

# **DIPLOMARBEIT / DIPLOMA THESIS**

Titel der Diplomarbeit / Title of the Diploma Thesis

# "Die Moosvegetation ausgewählter Quellen im Nationalpark Kalkalpen"

verfasst von / submitted by Nils Nowy, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Magister der Naturwissenschaften (Mag.rer.nat.)

Wien, 2019 / Vienna, 2019

Studienkennzahl It. Studienblatt / degree programme code as it appears on the student record sheet:

Studienrichtung It. Studienblatt / degree programme as it appears on the student record sheet:

Betreut von / Supervisor:

UA 190 445 482

Lehramtsstudium UF Biologie und Umweltkunde UF Bewegung und Sport

Doz. Mag. Dr. Harald Zechmeister

## **Danksagung**

Meinem Betreuer Harald Zechmeister gebührt der größte Dank. Nur durch seine Expertise, seine Liebe zur Organismengruppe der Moose und seine enorme Geduld mir gegenüber, konnte diese Arbeit begonnen und auch fertiggestellt werden.

Besonderer Dank kommt Erich Weigand und dem Nationalpark Kalkalpen zu, für die Förderung und Ermöglichung dieser Arbeit und die logistische Unterstützung vor Ort.

Weiters möchte ich Petar Hrtica und allen Gästen des Café Alt Wien danken, die für meinen Lebensunterhalt während des Studiums aufgekommen sind.

Zu guter Letzt möchte ich mich bei meiner Frau, Viki und meinen zwei Söhnen, Erik und Sven für deren Liebe, Rückhalt und Motivation bedanken.

### Zusammenfassung

Von Mai bis November 2005 wurden 39 Quellaustritte im Nationalpark Kalkalpen auf ihre Moosvegetation kartiert.

Insgesamt konnten 96 verschieden Moosarten, davon 20 Lebermoose und 76 Laubmoose, gefunden, herbarisiert und bestimmt werden. Die gefundenen Arten wurden mit dem "Katalog und Rote Liste der Moose Oberösterreichs" abgeglichen.

Dabei wurden 2 vom Aussterben bedrohte Arten (CR - Jungermannia obovata c.f., Oxyrrhynchium speciosum), 8 verletzliche Arten (VU - Amblystegium tenax, Cinclidotus aquaticus, Didymodon tophaceus, Leiocolea bantriensis, Palustriella decipiens, Plagiomnium ellipticum, Rhizomnium magnifolium, Warnstorfia exannulata), 1 gefährdete Art, aber unbekannten Ausmaßes (G - Philonotis caespitosa c.f.), 6 beinahe gefährdete Arten, auf der Vorwarnliste (NT - Dicranum polysetum, Marchantia polymorpha ssp. polymorpha, Palustriella commutata var. commutata, Philonotis fontana, Plagiomnium elatum, Scorpidium cossonii) und 1 seltene Arte (R - Anomobryum concinnatum) gefunden.

Die gefundenen Bestände konnten überwiegend den soziologischen Gesellschaften des Cratoneuretum commutati bzw. Brachythecio rivularis - Hygrohypnetum luridi zugeordnet werden.

#### **Abstract**

From May until November 2005, the mossvegetation of 39 springs in the Kalkalpen National Park was investigated.

All in all 96 different species of mosses were found, collected and identified on a species level. Those species were cross referenced with the "Katalog und Rote Liste der Moose Oberösterreichs".

2 critically endangered species (*Jungermannia obovata c.f., Oxyrrhynchium speciosum*), 8 vulnerable species (*Amblystegium tenax, Cinclidotus aquaticus, Didymodon tophaceus, Leiocolea bantriensis, Palustriella decipiens, Plagiomnium ellipticum, Rhizomnium magnifolium, Warnstorfia exannulata*), 1 species endangered to unknown extent (G - *Philonotis caespitosa c.f.*), 6 near threatened species (NT - *Dicranum polysetum, Marchantia polymorpha ssp. polymorpha, Palustriella commutata var. commutata, Philonotis fontana, Plagiomnium elatum, Scorpidium cossonii*) and 1 rare species (VU-R - *Anomobryum concinnatum*) were found.

In terms of plant sociology moss vegetation could mainly be ranked into Cratoneuretum commutati and Brachythecio rivularis - Hygrohypnetum luridi.

# Inhaltsverzeichnis:

| 1. Einleitung                                           |    |
|---------------------------------------------------------|----|
| 1.1. Nationalparks                                      | 6  |
| 1.2. Der Nationalpark Kalkalpen                         | 7  |
| 1.3. Geologie                                           | 8  |
| 1.4. Klima                                              | 9  |
| 1.5. Quellfluren                                        |    |
| 1.6. Moose                                              | 11 |
| 1.7. Methodik                                           |    |
| 2. Moosvegetationsaufnahmen der Quellen                 |    |
| 2.1. AMA (Ackermäuer Siphonquelle)                      |    |
| 2.2. AMQ-Quellaustritte (Ameisbach Quellen)             |    |
| AMQ I                                                   |    |
| AMQ II                                                  |    |
| AMQ III                                                 |    |
| AMQ IV                                                  |    |
| 2.3. EBA (Ebenforstquelle Nord)                         |    |
| 2.4. FALK I (Ponordoline Falkenmauer, Ost)              |    |
| · · · · · · · · · · · · · · · · · · ·                   |    |
| 2.5. FEIS (Feichtausee Quelle)                          |    |
| 2.6. GÖR (Obere Göritzbachquelle)                       |    |
| 2.7. HAS III (Untere Haselquelle)                       |    |
| 2.8. HRQ - Quellaustritte (Hintere Rettenbach Quelle)   |    |
| HRQ I                                                   |    |
| HRQ II                                                  |    |
| HRQ III                                                 |    |
| HRQ IV                                                  |    |
| HRQ V                                                   |    |
| HRQ VI                                                  |    |
| HRQ VII                                                 |    |
| HRQ VIII                                                |    |
| HRQ IX                                                  |    |
| 2.9. KRA (Krahlalmquelle)                               |    |
| 2.10. LEO (Quelle Leonsteiner Bach)                     |    |
| 2.11. LILA (Würfling Siphonhöhle)                       | 35 |
| 2.12. MAUL (Maulaufloch Quelle)                         | 37 |
| 2.13. OFEI (Nockkarquelle, Quelle ober gr. Feichtausee) | 38 |
| 2.14. PRED-N (Nördliche Predigtstuhl Quelle)            | 40 |
| 2.15. RIM (Rinnende Mauer)                              | 41 |
| 2.16. SCHA3 (Untere Schaumberg-Almquelle)               | 43 |
| 2.17. SCHÜ (Quelle Schaumberghütte)                     |    |
| 2.18. SFEL                                              | 46 |
| 2.19. SIQ (Sitzenbachquelle)                            | 47 |
| 2.20. STEF1 (Quellhorizont südl. Stefflalm)             |    |
| 2.21. STEY AA (Steyern Quelle)                          |    |
| 2.22. STEY AB (Steyern Quelle)                          |    |
| 2.23. SULZ (Sulzgrabenquelle)                           |    |
| 2.24. TDQ (Tuff-Doppelquelle)                           |    |
| 2.25. WEIS (Quelle im Weißenbach)                       |    |
| 2.26. ZEMO II (Quelltobel Dörflmoaralm)                 |    |
| 2.27. ZWIE I (Quelle unter Zwielauf)                    |    |
| 2.28. ZWIE I (Quelle unter Zwielauf)                    |    |
|                                                         |    |

| 3. Ergebnisse                  | 59 |
|--------------------------------|----|
| 3.1. Gesamtartenliste          |    |
| 3.2. Rote Liste Arten          |    |
| 3.3. Diskussion der Ergebnisse |    |
| 4. Literaturverzeichnis        |    |

### 1. Einleitung

#### 1.1. Nationalparks

Im Gegensatz zu anderen (nationalen) Schutzkategorien nimmt die Kategorie Nationalpark eine gesonderte Stellung ein, da hier die Kriterien der Weltnaturschutzunion (IUCN) gelten. Durch Erfüllung dieser Kriterien kommt es zur internationalen Anerkennung in die Schutzkategorie II (Nationalpark).

#### Die IUCN definiert:

Ein natürliches Landgebiet oder marines Gebiet, das ausgewiesen wurde um (a) die ökologische Unversehrtheit eines oder mehrerer Ökosysteme im Interesse der heutigen und kommender Generationen zu schützen, um (b) Nutzungen oder Inanspruchnahme, die den Zielen der Ausweisung abträglich sind, auszuschließen und um (c) eine Basis für geistigseelische Erfahrungen sowie Forschungs-, Bildungs- und Erholungsangebote für Besucher zu schaffen. Sie alle müssen umwelt- und kulturverträglich sein (EUROPARC und IUCN 2000: 24).

Die IUCN schreibt weiters Managementziele für Nationalparks vor, diese lauten wie folgt:

- Schutz natürlicher Regionen und landschaftlich reizvoller Gebiete von nationaler und internationaler Bedeutung für geistige, wissenschaftliche, erzieherische, touristische oder Erholungszwecke;
- Erhaltung charakteristischer Beispiele physiographischer Regionen, Lebensgemeinschaften, genetischer Ressourcen und von Arten in einem möglichst natürlichen Zustand, damit ökologische Stabilität und Vielfalt gewährleistet sind;
- Besucherlenkung für geistig-seelische, erzieherische, kulturelle und Erholungszwecke in der Form, daß das Gebiet in einem natürlichen oder naturnahen Zustand erhalten wird;
   [...]
- Beendigung und sodann unterbinden von Nutzungen oder Inanspruchnahme, die dem Zweck der Ausweisung entgegenstehen;
- Respektierung der ökologischen, geomorphologischen, religiösen oder ästhetischen Attribute, die Grundlage für die Ausweisung waren;
- Berücksichtigung der Bedürfnisse der eingeborenen Bevölkerung einschließlich deren Nutzung bestehender Ressourcen zur Deckung ihres Lebensbedarfs mit der Maßgabe, daß diese keinerlei nachteilige Auswirkungen auf die anderen Managementziele haben (EUROPARC und IUCN 2000: 24).

Weiters gelten auch Auswahlkriterien, die eine Klassifizierung in Kategorie II (Nationalpark) bedingen:

- Das Gebiet muss ein charakteristisches Beispiel für Naturregionen, Naturerscheinungen oder Landschaften von herausragender Schönheit enthalten, in denen Pflanzen- und Tierarten, Lebensräume und geomorphologische Erscheinungen vorkommen, die von besonderer Bedeutung sind in geistig-seelischer Hinsicht sowie für Wissenschaft, Bildung, Erholung und Tourismus.
- Das Gebiet muss groß genug sein, um eines oder mehrere vollständige Ökosysteme zu erfassen, die durch die laufende Inanspruchnahme oder menschlichen Nutzungen nicht wesentlich verändert wurden (EUROPARC und IUCN 2000: 25).

In Österreich sind bis heute sechs Regionen, mit einer Gesamtfläche von 238.035 ha, nach den IUCN Kriterien zu Nationalparks ausgewiesen worden. Das entspricht in etwa drei Prozent der Staatsfläche. Es sind die Nationalparks Hohe Tauern, Donauauen, Neusiedlersee-Seewinkel, Thayatal, Gesäuse und der Nationalpark Kalkalpen (Nationalparks Austria 2019).

#### 1.2. Der Nationalpark Kalkalpen

Der Nationalpark Kalkalpen liegt im Süden des Bundeslandes Oberösterreich und umfasst eine Fläche von 20.825 ha zwischen Sengsengebirge und Reichraminger Hintergebirge, siehe Abb.1. Er wurde 1996 beschlossen und 1997 durch die IUCN als Kategorie II -Nationalpark anerkannt. Es handelt sich dabei um das größte Waldschutzgebiet Österreichs, wobei der tiefste Punkt auf 385 m und der höchste Punkt, der Hohe Nock, auf 1.963 Seehöhe liegt. Naturschutzaktivitäten, die m wie Verordnung des Naturschutzgebietes Sengsengebirge 1976 und die Mollner Erklärung, von alpinen Vereinen und Naturschutzorganisationen 1989, gingen der Entstehung des Nationalparks voraus. Charakteristisch für das Sengsengebirge ist der starke Wassermangel in den Hochlagen, der auf die intensive Verkarstung zurückzuführen ist. In den Mittel- und Tieflagen wiederum kommt es zu einer Vielzahl an Quellaustritten und Karsthöhlen. Fichten-Tannen-Buchenwälder reichen bis etwa 1.500 Höhenmeter darüber, an steilen Schutthalden und Felswänden liegt nur Pioniervegetation vor. Das Reichraminger Hintergebirge umfasst das größte geschlossene Waldgebiet der Nördlichen Kalkalpen mit verzweigten Schluchten und etlichen Tälern. Man findet hier Fichten-Tannen-Buchenwälder, trockenwarme Kalk-Buchen- und Bergahorn-Schluchtenwälder. Auch Almflächen kommen im Gebiet vor, wenn sie auch nur ca. fünf Prozent der Gesamtfläche bilden. Diese sollen auch weiter bewirtschaftet werden, da sie unter anderem einen wichtigen Lebensraum für Schmetterlinge, hier kommen 135 in Oberösterreich gefährdete Arten vor, darstellen. Die Nationalparkfläche ist in eine Natur- und eine Bewahrungszone

geteilt. In der Naturzone ist grundsätzlich jeder Eingriff untersagt, Wandern, Bergsteigen und Tourenskifahren bleibt aber weiterhin erlaubt. In der Bewahrungszone gibt es Ausnahmen für naturnahe Almwirtschaft, ökologisch orientierte Forstwirtschaft und Jagd zur Wildstandsregulierung (Tiefenbach et al. 1998).

Für diese Arbeit von besonderem Interesse ist der Reichtum an Quellen im Nationalpark, über 800 Quellen sind hier bekannt und dokumentiert (Stadler 2017)



Abb.1 Nationalpark Kalkalpen (NP Kalkalpen 2019)

#### 1.3. Geologie

Die Entstehung der Kalkalpen begann vor ca. 250 Mio. Jahren, am Beginn des Ablagerungen Thetys-Meeres, Mesozoikums. Durch des hauptsächlich Reste abgestorbener Meeresorganismen, entstanden Sedimentgesteine. Aus zusammengehörigen Zonen gleicher Ablagerungsräume bildeten sich Decken aus. Im Nationalpark Kalkalpen sind die maßgeblich am geologischen Aufbau beteiligten Decken die Tirolische Decke und die Reichraminger Decke. Das Sengsengebirge gehört zur Decke, eine von Osten nach Westen streichende Großfalte Wettersteinkalk. Sie bedingt die Kettenform und die steil abfallenden Nordwände. Im Norden des Sengsengebirges liegen die Mollner Berge, die zur Reichraminger Decke gezählt werden. Östlich der Krummern Steyerling beginnt das Hintergebirge, ebenfalls ein Teil der Reichraminger Decke. Es handelt sich hierbei um eine größtenteils dolomitische, durch Flusserosion geprägte, zergliederte Voralpenlandschaft. So gibt es tiefe Schluchten und kleine Plateaus. Das Sengsengebirge bildet mit seinen hohen Gipfeln (knapp 2000 m) den Übergang zu den Kalkhochalpen. Das Hintergebirge ist typisch für die Kalkvoralpen. Im gesamten Areal kommt es zu einer Verkarstung von 75%, auch wenn dies nicht auf den ersten Blick ersichtlich ist (Haseke 2004).

Der Verlust der Bodendecke und das Kahlwerden von Bergflanken werden meist mit Karst assoziiert, dies ist jedoch nur, aber nicht zwingende, Begleiterscheinung der Verkarstung. Unter dem Begriff Karst wird die unterirdische Entwässerung im karbonatischen Gestein verstanden, mit typischen, daraus resultierenden Formen wie beispielsweise Höhlen, Dolinen und Quellen. Da Kalkgesteine nicht verwittern sondern sich im Wasser auflösen, gibt es auf karbonatischen Böden keinen Verwitterungshorizont, der Humus liegt dem blanken Fels auf (AC-Böden) und daher sind solche Böden sehr störungsanfällig (Ford und Williams 2013).

Solange die Oberfläche kaum genutzt oder gestört wird, bleibt sie intakt, wofür die Feichtau oder die Ebenforstalm im Nationalpark Kalkalpen gute Beispiele sind. Sie sind komplett verkarstet aber trotzdem dicht bewaldet und von Almwiesen und Bächen durchzogen (Stadler 2017).

