ≥ 2i and that (2) at any point between the (i − 1)-st and the
i-th rebuild, λ(H) = λ(G(p(i−1))).

Once we have shown this, we can argue that the number of rebuild steps is
small, thus giving the claimed probability in the lemma. Indeed, note that λ(G) ≤ n
since G is unweighted. Additionally, from above we get that after the i-th rebuild,
λ(G) ≥ 2i with high probability. Combining these two bounds yields i ≤ O(log n)
w.h.p., i.e., the number of rebuild steps is at most O(log n).

We first analyse i = ℓ + 1. Note that ℓ + 1 is the index of the first rebuild at
which p(i) < 1. Assume that the insertion of some edge e caused the first rebuild.
Lemma 5.5.6 showed that (1) at the first rebuild λ(G) = k and (2) that up to the first
rebuildG(p) = G = H . We observe that (1) and (2) remain true up to the (ℓ+1)-st
rebuild. In addition, λ(G) = k ≥ 24 log n/ϵ2 ≥ 2i, which implies that p(i) ≥ 1/2.
This shows the base case.

For the induction step (i > ℓ+1), we inductively assume that (1) at the (i− 1)-
st rebuild, p(i−1) ≥ 12 log n/(ϵ2λ(Gold)) with probability 1 − O((i − 2 − ℓ)/n4),

5.5. INCREMENTAL (1 + ϵ) MINIMUM CUT WITH Õ(n) SPACE 167

where Gold is the graph G right before the insertion that triggered the i-th rebuild
(i.e., at the last point in time when Query-Limited() returned a value less than
k), and (2) that λ(H) = λ(G(p(i−2))) at any time between the (i − 2)-nd and the
(i− 1)-st rebuild. Let e be the edge whose insertion caused the i-th rebuild. Define
Gnew = Gold∪{e}. By induction hypothesis, with probability 1−O((i−2−ℓ)/n4),
p(i−1) ≥ 12 log n/(ϵ2λ(Gold)) ≥ 12 log n/(ϵ2λ(Gnew)) as λ(Gold) ≤ λ(Gnew).
Thus, by Lemma 5.5.4, we get that λ(Gnew(p(i−1)))/p(i−1) ≤ (1 + ϵ)λ(Gnew) with
probability 1 − O(1/n4). Applying an union bound, we get that the two previous
statements hold simultaneously with probability 1−O((i− 1− ℓ)/n4).

We show below that λ(Gnew(p(i−1))) = λ(Hnew), where Hnew is the graph
stored in Lim(k) right before the i-th rebuild. Thus, λ(Hnew) = k, which implies
that

λ(Gnew(p(i−1))) = k = 48 log n/ϵ2 ≤ (1 + ϵ)λ(Gnew) · p(i−1)

= (1 + ϵ)λ(Gnew) · 12 log n/(2i−1ϵ2),

with probability 1 − O((i − 1 − ℓ)/n4). This in turn implies that with probability
1−O((i− 1− ℓ)/n4), λ(Gnew) ≥ 2i+1/(1 + ϵ) ≥ 2i by our choice of ϵ.

It remains to show that λ(Gnew(p(i−1))) = λ(Hnew). Note that this is a special
case of (2), which claims that at any point between that (i−1)-st and the i-th rebuild
λ(H) = λ(G(p(i−1))), where H and G are the current graphs. Thus, to complete
the proof of the lemma it suffices to show (2).

As H is a subgraph of G(p(i−1)), we know that λ(G(p(i−1))) ≥ λ(H). Thus,
we only need to show that λ(G(p(i−1))) ≤ λ(H). LetGi−1, resp. F i−1, resp.H i−1,
be the graph G, resp. F , resp. H , right after rebuild i − 1 and let Nh be the set
of edges inserted since, i.e., G = G(i−1) ∪ Nh. As we showed in Lemma 5.5.7,
H = F i−1(p(i−1)) ∪ Nh(p

(i−1)). Thus, H i−1 = F i−1(p(i−1)). Additionally, by
Lemma 5.5.8, F i−1(p(i−1)) is an msfd of order k + 1 of Gi−1(p(i−1)). Thus by
Lemma 5.3.2, for every cut (A, V \ A) of value at most k in H i−1, λ(A,H i−1) =
λ(F i−1(p(i−1)), A) = λ(A,Gi−1(p(i−1))), where λ(A,G) = |EG(A, V \A)|. Now
assume towards contradiction that λ(G(p(i−1))) > λ(H) and consider a minimum
cut (A, V \ A) in H , i.e., λ(H) = λ(A,H). We know that at any time k ≥ λ(H).
Thus k ≥ λ(H) = λ(A,H), which implies k ≥ λ(A,H i−1). By Lemma 5.3.2 it fol-
lows that λ(A,H i−1) = λ(A,Gi−1(p(i−1))). Note thatH = H i−1∪Nh(p

(i−1)) and
G(p(i−1)) = Gi−1(p(i−1))∪Nh(p

(i−1)). Let x be the number of edges ofNh(p
(i−1))

that cross the cut (A, V \ A). Then λ(H) = λ(H,A) = λ(A,H i−1) + x =
λ(A,Gi−1(p(i−1))) + x = λ(A,G(p(i−1))), which contradicts the assumption that
λ(G(p(i−1))) > λ(H).

Since our algorithm is incremental and applies only to unweighted graphs, we
know that there can be at most O(n2) edge insertions. The above lemma implies
that for any current graph G, Algorithm 21 returns a (1 + ϵ)-approximation to a
min-cut of G with probability 1 − O(log n/n4). Applying an union bound over
O(n2) possible different graphs, gives that the probability that the algorithm does

168 CHAPTER 5. INCREMENTAL MIN-CUT IN POLY-LOGARITHMIC TIME

not maintain a (1 + ϵ)-approximation is at most O(log n/n2) = O(1/n). Thus, at
any time we return a (1 + ϵ)-approximation with probability 1−O(1/n).

Theorem 5.5.10. There is an O(n log n/ϵ2) space randomized algorithm that
processes a stream of edge insertions starting from an empty graph G and maintains
a (1 + ϵ)-approximation to a min-cut of G with high probability. The total time for
insertiong m edges is O(mα(n) log3 n/ϵ2) and queries can be answered in constant
time.

Proof. The space requirement is O(n log n/ϵ2) since at any point of time, the
algorithm keeps H , Fw, Lim(k), and NI-Sparsifier (k), each of size at most
O(n log n/ϵ2) (Corollary 5.5.1 and Lemma 5.5.5).

When Algorithm 21 executes a Rebuild Step, only the Lim(k) data-structure is
rebuilt, but not NI-Sparsifier(k). During the whole algorithmm Insert-NI opera-
tions are performed. Thus, by Lemma 5.5.5, the total time for all operations involv-
ing NI-Sparsifier(k) is O(m log2 n/ϵ2).

It remains to analyze Steps 2 and 3. By Corollary 5.5.1, Initialize-
Limited(H, k) takes at most O(mα(n) log2 n/ϵ2) total time (Step 2). The running
time of Step 3 is O(m) as well. Since the number of Rebuild Steps is at most
O(log n), it follows that the total time for all Initialize-Limited(H, k) calls in
Steps 2 and the total time of Step 3 throughout the execution of the algorithm is
O(mα(n) log3 n/ϵ2).

We are left with analyzing the remaining part of Step 2. Each query operation
executes oneQuery-Limited() operation, which takes constant time. Each insertion
executes one Insert-NI(e, pe) operation, which takes amortized time O(log2 n/ϵ).
We maintain the edges of Fw in a balanced binary tree so that each insertion and
deletion takes O(log n) time. As there are m edge insertions the remaining part
of Step 2 takes total time O(m log2 n/ϵ2). Combining the above bounds gives the
theorem.

5.6 Conclusion

We obtained two new algorithms for the incremental (global) minimum cut problem
in undirected, unweighted graphs. Our first algorithm maintains exactly the value
of a minimum cut and has anO(log3 n log log2 n) amortized time per edge insertion
and O(1) query time. The main techniques behind this algorithm are (1) construct-
ing a small sparsifier that preserves the non-trivial minimum cuts (2) incrementally
maintaining the value of the minimum cut on the sparsifier and (3) employing peri-
odical rebuilds whenever the maintained sparsifier is not valid for the current graph.
While we believe the maintained sparsifier might prove useful to extend our algo-
rithm to less restrictive settings, techniques in (2) and (3) crucially exploit the fact
that the underlying data-structure supports edge insertions. An important problem
is whether there is a fully-dynamic algorithm for exactly maintaining the value of

5.6. CONCLUSION 169

the minimum cut in sub-linear query and update time. Perhaps a good starting
point is trying to come up with a deletions-only algorithm.

Our second result maintains a (1+ϵ)-approximation to the value of a minimum
cut in poly-logarithmic update timewhile using onlyO(n log n/ϵ2) space. Themain
idea behind our construction is to first maintain all minimum cuts up to a given
threshold using small space and then apply the randomized sparsification result due
to Karger [151]. It is an interesting direction to explore whether similar guarantees
can be achieved in the fully-dynamic or decremental setting. In fact, even in the
less general setting, that ignores the space requirement, it is not known whether
there are decremental algorithms that maintain the value of the minimum cut up to
a (1 + ϵ) multiplicative factor in poly-logarithmic update and query time.

CHAPTER 6
Fast Incremental Algorithms via

Local Sparsifiers

We show no(1)-approximation incremental algorithms with no(1) worst-case update
and query time on an undirected weighted n-node graph for many problems in-
cluding all-pairs shortest paths, all-pairs max flow and min cut, multi-commodity
concurrent flow, and uniform sparsest cut. By increasing the time to nϵ for any
fixed ϵ > 0 the approximation factors can be improved to polylog(n), and for all-
pairs shortest paths to O(1). For the all-pairs shortest paths problem, no previous
algorithm with both o(n) worst-case update and query time was known. For the
other problems, even algorithms with both o(n) amortized update and query time
were not known.

As key to our result, we introduce a new notion of a sparsifier, called local spar-
sifier, for any graph property P and present a new general technique that converts
any efficient construction algorithm for a local sparsifiers for P into an incremental
algorithm for approximately maintaining P . This technique connects several open
problems between the fields of graph sparsifiers and dynamic graph algorithms, and
leads to challenging new research questions for graph sparsifiers.

6.1 Introduction

In a recent study of the usage of graphs in practice [222] it was shown that real-
world graphs are usually very large and more than half of the graphs in the survey
change frequently, i.e., are dynamic. Due to the large size of these graphs, a dy-
namic algorithm needs to have sublinear time per operation to be useful for these
applications. Another interesting finding of the study is that more than 2/3 of the
graph computations are for “non-basic” graph problems, i.e., for problems for which
no linear-time static algorithm is known such as all-pairs shortest paths and vari-

171

172 CHAPTER 6. FAST INCREMENTAL ALGORITHMS VIA LOCAL SPARSIFIERS

ous forms of graph partitioning. However, the current state-of-the art in dynamic
graph algorithms is far from solving these “non-basic” graph problems in sublinear
time, for many of them not even a dynamic algorithm better than recomputation
from scratch is known. The reason for this “lack” of efficient dynamic algorithms
became clear only recently: it has been shown that under certain, widely accepted
assumptions maintaining the exact answer of many “non-basic” graph problems is
not possible in sublinear time [4, 6, 78, 135]. Thus, to design dynamic algorithms
for these problems, it is necessary to study approximation algorithms for them.

In this chapter, we study several “non-basic” graph problems including all-pairs
shortest paths, all-pairs max flow (and min cuts), multi-commodity concurrent flow,
and uniform sparsest cut (defined in Section 6.1). Despite an extensive research on
dynamic all-pairs shortest paths [10, 11, 39, 40, 61, 220, 224, 250], no previous algo-
rithms were known with o(n)worst-case update and query time on a general graph
with n nodes. For other problems where near-optimal time algorithms in the static
setting are well-studied (for example, max flow and multi-commodity concurrent
flow [158, 188, 210, 229, 231], uniform sparsest cut [22, 163, 188, 230, 236]) even
algorithms with both o(n) amortized update and query time were not known.

Our results. We show incremental approximation algorithms for the above prob-
lems. Incremental algorithms are data structures that maintain information about
a graph property while the graph is modified by a sequence of edge insertions. Our
algorithms significantly break the o(n) bound by showing no(1)-approximation al-
gorithms with no(1) worst-case update time for all above problems. By increasing
the time to nϵ for any constant ϵ > 0, the approximation factors can be improved
topolylog(n) and O(1) for all-pairs shortest paths. The precise statement is as fol-
lows:

Theorem 6.1.1. For any two parameters r, ℓ ≥ 1, there are incremental approxima-
tion algorithms on weighted (capacitated) undirected n-node graphs for the following
problems (as defined in Table 6.1) with their corresponding guarantees:

1. All-pairs max flow and min cuts: O(log n)4ℓ-approximation, Õ(n2/(ℓ+1))
worst-case update and query time.

2. All-pairs shortest paths: (2r− 1)ℓ-approximation, Õ(n2/(ℓ+1)n2/r) worst-case
update and query time.

3. Multi-commodity concurrent flow: O(log n)8ℓ-approximation, Õ(n2/(ℓ+1))
worst-case update time, and Õ(k2) query time when there are k commodity
pairs in the query.

4. Uniform Sparsest Cut: O(log n)8ℓ-approximation, Õ(n2/(ℓ+1)) worst-case up-
date time O(1) query time.

All the above algorithms are randomized, except the all-pairs shortest paths algorithm,
which is deterministic.

6.1. INTRODUCTION 173

Dynamic problems Query

All-pairs max flow Given (s, t), return the value of max flow from s to t.
All-pairs shortest paths Given (s, t), return the distance from s to t.

Multi-commodity
concurrent flow

Given {(si, ti,d(i))}ki=1, return the value α where,
concurrently for all i, si can send αd(i) unit of flow
to ti.

Uniform Sparsest Cut Return ΦG = minS⊂V
capG(S,V \S)

|S|·|V \S| .

Table 6.1: List of dynamic problems and their corresponding query operation.
For a weighted graph G = (V,E,w), we have that capG(S, V \ S) =∑

(u,v)∈E,u∈S,v/∈S w(u, v).

Previous cut/flow algorithms. Despite the fact that all-pairs max flow and min
cuts, multi-commodity concurrent flow, and uniform sparsest cut, are central prob-
lems in combinatorial optimization and have been extensively studied in the static
setting, there are essentially no fast algorithms in the dynamic setting. Using pre-
vious techniques, it is possible to get dynamic algorithms with Õ(1) worst-case
update time and Õ(n) query time under the assumption that the adversary is obliv-
ious.1 To the best of our knowledge, there is no previous algorithm with both o(n)
update and query time, even when we are content with only amortized guarantees.

Most closely related work to our work is the dynamic algorithm due to [67]
for explicitly maintaining all the values of all-pairs min-cuts in Õ(m2) update time.
For s-t max flow where s and t are fixed, there is an incremental algorithm with
O(n) amortized update time [122]. If we restrict to bipartite graphs with a certain
specific structure, there is a (1 + ϵ)-approximation fully dynamic algorithm [12]
with polylogarithmic worst-case update time. From the lower bound perspective,
Dahlgaard [78] shows a conditional lower bound of Ω(n1−o(1)) amortized update
time for exact incremental s-tmax flow in capacitated undirected graphs. This shows
that approximation is necessary to achieve sublinear running times.

Previous distance algorithms. Thedynamic all pairs shortest paths problem has
been extensively studied. Most previous work requires amortized update time. In
particular, they either have Ω(n) update time or need to assume an oblivious adver-
sary [11, 32, 39, 40, 61, 79, 134, 220]. An exception here is the work due to Alstrup et
al. [18] that shows a very fast amortized deterministic algorithm for approximating
the distance between two nodes, but this works only if the queried distance are short.

1Wemaintain a dynamic cut-sparsifier (against oblivious adversary) of size Õ(n) due to [12] with
Õ(1) update time, and when given a query, we execute the fastest static approximation algorithms
on the sparsifier in Õ(n) time (using, for example, [210] for (1 + ϵ)-approximate max flow, [229]
for (1 + ϵ)-approximate multi-commodity concurrent flow, and [230] for O(

√
logn)-approximate

uniform sparsest cuts).

174 CHAPTER 6. FAST INCREMENTAL ALGORITHMS VIA LOCAL SPARSIFIERS

For worst-case update time, all previous algorithms [10, 224, 250] give exact
answers but require Ω(n1.8) update time. If we allow a large approximation factor,
then the best algorithm to our knowledge is anO(

√
log n)-approximation algorithm

withO(n1+o(1))worst-case update time. This also assumes an oblivious adversary2.
To summarize, our all-pairs shortest paths algorithm is the first algorithm with o(n)
worst-case update. Moreover, it is deterministic.

Even for the more restricted dynamic s-t shortest path problem, the story is
similar as there is no o(n) worst-case update algorithm. All previous amortized al-
gorithms either take at least Ω(n3/4) on sparse graphs [38, 42, 43, 99] or assume
an oblivious adversary [46, 133]. There is in fact, a conditional lower bound of
Ω(n2−o(1)) worst-case update time for the incremental dynamic s-t exact shortest
paths on weighted graphs [6, 135]. This again shows that approximation is neces-
sary to obtain our worst-case update time.

Our techniques As a key to our results, we introduce a new notion of graph
sparsifier, called local sparsifier. It is a stronger version of a well-studied notion
called vertex sparsifier [60, 72, 94, 180, 191, 197]. Here, we give informal definitions.
Let G = (V,E) be a graph and, for each u, v ∈ V , let P(u, v,G) denote a property
between u and v in G. For example, P(u, v,G) is the distance or the size of the
u-v min cut. Let K ⊆ V be a set of nodes called terminals. A vertex sparsifier
of G with respect to K is a graph H = (V ′, E′) such that 1) |V ′| ≈ |K| and 2)
P(u, v,H) ≈ P(u, v,G) for all u, v ∈ K . That is, H has size close to K but still
“approximately preserves” the property P between all terminal nodes.

A local sparsifier ofG is a graph which contains possible vertex sparsifiers with
respect to any given set of terminals. More precisely, a local sparsifier of G is a
graph H such that, for any terminal set K , there is a subgraph of H , denoted by
H[K]3, whereH[K] is vertex sparsifier of G with respect toK . See Section 6.2 for
the formal definition.

Our main technical contribution is a meta-theorem which turns any efficient
construction for local sparsifiers for any propertyP into fast incremental algorithms
for P . Our reduction gives worst-case update time bounds and it is deterministic.
Given a randomized sparsifier construction, the resulting incremental algorithm is
also randomized. Details on this construction can be found in Section 6.3.

Given the meta-theorem, we then show that existing efficient constructions of
vertex sparsifiers, such as algorithms for computing Räcke trees in [216] andThorup-
Zwick emulators in [218, 251], can be adapted to build local sparsifiers. Details on
these constructions can be found in Sections 6.4 and 6.5. By plugging these construc-
tions into our framework, we obtain our results on all-pairs max flow and all-pairs
shortest paths Theorem 6.1.1. In fact, it is simple to extend our data-structure and

2They maintain a dynamic O(
√
logn)-spanner [45] (against oblivious adversary) of size

O(n1+o(1)) with no(1) worst-case update time. Then, given a query, we run a static shortest path
algorithm.

3This may not be a subgraph induced by K .

6.1. INTRODUCTION 175

show an incremental algorithm for maintaining a tree flow sparsifier (i.e. Räcke tree
[216]) itself.

Theorem 6.1.2 (Informal). For any ℓ ≥ 1, there is an incremental randomized algo-
rithm with Õ(n2/(ℓ+1)) worst-case time for maintaining a tree flow sparsifier of an
n-node graph G with quality O(log8ℓ n) and depth O(ℓ log2 n).

See Section 6.6 for the formal definition of a tree flow sparsifier and its quality.
Basically, it is a tree which “approximately preserves” all the cut/flow information of
the graph. From Theorem 6.1.2, the simple structure of low-depth tree allows us to
further implement other algorithms on the tree. Then, we easily obtain incremental
algorithms for uniform sparsest cut and multi-commodity concurrent flow as stated
Theorem 6.1.1.

Offline Fully Dynamic Algorithms. An offline dynamic algorithm is an algo-
rithm where the whole sequences of updates (edge insertions and deletions) and
queries is given as an input, and the algorithm needs to output information of the
updated graph at every step that is queried. We say that an offline dynamic algo-
rithm has (average) update and query time of t, if given a sequence of lengthL, then
the total running time is t · L.

Although the offline setting is a weaker than the standard dynamic setting, it
is interesting for two reasons. First, offline algorithms are used to obtain fast static
algorithms (e.g. [56, 181]). Second, many conditional lower bounds (e.g. [4, 6, 78])
for the standard dynamic setting also hold for the offline dynamic setting. Thus,
giving an efficient algorithm for the offline dynamic setting shows that no such
conditional lower bound is possible.

Simplifying the technique for incremental algorithms we can show an “offline”
version of the meta-theorem which converts any efficient construction of vertex
sparsifiers to an offline fully dynamic algorithm (see Section 6.7). Note that this
version is incomparable with the previous one: an offline fully dynamic algorithm is
incomparable to an online incremental algorithm. As this meta theorem only need
vertex sparsifiers which are weaker than local sparsifiers, we immediately obtain
the following.

Corollary 6.1.3 (Informal). There are offline fully dynamic approximation algo-
rithms for the same problems with the same parameters as in Theorem 6.1.14.

In fact, there were previous several offline algorithms in the literature which
are based on vertex sparsifiers. This includes the offline algorithms for minimum
spanning trees [95], effective resistance [181], and 2/3-edge connectivity [211]. Our
offline meta-theorem puts all their work into one framework: by just identifying
the efficient construction of vertex sparsifier from each of these woks, their results
can be immediately reproduced.

4To make sense of this, we in fact must replace “worst-case update time” with “average update
time”. There is also no concept of adversary in the offline setting.

176 CHAPTER 6. FAST INCREMENTAL ALGORITHMS VIA LOCAL SPARSIFIERS

New directions for sparsifiers. Apart from the new algorithms we devised in
Theorem 6.1.1 and Corollary 6.1.3, we believe that our meta-theorems are valuable
by themselves. They explicitly connect open problems of the two fields, namely dy-
namic algorithms and graph sparsifiers: any new upper or lower bounds is imme-
diately transferred via them (see Section 6.8 for particularly interesting examples.)
This connection also motivates the following research directions for constructing
sparsifiers:

(1) Trading size for quality: If there exists a near-linear time construction of a
vertex sparsifier with respect to terminalsK which has size as large asO(|K|no(1))
but preserve a graph property within a factor of (1 + ϵ) for any ϵ > 0, then the re-
sulting offline dynamic algorithmswould haveno(1) update time and approximation
factor only (1+ϵ′) for any ϵ′ > 0. A similar implication holds for local sparsifier and
incremental algorithms. This will give a significant improvement over our results
that have large approximation factor. To the best of our knowledge, this question
has not been explored in the vertex sparsifier literature since the research has con-
centrated on obtaining a vertex sparsifier whose size depends only on |K|. In fact,
even a vertex sparsifier of size poly(|K|no(1))with the (1+ϵ) factor would still give
an interesting implication for dynamic algorithms (see e.g. Theorem 6.8.2).

(2) Local sparsifier for effective resistance: A near-linear time construction for
vertex sparsifiers for effective resistance is known, i.e. an approximate Schur com-
plement. This gives a very fast offline algorithm for effective resistance, as observed
in [181]. However, in order to get an incremental algorithm, we would need a local
sparsifier with an efficient construction. We are not aware whether such sparsifiers
exist and we pose this as an important open question.

(3) Speeding up existing constructions: In this chapter, we only used existing spar-
sifiers that admit fast construction oracles. However, for example, there exist spar-
sifiers with better approximation quality for which no fast construction algorithm
is known (e.g. [72, 94]). Thus, it is an interesting research question to develop faster
algorithms for constructing them.

6.2 Local Sparsifiers

Let G = (V,E) be graph. For any u, v ∈ V we define P(u, v,G) to be a property
between vertices u and v in G. Throughout P(u, v,G)5 will be a solution to a
minimization problem involving u and v in G. We next review several notions
that allows us to reduce the size of G while (approximately) retaining pair-wise
information for some properties of G.

Definition 6.2.1 (Sparsifiers). Let G = (V,E) be a graph, and let α ≥ 1. A graph
H = (V ′, E′) with V ⊆ V ′ is an α-sparsifier of G iff for every u, v ∈ V

P(u, v,G) ≤ P(u, v,H) ≤ α · P(u, v,H).

5Our idea extends also to other graph properties, but we decided to work with minimization
problems in order to simplify the presentation.

6.2. LOCAL SPARSIFIERS 177

The above notion captures different forms of sparsification. When V ′ = V and
E′ ⊆ E, then H is referred to as edge sparsifier of G. Another example is when
H contains additional vertices and edges which do not appear in G but H has a
simpler structure than G.

The following sparsification notion is particularly useful if the goal is to reduce
the vertex count of the input graph G.

Definition 6.2.2 (Vertex Sparsifiers). LetG = (V,E) be a graph, with a terminal set
K ⊆ V , and let α ≥ 1. A graphH = (V ′, E′) withK ⊆ V ′ is an α-vertex sparsifier
of G with respect toK iff for every u, v ∈ K

P(u, v,G) ≤ P(u, v,H) ≤ α · P(u, v,G).

Ourwork requires that sparsifiers satisfy two important properties, namely tran-
sitivity and decomposability. While transitivity is obvious, decomposability gives
the following useful fact: if a graph is a combination of two graphs on disjoint edge
sets, combining the respective sparsifiers of these graphs gives a sparsifier for the
original graph. We next make these statement more precise.

Given a graph G = (V,E), a parameter α ≥ 1, and an α-sparsifier H of G,
we define S to be a mapping that takes G and α as inputs and produces H , i.e.,
H := S(G,α). We call such a mapping a sparsifier mapping. This leads to the
following definition.

Definition 6.2.3 (Transitivity). Assume a sparsifier mapping S fulfills the following
condition: For any graph G and parameters α1 ≥ 1 and α2 ≥ 1 it holds that when
H1 = S(G,α1) and H2 = S(H1, α2) then H2 is an α1α2-sparsifier of G. Then we
say that the mapping S is closed under transitivity.

Definition 6.2.4 (Decomposability). Assume a sparsifier mapping S fulfills the fol-
lowing condition: For any two edge-disjoing graphs G1 = (V,E1) and G2 = (V,E2)
over a set V of nodes whenH1 = S(G1, α) andH2 = S(G2, α2) thenH = H1 ∪H2

is anmax{α1, α2}-sparsifier of G. Then we say that S is closed under decomposition.

We next introduce a new notion of sparsification that captures properties of
both sparsifiers and vertex sparsifiers.

Definition 6.2.5 (Local Sparsifiers). Let G = (V,E) be a graph and α1 ≥ 1 be a
parameter. A graphH = (V ′, E′) with V ⊆ V ′ is a local sparsifier ofG with quality
α ≥ 1 iff the following hold:

1. The graph H is an α-sparsifier of G,

2. For every K ⊆ V , there exists a subgraph H[K] of H such that H[K] is α-
vertex sparsifier of G with respect toK . Additionally, ifK is a proper subset of
V , then H[K] must be a proper subgraph of H .

178 CHAPTER 6. FAST INCREMENTAL ALGORITHMS VIA LOCAL SPARSIFIERS

In other words, the above definition suggests that local sparsifiers are sparsi-
fiers from which we can extract vertex sparsifiers for any set of terminals K . Note
that there are Θ(2n) different terminal sets, thus Condition (2) of local sparsifiers
is very strong. The transitivity and decomposability notions readily extend to local
sparsifiers.

Since we will exploit local sparsifiers to speed up dynamic graph algorithms, it
is natural to define some notion that involves running times for manipulating local
sparsifiers. We address this in the following definition, where we introduce a data-
structure version of local sparsifiers. To avoid overloading the notation, we will
simply refer to this data-structure as local sparsifiers.

Definition 6.2.6. Given a graph G = (V,E) and a parameter α ≥ 1, a data-
structure local sparsifier or simply a local sparsifier H = (V ′, E′) with quality α
of G is a data-structure supporting the following operations:

• Preprocess(G,α): compute an α-sparsifier H of G,

• QuerySparsifier(G,K): compute the subgraph H[K] of H and return H[K]
as an α-vertex sparsifier of G with respect toK .

The above data-structure is characterized by two important measures:
preprocessing time, which denotes the time for executing the operation
Preprocess(G,α), and query time, which denotes the time for executing the op-
eration QuerySparsifier(G,K). Note that the data-structures always produces a
mapping S and and we will exploit properties of this mapping, specifically transi-
tivity and decomposability, in our dynamic algorithms.

Since our goal is to design incremental algorithms with sub-linear update and
query time, we will focus on building a local sparsifier with Õ(m · f(n)) prepro-
cessing time, while supporting queries in time Õ(|K| · g(n)), where f(n), g(n) are
both sub-linear functions in n. In other words, this means that after computing a
sparsifier of the input graph in time roughly proportional to its size, for any given
set of terminals, we can construct a vertex sparsifier with respect to the terminals in
time which depends only on the number of terminals, up to sub-linear factors. We
make precise this requirement in the following definition.

Definition 6.2.7. Let G = (V,E) be a graph, and let f(n), g(n) ≥ 1 be functions.
We say that (H,α, f(n), g(n)) is an efficient local sparsifier with quality α ≥ 1 of G
iff H is a local sparsifier of quality α, and the preprocessing and query time of H are
bounded by O(m · f(n)) and O(|K| · g(n)), respectively.

To simplify the presentation, we will abuse the notation and sometimes write
(H,α) instead of (H,α, f(n), g(n))when the runtime overheads are not important
in specific contexts.

6.3. FROM LOCAL SPARSIFIERS TO INCREMENTAL ALGORITHMS 179

6.3 From Local Sparsifiers to Incremental Algorithms

In this sectionwe showhow to use efficient local sparsifiers to design online (approx-
imate) incremental algorithms for problems with certain properties while achieving
fast worst-case update and query time. Roughly speaking, the key idea behind our
result is to form a set K out of the endpoints of all inserted edges since the last
rebuild, and to use the efficient local sparsifiers with this set K to build a suitable
vertex sparsifier at query time on which we answer the query using a static algo-
rithm.

Theorem 6.3.1. Let G = (V,E) be a graph, and for any u, v ∈ V , let P(u, v,G) be
a solution to a minimization problem between u and v inG. Let f(n), g(n), h(n) ≥ 1
be functions, α, ℓ ≥ 1 be parameters associated with the approximation factor, and let
β0, β1, . . . , βℓ with β0 = m be parameters associated with the running time. Assume
the following properties are satisfied

1. G admits an efficient local sparsifier (H,α, f(n), g(n)),

2. H is transitive and decomposable,

3. The property P(u, v,G) can be computed inO(mh(n)) time in a graph withm
edges and n vertices.

Then there is an incremental (approximate) dynamic algorithm that maintains for
every pair of nodes u and v, an estimate δ(u, v), such that

P(u, v,G) ≤ δ(u, v) ≤ αℓ · P(u, v,G), (6.1)

with worst-case update and query time of

Õ

 ℓ∑
j=1

(
βj−1

βj

)
f(n) + βℓh(n)

 g(n)

 where β0 = m. (6.2)

To gain some intuition, we first consider just a two-level scheme and then ex-
plain how this scheme naturally generalizes to more levels. Given an initial graph
G = (V,E) and an approximation parameter α ≥ 1, we build a data-structure that
maintains

1. an efficient local sparsifier (H,α, f(n), g(n)) ofG (Theorem 6.3.1 Part 1), and
2. a set of edges E1, which is initially set to empty.

Our data-structure is initialized using the Preprocess(G,α) operation of
(H,α, f(n), g(n)), and it is rebuilt every β1 insertions, for some β1 ≥ 0 to be fixed
later. Unless otherwise started, we will refer to G as the current graph. We next
describe the Insert(e) and Query(s, t) operations. Upon insertion of a new edge e
in G, we simply append edge e to E1. For answering (s, t) queries, we first create
the terminal set

K = ∪e∈E1V (e) ∪ {s, t}, (6.3)

180 CHAPTER 6. FAST INCREMENTAL ALGORITHMS VIA LOCAL SPARSIFIERS

where V (e) are the endpoints of e, and then invoke QuerySparsifier(G,K) to get
a vertex sparsifier H[K] of G \ E1 with respect to the terminal set K . Finally, we
set H ′ = H[K] ∪ E1, and run on H ′ a static algorithms that computes property
P(s, t,H) between s and t in H , denoted by δH′(s, t), and return this value as an
estimate.

We next argue that the δH′(s, t) approximates property P(s, t, G) up to an α
factor. Note that it is sufficient to show that H is an α-vertex sparsifier of G with
respect to K . To this end, by definition of local sparsifiers, H[K] is an α-vertex
sparsifier ofG \E1 with respect toK , which in turn implies thatH ′ = H[K]∪E1,
is an α-vertex sparsifier of (G\E1)∪E1 = Gwith respect toK . The latter follows
by decomposability of efficient local sparsifiers (Theorem 6.3.1 Part 2) and since
endpoints of E1 are added as terminals toK (Equation (6.3)).

We next analyze the update time. Note that the initialization time of our data-
structure cost O(mf(n)) (Theorem 6.3.1 Part 1), and recall that our data-structure
is rebuilt every β1 operations. Thus, the amortized update time per insertion is
O(mf(n)β−1

1). For the query time, note that the size of the terminal set K at any
time is O(β1). By Theorem 6.3.1 Part 1, we get that the the size of the sparsifier H
ofG isO(β1g(n)). Finally, the query time is bounded byO(β1g(n)h(n)) assuming
that P (u, v,H) can be computed in O(|E(H)|h(|V |) time.

Combining the above bounds on the update and query time, we obtain the fol-
lowing trade-off

O

((
m

β1

)
f(n) + β1g(n)h(n)

)
which in turn bounds the amortized update time and worst-case query time. The up-
date time can be turned into a worst-case guarantee by a standard global rebuilding
technique (see, for example, [115], Section 3.3.2).

We next explain the generalization of our approach to a multi-level hierarchy.

Data Structure. Consider some integer parameter ℓ ≥ 1 and parameters β0 ≥
. . . ≥ βℓ, with β0 = m. Our data structure maintains

1. a hierarchy of edge sets {Ei}1≤i≤ℓ, each associated with the parameters
{βi}1≤i≤ℓ,

2. a hierarchy of efficient local sparsifiers {(Hi, α
i+1)}0≤i≤ℓ−1 for {Gi}0≤i≤ℓ−1,

where G0 = G, and remaining Gi’s are graphs that will be specified later,

We initialize our data-structure by constructing an efficient local sparsifier
(H0, α0) for the initial graph G0 = G (Theorem 6.3.1 Part 1), and settingHi ← H0.
We also set Ei ← ∅ for 1 ≤ i ≤ ℓ.

We note that {Ei}1≤i≤ℓ will change over the course of the algorithm, as we will
shortly make precise. For 1 ≤ i ≤ ℓ, we will use E(t)

i , when necessary, to denote
the set Ei after the edge insertion at time t.

The hierarchy {Ei}1≤i≤ℓ keeps track of the inserted edges among different lev-
els in our update sequence. Maintaining these edges will be useful when deciding to

6.3. FROM LOCAL SPARSIFIERS TO INCREMENTAL ALGORITHMS 181

periodically rebuild parts of our data-structure. These periodical rebuilds will allow
us to strictly reduce the running time at the cost of paying a multiplicative increase
which is proportional to the number of levels k in the hierarchy.

Handling Insertions. Consider the insertion of edge e = (u, v) in G. We main-
tain a variable i that represents the level in the hierarchy (initially set to 1), and a
boolean variable rebuild (initially set to false) that determines whether a rebuild is
triggered at some level of the hierarchy when processing the insertion of e. While
i ≤ ℓ and rebuild equals false, we proceed as follows. We add e to Ei, and test
whether the size of Ei exceeds βi. If the latter holds, we set rebuild← true, and
distinguish two cases depending on whether i = 1 or i ≥ 2.

If i = 1, we recompute from scratch an efficient local sparasifier (H,α) of the
current graph G, set G0 ← G. Moreover, we set Hj ← H0 for i ≤ j ≤ ℓ − 1, and
let Ej ← ∅ for 1 ≤ j ≤ ℓ.

If i ≥ 2, our goal will be to recompute efficient local sparsifier Hi−1 at level
(i− 1) in the hierarchy. To this end, we first define the graph

Ri−1 := Hi−2[V (Ei−1)] ∪ Ei−1,

where Hi−2 is the efficient local sparsifier that we maintain at level (i − 2), and
V (Ei−1) denotes the endpoints of the edges in Ei−1. In other words, Ri−1 is ob-
tained by taking the union over the edges stored at level (i − 1) and the vertex
sparsifier Hi−2[V (Ei−1)] with respect to V (Ei−1) associated to the graph at level
(i − 2). We then construct an efficient local sparsifier (R′

i−1, α) of Ri−1. The effi-
cient local sparsifier Hi−1 is updated using the following rule

Hi−1 ← (Hi−2 \Hi−2[V (Ei−1)]) ∪R′
i−1.

Finally, we update the efficient local sparsifiers in the levels (i, . . . , ℓ − 1) by
setting Hj ← Hi−1, for i ≤ j ≤ ℓ − 1. We also let Ej ← ∅, for i ≤ j ≤ ℓ, and
increment i by 1. This algorithm is depicted in Figure 6.1.

HandlingQueries. To answer the query for the approximate propertyP(u, v,G)
between any pair of vertices s and t in G we proceed as follows. We first create a
terminal set using the endpoints of the edges stored at the last level Eℓ together
with s and t, i.e.,

K = ∪e∈Eℓ
V (e) ∪ {s, t},

where V (e) are the endpoints of e. We then proceed by querying the vertex spar-
sifier Hℓ−1[K] with respect to K , and union this with the maintained edge set Eℓ,
i.e., we define an auxiliary graph

H := Hℓ−1[K] ∪ Eℓ.

Finally, we run the algorithm from Theorem 6.3.1 Part 3 onH to calculate the prop-
ertyP(u, v,H) between u and v inH , which we denote by δH(s, t), and return this
value as an estimate.

182 CHAPTER 6. FAST INCREMENTAL ALGORITHMS VIA LOCAL SPARSIFIERS

Algorithm 6.1: Insert(e = (u, v))

1 Set i← 1
2 Set rebuild← false
3 Set E ← E ∪ {(u, v)}
4 while i ≤ ℓ and rebuild = false do
5 Ei ← Ei ∪ {(u, v)}
6 if |Ei| > βi then
7 rebuild← true
8 if i = 1 then
9 Set G0 ← G

10 Compute an efficient local sparsifier (H0, α) of G0 (Theorem 6.3.1
Part 1)

11 else
12 Let Ri−1 ← Hi−2[V (Ei−1)] ∪ Ei−1

13 Compute efficient local sparsifier (R′
i−1, α) of Ri−1 (Theorem 6.3.1

Part 1)
14 Set Hi−1 ← (Hi−2 \Hi−2[V (Ei−1)]) ∪R′

i−1

15 Set Hj ← Hi−1, for i ≤ j ≤ ℓ− 1
16 Set Ej ← ∅ for i ≤ j ≤ ℓ
17 Set i← i+ 1

Algorithm 6.2: Query(s, t)
1 SetK ← ∪e∈Eℓ

V (e) ∪ {s, t}
2 Set H ← Hℓ−1[K] ∪ Eℓ

3 Let δH(s, t) be the result obtained by the algorithm from Theorem 6.3.1 Part 3.
4 return δH(s, t).

Correctness. Let G be the current graph throughout the execution of the algo-
rithm. We will show that as long as |E1| ≤ β1, the efficient local sparsifier we
maintain at level (k − 1) is sufficient to give a good approximation to the graph
propertyP between any two pair of vertices fromG. Note that whenever |E1| > β1,
the entire data-structure is built from scratch, and in this case, the local sparsifier
H0 is already a good estimate for G.

To make the above statements precise, we need to introduce some useful nota-
tion. First, recall that for 1 ≤ i ≤ ℓ, we use E(t)

i to denote the set Ei after the
edge insertion at time t in our algorithm. Let E be the set of inserted edges so far
in our graph, i.e., G = G0 ∪ E, where G0 is the initial graph from the last rebuild
of the entire data-structure (Line 8 in Algorithm 6.1) or from the beginning of the
algorithm. For each e ∈ E, we let τe be the index of the lowest level edge set in the
current hierarchy {Ei}1≤i≤ℓ that contains e, i.e.,

τe = max{j ∈ {1, . . . , ℓ} | e ∈ Ej}.

6.3. FROM LOCAL SPARSIFIERS TO INCREMENTAL ALGORITHMS 183

This naturally induces a partitioning of E defined as follows

E = ∪1≤i≤ℓẼi, where Ẽi = {e ∈ E | τe = i} for 1 ≤ i ≤ ℓ.

Let {Hi}0≤i≤ℓ−1 be the hierarchy of current efficient local sparsifier that our
data structure maintains. Using the partitioning of E, we next show that each of
these local sparsifiers maintains information for property P with respect to some
edge sets in the partition, where the size of the edge set increases with the number
of levels. In particular, this implies that the lowest-level local sparsifier Hℓ−1 will
be a good estimate to property P in the current graphG. This approach is formally
summarized in the following lemma.

Lemma 6.3.2. The graph Hi at level i is an αi+1-efficient local sparsifier of G0 ∪(
E \ ∪i+1≤j≤ℓẼj

)
for 0 ≤ i ≤ ℓ− 1.

