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Abstract

The goal of my thesis is to show the ergodicity of the geodesic flow on quotient
spaces of the hyperbolic plane Γ \ H, where Γ is a lattice. This statement is pre-
sented and proven in the last section of chapter 3.

To be able to understand all the concepts needed, we start by introducing the
hyperbolic plane H in chapter 1 and point out how its geometry differs from Eu-
clidean geometry. In particular, we demonstrate how hyperbolic distance is defined
and show its consequences. For instance, we will see that geodesics in the hyper-
bolic plane consist of vertical lines and semicircles with centre on R. We will also
be interested in studying Möbius transformations, which do not alter hyperbolic
distances, angles or hyperbolic areas. Furthermore some fundamental properties
of hyperbolic geometry will be shown, such as the Gauss-Bonnet Theorem.

Chapter 2 starts by showing various characteristics of the projective special lin-
ear group, PSL2(R), such as the identification between PSL2(R) and T 1H, the
unit tangent bundle of H, or the fact that PSL2(R) is a closed linear group. The
reason why this is useful is that since the geodesic flow on the hyperbolic plane is
a function on T 1H we can also define the geodesic flow as a function on PSL2(R),
which will be done in chapter 3. We will also derive a metric on PSL2(R). This
will be done in a more general way by defining a metric on closed linear groups
G. Afterwards we consider properties of Fuchsian groups and introduce the notion
of fundamental regions. This will be important since we want Γ to be a Fuchsian
group whose fundamental domains have finite measure.

As mentioned before we start chapter 3 by defining the geodesic flow on T 1H as
well as on PSL2(R). The same can be done for the horocycle flow. In order to
define the geodesic flow on the quotient space Γ \ PSL2(R) we first demonstrate
the identifications T 1(Γ \H) ∼= Γ \ (T 1H) ∼= Γ \PSL2(R) and use the definition of
the geodesic flow on T 1(Γ \ H). Our last step before examining the ergodicity of
the geodesic flow on Γ \PSL2(R) will be the definition of a measure and a metric
on Γ \G.

I mainly followed the book [5] by Einsiedler and Ward and the paper [8] by
Katok. The others sources were used for additional information on the topics.





Zusammenfassung

Das Ziel meiner Masterarbeit ist die Ergodizität des geodätischen Flusses auf Quo-
tientenräumen der hyperbolischen Ebene Γ \ H zu zeigen, wobei Γ ein Gitter ist.
Diese Aussage wird im letzten Abschnitt von Kapitel 3 bewiesen.

Um alle benötigten Konzepte verstehen zu können, führen wir zunächst die
hyperbolische Ebene H im ersten Kapitel ein und zeigen auf, wie sich ihre Ge-
ometrie von der euklidischen Geometrie unterscheidet. Insbesondere zeigen wir,
wie die hyperbolische Distanz definiert ist und welche Konsequenzen dies hat.
Zum Beispiel werden wir sehen, dass Geodäten in der hyperbolischen Ebene aus
vertikalen Linien und Halbkreisen bestehen, deren Mittelpunkt auf R liegt. Wir
werden auch Möbius-Transformationen untersuchen. Diese verändern keine hy-
perbolischen Abstände, Winkel oder hyperbolischen Flächen. Außerdem werden
einige grundlegende Eigenschaften der hyperbolischen Geometrie aufgezeigt, wie
zum Beispiel der Satz von Gauß-Bonnet.

Wir beginnen das zweite Kapitel indem wir verschiedene Merkmale der projek-
tiven speziellen linearen Gruppe PSL2(R) zeigen, wie zum Beispiel die Identifika-
tion zwischen PSL2(R) und T 1H, dem Einheits-Tangentialbündel von H, oder die
Tatsache, dass PSL2(R) eine geschlossene lineare Gruppe ist. Dies ist nützlich,
weil der geodätische Fluss auf der hyperbolischen Ebene eine Funktion auf T 1H
ist. Daher können wir in Kapitel 3 den geodätischen Fluss auch als Funktion auf
PSL2(R) betrachten. Wir werden auch eine Metrik auf PSL2(R) herleiten. Dazu
definieren wir allgemeiner eine Metrik auf geschlossenen linearen Gruppen G. An-
schließend betrachten wir Eigenschaften von Fuchsschen Gruppen und führen den
Begriff der Fundamentalregion ein. Dies wird wichtig sein, da Γ eine Fuchssche
Gruppe sein soll, deren Fundamentalregionen endliches Maß haben.

Wie bereits erwähnt, beginnen wir das dritte Kapitel mit der Definition des
geodätischen Flusses auf T 1H sowie auf PSL2(R). Dasselbe kann für den horozyk-
lischen Fluss gemacht werden. Um den geodätischen Fluss auf dem Quotienten-
raum Γ\PSL2(R) zu definieren, werden zunächst die Identifikationen T 1(Γ\H) ∼=
Γ\(T 1H) ∼= Γ\PSL2(R) gezeigt, um danach den geodätischen Fluss auf T 1(Γ\H)
zu definieren. Bevor wir die Ergodizität des geodätischen Flusses auf Γ\PSL2(R)
untersuchen, definieren wir noch ein Maß und eine Metrik auf Γ \G.

Ich bin hauptsächlich dem Buch [5] von Einsiedler und Ward und der wis-
senschaftlichen Arbeit [8] von Katok gefolgt. Die anderen Quellen wurden für
zusätzliche Informationen zu den jeweiligen Themen verwendet.
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1 Hyperbolic geometry

In this chapter I will introduce properties of the hyperbolic plane which will be
relevant for the following chapters. Also some differences between Euclidean ge-
ometry and hyperbolic geometry will be studied.

1.1 Hyperbolic length and distance

Our first goal is to define a metric on the hyperbolic plane. This will be done by
constructing a Riemannian metric on the hyperbolic plane.

Definition 1.1. The hyperbolic plane is defined as the upper half-plane
H = {z ∈ C : =(z) > 0} of the complex plane C. Its boundary is given by
∂H = R ∪∞ = {z ∈ C : =(z) = 0} ∪ {∞}.

Definition 1.2. A path in H is a piecewise C1 curve γ : I → H, where I is the
unit interval [0, 1].

Before we define a metric on the hyperbolic plane we will briefly remember the
definition of a smooth manifold. Since the hyperbolic plane is a smooth manifold
we can define a Riemannian metric on it (by Proposition 13.3 in [10]). For a more
detailed discussion see for example [4] or [10].

Definition 1.3. A topological space M is called topological manifold if for every
p ∈ M there is an open set U ⊆ M containing p which is homeomorphic to Rn.
That is, M is a topological manifold if it is locally homeomorphic to Rn.

Definition 1.4. Let M be a topological manifold and let A be a family of home-
omorphisms Xα : Rn → M , Uα 7→ Xα(Uα), where the sets Uα are open in Rn and
α is in some index set A. Then a smooth manifold (M,A) is a pair satisfying

(i) M = ∪αXα(Uα);
(ii) Let α, β ∈ A such that Xα(Uα) ∩Xβ(Uβ) = V 6= ∅. Then the sets X−1

α (V ),
X−1
β (V ) are open in Rn. Additionally the composition

X−1
β ◦Xα : Rn → Rn

X−1
α (Xβ(Uβ)) 7→ Uβ

is smooth (see Figure 1.1). By interchanging α and β we get that also the
inverse map is smooth;

(iii) The family A is maximal with respect to (i) and (ii).

Remark 1.5. The family A is called an atlas and (Xα, Uα) is a coordinate system
for p ∈M if p ∈ Xα(Uα).
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M

V

Xa(Ua)

Xb(Ub)

Xa Xb

Ua

Ub

Figure 1.1: Representation of coordinates of a manifold M .

Definition 1.6. Let M be a smooth manifold and let <,>p: TpM ×TpM → R be
an inner product on TpM for p ∈M . If <,>p varies smoothly from point to point
on M , then the collection (<,>p)p∈M is called a Riemannian metric on M.

We define a Riemannian metric on H as follows.

Definition 1.7. Let z = x + iy be in H and the vectors (z, u) and (z, v) in TzH,
which is the tangent space of H at z. Since TzH = {z}×C ∼= {z}×R2 the vectors
u and v are in {z} × R2. Thus we can define an inner product on R2:

<,>z: R2 × R2 → R

u, v 7→< u, v >z:=
(u, v)

=(z)2
=

(u, v)

y2
,
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where (u, v) is the usual inner product in C ∼= R2.
Then we use the same symbol to define an inner product on TzH:

<,>z: TzH× TzH→ R

(z, u), (z, v) 7→< (z, u), (z, v) >z:=< u, v >z=
(u, v)

=(z)2
=

(u, v)

y2
.

By Definition 1.6 the Riemannian metric on H or hyperbolic Riemannian metric
is the collection of the inner products for all z in H.

Now we can define the hyperbolic distance d(., .) induced by the hyperbolic
Riemannian metric and show that it is a metric.

Definition 1.8. Let γ : I → H be a path in H and Dγ(t) = (γ(t), γ′(t)) its
derivative at time t ∈ [0, 1]. Dγ(t) is a vector in Tγ(t)H with norm ‖Dγ(t))‖γ(t).
The (hyperbolic) length of a path γ is given by

L(γ) =

∫ 1

0

‖Dγ(t))‖γ(t)dt =

∫ 1

0

√
< Dγ(t), Dγ(t) >γ(t)dt

=

∫ 1

0

√
(γ′(t), γ′(t))

=(γ(t))2
dt,

(1.1)

where the second equation follows by the definition of a norm induced by an inner
product and the third equation by Definition 1.7.
Now let z0 and z1 be points in H and consider paths γ in H connecting these two
points. Then we define the hyperbolic distance between z0 and z1 as

d : H×H→ R
(z0, z1) 7→ d(z0, z1) := inf

γ
L(γ),

the infimum over all paths starting at z0 and ending at z1.

Proposition 1.9. The hyperbolic distance function is a metric.

Proof. Let γ(t) = x(t) + iy(t) for t ∈ [0, 1] be a path in H going from z0 = γ(0) to
z1 = γ(1).
If z0 = z1 then we get a shortest path if x(t) and y(t) are constant functions and
thus

L(γ) =

∫ 1

0

√
(dx
dt

)2 + (dy
dt

)2

y(t)2
dt =

∫ 1

0

√
0

y(t)2
dt = 0. (1.2)

This shows d(z0, z1) = 0.
For z0 6= z1 at least one the functions x(t), y(t) cannot be constant. Therefore
the numerator in the first integral of equation (1.2) is strictly positive on some
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non-degenerate subinterval. Since the denominator is positive in any case, the
integrand is also positive. It follows that d(z0, z1) > 0, so the distance is strictly
positive.
To show the symmetry of the distance function consider the path

γ(1− t) = x(1− t) + iy(1− t),

t ∈ [0, 1], going in the reverse direction of γ(t), form z1 to z0. Then

L(γ(1− t)) =

∫ 1

0

√
(dx(1−t)

dt
)2 + (dy(1−t)

dt
)2

y(1− t)2
dt =

∫ 0

1

√
(dx(u)
−du )2 + (dy(u)

−du )2

y(u)2
(−du)

=

∫ 1

0

√
(dx(u)

du
)2 + (dy(u)

du
)2

y(u)2
du = L(γ(t)).

(1.3)

The second equation follows by the substitution 1 − t = u, −dt = du. Hence the
length of the path is independent of the direction of the path and so we get

d(z0, z1) = inf
γ(t)

L(γ(t)) = inf
γ(1−t)

L(γ(1− t)) = d(z1, z0).

For the triangle inequality consider an additional point z2 in H. Let γ1 be a
path from z0 to z1 and γ2 a path from z1 to z2. Let γ3 be the path composed
from γ1 and γ2 going from z0 to z2. By our construction the length of γ3 is
L(γ3) = L(γ1)+L(γ2) and by the definition of the hyperbolic distance function we
get d(z0, z2) ≤ L(γ3) = L(γ1) + L(γ2). Then taking the infimum over L(γ1) and
L(γ2) gives d(z0, z2) ≤ d(z0, z1) + d(z1, z2).

The notions of hyperbolic length and distance can be extended to the boundary
of H.

Definition 1.10. We define the length of a path γ : I → H ∪ ∂H with γ(t) ∈ H
for t ∈ (0, 1) by

L(γ) :=

∫ 1

0

√
(γ′(t), γ′(t))

=(γ(t))2
dt,

and call the infimum over all such paths the hyperbolic distance d(γ(0), γ(1)) be-
tween γ(0) and γ(1).

Lemma 1.11. The hyperbolic distance between any two points z0 ∈ H, z1 ∈ ∂H
is infinite.
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Proof. Let z1 = a ∈ R and z0 = b + ci, where b ∈ R and c ∈ R>0. Then
γ(t) = a+ (b− a)t+ cit is a path from z1 to z0 for t ∈ [0, 1]. Its length is

L(γ) =

∫ 1

0

√
(d(a+(b−a)t)

dt
)2 + (d(ct)

dt
)2

(ct)2
dt ≥

∫ 1

0

√
(d(ct)
dt

)2

(ct)2
dt =

∫ 1

0

1

t
dt = ln(t)|10

= lim
k→0

ln(
1

k
) =∞.

So d(z0, z1) =∞ follows.
If z1 = ∞ then by letting k ∈ R go to infinity γ(t) = b + tk + (1 − t)ci is a path
from z0 to z1 for t ∈ [0, 1]. Its length is

L(γ) = lim
k→∞

∫ 1

0

√
k2 + c2

((1− t)c)2
dt = lim

k→∞

√
k2 + c2

1

−c

∫ 1

0

−c
c(1− t)

dt

= lim
k→∞

√
k2 + c2

1

−c
ln(1− t)|10 =∞,

and again d(z0, z1) =∞ follows.

Remark 1.12. (i) The previous Lemma shows a considerable difference be-
tween hyperbolic length and Euclidean length: For example, if we take the
two points z0 = 1 + i and z1 = 1, then γ(t) = 1 + (1− t)i, t ∈ [0, 1], is a path
from z0 to z1. Its Euclidean length is 1, whereas its hyperbolic length is ∞.

(ii) We will see at the end of the next subsection (Remark 1.33 (iv)) that the
hyperbolic distance of two points on ∂H is also infinite.

1.2 Möbius transformations and geodesics

The last section enabled us to measure distances in the hyperbolic plane. Now
we are interested in finding functions on the hyperbolic plane which do not al-
ter distances. We will show that Möbius transformations fulfill this requirement.
Afterwards we consider paths of shortest lengths.

Definition 1.13. Let SL2(R) = {
(
a b
c d

)
∈ R2×2 : ad − bc = 1} be the special

linear group and define the action of SL2(R) on H by

T : SL2(R)×H→ H

(g, z) 7→ Tg(z) :=
az + b

cz + d
.

(1.4)

We call Tg a Möbius transformation.
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Now that we have defined Möbius transformations, let us continue with some
basic properties.