#### 1.4. Klima

Im Nationalpark Kalkalpen herrschen gemäßigt feuchte und stark ozeanisch beeinflusste klimatische Bedingungen vor, die sich durch aus dem Nordwesten kommende, atlantische Frontsysteme ergeben. Die sogenannte Nordstauzone entlang der Nördlichen Kalkalpen nimmt ca. 20 % der gesamten Landesfläche Österreichs ein und hier fallen ca. 50 % der Niederschläge. Das Gebiet wird auch als Prallhang Europas bezeichnet. So kommt es zu dem enormen Wassereichtum in Form von Quellen und Flüssen, in dieser Gegend. In den Gebirgsregionen ist die Witterung natürlich stark von der jeweiligen Höhenlage und Exposition abhängig, so liegen die Jahresmitteltemperaturen in den Tälern bei 8°C aber auf den Gipfeln um 1°C. Die Jahresniederschlagsmengen liegen zwischen 1300-1800 mm, steigen aber im Gipfelbereich auf über 2000 mm. Mit Gewitterfronten kommt es zwischen Juni und August zu Niederschlagsspitzen (Haseke 2004).

#### 1.5. Quellfluren

Nach Steinmann (1915) und Thienemann (1924) werden Quellen auf Grund der morphologischen Struktur des Wasseraustritts in die drei Typen Sturzquelle (Rheokrene), Sickerquelle (Helokrene) und Tümpelquelle (Limnokrene) eingeteilt. Fließende Übergänge zwischen diesen drei Quelltypen sind jedoch möglich.

Sturzquellen zeichnen sich durch einen punktuellen Wasseraustritt in meist steilem Gelände mit starker Schüttung und hoher Fließgeschwindigkeit des Wassers aus. Durch die vorwiegend starke Strömung ist das Substrat felsig bis steinig, kann aber auch wechseln, wenn es beispielsweise zu Falllaubstapeln kommt. Durch die starke Schüttung und die Steilheit des Geländes kommt es zu stark spritzwasserbeeinflussten Bereichen, die an Felswänden spezielle Rieselfluren bilden. Sickerquellen bilden typischerweise große, durchnässte Flächen, die von mehreren Austritten gespeist werden. Das Gelände ist hier meist nur schwach bis mäßig geneigt und die Schüttungsmengen geringer. Dadurch ist das Substrat relativ fein. Tone, Sande, Kiese, Totholz und Fallaub bleiben im Quellbereich und werden nicht weggespült. Tümpelquellen treten mit einem oder mehreren kleinen Austritten von unten in einen Quelltümpel aus. Sie treten meist am Hangfuß oder in Tallagen auf (Schindler 2004).

Im Nationalpark Kalkalpen sind besonders die Karstquellen hervorzuheben. Dies sind meist Sturzquellen im stark zerklüfteten Kalkstein, so dass Niederschlagswasser durch Spalten im Fels, wie durch Rohrleitungen, in die Tiefe fließt, um an anderer Stelle wieder als Quelle auszutreten. Nur wenige Stunden nach einem Gewitter kann die Quelle stark anschwellen. Dagegen reichen oft kurze Trockenperioden, um Karstquellen weitgehend versiegen zu lassen (Stadler 2017).

Im kalkhaltigen Wasser bilden sich artenarme Kalkquellfluren, die hauptsächlich aus Moosen bestehen. Um Photosynthese betreiben zu können, entziehen die Moose dem Wasser CO<sub>2</sub>. Dadurch fällt Kalziumkarbonat aus und überzieht Pflanzen und Untergrund mit einer harten Kruste. Diesen Vorgang bezeichnet man als Vertuffung, die so beschaffenen Quellen als Tuffquellen (Unterwurzacher et al. 2006).

Im Nationalpark Kalkalpen gibt es über 800 dokumentierte Quellen, trotz der geringen Flächenausdehnung sind sie typische und wichtige Lebensräume des Nationalparks, die hochspezialisierten Organismen als ökologische Nischen dienen (Stadler 2017).

#### 1.6. Moose

Zusammen mit den Grünalgen, Farn- und Samenpflanzen gehören die Moose zu den grünen Landpflanzen (Chlorobionta). Sie besitzen Chlorophyll a, b und Carotinoide, verwenden größtenteils Stärke als Reservestoff und bauen ihre Zellwände aus Zellulose auf. Im Gegensatz zu den meisten Farn- und Samenpflanzen besitzen Moose jedoch keine lignifizierten Leitgewebe, keine schützende, gut entwickelte Kutikula und keine Stomata. Außerdem lässt sich ihr Vegetationskörper nicht in Wurzel, Spross und Blätter gliedern. Dadurch ergiebt sich eine poikilohydrische (wechselfeuchte) Lebensweise, wobei die Moospflanzen nur im feuchten Zustand stoffwechselaktiv sind, und durch die nur rudimentären Leitgewebe und Fehlen von Festigungsgeweben kann eine bestimmte Maximalgröße (50 cm) nicht überschritten werden (Frahm 2001).

Die Wasseraufnahme und gleichzeitig Nährstoffaufnahme erfolgt direkt über die gesamte Pflanzenoberfläche in Form von athmosphärischen Wassers, Umgebungswassers oder Bodenwassers. Dies macht Moose auch besonders interessant zur Verwendung als Bioindikatoren von gasförmigen Emissionen oder bei Wassermoosen von Wasserqualität (Zechmeister 1996).

Der Gasaustausch erfolgt durch Diffusion über die Pflanzenoberfläche. Zu gute kommt den Moosen hierbei, dass in den bodennahen Luftschichten in Wäldern ein bis zu 50 % erhöhtes CO<sub>2</sub> - Angebot vorliegt. Diese höhere CO<sub>2</sub> Konzentration entsteht durch die Atmungsaktivität von Bodenmikroorganismen (Sveinbjörnson und Oechel 1992).

Auch submerse Moose sind auf gasförmiges CO<sub>2</sub> angewiesen, daher beschränkt sich ihr Vorkommen meist auf turbulente Fließgewässer. Nach Frahm (2001) ist zwar die Menge an gelöstem CO<sub>2</sub> im Wasser gleich hoch wie in der Luft, doch die Diffusion ist im Wasser um einen Faktor 10 niedriger. Da die CO<sub>2</sub> Aufnahme von der Fließgeschwindigkeit abhängig ist, kann die schlechtere Diffusionsrate bei höheren Fließgeschwindigkeiten jedoch wettgemacht werden.

Durch ihre einfache Struktur und spezielle Physiologie besiedeln Moose gerne feuchte Standorte, aber haben auch keine Probleme mit Trockenperioden, die überdauert werden ohne stoffwechselaktiv zu sein. So können Moose auch extreme Standorte, wie Felsen, Wüsten, Kältesteppen o.ä. besiedeln. Auch Karstquellen zählen, wegen des Wechsels von starker Schüttung und Trockenperioden hierzu. Je schwieriger die Umweltbedingungen für höhere Pflanzen werden, desto mehr treten Moose in den Vordergrund. Auf Wasserstandorte spezialisierte Moose weisen sehr wenige morphologische Anpassungen

an ihr Habitat auf. Nur Arten die im ständigen Fließwasser leben (z.B. *Hygroamblystegium*, *Fontinalis* oder *Ciclidotus*) haben verstärkte Mittelrippen, ein derbes Zellnetz oder gesäumte Blattränder um der Erosion durch das Wasser standzuhalten. Die sexuelle Vermehrung von Wassermoosen ist auf Trockenperioden beschränkt, da nur in diesen Zeiten Befruchtung möglich ist. Wassermoose vermehren sich daher oft vegetativ, meist durch Verfrachtung von Pflanzenfragmenten, aber auch durch blattachselständige oder blattbürtige Brutkörper (Frahm 2001).

#### 1.7. Methodik

#### Auswahl der Flächen:

Zusammen mit Dr. Erich Weigand wurden 28 Quelleareale, mit 39 Einzelquellen, zur Kartierung ausgewählt, die einen repräsentativen Querschnitt über die unterschiedlichen Quelltstandorte im Nationalpark Kalkalpen darstellen.

Die Eingrenzung der Aufnahmeflächen, welche Bereiche von Quellwasser betroffen und somit zur Kartierung relevant waren, erfolgte subjektiv nach Einschätzung des Autors.

#### Quelldaten:

Bei der Kartierung wurden Aufnahmedatum und Seehöhe in Metern vermerkt. Die Inklination wurde mit einer Skala von I-V, wobei die Skalierungen I: 0-10°, II: 10-20°, III: 20-30°, IV: 30-40° und V: > 40° bedeuten, angegeben. Weiters wurde für jede Quelle eine Skizze angefertigt oder ein Foto gemacht.

#### Kategorisierung der Flächen:

Quellaustritt (direkt am Austritt, Moose größtenteils submers)

Spritzwasserbereich (nicht submers, aber ständig durch Quellwasser nass)

Randbereich (bei starker Schüttung von Quellwasser beeinflusst, bei schwacher Schüttung nicht nass)

Quellabfluss (Moose in und um den Abflussbereich)

Weitere quellspezifische Kategorien, die bei den betreffenden Quellen genauer beschrieben werden (z.B.: Totholz, Unterschiede in der Steilheit, Höhlen, Felswände, Überrieselungsbereiche)

#### Aufnahme und Bestimmung:

Alle Vegetationsaufnahmen erfolgten von Mai bis November 2005. Insgesamt wurde 17 Tage lang kartiert und Material gesammelt.

Das gesammelte Material wurde teilweise vor Ort bestimmt, größtenteils aber herbarisiert und in einem Labor der Universität Wien mit Hilfe eines Stereomikroskops und eines Durchlichtmikroskops bestimmt.

Die Bestimmung der Moose erfolgte nach Frahm und Frey (2004), bis auf wenige Ausnahmen auf Artniveau.

### Taxonomie:

Die Nomenklatur der Laubmoose und Lebermoose richtet sich nach der "Checkliste der Moose Österreichs" (Köckinger et al. 2019).

#### Deckungen:

Die Deckungen der Moosvegetation wurden visuell in Form von Deckungsprozenten geschätzt. Die Einfachheit und Geschwindigkeit, auch in schwierigem Gelände, dieser Methode waren dafür ausschlaggebend.

Weiters lassen sich gerade Moose, durch die geringe Varianz ihrer Wuchsformen, kaum vorhandene Schichtung, Verteilungsmuster der Arten (wenig durchwachsene Bestände oder verteilte Einzelindividuen) und den fehlenden Blühaspekt (blühende Pflanzen werden meist überschätzt) gut visuell schätzen (Kent und Cocker 1992).

Die visuelle Deckungsschätzung wird wegen ihrer Subjektivität und einer hohen Fehlerrate oft abgelehnt (Stampfli 1991), in der vorliegenden Arbeit soll die Deckung jedoch nur eine Vorstellung über Verteilung und Dominanz einiger Arten in den untersuchten Quellfluren geben und die objektive Genauigkeit erscheint daher nicht so wichtig.

# 2. Moosvegetationsaufnahmen der Quellen

### 2.1. AMA (Ackermäuer Siphonquelle)

Aufnahme: 18.07.2005

Höhe: 940 m

Exposition: O-NO

Inklination: I

Der Quellaustritt liegt in einer ca. 2 m breiten und 1 m hohen Felshöhle, in einer senkrechten Felswand, siehe Skizze Abb.2. Seitlich des Abflusses beträgt die Geländeinklination ca. 30°. Im Abfluss befinden sich Geröll, Totholz und Laub. Durch den Fels und umliegenden Buchenwald kommt es zu einer Beschattung von ca. 70%. Moosarten der Quelle siehe Tab.1.

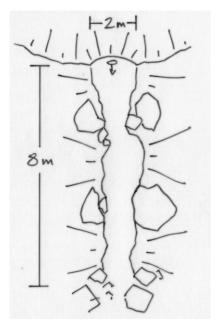



Abb.2 Skizze Ackermäuler Siphonquelle

Tab.1 Artenliste Ackermäuler Siphonquelle

| Quelle | Taxon                  | Aufnahmebereich | Deckung |
|--------|------------------------|-----------------|---------|
| AMA    | Brachythecium rivulare | Submers         | 90%     |
| AMA    | Thamnobryum alopecurum | Submers         | 10%     |
| AMA    | Brachythecium rivulare | Spritzwasser    | 55%     |
| AMA    | Thamnobryum alopecurum | Spritzwasser    | 30%     |

| Quelle | Taxon                     | Aufnahmebereich | Deckung |
|--------|---------------------------|-----------------|---------|
| AMA    | Conocephalum conicum      | Spritzwasser    | 5%      |
| AMA    | Plagiomnium undulatum     | Spritzwasser    | 5%      |
| AMA    | Pedinophyllum interruptum | Spritzwasser    | 2%      |
| AMA    | Plagiomnium rostratum     | Spritzwasser    |         |
| AMA    | Mnium thomsonii           | Spritzwasser    |         |
| AMA    | Ctenidium molluscum       | Spritzwasser    |         |
| AMA    | Fissidens dubius          | Spritzwasser    |         |
| AMA    | Pellia endiviifolia       | Spritzwasser    |         |
| AMA    | Amblystegium serpens      | Spritzwasser    |         |

### 2.2. AMQ-Quellaustritte (Ameisbach Quellen)

Diese hoch gelegenen Quellaustritte liegen unterhalb des Ahornsattels, siehe Skizze Abb.3. Ein Graben schneidet hier einen großen Kalkriegel an und bildet so den Quellhorizont.

Aufnahme: 13.09.2005

Seehöhe: 1164 m

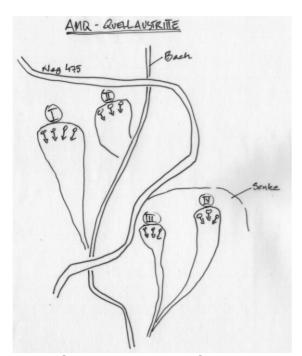



Abb.3 Skizze Ameisbach Quellaustritte

### AMQ I

**Exposition: N-NW** 

#### Inklination: II

Der Quellaustritt liegt an einer +/- lichten Stelle im Hang-Buchenwald, siehe Skizze Abb.4. Die Beschattung liegt bei etwa 40%. Viel Laub liegt in und um die Quelle, Moosarten der Quelle siehe Tab.2.

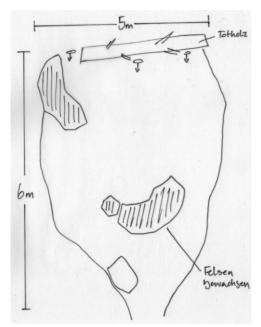



Abb.4 Skizze Ameisbachquelle I

Tab.2 Artenliste Ameisbachquelle I

| Quelle | Taxon                   | Aufnahmebereich | Deckung |
|--------|-------------------------|-----------------|---------|
| AMQ I  | Palustriella commutata  | Quellaustritt   | 90%     |
| AMQ I  | Plagiomnium undulatum   | Quellaustritt   | 5%      |
| AMQ I  | Brachythecium rivulare  | Quellaustritt   |         |
| AMQ I  | Rhizomnium punctatum    | Quellaustritt   |         |
| AMQ I  | Plagiochila porelloides | Quellaustritt   |         |
| AMQ I  | Orthothecium rufescens  | Quellaustritt   |         |
| AMQ I  | Fissidens dubius        | Quellaustritt   |         |
| AMQ I  | Lophocolea bidentata    | Quellaustritt   |         |

#### **AMQ II**

**Exposition: N-NW** 

Inklination: I

Der Quellaustritt liegt ca. 10 m neben AMQ I, im etwas lichteren Buchenwald mit nur 30 % Beschattung, siehe Skizze Abb.5. Es liegt ebenfalls viel Laub in und um den Austritt. Moosarten der Quelle siehe Tab.3.