Proof. We proceed by induction on the level i of the hierarchy. For the base case,
i.e., i = 0, by construction H0 is a α0+1-efficient local sparsifier of G0 ∪ (E \
∪1≤j≤ℓẼi) = G0, and thus the claim holds.

Let Hi the efficient local sparsifier that our algorithm maintains at level
i > 0. We want to show that Hi is an αi+1-efficient local sparsifier of G0 ∪(
E \ ∪i+1≤j≤ℓẼj

)
. To this end, note that it suffices to prove that Hi is an α-

efficient local sparsifier of Hi−1 ∪ Ẽi. We show this claim

• using the induction hypothesis onHi−1, i.e., thatHi−1 is an αi-efficient local
sparsifier of G0 ∪

(
E \ ∪i≤j≤ℓẼj

)
, and

• using the transitivity on Hi and Hi−1 ∪ Ẽi (Theorem 6.3.1 Part 2).

We these two facts and the decomposability of efficient local sparsifiers (Theo-
rem 6.3.1 Part 2) we get that that Hi is an αi+1-efficient local sparsifier of

G0 ∪
(
E \ ∪i≤j≤ℓẼj

)
∪ Ẽi = G0 ∪

(
E \ ∪i+1≤j≤ℓẼj

)
.

Thus it remains to show that Hi is an α-efficient local sparsifier of Hi−1 ∪ Ẽi.
We distinguish two cases. (1) If Ẽi = ∅, then we know that there was a rebuild at
a level smaller than i in the hierarchy, which implies that Hi = Hi−1 (Line 14 of
Algorithm 6.1). Thus Hi is trivially an α-efficient local sparsifier of Hi−1 ∪ Ẽi. (2)
If Ẽi ̸= ∅, let ti be the last time that Hi was rebuilt with respect to the set Ei, i.e.,
Lines 11-14 in Algorithm 6.1 were executed at time ti. We claim that Ẽi = E

(ti)
i .

Note that this follows by definition of Ẽi since edges belonging to this set do not
appear in the levels larger than i. To prove the claimed approximation guarantee on
Hi, we first observe that the graphHi−1 ∪ Ẽi can be partitioned into edge-disjoint
graphs as follows

Hi−1 ∪ Ẽi =
(
Hi−1 \Hi−1[V (Ẽi)]

)
∪
(
Hi−1[V (Ẽi)] ∪ Ẽi

)
,

184 CHAPTER 6. FAST INCREMENTAL ALGORITHMS VIA LOCAL SPARSIFIERS

where Ri = Hi−1[V (Ẽi)] ∪ Ẽi by our construction. Let (R′
i, α) be the efficient

local sparsifier of Ri computed by the algorithm. By definition of efficient local
sparsifiers we know that V (Ri) ⊆ V (R′

i) andR′
i is an α-sparsifier ofRi. Moreover,

recall that the algorithm updates Hi as follows

Hi =
(
Hi−1 \Hi−1[V (Ẽi)]

)
∪R′

i.

Applying the decomposability property of Theorem 6.3.1 Part 2 on Hi−1 \
Hi−1[V (Ẽi)] and R′

i we get that Hi is an α-efficient local sparsifier of Hi−1 ∪ Ẽi,
which completes the proof.

We finally show that the estimate δH(s, t) returned by the query algorithm in
Figure 6.2 approximates the property P of the current graph G up to an αℓ factor,
thus proving the claimed estimate in Theorem 6.3.1.

By Lemma 6.3.2, we get that Hℓ−1 is an αℓ-efficient local sparsifier of graph
G0 ∪ (E \ Ẽℓ). Since Ẽℓ = Eℓ (because ℓ is largest level), we get thatHℓ−1[K] is a
αℓ-vertex sparsifier of G0 ∪ (E \ Eℓ) with respect toK . Using decomposability of
efficient local sparsifiers (Theorem 6.3.1 Part 2), the latter implies thatH = Hℓ−1 ∪
Eℓ is a αℓ-vertex sparsifier of G0 ∪ (E \ Eℓ) ∪ Eℓ = G0 ∪ E = G.

Running Time. We first study the update time of our data structure. To this end,
it will be useful to bound the size of each efficient local sparsifier in the hierarchy
{Hi}0≤i≤ℓ−1 at any given point of time.

Lemma 6.3.3. At any point of time, for each 0 ≤ i ≤ (ℓ− 1) and K ⊆ V , we have
that

|Hi[K]| ≤ Õ (|K| · g(n)) .

Proof. We actually prove something stronger, namely that at any point of time, for
eachK ⊆ V and 0 ≤ i ≤ (ℓ−1)we have that |Hi[K]| ≤ O ((i+ 1)|K| · g(n)). As
wewill shortly see, the number of levels ℓ in the hierarchy does not exceedO(log n).
Since i ≤ (ℓ− 1), we immediately get the claimed bound of the lemma.

At any point of time during the execution of our data-structure, note that the
worst-case bound on the size of Hi[K] at level i is attained when the Hj for 0 ≤
j ≤ i are different i.e., each of the efficient local sparsifier has undergone a rebuild
with respect to the current edge set Ej . Thus, throughout we assume that this is
indeed the case, as otherwise the bounds can only get better.

We now prove the claim by induction on the level i of the hierarchy. For the
base case, i.e., i = 0, we know that H0 is an efficient local sparsifier of G0, and by
queryingH0 with respect toK it follows that |H0[K]| ≤ O(|K| · g(n)), and hence
the claim holds.

By induction hypothesis we get that for eachK ⊆ V , it holds that |Hi−1[K]| ≤
O(i|K| · g(n)). We now show the inductive step. Let K ⊆ V be any subset of
vertices. To this end, let Hi be the efficient local sparsifier that has undergone a
rebuild with respect to Ei at level i > 0. Let Ri := Hi−1[V (Ei)] ∪ Ei be the

6.3. FROM LOCAL SPARSIFIERS TO INCREMENTAL ALGORITHMS 185

intermediate graph which is used to rebuildHi, and let (R′
i, α) be the efficient local

sparsifier ofRi, as defined in Algorithm 6.1. DefineK ′ := K∩V (Ri) and note that
by construction |V (Ri)| ≤ n. Then by querying R′

i with respect toK ′ we get that

|R′
i(K

′)| ≤ O(|K ′| · g(|V (Ri)|)) ≤ O(|K| · g(n)).

Finally, sinceHi is formed by taking the union ofR′
i with some part ofHi−1 we

get that
|Hi| ≤ |Hi−1 ∪R′

i| ≤ O((i+ 1)|K| · g(n)),

where the bound on Hi−1 follows by induction hypothesis.

The lemma below bounds the amortized update time of our data-structure.

Lemma 6.3.4. The amortized time of Insert(e = (u, v)) operation is bounded by

Õ

ℓ−1∑
j=0

βj
βj+1

 f(n)g(n)

 .

Proof. For 0 ≤ i ≤ ℓ − 1, let Y (i) be the amortized update time aggregated up
to (and including) level i in the hierarchy. Furthermore, let Z(i) be the amortized
update time at level i in the hierarchy (and excluding all other levels). We will show
by induction on the number of levels i that Y (i) = Õ

((∑i
j=0

βj

βj+1

)
f(n)g(n)

)
,

which with i = (ℓ− 1) implies the claimed bound of the lemma.
For the base case, i.e., i = 0, recall that the cost for constructing an efficient local

sparsifier H0 of the current graph G0 is Õ(β0f(n)) (Theorem 6.3.1 Part 1), where
β0 = m is the current number of edges. Moreover, the cost for updating the efficient
local sparsifiers in the levels below {Hj}1≤j≤k−1 is bounded by Õ(ℓβ0f(n)) =
Õ(β0f(n)). Thus, the overall cost of a rebuild at level i = 0 is Õ(β0f(n)). Since
H0 is rebuilt every β1 insertions, we get that the amortized cost per insertion is
Y (0) = Z(0) = Õ

((
β0

β1

)
f(n)

)
= Õ

((
β0

β1

)
f(n)g(n)

)
, as desired.

We next show the inductive step. Consider the maintained efficient local spar-
sifier Hi at level i that undergoes a rebuild with respect to Ei, and let Hi−1 be the
efficient local sparsifier one level above (recall that a rebuild at level i is triggered
by level (i+1), i.e., because |Ei+1| > βi+1). We want to bound the size of the inter-
mediate graph Ri = Hi−1[V (Ei)] ∪ Ei, as defined in Algorithm 6.1, which in turn
determines the cost for rebuildingHi. To this end, first observe that by construction
|Ei| ≤ βi. Second, by Lemma 6.3.3 we get that

|Hi−1[V (Ei)]| ≤ Õ(|V (Ei)|g(n)) ≤ Õ(βig(n)).

Combining these two bounds we get that |Ri| ≤ Õ(βig(n)). We now bound
the cost for computing R′

i and updating the efficient local sparsifier Hi. As Algo-
rithm 6.1 computes an efficient local sparsifier (R′

i, α) ofRi, byTheorem 6.3.1 Part 1

186 CHAPTER 6. FAST INCREMENTAL ALGORITHMS VIA LOCAL SPARSIFIERS

we get that the cost for computing R′
i is

Õ(|Ri|f(n)) = Õ(βig(n)) · Õ(f(n)) = Õ(βif(n)g(n)).

Consider the update of the efficient local sparsifier Hi, and assume that before
the update,Hi = Hi−1 holds. Then we can simply updateHi by deleting the edges
Hi−1[V (Ei)] from Hi and adding the new edges R′

i to Hi. Since by the above
discussion the size of both Hi−1[V (Ei)] and R′

i is bounded by Õ(βif(n)g(n)), we
claim the cost for updating Hi is also bounded by Õ(βif(n)g(n)).

Now, ifHi ̸= Hi−1 holds before updatingHi, this means thatHi has undergone
already a rebuild with respect to Ei. We then reverse all the operations of the data-
structure during the last rebuild untilHi = Hi−1, and proceed as above for updating
Hi. Since by construction |Ei| ≤ βi, observe that the reversing cost cannot exceed
the cost of updatingHi, which we showed to be at most Õ(βif(n)g(n)). Similarly,
for updating the efficient local sparsifiers {Hj}i−1≤j≤ℓ−1, we first reverse their the
data-structure operations until Hi−1 = Hi+1 = . . . = Hℓ−1, and then proceed as
above for updating {Hj}i−1≤j≤ℓ−1

6. Since there are atmost ℓ levels below to update
during the rebuild at level i, the total cost for updating the hierarchy {Hj}i≤j≤ℓ−1

is bounded by
Õ(ℓβif(n)g(n)) = Õ(βif(n)g(n)).

Summing the cost for computing R′
i and the cost for updating the hierarchy

{Hj}i≤j≤ℓ−1, we conclude that the total cost for rebuildingHi with respect toEi is
bounded by Õ(βif(n)g(n)). Since the emulatorHi is rebuilt every βi+1 operations,
we get that the amortized cost per operation is

Z(i) = Õ

((
βi
βi+1

)
f(n)g(n)

)
.

To complete the inductive step, note that by induction hypothesis

Y (i− 1) = Õ

 i−1∑
j=0

βj
βj+1

 f(n)g(n)

 .

Summing over this and the bound on Z(i) we get

Y (i) = Y (i− 1) + Z(i)

= Õ

 i−1∑
j=0

βj
βj+1

 f(n)g(n)

+ Õ

((
βi
βi+1

)
f(n)g(n)

)

= Õ

 i∑
j=0

βj
βj+1

 f(n)g(n)

 .

6Note that this is faster than copying Hi−1 into the data structures for {Hj}i−1≤j≤ℓ−1

6.3. FROM LOCAL SPARSIFIERS TO INCREMENTAL ALGORITHMS 187

We next study the query time of our data-structure.

Lemma 6.3.5. The time for a Query(s, t) operation is bounded by Õ (βℓg(n)h(n)) .

Proof. LetK = ∪e∈Eℓ
V (e)∪{s, t} be the set of terminals defined in Algorithm 6.2.

By construction, we know that |Eℓ| ≤ βℓ, which in turn implies that |K| ≤ O(βℓ).
Let H = Hℓ−1[K] ∪ Eℓ be the graph estimator as defined in Algorithm 6.2, where
Hℓ−1 is the efficient local sparsifier at level (ℓ−1) in the hierarchy. By Lemma 6.3.3
and the bound on the size of T , we get that |Hℓ−1[K]| ≤ Õ(βℓg(n)), which in turn
implies that

|H| = |Hk−1[K] ∪ βℓ| ≤ Õ(βℓg(n)).

Since the algorithm for testing propertyP(s, t, G) runs in Õ(|H|h(n)) time byThe-
orem 6.3.1 Part 3, we get the our query time is bounded by Õ(βℓg(n)h(n)).

Combining the bounds on the update and query time from Lemmas 6.3.4
and 6.3.5, we obtain the following trade-off

Õ

ℓ−1∑
j=0

(
βj
βj+1

)
f(n) + βℓh(n)

 g(n)

 , where β0 = m,

which in turn proves the claimed update and query time in Theorem 6.3.1.
Finally we show for what choice of parameters {βi}0≤i≤ℓ the above trade-off

is minimized, if we ignore functions f(n), g(n) and h(n). As we will see in the
subsequent sections, this simplification will be justified in all the applications of
Theorem 6.3.1.

Lemma 6.3.6. For 1 ≤ ℓ ≤ log n, let {βi}0≤i≤ℓ be a family of parameters with
β0 = m. If we set

βi = (βi−1)
ℓ−(i−1)

ℓ+1−(i−1) , 1 ≤ i ≤ ℓ

then

Õ

ℓ−1∑
j=0

βj
βj+1

+ βℓ

 = Õ
(
m1/k+1

)
.

Proof. We claim that for each i ≥ 1, it holds that βi = m1− i
ℓ+1 , and prove this by

induction on i. For the base case, i.e., i = 1, by the choice of β1 we have β1 =

(β0)
ℓ

ℓ+1 = m1− 1
ℓ+1 .

For the inductive step, we have

βi = (βi−1)
ℓ−(i−1)

ℓ+1−(i−1) =

(
m1− (i−1)

ℓ+1

) ℓ−(i−1)
ℓ+1−(i−1)

= m
ℓ+1−(i−1)

ℓ+1
· ℓ−(i−1)
ℓ+1−(i−1)

= m1− i
ℓ+1 ,

(6.4)

where the second equality follows by induction hypothesis on βi−1.

188 CHAPTER 6. FAST INCREMENTAL ALGORITHMS VIA LOCAL SPARSIFIERS

Plugging the choice of βi in Equation 6.4 yields

Õ

ℓ−1∑
j=0

m1− j
ℓ+1

m1− (j+1)
ℓ+1

+m
1

k+1

 = Õ

ℓ−1∑
j=0

m
1

ℓ+1 +m
1

ℓ+1

 = Õ
(
ℓm

1
ℓ+1

)
= Õ

(
m

1
ℓ+1

)
.

6.4 Incremental All Pair Shortest Paths

In this section we show how to use our general Theorem 6.3.1 to design online in-
cremental algorithms for the approximate All-Pair Shortest Path Problem with fast
worst-case update and query time. Concretely, we will show that that assumptions
(1) and (2) in Theorem 6.3.1 are satisfied with certain parameters for shortest paths.
Note that (3) follows immediately by any Õ(m) time single pair shortest path algo-
rithm. This results in the following theorem.

Theorem 6.4.1. LetG = (V,E) be an undirected, weighted graph. For every r, ℓ ≥ 1,
there is a deterministic incremental approximate APSP algorithm that maintains for
every pair of nodes u and v, a distance estimate δ(u, v) such that

distG(u, v) ≤ δ(u, v) ≤ (2r − 1)ℓdistG(u, v),

with worst-case update and query time of

Õ(n2/(ℓ+1)n2/r).

We start by introducing the usual definitions of sparsifiers and vertex sparsifiers
for distances. Having defined these, the definition of local sparsifiers becomes ap-
parent from the general definition we introduced in Section 6.2. Let G = (V,E)
be an undirected, weighted graph with a terminal set K ⊆ V . For u, v ∈ V , let
distG(u, v) denote the length of a shortest path between u and v in G.

Definition 6.4.2 (Sparsifiers for Distances). Let G = (V,E) be an undirected,
weighted graph, and let α ≥ 1 be a stretch parameter. A graph H = (V ′, E′) with
V ⊆ V ′ is an α-sparsifier of G iff for all u, v ∈ V ,

distG(u, v) ≤ distH(u, v) ≤ α · distG(u, v).

Definition 6.4.3 (Vertex Sparsifiers for Distances). LetG = (V,E) be an undirected,
weighted graph with a terminal set K ⊆ V , and let α ≥ 1. A graph H = (V ′, E′)
with K ⊆ V ′ is an α-(vertex) distance sparsifier of G with respect to K iff for all
u, v ∈ K ,

distG(u, v) ≤ distH(u, v) ≤ α · distG(u, v).

6.4. INCREMENTAL ALL PAIR SHORTEST PATHS 189

Algorithm 6.3: HierarchyConstruct(G, r)
1 A0 ← V ; Ar ← ∅
2 for i← 1 to r − 1 do
3 Ai ← Sample

(
Ai−1, |V |−1/r

)
4 for every v ∈ V do
5 for i← 0 to r − 1 do
6 Let distG(Ai, v)← min{distG(w, v) | w ∈ Ai}
7 Let pi(v) ∈ Ai be such that distG(pi(v), v) = distG(Ai, v)

8 distG(Ar, v)←∞

9 Let B(v)← ∪r−1
i=0 {w ∈ Ai \Ai+1 | distG(w, v) < distG(Ai+1, v)}

We next show that the distance property in graphs admits efficient local spar-
sifiers. We achieve this by showing a deterministic variant of the distance oracle
due to Thorup and Zwick [251]. While we closely follow the ideas presented in the
deterministic oracle due to Roddity, Thorup and Zwick [218], we note that they only
give a bound on the total size of the oracle, which is not sufficient for our purposes.

Lemma 6.4.4 (Efficient Distance Local Sparsifiers). Given an undirected, weighted
graph G = (V,E), and a parameter r ≥ 1, there is a deterministic algorithm for
constructing an efficient distance local sparsifier with (2r− 1) stretch, Õ(mn1/r) pre-
processing time, and O(|K|n1/r) query time, whereK is any set of queried terminals.

We start by reviewing the randomized algorithm for APSP due to Thorup and
Zwick [251](which is depicted in Figure 6.3), and then derandomize that algorithm
and show how it can be used to solve the above problem.

1. Set A = V and Ar = ∅, and for 1 ≤ i ≤ r − 1 obtain Ai by picking each
node from Ai−1 independently, with probability n−1/r .

2. For each 1 ≤ i < r, and for each vertex v ∈ V , find the vertex pi(v) ∈ Ai

(also known as the i-th pivot) that minimizes the distance to v, i.e.,

pi(v) := arg min
u∈Ai

distG(u, v),

and its corresponding distance value

distG(Ai, v) := min{δ(w, v) | w ∈ Ai} = distG(v, pi(v)).

3. For each vertex v ∈ V , define the bunch B(v) = ∪r−1
i=0Bi(v), where

Bi(v) := {w ∈ Ai \Ai+1 | distG(w, v) < distG(Ai+1, v)}.

Thorup and Zwick [251] showed that using the hierarchy of sets (Ai)0≤i≤r cho-
sen as above, the expected size of a bunch E [|B(v)|] is O(rn1/r), for each vertex

190 CHAPTER 6. FAST INCREMENTAL ALGORITHMS VIA LOCAL SPARSIFIERS

v ∈ V . We note that the only place where their construction uses randomization is
when building the hierarchy of sets (the for loop in Step 2 in Figure 6.3). Therefore,
to derandomize their algorithm it suffices to design a deterministic algorithm that
efficiently computes a hierarchy of set (Ai)0≤i≤r such that |B(v)| ≤ Õ(rn1/r), for
each v ∈ V (note that compared to the randomized construction, we are content
with additional poly-log factors on the size of the bunches).

We present a deterministic algorithm for computing the hierarchy of sets that
closely follows the ideas presented in the deterministic construction of Roditty,Tho-
rup, and Zwick [218]. The main two ingredients of the algorithm are the hitting set
problem, and the source detection problem. For the sake of completeness, we next
review their definitions and properties.

Definition 6.4.5 (Hitting set). Let U be a set of elements, and let S = {S1, . . . , Sp}
be a collection of subsets of U . We say that T is a hitting set of U with respect to S if
T ⊆ U , and T has a non-empty intersection with every set of S, i.e., T ∩ Si ̸= ∅ for
every 1 ≤ i ≤ p.

It is known that computing a hitting set of minimum size is an NP-hard problem.
In our setting however, it is sufficient to compute approximate hitting sets. Since our
goal is to design a deterministic algorithm, one way to deterministically compute
such sets is using a variant of the well-known greedy approximation algorithm: (1)
Form the set T by repeatedly adding to T elements of U that ‘hit’ as many ‘unhit’
sets as possible, until only |U |/s sets are unhit, where |Si| ≥ s for each 1 ≤ i ≤ p
; (2) add an element from each one of the unhit sets to T . The lemma below shows
that this algorithm finds a reasonably sized hitting set in time linear in the size of
U the collection S.

Lemma 6.4.6. Let U be a set of size u and let S = {S1, . . . , Sp} be the collection of
subset of U, each of size at least s, where s ≤ p. Then the above deterministic greedy
algorithm runs in O(u + ps) time and finds a hitting set T of U with respect to S,
whose size is bounded by |T | = (u/s)(1 + ln p).

Note that the size of this hitting set is withinO(log n) of the optimum size since
in the worst case T has size at least u/s.

Definition 6.4.7 (Source Detection). Let G = (V,E) be an undirected, weighted
graph, let U ⊆ V be an arbitrary set of sources of size u, and let q be a parameter with
1 ≤ q ≤ u. For every v ∈ V , we let U(v, q,G) be the set of the q vertices of U that
are closest to v in G.

Roditty, Thorup, and Zwick [218] showed that the set U(v, q,G) can be com-
puted using q single-source shortest path computations. We review their result in
the lemma below.

Lemma 6.4.8 ([218]). For every v ∈ V , the set U(v, q,G) can be computed in time
O(qm log n).

6.4. INCREMENTAL ALL PAIR SHORTEST PATHS 191

Algorithm 6.4: DetHierarhcy(G, r)
Input :Undirected, weighted graph G = (V,E), parameter r ≥ 1
Output :Hierarchy of sets (Ai)0≤i≤r

1 q ← ⌈n1/r(1 + lnn)⌉
2 A0 ← V ; Ar ← ∅
3 for i← 0 to r − 2 do
4 Compute Ai(v, q,G) for each v ∈ V using the source detection

algorithm (Lemma 6.4.8)
5 Let {Ai(v, q,G)}v∈V be the resulting collection of sets
6 Compute a hitting set Ai+1 ⊆ Ai with respect to

{Ai(v, q,G)}v∈V (Lemma 6.4.6)
7 return (Ai)0≤i≤r

Our algorithm for constructing the hierarchy of sets (Ai)0≤i≤r , depicted in Fig-
ure 25, is as follows. Initially, we set A0 = V and Ar = ∅. To construct the set
Ai+1, given the set Ai, for 0 ≤ i ≤ p − 2, we first find the set Ai(v, q,G), where
q = Õ(n1/r), using the source detection algorithm from Lemma 6.4.8. Then we
observe that the collection of sets {Ai(v, q,G)}v∈V can be viewed as an instance
of the minimum hitting set problem over the set (universe) Ai, i.e., we want to find
a set Ai+1 ⊆ Ai of minimum size such that each set Ai(v, q,G) in the collection
contains at least one node of Ai+1. We construct Ai+1 by invoking the determin-
istic greedy algorithm from Lemma 6.4.6, which produces a hitting set whose size
is within O(log n) of the optimum one. We next prove the constructed hierarchy
produces bunches whose sizes are comparable to the randomized construction, and
also show that our deterministic construction can be implemented efficiently.

Lemma 6.4.9. Given an undirected, weighted graph G = (V,E), and a parameter
r ≥ 1, Algorithm 25 computes deterministically, inO(rmn1/r log n) time, a hierarchy
of sets (Ai)0≤i≤r such that for each v ∈ V ,

|B(v)| = O(rn1/r log n).

Proof. We start by showing the bound on the size of the bunches. To this end, we
first prove by induction on i that |Ai| ≤ n1−i/r for all 0 ≤ i ≤ r − 1. For the
base case, i.e., i = 0, the claim is true by construction since A0 = V . We as-
sume that |Ai| ≤ n1−i/r for the induction hypothesis, and show that |Ai+1| ≤
n1−(i+1)/r for the induction step. Note that by construction each set in the collec-
tion {Ai(v, q,G)}i∈V has size q = ⌈n1/r(1+ lnn)⌉ ≥ n1/r(1+ lnn). Invoking the
greedy algorithm from Lemma 6.4.6, we get a hitting set Ai+1 ⊆ Ai of size at most(

|Ai|
q

)
(1 + lnn) ≤

(
n1−i/r

n1/r(1 + lnn)

)
(1 + lnn) = n1−(i+1)/r.

We next show that for each v ∈ V and for each 0 ≤ i ≤ r − 1, |Bi(v)| ≤
O(n1/p log n), which in turn implies the claimed bound on the size of vertex

192 CHAPTER 6. FAST INCREMENTAL ALGORITHMS VIA LOCAL SPARSIFIERS

Algorithm 6.5: Preprocess(G, 2r − 1)

1 Invoke HierarchyConstruct(G, r), where instead of Steps 1-3 invoke
DetHierarchy(G, r)

2 for each v ∈ V do
3 Store each B(v), where w ∈ B(v) holds distG(v, w).

bunches. Note that it suffices to show thatBi(v) ⊆ Ai(v, q,G) since then |Bi(v)| ≤
|Ai(v, q,G)| ≤ n1/p(1 + lnn) = O(n1/p log n). Recall that for 1 ≤ i ≤ r − 1

Bi(v) = {w ∈ Ai \Ai+1 | distG(w, v) < distG(Ai+1, v)}

Now, by construction of Ai+1 we have that Ai+1 ∩ Ai(v, q,G) ̸= ∅, which
implies that Bi(v) ⊆ Ai(v, q,G) by the definition of Bi(v).

We finally analyze the running time. For 0 ≤ i ≤ r − 2, consider the sequence
of steps in the i-th iteration of the for loop in Figure 25. By Lemma 6.4.8, the
time to construct the collection of sets {Ai(v, q,G)}v∈V is O(mn1/r log n). Fur-
thermore, since the size of each set in this collection is at least q = O(n1/r log n),
Lemma 6.4.6 guarantees that the greedy algorithm for computing a hitting set Ai+1

takes O(n1+1/r log n) time. Combining the above bounds, we get that the total
time for the i-th iteration is O(mn1/r log n). Since there are at most r iterations,
we conclude that the running time of the algorithm is O(rmn1/r log n).

We now have all the necessary tools to prove Lemma 6.4.4.

Proof of Lemma 6.4.4. We first show how to implement the two operations of the
efficient local distance sparsifier (H, 2r − 1), and then analyze their running time.

In the preprocessing phase, depicted in Figure 6.5, given the graph G and the
stretch parameter (2r − 1), we first invoke HierarchyConstruct(G, r) in Fig-
ure 6.3, where Steps 1-3 are replaced by the deterministic algorithm for computing
the hierarchy of sets DetHierarchy(G, r). Note that this modification ensures that
our preprocessing algorithm is deterministic. Next, for each vertex v ∈ V , we store
its bunch B(v) in a balanced binary search tree, where each vertex w ∈ B(v) has
as key the value distG(w, v) (this step could be implemented differently, but as we
will shortly see, it will be useful in the subsequent applications of our algorithm).

We next describe how to implement the query operation, depicted in Figure 6.6.
LetK be the set of queried terminals. The main idea to construct a vertex distance
sparsifierH[K] ofGwith respect toK is to exploit the bunches that we stored in the
preprocessing step. More concretely, letH[K] be an initially empty graph. For each
vertex v ∈ K , and every vertex in its bunch u ∈ B(v), we add to H[K] the edge
(u, v) with weight distG(u, v). To show that the resulting graph H[K] is indeed a
vertex distance sparsifier with respect toK , we briefly review the query algorithm
in the construction of Thorup and Zwick [251], and show that this immediately
applies to our graph setting.

6.4. INCREMENTAL ALL PAIR SHORTEST PATHS 193

Algorithm 6.6: QuerySparsifier(G,K)

1 Set H[K]← ∅
2 for each v ∈ K do
3 for every u ∈ B(v) do
4 Add (v, u) to E(H[K]) with weight distG(v, u)

5 return H[K]

Let u, v ∈ K by any two terminals. The algorithm uses the variables w and i,
and starts by setting w ← u, and i ← 0. Then it repeatedly increments the value
of i, swaps u and v, and sets w ← pi(u) ∈ B(u), until w ∈ B(v). Finally, it
returns a distance estimate δ(u, v) = distG(w, u) + distG(w, v). Observe that w =
pi(u) ∈ B(u) for some 0 ≤ i ≤ r− 1 and w ∈ B(v). By construction of our vertex
sparsifier H[K], note that the edges (w, u) and (w, v), and their corresponding
weights, distG(w, u) and distG(w, v), are added to H[K]. Thus, there must exist a
path between u and v in H[K] whose stretch is at most the stretch of the distance
estimate δ(u, v). Since in [251] it was shown that for every u, v ∈ K ,

distG(u, v) ≤ δ(u, v) ≤ (2r − 1)distG(u, v),

we immediately get that

distG(u, v) ≤ distH[K](u, v) ≤ (2r − 1)distG(u, v).

We finally analyze the running time for both operations. First, note that
by Lemma 6.4.9, the deterministic algorithm for constructing the hierarchy of
sets DetHierarhcy(G, r) runs in O(rmn1/r log n) time. Moreover, Thorup and
Zwick [251] showed that given a hierarchy of sets, the bunches for all vertices in
G can be computed in O(rmn1/r log n) time. Combining these two bounds we get
that the operation Preprocess(G, r) runs in O(rmn1/r log n) = Õ(mn1/r) time.
For the running time of QuerySparsifier(G,K), recall that H[K] consists of the
union over all bunches of terminal vertices inK . Since the size of a each individual
vertex bunch is bounded by O(rn1/r log n) (Lemma 6.4.9), we get that the size of
H[K] is bounded by O(|K|rn1/r log n) = Õ(|K|n1/r). The latter also bounds the
time to output H[K].

We next show that local sparsifiers for distances are closed under transitivity
and decomposition. While transitivity follows directly from the definition, for the
sake of completeness we include the proof for decomposability.

Lemma 6.4.10 (Transitivity). IfH1 is anα1-local sparsifier ofG, andH2 is aα2-beta
local sparsifier of H1, then H2 is an α1α2-local sparsifier of G.

Lemma 6.4.11 (Decomposability). LetG = (V,E) be an undirected, weighted graph,
let E1, E2 be a partition of the edge set E, and let Hi be an αi-local sparsifier of
Gi = (V,Ei), for each 1 ≤ i ≤ 2. Then H = H1 ∪ H2 is a max{α1, α2}-local
sparsifier of H .

194 CHAPTER 6. FAST INCREMENTAL ALGORITHMS VIA LOCAL SPARSIFIERS

Proof. Let u, v ∈ V be an arbitrary pair of vertices, and let PG(u, v) be the shortest
path distance of weight distG(u, v) between u and v in G. Moreover, for each 1 ≤
i ≤ 2 let PGi(u, v) be the edges of PG(u, v) that belong to Ei. Since Hi is an αi-
sparsifier of Gi, for each 1 ≤ i ≤ r, we know that for each edge e ∈ PGi(u, v),
there exists a path PHi(e) in Hi such that

w(e) ≤ w(PHi(e)) ≤ αi ·w(e). (6.5)
Define

w(PH(u, v)) :=
∑

1≤i≤2

∑
e∈PGi

(u,v)

w(PHi(e)),

to be a path between u and v inH . We next show that weight of this path dominates
as well as stretches distG(u, v) within a max{α1, α2} factor.

Indeed, repeatedly applying Equation 6.5 we have that

w(PH(u, v)) =
∑

1≤i≤2

∑
e∈PGi

(u,v)

w(PHi(e)) ≥
∑

1≤i≤2

∑
e∈PGi

(u,v)

w(e)

= w(PG(u, v)) = distG(u, v),
and,
w(PH(u, v)) =

∑
1≤i≤2

∑
e∈PGi

(u,v)

w(PHi(e)) ≤ max{α1, α2} ·
∑

1≤i≤2

∑
e∈PGi

(u,v)

w(e)

= max{α1, α2} ·w(PG(u, v)) = max{α1, α2} · distG(u, v).
We now have all the necessary tools to prove Theorem 6.4.1.

Proof of Theorem 6.4.1. Let (H, 2r − 1, Õ(n1/r), Õ(n1/r)) be an efficient distance
local sparsifier of G (Lemma 6.4.4), which is closed under transitivity and decom-
position (Lemmas 6.4.10 and 6.4.11). Plugging the parameters α = (2r − 1),
f(n) = Õ(n1/r), g(n) = Õ(n1/r), h(n) = 1 into Theorem 6.3.1 we get an in-
cremental algorithm such that for any pair of vertices u and v it reports a query
estimate δ(u, v) with

distG(u, v) ≤ δ(u, v) ≤ (2r − 1)ℓdistG(u, v),
and handles update and query operations in worst-case time of

Õ

 ℓ∑
j=1

βj−1

βj
+ βℓ

n2/r

 , where β0 = m.

Note that the choice of parameters {β}0≤i≤ℓ does not depend on the factor n2/r .
Therefore, by ignoring this and applying Lemma 6.3.6 we get that there exists a
choice of parameters {β}0≤i≤ℓ such that

Õ

 ℓ∑
j=1

βj−1

βj
+ βℓ

n2/r

 = Õ
(
m1/(ℓ+1)n2/r

)
= Õ(n2/(ℓ+1)n2/r).

6.5. INCREMENTAL ALL PAIR MAX-FLOW 195

6.5 Incremental All Pair Max-Flow

In this section we show how to use our general Theorem 6.3.1 to design online
incremental algorithms for the approximate All-Pair Max-Flow Problem with fast
worst-case update and query time. Concretely, we will show that that assumptions
(1) and (2) inTheorem 6.3.1 are satisfied with certain parameters for flows. Note that
(3) follows immediately by employing the Õ(m) time approximate (s, t)-maximum
flow algorithm due to Peng [210]. We have the following theorem.

Theorem 6.5.1. Let G = (V,E) be an undirected, weighted graph. For every ℓ ≥ 1,
there is an incremental (randomized) approximate All Pair Max Flow algorithm that
maintains for every pair of nodes u and v, a maximum flow estimate δ(u, v) such that

1

O(log4ℓ n)
max-flowG(u, v) ≤ δ(u, v) ≤ max-flowG(u, v),

with wort-case update and query time of

Õ(n2/(ℓ+1)).

We start by introducing the usual definitions of sparsifiers and vertex sparsifiers
for flows. Having defined these, the definition of local sparsifiers becomes appar-
ent from the general definition we introduced in Section 6.2. Let G = (V,E) be a
undirected, weighted graph with a terminal set K ⊆ V . Let d be a demand func-
tion over K in G such that d(x, x′) = d(x′, x) and d(x, x) = 0 for all x, x′ ∈ K .
We denote by Px,x′ the set of all paths between x and x′ in G, for all x, x′ ∈ K .
Further, for each edge e ∈ E, let Pe be the set of all paths using edge e. A concur-
rent (multi-commodity) flow f of congestion λ is function over terminal paths in G
such that (1)

∑
p∈Px,x′

f(p) ≥ d(x, x′), for all distinct terminal pairs x, x′ ∈ K , and
(2)
∑

p∈Pe
f(p) ≤ λc(e), for all e ∈ E. We let congG(d) denote the congestion of

the concurrent flow that attains the smallest congestion.

Definition 6.5.2 (Sparsifiers for Flow). Let G = (V,E) be an undirected, weighted
graph. A graph H = (V ′, E′) with V ⊆ V ′ is a flow sparsifier of G with quality
α ≥ 1 iff for every demand function d among any pair of vertices in V

congH(d) ≤ congG(d) ≤ α · congH(d).

Definition 6.5.3 (Vertex Sparsifiers for Flows). Let G = (V,E) be an undirected,
weighted graph with a terminal set K ⊂ V . A graph H = (V,E′) with K ⊆ V ′

is a (vertex) flow sparsifier of G with quality α ≥ 1 iff for every demand function d
among any pair of vertices inK

congH(d) ≤ congG(d) ≤ α · congH(d).

We next show that the flow property in graphs admits efficient local sparsifier
with desirable guarantees.

196 CHAPTER 6. FAST INCREMENTAL ALGORITHMS VIA LOCAL SPARSIFIERS

Lemma 6.5.4 (Efficient Flow Local Sparsifiers). Given an undirected, weighted graph
G = (V,E), there is a randomized algorithm that constructs an efficient flow local
sparsifier with O(log4 n) quality, Õ(m) preprocessing time, and Õ(|K|) query time,
whereK is any set of queried terminals.

We prove the above lemma by using and slightly extending the fast cut-based
decomposition tree due to Räcke, Shah and Täubig [216], and Peng [210]. We remark
that their result is stated only for unweighted graphs, but it easily extends to the
weighted case.

Theorem 6.5.5 ([210, 216]). Given an undirected, weighted graphG = (V,E), there
is an Õ(m) time randomized algorithm FlowSparsify(G) that with high probabil-
ity computes a flow sparsifier H = (V ′, E′) with V ⊆ V ′ satisfying the following
properties

1. H is a bounded degree rooted tree

2. H has quality O(log4 n)

3. The leaf nodes of H correspond to nodes in G,

4. The height of H is at most O(log2 n).

Proof. The original construction of Räcke et al. [216] produces a rooted tree H ′

which satisifes the above properties, except thatH ′ has unbounded degree and the
height of the tree isO(log n). Since we will exploit the bounded degree assumption
in the subsequent applications of our data-structure, here we present a standard
reduction fromH ′ to a bounded degreeH at the cost of increasing the height of the
tree by a logarithmic factor.

LetH ′ be the rooted tree we described above. Let u ∈ H ′ be an internal node of
degree larger than 2 and letC(u) be its children. We start by removing all edges inci-
dent to the childrenC(u) fromH ′, and record all their corresponding edge weights.
Next, we create a bounded degree rooted tree H̃ where the children C(u) are the
leaf nodes, i.e., L(H̃) = C(u), and u is the root of H̃ . To complete the construction
of H̃ we need to define its edge weights. To this end, for any subtree R ⊆ H̃ let
E(L(R)) denote the set of edges incident to leaf nodes in R. We distinguish the
following two cases. (1) If e = (x, y) ∈ E(L(H̃)) and x ∈ L(H̃) = C(u), we set
wH̃(x, y) = wH′(x, u). (2) If e = (x, y) ̸∈ E(L(H̃)), then let H̃x and H̃y be the
trees obtained after deleting the edge e from H̃ . Further, for any subtree R ⊆ H̃
define

w(R) :=
∑

e∈E(L(R))

wH̃(e).

Finally, for e = (x, y) ̸∈ E(L(H̃)) and e ∈ H̃ we set

wH̃(x, y) = min{w(H̃x),w(H̃y)}.

6.5. INCREMENTAL ALL PAIR MAX-FLOW 197

Note that the weight sums w(H̃x) and w(H̃x) can be calculated since we first de-
fined the weights for edges in E(L(H̃)). Also observe that H ′ remains a tree be-
cause we simply removed children of u (which could be viewed as a star) and re-
placed this by another bounded degree tree H̃ . We repeat the above process for
every internal node of H ′ until H ′ becomes a bounded degree rooted tree, and de-
note by H the final resulting tree.

We claim that H has depth at most O(log2 n). Recall that the initial height of
H ′ wasO(log n), and every replacement of the star centered at a non-terminal with
a bounded degree tree increases the height by an additive ofO(log n). Summing up
over O(log n) levels, we get the claimed bound.

Finally, it is easy to see thatH is flow sparsifier of quality 1 forH ′ with respect
to all leaf nodes of H ′, which in turn correspond to the nodes of graph G. Thus, H
is also a flow sparsifier for G with quality O(log4 n).

We now have all the necessary tools to prove Lemma 6.5.4.

Proof of Lemma 6.5.4. We show how to implement the two operations of the effi-
cient local flow sparsifier (H,O(log4 n)), argue about its correctness, and then an-
alyze the running time of each operation.

In the preprocessing phase, given a graph G, we simply invoke
FlowSparsify(G) from Theorem 6.5.5 and let H be the resulting sparsifier.
For implementing the query operation, let K denote the set of queried terminals.
The main idea for constructing a (vertex) flow sparsifierH[K] of G with respect to
K is to exploit the fact that H is a tree. Concretely, let H[K] be an initially empty
graph. For v ∈ K , let P (v, r,H) be the path between v and r in H , where r is the
root of H (since v ∈ K ⊆ V , recall that v is a leaf node of H by Property (3) in
Theorem 6.5.5). For each v ∈ K , and every edge e ∈ P (v, r,H), we add e with
weight wH(e) to H[K]. Finally, we return H[K] as a (vertex) flow sparsifier of G
with respect toK .