Remark 1.14. (i) For any matrix g =

(
a b
c d

)
∈ R2×2 with ad− bc > 0 there

exists some matrix g̃ =

(
ã b̃

c̃ d̃

)
∈ SL2(R) such that

Tg(z) = Tg̃(z)

for any z ∈ H. This can be seen since for any g ∈ R2×2 with ad− bc > 0 we

can choose ν = 1√
ad−bc and set g̃ =

(
νa νb
νc νd

)
=

(
ã b̃

c̃ d̃

)
.

Then Tg̃(z) = νaz+νb
νcz+νd

= az+b
cz+d

= Tg(z) and ãd̃ − b̃c̃ = ν2(ad − bc) = 1 for any
z ∈ H. Thus a Möbius transformation can be defined as an action of the set

{
(
a b
c d

)
∈ R2×2 : ad − bc > 0} on H. But we will from now on assume

that det(g) = 1, i.e. g ∈ SL2(R).
(ii) The Möbius transformations can also define an action of the projective special

linear group

PSL2(R) := SL2(R)/{±I2}

on H since T−g(z) = −az−b
−cz−d = az+b

cz+d
= Tg(z) for g ∈ SL2(R) and z ∈ H.

Remark 1.15. Definition 1.13 really defines an action since:
(i) If z ∈ H, then az+b

cz+d
is defined for all a, b, c, d ∈ R such that ad − bc = 1.

Assume otherwise that cz + d = 0. Then z = −d
c
∈ R, which means z is not

in H. Also if c = 0 then d 6= 0 and if d = 0 then c 6= 0 since the determinant
of g must be equal to 1.

(ii) If we write

Tg(z) =
az + b

cz + d
=

(az + b)(cz̄ + d)

(cz + d)(cz̄ + d)
=
ac|z|2 + adz + bcz̄ + bc

|cz + d|2
,

the imaginary part

=(Tg(z)) =
Tg(z)− Tg(z)

2i
=

(ad− bc)(z − z̄)

2i|cz + d|2
=

(ad− bc)=(z)

|cz + d|2
=
=(z)

|cz + d|2

is strictly positive because the denominator and the numerator are positive.
(iii) The composition of two Möbius transformations is a Möbius transformation:

Let Tg and Tg̃ be two Möbius transformations with g =

(
a b
c d

)
and g̃ =
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(
ã b̃

c̃ d̃

)
. Then a simple calculation shows that

Tg̃ ◦ Tg(z) =
ãaz+b
cz+d

+ b̃

c̃az+b
cz+d

+ d̃
= Tg̃g(z)

and det(g̃g) = 1, where g̃g denotes matrix multiplication. The same holds
for Tg ◦ Tg̃(z).

Remark 1.16. (i) Remember that for all g ∈ SL2(R) we can write the action
in (1.4) as a bijective map

Tg : H→ H

z 7→ g · z = Tg(z) =
az + b

cz + d

with inverse transformation

T−1
g (z) =

dz − b
−cz + a

.

We can easily check T−1
g (Tg(z)) = Tg(T

−1
g (z)) = z.

(ii) Tg(z) is differentiable and the derivative is given by

T ′g(z) =
a(cz + d)− c(az + b)

(cz + d)2
=

ad− bc
(cz + d)2

=
1

(cz + d)2
.

(iii) We can extend Tg to the boundary of H as follows. For z ∈ R \ {−d
c
} the

transformation maps R to R. If z = −d
c

we set Tg(z) = ∞ and for z = ∞
we define Tg(∞) = infz→∞ Tg(z) = infz→∞

a+ b
z

c+ d
z

= a
c
, which is again in R. If

z =∞ and c = 0 both a and d cannot be 0 because we require ad− bc = 1.
In that case we set a

c
=∞ and −d

c
=∞ and obtain Tg(∞) =∞.

Theorem 1.17. Möbius transformations are homeomorphisms of H ∪ ∂H.

Proof. We have seen in Remark 1.16 that Tg is a bijection on H and can be extended
to ∂H. A simple calculation also shows that Tg is a bijection for points on ∂H.
Since for all z ∈ H ∪ ∂H both Tg(z) and T−1

g (z) are rational functions, they are
both continuous. Hence Tg is a homeomorphism for all g ∈ SL2(R).

Proposition 1.18. The set of all Möbius transformations is a group under com-
position, which we will call Möbius group.

Proof. (i) The closure follows by Remark 1.15(iii).
(ii) The existence of an inverse for all g is given in Remark 1.16(i).
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(iii) If we choose a = d = 1 and b = c = 0, then clearly det(g) = 1 and Tg is the
identity element.

(iv) The associativity follows by the associativity of matrix multiplication and
point (i).

Remark 1.19. Let Aut(H) be the group of homeomorphisms of H. Then we can
identify the Möbius group with Aut(H) by Theorem 1.17 and Proposition 1.18.
Thus we can write the action defined in (1.4) as a group homomorphism

SL2(R)→ Aut(H)

g 7→ Tg.

Remark 1.20. (i) The derivative of Tg is given by the following map

DTg : TH→ TH

(z, v) 7→ (Tg(z), T ′g(z)v) = (
az + b

cz + d
,

v

(cz + d)2
)

from the tangent bundle TH = ∪̇z∈HTzH = H × C to itself. It sends z ∈ H
to Tg(z) ∈ H and the vector component v of (z, v) ∈ TzH to T ′g(z)v ∈ C.

(ii) If z ∈ H is fixed we can identify the derivative of Tg at z

(DTg)z : TzH→ TTg(z)H

with

v 7→ v

(cz + d)2
=: (DTg)zv.

(iii) For any z ∈ H, u, v in TzH and (DTg)zu, (DTg)zv ∈ TTg(z)H the calculation

< (DTg)zu, (DTg)zv >Tg(z)
Def. 1.7

=
((DTg)zu, (DTg)zv)

=(Tg(z))2

Remark 1.15(ii)
= (

=(z)

|cz + d|2
)−2(

u

(cz + d)2
,

v

(cz + d)2
)

= (
=(z)

|cz + d|2
)−2 1

|cz + d|4
(u, v) =

1

=(z)2
(u, v) =< u, v >z

shows that DTg preserves the hyperbolic Riemannian metric.

Lemma 1.21. The Möbius transformations Tg are isometries, that is for any z0, z1

in H and for any g in ∈ R2×2 with det(g) = 1 the hyperbolic distance is invariant
under Tg.
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Proof. By Remark 1.20(iii) we know that the hyperbolic Riemannian metric is
invariant under Möbius transformations. Let γ : I → H be a path in H connecting
z0 with z1 and let Tg be a Möbius transformation. If γ(t) = z for some t, then
Dγ(t) is a vector in TzH. By equation (1.1) we get

L(γ) =

∫ 1

0

√
< Dγ(t), Dγ(t) >γ(t)dt

Dγ(t)=:(γ(t),u(t))
=

∫ 1

0

√
< u(t), u(t) >γ(t)dt

=

∫ 1

0

√
< (DTg)γ(t)u(t), (DTg)γ(t)u(t) >Tg(γ(t))dt = L(Tg ◦ γ),

where Tg ◦ γ is a path from Tg(z0) to Tg(z1). Now taking the infimum over all
possible paths γ from z0 to z1 yields d(z0, z1) = d(Tg(z0), Tg(z1)).

Definition 1.22. A path of shortest length between two points is called geodesic.

This means that the hyperbolic distance between two points is the distance of
a geodesic joining these two points.

Definition 1.23. The angle between two geodesics at their intersection point
z ∈ H is defined as the angle between their tangent vectors at z in TzH.

Remark 1.24. Let (z, u) and (z, v) with u = (u0, u1), v = (v0, v1) be the tangent
vectors of two geodesics at their intersection point z and let θ be the angle between
u and v. Since the tangent space TzH can be identified with R2 (see Definition 1.7)
we can use the cosine formula to define θ

cos(θ) =
< u, v >z

‖u‖‖v‖
.

Note that

< u, v >z

‖u‖‖v‖
Def. 1.7

=

(u,v)
=(z)2√

(u,u)
=(z)2

√
(v,v)
=(z)2

=
(u, v)

|u||v|
,

where |.| is the Euclidean norm.

Remark 1.24 shows that even though the distance in hyperbolic space is defined
differently from the distance in Euclidean space, the measure of angles coincide.

Now we will determine that the geodesics are the semicircles with centre on the
real axis and the vertical lines, as shown in Figure 1.2.

Figure 1.2: Semicircle and vertical lines in H.
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Proposition 1.25. The vertical lines in C and circles in C with centre in R can
be expressed by the equation

αzz̄ + βz + βz̄ + γ = 0 (1.5)

for α, β, γ ∈ R and z ∈ C.

Proof. By choosing α = 0 the equation above becomes βz + βz̄ + γ = 0. This
defines a vertical line z = x+ ik for k ∈ R, since by letting −γ

β
= 2x we get

β(x+ ik) + β(x− ik)− 2βx = 0.

A circle in C with centre in z0 ∈ R and radius r has the equation

|z − z0| − r2 = (z − z0)(z − z0)− r2 β:=−z0
= zz̄ + βz + βz̄ + β2 − r2 = 0.

And by choosing α = 1 and γ = β2 − r2 we get the required equation.

Definition 1.26. We denote by H the set of all vertical lines in H and semicircles
in H with centres in R.
Proposition 1.27. Let H be in H and let Tg be a Möbius transformation. Then
Tg(H) is again in H.

Proof. Claim: A Möbius transformation Tg maps vertical lines in C and circles in
C with centres in R to vertical lines in C or circles in C with centres in R.
We only need to prove the claim since by Remark 1.16 we already know that Tg
is a bijective map from the hyperbolic plane to itself. Thus if the claim is true Tg
will map H ∈ H bijectively into H
Proof of the claim: By Proposition 1.25 a vertical line or a circle with centre in R
is given by the equation (1.5). Let H be of the form (1.5). Then

Tg(H) = αTg(z)Tg(z̄) + βTg(z) + βTg(z̄) + γ

= zz̄(αa2 + 2βac+ γc2) + z(αab+ βad+ βbc+ γcd)

+ z̄(αab+ βbc+ βad+ γcd) + (αb2 + 2βbd+ γd2) = 0.

Since the terms in the brackets are in R the Möbius transformation of H is also of
the form (1.5) and the claim follows.

Proposition 1.28. The imaginary axis in H is a geodesic.

Proof. Let z0, z1 ∈ H be on the imaginary axis, z0 = iy0, z1 = iy1, where w.l.o.g.
y0 < y1. Then for t ∈ [0, 1] the path γ(t) = z0(1− t) + z1t goes from z0 to z1 along
the imaginary axis. The length of γ is

L(γ) =

∫ 1

0

√
< Dγ(t), Dγ(t) >γ(t) =

∫ 1

0

√
(=(−z0 + z1),=(−z0 + z1))

=(γ(t))2
dt

=

∫ 1

0

−y0 + y1

y0(1− t) + y1t
dt = ln(

y1

y0

).
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If we take any other path α(t) = x(t) + iy(t) joining z0 to z1 for t ∈ [0, 1], then we
can estimate its length by

L(α) =

∫ 1

0

√
(dx
dt

)2 + (dy
dt

)2

y2
dt ≥

∫ 1

0

|dy
dt
|

y
dt = ln(

y1

y0

).

Therefore the path of shortest length between any two points iy0, iy1 on the
imaginary axis is given by the vertical line segment γ and γ is the unique geodesic
joining iy0 and iy1. Thus the Proposition follows.

Lemma 1.29. For every H ∈ H there exists a Möbius transformation mapping
H bijectively to the imaginary axis of H.

Proof. For a vertical line H = b+ ik, b ∈ R, k ∈ R>0, the translation Tg mapping

z to z − b, with z ∈ H, g =

(
1 −b
0 1

)
and det(g) = 1 is a Möbius transformation

mapping H to imaginary axis of H.
If H is a semicircle with endpoints ζ− and ζ+ in R such that ζ− < ζ+, we define the

transformation Tg(z) = z−ζ+
z−ζ− . Since g =

(
1 −ζ+

1 −ζ−

)
has determinant −ζ−+ζ+ > 0,

the transformation Tg is a Möbius transformation. As shown in Figure 1.3 Tg maps
ζ− to infinity and ζ+ to zero. Therefore H is mapped to the imaginary axis of
H.

Tg

Figure 1.3: Möbius transformation Tg mapping a semicircle to the imaginary axis.

Remark 1.30. It follows from Lemma 1.29 that for any two elements H1 and
H2 in H there exists a Möbius transformation Tg such that TgH1 = H2. To see
this let Tg1 be the Möbius transformation mapping H1 to the imaginary axis in H
and Tg2 the Möbius transformation mapping H2 to the imaginary axis in H. Then
Tg = T−1

g2
◦ Tg1 .
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Lemma 1.31. For any H ∈ H and any z0 ∈ H there exists a Möbius transforma-
tion Tg mapping H to the imaginary axis in H, such that Tg(z0) = i.

Proof. Let Tg′ be a Möbius transformation which by Lemma 1.29 maps H to the
imaginary axis of H. Also let Tĝ be the Möbius transformation mapping z to kz,
for k ∈ R>0. Then Tĝ maps the imaginary axis of H to itself. Thus for a specific
k the composition Tĝ ◦ Tg′ is the wanted Möbius transformation.

Theorem 1.32. The elements of H are the geodesics in H and for any two points
in H there exists a unique geodesic joining them.

Proof. For any z0 and z1 in H there exists a unique H in H passing through z0

and z1. By Lemma 1.29 there exists a Möbius transformation Tg mapping H to
the positive imaginary axis in H. It follows from Proposition 1.28 that the unique
geodesic going through the points Tgz0 and Tgz1 is the positive imaginary axis.
Since by Lemma 1.21 Tg is an isometry, applying T−1

g to the positive imaginary
axis shows that H is the unique geodesic and the segment of H between z0 and z1

is the unique geodesic from z0 to z1.

Remark 1.33. (i) From Theorem 1.32 we can conclude that for any point there
exists a geodesic in any direction.

(ii) The segment of the geodesic between two points z0, z1 is denoted by [z0, z1].
(iii) By Proposition 1.27 and Theorem 1.32 Möbius transformations map geodesic

to geodesic.
(iv) By Lemma 1.28 and Theorem 1.32 the hyperbolic distance between two points

at R is infinity.

Euclidean geometry can be defined by using the five postulates of Euclid (see
[17], chapter 1.7). The fifth postulate is equivalent to the so-called parallel pos-
tulate. It says that for any straight line k of infinite length and any point x not
on that straight line, there exists a unique straight line l of infinite length going
through x, which is parallel to the first straight line. We have seen that in hy-
perbolic space the geodesics are the ”straight lines” because they are the paths
of minimum length. But in hyperbolic space for any geodesic H we are able to
find points z /∈ H, such that there are infinitely many geodesics going through z
which do not intersect H. Both situations are depicted in Figure 1.4. Therefore
hyperbolic geometry is a non-Euclidean geometry.
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x

k

l

H

z

Figure 1.4: Parallel postulate in R2 and H.

1.3 Hyperbolic area

After examining Möbius transformations of lines and paths in the hyperbolic plane
in the last section, we are now interested in studying the influence of Möbius
transformations on the hyperbolic area. Additionally we prove the Gauss-Bonnet
Theorem, which gives us another example of the difference between Euclidean
geometry and hyperbolic geometry. We start by defining the hyperbolic area.