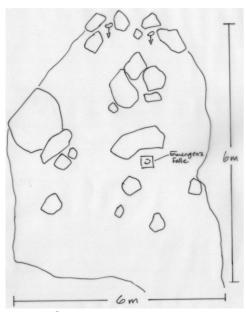



Abb.5 Skizze Ameisbachquelle II

Tab.3 Artenliste Ameisbachquelle II

| Quelle | Taxon                      | Aufnahmebereich | Deckung |
|--------|----------------------------|-----------------|---------|
| AMQ II | Warnstorfia exannulata     | Quellaustritt   | 60%     |
| AMQ II | Palustriella commutata     | Quellaustritt   | 30%     |
| AMQ II | Brachythecium rivulare     | Quellaustritt   | 10%     |
| AMQ II | Palustriella commutata     | Spritzwasser    | 85%     |
| AMQ II | Cratoneuron filicinum      | Spritzwasser    | 5%      |
| AMQ II | Plagiomnium undulatum      | Spritzwasser    | 5%      |
| AMQ II | Pellia endiviifolia        | Spritzwasser    |         |
| AMQ II | Rhizomnium punctatum       | Spritzwasser    |         |
| AMQ II | Campylium calcareum        | Spritzwasser    |         |
| AMQ II | Brachythecium rivulare     | Spritzwasser    |         |
| AMQ II | Lophocolea bidentata       | Spritzwasser    |         |
| AMQ II | Leiocolea heterocolpos     | Spritzwasser    |         |
| AMQ II | Leiocolea badensis c.f.    | Spritzwasser    |         |
| AMQ II | Rhytidiadelphus triquetrus | Spritzwasser    |         |
| AMQ II | Plagiochila porelloides    | Spritzwasser    |         |
| AMQ II | Fissidens dubius           | Spritzwasser    |         |
| AMQ II | Orthothecium rufescens     | Spritzwasser    |         |
| AMQ II | Pedinophyllum interruptum  | Spritzwasser    |         |
| AMQ II | Amblystegium humile        | Spritzwasser    |         |
| AMQ II | Ctenidium molluscum        | Spritzwasser    |         |
| AMQ II | Thuidium tamariscinum      | Spritzwasser    |         |
| AMQ II | Tortella tortuosa          | Spritzwasser    |         |
| AMQ II | Ditrichum gracile          | Spritzwasser    |         |
|        |                            |                 |         |

### **AMQ III**

Exposition: N-NW

Inklination: II

Der Quellaustritt liegt in einer Senke mitten im Buchenwald siehe Skizze Abb.6, daher kommt es zu einer Beschattung von ca. 90% und sehr viel Laub in der Quelle. Moosarten der Quelle siehe Tab.4.

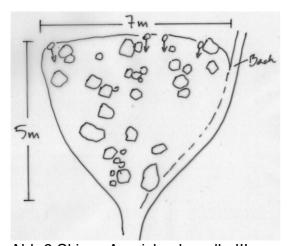



Abb.6 Skizze Ameisbachquelle III

Tab.4 Artenliste Ameisbachquelle III

| Quelle  | Taxon                     | Aufnahmebereich | Deckung |
|---------|---------------------------|-----------------|---------|
| AMQ III | Warnstorfia exannulata    | Quellaustritt   | 50%     |
| AMQ III | Brachythecium rivulare    | Quellaustritt   | 50%     |
| AMQ III | Palustriella commutata    | Spritzwasser    | 80%     |
| AMQ III | Cratoneuron filicinum     | Spritzwasser    | 10%     |
| AMQ III | Rhizomnium punctatum      | Spritzwasser    | 5%      |
| AMQ III | Conocephalum conicum      | Spritzwasser    |         |
| AMQ III | Plagiochila porelloides   | Spritzwasser    |         |
| AMQ III | Plagiomnium undulatum     | Spritzwasser    |         |
| AMQ III | Ctenidium molluscum       | Spritzwasser    |         |
| AMQ III | Fissidens dubius          | Spritzwasser    |         |
| AMQ III | Pedinophyllum interruptum | Spritzwasser    |         |
| AMQ III | Lophozia sp.              | Spritzwasser    |         |
| AMQ III | Campylium stellatum       | Spritzwasser    |         |
| AMQ III | Plagiomnium elatum        | Spritzwasser    |         |
| AMQ III | Pellia endiviifolia       | Spritzwasser    |         |
| AMQ III | Tortella tortuosa         | Spritzwasser    |         |

| Quelle  | Taxon                  | Aufnahmebereich | Deckung |
|---------|------------------------|-----------------|---------|
| AMQ III | Plagiomnium rostratum  | Spritzwasser    |         |
| AMQ III | Brachythecium rivulare | Spritzwasser    |         |

### **AMQ IV**

Exposition: N-NW

Inklination: I

Der Quellaustritt liegt in der gleichen Senke wie AMQ III, wird jedoch nur zu 60% beschattet, siehe Skizze Abb.7. Ebenfalls viel Laub im Quellareal. Moosarten der Quelle siehe Tab.5.

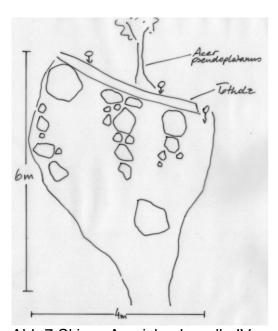



Abb.7 Skizze Ameisbachquelle IV

Tab.5 Artenliste Ameisbachquelle IV

| Quelle | Taxon                   | Aufnahmebereich | Deckung |
|--------|-------------------------|-----------------|---------|
| AMQ IV | Warnstorfia exannulata  | Quellaustritt   | 100%    |
| AMQ IV | Palustriella commutata  | Spritzwasser    | 50%     |
| AMQ IV | Brachythecium rivulare  | Spritzwasser    | 30%     |
| AMQ IV | Rhizomnium punctatum    | Spritzwasser    | 8%      |
| AMQ IV | Conocephalum conicum    | Spritzwasser    | 5%      |
| AMQ IV | Plagiochila porelloides | Spritzwasser    | 5%      |
| AMQ IV | Plagiomnium elatum      | Spritzwasser    |         |
| AMQ IV | Plagiomnium undulatum   | Spritzwasser    |         |
| AMQ IV | Thuidium tamariscinum   | Spritzwasser    |         |
| AMQ IV | Ctenidium molluscum     | Spritzwasser    |         |

| Quelle | Taxon                 | Aufnahmebereich | Deckung |
|--------|-----------------------|-----------------|---------|
| AMQ IV | Fissidens taxifolius  | Spritzwasser    |         |
| AMQ IV | Cratoneuron filicinum | Spritzwasser    |         |
| AMQ IV | Lophozia sp.          | Spritzwasser    |         |

#### 2.3. EBA (Ebenforstquelle Nord)

Aufnahme: 11.09.2005

Exposition: O-NO

Inklination: II

Seehöhe:1120 m

Hierbei handelt es sich um eine "gefasste" Quelle. Das Quellareal ist mit Stacheldraht umzäunt und vom Quellaustritt führt eine Holzrinne in einen Brunnentrog, siehe Skizze Abb.8. Das Areal ist dicht mit Hochstauden bewachsen, was zu einer Beschattung von 95% führt. Zur Zeit der Aufnahme war die Schüttung sehr gering. Moosarten der Quelle siehe Tab.6.

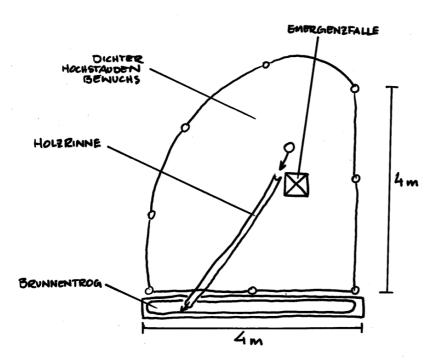



Abb.8 Skizze Ebenforstquelle Nord

Tab.6 Artenliste Ebenforstquelle Nord

| Quelle | Taxon                  | Aufnahmebereich | Deckung |
|--------|------------------------|-----------------|---------|
| EBA    | Brachythecium rivulare | Quellaustritt   | 100%    |
| EBA    | Brachythecium rivulare | Spritzwasser    | 90%     |
| EBA    | Plagiomnium undulatum  | Spritzwasser    | 5%      |
| EBA    | Rhizomnium punctatum   | Spritzwasser    | 4%      |
| EBA    | Amblystegium serpens   | Spritzwasser    |         |
| EBA    | Cratoneuron filicinum  | Spritzwasser    |         |
| EBA    | Plagiomnium rostratum  | Spritzwasser    |         |

### 2.4. FALK I (Ponordoline Falkenmauer, Ost)

Aufnahme: 12.10.2005

Exposition: W Inklination: II

Seehöhe: 1260 m

Der Quellaustritt liegt im Fichten-Buchen-Wald, in einer grabenartigen Struktur im Hang, siehe Skizze Abb.9. Die Beschattung liegt bei ca. 80%. Moosarten der Quelle siehe Tab.7

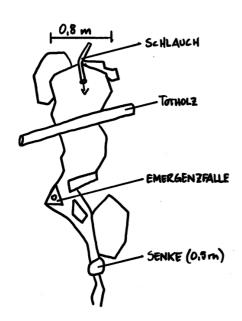



Abb.9 Skizze Ponordoline Falkenmauer, Ost

Tab.7 Artenliste Ponordoline Falkenmauer, Ost

| Quelle | Taxon                  | Aufnahmebereich | Deckung |
|--------|------------------------|-----------------|---------|
| FALK I | Palustriella commutata | Quellaustritt   | 95%     |
| FALK I | Brachythecium rivulare | Quellaustritt   |         |

| Quelle | Taxon                   | Aufnahmebereich | Deckung |
|--------|-------------------------|-----------------|---------|
| FALK I | Rhizomnium punctatum    | Quellaustritt   |         |
| FALK I | Conocephalum conicum    | Quellaustritt   |         |
| FALK I | Fissidens dubius        | Quellaustritt   |         |
| FALK I | Jungermannia sp.        | Quellaustritt   |         |
| FALK I | Leiocolea bantriensis   | Quellaustritt   |         |
| FALK I | Jungermannia atrovirens | Quellaustritt   |         |
|        |                         |                 |         |

### 2.5. FEIS (Feichtausee Quelle)

Aufnahme: 10.10.2005

**Exposition: N-NO** 

Inklination: I

Seehöhe: 1357 m

Hier handelt es sich um eine Folgequelle des Ausflusses des Großen Feichtausees. Ca. 50 Meter nachdem der Abfluss des Sees im Gestein versickert, tritt das Wasser als Feichtausee Quelle wieder aus, siehe Skizze Abb.10. Der Quellaustritt weist zum Aufnahmezeitpunkt eine Beschattung von nur 10%, durch einige, randlich stehende Fichten auf. Moosarten der Quelle siehe Tab.8.

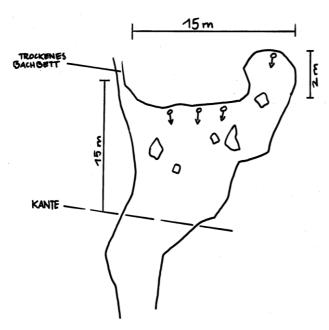



Abb.10 Skizze Feichtausee Quelle

Tab.8 Artenliste Feichtausee Quelle

| Quelle | Taxon                   | Aufnahmebereich | Deckung |
|--------|-------------------------|-----------------|---------|
| FEIS   | Palustriella commutata  | Quellaustritt   | 50%     |
| FEIS   | Brachythecium rivulare  | Quellaustritt   | 30%     |
| FEIS   | Pellia endiviifolia     | Quellaustritt   | 15%     |
| FEIS   | Palustriella decipiens  | Quellaustritt   |         |
| FEIS   | Rhizomnium magnifolium  | Quellaustritt   |         |
| FEIS   | Plagiomnium undulatum   | Quellaustritt   |         |
| FEIS   | Bryum pseudotriquetrum  | Quellaustritt   |         |
| FEIS   | Plagiochila porelloides | Quellaustritt   |         |
| FEIS   | Porella platyphylla     | Quellaustritt   |         |
| FEIS   | Aneura pinguis          | Quellaustritt   |         |

### 2.6. GÖR (Obere Göritzbachquelle)

Aufnahme: 11.09.2005

Exposition: W Inklination: I

Seehöhe: 1110 m

Die Quellaustritte liegen in einem ca. 5 m tiefen Graben neben einem Forstweg, siehe Skizze Abb.11 und weisen beim Aufnahmezeitpunkt eine sehr geringe Schüttung auf. Rund um das Areal stehen einige große Fichten und so kommt es zu einer Beschattung von ca. 80%. Moosarten der Quelle siehe Tab.9.

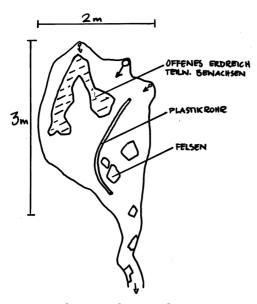



Abb.11 Skizze Obere Göritzbachquelle

Tab.9 Artenliste Obere Göritzbachquelle

| Quelle | Taxon                     | Aufnahmebereich | Deckung |
|--------|---------------------------|-----------------|---------|
| GÖR    | Cratoneuron filicinum     | Quellaustritt   | 60%     |
| GÖR    | Oxyrrhynchium speciosum   | Quellaustritt   | 15%     |
| GÖR    | Braythecium rivulare      | Quellaustritt   | 15%     |
| GÖR    | Plagiomnium undulatum     | Quellaustritt   |         |
| GÖR    | Plagiomnium affine s.lat. | Quellaustritt   |         |
| GÖR    | Rhizomnium punctatum      | Quellaustritt   |         |
| GÖR    | Pellia endiviifolia       | Quellaustritt   |         |

### 2.7. HAS III (Untere Haselquelle)

Aufnahme: 06.11.2005

Exposition: Austritt: N, Abfluss: NO

Inklination: V

Seehöhe: 575 m

Die untere Haselquelle tritt aus einer horizontalen Fuge einige Meter über dem Talgrund aus einer Felswand. Das Wasser prallt auf eine Felsplatte im Hang, versickert etwa 4 m tiefer, siehe Skizze Abb.12, und tritt erneut 10 m tiefer direkt in einen Bach aus. Die Quelle ist zu ca. 80% beschattet. Moosarten der Quelle siehe Tab.10.

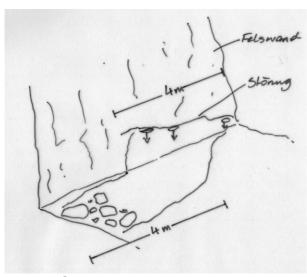



Abb.12 Skizze Untere Haselquelle

Tab.10 Artenliste Untere Haselquelle

| Quelle  | Taxon                      | Aufnahmebereich | Deckung |
|---------|----------------------------|-----------------|---------|
| HAS III | Platyhypnidium riparioides | Quellaustritt   | 65%     |
| HAS III | Palustriella commutata     | Quellaustritt   | 30%     |
| HAS III | Pellia endiviifolia        | Quellaustritt   |         |
| HAS III | Metzgeria furcata          | Quellaustritt   |         |
| HAS III | Pedinophyllum interruptum  | Quellaustritt   |         |
| HAS III | Plagiothecium sp.          | Quellaustritt   |         |
| HAS III | Plagiomnium rostratum      | Quellaustritt   |         |
| HAS III | Plagiomnium undulatum      | Quellaustritt   |         |
| HAS III | Conocephalum conicum       | Quellaustritt   |         |

#### 2.8. HRQ - Quellaustritte (Hintere Rettenbach Quelle)

Nach Haseke (1994) wird das Wasserregime des Hinteren Rettenbaches von einer einzigen Riesenkarstquelle bzw. einem Quellhorizont dominiert. Bei Niederwasser tritt das Wasser aus blockigen Klüften auf der linken Seite aus und der gesamte obere Quellbach kann trocken liegen. Auch weiter talwärts wird ein auwaldartiger Bereich von linksseitig gelegenen Quellen gespeist. Das Teufelsloch, ein Höhlenportal, kann bei Hochwasser mehrere Kubikmeter Wasser pro Sekunde schütten.

Die hier untersuchten Quellen befinden sich in dem auwaldähnlichen Bereich, der orografisch links des Rettenbaches liegt. Zum Zeitpunkt der Kartierung herrschte Niederwasser und die Schüttung der Quellen war gering.

#### **HRQI**

Aufnahme: 11.08.2005

Inklination: I

Seehöhe: 617 m

Der Quellaustritt liegt im Buchen-Fichten-Wald und ist zu 90% beschattet, daher liegt auch viel Laub in und um den Austritt. Moosarten der Quelle siehe Tab.11, Skizze der Quelle siehe Abb.13.

