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Abstract
The question whether all hyperbolic groups are residually finite has remained
open since Mikael Gromov posed it in 1987 in [14], although it has received a lot
of attention. Trusting Daniel Wise’s expertise in [50], most workers in the field
expect a negative answer. Thus the search for a counterexample is in progress.
One candidate for a non-residually finite, but hyperbolic group is the Heineken
group.
In order to study it, we first need to understand the two fundamental properties
of hyperbolicity and resiudal finiteness and explore equivalent definitions and
(non-)examples. Furthermore the Hopf-property of groups is closely connected,
as every finitely generated residually finite group is Hopfian.
A toolkit for determining whether a finitely generated group is residually finite
is needed: It contains the concept of Tietze transformations, whose value is
illustrated with a handful of examples. Then the classical result of Malcev affirms
the residual finiteness of finitely generated linear groups. As the third tool serves
Bass-Serre theory, which studies groups acting on trees. We work towards its
fundamental result, the Structure Theorem.
The third Chapter is dedicated to the application and benefit of these tools by
means of well-studied examples. Different arguments proving that free groups are
residually finite are explored. The family of Baumslag-Solitar groups BS(m,n)
for the integer pair (m,n) is studied. We do not only work through the conditions
on m and n that make BS(m,n) a (non-)residually finite and/or (non-)Hopfian
group, but also the Isomorphism Problem is tackled. Lastly, examples of groups
that are non-residually finite by absence of finite quotients such as the famous
Higman group are introduced.
This builds the foundation for focusing on the Heineken group. For it to be a
valid candidate, we need to make sure that it is not finite (and thus trivially
residually finite) and that it is hyperbolic. In order to do so the concept of
automatic groups is crucial. The algorithm to find a shortlex automatic structure
is explained. After trying to check the Heineken group for residual finiteness
with the tools at hand, we try to make a first step towards finding an answer
by focusing on finding finite quotients. Again, computational group theory is of
use: The Coset Enumeration and the Low Index Method are explained. Further
investigations with computational methods are suggested.



Die Frage, ob alle hyperbolischen Gruppen residuell endlich sind, ist offen, seit-
dem sie von Mikael Gromov in 1987 in [14] gestellt wurde, obwohl ihr schon
viel Aufmerksamkeit gewidmet wurde. Vertraut man Daniel Wise’s Expertise in
[50], erwarten die meisten Forscherinnen und Forscher dieses Fachgebietes eine
negative Antwort. Darum ist die Suche nach einem Gegenbeispiel im Gange.
Ein Kandidat für eine nicht residuell endliche, aber hyperbolische Gruppe ist
die Heineken-Gruppe.
Um sie zu erforschen müssen wir zuerst die beiden fundamentalen Eigenschaften
der Hyperbolie und der residuellen Endlichkeit verstehen und equivalente Def-
initionen und Beispiele untersuchen. Außerdem ist die Hopf-Eigenschaft von
Gruppen eng mit residueller Endlichkeit verbunden, da jede endlich erzeugte,
residuell endliche Gruppe Hopf ist.
Hilfsmittel um festzustellen, ob eine endlich erzeugte Gruppe residuell endlich
ist, werden benötigt: Das erste sind die Tietze-Transformationen, deren Nutzen
anhand von einigen Beispielen illustriert wird. Darauf folgt das klassische Re-
sultat von Malcev, das bestätigt, dass alle endlich erzeugten, linearen Gruppen
residuell endlich sind. Als drittes Hilfsmittel dient die Bass-Serre-Theorie, in der
es um Gruppen geht, die auf Bäume wirken. Wir erarbeiten ihr fundamentales
Resultat, den Struktursatz.
Das dritte Kapitel widmet sich anhand von wohlbekannten Beispielen den An-
wendungen und dem Nutzen dieser Hilfsmittel. Unterschiedliche Argumente,
die beweisen, dass freie Gruppen residuell endlich sind, werden vorgestellt. Die
Familie der Baumslag-Solitar-Gruppen BS(m,n) für das Paar von ganzen Zahlen
(m,n) wird untersucht. Nicht nur alle Bedingungen an m und n, die BS(m,n)
zu einer (nicht) residuell endlichen und/oder (nicht) Hopfschen Gruppe machen,
werden ausgearbeitet, sondern auch das Isomorphismus-Problem wird gelöst.
Abschließend werden Gruppen wie die berühmte Higman-Gruppe vorgestellt, die
aufgrund des Fehlens von endlichen Quotienten nicht residuell endlich sind.
Damit ist die Basis geschaffen, um den Fokus auf die Heineken-Gruppe zu legen.
Um zu zeigen, dass sie ein valider Kandidat ist, müssen wir uns versichern,
dass sie nicht endlich (und damit trivialerweise residuell endlich) und hyper-
bolisch ist. Dafür ist das Konzept von automatischen Gruppen essentiell. Der
Algorithmus, um eine shortlex-automatische Gruppe zu finden, wird erklärt.
Nach dem Versuch mit den entwickelten Hilfsmitteln zu prüfen, ob die Heineken-
Gruppe residuell endlich ist, versuchen wir einen ersten Schritt in Richtung einer
Antwort zu machen, indem wir uns auf die Suche nach endlichen Quotienten
fokussieren. Auch hier ist computerunterstützte Gruppentheorie von Bedeutung:
Nebenklassen-Numerierung und die Niedrige-Index-Methode werden erklärt und
weitere Forschungsansätze vorgeschlagen.
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1 Introduction

Ever since in [14], Gromov suggested to treat groups as geometric objects and
gave the definition of a hyperbolic group, finding a connection of hyperbolicity
and other group theoretic properties was of great interest. Although many prop-
erties have been understood, one intriguing question, already posed in Gromov’s
original work [14], remains open: Is every hyperbolic group resiudally finite?
While many mathematicians like Wise in [50] and in [25] with I. Kapovich, Agol,
Groves and Manning in [1] or Arzhantseva in [3] work on exploring equivalent
statements and connected conjectures, it is also tempting to answer the question
according to common beliefs with "no" by giving a counterexample.
In order to be able to work in this direction, two developments need to be
retraced: On the one hand, results essential for hyperbolic groups and residually
finite groups need to be understood. It is important to work extensively with
equivalent definitions and well-known examples to get a feeling for the properties
and methods to determine them. One the other hand, a suitable candidate for a
counterexample needs to be found. One might be the Heineken group. It has
been in the center of attention since the 1980’s, when Heineken asked in private
communication with Neubüser, whether a certain finitely generated group - now
called Heineken group - is trivial or at least finite, since its presentation can
be viewed as the generalization of a presentation of a group that turned out to
be trivial. As often seen, it can be hard to find an answer to the question of
finiteness of a group.
A lot of computational effort was put to finding finite quotients of the Heineken
group in order to prove that it is finite. But only a handful of finite quotients
were determined. From 1988 until the introduction of automatic structures in the
1990’s no progress at all was made - but the implementation of the algorithm to
find an automatic structure was a big game changer as discussed in [20]. It proved
that the Heineken group is infinite - in contrast to Heineken’s conjecture. Also,
with automaticity it can be proven that the Heineken group is hyperbolic. So
the research focus shifted to answering whether the Heineken group is residually
finite. Since it has turned out to be hard to find finite quotients, it might not
have a lot of them. That could make proving non-residual finiteness easier than
in other groups. We aim to explore both research direction from scratch.

We start with a reminder of two definitions that are crucial for everything
forthcoming. All further important fundamental group theoretical concepts can
be looked up in [5].

Definition 1.1. Let F be a group and S a set with a map i : S → F . F is
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called free over S if for every group H and for every map j : S → H there is a
unique homomorphism f : F → H such that f ◦ i = j.

It is easily checked that equivalently we can use the following:

Definition 1.2. A group F is called a free group generated by S if the set S
generates F freely and there are no non-trivial relations between elements of F .

Definition 1.3. Let F be a free group over S. The cardinality of S is called
the rank r of the group, i.e. r = rank(F ) := |S|.

Remark 1.1. We often denote a free group of rank r ≥ 2 by Fr and the free
group generated by the set S by FS .

Example 1.1.

(i). The free group generated by the empty set is the trivial group.

(ii). The free group generated by S = {s} is isomorphic to Z.

Definition 1.4. Let G be a group generated by the set S. Then the Cayley
graph Cay(G,S) of G with respect to S is a (often coloured,) directed graph.
Its vertex set V (Cay(G,S)) is identified with G, so every element g ∈ G has
an assigned vertex v ∈ V (Cay(G,S)). For every g ∈ G and s ∈ S, there is a
directed edge (g, gs) ∈ E(Cay(G,S)), connecting the vertices g and gs.

Example 1.2. Since a free group has no non-trivial relations, its Cayley graph
with respect to a free generating set cannot contain any circuits and is therefore
a tree. Also, the converse is true: A group whose Cayley graph is a tree, has to
be free, as shown in [5, p. 65, Proposition 8.1].

1.1 Hyperbolic Groups

Unless stated otherwise, all proofs in this chapter are guided by Bowditch’s
lecture notes [6] and Bridson’s and Haeflinger’s standard reference [7].

1.1.1 Hyperbolic spaces

Definition 1.5. Let (X, d) be a metric space and let I ⊆ R be a closed interval
with γ : I = [a, b]→ X a map.

(i). The map γ is called a geodesic if

d(γ(t), γ(u)) = |t− u|

for any t, u ∈ I.
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(ii). The map γ is called (λ, h)-quasi-geodesic for λ ≥ 1 and h ≥ 0 if

1
λ |t− u| − h ≤ d(γ(t), γ(u)) ≤ λ |t− u|+ h

for any t, u ∈ I. The map γ is called quasi-geodesic if there is a pair (λ, h)
such that γ is (λ, h)-quasi-geodesic.

(iii). The metric space (X, d) is called a geodesic space if for any pair of points
x, y ∈ X there are real numbers a, b ∈ R and a geodesic γ : I := [a, b]→ X

such that γ(a) = x and γ(b) = y.

(iv). The metric space (X, d) is called a quasi-geodesic space if there is a pair
(λ, h) such that for any pair of points x, y ∈ X there are real numbers
a, b ∈ R and a (λ, h)-quasi-geodesic γ : I := [a, b]→ X such that γ(a) = x

and γ(b) = y.

Remark 1.2. In general a geodesic does not have to be unique. Furthermore
quasi-geodesics need not be continuous.

Example 1.3. Since every word in a group G = 〈S | R 〉 has a minimal reduced
presentation in elements of S, the Cayley graph Cay(G,S) of G equipped with
the word metric is always a geodesic space.

Remark 1.3. Forthcoming we may often abuse the notation in a sense that we
simply write γ for the image of the geodesic γ : I → X in the metric space
(X, d). Moreover we may often write simply X for the metric space (X, d) when
it is clear which metric is being used.

Remark 1.4. For a geodesic α ⊆ X in the geodesic space X, we denote a segment
of α starting at x ∈ α ⊆ X and ending at y ∈ α ⊆ X with α[x, y] ⊆ X. If the
name of the map is not specified, we denote the geodesic segment between x ∈ X
and y ∈ X simply by [x, y] ⊆ X.

Definition 1.6. Let (X, d) be a metric space and let γ : [a, b]→ X be a curve
with [a, b] ⊆ R an interval. Then the length l(γ) of the curve γ is defined as

l(γ) = sup
a=t0≤t1≤···≤tn=b

n−1∑
i=0

d(γ(ti), γ(ti+1)) ,

where the supremum is taken over all possible partitions of the interval [a, b]
of the form {a = t0, t1, . . . , tn = b} ⊆ [a, b] without any bound on n ∈ N. If a
curve γ is of finite length l(γ) <∞, then it is called rectifiable.

Definition 1.7. Let (X, d) be a metric space. Let x ∈ X, Q ⊆ X and r ≥ 0.
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• The closed r-neighborhood of x is defined as

N (x, r) := {y ∈ X | d(x, y) ≤ r} .

• The closed r−neighborhood of Q is defined as

N (Q, r) :=
⋃
x∈Q
N (x, r) .

• The set Q ⊆ X is called r-dense if N (Q, r) = X.

• The set Q ⊆ X is called cobounded if there is an r′ ≥ 0 such that Q is
r′-dense.

Definition 1.8. Let (X, d) be a metric space.

(i). A triangle in X, whose edges lie on (quasi-)geodesics, i.e. they are
(quasi-)geodesic segments, is called a (quasi-)geodesic triangle.

Let (α, β, γ) be such a (quasi-)geodesic triangle.

(ii). The (geodesic) triangle (α, β, γ) is called δ-slim for δ ∈ R if

α ⊆ N (β, δ) ∪N (γ, δ), β ⊆ N (α, δ) ∪N (γ, δ) and γ ⊆ N (α, δ) ∪N (β, δ) .

(iii). A point p ∈ X is called a k-centre of the triangle (α, β, γ) for k ≥ 0 if

max{d(p, α), d(p, β), d(p, γ)} ≤ k .

Remark 1.5. If we want to specify the vertices x, y, z ∈ X of a (quasi-)geodesic
triangle, we often write ([x, y], [y, z], [z, x]) ⊆ X or (α[x, y], β[y, z], γ[z, x]) ⊆
(α, β, γ) ⊆ X.

Definition 1.9. Let (X, d) be a metric space and let P,Q ⊆ X be subsets. The
Hausdorff distance between P and Q is defined as

D(P,Q) := inf{r ∈ [0,∞) | P ⊆ N (Q, r), Q ⊆ N (P, r)} .

Finally, we are ready to define a hyperbolic space. It turns out that we can use
three equivalent definitions:

Definition 1.10 (Rips-condition). The geodesic space (X, d) is called a δ-
hyperbolic or δ-hyperbolic space if any (geodesic) triangle (α, β, γ) ⊆ X is δ-slim.
(X, d) is called hyperbolic or a hyperbolic space if there is a δ ≥ 0 such that every
(geodesic) triangle is δ-slim. The constant δ ≥ 0 is called a hyperbolicity constant
of X.
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Definition 1.11. The geodesic space (X, d) is called k-hyperbolic or k-hyperbolic
space if every (geodesic) triangle (α, β, γ) ⊆ X has a k-centre. (X, d) is called
hyperbolic or hyperbolic space if there is a k ≥ 0 such that every (geodesic)
triangle has a k-centre. The constant k ≥ 0 is called hyperbolicity constant of X.

Less often we use the concept of thinness: To introduce it, let (X, d) be a
geodesic space and let ([x, y], [y, z], [z, x]) ⊆ X be a geodesic triangle. Since by
the triangle inequality there are positive integers a, b, c ∈ N such that

d(x, y) = a+ b, d(y, z) = b+ c and d(z, x) = c+ a ,

we can find an isometry from the vertex set {x, y, z} of the triangle to the
vertices of a tripod T , which has edges of length a, b and c. This isometry
extends uniquely to a map χ : ([x, y], [y, z], [z, x])→ T that is an isometry when
restricted to an edge of the geodesic triangle. By definition for every t ∈ T its
fibre χ−1(t) in X

χ−1(t) := {a ∈ ([x, y], [y, z], [z, x]) | χ(a) = t} ⊆ X

consists of at most two elements, except for the center oT ∈ T of the the tripod.
Its fiber consists of three elements. This leads to the definition:

Definition 1.12. Let (X, d) be a geodesic space and let ([x, y], [y, z], [z, x]) ⊆ X
be a geodesic triangle. Let χ : ([x, y], [y, z], [z, x])→ T be the map defined above.

• The (three) elements of the fibre χ−1(oT ) := {ix, iy, iz} of oT ∈ T are
called internal points and are indexed by the vertex of the triangle opposite
to it. The diameter of the fiber χ−1(oT ) of oT ∈ T is called the insize I of
the triangle ([x, y], [y, z], [z, x]) ⊆ X.

• The triangle ([x, y], [y, z], [z, x]) ⊆ X is said to be δ-thin for some δ ≥ 0 if
for all t ∈ T with {pt, qt} ⊆ χ−1(t) it holds that

d(pt, qt) ≤ δ .

• If there is one δ ≥ 0 such that every geodesic triangle is δ-thin, X is called
δ-hyperbolic.

Remark 1.6.

(i). The definition of the internal points ix, iy, iz ∈ X of a geodesic triangle
([x, y], [y, z], [z, x]) ⊆ X implies

d(x, iy) = d(x, iz) , d(y, ix) = d(y, iz) and d(z, ix) = d(z, iy) .
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(ii). Note that in the Euclidean space X = E2 the internal points of a geodesic
triangle are precisely the points where the edges meet the inscribed circle.

Hyperbolicity is a well-defined property, i.e. it does not matter whether Definition
1.10, Definition 1.11 or Definition 1.12 is used:

Lemma 1.1. [7, p. 408, Proposition 1.17] Let (X, d) be a geodesic space. The
following conditions are equivalent:

(i). There is a δ0 ≥ 0 such that every geodesic triangle in X is δ0-slim.

(ii). There is a δ1 ≥ 0 such that every geodesic triangle in X is δ1-thin.

(iii). There is a k ≥ 0 such that every geodesic triangle has a k-centre.

Remark 1.7. Forthcoming we will apply Definition 1.10, Definition 1.11 or
Definition 1.12 dependent on whichever is more convenient in dealing with the
current problem. If necessary, indication of which definition is used gives the
name of the variable of the hyperbolicity constant.

Example 1.4. Any tree T is 0-hyperbolic: If we choose any three distinct points
x, y, ρ ∈ V (T ) in the vertex set of T and connect them by geodesics to obtain
a geodesic triangle ([x, y], [y, ρ], [ρ, x]) ⊆ T , they will always form a (maybe
degenerated) tripod as illustrated in Figure 1 adopted from [47] below, since T
does not have any circuits.

Figure 1: Three geodesics connecting three vertices x, y, ρ ∈ V (T ) in a tree always
have to pass through one common vertex, often denoted by x ∧ y, turning the
geodesic triangle into a tripod. The distance d(x ∧ y, ρ) between x ∧ y and ρ is
precisely (x · y)ρ [c.f. Equation (1) in Definition 1.14].

Hence the geodesics can be written as unions

[x, y] = [x, x ∧ y] ∪ [x ∧ y, y]

[y, ρ] = [y, x ∧ y] ∪ [x ∧ y, ρ]

[ρ, x] = [ρ, x ∧ y] ∪ [x ∧ y, x] ,
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where x ∧ y ∈ V (T ) denotes center of the tripod, i.e. the vertex where all three
geodesics intersect. So by taking the union of two geodesics, for example

[x, y] ∪ [y, ρ] = [x, x ∧ y] ∪ [x ∧ y, y] ∪ [y, x ∧ y] ∪ [x ∧ y, ρ]

= [x, x ∧ y] ∪ [x ∧ y, y] ∪ [x ∧ y, ρ] ,

the third geodesic is already contained. Hence the triangle is 0-slim.

Remark 1.8. Because of Example 1.4 we often think of δ-slim triangles as
thickened tripods and of δ-hyperbolic spaces as thickened trees.

Definition 1.13. Let G be a finitely generated group. Then G is called a
hyperbolic group if it has some finite generating set S such that the Cayley graph
Cay(G,S) is a hyperbolic space.

Remark 1.9. We will see in Chapter 1.1.2 that the choice of Cayley graph does
not matter for the property of hyperbolicity of a group, i.e. if there is one
finite generating set S of a group G such that the Cayley graph Cay(G,S) is a
hyperbolic space, the Cayley graphs for all finite generating sets are hyperbolic
spaces.

Example 1.5. Any free group is hyperbolic by Example 1.4, since by Example
1.2 the Cayley graph with respect to a free generating set is always a tree.

Example 1.6. Any finite group is hyperbolic, since it has a finite generating set
such that the Cayley graph is finite, hence there is a path of longest length l, so
the group is l-hyperbolic.

In order to give a complete description of hyperbolicity, we should not omit its
fourth definition, due to Mikhail Gromov [14]:

Definition 1.14. Let (X, d) be a metric space and let x ∈ X. The Gromov
product of y, z ∈ X with respect to x is defined to be

(y · z)x = 1
2 [d(y, x) + d(z, x)− d(y, z)] . (1)

Remark 1.10. It is apparent from the definition that the Gromov product is
commutative.

Remark 1.11. Let T = ([x, y], [y, z], [z, x]) ⊆ X be a geodesic triangle in X.

(i). By definition of the internal points,

(y · z)x = d(x, iy) = d(x, iz) .

(ii). Furthermore
d(x, [y, z]) ≤ (y · z)x + I ,
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where I ≥ 0 denotes the insize of T .

(iii). If T is δ-thin for δ ≥ 0, then

|d(x, [y, z])− (y · z)x| ≤ δ .

Definition 1.15 (Gromov). Let (X, d) be a metric space and let δ ≥ 0 be a
constant. X is called (δ)-hyperbolic if

(x · y)w ≥ min{(x · z)w, (y · z)w} − δ (2)

for all points x, y, z, w ∈ X.

Equivalently we can use:

Definition 1.16. (Four-Point Condition) Let (X, d) be a metric space and let
δ ≥ 0 be a constant. The condition

d(x,w) + d(y, z) ≤ max{d(x, y) + d(z, w), d(y, w) + d(x, z)}+ 2δ , (3)

for x, y, z, w ∈ X is called the (Gromov-)Four-Point Condition. X is called
(δ)-hyperbolic if the the Four-Point Condition is satisfied for all x, y, z, w ∈ X.

Again, we want to check that the property of hyperbolicity stays coherent:

Lemma 1.2. [2, p. 6, Theorem 2.3] Let (X, d) be a metric space.

• X is (δ)-hyperbolic for some δ ≥ 0 in the sense of Definition 1.15 if and
only if it is (δ′)-hyperbolic in the sense of Definition 1.16 for some δ′ ≥ 0.

• Every geodesic triangle in X is δ-slim for some δ ≥ 0, i.e. X is δ-hyperbolic
in the sense of Definition 1.10 if and only if X is (δ′)-hyperbolic for some
δ′ ≥ 0 in the sense of Definition 1.15.

1.1.2 Well-definedness of Hyperbolic Groups

To see that the hyperbolicity of a group is a well-defined property, i.e. independent
of the choice of the generating set S, we have to do some work and broaden first
our knowledge about (quasi-)geodesics:

Proposition 1.3 (Stability of Quasi-Geodesics). Let (X, d) be a δ-hyperbolic
space and let p ∈ X and q ∈ X be two points connected by a geodesic segment
α = [p, q] ⊆ X. Let β be a (λ, h)-quasi-geodesic connecting the same points
p, q ∈ X as α. Then there is a constant r ≥ 0 dependent only on λ, h and δ
bounding the Hausdorff distance of α and β, i.e.

D(α, β) < r .
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Proof. To tackle this proof we need to introduce two lemmata:

Lemma 1.4. [7, p. 400, Proposition 1.6] Let (X, d) be a δ-hyperbolic geodesic
space with γ ⊆ X a continuous, rectifiable path. Let α = [p, q] ⊆ X be the
geodesic segment connecting the endpoints p, q ∈ X of γ. Then for every x ∈ α

d(x, γ) ≤ δ |log2 l(γ)|+1 , (4)

where l(γ) denotes the length of γ.

Lemma 1.5. [7, p. 403, Lemma 1.11] Let (X, d) be a geodesic space with a
(λ, h)-quasi-geodesic γ : [a, b]→ X for [a, b] ⊆ R. Then there is a continuous
(λ, h′)-quasi-geodesic γ′ : [a, b]→ X satisfying the following conditions:

(1). γ′(a) = γ(a) and γ′(b) = γ(b).

(2). h′ = 2 (λ+ h).

(3). l(γ′|[t,t′]) ≤ k1 d(γ′(t), γ′(t′)) + k2

with k1 = λ (λ+ h) and k2 = (λh′ + 3)(λ+ h) .

(4). The Hausdorff distance between γ and γ′ is bounded by

D(γ, γ′) < (λ+ h) .

First replace the (λ, h)-quasi-geodesic β via Lemma 1.5 by the continuous (λ, h′)-
quasi-geodesic β′ satisfying the conditions (1). - (4). . Define the constant

D := sup{d(x, β′) | x ∈ [p, q] = α}

and let xo ∈ α ⊆ X be the point where the supremum is attained. Hence, the
open ball around xo with radius D does not meet β′.
Next define y, z ∈ α:

If d(xo, p) > 2D define y ∈ [p, xo] ⊆ α such that d(y, xo) = 2D ,

if d(xo, p) ≤ 2D define y := p ∈ [p, xo] ⊆ α ,

and

if d(q, xo) > 2D define z ∈ [xo, q] ⊆ α such that d(xo, z) = 2D ,

if d(q, xo) ≤ 2D define z := q ∈ [xo, q] ⊆ α .
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Furthermore we fix elements y′, z′ ∈ β′ such that

d(y, y′) ≤ D and d(z, z′) ≤ D ,

which exist by the definition of D and choose geodesic segments [y, y′] and [z, z′].
Now consider the path τ ⊆ X connecting y and z that goes along [y, y′], β′|[y′,z′]
and [z′, z] as illustrated in Figure 2 below.

Figure 2: The points p and q are connected by the geodesic α and the quasi-
geodesic β′. The points y and z on α are connected via the path τ that passes
through y′ and z′ on β′.

By construction, τ lies outside of the ball around xo with radius D. Since

d(y′, z′) ≤ d(y′, y)+d(y, z)+d(z, z′) ≤ d(y′, y)+d(y, xo)+d(xo, z)+d(z, z′) ≤ 6D

we obtain

l(τ) = l([y, y′]) + l(β′|[y′,z′]) + l([z, z′])
(3).
≤ D + k1 d(β′(y′), β′(z′)) + k2 +D

≤ D + k16D + k2 +D

= 2D + 6Dk1 + k2 .

With the fact that d(xo, β) = D and Lemma 1.4 we deduce

D − 1 ≤ δ |log2 l(τ)|

≤ δ |log2(2D + 6Dk1 + k2)| .

Thus we have found an upper bound Do of D in terms of λ, h and δ.
Next, we define

r′ := Do (1 + k1) + k2
2

and show that β′ ⊆ N (α, r′).
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In order to do so consider the maximal subinterval [a′, b′] ⊆ R in the preimage
[a, b] of β′ such that

β′([a′, b′]) $ N (α,Do) .

By connectedness there is a w ∈ α ⊆ N (β′, Do) and there are two elements
t ∈ [a, a′] and t′ ∈ [b′, b] such that

d(w, β′(t)) ≤ Do and d(w, β′(t′)) ≤ Do .

Thus, d(β′(t), β′(t′)) ≤ 2D. Hence, by condition (3). of Lemma 1.5 we obtain

l(β′|[t,t′]) ≤ 2k1Do + k2

and thus
β′ ⊆ N (α, r′) .

Lastly, we can define r := r′ + λ+ h, since then by (4). of Lemma 1.5 the claim
holds.

Corollary 1.6. Let (X, d) be a k-hyperbolic geodesic space. Any (λ, h)-quasi-
geodesic triangle (ᾱ, β̄, γ̄) ⊆ X with vertices x, y, z ∈ X has a t-centre, where
t ≥ 0 is only dependent on λ, h and k.

Proof. Let (α, β, γ) ⊆ X be a geodesic triangle connecting the same vertices
x, y, z ∈ X as (ᾱ, β̄, γ̄) ⊆ X. Then any k-centre of (α, β, γ), which exists since X
is k-hyperbolic, by Lemma 1.1 and by Proposition 1.3 has to be a (k + r)-centre
of (ᾱ, β̄, γ̄), with r ≥ 0 depending only on λ, h and k.

Next, we introduce a map, that turns out to pass hyperbolicity between spaces:

Definition 1.17. Let (X, d) and (X ′, d′) be two metric spaces. A map
φ : X → X ′ is called a (λ, h)−quasi-isometric embedding if there are constants
λ ≥ 1 and h ≥ 0 such that for any x, y ∈ X

1
λ d(x, y)− h ≤ d′(φ(x), φ(y)) ≤ λ d(x, y) + h . (5)

If in addition there is a constant c ≥ 0 such that for every x′ ∈ X ′ there is an
x ∈ X such that

d′(φ(x), x′) ≤ c , (6)

then the map φ is called (λ, h, c)-quasi-isometry. If there exists a quasi-isometry
between them, the metric spaces (X, d) and (X ′, d′) are called quasi-isometric.
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Definition 1.18. Let (X, d) and (X ′, d′) be two metric spaces with a map
φ : X → X ′. A map ψ : X ′ → X is called a quasi-inverse of φ if there is a
constant c ≥ 0 such that

d′(φ(ψ(x′)), x′) ≤ c and d(ψ(φ(x)), x) ≤ c

for all x ∈ X and x′ ∈ X ′.

Lemma 1.7. If φ : X → X ′ is a quasi-isometry between the metric spaces (X, d)
and (X ′, d′), then there exists a map ψ : X ′ → X, that is a quasi-isometric
quasi-inverse of φ.

Proof. [45, p. 16f, Proposition 3.0.3.] Let φ : X → X ′ be a (λ, h, c)-quasi-
isometry. Define the map ψ : X ′ → X such that the image of x′ ∈ X ′ is some
x ∈ X such that the property

d′(φ(x), x′) ≤ c

holds. Also, by the property of φ, we know that for every x′ ∈ X ′

d′(φ(ψ(x′)), x′) ≤ c .

Furthermore, for any x ∈ X we have

d(ψ(φ(x)), x) ≤ λ d′(φ(ψ(φ(x))), φ(x)) + λh ≤ λ (h+ c) .

Thus, d′(φ(ψ(x′), x′) and d(ψ(φ(x)), x) are both bounded, say by a constant
c′ ≥ 0, i.e. ψ is a quasi-inverse.
Since that fact already ensures condition (6) of a quasi-isometry, it is left to
check that ψ is a quasi-embedding: For any x′1, x′2 ∈ X ′ we have

d(ψ(x′1), ψ(x′2)) ≤ λ d′(φ(ψ(x′1)), φ(ψ(x′2))) + λh

≤ λ d′(x′1, x′2) + 2λ c′ + λh ,

which shows the right inequality of the condition (5) for a quasi-embedding and
analogously with

d(ψ(x′1), ψ(x′2)) ≥ 1
λ d
′(φ(ψ(x′1)), φ(ψ(x′2)))− h

λ

≥ 1
λ d(x′1, x′2)− 2c′

λ −
h
λ ,

we ensure the left one. Thus, ψ is a quasi-isometry.
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Proposition 1.8. Let (X, d) and (X ′, d′) be two quasi-isometric geodesic metric
spaces. Then X is hyperbolic if and only if X ′ is hyberbolic.

Proof. Let φ : X ′ → X be a (λ, h, c)-quasi-isometry and let (α, β, γ) ⊆ X ′ be
a geodesic triangle in X ′. Then (φ ◦ α, φ ◦ β, φ ◦ γ) ⊆ X is a quasi-geodesic
triangle in the hyperbolic space X and by Corollary 1.6 it has a t-centre. Thus,
by Lemma 1.1 it is also δ-slim for some δ ≥ 0. That means that for all x ∈ α
there is a y ∈ β ∪ γ such that

d(φ(x), φ(y)) ≤ δ .

Moreover, since φ is a (λ, h, c)-quasi-isometry,

d(x, y) ≤ λ d(φ(x), φ(y)) + λh ≤ λ δ + λh .

Analogously, we can repeat this argument for the other edges of the triangle β
and γ. Hence, the triangle (α, β, γ) ⊆ X ′ is δ′-slim with δ′ := λ δ + λh, which
makes X ′ a hyperbolic space as well. The converse is completely analogous since
by Lemma 1.7 with the quasi-isometry φ : X ′ → X there exists a quasi-isometric
inverse ψ : X → X ′.

Lastly, we show that we can find a quasi-isometry between Cayley-graphs:

Proposition 1.9. Let G be a group with two finite generating sets S, S′. Then
there is a quasi-isometry φ : Cay(G,S)→ Cay(G,S′).

Proof. Denote Cay(G,S) =: X and Cay(G,S′) =: X ′ with word metrics d and
d′ respectively. Since V (X) = G = V (X ′) we can extend the identity map
id : G→ G to

φ : X → X ′

v 7→ v for any v ∈ V (X)

e = (x, y) 7→ [x, y] ⊆ X ′ for any e = (x, y) ∈ E(X)

such that g φ(p) = φ(gp) for every p ∈ X and g ∈ G.
Now define r := max{d′(1, a) | a ∈ S}. So φ maps every edge e ∈ E(T ) to a
geodesic of at most length r in X ′. Hence for any x, y ∈ X

d′(φ(x), φ(y)) ≤ r · d(x, y)

In the same way we can extend the identity map to ψ : X ′ → X and obtain for
s := max{d(1, b) | b ∈ S′}

d(ψ(u), ψ(v)) ≤ s · d′(u, v) ,

13



which lets us conclude that φ and ψ are both quasi-isometries and quasi-inverse
to each other: Let x ∈ X and x′ ∈ X ′. Since φ and ψ are both the identity map
on vertices x ∈ V (X) and x′ ∈ V (X ′) respectively, we have

d′(φ(x), x) = d′(x, x) = 0 and d(ψ(x′), x′) = d(x′, x′) = 0 .

For an edge e′ ∈ E(X ′) it suffices to consider its midpoint m′ ∈ X ′. We do not
know, whether there is any point in X that gets mapped to m′ via φ. But we
can simply take one of the vertices of e′, which is definitely the image of an
x ∈ V (X) under φ. Hence the distance d′(φ(x),m′) is at most 1

2 . The same
argument holds for an edge e ∈ E(X). Thus condition (6) is satisfied and φ and
ψ are quasi-isometric embeddings for c = 1

2 .
Furthermore we get that

d′(φ(ψ(x′)), x′) = d′(x′, x′) = 0 and d(ψ(φ(x)), x) = d(x, x) = 0

for x ∈ V (X) and x′ ∈ V (X ′). Again, we need to consider also the midpoint m′

of an edge e′ ∈ E(X ′). It can get mapped under ψ to a point in X that is at
most distance s

2 away. Mapping this point back to X ′ via φ, this distance can
get stretched at most by r. Hence we have

d′(φ(ψ(m′)),m′) ≤ sr
2 .

Analogously we obtain for the midpoint m of an edge e ∈ E(X)

d(ψ(φ(m)),m) ≤ rs
2 .

Since with the midpoints this condition has to hold for all points lying on an
edge, φ and ψ are quasi-inverses of each other with constant c = rs

2 .
Lastly we get for g, h ∈ V (X) = V (X ′)

d′(g, h) ≤ r d(ψ(g), ψ(h)) ≤ s r d′(g, h)

and
d(g, h) ≤ s d′(φ(g), φ(h)) ≤ r s d(g, h) .

Thus, φ and ψ are both (λ, 0)-quasi-isometries for λ = rs, i.e. condition (5)
holds.

Corollary 1.10. Let G be a group generated by two distinct finite sets S and
S′. Then the Cayley graph Cay(G,S) is hyperbolic if and only if the Cayley
graph Cay(G,S′) is hyperbolic.
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Remark 1.12. By Corollary 1.10, hyperbolicity of groups is a well-defined property,
since it is independent of the choice of the generating set of the group.

Proof. This is immediate from Proposition 1.8 and Proposition 1.9.

1.1.3 Švarc-Milnor-Lemma

When we have a hyperbolic space X given, we want to "extract" a hyperbolic
group from it by finding an appropriate group action on it:

Definition 1.19. Let G be a group acting on the metric space (X, d) by isometry,
i.e.

d(x, y) = d(gx, gy) for everyx, y ∈ X and g ∈ G .

• The action is called properly discontinuous if for all r ≥ 0 and for all x ∈ X

|{g ∈ G | d(x, gx) ≤ r}| <∞ . (7)

• An action is called cocompact if the quotient space G\X is compact in the
quotient topology.

Definition 1.20. A metric space (X, d) is called proper if it is complete and
locally compact.

Remark 1.13. Some authors call an action satisfying condition (7) metrically
proper. They use the term properly discontinous only if the space (X, d) is a
proper geodesic space, where the property is equivalent to the following: For all
compact subsets K ⊆ X we have

|{g ∈ G | gK ∩K 6= ∅}| <∞ . (8)

To show that, observe that in any proper geodesic space (X, d) the neighborhood
N (x, r) is compact for all x ∈ X and all r ≥ 0: Fix an x ∈ X and consider the
set

A = {r ∈ [0,∞) | N (x, r) is compact} . (9)

Since X is proper, hence locally compact, A is not empty. So we can consider the
supremum of A. Supposing then that sup(A) <∞, gives a contradiction. With
that fact at hand, we know now that in a proper geodesic space, the condition
(7) for the property of proper discontinuity is equivalent to condition (8).

The following result will come in handy in the next chapter:
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Lemma 1.11. Let G be a group acting cocompactly on a locally compact graph
X. Let H ≤ G be a finite index subgroup of G. Then H acts cocompactly on X
as well.

Proof. By assumption, the quotient Y =G \X is compact. First, we want to show
that this is equivalent to saying that there is a compact subset K ⊆ X, whose
image under the action of G covers X. It is evident that the existence of such a
K ensures compactness of Y . For the converse, choose (by Axiom of Choice) for
every y ∈ Y an element y′ ∈ X that projects to y. Now for every y′ ∈ X there
is an open neighborhood Uy′ with compact closure in X, since X is assumed to
be locally compact. Projecting all Uy′ to Y and calling the images Uy yields an
open covering of Y by the sets Uy. But Y is compact, hence there is a finite set
{y1, . . . , yn} ⊆ Y such that the Uyi

cover Y . But that means that the set

K :=
n⋃
i=1

Uyi
⊆ X

is compact and projects onto Y . Hence, the image of K under the action of G
covers X.
Now let {g1, . . . , gH} ⊆ G be the finite set of right coset representatives of H in
G. Define the compact subset g1K∪· · ·∪gHK =: Z of X. Since H is a subgroup
of G, the image of Z under the action of H covers X. Thus the quotient Y =H \X

is compact, i.e. H acts cocompactly on X.

Theorem 1.12 (Švarc-Milnor-Lemma). Let G be a group acting properly dis-
continuously and cocompactly on the geodesic metric space (X, d). Then:

(i). G has a finite generating set A.

(ii). The Cayley graph Cay(G,A) of G with respect to A is quasi-isometric to
X.

Proof.

(i). Let a ∈ X. Consider the orbit G · a ∈ G\X . Since the action is cocompact,
hence G\X is compact, there is an r ≥ 0 such that G\X ⊆ N (G ·a, r). Hence
for any x ∈ X, the distance d(G · a,G · x) := min{d(a, gx) | g ∈ G} ≤ r.
Thus, for every x ∈ X there is a g ∈ G such that d(x, ga) ≤ r, which
implies that G · a is r-dense. Define k > 0 to be k = 2r + 1.
Define a graph ∆ = (V (∆), E(∆)) that has vertex set V (∆) = G and edge
set E(∆) = {(g, h) | d(ga, ha) ≤ k}. Since G acts properly discontinuously
on X, the graph ∆ is locally finite. Now we want to show that ∆ is
connected:
Let g, h ∈ G and let α = [ga, ha] ⊆ X be a geodesic in X connecting
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ga, ha ∈ X. Choose a sequence of points ga = x0, x1, . . . , xn−1, xn = ha

in X such that xi ∈ α for any i ∈ {0, 1, . . . , n} and d(xi, xi+1) ≤ 1 for any
i ∈ {0, 1, . . . , n − 1}. Next take gi ∈ G such that d(xi, gia) ≤ r for any
i ∈ {1, . . . , n− 1} and set g0 = g and gn = h. Then we can conclude

d(gia, gi+1a) ≤ 2r + 1 = k ,

which means that (gi, gi+1) ∈ E(∆). So g0g1 · · · gn connects g ∈ G to
h ∈ G in ∆, thus ∆ is connected.
Now define the set A := {g ∈ G \ {1G} | d(a, ga) ≤ k}. Since G acts on X
properly discontinuously, A is finite. Furthermore A is symmetric. Choose
g, h ∈ V (∆) such that (g, h) ∈ E(∆) then

d(ga, ha) ≤ k ⇔ d(a, g−1ha) ≤ k ⇔ g−1h ∈ A

which implies that ∆ = Cay(G,A), hence G is generated by the finite set
A.

(ii). We need to refine the construction from the proof of (i) above: Consider
the map

f : ∆→ X

g 7→ ga for every g ∈ V (∆) = G

(g, h) 7→ [ga, ha] ⊆ X for every (g, h) ∈ E(∆) .

Choose again xi ∈ X with i ∈ {0, 1, . . . , n} as above such that

n ≤ d(ga, ha) + 1 = d(f(g), f(h)) + 1 .

So if d∆(g, h) ≤ n, it follows that d(f(g), f(h)) ≤ r · n. But G = V (∆) is
cobounded in ∆ and Ga is cobounded in X, hence f is a quasi-isometry.
Since ∆ is the Cayley graph Cay(G,A) of G with respect to A, the theorem
is proven.

Corollary 1.13. A group G is finitely generated and hyperbolic if and only if it
acts properly discontinuously cocompactly on a proper hyperbolic space X.

Proof. First let G be generated by the finite set A and let its Cayley graph
Cay(G,A) =: X ′ be hyperbolic. Then G acts on X ′ by left translation, which is
properly discontinuous and cocompact. Furthermore as A is finite, the Cayley
graph X ′ is proper and by assumption hyperbolic, so the first implication is true.
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For the converse let G be acting on the proper hyperbolic space X properly
discontinuously cocompactly. Then by the first part of the Švarc-Milnor-Lemma
1.12 (i) G is finitely generated and by the second part (ii) the hyperbolic space
X is quasi-isomorphic to X ′ = Cay(G,A). Now Proposition 1.8 implies that X ′

has to be hyperbolic as well, which means that G is a hyperbolic group.

Example 1.7. By the Corollary 1.13 of the Švarc-Milnor-Lemma, any group that
acts properly discontinuously on a locally finite tree is hyperbolic.

1.1.4 Bigons

Another concept that will help us determining whether a group is hyperbolic
and will be crucial for the computational aspect is the following:

Definition 1.21. Let Γ be a graph. A pair of geodesics γ, γ′ ∈ Γ is called a
bigon if

γ(0) = γ′(0) and γ(l) = γ′(l) ,

where l denotes the length of γ.
We say the bigons are ε-thin if for any bigon γ, γ′, we have

d(γ(t), γ′(t)) < ε

for all t ∈ (0, l). A bigon γ, γ′ is called M-thick for some M ∈ N, if there is a
t ∈ (0, l) such that

d(γ(t), γ′(t)) ≥M .

Theorem 1.14. [39, Theorem 1.4] Let G = 〈X | R 〉 be a finitely generated
group with Cayley graph Cay(G,X). If there is an ε ≥ 0 such that the bigons in
Cay(G,X) are ε-thin, then G is hyperbolic.

1.2 Residual Finiteness

The following proofs are guided by [42] and [48].

Definition 1.22. Let P be a property a group can have. We say a group G is
residually P if for every g ∈ G \ {1G} there is a normal subgroup N E G such
that g /∈ N and the quotient G/N has property P .

Using that definition for finiteness gives the following:

Definition 1.23. A group G is residually finite if for every g ∈ G \ {1G} there
is a normal subgroup N E G such that g /∈ N and the quotient G/N is finite.

Example 1.8. Any finite group is residually finite.
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Example 1.9. Any simple infinite group is not residually finite.

We can easily show that residual finiteness has some useful characterizations:

Proposition 1.15. Let G be a group. Then the following statements are equiv-
alent:

(i). G is residually finite.

(ii). For every g ∈ G \ {1G} there is a homomorphism φ : G → F into some
finite group F such that φ(g) 6= 1F .

(iii).
⋂

NEG
|G/N |<∞

N = {1G}

(iv). For every g ∈ G \ {1G} there is a subgroup K ≤ G, such that g /∈ K and
|G/K| <∞.

(v).
⋂

K≤G
|G/K|<∞

K = {1G}

Proof. Let G be a group.

• (i) ⇒ (ii): Let G be residually finite. Let g ∈ G \ {1G} and let N E G

such that g /∈ N and |G/N | <∞. Define the map

φ : G→ G/N

h 7→ hN .

Clearly, φ is a homomorphism and

φ(g) = gN
g/∈N
6= N = 1G/N ,

so φ has the desired properties.

• (i)⇐ (ii): Suppose there is a homomorphism φ : G→ F into some finite
group F with φ(g) 6= 1F for every g ∈ G \ {1G}. Then g /∈ ker(φ), but
ker(φ) is a normal subgroup of G. By the Isomorphism Theorem we
know G/ker(φ) ∼= Im(φ) ⊆ F . But since F is finite we get |G/ker(φ)| =
|Im(φ)| ≤ |F | < ∞, so ker(φ) meets the conditions that make G a
residually finite group.

• (i) ⇒ (iii): Suppose
⋂

NEG
|G/N |<∞

N 6= {1G}. That means that there is a

g ∈ G \ {1G} such that g ∈ N for any normal subgroup N E G that has
finite index in G. So for this particular g ∈ G, we can not find a normal
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subgroup, in which g is not contained. But that means that G can not be
residually finite.

• (i) ⇐ (iii): Let
⋂

NEG
|G/|<∞

N = {1G}. That means that we cannot find a

g ∈ G \ {1G} that is contained in all finite index normal subgroups of
G. So for every g ∈ G \ {1G} we can find a finite index normal subgroup
Ng E G such that g /∈ Ng. Therefore G is residually finite.

• (i) ⇔ (iv) and (i) ⇔ (v): Those equivalences are immediate from
Poincaré’s theorem: Any finite index subgroup K ≤ G contains a subgroup
N ≤ K that is normal and of finite index in G. So those cases reduce to
the equivalence of (i)⇔ (ii) and (i)⇔ (iii).

Remark 1.14. From now on we will use whichever characterization of residual
finiteness suits our problem best without any further comment.

Example 1.10. The direct product of finitely many residually finite groups is
residually finite.

Proof. Let G and H be two residually finite groups. Then for every element
g ∈ G \ {1G} there is a finite group Fg and a homomorphism φg : G→ Fg such
that φg(g) 6= 1Fg

and for every element h ∈ G \ {1H} there is a finite group Fh
and a homomorphism φh : G→ Fh such that φh(h) 6= 1Fh

. Furthermore define
the trivial groups F1G

= {1G} and F1H
= {1H} and the trivial homomorphisms

φ1G
: G→ F1G

and φ1H
: H → F1H

respectively. Let now K = G×H define the
direct product of G and H and let Fx,y = Fx × Fy for x ∈ G and y ∈ H define
the direct product of Fx and Fy. Furthermore we can define the homomorphism

φx,y : K → Fx,y

(x, y) 7→ (φx(x), φy(y)) .