Definition 1.34. Let A be a Borel subset of H. The hyperbolic area of A is given
by

µ(A) =

∫
A

dxdy

y2
.

Definition 1.35. A map from H to H that preserves angles is called conformal.

This means that if f is a conformal map and γ1, γ2 are two paths in H intersecting
with angle θ at the point z, then the paths f ◦ γ1, f ◦ γ2 intersect with the same
angle θ at the point f(z).

Proposition 1.36. Möbius transformations are conformal.

Proof. Let Tg be a Möbius transformation and γ1, γ2 two paths in H. Assume the
paths intersect at a point γ1(0) = γ2(0) =: z with tangent vectors γ′1(0), γ′2(0).
Then the tangent vectors of Tg ◦ γ1, Tg ◦ γ2 at their intersection point Tg(z) are
(DTg)zγ

′
1(0), (DTg)zγ

′
2(0).

To check if the angle between the vectors γ′1(0), γ′2(0) and (DTg)zγ
′
1(0), (DTg)zγ

′
2(0)

is the same it suffices to check if the cosine formula for both vector pairs is the
same. The cosine formula for the angle θ between (DTg)zγ

′
1(0), (DTg)zγ

′
2(0) is

cos(θ) =
< (DTg)zγ

′
1(0), (DTg)zγ

′
2(0) >Tg(z)

‖(DTg)zγ′1(0)‖Tg(z)‖(DTg)zγ′2(0)‖Tg(z)

.

We have seen in Remark 1.20 (iii) that

< (DTg)zγ
′
1(0), (DTg)zγ

′
2(0) >Tg(z)=< γ′1(0), γ′2(0) >z .
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Thus it follows that

‖(DTg)zγ′1(0)‖Tg(z) =
√
< (DTg)zγ′1(0), (DTg)zγ′1(0) >Tg(z)

=
√
< γ′1(0), γ′1(0) >z = ‖γ′1(0)‖z

and
‖(DTg)zγ′2(0)‖Tg(z) = ‖γ′2(0)‖z.

Therefore we can show

cos(θ) =
< (DTg)zγ

′
1(0), (DTg)zγ

′
2(0) >Tg(z)

‖(DTg)zγ′1(0)‖Tg(z)‖(DTg)zγ′2(0)‖Tg(z)

=
< γ′1(0), γ′2(0) >z

‖γ′1(0)‖z‖γ′2(0)‖z
,

which implies that Möbius transformations are conformal.

Theorem 1.37. Möbius transformations preserve hyperbolic area. That is, for any
Borel subset A of H and any Möbius transformation Tg we have µ(A) = µ(Tg(A)).

Proof. Let Tg be a Möbius transformation and let z = x+ iy, Tg(z) = u+ iv and
A be a set in H. Then

µ(Tg(A)) =

∫
Tg(A)

1

=(Tg(A))2
dudv

f(u,v):= 1
=(Tg(A))2

=

∫
Tg(A)

f(u, v)dudv

=

∫
A

(f ◦ Tg)(x, y)| det(JR(Tg)(x, y))|dxdy,
(1.6)

where det(JR(Tg)) is the real Jacobian determinant and the last equation follows
by the change of variables formula.
Note the following:

(i) The real Jacobian determinant can be obtained from the complex Jacobian
determinant because of the fact that det(JR(Tg)) = | det(JC(Tg))|2;

(ii) By Remark 1.15 (ii) we have (f ◦ Tg)(x, y) = f(az+b
cz+d

) = ( =(z)
|cz+d|2 )−2;

(iii) | det(JR(Tg))| = |1|2
|cz+d|4 , since JC(Tg) = 1

(cz+d)2
by Remark 1.16 (ii).

Thus by using the comment above the last integral of equation (1.6) becomes∫
A

(
=(z)

|cz + d|2
)−2 |1|2

|cz + d|4
dxdy =

∫
A

1

y2
dxdy = µ(A),

which finishes our proof.

We would like to determine the hyperbolic area of specific geometric subsets of
H. The Gauss-Bonnet Theorem below gives us a formula for the hyperbolic area
of hyperbolic triangles (which correspond to hyperbolic 3-gons).
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Definition 1.38. A hyperbolic n-gon is an area of H bounded by n geodesic
segments, that is for n vertices z0, z1, ..., zn−1 in H ∪ ∂H it is bounded by the
segments [z0, z1], [z1, z2], ...[zn−1, z0].

Remark 1.39. (i) Remember that geodesics meet ∂H at right angles, since they
are semicircles with centre in ∂H or vertical lines. Therefore if two geodesic
segments meet at a vertex on ∂H the angle between the two geodesic segments
at this vertex is 0.

(ii) Hyperbolic triangles can be distinguished by the number of vertices on ∂H.

Theorem 1.40. (Gauss-Bonnet)
A hyperbolic triangle 4 with angles α, β and γ has hyperbolic area

µ(4) = π − (α + β + γ). (1.7)

Proof. Assume we have a triangle 4 with one vertex on ∂H. By Proposition 1.36
and Theorem 1.37 Möbius transformations do not change the angles or the area
of a triangle. Therefore we can map the vertex on ∂H to∞ by a Möbius transfor-
mation, where the denominator of the transformation is z − ζ (like we have seen
in Lemma 1.29). Then the angle at ∞ is 0 by Theorem 1.37. If we apply the
Möbius trasformations z 7→ z+ c and z 7→ kz for suitable c and k, we get that the
geodesic segment joining the other two vertices belongs to a geodesic with radius
1 and centre (0, 0). Let us call the angles at these vertices α and β and let the
vertical geodesic at angle α be at x = a and the vertical geodesic at angle β be at
x = b, just as in Figure 1.5.

-1 1

a

b

a b

D

Figure 1.5: Hyperbolic triangle 4.
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Then we can calculate the hyperbolic area

µ(4) =

∫
4

1

y2
dxdy =

∫ b

a

dx

∫ ∞
√

1−x2

1

y2
dy =

∫ b

a

1√
1− x2

dx

=

∫ β

π−α

− sin θ

sin θ
dθ = π − (α + β),

where the second last equation follows from the substitution x = cos θ. Now
assume our triangle 4 has vertices A,B and C, where none of them is in ∂H. We
then follow the geodesic containing the geodesic segment joining the vertices A
and B until we reach ∂H and call this new point D ∈ ∂H. By Theorem 1.32 we
can connect the points C and D by a geodesic segment. This method is shown in
Figure 1.6.

A

B

C

D

a

b

g

e

d

p-b

Figure 1.6: Triangles 4, 41 and 42.

Thus we get a triangle 41 with vertices A,C and D plus another triangle 42

with vertices B,C and D. Since both triangles 41,42 have one vertex on ∂H we
can calculate

µ(4) = µ(41)−µ(42) = (π−(α+γ+δ+ε))−(π−(π−β+δ+ε)) = π−(α+β+γ).

Remark 1.41. From the Gauss-Bonnet Theorem some significant differences be-
tween hyperbolic and Euclidean geometry follow:

(i) The sum of the angles of a hyperbolic triangle is strictly less than π, whereas
in Euclidean geometry the sum is always equal to π.

(ii) The area of an arbitrary hyperbolic triangle is at most π. It is equal to π
if and only if all the angles are zero. But in Euclidean geometry we can
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construct triangles with area greater than π and no triangle has area equal
to zero.

(iii) The formula (1.7) depends on the angles of the triangle, while in Euclidean
geometry the area of a triangle clearly does not depend on its angles.





2 Fuchsian groups and fundamental regions

We start this chapter by showing different properties of PSL2(R), such as identifi-
cations with T 1H and the Möbius group. We also prove the facts that PSL2(R) is
a topological space as well as a closed linear group and that the hyperbolic volume
is invariant under the action of PSL2(R) by DTg. At the end of the first section
we develop a method to define a metric on PSL2(R). In the second section we
show that Fuchsian groups act properly discontinuously on PSL2(R) and in the
last section we look at some properties of fundamental regions of Fuchsian groups.

2.1 The projective special linear grop

Definition 2.1. The unit tangent bundle of H is defined as

T 1H = {(z, v) ∈ TH : ‖v‖z = 1},

that is the collection of all unit vectors v at z ∈ H from all the tangent spaces
TzH.

We have seen in Remark 1.14(ii) the action PSL2(R)×H→ H, (g, z) 7→ az+b
cz+d

, by
Möbius transformations. Thus by restricting the derivative DTg on vectors v ∈ TH
with ‖v‖z = 1, DTg defines an action of PSL2(R) on T 1H by Remark 1.20.
It will prove useful to show that T 1H ∼= PSL2(R). For this, let us first remember
some properties of group actions and the first isomorphism theorem.

Definition 2.2. Let

G×X → X

(g, x) 7→ g · x

be an action of a group G on a nonempty set X.
(i) The action is called transitive if for all x, y ∈ X there is some g ∈ G such

that g · x = y.
(ii) The action is called simply transitive or regular if for all x, y ∈ X there exists

a unique g ∈ G such that g · x = y. This means that if g · x = x we must
have that g is the identity element of G.

(iii) For every x ∈ X the orbit of x (or G-orbit of x) is defined as

G · x := {g · x : g ∈ G}.

(iv) For every x ∈ X the stabilizer of x is defined as

StabG(x) = {g ∈ G : g · x = x}.
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Proposition 2.3. Let G act on X. For any x ∈ X there exists a bijective map

f : G/StabG(x)→ G · x
yStabG(x) 7→ y · x,

where y ∈ G.

The proof can be found for example in [1] Proposition 6.8.4.

Theorem 2.4. (First Isomorphism Theorem)
Let G and G′ be groups, let Φ : G → G′ be a surjective group homomorphism
and let N be the kernel of Φ. If π : G → G \ N := Ḡ is the quotient map, then
there exists a unique isomorphism Φ̄ : Ḡ→ G′, where Φ̄ = Φ ◦ π−1. That is, Ḡ is
isomorphic to G′.

G G′

Ḡ

Φ

π
∃!φ̄

Figure 2.1: First Isomorphism Theorem.

The First Isomorphism Theorem is proved in [1] (Theorem 2.12.10).

Lemma 2.5. The action PSL2(R)×H→ H given by Möbius transformations is
transitive.

Proof. Let z0 = x0 + iy0 and z1 = x1 + iy1 be in H. From Lemma 1.31 we know
that there exists a Möbius transformation Tg mapping z0 to i. We need to make

sure that g is in PSL2(R). For that choose g =

( 1√
y0
− x0√

y0

0
√
y0

)
. Clearly det(g) = 1

and Tg(z0) = i. Now we want to send i to z1 via the Möbius transformation Tg̃,

with g̃ =

(√
y1

x1√
y1

0 1√
y1

)
. Again we can check that det(g̃) = 1 and Tg̃(i) = z1.

Therefore the Möbius transformation mapping z0 to z1 is given by Tg̃g, where
g̃g ∈ PSL2(R).

Corollary 2.6. PSL2(R) can be identified with the Möbius group.

Proof. It follows Lemma 2.5 that the action SL2(R) × H → H is also transitive.
Thus using Remark 1.19 the group homomorphism f : SL2(R) → Aut(H) is
surjective. By Theorem 2.4 we can identify

SL2(R) \ ker(f) = SL2(R) \ {±I2} = PSL2(R)

with Aut(H)
Remark 1.19∼= Möbius group.



2.1 The projective special linear grop 21

Example 2.7. For the point i ∈ H we can calculate its stabilizer with respect to
the action PSL2(R)×H→ H given by Möbius transformations:

StabPSL2(R)(i) = {g ∈ PSL2(R) : Tg(i) = i} = {
(

cos θ − sin θ
sin θ cos θ

)
: θ ∈ R}/{±I2}

=: PSO(2).

This follows because for Tg(i) = i to be true we need =(i) = =(Tg(i)) and thus
by Remark 1.15(ii) we need |ci + d|2 = 1. This holds if and only if c = sin θ and
d = cos θ for some θ ∈ R. Thus we obtain

Tg(i) =
ai+ b

sin θi+ cos θ
= i

if and only if a = cos θ and b = − sin θ.
We call PSO(2) the projective special orthogonal group.
Since the action is transitive the orbit of i is PSL2(R) · i = H. And by using
Proposition 2.3 we can identify H with PSL2(R)/PSO(2).

Lemma 2.8. The action

DT : PSL2(R)× T 1H→ T 1H
(g, (z, v)) 7→ (Tg(z), T ′g(z)v)

is simply transitive.

Proof. By Lemma 2.5 there exists some Tg with g ∈ PSLg(R) mapping any element
z0 of H to any element z1 of H. Thus we can choose z0 := i with unit vector
v ∈ T 1

i H. To prove that DT is simply transitive we need to show that

DT : PSL2(R)× T 1H→ T 1H,

(g, (i, v)) 7→ (Tg(i), T
′
g(i)v)

!
= (i, v)

holds if and only if g = {±I2} ∈ PSL2R (by the second description of a simply
transitive action in Definition 2.2(ii)).
Let us assume that Tg(i) = i. By Example 2.7 we know that if Tg(i) = i then

g =

(
cos θ − sin θ
sin θ cos θ

)
∈ PSO(2) and we can calculate

T ′g(i)v =
v

(sin θi+ cos θ)2
= (cos(2θ)− i sin(2θ))v. (2.1)

Therefore T ′g(i)v is a unit vector for any angle θ. This shows that DT really maps
unit vector to unit vector and thus DT is transitive. From equation (2.1) it can
be seen that T ′g(i)v = v if and only if θ = nπ for n ∈ Z and thus

g =

(
cos(nπ) − sin(nπ)
sin(nπ) cos(nπ)

)
= {±I2},

so DT is simply transitive.
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Remark 2.9. We have seen in Theorem 1.32 that any geodesic γ is uniquely
determined by any two points lying on γ. It is also possible to uniquely determine
any geodesic γ by any point z on γ and a corresponding unit vector v ∈ T 1

zH, such
that γ′ at z has the same slope as v.

Theorem 2.10. There is an identification between PSL2(R) and T 1H.

Proof. Since the action DT of PSL2(R) is simply transitive on T 1H, its stabilizer
is the singleton {±I2} and its orbit PSL2(R) · (z, v), for any (z, v) ∈ T 1H, is given
by T 1H. By Proposition 2.3 we can identify SL2(R)/{±I2} = PSL2(R) with T 1H,
where the identification is given by

h ∈ PSL2(R) 7→ DTh(z, v) ∈ T 1H

for some fixed (z, v) ∈ T 1H.
To make this identification more explicit consider the elements (i, i), (z′, v′) ∈ T 1H,
where (z′, v′) is arbitrary and (i, i) is the point i together with the vector based
at i with unit length pointing upwards. Now if we consider the geodesic going
through z′ in the direction of v′ there is a Möbius transformation Tg mapping i
to Tg(i) = z′, by Lemma 1.29 and Lemma 1.31, such that DTg(i) = v′. This is
shown in Figure 2.2. Thus we can identify g ∈ PSL2(R) with DTg(i, i) = (z′, v′) ∈
T 1H.

