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ZUSAMMENFASSUNG

Bell Tests werden allgegenwärtig für eine Vielzahl von Anwendungen eingesetzt und
sind ein Grundpfeiler sowohl in der Quanteninformation als auch in den Grundlagen
der Quantenmechanik. Die Verletzung der CHSH-Bell Ungleichung durch einen Bell Test
zeigt auf grundlegende Art und Weise, dass die Natur mit keiner lokal realistischen Theo-
rie vollständig beschrieben werden kann. Damit ist gezeigt, dass Quantenverschränkung
tiefgründiger ist als klassische Korrelationen und dies ermöglicht konkrete Anwendun-
gen, wie z.B. die Quantenteleportation, die klassisch unerklärlich sind.

Für einen Bell Test können zwei verschränkte und massive Spin-1/2 Teilchen ver-
wendet werden, deren Spin in raumartig getrennten Gebieten jeweils durch einen Stern-
Gerlach-Apparat gemessen wird. Wenn sich die Teilchen jedoch in einer Superposition
relativistischer Geschwindigkeiten bewegen, ist die Realisierung eines Bell Tests unbe-
kannt, da in diesem Fall die Spinzustände vom Impuls abhängen und es keine operatio-
nelle Definition für die beiden Spinobservablen gibt.

In der vorliegenden Arbeit wird eine Lösung für dieses Problem vorgeschlagen, wel-
che Quantenbezugssysteme und die damit ermöglichte Definition des Ruhesystems eines
Quantenobjekts benützt. Das Ruhesystem eines Quantenobjekts kann nicht mittels üb-
licher Transformationen zwischen Bezugssystemen definiert werden, da sich Quanten-
objekte im Allgemeinen in einer Superposition von Geschwindigkeiten bewegen. Hier
wird diese Limitierung mithilfe von Transformationen zwischen Quantenbezugssyste-
men überwunden. Somit kann im Ruhesystem eines relativistischen Teilchens dessen
Spin, wie in der nicht-relativistischen Quantenmechanik, operationell definiert werden.
Die entsprechende Beschreibung in einem anderen (Quanten-)Bezugssystem ergibt sich
mittels einer relativistischen Transformation zwischen Quantenbezugssystemen. Auf die-
se Weise ergibt sich eine operationelle Definition der beiden Spinobservablen für den Bell
Test im Laborbezugssystem, wo sich die beiden massiven Spin-1/2 Teilchen in einer Su-
perposition relativistischer Geschwindigkeiten bewegen. Des Weiteren wird gezeigt, dass
die Verletzung der CHSH-Bell Ungleichung, im Gegensatz zu den Spinobservablen, un-
abhängig vom Bezugssystem ist. Die (maximale) Verletzung der CHSH-Bell Ungleichung
zeigt einen möglichen Weg, Quanteninformationsprotokolle operationell auf das relati-
vistische Milieu zu erweitern, wobei (verschränkte) massive Teilchen, die sich in einer
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Superposition relativistischer Geschwindigkeiten bewegen, als Träger der Quanteninfor-
mation dienen.
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ABSTRACT

Bell tests are ubiquitously used for a variety of applications, and have been a cornerstone
both in quantum information and quantum foundations. The violation of the CHSH-Bell
inequality, by means of a Bell test, shows fundamentally that nature cannot be entirely
described with any local realistic theory. This reveals that quantum entanglement is more
profound than classical correlations and allows for concrete applications with no classical
counterpart, such as quantum teleportation.

For a typical Bell test we can use two massive spin-1/2 particles which are entangled in
their spin degrees of freedom and jointly measure their spin states in space-like separated
regions with the help of two Stern-Gerlach apparatuses. However, when the particles
move in a superposition of relativistic velocities we do not know how to set up a Bell
test since, in this case, the spins are momentum-dependent and there is no operational
definition for the joint spin observables.

A solution to this problem is proposed in the present thesis, which exploits quantum
reference frames and the accompanying possibility of defining the rest frame of a quantum
system. Specifically, quantum reference frame transformations can reveal the rest frame
of a general quantum system (moving in a superposition of velocities from the point of
view of another physical system) which cannot be achieved by means of standard refer-
ence frame transformations. Thus, the rest frame of a relativistic particle can be used to
operationally define its spin degree of freedom as in non-relativistic quantum mechan-
ics and the corresponding description in another (quantum) reference frame is found by
means of a relativistic quantum reference frame transformation. In this way, we find
an operational definition of the joint spin observables for a Bell test in the laboratory
frame, where the two massive spin-1/2 particles move in a superposition of relativis-
tic velocities. Furthermore, it is shown that the violation of the CHSH-Bell inequality
is frame-independent in contrast to the spin observables which transform in a covariant
way. The (maximal) violation of the CHSH-Bell inequality points out a possible way to
operationally extend quantum information protocols to the relativistic regime, where (en-
tangled) massive particles moving in a superposition of relativistic velocities are utilized
as a resources of quantum information.
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1. INTRODUCTION

The usual interpretation of coordinate systems1 rests on the abstraction of idealized phys-
ical systems. In the case of spatial coordinates, Albert Einstein made clear that: "The
physical interpretation of the spatial co-ordinates presupposed a fixed body of reference,
which, moreover, had to be in a more or less definite state of motion (inertial system). In
a given inertial system the co-ordinates meant the results of certain measurements with
rigid (stationary) rods"2[1]. In this view, the physical meaning of coordinates is grounded
on the relation between two physical systems. Crucially, physical systems are ultimately
quantum; therefore, they can be in a superposition or entangled from the point of view
of another physical system. However, is it possible to use quantum systems to define a
reference frame?

An approach to answer this question was proposed in [2], where reference frames are
"attached" to quantum systems and exhibit genuine quantum features, i.e. they can be
in a superposition, or entangled, from the point of view of a different physical system.
These so-called quantum reference frames (QRFs) generalize the notion of usual reference
frames as abstract and idealized entities. Moreover, the rest of the world in the perspec-
tive of a QRF represents the relational information between the QRF and all physical
systems external to it. This is in line with the relational description of physics [3, 4], since
a quantum state with its properties, such as superposition and entanglement, is defined
only relative to a QRF - i.e. relative to a physical system. As a result of the presented QRF
framework [2], it is concluded that superposition and entanglement are frame-dependent
features.3 The central idea about quantum reference frames with the aim of linking the
perspectives of different QRFs is pictorially illustrated in figure 1.1.

1 Coordinate systems and reference frames are used as synonyms in the present thesis.
2 Albert Einstein’s original words in his autobiographical notes [1]: "Die physikalische Deutung der räum-

lichen Koordinaten setzten einen starren Bezugskörper voraus, der noch dazu von mehr oder minder bes-
timmten Bewegungszustande (Intertialsystem) sein musste. Bei gegebenem Inertialsystem bedeuteten
die Koordinaten Ergebnisse von bestimmten Messungen mit starren (ruhenden) Stäben."

3 It is worth mentioning that independently of the QRF approach [2], it is shown by utilizing a Gedanken
experiment in a general relativistic setup that superposition has to be understood relationally [5]. This em-
phasizes the need of non-classical relations between coordinates. In addition, arguments for the relational
nature of superposition are given in [6].
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BA

(a) The rest of the world from the point of view of
a laboratory (or another physical system). Here, an
atom A in spatial superposition and a spin particle
B are shown.

  

B
C

(b) Since the relation between physical systems en-
tirely defines their properties relative to each other,
the spin particle B and the laboratory C must be in
a spatial superposition state from the point of view
of the atom.

Figure 1.1.: We take the perspective of a physical system by means of a quantum reference frame
(QRF) which exhibits genuine quantum features such as superposition and entanglement. With
the help of generalized coordinate transformations, so-called QRF transformations, it is possible to
change between the perspectives of quantum reference frames. This leads to a frame-dependent
notion of superposition and entanglement.

By choosing relative variables, it is possible to find generalized transformations map-
ping the description of an initially chosen QRF to the perspective of another QRF. These
QRF transformations are quantum canonical transformations [7, 8] that take everything
external to the initial QRF as input and output the perspective of the new QRF describ-
ing everything that is external to the new QRF. This means that no QRF describes its
own dynamical degrees of freedom which can be related to the so-called self-reference
problem [9]. Furthermore, the considered approach to quantum reference frames [2] is
operational since it assigns a central role to primitive laboratory operations (preparations,
transformations and measurements). Consequently, the utilized QRF formalism can be
fully specified by notions with immediate physical meaning.

It was shown in [2] that a QRF transformation corresponding to a "superposition of
boosts" can be defined which outputs the rest frame of a quantum system that is mov-
ing in a superposition of velocities from the point of view of an initial QRF. It is crucial
to notice that, if a quantum system moves in a superposition of velocities, no standard
transformation can take us its rest frame. This generalized view of the rest frame of a
quantum system is a key element of the present thesis and allows for concrete applica-
tions, where the natural description of internal degrees of freedom in the rest frame is
utilized to find the corresponding description in the laboratory reference frame.

Specifically, this thesis focuses on particles with spin as internal degree of freedom
moving in a superposition of relativistic velocities from the point of view of the labora-
tory frame. In contrast to non-relativistic quantum mechanics, the operational definition
of spin through a Stern-Gerlach apparatus fails in the relativistic regime, because the spin
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state of a massive particle, which is moving in a superposition of relativistic velocities,
is not covariant under Lorentz transformations [10]. Significantly, this means that in rel-
ativistic quantum mechanics, the spin degree of freedom is momentum-dependent and
an initially considered pure reduced spin state (obtained by tracing out the momentum)
gets mixed if a Lorentz boost is applied (before the momentum is traced out). As a result,
the spin degree of freedom cannot be treated as a resource of quantum information in
the relativistic regime, because no spin state can be prepared and measured with prob-
ability one with respect to different inertial frames. In fact, there are several proposals
for a covariant spin operator in the relativistic regime which are mostly inspired through
abstract group theoretical considerations and lacking an operational identification [11].
However, in the rest frame of a particle its spin state can be operationally well defined
through a Stern-Gerlach apparatus as in non-relativistic quantum mechanics. With the
help of a relativistic QRF transformation4, corresponding to a "superposition of Lorentz
boosts", a relativistic version of the Stern-Gerlach experiment in the laboratory frame has
been found in [12]. This gives an operational definition of spin in the relativistic regime
and allows to treat one massive spin-1/2 particle moving in a superposition of relativistic
velocities as a quantum bit - a qubit.

The original results of the present thesis show, with the help of the QRF formalism
[2, 12], how to devise a Bell test with two massive spin-1/2 particles moving in a super-
position of relativistic velocities relative to the laboratory frame. Significantly, Bell tests
arose from the philosophical discussion of physical reality [14], since this led John Bell to
derive an inequality [15] which is satisfied by any description of nature that obeys local
realism. The worldview of local realism arose out of our everyday experiences and can
be composed into realism, i.e. the existence of the properties of a physical system inde-
pendently of measurement, and locality, i.e. the bounded propagation speed of phys-
ical influences by the speed of light. Significantly, the violation of the Clauser-Horne-
Shimony-Holt version of Bell’s inequality [16], referred to as CHSH-Bell inequality, made
it possible to experimentally [17, 18, 19] rule out any local realistic description of nature
which forces us rethink our worldview. So far, however, there is no experimental Bell test
utilizing massive spin particles at relativistic velocities. In fact, there are lots of theoreti-
cal approaches [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], where different spin
operators and quantum states are utilized. Apart from [34], all the other authors have
considered quantum states with sharp momenta; however, the extension to states in a
superposition of momenta poses a non-trivial problem which is addressed in the present
thesis. In contrast to [20, 23, 24, 25, 26, 29, 30, 32, 34] and in line with [21, 22, 27, 28, 31, 33],
we find that the violation of the CHSH-Bell inequality is frame-independent. This follows
from the unitarity of the considered relativistic QRF transformation which guarantees

4 Note that the extension of the QRF approach to the special-relativistic regime [12] is accompanied by
abandoning time as an absolute parameter, i.e. abandoning absolute Newtonian time [13], which is un-
derlying in the Galilean treatment of QRFs.
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that different observers/QRFs agree on the probabilities of observing the same event.
As a consequence, the joint spin observables (Bell observable) differ between QRFs. In
particular, we find an operational definition of the Bell observable in a relativistic setting
from the point of view of the laboratory frame by exploiting the rest frame of quantum
systems where spin measurements can be defined operationally. In this context, the vi-
olation of the CHSH-Bell inequality reveals a possible way to operationally use spin en-
tanglement between relativistic massive spin-1/2 particles moving in a superposition of
momenta such that quantum communication protocols, e.g. quantum teleportation [35],
can be extended operationally to this regime.

The present thesis is organized in the following way. In chapter 2, an introduction
to the QRF formalism [2] is given, where examples of QRF transformations correspond-
ing to the "superposition of spatial translations" and the "superposition of boosts" are
presented and the generalized notion of the rest frame of a quantum system is defined
and exemplified. The problems associated with the definition of spin within a special-
relativistic framework of quantum mechanics are explained in chapter 3. Moreover, [12]
is reviewed, where a relativistic QRF transformation corresponding to the "superposition
of Lorentz boosts" is introduced, and an operational definition of spin in the relativistic
regime is given. The original results of the present thesis are shown in chapter 4, where a
Bell test with different quantum states of massive spin-1/2 particles moving in a super-
position of relativistic velocities is discussed within the framework of quantum reference
frames.
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2. QUANTUM REFERENCE FRAMES

The present chapter reviews a formalism to describe physics from the point of view of a
quantum reference frame (QRF) introduced in [2]. In section 2.1, it is shown how to ex-
tend the standard reference frame transformation to a QRF transformation, and examples
of different transformations, corresponding to the "superposition of spatial translations"
and the "superposition of boosts" are presented. Finally, in section 2.2, a novel way of
defining the rest frame of a quantum system is discussed.

It is worth mentioning that in [2] the focus is put on the covariance of physical laws
and hence on dynamics, and accelerated QRFs are considered as well. However, these
topics are skipped here in order to maintain the guiding thread of this work.

2.1. QUANTUM REFERENCE FRAME TRANSFORMATIONS

In the following, two quantum systems, A and B, are described from the point of view of
a third system C. In general, A and B can be composed quantum systems; for instance,
A and B can refer to an atom which is composed of electrons, protons and neutrons.
The goal is to define a QRF transformation which allows to "jump" to the perspective of
another quantum system. To fix the ideas, the new QRF is chosen to be A and the cor-
responding change of perspective is pictorially represented in figure 1.1. More precisely,
the QRF transformations are found by choosing relative variables defined on a particular
basis.

The general procedure in this chapter is to start in the perspective of C describing ev-
erything that is external to it, i.e. A and B, and then apply a QRF transformation mapping
from C’s to A’s description. Importantly, the resulting perspective of A only involves B

and C as physical degrees of freedom. Moreover, the action of all QRF transformations on
the mutually observed system (B) is controlled by the quantum system we are jumping
to (A).

In mathematical terms, the QRF transformation Ŝ is defined as a map between Hilbert
spaces and the change from C’s to A’s perspective is denoted by Ŝ : H|CA ⊗ H

|C
B 7→

H|AB ⊗ H
|A
C where H|JK is the Hilbert space of K as seen by J. Crucially, QRF transfor-

mations are required to be quantum canonical transformations [7, 8]; this means that the
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transformation is invertible and mapping the phase space observables (x̂, p̂) 7→ (q̂, π̂)

such that the commutation relation is preserved, i.e. [x̂, p̂] = [q̂, π̂] = i~.
For simplicity, we only consider unitary QRF transformations, i.e. Ŝ−1 = Ŝ† imply-

ing ŜŜ† = Ŝ†Ŝ = 1. Consequently, the reverse QRF transformation, from A’s to C’s
perspective, is simply given by Ŝ† and the canonicity is immediate since

[q̂, π̂] ≡ [Ŝx̂Ŝ†, Ŝp̂Ŝ†] = Ŝx̂Ŝ†Ŝp̂Ŝ† − Ŝp̂Ŝ†Ŝx̂Ŝ† = Ŝ[x̂, p̂]Ŝ† = i~ (2.1)

where [x̂, p̂] = i~ is presupposed. Moreover, the unitarity ensures that the scalar product
stays invariant under QRF transformations, i.e.

〈φ|ψ〉|C = 〈Ŝφ|Ŝψ〉|A (2.2)

where the labels |C and |A refer to the Hilbert space on which the scalar product is ap-
plied; in particular, |C and |A refer to H|CA ⊗ H

|C
B and H|AB ⊗ H

|A
C , respectively. Notice

that the functional form of the two scalar products does not have to be the same since the
measure of the Hilbert space is allowed to change.