Let now (x, y) ∈ K \ {(1G, 1H)} be a non-trivial element in K. This element is
either of the form (g, h), (g, 1H) or (1G, h). Either way, the image φx,y((x, y)) is
non-trivial, since:

(φg(g), φh(h)) 6= (1Fg
, 1Fh

) = 1Fg,h

(φg(g), φ1H
(1H)) = (φg(g), 1H) 6= (1Fg

, 1F1H
) = 1Fg,1H

(φ1G
(1G), φh(h), ) = (1G, φh(h)) 6= (1F1G

, 1Fh
) = 1F1G,h

.
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As the finite direct product of finite groups, Fg,h has to be finite as well. Hence,
K is residually finite. Without any further ado, we can extend this argument to
any finite collection of residually finite groups.

Also, we can widen the definition of residual finiteness to any finite number of
group elements:

Proposition 1.16. Let G be a residual finite group and let g1, g2, . . . , gn ∈ G
for some n ∈ N. Then there is a subgroup K ≤ G such that [G : K] < ∞ and
gi /∈ K for any i ∈ {1, 2, . . . , n}.

Proof. Let G be residually finite. Then for every gi ∈ G with i ∈ {1, 2, . . . , n}
there is a normal subgroup Ki E G such that gi /∈ Ki and |G/Ki| < ∞ for
every i ∈ {1, 2, . . . , n}. Now define K :=

n⋂
i=1

Ki. Then clearly gi /∈ K for any

i ∈ {1, 2, . . . , n} and as the finite intersection of finite index normal subgroups,
K is a finite index normal subgroup as well.

Under special circumstances, residual finiteness can be passed on to sub- and
supergroups:

Proposition 1.17. Let G be a finitely generated group. Then:

(i). If G is residually finite and H ≤ G is a subgroup, then H is residually
finite as well.

(ii). If H ≤ G is a residually finite subgroup that has finite index [G : H] <∞,
then G is residually finite as well.

Proof. Let G be finitely generated.

(i). Let G be residually finite and letH ≤ G be a subgroup. Choose h ∈ H ≤ G.
Since G is residually finite, there is a homomorphism φ : G → F into
some finite group F such that φ(h) 6= 1F . Now restrict φ to H to get
a homomorphism φ|H : H → F with φ|H (h) 6= 1F . Therefore, H is
residually finite as well.

(ii). Let g ∈ G and let H be residually finite and of finite index in G. There
are two cases:
Case 1: g /∈ H. Then we can simply take H itself as the finite index
subgroup not containing g.
Case 2: g ∈ H. Since H is residually finite, there is a subgroup K ≤ H
with finite index [H : K] < ∞ such that g /∈ K. But of course K is a
subgroup of G as well and [G : K] = [G : H] · [H : K] < ∞, hence K is
the subgroup with the desired property.
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Example 1.11. The special linear group SLn(Z) is residually finite for any n ∈ N.

Proof. Consider the congruence groups SLn(Z)[m] which are defined to be
the kernel of the map φ : SLn(Z) → SLn(Z/mZ). Since SLn(Z)[m] =
{A = (ai,j)ni,j=1 ∈ SLn(Z) | ai,i ≡ 1 (modm); ai,j ≡ 0 (modm) if i 6= j},
we see that by multiplying elements from SLn(Z) to it we can at most obtainmn2

different elements, therefore [SLn(Z) : SLn(Z)[m]] <∞, so SLn(Z)[m] is a finite
index normal subgroup for anym ≥ 3. Now we consider A ∈ I :=

⋂
m≥3

SLn(Z)[m].

Then all diagonal elements of A are equivalent to 1 modulo m for any m ≥ 3, so
therefore they can only be precisely 1. Any off-diagonal element of A is equivalent
to 0 modulo m for any m ≥ 3, so they are all precisely 0. So A = I = 1SLn(Z),
So by Proposition 1.15 (iv), SLn(Z) is residually finite.

We can also find a topological interpretation for residual finiteness:

Remark 1.15. The basic concepts and definitions in algebraic topology that
might be used forthcoming can be found in Hatcher’s standard textbook [15]
and Kriegl’s lecture notes [27].

Proposition 1.18. Let G be a finitely generated group. Let M be a compact
manifold such that π1(M) = G and let M̃ be its universal covering. Then G is
residually finite if and only if for every compact subset C ⊆ M̃ there is a finite
sheeted covering MC of M such that C embedds homeomorphically into MC , i.e.
there exists an homeomorphism C →MC .

Proof. First let G be residually finite. Choose a compact subset C ⊆ M̃ . Since
π1(M) = G, we know G acts freely and properly discontinuously on M̃ , so for
every compact K ⊆ M̃ the set {g ∈ G | gK ∩K 6= ∅} is finite. Let us denote
this set without {1G} as TK := {g ∈ G \ {1G} | gK ∩K 6= ∅}, i.e. for K = C

we consider TC . Now choose HC ≤ G such that |G/HC | <∞ and TC ∩HC = ∅.
Note that HC exists by Proposition 1.16, since G is residually finite. Now let
MC be the finite sheeted covering corresponding to HC , that is π1(MC) = HC .
Then hC ∩ C = ∅ for every h ∈ π1(MC). Therefore the covering map M̃ →M

restricts to a homeomorphism on C.
Conversely assume that the topological condition holds. Choose g ∈ G \ {1G},
so g corresponds to a loop in M not homotopic to 0, since G = π1(M). Let
p : M̃ →M be the universal covering. Since M̃ is simply connected, p−1(g) =: a
is not a loop, so it has two distinct endpoints, say x and y. Now define C := {x, y}.
Clearly C is compact, so there is a finite sheeted cover MC , in which x and y
are distinct points. Now define π1(MC) =: HC . By the lifting property there is
a homomorphism HC = π1(MC) → π1(M) = G with |G/HC | < ∞. But since
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x 6= y and g is not a loop, g /∈ HC . So we have found a finite index subgroup of
G, that does not contain g, so G is residually finite.

Remark 1.16. In fact, in the proof of Proposition 1.18 we never used any
property of the manifold M , except that its fundamental group G acts properly
discontinuously and freely on its universal covering. Also, we can loose the
condition that the action needs to be free, as that only adds a finite number
of elements to TC . So instead of assuming that M is a manifold it suffices to
require M to be Hausdorff and locally compact.

Example 1.12. Z is residually finite.

Proof. We know that Z = π1(S1) where S is the unit circle. Now consider a
loop α, m times wrapping around S1. Take the standard m+ 1-sheeted cover
of S1. Then α lifts to a path that is not closed. So we can again define the
compact subset C as the endpoints of α and continue as above in the proof of
Proposition 1.18.

Example 1.13. Finitely generated abelian groups are residually finite.

Proof. Let G be a finitely generated abelian group. By the Structure Theorem
we know

G ∼= Zn ⊕ Zp1 ⊕ · · · ⊕ Zpn
.

But by Example 1.8 the finite group Zpi
is residually finite for i ∈ {1, 2, . . . , n}

and Z is residually finite by Example 1.12. As the direct product of finitely
many residually finite groups, G is residually finite by Example 1.10 as well.

1.3 Hopfian Groups

Definition 1.24. A group G is called Hopfian if either one of the following
conditions hold:

(i). G is not isomorphic to any of its proper quotients.

(ii). Any epimorphism π : G→ G is an isomorphism.

In fact, we only need one of the above conditions:

Lemma 1.19. The statements (i) and (ii) are equivalent.

Proof. First consider a short exact sequence

1→ A1
φ1→ A2

φ2→ A3 → 1
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where φ1 is injective, φ2 is surjective and ker(φ2) = Im(φ1). By the Isomorphism
Theorem we obtain

Im(φ2) ∼= A2/ker(φ2)
ker(φ2)=Im(φ1)⇒ Im(φ2) ∼= A2/Im(φ1)
φ1 injective⇒ Im(φ2) ∼= A2/A1

φ2 surjective⇒ A3 ∼= A2/A1

Now take A1 := K E G, A2 = A3 := G, φ1 = IdK and φ2 = π.
Then we get

1→ K → G
π→ G→ 1 and G ∼= G/K .

Suppose now that (i) holds, i.e. G � G/K, unless K = {1G}, so we get the
sequence

1→ 1→ G
π→ G→ 1

which means that π is bijective, so (ii) holds.
Conversely assume (ii) is true, that means π is bijective. Then K = {1G} and
so we cannot find a proper quotient isomorphic to G, i.e. (i) holds.

Remark 1.17. Since it is hard to check whether every epimorphism is an isomor-
phism, it is easier to determine that a group G is not Hopfian: We just need to
find one epimorphism π : G→ G such that ker(π) 6= {1G}.

Example 1.14. G = Z∞ is not Hopfian.

Proof. Consider the map

π : G → G

(n1, n2, . . . ) 7→ (n2, n3, . . . ) .

Clearly, this π is an epimorphism, but (1, 0, 0, . . . ) ∈ ker(π) and (1, 0, 0, . . . ) 6=
(0, 0, 0, . . . ) = 1Z∞ .

Theorem 1.20 (Malcev). Let G be a finitely generated, residually finite group.
Then G is Hopfian.

Proof. Let G be finitely generated and residually finite and let φ : G→ G be an
epimorphism with kernel N . Then N E G is a normal subgroup and G ∼= G/N .
We need to show that N = {1G}.
Let m ∈ N, then we know, since G is finitely generated, by Marshal Hall’s
theorem, there is only a finite number rm ∈ N of subgroups of index m in G.
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Denote them as {H1, . . . ,Hrm
}. Now define Ki := φ−1(Hi) as the preimage

for all i ∈ {1, . . . , rm}. As Ki is not the preimage of the trivial group for any
i ∈ {1, . . . , rm}, all Ki contain the kernel N . But since all Ki are also distinct
subgroups of G of index m, the set {Hi | i ∈ {1, . . . , rm}} is equal to the set
{Ki | i ∈ {1, . . . , rm}}. Hence N E Hi for all i ∈ {1, . . . , rm}. But m was
arbitrarily chosen, thus N has to be contained in any finite index subgroup, i.e.

N ≤
⋂

K≤G:
[G:K]<∞

K .

But this intersection is trivial by Proposition 1.15 (iv) as G is residually finite,
hence N = {1G} and G is Hopfian.

Example 1.15. Since any finite group is residually finite by Example 1.8, it is
also Hopfian.

Remark 1.18. Malcev’s Theorem 1.20 gives us a new tool to prove that a group is
not residually finite, by showing it is not Hopfian, i.e. we can find a non-injective
epimorphism.

2 Tools to Determine Residual Finiteness

It is obvious that it can become very cumbersome to determine whether a group
is residually finite with the original definition. In particular when the group is
infinite, we cannot run through all elements to check whether for all of them
there is a finite index normal subgroup not containing the element. Although
Proposition 1.15 gives some equivalent definitions, the question does not become
much more accessible. It remains unclear, how to systematically find finite index
subgroups. Hence, we need to develop some machinery that might help to check
groups for residual finiteness without simply applying the definition.

2.1 Tietze transformations

Definition 2.1. Let G = 〈A | R〉 = 〈a, b, c, · · · | P,Q,R, . . . 〉 be a presentation
of the group G, where A is the alphabet and R is the set of relations.

• For any relation W ∈ R of the form W1(A) = W2(A), where W1(A) and
W2(A) are both words in A ∪ A−1 the word W1(A)W2(A)−1 is called
relator.

• For any element A ∈ A, the word AA−1 is called trivial relator.
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• Let W be a word in G. Then W is derivable from R = {P,Q,R, . . . } if
the following operations, applied a finite number of times, change W into
the empty word:

(i). Insert one of the relators corresponding to the relations {P,Q,R, . . . }
or its inverse between any two consecutive symbols of W , before W
or after W .

(ii). Insert any trivial relator between any two consecutive symbols of W ,
before W or after W .

(iii). Delete one of the relators corresponding to the relations {P,Q,R, . . . }
or its inverse forming a block of consecutive symbols in W .

(iv). Delete any trivial relator forming a block of consecutive symbols in
W .

Definition 2.2. Let G = 〈a, b, c, · · · | P,Q,R, . . . 〉 be a group with alphabet
A = {a, b, c, . . . } and relations R = {P,Q,R, . . . }. The following four transfor-
mations to the presentation of G are called Tietze transformations:

T1 Let W1 = {S, T, . . . } ⊆ G be a set of words in A. If W1 is derivable from
elements in R, add {S = 1, T = 1, . . . } to R.

T2 Let R2 = {S = 1, T = 1, . . . } ⊆ R be some relations of the group presenta-
tion. If {S, T, . . . } is derivable from R \R2, delete R2 from R.

T3 Let W3 = {K,M, . . . } ⊆ G be words in A. Adjoin A3 = {x, y, . . . } to A and
R3 = {K = x,M = y, . . . } to R.

T4 Let A4 = {V,W, . . . } ⊆ A be some elements of the alphabet. If there
is a subset A′4 = {p, q, . . . } ⊆ A of A such that A4 ∩ A′4 = ∅ and
R4 = {p = V, q = W, . . . } ⊆ R is a subset, then delete A′4 from A
and R4 from R and replace every appearance of elements from A′4 in R
by the corresponding element of A4.

Theorem 2.1. [30, Chapter 1.5, p. 51 f.] Let G be a group with two presentations

〈{ai | i ∈ I ⊆ N} | {Rj(ai) | j ∈ J ⊆ N, i ∈ I}〉

and
〈{bk | i ∈ K ⊆ N} | {Sl(ak) | l ∈ L ⊆ N, k ∈ K}〉 .

Call the first presentation (A) with alphabet AA and relations RA and the second
presentation (B) with alphabet AB and relations RB. Then the presentation
(B) can be obtained from presentation (A) by repeated application of Tietze
transformations.
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Corollary 2.2. Let G be a finitely generated group with two group presentations
(A) and (B). Then the presentation (B) can be obtained by the presentation (A)
by applying a finite number of Tietze transformations.

The following examples [30, cf.] illustrate how convenient these Tietze transfor-
mations can be, as soon as one knows which generators and relations are suitable
to be added.

Example 2.1. Let G = 〈a, b, c | (ab)2ab2 = 1〉. Then G ∼= 〈c, x〉 = F2.

Proof.

• Use T3: Add new generators x, y and relations x = ab, y = ab2 to obtain

G = 〈a, b, c, x, y | (ab)2ab2 = 1, x = ab, y = ab2〉 .

• Use T1: Add the new relation x2y = 1, since it is derivable from the
relations of the current presentation to obtain

G = 〈a, b, c, x, y | (ab)2ab2 = 1, x2y = 1, x = ab, y = ab2〉 .

• Use T2: Delete the relation (ab)2ab2 = 1 since it is derivable from the other
relations of the current presentation to obtain

G = 〈a, b, c, x, y | x2y = 1, x = ab, y = ab2〉 .

• Use T1: Add the new relations b = x−1y and a = xy−1x, since they are
derivable from the relations of the current presentation via y = ab2 =
abb = xb and x = ab = ayx−1 to obtain

G = 〈a, b, c, x, y | x2y = 1, x = ab, y = ab2, b = x−1y, a = xy−1x〉 .

• Use T4: Observe that a = xy−1x =: V ∈ W({x, y}) ⊆ W(A \ {a, b}) and
b = x−1y =: W ∈ W({x, y}) ⊆ W(A\{a, b}) and therefore delete a, b from
A and we can replace a by V and b by W in all elements of R to obtain

G = 〈c, x, y | x2y = 1, x = (xy−1x)(x−1y), y = (xy−1x)(x−1y)2〉 .

• Use T2: Since x = xy−1xx−1y = x and y = xy−1xx−1yx−1y = y, the
two latter relations of our current presentations are derivable and can be
therefore deleted, so we obtain

G = 〈c, x, y | x2y = 1〉 .
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• Use T1: The relation x−2 = y can be derived from x2y = 1 and therefore
added so we obtain,

G = 〈c, x, y | x2y = 1, x−2 = y〉 .

• Use T2: The relation x2y = 1 can be derived from x−2 = y and therefore
deleted to obtain

G = 〈c, x, y | x−2 = y〉 .

• Use T4: Observe y = x−2 =: Z ∈ W({x}) ⊆ W(A \ {y}), so we can delete
y from A and the relation y = X from R and replace every occurrence of
y in R by X. But since R does not have any other element, the set R is
empty, so we obtain

G = 〈c, x〉 .

Example 2.2. Let G = 〈x, y | x3 = 1, y2 = 1, (xy)2 = 1〉. Then

G = 〈y, z | z2 = 1, y2 = 1, (zy)3 = 1〉 .

Proof.

• Use T3: Add the new generator z and the relation z = xy = xy−1 to obtain

G = 〈x, y, z | x3 = 1, y2 = 1, (xy)2 = 1, z = xy〉 .

• Use T1 and T2: Add the derivable relation x = zy−1 = zy and delete the
derivable relation z = xy to obtain

G = 〈x, y, z | x3 = 1, y2 = 1, (xy)2 = 1, zy = x〉 .

• Use T4: Observe x = zy =: V ∈ W({y, z}) ⊆ W(A \ {x}), hence we can
remove x from A and x = V from R and replace every occurrence of x in
an element of R by V to obtain

〈y, z | y2 = 1, z2 = 1, (zy)3 = 1〉 .

Example 2.3. Let G = 〈a, b, c | b2 = 1, (bc)2 = 1〉. Then

G = 〈x, y, z | y2 = 1, z2 = 1〉 .
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Proof.

• Use T3: Add the new generators x, y, z with relations x = a, y = b, z = bc

to obtain

G = 〈a, b, c, x, y, z | b2 = 1, (bc)2 = 1, x = a, y = b, z = bc〉 .

• Use T4: Observe that a = x =: V ∈ W({x, y}) ⊆ W(A \ {x, y}) and
b = y =: W ∈ W({x, y}) ⊆ W(A \ {x, y}). So we can remove a, b from
A and a = V , b = W from R and replace every occurrence of a and b in
elements of R by V and W respectively to obtain

G = 〈c, x, y, z | y2 = 1, (yc)2 = 1, z = yc〉 .

• Use T4: Observe that c = y−1z =: X ∈ W({y, z}) ⊆ W(A \ {c}). So we
can remove c from A and c = X from R and replace every occurrence of c
in elements of R by X. Since (yy−1z)2 = z2 we obtain

G = 〈x, y, z | y2 = 1, z2 = 1〉 .

Example 2.4. Let m,n ∈ Z such that gcd(m,n) = 1 and let G = 〈a | amn = 1〉.
Then

G = 〈b, c | bn = 1, cm = 1, bc = cb〉 .

Proof.

• Use T3 to obtain

G = 〈a, b, c | amn = 1, b = an, c = am, bc = cb〉 .

• Use T1 to obtain

G = 〈a, b, c | amn = 1, b = am, c = an, bn = 1, cm = 1, bc = cb〉 .

• Use T1: Observe that if gcd(m,n) = 1 then there are r, s ∈ Z such that
1 = rm+ sn, hence a = a1 = arm+sn = (am)r(an)s = brcs. So we obtain

G = 〈a, b, c | amn = 1, b = am, c = an, bn = 1, cm = 1, bc = cb, a = brcs〉 .
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• Use T4 to obtain

G = 〈b, c | bn = 1, cm = 1, bc = cb, (brcs)mn = 1, b = (brcs)m, c = (brcs)n〉 .

• Use T2: Observe that we can derive

(brcs)mn = (bn)rm(cm)sn = 1rm1sn = 1

(brcs)mb−1 = brmcsmb−1 = brm−1csm = bsncsm = (bn)s(cm)s = 1s1s = 1

(brcs)nc−1 = bmcsn−1 = brncrm = (bn)r(cm)r = 1r1r = 1 ,

so we obtain
G = 〈b, c | bn = 1, cm = 1, bc = cb〉 .

Example 2.5. Let G = 〈a, b | aba = bab〉. Then

G = 〈c, d | c3 = d2〉 .

Proof.

• Use T3 to obtain

G = 〈a, b, c, d | aba = bab, c = ab, d = aba〉 .

• Use T1 and T2: Derive

a = cb−1 ⇒ d = cb−1bcb−1 = c2b−1

⇒ b = d−1c2

⇒ a = c(d−1c2)−1 = c−1d

to obtain

G = 〈a, b, c, d | aba = bab, a = c−1d, b = d−1c2〉 .

• Use T4: Replace a by c−1d and b by d−1c2 and derive

c−1dd−1c2c−1d = d−1c2c−1dd−1c2 ⇒ d = d−1c3 ⇒ d2 = c3

to obtain
G = 〈c, d | d2 = c3〉 .
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2.2 Theorem of Malcev

Theorem 2.3 (Malcev). Let G be a finitely generated, linear group,
i.e. G ⊆ GLn(C) for some n ∈ N. Then G is residually finite.

Proof. [48] We will distinguish two cases:

• First let G ≤ GLn(Z) be finitely generated. Since GLn(Z) itself is finitely
generated, it suffices to show that GLn(Z) is residually finite, since the
then by Proposition 1.17 any subgroup will be residually finite as well.
So choose A ∈ GLn(Z) \ {I}. That means that A− I has at least one entry
x ∈ Z \ {0}. By the Fundamental Theorem of Arithmetic we know there
exists a prime p ∈ P such that p - x.
Now consider the homomorphism

φp : GLn(Z)→ GLn(Z/pZ)

M 7→M (mod p)

Since |Z/pZ| <∞ implies |GLn(Z/pZ)| <∞, we know by the Isomorphism
Theorem that |GLn(Z)/ker(φp)| <∞. But φp(A) = A (mod p) 6= I since
x 6= 0 (mod p), so A /∈ ker(φp). Therefore GLn(Z) is residually finite.

• Now let G ≤ GLn(C) be finitely generated. The finite collection of entries
of generators of G, (finitely) generate a ring R ⊆ C. In particular, R
cannot have any zero-divisors, since C is a field, so R is an integral domain.
Again, since with R also GLn(R) is finitely generated, it suffices to show
that GLn(R) is residually finite by Proposition 1.17.
So choose A ∈ GLn(R) \ {I}. Then A − I has an entry x ∈ R \ {0}. So
there exists a prime ideal P ⊆ R such that x /∈ P . But since R is finitely
generated, P has to be finitely generated and therefore R/P is finitely
generated. Also, since C is abelian, so are R and P and therefore R/P
is abelian. So R/P is a finite integral domain and therefore a finite field.
Now consider, analogously to the first case, the homomorphism

φP : GLn(R)→ GLn(R/P )

M 7→M (modP ) .

Since |R/P | <∞ implies |GLn(R/P )| <∞, we know by the Isomorphism
Theorem that |GLn(R)/ker(φP )| <∞. But φP (A) = A (modP ) 6= I since
x /∈ P , so A /∈ ker(φP ). Therefore GLn(R) and with it the subgroup
G ≤ GLn(R) is residually finite.
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Remark 2.1. Malcev’s Theorem 2.3 gives us a second proof for Example 1.11
that SLn(Z) is residually finite.

The converse of Malcev’s Theorem 2.3 is not true:

Example 2.6 (Drutu-Sapir). The group 〈a, t | at2 = a2〉 is residually finite but
not linear.

2.3 Bass-Serre Theory

The following results are adopted from Jean-Pierre’s Serre standard reference
Trees [43]. To fully understand his work, it is helpful to use details, reformulations
and examples introduced in [5] and [13].

Remark 2.2. An introduction on the necessary graph theoretical concepts and
definitions appearing in this chapter can be found Chapter 1 of [5] and in Chapter
2 of [43].

Nonetheless let us recall the most important definitions:

Definition 2.3. Let X = (V (X), E(X)) be a directed graph.

• The inverse of an edge e = (x, y) ∈ E(X) denoted by ē is the edge
(y, x) ∈ E(X) connecting the same vertices in the opposite direction.

• For an edge e = (x, y) ∈ E(X), x is called the origin of e, denoted by o(e)
and y is called the terminal vertex of e, denoted by t(e).

• If A ⊆ E(X) is a subset of the edge set, then A is called an orientation of
X if |A ∩ {e, ē}| = 1 for every e ∈ E(X).

Definition 2.4. Let X and Y be two graphs. A map f : X → Y is called graph
morphism if

f(V (X)) ⊆ V (Y ) and f(E(X)) ⊆ E(Y )

and the following three conditions hold for any e ∈ E(X):

(i). f(o(e)) = o(f(e))

(ii). f(t(e)) = t(f(e))

(iii). f(ē) = f(e) .

Definition 2.5. Let G be a group and X be a directed graph.

(i). We say G acts on X if there are maps

G× V (X)→ V (X) G× E(X)→ E(X)

(g, v) 7→ gv (g, e) 7→ ge
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such that go(e) = o(ge) and ge = ge for any e ∈ E(X).

(ii). The orbit of the vertex v ∈ V (X) under the action of G is the set
G · v = {gv | g ∈ G} and the orbit of the edge e ∈ E(X) under the
action of G is the set G · e = {ge | g ∈ G}.

(iii). The factor graph or quotient graph G\X is the graph given by the vertex set
V (G\X) = {G · v | v ∈ V (X)} and the edge set E(G\X) given by all the
orbits G · e with e ∈ E(X) such that

• G · v = o(G · e) if there is a g ∈ G such that gv = o(e),

• G · e = G · e .

Definition 2.6. Let G be a group acting on a directed graph X. A pair
(g, e) ∈ G× E(X) is called an inversion if ge = ē, i.e. g reverses the orientation
of the edge e. If there is no such pair, we say G acts on X without inversion.

Proposition 2.4. Let G be a group acting on the connected, directed graph X
without inversion. Then every subtree T ′ of G\X lifts to a subtree of X.

Proof. Define the set Ω := {T ⊆ X subtree | T projects injectively into T ′},
that is partially ordered by inclusion and any ascending chain of elements in Ω
have an upper bound given by their union. Hence, by Zorn’s Lemma there is a
maximal element T0 of Ω. Define the image of T0 in T ′ under the projection as
T ′0. If we suppose that T ′0 6= T ′, then there is an edge e′ ∈ E(T ′) \ E(T ′0). Since
T as a tree is connected, we can assume that o(e′) ∈ V (T ′0) and t(e′) /∈ V (T ′0).
Now let e′ be lifted to e. Since we could replace the lift by ge for any g ∈ G,
without loss of generality we can assume that o(e) ∈ V (T0). Now define T1 as
the graph obtained by adjoining vertex t(e) and edges e, ē to T0. But since
t(e) is a terminal vertex, T1 is still a tree, that projects injectively into T ′, in
contradiction to T0 being the maximal tree with that property. So T ′0 = T ′ and
T ′ lifts to a subtree of a X.

Definition 2.7. Let G be a group and let it act on a graph X. A lift T ⊆ X of
a maximal subtree in G\X is called tree of representatives of X mod G.

Definition 2.8. Let ϕ1 and ϕ2 be two actions of G on the set Ω1 and Ω2

respectively. We call ϕ1 and ϕ2 equivalent if there is a bijective map t : Ω1 → Ω2

such that
t(ϕ1(α, g)) = ϕ2(t(α), g)

for all α ∈ Ω1 and for all g ∈ G.
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2.3.1 Groups acting freely on a Tree

In case the graph is a tree, we need to refine the definition of a group action on
it:

Definition 2.9. Let G be a group and let T = T (V (T ), E(T )) be a tree. We
say G acts on T (by isometry) if there are maps

G× V (T )→ V (T ) G× E(T )→ E(T )

(g, v) 7→ gv (g, e) 7→ ge

such that for any e = (v1, v2) ∈ E(T ) we get ge = (gv1, gv2).

Definition 2.10. Let G be a group acting on some graph X = X(V (X), E(X)).
We say that the action is minimal if there is no proper subset of Y ⊂ X, left
invariant under the action of G, i.e.

G · Y 6= Y for any Y 6= ∅ , Y ⊂ X

Definition 2.11. Let G be a group acting on some (directed) graph X =
X(V (X), E(X)). We say that the action is free if

• the action is without inversions, i.e.

ge = g(v1, v2) 6= (v2, v1) = ē for any e = (v1, v2) ∈ E(X) ;

• the action does not fix any vertex, i.e.

gv 6= v for any v ∈ V (T ) .

Remark 2.3. Unless stated otherwise, if a group G acts on a graph X, we assume
from now on that the graph is directed and the action is always without inversion,
independent of the property of being a free action. This is not a loss of generality,
because we can use the following definition:

Definition 2.12. Let X = X(V (X), E(X)) be a graph. Its barycentric subdivision
B(X) is the graph that is obtained by dividing every edge e ∈ E(X) exactly in
the middle by a new vertex ve ∈ V (B(X)). So for every edge e = (x, y) ∈ E(X)
there are two edges e1 = (x, ve) ∈ E(B(X)) and e2 = (ve, y) ∈ E(B(X)).
Furthermore, we impose that

(ē)2 = ē1, (ē)1 = ē2 and ve = vē .
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If there is a group G acting on X we can extend the action of G on B(X) by
defining

ge1 = (ge)1 , ge2 = (ge)2 and gve = vge

for every g ∈ G, e1, e2 ∈ E(B(X)) and for every ve ∈ V (B(X)) with e ∈ E(X).

It is apparent that G always acts on B(X) without inversion, so if necessary we
can consider B(X) instead of X.

Remark 2.4. Recall Example 1.2: If G is generated by S, its Cayley graph
Cay(G,S) is an infinite tree if and only if G is the free group FS .

Proposition 2.5. Let G be a group. G is a free group if and only if G acts
freely on a tree.

Proof. Let G be a free group freely generated by the set S. Since any group acts
freely on its Cayley graph Cay(G,S), by Remark 2.4, G acts freely on a tree.
Conversely let G act freely on a tree T . We need to consider two cases, as
proposed in [31]:

(i). First assume the action to be transitive. Let v ∈ V (T ) and define
N (v) := {x ∈ V (T ) | ∃ e ∈ E(T ) : e = (x, v)} to be the set of neigh-
bors of v. Since the action is transitive and free, for every n ∈ N (v) there
is a unique gn ∈ G such that gnv = n. Define the set of all those gn as
S := {gn | n ∈ N (v)}. Choose S′ ⊆ S such that S′ ∩ S′−1 = ∅, so it con-
tains exclusively either gn or g−1

n for every n ∈ N (v). Now we want to show
that G = FS′ : Let g ∈ G and let x0 = v, x1, . . . , xm, xm+1 = gv ∈ V (T ) be
the path from v to gv in T . Since the action is transitive, for every xi with
i ∈ {1, 2, . . . ,m} there is a gi such that giv = xi. But since xi and xi+1

are connected for every i ∈ {0, 1, . . . ,m}, we conclude that g−1
i+1gi ∈ S.

Hence g ∈ 〈S〉 = 〈S′〉, so S is a generating set for G. It is left to show
that G is in fact a free group. So take a reduced word in S′ ∪ S′−1. We
can associate a path in T to it. If the path would also represent the trivial
element 1G, then T would have a circle, in contradiction to T being a tree.
So the group G cannot have any relations and is therefore free.

(ii). Now assume that the action of G on T is not transitive. Let again be
v ∈ V (T ). Define its orbit V ′(T ′) := G · v = {gv | g ∈ G}. Two
elements gv, hv ∈ V ′(T ′) are connected in T ′ := T ′(V ′(T ′), E′(T ′)) ⊆
T (V (T ), E(T )) if and only if they are connected in T (V (T ), E(T )) or if
the unique geodesic between gv and hv in T (V (T ), E(T )) does not contain
any element of V ′(T ′). By construction, T ′ cannot have a circle and is
connected, so T contains a subtree that is a subdivision of T ′. But as G
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acts on T , it also acts on T ′. This action of G on T ′ is now transitive. So
by the first case, G is a free group.

Corollary 2.6 (Nielsen-Schreier). Every subgroup of a free group is free.

Proof. Let G be a free group with subgroup H ≤ G. Then by Proposition 2.5,
G acts freely on some tree T . But as a subgroup of G, H acts freely on T as
well. So again by Proposition 2.5, His a free group.

2.3.2 Amalgamated Product

Definition 2.13. Let G := 〈SG | RG〉 and H := 〈SH | RH〉 be two groups. Let
K be some group and let ϕ : K → G and ψ : K → H be two monomorphisms.
Let G ∗H = 〈SG ∪ SH | RG ∪RH〉 be the free product. The free product with
amalgamation G∗KH of G and H, is the free product adjoined with the relations
ϕ(k)ψ(k)−1 = 1G∗H for any k ∈ K, i.e.

G ∗K H = 〈SG ∪ SH | RG ∪RH ∪ {ϕ(k)ψ(k)−1 = 1G∗H | k ∈ K}〉 .

Remark 2.5.

(i). Analogously we can think of the Definition 2.13 of the amalgamated product
in the following way: Let N be the smallest normal subgroup of G ∗H
generated by the conjugates of the set {ϕ(k)ψ(k)−1 | k ∈ K}, i.e. the
normal closure, then the amalgamated product is given by the quotient
G ∗K H = (G ∗H)/N .

(ii). Analogous to Definition 2.13 we can define the amalgamated product of
more than two groups: Let (Gi)i∈I a family of groups with I ⊆ N and let
(ϕi : K → Gi)i∈I be a family of monomorphism for some group K. Then
the free product with amalgamation ∗i∈IK Gi of the family (Gi)i∈I is defined
as the quotient of the free product ∗i∈IGi by the normal closure of the set
{ϕi(k)ϕi′(k)−1 | k ∈ K, i, i′ ∈ I}.

(iii). In fact, we can simplify Definition 2.13: Since the images A := ϕ(K) ≤ G,
and B := ψ(K) ≤ H of the monomorphisms ϕ : K → G and ψ : K → H

are subgroups, we can assume that there is an isomorphism ϕ̃ : A→ B. To
form the amalgamated product, we then only need to adjoin the relations
ϕ̃(a)a−1 = 1G∗H for any a ∈ A. If this interpretation is used, we denote
the amalgamated product as G ∗A∼=B H.

Example 2.7.
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(i). If K = {1}, then the amalgamated product G ∗K H = G ∗{1} H is simply
the free product G ∗H of G and H.

(ii). Let G = Z/4Z = 〈a | a4 = 1〉 and H = Z/6Z = 〈b | b6 = 1〉 be two cyclic
groups. Let K = Z/2Z = 〈c | c2 = 1〉 be a group with monomorphisms

ϕ : K → G ψ : K → H

c 7→ a2 c 7→ b3 .

Then the amalgamated product of G and H along K is given by

G ∗K H = Z/4Z ∗Z/2Z Z/6Z = 〈a, b | a4 = b6 = 1, a2b−3 = 1〉 .

(iii). Let V4 = 〈a, b | a2 = b2 = (ab)2 = 1〉 be the Klein four-group with its
subgroup B = 〈b | b2 = 1〉. We want to derive the amalgamated product
of V4 with itself along the subgroup B. Hence, we can first consider the
free product of V4 with itself, which is

V4 ∗ V4 = 〈a, b | a2 = b2 = (ab)2 = 1〉 ∗ 〈c, d | c2 = d2 = (cd)2 = 1〉

= 〈a, b, c, d | a2 = b2 = (ab)2 = c2 = d2 = (cd)2〉 .

Since the subgroups B and D = 〈d | d2 = 1〉 are isomorphic, we obtain for
the amalgamated product

V4 ∗B∼=D V4 = 〈a, b, c | a2 = b2 = c2 = (ab)2 = (bc)2 = 1〉 .

Definition 2.14.

(i). Let G and H be groups with isomorphic subgroups A ≤ G and B ≤ H.
Define F = G ∗A∼=B H to be their amalgamated product along A ∼= B and
let i : G ∗H → F be the canonical homomorphism from their free product
onto F . Then every element f ∈ F can be written as f = i(x0)i(x1) · · · i(xn)
where xi ∈ G ∪H. To make matters easier we will denote such an element
f ∈ F simply as f = x0x1 · · ·xn.

(ii). Let A ≤ G be a subgroup of the group G and B ≤ H be a subgroup of the
group H. Then TA denotes the system of representatives of right cosets
of A in G and TB denotes the system of representatives of right cosets of
B in H. Assume 1G ∈ TA and 1H ∈ TB. Moreover, denote the unique
presentation of an element g ∈ G as the product of an element of A and
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an element of TA by

g = xx for x ∈ A and x ∈ TA

and analogously for an element h ∈ H

h = yy for y ∈ B and y ∈ TB .

(iii). For an element f = x0x1 · · ·xn ∈ F a sequence (x0, x1, . . . , xn) is called
A-normal form if

• x0 ∈ A

• xi ∈ TA \ {1G} or xi ∈ TB \ {1H} and consecutive elements xi and
xi+1 lie in distinct systems of representatives.

Analogously the sequence is called B-normal form if

• x0 ∈ B

• xi ∈ TA \ {1G} or xi ∈ TB \ {1H} and consecutive elements xi and
xi+1 lie in distinct systems of representatives.

Example 2.8. Let G = 〈a | a12 = 1〉 and H = 〈b | b15 = 1〉 with subgroups
A = 〈a4 | a12 = 1〉 ≤ G and B = 〈b5 | b15 = 1〉 ≤ H. Let

ϕ : A ∼−→ B

a4 7→ b5

be the isomorphism between A and B. Then the amalgamated product of G
and H along ϕ is given by

G ∗A∼=B H = 〈a, b | a12 = 1, b15 = 1, a4 = b5〉 .

Consider the systems of coset representatives given by

TA = {1G, a, a2, a3} and TB = {1H , b, b2, b3, b4}

and let f ∈ G ∗A∼=B H be the element f = a3ba5. Then we can deduce

f = a3ba5 = a3ba4a = a3bb5a = a3b5ba = a3a4ba = a4a3ba ,

hence the A-normal form of f = a3ba5 is given by (a4, a3, b, a) since a4 ∈ A,
a3, a ∈ TA \ {1G} and b ∈ TB \ {1H}. Furthermore, since ϕ(a4) = b5, the
B-normal form of f is given by (b5, a3, b, a).
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Theorem 2.7 (Normal Form Theorem for Amalgamated Products). [5, p. 73, The-
orem 11.3] Let G and H be two groups with isomorphic subgroups A ≤ G and
B ≤ H. Then any element f ∈ G ∗A∼=B H in the amalgamated product can
be uniquely written in the form f = x0x1 · · ·xn, where (x0, x1, . . . , xn) is an
A-normal form.

The Normal Form Theorem 2.7 lets us deduce:

Corollary 2.8. Let G and H be two groups with isomorphic subgroups A ≤ G
and B ≤ H respectively. If an element f ∈ F := G ∗A∼=B H in the amalgamated
subgroup is of the form f = x0x1 · · ·xn with n ≥ 1 and xi ∈ G\A for i ≡ 1 (mod 2)
and xi ∈ H \B for i 6= 0 and i ≡ 0 (mod 2), then f 6= 1F .

Definition 2.15. Let G be a group acting on a graph X. A fundamental domain
of X mod G is a subgraph F ⊆ X of X such that F → G\X is an isomorphism.

Remark 2.6. Equivalently we can say that F is a fundamental domain of the
graph X under the action of G if |F ∩ [x]| = 1 for every [x] ∈ G\X , i.e. F contains
precisely one element per orbit.

Proposition 2.9. Let G be a group acting on a tree T . Then T has a funda-
mental domain mod G if and only if G\T is a tree.

Proof. If G\T is a tree, then by Proposition 2.4, G\T lifts to a subtree of T , so T
has a fundamental domain. If conversely T has a fundamental domain F mod G,
we need to show that G\T is a tree. But since as a tree, T is connected and
non-empty, so is G\T . Furthermore F is a non-empty connected subgraph of the
tree T , hence a tree itself. But since G\T is by Definition 2.15 isomorphic to F ,
it has to be a tree as well.

Definition 2.16. A graph isomorphic to the graph consisting of two vertices
and one connecting edge is called segment or interval.

Theorem 2.10. Let G be a group acting on a graph X with fundamental domain
Y , that is a segment consisting of two vertices p and q and one connecting edge
e. Let Gp, Gq and Ge denote the stabilizers of p, q and e respectively. Then X
is a tree if and only if the map ϕ : Gp ∗Ge

Gq → G is an isomorphism with
restrictions ϕ|Gp

and ϕ|Gq
equal to the identity map.

Proof. Since Gp are Gq are subgroups of G, it is clear that ϕ is a homomorphism
and that its restrictions to Gp and Gq are the identity map. To prove the
bijectivity we need two lemmata:

Clearly, the first lemma implies surjectivity, the second injectivity:
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Lemma 2.11. Let G be a group acting on a graph X with fundamental domain
Y as above. Then X is connected if and only if G = 〈Gp ∪Gq〉.

Lemma 2.12. Let G be a group acting on a graph X with fundamental domain
Y as above. Then X has no circuit if and only if ϕ : Gp ∗Ge Gq → G is injective.

Proof. (of Lemma 2.11)
Define X ′ to be the connected component of X containing Y ,
G′ := {g ∈ G | gX ′ = X ′} to be the subset of G that leaves X ′ invariant
and let G′′ := 〈Gp ∪ Gq〉 ≤ G. First observe that G′′ ⊆ G′: Let g ∈ G′′ and
assume g ∈ Gp. That means that gp = p and therefore gY ∩ Y = p. So Y and
gY have the same connected component X ′. Therefore gX ′ = X ′, which implies
g ∈ G′.
Next, observe that X = G′′Y ∪̇ (G \G′′)Y : Clearly, X is given by the union, but
suppose the union is not disjoint. Then there is an x ∈ G′′ and a y ∈ G \ G′′

such that either
y−1xp = p or y−1xq = q

or
y−1xp = q or y−1xq = p .

But the first case implies that y−1x ∈ Gp ∪Gq = G′′ and therefore y ∈ G′′, in
contradiction to y ∈ G \G′′ and the second case contradicts the assumption of Y
being a fundamental domain. So the union is disjoint. But since X ′ is connected,
it cannot have elements in two disjoint sets, so we can conclude X ′ ⊆ G′′Y and
therefore G′ ⊆ G′′. So G′ = G′′. Clearly, the graph X is connected if and only
X = X ′, which is the case if and only if G = G′ = G′′ = 〈Gp ∪Gq〉.

Proof. (of Lemma 2.12)
First assume X to have a circuit c = (w0, w1, . . . , wn) ⊆ E(X) without back-
tracking. There is an hi ∈ G such that wi = hiyi for yi ∈ {e, ē} and for
i ∈ {0, 1, . . . n}.
Now project c to G\X = Y . Since the wi build a circuit, n is odd and
o(yi) = t(yi−1) =: ri ∈ {p, q} and yi−1 = yi for any i ∈ {1, 2, . . . , n}. Next
note

hiri = hi o(yi) = o(hiyi) = o(wi) = t(wi−1) = t(hi−1yi−1) = hi−1ri .

So there is a gi ∈ Gri
⊆ G such that hi = hi−1gi. Suppose gi ∈ Ge as well. Then

wi = hiyi = hi−1giyi = hi−1yi = hi−1yi = hi−1yi−1 = wi−1 ,

which contradicts the assumption of c being non-backtracking. Thus, for every
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i ∈ {0, 1, . . . ,m} we have hi = hi−1gi with gi ∈ Gri
\ Ge. Also, since c is a

circuit, o(w0) = t(wn), so r0 = o(y0) = t(yn), hence

h0r0 = o(w0) = t(wn) = hn t(yn) = hnr0 ,

which gives
h0r0 = hnr0 = hn−1gnr0 = · · · = h0g1 · · · gnr0 .

So there is a g0 ∈ Gr0 ⊆ G such that g0g1 · · · gn = 1G, but by Corollary
2.8 of the Normal Form Theorem 2.7, we know g0g1 · · · gn 6= 1Gp∗GeGq

, so
g0g1 · · · gn ∈ ker(ϕ) and non-trivial, thus ϕ is not injective.

This completes the proof of Theorem 2.10.

Theorem 2.13. Let G = G1 ∗A G2 be an amalgamated product. Then there is
a tree X unique up to isomorphism such that G acts on X with fundamental
domain a segment Y consisting of two vertices p and q connected by an edge e
with stabilizers Gp = G1, Gq = G2 and Ge = A.

Proof. Construct a graph X, which is clearly unique up to isomorphism and
on which G acts: Define the vertex set V (X) := G/G1 ∪̇G/G2, the edge set
E(X) := G/A and edge maps

o : G/A→ G/G1 t : G/A→ G/G2

gA 7→ gG1 gA 7→ gG2 .

Let Y be the segment of X with vertices G1 and G2 connected by the edge A.
Clearly G acts on X by left multiplication with stabilizers Gp = G1, Gq = G2

and Ge = A, so we are left to show that X is a tree. But this follows directly
from Lemma 2.11 and Lemma 2.12.

Example 2.9. Let D∞ = 〈r, s | s2 = 1, srs = r−1〉 be the infinite dihedral group.
Consider the barycentric subdivision B(C∞) of the infinite cycle graph C∞, i.e.
the number line. Clearly, the map

D∞ × V (B(C∞))→ V (B(C∞))

(r, i) 7→ i+ 1

(s, i) 7→ −i

extends to an action of D∞ on B(C∞). Note that it is necessary to consider
the barycentric subdivision, because if we would let D∞ act on C∞, the action
would not be without inversions, since the element sr ∈ D∞ acting on the edge
(−1, 0) ∈ E(C∞) would give (0,−1) ∈ E(C∞).
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We can now consider the factor graph D∞\B(C∞) and observe that it is a segment
with the vertices 0, 1

2 ∈ V (B(C∞)) and their connecting edge (0, 1
2 ) ∈ E(B(C∞))

being a lift in B(C∞). The vertex stabilizer of 0 ∈ V (B(C∞)) is 〈s〉 ⊆ D∞,
since −0 = 0 and the vertex stabilizer of 1

2 ∈ V (B(C∞)) is 〈sr−1〉 ⊆ D∞ since
1
2 − 1 = − 1

2 and −(− 1
2 ) = 1

2 . The edge stabilizer of (0, 1
2 ) ∈ E(B(C∞)) is by

construction {1}. Hence, since C∞ is a tree, Theorem 2.10 implies that D∞ is
isomorphic to 〈s〉 ∗{1} 〈sr−1〉. But with the relations of D∞ we can deduce

s2 = 1 ⇔ s = s−1

and thus

srs = r−1 ⇔ rs = s−1r−1

⇔ rs−1 = sr−1

⇔ (sr−1)−1 = sr−1 .

We can define sr−1 =: t, thus 〈s〉 ∼= Z2 ∼= 〈t〉, which implies that

D∞ ∼= Z2 ∗ Z2 .

Figure 3: As the infinite dihedral group is isomorphic to the amalgamated product
〈s〉 ∗ 〈t〉, where 〈s〉 ∼= Z2 ∼= 〈t〉, we obtain this Bass-Serre tree [c.f. Remark 2.16].

Example 2.10. Consider the amalgamated product

G := Z/3Z ∗{1} Z/4Z = 〈a | a3 = 1〉 ∗ 〈b | b4 = 1〉 .

By Theorem 2.13, there exists a tree on which G acts. By using the proof of
the tree, we know how to construct the tree. We obtain the (3, 4)-biregular tree
given in Figure 4 below. The vertices are cosets of the form gZ/3Z and gZ/4Z
with g ∈ G and the edge maps are the following:

o : G→ G/Z/3Z t : G→ G/Z/4Z

g 7→ gZ/3Z g 7→ gZ/4Z .
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Figure 4: The amalgamated product G = Z/3Z∗Z/4Z = 〈a | a3 = 1〉∗〈b | b4 = 1〉
acts on this tree. The cosets of Z/3Z and Z/4Z are abbreviated by elements of
the form g〈a〉 and g〈b〉 respectively.