(i,i)

DTg(i,i) (z´, v´)

0

Figure 2.2: DTg maps (i, i) to (z′, v′).

Corollary 2.11. The action

PSL2(R)× PSL2(R)→ PSL2(R)

(g, h) 7→ g · h,
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where g · h denotes matrix multiplication, corresponds to the action

DT : PSL2(R)× T 1H→ T 1H
(g,DTh(i, i)) = (g, (Th(i), T

′
h(i)i)) 7→ DTgh(i, i) = (Tgh(i), T

′
gh(i)i).

Proof. We can identify h with DTh(i, i) by Theorem 2.10. By the definition of DT

in Remark 1.20 we know DT maps (g, Th(i)) to Tg ◦ Th(i)
Proposition 1.18

= Tgh(i).
So it remains to show that T ′g ◦ T ′h(i)i = T ′gh(i)i:

Let h =

(
ã b̃

c̃ d̃

)
, g =

(
a b
c d

)
, and g · h = gh =

(
aã+ bc̃ ab̃+ bd̃

cã+ dc̃ cb̃+ dd̃

)
. Then

T ′g ◦ T ′h(i)i = T ′g(
ãi+ b̃

c̃i+ d̃
)

i

(c̃i+ d̃)2
=

1

(c ãi+b̃
c̃i+d̃

+ d)2

i

(c̃i+ d̃)2

=
i

((cã+ dc̃)i+ cb̃+ dd̃)2
= T ′gh(i)i.

Remark 2.12. It follows from Lemma 1.21 that the group of all isometries on H,
Isom(H), contains PSL2(R).

Now let us show some topological properties of PSL2(R).

Definition 2.13. (i) We can identify any matrix

(
a b
c d

)
∈ R2×2 with the

vector (a, b, c, d) ∈ R4, where R4 carries the natural topology. Therefore we
can identify SL2(R) with the subspace

X = {(a, b, c, d) ∈ R4 : ad− bc = 1}

equipped with the subspace topology.
(ii) By defining the equivalence relation∼ onX, given by (a, b, c, d) ∼ (a′, b′, c′, d′)

if and only if (a, b, c, d) = ±(a′, b′, c′, d′), we are able to identify PSL2(R) with
the quotient space X/ ∼ carrying the quotient topology.

Definition 2.14. We call a subgroup of the general linear group

GL2(R) = {
(
a b
c d

)
∈ R2×2 : ad− bc 6= 0}

a linear group. A topological group G is called a closed linear group if there exists
a map f : G → GL2(R) such that f is a homeomorphism from G to f(G), i.e. f
is an embedding, and f(G) is closed in GL2(R).
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Remark 2.15. PSL2(R) is a topological group. The idea of the proof is the
following:
First we show that the general linear group GL2(R) is a topological group. Since
SL2(R) is a subgroup of GL2(R) we can conclude that SL2(R) is also a topological
group. Next we can show that if N is a normal subgroup of SL2(R), then the
quotient SL2(R)/N equipped with the quotient topology is a topological group.
Because {±I2} is a normal subgroup of SL2(R) the quotient SL2(R)/{±I2} =
PSL2(R) is a topological group.
The details are in [12], more specifically in Theorem 5.1.1 and Theorem 5.1.4.

Example 2.16. The special linear group SL2(R) is a closed linear group:
Consider the maps

SL2(R)
id→ GL2(R)

det→ R.
The identity map is a homeomorphism from SL2(R) to id(SL2(R)) = SL2(R).
Since the determinant map is continuous and {1} is closed in R the inverse
det−1({1}) = SL2(R) is closed in GL2(R).

Corollary 2.17. PSL2(R) is a closed linear group.

Proof. Consider the following conjugation map:

φ : SL2(R)→ GL(Mat22(R)) ∼= GL2(R)

g 7→ φg(m) = gmg−1

from the special linear group to the group of invertible linear automorphisms of
2× 2 matrices over R, where m ∈Mat22(R). φ is a homomorphism since

φgh(m) = ghmh−1g−1 = gφh(m)g−1 = φg(φh(m))

for all g, h ∈ SL2(R), m ∈Mat22(R). The kernel of φ is the set {±I2} because

φI2(m) = φ−I2(m) = m.

Thus by the quotient group mapping property for a projection

π : SL2(R)→ SL2(R)/{±I2} = PSL2(R)

there is a unique homomorphism

φ̃ : PSL2(R)→ GL(Mat22(R))

such that φ̃ = φ ◦ π−1.

SL2(R) GL2(R)

PSL2(R)

φ

π
φ̃

Figure 2.3: Quotient group mapping property.
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Our goal is to show that the image of PSL2(R) is a closed subset ofGL(Mat22(R)).

Therefore we need to make sure that φ̃ is continuous, injective and has a closed
image:

(i) It is clear that φ̃ is continuous and it is injective as φ̃g(m) = φ̃g(n) if and
only if m = n, for n,m ∈Mat22(R).

(ii) Claim: φ̃ is a proper map. That is, for any compact set K in GL2(R), φ̃−1(K)
is compact in PSL2(R).

Proof of the claim: Consider the two basis vectors m =

(
0 1
0 0

)
and

m̃ =

(
0 0
1 0

)
of Mat22(R) and calculate for g =

(
a b
c d

)
in PSL2(R)

gmg−1 =

(
a b
c d

)(
0 1
0 0

)(
d −b
−c a

)
=

(
−ac a2

−c2 ac

)
,

gm̃g−1 =

(
a b
c d

)(
0 0
1 0

)(
d −b
−c a

)
=

(
bd −b2

d2 −bd

)
.

Thus if the images are bounded, then a, b, c, d are bounded and φ̃ is a proper
map. It follows that φ̃(PSL2(R)) is closed since the image of a proper map
is closed (see Proposition 5.2.17 in [9]).

We have seen in Theorem 1.37 that the hyperbolic area is invariant under the
action of PSL2(R) by Möbius transformations Tg. Now we want to define a hy-
perbolic volume on T 1H and show that it is also invariant under the action of
PSL2(R) by the derivative of the Möbius transformations DTg.

Definition 2.18. Let m be a measure on the measurable space (T 1H,BT 1H), where
BT 1H is the Borel σ-algebra on T 1H. Let V ∈ BT 1H and let θ ∈ [0, 2πi) be the
angle of the unit tangent vector (z, v) = (z, eθ) at z = x+ iy ∈ H. The hyperbolic
volume of V is defined by

m(V ) =

∫
V

dµdθ
Def. 1.34

=

∫
V

1

y2
dxdydθ.

Theorem 2.19. The hyperbolic volume is invariant under the action of PSL2(R)
on T 1H.

Proof. Let (z, eθ) ∈ T 1H with θ ∈ [0, 2πi), z = x + iy, and let (z, eθ) be in
V ∈ BT 1H. Remember that the action of PSL2(R) on T 1H is given by

DTg(z, e
θ) = (Tg(z),

eθ

(cz + d)2
)
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(see Remark 1.20 (i)) and define

eθ
′
:=

eθ

(cz + d)2

with θ′ ∈ [0, 2πi). Let Tg(z) = u + iv. Then the hyperbolic volume of DTg(V ) is
given by

m(DTg(V )) =

∫
DTg(V )

1

v2
dudvdθ′

f(u,v):= 1
v2=

∫
DTg(V )

f(u, v)dudvdθ′

=

∫
V

(f ◦DTg)(x, y, θ)| det(JR(DTg)(x, y, θ))|dxdydθ,
(2.2)

where we used the change of variables formula in the last equation. As explained
in the proof of Theorem 1.37 we calculate the absolute value of the Jacobian
determinant

| det(JR(DTg))| = | det(JC(DTg))|2 = | det

(
d
dz
Tg(z) d

dθ
Tg(z)

d
dz
eθ
′ d

dθ
eθ
′

)
|2

= | eθ
′

(cz + d)2
|2 |e

θ′ |=1
=

1

|cz + d|4

and the composition of f with DTg

(f ◦DTg)(x, y, θ) =
1

=(Tg(z))2
= (
|cz + d|2

=(z)
)2 =

|cz + d|4

=(z)2
,

so that equation (2.2) becomes∫
V

|cz + d|4

=(z)2

1

|cz + d|4
dxdydθ =

∫
V

1

y2
dxdydθ = m(V )

as claimed.

Definition 2.20. The hyperbolic volume m on T 1H is also called Liouville mea-
sure.

We now would like to define a metric on PSL2(R) or more precisely on any
closed linear group G. This will be done by deriving a left-invariant metric from
a left-invariant Riemannian metric. For that we first need to introduce the notion
of Lie algebras. A more detailed introduction can be found for example in [5].

Definition 2.21. The map defined by the absolutely convergent power series

exp : Matdd(C)→Matdd(C)

m 7→
∞∑
n=0

1

n!
mn

is called (matrix) exponential map.
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Remark 2.22. We can consider the exponential map exp : Matdd(R)→ GLd(R)
since exp(Matdd(R)) ⊆ GLd(R). At 0 ∈Matdd(R) it is locally invertible.

Definition 2.23. The logarithm map

log : GLd(R)→Matdd(R)

g 7→ log(g) =
∞∑
n=1

(−1)n+1

n
(g − Id)n

is the inverse of the exponential map. If g is close enough to Id then log(g) is
convergent.

Proposition 2.24. Let G be a closed linear group contained in GLd(R). Then
there exists a neighbourhood B of Id in G such that log(B) ⊆Matdd(R). Addition-
ally log(B) is a neighbourhood of 0 contained in a linear subspace G of Matdd(R).

To prove Proposition 2.24 we need an exact definition of the subspace G and an
additional Lemma.

Definition 2.25. We call the subspace G mentioned in Proposition 2.24 the Lie
algebra of G. It can be characterised in the following equivalent ways

(i) G := {m ∈Matdd(R) : exp(tm) ∈ G,∀t ∈ R} = TIdG.
(ii) Let Φ : [a, b] → G be a path in G such that Φ(t) = Id for t ∈ [a, b]. Then G

consists of all derivatives Φ′(t) of all paths Φ(t) at t ∈ [a, b].

Figure 2.4 depicts one path Φ(t) ∈ G with Φ(t◦) = Id, t◦ ∈ [a, b], and its
derivative at t◦ in G as well as how to get from G to G and vice versa with the
functions log and exp, respectively.
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exp log

G

F(t°) = Id

F´(t°)

log(Id) = 0

F(t)

Figure 2.4: The exponential map and the logarithm map.

Lemma 2.26. There exists a neighbourhood A of 0 ∈Matdd(R) with the property
that for any sequence mj converging to m ∈ A, as j →∞, the following holds

(Id +
mj

j
)j

j→∞→ exp(m).

Proof. Let m be sufficiently small and j be sufficiently large. Then

j log(Id +
mj

j
) = j

∞∑
n=1

(−1)n+1

n
(Id +

mj

j
− Id)n = j

∞∑
n=1

(−1)n+1

n
(
mj

j
)n

= j(
mj

j
− (

mj

2j
)2 + (

mj

3j
)3 −+...) = mj +O(

1

j
),

implies that j log(Id +
mj
j

)
j→∞→ m. Therefore

exp(j log(Id +
mj

j
)) = (Id +

mj

j
)j

j→∞→ exp(m).
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Proof. (of Proposition 2.24)
We will first show that G is a linear subspace of Matdd(R) and then that there
exists some neighbourhood B of Id in G such that log(B) is a neighbourhood of 0
contained in G.

(i) Let k ∈ R and v ∈ G = {m ∈ Matdd(R) : exp(tm) ∈ G,∀t ∈ R}. Then kv
is also in G, since exp(tkv) ∈ G for all k, t ∈ R. To show that G is closed
under addition let v, w ∈ G and t > 0 such that t(v+w) is an element of the
neighbourhood A of 0 ∈Matdd(R) from Lemma 2.26. Let

(gn)n≥1 = ((exp(
t

n
v) exp(

t

n
w))n)n≥1

be a sequence in G. Then if we use the approximation

exp(
t

n
v) = Id +

t

n
v +O(

1

n2
)

we can write gn as

gn = ((Id +
t

n
v +O(

1

n2
))(Id +

t

n
w +O(

1

n2
))) = (Id +

1

n
(t(v +w) +O(

1

n
)))n.

Observe that t(v + w) + O( 1
n
) converges to t(v + w) as n → ∞. Therefore

we can use Lemma 2.26 to conclude that gn converges to exp(t(v + w)) as
n → ∞. Since G is a closed linear group the limit exp(t(v + w)) is in G.
Thus by the definition of G, v + w is in G.

(ii) Consider a linear complement V ⊆Matdd(R) of G and define the map

φ : G × V → GLd(R)

(tu, tv) 7→ (exp(tu))(exp(tv)),

for t ∈ R. Since

d

dt
(exp(tu) exp(tv)) = (u+ v) exp(tu) exp(tv),

the derivative of φ at t = 0 is given by φ′(tu, tv)|t=0 = u+ v. Thus

φ′ : G × V →Matdd(R)

is invertible at (0, 0) ∈ G × V . Now, by the inverse function theorem there
exists some neighbourhood U of (0, 0) ∈ G×V as well as some neighbourhood
B1 of φ(0, 0) = Id ∈ GLd(R) such that the map

φ|U : U → B1

is a diffeomorphism. Therefore every g ∈ B1 can be written as g = exp(u) exp(v)
such that u ∈ G and v ∈ V .
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To show that log(B) is a neighbourhood of 0 contained in G, we will show
that B ⊆ B1 is a neighourhood of Id such that log(B ∩ G) ⊆ G. Assume
by contradiction that log(B ∩ G) ⊆ V . Then there exists a sequence vm in
V \ {0} converging to 0 as m→∞. By Lemma 2.26

(Id +
vm
m

)m
m→∞→ exp(0) ∈ G

and exp(vm) ∈ G. Since the unit ball in V is compact we can choose a
subsequence vm

‖vm‖ of vm in the unit ball converging to w ∈ V . It can be

shown that exp(Zvm) is a subgroup of G and that Zvm is a discrete subgroup
of V . Then Zvm converges to the subspace Rw of V for m → ∞. Thus
exp(Rw) ⊆ G, which implies w ∈ G. This is a contradiction to w ∈ V .

Remark 2.27. It can be shown that the Lie algebra G of any closed linear group
G ⊆ GLd(R) uniquely determines G◦ := exp(G), which is the maximal path-
connected component of Id ∈ G and also a normal, open, closed subgroup of G.

Definition 2.28. Let G be a closed linear group. For any g ∈ G the tangent
space of G at g is defined as TgG := {g} × G. Therefore the tangent bundle to G
is defined as TG := G× G.

Definition 2.29. Let Φ : [0, 1] → G be a path in G such that Φ is differentiable
at t0 ∈ [0, 1]. Then the tangent vector at Φ(t0) is defined by

DΦ(t0) := (Φ(t0),Φ(t0)−1Φ′(t0)).

Remark 2.30. We need to check that DΦ(t0) really lies in G × G. The first
component Φ(t0) is in G by definition. For the second component of DΦ(t0)
consider the curve α(t) := Φ(t0)−1Φ(t) with values in G. Then α(t0) = Id ∈ G and
dα
dt

(t0) = Φ(t0)−1 dΦ
dt

(t0) ∈ G by Definition 2.25 (ii).