Until now the very basic framework has been discussed. In the following sections
some specific QRF transformations are derived and illustrated to get an intuition of the
subject.

2.1.1. The QRF Transformation of Relative Positions
When reference frames are treated as abstract entities, and not as physical degrees of
freedom, the distance between the reference frames is standardly considered to be fixed.
Thus, the description of a quantum system, say B, as seen from another (abstract) refer-
ence frame at position x0 relative to the initial frame is obtained by applying the standard
translation operator

T̂x0 = eix0p̂B/~ (2.3)

which translates the wave function of B by a fixed amount x0, see appendix A.1 for de-
tails.

In contrast, quantum reference frames are treated as physical degrees of freedom and
the aim is to switch between relative coordinates from C’s to A’s perspective as illustrated
in figure 2.1. Crucially, the distance between QRFs cannot be fixed due to the possibility
of spatial superposition states. Consequently, the change to the quantum reference frame
"attached" to the position of A can be obtained by promoting x0 to the position operator
x̂A, which is coherently translating the wave function of B by the distance between C and
A, and a subsequent parity-swap operator P̂AC : H|CA 7→ H

|A
C transforming the state of A

from C’s perspective to the state of C from A’s perspective. The parity-swap operator is
defined by P̂ACx̂AP̂†AC = −q̂C from which follows that P̂ACp̂AP̂†AC = −π̂C by canonicity,
see appendix A.2 for details.
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A

B

C

xA

xB

(a) Perspective of C

  
A

B

C

qC

qB

(b) Perspective of A

Figure 2.1.: Description of the rest of the world from two different perspectives, C and A. The
relation between the describing system and the rest of the world is fundamentally quantum and it
is preserved through QRF transformations. The multiple arrows indicate the possibility of spatial
superposition states with respect to the corresponding perspective.

The QRF transformation for relative positions Ŝx : H|CA ⊗H
|C
B 7→ H

|A
B ⊗H

|A
C is given by

Ŝx ≡ P̂AC eix̂Ap̂B/~ (2.4)

which transforms the considered phase space observables according to

x̂A 7→ −q̂C, x̂B 7→ q̂B − q̂C, (2.5)

p̂A 7→ −(π̂B + π̂C), p̂B 7→ π̂B, (2.6)

where the first line corresponds to the situation illustrated in figure 2.2 and the transfor-

  A

B

C

x̂A

x̂B

x̂B x̂A-

(a) Perspective of C

  
A

B

C

q̂C

q̂B

q̂Cq̂B-

(b) Perspective of A

Figure 2.2.: Spatial observables as seen from different perspectives. In comparison to figure 2.1,
the ability of superpositions is indicated by replacing the ordinary distances with their correspond-
ing operators.

mation of momenta follows from the requirement of canonicity. Notice that it is easy to
show that a transformation mapping to both relative positions and relative momenta is
not canonical [36, 37].
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The maps given in the two equations above can be easily verified since

x̂A 7→ Ŝxx̂AŜ
†
x ≡ P̂AC eix̂Ap̂B/~x̂Ae−ix̂Ap̂B/~ P̂†AC = P̂AC x̂AP̂†AC ≡ −q̂C (2.7)

and with the help of the well known Baker-Campbell-Hausdorff formula

eÂB̂e−Â = B̂ +
[
Â, B̂

]
+

1

2!

[
Â,
[
Â, B̂

]]
+

1

3!

[
Â,
[
Â,
[
Â, B̂

]]]
+

1

4!
... (2.8)

we obtain that

p̂A 7→ Ŝxp̂AŜ
†
x ≡ P̂AC eix̂Ap̂B/~p̂Ae−ix̂Ap̂B/~ P̂†AC

(2.8)
== P̂AC

(
p̂A + [ i

~ x̂Ap̂B, p̂A] + ...
)
P̂†AC

= P̂AC

(
p̂A + i

~ [x̂A, p̂A]p̂B + 0
)
P̂†AC

(2.9)

where all higher order commutators are zero because [x̂A, p̂A] = i~ is a scalar; thus,

p̂A 7→ P̂AC (p̂A − p̂B) P̂†AC = P̂AC p̂AP̂†AC − P̂AC p̂BP̂†AC = −π̂C − π̂B = − (π̂B + π̂C) .

(2.10)

Analogously, the phase space observables of B as seen by C are obtained via

x̂B 7→ Ŝxx̂BŜ
†
x ≡ P̂AC eix̂Ap̂B/~x̂Be−ix̂Ap̂B/~ P̂†AC

(2.8)
== P̂AC

(
x̂B + [ i

~ x̂Ap̂B, x̂B] + ...
)
P̂†AC

= P̂AC

(
x̂B + i

~ x̂A[p̂B, x̂B] + 0
)
P̂†AC = P̂AC (x̂B + x̂A) P̂†AC

= q̂B − q̂C

(2.11)

and

p̂B 7→ Ŝxp̂BŜ
†
x ≡ P̂AC eix̂Ap̂B/~p̂Be−ix̂Ap̂B/~ P̂†AC = P̂AC p̂BP̂†AC = π̂B. (2.12)

The QRF transformation Ŝx can also be derived from a gravity inspired symmetry
principle which imposes that all physical observables are relational (as in the treatment
above). This symmetry principle leads to redundancies when all systems A, B and C

are considered jointly from a so-called perspective neutral structure, which contains all
reference frames perspectives at once [38]. It is then possible to show that the choice
of a reference frame amounts to eliminating the redundancies. The QRF transformation
obtained with this method is shown to be equivalent to the one in eq. (2.4).

So far, we have seen that we can find a non-classical transformation mapping relative
position observables appropriately; in the following, we show how the QRF transforma-
tion acts on quantum states.
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Action on Quantum States
If C assigns an arbitrary yet separable state to A and B, i.e.

|ψ〉|CAB = |φ〉A |ξ〉B =

∞∫
−∞

dxA

∞∫
−∞

dxB φ(xA)ξ(xB) |xA〉A |xB〉B , (2.13)

then the transformation to A’s perspective via Ŝx yields

|ψ〉|ABC = Ŝx |ψ〉|CAB ≡ P̂AC eix̂Ap̂B/~ |ψ〉|CAB

= P̂AC

∞∫
−∞

dxA

∞∫
−∞

dxB φ(xA)ξ(xB) |xA〉A eixAp̂B/~ |xB〉B

= P̂AC

∞∫
−∞

dxA

∞∫
−∞

dxB φ(xA)ξ(xB) |xA〉A |xB − xA〉B

=

∞∫
−∞

dxA

∞∫
−∞

dxB φ(xA)ξ(xB) |−xA〉C |xB − xA〉B

=

∞∫
−∞

dqB

∞∫
−∞

dqC ξ(qB − qC)φ(−qC) |qB〉B |qC〉C

(2.14)

which is, in general, not a separable state. This means that entanglement depends on the
frame of reference - it is frame-dependent. (Details of the action of the translation and
parity-swap operator utilized here can be found in appendix A.1 and A.2, respectively.)

Illustrative Examples
Let us consider now a few examples to get an intuition about what it means to coherently
translate a quantum system. Similarly to what has been shown above, we start with a
separable state of A and B as seen from the perspective of C, and then transform to the
perspective of A, from which we describe systems B and C.

First of all, the QRF transformation Ŝx reduces to a classical reference transformation
when system A has a quantum state that is sharply localized in position basis with respect
to C, as illustrated in figure 2.3(a). In this case, C just assigns a position eigenstate to A,
i.e. |φ〉A = |x0〉A and hence φ(xA) = δ(xA − x0). Consequently, B gets only translated by
a well defined distance x0. This transformation corresponds to the standard translation
operator, eq. (2.3), with an additional switch of the roles of A and C via the parity-swap
operator.

In the simplest, non-classical, case system A is in a superposition state of two sharp
locations with respect to the reference system C, i.e. |φ〉A = (|x1〉A + |x2〉A)/

√
2 and hence

φ(xA) = [δ(xA−x1) + δ(xA−x2)]/
√

2. Allowing for arbitrary states of B (so that the joint
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C

A
-

A

B

B

C

x0 x

qx0

(a) φ(x) = δ(x− x0)

  

C

A
-

A

B

B
C

-

x1 x 2 x

qx 2 x1

(b) φ(x) = (δ(x− x1) + δ(x− x2))/
√

2

Figure 2.3.: Action of the relative coordinate QRF transformation on states; C’s perspective is
drawn in the first and A’s view in the second line. A classical translation between reference frames
is shown in (a) where the states are shifted by a fixed distance x0. Superposition of translations
are shown in (b) where the states are coherently translated by x1 and x2 yielding to an entangled
state in A’s perspective which is graphically indicated by the correlation between the patterns of
the lines (solid and dashed).

state of A and B is separable) we get in accordance with eq. (2.14)

|ψ〉|ABC =

∞∫
−∞

dqB

∞∫
−∞

dqC ξ(qB − qC)
δ(qC + x1) + δ(qC + x2)√

2
|qB〉B |qC〉C

=
1√
2

|−x1〉C

∞∫
−∞

dqB ξ(qB + x1) |qB〉B + |−x2〉C

∞∫
−∞

dqB ξ(qB + x2) |qB〉B

 (2.15)

which is clearly entangled and graphically illustrated in figure 2.3(b). The reverse trans-
formation, from A’s to C’s perspective, is simply given by Ŝ†x due to the required unitarity
of QRF transformations. Therefore, we could have also started with an entangled state
and ended up with a separable state according to |ψ〉|CAB = Ŝ†x |ψ〉|ABC. This very simple
example illustrates the relational, i.e. frame-dependent, nature of superposition and en-
tanglement.

In order to see how the transformation acts on general product states, consider now the

case where C assigns a Gaussian state to A in position basis, i.e. φ(x) = π−1/4b−1/2e−
(x−a)2

4b2

with a referring to the expectation value and b2 to the variance of |φ(x)|2. The resulting
state in A’s perspective is entangled in a similar way as in the previous example; however,
in this case each standard translation is weighted by the Gaussian. This is illustrated in
figure 2.4, where three weighted position eigenstates are highlighted with different pat-
terns in order to graphically illustrate entanglement. Notice that the envelopes shown
for C and B in A’s perspective are obtained by tracing out B and C, respectively. Conse-
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C

A

A
B

BC

x

q

Figure 2.4.: Quantum state of A and B as seen from C (above) and the transformed quantum
state of B and C as seen from A (below). In C’s reference frame, the quantum state of A has a
Gaussian profile in position basis, and it is in a product state with the quantum state of B. Since
C sees A as a coherent sum of position eigenstates and not as a single position eigenstate, the
QRF transformation coherently translates all states external to A by the single components of the
Gaussian. In order to see the entanglement as perceived by A, three of those components are
highlighted with different patterns for distinguishability. The drawn envelopes for C and B in A’s
perspective are obtained by tracing out B and C, respectively.

quently, C’s envelope is given by

∞∫
−∞

dqB|ξ(qB − qC)|2|φ(−qC)|2 = |φ(−qC)|2 (2.16)

where the normalization of ξ(qB) has been exploited and the envelope of B is obtained
via

∞∫
−∞

dqC|ξ(qB − qC)|2|φ(−qC)|2 (2.17)

which is the convolution product of the absolute squares of the two considered wave
functions ξ and φ. For illustration purpose |φ(−qC)| = φ(−qC) and

∫
dqC ξ(qB−qC)φ(−qC)

have been drawn for the envelopes in figure 2.4 in A’s perspective. The most significant
aspect here is that transforming to the perspective of a quantum system that is initially
described by a Gaussian wave function does not simply result in more broadened states
in the new perspective (indicated by the envelopes) but to a highly entangled state (indi-
cated by only three of the infinitely many position eigenstates building up the Gaussian
wave function).

2.1.2. The QRF Transformation of Relative Velocities
The aim of this section is to find a transformation to the QRF of a particle moving in a
superposition of velocities from the point of view of the initial reference frame.
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In the previous section the position basis has been used to express relative positions
and by canonicity the corresponding momenta have been calculated. Analogously, the
QRF transformation of relative momenta is obtained by utilizing the momentum basis,
see appendix A.3 for details. Note that this is the general scheme of finding a QRF trans-
formation: first, choose a basis to express the relative quantities of interest and secondly,
use the required canonicity to complete the transformation of the conjugate variables.

For the QRF transformation of relative velocities from A’s to C’s perspective we choose
the momentum basis to express the physical conditions, that the velocity of A as seen by
C is opposite to the velocity of C as seen by A, i.e. p̂A

mA
7→ − π̂C

mC

1, and that the velocity of
the jointly described system B as seen by A is coherently boosted by the velocity of C, i.e.
p̂B 7→ π̂B −mB

π̂C
mC

.
In order to swap the velocities of A and C, the parity-swap operator P̂AC mapping

p̂A 7→ −π̂C has to be generalized. Therefore, we introduce the generalized parity-swap
operator

P̂(v)
AC ≡ P̂AC exp

{
i
~ log

√
mC
mA

(x̂Ap̂A + p̂Ax̂A)
}

(2.18)

which rescales the corresponding momenta by the ratio of the masses of A and C such
that p̂A

mA
7→ − π̂C

mC
.

The action of the added scaling operator is shown with the Baker-Campbell-Hausdorff
formula eq. (2.8) according to

exp {η (x̂Ap̂A + p̂Ax̂A)} p̂A exp {−η (x̂Ap̂A + p̂Ax̂A)} = (p̂A + [η (x̂Ap̂A + p̂Ax̂A) , p̂A] + ...)

(2.19)

where η ≡ i
~ log

√
mC
mA

= i
2~ log mC

mA
. By recognizing x̂Ap̂A + p̂Ax̂A = 2p̂Ax̂A + [x̂A, p̂A] =

2p̂Ax̂A + i~, it follows that

[η (x̂Ap̂A + p̂Ax̂A) , p̂A] = 2η[p̂Ax̂A, p̂A] = 2ηp̂A[x̂A, p̂A] = 2i~ηp̂A (2.20)

and hence

p̂A + [η (x̂Ap̂A + p̂Ax̂A) , p̂A] + ... = p̂A + 2i~ηp̂A + 1
2! [η (x̂Ap̂A + p̂Ax̂A) , 2i~ηp̂A] + ...

= p̂A

(
1 + 2i~η + (2i~η)2/2! + ...

)
= p̂Ae2i~η = p̂A exp

{
−2 log

√
mC
mA

}
= mA

mC
p̂A.

(2.21)

1 Note that velocities are given by the ratio between momentum and mass due to the quadratic form of the
corresponding Hamiltonian in momenta, see [2].
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The subsequent action of the parity-swap operator finally gives the required condition
P̂(v)

AC
p̂A
mA
P̂(v)†

AC = − π̂C
mC

. Notice that the scaling operator exp {η (x̂Ap̂A + p̂Ax̂A)} has already
been considered as a quantum canonical transformation in [8].

Finally, the QRF transformation between relative velocities Ŝv : H|CA ⊗H
|C
B 7→ H

|A
B ⊗H

|A
C

is given by
Ŝv ≡ P̂(v)

AC exp
{
− i

~
mB
mA

p̂Ax̂B

}
(2.22)

where

x̂A 7→ − (mBq̂B +mCq̂C) /mA, x̂B 7→ q̂B, (2.23)

p̂A 7→ −mA
mC

π̂C, p̂B 7→ π̂B − mB
mC

π̂C. (2.24)

The map p̂A 7→ −mA
mC

π̂C has already been proven here, since p̂A commutes with the oper-

ator exp
{
− i

~
mB
mA

p̂Ax̂B

}
which is responsible for shifting the momentum of B appropri-

ately. The proofs of the other maps are given in appendix A.4.

2.2. NOTION OF THE REST FRAME OF A QUANTUM SYSTEM

In the previous section, generalized transformations have been introduced which allow
to "jump" to a reference frame associated to a quantum system - a quantum reference
frame (QRF). Crucially, in section 2.1.2, it has been shown how to transform to a QRF of
a quantum system, say A, moving in a superposition of velocities form the point of view
of another frame, say the laboratory C; here, the QRF of A is referred to as the rest frame
of a quantum system, since it is the frame where, in comparison to the laboratory frame,
the quantum system is at rest. Consequently, the QRF formalism allows us to define
operationally what we mean by the rest frame of a quantum system.