It will be useful later to state the following generalization of the necessary
condition of Lemma 2.11: If a group is acting on a connected graph with
fundamental domain a segment, then it is generated by the union of the vertex
stabilizers.

Lemma 2.14. [43, p.34, Lemma 4] Let G be a group acting on a connected
graph X. Let T be a tree of representatives of Y = G\X and let W ⊆ X be a
subgraph of X containing T such that every edge in E(W ) has one vertex in
V (T ) and G ·W = X. Furthermore define for every edge e ∈ E(W \ T ) with
o(e) ∈ V (T ) an element γe ∈ G such that γet(e) ∈ V (T ). Then the group H
generated by the elements γe and the vertex stabilizers Gp for p ∈ V (T ) is equal
to G.

Remark 2.7. If in Lemma 2.14 T is a fundamental domain, then we can take
W = T and all the γe = 1G for e ∈ E(T ).

We want to give a first application of when an amalgamated product is used to
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determine whether a group is residually finite, introduced by Graham Higman
in [17]:

Example 2.11. We aim to construct a group with three generators and two
defining relations that is isomorphic to a proper quotient of itself and therefore
not Hopfian and thus by Malcev’s Theorem 1.20 not residually finite.
We start with the following definitions: Let H1 be a group with two subgroups
V1, U1 ≤ H1 such that V1 ⊆ U1 and let H2 be a group with subgroup U2. Let
there be an isomorphism α : U1 → U2 and define the image of V1 under α
as V2 := α(V1). Denote the amalgamated products of H1 and H2 with the
identifications U1 ∼= U2 and V1 ∼= V2 as G and K respectively, i.e.

G = H1 ∗U1∼=U2 H2 and K = H1 ∗V1∼=V2 H2 .

Then, by construction, there is a homomorphism ϕ : G→ K, that cannot be an
isomorphism, as long as V1 $ U1 is a proper subset. Hence, by the Isomorphism
Theorem

G ∼= K/ker(ϕ) . (10)

Now we want to show that G is in fact isomorphic to K, to ensure G has
the desired property. In order to do so we suppose there is an isomorphism
µ : U1 → V1 such that it can be extended to an automorphism µ̄ : H1 → H1 and
that the isomorphism α◦µ◦α−1 : U2 → V2 can be extended to an automorphism
α ◦ µ̄ ◦ α−1 : H2 → H2.
As H1, H2 ≤ G and H1, H2 ≤ K are subgroups of the amalgamated products,
we can think of the automorphisms as restrictions of maps from G to K and
observe the following: The maps do not only agree on the intersection of H1

and H2 in G, which is U1 ∼= U2, but they also map it to the intersection of H1

and H2 in K, which is V1 ∼= V2. But since G and K are amalgamated products
where the intersections of H1 and H2 are identified, G and K are isomorphic,
hence by condition (10), G is isomorphic to a proper quotient of itself.
With the existence of such a group G insured, we want to find the desired
presentation for it. Take

H1 = 〈x, z | x−1zx = z2〉 and H2 = 〈y, w | y−1wy = w2〉

with

U1 = 〈z〉 and V1 = 〈z2〉 .
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Then the obvious choice of

U2 = 〈w〉 and V2 = 〈w2〉

gives us the group

G = 〈x, y, z | x−1zx = y−1zy = z2〉 .

Now consider the map induced by

φ : G→ G

x 7→ x

y 7→ y

z 7→ z2 .

Since

φ([x−1y, z]) = φ((x−1y)−1z−1x−1yz)

= φ(y−1xz−1x−1yz)

= y−1xz−2x−1yz2

= y−1xx−1z−1xx−1yz2

= y−1z−1yy−1zy

= 1G ,

we conclude that [x−1y, z] ∈ ker(φ). But the Normal Form Theorem 2.7
tells us that [x−1y, z] 6= 1G, which implies that φ is not injective. So we
can consider G/ker(φ) and deduce, since [x−1y, z] ∈ ker(φ) from the identity
[x−1y, z] ker(φ) = 1G/ker(φ), the relation

[x−1y, z] ker(φ) = 1G/ker(φ) ⇔ [x−1y, z] = 1

⇔ y−1xz−1x−1yz = 1

⇔ xz−1x−1yz = z

⇔ xz−1x−1 = yz−1y−1

⇔ (xz−1x−1)−1 = (yz−1y−1)−1

⇔ xzx−1 = yzy−1 .

Now we define

G′ := 〈x, y, z | x−1zx = y−1zy = z2, xzx−1 = yzy−1〉 (11)
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and want to check that G′ is isomorphic to G. Therefore we first observe that
the relation

xzx−1 = yzy−1 (12)

in G′ is not deducible from the relation

x−1zx = y−1zy = z2 (13)

given in the presentation of G, since (12) equates an element in 〈x, z〉 \ 〈z〉 with
an element in 〈y, z〉, whereas (13) implies that 〈x, z〉 and 〈y, z〉 intersect in 〈z〉.
But on the other hand, we can use Tietze transformations to get another
presentation of G′. In particular we use T3 and T4: Add the new generator v
with the relation v = xzx−1 and derive from it with (13)

xzx−1 = v ⇔ x−1x−1xzx−1xx = x−1x−1vxx⇔ x−1zx = x−2vx2

xzx−1 = v ⇔ z = x−1vx⇔ y−1zy = y−1x−1vx−1y

xzx−1 = v ⇔ z = x−1vx⇔ z2 = x−1v2x

to obtain the new relation

x−2vx2 = y−1x−1vx−1y = x−1v2x .

That immediately implies (via the first and the last term)

x−1vx = v2 . (14)

Furthermore with inserting that new relation in (12) we can derive

xzx−1 = v ⇔ z = x−1vx⇔ x−1xvxx−1 = yx−1vxy−1

⇔ v = yx−1vxy−1 ⇔ y−1vy = x−1vx

to obtain the new relation

y−1vy = x−1vx . (15)

So putting (14) and (15) together we obtain

y−1vy = x−1vx = v2 .

It is an easy check that this relation is not only a conclusion of, but also implies
relations (12) and (13), which means that the presentation (11) of G′ is in fact
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via Tietze transformations equivalent to the presentation

G′ = 〈x, y, v | y−1vy = x−1vx = v2〉 ,

which is isomorphic to the original presentation of G. So we have found a group
G isomorphic to a proper quotient of itself, i.e. G is not Hopfian and the proof
is done.

Remark 2.8. It is apparent that in the above Example 2.11 the choice of H1 and
H2 and with it of V1 can be generalized to

H1 = 〈x, z | x−1zx = zh〉 , H2 = 〈y, w | y−1wy = w2〉 and V1 = 〈zh〉

for any h ∈ Z \ {−1, 0, 1}.

2.3.3 HNN-extension

Definition 2.17. Let G = 〈S | R 〉 a group with subgroups H,K ≤ G and let
α : H → K be a homomorphism. Let t /∈ S be a new symbol. The group

G∗α := 〈S ∪ {t} | R ∪ {tht−1 = α(h) | h ∈ H}〉

is called HNN-extension of G relative to α.

Example 2.12.

(i). Let G = Z/2Z = 〈a | a2 = 1〉 be the cyclic group of order two with the
automorphism

α : G→ G

a 7→ a .

Then the HNN-extension of G relative to α is given by

G∗α = 〈G ∪ {t} | a2 = 1, t−1at = a〉 .

(ii). Let V4 = 〈a, b | a2 = b2 = (ab)2 = 1〉 be again the Klein four-group. Let
A = 〈a | a2 = 1〉 and B = 〈b | b2 = 1〉 be two subgroups of V4 that are
isomorphic via the map

α : A→ B

a 7→ b .
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Then the HNN-extension of V4 relative to α is given by

V4∗α = 〈a, b, t | a2 = b2 = (ab)2 = 1, t−1at = b〉 .

The contruction of the HNN-extension was first proven by Graham Higman,
Bernhard H. Neumann and Hanna Neumann in [18], hence the name was chosen
as initials of their names in their honour.

Proposition 2.15 (HNN-construction). Let G be a group with a subgroup
A ≤ G and an injective homomorphism θ : A→ G. Then there is a group G′,
that contains G and an element s ∈ G′ \ G such that θ(a) = sas−1 for every
a ∈ A.

Proof. Define for every n ∈ Z two groups An := A and Gn := G. Hence for every
n ∈ Z we can also find two injective homomorphisms: θ : An = A→ G = Gn and
the canonical injection id : An = A→ G = Gn+1. Let H = ∗ni(A)∼=θ(A)Gn be the
amalgamated product of all Gn, identifying the images of the homomorphisms
with each other. Next, let un be the canonical homomorphism Gn → Gn+1.
The un define an automorphism u : H → H. If we consider an element
a ∈ A ≤ G = G0, then its image u(a) ∈ G1 = G is equal to the element
θ(a) ∈ G0. Hence, u extends θ.
Now let S = 〈s〉 be an infinite, cyclic group generated by an element s /∈ G and
consider the semi-direct product G′ := H ou S, given by the homomorphism

φ : (S,H)→ H

(s, h) 7→ u(h) .

By [24, p. 140, Corollary 2], we know if H has the presentation H = 〈T | R〉
that G′ is presented as

〈T ∪ {s} | R, sts−1 = φ(s)(t); ∀ t ∈ T 〉 ,

hence
G′ = 〈T ∪ {s} | R, sts−1 = u(h); ∀ t ∈ T 〉 .

But since u extends θ, we know that u(a) = θ(a) for every a ∈ A, implying that

θ(a) = sas−1

for every a ∈ A.

Remark 2.9. One often says that the group G′ in Proposition 2.15 is derived
from (A,G, θ) by the HNN-construction.
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As for amalgamated products in Definition 2.14, we can introduce a normal form
for elements of an HNN-extension.

Definition 2.18.

(i). Let G = H∗α = 〈H, t | t−1at = α(a), a ∈ A〉 be an HNN-extension given
by the group H and its subgroups A and B isomorphic via the map α.
Let i : H ∗ 〈t〉 → G be the canonical isomorphism from the free product
into the HNN-extension. Then every element g ∈ G can be written as
g = i(g0)i(t)ε1i(g1) · · · i(t)εni(gn) where gi ∈ H and εi ∈ {±1} for all
i ∈ {1, 2, . . . , n}. To make matters easier we will denote such an elements
g ∈ G simply as g = g0t

ε1g1 · · · tεngn.

(ii). Let A,B ≤ H be two subgroups of the group H. Then, analogously to
Definition 2.14 (ii), TA denotes the system of representatives of right cosets
of A in H and TB denotes the system of representatives of right cosets
of B in H. Assume that 1H ∈ TA and 1H ∈ TB. Moreover, denote the
unique presentation of an element g ∈ G as the product of an element of
A and an element of TA by

g = xx for x ∈ A and x ∈ TA

and analogously for an element h ∈ H

h = yy for y ∈ B and y ∈ TB .

(iii). For an element g = g0t
ε1g1 · · · tεngn ∈ G a sequence (g0, t

ε1 , g1, . . . , t
εn , gn)

is called normal form if

• g0 ∈ G

• εi = −1 implies that gi ∈ TA
• εi = 1 implies that gi ∈ TB
• there is no consecutive subsequence tεi , 1, t−εi for any i ∈ {1, 2, . . . n}.

We call n be called the G-length of g.

Example 2.13. Let H = 〈a, b〉 = F2 be the free group of rank 2 and let A = 〈a2〉
and B = 〈b3〉 be two subgroups isomorphic via the map

α : A→ B

a2 7→ b3 .
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Let TA be the set of all reduced words in H not starting with any power of a
united with all the reduced words in H starting with a and let TB be the set
of all reduced words in H not starting with any power of b united with all the
reduced words in H starting with either b or b2. Consider the element

g = b2t−1a−4tb5abt−1a4b3a ∈ H∗α =: G .

We can start rewriting g from the right side using the relations t−1a2 = b3t−1

and tb3 = a2t to obtain its normal form:

g = b2t−1a−4tb5abt−1a4b3a = b2t−1a−4tb5abb3b3t−1b3a

= b2t−1a−4tb5ab7t−1b3a

= b2((b3)−1)2b5ab7t−1b3a

= bab7t−1b3a .

Hence, the normal form of g = b2t−1a−4tb5abt−1a4b3a is (bab7, t−1, b3a) since
bab7 ∈ H and b3a ∈ TA.

Theorem 2.16 (Normal Form Theorem for HNN-extensions). [5, p. 82, The-
orem 14.3] Let H be a group with subgroups A and B isomorphic via the map
α : A→ B and let G = 〈H, t | t−1at = ϕ(a), a ∈ A〉 be its HNN-extension. Then
for every g ∈ G there is a unique presentation g = g0t

ε1g1 · · · tεngn ∈ G, where
the sequence (g0, t

ε1 , g1, . . . , t
εn , gn) is a normal form.

Again, we can deduce:

Corollary 2.17 (Britton’s Lemma). Let H be a group with two isomorphic
subgroups A and B via the map α and let G = H∗α be the associated HNN-
extension. If an element g ∈ G is of the form g = g0t

ε1g1 · · · tεngn with n ≥ 1
and gi ∈ H for all i ∈ {1, 2, . . . , n}, then g 6= 1G.

Theorem 2.18. Let G be a group acting on a graph X with the quotient G\X

being a loop. Let F ⊆ X be a segment in X consisting of two vertices p and q
connected by the edge f with stabilizers Gp, Gq and Gf . Let x ∈ G such that
xp = q and define G′f := x−1Gfx with φ : Gf → G′f the homomorphism induced
by conjugation. Then X is a tree if and only if G′f ≤ Gp and the map

ψ : Gp∗φ = 〈Gp ∪ {t} | Rp ∪ {t−1at = φ(a) | a ∈ Gf}〉 → G

g 7→ g ∀ g ∈ Gp
t 7→ x

is an isomorphism.
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Proof. The proof is similar to the proof of Theorem 2.10 and will be the Corollary
2.33 of the Structure Theorem 2.32 in the next Chapter.

Theorem 2.19. Let G = H∗α be an HNN-extension of H with subgroups A
and α(A) for a monomorphism α : A→ G. Then there is a tree X unique up to
isomorphism such that G acts on X with the quotient G\X being a loop. Moreover
there is a segment Y ⊆ X such that the stabilizers of vertices and edges in the
group G are given by H, sHs−1 and A respectively.

Proof. The proof is very similar to the proof of Theorem 2.13 and can therefore
be omitted.

2.3.4 Graph of groups

So far we have only dealt with two special cases of actions on trees, namely when
the action is free and when the quotient of the graph by the action is a segment
or a loop. So next we want to broaden our concept to a more general case:

Definition 2.19. Let X be a directed, connected graph and let G be a set of
groups. A graph of groups is the pair (G, X), where every vertex v ∈ V (X) is
identified with a group Gv ∈ G and every edge e ∈ E(X) is identified with a group
Ge ∈ G such that Ge = Gē and for every e ∈ E(X) there is a monomorphism

αe : Ge ↪−→ Gt(e)

a 7→ ae .

We denote the image αe(Ge) of Ge in Gt(e) under the monomorphism αe with
Gee for every e ∈ E(X).

Remark 2.10. Instead of requiring Ge = Gē in Definition 2.19 of the graph of
groups, we can also demand to have a second monomorphism Ge ↪−→ Go(e) for
every e ∈ E(X).

Definition 2.20. Let (G, X) be a graph of groups. Define the group F(G, X)
as follows:
F(G, X) is generated by all groups Gv = 〈Gv | Rv 〉 for v ∈ V (X) and by the
elements e ∈ E(X) with the additional relations ē = e−1 and eaee−1 = aē for
any e ∈ E(X), i.e.

F(G, X) = 〈{Gv | v ∈ V (X)} ∪ E(X) | {Rv | v ∈ V (X)} ∪ R̃}〉

with R̃ = {ē = e−1, eaee−1 = aē | e ∈ E(X), a ∈ Ge} .
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Definition 2.21. Let (G, X) be a graph of groups and let c = c1c2 · · · cn be a
path in X with ci ∈ E(X) for all i ∈ {1, , 2 . . . n}. A word w ∈ F(G, X) is said to
be of type c given by (v0, v1, . . . , vn) with vi ∈ Go(ci+1) for any i ∈ {0, 1, . . . , n−1}
and with vn = Gt(cn) if

w = v0c1v1c2 · · · cnvn .

Definition 2.22. Let (G, X) be a graph of groups. Its fundamental group
π1(G, X, p0) with base point p0 ∈ V (X) is the set of all words in F(G, X) of type
c, where c is a circuit starting and ending at point p0, i.e.

π1(G, X, p0) = {w ∈ F(G, X) | w of type c, p0 = o(c) = t(c)} .

Example 2.14. If Gv = {1} for every v ∈ V (X), then π1(G, X, p0) = π1(X, p0),
i.e. the fundamental group with base point p0 in the sense of algebraic topology.

Definition 2.23. Let (G, X) be a graph of groups and let T ⊆ X be a maximal
subtree of X. Its fundamental group π1(G, X, T ) with respect to T is the quotient
of F(G, X) by the smallest normal subgroup containing all edges of T , i.e.

F(G, X)/〈〈{e ∈ E(T )}〉〉 .

Thus, if we denote the image of the edge e ∈ F(G, X) under the projection
p : F(G, X) → π1(G, X, T ) by ge, the group π1(G, X, T ) is generated by the
groups Gp for p ∈ V (X) and the elements ge for e ∈ E(X) subject to the
relations

• if e ∈ E(X) \ E(T ) and a ∈ Ge:

gea
eg−1
e = aē

gē = g−1
e ;

• if e ∈ E(T ) and a ∈ Ge:

ge = 1

ae = aē .

In fact, these two definitions for the fundamental group are equivalent:

Theorem 2.20. [43, p. 44, Proposition 20] Let (G, X) be a graph of groups, let
p0 ∈ V (X) and let T be a maximal subtree of X. Then the canonical projection

p : F(G, X)→ π1(G, X, T )
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induces an isomorphism of π1(G, X, p0) onto π1(G, X, T ).

As a direct consequence we get independence of the choice of the base point and
the the maximal subtree:

Corollary 2.21. Let (G, X) be a graph of groups. Then π1(G, X, p0) is iso-
morphic to π1(G, X, T ) for every p0 ∈ V (X) and for every maximal subtree
T ⊆ X.

Remark 2.11. We will denote this isomorphism class in Corollary 2.21 by π1(G, X)
and use from now on whichever of the two Definitions 2.22 and 2.23 is better
suited for the problem we are dealing with.

Example 2.15.

(i). Let (G, X) be a graph of groups with X a segment given by to vertices
p, q ∈ V (X) with one connecting edge e ∈ E(X) and associated groups
Gp, Gq and Ge in G respectively. Then X itself is its maximal spanning
tree. Hence in the construction of the fundamental group π1(G, X,X), we
get ge = 1 for every e ∈ E(X), which leads to the relation

ae = aē for every e ∈ E(X) and every a ∈ Ge .

But this implies that the subgroups of Gp and Gq isomorphic to Ge are
identified with each other, hence

π1(G, X,X) = Gp ∗Ge Gq .

(ii). More generally, let (G, X) be a graph with X a tree. Then, again X itself
is its maximal spanning tree. Hence π1(G,X,X) = ∗p∈V (X)

Ge
Gp along the

edge groups Ge for e ∈ E(X).

(iii). Let (G, X) be a graph of groups with X a single vertex p ∈ V (X) with one
loop e ∈ E(X) attached. Define A := Ge = Gē and observe that we have
two monomorphisms

A
e
↪→ Gp and A

ē
↪→ Gp .

Since every path c in X can only go along e and ē, we get that F(G, X) =
π1(G, X, p). Furthermore π1(G, X, p) is generated by Gp and an element
g := ge with the defining relation

gaeg−1 = aē for every a ∈ A .
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We can now identify A with a subgroup of G := Gp via the homomorphism

A→ G

a 7→ ae

and define a second homomorphism

θ : A→ G

a 7→ aē

to conclude that π1(G, X, p) is the group derived from (A,G, θ) by the
HNN-construction in Proposition 2.15. Hence π1(G, X, p) is the semi-
direct product of the infinite cyclic group generated by g and the normal
subgroup R = 〈〈G〉〉 generated by all the conjugates Gn := gnGg−n of G
for n ∈ Z, i.e. π1(G, X, p) = R o 〈g〉. Furthermore, the HNN-construction
gives us that R is the amalgamated product of the Gn according to the
homomorphisms

A→ Gn−1 and A→ Gn

a 7→ gn−1aēg1−n a 7→ gnaeg−n .

(iv). For any arbitrary graph of groups (G, X), we can obtain its fundamental
group by successively performing an amalgamated product for every edge
in the maximal subtree and an HNN-extension for every edge not in the
maximal subtree.

2.3.4.1 Reduced Words

Use the definition of a reduced word in our setting:

Definition 2.24. Let (G, X) be a graph of groups and let w be a word of type
c = c1 · · · cn, i.e.

w = v0c1v1c2 · · · cnvn

with vi ∈ Go(ci+1) for any i ∈ {0, 1, . . . , n − 1} and with vn = Gt(cn) . If n = 0,
the word w is called reduced if v0 6= 1. If n ≥ 1, the word w called reduced if
vi /∈ Gci

ci
, whenever ci+1 = c̄i holds for an i ∈ {1, 2, . . . n}.

Remark 2.12. By definition, every word of type c, where c is a path without
backtracking, is reduced.

The following example shows that a reduced expression of an element in the
fundamental group of a graph of groups is in general not unique:
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Example 2.16. Let (G, X) be a graph of groups with X a graph with vertex
set V (X) = {u, v} and two connecting edges, i.e. E(X) = {e1, ē1, e2, ē2} with
o(e1) = o(e2) = u and t(e1) = t(e2) = v. Let the associated vertex and edge
groups be given by

Gu = 〈a | a12 = 1〉 and Gv = 〈b | b18 = 1〉

Ge1 = Gē1 = 〈c | c2 = 1〉 and Ge2 = Gē2 = 〈d | d3 = 1〉

with monomorphisms

αe1 : Ge1 ↪→ Gu αē1 : Gē1 ↪→ Gv

c 7→ a6 c 7→ b9

αe2 : Ge2 ↪→ Gu αē2 : Gē2 ↪→ Gv

d 7→ a4 d 7→ b6 .

Define T to be the maximal subtree of Y given by the vertices u, v ∈ V (X) and
the edges e1, ē1 ∈ E(X). Then the group F(G, X) is generated by the elements
{a, b, e1, e2, ē1, ē2} and obeys the relations

a12 = b18 = 1, e−1
1 = ē1, e

−1
2 = ē2, e1a

6e−1
1 = b9 and e2a

4e−1
2 = b6 .

To obtain the fundamental group π1(G, X, T ) we need to take the quotient of
F(G, X) by the normal closure of the edges in T , i.e. by the normal closure of
{e1, ē1}. Hence, we obtain

π1(G, X, T ) = 〈a, b, e2, ē2 | a12 = b18 = 1, e−1
2 = ē2, a

6 = b9, e2a
4e−1

2 = b6〉 .

To make the notation a bit more accessible, note that via Tietze transformations
π1(G, X, T ) is isomorphic to the group

G = 〈a, b, t | a12 = b18 = 1, a6 = b9, ta4t−1 = b6〉 ,

by adding the generator t and the relation e2 = t. Consider now the element
g = bta3t−1a6b3t ∈ G and compute two reduced expressions for it by using the
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relations. First observe

g = bta3t−1a6b3t
a6=b9

= bta3t−1b12t

b12=ta8t−1

= bta3t−1ta8t−1t

= bta11

a12=1= bta−1 ,

which is reduced. Now, since we are allowed to insert the trivial element 1 = b−6b6

at any position, we can also derive

g = bta3t−1a6b3t = bb−6b6ta3t−1a6b3t

b6=ta4t−1

= b−5ta4t−1ta3t−1a6b3t

= b−5ta7t−1a6b3t−1

a6=b9

= b−5ta7t−1b12t

t−1b12t=a8

= b−5ta15

a12=1= b−5ta3 ,

which gives a second reduced expression for the element g.

Theorem 2.22. Let w be a reduced word of type c in the graph of groups (G, X).
Then its associated element in F(G, X) is not trivial.

Before we can tackle the proof, we need some observations and preliminaries.
Let us first draw the following conclusions supposing that Theorem 2.22 is true:

Corollary 2.23. The homomorphism Gp → F(G, X) is injective for every
Gp ∈ G with p ∈ V (X).

Proof. Since Theorem 2.22 holds for every path c in X, we can choose it to be
consisting of only one vertex p ∈ V (X) and no edge, hence it is of length zero.
Then all words of type c need to be in Gp and since their image cannot be trivial
in F(G, X), the homomorphism has to be injective.

Corollary 2.24. Let w = v0c1v1c2 · · · cnvn be a reduced word of type c = c1 · · · cn
in the graph of groups (G, X) with length l(c) ≥ 1 and o(c) = p0. Then w /∈ Gp0 .

Proof. Suppose that w ∈ Gp0 . Then w−1v0c1v1c2 · · · cn−1vn−1cnvn is a reduced
word of type c with trivial image in F(G, X) in contradiction to Theorem
2.22.
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Corollary 2.25. Let w be a reduced word of type c in the graph of groups (G, X)
with c a closed path and let T ⊆ X be a maximal tree of X. Then the image of
w in the fundamental group π1(G, X, T ) is non-trivial.

Proof. Define o(c) = t(c) =: p0 to be the origin of the path c. The image of w
is in the fundamental group π1(G, X, p0) and by Theorem 2.22 it is non-trivial.
But since π1(G, X, p0) is isomorphic to the fundamental group π1(G, X, T ) for
any maximal tree T by Corollary 2.21, the image of w has to be also non-trivial
in π1(G, X, T ).

Next, we need the following construction:

Construction 2.1. Let (G, X) be a graph of groups and let X ′ ⊆ X be a connected,
non-empty subgraph of X with its graph of groups (G|X′ , X ′) the restriction of
(G, X). Assume that Theorem 2.22 is true for (G|X′ , X ′). Then Corollary 2.23
implies that the map

Gp → F(G|X′ , X
′) (16)

is a monomorphism for every p ∈ V (X ′).
Next define W = X/X ′ to be the graph derived by contraction of the subgraph
X ′ in X to a vertex x′ ∈ V (W ). Then we get for W

V (W ) = (V (X) \ V (X ′)) ∪ {x′} and E(W ) = E(X) \ E(X ′)

and for e ∈ E(W )

ow(e) =

o(e) if o(e) /∈ V (X ′)

x′ otherwise
and tw(e) =

t(e) if t(e) /∈ V (X ′)

x′ otherwise .

We want to define the graph of groups (H,W ). The groups associated to the
the vertices and edges are given by

Hp = Gp if p ∈ V (X) \ V (X ′)

Hp = F(G|X′ , X
′) if p = x′

He = Ge for e ∈ E(W )

and the monomophisms He → Ht(e) are given by the ones in (G, X) whenever
t(e) ∈ V (W ) \ {x′} and for t(e) = x′ we can define the monomorphism

He → F(G|X′ , X
′)
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as the composition of

He = Ge → Gp and Gp → F(G|X′ , X
′) ,

where p = t(e) ∈ V (X ′), the first map is the monomorphism given in (G, X) and
the second is the monomorphism (16). Clearly, the projection (G, X)→ (H,W )
induces a homomorphism

ϕ : F(G, X)→ F(H,W ) . (17)

Lemma 2.26. The homomorphism ϕ : F(G, X) → F(H,W ) in (17) of Con-
struction 2.1 is in fact an isomorphism.

Proof. This becomes apparent by simply considering the definition of the groups.

Next, let us expand Construction 2.1 by associating to each word in (G, X) a
word in (H,W ) via the isomorphism from Lemma 2.26:

Construction 2.2. Let c = c1 · · · cn be a path in E(X) with vertices p0, p1, . . . , pn

in V (X) and let v = (v0, v1, v2, . . . , vn) be an n+1-tuple of elements vi ∈ Go(ci+1)

for every i ∈ {0, 1, . . . , n − 1} and vn ∈ Gt(cn). Our aim is to define subwords
of the word w = v0c1v1c2 · · · cn−1vn−1cnvn of type c in X ′ and replace them by
their images in Hx′ .
So for any pair (i, j) with 0 ≤ i ≤ j ≤ n define wi,j to be the subword of
w that consists of the subpath ci,j = (pi, ci, pi+1, ci+1, . . . , cj−1, pj) of c and
vi,j := (vi, . . . , vj). In case ci,j is contained in X ′, then let the image of wi,j in
Hx′ = F(G|X′ , X ′) be denoted by ri,j .
Now we define an increasing sequence of indices

0 ≤ i0 ≤ j0 < i1 ≤ j1 < · · · im ≤ jm ≤ n ,

satisfying the two conditions:

(i). The subpath cik,jk
has to be fully contained in X ′ for every 0 ≤ k ≤ m.

(ii). For every vertex pl ∈ V (X ′) of the path c that is contained in the graph
X ′ there has to be a kl ∈ {0, . . . ,m} such that pl is an element of cikl

,jkl
.

Thus, the intermediate paths cjk,ik+1 are of length l(cjk,ik+1) ≥ 1 for every
k ∈ {0, . . . ,m} and apart from their origin and terminal vertex, no vertex is
contained in V (X ′). Therefore they are paths in W .
Lastly, we can define a word w′ in (H,W ) of type c′, where c′ is the path

c′ = . . . , cjk−1,ik , cjk,ik+1, . . .
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given by
v′ = (. . . , vjk−1+1,ik−1, rik,jk

, vjk+1,ik+1−1, . . . ) ,

with the convention that vh,k is empty whenever h > k.
If i0 = 0, then c′ starts with cj0,i1 and if i0 6= 0, it starts with c0,i0 . Similarly
we get that v′ either starts with ri0,j0 if i0 = 0 and with v0,i0−1 if i0 6= 0.
Analogously we can determine the "ends" depending on whether jm = n.

To illustrate this rather technical Construction 2.2, we want to give an accessible
example.

Example 2.17. Let (G,X) be a graph of groups. Suppose that n = 4 and we have
a path c = c1c2c3c4 in E(X) with vertices {p0, p1, p2, p3, p4} =: Vc ∈ V (X). Now
let X ′ ⊆ be a subgraph of X with c∩E(X ′) = {c2} and Vc∩V (X ′) = {p0, p1, p2}.
Then, following Construction 2.2, we obtain

c′ = c1, c3, c4 and v′ = (v0, v1c2v2, v3, v4) .

Clearly, w of type c, given by v in F(G, X) corresponds to w′ of type c′ given by
v′ in F(H,W ) under the isomorphism (17) of Lemma 2.26.

Lemma 2.27. [43, p. 48, Lemma 7] If w is a reduced word in (G, X) of type c
and given by v, then w′ defined in the Construction 2.2 is a word of type c′ and
given by v′ is reduced in (H,W ).

This leads to the following lemma:

Lemma 2.28. If Theorem 2.22 is true for the graph of groups (H,W ) given by
Construction 2.1, then it is also true for (G, X).

Proof. This is a direct consequence of Lemma 2.26 and Lemma 2.27.

Proof. (of Theorem 2.22) Let (G, X) be a graph of groups and let w be a reduced
word of type c = c1c2 · · · cn given by v = (v0, v1, . . . , vn). We want to show that
w is non-trivial in F(G, X), as long as c and v are not both trivial. We have to
distinguish four cases for X.

(i). Let X be a segment consisting of two vertices p−1, p1 ∈ V (X) and one
connecting edge e ∈ E(X). Hence, w is of the form

w = v0e
k1v1e

k2 · · · eknvn ,

with ki = ±1 and ki+1 = −ki, v0 ∈ Gp−k1
and vi ∈ Gpki

\Geki

e . If n = 0,
w = v0 6= 1, so w is non-trivial. If n ≥ 1, we can consider the canonical
projection p into the fundamental group, which is precisely Gp−1 ∗Ge

Gp1

59



by Example 2.15 (i), i.e.

p : F(G, X)→ π1(G, X,X) = Gp−1 ∗Ge
Gp1 .

Since p(w) = v0v1 · · · vn and by Corollary 2.8 of the Normal Form Theo-
rem 2.7, we know v0v1 · · · vn 6= 1 and conclude that w 6= 1 as well.

(ii). Let X be a tree. With a standrad direct limit argument [43, c.f., Chapter 1],
we assume without loss of generality that X is finite. Now, we want to use
induction on n = 1

2 |E(X)|, half of the cardinality of the edge set (i.e. the
cardinality of an orientation of X): If n = 0, the path c has to be trivial, so
w = v0 6= 1. So assume n ≥ 1. Define X ′ ⊆ X to be a segment contained
in X. By (i) we can apply Theorem 2.22 on X ′. Next, we can consider the
quotient W = X/X ′, which is again a tree, with |E(W )| = n− 1. Hence,
by the induction hypothesis, Theorem 2.22 applies to (H,W ) and therefore
by Lemma 2.28 also to (G, X).

(iii). Let X be a single vertex p ∈ V (X) with one attached loop e ∈ E(X). Then
we know by Example 2.15 (iii) that the fundamental group is a semi-direct
product, namely

F(G, X) ∼= π1(G, X, p) = Ro 〈g〉 ,

where R is the normal subgroup R = 〈〈Gp〉〉 and 〈g〉 is the infinite cyclic
group generated by g := ge /∈ R. Moreover, we know R to be the amalga-
mated product of the Gn according to the homomorphisms

A→ Gn−1 and A→ Gn (18)

a 7→ gn−1aēg1−n a 7→ gnaeg−n .

Let us now consider a reduced word w = v0e
k1v1e

k2 · · · eknvn in F(G, X)
of type c = ek1ek2 · · · ekn with ki = ±1 and given by v = (v0, v1, . . . , vn)
with v0 ∈ G0 and vi /∈ Ae

ki if ki+1 = −ki. Since in this case the projection
of F(G, X) into π1(G, X, p) is an isomorphism, the image of w is simply
v0g

k1v1g
k2 . . . gknvn. Thus, we can distinguish two cases: If

n∑
i=1

ki 6= 0,

then w /∈ R, hence w 6= 1. So we can assume
n∑
i=1

ki = 0. Define

d0 = dn = 0; dj :=
j∑
i=1

ki = k1 + · · ·+ kj and sj := gdjvjg
−dj ,
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to obtain

w = s0s1 · · · sn with sj ∈ Gdj
,

dj+1 − dj = kj+1 = ±1 and sj /∈ gdjAe
kj
g−dj if dj+1 = dj−1 .

Next, let T = Cay(Z, {1}) be the Cayley graph of Z and let (K, T ) be
the tree of groups associated to it, where to every vertex n ∈ Z we
assign the group Gn and to every edge we assign the group A with the
homomorphisms given in (18). Then we have that R = π1(K, T, T ) and
s0s1 · · · sn is associated with a reduced word of (K, T ) whose type is a
closed path since d0 = dn = 0. But since T is a tree, by (ii) we can
apply Theorem 2.22 and thus also Corollary 2.25 to it. That implies that
s0s1 · · · sn 6= 1, but since w = s0s1 · · · sn also w 6= 1.

(iv). Let X be an arbitrary graph. As in part (i) we may assume that X is
finite and use indcution on n = 1

2 |E(X)|, half of the cardinality of the
edges in X. If n = 0, the path c has to be trivial and w = v0 6= 1. So
assume n ≥ 1. Define X ′ ⊆ X either as a segment or a loop in X. In both
cases, Theorem 2.22 is applicable to (G|X′ , X ′) by (i) and (iii). Also, by
the induction hypothesis, it is applicable to (H,W ) for W = X/X ′. Thus,
by Lemma 2.28, Theorem 2.22 holds also for (G, X).

Remark 2.13. Case (iii) of the Theorem 2.22 dealing with HNN-extensions is
equivalent to the statement of Corollary 2.17 and often referred to as Britton’s
Lemma.

2.3.4.2 Universal Covering

Remark 2.14. In the following sections, let (G, X) be always a non-empty,
connected graph of groups, with T a maximal spanning tree and A an orientation
of X.

Definition 2.25. Let X be a non-empty connected graph with orientation A
and let e ∈ E(X). Then we define the sign of an edge e ∈ E(X) by the following
map

s : E(X)→ Z/2Z

e 7→

0 if e ∈ A

1 if e /∈ A

61



and the absolute value of an edge e ∈ E(X) by

|e| :=

e if e ∈ A

ē if e /∈ A⇔ ē ∈ A .

It is our aim to construct a graph X̃ = X̃(G, X, T ) on which π := π1(G, X, T )
acts and a morphism

p : X̃ → X

inducing an isomorphism
π\X̃ → X

with right inverses

V (X)→ V (X̃) E(X)→ E(X̃)

p 7→ p̃ e 7→ ẽ . (19)

Furthermore we have the following two requirements:

• If p ∈ V (X) we want that the stabilizer πp̃ ⊆ π of p̃ in π equals Gp, the
stabilizer of p in G.

• If e ∈ E(X), we define w := |ē| and want that the stabilizer πẽ ⊆ π of ẽ in
π equals the subgroup Gww ≤ Gt(w).

To achieve these conditions, we simply define X̃ in the following way:

Definition 2.26. Let X̃ be graph with vertex set the disjoint union of the
vertex orbits π · p̃ ∼= π/πp̃ for p ∈ V (X), i.e.

V (X̃) =
⊔

p∈V (X)

π/πp̃

and edge set the disjoint union of the edge stabilizers π · ẽ ∼= π/πẽ for e ∈ E(X),
i.e.

E(X̃) =
⊔

e∈E(X)

π/πẽ

where

πp̃ = Gp and πẽ = Gww for w = |ē|

and p̃ is the image of 1 in π/πp̃ and ẽ is the image of 1 in π/πẽ. We call
X̃(G, X, T ) = X̃ = X̃(V (X̃), E(X̃)) the universal covering of X.

Next, we need to figure out how π acts on X̃ such that π\X̃ = X:
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Lemma 2.29. [43, p. 51] The map

π × X̃ → X̃

(g, ẽ) 7→ gẽ

(g, ˜̄e) 7→ g˜̄e = gẽ

(g, o(ẽ)) 7→ o(gẽ) = gg−s(e)e õ(e)

(g, t(ẽ)) 7→ t(gẽ) = gg1−s(e)
e t̃(e)

is a well-defined action of π on the universal covering X̃.

Remark 2.15. So now we have found the graph X̃ with an action of π on it such
that by construction π\X̃ = X. Moreover if e ∈ E(T ) ⊆ E(X), then ge = 1 and
so

o(ẽ) = o(1 · ẽ) = 1 · g−s(e)e õ(e) = õ(e)

t(ẽ) = t(1 · ẽ) = 1 · g1−s(e)
e t̃(e) = t̃(e) ,

which implies that the maps (19) define a lifting T ∼−→ T̃ ⊆ X̃ of T into X̃.

Theorem 2.30. Let (G, X) be a connected, non-empty graph of groups with max-
imal tree T and an orientation A. Then the universal covering X̃ = X̃(G, X, T )
is a tree.

Proof. First show that X̃ is connected. Let W be the smallest subgraph of X̃
that contains all ẽ, e ∈ E(Y ). Let now e ∈ E(Y ) be an edge. By Remark 2.15 we
know since T is the maximal subtree of Y that either o(ẽ) = õ(e) in case s(e) = 0
or t(ẽ) = t̃(e) in case s(e) = 1. Either way, at least one of the extremities of ẽ
belongs to the lift T̃ of T . Thus W is connected and π ·W = X̃. That means
that it suffices to show that there is a generating set S of π such that W ∪ sW
is connected for all s ∈ S. But by Definition 2.23 we know that π = π1(G, X, T )
is generated by the set

S = {Gp̃ | p ∈ V (X)} ∪ {ge | e ∈ E(X)} .

So let first a ∈ {Gp̃ | p ∈ V (X)} ⊆ S: Then a ∈ Gq̃ for some q̃ ∈ V (X̃), but
q̃ ∈W as well, so aW and W share the vertex q̃, so aW ∪W has to be connected.
Let now a ∈ {ge | e ∈ E(X)} ⊆ S: Then a = gf for some f ∈ E(X). If s(f) = 0,
then o(f̃) = o(gf f̃) = o(af̃) =: o and W and aW share this vertex o. If s(f) = 1,
then t(f̃) = t(gf f̃) = t(af̃) =: t and W and aW share this vertex t. Either way,
W ∪ aW is connected.
Secondly, we need to make sure that X̃ does not contain any circuit. Suppose that
on the contrary c̃ = s1ẽ1 · · · snẽn is a closed path of length n > 0 in X̃ without
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backtracking and with edges siẽi ∈ E(X̃) where si ∈ S and ei ∈ E(X) for any
i ∈ {1, 2, . . . , n}. Let c be the projection of c̃ in X with vertices (p0, . . . , pn) with
p0 = pn. To make the notation more accessible, define s(ei) =: ki and gei

=: gi
and observe

t(snẽn) = sng
1−kn
n p̃0 = s1g

−k1
1 p̃0 = o(s1ẽ1)

t(s1ẽ1) = s1g
1−k1
1 p̃1 = s2g

−k2
2 p̃1 = o(s2ẽ2)

...

t(sn−1ẽn−1) = sn−1g
1−kn−1
n−1 p̃n−1 = sng

−kn
n p̃n−1 = o(snẽn) .

Now defining qi := sig
−ki
i gives for ri ∈ Gpi = πp̃i

qngnrn = q1

q1g1r1 = q2

...

qn−1gn−1rn−1 = qn .

Thus we obtain

g1r1 = q−1
1 q2

g2r2 = q−1
2 q3

...

gnrn = q−1
n q1

and multiplying gives us

g1r1g2r2 · · · gnrn = 1 . (20)

Let now w = s1ẽ1r1s2ẽ2r2 . . . snẽnrn be a word of type c for (1, r1, . . . , rn). If we
can show that w is reduced, we are done, since then its image g1r1g2r2 · · · gnrn
cannot be equal to 1 by Corollary 2.25 of Theorem 2.22, since c is a closed path.
So suppose that w is not reduced, i.e. ei+1 = ēi for some i ∈ {1, 2, . . . , n− 1}.
That implies gi+1 = g−1

i and ki+1 = 1− ki. Using the formula

sig
−ki
i giri = qigiri = qi+1 = si+1g

−ki+1
i+1

gives
ri = gki−1

i s−1
i si+1g

1−ki
i .
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By assumption ri ∈ Gei
ei
, which is equivalent to s−1

i si+1 ∈ g1−ki
i Gei

ei
gki−1
i = πẽi

.
But si+1ẽi+1 = si+1ẽi 6= siẽi since c is not backtracking, thus siπẽ 6= si+1πẽi

,
in contradiction to s−1

i si+1 ∈ πẽi
. Therefore w cannot be a reduced word,

contradicting our assumption. Hence, w is a reduced word of type c and the
proof is done.

Remark 2.16. If the universal covering is a tree, it is often called Bass-Serre tree.

Example 2.18.

(i). If all the groups Gp = {1} associated to the vertices p ∈ V (X) in X are
trivial, then π = π1(Y, T ) and X̃ is the universal covering relative to T in
the usual sense known from algebraic topology.

(ii). Let the quotient Y be a segment consisting of two vertices p and q connected
by one edge e. Then we know by Theorem 2.13 that the fundamental
group π = π1(G, Y, T ) = Gp ∗Ge

Gq where Gp, Gq and Ge are the vertex
respectively edge stabilizers. Hence we obtain for the universal covering X̃
the tree associated to it.

2.3.4.3 Structure Theorem

Our aim is now to construct a graph of groups (G, Y ) where Y is the quotient of
the connected, non-empty graph X by a group action without inversions of G
and where its fundamental group is isomorphic to G.

Construction 2.3. Let T be a maximal tree of Y and let j′ : T → X be a lifting,
that exists by Lemma 2.4. Let A be an orientation of Y with associated sign
map s. We want to extend this lifting j′ to a map

j : E(Y )→ E(X)

e 7→ j(e)

with the properties ∀ e ∈ E(Y )

j(e) = j(e) (21)

o(j(e)) = j(o(e)) . (22)

It suffices to define the element j(e) for every edge e ∈ A \E(T ), since A is an
orientation and j|E(T ) = j′. To satisfy property (22), we need to choose j(e)
such that the origin

o(j(e)) ∈ V (j(T )) = V (j′(T )) .
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For the terminal vertex we observe that t(j(e)) and j(t(e)) need to have the
same projection t(e) ∈ V (Y ) for any e ∈ E(Y ). Hence they have to lie in the
same orbit and we can choose an element

γe

∈ G if e ∈ A \ E(T )

=: 1 ∈ G if e ∈ E(T )

with
γē = γ−1

e

such that for any e ∈ E(Y )

t(j(e)) = γe j(t(e)) .

So we obtain

o(j(e)) = γ−s(e)e j(o(e))

t(j(e)) = γ1−s(e)
e j(t(e)) .

Next, we attach to every vertex p ∈ V (Y ) the vertex stabilizer Gj(p) of
j(p) ∈ V (X) in G and to every edge e ∈ E(Y ) the edge stabilizer Gj(e) of
j(e) ∈ V (X) in G. The graph of groups is completed by the monomorphisms

Ge ↪→ Gt(e)

a 7→ ae =: γs(e)−1
e a γ1−s(e)

e ,

which are well defined since γs(e)−1
e Gj(e) γ

1−s(e)
e ⊆ Gj(t(e)).

Now we are in the position to define two (homo-)morphims, which will then give
us the isomorphism of G and the graph of groups (G, Y ) we are looking for:

Definition 2.27. Define φ to be the homomorphism given by

φ : π1(G, Y, T )→ G (23)

Gp ↪−→ G ∀ p ∈ V (Y )

ge 7→ γe ∀ e ∈ E(Y )

and ψ to be the graph morphism given by

ψ : X̃(G, Y, T )→ X (24)

gp̃ 7→ φ(g) j(p) ∀ p̃ ∈ V (X̃(G, Y, T ))

gẽ 7→ φ(g) j(e) ∀ ẽ ∈ E(X̃(G, Y, T )) .
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We want to check some properties of φ and ψ:

Definition 2.28. A homomorphism f : X̃ → X is said to be locally injective if
it is injective on every set of edges with a given common origin.

Lemma 2.31. φ is surjective and ψ is surjective and locally injective.

Proof. Let W be the smallest subgraph of X containing j(e) for every e ∈ E(Y ).
Then by our construction of j, we know o(j(e)) ∈ V (j(T )) for any e ∈ A, so
at least one vertex of the egde e ∈ E(W ) is in j(T ) and we have G ·W = X.
Furthermore, we defined γe ∈ G such that γet(e) ∈ V (T ). Therefore we can
apply Lemma 2.14 and conclude that G is generated by the set

{Gp | p ∈ V (Y )} ∪ {γe | e ∈ E(Y )} ,

which means that φ is surjective.
Also, by the definition of ψ, we know that ψ(1 · ỹ) = φ(1)j(y) = j(y), hence
W ⊆ ψ(X̃), which implies with the surjectivity of φ that ψ has to be surjective as
well. Moreover, φ induces isomorphisms between the stabilizers of corresponding
vertices and edges in X̃ and X, therefore ψ is locally injective.