Proposition 2.31. Consider a continuous path Φ : [0, 1] → G that at t0 ∈ [0, 1]
is differentiable. Then (gΦ)(t) = gΦ(t) and (Φg−1)(t) = Φ(t)g−1 are curves which
are differentiable at t0 for g ∈ G. Additionally D(gΦ)(t0) = (gΦ(t0), v) and
D(Φg−1) = (Φ(t0)g−1, gvg−1) if DΦ(t0) = (Φ(t0), v).

Proof. Note that

D(gΦ)(t0)
Def.
= (gΦ(t0), (gΦ(t0))−1gΦ′(t0))) = (gΦ(t0),Φ(t0)−1g−1gΦ′(t0))

= (gΦ(t0),Φ(t0)−1Φ′(t0)),

so D(gΦ)(t0) = (gΦ(t0), v) follows for v = Φ(t0)−1Φ′(t0). The other equation

D(Φg−1)(t0) = (Φ(t0)g−1, (Φ(t0)g−1)−1Φ′(t0)g−1)

= (Φ(t0)g−1, g(Φ(t0)−1Φ′(t0))g−1) = (Φ(t0)g−1, gvg−1)

also follows by definition.
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Remark 2.32. We can interpret the equation D(gΦ)(t0) = (gΦ(t0), v) in Propo-
sition 2.31 in the following way. The left translation

Lg : G→ G

h 7→ gh

has the derivative

D(Lg)h : ThG→ TghG

(h, v) 7→ (gh, v).

So it can be seen that D(Lg)h moves the base point h to gh but leaves v unchanged.
If we choose an inner product on G, denoted by <,>, we can define a Riemannian
metric on G as the collection of inner products

< (g, u), (g, v) >g:=< u, v >g=< u, v >, (2.3)

where u, v ∈ TgG, g ∈ G.

Notice that we defined TG
Def. 2.28

= G× G Def. 2.25
= G× TIdG, where G contains all

derivatives of paths going through the identity Id ∈ G. Then to get derivatives of
curves going through g ∈ G we can use

D(Lg)Id : TIdG→ TgG

(Id, v) 7→ (g, v).

Just as in the first chapter we define a metric dG(., .) induced by the Riemannian
metric on G. We start again by defining the length of paths on G.

Definition 2.33. Let Φ : [0, 1]→ G be a path in G. The length of Φ is given by

L(Φ) =

∫ 1

0

‖DΦ(t)‖Φ(t)dt
(2.3)
=

∫ 1

0

√
< DΦ(t), DΦ(t) >Φ(t)dt.

Then for paths starting at Φ(0) = g0 ∈ G◦ and ending at Φ(1) = g1 ∈ G◦ the
metric on G◦ is defined (as in the Definition 1.8) as

dG : G◦ ×G◦ → R
(g0, g1) 7→ dG(g0, g1) := inf

Φ
L(Φ),

where the infimum is taken over all such paths.

Corollary 2.34. The metric dG is left-invariant on G◦. That is, for all h, g0, g1 ∈
G◦ we have dG(hg0, hg1) = dG(g0, g1).
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Proof. By

L(hΦ) =

∫ 1

0

√
< D(hΦ)(t), D(hΦ)(t) >hΦ(t)dt

Proposition 2.31
=

∫ 1

0

√
< (hΦ(t), v), (hΦ(t), v) >hΦ(t)dt =

∫ 1

0

√
< v, v >hΦ(t)dt

Remark 2.32
=

∫ 1

0

√
< v, v >Φ(t)dt =

∫ 1

0

√
< (Φ(t), v), (Φ(t), v) >Φ(t)dt = L(Φ)

the length of Φ is left invariant for h ∈ G◦. Thus it follows that the metric dG is
also left-invariant on G◦.

2.2 Discrete subgroups of closed linear groups

We want to show that a subgroup of PSL2(R) is a Fuchsian group if and only if
it acts properly discontinuously on H.

Definition 2.35. We call a subgroup of a closed linear group discrete if it has a
discrete topology as subspace topology.

Remark 2.36. Γ is discrete if and only if it has the following property: A sequence
{gn} of elements of a subgroup Γ converges to the identity element if and only if
for a sufficiently large n the element gn is equal to the identity element.

Example 2.37. (i) SL2(Z) = {
(
a b
c d

)
∈ Z2×2 : ad − bc = 1} is a discrete

subgroup of SL2(R).
(ii) The modular group PSL2(Z) = SL2(Z)/{±I2} is a discrete subgroup of

PSL2(R).

Definition 2.38. A discrete subgroup of PSL2(R) is called a Fuchsian group.

Remark 2.39. (i) Remember that a discrete set is a set A ⊆ X, where every
point x ∈ A has a neighbourhood in X containing only x.

(ii) We will later need the fact that the intersection of a discrete set A and a
compact set K is finite. This is true because if we assume by contradiction
that A ∩ K is infinite, then since K is compact there exists a limit point
x ∈ A∩K. This would mean that there are infinitely many neighbourhoods
of x intersecting A ∩K. But this cannot be true since A is a discrete set.

Definition 2.40. Let {Mα : α ∈ A} be a family of subsets of a locally compact
metric space X. If for every compact set K ⊆ X, Mα ∩ K 6= ∅ only for finitely
many α ∈ A, then {Mα : α ∈ A} is called locally finite.
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Definition 2.41. Let G be a group which acts on X, a locally compact metric
space. If for every x ∈ X the family of singletons {{gx} : g ∈ G} is locally finite
then we say that G acts properly discontinuously on X.

Corollary 2.42. The group G acts properly discontinuously on the locally com-
pact metric space X if and only if the order of StabG(x) is finite for every x ∈ X
and the orbit of x has no accumulation points for every x ∈ X.

Proof. ”⇒”: Assume G acts properly discontinuously on X. By Definitions 2.40
and 2.41 for every x ∈ X there exists a compact set K ⊆ X such that {gx}∩K 6= ∅
only for finitely many g ∈ G. Therefore for every x ∈ X each orbit of x has no
accumulation points. Now assume that StabG(x) has infinite order and x ∈ K.
Then {x} = {gx} ∩K 6= ∅ for infinitely many g ∈ G.
”⇐”: Let K ⊆ X be compact and define the set K ′ := K ∩ Gx. We know that
the orbit Gx of x is a discrete set (by Remark 2.43). Thus by Remark 2.39 K ′ is
finite, which implies {gx} ∩K 6= ∅ only for finitely many g ∈ G

Remark 2.43. The condition that the orbit of x has no accumulation points is
equivalent to the condition of the orbit of x being a discrete set. Assume that G
acts on X by Möbius transformations. Then one direction of this equivalence can
be shown as follows:
Assume by contradiction that the orbit of x has an accumulation point s ∈ X.
That is, there exists a sequence (gn)n ∈ G such that Tgn(x) converges to s. But
this means that for any ε > 0 the distance dX(Tgn(x), Tgn+1(x)) < ε. We have seen
that Möbius transformations are isometries, and so

dX(Tgn(x), Tgn+1(x)) = dX(x, Tg−1
n
Tgn+1(x)) < ε.

Thus x is an accumulation point for its orbit, which implies that the orbit of x is
not a discrete set.

Now we can turn to the main statement of this section.

Theorem 2.44. A subgroup Γ of PSL2(R) acts properly discontinuously on H if
and only if Γ is a Fuchsian group.

To prove Theorem 2.44 we need the following auxiliary Lemma.

Lemma 2.45. The set E = {g ∈ PSL2(R) : Tg(z) ∈ K} is compact for a compact
subset K of H and a point z in H.

Proof. Consider the set E1 = {
(
a b
c d

)
∈ SL2(R) : az+b

cz+d
∈ K} and the projection

map π : SL2(R)→ PSL2(R). If E1 is compact then π(E1) = E is compact, since
the image of any compact set under a continuous map is compact. Define

β : SL2(R)→ H(
a b
c d

)
7→ β(

(
a b
c d

)
) :=

az + b

cz + d
.
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If we identify E1 with a subset of R4, as done in Definition 2.13, we show E1 is
compact by showing it is closed and bounded:

(i) E1 = β−1(K) is closed as K is closed and β is continuous.
(ii) Since K is bounded there exists some constant M1 > 0 such that

|az + b

cz + d
| < M1

for all

(
a b
c d

)
∈ E1. And since K is a subset of H there is a constant

M2 > 0 such that

=(
az + b

cz + d
)
Remark 1.15(ii)

=
=(z)

|cz + d|2
≥M2.

Thus |cz+ d| ≤
√
=(z)
M2

and |az+ b| < M1

√
=(z)
M2

. This shows that a, b, c, d are

bounded and consequently E1 is bounded.

Proof. (of Theorem 2.44)
Assume first that Γ is a Fuchsian group and let K be a compact subset of H and
z ∈ H. Showing that Γ acts properly discontinuously on H is the same as showing
that the set {g ∈ Γ : Tg(z) ∈ K} is finite. If we write

{g ∈ Γ : Tg(z) ∈ K} = {g ∈ PSL2(R) : Tg(z) ∈ K} ∩ Γ

and notice that the first term on the right hand side is compact by Lemma 2.45
the claim follows, because the intersection of a compact and a discrete set is finite
(Remark 2.39).
On the other hand let {g ∈ Γ : Tg(z) ∈ K} be finite for every z ∈ H and compact
K ⊆ H, but assume that Γ is not discrete. Since Γ is not discrete there exists
a sequence {gk} of elements in Γ, where the gk are distinct and not equal to the
identity element, such that gk converges to the identity element for k →∞. Thus
for any point s ∈ H that is not fixed by any gk the sequence {Tgk(s)} does not
contain s, consists of distinct points, and converges to s for k → ∞. Hence any
compact set K in H containing s in its interior contains infinitely many points of
the s orbit, i.e. {gk ∈ Γ : Tgk(s) ∈ K} is an infinite set. This is a contradiction to
our assumption that Γ acts properly discontinuously on H.

Corollary 2.46. For a subgroup Γ of PSL2(R) and for any z ∈ H the orbit
Γz = {Tg(z) : g ∈ Γ} of z is a discrete subset of H if and only if the action of Γ on
H is properly discontinuous.
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Proof. If Γ acts properly discontinuously on H then by Corollary 2.42 for all z ∈ H
the orbit Γz has no accumulation points. Then it follows by Remark 2.43 that Γz
is discrete.
If Γ does not act properly discontinuously on H then Γ is not discrete by Theo-
rem 2.44. By using the argumentation in the proof of Theorem 2.44 we find for
any s ∈ H a sequence {Tgk(s)} of distinct points converging to s. Thus the orbit
Γs of s is not a discrete subset of H.

2.3 Fundamental domains

Let a subgroup Γ of PSL2(R) act properly discontinuously on H.

Definition 2.47. A closed set F in X is called fundamental domain or fundamen-
tal region of Γ if the following are satisfied:

(i) X = ∪g∈ΓTg(F )

(ii)
◦
F ∩ Tg(

◦
F ) = ∅ for all g ∈ Γ not equal to the identity element.

Note that
◦
F denotes the interior of F and ∂F = F \

◦
F the boundary of F .

The tessellation of X is the family {Tg(F ) : g ∈ Γ}.

We will now consider two fundamental domains.

Example 2.48. The subgroup Γ = {gn : Tgn(z) = z + n, n ∈ Z} of the group of
all Möbius transformations is a Fuchsian group.
The closed set F = {z ∈ H : 0 ≤ <(z) ≤ 1} is a fundamental domain of Γ since:

(i) ∪n∈ZTgn(F ) = ∪n∈Z{z ∈ H : n ≤ <(z) ≤ n+ 1} = H and

(ii) For n,m ∈ Z we have that Tgn(
◦
F ) ∩ Tgm(

◦
F ) 6= ∅ if and only if m = n.

Proposition 2.49. A fundamental domain of PSL2(Z) is given by the set

F = {z ∈ H : |<(z)| ≤ 1

2
, |z| ≥ 1},

which is shown in Figure 2.5.
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F

0 1-1

Figure 2.5: A fundamental domain F of PSL2(Z).

Proof. (i) To get the first property in Definition 2.47 we will show that for any
z ∈ H there exists some g ∈ PSL2(Z) such that Tg(z) ∈ F .

Let g =

(
a b
c d

)
∈ PSL2(Z), then for any z ∈ H we have =(Tg(z)) = =(z)

|cz+d|2

by Remark 1.15. Let m be any positive real number. Since |cz+d| < m only
for finitely many pairs c, d ∈ Z there must exist a matrix g ∈ PSL2(Z) such
that Tg(z) has maximal imaginary part. That is,

=(Tg(z)) = max{=(Th(z)) : h ∈ PSL2(Z)}.

Let τ =

(
1 1
0 1

)
and k ∈ Z such that |<(TτkTg(z))| ≤ 1

2
.

Claim: w := Tτkg(z) ∈ F
Proof of the claim: Assume |w| = |Tτkg(z)| = |Tg(z) + k| < 1. Since

=(−1
w

) = w−w̄
2i|w|2 = =(w)

|w|2 and =(w) = =(Tg(z)) it follows that =(−1
w

) > =(Tg(z)),

contradicting the maximality of the imaginary part of Tg(z). Thus |w| ≥ 1
and w ∈ F .

(ii) To get the second property in Definition 2.47 we will show that the boundary
of F gets mapped to itself. For that let z, w ∈ F and set w = Tg(z).
Claim: Either |<(z)| = 1

2
and w = z ± 1, or |z| = 1 and w = −1

z
.

Proof of the claim: Assume w.l.o.g. that =(w) ≥ =(z). This implies together
with Remark 1.15 that |cz + d| ≤ 1. Since z ∈ F it follows that c = 0,±1.
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By assuming c = 0 it follows that d = ±1 and so =(w) = =(z), which means
that w = z± b. Since z, w ∈ F we know that |<(z)| ≤ 1

2
and |<(w)| ≤ 1

2
and

thus either b = 0 and g = I2 or b = ±1 and {<(z),<(w)} = {−1
2
, 1

2
}. If we

assume that c = 1, then since z ∈ F and |cz + d| ≤ 1 either d = 0 and thus

|z| = 1 or d = ±1 in the case of z =
√

3
2
i∓ 1

2
. In the case c = −1 by replacing

g with −g we get the same results as for c = 1 as Tg and T−g define the same
Möbius transformations.

Proposition 2.50. PSL2(Z) is generated by τ =

(
1 1
0 1

)
and σ =

(
0 −1
1 0

)
.

Notice that for τ, σ ∈ PSL2(Z) we get the Möbius transformations

Tτ (z) = z + 1, Tτ−1(z) = z − 1

and

Tσ(z) = −1

z
= Tσ−1(z)

for all z ∈ H.