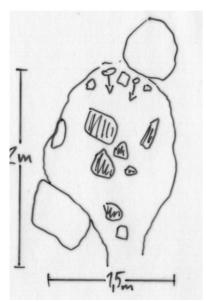



Abb.13 Skizze Hintere Rettenbachquelle I

Tab.11 Artenliste Hintere Rettenbachquelle I

| Quelle | Taxon                   | Aufnahmebereich | Deckung |
|--------|-------------------------|-----------------|---------|
| HRQ I  | Brachythecium rivulare  | Quellaustritt   | 45%     |
| HRQ I  | Fissidens taxifolius    | Quellaustritt   | 40%     |
| HRQ I  | Plagiothecium sp.       | Quellaustritt   | 5%      |
| HRQ I  | Plagiomnium ellipticum  | Quellaustritt   | 5%      |
| HRQ I  | Cinclidotus aquaticus   | Quellaustritt   | 5%      |
| HRQ I  | Plagiomnium undulatum   | Spritzwasser    | 60%     |
| HRQ I  | Brachythecium rivulare  | Spritzwasser    | 30%     |
| HRQ I  | Neckera crispa          | Spritzwasser    | 5%      |
| HRQ I  | Ctenidium molluscum     | Spritzwasser    |         |
| HRQ I  | Didymodon spadiceus     | Spritzwasser    |         |
| HRQ I  | Scapania aequiloba      | Spritzwasser    |         |
| HRQ I  | Mnium marginatum        | Spritzwasser    |         |
| HRQ I  | Metzgeria conjugata     | Spritzwasser    |         |
| HRQ I  | Plagiochila porelloides | Spritzwasser    |         |
| HRQ I  | Amblystegium serpens    | Spritzwasser    |         |
| HRQ I  | Tortella tortuosa       | Spritzwasser    |         |
| HRQ I  | Plagiomnium rostratum   | Spritzwasser    |         |
| HRQ I  | Hypnum cupressiforme    | Spritzwasser    |         |

## HRQ II

Aufnahme: 11.08.2005

Inklination: I

Der Quellaustritt liegt 6m von HRQ I entfernt im Buchen-Fichten-Wald, etwas lichter, mit einer Beschattung von 75%. Moosarten der Quelle siehe Tab.12, Skizze der Quelle siehe Abb.14.

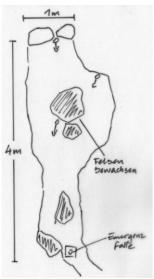



Abb.14 Skizze Hintere Rettenbachquelle II

Tab.12 Artenliste Hintere Rettenbachquelle II

| Quelle | Taxon                  | Aufnahmebereich | Deckung |
|--------|------------------------|-----------------|---------|
| HRQ II | Brachythecium rivulare | Quellaustritt   | 90%     |
| HRQ II | Cratoneuron filicinum  | Quellaustritt   | 5%      |
| HRQ II | Hygrohypnum luridum    | Quellaustritt   | 5%      |
| HRQ II | Brachythecium rivulare | Spritzwasser    | 55%     |
| HRQ II | Plagiomnium undulatum  | Spritzwasser    | 40%     |
| HRQ II | Ctenidium molluscum    | Spritzwasser    |         |
| HRQ II | Rhizomnium punctatum   | Spritzwasser    |         |
| HRQ II | Conocephalum conicum   | Spritzwasser    |         |
| HRQ II | Fissidens dubius       | Spritzwasser    |         |
| HRQ II | Tortella tortuosa      | Spritzwasser    |         |

#### **HRQ III**

Aufnahme: 11.08.2005

Inklination: I

Der Quellaustritt liegt ebenfalls im Fichten-Buchen-Wald bei einer Beschattung von 95%. Moosarten siehe Tab.13, Skizze der Quelle siehe Abb.15.

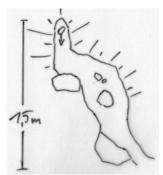



Abb.15 Skizze Hintere Rettenbachquelle III

Tab.13 Artenliste Hintere Rettenbachquelle III

| Quelle  | Taxon                  | Aufnahmebereich | Deckung |
|---------|------------------------|-----------------|---------|
| HRQ III | Brachythecium rivulare | Quellaustritt   | 80%     |
| HRQ III | Amblystegium tenax     | Quellaustritt   | 20%     |
| HRQ III | Plagiomnium undulatum  | Spritzwasser    | 30%     |
| HRQ III | Palustriella commutata | Spritzwasser    | 30%     |
| HRQ III | Conocephalum conicum   | Spritzwasser    | 20%     |
| HRQ III | Brachythecium rivulare | Spritzwasser    | 18%     |
| HRQ III | Climactium dendroides  | Spritzwasser    |         |
| HRQ III | Dicranum polysetum     | Spritzwasser    |         |
| HRQ III | Plagiomnium cuspidatum | Spritzwasser    |         |

### **HRQ IV**

Aufnahme: 11.08.2005

Inklination: II

Der Quellaustritt liegt an der Grenze Wald - Hochstaudenflur und weist eine Beschattung von 60% auf. Moosarten der Quelle siehe Tab.14, Skizze der Quelle siehe Abb.16.

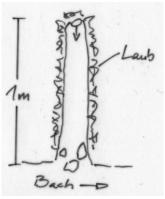



Abb.16 Skizze Hintere Rettenbachquelle IV

Tab.14 Artenliste hintere Rettenbachquelle IV

| Quelle | Taxon                     | Aufnahmebereich | Deckung |
|--------|---------------------------|-----------------|---------|
| HRQ IV | Brachythecium rivulare    | Quellaustritt   | 100%    |
| HRQ IV | Palustriella decipiens    | Spritzwasser    | 60%     |
| HRQ IV | Brachythecium rivulare    | Spritzwasser    | 35%     |
| HRQ IV | Plagiomnium undulatum     | Spritzwasser    |         |
| HRQ IV | Plagiomnium affine s.lat. | Spritzwasser    |         |
| HRQ IV | Lophocolea bidentata      | Spritzwasser    |         |

#### **HRQ V**

Aufnahme: 11.08.2005

Inklination: I, II

Der Quellaustritt liegt im Übergangsbereich zwischen Wald und Hochstaudenflur mit einer Beschattung von 60%. Die Quelle wird in zwei Bereiche eingeteilt, Bereich I (Inklination I) und Bereich II (Inklination II). Moosarten der Quelle siehe Tab.15, Skizze der Quelle siehe Abb.17.

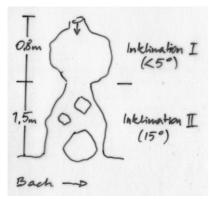



Abb.17 Skizze Hintere Rettenbachquelle V

Tab.15 Artenliste Hintere Rettenbachquelle V

| Quelle | Taxon                   | Aufnahmebereich | Deckung |
|--------|-------------------------|-----------------|---------|
| HRQ V  | Brachythecium rivulare  | Spritzwasser I  | 60%     |
| HRQ V  | Plagiomnium undulatum   | Spritzwasser I  | 40%     |
| HRQ V  | Palustriella commutata  | Spritzwasser I  |         |
| HRQ V  | Plagiochila porelloides | Spritzwasser I  |         |
| HRQ V  | Conocephalum conicum    | Spritzwasser I  |         |
| HRQ V  | Rhizomnium punctatum    | Spritzwasser I  |         |
| HRQ V  | Jungermannia atrovirens | Spritzwasser I  |         |
| HRQ V  | Campylium calcareum     | Spritzwasser I  |         |
| HRQ V  | Mnium marginatum        | Spritzwasser I  |         |
| HRQ V  | Lophocolea bidentata    | Spritzwasser I  |         |

| Quelle | Taxon                  | Aufnahmebereich | Deckung |
|--------|------------------------|-----------------|---------|
| HRQ V  | Brachythecium rivulare | Spritzwasser II | 50%     |
| HRQ V  | Plagiomnium undulatum  | Spritzwasser II | 25%     |
| HRQ V  | Palustriella commutata | Spritzwasser II | 20%     |
| HRQ V  | Plagiomnium rostratum  | Spritzwasser II |         |
| HRQ V  | Cratoneuron filicinum  | Spritzwasser II |         |

#### **HRQ VI**

Aufnahme: 11.08.2005

Inklination: I, II

Der Quellaustritt liegt im Übergangsbereich zwischen Wald und Hochstaudenflur mit einer Beschattung von 40%. Die Quelle wird in zwei Bereiche eingeteilt Bereich I (Inklination I) und Bereich II (Inklination II). Im Bereich I liegt eine Gesamtdeckung von nur 5% vor. Moosarten der Quelle siehe Tab.16, Skizze der Quelle siehe Abb.18.

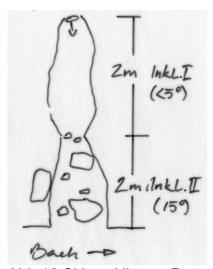



Abb.18 Skizze Hintere Rettenbachquelle VI

Tab.16 Artenliste Hintere Rettenbachquelle VI

| Quelle | Taxon                   | Aufnahmebereich | Deckung |
|--------|-------------------------|-----------------|---------|
| HRQ VI | Plagiomnium undulatum   | Spritzwasser I  |         |
| HRQ VI | Plagiochila porelloides | Spritzwasser I  |         |
| HRQ VI | Plagiomnium elatum      | Spritzwasser I  |         |
| HRQ VI | Lophocolea bidentata    | Spritzwasser I  |         |
| HRQ VI | Palustriella commutata  | Spritzwasser I  |         |
| HRQ VI | Brachythecium rivulare  | Spritzwasser I  |         |
| HRQ VI | Rhizomnium punctatum    | Spritzwasser I  |         |
| HRQ VI | Conocephalum conicum    | Spritzwasser I  |         |
| HRQ VI | Cratoneuron filicinum   | Spritzwasser II | 50%     |

| Quelle | Taxon                  | Aufnahmebereich | Deckung |
|--------|------------------------|-----------------|---------|
| HRQ VI | Palustriella commutata | Spritzwasser II | 40%     |
| HRQ VI | Plagiomnium undulatum  | Spritzwasser II |         |
| HRQ VI | Brachythecium rivulare | Spritzwasser II |         |
| HRQ VI | Plagiomnium rostratum  | Spritzwasser II |         |

### **HRQ VII**

Aufnahme: 11.08.2005

Inklination: I

Der Quellaustritt liegt im Übergangsbereich zwischen Wald und Hochstaudenflur mit einer Beschattung von 70%. Moosarten der Quelle siehe Tab.17, Skizze der Quelle siehe Abb.19.

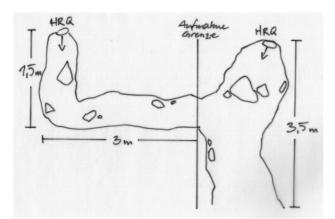



Abb.19 Skizze Hintere Rettenbachquelle VII (links) und VIII (rechts)

Tab.17 Artenliste Hintere Rettenbachquelle VII

| Quelle  | Taxon                   | Aufnahmebereich | Deckung |
|---------|-------------------------|-----------------|---------|
| HRQ VII | Brachythecium rivulare  | Spritzwasser    | 100%    |
| HRQ VII | Brachythecium rivulare  | Randbereich     |         |
| HRQ VII | Climactium dendroides   | Randbereich     |         |
| HRQ VII | Plagiomnium undulatum   | Randbereich     |         |
| HRQ VII | Conocephalum conicum    | Randbereich     |         |
| HRQ VII | Plagiochila porelloides | Randbereich     |         |
| HRQ VII | Cratoneuron filicinum   | Randbereich     |         |
| HRQ VII | Plagiomnium cuspidatum  | Randbereich     |         |

### **HRQ VIII**

Aufnahme: 11.08.2005

Inklination: I

Der Quellaustritt liegt direkt neben HRQ VII im Übergangsbereich zwischen Wald und Hochstaudenflur mit einer Beschattung von 50%. Moosarten der Quelle siehe Tab.18, Skizze der Quelle siehe Abb.19.

Tab.18 Artenliste Hintere Rettenbachquelle VIII

| Quelle   | Taxon                  | Aufnahmebereich | Deckung |
|----------|------------------------|-----------------|---------|
| HRQ VIII | Palustriella commutata | Quellaustritt   | 60%     |
| HRQ VIII | Cratoneuron filicinum  | Quellaustritt   | 40%     |
| HRQ VIII | Palustriella commutata | Spritzwasser    | 40%     |
| HRQ VIII | Cratoneuron filicinum  | Spritzwasser    | 30%     |
| HRQ VIII | Brachythecium rivulare | Spritzwasser    | 20%     |
| HRQ VIII | Plagiomnium undulatum  | Spritzwasser    |         |
| HRQ VIII | Plagiomnium elatum     | Spritzwasser    |         |

#### **HRQ IX**

Aufnahme: 11.08.2005

Inklination: I

Der Quellaustritt liegt direkt unter zwei großen Fichten und hat eine Beschattung von 90 %. Moosarten der Quelle siehe Tab.19, Skizze der Quelle siehe Abb.20.

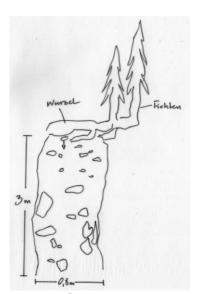



Abb.20 Skizze Hintere Rettenbachquelle IX

Tab.19 Artenliste Hintere Rettenbachquelle IX

| Quelle | Taxon                  | Aufnahmebereich | Deckung |
|--------|------------------------|-----------------|---------|
| HRQ IX | Palustriella commutata | Spritzwasser    | 50%     |
| HRQ IX | Amblystegium tenax     | Spritzwasser    | 50%     |
| HRQ IX | Plagiomnium undulatum  | Randbereich     |         |
| HRQ IX | Plagiomnium elatum     | Randbereich     |         |
| HRQ IX | Conocephalum conicum   | Randbereich     |         |

### 2.9. KRA (Krahlalmquelle)

Aufnahme: 10.08.05

Exposition: O Inklination: I

Seehöhe: 680 m

Die Quellaustritte liegen im Fichten-Buchen-Wald bei einer Beschattung von 90%. Es liegt viel Geröll in und um die Quellaustritte und einige Totholzstämme im Auslaufbereich, siehe Skizze Abb.21. Moosarten der Quelle siehe Tab.20.



Abb.21 Skizze Krahlalmquelle

Tab.20 Artenliste Krahlalmquelle

| Quelle | Taxon                  | Aufnahmebereich | Deckung |
|--------|------------------------|-----------------|---------|
| KRA    | Brachythecium rivulare | Quellaustritt   | 95%     |
| KRA    | Palustriella commutata | Quellaustritt   |         |
| KRA    | Amblystegium tenax     | Quellaustritt   |         |
| KRA    | Brachythecium rivulare | Spritzwasser    | 60%     |

| Quelle | Taxon                      | Aufnahmebereich | Deckung |
|--------|----------------------------|-----------------|---------|
| KRA    | Plagiomnium undulatum      | Spritzwasser    | 20%     |
| KRA    | Palustriella commutata     | Spritzwasser    | 10%     |
| KRA    | Conocephalum conicum       | Spritzwasser    |         |
| KRA    | Jungermannia sp.           | Spritzwasser    |         |
| KRA    | Lophocolea sp.             | Spritzwasser    |         |
| KRA    | Rhizomnium punctatum       | Spritzwasser    |         |
| KRA    | Hypnum sauteri             | Spritzwasser    |         |
| KRA    | Plagiomnium rostratum      | Spritzwasser    |         |
| KRA    | Rhytidiadelphus triquetrus | Spritzwasser    |         |
| KRA    | Pedinophyllum interruptum  | Spritzwasser    |         |
| KRA    | Encalypta streptocarpa     | Spritzwasser    |         |
| KRA    | Plagiochila porelloides    | Spritzwasser    |         |
| KRA    | Ctenidium molluscum        | Spritzwasser    |         |
| KRA    | Hylocomium splendens       | Spritzwasser    |         |
| KRA    | Rhizomnium magnifolium     | Spritzwasser    |         |
| KRA    | Campylium stellatum        | Spritzwasser    |         |
| KRA    | Lophocolea bidentata       | Spritzwasser    |         |
| KRA    | Fissidens dubius           | Spritzwasser    |         |
| KRA    | Catoscopium nigritum c.f.  | Spritzwasser    |         |
|        | Catocopiani ingintani cin  | opinizmacoci.   |         |

### 2.10. LEO (Quelle Leonsteiner Bach)

Aufnahme: 19.07.05

Exposition: Inklination: I

Seehöhe: 640 m

Die Quellaustritte liegen zwischen Felsblöcken in einer Schneise im Buchen-Fichten Mischwald, direkt am Rand des Baumbestandes mit einer Beschattung von 60%. Der Abflussbereich ist sehr felsig mit mehreren Totholzstämmen, siehe Skizze Abb.22. Das Wasser versiegt im Quellbach nach ca. 20 m zwischen grösseren Felsblöcken. Moosarten der Quelle siehe Tab.21.