The following result is often referred to as the Fundamental Theorem of Bass-
Serre Threory:

Theorem 2.32 (Structure Theorem). Let G be a group acting without inversions
on a connected, non-empty graph X. Let Y := G\X denote the quotient of X be
the action on G. Let (G, Y ) be the graph of groups given by the Construction 2.3.
Then the following three statements are equivalent:

(i). X is a tree.

(ii). The map ψ : X̃ → X is an isomorphism.

(iii). The map φ : π1(G, Y, T )→ G is an isomorphism.

Proof.

• (i)⇒ (ii): We already know by Lemma 2.31 that ψ is a locally injective,
surjective homomorphism. We need to show that it is also injective if X is
a tree. So let c be an injective path in X̃. Since X is a tree, geodesics are
unique, thus it suffices to check that ψ ◦ c has no backtracking. But that
follows directly from the fact that c is injecitve and ψ is locally injective.

• (ii)⇒ (i): Let ψ be an isomorphism. Then X has to be a tree, since X̃ is
a tree by Theorem 2.30.
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• (ii) ⇒ (iii): Assume that ψ is bijective. Since we know by Lemma
2.31 that φ is surjective anyways, we are left to show injectivity. Let
N := ker(φ) be the kernel of the homomorphism φ and let p ∈ V (Y ). Since
φ defines an isomorphism of Gp onto Gj(p), we have trivial intersection
N ∩ Gp = {1π1(G,Y,T )}. Hence no non-trivial element in N can fix the
vertex p̃ in X̃, since Gp = πp̃. That means that for n ∈ N \ {1π1(G,Y,T )},
the two vertices p̃ ∈ V (X̃) and np̃ ∈ V (X̃) are distinct in X̃. But since

ψ(np̃) = φ(n)j(p) = 1 · j(p) = j(p) = ψ(p̃) ,

they have the same image j(p) in X under ψ. So if ψ is an isomorphism,
in particular if ψ is injective, we conclude np̃ = p̃. But that means
n = 1π1(G,Y,T ), so φ is injective as well.

• (iii)⇒ (ii): If φ is an isomorphism, then so is ψ per Definition.

Remark 2.17. The most important implication of the Structure Theorem 2.32 is
(i)⇒ (iii): It tells us that if X is a tree, the group G acting on it is generated by
the vertex stabilizers Gp for p ∈ V (Y ) and the elements γe for e ∈ E(Y ) subject
to the relations of the Gp and

γea
eγ−1
e = aē, γē = γ−1

e and γe = 1 if e ∈ E(T ) .

Let us revisit Theorem 2.18 as a reformulation into a Corollary of the Structure
Theorem 2.32:

Corollary 2.33. Let G be a group acting on a graph X with the quotient
Y := G\X being a loop. Let F ⊆ X be a segment in X consisting of two vertices
p and q connected by the edge f with stabilizers Gp, Gq and Gf . Since Y is a
loop, there is an element γf ∈ G such that γfp = q. Define G′f := γ−1

f Geγf with
φ : Gf → G′f the homomorphism induced by conjugation. Then X is a tree if
and only if G′f ≤ Gp and the map

ψ : Gp∗φ = 〈Gp ∪ {t} | Rp ∪ {t−1at = φ(a) | a ∈ Gf}〉 → G

g 7→ g ∀ g ∈ Gp
t 7→ x

is an isomorphism. In particular, if X is a tree, then G is an HNN-extension.

Proof. First, let X be a tree. Then we know by the Structure Theorem 2.32
that G has to be isomorphic to π1(G, Y, T ). But Example 2.15 (iii) implies
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that π1(G, Y, T ) is precisely the HNN-extension Gp∗φ. Furthermore we know
by Construction 2.3 that the only (positively oriented) edge e ∈ E(Y ) has to
be the preimage of f ∈ V (X) under the map j, and the only vertex v ∈ V (Y )
has to be the preimage of p ∈ V (X). With the definition of the graph of
groups (G, Y ) we conclude that γs(e)−1

f Gj(e)γ
1−s(e)
f ≤ Gj(t(e) has to hold, hence

G′f = γ
s(e)−1
f Gfγ

1−s(e)
f ≤ Gp, which gives the second claim of the necessary

condition.
For the converse we can use the same argument: Since G′f ≤ Gp, the graph
of groups (G, Y ) of Construction 2.3 is well defined. Hence, we can apply the
Structure Theorem 2.32, which implies since the map φ : π1(G, Y, T )→ G is an
isomorphism that X is a tree.

Example 2.19. Let G = 〈a, b | a2 = b3〉 be a group and φ a homomorphism into
the symmetric group S3 = 〈d, s | s2 = d3 = 1, dsds = 1〉 of a triangle, given by

φ : G→ S3

a 7→ s

b 7→ d .

Define H = ker(φ) ≤ G to be the kernel of φ. We aim to find a presentation of
H in form of a fundamental group of a graph of groups. Therefore observe first
that G = 〈a〉 ∗〈a2〉∼=〈b3〉 〈b〉. By Theorem 2.13 there is a tree X with fundamental
domain a segment consisting of two vertices a and b connected with an edge e
with stabilizers Ga = 〈a〉, Gb = 〈b〉 and Ge = 〈a2〉 ∼= 〈b3〉. As H is a subgroup
of G, it acts on X by left multiplication as well. Now we want to determine
the factor graph Y := H\X , since then the Structure Theorem 2.32 implies
that H is isomorphic to the fundamental group π1(H, Y, T ). Therefore consider
the system of left coset representatives of H in G given by {1, b, b2, a, ba, b2a}.
Then any vertex g〈a〉 ∈ V (X) can be either in the same H-orbit as 〈a〉, b〈a〉 or
b2〈a〉. If we consider the system of left coset representatives of H in G given by
{1, b, b2, ab, ab2}, which we obtain from the previous one by the relations that
have to hold in H

baba = 1 ⇔ ab = b−1a−1 ⇔ ab = b2a

baba = 1 ⇔ ba = a−1b−1 ⇔ ba = ab2 ,

then we conclude that any vertex g〈b〉 is in the same H-orbit as 〈b〉 or a〈b〉. And
since 〈a〉, b〈a〉, b2〈a〉, 〈b〉 and a〈b〉 are not in the same H-orbit, we can conclude
that there are precisely 5 H-orbits, hence Y consists of 5 vertices, let us call them
A,D,E,B and C respectively. As the system of left coset representatives of H
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in G contains 6 elements, we have 6 H-orbits for the edges, whose representatives
we denote as the tree Ỹ . Hence Y has 6 edges. Since the relations that have to
hold in H imply that

b〈a〉 = 1 · b〈a〉 = (baba)−1b〈a〉 = a−1b−1a−1b−1b〈a〉 = ab2a〈a〉 = ab2〈a〉

and b2〈a〉 = 1b2〈a〉 = ababb2〈a〉 = abab3〈a〉 = aba〈a〉 = ab〈a〉 ,

we can deduce that the vertex E has to be connected to the vertices B and C.
Furthermore we have the obvious edges (B,A), (A,C), (B,D) and (B,E) in
E(Y ). Now let T be a maximal tree of Y , given by all vertices in V (Y ) and all
the edges except for (D,C) and (E,C) in E(Y ). Let T̃ ⊆ X be the lift of T
given by the map B 7→ 〈b〉, D 7→ b〈a〉, A 7→ 〈a〉 and E 7→ b2〈a〉.
Next, we want to compute the vertex and edge stabilizers in H. Therefore
observe that g〈a〉g−1 ≤ G is the vertex stabilizer in G for the vertex g〈a〉,
since g〈a〉g−1g〈a〉 = g〈a〉. In a similar manner we obtain for the edge stabilizer
g〈a2〉g−1 ≤ G. Intersecting those with H gives us for the vertex as well as for the
edge stabilizers g〈a2〉g−1 for any g ∈ G. But by the relation b3 = a2, we obtain
that any power of a2 commutes with any g ∈ G. Hence g〈a2〉g−1 = gg−1〈a2〉 =
〈a2〉, which means that 〈a2〉 is the vertex as well as the edge stabilizer for any
edge g〈a2〉 and any vertex g〈a〉 or g〈b〉. Hence for the graph of groups (H, Y )
we attach to every vertex and every edge the group 〈a2〉 and the edge maps are
simply given by the identity map. Thus, we have constructed a graph of group
(H, Y ), whose fundamental group π1(H, Y, T ) with respect to the maximal tree
T is isomorphic to H. So to obtain a presentation for H, we simply need to find
the presentation for π1(H, Y, T ): As we only have one stabilizer 〈a2〉, we have
only one generator from them, namely a2 := x and no relations. Furthermore,
there are two (positively oriented) edges, that are not in the normal closure, that
is quotient out, namely (D,C) and (E,C) in E(Y ). Let their corresponding
generators be denoted by t1 and t2. They have to be subject to the relations
t−1
1 xt1 = x and t−1

2 xt2 = x, since all the edge maps in (H, Y ) are identity maps.
Hence we obtain for H the presentation

H = 〈x, t1, t2 | t−1
1 xt1 = x, t−1

2 xt2 = x〉 .

2.3.4.4 Property FA

The fact that Bass-Serre theory can come in very handy with algebraic properties
of groups should be first illustrated by the following application:

Definition 2.29. Let G be a group acting on a tree T . Let

TG := {v ∈ V (T ) | gv = v ∀ g ∈ G} ∪ {e ∈ E(T ) | ge = e ∀ g ∈ G}
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be the set of all elements in T that are fixed by G. We say that G has Property
FA if TG 6= ∅ for every tree T .

Proposition 2.34. Let G be a countable group. Then G has Property FA if
and only if the following three statements hold

(i). G is finitely generated.

(ii). G is not an amalgamated product.

(iii). G has no quotient that is isomorphic to Z.

Proof. First suppose G has Property FA and show that this implies all three
statements:

(i). Suppose that G is not finitely generated. Let G1 ⊆ G2 ⊆ . . . be a nested
family of finitely generated groups and let G be their union, i.e.

G =
⋃
i∈N

Gi .

Construct a tree T by defining V (T ) =
⊔
i∈N

G/Gi and let there be an edge

between gGi and gGi+1 for all g ∈ G and i ∈ N. Then G acts on T , so by
Property FA the set TG is not empty, so there is a gGp ∈ V (T ) for some
g ∈ G and for some p ∈ N that is fixed by all elements in G. But that
implies that G = Gp, so G has to be finitely generated after all.

(ii). Suppose that G is an amalgamated product G = G1 ∗A G2. Then by
Theorem 2.13 G acts on a tree T with fundamental domain a segment
consisting of two vertices P and Q connected by one edge e with vertex
stabilizers GP � G and GQ � G proper subgroups of G. But that means
that each vertex of T can only be stabilized by a proper subgroup of G
and not G itself. Therefore XG = ∅ in contradiction to our assumption of
Property FA.

(iii). Suppose that there is an epimorphism G� Z. Then G acts on the Cayley
graph of Z, which is just the integer line, by translation. Thus, there
cannot be any fixed point, i.e. XG = ∅ in contradiction to the assumption
of Property FA.

Now assume conversely that all three statements hold and show that G has to
have Property FA. Let G act on a tree T and define the quotient Y := G\X . Then
by Theorem 2.32 G is isomorphic to the fundamental group of the associated
graph of groups π1(G, Y, T ). There is an epimorphism π1(G, Y, T )� π1(Y ) ∼= FS

for some generating set S. But since any free group has Z as a subgroup, (iii).
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implies that FS = {1FS
}. So Y has to be just a tree, in particular Y has no

loops. Now Example 2.15 (ii) implies that π1(G, Y, T ) can be written as an
amalgamated product

π1(G, Y, T ) = ∗i∈IGe
Gi

along the edge stabilizers Ge ∈ E(T ), where Gi is a vertex stabilizer for some
pi ∈ V (T ) and I ⊆ N is a finite set by property (i). . But since (ii). states that
G cannot be an amalgamated product and G ∼= π1(G, Y, T ) = ∗i∈IGe

Gi, we can
conclude that G = Gp for one p ∈ V (T ), which means that XG ⊇ Gp 6= ∅. So G
has Property FA.

Example 2.20. Let G be a group with Property FA. If G is contained in an
amalgamated product G1 ∗A G2, then by Theorem 2.34 G has to be contained
in a conjugate of G1 or G2.

3 Well-Studied Examples

3.1 Free Groups

The proofs and approaches in this chapter are guided by [42] and [48].

3.1.1 Hyperbolicity

Remark 3.1. As already pointed out in Example 1.5, any free group is hyperbolic,
since its Cayley graph with respect to a free generating set is always a locally
finite tree.

3.1.2 Residual Finiteness

Proposition 3.1. Free groups are residually finite.

We will explore three different ways to prove that fact:

Proof. (A) [of 3.1] Let F be a free group of rank n ∈ N generated by S. Let
x := x1x2 · · ·xk ∈ F . We want to find a homomorphism φ : F → Sn+1 such that
φ(x) 6= 1Sn+1 since then F is residually finite.
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So define

f : S → Sn+1

a 7→



id if a /∈ {x±1
1 , x±1

2 , . . . x±1
k }

some choice of
permutation
sending

i 7→ i+ 1 if a = xi

i+ 1 7→ i if a = x−1
i

if a ∈ {x±1
1 , x±1

2 , . . . x±1
k }

By Definition 1.1, f extends uniquely to a homomorphism φ : F → Sn+1 with
φ(x) = f(x1) f(x2) · · · f(xn). But since f(x1) maps 1 7→ 2, f(x2) maps 2 to 3
and so on up to f(xn), which maps n to n+ 1, we get that φ(x) maps 1 to n+ 1
and is therefore not the identity map.

Next, we want to use the topological interpretation of residual finiteness. There-
fore we want to establish some topological properties of free groups.

Proposition 3.2. Let X be a rose with |S| <∞ petals, that is the wedge of |S|
copies of the unit circle S1 indexed by S. Then π1(X), the fundamental group
of X, is isomorphic to FS.

Proof. We will use induction on |S| =: n:

• Let n = 0, i.e. S = ∅: Then the rose consists of no circles, but only a point
x. So π1(X) = {1} ∼= FS .

• Let |S| = n and suppose the claim is true for all the cases with cardinality
less or equal n−1: Take s0 ∈ S fixed and let U be a small open neighborhood
of the circle in the rose that corresponds to s0. Let T := S \ {s0} contain
all the other elements and let V be a small open neighborhood of all the
circles corresponding to the elements in T . Now, since |T | = n − 1 and
|{s0}| = 1, we get by the induction hypothesis that FT ∼= π1(V ) and
Z = F{s0}

∼= π1(U).
Next, choose an orientation on X, i.e. choose the direction for each circle
and define the map

i : S → π1(X)

s 7→ path around circle corresponding to s

Now let G be a group and consider any set map f : S → G. Since π1(U) ∼=
〈i(s0)〉 is free there is a unique group homomorphism f1 : π1(U)→ G such
that (f1 ◦ i)(s0) = f(s0). And since π1(V ) ∼= FT is free there is a unique
group homomorphism f2 : π1(V )→ G such that (f2 ◦ i)(t) = f(t) for every

73



t ∈ T . Hence, by the Seifert-van Kampen Theorem we obtain that there
is a unique group homomorphism f̃ : π1(X)→ G, that extends f1 and f2.
So in conclusion we have found for the set S with map i : S → π1(X) and
any arbitrary group G with map f : S → G an unique homomorphism
f̃ : π1(X)→ G such that f̃ ◦ i = f . Thus π1(X) is free over S by Definition
1.1.

Proposition 3.3. Let F be a group. F is free over some finite generating set
S if and only if there is a finite graph ∆ such that F ∼= π1(∆).

Proof. First let F be a free group generated by S. By Proposition 3.2 we know,
that F is isomorphic to the fundamental group of the rose with |S| petals, which
is a graph.
Conversely assume that there exists some finite graph ∆, such that its fundamen-
tal group is isomorphic to F . If we can show that any finite graph is homotopy
equivalent to a finite rose, we are done again by Proposition 3.2.
So let T be the maximal tree in ∆. Then ∆̃ := ∆/T is a rose, since we contract
T when building the quotient. Now consider the map q : ∆→ ∆̃. Since T is a
tree, there is a map r : ∆̃→ ∆ such that r is unique up to homotopy. But q ◦ r
is homotopic to id∆̃ and r ◦ q is homotopic to id∆. So the original graph ∆ and
the rose ∆̃ are homotopy equivalent.

Now we are ready for the second version of the proof of the residual finiteness of
free groups:

Proof. (B) [of 3.1] Let Fn be the fundamental group of the n-circle wedge Mn

and let w ∈ Fn \ {1Fn}. We want to find a finite sheeted cover MW of Mn such
that w is not a loop in MW . So take the universal cover M̃n of the n-circle
wedge, which is the 2n-regular tree and Cayley graph of Fn and define as W
the path in M̃n corresponding to w. Then we can define MW as follows: The
vertices of MW are precisely all vertices appearing in W and the edges of MW

are those appearing in W plus all necessary edges to make MW a 2n-regular
tree. This is no problem, since W ⊆ M̃n. So MW is finite and 2n-regular, so it
is a finite sheeted cover of the n-circle wedge Mn and W is not a loop in MW .
So w /∈ π1(Mc) but w ∈ π1(Mn) and [Fn : π1(MW )] < ∞, which implies that
Fn is residually finite.

For the third version of the proof we need some facts about subgroups of free
groups at hand:
First recall Corollary 2.6, which we can deduce from Proposition 3.3:
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Corollary 3.4 (Nielsen-Schreier). Every subgroup of a free group is free.

Proof. Let F be a free group. Then by Proposition 3.3 there is a graph X with
F ∼= π1(X). But any covering X ′ of X is a graph as well and its fundamental
group π1(X ′) =: H is a subgroup of π1(X) = F . Now Proposition 3.3 implies
that H is a free group as well.

Lemma 3.5 (Schreier Index-Formula). Let Fr be a free group of rank r ≥ 2
and let H ≤ Fr be a subgroup with [Fr : H] = k <∞. Then the rank of H, call
it s, is given by s = 1 + k · (r − 1).

Proof. Let Fr = π1(X) with X the rose with r petals and let H = π1(X ′) for
some covering X ′ of X. By the properties of the Euler characteristic we have
χ(X ′) = k ·χ(X). But since X is a rose with r petals we know on the other hand
that χ(X) = 1−r and also χ(X ′) = 1−s. Hence s = 1−χ(X ′) = 1−k·(1−r).

Lemma 3.6. The free group F2 of rank 2 has a finite index subgroup isomorphic
to Fk for any k ≥ 2.

Proof. Let Cn = 〈c | cn = 1〉 be the cyclic group of size n ∈ N generated by the
element c. Define the map

fn : F2 → Cn

x 7→ c

y 7→ 1Cn

Then we get [F2 : ker(fn)] = n and since by Lemma 3.5 [F2 : ker(fn)] =
rank(ker(fn))−1
rank(F2)−1 we obtain rank(ker(fn)) = n+ 1.

To use Malcev’s Theorem 2.3 we need to check whether free groups are linear.
We do that with the following Proposition:

Proposition 3.7 (Ping-Pong-Lemma). Let G be a group acting on some set X.
Let a, b ∈ G such that

• The elements a and b are of infinite order.

• There are non-empty subsets X1, X2 ⊆ X such that X1 ∩X2 6= X1 and
X1 ∩X2 6= X2 and for any m ∈ Z \ {0}

(i). amX2 ⊆ X1

(ii). bmX1 ⊆ X2 .

Then 〈a, b〉 is isomorphic to F2, the free group of rank 2.
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Proof. Consider the map

ϕ : F2 = 〈x, y〉 → 〈a, b〉 ≤ G

x 7→ a

y 7→ b .

Clearly, this is a homomorphism. We want to show that ϕ is bijective.
Since F2 does not have any relations, ϕ has to be surjective. For injectivity we
need to show, that ker(ϕ) = {1F2}. So take a reduced word w ∈ F2 \ {1F2} and
show that it is not in ker(ϕ), i.e. that ϕ(w) 6= 1G. Since w ∈ F2 \ {1F2} is a
reduced word, w = xm1yn1xm2yn2 · · ·xmkynk with n1,mk ∈ Z \ {0}, mj , nj ∈
Z \ {0} for j ∈ {2, 3, . . . , k − 1} and m1, nk ∈ Z.
Now we need a case distinction:

• Case 1 : m1 6= 0 and nk = 0, so w = xm1yn1xm2yn2 · · ·xmk .
Then

ϕ(w)X2 = ϕ(xm1)ϕ(yn1)ϕ(xm2)ϕ(ym2) · · ·ϕ(ynk−1)ϕ(xmk )X2

= am1bn1am2bm2 · · · bnk−1amkX2

But now we can use the two properties (i) and (ii) from the second
assumption

ϕ(w)X2 = am1bn1am2bn2 · · · bnk−1amkX2

(i)⇒ ϕ(w)X2 ⊆ am1bn1am2bn2 · · · bnk−1X1

(ii)⇒ ϕ(w)X2 ⊆ am1bn1am2bn2 · · · amk−1X2

...

⇒ ϕ(w)X2 ⊆ am1X2
(i)
⊆ X1

X2*X1⇒ ϕ(w)X2 6= X2

ϕ(w) 6= 1G

• Case 2 : m1 = 0 and nk 6= 0, so w = yn1xm2yn2 · · ·xmkynk .
Consider xwx−1 ∈ F2 since then by Case 1 we know ϕ(xwx−1) 6= 1G.
Suppose now ϕ(w) = 1F2 . Then

1F2 6= ϕ(xwx−1) = ϕ(x)ϕ(w)ϕ(x−1) = a 1F2 a
−1 = aa−1 = 1F2 ,

which is a contradiction, i.e. ϕ(w) 6= 1G.
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• Case 3 : m1 6= 0 and nk 6= 0, so w = xm1yn1xm2yn2 · · ·xmkynk .
Consider xlwx−l ∈ F2 for l 6= −m1, since then we get by Case 1 that
ϕ(xlwx−l) 6= 1G and we can proceed as in Case 2 to get ϕ(w) 6= 1G.

• Case 4 : m1 = 0 and nk = 0, so w = yn1xm2yn2 · · ·xmk .
Consider xlwx−l ∈ F2 for l 6= mk, since then we get by Case 1 that
ϕ(xlwx−l) 6= 1G and we can proceed as in Case 2 to get ϕ(w) 6= 1G.

We apply the Ping-Pong Lemma 3.7 to get:

Proposition 3.8. The free group F2 of rank 2 is a linear group.

Proof. LetG := SL2(R), letX := R2 and letG act onX by linear transformation,
i.e.

SL2(R)× R2 → R2([
a b

c d

]
,

[
x1

x2

])
7→

[
ax1 + bx2

cx1 + dx2

]

Next define X1 :=
{[

x

y

] ∣∣∣∣∣ |x| > |y|
}

and X2 :=
{[

x

y

] ∣∣∣∣∣ |x| < |y|
}
, since

then X1 ∩X2 = ∅.

Lastly define a =
[

1 2
0 1

]
and b =

[
1 0
2 1

]
since 〈a, b〉 ≤ SL2(Z).

Note that am =
[

1 2m
0 1

]
and bm =

[
1 0

2m 1

]
.

Consider amX2

am

[
x2

y2

]
=
[

1 2m
0 1

][
x2

y2

]
=
[
x2 + 2my2

y2

]
∈ X1

and bmX1

bm

[
x1

y1

]
=
[

1 0
2m 1

][
x1

y1

]
=
[

x2

2mx2 + y2

]
∈ X2 .

So all the conditions for the Ping-Pong-Lemma 3.7 are satisfied, hence we can
conclude

F2 ∼= 〈a, b〉 ≤ SL2(Z) ,

i.e. F2 is linear.
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Now we are ready for the third proof of the residual finiteness of linear groups:

Proof. (C) [of 3.1] Since by Proposition 3.8, the free group of rank 2, F2 is linear,
by Malcev’s Theorem 2.3 it is residually finite. But since by Proposition 3.6 any
free group Fr of rank r > 2 is a subgroup of F2, and F2 is finitely generated, by
Proposition 1.17 the residual finiteness is passed to Fr as well for any r > 2.

Corollary 3.9. Finitely generated free groups are Hopfian.

Proof. Since we know by Proposition 3.1 that free groups are residually finite,
Propostion 1.20 implies that any finitely generated free group is Hopfian.

Corollary 3.10. Let k, l ≥ 2. Then the free groups Fk and Fl are isomorphic
if and only if k = l.

Proof. Trivially, Fk and Fl are isomorphic if k = l. So assume conversely that
Fk ∼= Fl. Let X = {x1, x2, . . . , xk} be the generating set of Fk. Without loss of
generality we can assume that k > l and define Fl to be the free subgroup of
Fk generated by {x1, x2, . . . , xl}, the first l generators of Fk. Then there is a
surjective homomorphism

φ : Fk → Fl

xi 7→ xi ∀ i ∈ {1, 2, . . . l}

xi 7→ 1Fl
∀ i ∈ {l + 1, . . . , k} ,

which has a non-trivial kernel by definition. But since Fl ∼= Fk, we get by
composing φ with this isomorphism a surjective homomorphism Fk → Fk, that
has a non-trivial kernel. So Fk is not Hopfian, in contradiction to Corollary 3.9.
Thus, we conclude l = k.

3.2 Baumslag-Solitar Groups

Definition 3.1. Let m,n ∈ Z \ {0}. The finitely generated group

BS(m,n) = 〈a, b | b−1amb = an〉

is called the Baumslag-Solitar group (associated to the pair of integers (m,n)).

Remark 3.2.

(i). When considering BS(m,n) we may assume 0 < m ≤ |n| as we will see in
Theorem 3.12 that BS(m,n) is isomorphic to BS(−m,−n).
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(ii). Some authors define the Baumslag-Solitar group BS(m,n) also as

BS(m,n) = 〈a, b | bamb−1 = an〉 ,

but we will see in Theorem 3.12 that the two groups are isomorphic, thus
this difference does not really matter. We will stick with Definition 3.1.

(iii). The Baumslag-Solitar group BS(m,n) is the HNN-extension A∗α of the
infinite cyclic group A = 〈a〉 with associated subgroups A1 = 〈am〉 and
A2 = 〈an〉 along the isomorphism

α : A1 → A2

am 7→ an .

3.2.1 Hyperbolicity

Proposition 3.11. The Baumslag-Solitar group BS(m,n) is not hyperbolic for
any integers m,n ∈ Z \ {0}.

Proof. We need to convince ourselves that bigons in the Cayley graph of BS(m,n)
cannot be ε-thin, since then the group is not hyperbolic by Theorem 1.14. Observe
that with the relation an = b−1amb we can deduce for x ∈ Z

anx = (an)x = (b−1amb)x = b−1ambb−1amb · · · b−1amb = b−1amxb . (25)

With relation (25) at hand we want to show b−kam
k

bk = an
k holds for any

k ∈ N. We use induction on k ∈ N: The case k = 0 holds trivially. So assume
b−kam

k

bk = an
k is true. Then for any y ∈ Z we have

(an
k

)y = b−kam
k

bkb−kam
k

bk · · · b−kam
k

bk = b−kam
kybk .

Now we obtain for the case k + 1:

b−k−1am
k+1

bk+1 = b−kb−1amm
k

bbk
x:=mk

= b−kb−1amxbbk

= b−kanxbk = b−kanm
k

bk
y:=n= b−kam

kybk

= an
ky = an

kn

= an
k+1

Thus, b−kamk

bk = an
k and with it b−ka−mk

bk = a−n
k holds for all k ∈ N.

Let first m 6= |n|. Define x = 1BS(m,n) and y = a|n|
k+1 to be two vertices in the

Cayley graph C of BS(m,n) with k ∈ 2N\{0}. We choose k to be even, because
neighboring a-levels in C have edges oriented in opposite directions in case n is
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negative. Since we want to use the above derived relation b−kamk

bk = an
k , this

means we will go down k steps along b−1 and we want to make sure that the
a-level at which we arrive has edges oriented in the same direction as the edges
of the level we started at in order to always move towards y. Thus we only allow
2-steps. As we aim to let k be arbitrarily large anyways, this is not a restriction.
We want to show that there have to be two geodesics γ1 and γ2 connecting x
and y, one, say γ1, starting with ab−j and γ2 starting with b−j where j ≤ k

increases with k.
In order to do that we need the following observations:

• Clearly, a geodesic connecting x and y cannot begin with a−1 as this would
mean we move away from y even further.

• A geodesic cannot start with b, i.e. the geodesic does not start upwards
from x: Let γ be the path banb−1a|n|

k+1−m. It connects x and y, goes up
one b and then takes the first opportunity back to the a-axis on which x
and y lie. But γ has length

1 + |n|+ 1 + |nk|+ 1−m

which is longer than the length of the a-level connection a|n|k+1 between x
and y, which has length

|nk|+ 1 ,

as |n| > m. Thus γ cannot be a geodesic. But any alterations of γ that
keep starting with b are only increasing in length: We can either continue
going sideways longer and not take the first b−1 down, but this clearly
makes the path again longer than a|n|k+1 by the same argument as before.
The other option is to go upwards further. Since the path has to go down
again eventually as it heads towards y, we can assume it to have some
height l + 1 for l ∈ N, by which we mean the maximal distance of the
occurring a-levels to the basis level containing x and y. Let z be the
last vertex before the path makes the last upwards movement along b to
the highest occurring a-level of height l + 1 and let z′ be the first vertex
the path hits when going back to the a-level containing z. Then by the
same two arguments as we used before (with changed signs for n and m
necessary) this path is longer than the path that goes the same way to
z and then instead of going up just goes along the a-level to z′ before
continuing as before. This new path has now height l. Thus we have shown
that any path of height l + 1 can be shortened to a path of height l for
any l ∈ N, concluding inductively that no geodesic can start with b.
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• The straight a-level path γ := a|n|
k+1 between x and y is not a geodesic,

i.e. there is a shorter path containing some number of b−1: As k is even
we know that

a|n|
k+1 = b−kam

k

bka .

The original path has length |n|k + 1 whereas the one we obtained by the
substitution with the relation has length 2k +mk + 1. We claim that the
second one is always shorter, whenever k ≥ 3, i.e.

2k +mk < |n|k .

The least m and |n| can differ is 1, so if the claim is true for |n| = m+ 1 it
will clearly hold for any greater difference as well. Furthermore if it holds
for k = 3 it will hold for any k > 3 as the exponential growth of mk and
|n|k outpowers the linear growth of 2k. But to see that the claim is true
for |n| = m+ 1 and k = 3 is an easy check:

2 · 3 +m3 < (m+ 1)3

⇒ 6 +m3 < m3 + 3m2 + 3m+ 1

⇒ 5
3 < m2 +m,

which holds for any m ∈ N \ {0}. Thus we can always shorten γ by this
substitution as long as we choose k ≥ 4.

• We can arrange the geodesic to start with all the occurring b−1: We know
that a acts by isometry on the Cayley graph C. Thus, translating a path
γ by a keeps its length unchanged. This means that the path γ ∗ ap has
the same length as the path ap ∗ γ for all p ∈ Z (where ∗ denotes the
concatenation). In particular we can choose γ to have endpoints on the
same a-level. Then the paths γ ∗ ap and ap ∗ γ have the same endpoints.
Taking γ′ now to be a geodesic connecting x and y starting with ap for
some p ∈ N \ {0}, i.e. it is of the form γ′ = ap ∗ γ, we know that γ ∗ ap has
to be a geodesic as well. Again, this argument can be applied inductively:
Suppose γ′ is a path that goes down n+ 1 levels. By the hypothesis we
may assume γ′ starts with b−n. So γ′ = b−nap ∗γ ∗γr for some p ∈ N\{0},
where γ is a subpath starting with b−1 and going back to the same a-level
where it started. γr is simply the rest of the geodesic. Then by the same
argument as before we know that ap ∗ γ has the same length as γ ∗ ap, thus
we see that γ′ has the same length as b−n ∗ γ ∗ ap ∗ γr and we have found
a geodesic starting with b−(n+1) as desired.
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• We can find a condition on how many b−1 the geodesic must contain at
least: We need to figure out in which cases going further down shortens
the path. By the relation (25) we know that instead of going along ap|n|

we can take b−1a±pmb (where the sign of the exponent depends on the sign
of n). This will make the path shorter or keep its length in case

2 + pm ≤ p|n| ⇔ 2
|n| −m

≤ p .

So let us start with the path a|n|k and shorten it by going down. The new
path is b−1a±

|n|k
n mb = b−1a±|n|

k−1mb, which is shorter or equally long if

2 + |n|k−1m ≤ |n|k .

Shortening (or maintaining the length) again is possible in case

2 + |n|k−2m2 ≤ |n|k−1m.

For step j < k we obtain

2 + |n|k−jmj ≤ |n|k−j+1mj−1 .

Expressing this in terms of the general case we have

p = |n|k−jmj−1 .

Thus as long as

|n|k−jmj−1 = p ≥ 2
|n| −m

, (26)

the path is shortened or remains equally long. Thus we know the geodesic
must contain at least j times the element b−1 where j ∈ {1, . . . , k} is
maximal such that the condition (26) still holds. Clearly with increasing
k, the maximal j still satisfying (26) increases as well as m and |n| remain
fixed.

Thus we know that γ2 starting with b−j is well-chosen.

• The geodesic γ2 will eventually be back on the a-level of x and y where
it started. As x and y are |n|k + 1 steps apart on their shared a-level, we
know that γ2 does not reach this a-level exactly at y, but already before,
because the b−1-edges starting at x and y respectively do not lie in the
same sheet. Thus γ2 is of the form γ ∗ a for a subpath γ starting at x with
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b−j and ending at some point lying on the same a-level as x and y. Thus
again by the same argument as before the path a ∗ γ has the same length
as γ2. But since γ2 is a geodesic, so is a ∗ γ which starts with ab−j .

Thus also γ1 starting with ab−j is well-chosen.
Now consider for t ∈ {1, . . . , j} the distance

d(γ1(t), γ2(t)) .

We want to estimate it from below by considering the distance dT of the projec-
tions of the points in the Bass-Serre tree T . Let π : C → T be the projection.
Then we know that π(x) = π(γ1(1)) since γ1(1) = a. Thus we obtain

dT (π(γ1(t)), π(γ2(t))) = dT (π(γ1(t)), π(x)) + dT (π(x), π(γ2(t)))

= dT (π(γ1(t)), π(γ1(1))) + dT (π(γ2(0)), π(γ2(t)))

= t− 1 + t = 2t− 1 .

Hence
d(γ1(t), γ2(t)) ≥ 2t− 1 .

With t = j we obtain d(γ1(j), γ2(j)) ≥ 2j − 1, so with growing k ∈ 2N \ {0} we
have that j increases and thus the distance becomes arbitrarily large. This means
that by Theorem 1.14 the group BS(m,n) cannot be hyperbolic for m 6= |n|.
Let now m = |n|. Choose k ∈ mN, again such that k = 0 mod 2 and let
x = 1BS(m,n) and y = akbk be two vertices in the Cayley graph C of BS(m,n).
Consider the element

akbka−kb−k .

Since k is an (even) multiple ofm there is a t ∈ N such that k = mt. Thus we have
in case m = n with relation (25) that b−1amtb = amt and thus ba−mtb−1 = b−mt.
We obtain

akbka−kb−k = akbka−mtb−k

= akbk−1ba−mtb−1b−k+1

= akbk−1a−mtb−k+1

...

= akba−mtb−1 = aka−mt = aka−k = 1BS(m,n) .

In case m = −n we have with relation (25) that b−1amtb = a−mt and thus
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ba−mtb−1 = amt and bamtb−1 = a−mt. We obtain

akbka−kb−k = akbka−mtb−k

= akbk−1ba−mtb−1b−k+1

= akbk−1amtb−k+1

= akbk−2bamtb−1b−k+2

= akbk−2a−mtb−k+2

even number of steps
...

= akb2a−mtb−2

= akbamtb−1

= aka−mt = aka−k = 1BS(m,n) .

So either way, the element akbka−kb−k describes a loop in C. Furthermore the
elements akbk and (a−kb−k)−1 = bkak both connect x and y. This helps us
to find again two geodesics: Suppose γ is a geodesic connecting x and y. We
make the following observations: We can assume that γ stays in one sheet of C,
namely the one that contains y, as m = |n|. Furthermore γ stays within the area
enclosed by the paths akbk and bkak (those paths included) as leaving this area
will make the path longer than akbk and bkak by an argument similar to the one
used in the previous case: When leaving this area the path will eventually have to
return to the area, making staying in this area the shorter option. Furthermore
γ has a staircase-shape, i.e. the only possible directions in which γ can move are
upwards or to the right. Because again, if it would go down, it would need to go
up again eventually, which is longer than just going up. The same applies to
moving to the left. Thus γ is of the form

γ = ai1bj1 · · · ailbjl

where i2, . . . , il ∈ mZ, j1, . . . , jl−1 ∈ N \ {0}, i0, jl ∈ N. We want to rewrite
the element representing γ into normal form, starting at the end and using the
relation bam = a±mb as illustrated in Figure 5 below. This is possible at every
position as the exponents of a are multiples of m. Also it does not change the
length of the element: If we have the relation bam = amb, this is obvious and
since all the exponents of a in γ are positive, we end up with the element akbk.
In the case where the relation is bam = a−mb, we observe that if γ goes along
the basis a-level containing x or any other a-level that is of even distance to the
basis, the exponents of the in γ occurring a’s is positive. Along the other a-levels
the exponent is negative. This means: An element a has a positive exponent
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in γ if the exponent sum of the b’s occurring before is even and otherwise it is
negative. Thus, applying the relation to γ to rewrite it, a positive-exponent a
changes place with an even number of b’s, resulting in a positive exponent in the
end and a negative-exponent a changes place with an odd number of b’s, thus
the last change gives a a positive exponent. So the length of γ is maintained
and again we end up at the element akbk. Thus akbk has the same length as
the geodesic γ and is therefore a geodesic connecting x and y itself. By our
previous calculation we know that bkak connects x and y as well and it has the
same length as akbk. Therefore we can define the two geodesics γ1 := akbk and
γ2 := bkak connecting x and y.

Figure 5: Consider the Cayley graph of BS(2,−2). Let γ = a2ba−2b3a2b2 be a
path connecting x = 1BS(2,−2) and y = a6b6. As illustrated we can deform γ step-
wise first to γ′ = a2ba−2a−2b3b2 = a2ba−4b5 and then to γ′′ = a2a4bb5 = a6b6.
The same way any geodesic γ connecting x = 1BS(m,±m) and y = akbk can be
deformed to akbk.

Now consider for t = k the distance

d(γ1(t), γ2(t)) .
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Estimating it from below with the distance dT in the image of the projection
π : C → T of the Cayley graph to the Bass-Serre tree T gives since π(γ1(t)) =
π(γ1(k)) = π(ak) = π(x) that

d(γ1(t), γ2(t)) ≥ dT (π(γ1(t)), π(γ2(t))) = dT (π(x), π(γ2(k))) = k .

Thus again for growing k ∈ N the distance becomes arbitrarily large, which
means that by Theorem 1.14 the group BS(m,n) cannot be hyperbolic for
m = |n| either. That concludes the proof.

3.2.2 Isomorphism-Classes

Theorem 3.12. Let G := BS(m,n) and H := BS(m′, n′) be two Baumslag-
Solitar groups. Then G and H are isomorphic if and only if (m′, n′) = (m,n),
(m′, n′) = (−m,−n), (m′, n′) = (n,m) or (m′, n′) = (−n,−m).

A proof of this theorem can be found in [33]. We want to use a different approach
and give a proof that follows similar, more general work on so-called Generalized
Baumslag-Solitar Groups, introduced by Clay and Forester in [8] and Levitt in
[28].
In preparation for our proof, we need some definitions and observations concerning
a group acting on a tree, similar to what can be found in [26] and [49]:

Definition 3.2. Let G be a group acting on a tree T = (V (T ), E(T )) by
isometry and without inversions.

(i). For g ∈ G we define τ(g) := min{d(v, gv) | v ∈ V (T )} to be the minimal
distance that g ∈ G moves elements of V (T ).

(ii). For g ∈ G we define Min(g) := {v ∈ V (T ) | d(v, gv) = τ(g)} to be the
subset of V (T ) that contains all vertices that are moved by g ∈ G only the
minimal distance τ(g).

(iii). An element g ∈ G is called elliptic, if the vertices in Min(g) and edges
in E(Min(g)) := {(v1, v2) ∈ E(T ) | v1, v2 ∈ Min(g)} form a subtree of T
that is fixed pointwise by g.

(iv). An element g ∈ G is called hyperbolic, if Min(g) is a line on which g acts
by translation by the distance τ(g) > 0.

Lemma 3.13. Let G be a group acting on a tree T = (V (T ), E(T )) by isometry.
Then:

(i). Every g ∈ G is either elliptic or hyperbolic.

(ii). Every g ∈ G with order ord(g) <∞, i.e. of finite order, is elliptic.
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(iii). Let g, h ∈ G. If gh = hg, i.e. g and h commute, then gMin(h) = Min(h).

(iv). Let g ∈ G and p ∈ Z \ {0}. Then τ(gp) = |p| τ(g). Moreover, if g ∈ G is
hyperbolic, then Min(gp) = Min(g).

(v). Let g ∈ G be hyperbolic and v ∈ V (T ) \Min(g). Then

d(v, gv) = τ(g) + 2 d(v,Min(g)) .

(vi). Let g ∈ G be a hyperbolic element and let X ⊆ T be a subtree of T that is
preserved by g±1. Then X contains Min(g).

Proof. (of Lemma 3.13)

(i). Let g ∈ G.

• Case 1: Let τ(g) > 0. Show that g is hyperbolic.
Let x ∈ V (T ) and consider the triangle with vertices x, gx, g2x ∈ V (T )
illustrated in Figure 6 below.

Figure 6: This tripod illustrates the triangle with vertices x, gx and g2x. The
center of the tripod is called o, the midpoint of the edge [x, gx] is called m.

If gx ∈ [x, g2x], then we have already found the line Min(g). So
assume that this is not the case and define o ∈ V (T ) to be the center of
the tripod and m ∈ V (T ) the midpoint of [x, gx]. If d(m,x) ≥ d(o, x),
g fixes m, i.e. gm = m, which implies d(m, gm) = 0 and therefore
τ(g) = 0 in contradiction to our assumption. So we can assume
d(m,x) < d(o, x).
Now it suffices to show that d(m, g2m) = 2 d(m, gm) since that implies
that the g-translates of m form a g-invariant line. Since o ∈ [m, gm]
we can deduce go ∈ [gm, g2m]. Therefore we only need to show that
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d(o, go) = 2 d(o, gm):

d(o, go) = d(gx, g2x)− 2 d(gx, o)

= d(x, gx)− 2 ( 1
2 d(x, gx)− d(o, gm))

= 2 d(o, gm) .

So the desired line is given by m and all its g-translates as illustrated
in Figure 7 below. The distance d(m, gm) is precisely τ(g). Therefore
g is hyperbolic.

Figure 7: The line on which g acts by translation by the distance τ(g).

• Case 2: Let τ(g) = 0. Show that g is elliptic.
Let x, y ∈ V (T ) such that gx = x and gy = y, i.e. x, y ∈ Min(g).
Either |Min(g)| = 1, i.e. x = y, then (Min(g), ∅) ⊆ T trivially
is a subtree invariant under g, or |Min(g)| > 1. Then x 6= y and
[x, y] = [gx, gy]. So g leaves the path between x and y, that exists since
T is a tree, fixed. Therefore any elements in Min(g) are connected,
so (Min(g), E(Min(g)) is a g-invariant subtree of T . Therefore g is
elliptic.

(ii). Let g ∈ G be of finite order. Since translations of a line must have
infinite order, hyperbolic elements cannot be of finite order. Thus, g is not
hyperbolic and hence by (i), the only alternative is for g to be elliptic.

(iii). Let g, h ∈ G such that gh = hg and let x ∈Min(h). Then

x ∈Min(h)⇔ d(x, hx) = τ(h)

⇔ d(gx, ghx) = τ(h)

⇔ d(gx, hgx) = τ(h)

⇔ gx ∈Min(h) .

So therefore gMin(h) = Min(h).

(iv). Let g ∈ G.
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• Case 1: Let τ(g) = 0, i.e. g is elliptic.
⇒ there is an x ∈ V (T ) such that gx = x and therefore g−1x = x

⇒

gpx = gp−1(gx) = gp−1x = · · · = gx = x if p > 0

gpx = gp+1(g−1x) = gp+1x = · · · = g−1x = x if p < 0

⇒ τ(gp) = 0
⇒ τ(gp) = τ(g) = |p| τ(g) .

• Case 2: Let τ(g) > 0, i.e. g is hyperbolic.
First let p > 0: Since by Definition, Min(g) is a line on which g acts
by translation by distance τ(g), we know that x ∈Min(g) implies

d(x, gpx) = d(x, gx) + d(gx, g2x) + · · ·+ d(gp−1x, gpx) .

But also d(x, gx) = d(gn−1x, gnx) for any n ∈ N, so

|p| τ(g) = |p| d(x, gx)

= d(x, gx) + d(x, gx) + · · ·+ d(x, gx)︸ ︷︷ ︸
|p|-times

= d(x, gx) + d(gx, g2x) + · · ·+ d(gp−1x, gpx)

= d(x, gpx)

= τ(gp) .

Let now p < 0: Analogously we get again by Definition for x ∈Min(g)

d(x, gpx) = d(x, g−1x) + d(g−1x, g−2x) + · · ·+ d(gp+1x, gpx) .

and we know d(x, g−1x) = d(gn+1x, gnx) for any n ∈ Z−, so

|p| τ(g) = |p| d(x, g−1x)

= d(x, g−1x) + d(x, g−1x) + · · ·+ d(x, g−1x)︸ ︷︷ ︸
|p|-times

= d(x, g−1x) + d(g−1x, g−2x) + · · ·+ d(gp+1x, gpx)

= d(x, gpx)

= τ(gp) .

So the desired formula holds for any p ∈ Z \ {0}.
It is left to show that for g ∈ G hyperbolic Min(gp) = Min(g).
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Let x ∈Min(g) and let p > 0. Then

x ∈Min(g) (iii)⇔ gx ∈Min(g)
(iii)⇔ gp−1x ∈Min(g)

⇔ d(gp−1x, gpx) = τ(g) = 1
|p| τ(gp)

⇔ τ(gp) = |p| d(gp−1x, gpx) = d(x, gpx)

⇔ x ∈Min(gp) .

So Min(g) = Min(gp) as desired. Again, the argument for p < 0 is
completely analogous.

