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Zusammenfassung

Magnetostriktive Eigenschaften von Materialien gewinnen in vielen Anwendungsbereichen zunehmend
an Bedeutung. Vielfach aufgrund der Tatsache, dass magnetostriktive Effekte genutzt werden
können um indirekt andere Größen zu messen.
Dies ist zum Beispiel bei sogenannten amorphen, magnetostriktiven Dehnungsmessstreifen der
Fall: Hier werden indirekt lokale Dehnungen gemessen, indem die magnetische Antwort des
Streifens gemessen wird [2]. Über die Messung der magnetischen Antwort kann bei Kenntnis der
magnetostriktiven Eigenschaften des Materials auf die lokale Dehnung zurückgeschlossen werden.
Umgekehrt gibt es auch Anwendungen bei denen die Magnetostriktion einen unerwünschten
Nebeneffekt darstellt, der die Messung verfälscht. Dies ist zum Beispiel bei GMR-Sensoren
der Fall: Hier wird durch Magnetostriktion die Magnetisierungskurve in der weichmagnetischen
Schicht (Free Layer) verändert. Die Magnetisierung des Free Layers relativ zur hartmagnetischen
Schicht (Fixed Layer) ist damit beeinflusst und das Messresultat des Sensors verfälscht.
Ziel dieser Arbeit ist die Auswirkung von Magnetostriktion auf beliebige Materialien mit Hilfe der
FEM-Software Magnum.fe [13] berechnen zu können.
Hierzu wird eine FEM-Formulierung zur Lösung von Elastizitätsproblemen implementiert und an-
schließend ein Landau-Lifschitz-Gilbert (LLG) Term für den Effekt der Magnetostriktion in kubis-
chen Materialien hergeleitet. Als Anwendungsfall wird die spannungsabhängige Magnetisierungskurve
von monokristallinem und polykristallinem Eisen-Kobalt unter dem Einfluss verschiedener Span-
nungszustände untersucht.
Je nach Orientierung des monokristallinem Eisen-Kobalt relativ zu der angelegten externen Span-
nung fällt der Effekt der Magnetostriktion unterschiedlich stark aus. Für eine externe Spannung
von 0.2 · σc, angelegt auf die Probe, konnte eine Anstieg von 5% in der magnetischen Suszepti-
bilität festgestellt werden, wenn der Einkristall parallel zur externen Spannung ausgerichtet ist.
Die gleiche externe Spannung führt zu einem Anstieg von 64% in der magnetischen Suszepti-
bilität, wenn die Raumdiagonale des Einkristalls parallel zur externen Spannung ausgerichtet ist.
Für den Fall des polykristallinem Eisen-Kobalt wurde, bei der erwähnten charakteristischen Span-
nung, ein Anstieg von 41% in der magnetischen Suszeptibilität festgestellt.



Abstract

Magnetostrictive effects are increasingly important in a wide range of applications. There are
applications were magnetostrictive effects are welcomed and actually used in order to indirectly
measure other quantities. This is the case for strain gauges where amourphous magnetostrictive
ribbons are used to indirectly measure a local strain by measuring the magnetic response signal
which is directly related to the inner stress of the ribbon through the magneto-elastic coupling
known as magnetostriction [2].
Contrarily, there are also applications were magnetostriction is an undesired side-effect. This is
the case for GMR sensors where magnetostrictive effects alter the magnetization curve of the
soft-magnetic layer (free layer). This results in a distorted magnetization of the free layer relative
to the fixed layer and therefore measurement of the magnetic field will not be correct.
In the following work a FEM based linear elasticity solver is implemented to solve related elastic
problems. Subsequently a Landau-Lifschitz-Gilbert (LLG) term for magnetostriction in cubic ma-
terials is derived and implemented. Using the micromagnetic FEM-based software magnum.fe [13]
the stress-dependent magnetization curves of monocrystalline and polycrystalline iron-cobalt for
different orientations of external magnetic field relative to external stress are computed. Depend-
ing on the orientation of the iron-cobalt single crystal relative to the external stresses different
magnitudes of magnetostriction are observed. A specific external stress of 0.2 · σc applied on
the specimen leads to an increase in susceptibility of 5% if the single crystal is oriented par-
allel to the external stress. On the contrary the same external stress leads to an increase of
64% in susceptibility if the stress is aligned along the body diagonal of the single crystal. For the
inhomogeneous case of randomly oriented grains an increase of 41% in susceptibility was observed.



Danksagung
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Schließlich möchte ich mich noch bei Freunden und Studienkollegen für das Interesse an meiner
Arbeit bedanken.



Contents

1 Introduction 6

2 Theory 7
2.1 Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Linear Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Elastic moduli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 PDE Problem and variational formulation . . . . . . . . . . . . . . . . . 11
2.1.4 Effective elastic moduli . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Magnetostriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Magnetoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Isotropic magnetostriction . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Magnetostriction for cubic symmetry . . . . . . . . . . . . . . . . . . . 15
2.2.4 Effective magnetostriction . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.5 Uniaxial anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Results 19
3.1 Simple deformations (Elastic moduli) . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Inner stress formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Influence of geometry: long rod . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Effective elastic moduli (Reuss, Voigt, Hill) . . . . . . . . . . . . . . . . . . . . 23
3.5 Inner stress formation for grain structure . . . . . . . . . . . . . . . . . . . . . 26
3.6 2D Stoner-Wohlfarth model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7 Influence of established inner stress on magnetization curve . . . . . . . . . . . 30
3.8 Stress dependent magnetization curves in homogeneous material . . . . . . . . . 31
3.9 Stress dependent magnetization curves in inhomogeneous materials . . . . . . . 34
3.10 Effective magnetostriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Discussion and Outlook 36