Proof. We want to show that any element h ∈ PSL2(Z) can be written as

τn1στn2σ...στnj ,

for ni ∈ Z, 1 ≤ i ≤ j. Let F be the fundamental domain of PSL2(Z) and let z0 be
in the interior of F. Let h be any element of PSL2(Z) such that z = Th(z0) ∈ H.
Since τ, σ ∈ PSL2(Z) there is a word

g := τn1στn2σ...στnj

generated by τ and σ which is in PSL2(Z). By the same argumentation as in the
proof of Proposition 2.49 there is such a g where =(Tg(z)) is maximal. Then using
the first claim of the proof of Proposition 2.49 shows that there is a k ∈ Z such
that Tτkg(z) ∈ F . Then

g̃ := τ kg

is also generated by τ and σ and we can write Tg̃(z) = Tg̃h(z0). Since z0 ∈
◦
F and

Tg̃(z) ∈ F it follows by using the second claim in the proof of Proposition 2.49
that g̃h must be the identity matrix in PSL2(Z). Thus h = g̃−1 is also generated
by σ and τ .

Remark 2.51. Analogously to the proof of Proposition 2.50 it can be shown that

the sets U+ := {
(

1 s
0 1

)
: s ∈ R} and U− := {

(
1 0
s 1

)
: s ∈ R} generate

SL2(R).
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Even though fundamental regions are not uniquely determined the following
Theorem states that the hyperbolic area of any two fundamental regions for a
Fuchsian group is the same.

Theorem 2.52. Let two fundamental regions F1, F2 of a Fuchsian group Γ be
given. Assume additionally that µ(F1) < ∞ and µ(∂F1) = µ(∂F2) = 0. Then it
follows that µ(F1) = µ(F2).

Proof. Since F2 is a fundamental region ∪g∈ΓTg(
◦
F2) ⊂ H. Therefore we can write

F1 = F1 ∩H ⊇ F1 ∩ (∪g∈ΓTg(
◦
F2)) = ∪g∈Γ(F1 ∩ Tg(

◦
F2)).

Then the hyperbolic area of F1 is given by

µ(F1) ≥ µ(∪g∈Γ(F1 ∩ Tg(
◦
F2))) =

∑
g∈Γ

µ(F1 ∩ Tg(
◦
F2)), (2.4)

where the equation follows since the sets F1 ∩ Tg(
◦
F2), g ∈ Γ, are disjoint. By

Theorem 1.37 hyperbolic area is preserved by Möbius transformations. Thus equa-
tion (2.4) becomes

µ(F1) ≥
∑
g∈Γ

µ(T−1
g (F1) ∩

◦
F2)

Remark 1.16(i)
=

∑
g∈Γ

µ(Tg−1(F1) ∩
◦
F2)

=
∑
g∈Γ

µ(Tg(F1) ∩
◦
F2).

(2.5)

The last equation follows by the fact that the sum is taken over all g ∈ Γ. The

sets Tg(F1) ∩
◦
F2 are not disjoint and so equation (2.5) becomes

µ(F1) ≥ µ(∪g∈Γ(Tg(F1) ∩
◦
F2)) = µ(

◦
F2) = µ(F2),

using the assumptions that F1 is a fundamental region and µ(∂F2) = 0. We obtain
µ(F2) ≥ µ(F1) by swapping F1 with F2. Thus µ(F1) = µ(F2).

Definition 2.53. A Fuchsian group Γ is called a lattice in PSL2(R) if its funda-
mental domain F has finite measure

Example 2.54. We have seen that

F = {z ∈ H : |<(z)| ≤ 1

2
, |z| ≥ 1}

is a fundamental domain of PSL2(Z). Therefore =(z) ≥
√

3
2

for any z ∈ F and
PSL2(Z) is a lattice in PSL2(R) since

µ(F ) =

∫
z∈F

dA ≤
∫ ∞
√

3
2

∫ 1
2

− 1
2

dxdy

y2
=

∫ ∞
√
3
2

dy

y2
=

2√
3
<∞.
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3.1 The geodesic flow

We have seen in Remark 2.9 that any geodesic γ of unit speed is uniquely deter-
mined by a point z on γ and the unit vector v in the direction of γ with base point
z.

Definition 3.1. The geodesic flow on H is given by

gt : T 1H→ T 1H
(z, v) 7→ gt(z, v) = (γ(t), γ′(t)),

for the geodesic γ(t) going through z ∈ H at time 0 in the direction of v = γ′(0).

Remark 3.2. (i) The geodesic flow is a usual flow since:
1) g0 is equal to the identity map because

g0(z, v) = (γ(0), γ′(0)) = (z, v).

2)

gs(gt(z, v)) = gs(gt(γ(0), γ′(0)) = gs(γ(t), γ′(t))

= (γ(s+ t), γ′(s+ t)) = gs+t(γ(0), γ′(0)) = gs+t(z, v),

for all s, t ∈ R.
(ii) By Proposition 1.28 the imaginary axis is a geodesic. The vector i with unit

length pointing upwards and base point i determines the imaginary axis. We
can parameterize the geodesic by

γ(t) = iet

for t ∈ R. Since γ(0) = i, γ′(0) = i and ‖γ′(t)‖γ(t) =
√

e2t

e2t
= 1 we can define

the geodesic flow along the imaginary axis as

gt(i, i) = (iet, iet).

(iii) Let us consider the matrix

a−1
t :=

(
e
t
2 0

0 e
−t
2

)
∈ PSL2(R).

Then the derivative of the Möbius transfrmation Ta−1
t

of the point (i, i) ∈ T 1H
is given by

DTa−1
t

(i, i) = (Ta−1
t

(i), T ′
a−1
t

(i)i) = (
e
t
2 i+ 0

0 + e
−t
2

,
i

(0 + e
−t
2 )2

) = (iet, iet) = gt(i, i).
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(iv) Remember that for elements g in PSL2(R) the Möbius transformation Tg
bijectively maps geodesic to geodesic (Lemma 1.29 and Remark 1.33). Thus
for any point (z, v) ∈ T 1H determining a geodesic γ1, there exists a unique
element g of PSL2(R) such that DTg maps the parametrization of the imag-
inary axis to the parametrization of γ1, i.e.

gt(z, v) = DTg(gt(i, i)).

Corollary 3.3. The geodesic flow on H is described by right multiplication by
a−1
t , that is the geodesic flow

gt : T 1H→ T 1H
(z, v) = DTg(i, i) 7→ DTga−1

t
(i, i)

corresponds to the right multiplication by a−1
t ,

Rat : PSL2(R)→ PSL2(R)

g 7→ Rat(g) = ga−1
t .

Proof. By Theorem 2.10 we already know we can identify g and ga−1
t ∈ PSL2(R)

with DTg(i, i) and DTga−1
t

(i, i) ∈ T 1H respectively. Therefore it remains to show

that the equation gt(z, v) = DTga−1
t

(i, i) holds:

By Remark 3.2 we have

gt(z, v) = DTg(gt(i, i)) = DTg(ie
t, iet).

Now let g =

(
a b
c d

)
∈ PSL2(R). Then DTg(ie

t, iet) = (aie
t+b

ciet+d
, iet

(ciet+d)2
) and by

multiplying the first term with e
−t
2

e
−t
2

and the second with e−t

e−t
we get

DTg(ie
t, iet) = (

aie
t
2 + be

−t
2

cie
t
2 + de

−t
2

,
i

(cie
t
2 + de

−t
2 )2

) = DTae t2 be
−t
2

ce
t
2 de

−t
2

(i, i)

= DTga−1
t

(i, i).

Thus gt(z, v) = DTga−1
t

(i, i).

Remember that by Corollary 2.11 the derivative action

DT : PSL2(R)× T 1H→ T 1H

corresponds to left multiplication in PSL2(R).
Let us recall the definition of the stable and unstable manifold as well as the

definition of a horocycle.



3.1 The geodesic flow 41

Definition 3.4. The stable manifold of (z, v) for the geodesic flow is given by

W s((z, v)) := {(z′, v′) ∈ T 1H : d(gt(z, v), gt(z
′, v′))

t→∞→ 0}

and the unstable manifold of (z, v) by

W u((z, v)) := {(z′, v′) ∈ T 1H : d(gt(z, v), gt(z
′, v′))

t→−∞→ 0}.

Definition 3.5. The horocycles centered at infinity are the horizontal lines

{t+ ir : t ∈ R}, r ∈ R>0.

The horocycles centered at x, x ∈ R, are circles which at the point x are tangent
to R.

Corollary 3.6. For the geodesic flow through the point (i, i) ∈ T 1H the stable
manifold is the set of upwards pointing vectors on the horizontal line {t+i : t ∈ R}.

Proof. We know that for any vector (x + i, i), x ∈ R, the geodesic is a vertical

line. Then for g =

(
1 x
0 1

)
∈ PSL2(R) the Möbius transformation Tg satisfies

DTg(i, i) = (i+ x, i). Thus

gt(x+ i, i)
Corollary 3.3

= DTga−1
t

(i, i) = DT1 x
0 1

e t2 0

0 e
−t
2

(i, i)

= DTe t2 xe
−t
2

0 e
−t
2

(i, i) = (x+ iet, iet)

and the geodesic trajectories gt(x+ i, i) = (x+ iet, iet) and gt(i, i) = (iet, iet) move
parallel to each other. Now let

h(k) =
x

ek
+ iet, k ∈ R≥0,

be a path from x+ iet to iet. The length of h(k) is given by

L(h(k)) =

∫ ∞
0

√
( d
dk

x
ek

)2 + ( d
dk
et)2

et
dk =

1

et

∫ ∞
0

√
(− x
ek

)2dk

=
|x|
et

∫ ∞
0

1

ek
dk =

|x|
et
.

Since |x|
et
→ 0, as t → ∞, the distance between gt(i, i) and gt(x + i, i) tends to

zero. We now want to show that no other points (z, v) ∈ T 1H belong to the stable
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manifold.
First consider (z, v) := (x + iy, i) for any x ∈ R and y ∈ (0,∞) \ {1}. We can
calculate

gt(x+ iy, i) = DTy x
0 1

e t2 0

0 e
−t
2

(i, i) = DTye t2 xe
−t
2

0 e
−t
2

(i, i)

= (x+ iyet, iet)

and the length of the path
h(k) = x+ iket,

k ∈ [1, y] (or k ∈ [y, 1] if y ∈ (0, 1)), between x+ iet and x+ iyet given by

L(h(k)) =

∫ √
e2t

(ket)2
dk = | ln(y)| > 0

for all t ∈ R. This means that the distance between gt(x+ i, i) and gt(x+ iy, i) is
constant and positive for all t ∈ R. By the triangle inequality we have

d(gt(x+ iy, i), gt(i, i)) + d(gt(i, i), gt(x+ i, i)) ≥ d(gt(x+ iy, i), gt(x+ i, i)).

By the above

d(gt(i, i), gt(x+ i, i))
t→∞→ 0.

Thus
d(gt(x+ iy, i), gt(i, i)) > 0

for all t ∈ R. This means that the distance between gt(x + iy, i) and gt(i, i) does
not tend to zero as t→∞.
Now consider (z, v) ∈ T 1H with v 6= i. The corresponding geodesic of (z, v) is a
semicircle with endpoints on R, so gt((z, v)) → u ∈ R as t → ∞. On the other
hand, gt(i, i) → ∞ as t → ∞. Therefore d(gt(z, v), gt(i, i)) does not tend to zero
as t→∞.
Hence we can conclude that the set {(x + i, i) : x ∈ R} is the stable manifold of
(i, i) for the geodesic flow.

Remark 3.7. It can be shown that for the geodesic flow through the point (i,−i) ∈
T 1H the unstable manifold is the set of downwards pointing vectors on the line
{t+ i : t ∈ R}. That is, the geodesic flow gt(i,−i) is given by

DTgat(i, i) = (ie−t,−ie−t)

and
gt(x+ i,−i) = DTgat(i,−i) = (x+ ie−t,−ie−t).
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By choosing the path
h(k) = kx+ ie−t, k ∈ [0, 1],

from ie−t to x+ ie−t, we calculate

L(h(k)) =

∫ 1

0

√
x2

e−t
dk = |x|et → 0

as t→ −∞ and continue analogously to the proof in Corollary 3.6.

Remark 3.8. Notice that we can equivalently define the horocycles as curves
whose perpendicular geodesics converge to the same point. The set of vectors on a
horocyle defining these geodesics which converge to the same point is called stable
horocycle and corresponds to the stable manifold for a vector on this horocyle. On
the other hand the set of vectors on a horocyle whose distances under the geodesic
flow go to infinity is called unstable horocycle and corresponds to the unstable
manifold for a vector on this horocyle.

Figure 3.1 shows a horocycle centered at infinity and a horocycle centered at x
in blue. The corresponding stable horocycles/manifolds are represented by green
vectors whereas the unstable horocycles/manifolds are represented by red vectors.

x

Figure 3.1: Horocycles and stable/unstable manifolds.

Definition 3.9. The stable horocycle flow is given by

hs : T 1H→ T 1H
(z, v) 7→ hs(z, v) = hs(DTg(i, i)) = DTgu−(s)−1(i, i),

(3.1)

if the Möbius transformation Tg maps (i, i) ∈ T 1H to (z, v) ∈ T 1H and

u−(s)−1 = u−(−s) =

(
1 −s
0 1

)
∈ PSL2(R).
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It sends (z, v) belonging to a stable horocycle to another vector on the same stable
horocycle.
Analogously, the unstable horocycle flow is given by

hs : T 1H→ T 1H
(z, v) 7→ hs(z, v) = hs(DTg(i, i)) = DTgu+(s)−1(i, i),

(3.2)

with

u+(s)−1 = u+(−s) =

(
1 0
−s 1

)
∈ PSL2(R).

It sends (z, v) belonging to an unstable horocycle to another vector on the same
unstable horocycle.

Remark 3.10. Just as in Corollary 3.3, (3.1) corresponds to

Ru−(s) : PSL2(R)→ PSL2(R)

g 7→ Ru−(s)(g) = gu−(−s)

and (3.2) corresponds to

Ru+(s) : PSL2(R)→ PSL2(R)

g 7→ Ru+(s)(g) = gu+(−s).

3.2 Dynamics on Γ \ PSL2(R)

Notice that the geodesic flow on H is not recurrent, since for any g ∈ PSL2(R)
the orbit leaves any compact set at some time. To get more exciting dynamics we
will consider geodesic flows on quotient spaces of PSL2(R).
Let F be a fundamental domain for the action of a Fuchsian group Γ on H and
let π : H→ Γ \H be the natural projection induced by Γ, where Γ \H consists of
Γ-orbits.

Definition 3.11. We call F of Γ locally finite if and only if for each compact
subset K of H the set {Tg(F ) ∩K : g ∈ Γ} is finite.

Theorem 3.12. If F is locally finite then there exists a homeomorphism between
Γ \ F and Γ \H.

The proof can be found in [2]. It is included in the proof of Theorem 9.2.4.

Remark 3.13. By Theorem 2.52, we know that if a fundamental region F of Γ
has finite hyperbolic area, then µ(F ) = µ(Γ \ F ). Thus combining this with the
last Theorem shows

µ(Γ \H) = µ(Γ \ F ) = µ(F ).
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Corollary 3.14. T 1F := {(z, v) ∈ TH : z ∈ F, ‖v‖z = 1} is a fundamental
domain for the action of Γ on PSL2(R).