(v). Let v ∈ V (T ) \ Min(g) with distance n ≥ 1 to Min(g). Then let
v′ ∈ Min(g) be the vertex in Min(g) that is closest to v. Clearly, by
the definition of Min(g) we get

[v, gv] = [v, v′] ∪ [v′, gv′] ∪ [gv′, gv] .

Thus the claim holds.

(vi). Let x ∈ X. Then [x, gx] ⊆ X, since X is preserved by g. There are two
cases. Either x ∈Min(g) itself, or for x /∈Min(g), there is an x′ ∈Min(g)
closest to x. Clearly, x′ ∈ [x, gx]. Thus we deduce Min(g) ⊆ X.

Now we are ready to work through the proof of the Isomorphism Problem of
Baumslag-Solitar groups, given by Theorem 3.12:

Proof. (of Theorem 3.12)
First prove via Tietze transformations:
Claim 1 : BS(k, l) ∼= BS(l, k) and BS(k, l) ∼= BS(−k,−l) for all k, l ∈ Z:

BS(k, l) Def= 〈a, b | b−1akb = al〉
T1= 〈a, b | b−1akb = al, ak = balb−1〉
T2= 〈a, b | ak = balb−1〉
T3= 〈a, b, y | ak = balb−1, y = b−1〉
T4= 〈a, y | ak = y−1aly〉
Def= BS(l, k)
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BS(k, l) Def= 〈a, b | b−1akb = al〉
T1= 〈a, b | b−1akb = al, (b−1akb)−1 = (al)−1〉
T2= 〈a, b | b−1a−kb = a−l〉
Def= BS(−k,−l)

This gives the sufficient condition of the theorem immediately.
Also, now we can restrict ourselves to the case where 0 < m ≤ |n| in the proof
of the necessary condition, since by Claim 1 any group where the roles of m and
n are interchanged or both their signs are different will be isomorphic anyways.
So let 0 < m ≤ |n|.

Before entering the general case, we want to deal with BS(1, 1) and BS(1,−1)
separately. First observe that

BS(1, 1) = 〈a, b | b−1ab = a〉 = 〈a, b | ab = ba〉

is abelian. But by Britton’s Lemma 2.17 the Baumslag-Solitar group cannot be
abelian for any other pair of integers (m,n), hence BS(1, 1) is not isomorphic to
any other Baumslag-Solitar group (except BS(−1,−1) of course).
Checking that G = BS(1,−1) is only isomorphic to BS(−1, 1) requires a little
more work: First observe that G has an abelian subgroup A of index 2, namely
the subgroup generated by a and b2. Now we need the following lemma:

Lemma 3.14. If an abelian group A is acting cocompactly on a tree T , then
there is a point or a line in T that is left invariant under the action.

Proof. (of Lemma 3.14) It suffices to handle the following three cases for A being
generated by a and b:

(i). a and b elliptic: Suppose that Min(a) and Min(b) are disjoint sets. Let
x ∈ Min(a) and y ∈ Min(b) be the points where the sets are closest to
each other, i.e. connected by a unique geodesic. Translating Min(b) by a
gives that Min(a) and aMin(b) have to be closest to each other in x and
ay. But a and b commute, so by 3.13 (iii) we know aMin(b) = Min(b),
thus ay = y. Hence y ∈Min(a) as well, x = y and the sets are not disjoint.
That means that there is a vertex v ∈ V (T ) fixed by both a and b, hence
v is a point left invariant under the group action.

(ii). a elliptic and b hyperbolic: Suppose that Min(a) and Min(b) are disjoint
sets. Let x ∈Min(a) be the vertex that is closest to Min(b). By Lemma
3.13 (iii) we have bnx ∈ bnMin(a) = Min(a) for all n ∈ N. Since Min(a)
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is a subtree of T by definition, bnx and x have to be connected. But by
Lemma 3.13 (v) and (iv) we know that

d(x, bnx) = τ(bn) + 2d(x,Min(bn)) = nτ(b) + 2d(x,Min(b))

for any n ∈ N. Thus the geodesic connecting bnx and x has to go through
Min(b) and there cannot be a second geodesic since T is a tree. Hence
Min(b) ⊆ Min(a) and the line Min(b) is left invariant under the group
action.

(iii). a and b hyperbolic: Since a and b commute, we know by Lemma 3.13 (iii)
that b leaves Min(a) invariant and a leaves Min(b) invariant. Hence by
Lemma 3.13 (vi) we obtain that Min(b) ⊆Min(a) and Min(a) ⊆Min(b),
implying that Min(a) = Min(b). Thus there is a line left invariant under
the group action.

We know that any Baumslag-Solitar group BS(m,n) with |m|, |n| > 1 acts cocom-
pactly and minimally on its Bass-Serre tree, which is |m|+ |n|-regular (compare
with Figure 8). Suppose T is the Bass-Serre tree for BS(m,n) with |m|+ |n| > 2.
If G is isomorphic to BS(m,n), then G acts cocompacty on T as well. Thus by
Lemma 1.11, so does A. But by Lemma 3.14, A fixes a point or a line in T , which
implies that all of T is contained in a bounded neighborhood of a point or a
line, in contradiction to T being a branching tree. Hence G = BS(1,−1) cannot
be isomorphic to any other Baumslag-Solitar group (except BS(−1, 1) of course).

Now we are ready to deal with the general case, assuming throughout the proof
that m > 1 and |n| > 1. The guideline of the proof is the following: Assume
G ∼= H and m and n given. Show that the only choice for m′ and n′ is m′ = m

and n′ = n. In order to do so we will distinguish three cases for (m,n) with
m > 1 and |n| > 1 that need to be treated differently:

(i). n = m

(ii). n = −m

(iii). |n| 6= m

In all three cases we try to find an intrinsic property of G in terms of m and n,
i.e. a property that does not depend on the choice of the group presentation.
If this property is preserved by the isomorphism, we can conclude that H and
therefore m′ and n′ must have the same property as G and m and n. Then we
can conclude that the choice of m′ and n′ is already given by the choice of m
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and n.

In preparation for the case distinctions show the following:
Claim 2 : There is a tree T ′ on which G acts, such that τT ′(a) 6= 0 if and only
if |n| = m.
For the necessary condition observe first that for any g ∈ G, the minimal distance
τ(g) is invariant under conjugation, i.e. τ(g) = τ(h−1gh) for all h ∈ G:

τ(h−1gh) = min{d(y, h−1ghy) | y ∈ V (T )}

= min{d(hy, ghy) | y ∈ V (T )}

= min{d(hy, ghy) |hy ∈ V (T )}

= min{d(x, gx) |x ∈ V (T )}

= τ(g) .

So for G = BS(m,n) = 〈a, b | b−1amb = an〉 we obtain τ(am) = τ(b−1amb) =
τ(an). Now suppose that there is a tree T ′ with τT ′(a) > 0, then Lemma 3.13
(iv). with the fact that m > 0 implies

0 < mτT ′(a) = |m| τT ′(a) = τT ′(am) = τT ′(an) = |n| τT ′(a)

and therefore cancelling τT ′(a) 6= 0 gives |n| = m, hence the necessary condition
is proven.
For the sufficient condition, assume that |n| = m and show that there is a
tree T ′ with τT ′(a) > 0. Observe that if m = n, BS(m,n) quotients onto
BS(1, 1) = 〈a, b | b−1ab = a〉 and if m = −n, then BS(m,n) quotients onto
BS(1,−1) = 〈a, b | b−1ab = a−1〉, both times by mapping a to a and b to b.
Now take the quotient groups of BS(1, 1) and BS(1,−1) by 〈b2〉 by adding the
relation b2 = 1. In the case of BS(1, 1) this gives a presentation for Z× Z/2Z
and in the case of BS(1,−1) we obtain a presentation for the infinite dihe-
dral group Dih∞. In both cases we know that the group acts on a line with
the element a acting by translation. Hence, so does BS(m,n), which implies
that the line is the tree T ′ with the property τT ′(a) > 0, that we were looking for.

Next, to obtain a condition for the first case, we want to show:
Claim 3 : G has non-trivial center Z(G) if and only if n = m. In this case
Z(G) = 〈am〉.
The sufficient condition is straightforward: Let n = m, hence we have

G = 〈a, b | b−1amb = am〉 .
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Then 〈am〉 ⊆ Z(G) since for any g = ae1bf1ae2bf2 · · · aeibfi ∈ G with e1, fi ∈ Z,
f1, ei ∈ Z \ {0} and ej , fj ∈ Z \ {0} for j ∈ {2, . . . , i− 1} and any l ∈ Z we have

g−1almg = b−fia−ei · · · b−f1a−e1almae1bf1 · · · aeibfi

= b−fia−ei · · · b−f1almbf1 · · · aeibfi

= b−fia−ei · · · b−f2a−e2almae2bf2 · · · aeibfi

= · · · = b−fia−eialmaeibfi = b−fialmbfi

= alm

So Z(G) is not trivial, since alm ∈ Z(G) for all l ∈ Z.

For the necessary condition, we need to think of G as a graph of groups
G = (V (G), E(G)): Since G is an HNN-extension, the graph consists of a
single vertex {v} = V (G) with the edge set E(G) = {(v, v) | v ∈ V (G)} being
just a single loop. The vertex group is Gv = 〈a〉, the stable letter is b ∈ G and
the edge group is the infinite cyclic group generated by an element, say c, that
includes into 〈a〉 the following way:

i1 : 〈c〉 → 〈a〉 i2 : 〈c〉 → 〈a〉 (27)

c 7→ am c 7→ an (28)

So G = 〈〈a〉, b | b−1 i1(c′) b = i2(c′) ∀ c′ ∈ 〈c〉 〉 = BS(m,n).
Now let T = (V (T ), E(T )) be the Bass-Serre tree associated to this graph of
groups G = (V (G), E(G)), which is illustrated in Figure 8 for the general case
of m and n. The vertex set is given by V (T ) = {g〈a〉 | g ∈ G} and the edge set
E(T ) is constructed as follows:

∃ e ∈ E(T ) with o(e) = f〈a〉 ∈ V (T ) and t(e) = h〈a〉 ∈ V (T )

if ∃ k ∈ Z such that h〈a〉 = fakb〈a〉 or h〈a〉 = fakb−1〈a〉.

By construction, G acts on T by left multiplication. The vertex stabilizer for
g〈a〉 ∈ V (T ) is given by

Gg〈a〉 = {gapg−1 | p ∈ Z} (29)

since gapg−1g〈a〉 = gap〈a〉 = g〈a〉.
Now suppose Z(G) 6= {1} and z ∈ Z(G), i.e. for all g ∈ Z(G) we have g−1zg = z.
Therefore zMin(g) = Min(g) for all g ∈ G by Lemma 3.13 (iii). So z fixes
all minimal distance sets in T . Thus z fixes the whole tree T , in particular its
vertex v, that is stabilized by Gv = 〈a〉. So z ∈ 〈a〉, that means there is an l ∈ Z
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Figure 8: The Bass-Serre tree of the Baumslag-Solitar group BS(m,n) has |m|
outgoing and |n| incoming edges. A vertex g〈a〉 is connected to all vertices of the
form gapb−1〈a〉 with an incoming edge for p ∈ {0, . . . n− 1} and with vertices of
the form gaqb〈a〉 with an outgoing edge for q ∈ {0, . . . ,m− 1}. The green boxes
illustrate the computation that has to hold for an edge to exist.

such that z = al. Now consider

zn = aln = b−1almb ⇔ bzn = almb

zn∈Z(G)⇔ znb = almb

⇔ zn = alm .

So aln = zn = alm, which implies n = m.
Also, in that particular setting with n = m we can see with the relation
b−1amb = am, which is equivalent to amb = bam, that am commutes with every
element in G, so am ∈ Z(G). But by the property of the edge maps (27) of the
graph of groups description G of G, we know there is an edge whose stabilizer is
〈am〉. Hence the center Z(G) has to be a subgroup of 〈am〉, which implies that
Z(G) = 〈am〉.
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Now we have gathered enough information to prove the first case:

(i). n = m: We know the center Z(G) = 〈am〉, so we can consider G/Z(G) =
G/〈am〉 and show that this group is isomorphic to the free product Z∗Z/mZ
by using the following group action on the Bass-Serre tree T :

φ : G/〈am〉 × V (T )→ V (T ) (30)

(g/〈am〉, h〈a〉) 7→ gh〈a〉 .

Now we consider the quotient graph of groups of T by this action, which
is a vertex v with a single loop l. Attached to v is the group 〈a〉/〈am〉 ∼=
Z/mZ = 〈x | xm = 1〉 and attached to l is the group 〈am〉/〈am〉 = {1}.
Hence the fundamental group of the quotient, which by the Structure
Theorem 2.32 is isomorphic to G/〈am〉 is given by

〈x, t | xm = 1〉 ∼= Z/mZ ∗ Z .

Since we know by assumption H ∼= G and that the quotients of isomorphic
groups by their center are isomorphic as well, we obtain

H/Z(H) ∼= G/Z(G) ∼= Z/mZ ∗ Z

which by Claim 2 leads to the conclusion H = BS(m,m), i.e. m′ = m and
n′ = n = m.

So now we can continue assuming that G has trivial center Z(G) = {1}, i.e.
n 6= m.

We want to move on to the second case where n = −m. By Claim 2 we
know there is a tree T ′, such that τT ′(a) > 0 and T ′ = Min(a) is a line.
Hence, by Lemma 3.13 (iv) follows Min(am) = Min(a) = Min(a−m) and
τ(am) = |m| τ(a) = τ(a−m), thus we can observe: bMin(am) = Min(am), since

x ∈Min(am)⇔ x ∈Min(a−m)

⇔ d(x, a−mx) = τ(a−m) = τ(am)

⇔ d(x, b−1ambx) = τ(am)

⇔ d(bx, ambx) = τ(am)

⇔ bx ∈Min(am)

and so we conclude bMin(a) = bMin(am) = Min(am) = Min(a). Therefore
Min(a) is fixed by b and trivially by a, so by both of the generators of G, which
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implies gMin(a) = Min(a) for all g ∈ G. This gives us two cases: Either every
element in the group leaves the orientation of the line Min(a) invariant, or there
are certain elements that flip it. Since we are in the setting of n = −m, we can
conclude from the relation b−1amb = a−m that b flips the line.
Now we can define a group action φ of G on the orientation of the line, which is
represented by Z/2Z and its induced homomorphism ψ:

φ : G× Z/2Z→ Z/2Z ψ : G→ Z/2Z

(g, x) 7→ φ(g, x) = gx g 7→ ψ(g) =

0 if φ(g, x) = x ∀x ∈ Z/2Z

1 otherwise .

Since b flips the line, we know ψ(b) = 1 and therefore Im(ψ) 6= {0}. That
implies 2 = |Im(ψ)| = [G : ker(ψ)]. Let us denote that index-2 subgroup by
ker(ψ) =: G′. We can describe G′ explicitly: The elements contained in G′ do
not flip the line. So let g ∈ G′ be such an element. If there is one occurrence of
the line-flipping b±1 in g, it needs to contain a second b±1 as well, to reverse the
flip. Hence, the sum of the exponents of the occurring b±1’s needs to be an even
integer or 0. This leads to the observation that any g ∈ G′ commutes with am:
Of course any power of a will commute with am, so we only need to figure out,
how b and b−1 interact with am. By the relation b−1amb = a−m we can derive

b−1am = a−mb−1 b−1a−m = amb−1

bam = a−mb ba−m = amb .

So b and b−1 can switch place with a±m by the cost of a sign change in the
exponent. But in g ∈ G′ the number of appearances of b and b−1 is even,
therefore the number of sign changes is even, which gives us in the end the same
exponent m that we started with.

In fact, the subgroup of G′ generated by am gives all elements that commute
with the whole group G′:
Claim 4 : The center Z(G′) is given by 〈am〉 and G′/〈am〉 ∼= Z/mZ ∗Z/mZ ∗Z.
As in Claim 2, we consider the Bass-Serre tree T on which G acts. Since G′ is
a subgroup of G, it acts on T by left multiplication as well. This action is not
transitive any more: As g ∈ G′ contains an even number of b±1, g can move
vertices with an even number of b±1 only to vertices with an even number of b±1

and vertices with an odd number of b±1 only to vertices with an odd number
of b±1. Hence, we have two orbits of vertices, given by the representatives 〈a〉
and b〈a〉. Therefore, if we take the quotient of the tree T by the action of G′

we obtain a graph of groups isomorphic to G′ consisting of two vertices. Since
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the action of G on T preserves the orientation of the edges, the quotient graph
has two edges, one incoming and one outgoing for each of the two vertices. Now
we need to determine the groups that are associated to the vertices and edges.
Therefore we need to find the vertex and edge stabilizers of the G′-action, by
intersecting the G-stabilizers with G′:
First, consider the vertex stabilizers for the vertex orbit representatives of G′.
By (29), we obtain for 〈a〉 the set 〈a〉 and for b〈a〉 the set b〈a〉b−1. Since those
are already subgroups of G′, they are the G′-stabilizers and hence the groups
associated to the vertices of our graph. Next, we want to find the edge stabilizers
for the edge orbit representatives of G′. Clearly, those representatives are given
by e = (〈a〉, b〈a〉) and be = (b〈a〉, b2〈a〉). The G-stabilizer for an edge of the
form (g〈a〉, gapb±1〈a〉) for some p ∈ Z is given by

{galmg−1 | l ∈ Z} .

Therefore for e and be we obtain the sets 〈am〉 and b〈am〉b−1, which are already
subgroups of G′ and hence the groups associated to the edges of our graph of
groups.
Lastly we want to determine the edge maps. Let 〈x〉 be the infinite cyclic group
stabilizing the first edge and let 〈y〉 be the infinite cyclic group stabilizing the
second. By the graph of groups description we know that 〈x〉 embeds into 〈a〉 as
〈am〉, so we obtain as the first map

〈x〉 → 〈a〉

x 7→ am .

Moreover we know that 〈x〉 embeds into b〈a〉b−1 as 〈bamb−1〉 =: 〈cm〉. Here we
have two possibilities for the map: either x 7→ cm or x 7→ c−m. But since we have
the relation am = ba−mb−1 and we know x 7→ am, we obtain that c = ba−1b−1

and get the second map

〈x〉 → 〈bamb−1〉 = 〈cm〉

x 7→ cm .

Analogously we obtain for the other edge first the map

〈y〉 → 〈bamb−1〉 = 〈cm〉

y 7→ cm

and deduce from the identities am = ba−mb−1 and c = ba−1b−1 that the second
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map is given by

〈y〉 → 〈a〉

y 7→ am .

Now we use that any element in the center Z(G′) fixes the whole graph of
groups, in particular the edges. So any z ∈ Z(G′) is in the edge stabilizer
〈x〉 = 〈am〉, which implies that the center G′ is a subgroup of 〈am〉. But now
our previous observation am ∈ Z(G′) implies Z(G′) = 〈am〉. Lastly, we need to
show that G′/〈am〉 ∼= Z/mZ ∗Z/mZ ∗Z. Like in case (i), we let G′/〈am〉 act on
the Bass-Serre tree T via the restriction of the action (30):

φ′ : G′/〈am〉 × V (T )→ V (T )

(g〈am〉, h〈a〉) 7→ gh〈a〉 .

The quotient graph of groups of T by this action consist of two vertices v1 and v2,
which are connected by two edges e1, e2. Attached to v1 is the group 〈a〉/〈am〉 ∼=
Z/mZ = 〈x | xm = 1〉 and attached to v2 is the group b〈a〉b−1/〈am〉 ∼= Z/mZ =
〈y | ym = 1〉. Furthermore we know that both edge groups Ge1 = 〈am〉/〈am〉 =
{1} and Ge2 = b〈am〉b−1/〈am〉 = {1} are trivial. Thus we obtain that the
fundamental group of the quotient, which is by the Structure Theorem 2.32
isomorphic to G′/〈am〉, is given by

〈x, y, t | xm = ym = 1〉 ∼= Z/mZ ∗ Z/mZ ∗ Z .

Although this is some progress, it is not enough to consider G′/Z(G′) to conclude
that m′ = m, similar to our argument in case (i), since isomorphic groups can
have non-isomorphic index-2 subgroups.

For that reason we need to introduce two definitions:

Definition 3.3. Let G be a group. The subset of elements in g ∈ G, whose
centralizer C(g) = {h ∈ G |hg = gh} has finite index in G is called the virtual
center V(G) of G, i.e.

V(G) := {g ∈ G | [G : C(g)] <∞} .

Definition 3.4. Let G be a group and H ≤ G a subgroup. H is called a
characteristic subgroup of G if every automorphism φ : G→ G maps H to within
itself, i.e. φ(H) ≤ H.

In fact, those definitions are related in the following sense:
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Claim 5 : The virtual center V(G) of a group G is a characteristic subgroup.
First, we need to check that V(G) is in fact a subgroup of G. So let a, b ∈ V(G)
be two elements in the virtual center, i.e. their centralizers C(a) and C(b) are
subgroups of finite index in G. Hence their intersection C(a)∩C(b) is a subgroup
as well. Furthermore we can derive

[G : C(a) ∩ C(b)] = [G : C(a)][C(a) : C(a) ∩ C(b)]

= [G : C(a)][C(a)C(b) : C(b)]

≤ [G : C(a)][G : C(b)] <∞ ,

hence C(a)∩C(b) is of finite index as well. But by the definition of the centralizers
C(a) = {g ∈ G | ga = ag} and C(b) = {g ∈ G | gb = bg} we can observe that

C(a) ∩ C(b) = {g ∈ G | ga = ag, gb = bg}

= {g ∈ G | g = aga−1, g = bgb−1}

= {g ∈ G | aga−1 = bgb−1}

= {g ∈ G | ga−1b = a−1bg} ≤ C(a−1b) ,

thus C(a)∩C(b) is a subgroup of C(a−1b). That implies since C(a)∩C(b) has finite
index in G, so does C(a−1b). Hence, a−1b ∈ V(G), and so V(G) is a subgroup of
G.
For the virtual center to be a characteristic subgroup, we need to show that
φ(V(G)) ≤ V(G) for any automorphism φ : G → G. So we want to show that
φ(v) ∈ V(G) for every v ∈ V(G). That means, that we need to show that
[G : C(φ(v))] <∞ for every v ∈ V(G).
So let v ∈ V(G), i.e. [G : C(v)] <∞. Since this index is finite, it stays the same
under any automorphism φ

∞ > [G : C(v)] = [φ(G) : φ(C(v))] = [G : C(φ(v))]

Therefore φ(v) ∈ V(G) and V(G) is a characteristic subgroup.

Remark 3.3. In some literature (e.g. [40]), the virtual center is often referred to
as FC-center and elements of the virtual center are called FC-elements.

Claim 5 will be crucial for the second case, together with the following map:

Definition 3.5. Let G := BS(m,n) be a Baumslag-Solitar group and let a ∈ G.
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The map

φa : G→ Q∗+

g 7→ [g〈a〉g−1:g〈a〉g−1∩〈a〉]
[〈a〉:g〈a〉g−1∩〈a〉]

is called the modular homomorphism of G associated to a.

First, let us check that this is a well-chosen term:
Claim 6 : φa is a homomorphism.
For that we think of φa in the following way: We have the relation b−1amb = an

and with it banb−1 = am given in G, so we can conclude

b ∈ {g ∈ G | g〈a〉g−1 ∩ 〈a〉 has finite index in g〈a〉g−1 and in 〈a〉} .

Clearly

a ∈ {g ∈ G | g〈a〉g−1 ∩ 〈a〉 has finite index in g〈a〉g−1 and in 〈a〉}

as well and since G is generated by a and b we get that

G = {g ∈ G | g〈a〉g−1 ∩ 〈a〉 has finite index in g〈a〉g−1 and in 〈a〉} .

This means that for any g ∈ G we can find p, q ∈ Z such that gapg−1 = aq and
φa(g) = |pq |.
Now let g, h ∈ G. There are pg, qg, ph, qh ∈ Z such that

g apg g−1 = aqg h aph h−1 = aqh

i.e. φa(g) = |pg

qg
| φa(h) = |ph

qh
|

Since for conjugate elements also any powers of them are conjugate (compare
with condition 25) we can compute:

gh apgph h−1g−1 = g aqhpg g−1 = aqgqh

i.e. φa(gh) = |pgph

qpqh
| .

So we conclude with φa(gh) = |pgph

qpqh
| = |pg

qg
| |ph

qh
| = φa(g)φa(h) that φa is a

homomorphism.

Now, we can observe that for the generators a, b ∈ G, we obtain φa(a) = 1 and
by the group relation φa(b) = | nm |. Thus, since φa is a homomorphism, the im-
age |pg

qg
| of any g ∈ G under φa has to be a multiple of | nm |, hence n | pg andm | qg.
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With the modular homomorphism we can show:
Claim 7 : G has trivial center, but non-trivial virtual center if and only if
n = −m. In this case, V(G) = 〈am〉.
The Bass-Serre tree T on which G acts by left multiplication that was constructed
in Claim 3 is not a line. Suppose that the virtual center V(G) is non-trivial. and
let z ∈ V(G) \ {1G}. Define its centralizer to be G′′ := C(z) ≤ G. Hence, z is
in the center Z(G′′) and acts therefore trivially on the Bass-Serre tree T . So
in particular, z fixes all vertices, thus it is an element of all vertex stabilizers,
which means

z ∈
⋂

v∈V (T )

Gv .

Now suppose that |m| 6= |n|. Since the image of the modular homomorphism φa

is a multiple of | nm |, this means that in this case the image of φa is unbounded. So
there is always a g ∈ G such that the index [〈a〉 : g〈a〉g−1∩〈a〉] is arbitrarily large.
That means that we can find a vertex stabilizer g〈a〉g−1 that has arbitrarily
little elements in common with the vertex stabilizer 〈a〉 . So the intersection of
the vertex stabilizers has to be trivial, i.e.

z ∈
⋂

v∈V (T )

Gv = {1G} .

That leads to the conclusion z = 1G, in contradiction to the assumption z ∈
V(G) \ {1G}. So |m|= |n|.
Conversely suppose now n = −m. Since G′ as the kernel of the line flipping
homomorphism has index 2 in G, its center 〈am〉 = Z(G′) ⊆ V(G) is contained
in the virtual center, so the virtual center V(G) cannot be trivial.
It is left to show, that 〈am〉 is the whole virtual center: Suppose on the contrary
there is a z ∈ V(G) \ 〈am〉. That means that its centralizer C(z) =: G′′ has finite
index in G. Hence, G′′ acts on the Bass-Serre tree T with finitely many vertex
orbits. So if we take the quotient of T by the action of G′′ and construct from
this graph of groups again a Bass-Serre tree we get T back. Thus, since z ∈ C(z),
z ∈ Z(G′′), by the same arguments as in Claim 4, z acts trivially on T and
stabilizes in particular every edge. So z is contained in the edge stabilizer 〈am〉.
So V(G) = 〈am〉.
Now we can wrap up the second case:

(ii). n = −m: Since the virtual center V(G) ⊆ G is a characteristic subgroup, we
know that its centralizer C(V(G)) and therefore the quotient C(V(G))/V(G)
is an isomorphism invariant, i.e. for two isomorphic groups G and H their
quotients C(V(G))/V(G) and C(V(H))/V(H) will be isomorphic as well.
Now observe that the centralizer of the virtual center is precisely C(V(G)) =
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C(〈am〉) = G′: By definition C(〈am〉) = {g ∈ G | gs = sg ∀ s ∈ 〈am〉} and
we already know that G′ ⊆ C(〈am〉) since any element in 〈am〉 commutes
with all elements in G′. But also we already know that any element g /∈ G′

does not commute, so G′ is the whole centralizer of the virtual center. And
by Claim 4, G′/〈am〉 is isomorphic to Z/mZ ∗ Z/mZ ∗ Z. Hence

C(V(H))/V(H) ∼= C(V(G))/V(G) = G′/〈am〉 ∼= Z/mZ ∗ Z/mZ ∗ Z

and by Claim 7 we conclude that H = BS(m,n), i.e. m′ = m and
n′ = n = −m.

That leaves us with the case where G has trivial center and trivial virtual center,
so m 6= |n|. By Claim 2 it follows that τ(a) = 0 for every action of G on a tree,
which gives the subgroup 〈a〉 ⊆ G a special role: It is a maximal universally
elliptic subgroup. By universally elliptic we mean, that all elements in 〈a〉 are
elliptic for any arbitrary action of G on a tree, which we know to be true since
τ(a) = 0. The maximality condition refers to containment, which means there
is no universally elliptic subgroup properly containing 〈a〉. This holds because
we know that 〈a〉 is the maximal elliptic subgroup for the natural action of
G on T . Therefore, it is a maximal universally elliptic subgroup. Then, since
the minimal distance is invariant under conjugation as shown in the proof of
Claim 2, conjugating 〈a〉 gives all the maximal universally elliptic subgroups of G,
i.e. G has precisely one conjugacy class of maximal universally elliptic subgroups.

Now we want to find out how the modular homomorphism for any other repre-
sentative of this conjugacy class than 〈a〉 looks like:
Claim 8 : If we replace 〈a〉 by one of its conjugates h〈a〉h−1 for h ∈ G, the
modular homomorphism stays the same, i.e. φa = φhah−1 .
First observe, that the index stays the same if we conjugate both groups by
the same element: Let N be a group containing subgroups M,K ≤ N and let
M ≤ K be a subgroup of K. Let n ∈ N \K. Then

[nKn−1 : nMn−1] = |{k′nMn−1 | k′ ∈ nKn−1}|

= |{nkn−1nMn−1 | k ∈ K}|

= |{nkMn−1 | k ∈ K}|

= |{kM | k ∈ K}|

= [K : M ]
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Now let g ∈ G and consider

φhah−1(g) = [gh〈a〉h−1g−1:gh〈a〉h−1g−1∩h〈a〉h−1]
[h〈a〉h−1:gh〈a〉h−1g−1∩h〈a〉h−1] .

Conjugating the index in the numerator by h−1 gives

[gh〈a〉h−1g−1 : gh〈a〉h−1g−1 ∩ h〈a〉h−1] =

= [h−1gh〈a〉h−1g−1h : h−1gh〈a〉h−1g−1h ∩ h−1h〈a〉h−1h]

= [h−1gh〈a〉h−1g−1h : h−1gh〈a〉h−1g−1h ∩ 〈a〉]

= [h−1gh〈a〉(h−1gh)−1 : h−1gh〈a〉(h−1gh)−1 ∩ 〈a〉]

and conjugating the index in the denominator by h−1 gives

[h〈a〉h−1 : gh〈a〉h−1g−1 ∩ h〈a〉h−1] =

= [h−1h〈a〉h−1h : h−1gh〈a〉h−1g−1h ∩ h−1h〈a〉h−1h]

= [〈a〉 : h−1gh〈a〉h−1g−1h ∩ 〈a〉]

= [〈a〉 : h−1gh〈a〉(h−1gh)−1 ∩ 〈a〉] .

By inserting that and using that φa is a homomorphism into the commutative
group Q∗+ we can conclude

φhah−1(g) = [gh〈a〉h−1g−1:gh〈a〉h−1g−1∩h〈a〉h−1]
[h〈a〉h−1:gh〈a〉h−1g−1∩h〈a〉h−1]

= [h−1gh〈a〉(h−1gh)−1:h−1gh〈a〉(h−1gh)−1∩〈a〉]
[〈a〉:h−1gh〈a〉(h−1gh)−1∩〈a〉]

= φa(h−1gh) = φa(h)−1φa(g)φa(h)

= φa(h)−1φa(h)φa(g) = φa(g)

Actually, we can modify this homomorphism to be mapped into all multiplicative
rationals. If we use the interpretation of φa described in the proof of Claim 6,
that for any g ∈ G we can use the p, q ∈ Z satisfying gapg−1 = aq to obtain
φa(g) = |pq |, we see by very similar arguments as in Claim 6 and Claim 8 that we
can lose the absolute value on p

q and still have a homomorphism that is invariant
under the conjugation of 〈a〉. So let us denote this homomorphism as

φ̃a : G→ Q∗

g 7→ p
q .

Finally, we see that φ̃a(g) is a multiple of n
m for any g ∈ G, since that is true for

generators of G. So the value n
m is an isomorphism invariant.

That lets us draw the conclusion that n
m = n′

m′ .
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This still does not imply the desired result m = m′, n = n′, unless we can
determine the gcd(m,n) and show that it is an isomorphism invariant as well.
And this is precisely what we want to do:
Let I be a representative of the only conjugacy class of maximal universally
elliptic subgroups that is contained in G. Consider the subgroup J ≤ I that is
generated by all elements c ∈ I ∩ gIg−1 for all g ∈ G \ I.
Claim 9 : The index satisfies [I : J ] = gcd(m,n) and it is independent of the
choice of I.
Suppose we would have chosen any other representative Ĩ of the conjugacy class
instead of I. That means that there is some g̃ such that g̃Ig̃−1 = Ĩ. But since
then the corresponding J̃ is generated by an element c̃ ∈ g̃Ig̃−1 ∩ gg̃Ig̃−1g−1

and we know that the index is invariant under conjugation of both groups, we
can conclude that [Ĩ : J̃ ] = [I : J ]. So the choice of I and J does not matter.
Therefore pick the most convenient choice of I = 〈a〉.
Now consider the Bass-Serre tree T with v ∈ V (T ) the vertex that has the vertex
stabilizer Gv = 〈a〉 associated to it. We want to describe J in terms of the tree:
The conjugates of I are simply vertex stabilizers of other vertices. Let w be a
vertex adjecent to v, denote the edge (v, w) =: evw ∈ E(T ). By definition, for
the stabilizers holds Gv∩Gw = Gevw

. But since J ≤ 〈a〉∩g〈a〉g−1 = Gv∩Gx for
some vertex x ∈ V (T ) with stabilizer Gx = g〈a〉g−1 we conclude that J contains
Ge for every edge e ∈ N(v), i.e. for every edge e incident to v. But for any
other vertex u /∈ N(v), we know that Gv ∩Gu fixes the geodesic segment that
connects v and u. Therefore it fixes in particular the very first edge eo ∈ E(T )
of this segment. So Gv ∩Gu is a subgroup of Geo

. But since eo is incident to
v, we know that Geo

and therefore Gv ∩Gu is already contained in J . So J is
simply generated by all the edge stabilizers for edges incident to v, which itself
has stabilizer Gv = 〈a〉. So we conclude J = 〈am, an〉 = 〈agcd(m,n)〉. But since
I = 〈a〉 that implies [I : J ] = [〈a〉 : 〈agcd(m,n)〉] = gcd(m,n).
Summarizing those observations finishes the third case:

(iii). m 6= |n|: We know that in this setting since τ(a) = 0 we only have one
conjugacy class of maximal universally elliptic subgroups, with 〈a〉 as a
representative. By Claim 8, we know that for any element of this conjugacy
class, we will always get the same modular homomorphism φ̃a, which
makes the quotient n

m an isomorphism invariant. But by Claim 9 the index
[I : J ] = gcd(m,n) is an isomorphism invariant as well. So for G ∼= H we
obtain n

m = n′

m′ and gcd(m,n) = gcd(m′, n′), which leads to the conclusion
m = m′ and n = n′.

So putting all cases together we conclude that whenever G and H are isomor-
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phic, there are only four possible relations between (m,n) and (m′, n′), namley
(m′, n′) = (−m,−n), (m′, n′) = (n,m) or (m′, n′) = (−n,−m) by Claim 1 or
(m′, n′) = (m,n) by the case distinctions.

3.2.3 Residual Finiteness and Hopf-Property

Example 3.1. BS(2, 3) is not Hopfian and therefore not residually finite.

Proof. Let G := BS(2, 3) = 〈a, b | b−1a2b = a3〉. Define the map

µ : G→ G

a 7→ a2

b 7→ b .

Clearly, µ induces a homomorphism. Since

µ(b−1aba−1) = µ(b)−1µ(a)µ(b)µ(a)−1 = b−1a2ba−2 = a3a−2 = a

and
µ(b) = b ,

both generators of G are in the image of µ, therefore the homomorphism is
surjective. We want to show that it is not injective, i.e. that ker(µ) 6= {1G}.
Consider the word (b−1aba−1)2a−1 = b−1aba−1b−1aba−2 ∈ G. By the Normal
Form Theorem 2.17, this is not the trivial word. Now compute the image of
(b−1aba−1)2a−1 under µ:

µ((b−1aba−1)2a−1) = µ(b−1aba−1)2µ(a)−1 = (b−1a2ba−2)2a−2

= b−1a2ba−2b−1a2ba−2a−2

= a3a−2a3a−4 = 1G

Thus, (b−1aba−1)2a−1 ∈ ker(µ), so the kernel is non-trvial. Therfore we have
found an epimorphism with non-trivial kernel, which implies that BS(2, 3) is
non-Hopfian and hence by Proposition 1.20 not residually finite. [42]

This observation for the case m = 2 and n = 3 generalizes to the following
proposition:

Proposition 3.15.

(i). The Baumslag-Solitar group BS(m,n) is residually finite and thus Hopfian
if |m| = 1 or |n| = 1 or |m| = |n|.
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(ii). The Baumslag-Solitar group BS(m,n) is not residually finite, but Hopfian,
if |m| 6= 1, |n| 6= 1, |m| 6= |n| and π(m) = π(n), where π(k) denotes the set
of prime divisors of k ∈ Z.

(iii). The Baumslag-Solitar group BS(m,n) is not residually finite and not
Hopfian, if |m| 6= 1, |n| 6= 1, |m| 6= |n| and π(m) 6= π(n), where π(k)
denotes the set of prime divisors of k ∈ Z.

Remark 3.4. Originally, a characterization of residual finiteness and the Hopf-
property of Baumslag-Solitar groups was given by Gilbert Baumslag and Donald
Solitar themselves in [4] in 1962. But they claimed that the Baumslag-Solitar
group BS(m,n) is not only Hopfian, but also residually finite in case (ii)., i.e.
when m and n have the same set of prime factors, which turns out to be wrong.
The necessary correction was made by Meskin in 1972 and therefore the proof
should be guided by his paper [32]. It divides the proof into six lemmata, whose
proofs can be found in different sources, marked below.

Proof. To tackle the necessary case distinction we introduce a lemma per case:

Lemma 3.16. If m and n are integers such that either |m| = 1 or |n| = 1, then
G = BS(m,n) is residually finite and thus Hopfian.

The main idea of this proof was suggested by Derek Holt in [35].

Proof. Let m = 1 and n ∈ Z \ {−1, 0, 1} and define M to be the matrix group

generated by the two matrices A =
[

1 0
1 1

]
and B =

[
n 0
0 1

]
. We want to

show that the map induced by

ϕ : BS(1, n)→M

a 7→ A

b 7→ B

defines an isomorphism.
First, we need to check that ϕ is a homomorphism, i.e. that the relation of
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BS(1, n) also holds in M :

B−1AB =
[
n 0
0 1

]−1 [
1 0
1 1

][
n 0
0 1

]

=
[

1
n 0
0 1

][
1 0
1 1

][
n 0
0 1

]

=
[

1
n 0
1 1

][
n 0
0 1

]

=
[

1 0
n 1

]

=
[

1 0
1 1

]n
= An .

Since the generators of BS(1, n), are mapped to the generators of M , ϕ is
surjective. That leaves injectivity to be shown: Observe that any element of the
form

aε1bf1aε2 · · · aεkbfk ∈ BS(1, n)

with εl, fl ∈ Z \ {0} for l ∈ {2, . . . , k − 1}, f1, εk ∈ Z \ {0} and ε1, fk ∈ Z can be
written as

biaj ∈ BS(1, n)

for some pair i, j ∈ Z, since any occurrence of the subword ab can be replaced by
ban. Fruthermore, any element biaj ∈ BS(1, n) is being mapped to BiAj ∈M
for i, j ∈ Z via ϕ, but since

BiAj =
[
ni 0
j 1

]
,

and n ∈ Z \ {−1, 0, 1} all BiAj are distinct for distinct pairs i, j ∈ Z. Hence ϕ
is injective and BS(1, n) is isomorphic to a linear group. Thus, by the Theorem
2.3 of Malcev, BS(1, n) is residually finite.
Lastly, we note that by Claim 1 of Theorem 3.12, BS(n, 1) is isomorphic to
BS(1, n), and BS(−1, n) and BS(n,−1) are both isomorphic to BS(1,−n).
Thus BS(m,n) has to be residually finite for all integers m and n where either
|m| = 1 or |n| = 1.

Lemma 3.17. If m and n are integers such that |m| = |n| > 1, then
G = BS(m,n) is residually finite and thus Hopfian.
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The proof follows the idea suggested in [34].

Proof. First let m = n, i.e. we consider the group BS(m,m). Define ϕ to be
the homomorphism induced by

ϕ : BS(m,m)→ Z

a 7→ 1

b 7→ 0 .

Considering the Cayley graph of BS(m,m), we can interpret the map as mea-
suring the height of a given point in regards of the a-level, independent of the
b-level of the sheet the point is in. Hence, elements of the kernel H of ϕ have
to be on the same a-height, independent of their b-sheet. Thus, H has to be
generated by all the elements of the form akba−k for k ∈ Z. Since the given
relation b−1amb = am implies amba−m = b, we can deduce that H has to be
generated by elements of the form

akba−k

for k ∈ {0, . . . ,m− 1}. Next, we need to show that H is a free group. In order
to do so, consider the Bass-Serre tree T on which BS(m,m) and therefore its
subgroup H acts by left multiplication. Recall by (29) in the proof of Claim 3 of
the proof of Theorem 3.12 that the G-vertex stabilizer of a vertex g〈a〉 ∈ V (T )
is given by Gg〈a〉 = {gapg−1 | p ∈ Z}. Hence, by intersecting H with Gg〈a〉, we
see that there is no non-trivial element fixing any vertex g〈a〉 ∈ V (T ). Thus, H
acts freely on the tree T and is therefore by Theorem 2.5 a free group.
Furthermore, we know by Claim 4 of the proof of Theorem 3.12 that the center
of BS(m,m) is precisely 〈am〉, which is isomorphic to Z. So we can consider the
direct product H×〈am〉 ∼= H×Z. We know by Theorem 3.1 that as a free group
H is residually finite and that Z is residually finite. Hence, by Example 1.10,
their direct product is residually finite. If we can lastly show that H × 〈am〉 has
finite index in BS(m,m), we can deduce by Theorem 1.17 (ii) that BS(m,m) is
residually finite as well. Thus we want to show that H × 〈am〉 is isomorphic to
the kernel of the map

ψ : BS(m,m)→ Z/mZ

ak 7→ k +mZ

bk 7→ mZ ,

which is of index m.
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We know that H × 〈am〉 is the special case of the free product H ∗ 〈am〉 where
H and 〈am〉 commute. And they commute indeed, since by the relation any
element in 〈am〉 commutes with all g ∈ BS(m,m), hence in particular with all
h ∈ H ≤ G. So we can think of any element x ∈ H × 〈am〉 as an element of the
form x = halm with h ∈ H and l ∈ Z.
So let first x ∈ H ∗ 〈am〉. As the generators of H are of the form akba−k with
k ∈ {0, . . . ,m− 1}, they are all sent to mZ by ψ, as well as all elements aml for
l ∈ Z. So clearly, x ∈ ker(ψ). Assume conversely that x ∈ ker(ψ) ⊆ BS(m,m).
Since BS(m,m) is the HNN-extension of the infinite cyclic group 〈a〉 with
associated subgroup 〈am〉 along the identity map, we know by the Normal Form
Theorem 2.17 that x can be written as

x = ae0b±1ae1b±1 · · · aen

with e0 ∈ {0, 1, . . . ,m − 1} and ei ∈ {1, . . . ,m − 1} for all i ∈ {1, . . . n}. But
since x ∈ ker(ψ), the exponent sum of the a’s has to be divisible by m, i.e.

n∑
i=0

ei = 0 modm .

Now we apply the following: We start with i = 0 to insert in the subword
aeib±1aei+1 the trivial element 1 = a−eiaei to obtain

aeib±1a−eiaeiaei+1 .

In case ei + ei+1 ≥ m, rewrite

aeib±1a−eiaeiaei+1 = aeib±1a−eiaei+ei+1 = aeib±1a−eiamaei+ei+1−m .

We see that this subsequence now starts with a generating element of H, possibly
followed by an element of 〈am〉. To continue inductively with increasing i, if
necessary we lastly substitute the original index ei+1 by ei + ei+1 −m. So we
get a sequence of subwords in H and 〈am〉. This works also for the suffix: We
need to ensure that it is in H ∗ 〈am〉 as well. But it is clear that our alterations
do not change the divisibility of the exponent sum of the a’s by m. Hence when
entering the case i+ 1 = n we will always obtain that aen−1+en ∈ 〈am〉. Thus we
have a word in elements in H and 〈am〉. So we conclude x ∈ H ∗ 〈am〉, i.e. with
the commuting property of 〈am〉 we obtain ker(ψ) ∼= H × 〈am〉 and BS(m,m)
is residually finite.
Let now n = −m, i.e. consider the group BS(m,−m) = 〈a, b | b−1amb = a−m〉.
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Define φ to be the homomorphism induced by

φ : BS(m,−m)→ Z/2Z

a 7→ 0

b 7→ 1 .

Let K be the kernel of φ, which is an index-2 subgroup of BS(m,−m). K is
given by the presentation

〈a, x, y | am = xm, y−1amy = am, y−1xmy = xm〉 ,

for x = ba−1b−1 and y = b2. But K is isomorphic to a subgroup K ′ of
BS(m,m), given by the same homomorphism and presentation as K, where we
define x = bab−1 instead. Now we can consider the intersection of H with K ′,
which has to be a finite index subgroup of K ′, since H is of finite index. Also, it
has to be of the form F × Z, with F a free group, since H is of that form. But
since K is isomorphic to K ′, there is a finite index subgroup of the form F ×Z in
BS(m,−m) as well. Hence, by the same argument as in the case m = n before,
BS(m,−m) is residually finite.

Lemma 3.18. Let m and n be integers such that |m| 6= |n|, |m| 6= 1, |n| 6= 1
and they do not have the same set of prime factors, i.e. π(m) 6= π(n), then
G := BS(m,n) is not Hopfian and thus not residually finite.

Proof. [32, Lemma 2.1] Assume that m and n do not have the same set of prime
factors, i.e. π(m) 6= π(n). That means, without loss of generality there is a
prime p ∈ P such that p | m but p - n. Define the map

η : G→ G

a 7→ ap

b 7→ b ,

which clearly induces a homomorphism. Furthermore we can check that it is
surjective: Since b gets mapped to b by η anyways, we only need to make sure
that there is an element g ∈ G that gets mapped to the second generator a ∈ G
by η as well. Therefore observe that gcd(n, p) = 1, so by Bézout’s Identity, there
are integers x, y ∈ Z such that xn + yp = 1. Now consider the image of the
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element (b−1a
m
p b)xay ∈ G under η:

η((b−1a
m
p b)xay) = η(b−1a

m
p b)x η(a)y

= (b−1amb)xayp = anxayp

= axn+yp

= a1 = a

Hence, η is an epimorphism. To show that G is not Hopfian we need to check
that η is not injective, i.e. there is a non-trivial element in ker(η). Therefore we
consider the element [a

m
p , b]pbm−n ∈ G. By the Normal form theorem 2.17

[a
m
p , b]pbm−n 6= 1G ,

but

η([a
m
p , b]pbm−n) = [am, b]pap(m−n)

= (a−mb−1amb)pbp(m−n)

= (a−man)pap(m−n)

= a−p(m−n)+p(m−n)

= 1G .