We now argue about the correctness of H[K]. First, we show that H[K] is a
quality 1 (vertex) flow sparsifier of H with respect to K . To see this, note that
since H is a tree, every (multi-commodity) flow among any two leaf vertices (u, v)
is routed according to the unique shortest path between between u and v in H , de-
noted byP (u, v,H). SinceH[K] is formed taking the union of the pathsP (v, r,H),
for each v ∈ K , and P (u, v,H) ⊆ (P (v, r,H) ∪ P (u, r,H)), it follows that
P (u, v,H) is also contained in H[K]. Thus every flow we can route in H among
any two pairs inK , we can feasible route in H[K]. For the next direction, observe
that by construction H[K] ⊆ K . Therefore, any flow among any two pairs in K
that can be feasibly routed in H[K], can also be routed in H (this follows since H
has more edges than H[K], and thus the routing in H has more flexibility). Com-
bining the above we get thatH[K] is a quality 1 (vertex) flow sparsifier ofH . Since
H is flow sparsifier ofG with qualityO(log4 n) (Property (2) in Theorem 6.5.5) and
K ⊆ V , applying transitivity onH[K] andH (which we will shortly prove) we get
that H[K] is a quality O(log4 n) (vertex) flow sparsifier of G with respect toK .

198 CHAPTER 6. FAST INCREMENTAL ALGORITHMS VIA LOCAL SPARSIFIERS

We finally analyze the running time for both operations. Recall that the oper-
ation Preprocess(G) is implemented by simply invoking FlowSparsifiy(G). By
Theorem 6.5.5, we know that the latter can be implemented in Õ(m), which in
turn bounds the running time of our preprocessing step. For the running time
of QuerySparsifier(G,K), recall that H[K] consists of the union over the paths
P (v, r,H), for each v ∈ K . Since the length of each such path is bounded by
O(log2 n) (Property (4) in Theorem 6.5.5), we get that the size ofH[K] is bounded
by O(|K| log2 n) = Õ(|K|). Note that after having access to any leaf vertex v, the
path P (v, r,H) can be retrieved from H in time proportional to its length. This
implies that the time to output H[K] is also bounded by Õ(|K|).

We next show that local sparsifiers for flows are closed under transitivity and
decomposition. While transitivity follows directly from the definition, for the sake
of completeness we include the proof for decomposability.

Lemma6.5.6 (Transitivity). IfH1 is anα1-local sparsifier ofG, andH2 is anα2-local
sparsifier of H1, then H2 is an α1α2-local sparsifier of G.

Lemma 6.5.7 (Decomposability). LetG = (V,E) be an undirected, weighted graph,
let E1, E2 be a partition of the edge set E, and let Hi be an αi-local sparsifier of
Gi = (V,Ei), for each 1 ≤ i ≤ 2. Then H = H1 ∪ H2 is an max{α1, α2}-local
sparsifier of H .

Proof. Consider a demand d among any pair of vertices u, v ∈ V that is
routable in G. Let f a (multi-commodity) flow that routes d, and let D =
{(p1, f(p1)), (p2, f(p2)), . . . , (pℓ, f(pℓ))} be a flow-decomposition, where pi is a
path, and f(pi) is the amount of flow set along this path. Note that a flow
path decomposition also specifies a demand since for any u, v ∈ V , d(u, v) =∑

p∈D(u,v) f(p), where D(u, v) is all the paths in D whose endpoints are exactly u
and v. Fix any path p ∈ D, and let p(1) and p(2) be the set of subpaths of p that use
only edges from G1 and G2, respectively (note that p(1) and p(2) partition p). Note
that the set of paths p(1) and p(2) induce demands in G1 and G2. Taking the union
over all paths p ∈ D will induce demands d1 inG1 and d2 inG2 with d = d1+d2,
and these demands are routed among flow paths that lie entirely within G1 or G2.
By the definition of flow-sparsifier, these demands are also routable in H1 and H2,
and hence the demand d1 + d2 = d is routable in H .

For the other direction assume that a demand d among any pair of vertices
u, v ∈ V is routable in H . Similarly to above, let D be the corresponding path
decomposition of the flow f that routes d. Fix any path p ∈ D, and let p(1) and
p(2) be the set of subpaths of p that use only edges from H1 and H2. Note that H1

andH2 might have extra vertices that do not belong to V . However, the endpoints
of every path p′ belonging to p(1) ∪ p(2) must be from V . This means that the
these paths induced in H1, and H2 are among pairs of vertices in V . Thus, taking
the union over all paths p ∈ D will induce demands d1 in H1 and d2 in H2 with
d = d1 + d2, which are routed among flows path that lie entirely in H1 and H2,

6.6. INCREMENTAL TREE FLOW SPARSIFIER (RÄCKE TREE) 199

respectively. By the definition of flow sparsifiers, these demands routed in G1 and
G2 with congestion max{α1, α2}, respectively. Thus we can also route their sum
d = d1 + d2 with congestion max{α1, α2} in G.

We now have all the necessary tools to prove Theorem 6.5.1.

Proof of Theorem 6.5.1. Let (H,O(log4 n), Õ(1), Õ(1)) be an efficient flow local
sparsifier of G (Lemma 6.5.4), which is closed under transitivity and decomposi-
tion (Lemmas 6.5.6 and 6.5.7). Plugging the parameters α = O(log4 n), f(n) =
Õ(1), and g(n) = Õ(1) inTheorem 6.3.1 we get an incremental algorithm such that
for any pair of vertices u and v it reports a query estimate δ(u, v) with

1

Õ(log4ℓ n)
max-flowG(u, v) ≤ δ(u, v) ≤ max-flowG(u, v),

and handles update and query operations in worst-case time of

Õ

 ℓ∑
j=1

βj−1

βj
+ βℓ

 , where β0 = m.

Note that the choice of parameters {β}0≤i≤ℓ does not depend on the factor
poly(log n))2. Therefore, by ignoring this and applying Lemma 6.3.6 we get that
there exists a choice of parameters {β}0≤i≤ℓ such that

Õ

 ℓ∑
j=1

βj−1

βj
+ βℓ

 = Õ
(
m1/(ℓ+1)

)
= Õ(n2/(ℓ+1)).

6.6 Incremental Tree Flow Sparsifier (Räcke Tree)

In this section we show that a slightly modified version of the algorithm used to
prove Theorem 6.3.1 and a few extensions allow us to design a fast incremental al-
gorithm for maintaing a (multi-commodity) flow sparsifier H of a graph G with
poly-logarithmic quality. Most importantlyH will be a tree graph that satisfies cer-
tain interesting properties that we will exploit to maintain other dynamic problems.

Our extensions build upon the following twomain ideas. First, wewant to argue
that the efficient local sparsifier is a tree. Indeed, observe that the efficient local
sparsifierH produced by Lemma 6.5.4 produces a tree (Property (1)), and moreover,
by definition of local sparsifiers, the vertex sparsifier H[K] that we query from H
with respect to any set of terminalsK must also be a tree. Throughout we will refer
to H as a tree flow sparsifier. Now, recall that in Algorithm 6.1 we have an update
rule for rebuilding tree flow sparsifiers. Our goal is to show that under this update
rule, the updated sparsifiers still remain trees. We observe that this becomes clear
once one formalizes the update process, as shown below.

200 CHAPTER 6. FAST INCREMENTAL ALGORITHMS VIA LOCAL SPARSIFIERS

Let H be a tree flow sparsifier of G = (V,E), let E0 be some set of edges
with V (E0) ⊆ V , and let H[V (E0)] be a (vertex) flow sparsifier of G obtained by
queryingH with respect toV (E0). Moreover, letH ′[V (E0)] be a tree flow sparsifier
of H[V (E0)] ∪ E0. Then we have that

H ′ := (H \H[V (E0)]) ∪H ′[V (E0)]

is indeed a tree flow sparsifier of G ∪ E0.
The second idea we need is to ensure that at any point of time our incremental

algorithm maintains a tree flow sparsifier. Note that this is not the case in Algo-
rithm 6.1 since for answering queries (see Algorithm 6.2) it was sufficient to con-
sider the sparsifierHℓ−1 plus the edge setEℓ. To overcome this, we simplymaintain
an additional tree flow sparsifier Hℓ at level ℓ of the hierarchy, and after each edge
insertion we rebuild Hℓ. Concretely, Hℓ is updated by the above rule using the
sparsifier Hℓ−1, the edge set Eℓ and the (vertex) flow sparsifier Hℓ−1[V (Eℓ)] that
is obtained by querying Hℓ−1 with respect to V (Eℓ). This modification gives that
Hℓ is tree flow sparsifier of G at any point of time at the cost of increasing the
quality guarantee by a poly-logarithmic factor but not affecting our running time
guarantee.

Combining the above ideas leads to the following theorem.

Theorem 6.6.1. Let G = (V,E) be an undirected, weighted graph. For every ℓ ≥ 1,
there is an incremental (randomized) algorithm that maintains a tree flow sparsifier
H ofG with quality O(log8ℓ n) and depth O(ℓ log2 n). The worst-case update time is
Õ(n2/(ℓ+1)).

6.6.1 Applications of tree flow sparsifiers

We next show how to apply Theorem 6.6.1 for designing efficient incremental algo-
rithm for cut/flow based problems.

Incremental Maximum Concurrent Flow. Recall from Section 6.5 that
congG(d) is the congestion of the concurrent flow that attains the smallest con-
gestion among all flows that route demand d supported on the terminalsK . Recall
from Section 6.1 that given k demand pairs {(si, ti,d(i))}ki=1, the vector dwill have
O(k) non-zero entries. In the Maximum Concurrent Flow Problem the we want to
find a flow that minimizes congG(d).

The fastest approximation algorithm for solving theMaximumConcurrent Flow
Problem is due to Sherman [229].

Theorem 6.6.2 ([229]). Let ε > 0. Given an undirected, weighted graph G = (V,E)
and a demand vector d describing k demand pairs, there is an Õ(mk) algorithm that
approximates congG(d) within a (1 + ε) factor.

In the dynamic version of this problem, we want to construct a data-structure
that supports the following operations

6.6. INCREMENTAL TREE FLOW SPARSIFIER (RÄCKE TREE) 201

• Insert(u, v): insert the edge (u, v) in the graph, and

• Query(d): return the congestion congG(d) for routing demand d in the cur-
rent graph G.

Now, given Theorem 6.6.1, we just maintain tree flow sparsifierH . Then, given
a query {(si, ti,di)}ki=1 describing k demand pairs, we do the following. Let K
be the terminals including all si and ti. Then, we just run Sherman’s algorithm on
H[K] (which is the union of root-to-leaf paths of all nodes inK). This leads to the
following corollary.

Corollary 6.6.3. For every ℓ ≥ 1, there is an incremental (randomized) approximate
Maximum Concurrent Flow algorithm that maintains for every demand d describing
k demand pairs an estimate δ(d) such that

congG(d) ≤ δ(d) ≤ O(log8ℓ n) congG(d),

with wort-case update of Õ(n2/(ℓ+1)) and query time of Õ(k2)).

Uniform sparsest cut and cut oracles. Recall that the uniform sparsest cut ΦG

of a weighted graph G is defined as

ΦG = min
∅≠S⊂V

capG(S, V \ S)
|S| · |V \ S|

where capG(S, V \ S) =
∑

(u,v)∈E,u∈S,v/∈S w(u, v).
In the dynamic uniform sparsest cut problem, we want to approximateΦG when

given a query. In the dynamic cut oracle problem, we want to maintain a data struc-
ture such that, given a set of nodes S, we can approximate capG(S, V \ S) in time
proportional to |S|.

By Theorem 6.6.1, the above problems reduce to solving them on a tree that
undergoes changes. More importantly, this tree has only polylogarithmic depth.
Employing standard techniques for maintaining information on a dynamic tree (e.g.
ET tree [129] link/cut tree [232] or top tree [19]) leads to the following corollaries.

Corollary 6.6.4. For every ℓ ≥ 1, there is an incremental (randomized) O(log8ℓ n)-
approximate uniform sparsest cut algorithm with wort-case update of Õ(n2/(ℓ+1)).
Given a query, the algorithm returns aO(log8ℓ n)-approximation to the uniform spars-
est cut in O(1) time.

Corollary 6.6.5. For every ℓ ≥ 1, there is an incremental (randomized) cut oracle
algorithm with wort-case update of Õ(n2/(ℓ+1)). Given a set S of nodes, the algo-
rithm returns an O(log8ℓ n)-approximation to the size of the cut induced by S, i.e.
capG(S, V \ S), in time Õ(|S|).

202 CHAPTER 6. FAST INCREMENTAL ALGORITHMS VIA LOCAL SPARSIFIERS

6.7 From Vertex Sparsifiers to Offline Dynamic
Algorithms

In this section we show how to use efficient vertex sparsifier constructions to design
offline (approximate) dynamic algorithms for graph problems with certain proper-
ties while achieving fast amortized update and query time. To achieve this we use
a framework that has been exploited for solving offline 3-connectivity [211]. Our
main contribution is to show that this generalizes to a much wider class of prob-
lems, leading to several interesting bounds which are not yet known in the online
dynamic graph literature.

We start by defining the model. We are given an undirected graph G = (V,E)
and an offline sequence of events or operations x1, . . . , xm, where xi is ether an
edge update (insertion or deletion), or a query qi which asks about some graph
property in G at time i. The goal is to process this sequence of updates in G while
spending total time proportional to O(mf(m)), where f(m) is ideally some sub-
linear function inm.

We next show that an analogue to Theorem 6.3.1 can also be obtained in the
offline graph setting. Our algorithm makes use of the notion of vertex sparsifiers
as well as their useful properties including transitivity and decomposability (see
Section 6.2). In our construction we want graph properties that admit (1) fast al-
gorithms for computing vertex sparsifiers and (2) guarantee that the size of such
sparsifers is reasonably small. We formalize these requirements in the following
definition.

Definition 6.7.1. Let G = (V,E) be a graph, with a terminal set K ⊆ V and let
f(n), g(n) ≥ 1 be functions. We say that (G′, α, f(n), g(n)) is an α-efficient vertex
sparsifier of G with respect to K iff G′ is an α-vertex sparsifier of G, the time to
construct G′ is O(m · f(n)), and the size of G′ is O(|K| · g(n)).

Theorem 6.7.2. Let G = (V,E) be a graph, and for any u, v ∈ V , let P(u, v,G) be
a solution to a minimization problem between u and v inG. Let f(n), g(n), h(n) ≥ 1
be functions, α, ℓ ≥ 1 be parameters associated with the approximation factor, and let
β0, β1, . . . , βℓ with β0 = m be parameters associated with the running time. Assume
the following properties are satisfied

1. G admits an efficient vertex sparsifier (G′, α, f(n), g(n)),

2. G′ is transitive and decomposable,

3. The property P(u, v,G) can be computed inO(mh(n)) time in a graph withm
edges and n vertices.

Then there is an offline (approximate) dynamic algorithm that maintains for every pair
of nodes u and v, an estimate δ(u, v), such that

P(u, v,G) ≤ δ(u, v) ≤ αℓ · P(u, v,G). (6.6)

6.7. FROM VERTEX SPARSIFIERS TO OFFLINE DYNAMIC ALGORITHMS 203

The total time for processing a sequence ofm operations is:

Õ

β0
 ℓ∑

j=1

(
βj−1

βj

)
f(n) + βℓh(n)

 g(n)

 where β0 = m. (6.7)

Before describing the underlying data-structure upon which the above theorem
builds, we reduce the arbitrary sequence of operations into a more structured one,
and also build a particular view for the problem. These will allow us to greatly
simplify the presentation.

Concretely, first we may assume that each edge is inserted and deleted exactly
once during the sequence of operations. We achieve this by simply treating each
edge instance as a new edge, i.e., we assume that each insertion of an edge e = (u, v)
inserts a new edge that is different from all previous instances of (u, v).

Second, since we are given the entire sequence of operations, for each edge ewe
associate an interval [ie, de] which indicates the insertion and deletion time of e in
the operation sequence. Furthermore, we denote by qt the time when query q was
asked in the operation sequence. Let [1,m] denote the interval covering the entire
event sequence. If we are interested in processing updates from a given interval
[r, s], we will define graphs that consists of two types of edges with respect to this
interval:

1. non-permanent edges, which are edges affected by an event in this interval,
i.e., Ep

[r,s] = {e | ie or de ∈ [r, s]},

2. permanant edges, which are edges present throughout the entire interval, i.e.,
Enp

[r,s] = {e | ie < r ≤ s < de}.

Additionally, it will be useful to define the queried vertex pairs within the interval
[r, s]: Q[r,s] = {q | qt ∈ [r, s]}.

Data Structure. Wenowdescribe a generic tree data-structureT , which allows us
to unify our framework and thus greatly simplify the presentation. This tree struc-
ture is obtained by hierarchically partitioning the operation sequence into smaller
disjoint intervals. These intervals induce graphs that are suitable for applying ver-
tex sparsifiers, which in turn allow us to process updates in a fast way, while paying
some error in the accuracy of the query operations.

Consider some integer parameter ℓ ≥ 1 and parameters β0, β1, . . . , βℓ with
β0 = m. The tree T has ℓ + 1 levels, where each level i is associated with the
parameter βi, i = 0, . . . , ℓ. Each node of the tree stores some interval from the event
sequence. Formally, our decomposition tree T satisfies the following properties:

1. The root of the tree stores the interval [1,m].
2. The intervals stored at nodes of same level are disjoint.
3. Each interval [r, s] stored at a node in T is associated with

204 CHAPTER 6. FAST INCREMENTAL ALGORITHMS VIA LOCAL SPARSIFIERS

• a graph G[r,s] =
(
V,Ep

[r,s]

)
,

• a graph of new permanent edgesH[r,s] = G[r,s] \G[q,t], whereGq,t is the
parent of G[r,s] in T (if any).

• a set of boundary vertices ∂[r,s] = V (Enp
[r,s]) ∪ V (Q[r,s]).

4. If [r, s] ⊆ [q, t] then it holds that (a) ∂[r,s] ⊆ ∂[q,t], and (b) Ep
[q,t] ⊆ E

p
[r,s].

5. The length of the interval stored at a node at level i is βi.
6. A node at level i has βi/βi+1 children.
7. The number of nodes at level i is at most O(β0/βi).

The lemma below shows that a decomposition tree can be constructed in time
proportional to the length of the operation sequence times the height of the tree.

Lemma 6.7.3. LetG = (V,E) be a dynamic graph where the sequence of operations
is revealed upfront. Then there is an algorithm that computes the decomposition tree
T in O(ℓm) time, where m denotes the length of the operation sequence and ℓ is the
height of the tree.

Proof. Let T be a tree with a single node (corresponding to its root) that stores the
interval [1,m]. We augment T in the following natural way: (a) We partition the
interval [1,m] into β0/β1 = m/β1 disjoint intervals, each of length β1. (b) For each
of these intervals we create a node in the tree T , and connect each node with the
root of T , i.e., those nodes form the children of the root, and thus the nodes at level
1 of T . (c) We recursively apply steps (a) and (b) to the newly generated nodes until
we reach the (ℓ+ 1)-st level of the tree.

By the construction above, it easily follows that the generated tree T satisfies
properties (1), (2), (4), (5), (6) and (7). Thus, it remains to show how to compute the
quantities in (3). This can be achieved by (a) computing the intervals [ie, de], for
every edge e in the sequence (note that this is possible because we assumed that
every edge is inserted and deleted exactly once within the interval [1,m]), and (2)
for each node in the tree, computing the sets Enp

[r,s] and E
p
[r,s].

For the running time, observe that computing the intervals [ie, de] takes O(m)
time. Having computed these intervals, we can level-wise compute the permanent
and non-permanent edges for each node in that particular level. By disjointedness
of the intervals, the amount of work we perform per level is O(m). Since there are
most O(ℓ) levels, it follows that the running time for constructing the decomposi-
tion tree is O(ℓm).

Computing vertex sparsifiers in the hierarhcy. We next show how to effi-
ciently compute a vertex sparsifier G′

[r,s] for each node G[r,s] from the decomposi-
tion tree T . The main idea behind this algorithm is to leverage the sparsifier com-
puted at the parent nodes as well as apply the efficient vertex sparsifiers from The-
orem 6.7.2 Part 1. The procedure accomplishing this task for a single node of the

6.7. FROM VERTEX SPARSIFIERS TO OFFLINE DYNAMIC ALGORITHMS 205

tree T is formally given in Algorithm 6.7. To compute the vertex sparsifier for every
node, we simply apply it in a top-down fashion to the nodes of T .

Algorithm 6.7: VertexSparsify(G[r,s])

1 if G[r,s] is the root node then
2 G′′

[r,s] = G′
[r,s] ← (V, ∅), i,e, the empty graph.

3 else
4 Let G[q,t] be the parent of G[r,s] in T
5 G′′

[r,s] ←
(
G′

[q,t] ∪H[r,s]

)
, where G′

[q,t] is an efficient vertex sparsifier of G[q,t]

with respect to ∂[q,t]
6 Let G′

[r,s] be an α-efficient vertex sparsifier of G′′
[r,s] with respect to

∂[r,s] (Theorem 6.7.2 Part 1)
7 return G′

[r,s]

To argue about the usefulness of Algorithm 6.7, we need to bound the quality
of sparsifiers produced at the nodes of T . The lemma below show that the quality
grows multiplicatively with the number of levels in T .

Lemma 6.7.4. Let G[r,s] be a node of T at level i ≥ 0 . Then G′ =
VertexSparsify(G[r,s]) outputs an αi-efficient vertex sparsifier of G[r,s] with respect
to ∂[r,s]

Proof. We proceed by induction on i. For the base case, i.e., i = 0, G[1,m] is the
root node. Since Ep

[1,m] = ∅ by definition of permanent edges, we get thatG′
[1,m] =

G[1,m], i.e., G[1,m] is a sparsifier of itself.
Let G[r,s] be a node at level i > 0. Let G[q,t] be the parent of G[r,s] in T , and let

G′
[q,t] be its cut sparsifier at level (i − 1), as defined in Algorithm 6.7. By Property

(4) of T note that Ep
[q,t] ⊆ Ep

[r,s] since [r, s] ⊆ [q, t]. Also recall that H[r,s] =

G[r,s]\G[q,t]. By induction hypothesis, we know thatG′
[q,t] is anα

i−1-efficient vertex
sparsifier of G[q,t] with respect to ∂[q,t]. This together with the decomposability
property in Theorem 6.7.2 Part 2 imply that thatG′′

r,s = G′
[q,t]∪ (G[r,s] \G[q,t]) is an

αi−1-efficient vertex sparsifier ofG[q,t]∪(G[r,s]\G[q,t]) = G[r,s] with respect to ∂[q,t].
Now, by Theorem 6.7.2 Part 1 we get that G′

[r,s] is an α-efficient vertex sparsifier
of G′′

[r,s] with respect to ∂[r,s]. Since ∂[r,s] ⊆ ∂[q,t], and applying the transitivity
property (Theorem 6.7.2 Part 2) onG′

[r,s] andG
′′
[r,s], we get thatG′

[r,s] is an α
i−1+1 =

αi-efficient vertex sparsifier of G[r,s].

We now state a crucial property of the nodes in the decomposition tree T , which
allows us to get a reasonable bound on the running time for computing vertex sprasi-
fiers for the nodes in T .

Lemma 6.7.5. Let G[r,s] be a node in the decomposition tree T , and let G[q,t] be its
parent. Then we have that the number of new permanent edges ofG[r,s] is bounded by
the number of non-permanent edges of its parent, i.e., |E

(
H[r,s]

)
| ≤ |Enp

[q,t]|.

206 CHAPTER 6. FAST INCREMENTAL ALGORITHMS VIA LOCAL SPARSIFIERS

Proof. If an edges in inH[r,s], then it is not inGp
[r,s], thus it is a non-permanent edge

in G[q,t].

The lemma below gives a bound on the running time for computing vertex spar-
sifers in T .

Lemma 6.7.6. The total running time for computing the vertex sparsifiers for each
node in the decomposition tree T of height ℓ is bounded by

Õ

β0 ·
 ℓ∑

j=1

βj−1

βj

 , where β0 = m.

Proof. For i ≥ 1, let Y (i) be the total time for computing the vertex sparsifiers for
all the nodes in T up to (and including) level i. Furthermore, let Z(i) be the total
time for computing the vertex sparsifier of the nodes at level i in Y (and excluding
other levels). We will show by induction on the number of levels i that T (i) =

O
(
β0 ·

(∑i
j=1

βj−1

βj

)
f(n)g(n)

)
, which with i = k implies the claim we want to

prove.
For the base case, i.e., i = 1, consider any node G[r,s] at level 1 of T . By

construction of T , G[r,s] contains at most O(β0) permanent edges. Furthermore,
note that the parent of G[r,s] is the root node G[1,m], for which G′

[1,m] = (V, ∅).
Thus, by Theorem 6.7.2 Part 1 we get that the time to compute an efficient vertex
sparsifier per node is O(β0 · f(n)). By Property (7) of T , the number of nodes
at level 1 is O(β0/β1), implying that the total running time is Y (1) = Z(1) =

O
(
β0

(
β0

β1

)
f(n)

)
= O

(
β0

(
β0

β1

)
f(n)g(n)

)
, as desired.

We next show the inductive step. Let G[r,s] be a node at level i > 1, and let
G[q,t] be its parent. We want to bound the size of the intermediate graph G′′

[r,s] =

(G′
[q,t] ∪H[r,s]), as defined in Algorithm 6.7, which in turn determines the running

time for computing an efficient vertex sparsifier of G[r,s]. To this end, first observe
thatTheorem 6.7.2 Part 1 implies that the size of sparsifierG′

[q,t] ofG[q,t] is bounded
by

O(|∂[q,t]| · g(n)) ≤ |V (Enp
[r,s]) ∪ V (Q[r,s])| · g(n) ≤ O(βi−1 · g(n)),

since the number of non-permanent edges and queries is proportional to the length
of the interval being considered. Second, by Lemma 6.7.5, we also have that
|E(H[r,s])| ≤ |E

np
q,t | ≤ O(βi−1), thus giving that |G′′

[r,s]| ≤ O(βi−1 · g(n)). As
Algorithm 6.7 runs CutSparsify on the graph G′′

[r,s], Theorem 6.7.2 Part 1 gives
that the running time to compute an efficient vertex sparsifier for the node G[r,s]

is O(βi−1 · f(n)g(n)), and that its size is O(βi−1 · g(n)). Combining this together
with the fact that the number of nodes at level i is at most O(β0/βi) (Property (7)
of T) imply that

Z(i) = O

(
β0 ·

βi−1

βi
f(n)g(n)

)
.

6.7. FROM VERTEX SPARSIFIERS TO OFFLINE DYNAMIC ALGORITHMS 207

To complete the inductive step, note that by induction hypothesis,

Y (i− 1) = O

β0 ·
 i−1∑

j=1

βj − 1

βj

 f(n)g(n)

 .

Summing over this and the bound on Z(i) we get

Y (i) = Y (i− 1) + Z(i)

= O

β0 ·
 i−1∑

j=1

βj−1

βj

 f(n)g(n)

+O

(
β0 ·

(
βi−1

βi

)
f(n)g(n)

)

= O

β0 ·
 i∑

j=1

βj−1

βj
f(n)g(n)

 .

Processing operations in the hierarchy. So far we have shown how to reduce
the sequence of operations into smaller intervals in a hierarchical manner, while
(approximately) preserving the properties of the edges and queries involved in the
offline sequence. In what follows, we observe that for processing these events, it is
sufficient to process the nodes (and their corresponding intervals) stored at the last
level ℓ of the tree decomposition T (note that this is possible because intervals at
level ℓ form a partitioning of the event sequence [1,m], and all vertex pairs within
intervals that will be involved in edge updates or queries are preserved using vertex
sparsifiers).

The algorithm for processing the updates is quite simple: for every node G[r,s]

at level ℓ of T , we process all operations in the interval consecutively: for each
edge insertion or deletion we add or remove that suitable edges to G′

[r,s], and for
each query (x, y) we run on the vertex sparsifier G′

[r,s] the static algorithm from
Theorem 6.7.2 Part 3 to calculate the property P(x, y,G′

[r,s]) between x and y in
G′

[r,s]. (note that this is possible since ∂[r,s] ⊇ {x, y} by construction of T).
We next analyze the total time for processing the sequence of events in the last

level of T .

Lemma 6.7.7. The total time for processing the whole sequence of operations at level
ℓ of the decomposition tree T is Õ(β0βℓ · g(n)h(n)), where β0 = m.

Proof. As in the worst-case there can be at most O(βℓ) queries within the interval,
and since the size of G′

[r,s] is also bounded by O(βℓg(n)), by Theorem 6.7.2 Part 3
it follows that answering all the queries and processing the non-permanent edges
within a single interval at level ℓ is bounded by Õ(β2ℓ g(n)h(n)). Combining this
with the fact that the number of nodes at level ℓ isO(β0/βℓ) (Property (7) of T), we
get that the total cost for processing the queries is Õ(β0βℓ · g(n)h(n)).

208 CHAPTER 6. FAST INCREMENTAL ALGORITHMS VIA LOCAL SPARSIFIERS

Combining Lemma 6.7.6 and Lemma 6.7.7 leads to an overall performance of

Õ

β0
 ℓ∑

j=1

(
βj−1

βj

)
f(n) + βℓh(n)

 g(n)

 where β0 = m,

which proves the claimed total update time in Theorem 6.7.2.
We finally prove the correctness of our algorithm. Concretely, we show that

the estimate we return when processing any query (x, y) in the last level of the
hierarchy approximates the property P of the graph G up to an αℓ factor, thus
proving the claimed estimate in Theorem 6.7.2.

To this end, let qi be a query in the sequence of operations [1,m]. Since the
intervals at level ℓ of T form a partitioning of [1,m], there must exist an interval
[r, s] that contains the query qi. Let (x, y) be the queried vertex pair of qi. By
Lemma 6.7.4, we get that the graph G′

[r,s] at level ℓ is an αℓ-vertex sparsifier of
G[r,s] with respect to ∂[r,s]. Since by construction ∂[r,s] ⊇ {x, y}, we get that the
G′

[r,s] approximates the property P(x, y,G) of G[r,s] up to an αℓ factor. Finally,
recall that we run the algorithm fromTheorem 6.7.2 Part 3 onG′

[r,s], thus worsening
the approximation in the worst-case by at most a constant factor, which yields the
claimed bound.

6.7.1 Applications to Offline Shortest Paths and Max Flow

In this section we show how to use our general Theorem 6.7.2 to design offline
dynamic algorithms for the approximate All Pair Shortest Paths and All Pair Max
Flow with reasonably small total update time.

We first consider shortest paths. Recall that our goal is to show that assump-
tions (1), (2) and (3) fromTheorem 6.7.2 are satisfied with certain parameters for the
shortest path measure. For (1) we make the following observation: given a graph
G, a subset of terminals K , and a parameter r ≥ 1, we can construct an efficient
(vertex) distance sparsifier (H, (2r− 1), Õ(n1/r), Õ(n1/r)) by simply constructing
an efficient local sparsifier forG using Lemma 6.4.4 and querying it with respect to
K . Also note that assumption (2) is satisfied by the transitivity and decomposability
of H , and finally recall that (3) follows by any Õ(m) time single pair shortest path
algorithm. These together imply the following result.

Theorem 6.7.8. LetG = (V,E) be an undirected, weighted graph. For every r, ℓ ≥ 1,
there is an offline fully dynamic approximate All Pair Shortest Path algorithm that
maintains for every pair of nodes u and v, a distance estimate δ(u, v) such that

distG(u, v) ≤ δ(u, v) ≤ (2r − 1)ℓdistG(u, v).

The total time for processing a sequence ofm operations is

Õ(m ·m1/(ℓ+1)n2/r).

6.8. IMPLICATIONS ON HARDNESS OF APPROXIMATE DYNAMIC PROBLEMS 209

We now proceed with max flow. Following essentially the same idea as with
shortest paths, we need to show that assumptions (1), (2) and (3) fromTheorem 6.7.2
are satisfied with certain parameters for the max flow measure. For (1) we have the
following: given a graph G, a subset of terminals K , we can construct an efficient
(vertex) flow sparsifier (H,O(log4 n), Õ(1), Õ(1)) by simply constructing an effi-
cient flow local sparsifier for G using Lemma 6.5.4 and querying it with respect to
K . Also note that assumption (2) is satisfied by the transitivity and decomposability
ofH , and finally recall that (3) follows by employing the Õ(m) time (approximate)
(s, t)-maximum flow algorithm due to Peng [210]. These together imply the follow-
ing theorem.

Theorem 6.7.9. Let G = (V,E) be an undirected, weighted graph. For every ℓ ≥
1, there is an offline fully dynamic approximate All Pairs Max Flow algorithm that
maintains for every pair of nodes u and v, a flow estimate δ(u, v) such that

1

Õ(log4ℓ n)
max-flowG(u, v) ≤ δ(u, v) ≤ max-flowG(u, v).

The total time for processing a sequence ofm operations is

Õ(m ·m1/(ℓ+1)).

6.8 Implications on Hardness of Approximate
Dynamic Problems

6.8.1 Approximate max flow and cut sparsifiers

Assuming the OMv conjecture, Dahlgaard [78] show that any incremental exact
max flow algorithm on undirected graphs must have amortized update time at least
Ω(n1−o(1)). However, the hardness of approximation is not known7:

Proposition 6.8.1. There is no polynomial lower bound for dynamic ω(polylog(n))-
approximate max flow in the offline setting (and also in the online incremental setting).

This follows directly from Theorems 6.5.1 and 6.7.9. Thus the important open
problem is whether we can prove a hardness for dynamic (1+ ϵ)-approximate max
flow algorithms on undirected graphs for a constant ϵ > 0.

On the other hand, it is not known whether, given a set of k terminals,
there is a (1 + ϵ)-approximate cut (vertex) sparsifier of size poly(k, 1/ϵ) or even
poly(k, 1/ϵ, log n). If a cut sparsifier can only contain terminals as nodes, then the
approximation ratio must be at leastΩ(

√
log k/ log log k) [191]. If we need an exact

cut sparsifier, then the size must be at least 2Ω(k) [172].
7However, on directed graphs, the hardness of approximation is known. This is because even

dynamic reachability is hard under several conjectures [6, 135].

210 CHAPTER 6. FAST INCREMENTAL ALGORITHMS VIA LOCAL SPARSIFIERS

In what follows we draw a connection between these two open problems; if
there is a very efficient algorithm for the above cut sparsifier, then there cannot be
a Ω(n1−o(1)) lower bound in the offline setting for the dynamic approximate max
flow. Moreover, if the cut-sparsifier has size almost best possible, then there cannot
be even a super-polylogarithmic lower bound. Concretely, we show the following.

Theorem 6.8.2. If there is an algorithm that, given a undirected graph G = (V,E)
withm edges and a set T ⊂ V of k terminals, constructs an (1 + ϵ)-approximate cut
vertex sparsifier of size s = poly(k, 1/ϵ, log n) in time O(m poly(log n, 1/ϵ)), there
is an offline dynamic algorithm for maintaining (1 + ϵ′)-approximate value of max
flow with update time u = O(n1−γ poly(1/ϵ′)) for some constant γ > 0. Moreover,
if the size of the sparsifier s = k · poly(1/ϵ, log n), then we obtain the update time of
u = O(poly(log n, 1/ϵ′)). The dynamic algorithm is Monte Carlo randomized and it
is correct with high probability.

Proof. Let us assume ϵ′ is a constant for simplicity. The proof generalizes easily
when ϵ′ is not a constant.

First, we only need to consider offline dynamic algorithms where the underling
graph has m = Õ(n) edges at every time step and the length of the update se-
quences is n. This is because there is a dynamic algorithm by [12] that can maintain
a cut sparsifier H = (V,E′) of a graph G = (V,E) when the terminal set is V
with Õ(1) worst-case update. So we can work onH instead, and divide the update
sequences into segements of length n. If we have an offline dynamic algorithmwith
update time u on average on each period, then the average update time is Õ(u) over
the whole sequence.

We set ϵ = ϵ′/10 log n. Suppose that the sparsifier from the assumption has
size only s = k · poly(1/ϵ, log n) = Õ(k). Then, we apply the same proof as
in Theorem 6.7.9, except that the number of levels of the decomposition tree will
be log n instead of O(

√
log n). The quality of the cut-sparsifier at any level is at

most (1 + ϵ)logn = (1 + ϵ′/10 log n)logn ≤ (1 + ϵ′). The total running time
will be Õ(m

1+ 1
logn+1) = Õ(n). The latter implies that update time on average

is O(polylog(n)).
Assume that s = kc · poly(1/ϵ, log n) = Õ(kc) for some constant c > 1. Then,

we can apply again the same proof from Theorem 6.7.9. By using only two levels of
the decomposition tree, we can obtain an update time of Õ(n1−

1
c+1). Concretely, if

we set β0 = m and β1 = m1/(c+1) then the time for computing the decomposition
tree is β0

β1
· Õ(β0) = Õ(n2−

1
c+1). The total time for running approximate max flow

on the cut-sparsifier in the second level at each step is β0 · Õ(βc1) = Õ(n2−
1

c+1).
Thus it follows that the update time is Õ(n1−

1
c+1) on average.

6.8.2 Approximate distance oracles on general graphs

There are previous hardness results for approximation algorithms for dynamic short-
est path problems (including single-pair, single-source and all-pairs problems) [135].

6.8. IMPLICATIONS ON HARDNESS OF APPROXIMATE DYNAMIC PROBLEMS 211

All such results show a very high lower bound, e.g. Ω(n1−ϵ) or Ω(n1/2−ϵ) time on
an n-node graph. However, they hold only when the approximation factor is a small
constant. It is open whether one can obtain weaker polynomial lower bounds for
larger approximation factors. We show that it is impossible to show super-constant
factor lower-bounds in several settings.

Proposition 6.8.3. There is no polynomial lower bound for dynamic ω(1)-
approximate distance oracles in the offline setting (and also in the online incremental
setting).

More formally, for any lower bound stating thatω(1)-approximate offline dynamic
distance oracle algorithm on n-node graphs requires at least u(n) update time or q(n)
query time, then we have u(n) = no(1) and q(n) = no(1). The same holds for online
incremental algorithm with worst-case update time.

This follows directly from Theorems 6.4.1 and 6.7.8.

6.8.3 Approximate distance oracles on planar graphs

Similar to the situations above, assuming the APSP conjecture, Abboud and Dahl-
gaard [4] show that any offline fully dynamic algorithm for exact distance oracles
on planar graph requires either update time or query time of Ω(n1/2−o(1)). We can
still hope for a hardness result for (1 + ϵ)-approximate distance oracles, but this
remains an important open problem in the field of dynamic algorithms.

Recall the definition of distance approximatingminors fromChapter 7, which are
vertex distance sparsifiers that are required to be minors of the input graph. In the
exact setting, Krauthgamer et al. [170] showed that any distance preserving minor
with respect to k terminals, even when restricted to planar graphs, must have size
Ω(k2) size. Cheung et al. [69] showed that for planar graphs there is a (1 + ϵ)-
distance approximating minor of size Õ(k2ϵ−2). The natural question is whether
there is a (1+ ϵ)-approximateminor distance sparsifier for k terminals that has size
k1.99 · poly(1/ϵ, log n).

We again draw a connection between dynamic graph algorithms and vertex
sparsifiers; if there is a very efficient algorithm for such distance sparsifiers, then we
cannot extend the Ω(n1/2−o(1)) lower bound to the approximate setting. Moreover,
if the sparsifier has the (almost) best possible size, then there cannot be even a super-
polylogarithmic lower bound. More precisely, we show the following.

Theorem 6.8.4. Let G be an undirected graph G = (V,E) with m edges and a
set K ⊂ V of k terminals. If there is an algorithm that constructs a (1 + ϵ)-
distance approximating minor of size s = k2/(1+3γ) · poly(1/ϵ, log n), for some
constant 0 < γ ≤ 1/3, in time O(mpoly(log n, 1/ϵ)), then there is an offline dy-
namic (1+ ϵ′)-approximate distance oracle algorithm for with update and query time
u = O(n1/2−γ/2). In fact, if the size of the sparsifier is s = k ·poly(1/ϵ′, log n), then
we obtain an update and query time of u = O(poly(log n)).

212 CHAPTER 6. FAST INCREMENTAL ALGORITHMS VIA LOCAL SPARSIFIERS

The proof will be very similar to the one inTheorem 6.8.2 except that we need to
be more careful about planarity. Thus we first proving the following useful lemma.

Lemma 6.8.5. Each vertex sparsifier G′
[rp,sp]

corresponding to a node in our decom-
position tree is planar.

Proof. First, consider a sequence of H[r1,s1],H[r2,s2], . . . , H[rp,sp] corresponding to
a path in the decomposition tree, where H[r1,s1] is a child of the root8, and H[ri,si]

is a parent of H[ri+1,si+1]. Observe that ∪1≤i≤pH[ri,si] = G[rp,sp] which is planar.
From Algorithm 6.7, we unfold the recursion and obtain that

G′
[rp,sp]

= VertexSparsify(VertexSparsify(. . .) ∪H[rp−1,sp−1]) ∪H[rp,sp]).

Note that we omit the second parameter of VertexSparsify only for readability.
We assume by induction G′

[rp−1,sp−1]
= VertexSparsify(VertexSparsify(...) ∪

H[rp−1,sp−1]) is planar. We will prove that G′
[rp,sp]

planar. To this end, observe that
G′

[rp−1,sp−1]
is a minor of∪1≤i≤p−1H[ri,si]. Next, we need the following observation.

Claim 6.8.6. LetG1 be a minor ofG2. Let (u, v) be an edge such that u, v ∈ V (G1)∩
V (G2), i.e., the endpoints are nodes of bothG1 andG2. Then,G1∪{(u, v)} is a minor
ofG2∪{(u, v)}. In particular, ifG2∪{(u, v)}(u, v) is planar, then so isG1∪{(u, v)}.