Proof. By Theorem 2.10, PSL2(R) can be identified with T 1H. Thus we can
consider the action

DT : Γ× T 1H→ T 1H.
It follows that

T 1H = ∪g∈ΓDTg(T
1F ),

since we assume F to be a fundamental region of Γ on H. Let Tg(z) = z̃, z ∈ F ,
then z̃ ∈ F if and only if g is the identity. Therefore

(T 1
◦
F ) ∩DTg(T 1

◦
F ) = ∅

follows for all g not equal to the identity.

Remark 3.15. Let Γ be a Fuchsian group which does not contain elliptic elements,
i.e. it does not contain fixed points in H. Then it follows that T 1(Γ\H) = Γ\T 1H
and Γ \ PSL2(R) are homeomorphic. To get an idea of why this is true consider
the following maps.

T 1H PSL2(R)

Γ \ T 1H Γ \ PSL2(R)

φ

π′ π

Figure 3.2: Identification of Γ \ T 1H with Γ \ PSL2(R).

Let

φ : T 1H→ PSL2(R)

(z, v) = DTg(i, i) 7→ g

be the homeomorphism from Theorem 2.10, and let

π′ : T 1H→ Γ \ T 1H
(z, v) 7→ Γ(z, v) = {(z′, v′) := DTh(z, v) : h ∈ Γ},

π : PSL2(R)→ Γ \ PSL2(R)

g 7→ Γg = {hg : h ∈ Γ}
be the corresponding projections. Since

(z′, v′) = DTh(z, v) = DTh(DTg(i, i))
Cor. 2.11

= DThg(i, i),

we know by Theorem 2.10 that we can identify (z′, v′) ∈ Γ \ T 1H with hg ∈
Γ \ PSL2(R). Thus Γ \ T 1H ∼= Γ \ PSL2(R).
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Remark 3.16. By using the projection π′ : T 1H → T 1(Γ \ H) we can define the
geodesic flow on Γ \H

gt : T 1(Γ \H)→ T 1(Γ \H)

y := Γ(z, v) 7→ gt(y).

Remark 3.17. As in Corollary 3.3 the geodesic flow on Γ\H corresponds to right
multiplication by a−1

t

Rat : Γ \ PSL2(R)→ Γ \ PSL2(R)

x := Γg 7→ Rat(x) = xa−1
t .

Example 3.18. Let Γ = PSL2(Z). We have seen in Example 2.54 that a funda-
mental domain of the action of PSL2(Z) on H is given by

F = {z ∈ H : |<(z)| ≤ 1

2
, |z| ≥ 1}.

Since F is locally finite we can identify PSL2(Z) \H with PSL2(Z) \ F by Theo-
rem 3.12 and thus we can regard the geodesic flow on PSL2(Z) \ F given by

gt : T 1(PSL2(Z) \ F )→ T 1(PSL2(Z) \ F )

(z, v) = DTg(i, i) 7→ gt(z, v) = DTga−1
t

(i, i)

as the map

Rat : PSL2(Z) \ PSL2(R)→ PSL2(Z) \ PSL2(R)

x := PSL2(Z)g 7→ Rat(x) = xa−1
t .

Thus we can identify x with (z, v) = DTg(i, i) ∈ T 1(PSL2(Z) \ F ) such that
g ∈ PSL2(R) and z = Tg(i) ∈ F . If the geodesic is a vertical line, then the
geodesic flow Rat(x) follows the vertical line to infinity (represented by the black
arrow in Figure 3.3). If we assume that the geodesic is not a vertical line, then the
geodesic flow Rat(x) follows the geodesic uniquely determined by (z, v) until the
boundary of F is reached. That point z̃ on the boundary of F has a corresponding
unit vector ṽ pointing outside of F . By applying τ± or σ± to (z̃, ṽ) we obtain a
point z̄ on the boundary of F with a corresponding vector v̄ pointing inwards of
F . Again (z̄, v̄) determines a new geodesic which is followed by the geodesic flow
until the boundary of F is reached, where we repeat the former process. A possible
geodesic trajectory is illustrated in Figure 3.3, were the blue arrow represents the
vector (z, v), the green arrow the vector (z̃, ṽ) and the red arrow the vector (z̄, v̄).
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F

Figure 3.3: Geodesic flow on PSL2(Z) \ F .

Our next goal is to define a measure and a metric on the quotient space Γ \G.
We will need both in our last proof. Let us start by defining a left Haar measure
on a locally compact topological group G.

Definition 3.19. Consider a locally compact topological group G with Borel-σ-
algebra BG. We call a measure mG on the Borel subsets of G a left Haar measure
if mG satisfies the following properties:

(i) mG is left translation invariant, that is

mG(B) = mG(gB)

for all Borel subsets B ∈ BG and for all g ∈ G;
(ii) The measure mG(O) of any open subset O ⊆ G is positive;

(iii) The measure mG(K) of any compact subset K ⊆ G is finite.

Remark 3.20. (i) We can analogously define a right Haar measure.
(ii) It can be shown (Corollary 8.8 in [5]) that mG is unique up to a constant C.

This means that for any left Haar measure µ and for any Borel set B ∈ BG
there exists a constant C ∈ R>0 such that µ(B) = CmG(B). Notice that
mG(Bg) is also a left Haar measure for any g ∈ G if mG is. Thus there must
exist a unique continuous homomorphism mod form the group G into the
multiplicative group (R>0, ·) such that

mod (g)mG(B) = mG(Bg).
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Definition 3.21. We call the function mod : G→ R>0 described above modular
function or modular character.

Definition 3.22. G is called unimodular if mG is also a right Haar measure, or
equivalently, if mod (G) = {1}.

Theorem 3.23. Let Γ be a discrete subgroup of the closed linear group G, let

π : G→ X := Γ \G

be the natural projection and let F ⊆ G be a fundamental domain of Γ with finite
left Haar measure. Then the following hold:

(i) mG(F ′) = mG(F ) for any other fundamental region F ′ of Γ;
(ii) G is unimodular;

(iii) The measure
mX(B) := mG(π−1(B) ∩ F )

on X defined for all measurable subsets B of X is finite;
(iv) For all x ∈ X and g ∈ G the measure mX is invariant under the action

Rg(x) = xg−1.

Proof. (i) We prove a more general fact: Let A,A′ ⊆ G be two measurable sets
and let π|A, π|A′ be injective such that π(A) = π(A′). Then A and A′ have
the same left Haar measure. Since projections are surjective and we assume
π|A, π|A′ to be injective it follows that π|A, π|A′ are bijective as maps into
π(A). Thus for every g ∈ A there exists a unique γ ∈ Γ and g′ ∈ A′ such
that g = γg′ ∈ γA′. Thus we can write

A =
·
∪γ∈ΓA ∩ γA′ (3.3)

and
A′ =

·
∪γ′∈ΓA

′ ∩ γ′A. (3.4)

We can relate A ∩ γA′ with A′ ∩ γ′A in the following way

γ−1(A ∩ γA′) = γ−1A ∩ A′ γ
−1=:γ′
= γ′A ∩ A′, (3.5)

for γ ∈ Γ. To prove the claim we just need to gather the points above:

mG(A)
(3.3)
=
∑
γ∈Γ

mG(A ∩ γA′) =
∑
γ∈Γ

mG(A′ ∩ γ−1A)

(3.5)
=

∑
γ′∈Γ

mG(A′ ∩ γ′A)
(3.4)
= mG(A′),

(3.6)

where the second equation follows from (3.5) and the fact that mG is a left
Haar measure. Now if we consider two fundamental domains F, F ′ ⊆ G we
can use equation (3.6) to show that mG(F ) = mG(F ′).
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(ii) If F is a fundamental domain then F ′ := Fg is also a fundamental domain
for any g ∈ G. By Remark 3.20 we have mG(Fg) = mod (g)mG(F ). Then
using our result form (i) yields

mG(F ) = mG(F ′) = mG(Fg) = mod (g)mG(F )

for any g ∈ G. On the one hand mG(F ) is positive because Γ is discrete and
on the other hand mG(F ) is finite by assumption. Thus mod (G) = {1}
follows.

(iii) Since mG(F ) is finite the measure

mX(B) = mG(π−1(B) ∩ F ) ≤ mG(F )

is also finite for any measurable set B ⊆ X.
(iv) Since π(F ) = π(F ′) = X for any two fundamental domains F and F ′ it

follows that B ∩ π(F ) = B ∩ π(F ′) for any measurable set B ⊆ X. Let
A = π−1(B) ∩ F and A′ = π−1(B) ∩ F ′, then by applying the Haar measure
to these sets we get

mG(π−1(B) ∩ F ) = mG(A)
(3.6)
= mG(A′) = mG(π−1(B) ∩ F ′), (3.7)

which shows the independence of mX of the fundamental regions. If we define
D := π−1(B) ∩ F then

Dg = π−1(Bg) ∩ F ′ ⊆ F ′ := Fg

and

mG(D) = mG(Dg)

by the unimodularity of G. Then the equation

mX(R−1
g (B)) = mX(Bg)

Def.
= mG(π−1(Bg) ∩ F ′) = mG(Dg) = mG(D)

= mG(π−1(B) ∩ F )
Def.
= mX(B)

proves the claim that mX is right translation invariant, that is

mX(B) = mX(Bg)

for all measurable sets B ⊆ X and for all g ∈ G.

Remark 3.24. (i) mX(X) = mG(F ) <∞,
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(ii) mX(O) > 0 for any open set O ⊆ X.
To see this recall that π−1(O) is open in G, so that mG(π−1(O)) > 0. Now
we can write

π−1(O) = π−1(O) ∩G = ∪γ∈Γ(π−1(O) ∩ Fγ),

hence there exists a γ ∈ Γ such that

mG(π−1(O) ∩ Fγ) > 0.

But F ′ := Fγ is also a fundamental region, and by the independence of mX

of the fundamental regions (equation (3.7))

mX(O) = mG(π−1(O) ∩ F ) = mG(π−1(O) ∩ F ′) > 0.

(iii) Since mG is left translation invariant, so is mX .
By the points above and the right translation invariance shown in the last proof

the measure mX is called a Haar measure, but X may not be a group.

Now let us define a metric on X.

Definition 3.25. The metric on X = Γ \G is defined by

dX(Γg1,Γg2) := inf
γ1,γ2∈Γ

dG(γ1g1, γ2g2)
Corollary 2.34

= inf
γ1,γ2∈Γ

dG(g1, (γ1)−1γ2g2)

γ:=(γ1)−1γ2
= inf

γ∈Γ
dG(g1, γg2),

for g1, g2 ∈ G.

Remark 3.26. (i) On X the map

Rg : X → X

Γh 7→ Rg(Γh) = Γhg−1

is well-defined.
(ii) Let

π : G→ X

g 7→ Γg

be the quotient map. Then for g1, g2 ∈ G we have

dX(π(g1), π(g2)) = dX(Γg1,Γg2)
Definition 3.25

≤ dG(g1, g2).



3.3 Ergodicity of the geodesic flow 51

3.3 Ergodicity of the geodesic flow

Since PSL2(R) is a closed linear group we can apply Theorem 3.23 to PSL2(R)
and define X := Γ \ PSL2(R). Point (iv) in Theorem 3.23 has shown us that for
any g ∈ PSL2(R) the map Rg : X → X is a measure preserving transformation
with respect to the Haar measure mX . Therefore the time-t-map of the geodesic
flow Rat : X → X, at ∈ PSL2(R), is also a measure preserving transformation
with respect to mX . The last theorem in this section will show that for t 6= 0 the
geodesic flow Rat is ergodic with respect to mX . But first we need to remember
some useful theory.

Definition 3.27. Let (X,BX , µ) be a measure space and let T : X → X be a
measure preserving transformation, that is µ(A) = µ(T−1(A)) for any A ∈ BX .
T is called ergodic with respect to µ if A = T−1A implies either µ(A) = 0 or
µ(Ac) = 0, for any A ∈ BX .

Proposition 3.28. Let T be a measure preserving transformation on the measure
space (X,BX , µ). To say that T is ergodic is equivalent to the following statement:
Let f : X → R be a measurable function such that f ◦ T = f µ-almost every-
where, that is f is T -invariant µ-almost everywhere. Then f is constant µ-almost
everywhere.

Proof. Assume first that f is T -invariant µ-almost everywhere but f is not constant
µ−almost everywhere. Then there exists some a ∈ R such that the sets A :=
f−1((−∞, a]) and Ac := f−1((a,∞)) have positive measure. Thus we get

A = f−1((−∞, a])
T−invariance

= (f ◦ T )−1((−∞, a])

= T−1 ◦ f−1((−∞, a]) = T−1(A)

and similarly

Ac = f−1((a,∞))
T−invariance

= (f ◦ T )−1((a,∞))

= T−1 ◦ f−1((a,∞)) = T−1(Ac).

Therefore T is a measure preserving transformation with A = T−1(A), Ac =
T−1(Ac) and µ(A) > 0, µ(Ac) > 0, which implies that T is not ergodic.
Now suppose A ∈ BX such that µ(A) > 0 and A = T−1(A). Define f := IA to be
the indicator function of A. Then

µ(f ◦ T−1(A))
A=T−1(A)

= µ(f(A))

shows T -invariance of f µ-almost everywhere and thus f is constant µ-almost ev-
erywhere. Since we assumed µ(A) > 0, it follows that f = 1 µ-almost everywhere.
Then f c := IAc = 0 µ-almost everywhere and

µ(Ac) =

∫
X

f cdµ = 0,
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which implies ergodicity of T .

Theorem 3.29. (Lusin’s Theorem)
Let (X,BX , µ) be a measure space and let f : X → R be a measurable function
that is finite µ-almost everywhere. Then for any ε > 0 there exists a compact set
K ⊆ X such that f |K : K → R is continuous and µ(X \K) < ε.

A proof can be found in [14] or in any standard measure theory book.

Definition 3.30. Let (fn)n≥1 be a sequence in Lpµ = {f ∈ L0
µ : (

∫
|f |pdµ)

1
p <∞},

p ∈ [0,∞). (fn)n≥1 converges in Lpµ to f ∈ Lpµ if limn→∞ ‖fn − f‖p = 0.

Theorem 3.31. (Birkhoff’s Pointwise Ergodic Theorem)
Let (X,BX , µ) be a measure space and let T : X → X be a measure preserv-
ing transformation. Assume f ∈ L1

µ. Then for any x ∈ X almost everywhere
1
n

∑n−1
j=0 f(T jx) converges to f ∗(x), where f ∗ ∈ L1

µ is a T -invariant function and∫
fdµ =

∫
f ∗dµ. (3.8)

Additionally f ∗(x) =
∫
fdµ almost everywhere, if T is ergodic.

The proof of Proposition 3.31 can be found in [5] (Theorem 2.30).