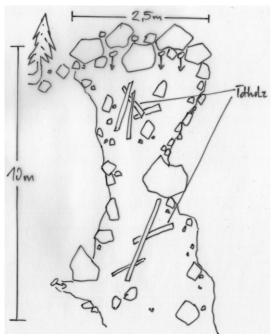



Abb.22 Skizze Quelle Leonsteiner Bach

Tab.21 Artenliste Quelle Leonsteiner Bach

| Quelle | Taxon                     | Aufnahmebereich | Deckung |
|--------|---------------------------|-----------------|---------|
| LEO    | Brachythecium rivulare    | Quellaustritt   | 90%     |
| LEO    | Cratoneuron filicinum     | Quellaustritt   | 10%     |
| LEO    | Cratoneuron filicinum     | Spritzwasser    | 50%     |
| LEO    | Ctenidium molluscum       | Spritzwasser    | 20%     |
| LEO    | Brachythecium rivulare    | Spritzwasser    | 20%     |
| LEO    | Neckera crispa            | Spritzwasser    |         |
| LEO    | Jungermannia obovata c.f. | Spritzwasser    |         |
| LEO    | Fissidens dubius          | Spritzwasser    |         |
| LEO    | Plagiomnium rostratum     | Spritzwasser    |         |
| LEO    | Tortella tortuosa         | Spritzwasser    |         |
| LEO    | Gymnostomum calcareum     | Spritzwasser    |         |
| LEO    | Plagiochila porelloides   | Spritzwasser    |         |
| LEO    | Mnium hornum              | Spritzwasser    |         |
| LEO    | Pellia endiviifolia       | Spritzwasser    |         |
| LEO    | Plagiomnium undulatum     | Spritzwasser    |         |

# 2.11. LILA (Würfling Siphonhöhle)

Aufnahme: 25.10.05

Exposition: W-NW

Inklination: I, V

Seehöhe: 445 m

Das Quellareal teilt sich in 2 distinkte Zonen. Der Quellaustritt selbst liegt in einer kleinen, 2,5 x 2,5 m Höhle mit einer Deckenhöhe von ca. 1,6 m und einer Beschattung von 95%. Das Wasser rinnt unter Totholz und Laub, zu einer ca. 6 m hohen, fast senkrechten Wand, über die das Wasser abfließt, siehe Skizze Abb.23. Die Wand hat eine Beschattung von 10%. Moosarten der Quelle siehe Tab.22.

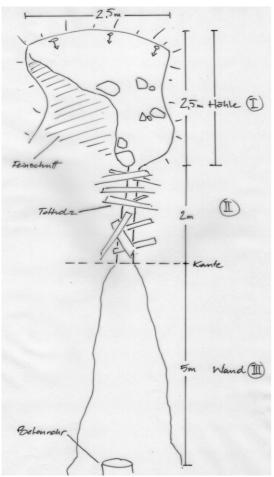



Abb.23 Skizze Würfling Siphonhöhle

Tab.22 Artenliste Würfling Siphonhöhle

| Quelle | Taxon                   | Aufnahmebereich | Deckung |
|--------|-------------------------|-----------------|---------|
| LILA   | Conocephalum conicum    | Höhle           | 60%     |
| LILA   | Cratoneuron filicinum   | Höhle           | 20%     |
| LILA   | Pellia endiviifolia     | Höhle           | 10%     |
| LILA   | Brachythecium rivulare  | Höhle           | 5%      |
| LILA   | Jungermannia atrovirens | Höhle           |         |
| LILA   | Fissidens dubius        | Höhle           |         |
| LILA   | Encalypta streptocarpa  | Höhle           |         |
| LILA   | Cratoneuron filicinum   | Wand            | 40%     |
| LILA   | Palustriella commutata  | Wand            | 40%     |

| Quelle | Taxon                      | Aufnahmebereich | Deckung |
|--------|----------------------------|-----------------|---------|
| LILA   | Platyhypnidium riparioides | Wand            | 15%     |
| LILA   | Pellia endiviifolia        | Wand            |         |
| LILA   | Orthothecium rufescens     | Wand            |         |

#### 2.12. MAUL (Maulaufloch Quelle)

Am nördlichen Ufer der Krummen Steyerling liegt der stark schwankende Karstwasser - Austritt. Die Hauptquelle ist ständig schüttend, bei Hochwasser wird zusätzlich eine normalerweise trockenliegende, begehbare Höhle als Überlauf aktiviert. Die Höhle ist auf einer Länge von 500 Metern vermessen und dokumentiert (Haseke 1994).

Aufnahme: 26.05.05

Exposition: W Inklination: III

Seehöhe: 595 m

Der Quellaustritt liegt im Hangbuchenwald bei einer Beschattung von ca. 70%, siehe Skizze Abb.24. Moosarten der Quelle siehe Tab.23.

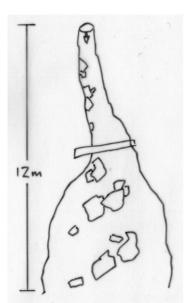



Abb.24 Skizze Maulaufloch Quelle

Tab.23 Artenliste Maulaufloch Quelle

| Quelle | Taxon                      | Aufnahmebereich | Deckung |
|--------|----------------------------|-----------------|---------|
| MAUL   | Platyhypnidium riparioides | Quellaustritt   | 100%    |
| MAUL   | Platyhypnidium riparioides | Spritzwasser    | 70%     |
| MAUL   | Brachythecium rivulare     | Spritzwasser    | 15%     |
| MAUL   | Cratoneuron filicinum      | Spritzwasser    | 5%      |
| MAUL   | Palustriella commutata     | Spritzwasser    | 5%      |
| MAUL   | Plagiomnium undulatum      | Spritzwasser    |         |
| MAUL   | Thamnobryum alopecurum     | Spritzwasser    |         |
| MAUL   | Fissidens dubius           | Spritzwasser    |         |
| MAUL   | Anomobryum concinnatum     | Spritzwasser    |         |
| MAUL   | Pellia endiviifolia        | Spritzwasser    |         |
| MAUL   | Ctenidium molluscum        | Spritzwasser    |         |
| MAUL   | Metzgeria conjugata        | Spritzwasser    |         |
| MAUL   | Mnium thomsonii            | Spritzwasser    |         |
| MAUL   | Conocephalum conicum       | Spritzwasser    |         |
| MAUL   | Plagiomnium rostratum      | Spritzwasser    |         |
|        |                            |                 |         |

#### 2.13. OFEI (Nockkarquelle, Quelle ober gr. Feichtausee)

Mit über 1565 Meter Seehöhe sind die Quellen über dem Großen Feichtausee die höchstgelegenen im Sengsengebirge mit einer beachtenswerten Schüttung. Vom See sieht man die Wasserstreifen in der ca. 50 m hohen Wandstufe zwischen Seekar und Nockkar. Zwei Quellen, die ca. 50 m voneinander entfernt liegen, befinden sich oberhalb der Wandkante. Sie stürzen über diese Kante hinab und versickern in einem Blockschuttfeld. Es ist ungewiß, ob sie im Gr. Feichtausee wieder auftauchen oder ihren Weg ins Berginnere nehmen. Nur der östliche Quellaustritt ist begehbar (Haseke 1996).

Aufnahme: 10.10.05

Exposition: N-NW

Inklination: I, V

Seehöhe: 1565 m

Das Quellareal teilt sich in zwei distinkte Bereiche:

Der Quellaustritt, ein 0,5 x 0,5 m großer, dicht mit Moosen bewachsener Bereich, der durch einen großen Felsblock beschattet wird (Beschattung 50%). Das Wasser versickert und tritt 1 m weiter unten durch einen Schlauch wieder aus. Direkt anschließend liegt eine

Felskante gefolgt von einer ca. 20 m hohen, fast senkrechten und stark moosbewachsenen Felswand, siehe Skizze Abb.25. Moosarten der Quelle siehe Tab.24.

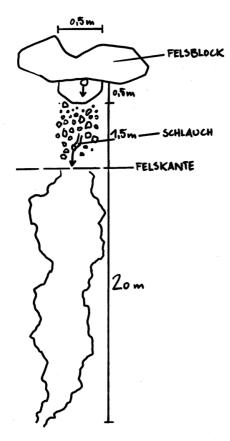



Abb.25 Skizze Nockkarquelle

Tab.24 Artenliste Nockkarquelle

| Quelle | Taxon                   | Aufnahmebereich | Deckung |
|--------|-------------------------|-----------------|---------|
| OFEI   | Ciriphyllum piliferum   | Quellaustritt   | 50%     |
| OFEI   | Cratoneuron filicinum   | Quellaustritt   | 25%     |
| OFEI   | Bryum pseudotriquetrum  | Quellaustritt   | 20%     |
| OFEI   | Palustriella commutata  | Quellaustritt   |         |
| OFEI   | Plagiochila porelloides | Quellaustritt   |         |
| OFEI   | Lophozia sp.            | Quellaustritt   |         |
| OFEI   | Palustriella commutata  | Wand            | 85%     |
| OFEI   | Bryum pseudotriquetrum  | Wand            | 5%      |
| OFEI   | Cratoneuron filicinum   | Wand            | 5%      |
| OFEI   | Orthothecium rufescens  | Wand            |         |
| OFEI   | Didymodon rigidulus     | Wand            |         |
| OFEI   | Aneura pinguis          | Wand            |         |
| OFEI   | Leiocolea collaris      | Wand            |         |
| OFEI   | Didymodon tophaceus     | Wand            |         |

### 2.14. PRED-N (Nördliche Predigtstuhl Quelle)

Zwei getrennte Kluftöffnungen entwässern das Ebenforst-Predigstuhl-Plateau. Die nördliche Quelle (PRED-N) strömt konzentriert aus einer Siphonröhre (Haseke 1994).

Aufnahme: 25.10.05

Exposition: O Inklination: I, V Seehöhe: 445 m

Am Fuße eines senkrechten Felsens im Buchenwald, befindet sich eine 2 m breite und ca. 20 cm hohe Aushöhlung aus der die Quelle austritt, siehe Skizze Abb.26. Zur Zeit der Aufnahme ist die Schüttung sehr stark. Das Wasser fließt für 3 m bei einer Inklination von ca. 5°, bis es zu einer Kante kommt, an der das Gelände bei einer Inklination > 40° abfällt. Moosarten der Quelle siehe Tab.25.

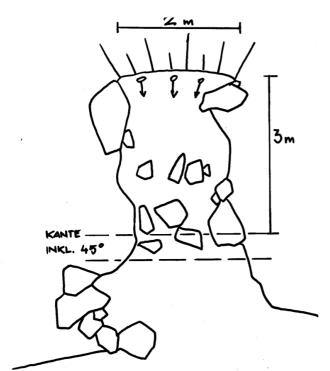



Abb.26 Skizze Nördliche Predigtstuhlquelle

Tab.25 Artenliste Nördliche Predigtstuhlquelle

| Quelle | Taxon                      | Aufnahmebereich | Deckung |
|--------|----------------------------|-----------------|---------|
| PRED-N | Platyhypnidium riparioides | Quellaustritt   | 100%    |
| PRED-N | Platyhypnidium riparioides | Spritzwasser    | 60%     |
| PRED-N | Palustriella commutata     | Spritzwasser    | 15%     |
| PRED-N | Plagiomnium rostratum      | Spritzwasser    | 10%     |
| PRED-N | Bryum pseudotriquetrum     | Spritzwasser    | 10%     |
| PRED-N | Conocephalum conicum       | Spritzwasser    |         |
| PRED-N | Thamnobryum alopecurum     | Spritzwasser    |         |
| PRED-N | Plagiochila porelloides    | Spritzwasser    |         |
| PRED-N | Fissidens dubius           | Spritzwasser    |         |
| PRED-N | Ctenidium molluscum        | Spritzwasser    |         |
| PRED-N | Dichodontium pellucidum    | Spritzwasser    |         |
| PRED-N | Jungermannia atrovirens    | Spritzwasser    |         |

### 2.15. RIM (Rinnende Mauer)

Aufnahme: 27.05.05

Exposition: W Inklination: V

Seehöhe: 365 m

Die Steyer bildet bei Molln eine lange Schlucht im Konglomeratgestein mit nahezu senkrechten Wänden. Auf einer Strecke von ca. 50 Metern tritt hier Wasser zwischen 5-7 Metern Höhe als Sprühregen aus der Steyerschluchtwand aus, siehe Abb.27. Dabei kommt es zu deutlichen Vertuffungen am Bewuchs, siehe Abb.28. Moosarten der Quelle siehe Tab 26.



Abb.27 Rinnende Mauer



Abb.28 Rinnende Mauer, Tuffbildung an Moosen

Tab.26 Artenliste Rinnende Mauer

| Quelle | Taxon                        | Aufnahmebereich   | Deckung |
|--------|------------------------------|-------------------|---------|
| RIM    | Palustriella commutata       | Überrieselte Wand | 40%     |
| RIM    | Pellia endiviifolia          | Überrieselte Wand | 20%     |
| RIM    | Hymenostylium recurvirostrum | Überrieselte Wand | 20%     |
| RIM    | Brachythecium rivulare       | Überrieselte Wand |         |
| RIM    | Conocephalum conicum         | Überrieselte Wand |         |
| RIM    | Amblystegium serpens         | Überrieselte Wand |         |
| RIM    | Orthothecium rufescens       | Überrieselte Wand |         |
| RIM    | Barbula reflexa              | Überrieselte Wand |         |
| RIM    | Plagiomnium rostratum        | Überrieselte Wand |         |
| RIM    | Seligeria trifaria           | Überrieselte Wand |         |
| RIM    | Jungermannia atrovirens      | Überrieselte Wand |         |
| RIM    | Bryum pseudotriquetrum       | Überrieselte Wand |         |
| RIM    | Bryum pallens                | Überrieselte Wand |         |
| RIM    | Oxyrrhynchium hians          | Überrieselte Wand |         |
| RIM    | Cinclidotus aquaticus        | Überrieselte Wand |         |
| RIM    | Catoscopium nigritum c.f.    | Überrieselte Wand |         |

### 2.16. SCHA3 (Untere Schaumberg-Almquelle)

Aufnahme: 27.05.05

Inklination: II

Exposition: S - SW

Höhe: 1205 m

Es handelt es sich um drei Quellaustritte auf einer offenen Wiese, daher liegt kaum nennenswerte Beschattung vor, siehe Skizze Abb.29. Der dritte Quellaustritt weist leichte Vertuffungen auf. Moosarten der Quellen siehe Tab.27.

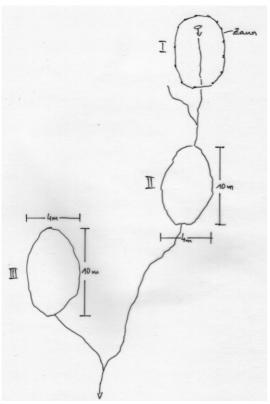



Abb.29 Skizze Untere Schaumberg-Almquelle

Tab.27 Artenliste Untere Schaumberg-Almquelle

| Quelle   | Taxon                    | Aufnahmebereich   | Deckung |
|----------|--------------------------|-------------------|---------|
| SCHA III | Palustriella commutata   | Quellaustritt I   | 60%     |
| SCHA III | Philonotis fontana       | Quellaustritt I   | 20%     |
| SCHA III | Brachythecium rivulare   | Quellaustritt I   | 10%     |
| SCHA III | Bryum pseudotriquetrum   | Quellaustritt I   | 9%      |
| SCHA III | Rhizomnium punctatum     | Quellaustritt I   |         |
| SCHA III | Calliergonella cuspidata | Quellaustritt I   |         |
| SCHA III | Palustriella commutata   | Quellaustritt II  | 50%     |
| SCHA III | Bryum pseudotriquetrum   | Quellaustritt II  | 20%     |
| SCHA III | Plagiomnium elatum       | Quellaustritt II  | 20%     |
| SCHA III | Philonotis fontana       | Quellaustritt II  | 5%      |
| SCHA III | Palustriella decipiens   | Quellaustritt II  |         |
| SCHA III | Brachythecium rivulare   | Quellaustritt II  |         |
| SCHA III | Bryum pallescens         | Quellaustritt II  |         |
| SCHA III | Pellia endiviifolia      | Quellaustritt II  |         |
| SCHA III | Campylium stellatum      | Quellaustritt II  |         |
| SCHA III | Calliergonella cuspidata | Quellaustritt II  |         |
| SCHA III | Palustriella commutata   | Quellaustritt III | 65%     |
| SCHA III | Bryum pseudotriquetrum   | Quellaustritt III | 20%     |
| SCHA III | Philonotis fontana       | Quellaustritt III | 10%     |
| SCHA III | Palustriella decipiens   | Quellaustritt III |         |
| SCHA III | Plagiomnium cuspidatum   | Quellaustritt III |         |

# 2.17. SCHÜ (Quelle Schaumberghütte)

Aufnahme: 27.05.05

Exposition: NW

Inklination: I

Höhe: 1125 m

Das Quellareal liegt im Fichtenforst auf einer Hauptfläche von ca. 40 x 5 m mit zahlreichen kleinen Nebenquellen im näheren Umkreis, siehe Abb.30. Die Aufnahmefläche beträgt 5 x 5 m. Moosarten der Quelle siehe Tab.28.