References 37



1 Introduction

Magnetostriction was first seen and studied in 1880 by J. Joule. As a simple definition magne-
tostriction can be seen as the deformation of a body caused by a change of magnetization. Or
more abstractly and accurately expressed: magnetostriction denotes the bidirectional coupling of
magnetic and elastic states. This is similar to the piezo-electric effect which is a phenomenon
caused by electric-elastic coupling.
Recently magnetostrictive effects are becoming increasingly important in a wide range of appli-
cations. In some applications magnetostrictive effects are welcomed and actually used in order
to indirectly measure other quantities. This for example is the case in strain gauges where amor-
phous magnetostrictive ribbons are used to indirectly measure a local strain by measuring the
magnetic response signal which is directly related to the inner stress of the ribbon through the
magneto-elastic coupling known as magnetostriction.
Contrarily, there are applications were magnetostrictive effects are an undesired by-product. This
is the case for GMR sensors where magnetostrictive effects alter the magnetization curve of the
soft-magnetic layer (free layer). This results in a distorted magnetization of the free layer relative
to the fixed layer and therefore measurement of the magnetic field will not be correct.
This works is focused on the latter case of undesired magnetostriction in GMR sensors.
To study this effect on a microscopic level various well established techniques are used to make
this complicated physical problem computationally more manageable. One of this techniques is
called finite elements method (FEM) and is widely used in engineering. FEM allows to solve
partial derivative equations (PDE) for complicated geometrical objects by dividing the object into
smaller more manageable blocks. This process is called finite element discretization. In analogues
manner the magnetization of materials can be discretized and computations can be carried out
by a so-called micromagnetic approach. A macroscopic approach would equate solving the ap-
propriate Maxwell equations.
This ideas are already implemented in the FEM-based micromagnetic python library magnum.fe
[13], which is implemented on top of the FEM library FEniCS [11]. All solutions described in this
work will be built as part of magnum.fe.
In order to compute the inner stress of a specimen for various boundary conditions (thermal
stress, surface pressure, etc.) a rather simple solver for linear elasticity is implemented. Plastic
deformatios are not considered.
In the phenomenological Landau-Lifschitz-Gilbert (LLG) micromagnetic theory magnetic effects
are expressed as contributions to the total effective field. Therefore a term for the effective field
of magnetostriction is derived and implemented.
Furthermore magnetization curves for various materials and boundary conditions are obtained
and additionally it is studied how and where effective methods can be used to save computation
time.
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2 Theory

2.1 Elasticity

2.1.1 Linear Elasticity

In continuum mechanics Linear Elasticity is often used as a simplification of the more general
nonlinear theory of elasticity. Using this model the following assumptions are being made [7]:

• the strains in the material are small

• stress is proportional to the strain

• material returns to it’s original shape when load is removed (elastic deformation)

• stress strain relation is independent of the rate of loading or straining

In this case both stress and strain is given by a second-order tensor, σij and εij, and are related
by a fourth-order tensor which is called stiffness tensor Cijkl or compliance tensor Sijkl:

σij = Cijklεkl

εij = Sijklσkl

This formula is often referred to as Hooke’s law.
Instead of the Einstein summation convention which is used above, one could also write it in the
form of a double dot product (dyadic product):

σ = C : ε

ε = S : σ

Tensors of stress and strain are defined as follows (see also Fig. 1):

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz


ε =

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 =

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz


It can be derived from equilibrium of the forces that in linear elasticity both second-order ten-

sors of stress and strain are inherently symmetric [14] and therefore also the fourth-order tensor
connecting both has some symmetry:

σij = σji =⇒ Cjikl = Cijkl

εij = εji =⇒ Cijlk = Cijkl

Because of this symmetries it is possible to write this important relation in the form of a simple
matrix vector multiplication which is called Voigt-Notation:

σi = Cijεj

7



Figure 1: Geometry of stress tensor in model of linear elasticity1

Whereas different conventions for the definition of Voigt-Notation can be used. Commonly the
following is used:

σ =


σ11

σ22

σ33

σ23

σ13

σ12

 , ε =


ε11

ε22

ε33

2ε23

2ε13

2ε12


And the fourth-order stiffness tensor is mapped upon the stiffness matrix as follows:

C =


C1111 C1122 C1133 C1123 C1113 C1112

C2211 C2222 C2233 C2223 C2213 C2212

C3311 C3322 C3333 C3323 C3313 C3312

C2311 C2322 C2333 C2323 C2313 C2312

C1311 C1322 C1333 C1323 C1313 C1312

C1211 C1222 C1233 C1223 C1213 C1212


If one further assumes a cubic material the degrees of freedom of the fourth-order tensor are
reduced to three, because of symmetry reasons:

C =


C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44


And for isotropic materials only two degrees of freedom remain:

1Image taken from: https://de.wikipedia.org/wiki/Spannungstensor
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C =


C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 (C11 − C12)/2 0 0
0 0 0 0 (C11 − C12)/2 0
0 0 0 0 0 (C11 − C12)/2


For this reason stiffness for isotropic materials is often given by two parameters called Lamé
Constants (µ and λ):

C =


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


Or equivalently Hooke’s law for isotropic materials can be written as follows:

σij = 2µεij + λtr(ε)δij

However for anisotropy materials the stiffness matrix (or compliance matrix) is used to describe
elastic properties of the material. Stiffness matrices can be found at the so-called materialspro-
ject [6] which publishes DFT (Density Functional Theory) derived stiffness matrices which can
be used freely.
According to the materialsproject derived stiffness matrices are within 15% of experimental values
[4].
For iron-cobalt (FeCo) the following stiffness matrix is used:

C =


259 154 154 0 0 0
154 254 154 0 0 0
154 154 254 0 0 0
0 0 0 131 0 0
0 0 0 0 131 0
0 0 0 0 0 131

GPa

And a compliance matrix of:

S =


6.9 −2.6 −2.6 0 0 0
−2.6 6.9 −2.6 0 0 0
−2.6 −2.6 6.9 0 0 0

0 0 0 7.6 0 0
0 0 0 0 7.6 0
0 0 0 0 0 7.6

 10−12Pa−1
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2.1.2 Elastic moduli

Instead of the generalized stiffness matrix commonly several specific ratios of stress and strain
are used to characterize materials (see also Fig. 2). The three most important elastic moduli
are:

• Young’s modulus (also called E-modulus)

• Shear modulus

• Bulk modulus

• Poisson ratio

Figure 2: Elastic moduli in linear elasticity2

For this reason an isotropic stiffness can be written in terms of the elastic moduli:

C =
E

(1 + ν)(1− 2ν)


1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2
0 0

0 0 0 0 1−2ν
2

0
0 0 0 0 0 1−2ν

2



For anisotropic materials these moduli are obviously directional dependent and can be visualized
in a three-dimensional plot as seen in Fig. 3. For an isotropic material this visualisation would
simply be a sphere.

2Image taken from: https://agilescientific.com/blog/2016/4/28/all-the-elastic-moduli
3Image taken from open source tool ELATE: http://progs.coudert.name/elate/mp?query=mp-2090
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Figure 3: Spatial dependence of Young’s modulus for FeCo visualized in 3D plot using open source
software ELATE3

2.1.3 PDE Problem and variational formulation

In linear elasticity deformations of a body Ω are given by the following partial differential equation:

−∇ · σ = fvol in Ω

Whereas fvol is the body force per volume unit.

According to Hooke’s law the stress tensor can be expressed in terms of stiffness and strain tensor:

σij = Cijklεkl

And further the strain tensor is given by the displacement vector field u:

ε =
1

2
(∇u+ (∇u)T )

Combined this results in (written as dyadic product):

−1

2
∇ ·
[
C : (∇u+ (∇u)T

]
= fvol

A variational formulation is obtained by forming the inner product of this equation and a vectorial
test function v:

−
∫

Ω

(∇ · σ) · v dx =

∫
Ω

fvol · v dx

Since there are second-order derivatives on the left-hand-side integration by parts is used:

−
∫

Ω

(∇ · σ) · v dx =

∫
Ω

σ : ∇v dx−
∫
∂Ω

(σ · n) · v ds

Here n is the outward normal on the boundary. Therefore σ ·n is a stress vector at the boundary.
Usually this is given as a boundary condition T = σ · n on a specific part of the boundary ∂ΩT

11



(the remaining part is given by dirichlet condition). It follows:∫
Ω

σ : ∇v dx =

∫
Ω

fvol · v dx+

∫
∂ΩT

T · v ds

Summarized the variational formulation is given as:

a(u, v) = L(v) ∀v ∈ V̂ (1)

Whereas:

a(u, v) =

∫
Ω

σ(u) : ∇v dx, (2)

σ(u) =
1

2

(
∇u+ (∇u)T

)
: C (3)

L(v) =

∫
Ω

fvol · v dx+

∫
∂ΩT

T · v ds (4)

2.1.4 Effective elastic moduli

In practice mostly polycrystalline materials are used because they are more simple to produce.
Polycrystalline materials are composed of a large number of grains. A grain is a volume element
having the same orientation. The sum and distribution of those grains is called the texture of
the material.
In order to calculate the effective elastic moduli analytically one first of all has to be able to rotate
the fourth-order tensor according to the respective grain. This can be achieved by applying a
conventional rotation matrix for each order successively:

C ′ijkl = CmnopRlpRkoRjnRim

If one considers an anisotropic material with uniform randomly oriented grains the effective stiff-
ness can be analytically solved by taking the average of stiffness or compliance tensor.
This is only valid if one assumes no interaction of grains at all. Further there are two possible
ways to take the average. Either the average of stiffness is taken - this is called Voigt Method.
Here implicitly a constant strain is assumed. Or alternatively the average of compliance is taken
- this is called Reuss Method. Here implicitly a constant stress is assumed [10].

Voigt Method

C̄ijkl =

∫
all possible R

CmnopRlpRkoRjnRim

For cubic materials this results in the following so-called Voigt effective elastic constants:

EV =
(C11 − C12 + 3C44)(C11 + 2C12)

2C11 + 3C12 + C44

, GV =
C11 − C12 + 3C44

5
, νV =

C11 + 4C12 − 2C44

4C11 + 6C12 + 2C44

Corresponding Lamé constants are given by:

µ =
1

5
(C11 − C12 + 3C44)

λ =
(C11 + 4C12 − 2C44)(C11 − C12 + 3C44)

5(3C11 + 7C12 − C44)

(5)
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Reuss Method

S̄ijkl =

∫
all possible R

SmnopRlpRkoRjnRim

For cubic materials this results in the following so-called Reuss effective elastic constants:

ER =
5

3S11 + 2S12 + S44

, GR =
5

4S11 − 4S12 + 3S44

, νR = − 2S11 + 8S12 + S44

6S11 + 4S12 + 2S44

Corresponding Lamé constants are given by:

µ =
5

8S11 + 12S12 + S44

λ =
2S11 + 8S12 − S44

(S11 + 2S12)(8S11 + 12S12 + S44)

(6)

Empirically it has been shown that these methods yield upper and lower bounds of the actual
effective elasticity. Therefore taking the mean of both yields good results. This method is called
Hill Method:

EH =
ER + EV

2
, GH =

GR +GV

2
, νH =

EH
2GH

− 1 (7)
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2.2 Magnetostriction

2.2.1 Magnetoelasticity

It is well-known that ferromagnetic materials experience a change in shape when an external
magnetic field is applied. Or more formally speaking, magnetostriction describes the fact that
magnetic field and elastic strain are coupled. For this reason the term magnetoelasticity is often
used.
This effect is responsible for the low-pitched humming sound which transformators emit when
connecting to an oscillating AC source. In this case oscillating currents produce an oscillating
magnetic flux which results in oscillating elastic strain and therefore propagation of sound waves.
The inverse effect, in which elastic strain (or elastic stress) results in a change of magnetization
is called Villari Effect.

2.2.2 Isotropic magnetostriction

As soon as an isotropic material is considered magnetic it already suffers from a change in volume
because of an effect called volume magnetostriction which is quantified by the volume magne-
tostriction coefficient λα,0 [5].
If a magnetic field H is applied upon this magnetic isotropic material, a strain in the direction of
the field, given by λ‖, and perpendicular to the field, given by λ⊥, is measured.
Since this change of length is volume conserving it follows for technical saturation:

λ‖ = −2λ⊥ = λs

This defines saturation magnetostriction for isotropic materials. Given that λs can be both
positive and negative, there are already two modes for magnetostriction in isotropic materials
(see Fig. 4).

Figure 4: Volume magnetostriction and two modes of magnetostriction in isotropic materials
when magnetic field is applied4.

4Image taken from [5]
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2.2.3 Magnetostriction for cubic symmetry

In order to find an expression for magnetostriction of cubic materials one has to firstly express
elastic energy and magnetoelastic energy and then minimize the sum of those energies.
In a formalism introduced by Callen[5] the energies are approximated by the following second-
order expressions:
Magnetoelastic energy:

Emel =
Bα

3
(εxx + εyy + εzz) +Bγ,2

[
2

3

(
εzz −

εxx + εyy
2

)(
m2
z −

m2
x +m2

y

2

)
+

1

2
(εxx − εyy)(m2

x −m2
y)

]
+2Bε,2(εyzmymz + εzxmzmx + εxymxmy)

Here mx, my, mz refers to the reduced magnetization, Bα, Bγ,2, Bε,2 are the magnetoelastic
coupling constants, whereas the notation is based on symmetry group considerations [5] and ε
refers to the strain tensor.

Elastic energy:

Eel =
1

2
cα

1

3

(
εxx + εyy + εzz

)2
+

1

2
cγ

[
2

3

(
εzz +

εxx + εyy
2

)2

+
1

2

(
εxx − εyy

)2

]
+ cε

(
ε2yz + ε2zx + ε2xy

)
Here cα, cγ and cε refers to the stiffness tensor components. Whereas the notation is again
based on symmetry group considerations [5]. Minimizing the sum of those energies shows that
magnetostriction is given by the six components of strain:

εxx + εyy + εzz = −B
α

cα

εzz −
εxx + εyy

2
= −B

γ,2

cγ

(
m2
z −

m2
x +m2

y

2

)
εxx − εyy = −B

γ,2

cγ
(
m2
x −m2

y

)
εyz = −B

ε,2

cε
mymz

εzx = −B
ε,2

cε
mzmx

εxy = −B
ε,2

cε
mxmy

Magnetostriction coefficients are then defined by:

λα,0 = −B
α

cα
, λγ,2 = −B

γ,2

cγ
, λε,2 = −B

ε,2

cε

There are certainly higher-orders terms of magnetostriction but these can be neglected because
they are reasonable small especially at room temperature.
Therefore magnetostriction can be described by a fourth-order tensor which is defined by two
coefficients:

ε = λ : (mmT )
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or

εmij =

{
3
2
λ100mimj, i = j

3
2
λ111mimj, i 6= j

Volume magnetostriction is neglected here because we are only interested in relative anisotropic
expansion.
Now strain can be expressed in terms of elastic and magnetic contributions:

ε = εel + εm

And elastic energy therefore written as [9]:

Eel =
1

2

(
ε− εm(~m)

)
: C :

(
ε− εm(~m)

)
In order to obtain the effective magnetic field ~Heff the functional derivation with respect to the
reduced magnetization has to be taken. This results in:

~Heff = − 1

µ0 Ms

∂E

∂ ~m
=

1

µ0 Ms

C
(
ε− εm(~m)

)
· ∂ε

m(~m)

∂ ~m

Please note that the prefactor 1
2

of elastic energy and the minus sign in the definition of effective
field vanishes because of taking the derivative.
In the next step another approximation is done and the absolute strain εm(~m) is neglected but
partial derivative of εm(~m) is still considered:

~Heff =
1

µ0 Ms

C
(
ε−��

�HHHεm(~m)
)
· ∂ε

m(~m)

∂ ~m

Therefore using Hook’s law the effective field can be expressed in terms of stress σ:

~Heff =
1

µ0 Ms

σ :
∂εm(~m)

∂ ~m

In order to take the functional derivative of εm(~m) in respect to ~m analytically the symmetry of
magnetostriction tensor is used as shown by A. Visintin [15]:

λijpg = λijqp

Therefore, the endresult for the effective magnetic field as it will be used in the phenomenological
Landau-Lifschitz-Gilbert (LLG) micromagnetic theory is simply:

Heff,k =
2

µ0 Ms

σijλijkqmq (8)

Please note the prefactor 2 which is a consequence of using the symmetry of magnetostriction
tensor as shown by A. Visintin [15].
Overall for imagination purposes there is a very elegant way of expressing the energy contribution
from magnetostriction [8]:

Eel = −3

2
λ100

3∑
i=1

σiiM
2
i −

3

2
λ111

3∑
i 6=j

σijMiMj

It is important to note that this formula implicitly assumes a single crystal oriented parallel to
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coordinate system.
Also it is apparent that the second term vanishes, if there are no shear stresses.