Proposition 3.32. Let mG be a left Haar measure on G, where G is a metrizable,
σ-locally compact group. Then the sets

{g ∈ G : mG(gB1 ∩B2) > 0}

and
{g ∈ G : mG(B1g ∩B2) > 0}

are non-empty and open, if B1, B2 ∈ BG such that mG(B1)mG(B2) > 0.
Additionally, if B ∈ BG then

mG(B) > 0 ⇐⇒ mG(B−1) > 0. (3.9)

Proof. We know that

mG(gB1 ∩B2) =

∫
IgB1(h)IB2(h)dmG(h). (3.10)

So if h ∈ gB1, then there exists a h̃ ∈ B1 such that h = gh̃. Therefore g = hh̃−1

and g ∈ hB−1
1 . Thus we can write

IhB−1
1

(g) = IgB1(h). (3.11)
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Then∫
mG(gB1 ∩B2)dmG(g)

(3.10)
=

∫
(

∫
IgB1(h)IB2(h)dmG(h))dmG(g)

(3.11)
=

∫
(

∫
IhB−1

1
(g)IB2(h)dmG(h))dmG(g)

Fubini
=

∫
IB2(h)(

∫
IhB−1

1
(g)dmG(g))dmG(h)

=

∫
IB2(h)mG(hB−1

1 )dmG(h)

(∗)
= mG(B−1

1 )

∫
IB2(h)dmG(h) = mG(B−1

1 )mG(B2),

(3.12)

where equation (∗) follows because mG is a left Haar measure. Notice that
IhB−1

1
(g), IB2(h) are not negative but they might not be integrable. In that case

we can exchange B1 and B2 with sequences of subsets which have compact closures
in order to use Fubini’s theorem. Now set G = B2, then

mG(B−1
1 )mG(G)

(3.12)
=

∫
mG(gB1 ∩G)dmG(g)

= mG(gB1)

∫
dmG(g) = mG(B1)mG(G),

and so mG(B1) = mG(B−1
1 ), which implies (3.9). It follows that∫

mG(gB1 ∩B2)dmG(g) = mG(B−1
1 )mG(B2) = mG(B1)mG(B2) > 0,

which implies that O := {g ∈ G : mG(gB1 ∩ B2) > 0} is not empty. To show
that O is also open we write B1 = ∪∞n=1An as a countable union of open sets with
compact closures. We can do this since we assumed G to be σ-compact. Then we
choose g, g1 ∈ O such that mG(gB1 ∩ B2) > 0. Therefore, there must exist some
An such that ε := mG(gAn ∩ B2) > 0. Now we want to show that the difference
between mG(gAn ∩B2) and mG(g1An ∩B2) is smaller than ε. For this we write

mG(g1An ∩B2) =

∫
Ig1An(h)IB2(h)dmG(h) =

∫
IAn(g−1

1 h)IB2(h)dmG(h)

and using f := IAn we can show that for g, g1 sufficiently close to each other the
second term of

|mG(g1An ∩B2)−mG(gAn ∩B2)| ≤ |
∫

(f(g−1
1 h)− f(g−1h))IB2(h)dmG(h)|
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is smaller than ε. See Lemma 8.7 in [5] for more details on how to prove this.
To show that O′ := {g ∈ G : mG(B1g∩B2) > 0} is non-empty and open remember
that mG(Bi) = mG(B−1

i ) for i = 1, 2 and so we get

0 < mG(B1)mG(B2) = mG(B−1
1 )mG(B−1

2 ),

which implies

mG(B−1
1 ) > 0,mG(B−1

2 ) > 0. (3.13)

Notice that we can write

{g ∈ G : mG(B1g ∪B2) > 0} = {h ∈ G : mG(hB−1
1 ∩B−1

2 ) > 0}−1.

Then since ∫
mG(hB−1

1 ∩B−1
2 )dmG(h) = mG(B−1

1 )mG(B−1
2 )

(3.13)
> 0,

it follows that {h ∈ G : mG(hB−1
1 ∩ B−1

2 ) > 0} is not empty and consequently
{h ∈ G : mG(hB−1

1 ∩ B−1
2 ) > 0}−1 is not empty. To show that O′ is open we can

repeat the part above, where we showed that O is open.

Theorem 3.33. (Heine-Cantor)
Let X be a compact metric space and Y be a metric space. Then a continuous
function f : X → Y is uniformly continuous.

The proof of Theorem 3.33 can be found for example in [13] (Theorem 4.19).

Theorem 3.34. Let Γ be a lattice in PSL2(R) and X = Γ \ PSL2(R). Then
Rat : X → X is ergodic with respect to mX for any t 6= 0.

Proof. Let f : X → R be a measurable function such that f ◦Rat = f mX-almost
everywhere for t 6= 0. We want to show f is constant and use Proposition 3.28 to
conclude that Rat is ergodic with respect to mX .

We start by normalising the measure mX such that mX(X) = 1. Then by
Lusin’s Theorem for any ε > 0 we can find a compact set K in X with measure
mX(K) > 1− ε and continuous function f |K : K → R.
Claim:

mX(B) > 1− 2ε (3.14)

for the set

B := {x ∈ X : lim
n→∞

1

n

n−1∑
l=0

IK(Rl
atx) >

1

2
}, (3.15)
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containing points that are in K for more than 1
2

of their future time.
Proof of the claim: Notice that

g∗(x) := lim
n→∞

1

n

n−1∑
l=0

IK(Rl
atx)

exists almost everywhere (by Theorem 3.31) and is in the interval [0, 1] by defini-
tion. Now by using equation (3.8) we get∫

g∗dmX =

∫
IKdmX = mX(K).

Thus

1− ε < mX(K) =

∫
X

g∗dmX =

∫
B

g∗dmX +

∫
X\B

g∗dmX

(1)

≤
∫
B

dmX +
1

2

∫
X\B

dmX = mX(B) +
1

2
mX(X \B)

mX(X)=1
= mX(B) +

1

2
(1−mX(B)),

where inequality (1) follows since g∗ ∈ (1
2
, 1] on B and g∗ ∈ [0, 1

2
) in X \B. There-

fore we obtain 1− 2ε < mX(B).

Now let the points
x, y := Ru−(s)x ∈ B

be connected by a stable manifold (see Remark 3.10 and Remark 3.17), for u−(s) :=(
1 s
0 1

)
, s ∈ R. Since we assumed f to be Rat-invariant we get

f(x) = f(Rl
at(x)), f(y) = f(Rl

at(y)) (3.16)

for all l ≥ 1. Moreover

dX(Rl
at(x), Rl

at(y)) = dX(Rl
at(x), Rl

at(Ru−(s)x)) = dX(xa−lt , R
l
at(xu

−(−s)))

= dX(xa−lt , xu
−(−s)a−lt )

(1)

≤ dPSL2(R)(I2, a
l
tu
−(−s)a−lt )

= dPSL2(R)(I2,

(
1 −se−lt
0 1

)
)
l→∞→ 0,

(3.17)

i.e. the distance between Rl
at(x) and Rl

at(y) goes to 0 as l goes to infinity. Note
that (1) follows by Remark 3.24 (iii) and Remark 3.26 (ii).
The points x, y are in K for more than 1

2
of their future time, since we assumed
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x, y ∈ B. Thus there exists a sequence of common return times to K, (ln)n≥0 going
to infinity as n→∞, such that

Rln
at(x), Rln

at(y) ∈ K.

We have seen that f |K is continuous and using the Theorem of Heine-Cantor shows
that f |K is uniformly continuous. This means that for any ε > 0 there exists a
δ > 0 such that for all Rln

at(x), Rln
at(y) ∈ K with dX(Rln

at(x), Rln
at(y)) < δ we get

dR(f(Rln
at(x)), f(Rln

at(y)))
(3.16)
= dR(f(x), f(y)) < ε. (3.18)

Because of (3.17) the distance between Rln
at(x) and Rln

at(y) also goes to 0 as n→∞,
which by (3.18) implies f(x) = f(y).

We can go through the same procedure as in the beginning of this proof for any
other 0 < ε1 < ε. That is, for ε1 we can find a compact set K1 ⊆ X such that f |K1

is continuous and mX(K1) > 1 − ε1 by Lusin’s Theorem. Since f |K and f |K1 are
continuous, so is f |K∪K1 and we can assume K ⊆ K1. Again we define the set

B1 := {x ∈ X : lim
n→∞

n−1∑
l=0

IK1(R
l
atx) >

1

2
}

satisfying B ⊆ B1.
Because ε was arbitrary we can continue this way (by letting ε→ 0) until we find
a compact set X ′ ⊆ X such that mX(X ′) = 1 and f |X′ is continuous. It then
follows by the above that since

B′ := {x ∈ X : lim
n→∞

n−1∑
l=0

IK′(Rl
atx) >

1

2
} ⊂ X

and

mX(B′)
(3.14)
> 1− 2ε

(with ε→ 0) we must have

mX(B′) = 1 = mX(X) = mX(X ′). (3.19)

Thus it follows analogously to our discussion above that f(x) = f(y) for x, y :=
Ru−s(x) ∈ B′ which corresponds to x, y ∈ X ′ by (3.19).

We can repeat what we have done so far for R−1
at . This means that for ε > 0 we

can find a compact set K̃ ⊆ X such that the set

B̃ := {x ∈ X : lim
n→∞

1

n

n−1∑
l=0

IK̃(R−lat x) >
1

2
}
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has measure mX(B̃) > 1− 2ε.
Then for

x, y := Ru+(s)x ∈ B̃,

connected by an unstable manifold (see Remark 3.10), where u+(s) :=

(
1 0
s 1

)
and s ∈ R, the inequality (3.17) becomes

dX(R−lat (x), R−lat (y)) = dX(xalt, xu
+(−s)alt) ≤ dPSL2(R)(I2, a

−l
t u

+(−s)alt)

= dPSL2(R)(I2,

(
1 0

−se−lt 1

)
)
l→∞→ 0.

In contrast to before, x, y are in K̃ for more than 1
2

of their past time. But the
rest follows analogously. Therefore we eventually find a set X ′′ with full measure
such that f(x) = f(y) for x, y = Ru+(s)(x) ∈ X ′′.

Now on the set X1 := X ′ ∩X ′′ we get f(x) = f(y) for x, y := Ru−(s)(x) as well
as x, y = Ru+(s)(x). That is, f is constant on points which are connected by a
stable or unstable manifold.
Remember that by Remark 2.51 U+, U− generate SL2(R). Hence it can be shown
that any element g of SL2(R) can be written as

g = u+(s4)u−(s3)u+(s2)u−(s1),

for s1, s2, s3, s4 ∈ R. To understand g better let us consider what Rg(x) does.
Assume Rg(x) = y. Rg(x) sends x first along the stable manifold containing x to
a point y1. It will need time s1 to get to y1. Afterwards y1 is sent during time s2

to the point y2 along the unstable manifold containing y1 and y2. Then repeat the
procedure until you reach the point y. The idea is shown in Figure 3.4, where we
represented the stable manifolds as green lines and the unstable manifolds as red
lines.
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x y1

y2 y3

y

Figure 3.4: Points x, y1, y2, y3 and y on the stable/unstable manifolds.

Now we claim:
mX(Xg) = 1

for

Xg := X1 ∩R−1
u−(s1)(X1) ∩R−1

u+(s2)u−(s1)(X1) ∩R−1
u−(s3)u+(s2)u−(s1)(X1) ∩R−1

g (X1)

and
f(x) = f(Rg(x)) (3.20)

for all x ∈ Xg.
Proof of the claim:

(i) Let x ∈ X1, then

y1 := Ru−(s1)(x) ∈ X1 ⇐⇒ x ∈ R−1
u−(s1)(X1).

Thus for x ∈ X1 ∩R−1
u−(s1)(X1) it follows that

f(x) = f(Ru−(s1)(x))

by the argument above. Since mX is invariant under Ru−(s1), R
−1
u−(s1)(X1) has

full measure.
(ii) Now define y2 := Ru+(s2)(y1) = Ru+(s2)Ru−(s1)(x). Then

y2 ∈ X1 ⇐⇒ x ∈ (Ru+(s2)Ru−(s1))
−1(X1) =: R−1

u+(s2)u−(s1)(X1).
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Thus for x ∈ X1 ∩R−1
u−(s1)(X1) ∩R−1

u+(s2)u−(s1)(X1) we get

f(x) = f(Ru+(s2)u−(s1)(x)),

again by the above argument. Since mX is invariant under Ru+(s2) and

R−1
u−(s1)(X1) has full measure, we know that R−1

u+(s2)u−(s1)(X1) has full measure.

By continuing this way the claim follows.

Now let us assume f : X → R is not constant almost everywhere with respect
to mX . Then we can find disjoint intervals I1, I2 ⊆ R, such that f(Γh) is either in
I1 or in I2 for h ∈ PSL2(R). Then since f is not constant almost everywhere the
sets

C1 := {h ∈ PSL2(R) : f(Γh) ∈ I1},
C2 := {h ∈ PSL2(R) : f(Γh) ∈ I2}

have neither zero measure nor full measure with respect to mPSL2(R), so

mPSL2(R)(C1)mPSL2(R)(C2) > 0.

Proposition 3.32 then implies that there exist g ∈ PSL2(R) such that

mPSL2(R)(C1 ∩ C2g) > 0.

Now consider the set

Dg := {h ∈ PSL2(R) : Γh ∈ Xg}.

Since mX(Xg) = 1 it follows that mX(Xc
g) = 0 and therefore mPSL2(R)(D

c
g) = 0.

This implies that there is some h ∈ PSL2(R) with h ∈ C1∩C2g∩Dg. But h ∈ Dg

implies

Γh ∈ Xg
(3.20)
=⇒ f(Γh) = f(Γhg−1), (3.21)

whereas
f(Γh) ∈ I1 (3.22)

for h ∈ C1 and
f(Γhg−1) ∈ I2 (3.23)

for hg−1 ∈ C2 ⇐⇒ h ∈ C2g. Because we assumed the intervals I1, I2 to be
disjoint, (3.22) and (3.23) contradict (3.21). Consequently, f is constant almost
everywhere with respect to mX , which is what we needed to show to prove the
ergodicity of the geodesic flow.

Remark 3.35. The last proof uses the so-called Hopf Argument:
Let us use the notation from Theorem 3.31.
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(i) By Theorem 3.31 for any x ∈ X

lim
n→∞

1

n

n−1∑
j=0

f ◦ T j(x) = f ∗(x)

almost everywhere.
(ii) If we choose an element y on the stable manifold

W s(x) := {y ∈ X : lim
n→∞

|T n(x)− T n(y)| = 0}

of x, then the distance between f ◦ T j(x) and f ◦ T j(y) goes to zero for
j →∞. Thus,

f ∗(x) = lim
n→∞

1

n

n−1∑
j=0

f ◦ T j(x) = lim
n→∞

1

n

n−1∑
j=0

f ◦ T j(y) = f ∗(y),

which implies that f is constant on stable manifolds.
By the T -invariance of f , we can write f ∗(x) = limn→∞

1
n

∑n−1
j=0 f ◦ T−j(x) and

conclude that f is also constant on unstable manifolds.

Remark 3.36. (i) Theorem 3.34 in particular implies that the geodesic flow on
PSL2(Z) \ PSL2(R) is ergodic.

(ii) Using Remark 3.16 and Remark 3.17 we can rephrase Theorem 3.34:
The geodesic flow

gt : T 1(Γ \H)→ T 1(Γ \H)

is ergodic with respect to the Liouville measure (see Theorem 17.4 in [8]).
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