It is worth to emphasize that such transformations to the QRF of a system moving
in a superposition of velocities cannot be achieved by using standard reference frame
transformations. Only approximately, when the dynamics of the considered quantum
system is semi-classical (e.g., assuming that the velocity is sharp), an ordinary coordinate
transformation can take us to its rest frame. However, when a quantum system (e.g.
a particle) moves in a superposition of velocities, QRF transformations are essential to
transform to its rest frame.

In general, the rest frame is of special interest when composite systems with external
as well as internal degrees of freedom are considered. In the rest frame, the physical
description of the internal degrees of freedom is the simplest, and the rest frame Hamil-
tonian alone is responsible for the dynamics of the internal degrees of freedom. We now
provide an example of how QRF techniques can be applied to a practical situation in
which a particle with internal degrees of freedom moves in a superposition of velocities.
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Consider a situation in the laboratory (C) where an interaction between a photon (B)
and an atom with external (A) and internal (Ã) degrees of freedom is investigated. As
a consequence of the interaction, the photon may be absorbed by the atom at the end
of the process. Importantly, we do not restrict to the case where the atom has a sharp
momentum/velocity state. Moreover, Ã refers to the internal energy degrees of freedom
of the atom described by a two-level system with the energy gap ∆E between the ground
and the excited state. The goal is to find the state of the photon and the atom, which
has to be prepared in the laboratory, such that the probability of photon absorption is
maximized.

This situation can be described easily in the rest frame of the atom, illustrated in figure
2.5(a), where the transition probability is maximal if the photon has the spectral frequency
ωB = ∆E/~. Since the atom and the laboratory move in a superposition of velocities

  

CA~

v2v1- -

Δ E

B

ωB

(a) Rest frame of the atom A. The photon B is in resonance with the internal energy levels of the
atom (separated by ∆E) if it has the spectral frequency ωB = ∆E/~.

  

A

v2v1

B

ωB,1

A~

Δ E

ωB,2'

'

(b) Laboratory frame C. Equivalently to the description in (a), the photon is in resonance with the
atom. In the laboratory frame, the atom’s external degrees of freedom and the photon are entan-
gled, because both are coherently boosted by the velocity v1 and v2 and, due to the Doppler effect,
the frequency of the photon is transformed to ω′B,1 and ω′B,2 with ω′B,i = ωB(1 + vi

c
). Entanglement

is graphically illustrated by the correlation between solid and dashed lines of A and B.

Figure 2.5.: The absorption of a photon by an atom in the perspective of (a) the rest frame of the
atom and (b) the laboratory frame. The photon absorption is naturally described in rest frame of
the atom A; a QRF transformation leads to an equivalent description from the point of view of the
laboratory frame C where the frequency of the photon is entangled with the external degrees of
freedom of the atom due to the Doppler effect.

relative to one another, the state of the laboratory C is in a superposition of velocities
from the point of view of the atom A. For simplicity, the state of C is considered to move
in a superposition of two sharp velocities −v1 and −v2 with respect to A.

A QRF transformation (controlled by the velocity of the laboratory) leads to an equiv-
alent description of this situation in the laboratory frame where the state of the photon
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B and the atom’s external degrees of freedom A are entangled as illustrated in 2.5(b).
The entanglement as seen in the laboratory arises from the superposed relative motion
between the photon source and the atom, and the corresponding coherent Doppler-shift
of the photon frequency. In general, the Doppler effect occurs when the emitter and the
receiver of a photon are moving relative to each other with the non-relativistic velocity v
shifting the received frequency according to ω′B = ωB(1 + v

c ) where ωB denotes the emit-
ted frequency and v > 0 (or v < 0) if the motion is towards (or away from) each other.
With the mentioned QRF transformation the description of this situation as seen from
the laboratory is obtained, where the photon source is at rest and the receiver (atom) of
the photon is moving towards the source in a superposition of non-relativistic velocities.
Corresponding to the velocity of the atom v1 and v2, the frequency received by the atom
is coherently Doppler-shifted according to ω′B,1 = ωB(1 + v1

c ) and ω′B,2 = ωB(1 + v2
c ), re-

spectively. Consequently, the state of the external degrees of freedom of the atom A and
the photon B are entangled from the point of view of the laboratory.

Crucially, if the photon is absorbed by the atom in its rest frame, then it is absorbed in
the laboratory frame as well. The frame-independence of the photon absorption is guar-
anteed by the unitarity of QRF transformations and the transformation of the observ-
ables; here, the observable for the photon frequency in A’s perspective ω̂B is transformed
to the corresponding observable in C’s perspective ω̂B(1 + p̂A

cmA
). Note that the explicit

form of the mentioned QRF transformation and comprehensive calculations are given in
[2].

The results of the present thesis (chapter 4), as well as section 3.4 and 3.5, rely on
this possibility of assigning operational meaning to the internal degrees of freedom of a
quantum system moving in a superposition of velocities by transforming to its rest frame.
Specifically, relativistic particles with spin as internal degree of freedom are of particular
interest here and the reason for that is given in the next chapter before introducing the
corresponding relativistic QRF transformation.
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3. SPIN IN SPECIAL RELATIVITY

Quantum systems with spin are used as a resource of (quantum) information; specifically,
a spin-1/2 system is the prime example of a quantum bit - a qubit. Consequently, it is of
major interest to use the quantum state encoded in a qubit for communication purposes
such as, for instance, quantum teleportation [35]. In this context, it is crucial to enter the
domain of relativistic velocities since this increases the communication speed substan-
tially. However, in special relativity, an operational definition of the spin is missing, i.e.
there is no relativistic Stern-Gerlach experiment, and this prevents us from using the spin
degree of freedom as a resource of quantum information.

This chapter is organized as follows. In section 3.1, the problem of identifying a co-
variant spin operator is explained and subsequently, in section 3.2, the requirements for
a proper relativistic spin operator are given. In section 3.3, the one-particle states of the
Dirac equation and Lorentz boosts are introduced. In section 3.4, a proposal for an op-
erational definition of relativistic spin, introduced in [12], is reviewed. This proposal
employs a relativistic QRF transformation which is capable to transform between the
rest frame of a spin particle and the laboratory reference frame, which move in a su-
perposition of relativistic velocities relative to each other. Finally, with this non-classical
transformation a relativistic spin operator is defined operationally in section 3.5.

3.1. THE PROBLEM OF DEFINING SPIN

In order to utilize spin as information carrier in the relativistic regime an operational
definition of spin is needed which gives the operations for preparing and measuring the
spin state of a relativistic particle. However, such an operational definition of spin is
lacking.

A key issue is the ambiguity of splitting the conserved total angular momentum op-
erator Ĵ = L̂ + Ŝ into an external L̂ and an internal Ŝ part referred to as orbital angular
momentum and spin, respectively. This is related to the definition of a relativistic po-
sition operator x̂ because L̂ = x̂ × p̂ with the momentum operator p̂ = −i~∇; thus,
different definitions of Ŝ induce different relativistic position operators x̂, and vice versa.
[11, 39]
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Moreover, in the seminal work [10], the authors show that the spin state of a relativistic
spin-1/2 particle (obtained by tracing out the momentum degree of freedom of the total
momentum-spin state) moving in a superposition of relativistic velocities is not covariant
under Lorentz transformations; whereas, the spin state transforms in a covariant way
under standard Lorentz boosts for states with sharp momentum. This has been shown by
comparing the entropy of the reduced spin density matrix of a general one-particle state
before and after a Lorentz boost. Since entropy can be used to quantify entanglement, it
has been concluded that an initially pure reduced spin state gets mixed after applying a
Lorentz boost which means that a Lorentz boost entangles the spin with the momentum
degree of freedom; however, the reduced spin density matrix stays pure for states with
sharp momentum.

Additionally, by questioning the preparation and measurement of relativistic spin
states via a Stern-Gerlach apparatus it is shown, by Lorentz boosting the inhomogeneous
magnetic field of the apparatus, that the measurable expectation value depends on the
momentum of the particle [40].

A possible solution to this problem would be to choose the description of the spin
(internal) degree of freedom from the point of view of the rest frame, where the spin can
be unambiguously defined, and then transform this description to the laboratory frame.
However, a standard reference frame transformation can only capture situations in which
the particle moves with a sharp velocity from the point of view of the laboratory. Thus,
for general quantum states (in a superposition of velocities), the transformation to the
rest frame has to be generalized. As discussed in section 2.2, the QRF formalism can be
exploited to transform to the rest frame of a general quantum system. Before introducing
the appropriate QRF transformation for relativistic spin states, in the next section, the
requirements for a good spin operator are discussed.

3.2. CHARACTERIZATION OF A PROPER SPIN OPERATOR

Essential features of a proper relativistic spin operator are discussed and compared to
existing proposals in [11]. The motivation of the authors is the lack of a commonly ac-
cepted spin operator in a relativistic setting and, in addition, the focus is set on the ability
of defining such an operator by experimental methods.

Following [11], the requirements of a relativistic spin operator for massive spin-1/2
particles are given in the following. The first requirement is that the spin commutes
with the free Dirac Hamiltonian (or with the Dirac Hamiltonian for central potentials)
ensuring that spin is a conserved quantity as in non-relativistic quantum mechanics. In
mathematical terms, a relativistic spin operator Ŝ = (Ŝx, Ŝy, Ŝz) has to satisfy

[Ĥ0, Ŝ] = 0 (3.1)
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where Ĥ0 denotes the free Dirac Hamiltonian. Moreover, it has to obey the su(2) algebra
and give the same eigenvalues as in the non-relativistic limit, i.e.

[Ŝi, Ŝj ] = i~εijkŜk with eigenvalues = ±~/2 (3.2)

where εijk denotes the Levi-Civita symbol. It is worth mentioning that eq. (3.2) is consid-
ered to be the fundamental property of angular momentum operators of spin-1/2 parti-
cles [41]. Finally, a proper relativistic spin operator has to have the correct non-relativistic
limit.

In [11], the properties of seven relativistic spin operators (Pauli, Foldy-Wouthuysen,
Czachor, Frenkel, Chakrabarti, Pryce and Fradkin-Good)1, which are often motivated
by abstract group theoretical considerations, are investigated. All of them converge to
the same (correct) expectation values in the non-relativistic limit. However, only two,
the Foldy-Wouthuysen [42] and the Pryce [43], of the seven investigated spin operators
qualify as proper relativistic spin operator since only these two satisfy eq. (3.1) and (3.2)
at once.

3.3. ONE-PARTICLE STATES

Here and in the following, the relativistic momentum-spin states are taken to be the
positive-energy solutions of the Dirac equation in the Foldy-Wouthuysen representation
[42]. In addition, the full quantum field-theory state is projected onto the one-particle
sector. A comprehensive treatment of the one-particle sector can be found, for instance,
in [44]. Useful relations and the used notation are introduced in the following.

A relativistic spin state for a Dirac particle with mass m > 0 is defined by

|ψ〉 =
∑
σ

∫
dµ(p)ψσ(p) |p; Σp(σ)〉 (3.3)

where σ denotes the spin in the rest frame of the Dirac particle, p the momentum, dµ(p)

the Lorentz-invariant integration measure and ψσ(p) = 〈p; Σp(σ)|ψ〉 the wave func-
tion. For clarity, the momentum dependent spin label Σp(σ) explicitly denotes the spin-
momentum entanglement as shown in [10] and discussed in section 3.1. The basis ele-
ments are defined via standard Lorentz boosts according to

|p; Σp(σ)〉 ≡ Û(Lp) |0;σ〉 (3.4)

where Û(Lp) is a unitary representation of a pure boost Lp taking the four-momentum
of the Dirac particle from kµ = (mc,0) to pµ = (Lp)µνkν = (p0,p) with p0 = p0(|p|) =

1 References of these spin operators are given exhaustively in [11].
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√
m2c2 + p2 2 and the speed of light c. It is important to notice that in the rest frame,
|0; Σ0(σ)〉 ≡ |0;σ〉, there is no entanglement between momentum and spin, i.e. the one-
particle state is separable: |0;σ〉 = |0〉 |σ〉. The Lorentz-invariant integration measure for
positive energy solutions, i.e. E = p0/c > 0, is given by [44]

dµ(p) =
d3p

(2π)32p0
=

d3p

(2π)32
√
m2c2 + p2

. (3.5)

Moreover, the orthogonality relation

〈p′; Σp′(σ
′)|p; Σp(σ)〉 = (2π)3(2p0)δσσ′δ

3(p− p′) (3.6)

leads to the scalar product

〈ϕ|ψ〉 =
∑
σ

∫
dµ(p)ϕ∗σ(p)ψσ(p) (3.7)

where ∗ denotes the complex conjugate.
Notice that in the literature, e.g. [45, 46], the spin-momentum entanglement is implicit;

however, such a notation might be misleading since

c1 |p1;σ〉+ c2 |p2;σ〉 6= (c1 |p1〉+ c2 |p2〉) |σ〉 (3.8)

because the spin state depends on the momentum and σ refers to the spin in the rest
frame only. Therefore, we denote basis elements by |p; Σp(σ)〉 ≡ |p; Σ(σ)〉3.

The explicit matrix for pure Lorentz boosts, transforming to a reference frame which
is moving with velocity v relative to the initial frame, is given by

Lv =

(
γ γ v>

c

γ v
c 1 + γ2

γ+1
vv>

c2

)
4 (3.9)

where γ ≡ (1 − v2

c2
)−1/2 [47]. This matrix can be written completely in terms of the

momentum p, or more accurately the ratio p/m, by substituting pµ ≡ (p0,p) = mγ(c,v)

in eq. (3.9)

Lp ≡ L p
m

=

(
p0

mc
p>

mc
p
mc 1+ 1

γ+1
pp>

(mc)2

)
(3.10)

with γ = γ p
m

=
√

1 + p2

m2c2
5 and p0 = mcγ =

√
m2c2 + p2 = p0(|p|).

2 Notice that the metric utilized here is η = diag(1,−1,−1,−1) leading to p0 = p0.
3 In later calculations, the index p of Σ is neglected for simplicity; however, Σ still indicates the momentum

dependence, where its index unambiguously reflects the same momentum as in the shared ket.
4 Notice that here the transpose is explicitly denoted for compactness and correctness; however, to avoid

cumbersome reading the transpose is not denoted explicitly elsewhere.
5 1

γ2
= 1− v2

c2
= 1− p2

γ2m2c2
⇔ γ2 = 1 + p2

m2c2
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3.4. SUPERPOSITION OF LORENTZ BOOSTS

As discussed in section 2.2, the QRF formalism can be utilized to define the rest frame of
quantum systems via corresponding QRF transformations. Following [12], an extension
to special relativity of the formalism introduced in [2] is given now by introducing a
transformation corresponding to a "superposition of Lorentz boosts".

In particular, we start in the rest frame of a spin-1/2 particle A, where spin can be
defined operationally6, and then transform to the laboratory C. Consequently, the labo-
ratory C describes the Dirac particle A ≡ AÃ with its external (momentum) and internal
(spin) degree of freedom which are labeled by A and Ã, respectively. However, in the rest
frame of the Dirac particle, i.e. in A’s perspective, only the spin Ã and the laboratory C

are described and a general quantum state is given by

|ψ〉|A
ÃC

= |σ〉Ã |φ〉C , (3.11)

where it is assumed that the states of Ã and C are separable. In the following, the spin
state is written in the eigenbasis {|+z〉 , |−z〉} of the Pauli operator σ̂z = |+z〉 〈+z| −
|−z〉 〈−z| = diag(1,−1)7

|σ〉Ã =
∑
λ=±z

cλ |λ〉Ã with
∑
λ=±z

|cλ|2 = 1. (3.12)

The state |φ〉C is expressed in the momentum basis and kept general; in particular, C is
allowed to move in a superposition of relativistic velocities. For simplicity, the relative
motion between A and C is restricted to be relativistic only in one dimension. Thus,

|φ〉C =

∫
dµC(π)φ(π) |π〉C (3.13)

with the (1+1)-momentum πµ = (π0(π), π) where π0(π) =
√
m2

Cc
2 + π2 and dµC(π) is

the (1+1)-dimensional version of eq. (3.5) with the mass mC indicated by the index C

of the integration measure dµ. Notice that, in general, the situation discussed here has
to be considered in three spatial dimensions due to the spin of the Dirac particle. The
extension to three dimension is done by enlarging the Hilbert space of C according to
|φ〉C → |φ〉C |φ0

y〉C |φ
0
z〉C with the non-relativistic states |φ0

i 〉 where i ∈ {y, z}. However,
these extra non-relativistic states can be ignored for what concerns the relativistic treat-
ment of the Dirac particle. The state |ψ〉|A

ÃC
as seen by the rest frame of the Dirac particle

is shown in figure 3.1(a) where, for illustration purposes, the laboratory moves in a su-
perposition of two sharp relativistic velocities only.