For thin FeCo films, as there are used in GMR sensors, the following magnetostriction con-
stants are used [3]:

λ100 = 18 · 10−6

λ111 = 101 · 10−6

2.2.4 Effective magnetostriction

Similar to elasticity also magnetostriction is coupled to the crystal structure. Therefore polycrys-
talline materials can be described by effective constants according to the texture of the material.
Since magnetostriction - as derived in the previous sections - is sufficiently described by two
magnetostriction coefficients this problem is much simpler:
Usually in the case of uniform randomly oriented grains saturation magnetostriction is used.
Instead of a material consisting of uniform randomly oriented grains one can aquivalently consider
one single grain and sum over all possible direction.
This approximation is only valid when [5]:

• Magnetostriction constants λ100 and λ111 have the same sign and similar order of magnitude

• Elastic constants are fairly isotropic

• Polycrystalline material has no texture (grains are uniform randomly oriented)

This results in the following expression for saturation magnetization:

λs =
4

15
λ111 +

2

5
λ100

Alternatively one can calculate an effective magnetostriction by summing over all possible direc-
tion and effectively building the average of the fourth-order magnetostriction tensor λ. This can
be done similar to effective stiffness by using Voigt, Reuss or Hill-Method.

2.2.5 Uniaxial anisotropy

Many magnetic effects in cubic materials can be expressed in the form of a cubic anisotropy.
However if one assumes uniaxial stress it is possible to express magnetostriction in the form of
an uniaxial anisotropy.
A second-order uniaxial anisotropy can be written as:

~H =
2Kuni

µ0 Ms

~Kaxis( ~Kaxis · ~m)

Here ~Kaxis denotes the anisotropy axis (direction of least energy) and Kuni the anisotropy con-
stant.
In case of a single cubic crystal and an applied stress along the crystal axis x, ~Kaxis simply points
in the direction of x and the Kuni is given by:

Kuni =
3

2
λ100σxx
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Whereas σxx equals the applied stress in the direction of x.

In case of a polycrystalline material an effective magnetostriction has to be used. Commonly
the saturation magnetostriction is used but also other approximations of effective magnetostric-
tion can be used as seen in section 2.2.4. In that case the following expression for Kuni is used:

Kuni =
3

2
λsσ

Whereas σ refers to the applied stress and ~Kaxis point in the direction of this stress. This relation
is also used in the analytical model derived by B. Bergmair [2].
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3 Results

Most of the following sections are also implemented as unit tests in magnum.fe.

3.1 Simple deformations (Elastic moduli)

In a first step the deformation of a simple cubic body is solved.
For this a fixed stiffness matrix of iron-cobalt (FeCo) is used and boundary conditions are applied:
the lower face is fixed by dirichlet conditions and on the upper face a compressive stress is applied.
Resulting deformations for different pressures are shown in Fig. 5. As a simple check the change
of expansion in direction of applied stress and in perpendicular direction is measured and from
this elastic moduli are calculated (denoted by Young’s modulus Emeasured and Poisson’s ratio
νmeasured).
Elastic moduli have to conform with values directly calculated out of stiffness tensor of the spe-
cific material (Ecalc and νcalc).
Results for different stresses and average relative expansion parallel and perpendicular to the
applied stress are as follows:

Compressive stress Emeasured νmeasured ε‖ ε⊥
10 GPa 156.14 GPa 2.994 -0.6% 0.2%
20 GPa 156.14 GPa 2.994 -1.3% 0.4%
30 GPa 156.14 GPa 2.994 -1.9% 0.6%
40 GPa 156.14 GPa 2.994 -2.6% 0.9%

Stiffness and compliance matrix of FeCo in Voigt notation is given by:

C = 109Pa ·


259 154 154 0 0 0
154 259 154 0 0 0
154 154 259 0 0 0
0 0 0 131 0 0
0 0 0 0 131 0
0 0 0 0 0 131



S = 10−12Pa−1 ·


6.9 −2.6 −2.6 0 0 0
−2.6 6.9 −2.6 0 0 0
−2.6 −2.6 6.9 0 0 0

0 0 0 7.6 0 0
0 0 0 0 7.6 0
0 0 0 0 0 7.6


Considering Hooke’s law it is very simple to calculate Young’s modulus and Poisson’s ratio an-
alytically for this specific case. Here the stress tensor σ consists only of one entry σ22 which is
the applied stress. Therefore:

Ecalc =
1

s22

= 144.93GPa

νcalc = −s22

s12

= 2.65
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The comparison of those values with simulated values shows 8% deviation in terms of Young’s
Moduli and 13% in terms of poisson’s ratio.