We apply Claim 6.8.6 where G2 = ∪1≤i≤p−1H[ri,si] and G1 = G′
[rp−1,sp−1]

.
As the endpoints of H[ri,si] are in both G1 and G2 by construction and G2 ∪
H[rp,sp] = ∪1≤i≤pH[ri,si] is planar, then G1 ∪H[rp,sp] is planar. Finally, G′

[rp,sp]
=

VertexSparsify(G1∪H[rp,sp]) is a minor ofG1∪H[rp,sp], soG′
[rp,sp]

is planar.

Now, we prove Theorem 6.8.4.

Proof of Theorem 6.8.4. We first prove the case when s = k · poly(1/ϵ, log n). We
again prove the theorem when ϵ′ is a constant for simplicity. Set ϵ = ϵ′/10 log n.
We build the corresponding decomposition tree with log n levels. The quality of the
sparsifier at any level is at most (1+ ϵ)logn = (1+ ϵ′/10 log n)logn ≤ (1+ ϵ′). The
total running time will be Õ(m

1+ 1
logn+1) = Õ(n) using the same argument as in

Lemma 6.3.4. That is the update time on average is O(poly(log n)).
For the case when s = k2/(1+3γ) · poly(1/ϵ, log n), the proof is the same except

the parameters need to be carefully chosen. We set ϵ = ϵ′γ/2. We choose β0 =
m = O(n), β1 = n(1+γ)/2, and βi+1 = n(1+γ−2γi)/2 for i ≥ 0. We get that there
will be at most 1/γ levels in the decomposition tree and thus the quality at each
level is at most

(1 + ϵ)1/γ ≤ eϵ/γ = eϵ
′/2 ≤ (1 + ϵ′)

because (1 + x) ≤ ex for any x and ex/2 ≤ (1 + x) for 0 ≤ x ≤ 1.
8Note that the graph H[r,s] is not defined at the root.

6.9. CONCLUSION 213

For each i, the total time to build the sparsifiers in level i+1 by running the algo-
rithm sparsifier at level i is n/βi+1 · Õ(β

2/(1+3γ)
i). This is because there are n/βi+1

many sparsifiers, and the algorithm is applied on a graph of size Õ(β
2/(1+3γ)
i). By

direct calculation we have that

n/βi+1 · β2/(1+3γ)
i = n

1−(1+γ−2iγ)/2+
(1+γ−2(i−1)γ)

(1+3γ) ≤ n1.5−γ/2.

To see this, note that 2/(1+3γ) ≥ 1 and consider the following chain of inequalities:

(1 + γ − 2(i− 1)γ)

(1 + 3γ)
− (1 + γ − 2iγ)/2

≤ 1 + γ

1 + 3γ
− (i− 1)γ − 1 + γ

2
+ iγ

≤ (1− γ) + γ − 1/2− γ/2
= 1/2− γ/2.

It follows that the total time over all levels is 1
γ ·O(n1.5−γ/2), which is turn implies

an average update time of O(n0.5−γ/2). This completes the proof.

6.9 Conclusion

In this chapter, we showed a fast incremental algorithm for approximating all-pairs
shortest paths, all-pairs max flow, multi-commodity concurrent flow and uniform
sparsest cut. Our algorithmic constructions require poly-logarithmic approxima-
tion while achieving sub-linear time for all these problems, except shortest path, for
which our approximate ratio improves to constant. The key building block behind
our meta algorithm is a new sparsification notion, referred to as a local sparsifier,
that generalizes the well-known notion of vertex sparsification. We also system-
ically study the power of (classic) vertex sparsification in the design of efficient
offline dynamic algorithms, where the sequence of updates and queries is given
beforehand.

Our work motivates the study of several important research directions. First, an
important open problem is whether one can construct efficient local sparsifiers for
cuts with constant quality, even when restricted to planar graphs. Recall that our
construction uses trees and that there is a lower bound of Ω(log n) on the quality
when approximating the cut structure of a graph by a tree [215].

Second, an interesting problem is to construct efficient local sparsifiers for ef-
fective resistances. At first, this problem seems promising as there are already near-
linear time construction of vertex resistance sparsifiers [88], known as approximate
Schur complements. However, this construction employs approximate Gaussian
elimination and thus it is highly sequential. It is worth investigating whether there
are other ways of constructing such sparsifiers that would extend to the local set-
ting.

CHAPTER 7
Graph Minors for Preserving

Terminal Distances
Approximately – Lower and

Upper Bounds

Given a graphwhere vertices are partitioned into k terminals and non-terminals, the
goal is to compress the graph (i.e., reduce the number of non-terminals) using minor
operations while preserving terminal distances approximately. The distortion of a
compressed graph is the maximum multiplicative blow-up of distances between all
pairs of terminals. We study the trade-off between the number of non-terminals and
the distortion. This problem generalizes the Steiner Point Removal (SPR) problem,
in which all non-terminals must be removed.

We introduce a novel black-box reduction to convert any lower bound on dis-
tortion for the SPR problem into a super-linear lower bound on the number of non-
terminals, with the same distortion, for our problem. This allows us to show that
there exist graphs such that every minor with distortion less than 2, 5/2 and 3must
have Ω(k2), Ω(k5/4), and Ω(k6/5) non-terminals, respectively, plus more trade-offs
in between. The black-box reduction has an interesting consequence: if the tight
lower bound on distortion for the SPR problem is super-constant, then allowing any
O(k) non-terminals will not help improving the lower bound to a constant.

We also build on the existing results on spanners, distance oracles and con-
nected 0-extensions to show a number of upper bounds for general graphs, planar
graphs, graphs that exclude a fixed minor and bounded treewidth graphs. Among
others, we show that any graph admits a minor with O(log k) distortion and O(k2)
non-terminals, and any planar graph admits a minor with 1 + ϵ distortion and
Õ(k2ϵ−2 log2 k) non-terminals.

215

216 CHAPTER 7. DISTANCE APPROXIMATING MINORS

7.1 Introduction

Graph compression generally describes a transformation of a large graph G into a
smaller graph H that preserves, either exactly or approximately, certain features
(e.g., distance, cut, flow) of G. Its algorithmic value is apparent, since the com-
pressed graph can be computed in a preprocessing step of an algorithm, so as to
reduce subsequent running time and memory. Some notable examples are graph
spanners, distance oracles and cut/flow sparsifiers.

In this chapter, we study compression using minor operations, which has at-
tracted increasing attention in recent years. Minor operations include vertex/edge
deletions and edge contractions. It is naturally motivated since it preserves cer-
tain structural properties of the original graph, e.g., any minor of a planar graph
remains planar, while reducing the size of the graph. We are interested in vertex
sparsification, where G has a designated subset K of k vertices called the termi-
nals, and the goal is to reduce the number of non-terminals in H while preserving
some feature among the terminals. Recent work in this field studied preserving
cuts and flows. Our focus here is on preserving terminal distances approximately
in a multiplicative sense, i.e., we want that for any pairs of terminals u, v ∈ K ,
distG(u, v) ≤ distH(u, v) ≤ α · distG(u, v), for a small distortion α. This problem,
called Approximate Terminal Distance Preservation (ATDP) problem, has natural ap-
plications in multicast routing [71] and network traffic optimization [226]. It was
also suggested in [170] that to solve the subset travelling salesman problem, one can
compute a compressed minor with a small distortion as a preprocessing step for
algorithms that solve the travelling salesman problem for planar graphs.

ATDP was initiated by Gupta [119], who introduced the related Steiner Point Re-
moval (SPR) problem: Given a treeGwith both terminals and non-terminals, output
a weighted tree G′ with terminals only which minimizes the distortion. Gupta gave
an algorithm that achieves a distortion of 8. Chan et al. [58] observed that Gupta’s
algorithm returned always a minor of G. For general graphs, Kamma et al. [146]
gave an algorithm to construct a minor with distortion O(log5 k). This bound has
been recently improved to O(log2 k) by Cheung [68] and finally to O(log k) by
Filtser [102]. Krauthgamer et al. [170] studied ATDP and showed that every graph
has a minor with O(k4) non-terminals and distortion 1. It is then natural to ask,
for different classes of graphs, what is the trade-off between the distortion and the
number of non-terminals. In this chapter, for different classes of graphs, and with
respect to different allowed distortions, we provide lower and upper bounds on the
number of non-terminals needed.

Further Related Work. Basu and Gupta [30] showed that for outer-planar
graphs, SPR can be solved with distortion O(1). When randomization is allowed,
Englert et al. [94] showed that for graphs that exclude a fixed minor, one can
construct a randomized minor for SPR with O(1) expected distortion. It remains
open whether similar guarantees can be obtained in the deterministic setting.

7.1. INTRODUCTION 217

Krauthgamer et al. [170] showed that solving ATDP with distortion 1 for planar
graphs needs Ω(k2) non-terminals.

In the past few years, there has been a considerable amount of work on vertex
sparsifiers that preserve cuts [24, 60, 72, 94, 180, 191, 197, 216]. In this setting, the
goal is to compress the graph only on the termials while approximately preserving
all possible terminal minimum cuts. This problem is closely connected to distance
sparsification, and there exist techniques to construct vertex sparsifiers for cuts us-
ing distance sparsifiers, and vice versa [94, 214].

A related graph compression is spanners, where the objective is to reduce the
number of edges by edge deletions only. We will use a spanner algorithm (e.g., [20])
to derive our upper bound results for general graphs. Although spanner operation
enjoys much less freedom than minor operation, proving a lower bound result for
it is notably difficult. Assuming the Erdös girth conjecture [98], there are lower
bounds that match the best known upper bounds, but the conjecture seems far from
being settled [256]. Woodruff [259] showed a lower bound result bypassing the
conjecture, but only for additive spanners.

Our Results. For various classes of graphs, we show lower and upper bounds
on the number of non-terminals needed in the minor for low distortion. The table
below summarizes our results. For our lower bound results, we use a novel black-
box reduction to convert any lower bound on distortion for the SPR problem into
a super-linear lower bound on the number of non-terminals for ATDP with the
same distortion. Precisely, we show that given any graph G∗ such that solving its
SPR problem leads to a minimum distortion of α, we use G∗ to construct a new
graph G such that every minor of G with distortion less than α must have at least
Ω(k1+δ(G∗)) non-terminals, for some constant δ(G∗) > 0. The lower bound results
in the above table are obtained by using for G∗ a complete ternary tree of height 2,
which was shown that solving its SPR problem leads to minimum distortion 3 [119].
More trade-offs are shown by using forG∗ a complete ternary tree of larger heights.

The black-box reduction has an interesting consequence. For the SPR problem
on general graphs, there is a huge gap between the best known lower and upper
bounds, which are 8 [58] and O(log k) [102]; it is unclear what the asymptotically
tight bound would be. Our black-box reduction allows us to prove the following re-
sult concerning the tight bound: for general graphs, if the tight bound on distortion
for the SPR problem is super-constant, then for any constant c > 0, even if ck non-
terminals are allowed in the minor, the lower bound will remain super-constant.
See Theorem 7.3.13 for a formal statement of this result.

We also build on the existing results on spanners, distance oracles and connected
0-extensions to show a number of upper bound results for general graphs, planar
graphs and graphs that exclude a fixed minor. Our techniques, combined with an
algorithm in Krauthgamer et al. [170], yield an upper bound result for graphs with
bounded treewidth. In particular, our upper bound on planar graphs implies that al-
lowing quadratic number of non-terminals, we can construct a deterministic minor

218 CHAPTER 7. DISTANCE APPROXIMATING MINORS

Graph Upper Bound Lower Bound
(distortion, size) (distortion, size)

General (2q − 1, O(k2+2/q)) (2− ε,Ω(k2))
General − (2.5− ε,Ω(k5/4))

(3− ε,Ω(k6/5))
(see Theorem 7.3.6 for more guarantees)

B.-Treewidth p (2q − 1, O(p1+2/qk)) (1,Ω(pk)) [170]
Exc.-Fix.-Minor (O(1), Õ(k2) −
Planar (1 + ε, Õ((k/ε)2) (1 + o(1),Ω(k2)) [170]
General (O(log k), 0) [102] −
Outerplanar (O(1), 0) [30] −
Trees (8, 0) [119] (8− o(1), 0) [58]
General (O(log k), 0)-rand [94] −
Exc.-Fix.-Minor (O(1), 0)-rand [94] (2− o(1), 0)-rand

Table 7.1: The results which are not followed by a reference are shown in this chap-
ter. The guarantees with the extension “-rand” refer to randomized distance approx-
imating minors; “size” refers to the number of non-terminals in the minor.

with arbitrarily small distortion.

7.2 Preliminaries

Let G = (V,E,w) denote an undirected graph with terminal set K ⊂ V of car-
dinality k, where w : E → R+ is the weight (length) function over edges E. A
graphH is a minor of G ifH can be obtained from G by performing a sequence of
vertex/edge deletions and edge contractions, but no terminal can be deleted, and no
two terminals can be contracted together. In other words, all terminals in G must
be preserved in H .

Besides the above standard description of minor operations, there is another
equivalent way to construct aminorH fromG [146], whichwill bemore convenient
for presenting some of our results. A partial partition of V (G) is a collection of
pairwise disjoint subsets of V (G) (but their union can be a proper subset of V (G)).
LetS1, · · · , Sm be a partial partition of V (G) such that (1) each induced graphG[Si]
is connected, (2) each terminal belongs to exactly one of these partial partitions, and
(3) no two terminals belong to the same partial partition. Contract the vertices in
each Si into one single “super-node” in H . For any vertex u ∈ V (G), let S(u)
denote the partial partition that contains u; for any super-node u ∈ V (H), let S(u)

7.3. DETERMINISTIC LOWER BOUNDS 219

denote the partial partition that is contracted into u. In H , super-nodes u1, u2 are
adjacent only if there exists an edge inGwith one of its endpoints in S(u1) and the
other in S(u2). We denote the super-node that contains terminal u by u as well.

Definition 7.2.1. The graph H = (V ′, E′,w′) is an α-distance approximating mi-
nor (abbr. α-DAM) of G = (V,E,w) if H is a minor of G and for any u, v ∈ K ,
distG(u, v) ≤ distH(u, v) ≤ α · distG(u, v). H is an (α, y)-DAM of G if H is an
α-DAM of G with at most y non-terminals.

We note that the SPR problem is equivalent to finding an (α, 0)-DAM. One can
also define a randomized version of distance approximating minor:

Definition 7.2.2. Let η be a probability distribution over minors of G = (V,E,w).
We call η an α-randomized distance approximating minor (abbr. α-rDAM) of G if for
any u, v ∈ K ,

EH∼η [distH(u, v)] ≤ α · distG(u, v),

and for every minor H in the support of η, distH(u, v) ≥ distG(u, v). Furthermore,
we call η an (α, y)-rDAM if η is an α-rDAM of G, and every minor in the support of
η has at most y non-terminals.

7.3 Deterministic Lower Bounds

For all the lower bound results, we use a tool in combinatorial design called Steiner
system (or alternatively, balanced incomplete block design). Let [k] denote the set
{1, 2, · · · , k}.

Definition 7.3.1. Given a ground setK = [k], an (s, 2)-Steiner system (abbr. (s, 2)-
SS) of K is a collection of s-subsets of K , denoted by K = {K1, · · · ,Kr}, where
r =

(
k
2

) /(
s
2

)
, such that every 2-subset of K is contained in exactly one of the s-

subsets.

Lemma 7.3.2 ([258]). For any integer s ≥ 2, there exists an integerMs such that for
every q ∈ N, the set [Ms + qs(s− 1)] admits an (s, 2)-SS.

Our general strategy is to use the following black-box reduction, which proceeds
by taking a small connected graphG∗ as input, and it outputs a large graphGwhich
contains many disjoint embeddings of G∗. Here is how it exactly proceeds:

• LetG∗ be a graph with s ≥ 2 terminals and q ≥ 1 non-terminals. Let k be an
integer, as given in Lemma 7.3.2, such that the terminal set K = [k] admits
an (s, 2)-SS K.

• We constructK′ ⊆ K that satisfies certain property depending on the specific
problem. For each s-set in K′, we add q non-terminals to the s-set, which
altogether form a group. The union of vertices in all groups is the vertex set
of our graph G. We note that each terminal may appear in many groups, but
each non-terminal appears in one group only.

220 CHAPTER 7. DISTANCE APPROXIMATING MINORS

• Within each of the groups, we embed G∗ in the natural way.

The following two lemmas describe some basic properties of all minors of G
output by the black-box above. Before presenting their proofs, we need to introduce
some helpful notation. Let G be an output graph from the black-box. In any minor
H ofG, we say a super-node is of Type-A if S(u) contains only non-terminals inG;
any other super-node u, for which S(u) contains exactly one terminal, is of Type-B.
Here are two simple facts:

(a) If u is of Type-A, sinceG[S(u)] is connected, the non-terminals in S(u)must
belong to the same group.

(b) If u is of Type-B, let t be the terminal in S(u). If S(u) contains a vertex from
some group R, then t ∈ R.

Lemma 7.3.3. LetH be a minor of G. Then for each edge (u1, u2) inH , there exists
exactly one group R in G such that S(u1) ∩R and S(u2) ∩R are both non-empty.

Proof. Existence ofR is easy to prove by a simple induction on the minor operation
sequence that generates H from G. To show the uniqueness, we proceed to a case
analysis. In the first case, either u1 or u2 is of Type-A.Then the uniqueness is trivial
by fact (a).

In the second case, both u1, u2 are of Type-B. For i = 1, 2, let vi be the terminal
in S(ui). Suppose there are two groupsRa, Rb that intersect both S(u1) and S(u2).
Then by fact (b), v1, v2 are in both Ra and Rb, a contradiction.

The above lemma permits us to legitimately define the notion R-edge: an edge
(u1, u2) in H is an R-edge if R is the unique group that intersects both S(u1) and
S(u2).

Lemma 7.3.4. Suppose that in a minorH ofG, (u1, u2) is a R1-edge and (u2, u3) is
R2-edge, whereR1 ̸= R2. ThenR1 andR2 intersect, and S(u2) contains the terminal
in R1 ∩R2.

Proof. Since S(u2) contains vertices from both R1 and R2, u2 must be of Type-B,
i.e., S(u2) contains exactly one terminal v. By fact (b), v is in both R1 and R2.

We will show that for any minor H with low distortion, at least one of the
non-terminals in each group must be retained, and thus H must have at least |K′|
non-terminals. We now present ourmain theorems on lower bounds and then prove
them.

Theorem 7.3.5. For infinitely many k ∈ N, there exists a bipartite graph with k
terminals which does not have a (2− ϵ, k2/7)-DAM, for all ϵ > 0.

Theorem 7.3.6. There exists a constant c1 > 0, such that for infinitely many k ∈ N,
there exists a quasi-bipartite graph with k terminals which does not have an (α −
ϵ, c1k

γ)-DAM, for all ϵ > 0, where α, γ are given in the table below.

7.3. DETERMINISTIC LOWER BOUNDS 221

1 6

2

5

4 7
3

1 2 43 5 6 7

Figure 7.1: On the left side: a Fano plane corresponding to a (3, 2)-SS with k = 7.
On the right side: the bipartite graph of the Fano plane constructed using our black-
box reduction. Numbered vertices are terminals while square-shaped vertices are
non-terminals.

α 2.5 3 10/3 11/3 4 4.2 4.4

γ 5/4 6/5 10/9 11/10 12/11 21/20 22/21

7.3.1 Distortion 2 Lower Bound

We next prove Theorem 7.3.5. Let us start by reviewing the lower bound for SPR
problem on stars due to Gupta [119].

Lemma 7.3.7. LetG∗ = (K∪{v}, E) be an unweighted star with k ≥ 3 terminals, in
which v is the center of the star. Then, every edge-weighted graph only on the terminals
K with fewer than

(
k
2

)
edges has distortion at least 2.

We construct G using the black-box reduction above. Let k ∈ N be such that
the terminalsK = [k] admits a (3, 2)-SS, denoted byK (see the figure above). Here,
we set K′ = K and G∗ to be the star with 3 terminals, as described in Lemma 7.3.7.

By the definition of Steiner system, the shortest path between every pair of
terminal u, v inG is unique, which is the 2-hop path within the group that contains
both terminals, i.e., distG(u, v) = 2 for all u, v ∈ K . Every other simple path
between u, v must pass through an extra terminal, so the length of such simple
path is at least 4.

Let H be a minor of G. Suppose that the number of non-terminals in H is less
than r, then there exists a groupR in which its non-terminal is not retained (which
means that it is either deleted, or contracted into a terminal in that group). By
Lemma 7.3.7, there exists a pair of terminals in that group such that every simple
path within R (which means a path comprising of R-edges only) between the two
terminals has length at least 4. And every other simple path must pass through an
extra terminal (just as inG), so again it has length at least 4. Thus, the distortion of
the two terminals is at least 2.

Therefore, every (2− ϵ)-DAM of G must have r > k2/7 non-terminals.

222 CHAPTER 7. DISTANCE APPROXIMATING MINORS

7.3.2 Higher Distortion Lower Bounds

Wenow proveTheorem 7.3.6. Concretely, wewill give the proof for the caseα = 2.5
here, and discuss how to generalize this proof for other distortions. We will first
define the notions of detouring graph and detouring cycle, and then use them to
construct the graph G that allows us to show the lower bound.

Detouring Graph and Detouring Cycle. For any s ≥ 3, let k ∈ N be such that
the terminal set K = [k] admits an (s, 2)-SS. Let K = {K1, · · · ,Kr} be such an
(s, 2)-SS. A detouring graph has the vertex setK. By the definition of Steiner system,
|Ki ∩Kj | is either zero or one. In the detouring graph,Ki is adjacent toKj if and
only if |Ki ∩Kj | = 1. Thus, in the detouring graph, it is legitimate to give each
edge (Ki,Kj) a terminal label, which is the terminal inKi ∩Kj . A detouring cycle
is a cycle in the detouring graph such that no two neighboring edges of the cycle
have the same terminal label.

Fact 7.3.8. Suppose that two edges in the detouring graph have a common vertex, and
their terminal labels are different, denoted by u, v. Then the common vertex must be
an s-set in K containing both u, v. By the definition of Steiner system, the s-set is
uniquely determined.

Claim 7.3.9. In the detouring graph, number of detouring cycles of size ℓ ≥ 3 is at
most kℓ.

Proof. Let (u1, · · · , uℓ) be an ℓ-tuple, where each entry is a terminal, that represents
the terminal labels of a detouring cycle. By the Fact above, the ℓ-tuple determines
uniquely all the vertices in the detouring cycle. By trivial counting, the number of
possible ℓ-tuples is at most kℓ, and hence also the number of detouring cycles of
size ℓ.

Our key lemma is shows that for any L ≥ 3, we can retain Ωs(k
L/(L−1)) ver-

tices in the detouring graph, such that the induced graph on these vertices has no
detouring cycle of size L or less.

Lemma 7.3.10. For any integer L ≥ 3, given a detouring graph with vertex set K =
{K1, · · · ,Kr}, there exists a subset K′ ⊂ K of cardinality Ωs(k

L/(L−1)) such that
the induced graph on K′ has no detouring cycle of size L or less.

Proof. We choose the subset K′ by the following randomized algorithm:

1. Each vertex is picked into K′ with probability δk−(L−2)/(L−1), where δ =
δ(s) < 1 is a positive constant which we will derive explicitly later.

2. While (there is a detouring cycle of size L or less in the induced graph of K′)
Remove a vertex in the detouring cycle from K′

7.3. DETERMINISTIC LOWER BOUNDS 223

After Step 1, E [|K′|] = r · δk−(L−2)/(L−1) ≥ δ
2s(s−1)k

L/(L−1). Using Claim
7.3.9, the expected number of detouring cycles of size L or less is at most

L∑
ℓ=3

kℓ · (δk−(L−2)/(L−1))ℓ ≤ 2δ3kL/(L−1).

Thus, the expected number of vertices removed in Step 2 is at most 2δ3kL/(L−1).
Now, choose δ = 1/

√
8s(s− 1). By the end of the algorithm,

E
[
|K′|

]
≥ δ

2s(s− 1)
kL/(L−1) − 2δ3kL/(L−1) = Ω(kL/(L−1)).

Construction of G and the proof. Recall the black-box reduction. Let k be an
integer such that K = [k] admits a (9, 2)-SS K. By Lemma 7.3.10, we choose K′

to be a subset of K with |K′| = Ω(k5/4), such that the induced graph on K′ has
no detouring cycle of size 5 or less. We choose G∗ to be a complete ternary tree of
height 2, in which the 9 leaves are the terminals. For each Ki ∈ K′, we add four
non-terminals toKi, altogether forming a group.

The following lemma is a direct consequence that the induced graph on K′ has
no detouring cycle of size 5 or less.

Lemma 7.3.11. For any two terminals u, v in the same group, let R denote the group.
Then, in any minorH ofG, every simple path from u to v either comprises of R-edges
only, or it comprises of edges from at least 5 groups other than R.

Proof of Theorem 7.3.6. Let H be a (2.5 − ϵ)-DAM of G, for some ϵ > 0. Suppose
that there exists a group such that all its non-terminals are not retained in H . By
[119], there exists a pair of terminals u, v in that group such that every simple path
between u and v, which comprises of edges of that group only, has length at least
3 · distG(u, v).

By Lemma 7.3.11 and Lemma 7.3.4, any other simple path P between u and v
passes through at least 4 other terminals, say they are ua, ub, uc, ud in the order
of the direction from u to v. We denote this path by P := u → ua → ub →
uc → ud → v, by ignoring the non-terminals along the path. Between every pair
of consecutive terminals in P , the length is at least 2. Thus, the length of P is at
least 10. Since distG(u, v) ≤ 4, the length of P is at least 2.5 · distG(u, v).

Thus, the length of every simple path from u to v inH is at least 2.5 ·distG(u, v),
a contradiction. Therefore, at least one non-terminal in each group is retained inH .
As there are Ω(k5/4) groups, we are done.

For the other results inTheorem 7.3.6, we follow the above proof almost exactly,
with the following modifications. Set s = 3h for some h ≥ 2, and set G∗ to be
a complete ternary tree with height h, in which the leaves are the terminals. Let
αh be a lower bound on the distortion for the SPR problem on G∗. Apply Lemma

224 CHAPTER 7. DISTANCE APPROXIMATING MINORS

7.3.10 with some integer h < L ≤ ⌈αhh⌉.1 Following the above proof, attaining a
distortion of min

{
L
h , αh

}
− ϵ needs Ω(kL/(L−1)) non-terminals.

The last puzzle we need is the values of αh. Chan et al. [58] considered un-
weighted complete binary tree with height h, and showed that as h tends to infinity,
the minimum distortion of SPR problem tends to 8. However, it is not clear from
their proof how the minimum distortion depends on h, which is needed for Theo-
rem 7.3.6. In what follows, we use their ideas on unweighted complete ternary trees
to derive such a dependence.

Let Th denote a unweighted complete ternary tree of height h, where the leaves
are the terminals. Let Sh denote the collection of all minors of Th. For each of its
node u, let T (u) denote the sub-tree rooted at u, and let t(u) denote the terminal
which u contracts into. Denote the root by r, and its three children by x, y, z. With-
out loss of generality, we assume that r is contracted into a terminal tr in T (x), i.e.,
t(r) = tr . Then, let2

DRL(h, α) := min
H∈Sh, distortion ≤α

max
terminal t∈T (y)∪T (z)

distH(tr, t).

If there is not such a minor H , then DRL(h, α) = +∞ by default. Note that when
α increases, DRL(h, α) decreases.

LetH ∈ Sh be a minor of Th with distortion ≤ α. Let w denote a deepest node
in T (y)∪T (z)∪{r} such that t(w) = tr . Let ℓ be the distance between r and w in
Th. Let w1, w2 be two children of w which are not in T (x).

Then, by the definition of DRL, there exist two terminals t1 ∈ T (w1) and t2 ∈
T (w2) such that for i = 1, 2, distH(ti, t(wi)) ≥ DRL(h−ℓ−1, α). Also, for i = 1, 2,
distH(t(wi), tr) ≥ distTh

(t(wi), tr) = 2h. Hence,

distH(t1, t2) = distH(t1, t(w1)) + distH(t(w1), tr) + distH(tr, t(w2))

+ distH(t(w2), t2)

≥ 2 [DRL(h− ℓ− 1, α) + 2h] .

Recall that distTh
(t1, t2) = 2(h− ℓ). Hence, the distortion w.r.t. t1, t2 is at least

DRL(h− ℓ− 1, α) + 2h

h− ℓ
.

This quantity cannot be larger than α.
We are ready to give a recurrence relation that bounds DRL(h, α) from below:

DRL(h, α) ≥ min
ℓ∈[0,h−1]:

DRL(h−ℓ−1,α)+2h
h−ℓ

≤α

DRL(h− ℓ− 1, α) + 2h, (7.1)

1Any choice of L larger than ⌈αhh⌉ will not improve the result.
2Formally speaking, there can be infinitely many minors (with weights) of Th with distortion at

mostα, so we should use inf instead ofmin in the definition. Yet, for each fixedminor without weight,
the standard restriction [146, Definition 1.3] is the optimal weight assignment. Since there are only
finitely many minors of Th (without weights), we can replace inf by min.

7.3. DETERMINISTIC LOWER BOUNDS 225

while the initial conditions are: ∀α ≥ 1, DRL(0, α) = 0, and

DRL(1, α) =

{
+∞, if α < 2;

2, if α ≥ 2.

Let αh denote the minimum distortion of Th. By letting ℓ run over all possible
distances between r and w, we obtain the following lower bound on αh:

αh ≥ min
α

max

{
α,

(
min

ℓ∈[0,h−1]

DRL(h− ℓ− 1, α) + 2h

h− ℓ

)}
. (7.2)

We compute the lower bounds in (7.1) and (7.2) using math software. In the
table below, we give the lower bounds on αh for h ∈ [3, 10] and h = 1000.

h 2 3,4 5 6,7 8 9,10 1000
αh 3 4 22/5 14/3 5 26/5 257/35

7.3.3 Generalizing the Lower Bound and its Implication

Indeed, we can set G∗ as any graph. In our above proofs we used a tree for G∗

because the only known lower bounds on distortion for the SPR problem are for
trees. If one can find a graph G∗ (either by a mathematical proof, or by computer
searches) such that its distortion for the SPR problem is at leastα, applying the black-
box reduction with this G∗, and reusing the above proof show that there exists a
graphGwith k terminals such that attaining a distortion of α−ϵ needsΩ(k1+δ(G∗))
non-terminals, for some δ(G∗) > 0.

Theorem 7.3.12. Let G∗ be a graph with s terminals, and the distance between any
two terminals is between 1 and β. Suppose the distortion for the SPR problem on G∗

is at least α. Then, for any positive integer max{2, ⌈β⌉} ≤ L ≤ ⌈αβ⌉, there exists a
constant c4 := c4(s) > 0, such that for infinitely many k ∈ N, there exists a graph
with k terminals which does not have a

(
min {L/β, α} − ϵ, c4kL/(L−1)

)
-DAM, for

all ϵ > 0.

Theabove theorem has an interesting consequence. For the SPR problem on gen-
eral graphs, the best known lower bound is 8, while the best known upper bound
is O(log k) [102]. There is a huge gap between the two bounds, and it is not clear
where the tight bound locates in between. Suppose that the tight lower bound on
SPR is super-constant. Then for any positive constant α, there exists a graph G∗

α

with s(α) terminals and some non-terminals, such that the distortion is larger than
α. By Theorem 7.3.12, G∗

α can be used to construct a family of graphs with k termi-
nals, such that to attain distortion α, the number of non-terminals needed is super-
linear in k. Recall that in SPR, no non-terminal can be retained. In other words,
Theorem 7.3.12 implies that: if retaining no non-terminal will lead to a super-constant

226 CHAPTER 7. DISTANCE APPROXIMATING MINORS

lower bound on distortion, then having the power of retaining any linear number of
non-terminals will not improve the lower bound to a constant.

Formally, we define the following generalization of SPR problem. Let LSPRy de-
note the problem that for an input graph with k terminals, find a DAMwith at most
yk non-terminals so as to minimize the distortion; the SPR problem is equivalent to
LSPR0.

Theorem 7.3.13. For general graphs, SPR has super-constant lower bound on distor-
tion if and only if for any constant y ≥ 0, LSPRy has super-constant lower bound on
distortion.

7.4 Minor Construction for General Graphs

In this section we give minor constructions that present numerous trade-offs be-
tween the distortion and size of DAMs. Our results are obtained by combining the
work of Coppersmith and Elkin [75] on sourcewise distance preservers with the
well-known notion of spanners.

Given an undirected graph G = (V,E,w), we let πu,v denote the shortest path
between u and v in G. Without loss of generality, we assume that for any pair of
vertices (u, v), the shortest path connecting u and v is unique. This can be achieved
by slightly perturbing the original edge lengths of G such that no paths have ex-
actly the same length (see [75]). The perturbation implies a consistent tie-breaking
scheme: whenever π is chosen as the shortest path, every subpath of π is also chosen
as the shortest path.

LetNG(u) denote the vertices incident to u in a graphG. We say that two paths
π and π′ branch at a vertex u ∈ V (π) ∩ V (π′) iff |Nπ∪π′(u)| > 2. We call such a
vertex u a branching vertex. Let P denote the set of shortest paths corresponding
to every pair of vertices inG. We review the following result proved in [75, Lemma
7.5].

Lemma 7.4.1. Any pair of shortest paths π, π′ ∈ P has at most two branching ver-
tices.

To simplify our exposition, we introduce the notion of terminal path covers.

Definition 7.4.2 (Terminal Path Cover). Given G = (V,E,w) with terminalsK , a
set of shortest paths P ′ ⊂ P is an (α, f(k))-terminal path cover (abbr. (α, f(k))-TPc)
of G with respect toK if

1. P ′ covers the terminals, i.e. K ⊆ V (H), whereH =
∪

π∈P ′ E(π),

2. |P ′| ≤ f(k) and for all u, v ∈ K , distG(u, v) ≤ distH(u, v) ≤ α · distG(u, v).

We remark that the endpoints of the shortest paths in P ′ are not necessarily
terminals. The above definition naturally leads to the following algorithm, which is

7.4. MINOR CONSTRUCTION FOR GENERAL GRAPHS 227

Algorithm 7.1: MinorSparsifier(G,K,P ′)

Input :Graph G = (V,E,w), terminalsK , (α, f(k))-TPc P ′ of G
Output :Distance Approximating Minor H of G

1 Set H ← ∅
2 Add all shortest paths from the path cover P ′ to H
3 while there exists a degree two non-terminal v incident to edges (v, u) and (v, w) do
4 Contract the edge (u, v)
5 Set the length of the edge (u,w) to distG(u,w)
6 return H

a slight generalization of the upper-bound technique employed by Krauthgamer et
al. [170].

The following lemma gives an upper bound on the size of the DAM output by
Algorithm 29. It is an easy generalization of a lemma in [170, Lemma 2.2] and we
review it here for the sake completeness.

Lemma 7.4.3. For a given graph G = (V,E,w) with terminals K ⊂ V and an
(α, f(k))-TPc P ′ of G, MinorSparsifier(G,K ,P ′) outputs an (α, f(k)2)-DAM of G.

Proof. First, it is clear that the union over paths of P ′ ⊂ P is a minor of G (this
can be alternatively viewed as deleting non-terminals and edges that do not partic-
ipate in any of the shortest paths in P ′). Further, the algorithm performs only edge
contractions. Thus, the produced graph H is a minor of G.

Since contracting edges incident to non-terminals of degree two does not affect
any distance in H , the distortion guarantee follows directly from that of the cover
P ′. Thus, it only remains to show the bound on the size of H .

To this end, consider any two paths π, π′ from P ′. From Lemma 7.4.1, we know
that π and π′ branch in atmost two vertices. Let u1 and u2 denote such vertices. Due
to the tie-breaking scheme in G, we know that the shortest path πu1,u2 is unique,
and thus it must be shared by both π and π′. The latter implies that every vertex in
the subpath must have degree degree exactly 2. Therefore, the only non-terminals
in π ∪ π′ are vertices u1 and u2, since non-terminals of degree two are removed
from the edge contractions performed in the algorithm.

There are O(f(k)2) pairs of shortest paths from P ′, each having at most 2 non-
terminals. Hence, the number of non-terminals in H is O(f(k)2).

A trivial exact terminal path cover for any k-terminal graph is to take the union
of all terminal shortest paths, which we refer to as the (1, O(k2))-TPc P ′ of G.
Krauthgamer et al. [170] used this (1, O(k2))-TPc to construct an (1, O(k4))-DAM.
Here, we study the question of whether increasing the distortion slightly allows us
to obtain a cover of size o(k2). We answer this question positively, by reducing it
to the well-known spanner problem.

Let q ≥ 1 be an integer and let G = (V,E,w) be an undirected graph.
A q-spanner of G is a subgraph S = (V,ES ,w) such that for all u, v in V ,

228 CHAPTER 7. DISTANCE APPROXIMATING MINORS

distG(u, v) ≤ distS(u, v) ≤ q · distG(u, v). We refer to q and |ES | as the stretch
and size of spanner S, respectively. It is well-known that a simply greedy algorithm
achieves the following guarantees.

Lemma 7.4.4 ([20]). Let q ≥ 1 be an integer. Any graph G = (V,E,w) admits a
(2q − 1)-spanner S of size O(|V |1+1/q).

We use the above lemma as follows. Given a graph G = (V,E,w) with ter-
minals K , we compute the complete graph QK = (K,

(
K
2

)
, dG|K), where dG|K

denotes the distance metric of G restricted to the point set K (In other words, for
any pair of terminals u, v ∈ K , the weight of the edge connecting them in QK is
given by wQK

(u, v) = dG(u, v)). Recall that all shortest paths in G are unique.
Using Lemma 7.4.4, we construct a (2q − 1)-spanner S of size O(k1+1/q) for

QK . Observe that each edge of S corresponds to a unique (terminal) shortest path
in G since S is a subgraph of QK . Thus, the set of shortest paths corresponding to
edges of S form a (2q − 1, O(k1+1/q))-TPc P ′ of G. Using P ′ with Lemma 7.4.3
gives the following theorem.

Theorem 7.4.5. Let q ≥ 1 an integer. Any graphG = (V,E,w)withK ⊂ V admits
a (2q − 1, O(k2+2/q))-DAM.

We mention two trade-offs from the above theorem. When q = 2, we get
an (3, O(k3))-DAM. When q = log k, we get an (O(log k), O(k2))-DAM. The
abovemethod allows us to have improved guarantees for bounded treewidth graphs.
In particular, we prove that any graph G with treewidth at most p admits an
(O(log p), O(pk))-DAM.

Theorem 7.4.6. Let q ≥ 1 be an integer. Any graph G = (V,E,w) with treewidth
at most p, terminalsK ⊂ V and k ≥ p admits a (2q − 1, O(p1+2/qk))-DAM.

Proof. We crucially exploit the fact that such graphs admit small separators: given a
graph G of bounded treewidth p and any nonnegative vertex weight function w(·),
there exists a set S ⊂ V (G) of at most p + 1 vertices whose removal separates
the graph into two connected components, G1 and G2, each with w(V (Gi)) ≤
2/3w(V (G)) (see [52]).

Krauthgamer et al. [170] use the above fact to construct an (1,O(p3k))-DAM
for graphs of treewidth at most p. We show that with two modifications, their
algorithm can be extended to constructing distance approximating minors. The first
modification is Step 2 of the algorithm ReduceGraphTW in [170]. For any integer
q ≥ 1, we replace their call to ReduceGraphNaive(H,K ∪ B)3 by our procedure
MinorSparsifier(H,K ∪B,P ′), where P ′ is a (2q − 1,O(p1+1/q))-TPc of G.

The second modification is a generalization of Lemma 4.2 in [170]. The main
idea is to use the small separator set S to decompose the graph into smaller almost-
disjoint graphs G1 and G2, compute their DAMs recursively, and then combine

3We remark that they use R to denote the set of terminals.

7.5. MINOR CONSTRUCTION FOR FIXED MINOR-FREE GRAPHS 229

them using the separator S into a DAM of G. This implies that the separator S
must belong to each Gi, i.e. all non-terminal vertices of S must be counted as ad-
ditional terminals in each Gi. Below we give a formal definition of this decomposi-
tion/composition process.

LetG1 = (V1, E1,w1) andG2 = (V2, E2,w2) be graphs on disjoint sets of non-
terminals, having terminal sets K1 = {s1, s2, . . . , sa1} and K2 = {t1, t2, . . . , ta2},
respectively. Further, let ϕ(si) = ti, for all i = 1, . . . , c be an one-to-one correspon-
dence between some subset ofK1 andK2 (this correspondence is among the sepa-
rator vertices). The ϕ-merge (or 2-sum) of G1 and G2 is the graph G = (V,E,w)
with terminal setK = K1 ∪ {tc+1, . . . , ta2} formed by identifying the terminals si
and ti, for all i = 1, . . . , c, where w(e) = min{w1(e),w2(e)} (assuming infinite
length when wi(e) is undefined). We denote this operation by G := G1 ⊕ϕ G2.

Belowwe state themain lemmawhose proof goes along the lines of [170, Lemma
4.2].

Lemma 7.4.7. Let G = G1 ⊕ϕ G2. For j = {1, 2}, let Hj be an (αj , f(aj))-DAM
for Gj . Then the graph H = H1 ⊕ϕ H2 is an (max{α1, α2}, f(a1) + f(a2))-DAM
of G.

In [170] it is shown that the size of the minor returned by the algorithm Re-
duceGraphTW is bounded by the number of leaves the in the recursion tree of the
algorithm. Further, they prove that there are at most O(k/p) such leaves. Plugging
our bounds from the modification of Step 2 along with the above lemma yields our
claimed result.