6 The spin state of a quantum system can, in principle, be tomographically verified by a series of standard
Stern-Gerlach measurements in the rest frame of a spin particle (or more precisely for slow velocities).

7 Equivalently, one could chose (normalized) eigenstates of σ̂x or σ̂y.
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A~ v1-

v2-

C

C

(a) Rest frame A of the Dirac particle A.

  

A~

A
v1

v2
A~

A

(b) Laboratory frame C.

Figure 3.1.: (a) In the rest frame of the Dirac particle, the total state of the spin Ã and of the
laboratory C is separable. The laboratory has a state which is in a superposition of two sharp
relativistic velocities −v1 and −v2. In this QRF, spin can be defined operationally with a Stern-
Gerlach experiment. (b) In C’s perspective, the spin (Ã) is entangled with the momentum (A)
degree of freedom of the Dirac particle (pictorially, this is represented by the correlation between
the transparency of the drawn symbols).

The QRF transformation between the momentum degree of freedom and the labora-
tory ŜL : H|A

Ã
⊗H|AC 7→ H

|C
A ⊗H

|C
Ã

maps |ψ〉|C
AÃ

= ŜL |ψ〉|AÃC
where

ŜL ≡ P̂(v)
CAÛÃ(π̂C) (3.14)

with the generalized parity-swap operator P̂(v)
CA : H|A

Ã
⊗ H|AC 7→ H|CA ⊗ H

|C
Ã

given by

P̂(v)
CA = P̂CA exp

{
i
~ log

√
mA
mC

(q̂Cπ̂C + π̂Cq̂C)
}

8 where P̂(v)
CA π̂CP̂(v)†

CA = −mC
mA

p̂A (see sec-

tion 2.1.2) and ÛÃ(π̂C) is a unitary operator depending on the momentum of C and act-
ing on the spin Ã. The QRF transformation ŜL can be defined via its action on a ba-
sis element of a complete basis via ŜL |λ〉Ã |π〉C = |−mA

mC
π; Σ(λ)〉

AÃ
where |p; Σ(λ)〉A ≡

|p; Σp(λ)〉A ≡ ÛA(Lp/mA
) |0;λ〉A with A ≡ AÃ. In comparison to the previous section,

Lp/mA
is the (1+1)-dimensional version of eq. (3.10) and ÛA(Lp/mA

) denotes the unitary
representation of a pure Lorentz boost taking the (1+1)-momentum from kµA = (mAc, 0)

to pµA = (Lp/mA
)µνkνA = (p0

A, p) where p0
A = p0

A(|p|) =
√
m2

Ac
2 + p2.

The action of the quantum reference transformation ŜL on the basis elements can be
derived when all appearing systems are considered jointly from an external perspective.
In line with the situation above, we start with a Dirac particle A at rest and with the labo-
ratory C moving with momentum π; thus, a general basis element is given by |0;λ〉A |π〉C.
Because A has zero momentum there is no entanglement between its momentum and
spin; hence, the state of A ≡ AÃ is separable, i.e. |0;λ〉A = |0〉A |λ〉Ã. It is important to
see that, in comparison to the treatment above, only the redundant state |0〉A has been
added. To transform from the rest frame A to the laboratory frame C, i.e. to the state in

8 In order to keep the label C referring to the laboratory, this is the reverse transformation of the generalized
parity-swap operator introduced in section 2.1.2, i.e. P̂(v)

CA = P̂(v)†
AC and P̂CA = P̂†AC.
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which the momentum of the laboratory is zero |0〉C, we first have to Lorentz boost A by
a velocity controlled by the momentum of the laboratory C, via

ÛA(L−π̂C/mC
) |0;λ〉A |π〉C = ÛA(L−π/mC

) |0;λ〉A |π〉C = |−mA
mC

π,Σ(λ)〉
A
|π〉C (3.15)

where A has been boosted to pA = (p0
A(mA

mC
π),−mA

mC
π) and the spin now depends on

the momentum of the corresponding state as discussed in section 3.3. To complete the
change of perspective, the laboratory state has to be boosted to its rest state. This can be
achieved by another Lorentz boost depending on the momentum of A, i.e. a coherent
Lorentz boost, given by Û †C(L−p̂A/mA

) = ÛC(Lp̂A/mA
); consequently,

ÛC(Lp̂A/mA
)ÛA(L−π̂C/mC

) |0;λ〉A |π〉C = |−mA
mC

π,Σ(λ)〉
A
ÛC(L−π/mC

) |π〉C
= |−mA

mC
π,Σ(λ)〉

A
|0〉C .

(3.16)

Since the two states of zero momentum |0〉A and |0〉C in the QRF of C and A, respectively,
do not play any role, we can discard them. Hence, the action of the QRF transformation
ŜL on the basis elements

ŜL |λ〉Ã |π〉C = |−mA
mC

π,Σ(λ)〉
A

(3.17)

is obtained.
Consequently, this QRF transformation acts on the total state in the following way

|ψ〉|C
AÃ

= ŜL |ψ〉|AÃC

=
∑
λ

cλ

∫
dµC(π)φ(π)ŜL |λ〉Ã |π〉C

=
∑
λ

cλ

∫
dµA(p) φ

(
−mC
mA

p
)
|p; Σ(λ)〉

(3.18)

where dµX(k) = dk

4π
√
m2

Xc
2+k2

and in the last step the substitution p = −mA
mC

π has been

used. In figure 3.1, the QRF transformation from |ψ〉|A
ÃC

to |ψ〉|C
AÃ

is illustrated where, for
simplicity, only two sharp relativistic velocities in superposition are considered.

3.5. AN OPERATIONAL DEFINITION OF SPIN

With the help of the previously introduced relativistic QRF transformation ŜL, it is now
possible to define a relativistic spin operator revealing the spin as seen in the rest frame
of the Dirac particle according to

Ξ̂ip̂A ≡ ŜL

(
σ̂i

Ã
⊗ 1C

)
Ŝ†L (3.19)
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which is simply called relativistic spin operator in the following and can be written in terms
of the manifestly covariant Pauli-Lubański operator Σ̂µ

p̂A
= (Σ̂0

p̂A
, Σ̂p̂A), see appendix A.5.

By definition, this relativistic spin operator obeys the su(2) algebra
[
Ξ̂ip̂A , Ξ̂

j
p̂A

]
= iεijkΞ̂

k
p̂A

.

Moreover, Ξ̂ip̂A has the same eigenvalues as the corresponding Pauli operator σ̂i
Ã

. This can

be shown by considering the state |ψ±〉|A
ÃC

= |±i〉Ã |φ〉C in the rest frame of A, where |±i〉
denotes the two eigenstates of the corresponding Pauli operator σ̂i, i.e. σ̂i |±i〉 = ± |±i〉
with i ∈ {x, y, z}. Consequently,

Ξ̂ip̂A |ψ
±〉|C

AÃ
= ŜL

(
σ̂i

Ã
⊗ 1C

)
Ŝ†LŜL |ψ±〉

|A
ÃC

= ŜL

(
σ̂i

Ã
⊗ 1C

)
|±i〉Ã |φ〉C

= ± |ψ±〉|C
AÃ

with |ψ±〉|C
AÃ

=

∫
dµA(p) φ

(
−mC
mA

p
)
|p; Σ(±i)〉 .

(3.20)

With these operators, it is possible to partition the Hilbert spaceH|CA ⊗H
|C
Ã

into two equiv-
alence classes by choosing one of the Pauli operators with the corresponding eigenvectors
(here: σ̂z with |±z〉) according to

H+z =
{
|ψ〉AÃ ∈ H

|C
A ⊗H

|C
Ã

: |ψ〉AÃ ∼ ŜL |+z〉Ã |φ〉C ,∀ |φ〉C ∈ H
|A
C

}
,

H−z =
{
|ψ〉AÃ ∈ H

|C
A ⊗H

|C
Ã

: |ψ〉AÃ ∼ ŜL |−z〉Ã |ξ〉C , ∀ |ξ〉C ∈ H
|A
C

}
.

(3.21)

This means that, if two states are eigenvectors of Ξ̂zp̂A with the same eigenvalue, then they

are considered to be equivalent and the Hilbert space H|CA ⊗ H
|C
Ã

can be divided in two
highly degenerate subspaces where the states in H+z correspond to "spin up" and the
states inH−z to the "spin down" eigenvalue. [12]

In addition, the relativistic spin operator Ξ̂p̂A commutes with the free Dirac Hamilto-
nian [12]; finally, it has the correct non-relativistic limit since ŜL → P̂(v)

CA, i.e. ÛÃ(π̂C)→ 1,
if the velocity of C tends to zero. Consequently, this relativistic spin operator satisfies all
the criteria for a proper relativistic spin operator discussed in section 3.2.9

Moreover, it can be shown that the relativistic spin operator Ξ̂p̂A is equivalent to the
Foldy-Wouthuysen [42] and the Pryce [43] spin operator. [12]

9 Notice that the actual non-relativistic spin operator, ~σ̂/2, differs from the Pauli operator σ̂ only by a factor
of ~/2 and, similarly, the relativistic spin operator Ξ̂p̂A introduced here is defined without the factor of ~/2.
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4. RELATIVISTIC BELL TEST WITHIN

QUANTUM REFERENCE FRAMES

This chapter contains the original results of the present thesis. It is shown how relativistic
QRFs can be used in order to set up a relativistic Bell test, i.e. a Bell test with relativistic
massive particles. In section 4.1, a short introduction to Bell’s theorem is given. In section
4.2, the relativistic QRF transformation ŜL (introduced in section 3.4) is extended to the
two particle case, where another spin-1/2 Dirac particle B is considered on top of the
Dirac particle A in chapter 3. With such extended QRF transformation Ŝ2, it is possible
to find the observables for a joint spin measurement on the two spin particles in differ-
ent QRFs. The relativistic Bell test is analyzed in different situations. In section 4.3, the
quantum state of the two Dirac particles is taken to be perfectly correlated in velocity,
so that the transformation to the rest frame of one particle automatically gives the rest
frame of the other particle (shared rest frame). This enables us to define operationally the
spin observables for a Bell test and, by applying the QRF transformation Ŝ2, the corre-
sponding observables in the laboratory frame are obtained. This treatment is generalized
by considering a general state for B in the rest frame of A in section 4.4 and, on top of
that, allowing for non-collinear relative motion between the considered systems in sec-
tion 4.5. Finally, in section 4.6, it is concluded that the relativistic QRF transformation
Ŝ2 preserves spacetime intervals and thus space-like separation which is relevant for the
Bell experiment.

4.1. BELL’S THEOREM

In 1964, John S. Bell showed that no local realistic theory of nature (such as classical me-
chanics) is able to reproduce all predictions of quantum theory. This worldview changing
result follows from the violation of a device-independent1 inequality which is satisfied
by any local realistic theory of nature. [15]

1 In this context, device-independent means that measurement apparatuses are described by "black boxes"
with inputs (measurement settings) and outputs (measurement outcomes), where no internal structure of
the measurement apparatuses, properties of the measured systems, Hamiltonians, etc. are assumed.
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In this context, an event is considered to be local if it is not affected by any action taking
place in a space-like separated region. On the other hand, physical systems are consid-
ered to be real if they posses properties prior to and independent of any observation,
i.e. the outcome of a measurement is predetermined by the preexisting properties of the
system.

In the following, the Clauser-Horne-Shimony-Holt version of Bell’s inequality [16],
referred to as CHSH-Bell inequality, is considered. In particular, the CHSH-Bell inequality
sets a bound on the correlations of joint spin2 measurements on two space-like separated
particles, say Ã and B̃, with the outcomes ±1 for each spin measurement according to

|S| = |E(x1,y1) + E(x1,y2) + E(x2,y1)− E(x2,y2)| ≤ 2 (4.1)

where E(xi,yj) denotes the expectation value of the joint measurement on Ã and B̃, and
the measurement settings x1 and x2 (y1 and y2) refer to the spin measurement on Ã (B̃).
In (non-relativistic) quantum mechanics, a joint spin measurement is described by the
observable x ·σ̂Ã⊗y ·σ̂B̃, where σ̂ ≡ (σ̂x, σ̂y, σ̂z) ≡ (σ̂1, σ̂2, σ̂3) denotes the Pauli operator
and x = (x1, x2, x3) as well as y = (y1, y2, y3) with |x| = |y| = 1 are Bloch vectors
referring to the measurement settings. For the singlet state |Ψ−〉ÃB̃ = (|+z〉Ã |−z〉B̃ −
|−z〉Ã |+z〉B̃)/

√
2 the expectation value for a joint spin measurement is given by

E(x,y) = 〈Ψ−|x · σ̂ ⊗ y · σ̂|Ψ−〉 =
∑
i,j

xiyj 〈Ψ−|σ̂i ⊗ σ̂j |Ψ−〉 = −x · y (4.2)

and a proper choice of measurement settings, e.g.

x1 =
1√
2

0

1

1

 , x2 =
1√
2

 0

1

−1

 , y1 =

0

1

0

 and y2 =

0

0

1

 , (4.3)

leads to |S| = 2
√

2 which violates the CHSH-Bell inequality. Significantly, in 2015, the
first experimental loophole-free3 violation of the CHSH-Bell inequality was conducted [17,
18, 19]. Consequently, a local realistic description of nature can be ruled out.

For convenience, we only consider the correlation tensor of the wave function |Ψ〉
defined via T ij|Ψ〉 = 〈Ψ|σ̂i ⊗ σ̂j |Ψ〉 in the following. In particular, the correlation tensor

for the singlet state T ij|Ψ−〉 ≡ 〈Ψ
−|σ̂i ⊗ σ̂j |Ψ−〉 = −δij , where δij denotes the Kronecker

delta and i, j ∈ {1, 2, 3}, has been shown to be sufficient evidence to conclude that the
CHSH-Bell inequality can be violated.

2 Here, we restrict to spin measurements but, in principle, any kind of measurement (with outcomes ±1)
could be used as well.

3 Except local realism and freedom of choice (i.e. the measurement settings are not predetermined), there
are no further (experimental) assumptions.
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In relativistic quantum mechanics, the momentum degrees of freedom of the two par-
ticles must be also taken into account, because their spin degrees of freedom depend on
their momentum degrees of freedom; in particular, the reduced spin state gets mixed
through a Lorentz boost of the full (spin and momentum) state [10]. This means that
different inertial observers would not agree on the violation of the CHSH-Bell inequality,
eq. (4.1), if all of them apply the same operator x · σ̂Ã ⊗ y · σ̂B̃ to their corresponding
Lorentz boosted states (after tracing out the momentum degrees of freedom). However,
if the joint spin observable is Lorentz transformed in addition to the full state, we find
an observer-independent violation of the CHSH-Bell inequality. This means that differ-
ent observers agree on the probabilities of observing the same event, but disagree on the
measured observables.

In the literature, different relativistic spin operators defined on the total (momentum
and spin) Hilbert space of each Dirac particle have been utilized for relativistic Bell tests
instead of the ordinary Pauli operator. In fact, there are lots of approaches with different
conclusions regarding the violation of the CHSH-Bell inequality in a relativistic setting
where a variety of spin operators and entangled states have been considered, see [20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. In particular, some authors conclude that
the violation of the CHSH-Bell inequality is observer-dependent [20, 23, 24, 25, 26, 29,
30, 32, 34] and others claim that it is observer-independent [21, 22, 27, 28, 31, 33]. Notice
that all the authors, except [34], were not considering quantum states in a superposition
of momenta. In comparison to the present work, the authors of [34] consider a standard
Stern-Gerlach apparatus in the laboratory frame with a postselection of the particles’
momenta which leads to a momentum dependent violation of the CHSH-Bell inequality,
where maximal violation is obtained in the case of sharp momenta.

Apart from the philosophical significance of abandoning local realism on grounds of
the violation of Bell-like inequalities, the QRF approach is utilized in the following to
find an operational definition of Bell observables in a relativistic setting from the point of
view of different QRFs. In this context, the violation of the CHSH-Bell inequality proves
the ability to operationally use spin entanglement between relativistic massive spin-1/2
particles such that quantum communication protocols, e.g. quantum teleportation [35],
can be extended operationally to the regime of superposed relativistic velocities.