Figure 5: Deformations for 10GPa, 50GPa and 100GPa as produced by the elasticity solver (Eq.
1-4). Poisson’s ratio can be seen on bottom-right (blue=10Gpa, red=100GPa).
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3.2 Inner stress formation

When a stress is applied on one face and the opposite face is fixed an inhomogeneous inner stress
is established as seen in Fig. 6.
On the other hand if a force is applied on both faces in a compressive manner a homogeneous
inner stress is established as seen in Fig. 7.
The latter case resembles the deformation which is caused in the case of thermal expansion for
example.
If this is the case a constant stress can be assigned throughout the whole mesh and no boundary
conditions or linear elasticity solver has to be used.

Figure 6: Inner stress of two separate cubes. Bottom (y=0) is fixed with Dirichlet boundary
conditions on the top a force of 200MPa and 400MPa respectively is applied (Eq. 1-4
for linear elasticity are solved)
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Figure 7: Inner stress of a cube. On both sides a force of 400MPa is applied in a compressive
manner. A constant stress is established.

3.3 Influence of geometry: long rod

As seen in Fig. 6 inner stress in a cube varies significantly throughout the cube and this gets
worse if bigger forces are applied as seen for 400MPa which is the yield strength (end of elastic
region) of FeCo.
In order to see if this gets worse for different geometries the same elastic problem is solved for a
long rod (see Fig. 8).

Figure 8: Inner stress of a long rod. Bottom (y=0) is fixed, on the top a force of 200MPa and
400MPa respectively is applied (Eq. 1-4 for linear elasticity are solved).

Similar to the compressed cube, a compressed long rod with the same force applied on both sides
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again shows a constant inner stress as seen in Fig. 9.

Figure 9: Inner stress of a long rod. On both sides a force of 400MPa is applied in a compressive
manner. A constant stress is established (Eq. 1-4 for linear elasticity are solved).

3.4 Effective elastic moduli (Reuss, Voigt, Hill)

As discussed in section 2.1.4 commonly polycrystalline materials are used in practice. Therefore a
mesh with randomly oriented grains has to be build [1] and a respectively rotated stiffness tensor
has to be assigned to each grain. Then the elastic problem can be solved as usual.
A typical grain structure is shown in Fig. 10. Rotations of stiffness tensors are done according
to the following random angles:

θ = 2π · ξ′

φ = arccos(1− 2 · ξ′′)
α = 2π · ξ′′′

(9)

Here ξ′, ξ′′ and ξ′′′ are random numbers between 0 and 1.
The angles θ and φ define the normalized random rotation axis by the following vector:

~r =

sinφ cos θ
sinφ sin θ

cosφ


Together with the random angle α a rotation matrix is built using the exponential definition of
rotation matrices:

R = exp(1 · α~r)

Subsequently the rotation matrix is applied upon the respective stiffness tensor of each grain:

C ′ijkl = CmnopRlpRkoRjnRim
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Figure 10: Example for a grain structure used in simulations. Different colors represent different
domains.

Figure 11: Blue points shows angular distribution of grain orientation as generated by Eq. 9.
Cleary a uniform distribution is established 5.

This results in uniform distributed orientations on a sphere surface.
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In order to compare the elastic moduli of a polycrystalline material with the various analytical
solutions mentioned in Section 2.1.4, a simple elastic problem (with grain structure) is formulated
and Young’s modulus is measured.
Materials with various degrees of anisotropy are used to get an overview about the accuracy of
analytical solutions.
The analytical solution according to Reuss seems to best fit the solution of the implemented
solver across all tested materials. Therefore, for simple problems a homogeneous mesh (without
domains) with an effective stiffness tensor can be used which is much more efficient.
Results are shown in Fig. 12.

Figure 12: Young’s moduli are divided by literature values to better visualize results for different
materials. Zener-Ratio is included as a measure of anisotropy for the respective mate-
rial. ”Solver” corresponds to solving Eq. 1-4 for individually randomly oriented grains.
For ”Voigt”, ”Reuss” and ”Hill” a homogen mesh with effective stiffness constants is
used. See Eq. 5, 6 and 7.
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3.5 Inner stress formation for grain structure

As shown in the previous section it is possible to use an effective stiffness tensor to approximate
the behaviour of a polycrystalline material. But magnetostriction might be sensible to fluctuations
of stress inside the structure. For this reason similar to Section 3.2 some simple elastic problems
are solved and inner stress is obtained.
Firstly a stress is applied on one side of a mesh on the other side is fixed through dirichlet
boundary conditions.
In contrast to section 3.2 a grain structure with randomly oriented grains is used. Results are
similar (see Fig. 13) to the case of using a homogeneous mesh but with additional strong
fluctuations because of the randomly oriented grains.
Secondly a stress is applied on both sides in a compressive manner similar results are obtained
(see Fig. 14).
Therefore, in case of grain structure the elasticity solver has to be used in every case since no
constant stress is established and fluctuations are too strong to be neglected.
This fluctuations are visible in the displacement field as shown in Fig. 15 and also in the stress
tensor field (see Fig. 16). .

Figure 13: Inner stress of a grain structure with randomly oriented grains. Here the left side is
fixed, on the right side a force of 400MPa is applied. Eq. 1-4 for linear elasticity are
solved.

5Image taken from: http://corysimon.github.io/articles/uniformdistn-on-sphere/
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Figure 14: Inner stress of a grain structure. On both sides a force of 400MPa is applied in a
compressive manner. Big fluctuations are visible. Eq. 1-4 for linear elasticity are
solved.

Figure 15: On the left-hand side the setup is shown. The white arrows represent the applied
stress (400MPa) and the white bar indicates that the bottom side is fixed by dirichlet
boundary conditions. To the right components of displacement field u are shown in
the order of ux, uy and uz. The displacement field shows a cloudy distribution because
of the randomly oriented grains. Eq. 1-4 for linear elasticity are solved.