7.5 Minor Construction for Fixed Minor-Free Graphs

In this section we give improved guarantees for distance approximating minors for
special families of graphs. Specifically, we show that graphs that exclude a fixed
minor admit an (O(1), Õ(k2))-DAM. This family of graphs includes, among others,
planar graphs.

The reduction to spanner in Section 7.4 does not consider the structure of QK ,
which is inherited from the input graph. We exploit this structure by employing
the randomized Steiner Point Removal Problem, which is equivalent to finding an
(α, 0)-rDAM. Let us start by reviewing the following result of Englert et al. [94],
which shows that for graphs that exclude a fixed minor, there exists a randomized
minor with constant distortion.

Theorem 7.5.1 ([94], Theorem 14). Let α = O(1). Given a graph that excludes a
fixed minor G = (V,E,w) with K ⊂ V , there is a probability distribution η over
minors H = (K,E′,w′) of G, such that for all u, v in K , EH∼η[distH(u, v)] ≤
α · distG(u, v) and for every minor H in the support of η, distH(u, v) ≥ distG(u, v).

230 CHAPTER 7. DISTANCE APPROXIMATING MINORS

Given a graph G that excludes a fixed minor, any minor H of G only on the
terminals also excludes the same fixed minor. Thus H has O(k) edges [244]. This
leads to the corollary below.

Corollary 7.5.2. Let α = O(1). Given a graph that excludes a fixed minor G =
(V,E,w) withK ⊂ V and QK previously defined, there exists a probability distribu-
tion η over subgraphsH = (K,E′,w′) ofQK , each having at most O(k) edges, such
that for all u, v inK , EH∼η[distH(u, v)] ≤ α · distQK

(u, v).

Proof. Let η be the distribution over minors of G from Theorem 7.5.1, then every
minor in its support is clearly a subgraph ofQK with O(k) edges. Since during the
construction of these minors we may assume that for all (u, v) in E’, w′(u, v) =
distG(u, v), the corollary follows.

Lemma 7.5.3. Given a graph that excludes a fixed minor G = (V,E,w) with K ⊂
V , and QK as previously defined, there exists an O(1)-spanner S of size O(k log k)
for QK .

Proof. Let η be the probability distribution over subgraphs H from Corollary 7.5.2.
Set S = ∅. First, we sample independently q = 3 log k subgraphs H1, . . . , Hq

from η. We then add the edges from all these subgraphs to the graph S, i.e., ES =∪q
i=1EHi . Fix an edge (t, t′) from QK and a subgraph Hi. By Corollary 7.5.2 and

the Markov inequality, P[distHi(u, v) ≥ 2α · distQK
(u, v)] ≤ 2−1, and hence

P[distS(u, v) ≥ 2α·dQK
(u, v)]

=

q∏
i=1

P[distHi(u, v) ≥ 2α · dQK
(t, t′)] ≤ 2−q = k−3.

Applying union bound overall all edges from QK yields

P[∃(u, v) ∈ E(QK) with distS(u, v) ≥ 2α · distQK
(u, v)] ≤ k2 · k−3 = k−1.

Hence, for all edges (u, v) from QK , with probability at least 1− 1/k, we preserve
the shortest path distance between u and v up to a factor of 2α = O(1) in S.
Since S is a subgraph of QK , this implies that there exists a O(1)-spanner S of
size O(k log k) for QK .

Similar to the last section, the set of shortest paths corresponding to edges ofS is
an (O(1), O(k log k))-TPc P ′ of G. Using P ′ with Lemma 7.4.3 gives the following
theorem.

Theorem 7.5.4. Any graph that excludes a fixed minor G = (V,E,w) withK ⊂ V
admits an (O(1), Õ(k2))-DAM.

7.6. MINOR CONSTRUCTION FOR PLANAR GRAPHS 231

7.6 Minor Construction for Planar Graphs

In this section, we show that for planar graphs one can improve the constant guar-
antee bound on the distortion to 3 and 1 + ϵ, respectively, without affecting the
size of the minor. Our work builds on existing techniques used in the context of
approximate distance oracles, thereby bypassing our previous spanner reduction.
Both results use essentially the same ideas and rely heavily on the fact that planar
graphs admit separators with special properties.

We say that a graph G = (V,E,w) admits a λ-separator if there exists a set
R ⊆ V whose removal partitionsG into connected components, each of size atmost
λn, where 1/2 ≤ λ < 1. Lipton and Tarjan [184] showed that every planar graph
has a 2/3-separator R of size O(

√
n). Later on, Gupta et al. [121] and Thorup [245]

independently observed that one can modify their construction to obtain a 2/3-
separator R, with the additional property that R consists of vertices belonging to
shortest paths from G (note that this R is not guaranteed to be small). We briefly
review the construction of such shortest path separators.

Let G = (V,E,w) be a triangulated planar graph (the triangulation is guaran-
teed by adding infinity edge lengths among the missing edges). Further, let us fix
an arbitrary shortest path tree A rooted at some vertex r. Then, it can be inferred
from the work of Lipton and Tarjan [184] that there always exists a non-tree edge
e = (u, v) ofA such that the fundamental cycle C inA∪{e}, formed by adding the
non-tree edge e toA, gives a 2/3-separator forG. BecauseA is a tree, the separator
will consist of two paths from the lca(u, v) to u and v. We denote such paths by P1

and P2, respectively. Both paths are shortest paths as they belong to A. We will
show how to use such separators to obtain terminal path covers. Before proceeding,
we give the following preprocessing step.

Preprocessing Step. Given a planar graphG = (V,E,w)withK ⊂ V , the algo-
rithmMinorSparsifier(G,K , P ′) withP ′ being the (1, O(k2))-TPc ofG, produces
an (1, O(k4))-DAMG′ forG. To simplify our notation, we will useG instead ofG′

in the following, i.e., we assume that G has at most O(k4) vertices.

7.6.1 Distortion-3 Guarantee

When solving a graph problem it is often the case that the solution is much easier
on simpler graph instances, e.g., trees. Driven by this, it is desirable to reduce the
problem from arbitrary graphs to one or several tree instances, possibly allowing a
small loss in the quality of the solution. Along the lines of such an approach, Gupta
et al. [121] gave the following definition in the context of shortest path distances.

Definition 7.6.1 (Forest Cover). Given a graph G = (V,E,w), a forest cover
(with stretch α) of G is a family F of subforests {F1, F2, . . . , Fk} of G such that
for every u, v ∈ V , there is a forest Fi ∈ F such that distG(u, v) ≤ distFi(u, v) ≤
α · distG(u, v).

232 CHAPTER 7. DISTANCE APPROXIMATING MINORS

If we restrict our attention to planar graphs, Gupta et al. [121] used shortest
path separators (as described above) to give a divide-and-conquer algorithm for
constructing forest covers with small guarantees on the stretch and size. Here, we
slightly modify and adopt their construction for our specific application. Before
proceeding to the algorithm, we give the following useful definition.

Definition 7.6.2. Let t be a terminal and let π be a shortest path in G. Then tπmin

denotes the vertex of π that minimizes distG(t, p), for all p ∈ V (π), breaking ties
lexicographically.

Algorithm 7.2: ForestCover(G,K)

Input :Planar graph G = (V,E,w), terminalsK
Output :Forest cover F of G

1 if |V (G)| ≤ 1 then
2 return V (G)

3 Compute a 2/3-separator C consisting of shortest paths π1 and π2 for G
4 for i = 1, 2 do
5 Contract πi to a single vertex pi and compute a shortest path tree Li from pi
6 Expand back the contracted edges in Li to get the tree L′

i

7 for every terminal t ∈ K do
8 Add tπi

min as a terminal in the tree L′
i

9 Let (G1,K1) and (G2,K2) be the resulting connected graphs from G \ C,
whereK1 andK2 are disjoint subsets of the terminalsK induced by C
// Note that all distances involving terminals from C are taken

care of

10 return
∪2

i=1 L
′
i ∪
∪2

i=1 ForestCover(Gi,Ki)

Algorithm 7.3: PlanarTPc-1 (G,K)

Input :Planar graph G = (V,E,w), terminalsK
Output :Terminal path cover P ′ of G

1 Set P ′ ← ∅
2 Set F ← ForestCover(G,K)
3 for each forest Fi ∈ F do
4 Let Ri be the terminal set of Fi and let P ′

i be the (trivial) (1, O(k2))-TPc of Fi

5 Compute F ′
i getsMinorSparsifier(Fi, Ri, P ′

i)
6 Add the shortest paths corresponding to the edges of F ′

i to P ′

7 return P ′

Gupta et al. [121] showed the following guarantees for Algorithm 30.

Theorem 7.6.3 ([121], Theorem 5.1). Given a planar graph G = (V,E,w) with
K ⊂ V , ForsetCover(G,K) produces a stretch-3 forest cover withO(log |V |) forests.

7.6. MINOR CONSTRUCTION FOR PLANAR GRAPHS 233

We note that the original construction does not consider terminal vertices, but
this does not worsen neither the stretch nor the size of the cover. The only difference
here is that we need to add at most k new terminals to each forest compared to
the original number of terminals in the input graph. This modification affects our
bounds on the size of a minor only by a constant factor.

Below we show that using the above theorem one can obtain terminal path
covers for planar graphs.

Lemma 7.6.4. Given a planar graph G = (V,E,w) with K ⊂ V , PlanarTPc-
1(G,K) produces an (3, O(k log k))-TPc P ′ for G.

Proof. We first review the following simple fact, whose proof can be found in [170].

Fact 7.6.5. Given a forest F = (V,E,w) with terminals K ⊂ V and P ′ being the
(trivial) (1, O(k2))-TPc of F , the procedure MinorSparsifier(F,K,P ′) outputs an
(1, k)-DAM.

Let us proceed with the analysis. Observe that from the Preprocessing Step our
input graphG has at mostO(k4) vertices. Thus, applyingTheorem 7.6.3 onG gives
a stretch-3 forest cover F of size O(log k). In addition, recall that all shortest paths
are unique in G.

Next, let Fi by any forest from F . By construction, we note that each tree
belonging to Fi has the nice property of being a concatenation of a given shortest
path with another shortest path tree. Wewill exploit this in order to show that every
edge of the minor F ′

i for Fi corresponds to the (unique) shortest path between its
endpoints in G.

To this end, let e′ = (u, v) be an edge of F ′
i that does not exist in Fi. Since

F ′
i is a minor of Fi, we can map back e′ to the path πu,v connecting u and v in Fi.

Because of the additional terminals uPi
min added to Fi, we claim that πu,v is entirely

contained either in some shortest path tree Lj or some shortest path separator Pj .
Using the fact that subpaths of shortest paths are shortest paths, we conclude that
the length of the path πu,v (or equivalently, the length of edge e′) corresponds to
the unique shortest path connecting u and v inG. The same argument is repeatedly
applied to every such edge of F ′

i .
By construction we know that Fi has at most 2k terminals. Using Fact 7.6.5

we get that F ′
i contains at most 4k edges. Since there are O(log k) forests, we

conclude that the terminal path cover P ′ consists of O(k log k) shortest paths. The
stretch guarantee follows directly from that of cover F , since F ′

i exactly preserves
all distances between terminals in Fi.

Theorem 7.6.6. Any planar graphG = (V,E,w) withK ⊂ V admits a (3, Õ(k2))-
DAM.

234 CHAPTER 7. DISTANCE APPROXIMATING MINORS

7.6.2 Distortion-(1 + ϵ) Guarantee

Next we present our best trade-off between distortion and size of minors for planar
graphs. Our idea is to construct terminal path covers using the construction of
Thorup [245] in the context of approximate distance oracles in planar graphs. Here,
we modify a simplified version due to Kawarabayashi et al. [155].

The construction relies on two important ideas. Similarly to the distortion-3
result, the first idea is to recursively use shortest path separators to decompose the
graph. The second consists of approximating shortest paths that cross a shortest
path separator. Below we present some necessary modification to make use of such
a construction for our purposes.

Let π be a shortest path inG. For a terminal t ∈ K , we let the pair (p, t), where
p ∈ V (π), denote the portal of t with respect to the path π. An ϵ-cover C(t, π) of t
with respect to π is a set of portals with the following property:

• for all p ∈ V (π), thee exsits q ∈ C(t, π) such that

distG(t, q) + distG(q, p) ≤ (1 + ϵ)distG(t, p).

Let (t, t′) by any terminal pair in G. Let πt,t′ be the (unique) shortest path that
crosses the path π at vertex w. Then using the ϵ-covers C(t, π) and C(t′, π), there
exist portals (t, p) and (p′, t′) such that the new distance between t and t′ is

distG(t, p) + distG(p, p′) + distG(p′, t′)
≤ distG(t, p) + distG(p, w) + distG(w, p′) + distG(p′, t′)
≤ (1 + ϵ)distG(t, t′).

(7.3)

The new distance clearly dominates the old one. The next result due toThorup [245]
shows that maintaining a small number of portals per terminal suffices to approxi-
mately preserve terminal shortest paths.

Lemma 7.6.7. Let ϵ > 0. For a given terminal t ∈ K and a shortest path π, there
exists an ϵ-cover C(t, π) of size O(1/ϵ).

The above lemma leads to the following recursive procedure.

Lemma 7.6.8. Given a planar graph G = (V,E,w) with K ⊂ V , PlanarTPc-
2(G,K) outputs an (1 + ϵ, O(kϵ−1 log k))-TPc P ′ for G.

Proof. From the Preprocessing Step we know that G has at most O(k4) vertices.
Further, recall that removing the vertices that belong to the shortest path separators
from G results into two graphs G1 and G2, whose size is at most 2/3 · |G|. Thus,
there are at most O(log k) levels of recursion for the above procedure.

Let P ′ be the terminal path cover output by PlanarTPc-2(G,K). We first bound
the number of separator shortest paths added in Step 3. Note that at any level of
the recursion there at most k terminals and, thus the number of recursive calls per

7.6. MINOR CONSTRUCTION FOR PLANAR GRAPHS 235

Algorithm 7.4: PlanarTPc-2 (G,K)

Input :Planar graph G = (V,E,w), terminalsK
Output :Terminal path cover P ′ of G

1 if |V (G)| ≤ 1 orK = ∅ then
2 return ∅
3 Set B ← ∅
4 Compute a 2/3-separator C consisting of shortest paths π1 and π2
5 Add π1 and π2 to B
6 for every terminal t ∈ K do
7 Compute ϵ-covers C(t, π1) and C(t, π2)
8 for every portal (t, p) ∈ C(t, π1) ∪ C(t, π2) do
9 Add the shortest path πt,p to B

10 Let (G1,K1) and (G2,K2) be the resulting connected graphs from G \ C,
whereK1 andK2 are disjoint subsets of the terminalsK induced by C
// Note that all distances involving terminals from C are taken

care of

11 return B ∪
∪2

i=1 PlanarTPc-2(Gi,Ki)

level is at most k. Since we added two paths per recursive call, we get that there are
at most O(k log k) paths overall.

We now continue with the counting or portals. Let t ∈ K be any terminal and
consider any recursive call applied on the current graph (G′,K ′). If t ̸∈ K ′, then we
simply ignore t. Otherwise, t either belongs to one of the separator shortest paths
in G′ or one of the partitions induced by the separators. In the first case, we know
that t is retained because we added π1 and π2 to P ′ and these are already counted.
In the second case, using Lemma 7.6.7, we add O(1/ϵ) shortest paths connecting
portals from C(t, π1) and C(t, π2). Therefore, in any recursive call, we maintain at
most O(1/ϵ) shortest paths per terminal. Since every terminal can participate in at
most O(log k) recursive calls, we get that the total number of portal-shortest paths
is at most O(k log k/ϵ). Combining both bounds, it follows that the size of P ′ is at
most O(k log k/ϵ).

It remains to show the stretch guarantee of P ′. Let R be the recursion tree
of the algorithm, where every node corresponds to a recursive call. For any pair
t, t′ ∈ L, let a ∈ V (R) associated with (Ga,Ka) be the leafmost node such that
t, t′ ∈ Ka. Then, it follows that among all ancestors of a in the tree R, there must
exist a separator path πi, i = 1, 2 that crosses πt,t′ and attains the minimum length.
The stretch guarantee follows directly from (7.3).

Theorem 7.6.9. Any planar graph G = (V,E,w) with K ⊂ V admits an (1 +
ϵ, O(k2ϵ−2 log2 k))-DAM.

236 CHAPTER 7. DISTANCE APPROXIMATING MINORS

7.7 Conclusion

In this chapter, we introduced the notion of distance approximating minors, which
are vertex sparsifiers that are minors of the input graph and approximately pre-
serve shortest path distances among a designated subset of vertices, referred to as
terminals. This notion is a natural generalization of the Steiner Point Removal prob-
lem [119], where the sparsifier must contain only terminals and the Distance Pre-
serving Minor problem [170], where we want to exactly preserve pair-wise termi-
nal distances while allowing additional non-terminal vertices in the sparsifier. We
study distance approximatingminors from both upper and lower bound perspective.
For example, we show that for k-terminal general graphs and distortion 3− ϵ, one
needs to retain at least Ω(k6/5) non-terminal vertices. For planar graphs, we show
an algorithm that computes a (1+ϵ)-distance approximating minors with Õ(k2ϵ−2)
non-terminals. Our lower-bound and algorithmic constructions bring together tech-
niques from distance oracles, branching events in shortest path computations and
Steiner systems from combinatorics.

There remain gaps between some of the best upper and lower bounds, e.g., for
distortion 3−ϵ, the lower bound isΩ(k6/5), while for distortion 3, our upper bound
is Õ(k3). Therefore, understanding the trade-off between distortion and the size of
the sparsifiers is an interesting open problem. In the same vein, it is interesting to
explore whether the size of the sparisifer in the planar setting can be improved to
Õ(k2−o(1)), while keeping the same approximation guarantee. As we demonstrate
in Chapter 6, this question is particularly relevant due to its connection to the offline
dynamic APSP problem in planar graphs.

Another important problem in this area is to design fast algorithms for construct-
ing distance preserving minors. While most of the vertex sparsification studies in
the literature have focused on understanding the trade-off between distortion and
size, we believe that the running time for constructing such sparsifiers is an impor-
tant aspect that better serves the general purpose of using sparsification to speed
up algorithmic constructions.

CHAPTER 8
Reachability Preserving Minors

and Sparsifiers for Cuts and
Distances

Graph Sparsification aims at compressing large graphs into smaller ones while pre-
serving important characteristics of the input graph. In this chapter we study Vertex
Sparsifiers, i.e., sparsifiers whose goal is to reduce the number of vertices. We focus
on the following notions:

(1) Given a digraph G = (V,E) and terminal vertices K ⊂ V with |K| = k,
a (vertex) reachability sparsifier of G is a digraph H = (V ′, E′), K ⊂ V ′ that
preserves all reachability information among terminal pairs. In this chapter we
introduce the notion of reachability-preserving minors (RPMs) , i.e., we require H
to be a minor of G. We show any directed graph G admits a RPM H of size O(k3),
and if G is planar, then the size ofH improves to O(k2 log k). We complement our
upper-bound by showing that there exists an infinite family of grids such that any
RPM must have Ω(k2) vertices.

(2) Given a weighted undirected graph G = (V,E) and terminal vertices K
with |K| = k, an exact (vertex) cut sparsifier of G is a graph H with K ⊂ V ′ that
preserves the value of minimum-cuts separating any bipartition of K . We show
that planar graphs with all the k terminals lying on the same face admit exact cut
sparsifiers of sizeO(k2) that are also planar. Our result extends to flow and distance
sparsifiers. It improves the previous best-known bound of O(k222k) for cut and
flow sparsifiers by an exponential factor, and matches an Ω(k2) lower-bound for
this class of graphs.

237

238 CHAPTER 8. SPARSIFICATION FOR REACHABILITY, CUTS AND DISTANCES

8.1 Introduction

Very large graphs or networks are ubiquitous nowadays, from social networks to
information networks. One natural and effective way of processing and analyzing
such graphs is to compress or sparsify the graph into a smaller one that well pre-
serves certain properties of the original graph. Such a sparsification can be obtained
by reducing the number of edges. Typical examples include cut sparsifiers [35], spec-
tral sparsifiers [238], spanners [251] and transitive reductions [15], which are sub-
graphs defined on the same vertex set of the original graph G while having much
smaller number of edges and still well preserving the cut structure, spectral proper-
ties, pairwise distances and transitive closure of G, respectively.

Another way of performing sparsification is by reducing the number of vertices,
which is most appealing when only the properties among a subset of vertices (which
are called terminals) are of interest (see e.g., [24, 170, 197]). We call such small
graphs vertex sparsifiers of the original graph. In this chapter, we will particularly
focus on vertex reachability sparsifiers for directed graphs and cut (and other related)
sparsifiers for undirected graphs.

Vertex reachability sparsifiers in directed graphs is an important and fundamen-
tal notion in Graph Sparsification, which has been implicitly studied in the dynamic
graph algorithms community [81, 240], and explicitly in [154]. Specifically, given
a digraph G = (V,E), K ⊂ V , a digraph H = (V ′, E′), K ⊂ V ′ is a (vertex)
reachability sparsifier of G if for any x, x′ ∈ K , there is a directed path from x to
x′ in H iff there is a directed path from x to x′ in G. If |K| = k, we call the di-
graphG a k-terminal digraph. Note that any k-terminal digraphG always admits a
trivial reachability vertex sparsifier H , which corresponds to the transitive closure
restricted to the terminals.

In this chapter, we initiate the study of reachability-preservingminors, i.e., vertex
reachability sparsifiers with H required to be a minor of G. The restriction on H
being a minor of G is desirable as it makes sure that H is structurally similar to
G, e.g., any minor of a planar graph remains planar. We ask the question whether
general graphs admit reachability-preserving minors whose size can be bounded
independently of the input graph G, and study it from both the lower- and upper-
bound perspective.

For the notion of cut (and other related) sparsifiers, we are given a capacitated
undirected graph G = (V,E, c), and a set of terminals K and our goal is to find
a (capacitated undirected) graph H = (V ′, E′, c′) with as few vertices as possible
and K ⊆ V ′ such that the quantities like, cut value, multi-commodity flow and
distance among terminal vertices inH are the same as or close to the corresponding
quantities in G. If |K| = k, we call the graph G a k-terminal graph.

We say H is a quality-q (vertex) cut sparsifier of G, if for every bipartition
(U,K \ U) of the terminal setK , the value of the minimum cut separating U from
K \ U in G is within a factor of q of the value of minimum cut separating U from
K \ U in H . If H is a quality-1 cut sparsifier, then it will be also called a mim-
icking network [125]. Similarly, we define flow and distance sparsifiers that (ap-

8.1. INTRODUCTION 239

proximately) preserve multicommodity flows and distances among terminal pairs,
respectively (see Section 8.6 for formal definitions). These type of sparsifiers have
proven useful in approximation algorithms [197] and also find applications in net-
work routing [73].

Our Results. Our first and main contribution is the study of reachability-
preserving minors. Although reachability is a weaker requirement in comparison
to shortest path distances, directed graphs are usually much more cumbersome to
deal with from the perspective of graph sparsification. Surprisingly, we show that
general digraphs admit reachability-preserving minors with O(k3) vertices, which
is in contrast to the bound of O(k4) on the size of distance-preserving minors in
undirected graphs by Krauthgamer et al. [170].

Theorem 8.1.1. Given a k-terminal digraph G, there exist a reachability-preserving
minor H of G with size O(k3).

It might be interesting to compare the above result with the construction of
reachability preserver by Abbound and Bodwin [1], where the reachability preserver
for a pair-set P in a graph G is defined to be a subgraph of G that preserves the
reachability of all pairs in P . The size (i.e., the number of edges) of such preservers
is shown to be at least Ω(n2/(d+1)|P |(d−1)/d), for any integer d ≥ 2, which is in
sharp contrast to our upper bound O(|P |3/2) on the size of reachability-preserving
minors by taking P to be the pair-set of all terminals.

Furthermore, by exploiting a tight integration of our techniques with the com-
pact distance oracles for planar graphs by Thorup [245], we can show the following
theorem regarding the size of reachability-preserving minors for planar digraphs.

Theorem 8.1.2. Given a k-terminal planar digraph G, there exists a reachability-
preserving minor H of G with size O(k2 log k).

We complement the above result by showing that there exist instances where
the above upper-bound is tight up to a O(log k) factor.

Theorem 8.1.3. For infinitely many k ∈ N there exists a k-terminal acyclic di-
rected grid G such that any reachability-preserving minor of G must use Ω(k2) non-
terminals.

Our second contribution is new algorithms for constructing quality-1 (exact) cut,
flow and distance sparsifiers for k-terminal planar graphs, where all the terminals
are assumed to lie on the same face. We call such k-terminal planar graphsOkamura-
Seymour (OS) instances. They are of particular interest in the algorithm design
and optimization community, due to the classical Okamura-Seymour theorem that
characterizes the existence of feasible concurrent flows in such graphs (see e.g., [64,
65, 179, 205]).

We show that the size of quality-1 sparsifiers can be as small as O(k2) for such
instances, for which only exponential (in k) size of cut and flow sparisifiers were
known before [24, 171]. Formally, we have the following theorem.

240 CHAPTER 8. SPARSIFICATION FOR REACHABILITY, CUTS AND DISTANCES

Theorem 8.1.4. For any OS instance G, i.e., a k-terminal planar graph in which all
terminals lie on the same face, there exist quality-1 cut, flow and distance sparsifers of
size O(k2). Furthermore, the resulting sparsifiers are also planar.

We remark that all the above sparsifiers can be constructed in polynomial time
(in n and k), but we will not optimize the running time here. As we mentioned
above, previously the only known upper bound on the size of quality-1 cut and flow
sparsifiers for OS instance was O(k222k), given by [24, 171]. Our upper bound for
cut sparsifier also matches the lower bound ofΩ(k2) for OS instance given by [171].
More specifically, in [171], an OS instance (that is a grid in which all terminals lie
on the boundary) is constructed, and used to show that any mimicking network for
this instance needsΩ(k2) edges, which is thus a lower bound for planar graphs (see
the table below for an overview). Note that that even though our distance sparsifier
is not necessarily a minor of the original graph G, it still shares the nice property
of being planar as G. Furthermore, Krauthgamer and Zondiner [173] proved that
there exists a k-terminal planar graphG (not necessarily an OS instance), such that
any quality-1 distance sparsifier of G that is planar requires at least Ω(k2) vertices.

Graph Type of sparsifier Upper Bound Lower Bound
Planar Cut (minor) O(k22k) [171] Ω(k2) [171]

Planar (γ) Cut (minor) O(γ522γk4) [172] Ω(2k) [153]
Planar OS Cut (planar) O(k2) Ω(k2) [171]
Planar OS Distance (minor) O(k4) [170] Ω(k2) [170]
Planar OS Distnace (planar) O(k2) Ω(k2) [173]

Table 8.1: An overview on the best-known results for mimicking networks and dis-
tance sparsifiers. The results which are not followed by a reference are shown in
this chapter.

We further provide a lower bound on the size of any data structure (not neces-
sarily a graph) that approximately preserves pairwise terminal distances of general
k-terminal graphs, which gives a trade-off between the distance stretch and the
space complexity.

Theorem 8.1.5. For any ε > 0 and t ≥ 2, there exists a (sparse) k-terminal n-vertex
graph such that k = o(n), and any data structure that approximates pairwise terminal
distances within a multiplicative factor of t − ε or an additive error 2t − 3 must use
Ω(k1+1/(t−1)) bits.

Remark. Recently and independently of our work, Krauthgamer and Rika [172]
constructed quality-1 cut sparsifiers of sizeO(γ522γk4) for planar graphs whose ter-
minals are incident to at most γ = γ(G) faces. In comparisonwith our upper-bound
which only considers the case γ = 1, the size of our sparsifiers from Theorem 8.1.4
is better by aΩ(k2) factor. Moreover, their work focuses on constructing sparsifiers

8.1. INTRODUCTION 241

that are minors of the originial input graph, while our construction only guarantee
that the resulting sparsifiers are planar graphs. Subsequent to our work, Karpov
et al. [153] proved that there exists edge-weighted k-terminal planar graphs that
require Ω(2k) edges in any exact cut sparsifier, which implies that it is necessary to
have some additional assumption (e.g., γ = O(1)) to obtain a cut sparsifier of kO(1)

size.

Our Techniques. Our results for reachability-preserving minors are obtained by
exploiting a technique of counting “branching” events between shortest paths in
the directed setting (this technique was introduced by Coppersmith and Elkin [75],
and has also been recently leveraged by Bodwin [53] and Abboud and Bodwin [1]).
Using this and a consistent tie-breaking scheme for shortest paths, we can effi-
ciently construct a RPM for general digraphs of size O(k4) and by using a more
refined analysis of branching events (see [1]), we can further reduce the size to be
O(k3). We then combine our constructionwith a decomposition for planar digraphs
(see [245]), to show that it suffices to maintain the reachability information among
O(k log k) terminal pairs, instead of the naive O(k2) pairs, and then construct a
RPM for planar digraphs with O(k2 log k) vertices.

The lower-bound follows by constructing a special class of k-terminal directed
grids and showing that any RPM for such grids must use Ω(k2) vertices. Similar
ideas for proving the lower bound on the size of distance-preserving minors for
undirected graphs have been used by Krauthgamer et al. [170].

We construct our quality-1 cut and distance sparsifiers by repeatedly perform-
ing Wye-Delta transformations, which are local operations that preserve cut values
and distances and have proven very powerful in analyzing electrical networks and
in the theory of circular planar graphs (see e.g., [77, 101]). Khan and Raghaven-
dra [162] used Wye-Delta transformations to construct quality-1 cut sparsifiers of
size O(k) for trees and outerplanar graphs, while our case (i.e., the planar OS in-
stances) is more general and complicated and previously it was not clear at all how
to apply such transformations to a more broad class of graphs. Our approach is as
follows. Given a k-terminal planar graph with terminals lying on the same face,
we first embed it into some large grid with terminals lying on the boundary of the
grid. Next, we show how to embed this grid into a “more suitable” graph, which we
will refer to as “half-grid”. Finally, using the Wye-Delta operations, we reduce the
“half-grid” into another graph whose number of vertices can be bounded by O(k2).
Since we argue that the above graph reductions preserve exactly all terminal mini-
mum cuts, our result follows. Gitler [112] proposed a similar approach for studying
the reducibility of multi-terminal graphs with the goal to classify all Wye-Delta re-
ducible graphs, which is very different from our motivation of constructing small
vertex sparsifiers with good quality.

The distance sparsifiers can be constructed similarly by slightly modifying the
Wye-Delta operation. Our flow sparsifiers follow from the construction of cut spar-
sifiers and the flow/cut gaps for OS instances (which has been initially observed by

242 CHAPTER 8. SPARSIFICATION FOR REACHABILITY, CUTS AND DISTANCES

Andoni et al. [24]). Our lower bound on the space complexity of any compression
function approximately preserving terminal pairwise distance is derived by combin-
ing extremal combinatorics construction of Steiner Triple System that was used to
prove lower bounds on the size of distance approximating minors (see [69]) and the
incompressibility technique from [192].

Related Work. There has been a long line of work on investigating the trade-
off between the quality of the vertex sparsifier and its size (see e.g., [24, 94, 171]).
(Throughout, cut, flow and distance sparsifiers will refer to their vertex versions.)
Quality-1 cut sparsifiers (or equivalently, mimicking networks) were first introduced
by Hagerup et al. [125], who proved that for any graphG, there always exists a mim-
icking network of size O(22

k
). Krauthgamer and Rika [171] showed how to build

a mimicking network of size O(k222k) for any planar graph G that is minor of the
input graph. They also proved a lower bound of Ω(k2) on the number of edges of
the mimicking network of planar graphs, and a lower bound of 2Ω(k) on the number
of vertices of the mimicking network for general graphs.

Quality-1 vertex flow sparsifiers have been studied in [24, 118], albeit only for
restricted families of graphs like quasi-bipartite, series-parallel, etc. It is not known
if any general undirected graph G admits a constant quality flow sparsifier with
size independent of |V (G)| and the edge capacities. For the quality-1 distance
sparsifiers, Krauthgamer et al. [170] introduced the notion of distance-preserving
minors, and showed an upper-bound of size O(k4) for general undirected graphs.
They also gave a lower bound of Ω(k2) on the size of such a minor for planar
graphs. Abboud et al. [5] show how to compress a planar graph metric using only
Õ(min{k2,

√
k · n}) bits. Recently, Chang et al. [59] extended their compressing

scheme to a graph sparsifer which matches their bound.
Over the last two decades, there has been a considerable amount of work on un-

derstanding the tradeoff between the sparsifier’s quality q and its size for q > 1, i.e.,
when the sparsifiers only approximately preserve the corresponding properties [24,
44, 58, 60, 63, 68, 69, 72, 94, 102, 109, 119, 146, 180, 191, 197].

8.2 Preliminaries

Let G = (V,E) be a directed graph with terminal set K ⊂ V , |K| = k, which
we will refer to as a k-terminal digraph. We say G is a k-terminal DAG if G has
no directed cycles. The in-degree of a vertex v, denoted by deg−G(v), is the number
of edges directed towards v in G. A digraph H = (V ′, E′), K ⊂ V ′ is a (vertex)
reachability sparsifier ofG if for any x, x′ ∈ K , there is a directed path from x to x′
in H iff there is a directed path from x to x′ in G. If H is obtained by performing
minor operations in G, then we say that H is a reachability-preserving minor of G.
We define the size of H to be the number of non-terminals in H , i.e. |V ′ \K|.

Let G = (V,E, c) be an undirected graph with terminal set K ⊂ V of cardi-
nality k, where c : E → R≥0 assigns a non-negative capacity to each edge. We
will refer to such a graph as a k-terminal graph. Let U ⊂ V and S ⊂ K . We say

8.3. REACHABILITY-PRESERVING MINORS FOR GENERAL DIGRAPHS 243

that a cut (U, V \ U) is S-separating if it separates the terminal subset S from its
complement K \ S, i.e., U ∩ K is either S or K \ S. We will refer to such cut
as a terminal cut. The cutset δ(U) of a cut (U, V \ U) represents the edges that
have one endpoint in U and the other one in V \ U . The cost capG(δ(U)) of a cut
(U, V \U) is the sum over all capacities of the edges belonging to the cutset. We let
mincutG(S,K \S) denote the minimum cost of any S-separating cut ofG. A graph
H = (V ′, E′, c′),K ⊂ V ′ is a quality-q (vertex) cut sparsifier of G with q ≥ 1 if for
any S ⊂ K, min-cutG(S,K \S) ≤ min-cutH(S,K \S) ≤ q ·min-cutG(S,K \S).

8.3 Reachability-Preserving Minors for General
Digraphs

In this section, we provide two constructions for reachability-preserving minors
for general digraphs. The resulting minor from the first construction has sizeO(k4),
which is larger than the sizeO(k3) of theminor from the second construction. How-
ever, our first construction can be implemented in polynomial time (in n), while the
second one requires exponential running time.

8.3.1 A Warm-up: An Upper Bound of O(k4)

In this section we show that any k-terminal digraph admits a reachability-
preservingminor of sizeO(k4). We accomplish this by first restricting our attention
to DAGs, and then showing how to generalize the result to any digraph.

We start by introducing the following definition. Given a digraph G with a
terminal setK of size k and a pair-set P ⊆ K ×K , we say thatH is a reachability-
preserving minor with respect to P , ifH is a minor of G that preserves the reacha-
bility information only among the pairs in P . Note that in the definition of vertex
reachability sparsifiers, the trivial pair-set P contains k(k − 1) terminal-pairs, i.e.,
for any pair x, x′ ∈ K , both (x, x′) and (x′, x) belong to P . Whenever we omit P ,
we mean to preserve the reachability information among all possible terminal pairs.

We next review a useful scheme for breaking ties between shortest paths con-
necting some vertex pair from P . This tie-breaking is usually achieved by slightly
perturbing the edge lengths of the original graph such that no two paths have the
same length (note that in our case, edge lengths are initially one). The perturbation
gives a consistent scheme in the sense that whenever π is chosen as a shortest path,
every sub-path of π is also chosen as a shortest path. Below we formalize these
ideas using two definitions and a lemma from [53].

Definition 8.3.1 (Tie-breaking Scheme). Given a k-terminal G, a shortest path tie
breaking scheme is a function π that maps every pair of vertices (s, t) to some shortest
path between s and t in G. For any pair-set P , we let π(P) denote the union over all
shortest paths between pairs in P with respect to the scheme π.

244 CHAPTER 8. SPARSIFICATION FOR REACHABILITY, CUTS AND DISTANCES

Definition 8.3.2 (Consistency). A tie-breaking scheme is consistent if, for all vertices
y, x, x′, y′ ∈ V , if x, x′ ∈ π(y, y′)with d(y, x) < d(y, x′), then π(x, x′) is a sub-path
of π(y, y′).

Lemma 8.3.3 ([53]). For any k-terminal G, there is a consistent tie-breaking scheme
in G.

We remark that for any k-terminal graph with n vertices, the consistent tie-
breaking scheme can be constructed in polynomial (in n) time [75].

Let G be a k-terminal DAG. Given a tie-breaking scheme π, the first step to
construct a reachability-preserving minor is to start with an empty graph H and
then for every pair p ∈ P , repeatedly add the shortest-path π(p) to H . We can
alternatively think of this as deleting vertices and edges that do not participate in
any shortest path among terminal-pairs in P with respect to the scheme π. Clearly,
the DAG H = (V ′, E′), E′ := π(P), is a minor of G and preserves all reachability
information among pairs in P . We next review the notion of a branching event,
which will be useful to bound the size of H .

Definition 8.3.4 (Branching Event). Abranching event is a set of two distinct directed
edges {e1 = (u1, v), e2 = (u2, v)} that enter the same node v.

Lemma 8.3.5. The DAGH has at most |P |(|P | − 1|)/2 branching events.

Proof. First, note that by construction ofH , we can associate each edge e ∈ E′ with
some pair p ∈ P such that e ∈ π(p). To prove the lemma, it suffices to show that
for any two terminal-pairs p1, p2 ∈ P , there is at most one branching event in the
graph induced by π(p1) ∪ π(p2). Suppose towards contradiction that there exist
two terminal pairs p1, p2 that have two branching events in π(p1) ∪ π(p2). More
specifically, we assume there exist two branching events

b := {e1 = (u1, v), e2 = (u2, v)} and b′ := {e1 = (u′1, v
′), e2 = (u′2, v

′)},

where ei and e′i lie on the dipath π(pi), for i = 1, 2.
Assume without loss of generality that the vertex v appears before v′ in the

dipath π(p1). We then claim that v must also appear before v′ in the dipath π(p2),
since otherwise wewould have a directed cycle between v and v′, thus contradicting
the fact that H is acyclic. Since the tie-breaking scheme π is consistent (Lemma
8.3.3), it follows that the dipaths π(p1) and π(p2) must share the subpath π(v, v′).
Thus, π(p1) and π(p2) use the same edge that enters the node v′, i.e., e′1 = e′2.
However, by definition of a branching event, the edges that enter a node must be
distinct, contradicting the fact that b′ is a branching event. This implies that there
cannot be two branching events for the terminal pairs p1 and p2, thus proving the
lemma.

We now have all the tools to present our algorithm for constructing reachability-
preserving minors for DAGs.

8.3. REACHABILITY-PRESERVING MINORS FOR GENERAL DIGRAPHS 245

Algorithm 8.1: MinorSparsifyDag (G,P)

Input :k-terminal DAG G, pair-set P
Output :Reachability preserving minor H of G with respect to P

1 Set H ← ∅
2 Compute a consistent tie-breaking scheme π for shortest paths in G
3 For each p ∈ P , add the shortest path π(p) to H
4 while there is an edge (u, v) directed towards a non-terminal v with deg−H(v) = 1 do
5 Contract the edge (u, v)
6 return H

Lemma 8.3.6. Given a k-terminal DAG G with a pair-set P , Algorithm 33 outputs a
reachability-preserving minor H of size O(|P |2) for G with respect to P .

Proof. We first argue that H is a reachability-preserving minor with respect to the
terminals. Indeed, after Line 2 of the algorithm, graph H can viewed as deleting
vertices and edges fromG that do not lie on any of the shortest path among terminal
pairs inP , chosen according to the scheme π. Thus, at this pointH is clearly aminor
of G that preserves the reachability information among the pairs in P . The edge
contractions we perform in the remaining part of the algorithm guarantee that the
resultingH remains a reachability-preserving minor of G with respect to P .

To bound the size ofH , note that every non-terminal v ∈ V ′ \K has in-degree
at least 2, and thus it corresponds to at least one branching event. Lemma 8.3.5
shows that the number of branching events is at most O(|P |2). Observing that
edge contractions in Line 4 do not affect this number, we get that the size of H is
O(|P |2).

We next show how the construction of reachability-preserving minors can be
reduced from general digraphs to DAGs, and prove the following theorem.

Theorem 8.3.7. Given a k-terminal digraph G with a pair-set P , there exists a poly-
nomial time algorithm that outputs a reachability-preserving minorH of sizeO(|P |2)
with respect to P .

Taking P to be the trivial pair-set, we get a reachability-preserving minor of
size O(k4).

Proof of Theorem 8.3.7. Recall that a digraph is strongly connected if there is a di-
rected path between all pair of vertices. We proceed by first finding a decomposi-
tion of the graph into strongly connected components (SCCs) [242]. We observe
that each SCC that contains terminals can be contracted into a smaller component
only on the terminals. Then contracting each SCC into a single vertex to obtain
a DAG and invoking Algorithm 33 on the resulting DAG gives some intermediate
reachability-preserving minor. Finally, we show that this minor can be expanded
back to produce a reachability-preserving minor for the original digraph. These
steps are formally given in the procedure Algorithm 34.