4.2. INCLUSION OF A SECOND DIRAC PARTICLE

In order to set up a Bell experiment within QRFs, we now extend the formalism for rel-
ativistic QRFs given in section 3.4 and 3.5 to include a second Dirac particle B ≡ BB̃,
where B refers to external (momentum) and B̃ to internal (spin) degrees of freedom. In
doing so, a (1+1)-dimensional situation is considered, where from the viewpoint of par-
ticle A the motion of particle B and the laboratory C is along the same spatial direction.
Consequently, the QRF transformation ŜL from QRF A to QRF C (laboratory) has to be
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extended with a boost on system B controlled by the velocity of the laboratory C. Ac-
cordingly, the new QRF transformation Ŝ2 : H|A

Ã
⊗H|AB ⊗H

|A
C 7→ H

|C
A ⊗H

|C
B with A ≡ AÃ

and B ≡ BB̃ is given by
Ŝ2 ≡ ŜL ÛB(L−π̂C/mC

) (4.4)

where ÛB(L−π̂C/mC
) is a unitary representation of a Lorentz boost controlled by the veloc-

ity of C and acting on the Dirac particle B; as introduced in section 3.4, ŜL ≡ P̂(v)
CAÛÃ(π̂C)

is given by the generalized parity-swap operator P̂(v)
CA mapping P̂(v)

CA π̂CP̂(v)†
CA = −mC

mA
p̂A

4

and a unitary operator ÛÃ(π̂C) controlled by the momentum of C and acting on the spin
degree of freedom Ã.

We now take a basis of the total Hilbert space in the rest frame of A according to
|a〉Ã |πB; Σ(b)〉B |πC〉C where |a〉Ã is the spin state of A in its rest frame and |πC〉C is
a momentum eigenstate of the laboratory as seen by A as in chapter 3; here, the state
|πB; Σ(b)〉B ≡ ÛB(LπB/mB

) |0; b〉B is added where b refers to the spin of the Dirac particle
B in its rest frame. By utilizing the properties of the Lorentz group (in particular that
two successive collinear Lorentz boost are still a Lorentz boost), the action of the QRF
transformation Ŝ2 on the considered basis is given by

Ŝ2 |a〉Ã |πB; Σ(b)〉B |πC〉C = ŜL |a〉Ã |πC〉 ÛB(L−πC/mC
) |πB; Σ(b)〉B

= ŜL |a〉Ã |πC〉 ÛB(L−πC/mC
)ÛB(LπB/mB

) |0; b〉B
= |−mA

mC
πC; Σ(a)〉

A
|LπB; Σ(b)〉B

(4.5)

where in C’s perspective the spin of A is entangled with its momentum degrees of free-
dom and B moves with the booted momentum LπB which refers to the spatial part of
the (1+1)-momentum

(
L−πC/mC

)µ
ν
πνB ≡ pµB where πνB ≡ (π0

B, πB) with π0
B = π0

B(|πB|) =√
m2

Bc
2 + π2

B; consequently, the momentum degrees of freedom A and B are correlated

as well. It is essential to notice that the spin state B̃ is different after this transforma-
tion since Σ always refers to the momentum of the corresponding momentum-spin ket.
Moreover, Wigner rotations (appendix A.6) do not appear for this configuration, because
the relativistic momenta πB and πC are aligned such that the two successive boosts are
described by a single boost, i.e. Û(L−πC)Û(LπB) = Û(LLπB).5

4.3. SHARED REST FRAME

In this section, we consider a specific situation where the two Dirac particles A and B are
entangled in their spin degree of freedom and share the same rest frame. This state can

4 The generalized parity-swap operator is explicitly given by P̂(v)
CA = P̂CA exp

{
i
~ log

√
mA
mC

(q̂Cπ̂C + π̂Cq̂C)
}

where P̂ACp̂AP̂†AC = −π̂C. See section 2.1.2 for details.
5 Here, this is trivially guaranteed since relativistic velocities are only considered in one spatial dimension.

Notice that the other two spatial dimensions are neglected for simplicity; however, non-relativistically, they
can be easily added as discussed in section 3.4.
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be written in A’s perspective according to

|ψ−〉|A
ÃBC

=
1√
2

(
|+z〉Ã |0;−z〉B − |−z〉Ã |0; +z〉B

)
|φ〉C

=
∑
λ=±z

cλ |λ〉Ã |0;−λ〉B |φ〉C with c±z = ±1/
√

2,
(4.6)

where |±z〉 denote the (normalized) eigenstates of the σ̂z Pauli operator, |0;λ〉B = |0〉B |λ〉B̃
represents the state of B at rest as seen by A and

|φ〉C ≡ |φ〉
|A
C =

∫
dµC(πC) φ(πC) |πC〉C with dµC(πC) = dπC

4π
√
m2

Cc
2+π2

C

(4.7)

is a general laboratory state in A’s perspective expanded in the momentum basis. Since
the momentum degree of freedom B factorizes, we can write

|ψ−〉|A
ÃBC

=
1√
2

(
|+z〉Ã |−z〉B̃ − |−z〉Ã |+z〉B̃

)
|0〉B |φ〉C = |Ψ−〉ÃB̃ |0〉B |φ〉C (4.8)

with the singlet state |Ψ−〉ÃB̃ which is pictorially illustrated in figure 4.1(a) where, for
simplicity, a superposition state of two sharp momenta/velocities is drawn for |φ〉C.

  

A~ B~ v1-

v2-

C

C

(a) Shared rest frame of A and B.

  

A~

A
v1

v2
A~

A

B
v1

v2B

B~

B~

(b) Laboratory frame C.

Figure 4.1.: In the shared rest frame (a) only the spin degrees of freedom Ã and B̃ are entangled
(indicated by the correlation between the arrow patterns) and the laboratory state, moving in
a superposition of two sharp relativistic velocities −v1 and −v2 relative to the shared rest frame,
factorizes. The QRF transformation Ŝ2 takes us to the corresponding perspective of the laboratory
(b), where the total quantum state of the Dirac particles A and B is entangled (indicated by the
correlation between the patterns of the drawn symbols).

The corresponding state in the laboratory frame is obtained according to

|ψ−〉|CAB = Ŝ2 |ψ−〉
|A
ÃBC

=
∑
λ

cλ

∫
dµC(π)φ(π)ŜL |λ〉Ã |π〉C ÛB(L−π/mC

) |0;−λ〉B

=
∑
λ

cλ

∫
dµA(p) φ

(
−mC
mA

p
)
|p; Σ(λ)〉A |

mB
mA

p; Σ(−λ)〉
B

(4.9)
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where the spin degree of freedom of each Dirac particle is correlated with its momen-
tum degree of freedom; moreover, the coherent Lorentz boost has caused entanglement
between the total quantum state of particle A and B. This is illustrated in figure 4.1(b)
where, for simplicity of illustration, the two QRFs A and C move in a superposition of
two sharp velocities relative to each other.

4.3.1. Bell Observable in the Shared Rest Frame
Concerning the state |ψ−〉|A = |Ψ−〉ÃB̃ |0〉B |φ〉C, we can adopt the non-relativistic treat-
ment regarding the CHSH-Bell inequality in A’s rest frame by considering the Bell ob-
servable

Ôij|A ≡ σ̂
i
Ã
⊗ 1B ⊗ σ̂jB̃ ⊗ 1C (4.10)

with the Pauli operators σ̂i because this leads to the same correlation tensor as in the
non-relativistic case. This is immediate since the singlet state factorizes from the total
state and thus

T ij =
[
〈ψ−| Ôij|A |ψ

−〉
]|A

= ÃB̃〈Ψ
−| σ̂i

Ã
⊗ σ̂j

B̃
|Ψ−〉ÃB̃ = −δij (4.11)

where [〈ψ−| ... |ψ−〉]|A refers to the utilized state |ψ−〉|A ≡ |ψ−〉|A
ÃBC

. With the measure-
ment settings given in eq. (4.3) the CHSH-Bell inequality is violated in the rest frame of
the Dirac particle A.

Crucially, the QRF transformation Ŝ2 leaves the correlation tensor invariant. In partic-
ular,

T ij =
[
〈ψ−| Ôij|A |ψ

−〉
]|A

=
[
〈ψ−| Ôij|C |ψ

−〉
]|C

. (4.12)

with the observable Ôij|C = Ŝ2Ô
ij
|AŜ
†
2 and state |ψ−〉|C = Ŝ2 |ψ−〉|A as seen by the labora-

tory C. This ensures that the CHSH-Bell inequality is violated in the laboratory frame
C when it is violated in the rest frame of A, and vice versa. Notice that the invariance
of the correlation tensor is guaranteed for all possible states and observables since it is
based on the unitarity of Ŝ2 and the accompanied transformation of the observables only.
In the next section, we show that the transformed observables take a local form in the
Hilbert spaces of the two Dirac particles A and B, so that a relativistic version of the Bell
experiment can be set up in the laboratory frame.

4.3.2. Bell Observable in the Laboratory Frame
In this section, the form of the observable in the laboratory frame Ôij|C = Ŝ2Ô

ij
|AŜ
†
2 is

calculated via its action on the corresponding state

Ôij|C |ψ
−〉|CAB = Ŝ2Ô

ij
|AŜ
†
2Ŝ2 |ψ−〉

|A
ÃBC

= Ŝ2 Ô
ij
|A |ψ

−〉|A
ÃBC

= Ŝ2

∑
λ

cλ

∫
dµC(π)φ(π)Ôij|A |λ〉Ã |0;−λ〉B |π〉C

(4.13)
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where

Ôij|A |λ〉Ã |0;−λ〉B |π〉C =
(
σ̂i

Ã
⊗ 1B ⊗ σ̂jB̃ ⊗ 1C

)
|λ〉Ã ⊗ |0〉B ⊗ |−λ〉B̃ ⊗ |π〉C

= σ̂i
Ã
|λ〉Ã ⊗ |0〉B̃ ⊗ σ̂

j

B̃
|−λ〉B̃ ⊗ |π〉C

=
∑
a

[σi]a,λ |a〉Ã ⊗ |0〉B̃ ⊗
∑
a

[σj ]b,−λ |b〉B̃ ⊗ |π〉C

=
∑
a,b

[σi]a,λ[σj ]b,−λ |a〉Ã |0; b〉B |π〉C

(4.14)

with a, b = ±z and the matrix elements [σk]m,n of the Pauli operator σ̂k written in the
σ̂z-basis as explicitly given in appendix A.5. Consequently,

Ôij|C |ψ
−〉|CAB = Ŝ2

∑
λ,a,b

cλ [σi]a,λ[σj ]b,−λ

∫
dµC(π)φ(π) |a〉Ã |0; b〉B |π〉C

=
∑
λ,a,b

cλ [σi]a,λ[σj ]b,−λ

∫
dµA(p)φ

(
−mC
mA

p
)
|p; Σ(a)〉A |

mB
mA

p; Σ(b)〉
B

(4.15)

with p = −mA
mC

π and the Lorentz-invariant integration measures dµX(k) = dk

4π
√
m2

Xc
2+k2

.

On the other hand, with the laboratory state |ψ−〉|CAB, eq. (4.9), it follows that

Ôij|C |ψ
−〉|CAB =

∑
λ

cλ

∫
dµA(p) φ

(
−mC
mA

p
)
Ôij|C |p; Σ(λ)〉A |

mB
mA

p; Σ(−λ)〉
B

(4.16)

and, by comparing the previous two equations, we obtain the action of the Bell observ-
able Ôij|C on the eigenstates

Ôij|C |p; Σ(λ)〉A |
mB
mA

p; Σ(−λ)〉
B

=
∑
a,b

[σi]a,λ[σj ]b,−λ |p; Σ(a)〉A |
mB
mA

p; Σ(b)〉
B

=
∑
a

[σi]a,λ |p; Σ(a)〉A ⊗
∑
b

[σj ]b,−λ |mB
mA

p; Σ(b)〉
B
.

(4.17)

Notice that the observable Ôij|C acts on the total Hilbert space locally in A and B, i.e. the

total observable in the laboratory frame factorizes into Ôij|C = ÔiA ⊗ Ô
j
B. Thus, we can

consider each particle separately. With the help of the standard Lorentz boost ÛA(Lp) ≡
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ÛA(Lp/mA
), we find∑

a

[σi]a,λ |p; Σ(a)〉A =
∑
a

[σi]a,λÛA(Lp)Û
†
A(Lp) |p; Σp(a)〉A

= ÛA(Lp)
∑
a

[σi]a,λ |0; a〉A

= ÛA(Lp)
(
1A ⊗ σ̂iÃ

)
|0;λ〉A

= ÛA(Lp)
(
1A ⊗ σ̂iÃ

)
Û †A(Lp) |p; Σ(λ)〉A

= Ξ̂ip |p; Σ(λ)〉A = Ξ̂ip̂A |p; Σ(λ)〉A ,

(4.18)

where we have used the unitarity of the standard Lorentz boost ÛA(Lp) ≡ ÛA(Lp/mA
).

In appendix A.5, it is shown that the relativistic spin observable Ξ̂ip can be specified in
terms of the Pauli-Lubański spin operator Σ̂ν

p according to Ξ̂ip = Û(Lp)
(
1⊗ σ̂i

)
Û †(Lp) =

(Lp)
i
νΣ̂ν

p . Analogously, with pB ≡ mB
mA

p and ÛB(LpB) ≡ ÛB(LpB/mB
), we obtain

∑
b

[σj ]b,−λ |pB; Σ(b)〉B = ÛB(LpB)
(
1B ⊗ σ̂jB̃

)
Û †B(LpB) |pB; Σ(−λ)〉B

= Ξ̂jpB |pB; Σ(−λ)〉B = Ξ̂jp̂B |pB; Σ(−λ)〉B .
(4.19)

Notice that whenever there is a momentum index the corresponding mass is implic-
itly taken into account, i.e. Ξ̂jp̂A ≡ Ξ̂ip̂A/mA

=
(
Lp̂A/mA

)i
µ

Σ̂µ
p̂A/mA

and Ξ̂jp̂B ≡ Ξ̂jp̂B/mB
=(

Lp̂B/mB

)j
µ

Σ̂µ
p̂B/mB

.
Consequently,

Ôij|C |ψ〉
|C
AB =

∑
λ

cλ

∫
dµA(p) φ

(
−mC
mA

p
) [

Ξ̂ip̂A ⊗ Ξ̂jp̂B

]
|p; Σp(λ)〉A |

mB
mA

p; ΣmB
mA

p
(−λ)〉

B

= Ξ̂ip̂A ⊗ Ξ̂jp̂B |ψ〉
|C
AB .

(4.20)

Therefore, in the case of a shared rest frame, the laboratory Bell observable is given by

Ôij|C = Ŝ2Ô
ij
|AŜ
†
2 = Ŝ2

(
σ̂i

Ã
⊗ 1B ⊗ σ̂jB̃ ⊗ 1C

)
Ŝ†2 = Ξ̂ip̂A ⊗ Ξ̂jp̂B , (4.21)

where the spin and momentum degrees of freedom are not separable in the laboratory
frame. However, it is crucial to notice that Ôij|C is separable in the Hilbert spaces of the
two Dirac particles A and B; thus, the spin states of A and B can be measured separately
via Ξ̂ip̂A and Ξ̂jp̂B , respectively. This feature ensures that the two spin measurements can
be performed in space-like separated regions such that the locality assumption of Bell’s
theorem is satisfied.
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4.4. GENERAL SCENARIO

In comparison to the previous section, it is no longer assumed that the state of the two
Dirac particles is perfectly correlated in momentum basis. Thus, the total state in the rest
frame of A is described by

|ψ〉|A ≡ |ψ〉|A
ÃBC

= |η〉ÃB |φ〉C (4.22)

where |φ〉C, given in eq. (4.7), is the state of the laboratory degree of freedom from the
point of view of particle A, and it factorizes from

|η〉ÃB ≡ |η〉
|A
ÃB

=
∑
a,b

cab

∫
dµB(πB) η(πB) |a〉Ã |πB; Σ(b)〉B (4.23)

where the Lorentz-invariant integration measure is given by dµB(πB) = dπB
4π
√
m2

Bc
2+π2

B

.

Hence, in A’s perspective the Dirac particle B moves in a superposition of momenta and
can be entangled with the spin state of Ã which is graphically illustrated in figure 4.2(a).

  

A~
v1-

v2-

CB

B~
vB,1

vB,2

(a) Rest frame A of the Dirac particle A.

  

B

B~

A~

A
v1

v2

Lv1vB,1

Lv1vB,2

Lv2vB,1

Lv2vB,2

(b) Laboratory frame C.