27



Figure 16: On the left-hand side the setup is shown. The white arrows represent the applied
stress (400MPa) and the white bar indicates that the bottom side is fixed by dirichlet
boundary conditions. To the right components of stress tensor field σ are shown in
the order of σxx, σyy and σzz. Eq. 1-4 for linear elasticity are solved.

3.6 2D Stoner-Wohlfarth model

One of the most simple model for investigating magnetic effects is the so-called Stoner-Wohlfarth
model. This two-dimensional model consists of a ferromagnetic material with an uniaxial mag-
netic anisotropy (easy axis) and a perpendicular directed external magentic field.
As shown by Bergmair et al. [2] the influence of an applied stress (parallel to the external field) in
a Stoner-Wohlfarth model is described by a linear material law which saturates at the stress de-
pendent anisotropy field HAσ. The magnetization in the direction of the external field is given by:

m‖H(H, σ) =

{
H
HAσ

0 < H < HAσ

1 HAσ ≤ H

Where the stress dependent anisotropy field is given by:

HAσ =
2Kuni − 3λsσ

Js
=

(
1− σ

σc

)
HA

Here Js is the saturation polarization, Kuni is the anisotropy constant and HA is the effective
field of the uniaxial anisotropy:

Js = µ0Ms

HA =
2Ku

Js

This is just a simple case of the already derived tensorial effective field of magnetoelasticity:
Since the easy axis is directed perpendicular to the applied uniaxial stress the stress dependent
effective anisotropy field is simply given by the effective uniaxial anisotropy field HA (see 2.2.5)
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subtracted by the effective field of magnetoelasticity for the simplified case of uniaxial applied
stress:

HAσ = HA −
2

Js

3

2
λsσ =

2Kuni − 3λsσ

Js

In case of applied stress parallel to easy axis the subtraction changes to an addition.
Comparison of analytical results and numerical results as obtain by FEM-simulation is shown in
Fig. 17.
As an orientation value the following characteristic stress is introduced [2]:

σc =
2Kuni

3λs

Figure 17: Comparison of analytical results of stress dependent magnetization curves6 versus
numerical results of FEM-simulation. A homogen mesh with constant stress is used.
The introduced LLG term for magnetostriction (see Eq. 8) is used. A homogeneous
mesh with dimensions 10x10x10 and 1000 cells was used.

Figure 18: Similar to Stoner-Wohlfarth model an uniaxial magnetic anisotropy (easy axis) is di-
rected perpendicular to an external H-field. A constant stress parallel to H-field is
applied.

6Image taken from [2]
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3.7 Influence of established inner stress on magnetization curve

As pointed out in the previous sections the way how boundary conditions are defined matters
and changes what kind of inner stress is established. But since the average of inner stress is
always the same for all cases it does not change magnetization curves. This is due to the fact
that magnetization curves are measured by taking the average over the whole mesh either way.
Results that prove this are shown in Fig. 19. This is indifferent of the dimension of the mesh
and does also hold for inhomogeneous structures like grain structures. This is shown in Fig. 20.

Figure 19: Stress dependent magnetization curves in homogeneous FeCo for different boundary
conditions and therefore different fluctuations of inner stress. Clearly in all cases same
magnetization curves are measured because specific fluctuations in magnetization get
averaged out. Equations for linear elasticity (Eq. 1-4) and magnetostriction (Eq. 8)
are solved. A homogenous mesh with dimensions 1200x200x5 (nm) and 1000 cells
was used. As applied stress the yield strength of FeCo was chosen (400 MPa).

Figure 20: Stress dependent magnetization curves in inhomogeneous (grain structure) FeCo for
different boundary conditions and therefore different fluctuations of inner stress. There
is no significant deviation in magnetization curves. Same as in homogeneous case the
specific fluctuations in magnetization get averaged out. Equations for linear elasticity
(Eq. 1-4) and magnetostriction (Eq. 8) are solved. An inhomogenous mesh with
dimensions 1200x200x5 (nm), 63885 cells and 139 grains was used. As applied stress
the yield strength of FeCo was chosen (400 MPa).
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3.8 Stress dependent magnetization curves in homogeneous material

In order to research the effect of magnetostriction in homogeneous material further, magnetiza-
tion curves for differently oriented applied stresses are obtained.
In the following a directly assigned constant stress is used since it is computed the fastest because
no elastic problem has to be solved. Results are shown in Fig. 22.
Firstly it is noted that whether stress is applied parallel to easy axis or external field just changes
the sign of magnetoelastic contribution as suggested in previous section.
Accordingly for a stress applied with 45 degrees relative to easy axis a stress independent mag-
netization curve is measured (which just resembles a superposition of the two former cases).
Consequently, for a stress applied with -45 degress relative to easy axis the contribution of mag-
netization of magnetoelasticity doubles.
There is still another degree of freedom which is not considered in the four pictured cases and
that is the orientation of the FeCo crystal (see Fig. 21). As pointed out in section 2.2.3 the
second term vanishes if the crystal is oriented parallel to the coordinate system and no shear
stresses are at work. Since λ111 of FeCo is far bigger than λ100 this makes a huge difference.
Therefore, the same four cases are computed with the FeCo crystal being rotated in a way that
the body diagonal is parallel to the coordinate system. Results are shown in Fig. 23.