Tab.28 Artenliste Quelle Schaumberghütte

| Quelle | Taxon                   | Aufnahmebereich | Deckung |
|--------|-------------------------|-----------------|---------|
| SCHÜ   | Brachythecium rivulare  | Quellaustritt   | 35%     |
| SCHÜ   | Pellia epiphylla        | Quellaustritt   | 20%     |
| SCHÜ   | Thuidium tamariscinum   | Quellaustritt   | 20%     |
| SCHÜ   | Plagiomnium undulatum   | Quellaustritt   | 10%     |
| SCHÜ   | Rhizomnium punctatum    | Quellaustritt   | 5%      |
| SCHÜ   | Jungermannia atrovirens | Quellaustritt   | 5%      |
| SCHÜ   | Bryum pseudotriquetrum  | Quellaustritt   |         |
| SCHÜ   | Pellia endiviifolia     | Quellaustritt   |         |
| SCHÜ   | Polytrichum formosum    | Quellaustritt   |         |

Abb.30 Quelle Schaumberghütte



#### 2.18. SFEL

Aufnahme: 27.05.05

Exposition: S-SW

Inklination: V

Höhe: 1135 m

10 m von TDQ entfernt liegt dieser Quellaustritt in ca. 4 m Höhe, im Fels neben dem Forstweg, ohne nennenswerte Beschattung. Der Abflussbereich am Boden ist ca. 4 m lang und flach, bevor das Wasser durch ein Rohr gefasst und unter dem Forstweg durchgeführt wird, anschließend folgt ein steiler Abflussbereich, siehe Skizze Abb.31. Moosarten der Quelle siehe Tab.29.

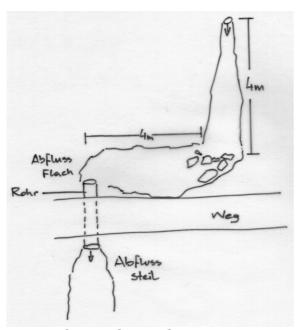



Abb.31 Skizze Quelle SFEL

Tab.29 Artenliste Quelle SFEL

| Quelle | Taxon                   | Aufnahmebereich       | Deckung |
|--------|-------------------------|-----------------------|---------|
| SFEL   | Palustriella commutata  | Quellaustritt         | 80%     |
| SFEL   | Philonotis fontana      | Quellaustritt         | 15%     |
| SFEL   | Bryum pseudotriquetrum  | Quellaustritt         | 5%      |
| SFEL   | Encalypta streptocarpa  | Spritzwasser          | 45%     |
| SFEL   | Barbula reflexa         | Spritzwasser          | 35%     |
| SFEL   | Taxiphyllum wissgrillii | Spritzwasser          | 15%     |
| SFEL   | Tortella tortuosa       | Spritzwasser          | 5%      |
| SFEL   | Philonotis fontana      | Abflussbereich, flach | 80%     |
| SFEL   | Palustriella commutata  | Abflussbereich, flach | 15%     |

| Quelle | Taxon                  | Aufnahmebereich       | Deckung |
|--------|------------------------|-----------------------|---------|
| SFEL   | Pellia endiviifolia    | Abflussbereich, flach | 5%      |
| SFEL   | Brachythecium rivulare | Abflussbereich, steil | 50%     |
| SFEL   | Palustriella commutata | Abflussbereich, steil | 40%     |
| SFEL   | Cratoneuron filicinum  | Abflussbereich, steil |         |
| SFEL   | Philonotis fontana     | Abflussbereich, steil |         |
| SFEL   | Bryum pseudotriquetrum | Abflussbereich, steil |         |
| SFEL   | Pellia endiviifolia    | Abflussbereich, steil |         |

## 2.19. SIQ (Sitzenbachquelle)

Aufnahme: 07.11.05

Exposition: N-NO

Inklination: IV

Höhe: 1054 m

Es handelt sich um eine in einem Hang im Fichten-Buchen Wald gelegene Quelle, siehe Abb.32. Beim Aufnahmezeitpunkt lag sehr viel Totholz im Quellabfluss. Moosarten der Quelle siehe Tab.30.

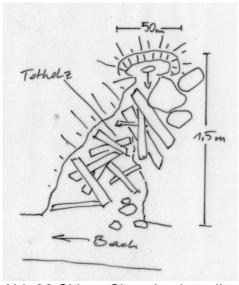



Abb.32 Skizze Sitzenbachquelle

Tab.30 Artenliste Sitzenbachquelle

|        | •                          |                       |         |
|--------|----------------------------|-----------------------|---------|
| Quelle | Taxon                      | Aufnahmebereich       | Deckung |
| SIQ    | Platyhypnidium riparioides | Quellaustritt         | 60%     |
| SIQ    | Palustriella commutata     | Quellaustritt         | 30%     |
| SIQ    | Plagiomnium affine s.str.  | Quellaustritt         | 5%      |
| SIQ    | Plagiomnium undulatum      | Quellaustritt         | 4%      |
| SIQ    | Conocephalum conicum       | Quellaustritt         | 1%      |
| SIQ    | Brachythecium rivulare     | Spritzwasser, Totholz | 60%     |
| SIQ    | Campylium calcareum        | Spritzwasser, Totholz | 30%     |
| SIQ    | Plagiomnium affine s.str.  | Spritzwasser, Totholz |         |
| SIQ    | Plagiomnium undulatum      | Spritzwasser, Totholz |         |
| SIQ    | Plagiomnium medium         | Spritzwasser, Totholz |         |
| SIQ    | Conocephalum conicum       | Spritzwasser, Totholz |         |
| SIQ    | Thuidium tamariscinum      | Spritzwasser, Totholz |         |
| SIQ    | Palustriella commutata     | Spritzwasser, Totholz |         |
| SIQ    | Jungermannia sp.           | Spritzwasser, Totholz |         |
| SIQ    | Cratoneuron filicinum      | Spritzwasser, Totholz |         |
| SIQ    | Rhizomnium punctatum       | Spritzwasser, Totholz |         |
| SIQ    | Jungermannia atrovirens    | Spritzwasser, Totholz |         |
| SIQ    | Bryum pseudotriquetrum     | Spritzwasser, Totholz |         |
| SIQ    | Campylium stellatum        | Spritzwasser, Totholz |         |
|        |                            |                       |         |

## 2.20. STEF1 (Quellhorizont südl. Stefflalm)

Aufnahme: 12.10.05

Inklination: III Höhe: 1015 m

Die Quelle liegt auf einem Hang mit einer Inklination von ca. 20°, auf einer Lichtung im Fichten-Buchen Jungwald, siehe Skizze Abb.33. Es liegt daher keine nennenswerte Beschattung vor. Moosarten der Quelle siehe Tab.31.

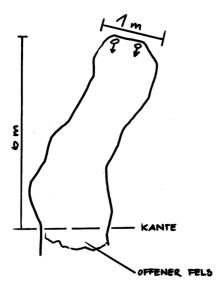



Abb.33 Skizze Quellhorizont südl. Steffelalm

Tab.31 Artenliste Quellhorizont südl. Stefflalm

| Quelle | Taxon                      | Aufnahmebereich | Deckung |
|--------|----------------------------|-----------------|---------|
| STEF I | Palustriella commutata     | Quellaustritt   | 90%     |
| STEF I | Philonotis calcarea        | Quellaustritt   | 8%      |
| STEF I | Scorpidium cossonii        | Quellaustritt   | 2%      |
| STEF I | Conocephalum conicum       | Randbereich     |         |
| STEF I | Rhizomnium punctatum       | Randbereich     |         |
| STEF I | Rhytidiadelphus triquetrus | Randbereich     |         |
| STEF I | Plagiomnium undulatum      | Randbereich     |         |
| STEF I | Ciriphyllum piliferum      | Randbereich     |         |
| STEF I | Scorpidium cossonii        | Randbereich     |         |

### 2.21. STEY AA (Steyern Quelle)

Die zwei Steyern Quellen, AA und AB, liegen am Talausgang des Klausgrabens beim Forsthaus "Steyern" und damit nicht mehr im Nationalparkgebiet. Da sie aber große Teile des Nationalparks entwässern, sind sie für den Nationalpark dennoch von großem Interesse (Haseke 1994).

Aufnahme: 26.05.05 Exposition: W-NW

Inklination: III Höhe: 545 m Die Quelle liegt im Buchenwald und ist zu 90% beschattet. Sie tritt aus einem 2,5 m langen Felsstück mit ca. 30° Neigung aus. Dieses mündet in ein 1 x 1 m großes Becken mit nahezu senkrechten Seitenwänden (Spritzwasserbereich), siehe Skizze Abb.34. Moosarten der Quelle siehe Tab.32.

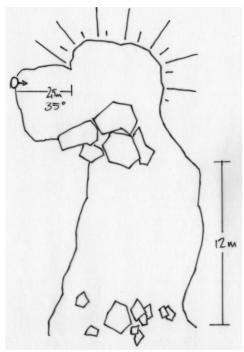



Abb.34 Skizze Steyernquelle AA

Tab.32 Artenliste Steyernquelle AA

| Quelle  | Taxon                      | Aufnahmebereich | Deckung |
|---------|----------------------------|-----------------|---------|
| STEY AA | Thamnobryum alopecurum     | Quellaustritt   | 70%     |
| STEY AA | Brachythecium rivulare     | Quellaustritt   | 28%     |
| STEY AA | Platyhypnidium riparioides | Quellaustritt   | 1%      |
| STEY AA | Amblystegium serpens       | Quellaustritt   | 1%      |
| STEY AA | Thamnobryum alopecurum     | Spritzwasser    | 40%     |
| STEY AA | Conocephalum conicum       | Spritzwasser    | 15%     |
| STEY AA | Mnium thomsonii            | Spritzwasser    | 10%     |
| STEY AA | Ctenidium molluscum        | Spritzwasser    | 10%     |
| STEY AA | Dichodontium pellucidum    | Spritzwasser    | 5%      |
| STEY AA | Didymodon sinuosus c.f.    | Spritzwasser    |         |
| STEY AA | Hygrohypnum luridum        | Spritzwasser    |         |
| STEY AA | Encalypta streptocarpa     | Spritzwasser    |         |
| STEY AA | Orthothecium rufescens     | Spritzwasser    |         |
| STEY AA | Palustriella commutata     | Spritzwasser    |         |
| STEY AA | Mnium hornum               | Spritzwasser    |         |
| STEY AA | Fissidens dubius           | Spritzwasser    |         |
| STEY AA | Thuidium tamariscinum      | Spritzwasser    |         |
| STEY AA | Jungermannia sp.           | Spritzwasser    |         |
|         |                            |                 |         |

| Quelle  | Taxon                  | Aufnahmebereich | Deckung |
|---------|------------------------|-----------------|---------|
| STEY AA | Plagiomnium undulatum  | Spritzwasser    |         |
| STEY AA | Lophozia sp.           | Spritzwasser    |         |
| STEY AA | Rhizomnium punctatum   | Spritzwasser    |         |
| STEY AA | Brachythecium rivulare | Quellabfluss    | 40%     |
| STEY AA | Thamnobryum alopecurum | Quellabfluss    | 40%     |
| STEY AA | Conocephalum conicum   | Quellabfluss    | 10%     |
| STEY AA | Palustriella commutata | Quellabfluss    |         |
| STEY AA | Amblystegium tenax     | Quellabfluss    |         |

### 2.22. STEY AB (Steyern Quelle)

Aufnahme: 26.05.05

Exposition: O-NO

Inklination: I

Höhe: 545 m

Es handelt sich hierbei um eine in Beton gefasste Quelle. Sie liegt offen und ist nicht beschattet. Die ersten 2 m ist der Abfluss 1,5 m breit, danach weitet er sich auf bis zu 6 m, siehe Skizze Abb.35. Im Abfluss liegen einige große Totholzstücke. Moosarten der Quelle siehe Tab.33.

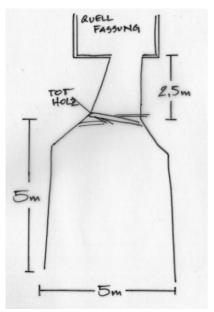



Abb.35 Skizze Steyernquelle AB

Tab.33 Artenliste Steyernquelle AB

| Quell | е            | Taxon                  | Aufnahmebereich          | Deckung |
|-------|--------------|------------------------|--------------------------|---------|
| STEY  | AB H         | ygrohypnum luridum     | Quellaustritt            | 75%     |
| STEY  | AB <i>Bi</i> | rachythecium rivulare  | Quellaustritt            | 15%     |
| STEY  | AB F         | ontinalis antipyretica | Quellaustritt            | 5%      |
| STEY  | AB Pa        | alustriella commutata  | Quellaustritt            | 4%      |
| STEY  | AB C         | ratoneuron filicinum   | Quellaustritt            |         |
| STEY  | AB G         | ymnostomum calcareum   | Quellaustritt            |         |
| STEY  | AB <i>Bi</i> | rachythecium rivulare  | Spritzwasser, Totholz    | 80%     |
| STEY  | AB H         | ygrohypnum luridum     | Spritzwasser, Totholz    | 15%     |
| STEY  | AB A         | mblystegium tenax      | Spritzwasser, Totholz    | 5%      |
| STEY  | AB F         | ontinalis antipyretica | Randbereich, überrieselt | 90%     |
| STEY  | AB H         | ygrohypnum luridum     | Randbereich, überrieselt | 10%     |
| STEY  | AB <i>Pl</i> | lagiomnium undulatum   | Randbereich              |         |
| STEY  | AB P         | ohlia wahlenbergii     | Randbereich              |         |
| STEY  | AB <i>Fi</i> | issidens taxifolius    | Randbereich              |         |
| STEY  | AB C         | onocephalum conicum    | Randbereich              |         |
| STEY  | AB R         | hizomnium punctatum    | Randbereich              |         |
| STEY  | AB P         | ellia endiviifolia     | Randbereich              |         |
| STEY  | AB Pa        | alustriella commutata  | Randbereich              |         |
|       |              |                        |                          |         |

#### 2.23. SULZ (Sulzgrabenquelle)

Aufnahme: 20.07.05

Exposition: O - SO

Inklination: I

Seehöhe: 965 m

Der Quellaustritt liegt in einem Graben zwischen einer Almwiese und einem Fichten-Buchen Mischwald. Eine ausgewachsene Buche in der Nähe der Quellaustritte beschattet diese zu ca. 30%. In dem Quellareal liegt ein Schlauch, der zu einem Viehtrog führt, außerdem ist eine Emergenzfalle aufgestellt, siehe Skizze Abb.36. Moosarten der Quelle siehe Tab.34.

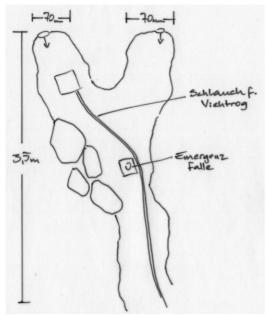



Abb.36 Skizze Sulzgrabenquelle

Tab.34 Artenliste Sulzgrabenquelle

| Quelle | Taxon                                 | Aufnahmebereich | Deckung |
|--------|---------------------------------------|-----------------|---------|
| SULZ   | Palustriella decipiens                | Quellaustritt   | 50%     |
| SULZ   | Platyhypnidium riparioides            | Quellaustritt   | 25%     |
| SULZ   | Thamnobryum alopecurum                | Quellaustritt   | 15%     |
| SULZ   | Brachythecium rivulare                | Quellaustritt   | 10%     |
| SULZ   | Rhizomnium punctatum                  | Spritzwasser    |         |
| SULZ   | Plagiomnium punctatum                 | Spritzwasser    |         |
| SULZ   | Marchantia polymorpha ssp. polymorpha | Spritzwasser    |         |
| SULZ   | Hylocomium splendens                  | Spritzwasser    |         |
| SULZ   | Thamnobryum alopecurum                | Spritzwasser    |         |
| SULZ   | Palustriella decipiens                | Spritzwasser    |         |
| SULZ   | Brachythecium rivulare                | Spritzwasser    |         |
| SULZ   | Pellia endiviifolia                   | Spritzwasser    |         |

# 2.24. TDQ (Tuff-Doppelquelle)

Aufnahme: 27.05.05

Exposition: S-SW

Inklination: V

Höhe: 1135 m

Es handelt sich um zwei Quellaustritte im fast senkrechten Fels, die am Rande einer Forststrasse ca. 1 m auseinander liegen, siehe Skizze Abb.37. Es liegt keine Beschattung vor. Moosarten der Quelle siehe Tab.35.