Figure 4.2.: (a) In A’s perspective, the spin degree of freedom B̃ of the Dirac particle B ≡ BB̃
depends on its momentum degree of freedom B (indicated by the orientation of dashed and solid
lines) since B is moving in a superposition of two sharp relativistic velocities vB,1 and vB,2 with
respect to the QRF A. Moreover, the state of the laboratory C is moving in a superposition of
two sharp relativistic velocities −v1 and −v2 relative to A. In the initial QRF A, we consider
entanglement between the spin state of Ã and the Dirac particle B (illustrated by the correlation
between the dashed and between the solid lines). The QRF transformation Ŝ2 coherently boosts
the two Dirac particles by the velocity of C and outputs the perspective of the laboratory. (b) In
the laboratory frame C, the two Dirac particles A and B are entangled and both spin degrees of
freedom Ã and B̃ depend on the corresponding momentum degrees of freedom A and B.
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Accordingly, the state in the perspective of the laboratory C is given by

|ψ〉|C ≡ |ψ〉|CAB = Ŝ2 |ψ〉|AÃBC

=
∑
a,b

cab

∫
dµB(πB)dµC(πC) η(πB)φ(πC) Ŝ2 |a〉Ã |πB; Σ(b)〉B |πC〉C

(4.5)
===

∑
a,b

cab

∫
dµA(pA)dµB(pB) η(L−1pB)φ

(
−mC
mA

pA

)
|pA; Σ(a)〉A |pB; Σ(b)〉B

(4.24)

with pA = −mA
mC

πC, pB referring to pµB ≡ (p0
B, pB) ≡ (L−πC/mC

)µνπνB, L−1pB referring to
the spatial part of πµB ≡ (L−1

pA/mA
)µνpνB and the Lorentz-invariant integration measures

dµX(k) = dk

4π
√
m2

Xc
2+k2

. Thus, in C’s perspective the two Dirac particles A and B are

entangled and their spin degrees of freedom, Ã and B̃, are momentum dependent. This
is graphically illustrated in figure 4.2(b).

4.4.1. Bell Observable in the Rest Frame
In the rest frame of the Dirac particle A a proper spin observable for its spin state Ã is in-
deed the same as in the non-relativistic case, i.e. σ̂i

Ã
. However, 1B⊗ σ̂jB̃ is no longer valid

as spin observable for the other Dirac particle B due to its (non-sharp) relativistic mo-
mentum states which leads to spin-momentum entanglement. Therefore, in analogy to
section 3.5, the observable Ξ̂jπ̂B is used as relativistic spin observable for B. Consequently,
the joint spin measurement in A’s rest frame is described by

Ĝij|A ≡ σ̂
i
Ã
⊗ Ξ̂jπ̂B ⊗ 1C. (4.25)

Since the momentum degree of freedom B does no longer factorize from the total state,
we have to check that the CHSH-Bell inequality, eq. (4.1), is violated with this choice of
observables. This is done by calculating the corresponding (QRF-invariant) correlation
tensor in the following section.

4.4.2. Correlation Tensor
Here, the correlation tensor T ij is calculated in the rest frame of the Dirac particle A,
where the laboratory C separates from the total state such that

T ij =
[
〈ψ| Ĝij|A |ψ〉

]|A
= 〈η| σ̂i

Ã
⊗ Ξ̂jπ̂B |η〉 with |η〉 = |η〉|A

ÃB
. (4.26)

With the general state |η〉|A
ÃB

, eq. (4.23), it follows that

σ̂i
Ã
⊗ Ξ̂jπ̂B |η〉

|A
ÃB

=
∑
a,b

cab

∫
dµB(πB) η(πB) σ̂i

Ã
|a〉Ã ⊗ Ξ̂jπ̂B |πB; Σ(b)〉B (4.27)
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where σ̂i
Ã
|a〉Ã =

∑
a′ [σ

i]a′a |a′〉Ã and following eq. (4.19) we can write Ξ̂jπ̂B |πB; Σ(b)〉B =

Ξ̂jπB |πB; Σ(b)〉B = ÛB(LπB)
(
1B ⊗ σ̂jB̃

)
Û †B(LπB) |πB; Σ(b)〉B =

∑
b′ [σ

j ]b′b |πB; Σ(b′)〉B with

a, a′, b, b′ = ±z and the matrix elements [σk]mn of the Pauli operator σ̂k written in the σ̂z-
basis as explicitly given in eq. (A.28). Consequently,

σ̂i
Ã
⊗ Ξ̂jπ̂B |η〉

|A
ÃB

=
∑

a,a′,b,b′

cab[σ
i]a′a[σ

j ]b′b

∫
dµB(πB) η(πB) |a′〉Ã |πB; Σ(b′)〉B (4.28)

and, by using the orthogonality relations 〈ā|a′〉 = δāa′ as well as 〈π̄B; Σ(b̄)|πB; Σ(b′)〉 =

(2π)2π̄0
Bδb̄b′δ(πB − π̄B), the correlation tensor is given by

T ij =
∑

a,a′,b,b′

c∗a′b′cab[σ
i]a′a[σ

j ]b′b

∫
dµB(πB) |η(πB)|2. (4.29)

This can be further simplified by noting that the quantum state is normalized, i.e.

[〈η|η〉]|A =
∑
a,b

|cab|2
∫

dµB(πB) |η(πB)|2 = 1

⇔
∑
a,b

|cab|2 = 1 and
∫

dµB(πB) |η(πB)|2 = 1.

(4.30)

This leads to
T ij =

∑
a,a′,b,b′

c∗a′b′cab[σ
i]a′a[σ

j ]b′b. (4.31)

From now on, entanglement between the spin Ã and the Dirac particle B as seen from
the rest frame of A is considered by the state

|η−〉|A
ÃB

=
∑
λ=±z

cλ

∫
dµB(πB) η(πB) |λ〉Ã |πB; Σ(−λ)〉B with c±z = ±1/

√
2

=

∫
dµB(πB) η(πB)

[
|+z〉Ã |πB; Σ(−z)〉B − |−z〉Ã |πB; Σ(+z)〉B

]
/
√

2

(4.32)

which reflects a relativistic generalization of the singlet state in the case where B is a
relativistic particle. The state |η−〉|A

ÃB
is obtained by inserting cab = caδa,−b and c±z =

±1/
√

2 into |η〉|A
ÃB

given in eq. (4.23). Notice that the previous case, where the particles
A and B are perfectly correlated in momenta, is obtained by taking a sharply localized
state in momentum basis around πB = 0 for particle B.6 Finally, the correlation tensor is
given by

T ij =
∑
λ,λ′

c∗λ′cλ [σi]λ′λ[σj ]−λ′,−λ = −δij (4.33)

6 In particular, |η−〉|A
ÃB
→ |Ψ−〉ÃB̃ ⊗ |0〉B for πB → 0, where |Ψ−〉ÃB̃ denotes the singlet state.
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which is calculated straightforwardly by inserting coefficients c±z = ±1/
√

2 and the ma-
trix elements [σk]mn given in eq. (A.28). Thus, the CHSH-Bell inequality can be violated
in A’s rest frame with the initial state |ψ′−〉|A

ÃBC
≡ |η−〉|A

ÃB
|φ〉C and the corresponding

observable Ĝij|A ≡ σ̂
i
Ã
⊗ Ξ̂jπ̂B ⊗ 1C.

As a consequence, the CHSH-Bell inequality can also be violated in the laboratory
frame when the corresponding observable Ĝij|C = Ŝ2Ĝ

ij
|AŜ
†
2 is applied.

4.4.3. Bell Observable in the Laboratory Frame
We now derive the general form of the Bell observable in the laboratory frame Ĝij|C =

Ŝ2Ĝ
ij
|AŜ
†
2. For this purpose, the considered class of states in the rest frame of A is kept

general - only the laboratory state |φ〉C, given in eq. (4.22), factorizes.
First, notice that the action of Ĝij|C on that class of states is immediate from the unitarity

of Ŝ2 since

Ĝij|C |ψ〉
|C
AB = Ŝ2Ĝ

ij
|AŜ
†
2Ŝ2 |ψ〉|AÃBC

= Ŝ2Ĝ
ij
|A |ψ〉

|A
ÃBC

= Ŝ2

([
σ̂i

Ã
⊗ Ξ̂jπ̂B |η〉

|A
ÃB

]
⊗ |φ〉C

)
=

∑
a,a′,b,b′

cab [σi]a′a[σ
j ]b′b

∫
dµA(pA)dµB(pB)

η(L−1pB)φ
(
−mC
mA

pA

)
|pA; Σ(a′)〉A |pB; Σ(b′)〉B

(4.34)

where eq. (4.28) followed by eq. (4.24) have been utilized. Consequently,

Ĝij|C |ψ〉
|C
AB =

∑
a,b

cab

∫
dµA(pA)dµB(pB) η(L−1pB)φ

(
−mC
mA

pA

)
∑
a′

[σi]a′a |pA; Σ(a′)〉A ⊗
∑
b′

[σj ]b′b |pB; Σ(b′)〉B .

(4.35)

where, in analogy to eq. (4.18) and (4.19), we can write∑
a′

[σi]a′a |pA; Σ(a′)〉A = Ξ̂ip̂A |pA; Σ(a)〉A (4.36)

and ∑
b′

[σj ]b′b |pB; Σ(b′)〉B = Ξ̂jp̂B |pB; Σ(b)〉B . (4.37)

The operator index of Ξ̂ip̂A ≡ Ξ̂ip̂A/mA
and Ξ̂jp̂B ≡ Ξ̂jp̂B/mB

makes it possible to move the
two relativistic spin operators outside the integral and we obtain

Ĝij|C |ψ〉
|C
AB = Ξ̂ip̂A ⊗ Ξ̂jp̂B |ψ〉

|C
AB . (4.38)
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Finally, the joint spin measurement as seen by the laboratory C is described with the
observable

Ĝij|C = Ξ̂ip̂A ⊗ Ξ̂jp̂B . (4.39)

Crucially, the two spin measurements on the two Dirac particles A and B can be per-
formed independently in space-like separated regions due to the product form of Ĝij|C;
thus, a proper Bell test can be performed in the laboratory C. Notice that the shared rest
frame scenario (section 4.3) is a special case of the situation considered here and thus
yielding to the same Bell observable in the laboratory frame.

4.5. EXTENSION TO NON-COLLINEAR RELATIVE MOTION

Additionally to section 4.4, we now allow for scenarios where the motion of the Dirac
particle B and the laboratory C is not collinear with respect to the rest frame of particle
A. However, we demand the angle ξ between the momentum of the Dirac particle πB and
the laboratory πC to be fixed, i.e. the two systems do not move in superposed directions.
Without loss of generality, we replace the previously considered 1-dimensional momenta
by 3-dimensional vectors according to

πB → πB = (πB, 0, 0) = πB ex (4.40)

and
πC → πC = πC u, where u = (ux, uy, 0), |u| = 1. (4.41)

Since ξ = ^(πB,πC) is fixed, we still have a one-dimensional integration for each system,
i.e. we are integrating along ex ≡ (1, 0, 0) and u over the projections πB ≡ πB · ex and
πC ≡ πC · u, respectively.

Apart from the replacements πB → πB and πB → πC, the same state |ψ〉|A ≡ |ψ〉|A
ÃBC

=

|η〉ÃB |φ〉C as in section 4.4 is considered in the following. Thus, we can adopt all state-
ments given in the previous section which refer to the rest frame of the Dirac particle A,
since the laboratory state |ψ〉C7 factorizes. Crucially, this allows to conclude immediately
that the CHSH-Bell inequality is violated in the rest frame of particle A if the observable

x · σ̂Ã ⊗ y · Ξ̂π̂B
⊗ 1C =

∑
i,j

xiyj σ̂
i
Ã
⊗ Ξ̂jπ̂B

⊗ 1C (4.42)

with proper measurement settings x and y, as e.g. given in eq. (4.3), is utilized.
However, the description in the laboratory frame is different now due to an additional

Wigner rotation (appendix A.6) of the spin degree of freedom B̃. The Wigner rotation
appears, in contrast to section 4.4, because the laboratory C and the Dirac particle B

7 Effectively, |φ〉C is the only state that has been changed in comparison to the previous treatment. The
difference is that now the state |φ〉C propagates along u, whereas it was propagating along ex before.
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do not move in a line with respect to the rest frame of A. Accordingly, the state in the
perspective of the laboratory C is given by

|ψ〉|C ≡ |ψ〉|CAB = Ŝ2 |ψ〉|AÃBC

= Ŝ2

∑
a,b

cab

∫
dµB(πB)dµC(πC) η(πB)φ(πC) |a〉Ã |πB; Σ(b)〉B |πC〉C

=
∑
a,b

cab

∫
dµB(πB)dµC(πC) η(πB)φ(πC) Ŝ2 |a〉Ã |πB; Σ(b)〉B |πC〉C

(4.43)

where, by applying the (1+3)-dimensional extension of the previous QRF transformation
Ŝ2 ≡ ŜL ÛB(L−π̂C

), we obtain

Ŝ2 |a〉Ã |πB; Σ(b)〉B |πC〉C = ŜL |a〉Ã |πC〉C ÛB(L−πC) |πB; Σ(b)〉B
= |−mA

mC
πC; Σ(a)〉

A
ÛB(L−πC)ÛB(LπB) |0; b〉B .

(4.44)

The two successive non-collinear (πB ∦ πC) boosts on particle B result in a boost and a
Wigner rotation of the spin degree of freedom B̃ according to

ÛB(L−πC)ÛB(LπB) |0; b〉B = ÛB(LLπB
)
[
1B ⊗ R̂B̃(Ω)

]
|0; b〉B

= ÛB(LLπB
) |0;RΩ(b)〉B

= |LπB; Σ(RΩ(b))〉B

(4.45)

where LπB refers to the spatial part of the four-momentum
(
L−πC/mC

)µ
ν
πνB ≡ pµB ≡

(p0
B,pB), i.e. LπB ≡ pB, and the rotation is specified through Ω ≡ Ωn, |n| = 1. More

specifically, the spin B̃ is rotated around the axis

n =
πB × πC

|πB × πC|
= ez ≡ (0, 0, 1) (4.46)

by the (Bloch) angle Ω given by

cos Ω =
1 + γπB + γπC + γLπB

(1 + γπB)(1 + γπC)(1 + γLπB
)
− 1 (4.47)

where γπB =

√
1 +

π2
B

m2
Bc

2 , γπC =

√
1 +

π2
C

m2
Cc

2 and

γLπB
= γπBγπC(1− βπB

· βπC
) = γπBγπC

(
1− πB√

m2
Bc

2+π2
B

· πC√
m2

Cc
2+π2

C

)
. (4.48)

Consequently, the rotation operator can be explicitly written as

R̂(Ω) = e−iΩ·σ̂/2 = e−iΩσ̂z/2 = 1 cos(Ω/2)− iσ̂z sin(Ω/2). (4.49)
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Thus, the axis of rotation is fixed and the rotation angle Ω depends on the relative orien-
tation as well as on the magnitude of the two momenta πB and πC, i.e. Ω = Ω(πB,πC).
This means that we actually have a superposition of Wigner rotations acting on the spin
B̃ because of the superpositions of momenta. Finally, we obtain the total state in the
laboratory frame

|ψ〉|C =
∑
a,b

cab

∫
dµA(pA)dµB(pB) η(L−1pB)φ

(
−mC
mA

pA

)
|pA; Σ(a)〉A |pB; Σ(RΩ(b))〉B

(4.50)

where pA ≡ −mA
mC

πC and pB denotes the spatial part of the four-momentum pµB ≡
(p0

B,pB) ≡ (L−πC)µν π
ν
B. With this we find Ω = Ω(pA,pB) in the laboratory frame C,

where the rotation is also around the z-axis (as the two momenta pA and pB lie in the
x-y-plane) and the rotation angle is given by

cos Ω =
1 + γpA

+ γpB
+ γLpB

(1 + γpA
)(1 + γpB

)(1 + γLpB
)
− 1 (4.51)

where LpB refers to the spatial part of
(
L−pA

)µ
ν
pνB, γpA

=

√
1 +

p2
A

m2
Ac

2 , γpB
=

√
1 +

p2
B

m2
Bc

2

and γLpB
= γpA

γpB
(1− βpA

· βpB
).