Hence G cannot be Hopfian and thus by Malcev’s Theorem 1.20 not residually
finite.

Remark 3.5. Note that even without Proposition 1.20 at hand, the claim in the
above proof of Lemma 3.18 that G = BS(m,n) is not residually finite is an
easy check: The kernel of any surjective endomorphism of a finitely generated
group has to be contained in every normal subgroup of finite index of that group.
Hence, the non-trivial element [a

m
p , b]pbm−n has to be contained in every normal

subgroup of finite index, contradicting the condition of residual finiteness.

Lemma 3.19. Let m and n be integers such that |m| 6= |n|, |m| 6= 1 and |n| 6= 1.
Furthermore let them have the same set of prime factors, i.e. π(m) = π(n) and let
it contain more than one prime, i.e. |π(m)| = |π(n)| > 1. Then G := BS(m,n)
is not residually finite.

Proof. [32, Lemma 2.1] Let π(m) = π(n) with |π(m)| = |π(n)| > 1. Then there
has to be a common divisor k ∈ Z \ {0} of m and n, such that |k| 6= |m|, |n|
and π(mk ) 6= π(nk ). Now we can consider BS(mk ,

n
k ), to argue as before in the

proof of Lemma 3.18 that it cannot be residually finite. But as BS(mk ,
n
k ) is

112



isomorphic to the subgroup of BS(m,n) generated by ak and b, we conclude
with Proposition 1.17 that BS(m,n) cannot be residually finite either.

If π(m) = π(n) and |π(m)| = |π(n)| = 1, so m and n are powers of the same
prime, we use:

Lemma 3.20. Let m and n be integers such that m | n or n | m and |m| 6= |n|
as well as |m| 6= 1 and |n| 6= 1. Then G := BS(m,n) is not residually finite.

Proof. [32, Lemma 2.2] Assume without loss of generality that m | n, i.e. there
is an h ∈ Z \ {0} such that n = h ·m. Next, recall from Example 2.11 that the
group

K := 〈x, y, z | x−1zx = y−1zy = zh〉

is not Hopfian and thus not residually finite for h = 2. Analogously, as indicated
in and Remark 2.8, we can check that the group is not Hopfian and thus not
residually finite for any h ∈ Z \ {−1, 0, 1}. Consider the map

µ : K → K

x 7→ x

y 7→ y

z 7→ zh ,

which clearly extends to a homomorphism. Again we can find a by the Normal
Form Theorem 2.17 non-trivial element, namely again [x−1y, z] ∈ G that has
trivial image under µ:

µ([x−1y, z]) = µ((x−1y)−1z−1x−1yz)

= µ(y−1xz−1x−1yz)

= y−1xz−hx−1yzh

= y−1xx−1z−1xx−1yzh

= y−1z−1yy−1zy

= 1K .

Now we can make the substitution

x 7→ b, y 7→ a−1ba and z 7→ am

and see that we obtain the group

〈a, b, am | b−1amb = (a−1ba)−1ama−1ba = (am)h〉 ,
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which is clearly via Tietze transformations isomorphic to G. Hence, the element

[x−1y, z] 7→ [b−1a−1ba, am] = [[a, b], am]

is a non-trivial element in the kernel of an epimorphism as well. Thus G cannot
be Hopfian and therefore not residually finite.

Lemma 3.21. Let m and n be integers such that |m| 6= 1, |n| 6= 1, |m| 6= |n|
and π(m) = π(n), then G = BS(m,n) is Hopfian.

Proof. [46, Proposition 4.9] Let ϕ : G→ G be a surjective endomorphism. We
want to show that it is injective. By the relation, we know that am and an are
conjugates. Hence, so are ϕ(a)m and ϕ(a)n.
First we claim that ϕ(a) is conjugate to a power of a. Observe that ϕ(a) is
conjugate to an element u ∈ G, that is cyclically reduced, i.e. for which any
cyclic permutation of the word is reduced as well. Thus, there is a g ∈ G such
that ϕ(a) = g−1ug. As u ∈ G, by the Normal Form Theorem 2.16 it can be
written as

u = ah0b±1ah1 · · · b±ahq .

Moreover, with the relation we obtain

ϕ(b)−1ϕ(a)mϕ(b) = ϕ(a)n

⇒ ϕ(b)−1g−1umgϕ(b) = g−1ung

⇒ gϕ(b)−1g−1umgϕ(b)g−1 = un .

Hence, um and un are conjugates. By Collin’s Lemma [29, p.185f, Theorem
2.5] this implies that um and un must have the same G-length. But since u is
cyclically reduced, the G-length of uj = q|j| for every j ∈ Z. Thus q|m| = q|n|,
which implies with the assumption |m| 6= |n| that q = 0. Thus u is a power of
a. Hence, ϕ(a) is conjugate to ak for some k ∈ Z. Since if necessary we could
compose ϕ with an inner automorphism and still have a surjective endomorphism,
we can without loss of generality assume that ϕ(a) = ak with k ∈ N.
Next we want to show Lemma 1.2 of [9], which states that gcd(k,m, n) = 1. As
ϕ is a surjective endomorphism we have G = 〈ϕ(a), ϕ(b)〉. Thus by the Normal
Form Theorem 2.16 we can write a as

a = ϕ(a)h0ϕ(b)±1 · · ·ϕ(b)±ϕ(a)hr .

As ϕ(a) = ak we obtain

a = akh0ϕ(b)±1 · · ·ϕ(b)±1akhr . (31)
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On the right hand side we have exponent sum k

(
rhi∑
i=0

)
and since G is not cyclic,

we know k 6= 0. Now suppose that gcd(k,m, n) 6= 1, i.e. there is a prime p ∈ P
such that p | gcd(k,m, n). If there are two words u and v in G written in a and
b with u =G v, then their exponent sums have to be congruent modulo p. But
the left hand side in (31) has exponent sum 1, while the right hand side has

k

(
r∑
i=0

hi

)
. As p divides k we obtain

1 = 0 mod p ,

which is a contradiction. Hence we have gcd(k,m, n) = 1.
By assumption π(m) = π(n), thus k is coprime to m as well as to n. Now we
want to show that ϕ(b) is of the form aj1baj2 for some j1, j2 ∈ Z. Again, by the
Normal Form Theorem 2.16 we know that we can write ϕ(b) as

ϕ(b) = ah0bε1ah1 · · · bεrahr .

By the relation we get

ϕ(b)−1ϕ(a)mϕ(b) = ϕ(a)n ⇒ ϕ(b)−1akmϕ(b) = akn .

Inserting the normal form of ϕ(b) gives

(ah0bε1ah1 · · · bεrahr )−1akm(ah0bε1ah1 · · · bεrahr )a−km = 1G
⇒ a−hrb−εr · · · b−ε1a−h0akmah0bε1ah1 · · · bεrahra−km = 1G
⇒ a−hrb−εr · · · b−ε1akmbε1ah1 · · · bεrahra−km = 1G .

By Britton’s Lemma 2.17, this expression is reducible. As ϕ(b) was given in
normal form, we cannot reduce it further. Hence we know that b−ε1akmbε1 is
reducible. This implies that ε1 = 1 and b−ε1akmbε1 = b−1akmb1 = akn. Thus
we have the expression b−ε2aknbε2 that is reducible. We obtain ε2 = −1 and
b−ε2aknbε2 = akm. Continuing this procedure gives us that r is odd and that
εi = (−1)i+1. Hence ϕ(b) is of the form

ϕ(b) = ah0bah1b−1 · · · b−1ahr−1bahr . (32)

Applying the Normal Form Theorem 2.16 to b gives that it is of the form

b = ϕ(a)n0ϕ(b)ε1ϕ(a)n1 · · ·ϕ(a)ns = akn0ϕ(b)ε1akn1 · · · akns .

Suppose that s is minimal. Assume that s > 1 and replace ϕ(b) by its normal
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form (32). Again, by Britton’s Lemma (2.17), we are able to reduce the right
hand side. Thus, there has to be a sequence of the form

b−εadbε

with either ε = 1 and n | d or ε = −1 and m | d. But since we know ε1 = εr = 1,
we deduce for a given r that εt = −εt+1 and m | knt. But since gcd(k,m) = 1,
we conclude m | nt, thus there is an x ∈ Z such that nt = mx. We obtain

ϕ(b)εtakntϕ(b)−εt = ϕ(b)εtakmxϕ(b)−εt = aknx ,

which means that b is reducible in contradiction to the assumption that s is
minimal. Thus s = 1 and b = akn0ϕ(b)akn1 , which is equivalent to

ϕ(b) = a−kn0ba−kn1 .

It remains to show that ϕ is injective. Therefore we suppose that it is not, i.e.
that there is a non-trivial element v in the kernel of ϕ. Write v in Normal Form
as

v = al0bε1 · · · bεzalz

with z ≥ 1. Then we obtain for its image under ϕ

1G = ϕ(v)

= ϕ(a)l0ϕ(b)ε1 · · ·ϕ(b)εzϕ(a)lz

= akl0(a−kn0ba−kn1)ε1 · · · (a−kn0ba−kn1)εzaklz .

Again, by Britton’s Lemma 2.17 this expression is reducible, which means there
is a reducible subsequence, for example b−1amjb with b−1alib a subsequence of
its preimage. Thus, we have

ϕ(b−1alib) = akn1b−1akliba−kn1

where kli = mj. Since k and m are coprime, we have m | li. But v is given in
normal form, hence 0 ≤ li < |m|, which is a contradiction. So we have that ϕ is
injective and hence G is Hopfian.

This concludes the proof of Proposition 3.15.

3.3 Groups Without Finite Quotients

One way of finding an example for a non-residually finite group, is to find an
infinite group that does not have any finite quotients, since then the property of
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residual finiteness trivially cannot be satisfied.

3.3.1 Higman-Group

The first and most well-known example of such a group was introduced by
Graham Higman in 1951 [16]:

Proposition 3.22. The group

H = 〈a, b, c, d | [b, a] = b, [c, b] = c, [d, c] = d, [a, d] = a〉 ,

where [x, y] := x−1y−1xy defines the commutator, is infinite, not simple and
does not have any finite quotients.

The absence of finite quotients was shown in [38], the rest of the proof is guided
by [41].

Proof. First we need to observe that H is in fact an amalgamated product
constructed the following way:

• Define the groups Hi := 〈ai, bi | a−1
i biai = b2i 〉 for i ∈ {1, 2, 3, 4}.

• Form amalgamated products K12 and K34: Identify the isomorphic sub-
groups 〈a2〉 ∼= 〈b1〉 of H1 and H2 to obtain

K12 = H1 ∗〈a2〉∼=〈b1〉 H2

= 〈a1, a2, b2 | a−1
1 a2a1 = a2

2, a
−1
2 b2a2 = b22〉

and analogously 〈b3〉 ∼= 〈a4〉 of H3 and H4 to obtain

K34 = H3 ∗〈b3〉∼=〈a4〉 H4

= 〈a3, a4, b4 | a−1
3 a4a3 = a2

4, a
−1
4 b4a4 = b24〉

• Form the amalgamated product K1234: Identify the isomorphic subgroups
〈a1, b2〉 ∼= 〈a3, b4〉 of K12 and K34 via b2 = a3 and a1 = b4 to obtain

K1234 = K12 ∗〈a1,b2〉∼=〈a3,b4〉 K34 =

= 〈a1, a2, a3, a4 | a−1
1 a2a1 = a2

2, a
−1
2 a3a2 = a2

3, a
−1
3 a4a3 = a2

4, a
−1
4 a1a4 = a2

1〉

• Lastly observe that clearly G ∼= K1234.

Now we can check the three properties of G using the identity G ∼= K1234:
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(i). G has no non-trivial finite quotient: Suppose that N E G is a normal
subgroup of G with |G/N | < ∞. Then we need to deduce that G/N =
{1G/N}. So, since the relations of G have to hold in G/N as well, we need
to deduce that a1N = a2N = a3N = a4N = 1G/N . For that we use the
following lemma:

Lemma 3.23. Let n ∈ N \ {1}, let q ∈ P be the smallest prime factor of
n and let p ∈ P be the smallest prime factor of 2n − 1. Then q < p.

Proof. Define r := min{k ∈ N | p | 2k − 1}. If r 6= 1, then there is a q ∈ P
such that q | r. Furthermore, by Fermat’s Little theorem, we know that
p | 2p−1 − 1, hence r | p− 1. Thus we deduce that q ≤ p− 1, and therefore
q < p. But by the properties of Mersenne numbers, r | n, so with q | r we
deduce q | n, and the desired result is proven.

Now we assume that the relations of G ∼= K1234 hold and that there is at
least one i ∈ {1, 2, 3, 4} such that aiN 6= 1G/N . Show that a−n1 a2a

n
1 = a2n

2

by using a−1
1 a2 = a2

2a
−1
1 and induction on n ∈ N:

For the case n = 1 the formula is apparent from the group relation. Now
assume that an1a2a

n
1 = a2n

1 and show that a−n−1
1 a2a

n+1
1 = a2n+1

2 holds:

a−n−1
1 a2a

n+1
1 = a−1

1 a−n1 a2a
n
1a1

IH= a−1
1 a2n

2 a1

= a−1
1 a2a

2n−1
2 a1

= a2
2a
−1
1 a2n−1

2 a1

= a2
2a
−1
1 a2a

2n−2
2 a1

= a2
2a

2
2a
−1
1 a2n−2

2 a1

= · · · = a2
2a

2
2 · · · a2︸ ︷︷ ︸

2n times

a−1
1 a1

= (a2
2)2n

= a2n+1

2 .

Now define the order of the images of the generators ai in G/N as
ord(aiN) =: ni and use in the above formula n = n1 to obtain

a−n1
1 a2a

n1
1 N = a2n1

2 N

⇒ a−n1
1 N a2N an1

1 N = a2n1
2 N

⇒ (a1N)−n1 a2N (a1N)n1 = a2n1
2 N

⇒ a2N = a2n1
2 N

⇒ N = a2n1−1
2 N .
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So we can conclude n2 has to be a divisor of 2n1 − 1, hence if n1 = 1,
then n2 = 1 and therefore n3 = n4 = 1 in contradiction to our assumption.
Thus we can assume that n1 > 1. Consider the smallest prime factor
p ∈ P of the product n1n2n3n4. Since the relations are symmetric, we
can without loss of generality assume that p | n2. But since n2 | 2n1 − 1,
Lemma 3.23 implies that there is a prime q ∈ P such that q | n1 and
q < p < n2 in contradiction to the minimality of p. So n1 ≯ 1 and
therefore n1 = n2 = n3 = n4 and a1N = a2N = a3N = a4N = 1GN

. Thus
there is no proper normal subgroup N E G with finite index, so G does
not have any proper finite quotient, and is therefore not residually finite.

(ii). G is infinite: By the construction of G via the amalgamated product we
know that the element a1 in H1 has order ordH1(a1) =∞, so the element
a1 is a generator of K1234, hence 〈a1〉 is an infinite cyclic subgroup of G,
which implies that G has to be infinite as well.

(iii). G is not simple: We know that G is isomorphic to the amalgamated product
(K12 ∗K34)/M , where M is the subgroup isomorphic to the normal closure
of 〈a1, b2〉. Now we consider the two groups

K := 〈a1, a2, b2 | a−1
1 a2a1 = a2

2, a
−1
2 b2a2 = b22, (a1b2)3 = (b2a1)3〉

K ′ := 〈a3, a4, b1 | a−1
3 a4a3 = a2

4, a
−1
4 b4a4 = b24, (a3b4)3 = (b4a3)3〉

and take the amalgamated product (K ∗K ′)/M =: K̃ with M as above.
Define the group homomorphism

ϕ : G→ K̃

ai 7→ ai .

We know that (a1b2)3(b2a1)−3 6= 1G, but

ϕ((a1b2)3(b2a1)−3) = (a1b2)3(b2a1)−3 = 1K̃ ,

so (a1b2)3(b2a1)−3 ∈ ker(ϕ) and ϕ is not injective. So the kernel of ϕ is a
non-trivial normal subgroup of G and therefore G is not simple, if we can
exclude the case that ker(ϕ) = G, which means Im(ϕ) 6= {1G} which is
equivalent to K̃ 6= {1K̃}. But that K̃ is non-trivial is an easy check with
GAP.

119



3.3.2 Discrete Groups

The following two examples as constructed in [10] are of groups without any
finite quotients. Therefore they are trivially not residually finite. We will only
focus on the arguments essential for proving the non-existence of finite quotients:

Example 3.2. There is an infinite discrete subgroup G ⊆ Isom(H3) of the
isomorphism group of the hyperbolic space H3 without any finite quotient.

Proof. We want to give an algebraic description of a group and show that it
has no finite quotients. Let T be the maximal rooted binary tree. Denote the
root with ∗ and let |v| := d(v, ∗) denote the length of the path from any vertex
v ∈ V (T ) to the root ∗. Let the edges of T be oriented towards the root ∗ and
denote the terminal vertex of any edge e ∈ E(T ) by t(e). Lastly denote for any
vertex v ∈ V (T ) the outgoing edge by eo(v) and the incoming edges by e1(v) and
e2(v). (Note that any vertex can have at most two incoming and one outgoing
edges as the tree T is binary.)

Figure 9: This illustrates the first seven vertices of the infinite, maximal rooted
binary T with root ∗. The two incoming edges of a vertex are labelled as e1 and
e2, the outgoing edge is denoted as e0.

Now define a set GE := {ge | e ∈ E}, indexed by the edges in E(T ) and the
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group

G := 〈GE | {g3+|v|
eo(v) = 1G, geo(v)g

−1
e1(v)g

−1
e2(v) = 1G | v ∈ V with |v| ≥ 1}〉 .

Then G is the fundamental group π1(T ) of the graph of groups T with underlying
graph T . The vertex groups of V (T ) are for v ∈ V (T ) \ {∗} given by

Gv = 〈geo(v), ge1(v), ge2(v) | g
4+|v|
e1(v) = 1, g4+|v|

e2(v) = 1, geo(v)g
−1
e1(v)g

−1
e2(v) = 1〉

and
G∗ = 〈ge1(∗), ge2(∗) | g4

e1(∗) = 1, g4
e2(∗)〉 .

The edge groups of E(T ) are given by

Ge = 〈ge | g4+|t(e)|
e 〉 .

Now we want to think about G as a nested union of a sequence of subgroups of G.
Therefore we describe the subgroup Gn ≤ G for n ∈ N as the the fundamental
group

Gn := π1(T n)

where T n ⊆ T is the subgraph of T corresponding to the ball of radius n − 1
around the root ∗. So equivalently

Gn = 〈geo(v) | v ∈ V (T ) with |v| ≤ n〉 .

By construction we have

G1 ⊆ G2 ⊆ G3 ⊆ . . .

and
G =

⋃
n∈N

Gn .

Now we can show:
Claim 1 : Gn is generated by Sn := {geo(v) | |v| = n} for any n ∈ N.
We know that by construction Gn is generated by S1 ∪ S2 ∪ · · · ∪ Sn, hence it is
generated by Gn−1 ∪ Sn for any n ∈ N. So we need to show that Gn−1 ⊆ 〈Sn〉.
In order to do so we use induction on n ∈ N:
Since the base case is trivial, let v ∈ V with |v| = n − 1 and define for e1(v)
and e2(v) the initial vertices as v1 and v2 respectively, i.e. eo(v1) = e1(v) and
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eo(v2) = e2(v). But we know by the relations in G that

geo(v) = ge1(v)ge2(v)

= geo(v1)geo(v2) ∈ Sn

and geo(v1)geo(v2) ∈ Sn since |v1| = |v2| = |v|+ 1 = n. So any element in Gn−1

is also in 〈Sn〉.
This enables us to show:
Claim 2: G has no finite quotients.
Let H be a finite group and let π : G → H be a homomorphism. If π is
trivial, that is π(g) = 1H for any g ∈ G, then the claim is true. So let
k, n ∈ N such that n > k and 3 + n ≡ 1 (mod |H|) and note that for any
geo(v) ∈ Sn = {geo(v) | |v| = n} we have g3+n

eo(v) = 1G. But as gcd(|H|, 3 + n) = 1,
we obtain π|Sn : Sn → H is trivial, thus Sn ⊆ ker(π). Since Sn generates
Gn this implies Gn ⊆ ker(π), and with k < n we conclude Gk ⊆ ker(π). The
choice of k ∈ N was arbitrary, and

⋃
k≥1

= G, hence G ⊆ ker(π). So there is no

non-trivial homomorphism π : G → H and therefore also no proper subgroup
K ≤ G with finite index.
To complete the proof of the statement it is left to show that there is a discrete
subgroup of PSL2(C) isomorphic to G. The proof is omitted, since it would go
beyond the scope of the topics of interest.

Example 3.3. There is a torsion-free discrete subgroup G ⊆ Isom(H3) of the
isomorphism group of the hyperbolic space H3 that does not have any finite
quotients and is therefore not residually finite.

Proof. It is not possible to explain the construction of the group in question
in all details with the tools at hand, as it is the fundamental group of a very
special manifold. Therefore we will deal with it only heuristically and again
focus on the argument that is crucial for the non-residual finiteness. For the
construction we start with a one-holed torus T with two curves α and β on it
that intersect exactly in one single point. Then we take a regular neighborhood
U of β × {0} in the 3-manifold T × [−1, 1] and define two curves µ and β′ with
some special properties. Finally for n ∈ N we define the manifold Mn that we
obtain by Dehn-filling the curve nµ+ β′. We get a presentation

π1(Mn) = π1(T ) ∗〈β〉 π1(U) ∼= 〈a, b, c | b = cn〉 .

The curve ∂T × {0} corresponds to the conjugacy class of [a, b] = [a, cn]. By a
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claim in [10], π1(Mn) admits a geometrically finite representation

ρn : π1(Mn)→ PSL2(C)

[a, b] 7→ g with g(z) = z + 1 .

Define for t ∈ R the element ht ∈ PSL2(C) as the element ht(z) = z + ti. It is
shown in [10] that for tn →∞ the group

G = 〈
⋃
n∈N

htnρn(π1(Mn))h−1
tn | n ∈ N〉

is discrete. Note that as g(z) = z+ 1 and ht(z) = z+ ti, we can write any g ∈ G
as

g = htgh
−1
t = htρn([a, b])h−1

t = htρn([a, cn])h−1
t .

Now we claim that G is not residually finite: Let H be a finite group and let
π : G→ H be a homomorphism. If we can show that π is always trivial, then
there is no finite quotient and therefore G is not residually finite. So let g ∈ G.
Then

π(g) = π(htρn([a, cn])h−1
t )

= π(ht)[π(ρn(a)), π(ρn(c))]π(ht)−1

= π(ht)[π(ρn(a)), ρ|H|(c)|H|]π(ht)−1

= π(ht)[π(ρn(a)), 1H ]π(ht)−1

= π(ht)π(ht)−1

= 1H .

Hence there is no proper subgroup K ≤ G with finite index, so G is not residually
finite.

4 Computational Approach: The Heineken Group

The following group will be the main interest and motivation in the forthcoming
chapter:

Definition 4.1. The group H, given by the presentation

H = 〈x, y, z | [x, [x, y]] = z, [y, [y, z]] = x, [z, [z, x]] = y〉 , (33)

where [a, b] := a−1b−1ab denotes the commutator, is called the Heineken group.

Originally, the Heineken group H was of interest, because it is a generalization
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of the simpler presentation

〈x, y, z | [x, y] = z, [y, z] = x, [z, x] = y〉 ,

which was known to be trivial by computational methods very early, for example it
was stated in [37]. It was investigated with methods that have proven themselves
valuable to show that certain groups are finite. However, since the existence of
an automatic structure and with it the infiniteness and the hyperbolicity of the
Heineken group is proven, the research can be refocused on the question whether
the Heineken group is residually finite. Especially, since on the one hand its
presentation is similar to the one of the Higman group, which we proved to be
non-residual finite by the absence of finite quotients and on the other hand since
it turns out to be very hard to find finite quotients, it suggests itself that there
might not exist a lot of them. Therefore it could be a feasible goal to determine
whether the Heineken group is the first known example of a hyperbolic but
non-residually finite group.
We want to retrace the findings about the Heineken group and test and explain
different attempts to determine whether the Heineken group is residually finite.

Remark 4.1. With Tietze transformations we also obtain a presentation of the
Heineken group H with only two generators, that is in general more useful for
computations:

H = 〈x, y | [y, [y, [x, [x, y]]]] = x, [[x, [x, y]], [[x, [x, y]], x]] = y〉 . (34)

All the computational concepts used to approach questions about the Heineken
group in the forthcoming chapters are guided by Holt’s Handbook of Computa-
tional Group Theory [19].

4.1 Finiteness & Hyperbolicity

The algorithms described in this chapter are available in GAP on Linux. They
have been implemented by Derek Holt in an extra package called "KBMAG" (say
"kay-bee-mag"), which stands for "Knuth-Bendix on Monoids and Automatic
Groups". It is an interface to some C-programs that can be run stand-alone
without GAP as well. However, it is much more convenient and user-friendly to
use GAP. The package can be used after inputting

gap > LoadPackage(”kbmag”);

In case the package is not stored in the same directory as the GAP roots, we
need to use the funtion SetPackagePath("kbmag","...") to be able to load
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the package with the above command.

In order to tackle the problem of Finiteness and Hyperbolicity and explain the
algorithms needed, we need to introduce quite a lot of machinery:

4.1.1 Finite State Automata

Definition 4.2. A finite state automaton (FSA)M is a quintuple (Σ, A, τ, S, F ),
where

(i). Σ is a finite set, the set of states;

(ii). A is a finite set, the alphabet;

(iii). S ⊆ Σ is the set of start states;

(iv). F ⊆ Σ is the set of final states;

(v). τ ⊆ Σ×A′ × Σ is the set of transitions, with A′ := A ∪ {ε} for ε /∈ A.

Remark 4.2. We can think of a transition (σ1, a, σ2) ∈ τ as a labelled arrow

σ1
a→ σ2 ,

i.e. the element a sends state σ1 to state σ2. We often denote it as σa1 = σ2.

Let us first define all the terminology needed:

Definition 4.3.

(i). A transition of the form (σ1, ε, σ2) ∈ τ for some σ1, σ2 ∈ Σ is called
ε-transition.

(ii). Let w = a1a2 · · · ar ∈ (A′)∗, then a sequence ((σi−1, ai, σi))i∈{1,...,r} ⊆ τ

from state σ0 to state σr is called a path of arrows labelled w.

(iii). Let w ∈ (A′)∗. The word in A∗ obtained by deleting all occurrences of ε
in w is denoted by ρ(w).

(iv). The language L(M) of the FSA M is defined to be the subset of A∗

containing w ∈ A∗ if there is an element w′ ∈ (A′)∗ such that ρ(w′) = w

and there is a path of arrows labelled w′ from a start state σ0 ∈ S to a
final state σw′ ∈ F .

Remark 4.3. We often refer to all elements of the language as to be accepted by
the FSA and we sometimes refer to the final states as accepted states. States,
for which no transition is defined, are often called failure or dead states.
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Example 4.1. Let A = {x, y, x−1, y−1}, let Σ = {1, 2, 3, 4}, let S = {1} and let
F = {1, 2, 3, 4}. We usually have two options to illustrate the transitions τ .
Either we use a diagram or a transition table:

x x−1 y y−1

1 2 3 4 0
2 0 0 4 0
3 0 0 4 0
4 0 0 0 0

In the diagram the start state is marked by a small unlabelled arrow without a
source. Circles represent the states, a double circle marks a final state. In the
transition table every state has a row. In the columns it can be read off to which
state it is sent by which element of the alphabet. If a transition is not defined,
the corresponding spot in the table is filled with a 0.
In the given example the language L(M) of the FSA M = (Σ, A, τ, S, F ) is

L(M) = {ε, x, xy, x−1, x−1y, y} .

Definition 4.4. Let M be an FSA.

(i). M is called (partial) deterministic finite state automaton (DFA) if

• |S| ≤ 1 ;

• There are no ε-transitions ;

• For all σ0 ∈ S and for all a ∈ A there is at most one transition
(σ0, a, σ) ∈ τ for some σ ∈ Σ.

(ii). M is called complete deterministic finite state automaton (complete DFA)
if

• |S| = 1 ;

• There are no ε-transitions ;

• For all σ0 ∈ S and for all a ∈ A there is exactly one transition
(σ0, a, σ) ∈ τ for some σ ∈ Σ.

Example 4.2. Let C be a coset table defined in the upcoming chapter 4.2 in
Definition 4.29. Then M with Σ = Ω, S = {1}, F = {i} for some i ∈ Ω, the
alphabet given by A and the transitions given by the table C defines a DFA. The
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language L(M) is the subset of the coset Hg corresponding to i. If the coset
table is complete, the DFA is complete and L(M) is the whole coset Hg.

If a DFA has the following property, we can determine the cardinality of its
language:

Definition 4.5. Let M = (Σ, A, τ, {σ0}, F ) be a DSA.

(i). A state σ ∈ Σ is called accessible if there is a word w ∈ A∗ such that
σw0 = σ and it is called coaccessible if there is a word w ∈ A∗ such that
σw ∈ F .

(ii). M is called accessible/coaccessible if all σ ∈ Σ are accessible/coaccessible.

(iii). M is called trim if it is accessible and coaccessible.

If we have a trim DFA M given, we can determine the cardinality of its language
L(M) with the following algorithm, known as FSA-Count:
First observe that L(M) is infinite if M contains a circuit. Suppose M has a
circuit, then there is a non-empty word w ∈ (A′)∗ and a state σ ∈ Σ such that
σw = σ. But since M is trim, there are also two words w1, w2 ∈ (A′)∗ such that
σw1

0 = σ and σw2 ∈ F . Hence the word w1w
nw2 ∈ L(M) for every n ∈ N, which

implies that L(M) is infinite.
Now we can distinguish three steps:

(i). Compute for every state σ ∈ Σ the number δσ of arrows with target σ. If
δσ0 > 0, then we have a circuit starting and ending in σ0, hence L(M) has
to be infinite.

(ii). Order the states in Σ in a list ζ such that ζ[1] = σ0 and for any arrow
ζ[i] a→ ζ[j] we have i < j. This is done by first defining ζ[1] := σ0 and
then considering σ ∈ Σ. For every arrow with target σ and some source
ζ[i] for i ∈ {1, 2, . . . } we reduce the number δσ by 1. If we obtain δσ = 0
at some point, we know that all arrows with target σ have a source in the
list. So we can append σ to the list. If δσ does not reduce to 0 for some
σ ∈ Σ, the list ζ does not contain all elements in Σ. Define this set of
not-contained elements to be Γ. Since δγ > 0 for all γ ∈ Γ, there is at least
one arrow with target γ ∈ Γ and its source in Γ as well. Hence there is a
circuit within Γ, implying that L(M) is infinite.

(iii). If the list ζ contains all states of Σ, then we have ordered Σ with the
property that for every arrow ζ[i] a→ ζ[j] we have i < j. Define βσ to be
the number of words w ∈ A∗ such that σw ∈ F . Clearly, we have for σ /∈ F

βσ =
∑

(σ,a,σ′)∈τ

βσ′
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and βσ = 1 in case σ ∈ F . Hence we can run through the list in reverse
order and find |L(M)| = βζ[1].

Now we want to introduce an FSA for groups:

Definition 4.6. Let G = 〈X | R 〉 be a group and define A := X ∪X−1. An
FSA W with alphabet A is called word acceptor for G if it accepts at least one
word in A∗ for every g ∈ G, which means that the language L(W ) contains at
least one word of A∗ for every g ∈ G. If the language L(W ) contains precisely
one word of A∗ for every g ∈ G, then W is called unique.

Remark 4.4. Since a unique word acceptor W for the group G has to be trim, we
can use it by computing the cardinality of L(W ) with FSA-Count to determine
the cardinality of G.

Hence, if we can find a word acceptor for the Heineken group, we will be able
to answer the question for its cardinality. However, so far it is unclear how to
find a unique word acceptor for a given group. It will be part of a so called
automatic structure, but to be able to define this term, we need to define one
last concept: We want to define an FSA that can read two words w1 and w2

simultaneously. It suggests itself to simply use A×A as an alphabet in an FSA,
but one problem occurs: What to do when |w1| 6= |w2|?

Definition 4.7.

(i). Define A+ := A∪{$} for $ /∈ A and let w1, w2 ∈ A∗ such that w1 = a1 · · · al
and w2 = b1 · · · bm with ai, bj ∈ A for all i ∈ {1, . . . , l} and j ∈ {1, . . . ,m}.
We define the word (w1, w2)+ ∈ (A+ ×A+)∗ to be the word

(α1, β1)(α2, β2) · · · (αn, βn)

with n := max(l,m) and

• αi = ai for every 1 ≤ i ≤ l and αi = $ for all l < i ≤ n

• βj = bi for every 1 ≤ j ≤ m and βj = $ for all m < j ≤ n .

The pair (w1, w2)+ is called padded pair, $ is called the padding symbol.

(ii). A 2-variable FSAM over the alphabet A is an FSA with alphabet A+×A+

where words in L(M) are of the form of a padded pair (w1, w2)+ for
w1, w2 ∈ A∗.

Example 4.3. Let A = {a, b, c, d} and let w1 = abc and w2 = d. Then the padded
pair (w1, w2)+ ∈ (A+ ×A+)∗ is given by

(w1, w2)+ = (a, d)(b, $)(c, $) .
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4.1.2 Automatic Groups

For the following constructions, we need to interpret groups as monoids, thus
recall:

Definition 4.8.

(i). A set M with an associative binary operation and an identity element is
called monoid.

(ii). Let X be a finite set. The monoid M consisting of all possible words in
X∗, i.e.

M = {m ∈M | m = x1 · · ·xr, xi ∈ X for all i ∈ {1, . . . , r}}

is called finitely generated by X.

(iii). Let M and N be two monoids. A monoid homomorphism is a map
f : M → N satisfying f(xy) = f(x)f(y) for all x, y ∈M and f(1M ) = 1N .

(iv). An equivalence relation ∼ on a monoid M where x ∼ y implies xz ∼ yz

and zx ∼ zy for all x, y, z ∈M is called congruence.

Proposition 4.1. Let f : M → N be a monoid homomorphisn. Define the
equivalence relation ∼ as

x ∼ y ⇔ f(x) = f(y) .

Then ∼ is a congruence, called the kernel of f .

Proof. The proof is straightforward.

Theorem 4.2. Let f : M → N be a monoid homomorphism with kernel ∼.
Then the map

ϕ : M/ ∼ → im(f)

[x] 7→ f(x)

where M/ ∼ is the quotient structure with elements given by equivalence classes
under ∼ and the well-defined multiplication given by [x][y] = [xy], is a monoid
isomorphism.

Proof. The required properties can be easily checked by using the definitions.

Definition 4.9.
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(i). Let M be a monoid and R ⊆M ×M . The congruence σ generated by R
is the intersection of all congruences on M containing R.

(ii). Let X be a set and R ⊆ X∗×X∗. Then Mon〈X | R 〉 is defined to be the
monoid given by X∗/σ. If X and R are finite sets, we call Mon〈X | R 〉
finitely presentable.

Forthcoming, we want to use the following fact:

Theorem 4.3. [19, p. 416, Theorem 12.12] Let X be a set. Define the set
A := X ∪ X−1 and let R ⊆ A∗ × A∗. The group defined by the presentation
〈X | R 〉 is equal to the monoid defined by the presentation Mon〈A | IX ∪ R〉,
where IX := {(xx−1, εA) | x ∈ A} ⊆ A∗ ×A∗.

With that at hand, we can return to groups:

Definition 4.10. Let G = 〈X | R 〉 be a group, generated as a monoid by
A := X ∪X−1. G is called automatic if:

(i). There is a word acceptor W for G with alphabet A.

(ii). For every x ∈ A ∪ {ε} there is a 2-variable FSA over the alphabet A such
that for every v, w ∈ A∗ we have

(v, w)+ ∈ L(Mx) ⇔ v, w ∈ L(W ) and vx =G w .

The Mx are called multiplier automata. The pair (W, {Mx}x∈A∪{ε}) is called
automatic structure for G. In case the word acceptor W is unique, we say
(W, {Mx}x∈A∪{ε}) is an automatic structure with uniqueness.

The definition of the automatic structure for the group G makes sense, since:

Proposition 4.4. [12, p. 52, Theorem 2.4.1] Let G be a group generated as a
monoid by the set A1 and let (W1, {M1x}x∈A∪{ε}) be the corresponding automatic
structure. If A2 is another finite set generating the monoid presentation of the
group, then there is an automatic structure (W2, {M2x}x∈A∪{ε}) corresponding
to A2.

So now, we are aiming to show that the Heineken group is automatic, to be
able to determine its cardinality by counting the elements of the language of the
word acceptor of the automatic structure. To make matters easier, we first we
limit our search to word acceptors only accepting minimal elements:

Definition 4.11. Let G = 〈X | R 〉 be a group and define A := X ∪X−1.
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(i). Let <A be a well-ordering of A and <L the lexicographic order with respect
to <A. The ordering <s on A∗ is defined for all u, v ∈ A∗ as

u <s v ⇔ |u| < |v| or |u| = |v| and u <L v.

and it is called shortlex ordering.

(ii). An automatic structure (W, {Mx}x∈A∪{ε}) is called shortlex automatic
structure if W accepts precisely the minimal words under the shortlex
ordering of A∗. That means

L(W ) = {w ∈ A∗ | w <s v for all v ∈ A∗ with w =G v} .

(iii). The group G is called shortlex automatic with respect to X if it has a
shortlex automatic structure for the presentation G = 〈X | R 〉.

Remark 4.5. Shortlex automaticity is a stronger property than automatcity: A
group can be automatic for a given set A, but not shortlex automatic for the
same A, independet of the chosen well-ordering on A. Also, if a group is shortlex
automatic for a specific well-ordering on A, it does not have to be shortlex
automatic for any other well-ordering on A.

We are now aiming to define an algorithm that computes a shortlex automatic
structure for a given group G in case G is shortlex automatic to apply it to the
Heineken group in the end. In order to be able to do that we need to introduce
some more terminology and concepts:

Definition 4.12. Let G = 〈X | R 〉 be a group and let A := X ∪X−1.

(i). Let w = a1 · · · an ∈ A∗. Then we denote the prefix of w of length i ∈ N0

as wi, i.e.

w0 = εA

wi = a1 · · · ai with ai ∈ A for i ∈ {1, . . . n− 1}

wi = w for i ≥ n .

(ii). Let (w, v) ∈ A∗ ×A∗. The set

{w−1
i vi | i ∈ N0} ⊆ G

is called the set of word-differences associated to (w, v).
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(iii). Let P ⊆ A∗ ×A∗. Then the set⋃
(w,v)∈P

{w−1
i vi | i ∈ N0} ⊆ G

is called the set of word-differences associated to P .

Lemma 4.5. Let (W, {Mx}x∈A∪{ε}) be an automatic structure for the group G
and let D be the set of word-differences associated to the set

P = {(w, v) ∈ A∗ ×A∗ | (w, v)+ ∈ L(Mx) for some x ∈ A ∪ {ε}} .

Then D is finite.

Proof. Let w−1
i vi ∈ D for some i ∈ N0 where (w, v) ∈ A∗ × A∗ such that

(w, v)+ ∈ L(Mx) for some x ∈ A ∪ {ε}. Then there are w′, v′ ∈ A∗ such that
w = wiw

′ and v = viv
′. Hence (wi, vi)+(w′, v′)+ ∈ L(Mx), which means that

there is a path of arrows in Mx from σ
(wi,vi)+

0,x to a final state, where σ0,x denotes
the start state of Mx. By removing all circuits, we can choose this path to
be of length at most equal to the number |Σx| of states in Mx. Define now
k := max{|Σx| | x ∈ A ∪ {ε}}. Thus, we can choose w′′, v′′ ∈ A∗ such that
|w′′|, |v′′| ≤ k and (wi, vi)+(w′′, v′′)+ ∈ L(Mx). That implies by definition of
L(Mx) that wiw′′x = viv

′′ and hence w−1
i vi = w′′x(v′′)−1. But w′′x(v′′)−1 has

at most length 2k + 1, hence all elements in D can be at most of this finite
length. But there can only exist finitely many distinct words of a finite length
and per given pair (w, v), the set D can only contain finitely many elements as
well, therefore D has to be finite.

Geometrically interpreted, Lemma 4.5 gives that any pair (w, v) ∈ A∗ ×A∗ with
(w, v)+ ∈ L(Mx) for some x ∈ A ∪ {ε} has the following property:

Definition 4.13. A pair (w, v) ∈ A∗ ×A∗ has Fellow-Traveller Property if the
distance d(wi, vi) in the word metric of the Cayley graph Cay(G,X) of G is
uniformly bounded, i.e. there is a fixed constant k > 0 such that d(wi, vi) ≤ k
for all i ∈ {0, 1, . . . ,max(|w|, |v|)}.

Definition 4.14. Let Z be an accessible 2-variable DFA with S = {σ}. It is
called word-difference automaton if there is a map δ : ΣZ → G satisfying

(i). δ(σ0) = 1G ;

(ii). For all a, b ∈ A+ and all σ ∈ ΣZ such that if the transition σ(a,b) is defined
it holds that

δ(σ(a,b)) = a−1δ(σ)b ,
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with the convention that $ represents 1G.

Lemma 4.6. Let Z be a word-difference DFA and let there be a g ∈ G such that
δ(σ) = g for all σ ∈ FZ . Then wg =G v for all w, v ∈ A∗ with (w, v)+ ∈ L(Z).

Proof. Let w, v ∈ A∗ with (w, v)+ ∈ L(Z). Then there is a σ ∈ FZ such that
σ

(w,v)+

0 = σ, where {σ0} = SZ . Hence we obtain

δ(σ) = δ(σ(w,v)+

0 ) = w−1δ(σ0)v = w−1v .

But δ(σ) = g, thus g =G w−1v, which implies wg =G v.

The definition of a word-difference automaton can be adjusted to fit in the
concept of an automatic structure:

Definition 4.15. Let (W, {Mx}x∈A∪{ε}) be an automatic structure of the group
G. Let for every x ∈ A ∪ {ε} the associated word-difference DFA Zx be a word-
difference automaton defined as follows:

• Define DL and DR to be identical copies of the set of word-differences D
and let ΣZx := D ∪DL ∪DR be the set of states of Zx.

• Let 1G be the unique start state.

• Let δ : ΣZx → G be the identity map.

• Define for σ ∈ ΣZx and a, b ∈ A the transition σ(a,b) = ρ if a−1σb =G

ρ ∈ D and let it undefined otherwise. Furthermore we define a transition
(a, $) ∈ A × A+ only when the source state is in D ∪DL and the target
is in DL. These are the only transitions with target in DL. A transition
($, a) ∈ A+×A is only defined when the source state is in D ∪DR and the
target is in DR. These are the only transitions with target in DR.

• We make Zx accessible by removing all inaccessible states.

• There are (up to) three final states, elements representing x in D, DL and
DR.

Proposition 4.7. Let x ∈ A ∪ {ε} arbitrarily. Then:

(i). wx =G v for all (w, v)+ ∈ L(Zx).

(ii). (w, v)+ ∈ L(Zx) for all (w, v)+ ∈ L(Mx).

Proof.

(i). By definition, we know that all accepting states of Zx represent x, hence
δ(σ) = x for all σ ∈ FZx

and we can apply Lemma 4.6. This tells us that
for every w, v ∈ A∗ with (w, v)+ ∈ L(Zx), wx =G v.
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(ii). Let (w, v)+ ∈ L(Mx), then w, v ∈ L(W ) and wx =G v, which implies
x = w−1v. Consider σ(w,v)+

0 , where {σ0} = SZx
. Since the set of states in

Zx is precisely the set D of all word-differences associated to elements in
L(Mx), it follows that σ(w,v)+

0 is defined and that it is precisely

σ
(w,v)+

0 = w−1v =G x .

But x is represented by the accepting states of Zx, hence (w, v)+ ∈ L(Zx).

Definition 4.16. A collection {Zx}x∈A∪{ε} of word-difference DFA for a group
G is called correct for an automatic structure (W, {Mx}x∈A∪{ε}) of G if every
Zx satisfies Proposition 4.7.

Proposition 4.8. Let {Zx}x∈A∪{ε} be a collection of word-difference DFA for
a group G. If it is correct for an automatic structure (W, {Mx}x∈A∪{ε}) of G
then

L(Mx) = {(w, v)+ | w, v ∈ L(W ) and (w, v)+ ∈ L(Zx)}

for every x ∈ A ∪ {ε}.

Proof. This follows directly by the definition of correctness of Zx and the defini-
tion of the language of Mx as

L(Mx) = {(w, v)+ | w, v ∈ L(W ) and wx =G v} .

4.1.3 Algorithm to Compute Shortlex Automatic Structures

Before we can describe the full algorithm to find a shortlex automatic structure
we need to introduce another algorithm essential for the process:

4.1.3.1 Knuth-Bendix Algorithm

Definition 4.17. Let A be a finite set and let A∗ be the monoid consisting
of all words over A. A rewriting system on A∗ is a set S of ordered pairs
(w1, w2) ∈ A∗×A∗. An element (w1, w2) ∈ S is called rewrite rule, w1 is referred
to as the left hand side (LHS) and w2 as the right hand side (RHS).

Remark 4.6. We can interpret a rewrite rule (w1, w2) as the rule to replace an
occurrence of w1 in a word by w2. Hence we want to assume that no distinct
rules have the same LHS, since otherwise we would not be able to choose which
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replacement to use.
For u, v ∈ A∗, we write

u→S v

if there exist words x, y, w1, w2 ∈ A∗ such that

u = xw1y, v = xw2y and (w1, w2) ∈ S ,

i.e. v is obtained from u by making a substitution using the rewrite rule
(w1, w2) ∈ S of the rewriting system S.
We write

u→∗S v

if there is an n ∈ N such that there are u = u0, u1, . . . , un = v ∈ A∗ with
ui →S ui+1 for every 0 ≤ i ≤ n.
We write

u↔∗S v

if both u→∗S v and v →∗S u.
Without a danger of ambiguity, we might omit the index S to clarify which
rewriting system we are talking about.

Definition 4.18.

(i). A word u ∈ A∗ is called irreducible or reduced if there is no v ∈ A∗ such
that u→ v.