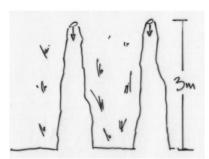



Abb.37 Skizze Tuff-Doppelquelle

Tab.35 Artenliste Tuff-Doppelquelle

| Quelle | Taxon                      | Aufnahmebereich       | Deckung |
|--------|----------------------------|-----------------------|---------|
| TDQ    | Palustriella commutata     | Quellaustritt, links  | 95%     |
| TDQ    | Bryum pseudotriquetrum     | Quellaustritt, links  | 3%      |
| TDQ    | Bryum rutilans             | Quellaustritt, links  | 2%      |
| TDQ    | Palustriella commutata     | Quellaustritt, rechts | 50%     |
| TDQ    | Philonotis fontana         | Quellaustritt, rechts | 40%     |
| TDQ    | Pellia endiviifolia        | Quellaustritt, rechts | 5%      |
| TDQ    | Bryum pseudotriquetrum     | Quellaustritt, rechts |         |
| TDQ    | Brachythecium rivulare     | Quellaustritt, rechts |         |
| TDQ    | Didymodon ferrugineus      | Quellaustritt, rechts |         |
| TDQ    | Philonotis caespitosa c.f. | Quellaustritt, rechts |         |
| TDQ    | Cratoneuron filicinum      | Quellaustritt, rechts |         |

### 2.25. WEIS (Quelle im Weißenbach)

Aufnahme: 25.10.05

Exposition: N-O

Inklination: I Höhe: 480 m

Der Quellaustritt liegt in einer Felsnische, ca. 5 m vom Bachufer des großen Weißenbachs entfernt, siehe Skizze Abb.38. Durch den überhängenden Fels und Baumbewuchs am Fels oberhalb der Quelle, kommt es zu einer Beschattung von ca. 70%. Moosarten der Quelle siehe Tab.36.

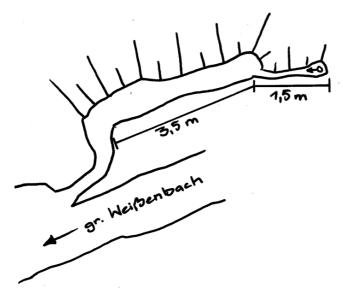



Abb.38 Skizze Quelle im Weißenbach

Tab.36 Artenliste Quelle im Weißenbach

| Quelle | Taxon                  | Aufnahmebereich | Deckung |
|--------|------------------------|-----------------|---------|
| WEIS   | Palustriella commutata | Spritzwasser    | 45%     |
| WEIS   | Palustriella decipiens | Spritzwasser    | 45%     |
| WEIS   | Conocephalum conicum   | Spritzwasser    | 5%      |
| WEIS   | Pellia endiviifolia    | Spritzwasser    | 3%      |
| WEIS   | Orthothecium rufescens | Spritzwasser    |         |
| WEIS   | Encalypta streptocarpa | Spritzwasser    |         |
| WEIS   | Ctenidium molluscum    | Spritzwasser    |         |
| WEIS   | Fissidens taxifolius   | Spritzwasser    |         |

### 2.26. ZEMO II (Quelitobel Dörfimoaralm)

Aufnahme: 28.09.05

Inklination: II Höhe: 1180 m

Die Quelle liegt ca. 2 m von der Forststrasse entfernt und wird von einer großen Fichte und einem Bergahorn direkt neben dem Quellaustritt zu ca. 60% beschattet, siehe Skizze Abb.39. Rund um das Quellareal wächst ein dichter Bestand von Bergahörnern. In der Quelle, die zum Zeitpunkt der Kartierung nur eine geringe Schüttung aufweist, liegen einige Totholzstämme. Moosarten der Quelle siehe Tab.37.

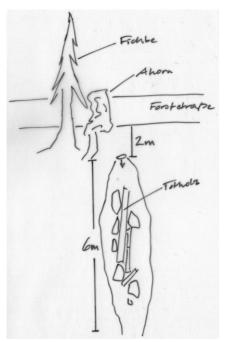



Abb.39 Skizze Quelltobel Dörfelmoaralm

Tab.37 Artenliste Quelltobel Dörfelmoaralm

| Quelle  | Taxon                   | Aufnahmebereich | Deckung |
|---------|-------------------------|-----------------|---------|
| ZEMO II | Pellia endiviifolia     | Spritzwasser    | 80%     |
| ZEMO II | Palustriella decipiens  | Spritzwasser    | 10%     |
| ZEMO II | Plagiomnium undulatum   | Spritzwasser    | 7%      |
| ZEMO II | Conocephalum conicum    | Spritzwasser    | 2%      |
| ZEMO II | Rhizomnium punctatum    | Spritzwasser    |         |
| ZEMO II | Brachythecium rivulare  | Spritzwasser    |         |
| ZEMO II | Plagiochila porelloides | Spritzwasser    |         |
| ZEMO II | Bryum pseudotriquetrum  | Spritzwasser    |         |
| ZEMO II | Sanionia uncinata       | Spritzwasser    |         |

## 2.27. ZWIE I (Quelle unter Zwielauf)

Aufnahme: 20.07.05

Exposition: S-O

Inklination: II

Höhe: 1100 m

Die Quelle liegt auf einer Lichtung im Fichten-Buchen-Tannen-Ahorn Mischwald. Das gesamte Quellareal ist sehr steinig mit einigen großen (ca. 1 m Durchmesser) Felsblöcken

und viel Geröll, siehe Skizze Abb.40. Die Beschattung liegt bei ca. 15%. Moosarten der Quelle siehe Tab.38.

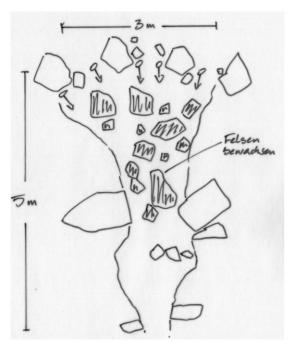



Abb.40 Skizze Quelle unter Zwielauf I

Tab.38 Artenliste Quelle unter Zwielauf I

| Quelle | Taxon                    | Aufnahmebereich | Deckung |
|--------|--------------------------|-----------------|---------|
| ZWIE I | Cratoneuron filicinum    | Quellaustritt   | 45%     |
| ZWIE I | Brachythecium rivulare   | Quellaustritt   | 25%     |
| ZWIE I | Palustriella commutata   | Quellaustritt   | 20%     |
| ZWIE I | Hygrohypnum luridum      | Quellaustritt   | 10%     |
| ZWIE I | Cratoneuron filicinum    | Spritzwasser    | 40%     |
| ZWIE I | Brachythecium rivulare   | Spritzwasser    | 40%     |
| ZWIE I | Plagiochila porelloides  | Spritzwasser    | 10%     |
| ZWIE I | Palustriella commutata   | Spritzwasser    | 5%      |
| ZWIE I | Bryum pseudotriquetrum   | Spritzwasser    |         |
| ZWIE I | Conocephalum conicum     | Spritzwasser    |         |
| ZWIE I | Thamnobryum alopecurum   | Spritzwasser    |         |
| ZWIE I | Pellia endiviifolia      | Spritzwasser    |         |
| ZWIE I | Dichodontium pellucidum  | Spritzwasser    |         |
| ZWIE I | Rhizomnium punctatum     | Spritzwasser    |         |
| ZWIE I | Palustriella decipiens   | Spritzwasser    |         |
| ZWIE I | Bryum elegans            | Spritzwasser    |         |
| ZWIE I | Schistidium dupretii     | Spritzwasser    |         |
| ZWIE I | Rhizomnium magnifolium   | Spritzwasser    |         |
| ZWIE I | Porella platyphylla      | Spritzwasser    |         |
| ZWIE I | Tortella tortuosa        | Spritzwasser    |         |
| ZWIE I | Tortella bambergeri c.f. | Spritzwasser    |         |

### 2.28. ZWIE II (Quelle unter Zwielauf)

Aufnahme: 20.07.05 Exposition: S-SW

Inklination: I Höhe: 1150 m

Die Quelle liegt auf einer Kahlschlagfläche mit Fichtenjungbewuchs und Hochstauden, und ist praktisch unbeschattet, siehe Skizze Abb.41. Moosarten der Quelle siehe Tab.39.

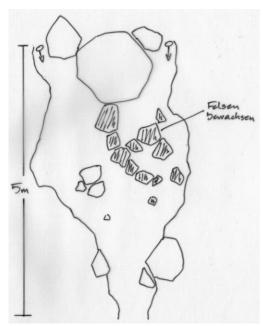



Abb.41 Skizze Quelle unter Zwielauf II

Tab. 39 Artenliste Quelle unter Zwielauf II

| Quelle  | Taxon                   | Aufnahmebereich | Deckung |
|---------|-------------------------|-----------------|---------|
| ZWIE II | Brachythecium rivulare  | Quellaustritt   | 100%    |
| ZWIE II | Brachythecium rivulare  | Spritzwasser    | 75%     |
| ZWIE II | Ctenidium molluscum     | Spritzwasser    | 10%     |
| ZWIE II | Porella platyphylla     | Spritzwasser    | 10%     |
| ZWIE II | Tortella tortuosa       | Spritzwasser    |         |
| ZWIE II | Schistidium dupretii    | Spritzwasser    |         |
| ZWIE II | Radula complanata       | Spritzwasser    |         |
| ZWIE II | Bryum pseudotriquetrum  | Spritzwasser    |         |
| ZWIE II | Plagiochila porelloides | Randbereich     |         |
| ZWIE II | Mnium thomsonii         | Randbereich     |         |
| ZWIE II | Pellia endiviifolia     | Randbereich     |         |
| ZWIE II | Cololejeunea calcarea   | Randbereich     |         |
|         |                         |                 |         |

# 3. Ergebnisse

### 3.1. Gesamtartenliste

Insgesamt konnten, an 39 Quellstandorten, 96 Moosarten, davon 20 Lebermoose und 76 Laubmoose gefunden und bestimmt werden, siehe Tab.40.

Tab.40 Gesamtartenliste aller in dieser Arbeit kartierter Quellen

| Tab.40 Gesamtartenliste aller in dieser Ai |
|--------------------------------------------|
| TAXON                                      |
| Amblystegium humile                        |
| Amblystegium serpens                       |
| Amblystegium tenax                         |
| Aneura pinguis                             |
| Anomobryum concinnatum                     |
| Brachythecium rivulare                     |
| Bryum elegans                              |
| Bryum pallens                              |
| Bryum pseudotriquetrum                     |
| Bryum pallescens                           |
| Calliergonella cuspidata                   |
| Campylium calcareum                        |
| Campylium stellatum                        |
| Catoscopium nigritum c.f.                  |
| Cinclidotus aquaticus                      |
| Ciriphyllum piliferum                      |
| Climactium dendroides                      |
| Cololejeunea calcarea                      |
| Conocephalum conicum                       |
| Cratoneuron filicinum                      |
| Ctenidium molluscum                        |
| Dichodontium pellucidum                    |
| Dicranum polysetum                         |
| Didymodon ferrugineus                      |
| Didymodon spadiceus                        |
| Didymodon rigidulus                        |
| Didymodon sinuosus c.f.                    |
| Didymodon tophaceus                        |
| Ditrichum gracile                          |
| Encalypta streptocarpa                     |
| Fissidens dubius                           |
| Fissidens taxifolius                       |
| Fontinalis antipyretica                    |
| Gymnostomum calcareum                      |
| Hygrohypnum Iuridum                        |
| Hylocomium splendens                       |
| Hymenostylium recurvirostrum               |
|                                            |

Hypnum cupressiforme

Hypnum sauteri

Jungermannia atrovirens

Jungermannia obovata c.f.

Jungermannia sp.

Leiocolea badensis c.f.

Leiocolea bantriensis

Leiocolea collaris

Leiocolea heterocolpos

Lophocolea bidentata

Lophocolea sp.

Lophozia sp.

Marchantia polymorpha ssp. polymorpha

Metzgeria conjugata

Metzgeria furcata

Mnium hornum

Mnium marginatum

Mnium thomsonii

Neckera crispa

Orthothecium rufescens

Oxyrrhynchium hians

Oxyrrhynchium speciosum

Palustriella commutata

Palustriella decipiens

Pedinophyllum interruptum

Pellia endiviifolia

Pellia epiphylla

Philonotis caespitosa c.f.

Philonotis calcarea

Philonotis fontana

Plagiochila porelloides

Plagiomnium affine s.lat.

Plagiomnium affine s.str.

Plagiomnium cuspidatum

Plagiomnium elatum

Plagiomnium ellipticum

Plagiomnium medium

Plagiomnium rostratum

Plagiomnium undulatum

Plagiothecium sp.

Platyhypnidium riparioides

Pohlia wahlenbergii

Polytrichum formosum

Porella platyphylla

Radula complanata

Rhizomnium magnifolium

Rhizomnium punctatum

Rhytidiadelphus triquetrus

Sanionia uncinata

Scapania aequiloba

Schistidium dupretii

Scorpidium cossonii

Seligeria trifaria

Taxiphyllum wissgrillii
Thamnobryum alopecurum
Thuidium tamariscinum
Tortella bambergeri c.f.
Tortella tortuosa
Warnstorfia exannulata

#### 3.2. Rote Liste Arten

Von den gesammelten Moosen, konnten 18 Arten mit naturschutzrelevanter Bedeutung nachgewiesen werden. Die Zuordnung in Gefährdungskategorien und die jeweiligen Definitionen folgen dem "Katalog und Rote Liste der Moose Oberösterreichs" (Schröck et al. 2014):

#### **CR (Critically Endangered - vom Aussterben bedroht)**

Sehr seltene Arten, die massiv bedroht sind und in absehbarer Zeit aussterben werden, wenn die gegenwärtigen, erheblichen Bedrohungen fortbestehen. Das Überleben dieser Arten sollte durch die sofortige Einleitung adäquater Schutzmaßnahmen dauerhaft gesichert werden (Schröck et al. 2014: 49).

Jungermannia obovata c.f.

Oxyrrhynchium speciosum

#### VU (Vulnerable - verletzlich)

Etwas weiter verbreitete Moose mit deutlich erkennbaren Rückgängen oder seltene Arten mit einer vergleichsweise geringen Habitatgefährdung. Mit Hilfe von allgemeinem Biotopmanagement sollte versucht werden, die Populationen zu stabilisieren, um zu verhindern, dass die Arten in die Kategorie "EN" aufrücken oder sie lokal zur Gänze verschwinden (Schröck et al. 2014: 50).

Amblystegium tenax

Cinclidotus aquaticus

Didymodon tophaceus

Leiocolea bantriensis

Palustriella decipiens

Plagiomnium ellipticum

Rhizomnium magnifolium

#### G (gefährdet, aber unbekannten Ausmaßes)

Arten, über deren aktuelle Verbreitung und Gefährdung zu wenige Informationen vorhanden sind, als dass eine vollständige Bewertung möglich war. Oft handelt es sich dabei um schwierig zu erfassende bzw. unbeständige Arten oder um Moose, deren Taxonomie nicht zur Gänze geklärt ist (Schröck et al. 2014: 50).

Philonotis caespitosa c.f.

#### NT (Near Threatened - beinahe gefährdet, Vorwarnliste)

Arten mit erkennbaren Rückgängen, die aber heute noch weit verbreitet sind und somit im Sinne der Roten Liste nicht als gefährdet zu betrachten sind. Einige dieser Arten haben zumindest lokal bereits erhebliche Bestandesrückgänge zu verzeichnen oder sind mancherorts bereits zur Gänze verschwunden, so dass bei Bestehen der aktuellen Gefährdungen in absehbarer Zeit mit einem Aufrücken in die Kategorie "VU" zu rechnen ist, was durch allgemeines Biotopmanagement verhindert werden sollte (Schröck et al. 2014: 50).

Dicranum polysetum

Marchantia polymorpha ssp. polymorpha

Palustriella commutata

Philonotis fontana

Plagiomnium elatum

Scorpidium cossonii

#### R (Rare - selten)

Sehr seltene Moose mit wenigen Vorkommen in einem sehr eng umgrenzten Gebiet oder Arten mit punktuellen Vorkommen in einem größeren Gebiet, die eine enge ökologische Anbindung an seltene Habitattypen und/oder Substrate aufweisen. Die Arten dieser Kategorie weisen demnach eine hohe naturschutzfachliche Bedeutung auf und ein verstärktes Vorkommen von R-Arten [...] in einer Region steht für sehr diverse, naturnahe Landschaften (Schröck et al. 2014: 50).