246 CHAPTER 8. SPARSIFICATION FOR REACHABILITY, CUTS AND DISTANCES

Algorithm 8.2: MinorSparsify (G,P)

Input :k-terminal digraph G, pair-set P
Output :Reachability preserving minor H of G with respect to P

1 Compute a strongly connected component decomposition D of G
2 Let f be some initially empty labelling that records the SCC of every vertex
3 for each SCC C ∈ D do
4 if C contains some terminal x ∈ K then
5 For all v ∈ C , set f(v)← x
6 else
7 Choose some arbitrary u ∈ C , and set f(v)← u, for all v ∈ C .

// Preprocessing Step
8 Let DK denote the set of SCCs containing terminals in G
9 for all SSC C ∈ DK do

10 while C contains some non-terminal v do
11 Choose some directed edge (v, u) leaving v inside C , and contract v into u

12 Let Ĝ = (V̂, Ê) and D̂ denote the resulting graph and the SCC decomposition
// Main Procedure

13 Contract each SSC in D̂ into a single vertex, producing the DAG G′ = (V ′, E′)
14 LetK ′ ← ∅ and P ′ ← ∅ be the terminal set and pair-set of G′, respectively
15 For all k ∈ K , add f(k) toK ′ and remove duplicates, if any
16 For all (s, t) ∈ P , add (f(s), f(t)) to P ′ if f(s) ̸= f(t)
17 Set H ′ =MinorSparsifyDag(G′, P ′)
18 Let H be the graph obtained by expanding back all contracted SCCs in D̂K in H ′

19 returnH

The main intuition behind the correctness of the above reduction lies on two
important observations. First, vertices belonging to the same strongly connected
components can always reach each other. Second, vertices belonging to different
strongly connected components can reach each other if the corresponding vertices
in the contracted graph can do so. We have the following useful observation.

Fact 8.3.8. For any strongly connected digraph G = (V,E), contracting any edge
e ∈ E results in another strongly connected digraph G′ = (V ′, E′).

Now we show that the graph H output by MinorSparsify is a reachability-
preserving minor of G. It is easy to verify that the produced graph H is indeed a
minor of G. To show the correctness, we will prove that H preserves the reacha-
bility information among all pairs from P in G. Before doing that, observe that the
graph Ĝ obtained after the preprocessing step is a reachability preserving minor
of G with respect to P . Indeed, this can be inferred by a repeated application of
Fact 8.3.8 to each SSC containing terminal vertices.

Now, let (s, t) ∈ P be any terminal-pair in G. Assume that t is reachable from
s in G. We distinguish two cases:

8.3. REACHABILITY-PRESERVING MINORS FOR GENERAL DIGRAPHS 247

1. If s and t belong to the same SCC in D, they do also belong to the corre-
sponding SCC in D̂. In Line 10, s and t are contracted into a single terminal.
However, since the contracted SSC contains terminals, it is expanded back to
its original form in D̂ in Line 17. Thus, it follows that t is reachable from s in
the output graph H .

2. If s and t do not belong to the same SCC in D, they must also not belong
to the same SCC in D̂. Let f(s) and f(t) denote the terminals in the DAG
G′ obtained by contracting their corresponding components in D̂ (Line 10).
Since t is reachable from s in Ĝ, note that f(t) must also be reachable from
f(s) in G′. By Lemma 8.3.6, it follows that f(t) is reachable from f(s) in
the reachability-preserving minor H ′ of G′. Expanding back the SCCs that
contain terminals in H ′ (Line 17), we can construct the directed path s
f(s) f(t) t in H , which shows that t is also reachable from s in the
output graph H .

When t is not reachable from s in G, we can similarly show that t is also not reach-
able from s in H , thus concluding the correctness proof.

We now bound the size ofH . Since the DAG G′ has |P ′| ≤ |P | pairs, it follows
by Lemma 8.3.6 thatH ′ has size at mostO(|P |2). After expanding back the SCCs in
Line 19, we get that each SSC inH contains at most ki terminals, where k =

∑
i ki.

Note that this does not contribute to the size of H . Therefore, we get that the size
of the output graph H is at most O(|P |2).

8.3.2 An Improved Bound of O(k3)

Using the recent work due to Abboud and Bodwin [1], we next show how to get
a polynomial improvement on the number of branching events from Lemma 8.3.5.
This in turn gives a polynomial improvement on the size of reachability-preserving
minor from Theorem 8.3.7.

Specifically, given a k-terminal DAG G with a pair-set P , let H = (V,E′) be
the subgraph of G with minimum number of edges that preserves all reachability
information among the pairs in P . We call such an H the sparsest reachability pre-
server of G. The following lemma is implicit in [1], and we include it here for the
sake of completeness.

Lemma 8.3.9. The DAGH = (V,E′) has at most k · |P | branching events.

Proof. For each pair (s, t) ∈ P , we associate a directed path s t in H , and let
π̃(s, t) denote such a path. Note that since H is acyclic, every π̃(s, t) is acyclic
as well. Moreover, using the fact that H is the sparsest reachability preserver, it
follows that for every edge e ∈ E′, there must be some pair (s, t) ∈ P such that
deleting e fromH implies that s cannot reach t, i.e., s ̸ t inH \{e}. This naturally
leads to a relationship between edges and pairs. Specifically, we say that every edge
e ∈ E′ is owned by one such pair (s, t) ∈ P .

248 CHAPTER 8. SPARSIFICATION FOR REACHABILITY, CUTS AND DISTANCES

Next, for each (s, t) ∈ P , we let BH
(s,t) denote the set of all branching events

{e1, e2} in H such that either e1 or e2 (but not both) is owned by (s, t). We
claim that

∪
{BH

(s,t) | (s, t) ∈ P} contains all branching events in H . Indeed,
suppose towards contradiction that {e1, e2} is a branching event in H but not
in
∪
{BH

(s,t) | (s, t) ∈ P}. Then by definition of BH
(s,t) there must be some pair

(s, t) ∈ P such that e1 and e2 are both owned by (s, t). The latter implies that we
can construct two directed paths from s to t, where one path uses e1 and the other
uses e2. Delete edge e1 w.l.o.g. Then we still have another directed path from s to
t, thus contradicting the assumption that e1 is owned by (s, t).

Now, to prove the lemma it suffices to show that |BH
(s,t)| ≤ k, for every (s, t) ∈

P . Suppose towards contradiction that there exists a pair (s, t) ∈ P such that
|BH

(s,t)| ≥ k+1. Then by the pigeonhole principle, there exist two branching events

{(x1, b1), (x2, b1)}, {(y1, b2), (y2, b2)} ∈ BH
(s,t)

entering the nodes b1 and b2, such that (s, t) owns (x1, b1) and (y1, b2), and the
other edges are owned by pairs that share a common left terminal, i.e.,

(x2, b1) is owned by (u, v1) and (y2, b2) is owned by (u, v2)

for some u ∈ K and (u, v1), (u, v2) ∈ P . Note that by the definition of BH
(s,t),

y1 and y2 are different vertices. We further assume w.l.o.g. that node b1 appears
before b2 in π̃(s, t). Now, since the pair (u, v2) owns the edge (y2, b2), every path
u v2 must use the edge (y2, b2), which further implies that every path u b2
must use the edge (y2, b2). We can form a path u b2 by first taking the path
π̃(u, v1)[u b1]

1 and then extend it by concatenating it with the path π̃(s, t)[b1
b2]. This implies one of the following cases: (1) (y2, b2) ∈ π̃(s, t)[b1 b2] or (2)
(y2, b2) ∈ π̃(u, v1)[u, b1]. We show that (2) cannot happen, thus only (1) holds. To
this end, suppose towards contradiction that (y2, b2) ∈ π̃(u, v1)[u, b1]. Then we
can find a directed path b2 b1. But since b1 appears before b2, we get the cycle
b2 b1 b2, which contradicts the fact that H is acyclic.

Finally, case (1) implies that (y2, b2) ∈ π̃(s, t). Therefore, the path π̃(s, t) con-
tains both (y1, b2) and (y2, b2). On the other hand, since π̃(s, t) is acyclic, there
cannot be two vertices entering b2, which is a contradiction.

1Let x, y, x′, y′ ∈ V , π̃(x, y) be a directed path from x to y, and suppose x′, y′ ∈ π̃(x, y) with
x′ appearing before y′. Then π̃(x, y)[x′ y′] denotes the directed subpath from x′ to y′ in π̃(x, y).

8.4. REACHABILITY-PRESERVING MINORS FOR PLANAR DIGRAPHS 249

The above lemma leads to the following algorithm.
Algorithm 8.3: MinorSparsifyDag2 (G,P)
Input :k-terminal DAG G, pair-set P
Output :Reachability preserving minor H of G with respect to P

1 Set H = (V,E′) be the sparsest reachability preserver with respect to P
2 Remove isolated non-terminal vertices from H , if any
3 For each p ∈ P , add the shortest path π(p) to H
4 while there is an edge (u, v) directed towards a non-terminal v with deg−H(v) = 1 do
5 Contract the edge (u, v)
6 return H

We remark that the above construction is built upon the sparest reachability
preserverH , which we can find in exponential time (say, by a brute-force approach).
By using similar arguments as in the proof of Lemma 8.3.6 and Theorem 8.3.7, we
have the following guarantees.

Lemma 8.3.10. Given a k-terminal DAG G with a pair-set P , Algorithm 35 outputs
a reachability-preserving minor H of size O(k · |P |) for G with respect to P .

Theorem 8.3.11. Given a k-terminal digraph G with a pair-set P , there exists an al-
gorithm that outputs a reachability-preserving minorH of sizeO(k · |P |) with respect
to P .

Taking P to be the trivial pair-set we get a reachability-preserving minor of size
O(k3), which proves Theorem 8.1.1. We note that in contrast to Theorem 8.3.7, the
above theorem guarantees only an exponential-time algorithm in theworst-case. As
discussed above, this comes from the assumption that we have access to the sparsest
reachability preserver. It is conceivable that a similar approach that appears in [1]
could be employed to achieve a better running-time. However, the focus of our
work is on optimizing the size of reachability-preserving minors.

8.4 Reachability-Preserving Minors for Planar
Digraphs

In this section we show that any k-terminal planar digraphG admits a reachability-
preservingminor of sizeO(k2 log k) and thus proveTheorem 8.1.2. Thismatches the
lower-bound of Theorem 8.1.3 up to an O(log k) factor. The main idea is as follows.
Given a k-terminal planar digraphGwith the trivial pair-set P , |P | = k(k−1), our
goal will be to slightly increase the number of terminals while considerably reducing
the size of the pair-set P , under the condition that no reachability information is
lost among the terminal-pairs in P .

Preprocessing Step. Given a k-terminal digraph G, we apply Theorem 8.1.1 to
get a reachability-preserving minor G′. To simplify the notation, we will use G
instead of G′, i.e., throughout we assume that G has at most O(k3) vertices.

250 CHAPTER 8. SPARSIFICATION FOR REACHABILITY, CUTS AND DISTANCES

Decomposition into Path-Separable Digraphs and the Algorithm. We say
that a graph G = (V,E) admits an α-separator if there exists a set S ⊂ V whose
removal partitionsG into connected components, each of size at most α · |V |, where
1/2 ≤ α < 1. If the vertices of S consist of the union over r paths of G, for
some r ≥ 1, we say that G is (α, r)-path separable. We now review the following
reduction due to Thorup [245].

Theorem 8.4.1 ([245]). Given a digraph G, we can construct a series of digraphs
G0, . . . , Gb for some b ≤ n such that the number of vertices and edges over all Gi’s is
linear in the number of vertices and edges in G, and

1. Each vertex and edge of G appears in at most two Gi’s.

2. For all u, v ∈ V , if there is a dipath R from u to v in G, there is a Gi that
contains R.

3. Each Gi = (Vi, Ei) is (1/2, 6)-path separable.

4. Each Gi is a minor of G. In particular, if G is planar, so is Gi.

Now we review how directed reachability can be efficiently represented by sep-
arator dipaths. Let G be a k-terminal directed graph G that contains some directed
path Q. Assume that the vertices of Q are ordered in increasing order in the direc-
tion of Q. For each terminal x ∈ K , let tox[Q] be the first vertex in Q that can
be reached by x, and let fromx[Q] be the last vertex in Q that reaches x. Let (s, t)
be a terminal pair and let R be the directed path from s to t in G. We say that R
intersects Q iff s can reach tos[Q] and t can be reached from fromt[Q] in Q, and
tos[Q] precedes fromt[Q] in Q.

We now are going to combine the above tools to give our labelling algorithm
aimed at reducing the size of the trivial pair-set P . By Theorem 8.4.1, we restrict
our attention only to the digraphsGi. LetKi := V (Gi)∩K be the set of terminals
restricted to the graph Gi.

Lemma 8.4.2. LetG be a k-terminal planar digraph. Let P ′ := ∪bi=0P
′
i be the union

over all pair-sets output by running Algorithm 36 on each digraph Gi. Then the size
of |P ′| is at most O(k log k). Moreover, if H is a reachability-preserving minor of G
with respect to P ′, then H is a reachability-preserving minor of G with respect to all
terminal pairs.

Proof. By preprocessing,G has at mostO(k3) vertices. Throughout, it will be useful
to think of the above algorithm as simultaneously running it on each digraph Gi.
By Item 2 ofTheorem 8.4.1, each terminal appears in at most twoGi’s. Thus at each
recursive level, there will be at most O(k) activeGi’s. Also, note that the separator
properties imply that there are O(log k) recursive calls overall.

We next bound the size of the pair-setP ′. Let q denote the total number of newly
added terminals in Line 7 per recursive level. Since there are O(k) terminals, each
adding at mostO(1) new terminals, it follows that q = O(k). First, we argue about
the number of pairs added in Line 9. Since this is bounded by O(q), it follows that

8.4. REACHABILITY-PRESERVING MINORS FOR PLANAR DIGRAPHS 251

Algorithm 8.4: ReducePairSet (Gi,Ki)

Input :planar digraph G, terminalsKi

Output :Pair-set Pi with respect toKi

1 if |V (Gi)| ≤ 1 orKi = ∅ then
2 return ∅
3 Let P ′

i ← ∅ be a new pair-set
4 Compute a 1/2-separator S of Gi consisting of 6 dipaths by Item 4 of Theorem 8.4.1
5 for each dipath Q ∈ S do

// Addition of terminal connections with Q
6 Let Q′ be the set of existing terminals of Q
7 for each terminal x ∈ Ki do
8 Compute tox[Q] and fromx[Q]
9 Declare tox[Q] and fromx[Q] terminals and add them to Q′

10 Add (x, tox[Q]) and (fromx[Q], x) to P ′
i

// Sparsification of Q using Q′

11 Remove all vertices in Q \Q′

12 Define directed pairs (s, t), where s and t are consecutive terminals of Q′,
according to the ordering of Q and add all these pairs to P ′

i

13 Let (G(1)
i ,K

(1)
i) and (G

(2)
i ,K

(2)
i) be the resulting graphs from G \ S,

whereK(1)
i andK(2)

i are disjoint subsets of the terminalsK separated by S
// Note that reachability info. about terminals in S are taken

care of.

14 return P ′
i ∪
∪2

j=1 ReducePairSet(G
(j)
i ,K

(j)
i)

there are O(k log k) pairs overall. Second, we bound the number of pairs added
when sparsifying the separator paths, i.e., pair additions in Line 11. For all the
separators in the same recursive level, we canwrite q :=

∑
i |Q′

j |, whereQ′
j denotes

the set newly added terminals for some separator dipath. By Line 11, it follows that
we need only (|Q′

j | − 1) pairs to represent each such dipath. Thus, per recursive
call, the total number of newly added pairs isO(q) = O(k). Summing these overall
O(log k) levels, and combining this with the previous bound, gives the claimed
bound on |P ′|.

Finally, we argue that P ′ is a pair-set that can recover reachability information
among terminals. Fix any terminal pair (s, t) and let R be a directed path from s to
t in G. By Item 2 of Theorem 8.4.1, there is some digraph Gi that contains R. Then,
Rmust intersect with some separator dipathQ, at some level of the recursion of the
above algorithm onGi. The above argument gives thatP ′ contains all the necessary
information to give a (possibly) another directed path from s to t in G.

Applying Theorem 8.3.11 on the digraph G with pair-set P ′, as defined by the
above lemma, we get Theorem 8.1.2.

252 CHAPTER 8. SPARSIFICATION FOR REACHABILITY, CUTS AND DISTANCES

8.4.1 Lower-bound for Planar DAGs

In this section we prove that there exists an infinite family of k-terminal acyclic
directed grids such that any reachability-preserving minor for such graphs needs
Ω(k2) non-terminals (i.e., prove Theorem 8.1.3). We achieve this by adapting
the ideas of Krauthgamer et al. [170], from their lower-bound proof on distance-
preserving minors for undirected graphs.

We start by defining of our lower-bound instance. Fix k such that r = k/4 is
an integer. Construct an initially undirected (r+ 1)× (r+ 1) grid, where all the k
terminals lie on the boundary, except at the corners, and declare all non-boundary
vertices non-terminals. Remove the four corner vertices, and then all boundary
edges connecting the terminals. Now, make the graph directed by first directing
each horizontal edge from left to right, and then directing each vertical edge from
top to bottom. Let G denote the resulting k-terminal directed grid. It is easy to
verify that G is acyclic.

Theorem 8.4.3. For infinitely many k ∈ N there exists a k-terminal acyclic di-
rected grid G such that any reachability-preserving minor of G must use Ω(k2) non-
terminals.

Proof. LetG be the k-terminal grid defined as above. Note that there are r terminals
on each side of the grid. Let H be any reachability-preserving minor of G. Recall
thatH contains all terminal vertices fromG. Furthermore, let x1, x2, . . . , xr be the
terminals on the left-side of the grid, ordered from top to bottom. Similarly, define
y1, y2, . . . , yr to be the terminals on the right-side. Note that by construction of G,
for an index pair (i, j) with i < j, there is no directed path from xj to yi. Finally,
define P i

H to be the directed path from xi to yi in H , for i = 1, . . . , r. Throughout
we will refer to such paths as horizontal.

Claim 8.4.4. The horizontal directed paths P 1
H , P

2
H , . . . , P

r
H are vertex disjoint inH .

Proof. Suppose towards contradiction that there exist some i and j with i < j such
that P i

H and P j
H intersect at some vertex z inH . This implies that there are directed

paths from xi and xj to z, and from z to yi and yj . The latter implies that there is a
directed path from xj to yi in H . However, by construction of G, we know that xj
cannot reach yi for i < j, contradicting the fact thatH is a reachability-preserving
minor of G.

We can apply symmetric argument to the vertical paths inH . More specifically,
define u1, u2, . . . , ur to be the terminal on the top-side of the grid, order from left to
right. Similarly, define v1, v2, . . . , ur to be the terminals on the bottom-side. Note
that by construction of G, for an index pair (i, j) with i < j, there is no directed
path from uj to vi. Finally, defineQi

H to be the directed path from ui to vi inH , for
i = 1, . . . , r. Then we get the following symmetric claim.

Claim 8.4.5. The vertical directed paths Q1
H , Q

2
H , . . . , Q

r
H are vertex disjoint in H .

8.5. AN EXACT CUT SPARSIFIER OF SIZE O(k2) 253

We next argue that all the horizontal and the vertical paths must intersect with
each other.

Claim 8.4.6. Any pair of horizontal and vertical paths P i
H and Qj

H intersect in H .

Proof. Since H is a minor of G, any dipath that connects two terminals in H can
be mapped back to a dipath connecting two terminals in G. Let Pi and Qj be the
corresponding dipaths in G that are obtained by expanding back the dipaths P i

H

and Qj
H in H . By construction of G, the horizontal and vertical dipaths between

terminals are unique, implying thatPi andQj must intersect at some vertex ofG. By
performing the backtracked minor-operations on this vertex yields an intersection
vertex between P i

H and Qj
H in H .

The last claim we need shows that no pair of horizontal and the vertical paths
intersects intersect at a terminal vertex.

Claim 8.4.7. No pair of horizontal and vertical paths P i
H and Qj

H intersects at a
terminal vertex in G.

Proof. Consider the terminal pairs (xi, yi) and (uj , vj) corresponding to the paths
P i
H and Qj

H . Note that by construction of G, the set of terminals reachable
from both xi and uj in G is {yi, yi+1, . . . , yr} ∪ {vj , vj+1, . . . , vr}. Since H
is a reachability-preserving minor of G, xi and uj must also be able to reach
this terminal-set in H and also P i

H and Qj
H cannot intersect at any terminal in

{y1, . . . , yi−1} ∪ {v1, . . . , vj−1}. Now, suppose towards contradiction that P i
H and

Qj
H intersect at some terminal yk, for k ∈ {i + 1, . . . , r}. This implies that in the

path P i
H , there is a directed path from yk to yi, for k > i, giving a contradiction by

construction of G. Furthermore, observe that P i
H and Qj

H cannot intersect at yi, as
otherwise we would have a directed path from yi to vj , which is a contradiction by
construction ofG. Applying a similar argument to the case when paths intersect at
some terminal vℓ, for k ∈ {j + 1, . . . , r}, gives the claim.

We know have all the necessary tools to prove the theorem. Claim 8.4.6 shows
that the paths P i

H andQj
H intersect inH and let zi,jH denote one of the intersection

vertices. Now, we must show that all these vertices are distinct. To this end, assume
that zi1,j1H = zi2,j2H . Since these vertices belong to both P i1

H and P i2
H , by Claim 8.4.4

we get that i1 = i2. Similarly, by Claim 8.4.5 we get that j1 = j2. Thus, we have
that all vertices zi,jH , for i, j = 1, 2, . . . , r are distinct. Since Claim 8.4.7 implies that
none of this intersection vertices is a terminal, we conclude thatH must contain at
least r2 = (k/4)2 non-terminals.

8.5 An Exact Cut Sparsifier of Size O(k2)

In this section we show that given a k-terminal planar graph, where all terminals
lie on the same face, one can construct a quality-1 cut sparsifier of sizeO(k2). Note

254 CHAPTER 8. SPARSIFICATION FOR REACHABILITY, CUTS AND DISTANCES

that it suffices to consider the case when all terminals lie on the outer face. We first
present some basic tools.

8.5.1 Basic Tools

Wye-Delta Transformations. In this section we investigate the applicability of
some graph reduction techniques that aim at reducing the number of non-terminals
in a k-terminal graph. We start by reviewing the so-called Wye-Delta operations in
graph reductions. These operations consist of five basic rules, which we describe
below. (See Fig. 8.1 for illustrations.)

1. Degree-one reduction: Delete a degree-one non-terminal and its incident edge.

2. Series reduction: Delete a degree-two non-terminal y and its incident edges
(x, y) and (y, z), and add a new edge (x, z) of capacity min{c(x, y), c(y, z)}.

3. Parallel reduction: Replace all parallel edges by a single edge whose capacity
is the sum over all capacities of parallel edges.

4. Wye-Delta transformation: Let x be a degree-three non-terminal with neigh-
bours δ(x) = {u, v, w}. Assume w.l.o.g.2 that for any pair (u, v) ∈ δ(x),
c(u, x) + c(v, x) ≥ c(w, x), where w ∈ δ(v) \ {u, v}. Then we can delete x
(along with all its incident edges) and add edges (u, v), (v, w) and (w, u)with
capacities (c(u, x) + c(v, x) − c(w, x))/2, (c(v, x) + c(w, x) − c(u, x))/2
and (c(u, x) + c(w, x)− c(v, x))/2, respectively.

5. Delta-Wye transformation: Delete the edges of a triangle connecting x, y and
z, introduce a new non-terminal vertex w and add new edges (w, x), (w, y)
and (w, z)with edge capacities c(x, y)+c(x, z), c(x, y)+c(y, z) and c(x, z)+
c(y, z) respectively.

The following lemma (which follows from the above definitions) shows that the
above rules preserve exactly all terminal minimum cuts.

Lemma 8.5.1. Let G be a k-terminal graph and G′ be a k-terminal graph obtained
from G by applying one of the rules 1− 5. Then G′ is a quality-1 cut sparsifier of G.

For our application, it will be useful to enrich the set of rules by introducing
two new operations. These operations can be realized as series of the operations
1-5. (See Fig. 8.2 and 8.3 for illustrations.)

6. Edge deletion (with vertex x): For a degree-three non-terminal with neigh-
bours u, v, the edge (u, v) can be deleted, if it exists. To achieve this, we use
a Delta-Wye transformation followed by a series reduction.

2Suppose there exist a pair (u, v) ∈ δ(x) with c(u, x) + c(v, x) < c(w, x), where w ∈ δ(v) \
{u, v}. Then we can simply set c(w, x) = c(u, x) + c(v, x), since any terminal minimum cut would
cut the edges (u, x) and (v, x) instead of the edge (w, x).

8.5. AN EXACT CUT SPARSIFIER OF SIZE O(k2) 255

1

y

2
x y z x z

3

4

u

x

v

w

u v

w

5

x y

z

x y

z

w

Figure 8.1: Wye-Delta operations: 1. Degree-one reduction; 2. Series reduction; 3.
Parallel reduction; 4. Wye-Delta transformation; 5. Delta-Wye transformation.

7. Edge replacement: For a degree-four non-terminal vertex with neighbours
x, u, v, w, if the edge (x, u) exists, then it can be replaced by the edge (v, w).
To achieve this, we use a Delta-Wye transformation followed by a Wye-Delta
transformation.

6

u

x

v u w

x

v
u

w

v

Figure 8.2: Edge deletion transformation. Edge capacities are omitted.

256 CHAPTER 8. SPARSIFICATION FOR REACHABILITY, CUTS AND DISTANCES

7

x u

w v

x u

w v

x u

w v

Figure 8.3: Edge replacement transformation. Edge capacities are omitted.

A k-terminal graph G is Wye-Delta reducible to another k-terminal graphH , if
G is reduced to H by repeatedly applying one of the operations 1-7.

Lemma 8.5.2. Let G and H be k-terminal graphs. Moreover, let G be Wye-Delta
reducible to H . Then H is a quality-1 cut sparsifier of G.

Proof. Observe that the rules 1-7 do not affect any terminal vertex and each rule
preserves exactly all terminal minimum cuts by Lemma 8.5.1. An induction on the
number of rules needed to reduce G to H proves the claim.

Grid Graphs. A grid graph is a graph with n × n vertices {(u, v) : u, v =
1, . . . , n}, where (u, v) and (u′, v′) are adjacent if |u′ − u| + |v′ − v| = 1. For
k < n, a half-grid graph with k terminals is a graph Tn

k = (V,E) withK ⊂ V and
n(n+ 1)/2 vertices {(i, j) : i ≤ j and i, j = 1, . . . , n}, where (i, j) and (i′, j′) are
connected by an edge if |i′−i|+ |j′−j| = 1, and additional diagonal edges between
(i, i) and (i+ 1, i + 1) for i = 1, . . . , n− 1. Moreover, each terminal vertex in Tn

k

must be one of its diagonal vertices, i.e., every x ∈ K is of the form (m,m) for
somem ∈ {1, . . . , n}. Let T̂n

k be the same graph as Tn
k but excluding the diagonal

edges.

Graph Embeddings. Throughout this chapter, we will be dealing with the em-
bedding of a planar graph into a square grid graph. One way of drawing graphs in
the plane are orthogonal grid-embeddings [254]. In such a setting, the vertices corre-
spond to distinct points and edges consist of alternating sequences of vertical and
horizontal segments. Equivalently, one can view this as drawing our input graph
as a subgraph of some grid. Formally, a node-embedding ρ of G1 = (V1, E1) into
G2 = (V2, E2) is an injective mapping that maps V1 into V2, and E1 into paths in
G2, i.e., (u, v) maps to a path from ρ(u) to ρ(v), such that every pair of paths that
correspond to two different edges in G1 is vertex-disjoint (except possibly at the
endpoints). If G2 is a planar graph, then ρ(G1) and G1 are also planar. Thus, if G1

and G2 are planar we then refer to ρ as an orthogonal embedding. Moreover, given
a planar graph G1 drawn in the plane, the embedding ρ is called region-preserving
if ρ(G1) and G1 have the same planar topological embedding.

Let G1 be a k-terminal graph. Since the embedding does not affect the vertices
of G1, the terminals of G1 are also terminals in ρ(G1). Although the embedding

8.5. AN EXACT CUT SPARSIFIER OF SIZE O(k2) 257

does not consider capacity of the edges in G1, we can still guarantee that such an
embedding preserves all terminal minimum cuts, for which we make use of the
following operation:

1. Edge subdivision: Let (u, v) be an edge of capacity c(u, v). Delete (u, v),
introduce a new vertex w and add edges (u,w) and (w, v), each of capacity
c(u, v).

The following lemma shows that a node-embedding is a cut preservingmapping.

Lemma 8.5.3. Let ρ be a node-embedding and letG1 and ρ(G1) be k-terminal graphs
defined as above. Then ρ(G1) preserves exactly all terminal minimum cuts of G.

Proof. We can view each path obtained from the embedding as taking the edge cor-
responding to the path endpoints in G1 and performing edge subdivisions finitely
many times. We claim that such subdivisions preserve all terminal cuts.

Indeed, let us consider a single edge subdivision for (u, v) (the general claim
then follows by induction on the number of edge subdivisions). Fix S ⊂ K and
consider some S-separating minimum cut (U, V \U) inG1 cutting (u, v). Then, in
the transformed graph ρ(G1), we can simply cut either the edge (u,w) or (w, v).
Since by construction, the new edge has the same capacity as the subdivided edge,
we get that capρ(G1)(δ(U)) = capG1

(δ(U)), and in particular min-cutρ(G1)(S,K \
S) ≤ min-cutG1(S,K \ S).

Furthermore, since G1 is obtained by contracting two edges of the same ca-
pacity of ρ(G1), for any S-separating minimum cut (U, V \ U) in ρ(G1), we
have capρ(G1)(δ(U)) ≥ capG1

(δ(U)), and in particular min-cutρ(G1)(S,K \ S) ≥
min-cutG1(S,K \ S). Combining the above gives the lemma.

8.5.2 Our Construction

In this section we construct our exact cut sparsifier and prove that any planar k-
terminal graph with all terminals lying on the same face admits a cut sparsifier of
size O(k2) that is also planar.

Embedding into Grids

It is well-known that one can obtain an orthogonal embedding of a planar graph
with maximum-degree at most three into a grid (see Valiant [254]). However, our
input planar graph can have arbitrarily large maximum degree. In order to be able
to make use of such an embedding, we need to first reduce our input graph to a
bounded-degree graph while preserving planarity and all terminal minimum cuts.
We achieve this by making use of a vertex splitting technique, which we describe
below.

Given a k-terminal planar graph G′ = (V ′, E′, c′) with K ⊂ V ′ lying on the
outer face, vertex splitting produces a k-terminal planar graph G = (V,E, c) with

258 CHAPTER 8. SPARSIFICATION FOR REACHABILITY, CUTS AND DISTANCES

K ⊂ V such that the maximum degree of G is at most three. Specifically, for each
vertex v of degree d > 3 with neighboring vertices u1, . . . , ud, we delete v and
introduce new vertices v1, . . . , vd along with edges {(vi, vi+1) : i = 1, . . . , d − 1},
each of capacity C + 1, where C =

∑
e∈E′ c′(e). Further, we replace the edges

{(ui, v) : i = 1, . . . , d} with {(ui, vi) : i = 1, . . . , d}, each of corresponding
capacity. If v is a terminal vertex, we set one of the vi’s to be a terminal vertex. It
follows that the resulting graphG is planar and terminals can be still embedded on
the outer face. Note that while the degree of every vertex vi is at most 3, the degree
of any other vertex is not affected.

Claim 8.5.4. Let G′ and G be k-terminal graphs defined as above. Then G preserves
exactly all minimum terminal cuts of G′, i.e., G is a quality-1 cut sparsifier of G′.

Proof. It suffices to prove the case where G is obtained from G′ by a single vertex
splitting. Then the claim follows by induction on the number of vertex splittings
required to transform G′ to G.

LetS ⊂ K and (U, V \U) be anS-separating cut inG of sizemin-cutG(S,K\S).
Suppose towards contradiction that δ(U) contains an edge of the form (vj , vj+1),
for some j, which in turn gives that cap(δ(U)) ≥ C +1. Then we can move all the
points vi to one of the sides of the cut (U, V \ S) and obtain a new S-separating
cut in G of cost at most C , contradicting the fact that (U, V \ U) is a minimum
terminal cut. Hence, it follows that δ(U) uses either edges that are in both G and
G′ or edges of the form (ui, vi), which by construction have the same capacity as
the edges (ui, v) inG′. Thus, an S-separating minimum cut inG corresponds to an
S-separating minimum cut inG′ of the same cost. Since S is chosen arbitrarily, the
claim follows.

LetG = (V,E) be a k-terminal graph obtained by vertex splitting of all vertices
of degree larger than 3 of G′ = (V ′, E′). Further, let n′ = |V ′|,m′ = |E′|, n = |V |
and m = |E|. Then it is easy to show that n ≤ 2m′ and m ≤ m′ + n ≤ 3m′.
Since G′ is planar, we have that n = O(n′) and m = O(n′). Thus, by just a linear
blow-up on the size of vertex and edge sets, we may assume w.l.o.g. that our input
graph is a planar graph of degree at most three.

Valiant [254] and Tamassia et al. [241] showed that a k-terminal planar graph
Gwith n vertices and degree at most three admits an orthogonal region-preserving
embedding into some square grid of size O(n) × O(n). By Lemma 8.5.3, we know
that the resulting graph exactly preserves all terminal minimum cuts of G. We
remark that since the embedding is region-preserving, the outer face of the input
graph is embedded to the outer face of the grid. Therefore, all terminals in the
embedded graph lie on the outer face of the grid. Performing appropriate edge
subdivisions, we can make all the terminals lie on the boundary of some possibly
larger grid. Further, we can add dummy non-terminals and zero edge capacities to
transform our graph into a full-grid H . We observe that the latter does not affect
any terminal min-cut. The above leads to the following:

8.5. AN EXACT CUT SPARSIFIER OF SIZE O(k2) 259

Figure 8.4: Embedding grid into half-grid. Black vertices represent terminals while
white vertices represent non-terminals. The counter-clockwise ordering starts at
the top right terminal. Coloured edges and paths correspond to the mapping of
the respective edges: blue for edges ((i, 1), (i, 2)), red for edges ((n− 1, j), (n, j)),
green for edges ((1, j), (2, j)) and yellow for edges ((i, n− 1), (i, n)), where i, j =
2, . . . , n− 1.

Lemma 8.5.5. Given a k-terminal planar graphG, where all terminals lie on the outer
face, there exists a k-terminal grid graph H , where all terminals lie on the boundary
such that H preserves exactly all terminal minimum cuts of G. The resulting graph
has O(n2) vertices and edges.

Embedding Grids into Half-Grids

Next, we show how to embed square grids into half-grid graphs (see Section 8.2),
which will facilitate the application of Wye-Delta transformations. The existence of
such an embedding was claimed in the thesis of Gitler [112], but no details on its
construction were given.

Let G be a k-terminal square grid on n× n vertices where terminals lie on the
boundary of the grid. We obtain the following:

Lemma 8.5.6. There exists a node embedding of the gridG into T ℓ
k , where ℓ = 4n−3.

Proof. Our construction works as follows (See Fig. 8.5 for an example). We first fix
an ordering on the vertices lying on the boundary of the grid in the order induced
by the grid. Then we embed each vertex according to that order into the diagonal
vertices of the half-grid, along with the edges that form the boundary of the grid.
The sub-grid obtained by removing all boundary vertices is embedded appropriately
into the upper-part of the half-grid. Finally, we show how to embed edges between

260 CHAPTER 8. SPARSIFICATION FOR REACHABILITY, CUTS AND DISTANCES

the boundary and the sub-grid vertices and argue that such an embedding is indeed
vertex-disjoint for any pair of paths.

Figure 8.5: Half-Grid Reduction.

We start with the embedding of the vertices ofG. Let us first consider the bound-
ary vertices. The ordering imposed on these vertices can be viewed as starting with
the upper-right vertex (1, n) and visiting the rest of vertices in a counter-clockwise
direction until reaching the vertex (2, n). We map the vertices on the boundary as
follows.

1. The vertex (1, j) is mapped to the vertex (n−j+1, n−j+1) for j = 2, . . . , n,

2. The vertex (i, 1) is mapped to the vertex (n + i − 1, n + i − 1) for i =
1, . . . , n− 1,

8.5. AN EXACT CUT SPARSIFIER OF SIZE O(k2) 261

3. The vertex (n, j) is mapped to the vertex (2n + j − 2, 2n + j − 2) for j =
1, . . . , n− 1,

4. The vertex (i, n) is mapped to the vertex (4n−i−2, 4n−i−2) for i = 2, . . . , n.

Now we consider the vertices that belong to the induced sub-grid S of G of size
(n−2)2 when removing the boundary vertices of our input grid. We map the vertex
(i, j) to the vertex (n + i − 1, 2n + j − 2) for i, j = 2, . . . , n − 1. In other words,
for every vertex of S we make a vertical shift by n− 1 units and an horizontal shift
by 2n − 2 units. By construction, it is not hard to check that every vertex of G is
mapped to a different vertex of T ℓ

k and all terminal vertices lie on the diagonal of
T ℓ
k .

We continue with the embedding of the edges of G. First, every edge between
two boundary vertices in G is embedded to the edge between the corresponding
mapped diagonal vertices of T ℓ

k , except the edge between (1, n) and (2, n). For this
edge, we define an edge embedding between the corresponding vertices (1, 1) and
(4n− 4, 4n− 4) of T ℓ

k by using the path:

(1, 1)→ (1, 2)→ . . .→ (1, 4n− 3)→ (2, 4n− 3)

→ . . .→ (4n− 4, 4n− 3)→ (4n− 4, 4n− 4).

Next, every edge of the sub-grid S is embedded in to the edge connecting the
mapped endpoints of that edge in T ℓ

k . In other words, if (i, j) and (i′, j′) were
connected by an edge e in S, then (n+ i−1, 2n+j−2) and (n+ i′−1, 2n+j′−2)
are connected by an edge e′ in T ℓ

k and e is mapped to e′. Finally, the only edges that
remain are those connecting a boundary vertex of G with a boundary vertex of S.
We distinguish four cases depending on the edge position.

1. The edge ((i, 2), (i, 1)) is mapped to the horizontal path given by:

(n+ i− 1, 2n)→ (n+ i− 1, 2n− 1)

→ . . .→ (n+ i− 1, n+ i− 1) for i = 2, . . . , n− 1

2. The edge ((n− 1, j), (n, j)) is mapped to the vertical path given by:

(2n− 2, 2n+ j − 2)→ (2n− 1, 2n+ j − 2)

→ . . .→ (2n+ j − 2, 2n+ j − 2) for j = 2, . . . , n− 1.

3. The edge ((2, j), (1, j)) is mapped to the L-shaped path:

(n+ 1, 2n+j − 2)→ (n, 2n+ j − 2)→ . . .→ (n− j + 1, 2n+ j − 2)

→ (n− j + 1, 2n+ j − 3)→ . . .→ (n− j + 1, n− j + 1)

for j = 2, . . . , n− 1.

262 CHAPTER 8. SPARSIFICATION FOR REACHABILITY, CUTS AND DISTANCES

4. The edge ((i, n− 1), (i, n)) is mapped to the L-shaped path:

(n+ i− 1, 3n− 3)→ (n+ i− 1, 3n− 2)→ . . .→ (n+ i− 1, 4n− i− 2)

→ (n+ i, 4n− i− 2)→ . . .→ (4n− i− 2, 4n− i− 2)

for i = 2, . . . , n− 1.

By construction, it follows that the paths in our edge embedding are vertex disjoint.

Reducing Half-Grids and Bringing the Piece Together

We now review the construction of Gitler [112], which shows how to reduce half-
grids tomuch smaller half-grids (excluding diagonal edges) whose size depends only
on k. For the sake of completeness, we provide a full proof here. Recall that T̂n

k is
the graph Tn

k without the diagonal edges.

Lemma 8.5.7 ([112]). For any positive k, n with k < n, Tn
k is Wye-Delta reducible

to T̂ k
k .

Proof. For sake of simplicity, we assume w.l.o.g that the four vertices (1, 1), (2, 2),
(n−1, n−1) and (n, n) are terminals3. Furthermore, we say that two terminals (i, i)
and (j, j) are adjacent iff i < j and there is no terminal (ℓ, ℓ) such that i < ℓ < j.

We next describe the reduction procedure. Also see Fig. 8.5 for an example. The
reduction procedure starts by removing the diagonal edges of Tn

k , thus producing
the graph T̂n

k . Specifically, the two edges ((1, 1), (2, 2)) and ((n−1, n−1), (n, n))
are removed using an edge deletion operation. For each remaining diagonal edge
of the form ((i, i), (i + 1, i + 1)), i = 2, . . . , n − 2 we repeatedly apply an edge
replacement operation until the edge is incident to a boundary vertex (1, j) or (j, n)
of the grid, where an edge deletion operation with one of the neighbours of (1, j)
resp. (j, n) as vertex x is applied.

Now, we know that all non-terminals of the form (i, i) are degree-two vertices,
thus a series reduction is applied on each of them. This produces new diagonal
edges, which are effectively reduced by the above procedure. We keep removing
the newly-created degree-two non-terminal vertices and the newly-created edges
until no further removals are possible. At this point, the only degree-2 vertices are
terminal vertices.