(ii). The set of descendents of a word u ∈ A∗ is defined as

desc(u) := {w ∈ A∗ \ {u} | u→∗ w}

Definition 4.19. A rewriting system S is called

(i). Noetherian if there is no infinite chain of words, which means that for
every u ∈ A∗ there is an irreducible v ∈ A∗ such that u→∗ v.

(ii). confluent if for every u, v1, v2 ∈ A∗ with u→∗ v1 and u→∗ v2 there is a
word w ∈ A∗ such that v1 →∗ w and v2 →∗ w.

(iii). complete if it is Noetherian and confluent.

(iv). locally confluent if for every u, v1, v2 ∈ A∗ with u→ v1 and u→ v2 there
is a word w ∈ A∗ such that v1 →∗ w and v2 →∗ w.

Lemma 4.9. Let S be a rewriting system. Then:

(i). If S is Noetherian, |desc(u)| <∞ for all u ∈ A∗.
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(ii). If S is Noetherian and locally confluent, S is confluent, hence complete.

(iii). If S is Noetherian and locally confluent, each equivalence class under ↔∗

contains a unique S-irreducible element.

(iv). S is locally confluent if and only if the following two conditions hold for
all rewriting rules (u1, t1), (u2, t2) ∈ S:

(a) If u1 = rs and u2 = st for some r, t ∈ A∗ and s ∈ A∗ \ {ε}, then
there exists a word w ∈ A∗ such that t1t→∗ w and rt2 →∗ w.

(b) If u1 = rst and u2 = s for some r, t ∈ A∗ and s ∈ A∗ \ {ε}, then
there exists a word w ∈ A∗ such that t1 →∗ w and rt2t→∗ w.

Definition 4.20. A pair (u1, t1), (u2, t2) ∈ S of rewriting rules of the rewriting
system S is called a crititcal pair if either the condition (iv)a

u1 = rs and u2 = st for some r, t ∈ A∗ and s ∈ A∗ \ {ε}

or the condition (iv)b

u1 = rst and u2 = s for some r, t ∈ A∗ and s ∈ A∗ \ {ε}

of Lemma 4.9 (iv) holds.

Proof. (of Lemma 4.9) Since a complete proof can be found in [19, p. 418f.], we
only want to outline the crucial arguments:

(i). By assuming that there is an u ∈ A∗ with |desc(u)| =∞, we can construct
an infinite chain {ui}i∈N such that ui → ui+1 for all i ∈ N, in contradiction
to S being Noetherian.

(ii). Show by induction on |desc(u)| that for every u ∈ A∗ there is a unique
irreducible w ∈ A∗ such that u →∗ w. This is possible since (i) ensures
that |desc(u)| is finite.

(iii). Let u, v ∈ A∗ such that u↔∗ v and both u and v irreducible. Then there
exist an n ∈ N and u = u0, u1, . . . , un = v with

u0
∗ ← u1 →∗ u2

∗ ← · · · →∗ un .

Induction on n ∈ N gives the result.

(iv). Suppose first that S is locally confluent. Suppose there is a pair of rewriting
rules (u1, t1), (u2, t2) ∈ S such that
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(a) u1 = rs and u2 = st for some r, t ∈ A∗ and s ∈ A∗ \{ε}. Consider the
word v = rst. By applying the two rules it can be either rewritten to

v → t1t or v → rt2 .

But then local confluency implies that there is a word w ∈ A∗ such
that t1t→∗ w and rt2 →∗ w, so (iv)a holds.

(b) u1 = rst and u2 = s for some r, t ∈ A∗ and s ∈ A∗ \{ε}. Consider the
word v = rst. By applying the two rules it can be either rewritten to

v → t1 or v → rt2t .

But then local confluency implies that there is a word w ∈ A∗ such
that t1 →∗ w and rt2t→∗ w, so (iv)b holds.

Assume conversely that (iv)a and (iv)b hold. Let u ∈ A∗ be a word with
u→ v1 and u→ v2. Then u has two subwords u1 and u2 such that there
are rewrite rules (u1, t1), (u2, t2) ∈ S. There are two cases:

• If u1 and u2 do not overlap, then there are r, s, t ∈ A∗ such that
u = ru1su2t. Hence v1 = rt1su2t and v2 = ru1st2t. But then v1 → w

and v2 → w with w = rt1st2t.
• If u1 and u2 overlap, then we are either in case (iv)a or (iv)b. Hence

there is a word w ∈ A∗ such that v1 →∗ w and v2 →∗ w.

Either way, S is locally confluent.

Definition 4.21. The following process is called the Knuth-Bendix completion
process: Take a rewriting system S and consider all critical pairs. For every
critical pair (u, v) ∈ A∗ ×A∗ for which neither the implication of (iv)a nor the
implication (iv)b is true, determine the two distinct irreducible words w1 and w2

which are equivalent under ↔∗ and adjoin the pair (w1, w2) or the pair (w2, w1)
to S.

One questions remains: How should the process decide whether to adjoin (w1, w2)
or (w2, w1) to the rewriting system S? It should be guided by an ordering:

Definition 4.22. Let ≤ be a well-ordering on A∗. It is called reduction ordering
if u ≤ v for u, v ∈ A∗ implies that

uw ≤ vw and wu ≤ wv

for all w ∈ A∗.
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Example 4.4. The shortlex ordering is a reduction ordering.

Remark 4.7. If we order all elements of A∗ with a reduction ordering ≤, then
u→∗ v for u, v ∈ A∗ implies that u ≥ v and hence S is always Noetherian, since
≤ has to be a well-ordering. Thus we can forthcoming assume any rewriting
system to be Noetherian.

It is natural to impose that the Knuth-Bendix completion process should, when
adjoining a critical pair consisting of w1 and w2 to the rewriting system S, choose
the larger one of w1 and w2 with respect to a given reduction ordering to be the
LHS of the new rule.

Definition 4.23. A rewriting rule (w1, w2) of the rewriting system S is called
irreducible if w2 and all proper subwords of w1 are irreducible. The rewriting
system S is called irreducible or reduced if all rules it contains are reduced.

Remark 4.8. Any non-irreducible rule in a rewriting system can be simplified. Any
new rule adjoined by the Knuth-Bendix completion process is itself irreducible
and it might imply further simplification of other rules, that have not been
possible before. Hence we adjoin a new step to the Knuth-Bendix completion
process: For any pair of rules, check if at least one of them can be removed or
simplified. If not, check if it is a critical pair.

Definition 4.24. Let S be a rewriting system on A∗.

(i). An element u ∈ A∗ is called (S-)minimal if it is the least element with
respect to a reduction ordering in its ↔∗ equivalence class.

(ii). A pair (w1, w2) ∈ A∗ ×A∗ is called (S-)essential if w1 ↔∗ w2 and w2 and
all proper subwords of w1 are minimal.

Proposition 4.10. [19, p. 421, Propostion 12.20] Let S be a rewriting system
on A∗.

(i). Let w ∈ A∗ and let v ∈ A∗ be S-minimal such that w ↔∗ v. After
running the Knuth-Bendix completion process on S sufficiently long, we
have w →∗S v.

(ii). Let (w1, w2) be an S-essential rule. After running the Knuth-Bendix
completion process on S sufficiently long, we have (w1, w2) ∈ S.

Corollary 4.11. [19, p. 422, Corollary 12.21] If there are only finitely many
↔∗ equivalence classes, the Knuth-Bendix completion process on a rewriting
system S halts with a finite complete set of rules.
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Now we are ready to use the Knuth-Bendix completion procedure also for group
theoretical problems. We need the following observations:
Let S be a rewriting system on A∗. Then the equivalence relation ↔∗ is a
congruence on A, generated by S. Hence we have in the monoid presentation
that

A/↔∗= Mon〈A | S〉 .

By Lemma 4.9 (iii), if S is complete, any S-irreducible word is S-minimal and
they form a set of representatives of the ↔∗ equivalence classes.
If S is not only complete, but also finite, we can determine for any pair u, v ∈ A∗,
whether u and v reduce to the same irreducible word. Hence the word problem
is solvable.
If G = 〈X | R 〉 is now a group, we already know that G has a corresponding
monoid presentation Mon〈A | IX ∪R〉. Hence we can interpret the set IX ∪R
as a rewriting system on which we apply the Knuth-Bendix completion process.
This might solve the word problem for specific groups.

Example 4.5. Let Fr be the free group of rank r. It corresponds to the monoid
Mon〈{x1, . . . , xr, x

−1
1 , . . . , x−1

r } | IX〉 where IX consists of all pairs (xix−ii , ε)
and (x−1

i xi, ε) for i ∈ {1, . . . , r}, where we order with shortlex ordering. The
pairs in IX are critical, but any overlap of x−1

i in xix−1
i x reduces to x in both

cases for all i ∈ {1, . . . , r}. Hence the rewriting system IX is confluent by
Lemma 4.9 (iv). Furthermore, we see that the IX -reduced words in Fr are those
containing no adjacent mutually-inverses.

Example 4.6. Let D3 := 〈x, y | x3 = 1, y2 = 1, (xy)2 = 1〉 be the dihedral group
of order 6. The alphabet is given by A := {x, x−1, y, y−1} and we impose the
ordering x < x−1 < y < y−1. We can start with the rules

S = {(xx−1, ε), (x−1x, ε), (yy−1, ε), (y−1y, ε), (xx, x−1), (y−1, y), (yx−1, xy)} ,

where the LHS is larger than the RHS in the shortlex ordering.
Consider the critical pair (x−1x, ε), (xx, x−1), where there is an overlap in x.
Hence the word w = x−1xx can be reduced in two different ways to x and to
x−1x−1 and we adjoin the rule (x−1x−1, x) to S. After examining all critical
pairs we end up with the complete set of rules

S = {(xx−1, ε), (x−1x, ε), (yy−1, ε), (y−1y, ε), (xx, x−1),

(x−1x−1, x), (y−1, y), (yy, ε), (yx−1, xy), (yx, x−1y)} .

A last observation gives that the rules (yy−1, ε) and (y−1y, ε) are not reduced,
since there is a rule containing y−1 as a LHS, hence y−1 is reducible. Substituting
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the occurrence of y−1 in (yy−1, ε) and (y−1y, ε) with y gives two redundant rules,
thus we obtain a set of essential rules:

S = {(xx−1, ε), (x−1x, ε), (xx, x−1), (x−1x−1, x),

(y−1, y), (yy, ε), (yx−1, xy), (xy, x−1, y)} .

We want to forge the bridge back to automatic groups:

Remark 4.9. Let G = 〈X | R 〉 be a group with a monoid presentation
Mon〈A | IX ∪ R〉. Let W be word acceptor of a shortlex automatic struc-
ture for G. Define S to be the rewriting system IX ∪R.

(i). A word u ∈ A∗ that is the S-minimal representative of the equivalence
relation↔∗ corresponding to S, is the ≤-minimal representative of a group
element in G. Hence the language of the unique word acceptor W is the
set of all S-minimal sets in A∗.

(ii). If (w, v) is an S-essential pair, i.e. w ↔∗ v and v and all proper subwords
of w are minimal, then w =G v and all proper subwords of w are in the
language of a unique word acceptor W .

While the Knuth-Bendix completion process seems to be a big asset, in its
implementation a lot of time and space is needed - mostly for reducing words to
equivalent irreducible words. This process was rendered more efficiently by the
use of a DFA:

Definition 4.25. Let S be a finite rewriting process over A∗. Define the
associated DFA MS as follows:

• Σ is the set of all prefixes of all LHS of rules in S.

• A is the alphabet.

• S = {ε}.

• F is the set of all proper prefixes of all LHS of rules in S.

• For σ ∈ F and a ∈ A, the transition σa is defined to be the longest suffix
of σa ∈ Σ that lies in Σ. For σ ∈ Σ \ F , the transition σa is undefined.
Hence complete LHS of rules are dead states.

If we assume that S is a reduced, finite rewriting process, hence no LHS of a rule
is a proper substring of any other LHS of a rule, then the non-final states of MS
are precisely the LHS of the rules in S. So let w = w1w2w3 be a word in A∗ with
(w2, v2) ∈ S, i.e. w2 is a LHS of a rule in S (and let w1 not contain a LHS of a
rule). If we read w under MS , then after reading w1w2 a dead state is reached.
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This means precisely that the language L(MS) is the set of S-irreducible words.
Hence, we can use MS to reduce words in A∗ with S in the following way:
Let w ∈ A∗. Read w into MS . If we find that w is of the form w = w1w2w3

where εw1w2 = w2, then we know there exists a rule (w2, v2) ∈ S. Now we can
replace the occurrence of w2 by v2 and restart the process.

Executing this process for the rewriting system of the dihedral group of order 6
we gave in Example 4.6 should illustrate it sufficiently:

Example 4.7. Let D3 := 〈x, y | x3 = 1, y2 = 1, (xy)2 = 1〉 be the dihedral group
of order 6 with the complete, finite rewriting system

S = {(xx−1, ε), (x−1x, ε), (yy−1, ε), (y−1y, ε), (xx, x−1),

(x−1x−1, x), (y−1, y), (yy, ε), (yx−1, xy), (yx, x−1y)} .

Number the states of MS in the following way:

1 = ε, 2 = x, 3 = x−1, 4 = y;

−1 = y−1, −2 = xx−1, 3 = x−1x, −4 = xx,

−5 = x−1x−1, −6 = yy, −7 = yx−1, −8 = yx .

The set of final states is F = {1, 2, 3, 4}, while the dead states are ones with a
negative number. The defined transitions are given by the longest suffix lying in
the set of states, denoted in following table:

x x−1 y y−1

1 2 3 4 −1
2 −4 −2 4 −1
3 −3 −5 4 −1
4 −8 −7 −6 −1

We want to use MS to reduce the word w = yxy−1x−1. Scan the start state
under w to obtain

1w = 1yxy
−1x−1

= 4xy
−1x−1

= −8y
−1x−1

,

which is undefined. Hence there has to be a rule in S with yx as a LHS. We
find (yx, x−1y) ∈ S and use it to replace the subword of w to obtain the word
w1 = x−1yy−1x−1 equivalent to w. Now we scan the start state under w1 and
obtain

1w1 = 1x
−1yy−1x−1

= 3yy
−1x−1

= 4y
−1x−1

= −1x
−1
.
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Since x−1y was obtained by a replacement and S is reduced, we know that y−1

has to be the LHS of a rule in S, namely (y−1, y) ∈ S. Replacing y−1 by y gives
the word w2 = x−1yyx−1, which is equivalent to w1 and w. Scanning the start
state under w2 gives

1w2 = 1x
−1yyx−1

= 4yyx
−1

= −6yx
−1
.

Hence we find the rule (yy, ε) ∈ S to obtain the word w3 = x−1x−1 equivalent
to w2, w1 and w. The last scan of the start state under w3 gives

1w3 = 1x
−1x−1

= 3x
−1

= −5 .

Thus x−1x−1 is the LHS of a rule, the rule (x−1x−1, x) ∈ S, which gives w4 = x,
equivalent to w3, w2, w1 and w. Now

1w4 = 1x = 2

is accepted, hence w = yxy−1x−1 is equivalent to the reduced word w4 = x.

Now we have all the necessary concepts at hand to describe the algorithm for
finding a shortlex automatic structure:
As usual, we are dealing with a finitely presented group G = 〈X | R 〉, where
the set A is defined as A := X ∪X−1. We need to have a total ordering on A
given, which determines a the shortlex ordering < on A∗. The aim is, in case G
is shortlex automatic, that with sufficient time and space, we find a procedure
that will eventually compute the shortlex automatic structure for G. If G is
against our initial assumption not shortlex automatic, the procedure will simply
not complete, hence no information is gained, since we cannot ensure that the
procedure did not terminate for space or time deficiency reasons.

Definition 4.26. Let (W, {Mx}x∈A∪{ε}) be a shortlex automatic structure for
the group G with the collection of associated word-difference DFA {Zx}x∈A∪{ε}.
In the algorithm computing this shortlex automatic structure with word-difference
DFA we denote possible candidates as W ′, M ′x and Z ′x. We say a candidate is
correct if its language agrees with the original one.

The algorithm is divided in five individual steps:

1. Compute a collection of candidates {Z ′x}x∈A∪{ε} with the Knuth-Bendix
completion process.

2. Use Z ′ε to compute a candidate W ′.

3. Use Z ′ε and W ′ to compute candidates M ′x. If it turns out in this step that
L(W ′) 6= L(W ), then we need to redefine Z ′x and repeat step 2.
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4. Start testing the correctness of M ′x. If there is an x ∈ A ∪ {ε} with
L(M ′x) 6= L(Mx), redefine Z ′x and repeat step 3.

5. Test the correctness of M ′x and W ′ fully. In case the test returns false,
start the process from the beginning.

We will describe all steps in further detail now:

4.1.3.2 Step 1: Knuth-Bendix

Define S to be the rewriting system given by the monoid presentation associated
to the group G = 〈X | R 〉 using the shortlex ordering < on A∗.

Lemma 4.12. The set D0 of all word-differences associated to the set E ⊆ S
of S-essential rules is a subset of the set D of all word-differences associated to
elements accepted by Mx for x ∈ A ∪ {ε}. Thus, D0 is finite.

Proof. Let (w, v) ∈ E , then we know by Remark 4.9 (ii) that w =G v and
that all proper subwords of w and v are elements of L(W ). Hence there is an
u ∈ L(W ) and an x ∈ A such that w = ux. Thus the fact that u, v ∈ L(W )
and ux =G v implies that (u, v)+ ∈ L(Mx). But since by the shortlex ordering
|w| ≥ |v|, all word-differences associated with the pair (w, v) = (ux, v) have to
be associated with (u, v) as well. Hence D0 has to be a subset of the set D of
all word-differences associated to elements accepted by some Mx. But since D
is finite by Lemma 4.5, the set D0 ⊆ D has to be finite as well.

So there can be infinitely many S-essential rules, but the set of word-differences
associated to them will always be finite.

Now we can describe the algorithm:

• Run the Knuth-Bendix completion process on S: We denote at any stage
of the procedure for a word w ∈ A∗ its current S-reduced word obtained
by the DFA-method described in Defintion 4.25 as r(w).

• We regularly interrupt the Knuth-Bendix completion process to compute
for each rule (w, v) ∈ S the set of reduced associated word-differences

{r(a−1
i r(w−1

i−1vi−1)bi) | 0 ≤ i ≤ |w|} ,

where w = a1 · · · a|w| and v = b1 · · · b|v|. Define D′0 to be the union of all
those sets of word-differences over all rules currently in S.

• Check if D′0 seems to have become stable. If so, compute the DFA Z ′x for
all x ∈ A ∪ {ε} as follows:
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– ΣZ′x = D′0 ∪D′0L ∪D′0L;

– A is the alphabet;

– SZ′x = {ε};

– FZ′x = {r(x)}

– For σ ∈ D′0 and a, b ∈ A+ in case r(a−1σb) ∈ D′0 we define

σ(a,b) = r(a−1σb)

if not, we leave it undefined. For padded pairs we use the additional
transitions according to Definition 4.15.

– The map δ : ΣZ′x → G sends a word in ΣZ′x to its corresponding group
element.

Proposition 4.13. [19, p. 458, Proposition 13.14] If the Knuth-Bendix com-
pletion process runs sufficiently long, (w, v)+ ∈ L(Z ′ε) for any S-essential rule
(w, v) ∈ E.

4.1.3.3 Step 2: Construct the word acceptor

By Section 13.1.6 in [19], we can construct a DFA W ′ with a language defined
as follows:
Let L be the set

L := {w ∈ A∗ | ∃ v ∈ A∗ : (w, v)+ ∈ L(Z ′ε) and v < w} .

Then the language L(W ′) of W ′ is given by L(W ′) = ¬(A∗LA∗).

Definition 4.27. A set P ⊆ A∗ is called prefix closed if for all w ∈ P all its
proper prefixes wi for i ∈ {0, . . . , |w| − 1} are elements of P as well.

Proposition 4.14. [19, p. 460, Proposition 13,15] The defined language L(W ′)
is prefixed closed, i.e. for every w ∈ L(W ′), all prefixes wi ∈ L(W ′) for
i ∈ {1, . . . , |w|}. Furthermore L(W ) ⊆ L(W ′) and if the DFA Z ′ε accepts all
essential rules, then L(W ′) ⊆ L(W ) as well.

Remark 4.10. It may happen that we need to replace a word u ∈ A∗ by a word
u′ ∈ L(W ′) with u =G u′. In general this is possible by executing the following
procedure: Let u /∈ L(W ′), then we need to find a subword w of u which is
the shortest subword that is not in L(W ′). Then there is a v ∈ A′ such that
(w, v)+ ∈ L(Z ′) and v < w. We can find this word v with an algorithm described
in Section 13.1.7 of [19] and then substitute the occurrence of w in u by v. Then
we repeat the process. Since u gets shorter and shorter in the shortlex ordering
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in each step, the process will terminate in finitely many steps with u ∈ L(W ′).
In fact, since (w, v)+ ∈ L(Z ′ε) implies that (uw, uv)+ ∈ L(Z ′ε) for all u ∈ A∗, it
suffices to find the shortest prefix w of u with w /∈ L(W ′). That is an easy task:
Since L(W ′) is prefix-closed by Proposition 4.14, we simply read u into W ′ and
we have found the shortest prefix not in L(W ′) when we reach a failure state.

4.1.3.4 Step 3: Construct the multiplier automata

By Proposition 4.8 we know that

L(Mx) = {(w, v)+) | w, v ∈ L(W ) and (w, v)+ ∈ L(Zx)} ,

if Zx is correct. Hence, since we want Z ′x to be correct, we need to define M ′x
such that this set equivalence holds. This is ensured by constructing M ′x for
x ∈ A ∪ {ε} as follows:

• ΣM ′x = ΣW ′ × ΣW ′ × ΣZ′x ;

• SM ′x = SW ′ × SW ′ × SZ′x := (σ0, σ0, ρ0) .

• FM ′x = FW ′ × FW ′ × FZ′x ;

• Since transitions for W ′ are not yet defined, we need to correct this in
order to extend the definition of transitions on W ′ and Z ′x to get the
transitions for M ′x. Hence we define σ$ = σ if σ ∈ FW ′ and we leave it
undefined otherwise. Then we define for a pair (a, b) ∈ (A+ × A+)∗ and
(σ1, σ2, ρ) ∈ ΣM ′x the transition

(σ1, σ2, ρ)(a,b) = (σa1 , σb2, ρ(a,b)) .

It is an easy check to see:

L(M ′x) = {(w, v)+ | w, v ∈ L(W ′), (w, v)+ ∈ L(Z ′x)} .

Let us state two properties, we will need in Step 5:

Proposition 4.15. [19, p. 461, Proposition 13.16]

(i). For all w, v ∈ A∗ with (w, v)∗ ∈ L(M ′x) we have w, v ∈ L(W ′) and
wx =G v.

(ii). If a1a2 · · · an ∈ L(W ′) with n > 0, then

(a1 · · · an−1, a1a2 · · · an)+ ∈ L(M ′an
)

.
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Remark 4.11. Applying Step 3 directly after Step 2 guarantees that we cannot
have (w, v)+ ∈ L(M ′ε) with w > v. But in Step 4 we will check the correctness
of L(M ′x) and if it turns out that it is not correct, we need to redefine that
underlying Z ′x. Then we go back to Step 3, and we may find (w, v)+ ∈ L(M ′ε)
with w > v. This implies that w /∈ L(W ), hence L(W ′) was not correct. Usually
the reason for that is that the word difference associated to (w, v) is not yet in
D′0 used to construct Z ′x. Thus we need to compute the missing word differences,
reduce them to words in L(W ′) as described in Remark 4.10 and adjoin them to
D′0. Then we can recompute Z ′x and repeat Step 2.

4.1.3.5 Step 4: Checking the correctness of the multiplier automata

Throughout Step 4, we will assume that W ′ is correct.

Lemma 4.16. If L(M ′x) is not correct for some x ∈ A∪{ε}, there is a w ∈ L(W ′)
such that there is no v ∈ A∗ with (w, v)+ ∈ L(M ′x).

Proof. If L(M ′x) is not correct for some x ∈ A∪{ε}, then there are w, v ∈ L(W ′)
with wx =G v but (w, v)+ /∈ L(M ′x). Suppose for this w ∈ L(W ′) there is
another v′ ∈ A∗ with (w, v′) ∈ L(W ′) = L(W ) with (w, v′) ∈ L(M ′x). Then
w, v′ ∈ L(W ′) = L(W ) and wx =G v′, which implies that v = v′. Hence if
L(M ′x) is not correct, for w ∈ L(W ′) such a v ∈ A∗ with (w, v)+ ∈ L(M ′x) cannot
exist.

Again, by the construction given in Section 13.1.6 of [19], we can define an FSA
Ex for every x ∈ A ∪ {ε} with language

L(Ex) = {w ∈ A∗ | ∃ v ∈ A∗ : (w, v)+ ∈ L(M ′x)} .

There are two cases:

1. If L(Ex) = A∗ for all x ∈ A ∪ {ε}, then L(M ′x) cannot be incorrect by
Lemma 4.16. Hence we can move on to Step 5.

2. If there is an x ∈ A∪{ε} with L(Ex) 6= A∗, then we can use an enumeration
algorithm given in Section 13.1.2 of [19] to find ¬L(Ex). With the procedure
described in Remark 4.10 we can find for every w ∈ ¬L(Ex) and element
v ∈ L(W ′) such that wx =G v. Next we compute the word differences
associated to (w, v), reduce them to words in L(W ′) and adjoin them to
D′0. Then we can recompute the Z ′x and return to Step 3.

The following Theorem ensures that the algorithm does exactly what we are
aiming for:
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Theorem 4.17. [19, p. 463, Theorem 13.17] If the Knuth-Bendix algorithm in
Step 1 runs long enough and the group G is shortlex automatic, then the shortlex
automatic structure will be successfully computed in Step 2 to Step 4.

4.1.3.6 Step 5: Checking the correctness of the shortlex automatic
structure

The following Theorem ensures that the shortlex automatic structure
(W ′, {M ′x}x∈A∪{ε}) found in Step 1 to Step 4 is indeed a shortlex automatic
structure for G.

Theorem 4.18. [19, p.464, Theorem 13.18] Let G = 〈X | R 〉 be a group with
monoid presentation Mon〈X | IX ∪ R 〉. Suppose W ′ is an FSA and Mx is a
2-variable FSA over A for all x ∈ A ∪ {ε} satisfying:

(i). If (w, v)+ ∈ L(Mx) for some w, v ∈ A∗ and x ∈ A∪{ε}, then w, v ∈ L(W )
and wx =G v.

(ii). L(W ) is not empty.

(iii). If a1 · · · an ∈ L(W ) with n > 0, then a1 · · · an−1 ∈ L(W ) and
(a1 · · · an−1, a1 · · · an)+ ∈ L(Man).

(iv). Let w = w0 ∈ L(W ) and (a1 · · · an, ε) ∈ IX ∪ R. Then for wn ∈ L(W )
there are w1, . . . , wn1 ∈ L(W ) such that (wi−1, wi)+ ∈ L(Mai) for
i ∈ {1, . . . , n} if and only if w = wn.

Then (W, {Mx}x∈A∪{ε}) forms an automatic structure for G with uniqueness.

So we only need to check that our structure (W ′, {M ′x}x∈A∪{ε}) satisfies the
conditions (a precise verification is given in [19, p. 465]):

(i). This holds by Proposition 4.15 (ii).

(ii). Since by Proposition 4.14, L(W ′) is prefix-closed, it contains ε and is
therefore non-empty.

(iii). This holds by Proposition 4.15 (i).

(iv). To check this property, we need to use the construction of a so-called
composite FSA Mu for u = a1 · · · an ∈ A∗, described in Section 13.1.7 of
[19]. Its language is given by

L(Mu) = {(w, v)+ |∃w = w0, w1, . . . , wn = v ∈ A∗ :

(wi−1, wi)∗ ∈ L(M ′an
), i ∈ {1, . . . , n}} .
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So if the property holds, we know

L(Mu) = {(w,w) | w ∈ L(W ′)} .

So in Step 5, we construct the language of Mu and check whether it is
indeed equal to the set {(w,w) | w ∈ L(W ′)}.

If this above algorithm returns true, then we know by Theorem 4.18 that
(W ′, {M ′x}x∈A∪{ε}) is a shortlex automatic structure for G. If it returns false,
we need to start from the very beginning with Step 1.

Example 4.8. We want to use the shortlex automatic algorithm to determine
whether the Heineken group is an automatic group. Therefore we use the
following input in GAP:

gap > F := FreeGroup(”a”, ”b”, ”c”); ;

gap > a := F.1; ; b := F.2; ; c := F.3; ;

gap > H := F/[Comm(a, Comm(a, b)) ∗ ĉ − 1, Comm(b, Comm(b, c)) ∗ â − 1,

> Comm(c, Comm(c, a)) ∗ b̂ − 1]; ;

gap > R := KBMAGRewritingSystem(H); ;

gap > AutomaticStructure(R, true);

The first line generates the free group F over the three generators a, b and c,
the second line defines the names of the generators as a, b and c. The third
line takes the quotient of F by the defining relations of the Heineken group,
hence H is the Heineken group. In the forth line we compute a rewriting system
R for H and in the last line we compute whether with this R we can find an
automatic structure by using the shortlex automatic algorithm of H executed
via the function AutomaticStructure. The input true states that we want to
have large parameters. Since we suppressed the output of all but the last line
with ; ; , we only get the output for the last line, namely (depending on the info
level we set) true. Hence we know that H is automatic. Furthermore we can
read off that the procedure halts with 63832 equations, that there are 271 word
differences and that the word-acceptor has 1106 states.

4.1.4 Use & Value of Automatic Structures

4.1.4.1 Finiteness

Let G be a group for which we have found a shortlex automatic structure
(W, {Mx}x∈A∪{ε}). Since W is a word acceptor with uniqueness, we know as
already mentioned in Remark 4.4 that we can determine whether G is finite or
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infinite by the FSA-Count algorithm.

Example 4.9. With the previously in Example 4.8 computed automatic structure
for H, we can find the order of H. In GAP this is easily done, since the FSA-
Count of the word-acceptor is implemented as the function Size(R), where R
is the rewriting system of H we used to compute the automatic structure with.
So inputting

gap > Size(R);

gives infinity, hence H is not finite, in contradiction to Heineken’s conjecture.

4.1.4.2 Hyperbolicity

Definition 4.28. A group G is called strongly geodesically automatic if the set
of all geodesic words form the language of the word acceptor of an automatic
structure for G.

Theorem 4.19. A strongly geodesically automatic group is hyperbolic.

Proof. [39, p.1, Theorem 2] Suppose G = 〈X | R 〉 is a strongly geodesically
automatic group. Let A = X ∪X−1. Then the set of all geodesic words form the
language of the word acceptor W of a automatic structure (W, {Mx}x∈A∪{ε}) for
G. Let now γ, γ′ be a bigon in the Cayley graph Cay(G,X) with l the length of
γ and let u1, u2 ∈ A∗ be geodesic words in A∗ such that γ(l)γ′−1(l) = u1xu

−1
2

for x ∈ A∪{ε} and u1, u2 ∈ V (Cay(G,X)), i.e. the length of u−1
1 u2 is at most 1.

If x = ε, which means that the endpoint γ(l) of γ is a vertex in V (Cay(G,X)),
then u1 =G u2 and thus (u1, u2)+ ∈ Mε. If x ∈ A, which means that the
endpoint γ(l) of γ is the midpoint of an egde in E(Cay(G,X)), then u1x =G u2

and thus (u1, u2)+ ∈Mx. Hence by the Fellow-Traveller Property in Lemma 4.5,
there is a constant k such that d(u1i, u2i) ≤ k for for i ∈ N since all (u1, u2)+

are in Mx for some x ∈ A ∪ {ε}. Hence G is hyperbolic by Theorem 1.14.

The proof of this Theorem 4.19 suggests that we can verify hyperbolicity of a
group G by finding the constant k ≥ 0, for which all bigons are k-thin. This is
exactly what the following algorithm that was introduced by Holt and Epstein
in [11] does:
Assume that we have computed a shortlex automatic structure (W, {Mx}x∈A∪{ε})
We want to construct the following four sequences of finite state automata for
n > 0:

• WDn, which are the word-difference automata;

• GEn, which are the automata, checking for geodesic equivalence;
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• GWn, which are the geodesic word acceptors;

• Tn, which are the automata testing whether the procedure has finished.

As above in Lemma 4.5, let D be the set of all word differences associated to
the elements of the multiplier automata Mx with x ∈ A ∪ {ε}. Moreover we
introduce the set WDn ⊆ G, which is a subset of G containing 1G and will be
defined inductively for n > 1. For n = 1 we define WD1 = D.
Let WDn be the word difference automaton associated to the set WDn with
unique accepting state 1G. The other automata are constructed in a way that
their languages are given by the following sets:

• L(GEn) = {(u, v) ∈ A∗ ×A∗ | (u, v) ∈ L(WDn), v ∈ L(W ), l(u) = l(v)};

• L(GWn) = {u ∈ A∗ | ∃ v ∈ A∗ : (u, v) ∈ L(GEn)};

• L(Tn) = {w ∈ A∗ \ L(GWn) | ∃u : (w, u) ∈ L(WDn), u ∈ L(GWn), l(u) =
l(w)}.

We observe: For a pair (u, v) ∈ L(GEn), we have that u =G v and that u, v are
both geodesics in Cay(G,X) and v geodesic in G. So while they both have the
same length, represent the same element and their associated word differences
are in WDn, only v is the shortlex minimal representative of the corresponding
element in G.
An element u ∈ L(GWn) is geodesic in Cay(G,X), since it has a shortlex-minimal
partner v ∈ A∗ that is geodesic in G, of the same length and representing the
same element in G. Though, again u is not the shortlex-minimal representative
of the corresponding element in G.
An element w of the test language is not in L(GWn), which means that it does
not have a shortlex-minimal partner v ∈ L(W ) of same length, representing the
same element and with the associated word. But it is geodesic in Cay(G,X),
since we want it to have a non-shortlex-minimal partner u ∈ A∗ that has a
shortlex-minimal partner v ∈ A∗. Hence all three elements w, u and v illustrated
in Figure 10 have the same length, correspond to the same element in G, and
the word differences associated to (w, u) and (u, v) are in WDn, but only v

is the shortlex-minimal representative of the corresponding word in G. So
intuitively speaking, we can say that u ∈ L(GWn) is n steps away from being
a shortlex-minimal element, while w ∈ L(Tn) is n+ 1 steps away from being a
shortlex-minimal element.
If L(Tn) is empty for some n > 0, the procedure halts. If for a given n > 0, we
find L(Tn) not to be empty, that means that there is a word w ∈ L(Tn). We
reduce this word with the procedure described in Remark 4.10 to its shortlex-
representative v ∈ L(W ) and then we define the set WDn+1 as the union of
WDn and the set of word-differences associated to the pair (w, v).
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Figure 10: While the geodesic paths v, u and w all represent the same element,
only v is shortlex-minimal.

Theorem 4.20. [11, p. 7, Theorem 3.1] The above described procedure halts if
and only if G = 〈X | R 〉 is strongly geodesically automatic with respect to X.

Remark 4.12. As by Theorem 4.19, any strongly geodesically automatic group is
hyperbolic, by Theorem 4.20, the group G is hyperbolic if the procedure halts.
This can be seen directly from the procedure as well: If it halts at step n then
every geodesic element is paired with a shortlex-minimal element. Therefore
geodesic bigons are (2n+ 1) ∗ l-thin, where l is the maximal occurring length of
the word differences, as illustrated in Figure 11 below.

Figure 11: The geodesic bigons γ1 and γ2 can be both reduced to their shortlex-
minimal partners γ′1 and γ′2 in n steps of size l and their shortlex-representatives
differ by one step of size l, thus their distance is at most (2n+ 1)l.

Example 4.10. Unfortunately for the "lazy" user, there is no function in GAP like
IsHyperbolic(H) to determine whether the Heineken group H is hyperbolic. So
we have to start with the rewriting system R and the automatic structure we
have computed for the Heineken group H in Example 4.8. We need to input the
following steps to get the result we are aiming for:

gap > WriteRWS(R, ”Heineken”, ”; ”); ;

gap > progname := Filename(_KBExtDir, ”gpgeowa”); ;

gap > callstring := Concatenation(progname, ”Heineken”); ;

gap > Exec(callstring);
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The function WriteRWS(R,"Heineken",";") writes the rewriting system R to
a file with name Heineken in external format. The symbol ; is the endsymbol.
KBExtDir is an external variable representing the directory of external programs

in the KBMAG package available and "gpgeowa" is a program, computing whether
bigons are ε-thin with the above described algorithm. Hence we use the function
Filename() to name the program "gpgeowa" of the KBMAG directory, we
choose the name progname. Then we need to concatenate the calling of the two
external files, progname and Heineken. In the end we execute the program with
the function Exec(), hence after that the program gpgeowa is run on the file
Heineken. If the process completes, then we know bigons to be ε-thin for some
ε > 0, i.e. the group to be hyperbolic. In the case of the Heineken group H it
completes with the information

#Geodesic word-acceptor with 54 states computed.

#Geodesic pairs machine with 114 states computed.

#Geodesic difference machine with 31 states computed.

Thus, we have a verification that the Heineken group H is hyperbolic indeed.

4.2 Residual Finiteness

4.2.1 Using the Tools

While the tools described in Chapter 2 may be very valuable for other (well-
known) examples as illustrated in Chapter 3, for the Heineken group H they
have not been of great help so far. Since to apply the Theorem 2.3 of Malcev,
we would need to check the Heineken group for linearity, the problem is simply
shifted to another very tough open question of how to check whether a group
is linear. Also, it is not apparent at all how to find a space or even a tree
on which the Heineken group acts to be able to approach it with Bass-Serre
theory. At least in Remark 4.1 with Tietze transformations we found another
presentation of H that has not yet given us any advantage when applying the
KBMAG-algorithms, but will be valuable in the forthcoming chapter dedicated
to the task of finding finite quotients.

4.2.2 Finite Quotients

Since we do not have any tool at hand to deal with the question of residual
finiteness of the Heineken group H, we choose to take one step back and start
by trying to find finite quotients of the Heineken group since this has been
the crucial idea for proving that the Higman group is not residually finite for
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example. Unfortunately, as opposed to the Higman group, the Heineken group
has finite quotients, but it would be helpful if we could verify that at least it
does not have a lot of them.

4.2.2.1 Brute Force

Of course, there is a naive approach to find a finite quotient: We choose any
finite group F and search for a non-trivial homomorphism from the Heineken
group H onto F . To check for a given group F whether there exists such an
epimorphism, we can use GAP: There is an algorithm, called GQuotients,
which finds all epimorphisms between a finitely presented group G = 〈X | R 〉
and a finite group F up to automorphisms of F . The idea of the procedure is
the following: We consider all r-tuples (g1, . . . , gr) ∈ F r, where r := |X| is the
number of generators of G. Then we test whether the map

ϕ : X → F

xi 7→ gi for all i ∈ {1, . . . , r}

extends to a homomorphism ϕ : G→ F by checking if ϕ(a1) · · ·ϕ(am) = 1G for
all w = a1 · · · am ∈ R with ai ∈ A := X ∪X−1 for all i ∈ {1, . . . ,m}. That this
is a sufficient property for ϕ to be a homomorphism is ensured by Theorem 2.52
of [19, p. 37]. Of course this process is only efficient enough for small groups F
and a small number of generators r. But we can prune the search tree by the
following adjustment: We first try to rule out k-tuples (g1, . . . , gk) ∈ Gk for some
k < r as initial subsequences of a possible image (g1, . . . , gr) ∈ Gr. Suppose
there is a relator w ∈ R only involving the first k generators x1, . . . , xk ∈ X.
Then we check if the map

ϕ : X → F

xi 7→ gi for all i ∈ {1, . . . , k}

extends to a homomorphism. If not we can rule out the initial subsequence
(g1, . . . , gk) ∈ Gk, if it is succesfull we consider a possible image (g1, . . . , gr) ∈ Gr.
Two further observations are also helpful: If we reorder the generators such
that the subsets Rk ⊆ R of R containing all relators involving only the first k
elements are as large as possible, the algorithm becomes more efficient. Also,
if there is a generator xi ∈ X of order n ∈ N for some i ∈ {1, . . . , r}, then we
know that it can only be mapped to an element with an order dividing n, which
helps us to rule out some images.

In case of the Heineken group we first want to apply the algorithm to the finite,
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alternating group A5 and to the finite, linear group SL(2, 5) of 2× 2-matrices
over the field of size 5, since [21, p. 345] suggests that those two groups are
isomorphic to finite quotients of H. We obtain the two epimorphisms:

ϕ1 : H→ A5 ϕ2 : H→ SL(2, 5)

x 7→ (1, 2, 5, 3, 4) x 7→

[
4 1
0 4

]

y 7→ (1, 2, 4, 5, 3) y 7→

[
2 1
1 1

]

z 7→ (1, 2, 3, 4, 5) z 7→

[
1 4
4 3

]
.

Furthermore, we can observe the following restrictions we can make before trying
any other finite group F :
Denote the images of the generators of x, y and z by x̄, ȳ and z̄.

• F cannot be abelian: Suppose it was. Since the relations of H have to hold
in F as well, we have for example

x̄−1ȳ−1x̄−1ȳx̄ȳ−1x̄ȳ = z̄ .

But since the number of appearances of x̄ and its inverse and of ȳ and
is inverse is the same, we conclude z̄ = 1F . Analogously we get with the
other two relations ȳ = 1F and x̄ = 1F . Hence the epimorphism is trivial.

• No two generators of H can be mapped to generators of F that commute:
Suppose x̄ and ȳ commute. Then we conclude as above that z̄ = 1F . But
then the third relation gives

z̄−1x̄−1x̄−1x̄z̄x̄−1z̄x̄ = x̄−1x̄x̄−1x̄ = 1F

and hence
ȳ = 1F .

Analogously we obtain with the second relation x̄ = 1F . So the epimor-
phism is trivial again.

• No generator can be mapped to the trivial element 1F : This follows by
the same argument as above.

Unfortunately, these observation still have not been helpful enough to find a
proper finite quotient by coincidence.
Also taking finite groups and adding the relations that have to hold in the

154



Heineken group has not been a successful brute force attempt.
Moreover, we can try to use the GAP-function PQuotient(H,p). It searches for
quotients of H, whose orders are a power less or equal 24 of the prime number
p. Trying this with all prime numbers less than 500000 does not give any finite
quotient though.

4.2.2.2 Coset Enumeration & the Low Index Method

Another way to determine whether a quotient is finite, is by counting the cosets
it contains. Therefore we need to introduce the procedure to enumerate all the
cosets efficiently that was formerly known as Todd-Coxeter algorithm and has
been called Coset Enumeration since its implementation on a computer. We
will not give the precise algorithm for the procedure, nor the pseudo code, but
the main interest of this Chapter is to heuristically explain and illustrate with
examples how the enumeration works.
First we introduce a tool to keep track of the current cosets in the procedure:

Definition 4.29. Let G = 〈X | R 〉 be a group and H = 〈Y 〉 a finitely generated
subgroup. Define the set A := X ∪X−1.

(i). The coset table C is the quintuple (τ, χ, p, n,M) where

• M ∈ N, is the largest number of different cosets we allow;

• n < M , n ∈ N is the number of different cosets that we have found
so far;

• τ is a map τ : [1, . . . , n] → A∗ that gives the representative x ∈ A∗

for the coset with number α ∈ [1, . . . , n];

• p is a map p : [1, . . . , n] → [1, . . . , n] with p(α) ≤ α for all
α ∈ [1, . . . , n] recording if two unequal numbers represent the same
coset;

• χ is a partial map

χ : [1, . . . , n]×A→ [1, . . . , n]

(α, x) 7→ αx .

(ii). The set Ω := {α ∈ [1, . . . , n] | p(α) = α} is called the set of live cosets.

(iii). A coset table C is called complete if it does not have undefined values, i.e.
χ is defined for all α ∈ [1, . . . , n] and for all x ∈ A.

Remark 4.13.
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(i). The notation [1, . . . , n] is used for an ordered list of all consecutive elements
in N from 1 to n. We need it because it we need to define the coset numbers
consecutively for the enumeration to make sense.

(ii). Apart from the value M , all components of the coset table C usually
change throughout the procedure.

(iii). We will see that our procedure has a flaw: It can happen that the cosets
with the numbers α and β in [1, . . . n] coincide, although α < β. That
is why we need the map p. We simply define p(β) = α, since then β is
removed from the set of live cosets Ω.

(iv). We require in the coset table before starting the procedure the initial values
n = 1, p(1) = 1 and τ(1) = ε.

As the name suggests, coset tables are usually visualized in a table. The
following example will illustrate how and furthermore heuristically explain how
the procedure works, before defining it in general.

Example 4.11. Let G = 〈x, y | x3 = y3 = 1, xy = yx〉 and let H = 〈x〉 ≤ G be a
subgroup. We want to show that |G : H| = 3.
We always start by representing the trivial coset H with the number 1, hence
the coset representative given by τ(1) is the trivial element, as required. Now we
need to scan 1 under all the elements of A = {x, x−1, y, y−1}, which means that
we use the partial map χ and evaluate the image of the form αx by multiplying
the element from the right to the coset that is represented by the value α. For
1 we get: 1x represents Hx, which is simply H, since x ∈ H. Hence 1x = 1.
Analogously, since x−1 ∈ H, we obtain 1x−1 = 1. Next, we scan 1 under y and
under y−1. 1y represents Hy, which is a coset appearing for the first time. Thus,
it does not have a number yet and we represent it by 2, i.e. 1y = 2. Analogously
we obtain that 1y−1 represents the coset Hy−1, which we represent by 3. So for
now, we obtain the coset table

x x−1 y y−1

1 1 1 2 3
2
3

Next, we see that 2y−1 = 1, since Hyy−1 = H and that 3y = 1, since Hy−1y = H.

156



But 2y and 3y−1 is undefined:

x x−1 y y−1

1 1 1 2 3
2 1
3 1

Now, our second tool, called deduction can be used. Since we know that 1y3 = 1,
as Hy3 = H, we can use the scans that we know so far to deduce

y y y

1 2 3 1
_

The underlined scan is the one we deduced, which is 2y = 3. Furthermore we
obtain the inverse, which is 3y−1 = 2. Hence the current coset table is

x x−1 y y−1

1 1 1 2 3
2 3 1
3 1 2

Lastly, we can use the fact that 1x−1y−1xy = 1 and 2x−1y−1xy = 2 as the relations
imply that x−1y−1xy is the trivial word and make the following deductions:

x−1 y−1 x y

1 1 3 3 1
_

which implies 3x = 3 and thus 3x−1 = 3 and

x−1 y−1 x y

2 2 1 3 2
_

which implies 2x = 2 and thus 2x−1 = 2. So we obtain the complete coset table

x x−1 y y−1

1 1 1 2 3
2 2 2 3 1
3 3 3 1 2

which we know to be correct after checking that for every α ∈ [1, . . . , n] and for
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every relator w ∈ R, we get αw = α. Hence, the index |G : H| of H in G is equal
to the number of cosets defined, which is 3.