Anomobryum concinnatum

#### 3.3. Diskussion der Ergebnisse

In den 39 untersuchten Quellfluren konnten 96 verschiedene Moosarten gefunden werden. Nach Abgleich mit dem "Katalog und Rote Liste der Moose Oberösterreichs" (Schröck et al. 2014) wurden zwei vom Aussterben bedrohte Arten (CR - Jungermannia obovata, Oxyrrhynchium speciosum), acht verletzliche Arten (VU - Amblystegium tenax, Cinclidotus aquaticus, Didymodon tophaceus, Leiocolea bantriensis, Palustriella decipiens, Plagiomnium ellipticum, Rhizomnium magnifolium, Warnstorfia exannulata), eine gefährdete Art, aber unbekannten Ausmaßes (G - Philonotis caespitosa), sechs beinahe gefährdete Arten, auf der Vorwarnliste (NT - Dicranum polysetum, Marchantia polymorpha ssp. polymorpha, Palustriella commutata, Philonotis fontana, Plagiomnium elatum, Scorpidium cossonii) und eine seltene Arte (R - Anomobryum concinnatum) gefunden (siehe Kapitel 3.2.).

Da Quellfluren kleinräumige und somit sehr sensible Sonderstandorte darstellen, sind diese Lebensräume und die auf diese Standorte spezialisierten Moose stark gefährdet. Quellfassungen, Beweidung, Drainagierung oder forstliche Maßnahmen können leicht zur Zerstörung dieser Biotope führen. Daher ist es besonders wichtig, dass viele solcher Flächen im Nationalpark Kalkalpen liegen und somit Schutzstatus genießen. Im Nationalpark wird durch Quell-Monitoringprogramme die Entwicklung dieser Flächen genau untersucht (Haseke 1994, Haseke 1995, Haseke 1996).

Von all den vorgefundenen Moosarten sind nicht viele "echte Wassermoose", d.h. Moose die ständig oder über sehr lange Zeiträume submers leben. Nur *Cinclidotus aquaticus*, *Fontinalis antipyretica* und *Platyhypnidium riparoides* qualifizieren sich als solche. Auch diese submers lebenden Arten können Trockenperioden, wie an Quellstandorten üblich, überstehen und nutzen diese Zeiten zur Ausbildung von Sporogonen. *Amblystegium tenax* weist zwar eine amphibische bzw. subaquatische Lebensweise auf, benötigt also regelmäßige Überflutungen, lebt aber die übrige Zeit über der Mittelwasserlinie (Schlüsselmayr 2005).

Die am häufigsten vorgefunden Arten, *Brachythecium rivulare* (an 33 Standorten), *Palustriella commutata* (an 27 Standorten) und *Cratoneuron filicinum* (an 19 Standorten), aber auch *Dichodontium pellucidum, Didymodon spadiceus* und *Hygrohypnum luridum* sind nach Schlüsselmayr (2005) vorwiegend als Ufermoose lebende Arten, die über der Wasserlinie und unter der Hochwasserlinie auftreten, aber durchaus auch unabhängig von Gewässern an feuchten Standorten existieren können. Weiter an und über der Hochwasserlinie kommen dann auch viele hygrophile Arten vor, die vom günstigen

Mikroklima eines Quellstandorts profitieren. Hierzu zählen beispielsweise *Conocephalum* conicum, Marchantia polymorpha, Bryum pseudotriquetrum und andere.

Im Zuge dieser Arbeit wurde der Versuch gestartet, die untersuchten Moosquellfluren ausschließlich mit Hilfe der gefundenen Moosarten Pflanzengesellschaften zuzuordnen.

Quellflurgesellschaften werden der Klasse Montio-Cardaminetea, die in Österreich mit sechs Verbänden auftritt, zugeordnet.

Die Gesellschaften dieser Klasse entwickeln sich an sickerfeuchten bis nassen, kühltemperierten Standorten mit hoher Luftfeuchtigkeit, die mit bewegtem Oberflächenwasser versorgt werden. Quellwasser weist unmittelbar nach dem Austritt eine sehr geringe Sauerstoffsättigung auf, die mit zunehmendem Abstand zum Quellursprung durch Aufnahme über athmosphärischen Sauerstoff ansteigt. Da Quellen von homothermen Tiefenwässern gespeist werden, sind die Temperaturen im Jahresverlauf relativ gleichbleibend. Durch diese ökologischen Bedingungen werden Quellfluren meist durch extrem stenöke Arten besiedelt. Das kaltstenotherme Quellwasser bringt Blütenpflanzen in einen physiologischen Grenzbereich, Kryptogamen weisen bei solchen Bedingungen jedoch deutlich positive Photosyntheseraten und dementsprechendenes Wachstum auf. Bryophyten stellen daher einen Grundpfeiler der Klassifizierung und viele Moose finden sich hier als diagnostische Arten wieder (Zechmeister 1993).

Zumindest acht Quellstandorte, lassen sich dem Cratoneuretum commutati Aichinger 1933, Kalkquellflur der Montanstufe, aus dem Verband Adiantion Br.-Bl. ex Horvatic 1939 zuordnen. Die Kennart dieser Gesellschaft ist *Cratoneuron filicinum*, dominante und konstante Begleitarten sind *Palustriella commutata, Campylium stellatum und Conocephalum conicum*.

Nach Zechmeister (1993) liegen in typischer Ausbildung dieser Gesellschaft oft einartige Bestände von *Palustriella commutata* vor.

Die Quellen AMQ I, FALK I, SFEL, STEF I und TDQ weisen alle eine über 80 prozentige Deckung von *Palustriella commutata* am Quellaustritt auf.

An den Standorten AMQ II und AMQ III zeigt zumindest die Spritzwasserzone eine hohe Dominanz von *Palustriella commutata* (85% und 80%) und HRQ VIII weist am Quellaustritt Deckungswerte von 60% für *P.commutata* auf, die restlichen 40% entfallen hier auf die Kennart *Cratoneuron filicinum*.

Die Begleitart *C.stellatum* kommt in AMQ III vor, *C.filicinum* wurde in AMQ II, AMQ III, HRQ VIII, SFEL und TDQ gefunden und *C.conicum* konnte in AMQ III, FALK und STEF I beschrieben werden (siehe Tab.2, 3, 4, 7, 18, 29, 31, 35).

Ein Standort, die Obere Feichtauseequelle (OFEI), weist ebenfalls eine sehr hohe Deckung (85%) für *Palustriella commutata* auf, da die Quelle jedoch auf über 1500 m liegt, käme eher das Cratoneuretum falcati Gams 1927 in Frage. Kenntaxa dieser Gesellschaft sind *Palustriella commutata var. falcata* und *Philonotis calcarea*. Als konstanter Begleiter wird *Bryum pseudotriquetrum* beschrieben. Im Zuge dieser Arbeit wurden die Moose nur auf Artniveau bestimmt, die Varietät *falcata* des Laubmooses *Palustriella commutata* ersetzt jedoch, laut Zechmeister (1993), in höheren Lagen die typische Form und so ist auch davon auszugehen, dass dies hier der Fall ist. *P.calcarea* wurde nicht gefunden, *B.pseudotriquetrum* dagegen konnte sowohl im Quellaustritt, als auch auf der anschließenden Wand gefunden werden (siehe Tab.24).

Schlüsselmayr (2005) beschreibt aus dem Gebiet der Kalkalpen Wassermoosgesellschaften, denen sich auch Moosgesellschaften, in dieser Arbeit kartierter Quellen, zuordnen lassen.

Das Brachythecio rivularis - Hygrohypnetum luridi Phil. 1965 ist nach Schlüsselmayr (2005) in den Kalkvoralpen und Kalkalpen Oberösterreichs die dominierende Moosgesellschaft submontaner und montaner Uferbereiche kleinerer Fließgewässer. Das namensgebende Laubmoos *Brachythecium rivulare* dominiert hier Felsblöcke und Uferbereiche, wobei Lücken und Randbereiche durch eine Vielzahl hygrophiler Moose besiedelt werden. Wichtige Begleitarten, die auch hohe Deckungen erreichen sind *Cratoneuron filicinum, Dichodontium pellucidum und Hygrohypnum luridum*.

Von den in dieser Arbeit kartierten Quellstandorten, können zumindest zwölf Standorte dem Brachythecio rivularis - Hygrohypnetum luridi Phil. 1965 zugeordnet werden.

AMA, EBA, HRQ II, HRQ III, HRQ IV, KRA, LEO und ZWIE II weisen jeweils am Quellaustritt eine Deckung von über 80% von Brachythecium rivulare auf.

HRQ V, HRQ VII, SIQ und STEY AB weisen zumindest im Spritzwasserbereich Deckungswerte von über 60% für B. rivulare auf.

Die Begleitart Cratoneuron filicinum kommt an EBA, HRQ II, HRQ V, HRQ VII, LEO, SIQ und STEY AB, die Begleitart Hygrohypnum luridum kommt an HRQ II und STEY AB vor (siehe Tab.1, 12, 13, 14, 15, 17, 20, 21, 30, 33, 39).

Das Oxyrrhynchietum rusciformis Gams ex v. Hübschm. 1953 ist laut Schlüsselmayr (2005) in den Kalkvoralpen und Kalkalpen Oberösterreichs die häufigste aquatische Moosgesellschaft an bzw. in schnell fließenden Gewässern. Die Kennart dieser Wassermoosgesellschaft ist *Platyhypnidium riparoides* und als konstante Begleitarten werden *Cratoneuron filicinum* und *Dichodontium pellucidum* angegeben.

Die Quellen HAS III, MAUL, PRED-N und SIQ zeigen am Quellaustritt Deckungswerte für *Platyhypnidium riparoides* die über 60% liegen. In der Quelle PRED-N wurde auch *Dichodontium pellucidum* aufgefunden und in der Quelle MAUL wurde *Cratoneuron filicinum* gefunden (siehe Tab.10, 23, 25, 30).

Wie man an der Sitzenbachquelle (SIQ) sehen kann, die sich den beiden oben beschriebenen Wassermoosgesellschaften zuordnen lässt, ist die genaue Zuordnung sehr schwierig, da die Übergänge zwischen den Gesellschaften oft fließend sind und so die Größe der Aufnahmeflächen oft über die genaue Zuordnung entscheiden kann. Auch Schlüsselmayr (2005)spricht der Schwierigkeit der von Abgrenzung von aufgrund des Aufnahmeflächen, Vorhandenseins von Kontaktzonen, die Artenzusammensetzungen mehrerer Mossgesellschaften aufweisen.

Quellstandorte wie beispielsweise ZWIE I, mit Deckungswerten im Quellaustritt von 45% C.filicinum, 25% B.rivulare, 20% P.commutata und 10% H.luridum, lassen sich daher nicht eindeutig zuordnen und die Deckungswerte legen nahe, dass sich hier Cratoneuretum commutati Aichinger 1933 und Brachythecio rivularis - Hygrohypnetum luridi Phil. 1965 überschneiden. Um eine genauere Zuordnung der untersuchten Flächen zu Pflanzengesellschaften zu erreichen, wäre die Auswahl bzw. die Abgrenzung der Aufnahmeflächen daher zu verändern, um so Übergangszonen auszuklammern und aussagekräftigere Deckungszahlen zu erhalten.

Obwohl Hauptaugenmerk dieser Arbeit auf eine rein floristische Kartierung gelegt wurde und somit die Aufnahmeflächen so gewählt wurden, dass alle vom Quellwasser beeinflussten Moose miteingeschlossen waren, konnten doch 24 Quellstandorte Wassermoos- bzw. Quellflurgesellschaften zugeordnet werden, ohne dabei das Vorkommen höherer Pflanzen zu berücksichtigen. Bei schärferer Eingrenzung der Aufnahmeflächen, könnte diese Zahl noch nach oben korrigiert werden.

#### 4. Literaturverzeichnis

- EUROPARC und IUCN (2000): Richtlinien für Managementkategorien von Schutzgebieten - Interpretation und Anwendung der Management Kategorien in Europa. EUROPARC und WCPA, Grafenau, Deutschland 48 S.
- Ford, D. und Williams, P. D. (2013): *Karst hydrogeology and geomorphology*, John Wiley & Sons.
- Frahm, J.-P. und Frey, W. (2004): Moosflora, 4. Auflage, Ulmer Verlag, Stuttgart
- Haseke, H. (2004): Markierungsversuche und Hydrologie Nationalpark Kalkalpen. Bericht Markierungsversuche 2004 im Nationalpark Kalkalpen. Molln/Salzburg
- Haseke, H. (1990): *Hydrologie und Karstmorphologie des Sengsengebirges Nationalpark Kalkalpen*, Forschungsprojekt 2.1.-1990, Molln/Salzburg
- Haseke, H. und Angerer, S. (1994): *Quelldokumentation im Nationalpark Kalkalpen Teil*1, NPK Jahresbericht 1994, Molln/Salzburg
- Haseke, H. und Angerer, S. (1995): *Quelldokumentation im Nationalpark Kalkalpen Teil* 2, NPK Jahresbericht 1995, Molln/Salzburg
- Haseke, H. (1996): *Quelldokumentation Teil 3. Endbericht des Teilprojekts 1* 1603-7.3./1996 Unveröff. Studie i. A. des Vereins Nationalpark Kalkalpen
- Kent, M. und Coker, P. (1992): *Vegetation Description and Analysis*, Belhave Press London: 363.
- Köckinger, H., Schröck, C., Krisai, R. und Zechmeister, H. (2019): Checkliste der Moose Österreichs. http://cvl.univie.ac.at/projekte/moose/ [06.10.2019]
- Nationalparks Austria (2019): Größe und Anzahl der österreichischen Nationalparks. https://www.nationalparksaustria.at/de/pages/faqs-8.aspx [08.08.2019]

- NP Kalkalpen (2019): Karte des Nationalparks Kalkalpen. https://www.kalkalpen.at/de/Eckdaten Nationalpark Kalkalpen [08.08.2019]
- Schindler, H. (2004): Bewertung der Auswirkungen von Umweltfaktoren auf die Struktur und Lebensgemeinschaften von Quellen in Rheinland-Pfalz, Unveröff. Diss., Universität Koblenz-Landau
- Schlüsslmayr, G. (2005): Soziologische Moosflora des südöstlichen Oberösterreich, Stapfia 84. ISSN 0252-192X Land Oberösterreich Biologiezentrum des Oberösterreichischen Landesmuseums, Linz.
- Schröck, C., Köckinger, H. und Schlüsselmayr, G. (2014): *Katalog und Rote Liste der Moose Oberösterreichs*. Stapfia 100. ISSN 0252-192X Land Oberösterreich Biologiezentrum des Oberösterreichischen Landesmuseums, Linz.
- Stadler, P. (2017): *Karstquellen im Nationalpark Kalkalpen*. Schriftenreihe des Nationalpark Kalkalpen Bd.17.
- Stampfli, A. (1991): Accurate determination of vegetational change in meadows by successive point quadrat analysis. Vegetatio, 96: 185-194.
- Steinmann, P. (1915): *Praktikum der Süßwasserbiologie. I. Die Organismen des fließenden Wassers.* Sammlung naturwiss. Praktika 7, Berlin.
- Sveinbjörnson, B. und Oechel, W.B. (1992): Controls and growth and productivity of bryophytes: environmental limitations under current and anticipated conditions. In: J.W. Bates & A.M. Farmer (Hrsg.), Bryophytes and lichens in a changing environment, S.33-76. Oxford
- Thienemann, A. (1924): Die Gewässer Mitteleuropas eine hydrobiologische Charakteristik ihrer Haupttypen. Stuttgart.
- Tiefenbach, M., Larndorfer, G. und Weigand, E. (1998): *Naturschutz in Österreich*.

  Monographien Band 91, Wien: Umweltbundesamt

- Unterwurzacher, M., Rüf, B. und Sanders, D. (2006): Quelltuff in Vorarlberg Bildung, Verwendung, materialtechnische Eigenschaften. Vorarlberger Naturschau 19, S. 207-224. Dornbirn
- Zechmeister, H. G. (1993) Montio-Cardaminetea. In: Grabherr, G. und Mucina, L. (Hrsg.), Die Pflanzengesellschaften Österreichs. Teil II S. 213-232. Gustav Fischer Verlag, Jena.
- Zechmeister, H. G. (1996): *Biomonitoring und Bioindikation mittels Moosen. Teil 1.* 1992. Integrated Monitoring Serie. IM-Rep-005. Umweltbundesamt. Wien.