The resulting graph has a staircase structure, where for every pair of adja-
cent terminals (i, i) and (j, j), there is a non-terminal (i, j) of degree three or
four, namely, the intersection vertex, and a (possibly empty) sequence of degree-
three non-terminals that lie on the boundary path from (i, i) to (j, j). For k =
i+1, . . . , j − 1, let (i, k) and (k, j) be the degree-three non-terminals lying on the
row and the column subpath, respectively. Additionally, for k = i+1, . . . , j−1, let

3If they are not terminals, we can simply define them as terminals, thus increasing the number
of terminals to k + 4 = O(k).

8.6. EXTENSIONS TO PLANAR FLOW AND DISTANCE SPARSIFIERS 263

Ci
k = {(i′, k) : i′ = i, . . . , 1}, resp. Rj

k = {(k, j′) : j′ = j, . . . , n} be the vertices
sharing the same column, resp. row with (i, k), resp. (k, j). We next show that the
vertices belonging to Ci

k and Rj
k can be removed.

The removal process works as follows. For k = i + 1, . . . , j − 1, we start by
choosing a degree 3 vertex (i, k) and its corresponding column Ci

k. Then we apply
a Wye-Delta transformation on (i, k), thus creating two new diagonal edges. Simi-
larly as above, we remove such edges by repeatedly applying an edge replacement
operation until they have been pushed to the boundary of the grid, where an edge
deletion operation is applied. In the resulting graph, the vertex (i − 1, k) ∈ Ci

k

is now a degree-three non-terminal. We apply the same procedure to this vertex.
Applying such a procedure to all remaining vertices of Ci

k, we eliminate a column
of the grid. Symmetrically, the same process applies to the case when we want to
remove the row Rj

k corresponding to the vertex (k, j).
Applying the above removal process for every adjacent terminal pair and the

corresponding degree-three non-terminals, we end up with the graph T̂ k
k , where

every diagonal vertex is a terminal. By definition, it follows that T̂ k
k has at most

O(k2) vertices.

Combining the above reductions leads to the following theorem:

Theorem 8.5.8. Let G be a k-terminal planar graph where all terminals lie on the
outer face. Then G admits a quality-1 cut sparsifier of size O(k2), which is also a
planar graph.

Proof. Let n denote the number of vertices in G. First, we apply Lemma 8.5.5 on G
to obtain a grid graph H with O(n2) vertices, which preserves exactly all terminal
minimum cuts ofG. We then apply Lemma 8.5.6 onH to obtain a node embedding
ρ into the half-grid T ℓ

k , where ℓ = 4n− 3. By Lemma 8.5.3, ρ(H) preserves exactly
all terminal minimum cuts of H . We can further extend ρ(H) to the full half-grid
T ℓ
k , if dummy non-terminals and zero edge capacities are added. Finally, we apply

Lemma 8.5.7 on T ℓ
k to obtain a Wye-Delta reduction to the reduced half-grid graph

T̂ k
k . It follows by Lemma 8.5.2 that T̂ k

k is a quality-1 cut sparsifier of T ℓ
k , where the

size guarantee is immediate from the definition of T̂ k
k .

8.6 Extensions to Planar Flow and Distance Sparsifiers

In this section we show how to extend our result for cut sparsifiers to flow and
distance sparsifiers.

8.6.1 An Upper Bound for Flow Sparsifiers

We first review the notion of Flow Sparsifiers. Let d be a demand function over
terminal pairs in G such that d(x, x′) = d(x′, x) and d(x, x) = 0 for all x, x′ ∈ K .
We denote by Pxx′ the set of all paths between vertices x and x′, for all x, x′ ∈ K .

264 CHAPTER 8. SPARSIFICATION FOR REACHABILITY, CUTS AND DISTANCES

Further, let Pe be the set of all paths using edge e, for all e ∈ E . A concurrent
(multi-commodity) flow f of throughput λ is a function over terminal paths in G
such that (1)

∑
p∈Pxx′

f(p) ≥ λd(x, x′), for all distinct terminal pairs x, x′ ∈ K

and (2)
∑

p∈Pe
f(p) ≤ c(e), for all e ∈ E. We let λG(d) denote the throughput

of the concurrent flow in G that attains the largest throughput and we call a flow
achieving this throughput themaximum concurrent flow. A graphH = (V ′, E′, c′),
K ⊂ V ′ is a quality-1 (vertex) flow sparsifier of G with q ≥ 1 if for every demand
function d, λG(d) ≤ λH(d) ≤ q · λH(d).

Next we show that given a k-terminal planar graph, where all terminals lie on
the outer face, one can construct a quality-1 flow sparsifier of size O(k2). Our
result follows from combining the observation of Andoni et al. [24] for constructing
flow-sparsifiers using flow/cut gaps and the flow/cut gap result of Okamura and
Seymour [205].

Given a k-terminal graph and a demand function d, recall that λG(d) is the
maximum fraction of d that can be routed in G. We define the sparsity of a cut
(U, V \ U) to be

ΦG(U,d) :=
cap(δ(U))∑

i,j:|{i,j}∩U |=1 dij

and the sparsest cut asΦG(d) := minU⊂V ΦG(U,d). Then the flow-cut gap is given
by

γ(G) := max{ΦG(d)/λG(d) : d ∈ R(
k
2)

+ }.

We will make use of the following theorem:

Theorem 8.6.1 ([24]). Given a k-terminal graph G with terminals K , let G′ be a

quality-β cut sparsifier for G with β ≥ 1. Then for every demand function d ∈ R(
k
2)

+ ,

1

γ(G′)
≤ λG′(d)

λG(d)
≤ β · γ(G).

Therefore, the graphG′ with edge capacities scaled up by γ(G′) is a quality-β · γ(G) ·
γ(G′) flow sparsifier of size |V (G′)| for G.

This leads to the following corollary.

Corollary 8.6.2. Let G be a k-terminal planar graph where all terminals lie on the
outer face. Then G admits a quality-1 flow sparsifier of size O(k2).

Proof. Given a k-terminal planar graph where all terminals lie on the outer face,
Theorem 8.5.8 shows how to construct a cut sparsifier G′ with quality β = 1 and
size O(k2), which is also a planar graph with all the k terminals lying on the outer
face. Okamura and Seymour [205] showed that for every k-terminal planar graph
G with terminals lying on the outer face the flow-cut gap is 1. This implies that
γ(G) = 1 and γ(G′) = 1. Invoking Theorem 8.6.1 we get thatG′ is a quality-1 flow
sparsifier of size O(k2) for G.

8.6. EXTENSIONS TO PLANAR FLOW AND DISTANCE SPARSIFIERS 265

8.6.2 An Upper Bound for Distance Sparsifiers

We first review the notion of Vertex Distance Sparsifiers. Let G = (V,E,w) with
K ⊂ V be a k-terminal graph, where we replace the capacity function c with a
weight or length function w : E → R≥0. For a terminal pair (x, x′) ∈ K , let
distG(x, x′) denote the shortest path with respect to the edge lengths w in G. A
graph H = (V ′, E′,w′) is a quality-q (vertex) distance sparsifier of G with q ≥ 1 if
for any x, x′ ∈ K , distG(x, x′) ≤ distH(x, x′) ≤ q · distG(x, x′).

Next we argue that a symmetric approach applies to the construction of vertex
sparsifiers that preserve distances. Concretely, we prove that given a k-terminal
planar graph, where all terminals lie on the outer face, one can construct a quality-
1 distance sparsifier of size O(k2), which is also a planar graph. It is not hard to
see that almost all arguments that we used about cut sparsifiers go through, except
some adaptations regarding edge lengths in the Wye-Delta rules, edge subdivision
operation and vertex splitting operation.

We start adapting the Wye-Delta operations.

1. Degree-one reduction: Delete a degree-one non-terminal and its incident edge.

2. Series reduction: Delete a degree-two non-terminal y and its incident edges
(x, y) and (y, z), and add a new edge (x, z) of length w(x, y) +w(y, z).

3. Parallel reduction: Replace all parallel edges by a single edge whose length is
the minimum over all lengths of parallel edges.

4. Wye-Delta transformation: Let x be a degree-three non-terminal with neigh-
bours δ(x) = {u, v, w}. Delete x (along with all its incident edges) and add
edges (u, v), (v, w) and (w, u) with lengths w(u, x) + w(v, x), w(v, x) +
w(w, x) and w(w, x) +w(u, x), respectively.

5. Delta-Wye transformation: Let x, y and z be the vertices of the triangle con-
necting them. Assume w.l.o.g.4 that for any triangle edge (x, y), w(x, y) ≤
w(x, z) + w(y, z), where z is the other triangle vertex. Delete the edges
of the triangle, introduce a new vertex w and add new edges (w, x), (w, y)
and (w, z) with edge lengths (w(x, y) + w(x, z) − w(y, z))/2, (w(x, z) +
w(y, z)−w(x, u))/2 and (w(x, y) +w(y, z)−w(x, z))/2, respectively.

The following lemma shows that the above rules preserve exactly all shortest path
distances between terminal pairs.

Lemma 8.6.3. Let G be a k-terminal graph and G′ be a k-terminal graph obtained
from G by applying one of the rules 1-5. Then G′ is a quality-1 distance sparsifier of
G.

4Suppose there exists a triangle edge (x, y) with w(x, y) > w(x, z) + w(y, z), where z is the
other triangle vertex. Then we can simply set w(x, y) = w(x, z) +w(y, z), since any shortest path
between terminal pairs would use the edges (x, z) and (y, z) instead of the edge (x, y).

266 CHAPTER 8. SPARSIFICATION FOR REACHABILITY, CUTS AND DISTANCES

We remark that there is no need to re-define the Edge deletion and replacement
operations, since they are just a combination of the above rules. An analogue of
Lemma 8.5.2 can also be shown for distances. We now modify the Edge subdivision
operation, which is used when dealing with graph embeddings (see Section 8.5.1).

1. Edge subdivision: Let (u, v) be an edge of length w(u, v). Delete (u, v), in-
troduce a new vertex w and add edges (u,w) and (w, v), each of length
w(u, v)/2.

We now prove an analogue to Lemma 8.5.3.

Lemma 8.6.4. Let ρ be a node embedding and letG1 and ρ(G1) be k-terminal graphs
as defined in Section 8.5.1. Then ρ(G1) preserves exactly all shortest path distances
between terminal pairs.

Proof. We can view each path obtained from the embedding as taking the edge cor-
responding to that path endpoints in G1 and performing edge subdivisions finitely
many times. We claim that such subdivisions preserve all terminal shortest paths.

Indeed, let us consider a single edge subdivison for (u, v) (the general claim then
follows by induction on the number of edge subdivions). Fix x, x′ ∈ K and consider
some shortest path p(x, x′) in G1 that uses (u, v). We can construct in ρ(G1) a
path q(x, x′) of the same length as follows: traverse the subpath p(x, u), traverse
the edges (u,w) and (w, v) and finally traverse the subpath p(v, x′). It follows that∑

e∈p(x,x′)w(e) =
∑

e∈q(x,x′)w(e), and thus distρ(G1)(s, t) ≤ distG1(s, t).
On the other hand, fix x, x′ ∈ K and consider some shortest path p′(x, x′) in

ρ(G1) that uses the two subdivided edges (u,w) and (w, v) (note that it cannot use
only one of them). We can construct in G1 a path q′(x, x′) of the same length as
follows: traverse the subpath p′(x, u), traverse the edge (u, v) and finally traverse
the subpath p′(v, x′). It follows that

∑
e∈p′(x,x′)w(e) =

∑
e∈q′(x,x′)w(e) and thus

distG1(s, t) ≤ distρ(G1)(s, t). Combining the above gives the lemma.

We next consider vertex splitting for graphs whose maximum degree is larger
than three. For each vertex v of degree d > 3 with u1, . . . , ud adjacent to v, we
delete v and introduce new vertices v1, . . . , vd along with edges {(vi, vi+1) : i =
1, . . . , d − 1}, each of length 0. Furthermore, we replace the edges {(ui, v) : i =
1, . . . , d} with {(ui, vi) : i = 1, . . . , d}, each of corresponding length. If v is a
terminal vertex, we make one of the vi’s be a terminal vertex. An analogue to Claim
8.5.4 gives that the resulting graph preserves all terminal shortest path distances.

We finally note that whenever we add dummy edges of capacity 0 in the cut
setting, we replace them by edges of length D + 1 in the distance setting, where
D is the sum over all edge lengths in the graph we consider. Since any shortest
path in the graph does not use the added edges, the terminal shortest path remain
unaffected. The above discussion leads to the following theorem.

Theorem 8.6.5. Let G be a k-terminal planar graph where all terminals lie on the
outer face. Then G admits a quality-1 distance sparsifier of size O(k2), which is also
a planar graph.

8.6. EXTENSIONS TO PLANAR FLOW AND DISTANCE SPARSIFIERS 267

8.6.3 Incompressibility of Distances in k-Terminal Graphs

In this section we prove the following incompressibility result (i.e., Theorem 8.1.5)
concerning the trade-off between quality and size of any compression function
when estimating terminal distances in k-terminal graphs: for every ε > 0 and t ≥ 2,
there exists a (sparse) k-terminal n-vertex graph such that k = o(n), and that any
compression algorithm that approximates pairwise terminal distances within a fac-
tor of t − ε or an additive error 2t − 3 must use Ω(k1+1/(t−1)) bits. Our lower
bound is inspired by the work of Matoušek [192], which has also been utilized in
the context of distance oracles [251]. Our arguments rely on the recent extremal
combinatorics construction (see [69]) that was used to prove lower bounds on the
size of distance approximating minors.

Discussion on our result. Note that for any k-terminal graph G, if we do not
have any restriction on the structure of the distance sparsifier, thenG always admits
a trivial quality 1 distance sparsifier H which is the complete weighted graph on
k terminals with each edge weight being equal to the distance between the two
endpoints in G. Furthermore, by the well-known result of Awerbuch [28], such a
graphH in turn admits a multiplicative (2t− 1)-spanner H ′ with O(k1+1/t) edges,
that is, all the distances inH are preserved up to a multiplicative factor of 2t− 1 in
H ′, for any t ≥ 1. This directly implies that the k-terminal graph G has a quality
2t − 1 distance sparsifier with k vertices and O(k1+1/t) edges. On the other hand,
though unconditional lower bounds of type similar to our result have been known
for the number of edges of spanners [178, 259], we are not aware of such lower
bounds for the size of data structure that preserves pairwise terminal distances for
any k-terminaln-vertex graphwhen k = o(n). In the extreme casewhen k = n (i.e.,
all the vertices are terminals), the recent work by Abboud and Bodwin [2] shows
that any data structure that preserves the distances with an additive error t needs
Ω(n4/3−ε) bits, for any ε > 0, t = O(nδ) and δ = δ(ε) (see also the follow-up
work [3]).

We start by reviewing a classical notion in combinatorial design.

Definition 8.6.6 (Steiner Triple System). Given a ground set K = [k], an (3, 2)-
Steiner system (abbr. (3, 2)-SS) of K is a collection of 3-subsets of K , denoted by
S = {S1, . . . , Sr}, where r =

(
k
2

)
/3 , such that every 2-subset of K is contained in

exactly one of the 3-subsets.

Lemma 8.6.7 ([258]). For infinity many k, the setK = [k] admits an (3, 2)-SS.

Roughly speaking, our proof proceeds by forming a k-terminal bipartite graph,
where terminals lie on one side and non-terminals on the other. The set of non-
terminals will correspond to some subset of a Steiner Triple System S , which will
satisfy some certain property. One can equivalently view such a graph as taking
union over star graphs. Before delving into details, we need to review a couple of
other useful definitions and the construction from [69].

268 CHAPTER 8. SPARSIFICATION FOR REACHABILITY, CUTS AND DISTANCES

Detour Graph and Cycle. Let k be an integer such thatK = [k] admits an (3, 2)-
SS. Let S be such an (3, 2)-SS. We associate S = {S1, . . . , Sr} with a graph whose
vertex set is S . We refer to such graph as a detouring graph. By the definition of
Steiner system, it follows that |Si ∩ Sj | is either zero or one. Thus, two vertices Si
and Sj are adjacent in the detouring graph iff |Si ∩ Sj | = 1. It is also useful to
label each edge (Si, Sj) with the terminal in Si ∩ Sj . A detouring cycle is a cycle
in the detouring graph such that no two neighbouring edges in the cycles have the
same terminal label. Observe that the detouring graph has other cycles which are
not detouring cycles.

Ideally, we would like to construct detouring graphs with long detouring cycles
while keeping the size of the graph as large as possible. One trade-off is given in
the following lemma.

Lemma 8.6.8 ([69]). For any integer t ≥ 3, given a detouring graph with vertex set S ,
there exists a subset S ′ ⊂ S of cardinality Ω(k1+1/(t−1)) such that the induced graph
on S ′ has no detouring cycles of size t or less.

Nowwe are ready to prove our incompressibility result regarding approximately
preserving terminal pairwise distances.

Proof of Theorem 8.1.5: Let k be an integer such thatK = [k] admits an (3, 2)-
SS S . Fix some integer t ≥ 3, some positive constant c and use Lemma 8.6.8 to
construct a subset S ′ of S of size Ω(k1+1/(t−1)) such that the induced graph on S ′
has no detouring cycles of size t or less. We may assume w.l.o.g. that ℓ = |S ′| =
c · k1+1/(t−1) (this can be achieved by repeatedly removing elements from S ′, as
the property concerning the detouring cycles is not destroyed). Fix some ordering
among 3-subsets of S ′ and among terminals in each 3-subset.

We define the k-terminal graph G as follows:

• For each ei ∈ S ′ create a non-terminal vertex vi. Let VS′ denote the set of
such vertices. The vertex set of G isK ∪ VS′ , whereK = [k] denotes the set
of terminals.

• For each ei ∈ S ′, connect vi to the three terminals {xi1, xi2, xi3} belonging to
ei, i.e., add edges (vi, xij), j = 1, 2, 3.

Note that G is sparse since both the number of vertices and edges are Θ(ℓ), and it
also holds that k = o(|V (G)|).

For any subset R ⊆ S ′, we define the subgraph GR = (V (G), ER) of G as
follows. For each ei ∈ S′, if ei ∈ R, perform no changes. If ei ̸∈ R, delete the edge
(vi, x

i
1). Note that there are 2ℓ subgraphsGR. We let G denote the family of all such

subgraphs.
We say a terminal pair (x, x′) respectsS ′ if in the (3, 2)-SSS , the unique 3-subset

e that contains x and x′ belongs to S ′. GivenR ⊆ S ′ and some terminal pair (x, x′),
we say that R covers (x, x′) if both x and x′ are connected to some non-terminal v
in GR.

8.7. CONCLUSION 269

Claim 8.6.9. For all R ⊆ S ′ and terminal pairs (x, x′) covered by R we have that
distGR

(x, x′) = 2.

Proof. By the definition of Steiner system and the construction of GR, the shortest
path between x and x′ is simply a 2-hop path, i.e., distGR

(x, x′) = 2.

Claim 8.6.10. For all R ⊆ S ′ and any terminal pair (x, x′) that respects S ′ and is
not covered by R, we have that distGR

(x, x′) ≥ 2t.

Proof. Since (x, x′) respects S ′, there exists ei = (xi1, x
i
2, x

i
3) ∈ S ′ that contains

both x and x′. By construction of GR and the fact that (x, x′) is not covered by
R, it follows that ei ∈ S ′ \ R, and one of x, x′ corresponds to xi1 and the other
corresponds to xi2 or xi3. W.l.o.g., we assume x = xi1 and x′ = xi2. Note that there
is no edge connecting xi1 with the non-terminal vi that corresponds to ei. Now by
Lemma 8.6.8, the detouring graph induced on S ′ has no detouring cycles of size t or
less, which implies that any other simple path between xi1 and xi2 in G must pass
through at least t − 1 other terminals. Let w1, . . . , wt−1 be such terminals and let
P := xi1 → w1, . . . , wt−1 → xi2 denote the corresponding path, ignoring the non-
terminals along the path. Between any consecutive terminal pairs in P , the shortest
path is at least 2. Thus, the length of P is at least 2t, i.e., distGR

(xi1, x
i
2) ≥ 2t.

Fix any two subsets R1, R2 ⊆ S ′ with R1 ̸= R2. It follows that there exists
a 3-subset ei = (xi1, x

i
2, x

i
3) ∈ S ′ such that either e ∈ R1 \ R2 or e ∈ R2 \ R1.

Assume w.l.o.g that e ∈ R2 \R1. Note that (xi1, xi2) respects S ′ and it is covered in
R2 but not in R1. By Claim 8.6.9 and 8.6.10, it holds that distGR2

(xi1, x
i
2) = 2 and

distGR1
(xi1, x

i
2) ≥ 2t. In other words, there exists a set G of 2ℓ different subgraphs

on the same set of nodes V (G) satisfying the following property: for anyG1, G2 ∈
G, there exists a terminal pair (x, x′) such that the distances between x and x′ inG1

and G2 differ by at least a t factor as well as by at least 2t − 2. On the other hand,
for any compression function that approximates terminal path distances within a
factor of t − ε or an additive error 2t − 3 and produces a bitstring with less than
ℓ bits, there exist two different graphs G1, G2 ∈ G that map to the same bit string.
Hence, any such compression function must use at least Ω(ℓ) = Ω(k1+1/(t−1)) bits
if we want to preserve terminal distances within a t− ε factor or an additive error
2t− 3.

To complete our argument, we need to show the claim for quality t = 2. The
only significant modification we need is the usage of an (3, 2)-SS in the construction
of graph G (instead of using a subset of it). The remaining details are similar to the
above proof and we omit them here.

8.7 Conclusion

In this chapter, we studied vertex sparsifiers for preserving reachability information,
cuts, and distances. Our first contribution is studying the notion of reachability pre-
serving minors, which are sparsifiers that preserve reachability information among

270 CHAPTER 8. SPARSIFICATION FOR REACHABILITY, CUTS AND DISTANCES

a given set of terminals and are obtained by performing minor operations on given
input graphs. We show that any k-terminal planar graph admits a reachability pre-
serving minor of sizeO(k2 log k), and then prove that this result is up to a logarith-
mic factor in grid graphs. For general graphs we obtain an upper bound of O(k3).
The algorithmic and lower bound constructions behind these results bring together
techniques from reachability oracles and counting branching events in shortest path
computations. Interesting open problems include closing the gap between the best-
known upper and lower bounds in general graphs and improving the running time
of our algorithms.

Our second contribution is studying vertex sparsifiers that preserve cuts and
distances when restricted to planar graphs with terminals lying on the same faces,
which are sometimes referred to as Okamura-Seymour (OS) graphs. For any k-
terminal OS graph, we show that there exist quality-1 cut and distance sparsifiers
that at the same time preserve planarity. The main idea behind these results is to
adapt a local reduction technique, known as Why-Delta transformation, to the cut
and distance measure. An important open problem is whether one can extend this
technique to remove the assumption on the location of terminal vertices, or prove
a non-trivial bound in the more general setting where terminals lie on a bounded
number of faces, similar to Krauthgamer and Rika [172].

Bibliography

[1] Amir Abboud and Greg Bodwin. “Reachability Preservers: New Extremal
Bounds and Approximation Algorithms”. In: Symposium on Discrete Algo-
rithms (SODA). 2018, pp. 1865–1883.

[2] Amir Abboud andGreg Bodwin. “The 4/3 additive spanner exponent is tight”.
In: Symosium on Theory of Computing (STOC). 2016, pp. 351–361.

[3] Amir Abboud, Greg Bodwin, and Seth Pettie. “A Hierarchy of Lower Bounds
for Sublinear Additive Spanners”. In: Symposium on Discrete Algorithms
(SODA). 2017, pp. 568–576.

[4] Amir Abboud and Søren Dahlgaard. “Popular Conjectures as a Barrier for
Dynamic Planar Graph Algorithms”. In: Symposium on Foundations of Com-
puter Science (FOCS). 2016, pp. 477–486.

[5] Amir Abboud, Pawel Gawrychowski, Shay Mozes, and Oren Weimann.
“Near-Optimal Compression for the Planar Graph Metric”. In: Symposium
on Discrete Algorithms (SODA). 2018, pp. 530–549.

[6] Amir Abboud and Virginia Vassilevska Williams. “Popular Conjectures Im-
ply Strong Lower Bounds for Dynamic Problems”. In: ymposium on Founda-
tions of Computer Science (FOCS). 2014, pp. 434–443.

[7] Amir Abboud and Virginia Vassilevska Williams. “Popular conjectures im-
ply strong lower bounds for dynamic problems”. In: Symposium on Founda-
tions of Computer Science (FOCS). 2014, pp. 434–443.

[8] Ittai Abraham, Yair Bartal, and Ofer Neiman. “Nearly Tight Low Stretch
Spanning Trees”. In: Symposium on Foundations of Computer Science (FOCS).
2008, pp. 781–790.

[9] Ittai Abraham, Shiri Chechik, and Cyril Gavoille. “Fully dynamic approxi-
mate distance oracles for planar graphs via forbidden-set distance labels”.
In: Symposium on Theory of Computing (STOC). 2012, pp. 1199–1218.

[10] Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. “Fully dynamic all-
pairs shortest paths with worst-case update-time revisited”. In: Symposium
on Discrete Algorithms (SODA). 2017, pp. 440–452.

271

272 BIBLIOGRAPHY

[11] Ittai Abraham, Shiri Chechik, and Kunal Talwar. “Fully Dynamic All-Pairs
Shortest Paths: Breaking theO(n)Barrier”. In: InternationalWorkshop on Ap-
proximation Algorithms for Combinatorial Optimization Problems (APPROX).
2014, pp. 1–16.

[12] Ittai Abraham, David Durfee, Ioannis Koutis, Sebastian Krinninger, and
Richard Peng. “On Fully Dynamic Graph Sparsifiers”. In: Symposium on
Foundations of Computer Science (FOCS). 2016, pp. 335–344.

[13] Ittai Abraham and Ofer Neiman. “Using Petal-Decompositions to Build a
Low Stretch Spanning Tree”. In: Symposium onTheory of Computing (STOC).
2012, pp. 395–406.

[14] Kook Jin Ahn and Sudipto Guha. “Graph Sparsification in the Semi-
streaming Model”. In: International Colloquium on Automata Languages and
Programming (ICALP). 2009, pp. 328–338.

[15] Alfred V. Aho, M. R. Garey, and Jeffrey D. Ullman. “The Transitive Reduction
of a Directed Graph”. In: SIAM J. Comput. 1.2 (1972), pp. 131–137.

[16] R. Aleliunas, R. J. Lipton, L. Lovasz, C. Rackoff, and R. M. Karp. “Random
walks, universal traversal sequences, and the complexity of maze problems”.
In: Symposium on Foundations of Computer Science (FOCS). 1979, pp. 218–
223.

[17] Noga Alon, Richard M. Karp, David Peleg, and Douglas B. West. “A Graph-
Theoretic Game and Its Application to the k-Server Problem”. In: SIAM Jour-
nal on Computing 24.1 (1995), pp. 78–100.

[18] Stephen Alstrup, Søren Dahlgaard, Arnold Filtser, Morten Stöckel, and
Christian Wulff-Nilsen. “Constructing Light Spanners Deterministically in
Near-Linear Time”. In: CoRR abs/1709.01960 (2017).

[19] Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup.
“Maintaining information in fully dynamic trees with top trees”. In: ACM
Trans. Algorithms 1.2 (2005), pp. 243–264.

[20] Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José
Soares. “On Sparse Spanners of Weighted Graphs”. In: Discrete & Compu-
tational Geometry 9 (1993), pp. 81–100.

[21] Nima Anari and Shayan Oveis Gharan. “Effective-resistance-reducing flows,
spectrally thin trees, and asymmetric TSP”. In: Symposium on Foundations
of Computer Science (FOCS). 2015, pp. 20–39.

[22] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. “Using PageRank to
Locally Partition a Graph”. In: Internet Mathematics 4.1 (2007), pp. 35–64.

[23] Reid Andersen andUriel Feige. “Interchanging distance and capacity in prob-
abilistic mappings”. In: CoRR abs/0907.3631 (2009).

BIBLIOGRAPHY 273

[24] Alexandr Andoni, Anupam Gupta, and Robert Krauthgamer. “Towards (1 +
eps)-Approximate Flow Sparsifiers”. In: Symposium on Discrete Algorithms
(SODA). 2014, pp. 279–293.

[25] Alexandr Andoni, Robert Krauthgamer, and Yosef Pogrow. “On Solving Lin-
ear Systems in Sublinear Time”. In: Innovations in Theoretical Computer Sci-
ence Conference (ITCS). 2019, 3:1–3:19.

[26] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. “Expander flows, geomet-
ric embeddings and graph partitioning”. In: J. ACM 56.2 (2009). Announced
at STOC’04, 5:1–5:37.

[27] Giorgio Ausiello, Paolo Giulio Franciosa, and Giuseppe F. Italiano. “Small
Stretch Spanners on Dynamic Graphs”. In: Journal of Graph Algorithms and
Applications 10.2 (2006). Announced at ESA’05, pp. 365–385.

[28] Baruch Awerbuch. “Complexity of Network Synchronization”. In: Journal of
the ACM 32.4 (1985), pp. 804–823.

[29] Greg Barnes and Uriel Feige. “Short Random Walks on Graphs”. In: SIAM
Journal on Discrete Mathemathics 9.1 (1996), pp. 19–28.

[30] Amitabh Basu and Anupam Gupta. “Steiner Point Removal in Graph Met-
rics”. In: (2008). http://www.ams.jhu.edu/∼abasu9/papers/SPR.pdf.

[31] Surender Baswana, Manoj Gupta, and Sandeep Sen. “Fully Dynamic Max-
imal Matching in O(log n) Update Time”. In: SIAM J. Comput. 44.1 (2015).
Announced at FOCS’11, pp. 88–113.

[32] Surender Baswana, Ramesh Hariharan, and Sandeep Sen. “Improved decre-
mental algorithms for maintaining transitive closure and all-pairs shortest
paths”. In: J. Algorithms 62.2 (2007), pp. 74–92.

[33] Surender Baswana, Sumeet Khurana, and Soumojit Sarkar. “Fully dynamic
randomized algorithms for graph spanners”. In: ACM Transactions on Algo-
rithms 8.4 (2012), 35:1–35:51.

[34] Joshua Batson, Daniel A. Spielman, Nikhil Srivastava, and Shang-Hua Teng.
“Spectral sparsification of graphs: theory and algorithms”. In: Communica-
tions of the ACM 56.8 (2013), pp. 87–94.

[35] András A. Benczúr and David R. Karger. “Approximating s-t Minimum Cuts
in Õ(n2) Time”. In: Symposium onTheory of Computing (STOC). 1996, pp. 47–
55.

[36] András A. Benczúr and David R. Karger. “Randomized Approximation
Schemes for Cuts and Flows in Capacitated Graphs”. In: SIAM Journal on
Computing 44.2 (2015), pp. 290–319.

[37] David Berman and M. S. Klamkin. “A Reverse Card Shuffle”. In: SIAM Review
18.3 (1976), pp. 491–492.

274 BIBLIOGRAPHY

[38] Aaron Bernstein. “Deterministic Partially Dynamic Single Source Shortest
Paths in Weighted Graphs”. In: International Colloquium on Automata Lan-
guages and Programming (ICALP). 2017, 44:1–44:14.

[39] Aaron Bernstein. “Fully Dynamic (2 + epsilon) Approximate All-Pairs Short-
est Paths with Fast Query and Close to Linear Update Time”. In: Symposium
on Foundations of Computer Science (FOCS). 2009, pp. 693–702.

[40] Aaron Bernstein. “Maintaining Shortest Paths Under Deletions in Weighted
Directed Graphs”. In: SIAM J. Comput. 45.2 (2016), pp. 548–574.

[41] Aaron Bernstein. “Maintaining shortest paths under deletions in weighted
directed graphs”. In: Symposium on Theory of Computing (STOC). 2013,
pp. 725–734.

[42] Aaron Bernstein and Shiri Chechik. “Deterministic decremental single
source shortest paths: beyond the o(mn) bound”. In: Symposium on Theory
of Computing (STOC). 2016, pp. 389–397.

[43] Aaron Bernstein and Shiri Chechik. “Deterministic Partially Dynamic Single
Source Shortest Paths for Sparse Graphs”. In: Symposium on Discrete Algo-
rithms (SODA). 2017, pp. 453–469.

[44] Aaron Bernstein, Karl Däubel, Yann Disser, Max Klimm, Torsten Mütze, and
Frieder Smolny. “Distance-Preserving Graph Contractions”. In: Innovations
in Theoretical Computer Science Conference (ITCS). 2018, 51:1–51:14.

[45] Aaron Bernstein, Sebastian Forster, and Monika Henzinger. “A Deamortiza-
tion Approach for Dynamic Spanner and Dynamic Maximal Matching”. In:
Symposium on Discrete Algorithms (SODA). 2019.

[46] Aaron Bernstein and Liam Roditty. “Improved Dynamic Algorithms for
Maintaining Approximate Shortest Paths Under Deletions”. In: Symposium
on Discrete Algorithms (SODA). 2011, pp. 1355–1365.

[47] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. “Deter-
ministic Fully Dynamic Data Structures for Vertex Cover and Matching”. In:
SIAM J. Comput. 47.3 (2018). Announced at SODA’15, pp. 859–887.

[48] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. “New de-
terministic approximation algorithms for fully dynamic matching”. In: Sym-
posium on Theory of Computing (STOC). 2016, pp. 398–411.

[49] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Char-
alampos E. Tsourakakis. “Space- and Time-Efficient Algorithm for Maintain-
ing Dense Subgraphs on One-Pass Dynamic Streams”. In: Symposium onThe-
ory of Computing (STOC). 2015, pp. 173–182.

[50] Daniel K Blandford, Guy E Blelloch, and Ian A Kash. “Compact represen-
tations of separable graphs”. In: Symposium on Discrete Algorithms (SODA).
2003, pp. 679–688.

BIBLIOGRAPHY 275

[51] Guy E. Blelloch, Anupam Gupta, Ioannis Koutis, Gary L. Miller, Richard
Peng, and Kanat Tangwongsan. “Nearly-Linear Work Parallel SDD Solvers,
Low-Diameter Decomposition, and Low-Stretch Subgraphs”. In: Theory of
Computing Systems 55.3 (2014). Announced at SPAA’11, pp. 521–554.

[52] Hans L. Bodlaender, John R. Gilbert, Hjálmtýr Hafsteinsson, and Ton Kloks.
“Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination
Tree”. In: J. Algorithms 18.2 (Mar. 1995), pp. 238–255.

[53] Greg Bodwin. “Linear Size Distance Preservers”. In: Symposium on Discrete
Algorithms (SODA). 2017, pp. 600–615.

[54] Greg Bodwin and Sebastian Krinninger. “Fully Dynamic Spanners with
Worst-Case Update Time”. In: European Symposium on Algorithms (ESA).
2016, 17:1–17:18.

[55] Erik G. Boman and Bruce Hendrickson. “Support Theory for Precondi-
tioning”. In: SIAM Journal on Matrix Analysis and Applications 25.3 (2003),
pp. 694–717.

[56] Karl Bringmann, Marvin Künnemann, and André Nusser. “Fréchet Distance
Under Translation: Conditional Hardness and an Algorithm via Offline Dy-
namic Grid Reachability”. In: Symposium on Discrete Algorithms (SODA).
2019, pp. 2902–2921.

[57] James R Bunch and John EHopcroft. “Triangular factorization and inversion
by fast matrix multiplication”. In:Mathematics of Computation 28.125 (1974),
pp. 231–236.

[58] Hubert T.-H. Chan, Donglin Xia, Goran Konjevod, and Andréa W. Richa.
“A Tight Lower Bound for the Steiner Point Removal Problem on Trees”.
In: International Workshop on Approximation Algorithms for Combinatorial
Optimization (APPROX). 2006, pp. 70–81.

[59] Hsien-Chih Chang, Pawel Gawrychowski, Shay Mozes, and Oren Weimann.
“Near-Optimal Distance Emulator for Planar Graphs”. In: European Sympo-
sium on Algorithms (ESA). 2018, 16:1–16:17.

[60] Moses Charikar, Tom Leighton, Shi Li, and Ankur Moitra. “Vertex Sparsi-
fiers and Abstract Rounding Algorithms”. In: Symposium on Foundations of
Computer Science (FOCS). 2010, pp. 265–274.

[61] Shiri Chechik. “Near-Optimal Approximate Decremental All Pairs Short-
est Paths”. In: Symposium on Foundations of Computer Science (FOCS). 2018,
pp. 170–181.

[62] Shiri Chechik, Thomas Dueholm Hansen, Giuseppe F. Italiano, Jakub Lacki,
and Nikos Parotsidis. “Decremental Single-Source Reachability and Strongly
Connected Components in Õ(m

√
n) Total Update Time”. In: Symposium on

Foundations of Computer Science (FOCS). 2016, pp. 315–324.

276 BIBLIOGRAPHY

[63] Chandra Chekuri, Anupam Gupta, Ilan Newman, Yuri Rabinovich, and Alis-
tair Sinclair. “Embedding k-outerplanar graphs into l1”. In: SIAM Journal on
Discrete Mathematics 20.1 (2006), pp. 119–136.

[64] Chandra Chekuri, Sanjeev Khanna, and F Bruce Shepherd. “Edge-disjoint
paths in planar graphs with constant congestion”. In: SIAM Journal on Com-
puting 39.1 (2009), pp. 281–301.

[65] Chandra Chekuri, F Bruce Shepherd, and ChristopheWeibel. “Flow-cut gaps
for integer and fractional multiflows”. In: Symposium on Discrete Algorithms
(SODA). 2010, pp. 1198–1208.

[66] Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and Shang-Hua Teng. “Ef-
ficient sampling for Gaussian graphical models via spectral sparsification”.
In: Conference on Learning Theory (COLT). 2015, pp. 364–390.

[67] Ho Yee Cheung, Tsz Chiu Kwok, and Lap Chi Lau. “Fast matrix rank algo-
rithms and applications”. In: J. ACM 60.5 (2013), 31:1–31:25.

[68] Yun Kuen Cheung. “Steiner Point Removal - Distant Terminals Don’t (Re-
ally) Bother”. In: Symposium on Discrete Algorithms (SODA). 2018, pp. 1353–
1360.

[69] Yun Kuen Cheung, Gramoz Goranci, and Monika Henzinger. “Graph Mi-
nors for Preserving Terminal Distances Approximately - Lower and Upper
Bounds”. In: International Colloquium on Automata Languages and Program-
ming (ICALP). 2016, 131:1–131:14.

[70] Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman,
and Shang-Hua Teng. “Electrical flows, laplacian systems, and faster approx-
imation of maximum flow in undirected graphs”. In: Symposium on Theory
of Computing (STOC). 2011, pp. 273–282.

[71] Yang-Hua Chu, Sanjay G. Rao, and Hui Zhang. “A case for end systemmulti-
cast”. In: International Conference on Measurement andModeling of Computer
Systems (SIGMETRICS). 2000, pp. 1–12.

[72] Julia Chuzhoy. “On vertex sparsifiers with Steiner nodes”. In: Symposium on
Theory of Computing (STOC). 2012, pp. 673–688.

[73] Julia Chuzhoy. “Routing in undirected graphs with constant congestion”. In:
Symposium on Theory of Computing Conference (STOC). 2012, pp. 855–874.

[74] Michael B. Cohen, Rasmus Kyng, Gary L. Miller, JakubW. Pachocki, Richard
Peng, Anup B. Rao, and Shen Chen Xu. “Solving SDD linear systems in
nearlym log1/2 n time”. In: Symposium onTheory of Computing (STOC). 2014,
pp. 343–352.

[75] Don Coppersmith and Michael Elkin. “Sparse Sourcewise and Pairwise Dis-
tance Preservers”. In: SIAM J. Discrete Math. 20.2 (2006). Announced at
SODA’05, pp. 463–501.

BIBLIOGRAPHY 277

[76] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms (3. ed.) MIT Press, 2009. isbn: 978-0-262-
03384-8.

[77] Edward B Curtis, David Ingerman, and James A Morrow. “Circular planar
graphs and resistor networks”. In: Linear algebra and its applications 283.1
(1998), pp. 115–150.

[78] Søren Dahlgaard. “On the Hardness of Partially Dynamic Graph Problems
and Connections to Diameter”. In: International Colloquium on Automata,
Languages, and Programming (ICALP). 2016, 48:1–48:14.

[79] Camil Demetrescu and Giuseppe F. Italiano. “A new approach to dynamic
all pairs shortest paths”. In: J. ACM 51.6 (2004). Announced at STOC’03,
pp. 968–992.

[80] Camil Demetrescu and Giuseppe F. Italiano. “Trade-offs for fully dynamic
transitive closure on DAGs: breaking through the O(n2 barrier”. In: J. ACM
52.2 (2005). Announced at FOCS’00, pp. 147–156.

[81] Krzysztof Diks and Piotr Sankowski. “Dynamic Plane Transitive Closure”.
In: European Symposium on Algorithms (ESA). 2007, pp. 594–604.

[82] E. A. Dinitz, A. V. Karzanov, and M. V. Lomonosov. “On the structure of a
family of minimum weighted cuts in a graph”. In: Studies in Discrete Opti-
mization (1976), pp. 290–306.

[83] Michael Dinitz, Robert Krauthgamer, and Tal Wagner. “Towards Resistance
Sparsifiers”. In: International Workshop on Approximation Algorithms for
Combinatorial Optimization (APPROX). 2015, pp. 738–755.

[84] Yefim Dinitz and Jeffery Westbrook. “Maintaining the Classes of 4-Edge-
Connectivity in a Graph On-Line”. In: Algorithmica 20.3 (1998), pp. 242–276.

[85] Florian Dörfler and Francesco Bullo. “Kron Reduction of Graphs With Ap-
plications to Electrical Networks”. In: IEEE Trans. on Circuits and Systems
60-I.1 (2013), pp. 150–163.