Studying the introductory example carefully lets us quickly filter out four prop-
erties that the procedure might or should have:

Definition 4.30. Let C be the coset table for a group G with respect to the
subgroup H. We define the following properties for C

Property 1 1 ∈ Ω and τ(1) = ε.

Property 2 αx = β ⇔ βx
−1 = α.

Property 3 If αx = β, then Hτ(α)x = Hτ(β).

Property 4 For all α ∈ Ω, 1τ(α) is defined and it is equal to α.

We are ready to describe the procedure for the general case in detail now: Since
we start the procedure with an, besides the initial values, empty table, we first
need to determine how to define new elements in the set of live coset Ω. So we
run through the table and check for empty entries until we have found the first
α ∈ Ω and x ∈ A such that αx is undefined. Then we simply choose the first
β that has so far not been an element of Ω, adjoin it to Ω and define it to be
equal to αx, i.e. αx = β. Moreover we put p(β) := β and we define τ(β) := τ(α)x.

Clearly, Property 1 and Property 3 are satisfied. To ensure that Property 2
holds, we simply define βx−1 := α. So we are left to check Property 4: Suppose
1τ(β) 6= β. That implies that 1τ(α)x 6= αx, thus τ(α) has to end with x−1, i.e.
there is a word v such that τ(α) = vx−1. But then we obtain, since Property 4
holds for α by assumption, α = 1τ(α) = 1vx−1 and hence by Property 2 αx = 1v

in contradiction to the fact that αx has been undefined. So Property 4 has to
hold as well.

Next, we want to define the scanning and the deduction: There are two settings
in which it makes sense to scan α ∈ Ω under w ∈ A∗, since we know what
outcome to require:

1) α = 1 and w ∈ Y : If w ∈ Y , then we know that Hw = H. So, since H is
always represented by 1, we know that 1w = 1 has to hold.

2) α ∈ Ω and w ∈ R: If w ∈ R, then we know that Hgw = Hg for all g ∈ G.
Hence we know for any α ∈ Ω that αw = α has to hold.

Suppose we have a pair α and w given in one of the two settings. Then the
scanning has two steps:
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(i). Locate the largest prefix s ∈ A∗ of w such that αs is defined. The word w
can be written as w = sv with v ∈ A∗.

(ii). Locate the largest suffix t ∈ A∗ of v such that αt−1 is defined. The word v
can be written as v = ut for u ∈ A∗, hence w = sut.

There are three possible cases:

(1) t = v: In this case w = st and we say that the scan completes. There are
two possibilities:

(a) αs = αt
−1 : We we say the scan completes correctly.

(b) αs 6= αt
−1 : We say the scan completes incorrectly.

(2) v = ut and |u| = 1: Then there is an element x ∈ A such that x represents
the word u. We say that the scan is incomplete, but a deduction is possible:
We can compute

αs =: β and αt
−1

=: γ

and define
βx := γ and γx

−1
= β .

(3) v = ut and |u| 6= 1: We say the scan is incomplete.

Proposition 4.21. Let the assignments βx = γ and γx−1 = β result from a
deduction of scanning an element α ∈ Ω under a word w ∈ A∗ described above.
Then the Properties 1, 2, 3 and 4 remain true after making the deductions.

Proof. It is obvious that the deductions do not have any effect on Property 1
and 4 and that the Property 2 is satisfied by construction. So we are left to show
that Property 3 holds, i.e. we need to prove that Hτ(β)x = Hτ(γ). Since we
know that αx = β and γt = α before the deduction, Property 3 implies at that
stage that Hτ(α)x = Hτ(β) and Hτ(γ)t = Hτ(γ)α. We need to distinguish
between the two possible settings:

1) Let α = 1 and w ∈ Y : Then Hτ(α) = H and we obtain

Hτ(β) = Hτ(α)s = Hs = H(sxt)−1s = Ht−1x−1s−1s =

Ht−1x−1 = Hτ(α)t−1x−1 = Hτ(γ)tt−1x−1 = Hτ(γ)x−1 .

Thus, Hτ(β)x = Hτ(γ).

2) Let α ∈ Ω and w ∈ R: Since 1G = w = sxt, we obtain that tsx = 1G and
hence

Hτ(β)x = Hτ(α)sx = Hτ(γ)tsx = Hτ(γ) .
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So either way, Property 3 holds after the deductions as well.

Example 4.12. Let G = 〈x, y | x2 = 1, y3 = 1, (xy)3 = 1〉 be a group with a
subgroup H generated by Y := {xy}. Then |G : H| = 4.

Proof. We obtain the set A = {x, x−1, y, y−1}, but since the relation x2 = 1
implies x = x−1, the column of x and x−1 will be exactly the same and therefore
we can omit x−1 in our table. As usual, let 1 represent the trivial coset H.
Now we define 1x = 2, hence 2 represents the coset Hx and with it we get
1 = 2x−1 = 2x. So the current table is

x y y−1

1 2
2 1

Now we scan 1 under w = xy ∈ Y :

(i). Since 1x = 2 is defined, and 1xy = 2y is not, we get s = x and v = y.

(ii). Since 1y−1 is not defined, we get t = ε and u = y.

Thus, we are in Case (2) and obtain from 1s = 1x = 2 and 1t−1 = 1ε = 1 the
deductions

2y = 1 and 1y
−1

= 2 .

In a diagram we can illustrate the deduction as

x y

1 2 1
_

Hence, current coset table is

x y y−1

1 2 2
2 1 1

Since there is no other useful scan possible, we next define 1y = 3 and thus
3y−1 = 1. Now we scan 1 under the word y3 ∈ R:

(i). Since 1y = 3 is defined, and 1y2 = 3y is not, we get s = y and v = y2.

(ii). Since 1y−1 = 2 is defined and 1y−2 = 2y−1 is not, we get t = y and u = y.

Thus, we are in Case (2) and obtain from 1s = 1y = 3 and 1t−1 = 1y−1 = 2 the
deductions

3y = 2 and 2y
−1

= 3 .
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In a diagram we can illustrate the deduction as

x y y

1 3 2 1
_

The current table is
x y y−1

1 2 3 2
2 1 1 3
3 2 1

Next, we define 3x = 4 and thus 4x = 3 and scan 2 under (xy)3 ∈ R:

(i). Since 2xyx = 1yx = 3x = 4 is defined, and 1xyxy = 4y is not, we get
s = xyx and v = yxy.

(ii). Since 2y−1x−1 = 3x−1 = 3x = 4 is defined and 2y−1x−1y−1 = 4y−1 is not, we
get t = xy and u = y.

Thus, we are in Case (2) and obtain from 2s = 2xyx = 4 and 2t−1 = 2y−1x−1 = 4
the deductions

4y = 4 and 4y
−1

= 4 .

In a diagram we can illustrate the deduction as

x y x y x y

2 1 3 4 4 3 2
_

The current table is
x y y−1

1 2 3 2
2 1 1 3
3 4 2 1
4 3 4 4

and complete.

Theorem 4.22. Let G = 〈X | R 〉 be a group with subgroup H generated by the
set Y and let C be a coset table. If

(i). Property 1 to 4 are satisfied,

(ii). the coset table C is complete,

(iii). 1 scans correctly under all w ∈ Y ,
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(iv). all α ∈ Ω scan correctly under all w ∈ R,

then |G : H| = |Ω|.
Furthermore for every x ∈ A = X ∪X−1, the map

ϕ(x) : Ω→ Ω

α 7→ αx

is a permutation of Ω and ϕ extends to a homomorphism ϕ̄(x) : G→ Sym(Ω),
which is equivalent to the action of G on the cosets of H by right multiplication.

Proof. Since αx = αx trivially holds, Property 2 implies that αxx−1 = α, hence
the maps ϕ(x) and ϕ(x−1) are inverse to each other and ϕ is a permutation of
Ω.
Next, take w = x1 · · ·xr ∈ R. Clearly ϕ(w) = ϕ(x1 · · ·xr) = ϕ(x1) · · ·ϕ(xr) and
by (iv), αw = α. Hence ϕ(x1) · · ·ϕ(xr) = 1Sym(Ω). Thus, ϕ extends by Theorem
2.52 of [19, p. 37] to a group homomorphism and defines therefore a group action

ϕ : G→ Sym(Ω)

x 7→ ϕ(x) .

To show that this action is equivalent to the action ρ of G on the set
C = {Hg | g ∈ G} of right cosets of H given by

ρ : G→ Sym(C)

x 7→ ρ(x) : C → C

Hg 7→ Hgx

by Definition 2.8 we need to find a bijection t : Ω→ C such that

t(ϕ(x)(α)) = ρ(x)(t(α))

holds for every α ∈ Ω and every g ∈ G. Let us define t and check the properties:
Let t be the map

t : Ω→ C

α 7→ Hτ(α) .

Then by (ii) and Property 3, we have for every v ∈ A∗

t(1v) = Hτ(1v) = Hτ(1)v = Hv .
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Hence, t hits every coset in C, and is therefore surjective. For injectivity
suppose that t(α) = t(β). We need to show that α = β. First deduce from
t(α) = t(β) that Hτ(α) = Hτ(β), hence t(α)t(β)−1 ∈ H. Therefore there are
w1, w2, . . . , wr ∈ Y ∪ Y −1 such that t(α)t(β)−1 = w1w2 · · ·wr. But by (iii),
1wi = 1 for all wi ∈ Y ∪ Y −1, thus 1τ(α)τ(β)−1 = 1. By Property 2 and 4 we
obtain α = 1τ(α) = 1τ(β) = β, hence t is injective. So we obtain

|Ω| = |C| = |G : H| .

Lastly, we see by Property 3 that

t(αg) = Hτ(αg) = Hτ(α)g = t(α)g

holds for every α ∈ Ω and for every g ∈ G, hence the actions ϕ and ρ are
equivalent.

One problem has been unaddressed so far: How to proceed when a scan completes
incorrectly. This means, if we scan α ∈ Ω under w that w is of the form w = st,
but αs =: β 6= γ := αt

−1 . We can show that that simply means that β and γ
represent the same coset:

Proposition 4.23. Suppose that either α ∈ Ω and w ∈ R or α = 1 and
w ∈ Y and that w is of the form w = st with β = αs and γ = αt

−1 . Then
Hτ(β) = Hτ(γ).

Proof. Since αs = β we have by Property 3 Hτ(α)s = Hτ(β) and since γt = α

we have Hτ(γ)t = Hτ(α). We need to distinguish between the two cases:

1) If w = st ∈ H and α = 1, then Hτ(α) = H. Hence

Hτ(β) = Hτ(α)s = Hs = H(st)−1s = Ht−1s−1s =

Ht−1 = Hτ(α)t−1 = Hτ(γ)tt−1 = Hτ(γ) .

2) If w = st ∈ R, then ts = 1. Hence

Hτ(β) = Hτ(α)s = Hτ(γ)ts = Hτ(γ) .

Thus, either way, the claim is true.

Definition 4.31. Let G = 〈X | R 〉 be a group with subgroup H generated by
the set Y . Let α ∈ Ω scan incorrectly under the word w = st ∈ A∗ such that
αs = β and αt−1 = γ. Then we say there is a coincidence between β and γ. We
denote it by β ∼ γ.
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Definition 4.32.

(i). Let G be a group acting on a set Ω by

ϕ : Ω×G→ Ω

(α, g) 7→ αg

and let ∼ be an equivalence relation on Ω. ∼ is called a G-congruence if
for all α, β ∈ Ω and for all g ∈ G, α ∼ β implies that αg = βg.

(ii). Let S ⊆ Ω×Ω be a set. The G-congruence generated by S is the intersection
of all G-congruences containing S.

Remark 4.14.

(i). Being coincident is an equivalence relation.

(ii). Consider βx and γx, both defined for some x ∈ A where β ∼ γ. Then, by
Property 3 we have Hτ(β)x = Hτ(γ)x and hence Hτ(βx) = Hτ(γx). By
induction on the word length, we obtain that if β ∼ γ, then Hτ(βw) =
Hτ(γw) for any word w ∈ G. So, putting aside that αw is in general
not defined for all w ∈ A∗ and α ∈ Ω, ∼ can be considered to be a
G-congruence.

We still need to implement a way to eliminate coincidences in our procedure:
If we find a coincidence by an incorrectly completed scan, we need to compute
all by the G-congruence implied coincidences. That is, if there is a coincidence
β ∼ γ, we need to compute βz and γz for all z ∈ A and deduce that βz ∼ γz.
Next, we need to make sure to not lose any information. So we substitute every
occurrence of the redundant elements in the coset table by their coinciding
elements. Lastly, we will eliminate all redundant elements of Ω by using the
function p: As indicated in Remark 4.13 (iii), if we have the coincidence α ∼ β
and α < β, then we set p(β) = α, since then by definition of the set Ω, the
element β is eliminated from it.
An example should illustrate how the producure works:

Example 4.13. Let G = 〈x, y | x2y2, x3y5〉 be a group with H = {1G} being the
trivial subgroup, i.e. its generating set Y is empty. Then |G : H| = 4.

Proof. As usual, A = {x, x−1, y, y−1} and 1 represents the trivial cosetH. Define
1x = 2 and thus 2x−1 = 1, 2x = 3 and thus 3x−1 = 2 and 3y = 4 and thus 4y−1 .
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So the current coset table is

x x−1 y y−1

1 2
2 3 1
3 2 4
4 3

We can make the following deduction by scanning 1 under x2y2 ∈ R:

x x y x

1 2 3 4 1
_

hence 4y = 1 and 1y−1 = 4. Next define 3x = 5 and thus 5x−1 = 3 and 5y = 6
and thus 6y−1 = 5. The current coset table is

x x−1 y y−1

1 2 4
2 3 1
3 5 2 4
4 1 3
5 3 6
6 5

Scanning 2 under x2y2 ∈ R gives with

x x y x

2 3 5 6 2
_

the deduction 6y = 2 and 2y−1 = 6,

scanning 1 under x3y5 ∈ R gives with

x x x y y y y y

1 2 3 5 6 2 3 4 1
_

the deduction 2y = 3 and 3y−1 = 2
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and scanning 3 under x2y2 ∈ R gives with

x x y x

3 5 6 2 3
_

the deduction 5x = 6 and 6x−1 = 5. The current coset table is

x x−1 y y−1

1 2 4
2 3 1 3 6
3 5 2 4 2
4 1 3
5 6 3 6
6 5 2 5

But if we now scan 2 under x3y5 ∈ R we see that the scan completes incorrectly

x x x y y y y y

2 3 5 6 2 3 4 1 | 6 2

so we have detected a coincidence between 1 and 6. Computing 1z and 6z for all
z ∈ A gives us a for y−1 the second coincidence

5 = 6y
−1
∼ 1y

−1
= 4 .

Thus, we need to substitute every occurrence of 6 in the coset table by 1 and
every occurrence of 5 by 4 and finally remove 5 and 6 from Ω. Hence we get the
coset table

x x−1 y y−1

1 2 4 2 4
2 3 1 3 1
3 4 2 4 2
4 1 3 1 3

Although the procedure for an occurrence of a coincidence is just described
heuristically, for full disclosure we want to give the following statement insuring
that the procedure works:

Theorem 4.24. [19, p. 158, Proposition 5.4] After executing the procedure
to get rid of the coincidence of α and β, only the least representatives of the
equivalence classes of the G-congruence ∼ generated by α and β remain in Ω and
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p(v) = v for every v ∈ [1, . . . , n] if and only if v ∈ Ω. Furthermore, if for some
x ∈ A we have γx = δ before executing the procedure, then the smallest equivalent
representative of γ to the x is equal to the smallest equivalent representative of
δ. Also, Property 1 to 4 all continue to hold after executing the procedure.

To get more uniform results when running the procedure we introduce:

Definition 4.33. A Standardized Coset Table C, is a coset table that is reordered
such that if we scan the table first by elements of Ω and then by elements of A,
the cosets occur in ascending numerical order.

Next, we want to deal with a problem that can be interpreted as the converse
of Coset Enumeration: We want to find all subgroups up to a given index.
Since the time required for solving a problem of that form grows more than
exponentially in the given index N , it is called Low-Index Subgroups Problem. A
classic example that illustrates that fact will be the Heineken group H.
There are two well-known fundamentally different algorithms that attempt to
solve the Low Index Subgroup Problem. Both were first introduced by Charles
Sims. In general it is dependent on the group and its presentation, which algo-
rithm is more efficient, but there is no proper rule stating which one should be
applied. In dealing with standard examples of groups, Holt claims in [19] that the
second algorithm is more efficient. It is implemented in Magma. Nonetheless,
the widely used open source program GAP still uses the first algorithm. Therefore
we want to introduce both heuristically.

The setting is the same as for the Coset Enumeration: Let forthcoming
G = 〈X | R 〉 be a group and let A be the set A := X ∪X−1.

Definition 4.34. We call a (standardized) coset table C complete for G if

• all columns are indexed by A,

• αx = β if and only if βx−1 = α for all α, β ∈ Ω and for all x ∈ A, i.e.
Property 2 holds,

• all α ∈ Ω scan correctly under all w ∈ R.

The following statement ensures that with a standardized complete coset table
we can really find a subgroup up to a given index:

Proposition 4.25. [19, p. 189, Proposition 5.6] For any n > 0 there is a
one-to-one-correspondence between the standardized complete coset tables for G
with n = |Ω| and the subgroups of G with index n. In particular the subgroup
H corresponding to a coset table C is the stabilizer G1 in the group action
corresponding to C.
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Both algorithms search for a standardized complete coset table:
The first algorithm was invented in 1974 by Sims and fully formulated and pre-
sented by Joachim Neubüser in 1981 in [36]. Its idea is to use Coset Enumeration,
but let the procedure run until more than the desired N cosets are found and
then force coincidences. Concretely, we define a number f(N) ∈ (N, 2N) ∩ N,
which is the maximal number of cosets we allow in a coset table. We start with
an empty coset table and fill it by enumerating the cosets of the trivial group
{1g} with the Coset Enumeration. The procedure is executed until

1) The coset table is complete.

2) All possible numbers for cosets up until f(N) are used and there are no
further possible deductions and no more coincidence occurring.

We have reached the first level, level 0, of our search tree. There are three
options

1A) The maximal coset number used is less or equal N . Then G itself is of
order less or equal N . We need to display G as the first subgroup of index
less or equal N , that we have found. Then we can continue by forcing a
coincidence.

1B) The maximal coset number used is greater than N . We force a coincidence.

2) We need to force a coincidence.

Forcing a coincidence means, we choose two different numbers α and β in our
coset table to represent the same coset of some subgroup H. That means that
Hτ(α) = Hτ(β) and hence we can use τ(α)τ(β)−1 ∈ H as a generator.
We need to work through all possible forced coincidences - each represents a
branch of the search tree at level 0. After a forced coincidence, we make all
possible deductions and eliminate all further occurring coincidences. Then we
rename the cosets, such that only consecutive numbers starting from 1 are used
in the coset table and start executing the Coset Enumeration again until case 1)
or case 2) is reached. Then we continue as before:
We have reached the second level, level 1, of our search tree. There are three
options

1A) The maximal coset number used is less or equal N . We have found a
subgroup of index less or equal N and we need to display it. Then we can
continue by forcing a coincidence.

1B) The maximal coset number used is greater than N . We need to force a
coincidence.
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2) We need to force a coincidence.

Remark 4.15.

(i). In fact, further coincidences occurring with a forced coincidence can make
the procedure in practice way easier. If we impose an ordering on the pairs
of coset numbers that are possibly coinciding (often lexicographically in
combination with the length of the coset representatives that belong to the
coset numbers), we can do the following: If a forced coincidence implies a
coincidence where the second pair is in this ordering less than the first pair,
we can skip this case, i.e. branch of the search tree, since it will be covered
by another branch in the search anyways. Also, the ordering ensures that
the results we obtain are standardized. Further refinements also give us
only one representative per conjugacy class of subgroups.

(ii). If we can continue this search it will eventually terminate: Since we know
that per given finite index there are only finitely many subgroups of a
finitely generated group, the search tree has to be finite.

We want to illustrate the procedure by means of the following example.

Example 4.14. Determine all subgroups of G = 〈x, y | x2, y3〉 up to index N = 4.

Remark 4.16. To make matters easier we will neglect stating the ordering used.
We will give, guided by [23], the search tree first, and then simply follow it to
detect the subgroups. The fact that we have found all such subgroups in the
end can be easily checked in GAP.

Proof. Since x2 = 1G, we can omit x−1 in the set A, thus A = {x, y, y−1}. As
usual 1 represents the trivial coset H. We start with the definition H := {1G},
throughout the procedure H will change by the forced coincidences. Our search
tree is the following, given in Figure 12:

Figure 12: This search tree gives all necessary forced coincidences.
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We let f(N) = 7 ∈ (4, 8) ∩ N and start the Coset Enumeration of H in G to
obtain the following coset table C0 at level 0:

C0 x y y−1

1 2 3 4
2 1 5 6
3 7 4 1
4 1 3
5 6 2
6 2 5
7 3

We follow the search tree and exercise the first forced coincidence 1 ∼ 2. It
implies H = Hx, hence x ∈ H is a generator. We obtain by setting 1 ∼ 2 the
coincidences 3 ∼ 5 and 4 ∼ 6, which lead to the left table. Then, by renaming
and executing the Coset Enumeration again, the first coset table C01 at level 1
can be determined:

x y y−1

1 1 3 4
3 7 4 1
4 1 3
7 3

−→

C01 x y y−1

1 1 2 3
2 4 3 1
3 5 1 2
4 2 6 7
5 3
6 7 4
7 4 6

Since C01 is incomplete, we force again the coincidence 1 ∼ 2. It implies
H = Hy−1, hence y ∈ H is a generator. We obtain by setting 1 ∼ 2 the
coincidences 1 ∼ 4, 2 ∼ 4, 1 ∼ 3, 1 ∼ 5, 3 ∼ 6 and 1 ∼ 7, hence all numbers
represent the same coset and the first coset table C011 at level 2 is complete and
trivial:

C011 x y y−1

1 1 1 1

Thus, the coset table C011 corresponds to the subgroup H1 of G of index 1, which
is generated by x and y, hence H1 = G.
Since we have found a complete table, we return to C01 at the previous level
1, and force a new coincidence, namely 2 ∼ 4. It implies Hy = Hyx, hence
yxy−1 ∈ H is a generator. The coincidence 2 ∼ 4 implies the coincidences 3 ∼ 6
and 1 ∼ 7, which lead to the left table. Renaming and executing the Coset
Enumeration determines the second coset table C012 at level 2:

170



x y y−1

1 1 2 3
2 2 3 1
3 5 1 2
5 3

−→

C012 x y y−1

1 1 2 3
2 2 3 1
3 4 1 2
4 3 5 6
5 7 6 4
6 4 5
7 5

Since C012 is incomplete, we impose with 3 ∼ 4 another coincidence. It implies
Hy−1 = Hy−1x, hence y−1xy ∈ H. The coincidence 3 ∼ 4 implies the coinci-
dences 1 ∼ 5, 2 ∼ 6 and 1 ∼ 7. Thus, we obtain the first coest table C0121 at
level 3, which is complete:

C0121 x y y−1

1 1 2 3
2 2 3 1
3 3 1 2

So the complete coset table C0121 corresponds to the subgroup H2 of G of index
3, which is generated by x, yxy−1 and y−1xy.
We have found another complete coset table, so we return to C012 at level 2 and
force the coincidence 4 ∼ 5. It implies Hy−1x = Hy−1xy, hence y−1xy−1xy ∈ H
is a generator. The forced coincidence implies 3 ∼ 7, 5 ∼ 6 and 4 ∼ 6. We obtain
the second coset table C0122 at level 4 and it is also complete:

C0122 x y y−1

1 1 2 3
2 2 3 1
3 4 1 2
4 3 4 4

The coset table C0122 corresponds to the subgroup H3 of G of index 4, which is
generated by x, yxy−1 and y−1xy−1xy.
Since we have found a complete coset table, we need to return to a previous level.
Our search tree suggests to continue with C01 at level 1. We force the coincidence
3 ∼ 4, which implies Hy−1 = Hyx, hence y−1xy−1 ∈ H is a generator. We
obtain the implied coincidences 2 ∼ 5, 1 ∼ 6 and 2 ∼ 7. They determine the
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third coset table C013 at level 2, which turns out to be complete:

C013 x y y−1

1 1 2 3
2 3 3 1
3 2 1 2

The coset table C013 corresponds to the subgroup H4 of G of index 3, which is
generated by x and y−1xy−1.
Now we return to C0 at level 0 and force another coincidence, namely 1 ∼ 3. It
implies that H = Hy, hence y−1 ∈ H is a generator and that 2 ∼ 7, 3 ∼ 4 and
4 ∼ 1. These coincidences lead to the left table. After renaming and executing
the Coset Enumeration, we obtain the second coset table C02 at level 1:

x y y−1

1 2 1 1
2 1 5 6
5 6 2
6 2 5

−→

C02 x y y−1

1 2 1 1
2 1 3 4
3 5 4 2
4 6 2 3
5 3 7
6 4
7 5

C02 is incomplete, hence we impose 2 ∼ 3, which implies Hx = Hxy, i.e.
xy−1x ∈ H is a generator. Furthermore we deduce the coincidences 1 ∼ 5, 3 ∼ 4,
4 ∼ 2, 1 ∼ 6 and 1 ∼ 7. So we obtain the forth coset table C021 at level 2, which
is complete:

x y y−1

1 2 1 1
2 1 2 2

The complete coset table C021 corresponds to the subgroup H5 of G of index 2,
which is generated by y−1 and xy−1x.
We return to C02 at the previous level 1 and force the coincidence 4 ∼ 5. It
implies Hxy−1 = Hxyx, thus xy−1xy−1x ∈ H is a generator. We obtain with
the implied coincidences 2 ∼ 7 and 3 ∼ 6 the fifth coset table C022 at level 2 and
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it turns out to be complete:

C02 x y y−1

1 2 1 1
2 1 3 4
3 4 4 2
4 3 2 3

So the complete coset table C022 corresponds to the subgroup H6 of G of index
4, which is generated by y−1 and xy−1xy−1x.

The second algorithm was introduced more recently in 1984 in Sims’ book [44].
Its idea is to use incomplete coset tables and systematically search for a possible
way to fill them by running through all elements of {1, . . . , N} and checking
whether a contradiction occurs.

Remark 4.17. It is not efficient to store and output whole tables, so we can
save some space and time by only returning coset tables corresponding to
representatives of conjugacy classes of subgroups of G, i.e. per conjugacy class
we only get one coset table. This works since the conjugates of a subgroup are
then given by the stabilizers Gα = {g ∈ G | αg = α} of the associated group
action for the different α ∈ Ω.

Since the algorithm consists of five layers, we will not give a detailed explanation,
but will just introduce it heuristically by means of an example:

Example 4.15. Determine all subgroups of G = 〈x, y | x2, y3, (xy)4〉 ∼= S4 up to
index N = 4.

Proof. Since x = x−1, we can omit x−1 in A, which is thus given by
A = {x, y, y−1}.

• Start by imposing an ordering on the elements of A to determine in which
order elements from A are used:

We impose
x < y < y−1 .

• Split the set R of relators into two disjoint sets R1 and R2 dependent on
the length of the relators. R1 should contain all "shorter" relators, since
they are being used for the scaning procedure and R2 should contain all
"longer" relators, since they are being used for checking if the coset table is
correct. It is not fully determined, what qualifies for short and long.

We define R1 = {x2, y3} and R2 = {(xy)4}.
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• Set the default coset table C0 to be empty.

We have
C0 x y y−1

1

• Run through the coset table line by line until the first undefined, i.e. empty
position is found.

The first undefined position in C0 is 1x.

• Define this position as the smallest available element α ∈ [1, . . . , N ] =
[1, 2, 3, 4]. Check that this definition is not a contradiction to Property 2
and there is no incorrect scan under any element of R1. If so, put the new
definition in the coset table and name the new coset table C1.

Define 1x =: 1. Property 2 is not contradicted and there is no incorrect scan,
hence we obtain

C1 x y y−1

1 1

• Check if by Property 2 or scanning α under all words of R1 any deductions
can be made. Put them in the coset table.

There are no possible deductions.

• Check if the coset table is incomplete. If so, run through the coset table
line by line until the first undefined, i.e. empty position is found.

The first undefined position in C1 is 1y.

• Define this position as the smallest available element α ∈ [1, . . . , N ] =
[1, 2, 3, 4]. Check that this definition is not a contradiction to Property 2
and there is no incorrect scan under any element of R1. If so, put the new
definition in the coset table and name the new coset table C11.

Define 1y = 1. Property 2 is not contradicted and there is no incorrect scan,
hence we obtain

C11 x y y−1

1 1 1

• Check if by Property 2 or scanning α under all words of R1 any deductions
can be made. Put them in the coset table.

By Property 2 we deduce 1y−1 = 1. Hence we obtain

C11 x y y−1

1 1 1 1
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• Check if the coset table is incomplete. If not, scan all elements of Ω under
all elements of R2 to make sure it is correct.

The table is complete. 1(xy)4 = 1, hence the table is correct. With C11, we have
found the first coset table.

• Return to the coset before the last new definition. This we can do by
simply losing the last index of the coset table.

The coset table we return to is C1.

• Run through the coset table line by line until the first undefined, i.e. empty
position is found.

Again, the first undefined position in C1 is 1y.

• Define this position as the smallest available element α ∈ [1, . . . , N ] =
[1, 2, 3, 4]. Check that this definition is not a contradiction to Property
2 and there is no incorrect scan under any element of R1. If so, put the
new definition in the coset table and add to the index of the name of the
current coset table the number of how often this position has been validly
defined so far to name the new coset table.

Since we have used 1 ∈ [1, 2, 3, 4] already it is not available anymore. Thus,
define 1y =: 2. Property 2 is not contradicted and there is no incorrect scan,
hence we obtain

C12 x y y−1

1 1 2
2

• Check if by Property 2 or scanning α under all words of R1 any deductions
can be made. Put them in the coset table.

By Property 2 we decuce 2y−1 = 1. Hence we obtain

C12 x y y−1

1 1 2
2 1

• Check if the coset table is incomplete. If so, run through the coset table
line by line until the first undefined, i.e. empty position is found.

The first undefined position in C12 is 1y.

• Define this position as the smallest available element α ∈ [1, . . . , N ] =
[1, 2, 3, 4]. Check if this definition is a contradiction to Property 2 or if

175



there is an incorrect scan under any element of R1. If so, move on and
define this position as the next smallest available element α ∈ [1, 2, 3, 4].
Check again that this definition is not a contradiction to Property 2 and
there is no incorrect scan under any element of R1. Repeat this until there
is an element α ∈ [1, 2, 3, 4] such that Property 2 is not contradicted and
there is no incorrect scan under any element of R1. Put this new definition
in the coset table and add to the index of the name of the current coset
table the number of how often this position has been validly defined so far
to name the new coset table.

Define 1y =: 1. Then by Property 2, we get that 1y−1 = 1 must hold, in
contradiction to 1y−1 = 2. So the definition is invalid and we define 1y−1 = 2.
Property 2 is not contradicted and gives 2y = 1. Now we can scan 1 under y3

and know that the result must be 1. But

1y
3

= 2y
2

= 1y = 2 ,

hence we obtain a contradiction again. So the definition is invalid and we define
1y =: 3. Property 2 is not contradicted and there is no incorrect scan, hence we
obtain

C121 x y y−1

1 1 2 3
2 1
3

• Check if by Property 2 or scanning α under all words of R1 any deductions
can be made. Put them in the coset table.

By Property 2, we deduce 3y = 1. By scanning 1 under y3 we deduce

y y y

1 2 3 1
_

i.e. 2y = 3 and 3y−1 = 2. So the coset table C121 is

C121 x y y−1

1 1 2 3
2 3 1
3 1 2

• Check if the coset table is incomplete. If so, run through the coset table
line by line until the first undefined, i.e. empty position is found.
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The first undefined position in C121 is 2x.

• Define this position as the smallest available element α ∈ [1, . . . , N ] =
[1, 2, 3, 4]. Check if this definition is a contradiction to Property 2 or if
there is an incorrect scan under any element of R1. If so, move on and
define this position as the next smallest available element α ∈ [1, 2, 3, 4].
Check again that this definition is not a contradiction to Property 2 and
there is no incorrect scan under any element of R1. Repeat this until there
is an element α ∈ [1, 2, 3, 4] such that Property 2 is not contradicted and
there is no incorrect scan under any element of R1. Put this new definition
in the coset table and add to the index of the name of the current coset
table the number of how often this position has been validly defined so far
to name the new coset table.

Define 2x = 1 Then by Property 2, we know that 1x = 2 must hold, in
contradiction to 1x = 1. So the definition is invalid and we define 2x =: 2.
Property 2 is not contradicted and there is no incorrect scan, hence we obtain

C1211 x y y−1

1 1 2 3
2 2 3 1
3 1 2

• Check if by Property 2 or scanning α under all words of R1 any deductions
can be made. Put them in the coset table.

There are no possible deductions.

• Check if the coset table is incomplete. If so, run through the coset table
line by line until the first undefined, i.e. empty position is found.

The first undefined position in C1211 is 3x.

• Define this position as the smallest available element α ∈ [1, . . . , N ] =
[1, 2, 3, 4]. Check if this definition is a contradiction to Property 2 or if
there is an incorrect scan under any element of R1. If so, move on and
define this position as the next smallest available element α ∈ [1, 2, 3, 4].
Check again that this definition is not a contradiction to Property 2 and
there is no incorrect scan under any element of R1. Repeat this until there
is an element α ∈ [1, 2, 3, 4] such that Property 2 is not contradicted and
there is no incorrect scan under any element of R1. Put this new definition
in the coset table and add to the index of the name of the current coset
table the number of how often this position has been validly defined so far
to name the new coset table.
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Define 3x = 1. Then by Property 2, we know that 1x = 3 must hold, in
contradiction to 1x = 1. So the definition is invalid and we define 3x = 2. Then
by Property 2, we know that 2x = 3 must hold, in contradiction to 2x = 2. So
the definition is invalid and we define 3x =: 3. Property 2 is not contradicted
and there is no incorrect scan, hence we obtain

C12111 x y y−1

1 1 2 3
2 2 3 1
3 3 1 2

• Check if the coset table is incomplete. If not, scan all elements of Ω under
all elements of R2 to make sure it is correct.

The coset table C12111 is complete. Scan all α ∈ Ω = {1, 2, 3} under all words
w ∈ R2: First scan 1 under (xy)4. The result must be 1, but

1(xy)4
= 1xyxyxyxy = 1yxyxyxy = 2xyxyxy = 2yxyxy = 3xyxy = 3yxy = 1xy = 1y = 2 ,

hence we obtain a contradiction. So the coset table C12111 is incorrect.

• Return to the coset table before the last new definition. This we can do
by simply losing the last index of the name of the coset table.

The coset we return to is C1211.

• Run through the coset table line by line until the first undefined, i.e. empty
position is found.

Again, the first undefined position in C1211 is 3x.

• Define this position as the smallest available element α ∈ [1, . . . , N ] =
[1, 2, 3, 4]. Check that this definition is not a contradiction to Property
2 and there is no incorrect scan under any element of R1. If so, put the
new definition in the coset table and add to the index of the name of the
current coset table the number of how often this position has been validly
defined so far to name the new coset table.

Since we have tried 1, 2, 3 ∈ [1, 2, 3, 4] already they are not available anymore.
Thus, define 3x =: 4. Property 2 is not contradicted and there is no incorrect
scan, hence we obtain

C12112 x y y−1

1 1 2 3
2 2 3 1
3 4 1 2
4
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• Check if by Property 2 or scanning α under all words of R1 any deductions
can be made. Put them in the coset table.

By Property 2, we deduce 4x = 3, hence we obtain

C12112 x y y−1

1 1 2 3
2 2 3 1
3 4 1 2
4 3

• Check if the coset table is incomplete. If so, run through the coset table
line by line until the first undefined, i.e. empty position is found.

The first undefined position in C12112 is 4y.

• Define this position as the smallest available element α ∈ [1, . . . , N ] =
[1, 2, 3, 4]. Check if this definition is a contradiction to Property 2 or if
there is an incorrect scan under any element of R1. If so, move on and
define this position as the next smallest available element α ∈ [1, 2, 3, 4].
Check again that this definition is not a contradiction to Property 2 and
there is no incorrect scan under any element of R1. Repeat this until there
is an element α ∈ [1, 2, 3, 4] such that Property 2 is not contradicted and
there is no incorrect scan under any element of R1. Put this new definition
in the coset table and add to the index of the name of the current coset
table the number of how often this position has been validly defined so far
to name the new coset table.

Define 4y =: 1. Then by Property 2, we know that 1y−1 = 4 must hold, in
contradiction to 1y−1 = 3. Also for 4y = 2 and 4y = 3 we obtain a contradiction.
So we define 4y =: 4. Property 2 is not contradicted and there is no incorrect
scan, hence we obtain

C121121 x y y−1

1 1 2 3
2 2 3 1
3 4 1 2
4 3 4

• Check if by Property 2 or scanning α under all words of R1 any deductions
can be made. Put them in the coset table.
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By Property 2, we deduce 4y−1 = 4, hence we obtain

C121121 x y y−1

1 1 2 3
2 2 3 1
3 4 1 2
4 3 4 4

• Check if the coset table is incomplete. If not, scan all elements of Ω under
all elements of R2 to make sure it is correct.

The coset table C121121 is complete. All α ∈ Ω scan correctly under (xy)4, hence
the table is correct. With C121121, we have found the second coset table.

• Return to the coset table before the last new definition. This we can do
by simply losing the last index of the coset table.

The coset we return to is C12112.

• Run through the coset table line by line until the first undefined, i.e. empty
position is found.

Again, the first undefined position in C12112 is 4y.

• Define this position as the smallest available element α ∈ [1, . . . , N ] =
[1, 2, 3, 4]. If there is no element available, return to the coset table before
the last new definition, by losing the last index of the coset table.

We have tried all α ∈ [1, 2, 3, 4] for 4y, hence we need to return to C1211.

• Run through the coset table line by line until the first undefined, i.e. empty
position is found.

Again, the first undefined position in C1211 is 3x.

• Define this position as the smallest available element α ∈ [1, . . . , N ] =
[1, 2, 3, 4]. If there is no element available, return to the coset table before
the last new definition, by losing the last index of the coset table.

We have tried all α ∈ [1, 2, 3, 4] for 3x, hence we need to return to C121.

• Run through the coset table line by line until the first undefined, i.e. empty
position is found.

Again, the first undefined position in C121 is 2x.

• Continue the process as described before.
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The next available definition is 2x =: 3. Property 2 is not contradicted and there
is no incorrect scan. By Property 2 we can deduce 3x = 2. Hence we obtain

C1212 x y y−1

1 1 2 3
2 3 3 1
3 2 1 2

The coset table C1212 is complete and all α ∈ Ω scan correctly under all words
of R2, hence we have found the third coset table.

Return to C121, the last coset table before the last definition. The next available
definition for 2x is 2x =: 4. It is not a contradiction to Propery 2 and there is
no incorrect scan. By Property 2 we deduce 4x = 2. Hence we obtain

C1213 x y y−1

1 1 2 3
2 4 3 1
3 1 2
4 2

The next undefined position is 3x. Since 3x = 1 and 3x = 2 contradicts Property
2, we define 3x = 3. There is no contradiction to Property 2 and there is no
incorrect scan.

• Check if the algorithm FirstInClass, which is described in [19, p.194]
returns true: This algorithm checks whether the subgroup corresponding
to the coset table is the canonical representative of the conjugacy class of
subgroups. If it is not, i.e. FirstInClass returns false, the definition is
invalid. Move on to the next available definition.

For the definition 3x = 3, FirstInClass returns false (in fact the table is in
the same conjugacy class as C121121 as stated in [19, p. 195, Example 5.10]),
hence the definition is invalid. We are left with the possible definition 3x = 4,
which is a contradiction to Property 2. Thus, we need to return to the coset
table before the last new definition.

Return to C12, where the next undefined position is 1y. The next available
α ∈ [1, 2, 3, 4] would be 3.

• Check if every α ∈ [1, 2, 3, 4] such that α < 3 has occured in the coset table
at least once. If not, the definition is unvalid. Return to the coset table
before the last definition.
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If we define 1y =: 3, then 2 would not occur in the coset table. Hence the
definition is invalid and we need to return to C0.
Define 1x =: 2 and deduce 2x = 1:

C2 x y y−1

1 2
2 1

Define 1y = 1 and deduce 1y−1 = 1:

C21 x y y−1

1 2 1 1
2 1

Since 2y = 1 implies 1y−1 = 2 in contradiction to 1y−1 = 1, define 2y =: 2 and
deduce 2y−1 = 2:

C211 x y y−1

1 2 1 1
2 1 2 2

The coset table C211 is complete and all α ∈ Ω scan correctly under all words of
R2, hence we have found the forth coset table.

Return to the coset table C21, define 2y =: 3 and deduce 3y−1 = 2:

C212 x y y−1

1 2 1 1
2 1 3
3 2

Since 2y−1 = 1 and 2y−1 = 2 both imply contradictions to Property 2, we try
2y−1 = 3. But scanning 2 under y−3 gives

2y
−3

= 3y
−2

= 2y
−1

= 3 ,

in contradiction to the desired result 2. Hence we define 2y−1 =: 4 and deduce
4y = 2. Furthermore by scanning 2 under y3 we deduce

y y y

2 3 4 2
_
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i.e. 3y = 4 and 4y−1 = 3:

C2121 x y y−1

1 2 1 1
2 1 3 4
3 4 2
4 2 3

Since 3x = 1 and 3x = 2 both imply contradictions to Property 2, we try 3x = 3.
But then FirstInClass returns false. Hence we define 3x =: 4 and deduce
4x = 3:

C21211 x y y−1

1 2 1 1
2 1 3 4
3 4 4 2
4 4 2 3

The coset table C21211 is complete and all α ∈ Ω scan correctly under all words
of R2, hence we have found the fifth coset table.

Return to the coset table C2, since this is the last one where a new definition is
still available. Define 1y =: 2 and deduce 2y−1 = 1:

C22 x y y−1

1 2 2
2 1 1

Since 1y−1 = 1 implies a contradiction to Property 2, we try 1y−1 = 2. But
scanning 1 under y3 gives

1y
3

= 2y
2

= 1y
1

= 2 ,

in contradiction to the desired result 1. Hence we define 1y−1 =: 3 and deduce
3y = 1. Furthermore, by scanning 1 under y3 we deduce

y y y

1 2 3 1
_
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i.e. 2y = 3 and 3y−1 = 2:

C221 x y y−1

1 2 2 3
2 1 3 1
3 1 2

Since 3x = 1 and 3x = 2 both imply contradictions to Property 2, we try 3x = 3.
But then FirstInClass returns false. Hence we define 3x =: 4 and deduce
4x = 3:

C221 x y y−1

1 2 2 3
2 1 3 1
3 4 1 2
4 3

Since 4y = 1, 4y = 2 and 4y = 3 all imply contradictions to Property 2, we try
4y = 4. But then FirstInClass returns false. Hence we need to return to
coset table with the last definition, where a new one is available.

Return to C2. Define 1y =: 3 and deduce 3y−1 = 1:

C23 x y y−1

1 2 3
2 1 1
3 1

Since 1y−1 = 1 implies a contradiction to Property 2, we try 1y−1 = 2. But then
FirstInClass returns false. Hence we try 1y−1 = 3 and deduce 3y = 1. But
scanning 1 under y3 gives

1y
3

= 3y
2

= 1y = 3 ,

in contradiction to the desired result 1. Hence we define 1y−1 =: 4 and deduce
4y = 1. Furthermore by scanning 1 under y3 we deduce

y y y

1 3 4 1
_
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i.e. 3y = 4 and 4y−1 = 3:

C231 x y y−1

1 2 3 4
2 1
3 4 1
4 1 3

Since 2y = 1 implies a contradiction to Property 2, we try 2y = 2. But then
FirstInClass returns false. Hence we try 2y = 3 and 2y = 4, which both give
a contradiction to Property 2 as well.

Hence we return to C2, but we cannot define 1y = 4, since then 3, which is less
then 4, would not occur in the coset table. Thus, we need to return to C0. But
we cannot define 1x = 3, since then 2, which is less then 3, would not occur in the
coset table. Hence with C11, C121121, C1212, C211 and C21211 we have found all
possible coset tables corresponding to a canonical representative of a subgroup
of G up to index 4.

Example 4.16. It turns out that the Heineken group H is an example of a group for
which the Low Index Method becomes quickly unfeasible with increasing index n.
Computing any subgroup of large index is almost impossible. The only chance we
stand is by using the 2-generator presentation (34). Searching for all subgroups
up to index 10 with the GAP-function LowIndexSubgroupsOfFpGroup(H,n),
where H still has the 3-generator presentation (33) takes already about 280
seconds on a standard desktop computer. Hence we use SimpliedFpGroup(H)

to obtain the 2-generator presentation, with which the computation is finished
in 11 seconds. We obtain a list of five subgroups up to index 10, given in the
following table. None of them is (properly) normal.

Index Generators Normal #Relators

H1 1 a, b / 2

H2 6 a, b−1a2b−1, b−1a−1b−2,

b−2a−1b−1, ba2b−2, bab−3 no 12

H3 5 ba−1, a2b, a−2b−1a−1,

a−1b2, a−1b−2a−1, b−1ab−1a−1 no 10

H4 10 ba−1, b−1ab−1a−1, b−1a−1b−1a, b−2a−2,

a5, a2b−2a−1, a−2ba−1b−1a−1, (a−1b)2a
no 20

H5 10 ba−1, a−1ba−2, b−1ab−1a−1, a5, a(ab)2,

(ab)2a, ab4, a−2b2a, a−2b−1ab
no 20
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A computation to verify with the Low Index Method whether the quotient
isomorphic to A5 is the smallest proper finite one, took more than 125 days on
my desktop computer provided by the University and was therefore aborted.
To my knowledge, no further computations can be done in the time and space
frame of the devices accessible to me.
Nonetheless it seems like the Low Index Method has some useful application
for the Heineken group: Joachim Neubüser proves in [37] using the Low Index
Method applied together with the so-called "Schreier-Sims Algorithm", the
"Reidemeister-Schreier Algorithm", the "Method of SL(2, · · · )-Representations"
and the "Nilpotent Quotient Algorithm" that there is a finite quotient of the
Heineken group H of size 60·224. Furthermore Neubüser’s student Hoppe suggests
in [22] that it has finite quotients of size 960 and 3840 besides the ones of size
60 and 120. Although he gives a set of generators of those subgroups, it is not
feasible for me to verify their index in GAP. But it is apparent that all four
numbers 60, 120, 960, 3840 are of the form 60 ·2x where x is a natural number, in
those cases we have x ∈ {0, 1, 4, 6}. It might be interesting to investigate further,
whether those results can be obtained with similar methods as the quotient of
size 60 · 224.
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