Figure 21: For the left-hands-side the cubic crystal is oriented parallel to the coordinate system
(minimal magnetostriction). For the right-hand-side the crystal is rotated and the
same force (indicated by the red arrow) acts along the body diagonal of the crystal
(maximal magnetostriction).
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Figure 22: Minimal magnetostriction (see Fig. 21): Stress dependent magnetization curves
in homogeneous FeCo for different stresses varied in orientation relative to the easy
axis (dotted line) and magnitude. The homogeneous material is rotated in a way to
show minimal magnetostriction (no shear stresses). A constant stress and Eq. 8 is
used. A homogeneous mesh with dimensions 1200x200x5 (nm) was chosen. As applied
stress the characteristic stress σc multiplied by the number given in the plot was used.
Additional simulation parameters: Kuni = 1920, Js = 1T , Aex = 2 · 10−11 J

m
.

.
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Figure 23: Maximal magnetostriction (see Fig. 21): Stress dependent magnetization curves
in homogeneous FeCo for different stresses varied in orientation relative to the easy
axis and magnitude. The homogeneous material is rotated in a way to show maximal
magnetostriction (high shear stresses). A constant stress and Eq. 8 is used. A
homogeneous mesh with dimensions 1200x200x5 (nm) was chosen. As applied stress
the characteristic stress σc multiplied by the number given in the plot was used.
Additional simulation parameters: Kuni = 1920, Js = 1T , Aex = 2 · 10−11 J

m
.

.
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3.9 Stress dependent magnetization curves in inhomogeneous
materials

Similar to the previous section four test cases with different orientation of applied stress and
external magnetic field are build. Contrarily to the previous section an inhomogeneous material
is used.
It has already been shown that all types of stress result in the same magnetization curves.
Therefore, a constant stress is assigned and grains are randomly oriented in terms of stiffness and
magnetostriction.
The resulting magnetization curves are qualitatively identical (see Fig. 24). In terms of the
magnitude of magnetostriction an average between the homogenous minimal case (see Fig. 22)
and homogeneous maximal case (see Fig.23) seems to be obtained.

Figure 24: Stress dependent magnetization curves in polycrystalline FeCo for different stresses
varied in orientation relative to the easy axis and magnitude. A constant stress and Eq.
8 is used. A inhomogeneous mesh with dimensions 1200x200x5 (nm), 63885 cells and
139 grains was chosen. As applied stress the characteristic stress σc multiplied by the
number given in the plot was used. Additional simulation parameters: Kuni = 1920,
Js = 1T , Aex = 2 · 10−11 J

m
, grain diameter = 40nm.
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3.10 Effective magnetostriction

For polycrystalline materials rotation of the stiffness but also magnetostriction constants have to
be considered.
Instead of rotating the magnetostriction tensor for each grain individually an effective magne-
tostriction for the whole material can be approximated as shown in Section 2.2.4.
To investigate if these new methods will lead to better results than the commonly used satura-
tion magnetostriction λs a test case like in the previous section is used. Then the magnetization
curves for different approximation methods are computed. Unfortunately as displayed in Fig. 25
these newly introduced approximation methods for magnetostriction yield no better results then
the commonly used saturation magnetostriction but still results are very close to the real curves
in the case of iron-cobalt.

Figure 25: Stress dependent magnetization curves in a homogeneous (monocrystalline) material
of FeCo for different approximated effective magnetostriction constants (saturation
magnetostriction, Voigt Method, Reuss Method) and for comparison with the ”real”
magnetization curve of randomly oriented grains. A constant stress and Eq. 8 is used.
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4 Discussion and Outlook

In this work many important observations have been made: First of all, both thermal stress
and surface pressure result in different inner stress states. But in terms of magnetization curves
no significant difference is observed. As a consequence, for simple cases and geometries it is
sufficient to assign a constant inner stress and no linear elasticity solver has to be used. This
holds for homogeneous or monocrystalline as well as inhomogeneous or polycrystalline materials.
Further, in the case of an uniaxial stress, magnetostriction can be expressed as a simple unixial
anisotropy with an axis along the applied stress and a specific stress dependent constant as derived
in Section 2.2.5.
Furthermore polycrystalline materials can be approximated with effective stiffness or compliance
tensors. The same approach can be used for magnetostriction which is a fourth-order tensor
as well. Results of the Voigt Method applied on magnetostriction are similar to the commonly
used saturation magnetostriction. Unfortunately no improvement in accuracy could have been
observed.
The most important observation though was a massive increase of magnetostriction if stress was
applied in a way that iron-cobalt crystals experience a shear stress.
This is obviously due to the fact that magnetostriction along the body diagonal λ111 is much
higher in contrast to the magnetostriction along the side length of the crystal λ100.
This fact can be utilized to reduce magnetostrictive effects in materials. As shown in Fig. 22
and Fig. 23 a specific external stress of 0.2 · σc leads to an increase in susceptibility of 5% if the
single crystal is oriented parallel to the external stress. On the contrary the same external stress
leads to an increase of 64% in susceptibility if the stress is aligned along the body diagonal of
the single crystal. For the polycrystalline case of randomly oriented grains an increase of 46% in
susceptibility was observed. This effect in polycrystalline materials can be reduced by making sure
that all crystals are at least on a plane parallel to the uniaxial stress. This reduces overall shear
stresses and therefore magnetostrictive effects. Manufacturing the free layer for GMR sensors in
that way should be further studied.
In addition, all computations done in this work can of course be carried out for Nickel (Ni) which,
in contrast to FeCo, has a positive magnetostriction and is used in many applications for that
reason. It might be possible to construct a GMR sensor consisting of alternating Ni and FeCo
slices or layers to obtain a very small overall magnetostriction. Similar ideas but with different
objectives have already been studied [12].
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