[86] Peter G Doyle and J Laurie Snell. RandomWalks and Electric Networks. Carus
Mathematical Monographs. Mathematical Association of America, 1984.

[87] David Durfee, Yu Gao, Gramoz Goranci, and Richard Peng. “Fully Dynamic
Spectral Vertex Sparsifiers and Applications”. In: Symposium on Theory of
Computing (STOC). (forthcoming). 2019.

[88] David Durfee, Rasmus Kyng, John Peebles, Anup B. Rao, and Sushant
Sachdeva. “Sampling random spanning trees faster than matrix multiplica-
tion”. In: Symposium on Theory of Computing (STOC). 2017, pp. 730–742.

[89] David Durfee, John Peebles, Richard Peng, and Anup B Rao. “Determinant-
preserving sparsification of SDDM matrices with applications to counting
and sampling spanning trees”. In: Symposium on Foundations of Computer
Science (FOCS). 2017, pp. 926–937.

278 BIBLIOGRAPHY

[90] Michael Elkin. “Streaming and fully dynamic centralized algorithms for con-
structing and maintaining sparse spanners”. In: ACM Transactions on Algo-
rithms 7.2 (2011). Announced at ICALP’07, 20:1–20:17.

[91] Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-Hua Teng.
“Lower-Stretch Spanning Trees”. In: SIAM Journal on Computing 38.2 (2008).
Announced at STOC’05, pp. 608–628.

[92] Michael Elkin and Ofer Neiman. “Efficient Algorithms for Constructing
Very Sparse Spanners and Emulators”. In: Symposium on Discrete Algorithms
(SODA). 2017, pp. 652–669.

[93] Yuval Emek. “k-Outerplanar Graphs, Planar Duality, and Low Stretch Span-
ning Trees”. In: Algorithmica 61.1 (2011), pp. 141–160.

[94] Matthias Englert, Anupam Gupta, Robert Krauthgamer, Harald Räcke, Inbal
Talgam-Cohen, and Kunal Talwar. “Vertex Sparsifiers: New Results fromOld
Techniques”. In: SIAM J. Comput. 43.4 (2014). Announced at APPROX’10,
pp. 1239–1262.

[95] David Eppstein. “Offline Algorithms for Dynamic Minimum Spanning Tree
Problems”. In: Workshop on Algorithms and Data Structures (WADS). 1991,
pp. 392–399.

[96] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig.
“Sparsification - a technique for speeding up dynamic graph algorithms”. In:
Journal of the ACM 44.5 (1997). Announced at FOCS’92, pp. 669–696.

[97] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer.
“Separator Based Sparsification. I. Planary Testing and Minimum Spanning
Trees”. In: J. Comput. Syst. Sci. 52.1 (1996), pp. 3–27.

[98] Paul Erdös. “Extremal Problems in Graph Theory”. In: Theory of Graphs and
its Applications (Proc. Symposium Smolenice) (1963).

[99] Shimon Even and Yossi Shiloach. “An On-Line Edge-Deletion Problem”. In:
Journal of the ACM 28.1 (1981), pp. 1–4.

[100] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. “A tight bound on ap-
proximating arbitrary metrics by tree metrics”. In: J. Comput. Syst. Sci. 69.3
(2004), pp. 485–497.

[101] Thomas A Feo and J Scott Provan. “Delta-wye transformations and the effi-
cient reduction of two-terminal planar graphs”. In: Operations Research 41.3
(1993), pp. 572–582.

[102] Arnold Filtser. “Steiner Point Removal with Distortion O(log k)”. In: Sympo-
sium on Discrete Algorithms (SODA). 2018, pp. 1361–1373.

[103] Tamás Fleiner and András Frank. “A quick proof for the cactus representa-
tion of mincuts”. In: (2009).

[104] Randolph Ford and Delbert Fulkerson. “Maximal Flow through a Network”.
In: Canadian journal of Mathematics, 8.3 (1956), pp. 399–404.

BIBLIOGRAPHY 279

[105] Sebastian Forster and Gramoz Goranci. “Dynamic Low-Stretch Trees via Dy-
namic Low-Diameter Decompositions”. In: Symposium onTheory of Comput-
ing (STOC). (forthcoming). 2019.

[106] Greg N. Frederickson. “Data Structures for On-Line Updating of Minimum
Spanning Trees, with Applications”. In: SIAM J. Comput. 14.4 (1985). An-
nounced at STOC’83, pp. 781–798.

[107] Harold N. Gabow. “A Matroid Approach to Finding Edge Connectivity and
Packing Arborescences”. In: Journal of Computer and System Sciences 50.2
(1995), pp. 259–273.

[108] Harold N. Gabow. “Applications of a Poset Representation to Edge Connec-
tivity and Graph Rigidity”. In: Symposium on Foundations of Computer Sci-
ence (FOCS). 1991, pp. 812–821.

[109] Kshitij Gajjar and Jaikumar Radhakrishnan. “Distance-Preserving Sub-
graphs of Interval Graphs”. In: European Symposium on Algorithms (ESA).
2017, 39:1–39:13.

[110] Zvi Galil and Giuseppe F. Italiano. “Maintaining the 3-Edge-Connected Com-
ponents of a Graph On-Line”. In: SIAM Journal on Computing 22.1 (1993),
pp. 11–28.

[111] Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen,
and Boaz Patt-Shamir. “Near-Optimal Distributed Maximum Flow”. In: Sym-
posium on Principles of Distributed Computing (PODC). 2015, pp. 81–90.

[112] Isidoro Gitler. “Delta-Wye-Delta Transformations: Algorithms and Applica-
tions”. PhD thesis. Department of Combinatorics and Optimization, Univer-
sity of Waterloo, 1991.

[113] Gramoz Goranci, Monika Henzinger, and Pan Peng. “Dynamic Effective Re-
sistances and Approximate Schur Complement on Separable Graphs”. In: Eu-
ropean Symposium on Algorithms (ESA). 2018, 40:1–40:15.

[114] Gramoz Goranci, Monika Henzinger, and Pan Peng. “Improved Guarantees
for Vertex Sparsification in Planar Graphs”. In: European Symposium on Al-
gorithms (ESA). 2017, 44:1–44:14.

[115] Gramoz Goranci, Monika Henzinger, and Pan Peng. “The Power of Vertex
Sparsifiers in Dynamic Graph Algorithms”. In: European Symposium on Al-
gorithms (ESA). 2017, 45:1–45:14.

[116] Gramoz Goranci, Monika Henzinger, and Thatchaphol Saranurak. “Fast In-
cremental Algorithms via Local Sparsifiers”. manuscript. 2019.

[117] Gramoz Goranci, Monika Henzinger, and Mikkel Thorup. “Incremental Ex-
act Min-Cut in Polylogarithmic Amortized Update Time”. In: ACM Trans.
Algorithms 14.2 (2018). Announced at ESA’16, 17:1–17:21.

280 BIBLIOGRAPHY

[118] Gramoz Goranci and Harald Räcke. “Vertex Sparsification in Trees”. In: Inter-
national Workshop on Approximation and Online Algorithms (WAOA). 2016,
pp. 103–115.

[119] Anupam Gupta. “Steiner points in tree metrics don’t (really) help”. In: Sym-
posium on Discrete Algorithms (SODA). 2001, pp. 220–227.

[120] Anupam Gupta and Dominick DiRenzo. “Unpublished Manuscript”. In:
(2016). personal communication.

[121] Anupam Gupta, Amit Kumar, and Rajeev Rastogi. “Traveling with a Pez
Dispenser (or, Routing Issues in MPLS)”. In: SIAM J. Comput. 34.2 (2004),
pp. 453–474.

[122] Manoj Gupta and Shahbaz Khan. “Simple dynamic algorithms for Maximal
Independent Set and other problems”. In: CoRR abs/1804.01823 (2018).

[123] Manoj Gupta and Richard Peng. “Fully Dynamic (1+ e)-Approximate Match-
ings”. In: Symposium on Foundations of Computer Science (FOCS). 2013,
pp. 548–557.

[124] Bernhard Haeupler and Jason Li. “Faster Distributed Shortest Path Approxi-
mations via Shortcuts”. In: International Symposium on Distributed Comput-
ing (DISC). 2018, 33:1–33:14.

[125] Torben Hagerup, Jyrki Katajainen, Naomi Nishimura, and Prabhakar Ragde.
“Characterizing Multiterminal Flow Networks and Computing Flows in Net-
works of Small Treewidth”. In: J. Comput. Syst. Sci. 57.3 (1998), pp. 366–375.

[126] Prahladh Harsha, Thomas P Hayes, Hariharan Narayanan, Harald Räcke,
and Jaikumar Radhakrishnan. “Minimizing average latency in oblivious
routing”. In: Symposium on Discrete Algorithms (SODA). 2008, pp. 200–207.

[127] Monika Rauch Henzinger. “A Static 2-Approximation Algorithm for Vertex
Connectivity and Incremental Approximation Algorithms for Edge and Ver-
tex Connectivity”. In: J. Algorithms 24.1 (1997), pp. 194–220.

[128] Monika Rauch Henzinger and Valerie King. “Maintaining Minimum Span-
ning Forests in Dynamic Graphs”. In: SIAM J. Comput. 31.2 (2001). An-
nounced at ICALP’97, pp. 364–374.

[129] Monika Rauch Henzinger and Valerie King. “Randomized Fully Dynamic
Graph Algorithms with Polylogarithmic Time per Operation”. In: Journal of
the ACM 46.4 (1999). Announced at STOC’95, pp. 502–516.

[130] Monika Rauch Henzinger and Mikkel Thorup. “Sampling to provide or to
bound: With applications to fully dynamic graph algorithms”. In: Random
Struct. Algorithms 11.4 (1997). Announced at ICALP’96, pp. 369–379.

[131] Monika Henzinger and Valerie King. “Fully Dynamic Biconnectivity and
Transitive Closure”. In: Symposium on Foundations of Computer Science
(FOCS). 1995, pp. 664–672.

BIBLIOGRAPHY 281

[132] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “A Sub-
quadratic-Time Algorithm for Dynamic Single-Source Shortest Paths”. In:
Symposium on Discrete Algorithms (SODA). 2014, pp. 1053–1072.

[133] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Decre-
mental Single-Source Shortest Paths on Undirected Graphs in Near-Linear
Total Update Time”. In: Symposium on Foundations of Computer Science
(FOCS). 2014, pp. 146–155.

[134] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Dy-
namic Approximate All-Pairs Shortest Paths: Breaking the O(mn) Barrier
and Derandomization”. In: SIAM Journal on Computing 45.3 (2016). An-
nounced at FOCS’13, pp. 947–1006.

[135] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatch-
aphol Saranurak. “Unifying and Strengthening Hardness for Dynamic Prob-
lems via the Online Matrix-Vector Multiplication Conjecture”. In: Sympo-
sium on Theory of Computing (STOC). 2015, pp. 21–30.

[136] Monika Henzinger, Satish Rao, and Di Wang. “Local Flow Partitioning for
Faster Edge Connectivity”. In: Symposium on Discrete Algorithms (SODA).
2017, pp. 1919–1938.

[137] Jacob Holm, Giuseppe F Italiano, Adam Karczmarz, Jakub Łacki, Eva Roten-
berg, and Piotr Sankowski. “Contracting a planar graph efficiently”. In: Eu-
ropean Symposium on Algorithms (ESA). 2017, 50:1–50:15.

[138] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. “Poly-logarithmic
deterministic fully-dynamic algorithms for connectivity, minimum span-
ning tree, 2-edge, and biconnectivity”. In: J. ACM 48.4 (2001). Announced
at STOC’98, pp. 723–760.

[139] Jacob Holm, Eva Rotenberg, and Christian Wulff-Nilsen. “Faster Fully-
Dynamic Minimum Spanning Forest”. In: European Symposium on Algo-
rithms (ESA). 2015, pp. 742–753.

[140] T. C. Hu. “Optimum Communication Spanning Trees”. In: SIAM Journal on
Computing 3.3 (1974), pp. 188–195.

[141] Oscar H Ibarra, Shlomo Moran, and Roger Hui. “A generalization of the fast
LUP matrix decomposition algorithm and applications”. In: Journal of Algo-
rithms 3.1 (1982), pp. 45–56.

[142] Giuseppe F Italiano, Adam Karczmarz, Jakub Łącki, and Piotr Sankowski.
“Decremental single-source reachability in planar digraphs”. In: Symposium
on Theory of Computing (STOC). 2017, pp. 1108–1121.

[143] Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian
Wulff-Nilsen. “Improved algorithms for min cut and max flow in undirected
planar graphs”. In: Symposium onTheory of Computing (STOC). 2011, pp. 313–
322.

http://dx.doi.org/10.1137/1.9781611973402.79
http://dx.doi.org/10.1137/1.9781611973402.79
http://dx.doi.org/10.1137/1.9781611973402.79

282 BIBLIOGRAPHY

[144] Arun Jambulapati and Aaron Sidford. “Efficient Õ(n/ε) Spectral Sketches
for the Laplacian and its Pseudoinverse”. In: Symposium on Discrete Algo-
rithms (SODA). 2018, pp. 2487–2503.

[145] Gorav Jindal, Pavel Kolev, Richard Peng, and Saurabh Sawlani. “Density In-
dependent Algorithms for Sparsifying k-Step Random Walks”. In: Interna-
tional Workshop on Approximation Algorithms for Combinatorial Optimiza-
tion Problems (APPROX). 2017, 14:1–14:17.

[146] Lior Kamma, Robert Krauthgamer, and Huy L. Nguyen. “Cutting Corners
Cheaply, or How to Remove Steiner Points”. In: SIAM J. Comput. 44.4 (2015).
Announced at SODA’14, pp. 975–995.

[147] Bruce M. Kapron, Valerie King, and Ben Mountjoy. “Dynamic graph connec-
tivity in polylogarithmic worst case time”. In: Symposium on Discrete Algo-
rithms (SODA). 2013, pp. 1131–1142.

[148] Adam Karczmarz. “Decrementai Transitive Closure and Shortest Paths for
Planar Digraphs and Beyond”. In: Symposium on Discrete Algorithms (SODA).
2018, pp. 73–92.

[149] David Karger. “Random Sampling in Graph Optimization Problems”. PhD
thesis. Stanford, USA: Stanford University, 1994.

[150] David R. Karger. “Minimum cuts in near-linear time”. In: J. ACM 47.1 (2000),
pp. 46–76.

[151] David R. Karger. “Random Sampling in Cut, Flow, and Network Design Prob-
lems”. In: Mathematics of Operations Research 24.2 (1999), pp. 383–413.

[152] David R. Karger. “Using Randomized Sparsification to Approximate Mini-
mum Cuts”. In: Symposium on Discrete Algorithms (SODA). 1994, pp. 424–
432.

[153] Nikolai Karpov, Marcin Pilipczuk, and Anna Zych-Pawlewicz. “An Expo-
nential Lower Bound for Cut Sparsifiers in Planar Graphs”. In: Algorithmica
(2018).

[154] Irit Katriel, Martin Kutz, and Martin Skutella. “Reachability substitutes for
planar digraphs”. In: Technical Report MPI-I-2005-1-002. Max-Planck-Institut
für Informatik, 2005.

[155] Ken-ichi Kawarabayashi, Philip N. Klein, and Christian Sommer. “Linear-
Space Approximate Distance Oracles for Planar, Bounded-Genus andMinor-
Free Graphs”. In: International Colloquium on Automata Languages and Pro-
gramming (ICALP). 2011, pp. 135–146.

[156] Ken-ichi Kawarabayashi and Bruce Reed. “A separator theorem in minor-
closed classes”. In: Symposium on Foundations of Computer Science (FOCS).
2010, pp. 153–162.

BIBLIOGRAPHY 283

[157] Ken-ichi Kawarabayashi and Mikkel Thorup. “Deterministic Edge Connec-
tivity in Near-Linear Time”. In: J. ACM 66.1 (2019). Announced at STOC’15,
4:1–4:50.

[158] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. “An
Almost-Linear-Time Algorithm for Approximate Max Flow in Undirected
Graphs, and itsMulticommodityGeneralizations”. In: Symposium onDiscrete
Algorithms (SODA). 2014, pp. 217–226.

[159] Jonathan A. Kelner and Alex Levin. “Spectral Sparsification in the Semi-
streaming Setting”. In: Theory of Computing Systems 53.2 (2013), pp. 243–
262.

[160] Jonathan A Kelner, Gary L Miller, and Richard Peng. “Faster approximate
multicommodity flow using quadratically coupled flows”. In: Symposium on
Theory of Computing (STOC). 2012, pp. 1–18.

[161] JonathanA. Kelner, LorenzoOrecchia, Aaron Sidford, and ZeyuanAllen Zhu.
“A simple, combinatorial algorithm for solving SDD systems in nearly-linear
time”. In: Symposium on Theory of Computing (STOC). 2013, pp. 911–920.

[162] Arindam Khan and Prasad Raghavendra. “On mimicking networks repre-
senting minimum terminal cuts”. In: Information Processing Letters 114.7
(2014), pp. 365–371.

[163] Rohit Khandekar, Satish Rao, and Umesh V. Vazirani. “Graph partitioning us-
ing single commodity flows”. In: J. ACM 56.4 (2009). Announced at STOC’06,
19:1–19:15.

[164] Valerie King. “Fully Dynamic Algorithms for Maintaining All-Pairs Shortest
Paths and Transitive Closure in Digraphs”. In: Symposium on Foundations of
Computer Science (FOCS). 1999, pp. 81–91.

[165] Douglas J Klein and Milan Randić. “Resistance distance”. In: Journal of math-
ematical chemistry 12.1 (1993), pp. 81–95.

[166] Philip N. Klein and Sairam Subramanian. “A Fully Dynamic Approximation
Scheme for Shortest Paths in Planar Graphs”. In: Algorithmica 22.3 (1998),
pp. 235–249.

[167] Ioannis Koutis, Alex Levin, and Richard Peng. “Faster Spectral Sparsifica-
tion and Numerical Algorithms for SDD Matrices”. In: ACM Transactions on
Algorithms 12.2 (2016). Announced at STACS’12, 17:1–17:16.

[168] Ioannis Koutis, Gary L. Miller, and Richard Peng. “A Nearly-m log n Time
Solver for SDD Linear Systems”. In: Symposium on Foundations of Computer
Science (FOCS). 2011, pp. 590–598.

[169] Ioannis Koutis, Gary L. Miller, and Richard Peng. “Approaching Optimality
for Solving SDD Linear Systems”. In: SIAM Journal on Computing 43.1 (2014).
Announced at FOCS’10, pp. 337–354.

284 BIBLIOGRAPHY

[170] Robert Krauthgamer, Huy L. Nguyen, and Tamar Zondiner. “Preserving Ter-
minal Distances Using Minors”. In: SIAM J. Discrete Math. 28.1 (2014). An-
nounced at ICALP’12, pp. 127–141.

[171] Robert Krauthgamer and Inbal Rika. “Mimicking Networks and Succinct
Representations of Terminal Cuts”. In: Symposium on Discrete Algorithms
(SODA). 2013, pp. 1789–1799.

[172] Robert Krauthgamer and Inbal Rika. “Refined Vertex Sparsifiers of Planar
Graphs”. In: CoRR abs/1702.05951 (2017).

[173] Robert Krauthgamer and Tamar Zondiner. “Preserving Terminal Distances
UsingMinors”. In: International Colloquium on Automata Languages and Pro-
gramming (ICALP). 2012, pp. 594–605.

[174] Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A.
Spielman. “Sparsified Cholesky and multigrid solvers for connection lapla-
cians”. In: Symposium on Theory of Computing (STOC). 2016.

[175] Rasmus Kyng, Jakub Pachocki, Richard Peng, and Sushant Sachdeva. “A
Framework for Analyzing Resparsification Algorithms”. In: Symposium on
Discrete Algorithms (SODA). 2017, pp. 2032–2043.

[176] Rasmus Kyng and Sushant Sachdeva. “Approximate Gaussian Elimination
for Laplacians - Fast, Sparse, and Simple”. In: Symposium on Foundations of
Computer Science (FOCS). 2016, pp. 573–582.

[177] Jakub Lacki and Piotr Sankowski. “Min-Cuts and Shortest Cycles in Pla-
nar Graphs in O(n log log n) Time”. In: European Symposium on Algorithms
(ESA). 2011, pp. 155–166.

[178] Felix Lazebnik, Vasiliy A Ustimenko, and Andrew JWoldar. “A new series of
dense graphs of high girth”. In: Bulletin of the American mathematical society
32.1 (1995), pp. 73–79.

[179] James R Lee, Manor Mendel, and Mohammad Moharrami. “A node-
capacitated okamura-seymour theorem”. In: Symposium on Theory of Com-
puting (STOC). 2013, pp. 495–504.

[180] FrankThomson Leighton andAnkurMoitra. “Extensions and limits to vertex
sparsification”. In: Symposium onTheory of Computing (STOC). 2010, pp. 47–
56.

[181] Huan Li, Stacy Patterson, Yuhao Yi, and Zhongzhi Zhang. “Maximizing the
Number of Spanning Trees in a Connected Graph”. In: CoRR abs/1804.02785
(2018).

[182] Huan Li and Zhongzhi Zhang. “Kirchhoff Index As a Measure of Edge Cen-
trality in Weighted Networks: Nearly Linear Time Algorithms”. In: Sympo-
sium on Discrete Algorithms (SODA). 2018, pp. 2377–2396.

BIBLIOGRAPHY 285

[183] David Liben-Nowell and Jon M. Kleinberg. “The link prediction problem for
social networks”. In: International Conference on Information and Knowledge
Management (CIKM). 2003, pp. 556–559.

[184] Richard J. Lipton and Robert Endre Tarjan. “A SeparatorTheorem for Planar
Graphs”. In: SIAM Journal on Applied Mathematics 36.2 (1979), pp. 177–189.

[185] Richard Lipton, Donald Rose, and Robert Tarjan. “Generalized Nested Dis-
section”. In: SIAM Journal on Numerical Analysis 16.2 (1979), pp. 346–358.

[186] Andreas Loukas and Pierre Vandergheynst. “Spectrally Approximating
Large Graphs with Smaller Graphs”. In: International Conference on Machine
Learning (ICML). Vol. 80. 2018, pp. 3243–3252.

[187] Aleksander Madry. “Computing Maximum Flow with Augmenting Electri-
cal Flows”. In: Symposium on Foundations of Computer Science (FOCS). 2016,
pp. 593–602.

[188] Aleksander Madry. “Fast Approximation Algorithms for Cut-Based Prob-
lems in Undirected Graphs”. In: Symposium on Foundations of Computer Sci-
ence (FOCS). 2010, pp. 245–254.

[189] Aleksander Madry. “Navigating Central Path with Electrical Flows: From
Flows to Matchings, and Back”. In: Symposium on Foundations of Computer
Science (FOCS). 2013, pp. 253–262.

[190] AleksanderMądry, Damian Straszak, and Jakub Tarnawski. “Fast generation
of random spanning trees and the effective resistancemetric”. In: Symposium
on Discrete Algorithms (SODA). 2015, pp. 2019–2036.

[191] Konstantin Makarychev and Yury Makarychev. “Metric Extension Opera-
tors, Vertex Sparsifiers and Lipschitz Extendability”. In: Symposium on Foun-
dations of Computer Science (FOCS). 2010, pp. 255–264.

[192] Jiřı ́Matoušek. “On the distortion required for embedding finitemetric spaces
into normed spaces”. In: Israel Journal of Mathematics 93.1 (1996), pp. 333–
344.

[193] Karl Menger. “Zur allgemeinen kurventheorie”. In: Fundamenta Mathemati-
cae 1.10 (1927), pp. 96–115.

[194] Gary L. Miller and Richard Peng. “Approximate Maximum Flow on Separa-
ble Undirected Graphs”. In: Symposium on Discrete Algorithms (SODA). 2013,
pp. 1151–1170.

[195] Gary L. Miller, Richard Peng, and Shen Chen Xu. “Parallel Graph Decom-
positions Using Random Shifts”. In: Symposium on Parallelism in Algorithms
and Architectures (SPAA). 2013, pp. 196–203.

[196] Gary L Miller, Shang-Hua Teng, William Thurston, and Stephen A Vavasis.
“Separators for sphere-packings and nearest neighbor graphs”. In: Journal of
the ACM (JACM) 44.1 (1997), pp. 1–29.

286 BIBLIOGRAPHY

[197] Ankur Moitra. “Approximation Algorithms for Multicommodity-Type Prob-
lems with Guarantees Independent of the Graph Size”. In: Symposium on
Foundations of Computer Science (FOCS). 2009, pp. 3–12.

[198] Cameron Musco, Praneeth Netrapalli, Aaron Sidford, Shashanka Ubaru, and
David P. Woodruff. “Spectrum Approximation Beyond Fast Matrix Multipli-
cation: Algorithms and Hardness”. In: 2018, 8:1–8:21.

[199] Hiroshi Nagamochi and Toshihide Ibaraki. “A Linear-Time Algorithm for
Finding a Sparse k-Connected Spanning Subgraph of a k-Connected Graph”.
In: Algorithmica 7.5&6 (1992), pp. 583–596.

[200] Hiroshi Nagamochi and Toshihide Ibaraki.Algorithmic Aspects of Graph Con-
nectivity. 1st ed. New York, NY, USA: Cambridge University Press, 2008.

[201] Danupon Nanongkai andThatchaphol Saranurak. “Dynamic Cut Oracle”. In:
(2016). personal communication.

[202] Danupon Nanongkai and Thatchaphol Saranurak. “Dynamic spanning for-
est with worst-case update time: adaptive, Las Vegas, and O(n1/2−ϵ) time”.
In: Symposium on Theory of Computing (STOC). 2017, pp. 1122–1129.

[203] Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen.
“Dynamic Minimum Spanning Forest with Subpolynomial Worst-Case Up-
date Time”. In: Symposium on Foundations of Computer Science (FOCS). 2017,
pp. 950–961.

[204] Ofer Neiman and Shay Solomon. “Simple Deterministic Algorithms for Fully
Dynamic Maximal Matching”. In: ACM Trans. Algorithms 12.1 (2016). An-
nounced at STOC’13, 7:1–7:15.

[205] Haruko Okamura and Paul D. Seymour. “Multicommodity flows in planar
graphs”. In: J. Comb. Theory, Ser. B 31.1 (1981), pp. 75–81.

[206] Krzysztof Onak and Ronitt Rubinfeld. “Maintaining a large matching and
a small vertex cover”. In: Symposium on Theory of Computing (STOC). 2010,
pp. 457–464.

[207] David Peleg and Eilon Reshef. “Deterministic Polylog Approximation for
Minimum Communication Spanning Trees”. In: International Colloquium on
Automata, Languages and Programming. 1998, pp. 670–681.

[208] David Peleg andAlejandroA Schäffer. “Graph spanners”. In: Journal of graph
theory 13.1 (1989), pp. 99–116.

[209] David Peleg and Eli Upfal. “The Token Distribution Problem”. In: SIAM J.
Comput. 18.2 (1989). Announced at FOCS’86, pp. 229–243.

[210] Richard Peng. “Approximate Undirected Maximum Flows in O(mpolylog(n))
Time”. In: Symposium on Discrete Algorithms (SODA). 2016, pp. 1862–1867.

[211] Richard Peng, Bryce Sandlund, and Daniel Dominic Sleator. “Offline Dy-
namic Higher Connectivity”. In: CoRR abs/1708.03812 (2017).

BIBLIOGRAPHY 287

[212] Richard Peng and Daniel A. Spielman. “An efficient parallel solver for
SDD linear systems”. In: Symposium on Theory of Computing (STOC). 2014,
pp. 333–342.

[213] Johannes A. La Poutré. “Maintenance of 2- and 3-Edge-Connected Compo-
nents of Graphs II”. In: SIAM Journal on Computing 29.5 (2000), pp. 1521–
1549.

[214] Harald Räcke. “Optimal hierarchical decompositions for congestion mini-
mization in networks”. In: Symposium onTheory of Computing (STOC). 2008,
pp. 255–264.

[215] Harald Räcke and Chintan Shah. “Improved Guarantees for Tree Cut Spar-
sifiers”. In: European Symposium on Algorithms (ESA). 2014, pp. 774–785.

[216] Harald Räcke, Chintan Shah, and Hanjo Täubig. “Computing Cut-Based Hi-
erarchical Decompositions in Almost Linear Time”. In: Symposium on Dis-
crete Algorithms (SODA). 2014, pp. 227–238.

[217] Liam Roditty. “A faster and simpler fully dynamic transitive closure”. In:
ACM Trans. Algorithms 4.1 (2008). Announced at SODA’03, 6:1–6:16.

[218] Liam Roditty, Mikkel Thorup, and Uri Zwick. “Deterministic Constructions
of Approximate Distance Oracles and Spanners”. In: International Collo-
quium on Automata Languages and Programming (ICALP). 2005, pp. 261–
272.

[219] Liam Roditty and Uri Zwick. “A Fully Dynamic Reachability Algorithm for
Directed Graphs with an Almost Linear Update Time”. In: SIAM J. Comput.
45.3 (2016). Announced at STOC’04, pp. 712–733.

[220] Liam Roditty and Uri Zwick. “Dynamic Approximate All-Pairs Shortest
Paths in Undirected Graphs”. In: SIAM J. Comput. 41.3 (2012), pp. 670–683.

[221] Liam Roditty and Uri Zwick. “Improved Dynamic Reachability Algorithms
for Directed Graphs”. In: Symposium on Foundations of Computer Science
(FOCS). 2002, p. 679.

[222] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and
M. Tamer Özsu. “The Ubiquity of Large Graphs and Surprising Challenges
of Graph Processing”. In: PVLDB 11.4 (2017), pp. 420–431.

[223] Piotr Sankowski. “Dynamic Transitive Closure via Dynamic Matrix Inverse
(Extended Abstract)”. In: Symposium on Foundations of Computer Science
(FOCS). 2004, pp. 509–517.

[224] Piotr Sankowski. “Subquadratic Algorithm for Dynamic Shortest Distances”.
In: International Conference on Computing and Combinatorics (COCOON).
2005, pp. 461–470.

[225] Thatchaphol Saranurak and Di Wang. “Expander Decomposition and Prun-
ing: Faster, Stronger, and Simpler”. In: Symposium on Discrete Algorithms
(SODA). 2019, pp. 2616–2635.

288 BIBLIOGRAPHY

[226] Michael Scharf, Gordon T. Wilfong, and Lisa Zhang. “Sparsifying network
topologies for application guidance”. In: IFIP/IEEE International Symposium
on Integrated Network Management (IM). 2015, pp. 234–242.

[227] Aaron Schild. “An almost-linear time algorithm for uniform random span-
ning tree generation”. In: Symposium on Theory of Computing (STOC). 2018,
pp. 214–227.

[228] Aaron Schild, Satish Rao, and Nikhil Srivastava. “Localization of Electrical
Flows”. In: Symposium on Discrete Algorithms (SODA). 2018, pp. 1577–1584.

[229] Jonah Sherman. “Area-convexity, l∞ regularization, and undirected mul-
ticommodity flow”. In: Symposium on Theory of Computing (STOC). 2017,
pp. 452–460.

[230] Jonah Sherman. “Breaking the Multicommodity Flow Barrier for O(vlog n)-
Approximations to Sparsest Cut”. In: Symposium on Foundations of Computer
Science (FOCS). 2009, pp. 363–372.

[231] Jonah Sherman. “Nearly Maximum Flows in Nearly Linear Time”. In: Sym-
posium on Foundations of Computer Science (FOCS). 2013, pp. 263–269.

[232] Daniel Dominic Sleator and Robert Endre Tarjan. “A Data Structure for
Dynamic Trees”. In: Journal of Computer and System Sciences 26.3 (1983),
pp. 362–391.

[233] Shay Solomon. “Fully Dynamic Maximal Matching in Constant Update
Time”. In: Foundations of Computer Science (FOCS). 2016, pp. 325–334.

[234] Daniel A. Spielman. “Algorithms, Graph Theory, and Linear Equations in
Laplacian Matrices”. In: Proceedings of the International Congress of Mathe-
maticians. 2010.

[235] Daniel A. Spielman and Nikhil Srivastava. “Graph Sparsification by Effective
Resistances”. In: SIAM J. Comput. 40.6 (2011), pp. 1913–1926.

[236] Daniel A. Spielman and Shang-Hua Teng. “A Local Clustering Algorithm for
Massive Graphs and Its Application to Nearly Linear Time Graph Partition-
ing”. In: SIAM J. Comput. 42.1 (2013), pp. 1–26.

[237] Daniel A. Spielman and Shang-Hua Teng. “Nearly Linear Time Algorithms
for Preconditioning and Solving Symmetric, Diagonally Dominant Linear
Systems”. In: SIAM J. Matrix Analysis Applications 35.3 (2014). Announced
at STOC’04, pp. 835–885.

[238] Daniel A. Spielman and Shang-Hua Teng. “Spectral Sparsification of
Graphs”. In: SIAM J. Comput. 40.4 (2011), pp. 981–1025.

[239] Daniel A. Spielman and Jaeoh Woo. “A Note on Preconditioning by Low-
Stretch Spanning Trees”. In: CoRR abs/0903.2816 (2009). arXiv: 0903.2816.

[240] Sairam Subramanian. “A Fully Dynamic Data Structure for Reachability
in Planar Digraphs”. In: European Symposium on Algorithms (ESA). 1993,
pp. 372–383.

http://arxiv.org/abs/0903.2816

BIBLIOGRAPHY 289

[241] Roberto Tamassia and Ioannis G Tollis. “Planar grid embedding in linear
time”. In: IEEE Trans. Circuits Syst. 36.9 (1989), pp. 1230–1234.

[242] Robert Endre Tarjan. “Depth-First Search and Linear Graph Algorithms”. In:
SIAM J. Comput. 1.2 (1972), pp. 146–160.

[243] Shang-Hua Teng. “The Laplacian Paradigm: Emerging Algorithms for Mas-
sive Graphs”. In: Theory and Applications of Models of Computation. 2010,
pp. 2–14.

[244] Andrew Thomason. “An extremal function for contractions of graphs”. In:
Mathematical Proceedings of the Cambridge Philosophical Society 95 (02 1984),
pp. 261–265.

[245] Mikkel Thorup. “Compact oracles for reachability and approximate dis-
tances in planar digraphs”. In: J. ACM 51.6 (2004). Announced at FOCS’01,
pp. 993–1024.

[246] Mikkel Thorup. “Dynamic Graph Algorithms with Applications”. In: Scandi-
navian Workshop on Algorithm Theory (SWAT). 2000, pp. 1–9.

[247] Mikkel Thorup. “Fully-Dynamic All-Pairs Shortest Paths: Faster and Allow-
ing Negative Cycles”. In: candinavianWorkshop on AlgorithmTheory (SWAT).
2004, pp. 384–396.

[248] MikkelThorup. “Fully-DynamicMin-Cut”. In:Combinatorica 27.1 (2007). An-
nounced at STOC’01, pp. 91–127.

[249] Mikkel Thorup. “Near-optimal fully-dynamic graph connectivity”. In: Sym-
posium on Theory of Computing (STOC). 2000, pp. 343–350.

[250] Mikkel Thorup. “Worst-case update times for fully-dynamic all-pairs short-
est paths”. In: Symposium on Theorey of Computing (STOC). 2005, pp. 112–
119.

[251] Mikkel Thorup and Uri Zwick. “Approximate distance oracles”. In: J. ACM
52.1 (2005). Announced at STOC’01, pp. 1–24.

[252] Joel A. Tropp. “User-Friendly Tail Bounds for Sums of Random Matrices”.
In: Foundations of Computational Mathemathics 12.4 (Aug. 2012), pp. 389–
434. issn: 1615-3375.

[253] P. M. Vaidya. “Solving Linear Equations with Symmetric Diagonally Domi-
nant Matrices by Constructing Good Preconditioners”. manuscript.

[254] Leslie G. Valiant. “Universality Considerations in VLSI Circuits”. In: IEEE
Trans. Computers 30.2 (1981), pp. 135–140.

[255] Tal Wagner, Sudipto Guha, Shiva Prasad Kasiviswanathan, and Nina Mishra.
“Semi-Supervised Learning on Data Streams via Temporal Label Propa-
gation”. In: International Conference on Machine Learning (ICML). 2018,
pp. 5082–5091.

290 BIBLIOGRAPHY

[256] RephaelWenger. “Extremal graphs with no C4’s, C6’s, or C10’s”. In: J. Comb.
Theory, Ser. B 52.1 (1991), pp. 113–116.

[257] Virginia Vassilevska Williams. “Multiplying matrices faster than
Coppersmith-Winograd”. In: Symposium on Theory of Computing (STOC).
2012, pp. 887–898.

[258] Richard M.Wilson. “An ExistenceTheory for Pairwise Balanced Designs, III:
Proof of the Existence Conjectures”. In: J. Comb. Theory, Ser. A 18.1 (1975),
pp. 71–79.

[259] David P. Woodruff. “Lower Bounds for Additive Spanners, Emulators, and
More”. In: Symposium on Foundations of Computer Science (FOCS). 2006,
pp. 389–398.

[260] Christian Wulff-Nilsen. “Fully-dynamic minimum spanning forest with im-
proved worst-case update time”. In: Symposium on Theory of Computing
(STOC). 2017, pp. 1130–1143.

	Introduction
	Dynamic Graph Algorithms
	Dynamic Algorithms for Spectral Primitives
	Dynamic Low-Stretch Trees
	Dynamic Graph Partitioning

	Graph Sparsification
	Distance Approximating Minors
	Reachability Preserving Minors
	Structure of Thesis

	Dynamic Effective Resistances and Approximate Schur Complement on Separable Graphs
	Introduction
	Our Results
	Our Techniques

	Preliminaries
	Useful Properties of Approximate Schur Complement
	Dynamic Effective Resistances on Separable Graphs
	Dynamic Approximate Schur Complement
	Extension to Dynamic All-Pairs Effective Resistance

	Lower Bounds for Dynamic Effective Resistances
	A Lower Bound for O(n)-Separable Graphs
	A Lower Bound for General Graphs

	Conclusion

	Fully Dynamic Spectral Vertex Sparsifiers and Applications
	Introduction
	Related Works

	Preliminaries
	Projection matrix and its properties

	Overview
	Dynamic Schur Complement
	Dynamic Schur Complement on Unweighted Graphs
	Dynamic All-Pair Effective Resistance on Unweighted Graphs
	Dynamic Schur Complement on Weighted Graphs
	Dynamic All-Pair Effective Resistance on Weighted Graphs

	Dynamic Laplacian Solver in Sub-linear Time
	Dynamic Projection
	Initialization of Approximate Projection Vector
	Stability of Projected Vectors

	Sampling Weights of a Random Walk
	Schur Complement Sparsifier from Sum of Random Walks
	Conclusion

	Dynamic Low-Stretch Trees via Dynamic Low-Diameter Decompositions
	Introduction
	Preliminaries
	Technical Overview
	Dynamic Low Average Stretch Forest
	Generic Dynamic LDD Hierarchy
	Dynamic Low-Stretch Tree Algorithms
	Input Graph Sparsification

	Dynamic Low-Diameter Decomposition
	Static Low-Diameter Decomposition
	Decremental Low-Diameter Decomposition
	Fully Dynamic Low-Diameter Decomposition

	Dynamic Spanner Algorithm
	Static Spanner Construction
	Dynamic Spanner Algorithm

	Conclusion

	Incremental Exact Min-Cut in Poly-logarithmic Amortized Update Time
	Introduction
	Preliminaries
	Sparse certificates
	Incremental Exact Minimum Cut
	Incremental 1+eps Minimum Cut with O(n poly log n) space
	An O (n log2 n) space algorithm
	Improving the space to O (n log n)

	Conclusion

	Fast Incremental Algorithms via Local Sparsifiers
	Introduction
	Local Sparsifiers
	From Local Sparsifiers to Incremental Algorithms
	Incremental All Pair Shortest Paths
	Incremental All Pair Max-Flow
	Incremental Tree Flow Sparsifier (Räcke Tree)
	Applications of tree flow sparsifiers

	From Vertex Sparsifiers to Offline Dynamic Algorithms
	Applications to Offline Shortest Paths and Max Flow

	Implications on Hardness of Approximate Dynamic Problems
	Approximate max flow and cut sparsifiers
	Approximate distance oracles on general graphs
	Approximate distance oracles on planar graphs

	Conclusion

	Graph Minors for Preserving Terminal Distances Approximately – Lower and Upper Bounds
	Introduction
	Preliminaries
	Deterministic Lower Bounds
	Distortion 2 Lower Bound
	Higher Distortion Lower Bounds
	Generalizing the Lower Bound and its Implication

	Minor Construction for General Graphs
	Minor Construction for Fixed Minor-Free Graphs
	Minor Construction for Planar Graphs
	Distortion-3 Guarantee
	Distortion-(1+ε) Guarantee

	Conclusion

	Reachability Preserving Minors and Sparsifiers for Cuts and Distances
	Introduction
	Preliminaries
	Reachability-Preserving Minors for General Digraphs
	A Warm-up: An Upper Bound of O(k4)
	An Improved Bound of O(k3)

	Reachability-Preserving Minors for Planar Digraphs
	Lower-bound for Planar DAGs

	An Exact Cut Sparsifier of Size O(k2)
	Basic Tools
	Our Construction

	Extensions to Planar Flow and Distance Sparsifiers
	An Upper Bound for Flow Sparsifiers
	An Upper Bound for Distance Sparsifiers
	Incompressibility of Distances in k-Terminal Graphs

	Conclusion

	Bibliography