Ultimately, the most significant question is the form of the Bell observable in the labo-
ratory frame, Ĝxy

|C ≡ Ŝ2

(
x · σ̂Ã ⊗ y · Ξ̂π̂B

⊗ 1C

)
Ŝ†2, which is calculated in the following

through its action on the laboratory state according to

Ĝxy
|C |ψ〉

|C = Ŝ2

(
x · σ̂Ã ⊗ y · Ξ̂π̂B ⊗ 1C

)
Ŝ†2Ŝ2 |ψ〉|A

(4.28)
=== Ŝ2

∑
i,j

xiyj
∑

a,a′,b,b′

cab[σ
i]a′a[σ

j ]b′b

∫
dµB(πB) η(πB) |a′〉Ã |πB; Σ(b′)〉B ⊗ |φ〉C

= Ŝ2

∑
i,j,a,b,a′,b′

xiyjcab[σ
i]a′a[σ

j ]b′b

∫
dµB(πB)dµC(πC) η(πB)φ (πC)

|a′〉Ã |πB; Σ(b′)〉B |πC〉C

=
∑

i,j,a,b,a′,b′

xiyjcab[σ
i]a′a[σ

j ]b′b

∫
dµA(pA)dµB(pB) η(L−1pB)φ

(
−mC
mA

pA

)
|pA; Σ(a′)〉A |pB; Σ(RΩ(b′))〉B

=
∑
i,j,a,b

xiyjcab

∫
dµA(pA)dµB(pB) η(L−1pB)φ

(
−mC
mA

pA

)
∑
a′

[σi]a′a |pA; Σ(a′)〉A ⊗
∑
b′

[σj ]b′b |pB; Σ(RΩ(b′))〉B

(4.52)
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where for the Dirac particle A we know already that
∑

a′ [σ
i]a′a |pA; Σ(a′)〉A = Ξ̂ip̂A

|pA; Σ(a)〉A
and hence

Ĝxy
|C |ψ〉

|C =
∑
a,b

cab

∫
dµA(pA)dµB(pB) η(L−1pB)φ

(
−mC
mA

pA

)
x · Ξ̂p̂A

|pA; Σ(a)〉A ⊗
∑
j,b′

yj [σ
j ]b′b |pB; Σ(RΩ(b′))〉B .

(4.53)

For the Dirac particle B we find∑
j,b′

yj [σ
j ]b′b |pB; Σ(RΩ(b′))〉B =

∑
j,b′

yj [σ
j ]b′bÛ(LpB

) |0;RΩ(b′)〉B

=
∑
j,b′

yj [σ
j ]b′bÛ(LpB

)
[
1B ⊗ R̂B̃(Ω)

]
|0; b′〉B

= Û(LpB
)
[
1B ⊗ R̂B̃(Ω)

]
(1B ⊗ y · σ̂B̃) |0; b〉B

(4.54)

and by inserting 1B = 1BB̃ = [1B ⊗ R̂†B̃(Ω)]Û †(LpB
)Û(LpB

)[1B ⊗ R̂B̃(Ω)] we get

∑
j,b′

yj [σ
j ]b′b |pB; Σ(RΩ(b′))〉B

= Û(LpB
)
[
1B ⊗ R̂B̃(Ω)

]
(1B ⊗ y · σ̂B̃)

[
1B ⊗ R̂†B̃(Ω)

]
Û †(LpB

) |pB; Σ(RΩ(b))〉B

= Û(LpB
)
[
1B ⊗ R̂B̃(Ω)(y · σ̂B̃)R̂†

B̃
(Ω)

]
Û †(LpB

) |pB; Σ(RΩ(b))〉B .

(4.55)

Its is straight forward to show that R̂B̃(Ω)(y · σ̂B̃)R̂†
B̃

(Ω) = yR · σ̂B̃ where

yR = yR(Ω) = y cos Ω + n(n · y)(1− cos Ω) + (n× y) sin Ω (4.56)

and Ω = Ωn [48]. This means that the measurement setting for the Dirac particle B in the
laboratory frame is rotated with respect to the setting in the rest frame of A. With this, it
follows that∑

j,b′

yj [σ
j ]b′b |pB; Σ(RΩ(b′))〉B = Û(LpB

)(1B ⊗ yR · σ̂B̃)Û †(LpB
) |pB; Σ(RΩ(b))〉B

=
∑
j

yRj Û(LpB
)(1B ⊗ σ̂jB̃)Û †(LpB

) |pB; Σ(RΩ(b))〉B

=
∑
j

yRj Ξ̂jp̂B
|pB; Σ(RΩ(b))〉B

= yR · Ξ̂p̂B
|pB; Σ(RΩ(b))〉B

(4.57)
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and with yR = yR(Ω) = yR(pA,pB) we obtain

Ĝxy
|C |ψ〉

|C =
∑
a,b

cab

∫
dµA(pA)dµB(pB) η(L−1pB)φ

(
−mC
mA

pA

)
x · Ξ̂p̂A

|pA; Σ(a)〉A ⊗ yR(pA, p̂B) · Ξ̂p̂B
|pB; Σ(RΩ(b))〉B

(4.58)

where pB has been promoted to an operator which is possible since Ξ̂p̂B
does not change

the momentum of the Dirac particle B. However, if we promote pA → p̂A in the argu-
ment of yR, then we cannot split the Bell observable in the laboratory frame into two
observables Ĝx

AÃ
∈ HA ≡ HAÃ and ĜyR

BB̃
∈ HB ≡ HBB̃ acting on particle A and B

separately, i.e.

Ĝxy
|C ≡ Ŝ2

(
x · σ̂Ã ⊗ y · Ξ̂π̂B

⊗ 1C

)
Ŝ†2

=
∑
j

(
x · Ξ̂p̂A

⊗ 1AÃ

) (
yRj (p̂A, p̂B)⊗ 1Ã ⊗ 1B̃

) (
1AÃ ⊗ Ξ̂jp̂B

)
6= Ĝx

AÃ
⊗ ĜyR

BB̃
.

(4.59)

As a consequence, it is not immediately clear that we can perform a Bell test in the lab-
oratory such that the locality assumption of Bell’s theorem is fulfilled. Notice that the
measurement setting yR = yR(p̂A, p̂B) is not fixed as it is the case in the rest frame, but it
depends on the momenta pA and pB which results from a "coherent rotation" of the fixed
measurement direction y (as seen by the rest frame of A) by the angle Ω(pA,pB) around
the z-axis (n = ez).

However, yR(p̂A, p̂B) does not depend on the choice of the spin measurement direc-
tion x (referring to particle A). Thus, it might be possible to set up a proper Bell test, for
example, if the momentum and the spin degrees of freedom are measured successively. A
possible scheme could be that before the spin measurements are performed the momenta
pA and pB are measured by Alice and Bob who are located next to the Dirac particles A

and B, respectively. Then, Alice sends her outcome pA to Bob. With the knowledge of
pA and pB, Bob can adjust his spin measurement settings, following eq. (4.56), according
to

yR1 =

− sin [Ω(pA,pB)]

cos [Ω(pA,pB)]

0

 as well as yR2 =

0

0

1

 ≡ y1, (4.60)

where the measurement settings x1, x2, y1 and y2 as given in eq. (4.3) are considered
here, and Ω(pA,pB) can be calculated via eq. (4.51). Since the choice of the direction yRi
is made after Alice signaled to Bob, the choices between the two measurement settings
(x1, x2) for Alice and (yR1 , yR2 ≡ y2) for Bob are still space-like separated such that the lo-
cality assumption of Bell’s theorem is satisfied. Notice that, according to this scheme, the
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momentum measurements will collapse the momentum superposition states such that
we obtain sharp momenta and thus a sharp Wigner rotation instead of a superposition of
Wigner rotations as the general result, see eq. (4.58) and (4.59), predicts.

4.6. PRESERVATION OF SPACETIME INTERVALS

For a proper Bell test the two spin measurements must be performed in space-like sepa-
rated regions so that there cannot be any signaling between the two spin systems. In the
initially considered rest frame A we can set up the Bell experiment and impose that the
two spin measurements on Ã and B ≡ BB̃ are space-like separated. However, can the
corresponding experiment in the laboratory frame also considered to be space-like sep-
arated? Or does the superposition of Lorentz boosts in some way mix up the space-like
separation?

The QRF transformation ŜL is derived from an external perspective (section 3.4); con-
sequently, the QRF transformation Ŝ2 which includes the second Dirac particle B can be
related to an external perspective transforming from A’s to C’s rest frame via

Ŝext = ÛC(Lp̂A/mA
)ÛA(L−π̂C/mC

)ÛB(L−π̂C/mC
). (4.61)

This means that the two Dirac particles A ≡ AÃ and B ≡ BB̃ are coherently boosted by
the velocity of the laboratory C; in other words, both boosts are controlled by C’s velocity.
Thus, the spacetime coordinates assigned for two events (e.g. the two spin measurements
in A’s perspective) are coherently boosted by the same velocity. Consequently, the QRF
transformation Ŝ2 ≡ ŜL ÛB(L−π̂C/mC

), derived from Ŝext and utilized for the Bell tests
above, preserves spacetime intervals in a coherent manner. Significantly, this means that
two space-like separated events in the initial QRF are also space-like separated in the
final QRF.
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5. CONCLUSION

In the present thesis, it has been shown how quantum reference frames can be used to
devise a Bell test for two spin-1/2 particles moving in a superposition of relativistic veloc-
ities. In particular, the quantum reference frame formalism leads to a generalized notion
of the rest frame of a quantum system which can be utilized to operationally define the
Bell observable (joint spin observables) in the rest frame of one of the two spin particles.
With the help of a relativistic quantum reference frame transformation, the corresponding
Bell observable in the laboratory frame, where the spin particles move in a superposition
of relativistic velocities, has been calculated for different state configurations. Signifi-
cantly, it follows that the violation of the CHSH-Bell inequality is frame-independent in
contrast to the Bell observable which is frame-dependent.

It has been shown that, as long as the relativistic motion of the two spin particles
is collinear, the Bell observable in the laboratory frame factorizes into two momentum-
dependent spin observables acting on each particle separately. This means that the joint
spin measurements of the Bell test are represented by a product of observables in space-
like separated regions such that the locality assumption of Bell’s theorem is satisfied.
However, if their relativistic motion is not collinear, the appearance of a superposition of
Wigner rotations (depending on the superposed momenta of both particles) destroys the
above mentioned factorization of the Bell observable as seen in the laboratory frame. For
this case, a possible way how to perform a proper Bell test has been outlined, where the
choices of the measurement settings are still made in space-like separated regions.

The second scenario, where the motion of the two particles is not collinear, has thrown
up many questions in need of further investigation. For example, the agreement with the
locality assumption needs to be analyzed more rigorously and the spin measurement in
superposed (Wigner rotated) directions should be studied more thoroughly. Apart from
this theoretical future line of research, the experimental implementation of the relativis-
tic Stern-Gerlach apparatus would lead to significant insights. Since the rest frame of a
quantum system is not directly accessible to us, the relativistic Stern-Gerlach apparatus
could be used to experimentally test the generalized notion of the rest frame of a quan-
tum system and the quantum reference frame approach itself.
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A. APPENDIX

A.1. TRANSLATION OPERATOR

In quantum mechanics textbooks, the usual translation operator is defined by its action
on a position eigenstate via

T̂a |x〉 ≡ |x− a〉 (A.1)

and can be represented by
T̂a = eiap̂/~. (A.2)

This can be shown by utilizing the completeness relation 1 =
∫

dp |p〉 〈p| and 〈x|p〉 =

eixp/~/
√

2π~ via

T̂a |x〉 = eiap̂/~ |x〉 =

∞∫
−∞

dp |p〉 〈p| eiap̂/~︸ ︷︷ ︸
=〈p|eiap/~

|x〉 =

∞∫
−∞

dp 〈p|x〉 eiap/~ |p〉

=

∞∫
−∞

dp
e−i(x−a)p/~
√

2π~
|p〉 =

∞∫
−∞

dp 〈p|x− a〉 |p〉 =

∞∫
−∞

dp |p〉 〈p|x− a〉

= |x− a〉 .

(A.3)

Moreover, we can shift momentum eigenstates according to

e−ibx̂/~ |p〉 = |p− b〉 (A.4)

which can be shown analogously to eq. (A.3) by utilizing the completeness of the position
basis 1 =

∫
dx |x〉 〈x|.

Note that the results above can be easily extended to all three spatial dimensions with
〈x|p〉 = (2π~)−3/2 eix·p/~ and 1 =

∫
d3x |x〉 〈x| =

∫
d3p |p〉 〈p| where x ≡ (x1, x2, x3) and

p ≡ (p1, p2, p3).
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A.2. PARITY OPERATOR

The unitary parity-swap operator P̂AC : H|CA 7→ H
|A
C is defined by

P̂AC x̂AP̂†AC ≡ −q̂C. (A.5)

From this definition and the required canonicity, i.e. i~ = [x̂A, p̂A] = [q̂C, π̂C], it follows
that

i~ = P̂AC[x̂A, p̂A]P̂†AC = P̂AC x̂Ap̂AP̂†AC − P̂AC p̂Ax̂AP̂†AC

= P̂AC x̂AP̂ACP̂†AC p̂AP̂†AC − P̂AC p̂AP̂ACP̂†AC x̂AP̂†AC

(A.5)
== −q̂CP̂†AC p̂AP̂†AC + P̂AC p̂AP̂AC q̂C

!
= q̂Cπ̂C − π̂Cq̂C ≡ [q̂C, π̂C]

(A.6)

and hence
P̂AC p̂AP̂†AC = −π̂C. (A.7)

The action of the parity-swap operator on position and momentum eigenstates is given
by

P̂AC |x〉A = |−x〉C and P̂AC |p〉A = |−p〉C (A.8)

which can be verified with the definition (A.5), and analogously with equation (A.7), via

P̂AC x̂AP̂†AC = P̂AC

∞∫
−∞

dx |x〉A〈x| x̂AP̂†AC =

∞∫
−∞

dx x P̂AC |x〉A〈x| P̂
†
AC

=

∞∫
−∞

dx x |−x〉C〈−x| = −
∞∫
−∞

dq q |q〉C〈q| =
∞∫
−∞

dx x |−x〉C〈−x|

= −
∞∫
−∞

dq q̂C |q〉C〈q| = −q̂C

(A.9)

where the completeness relations 1 =
∫

dx |x〉A〈x| =
∫

dq |q〉C〈q| have been utilized.
In order to identify immediately to which perspective the appearing operators belong,

the convention
P̂AC x̂BP̂†AC ≡ q̂B and P̂AC p̂BP̂†AC ≡ π̂B. (A.10)

is used and whenever the parity-swap operator takes its action on states the variables of
describing the state of B are relabeled, specifically (xB, pB)→ (qB, πB).

A.3. THE QRF TRANSFORMATION OF RELATIVE MOMENTA

In section 2.1.1, the position basis has been used to express relative locations and by
canonicity the corresponding momenta have been calculated. Analogously, the momen-
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tum basis can be used to express the momenta as the relational variables according to

p̂B 7→ π̂B − π̂C and p̂A 7→ −π̂C (A.11)

and from canonicity it follows that x̂B 7→ q̂B and x̂A 7→ −(q̂C + q̂B). It has already been
pointed out that momenta are generating translations and due to complementarity it is
immediate that shifts in momenta (boosts) are generated by position operators, i.e.

eiap̂B/~ |x〉B = |x− a〉B and e−ibx̂B/~ |p〉B = |p− b〉B . (A.12)

Accordingly, by exchanging the position and momentum operator of A and B in the QRF
transformation of relative coordinates Ŝx, eq. (2.4), we obtain the QRF transformation
between relative momenta

Ŝp ≡ P̂AC e−ip̂Ax̂B/~ (A.13)

where the parity-swap operator maps P̂ACp̂AP̂†AC = −π̂C as derived in appendix A.2.

A.4. THE QRF TRANSFORMATION OF RELATIVE VELOCITIES

The QRF transformation of relative velocities Ŝv : H|CA ⊗H
|C
B 7→ H

|A
B ⊗H

|A
C defined by

Ŝv ≡ P̂(v)
AC exp

{
− i

~
mB
mA

p̂Ax̂B

}
(A.14)

is mapping

x̂A 7→ − (mBq̂B +mCq̂C) /mA, x̂B 7→ q̂B, (A.15)

p̂A 7→ −mA
mC

π̂C, p̂B 7→ π̂B − mB
mC

π̂C (A.16)

which is shown in the following.
The first operation, exp

{
− i

~
mB
mA

p̂Ax̂B

}
, is coherently boosting B with the velocity of A.

Its action can be calculated with Baker-Campbell-Hausdorff formula (2.8) analogously to
the coherent translation case in section 2.1.1; they only differ by flipping the labels A and
B plus an additional factor of relative masses. Hence,

x̂A 7→ Ŝvx̂AŜ
†
v = P̂(v)

AC

(
x̂A − mB

mA
x̂B

)(
P̂(v)

AC

)†
,

p̂A 7→ Ŝvp̂AŜ
†
v = P̂(v)

AC p̂A

(
P̂(v)

AC

)†
,

x̂B 7→ Ŝvx̂BŜ
†
v = P̂(v)

AC x̂B

(
P̂(v)

AC

)†
,

p̂B 7→ Ŝvp̂BŜ
†
v = P̂(v)

AC

(
p̂B + mB

mA
p̂A

)(
P̂(v)

AC

)†
.

(A.17)
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In order to keep the calculations compact, consider now only the action of P̂(v)
AC on the

phase space observables of C, i.e. on x̂A, p̂A, x̂B, p̂B, and define η ≡ i
~ log

√
mC
mA

= i
2~ log mC

mA
.

Thus,

P̂(v)
AC x̂A

(
P̂(v)

AC

)†
= P̂AC exp {η (x̂Ap̂A + p̂Ax̂A)} x̂A exp {−η (x̂Ap̂A + p̂Ax̂A)} P̂†AC

(2.8)
== P̂AC (x̂A + [η (x̂Ap̂A + p̂Ax̂A) , x̂A] + ...) P̂†AC,

(A.18)

where by utilizing Heisenberg’s indeterminacy relation in accordance with x̂Ap̂A+p̂Ax̂A =

2p̂Ax̂A + [x̂A, p̂A] = 2p̂Ax̂A + i~, it follows that

[η (x̂Ap̂A + p̂Ax̂A) , x̂A] = 2η[p̂Ax̂A, x̂A] = 2η[p̂A, x̂A]x̂A = −2i~ηx̂A (A.19)

and hence

x̂A + [η (x̂Ap̂A + p̂Ax̂A) , x̂A] + ... = x̂A − 2i~ηx̂A + 1
2! [η (x̂Ap̂A + p̂Ax̂A) ,−2i~ηx̂A] + ...

= x̂A

(
1 + (−2i~η) + (−2i~η)2/2! + ...

)
= x̂Ae−2i~η = x̂A exp

{
log mC

mA

}
= mC

mA
x̂A.

(A.20)

Consequently,

P̂(v)
AC x̂A

(
P̂(v)

AC

)†
= mC

mA
P̂AC x̂AP̂†AC = −mC

mA
q̂C (A.21)

and as already shown by construction of the generalized parity-swap operator in section
2.1.2, it is

P̂(v)
AC p̂A

(
P̂(v)

AC

)†
= mA

mC
P̂AC p̂AP̂†AC = −mA

mC
π̂C. (A.22)

Since x̂B and p̂B commute with the scaling operator exp {η (x̂Ap̂A + p̂Ax̂A)} it is immedi-
ate that

P̂(v)
AC x̂B

(
P̂(v)

AC

)†
= P̂AC x̂BP̂†AC = q̂B (A.23)

and

P̂(v)
AC p̂B

(
P̂(v)

AC

)†
= P̂AC p̂BP̂†AC = π̂B. (A.24)

A.5. EXPLICIT FORM OF THE RELATIVISTIC SPIN OPERATOR

In special relativity, the spin operator Ŝ in the rest frame of a quantum system can be
described with the four-spin ŜµR = (0, Ŝ); thus, the spin operator as seen from an in-
ertial frame Ŝµ (following classical trajectories) is obtained with a Lorentz boost via
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Ŝµ = (Lp)µν ŜνR where Lp is defined by

Lp ≡ L p
m

=

(
p0

mc
p>

mc
p
mc 1 + 1

γ+1
pp>

(mc)2

)
(A.25)

with γ = γp = γp/m =
√

1 + p2

m2c2
and p0 = mcγ =

√
m2c2 + p2 = p0(|p|). [39]

When the Pauli operator σ̂ ≡ (σ̂x, σ̂y, σ̂z) is utilized as spin operator1 in the rest frame,
i.e. σ̂µ = (0, σ̂), then the spin as seen from another inertial frame is given (up to a factor
m) by the manifestly covariant Pauli-Lubański spin operator Σ̂µ

p ≡ (Σ̂0
p, Σ̂p) = (L−p)µν σ̂ν .

Here, the sign of p has been adjusted for consistency with the main text where the pa-
rameter of the Lorentz boost of the Dirac particle A has a negative sign, see (3.15). Simply
applying the Lorentz boost L−p leads to the explicit form

Σ̂0
p = γp

(
βp · σ̂

)
and Σ̂p = σ̂ +

γ2
p

γp + 1

(
βp · σ̂

)
βp (A.26)

where βp ≡ βp/m = p√
m2c2+p2

and hence Σ̂µ
p ≡ Σ̂µ

p/m. It is important to notice that

the four-spin does not introduce extra degrees of freedom due to the covariant constraint
ηµνp

µΣ̂ν
p = ηµνk

µσ̂ν = 0 where ηµν = diag(1,−1,−1,−1). Crucially, this result stays the
same when the appearing momenta are promoted to operators, p→ p̂, which is utilized
in this work and noted accordingly with a corresponding index, e.g. Σ̂µ

p̂ ≡ Σ̂µ
p̂/m.

The explicit form of the relativistic spin operator Ξ̂p̂ can be derived via its action on a
one-particle eigenstate, |p; Σ(λ)〉with λ = ±z, according to

Ξ̂ip̂A
|p; Σ(λ)〉AÃ ≡ ŜL(σ̂i

Ã
⊗ 1C)Ŝ†LŜL |λ〉Ã |−

mC
mA

p〉
C

= ŜL

∑
a=±z

[σi]a,λ |a〉Ã |−
mC
mA

p〉
C

=
∑
a=±z

[σi]a,λ |p; Σ(a)〉AÃ

(A.27)

where [σi]a,λ is a matrix element of the corresponding Pauli matrix written in the σ̂z-basis,
i.e.

σ̂x =

(
0 1

1 0

)
, σ̂y =

(
0 −i

i 0

)
and σ̂z =

(
1 0

0 −1

)
. (A.28)

1 Up to the factor ~/2.
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By applying a standard Lorentz boost, specifically Û †(Lp) |p; Σ(a)〉 = |0; a〉 = |0〉 |a〉, it is

Ξ̂ip̂A
|p; Σ(λ)〉AÃ =

∑
a

[σi]a,λÛA(Lp)Û †A(Lp) |p; Σ(a)〉A

= ÛA(Lp)
∑
a

[σi]a,λ |0; a〉A

= ÛA(Lp)
(
1A ⊗ σ̂iÃ

)
|0;λ〉A ,

(A.29)

where A ≡ AÃ.2 Notice that the Pauli-Lubański operator coincides with the non-relativistic
Pauli operator when it is applied on a zero-momentum state. It follows that

Ξ̂ip̂A
|p; Σ(λ)〉AÃ = Û(Lp)Σ̂i

p̂A
|0;λ〉A = Û(Lp)Σ̂i

p̂A
Û †(Lp)Û(Lp) |0;λ〉A

= (Lp)iνΣ̂ν
p̂A
|p; Σ(λ)〉A = (Lp̂A

)iνΣ̂ν
p̂A
|p; Σ(λ)〉A

(A.30)

where in the last step the parameter of the Lorentz boost has been promoted to an op-
erator; this is possible because the Pauli-Lubański operator leaves the momentum of the
one-particle eigenstate invariant.

Consequently, by applying Ξ̂ip̂ = (Lp̂)iνΣ̂ν
p̂ and exploiting the covariant constraint

ηµν p̂
µΣ̂ν

p̂ = 0, we find

Ξ̂p̂ = Σ̂p̂ −
γp̂

γp̂ + 1

(
Σ̂p̂ · βp̂

)
βp̂. (A.31)

It is important to notice that Ξ̂p̂ ≡ Ξ̂p̂/m acts on both the external (momentum) and
internal (spin) degrees of freedom.

A.6. WIGNER ROTATIONS

As introduced in section 3.3, a relativistic spin state for a Dirac particle with mass m > 0

is given by

|ψ〉 =
∑
σ

∫
dµ(p)ψσ(p) |p; Σp(σ)〉 (A.32)

where σ denotes the spin in the rest frame of the Dirac particle, p the momentum, dµ(p)

the Lorentz-invariant integration measure and ψσ(p) = 〈p; Σp(σ)|ψ〉 the wave function.
The basis elements are defined via standard Lorentz boosts according to

|p; Σp(σ)〉 ≡ Û(Lp) |0;σ〉 (A.33)

where Û(Lp) is a unitary representation of a pure boost Lp taking the four-momentum
of the Dirac particle from kµ = (mc,0) to pµ = (Lp)µνkν = (p0,p) with p0 = p0(|p|) =√
m2c2 + p2. It is important to notice that in the particle’s rest frame the one-particle state

is separable, i.e. |0;σ〉 = |0〉 |σ〉.

2 By inserting an identity, this allows to identify Ξ̂p̂ = Û(Lp̂)(1⊗ σ̂)Û†(Lp̂).
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If the state |p; Σp(σ)〉 gets boosted by the momentum q we obtain two successive
Lorentz boosts with respect to the rest frame of the particle according to Û(Lq)Û(Lp) |0;σ〉,
where the corresponding four-momentum is given by (Lq)µν p

ν ≡ wµ = (w0,w). Surpris-
ingly, two successive non-collinear boosts, i.e. q ∦ p, lead to one boost by the momentum
w and an additional spatial rotation which is called Wigner rotation. This follows from
a straight forward matrix multiplication of the two Lorentz boosts [47] as well as from
group properties of the Poincaré group (see e.g. [44]) according to

Û(Lq)Û(Lp) = Û(Lw)Û−1(Lw)Û(Lq)Û(Lp) = Û(Lw)Û(L−1
w LqLp), (A.34)

where it is immediate that W ≡ L−1
w LqLp can at most be a spatial rotation because it

takes kµ → pµ → wµ = (Lq)µν p
ν and back to kµ. If the two momenta p and q are aligned

then W = 1, i.e. two successive collinear boosts result in a single boost. The Wigner
rotation rotation W = W (q,p) can be specified through the rotation axis

n =
q× p

|q× p|
, |n| = 1 (A.35)

and the rotation angle Ω given in accordance with

cos Ω =
1 + γp + γq + γw

(1 + γp)(1 + γq)(1 + γw)
− 1 (A.36)

where γp = γp/mp =

√
1 + p2

m2
pc

2 , γq = γq/mq =

√
1 + q2

m2
qc

2 and γw = γpγq(1 + βp · βq)

with βp ≡ βp/mp = p√
m2
pc

2+p2
and βq ≡ βq/mq = q√

m2
qc

2+q2
, see [47]. Hence, Ω =

Ω(p,q) = Ωn completely determines the Wigner rotation.
In our case the Wigner rotation is applied to a zero-momentum state such that the

rotation only affects the spin degree of freedom. Thus,

Û(Lq) |p; Σp(σ)〉 ≡ Û(Lq)Û(Lp) |0;σ〉 = Û(Lw)Û(W ) |0;σ〉

= Û(Lw)
[
1⊗ R̂(Ω)

]
|0;σ〉 = Û(Lw) |0;RΩ(σ)〉

= |w; Σw(RΩ(σ))〉

(A.37)

where RΩ(σ) refers to the Wigner rotated spin state and the rotation operator is given by

R̂(Ω) = e−iΩ·σ̂/2 = 1 cos(Ω/2)− i(n · σ̂) sin(Ω/2) (A.38)

with the Pauli operator σ̂ ≡ (σ̂x, σ̂y, σ̂z).
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[30] P. Caban, J. Rembieliński, and M. Włodarczyk, “Strange behavior of the relativis-
tic Einstein-Podolsky-Rosen correlations,” Physical Review A, vol. 79, no. 1, pp. 1–4,
2009.

[31] S. Moradi, “Bell’s inequality with Dirac particles,” JETP Letters, vol. 89, no. 1, pp. 50–
52, 2009.

[32] P. Caban, A. Dziegielewska, A. Karmazyn, and M. Okrasa, “Polarization correlations
of Dirac particles,” Physical Review A, vol. 81, no. 3, pp. 1–6, 2010.

[33] N. Friis, R. A. Bertlmann, M. Huber, and B. C. Hiesmayr, “Relativistic entanglement
of two massive particles,” Physical Review A, vol. 81, no. 4, pp. 1–9, 2010.

[34] P. L. Saldanha and V. Vedral, “Spin quantum correlations of relativistic particles,”
Physical Review A, vol. 85, no. 6, pp. 6–9, 2012.

[35] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Tele-
porting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen
channels,” Physical Review Letters, vol. 70, no. 13, pp. 1895–1899, 1993.

[36] R. M. Angelo, N. Brunner, S. Popescu, A. J. Short, and P. Skrzypczyk, “Physics within
a quantum reference frame,” Journal of Physics A: Mathematical and Theoretical, vol. 44,
no. 14, pp. 1–17, 2011.

55



[37] R. M. Angelo and A. D. Ribeiro, “Kinematics and dynamics in noninertial quantum
frames of reference,” Journal of Physics A: Mathematical and Theoretical, vol. 45, no. 46,
pp. 1–19, 2012.

[38] A. Vanrietvelde, P. A. Hoehn, F. Giacomini, and E. Castro-Ruiz, “A change of
perspective: switching quantum reference frames via a perspective-neutral frame-
work,” arXiv:1809.00556, pp. 1–33, 2018.

[39] L. C. Céleri, V. Kiosses, and D. R. Terno, “Spin and localization of relativistic
fermions and uncertainty relations,” Physical Review A, vol. 94, no. 6, pp. 1–11, 2016.

[40] P. L. Saldanha and V. Vedral, “Physical interpretation of the Wigner rotations and
its implications for relativistic quantum information,” New Journal of Physics, vol. 14,
2012.

[41] J. J. Sakurai, Modern Quantum Mechanics. Addison-Wesley Publishing Company,
revised ed., 1994.

[42] L. L. Foldy and S. A. Wouthuysen, “On the Dirac Theory of Spin 1/2 Particles and
Its Non-Relativistic Limit,” Physical Review, vol. 78, no. 1, pp. 29–36, 1950.

[43] M. H. L. Pryce, “The Mass-Centre in the Restricted Theory of Relativity and Its Con-
nexion with the Quantum Theory of Elementary Particles,” Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, vol. 195, no. 1040, pp. 62–
81, 1948.

[44] S. Weinberg, The quantum theory of fields, Volume 1: Foundations. Cambridge Univer-
sity Press, 1995.

[45] R. M. Gingrich and C. Adami, “Quantum entanglement of moving bodies,” Physical
Review Letters, vol. 89, no. 27, pp. 1–4, 2002.

[46] A. Peres and D. R. Terno, “Quantum information and relativity theory,” Reviews of
Modern Physics, vol. 76, no. 1, pp. 93–123, 2004.

[47] R. U. Sexl and H. K. Urbantke, Relativity, Groups, Particles. Springer-Verlag Wien,
2001.

[48] J. Yepez, “Lecture notes: Qubit representations and rotations,” 2013.

56


	Contents
	Zusammenfassung
	Abstract
	Acknowledgments
	Introduction
	Quantum Reference Frames
	Quantum Reference Frame Transformations
	The QRF Transformation of Relative Positions
	The QRF Transformation of Relative Velocities

	Notion of the Rest Frame of a Quantum System

	Spin in Special Relativity
	The Problem of Defining Spin
	Characterization of a Proper Spin Operator
	One-particle States
	Superposition of Lorentz Boosts
	An Operational Definition of Spin

	Relativistic Bell Test within Quantum Reference Frames
	Bell's Theorem
	Inclusion of a Second Dirac Particle
	Shared Rest Frame
	Bell Observable in the Shared Rest Frame
	Bell Observable in the Laboratory Frame

	General Scenario
	Bell Observable in the Rest Frame
	Correlation Tensor
	Bell Observable in the Laboratory Frame

	Extension to Non-collinear Relative Motion
	Preservation of Spacetime Intervals

	Conclusion
	Appendix
	Translation Operator
	Parity Operator
	The QRF Transformation of Relative Momenta
	The QRF Transformation of Relative Velocities
	Explicit Form of the Relativistic Spin Operator
	Wigner Rotations

	Bibliography

